5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
84 extern const struct regexp_engine my_reg_engine;
89 #include "dquote_static.c"
90 #include "charclass_invlists.h"
91 #include "inline_invlist.c"
92 #include "unicode_constants.h"
94 #define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
95 #define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
96 #define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
103 # if defined(BUGGY_MSC6)
104 /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
105 # pragma optimize("a",off)
106 /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
107 # pragma optimize("w",on )
108 # endif /* BUGGY_MSC6 */
112 #define STATIC static
116 typedef struct RExC_state_t {
117 U32 flags; /* RXf_* are we folding, multilining? */
118 U32 pm_flags; /* PMf_* stuff from the calling PMOP */
119 char *precomp; /* uncompiled string. */
120 REGEXP *rx_sv; /* The SV that is the regexp. */
121 regexp *rx; /* perl core regexp structure */
122 regexp_internal *rxi; /* internal data for regexp object pprivate field */
123 char *start; /* Start of input for compile */
124 char *end; /* End of input for compile */
125 char *parse; /* Input-scan pointer. */
126 I32 whilem_seen; /* number of WHILEM in this expr */
127 regnode *emit_start; /* Start of emitted-code area */
128 regnode *emit_bound; /* First regnode outside of the allocated space */
129 regnode *emit; /* Code-emit pointer; ®dummy = don't = compiling */
130 I32 naughty; /* How bad is this pattern? */
131 I32 sawback; /* Did we see \1, ...? */
133 I32 size; /* Code size. */
134 I32 npar; /* Capture buffer count, (OPEN). */
135 I32 cpar; /* Capture buffer count, (CLOSE). */
136 I32 nestroot; /* root parens we are in - used by accept */
139 regnode **open_parens; /* pointers to open parens */
140 regnode **close_parens; /* pointers to close parens */
141 regnode *opend; /* END node in program */
142 I32 utf8; /* whether the pattern is utf8 or not */
143 I32 orig_utf8; /* whether the pattern was originally in utf8 */
144 /* XXX use this for future optimisation of case
145 * where pattern must be upgraded to utf8. */
146 I32 uni_semantics; /* If a d charset modifier should use unicode
147 rules, even if the pattern is not in
149 HV *paren_names; /* Paren names */
151 regnode **recurse; /* Recurse regops */
152 I32 recurse_count; /* Number of recurse regops */
155 I32 override_recoding;
156 I32 in_multi_char_class;
157 struct reg_code_block *code_blocks; /* positions of literal (?{})
159 int num_code_blocks; /* size of code_blocks[] */
160 int code_index; /* next code_blocks[] slot */
162 char *starttry; /* -Dr: where regtry was called. */
163 #define RExC_starttry (pRExC_state->starttry)
165 SV *runtime_code_qr; /* qr with the runtime code blocks */
167 const char *lastparse;
169 AV *paren_name_list; /* idx -> name */
170 #define RExC_lastparse (pRExC_state->lastparse)
171 #define RExC_lastnum (pRExC_state->lastnum)
172 #define RExC_paren_name_list (pRExC_state->paren_name_list)
176 #define RExC_flags (pRExC_state->flags)
177 #define RExC_pm_flags (pRExC_state->pm_flags)
178 #define RExC_precomp (pRExC_state->precomp)
179 #define RExC_rx_sv (pRExC_state->rx_sv)
180 #define RExC_rx (pRExC_state->rx)
181 #define RExC_rxi (pRExC_state->rxi)
182 #define RExC_start (pRExC_state->start)
183 #define RExC_end (pRExC_state->end)
184 #define RExC_parse (pRExC_state->parse)
185 #define RExC_whilem_seen (pRExC_state->whilem_seen)
186 #ifdef RE_TRACK_PATTERN_OFFSETS
187 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */
189 #define RExC_emit (pRExC_state->emit)
190 #define RExC_emit_start (pRExC_state->emit_start)
191 #define RExC_emit_bound (pRExC_state->emit_bound)
192 #define RExC_naughty (pRExC_state->naughty)
193 #define RExC_sawback (pRExC_state->sawback)
194 #define RExC_seen (pRExC_state->seen)
195 #define RExC_size (pRExC_state->size)
196 #define RExC_npar (pRExC_state->npar)
197 #define RExC_nestroot (pRExC_state->nestroot)
198 #define RExC_extralen (pRExC_state->extralen)
199 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
200 #define RExC_utf8 (pRExC_state->utf8)
201 #define RExC_uni_semantics (pRExC_state->uni_semantics)
202 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
203 #define RExC_open_parens (pRExC_state->open_parens)
204 #define RExC_close_parens (pRExC_state->close_parens)
205 #define RExC_opend (pRExC_state->opend)
206 #define RExC_paren_names (pRExC_state->paren_names)
207 #define RExC_recurse (pRExC_state->recurse)
208 #define RExC_recurse_count (pRExC_state->recurse_count)
209 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
210 #define RExC_contains_locale (pRExC_state->contains_locale)
211 #define RExC_override_recoding (pRExC_state->override_recoding)
212 #define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
215 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
216 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
217 ((*s) == '{' && regcurly(s, FALSE)))
220 #undef SPSTART /* dratted cpp namespace... */
223 * Flags to be passed up and down.
225 #define WORST 0 /* Worst case. */
226 #define HASWIDTH 0x01 /* Known to match non-null strings. */
228 /* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
229 * character. (There needs to be a case: in the switch statement in regexec.c
230 * for any node marked SIMPLE.) Note that this is not the same thing as
233 #define SPSTART 0x04 /* Starts with * or + */
234 #define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
235 #define TRYAGAIN 0x10 /* Weeded out a declaration. */
236 #define RESTART_UTF8 0x20 /* Restart, need to calcuate sizes as UTF-8 */
238 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
240 /* whether trie related optimizations are enabled */
241 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
242 #define TRIE_STUDY_OPT
243 #define FULL_TRIE_STUDY
249 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
250 #define PBITVAL(paren) (1 << ((paren) & 7))
251 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
252 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
253 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
255 #define REQUIRE_UTF8 STMT_START { \
257 *flagp = RESTART_UTF8; \
262 /* This converts the named class defined in regcomp.h to its equivalent class
263 * number defined in handy.h. */
264 #define namedclass_to_classnum(class) ((int) ((class) / 2))
265 #define classnum_to_namedclass(classnum) ((classnum) * 2)
267 /* About scan_data_t.
269 During optimisation we recurse through the regexp program performing
270 various inplace (keyhole style) optimisations. In addition study_chunk
271 and scan_commit populate this data structure with information about
272 what strings MUST appear in the pattern. We look for the longest
273 string that must appear at a fixed location, and we look for the
274 longest string that may appear at a floating location. So for instance
279 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
280 strings (because they follow a .* construct). study_chunk will identify
281 both FOO and BAR as being the longest fixed and floating strings respectively.
283 The strings can be composites, for instance
287 will result in a composite fixed substring 'foo'.
289 For each string some basic information is maintained:
291 - offset or min_offset
292 This is the position the string must appear at, or not before.
293 It also implicitly (when combined with minlenp) tells us how many
294 characters must match before the string we are searching for.
295 Likewise when combined with minlenp and the length of the string it
296 tells us how many characters must appear after the string we have
300 Only used for floating strings. This is the rightmost point that
301 the string can appear at. If set to I32 max it indicates that the
302 string can occur infinitely far to the right.
305 A pointer to the minimum number of characters of the pattern that the
306 string was found inside. This is important as in the case of positive
307 lookahead or positive lookbehind we can have multiple patterns
312 The minimum length of the pattern overall is 3, the minimum length
313 of the lookahead part is 3, but the minimum length of the part that
314 will actually match is 1. So 'FOO's minimum length is 3, but the
315 minimum length for the F is 1. This is important as the minimum length
316 is used to determine offsets in front of and behind the string being
317 looked for. Since strings can be composites this is the length of the
318 pattern at the time it was committed with a scan_commit. Note that
319 the length is calculated by study_chunk, so that the minimum lengths
320 are not known until the full pattern has been compiled, thus the
321 pointer to the value.
325 In the case of lookbehind the string being searched for can be
326 offset past the start point of the final matching string.
327 If this value was just blithely removed from the min_offset it would
328 invalidate some of the calculations for how many chars must match
329 before or after (as they are derived from min_offset and minlen and
330 the length of the string being searched for).
331 When the final pattern is compiled and the data is moved from the
332 scan_data_t structure into the regexp structure the information
333 about lookbehind is factored in, with the information that would
334 have been lost precalculated in the end_shift field for the
337 The fields pos_min and pos_delta are used to store the minimum offset
338 and the delta to the maximum offset at the current point in the pattern.
342 typedef struct scan_data_t {
343 /*I32 len_min; unused */
344 /*I32 len_delta; unused */
348 I32 last_end; /* min value, <0 unless valid. */
351 SV **longest; /* Either &l_fixed, or &l_float. */
352 SV *longest_fixed; /* longest fixed string found in pattern */
353 I32 offset_fixed; /* offset where it starts */
354 I32 *minlen_fixed; /* pointer to the minlen relevant to the string */
355 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
356 SV *longest_float; /* longest floating string found in pattern */
357 I32 offset_float_min; /* earliest point in string it can appear */
358 I32 offset_float_max; /* latest point in string it can appear */
359 I32 *minlen_float; /* pointer to the minlen relevant to the string */
360 I32 lookbehind_float; /* is the position of the string modified by LB */
364 struct regnode_charclass_class *start_class;
368 * Forward declarations for pregcomp()'s friends.
371 static const scan_data_t zero_scan_data =
372 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
374 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
375 #define SF_BEFORE_SEOL 0x0001
376 #define SF_BEFORE_MEOL 0x0002
377 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
378 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
381 # define SF_FIX_SHIFT_EOL (0+2)
382 # define SF_FL_SHIFT_EOL (0+4)
384 # define SF_FIX_SHIFT_EOL (+2)
385 # define SF_FL_SHIFT_EOL (+4)
388 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
389 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
391 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
392 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
393 #define SF_IS_INF 0x0040
394 #define SF_HAS_PAR 0x0080
395 #define SF_IN_PAR 0x0100
396 #define SF_HAS_EVAL 0x0200
397 #define SCF_DO_SUBSTR 0x0400
398 #define SCF_DO_STCLASS_AND 0x0800
399 #define SCF_DO_STCLASS_OR 0x1000
400 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
401 #define SCF_WHILEM_VISITED_POS 0x2000
403 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
404 #define SCF_SEEN_ACCEPT 0x8000
406 #define UTF cBOOL(RExC_utf8)
408 /* The enums for all these are ordered so things work out correctly */
409 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
410 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_DEPENDS_CHARSET)
411 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
412 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) >= REGEX_UNICODE_CHARSET)
413 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_RESTRICTED_CHARSET)
414 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) >= REGEX_ASCII_RESTRICTED_CHARSET)
415 #define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
417 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
419 #define OOB_NAMEDCLASS -1
421 /* There is no code point that is out-of-bounds, so this is problematic. But
422 * its only current use is to initialize a variable that is always set before
424 #define OOB_UNICODE 0xDEADBEEF
426 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
427 #define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
430 /* length of regex to show in messages that don't mark a position within */
431 #define RegexLengthToShowInErrorMessages 127
434 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
435 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
436 * op/pragma/warn/regcomp.
438 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
439 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
441 #define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
444 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
445 * arg. Show regex, up to a maximum length. If it's too long, chop and add
448 #define _FAIL(code) STMT_START { \
449 const char *ellipses = ""; \
450 IV len = RExC_end - RExC_precomp; \
453 SAVEFREESV(RExC_rx_sv); \
454 if (len > RegexLengthToShowInErrorMessages) { \
455 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
456 len = RegexLengthToShowInErrorMessages - 10; \
462 #define FAIL(msg) _FAIL( \
463 Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \
464 msg, (int)len, RExC_precomp, ellipses))
466 #define FAIL2(msg,arg) _FAIL( \
467 Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \
468 arg, (int)len, RExC_precomp, ellipses))
471 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
473 #define Simple_vFAIL(m) STMT_START { \
474 const IV offset = RExC_parse - RExC_precomp; \
475 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
476 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
480 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
482 #define vFAIL(m) STMT_START { \
484 SAVEFREESV(RExC_rx_sv); \
489 * Like Simple_vFAIL(), but accepts two arguments.
491 #define Simple_vFAIL2(m,a1) STMT_START { \
492 const IV offset = RExC_parse - RExC_precomp; \
493 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \
494 (int)offset, RExC_precomp, RExC_precomp + offset); \
498 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
500 #define vFAIL2(m,a1) STMT_START { \
502 SAVEFREESV(RExC_rx_sv); \
503 Simple_vFAIL2(m, a1); \
508 * Like Simple_vFAIL(), but accepts three arguments.
510 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
511 const IV offset = RExC_parse - RExC_precomp; \
512 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \
513 (int)offset, RExC_precomp, RExC_precomp + offset); \
517 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
519 #define vFAIL3(m,a1,a2) STMT_START { \
521 SAVEFREESV(RExC_rx_sv); \
522 Simple_vFAIL3(m, a1, a2); \
526 * Like Simple_vFAIL(), but accepts four arguments.
528 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
529 const IV offset = RExC_parse - RExC_precomp; \
530 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \
531 (int)offset, RExC_precomp, RExC_precomp + offset); \
534 #define vFAIL4(m,a1,a2,a3) STMT_START { \
536 SAVEFREESV(RExC_rx_sv); \
537 Simple_vFAIL4(m, a1, a2, a3); \
540 /* m is not necessarily a "literal string", in this macro */
541 #define reg_warn_non_literal_string(loc, m) STMT_START { \
542 const IV offset = loc - RExC_precomp; \
543 Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s" REPORT_LOCATION, \
544 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
547 #define ckWARNreg(loc,m) STMT_START { \
548 const IV offset = loc - RExC_precomp; \
549 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
550 (int)offset, RExC_precomp, RExC_precomp + offset); \
553 #define vWARN_dep(loc, m) STMT_START { \
554 const IV offset = loc - RExC_precomp; \
555 Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), m REPORT_LOCATION, \
556 (int)offset, RExC_precomp, RExC_precomp + offset); \
559 #define ckWARNdep(loc,m) STMT_START { \
560 const IV offset = loc - RExC_precomp; \
561 Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
563 (int)offset, RExC_precomp, RExC_precomp + offset); \
566 #define ckWARNregdep(loc,m) STMT_START { \
567 const IV offset = loc - RExC_precomp; \
568 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
570 (int)offset, RExC_precomp, RExC_precomp + offset); \
573 #define ckWARN2regdep(loc,m, a1) STMT_START { \
574 const IV offset = loc - RExC_precomp; \
575 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
577 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
580 #define ckWARN2reg(loc, m, a1) STMT_START { \
581 const IV offset = loc - RExC_precomp; \
582 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
583 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
586 #define vWARN3(loc, m, a1, a2) STMT_START { \
587 const IV offset = loc - RExC_precomp; \
588 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
589 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
592 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
593 const IV offset = loc - RExC_precomp; \
594 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
595 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
598 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
599 const IV offset = loc - RExC_precomp; \
600 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
601 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
604 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
605 const IV offset = loc - RExC_precomp; \
606 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
607 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
610 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
611 const IV offset = loc - RExC_precomp; \
612 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
613 a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
617 /* Allow for side effects in s */
618 #define REGC(c,s) STMT_START { \
619 if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
622 /* Macros for recording node offsets. 20001227 mjd@plover.com
623 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
624 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
625 * Element 0 holds the number n.
626 * Position is 1 indexed.
628 #ifndef RE_TRACK_PATTERN_OFFSETS
629 #define Set_Node_Offset_To_R(node,byte)
630 #define Set_Node_Offset(node,byte)
631 #define Set_Cur_Node_Offset
632 #define Set_Node_Length_To_R(node,len)
633 #define Set_Node_Length(node,len)
634 #define Set_Node_Cur_Length(node)
635 #define Node_Offset(n)
636 #define Node_Length(n)
637 #define Set_Node_Offset_Length(node,offset,len)
638 #define ProgLen(ri) ri->u.proglen
639 #define SetProgLen(ri,x) ri->u.proglen = x
641 #define ProgLen(ri) ri->u.offsets[0]
642 #define SetProgLen(ri,x) ri->u.offsets[0] = x
643 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
645 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
646 __LINE__, (int)(node), (int)(byte))); \
648 Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
650 RExC_offsets[2*(node)-1] = (byte); \
655 #define Set_Node_Offset(node,byte) \
656 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
657 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
659 #define Set_Node_Length_To_R(node,len) STMT_START { \
661 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
662 __LINE__, (int)(node), (int)(len))); \
664 Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
666 RExC_offsets[2*(node)] = (len); \
671 #define Set_Node_Length(node,len) \
672 Set_Node_Length_To_R((node)-RExC_emit_start, len)
673 #define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len)
674 #define Set_Node_Cur_Length(node) \
675 Set_Node_Length(node, RExC_parse - parse_start)
677 /* Get offsets and lengths */
678 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
679 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
681 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
682 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
683 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
687 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
688 #define EXPERIMENTAL_INPLACESCAN
689 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
691 #define DEBUG_STUDYDATA(str,data,depth) \
692 DEBUG_OPTIMISE_MORE_r(if(data){ \
693 PerlIO_printf(Perl_debug_log, \
694 "%*s" str "Pos:%"IVdf"/%"IVdf \
695 " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
696 (int)(depth)*2, "", \
697 (IV)((data)->pos_min), \
698 (IV)((data)->pos_delta), \
699 (UV)((data)->flags), \
700 (IV)((data)->whilem_c), \
701 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
702 is_inf ? "INF " : "" \
704 if ((data)->last_found) \
705 PerlIO_printf(Perl_debug_log, \
706 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
707 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
708 SvPVX_const((data)->last_found), \
709 (IV)((data)->last_end), \
710 (IV)((data)->last_start_min), \
711 (IV)((data)->last_start_max), \
712 ((data)->longest && \
713 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
714 SvPVX_const((data)->longest_fixed), \
715 (IV)((data)->offset_fixed), \
716 ((data)->longest && \
717 (data)->longest==&((data)->longest_float)) ? "*" : "", \
718 SvPVX_const((data)->longest_float), \
719 (IV)((data)->offset_float_min), \
720 (IV)((data)->offset_float_max) \
722 PerlIO_printf(Perl_debug_log,"\n"); \
725 /* Mark that we cannot extend a found fixed substring at this point.
726 Update the longest found anchored substring and the longest found
727 floating substrings if needed. */
730 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf)
732 const STRLEN l = CHR_SVLEN(data->last_found);
733 const STRLEN old_l = CHR_SVLEN(*data->longest);
734 GET_RE_DEBUG_FLAGS_DECL;
736 PERL_ARGS_ASSERT_SCAN_COMMIT;
738 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
739 SvSetMagicSV(*data->longest, data->last_found);
740 if (*data->longest == data->longest_fixed) {
741 data->offset_fixed = l ? data->last_start_min : data->pos_min;
742 if (data->flags & SF_BEFORE_EOL)
744 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
746 data->flags &= ~SF_FIX_BEFORE_EOL;
747 data->minlen_fixed=minlenp;
748 data->lookbehind_fixed=0;
750 else { /* *data->longest == data->longest_float */
751 data->offset_float_min = l ? data->last_start_min : data->pos_min;
752 data->offset_float_max = (l
753 ? data->last_start_max
754 : (data->pos_delta == I32_MAX ? I32_MAX : data->pos_min + data->pos_delta));
755 if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX)
756 data->offset_float_max = I32_MAX;
757 if (data->flags & SF_BEFORE_EOL)
759 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
761 data->flags &= ~SF_FL_BEFORE_EOL;
762 data->minlen_float=minlenp;
763 data->lookbehind_float=0;
766 SvCUR_set(data->last_found, 0);
768 SV * const sv = data->last_found;
769 if (SvUTF8(sv) && SvMAGICAL(sv)) {
770 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
776 data->flags &= ~SF_BEFORE_EOL;
777 DEBUG_STUDYDATA("commit: ",data,0);
780 /* These macros set, clear and test whether the synthetic start class ('ssc',
781 * given by the parameter) matches an empty string (EOS). This uses the
782 * 'next_off' field in the node, to save a bit in the flags field. The ssc
783 * stands alone, so there is never a next_off, so this field is otherwise
784 * unused. The EOS information is used only for compilation, but theoretically
785 * it could be passed on to the execution code. This could be used to store
786 * more than one bit of information, but only this one is currently used. */
787 #define SET_SSC_EOS(node) STMT_START { (node)->next_off = TRUE; } STMT_END
788 #define CLEAR_SSC_EOS(node) STMT_START { (node)->next_off = FALSE; } STMT_END
789 #define TEST_SSC_EOS(node) cBOOL((node)->next_off)
791 /* Can match anything (initialization) */
793 S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
795 PERL_ARGS_ASSERT_CL_ANYTHING;
797 ANYOF_BITMAP_SETALL(cl);
798 cl->flags = ANYOF_UNICODE_ALL;
801 /* If any portion of the regex is to operate under locale rules,
802 * initialization includes it. The reason this isn't done for all regexes
803 * is that the optimizer was written under the assumption that locale was
804 * all-or-nothing. Given the complexity and lack of documentation in the
805 * optimizer, and that there are inadequate test cases for locale, so many
806 * parts of it may not work properly, it is safest to avoid locale unless
808 if (RExC_contains_locale) {
809 ANYOF_CLASS_SETALL(cl); /* /l uses class */
810 cl->flags |= ANYOF_LOCALE|ANYOF_CLASS|ANYOF_LOC_FOLD;
813 ANYOF_CLASS_ZERO(cl); /* Only /l uses class now */
817 /* Can match anything (initialization) */
819 S_cl_is_anything(const struct regnode_charclass_class *cl)
823 PERL_ARGS_ASSERT_CL_IS_ANYTHING;
825 for (value = 0; value < ANYOF_MAX; value += 2)
826 if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
828 if (!(cl->flags & ANYOF_UNICODE_ALL))
830 if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
835 /* Can match anything (initialization) */
837 S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
839 PERL_ARGS_ASSERT_CL_INIT;
841 Zero(cl, 1, struct regnode_charclass_class);
843 cl_anything(pRExC_state, cl);
844 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
847 /* These two functions currently do the exact same thing */
848 #define cl_init_zero S_cl_init
850 /* 'AND' a given class with another one. Can create false positives. 'cl'
851 * should not be inverted. 'and_with->flags & ANYOF_CLASS' should be 0 if
852 * 'and_with' is a regnode_charclass instead of a regnode_charclass_class. */
854 S_cl_and(struct regnode_charclass_class *cl,
855 const struct regnode_charclass_class *and_with)
857 PERL_ARGS_ASSERT_CL_AND;
859 assert(PL_regkind[and_with->type] == ANYOF);
861 /* I (khw) am not sure all these restrictions are necessary XXX */
862 if (!(ANYOF_CLASS_TEST_ANY_SET(and_with))
863 && !(ANYOF_CLASS_TEST_ANY_SET(cl))
864 && (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
865 && !(and_with->flags & ANYOF_LOC_FOLD)
866 && !(cl->flags & ANYOF_LOC_FOLD)) {
869 if (and_with->flags & ANYOF_INVERT)
870 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
871 cl->bitmap[i] &= ~and_with->bitmap[i];
873 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
874 cl->bitmap[i] &= and_with->bitmap[i];
875 } /* XXXX: logic is complicated otherwise, leave it along for a moment. */
877 if (and_with->flags & ANYOF_INVERT) {
879 /* Here, the and'ed node is inverted. Get the AND of the flags that
880 * aren't affected by the inversion. Those that are affected are
881 * handled individually below */
882 U8 affected_flags = cl->flags & ~INVERSION_UNAFFECTED_FLAGS;
883 cl->flags &= (and_with->flags & INVERSION_UNAFFECTED_FLAGS);
884 cl->flags |= affected_flags;
886 /* We currently don't know how to deal with things that aren't in the
887 * bitmap, but we know that the intersection is no greater than what
888 * is already in cl, so let there be false positives that get sorted
889 * out after the synthetic start class succeeds, and the node is
890 * matched for real. */
892 /* The inversion of these two flags indicate that the resulting
893 * intersection doesn't have them */
894 if (and_with->flags & ANYOF_UNICODE_ALL) {
895 cl->flags &= ~ANYOF_UNICODE_ALL;
897 if (and_with->flags & ANYOF_NON_UTF8_LATIN1_ALL) {
898 cl->flags &= ~ANYOF_NON_UTF8_LATIN1_ALL;
901 else { /* and'd node is not inverted */
902 U8 outside_bitmap_but_not_utf8; /* Temp variable */
904 if (! ANYOF_NONBITMAP(and_with)) {
906 /* Here 'and_with' doesn't match anything outside the bitmap
907 * (except possibly ANYOF_UNICODE_ALL), which means the
908 * intersection can't either, except for ANYOF_UNICODE_ALL, in
909 * which case we don't know what the intersection is, but it's no
910 * greater than what cl already has, so can just leave it alone,
911 * with possible false positives */
912 if (! (and_with->flags & ANYOF_UNICODE_ALL)) {
913 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
914 cl->flags &= ~ANYOF_NONBITMAP_NON_UTF8;
917 else if (! ANYOF_NONBITMAP(cl)) {
919 /* Here, 'and_with' does match something outside the bitmap, and cl
920 * doesn't have a list of things to match outside the bitmap. If
921 * cl can match all code points above 255, the intersection will
922 * be those above-255 code points that 'and_with' matches. If cl
923 * can't match all Unicode code points, it means that it can't
924 * match anything outside the bitmap (since the 'if' that got us
925 * into this block tested for that), so we leave the bitmap empty.
927 if (cl->flags & ANYOF_UNICODE_ALL) {
928 ARG_SET(cl, ARG(and_with));
930 /* and_with's ARG may match things that don't require UTF8.
931 * And now cl's will too, in spite of this being an 'and'. See
932 * the comments below about the kludge */
933 cl->flags |= and_with->flags & ANYOF_NONBITMAP_NON_UTF8;
937 /* Here, both 'and_with' and cl match something outside the
938 * bitmap. Currently we do not do the intersection, so just match
939 * whatever cl had at the beginning. */
943 /* Take the intersection of the two sets of flags. However, the
944 * ANYOF_NONBITMAP_NON_UTF8 flag is treated as an 'or'. This is a
945 * kludge around the fact that this flag is not treated like the others
946 * which are initialized in cl_anything(). The way the optimizer works
947 * is that the synthetic start class (SSC) is initialized to match
948 * anything, and then the first time a real node is encountered, its
949 * values are AND'd with the SSC's with the result being the values of
950 * the real node. However, there are paths through the optimizer where
951 * the AND never gets called, so those initialized bits are set
952 * inappropriately, which is not usually a big deal, as they just cause
953 * false positives in the SSC, which will just mean a probably
954 * imperceptible slow down in execution. However this bit has a
955 * higher false positive consequence in that it can cause utf8.pm,
956 * utf8_heavy.pl ... to be loaded when not necessary, which is a much
957 * bigger slowdown and also causes significant extra memory to be used.
958 * In order to prevent this, the code now takes a different tack. The
959 * bit isn't set unless some part of the regular expression needs it,
960 * but once set it won't get cleared. This means that these extra
961 * modules won't get loaded unless there was some path through the
962 * pattern that would have required them anyway, and so any false
963 * positives that occur by not ANDing them out when they could be
964 * aren't as severe as they would be if we treated this bit like all
966 outside_bitmap_but_not_utf8 = (cl->flags | and_with->flags)
967 & ANYOF_NONBITMAP_NON_UTF8;
968 cl->flags &= and_with->flags;
969 cl->flags |= outside_bitmap_but_not_utf8;
973 /* 'OR' a given class with another one. Can create false positives. 'cl'
974 * should not be inverted. 'or_with->flags & ANYOF_CLASS' should be 0 if
975 * 'or_with' is a regnode_charclass instead of a regnode_charclass_class. */
977 S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
979 PERL_ARGS_ASSERT_CL_OR;
981 if (or_with->flags & ANYOF_INVERT) {
983 /* Here, the or'd node is to be inverted. This means we take the
984 * complement of everything not in the bitmap, but currently we don't
985 * know what that is, so give up and match anything */
986 if (ANYOF_NONBITMAP(or_with)) {
987 cl_anything(pRExC_state, cl);
990 * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
991 * <= (B1 | !B2) | (CL1 | !CL2)
992 * which is wasteful if CL2 is small, but we ignore CL2:
993 * (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
994 * XXXX Can we handle case-fold? Unclear:
995 * (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
996 * (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
998 else if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
999 && !(or_with->flags & ANYOF_LOC_FOLD)
1000 && !(cl->flags & ANYOF_LOC_FOLD) ) {
1003 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
1004 cl->bitmap[i] |= ~or_with->bitmap[i];
1005 } /* XXXX: logic is complicated otherwise */
1007 cl_anything(pRExC_state, cl);
1010 /* And, we can just take the union of the flags that aren't affected
1011 * by the inversion */
1012 cl->flags |= or_with->flags & INVERSION_UNAFFECTED_FLAGS;
1014 /* For the remaining flags:
1015 ANYOF_UNICODE_ALL and inverted means to not match anything above
1016 255, which means that the union with cl should just be
1017 what cl has in it, so can ignore this flag
1018 ANYOF_NON_UTF8_LATIN1_ALL and inverted means if not utf8 and ord
1019 is 127-255 to match them, but then invert that, so the
1020 union with cl should just be what cl has in it, so can
1023 } else { /* 'or_with' is not inverted */
1024 /* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
1025 if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
1026 && (!(or_with->flags & ANYOF_LOC_FOLD)
1027 || (cl->flags & ANYOF_LOC_FOLD)) ) {
1030 /* OR char bitmap and class bitmap separately */
1031 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
1032 cl->bitmap[i] |= or_with->bitmap[i];
1033 if (or_with->flags & ANYOF_CLASS) {
1034 ANYOF_CLASS_OR(or_with, cl);
1037 else { /* XXXX: logic is complicated, leave it along for a moment. */
1038 cl_anything(pRExC_state, cl);
1041 if (ANYOF_NONBITMAP(or_with)) {
1043 /* Use the added node's outside-the-bit-map match if there isn't a
1044 * conflict. If there is a conflict (both nodes match something
1045 * outside the bitmap, but what they match outside is not the same
1046 * pointer, and hence not easily compared until XXX we extend
1047 * inversion lists this far), give up and allow the start class to
1048 * match everything outside the bitmap. If that stuff is all above
1049 * 255, can just set UNICODE_ALL, otherwise caould be anything. */
1050 if (! ANYOF_NONBITMAP(cl)) {
1051 ARG_SET(cl, ARG(or_with));
1053 else if (ARG(cl) != ARG(or_with)) {
1055 if ((or_with->flags & ANYOF_NONBITMAP_NON_UTF8)) {
1056 cl_anything(pRExC_state, cl);
1059 cl->flags |= ANYOF_UNICODE_ALL;
1064 /* Take the union */
1065 cl->flags |= or_with->flags;
1069 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1070 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1071 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1072 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
1077 dump_trie(trie,widecharmap,revcharmap)
1078 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1079 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1081 These routines dump out a trie in a somewhat readable format.
1082 The _interim_ variants are used for debugging the interim
1083 tables that are used to generate the final compressed
1084 representation which is what dump_trie expects.
1086 Part of the reason for their existence is to provide a form
1087 of documentation as to how the different representations function.
1092 Dumps the final compressed table form of the trie to Perl_debug_log.
1093 Used for debugging make_trie().
1097 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1098 AV *revcharmap, U32 depth)
1101 SV *sv=sv_newmortal();
1102 int colwidth= widecharmap ? 6 : 4;
1104 GET_RE_DEBUG_FLAGS_DECL;
1106 PERL_ARGS_ASSERT_DUMP_TRIE;
1108 PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
1109 (int)depth * 2 + 2,"",
1110 "Match","Base","Ofs" );
1112 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1113 SV ** const tmp = av_fetch( revcharmap, state, 0);
1115 PerlIO_printf( Perl_debug_log, "%*s",
1117 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1118 PL_colors[0], PL_colors[1],
1119 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1120 PERL_PV_ESCAPE_FIRSTCHAR
1125 PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
1126 (int)depth * 2 + 2,"");
1128 for( state = 0 ; state < trie->uniquecharcount ; state++ )
1129 PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
1130 PerlIO_printf( Perl_debug_log, "\n");
1132 for( state = 1 ; state < trie->statecount ; state++ ) {
1133 const U32 base = trie->states[ state ].trans.base;
1135 PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
1137 if ( trie->states[ state ].wordnum ) {
1138 PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
1140 PerlIO_printf( Perl_debug_log, "%6s", "" );
1143 PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
1148 while( ( base + ofs < trie->uniquecharcount ) ||
1149 ( base + ofs - trie->uniquecharcount < trie->lasttrans
1150 && trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
1153 PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
1155 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
1156 if ( ( base + ofs >= trie->uniquecharcount ) &&
1157 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
1158 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
1160 PerlIO_printf( Perl_debug_log, "%*"UVXf,
1162 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
1164 PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
1168 PerlIO_printf( Perl_debug_log, "]");
1171 PerlIO_printf( Perl_debug_log, "\n" );
1173 PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=", (int)depth*2, "");
1174 for (word=1; word <= trie->wordcount; word++) {
1175 PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
1176 (int)word, (int)(trie->wordinfo[word].prev),
1177 (int)(trie->wordinfo[word].len));
1179 PerlIO_printf(Perl_debug_log, "\n" );
1182 Dumps a fully constructed but uncompressed trie in list form.
1183 List tries normally only are used for construction when the number of
1184 possible chars (trie->uniquecharcount) is very high.
1185 Used for debugging make_trie().
1188 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
1189 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1193 SV *sv=sv_newmortal();
1194 int colwidth= widecharmap ? 6 : 4;
1195 GET_RE_DEBUG_FLAGS_DECL;
1197 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
1199 /* print out the table precompression. */
1200 PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
1201 (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
1202 "------:-----+-----------------\n" );
1204 for( state=1 ; state < next_alloc ; state ++ ) {
1207 PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
1208 (int)depth * 2 + 2,"", (UV)state );
1209 if ( ! trie->states[ state ].wordnum ) {
1210 PerlIO_printf( Perl_debug_log, "%5s| ","");
1212 PerlIO_printf( Perl_debug_log, "W%4x| ",
1213 trie->states[ state ].wordnum
1216 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
1217 SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
1219 PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
1221 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1222 PL_colors[0], PL_colors[1],
1223 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1224 PERL_PV_ESCAPE_FIRSTCHAR
1226 TRIE_LIST_ITEM(state,charid).forid,
1227 (UV)TRIE_LIST_ITEM(state,charid).newstate
1230 PerlIO_printf(Perl_debug_log, "\n%*s| ",
1231 (int)((depth * 2) + 14), "");
1234 PerlIO_printf( Perl_debug_log, "\n");
1239 Dumps a fully constructed but uncompressed trie in table form.
1240 This is the normal DFA style state transition table, with a few
1241 twists to facilitate compression later.
1242 Used for debugging make_trie().
1245 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
1246 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1251 SV *sv=sv_newmortal();
1252 int colwidth= widecharmap ? 6 : 4;
1253 GET_RE_DEBUG_FLAGS_DECL;
1255 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
1258 print out the table precompression so that we can do a visual check
1259 that they are identical.
1262 PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
1264 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1265 SV ** const tmp = av_fetch( revcharmap, charid, 0);
1267 PerlIO_printf( Perl_debug_log, "%*s",
1269 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1270 PL_colors[0], PL_colors[1],
1271 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1272 PERL_PV_ESCAPE_FIRSTCHAR
1278 PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
1280 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
1281 PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
1284 PerlIO_printf( Perl_debug_log, "\n" );
1286 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
1288 PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
1289 (int)depth * 2 + 2,"",
1290 (UV)TRIE_NODENUM( state ) );
1292 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1293 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
1295 PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
1297 PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
1299 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
1300 PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
1302 PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
1303 trie->states[ TRIE_NODENUM( state ) ].wordnum );
1311 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
1312 startbranch: the first branch in the whole branch sequence
1313 first : start branch of sequence of branch-exact nodes.
1314 May be the same as startbranch
1315 last : Thing following the last branch.
1316 May be the same as tail.
1317 tail : item following the branch sequence
1318 count : words in the sequence
1319 flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
1320 depth : indent depth
1322 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
1324 A trie is an N'ary tree where the branches are determined by digital
1325 decomposition of the key. IE, at the root node you look up the 1st character and
1326 follow that branch repeat until you find the end of the branches. Nodes can be
1327 marked as "accepting" meaning they represent a complete word. Eg:
1331 would convert into the following structure. Numbers represent states, letters
1332 following numbers represent valid transitions on the letter from that state, if
1333 the number is in square brackets it represents an accepting state, otherwise it
1334 will be in parenthesis.
1336 +-h->+-e->[3]-+-r->(8)-+-s->[9]
1340 (1) +-i->(6)-+-s->[7]
1342 +-s->(3)-+-h->(4)-+-e->[5]
1344 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
1346 This shows that when matching against the string 'hers' we will begin at state 1
1347 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
1348 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
1349 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
1350 single traverse. We store a mapping from accepting to state to which word was
1351 matched, and then when we have multiple possibilities we try to complete the
1352 rest of the regex in the order in which they occured in the alternation.
1354 The only prior NFA like behaviour that would be changed by the TRIE support is
1355 the silent ignoring of duplicate alternations which are of the form:
1357 / (DUPE|DUPE) X? (?{ ... }) Y /x
1359 Thus EVAL blocks following a trie may be called a different number of times with
1360 and without the optimisation. With the optimisations dupes will be silently
1361 ignored. This inconsistent behaviour of EVAL type nodes is well established as
1362 the following demonstrates:
1364 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
1366 which prints out 'word' three times, but
1368 'words'=~/(word|word|word)(?{ print $1 })S/
1370 which doesnt print it out at all. This is due to other optimisations kicking in.
1372 Example of what happens on a structural level:
1374 The regexp /(ac|ad|ab)+/ will produce the following debug output:
1376 1: CURLYM[1] {1,32767}(18)
1387 This would be optimizable with startbranch=5, first=5, last=16, tail=16
1388 and should turn into:
1390 1: CURLYM[1] {1,32767}(18)
1392 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
1400 Cases where tail != last would be like /(?foo|bar)baz/:
1410 which would be optimizable with startbranch=1, first=1, last=7, tail=8
1411 and would end up looking like:
1414 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
1421 d = uvuni_to_utf8_flags(d, uv, 0);
1423 is the recommended Unicode-aware way of saying
1428 #define TRIE_STORE_REVCHAR(val) \
1431 SV *zlopp = newSV(7); /* XXX: optimize me */ \
1432 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
1433 unsigned const char *const kapow = uvuni_to_utf8(flrbbbbb, val); \
1434 SvCUR_set(zlopp, kapow - flrbbbbb); \
1437 av_push(revcharmap, zlopp); \
1439 char ooooff = (char)val; \
1440 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
1444 #define TRIE_READ_CHAR STMT_START { \
1447 /* if it is UTF then it is either already folded, or does not need folding */ \
1448 uvc = utf8n_to_uvuni( (const U8*) uc, UTF8_MAXLEN, &len, uniflags); \
1450 else if (folder == PL_fold_latin1) { \
1451 /* if we use this folder we have to obey unicode rules on latin-1 data */ \
1452 if ( foldlen > 0 ) { \
1453 uvc = utf8n_to_uvuni( (const U8*) scan, UTF8_MAXLEN, &len, uniflags ); \
1459 uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, 1); \
1460 skiplen = UNISKIP(uvc); \
1461 foldlen -= skiplen; \
1462 scan = foldbuf + skiplen; \
1465 /* raw data, will be folded later if needed */ \
1473 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
1474 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
1475 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
1476 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
1478 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
1479 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
1480 TRIE_LIST_CUR( state )++; \
1483 #define TRIE_LIST_NEW(state) STMT_START { \
1484 Newxz( trie->states[ state ].trans.list, \
1485 4, reg_trie_trans_le ); \
1486 TRIE_LIST_CUR( state ) = 1; \
1487 TRIE_LIST_LEN( state ) = 4; \
1490 #define TRIE_HANDLE_WORD(state) STMT_START { \
1491 U16 dupe= trie->states[ state ].wordnum; \
1492 regnode * const noper_next = regnext( noper ); \
1495 /* store the word for dumping */ \
1497 if (OP(noper) != NOTHING) \
1498 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
1500 tmp = newSVpvn_utf8( "", 0, UTF ); \
1501 av_push( trie_words, tmp ); \
1505 trie->wordinfo[curword].prev = 0; \
1506 trie->wordinfo[curword].len = wordlen; \
1507 trie->wordinfo[curword].accept = state; \
1509 if ( noper_next < tail ) { \
1511 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \
1512 trie->jump[curword] = (U16)(noper_next - convert); \
1514 jumper = noper_next; \
1516 nextbranch= regnext(cur); \
1520 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
1521 /* chain, so that when the bits of chain are later */\
1522 /* linked together, the dups appear in the chain */\
1523 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
1524 trie->wordinfo[dupe].prev = curword; \
1526 /* we haven't inserted this word yet. */ \
1527 trie->states[ state ].wordnum = curword; \
1532 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
1533 ( ( base + charid >= ucharcount \
1534 && base + charid < ubound \
1535 && state == trie->trans[ base - ucharcount + charid ].check \
1536 && trie->trans[ base - ucharcount + charid ].next ) \
1537 ? trie->trans[ base - ucharcount + charid ].next \
1538 : ( state==1 ? special : 0 ) \
1542 #define MADE_JUMP_TRIE 2
1543 #define MADE_EXACT_TRIE 4
1546 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
1549 /* first pass, loop through and scan words */
1550 reg_trie_data *trie;
1551 HV *widecharmap = NULL;
1552 AV *revcharmap = newAV();
1554 const U32 uniflags = UTF8_ALLOW_DEFAULT;
1559 regnode *jumper = NULL;
1560 regnode *nextbranch = NULL;
1561 regnode *convert = NULL;
1562 U32 *prev_states; /* temp array mapping each state to previous one */
1563 /* we just use folder as a flag in utf8 */
1564 const U8 * folder = NULL;
1567 const U32 data_slot = add_data( pRExC_state, 4, "tuuu" );
1568 AV *trie_words = NULL;
1569 /* along with revcharmap, this only used during construction but both are
1570 * useful during debugging so we store them in the struct when debugging.
1573 const U32 data_slot = add_data( pRExC_state, 2, "tu" );
1574 STRLEN trie_charcount=0;
1576 SV *re_trie_maxbuff;
1577 GET_RE_DEBUG_FLAGS_DECL;
1579 PERL_ARGS_ASSERT_MAKE_TRIE;
1581 PERL_UNUSED_ARG(depth);
1588 case EXACTFU_TRICKYFOLD:
1589 case EXACTFU: folder = PL_fold_latin1; break;
1590 case EXACTF: folder = PL_fold; break;
1591 case EXACTFL: folder = PL_fold_locale; break;
1592 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
1595 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
1597 trie->startstate = 1;
1598 trie->wordcount = word_count;
1599 RExC_rxi->data->data[ data_slot ] = (void*)trie;
1600 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
1602 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
1603 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
1604 trie->wordcount+1, sizeof(reg_trie_wordinfo));
1607 trie_words = newAV();
1610 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
1611 if (!SvIOK(re_trie_maxbuff)) {
1612 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
1614 DEBUG_TRIE_COMPILE_r({
1615 PerlIO_printf( Perl_debug_log,
1616 "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
1617 (int)depth * 2 + 2, "",
1618 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
1619 REG_NODE_NUM(last), REG_NODE_NUM(tail),
1623 /* Find the node we are going to overwrite */
1624 if ( first == startbranch && OP( last ) != BRANCH ) {
1625 /* whole branch chain */
1628 /* branch sub-chain */
1629 convert = NEXTOPER( first );
1632 /* -- First loop and Setup --
1634 We first traverse the branches and scan each word to determine if it
1635 contains widechars, and how many unique chars there are, this is
1636 important as we have to build a table with at least as many columns as we
1639 We use an array of integers to represent the character codes 0..255
1640 (trie->charmap) and we use a an HV* to store Unicode characters. We use the
1641 native representation of the character value as the key and IV's for the
1644 *TODO* If we keep track of how many times each character is used we can
1645 remap the columns so that the table compression later on is more
1646 efficient in terms of memory by ensuring the most common value is in the
1647 middle and the least common are on the outside. IMO this would be better
1648 than a most to least common mapping as theres a decent chance the most
1649 common letter will share a node with the least common, meaning the node
1650 will not be compressible. With a middle is most common approach the worst
1651 case is when we have the least common nodes twice.
1655 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1656 regnode *noper = NEXTOPER( cur );
1657 const U8 *uc = (U8*)STRING( noper );
1658 const U8 *e = uc + STR_LEN( noper );
1660 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1662 const U8 *scan = (U8*)NULL;
1663 U32 wordlen = 0; /* required init */
1665 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/
1667 if (OP(noper) == NOTHING) {
1668 regnode *noper_next= regnext(noper);
1669 if (noper_next != tail && OP(noper_next) == flags) {
1671 uc= (U8*)STRING(noper);
1672 e= uc + STR_LEN(noper);
1673 trie->minlen= STR_LEN(noper);
1680 if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
1681 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
1682 regardless of encoding */
1683 if (OP( noper ) == EXACTFU_SS) {
1684 /* false positives are ok, so just set this */
1685 TRIE_BITMAP_SET(trie,0xDF);
1688 for ( ; uc < e ; uc += len ) {
1689 TRIE_CHARCOUNT(trie)++;
1694 U8 folded= folder[ (U8) uvc ];
1695 if ( !trie->charmap[ folded ] ) {
1696 trie->charmap[ folded ]=( ++trie->uniquecharcount );
1697 TRIE_STORE_REVCHAR( folded );
1700 if ( !trie->charmap[ uvc ] ) {
1701 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
1702 TRIE_STORE_REVCHAR( uvc );
1705 /* store the codepoint in the bitmap, and its folded
1707 TRIE_BITMAP_SET(trie, uvc);
1709 /* store the folded codepoint */
1710 if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
1713 /* store first byte of utf8 representation of
1714 variant codepoints */
1715 if (! UNI_IS_INVARIANT(uvc)) {
1716 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
1719 set_bit = 0; /* We've done our bit :-) */
1724 widecharmap = newHV();
1726 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
1729 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
1731 if ( !SvTRUE( *svpp ) ) {
1732 sv_setiv( *svpp, ++trie->uniquecharcount );
1733 TRIE_STORE_REVCHAR(uvc);
1737 if( cur == first ) {
1738 trie->minlen = chars;
1739 trie->maxlen = chars;
1740 } else if (chars < trie->minlen) {
1741 trie->minlen = chars;
1742 } else if (chars > trie->maxlen) {
1743 trie->maxlen = chars;
1745 if (OP( noper ) == EXACTFU_SS) {
1746 /* XXX: workaround - 'ss' could match "\x{DF}" so minlen could be 1 and not 2*/
1747 if (trie->minlen > 1)
1750 if (OP( noper ) == EXACTFU_TRICKYFOLD) {
1751 /* XXX: workround - things like "\x{1FBE}\x{0308}\x{0301}" can match "\x{0390}"
1752 * - We assume that any such sequence might match a 2 byte string */
1753 if (trie->minlen > 2 )
1757 } /* end first pass */
1758 DEBUG_TRIE_COMPILE_r(
1759 PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
1760 (int)depth * 2 + 2,"",
1761 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
1762 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
1763 (int)trie->minlen, (int)trie->maxlen )
1767 We now know what we are dealing with in terms of unique chars and
1768 string sizes so we can calculate how much memory a naive
1769 representation using a flat table will take. If it's over a reasonable
1770 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
1771 conservative but potentially much slower representation using an array
1774 At the end we convert both representations into the same compressed
1775 form that will be used in regexec.c for matching with. The latter
1776 is a form that cannot be used to construct with but has memory
1777 properties similar to the list form and access properties similar
1778 to the table form making it both suitable for fast searches and
1779 small enough that its feasable to store for the duration of a program.
1781 See the comment in the code where the compressed table is produced
1782 inplace from the flat tabe representation for an explanation of how
1783 the compression works.
1788 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
1791 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
1793 Second Pass -- Array Of Lists Representation
1795 Each state will be represented by a list of charid:state records
1796 (reg_trie_trans_le) the first such element holds the CUR and LEN
1797 points of the allocated array. (See defines above).
1799 We build the initial structure using the lists, and then convert
1800 it into the compressed table form which allows faster lookups
1801 (but cant be modified once converted).
1804 STRLEN transcount = 1;
1806 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1807 "%*sCompiling trie using list compiler\n",
1808 (int)depth * 2 + 2, ""));
1810 trie->states = (reg_trie_state *)
1811 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1812 sizeof(reg_trie_state) );
1816 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1818 regnode *noper = NEXTOPER( cur );
1819 U8 *uc = (U8*)STRING( noper );
1820 const U8 *e = uc + STR_LEN( noper );
1821 U32 state = 1; /* required init */
1822 U16 charid = 0; /* sanity init */
1823 U8 *scan = (U8*)NULL; /* sanity init */
1824 STRLEN foldlen = 0; /* required init */
1825 U32 wordlen = 0; /* required init */
1826 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1829 if (OP(noper) == NOTHING) {
1830 regnode *noper_next= regnext(noper);
1831 if (noper_next != tail && OP(noper_next) == flags) {
1833 uc= (U8*)STRING(noper);
1834 e= uc + STR_LEN(noper);
1838 if (OP(noper) != NOTHING) {
1839 for ( ; uc < e ; uc += len ) {
1844 charid = trie->charmap[ uvc ];
1846 SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1850 charid=(U16)SvIV( *svpp );
1853 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1860 if ( !trie->states[ state ].trans.list ) {
1861 TRIE_LIST_NEW( state );
1863 for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
1864 if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
1865 newstate = TRIE_LIST_ITEM( state, check ).newstate;
1870 newstate = next_alloc++;
1871 prev_states[newstate] = state;
1872 TRIE_LIST_PUSH( state, charid, newstate );
1877 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1881 TRIE_HANDLE_WORD(state);
1883 } /* end second pass */
1885 /* next alloc is the NEXT state to be allocated */
1886 trie->statecount = next_alloc;
1887 trie->states = (reg_trie_state *)
1888 PerlMemShared_realloc( trie->states,
1890 * sizeof(reg_trie_state) );
1892 /* and now dump it out before we compress it */
1893 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
1894 revcharmap, next_alloc,
1898 trie->trans = (reg_trie_trans *)
1899 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
1906 for( state=1 ; state < next_alloc ; state ++ ) {
1910 DEBUG_TRIE_COMPILE_MORE_r(
1911 PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
1915 if (trie->states[state].trans.list) {
1916 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
1920 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1921 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
1922 if ( forid < minid ) {
1924 } else if ( forid > maxid ) {
1928 if ( transcount < tp + maxid - minid + 1) {
1930 trie->trans = (reg_trie_trans *)
1931 PerlMemShared_realloc( trie->trans,
1933 * sizeof(reg_trie_trans) );
1934 Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
1936 base = trie->uniquecharcount + tp - minid;
1937 if ( maxid == minid ) {
1939 for ( ; zp < tp ; zp++ ) {
1940 if ( ! trie->trans[ zp ].next ) {
1941 base = trie->uniquecharcount + zp - minid;
1942 trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1943 trie->trans[ zp ].check = state;
1949 trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1950 trie->trans[ tp ].check = state;
1955 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1956 const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
1957 trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
1958 trie->trans[ tid ].check = state;
1960 tp += ( maxid - minid + 1 );
1962 Safefree(trie->states[ state ].trans.list);
1965 DEBUG_TRIE_COMPILE_MORE_r(
1966 PerlIO_printf( Perl_debug_log, " base: %d\n",base);
1969 trie->states[ state ].trans.base=base;
1971 trie->lasttrans = tp + 1;
1975 Second Pass -- Flat Table Representation.
1977 we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
1978 We know that we will need Charcount+1 trans at most to store the data
1979 (one row per char at worst case) So we preallocate both structures
1980 assuming worst case.
1982 We then construct the trie using only the .next slots of the entry
1985 We use the .check field of the first entry of the node temporarily to
1986 make compression both faster and easier by keeping track of how many non
1987 zero fields are in the node.
1989 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
1992 There are two terms at use here: state as a TRIE_NODEIDX() which is a
1993 number representing the first entry of the node, and state as a
1994 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
1995 TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
1996 are 2 entrys per node. eg:
2004 The table is internally in the right hand, idx form. However as we also
2005 have to deal with the states array which is indexed by nodenum we have to
2006 use TRIE_NODENUM() to convert.
2009 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
2010 "%*sCompiling trie using table compiler\n",
2011 (int)depth * 2 + 2, ""));
2013 trie->trans = (reg_trie_trans *)
2014 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
2015 * trie->uniquecharcount + 1,
2016 sizeof(reg_trie_trans) );
2017 trie->states = (reg_trie_state *)
2018 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2019 sizeof(reg_trie_state) );
2020 next_alloc = trie->uniquecharcount + 1;
2023 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2025 regnode *noper = NEXTOPER( cur );
2026 const U8 *uc = (U8*)STRING( noper );
2027 const U8 *e = uc + STR_LEN( noper );
2029 U32 state = 1; /* required init */
2031 U16 charid = 0; /* sanity init */
2032 U32 accept_state = 0; /* sanity init */
2033 U8 *scan = (U8*)NULL; /* sanity init */
2035 STRLEN foldlen = 0; /* required init */
2036 U32 wordlen = 0; /* required init */
2038 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
2040 if (OP(noper) == NOTHING) {
2041 regnode *noper_next= regnext(noper);
2042 if (noper_next != tail && OP(noper_next) == flags) {
2044 uc= (U8*)STRING(noper);
2045 e= uc + STR_LEN(noper);
2049 if ( OP(noper) != NOTHING ) {
2050 for ( ; uc < e ; uc += len ) {
2055 charid = trie->charmap[ uvc ];
2057 SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
2058 charid = svpp ? (U16)SvIV(*svpp) : 0;
2062 if ( !trie->trans[ state + charid ].next ) {
2063 trie->trans[ state + charid ].next = next_alloc;
2064 trie->trans[ state ].check++;
2065 prev_states[TRIE_NODENUM(next_alloc)]
2066 = TRIE_NODENUM(state);
2067 next_alloc += trie->uniquecharcount;
2069 state = trie->trans[ state + charid ].next;
2071 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
2073 /* charid is now 0 if we dont know the char read, or nonzero if we do */
2076 accept_state = TRIE_NODENUM( state );
2077 TRIE_HANDLE_WORD(accept_state);
2079 } /* end second pass */
2081 /* and now dump it out before we compress it */
2082 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
2084 next_alloc, depth+1));
2088 * Inplace compress the table.*
2090 For sparse data sets the table constructed by the trie algorithm will
2091 be mostly 0/FAIL transitions or to put it another way mostly empty.
2092 (Note that leaf nodes will not contain any transitions.)
2094 This algorithm compresses the tables by eliminating most such
2095 transitions, at the cost of a modest bit of extra work during lookup:
2097 - Each states[] entry contains a .base field which indicates the
2098 index in the state[] array wheres its transition data is stored.
2100 - If .base is 0 there are no valid transitions from that node.
2102 - If .base is nonzero then charid is added to it to find an entry in
2105 -If trans[states[state].base+charid].check!=state then the
2106 transition is taken to be a 0/Fail transition. Thus if there are fail
2107 transitions at the front of the node then the .base offset will point
2108 somewhere inside the previous nodes data (or maybe even into a node
2109 even earlier), but the .check field determines if the transition is
2113 The following process inplace converts the table to the compressed
2114 table: We first do not compress the root node 1,and mark all its
2115 .check pointers as 1 and set its .base pointer as 1 as well. This
2116 allows us to do a DFA construction from the compressed table later,
2117 and ensures that any .base pointers we calculate later are greater
2120 - We set 'pos' to indicate the first entry of the second node.
2122 - We then iterate over the columns of the node, finding the first and
2123 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
2124 and set the .check pointers accordingly, and advance pos
2125 appropriately and repreat for the next node. Note that when we copy
2126 the next pointers we have to convert them from the original
2127 NODEIDX form to NODENUM form as the former is not valid post
2130 - If a node has no transitions used we mark its base as 0 and do not
2131 advance the pos pointer.
2133 - If a node only has one transition we use a second pointer into the
2134 structure to fill in allocated fail transitions from other states.
2135 This pointer is independent of the main pointer and scans forward
2136 looking for null transitions that are allocated to a state. When it
2137 finds one it writes the single transition into the "hole". If the
2138 pointer doesnt find one the single transition is appended as normal.
2140 - Once compressed we can Renew/realloc the structures to release the
2143 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
2144 specifically Fig 3.47 and the associated pseudocode.
2148 const U32 laststate = TRIE_NODENUM( next_alloc );
2151 trie->statecount = laststate;
2153 for ( state = 1 ; state < laststate ; state++ ) {
2155 const U32 stateidx = TRIE_NODEIDX( state );
2156 const U32 o_used = trie->trans[ stateidx ].check;
2157 U32 used = trie->trans[ stateidx ].check;
2158 trie->trans[ stateidx ].check = 0;
2160 for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
2161 if ( flag || trie->trans[ stateidx + charid ].next ) {
2162 if ( trie->trans[ stateidx + charid ].next ) {
2164 for ( ; zp < pos ; zp++ ) {
2165 if ( ! trie->trans[ zp ].next ) {
2169 trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
2170 trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2171 trie->trans[ zp ].check = state;
2172 if ( ++zp > pos ) pos = zp;
2179 trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
2181 trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2182 trie->trans[ pos ].check = state;
2187 trie->lasttrans = pos + 1;
2188 trie->states = (reg_trie_state *)
2189 PerlMemShared_realloc( trie->states, laststate
2190 * sizeof(reg_trie_state) );
2191 DEBUG_TRIE_COMPILE_MORE_r(
2192 PerlIO_printf( Perl_debug_log,
2193 "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
2194 (int)depth * 2 + 2,"",
2195 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
2198 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
2201 } /* end table compress */
2203 DEBUG_TRIE_COMPILE_MORE_r(
2204 PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
2205 (int)depth * 2 + 2, "",
2206 (UV)trie->statecount,
2207 (UV)trie->lasttrans)
2209 /* resize the trans array to remove unused space */
2210 trie->trans = (reg_trie_trans *)
2211 PerlMemShared_realloc( trie->trans, trie->lasttrans
2212 * sizeof(reg_trie_trans) );
2214 { /* Modify the program and insert the new TRIE node */
2215 U8 nodetype =(U8)(flags & 0xFF);
2219 regnode *optimize = NULL;
2220 #ifdef RE_TRACK_PATTERN_OFFSETS
2223 U32 mjd_nodelen = 0;
2224 #endif /* RE_TRACK_PATTERN_OFFSETS */
2225 #endif /* DEBUGGING */
2227 This means we convert either the first branch or the first Exact,
2228 depending on whether the thing following (in 'last') is a branch
2229 or not and whther first is the startbranch (ie is it a sub part of
2230 the alternation or is it the whole thing.)
2231 Assuming its a sub part we convert the EXACT otherwise we convert
2232 the whole branch sequence, including the first.
2234 /* Find the node we are going to overwrite */
2235 if ( first != startbranch || OP( last ) == BRANCH ) {
2236 /* branch sub-chain */
2237 NEXT_OFF( first ) = (U16)(last - first);
2238 #ifdef RE_TRACK_PATTERN_OFFSETS
2240 mjd_offset= Node_Offset((convert));
2241 mjd_nodelen= Node_Length((convert));
2244 /* whole branch chain */
2246 #ifdef RE_TRACK_PATTERN_OFFSETS
2249 const regnode *nop = NEXTOPER( convert );
2250 mjd_offset= Node_Offset((nop));
2251 mjd_nodelen= Node_Length((nop));
2255 PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
2256 (int)depth * 2 + 2, "",
2257 (UV)mjd_offset, (UV)mjd_nodelen)
2260 /* But first we check to see if there is a common prefix we can
2261 split out as an EXACT and put in front of the TRIE node. */
2262 trie->startstate= 1;
2263 if ( trie->bitmap && !widecharmap && !trie->jump ) {
2265 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
2269 const U32 base = trie->states[ state ].trans.base;
2271 if ( trie->states[state].wordnum )
2274 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2275 if ( ( base + ofs >= trie->uniquecharcount ) &&
2276 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
2277 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
2279 if ( ++count > 1 ) {
2280 SV **tmp = av_fetch( revcharmap, ofs, 0);
2281 const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
2282 if ( state == 1 ) break;
2284 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
2286 PerlIO_printf(Perl_debug_log,
2287 "%*sNew Start State=%"UVuf" Class: [",
2288 (int)depth * 2 + 2, "",
2291 SV ** const tmp = av_fetch( revcharmap, idx, 0);
2292 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
2294 TRIE_BITMAP_SET(trie,*ch);
2296 TRIE_BITMAP_SET(trie, folder[ *ch ]);
2298 PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
2302 TRIE_BITMAP_SET(trie,*ch);
2304 TRIE_BITMAP_SET(trie,folder[ *ch ]);
2305 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
2311 SV **tmp = av_fetch( revcharmap, idx, 0);
2313 char *ch = SvPV( *tmp, len );
2315 SV *sv=sv_newmortal();
2316 PerlIO_printf( Perl_debug_log,
2317 "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
2318 (int)depth * 2 + 2, "",
2320 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
2321 PL_colors[0], PL_colors[1],
2322 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2323 PERL_PV_ESCAPE_FIRSTCHAR
2328 OP( convert ) = nodetype;
2329 str=STRING(convert);
2332 STR_LEN(convert) += len;
2338 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
2343 trie->prefixlen = (state-1);
2345 regnode *n = convert+NODE_SZ_STR(convert);
2346 NEXT_OFF(convert) = NODE_SZ_STR(convert);
2347 trie->startstate = state;
2348 trie->minlen -= (state - 1);
2349 trie->maxlen -= (state - 1);
2351 /* At least the UNICOS C compiler choked on this
2352 * being argument to DEBUG_r(), so let's just have
2355 #ifdef PERL_EXT_RE_BUILD
2361 regnode *fix = convert;
2362 U32 word = trie->wordcount;
2364 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
2365 while( ++fix < n ) {
2366 Set_Node_Offset_Length(fix, 0, 0);
2369 SV ** const tmp = av_fetch( trie_words, word, 0 );
2371 if ( STR_LEN(convert) <= SvCUR(*tmp) )
2372 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
2374 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
2382 NEXT_OFF(convert) = (U16)(tail - convert);
2383 DEBUG_r(optimize= n);
2389 if ( trie->maxlen ) {
2390 NEXT_OFF( convert ) = (U16)(tail - convert);
2391 ARG_SET( convert, data_slot );
2392 /* Store the offset to the first unabsorbed branch in
2393 jump[0], which is otherwise unused by the jump logic.
2394 We use this when dumping a trie and during optimisation. */
2396 trie->jump[0] = (U16)(nextbranch - convert);
2398 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
2399 * and there is a bitmap
2400 * and the first "jump target" node we found leaves enough room
2401 * then convert the TRIE node into a TRIEC node, with the bitmap
2402 * embedded inline in the opcode - this is hypothetically faster.
2404 if ( !trie->states[trie->startstate].wordnum
2406 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
2408 OP( convert ) = TRIEC;
2409 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
2410 PerlMemShared_free(trie->bitmap);
2413 OP( convert ) = TRIE;
2415 /* store the type in the flags */
2416 convert->flags = nodetype;
2420 + regarglen[ OP( convert ) ];
2422 /* XXX We really should free up the resource in trie now,
2423 as we won't use them - (which resources?) dmq */
2425 /* needed for dumping*/
2426 DEBUG_r(if (optimize) {
2427 regnode *opt = convert;
2429 while ( ++opt < optimize) {
2430 Set_Node_Offset_Length(opt,0,0);
2433 Try to clean up some of the debris left after the
2436 while( optimize < jumper ) {
2437 mjd_nodelen += Node_Length((optimize));
2438 OP( optimize ) = OPTIMIZED;
2439 Set_Node_Offset_Length(optimize,0,0);
2442 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
2444 } /* end node insert */
2446 /* Finish populating the prev field of the wordinfo array. Walk back
2447 * from each accept state until we find another accept state, and if
2448 * so, point the first word's .prev field at the second word. If the
2449 * second already has a .prev field set, stop now. This will be the
2450 * case either if we've already processed that word's accept state,
2451 * or that state had multiple words, and the overspill words were
2452 * already linked up earlier.
2459 for (word=1; word <= trie->wordcount; word++) {
2461 if (trie->wordinfo[word].prev)
2463 state = trie->wordinfo[word].accept;
2465 state = prev_states[state];
2468 prev = trie->states[state].wordnum;
2472 trie->wordinfo[word].prev = prev;
2474 Safefree(prev_states);
2478 /* and now dump out the compressed format */
2479 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
2481 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
2483 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
2484 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
2486 SvREFCNT_dec_NN(revcharmap);
2490 : trie->startstate>1
2496 S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
2498 /* The Trie is constructed and compressed now so we can build a fail array if it's needed
2500 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
2501 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
2504 We find the fail state for each state in the trie, this state is the longest proper
2505 suffix of the current state's 'word' that is also a proper prefix of another word in our
2506 trie. State 1 represents the word '' and is thus the default fail state. This allows
2507 the DFA not to have to restart after its tried and failed a word at a given point, it
2508 simply continues as though it had been matching the other word in the first place.
2510 'abcdgu'=~/abcdefg|cdgu/
2511 When we get to 'd' we are still matching the first word, we would encounter 'g' which would
2512 fail, which would bring us to the state representing 'd' in the second word where we would
2513 try 'g' and succeed, proceeding to match 'cdgu'.
2515 /* add a fail transition */
2516 const U32 trie_offset = ARG(source);
2517 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
2519 const U32 ucharcount = trie->uniquecharcount;
2520 const U32 numstates = trie->statecount;
2521 const U32 ubound = trie->lasttrans + ucharcount;
2525 U32 base = trie->states[ 1 ].trans.base;
2528 const U32 data_slot = add_data( pRExC_state, 1, "T" );
2529 GET_RE_DEBUG_FLAGS_DECL;
2531 PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE;
2533 PERL_UNUSED_ARG(depth);
2537 ARG_SET( stclass, data_slot );
2538 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
2539 RExC_rxi->data->data[ data_slot ] = (void*)aho;
2540 aho->trie=trie_offset;
2541 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
2542 Copy( trie->states, aho->states, numstates, reg_trie_state );
2543 Newxz( q, numstates, U32);
2544 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
2547 /* initialize fail[0..1] to be 1 so that we always have
2548 a valid final fail state */
2549 fail[ 0 ] = fail[ 1 ] = 1;
2551 for ( charid = 0; charid < ucharcount ; charid++ ) {
2552 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
2554 q[ q_write ] = newstate;
2555 /* set to point at the root */
2556 fail[ q[ q_write++ ] ]=1;
2559 while ( q_read < q_write) {
2560 const U32 cur = q[ q_read++ % numstates ];
2561 base = trie->states[ cur ].trans.base;
2563 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
2564 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
2566 U32 fail_state = cur;
2569 fail_state = fail[ fail_state ];
2570 fail_base = aho->states[ fail_state ].trans.base;
2571 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
2573 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
2574 fail[ ch_state ] = fail_state;
2575 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
2577 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
2579 q[ q_write++ % numstates] = ch_state;
2583 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
2584 when we fail in state 1, this allows us to use the
2585 charclass scan to find a valid start char. This is based on the principle
2586 that theres a good chance the string being searched contains lots of stuff
2587 that cant be a start char.
2589 fail[ 0 ] = fail[ 1 ] = 0;
2590 DEBUG_TRIE_COMPILE_r({
2591 PerlIO_printf(Perl_debug_log,
2592 "%*sStclass Failtable (%"UVuf" states): 0",
2593 (int)(depth * 2), "", (UV)numstates
2595 for( q_read=1; q_read<numstates; q_read++ ) {
2596 PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
2598 PerlIO_printf(Perl_debug_log, "\n");
2601 /*RExC_seen |= REG_SEEN_TRIEDFA;*/
2606 * There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
2607 * These need to be revisited when a newer toolchain becomes available.
2609 #if defined(__sparc64__) && defined(__GNUC__)
2610 # if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
2611 # undef SPARC64_GCC_WORKAROUND
2612 # define SPARC64_GCC_WORKAROUND 1
2616 #define DEBUG_PEEP(str,scan,depth) \
2617 DEBUG_OPTIMISE_r({if (scan){ \
2618 SV * const mysv=sv_newmortal(); \
2619 regnode *Next = regnext(scan); \
2620 regprop(RExC_rx, mysv, scan); \
2621 PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
2622 (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
2623 Next ? (REG_NODE_NUM(Next)) : 0 ); \
2627 /* The below joins as many adjacent EXACTish nodes as possible into a single
2628 * one. The regop may be changed if the node(s) contain certain sequences that
2629 * require special handling. The joining is only done if:
2630 * 1) there is room in the current conglomerated node to entirely contain the
2632 * 2) they are the exact same node type
2634 * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
2635 * these get optimized out
2637 * If a node is to match under /i (folded), the number of characters it matches
2638 * can be different than its character length if it contains a multi-character
2639 * fold. *min_subtract is set to the total delta of the input nodes.
2641 * And *has_exactf_sharp_s is set to indicate whether or not the node is EXACTF
2642 * and contains LATIN SMALL LETTER SHARP S
2644 * This is as good a place as any to discuss the design of handling these
2645 * multi-character fold sequences. It's been wrong in Perl for a very long
2646 * time. There are three code points in Unicode whose multi-character folds
2647 * were long ago discovered to mess things up. The previous designs for
2648 * dealing with these involved assigning a special node for them. This
2649 * approach doesn't work, as evidenced by this example:
2650 * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
2651 * Both these fold to "sss", but if the pattern is parsed to create a node that
2652 * would match just the \xDF, it won't be able to handle the case where a
2653 * successful match would have to cross the node's boundary. The new approach
2654 * that hopefully generally solves the problem generates an EXACTFU_SS node
2657 * It turns out that there are problems with all multi-character folds, and not
2658 * just these three. Now the code is general, for all such cases, but the
2659 * three still have some special handling. The approach taken is:
2660 * 1) This routine examines each EXACTFish node that could contain multi-
2661 * character fold sequences. It returns in *min_subtract how much to
2662 * subtract from the the actual length of the string to get a real minimum
2663 * match length; it is 0 if there are no multi-char folds. This delta is
2664 * used by the caller to adjust the min length of the match, and the delta
2665 * between min and max, so that the optimizer doesn't reject these
2666 * possibilities based on size constraints.
2667 * 2) Certain of these sequences require special handling by the trie code,
2668 * so, if found, this code changes the joined node type to special ops:
2669 * EXACTFU_TRICKYFOLD and EXACTFU_SS.
2670 * 3) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
2671 * is used for an EXACTFU node that contains at least one "ss" sequence in
2672 * it. For non-UTF-8 patterns and strings, this is the only case where
2673 * there is a possible fold length change. That means that a regular
2674 * EXACTFU node without UTF-8 involvement doesn't have to concern itself
2675 * with length changes, and so can be processed faster. regexec.c takes
2676 * advantage of this. Generally, an EXACTFish node that is in UTF-8 is
2677 * pre-folded by regcomp.c. This saves effort in regex matching.
2678 * However, the pre-folding isn't done for non-UTF8 patterns because the
2679 * fold of the MICRO SIGN requires UTF-8, and we don't want to slow things
2680 * down by forcing the pattern into UTF8 unless necessary. Also what
2681 * EXACTF and EXACTFL nodes fold to isn't known until runtime. The fold
2682 * possibilities for the non-UTF8 patterns are quite simple, except for
2683 * the sharp s. All the ones that don't involve a UTF-8 target string are
2684 * members of a fold-pair, and arrays are set up for all of them so that
2685 * the other member of the pair can be found quickly. Code elsewhere in
2686 * this file makes sure that in EXACTFU nodes, the sharp s gets folded to
2687 * 'ss', even if the pattern isn't UTF-8. This avoids the issues
2688 * described in the next item.
2689 * 4) A problem remains for the sharp s in EXACTF nodes. Whether it matches
2690 * 'ss' or not is not knowable at compile time. It will match iff the
2691 * target string is in UTF-8, unlike the EXACTFU nodes, where it always
2692 * matches; and the EXACTFL and EXACTFA nodes where it never does. Thus
2693 * it can't be folded to "ss" at compile time, unlike EXACTFU does (as
2694 * described in item 3). An assumption that the optimizer part of
2695 * regexec.c (probably unwittingly) makes is that a character in the
2696 * pattern corresponds to at most a single character in the target string.
2697 * (And I do mean character, and not byte here, unlike other parts of the
2698 * documentation that have never been updated to account for multibyte
2699 * Unicode.) This assumption is wrong only in this case, as all other
2700 * cases are either 1-1 folds when no UTF-8 is involved; or is true by
2701 * virtue of having this file pre-fold UTF-8 patterns. I'm
2702 * reluctant to try to change this assumption, so instead the code punts.
2703 * This routine examines EXACTF nodes for the sharp s, and returns a
2704 * boolean indicating whether or not the node is an EXACTF node that
2705 * contains a sharp s. When it is true, the caller sets a flag that later
2706 * causes the optimizer in this file to not set values for the floating
2707 * and fixed string lengths, and thus avoids the optimizer code in
2708 * regexec.c that makes the invalid assumption. Thus, there is no
2709 * optimization based on string lengths for EXACTF nodes that contain the
2710 * sharp s. This only happens for /id rules (which means the pattern
2714 #define JOIN_EXACT(scan,min_subtract,has_exactf_sharp_s, flags) \
2715 if (PL_regkind[OP(scan)] == EXACT) \
2716 join_exact(pRExC_state,(scan),(min_subtract),has_exactf_sharp_s, (flags),NULL,depth+1)
2719 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, UV *min_subtract, bool *has_exactf_sharp_s, U32 flags,regnode *val, U32 depth) {
2720 /* Merge several consecutive EXACTish nodes into one. */
2721 regnode *n = regnext(scan);
2723 regnode *next = scan + NODE_SZ_STR(scan);
2727 regnode *stop = scan;
2728 GET_RE_DEBUG_FLAGS_DECL;
2730 PERL_UNUSED_ARG(depth);
2733 PERL_ARGS_ASSERT_JOIN_EXACT;
2734 #ifndef EXPERIMENTAL_INPLACESCAN
2735 PERL_UNUSED_ARG(flags);
2736 PERL_UNUSED_ARG(val);
2738 DEBUG_PEEP("join",scan,depth);
2740 /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
2741 * EXACT ones that are mergeable to the current one. */
2743 && (PL_regkind[OP(n)] == NOTHING
2744 || (stringok && OP(n) == OP(scan)))
2746 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
2749 if (OP(n) == TAIL || n > next)
2751 if (PL_regkind[OP(n)] == NOTHING) {
2752 DEBUG_PEEP("skip:",n,depth);
2753 NEXT_OFF(scan) += NEXT_OFF(n);
2754 next = n + NODE_STEP_REGNODE;
2761 else if (stringok) {
2762 const unsigned int oldl = STR_LEN(scan);
2763 regnode * const nnext = regnext(n);
2765 /* XXX I (khw) kind of doubt that this works on platforms where
2766 * U8_MAX is above 255 because of lots of other assumptions */
2767 /* Don't join if the sum can't fit into a single node */
2768 if (oldl + STR_LEN(n) > U8_MAX)
2771 DEBUG_PEEP("merg",n,depth);
2774 NEXT_OFF(scan) += NEXT_OFF(n);
2775 STR_LEN(scan) += STR_LEN(n);
2776 next = n + NODE_SZ_STR(n);
2777 /* Now we can overwrite *n : */
2778 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
2786 #ifdef EXPERIMENTAL_INPLACESCAN
2787 if (flags && !NEXT_OFF(n)) {
2788 DEBUG_PEEP("atch", val, depth);
2789 if (reg_off_by_arg[OP(n)]) {
2790 ARG_SET(n, val - n);
2793 NEXT_OFF(n) = val - n;
2801 *has_exactf_sharp_s = FALSE;
2803 /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
2804 * can now analyze for sequences of problematic code points. (Prior to
2805 * this final joining, sequences could have been split over boundaries, and
2806 * hence missed). The sequences only happen in folding, hence for any
2807 * non-EXACT EXACTish node */
2808 if (OP(scan) != EXACT) {
2809 const U8 * const s0 = (U8*) STRING(scan);
2811 const U8 * const s_end = s0 + STR_LEN(scan);
2813 /* One pass is made over the node's string looking for all the
2814 * possibilities. to avoid some tests in the loop, there are two main
2815 * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
2819 /* Examine the string for a multi-character fold sequence. UTF-8
2820 * patterns have all characters pre-folded by the time this code is
2822 while (s < s_end - 1) /* Can stop 1 before the end, as minimum
2823 length sequence we are looking for is 2 */
2826 int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
2827 if (! len) { /* Not a multi-char fold: get next char */
2832 /* Nodes with 'ss' require special handling, except for EXACTFL
2833 * and EXACTFA for which there is no multi-char fold to this */
2834 if (len == 2 && *s == 's' && *(s+1) == 's'
2835 && OP(scan) != EXACTFL && OP(scan) != EXACTFA)
2838 OP(scan) = EXACTFU_SS;
2841 else if (len == 6 /* len is the same in both ASCII and EBCDIC for these */
2842 && (memEQ(s, GREEK_SMALL_LETTER_IOTA_UTF8
2843 COMBINING_DIAERESIS_UTF8
2844 COMBINING_ACUTE_ACCENT_UTF8,
2846 || memEQ(s, GREEK_SMALL_LETTER_UPSILON_UTF8
2847 COMBINING_DIAERESIS_UTF8
2848 COMBINING_ACUTE_ACCENT_UTF8,
2853 /* These two folds require special handling by trie's, so
2854 * change the node type to indicate this. If EXACTFA and
2855 * EXACTFL were ever to be handled by trie's, this would
2856 * have to be changed. If this node has already been
2857 * changed to EXACTFU_SS in this loop, leave it as is. (I
2858 * (khw) think it doesn't matter in regexec.c for UTF
2859 * patterns, but no need to change it */
2860 if (OP(scan) == EXACTFU) {
2861 OP(scan) = EXACTFU_TRICKYFOLD;
2865 else { /* Here is a generic multi-char fold. */
2866 const U8* multi_end = s + len;
2868 /* Count how many characters in it. In the case of /l and
2869 * /aa, no folds which contain ASCII code points are
2870 * allowed, so check for those, and skip if found. (In
2871 * EXACTFL, no folds are allowed to any Latin1 code point,
2872 * not just ASCII. But there aren't any of these
2873 * currently, nor ever likely, so don't take the time to
2874 * test for them. The code that generates the
2875 * is_MULTI_foo() macros croaks should one actually get put
2876 * into Unicode .) */
2877 if (OP(scan) != EXACTFL && OP(scan) != EXACTFA) {
2878 count = utf8_length(s, multi_end);
2882 while (s < multi_end) {
2885 goto next_iteration;
2895 /* The delta is how long the sequence is minus 1 (1 is how long
2896 * the character that folds to the sequence is) */
2897 *min_subtract += count - 1;
2901 else if (OP(scan) != EXACTFL && OP(scan) != EXACTFA) {
2903 /* Here, the pattern is not UTF-8. Look for the multi-char folds
2904 * that are all ASCII. As in the above case, EXACTFL and EXACTFA
2905 * nodes can't have multi-char folds to this range (and there are
2906 * no existing ones in the upper latin1 range). In the EXACTF
2907 * case we look also for the sharp s, which can be in the final
2908 * position. Otherwise we can stop looking 1 byte earlier because
2909 * have to find at least two characters for a multi-fold */
2910 const U8* upper = (OP(scan) == EXACTF) ? s_end : s_end -1;
2912 /* The below is perhaps overboard, but this allows us to save a
2913 * test each time through the loop at the expense of a mask. This
2914 * is because on both EBCDIC and ASCII machines, 'S' and 's' differ
2915 * by a single bit. On ASCII they are 32 apart; on EBCDIC, they
2916 * are 64. This uses an exclusive 'or' to find that bit and then
2917 * inverts it to form a mask, with just a single 0, in the bit
2918 * position where 'S' and 's' differ. */
2919 const U8 S_or_s_mask = (U8) ~ ('S' ^ 's');
2920 const U8 s_masked = 's' & S_or_s_mask;
2923 int len = is_MULTI_CHAR_FOLD_latin1_safe(s, s_end);
2924 if (! len) { /* Not a multi-char fold. */
2925 if (*s == LATIN_SMALL_LETTER_SHARP_S && OP(scan) == EXACTF)
2927 *has_exactf_sharp_s = TRUE;
2934 && ((*s & S_or_s_mask) == s_masked)
2935 && ((*(s+1) & S_or_s_mask) == s_masked))
2938 /* EXACTF nodes need to know that the minimum length
2939 * changed so that a sharp s in the string can match this
2940 * ss in the pattern, but they remain EXACTF nodes, as they
2941 * won't match this unless the target string is is UTF-8,
2942 * which we don't know until runtime */
2943 if (OP(scan) != EXACTF) {
2944 OP(scan) = EXACTFU_SS;
2948 *min_subtract += len - 1;
2955 /* Allow dumping but overwriting the collection of skipped
2956 * ops and/or strings with fake optimized ops */
2957 n = scan + NODE_SZ_STR(scan);
2965 DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
2969 /* REx optimizer. Converts nodes into quicker variants "in place".
2970 Finds fixed substrings. */
2972 /* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
2973 to the position after last scanned or to NULL. */
2975 #define INIT_AND_WITHP \
2976 assert(!and_withp); \
2977 Newx(and_withp,1,struct regnode_charclass_class); \
2978 SAVEFREEPV(and_withp)
2980 /* this is a chain of data about sub patterns we are processing that
2981 need to be handled separately/specially in study_chunk. Its so
2982 we can simulate recursion without losing state. */
2984 typedef struct scan_frame {
2985 regnode *last; /* last node to process in this frame */
2986 regnode *next; /* next node to process when last is reached */
2987 struct scan_frame *prev; /*previous frame*/
2988 I32 stop; /* what stopparen do we use */
2992 #define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf)
2995 S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
2996 I32 *minlenp, I32 *deltap,
3001 struct regnode_charclass_class *and_withp,
3002 U32 flags, U32 depth)
3003 /* scanp: Start here (read-write). */
3004 /* deltap: Write maxlen-minlen here. */
3005 /* last: Stop before this one. */
3006 /* data: string data about the pattern */
3007 /* stopparen: treat close N as END */
3008 /* recursed: which subroutines have we recursed into */
3009 /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
3012 I32 min = 0; /* There must be at least this number of characters to match */
3014 regnode *scan = *scanp, *next;
3016 int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
3017 int is_inf_internal = 0; /* The studied chunk is infinite */
3018 I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
3019 scan_data_t data_fake;
3020 SV *re_trie_maxbuff = NULL;
3021 regnode *first_non_open = scan;
3022 I32 stopmin = I32_MAX;
3023 scan_frame *frame = NULL;
3024 GET_RE_DEBUG_FLAGS_DECL;
3026 PERL_ARGS_ASSERT_STUDY_CHUNK;
3029 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
3033 while (first_non_open && OP(first_non_open) == OPEN)
3034 first_non_open=regnext(first_non_open);
3039 while ( scan && OP(scan) != END && scan < last ){
3040 UV min_subtract = 0; /* How mmany chars to subtract from the minimum
3041 node length to get a real minimum (because
3042 the folded version may be shorter) */
3043 bool has_exactf_sharp_s = FALSE;
3044 /* Peephole optimizer: */
3045 DEBUG_STUDYDATA("Peep:", data,depth);
3046 DEBUG_PEEP("Peep",scan,depth);
3048 /* Its not clear to khw or hv why this is done here, and not in the
3049 * clauses that deal with EXACT nodes. khw's guess is that it's
3050 * because of a previous design */
3051 JOIN_EXACT(scan,&min_subtract, &has_exactf_sharp_s, 0);
3053 /* Follow the next-chain of the current node and optimize
3054 away all the NOTHINGs from it. */
3055 if (OP(scan) != CURLYX) {
3056 const int max = (reg_off_by_arg[OP(scan)]
3058 /* I32 may be smaller than U16 on CRAYs! */
3059 : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
3060 int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
3064 /* Skip NOTHING and LONGJMP. */
3065 while ((n = regnext(n))
3066 && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
3067 || ((OP(n) == LONGJMP) && (noff = ARG(n))))
3068 && off + noff < max)
3070 if (reg_off_by_arg[OP(scan)])
3073 NEXT_OFF(scan) = off;
3078 /* The principal pseudo-switch. Cannot be a switch, since we
3079 look into several different things. */
3080 if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
3081 || OP(scan) == IFTHEN) {
3082 next = regnext(scan);
3084 /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
3086 if (OP(next) == code || code == IFTHEN) {
3087 /* NOTE - There is similar code to this block below for handling
3088 TRIE nodes on a re-study. If you change stuff here check there
3090 I32 max1 = 0, min1 = I32_MAX, num = 0;
3091 struct regnode_charclass_class accum;
3092 regnode * const startbranch=scan;
3094 if (flags & SCF_DO_SUBSTR)
3095 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
3096 if (flags & SCF_DO_STCLASS)
3097 cl_init_zero(pRExC_state, &accum);
3099 while (OP(scan) == code) {
3100 I32 deltanext, minnext, f = 0, fake;
3101 struct regnode_charclass_class this_class;
3104 data_fake.flags = 0;
3106 data_fake.whilem_c = data->whilem_c;
3107 data_fake.last_closep = data->last_closep;
3110 data_fake.last_closep = &fake;
3112 data_fake.pos_delta = delta;
3113 next = regnext(scan);
3114 scan = NEXTOPER(scan);
3116 scan = NEXTOPER(scan);
3117 if (flags & SCF_DO_STCLASS) {
3118 cl_init(pRExC_state, &this_class);
3119 data_fake.start_class = &this_class;
3120 f = SCF_DO_STCLASS_AND;
3122 if (flags & SCF_WHILEM_VISITED_POS)
3123 f |= SCF_WHILEM_VISITED_POS;
3125 /* we suppose the run is continuous, last=next...*/
3126 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3128 stopparen, recursed, NULL, f,depth+1);
3131 if (deltanext == I32_MAX) {
3132 is_inf = is_inf_internal = 1;
3134 } else if (max1 < minnext + deltanext)
3135 max1 = minnext + deltanext;
3137 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
3139 if (data_fake.flags & SCF_SEEN_ACCEPT) {
3140 if ( stopmin > minnext)
3141 stopmin = min + min1;
3142 flags &= ~SCF_DO_SUBSTR;
3144 data->flags |= SCF_SEEN_ACCEPT;
3147 if (data_fake.flags & SF_HAS_EVAL)
3148 data->flags |= SF_HAS_EVAL;
3149 data->whilem_c = data_fake.whilem_c;
3151 if (flags & SCF_DO_STCLASS)
3152 cl_or(pRExC_state, &accum, &this_class);
3154 if (code == IFTHEN && num < 2) /* Empty ELSE branch */
3156 if (flags & SCF_DO_SUBSTR) {
3157 data->pos_min += min1;
3158 if (data->pos_delta >= I32_MAX - (max1 - min1))
3159 data->pos_delta = I32_MAX;
3161 data->pos_delta += max1 - min1;
3162 if (max1 != min1 || is_inf)
3163 data->longest = &(data->longest_float);
3166 if (delta == I32_MAX || I32_MAX - delta - (max1 - min1) < 0)
3169 delta += max1 - min1;
3170 if (flags & SCF_DO_STCLASS_OR) {
3171 cl_or(pRExC_state, data->start_class, &accum);
3173 cl_and(data->start_class, and_withp);
3174 flags &= ~SCF_DO_STCLASS;
3177 else if (flags & SCF_DO_STCLASS_AND) {
3179 cl_and(data->start_class, &accum);
3180 flags &= ~SCF_DO_STCLASS;
3183 /* Switch to OR mode: cache the old value of
3184 * data->start_class */
3186 StructCopy(data->start_class, and_withp,
3187 struct regnode_charclass_class);
3188 flags &= ~SCF_DO_STCLASS_AND;
3189 StructCopy(&accum, data->start_class,
3190 struct regnode_charclass_class);
3191 flags |= SCF_DO_STCLASS_OR;
3192 SET_SSC_EOS(data->start_class);
3196 if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
3199 Assuming this was/is a branch we are dealing with: 'scan' now
3200 points at the item that follows the branch sequence, whatever
3201 it is. We now start at the beginning of the sequence and look
3208 which would be constructed from a pattern like /A|LIST|OF|WORDS/
3210 If we can find such a subsequence we need to turn the first
3211 element into a trie and then add the subsequent branch exact
3212 strings to the trie.
3216 1. patterns where the whole set of branches can be converted.
3218 2. patterns where only a subset can be converted.
3220 In case 1 we can replace the whole set with a single regop
3221 for the trie. In case 2 we need to keep the start and end
3224 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
3225 becomes BRANCH TRIE; BRANCH X;
3227 There is an additional case, that being where there is a
3228 common prefix, which gets split out into an EXACT like node
3229 preceding the TRIE node.
3231 If x(1..n)==tail then we can do a simple trie, if not we make
3232 a "jump" trie, such that when we match the appropriate word
3233 we "jump" to the appropriate tail node. Essentially we turn
3234 a nested if into a case structure of sorts.
3239 if (!re_trie_maxbuff) {
3240 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
3241 if (!SvIOK(re_trie_maxbuff))
3242 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
3244 if ( SvIV(re_trie_maxbuff)>=0 ) {
3246 regnode *first = (regnode *)NULL;
3247 regnode *last = (regnode *)NULL;
3248 regnode *tail = scan;
3253 SV * const mysv = sv_newmortal(); /* for dumping */
3255 /* var tail is used because there may be a TAIL
3256 regop in the way. Ie, the exacts will point to the
3257 thing following the TAIL, but the last branch will
3258 point at the TAIL. So we advance tail. If we
3259 have nested (?:) we may have to move through several
3263 while ( OP( tail ) == TAIL ) {
3264 /* this is the TAIL generated by (?:) */
3265 tail = regnext( tail );
3269 DEBUG_TRIE_COMPILE_r({
3270 regprop(RExC_rx, mysv, tail );
3271 PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
3272 (int)depth * 2 + 2, "",
3273 "Looking for TRIE'able sequences. Tail node is: ",
3274 SvPV_nolen_const( mysv )
3280 Step through the branches
3281 cur represents each branch,
3282 noper is the first thing to be matched as part of that branch
3283 noper_next is the regnext() of that node.
3285 We normally handle a case like this /FOO[xyz]|BAR[pqr]/
3286 via a "jump trie" but we also support building with NOJUMPTRIE,
3287 which restricts the trie logic to structures like /FOO|BAR/.
3289 If noper is a trieable nodetype then the branch is a possible optimization
3290 target. If we are building under NOJUMPTRIE then we require that noper_next
3291 is the same as scan (our current position in the regex program).
3293 Once we have two or more consecutive such branches we can create a
3294 trie of the EXACT's contents and stitch it in place into the program.
3296 If the sequence represents all of the branches in the alternation we
3297 replace the entire thing with a single TRIE node.
3299 Otherwise when it is a subsequence we need to stitch it in place and
3300 replace only the relevant branches. This means the first branch has
3301 to remain as it is used by the alternation logic, and its next pointer,
3302 and needs to be repointed at the item on the branch chain following
3303 the last branch we have optimized away.
3305 This could be either a BRANCH, in which case the subsequence is internal,
3306 or it could be the item following the branch sequence in which case the
3307 subsequence is at the end (which does not necessarily mean the first node
3308 is the start of the alternation).
3310 TRIE_TYPE(X) is a define which maps the optype to a trietype.
3313 ----------------+-----------
3317 EXACTFU_SS | EXACTFU
3318 EXACTFU_TRICKYFOLD | EXACTFU
3323 #define TRIE_TYPE(X) ( ( NOTHING == (X) ) ? NOTHING : \
3324 ( EXACT == (X) ) ? EXACT : \
3325 ( EXACTFU == (X) || EXACTFU_SS == (X) || EXACTFU_TRICKYFOLD == (X) ) ? EXACTFU : \
3328 /* dont use tail as the end marker for this traverse */
3329 for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
3330 regnode * const noper = NEXTOPER( cur );
3331 U8 noper_type = OP( noper );
3332 U8 noper_trietype = TRIE_TYPE( noper_type );
3333 #if defined(DEBUGGING) || defined(NOJUMPTRIE)
3334 regnode * const noper_next = regnext( noper );
3335 U8 noper_next_type = (noper_next && noper_next != tail) ? OP(noper_next) : 0;
3336 U8 noper_next_trietype = (noper_next && noper_next != tail) ? TRIE_TYPE( noper_next_type ) :0;
3339 DEBUG_TRIE_COMPILE_r({
3340 regprop(RExC_rx, mysv, cur);
3341 PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
3342 (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
3344 regprop(RExC_rx, mysv, noper);
3345 PerlIO_printf( Perl_debug_log, " -> %s",
3346 SvPV_nolen_const(mysv));
3349 regprop(RExC_rx, mysv, noper_next );
3350 PerlIO_printf( Perl_debug_log,"\t=> %s\t",
3351 SvPV_nolen_const(mysv));
3353 PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d,tt==%s,nt==%s,nnt==%s)\n",
3354 REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur),
3355 PL_reg_name[trietype], PL_reg_name[noper_trietype], PL_reg_name[noper_next_trietype]
3359 /* Is noper a trieable nodetype that can be merged with the
3360 * current trie (if there is one)? */
3364 ( noper_trietype == NOTHING)
3365 || ( trietype == NOTHING )
3366 || ( trietype == noper_trietype )
3369 && noper_next == tail
3373 /* Handle mergable triable node
3374 * Either we are the first node in a new trieable sequence,
3375 * in which case we do some bookkeeping, otherwise we update
3376 * the end pointer. */
3379 if ( noper_trietype == NOTHING ) {
3380 #if !defined(DEBUGGING) && !defined(NOJUMPTRIE)
3381 regnode * const noper_next = regnext( noper );
3382 U8 noper_next_type = (noper_next && noper_next!=tail) ? OP(noper_next) : 0;
3383 U8 noper_next_trietype = noper_next_type ? TRIE_TYPE( noper_next_type ) :0;
3386 if ( noper_next_trietype ) {
3387 trietype = noper_next_trietype;
3388 } else if (noper_next_type) {
3389 /* a NOTHING regop is 1 regop wide. We need at least two
3390 * for a trie so we can't merge this in */
3394 trietype = noper_trietype;
3397 if ( trietype == NOTHING )
3398 trietype = noper_trietype;
3403 } /* end handle mergable triable node */
3405 /* handle unmergable node -
3406 * noper may either be a triable node which can not be tried
3407 * together with the current trie, or a non triable node */
3409 /* If last is set and trietype is not NOTHING then we have found
3410 * at least two triable branch sequences in a row of a similar
3411 * trietype so we can turn them into a trie. If/when we
3412 * allow NOTHING to start a trie sequence this condition will be
3413 * required, and it isn't expensive so we leave it in for now. */
3414 if ( trietype && trietype != NOTHING )
3415 make_trie( pRExC_state,
3416 startbranch, first, cur, tail, count,
3417 trietype, depth+1 );
3418 last = NULL; /* note: we clear/update first, trietype etc below, so we dont do it here */
3422 && noper_next == tail
3425 /* noper is triable, so we can start a new trie sequence */
3428 trietype = noper_trietype;
3430 /* if we already saw a first but the current node is not triable then we have
3431 * to reset the first information. */
3436 } /* end handle unmergable node */
3437 } /* loop over branches */
3438 DEBUG_TRIE_COMPILE_r({
3439 regprop(RExC_rx, mysv, cur);
3440 PerlIO_printf( Perl_debug_log,
3441 "%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
3442 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3445 if ( last && trietype ) {
3446 if ( trietype != NOTHING ) {
3447 /* the last branch of the sequence was part of a trie,
3448 * so we have to construct it here outside of the loop
3450 made= make_trie( pRExC_state, startbranch, first, scan, tail, count, trietype, depth+1 );
3451 #ifdef TRIE_STUDY_OPT
3452 if ( ((made == MADE_EXACT_TRIE &&
3453 startbranch == first)
3454 || ( first_non_open == first )) &&
3456 flags |= SCF_TRIE_RESTUDY;
3457 if ( startbranch == first
3460 RExC_seen &=~REG_TOP_LEVEL_BRANCHES;
3465 /* at this point we know whatever we have is a NOTHING sequence/branch
3466 * AND if 'startbranch' is 'first' then we can turn the whole thing into a NOTHING
3468 if ( startbranch == first ) {
3470 /* the entire thing is a NOTHING sequence, something like this:
3471 * (?:|) So we can turn it into a plain NOTHING op. */
3472 DEBUG_TRIE_COMPILE_r({
3473 regprop(RExC_rx, mysv, cur);
3474 PerlIO_printf( Perl_debug_log,
3475 "%*s- %s (%d) <NOTHING BRANCH SEQUENCE>\n", (int)depth * 2 + 2,
3476 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3479 OP(startbranch)= NOTHING;
3480 NEXT_OFF(startbranch)= tail - startbranch;
3481 for ( opt= startbranch + 1; opt < tail ; opt++ )
3485 } /* end if ( last) */
3486 } /* TRIE_MAXBUF is non zero */
3491 else if ( code == BRANCHJ ) { /* single branch is optimized. */
3492 scan = NEXTOPER(NEXTOPER(scan));
3493 } else /* single branch is optimized. */
3494 scan = NEXTOPER(scan);
3496 } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
3497 scan_frame *newframe = NULL;
3502 if (OP(scan) != SUSPEND) {
3503 /* set the pointer */
3504 if (OP(scan) == GOSUB) {
3506 RExC_recurse[ARG2L(scan)] = scan;
3507 start = RExC_open_parens[paren-1];
3508 end = RExC_close_parens[paren-1];
3511 start = RExC_rxi->program + 1;
3515 Newxz(recursed, (((RExC_npar)>>3) +1), U8);
3516 SAVEFREEPV(recursed);
3518 if (!PAREN_TEST(recursed,paren+1)) {
3519 PAREN_SET(recursed,paren+1);
3520 Newx(newframe,1,scan_frame);
3522 if (flags & SCF_DO_SUBSTR) {
3523 SCAN_COMMIT(pRExC_state,data,minlenp);
3524 data->longest = &(data->longest_float);
3526 is_inf = is_inf_internal = 1;
3527 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3528 cl_anything(pRExC_state, data->start_class);
3529 flags &= ~SCF_DO_STCLASS;
3532 Newx(newframe,1,scan_frame);
3535 end = regnext(scan);
3540 SAVEFREEPV(newframe);
3541 newframe->next = regnext(scan);
3542 newframe->last = last;
3543 newframe->stop = stopparen;
3544 newframe->prev = frame;
3554 else if (OP(scan) == EXACT) {
3555 I32 l = STR_LEN(scan);
3558 const U8 * const s = (U8*)STRING(scan);
3559 uc = utf8_to_uvchr_buf(s, s + l, NULL);
3560 l = utf8_length(s, s + l);
3562 uc = *((U8*)STRING(scan));
3565 if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
3566 /* The code below prefers earlier match for fixed
3567 offset, later match for variable offset. */
3568 if (data->last_end == -1) { /* Update the start info. */
3569 data->last_start_min = data->pos_min;
3570 data->last_start_max = is_inf
3571 ? I32_MAX : data->pos_min + data->pos_delta;
3573 sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
3575 SvUTF8_on(data->last_found);
3577 SV * const sv = data->last_found;
3578 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3579 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3580 if (mg && mg->mg_len >= 0)
3581 mg->mg_len += utf8_length((U8*)STRING(scan),
3582 (U8*)STRING(scan)+STR_LEN(scan));
3584 data->last_end = data->pos_min + l;
3585 data->pos_min += l; /* As in the first entry. */
3586 data->flags &= ~SF_BEFORE_EOL;
3588 if (flags & SCF_DO_STCLASS_AND) {
3589 /* Check whether it is compatible with what we know already! */
3593 /* If compatible, we or it in below. It is compatible if is
3594 * in the bitmp and either 1) its bit or its fold is set, or 2)
3595 * it's for a locale. Even if there isn't unicode semantics
3596 * here, at runtime there may be because of matching against a
3597 * utf8 string, so accept a possible false positive for
3598 * latin1-range folds */
3600 (!(data->start_class->flags & ANYOF_LOCALE)
3601 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3602 && (!(data->start_class->flags & ANYOF_LOC_FOLD)
3603 || !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3608 ANYOF_CLASS_ZERO(data->start_class);
3609 ANYOF_BITMAP_ZERO(data->start_class);
3611 ANYOF_BITMAP_SET(data->start_class, uc);
3612 else if (uc >= 0x100) {
3615 /* Some Unicode code points fold to the Latin1 range; as
3616 * XXX temporary code, instead of figuring out if this is
3617 * one, just assume it is and set all the start class bits
3618 * that could be some such above 255 code point's fold
3619 * which will generate fals positives. As the code
3620 * elsewhere that does compute the fold settles down, it
3621 * can be extracted out and re-used here */
3622 for (i = 0; i < 256; i++){
3623 if (HAS_NONLATIN1_FOLD_CLOSURE(i)) {
3624 ANYOF_BITMAP_SET(data->start_class, i);
3628 CLEAR_SSC_EOS(data->start_class);
3630 data->start_class->flags &= ~ANYOF_UNICODE_ALL;
3632 else if (flags & SCF_DO_STCLASS_OR) {
3633 /* false positive possible if the class is case-folded */
3635 ANYOF_BITMAP_SET(data->start_class, uc);
3637 data->start_class->flags |= ANYOF_UNICODE_ALL;
3638 CLEAR_SSC_EOS(data->start_class);
3639 cl_and(data->start_class, and_withp);
3641 flags &= ~SCF_DO_STCLASS;
3643 else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
3644 I32 l = STR_LEN(scan);
3645 UV uc = *((U8*)STRING(scan));
3647 /* Search for fixed substrings supports EXACT only. */
3648 if (flags & SCF_DO_SUBSTR) {
3650 SCAN_COMMIT(pRExC_state, data, minlenp);
3653 const U8 * const s = (U8 *)STRING(scan);
3654 uc = utf8_to_uvchr_buf(s, s + l, NULL);
3655 l = utf8_length(s, s + l);
3657 if (has_exactf_sharp_s) {
3658 RExC_seen |= REG_SEEN_EXACTF_SHARP_S;
3660 min += l - min_subtract;
3662 delta += min_subtract;
3663 if (flags & SCF_DO_SUBSTR) {
3664 data->pos_min += l - min_subtract;
3665 if (data->pos_min < 0) {
3668 data->pos_delta += min_subtract;
3670 data->longest = &(data->longest_float);
3673 if (flags & SCF_DO_STCLASS_AND) {
3674 /* Check whether it is compatible with what we know already! */
3677 (!(data->start_class->flags & ANYOF_LOCALE)
3678 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3679 && !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3683 ANYOF_CLASS_ZERO(data->start_class);
3684 ANYOF_BITMAP_ZERO(data->start_class);
3686 ANYOF_BITMAP_SET(data->start_class, uc);
3687 CLEAR_SSC_EOS(data->start_class);
3688 if (OP(scan) == EXACTFL) {
3689 /* XXX This set is probably no longer necessary, and
3690 * probably wrong as LOCALE now is on in the initial
3692 data->start_class->flags |= ANYOF_LOCALE|ANYOF_LOC_FOLD;
3696 /* Also set the other member of the fold pair. In case
3697 * that unicode semantics is called for at runtime, use
3698 * the full latin1 fold. (Can't do this for locale,
3699 * because not known until runtime) */
3700 ANYOF_BITMAP_SET(data->start_class, PL_fold_latin1[uc]);
3702 /* All other (EXACTFL handled above) folds except under
3703 * /iaa that include s, S, and sharp_s also may include
3705 if (OP(scan) != EXACTFA) {
3706 if (uc == 's' || uc == 'S') {
3707 ANYOF_BITMAP_SET(data->start_class,
3708 LATIN_SMALL_LETTER_SHARP_S);
3710 else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
3711 ANYOF_BITMAP_SET(data->start_class, 's');
3712 ANYOF_BITMAP_SET(data->start_class, 'S');
3717 else if (uc >= 0x100) {
3719 for (i = 0; i < 256; i++){
3720 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3721 ANYOF_BITMAP_SET(data->start_class, i);
3726 else if (flags & SCF_DO_STCLASS_OR) {
3727 if (data->start_class->flags & ANYOF_LOC_FOLD) {
3728 /* false positive possible if the class is case-folded.
3729 Assume that the locale settings are the same... */
3731 ANYOF_BITMAP_SET(data->start_class, uc);
3732 if (OP(scan) != EXACTFL) {
3734 /* And set the other member of the fold pair, but
3735 * can't do that in locale because not known until
3737 ANYOF_BITMAP_SET(data->start_class,
3738 PL_fold_latin1[uc]);
3740 /* All folds except under /iaa that include s, S,
3741 * and sharp_s also may include the others */
3742 if (OP(scan) != EXACTFA) {
3743 if (uc == 's' || uc == 'S') {
3744 ANYOF_BITMAP_SET(data->start_class,
3745 LATIN_SMALL_LETTER_SHARP_S);
3747 else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
3748 ANYOF_BITMAP_SET(data->start_class, 's');
3749 ANYOF_BITMAP_SET(data->start_class, 'S');
3754 CLEAR_SSC_EOS(data->start_class);
3756 cl_and(data->start_class, and_withp);
3758 flags &= ~SCF_DO_STCLASS;
3760 else if (REGNODE_VARIES(OP(scan))) {
3761 I32 mincount, maxcount, minnext, deltanext, fl = 0;
3762 I32 f = flags, pos_before = 0;
3763 regnode * const oscan = scan;
3764 struct regnode_charclass_class this_class;
3765 struct regnode_charclass_class *oclass = NULL;
3766 I32 next_is_eval = 0;
3768 switch (PL_regkind[OP(scan)]) {
3769 case WHILEM: /* End of (?:...)* . */
3770 scan = NEXTOPER(scan);
3773 if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
3774 next = NEXTOPER(scan);
3775 if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
3777 maxcount = REG_INFTY;
3778 next = regnext(scan);
3779 scan = NEXTOPER(scan);
3783 if (flags & SCF_DO_SUBSTR)
3788 if (flags & SCF_DO_STCLASS) {
3790 maxcount = REG_INFTY;
3791 next = regnext(scan);
3792 scan = NEXTOPER(scan);
3795 is_inf = is_inf_internal = 1;
3796 scan = regnext(scan);
3797 if (flags & SCF_DO_SUBSTR) {
3798 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */
3799 data->longest = &(data->longest_float);
3801 goto optimize_curly_tail;
3803 if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
3804 && (scan->flags == stopparen))
3809 mincount = ARG1(scan);
3810 maxcount = ARG2(scan);
3812 next = regnext(scan);
3813 if (OP(scan) == CURLYX) {
3814 I32 lp = (data ? *(data->last_closep) : 0);
3815 scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
3817 scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
3818 next_is_eval = (OP(scan) == EVAL);
3820 if (flags & SCF_DO_SUBSTR) {
3821 if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */
3822 pos_before = data->pos_min;
3826 data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
3828 data->flags |= SF_IS_INF;
3830 if (flags & SCF_DO_STCLASS) {
3831 cl_init(pRExC_state, &this_class);
3832 oclass = data->start_class;
3833 data->start_class = &this_class;
3834 f |= SCF_DO_STCLASS_AND;
3835 f &= ~SCF_DO_STCLASS_OR;
3837 /* Exclude from super-linear cache processing any {n,m}
3838 regops for which the combination of input pos and regex
3839 pos is not enough information to determine if a match
3842 For example, in the regex /foo(bar\s*){4,8}baz/ with the
3843 regex pos at the \s*, the prospects for a match depend not
3844 only on the input position but also on how many (bar\s*)
3845 repeats into the {4,8} we are. */
3846 if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
3847 f &= ~SCF_WHILEM_VISITED_POS;
3849 /* This will finish on WHILEM, setting scan, or on NULL: */
3850 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3851 last, data, stopparen, recursed, NULL,
3853 ? (f & ~SCF_DO_SUBSTR) : f),depth+1);
3855 if (flags & SCF_DO_STCLASS)
3856 data->start_class = oclass;
3857 if (mincount == 0 || minnext == 0) {
3858 if (flags & SCF_DO_STCLASS_OR) {
3859 cl_or(pRExC_state, data->start_class, &this_class);
3861 else if (flags & SCF_DO_STCLASS_AND) {
3862 /* Switch to OR mode: cache the old value of
3863 * data->start_class */
3865 StructCopy(data->start_class, and_withp,
3866 struct regnode_charclass_class);
3867 flags &= ~SCF_DO_STCLASS_AND;
3868 StructCopy(&this_class, data->start_class,
3869 struct regnode_charclass_class);
3870 flags |= SCF_DO_STCLASS_OR;
3871 SET_SSC_EOS(data->start_class);
3873 } else { /* Non-zero len */
3874 if (flags & SCF_DO_STCLASS_OR) {
3875 cl_or(pRExC_state, data->start_class, &this_class);
3876 cl_and(data->start_class, and_withp);
3878 else if (flags & SCF_DO_STCLASS_AND)
3879 cl_and(data->start_class, &this_class);
3880 flags &= ~SCF_DO_STCLASS;
3882 if (!scan) /* It was not CURLYX, but CURLY. */
3884 if ( /* ? quantifier ok, except for (?{ ... }) */
3885 (next_is_eval || !(mincount == 0 && maxcount == 1))
3886 && (minnext == 0) && (deltanext == 0)
3887 && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
3888 && maxcount <= REG_INFTY/3) /* Complement check for big count */
3890 /* Fatal warnings may leak the regexp without this: */
3891 SAVEFREESV(RExC_rx_sv);
3892 ckWARNreg(RExC_parse,
3893 "Quantifier unexpected on zero-length expression");
3894 (void)ReREFCNT_inc(RExC_rx_sv);
3897 min += minnext * mincount;
3898 is_inf_internal |= deltanext == I32_MAX
3899 || (maxcount == REG_INFTY && minnext + deltanext > 0);
3900 is_inf |= is_inf_internal;
3904 delta += (minnext + deltanext) * maxcount - minnext * mincount;
3906 /* Try powerful optimization CURLYX => CURLYN. */
3907 if ( OP(oscan) == CURLYX && data
3908 && data->flags & SF_IN_PAR
3909 && !(data->flags & SF_HAS_EVAL)
3910 && !deltanext && minnext == 1 ) {
3911 /* Try to optimize to CURLYN. */
3912 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
3913 regnode * const nxt1 = nxt;
3920 if (!REGNODE_SIMPLE(OP(nxt))
3921 && !(PL_regkind[OP(nxt)] == EXACT
3922 && STR_LEN(nxt) == 1))
3928 if (OP(nxt) != CLOSE)
3930 if (RExC_open_parens) {
3931 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3932 RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
3934 /* Now we know that nxt2 is the only contents: */
3935 oscan->flags = (U8)ARG(nxt);
3937 OP(nxt1) = NOTHING; /* was OPEN. */
3940 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3941 NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
3942 NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
3943 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3944 OP(nxt + 1) = OPTIMIZED; /* was count. */
3945 NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
3950 /* Try optimization CURLYX => CURLYM. */
3951 if ( OP(oscan) == CURLYX && data
3952 && !(data->flags & SF_HAS_PAR)
3953 && !(data->flags & SF_HAS_EVAL)
3954 && !deltanext /* atom is fixed width */
3955 && minnext != 0 /* CURLYM can't handle zero width */
3956 && ! (RExC_seen & REG_SEEN_EXACTF_SHARP_S) /* Nor \xDF */
3958 /* XXXX How to optimize if data == 0? */
3959 /* Optimize to a simpler form. */
3960 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
3964 while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
3965 && (OP(nxt2) != WHILEM))
3967 OP(nxt2) = SUCCEED; /* Whas WHILEM */
3968 /* Need to optimize away parenths. */
3969 if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
3970 /* Set the parenth number. */
3971 regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
3973 oscan->flags = (U8)ARG(nxt);
3974 if (RExC_open_parens) {
3975 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3976 RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
3978 OP(nxt1) = OPTIMIZED; /* was OPEN. */
3979 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3982 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3983 OP(nxt + 1) = OPTIMIZED; /* was count. */
3984 NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
3985 NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
3988 while ( nxt1 && (OP(nxt1) != WHILEM)) {
3989 regnode *nnxt = regnext(nxt1);
3991 if (reg_off_by_arg[OP(nxt1)])
3992 ARG_SET(nxt1, nxt2 - nxt1);
3993 else if (nxt2 - nxt1 < U16_MAX)
3994 NEXT_OFF(nxt1) = nxt2 - nxt1;
3996 OP(nxt) = NOTHING; /* Cannot beautify */
4001 /* Optimize again: */
4002 study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
4003 NULL, stopparen, recursed, NULL, 0,depth+1);
4008 else if ((OP(oscan) == CURLYX)
4009 && (flags & SCF_WHILEM_VISITED_POS)
4010 /* See the comment on a similar expression above.
4011 However, this time it's not a subexpression
4012 we care about, but the expression itself. */
4013 && (maxcount == REG_INFTY)
4014 && data && ++data->whilem_c < 16) {
4015 /* This stays as CURLYX, we can put the count/of pair. */
4016 /* Find WHILEM (as in regexec.c) */
4017 regnode *nxt = oscan + NEXT_OFF(oscan);
4019 if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
4021 PREVOPER(nxt)->flags = (U8)(data->whilem_c
4022 | (RExC_whilem_seen << 4)); /* On WHILEM */
4024 if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
4026 if (flags & SCF_DO_SUBSTR) {
4027 SV *last_str = NULL;
4028 int counted = mincount != 0;
4030 if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */
4031 #if defined(SPARC64_GCC_WORKAROUND)
4034 const char *s = NULL;
4037 if (pos_before >= data->last_start_min)
4040 b = data->last_start_min;
4043 s = SvPV_const(data->last_found, l);
4044 old = b - data->last_start_min;
4047 I32 b = pos_before >= data->last_start_min
4048 ? pos_before : data->last_start_min;
4050 const char * const s = SvPV_const(data->last_found, l);
4051 I32 old = b - data->last_start_min;
4055 old = utf8_hop((U8*)s, old) - (U8*)s;
4057 /* Get the added string: */
4058 last_str = newSVpvn_utf8(s + old, l, UTF);
4059 if (deltanext == 0 && pos_before == b) {
4060 /* What was added is a constant string */
4062 SvGROW(last_str, (mincount * l) + 1);
4063 repeatcpy(SvPVX(last_str) + l,
4064 SvPVX_const(last_str), l, mincount - 1);
4065 SvCUR_set(last_str, SvCUR(last_str) * mincount);
4066 /* Add additional parts. */
4067 SvCUR_set(data->last_found,
4068 SvCUR(data->last_found) - l);
4069 sv_catsv(data->last_found, last_str);
4071 SV * sv = data->last_found;
4073 SvUTF8(sv) && SvMAGICAL(sv) ?
4074 mg_find(sv, PERL_MAGIC_utf8) : NULL;
4075 if (mg && mg->mg_len >= 0)
4076 mg->mg_len += CHR_SVLEN(last_str) - l;
4078 data->last_end += l * (mincount - 1);
4081 /* start offset must point into the last copy */
4082 data->last_start_min += minnext * (mincount - 1);
4083 data->last_start_max += is_inf ? I32_MAX
4084 : (maxcount - 1) * (minnext + data->pos_delta);
4087 /* It is counted once already... */
4088 data->pos_min += minnext * (mincount - counted);
4090 PerlIO_printf(Perl_debug_log, "counted=%d deltanext=%d I32_MAX=%d minnext=%d maxcount=%d mincount=%d\n",
4091 counted, deltanext, I32_MAX, minnext, maxcount, mincount);
4092 if (deltanext != I32_MAX)
4093 PerlIO_printf(Perl_debug_log, "LHS=%d RHS=%d\n", -counted * deltanext + (minnext + deltanext) * maxcount - minnext * mincount, I32_MAX - data->pos_delta);
4095 if (deltanext == I32_MAX || -counted * deltanext + (minnext + deltanext) * maxcount - minnext * mincount >= I32_MAX - data->pos_delta)
4096 data->pos_delta = I32_MAX;
4098 data->pos_delta += - counted * deltanext +
4099 (minnext + deltanext) * maxcount - minnext * mincount;
4100 if (mincount != maxcount) {
4101 /* Cannot extend fixed substrings found inside
4103 SCAN_COMMIT(pRExC_state,data,minlenp);
4104 if (mincount && last_str) {
4105 SV * const sv = data->last_found;
4106 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
4107 mg_find(sv, PERL_MAGIC_utf8) : NULL;
4111 sv_setsv(sv, last_str);
4112 data->last_end = data->pos_min;
4113 data->last_start_min =
4114 data->pos_min - CHR_SVLEN(last_str);
4115 data->last_start_max = is_inf
4117 : data->pos_min + data->pos_delta
4118 - CHR_SVLEN(last_str);
4120 data->longest = &(data->longest_float);
4122 SvREFCNT_dec(last_str);
4124 if (data && (fl & SF_HAS_EVAL))
4125 data->flags |= SF_HAS_EVAL;
4126 optimize_curly_tail:
4127 if (OP(oscan) != CURLYX) {
4128 while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
4130 NEXT_OFF(oscan) += NEXT_OFF(next);
4133 default: /* REF, and CLUMP only? */
4134 if (flags & SCF_DO_SUBSTR) {
4135 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
4136 data->longest = &(data->longest_float);
4138 is_inf = is_inf_internal = 1;
4139 if (flags & SCF_DO_STCLASS_OR)
4140 cl_anything(pRExC_state, data->start_class);
4141 flags &= ~SCF_DO_STCLASS;
4145 else if (OP(scan) == LNBREAK) {
4146 if (flags & SCF_DO_STCLASS) {
4148 CLEAR_SSC_EOS(data->start_class); /* No match on empty */
4149 if (flags & SCF_DO_STCLASS_AND) {
4150 for (value = 0; value < 256; value++)
4151 if (!is_VERTWS_cp(value))
4152 ANYOF_BITMAP_CLEAR(data->start_class, value);
4155 for (value = 0; value < 256; value++)
4156 if (is_VERTWS_cp(value))
4157 ANYOF_BITMAP_SET(data->start_class, value);
4159 if (flags & SCF_DO_STCLASS_OR)
4160 cl_and(data->start_class, and_withp);
4161 flags &= ~SCF_DO_STCLASS;
4164 delta++; /* Because of the 2 char string cr-lf */
4165 if (flags & SCF_DO_SUBSTR) {
4166 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
4168 data->pos_delta += 1;
4169 data->longest = &(data->longest_float);
4172 else if (REGNODE_SIMPLE(OP(scan))) {
4175 if (flags & SCF_DO_SUBSTR) {
4176 SCAN_COMMIT(pRExC_state,data,minlenp);
4180 if (flags & SCF_DO_STCLASS) {
4182 CLEAR_SSC_EOS(data->start_class); /* No match on empty */
4184 /* Some of the logic below assumes that switching
4185 locale on will only add false positives. */
4186 switch (PL_regkind[OP(scan)]) {
4192 Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan));
4195 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
4196 cl_anything(pRExC_state, data->start_class);
4199 if (OP(scan) == SANY)
4201 if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */
4202 value = (ANYOF_BITMAP_TEST(data->start_class,'\n')
4203 || ANYOF_CLASS_TEST_ANY_SET(data->start_class));
4204 cl_anything(pRExC_state, data->start_class);
4206 if (flags & SCF_DO_STCLASS_AND || !value)
4207 ANYOF_BITMAP_CLEAR(data->start_class,'\n');
4210 if (flags & SCF_DO_STCLASS_AND)
4211 cl_and(data->start_class,
4212 (struct regnode_charclass_class*)scan);
4214 cl_or(pRExC_state, data->start_class,
4215 (struct regnode_charclass_class*)scan);
4223 classnum = FLAGS(scan);
4224 if (flags & SCF_DO_STCLASS_AND) {
4225 if (!(data->start_class->flags & ANYOF_LOCALE)) {
4226 ANYOF_CLASS_CLEAR(data->start_class, classnum_to_namedclass(classnum) + 1);
4227 for (value = 0; value < loop_max; value++) {
4228 if (! _generic_isCC(UNI_TO_NATIVE(value), classnum)) {
4229 ANYOF_BITMAP_CLEAR(data->start_class, UNI_TO_NATIVE(value));
4235 if (data->start_class->flags & ANYOF_LOCALE) {
4236 ANYOF_CLASS_SET(data->start_class, classnum_to_namedclass(classnum));
4240 /* Even if under locale, set the bits for non-locale
4241 * in case it isn't a true locale-node. This will
4242 * create false positives if it truly is locale */
4243 for (value = 0; value < loop_max; value++) {
4244 if (_generic_isCC(UNI_TO_NATIVE(value), classnum)) {
4245 ANYOF_BITMAP_SET(data->start_class, UNI_TO_NATIVE(value));
4257 classnum = FLAGS(scan);
4258 if (flags & SCF_DO_STCLASS_AND) {
4259 if (!(data->start_class->flags & ANYOF_LOCALE)) {
4260 ANYOF_CLASS_CLEAR(data->start_class, classnum_to_namedclass(classnum));
4261 for (value = 0; value < loop_max; value++) {
4262 if (_generic_isCC(UNI_TO_NATIVE(value), classnum)) {
4263 ANYOF_BITMAP_CLEAR(data->start_class, UNI_TO_NATIVE(value));
4269 if (data->start_class->flags & ANYOF_LOCALE) {
4270 ANYOF_CLASS_SET(data->start_class, classnum_to_namedclass(classnum) + 1);
4274 /* Even if under locale, set the bits for non-locale in
4275 * case it isn't a true locale-node. This will create
4276 * false positives if it truly is locale */
4277 for (value = 0; value < loop_max; value++) {
4278 if (! _generic_isCC(UNI_TO_NATIVE(value), classnum)) {
4279 ANYOF_BITMAP_SET(data->start_class, UNI_TO_NATIVE(value));
4282 if (PL_regkind[OP(scan)] == NPOSIXD) {
4283 data->start_class->flags |= ANYOF_NON_UTF8_LATIN1_ALL;
4289 if (flags & SCF_DO_STCLASS_OR)
4290 cl_and(data->start_class, and_withp);
4291 flags &= ~SCF_DO_STCLASS;
4294 else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
4295 data->flags |= (OP(scan) == MEOL
4298 SCAN_COMMIT(pRExC_state, data, minlenp);
4301 else if ( PL_regkind[OP(scan)] == BRANCHJ
4302 /* Lookbehind, or need to calculate parens/evals/stclass: */
4303 && (scan->flags || data || (flags & SCF_DO_STCLASS))
4304 && (OP(scan) == IFMATCH || OP(scan) == UNLESSM)) {
4305 if ( OP(scan) == UNLESSM &&
4307 OP(NEXTOPER(NEXTOPER(scan))) == NOTHING &&
4308 OP(regnext(NEXTOPER(NEXTOPER(scan)))) == SUCCEED
4311 regnode *upto= regnext(scan);
4313 SV * const mysv_val=sv_newmortal();
4314 DEBUG_STUDYDATA("OPFAIL",data,depth);
4316 /*DEBUG_PARSE_MSG("opfail");*/
4317 regprop(RExC_rx, mysv_val, upto);
4318 PerlIO_printf(Perl_debug_log, "~ replace with OPFAIL pointed at %s (%"IVdf") offset %"IVdf"\n",
4319 SvPV_nolen_const(mysv_val),
4320 (IV)REG_NODE_NUM(upto),
4325 NEXT_OFF(scan) = upto - scan;
4326 for (opt= scan + 1; opt < upto ; opt++)
4327 OP(opt) = OPTIMIZED;
4331 if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4332 || OP(scan) == UNLESSM )
4334 /* Negative Lookahead/lookbehind
4335 In this case we can't do fixed string optimisation.
4338 I32 deltanext, minnext, fake = 0;
4340 struct regnode_charclass_class intrnl;
4343 data_fake.flags = 0;
4345 data_fake.whilem_c = data->whilem_c;
4346 data_fake.last_closep = data->last_closep;
4349 data_fake.last_closep = &fake;
4350 data_fake.pos_delta = delta;
4351 if ( flags & SCF_DO_STCLASS && !scan->flags
4352 && OP(scan) == IFMATCH ) { /* Lookahead */
4353 cl_init(pRExC_state, &intrnl);
4354 data_fake.start_class = &intrnl;
4355 f |= SCF_DO_STCLASS_AND;
4357 if (flags & SCF_WHILEM_VISITED_POS)
4358 f |= SCF_WHILEM_VISITED_POS;
4359 next = regnext(scan);
4360 nscan = NEXTOPER(NEXTOPER(scan));
4361 minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
4362 last, &data_fake, stopparen, recursed, NULL, f, depth+1);
4365 FAIL("Variable length lookbehind not implemented");
4367 else if (minnext > (I32)U8_MAX) {
4368 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4370 scan->flags = (U8)minnext;
4373 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4375 if (data_fake.flags & SF_HAS_EVAL)
4376 data->flags |= SF_HAS_EVAL;
4377 data->whilem_c = data_fake.whilem_c;
4379 if (f & SCF_DO_STCLASS_AND) {
4380 if (flags & SCF_DO_STCLASS_OR) {
4381 /* OR before, AND after: ideally we would recurse with
4382 * data_fake to get the AND applied by study of the
4383 * remainder of the pattern, and then derecurse;
4384 * *** HACK *** for now just treat as "no information".
4385 * See [perl #56690].
4387 cl_init(pRExC_state, data->start_class);
4389 /* AND before and after: combine and continue */
4390 const int was = TEST_SSC_EOS(data->start_class);
4392 cl_and(data->start_class, &intrnl);
4394 SET_SSC_EOS(data->start_class);
4398 #if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4400 /* Positive Lookahead/lookbehind
4401 In this case we can do fixed string optimisation,
4402 but we must be careful about it. Note in the case of
4403 lookbehind the positions will be offset by the minimum
4404 length of the pattern, something we won't know about
4405 until after the recurse.
4407 I32 deltanext, fake = 0;
4409 struct regnode_charclass_class intrnl;
4411 /* We use SAVEFREEPV so that when the full compile
4412 is finished perl will clean up the allocated
4413 minlens when it's all done. This way we don't
4414 have to worry about freeing them when we know
4415 they wont be used, which would be a pain.
4418 Newx( minnextp, 1, I32 );
4419 SAVEFREEPV(minnextp);
4422 StructCopy(data, &data_fake, scan_data_t);
4423 if ((flags & SCF_DO_SUBSTR) && data->last_found) {
4426 SCAN_COMMIT(pRExC_state, &data_fake,minlenp);
4427 data_fake.last_found=newSVsv(data->last_found);
4431 data_fake.last_closep = &fake;
4432 data_fake.flags = 0;
4433 data_fake.pos_delta = delta;
4435 data_fake.flags |= SF_IS_INF;
4436 if ( flags & SCF_DO_STCLASS && !scan->flags
4437 && OP(scan) == IFMATCH ) { /* Lookahead */
4438 cl_init(pRExC_state, &intrnl);
4439 data_fake.start_class = &intrnl;
4440 f |= SCF_DO_STCLASS_AND;
4442 if (flags & SCF_WHILEM_VISITED_POS)
4443 f |= SCF_WHILEM_VISITED_POS;
4444 next = regnext(scan);
4445 nscan = NEXTOPER(NEXTOPER(scan));
4447 *minnextp = study_chunk(pRExC_state, &nscan, minnextp, &deltanext,
4448 last, &data_fake, stopparen, recursed, NULL, f,depth+1);
4451 FAIL("Variable length lookbehind not implemented");
4453 else if (*minnextp > (I32)U8_MAX) {
4454 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4456 scan->flags = (U8)*minnextp;
4461 if (f & SCF_DO_STCLASS_AND) {
4462 const int was = TEST_SSC_EOS(data.start_class);
4464 cl_and(data->start_class, &intrnl);
4466 SET_SSC_EOS(data->start_class);
4469 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4471 if (data_fake.flags & SF_HAS_EVAL)
4472 data->flags |= SF_HAS_EVAL;
4473 data->whilem_c = data_fake.whilem_c;
4474 if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
4475 if (RExC_rx->minlen<*minnextp)
4476 RExC_rx->minlen=*minnextp;
4477 SCAN_COMMIT(pRExC_state, &data_fake, minnextp);
4478 SvREFCNT_dec_NN(data_fake.last_found);
4480 if ( data_fake.minlen_fixed != minlenp )
4482 data->offset_fixed= data_fake.offset_fixed;
4483 data->minlen_fixed= data_fake.minlen_fixed;
4484 data->lookbehind_fixed+= scan->flags;
4486 if ( data_fake.minlen_float != minlenp )
4488 data->minlen_float= data_fake.minlen_float;
4489 data->offset_float_min=data_fake.offset_float_min;
4490 data->offset_float_max=data_fake.offset_float_max;
4491 data->lookbehind_float+= scan->flags;
4498 else if (OP(scan) == OPEN) {
4499 if (stopparen != (I32)ARG(scan))
4502 else if (OP(scan) == CLOSE) {
4503 if (stopparen == (I32)ARG(scan)) {
4506 if ((I32)ARG(scan) == is_par) {
4507 next = regnext(scan);
4509 if ( next && (OP(next) != WHILEM) && next < last)
4510 is_par = 0; /* Disable optimization */
4513 *(data->last_closep) = ARG(scan);
4515 else if (OP(scan) == EVAL) {
4517 data->flags |= SF_HAS_EVAL;
4519 else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
4520 if (flags & SCF_DO_SUBSTR) {
4521 SCAN_COMMIT(pRExC_state,data,minlenp);
4522 flags &= ~SCF_DO_SUBSTR;
4524 if (data && OP(scan)==ACCEPT) {
4525 data->flags |= SCF_SEEN_ACCEPT;
4530 else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
4532 if (flags & SCF_DO_SUBSTR) {
4533 SCAN_COMMIT(pRExC_state,data,minlenp);
4534 data->longest = &(data->longest_float);
4536 is_inf = is_inf_internal = 1;
4537 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
4538 cl_anything(pRExC_state, data->start_class);
4539 flags &= ~SCF_DO_STCLASS;
4541 else if (OP(scan) == GPOS) {
4542 if (!(RExC_rx->extflags & RXf_GPOS_FLOAT) &&
4543 !(delta || is_inf || (data && data->pos_delta)))
4545 if (!(RExC_rx->extflags & RXf_ANCH) && (flags & SCF_DO_SUBSTR))
4546 RExC_rx->extflags |= RXf_ANCH_GPOS;
4547 if (RExC_rx->gofs < (U32)min)
4548 RExC_rx->gofs = min;
4550 RExC_rx->extflags |= RXf_GPOS_FLOAT;
4554 #ifdef TRIE_STUDY_OPT
4555 #ifdef FULL_TRIE_STUDY
4556 else if (PL_regkind[OP(scan)] == TRIE) {
4557 /* NOTE - There is similar code to this block above for handling
4558 BRANCH nodes on the initial study. If you change stuff here
4560 regnode *trie_node= scan;
4561 regnode *tail= regnext(scan);
4562 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4563 I32 max1 = 0, min1 = I32_MAX;
4564 struct regnode_charclass_class accum;
4566 if (flags & SCF_DO_SUBSTR) /* XXXX Add !SUSPEND? */
4567 SCAN_COMMIT(pRExC_state, data,minlenp); /* Cannot merge strings after this. */
4568 if (flags & SCF_DO_STCLASS)
4569 cl_init_zero(pRExC_state, &accum);
4575 const regnode *nextbranch= NULL;
4578 for ( word=1 ; word <= trie->wordcount ; word++)
4580 I32 deltanext=0, minnext=0, f = 0, fake;
4581 struct regnode_charclass_class this_class;
4583 data_fake.flags = 0;
4585 data_fake.whilem_c = data->whilem_c;
4586 data_fake.last_closep = data->last_closep;
4589 data_fake.last_closep = &fake;
4590 data_fake.pos_delta = delta;
4591 if (flags & SCF_DO_STCLASS) {
4592 cl_init(pRExC_state, &this_class);
4593 data_fake.start_class = &this_class;
4594 f = SCF_DO_STCLASS_AND;
4596 if (flags & SCF_WHILEM_VISITED_POS)
4597 f |= SCF_WHILEM_VISITED_POS;
4599 if (trie->jump[word]) {
4601 nextbranch = trie_node + trie->jump[0];
4602 scan= trie_node + trie->jump[word];
4603 /* We go from the jump point to the branch that follows
4604 it. Note this means we need the vestigal unused branches
4605 even though they arent otherwise used.
4607 minnext = study_chunk(pRExC_state, &scan, minlenp,
4608 &deltanext, (regnode *)nextbranch, &data_fake,
4609 stopparen, recursed, NULL, f,depth+1);
4611 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
4612 nextbranch= regnext((regnode*)nextbranch);
4614 if (min1 > (I32)(minnext + trie->minlen))
4615 min1 = minnext + trie->minlen;
4616 if (deltanext == I32_MAX) {
4617 is_inf = is_inf_internal = 1;
4619 } else if (max1 < (I32)(minnext + deltanext + trie->maxlen))
4620 max1 = minnext + deltanext + trie->maxlen;
4622 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4624 if (data_fake.flags & SCF_SEEN_ACCEPT) {
4625 if ( stopmin > min + min1)
4626 stopmin = min + min1;
4627 flags &= ~SCF_DO_SUBSTR;
4629 data->flags |= SCF_SEEN_ACCEPT;
4632 if (data_fake.flags & SF_HAS_EVAL)
4633 data->flags |= SF_HAS_EVAL;
4634 data->whilem_c = data_fake.whilem_c;
4636 if (flags & SCF_DO_STCLASS)
4637 cl_or(pRExC_state, &accum, &this_class);
4640 if (flags & SCF_DO_SUBSTR) {
4641 data->pos_min += min1;
4642 data->pos_delta += max1 - min1;
4643 if (max1 != min1 || is_inf)
4644 data->longest = &(data->longest_float);
4647 delta += max1 - min1;
4648 if (flags & SCF_DO_STCLASS_OR) {
4649 cl_or(pRExC_state, data->start_class, &accum);
4651 cl_and(data->start_class, and_withp);
4652 flags &= ~SCF_DO_STCLASS;
4655 else if (flags & SCF_DO_STCLASS_AND) {
4657 cl_and(data->start_class, &accum);
4658 flags &= ~SCF_DO_STCLASS;
4661 /* Switch to OR mode: cache the old value of
4662 * data->start_class */
4664 StructCopy(data->start_class, and_withp,
4665 struct regnode_charclass_class);
4666 flags &= ~SCF_DO_STCLASS_AND;
4667 StructCopy(&accum, data->start_class,
4668 struct regnode_charclass_class);
4669 flags |= SCF_DO_STCLASS_OR;
4670 SET_SSC_EOS(data->start_class);
4677 else if (PL_regkind[OP(scan)] == TRIE) {
4678 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4681 min += trie->minlen;
4682 delta += (trie->maxlen - trie->minlen);
4683 flags &= ~SCF_DO_STCLASS; /* xxx */
4684 if (flags & SCF_DO_SUBSTR) {
4685 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
4686 data->pos_min += trie->minlen;
4687 data->pos_delta += (trie->maxlen - trie->minlen);
4688 if (trie->maxlen != trie->minlen)
4689 data->longest = &(data->longest_float);
4691 if (trie->jump) /* no more substrings -- for now /grr*/
4692 flags &= ~SCF_DO_SUBSTR;
4694 #endif /* old or new */
4695 #endif /* TRIE_STUDY_OPT */
4697 /* Else: zero-length, ignore. */
4698 scan = regnext(scan);
4703 stopparen = frame->stop;
4704 frame = frame->prev;
4705 goto fake_study_recurse;
4710 DEBUG_STUDYDATA("pre-fin:",data,depth);
4713 *deltap = is_inf_internal ? I32_MAX : delta;
4714 if (flags & SCF_DO_SUBSTR && is_inf)
4715 data->pos_delta = I32_MAX - data->pos_min;
4716 if (is_par > (I32)U8_MAX)
4718 if (is_par && pars==1 && data) {
4719 data->flags |= SF_IN_PAR;
4720 data->flags &= ~SF_HAS_PAR;
4722 else if (pars && data) {
4723 data->flags |= SF_HAS_PAR;
4724 data->flags &= ~SF_IN_PAR;
4726 if (flags & SCF_DO_STCLASS_OR)
4727 cl_and(data->start_class, and_withp);
4728 if (flags & SCF_TRIE_RESTUDY)
4729 data->flags |= SCF_TRIE_RESTUDY;
4731 DEBUG_STUDYDATA("post-fin:",data,depth);
4733 return min < stopmin ? min : stopmin;
4737 S_add_data(RExC_state_t *pRExC_state, U32 n, const char *s)
4739 U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
4741 PERL_ARGS_ASSERT_ADD_DATA;
4743 Renewc(RExC_rxi->data,
4744 sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
4745 char, struct reg_data);
4747 Renew(RExC_rxi->data->what, count + n, U8);
4749 Newx(RExC_rxi->data->what, n, U8);
4750 RExC_rxi->data->count = count + n;
4751 Copy(s, RExC_rxi->data->what + count, n, U8);
4755 /*XXX: todo make this not included in a non debugging perl */
4756 #ifndef PERL_IN_XSUB_RE
4758 Perl_reginitcolors(pTHX)
4761 const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
4763 char *t = savepv(s);
4767 t = strchr(t, '\t');
4773 PL_colors[i] = t = (char *)"";
4778 PL_colors[i++] = (char *)"";
4785 #ifdef TRIE_STUDY_OPT
4786 #define CHECK_RESTUDY_GOTO_butfirst(dOsomething) \
4789 (data.flags & SCF_TRIE_RESTUDY) \
4797 #define CHECK_RESTUDY_GOTO_butfirst
4801 * pregcomp - compile a regular expression into internal code
4803 * Decides which engine's compiler to call based on the hint currently in
4807 #ifndef PERL_IN_XSUB_RE
4809 /* return the currently in-scope regex engine (or the default if none) */
4811 regexp_engine const *
4812 Perl_current_re_engine(pTHX)
4816 if (IN_PERL_COMPILETIME) {
4817 HV * const table = GvHV(PL_hintgv);
4821 return &PL_core_reg_engine;
4822 ptr = hv_fetchs(table, "regcomp", FALSE);
4823 if ( !(ptr && SvIOK(*ptr) && SvIV(*ptr)))
4824 return &PL_core_reg_engine;
4825 return INT2PTR(regexp_engine*,SvIV(*ptr));
4829 if (!PL_curcop->cop_hints_hash)
4830 return &PL_core_reg_engine;
4831 ptr = cop_hints_fetch_pvs(PL_curcop, "regcomp", 0);
4832 if ( !(ptr && SvIOK(ptr) && SvIV(ptr)))
4833 return &PL_core_reg_engine;
4834 return INT2PTR(regexp_engine*,SvIV(ptr));
4840 Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
4843 regexp_engine const *eng = current_re_engine();
4844 GET_RE_DEBUG_FLAGS_DECL;
4846 PERL_ARGS_ASSERT_PREGCOMP;
4848 /* Dispatch a request to compile a regexp to correct regexp engine. */
4850 PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
4853 return CALLREGCOMP_ENG(eng, pattern, flags);
4857 /* public(ish) entry point for the perl core's own regex compiling code.
4858 * It's actually a wrapper for Perl_re_op_compile that only takes an SV
4859 * pattern rather than a list of OPs, and uses the internal engine rather
4860 * than the current one */
4863 Perl_re_compile(pTHX_ SV * const pattern, U32 rx_flags)
4865 SV *pat = pattern; /* defeat constness! */
4866 PERL_ARGS_ASSERT_RE_COMPILE;
4867 return Perl_re_op_compile(aTHX_ &pat, 1, NULL,
4868 #ifdef PERL_IN_XSUB_RE
4871 &PL_core_reg_engine,
4873 NULL, NULL, rx_flags, 0);
4877 /* upgrade pattern pat_p of length plen_p to UTF8, and if there are code
4878 * blocks, recalculate the indices. Update pat_p and plen_p in-place to
4879 * point to the realloced string and length.
4881 * This is essentially a copy of Perl_bytes_to_utf8() with the code index
4885 S_pat_upgrade_to_utf8(pTHX_ RExC_state_t * const pRExC_state,
4886 char **pat_p, STRLEN *plen_p, int num_code_blocks)
4888 U8 *const src = (U8*)*pat_p;
4891 STRLEN s = 0, d = 0;
4893 GET_RE_DEBUG_FLAGS_DECL;
4895 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
4896 "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
4898 Newx(dst, *plen_p * 2 + 1, U8);
4900 while (s < *plen_p) {
4901 const UV uv = NATIVE_TO_ASCII(src[s]);
4902 if (UNI_IS_INVARIANT(uv))
4903 dst[d] = (U8)UTF_TO_NATIVE(uv);
4905 dst[d++] = (U8)UTF8_EIGHT_BIT_HI(uv);
4906 dst[d] = (U8)UTF8_EIGHT_BIT_LO(uv);
4908 if (n < num_code_blocks) {
4909 if (!do_end && pRExC_state->code_blocks[n].start == s) {
4910 pRExC_state->code_blocks[n].start = d;
4911 assert(dst[d] == '(');
4914 else if (do_end && pRExC_state->code_blocks[n].end == s) {
4915 pRExC_state->code_blocks[n].end = d;
4916 assert(dst[d] == ')');
4926 *pat_p = (char*) dst;
4928 RExC_orig_utf8 = RExC_utf8 = 1;
4933 /* S_concat_pat(): concatenate a list of args to the pattern string pat,
4934 * while recording any code block indices, and handling overloading,
4935 * nested qr// objects etc. If pat is null, it will allocate a new
4936 * string, or just return the first arg, if there's only one.
4938 * Returns the malloced/updated pat.
4939 * patternp and pat_count is the array of SVs to be concatted;
4940 * oplist is the optional list of ops that generated the SVs;
4941 * recompile_p is a pointer to a boolean that will be set if
4942 * the regex will need to be recompiled.
4943 * delim, if non-null is an SV that will be inserted between each element
4947 S_concat_pat(pTHX_ RExC_state_t * const pRExC_state,
4948 SV *pat, SV ** const patternp, int pat_count,
4949 OP *oplist, bool *recompile_p, SV *delim)
4953 bool use_delim = FALSE;
4954 bool alloced = FALSE;
4956 /* if we know we have at least two args, create an empty string,
4957 * then concatenate args to that. For no args, return an empty string */
4958 if (!pat && pat_count != 1) {
4959 pat = newSVpvn("", 0);
4964 for (svp = patternp; svp < patternp + pat_count; svp++) {
4967 STRLEN orig_patlen = 0;
4969 SV *msv = use_delim ? delim : *svp;
4971 /* if we've got a delimiter, we go round the loop twice for each
4972 * svp slot (except the last), using the delimiter the second
4981 if (SvTYPE(msv) == SVt_PVAV) {
4982 /* we've encountered an interpolated array within
4983 * the pattern, e.g. /...@a..../. Expand the list of elements,
4984 * then recursively append elements.
4985 * The code in this block is based on S_pushav() */
4987 AV *const av = (AV*)msv;
4988 const I32 maxarg = AvFILL(av) + 1;
4992 assert(oplist->op_type == OP_PADAV
4993 || oplist->op_type == OP_RV2AV);
4994 oplist = oplist->op_sibling;;
4997 if (SvRMAGICAL(av)) {
5000 Newx(array, maxarg, SV*);
5002 for (i=0; i < (U32)maxarg; i++) {
5003 SV ** const svp = av_fetch(av, i, FALSE);
5004 array[i] = svp ? *svp : &PL_sv_undef;
5008 array = AvARRAY(av);
5010 pat = S_concat_pat(aTHX_ pRExC_state, pat,
5011 array, maxarg, NULL, recompile_p,
5013 GvSV((gv_fetchpvs("\"", GV_ADDMULTI, SVt_PV))));
5019 /* we make the assumption here that each op in the list of
5020 * op_siblings maps to one SV pushed onto the stack,
5021 * except for code blocks, with have both an OP_NULL and
5023 * This allows us to match up the list of SVs against the
5024 * list of OPs to find the next code block.
5026 * Note that PUSHMARK PADSV PADSV ..
5028 * PADRANGE PADSV PADSV ..
5029 * so the alignment still works. */
5032 if (oplist->op_type == OP_NULL
5033 && (oplist->op_flags & OPf_SPECIAL))
5035 assert(n < pRExC_state->num_code_blocks);
5036 pRExC_state->code_blocks[n].start = pat ? SvCUR(pat) : 0;
5037 pRExC_state->code_blocks[n].block = oplist;
5038 pRExC_state->code_blocks[n].src_regex = NULL;
5041 oplist = oplist->op_sibling; /* skip CONST */
5044 oplist = oplist->op_sibling;;
5047 /* apply magic and QR overloading to arg */
5050 if (SvROK(msv) && SvAMAGIC(msv)) {
5051 SV *sv = AMG_CALLunary(msv, regexp_amg);
5055 if (SvTYPE(sv) != SVt_REGEXP)
5056 Perl_croak(aTHX_ "Overloaded qr did not return a REGEXP");
5061 /* try concatenation overload ... */
5062 if (pat && (SvAMAGIC(pat) || SvAMAGIC(msv)) &&
5063 (sv = amagic_call(pat, msv, concat_amg, AMGf_assign)))
5066 /* overloading involved: all bets are off over literal
5067 * code. Pretend we haven't seen it */
5068 pRExC_state->num_code_blocks -= n;
5072 /* ... or failing that, try "" overload */
5073 while (SvAMAGIC(msv)
5074 && (sv = AMG_CALLunary(msv, string_amg))
5078 && SvRV(msv) == SvRV(sv))
5083 if (SvROK(msv) && SvTYPE(SvRV(msv)) == SVt_REGEXP)
5087 /* this is a partially unrolled
5088 * sv_catsv_nomg(pat, msv);
5089 * that allows us to adjust code block indices if
5092 char *dst = SvPV_force_nomg(pat, dlen);
5094 if (SvUTF8(msv) && !SvUTF8(pat)) {
5095 S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &dst, &dlen, n);
5096 sv_setpvn(pat, dst, dlen);
5099 sv_catsv_nomg(pat, msv);
5106 pRExC_state->code_blocks[n-1].end = SvCUR(pat)-1;
5109 /* extract any code blocks within any embedded qr//'s */
5110 if (rx && SvTYPE(rx) == SVt_REGEXP
5111 && RX_ENGINE((REGEXP*)rx)->op_comp)
5114 RXi_GET_DECL(ReANY((REGEXP *)rx), ri);
5115 if (ri->num_code_blocks) {
5117 /* the presence of an embedded qr// with code means
5118 * we should always recompile: the text of the
5119 * qr// may not have changed, but it may be a
5120 * different closure than last time */
5122 Renew(pRExC_state->code_blocks,
5123 pRExC_state->num_code_blocks + ri->num_code_blocks,
5124 struct reg_code_block);
5125 pRExC_state->num_code_blocks += ri->num_code_blocks;
5127 for (i=0; i < ri->num_code_blocks; i++) {
5128 struct reg_code_block *src, *dst;
5129 STRLEN offset = orig_patlen
5130 + ReANY((REGEXP *)rx)->pre_prefix;
5131 assert(n < pRExC_state->num_code_blocks);
5132 src = &ri->code_blocks[i];
5133 dst = &pRExC_state->code_blocks[n];
5134 dst->start = src->start + offset;
5135 dst->end = src->end + offset;
5136 dst->block = src->block;
5137 dst->src_regex = (REGEXP*) SvREFCNT_inc( (SV*)
5146 /* avoid calling magic multiple times on a single element e.g. =~ $qr */
5155 /* see if there are any run-time code blocks in the pattern.
5156 * False positives are allowed */
5159 S_has_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
5160 char *pat, STRLEN plen)
5165 for (s = 0; s < plen; s++) {
5166 if (n < pRExC_state->num_code_blocks
5167 && s == pRExC_state->code_blocks[n].start)
5169 s = pRExC_state->code_blocks[n].end;
5173 /* TODO ideally should handle [..], (#..), /#.../x to reduce false
5175 if (pat[s] == '(' && s+2 <= plen && pat[s+1] == '?' &&
5177 || (s + 2 <= plen && pat[s+2] == '?' && pat[s+3] == '{'))
5184 /* Handle run-time code blocks. We will already have compiled any direct
5185 * or indirect literal code blocks. Now, take the pattern 'pat' and make a
5186 * copy of it, but with any literal code blocks blanked out and
5187 * appropriate chars escaped; then feed it into
5189 * eval "qr'modified_pattern'"
5193 * a\bc(?{"this was literal"})def'ghi\\jkl(?{"this is runtime"})mno
5197 * qr'a\\bc_______________________def\'ghi\\\\jkl(?{"this is runtime"})mno'
5199 * After eval_sv()-ing that, grab any new code blocks from the returned qr
5200 * and merge them with any code blocks of the original regexp.
5202 * If the pat is non-UTF8, while the evalled qr is UTF8, don't merge;
5203 * instead, just save the qr and return FALSE; this tells our caller that
5204 * the original pattern needs upgrading to utf8.
5208 S_compile_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
5209 char *pat, STRLEN plen)
5213 GET_RE_DEBUG_FLAGS_DECL;
5215 if (pRExC_state->runtime_code_qr) {
5216 /* this is the second time we've been called; this should
5217 * only happen if the main pattern got upgraded to utf8
5218 * during compilation; re-use the qr we compiled first time
5219 * round (which should be utf8 too)
5221 qr = pRExC_state->runtime_code_qr;
5222 pRExC_state->runtime_code_qr = NULL;
5223 assert(RExC_utf8 && SvUTF8(qr));
5229 int newlen = plen + 6; /* allow for "qr''x\0" extra chars */
5233 /* determine how many extra chars we need for ' and \ escaping */
5234 for (s = 0; s < plen; s++) {
5235 if (pat[s] == '\'' || pat[s] == '\\')
5239 Newx(newpat, newlen, char);
5241 *p++ = 'q'; *p++ = 'r'; *p++ = '\'';
5243 for (s = 0; s < plen; s++) {
5244 if (n < pRExC_state->num_code_blocks
5245 && s == pRExC_state->code_blocks[n].start)
5247 /* blank out literal code block */
5248 assert(pat[s] == '(');
5249 while (s <= pRExC_state->code_blocks[n].end) {
5257 if (pat[s] == '\'' || pat[s] == '\\')
5262 if (pRExC_state->pm_flags & RXf_PMf_EXTENDED)
5266 PerlIO_printf(Perl_debug_log,
5267 "%sre-parsing pattern for runtime code:%s %s\n",
5268 PL_colors[4],PL_colors[5],newpat);
5271 sv = newSVpvn_flags(newpat, p-newpat-1, RExC_utf8 ? SVf_UTF8 : 0);
5277 PUSHSTACKi(PERLSI_REQUIRE);
5278 /* G_RE_REPARSING causes the toker to collapse \\ into \ when
5279 * parsing qr''; normally only q'' does this. It also alters
5281 eval_sv(sv, G_SCALAR|G_RE_REPARSING);
5282 SvREFCNT_dec_NN(sv);
5287 SV * const errsv = ERRSV;
5288 if (SvTRUE_NN(errsv))
5290 Safefree(pRExC_state->code_blocks);
5291 /* use croak_sv ? */
5292 Perl_croak_nocontext("%s", SvPV_nolen_const(errsv));
5295 assert(SvROK(qr_ref));
5297 assert(SvTYPE(qr) == SVt_REGEXP && RX_ENGINE((REGEXP*)qr)->op_comp);
5298 /* the leaving below frees the tmp qr_ref.
5299 * Give qr a life of its own */
5307 if (!RExC_utf8 && SvUTF8(qr)) {
5308 /* first time through; the pattern got upgraded; save the
5309 * qr for the next time through */
5310 assert(!pRExC_state->runtime_code_qr);
5311 pRExC_state->runtime_code_qr = qr;
5316 /* extract any code blocks within the returned qr// */
5319 /* merge the main (r1) and run-time (r2) code blocks into one */
5321 RXi_GET_DECL(ReANY((REGEXP *)qr), r2);
5322 struct reg_code_block *new_block, *dst;
5323 RExC_state_t * const r1 = pRExC_state; /* convenient alias */
5326 if (!r2->num_code_blocks) /* we guessed wrong */
5328 SvREFCNT_dec_NN(qr);
5333 r1->num_code_blocks + r2->num_code_blocks,
5334 struct reg_code_block);
5337 while ( i1 < r1->num_code_blocks
5338 || i2 < r2->num_code_blocks)
5340 struct reg_code_block *src;
5343 if (i1 == r1->num_code_blocks) {
5344 src = &r2->code_blocks[i2++];
5347 else if (i2 == r2->num_code_blocks)
5348 src = &r1->code_blocks[i1++];
5349 else if ( r1->code_blocks[i1].start
5350 < r2->code_blocks[i2].start)
5352 src = &r1->code_blocks[i1++];
5353 assert(src->end < r2->code_blocks[i2].start);
5356 assert( r1->code_blocks[i1].start
5357 > r2->code_blocks[i2].start);
5358 src = &r2->code_blocks[i2++];
5360 assert(src->end < r1->code_blocks[i1].start);
5363 assert(pat[src->start] == '(');
5364 assert(pat[src->end] == ')');
5365 dst->start = src->start;
5366 dst->end = src->end;
5367 dst->block = src->block;
5368 dst->src_regex = is_qr ? (REGEXP*) SvREFCNT_inc( (SV*) qr)
5372 r1->num_code_blocks += r2->num_code_blocks;
5373 Safefree(r1->code_blocks);
5374 r1->code_blocks = new_block;
5377 SvREFCNT_dec_NN(qr);
5383 S_setup_longest(pTHX_ RExC_state_t *pRExC_state, SV* sv_longest, SV** rx_utf8, SV** rx_substr, I32* rx_end_shift, I32 lookbehind, I32 offset, I32 *minlen, STRLEN longest_length, bool eol, bool meol)
5385 /* This is the common code for setting up the floating and fixed length
5386 * string data extracted from Perl_re_op_compile() below. Returns a boolean
5387 * as to whether succeeded or not */
5391 if (! (longest_length
5392 || (eol /* Can't have SEOL and MULTI */
5393 && (! meol || (RExC_flags & RXf_PMf_MULTILINE)))
5395 /* See comments for join_exact for why REG_SEEN_EXACTF_SHARP_S */
5396 || (RExC_seen & REG_SEEN_EXACTF_SHARP_S))
5401 /* copy the information about the longest from the reg_scan_data
5402 over to the program. */
5403 if (SvUTF8(sv_longest)) {
5404 *rx_utf8 = sv_longest;
5407 *rx_substr = sv_longest;
5410 /* end_shift is how many chars that must be matched that
5411 follow this item. We calculate it ahead of time as once the
5412 lookbehind offset is added in we lose the ability to correctly
5414 ml = minlen ? *(minlen) : (I32)longest_length;
5415 *rx_end_shift = ml - offset
5416 - longest_length + (SvTAIL(sv_longest) != 0)
5419 t = (eol/* Can't have SEOL and MULTI */
5420 && (! meol || (RExC_flags & RXf_PMf_MULTILINE)));
5421 fbm_compile(sv_longest, t ? FBMcf_TAIL : 0);
5427 * Perl_re_op_compile - the perl internal RE engine's function to compile a
5428 * regular expression into internal code.
5429 * The pattern may be passed either as:
5430 * a list of SVs (patternp plus pat_count)
5431 * a list of OPs (expr)
5432 * If both are passed, the SV list is used, but the OP list indicates
5433 * which SVs are actually pre-compiled code blocks
5435 * The SVs in the list have magic and qr overloading applied to them (and
5436 * the list may be modified in-place with replacement SVs in the latter
5439 * If the pattern hasn't changed from old_re, then old_re will be
5442 * eng is the current engine. If that engine has an op_comp method, then
5443 * handle directly (i.e. we assume that op_comp was us); otherwise, just
5444 * do the initial concatenation of arguments and pass on to the external
5447 * If is_bare_re is not null, set it to a boolean indicating whether the
5448 * arg list reduced (after overloading) to a single bare regex which has
5449 * been returned (i.e. /$qr/).
5451 * orig_rx_flags contains RXf_* flags. See perlreapi.pod for more details.
5453 * pm_flags contains the PMf_* flags, typically based on those from the
5454 * pm_flags field of the related PMOP. Currently we're only interested in
5455 * PMf_HAS_CV, PMf_IS_QR, PMf_USE_RE_EVAL.
5457 * We can't allocate space until we know how big the compiled form will be,
5458 * but we can't compile it (and thus know how big it is) until we've got a
5459 * place to put the code. So we cheat: we compile it twice, once with code
5460 * generation turned off and size counting turned on, and once "for real".
5461 * This also means that we don't allocate space until we are sure that the
5462 * thing really will compile successfully, and we never have to move the
5463 * code and thus invalidate pointers into it. (Note that it has to be in
5464 * one piece because free() must be able to free it all.) [NB: not true in perl]
5466 * Beware that the optimization-preparation code in here knows about some
5467 * of the structure of the compiled regexp. [I'll say.]
5471 Perl_re_op_compile(pTHX_ SV ** const patternp, int pat_count,
5472 OP *expr, const regexp_engine* eng, REGEXP *old_re,
5473 bool *is_bare_re, U32 orig_rx_flags, U32 pm_flags)
5478 regexp_internal *ri;
5486 SV *code_blocksv = NULL;
5487 SV** new_patternp = patternp;
5489 /* these are all flags - maybe they should be turned
5490 * into a single int with different bit masks */
5491 I32 sawlookahead = 0;
5494 regex_charset initial_charset = get_regex_charset(orig_rx_flags);
5496 bool runtime_code = 0;
5498 RExC_state_t RExC_state;
5499 RExC_state_t * const pRExC_state = &RExC_state;
5500 #ifdef TRIE_STUDY_OPT
5502 RExC_state_t copyRExC_state;
5504 GET_RE_DEBUG_FLAGS_DECL;
5506 PERL_ARGS_ASSERT_RE_OP_COMPILE;
5508 DEBUG_r(if (!PL_colorset) reginitcolors());
5510 #ifndef PERL_IN_XSUB_RE
5511 /* Initialize these here instead of as-needed, as is quick and avoids
5512 * having to test them each time otherwise */
5513 if (! PL_AboveLatin1) {
5514 PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist);
5515 PL_ASCII = _new_invlist_C_array(ASCII_invlist);
5516 PL_Latin1 = _new_invlist_C_array(Latin1_invlist);
5518 PL_L1Posix_ptrs[_CC_ALPHANUMERIC]
5519 = _new_invlist_C_array(L1PosixAlnum_invlist);
5520 PL_Posix_ptrs[_CC_ALPHANUMERIC]
5521 = _new_invlist_C_array(PosixAlnum_invlist);
5523 PL_L1Posix_ptrs[_CC_ALPHA]
5524 = _new_invlist_C_array(L1PosixAlpha_invlist);
5525 PL_Posix_ptrs[_CC_ALPHA] = _new_invlist_C_array(PosixAlpha_invlist);
5527 PL_Posix_ptrs[_CC_BLANK] = _new_invlist_C_array(PosixBlank_invlist);
5528 PL_XPosix_ptrs[_CC_BLANK] = _new_invlist_C_array(XPosixBlank_invlist);
5530 /* Cased is the same as Alpha in the ASCII range */
5531 PL_L1Posix_ptrs[_CC_CASED] = _new_invlist_C_array(L1Cased_invlist);
5532 PL_Posix_ptrs[_CC_CASED] = _new_invlist_C_array(PosixAlpha_invlist);
5534 PL_Posix_ptrs[_CC_CNTRL] = _new_invlist_C_array(PosixCntrl_invlist);
5535 PL_XPosix_ptrs[_CC_CNTRL] = _new_invlist_C_array(XPosixCntrl_invlist);
5537 PL_Posix_ptrs[_CC_DIGIT] = _new_invlist_C_array(PosixDigit_invlist);
5538 PL_L1Posix_ptrs[_CC_DIGIT] = _new_invlist_C_array(PosixDigit_invlist);
5540 PL_L1Posix_ptrs[_CC_GRAPH] = _new_invlist_C_array(L1PosixGraph_invlist);
5541 PL_Posix_ptrs[_CC_GRAPH] = _new_invlist_C_array(PosixGraph_invlist);
5543 PL_L1Posix_ptrs[_CC_LOWER] = _new_invlist_C_array(L1PosixLower_invlist);
5544 PL_Posix_ptrs[_CC_LOWER] = _new_invlist_C_array(PosixLower_invlist);
5546 PL_L1Posix_ptrs[_CC_PRINT] = _new_invlist_C_array(L1PosixPrint_invlist);
5547 PL_Posix_ptrs[_CC_PRINT] = _new_invlist_C_array(PosixPrint_invlist);
5549 PL_L1Posix_ptrs[_CC_PUNCT] = _new_invlist_C_array(L1PosixPunct_invlist);
5550 PL_Posix_ptrs[_CC_PUNCT] = _new_invlist_C_array(PosixPunct_invlist);
5552 PL_Posix_ptrs[_CC_SPACE] = _new_invlist_C_array(PerlSpace_invlist);
5553 PL_XPosix_ptrs[_CC_SPACE] = _new_invlist_C_array(XPerlSpace_invlist);
5554 PL_Posix_ptrs[_CC_PSXSPC] = _new_invlist_C_array(PosixSpace_invlist);
5555 PL_XPosix_ptrs[_CC_PSXSPC] = _new_invlist_C_array(XPosixSpace_invlist);
5557 PL_L1Posix_ptrs[_CC_UPPER] = _new_invlist_C_array(L1PosixUpper_invlist);
5558 PL_Posix_ptrs[_CC_UPPER] = _new_invlist_C_array(PosixUpper_invlist);
5560 PL_XPosix_ptrs[_CC_VERTSPACE] = _new_invlist_C_array(VertSpace_invlist);
5562 PL_Posix_ptrs[_CC_WORDCHAR] = _new_invlist_C_array(PosixWord_invlist);
5563 PL_L1Posix_ptrs[_CC_WORDCHAR]
5564 = _new_invlist_C_array(L1PosixWord_invlist);
5566 PL_Posix_ptrs[_CC_XDIGIT] = _new_invlist_C_array(PosixXDigit_invlist);
5567 PL_XPosix_ptrs[_CC_XDIGIT] = _new_invlist_C_array(XPosixXDigit_invlist);
5569 PL_HasMultiCharFold = _new_invlist_C_array(_Perl_Multi_Char_Folds_invlist);
5573 pRExC_state->code_blocks = NULL;
5574 pRExC_state->num_code_blocks = 0;
5577 *is_bare_re = FALSE;
5579 if (expr && (expr->op_type == OP_LIST ||
5580 (expr->op_type == OP_NULL && expr->op_targ == OP_LIST))) {
5581 /* allocate code_blocks if needed */
5585 for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling)
5586 if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL))
5587 ncode++; /* count of DO blocks */
5589 pRExC_state->num_code_blocks = ncode;
5590 Newx(pRExC_state->code_blocks, ncode, struct reg_code_block);
5595 /* compile-time pattern with just OP_CONSTs and DO blocks */
5600 /* find how many CONSTs there are */
5603 if (expr->op_type == OP_CONST)
5606 for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling) {
5607 if (o->op_type == OP_CONST)
5611 /* fake up an SV array */
5613 assert(!new_patternp);
5614 Newx(new_patternp, n, SV*);
5615 SAVEFREEPV(new_patternp);
5619 if (expr->op_type == OP_CONST)
5620 new_patternp[n] = cSVOPx_sv(expr);
5622 for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling) {
5623 if (o->op_type == OP_CONST)
5624 new_patternp[n++] = cSVOPo_sv;
5629 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
5630 "Assembling pattern from %d elements%s\n", pat_count,
5631 orig_rx_flags & RXf_SPLIT ? " for split" : ""));
5633 /* set expr to the first arg op */
5635 if (pRExC_state->num_code_blocks
5636 && expr->op_type != OP_CONST)
5638 expr = cLISTOPx(expr)->op_first;
5639 assert( expr->op_type == OP_PUSHMARK
5640 || (expr->op_type == OP_NULL && expr->op_targ == OP_PUSHMARK)
5641 || expr->op_type == OP_PADRANGE);
5642 expr = expr->op_sibling;
5645 pat = S_concat_pat(aTHX_ pRExC_state, NULL, new_patternp, pat_count,
5646 expr, &recompile, NULL);
5648 /* handle bare (possibly after overloading) regex: foo =~ $re */
5653 if (SvTYPE(re) == SVt_REGEXP) {
5657 Safefree(pRExC_state->code_blocks);
5658 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
5659 "Precompiled pattern%s\n",
5660 orig_rx_flags & RXf_SPLIT ? " for split" : ""));
5666 exp = SvPV_nomg(pat, plen);
5668 if (!eng->op_comp) {
5669 if ((SvUTF8(pat) && IN_BYTES)
5670 || SvGMAGICAL(pat) || SvAMAGIC(pat))
5672 /* make a temporary copy; either to convert to bytes,
5673 * or to avoid repeating get-magic / overloaded stringify */
5674 pat = newSVpvn_flags(exp, plen, SVs_TEMP |
5675 (IN_BYTES ? 0 : SvUTF8(pat)));
5677 Safefree(pRExC_state->code_blocks);
5678 return CALLREGCOMP_ENG(eng, pat, orig_rx_flags);
5681 /* ignore the utf8ness if the pattern is 0 length */
5682 RExC_utf8 = RExC_orig_utf8 = (plen == 0 || IN_BYTES) ? 0 : SvUTF8(pat);
5683 RExC_uni_semantics = 0;
5684 RExC_contains_locale = 0;
5685 pRExC_state->runtime_code_qr = NULL;
5688 SV *dsv= sv_newmortal();
5689 RE_PV_QUOTED_DECL(s, RExC_utf8, dsv, exp, plen, 60);
5690 PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
5691 PL_colors[4],PL_colors[5],s);
5695 /* we jump here if we upgrade the pattern to utf8 and have to
5698 if ((pm_flags & PMf_USE_RE_EVAL)
5699 /* this second condition covers the non-regex literal case,
5700 * i.e. $foo =~ '(?{})'. */
5701 || (IN_PERL_COMPILETIME && (PL_hints & HINT_RE_EVAL))
5703 runtime_code = S_has_runtime_code(aTHX_ pRExC_state, exp, plen);
5705 /* return old regex if pattern hasn't changed */
5706 /* XXX: note in the below we have to check the flags as well as the pattern.
5708 * Things get a touch tricky as we have to compare the utf8 flag independently
5709 * from the compile flags.
5714 && !!RX_UTF8(old_re) == !!RExC_utf8
5715 && ( RX_COMPFLAGS(old_re) == ( orig_rx_flags & RXf_PMf_FLAGCOPYMASK ) )
5716 && RX_PRECOMP(old_re)
5717 && RX_PRELEN(old_re) == plen
5718 && memEQ(RX_PRECOMP(old_re), exp, plen)
5719 && !runtime_code /* with runtime code, always recompile */ )
5721 Safefree(pRExC_state->code_blocks);
5725 rx_flags = orig_rx_flags;
5727 if (initial_charset == REGEX_LOCALE_CHARSET) {
5728 RExC_contains_locale = 1;
5730 else if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
5732 /* Set to use unicode semantics if the pattern is in utf8 and has the
5733 * 'depends' charset specified, as it means unicode when utf8 */
5734 set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
5738 RExC_flags = rx_flags;
5739 RExC_pm_flags = pm_flags;
5742 if (TAINTING_get && TAINT_get)
5743 Perl_croak(aTHX_ "Eval-group in insecure regular expression");
5745 if (!S_compile_runtime_code(aTHX_ pRExC_state, exp, plen)) {
5746 /* whoops, we have a non-utf8 pattern, whilst run-time code
5747 * got compiled as utf8. Try again with a utf8 pattern */
5748 S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
5749 pRExC_state->num_code_blocks);
5750 goto redo_first_pass;
5753 assert(!pRExC_state->runtime_code_qr);
5758 RExC_in_lookbehind = 0;
5759 RExC_seen_zerolen = *exp == '^' ? -1 : 0;
5761 RExC_override_recoding = 0;
5762 RExC_in_multi_char_class = 0;
5764 /* First pass: determine size, legality. */
5767 RExC_end = exp + plen;
5772 RExC_emit = &PL_regdummy;
5773 RExC_whilem_seen = 0;
5774 RExC_open_parens = NULL;
5775 RExC_close_parens = NULL;
5777 RExC_paren_names = NULL;
5779 RExC_paren_name_list = NULL;
5781 RExC_recurse = NULL;
5782 RExC_recurse_count = 0;
5783 pRExC_state->code_index = 0;
5785 #if 0 /* REGC() is (currently) a NOP at the first pass.
5786 * Clever compilers notice this and complain. --jhi */
5787 REGC((U8)REG_MAGIC, (char*)RExC_emit);
5790 PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n");
5792 RExC_lastparse=NULL;
5794 /* reg may croak on us, not giving us a chance to free
5795 pRExC_state->code_blocks. We cannot SAVEFREEPV it now, as we may
5796 need it to survive as long as the regexp (qr/(?{})/).
5797 We must check that code_blocksv is not already set, because we may
5798 have jumped back to restart the sizing pass. */
5799 if (pRExC_state->code_blocks && !code_blocksv) {
5800 code_blocksv = newSV_type(SVt_PV);
5801 SAVEFREESV(code_blocksv);
5802 SvPV_set(code_blocksv, (char *)pRExC_state->code_blocks);
5803 SvLEN_set(code_blocksv, 1); /*sufficient to make sv_clear free it*/
5805 if (reg(pRExC_state, 0, &flags,1) == NULL) {
5806 /* It's possible to write a regexp in ascii that represents Unicode
5807 codepoints outside of the byte range, such as via \x{100}. If we
5808 detect such a sequence we have to convert the entire pattern to utf8
5809 and then recompile, as our sizing calculation will have been based
5810 on 1 byte == 1 character, but we will need to use utf8 to encode
5811 at least some part of the pattern, and therefore must convert the whole
5814 if (flags & RESTART_UTF8) {
5815 S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
5816 pRExC_state->num_code_blocks);
5817 goto redo_first_pass;
5819 Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for sizing pass, flags=%#X", flags);
5822 SvLEN_set(code_blocksv,0); /* no you can't have it, sv_clear */
5825 PerlIO_printf(Perl_debug_log,
5826 "Required size %"IVdf" nodes\n"
5827 "Starting second pass (creation)\n",
5830 RExC_lastparse=NULL;
5833 /* The first pass could have found things that force Unicode semantics */
5834 if ((RExC_utf8 || RExC_uni_semantics)
5835 && get_regex_charset(rx_flags) == REGEX_DEPENDS_CHARSET)
5837 set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
5840 /* Small enough for pointer-storage convention?
5841 If extralen==0, this means that we will not need long jumps. */
5842 if (RExC_size >= 0x10000L && RExC_extralen)
5843 RExC_size += RExC_extralen;
5846 if (RExC_whilem_seen > 15)
5847 RExC_whilem_seen = 15;
5849 /* Allocate space and zero-initialize. Note, the two step process
5850 of zeroing when in debug mode, thus anything assigned has to
5851 happen after that */
5852 rx = (REGEXP*) newSV_type(SVt_REGEXP);
5854 Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
5855 char, regexp_internal);
5856 if ( r == NULL || ri == NULL )
5857 FAIL("Regexp out of space");
5859 /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
5860 Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode), char);
5862 /* bulk initialize base fields with 0. */
5863 Zero(ri, sizeof(regexp_internal), char);
5866 /* non-zero initialization begins here */
5869 r->extflags = rx_flags;
5870 RXp_COMPFLAGS(r) = orig_rx_flags & RXf_PMf_FLAGCOPYMASK;
5872 if (pm_flags & PMf_IS_QR) {
5873 ri->code_blocks = pRExC_state->code_blocks;
5874 ri->num_code_blocks = pRExC_state->num_code_blocks;
5879 for (n = 0; n < pRExC_state->num_code_blocks; n++)
5880 if (pRExC_state->code_blocks[n].src_regex)
5881 SAVEFREESV(pRExC_state->code_blocks[n].src_regex);
5882 SAVEFREEPV(pRExC_state->code_blocks);
5886 bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
5887 bool has_charset = (get_regex_charset(r->extflags) != REGEX_DEPENDS_CHARSET);
5889 /* The caret is output if there are any defaults: if not all the STD
5890 * flags are set, or if no character set specifier is needed */
5892 (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
5894 bool has_runon = ((RExC_seen & REG_SEEN_RUN_ON_COMMENT)==REG_SEEN_RUN_ON_COMMENT);
5895 U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
5896 >> RXf_PMf_STD_PMMOD_SHIFT);
5897 const char *fptr = STD_PAT_MODS; /*"msix"*/
5899 /* Allocate for the worst case, which is all the std flags are turned
5900 * on. If more precision is desired, we could do a population count of
5901 * the flags set. This could be done with a small lookup table, or by
5902 * shifting, masking and adding, or even, when available, assembly
5903 * language for a machine-language population count.
5904 * We never output a minus, as all those are defaults, so are
5905 * covered by the caret */
5906 const STRLEN wraplen = plen + has_p + has_runon
5907 + has_default /* If needs a caret */
5909 /* If needs a character set specifier */
5910 + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
5911 + (sizeof(STD_PAT_MODS) - 1)
5912 + (sizeof("(?:)") - 1);
5914 Newx(p, wraplen + 1, char); /* +1 for the ending NUL */
5915 r->xpv_len_u.xpvlenu_pv = p;
5917 SvFLAGS(rx) |= SVf_UTF8;
5920 /* If a default, cover it using the caret */
5922 *p++= DEFAULT_PAT_MOD;
5926 const char* const name = get_regex_charset_name(r->extflags, &len);
5927 Copy(name, p, len, char);
5931 *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
5934 while((ch = *fptr++)) {
5942 Copy(RExC_precomp, p, plen, char);
5943 assert ((RX_WRAPPED(rx) - p) < 16);
5944 r->pre_prefix = p - RX_WRAPPED(rx);
5950 SvCUR_set(rx, p - RX_WRAPPED(rx));
5954 r->nparens = RExC_npar - 1; /* set early to validate backrefs */
5956 if (RExC_seen & REG_SEEN_RECURSE) {
5957 Newxz(RExC_open_parens, RExC_npar,regnode *);
5958 SAVEFREEPV(RExC_open_parens);
5959 Newxz(RExC_close_parens,RExC_npar,regnode *);
5960 SAVEFREEPV(RExC_close_parens);
5963 /* Useful during FAIL. */
5964 #ifdef RE_TRACK_PATTERN_OFFSETS
5965 Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
5966 DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
5967 "%s %"UVuf" bytes for offset annotations.\n",
5968 ri->u.offsets ? "Got" : "Couldn't get",
5969 (UV)((2*RExC_size+1) * sizeof(U32))));
5971 SetProgLen(ri,RExC_size);
5976 /* Second pass: emit code. */
5977 RExC_flags = rx_flags; /* don't let top level (?i) bleed */
5978 RExC_pm_flags = pm_flags;
5980 RExC_end = exp + plen;
5983 RExC_emit_start = ri->program;
5984 RExC_emit = ri->program;
5985 RExC_emit_bound = ri->program + RExC_size + 1;
5986 pRExC_state->code_index = 0;
5988 REGC((U8)REG_MAGIC, (char*) RExC_emit++);
5989 if (reg(pRExC_state, 0, &flags,1) == NULL) {
5991 Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for generation pass, flags=%#X", flags);
5993 /* XXXX To minimize changes to RE engine we always allocate
5994 3-units-long substrs field. */
5995 Newx(r->substrs, 1, struct reg_substr_data);
5996 if (RExC_recurse_count) {
5997 Newxz(RExC_recurse,RExC_recurse_count,regnode *);
5998 SAVEFREEPV(RExC_recurse);
6002 r->minlen = minlen = sawlookahead = sawplus = sawopen = 0;
6003 Zero(r->substrs, 1, struct reg_substr_data);
6005 #ifdef TRIE_STUDY_OPT
6007 StructCopy(&zero_scan_data, &data, scan_data_t);
6008 copyRExC_state = RExC_state;
6011 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
6013 RExC_state = copyRExC_state;
6014 if (seen & REG_TOP_LEVEL_BRANCHES)
6015 RExC_seen |= REG_TOP_LEVEL_BRANCHES;
6017 RExC_seen &= ~REG_TOP_LEVEL_BRANCHES;
6018 StructCopy(&zero_scan_data, &data, scan_data_t);
6021 StructCopy(&zero_scan_data, &data, scan_data_t);
6024 /* Dig out information for optimizations. */
6025 r->extflags = RExC_flags; /* was pm_op */
6026 /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
6029 SvUTF8_on(rx); /* Unicode in it? */
6030 ri->regstclass = NULL;
6031 if (RExC_naughty >= 10) /* Probably an expensive pattern. */
6032 r->intflags |= PREGf_NAUGHTY;
6033 scan = ri->program + 1; /* First BRANCH. */
6035 /* testing for BRANCH here tells us whether there is "must appear"
6036 data in the pattern. If there is then we can use it for optimisations */
6037 if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES)) { /* Only one top-level choice. */
6039 STRLEN longest_float_length, longest_fixed_length;
6040 struct regnode_charclass_class ch_class; /* pointed to by data */
6042 I32 last_close = 0; /* pointed to by data */
6043 regnode *first= scan;
6044 regnode *first_next= regnext(first);
6046 * Skip introductions and multiplicators >= 1
6047 * so that we can extract the 'meat' of the pattern that must
6048 * match in the large if() sequence following.
6049 * NOTE that EXACT is NOT covered here, as it is normally
6050 * picked up by the optimiser separately.
6052 * This is unfortunate as the optimiser isnt handling lookahead
6053 * properly currently.
6056 while ((OP(first) == OPEN && (sawopen = 1)) ||
6057 /* An OR of *one* alternative - should not happen now. */
6058 (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
6059 /* for now we can't handle lookbehind IFMATCH*/
6060 (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
6061 (OP(first) == PLUS) ||
6062 (OP(first) == MINMOD) ||
6063 /* An {n,m} with n>0 */
6064 (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
6065 (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
6068 * the only op that could be a regnode is PLUS, all the rest
6069 * will be regnode_1 or regnode_2.
6072 if (OP(first) == PLUS)
6075 first += regarglen[OP(first)];
6077 first = NEXTOPER(first);
6078 first_next= regnext(first);
6081 /* Starting-point info. */
6083 DEBUG_PEEP("first:",first,0);
6084 /* Ignore EXACT as we deal with it later. */
6085 if (PL_regkind[OP(first)] == EXACT) {
6086 if (OP(first) == EXACT)
6087 NOOP; /* Empty, get anchored substr later. */
6089 ri->regstclass = first;
6092 else if (PL_regkind[OP(first)] == TRIE &&
6093 ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
6096 /* this can happen only on restudy */
6097 if ( OP(first) == TRIE ) {
6098 struct regnode_1 *trieop = (struct regnode_1 *)
6099 PerlMemShared_calloc(1, sizeof(struct regnode_1));
6100 StructCopy(first,trieop,struct regnode_1);
6101 trie_op=(regnode *)trieop;
6103 struct regnode_charclass *trieop = (struct regnode_charclass *)
6104 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
6105 StructCopy(first,trieop,struct regnode_charclass);
6106 trie_op=(regnode *)trieop;
6109 make_trie_failtable(pRExC_state, (regnode *)first, trie_op, 0);
6110 ri->regstclass = trie_op;
6113 else if (REGNODE_SIMPLE(OP(first)))
6114 ri->regstclass = first;
6115 else if (PL_regkind[OP(first)] == BOUND ||
6116 PL_regkind[OP(first)] == NBOUND)
6117 ri->regstclass = first;
6118 else if (PL_regkind[OP(first)] == BOL) {
6119 r->extflags |= (OP(first) == MBOL
6121 : (OP(first) == SBOL
6124 first = NEXTOPER(first);
6127 else if (OP(first) == GPOS) {
6128 r->extflags |= RXf_ANCH_GPOS;
6129 first = NEXTOPER(first);
6132 else if ((!sawopen || !RExC_sawback) &&
6133 (OP(first) == STAR &&
6134 PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
6135 !(r->extflags & RXf_ANCH) && !pRExC_state->num_code_blocks)
6137 /* turn .* into ^.* with an implied $*=1 */
6139 (OP(NEXTOPER(first)) == REG_ANY)
6142 r->extflags |= type;
6143 r->intflags |= PREGf_IMPLICIT;
6144 first = NEXTOPER(first);
6147 if (sawplus && !sawlookahead && (!sawopen || !RExC_sawback)
6148 && !pRExC_state->num_code_blocks) /* May examine pos and $& */
6149 /* x+ must match at the 1st pos of run of x's */
6150 r->intflags |= PREGf_SKIP;
6152 /* Scan is after the zeroth branch, first is atomic matcher. */
6153 #ifdef TRIE_STUDY_OPT
6156 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
6157 (IV)(first - scan + 1))
6161 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
6162 (IV)(first - scan + 1))
6168 * If there's something expensive in the r.e., find the
6169 * longest literal string that must appear and make it the
6170 * regmust. Resolve ties in favor of later strings, since
6171 * the regstart check works with the beginning of the r.e.
6172 * and avoiding duplication strengthens checking. Not a
6173 * strong reason, but sufficient in the absence of others.
6174 * [Now we resolve ties in favor of the earlier string if
6175 * it happens that c_offset_min has been invalidated, since the
6176 * earlier string may buy us something the later one won't.]
6179 data.longest_fixed = newSVpvs("");
6180 data.longest_float = newSVpvs("");
6181 data.last_found = newSVpvs("");
6182 data.longest = &(data.longest_fixed);
6183 ENTER_with_name("study_chunk");
6184 SAVEFREESV(data.longest_fixed);
6185 SAVEFREESV(data.longest_float);
6186 SAVEFREESV(data.last_found);
6188 if (!ri->regstclass) {
6189 cl_init(pRExC_state, &ch_class);
6190 data.start_class = &ch_class;
6191 stclass_flag = SCF_DO_STCLASS_AND;
6192 } else /* XXXX Check for BOUND? */
6194 data.last_closep = &last_close;
6196 minlen = study_chunk(pRExC_state, &first, &minlen, &fake, scan + RExC_size, /* Up to end */
6197 &data, -1, NULL, NULL,
6198 SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag,0);
6201 CHECK_RESTUDY_GOTO_butfirst(LEAVE_with_name("study_chunk"));
6204 if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
6205 && data.last_start_min == 0 && data.last_end > 0
6206 && !RExC_seen_zerolen
6207 && !(RExC_seen & REG_SEEN_VERBARG)
6208 && (!(RExC_seen & REG_SEEN_GPOS) || (r->extflags & RXf_ANCH_GPOS)))
6209 r->extflags |= RXf_CHECK_ALL;
6210 scan_commit(pRExC_state, &data,&minlen,0);
6212 longest_float_length = CHR_SVLEN(data.longest_float);
6214 if (! ((SvCUR(data.longest_fixed) /* ok to leave SvCUR */
6215 && data.offset_fixed == data.offset_float_min
6216 && SvCUR(data.longest_fixed) == SvCUR(data.longest_float)))
6217 && S_setup_longest (aTHX_ pRExC_state,
6221 &(r->float_end_shift),
6222 data.lookbehind_float,
6223 data.offset_float_min,
6225 longest_float_length,
6226 cBOOL(data.flags & SF_FL_BEFORE_EOL),
6227 cBOOL(data.flags & SF_FL_BEFORE_MEOL)))
6229 r->float_min_offset = data.offset_float_min - data.lookbehind_float;
6230 r->float_max_offset = data.offset_float_max;
6231 if (data.offset_float_max < I32_MAX) /* Don't offset infinity */
6232 r->float_max_offset -= data.lookbehind_float;
6233 SvREFCNT_inc_simple_void_NN(data.longest_float);
6236 r->float_substr = r->float_utf8 = NULL;
6237 longest_float_length = 0;
6240 longest_fixed_length = CHR_SVLEN(data.longest_fixed);
6242 if (S_setup_longest (aTHX_ pRExC_state,
6244 &(r->anchored_utf8),
6245 &(r->anchored_substr),
6246 &(r->anchored_end_shift),
6247 data.lookbehind_fixed,
6250 longest_fixed_length,
6251 cBOOL(data.flags & SF_FIX_BEFORE_EOL),
6252 cBOOL(data.flags & SF_FIX_BEFORE_MEOL)))
6254 r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
6255 SvREFCNT_inc_simple_void_NN(data.longest_fixed);
6258 r->anchored_substr = r->anchored_utf8 = NULL;
6259 longest_fixed_length = 0;
6261 LEAVE_with_name("study_chunk");
6264 && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
6265 ri->regstclass = NULL;
6267 if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
6269 && ! TEST_SSC_EOS(data.start_class)
6270 && !cl_is_anything(data.start_class))
6272 const U32 n = add_data(pRExC_state, 1, "f");
6273 OP(data.start_class) = ANYOF_SYNTHETIC;
6275 Newx(RExC_rxi->data->data[n], 1,
6276 struct regnode_charclass_class);
6277 StructCopy(data.start_class,
6278 (struct regnode_charclass_class*)RExC_rxi->data->data[n],
6279 struct regnode_charclass_class);
6280 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
6281 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
6282 DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
6283 regprop(r, sv, (regnode*)data.start_class);
6284 PerlIO_printf(Perl_debug_log,
6285 "synthetic stclass \"%s\".\n",
6286 SvPVX_const(sv));});
6289 /* A temporary algorithm prefers floated substr to fixed one to dig more info. */
6290 if (longest_fixed_length > longest_float_length) {
6291 r->check_end_shift = r->anchored_end_shift;
6292 r->check_substr = r->anchored_substr;
6293 r->check_utf8 = r->anchored_utf8;
6294 r->check_offset_min = r->check_offset_max = r->anchored_offset;
6295 if (r->extflags & RXf_ANCH_SINGLE)
6296 r->extflags |= RXf_NOSCAN;
6299 r->check_end_shift = r->float_end_shift;
6300 r->check_substr = r->float_substr;
6301 r->check_utf8 = r->float_utf8;
6302 r->check_offset_min = r->float_min_offset;
6303 r->check_offset_max = r->float_max_offset;
6305 /* XXXX Currently intuiting is not compatible with ANCH_GPOS.
6306 This should be changed ASAP! */
6307 if ((r->check_substr || r->check_utf8) && !(r->extflags & RXf_ANCH_GPOS)) {
6308 r->extflags |= RXf_USE_INTUIT;
6309 if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
6310 r->extflags |= RXf_INTUIT_TAIL;
6312 /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
6313 if ( (STRLEN)minlen < longest_float_length )
6314 minlen= longest_float_length;
6315 if ( (STRLEN)minlen < longest_fixed_length )
6316 minlen= longest_fixed_length;
6320 /* Several toplevels. Best we can is to set minlen. */
6322 struct regnode_charclass_class ch_class;
6325 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
6327 scan = ri->program + 1;
6328 cl_init(pRExC_state, &ch_class);
6329 data.start_class = &ch_class;
6330 data.last_closep = &last_close;
6333 minlen = study_chunk(pRExC_state, &scan, &minlen, &fake, scan + RExC_size,
6334 &data, -1, NULL, NULL, SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS,0);
6336 CHECK_RESTUDY_GOTO_butfirst(NOOP);
6338 r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
6339 = r->float_substr = r->float_utf8 = NULL;
6341 if (! TEST_SSC_EOS(data.start_class)
6342 && !cl_is_anything(data.start_class))
6344 const U32 n = add_data(pRExC_state, 1, "f");
6345 OP(data.start_class) = ANYOF_SYNTHETIC;
6347 Newx(RExC_rxi->data->data[n], 1,
6348 struct regnode_charclass_class);
6349 StructCopy(data.start_class,
6350 (struct regnode_charclass_class*)RExC_rxi->data->data[n],
6351 struct regnode_charclass_class);
6352 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
6353 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
6354 DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
6355 regprop(r, sv, (regnode*)data.start_class);
6356 PerlIO_printf(Perl_debug_log,
6357 "synthetic stclass \"%s\".\n",
6358 SvPVX_const(sv));});
6362 /* Guard against an embedded (?=) or (?<=) with a longer minlen than
6363 the "real" pattern. */
6365 PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf"\n",
6366 (IV)minlen, (IV)r->minlen);
6368 r->minlenret = minlen;
6369 if (r->minlen < minlen)
6372 if (RExC_seen & REG_SEEN_GPOS)
6373 r->extflags |= RXf_GPOS_SEEN;
6374 if (RExC_seen & REG_SEEN_LOOKBEHIND)
6375 r->extflags |= RXf_NO_INPLACE_SUBST; /* inplace might break the lookbehind */
6376 if (pRExC_state->num_code_blocks)
6377 r->extflags |= RXf_EVAL_SEEN;
6378 if (RExC_seen & REG_SEEN_CANY)
6379 r->extflags |= RXf_CANY_SEEN;
6380 if (RExC_seen & REG_SEEN_VERBARG)
6382 r->intflags |= PREGf_VERBARG_SEEN;
6383 r->extflags |= RXf_NO_INPLACE_SUBST; /* don't understand this! Yves */
6385 if (RExC_seen & REG_SEEN_CUTGROUP)
6386 r->intflags |= PREGf_CUTGROUP_SEEN;
6387 if (pm_flags & PMf_USE_RE_EVAL)
6388 r->intflags |= PREGf_USE_RE_EVAL;
6389 if (RExC_paren_names)
6390 RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
6392 RXp_PAREN_NAMES(r) = NULL;
6395 regnode *first = ri->program + 1;
6397 regnode *next = NEXTOPER(first);
6400 if (PL_regkind[fop] == NOTHING && nop == END)
6401 r->extflags |= RXf_NULL;
6402 else if (PL_regkind[fop] == BOL && nop == END)
6403 r->extflags |= RXf_START_ONLY;
6404 else if (fop == PLUS && PL_regkind[nop] == POSIXD && FLAGS(next) == _CC_SPACE && OP(regnext(first)) == END)
6405 r->extflags |= RXf_WHITE;
6406 else if ( r->extflags & RXf_SPLIT && fop == EXACT && STR_LEN(first) == 1 && *(STRING(first)) == ' ' && OP(regnext(first)) == END )
6407 r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
6411 if (RExC_paren_names) {
6412 ri->name_list_idx = add_data( pRExC_state, 1, "a" );
6413 ri->data->data[ri->name_list_idx] = (void*)SvREFCNT_inc(RExC_paren_name_list);
6416 ri->name_list_idx = 0;
6418 if (RExC_recurse_count) {
6419 for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
6420 const regnode *scan = RExC_recurse[RExC_recurse_count-1];
6421 ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
6424 Newxz(r->offs, RExC_npar, regexp_paren_pair);
6425 /* assume we don't need to swap parens around before we match */
6428 PerlIO_printf(Perl_debug_log,"Final program:\n");
6431 #ifdef RE_TRACK_PATTERN_OFFSETS
6432 DEBUG_OFFSETS_r(if (ri->u.offsets) {
6433 const U32 len = ri->u.offsets[0];
6435 GET_RE_DEBUG_FLAGS_DECL;
6436 PerlIO_printf(Perl_debug_log, "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
6437 for (i = 1; i <= len; i++) {
6438 if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
6439 PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
6440 (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
6442 PerlIO_printf(Perl_debug_log, "\n");
6447 /* under ithreads the ?pat? PMf_USED flag on the pmop is simulated
6448 * by setting the regexp SV to readonly-only instead. If the
6449 * pattern's been recompiled, the USEDness should remain. */
6450 if (old_re && SvREADONLY(old_re))
6458 Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
6461 PERL_ARGS_ASSERT_REG_NAMED_BUFF;
6463 PERL_UNUSED_ARG(value);
6465 if (flags & RXapif_FETCH) {
6466 return reg_named_buff_fetch(rx, key, flags);
6467 } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
6468 Perl_croak_no_modify();
6470 } else if (flags & RXapif_EXISTS) {
6471 return reg_named_buff_exists(rx, key, flags)
6474 } else if (flags & RXapif_REGNAMES) {
6475 return reg_named_buff_all(rx, flags);
6476 } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
6477 return reg_named_buff_scalar(rx, flags);
6479 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
6485 Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
6488 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
6489 PERL_UNUSED_ARG(lastkey);
6491 if (flags & RXapif_FIRSTKEY)
6492 return reg_named_buff_firstkey(rx, flags);
6493 else if (flags & RXapif_NEXTKEY)
6494 return reg_named_buff_nextkey(rx, flags);
6496 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter", (int)flags);
6502 Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
6505 AV *retarray = NULL;
6507 struct regexp *const rx = ReANY(r);
6509 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
6511 if (flags & RXapif_ALL)
6514 if (rx && RXp_PAREN_NAMES(rx)) {
6515 HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
6518 SV* sv_dat=HeVAL(he_str);
6519 I32 *nums=(I32*)SvPVX(sv_dat);
6520 for ( i=0; i<SvIVX(sv_dat); i++ ) {
6521 if ((I32)(rx->nparens) >= nums[i]
6522 && rx->offs[nums[i]].start != -1
6523 && rx->offs[nums[i]].end != -1)
6526 CALLREG_NUMBUF_FETCH(r,nums[i],ret);
6531 ret = newSVsv(&PL_sv_undef);
6534 av_push(retarray, ret);
6537 return newRV_noinc(MUTABLE_SV(retarray));
6544 Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
6547 struct regexp *const rx = ReANY(r);
6549 PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
6551 if (rx && RXp_PAREN_NAMES(rx)) {
6552 if (flags & RXapif_ALL) {
6553 return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
6555 SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
6557 SvREFCNT_dec_NN(sv);
6569 Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
6571 struct regexp *const rx = ReANY(r);
6573 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
6575 if ( rx && RXp_PAREN_NAMES(rx) ) {
6576 (void)hv_iterinit(RXp_PAREN_NAMES(rx));
6578 return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
6585 Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
6587 struct regexp *const rx = ReANY(r);
6588 GET_RE_DEBUG_FLAGS_DECL;
6590 PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
6592 if (rx && RXp_PAREN_NAMES(rx)) {
6593 HV *hv = RXp_PAREN_NAMES(rx);
6595 while ( (temphe = hv_iternext_flags(hv,0)) ) {
6598 SV* sv_dat = HeVAL(temphe);
6599 I32 *nums = (I32*)SvPVX(sv_dat);
6600 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
6601 if ((I32)(rx->lastparen) >= nums[i] &&
6602 rx->offs[nums[i]].start != -1 &&
6603 rx->offs[nums[i]].end != -1)
6609 if (parno || flags & RXapif_ALL) {
6610 return newSVhek(HeKEY_hek(temphe));
6618 Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
6623 struct regexp *const rx = ReANY(r);
6625 PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
6627 if (rx && RXp_PAREN_NAMES(rx)) {
6628 if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
6629 return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
6630 } else if (flags & RXapif_ONE) {
6631 ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
6632 av = MUTABLE_AV(SvRV(ret));
6633 length = av_len(av);
6634 SvREFCNT_dec_NN(ret);
6635 return newSViv(length + 1);
6637 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar", (int)flags);
6641 return &PL_sv_undef;
6645 Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
6647 struct regexp *const rx = ReANY(r);
6650 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
6652 if (rx && RXp_PAREN_NAMES(rx)) {
6653 HV *hv= RXp_PAREN_NAMES(rx);
6655 (void)hv_iterinit(hv);
6656 while ( (temphe = hv_iternext_flags(hv,0)) ) {
6659 SV* sv_dat = HeVAL(temphe);
6660 I32 *nums = (I32*)SvPVX(sv_dat);
6661 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
6662 if ((I32)(rx->lastparen) >= nums[i] &&
6663 rx->offs[nums[i]].start != -1 &&
6664 rx->offs[nums[i]].end != -1)
6670 if (parno || flags & RXapif_ALL) {
6671 av_push(av, newSVhek(HeKEY_hek(temphe)));
6676 return newRV_noinc(MUTABLE_SV(av));
6680 Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
6683 struct regexp *const rx = ReANY(r);
6689 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
6691 if ( n == RX_BUFF_IDX_CARET_PREMATCH
6692 || n == RX_BUFF_IDX_CARET_FULLMATCH
6693 || n == RX_BUFF_IDX_CARET_POSTMATCH
6696 bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
6698 /* on something like
6701 * the KEEPCOPY is set on the PMOP rather than the regex */
6702 if (PL_curpm && r == PM_GETRE(PL_curpm))
6703 keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
6712 if (n == RX_BUFF_IDX_CARET_FULLMATCH)
6713 /* no need to distinguish between them any more */
6714 n = RX_BUFF_IDX_FULLMATCH;
6716 if ((n == RX_BUFF_IDX_PREMATCH || n == RX_BUFF_IDX_CARET_PREMATCH)
6717 && rx->offs[0].start != -1)
6719 /* $`, ${^PREMATCH} */
6720 i = rx->offs[0].start;
6724 if ((n == RX_BUFF_IDX_POSTMATCH || n == RX_BUFF_IDX_CARET_POSTMATCH)
6725 && rx->offs[0].end != -1)
6727 /* $', ${^POSTMATCH} */
6728 s = rx->subbeg - rx->suboffset + rx->offs[0].end;
6729 i = rx->sublen + rx->suboffset - rx->offs[0].end;
6732 if ( 0 <= n && n <= (I32)rx->nparens &&
6733 (s1 = rx->offs[n].start) != -1 &&
6734 (t1 = rx->offs[n].end) != -1)
6736 /* $&, ${^MATCH}, $1 ... */
6738 s = rx->subbeg + s1 - rx->suboffset;
6743 assert(s >= rx->subbeg);
6744 assert(rx->sublen >= (s - rx->subbeg) + i );
6746 #if NO_TAINT_SUPPORT
6747 sv_setpvn(sv, s, i);
6749 const int oldtainted = TAINT_get;
6751 sv_setpvn(sv, s, i);
6752 TAINT_set(oldtainted);
6754 if ( (rx->extflags & RXf_CANY_SEEN)
6755 ? (RXp_MATCH_UTF8(rx)
6756 && (!i || is_utf8_string((U8*)s, i)))
6757 : (RXp_MATCH_UTF8(rx)) )
6764 if (RXp_MATCH_TAINTED(rx)) {
6765 if (SvTYPE(sv) >= SVt_PVMG) {
6766 MAGIC* const mg = SvMAGIC(sv);
6769 SvMAGIC_set(sv, mg->mg_moremagic);
6771 if ((mgt = SvMAGIC(sv))) {
6772 mg->mg_moremagic = mgt;
6773 SvMAGIC_set(sv, mg);
6784 sv_setsv(sv,&PL_sv_undef);
6790 Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
6791 SV const * const value)
6793 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
6795 PERL_UNUSED_ARG(rx);
6796 PERL_UNUSED_ARG(paren);
6797 PERL_UNUSED_ARG(value);
6800 Perl_croak_no_modify();
6804 Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
6807 struct regexp *const rx = ReANY(r);
6811 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
6813 if ( paren == RX_BUFF_IDX_CARET_PREMATCH
6814 || paren == RX_BUFF_IDX_CARET_FULLMATCH
6815 || paren == RX_BUFF_IDX_CARET_POSTMATCH
6818 bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
6820 /* on something like
6823 * the KEEPCOPY is set on the PMOP rather than the regex */
6824 if (PL_curpm && r == PM_GETRE(PL_curpm))
6825 keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
6831 /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
6833 case RX_BUFF_IDX_CARET_PREMATCH: /* ${^PREMATCH} */
6834 case RX_BUFF_IDX_PREMATCH: /* $` */
6835 if (rx->offs[0].start != -1) {
6836 i = rx->offs[0].start;
6845 case RX_BUFF_IDX_CARET_POSTMATCH: /* ${^POSTMATCH} */
6846 case RX_BUFF_IDX_POSTMATCH: /* $' */
6847 if (rx->offs[0].end != -1) {
6848 i = rx->sublen - rx->offs[0].end;
6850 s1 = rx->offs[0].end;
6857 default: /* $& / ${^MATCH}, $1, $2, ... */
6858 if (paren <= (I32)rx->nparens &&
6859 (s1 = rx->offs[paren].start) != -1 &&
6860 (t1 = rx->offs[paren].end) != -1)
6866 if (ckWARN(WARN_UNINITIALIZED))
6867 report_uninit((const SV *)sv);
6872 if (i > 0 && RXp_MATCH_UTF8(rx)) {
6873 const char * const s = rx->subbeg - rx->suboffset + s1;
6878 if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
6885 Perl_reg_qr_package(pTHX_ REGEXP * const rx)
6887 PERL_ARGS_ASSERT_REG_QR_PACKAGE;
6888 PERL_UNUSED_ARG(rx);
6892 return newSVpvs("Regexp");
6895 /* Scans the name of a named buffer from the pattern.
6896 * If flags is REG_RSN_RETURN_NULL returns null.
6897 * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
6898 * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
6899 * to the parsed name as looked up in the RExC_paren_names hash.
6900 * If there is an error throws a vFAIL().. type exception.
6903 #define REG_RSN_RETURN_NULL 0
6904 #define REG_RSN_RETURN_NAME 1
6905 #define REG_RSN_RETURN_DATA 2
6908 S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
6910 char *name_start = RExC_parse;
6912 PERL_ARGS_ASSERT_REG_SCAN_NAME;
6914 if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
6915 /* skip IDFIRST by using do...while */
6918 RExC_parse += UTF8SKIP(RExC_parse);
6919 } while (isWORDCHAR_utf8((U8*)RExC_parse));
6923 } while (isWORDCHAR(*RExC_parse));
6925 RExC_parse++; /* so the <- from the vFAIL is after the offending character */
6926 vFAIL("Group name must start with a non-digit word character");
6930 = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
6931 SVs_TEMP | (UTF ? SVf_UTF8 : 0));
6932 if ( flags == REG_RSN_RETURN_NAME)
6934 else if (flags==REG_RSN_RETURN_DATA) {
6937 if ( ! sv_name ) /* should not happen*/
6938 Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
6939 if (RExC_paren_names)
6940 he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
6942 sv_dat = HeVAL(he_str);
6944 vFAIL("Reference to nonexistent named group");
6948 Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name",
6949 (unsigned long) flags);
6951 assert(0); /* NOT REACHED */
6956 #define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \
6957 int rem=(int)(RExC_end - RExC_parse); \
6966 if (RExC_lastparse!=RExC_parse) \
6967 PerlIO_printf(Perl_debug_log," >%.*s%-*s", \
6970 iscut ? "..." : "<" \
6973 PerlIO_printf(Perl_debug_log,"%16s",""); \
6976 num = RExC_size + 1; \
6978 num=REG_NODE_NUM(RExC_emit); \
6979 if (RExC_lastnum!=num) \
6980 PerlIO_printf(Perl_debug_log,"|%4d",num); \
6982 PerlIO_printf(Perl_debug_log,"|%4s",""); \
6983 PerlIO_printf(Perl_debug_log,"|%*s%-4s", \
6984 (int)((depth*2)), "", \
6988 RExC_lastparse=RExC_parse; \
6993 #define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \
6994 DEBUG_PARSE_MSG((funcname)); \
6995 PerlIO_printf(Perl_debug_log,"%4s","\n"); \
6997 #define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \
6998 DEBUG_PARSE_MSG((funcname)); \
6999 PerlIO_printf(Perl_debug_log,fmt "\n",args); \
7002 /* This section of code defines the inversion list object and its methods. The
7003 * interfaces are highly subject to change, so as much as possible is static to
7004 * this file. An inversion list is here implemented as a malloc'd C UV array
7005 * with some added info that is placed as UVs at the beginning in a header
7006 * portion. An inversion list for Unicode is an array of code points, sorted
7007 * by ordinal number. The zeroth element is the first code point in the list.
7008 * The 1th element is the first element beyond that not in the list. In other
7009 * words, the first range is
7010 * invlist[0]..(invlist[1]-1)
7011 * The other ranges follow. Thus every element whose index is divisible by two
7012 * marks the beginning of a range that is in the list, and every element not
7013 * divisible by two marks the beginning of a range not in the list. A single
7014 * element inversion list that contains the single code point N generally
7015 * consists of two elements
7018 * (The exception is when N is the highest representable value on the
7019 * machine, in which case the list containing just it would be a single
7020 * element, itself. By extension, if the last range in the list extends to
7021 * infinity, then the first element of that range will be in the inversion list
7022 * at a position that is divisible by two, and is the final element in the
7024 * Taking the complement (inverting) an inversion list is quite simple, if the
7025 * first element is 0, remove it; otherwise add a 0 element at the beginning.
7026 * This implementation reserves an element at the beginning of each inversion
7027 * list to contain 0 when the list contains 0, and contains 1 otherwise. The
7028 * actual beginning of the list is either that element if 0, or the next one if
7031 * More about inversion lists can be found in "Unicode Demystified"
7032 * Chapter 13 by Richard Gillam, published by Addison-Wesley.
7033 * More will be coming when functionality is added later.
7035 * The inversion list data structure is currently implemented as an SV pointing
7036 * to an array of UVs that the SV thinks are bytes. This allows us to have an
7037 * array of UV whose memory management is automatically handled by the existing
7038 * facilities for SV's.
7040 * Some of the methods should always be private to the implementation, and some
7041 * should eventually be made public */
7043 /* The header definitions are in F<inline_invlist.c> */
7044 #define TO_INTERNAL_SIZE(x) (((x) + HEADER_LENGTH) * sizeof(UV))
7045 #define FROM_INTERNAL_SIZE(x) (((x)/ sizeof(UV)) - HEADER_LENGTH)
7047 #define INVLIST_INITIAL_LEN 10
7049 PERL_STATIC_INLINE UV*
7050 S__invlist_array_init(pTHX_ SV* const invlist, const bool will_have_0)
7052 /* Returns a pointer to the first element in the inversion list's array.
7053 * This is called upon initialization of an inversion list. Where the
7054 * array begins depends on whether the list has the code point U+0000
7055 * in it or not. The other parameter tells it whether the code that
7056 * follows this call is about to put a 0 in the inversion list or not.
7057 * The first element is either the element with 0, if 0, or the next one,
7060 UV* zero = get_invlist_zero_addr(invlist);
7062 PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
7065 assert(! *_get_invlist_len_addr(invlist));
7067 /* 1^1 = 0; 1^0 = 1 */
7068 *zero = 1 ^ will_have_0;
7069 return zero + *zero;
7072 PERL_STATIC_INLINE UV*
7073 S_invlist_array(pTHX_ SV* const invlist)
7075 /* Returns the pointer to the inversion list's array. Every time the
7076 * length changes, this needs to be called in case malloc or realloc moved
7079 PERL_ARGS_ASSERT_INVLIST_ARRAY;
7081 /* Must not be empty. If these fail, you probably didn't check for <len>
7082 * being non-zero before trying to get the array */
7083 assert(*_get_invlist_len_addr(invlist));
7084 assert(*get_invlist_zero_addr(invlist) == 0
7085 || *get_invlist_zero_addr(invlist) == 1);
7087 /* The array begins either at the element reserved for zero if the
7088 * list contains 0 (that element will be set to 0), or otherwise the next
7089 * element (in which case the reserved element will be set to 1). */
7090 return (UV *) (get_invlist_zero_addr(invlist)
7091 + *get_invlist_zero_addr(invlist));
7094 PERL_STATIC_INLINE void
7095 S_invlist_set_len(pTHX_ SV* const invlist, const UV len)
7097 /* Sets the current number of elements stored in the inversion list */
7099 PERL_ARGS_ASSERT_INVLIST_SET_LEN;
7101 *_get_invlist_len_addr(invlist) = len;
7103 assert(len <= SvLEN(invlist));
7105 SvCUR_set(invlist, TO_INTERNAL_SIZE(len));
7106 /* If the list contains U+0000, that element is part of the header,
7107 * and should not be counted as part of the array. It will contain
7108 * 0 in that case, and 1 otherwise. So we could flop 0=>1, 1=>0 and
7110 * SvCUR_set(invlist,
7111 * TO_INTERNAL_SIZE(len
7112 * - (*get_invlist_zero_addr(inv_list) ^ 1)));
7113 * But, this is only valid if len is not 0. The consequences of not doing
7114 * this is that the memory allocation code may think that 1 more UV is
7115 * being used than actually is, and so might do an unnecessary grow. That
7116 * seems worth not bothering to make this the precise amount.
7118 * Note that when inverting, SvCUR shouldn't change */
7121 PERL_STATIC_INLINE IV*
7122 S_get_invlist_previous_index_addr(pTHX_ SV* invlist)
7124 /* Return the address of the UV that is reserved to hold the cached index
7127 PERL_ARGS_ASSERT_GET_INVLIST_PREVIOUS_INDEX_ADDR;
7129 return (IV *) (SvPVX(invlist) + (INVLIST_PREVIOUS_INDEX_OFFSET * sizeof (UV)));
7132 PERL_STATIC_INLINE IV
7133 S_invlist_previous_index(pTHX_ SV* const invlist)
7135 /* Returns cached index of previous search */
7137 PERL_ARGS_ASSERT_INVLIST_PREVIOUS_INDEX;
7139 return *get_invlist_previous_index_addr(invlist);
7142 PERL_STATIC_INLINE void
7143 S_invlist_set_previous_index(pTHX_ SV* const invlist, const IV index)
7145 /* Caches <index> for later retrieval */
7147 PERL_ARGS_ASSERT_INVLIST_SET_PREVIOUS_INDEX;
7149 assert(index == 0 || index < (int) _invlist_len(invlist));
7151 *get_invlist_previous_index_addr(invlist) = index;
7154 PERL_STATIC_INLINE UV
7155 S_invlist_max(pTHX_ SV* const invlist)
7157 /* Returns the maximum number of elements storable in the inversion list's
7158 * array, without having to realloc() */
7160 PERL_ARGS_ASSERT_INVLIST_MAX;
7162 return SvLEN(invlist) == 0 /* This happens under _new_invlist_C_array */
7163 ? _invlist_len(invlist)
7164 : FROM_INTERNAL_SIZE(SvLEN(invlist));
7167 PERL_STATIC_INLINE UV*
7168 S_get_invlist_zero_addr(pTHX_ SV* invlist)
7170 /* Return the address of the UV that is reserved to hold 0 if the inversion
7171 * list contains 0. This has to be the last element of the heading, as the
7172 * list proper starts with either it if 0, or the next element if not.
7173 * (But we force it to contain either 0 or 1) */
7175 PERL_ARGS_ASSERT_GET_INVLIST_ZERO_ADDR;
7177 return (UV *) (SvPVX(invlist) + (INVLIST_ZERO_OFFSET * sizeof (UV)));
7180 #ifndef PERL_IN_XSUB_RE
7182 Perl__new_invlist(pTHX_ IV initial_size)
7185 /* Return a pointer to a newly constructed inversion list, with enough
7186 * space to store 'initial_size' elements. If that number is negative, a
7187 * system default is used instead */
7191 if (initial_size < 0) {
7192 initial_size = INVLIST_INITIAL_LEN;
7195 /* Allocate the initial space */
7196 new_list = newSV(TO_INTERNAL_SIZE(initial_size));
7197 invlist_set_len(new_list, 0);
7199 /* Force iterinit() to be used to get iteration to work */
7200 *get_invlist_iter_addr(new_list) = UV_MAX;
7202 /* This should force a segfault if a method doesn't initialize this
7204 *get_invlist_zero_addr(new_list) = UV_MAX;
7206 *get_invlist_previous_index_addr(new_list) = 0;
7207 *get_invlist_version_id_addr(new_list) = INVLIST_VERSION_ID;
7208 #if HEADER_LENGTH != 5
7209 # error Need to regenerate INVLIST_VERSION_ID by running perl -E 'say int(rand 2**31-1)', and then changing the #if to the new length
7217 S__new_invlist_C_array(pTHX_ UV* list)
7219 /* Return a pointer to a newly constructed inversion list, initialized to
7220 * point to <list>, which has to be in the exact correct inversion list
7221 * form, including internal fields. Thus this is a dangerous routine that
7222 * should not be used in the wrong hands */
7224 SV* invlist = newSV_type(SVt_PV);
7226 PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY;
7228 SvPV_set(invlist, (char *) list);
7229 SvLEN_set(invlist, 0); /* Means we own the contents, and the system
7230 shouldn't touch it */
7231 SvCUR_set(invlist, TO_INTERNAL_SIZE(_invlist_len(invlist)));
7233 if (*get_invlist_version_id_addr(invlist) != INVLIST_VERSION_ID) {
7234 Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list");
7237 /* Initialize the iteration pointer.
7238 * XXX This could be done at compile time in charclass_invlists.h, but I
7239 * (khw) am not confident that the suffixes for specifying the C constant
7240 * UV_MAX are portable, e.g. 'ull' on a 32 bit machine that is configured
7241 * to use 64 bits; might need a Configure probe */
7242 invlist_iterfinish(invlist);
7248 S_invlist_extend(pTHX_ SV* const invlist, const UV new_max)
7250 /* Grow the maximum size of an inversion list */
7252 PERL_ARGS_ASSERT_INVLIST_EXTEND;
7254 SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max));
7257 PERL_STATIC_INLINE void
7258 S_invlist_trim(pTHX_ SV* const invlist)
7260 PERL_ARGS_ASSERT_INVLIST_TRIM;
7262 /* Change the length of the inversion list to how many entries it currently
7265 SvPV_shrink_to_cur((SV *) invlist);
7268 #define _invlist_union_complement_2nd(a, b, output) _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
7271 S__append_range_to_invlist(pTHX_ SV* const invlist, const UV start, const UV end)
7273 /* Subject to change or removal. Append the range from 'start' to 'end' at
7274 * the end of the inversion list. The range must be above any existing
7278 UV max = invlist_max(invlist);
7279 UV len = _invlist_len(invlist);
7281 PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
7283 if (len == 0) { /* Empty lists must be initialized */
7284 array = _invlist_array_init(invlist, start == 0);
7287 /* Here, the existing list is non-empty. The current max entry in the
7288 * list is generally the first value not in the set, except when the
7289 * set extends to the end of permissible values, in which case it is
7290 * the first entry in that final set, and so this call is an attempt to
7291 * append out-of-order */
7293 UV final_element = len - 1;
7294 array = invlist_array(invlist);
7295 if (array[final_element] > start
7296 || ELEMENT_RANGE_MATCHES_INVLIST(final_element))
7298 Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%"UVuf", start=%"UVuf", match=%c",
7299 array[final_element], start,
7300 ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f');
7303 /* Here, it is a legal append. If the new range begins with the first
7304 * value not in the set, it is extending the set, so the new first
7305 * value not in the set is one greater than the newly extended range.
7307 if (array[final_element] == start) {
7308 if (end != UV_MAX) {
7309 array[final_element] = end + 1;
7312 /* But if the end is the maximum representable on the machine,
7313 * just let the range that this would extend to have no end */
7314 invlist_set_len(invlist, len - 1);
7320 /* Here the new range doesn't extend any existing set. Add it */
7322 len += 2; /* Includes an element each for the start and end of range */
7324 /* If overflows the existing space, extend, which may cause the array to be
7327 invlist_extend(invlist, len);
7328 invlist_set_len(invlist, len); /* Have to set len here to avoid assert
7329 failure in invlist_array() */
7330 array = invlist_array(invlist);
7333 invlist_set_len(invlist, len);
7336 /* The next item on the list starts the range, the one after that is
7337 * one past the new range. */
7338 array[len - 2] = start;
7339 if (end != UV_MAX) {
7340 array[len - 1] = end + 1;
7343 /* But if the end is the maximum representable on the machine, just let
7344 * the range have no end */
7345 invlist_set_len(invlist, len - 1);
7349 #ifndef PERL_IN_XSUB_RE
7352 Perl__invlist_search(pTHX_ SV* const invlist, const UV cp)
7354 /* Searches the inversion list for the entry that contains the input code
7355 * point <cp>. If <cp> is not in the list, -1 is returned. Otherwise, the
7356 * return value is the index into the list's array of the range that
7361 IV high = _invlist_len(invlist);
7362 const IV highest_element = high - 1;
7365 PERL_ARGS_ASSERT__INVLIST_SEARCH;
7367 /* If list is empty, return failure. */
7372 /* (We can't get the array unless we know the list is non-empty) */
7373 array = invlist_array(invlist);
7375 mid = invlist_previous_index(invlist);
7376 assert(mid >=0 && mid <= highest_element);
7378 /* <mid> contains the cache of the result of the previous call to this
7379 * function (0 the first time). See if this call is for the same result,
7380 * or if it is for mid-1. This is under the theory that calls to this
7381 * function will often be for related code points that are near each other.
7382 * And benchmarks show that caching gives better results. We also test
7383 * here if the code point is within the bounds of the list. These tests
7384 * replace others that would have had to be made anyway to make sure that
7385 * the array bounds were not exceeded, and these give us extra information
7386 * at the same time */
7387 if (cp >= array[mid]) {
7388 if (cp >= array[highest_element]) {
7389 return highest_element;
7392 /* Here, array[mid] <= cp < array[highest_element]. This means that
7393 * the final element is not the answer, so can exclude it; it also
7394 * means that <mid> is not the final element, so can refer to 'mid + 1'
7396 if (cp < array[mid + 1]) {
7402 else { /* cp < aray[mid] */
7403 if (cp < array[0]) { /* Fail if outside the array */
7407 if (cp >= array[mid - 1]) {
7412 /* Binary search. What we are looking for is <i> such that
7413 * array[i] <= cp < array[i+1]
7414 * The loop below converges on the i+1. Note that there may not be an
7415 * (i+1)th element in the array, and things work nonetheless */
7416 while (low < high) {
7417 mid = (low + high) / 2;
7418 assert(mid <= highest_element);
7419 if (array[mid] <= cp) { /* cp >= array[mid] */
7422 /* We could do this extra test to exit the loop early.
7423 if (cp < array[low]) {
7428 else { /* cp < array[mid] */
7435 invlist_set_previous_index(invlist, high);
7440 Perl__invlist_populate_swatch(pTHX_ SV* const invlist, const UV start, const UV end, U8* swatch)
7442 /* populates a swatch of a swash the same way swatch_get() does in utf8.c,
7443 * but is used when the swash has an inversion list. This makes this much
7444 * faster, as it uses a binary search instead of a linear one. This is
7445 * intimately tied to that function, and perhaps should be in utf8.c,
7446 * except it is intimately tied to inversion lists as well. It assumes
7447 * that <swatch> is all 0's on input */
7450 const IV len = _invlist_len(invlist);
7454 PERL_ARGS_ASSERT__INVLIST_POPULATE_SWATCH;
7456 if (len == 0) { /* Empty inversion list */
7460 array = invlist_array(invlist);
7462 /* Find which element it is */
7463 i = _invlist_search(invlist, start);
7465 /* We populate from <start> to <end> */
7466 while (current < end) {
7469 /* The inversion list gives the results for every possible code point
7470 * after the first one in the list. Only those ranges whose index is
7471 * even are ones that the inversion list matches. For the odd ones,
7472 * and if the initial code point is not in the list, we have to skip
7473 * forward to the next element */
7474 if (i == -1 || ! ELEMENT_RANGE_MATCHES_INVLIST(i)) {
7476 if (i >= len) { /* Finished if beyond the end of the array */
7480 if (current >= end) { /* Finished if beyond the end of what we
7482 if (LIKELY(end < UV_MAX)) {
7486 /* We get here when the upper bound is the maximum
7487 * representable on the machine, and we are looking for just
7488 * that code point. Have to special case it */
7490 goto join_end_of_list;
7493 assert(current >= start);
7495 /* The current range ends one below the next one, except don't go past
7498 upper = (i < len && array[i] < end) ? array[i] : end;
7500 /* Here we are in a range that matches. Populate a bit in the 3-bit U8
7501 * for each code point in it */
7502 for (; current < upper; current++) {
7503 const STRLEN offset = (STRLEN)(current - start);
7504 swatch[offset >> 3] |= 1 << (offset & 7);
7509 /* Quit if at the end of the list */
7512 /* But first, have to deal with the highest possible code point on
7513 * the platform. The previous code assumes that <end> is one
7514 * beyond where we want to populate, but that is impossible at the
7515 * platform's infinity, so have to handle it specially */
7516 if (UNLIKELY(end == UV_MAX && ELEMENT_RANGE_MATCHES_INVLIST(len-1)))
7518 const STRLEN offset = (STRLEN)(end - start);
7519 swatch[offset >> 3] |= 1 << (offset & 7);
7524 /* Advance to the next range, which will be for code points not in the
7533 Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** output)
7535 /* Take the union of two inversion lists and point <output> to it. *output
7536 * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
7537 * the reference count to that list will be decremented. The first list,
7538 * <a>, may be NULL, in which case a copy of the second list is returned.
7539 * If <complement_b> is TRUE, the union is taken of the complement
7540 * (inversion) of <b> instead of b itself.
7542 * The basis for this comes from "Unicode Demystified" Chapter 13 by
7543 * Richard Gillam, published by Addison-Wesley, and explained at some
7544 * length there. The preface says to incorporate its examples into your
7545 * code at your own risk.
7547 * The algorithm is like a merge sort.
7549 * XXX A potential performance improvement is to keep track as we go along
7550 * if only one of the inputs contributes to the result, meaning the other
7551 * is a subset of that one. In that case, we can skip the final copy and
7552 * return the larger of the input lists, but then outside code might need
7553 * to keep track of whether to free the input list or not */
7555 UV* array_a; /* a's array */
7557 UV len_a; /* length of a's array */
7560 SV* u; /* the resulting union */
7564 UV i_a = 0; /* current index into a's array */
7568 /* running count, as explained in the algorithm source book; items are
7569 * stopped accumulating and are output when the count changes to/from 0.
7570 * The count is incremented when we start a range that's in the set, and
7571 * decremented when we start a range that's not in the set. So its range
7572 * is 0 to 2. Only when the count is zero is something not in the set.
7576 PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND;
7579 /* If either one is empty, the union is the other one */
7580 if (a == NULL || ((len_a = _invlist_len(a)) == 0)) {
7587 *output = invlist_clone(b);
7589 _invlist_invert(*output);
7591 } /* else *output already = b; */
7594 else if ((len_b = _invlist_len(b)) == 0) {
7599 /* The complement of an empty list is a list that has everything in it,
7600 * so the union with <a> includes everything too */
7605 *output = _new_invlist(1);
7606 _append_range_to_invlist(*output, 0, UV_MAX);
7608 else if (*output != a) {
7609 *output = invlist_clone(a);
7611 /* else *output already = a; */
7615 /* Here both lists exist and are non-empty */
7616 array_a = invlist_array(a);
7617 array_b = invlist_array(b);
7619 /* If are to take the union of 'a' with the complement of b, set it
7620 * up so are looking at b's complement. */
7623 /* To complement, we invert: if the first element is 0, remove it. To
7624 * do this, we just pretend the array starts one later, and clear the
7625 * flag as we don't have to do anything else later */
7626 if (array_b[0] == 0) {
7629 complement_b = FALSE;
7633 /* But if the first element is not zero, we unshift a 0 before the
7634 * array. The data structure reserves a space for that 0 (which
7635 * should be a '1' right now), so physical shifting is unneeded,
7636 * but temporarily change that element to 0. Before exiting the
7637 * routine, we must restore the element to '1' */
7644 /* Size the union for the worst case: that the sets are completely
7646 u = _new_invlist(len_a + len_b);
7648 /* Will contain U+0000 if either component does */
7649 array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0)
7650 || (len_b > 0 && array_b[0] == 0));
7652 /* Go through each list item by item, stopping when exhausted one of
7654 while (i_a < len_a && i_b < len_b) {
7655 UV cp; /* The element to potentially add to the union's array */
7656 bool cp_in_set; /* is it in the the input list's set or not */
7658 /* We need to take one or the other of the two inputs for the union.
7659 * Since we are merging two sorted lists, we take the smaller of the
7660 * next items. In case of a tie, we take the one that is in its set
7661 * first. If we took one not in the set first, it would decrement the
7662 * count, possibly to 0 which would cause it to be output as ending the
7663 * range, and the next time through we would take the same number, and
7664 * output it again as beginning the next range. By doing it the
7665 * opposite way, there is no possibility that the count will be
7666 * momentarily decremented to 0, and thus the two adjoining ranges will
7667 * be seamlessly merged. (In a tie and both are in the set or both not
7668 * in the set, it doesn't matter which we take first.) */
7669 if (array_a[i_a] < array_b[i_b]
7670 || (array_a[i_a] == array_b[i_b]
7671 && ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
7673 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
7677 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
7678 cp = array_b[i_b++];
7681 /* Here, have chosen which of the two inputs to look at. Only output
7682 * if the running count changes to/from 0, which marks the
7683 * beginning/end of a range in that's in the set */
7686 array_u[i_u++] = cp;
7693 array_u[i_u++] = cp;
7698 /* Here, we are finished going through at least one of the lists, which
7699 * means there is something remaining in at most one. We check if the list
7700 * that hasn't been exhausted is positioned such that we are in the middle
7701 * of a range in its set or not. (i_a and i_b point to the element beyond
7702 * the one we care about.) If in the set, we decrement 'count'; if 0, there
7703 * is potentially more to output.
7704 * There are four cases:
7705 * 1) Both weren't in their sets, count is 0, and remains 0. What's left
7706 * in the union is entirely from the non-exhausted set.
7707 * 2) Both were in their sets, count is 2. Nothing further should
7708 * be output, as everything that remains will be in the exhausted
7709 * list's set, hence in the union; decrementing to 1 but not 0 insures
7711 * 3) the exhausted was in its set, non-exhausted isn't, count is 1.
7712 * Nothing further should be output because the union includes
7713 * everything from the exhausted set. Not decrementing ensures that.
7714 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
7715 * decrementing to 0 insures that we look at the remainder of the
7716 * non-exhausted set */
7717 if ((i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
7718 || (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
7723 /* The final length is what we've output so far, plus what else is about to
7724 * be output. (If 'count' is non-zero, then the input list we exhausted
7725 * has everything remaining up to the machine's limit in its set, and hence
7726 * in the union, so there will be no further output. */
7729 /* At most one of the subexpressions will be non-zero */
7730 len_u += (len_a - i_a) + (len_b - i_b);
7733 /* Set result to final length, which can change the pointer to array_u, so
7735 if (len_u != _invlist_len(u)) {
7736 invlist_set_len(u, len_u);
7738 array_u = invlist_array(u);
7741 /* When 'count' is 0, the list that was exhausted (if one was shorter than
7742 * the other) ended with everything above it not in its set. That means
7743 * that the remaining part of the union is precisely the same as the
7744 * non-exhausted list, so can just copy it unchanged. (If both list were
7745 * exhausted at the same time, then the operations below will be both 0.)
7748 IV copy_count; /* At most one will have a non-zero copy count */
7749 if ((copy_count = len_a - i_a) > 0) {
7750 Copy(array_a + i_a, array_u + i_u, copy_count, UV);
7752 else if ((copy_count = len_b - i_b) > 0) {
7753 Copy(array_b + i_b, array_u + i_u, copy_count, UV);
7757 /* If we've changed b, restore it */
7762 /* We may be removing a reference to one of the inputs */
7763 if (a == *output || b == *output) {
7764 assert(! invlist_is_iterating(*output));
7765 SvREFCNT_dec_NN(*output);
7773 Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** i)
7775 /* Take the intersection of two inversion lists and point <i> to it. *i
7776 * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
7777 * the reference count to that list will be decremented.
7778 * If <complement_b> is TRUE, the result will be the intersection of <a>
7779 * and the complement (or inversion) of <b> instead of <b> directly.
7781 * The basis for this comes from "Unicode Demystified" Chapter 13 by
7782 * Richard Gillam, published by Addison-Wesley, and explained at some
7783 * length there. The preface says to incorporate its examples into your
7784 * code at your own risk. In fact, it had bugs
7786 * The algorithm is like a merge sort, and is essentially the same as the
7790 UV* array_a; /* a's array */
7792 UV len_a; /* length of a's array */
7795 SV* r; /* the resulting intersection */
7799 UV i_a = 0; /* current index into a's array */
7803 /* running count, as explained in the algorithm source book; items are
7804 * stopped accumulating and are output when the count changes to/from 2.
7805 * The count is incremented when we start a range that's in the set, and
7806 * decremented when we start a range that's not in the set. So its range
7807 * is 0 to 2. Only when the count is 2 is something in the intersection.
7811 PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND;
7814 /* Special case if either one is empty */
7815 len_a = _invlist_len(a);
7816 if ((len_a == 0) || ((len_b = _invlist_len(b)) == 0)) {
7818 if (len_a != 0 && complement_b) {
7820 /* Here, 'a' is not empty, therefore from the above 'if', 'b' must
7821 * be empty. Here, also we are using 'b's complement, which hence
7822 * must be every possible code point. Thus the intersection is
7825 *i = invlist_clone(a);
7831 /* else *i is already 'a' */
7835 /* Here, 'a' or 'b' is empty and not using the complement of 'b'. The
7836 * intersection must be empty */
7843 *i = _new_invlist(0);
7847 /* Here both lists exist and are non-empty */
7848 array_a = invlist_array(a);
7849 array_b = invlist_array(b);
7851 /* If are to take the intersection of 'a' with the complement of b, set it
7852 * up so are looking at b's complement. */
7855 /* To complement, we invert: if the first element is 0, remove it. To
7856 * do this, we just pretend the array starts one later, and clear the
7857 * flag as we don't have to do anything else later */
7858 if (array_b[0] == 0) {
7861 complement_b = FALSE;
7865 /* But if the first element is not zero, we unshift a 0 before the
7866 * array. The data structure reserves a space for that 0 (which
7867 * should be a '1' right now), so physical shifting is unneeded,
7868 * but temporarily change that element to 0. Before exiting the
7869 * routine, we must restore the element to '1' */
7876 /* Size the intersection for the worst case: that the intersection ends up
7877 * fragmenting everything to be completely disjoint */
7878 r= _new_invlist(len_a + len_b);
7880 /* Will contain U+0000 iff both components do */
7881 array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0
7882 && len_b > 0 && array_b[0] == 0);
7884 /* Go through each list item by item, stopping when exhausted one of
7886 while (i_a < len_a && i_b < len_b) {
7887 UV cp; /* The element to potentially add to the intersection's
7889 bool cp_in_set; /* Is it in the input list's set or not */
7891 /* We need to take one or the other of the two inputs for the
7892 * intersection. Since we are merging two sorted lists, we take the
7893 * smaller of the next items. In case of a tie, we take the one that
7894 * is not in its set first (a difference from the union algorithm). If
7895 * we took one in the set first, it would increment the count, possibly
7896 * to 2 which would cause it to be output as starting a range in the
7897 * intersection, and the next time through we would take that same
7898 * number, and output it again as ending the set. By doing it the
7899 * opposite of this, there is no possibility that the count will be
7900 * momentarily incremented to 2. (In a tie and both are in the set or
7901 * both not in the set, it doesn't matter which we take first.) */
7902 if (array_a[i_a] < array_b[i_b]
7903 || (array_a[i_a] == array_b[i_b]
7904 && ! ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
7906 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
7910 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
7914 /* Here, have chosen which of the two inputs to look at. Only output
7915 * if the running count changes to/from 2, which marks the
7916 * beginning/end of a range that's in the intersection */
7920 array_r[i_r++] = cp;
7925 array_r[i_r++] = cp;
7931 /* Here, we are finished going through at least one of the lists, which
7932 * means there is something remaining in at most one. We check if the list
7933 * that has been exhausted is positioned such that we are in the middle
7934 * of a range in its set or not. (i_a and i_b point to elements 1 beyond
7935 * the ones we care about.) There are four cases:
7936 * 1) Both weren't in their sets, count is 0, and remains 0. There's
7937 * nothing left in the intersection.
7938 * 2) Both were in their sets, count is 2 and perhaps is incremented to
7939 * above 2. What should be output is exactly that which is in the
7940 * non-exhausted set, as everything it has is also in the intersection
7941 * set, and everything it doesn't have can't be in the intersection
7942 * 3) The exhausted was in its set, non-exhausted isn't, count is 1, and
7943 * gets incremented to 2. Like the previous case, the intersection is
7944 * everything that remains in the non-exhausted set.
7945 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
7946 * remains 1. And the intersection has nothing more. */
7947 if ((i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
7948 || (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
7953 /* The final length is what we've output so far plus what else is in the
7954 * intersection. At most one of the subexpressions below will be non-zero */
7957 len_r += (len_a - i_a) + (len_b - i_b);
7960 /* Set result to final length, which can change the pointer to array_r, so
7962 if (len_r != _invlist_len(r)) {
7963 invlist_set_len(r, len_r);
7965 array_r = invlist_array(r);
7968 /* Finish outputting any remaining */
7969 if (count >= 2) { /* At most one will have a non-zero copy count */
7971 if ((copy_count = len_a - i_a) > 0) {
7972 Copy(array_a + i_a, array_r + i_r, copy_count, UV);
7974 else if ((copy_count = len_b - i_b) > 0) {
7975 Copy(array_b + i_b, array_r + i_r, copy_count, UV);
7979 /* If we've changed b, restore it */
7984 /* We may be removing a reference to one of the inputs */
7985 if (a == *i || b == *i) {
7986 assert(! invlist_is_iterating(*i));
7987 SvREFCNT_dec_NN(*i);
7995 Perl__add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end)
7997 /* Add the range from 'start' to 'end' inclusive to the inversion list's
7998 * set. A pointer to the inversion list is returned. This may actually be
7999 * a new list, in which case the passed in one has been destroyed. The
8000 * passed in inversion list can be NULL, in which case a new one is created
8001 * with just the one range in it */
8006 if (invlist == NULL) {
8007 invlist = _new_invlist(2);
8011 len = _invlist_len(invlist);
8014 /* If comes after the final entry actually in the list, can just append it
8017 || (! ELEMENT_RANGE_MATCHES_INVLIST(len - 1)
8018 && start >= invlist_array(invlist)[len - 1]))
8020 _append_range_to_invlist(invlist, start, end);
8024 /* Here, can't just append things, create and return a new inversion list
8025 * which is the union of this range and the existing inversion list */
8026 range_invlist = _new_invlist(2);
8027 _append_range_to_invlist(range_invlist, start, end);
8029 _invlist_union(invlist, range_invlist, &invlist);
8031 /* The temporary can be freed */
8032 SvREFCNT_dec_NN(range_invlist);
8039 PERL_STATIC_INLINE SV*
8040 S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) {
8041 return _add_range_to_invlist(invlist, cp, cp);
8044 #ifndef PERL_IN_XSUB_RE
8046 Perl__invlist_invert(pTHX_ SV* const invlist)
8048 /* Complement the input inversion list. This adds a 0 if the list didn't
8049 * have a zero; removes it otherwise. As described above, the data
8050 * structure is set up so that this is very efficient */
8052 UV* len_pos = _get_invlist_len_addr(invlist);
8054 PERL_ARGS_ASSERT__INVLIST_INVERT;
8056 assert(! invlist_is_iterating(invlist));
8058 /* The inverse of matching nothing is matching everything */
8059 if (*len_pos == 0) {
8060 _append_range_to_invlist(invlist, 0, UV_MAX);
8064 /* The exclusive or complents 0 to 1; and 1 to 0. If the result is 1, the
8065 * zero element was a 0, so it is being removed, so the length decrements
8066 * by 1; and vice-versa. SvCUR is unaffected */
8067 if (*get_invlist_zero_addr(invlist) ^= 1) {
8076 Perl__invlist_invert_prop(pTHX_ SV* const invlist)
8078 /* Complement the input inversion list (which must be a Unicode property,
8079 * all of which don't match above the Unicode maximum code point.) And
8080 * Perl has chosen to not have the inversion match above that either. This
8081 * adds a 0x110000 if the list didn't end with it, and removes it if it did
8087 PERL_ARGS_ASSERT__INVLIST_INVERT_PROP;
8089 _invlist_invert(invlist);
8091 len = _invlist_len(invlist);
8093 if (len != 0) { /* If empty do nothing */
8094 array = invlist_array(invlist);
8095 if (array[len - 1] != PERL_UNICODE_MAX + 1) {
8096 /* Add 0x110000. First, grow if necessary */
8098 if (invlist_max(invlist) < len) {
8099 invlist_extend(invlist, len);
8100 array = invlist_array(invlist);
8102 invlist_set_len(invlist, len);
8103 array[len - 1] = PERL_UNICODE_MAX + 1;
8105 else { /* Remove the 0x110000 */
8106 invlist_set_len(invlist, len - 1);
8114 PERL_STATIC_INLINE SV*
8115 S_invlist_clone(pTHX_ SV* const invlist)
8118 /* Return a new inversion list that is a copy of the input one, which is
8121 /* Need to allocate extra space to accommodate Perl's addition of a
8122 * trailing NUL to SvPV's, since it thinks they are always strings */
8123 SV* new_invlist = _new_invlist(_invlist_len(invlist) + 1);
8124 STRLEN length = SvCUR(invlist);
8126 PERL_ARGS_ASSERT_INVLIST_CLONE;
8128 SvCUR_set(new_invlist, length); /* This isn't done automatically */
8129 Copy(SvPVX(invlist), SvPVX(new_invlist), length, char);
8134 PERL_STATIC_INLINE UV*
8135 S_get_invlist_iter_addr(pTHX_ SV* invlist)
8137 /* Return the address of the UV that contains the current iteration
8140 PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR;
8142 return (UV *) (SvPVX(invlist) + (INVLIST_ITER_OFFSET * sizeof (UV)));
8145 PERL_STATIC_INLINE UV*
8146 S_get_invlist_version_id_addr(pTHX_ SV* invlist)
8148 /* Return the address of the UV that contains the version id. */
8150 PERL_ARGS_ASSERT_GET_INVLIST_VERSION_ID_ADDR;
8152 return (UV *) (SvPVX(invlist) + (INVLIST_VERSION_ID_OFFSET * sizeof (UV)));
8155 PERL_STATIC_INLINE void
8156 S_invlist_iterinit(pTHX_ SV* invlist) /* Initialize iterator for invlist */
8158 PERL_ARGS_ASSERT_INVLIST_ITERINIT;
8160 *get_invlist_iter_addr(invlist) = 0;
8163 PERL_STATIC_INLINE void
8164 S_invlist_iterfinish(pTHX_ SV* invlist)
8166 /* Terminate iterator for invlist. This is to catch development errors.
8167 * Any iteration that is interrupted before completed should call this
8168 * function. Functions that add code points anywhere else but to the end
8169 * of an inversion list assert that they are not in the middle of an
8170 * iteration. If they were, the addition would make the iteration
8171 * problematical: if the iteration hadn't reached the place where things
8172 * were being added, it would be ok */
8174 PERL_ARGS_ASSERT_INVLIST_ITERFINISH;
8176 *get_invlist_iter_addr(invlist) = UV_MAX;
8180 S_invlist_iternext(pTHX_ SV* invlist, UV* start, UV* end)
8182 /* An C<invlist_iterinit> call on <invlist> must be used to set this up.
8183 * This call sets in <*start> and <*end>, the next range in <invlist>.
8184 * Returns <TRUE> if successful and the next call will return the next
8185 * range; <FALSE> if was already at the end of the list. If the latter,
8186 * <*start> and <*end> are unchanged, and the next call to this function
8187 * will start over at the beginning of the list */
8189 UV* pos = get_invlist_iter_addr(invlist);
8190 UV len = _invlist_len(invlist);
8193 PERL_ARGS_ASSERT_INVLIST_ITERNEXT;
8196 *pos = UV_MAX; /* Force iterinit() to be required next time */
8200 array = invlist_array(invlist);
8202 *start = array[(*pos)++];
8208 *end = array[(*pos)++] - 1;
8214 PERL_STATIC_INLINE bool
8215 S_invlist_is_iterating(pTHX_ SV* const invlist)
8217 PERL_ARGS_ASSERT_INVLIST_IS_ITERATING;
8219 return *(get_invlist_iter_addr(invlist)) < UV_MAX;
8222 PERL_STATIC_INLINE UV
8223 S_invlist_highest(pTHX_ SV* const invlist)
8225 /* Returns the highest code point that matches an inversion list. This API
8226 * has an ambiguity, as it returns 0 under either the highest is actually
8227 * 0, or if the list is empty. If this distinction matters to you, check
8228 * for emptiness before calling this function */
8230 UV len = _invlist_len(invlist);
8233 PERL_ARGS_ASSERT_INVLIST_HIGHEST;
8239 array = invlist_array(invlist);
8241 /* The last element in the array in the inversion list always starts a
8242 * range that goes to infinity. That range may be for code points that are
8243 * matched in the inversion list, or it may be for ones that aren't
8244 * matched. In the latter case, the highest code point in the set is one
8245 * less than the beginning of this range; otherwise it is the final element
8246 * of this range: infinity */
8247 return (ELEMENT_RANGE_MATCHES_INVLIST(len - 1))
8249 : array[len - 1] - 1;
8252 #ifndef PERL_IN_XSUB_RE
8254 Perl__invlist_contents(pTHX_ SV* const invlist)
8256 /* Get the contents of an inversion list into a string SV so that they can
8257 * be printed out. It uses the format traditionally done for debug tracing
8261 SV* output = newSVpvs("\n");
8263 PERL_ARGS_ASSERT__INVLIST_CONTENTS;
8265 assert(! invlist_is_iterating(invlist));
8267 invlist_iterinit(invlist);
8268 while (invlist_iternext(invlist, &start, &end)) {
8269 if (end == UV_MAX) {
8270 Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\tINFINITY\n", start);
8272 else if (end != start) {
8273 Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\t%04"UVXf"\n",
8277 Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\n", start);
8285 #ifdef PERL_ARGS_ASSERT__INVLIST_DUMP
8287 Perl__invlist_dump(pTHX_ SV* const invlist, const char * const header)
8289 /* Dumps out the ranges in an inversion list. The string 'header'
8290 * if present is output on a line before the first range */
8294 PERL_ARGS_ASSERT__INVLIST_DUMP;
8296 if (header && strlen(header)) {
8297 PerlIO_printf(Perl_debug_log, "%s\n", header);
8299 if (invlist_is_iterating(invlist)) {
8300 PerlIO_printf(Perl_debug_log, "Can't dump because is in middle of iterating\n");
8304 invlist_iterinit(invlist);
8305 while (invlist_iternext(invlist, &start, &end)) {
8306 if (end == UV_MAX) {
8307 PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. INFINITY\n", start);
8309 else if (end != start) {
8310 PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. 0x%04"UVXf"\n",
8314 PerlIO_printf(Perl_debug_log, "0x%04"UVXf"\n", start);
8322 S__invlistEQ(pTHX_ SV* const a, SV* const b, bool complement_b)
8324 /* Return a boolean as to if the two passed in inversion lists are
8325 * identical. The final argument, if TRUE, says to take the complement of
8326 * the second inversion list before doing the comparison */
8328 UV* array_a = invlist_array(a);
8329 UV* array_b = invlist_array(b);
8330 UV len_a = _invlist_len(a);
8331 UV len_b = _invlist_len(b);
8333 UV i = 0; /* current index into the arrays */
8334 bool retval = TRUE; /* Assume are identical until proven otherwise */
8336 PERL_ARGS_ASSERT__INVLISTEQ;
8338 /* If are to compare 'a' with the complement of b, set it
8339 * up so are looking at b's complement. */
8342 /* The complement of nothing is everything, so <a> would have to have
8343 * just one element, starting at zero (ending at infinity) */
8345 return (len_a == 1 && array_a[0] == 0);
8347 else if (array_b[0] == 0) {
8349 /* Otherwise, to complement, we invert. Here, the first element is
8350 * 0, just remove it. To do this, we just pretend the array starts
8351 * one later, and clear the flag as we don't have to do anything
8356 complement_b = FALSE;
8360 /* But if the first element is not zero, we unshift a 0 before the
8361 * array. The data structure reserves a space for that 0 (which
8362 * should be a '1' right now), so physical shifting is unneeded,
8363 * but temporarily change that element to 0. Before exiting the
8364 * routine, we must restore the element to '1' */
8371 /* Make sure that the lengths are the same, as well as the final element
8372 * before looping through the remainder. (Thus we test the length, final,
8373 * and first elements right off the bat) */
8374 if (len_a != len_b || array_a[len_a-1] != array_b[len_a-1]) {
8377 else for (i = 0; i < len_a - 1; i++) {
8378 if (array_a[i] != array_b[i]) {
8391 #undef HEADER_LENGTH
8392 #undef INVLIST_INITIAL_LENGTH
8393 #undef TO_INTERNAL_SIZE
8394 #undef FROM_INTERNAL_SIZE
8395 #undef INVLIST_LEN_OFFSET
8396 #undef INVLIST_ZERO_OFFSET
8397 #undef INVLIST_ITER_OFFSET
8398 #undef INVLIST_VERSION_ID
8399 #undef INVLIST_PREVIOUS_INDEX_OFFSET
8401 /* End of inversion list object */
8404 S_parse_lparen_question_flags(pTHX_ struct RExC_state_t *pRExC_state)
8406 /* This parses the flags that are in either the '(?foo)' or '(?foo:bar)'
8407 * constructs, and updates RExC_flags with them. On input, RExC_parse
8408 * should point to the first flag; it is updated on output to point to the
8409 * final ')' or ':'. There needs to be at least one flag, or this will
8412 /* for (?g), (?gc), and (?o) warnings; warning
8413 about (?c) will warn about (?g) -- japhy */
8415 #define WASTED_O 0x01
8416 #define WASTED_G 0x02
8417 #define WASTED_C 0x04
8418 #define WASTED_GC (0x02|0x04)
8419 I32 wastedflags = 0x00;
8420 U32 posflags = 0, negflags = 0;
8421 U32 *flagsp = &posflags;
8422 char has_charset_modifier = '\0';
8424 bool has_use_defaults = FALSE;
8425 const char* const seqstart = RExC_parse - 1; /* Point to the '?' */
8427 PERL_ARGS_ASSERT_PARSE_LPAREN_QUESTION_FLAGS;
8429 /* '^' as an initial flag sets certain defaults */
8430 if (UCHARAT(RExC_parse) == '^') {
8432 has_use_defaults = TRUE;
8433 STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
8434 set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
8435 ? REGEX_UNICODE_CHARSET
8436 : REGEX_DEPENDS_CHARSET);
8439 cs = get_regex_charset(RExC_flags);
8440 if (cs == REGEX_DEPENDS_CHARSET
8441 && (RExC_utf8 || RExC_uni_semantics))
8443 cs = REGEX_UNICODE_CHARSET;
8446 while (*RExC_parse) {
8447 /* && strchr("iogcmsx", *RExC_parse) */
8448 /* (?g), (?gc) and (?o) are useless here
8449 and must be globally applied -- japhy */
8450 switch (*RExC_parse) {
8452 /* Code for the imsx flags */
8453 CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp);
8455 case LOCALE_PAT_MOD:
8456 if (has_charset_modifier) {
8457 goto excess_modifier;
8459 else if (flagsp == &negflags) {
8462 cs = REGEX_LOCALE_CHARSET;
8463 has_charset_modifier = LOCALE_PAT_MOD;
8464 RExC_contains_locale = 1;
8466 case UNICODE_PAT_MOD:
8467 if (has_charset_modifier) {
8468 goto excess_modifier;
8470 else if (flagsp == &negflags) {
8473 cs = REGEX_UNICODE_CHARSET;
8474 has_charset_modifier = UNICODE_PAT_MOD;
8476 case ASCII_RESTRICT_PAT_MOD:
8477 if (flagsp == &negflags) {
8480 if (has_charset_modifier) {
8481 if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
8482 goto excess_modifier;
8484 /* Doubled modifier implies more restricted */
8485 cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
8488 cs = REGEX_ASCII_RESTRICTED_CHARSET;
8490 has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
8492 case DEPENDS_PAT_MOD:
8493 if (has_use_defaults) {
8494 goto fail_modifiers;
8496 else if (flagsp == &negflags) {
8499 else if (has_charset_modifier) {
8500 goto excess_modifier;
8503 /* The dual charset means unicode semantics if the
8504 * pattern (or target, not known until runtime) are
8505 * utf8, or something in the pattern indicates unicode
8507 cs = (RExC_utf8 || RExC_uni_semantics)
8508 ? REGEX_UNICODE_CHARSET
8509 : REGEX_DEPENDS_CHARSET;
8510 has_charset_modifier = DEPENDS_PAT_MOD;
8514 if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
8515 vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
8517 else if (has_charset_modifier == *(RExC_parse - 1)) {
8518 vFAIL2("Regexp modifier \"%c\" may not appear twice", *(RExC_parse - 1));
8521 vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
8526 vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"", *(RExC_parse - 1));
8528 case ONCE_PAT_MOD: /* 'o' */
8529 case GLOBAL_PAT_MOD: /* 'g' */
8530 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
8531 const I32 wflagbit = *RExC_parse == 'o' ? WASTED_O : WASTED_G;
8532 if (! (wastedflags & wflagbit) ) {
8533 wastedflags |= wflagbit;
8536 "Useless (%s%c) - %suse /%c modifier",
8537 flagsp == &negflags ? "?-" : "?",
8539 flagsp == &negflags ? "don't " : "",
8546 case CONTINUE_PAT_MOD: /* 'c' */
8547 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
8548 if (! (wastedflags & WASTED_C) ) {
8549 wastedflags |= WASTED_GC;
8552 "Useless (%sc) - %suse /gc modifier",
8553 flagsp == &negflags ? "?-" : "?",
8554 flagsp == &negflags ? "don't " : ""
8559 case KEEPCOPY_PAT_MOD: /* 'p' */
8560 if (flagsp == &negflags) {
8562 ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
8564 *flagsp |= RXf_PMf_KEEPCOPY;
8568 /* A flag is a default iff it is following a minus, so
8569 * if there is a minus, it means will be trying to
8570 * re-specify a default which is an error */
8571 if (has_use_defaults || flagsp == &negflags) {
8572 goto fail_modifiers;
8575 wastedflags = 0; /* reset so (?g-c) warns twice */
8579 RExC_flags |= posflags;
8580 RExC_flags &= ~negflags;
8581 set_regex_charset(&RExC_flags, cs);
8587 vFAIL3("Sequence (%.*s...) not recognized",
8588 RExC_parse-seqstart, seqstart);
8597 - reg - regular expression, i.e. main body or parenthesized thing
8599 * Caller must absorb opening parenthesis.
8601 * Combining parenthesis handling with the base level of regular expression
8602 * is a trifle forced, but the need to tie the tails of the branches to what
8603 * follows makes it hard to avoid.
8605 #define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
8607 #define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
8609 #define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
8612 /* Returns NULL, setting *flagp to TRYAGAIN at the end of (?) that only sets
8613 flags. Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan
8614 needs to be restarted.
8615 Otherwise would only return NULL if regbranch() returns NULL, which
8618 S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
8619 /* paren: Parenthesized? 0=top; 1,2=inside '(': changed to letter.
8620 * 2 is like 1, but indicates that nextchar() has been called to advance
8621 * RExC_parse beyond the '('. Things like '(?' are indivisible tokens, and
8622 * this flag alerts us to the need to check for that */
8625 regnode *ret; /* Will be the head of the group. */
8628 regnode *ender = NULL;
8631 U32 oregflags = RExC_flags;
8632 bool have_branch = 0;
8634 I32 freeze_paren = 0;
8635 I32 after_freeze = 0;
8637 char * parse_start = RExC_parse; /* MJD */
8638 char * const oregcomp_parse = RExC_parse;
8640 GET_RE_DEBUG_FLAGS_DECL;
8642 PERL_ARGS_ASSERT_REG;
8643 DEBUG_PARSE("reg ");
8645 *flagp = 0; /* Tentatively. */
8648 /* Make an OPEN node, if parenthesized. */
8651 /* Under /x, space and comments can be gobbled up between the '(' and
8652 * here (if paren ==2). The forms '(*VERB' and '(?...' disallow such
8653 * intervening space, as the sequence is a token, and a token should be
8655 bool has_intervening_patws = paren == 2 && *(RExC_parse - 1) != '(';
8657 if ( *RExC_parse == '*') { /* (*VERB:ARG) */
8658 char *start_verb = RExC_parse;
8659 STRLEN verb_len = 0;
8660 char *start_arg = NULL;
8661 unsigned char op = 0;
8663 int internal_argval = 0; /* internal_argval is only useful if !argok */
8665 if (has_intervening_patws && SIZE_ONLY) {
8666 ckWARNregdep(RExC_parse + 1, "In '(*VERB...)', splitting the initial '(*' is deprecated");
8668 while ( *RExC_parse && *RExC_parse != ')' ) {
8669 if ( *RExC_parse == ':' ) {
8670 start_arg = RExC_parse + 1;
8676 verb_len = RExC_parse - start_verb;
8679 while ( *RExC_parse && *RExC_parse != ')' )
8681 if ( *RExC_parse != ')' )
8682 vFAIL("Unterminated verb pattern argument");
8683 if ( RExC_parse == start_arg )
8686 if ( *RExC_parse != ')' )
8687 vFAIL("Unterminated verb pattern");
8690 switch ( *start_verb ) {
8691 case 'A': /* (*ACCEPT) */
8692 if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
8694 internal_argval = RExC_nestroot;
8697 case 'C': /* (*COMMIT) */
8698 if ( memEQs(start_verb,verb_len,"COMMIT") )
8701 case 'F': /* (*FAIL) */
8702 if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
8707 case ':': /* (*:NAME) */
8708 case 'M': /* (*MARK:NAME) */
8709 if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
8714 case 'P': /* (*PRUNE) */
8715 if ( memEQs(start_verb,verb_len,"PRUNE") )
8718 case 'S': /* (*SKIP) */
8719 if ( memEQs(start_verb,verb_len,"SKIP") )
8722 case 'T': /* (*THEN) */
8723 /* [19:06] <TimToady> :: is then */
8724 if ( memEQs(start_verb,verb_len,"THEN") ) {
8726 RExC_seen |= REG_SEEN_CUTGROUP;
8732 vFAIL3("Unknown verb pattern '%.*s'",
8733 verb_len, start_verb);
8736 if ( start_arg && internal_argval ) {
8737 vFAIL3("Verb pattern '%.*s' may not have an argument",
8738 verb_len, start_verb);
8739 } else if ( argok < 0 && !start_arg ) {
8740 vFAIL3("Verb pattern '%.*s' has a mandatory argument",
8741 verb_len, start_verb);
8743 ret = reganode(pRExC_state, op, internal_argval);
8744 if ( ! internal_argval && ! SIZE_ONLY ) {
8746 SV *sv = newSVpvn( start_arg, RExC_parse - start_arg);
8747 ARG(ret) = add_data( pRExC_state, 1, "S" );
8748 RExC_rxi->data->data[ARG(ret)]=(void*)sv;
8755 if (!internal_argval)
8756 RExC_seen |= REG_SEEN_VERBARG;
8757 } else if ( start_arg ) {
8758 vFAIL3("Verb pattern '%.*s' may not have an argument",
8759 verb_len, start_verb);
8761 ret = reg_node(pRExC_state, op);
8763 nextchar(pRExC_state);
8766 if (*RExC_parse == '?') { /* (?...) */
8767 bool is_logical = 0;
8768 const char * const seqstart = RExC_parse;
8769 if (has_intervening_patws && SIZE_ONLY) {
8770 ckWARNregdep(RExC_parse + 1, "In '(?...)', splitting the initial '(?' is deprecated");
8774 paren = *RExC_parse++;
8775 ret = NULL; /* For look-ahead/behind. */
8778 case 'P': /* (?P...) variants for those used to PCRE/Python */
8779 paren = *RExC_parse++;
8780 if ( paren == '<') /* (?P<...>) named capture */
8782 else if (paren == '>') { /* (?P>name) named recursion */
8783 goto named_recursion;
8785 else if (paren == '=') { /* (?P=...) named backref */
8786 /* this pretty much dupes the code for \k<NAME> in regatom(), if
8787 you change this make sure you change that */
8788 char* name_start = RExC_parse;
8790 SV *sv_dat = reg_scan_name(pRExC_state,
8791 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
8792 if (RExC_parse == name_start || *RExC_parse != ')')
8793 vFAIL2("Sequence %.3s... not terminated",parse_start);
8796 num = add_data( pRExC_state, 1, "S" );
8797 RExC_rxi->data->data[num]=(void*)sv_dat;
8798 SvREFCNT_inc_simple_void(sv_dat);
8801 ret = reganode(pRExC_state,
8804 : (ASCII_FOLD_RESTRICTED)
8806 : (AT_LEAST_UNI_SEMANTICS)
8814 Set_Node_Offset(ret, parse_start+1);
8815 Set_Node_Cur_Length(ret); /* MJD */
8817 nextchar(pRExC_state);
8821 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
8823 case '<': /* (?<...) */
8824 if (*RExC_parse == '!')
8826 else if (*RExC_parse != '=')
8832 case '\'': /* (?'...') */
8833 name_start= RExC_parse;
8834 svname = reg_scan_name(pRExC_state,
8835 SIZE_ONLY ? /* reverse test from the others */
8836 REG_RSN_RETURN_NAME :
8837 REG_RSN_RETURN_NULL);
8838 if (RExC_parse == name_start) {
8840 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
8843 if (*RExC_parse != paren)
8844 vFAIL2("Sequence (?%c... not terminated",
8845 paren=='>' ? '<' : paren);
8849 if (!svname) /* shouldn't happen */
8851 "panic: reg_scan_name returned NULL");
8852 if (!RExC_paren_names) {
8853 RExC_paren_names= newHV();
8854 sv_2mortal(MUTABLE_SV(RExC_paren_names));
8856 RExC_paren_name_list= newAV();
8857 sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
8860 he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
8862 sv_dat = HeVAL(he_str);
8864 /* croak baby croak */
8866 "panic: paren_name hash element allocation failed");
8867 } else if ( SvPOK(sv_dat) ) {
8868 /* (?|...) can mean we have dupes so scan to check
8869 its already been stored. Maybe a flag indicating
8870 we are inside such a construct would be useful,
8871 but the arrays are likely to be quite small, so
8872 for now we punt -- dmq */
8873 IV count = SvIV(sv_dat);
8874 I32 *pv = (I32*)SvPVX(sv_dat);
8876 for ( i = 0 ; i < count ; i++ ) {
8877 if ( pv[i] == RExC_npar ) {
8883 pv = (I32*)SvGROW(sv_dat, SvCUR(sv_dat) + sizeof(I32)+1);
8884 SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
8885 pv[count] = RExC_npar;
8886 SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
8889 (void)SvUPGRADE(sv_dat,SVt_PVNV);
8890 sv_setpvn(sv_dat, (char *)&(RExC_npar), sizeof(I32));
8892 SvIV_set(sv_dat, 1);
8895 /* Yes this does cause a memory leak in debugging Perls */
8896 if (!av_store(RExC_paren_name_list, RExC_npar, SvREFCNT_inc(svname)))
8897 SvREFCNT_dec_NN(svname);
8900 /*sv_dump(sv_dat);*/
8902 nextchar(pRExC_state);
8904 goto capturing_parens;
8906 RExC_seen |= REG_SEEN_LOOKBEHIND;
8907 RExC_in_lookbehind++;
8909 case '=': /* (?=...) */
8910 RExC_seen_zerolen++;
8912 case '!': /* (?!...) */
8913 RExC_seen_zerolen++;
8914 if (*RExC_parse == ')') {
8915 ret=reg_node(pRExC_state, OPFAIL);
8916 nextchar(pRExC_state);
8920 case '|': /* (?|...) */
8921 /* branch reset, behave like a (?:...) except that
8922 buffers in alternations share the same numbers */
8924 after_freeze = freeze_paren = RExC_npar;
8926 case ':': /* (?:...) */
8927 case '>': /* (?>...) */
8929 case '$': /* (?$...) */
8930 case '@': /* (?@...) */
8931 vFAIL2("Sequence (?%c...) not implemented", (int)paren);
8933 case '#': /* (?#...) */
8934 /* XXX As soon as we disallow separating the '?' and '*' (by
8935 * spaces or (?#...) comment), it is believed that this case
8936 * will be unreachable and can be removed. See
8938 while (*RExC_parse && *RExC_parse != ')')
8940 if (*RExC_parse != ')')
8941 FAIL("Sequence (?#... not terminated");
8942 nextchar(pRExC_state);
8945 case '0' : /* (?0) */
8946 case 'R' : /* (?R) */
8947 if (*RExC_parse != ')')
8948 FAIL("Sequence (?R) not terminated");
8949 ret = reg_node(pRExC_state, GOSTART);
8950 *flagp |= POSTPONED;
8951 nextchar(pRExC_state);
8954 { /* named and numeric backreferences */
8956 case '&': /* (?&NAME) */
8957 parse_start = RExC_parse - 1;
8960 SV *sv_dat = reg_scan_name(pRExC_state,
8961 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
8962 num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
8964 goto gen_recurse_regop;
8965 assert(0); /* NOT REACHED */
8967 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
8969 vFAIL("Illegal pattern");
8971 goto parse_recursion;
8973 case '-': /* (?-1) */
8974 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
8975 RExC_parse--; /* rewind to let it be handled later */
8979 case '1': case '2': case '3': case '4': /* (?1) */
8980 case '5': case '6': case '7': case '8': case '9':
8983 num = atoi(RExC_parse);
8984 parse_start = RExC_parse - 1; /* MJD */
8985 if (*RExC_parse == '-')
8987 while (isDIGIT(*RExC_parse))
8989 if (*RExC_parse!=')')
8990 vFAIL("Expecting close bracket");
8993 if ( paren == '-' ) {
8995 Diagram of capture buffer numbering.
8996 Top line is the normal capture buffer numbers
8997 Bottom line is the negative indexing as from
9001 /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
9005 num = RExC_npar + num;
9008 vFAIL("Reference to nonexistent group");
9010 } else if ( paren == '+' ) {
9011 num = RExC_npar + num - 1;
9014 ret = reganode(pRExC_state, GOSUB, num);
9016 if (num > (I32)RExC_rx->nparens) {
9018 vFAIL("Reference to nonexistent group");
9020 ARG2L_SET( ret, RExC_recurse_count++);
9022 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
9023 "Recurse #%"UVuf" to %"IVdf"\n", (UV)ARG(ret), (IV)ARG2L(ret)));
9027 RExC_seen |= REG_SEEN_RECURSE;
9028 Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
9029 Set_Node_Offset(ret, parse_start); /* MJD */
9031 *flagp |= POSTPONED;
9032 nextchar(pRExC_state);
9034 } /* named and numeric backreferences */
9035 assert(0); /* NOT REACHED */
9037 case '?': /* (??...) */
9039 if (*RExC_parse != '{') {
9041 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
9044 *flagp |= POSTPONED;
9045 paren = *RExC_parse++;
9047 case '{': /* (?{...}) */
9050 struct reg_code_block *cb;
9052 RExC_seen_zerolen++;
9054 if ( !pRExC_state->num_code_blocks
9055 || pRExC_state->code_index >= pRExC_state->num_code_blocks
9056 || pRExC_state->code_blocks[pRExC_state->code_index].start
9057 != (STRLEN)((RExC_parse -3 - (is_logical ? 1 : 0))
9060 if (RExC_pm_flags & PMf_USE_RE_EVAL)
9061 FAIL("panic: Sequence (?{...}): no code block found\n");
9062 FAIL("Eval-group not allowed at runtime, use re 'eval'");
9064 /* this is a pre-compiled code block (?{...}) */
9065 cb = &pRExC_state->code_blocks[pRExC_state->code_index];
9066 RExC_parse = RExC_start + cb->end;
9069 if (cb->src_regex) {
9070 n = add_data(pRExC_state, 2, "rl");
9071 RExC_rxi->data->data[n] =
9072 (void*)SvREFCNT_inc((SV*)cb->src_regex);
9073 RExC_rxi->data->data[n+1] = (void*)o;
9076 n = add_data(pRExC_state, 1,
9077 (RExC_pm_flags & PMf_HAS_CV) ? "L" : "l");
9078 RExC_rxi->data->data[n] = (void*)o;
9081 pRExC_state->code_index++;
9082 nextchar(pRExC_state);
9086 ret = reg_node(pRExC_state, LOGICAL);
9087 eval = reganode(pRExC_state, EVAL, n);
9090 /* for later propagation into (??{}) return value */
9091 eval->flags = (U8) (RExC_flags & RXf_PMf_COMPILETIME);
9093 REGTAIL(pRExC_state, ret, eval);
9094 /* deal with the length of this later - MJD */
9097 ret = reganode(pRExC_state, EVAL, n);
9098 Set_Node_Length(ret, RExC_parse - parse_start + 1);
9099 Set_Node_Offset(ret, parse_start);
9102 case '(': /* (?(?{...})...) and (?(?=...)...) */
9105 if (RExC_parse[0] == '?') { /* (?(?...)) */
9106 if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
9107 || RExC_parse[1] == '<'
9108 || RExC_parse[1] == '{') { /* Lookahead or eval. */
9112 ret = reg_node(pRExC_state, LOGICAL);
9116 tail = reg(pRExC_state, 1, &flag, depth+1);
9117 if (flag & RESTART_UTF8) {
9118 *flagp = RESTART_UTF8;
9121 REGTAIL(pRExC_state, ret, tail);
9125 else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */
9126 || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
9128 char ch = RExC_parse[0] == '<' ? '>' : '\'';
9129 char *name_start= RExC_parse++;
9131 SV *sv_dat=reg_scan_name(pRExC_state,
9132 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
9133 if (RExC_parse == name_start || *RExC_parse != ch)
9134 vFAIL2("Sequence (?(%c... not terminated",
9135 (ch == '>' ? '<' : ch));
9138 num = add_data( pRExC_state, 1, "S" );
9139 RExC_rxi->data->data[num]=(void*)sv_dat;
9140 SvREFCNT_inc_simple_void(sv_dat);
9142 ret = reganode(pRExC_state,NGROUPP,num);
9143 goto insert_if_check_paren;
9145 else if (RExC_parse[0] == 'D' &&
9146 RExC_parse[1] == 'E' &&
9147 RExC_parse[2] == 'F' &&
9148 RExC_parse[3] == 'I' &&
9149 RExC_parse[4] == 'N' &&
9150 RExC_parse[5] == 'E')
9152 ret = reganode(pRExC_state,DEFINEP,0);
9155 goto insert_if_check_paren;
9157 else if (RExC_parse[0] == 'R') {
9160 if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
9161 parno = atoi(RExC_parse++);
9162 while (isDIGIT(*RExC_parse))
9164 } else if (RExC_parse[0] == '&') {
9167 sv_dat = reg_scan_name(pRExC_state,
9168 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
9169 parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
9171 ret = reganode(pRExC_state,INSUBP,parno);
9172 goto insert_if_check_paren;
9174 else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
9177 parno = atoi(RExC_parse++);
9179 while (isDIGIT(*RExC_parse))
9181 ret = reganode(pRExC_state, GROUPP, parno);
9183 insert_if_check_paren:
9184 if ((c = *nextchar(pRExC_state)) != ')')
9185 vFAIL("Switch condition not recognized");
9187 REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
9188 br = regbranch(pRExC_state, &flags, 1,depth+1);
9190 if (flags & RESTART_UTF8) {
9191 *flagp = RESTART_UTF8;
9194 FAIL2("panic: regbranch returned NULL, flags=%#X",
9197 REGTAIL(pRExC_state, br, reganode(pRExC_state, LONGJMP, 0));
9198 c = *nextchar(pRExC_state);
9203 vFAIL("(?(DEFINE)....) does not allow branches");
9204 lastbr = reganode(pRExC_state, IFTHEN, 0); /* Fake one for optimizer. */
9205 if (!regbranch(pRExC_state, &flags, 1,depth+1)) {
9206 if (flags & RESTART_UTF8) {
9207 *flagp = RESTART_UTF8;
9210 FAIL2("panic: regbranch returned NULL, flags=%#X",
9213 REGTAIL(pRExC_state, ret, lastbr);
9216 c = *nextchar(pRExC_state);
9221 vFAIL("Switch (?(condition)... contains too many branches");
9222 ender = reg_node(pRExC_state, TAIL);
9223 REGTAIL(pRExC_state, br, ender);
9225 REGTAIL(pRExC_state, lastbr, ender);
9226 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
9229 REGTAIL(pRExC_state, ret, ender);
9230 RExC_size++; /* XXX WHY do we need this?!!
9231 For large programs it seems to be required
9232 but I can't figure out why. -- dmq*/
9236 vFAIL2("Unknown switch condition (?(%.2s", RExC_parse);
9239 case '[': /* (?[ ... ]) */
9240 return handle_regex_sets(pRExC_state, NULL, flagp, depth,
9243 RExC_parse--; /* for vFAIL to print correctly */
9244 vFAIL("Sequence (? incomplete");
9246 default: /* e.g., (?i) */
9249 parse_lparen_question_flags(pRExC_state);
9250 if (UCHARAT(RExC_parse) != ':') {
9251 nextchar(pRExC_state);
9256 nextchar(pRExC_state);
9266 ret = reganode(pRExC_state, OPEN, parno);
9269 RExC_nestroot = parno;
9270 if (RExC_seen & REG_SEEN_RECURSE
9271 && !RExC_open_parens[parno-1])
9273 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
9274 "Setting open paren #%"IVdf" to %d\n",
9275 (IV)parno, REG_NODE_NUM(ret)));
9276 RExC_open_parens[parno-1]= ret;
9279 Set_Node_Length(ret, 1); /* MJD */
9280 Set_Node_Offset(ret, RExC_parse); /* MJD */
9288 /* Pick up the branches, linking them together. */
9289 parse_start = RExC_parse; /* MJD */
9290 br = regbranch(pRExC_state, &flags, 1,depth+1);
9292 /* branch_len = (paren != 0); */
9295 if (flags & RESTART_UTF8) {
9296 *flagp = RESTART_UTF8;
9299 FAIL2("panic: regbranch returned NULL, flags=%#X", flags);
9301 if (*RExC_parse == '|') {
9302 if (!SIZE_ONLY && RExC_extralen) {
9303 reginsert(pRExC_state, BRANCHJ, br, depth+1);
9306 reginsert(pRExC_state, BRANCH, br, depth+1);
9307 Set_Node_Length(br, paren != 0);
9308 Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
9312 RExC_extralen += 1; /* For BRANCHJ-BRANCH. */
9314 else if (paren == ':') {
9315 *flagp |= flags&SIMPLE;
9317 if (is_open) { /* Starts with OPEN. */
9318 REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */
9320 else if (paren != '?') /* Not Conditional */
9322 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
9324 while (*RExC_parse == '|') {
9325 if (!SIZE_ONLY && RExC_extralen) {
9326 ender = reganode(pRExC_state, LONGJMP,0);
9327 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender); /* Append to the previous. */
9330 RExC_extralen += 2; /* Account for LONGJMP. */
9331 nextchar(pRExC_state);
9333 if (RExC_npar > after_freeze)
9334 after_freeze = RExC_npar;
9335 RExC_npar = freeze_paren;
9337 br = regbranch(pRExC_state, &flags, 0, depth+1);
9340 if (flags & RESTART_UTF8) {
9341 *flagp = RESTART_UTF8;
9344 FAIL2("panic: regbranch returned NULL, flags=%#X", flags);
9346 REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */
9348 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
9351 if (have_branch || paren != ':') {
9352 /* Make a closing node, and hook it on the end. */
9355 ender = reg_node(pRExC_state, TAIL);
9358 ender = reganode(pRExC_state, CLOSE, parno);
9359 if (!SIZE_ONLY && RExC_seen & REG_SEEN_RECURSE) {
9360 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
9361 "Setting close paren #%"IVdf" to %d\n",
9362 (IV)parno, REG_NODE_NUM(ender)));
9363 RExC_close_parens[parno-1]= ender;
9364 if (RExC_nestroot == parno)
9367 Set_Node_Offset(ender,RExC_parse+1); /* MJD */
9368 Set_Node_Length(ender,1); /* MJD */
9374 *flagp &= ~HASWIDTH;
9377 ender = reg_node(pRExC_state, SUCCEED);
9380 ender = reg_node(pRExC_state, END);
9382 assert(!RExC_opend); /* there can only be one! */
9387 DEBUG_PARSE_r(if (!SIZE_ONLY) {
9388 SV * const mysv_val1=sv_newmortal();
9389 SV * const mysv_val2=sv_newmortal();
9390 DEBUG_PARSE_MSG("lsbr");
9391 regprop(RExC_rx, mysv_val1, lastbr);
9392 regprop(RExC_rx, mysv_val2, ender);
9393 PerlIO_printf(Perl_debug_log, "~ tying lastbr %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
9394 SvPV_nolen_const(mysv_val1),
9395 (IV)REG_NODE_NUM(lastbr),
9396 SvPV_nolen_const(mysv_val2),
9397 (IV)REG_NODE_NUM(ender),
9398 (IV)(ender - lastbr)
9401 REGTAIL(pRExC_state, lastbr, ender);
9403 if (have_branch && !SIZE_ONLY) {
9406 RExC_seen |= REG_TOP_LEVEL_BRANCHES;
9408 /* Hook the tails of the branches to the closing node. */
9409 for (br = ret; br; br = regnext(br)) {
9410 const U8 op = PL_regkind[OP(br)];
9412 REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
9413 if (OP(NEXTOPER(br)) != NOTHING || regnext(NEXTOPER(br)) != ender)
9416 else if (op == BRANCHJ) {
9417 REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
9418 /* for now we always disable this optimisation * /
9419 if (OP(NEXTOPER(NEXTOPER(br))) != NOTHING || regnext(NEXTOPER(NEXTOPER(br))) != ender)
9425 br= PL_regkind[OP(ret)] != BRANCH ? regnext(ret) : ret;
9426 DEBUG_PARSE_r(if (!SIZE_ONLY) {
9427 SV * const mysv_val1=sv_newmortal();
9428 SV * const mysv_val2=sv_newmortal();
9429 DEBUG_PARSE_MSG("NADA");
9430 regprop(RExC_rx, mysv_val1, ret);
9431 regprop(RExC_rx, mysv_val2, ender);
9432 PerlIO_printf(Perl_debug_log, "~ converting ret %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
9433 SvPV_nolen_const(mysv_val1),
9434 (IV)REG_NODE_NUM(ret),
9435 SvPV_nolen_const(mysv_val2),
9436 (IV)REG_NODE_NUM(ender),
9441 if (OP(ender) == TAIL) {
9446 for ( opt= br + 1; opt < ender ; opt++ )
9448 NEXT_OFF(br)= ender - br;
9456 static const char parens[] = "=!<,>";
9458 if (paren && (p = strchr(parens, paren))) {
9459 U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
9460 int flag = (p - parens) > 1;
9463 node = SUSPEND, flag = 0;
9464 reginsert(pRExC_state, node,ret, depth+1);
9465 Set_Node_Cur_Length(ret);
9466 Set_Node_Offset(ret, parse_start + 1);
9468 REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
9472 /* Check for proper termination. */
9474 /* restore original flags, but keep (?p) */
9475 RExC_flags = oregflags | (RExC_flags & RXf_PMf_KEEPCOPY);
9476 if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
9477 RExC_parse = oregcomp_parse;
9478 vFAIL("Unmatched (");
9481 else if (!paren && RExC_parse < RExC_end) {
9482 if (*RExC_parse == ')') {
9484 vFAIL("Unmatched )");
9487 FAIL("Junk on end of regexp"); /* "Can't happen". */
9488 assert(0); /* NOTREACHED */
9491 if (RExC_in_lookbehind) {
9492 RExC_in_lookbehind--;
9494 if (after_freeze > RExC_npar)
9495 RExC_npar = after_freeze;
9500 - regbranch - one alternative of an | operator
9502 * Implements the concatenation operator.
9504 * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
9508 S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
9512 regnode *chain = NULL;
9514 I32 flags = 0, c = 0;
9515 GET_RE_DEBUG_FLAGS_DECL;
9517 PERL_ARGS_ASSERT_REGBRANCH;
9519 DEBUG_PARSE("brnc");
9524 if (!SIZE_ONLY && RExC_extralen)
9525 ret = reganode(pRExC_state, BRANCHJ,0);
9527 ret = reg_node(pRExC_state, BRANCH);
9528 Set_Node_Length(ret, 1);
9532 if (!first && SIZE_ONLY)
9533 RExC_extralen += 1; /* BRANCHJ */
9535 *flagp = WORST; /* Tentatively. */
9538 nextchar(pRExC_state);
9539 while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
9541 latest = regpiece(pRExC_state, &flags,depth+1);
9542 if (latest == NULL) {
9543 if (flags & TRYAGAIN)
9545 if (flags & RESTART_UTF8) {
9546 *flagp = RESTART_UTF8;
9549 FAIL2("panic: regpiece returned NULL, flags=%#X", flags);
9551 else if (ret == NULL)
9553 *flagp |= flags&(HASWIDTH|POSTPONED);
9554 if (chain == NULL) /* First piece. */
9555 *flagp |= flags&SPSTART;
9558 REGTAIL(pRExC_state, chain, latest);
9563 if (chain == NULL) { /* Loop ran zero times. */
9564 chain = reg_node(pRExC_state, NOTHING);
9569 *flagp |= flags&SIMPLE;
9576 - regpiece - something followed by possible [*+?]
9578 * Note that the branching code sequences used for ? and the general cases
9579 * of * and + are somewhat optimized: they use the same NOTHING node as
9580 * both the endmarker for their branch list and the body of the last branch.
9581 * It might seem that this node could be dispensed with entirely, but the
9582 * endmarker role is not redundant.
9584 * Returns NULL, setting *flagp to TRYAGAIN if regatom() returns NULL with
9586 * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
9590 S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
9597 const char * const origparse = RExC_parse;
9599 I32 max = REG_INFTY;
9600 #ifdef RE_TRACK_PATTERN_OFFSETS
9603 const char *maxpos = NULL;
9605 /* Save the original in case we change the emitted regop to a FAIL. */
9606 regnode * const orig_emit = RExC_emit;
9608 GET_RE_DEBUG_FLAGS_DECL;
9610 PERL_ARGS_ASSERT_REGPIECE;
9612 DEBUG_PARSE("piec");
9614 ret = regatom(pRExC_state, &flags,depth+1);
9616 if (flags & (TRYAGAIN|RESTART_UTF8))
9617 *flagp |= flags & (TRYAGAIN|RESTART_UTF8);
9619 FAIL2("panic: regatom returned NULL, flags=%#X", flags);
9625 if (op == '{' && regcurly(RExC_parse, FALSE)) {
9627 #ifdef RE_TRACK_PATTERN_OFFSETS
9628 parse_start = RExC_parse; /* MJD */
9630 next = RExC_parse + 1;
9631 while (isDIGIT(*next) || *next == ',') {
9640 if (*next == '}') { /* got one */
9644 min = atoi(RExC_parse);
9648 maxpos = RExC_parse;
9650 if (!max && *maxpos != '0')
9651 max = REG_INFTY; /* meaning "infinity" */
9652 else if (max >= REG_INFTY)
9653 vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
9655 nextchar(pRExC_state);
9656 if (max < min) { /* If can't match, warn and optimize to fail
9659 ckWARNreg(RExC_parse, "Quantifier {n,m} with n > m can't match");
9661 /* We can't back off the size because we have to reserve
9662 * enough space for all the things we are about to throw
9663 * away, but we can shrink it by the ammount we are about
9665 RExC_size = PREVOPER(RExC_size) - regarglen[(U8)OPFAIL];
9668 RExC_emit = orig_emit;
9670 ret = reg_node(pRExC_state, OPFAIL);
9675 if ((flags&SIMPLE)) {
9676 RExC_naughty += 2 + RExC_naughty / 2;
9677 reginsert(pRExC_state, CURLY, ret, depth+1);
9678 Set_Node_Offset(ret, parse_start+1); /* MJD */
9679 Set_Node_Cur_Length(ret);
9682 regnode * const w = reg_node(pRExC_state, WHILEM);
9685 REGTAIL(pRExC_state, ret, w);
9686 if (!SIZE_ONLY && RExC_extralen) {
9687 reginsert(pRExC_state, LONGJMP,ret, depth+1);
9688 reginsert(pRExC_state, NOTHING,ret, depth+1);
9689 NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
9691 reginsert(pRExC_state, CURLYX,ret, depth+1);
9693 Set_Node_Offset(ret, parse_start+1);
9694 Set_Node_Length(ret,
9695 op == '{' ? (RExC_parse - parse_start) : 1);
9697 if (!SIZE_ONLY && RExC_extralen)
9698 NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
9699 REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
9701 RExC_whilem_seen++, RExC_extralen += 3;
9702 RExC_naughty += 4 + RExC_naughty; /* compound interest */
9711 ARG1_SET(ret, (U16)min);
9712 ARG2_SET(ret, (U16)max);
9724 #if 0 /* Now runtime fix should be reliable. */
9726 /* if this is reinstated, don't forget to put this back into perldiag:
9728 =item Regexp *+ operand could be empty at {#} in regex m/%s/
9730 (F) The part of the regexp subject to either the * or + quantifier
9731 could match an empty string. The {#} shows in the regular
9732 expression about where the problem was discovered.
9736 if (!(flags&HASWIDTH) && op != '?')
9737 vFAIL("Regexp *+ operand could be empty");
9740 #ifdef RE_TRACK_PATTERN_OFFSETS
9741 parse_start = RExC_parse;
9743 nextchar(pRExC_state);
9745 *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
9747 if (op == '*' && (flags&SIMPLE)) {
9748 reginsert(pRExC_state, STAR, ret, depth+1);
9752 else if (op == '*') {
9756 else if (op == '+' && (flags&SIMPLE)) {
9757 reginsert(pRExC_state, PLUS, ret, depth+1);
9761 else if (op == '+') {
9765 else if (op == '?') {
9770 if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
9771 SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
9772 ckWARN3reg(RExC_parse,
9773 "%.*s matches null string many times",
9774 (int)(RExC_parse >= origparse ? RExC_parse - origparse : 0),
9776 (void)ReREFCNT_inc(RExC_rx_sv);
9779 if (RExC_parse < RExC_end && *RExC_parse == '?') {
9780 nextchar(pRExC_state);
9781 reginsert(pRExC_state, MINMOD, ret, depth+1);
9782 REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
9784 #ifndef REG_ALLOW_MINMOD_SUSPEND
9787 if (RExC_parse < RExC_end && *RExC_parse == '+') {
9789 nextchar(pRExC_state);
9790 ender = reg_node(pRExC_state, SUCCEED);
9791 REGTAIL(pRExC_state, ret, ender);
9792 reginsert(pRExC_state, SUSPEND, ret, depth+1);
9794 ender = reg_node(pRExC_state, TAIL);
9795 REGTAIL(pRExC_state, ret, ender);
9799 if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
9801 vFAIL("Nested quantifiers");
9808 S_grok_bslash_N(pTHX_ RExC_state_t *pRExC_state, regnode** node_p, UV *valuep, I32 *flagp, U32 depth, bool in_char_class,
9809 const bool strict /* Apply stricter parsing rules? */
9813 /* This is expected to be called by a parser routine that has recognized '\N'
9814 and needs to handle the rest. RExC_parse is expected to point at the first
9815 char following the N at the time of the call. On successful return,
9816 RExC_parse has been updated to point to just after the sequence identified
9817 by this routine, and <*flagp> has been updated.
9819 The \N may be inside (indicated by the boolean <in_char_class>) or outside a
9822 \N may begin either a named sequence, or if outside a character class, mean
9823 to match a non-newline. For non single-quoted regexes, the tokenizer has
9824 attempted to decide which, and in the case of a named sequence, converted it
9825 into one of the forms: \N{} (if the sequence is null), or \N{U+c1.c2...},
9826 where c1... are the characters in the sequence. For single-quoted regexes,
9827 the tokenizer passes the \N sequence through unchanged; this code will not
9828 attempt to determine this nor expand those, instead raising a syntax error.
9829 The net effect is that if the beginning of the passed-in pattern isn't '{U+'
9830 or there is no '}', it signals that this \N occurrence means to match a
9833 Only the \N{U+...} form should occur in a character class, for the same
9834 reason that '.' inside a character class means to just match a period: it
9835 just doesn't make sense.
9837 The function raises an error (via vFAIL), and doesn't return for various
9838 syntax errors. Otherwise it returns TRUE and sets <node_p> or <valuep> on
9839 success; it returns FALSE otherwise. Returns FALSE, setting *flagp to
9840 RESTART_UTF8 if the sizing scan needs to be restarted. Such a restart is
9841 only possible if node_p is non-NULL.
9844 If <valuep> is non-null, it means the caller can accept an input sequence
9845 consisting of a just a single code point; <*valuep> is set to that value
9846 if the input is such.
9848 If <node_p> is non-null it signifies that the caller can accept any other
9849 legal sequence (i.e., one that isn't just a single code point). <*node_p>
9851 1) \N means not-a-NL: points to a newly created REG_ANY node;
9852 2) \N{}: points to a new NOTHING node;
9853 3) otherwise: points to a new EXACT node containing the resolved
9855 Note that FALSE is returned for single code point sequences if <valuep> is
9859 char * endbrace; /* '}' following the name */
9861 char *endchar; /* Points to '.' or '}' ending cur char in the input
9863 bool has_multiple_chars; /* true if the input stream contains a sequence of
9864 more than one character */
9866 GET_RE_DEBUG_FLAGS_DECL;
9868 PERL_ARGS_ASSERT_GROK_BSLASH_N;
9872 assert(cBOOL(node_p) ^ cBOOL(valuep)); /* Exactly one should be set */
9874 /* The [^\n] meaning of \N ignores spaces and comments under the /x
9875 * modifier. The other meaning does not */
9876 p = (RExC_flags & RXf_PMf_EXTENDED)
9877 ? regwhite( pRExC_state, RExC_parse )
9880 /* Disambiguate between \N meaning a named character versus \N meaning
9881 * [^\n]. The former is assumed when it can't be the latter. */
9882 if (*p != '{' || regcurly(p, FALSE)) {
9885 /* no bare \N in a charclass */
9886 if (in_char_class) {
9887 vFAIL("\\N in a character class must be a named character: \\N{...}");
9891 nextchar(pRExC_state);
9892 *node_p = reg_node(pRExC_state, REG_ANY);
9893 *flagp |= HASWIDTH|SIMPLE;
9896 Set_Node_Length(*node_p, 1); /* MJD */
9900 /* Here, we have decided it should be a named character or sequence */
9902 /* The test above made sure that the next real character is a '{', but
9903 * under the /x modifier, it could be separated by space (or a comment and
9904 * \n) and this is not allowed (for consistency with \x{...} and the
9905 * tokenizer handling of \N{NAME}). */
9906 if (*RExC_parse != '{') {
9907 vFAIL("Missing braces on \\N{}");
9910 RExC_parse++; /* Skip past the '{' */
9912 if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */
9913 || ! (endbrace == RExC_parse /* nothing between the {} */
9914 || (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked below */
9915 && strnEQ(RExC_parse, "U+", 2)))) /* for a better error msg) */
9917 if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
9918 vFAIL("\\N{NAME} must be resolved by the lexer");
9921 if (endbrace == RExC_parse) { /* empty: \N{} */
9924 *node_p = reg_node(pRExC_state,NOTHING);
9926 else if (in_char_class) {
9927 if (SIZE_ONLY && in_char_class) {
9929 RExC_parse++; /* Position after the "}" */
9930 vFAIL("Zero length \\N{}");
9933 ckWARNreg(RExC_parse,
9934 "Ignoring zero length \\N{} in character class");
9942 nextchar(pRExC_state);
9946 RExC_uni_semantics = 1; /* Unicode named chars imply Unicode semantics */
9947 RExC_parse += 2; /* Skip past the 'U+' */
9949 endchar = RExC_parse + strcspn(RExC_parse, ".}");
9951 /* Code points are separated by dots. If none, there is only one code
9952 * point, and is terminated by the brace */
9953 has_multiple_chars = (endchar < endbrace);
9955 if (valuep && (! has_multiple_chars || in_char_class)) {
9956 /* We only pay attention to the first char of
9957 multichar strings being returned in char classes. I kinda wonder
9958 if this makes sense as it does change the behaviour
9959 from earlier versions, OTOH that behaviour was broken
9960 as well. XXX Solution is to recharacterize as
9961 [rest-of-class]|multi1|multi2... */
9963 STRLEN length_of_hex = (STRLEN)(endchar - RExC_parse);
9964 I32 grok_hex_flags = PERL_SCAN_ALLOW_UNDERSCORES
9965 | PERL_SCAN_DISALLOW_PREFIX
9966 | (SIZE_ONLY ? PERL_SCAN_SILENT_ILLDIGIT : 0);
9968 *valuep = grok_hex(RExC_parse, &length_of_hex, &grok_hex_flags, NULL);
9970 /* The tokenizer should have guaranteed validity, but it's possible to
9971 * bypass it by using single quoting, so check */
9972 if (length_of_hex == 0
9973 || length_of_hex != (STRLEN)(endchar - RExC_parse) )
9975 RExC_parse += length_of_hex; /* Includes all the valid */
9976 RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
9977 ? UTF8SKIP(RExC_parse)
9979 /* Guard against malformed utf8 */
9980 if (RExC_parse >= endchar) {
9981 RExC_parse = endchar;
9983 vFAIL("Invalid hexadecimal number in \\N{U+...}");
9986 if (in_char_class && has_multiple_chars) {
9988 RExC_parse = endbrace;
9989 vFAIL("\\N{} in character class restricted to one character");
9992 ckWARNreg(endchar, "Using just the first character returned by \\N{} in character class");
9996 RExC_parse = endbrace + 1;
9998 else if (! node_p || ! has_multiple_chars) {
10000 /* Here, the input is legal, but not according to the caller's
10001 * options. We fail without advancing the parse, so that the
10002 * caller can try again */
10008 /* What is done here is to convert this to a sub-pattern of the form
10009 * (?:\x{char1}\x{char2}...)
10010 * and then call reg recursively. That way, it retains its atomicness,
10011 * while not having to worry about special handling that some code
10012 * points may have. toke.c has converted the original Unicode values
10013 * to native, so that we can just pass on the hex values unchanged. We
10014 * do have to set a flag to keep recoding from happening in the
10017 SV * substitute_parse = newSVpvn_flags("?:", 2, SVf_UTF8|SVs_TEMP);
10019 char *orig_end = RExC_end;
10022 while (RExC_parse < endbrace) {
10024 /* Convert to notation the rest of the code understands */
10025 sv_catpv(substitute_parse, "\\x{");
10026 sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
10027 sv_catpv(substitute_parse, "}");
10029 /* Point to the beginning of the next character in the sequence. */
10030 RExC_parse = endchar + 1;
10031 endchar = RExC_parse + strcspn(RExC_parse, ".}");
10033 sv_catpv(substitute_parse, ")");
10035 RExC_parse = SvPV(substitute_parse, len);
10037 /* Don't allow empty number */
10039 vFAIL("Invalid hexadecimal number in \\N{U+...}");
10041 RExC_end = RExC_parse + len;
10043 /* The values are Unicode, and therefore not subject to recoding */
10044 RExC_override_recoding = 1;
10046 if (!(*node_p = reg(pRExC_state, 1, &flags, depth+1))) {
10047 if (flags & RESTART_UTF8) {
10048 *flagp = RESTART_UTF8;
10051 FAIL2("panic: reg returned NULL to grok_bslash_N, flags=%#X",
10054 *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
10056 RExC_parse = endbrace;
10057 RExC_end = orig_end;
10058 RExC_override_recoding = 0;
10060 nextchar(pRExC_state);
10070 * It returns the code point in utf8 for the value in *encp.
10071 * value: a code value in the source encoding
10072 * encp: a pointer to an Encode object
10074 * If the result from Encode is not a single character,
10075 * it returns U+FFFD (Replacement character) and sets *encp to NULL.
10078 S_reg_recode(pTHX_ const char value, SV **encp)
10081 SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
10082 const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
10083 const STRLEN newlen = SvCUR(sv);
10084 UV uv = UNICODE_REPLACEMENT;
10086 PERL_ARGS_ASSERT_REG_RECODE;
10090 ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
10093 if (!newlen || numlen != newlen) {
10094 uv = UNICODE_REPLACEMENT;
10100 PERL_STATIC_INLINE U8
10101 S_compute_EXACTish(pTHX_ RExC_state_t *pRExC_state)
10105 PERL_ARGS_ASSERT_COMPUTE_EXACTISH;
10111 op = get_regex_charset(RExC_flags);
10112 if (op >= REGEX_ASCII_RESTRICTED_CHARSET) {
10113 op--; /* /a is same as /u, and map /aa's offset to what /a's would have
10114 been, so there is no hole */
10117 return op + EXACTF;
10120 PERL_STATIC_INLINE void
10121 S_alloc_maybe_populate_EXACT(pTHX_ RExC_state_t *pRExC_state, regnode *node, I32* flagp, STRLEN len, UV code_point)
10123 /* This knows the details about sizing an EXACTish node, setting flags for
10124 * it (by setting <*flagp>, and potentially populating it with a single
10127 * If <len> (the length in bytes) is non-zero, this function assumes that
10128 * the node has already been populated, and just does the sizing. In this
10129 * case <code_point> should be the final code point that has already been
10130 * placed into the node. This value will be ignored except that under some
10131 * circumstances <*flagp> is set based on it.
10133 * If <len> is zero, the function assumes that the node is to contain only
10134 * the single character given by <code_point> and calculates what <len>
10135 * should be. In pass 1, it sizes the node appropriately. In pass 2, it
10136 * additionally will populate the node's STRING with <code_point>, if <len>
10137 * is 0. In both cases <*flagp> is appropriately set
10139 * It knows that under FOLD, the Latin Sharp S and UTF characters above
10140 * 255, must be folded (the former only when the rules indicate it can
10143 bool len_passed_in = cBOOL(len != 0);
10144 U8 character[UTF8_MAXBYTES_CASE+1];
10146 PERL_ARGS_ASSERT_ALLOC_MAYBE_POPULATE_EXACT;
10148 if (! len_passed_in) {
10150 if (FOLD && (! LOC || code_point > 255)) {
10151 _to_uni_fold_flags(NATIVE_TO_UNI(code_point),
10154 FOLD_FLAGS_FULL | ((LOC)
10155 ? FOLD_FLAGS_LOCALE
10156 : (ASCII_FOLD_RESTRICTED)
10157 ? FOLD_FLAGS_NOMIX_ASCII
10161 uvchr_to_utf8( character, code_point);
10162 len = UTF8SKIP(character);
10166 || code_point != LATIN_SMALL_LETTER_SHARP_S
10167 || ASCII_FOLD_RESTRICTED
10168 || ! AT_LEAST_UNI_SEMANTICS)
10170 *character = (U8) code_point;
10175 *(character + 1) = 's';
10181 RExC_size += STR_SZ(len);
10184 RExC_emit += STR_SZ(len);
10185 STR_LEN(node) = len;
10186 if (! len_passed_in) {
10187 Copy((char *) character, STRING(node), len, char);
10191 *flagp |= HASWIDTH;
10193 /* A single character node is SIMPLE, except for the special-cased SHARP S
10195 if ((len == 1 || (UTF && len == UNISKIP(code_point)))
10196 && (code_point != LATIN_SMALL_LETTER_SHARP_S
10197 || ! FOLD || ! DEPENDS_SEMANTICS))
10204 - regatom - the lowest level
10206 Try to identify anything special at the start of the pattern. If there
10207 is, then handle it as required. This may involve generating a single regop,
10208 such as for an assertion; or it may involve recursing, such as to
10209 handle a () structure.
10211 If the string doesn't start with something special then we gobble up
10212 as much literal text as we can.
10214 Once we have been able to handle whatever type of thing started the
10215 sequence, we return.
10217 Note: we have to be careful with escapes, as they can be both literal
10218 and special, and in the case of \10 and friends, context determines which.
10220 A summary of the code structure is:
10222 switch (first_byte) {
10223 cases for each special:
10224 handle this special;
10227 switch (2nd byte) {
10228 cases for each unambiguous special:
10229 handle this special;
10231 cases for each ambigous special/literal:
10233 if (special) handle here
10235 default: // unambiguously literal:
10238 default: // is a literal char
10241 create EXACTish node for literal;
10242 while (more input and node isn't full) {
10243 switch (input_byte) {
10244 cases for each special;
10245 make sure parse pointer is set so that the next call to
10246 regatom will see this special first
10247 goto loopdone; // EXACTish node terminated by prev. char
10249 append char to EXACTISH node;
10251 get next input byte;
10255 return the generated node;
10257 Specifically there are two separate switches for handling
10258 escape sequences, with the one for handling literal escapes requiring
10259 a dummy entry for all of the special escapes that are actually handled
10262 Returns NULL, setting *flagp to TRYAGAIN if reg() returns NULL with
10264 Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
10266 Otherwise does not return NULL.
10270 S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
10273 regnode *ret = NULL;
10275 char *parse_start = RExC_parse;
10279 GET_RE_DEBUG_FLAGS_DECL;
10281 *flagp = WORST; /* Tentatively. */
10283 DEBUG_PARSE("atom");
10285 PERL_ARGS_ASSERT_REGATOM;
10288 switch ((U8)*RExC_parse) {
10290 RExC_seen_zerolen++;
10291 nextchar(pRExC_state);
10292 if (RExC_flags & RXf_PMf_MULTILINE)
10293 ret = reg_node(pRExC_state, MBOL);
10294 else if (RExC_flags & RXf_PMf_SINGLELINE)
10295 ret = reg_node(pRExC_state, SBOL);
10297 ret = reg_node(pRExC_state, BOL);
10298 Set_Node_Length(ret, 1); /* MJD */
10301 nextchar(pRExC_state);
10303 RExC_seen_zerolen++;
10304 if (RExC_flags & RXf_PMf_MULTILINE)
10305 ret = reg_node(pRExC_state, MEOL);
10306 else if (RExC_flags & RXf_PMf_SINGLELINE)
10307 ret = reg_node(pRExC_state, SEOL);
10309 ret = reg_node(pRExC_state, EOL);
10310 Set_Node_Length(ret, 1); /* MJD */
10313 nextchar(pRExC_state);
10314 if (RExC_flags & RXf_PMf_SINGLELINE)
10315 ret = reg_node(pRExC_state, SANY);
10317 ret = reg_node(pRExC_state, REG_ANY);
10318 *flagp |= HASWIDTH|SIMPLE;
10320 Set_Node_Length(ret, 1); /* MJD */
10324 char * const oregcomp_parse = ++RExC_parse;
10325 ret = regclass(pRExC_state, flagp,depth+1,
10326 FALSE, /* means parse the whole char class */
10327 TRUE, /* allow multi-char folds */
10328 FALSE, /* don't silence non-portable warnings. */
10330 if (*RExC_parse != ']') {
10331 RExC_parse = oregcomp_parse;
10332 vFAIL("Unmatched [");
10335 if (*flagp & RESTART_UTF8)
10337 FAIL2("panic: regclass returned NULL to regatom, flags=%#X",
10340 nextchar(pRExC_state);
10341 Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
10345 nextchar(pRExC_state);
10346 ret = reg(pRExC_state, 2, &flags,depth+1);
10348 if (flags & TRYAGAIN) {
10349 if (RExC_parse == RExC_end) {
10350 /* Make parent create an empty node if needed. */
10351 *flagp |= TRYAGAIN;
10356 if (flags & RESTART_UTF8) {
10357 *flagp = RESTART_UTF8;
10360 FAIL2("panic: reg returned NULL to regatom, flags=%#X", flags);
10362 *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
10366 if (flags & TRYAGAIN) {
10367 *flagp |= TRYAGAIN;
10370 vFAIL("Internal urp");
10371 /* Supposed to be caught earlier. */
10374 if (!regcurly(RExC_parse, FALSE)) {
10383 vFAIL("Quantifier follows nothing");
10388 This switch handles escape sequences that resolve to some kind
10389 of special regop and not to literal text. Escape sequnces that
10390 resolve to literal text are handled below in the switch marked
10393 Every entry in this switch *must* have a corresponding entry
10394 in the literal escape switch. However, the opposite is not
10395 required, as the default for this switch is to jump to the
10396 literal text handling code.
10398 switch ((U8)*++RExC_parse) {
10400 /* Special Escapes */
10402 RExC_seen_zerolen++;
10403 ret = reg_node(pRExC_state, SBOL);
10405 goto finish_meta_pat;
10407 ret = reg_node(pRExC_state, GPOS);
10408 RExC_seen |= REG_SEEN_GPOS;
10410 goto finish_meta_pat;
10412 RExC_seen_zerolen++;
10413 ret = reg_node(pRExC_state, KEEPS);
10415 /* XXX:dmq : disabling in-place substitution seems to
10416 * be necessary here to avoid cases of memory corruption, as
10417 * with: C<$_="x" x 80; s/x\K/y/> -- rgs
10419 RExC_seen |= REG_SEEN_LOOKBEHIND;
10420 goto finish_meta_pat;
10422 ret = reg_node(pRExC_state, SEOL);
10424 RExC_seen_zerolen++; /* Do not optimize RE away */
10425 goto finish_meta_pat;
10427 ret = reg_node(pRExC_state, EOS);
10429 RExC_seen_zerolen++; /* Do not optimize RE away */
10430 goto finish_meta_pat;
10432 ret = reg_node(pRExC_state, CANY);
10433 RExC_seen |= REG_SEEN_CANY;
10434 *flagp |= HASWIDTH|SIMPLE;
10435 goto finish_meta_pat;
10437 ret = reg_node(pRExC_state, CLUMP);
10438 *flagp |= HASWIDTH;
10439 goto finish_meta_pat;
10445 arg = ANYOF_WORDCHAR;
10449 RExC_seen_zerolen++;
10450 RExC_seen |= REG_SEEN_LOOKBEHIND;
10451 op = BOUND + get_regex_charset(RExC_flags);
10452 if (op > BOUNDA) { /* /aa is same as /a */
10455 ret = reg_node(pRExC_state, op);
10456 FLAGS(ret) = get_regex_charset(RExC_flags);
10458 if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
10459 ckWARNdep(RExC_parse, "\"\\b{\" is deprecated; use \"\\b\\{\" or \"\\b[{]\" instead");
10461 goto finish_meta_pat;
10463 RExC_seen_zerolen++;
10464 RExC_seen |= REG_SEEN_LOOKBEHIND;
10465 op = NBOUND + get_regex_charset(RExC_flags);
10466 if (op > NBOUNDA) { /* /aa is same as /a */
10469 ret = reg_node(pRExC_state, op);
10470 FLAGS(ret) = get_regex_charset(RExC_flags);
10472 if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
10473 ckWARNdep(RExC_parse, "\"\\B{\" is deprecated; use \"\\B\\{\" or \"\\B[{]\" instead");
10475 goto finish_meta_pat;
10485 ret = reg_node(pRExC_state, LNBREAK);
10486 *flagp |= HASWIDTH|SIMPLE;
10487 goto finish_meta_pat;
10495 goto join_posix_op_known;
10501 arg = ANYOF_VERTWS;
10503 goto join_posix_op_known;
10513 op = POSIXD + get_regex_charset(RExC_flags);
10514 if (op > POSIXA) { /* /aa is same as /a */
10518 join_posix_op_known:
10521 op += NPOSIXD - POSIXD;
10524 ret = reg_node(pRExC_state, op);
10526 FLAGS(ret) = namedclass_to_classnum(arg);
10529 *flagp |= HASWIDTH|SIMPLE;
10533 nextchar(pRExC_state);
10534 Set_Node_Length(ret, 2); /* MJD */
10540 char* parse_start = RExC_parse - 2;
10545 ret = regclass(pRExC_state, flagp,depth+1,
10546 TRUE, /* means just parse this element */
10547 FALSE, /* don't allow multi-char folds */
10548 FALSE, /* don't silence non-portable warnings.
10549 It would be a bug if these returned
10552 /* regclass() can only return RESTART_UTF8 if multi-char folds
10555 FAIL2("panic: regclass returned NULL to regatom, flags=%#X",
10560 Set_Node_Offset(ret, parse_start + 2);
10561 Set_Node_Cur_Length(ret);
10562 nextchar(pRExC_state);
10566 /* Handle \N and \N{NAME} with multiple code points here and not
10567 * below because it can be multicharacter. join_exact() will join
10568 * them up later on. Also this makes sure that things like
10569 * /\N{BLAH}+/ and \N{BLAH} being multi char Just Happen. dmq.
10570 * The options to the grok function call causes it to fail if the
10571 * sequence is just a single code point. We then go treat it as
10572 * just another character in the current EXACT node, and hence it
10573 * gets uniform treatment with all the other characters. The
10574 * special treatment for quantifiers is not needed for such single
10575 * character sequences */
10577 if (! grok_bslash_N(pRExC_state, &ret, NULL, flagp, depth, FALSE,
10578 FALSE /* not strict */ )) {
10579 if (*flagp & RESTART_UTF8)
10585 case 'k': /* Handle \k<NAME> and \k'NAME' */
10588 char ch= RExC_parse[1];
10589 if (ch != '<' && ch != '\'' && ch != '{') {
10591 vFAIL2("Sequence %.2s... not terminated",parse_start);
10593 /* this pretty much dupes the code for (?P=...) in reg(), if
10594 you change this make sure you change that */
10595 char* name_start = (RExC_parse += 2);
10597 SV *sv_dat = reg_scan_name(pRExC_state,
10598 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
10599 ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
10600 if (RExC_parse == name_start || *RExC_parse != ch)
10601 vFAIL2("Sequence %.3s... not terminated",parse_start);
10604 num = add_data( pRExC_state, 1, "S" );
10605 RExC_rxi->data->data[num]=(void*)sv_dat;
10606 SvREFCNT_inc_simple_void(sv_dat);
10610 ret = reganode(pRExC_state,
10613 : (ASCII_FOLD_RESTRICTED)
10615 : (AT_LEAST_UNI_SEMANTICS)
10621 *flagp |= HASWIDTH;
10623 /* override incorrect value set in reganode MJD */
10624 Set_Node_Offset(ret, parse_start+1);
10625 Set_Node_Cur_Length(ret); /* MJD */
10626 nextchar(pRExC_state);
10632 case '1': case '2': case '3': case '4':
10633 case '5': case '6': case '7': case '8': case '9':
10636 bool isg = *RExC_parse == 'g';
10641 if (*RExC_parse == '{') {
10645 if (*RExC_parse == '-') {
10649 if (hasbrace && !isDIGIT(*RExC_parse)) {
10650 if (isrel) RExC_parse--;
10652 goto parse_named_seq;
10654 num = atoi(RExC_parse);
10655 if (isg && num == 0)
10656 vFAIL("Reference to invalid group 0");
10658 num = RExC_npar - num;
10660 vFAIL("Reference to nonexistent or unclosed group");
10662 if (!isg && num > 9 && num >= RExC_npar)
10663 /* Probably a character specified in octal, e.g. \35 */
10666 char * const parse_start = RExC_parse - 1; /* MJD */
10667 while (isDIGIT(*RExC_parse))
10669 if (parse_start == RExC_parse - 1)
10670 vFAIL("Unterminated \\g... pattern");
10672 if (*RExC_parse != '}')
10673 vFAIL("Unterminated \\g{...} pattern");
10677 if (num > (I32)RExC_rx->nparens)
10678 vFAIL("Reference to nonexistent group");
10681 ret = reganode(pRExC_state,
10684 : (ASCII_FOLD_RESTRICTED)
10686 : (AT_LEAST_UNI_SEMANTICS)
10692 *flagp |= HASWIDTH;
10694 /* override incorrect value set in reganode MJD */
10695 Set_Node_Offset(ret, parse_start+1);
10696 Set_Node_Cur_Length(ret); /* MJD */
10698 nextchar(pRExC_state);
10703 if (RExC_parse >= RExC_end)
10704 FAIL("Trailing \\");
10707 /* Do not generate "unrecognized" warnings here, we fall
10708 back into the quick-grab loop below */
10715 if (RExC_flags & RXf_PMf_EXTENDED) {
10716 if ( reg_skipcomment( pRExC_state ) )
10723 parse_start = RExC_parse - 1;
10732 #define MAX_NODE_STRING_SIZE 127
10733 char foldbuf[MAX_NODE_STRING_SIZE+UTF8_MAXBYTES_CASE];
10735 U8 upper_parse = MAX_NODE_STRING_SIZE;
10738 bool next_is_quantifier;
10739 char * oldp = NULL;
10741 /* If a folding node contains only code points that don't
10742 * participate in folds, it can be changed into an EXACT node,
10743 * which allows the optimizer more things to look for */
10747 node_type = compute_EXACTish(pRExC_state);
10748 ret = reg_node(pRExC_state, node_type);
10750 /* In pass1, folded, we use a temporary buffer instead of the
10751 * actual node, as the node doesn't exist yet */
10752 s = (SIZE_ONLY && FOLD) ? foldbuf : STRING(ret);
10758 /* We do the EXACTFish to EXACT node only if folding, and not if in
10759 * locale, as whether a character folds or not isn't known until
10761 maybe_exact = FOLD && ! LOC;
10763 /* XXX The node can hold up to 255 bytes, yet this only goes to
10764 * 127. I (khw) do not know why. Keeping it somewhat less than
10765 * 255 allows us to not have to worry about overflow due to
10766 * converting to utf8 and fold expansion, but that value is
10767 * 255-UTF8_MAXBYTES_CASE. join_exact() may join adjacent nodes
10768 * split up by this limit into a single one using the real max of
10769 * 255. Even at 127, this breaks under rare circumstances. If
10770 * folding, we do not want to split a node at a character that is a
10771 * non-final in a multi-char fold, as an input string could just
10772 * happen to want to match across the node boundary. The join
10773 * would solve that problem if the join actually happens. But a
10774 * series of more than two nodes in a row each of 127 would cause
10775 * the first join to succeed to get to 254, but then there wouldn't
10776 * be room for the next one, which could at be one of those split
10777 * multi-char folds. I don't know of any fool-proof solution. One
10778 * could back off to end with only a code point that isn't such a
10779 * non-final, but it is possible for there not to be any in the
10781 for (p = RExC_parse - 1;
10782 len < upper_parse && p < RExC_end;
10787 if (RExC_flags & RXf_PMf_EXTENDED)
10788 p = regwhite( pRExC_state, p );
10799 /* Literal Escapes Switch
10801 This switch is meant to handle escape sequences that
10802 resolve to a literal character.
10804 Every escape sequence that represents something
10805 else, like an assertion or a char class, is handled
10806 in the switch marked 'Special Escapes' above in this
10807 routine, but also has an entry here as anything that
10808 isn't explicitly mentioned here will be treated as
10809 an unescaped equivalent literal.
10812 switch ((U8)*++p) {
10813 /* These are all the special escapes. */
10814 case 'A': /* Start assertion */
10815 case 'b': case 'B': /* Word-boundary assertion*/
10816 case 'C': /* Single char !DANGEROUS! */
10817 case 'd': case 'D': /* digit class */
10818 case 'g': case 'G': /* generic-backref, pos assertion */
10819 case 'h': case 'H': /* HORIZWS */
10820 case 'k': case 'K': /* named backref, keep marker */
10821 case 'p': case 'P': /* Unicode property */
10822 case 'R': /* LNBREAK */
10823 case 's': case 'S': /* space class */
10824 case 'v': case 'V': /* VERTWS */
10825 case 'w': case 'W': /* word class */
10826 case 'X': /* eXtended Unicode "combining character sequence" */
10827 case 'z': case 'Z': /* End of line/string assertion */
10831 /* Anything after here is an escape that resolves to a
10832 literal. (Except digits, which may or may not)
10838 case 'N': /* Handle a single-code point named character. */
10839 /* The options cause it to fail if a multiple code
10840 * point sequence. Handle those in the switch() above
10842 RExC_parse = p + 1;
10843 if (! grok_bslash_N(pRExC_state, NULL, &ender,
10844 flagp, depth, FALSE,
10845 FALSE /* not strict */ ))
10847 if (*flagp & RESTART_UTF8)
10848 FAIL("panic: grok_bslash_N set RESTART_UTF8");
10849 RExC_parse = p = oldp;
10853 if (ender > 0xff) {
10870 ender = ASCII_TO_NATIVE('\033');
10874 ender = ASCII_TO_NATIVE('\007');
10880 const char* error_msg;
10882 bool valid = grok_bslash_o(&p,
10885 TRUE, /* out warnings */
10886 FALSE, /* not strict */
10887 TRUE, /* Output warnings
10892 RExC_parse = p; /* going to die anyway; point
10893 to exact spot of failure */
10897 if (PL_encoding && ender < 0x100) {
10898 goto recode_encoding;
10900 if (ender > 0xff) {
10907 UV result = UV_MAX; /* initialize to erroneous
10909 const char* error_msg;
10911 bool valid = grok_bslash_x(&p,
10914 TRUE, /* out warnings */
10915 FALSE, /* not strict */
10916 TRUE, /* Output warnings
10921 RExC_parse = p; /* going to die anyway; point
10922 to exact spot of failure */
10927 if (PL_encoding && ender < 0x100) {
10928 goto recode_encoding;
10930 if (ender > 0xff) {
10937 ender = grok_bslash_c(*p++, UTF, SIZE_ONLY);
10939 case '0': case '1': case '2': case '3':case '4':
10940 case '5': case '6': case '7':
10942 (isDIGIT(p[1]) && atoi(p) >= RExC_npar))
10944 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
10946 ender = grok_oct(p, &numlen, &flags, NULL);
10947 if (ender > 0xff) {
10951 if (SIZE_ONLY /* like \08, \178 */
10954 && isDIGIT(*p) && ckWARN(WARN_REGEXP))
10956 reg_warn_non_literal_string(
10958 form_short_octal_warning(p, numlen));
10961 else { /* Not to be treated as an octal constant, go
10966 if (PL_encoding && ender < 0x100)
10967 goto recode_encoding;
10969 case '8': case '9': /* These are illegal unless backrefs */
10970 if (atoi(p) <= RExC_npar) {
10971 --p; /* backup to backslash; handle as backref */
10976 if (! RExC_override_recoding) {
10977 SV* enc = PL_encoding;
10978 ender = reg_recode((const char)(U8)ender, &enc);
10979 if (!enc && SIZE_ONLY)
10980 ckWARNreg(p, "Invalid escape in the specified encoding");
10986 FAIL("Trailing \\");
10990 if (!SIZE_ONLY&& isALPHANUMERIC(*p)) {
10991 /* Include any { following the alpha to emphasize
10992 * that it could be part of an escape at some point
10994 int len = (isALPHA(*p) && *(p + 1) == '{') ? 2 : 1;
10995 ckWARN3reg(p + len, "Unrecognized escape \\%.*s passed through", len, p);
10997 goto normal_default;
10998 } /* End of switch on '\' */
11000 default: /* A literal character */
11003 && RExC_flags & RXf_PMf_EXTENDED
11004 && ckWARN(WARN_DEPRECATED)
11005 && is_PATWS_non_low(p, UTF))
11007 vWARN_dep(p + ((UTF) ? UTF8SKIP(p) : 1),
11008 "Escape literal pattern white space under /x");
11012 if (UTF8_IS_START(*p) && UTF) {
11014 ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
11015 &numlen, UTF8_ALLOW_DEFAULT);
11021 } /* End of switch on the literal */
11023 /* Here, have looked at the literal character and <ender>
11024 * contains its ordinal, <p> points to the character after it
11027 if ( RExC_flags & RXf_PMf_EXTENDED)
11028 p = regwhite( pRExC_state, p );
11030 /* If the next thing is a quantifier, it applies to this
11031 * character only, which means that this character has to be in
11032 * its own node and can't just be appended to the string in an
11033 * existing node, so if there are already other characters in
11034 * the node, close the node with just them, and set up to do
11035 * this character again next time through, when it will be the
11036 * only thing in its new node */
11037 if ((next_is_quantifier = (p < RExC_end && ISMULT2(p))) && len)
11045 /* See comments for join_exact() as to why we fold
11046 * this non-UTF at compile time */
11047 || (node_type == EXACTFU
11048 && ender == LATIN_SMALL_LETTER_SHARP_S))
11052 /* Prime the casefolded buffer. Locale rules, which
11053 * apply only to code points < 256, aren't known until
11054 * execution, so for them, just output the original
11055 * character using utf8. If we start to fold non-UTF
11056 * patterns, be sure to update join_exact() */
11057 if (LOC && ender < 256) {
11058 if (UNI_IS_INVARIANT(ender)) {
11062 *s = UTF8_TWO_BYTE_HI(ender);
11063 *(s + 1) = UTF8_TWO_BYTE_LO(ender);
11068 UV folded = _to_uni_fold_flags(
11073 | ((LOC) ? FOLD_FLAGS_LOCALE
11074 : (ASCII_FOLD_RESTRICTED)
11075 ? FOLD_FLAGS_NOMIX_ASCII
11079 /* If this node only contains non-folding code
11080 * points so far, see if this new one is also
11083 if (folded != ender) {
11084 maybe_exact = FALSE;
11087 /* Here the fold is the original; we have
11088 * to check further to see if anything
11090 if (! PL_utf8_foldable) {
11091 SV* swash = swash_init("utf8",
11093 &PL_sv_undef, 1, 0);
11095 _get_swash_invlist(swash);
11096 SvREFCNT_dec_NN(swash);
11098 if (_invlist_contains_cp(PL_utf8_foldable,
11101 maybe_exact = FALSE;
11109 /* The loop increments <len> each time, as all but this
11110 * path (and the one just below for UTF) through it add
11111 * a single byte to the EXACTish node. But this one
11112 * has changed len to be the correct final value, so
11113 * subtract one to cancel out the increment that
11115 len += foldlen - 1;
11118 *(s++) = (char) ender;
11119 maybe_exact &= ! IS_IN_SOME_FOLD_L1(ender);
11123 const STRLEN unilen = reguni(pRExC_state, ender, s);
11129 /* See comment just above for - 1 */
11133 REGC((char)ender, s++);
11136 if (next_is_quantifier) {
11138 /* Here, the next input is a quantifier, and to get here,
11139 * the current character is the only one in the node.
11140 * Also, here <len> doesn't include the final byte for this
11146 } /* End of loop through literal characters */
11148 /* Here we have either exhausted the input or ran out of room in
11149 * the node. (If we encountered a character that can't be in the
11150 * node, transfer is made directly to <loopdone>, and so we
11151 * wouldn't have fallen off the end of the loop.) In the latter
11152 * case, we artificially have to split the node into two, because
11153 * we just don't have enough space to hold everything. This
11154 * creates a problem if the final character participates in a
11155 * multi-character fold in the non-final position, as a match that
11156 * should have occurred won't, due to the way nodes are matched,
11157 * and our artificial boundary. So back off until we find a non-
11158 * problematic character -- one that isn't at the beginning or
11159 * middle of such a fold. (Either it doesn't participate in any
11160 * folds, or appears only in the final position of all the folds it
11161 * does participate in.) A better solution with far fewer false
11162 * positives, and that would fill the nodes more completely, would
11163 * be to actually have available all the multi-character folds to
11164 * test against, and to back-off only far enough to be sure that
11165 * this node isn't ending with a partial one. <upper_parse> is set
11166 * further below (if we need to reparse the node) to include just
11167 * up through that final non-problematic character that this code
11168 * identifies, so when it is set to less than the full node, we can
11169 * skip the rest of this */
11170 if (FOLD && p < RExC_end && upper_parse == MAX_NODE_STRING_SIZE) {
11172 const STRLEN full_len = len;
11174 assert(len >= MAX_NODE_STRING_SIZE);
11176 /* Here, <s> points to the final byte of the final character.
11177 * Look backwards through the string until find a non-
11178 * problematic character */
11182 /* These two have no multi-char folds to non-UTF characters
11184 if (ASCII_FOLD_RESTRICTED || LOC) {
11188 while (--s >= s0 && IS_NON_FINAL_FOLD(*s)) { }
11192 if (! PL_NonL1NonFinalFold) {
11193 PL_NonL1NonFinalFold = _new_invlist_C_array(
11194 NonL1_Perl_Non_Final_Folds_invlist);
11197 /* Point to the first byte of the final character */
11198 s = (char *) utf8_hop((U8 *) s, -1);
11200 while (s >= s0) { /* Search backwards until find
11201 non-problematic char */
11202 if (UTF8_IS_INVARIANT(*s)) {
11204 /* There are no ascii characters that participate
11205 * in multi-char folds under /aa. In EBCDIC, the
11206 * non-ascii invariants are all control characters,
11207 * so don't ever participate in any folds. */
11208 if (ASCII_FOLD_RESTRICTED
11209 || ! IS_NON_FINAL_FOLD(*s))
11214 else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
11216 /* No Latin1 characters participate in multi-char
11217 * folds under /l */
11219 || ! IS_NON_FINAL_FOLD(TWO_BYTE_UTF8_TO_UNI(
11225 else if (! _invlist_contains_cp(
11226 PL_NonL1NonFinalFold,
11227 valid_utf8_to_uvchr((U8 *) s, NULL)))
11232 /* Here, the current character is problematic in that
11233 * it does occur in the non-final position of some
11234 * fold, so try the character before it, but have to
11235 * special case the very first byte in the string, so
11236 * we don't read outside the string */
11237 s = (s == s0) ? s -1 : (char *) utf8_hop((U8 *) s, -1);
11238 } /* End of loop backwards through the string */
11240 /* If there were only problematic characters in the string,
11241 * <s> will point to before s0, in which case the length
11242 * should be 0, otherwise include the length of the
11243 * non-problematic character just found */
11244 len = (s < s0) ? 0 : s - s0 + UTF8SKIP(s);
11247 /* Here, have found the final character, if any, that is
11248 * non-problematic as far as ending the node without splitting
11249 * it across a potential multi-char fold. <len> contains the
11250 * number of bytes in the node up-to and including that
11251 * character, or is 0 if there is no such character, meaning
11252 * the whole node contains only problematic characters. In
11253 * this case, give up and just take the node as-is. We can't
11259 /* Here, the node does contain some characters that aren't
11260 * problematic. If one such is the final character in the
11261 * node, we are done */
11262 if (len == full_len) {
11265 else if (len + ((UTF) ? UTF8SKIP(s) : 1) == full_len) {
11267 /* If the final character is problematic, but the
11268 * penultimate is not, back-off that last character to
11269 * later start a new node with it */
11274 /* Here, the final non-problematic character is earlier
11275 * in the input than the penultimate character. What we do
11276 * is reparse from the beginning, going up only as far as
11277 * this final ok one, thus guaranteeing that the node ends
11278 * in an acceptable character. The reason we reparse is
11279 * that we know how far in the character is, but we don't
11280 * know how to correlate its position with the input parse.
11281 * An alternate implementation would be to build that
11282 * correlation as we go along during the original parse,
11283 * but that would entail extra work for every node, whereas
11284 * this code gets executed only when the string is too
11285 * large for the node, and the final two characters are
11286 * problematic, an infrequent occurrence. Yet another
11287 * possible strategy would be to save the tail of the
11288 * string, and the next time regatom is called, initialize
11289 * with that. The problem with this is that unless you
11290 * back off one more character, you won't be guaranteed
11291 * regatom will get called again, unless regbranch,
11292 * regpiece ... are also changed. If you do back off that
11293 * extra character, so that there is input guaranteed to
11294 * force calling regatom, you can't handle the case where
11295 * just the first character in the node is acceptable. I
11296 * (khw) decided to try this method which doesn't have that
11297 * pitfall; if performance issues are found, we can do a
11298 * combination of the current approach plus that one */
11304 } /* End of verifying node ends with an appropriate char */
11306 loopdone: /* Jumped to when encounters something that shouldn't be in
11309 /* If 'maybe_exact' is still set here, means there are no
11310 * code points in the node that participate in folds */
11311 if (FOLD && maybe_exact) {
11315 /* I (khw) don't know if you can get here with zero length, but the
11316 * old code handled this situation by creating a zero-length EXACT
11317 * node. Might as well be NOTHING instead */
11322 alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, len, ender);
11325 RExC_parse = p - 1;
11326 Set_Node_Cur_Length(ret); /* MJD */
11327 nextchar(pRExC_state);
11329 /* len is STRLEN which is unsigned, need to copy to signed */
11332 vFAIL("Internal disaster");
11335 } /* End of label 'defchar:' */
11337 } /* End of giant switch on input character */
11343 S_regwhite( RExC_state_t *pRExC_state, char *p )
11345 const char *e = RExC_end;
11347 PERL_ARGS_ASSERT_REGWHITE;
11352 else if (*p == '#') {
11355 if (*p++ == '\n') {
11361 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
11370 S_regpatws( RExC_state_t *pRExC_state, char *p , const bool recognize_comment )
11372 /* Returns the next non-pattern-white space, non-comment character (the
11373 * latter only if 'recognize_comment is true) in the string p, which is
11374 * ended by RExC_end. If there is no line break ending a comment,
11375 * RExC_seen has added the REG_SEEN_RUN_ON_COMMENT flag; */
11376 const char *e = RExC_end;
11378 PERL_ARGS_ASSERT_REGPATWS;
11382 if ((len = is_PATWS_safe(p, e, UTF))) {
11385 else if (recognize_comment && *p == '#') {
11389 if (is_LNBREAK_safe(p, e, UTF)) {
11395 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
11403 /* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
11404 Character classes ([:foo:]) can also be negated ([:^foo:]).
11405 Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
11406 Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
11407 but trigger failures because they are currently unimplemented. */
11409 #define POSIXCC_DONE(c) ((c) == ':')
11410 #define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
11411 #define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
11413 PERL_STATIC_INLINE I32
11414 S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value, const bool strict)
11417 I32 namedclass = OOB_NAMEDCLASS;
11419 PERL_ARGS_ASSERT_REGPPOSIXCC;
11421 if (value == '[' && RExC_parse + 1 < RExC_end &&
11422 /* I smell either [: or [= or [. -- POSIX has been here, right? */
11423 POSIXCC(UCHARAT(RExC_parse)))
11425 const char c = UCHARAT(RExC_parse);
11426 char* const s = RExC_parse++;
11428 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
11430 if (RExC_parse == RExC_end) {
11433 /* Try to give a better location for the error (than the end of
11434 * the string) by looking for the matching ']' */
11436 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
11439 vFAIL2("Unmatched '%c' in POSIX class", c);
11441 /* Grandfather lone [:, [=, [. */
11445 const char* const t = RExC_parse++; /* skip over the c */
11448 if (UCHARAT(RExC_parse) == ']') {
11449 const char *posixcc = s + 1;
11450 RExC_parse++; /* skip over the ending ] */
11453 const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
11454 const I32 skip = t - posixcc;
11456 /* Initially switch on the length of the name. */
11459 if (memEQ(posixcc, "word", 4)) /* this is not POSIX,
11460 this is the Perl \w
11462 namedclass = ANYOF_WORDCHAR;
11465 /* Names all of length 5. */
11466 /* alnum alpha ascii blank cntrl digit graph lower
11467 print punct space upper */
11468 /* Offset 4 gives the best switch position. */
11469 switch (posixcc[4]) {
11471 if (memEQ(posixcc, "alph", 4)) /* alpha */
11472 namedclass = ANYOF_ALPHA;
11475 if (memEQ(posixcc, "spac", 4)) /* space */
11476 namedclass = ANYOF_PSXSPC;
11479 if (memEQ(posixcc, "grap", 4)) /* graph */
11480 namedclass = ANYOF_GRAPH;
11483 if (memEQ(posixcc, "asci", 4)) /* ascii */
11484 namedclass = ANYOF_ASCII;
11487 if (memEQ(posixcc, "blan", 4)) /* blank */
11488 namedclass = ANYOF_BLANK;
11491 if (memEQ(posixcc, "cntr", 4)) /* cntrl */
11492 namedclass = ANYOF_CNTRL;
11495 if (memEQ(posixcc, "alnu", 4)) /* alnum */
11496 namedclass = ANYOF_ALPHANUMERIC;
11499 if (memEQ(posixcc, "lowe", 4)) /* lower */
11500 namedclass = (FOLD) ? ANYOF_CASED : ANYOF_LOWER;
11501 else if (memEQ(posixcc, "uppe", 4)) /* upper */
11502 namedclass = (FOLD) ? ANYOF_CASED : ANYOF_UPPER;
11505 if (memEQ(posixcc, "digi", 4)) /* digit */
11506 namedclass = ANYOF_DIGIT;
11507 else if (memEQ(posixcc, "prin", 4)) /* print */
11508 namedclass = ANYOF_PRINT;
11509 else if (memEQ(posixcc, "punc", 4)) /* punct */
11510 namedclass = ANYOF_PUNCT;
11515 if (memEQ(posixcc, "xdigit", 6))
11516 namedclass = ANYOF_XDIGIT;
11520 if (namedclass == OOB_NAMEDCLASS)
11521 Simple_vFAIL3("POSIX class [:%.*s:] unknown",
11524 /* The #defines are structured so each complement is +1 to
11525 * the normal one */
11529 assert (posixcc[skip] == ':');
11530 assert (posixcc[skip+1] == ']');
11531 } else if (!SIZE_ONLY) {
11532 /* [[=foo=]] and [[.foo.]] are still future. */
11534 /* adjust RExC_parse so the warning shows after
11535 the class closes */
11536 while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
11538 vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
11541 /* Maternal grandfather:
11542 * "[:" ending in ":" but not in ":]" */
11544 vFAIL("Unmatched '[' in POSIX class");
11547 /* Grandfather lone [:, [=, [. */
11557 S_could_it_be_a_POSIX_class(pTHX_ RExC_state_t *pRExC_state)
11559 /* This applies some heuristics at the current parse position (which should
11560 * be at a '[') to see if what follows might be intended to be a [:posix:]
11561 * class. It returns true if it really is a posix class, of course, but it
11562 * also can return true if it thinks that what was intended was a posix
11563 * class that didn't quite make it.
11565 * It will return true for
11567 * [:alphanumerics] (as long as the ] isn't followed immediately by a
11568 * ')' indicating the end of the (?[
11569 * [:any garbage including %^&$ punctuation:]
11571 * This is designed to be called only from S_handle_regex_sets; it could be
11572 * easily adapted to be called from the spot at the beginning of regclass()
11573 * that checks to see in a normal bracketed class if the surrounding []
11574 * have been omitted ([:word:] instead of [[:word:]]). But doing so would
11575 * change long-standing behavior, so I (khw) didn't do that */
11576 char* p = RExC_parse + 1;
11577 char first_char = *p;
11579 PERL_ARGS_ASSERT_COULD_IT_BE_A_POSIX_CLASS;
11581 assert(*(p - 1) == '[');
11583 if (! POSIXCC(first_char)) {
11588 while (p < RExC_end && isWORDCHAR(*p)) p++;
11590 if (p >= RExC_end) {
11594 if (p - RExC_parse > 2 /* Got at least 1 word character */
11595 && (*p == first_char
11596 || (*p == ']' && p + 1 < RExC_end && *(p + 1) != ')')))
11601 p = (char *) memchr(RExC_parse, ']', RExC_end - RExC_parse);
11604 && p - RExC_parse > 2 /* [:] evaluates to colon;
11605 [::] is a bad posix class. */
11606 && first_char == *(p - 1));
11610 S_handle_regex_sets(pTHX_ RExC_state_t *pRExC_state, SV** return_invlist, I32 *flagp, U32 depth,
11611 char * const oregcomp_parse)
11613 /* Handle the (?[...]) construct to do set operations */
11616 UV start, end; /* End points of code point ranges */
11618 char *save_end, *save_parse;
11623 const bool save_fold = FOLD;
11625 GET_RE_DEBUG_FLAGS_DECL;
11627 PERL_ARGS_ASSERT_HANDLE_REGEX_SETS;
11630 vFAIL("(?[...]) not valid in locale");
11632 RExC_uni_semantics = 1;
11634 /* This will return only an ANYOF regnode, or (unlikely) something smaller
11635 * (such as EXACT). Thus we can skip most everything if just sizing. We
11636 * call regclass to handle '[]' so as to not have to reinvent its parsing
11637 * rules here (throwing away the size it computes each time). And, we exit
11638 * upon an unescaped ']' that isn't one ending a regclass. To do both
11639 * these things, we need to realize that something preceded by a backslash
11640 * is escaped, so we have to keep track of backslashes */
11643 Perl_ck_warner_d(aTHX_
11644 packWARN(WARN_EXPERIMENTAL__REGEX_SETS),
11645 "The regex_sets feature is experimental" REPORT_LOCATION,
11646 (int) (RExC_parse - RExC_precomp) , RExC_precomp, RExC_parse);
11648 while (RExC_parse < RExC_end) {
11649 SV* current = NULL;
11650 RExC_parse = regpatws(pRExC_state, RExC_parse,
11651 TRUE); /* means recognize comments */
11652 switch (*RExC_parse) {
11656 /* Skip the next byte (which could cause us to end up in
11657 * the middle of a UTF-8 character, but since none of those
11658 * are confusable with anything we currently handle in this
11659 * switch (invariants all), it's safe. We'll just hit the
11660 * default: case next time and keep on incrementing until
11661 * we find one of the invariants we do handle. */
11666 /* If this looks like it is a [:posix:] class, leave the
11667 * parse pointer at the '[' to fool regclass() into
11668 * thinking it is part of a '[[:posix:]]'. That function
11669 * will use strict checking to force a syntax error if it
11670 * doesn't work out to a legitimate class */
11671 bool is_posix_class
11672 = could_it_be_a_POSIX_class(pRExC_state);
11673 if (! is_posix_class) {
11677 /* regclass() can only return RESTART_UTF8 if multi-char
11678 folds are allowed. */
11679 if (!regclass(pRExC_state, flagp,depth+1,
11680 is_posix_class, /* parse the whole char
11681 class only if not a
11683 FALSE, /* don't allow multi-char folds */
11684 TRUE, /* silence non-portable warnings. */
11686 FAIL2("panic: regclass returned NULL to handle_sets, flags=%#X",
11689 /* function call leaves parse pointing to the ']', except
11690 * if we faked it */
11691 if (is_posix_class) {
11695 SvREFCNT_dec(current); /* In case it returned something */
11701 if (RExC_parse < RExC_end
11702 && *RExC_parse == ')')
11704 node = reganode(pRExC_state, ANYOF, 0);
11705 RExC_size += ANYOF_SKIP;
11706 nextchar(pRExC_state);
11707 Set_Node_Length(node,
11708 RExC_parse - oregcomp_parse + 1); /* MJD */
11717 FAIL("Syntax error in (?[...])");
11720 /* Pass 2 only after this. Everything in this construct is a
11721 * metacharacter. Operands begin with either a '\' (for an escape
11722 * sequence), or a '[' for a bracketed character class. Any other
11723 * character should be an operator, or parenthesis for grouping. Both
11724 * types of operands are handled by calling regclass() to parse them. It
11725 * is called with a parameter to indicate to return the computed inversion
11726 * list. The parsing here is implemented via a stack. Each entry on the
11727 * stack is a single character representing one of the operators, or the
11728 * '('; or else a pointer to an operand inversion list. */
11730 #define IS_OPERAND(a) (! SvIOK(a))
11732 /* The stack starts empty. It is a syntax error if the first thing parsed
11733 * is a binary operator; everything else is pushed on the stack. When an
11734 * operand is parsed, the top of the stack is examined. If it is a binary
11735 * operator, the item before it should be an operand, and both are replaced
11736 * by the result of doing that operation on the new operand and the one on
11737 * the stack. Thus a sequence of binary operands is reduced to a single
11738 * one before the next one is parsed.
11740 * A unary operator may immediately follow a binary in the input, for
11743 * When an operand is parsed and the top of the stack is a unary operator,
11744 * the operation is performed, and then the stack is rechecked to see if
11745 * this new operand is part of a binary operation; if so, it is handled as
11748 * A '(' is simply pushed on the stack; it is valid only if the stack is
11749 * empty, or the top element of the stack is an operator or another '('
11750 * (for which the parenthesized expression will become an operand). By the
11751 * time the corresponding ')' is parsed everything in between should have
11752 * been parsed and evaluated to a single operand (or else is a syntax
11753 * error), and is handled as a regular operand */
11755 sv_2mortal((SV *)(stack = newAV()));
11757 while (RExC_parse < RExC_end) {
11758 I32 top_index = av_tindex(stack);
11760 SV* current = NULL;
11762 /* Skip white space */
11763 RExC_parse = regpatws(pRExC_state, RExC_parse,
11764 TRUE); /* means recognize comments */
11765 if (RExC_parse >= RExC_end) {
11766 Perl_croak(aTHX_ "panic: Read past end of '(?[ ])'");
11768 if ((curchar = UCHARAT(RExC_parse)) == ']') {
11775 if (av_tindex(stack) >= 0 /* This makes sure that we can
11776 safely subtract 1 from
11777 RExC_parse in the next clause.
11778 If we have something on the
11779 stack, we have parsed something
11781 && UCHARAT(RExC_parse - 1) == '('
11782 && RExC_parse < RExC_end)
11784 /* If is a '(?', could be an embedded '(?flags:(?[...])'.
11785 * This happens when we have some thing like
11787 * my $thai_or_lao = qr/(?[ \p{Thai} + \p{Lao} ])/;
11789 * qr/(?[ \p{Digit} & $thai_or_lao ])/;
11791 * Here we would be handling the interpolated
11792 * '$thai_or_lao'. We handle this by a recursive call to
11793 * ourselves which returns the inversion list the
11794 * interpolated expression evaluates to. We use the flags
11795 * from the interpolated pattern. */
11796 U32 save_flags = RExC_flags;
11797 const char * const save_parse = ++RExC_parse;
11799 parse_lparen_question_flags(pRExC_state);
11801 if (RExC_parse == save_parse /* Makes sure there was at
11802 least one flag (or this
11803 embedding wasn't compiled)
11805 || RExC_parse >= RExC_end - 4
11806 || UCHARAT(RExC_parse) != ':'
11807 || UCHARAT(++RExC_parse) != '('
11808 || UCHARAT(++RExC_parse) != '?'
11809 || UCHARAT(++RExC_parse) != '[')
11812 /* In combination with the above, this moves the
11813 * pointer to the point just after the first erroneous
11814 * character (or if there are no flags, to where they
11815 * should have been) */
11816 if (RExC_parse >= RExC_end - 4) {
11817 RExC_parse = RExC_end;
11819 else if (RExC_parse != save_parse) {
11820 RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
11822 vFAIL("Expecting '(?flags:(?[...'");
11825 (void) handle_regex_sets(pRExC_state, ¤t, flagp,
11826 depth+1, oregcomp_parse);
11828 /* Here, 'current' contains the embedded expression's
11829 * inversion list, and RExC_parse points to the trailing
11830 * ']'; the next character should be the ')' which will be
11831 * paired with the '(' that has been put on the stack, so
11832 * the whole embedded expression reduces to '(operand)' */
11835 RExC_flags = save_flags;
11836 goto handle_operand;
11841 RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
11842 vFAIL("Unexpected character");
11845 /* regclass() can only return RESTART_UTF8 if multi-char
11846 folds are allowed. */
11847 if (!regclass(pRExC_state, flagp,depth+1,
11848 TRUE, /* means parse just the next thing */
11849 FALSE, /* don't allow multi-char folds */
11850 FALSE, /* don't silence non-portable warnings. */
11852 FAIL2("panic: regclass returned NULL to handle_sets, flags=%#X",
11854 /* regclass() will return with parsing just the \ sequence,
11855 * leaving the parse pointer at the next thing to parse */
11857 goto handle_operand;
11859 case '[': /* Is a bracketed character class */
11861 bool is_posix_class = could_it_be_a_POSIX_class(pRExC_state);
11863 if (! is_posix_class) {
11867 /* regclass() can only return RESTART_UTF8 if multi-char
11868 folds are allowed. */
11869 if(!regclass(pRExC_state, flagp,depth+1,
11870 is_posix_class, /* parse the whole char class
11871 only if not a posix class */
11872 FALSE, /* don't allow multi-char folds */
11873 FALSE, /* don't silence non-portable warnings. */
11875 FAIL2("panic: regclass returned NULL to handle_sets, flags=%#X",
11877 /* function call leaves parse pointing to the ']', except if we
11879 if (is_posix_class) {
11883 goto handle_operand;
11892 || ( ! (top_ptr = av_fetch(stack, top_index, FALSE)))
11893 || ! IS_OPERAND(*top_ptr))
11896 vFAIL2("Unexpected binary operator '%c' with no preceding operand", curchar);
11898 av_push(stack, newSVuv(curchar));
11902 av_push(stack, newSVuv(curchar));
11906 if (top_index >= 0) {
11907 top_ptr = av_fetch(stack, top_index, FALSE);
11909 if (IS_OPERAND(*top_ptr)) {
11911 vFAIL("Unexpected '(' with no preceding operator");
11914 av_push(stack, newSVuv(curchar));
11921 || ! (current = av_pop(stack))
11922 || ! IS_OPERAND(current)
11923 || ! (lparen = av_pop(stack))
11924 || IS_OPERAND(lparen)
11925 || SvUV(lparen) != '(')
11927 SvREFCNT_dec(current);
11929 vFAIL("Unexpected ')'");
11932 SvREFCNT_dec_NN(lparen);
11939 /* Here, we have an operand to process, in 'current' */
11941 if (top_index < 0) { /* Just push if stack is empty */
11942 av_push(stack, current);
11945 SV* top = av_pop(stack);
11947 char current_operator;
11949 if (IS_OPERAND(top)) {
11950 SvREFCNT_dec_NN(top);
11951 SvREFCNT_dec_NN(current);
11952 vFAIL("Operand with no preceding operator");
11954 current_operator = (char) SvUV(top);
11955 switch (current_operator) {
11956 case '(': /* Push the '(' back on followed by the new
11958 av_push(stack, top);
11959 av_push(stack, current);
11960 SvREFCNT_inc(top); /* Counters the '_dec' done
11961 just after the 'break', so
11962 it doesn't get wrongly freed
11967 _invlist_invert(current);
11969 /* Unlike binary operators, the top of the stack,
11970 * now that this unary one has been popped off, may
11971 * legally be an operator, and we now have operand
11974 SvREFCNT_dec_NN(top);
11975 goto handle_operand;
11978 prev = av_pop(stack);
11979 _invlist_intersection(prev,
11982 av_push(stack, current);
11987 prev = av_pop(stack);
11988 _invlist_union(prev, current, ¤t);
11989 av_push(stack, current);
11993 prev = av_pop(stack);;
11994 _invlist_subtract(prev, current, ¤t);
11995 av_push(stack, current);
11998 case '^': /* The union minus the intersection */
12004 prev = av_pop(stack);
12005 _invlist_union(prev, current, &u);
12006 _invlist_intersection(prev, current, &i);
12007 /* _invlist_subtract will overwrite current
12008 without freeing what it already contains */
12010 _invlist_subtract(u, i, ¤t);
12011 av_push(stack, current);
12012 SvREFCNT_dec_NN(i);
12013 SvREFCNT_dec_NN(u);
12014 SvREFCNT_dec_NN(element);
12019 Perl_croak(aTHX_ "panic: Unexpected item on '(?[ ])' stack");
12021 SvREFCNT_dec_NN(top);
12022 SvREFCNT_dec(prev);
12026 RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
12029 if (av_tindex(stack) < 0 /* Was empty */
12030 || ((final = av_pop(stack)) == NULL)
12031 || ! IS_OPERAND(final)
12032 || av_tindex(stack) >= 0) /* More left on stack */
12034 vFAIL("Incomplete expression within '(?[ ])'");
12037 /* Here, 'final' is the resultant inversion list from evaluating the
12038 * expression. Return it if so requested */
12039 if (return_invlist) {
12040 *return_invlist = final;
12044 /* Otherwise generate a resultant node, based on 'final'. regclass() is
12045 * expecting a string of ranges and individual code points */
12046 invlist_iterinit(final);
12047 result_string = newSVpvs("");
12048 while (invlist_iternext(final, &start, &end)) {
12049 if (start == end) {
12050 Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}", start);
12053 Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}-\\x{%"UVXf"}",
12058 save_parse = RExC_parse;
12059 RExC_parse = SvPV(result_string, len);
12060 save_end = RExC_end;
12061 RExC_end = RExC_parse + len;
12063 /* We turn off folding around the call, as the class we have constructed
12064 * already has all folding taken into consideration, and we don't want
12065 * regclass() to add to that */
12066 RExC_flags &= ~RXf_PMf_FOLD;
12067 /* regclass() can only return RESTART_UTF8 if multi-char folds are allowed.
12069 node = regclass(pRExC_state, flagp,depth+1,
12070 FALSE, /* means parse the whole char class */
12071 FALSE, /* don't allow multi-char folds */
12072 TRUE, /* silence non-portable warnings. The above may very
12073 well have generated non-portable code points, but
12074 they're valid on this machine */
12077 FAIL2("panic: regclass returned NULL to handle_sets, flags=%#"UVxf,
12080 RExC_flags |= RXf_PMf_FOLD;
12082 RExC_parse = save_parse + 1;
12083 RExC_end = save_end;
12084 SvREFCNT_dec_NN(final);
12085 SvREFCNT_dec_NN(result_string);
12087 nextchar(pRExC_state);
12088 Set_Node_Length(node, RExC_parse - oregcomp_parse + 1); /* MJD */
12093 /* The names of properties whose definitions are not known at compile time are
12094 * stored in this SV, after a constant heading. So if the length has been
12095 * changed since initialization, then there is a run-time definition. */
12096 #define HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION (SvCUR(listsv) != initial_listsv_len)
12099 S_regclass(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth,
12100 const bool stop_at_1, /* Just parse the next thing, don't
12101 look for a full character class */
12102 bool allow_multi_folds,
12103 const bool silence_non_portable, /* Don't output warnings
12106 SV** ret_invlist) /* Return an inversion list, not a node */
12108 /* parse a bracketed class specification. Most of these will produce an
12109 * ANYOF node; but something like [a] will produce an EXACT node; [aA], an
12110 * EXACTFish node; [[:ascii:]], a POSIXA node; etc. It is more complex
12111 * under /i with multi-character folds: it will be rewritten following the
12112 * paradigm of this example, where the <multi-fold>s are characters which
12113 * fold to multiple character sequences:
12114 * /[abc\x{multi-fold1}def\x{multi-fold2}ghi]/i
12115 * gets effectively rewritten as:
12116 * /(?:\x{multi-fold1}|\x{multi-fold2}|[abcdefghi]/i
12117 * reg() gets called (recursively) on the rewritten version, and this
12118 * function will return what it constructs. (Actually the <multi-fold>s
12119 * aren't physically removed from the [abcdefghi], it's just that they are
12120 * ignored in the recursion by means of a flag:
12121 * <RExC_in_multi_char_class>.)
12123 * ANYOF nodes contain a bit map for the first 256 characters, with the
12124 * corresponding bit set if that character is in the list. For characters
12125 * above 255, a range list or swash is used. There are extra bits for \w,
12126 * etc. in locale ANYOFs, as what these match is not determinable at
12129 * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs
12130 * to be restarted. This can only happen if ret_invlist is non-NULL.
12134 UV prevvalue = OOB_UNICODE, save_prevvalue = OOB_UNICODE;
12136 UV value = OOB_UNICODE, save_value = OOB_UNICODE;
12139 IV namedclass = OOB_NAMEDCLASS;
12140 char *rangebegin = NULL;
12141 bool need_class = 0;
12143 STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
12144 than just initialized. */
12145 SV* properties = NULL; /* Code points that match \p{} \P{} */
12146 SV* posixes = NULL; /* Code points that match classes like, [:word:],
12147 extended beyond the Latin1 range */
12148 UV element_count = 0; /* Number of distinct elements in the class.
12149 Optimizations may be possible if this is tiny */
12150 AV * multi_char_matches = NULL; /* Code points that fold to more than one
12151 character; used under /i */
12153 char * stop_ptr = RExC_end; /* where to stop parsing */
12154 const bool skip_white = cBOOL(ret_invlist); /* ignore unescaped white
12156 const bool strict = cBOOL(ret_invlist); /* Apply strict parsing rules? */
12158 /* Unicode properties are stored in a swash; this holds the current one
12159 * being parsed. If this swash is the only above-latin1 component of the
12160 * character class, an optimization is to pass it directly on to the
12161 * execution engine. Otherwise, it is set to NULL to indicate that there
12162 * are other things in the class that have to be dealt with at execution
12164 SV* swash = NULL; /* Code points that match \p{} \P{} */
12166 /* Set if a component of this character class is user-defined; just passed
12167 * on to the engine */
12168 bool has_user_defined_property = FALSE;
12170 /* inversion list of code points this node matches only when the target
12171 * string is in UTF-8. (Because is under /d) */
12172 SV* depends_list = NULL;
12174 /* inversion list of code points this node matches. For much of the
12175 * function, it includes only those that match regardless of the utf8ness
12176 * of the target string */
12177 SV* cp_list = NULL;
12180 /* In a range, counts how many 0-2 of the ends of it came from literals,
12181 * not escapes. Thus we can tell if 'A' was input vs \x{C1} */
12182 UV literal_endpoint = 0;
12184 bool invert = FALSE; /* Is this class to be complemented */
12186 /* Is there any thing like \W or [:^digit:] that matches above the legal
12187 * Unicode range? */
12188 bool runtime_posix_matches_above_Unicode = FALSE;
12190 regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
12191 case we need to change the emitted regop to an EXACT. */
12192 const char * orig_parse = RExC_parse;
12193 const I32 orig_size = RExC_size;
12194 GET_RE_DEBUG_FLAGS_DECL;
12196 PERL_ARGS_ASSERT_REGCLASS;
12198 PERL_UNUSED_ARG(depth);
12201 DEBUG_PARSE("clas");
12203 /* Assume we are going to generate an ANYOF node. */
12204 ret = reganode(pRExC_state, ANYOF, 0);
12207 RExC_size += ANYOF_SKIP;
12208 listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
12211 ANYOF_FLAGS(ret) = 0;
12213 RExC_emit += ANYOF_SKIP;
12215 ANYOF_FLAGS(ret) |= ANYOF_LOCALE;
12217 listsv = newSVpvs_flags("# comment\n", SVs_TEMP);
12218 initial_listsv_len = SvCUR(listsv);
12219 SvTEMP_off(listsv); /* Grr, TEMPs and mortals are conflated. */
12223 RExC_parse = regpatws(pRExC_state, RExC_parse,
12224 FALSE /* means don't recognize comments */);
12227 if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
12230 allow_multi_folds = FALSE;
12233 RExC_parse = regpatws(pRExC_state, RExC_parse,
12234 FALSE /* means don't recognize comments */);
12238 /* Check that they didn't say [:posix:] instead of [[:posix:]] */
12239 if (!SIZE_ONLY && RExC_parse < RExC_end && POSIXCC(UCHARAT(RExC_parse))) {
12240 const char *s = RExC_parse;
12241 const char c = *s++;
12243 while (isWORDCHAR(*s))
12245 if (*s && c == *s && s[1] == ']') {
12246 SAVEFREESV(RExC_rx_sv);
12248 "POSIX syntax [%c %c] belongs inside character classes",
12250 (void)ReREFCNT_inc(RExC_rx_sv);
12254 /* If the caller wants us to just parse a single element, accomplish this
12255 * by faking the loop ending condition */
12256 if (stop_at_1 && RExC_end > RExC_parse) {
12257 stop_ptr = RExC_parse + 1;
12260 /* allow 1st char to be ']' (allowing it to be '-' is dealt with later) */
12261 if (UCHARAT(RExC_parse) == ']')
12262 goto charclassloop;
12266 if (RExC_parse >= stop_ptr) {
12271 RExC_parse = regpatws(pRExC_state, RExC_parse,
12272 FALSE /* means don't recognize comments */);
12275 if (UCHARAT(RExC_parse) == ']') {
12281 namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
12282 save_value = value;
12283 save_prevvalue = prevvalue;
12286 rangebegin = RExC_parse;
12290 value = utf8n_to_uvchr((U8*)RExC_parse,
12291 RExC_end - RExC_parse,
12292 &numlen, UTF8_ALLOW_DEFAULT);
12293 RExC_parse += numlen;
12296 value = UCHARAT(RExC_parse++);
12299 && RExC_parse < RExC_end
12300 && POSIXCC(UCHARAT(RExC_parse)))
12302 namedclass = regpposixcc(pRExC_state, value, strict);
12304 else if (value == '\\') {
12306 value = utf8n_to_uvchr((U8*)RExC_parse,
12307 RExC_end - RExC_parse,
12308 &numlen, UTF8_ALLOW_DEFAULT);
12309 RExC_parse += numlen;
12312 value = UCHARAT(RExC_parse++);
12314 /* Some compilers cannot handle switching on 64-bit integer
12315 * values, therefore value cannot be an UV. Yes, this will
12316 * be a problem later if we want switch on Unicode.
12317 * A similar issue a little bit later when switching on
12318 * namedclass. --jhi */
12320 /* If the \ is escaping white space when white space is being
12321 * skipped, it means that that white space is wanted literally, and
12322 * is already in 'value'. Otherwise, need to translate the escape
12323 * into what it signifies. */
12324 if (! skip_white || ! is_PATWS_cp(value)) switch ((I32)value) {
12326 case 'w': namedclass = ANYOF_WORDCHAR; break;
12327 case 'W': namedclass = ANYOF_NWORDCHAR; break;
12328 case 's': namedclass = ANYOF_SPACE; break;
12329 case 'S': namedclass = ANYOF_NSPACE; break;
12330 case 'd': namedclass = ANYOF_DIGIT; break;
12331 case 'D': namedclass = ANYOF_NDIGIT; break;
12332 case 'v': namedclass = ANYOF_VERTWS; break;
12333 case 'V': namedclass = ANYOF_NVERTWS; break;
12334 case 'h': namedclass = ANYOF_HORIZWS; break;
12335 case 'H': namedclass = ANYOF_NHORIZWS; break;
12336 case 'N': /* Handle \N{NAME} in class */
12338 /* We only pay attention to the first char of
12339 multichar strings being returned. I kinda wonder
12340 if this makes sense as it does change the behaviour
12341 from earlier versions, OTOH that behaviour was broken
12343 if (! grok_bslash_N(pRExC_state, NULL, &value, flagp, depth,
12344 TRUE, /* => charclass */
12347 if (*flagp & RESTART_UTF8)
12348 FAIL("panic: grok_bslash_N set RESTART_UTF8");
12358 /* We will handle any undefined properties ourselves */
12359 U8 swash_init_flags = _CORE_SWASH_INIT_RETURN_IF_UNDEF;
12361 if (RExC_parse >= RExC_end)
12362 vFAIL2("Empty \\%c{}", (U8)value);
12363 if (*RExC_parse == '{') {
12364 const U8 c = (U8)value;
12365 e = strchr(RExC_parse++, '}');
12367 vFAIL2("Missing right brace on \\%c{}", c);
12368 while (isSPACE(UCHARAT(RExC_parse)))
12370 if (e == RExC_parse)
12371 vFAIL2("Empty \\%c{}", c);
12372 n = e - RExC_parse;
12373 while (isSPACE(UCHARAT(RExC_parse + n - 1)))
12384 if (UCHARAT(RExC_parse) == '^') {
12387 /* toggle. (The rhs xor gets the single bit that
12388 * differs between P and p; the other xor inverts just
12390 value ^= 'P' ^ 'p';
12392 while (isSPACE(UCHARAT(RExC_parse))) {
12397 /* Try to get the definition of the property into
12398 * <invlist>. If /i is in effect, the effective property
12399 * will have its name be <__NAME_i>. The design is
12400 * discussed in commit
12401 * 2f833f5208e26b208886e51e09e2c072b5eabb46 */
12402 Newx(name, n + sizeof("_i__\n"), char);
12404 sprintf(name, "%s%.*s%s\n",
12405 (FOLD) ? "__" : "",
12411 /* Look up the property name, and get its swash and
12412 * inversion list, if the property is found */
12414 SvREFCNT_dec_NN(swash);
12416 swash = _core_swash_init("utf8", name, &PL_sv_undef,
12419 NULL, /* No inversion list */
12422 if (! swash || ! (invlist = _get_swash_invlist(swash))) {
12424 SvREFCNT_dec_NN(swash);
12428 /* Here didn't find it. It could be a user-defined
12429 * property that will be available at run-time. If we
12430 * accept only compile-time properties, is an error;
12431 * otherwise add it to the list for run-time look up */
12433 RExC_parse = e + 1;
12434 vFAIL3("Property '%.*s' is unknown", (int) n, name);
12436 Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%s\n",
12437 (value == 'p' ? '+' : '!'),
12439 has_user_defined_property = TRUE;
12441 /* We don't know yet, so have to assume that the
12442 * property could match something in the Latin1 range,
12443 * hence something that isn't utf8. Note that this
12444 * would cause things in <depends_list> to match
12445 * inappropriately, except that any \p{}, including
12446 * this one forces Unicode semantics, which means there
12447 * is <no depends_list> */
12448 ANYOF_FLAGS(ret) |= ANYOF_NONBITMAP_NON_UTF8;
12452 /* Here, did get the swash and its inversion list. If
12453 * the swash is from a user-defined property, then this
12454 * whole character class should be regarded as such */
12455 has_user_defined_property =
12457 & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY);
12459 /* Invert if asking for the complement */
12460 if (value == 'P') {
12461 _invlist_union_complement_2nd(properties,
12465 /* The swash can't be used as-is, because we've
12466 * inverted things; delay removing it to here after
12467 * have copied its invlist above */
12468 SvREFCNT_dec_NN(swash);
12472 _invlist_union(properties, invlist, &properties);
12477 RExC_parse = e + 1;
12478 namedclass = ANYOF_UNIPROP; /* no official name, but it's
12481 /* \p means they want Unicode semantics */
12482 RExC_uni_semantics = 1;
12485 case 'n': value = '\n'; break;
12486 case 'r': value = '\r'; break;
12487 case 't': value = '\t'; break;
12488 case 'f': value = '\f'; break;
12489 case 'b': value = '\b'; break;
12490 case 'e': value = ASCII_TO_NATIVE('\033');break;
12491 case 'a': value = ASCII_TO_NATIVE('\007');break;
12493 RExC_parse--; /* function expects to be pointed at the 'o' */
12495 const char* error_msg;
12496 bool valid = grok_bslash_o(&RExC_parse,
12499 SIZE_ONLY, /* warnings in pass
12502 silence_non_portable,
12508 if (PL_encoding && value < 0x100) {
12509 goto recode_encoding;
12513 RExC_parse--; /* function expects to be pointed at the 'x' */
12515 const char* error_msg;
12516 bool valid = grok_bslash_x(&RExC_parse,
12519 TRUE, /* Output warnings */
12521 silence_non_portable,
12527 if (PL_encoding && value < 0x100)
12528 goto recode_encoding;
12531 value = grok_bslash_c(*RExC_parse++, UTF, SIZE_ONLY);
12533 case '0': case '1': case '2': case '3': case '4':
12534 case '5': case '6': case '7':
12536 /* Take 1-3 octal digits */
12537 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
12538 numlen = (strict) ? 4 : 3;
12539 value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
12540 RExC_parse += numlen;
12543 RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
12544 vFAIL("Need exactly 3 octal digits");
12546 else if (! SIZE_ONLY /* like \08, \178 */
12548 && RExC_parse < RExC_end
12549 && isDIGIT(*RExC_parse)
12550 && ckWARN(WARN_REGEXP))
12552 SAVEFREESV(RExC_rx_sv);
12553 reg_warn_non_literal_string(
12555 form_short_octal_warning(RExC_parse, numlen));
12556 (void)ReREFCNT_inc(RExC_rx_sv);
12559 if (PL_encoding && value < 0x100)
12560 goto recode_encoding;
12564 if (! RExC_override_recoding) {
12565 SV* enc = PL_encoding;
12566 value = reg_recode((const char)(U8)value, &enc);
12569 vFAIL("Invalid escape in the specified encoding");
12571 else if (SIZE_ONLY) {
12572 ckWARNreg(RExC_parse,
12573 "Invalid escape in the specified encoding");
12579 /* Allow \_ to not give an error */
12580 if (!SIZE_ONLY && isWORDCHAR(value) && value != '_') {
12582 vFAIL2("Unrecognized escape \\%c in character class",
12586 SAVEFREESV(RExC_rx_sv);
12587 ckWARN2reg(RExC_parse,
12588 "Unrecognized escape \\%c in character class passed through",
12590 (void)ReREFCNT_inc(RExC_rx_sv);
12594 } /* End of switch on char following backslash */
12595 } /* end of handling backslash escape sequences */
12598 literal_endpoint++;
12601 /* Here, we have the current token in 'value' */
12603 /* What matches in a locale is not known until runtime. This includes
12604 * what the Posix classes (like \w, [:space:]) match. Room must be
12605 * reserved (one time per class) to store such classes, either if Perl
12606 * is compiled so that locale nodes always should have this space, or
12607 * if there is such class info to be stored. The space will contain a
12608 * bit for each named class that is to be matched against. This isn't
12609 * needed for \p{} and pseudo-classes, as they are not affected by
12610 * locale, and hence are dealt with separately */
12613 && (ANYOF_LOCALE == ANYOF_CLASS
12614 || (namedclass > OOB_NAMEDCLASS && namedclass < ANYOF_MAX)))
12618 RExC_size += ANYOF_CLASS_SKIP - ANYOF_SKIP;
12621 RExC_emit += ANYOF_CLASS_SKIP - ANYOF_SKIP;
12622 ANYOF_CLASS_ZERO(ret);
12624 ANYOF_FLAGS(ret) |= ANYOF_CLASS;
12627 if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
12629 /* a bad range like a-\d, a-[:digit:]. The '-' is taken as a
12630 * literal, as is the character that began the false range, i.e.
12631 * the 'a' in the examples */
12634 const int w = (RExC_parse >= rangebegin)
12635 ? RExC_parse - rangebegin
12638 vFAIL4("False [] range \"%*.*s\"", w, w, rangebegin);
12641 SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
12642 ckWARN4reg(RExC_parse,
12643 "False [] range \"%*.*s\"",
12645 (void)ReREFCNT_inc(RExC_rx_sv);
12646 cp_list = add_cp_to_invlist(cp_list, '-');
12647 cp_list = add_cp_to_invlist(cp_list, prevvalue);
12651 range = 0; /* this was not a true range */
12652 element_count += 2; /* So counts for three values */
12656 U8 classnum = namedclass_to_classnum(namedclass);
12657 if (namedclass >= ANYOF_MAX) { /* If a special class */
12658 if (namedclass != ANYOF_UNIPROP) { /* UNIPROP = \p and \P */
12660 /* Here, should be \h, \H, \v, or \V. Neither /d nor
12661 * /l make a difference in what these match. There
12662 * would be problems if these characters had folds
12663 * other than themselves, as cp_list is subject to
12665 if (classnum != _CC_VERTSPACE) {
12666 assert( namedclass == ANYOF_HORIZWS
12667 || namedclass == ANYOF_NHORIZWS);
12669 /* It turns out that \h is just a synonym for
12671 classnum = _CC_BLANK;
12674 _invlist_union_maybe_complement_2nd(
12676 PL_XPosix_ptrs[classnum],
12677 cBOOL(namedclass % 2), /* Complement if odd
12678 (NHORIZWS, NVERTWS)
12683 else if (classnum == _CC_ASCII) {
12686 ANYOF_CLASS_SET(ret, namedclass);
12689 #endif /* Not isascii(); just use the hard-coded definition for it */
12691 _invlist_union_maybe_complement_2nd(
12694 cBOOL(namedclass % 2), /* Complement if odd
12698 /* The code points 128-255 added above will be
12699 * subtracted out below under /d, so the flag needs to
12701 if (namedclass == ANYOF_NASCII && DEPENDS_SEMANTICS) {
12702 ANYOF_FLAGS(ret) |= ANYOF_NON_UTF8_LATIN1_ALL;
12706 else { /* Garden variety class */
12708 /* The ascii range inversion list */
12709 SV* ascii_source = PL_Posix_ptrs[classnum];
12711 /* The full Latin1 range inversion list */
12712 SV* l1_source = PL_L1Posix_ptrs[classnum];
12714 /* This code is structured into two major clauses. The
12715 * first is for classes whose complete definitions may not
12716 * already be known. It not, the Latin1 definition
12717 * (guaranteed to already known) is used plus code is
12718 * generated to load the rest at run-time (only if needed).
12719 * If the complete definition is known, it drops down to
12720 * the second clause, where the complete definition is
12723 if (classnum < _FIRST_NON_SWASH_CC) {
12725 /* Here, the class has a swash, which may or not
12726 * already be loaded */
12728 /* The name of the property to use to match the full
12729 * eXtended Unicode range swash for this character
12731 const char *Xname = swash_property_names[classnum];
12733 /* If returning the inversion list, we can't defer
12734 * getting this until runtime */
12735 if (ret_invlist && ! PL_utf8_swash_ptrs[classnum]) {
12736 PL_utf8_swash_ptrs[classnum] =
12737 _core_swash_init("utf8", Xname, &PL_sv_undef,
12740 NULL, /* No inversion list */
12741 NULL /* No flags */
12743 assert(PL_utf8_swash_ptrs[classnum]);
12745 if ( ! PL_utf8_swash_ptrs[classnum]) {
12746 if (namedclass % 2 == 0) { /* A non-complemented
12748 /* If not /a matching, there are code points we
12749 * don't know at compile time. Arrange for the
12750 * unknown matches to be loaded at run-time, if
12752 if (! AT_LEAST_ASCII_RESTRICTED) {
12753 Perl_sv_catpvf(aTHX_ listsv, "+utf8::%s\n",
12756 if (LOC) { /* Under locale, set run-time
12758 ANYOF_CLASS_SET(ret, namedclass);
12761 /* Add the current class's code points to
12762 * the running total */
12763 _invlist_union(posixes,
12764 (AT_LEAST_ASCII_RESTRICTED)
12770 else { /* A complemented class */
12771 if (AT_LEAST_ASCII_RESTRICTED) {
12772 /* Under /a should match everything above
12773 * ASCII, plus the complement of the set's
12775 _invlist_union_complement_2nd(posixes,
12780 /* Arrange for the unknown matches to be
12781 * loaded at run-time, if needed */
12782 Perl_sv_catpvf(aTHX_ listsv, "!utf8::%s\n",
12784 runtime_posix_matches_above_Unicode = TRUE;
12786 ANYOF_CLASS_SET(ret, namedclass);
12790 /* We want to match everything in
12791 * Latin1, except those things that
12792 * l1_source matches */
12793 SV* scratch_list = NULL;
12794 _invlist_subtract(PL_Latin1, l1_source,
12797 /* Add the list from this class to the
12800 posixes = scratch_list;
12803 _invlist_union(posixes,
12806 SvREFCNT_dec_NN(scratch_list);
12808 if (DEPENDS_SEMANTICS) {
12810 |= ANYOF_NON_UTF8_LATIN1_ALL;
12815 goto namedclass_done;
12818 /* Here, there is a swash loaded for the class. If no
12819 * inversion list for it yet, get it */
12820 if (! PL_XPosix_ptrs[classnum]) {
12821 PL_XPosix_ptrs[classnum]
12822 = _swash_to_invlist(PL_utf8_swash_ptrs[classnum]);
12826 /* Here there is an inversion list already loaded for the
12829 if (namedclass % 2 == 0) { /* A non-complemented class,
12830 like ANYOF_PUNCT */
12832 /* For non-locale, just add it to any existing list
12834 _invlist_union(posixes,
12835 (AT_LEAST_ASCII_RESTRICTED)
12837 : PL_XPosix_ptrs[classnum],
12840 else { /* Locale */
12841 SV* scratch_list = NULL;
12843 /* For above Latin1 code points, we use the full
12845 _invlist_intersection(PL_AboveLatin1,
12846 PL_XPosix_ptrs[classnum],
12848 /* And set the output to it, adding instead if
12849 * there already is an output. Checking if
12850 * 'posixes' is NULL first saves an extra clone.
12851 * Its reference count will be decremented at the
12852 * next union, etc, or if this is the only
12853 * instance, at the end of the routine */
12855 posixes = scratch_list;
12858 _invlist_union(posixes, scratch_list, &posixes);
12859 SvREFCNT_dec_NN(scratch_list);
12862 #ifndef HAS_ISBLANK
12863 if (namedclass != ANYOF_BLANK) {
12865 /* Set this class in the node for runtime
12867 ANYOF_CLASS_SET(ret, namedclass);
12868 #ifndef HAS_ISBLANK
12871 /* No isblank(), use the hard-coded ASCII-range
12872 * blanks, adding them to the running total. */
12874 _invlist_union(posixes, ascii_source, &posixes);
12879 else { /* A complemented class, like ANYOF_NPUNCT */
12881 _invlist_union_complement_2nd(
12883 (AT_LEAST_ASCII_RESTRICTED)
12885 : PL_XPosix_ptrs[classnum],
12887 /* Under /d, everything in the upper half of the
12888 * Latin1 range matches this complement */
12889 if (DEPENDS_SEMANTICS) {
12890 ANYOF_FLAGS(ret) |= ANYOF_NON_UTF8_LATIN1_ALL;
12893 else { /* Locale */
12894 SV* scratch_list = NULL;
12895 _invlist_subtract(PL_AboveLatin1,
12896 PL_XPosix_ptrs[classnum],
12899 posixes = scratch_list;
12902 _invlist_union(posixes, scratch_list, &posixes);
12903 SvREFCNT_dec_NN(scratch_list);
12905 #ifndef HAS_ISBLANK
12906 if (namedclass != ANYOF_NBLANK) {
12908 ANYOF_CLASS_SET(ret, namedclass);
12909 #ifndef HAS_ISBLANK
12912 /* Get the list of all code points in Latin1
12913 * that are not ASCII blanks, and add them to
12914 * the running total */
12915 _invlist_subtract(PL_Latin1, ascii_source,
12917 _invlist_union(posixes, scratch_list, &posixes);
12918 SvREFCNT_dec_NN(scratch_list);
12925 continue; /* Go get next character */
12927 } /* end of namedclass \blah */
12929 /* Here, we have a single value. If 'range' is set, it is the ending
12930 * of a range--check its validity. Later, we will handle each
12931 * individual code point in the range. If 'range' isn't set, this
12932 * could be the beginning of a range, so check for that by looking
12933 * ahead to see if the next real character to be processed is the range
12934 * indicator--the minus sign */
12937 RExC_parse = regpatws(pRExC_state, RExC_parse,
12938 FALSE /* means don't recognize comments */);
12942 if (prevvalue > value) /* b-a */ {
12943 const int w = RExC_parse - rangebegin;
12944 Simple_vFAIL4("Invalid [] range \"%*.*s\"", w, w, rangebegin);
12945 range = 0; /* not a valid range */
12949 prevvalue = value; /* save the beginning of the potential range */
12950 if (! stop_at_1 /* Can't be a range if parsing just one thing */
12951 && *RExC_parse == '-')
12953 char* next_char_ptr = RExC_parse + 1;
12954 if (skip_white) { /* Get the next real char after the '-' */
12955 next_char_ptr = regpatws(pRExC_state,
12957 FALSE); /* means don't recognize
12961 /* If the '-' is at the end of the class (just before the ']',
12962 * it is a literal minus; otherwise it is a range */
12963 if (next_char_ptr < RExC_end && *next_char_ptr != ']') {
12964 RExC_parse = next_char_ptr;
12966 /* a bad range like \w-, [:word:]- ? */
12967 if (namedclass > OOB_NAMEDCLASS) {
12968 if (strict || ckWARN(WARN_REGEXP)) {
12970 RExC_parse >= rangebegin ?
12971 RExC_parse - rangebegin : 0;
12973 vFAIL4("False [] range \"%*.*s\"",
12978 "False [] range \"%*.*s\"",
12983 cp_list = add_cp_to_invlist(cp_list, '-');
12987 range = 1; /* yeah, it's a range! */
12988 continue; /* but do it the next time */
12993 /* Here, <prevvalue> is the beginning of the range, if any; or <value>
12996 /* non-Latin1 code point implies unicode semantics. Must be set in
12997 * pass1 so is there for the whole of pass 2 */
12999 RExC_uni_semantics = 1;
13002 /* Ready to process either the single value, or the completed range.
13003 * For single-valued non-inverted ranges, we consider the possibility
13004 * of multi-char folds. (We made a conscious decision to not do this
13005 * for the other cases because it can often lead to non-intuitive
13006 * results. For example, you have the peculiar case that:
13007 * "s s" =~ /^[^\xDF]+$/i => Y
13008 * "ss" =~ /^[^\xDF]+$/i => N
13010 * See [perl #89750] */
13011 if (FOLD && allow_multi_folds && value == prevvalue) {
13012 if (value == LATIN_SMALL_LETTER_SHARP_S
13013 || (value > 255 && _invlist_contains_cp(PL_HasMultiCharFold,
13016 /* Here <value> is indeed a multi-char fold. Get what it is */
13018 U8 foldbuf[UTF8_MAXBYTES_CASE];
13021 UV folded = _to_uni_fold_flags(
13026 | ((LOC) ? FOLD_FLAGS_LOCALE
13027 : (ASCII_FOLD_RESTRICTED)
13028 ? FOLD_FLAGS_NOMIX_ASCII
13032 /* Here, <folded> should be the first character of the
13033 * multi-char fold of <value>, with <foldbuf> containing the
13034 * whole thing. But, if this fold is not allowed (because of
13035 * the flags), <fold> will be the same as <value>, and should
13036 * be processed like any other character, so skip the special
13038 if (folded != value) {
13040 /* Skip if we are recursed, currently parsing the class
13041 * again. Otherwise add this character to the list of
13042 * multi-char folds. */
13043 if (! RExC_in_multi_char_class) {
13044 AV** this_array_ptr;
13046 STRLEN cp_count = utf8_length(foldbuf,
13047 foldbuf + foldlen);
13048 SV* multi_fold = sv_2mortal(newSVpvn("", 0));
13050 Perl_sv_catpvf(aTHX_ multi_fold, "\\x{%"UVXf"}", value);
13053 if (! multi_char_matches) {
13054 multi_char_matches = newAV();
13057 /* <multi_char_matches> is actually an array of arrays.
13058 * There will be one or two top-level elements: [2],
13059 * and/or [3]. The [2] element is an array, each
13060 * element thereof is a character which folds to two
13061 * characters; likewise for [3]. (Unicode guarantees a
13062 * maximum of 3 characters in any fold.) When we
13063 * rewrite the character class below, we will do so
13064 * such that the longest folds are written first, so
13065 * that it prefers the longest matching strings first.
13066 * This is done even if it turns out that any
13067 * quantifier is non-greedy, out of programmer
13068 * laziness. Tom Christiansen has agreed that this is
13069 * ok. This makes the test for the ligature 'ffi' come
13070 * before the test for 'ff' */
13071 if (av_exists(multi_char_matches, cp_count)) {
13072 this_array_ptr = (AV**) av_fetch(multi_char_matches,
13074 this_array = *this_array_ptr;
13077 this_array = newAV();
13078 av_store(multi_char_matches, cp_count,
13081 av_push(this_array, multi_fold);
13084 /* This element should not be processed further in this
13087 value = save_value;
13088 prevvalue = save_prevvalue;
13094 /* Deal with this element of the class */
13097 cp_list = _add_range_to_invlist(cp_list, prevvalue, value);
13099 SV* this_range = _new_invlist(1);
13100 _append_range_to_invlist(this_range, prevvalue, value);
13102 /* In EBCDIC, the ranges 'A-Z' and 'a-z' are each not contiguous.
13103 * If this range was specified using something like 'i-j', we want
13104 * to include only the 'i' and the 'j', and not anything in
13105 * between, so exclude non-ASCII, non-alphabetics from it.
13106 * However, if the range was specified with something like
13107 * [\x89-\x91] or [\x89-j], all code points within it should be
13108 * included. literal_endpoint==2 means both ends of the range used
13109 * a literal character, not \x{foo} */
13110 if (literal_endpoint == 2
13111 && (prevvalue >= 'a' && value <= 'z')
13112 || (prevvalue >= 'A' && value <= 'Z'))
13114 _invlist_intersection(this_range, PL_Posix_ptrs[_CC_ALPHA],
13117 _invlist_union(cp_list, this_range, &cp_list);
13118 literal_endpoint = 0;
13122 range = 0; /* this range (if it was one) is done now */
13123 } /* End of loop through all the text within the brackets */
13125 /* If anything in the class expands to more than one character, we have to
13126 * deal with them by building up a substitute parse string, and recursively
13127 * calling reg() on it, instead of proceeding */
13128 if (multi_char_matches) {
13129 SV * substitute_parse = newSVpvn_flags("?:", 2, SVs_TEMP);
13132 char *save_end = RExC_end;
13133 char *save_parse = RExC_parse;
13134 bool first_time = TRUE; /* First multi-char occurrence doesn't get
13139 #if 0 /* Have decided not to deal with multi-char folds in inverted classes,
13140 because too confusing */
13142 sv_catpv(substitute_parse, "(?:");
13146 /* Look at the longest folds first */
13147 for (cp_count = av_len(multi_char_matches); cp_count > 0; cp_count--) {
13149 if (av_exists(multi_char_matches, cp_count)) {
13150 AV** this_array_ptr;
13153 this_array_ptr = (AV**) av_fetch(multi_char_matches,
13155 while ((this_sequence = av_pop(*this_array_ptr)) !=
13158 if (! first_time) {
13159 sv_catpv(substitute_parse, "|");
13161 first_time = FALSE;
13163 sv_catpv(substitute_parse, SvPVX(this_sequence));
13168 /* If the character class contains anything else besides these
13169 * multi-character folds, have to include it in recursive parsing */
13170 if (element_count) {
13171 sv_catpv(substitute_parse, "|[");
13172 sv_catpvn(substitute_parse, orig_parse, RExC_parse - orig_parse);
13173 sv_catpv(substitute_parse, "]");
13176 sv_catpv(substitute_parse, ")");
13179 /* This is a way to get the parse to skip forward a whole named
13180 * sequence instead of matching the 2nd character when it fails the
13182 sv_catpv(substitute_parse, "(*THEN)(*SKIP)(*FAIL)|.)");
13186 RExC_parse = SvPV(substitute_parse, len);
13187 RExC_end = RExC_parse + len;
13188 RExC_in_multi_char_class = 1;
13189 RExC_emit = (regnode *)orig_emit;
13191 ret = reg(pRExC_state, 1, ®_flags, depth+1);
13193 *flagp |= reg_flags&(HASWIDTH|SIMPLE|SPSTART|POSTPONED|RESTART_UTF8);
13195 RExC_parse = save_parse;
13196 RExC_end = save_end;
13197 RExC_in_multi_char_class = 0;
13198 SvREFCNT_dec_NN(multi_char_matches);
13202 /* If the character class contains only a single element, it may be
13203 * optimizable into another node type which is smaller and runs faster.
13204 * Check if this is the case for this class */
13205 if (element_count == 1 && ! ret_invlist) {
13209 if (namedclass > OOB_NAMEDCLASS) { /* this is a named class, like \w or
13210 [:digit:] or \p{foo} */
13212 /* All named classes are mapped into POSIXish nodes, with its FLAG
13213 * argument giving which class it is */
13214 switch ((I32)namedclass) {
13215 case ANYOF_UNIPROP:
13218 /* These don't depend on the charset modifiers. They always
13219 * match under /u rules */
13220 case ANYOF_NHORIZWS:
13221 case ANYOF_HORIZWS:
13222 namedclass = ANYOF_BLANK + namedclass - ANYOF_HORIZWS;
13225 case ANYOF_NVERTWS:
13230 /* The actual POSIXish node for all the rest depends on the
13231 * charset modifier. The ones in the first set depend only on
13232 * ASCII or, if available on this platform, locale */
13236 op = (LOC) ? POSIXL : POSIXA;
13247 /* under /a could be alpha */
13249 if (ASCII_RESTRICTED) {
13250 namedclass = ANYOF_ALPHA + (namedclass % 2);
13258 /* The rest have more possibilities depending on the charset.
13259 * We take advantage of the enum ordering of the charset
13260 * modifiers to get the exact node type, */
13262 op = POSIXD + get_regex_charset(RExC_flags);
13263 if (op > POSIXA) { /* /aa is same as /a */
13266 #ifndef HAS_ISBLANK
13268 && (namedclass == ANYOF_BLANK
13269 || namedclass == ANYOF_NBLANK))
13276 /* The odd numbered ones are the complements of the
13277 * next-lower even number one */
13278 if (namedclass % 2 == 1) {
13282 arg = namedclass_to_classnum(namedclass);
13286 else if (value == prevvalue) {
13288 /* Here, the class consists of just a single code point */
13291 if (! LOC && value == '\n') {
13292 op = REG_ANY; /* Optimize [^\n] */
13293 *flagp |= HASWIDTH|SIMPLE;
13297 else if (value < 256 || UTF) {
13299 /* Optimize a single value into an EXACTish node, but not if it
13300 * would require converting the pattern to UTF-8. */
13301 op = compute_EXACTish(pRExC_state);
13303 } /* Otherwise is a range */
13304 else if (! LOC) { /* locale could vary these */
13305 if (prevvalue == '0') {
13306 if (value == '9') {
13313 /* Here, we have changed <op> away from its initial value iff we found
13314 * an optimization */
13317 /* Throw away this ANYOF regnode, and emit the calculated one,
13318 * which should correspond to the beginning, not current, state of
13320 const char * cur_parse = RExC_parse;
13321 RExC_parse = (char *)orig_parse;
13325 /* To get locale nodes to not use the full ANYOF size would
13326 * require moving the code above that writes the portions
13327 * of it that aren't in other nodes to after this point.
13328 * e.g. ANYOF_CLASS_SET */
13329 RExC_size = orig_size;
13333 RExC_emit = (regnode *)orig_emit;
13334 if (PL_regkind[op] == POSIXD) {
13336 op += NPOSIXD - POSIXD;
13341 ret = reg_node(pRExC_state, op);
13343 if (PL_regkind[op] == POSIXD || PL_regkind[op] == NPOSIXD) {
13347 *flagp |= HASWIDTH|SIMPLE;
13349 else if (PL_regkind[op] == EXACT) {
13350 alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value);
13353 RExC_parse = (char *) cur_parse;
13355 SvREFCNT_dec(posixes);
13356 SvREFCNT_dec(cp_list);
13363 /****** !SIZE_ONLY (Pass 2) AFTER HERE *********/
13365 /* If folding, we calculate all characters that could fold to or from the
13366 * ones already on the list */
13367 if (FOLD && cp_list) {
13368 UV start, end; /* End points of code point ranges */
13370 SV* fold_intersection = NULL;
13372 /* If the highest code point is within Latin1, we can use the
13373 * compiled-in Alphas list, and not have to go out to disk. This
13374 * yields two false positives, the masculine and feminine ordinal
13375 * indicators, which are weeded out below using the
13376 * IS_IN_SOME_FOLD_L1() macro */
13377 if (invlist_highest(cp_list) < 256) {
13378 _invlist_intersection(PL_L1Posix_ptrs[_CC_ALPHA], cp_list,
13379 &fold_intersection);
13383 /* Here, there are non-Latin1 code points, so we will have to go
13384 * fetch the list of all the characters that participate in folds
13386 if (! PL_utf8_foldable) {
13387 SV* swash = swash_init("utf8", "_Perl_Any_Folds",
13388 &PL_sv_undef, 1, 0);
13389 PL_utf8_foldable = _get_swash_invlist(swash);
13390 SvREFCNT_dec_NN(swash);
13393 /* This is a hash that for a particular fold gives all characters
13394 * that are involved in it */
13395 if (! PL_utf8_foldclosures) {
13397 /* If we were unable to find any folds, then we likely won't be
13398 * able to find the closures. So just create an empty list.
13399 * Folding will effectively be restricted to the non-Unicode
13400 * rules hard-coded into Perl. (This case happens legitimately
13401 * during compilation of Perl itself before the Unicode tables
13402 * are generated) */
13403 if (_invlist_len(PL_utf8_foldable) == 0) {
13404 PL_utf8_foldclosures = newHV();
13407 /* If the folds haven't been read in, call a fold function
13409 if (! PL_utf8_tofold) {
13410 U8 dummy[UTF8_MAXBYTES+1];
13412 /* This string is just a short named one above \xff */
13413 to_utf8_fold((U8*) HYPHEN_UTF8, dummy, NULL);
13414 assert(PL_utf8_tofold); /* Verify that worked */
13416 PL_utf8_foldclosures =
13417 _swash_inversion_hash(PL_utf8_tofold);
13421 /* Only the characters in this class that participate in folds need
13422 * be checked. Get the intersection of this class and all the
13423 * possible characters that are foldable. This can quickly narrow
13424 * down a large class */
13425 _invlist_intersection(PL_utf8_foldable, cp_list,
13426 &fold_intersection);
13429 /* Now look at the foldable characters in this class individually */
13430 invlist_iterinit(fold_intersection);
13431 while (invlist_iternext(fold_intersection, &start, &end)) {
13434 /* Locale folding for Latin1 characters is deferred until runtime */
13435 if (LOC && start < 256) {
13439 /* Look at every character in the range */
13440 for (j = start; j <= end; j++) {
13442 U8 foldbuf[UTF8_MAXBYTES_CASE+1];
13448 /* We have the latin1 folding rules hard-coded here so that
13449 * an innocent-looking character class, like /[ks]/i won't
13450 * have to go out to disk to find the possible matches.
13451 * XXX It would be better to generate these via regen, in
13452 * case a new version of the Unicode standard adds new
13453 * mappings, though that is not really likely, and may be
13454 * caught by the default: case of the switch below. */
13456 if (IS_IN_SOME_FOLD_L1(j)) {
13458 /* ASCII is always matched; non-ASCII is matched only
13459 * under Unicode rules */
13460 if (isASCII(j) || AT_LEAST_UNI_SEMANTICS) {
13462 add_cp_to_invlist(cp_list, PL_fold_latin1[j]);
13466 add_cp_to_invlist(depends_list, PL_fold_latin1[j]);
13470 if (HAS_NONLATIN1_FOLD_CLOSURE(j)
13471 && (! isASCII(j) || ! ASCII_FOLD_RESTRICTED))
13473 /* Certain Latin1 characters have matches outside
13474 * Latin1. To get here, <j> is one of those
13475 * characters. None of these matches is valid for
13476 * ASCII characters under /aa, which is why the 'if'
13477 * just above excludes those. These matches only
13478 * happen when the target string is utf8. The code
13479 * below adds the single fold closures for <j> to the
13480 * inversion list. */
13485 add_cp_to_invlist(cp_list, KELVIN_SIGN);
13489 cp_list = add_cp_to_invlist(cp_list,
13490 LATIN_SMALL_LETTER_LONG_S);
13493 cp_list = add_cp_to_invlist(cp_list,
13494 GREEK_CAPITAL_LETTER_MU);
13495 cp_list = add_cp_to_invlist(cp_list,
13496 GREEK_SMALL_LETTER_MU);
13498 case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
13499 case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
13501 add_cp_to_invlist(cp_list, ANGSTROM_SIGN);
13503 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
13504 cp_list = add_cp_to_invlist(cp_list,
13505 LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
13507 case LATIN_SMALL_LETTER_SHARP_S:
13508 cp_list = add_cp_to_invlist(cp_list,
13509 LATIN_CAPITAL_LETTER_SHARP_S);
13511 case 'F': case 'f':
13512 case 'I': case 'i':
13513 case 'L': case 'l':
13514 case 'T': case 't':
13515 case 'A': case 'a':
13516 case 'H': case 'h':
13517 case 'J': case 'j':
13518 case 'N': case 'n':
13519 case 'W': case 'w':
13520 case 'Y': case 'y':
13521 /* These all are targets of multi-character
13522 * folds from code points that require UTF8 to
13523 * express, so they can't match unless the
13524 * target string is in UTF-8, so no action here
13525 * is necessary, as regexec.c properly handles
13526 * the general case for UTF-8 matching and
13527 * multi-char folds */
13530 /* Use deprecated warning to increase the
13531 * chances of this being output */
13532 ckWARN2regdep(RExC_parse, "Perl folding rules are not up-to-date for 0x%"UVXf"; please use the perlbug utility to report;", j);
13539 /* Here is an above Latin1 character. We don't have the rules
13540 * hard-coded for it. First, get its fold. This is the simple
13541 * fold, as the multi-character folds have been handled earlier
13542 * and separated out */
13543 _to_uni_fold_flags(j, foldbuf, &foldlen,
13545 ? FOLD_FLAGS_LOCALE
13546 : (ASCII_FOLD_RESTRICTED)
13547 ? FOLD_FLAGS_NOMIX_ASCII
13550 /* Single character fold of above Latin1. Add everything in
13551 * its fold closure to the list that this node should match.
13552 * The fold closures data structure is a hash with the keys
13553 * being the UTF-8 of every character that is folded to, like
13554 * 'k', and the values each an array of all code points that
13555 * fold to its key. e.g. [ 'k', 'K', KELVIN_SIGN ].
13556 * Multi-character folds are not included */
13557 if ((listp = hv_fetch(PL_utf8_foldclosures,
13558 (char *) foldbuf, foldlen, FALSE)))
13560 AV* list = (AV*) *listp;
13562 for (k = 0; k <= av_len(list); k++) {
13563 SV** c_p = av_fetch(list, k, FALSE);
13566 Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
13570 /* /aa doesn't allow folds between ASCII and non-; /l
13571 * doesn't allow them between above and below 256 */
13572 if ((ASCII_FOLD_RESTRICTED
13573 && (isASCII(c) != isASCII(j)))
13574 || (LOC && ((c < 256) != (j < 256))))
13579 /* Folds involving non-ascii Latin1 characters
13580 * under /d are added to a separate list */
13581 if (isASCII(c) || c > 255 || AT_LEAST_UNI_SEMANTICS)
13583 cp_list = add_cp_to_invlist(cp_list, c);
13586 depends_list = add_cp_to_invlist(depends_list, c);
13592 SvREFCNT_dec_NN(fold_intersection);
13595 /* And combine the result (if any) with any inversion list from posix
13596 * classes. The lists are kept separate up to now because we don't want to
13597 * fold the classes (folding of those is automatically handled by the swash
13598 * fetching code) */
13600 if (! DEPENDS_SEMANTICS) {
13602 _invlist_union(cp_list, posixes, &cp_list);
13603 SvREFCNT_dec_NN(posixes);
13610 /* Under /d, we put into a separate list the Latin1 things that
13611 * match only when the target string is utf8 */
13612 SV* nonascii_but_latin1_properties = NULL;
13613 _invlist_intersection(posixes, PL_Latin1,
13614 &nonascii_but_latin1_properties);
13615 _invlist_subtract(nonascii_but_latin1_properties, PL_ASCII,
13616 &nonascii_but_latin1_properties);
13617 _invlist_subtract(posixes, nonascii_but_latin1_properties,
13620 _invlist_union(cp_list, posixes, &cp_list);
13621 SvREFCNT_dec_NN(posixes);
13627 if (depends_list) {
13628 _invlist_union(depends_list, nonascii_but_latin1_properties,
13630 SvREFCNT_dec_NN(nonascii_but_latin1_properties);
13633 depends_list = nonascii_but_latin1_properties;
13638 /* And combine the result (if any) with any inversion list from properties.
13639 * The lists are kept separate up to now so that we can distinguish the two
13640 * in regards to matching above-Unicode. A run-time warning is generated
13641 * if a Unicode property is matched against a non-Unicode code point. But,
13642 * we allow user-defined properties to match anything, without any warning,
13643 * and we also suppress the warning if there is a portion of the character
13644 * class that isn't a Unicode property, and which matches above Unicode, \W
13645 * or [\x{110000}] for example.
13646 * (Note that in this case, unlike the Posix one above, there is no
13647 * <depends_list>, because having a Unicode property forces Unicode
13650 bool warn_super = ! has_user_defined_property;
13653 /* If it matters to the final outcome, see if a non-property
13654 * component of the class matches above Unicode. If so, the
13655 * warning gets suppressed. This is true even if just a single
13656 * such code point is specified, as though not strictly correct if
13657 * another such code point is matched against, the fact that they
13658 * are using above-Unicode code points indicates they should know
13659 * the issues involved */
13661 bool non_prop_matches_above_Unicode =
13662 runtime_posix_matches_above_Unicode
13663 | (invlist_highest(cp_list) > PERL_UNICODE_MAX);
13665 non_prop_matches_above_Unicode =
13666 ! non_prop_matches_above_Unicode;
13668 warn_super = ! non_prop_matches_above_Unicode;
13671 _invlist_union(properties, cp_list, &cp_list);
13672 SvREFCNT_dec_NN(properties);
13675 cp_list = properties;
13679 OP(ret) = ANYOF_WARN_SUPER;
13683 /* Here, we have calculated what code points should be in the character
13686 * Now we can see about various optimizations. Fold calculation (which we
13687 * did above) needs to take place before inversion. Otherwise /[^k]/i
13688 * would invert to include K, which under /i would match k, which it
13689 * shouldn't. Therefore we can't invert folded locale now, as it won't be
13690 * folded until runtime */
13692 /* Optimize inverted simple patterns (e.g. [^a-z]) when everything is known
13693 * at compile time. Besides not inverting folded locale now, we can't
13694 * invert if there are things such as \w, which aren't known until runtime
13697 && ! (LOC && (FOLD || (ANYOF_FLAGS(ret) & ANYOF_CLASS)))
13699 && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
13701 _invlist_invert(cp_list);
13703 /* Any swash can't be used as-is, because we've inverted things */
13705 SvREFCNT_dec_NN(swash);
13709 /* Clear the invert flag since have just done it here */
13714 *ret_invlist = cp_list;
13715 SvREFCNT_dec(swash);
13717 /* Discard the generated node */
13719 RExC_size = orig_size;
13722 RExC_emit = orig_emit;
13727 /* If we didn't do folding, it's because some information isn't available
13728 * until runtime; set the run-time fold flag for these. (We don't have to
13729 * worry about properties folding, as that is taken care of by the swash
13733 ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD;
13736 /* Some character classes are equivalent to other nodes. Such nodes take
13737 * up less room and generally fewer operations to execute than ANYOF nodes.
13738 * Above, we checked for and optimized into some such equivalents for
13739 * certain common classes that are easy to test. Getting to this point in
13740 * the code means that the class didn't get optimized there. Since this
13741 * code is only executed in Pass 2, it is too late to save space--it has
13742 * been allocated in Pass 1, and currently isn't given back. But turning
13743 * things into an EXACTish node can allow the optimizer to join it to any
13744 * adjacent such nodes. And if the class is equivalent to things like /./,
13745 * expensive run-time swashes can be avoided. Now that we have more
13746 * complete information, we can find things necessarily missed by the
13747 * earlier code. I (khw) am not sure how much to look for here. It would
13748 * be easy, but perhaps too slow, to check any candidates against all the
13749 * node types they could possibly match using _invlistEQ(). */
13754 && ! (ANYOF_FLAGS(ret) & ANYOF_CLASS)
13755 && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
13758 U8 op = END; /* The optimzation node-type */
13759 const char * cur_parse= RExC_parse;
13761 invlist_iterinit(cp_list);
13762 if (! invlist_iternext(cp_list, &start, &end)) {
13764 /* Here, the list is empty. This happens, for example, when a
13765 * Unicode property is the only thing in the character class, and
13766 * it doesn't match anything. (perluniprops.pod notes such
13769 *flagp |= HASWIDTH|SIMPLE;
13771 else if (start == end) { /* The range is a single code point */
13772 if (! invlist_iternext(cp_list, &start, &end)
13774 /* Don't do this optimization if it would require changing
13775 * the pattern to UTF-8 */
13776 && (start < 256 || UTF))
13778 /* Here, the list contains a single code point. Can optimize
13779 * into an EXACT node */
13788 /* A locale node under folding with one code point can be
13789 * an EXACTFL, as its fold won't be calculated until
13795 /* Here, we are generally folding, but there is only one
13796 * code point to match. If we have to, we use an EXACT
13797 * node, but it would be better for joining with adjacent
13798 * nodes in the optimization pass if we used the same
13799 * EXACTFish node that any such are likely to be. We can
13800 * do this iff the code point doesn't participate in any
13801 * folds. For example, an EXACTF of a colon is the same as
13802 * an EXACT one, since nothing folds to or from a colon. */
13804 if (IS_IN_SOME_FOLD_L1(value)) {
13809 if (! PL_utf8_foldable) {
13810 SV* swash = swash_init("utf8", "_Perl_Any_Folds",
13811 &PL_sv_undef, 1, 0);
13812 PL_utf8_foldable = _get_swash_invlist(swash);
13813 SvREFCNT_dec_NN(swash);
13815 if (_invlist_contains_cp(PL_utf8_foldable, value)) {
13820 /* If we haven't found the node type, above, it means we
13821 * can use the prevailing one */
13823 op = compute_EXACTish(pRExC_state);
13828 else if (start == 0) {
13829 if (end == UV_MAX) {
13831 *flagp |= HASWIDTH|SIMPLE;
13834 else if (end == '\n' - 1
13835 && invlist_iternext(cp_list, &start, &end)
13836 && start == '\n' + 1 && end == UV_MAX)
13839 *flagp |= HASWIDTH|SIMPLE;
13843 invlist_iterfinish(cp_list);
13846 RExC_parse = (char *)orig_parse;
13847 RExC_emit = (regnode *)orig_emit;
13849 ret = reg_node(pRExC_state, op);
13851 RExC_parse = (char *)cur_parse;
13853 if (PL_regkind[op] == EXACT) {
13854 alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value);
13857 SvREFCNT_dec_NN(cp_list);
13862 /* Here, <cp_list> contains all the code points we can determine at
13863 * compile time that match under all conditions. Go through it, and
13864 * for things that belong in the bitmap, put them there, and delete from
13865 * <cp_list>. While we are at it, see if everything above 255 is in the
13866 * list, and if so, set a flag to speed up execution */
13867 ANYOF_BITMAP_ZERO(ret);
13870 /* This gets set if we actually need to modify things */
13871 bool change_invlist = FALSE;
13875 /* Start looking through <cp_list> */
13876 invlist_iterinit(cp_list);
13877 while (invlist_iternext(cp_list, &start, &end)) {
13881 if (end == UV_MAX && start <= 256) {
13882 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
13885 /* Quit if are above what we should change */
13890 change_invlist = TRUE;
13892 /* Set all the bits in the range, up to the max that we are doing */
13893 high = (end < 255) ? end : 255;
13894 for (i = start; i <= (int) high; i++) {
13895 if (! ANYOF_BITMAP_TEST(ret, i)) {
13896 ANYOF_BITMAP_SET(ret, i);
13902 invlist_iterfinish(cp_list);
13904 /* Done with loop; remove any code points that are in the bitmap from
13906 if (change_invlist) {
13907 _invlist_subtract(cp_list, PL_Latin1, &cp_list);
13910 /* If have completely emptied it, remove it completely */
13911 if (_invlist_len(cp_list) == 0) {
13912 SvREFCNT_dec_NN(cp_list);
13918 ANYOF_FLAGS(ret) |= ANYOF_INVERT;
13921 /* Here, the bitmap has been populated with all the Latin1 code points that
13922 * always match. Can now add to the overall list those that match only
13923 * when the target string is UTF-8 (<depends_list>). */
13924 if (depends_list) {
13926 _invlist_union(cp_list, depends_list, &cp_list);
13927 SvREFCNT_dec_NN(depends_list);
13930 cp_list = depends_list;
13934 /* If there is a swash and more than one element, we can't use the swash in
13935 * the optimization below. */
13936 if (swash && element_count > 1) {
13937 SvREFCNT_dec_NN(swash);
13942 && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
13944 ARG_SET(ret, ANYOF_NONBITMAP_EMPTY);
13947 /* av[0] stores the character class description in its textual form:
13948 * used later (regexec.c:Perl_regclass_swash()) to initialize the
13949 * appropriate swash, and is also useful for dumping the regnode.
13950 * av[1] if NULL, is a placeholder to later contain the swash computed
13951 * from av[0]. But if no further computation need be done, the
13952 * swash is stored there now.
13953 * av[2] stores the cp_list inversion list for use in addition or
13954 * instead of av[0]; used only if av[1] is NULL
13955 * av[3] is set if any component of the class is from a user-defined
13956 * property; used only if av[1] is NULL */
13957 AV * const av = newAV();
13960 av_store(av, 0, (HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
13961 ? SvREFCNT_inc(listsv) : &PL_sv_undef);
13963 av_store(av, 1, swash);
13964 SvREFCNT_dec_NN(cp_list);
13967 av_store(av, 1, NULL);
13969 av_store(av, 2, cp_list);
13970 av_store(av, 3, newSVuv(has_user_defined_property));
13974 rv = newRV_noinc(MUTABLE_SV(av));
13975 n = add_data(pRExC_state, 1, "s");
13976 RExC_rxi->data->data[n] = (void*)rv;
13980 *flagp |= HASWIDTH|SIMPLE;
13983 #undef HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
13986 /* reg_skipcomment()
13988 Absorbs an /x style # comments from the input stream.
13989 Returns true if there is more text remaining in the stream.
13990 Will set the REG_SEEN_RUN_ON_COMMENT flag if the comment
13991 terminates the pattern without including a newline.
13993 Note its the callers responsibility to ensure that we are
13994 actually in /x mode
13999 S_reg_skipcomment(pTHX_ RExC_state_t *pRExC_state)
14003 PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
14005 while (RExC_parse < RExC_end)
14006 if (*RExC_parse++ == '\n') {
14011 /* we ran off the end of the pattern without ending
14012 the comment, so we have to add an \n when wrapping */
14013 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
14021 Advances the parse position, and optionally absorbs
14022 "whitespace" from the inputstream.
14024 Without /x "whitespace" means (?#...) style comments only,
14025 with /x this means (?#...) and # comments and whitespace proper.
14027 Returns the RExC_parse point from BEFORE the scan occurs.
14029 This is the /x friendly way of saying RExC_parse++.
14033 S_nextchar(pTHX_ RExC_state_t *pRExC_state)
14035 char* const retval = RExC_parse++;
14037 PERL_ARGS_ASSERT_NEXTCHAR;
14040 if (RExC_end - RExC_parse >= 3
14041 && *RExC_parse == '('
14042 && RExC_parse[1] == '?'
14043 && RExC_parse[2] == '#')
14045 while (*RExC_parse != ')') {
14046 if (RExC_parse == RExC_end)
14047 FAIL("Sequence (?#... not terminated");
14053 if (RExC_flags & RXf_PMf_EXTENDED) {
14054 if (isSPACE(*RExC_parse)) {
14058 else if (*RExC_parse == '#') {
14059 if ( reg_skipcomment( pRExC_state ) )
14068 - reg_node - emit a node
14070 STATIC regnode * /* Location. */
14071 S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
14075 regnode * const ret = RExC_emit;
14076 GET_RE_DEBUG_FLAGS_DECL;
14078 PERL_ARGS_ASSERT_REG_NODE;
14081 SIZE_ALIGN(RExC_size);
14085 if (RExC_emit >= RExC_emit_bound)
14086 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
14087 op, RExC_emit, RExC_emit_bound);
14089 NODE_ALIGN_FILL(ret);
14091 FILL_ADVANCE_NODE(ptr, op);
14092 #ifdef RE_TRACK_PATTERN_OFFSETS
14093 if (RExC_offsets) { /* MJD */
14094 MJD_OFFSET_DEBUG(("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
14095 "reg_node", __LINE__,
14097 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
14098 ? "Overwriting end of array!\n" : "OK",
14099 (UV)(RExC_emit - RExC_emit_start),
14100 (UV)(RExC_parse - RExC_start),
14101 (UV)RExC_offsets[0]));
14102 Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
14110 - reganode - emit a node with an argument
14112 STATIC regnode * /* Location. */
14113 S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
14117 regnode * const ret = RExC_emit;
14118 GET_RE_DEBUG_FLAGS_DECL;
14120 PERL_ARGS_ASSERT_REGANODE;
14123 SIZE_ALIGN(RExC_size);
14128 assert(2==regarglen[op]+1);
14130 Anything larger than this has to allocate the extra amount.
14131 If we changed this to be:
14133 RExC_size += (1 + regarglen[op]);
14135 then it wouldn't matter. Its not clear what side effect
14136 might come from that so its not done so far.
14141 if (RExC_emit >= RExC_emit_bound)
14142 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
14143 op, RExC_emit, RExC_emit_bound);
14145 NODE_ALIGN_FILL(ret);
14147 FILL_ADVANCE_NODE_ARG(ptr, op, arg);
14148 #ifdef RE_TRACK_PATTERN_OFFSETS
14149 if (RExC_offsets) { /* MJD */
14150 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
14154 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0] ?
14155 "Overwriting end of array!\n" : "OK",
14156 (UV)(RExC_emit - RExC_emit_start),
14157 (UV)(RExC_parse - RExC_start),
14158 (UV)RExC_offsets[0]));
14159 Set_Cur_Node_Offset;
14167 - reguni - emit (if appropriate) a Unicode character
14170 S_reguni(pTHX_ const RExC_state_t *pRExC_state, UV uv, char* s)
14174 PERL_ARGS_ASSERT_REGUNI;
14176 return SIZE_ONLY ? UNISKIP(uv) : (uvchr_to_utf8((U8*)s, uv) - (U8*)s);
14180 - reginsert - insert an operator in front of already-emitted operand
14182 * Means relocating the operand.
14185 S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
14191 const int offset = regarglen[(U8)op];
14192 const int size = NODE_STEP_REGNODE + offset;
14193 GET_RE_DEBUG_FLAGS_DECL;
14195 PERL_ARGS_ASSERT_REGINSERT;
14196 PERL_UNUSED_ARG(depth);
14197 /* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
14198 DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
14207 if (RExC_open_parens) {
14209 /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
14210 for ( paren=0 ; paren < RExC_npar ; paren++ ) {
14211 if ( RExC_open_parens[paren] >= opnd ) {
14212 /*DEBUG_PARSE_FMT("open"," - %d",size);*/
14213 RExC_open_parens[paren] += size;
14215 /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
14217 if ( RExC_close_parens[paren] >= opnd ) {
14218 /*DEBUG_PARSE_FMT("close"," - %d",size);*/
14219 RExC_close_parens[paren] += size;
14221 /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
14226 while (src > opnd) {
14227 StructCopy(--src, --dst, regnode);
14228 #ifdef RE_TRACK_PATTERN_OFFSETS
14229 if (RExC_offsets) { /* MJD 20010112 */
14230 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
14234 (UV)(dst - RExC_emit_start) > RExC_offsets[0]
14235 ? "Overwriting end of array!\n" : "OK",
14236 (UV)(src - RExC_emit_start),
14237 (UV)(dst - RExC_emit_start),
14238 (UV)RExC_offsets[0]));
14239 Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
14240 Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
14246 place = opnd; /* Op node, where operand used to be. */
14247 #ifdef RE_TRACK_PATTERN_OFFSETS
14248 if (RExC_offsets) { /* MJD */
14249 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
14253 (UV)(place - RExC_emit_start) > RExC_offsets[0]
14254 ? "Overwriting end of array!\n" : "OK",
14255 (UV)(place - RExC_emit_start),
14256 (UV)(RExC_parse - RExC_start),
14257 (UV)RExC_offsets[0]));
14258 Set_Node_Offset(place, RExC_parse);
14259 Set_Node_Length(place, 1);
14262 src = NEXTOPER(place);
14263 FILL_ADVANCE_NODE(place, op);
14264 Zero(src, offset, regnode);
14268 - regtail - set the next-pointer at the end of a node chain of p to val.
14269 - SEE ALSO: regtail_study
14271 /* TODO: All three parms should be const */
14273 S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
14277 GET_RE_DEBUG_FLAGS_DECL;
14279 PERL_ARGS_ASSERT_REGTAIL;
14281 PERL_UNUSED_ARG(depth);
14287 /* Find last node. */
14290 regnode * const temp = regnext(scan);
14292 SV * const mysv=sv_newmortal();
14293 DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
14294 regprop(RExC_rx, mysv, scan);
14295 PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
14296 SvPV_nolen_const(mysv), REG_NODE_NUM(scan),
14297 (temp == NULL ? "->" : ""),
14298 (temp == NULL ? PL_reg_name[OP(val)] : "")
14306 if (reg_off_by_arg[OP(scan)]) {
14307 ARG_SET(scan, val - scan);
14310 NEXT_OFF(scan) = val - scan;
14316 - regtail_study - set the next-pointer at the end of a node chain of p to val.
14317 - Look for optimizable sequences at the same time.
14318 - currently only looks for EXACT chains.
14320 This is experimental code. The idea is to use this routine to perform
14321 in place optimizations on branches and groups as they are constructed,
14322 with the long term intention of removing optimization from study_chunk so
14323 that it is purely analytical.
14325 Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
14326 to control which is which.
14329 /* TODO: All four parms should be const */
14332 S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
14337 #ifdef EXPERIMENTAL_INPLACESCAN
14340 GET_RE_DEBUG_FLAGS_DECL;
14342 PERL_ARGS_ASSERT_REGTAIL_STUDY;
14348 /* Find last node. */
14352 regnode * const temp = regnext(scan);
14353 #ifdef EXPERIMENTAL_INPLACESCAN
14354 if (PL_regkind[OP(scan)] == EXACT) {
14355 bool has_exactf_sharp_s; /* Unexamined in this routine */
14356 if (join_exact(pRExC_state,scan,&min, &has_exactf_sharp_s, 1,val,depth+1))
14361 switch (OP(scan)) {
14367 case EXACTFU_TRICKYFOLD:
14369 if( exact == PSEUDO )
14371 else if ( exact != OP(scan) )
14380 SV * const mysv=sv_newmortal();
14381 DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
14382 regprop(RExC_rx, mysv, scan);
14383 PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
14384 SvPV_nolen_const(mysv),
14385 REG_NODE_NUM(scan),
14386 PL_reg_name[exact]);
14393 SV * const mysv_val=sv_newmortal();
14394 DEBUG_PARSE_MSG("");
14395 regprop(RExC_rx, mysv_val, val);
14396 PerlIO_printf(Perl_debug_log, "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
14397 SvPV_nolen_const(mysv_val),
14398 (IV)REG_NODE_NUM(val),
14402 if (reg_off_by_arg[OP(scan)]) {
14403 ARG_SET(scan, val - scan);
14406 NEXT_OFF(scan) = val - scan;
14414 - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
14418 S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
14424 for (bit=0; bit<32; bit++) {
14425 if (flags & (1<<bit)) {
14426 if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
14429 if (!set++ && lead)
14430 PerlIO_printf(Perl_debug_log, "%s",lead);
14431 PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
14434 if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
14435 if (!set++ && lead) {
14436 PerlIO_printf(Perl_debug_log, "%s",lead);
14439 case REGEX_UNICODE_CHARSET:
14440 PerlIO_printf(Perl_debug_log, "UNICODE");
14442 case REGEX_LOCALE_CHARSET:
14443 PerlIO_printf(Perl_debug_log, "LOCALE");
14445 case REGEX_ASCII_RESTRICTED_CHARSET:
14446 PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
14448 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
14449 PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
14452 PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
14458 PerlIO_printf(Perl_debug_log, "\n");
14460 PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
14466 Perl_regdump(pTHX_ const regexp *r)
14470 SV * const sv = sv_newmortal();
14471 SV *dsv= sv_newmortal();
14472 RXi_GET_DECL(r,ri);
14473 GET_RE_DEBUG_FLAGS_DECL;
14475 PERL_ARGS_ASSERT_REGDUMP;
14477 (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
14479 /* Header fields of interest. */
14480 if (r->anchored_substr) {
14481 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
14482 RE_SV_DUMPLEN(r->anchored_substr), 30);
14483 PerlIO_printf(Perl_debug_log,
14484 "anchored %s%s at %"IVdf" ",
14485 s, RE_SV_TAIL(r->anchored_substr),
14486 (IV)r->anchored_offset);
14487 } else if (r->anchored_utf8) {
14488 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
14489 RE_SV_DUMPLEN(r->anchored_utf8), 30);
14490 PerlIO_printf(Perl_debug_log,
14491 "anchored utf8 %s%s at %"IVdf" ",
14492 s, RE_SV_TAIL(r->anchored_utf8),
14493 (IV)r->anchored_offset);
14495 if (r->float_substr) {
14496 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
14497 RE_SV_DUMPLEN(r->float_substr), 30);
14498 PerlIO_printf(Perl_debug_log,
14499 "floating %s%s at %"IVdf"..%"UVuf" ",
14500 s, RE_SV_TAIL(r->float_substr),
14501 (IV)r->float_min_offset, (UV)r->float_max_offset);
14502 } else if (r->float_utf8) {
14503 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
14504 RE_SV_DUMPLEN(r->float_utf8), 30);
14505 PerlIO_printf(Perl_debug_log,
14506 "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
14507 s, RE_SV_TAIL(r->float_utf8),
14508 (IV)r->float_min_offset, (UV)r->float_max_offset);
14510 if (r->check_substr || r->check_utf8)
14511 PerlIO_printf(Perl_debug_log,
14513 (r->check_substr == r->float_substr
14514 && r->check_utf8 == r->float_utf8
14515 ? "(checking floating" : "(checking anchored"));
14516 if (r->extflags & RXf_NOSCAN)
14517 PerlIO_printf(Perl_debug_log, " noscan");
14518 if (r->extflags & RXf_CHECK_ALL)
14519 PerlIO_printf(Perl_debug_log, " isall");
14520 if (r->check_substr || r->check_utf8)
14521 PerlIO_printf(Perl_debug_log, ") ");
14523 if (ri->regstclass) {
14524 regprop(r, sv, ri->regstclass);
14525 PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
14527 if (r->extflags & RXf_ANCH) {
14528 PerlIO_printf(Perl_debug_log, "anchored");
14529 if (r->extflags & RXf_ANCH_BOL)
14530 PerlIO_printf(Perl_debug_log, "(BOL)");
14531 if (r->extflags & RXf_ANCH_MBOL)
14532 PerlIO_printf(Perl_debug_log, "(MBOL)");
14533 if (r->extflags & RXf_ANCH_SBOL)
14534 PerlIO_printf(Perl_debug_log, "(SBOL)");
14535 if (r->extflags & RXf_ANCH_GPOS)
14536 PerlIO_printf(Perl_debug_log, "(GPOS)");
14537 PerlIO_putc(Perl_debug_log, ' ');
14539 if (r->extflags & RXf_GPOS_SEEN)
14540 PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
14541 if (r->intflags & PREGf_SKIP)
14542 PerlIO_printf(Perl_debug_log, "plus ");
14543 if (r->intflags & PREGf_IMPLICIT)
14544 PerlIO_printf(Perl_debug_log, "implicit ");
14545 PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
14546 if (r->extflags & RXf_EVAL_SEEN)
14547 PerlIO_printf(Perl_debug_log, "with eval ");
14548 PerlIO_printf(Perl_debug_log, "\n");
14549 DEBUG_FLAGS_r(regdump_extflags("r->extflags: ",r->extflags));
14551 PERL_ARGS_ASSERT_REGDUMP;
14552 PERL_UNUSED_CONTEXT;
14553 PERL_UNUSED_ARG(r);
14554 #endif /* DEBUGGING */
14558 - regprop - printable representation of opcode
14560 #define EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags) \
14563 Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]); \
14564 if (flags & ANYOF_INVERT) \
14565 /*make sure the invert info is in each */ \
14566 sv_catpvs(sv, "^"); \
14572 Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o)
14578 /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
14579 static const char * const anyofs[] = {
14580 #if _CC_WORDCHAR != 0 || _CC_DIGIT != 1 || _CC_ALPHA != 2 || _CC_LOWER != 3 \
14581 || _CC_UPPER != 4 || _CC_PUNCT != 5 || _CC_PRINT != 6 \
14582 || _CC_ALPHANUMERIC != 7 || _CC_GRAPH != 8 || _CC_CASED != 9 \
14583 || _CC_SPACE != 10 || _CC_BLANK != 11 || _CC_XDIGIT != 12 \
14584 || _CC_PSXSPC != 13 || _CC_CNTRL != 14 || _CC_ASCII != 15 \
14585 || _CC_VERTSPACE != 16
14586 #error Need to adjust order of anyofs[]
14623 RXi_GET_DECL(prog,progi);
14624 GET_RE_DEBUG_FLAGS_DECL;
14626 PERL_ARGS_ASSERT_REGPROP;
14630 if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */
14631 /* It would be nice to FAIL() here, but this may be called from
14632 regexec.c, and it would be hard to supply pRExC_state. */
14633 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(o), (int)REGNODE_MAX);
14634 sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
14636 k = PL_regkind[OP(o)];
14639 sv_catpvs(sv, " ");
14640 /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
14641 * is a crude hack but it may be the best for now since
14642 * we have no flag "this EXACTish node was UTF-8"
14644 pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
14645 PERL_PV_ESCAPE_UNI_DETECT |
14646 PERL_PV_ESCAPE_NONASCII |
14647 PERL_PV_PRETTY_ELLIPSES |
14648 PERL_PV_PRETTY_LTGT |
14649 PERL_PV_PRETTY_NOCLEAR
14651 } else if (k == TRIE) {
14652 /* print the details of the trie in dumpuntil instead, as
14653 * progi->data isn't available here */
14654 const char op = OP(o);
14655 const U32 n = ARG(o);
14656 const reg_ac_data * const ac = IS_TRIE_AC(op) ?
14657 (reg_ac_data *)progi->data->data[n] :
14659 const reg_trie_data * const trie
14660 = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
14662 Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
14663 DEBUG_TRIE_COMPILE_r(
14664 Perl_sv_catpvf(aTHX_ sv,
14665 "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
14666 (UV)trie->startstate,
14667 (IV)trie->statecount-1, /* -1 because of the unused 0 element */
14668 (UV)trie->wordcount,
14671 (UV)TRIE_CHARCOUNT(trie),
14672 (UV)trie->uniquecharcount
14675 if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
14677 int rangestart = -1;
14678 U8* bitmap = IS_ANYOF_TRIE(op) ? (U8*)ANYOF_BITMAP(o) : (U8*)TRIE_BITMAP(trie);
14679 sv_catpvs(sv, "[");
14680 for (i = 0; i <= 256; i++) {
14681 if (i < 256 && BITMAP_TEST(bitmap,i)) {
14682 if (rangestart == -1)
14684 } else if (rangestart != -1) {
14685 if (i <= rangestart + 3)
14686 for (; rangestart < i; rangestart++)
14687 put_byte(sv, rangestart);
14689 put_byte(sv, rangestart);
14690 sv_catpvs(sv, "-");
14691 put_byte(sv, i - 1);
14696 sv_catpvs(sv, "]");
14699 } else if (k == CURLY) {
14700 if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
14701 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
14702 Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
14704 else if (k == WHILEM && o->flags) /* Ordinal/of */
14705 Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
14706 else if (k == REF || k == OPEN || k == CLOSE || k == GROUPP || OP(o)==ACCEPT) {
14707 Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
14708 if ( RXp_PAREN_NAMES(prog) ) {
14709 if ( k != REF || (OP(o) < NREF)) {
14710 AV *list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
14711 SV **name= av_fetch(list, ARG(o), 0 );
14713 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
14716 AV *list= MUTABLE_AV(progi->data->data[ progi->name_list_idx ]);
14717 SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
14718 I32 *nums=(I32*)SvPVX(sv_dat);
14719 SV **name= av_fetch(list, nums[0], 0 );
14722 for ( n=0; n<SvIVX(sv_dat); n++ ) {
14723 Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
14724 (n ? "," : ""), (IV)nums[n]);
14726 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
14730 } else if (k == GOSUB)
14731 Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o)); /* Paren and offset */
14732 else if (k == VERB) {
14734 Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
14735 SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
14736 } else if (k == LOGICAL)
14737 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* 2: embedded, otherwise 1 */
14738 else if (k == ANYOF) {
14739 int i, rangestart = -1;
14740 const U8 flags = ANYOF_FLAGS(o);
14744 if (flags & ANYOF_LOCALE)
14745 sv_catpvs(sv, "{loc}");
14746 if (flags & ANYOF_LOC_FOLD)
14747 sv_catpvs(sv, "{i}");
14748 Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
14749 if (flags & ANYOF_INVERT)
14750 sv_catpvs(sv, "^");
14752 /* output what the standard cp 0-255 bitmap matches */
14753 for (i = 0; i <= 256; i++) {
14754 if (i < 256 && ANYOF_BITMAP_TEST(o,i)) {
14755 if (rangestart == -1)
14757 } else if (rangestart != -1) {
14758 if (i <= rangestart + 3)
14759 for (; rangestart < i; rangestart++)
14760 put_byte(sv, rangestart);
14762 put_byte(sv, rangestart);
14763 sv_catpvs(sv, "-");
14764 put_byte(sv, i - 1);
14771 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
14772 /* output any special charclass tests (used entirely under use locale) */
14773 if (ANYOF_CLASS_TEST_ANY_SET(o))
14774 for (i = 0; i < (int)(sizeof(anyofs)/sizeof(char*)); i++)
14775 if (ANYOF_CLASS_TEST(o,i)) {
14776 sv_catpv(sv, anyofs[i]);
14780 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
14782 if (flags & ANYOF_NON_UTF8_LATIN1_ALL) {
14783 sv_catpvs(sv, "{non-utf8-latin1-all}");
14786 /* output information about the unicode matching */
14787 if (flags & ANYOF_UNICODE_ALL)
14788 sv_catpvs(sv, "{unicode_all}");
14789 else if (ANYOF_NONBITMAP(o))
14790 sv_catpvs(sv, "{unicode}");
14791 if (flags & ANYOF_NONBITMAP_NON_UTF8)
14792 sv_catpvs(sv, "{outside bitmap}");
14794 if (ANYOF_NONBITMAP(o)) {
14795 SV *lv; /* Set if there is something outside the bit map */
14796 SV * const sw = regclass_swash(prog, o, FALSE, &lv, NULL);
14797 bool byte_output = FALSE; /* If something in the bitmap has been
14800 if (lv && lv != &PL_sv_undef) {
14802 U8 s[UTF8_MAXBYTES_CASE+1];
14804 for (i = 0; i <= 256; i++) { /* Look at chars in bitmap */
14805 uvchr_to_utf8(s, i);
14808 && ! ANYOF_BITMAP_TEST(o, i) /* Don't duplicate
14812 && swash_fetch(sw, s, TRUE))
14814 if (rangestart == -1)
14816 } else if (rangestart != -1) {
14817 byte_output = TRUE;
14818 if (i <= rangestart + 3)
14819 for (; rangestart < i; rangestart++) {
14820 put_byte(sv, rangestart);
14823 put_byte(sv, rangestart);
14824 sv_catpvs(sv, "-");
14833 char *s = savesvpv(lv);
14834 char * const origs = s;
14836 while (*s && *s != '\n')
14840 const char * const t = ++s;
14843 sv_catpvs(sv, " ");
14849 /* Truncate very long output */
14850 if (s - origs > 256) {
14851 Perl_sv_catpvf(aTHX_ sv,
14853 (int) (s - origs - 1),
14859 else if (*s == '\t') {
14874 SvREFCNT_dec_NN(lv);
14878 Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
14880 else if (k == POSIXD || k == NPOSIXD) {
14881 U8 index = FLAGS(o) * 2;
14882 if (index > (sizeof(anyofs) / sizeof(anyofs[0]))) {
14883 Perl_sv_catpvf(aTHX_ sv, "[illegal type=%d])", index);
14886 sv_catpv(sv, anyofs[index]);
14889 else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
14890 Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
14892 PERL_UNUSED_CONTEXT;
14893 PERL_UNUSED_ARG(sv);
14894 PERL_UNUSED_ARG(o);
14895 PERL_UNUSED_ARG(prog);
14896 #endif /* DEBUGGING */
14900 Perl_re_intuit_string(pTHX_ REGEXP * const r)
14901 { /* Assume that RE_INTUIT is set */
14903 struct regexp *const prog = ReANY(r);
14904 GET_RE_DEBUG_FLAGS_DECL;
14906 PERL_ARGS_ASSERT_RE_INTUIT_STRING;
14907 PERL_UNUSED_CONTEXT;
14911 const char * const s = SvPV_nolen_const(prog->check_substr
14912 ? prog->check_substr : prog->check_utf8);
14914 if (!PL_colorset) reginitcolors();
14915 PerlIO_printf(Perl_debug_log,
14916 "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
14918 prog->check_substr ? "" : "utf8 ",
14919 PL_colors[5],PL_colors[0],
14922 (strlen(s) > 60 ? "..." : ""));
14925 return prog->check_substr ? prog->check_substr : prog->check_utf8;
14931 handles refcounting and freeing the perl core regexp structure. When
14932 it is necessary to actually free the structure the first thing it
14933 does is call the 'free' method of the regexp_engine associated to
14934 the regexp, allowing the handling of the void *pprivate; member
14935 first. (This routine is not overridable by extensions, which is why
14936 the extensions free is called first.)
14938 See regdupe and regdupe_internal if you change anything here.
14940 #ifndef PERL_IN_XSUB_RE
14942 Perl_pregfree(pTHX_ REGEXP *r)
14948 Perl_pregfree2(pTHX_ REGEXP *rx)
14951 struct regexp *const r = ReANY(rx);
14952 GET_RE_DEBUG_FLAGS_DECL;
14954 PERL_ARGS_ASSERT_PREGFREE2;
14956 if (r->mother_re) {
14957 ReREFCNT_dec(r->mother_re);
14959 CALLREGFREE_PVT(rx); /* free the private data */
14960 SvREFCNT_dec(RXp_PAREN_NAMES(r));
14961 Safefree(r->xpv_len_u.xpvlenu_pv);
14964 SvREFCNT_dec(r->anchored_substr);
14965 SvREFCNT_dec(r->anchored_utf8);
14966 SvREFCNT_dec(r->float_substr);
14967 SvREFCNT_dec(r->float_utf8);
14968 Safefree(r->substrs);
14970 RX_MATCH_COPY_FREE(rx);
14971 #ifdef PERL_ANY_COW
14972 SvREFCNT_dec(r->saved_copy);
14975 SvREFCNT_dec(r->qr_anoncv);
14976 rx->sv_u.svu_rx = 0;
14981 This is a hacky workaround to the structural issue of match results
14982 being stored in the regexp structure which is in turn stored in
14983 PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
14984 could be PL_curpm in multiple contexts, and could require multiple
14985 result sets being associated with the pattern simultaneously, such
14986 as when doing a recursive match with (??{$qr})
14988 The solution is to make a lightweight copy of the regexp structure
14989 when a qr// is returned from the code executed by (??{$qr}) this
14990 lightweight copy doesn't actually own any of its data except for
14991 the starp/end and the actual regexp structure itself.
14997 Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
14999 struct regexp *ret;
15000 struct regexp *const r = ReANY(rx);
15001 const bool islv = ret_x && SvTYPE(ret_x) == SVt_PVLV;
15003 PERL_ARGS_ASSERT_REG_TEMP_COPY;
15006 ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
15008 SvOK_off((SV *)ret_x);
15010 /* For PVLVs, SvANY points to the xpvlv body while sv_u points
15011 to the regexp. (For SVt_REGEXPs, sv_upgrade has already
15012 made both spots point to the same regexp body.) */
15013 REGEXP *temp = (REGEXP *)newSV_type(SVt_REGEXP);
15014 assert(!SvPVX(ret_x));
15015 ret_x->sv_u.svu_rx = temp->sv_any;
15016 temp->sv_any = NULL;
15017 SvFLAGS(temp) = (SvFLAGS(temp) & ~SVTYPEMASK) | SVt_NULL;
15018 SvREFCNT_dec_NN(temp);
15019 /* SvCUR still resides in the xpvlv struct, so the regexp copy-
15020 ing below will not set it. */
15021 SvCUR_set(ret_x, SvCUR(rx));
15024 /* This ensures that SvTHINKFIRST(sv) is true, and hence that
15025 sv_force_normal(sv) is called. */
15027 ret = ReANY(ret_x);
15029 SvFLAGS(ret_x) |= SvUTF8(rx);
15030 /* We share the same string buffer as the original regexp, on which we
15031 hold a reference count, incremented when mother_re is set below.
15032 The string pointer is copied here, being part of the regexp struct.
15034 memcpy(&(ret->xpv_cur), &(r->xpv_cur),
15035 sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
15037 const I32 npar = r->nparens+1;
15038 Newx(ret->offs, npar, regexp_paren_pair);
15039 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
15042 Newx(ret->substrs, 1, struct reg_substr_data);
15043 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
15045 SvREFCNT_inc_void(ret->anchored_substr);
15046 SvREFCNT_inc_void(ret->anchored_utf8);
15047 SvREFCNT_inc_void(ret->float_substr);
15048 SvREFCNT_inc_void(ret->float_utf8);
15050 /* check_substr and check_utf8, if non-NULL, point to either their
15051 anchored or float namesakes, and don't hold a second reference. */
15053 RX_MATCH_COPIED_off(ret_x);
15054 #ifdef PERL_ANY_COW
15055 ret->saved_copy = NULL;
15057 ret->mother_re = ReREFCNT_inc(r->mother_re ? r->mother_re : rx);
15058 SvREFCNT_inc_void(ret->qr_anoncv);
15064 /* regfree_internal()
15066 Free the private data in a regexp. This is overloadable by
15067 extensions. Perl takes care of the regexp structure in pregfree(),
15068 this covers the *pprivate pointer which technically perl doesn't
15069 know about, however of course we have to handle the
15070 regexp_internal structure when no extension is in use.
15072 Note this is called before freeing anything in the regexp
15077 Perl_regfree_internal(pTHX_ REGEXP * const rx)
15080 struct regexp *const r = ReANY(rx);
15081 RXi_GET_DECL(r,ri);
15082 GET_RE_DEBUG_FLAGS_DECL;
15084 PERL_ARGS_ASSERT_REGFREE_INTERNAL;
15090 SV *dsv= sv_newmortal();
15091 RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
15092 dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
15093 PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
15094 PL_colors[4],PL_colors[5],s);
15097 #ifdef RE_TRACK_PATTERN_OFFSETS
15099 Safefree(ri->u.offsets); /* 20010421 MJD */
15101 if (ri->code_blocks) {
15103 for (n = 0; n < ri->num_code_blocks; n++)
15104 SvREFCNT_dec(ri->code_blocks[n].src_regex);
15105 Safefree(ri->code_blocks);
15109 int n = ri->data->count;
15112 /* If you add a ->what type here, update the comment in regcomp.h */
15113 switch (ri->data->what[n]) {
15119 SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
15122 Safefree(ri->data->data[n]);
15128 { /* Aho Corasick add-on structure for a trie node.
15129 Used in stclass optimization only */
15131 reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
15133 refcount = --aho->refcount;
15136 PerlMemShared_free(aho->states);
15137 PerlMemShared_free(aho->fail);
15138 /* do this last!!!! */
15139 PerlMemShared_free(ri->data->data[n]);
15140 PerlMemShared_free(ri->regstclass);
15146 /* trie structure. */
15148 reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
15150 refcount = --trie->refcount;
15153 PerlMemShared_free(trie->charmap);
15154 PerlMemShared_free(trie->states);
15155 PerlMemShared_free(trie->trans);
15157 PerlMemShared_free(trie->bitmap);
15159 PerlMemShared_free(trie->jump);
15160 PerlMemShared_free(trie->wordinfo);
15161 /* do this last!!!! */
15162 PerlMemShared_free(ri->data->data[n]);
15167 Perl_croak(aTHX_ "panic: regfree data code '%c'", ri->data->what[n]);
15170 Safefree(ri->data->what);
15171 Safefree(ri->data);
15177 #define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
15178 #define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
15179 #define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
15182 re_dup - duplicate a regexp.
15184 This routine is expected to clone a given regexp structure. It is only
15185 compiled under USE_ITHREADS.
15187 After all of the core data stored in struct regexp is duplicated
15188 the regexp_engine.dupe method is used to copy any private data
15189 stored in the *pprivate pointer. This allows extensions to handle
15190 any duplication it needs to do.
15192 See pregfree() and regfree_internal() if you change anything here.
15194 #if defined(USE_ITHREADS)
15195 #ifndef PERL_IN_XSUB_RE
15197 Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
15201 const struct regexp *r = ReANY(sstr);
15202 struct regexp *ret = ReANY(dstr);
15204 PERL_ARGS_ASSERT_RE_DUP_GUTS;
15206 npar = r->nparens+1;
15207 Newx(ret->offs, npar, regexp_paren_pair);
15208 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
15210 if (ret->substrs) {
15211 /* Do it this way to avoid reading from *r after the StructCopy().
15212 That way, if any of the sv_dup_inc()s dislodge *r from the L1
15213 cache, it doesn't matter. */
15214 const bool anchored = r->check_substr
15215 ? r->check_substr == r->anchored_substr
15216 : r->check_utf8 == r->anchored_utf8;
15217 Newx(ret->substrs, 1, struct reg_substr_data);
15218 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
15220 ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
15221 ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
15222 ret->float_substr = sv_dup_inc(ret->float_substr, param);
15223 ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
15225 /* check_substr and check_utf8, if non-NULL, point to either their
15226 anchored or float namesakes, and don't hold a second reference. */
15228 if (ret->check_substr) {
15230 assert(r->check_utf8 == r->anchored_utf8);
15231 ret->check_substr = ret->anchored_substr;
15232 ret->check_utf8 = ret->anchored_utf8;
15234 assert(r->check_substr == r->float_substr);
15235 assert(r->check_utf8 == r->float_utf8);
15236 ret->check_substr = ret->float_substr;
15237 ret->check_utf8 = ret->float_utf8;
15239 } else if (ret->check_utf8) {
15241 ret->check_utf8 = ret->anchored_utf8;
15243 ret->check_utf8 = ret->float_utf8;
15248 RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
15249 ret->qr_anoncv = MUTABLE_CV(sv_dup_inc((const SV *)ret->qr_anoncv, param));
15252 RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
15254 if (RX_MATCH_COPIED(dstr))
15255 ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen);
15257 ret->subbeg = NULL;
15258 #ifdef PERL_ANY_COW
15259 ret->saved_copy = NULL;
15262 /* Whether mother_re be set or no, we need to copy the string. We
15263 cannot refrain from copying it when the storage points directly to
15264 our mother regexp, because that's
15265 1: a buffer in a different thread
15266 2: something we no longer hold a reference on
15267 so we need to copy it locally. */
15268 RX_WRAPPED(dstr) = SAVEPVN(RX_WRAPPED(sstr), SvCUR(sstr)+1);
15269 ret->mother_re = NULL;
15272 #endif /* PERL_IN_XSUB_RE */
15277 This is the internal complement to regdupe() which is used to copy
15278 the structure pointed to by the *pprivate pointer in the regexp.
15279 This is the core version of the extension overridable cloning hook.
15280 The regexp structure being duplicated will be copied by perl prior
15281 to this and will be provided as the regexp *r argument, however
15282 with the /old/ structures pprivate pointer value. Thus this routine
15283 may override any copying normally done by perl.
15285 It returns a pointer to the new regexp_internal structure.
15289 Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
15292 struct regexp *const r = ReANY(rx);
15293 regexp_internal *reti;
15295 RXi_GET_DECL(r,ri);
15297 PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
15301 Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode), char, regexp_internal);
15302 Copy(ri->program, reti->program, len+1, regnode);
15304 reti->num_code_blocks = ri->num_code_blocks;
15305 if (ri->code_blocks) {
15307 Newxc(reti->code_blocks, ri->num_code_blocks, struct reg_code_block,
15308 struct reg_code_block);
15309 Copy(ri->code_blocks, reti->code_blocks, ri->num_code_blocks,
15310 struct reg_code_block);
15311 for (n = 0; n < ri->num_code_blocks; n++)
15312 reti->code_blocks[n].src_regex = (REGEXP*)
15313 sv_dup_inc((SV*)(ri->code_blocks[n].src_regex), param);
15316 reti->code_blocks = NULL;
15318 reti->regstclass = NULL;
15321 struct reg_data *d;
15322 const int count = ri->data->count;
15325 Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
15326 char, struct reg_data);
15327 Newx(d->what, count, U8);
15330 for (i = 0; i < count; i++) {
15331 d->what[i] = ri->data->what[i];
15332 switch (d->what[i]) {
15333 /* see also regcomp.h and regfree_internal() */
15334 case 'a': /* actually an AV, but the dup function is identical. */
15338 case 'u': /* actually an HV, but the dup function is identical. */
15339 d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
15342 /* This is cheating. */
15343 Newx(d->data[i], 1, struct regnode_charclass_class);
15344 StructCopy(ri->data->data[i], d->data[i],
15345 struct regnode_charclass_class);
15346 reti->regstclass = (regnode*)d->data[i];
15349 /* Trie stclasses are readonly and can thus be shared
15350 * without duplication. We free the stclass in pregfree
15351 * when the corresponding reg_ac_data struct is freed.
15353 reti->regstclass= ri->regstclass;
15357 ((reg_trie_data*)ri->data->data[i])->refcount++;
15362 d->data[i] = ri->data->data[i];
15365 Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'", ri->data->what[i]);
15374 reti->name_list_idx = ri->name_list_idx;
15376 #ifdef RE_TRACK_PATTERN_OFFSETS
15377 if (ri->u.offsets) {
15378 Newx(reti->u.offsets, 2*len+1, U32);
15379 Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
15382 SetProgLen(reti,len);
15385 return (void*)reti;
15388 #endif /* USE_ITHREADS */
15390 #ifndef PERL_IN_XSUB_RE
15393 - regnext - dig the "next" pointer out of a node
15396 Perl_regnext(pTHX_ regnode *p)
15404 if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */
15405 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(p), (int)REGNODE_MAX);
15408 offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
15417 S_re_croak2(pTHX_ const char* pat1,const char* pat2,...)
15420 STRLEN l1 = strlen(pat1);
15421 STRLEN l2 = strlen(pat2);
15424 const char *message;
15426 PERL_ARGS_ASSERT_RE_CROAK2;
15432 Copy(pat1, buf, l1 , char);
15433 Copy(pat2, buf + l1, l2 , char);
15434 buf[l1 + l2] = '\n';
15435 buf[l1 + l2 + 1] = '\0';
15437 /* ANSI variant takes additional second argument */
15438 va_start(args, pat2);
15442 msv = vmess(buf, &args);
15444 message = SvPV_const(msv,l1);
15447 Copy(message, buf, l1 , char);
15448 buf[l1-1] = '\0'; /* Overwrite \n */
15449 Perl_croak(aTHX_ "%s", buf);
15452 /* XXX Here's a total kludge. But we need to re-enter for swash routines. */
15454 #ifndef PERL_IN_XSUB_RE
15456 Perl_save_re_context(pTHX)
15460 struct re_save_state *state;
15462 SAVEVPTR(PL_curcop);
15463 SSGROW(SAVESTACK_ALLOC_FOR_RE_SAVE_STATE + 1);
15465 state = (struct re_save_state *)(PL_savestack + PL_savestack_ix);
15466 PL_savestack_ix += SAVESTACK_ALLOC_FOR_RE_SAVE_STATE;
15467 SSPUSHUV(SAVEt_RE_STATE);
15469 Copy(&PL_reg_state, state, 1, struct re_save_state);
15471 PL_reg_oldsaved = NULL;
15472 PL_reg_oldsavedlen = 0;
15473 PL_reg_oldsavedoffset = 0;
15474 PL_reg_oldsavedcoffset = 0;
15475 PL_reg_maxiter = 0;
15476 PL_reg_leftiter = 0;
15477 PL_reg_poscache = NULL;
15478 PL_reg_poscache_size = 0;
15479 #ifdef PERL_ANY_COW
15483 /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
15485 const REGEXP * const rx = PM_GETRE(PL_curpm);
15488 for (i = 1; i <= RX_NPARENS(rx); i++) {
15489 char digits[TYPE_CHARS(long)];
15490 const STRLEN len = my_snprintf(digits, sizeof(digits), "%lu", (long)i);
15491 GV *const *const gvp
15492 = (GV**)hv_fetch(PL_defstash, digits, len, 0);
15495 GV * const gv = *gvp;
15496 if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
15508 S_put_byte(pTHX_ SV *sv, int c)
15510 PERL_ARGS_ASSERT_PUT_BYTE;
15512 /* Our definition of isPRINT() ignores locales, so only bytes that are
15513 not part of UTF-8 are considered printable. I assume that the same
15514 holds for UTF-EBCDIC.
15515 Also, code point 255 is not printable in either (it's E0 in EBCDIC,
15516 which Wikipedia says:
15518 EO, or Eight Ones, is an 8-bit EBCDIC character code represented as all
15519 ones (binary 1111 1111, hexadecimal FF). It is similar, but not
15520 identical, to the ASCII delete (DEL) or rubout control character. ...
15521 it is typically mapped to hexadecimal code 9F, in order to provide a
15522 unique character mapping in both directions)
15524 So the old condition can be simplified to !isPRINT(c) */
15527 Perl_sv_catpvf(aTHX_ sv, "\\x%02x", c);
15530 Perl_sv_catpvf(aTHX_ sv, "\\x{%x}", c);
15534 const char string = c;
15535 if (c == '-' || c == ']' || c == '\\' || c == '^')
15536 sv_catpvs(sv, "\\");
15537 sv_catpvn(sv, &string, 1);
15542 #define CLEAR_OPTSTART \
15543 if (optstart) STMT_START { \
15544 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
15548 #define DUMPUNTIL(b,e) CLEAR_OPTSTART; node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
15550 STATIC const regnode *
15551 S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
15552 const regnode *last, const regnode *plast,
15553 SV* sv, I32 indent, U32 depth)
15556 U8 op = PSEUDO; /* Arbitrary non-END op. */
15557 const regnode *next;
15558 const regnode *optstart= NULL;
15560 RXi_GET_DECL(r,ri);
15561 GET_RE_DEBUG_FLAGS_DECL;
15563 PERL_ARGS_ASSERT_DUMPUNTIL;
15565 #ifdef DEBUG_DUMPUNTIL
15566 PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
15567 last ? last-start : 0,plast ? plast-start : 0);
15570 if (plast && plast < last)
15573 while (PL_regkind[op] != END && (!last || node < last)) {
15574 /* While that wasn't END last time... */
15577 if (op == CLOSE || op == WHILEM)
15579 next = regnext((regnode *)node);
15582 if (OP(node) == OPTIMIZED) {
15583 if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
15590 regprop(r, sv, node);
15591 PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
15592 (int)(2*indent + 1), "", SvPVX_const(sv));
15594 if (OP(node) != OPTIMIZED) {
15595 if (next == NULL) /* Next ptr. */
15596 PerlIO_printf(Perl_debug_log, " (0)");
15597 else if (PL_regkind[(U8)op] == BRANCH && PL_regkind[OP(next)] != BRANCH )
15598 PerlIO_printf(Perl_debug_log, " (FAIL)");
15600 PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
15601 (void)PerlIO_putc(Perl_debug_log, '\n');
15605 if (PL_regkind[(U8)op] == BRANCHJ) {
15608 const regnode *nnode = (OP(next) == LONGJMP
15609 ? regnext((regnode *)next)
15611 if (last && nnode > last)
15613 DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
15616 else if (PL_regkind[(U8)op] == BRANCH) {
15618 DUMPUNTIL(NEXTOPER(node), next);
15620 else if ( PL_regkind[(U8)op] == TRIE ) {
15621 const regnode *this_trie = node;
15622 const char op = OP(node);
15623 const U32 n = ARG(node);
15624 const reg_ac_data * const ac = op>=AHOCORASICK ?
15625 (reg_ac_data *)ri->data->data[n] :
15627 const reg_trie_data * const trie =
15628 (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
15630 AV *const trie_words = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
15632 const regnode *nextbranch= NULL;
15635 for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
15636 SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
15638 PerlIO_printf(Perl_debug_log, "%*s%s ",
15639 (int)(2*(indent+3)), "",
15640 elem_ptr ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr), SvCUR(*elem_ptr), 60,
15641 PL_colors[0], PL_colors[1],
15642 (SvUTF8(*elem_ptr) ? PERL_PV_ESCAPE_UNI : 0) |
15643 PERL_PV_PRETTY_ELLIPSES |
15644 PERL_PV_PRETTY_LTGT
15649 U16 dist= trie->jump[word_idx+1];
15650 PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
15651 (UV)((dist ? this_trie + dist : next) - start));
15654 nextbranch= this_trie + trie->jump[0];
15655 DUMPUNTIL(this_trie + dist, nextbranch);
15657 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
15658 nextbranch= regnext((regnode *)nextbranch);
15660 PerlIO_printf(Perl_debug_log, "\n");
15663 if (last && next > last)
15668 else if ( op == CURLY ) { /* "next" might be very big: optimizer */
15669 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
15670 NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
15672 else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
15674 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
15676 else if ( op == PLUS || op == STAR) {
15677 DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
15679 else if (PL_regkind[(U8)op] == ANYOF) {
15680 /* arglen 1 + class block */
15681 node += 1 + ((ANYOF_FLAGS(node) & ANYOF_CLASS)
15682 ? ANYOF_CLASS_SKIP : ANYOF_SKIP);
15683 node = NEXTOPER(node);
15685 else if (PL_regkind[(U8)op] == EXACT) {
15686 /* Literal string, where present. */
15687 node += NODE_SZ_STR(node) - 1;
15688 node = NEXTOPER(node);
15691 node = NEXTOPER(node);
15692 node += regarglen[(U8)op];
15694 if (op == CURLYX || op == OPEN)
15698 #ifdef DEBUG_DUMPUNTIL
15699 PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
15704 #endif /* DEBUGGING */
15708 * c-indentation-style: bsd
15709 * c-basic-offset: 4
15710 * indent-tabs-mode: nil
15713 * ex: set ts=8 sts=4 sw=4 et: