]> git.vpit.fr Git - perl/modules/re-engine-Hooks.git/commitdiff
Add support for perl 5.23.[01]
authorVincent Pit <vince@profvince.com>
Tue, 21 Jul 2015 16:59:24 +0000 (13:59 -0300)
committerVincent Pit <vince@profvince.com>
Tue, 21 Jul 2015 16:59:24 +0000 (13:59 -0300)
17 files changed:
MANIFEST
src/5023000/dquote_static.c [new file with mode: 0644]
src/5023000/inline_invlist.c [new file with mode: 0644]
src/5023000/orig/dquote_static.c [new file with mode: 0644]
src/5023000/orig/inline_invlist.c [new file with mode: 0644]
src/5023000/orig/regcomp.c [new file with mode: 0644]
src/5023000/orig/regexec.c [new file with mode: 0644]
src/5023000/regcomp.c [new file with mode: 0644]
src/5023000/regexec.c [new file with mode: 0644]
src/5023001/dquote_static.c [new file with mode: 0644]
src/5023001/inline_invlist.c [new file with mode: 0644]
src/5023001/orig/dquote_static.c [new file with mode: 0644]
src/5023001/orig/inline_invlist.c [new file with mode: 0644]
src/5023001/orig/regcomp.c [new file with mode: 0644]
src/5023001/orig/regexec.c [new file with mode: 0644]
src/5023001/regcomp.c [new file with mode: 0644]
src/5023001/regexec.c [new file with mode: 0644]

index e65c484cf4716df6aff66f35e20af90259408540..5c87d6e8b6b61ef78a625a7290887c289220b271 100644 (file)
--- a/MANIFEST
+++ b/MANIFEST
@@ -89,6 +89,14 @@ src/5022000/dquote_static.c
 src/5022000/inline_invlist.c
 src/5022000/regcomp.c
 src/5022000/regexec.c
+src/5023000/dquote_static.c
+src/5023000/inline_invlist.c
+src/5023000/regcomp.c
+src/5023000/regexec.c
+src/5023001/dquote_static.c
+src/5023001/inline_invlist.c
+src/5023001/regcomp.c
+src/5023001/regexec.c
 src/update.pl
 t/00-load.t
 t/05-keys.t
diff --git a/src/5023000/dquote_static.c b/src/5023000/dquote_static.c
new file mode 100644 (file)
index 0000000..95c2a56
--- /dev/null
@@ -0,0 +1,348 @@
+/*    dquote_static.c
+ *
+ * This file contains static functions that are related to
+ * parsing double-quotish expressions, but are used in more than
+ * one file.
+ *
+ * It is currently #included by regcomp.c and toke.c.
+*/
+
+#define PERL_IN_DQUOTE_STATIC_C
+#include "embed.h"
+
+/*
+ - regcurly - a little FSA that accepts {\d+,?\d*}
+ Pulled from regcomp.c.
+ */
+PERL_STATIC_INLINE I32
+S_regcurly(const char *s)
+{
+ PERL_ARGS_ASSERT_REGCURLY;
+
+ if (*s++ != '{')
+  return FALSE;
+ if (!isDIGIT(*s))
+  return FALSE;
+ while (isDIGIT(*s))
+  s++;
+ if (*s == ',') {
+  s++;
+  while (isDIGIT(*s))
+   s++;
+ }
+
+ return *s == '}';
+}
+
+/* XXX Add documentation after final interface and behavior is decided */
+/* May want to show context for error, so would pass Perl_bslash_c(pTHX_ const char* current, const char* start, const bool output_warning)
+ U8 source = *current;
+*/
+
+STATIC char
+S_grok_bslash_c(pTHX_ const char source, const bool output_warning)
+{
+
+ U8 result;
+
+ if (! isPRINT_A(source)) {
+  Perl_croak(aTHX_ "%s",
+      "Character following \"\\c\" must be printable ASCII");
+ }
+ else if (source == '{') {
+  const char control = toCTRL('{');
+  if (isPRINT_A(control)) {
+   /* diag_listed_as: Use "%s" instead of "%s" */
+   Perl_croak(aTHX_ "Use \"%c\" instead of \"\\c{\"", control);
+  }
+  else {
+   Perl_croak(aTHX_ "Sequence \"\\c{\" invalid");
+  }
+ }
+
+ result = toCTRL(source);
+ if (output_warning && isPRINT_A(result)) {
+  U8 clearer[3];
+  U8 i = 0;
+  if (! isWORDCHAR(result)) {
+   clearer[i++] = '\\';
+  }
+  clearer[i++] = result;
+  clearer[i++] = '\0';
+
+  Perl_ck_warner(aTHX_ packWARN(WARN_SYNTAX),
+      "\"\\c%c\" is more clearly written simply as \"%s\"",
+      source,
+      clearer);
+ }
+
+ return result;
+}
+
+STATIC bool
+S_grok_bslash_o(pTHX_ char **s, UV *uv, const char** error_msg,
+     const bool output_warning, const bool strict,
+     const bool silence_non_portable,
+     const bool UTF)
+{
+
+/*  Documentation to be supplied when interface nailed down finally
+ *  This returns FALSE if there is an error which the caller need not recover
+ *  from; otherwise TRUE.  In either case the caller should look at *len [???].
+ *  It guarantees that the returned codepoint, *uv, when expressed as
+ *  utf8 bytes, would fit within the skipped "\o{...}" bytes.
+ *  On input:
+ * s   is the address of a pointer to a NULL terminated string that begins
+ *     with 'o', and the previous character was a backslash.  At exit, *s
+ *     will be advanced to the byte just after those absorbed by this
+ *     function.  Hence the caller can continue parsing from there.  In
+ *     the case of an error, this routine has generally positioned *s to
+ *     point just to the right of the first bad spot, so that a message
+ *     that has a "<--" to mark the spot will be correctly positioned.
+ * uv  points to a UV that will hold the output value, valid only if the
+ *     return from the function is TRUE
+ *      error_msg is a pointer that will be set to an internal buffer giving an
+ *     error message upon failure (the return is FALSE).  Untouched if
+ *     function succeeds
+ * output_warning says whether to output any warning messages, or suppress
+ *     them
+ * strict is true if this should fail instead of warn if there are
+ *     non-octal digits within the braces
+ *      silence_non_portable is true if to suppress warnings about the code
+ *          point returned being too large to fit on all platforms.
+ * UTF is true iff the string *s is encoded in UTF-8.
+ */
+ char* e;
+ STRLEN numbers_len;
+ I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
+    | PERL_SCAN_DISALLOW_PREFIX
+    /* XXX Until the message is improved in grok_oct, handle errors
+    * ourselves */
+    | PERL_SCAN_SILENT_ILLDIGIT;
+
+#ifdef DEBUGGING
+ char *start = *s - 1;
+ assert(*start == '\\');
+#endif
+
+ PERL_ARGS_ASSERT_GROK_BSLASH_O;
+
+
+ assert(**s == 'o');
+ (*s)++;
+
+ if (**s != '{') {
+  *error_msg = "Missing braces on \\o{}";
+  return FALSE;
+ }
+
+ e = strchr(*s, '}');
+ if (!e) {
+  (*s)++;  /* Move past the '{' */
+  while (isOCTAL(**s)) { /* Position beyond the legal digits */
+   (*s)++;
+  }
+  *error_msg = "Missing right brace on \\o{";
+  return FALSE;
+ }
+
+ (*s)++;    /* Point to expected first digit (could be first byte of utf8
+    sequence if not a digit) */
+ numbers_len = e - *s;
+ if (numbers_len == 0) {
+  (*s)++;    /* Move past the } */
+  *error_msg = "Number with no digits";
+  return FALSE;
+ }
+
+ if (silence_non_portable) {
+  flags |= PERL_SCAN_SILENT_NON_PORTABLE;
+ }
+
+ *uv = grok_oct(*s, &numbers_len, &flags, NULL);
+ /* Note that if has non-octal, will ignore everything starting with that up
+ * to the '}' */
+
+ if (numbers_len != (STRLEN) (e - *s)) {
+  if (strict) {
+   *s += numbers_len;
+   *s += (UTF) ? UTF8SKIP(*s) : (STRLEN) 1;
+   *error_msg = "Non-octal character";
+   return FALSE;
+  }
+  else if (output_warning) {
+   Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
+   /* diag_listed_as: Non-octal character '%c'.  Resolved as "%s" */
+      "Non-octal character '%c'.  Resolved as \"\\o{%.*s}\"",
+      *(*s + numbers_len),
+      (int) numbers_len,
+      *s);
+  }
+ }
+
+ /* Return past the '}' */
+ *s = e + 1;
+
+ /* guarantee replacing "\o{...}" with utf8 bytes fits within
+ * existing space */
+ assert(OFFUNISKIP(*uv) < *s - start);
+
+ return TRUE;
+}
+
+PERL_STATIC_INLINE bool
+S_grok_bslash_x(pTHX_ char **s, UV *uv, const char** error_msg,
+     const bool output_warning, const bool strict,
+     const bool silence_non_portable,
+     const bool UTF)
+{
+
+/*  Documentation to be supplied when interface nailed down finally
+ *  This returns FALSE if there is an error which the caller need not recover
+ *  from; otherwise TRUE.
+ *  It guarantees that the returned codepoint, *uv, when expressed as
+ *  utf8 bytes, would fit within the skipped "\x{...}" bytes.
+ *
+ *  On input:
+ * s   is the address of a pointer to a NULL terminated string that begins
+ *     with 'x', and the previous character was a backslash.  At exit, *s
+ *     will be advanced to the byte just after those absorbed by this
+ *     function.  Hence the caller can continue parsing from there.  In
+ *     the case of an error, this routine has generally positioned *s to
+ *     point just to the right of the first bad spot, so that a message
+ *     that has a "<--" to mark the spot will be correctly positioned.
+ * uv  points to a UV that will hold the output value, valid only if the
+ *     return from the function is TRUE
+ *      error_msg is a pointer that will be set to an internal buffer giving an
+ *     error message upon failure (the return is FALSE).  Untouched if
+ *     function succeeds
+ * output_warning says whether to output any warning messages, or suppress
+ *     them
+ * strict is true if anything out of the ordinary should cause this to
+ *     fail instead of warn or be silent.  For example, it requires
+ *     exactly 2 digits following the \x (when there are no braces).
+ *     3 digits could be a mistake, so is forbidden in this mode.
+ *      silence_non_portable is true if to suppress warnings about the code
+ *          point returned being too large to fit on all platforms.
+ * UTF is true iff the string *s is encoded in UTF-8.
+ */
+ char* e;
+ STRLEN numbers_len;
+ I32 flags = PERL_SCAN_DISALLOW_PREFIX;
+#ifdef DEBUGGING
+ char *start = *s - 1;
+ assert(*start == '\\');
+#endif
+
+ PERL_ARGS_ASSERT_GROK_BSLASH_X;
+
+ assert(**s == 'x');
+ (*s)++;
+
+ if (strict || ! output_warning) {
+  flags |= PERL_SCAN_SILENT_ILLDIGIT;
+ }
+
+ if (**s != '{') {
+  STRLEN len = (strict) ? 3 : 2;
+
+  *uv = grok_hex(*s, &len, &flags, NULL);
+  *s += len;
+  if (strict && len != 2) {
+   if (len < 2) {
+    *s += (UTF) ? UTF8SKIP(*s) : 1;
+    *error_msg = "Non-hex character";
+   }
+   else {
+    *error_msg = "Use \\x{...} for more than two hex characters";
+   }
+   return FALSE;
+  }
+  goto ok;
+ }
+
+ e = strchr(*s, '}');
+ if (!e) {
+  (*s)++;  /* Move past the '{' */
+  while (isXDIGIT(**s)) { /* Position beyond the legal digits */
+   (*s)++;
+  }
+  /* XXX The corresponding message above for \o is just '\\o{'; other
+  * messages for other constructs include the '}', so are inconsistent.
+  */
+  *error_msg = "Missing right brace on \\x{}";
+  return FALSE;
+ }
+
+ (*s)++;    /* Point to expected first digit (could be first byte of utf8
+    sequence if not a digit) */
+ numbers_len = e - *s;
+ if (numbers_len == 0) {
+  if (strict) {
+   (*s)++;    /* Move past the } */
+   *error_msg = "Number with no digits";
+   return FALSE;
+  }
+  *s = e + 1;
+  *uv = 0;
+  goto ok;
+ }
+
+ flags |= PERL_SCAN_ALLOW_UNDERSCORES;
+ if (silence_non_portable) {
+  flags |= PERL_SCAN_SILENT_NON_PORTABLE;
+ }
+
+ *uv = grok_hex(*s, &numbers_len, &flags, NULL);
+ /* Note that if has non-hex, will ignore everything starting with that up
+ * to the '}' */
+
+ if (strict && numbers_len != (STRLEN) (e - *s)) {
+  *s += numbers_len;
+  *s += (UTF) ? UTF8SKIP(*s) : 1;
+  *error_msg = "Non-hex character";
+  return FALSE;
+ }
+
+ /* Return past the '}' */
+ *s = e + 1;
+
+  ok:
+ /* guarantee replacing "\x{...}" with utf8 bytes fits within
+ * existing space */
+ assert(OFFUNISKIP(*uv) < *s - start);
+ return TRUE;
+}
+
+STATIC char*
+S_form_short_octal_warning(pTHX_
+      const char * const s, /* Points to first non-octal */
+      const STRLEN len      /* Length of octals string, so
+             (s-len) points to first
+             octal */
+) {
+ /* Return a character string consisting of a warning message for when a
+ * string constant in octal is weird, like "\078".  */
+
+ const char * sans_leading_zeros = s - len;
+
+ PERL_ARGS_ASSERT_FORM_SHORT_OCTAL_WARNING;
+
+ assert(*s == '8' || *s == '9');
+
+ /* Remove the leading zeros, retaining one zero so won't be zero length */
+ while (*sans_leading_zeros == '0') sans_leading_zeros++;
+ if (sans_leading_zeros == s) {
+  sans_leading_zeros--;
+ }
+
+ return Perl_form(aTHX_
+     "'%.*s' resolved to '\\o{%.*s}%c'",
+     (int) (len + 2), s - len - 1,
+     (int) (s - sans_leading_zeros), sans_leading_zeros,
+     *s);
+}
+
+/*
+ * ex: set ts=8 sts=4 sw=4 et:
+ */
diff --git a/src/5023000/inline_invlist.c b/src/5023000/inline_invlist.c
new file mode 100644 (file)
index 0000000..450e1be
--- /dev/null
@@ -0,0 +1,87 @@
+/*    inline_invlist.c
+ *
+ *    Copyright (C) 2012 by Larry Wall and others
+ *
+ *    You may distribute under the terms of either the GNU General Public
+ *    License or the Artistic License, as specified in the README file.
+ */
+
+#if defined(PERL_IN_UTF8_C) || defined(PERL_IN_REGCOMP_C) || defined(PERL_IN_REGEXEC_C)
+
+/* An element is in an inversion list iff its index is even numbered: 0, 2, 4,
+ * etc */
+#define ELEMENT_RANGE_MATCHES_INVLIST(i) (! ((i) & 1))
+#define PREV_RANGE_MATCHES_INVLIST(i) (! ELEMENT_RANGE_MATCHES_INVLIST(i))
+
+/* This converts to/from our UVs to what the SV code is expecting: bytes. */
+#define TO_INTERNAL_SIZE(x) ((x) * sizeof(UV))
+#define FROM_INTERNAL_SIZE(x) ((x)/ sizeof(UV))
+
+PERL_STATIC_INLINE bool*
+S_get_invlist_offset_addr(SV* invlist)
+{
+ /* Return the address of the field that says whether the inversion list is
+ * offset (it contains 1) or not (contains 0) */
+ PERL_ARGS_ASSERT_GET_INVLIST_OFFSET_ADDR;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ return &(((XINVLIST*) SvANY(invlist))->is_offset);
+}
+
+PERL_STATIC_INLINE UV
+S__invlist_len(SV* const invlist)
+{
+ /* Returns the current number of elements stored in the inversion list's
+ * array */
+
+ PERL_ARGS_ASSERT__INVLIST_LEN;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ return (SvCUR(invlist) == 0)
+  ? 0
+  : FROM_INTERNAL_SIZE(SvCUR(invlist)) - *get_invlist_offset_addr(invlist);
+}
+
+PERL_STATIC_INLINE bool
+S__invlist_contains_cp(SV* const invlist, const UV cp)
+{
+ /* Does <invlist> contain code point <cp> as part of the set? */
+
+ IV index = _invlist_search(invlist, cp);
+
+ PERL_ARGS_ASSERT__INVLIST_CONTAINS_CP;
+
+ return index >= 0 && ELEMENT_RANGE_MATCHES_INVLIST(index);
+}
+
+PERL_STATIC_INLINE UV*
+S_invlist_array(SV* const invlist)
+{
+ /* Returns the pointer to the inversion list's array.  Every time the
+ * length changes, this needs to be called in case malloc or realloc moved
+ * it */
+
+ PERL_ARGS_ASSERT_INVLIST_ARRAY;
+
+ /* Must not be empty.  If these fail, you probably didn't check for <len>
+ * being non-zero before trying to get the array */
+ assert(_invlist_len(invlist));
+
+ /* The very first element always contains zero, The array begins either
+ * there, or if the inversion list is offset, at the element after it.
+ * The offset header field determines which; it contains 0 or 1 to indicate
+ * how much additionally to add */
+ assert(0 == *(SvPVX(invlist)));
+ return ((UV *) SvPVX(invlist) + *get_invlist_offset_addr(invlist));
+}
+
+#   if defined(PERL_IN_UTF8_C) || defined(PERL_IN_REGEXEC_C)
+
+/* These symbols are only needed later in regcomp.c */
+#       undef TO_INTERNAL_SIZE
+#       undef FROM_INTERNAL_SIZE
+#   endif
+
+#endif
diff --git a/src/5023000/orig/dquote_static.c b/src/5023000/orig/dquote_static.c
new file mode 100644 (file)
index 0000000..885ba06
--- /dev/null
@@ -0,0 +1,348 @@
+/*    dquote_static.c
+ *
+ * This file contains static functions that are related to
+ * parsing double-quotish expressions, but are used in more than
+ * one file.
+ *
+ * It is currently #included by regcomp.c and toke.c.
+*/
+
+#define PERL_IN_DQUOTE_STATIC_C
+#include "embed.h"
+
+/*
+ - regcurly - a little FSA that accepts {\d+,?\d*}
+    Pulled from regcomp.c.
+ */
+PERL_STATIC_INLINE I32
+S_regcurly(const char *s)
+{
+    PERL_ARGS_ASSERT_REGCURLY;
+
+    if (*s++ != '{')
+       return FALSE;
+    if (!isDIGIT(*s))
+       return FALSE;
+    while (isDIGIT(*s))
+       s++;
+    if (*s == ',') {
+       s++;
+       while (isDIGIT(*s))
+           s++;
+    }
+
+    return *s == '}';
+}
+
+/* XXX Add documentation after final interface and behavior is decided */
+/* May want to show context for error, so would pass Perl_bslash_c(pTHX_ const char* current, const char* start, const bool output_warning)
+    U8 source = *current;
+*/
+
+STATIC char
+S_grok_bslash_c(pTHX_ const char source, const bool output_warning)
+{
+
+    U8 result;
+
+    if (! isPRINT_A(source)) {
+        Perl_croak(aTHX_ "%s",
+                        "Character following \"\\c\" must be printable ASCII");
+    }
+    else if (source == '{') {
+        const char control = toCTRL('{');
+        if (isPRINT_A(control)) {
+            /* diag_listed_as: Use "%s" instead of "%s" */
+            Perl_croak(aTHX_ "Use \"%c\" instead of \"\\c{\"", control);
+        }
+        else {
+            Perl_croak(aTHX_ "Sequence \"\\c{\" invalid");
+        }
+    }
+
+    result = toCTRL(source);
+    if (output_warning && isPRINT_A(result)) {
+        U8 clearer[3];
+        U8 i = 0;
+        if (! isWORDCHAR(result)) {
+            clearer[i++] = '\\';
+        }
+        clearer[i++] = result;
+        clearer[i++] = '\0';
+
+        Perl_ck_warner(aTHX_ packWARN(WARN_SYNTAX),
+                        "\"\\c%c\" is more clearly written simply as \"%s\"",
+                        source,
+                        clearer);
+    }
+
+    return result;
+}
+
+STATIC bool
+S_grok_bslash_o(pTHX_ char **s, UV *uv, const char** error_msg,
+                      const bool output_warning, const bool strict,
+                      const bool silence_non_portable,
+                      const bool UTF)
+{
+
+/*  Documentation to be supplied when interface nailed down finally
+ *  This returns FALSE if there is an error which the caller need not recover
+ *  from; otherwise TRUE.  In either case the caller should look at *len [???].
+ *  It guarantees that the returned codepoint, *uv, when expressed as
+ *  utf8 bytes, would fit within the skipped "\o{...}" bytes.
+ *  On input:
+ *     s   is the address of a pointer to a NULL terminated string that begins
+ *         with 'o', and the previous character was a backslash.  At exit, *s
+ *         will be advanced to the byte just after those absorbed by this
+ *         function.  Hence the caller can continue parsing from there.  In
+ *         the case of an error, this routine has generally positioned *s to
+ *         point just to the right of the first bad spot, so that a message
+ *         that has a "<--" to mark the spot will be correctly positioned.
+ *     uv  points to a UV that will hold the output value, valid only if the
+ *         return from the function is TRUE
+ *      error_msg is a pointer that will be set to an internal buffer giving an
+ *         error message upon failure (the return is FALSE).  Untouched if
+ *         function succeeds
+ *     output_warning says whether to output any warning messages, or suppress
+ *         them
+ *     strict is true if this should fail instead of warn if there are
+ *         non-octal digits within the braces
+ *      silence_non_portable is true if to suppress warnings about the code
+ *          point returned being too large to fit on all platforms.
+ *     UTF is true iff the string *s is encoded in UTF-8.
+ */
+    char* e;
+    STRLEN numbers_len;
+    I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
+               | PERL_SCAN_DISALLOW_PREFIX
+               /* XXX Until the message is improved in grok_oct, handle errors
+                * ourselves */
+               | PERL_SCAN_SILENT_ILLDIGIT;
+
+#ifdef DEBUGGING
+    char *start = *s - 1;
+    assert(*start == '\\');
+#endif
+
+    PERL_ARGS_ASSERT_GROK_BSLASH_O;
+
+
+    assert(**s == 'o');
+    (*s)++;
+
+    if (**s != '{') {
+       *error_msg = "Missing braces on \\o{}";
+       return FALSE;
+    }
+
+    e = strchr(*s, '}');
+    if (!e) {
+        (*s)++;  /* Move past the '{' */
+        while (isOCTAL(**s)) { /* Position beyond the legal digits */
+            (*s)++;
+        }
+        *error_msg = "Missing right brace on \\o{";
+       return FALSE;
+    }
+
+    (*s)++;    /* Point to expected first digit (could be first byte of utf8
+                  sequence if not a digit) */
+    numbers_len = e - *s;
+    if (numbers_len == 0) {
+        (*s)++;    /* Move past the } */
+       *error_msg = "Number with no digits";
+       return FALSE;
+    }
+
+    if (silence_non_portable) {
+        flags |= PERL_SCAN_SILENT_NON_PORTABLE;
+    }
+
+    *uv = grok_oct(*s, &numbers_len, &flags, NULL);
+    /* Note that if has non-octal, will ignore everything starting with that up
+     * to the '}' */
+
+    if (numbers_len != (STRLEN) (e - *s)) {
+        if (strict) {
+            *s += numbers_len;
+            *s += (UTF) ? UTF8SKIP(*s) : (STRLEN) 1;
+            *error_msg = "Non-octal character";
+            return FALSE;
+        }
+        else if (output_warning) {
+            Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
+            /* diag_listed_as: Non-octal character '%c'.  Resolved as "%s" */
+                        "Non-octal character '%c'.  Resolved as \"\\o{%.*s}\"",
+                        *(*s + numbers_len),
+                        (int) numbers_len,
+                        *s);
+        }
+    }
+
+    /* Return past the '}' */
+    *s = e + 1;
+
+    /* guarantee replacing "\o{...}" with utf8 bytes fits within
+     * existing space */
+    assert(OFFUNISKIP(*uv) < *s - start);
+
+    return TRUE;
+}
+
+PERL_STATIC_INLINE bool
+S_grok_bslash_x(pTHX_ char **s, UV *uv, const char** error_msg,
+                      const bool output_warning, const bool strict,
+                      const bool silence_non_portable,
+                      const bool UTF)
+{
+
+/*  Documentation to be supplied when interface nailed down finally
+ *  This returns FALSE if there is an error which the caller need not recover
+ *  from; otherwise TRUE.
+ *  It guarantees that the returned codepoint, *uv, when expressed as
+ *  utf8 bytes, would fit within the skipped "\x{...}" bytes.
+ *
+ *  On input:
+ *     s   is the address of a pointer to a NULL terminated string that begins
+ *         with 'x', and the previous character was a backslash.  At exit, *s
+ *         will be advanced to the byte just after those absorbed by this
+ *         function.  Hence the caller can continue parsing from there.  In
+ *         the case of an error, this routine has generally positioned *s to
+ *         point just to the right of the first bad spot, so that a message
+ *         that has a "<--" to mark the spot will be correctly positioned.
+ *     uv  points to a UV that will hold the output value, valid only if the
+ *         return from the function is TRUE
+ *      error_msg is a pointer that will be set to an internal buffer giving an
+ *         error message upon failure (the return is FALSE).  Untouched if
+ *         function succeeds
+ *     output_warning says whether to output any warning messages, or suppress
+ *         them
+ *     strict is true if anything out of the ordinary should cause this to
+ *         fail instead of warn or be silent.  For example, it requires
+ *         exactly 2 digits following the \x (when there are no braces).
+ *         3 digits could be a mistake, so is forbidden in this mode.
+ *      silence_non_portable is true if to suppress warnings about the code
+ *          point returned being too large to fit on all platforms.
+ *     UTF is true iff the string *s is encoded in UTF-8.
+ */
+    char* e;
+    STRLEN numbers_len;
+    I32 flags = PERL_SCAN_DISALLOW_PREFIX;
+#ifdef DEBUGGING
+    char *start = *s - 1;
+    assert(*start == '\\');
+#endif
+
+    PERL_ARGS_ASSERT_GROK_BSLASH_X;
+
+    assert(**s == 'x');
+    (*s)++;
+
+    if (strict || ! output_warning) {
+        flags |= PERL_SCAN_SILENT_ILLDIGIT;
+    }
+
+    if (**s != '{') {
+        STRLEN len = (strict) ? 3 : 2;
+
+       *uv = grok_hex(*s, &len, &flags, NULL);
+       *s += len;
+        if (strict && len != 2) {
+            if (len < 2) {
+                *s += (UTF) ? UTF8SKIP(*s) : 1;
+                *error_msg = "Non-hex character";
+            }
+            else {
+                *error_msg = "Use \\x{...} for more than two hex characters";
+            }
+            return FALSE;
+        }
+       goto ok;
+    }
+
+    e = strchr(*s, '}');
+    if (!e) {
+        (*s)++;  /* Move past the '{' */
+        while (isXDIGIT(**s)) { /* Position beyond the legal digits */
+            (*s)++;
+        }
+        /* XXX The corresponding message above for \o is just '\\o{'; other
+         * messages for other constructs include the '}', so are inconsistent.
+         */
+       *error_msg = "Missing right brace on \\x{}";
+       return FALSE;
+    }
+
+    (*s)++;    /* Point to expected first digit (could be first byte of utf8
+                  sequence if not a digit) */
+    numbers_len = e - *s;
+    if (numbers_len == 0) {
+        if (strict) {
+            (*s)++;    /* Move past the } */
+            *error_msg = "Number with no digits";
+            return FALSE;
+        }
+        *s = e + 1;
+        *uv = 0;
+        goto ok;
+    }
+
+    flags |= PERL_SCAN_ALLOW_UNDERSCORES;
+    if (silence_non_portable) {
+        flags |= PERL_SCAN_SILENT_NON_PORTABLE;
+    }
+
+    *uv = grok_hex(*s, &numbers_len, &flags, NULL);
+    /* Note that if has non-hex, will ignore everything starting with that up
+     * to the '}' */
+
+    if (strict && numbers_len != (STRLEN) (e - *s)) {
+        *s += numbers_len;
+        *s += (UTF) ? UTF8SKIP(*s) : 1;
+        *error_msg = "Non-hex character";
+        return FALSE;
+    }
+
+    /* Return past the '}' */
+    *s = e + 1;
+
+  ok:
+    /* guarantee replacing "\x{...}" with utf8 bytes fits within
+     * existing space */
+    assert(OFFUNISKIP(*uv) < *s - start);
+    return TRUE;
+}
+
+STATIC char*
+S_form_short_octal_warning(pTHX_
+                           const char * const s, /* Points to first non-octal */
+                           const STRLEN len      /* Length of octals string, so
+                                                    (s-len) points to first
+                                                    octal */
+) {
+    /* Return a character string consisting of a warning message for when a
+     * string constant in octal is weird, like "\078".  */
+
+    const char * sans_leading_zeros = s - len;
+
+    PERL_ARGS_ASSERT_FORM_SHORT_OCTAL_WARNING;
+
+    assert(*s == '8' || *s == '9');
+
+    /* Remove the leading zeros, retaining one zero so won't be zero length */
+    while (*sans_leading_zeros == '0') sans_leading_zeros++;
+    if (sans_leading_zeros == s) {
+        sans_leading_zeros--;
+    }
+
+    return Perl_form(aTHX_
+                     "'%.*s' resolved to '\\o{%.*s}%c'",
+                     (int) (len + 2), s - len - 1,
+                     (int) (s - sans_leading_zeros), sans_leading_zeros,
+                     *s);
+}
+
+/*
+ * ex: set ts=8 sts=4 sw=4 et:
+ */
diff --git a/src/5023000/orig/inline_invlist.c b/src/5023000/orig/inline_invlist.c
new file mode 100644 (file)
index 0000000..1589f95
--- /dev/null
@@ -0,0 +1,87 @@
+/*    inline_invlist.c
+ *
+ *    Copyright (C) 2012 by Larry Wall and others
+ *
+ *    You may distribute under the terms of either the GNU General Public
+ *    License or the Artistic License, as specified in the README file.
+ */
+
+#if defined(PERL_IN_UTF8_C) || defined(PERL_IN_REGCOMP_C) || defined(PERL_IN_REGEXEC_C)
+
+/* An element is in an inversion list iff its index is even numbered: 0, 2, 4,
+ * etc */
+#define ELEMENT_RANGE_MATCHES_INVLIST(i) (! ((i) & 1))
+#define PREV_RANGE_MATCHES_INVLIST(i) (! ELEMENT_RANGE_MATCHES_INVLIST(i))
+
+/* This converts to/from our UVs to what the SV code is expecting: bytes. */
+#define TO_INTERNAL_SIZE(x) ((x) * sizeof(UV))
+#define FROM_INTERNAL_SIZE(x) ((x)/ sizeof(UV))
+
+PERL_STATIC_INLINE bool*
+S_get_invlist_offset_addr(SV* invlist)
+{
+    /* Return the address of the field that says whether the inversion list is
+     * offset (it contains 1) or not (contains 0) */
+    PERL_ARGS_ASSERT_GET_INVLIST_OFFSET_ADDR;
+
+    assert(SvTYPE(invlist) == SVt_INVLIST);
+
+    return &(((XINVLIST*) SvANY(invlist))->is_offset);
+}
+
+PERL_STATIC_INLINE UV
+S__invlist_len(SV* const invlist)
+{
+    /* Returns the current number of elements stored in the inversion list's
+     * array */
+
+    PERL_ARGS_ASSERT__INVLIST_LEN;
+
+    assert(SvTYPE(invlist) == SVt_INVLIST);
+
+    return (SvCUR(invlist) == 0)
+           ? 0
+           : FROM_INTERNAL_SIZE(SvCUR(invlist)) - *get_invlist_offset_addr(invlist);
+}
+
+PERL_STATIC_INLINE bool
+S__invlist_contains_cp(SV* const invlist, const UV cp)
+{
+    /* Does <invlist> contain code point <cp> as part of the set? */
+
+    IV index = _invlist_search(invlist, cp);
+
+    PERL_ARGS_ASSERT__INVLIST_CONTAINS_CP;
+
+    return index >= 0 && ELEMENT_RANGE_MATCHES_INVLIST(index);
+}
+
+PERL_STATIC_INLINE UV*
+S_invlist_array(SV* const invlist)
+{
+    /* Returns the pointer to the inversion list's array.  Every time the
+     * length changes, this needs to be called in case malloc or realloc moved
+     * it */
+
+    PERL_ARGS_ASSERT_INVLIST_ARRAY;
+
+    /* Must not be empty.  If these fail, you probably didn't check for <len>
+     * being non-zero before trying to get the array */
+    assert(_invlist_len(invlist));
+
+    /* The very first element always contains zero, The array begins either
+     * there, or if the inversion list is offset, at the element after it.
+     * The offset header field determines which; it contains 0 or 1 to indicate
+     * how much additionally to add */
+    assert(0 == *(SvPVX(invlist)));
+    return ((UV *) SvPVX(invlist) + *get_invlist_offset_addr(invlist));
+}
+
+#   if defined(PERL_IN_UTF8_C) || defined(PERL_IN_REGEXEC_C)
+
+/* These symbols are only needed later in regcomp.c */
+#       undef TO_INTERNAL_SIZE
+#       undef FROM_INTERNAL_SIZE
+#   endif
+
+#endif
diff --git a/src/5023000/orig/regcomp.c b/src/5023000/orig/regcomp.c
new file mode 100644 (file)
index 0000000..4a37b6a
--- /dev/null
@@ -0,0 +1,18202 @@
+/*    regcomp.c
+ */
+
+/*
+ * 'A fair jaw-cracker dwarf-language must be.'            --Samwise Gamgee
+ *
+ *     [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
+ */
+
+/* This file contains functions for compiling a regular expression.  See
+ * also regexec.c which funnily enough, contains functions for executing
+ * a regular expression.
+ *
+ * This file is also copied at build time to ext/re/re_comp.c, where
+ * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
+ * This causes the main functions to be compiled under new names and with
+ * debugging support added, which makes "use re 'debug'" work.
+ */
+
+/* NOTE: this is derived from Henry Spencer's regexp code, and should not
+ * confused with the original package (see point 3 below).  Thanks, Henry!
+ */
+
+/* Additional note: this code is very heavily munged from Henry's version
+ * in places.  In some spots I've traded clarity for efficiency, so don't
+ * blame Henry for some of the lack of readability.
+ */
+
+/* The names of the functions have been changed from regcomp and
+ * regexec to pregcomp and pregexec in order to avoid conflicts
+ * with the POSIX routines of the same names.
+*/
+
+#ifdef PERL_EXT_RE_BUILD
+#include "re_top.h"
+#endif
+
+/*
+ * pregcomp and pregexec -- regsub and regerror are not used in perl
+ *
+ *     Copyright (c) 1986 by University of Toronto.
+ *     Written by Henry Spencer.  Not derived from licensed software.
+ *
+ *     Permission is granted to anyone to use this software for any
+ *     purpose on any computer system, and to redistribute it freely,
+ *     subject to the following restrictions:
+ *
+ *     1. The author is not responsible for the consequences of use of
+ *             this software, no matter how awful, even if they arise
+ *             from defects in it.
+ *
+ *     2. The origin of this software must not be misrepresented, either
+ *             by explicit claim or by omission.
+ *
+ *     3. Altered versions must be plainly marked as such, and must not
+ *             be misrepresented as being the original software.
+ *
+ *
+ ****    Alterations to Henry's code are...
+ ****
+ ****    Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ ****    2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ ****    by Larry Wall and others
+ ****
+ ****    You may distribute under the terms of either the GNU General Public
+ ****    License or the Artistic License, as specified in the README file.
+
+ *
+ * Beware that some of this code is subtly aware of the way operator
+ * precedence is structured in regular expressions.  Serious changes in
+ * regular-expression syntax might require a total rethink.
+ */
+#include "EXTERN.h"
+#define PERL_IN_REGCOMP_C
+#include "perl.h"
+
+#ifndef PERL_IN_XSUB_RE
+#  include "INTERN.h"
+#endif
+
+#define REG_COMP_C
+#ifdef PERL_IN_XSUB_RE
+#  include "re_comp.h"
+EXTERN_C const struct regexp_engine my_reg_engine;
+#else
+#  include "regcomp.h"
+#endif
+
+#include "dquote_static.c"
+#include "inline_invlist.c"
+#include "unicode_constants.h"
+
+#define HAS_NONLATIN1_FOLD_CLOSURE(i) \
+ _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
+#define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(i) \
+ _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
+#define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
+#define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
+
+#ifndef STATIC
+#define        STATIC  static
+#endif
+
+#ifndef MIN
+#define MIN(a,b) ((a) < (b) ? (a) : (b))
+#endif
+
+/* this is a chain of data about sub patterns we are processing that
+   need to be handled separately/specially in study_chunk. Its so
+   we can simulate recursion without losing state.  */
+struct scan_frame;
+typedef struct scan_frame {
+    regnode *last_regnode;      /* last node to process in this frame */
+    regnode *next_regnode;      /* next node to process when last is reached */
+    U32 prev_recursed_depth;
+    I32 stopparen;              /* what stopparen do we use */
+    U32 is_top_frame;           /* what flags do we use? */
+
+    struct scan_frame *this_prev_frame; /* this previous frame */
+    struct scan_frame *prev_frame;      /* previous frame */
+    struct scan_frame *next_frame;      /* next frame */
+} scan_frame;
+
+/* Certain characters are output as a sequence with the first being a
+ * backslash. */
+#define isBACKSLASHED_PUNCT(c)                                              \
+                    ((c) == '-' || (c) == ']' || (c) == '\\' || (c) == '^')
+
+
+struct RExC_state_t {
+    U32                flags;                  /* RXf_* are we folding, multilining? */
+    U32                pm_flags;               /* PMf_* stuff from the calling PMOP */
+    char       *precomp;               /* uncompiled string. */
+    REGEXP     *rx_sv;                 /* The SV that is the regexp. */
+    regexp     *rx;                    /* perl core regexp structure */
+    regexp_internal    *rxi;           /* internal data for regexp object
+                                           pprivate field */
+    char       *start;                 /* Start of input for compile */
+    char       *end;                   /* End of input for compile */
+    char       *parse;                 /* Input-scan pointer. */
+    SSize_t    whilem_seen;            /* number of WHILEM in this expr */
+    regnode    *emit_start;            /* Start of emitted-code area */
+    regnode    *emit_bound;            /* First regnode outside of the
+                                           allocated space */
+    regnode    *emit;                  /* Code-emit pointer; if = &emit_dummy,
+                                           implies compiling, so don't emit */
+    regnode_ssc        emit_dummy;             /* placeholder for emit to point to;
+                                           large enough for the largest
+                                           non-EXACTish node, so can use it as
+                                           scratch in pass1 */
+    I32                naughty;                /* How bad is this pattern? */
+    I32                sawback;                /* Did we see \1, ...? */
+    U32                seen;
+    SSize_t    size;                   /* Code size. */
+    I32                npar;            /* Capture buffer count, (OPEN) plus
+                                           one. ("par" 0 is the whole
+                                           pattern)*/
+    I32                nestroot;               /* root parens we are in - used by
+                                           accept */
+    I32                extralen;
+    I32                seen_zerolen;
+    regnode    **open_parens;          /* pointers to open parens */
+    regnode    **close_parens;         /* pointers to close parens */
+    regnode    *opend;                 /* END node in program */
+    I32                utf8;           /* whether the pattern is utf8 or not */
+    I32                orig_utf8;      /* whether the pattern was originally in utf8 */
+                               /* XXX use this for future optimisation of case
+                                * where pattern must be upgraded to utf8. */
+    I32                uni_semantics;  /* If a d charset modifier should use unicode
+                                  rules, even if the pattern is not in
+                                  utf8 */
+    HV         *paren_names;           /* Paren names */
+
+    regnode    **recurse;              /* Recurse regops */
+    I32                recurse_count;          /* Number of recurse regops */
+    U8          *study_chunk_recursed;  /* bitmap of which subs we have moved
+                                           through */
+    U32         study_chunk_recursed_bytes;  /* bytes in bitmap */
+    I32                in_lookbehind;
+    I32                contains_locale;
+    I32                contains_i;
+    I32                override_recoding;
+#ifdef EBCDIC
+    I32                recode_x_to_native;
+#endif
+    I32                in_multi_char_class;
+    struct reg_code_block *code_blocks;        /* positions of literal (?{})
+                                           within pattern */
+    int                num_code_blocks;        /* size of code_blocks[] */
+    int                code_index;             /* next code_blocks[] slot */
+    SSize_t     maxlen;                        /* mininum possible number of chars in string to match */
+    scan_frame *frame_head;
+    scan_frame *frame_last;
+    U32         frame_count;
+    U32         strict;
+#ifdef ADD_TO_REGEXEC
+    char       *starttry;              /* -Dr: where regtry was called. */
+#define RExC_starttry  (pRExC_state->starttry)
+#endif
+    SV         *runtime_code_qr;       /* qr with the runtime code blocks */
+#ifdef DEBUGGING
+    const char  *lastparse;
+    I32         lastnum;
+    AV          *paren_name_list;       /* idx -> name */
+    U32         study_chunk_recursed_count;
+    SV          *mysv1;
+    SV          *mysv2;
+#define RExC_lastparse (pRExC_state->lastparse)
+#define RExC_lastnum   (pRExC_state->lastnum)
+#define RExC_paren_name_list    (pRExC_state->paren_name_list)
+#define RExC_study_chunk_recursed_count    (pRExC_state->study_chunk_recursed_count)
+#define RExC_mysv      (pRExC_state->mysv1)
+#define RExC_mysv1     (pRExC_state->mysv1)
+#define RExC_mysv2     (pRExC_state->mysv2)
+
+#endif
+};
+
+#define RExC_flags     (pRExC_state->flags)
+#define RExC_pm_flags  (pRExC_state->pm_flags)
+#define RExC_precomp   (pRExC_state->precomp)
+#define RExC_rx_sv     (pRExC_state->rx_sv)
+#define RExC_rx                (pRExC_state->rx)
+#define RExC_rxi       (pRExC_state->rxi)
+#define RExC_start     (pRExC_state->start)
+#define RExC_end       (pRExC_state->end)
+#define RExC_parse     (pRExC_state->parse)
+#define RExC_whilem_seen       (pRExC_state->whilem_seen)
+#ifdef RE_TRACK_PATTERN_OFFSETS
+#define RExC_offsets   (pRExC_state->rxi->u.offsets) /* I am not like the
+                                                         others */
+#endif
+#define RExC_emit      (pRExC_state->emit)
+#define RExC_emit_dummy        (pRExC_state->emit_dummy)
+#define RExC_emit_start        (pRExC_state->emit_start)
+#define RExC_emit_bound        (pRExC_state->emit_bound)
+#define RExC_sawback   (pRExC_state->sawback)
+#define RExC_seen      (pRExC_state->seen)
+#define RExC_size      (pRExC_state->size)
+#define RExC_maxlen        (pRExC_state->maxlen)
+#define RExC_npar      (pRExC_state->npar)
+#define RExC_nestroot   (pRExC_state->nestroot)
+#define RExC_extralen  (pRExC_state->extralen)
+#define RExC_seen_zerolen      (pRExC_state->seen_zerolen)
+#define RExC_utf8      (pRExC_state->utf8)
+#define RExC_uni_semantics     (pRExC_state->uni_semantics)
+#define RExC_orig_utf8 (pRExC_state->orig_utf8)
+#define RExC_open_parens       (pRExC_state->open_parens)
+#define RExC_close_parens      (pRExC_state->close_parens)
+#define RExC_opend     (pRExC_state->opend)
+#define RExC_paren_names       (pRExC_state->paren_names)
+#define RExC_recurse   (pRExC_state->recurse)
+#define RExC_recurse_count     (pRExC_state->recurse_count)
+#define RExC_study_chunk_recursed        (pRExC_state->study_chunk_recursed)
+#define RExC_study_chunk_recursed_bytes  \
+                                   (pRExC_state->study_chunk_recursed_bytes)
+#define RExC_in_lookbehind     (pRExC_state->in_lookbehind)
+#define RExC_contains_locale   (pRExC_state->contains_locale)
+#define RExC_contains_i (pRExC_state->contains_i)
+#define RExC_override_recoding (pRExC_state->override_recoding)
+#ifdef EBCDIC
+#   define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)
+#endif
+#define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
+#define RExC_frame_head (pRExC_state->frame_head)
+#define RExC_frame_last (pRExC_state->frame_last)
+#define RExC_frame_count (pRExC_state->frame_count)
+#define RExC_strict (pRExC_state->strict)
+
+/* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
+ * a flag to disable back-off on the fixed/floating substrings - if it's
+ * a high complexity pattern we assume the benefit of avoiding a full match
+ * is worth the cost of checking for the substrings even if they rarely help.
+ */
+#define RExC_naughty   (pRExC_state->naughty)
+#define TOO_NAUGHTY (10)
+#define MARK_NAUGHTY(add) \
+    if (RExC_naughty < TOO_NAUGHTY) \
+        RExC_naughty += (add)
+#define MARK_NAUGHTY_EXP(exp, add) \
+    if (RExC_naughty < TOO_NAUGHTY) \
+        RExC_naughty += RExC_naughty / (exp) + (add)
+
+#define        ISMULT1(c)      ((c) == '*' || (c) == '+' || (c) == '?')
+#define        ISMULT2(s)      ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
+       ((*s) == '{' && regcurly(s)))
+
+/*
+ * Flags to be passed up and down.
+ */
+#define        WORST           0       /* Worst case. */
+#define        HASWIDTH        0x01    /* Known to match non-null strings. */
+
+/* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
+ * character.  (There needs to be a case: in the switch statement in regexec.c
+ * for any node marked SIMPLE.)  Note that this is not the same thing as
+ * REGNODE_SIMPLE */
+#define        SIMPLE          0x02
+#define        SPSTART         0x04    /* Starts with * or + */
+#define POSTPONED      0x08    /* (?1),(?&name), (??{...}) or similar */
+#define TRYAGAIN       0x10    /* Weeded out a declaration. */
+#define RESTART_UTF8    0x20    /* Restart, need to calcuate sizes as UTF-8 */
+
+#define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
+
+/* whether trie related optimizations are enabled */
+#if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
+#define TRIE_STUDY_OPT
+#define FULL_TRIE_STUDY
+#define TRIE_STCLASS
+#endif
+
+
+
+#define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
+#define PBITVAL(paren) (1 << ((paren) & 7))
+#define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
+#define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
+#define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
+
+#define REQUIRE_UTF8   STMT_START {                                       \
+                                     if (!UTF) {                           \
+                                         *flagp = RESTART_UTF8;            \
+                                         return NULL;                      \
+                                     }                                     \
+                        } STMT_END
+
+/* This converts the named class defined in regcomp.h to its equivalent class
+ * number defined in handy.h. */
+#define namedclass_to_classnum(class)  ((int) ((class) / 2))
+#define classnum_to_namedclass(classnum)  ((classnum) * 2)
+
+#define _invlist_union_complement_2nd(a, b, output) \
+                        _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
+#define _invlist_intersection_complement_2nd(a, b, output) \
+                 _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
+
+/* About scan_data_t.
+
+  During optimisation we recurse through the regexp program performing
+  various inplace (keyhole style) optimisations. In addition study_chunk
+  and scan_commit populate this data structure with information about
+  what strings MUST appear in the pattern. We look for the longest
+  string that must appear at a fixed location, and we look for the
+  longest string that may appear at a floating location. So for instance
+  in the pattern:
+
+    /FOO[xX]A.*B[xX]BAR/
+
+  Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
+  strings (because they follow a .* construct). study_chunk will identify
+  both FOO and BAR as being the longest fixed and floating strings respectively.
+
+  The strings can be composites, for instance
+
+     /(f)(o)(o)/
+
+  will result in a composite fixed substring 'foo'.
+
+  For each string some basic information is maintained:
+
+  - offset or min_offset
+    This is the position the string must appear at, or not before.
+    It also implicitly (when combined with minlenp) tells us how many
+    characters must match before the string we are searching for.
+    Likewise when combined with minlenp and the length of the string it
+    tells us how many characters must appear after the string we have
+    found.
+
+  - max_offset
+    Only used for floating strings. This is the rightmost point that
+    the string can appear at. If set to SSize_t_MAX it indicates that the
+    string can occur infinitely far to the right.
+
+  - minlenp
+    A pointer to the minimum number of characters of the pattern that the
+    string was found inside. This is important as in the case of positive
+    lookahead or positive lookbehind we can have multiple patterns
+    involved. Consider
+
+    /(?=FOO).*F/
+
+    The minimum length of the pattern overall is 3, the minimum length
+    of the lookahead part is 3, but the minimum length of the part that
+    will actually match is 1. So 'FOO's minimum length is 3, but the
+    minimum length for the F is 1. This is important as the minimum length
+    is used to determine offsets in front of and behind the string being
+    looked for.  Since strings can be composites this is the length of the
+    pattern at the time it was committed with a scan_commit. Note that
+    the length is calculated by study_chunk, so that the minimum lengths
+    are not known until the full pattern has been compiled, thus the
+    pointer to the value.
+
+  - lookbehind
+
+    In the case of lookbehind the string being searched for can be
+    offset past the start point of the final matching string.
+    If this value was just blithely removed from the min_offset it would
+    invalidate some of the calculations for how many chars must match
+    before or after (as they are derived from min_offset and minlen and
+    the length of the string being searched for).
+    When the final pattern is compiled and the data is moved from the
+    scan_data_t structure into the regexp structure the information
+    about lookbehind is factored in, with the information that would
+    have been lost precalculated in the end_shift field for the
+    associated string.
+
+  The fields pos_min and pos_delta are used to store the minimum offset
+  and the delta to the maximum offset at the current point in the pattern.
+
+*/
+
+typedef struct scan_data_t {
+    /*I32 len_min;      unused */
+    /*I32 len_delta;    unused */
+    SSize_t pos_min;
+    SSize_t pos_delta;
+    SV *last_found;
+    SSize_t last_end;      /* min value, <0 unless valid. */
+    SSize_t last_start_min;
+    SSize_t last_start_max;
+    SV **longest;          /* Either &l_fixed, or &l_float. */
+    SV *longest_fixed;      /* longest fixed string found in pattern */
+    SSize_t offset_fixed;   /* offset where it starts */
+    SSize_t *minlen_fixed;  /* pointer to the minlen relevant to the string */
+    I32 lookbehind_fixed;   /* is the position of the string modfied by LB */
+    SV *longest_float;      /* longest floating string found in pattern */
+    SSize_t offset_float_min; /* earliest point in string it can appear */
+    SSize_t offset_float_max; /* latest point in string it can appear */
+    SSize_t *minlen_float;  /* pointer to the minlen relevant to the string */
+    SSize_t lookbehind_float; /* is the pos of the string modified by LB */
+    I32 flags;
+    I32 whilem_c;
+    SSize_t *last_closep;
+    regnode_ssc *start_class;
+} scan_data_t;
+
+/*
+ * Forward declarations for pregcomp()'s friends.
+ */
+
+static const scan_data_t zero_scan_data =
+  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
+
+#define SF_BEFORE_EOL          (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
+#define SF_BEFORE_SEOL         0x0001
+#define SF_BEFORE_MEOL         0x0002
+#define SF_FIX_BEFORE_EOL      (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
+#define SF_FL_BEFORE_EOL       (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
+
+#define SF_FIX_SHIFT_EOL       (+2)
+#define SF_FL_SHIFT_EOL                (+4)
+
+#define SF_FIX_BEFORE_SEOL     (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
+#define SF_FIX_BEFORE_MEOL     (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
+
+#define SF_FL_BEFORE_SEOL      (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
+#define SF_FL_BEFORE_MEOL      (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
+#define SF_IS_INF              0x0040
+#define SF_HAS_PAR             0x0080
+#define SF_IN_PAR              0x0100
+#define SF_HAS_EVAL            0x0200
+#define SCF_DO_SUBSTR          0x0400
+#define SCF_DO_STCLASS_AND     0x0800
+#define SCF_DO_STCLASS_OR      0x1000
+#define SCF_DO_STCLASS         (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
+#define SCF_WHILEM_VISITED_POS 0x2000
+
+#define SCF_TRIE_RESTUDY        0x4000 /* Do restudy? */
+#define SCF_SEEN_ACCEPT         0x8000
+#define SCF_TRIE_DOING_RESTUDY 0x10000
+#define SCF_IN_DEFINE          0x20000
+
+
+
+
+#define UTF cBOOL(RExC_utf8)
+
+/* The enums for all these are ordered so things work out correctly */
+#define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
+#define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags)                    \
+                                                     == REGEX_DEPENDS_CHARSET)
+#define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
+#define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags)                \
+                                                     >= REGEX_UNICODE_CHARSET)
+#define ASCII_RESTRICTED (get_regex_charset(RExC_flags)                      \
+                                            == REGEX_ASCII_RESTRICTED_CHARSET)
+#define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags)             \
+                                            >= REGEX_ASCII_RESTRICTED_CHARSET)
+#define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags)                 \
+                                        == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
+
+#define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
+
+/* For programs that want to be strictly Unicode compatible by dying if any
+ * attempt is made to match a non-Unicode code point against a Unicode
+ * property.  */
+#define ALWAYS_WARN_SUPER  ckDEAD(packWARN(WARN_NON_UNICODE))
+
+#define OOB_NAMEDCLASS         -1
+
+/* There is no code point that is out-of-bounds, so this is problematic.  But
+ * its only current use is to initialize a variable that is always set before
+ * looked at. */
+#define OOB_UNICODE            0xDEADBEEF
+
+#define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
+#define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
+
+
+/* length of regex to show in messages that don't mark a position within */
+#define RegexLengthToShowInErrorMessages 127
+
+/*
+ * If MARKER[12] are adjusted, be sure to adjust the constants at the top
+ * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
+ * op/pragma/warn/regcomp.
+ */
+#define MARKER1 "<-- HERE"    /* marker as it appears in the description */
+#define MARKER2 " <-- HERE "  /* marker as it appears within the regex */
+
+#define REPORT_LOCATION " in regex; marked by " MARKER1    \
+                        " in m/%"UTF8f MARKER2 "%"UTF8f"/"
+
+#define REPORT_LOCATION_ARGS(offset)            \
+                UTF8fARG(UTF, offset, RExC_precomp), \
+                UTF8fARG(UTF, RExC_end - RExC_precomp - offset, RExC_precomp + offset)
+
+/* Used to point after bad bytes for an error message, but avoid skipping
+ * past a nul byte. */
+#define SKIP_IF_CHAR(s) (!*(s) ? 0 : UTF ? UTF8SKIP(s) : 1)
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
+ * arg. Show regex, up to a maximum length. If it's too long, chop and add
+ * "...".
+ */
+#define _FAIL(code) STMT_START {                                       \
+    const char *ellipses = "";                                         \
+    IV len = RExC_end - RExC_precomp;                                  \
+                                                                       \
+    if (!SIZE_ONLY)                                                    \
+       SAVEFREESV(RExC_rx_sv);                                         \
+    if (len > RegexLengthToShowInErrorMessages) {                      \
+       /* chop 10 shorter than the max, to ensure meaning of "..." */  \
+       len = RegexLengthToShowInErrorMessages - 10;                    \
+       ellipses = "...";                                               \
+    }                                                                  \
+    code;                                                               \
+} STMT_END
+
+#define        FAIL(msg) _FAIL(                            \
+    Perl_croak(aTHX_ "%s in regex m/%"UTF8f"%s/",          \
+           msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
+
+#define        FAIL2(msg,arg) _FAIL(                       \
+    Perl_croak(aTHX_ msg " in regex m/%"UTF8f"%s/",        \
+           arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
+
+/*
+ * Simple_vFAIL -- like FAIL, but marks the current location in the scan
+ */
+#define        Simple_vFAIL(m) STMT_START {                                    \
+    const IV offset =                                                   \
+        (RExC_parse > RExC_end ? RExC_end : RExC_parse) - RExC_precomp; \
+    Perl_croak(aTHX_ "%s" REPORT_LOCATION,                             \
+           m, REPORT_LOCATION_ARGS(offset));   \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
+ */
+#define        vFAIL(m) STMT_START {                           \
+    if (!SIZE_ONLY)                                    \
+       SAVEFREESV(RExC_rx_sv);                         \
+    Simple_vFAIL(m);                                   \
+} STMT_END
+
+/*
+ * Like Simple_vFAIL(), but accepts two arguments.
+ */
+#define        Simple_vFAIL2(m,a1) STMT_START {                        \
+    const IV offset = RExC_parse - RExC_precomp;                       \
+    S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1,                     \
+                      REPORT_LOCATION_ARGS(offset));   \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
+ */
+#define        vFAIL2(m,a1) STMT_START {                       \
+    if (!SIZE_ONLY)                                    \
+       SAVEFREESV(RExC_rx_sv);                         \
+    Simple_vFAIL2(m, a1);                              \
+} STMT_END
+
+
+/*
+ * Like Simple_vFAIL(), but accepts three arguments.
+ */
+#define        Simple_vFAIL3(m, a1, a2) STMT_START {                   \
+    const IV offset = RExC_parse - RExC_precomp;               \
+    S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2,         \
+           REPORT_LOCATION_ARGS(offset));      \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
+ */
+#define        vFAIL3(m,a1,a2) STMT_START {                    \
+    if (!SIZE_ONLY)                                    \
+       SAVEFREESV(RExC_rx_sv);                         \
+    Simple_vFAIL3(m, a1, a2);                          \
+} STMT_END
+
+/*
+ * Like Simple_vFAIL(), but accepts four arguments.
+ */
+#define        Simple_vFAIL4(m, a1, a2, a3) STMT_START {               \
+    const IV offset = RExC_parse - RExC_precomp;               \
+    S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, a3,             \
+           REPORT_LOCATION_ARGS(offset));      \
+} STMT_END
+
+#define        vFAIL4(m,a1,a2,a3) STMT_START {                 \
+    if (!SIZE_ONLY)                                    \
+       SAVEFREESV(RExC_rx_sv);                         \
+    Simple_vFAIL4(m, a1, a2, a3);                      \
+} STMT_END
+
+/* A specialized version of vFAIL2 that works with UTF8f */
+#define vFAIL2utf8f(m, a1) STMT_START { \
+    const IV offset = RExC_parse - RExC_precomp;   \
+    if (!SIZE_ONLY)                                \
+        SAVEFREESV(RExC_rx_sv);                    \
+    S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
+            REPORT_LOCATION_ARGS(offset));         \
+} STMT_END
+
+/* These have asserts in them because of [perl #122671] Many warnings in
+ * regcomp.c can occur twice.  If they get output in pass1 and later in that
+ * pass, the pattern has to be converted to UTF-8 and the pass restarted, they
+ * would get output again.  So they should be output in pass2, and these
+ * asserts make sure new warnings follow that paradigm. */
+
+/* m is not necessarily a "literal string", in this macro */
+#define reg_warn_non_literal_string(loc, m) STMT_START {                \
+    const IV offset = loc - RExC_precomp;                               \
+    __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s" REPORT_LOCATION,      \
+            m, REPORT_LOCATION_ARGS(offset));       \
+} STMT_END
+
+#define        ckWARNreg(loc,m) STMT_START {                                   \
+    const IV offset = loc - RExC_precomp;                              \
+    __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,    \
+           REPORT_LOCATION_ARGS(offset));              \
+} STMT_END
+
+#define        vWARN(loc, m) STMT_START {                                      \
+    const IV offset = loc - RExC_precomp;                              \
+    __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,       \
+           REPORT_LOCATION_ARGS(offset));              \
+} STMT_END
+
+#define        vWARN_dep(loc, m) STMT_START {                                  \
+    const IV offset = loc - RExC_precomp;                              \
+    __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), m REPORT_LOCATION,   \
+           REPORT_LOCATION_ARGS(offset));              \
+} STMT_END
+
+#define        ckWARNdep(loc,m) STMT_START {                                   \
+    const IV offset = loc - RExC_precomp;                              \
+    __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED),                 \
+           m REPORT_LOCATION,                                          \
+           REPORT_LOCATION_ARGS(offset));              \
+} STMT_END
+
+#define        ckWARNregdep(loc,m) STMT_START {                                \
+    const IV offset = loc - RExC_precomp;                              \
+    __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP),   \
+           m REPORT_LOCATION,                                          \
+           REPORT_LOCATION_ARGS(offset));              \
+} STMT_END
+
+#define        ckWARN2reg_d(loc,m, a1) STMT_START {                            \
+    const IV offset = loc - RExC_precomp;                              \
+    __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP),                     \
+           m REPORT_LOCATION,                                          \
+           a1, REPORT_LOCATION_ARGS(offset));  \
+} STMT_END
+
+#define        ckWARN2reg(loc, m, a1) STMT_START {                             \
+    const IV offset = loc - RExC_precomp;                              \
+    __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,    \
+           a1, REPORT_LOCATION_ARGS(offset));  \
+} STMT_END
+
+#define        vWARN3(loc, m, a1, a2) STMT_START {                             \
+    const IV offset = loc - RExC_precomp;                              \
+    __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,               \
+           a1, a2, REPORT_LOCATION_ARGS(offset));      \
+} STMT_END
+
+#define        ckWARN3reg(loc, m, a1, a2) STMT_START {                         \
+    const IV offset = loc - RExC_precomp;                              \
+    __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,    \
+           a1, a2, REPORT_LOCATION_ARGS(offset));      \
+} STMT_END
+
+#define        vWARN4(loc, m, a1, a2, a3) STMT_START {                         \
+    const IV offset = loc - RExC_precomp;                              \
+    __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,               \
+           a1, a2, a3, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define        ckWARN4reg(loc, m, a1, a2, a3) STMT_START {                     \
+    const IV offset = loc - RExC_precomp;                              \
+    __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,    \
+           a1, a2, a3, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define        vWARN5(loc, m, a1, a2, a3, a4) STMT_START {                     \
+    const IV offset = loc - RExC_precomp;                              \
+    __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,               \
+           a1, a2, a3, a4, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/* Macros for recording node offsets.   20001227 mjd@plover.com
+ * Nodes are numbered 1, 2, 3, 4.  Node #n's position is recorded in
+ * element 2*n-1 of the array.  Element #2n holds the byte length node #n.
+ * Element 0 holds the number n.
+ * Position is 1 indexed.
+ */
+#ifndef RE_TRACK_PATTERN_OFFSETS
+#define Set_Node_Offset_To_R(node,byte)
+#define Set_Node_Offset(node,byte)
+#define Set_Cur_Node_Offset
+#define Set_Node_Length_To_R(node,len)
+#define Set_Node_Length(node,len)
+#define Set_Node_Cur_Length(node,start)
+#define Node_Offset(n)
+#define Node_Length(n)
+#define Set_Node_Offset_Length(node,offset,len)
+#define ProgLen(ri) ri->u.proglen
+#define SetProgLen(ri,x) ri->u.proglen = x
+#else
+#define ProgLen(ri) ri->u.offsets[0]
+#define SetProgLen(ri,x) ri->u.offsets[0] = x
+#define Set_Node_Offset_To_R(node,byte) STMT_START {                   \
+    if (! SIZE_ONLY) {                                                 \
+       MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n",         \
+                   __LINE__, (int)(node), (int)(byte)));               \
+       if((node) < 0) {                                                \
+           Perl_croak(aTHX_ "value of node is %d in Offset macro",     \
+                                         (int)(node));                  \
+       } else {                                                        \
+           RExC_offsets[2*(node)-1] = (byte);                          \
+       }                                                               \
+    }                                                                  \
+} STMT_END
+
+#define Set_Node_Offset(node,byte) \
+    Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
+#define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
+
+#define Set_Node_Length_To_R(node,len) STMT_START {                    \
+    if (! SIZE_ONLY) {                                                 \
+       MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n",           \
+               __LINE__, (int)(node), (int)(len)));                    \
+       if((node) < 0) {                                                \
+           Perl_croak(aTHX_ "value of node is %d in Length macro",     \
+                                         (int)(node));                  \
+       } else {                                                        \
+           RExC_offsets[2*(node)] = (len);                             \
+       }                                                               \
+    }                                                                  \
+} STMT_END
+
+#define Set_Node_Length(node,len) \
+    Set_Node_Length_To_R((node)-RExC_emit_start, len)
+#define Set_Node_Cur_Length(node, start)                \
+    Set_Node_Length(node, RExC_parse - start)
+
+/* Get offsets and lengths */
+#define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
+#define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
+
+#define Set_Node_Offset_Length(node,offset,len) STMT_START {   \
+    Set_Node_Offset_To_R((node)-RExC_emit_start, (offset));    \
+    Set_Node_Length_To_R((node)-RExC_emit_start, (len));       \
+} STMT_END
+#endif
+
+#if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
+#define EXPERIMENTAL_INPLACESCAN
+#endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
+
+#define DEBUG_RExC_seen() \
+        DEBUG_OPTIMISE_MORE_r({                                             \
+            PerlIO_printf(Perl_debug_log,"RExC_seen: ");                    \
+                                                                            \
+            if (RExC_seen & REG_ZERO_LEN_SEEN)                              \
+                PerlIO_printf(Perl_debug_log,"REG_ZERO_LEN_SEEN ");         \
+                                                                            \
+            if (RExC_seen & REG_LOOKBEHIND_SEEN)                            \
+                PerlIO_printf(Perl_debug_log,"REG_LOOKBEHIND_SEEN ");       \
+                                                                            \
+            if (RExC_seen & REG_GPOS_SEEN)                                  \
+                PerlIO_printf(Perl_debug_log,"REG_GPOS_SEEN ");             \
+                                                                            \
+            if (RExC_seen & REG_RECURSE_SEEN)                               \
+                PerlIO_printf(Perl_debug_log,"REG_RECURSE_SEEN ");          \
+                                                                            \
+            if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN)                         \
+                PerlIO_printf(Perl_debug_log,"REG_TOP_LEVEL_BRANCHES_SEEN ");    \
+                                                                            \
+            if (RExC_seen & REG_VERBARG_SEEN)                               \
+                PerlIO_printf(Perl_debug_log,"REG_VERBARG_SEEN ");          \
+                                                                            \
+            if (RExC_seen & REG_CUTGROUP_SEEN)                              \
+                PerlIO_printf(Perl_debug_log,"REG_CUTGROUP_SEEN ");         \
+                                                                            \
+            if (RExC_seen & REG_RUN_ON_COMMENT_SEEN)                        \
+                PerlIO_printf(Perl_debug_log,"REG_RUN_ON_COMMENT_SEEN ");   \
+                                                                            \
+            if (RExC_seen & REG_UNFOLDED_MULTI_SEEN)                        \
+                PerlIO_printf(Perl_debug_log,"REG_UNFOLDED_MULTI_SEEN ");   \
+                                                                            \
+            if (RExC_seen & REG_GOSTART_SEEN)                               \
+                PerlIO_printf(Perl_debug_log,"REG_GOSTART_SEEN ");          \
+                                                                            \
+            if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN)                               \
+                PerlIO_printf(Perl_debug_log,"REG_UNBOUNDED_QUANTIFIER_SEEN ");          \
+                                                                            \
+            PerlIO_printf(Perl_debug_log,"\n");                             \
+        });
+
+#define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
+  if ((flags) & flag) PerlIO_printf(Perl_debug_log, "%s ", #flag)
+
+#define DEBUG_SHOW_STUDY_FLAGS(flags,open_str,close_str)                    \
+    if ( ( flags ) ) {                                                      \
+        PerlIO_printf(Perl_debug_log, "%s", open_str);                      \
+        DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_SEOL);                     \
+        DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_MEOL);                     \
+        DEBUG_SHOW_STUDY_FLAG(flags,SF_IS_INF);                             \
+        DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_PAR);                            \
+        DEBUG_SHOW_STUDY_FLAG(flags,SF_IN_PAR);                             \
+        DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_EVAL);                           \
+        DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_SUBSTR);                         \
+        DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_AND);                    \
+        DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_OR);                     \
+        DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS);                        \
+        DEBUG_SHOW_STUDY_FLAG(flags,SCF_WHILEM_VISITED_POS);                \
+        DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_RESTUDY);                      \
+        DEBUG_SHOW_STUDY_FLAG(flags,SCF_SEEN_ACCEPT);                       \
+        DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_DOING_RESTUDY);                \
+        DEBUG_SHOW_STUDY_FLAG(flags,SCF_IN_DEFINE);                         \
+        PerlIO_printf(Perl_debug_log, "%s", close_str);                     \
+    }
+
+
+#define DEBUG_STUDYDATA(str,data,depth)                              \
+DEBUG_OPTIMISE_MORE_r(if(data){                                      \
+    PerlIO_printf(Perl_debug_log,                                    \
+        "%*s" str "Pos:%"IVdf"/%"IVdf                                \
+        " Flags: 0x%"UVXf,                                           \
+        (int)(depth)*2, "",                                          \
+        (IV)((data)->pos_min),                                       \
+        (IV)((data)->pos_delta),                                     \
+        (UV)((data)->flags)                                          \
+    );                                                               \
+    DEBUG_SHOW_STUDY_FLAGS((data)->flags," [ ","]");                 \
+    PerlIO_printf(Perl_debug_log,                                    \
+        " Whilem_c: %"IVdf" Lcp: %"IVdf" %s",                        \
+        (IV)((data)->whilem_c),                                      \
+        (IV)((data)->last_closep ? *((data)->last_closep) : -1),     \
+        is_inf ? "INF " : ""                                         \
+    );                                                               \
+    if ((data)->last_found)                                          \
+        PerlIO_printf(Perl_debug_log,                                \
+            "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
+            " %sFloat: '%s' @ %"IVdf"/%"IVdf"",                      \
+            SvPVX_const((data)->last_found),                         \
+            (IV)((data)->last_end),                                  \
+            (IV)((data)->last_start_min),                            \
+            (IV)((data)->last_start_max),                            \
+            ((data)->longest &&                                      \
+             (data)->longest==&((data)->longest_fixed)) ? "*" : "",  \
+            SvPVX_const((data)->longest_fixed),                      \
+            (IV)((data)->offset_fixed),                              \
+            ((data)->longest &&                                      \
+             (data)->longest==&((data)->longest_float)) ? "*" : "",  \
+            SvPVX_const((data)->longest_float),                      \
+            (IV)((data)->offset_float_min),                          \
+            (IV)((data)->offset_float_max)                           \
+        );                                                           \
+    PerlIO_printf(Perl_debug_log,"\n");                              \
+});
+
+/* is c a control character for which we have a mnemonic? */
+#define isMNEMONIC_CNTRL(c) _IS_MNEMONIC_CNTRL_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
+
+STATIC const char *
+S_cntrl_to_mnemonic(const U8 c)
+{
+    /* Returns the mnemonic string that represents character 'c', if one
+     * exists; NULL otherwise.  The only ones that exist for the purposes of
+     * this routine are a few control characters */
+
+    switch (c) {
+        case '\a':       return "\\a";
+        case '\b':       return "\\b";
+        case ESC_NATIVE: return "\\e";
+        case '\f':       return "\\f";
+        case '\n':       return "\\n";
+        case '\r':       return "\\r";
+        case '\t':       return "\\t";
+    }
+
+    return NULL;
+}
+
+/* Mark that we cannot extend a found fixed substring at this point.
+   Update the longest found anchored substring and the longest found
+   floating substrings if needed. */
+
+STATIC void
+S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
+                    SSize_t *minlenp, int is_inf)
+{
+    const STRLEN l = CHR_SVLEN(data->last_found);
+    const STRLEN old_l = CHR_SVLEN(*data->longest);
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_SCAN_COMMIT;
+
+    if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
+       SvSetMagicSV(*data->longest, data->last_found);
+       if (*data->longest == data->longest_fixed) {
+           data->offset_fixed = l ? data->last_start_min : data->pos_min;
+           if (data->flags & SF_BEFORE_EOL)
+               data->flags
+                   |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
+           else
+               data->flags &= ~SF_FIX_BEFORE_EOL;
+           data->minlen_fixed=minlenp;
+           data->lookbehind_fixed=0;
+       }
+       else { /* *data->longest == data->longest_float */
+           data->offset_float_min = l ? data->last_start_min : data->pos_min;
+           data->offset_float_max = (l
+                          ? data->last_start_max
+                          : (data->pos_delta > SSize_t_MAX - data->pos_min
+                                        ? SSize_t_MAX
+                                        : data->pos_min + data->pos_delta));
+           if (is_inf
+                || (STRLEN)data->offset_float_max > (STRLEN)SSize_t_MAX)
+               data->offset_float_max = SSize_t_MAX;
+           if (data->flags & SF_BEFORE_EOL)
+               data->flags
+                   |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
+           else
+               data->flags &= ~SF_FL_BEFORE_EOL;
+            data->minlen_float=minlenp;
+            data->lookbehind_float=0;
+       }
+    }
+    SvCUR_set(data->last_found, 0);
+    {
+       SV * const sv = data->last_found;
+       if (SvUTF8(sv) && SvMAGICAL(sv)) {
+           MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
+           if (mg)
+               mg->mg_len = 0;
+       }
+    }
+    data->last_end = -1;
+    data->flags &= ~SF_BEFORE_EOL;
+    DEBUG_STUDYDATA("commit: ",data,0);
+}
+
+/* An SSC is just a regnode_charclass_posix with an extra field: the inversion
+ * list that describes which code points it matches */
+
+STATIC void
+S_ssc_anything(pTHX_ regnode_ssc *ssc)
+{
+    /* Set the SSC 'ssc' to match an empty string or any code point */
+
+    PERL_ARGS_ASSERT_SSC_ANYTHING;
+
+    assert(is_ANYOF_SYNTHETIC(ssc));
+
+    ssc->invlist = sv_2mortal(_new_invlist(2)); /* mortalize so won't leak */
+    _append_range_to_invlist(ssc->invlist, 0, UV_MAX);
+    ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING;  /* Plus matches empty */
+}
+
+STATIC int
+S_ssc_is_anything(const regnode_ssc *ssc)
+{
+    /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
+     * point; FALSE otherwise.  Thus, this is used to see if using 'ssc' buys
+     * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
+     * in any way, so there's no point in using it */
+
+    UV start, end;
+    bool ret;
+
+    PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
+
+    assert(is_ANYOF_SYNTHETIC(ssc));
+
+    if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
+        return FALSE;
+    }
+
+    /* See if the list consists solely of the range 0 - Infinity */
+    invlist_iterinit(ssc->invlist);
+    ret = invlist_iternext(ssc->invlist, &start, &end)
+          && start == 0
+          && end == UV_MAX;
+
+    invlist_iterfinish(ssc->invlist);
+
+    if (ret) {
+        return TRUE;
+    }
+
+    /* If e.g., both \w and \W are set, matches everything */
+    if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+        int i;
+        for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
+            if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
+                return TRUE;
+            }
+        }
+    }
+
+    return FALSE;
+}
+
+STATIC void
+S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
+{
+    /* Initializes the SSC 'ssc'.  This includes setting it to match an empty
+     * string, any code point, or any posix class under locale */
+
+    PERL_ARGS_ASSERT_SSC_INIT;
+
+    Zero(ssc, 1, regnode_ssc);
+    set_ANYOF_SYNTHETIC(ssc);
+    ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
+    ssc_anything(ssc);
+
+    /* If any portion of the regex is to operate under locale rules that aren't
+     * fully known at compile time, initialization includes it.  The reason
+     * this isn't done for all regexes is that the optimizer was written under
+     * the assumption that locale was all-or-nothing.  Given the complexity and
+     * lack of documentation in the optimizer, and that there are inadequate
+     * test cases for locale, many parts of it may not work properly, it is
+     * safest to avoid locale unless necessary. */
+    if (RExC_contains_locale) {
+       ANYOF_POSIXL_SETALL(ssc);
+    }
+    else {
+       ANYOF_POSIXL_ZERO(ssc);
+    }
+}
+
+STATIC int
+S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
+                        const regnode_ssc *ssc)
+{
+    /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
+     * to the list of code points matched, and locale posix classes; hence does
+     * not check its flags) */
+
+    UV start, end;
+    bool ret;
+
+    PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
+
+    assert(is_ANYOF_SYNTHETIC(ssc));
+
+    invlist_iterinit(ssc->invlist);
+    ret = invlist_iternext(ssc->invlist, &start, &end)
+          && start == 0
+          && end == UV_MAX;
+
+    invlist_iterfinish(ssc->invlist);
+
+    if (! ret) {
+        return FALSE;
+    }
+
+    if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
+        return FALSE;
+    }
+
+    return TRUE;
+}
+
+STATIC SV*
+S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
+                               const regnode_charclass* const node)
+{
+    /* Returns a mortal inversion list defining which code points are matched
+     * by 'node', which is of type ANYOF.  Handles complementing the result if
+     * appropriate.  If some code points aren't knowable at this time, the
+     * returned list must, and will, contain every code point that is a
+     * possibility. */
+
+    SV* invlist = sv_2mortal(_new_invlist(0));
+    SV* only_utf8_locale_invlist = NULL;
+    unsigned int i;
+    const U32 n = ARG(node);
+    bool new_node_has_latin1 = FALSE;
+
+    PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
+
+    /* Look at the data structure created by S_set_ANYOF_arg() */
+    if (n != ANYOF_ONLY_HAS_BITMAP) {
+        SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
+        AV * const av = MUTABLE_AV(SvRV(rv));
+        SV **const ary = AvARRAY(av);
+        assert(RExC_rxi->data->what[n] == 's');
+
+        if (ary[1] && ary[1] != &PL_sv_undef) { /* Has compile-time swash */
+            invlist = sv_2mortal(invlist_clone(_get_swash_invlist(ary[1])));
+        }
+        else if (ary[0] && ary[0] != &PL_sv_undef) {
+
+            /* Here, no compile-time swash, and there are things that won't be
+             * known until runtime -- we have to assume it could be anything */
+            return _add_range_to_invlist(invlist, 0, UV_MAX);
+        }
+        else if (ary[3] && ary[3] != &PL_sv_undef) {
+
+            /* Here no compile-time swash, and no run-time only data.  Use the
+             * node's inversion list */
+            invlist = sv_2mortal(invlist_clone(ary[3]));
+        }
+
+        /* Get the code points valid only under UTF-8 locales */
+        if ((ANYOF_FLAGS(node) & ANYOF_LOC_FOLD)
+            && ary[2] && ary[2] != &PL_sv_undef)
+        {
+            only_utf8_locale_invlist = ary[2];
+        }
+    }
+
+    /* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
+     * code points, and an inversion list for the others, but if there are code
+     * points that should match only conditionally on the target string being
+     * UTF-8, those are placed in the inversion list, and not the bitmap.
+     * Since there are circumstances under which they could match, they are
+     * included in the SSC.  But if the ANYOF node is to be inverted, we have
+     * to exclude them here, so that when we invert below, the end result
+     * actually does include them.  (Think about "\xe0" =~ /[^\xc0]/di;).  We
+     * have to do this here before we add the unconditionally matched code
+     * points */
+    if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
+        _invlist_intersection_complement_2nd(invlist,
+                                             PL_UpperLatin1,
+                                             &invlist);
+    }
+
+    /* Add in the points from the bit map */
+    for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
+        if (ANYOF_BITMAP_TEST(node, i)) {
+            invlist = add_cp_to_invlist(invlist, i);
+            new_node_has_latin1 = TRUE;
+        }
+    }
+
+    /* If this can match all upper Latin1 code points, have to add them
+     * as well */
+    if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII) {
+        _invlist_union(invlist, PL_UpperLatin1, &invlist);
+    }
+
+    /* Similarly for these */
+    if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
+        _invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
+    }
+
+    if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
+        _invlist_invert(invlist);
+    }
+    else if (new_node_has_latin1 && ANYOF_FLAGS(node) & ANYOF_LOC_FOLD) {
+
+        /* Under /li, any 0-255 could fold to any other 0-255, depending on the
+         * locale.  We can skip this if there are no 0-255 at all. */
+        _invlist_union(invlist, PL_Latin1, &invlist);
+    }
+
+    /* Similarly add the UTF-8 locale possible matches.  These have to be
+     * deferred until after the non-UTF-8 locale ones are taken care of just
+     * above, or it leads to wrong results under ANYOF_INVERT */
+    if (only_utf8_locale_invlist) {
+        _invlist_union_maybe_complement_2nd(invlist,
+                                            only_utf8_locale_invlist,
+                                            ANYOF_FLAGS(node) & ANYOF_INVERT,
+                                            &invlist);
+    }
+
+    return invlist;
+}
+
+/* These two functions currently do the exact same thing */
+#define ssc_init_zero          ssc_init
+
+#define ssc_add_cp(ssc, cp)   ssc_add_range((ssc), (cp), (cp))
+#define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
+
+/* 'AND' a given class with another one.  Can create false positives.  'ssc'
+ * should not be inverted.  'and_with->flags & ANYOF_MATCHES_POSIXL' should be
+ * 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */
+
+STATIC void
+S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
+                const regnode_charclass *and_with)
+{
+    /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
+     * another SSC or a regular ANYOF class.  Can create false positives. */
+
+    SV* anded_cp_list;
+    U8  anded_flags;
+
+    PERL_ARGS_ASSERT_SSC_AND;
+
+    assert(is_ANYOF_SYNTHETIC(ssc));
+
+    /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
+     * the code point inversion list and just the relevant flags */
+    if (is_ANYOF_SYNTHETIC(and_with)) {
+        anded_cp_list = ((regnode_ssc *)and_with)->invlist;
+        anded_flags = ANYOF_FLAGS(and_with);
+
+        /* XXX This is a kludge around what appears to be deficiencies in the
+         * optimizer.  If we make S_ssc_anything() add in the WARN_SUPER flag,
+         * there are paths through the optimizer where it doesn't get weeded
+         * out when it should.  And if we don't make some extra provision for
+         * it like the code just below, it doesn't get added when it should.
+         * This solution is to add it only when AND'ing, which is here, and
+         * only when what is being AND'ed is the pristine, original node
+         * matching anything.  Thus it is like adding it to ssc_anything() but
+         * only when the result is to be AND'ed.  Probably the same solution
+         * could be adopted for the same problem we have with /l matching,
+         * which is solved differently in S_ssc_init(), and that would lead to
+         * fewer false positives than that solution has.  But if this solution
+         * creates bugs, the consequences are only that a warning isn't raised
+         * that should be; while the consequences for having /l bugs is
+         * incorrect matches */
+        if (ssc_is_anything((regnode_ssc *)and_with)) {
+            anded_flags |= ANYOF_WARN_SUPER;
+        }
+    }
+    else {
+        anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
+        anded_flags = ANYOF_FLAGS(and_with) & ANYOF_COMMON_FLAGS;
+    }
+
+    ANYOF_FLAGS(ssc) &= anded_flags;
+
+    /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
+     * C2 is the list of code points in 'and-with'; P2, its posix classes.
+     * 'and_with' may be inverted.  When not inverted, we have the situation of
+     * computing:
+     *  (C1 | P1) & (C2 | P2)
+     *                     =  (C1 & (C2 | P2)) | (P1 & (C2 | P2))
+     *                     =  ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
+     *                    <=  ((C1 & C2) |       P2)) | ( P1       | (P1 & P2))
+     *                    <=  ((C1 & C2) | P1 | P2)
+     * Alternatively, the last few steps could be:
+     *                     =  ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
+     *                    <=  ((C1 & C2) |  C1      ) | (      C2  | (P1 & P2))
+     *                    <=  (C1 | C2 | (P1 & P2))
+     * We favor the second approach if either P1 or P2 is non-empty.  This is
+     * because these components are a barrier to doing optimizations, as what
+     * they match cannot be known until the moment of matching as they are
+     * dependent on the current locale, 'AND"ing them likely will reduce or
+     * eliminate them.
+     * But we can do better if we know that C1,P1 are in their initial state (a
+     * frequent occurrence), each matching everything:
+     *  (<everything>) & (C2 | P2) =  C2 | P2
+     * Similarly, if C2,P2 are in their initial state (again a frequent
+     * occurrence), the result is a no-op
+     *  (C1 | P1) & (<everything>) =  C1 | P1
+     *
+     * Inverted, we have
+     *  (C1 | P1) & ~(C2 | P2)  =  (C1 | P1) & (~C2 & ~P2)
+     *                          =  (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
+     *                         <=  (C1 & ~C2) | (P1 & ~P2)
+     * */
+
+    if ((ANYOF_FLAGS(and_with) & ANYOF_INVERT)
+        && ! is_ANYOF_SYNTHETIC(and_with))
+    {
+        unsigned int i;
+
+        ssc_intersection(ssc,
+                         anded_cp_list,
+                         FALSE /* Has already been inverted */
+                         );
+
+        /* If either P1 or P2 is empty, the intersection will be also; can skip
+         * the loop */
+        if (! (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL)) {
+            ANYOF_POSIXL_ZERO(ssc);
+        }
+        else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+
+            /* Note that the Posix class component P from 'and_with' actually
+             * looks like:
+             *      P = Pa | Pb | ... | Pn
+             * where each component is one posix class, such as in [\w\s].
+             * Thus
+             *      ~P = ~(Pa | Pb | ... | Pn)
+             *         = ~Pa & ~Pb & ... & ~Pn
+             *        <= ~Pa | ~Pb | ... | ~Pn
+             * The last is something we can easily calculate, but unfortunately
+             * is likely to have many false positives.  We could do better
+             * in some (but certainly not all) instances if two classes in
+             * P have known relationships.  For example
+             *      :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
+             * So
+             *      :lower: & :print: = :lower:
+             * And similarly for classes that must be disjoint.  For example,
+             * since \s and \w can have no elements in common based on rules in
+             * the POSIX standard,
+             *      \w & ^\S = nothing
+             * Unfortunately, some vendor locales do not meet the Posix
+             * standard, in particular almost everything by Microsoft.
+             * The loop below just changes e.g., \w into \W and vice versa */
+
+            regnode_charclass_posixl temp;
+            int add = 1;    /* To calculate the index of the complement */
+
+            ANYOF_POSIXL_ZERO(&temp);
+            for (i = 0; i < ANYOF_MAX; i++) {
+                assert(i % 2 != 0
+                       || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
+                       || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
+
+                if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
+                    ANYOF_POSIXL_SET(&temp, i + add);
+                }
+                add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
+            }
+            ANYOF_POSIXL_AND(&temp, ssc);
+
+        } /* else ssc already has no posixes */
+    } /* else: Not inverted.  This routine is a no-op if 'and_with' is an SSC
+         in its initial state */
+    else if (! is_ANYOF_SYNTHETIC(and_with)
+             || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
+    {
+        /* But if 'ssc' is in its initial state, the result is just 'and_with';
+         * copy it over 'ssc' */
+        if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
+            if (is_ANYOF_SYNTHETIC(and_with)) {
+                StructCopy(and_with, ssc, regnode_ssc);
+            }
+            else {
+                ssc->invlist = anded_cp_list;
+                ANYOF_POSIXL_ZERO(ssc);
+                if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
+                    ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
+                }
+            }
+        }
+        else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
+                 || (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL))
+        {
+            /* One or the other of P1, P2 is non-empty. */
+            if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
+                ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
+            }
+            ssc_union(ssc, anded_cp_list, FALSE);
+        }
+        else { /* P1 = P2 = empty */
+            ssc_intersection(ssc, anded_cp_list, FALSE);
+        }
+    }
+}
+
+STATIC void
+S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
+               const regnode_charclass *or_with)
+{
+    /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
+     * another SSC or a regular ANYOF class.  Can create false positives if
+     * 'or_with' is to be inverted. */
+
+    SV* ored_cp_list;
+    U8 ored_flags;
+
+    PERL_ARGS_ASSERT_SSC_OR;
+
+    assert(is_ANYOF_SYNTHETIC(ssc));
+
+    /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
+     * the code point inversion list and just the relevant flags */
+    if (is_ANYOF_SYNTHETIC(or_with)) {
+        ored_cp_list = ((regnode_ssc*) or_with)->invlist;
+        ored_flags = ANYOF_FLAGS(or_with);
+    }
+    else {
+        ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
+        ored_flags = ANYOF_FLAGS(or_with) & ANYOF_COMMON_FLAGS;
+    }
+
+    ANYOF_FLAGS(ssc) |= ored_flags;
+
+    /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
+     * C2 is the list of code points in 'or-with'; P2, its posix classes.
+     * 'or_with' may be inverted.  When not inverted, we have the simple
+     * situation of computing:
+     *  (C1 | P1) | (C2 | P2)  =  (C1 | C2) | (P1 | P2)
+     * If P1|P2 yields a situation with both a class and its complement are
+     * set, like having both \w and \W, this matches all code points, and we
+     * can delete these from the P component of the ssc going forward.  XXX We
+     * might be able to delete all the P components, but I (khw) am not certain
+     * about this, and it is better to be safe.
+     *
+     * Inverted, we have
+     *  (C1 | P1) | ~(C2 | P2)  =  (C1 | P1) | (~C2 & ~P2)
+     *                         <=  (C1 | P1) | ~C2
+     *                         <=  (C1 | ~C2) | P1
+     * (which results in actually simpler code than the non-inverted case)
+     * */
+
+    if ((ANYOF_FLAGS(or_with) & ANYOF_INVERT)
+        && ! is_ANYOF_SYNTHETIC(or_with))
+    {
+        /* We ignore P2, leaving P1 going forward */
+    }   /* else  Not inverted */
+    else if (ANYOF_FLAGS(or_with) & ANYOF_MATCHES_POSIXL) {
+        ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
+        if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+            unsigned int i;
+            for (i = 0; i < ANYOF_MAX; i += 2) {
+                if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
+                {
+                    ssc_match_all_cp(ssc);
+                    ANYOF_POSIXL_CLEAR(ssc, i);
+                    ANYOF_POSIXL_CLEAR(ssc, i+1);
+                }
+            }
+        }
+    }
+
+    ssc_union(ssc,
+              ored_cp_list,
+              FALSE /* Already has been inverted */
+              );
+}
+
+PERL_STATIC_INLINE void
+S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
+{
+    PERL_ARGS_ASSERT_SSC_UNION;
+
+    assert(is_ANYOF_SYNTHETIC(ssc));
+
+    _invlist_union_maybe_complement_2nd(ssc->invlist,
+                                        invlist,
+                                        invert2nd,
+                                        &ssc->invlist);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_intersection(pTHX_ regnode_ssc *ssc,
+                         SV* const invlist,
+                         const bool invert2nd)
+{
+    PERL_ARGS_ASSERT_SSC_INTERSECTION;
+
+    assert(is_ANYOF_SYNTHETIC(ssc));
+
+    _invlist_intersection_maybe_complement_2nd(ssc->invlist,
+                                               invlist,
+                                               invert2nd,
+                                               &ssc->invlist);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
+{
+    PERL_ARGS_ASSERT_SSC_ADD_RANGE;
+
+    assert(is_ANYOF_SYNTHETIC(ssc));
+
+    ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
+{
+    /* AND just the single code point 'cp' into the SSC 'ssc' */
+
+    SV* cp_list = _new_invlist(2);
+
+    PERL_ARGS_ASSERT_SSC_CP_AND;
+
+    assert(is_ANYOF_SYNTHETIC(ssc));
+
+    cp_list = add_cp_to_invlist(cp_list, cp);
+    ssc_intersection(ssc, cp_list,
+                     FALSE /* Not inverted */
+                     );
+    SvREFCNT_dec_NN(cp_list);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_clear_locale(regnode_ssc *ssc)
+{
+    /* Set the SSC 'ssc' to not match any locale things */
+    PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
+
+    assert(is_ANYOF_SYNTHETIC(ssc));
+
+    ANYOF_POSIXL_ZERO(ssc);
+    ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
+}
+
+#define NON_OTHER_COUNT   NON_OTHER_COUNT_FOR_USE_ONLY_BY_REGCOMP_DOT_C
+
+STATIC bool
+S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
+{
+    /* The synthetic start class is used to hopefully quickly winnow down
+     * places where a pattern could start a match in the target string.  If it
+     * doesn't really narrow things down that much, there isn't much point to
+     * having the overhead of using it.  This function uses some very crude
+     * heuristics to decide if to use the ssc or not.
+     *
+     * It returns TRUE if 'ssc' rules out more than half what it considers to
+     * be the "likely" possible matches, but of course it doesn't know what the
+     * actual things being matched are going to be; these are only guesses
+     *
+     * For /l matches, it assumes that the only likely matches are going to be
+     *      in the 0-255 range, uniformly distributed, so half of that is 127
+     * For /a and /d matches, it assumes that the likely matches will be just
+     *      the ASCII range, so half of that is 63
+     * For /u and there isn't anything matching above the Latin1 range, it
+     *      assumes that that is the only range likely to be matched, and uses
+     *      half that as the cut-off: 127.  If anything matches above Latin1,
+     *      it assumes that all of Unicode could match (uniformly), except for
+     *      non-Unicode code points and things in the General Category "Other"
+     *      (unassigned, private use, surrogates, controls and formats).  This
+     *      is a much large number. */
+
+    const U32 max_match = (LOC)
+                          ? 127
+                          : (! UNI_SEMANTICS)
+                            ? 63
+                            : (invlist_highest(ssc->invlist) < 256)
+                              ? 127
+                              : ((NON_OTHER_COUNT + 1) / 2) - 1;
+    U32 count = 0;      /* Running total of number of code points matched by
+                           'ssc' */
+    UV start, end;      /* Start and end points of current range in inversion
+                           list */
+
+    PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;
+
+    invlist_iterinit(ssc->invlist);
+    while (invlist_iternext(ssc->invlist, &start, &end)) {
+
+        /* /u is the only thing that we expect to match above 255; so if not /u
+         * and even if there are matches above 255, ignore them.  This catches
+         * things like \d under /d which does match the digits above 255, but
+         * since the pattern is /d, it is not likely to be expecting them */
+        if (! UNI_SEMANTICS) {
+            if (start > 255) {
+                break;
+            }
+            end = MIN(end, 255);
+        }
+        count += end - start + 1;
+        if (count > max_match) {
+            invlist_iterfinish(ssc->invlist);
+            return FALSE;
+        }
+    }
+
+    return TRUE;
+}
+
+
+STATIC void
+S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
+{
+    /* The inversion list in the SSC is marked mortal; now we need a more
+     * permanent copy, which is stored the same way that is done in a regular
+     * ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
+     * map */
+
+    SV* invlist = invlist_clone(ssc->invlist);
+
+    PERL_ARGS_ASSERT_SSC_FINALIZE;
+
+    assert(is_ANYOF_SYNTHETIC(ssc));
+
+    /* The code in this file assumes that all but these flags aren't relevant
+     * to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
+     * by the time we reach here */
+    assert(! (ANYOF_FLAGS(ssc) & ~ANYOF_COMMON_FLAGS));
+
+    populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
+
+    set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist,
+                                NULL, NULL, NULL, FALSE);
+
+    /* Make sure is clone-safe */
+    ssc->invlist = NULL;
+
+    if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+        ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
+    }
+
+    assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
+}
+
+#define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
+#define TRIE_LIST_CUR(state)  ( TRIE_LIST_ITEM( state, 0 ).forid )
+#define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
+#define TRIE_LIST_USED(idx)  ( trie->states[state].trans.list         \
+                               ? (TRIE_LIST_CUR( idx ) - 1)           \
+                               : 0 )
+
+
+#ifdef DEBUGGING
+/*
+   dump_trie(trie,widecharmap,revcharmap)
+   dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
+   dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
+
+   These routines dump out a trie in a somewhat readable format.
+   The _interim_ variants are used for debugging the interim
+   tables that are used to generate the final compressed
+   representation which is what dump_trie expects.
+
+   Part of the reason for their existence is to provide a form
+   of documentation as to how the different representations function.
+
+*/
+
+/*
+  Dumps the final compressed table form of the trie to Perl_debug_log.
+  Used for debugging make_trie().
+*/
+
+STATIC void
+S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
+           AV *revcharmap, U32 depth)
+{
+    U32 state;
+    SV *sv=sv_newmortal();
+    int colwidth= widecharmap ? 6 : 4;
+    U16 word;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_DUMP_TRIE;
+
+    PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
+        (int)depth * 2 + 2,"",
+        "Match","Base","Ofs" );
+
+    for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
+       SV ** const tmp = av_fetch( revcharmap, state, 0);
+        if ( tmp ) {
+            PerlIO_printf( Perl_debug_log, "%*s",
+                colwidth,
+                pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+                           PL_colors[0], PL_colors[1],
+                           (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+                           PERL_PV_ESCAPE_FIRSTCHAR
+                )
+            );
+        }
+    }
+    PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
+        (int)depth * 2 + 2,"");
+
+    for( state = 0 ; state < trie->uniquecharcount ; state++ )
+        PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
+    PerlIO_printf( Perl_debug_log, "\n");
+
+    for( state = 1 ; state < trie->statecount ; state++ ) {
+       const U32 base = trie->states[ state ].trans.base;
+
+        PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|",
+                                       (int)depth * 2 + 2,"", (UV)state);
+
+        if ( trie->states[ state ].wordnum ) {
+            PerlIO_printf( Perl_debug_log, " W%4X",
+                                           trie->states[ state ].wordnum );
+        } else {
+            PerlIO_printf( Perl_debug_log, "%6s", "" );
+        }
+
+        PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
+
+        if ( base ) {
+            U32 ofs = 0;
+
+            while( ( base + ofs  < trie->uniquecharcount ) ||
+                   ( base + ofs - trie->uniquecharcount < trie->lasttrans
+                     && trie->trans[ base + ofs - trie->uniquecharcount ].check
+                                                                    != state))
+                    ofs++;
+
+            PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
+
+            for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
+                if ( ( base + ofs >= trie->uniquecharcount )
+                        && ( base + ofs - trie->uniquecharcount
+                                                        < trie->lasttrans )
+                        && trie->trans[ base + ofs
+                                    - trie->uniquecharcount ].check == state )
+                {
+                   PerlIO_printf( Perl_debug_log, "%*"UVXf,
+                    colwidth,
+                    (UV)trie->trans[ base + ofs
+                                             - trie->uniquecharcount ].next );
+                } else {
+                    PerlIO_printf( Perl_debug_log, "%*s",colwidth,"   ." );
+                }
+            }
+
+            PerlIO_printf( Perl_debug_log, "]");
+
+        }
+        PerlIO_printf( Perl_debug_log, "\n" );
+    }
+    PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=",
+                                (int)depth*2, "");
+    for (word=1; word <= trie->wordcount; word++) {
+       PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
+           (int)word, (int)(trie->wordinfo[word].prev),
+           (int)(trie->wordinfo[word].len));
+    }
+    PerlIO_printf(Perl_debug_log, "\n" );
+}
+/*
+  Dumps a fully constructed but uncompressed trie in list form.
+  List tries normally only are used for construction when the number of
+  possible chars (trie->uniquecharcount) is very high.
+  Used for debugging make_trie().
+*/
+STATIC void
+S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
+                        HV *widecharmap, AV *revcharmap, U32 next_alloc,
+                        U32 depth)
+{
+    U32 state;
+    SV *sv=sv_newmortal();
+    int colwidth= widecharmap ? 6 : 4;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
+
+    /* print out the table precompression.  */
+    PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
+        (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
+        "------:-----+-----------------\n" );
+
+    for( state=1 ; state < next_alloc ; state ++ ) {
+        U16 charid;
+
+        PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
+            (int)depth * 2 + 2,"", (UV)state  );
+        if ( ! trie->states[ state ].wordnum ) {
+            PerlIO_printf( Perl_debug_log, "%5s| ","");
+        } else {
+            PerlIO_printf( Perl_debug_log, "W%4x| ",
+                trie->states[ state ].wordnum
+            );
+        }
+        for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
+           SV ** const tmp = av_fetch( revcharmap,
+                                        TRIE_LIST_ITEM(state,charid).forid, 0);
+           if ( tmp ) {
+                PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
+                    colwidth,
+                    pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
+                              colwidth,
+                              PL_colors[0], PL_colors[1],
+                              (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
+                              | PERL_PV_ESCAPE_FIRSTCHAR
+                    ) ,
+                    TRIE_LIST_ITEM(state,charid).forid,
+                    (UV)TRIE_LIST_ITEM(state,charid).newstate
+                );
+                if (!(charid % 10))
+                    PerlIO_printf(Perl_debug_log, "\n%*s| ",
+                        (int)((depth * 2) + 14), "");
+            }
+        }
+        PerlIO_printf( Perl_debug_log, "\n");
+    }
+}
+
+/*
+  Dumps a fully constructed but uncompressed trie in table form.
+  This is the normal DFA style state transition table, with a few
+  twists to facilitate compression later.
+  Used for debugging make_trie().
+*/
+STATIC void
+S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
+                         HV *widecharmap, AV *revcharmap, U32 next_alloc,
+                         U32 depth)
+{
+    U32 state;
+    U16 charid;
+    SV *sv=sv_newmortal();
+    int colwidth= widecharmap ? 6 : 4;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
+
+    /*
+       print out the table precompression so that we can do a visual check
+       that they are identical.
+     */
+
+    PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
+
+    for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
+       SV ** const tmp = av_fetch( revcharmap, charid, 0);
+        if ( tmp ) {
+            PerlIO_printf( Perl_debug_log, "%*s",
+                colwidth,
+                pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+                           PL_colors[0], PL_colors[1],
+                           (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+                           PERL_PV_ESCAPE_FIRSTCHAR
+                )
+            );
+        }
+    }
+
+    PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
+
+    for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
+        PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
+    }
+
+    PerlIO_printf( Perl_debug_log, "\n" );
+
+    for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
+
+        PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
+            (int)depth * 2 + 2,"",
+            (UV)TRIE_NODENUM( state ) );
+
+        for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
+            UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
+            if (v)
+                PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
+            else
+                PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
+        }
+        if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
+            PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n",
+                                            (UV)trie->trans[ state ].check );
+        } else {
+            PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n",
+                                            (UV)trie->trans[ state ].check,
+            trie->states[ TRIE_NODENUM( state ) ].wordnum );
+        }
+    }
+}
+
+#endif
+
+
+/* make_trie(startbranch,first,last,tail,word_count,flags,depth)
+  startbranch: the first branch in the whole branch sequence
+  first      : start branch of sequence of branch-exact nodes.
+              May be the same as startbranch
+  last       : Thing following the last branch.
+              May be the same as tail.
+  tail       : item following the branch sequence
+  count      : words in the sequence
+  flags      : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
+  depth      : indent depth
+
+Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
+
+A trie is an N'ary tree where the branches are determined by digital
+decomposition of the key. IE, at the root node you look up the 1st character and
+follow that branch repeat until you find the end of the branches. Nodes can be
+marked as "accepting" meaning they represent a complete word. Eg:
+
+  /he|she|his|hers/
+
+would convert into the following structure. Numbers represent states, letters
+following numbers represent valid transitions on the letter from that state, if
+the number is in square brackets it represents an accepting state, otherwise it
+will be in parenthesis.
+
+      +-h->+-e->[3]-+-r->(8)-+-s->[9]
+      |    |
+      |   (2)
+      |    |
+     (1)   +-i->(6)-+-s->[7]
+      |
+      +-s->(3)-+-h->(4)-+-e->[5]
+
+      Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
+
+This shows that when matching against the string 'hers' we will begin at state 1
+read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
+then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
+is also accepting. Thus we know that we can match both 'he' and 'hers' with a
+single traverse. We store a mapping from accepting to state to which word was
+matched, and then when we have multiple possibilities we try to complete the
+rest of the regex in the order in which they occurred in the alternation.
+
+The only prior NFA like behaviour that would be changed by the TRIE support is
+the silent ignoring of duplicate alternations which are of the form:
+
+ / (DUPE|DUPE) X? (?{ ... }) Y /x
+
+Thus EVAL blocks following a trie may be called a different number of times with
+and without the optimisation. With the optimisations dupes will be silently
+ignored. This inconsistent behaviour of EVAL type nodes is well established as
+the following demonstrates:
+
+ 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
+
+which prints out 'word' three times, but
+
+ 'words'=~/(word|word|word)(?{ print $1 })S/
+
+which doesnt print it out at all. This is due to other optimisations kicking in.
+
+Example of what happens on a structural level:
+
+The regexp /(ac|ad|ab)+/ will produce the following debug output:
+
+   1: CURLYM[1] {1,32767}(18)
+   5:   BRANCH(8)
+   6:     EXACT <ac>(16)
+   8:   BRANCH(11)
+   9:     EXACT <ad>(16)
+  11:   BRANCH(14)
+  12:     EXACT <ab>(16)
+  16:   SUCCEED(0)
+  17:   NOTHING(18)
+  18: END(0)
+
+This would be optimizable with startbranch=5, first=5, last=16, tail=16
+and should turn into:
+
+   1: CURLYM[1] {1,32767}(18)
+   5:   TRIE(16)
+       [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
+         <ac>
+         <ad>
+         <ab>
+  16:   SUCCEED(0)
+  17:   NOTHING(18)
+  18: END(0)
+
+Cases where tail != last would be like /(?foo|bar)baz/:
+
+   1: BRANCH(4)
+   2:   EXACT <foo>(8)
+   4: BRANCH(7)
+   5:   EXACT <bar>(8)
+   7: TAIL(8)
+   8: EXACT <baz>(10)
+  10: END(0)
+
+which would be optimizable with startbranch=1, first=1, last=7, tail=8
+and would end up looking like:
+
+    1: TRIE(8)
+      [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
+       <foo>
+       <bar>
+   7: TAIL(8)
+   8: EXACT <baz>(10)
+  10: END(0)
+
+    d = uvchr_to_utf8_flags(d, uv, 0);
+
+is the recommended Unicode-aware way of saying
+
+    *(d++) = uv;
+*/
+
+#define TRIE_STORE_REVCHAR(val)                                            \
+    STMT_START {                                                           \
+       if (UTF) {                                                         \
+            SV *zlopp = newSV(7); /* XXX: optimize me */                   \
+           unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp);      \
+            unsigned const char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
+           SvCUR_set(zlopp, kapow - flrbbbbb);                            \
+           SvPOK_on(zlopp);                                               \
+           SvUTF8_on(zlopp);                                              \
+           av_push(revcharmap, zlopp);                                    \
+       } else {                                                           \
+            char ooooff = (char)val;                                           \
+           av_push(revcharmap, newSVpvn(&ooooff, 1));                     \
+       }                                                                  \
+        } STMT_END
+
+/* This gets the next character from the input, folding it if not already
+ * folded. */
+#define TRIE_READ_CHAR STMT_START {                                           \
+    wordlen++;                                                                \
+    if ( UTF ) {                                                              \
+        /* if it is UTF then it is either already folded, or does not need    \
+         * folding */                                                         \
+        uvc = valid_utf8_to_uvchr( (const U8*) uc, &len);                     \
+    }                                                                         \
+    else if (folder == PL_fold_latin1) {                                      \
+        /* This folder implies Unicode rules, which in the range expressible  \
+         *  by not UTF is the lower case, with the two exceptions, one of     \
+         *  which should have been taken care of before calling this */       \
+        assert(*uc != LATIN_SMALL_LETTER_SHARP_S);                            \
+        uvc = toLOWER_L1(*uc);                                                \
+        if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU;         \
+        len = 1;                                                              \
+    } else {                                                                  \
+        /* raw data, will be folded later if needed */                        \
+        uvc = (U32)*uc;                                                       \
+        len = 1;                                                              \
+    }                                                                         \
+} STMT_END
+
+
+
+#define TRIE_LIST_PUSH(state,fid,ns) STMT_START {               \
+    if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) {    \
+       U32 ging = TRIE_LIST_LEN( state ) *= 2;                 \
+       Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
+    }                                                           \
+    TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid;     \
+    TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns;   \
+    TRIE_LIST_CUR( state )++;                                   \
+} STMT_END
+
+#define TRIE_LIST_NEW(state) STMT_START {                       \
+    Newxz( trie->states[ state ].trans.list,               \
+       4, reg_trie_trans_le );                                 \
+     TRIE_LIST_CUR( state ) = 1;                                \
+     TRIE_LIST_LEN( state ) = 4;                                \
+} STMT_END
+
+#define TRIE_HANDLE_WORD(state) STMT_START {                    \
+    U16 dupe= trie->states[ state ].wordnum;                    \
+    regnode * const noper_next = regnext( noper );              \
+                                                                \
+    DEBUG_r({                                                   \
+        /* store the word for dumping */                        \
+        SV* tmp;                                                \
+        if (OP(noper) != NOTHING)                               \
+            tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF);   \
+        else                                                    \
+            tmp = newSVpvn_utf8( "", 0, UTF );                 \
+        av_push( trie_words, tmp );                             \
+    });                                                         \
+                                                                \
+    curword++;                                                  \
+    trie->wordinfo[curword].prev   = 0;                         \
+    trie->wordinfo[curword].len    = wordlen;                   \
+    trie->wordinfo[curword].accept = state;                     \
+                                                                \
+    if ( noper_next < tail ) {                                  \
+        if (!trie->jump)                                        \
+            trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
+                                                 sizeof(U16) ); \
+        trie->jump[curword] = (U16)(noper_next - convert);      \
+        if (!jumper)                                            \
+            jumper = noper_next;                                \
+        if (!nextbranch)                                        \
+            nextbranch= regnext(cur);                           \
+    }                                                           \
+                                                                \
+    if ( dupe ) {                                               \
+        /* It's a dupe. Pre-insert into the wordinfo[].prev   */\
+        /* chain, so that when the bits of chain are later    */\
+        /* linked together, the dups appear in the chain      */\
+       trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
+       trie->wordinfo[dupe].prev = curword;                    \
+    } else {                                                    \
+        /* we haven't inserted this word yet.                */ \
+        trie->states[ state ].wordnum = curword;                \
+    }                                                           \
+} STMT_END
+
+
+#define TRIE_TRANS_STATE(state,base,ucharcount,charid,special)         \
+     ( ( base + charid >=  ucharcount                                  \
+         && base + charid < ubound                                     \
+         && state == trie->trans[ base - ucharcount + charid ].check   \
+         && trie->trans[ base - ucharcount + charid ].next )           \
+           ? trie->trans[ base - ucharcount + charid ].next            \
+           : ( state==1 ? special : 0 )                                        \
+      )
+
+#define MADE_TRIE       1
+#define MADE_JUMP_TRIE  2
+#define MADE_EXACT_TRIE 4
+
+STATIC I32
+S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
+                  regnode *first, regnode *last, regnode *tail,
+                  U32 word_count, U32 flags, U32 depth)
+{
+    /* first pass, loop through and scan words */
+    reg_trie_data *trie;
+    HV *widecharmap = NULL;
+    AV *revcharmap = newAV();
+    regnode *cur;
+    STRLEN len = 0;
+    UV uvc = 0;
+    U16 curword = 0;
+    U32 next_alloc = 0;
+    regnode *jumper = NULL;
+    regnode *nextbranch = NULL;
+    regnode *convert = NULL;
+    U32 *prev_states; /* temp array mapping each state to previous one */
+    /* we just use folder as a flag in utf8 */
+    const U8 * folder = NULL;
+
+#ifdef DEBUGGING
+    const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuuu"));
+    AV *trie_words = NULL;
+    /* along with revcharmap, this only used during construction but both are
+     * useful during debugging so we store them in the struct when debugging.
+     */
+#else
+    const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
+    STRLEN trie_charcount=0;
+#endif
+    SV *re_trie_maxbuff;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_MAKE_TRIE;
+#ifndef DEBUGGING
+    PERL_UNUSED_ARG(depth);
+#endif
+
+    switch (flags) {
+        case EXACT: case EXACTL: break;
+       case EXACTFA:
+        case EXACTFU_SS:
+       case EXACTFU:
+       case EXACTFLU8: folder = PL_fold_latin1; break;
+       case EXACTF:  folder = PL_fold; break;
+        default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
+    }
+
+    trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
+    trie->refcount = 1;
+    trie->startstate = 1;
+    trie->wordcount = word_count;
+    RExC_rxi->data->data[ data_slot ] = (void*)trie;
+    trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
+    if (flags == EXACT || flags == EXACTL)
+       trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
+    trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
+                       trie->wordcount+1, sizeof(reg_trie_wordinfo));
+
+    DEBUG_r({
+        trie_words = newAV();
+    });
+
+    re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
+    assert(re_trie_maxbuff);
+    if (!SvIOK(re_trie_maxbuff)) {
+        sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
+    }
+    DEBUG_TRIE_COMPILE_r({
+        PerlIO_printf( Perl_debug_log,
+          "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
+          (int)depth * 2 + 2, "",
+          REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
+          REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
+    });
+
+   /* Find the node we are going to overwrite */
+    if ( first == startbranch && OP( last ) != BRANCH ) {
+        /* whole branch chain */
+        convert = first;
+    } else {
+        /* branch sub-chain */
+        convert = NEXTOPER( first );
+    }
+
+    /*  -- First loop and Setup --
+
+       We first traverse the branches and scan each word to determine if it
+       contains widechars, and how many unique chars there are, this is
+       important as we have to build a table with at least as many columns as we
+       have unique chars.
+
+       We use an array of integers to represent the character codes 0..255
+       (trie->charmap) and we use a an HV* to store Unicode characters. We use
+       the native representation of the character value as the key and IV's for
+       the coded index.
+
+       *TODO* If we keep track of how many times each character is used we can
+       remap the columns so that the table compression later on is more
+       efficient in terms of memory by ensuring the most common value is in the
+       middle and the least common are on the outside.  IMO this would be better
+       than a most to least common mapping as theres a decent chance the most
+       common letter will share a node with the least common, meaning the node
+       will not be compressible. With a middle is most common approach the worst
+       case is when we have the least common nodes twice.
+
+     */
+
+    for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+        regnode *noper = NEXTOPER( cur );
+        const U8 *uc = (U8*)STRING( noper );
+        const U8 *e  = uc + STR_LEN( noper );
+        int foldlen = 0;
+        U32 wordlen      = 0;         /* required init */
+        STRLEN minchars = 0;
+        STRLEN maxchars = 0;
+        bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
+                                               bitmap?*/
+
+        if (OP(noper) == NOTHING) {
+            regnode *noper_next= regnext(noper);
+            if (noper_next != tail && OP(noper_next) == flags) {
+                noper = noper_next;
+                uc= (U8*)STRING(noper);
+                e= uc + STR_LEN(noper);
+               trie->minlen= STR_LEN(noper);
+            } else {
+               trie->minlen= 0;
+               continue;
+           }
+        }
+
+        if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
+            TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
+                                          regardless of encoding */
+            if (OP( noper ) == EXACTFU_SS) {
+                /* false positives are ok, so just set this */
+                TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
+            }
+        }
+        for ( ; uc < e ; uc += len ) {  /* Look at each char in the current
+                                           branch */
+            TRIE_CHARCOUNT(trie)++;
+            TRIE_READ_CHAR;
+
+            /* TRIE_READ_CHAR returns the current character, or its fold if /i
+             * is in effect.  Under /i, this character can match itself, or
+             * anything that folds to it.  If not under /i, it can match just
+             * itself.  Most folds are 1-1, for example k, K, and KELVIN SIGN
+             * all fold to k, and all are single characters.   But some folds
+             * expand to more than one character, so for example LATIN SMALL
+             * LIGATURE FFI folds to the three character sequence 'ffi'.  If
+             * the string beginning at 'uc' is 'ffi', it could be matched by
+             * three characters, or just by the one ligature character. (It
+             * could also be matched by two characters: LATIN SMALL LIGATURE FF
+             * followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
+             * (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
+             * match.)  The trie needs to know the minimum and maximum number
+             * of characters that could match so that it can use size alone to
+             * quickly reject many match attempts.  The max is simple: it is
+             * the number of folded characters in this branch (since a fold is
+             * never shorter than what folds to it. */
+
+            maxchars++;
+
+            /* And the min is equal to the max if not under /i (indicated by
+             * 'folder' being NULL), or there are no multi-character folds.  If
+             * there is a multi-character fold, the min is incremented just
+             * once, for the character that folds to the sequence.  Each
+             * character in the sequence needs to be added to the list below of
+             * characters in the trie, but we count only the first towards the
+             * min number of characters needed.  This is done through the
+             * variable 'foldlen', which is returned by the macros that look
+             * for these sequences as the number of bytes the sequence
+             * occupies.  Each time through the loop, we decrement 'foldlen' by
+             * how many bytes the current char occupies.  Only when it reaches
+             * 0 do we increment 'minchars' or look for another multi-character
+             * sequence. */
+            if (folder == NULL) {
+                minchars++;
+            }
+            else if (foldlen > 0) {
+                foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
+            }
+            else {
+                minchars++;
+
+                /* See if *uc is the beginning of a multi-character fold.  If
+                 * so, we decrement the length remaining to look at, to account
+                 * for the current character this iteration.  (We can use 'uc'
+                 * instead of the fold returned by TRIE_READ_CHAR because for
+                 * non-UTF, the latin1_safe macro is smart enough to account
+                 * for all the unfolded characters, and because for UTF, the
+                 * string will already have been folded earlier in the
+                 * compilation process */
+                if (UTF) {
+                    if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
+                        foldlen -= UTF8SKIP(uc);
+                    }
+                }
+                else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
+                    foldlen--;
+                }
+            }
+
+            /* The current character (and any potential folds) should be added
+             * to the possible matching characters for this position in this
+             * branch */
+            if ( uvc < 256 ) {
+                if ( folder ) {
+                    U8 folded= folder[ (U8) uvc ];
+                    if ( !trie->charmap[ folded ] ) {
+                        trie->charmap[ folded ]=( ++trie->uniquecharcount );
+                        TRIE_STORE_REVCHAR( folded );
+                    }
+                }
+                if ( !trie->charmap[ uvc ] ) {
+                    trie->charmap[ uvc ]=( ++trie->uniquecharcount );
+                    TRIE_STORE_REVCHAR( uvc );
+                }
+                if ( set_bit ) {
+                   /* store the codepoint in the bitmap, and its folded
+                    * equivalent. */
+                    TRIE_BITMAP_SET(trie, uvc);
+
+                   /* store the folded codepoint */
+                    if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
+
+                   if ( !UTF ) {
+                       /* store first byte of utf8 representation of
+                          variant codepoints */
+                       if (! UVCHR_IS_INVARIANT(uvc)) {
+                           TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
+                       }
+                   }
+                    set_bit = 0; /* We've done our bit :-) */
+                }
+            } else {
+
+                /* XXX We could come up with the list of code points that fold
+                 * to this using PL_utf8_foldclosures, except not for
+                 * multi-char folds, as there may be multiple combinations
+                 * there that could work, which needs to wait until runtime to
+                 * resolve (The comment about LIGATURE FFI above is such an
+                 * example */
+
+                SV** svpp;
+                if ( !widecharmap )
+                    widecharmap = newHV();
+
+                svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
+
+                if ( !svpp )
+                    Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
+
+                if ( !SvTRUE( *svpp ) ) {
+                    sv_setiv( *svpp, ++trie->uniquecharcount );
+                    TRIE_STORE_REVCHAR(uvc);
+                }
+            }
+        } /* end loop through characters in this branch of the trie */
+
+        /* We take the min and max for this branch and combine to find the min
+         * and max for all branches processed so far */
+        if( cur == first ) {
+            trie->minlen = minchars;
+            trie->maxlen = maxchars;
+        } else if (minchars < trie->minlen) {
+            trie->minlen = minchars;
+        } else if (maxchars > trie->maxlen) {
+            trie->maxlen = maxchars;
+        }
+    } /* end first pass */
+    DEBUG_TRIE_COMPILE_r(
+        PerlIO_printf( Perl_debug_log,
+                "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
+                (int)depth * 2 + 2,"",
+                ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
+               (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
+               (int)trie->minlen, (int)trie->maxlen )
+    );
+
+    /*
+        We now know what we are dealing with in terms of unique chars and
+        string sizes so we can calculate how much memory a naive
+        representation using a flat table  will take. If it's over a reasonable
+        limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
+        conservative but potentially much slower representation using an array
+        of lists.
+
+        At the end we convert both representations into the same compressed
+        form that will be used in regexec.c for matching with. The latter
+        is a form that cannot be used to construct with but has memory
+        properties similar to the list form and access properties similar
+        to the table form making it both suitable for fast searches and
+        small enough that its feasable to store for the duration of a program.
+
+        See the comment in the code where the compressed table is produced
+        inplace from the flat tabe representation for an explanation of how
+        the compression works.
+
+    */
+
+
+    Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
+    prev_states[1] = 0;
+
+    if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
+                                                    > SvIV(re_trie_maxbuff) )
+    {
+        /*
+            Second Pass -- Array Of Lists Representation
+
+            Each state will be represented by a list of charid:state records
+            (reg_trie_trans_le) the first such element holds the CUR and LEN
+            points of the allocated array. (See defines above).
+
+            We build the initial structure using the lists, and then convert
+            it into the compressed table form which allows faster lookups
+            (but cant be modified once converted).
+        */
+
+        STRLEN transcount = 1;
+
+        DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
+            "%*sCompiling trie using list compiler\n",
+            (int)depth * 2 + 2, ""));
+
+       trie->states = (reg_trie_state *)
+           PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
+                                 sizeof(reg_trie_state) );
+        TRIE_LIST_NEW(1);
+        next_alloc = 2;
+
+        for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+
+            regnode *noper   = NEXTOPER( cur );
+           U8 *uc           = (U8*)STRING( noper );
+            const U8 *e      = uc + STR_LEN( noper );
+           U32 state        = 1;         /* required init */
+           U16 charid       = 0;         /* sanity init */
+            U32 wordlen      = 0;         /* required init */
+
+            if (OP(noper) == NOTHING) {
+                regnode *noper_next= regnext(noper);
+                if (noper_next != tail && OP(noper_next) == flags) {
+                    noper = noper_next;
+                    uc= (U8*)STRING(noper);
+                    e= uc + STR_LEN(noper);
+                }
+            }
+
+            if (OP(noper) != NOTHING) {
+                for ( ; uc < e ; uc += len ) {
+
+                    TRIE_READ_CHAR;
+
+                    if ( uvc < 256 ) {
+                        charid = trie->charmap[ uvc ];
+                   } else {
+                        SV** const svpp = hv_fetch( widecharmap,
+                                                    (char*)&uvc,
+                                                    sizeof( UV ),
+                                                    0);
+                        if ( !svpp ) {
+                            charid = 0;
+                        } else {
+                            charid=(U16)SvIV( *svpp );
+                        }
+                   }
+                    /* charid is now 0 if we dont know the char read, or
+                     * nonzero if we do */
+                    if ( charid ) {
+
+                        U16 check;
+                        U32 newstate = 0;
+
+                        charid--;
+                        if ( !trie->states[ state ].trans.list ) {
+                            TRIE_LIST_NEW( state );
+                       }
+                        for ( check = 1;
+                              check <= TRIE_LIST_USED( state );
+                              check++ )
+                        {
+                            if ( TRIE_LIST_ITEM( state, check ).forid
+                                                                    == charid )
+                            {
+                                newstate = TRIE_LIST_ITEM( state, check ).newstate;
+                                break;
+                            }
+                        }
+                        if ( ! newstate ) {
+                            newstate = next_alloc++;
+                           prev_states[newstate] = state;
+                            TRIE_LIST_PUSH( state, charid, newstate );
+                            transcount++;
+                        }
+                        state = newstate;
+                    } else {
+                        Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
+                   }
+               }
+           }
+            TRIE_HANDLE_WORD(state);
+
+        } /* end second pass */
+
+        /* next alloc is the NEXT state to be allocated */
+        trie->statecount = next_alloc;
+        trie->states = (reg_trie_state *)
+           PerlMemShared_realloc( trie->states,
+                                  next_alloc
+                                  * sizeof(reg_trie_state) );
+
+        /* and now dump it out before we compress it */
+        DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
+                                                        revcharmap, next_alloc,
+                                                        depth+1)
+        );
+
+        trie->trans = (reg_trie_trans *)
+           PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
+        {
+            U32 state;
+            U32 tp = 0;
+            U32 zp = 0;
+
+
+            for( state=1 ; state < next_alloc ; state ++ ) {
+                U32 base=0;
+
+                /*
+                DEBUG_TRIE_COMPILE_MORE_r(
+                    PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
+                );
+                */
+
+                if (trie->states[state].trans.list) {
+                    U16 minid=TRIE_LIST_ITEM( state, 1).forid;
+                    U16 maxid=minid;
+                   U16 idx;
+
+                    for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
+                       const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
+                       if ( forid < minid ) {
+                           minid=forid;
+                       } else if ( forid > maxid ) {
+                           maxid=forid;
+                       }
+                    }
+                    if ( transcount < tp + maxid - minid + 1) {
+                        transcount *= 2;
+                       trie->trans = (reg_trie_trans *)
+                           PerlMemShared_realloc( trie->trans,
+                                                    transcount
+                                                    * sizeof(reg_trie_trans) );
+                        Zero( trie->trans + (transcount / 2),
+                              transcount / 2,
+                              reg_trie_trans );
+                    }
+                    base = trie->uniquecharcount + tp - minid;
+                    if ( maxid == minid ) {
+                        U32 set = 0;
+                        for ( ; zp < tp ; zp++ ) {
+                            if ( ! trie->trans[ zp ].next ) {
+                                base = trie->uniquecharcount + zp - minid;
+                                trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
+                                                                   1).newstate;
+                                trie->trans[ zp ].check = state;
+                                set = 1;
+                                break;
+                            }
+                        }
+                        if ( !set ) {
+                            trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
+                                                                   1).newstate;
+                            trie->trans[ tp ].check = state;
+                            tp++;
+                            zp = tp;
+                        }
+                    } else {
+                        for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
+                            const U32 tid = base
+                                           - trie->uniquecharcount
+                                           + TRIE_LIST_ITEM( state, idx ).forid;
+                            trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
+                                                                idx ).newstate;
+                            trie->trans[ tid ].check = state;
+                        }
+                        tp += ( maxid - minid + 1 );
+                    }
+                    Safefree(trie->states[ state ].trans.list);
+                }
+                /*
+                DEBUG_TRIE_COMPILE_MORE_r(
+                    PerlIO_printf( Perl_debug_log, " base: %d\n",base);
+                );
+                */
+                trie->states[ state ].trans.base=base;
+            }
+            trie->lasttrans = tp + 1;
+        }
+    } else {
+        /*
+           Second Pass -- Flat Table Representation.
+
+           we dont use the 0 slot of either trans[] or states[] so we add 1 to
+           each.  We know that we will need Charcount+1 trans at most to store
+           the data (one row per char at worst case) So we preallocate both
+           structures assuming worst case.
+
+           We then construct the trie using only the .next slots of the entry
+           structs.
+
+           We use the .check field of the first entry of the node temporarily
+           to make compression both faster and easier by keeping track of how
+           many non zero fields are in the node.
+
+           Since trans are numbered from 1 any 0 pointer in the table is a FAIL
+           transition.
+
+           There are two terms at use here: state as a TRIE_NODEIDX() which is
+           a number representing the first entry of the node, and state as a
+           TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
+           and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
+           if there are 2 entrys per node. eg:
+
+             A B       A B
+          1. 2 4    1. 3 7
+          2. 0 3    3. 0 5
+          3. 0 0    5. 0 0
+          4. 0 0    7. 0 0
+
+           The table is internally in the right hand, idx form. However as we
+           also have to deal with the states array which is indexed by nodenum
+           we have to use TRIE_NODENUM() to convert.
+
+        */
+        DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
+            "%*sCompiling trie using table compiler\n",
+            (int)depth * 2 + 2, ""));
+
+       trie->trans = (reg_trie_trans *)
+           PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
+                                 * trie->uniquecharcount + 1,
+                                 sizeof(reg_trie_trans) );
+        trie->states = (reg_trie_state *)
+           PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
+                                 sizeof(reg_trie_state) );
+        next_alloc = trie->uniquecharcount + 1;
+
+
+        for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+
+            regnode *noper   = NEXTOPER( cur );
+           const U8 *uc     = (U8*)STRING( noper );
+            const U8 *e      = uc + STR_LEN( noper );
+
+            U32 state        = 1;         /* required init */
+
+            U16 charid       = 0;         /* sanity init */
+            U32 accept_state = 0;         /* sanity init */
+
+            U32 wordlen      = 0;         /* required init */
+
+            if (OP(noper) == NOTHING) {
+                regnode *noper_next= regnext(noper);
+                if (noper_next != tail && OP(noper_next) == flags) {
+                    noper = noper_next;
+                    uc= (U8*)STRING(noper);
+                    e= uc + STR_LEN(noper);
+                }
+            }
+
+            if ( OP(noper) != NOTHING ) {
+                for ( ; uc < e ; uc += len ) {
+
+                    TRIE_READ_CHAR;
+
+                    if ( uvc < 256 ) {
+                        charid = trie->charmap[ uvc ];
+                    } else {
+                        SV* const * const svpp = hv_fetch( widecharmap,
+                                                           (char*)&uvc,
+                                                           sizeof( UV ),
+                                                           0);
+                        charid = svpp ? (U16)SvIV(*svpp) : 0;
+                    }
+                    if ( charid ) {
+                        charid--;
+                        if ( !trie->trans[ state + charid ].next ) {
+                            trie->trans[ state + charid ].next = next_alloc;
+                            trie->trans[ state ].check++;
+                           prev_states[TRIE_NODENUM(next_alloc)]
+                                   = TRIE_NODENUM(state);
+                            next_alloc += trie->uniquecharcount;
+                        }
+                        state = trie->trans[ state + charid ].next;
+                    } else {
+                        Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
+                    }
+                    /* charid is now 0 if we dont know the char read, or
+                     * nonzero if we do */
+                }
+            }
+            accept_state = TRIE_NODENUM( state );
+            TRIE_HANDLE_WORD(accept_state);
+
+        } /* end second pass */
+
+        /* and now dump it out before we compress it */
+        DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
+                                                         revcharmap,
+                                                         next_alloc, depth+1));
+
+        {
+        /*
+           * Inplace compress the table.*
+
+           For sparse data sets the table constructed by the trie algorithm will
+           be mostly 0/FAIL transitions or to put it another way mostly empty.
+           (Note that leaf nodes will not contain any transitions.)
+
+           This algorithm compresses the tables by eliminating most such
+           transitions, at the cost of a modest bit of extra work during lookup:
+
+           - Each states[] entry contains a .base field which indicates the
+           index in the state[] array wheres its transition data is stored.
+
+           - If .base is 0 there are no valid transitions from that node.
+
+           - If .base is nonzero then charid is added to it to find an entry in
+           the trans array.
+
+           -If trans[states[state].base+charid].check!=state then the
+           transition is taken to be a 0/Fail transition. Thus if there are fail
+           transitions at the front of the node then the .base offset will point
+           somewhere inside the previous nodes data (or maybe even into a node
+           even earlier), but the .check field determines if the transition is
+           valid.
+
+           XXX - wrong maybe?
+           The following process inplace converts the table to the compressed
+           table: We first do not compress the root node 1,and mark all its
+           .check pointers as 1 and set its .base pointer as 1 as well. This
+           allows us to do a DFA construction from the compressed table later,
+           and ensures that any .base pointers we calculate later are greater
+           than 0.
+
+           - We set 'pos' to indicate the first entry of the second node.
+
+           - We then iterate over the columns of the node, finding the first and
+           last used entry at l and m. We then copy l..m into pos..(pos+m-l),
+           and set the .check pointers accordingly, and advance pos
+           appropriately and repreat for the next node. Note that when we copy
+           the next pointers we have to convert them from the original
+           NODEIDX form to NODENUM form as the former is not valid post
+           compression.
+
+           - If a node has no transitions used we mark its base as 0 and do not
+           advance the pos pointer.
+
+           - If a node only has one transition we use a second pointer into the
+           structure to fill in allocated fail transitions from other states.
+           This pointer is independent of the main pointer and scans forward
+           looking for null transitions that are allocated to a state. When it
+           finds one it writes the single transition into the "hole".  If the
+           pointer doesnt find one the single transition is appended as normal.
+
+           - Once compressed we can Renew/realloc the structures to release the
+           excess space.
+
+           See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
+           specifically Fig 3.47 and the associated pseudocode.
+
+           demq
+        */
+        const U32 laststate = TRIE_NODENUM( next_alloc );
+       U32 state, charid;
+        U32 pos = 0, zp=0;
+        trie->statecount = laststate;
+
+        for ( state = 1 ; state < laststate ; state++ ) {
+            U8 flag = 0;
+           const U32 stateidx = TRIE_NODEIDX( state );
+           const U32 o_used = trie->trans[ stateidx ].check;
+           U32 used = trie->trans[ stateidx ].check;
+            trie->trans[ stateidx ].check = 0;
+
+            for ( charid = 0;
+                  used && charid < trie->uniquecharcount;
+                  charid++ )
+            {
+                if ( flag || trie->trans[ stateidx + charid ].next ) {
+                    if ( trie->trans[ stateidx + charid ].next ) {
+                        if (o_used == 1) {
+                            for ( ; zp < pos ; zp++ ) {
+                                if ( ! trie->trans[ zp ].next ) {
+                                    break;
+                                }
+                            }
+                            trie->states[ state ].trans.base
+                                                    = zp
+                                                      + trie->uniquecharcount
+                                                      - charid ;
+                            trie->trans[ zp ].next
+                                = SAFE_TRIE_NODENUM( trie->trans[ stateidx
+                                                             + charid ].next );
+                            trie->trans[ zp ].check = state;
+                            if ( ++zp > pos ) pos = zp;
+                            break;
+                        }
+                        used--;
+                    }
+                    if ( !flag ) {
+                        flag = 1;
+                        trie->states[ state ].trans.base
+                                       = pos + trie->uniquecharcount - charid ;
+                    }
+                    trie->trans[ pos ].next
+                        = SAFE_TRIE_NODENUM(
+                                       trie->trans[ stateidx + charid ].next );
+                    trie->trans[ pos ].check = state;
+                    pos++;
+                }
+            }
+        }
+        trie->lasttrans = pos + 1;
+        trie->states = (reg_trie_state *)
+           PerlMemShared_realloc( trie->states, laststate
+                                  * sizeof(reg_trie_state) );
+        DEBUG_TRIE_COMPILE_MORE_r(
+            PerlIO_printf( Perl_debug_log,
+                "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
+                (int)depth * 2 + 2,"",
+                (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
+                       + 1 ),
+                (IV)next_alloc,
+                (IV)pos,
+                ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
+            );
+
+        } /* end table compress */
+    }
+    DEBUG_TRIE_COMPILE_MORE_r(
+            PerlIO_printf(Perl_debug_log,
+                "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
+                (int)depth * 2 + 2, "",
+                (UV)trie->statecount,
+                (UV)trie->lasttrans)
+    );
+    /* resize the trans array to remove unused space */
+    trie->trans = (reg_trie_trans *)
+       PerlMemShared_realloc( trie->trans, trie->lasttrans
+                              * sizeof(reg_trie_trans) );
+
+    {   /* Modify the program and insert the new TRIE node */
+        U8 nodetype =(U8)(flags & 0xFF);
+        char *str=NULL;
+
+#ifdef DEBUGGING
+        regnode *optimize = NULL;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+
+        U32 mjd_offset = 0;
+        U32 mjd_nodelen = 0;
+#endif /* RE_TRACK_PATTERN_OFFSETS */
+#endif /* DEBUGGING */
+        /*
+           This means we convert either the first branch or the first Exact,
+           depending on whether the thing following (in 'last') is a branch
+           or not and whther first is the startbranch (ie is it a sub part of
+           the alternation or is it the whole thing.)
+           Assuming its a sub part we convert the EXACT otherwise we convert
+           the whole branch sequence, including the first.
+         */
+        /* Find the node we are going to overwrite */
+        if ( first != startbranch || OP( last ) == BRANCH ) {
+            /* branch sub-chain */
+            NEXT_OFF( first ) = (U16)(last - first);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+            DEBUG_r({
+                mjd_offset= Node_Offset((convert));
+                mjd_nodelen= Node_Length((convert));
+            });
+#endif
+            /* whole branch chain */
+        }
+#ifdef RE_TRACK_PATTERN_OFFSETS
+        else {
+            DEBUG_r({
+                const  regnode *nop = NEXTOPER( convert );
+                mjd_offset= Node_Offset((nop));
+                mjd_nodelen= Node_Length((nop));
+            });
+        }
+        DEBUG_OPTIMISE_r(
+            PerlIO_printf(Perl_debug_log,
+                "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
+                (int)depth * 2 + 2, "",
+                (UV)mjd_offset, (UV)mjd_nodelen)
+        );
+#endif
+        /* But first we check to see if there is a common prefix we can
+           split out as an EXACT and put in front of the TRIE node.  */
+        trie->startstate= 1;
+        if ( trie->bitmap && !widecharmap && !trie->jump  ) {
+            U32 state;
+            for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
+                U32 ofs = 0;
+                I32 idx = -1;
+                U32 count = 0;
+                const U32 base = trie->states[ state ].trans.base;
+
+                if ( trie->states[state].wordnum )
+                        count = 1;
+
+                for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
+                    if ( ( base + ofs >= trie->uniquecharcount ) &&
+                         ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
+                         trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
+                    {
+                        if ( ++count > 1 ) {
+                            SV **tmp = av_fetch( revcharmap, ofs, 0);
+                           const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
+                            if ( state == 1 ) break;
+                            if ( count == 2 ) {
+                                Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
+                                DEBUG_OPTIMISE_r(
+                                    PerlIO_printf(Perl_debug_log,
+                                       "%*sNew Start State=%"UVuf" Class: [",
+                                        (int)depth * 2 + 2, "",
+                                        (UV)state));
+                               if (idx >= 0) {
+                                   SV ** const tmp = av_fetch( revcharmap, idx, 0);
+                                   const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
+
+                                    TRIE_BITMAP_SET(trie,*ch);
+                                    if ( folder )
+                                        TRIE_BITMAP_SET(trie, folder[ *ch ]);
+                                    DEBUG_OPTIMISE_r(
+                                        PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
+                                    );
+                               }
+                           }
+                           TRIE_BITMAP_SET(trie,*ch);
+                           if ( folder )
+                               TRIE_BITMAP_SET(trie,folder[ *ch ]);
+                           DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
+                       }
+                        idx = ofs;
+                   }
+                }
+                if ( count == 1 ) {
+                    SV **tmp = av_fetch( revcharmap, idx, 0);
+                    STRLEN len;
+                    char *ch = SvPV( *tmp, len );
+                    DEBUG_OPTIMISE_r({
+                        SV *sv=sv_newmortal();
+                        PerlIO_printf( Perl_debug_log,
+                           "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
+                            (int)depth * 2 + 2, "",
+                            (UV)state, (UV)idx,
+                            pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
+                               PL_colors[0], PL_colors[1],
+                               (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+                               PERL_PV_ESCAPE_FIRSTCHAR
+                            )
+                        );
+                    });
+                    if ( state==1 ) {
+                        OP( convert ) = nodetype;
+                        str=STRING(convert);
+                        STR_LEN(convert)=0;
+                    }
+                    STR_LEN(convert) += len;
+                    while (len--)
+                        *str++ = *ch++;
+               } else {
+#ifdef DEBUGGING
+                   if (state>1)
+                       DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
+#endif
+                   break;
+               }
+           }
+           trie->prefixlen = (state-1);
+            if (str) {
+                regnode *n = convert+NODE_SZ_STR(convert);
+                NEXT_OFF(convert) = NODE_SZ_STR(convert);
+                trie->startstate = state;
+                trie->minlen -= (state - 1);
+                trie->maxlen -= (state - 1);
+#ifdef DEBUGGING
+               /* At least the UNICOS C compiler choked on this
+                * being argument to DEBUG_r(), so let's just have
+                * it right here. */
+               if (
+#ifdef PERL_EXT_RE_BUILD
+                   1
+#else
+                   DEBUG_r_TEST
+#endif
+                   ) {
+                   regnode *fix = convert;
+                   U32 word = trie->wordcount;
+                   mjd_nodelen++;
+                   Set_Node_Offset_Length(convert, mjd_offset, state - 1);
+                   while( ++fix < n ) {
+                       Set_Node_Offset_Length(fix, 0, 0);
+                   }
+                   while (word--) {
+                       SV ** const tmp = av_fetch( trie_words, word, 0 );
+                       if (tmp) {
+                           if ( STR_LEN(convert) <= SvCUR(*tmp) )
+                               sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
+                           else
+                               sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
+                       }
+                   }
+               }
+#endif
+                if (trie->maxlen) {
+                    convert = n;
+               } else {
+                    NEXT_OFF(convert) = (U16)(tail - convert);
+                    DEBUG_r(optimize= n);
+                }
+            }
+        }
+        if (!jumper)
+            jumper = last;
+        if ( trie->maxlen ) {
+           NEXT_OFF( convert ) = (U16)(tail - convert);
+           ARG_SET( convert, data_slot );
+           /* Store the offset to the first unabsorbed branch in
+              jump[0], which is otherwise unused by the jump logic.
+              We use this when dumping a trie and during optimisation. */
+           if (trie->jump)
+               trie->jump[0] = (U16)(nextbranch - convert);
+
+            /* If the start state is not accepting (meaning there is no empty string/NOTHING)
+            *   and there is a bitmap
+            *   and the first "jump target" node we found leaves enough room
+            * then convert the TRIE node into a TRIEC node, with the bitmap
+            * embedded inline in the opcode - this is hypothetically faster.
+            */
+            if ( !trie->states[trie->startstate].wordnum
+                && trie->bitmap
+                && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
+            {
+                OP( convert ) = TRIEC;
+                Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
+                PerlMemShared_free(trie->bitmap);
+                trie->bitmap= NULL;
+            } else
+                OP( convert ) = TRIE;
+
+            /* store the type in the flags */
+            convert->flags = nodetype;
+            DEBUG_r({
+            optimize = convert
+                      + NODE_STEP_REGNODE
+                      + regarglen[ OP( convert ) ];
+            });
+            /* XXX We really should free up the resource in trie now,
+                   as we won't use them - (which resources?) dmq */
+        }
+        /* needed for dumping*/
+        DEBUG_r(if (optimize) {
+            regnode *opt = convert;
+
+            while ( ++opt < optimize) {
+                Set_Node_Offset_Length(opt,0,0);
+            }
+            /*
+                Try to clean up some of the debris left after the
+                optimisation.
+             */
+            while( optimize < jumper ) {
+                mjd_nodelen += Node_Length((optimize));
+                OP( optimize ) = OPTIMIZED;
+                Set_Node_Offset_Length(optimize,0,0);
+                optimize++;
+            }
+            Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
+        });
+    } /* end node insert */
+
+    /*  Finish populating the prev field of the wordinfo array.  Walk back
+     *  from each accept state until we find another accept state, and if
+     *  so, point the first word's .prev field at the second word. If the
+     *  second already has a .prev field set, stop now. This will be the
+     *  case either if we've already processed that word's accept state,
+     *  or that state had multiple words, and the overspill words were
+     *  already linked up earlier.
+     */
+    {
+       U16 word;
+       U32 state;
+       U16 prev;
+
+       for (word=1; word <= trie->wordcount; word++) {
+           prev = 0;
+           if (trie->wordinfo[word].prev)
+               continue;
+           state = trie->wordinfo[word].accept;
+           while (state) {
+               state = prev_states[state];
+               if (!state)
+                   break;
+               prev = trie->states[state].wordnum;
+               if (prev)
+                   break;
+           }
+           trie->wordinfo[word].prev = prev;
+       }
+       Safefree(prev_states);
+    }
+
+
+    /* and now dump out the compressed format */
+    DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
+
+    RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
+#ifdef DEBUGGING
+    RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
+    RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
+#else
+    SvREFCNT_dec_NN(revcharmap);
+#endif
+    return trie->jump
+           ? MADE_JUMP_TRIE
+           : trie->startstate>1
+             ? MADE_EXACT_TRIE
+             : MADE_TRIE;
+}
+
+STATIC regnode *
+S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
+{
+/* The Trie is constructed and compressed now so we can build a fail array if
+ * it's needed
+
+   This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
+   3.32 in the
+   "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
+   Ullman 1985/88
+   ISBN 0-201-10088-6
+
+   We find the fail state for each state in the trie, this state is the longest
+   proper suffix of the current state's 'word' that is also a proper prefix of
+   another word in our trie. State 1 represents the word '' and is thus the
+   default fail state. This allows the DFA not to have to restart after its
+   tried and failed a word at a given point, it simply continues as though it
+   had been matching the other word in the first place.
+   Consider
+      'abcdgu'=~/abcdefg|cdgu/
+   When we get to 'd' we are still matching the first word, we would encounter
+   'g' which would fail, which would bring us to the state representing 'd' in
+   the second word where we would try 'g' and succeed, proceeding to match
+   'cdgu'.
+ */
+ /* add a fail transition */
+    const U32 trie_offset = ARG(source);
+    reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
+    U32 *q;
+    const U32 ucharcount = trie->uniquecharcount;
+    const U32 numstates = trie->statecount;
+    const U32 ubound = trie->lasttrans + ucharcount;
+    U32 q_read = 0;
+    U32 q_write = 0;
+    U32 charid;
+    U32 base = trie->states[ 1 ].trans.base;
+    U32 *fail;
+    reg_ac_data *aho;
+    const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
+    regnode *stclass;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
+    PERL_UNUSED_CONTEXT;
+#ifndef DEBUGGING
+    PERL_UNUSED_ARG(depth);
+#endif
+
+    if ( OP(source) == TRIE ) {
+        struct regnode_1 *op = (struct regnode_1 *)
+            PerlMemShared_calloc(1, sizeof(struct regnode_1));
+        StructCopy(source,op,struct regnode_1);
+        stclass = (regnode *)op;
+    } else {
+        struct regnode_charclass *op = (struct regnode_charclass *)
+            PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
+        StructCopy(source,op,struct regnode_charclass);
+        stclass = (regnode *)op;
+    }
+    OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */
+
+    ARG_SET( stclass, data_slot );
+    aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
+    RExC_rxi->data->data[ data_slot ] = (void*)aho;
+    aho->trie=trie_offset;
+    aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
+    Copy( trie->states, aho->states, numstates, reg_trie_state );
+    Newxz( q, numstates, U32);
+    aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
+    aho->refcount = 1;
+    fail = aho->fail;
+    /* initialize fail[0..1] to be 1 so that we always have
+       a valid final fail state */
+    fail[ 0 ] = fail[ 1 ] = 1;
+
+    for ( charid = 0; charid < ucharcount ; charid++ ) {
+       const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
+       if ( newstate ) {
+            q[ q_write ] = newstate;
+            /* set to point at the root */
+            fail[ q[ q_write++ ] ]=1;
+        }
+    }
+    while ( q_read < q_write) {
+       const U32 cur = q[ q_read++ % numstates ];
+        base = trie->states[ cur ].trans.base;
+
+        for ( charid = 0 ; charid < ucharcount ; charid++ ) {
+           const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
+           if (ch_state) {
+                U32 fail_state = cur;
+                U32 fail_base;
+                do {
+                    fail_state = fail[ fail_state ];
+                    fail_base = aho->states[ fail_state ].trans.base;
+                } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
+
+                fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
+                fail[ ch_state ] = fail_state;
+                if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
+                {
+                        aho->states[ ch_state ].wordnum =  aho->states[ fail_state ].wordnum;
+                }
+                q[ q_write++ % numstates] = ch_state;
+            }
+        }
+    }
+    /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
+       when we fail in state 1, this allows us to use the
+       charclass scan to find a valid start char. This is based on the principle
+       that theres a good chance the string being searched contains lots of stuff
+       that cant be a start char.
+     */
+    fail[ 0 ] = fail[ 1 ] = 0;
+    DEBUG_TRIE_COMPILE_r({
+        PerlIO_printf(Perl_debug_log,
+                     "%*sStclass Failtable (%"UVuf" states): 0",
+                     (int)(depth * 2), "", (UV)numstates
+        );
+        for( q_read=1; q_read<numstates; q_read++ ) {
+            PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
+        }
+        PerlIO_printf(Perl_debug_log, "\n");
+    });
+    Safefree(q);
+    /*RExC_seen |= REG_TRIEDFA_SEEN;*/
+    return stclass;
+}
+
+
+#define DEBUG_PEEP(str,scan,depth) \
+    DEBUG_OPTIMISE_r({if (scan){ \
+       regnode *Next = regnext(scan); \
+       regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state); \
+       PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)", \
+           (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),\
+           Next ? (REG_NODE_NUM(Next)) : 0 ); \
+       DEBUG_SHOW_STUDY_FLAGS(flags," [ ","]");\
+       PerlIO_printf(Perl_debug_log, "\n"); \
+   }});
+
+/* The below joins as many adjacent EXACTish nodes as possible into a single
+ * one.  The regop may be changed if the node(s) contain certain sequences that
+ * require special handling.  The joining is only done if:
+ * 1) there is room in the current conglomerated node to entirely contain the
+ *    next one.
+ * 2) they are the exact same node type
+ *
+ * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
+ * these get optimized out
+ *
+ * If a node is to match under /i (folded), the number of characters it matches
+ * can be different than its character length if it contains a multi-character
+ * fold.  *min_subtract is set to the total delta number of characters of the
+ * input nodes.
+ *
+ * And *unfolded_multi_char is set to indicate whether or not the node contains
+ * an unfolded multi-char fold.  This happens when whether the fold is valid or
+ * not won't be known until runtime; namely for EXACTF nodes that contain LATIN
+ * SMALL LETTER SHARP S, as only if the target string being matched against
+ * turns out to be UTF-8 is that fold valid; and also for EXACTFL nodes whose
+ * folding rules depend on the locale in force at runtime.  (Multi-char folds
+ * whose components are all above the Latin1 range are not run-time locale
+ * dependent, and have already been folded by the time this function is
+ * called.)
+ *
+ * This is as good a place as any to discuss the design of handling these
+ * multi-character fold sequences.  It's been wrong in Perl for a very long
+ * time.  There are three code points in Unicode whose multi-character folds
+ * were long ago discovered to mess things up.  The previous designs for
+ * dealing with these involved assigning a special node for them.  This
+ * approach doesn't always work, as evidenced by this example:
+ *      "\xDFs" =~ /s\xDF/ui    # Used to fail before these patches
+ * Both sides fold to "sss", but if the pattern is parsed to create a node that
+ * would match just the \xDF, it won't be able to handle the case where a
+ * successful match would have to cross the node's boundary.  The new approach
+ * that hopefully generally solves the problem generates an EXACTFU_SS node
+ * that is "sss" in this case.
+ *
+ * It turns out that there are problems with all multi-character folds, and not
+ * just these three.  Now the code is general, for all such cases.  The
+ * approach taken is:
+ * 1)   This routine examines each EXACTFish node that could contain multi-
+ *      character folded sequences.  Since a single character can fold into
+ *      such a sequence, the minimum match length for this node is less than
+ *      the number of characters in the node.  This routine returns in
+ *      *min_subtract how many characters to subtract from the the actual
+ *      length of the string to get a real minimum match length; it is 0 if
+ *      there are no multi-char foldeds.  This delta is used by the caller to
+ *      adjust the min length of the match, and the delta between min and max,
+ *      so that the optimizer doesn't reject these possibilities based on size
+ *      constraints.
+ * 2)   For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
+ *      is used for an EXACTFU node that contains at least one "ss" sequence in
+ *      it.  For non-UTF-8 patterns and strings, this is the only case where
+ *      there is a possible fold length change.  That means that a regular
+ *      EXACTFU node without UTF-8 involvement doesn't have to concern itself
+ *      with length changes, and so can be processed faster.  regexec.c takes
+ *      advantage of this.  Generally, an EXACTFish node that is in UTF-8 is
+ *      pre-folded by regcomp.c (except EXACTFL, some of whose folds aren't
+ *      known until runtime).  This saves effort in regex matching.  However,
+ *      the pre-folding isn't done for non-UTF8 patterns because the fold of
+ *      the MICRO SIGN requires UTF-8, and we don't want to slow things down by
+ *      forcing the pattern into UTF8 unless necessary.  Also what EXACTF (and,
+ *      again, EXACTFL) nodes fold to isn't known until runtime.  The fold
+ *      possibilities for the non-UTF8 patterns are quite simple, except for
+ *      the sharp s.  All the ones that don't involve a UTF-8 target string are
+ *      members of a fold-pair, and arrays are set up for all of them so that
+ *      the other member of the pair can be found quickly.  Code elsewhere in
+ *      this file makes sure that in EXACTFU nodes, the sharp s gets folded to
+ *      'ss', even if the pattern isn't UTF-8.  This avoids the issues
+ *      described in the next item.
+ * 3)   A problem remains for unfolded multi-char folds. (These occur when the
+ *      validity of the fold won't be known until runtime, and so must remain
+ *      unfolded for now.  This happens for the sharp s in EXACTF and EXACTFA
+ *      nodes when the pattern isn't in UTF-8.  (Note, BTW, that there cannot
+ *      be an EXACTF node with a UTF-8 pattern.)  They also occur for various
+ *      folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
+ *      The reason this is a problem is that the optimizer part of regexec.c
+ *      (probably unwittingly, in Perl_regexec_flags()) makes an assumption
+ *      that a character in the pattern corresponds to at most a single
+ *      character in the target string.  (And I do mean character, and not byte
+ *      here, unlike other parts of the documentation that have never been
+ *      updated to account for multibyte Unicode.)  sharp s in EXACTF and
+ *      EXACTFL nodes can match the two character string 'ss'; in EXACTFA nodes
+ *      it can match "\x{17F}\x{17F}".  These, along with other ones in EXACTFL
+ *      nodes, violate the assumption, and they are the only instances where it
+ *      is violated.  I'm reluctant to try to change the assumption, as the
+ *      code involved is impenetrable to me (khw), so instead the code here
+ *      punts.  This routine examines EXACTFL nodes, and (when the pattern
+ *      isn't UTF-8) EXACTF and EXACTFA for such unfolded folds, and returns a
+ *      boolean indicating whether or not the node contains such a fold.  When
+ *      it is true, the caller sets a flag that later causes the optimizer in
+ *      this file to not set values for the floating and fixed string lengths,
+ *      and thus avoids the optimizer code in regexec.c that makes the invalid
+ *      assumption.  Thus, there is no optimization based on string lengths for
+ *      EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
+ *      EXACTF and EXACTFA nodes that contain the sharp s.  (The reason the
+ *      assumption is wrong only in these cases is that all other non-UTF-8
+ *      folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
+ *      their expanded versions.  (Again, we can't prefold sharp s to 'ss' in
+ *      EXACTF nodes because we don't know at compile time if it actually
+ *      matches 'ss' or not.  For EXACTF nodes it will match iff the target
+ *      string is in UTF-8.  This is in contrast to EXACTFU nodes, where it
+ *      always matches; and EXACTFA where it never does.  In an EXACTFA node in
+ *      a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
+ *      problem; but in a non-UTF8 pattern, folding it to that above-Latin1
+ *      string would require the pattern to be forced into UTF-8, the overhead
+ *      of which we want to avoid.  Similarly the unfolded multi-char folds in
+ *      EXACTFL nodes will match iff the locale at the time of match is a UTF-8
+ *      locale.)
+ *
+ *      Similarly, the code that generates tries doesn't currently handle
+ *      not-already-folded multi-char folds, and it looks like a pain to change
+ *      that.  Therefore, trie generation of EXACTFA nodes with the sharp s
+ *      doesn't work.  Instead, such an EXACTFA is turned into a new regnode,
+ *      EXACTFA_NO_TRIE, which the trie code knows not to handle.  Most people
+ *      using /iaa matching will be doing so almost entirely with ASCII
+ *      strings, so this should rarely be encountered in practice */
+
+#define JOIN_EXACT(scan,min_subtract,unfolded_multi_char, flags) \
+    if (PL_regkind[OP(scan)] == EXACT) \
+        join_exact(pRExC_state,(scan),(min_subtract),unfolded_multi_char, (flags),NULL,depth+1)
+
+STATIC U32
+S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan,
+                   UV *min_subtract, bool *unfolded_multi_char,
+                   U32 flags,regnode *val, U32 depth)
+{
+    /* Merge several consecutive EXACTish nodes into one. */
+    regnode *n = regnext(scan);
+    U32 stringok = 1;
+    regnode *next = scan + NODE_SZ_STR(scan);
+    U32 merged = 0;
+    U32 stopnow = 0;
+#ifdef DEBUGGING
+    regnode *stop = scan;
+    GET_RE_DEBUG_FLAGS_DECL;
+#else
+    PERL_UNUSED_ARG(depth);
+#endif
+
+    PERL_ARGS_ASSERT_JOIN_EXACT;
+#ifndef EXPERIMENTAL_INPLACESCAN
+    PERL_UNUSED_ARG(flags);
+    PERL_UNUSED_ARG(val);
+#endif
+    DEBUG_PEEP("join",scan,depth);
+
+    /* Look through the subsequent nodes in the chain.  Skip NOTHING, merge
+     * EXACT ones that are mergeable to the current one. */
+    while (n
+           && (PL_regkind[OP(n)] == NOTHING
+               || (stringok && OP(n) == OP(scan)))
+           && NEXT_OFF(n)
+           && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
+    {
+
+        if (OP(n) == TAIL || n > next)
+            stringok = 0;
+        if (PL_regkind[OP(n)] == NOTHING) {
+            DEBUG_PEEP("skip:",n,depth);
+            NEXT_OFF(scan) += NEXT_OFF(n);
+            next = n + NODE_STEP_REGNODE;
+#ifdef DEBUGGING
+            if (stringok)
+                stop = n;
+#endif
+            n = regnext(n);
+        }
+        else if (stringok) {
+            const unsigned int oldl = STR_LEN(scan);
+            regnode * const nnext = regnext(n);
+
+            /* XXX I (khw) kind of doubt that this works on platforms (should
+             * Perl ever run on one) where U8_MAX is above 255 because of lots
+             * of other assumptions */
+            /* Don't join if the sum can't fit into a single node */
+            if (oldl + STR_LEN(n) > U8_MAX)
+                break;
+
+            DEBUG_PEEP("merg",n,depth);
+            merged++;
+
+            NEXT_OFF(scan) += NEXT_OFF(n);
+            STR_LEN(scan) += STR_LEN(n);
+            next = n + NODE_SZ_STR(n);
+            /* Now we can overwrite *n : */
+            Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
+#ifdef DEBUGGING
+            stop = next - 1;
+#endif
+            n = nnext;
+            if (stopnow) break;
+        }
+
+#ifdef EXPERIMENTAL_INPLACESCAN
+       if (flags && !NEXT_OFF(n)) {
+           DEBUG_PEEP("atch", val, depth);
+           if (reg_off_by_arg[OP(n)]) {
+               ARG_SET(n, val - n);
+           }
+           else {
+               NEXT_OFF(n) = val - n;
+           }
+           stopnow = 1;
+       }
+#endif
+    }
+
+    *min_subtract = 0;
+    *unfolded_multi_char = FALSE;
+
+    /* Here, all the adjacent mergeable EXACTish nodes have been merged.  We
+     * can now analyze for sequences of problematic code points.  (Prior to
+     * this final joining, sequences could have been split over boundaries, and
+     * hence missed).  The sequences only happen in folding, hence for any
+     * non-EXACT EXACTish node */
+    if (OP(scan) != EXACT && OP(scan) != EXACTL) {
+        U8* s0 = (U8*) STRING(scan);
+        U8* s = s0;
+        U8* s_end = s0 + STR_LEN(scan);
+
+        int total_count_delta = 0;  /* Total delta number of characters that
+                                       multi-char folds expand to */
+
+       /* One pass is made over the node's string looking for all the
+        * possibilities.  To avoid some tests in the loop, there are two main
+        * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
+        * non-UTF-8 */
+       if (UTF) {
+            U8* folded = NULL;
+
+            if (OP(scan) == EXACTFL) {
+                U8 *d;
+
+                /* An EXACTFL node would already have been changed to another
+                 * node type unless there is at least one character in it that
+                 * is problematic; likely a character whose fold definition
+                 * won't be known until runtime, and so has yet to be folded.
+                 * For all but the UTF-8 locale, folds are 1-1 in length, but
+                 * to handle the UTF-8 case, we need to create a temporary
+                 * folded copy using UTF-8 locale rules in order to analyze it.
+                 * This is because our macros that look to see if a sequence is
+                 * a multi-char fold assume everything is folded (otherwise the
+                 * tests in those macros would be too complicated and slow).
+                 * Note that here, the non-problematic folds will have already
+                 * been done, so we can just copy such characters.  We actually
+                 * don't completely fold the EXACTFL string.  We skip the
+                 * unfolded multi-char folds, as that would just create work
+                 * below to figure out the size they already are */
+
+                Newx(folded, UTF8_MAX_FOLD_CHAR_EXPAND * STR_LEN(scan) + 1, U8);
+                d = folded;
+                while (s < s_end) {
+                    STRLEN s_len = UTF8SKIP(s);
+                    if (! is_PROBLEMATIC_LOCALE_FOLD_utf8(s)) {
+                        Copy(s, d, s_len, U8);
+                        d += s_len;
+                    }
+                    else if (is_FOLDS_TO_MULTI_utf8(s)) {
+                        *unfolded_multi_char = TRUE;
+                        Copy(s, d, s_len, U8);
+                        d += s_len;
+                    }
+                    else if (isASCII(*s)) {
+                        *(d++) = toFOLD(*s);
+                    }
+                    else {
+                        STRLEN len;
+                        _to_utf8_fold_flags(s, d, &len, FOLD_FLAGS_FULL);
+                        d += len;
+                    }
+                    s += s_len;
+                }
+
+                /* Point the remainder of the routine to look at our temporary
+                 * folded copy */
+                s = folded;
+                s_end = d;
+            } /* End of creating folded copy of EXACTFL string */
+
+            /* Examine the string for a multi-character fold sequence.  UTF-8
+             * patterns have all characters pre-folded by the time this code is
+             * executed */
+            while (s < s_end - 1) /* Can stop 1 before the end, as minimum
+                                     length sequence we are looking for is 2 */
+           {
+                int count = 0;  /* How many characters in a multi-char fold */
+                int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
+                if (! len) {    /* Not a multi-char fold: get next char */
+                    s += UTF8SKIP(s);
+                    continue;
+                }
+
+                /* Nodes with 'ss' require special handling, except for
+                 * EXACTFA-ish for which there is no multi-char fold to this */
+                if (len == 2 && *s == 's' && *(s+1) == 's'
+                    && OP(scan) != EXACTFA
+                    && OP(scan) != EXACTFA_NO_TRIE)
+                {
+                    count = 2;
+                    if (OP(scan) != EXACTFL) {
+                        OP(scan) = EXACTFU_SS;
+                    }
+                    s += 2;
+                }
+                else { /* Here is a generic multi-char fold. */
+                    U8* multi_end  = s + len;
+
+                    /* Count how many characters are in it.  In the case of
+                     * /aa, no folds which contain ASCII code points are
+                     * allowed, so check for those, and skip if found. */
+                    if (OP(scan) != EXACTFA && OP(scan) != EXACTFA_NO_TRIE) {
+                        count = utf8_length(s, multi_end);
+                        s = multi_end;
+                    }
+                    else {
+                        while (s < multi_end) {
+                            if (isASCII(*s)) {
+                                s++;
+                                goto next_iteration;
+                            }
+                            else {
+                                s += UTF8SKIP(s);
+                            }
+                            count++;
+                        }
+                    }
+                }
+
+                /* The delta is how long the sequence is minus 1 (1 is how long
+                 * the character that folds to the sequence is) */
+                total_count_delta += count - 1;
+              next_iteration: ;
+           }
+
+            /* We created a temporary folded copy of the string in EXACTFL
+             * nodes.  Therefore we need to be sure it doesn't go below zero,
+             * as the real string could be shorter */
+            if (OP(scan) == EXACTFL) {
+                int total_chars = utf8_length((U8*) STRING(scan),
+                                           (U8*) STRING(scan) + STR_LEN(scan));
+                if (total_count_delta > total_chars) {
+                    total_count_delta = total_chars;
+                }
+            }
+
+            *min_subtract += total_count_delta;
+            Safefree(folded);
+       }
+       else if (OP(scan) == EXACTFA) {
+
+            /* Non-UTF-8 pattern, EXACTFA node.  There can't be a multi-char
+             * fold to the ASCII range (and there are no existing ones in the
+             * upper latin1 range).  But, as outlined in the comments preceding
+             * this function, we need to flag any occurrences of the sharp s.
+             * This character forbids trie formation (because of added
+             * complexity) */
+           while (s < s_end) {
+                if (*s == LATIN_SMALL_LETTER_SHARP_S) {
+                    OP(scan) = EXACTFA_NO_TRIE;
+                    *unfolded_multi_char = TRUE;
+                    break;
+                }
+                s++;
+                continue;
+            }
+        }
+       else {
+
+            /* Non-UTF-8 pattern, not EXACTFA node.  Look for the multi-char
+             * folds that are all Latin1.  As explained in the comments
+             * preceding this function, we look also for the sharp s in EXACTF
+             * and EXACTFL nodes; it can be in the final position.  Otherwise
+             * we can stop looking 1 byte earlier because have to find at least
+             * two characters for a multi-fold */
+           const U8* upper = (OP(scan) == EXACTF || OP(scan) == EXACTFL)
+                              ? s_end
+                              : s_end -1;
+
+           while (s < upper) {
+                int len = is_MULTI_CHAR_FOLD_latin1_safe(s, s_end);
+                if (! len) {    /* Not a multi-char fold. */
+                    if (*s == LATIN_SMALL_LETTER_SHARP_S
+                        && (OP(scan) == EXACTF || OP(scan) == EXACTFL))
+                    {
+                        *unfolded_multi_char = TRUE;
+                    }
+                    s++;
+                    continue;
+                }
+
+                if (len == 2
+                    && isALPHA_FOLD_EQ(*s, 's')
+                    && isALPHA_FOLD_EQ(*(s+1), 's'))
+                {
+
+                    /* EXACTF nodes need to know that the minimum length
+                     * changed so that a sharp s in the string can match this
+                     * ss in the pattern, but they remain EXACTF nodes, as they
+                     * won't match this unless the target string is is UTF-8,
+                     * which we don't know until runtime.  EXACTFL nodes can't
+                     * transform into EXACTFU nodes */
+                    if (OP(scan) != EXACTF && OP(scan) != EXACTFL) {
+                        OP(scan) = EXACTFU_SS;
+                    }
+               }
+
+                *min_subtract += len - 1;
+                s += len;
+           }
+       }
+    }
+
+#ifdef DEBUGGING
+    /* Allow dumping but overwriting the collection of skipped
+     * ops and/or strings with fake optimized ops */
+    n = scan + NODE_SZ_STR(scan);
+    while (n <= stop) {
+       OP(n) = OPTIMIZED;
+       FLAGS(n) = 0;
+       NEXT_OFF(n) = 0;
+        n++;
+    }
+#endif
+    DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
+    return stopnow;
+}
+
+/* REx optimizer.  Converts nodes into quicker variants "in place".
+   Finds fixed substrings.  */
+
+/* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
+   to the position after last scanned or to NULL. */
+
+#define INIT_AND_WITHP \
+    assert(!and_withp); \
+    Newx(and_withp,1, regnode_ssc); \
+    SAVEFREEPV(and_withp)
+
+
+static void
+S_unwind_scan_frames(pTHX_ const void *p)
+{
+    scan_frame *f= (scan_frame *)p;
+    do {
+        scan_frame *n= f->next_frame;
+        Safefree(f);
+        f= n;
+    } while (f);
+}
+
+
+STATIC SSize_t
+S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
+                        SSize_t *minlenp, SSize_t *deltap,
+                       regnode *last,
+                       scan_data_t *data,
+                       I32 stopparen,
+                        U32 recursed_depth,
+                       regnode_ssc *and_withp,
+                       U32 flags, U32 depth)
+                       /* scanp: Start here (read-write). */
+                       /* deltap: Write maxlen-minlen here. */
+                       /* last: Stop before this one. */
+                       /* data: string data about the pattern */
+                       /* stopparen: treat close N as END */
+                       /* recursed: which subroutines have we recursed into */
+                       /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
+{
+    /* There must be at least this number of characters to match */
+    SSize_t min = 0;
+    I32 pars = 0, code;
+    regnode *scan = *scanp, *next;
+    SSize_t delta = 0;
+    int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
+    int is_inf_internal = 0;           /* The studied chunk is infinite */
+    I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
+    scan_data_t data_fake;
+    SV *re_trie_maxbuff = NULL;
+    regnode *first_non_open = scan;
+    SSize_t stopmin = SSize_t_MAX;
+    scan_frame *frame = NULL;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_STUDY_CHUNK;
+
+
+    if ( depth == 0 ) {
+        while (first_non_open && OP(first_non_open) == OPEN)
+            first_non_open=regnext(first_non_open);
+    }
+
+
+  fake_study_recurse:
+    DEBUG_r(
+        RExC_study_chunk_recursed_count++;
+    );
+    DEBUG_OPTIMISE_MORE_r(
+    {
+        PerlIO_printf(Perl_debug_log,
+            "%*sstudy_chunk stopparen=%ld recursed_count=%lu depth=%lu recursed_depth=%lu scan=%p last=%p",
+            (int)(depth*2), "", (long)stopparen,
+            (unsigned long)RExC_study_chunk_recursed_count,
+            (unsigned long)depth, (unsigned long)recursed_depth,
+            scan,
+            last);
+        if (recursed_depth) {
+            U32 i;
+            U32 j;
+            for ( j = 0 ; j < recursed_depth ; j++ ) {
+                for ( i = 0 ; i < (U32)RExC_npar ; i++ ) {
+                    if (
+                        PAREN_TEST(RExC_study_chunk_recursed +
+                                   ( j * RExC_study_chunk_recursed_bytes), i )
+                        && (
+                            !j ||
+                            !PAREN_TEST(RExC_study_chunk_recursed +
+                                   (( j - 1 ) * RExC_study_chunk_recursed_bytes), i)
+                        )
+                    ) {
+                        PerlIO_printf(Perl_debug_log," %d",(int)i);
+                        break;
+                    }
+                }
+                if ( j + 1 < recursed_depth ) {
+                    PerlIO_printf(Perl_debug_log, ",");
+                }
+            }
+        }
+        PerlIO_printf(Perl_debug_log,"\n");
+    }
+    );
+    while ( scan && OP(scan) != END && scan < last ){
+        UV min_subtract = 0;    /* How mmany chars to subtract from the minimum
+                                   node length to get a real minimum (because
+                                   the folded version may be shorter) */
+       bool unfolded_multi_char = FALSE;
+       /* Peephole optimizer: */
+        DEBUG_STUDYDATA("Peep:", data, depth);
+        DEBUG_PEEP("Peep", scan, depth);
+
+
+        /* The reason we do this here we need to deal with things like /(?:f)(?:o)(?:o)/
+         * which cant be dealt with by the normal EXACT parsing code, as each (?:..) is handled
+         * by a different invocation of reg() -- Yves
+         */
+        JOIN_EXACT(scan,&min_subtract, &unfolded_multi_char, 0);
+
+       /* Follow the next-chain of the current node and optimize
+          away all the NOTHINGs from it.  */
+       if (OP(scan) != CURLYX) {
+           const int max = (reg_off_by_arg[OP(scan)]
+                      ? I32_MAX
+                      /* I32 may be smaller than U16 on CRAYs! */
+                      : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
+           int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
+           int noff;
+           regnode *n = scan;
+
+           /* Skip NOTHING and LONGJMP. */
+           while ((n = regnext(n))
+                  && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
+                      || ((OP(n) == LONGJMP) && (noff = ARG(n))))
+                  && off + noff < max)
+               off += noff;
+           if (reg_off_by_arg[OP(scan)])
+               ARG(scan) = off;
+           else
+               NEXT_OFF(scan) = off;
+       }
+
+       /* The principal pseudo-switch.  Cannot be a switch, since we
+          look into several different things.  */
+        if ( OP(scan) == DEFINEP ) {
+            SSize_t minlen = 0;
+            SSize_t deltanext = 0;
+            SSize_t fake_last_close = 0;
+            I32 f = SCF_IN_DEFINE;
+
+            StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+            scan = regnext(scan);
+            assert( OP(scan) == IFTHEN );
+            DEBUG_PEEP("expect IFTHEN", scan, depth);
+
+            data_fake.last_closep= &fake_last_close;
+            minlen = *minlenp;
+            next = regnext(scan);
+            scan = NEXTOPER(NEXTOPER(scan));
+            DEBUG_PEEP("scan", scan, depth);
+            DEBUG_PEEP("next", next, depth);
+
+            /* we suppose the run is continuous, last=next...
+             * NOTE we dont use the return here! */
+            (void)study_chunk(pRExC_state, &scan, &minlen,
+                              &deltanext, next, &data_fake, stopparen,
+                              recursed_depth, NULL, f, depth+1);
+
+            scan = next;
+        } else
+        if (
+            OP(scan) == BRANCH  ||
+            OP(scan) == BRANCHJ ||
+            OP(scan) == IFTHEN
+        ) {
+           next = regnext(scan);
+           code = OP(scan);
+
+            /* The op(next)==code check below is to see if we
+             * have "BRANCH-BRANCH", "BRANCHJ-BRANCHJ", "IFTHEN-IFTHEN"
+             * IFTHEN is special as it might not appear in pairs.
+             * Not sure whether BRANCH-BRANCHJ is possible, regardless
+             * we dont handle it cleanly. */
+           if (OP(next) == code || code == IFTHEN) {
+                /* NOTE - There is similar code to this block below for
+                 * handling TRIE nodes on a re-study.  If you change stuff here
+                 * check there too. */
+               SSize_t max1 = 0, min1 = SSize_t_MAX, num = 0;
+               regnode_ssc accum;
+               regnode * const startbranch=scan;
+
+                if (flags & SCF_DO_SUBSTR) {
+                    /* Cannot merge strings after this. */
+                    scan_commit(pRExC_state, data, minlenp, is_inf);
+                }
+
+                if (flags & SCF_DO_STCLASS)
+                   ssc_init_zero(pRExC_state, &accum);
+
+               while (OP(scan) == code) {
+                   SSize_t deltanext, minnext, fake;
+                   I32 f = 0;
+                   regnode_ssc this_class;
+
+                    DEBUG_PEEP("Branch", scan, depth);
+
+                   num++;
+                    StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+                   if (data) {
+                       data_fake.whilem_c = data->whilem_c;
+                       data_fake.last_closep = data->last_closep;
+                   }
+                   else
+                       data_fake.last_closep = &fake;
+
+                   data_fake.pos_delta = delta;
+                   next = regnext(scan);
+
+                    scan = NEXTOPER(scan); /* everything */
+                    if (code != BRANCH)    /* everything but BRANCH */
+                       scan = NEXTOPER(scan);
+
+                   if (flags & SCF_DO_STCLASS) {
+                       ssc_init(pRExC_state, &this_class);
+                       data_fake.start_class = &this_class;
+                       f = SCF_DO_STCLASS_AND;
+                   }
+                   if (flags & SCF_WHILEM_VISITED_POS)
+                       f |= SCF_WHILEM_VISITED_POS;
+
+                   /* we suppose the run is continuous, last=next...*/
+                   minnext = study_chunk(pRExC_state, &scan, minlenp,
+                                      &deltanext, next, &data_fake, stopparen,
+                                      recursed_depth, NULL, f,depth+1);
+
+                   if (min1 > minnext)
+                       min1 = minnext;
+                   if (deltanext == SSize_t_MAX) {
+                       is_inf = is_inf_internal = 1;
+                       max1 = SSize_t_MAX;
+                   } else if (max1 < minnext + deltanext)
+                       max1 = minnext + deltanext;
+                   scan = next;
+                   if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+                       pars++;
+                   if (data_fake.flags & SCF_SEEN_ACCEPT) {
+                       if ( stopmin > minnext)
+                           stopmin = min + min1;
+                       flags &= ~SCF_DO_SUBSTR;
+                       if (data)
+                           data->flags |= SCF_SEEN_ACCEPT;
+                   }
+                   if (data) {
+                       if (data_fake.flags & SF_HAS_EVAL)
+                           data->flags |= SF_HAS_EVAL;
+                       data->whilem_c = data_fake.whilem_c;
+                   }
+                   if (flags & SCF_DO_STCLASS)
+                       ssc_or(pRExC_state, &accum, (regnode_charclass*)&this_class);
+               }
+               if (code == IFTHEN && num < 2) /* Empty ELSE branch */
+                   min1 = 0;
+               if (flags & SCF_DO_SUBSTR) {
+                   data->pos_min += min1;
+                   if (data->pos_delta >= SSize_t_MAX - (max1 - min1))
+                       data->pos_delta = SSize_t_MAX;
+                   else
+                       data->pos_delta += max1 - min1;
+                   if (max1 != min1 || is_inf)
+                       data->longest = &(data->longest_float);
+               }
+               min += min1;
+               if (delta == SSize_t_MAX
+                || SSize_t_MAX - delta - (max1 - min1) < 0)
+                   delta = SSize_t_MAX;
+               else
+                   delta += max1 - min1;
+               if (flags & SCF_DO_STCLASS_OR) {
+                   ssc_or(pRExC_state, data->start_class, (regnode_charclass*) &accum);
+                   if (min1) {
+                       ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+                       flags &= ~SCF_DO_STCLASS;
+                   }
+               }
+               else if (flags & SCF_DO_STCLASS_AND) {
+                   if (min1) {
+                       ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
+                       flags &= ~SCF_DO_STCLASS;
+                   }
+                   else {
+                       /* Switch to OR mode: cache the old value of
+                        * data->start_class */
+                       INIT_AND_WITHP;
+                       StructCopy(data->start_class, and_withp, regnode_ssc);
+                       flags &= ~SCF_DO_STCLASS_AND;
+                       StructCopy(&accum, data->start_class, regnode_ssc);
+                       flags |= SCF_DO_STCLASS_OR;
+                   }
+               }
+
+                if (PERL_ENABLE_TRIE_OPTIMISATION &&
+                        OP( startbranch ) == BRANCH )
+                {
+               /* demq.
+
+                   Assuming this was/is a branch we are dealing with: 'scan'
+                   now points at the item that follows the branch sequence,
+                   whatever it is. We now start at the beginning of the
+                   sequence and look for subsequences of
+
+                  BRANCH->EXACT=>x1
+                  BRANCH->EXACT=>x2
+                  tail
+
+                   which would be constructed from a pattern like
+                   /A|LIST|OF|WORDS/
+
+                  If we can find such a subsequence we need to turn the first
+                  element into a trie and then add the subsequent branch exact
+                  strings to the trie.
+
+                  We have two cases
+
+                     1. patterns where the whole set of branches can be
+                        converted.
+
+                    2. patterns where only a subset can be converted.
+
+                  In case 1 we can replace the whole set with a single regop
+                  for the trie. In case 2 we need to keep the start and end
+                  branches so
+
+                    'BRANCH EXACT; BRANCH EXACT; BRANCH X'
+                    becomes BRANCH TRIE; BRANCH X;
+
+                 There is an additional case, that being where there is a
+                 common prefix, which gets split out into an EXACT like node
+                 preceding the TRIE node.
+
+                 If x(1..n)==tail then we can do a simple trie, if not we make
+                 a "jump" trie, such that when we match the appropriate word
+                 we "jump" to the appropriate tail node. Essentially we turn
+                 a nested if into a case structure of sorts.
+
+               */
+
+                   int made=0;
+                   if (!re_trie_maxbuff) {
+                       re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
+                       if (!SvIOK(re_trie_maxbuff))
+                           sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
+                   }
+                    if ( SvIV(re_trie_maxbuff)>=0  ) {
+                        regnode *cur;
+                        regnode *first = (regnode *)NULL;
+                        regnode *last = (regnode *)NULL;
+                        regnode *tail = scan;
+                        U8 trietype = 0;
+                        U32 count=0;
+
+                        /* var tail is used because there may be a TAIL
+                           regop in the way. Ie, the exacts will point to the
+                           thing following the TAIL, but the last branch will
+                           point at the TAIL. So we advance tail. If we
+                           have nested (?:) we may have to move through several
+                           tails.
+                         */
+
+                        while ( OP( tail ) == TAIL ) {
+                            /* this is the TAIL generated by (?:) */
+                            tail = regnext( tail );
+                        }
+
+
+                        DEBUG_TRIE_COMPILE_r({
+                            regprop(RExC_rx, RExC_mysv, tail, NULL, pRExC_state);
+                            PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
+                              (int)depth * 2 + 2, "",
+                              "Looking for TRIE'able sequences. Tail node is: ",
+                              SvPV_nolen_const( RExC_mysv )
+                            );
+                        });
+
+                        /*
+
+                            Step through the branches
+                                cur represents each branch,
+                                noper is the first thing to be matched as part
+                                      of that branch
+                                noper_next is the regnext() of that node.
+
+                            We normally handle a case like this
+                            /FOO[xyz]|BAR[pqr]/ via a "jump trie" but we also
+                            support building with NOJUMPTRIE, which restricts
+                            the trie logic to structures like /FOO|BAR/.
+
+                            If noper is a trieable nodetype then the branch is
+                            a possible optimization target. If we are building
+                            under NOJUMPTRIE then we require that noper_next is
+                            the same as scan (our current position in the regex
+                            program).
+
+                            Once we have two or more consecutive such branches
+                            we can create a trie of the EXACT's contents and
+                            stitch it in place into the program.
+
+                            If the sequence represents all of the branches in
+                            the alternation we replace the entire thing with a
+                            single TRIE node.
+
+                            Otherwise when it is a subsequence we need to
+                            stitch it in place and replace only the relevant
+                            branches. This means the first branch has to remain
+                            as it is used by the alternation logic, and its
+                            next pointer, and needs to be repointed at the item
+                            on the branch chain following the last branch we
+                            have optimized away.
+
+                            This could be either a BRANCH, in which case the
+                            subsequence is internal, or it could be the item
+                            following the branch sequence in which case the
+                            subsequence is at the end (which does not
+                            necessarily mean the first node is the start of the
+                            alternation).
+
+                            TRIE_TYPE(X) is a define which maps the optype to a
+                            trietype.
+
+                                optype          |  trietype
+                                ----------------+-----------
+                                NOTHING         | NOTHING
+                                EXACT           | EXACT
+                                EXACTFU         | EXACTFU
+                                EXACTFU_SS      | EXACTFU
+                                EXACTFA         | EXACTFA
+                                EXACTL          | EXACTL
+                                EXACTFLU8       | EXACTFLU8
+
+
+                        */
+#define TRIE_TYPE(X) ( ( NOTHING == (X) )                                   \
+                       ? NOTHING                                            \
+                       : ( EXACT == (X) )                                   \
+                         ? EXACT                                            \
+                         : ( EXACTFU == (X) || EXACTFU_SS == (X) )          \
+                           ? EXACTFU                                        \
+                           : ( EXACTFA == (X) )                             \
+                             ? EXACTFA                                      \
+                             : ( EXACTL == (X) )                            \
+                               ? EXACTL                                     \
+                               : ( EXACTFLU8 == (X) )                        \
+                                 ? EXACTFLU8                                 \
+                                 : 0 )
+
+                        /* dont use tail as the end marker for this traverse */
+                        for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
+                            regnode * const noper = NEXTOPER( cur );
+                            U8 noper_type = OP( noper );
+                            U8 noper_trietype = TRIE_TYPE( noper_type );
+#if defined(DEBUGGING) || defined(NOJUMPTRIE)
+                            regnode * const noper_next = regnext( noper );
+                           U8 noper_next_type = (noper_next && noper_next != tail) ? OP(noper_next) : 0;
+                           U8 noper_next_trietype = (noper_next && noper_next != tail) ? TRIE_TYPE( noper_next_type ) :0;
+#endif
+
+                            DEBUG_TRIE_COMPILE_r({
+                                regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
+                                PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
+                                   (int)depth * 2 + 2,"", SvPV_nolen_const( RExC_mysv ), REG_NODE_NUM(cur) );
+
+                                regprop(RExC_rx, RExC_mysv, noper, NULL, pRExC_state);
+                                PerlIO_printf( Perl_debug_log, " -> %s",
+                                    SvPV_nolen_const(RExC_mysv));
+
+                                if ( noper_next ) {
+                                  regprop(RExC_rx, RExC_mysv, noper_next, NULL, pRExC_state);
+                                  PerlIO_printf( Perl_debug_log,"\t=> %s\t",
+                                    SvPV_nolen_const(RExC_mysv));
+                                }
+                                PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d,tt==%s,nt==%s,nnt==%s)\n",
+                                   REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur),
+                                  PL_reg_name[trietype], PL_reg_name[noper_trietype], PL_reg_name[noper_next_trietype]
+                               );
+                            });
+
+                            /* Is noper a trieable nodetype that can be merged
+                             * with the current trie (if there is one)? */
+                            if ( noper_trietype
+                                  &&
+                                  (
+                                        ( noper_trietype == NOTHING)
+                                        || ( trietype == NOTHING )
+                                        || ( trietype == noper_trietype )
+                                  )
+#ifdef NOJUMPTRIE
+                                  && noper_next == tail
+#endif
+                                  && count < U16_MAX)
+                            {
+                                /* Handle mergable triable node Either we are
+                                 * the first node in a new trieable sequence,
+                                 * in which case we do some bookkeeping,
+                                 * otherwise we update the end pointer. */
+                                if ( !first ) {
+                                    first = cur;
+                                   if ( noper_trietype == NOTHING ) {
+#if !defined(DEBUGGING) && !defined(NOJUMPTRIE)
+                                       regnode * const noper_next = regnext( noper );
+                                        U8 noper_next_type = (noper_next && noper_next!=tail) ? OP(noper_next) : 0;
+                                       U8 noper_next_trietype = noper_next_type ? TRIE_TYPE( noper_next_type ) :0;
+#endif
+
+                                        if ( noper_next_trietype ) {
+                                           trietype = noper_next_trietype;
+                                        } else if (noper_next_type)  {
+                                            /* a NOTHING regop is 1 regop wide.
+                                             * We need at least two for a trie
+                                             * so we can't merge this in */
+                                            first = NULL;
+                                        }
+                                    } else {
+                                        trietype = noper_trietype;
+                                    }
+                                } else {
+                                    if ( trietype == NOTHING )
+                                        trietype = noper_trietype;
+                                    last = cur;
+                                }
+                               if (first)
+                                   count++;
+                            } /* end handle mergable triable node */
+                            else {
+                                /* handle unmergable node -
+                                 * noper may either be a triable node which can
+                                 * not be tried together with the current trie,
+                                 * or a non triable node */
+                                if ( last ) {
+                                    /* If last is set and trietype is not
+                                     * NOTHING then we have found at least two
+                                     * triable branch sequences in a row of a
+                                     * similar trietype so we can turn them
+                                     * into a trie. If/when we allow NOTHING to
+                                     * start a trie sequence this condition
+                                     * will be required, and it isn't expensive
+                                     * so we leave it in for now. */
+                                    if ( trietype && trietype != NOTHING )
+                                        make_trie( pRExC_state,
+                                                startbranch, first, cur, tail,
+                                                count, trietype, depth+1 );
+                                    last = NULL; /* note: we clear/update
+                                                    first, trietype etc below,
+                                                    so we dont do it here */
+                                }
+                                if ( noper_trietype
+#ifdef NOJUMPTRIE
+                                     && noper_next == tail
+#endif
+                                ){
+                                    /* noper is triable, so we can start a new
+                                     * trie sequence */
+                                    count = 1;
+                                    first = cur;
+                                    trietype = noper_trietype;
+                                } else if (first) {
+                                    /* if we already saw a first but the
+                                     * current node is not triable then we have
+                                     * to reset the first information. */
+                                    count = 0;
+                                    first = NULL;
+                                    trietype = 0;
+                                }
+                            } /* end handle unmergable node */
+                        } /* loop over branches */
+                        DEBUG_TRIE_COMPILE_r({
+                            regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
+                            PerlIO_printf( Perl_debug_log,
+                              "%*s- %s (%d) <SCAN FINISHED>\n",
+                              (int)depth * 2 + 2,
+                              "", SvPV_nolen_const( RExC_mysv ),REG_NODE_NUM(cur));
+
+                        });
+                        if ( last && trietype ) {
+                            if ( trietype != NOTHING ) {
+                                /* the last branch of the sequence was part of
+                                 * a trie, so we have to construct it here
+                                 * outside of the loop */
+                                made= make_trie( pRExC_state, startbranch,
+                                                 first, scan, tail, count,
+                                                 trietype, depth+1 );
+#ifdef TRIE_STUDY_OPT
+                                if ( ((made == MADE_EXACT_TRIE &&
+                                     startbranch == first)
+                                     || ( first_non_open == first )) &&
+                                     depth==0 ) {
+                                    flags |= SCF_TRIE_RESTUDY;
+                                    if ( startbranch == first
+                                         && scan == tail )
+                                    {
+                                        RExC_seen &=~REG_TOP_LEVEL_BRANCHES_SEEN;
+                                    }
+                                }
+#endif
+                            } else {
+                                /* at this point we know whatever we have is a
+                                 * NOTHING sequence/branch AND if 'startbranch'
+                                 * is 'first' then we can turn the whole thing
+                                 * into a NOTHING
+                                 */
+                                if ( startbranch == first ) {
+                                    regnode *opt;
+                                    /* the entire thing is a NOTHING sequence,
+                                     * something like this: (?:|) So we can
+                                     * turn it into a plain NOTHING op. */
+                                    DEBUG_TRIE_COMPILE_r({
+                                        regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
+                                        PerlIO_printf( Perl_debug_log,
+                                          "%*s- %s (%d) <NOTHING BRANCH SEQUENCE>\n", (int)depth * 2 + 2,
+                                          "", SvPV_nolen_const( RExC_mysv ),REG_NODE_NUM(cur));
+
+                                    });
+                                    OP(startbranch)= NOTHING;
+                                    NEXT_OFF(startbranch)= tail - startbranch;
+                                    for ( opt= startbranch + 1; opt < tail ; opt++ )
+                                        OP(opt)= OPTIMIZED;
+                                }
+                            }
+                        } /* end if ( last) */
+                    } /* TRIE_MAXBUF is non zero */
+
+                } /* do trie */
+
+           }
+           else if ( code == BRANCHJ ) {  /* single branch is optimized. */
+               scan = NEXTOPER(NEXTOPER(scan));
+           } else                      /* single branch is optimized. */
+               scan = NEXTOPER(scan);
+           continue;
+       } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
+            I32 paren = 0;
+            regnode *start = NULL;
+            regnode *end = NULL;
+            U32 my_recursed_depth= recursed_depth;
+
+
+            if (OP(scan) != SUSPEND) { /* GOSUB/GOSTART */
+                /* Do setup, note this code has side effects beyond
+                 * the rest of this block. Specifically setting
+                 * RExC_recurse[] must happen at least once during
+                 * study_chunk(). */
+               if (OP(scan) == GOSUB) {
+                   paren = ARG(scan);
+                   RExC_recurse[ARG2L(scan)] = scan;
+                    start = RExC_open_parens[paren-1];
+                    end   = RExC_close_parens[paren-1];
+                } else {
+                    start = RExC_rxi->program + 1;
+                    end   = RExC_opend;
+                }
+                /* NOTE we MUST always execute the above code, even
+                 * if we do nothing with a GOSUB/GOSTART */
+                if (
+                    ( flags & SCF_IN_DEFINE )
+                    ||
+                    (
+                        (is_inf_internal || is_inf || (data && data->flags & SF_IS_INF))
+                        &&
+                        ( (flags & (SCF_DO_STCLASS | SCF_DO_SUBSTR)) == 0 )
+                    )
+                ) {
+                    /* no need to do anything here if we are in a define. */
+                    /* or we are after some kind of infinite construct
+                     * so we can skip recursing into this item.
+                     * Since it is infinite we will not change the maxlen
+                     * or delta, and if we miss something that might raise
+                     * the minlen it will merely pessimise a little.
+                     *
+                     * Iow /(?(DEFINE)(?<foo>foo|food))a+(?&foo)/
+                     * might result in a minlen of 1 and not of 4,
+                     * but this doesn't make us mismatch, just try a bit
+                     * harder than we should.
+                     * */
+                    scan= regnext(scan);
+                    continue;
+                }
+
+                if (
+                    !recursed_depth
+                    ||
+                    !PAREN_TEST(RExC_study_chunk_recursed + ((recursed_depth-1) * RExC_study_chunk_recursed_bytes), paren)
+                ) {
+                    /* it is quite possible that there are more efficient ways
+                     * to do this. We maintain a bitmap per level of recursion
+                     * of which patterns we have entered so we can detect if a
+                     * pattern creates a possible infinite loop. When we
+                     * recurse down a level we copy the previous levels bitmap
+                     * down. When we are at recursion level 0 we zero the top
+                     * level bitmap. It would be nice to implement a different
+                     * more efficient way of doing this. In particular the top
+                     * level bitmap may be unnecessary.
+                     */
+                    if (!recursed_depth) {
+                        Zero(RExC_study_chunk_recursed, RExC_study_chunk_recursed_bytes, U8);
+                    } else {
+                        Copy(RExC_study_chunk_recursed + ((recursed_depth-1) * RExC_study_chunk_recursed_bytes),
+                             RExC_study_chunk_recursed + (recursed_depth * RExC_study_chunk_recursed_bytes),
+                             RExC_study_chunk_recursed_bytes, U8);
+                    }
+                    /* we havent recursed into this paren yet, so recurse into it */
+                   DEBUG_STUDYDATA("set:", data,depth);
+                    PAREN_SET(RExC_study_chunk_recursed + (recursed_depth * RExC_study_chunk_recursed_bytes), paren);
+                    my_recursed_depth= recursed_depth + 1;
+                } else {
+                   DEBUG_STUDYDATA("inf:", data,depth);
+                    /* some form of infinite recursion, assume infinite length
+                     * */
+                    if (flags & SCF_DO_SUBSTR) {
+                        scan_commit(pRExC_state, data, minlenp, is_inf);
+                        data->longest = &(data->longest_float);
+                    }
+                    is_inf = is_inf_internal = 1;
+                    if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+                        ssc_anything(data->start_class);
+                    flags &= ~SCF_DO_STCLASS;
+
+                    start= NULL; /* reset start so we dont recurse later on. */
+               }
+            } else {
+               paren = stopparen;
+                start = scan + 2;
+               end = regnext(scan);
+           }
+            if (start) {
+                scan_frame *newframe;
+                assert(end);
+                if (!RExC_frame_last) {
+                    Newxz(newframe, 1, scan_frame);
+                    SAVEDESTRUCTOR_X(S_unwind_scan_frames, newframe);
+                    RExC_frame_head= newframe;
+                    RExC_frame_count++;
+                } else if (!RExC_frame_last->next_frame) {
+                    Newxz(newframe,1,scan_frame);
+                    RExC_frame_last->next_frame= newframe;
+                    newframe->prev_frame= RExC_frame_last;
+                    RExC_frame_count++;
+                } else {
+                    newframe= RExC_frame_last->next_frame;
+                }
+                RExC_frame_last= newframe;
+
+                newframe->next_regnode = regnext(scan);
+                newframe->last_regnode = last;
+                newframe->stopparen = stopparen;
+                newframe->prev_recursed_depth = recursed_depth;
+                newframe->this_prev_frame= frame;
+
+                DEBUG_STUDYDATA("frame-new:",data,depth);
+                DEBUG_PEEP("fnew", scan, depth);
+
+               frame = newframe;
+               scan =  start;
+               stopparen = paren;
+               last = end;
+                depth = depth + 1;
+                recursed_depth= my_recursed_depth;
+
+               continue;
+           }
+       }
+       else if (OP(scan) == EXACT || OP(scan) == EXACTL) {
+           SSize_t l = STR_LEN(scan);
+           UV uc;
+           if (UTF) {
+               const U8 * const s = (U8*)STRING(scan);
+               uc = utf8_to_uvchr_buf(s, s + l, NULL);
+               l = utf8_length(s, s + l);
+           } else {
+               uc = *((U8*)STRING(scan));
+           }
+           min += l;
+           if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
+               /* The code below prefers earlier match for fixed
+                  offset, later match for variable offset.  */
+               if (data->last_end == -1) { /* Update the start info. */
+                   data->last_start_min = data->pos_min;
+                   data->last_start_max = is_inf
+                       ? SSize_t_MAX : data->pos_min + data->pos_delta;
+               }
+               sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
+               if (UTF)
+                   SvUTF8_on(data->last_found);
+               {
+                   SV * const sv = data->last_found;
+                   MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
+                       mg_find(sv, PERL_MAGIC_utf8) : NULL;
+                   if (mg && mg->mg_len >= 0)
+                       mg->mg_len += utf8_length((U8*)STRING(scan),
+                                              (U8*)STRING(scan)+STR_LEN(scan));
+               }
+               data->last_end = data->pos_min + l;
+               data->pos_min += l; /* As in the first entry. */
+               data->flags &= ~SF_BEFORE_EOL;
+           }
+
+            /* ANDing the code point leaves at most it, and not in locale, and
+             * can't match null string */
+           if (flags & SCF_DO_STCLASS_AND) {
+                ssc_cp_and(data->start_class, uc);
+                ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+                ssc_clear_locale(data->start_class);
+           }
+           else if (flags & SCF_DO_STCLASS_OR) {
+                ssc_add_cp(data->start_class, uc);
+               ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+
+                /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
+                ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+           }
+           flags &= ~SCF_DO_STCLASS;
+       }
+        else if (PL_regkind[OP(scan)] == EXACT) {
+            /* But OP != EXACT!, so is EXACTFish */
+           SSize_t l = STR_LEN(scan);
+            const U8 * s = (U8*)STRING(scan);
+
+           /* Search for fixed substrings supports EXACT only. */
+           if (flags & SCF_DO_SUBSTR) {
+               assert(data);
+                scan_commit(pRExC_state, data, minlenp, is_inf);
+           }
+           if (UTF) {
+               l = utf8_length(s, s + l);
+           }
+           if (unfolded_multi_char) {
+                RExC_seen |= REG_UNFOLDED_MULTI_SEEN;
+           }
+           min += l - min_subtract;
+            assert (min >= 0);
+            delta += min_subtract;
+           if (flags & SCF_DO_SUBSTR) {
+               data->pos_min += l - min_subtract;
+               if (data->pos_min < 0) {
+                    data->pos_min = 0;
+                }
+                data->pos_delta += min_subtract;
+               if (min_subtract) {
+                   data->longest = &(data->longest_float);
+               }
+           }
+
+            if (flags & SCF_DO_STCLASS) {
+                SV* EXACTF_invlist = _make_exactf_invlist(pRExC_state, scan);
+
+                assert(EXACTF_invlist);
+                if (flags & SCF_DO_STCLASS_AND) {
+                    if (OP(scan) != EXACTFL)
+                        ssc_clear_locale(data->start_class);
+                    ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+                    ANYOF_POSIXL_ZERO(data->start_class);
+                    ssc_intersection(data->start_class, EXACTF_invlist, FALSE);
+                }
+                else {  /* SCF_DO_STCLASS_OR */
+                    ssc_union(data->start_class, EXACTF_invlist, FALSE);
+                    ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+
+                    /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
+                    ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+                }
+                flags &= ~SCF_DO_STCLASS;
+                SvREFCNT_dec(EXACTF_invlist);
+            }
+       }
+       else if (REGNODE_VARIES(OP(scan))) {
+           SSize_t mincount, maxcount, minnext, deltanext, pos_before = 0;
+           I32 fl = 0, f = flags;
+           regnode * const oscan = scan;
+           regnode_ssc this_class;
+           regnode_ssc *oclass = NULL;
+           I32 next_is_eval = 0;
+
+           switch (PL_regkind[OP(scan)]) {
+           case WHILEM:                /* End of (?:...)* . */
+               scan = NEXTOPER(scan);
+               goto finish;
+           case PLUS:
+               if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
+                   next = NEXTOPER(scan);
+                   if (OP(next) == EXACT
+                        || OP(next) == EXACTL
+                        || (flags & SCF_DO_STCLASS))
+                    {
+                       mincount = 1;
+                       maxcount = REG_INFTY;
+                       next = regnext(scan);
+                       scan = NEXTOPER(scan);
+                       goto do_curly;
+                   }
+               }
+               if (flags & SCF_DO_SUBSTR)
+                   data->pos_min++;
+               min++;
+               /* FALLTHROUGH */
+           case STAR:
+               if (flags & SCF_DO_STCLASS) {
+                   mincount = 0;
+                   maxcount = REG_INFTY;
+                   next = regnext(scan);
+                   scan = NEXTOPER(scan);
+                   goto do_curly;
+               }
+               if (flags & SCF_DO_SUBSTR) {
+                    scan_commit(pRExC_state, data, minlenp, is_inf);
+                    /* Cannot extend fixed substrings */
+                   data->longest = &(data->longest_float);
+               }
+                is_inf = is_inf_internal = 1;
+                scan = regnext(scan);
+               goto optimize_curly_tail;
+           case CURLY:
+               if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
+                   && (scan->flags == stopparen))
+               {
+                   mincount = 1;
+                   maxcount = 1;
+               } else {
+                   mincount = ARG1(scan);
+                   maxcount = ARG2(scan);
+               }
+               next = regnext(scan);
+               if (OP(scan) == CURLYX) {
+                   I32 lp = (data ? *(data->last_closep) : 0);
+                   scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
+               }
+               scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
+               next_is_eval = (OP(scan) == EVAL);
+             do_curly:
+               if (flags & SCF_DO_SUBSTR) {
+                    if (mincount == 0)
+                        scan_commit(pRExC_state, data, minlenp, is_inf);
+                    /* Cannot extend fixed substrings */
+                   pos_before = data->pos_min;
+               }
+               if (data) {
+                   fl = data->flags;
+                   data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
+                   if (is_inf)
+                       data->flags |= SF_IS_INF;
+               }
+               if (flags & SCF_DO_STCLASS) {
+                   ssc_init(pRExC_state, &this_class);
+                   oclass = data->start_class;
+                   data->start_class = &this_class;
+                   f |= SCF_DO_STCLASS_AND;
+                   f &= ~SCF_DO_STCLASS_OR;
+               }
+               /* Exclude from super-linear cache processing any {n,m}
+                  regops for which the combination of input pos and regex
+                  pos is not enough information to determine if a match
+                  will be possible.
+
+                  For example, in the regex /foo(bar\s*){4,8}baz/ with the
+                  regex pos at the \s*, the prospects for a match depend not
+                  only on the input position but also on how many (bar\s*)
+                  repeats into the {4,8} we are. */
+               if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
+                   f &= ~SCF_WHILEM_VISITED_POS;
+
+               /* This will finish on WHILEM, setting scan, or on NULL: */
+               minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
+                                  last, data, stopparen, recursed_depth, NULL,
+                                  (mincount == 0
+                                   ? (f & ~SCF_DO_SUBSTR)
+                                   : f)
+                                  ,depth+1);
+
+               if (flags & SCF_DO_STCLASS)
+                   data->start_class = oclass;
+               if (mincount == 0 || minnext == 0) {
+                   if (flags & SCF_DO_STCLASS_OR) {
+                       ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
+                   }
+                   else if (flags & SCF_DO_STCLASS_AND) {
+                       /* Switch to OR mode: cache the old value of
+                        * data->start_class */
+                       INIT_AND_WITHP;
+                       StructCopy(data->start_class, and_withp, regnode_ssc);
+                       flags &= ~SCF_DO_STCLASS_AND;
+                       StructCopy(&this_class, data->start_class, regnode_ssc);
+                       flags |= SCF_DO_STCLASS_OR;
+                        ANYOF_FLAGS(data->start_class)
+                                                |= SSC_MATCHES_EMPTY_STRING;
+                   }
+               } else {                /* Non-zero len */
+                   if (flags & SCF_DO_STCLASS_OR) {
+                       ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
+                       ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+                   }
+                   else if (flags & SCF_DO_STCLASS_AND)
+                       ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
+                   flags &= ~SCF_DO_STCLASS;
+               }
+               if (!scan)              /* It was not CURLYX, but CURLY. */
+                   scan = next;
+               if (!(flags & SCF_TRIE_DOING_RESTUDY)
+                   /* ? quantifier ok, except for (?{ ... }) */
+                   && (next_is_eval || !(mincount == 0 && maxcount == 1))
+                   && (minnext == 0) && (deltanext == 0)
+                   && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
+                    && maxcount <= REG_INFTY/3) /* Complement check for big
+                                                   count */
+               {
+                   /* Fatal warnings may leak the regexp without this: */
+                   SAVEFREESV(RExC_rx_sv);
+                   Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP),
+                       "Quantifier unexpected on zero-length expression "
+                       "in regex m/%"UTF8f"/",
+                        UTF8fARG(UTF, RExC_end - RExC_precomp,
+                                 RExC_precomp));
+                   (void)ReREFCNT_inc(RExC_rx_sv);
+               }
+
+               min += minnext * mincount;
+               is_inf_internal |= deltanext == SSize_t_MAX
+                         || (maxcount == REG_INFTY && minnext + deltanext > 0);
+               is_inf |= is_inf_internal;
+                if (is_inf) {
+                   delta = SSize_t_MAX;
+                } else {
+                   delta += (minnext + deltanext) * maxcount
+                             - minnext * mincount;
+                }
+               /* Try powerful optimization CURLYX => CURLYN. */
+               if (  OP(oscan) == CURLYX && data
+                     && data->flags & SF_IN_PAR
+                     && !(data->flags & SF_HAS_EVAL)
+                     && !deltanext && minnext == 1 ) {
+                   /* Try to optimize to CURLYN.  */
+                   regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
+                   regnode * const nxt1 = nxt;
+#ifdef DEBUGGING
+                   regnode *nxt2;
+#endif
+
+                   /* Skip open. */
+                   nxt = regnext(nxt);
+                   if (!REGNODE_SIMPLE(OP(nxt))
+                       && !(PL_regkind[OP(nxt)] == EXACT
+                            && STR_LEN(nxt) == 1))
+                       goto nogo;
+#ifdef DEBUGGING
+                   nxt2 = nxt;
+#endif
+                   nxt = regnext(nxt);
+                   if (OP(nxt) != CLOSE)
+                       goto nogo;
+                   if (RExC_open_parens) {
+                       RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
+                       RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
+                   }
+                   /* Now we know that nxt2 is the only contents: */
+                   oscan->flags = (U8)ARG(nxt);
+                   OP(oscan) = CURLYN;
+                   OP(nxt1) = NOTHING; /* was OPEN. */
+
+#ifdef DEBUGGING
+                   OP(nxt1 + 1) = OPTIMIZED; /* was count. */
+                   NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
+                   NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
+                   OP(nxt) = OPTIMIZED;        /* was CLOSE. */
+                   OP(nxt + 1) = OPTIMIZED; /* was count. */
+                   NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
+#endif
+               }
+             nogo:
+
+               /* Try optimization CURLYX => CURLYM. */
+               if (  OP(oscan) == CURLYX && data
+                     && !(data->flags & SF_HAS_PAR)
+                     && !(data->flags & SF_HAS_EVAL)
+                     && !deltanext     /* atom is fixed width */
+                     && minnext != 0   /* CURLYM can't handle zero width */
+
+                         /* Nor characters whose fold at run-time may be
+                          * multi-character */
+                      && ! (RExC_seen & REG_UNFOLDED_MULTI_SEEN)
+               ) {
+                   /* XXXX How to optimize if data == 0? */
+                   /* Optimize to a simpler form.  */
+                   regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
+                   regnode *nxt2;
+
+                   OP(oscan) = CURLYM;
+                   while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
+                           && (OP(nxt2) != WHILEM))
+                       nxt = nxt2;
+                   OP(nxt2)  = SUCCEED; /* Whas WHILEM */
+                   /* Need to optimize away parenths. */
+                   if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
+                       /* Set the parenth number.  */
+                       regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
+
+                       oscan->flags = (U8)ARG(nxt);
+                       if (RExC_open_parens) {
+                           RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
+                           RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
+                       }
+                       OP(nxt1) = OPTIMIZED;   /* was OPEN. */
+                       OP(nxt) = OPTIMIZED;    /* was CLOSE. */
+
+#ifdef DEBUGGING
+                       OP(nxt1 + 1) = OPTIMIZED; /* was count. */
+                       OP(nxt + 1) = OPTIMIZED; /* was count. */
+                       NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
+                       NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
+#endif
+#if 0
+                       while ( nxt1 && (OP(nxt1) != WHILEM)) {
+                           regnode *nnxt = regnext(nxt1);
+                           if (nnxt == nxt) {
+                               if (reg_off_by_arg[OP(nxt1)])
+                                   ARG_SET(nxt1, nxt2 - nxt1);
+                               else if (nxt2 - nxt1 < U16_MAX)
+                                   NEXT_OFF(nxt1) = nxt2 - nxt1;
+                               else
+                                   OP(nxt) = NOTHING;  /* Cannot beautify */
+                           }
+                           nxt1 = nnxt;
+                       }
+#endif
+                       /* Optimize again: */
+                       study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
+                                    NULL, stopparen, recursed_depth, NULL, 0,depth+1);
+                   }
+                   else
+                       oscan->flags = 0;
+               }
+               else if ((OP(oscan) == CURLYX)
+                        && (flags & SCF_WHILEM_VISITED_POS)
+                        /* See the comment on a similar expression above.
+                           However, this time it's not a subexpression
+                           we care about, but the expression itself. */
+                        && (maxcount == REG_INFTY)
+                        && data && ++data->whilem_c < 16) {
+                   /* This stays as CURLYX, we can put the count/of pair. */
+                   /* Find WHILEM (as in regexec.c) */
+                   regnode *nxt = oscan + NEXT_OFF(oscan);
+
+                   if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
+                       nxt += ARG(nxt);
+                   PREVOPER(nxt)->flags = (U8)(data->whilem_c
+                       | (RExC_whilem_seen << 4)); /* On WHILEM */
+               }
+               if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
+                   pars++;
+               if (flags & SCF_DO_SUBSTR) {
+                   SV *last_str = NULL;
+                    STRLEN last_chrs = 0;
+                   int counted = mincount != 0;
+
+                    if (data->last_end > 0 && mincount != 0) { /* Ends with a
+                                                                  string. */
+                       SSize_t b = pos_before >= data->last_start_min
+                           ? pos_before : data->last_start_min;
+                       STRLEN l;
+                       const char * const s = SvPV_const(data->last_found, l);
+                       SSize_t old = b - data->last_start_min;
+
+                       if (UTF)
+                           old = utf8_hop((U8*)s, old) - (U8*)s;
+                       l -= old;
+                       /* Get the added string: */
+                       last_str = newSVpvn_utf8(s  + old, l, UTF);
+                        last_chrs = UTF ? utf8_length((U8*)(s + old),
+                                            (U8*)(s + old + l)) : l;
+                       if (deltanext == 0 && pos_before == b) {
+                           /* What was added is a constant string */
+                           if (mincount > 1) {
+
+                               SvGROW(last_str, (mincount * l) + 1);
+                               repeatcpy(SvPVX(last_str) + l,
+                                         SvPVX_const(last_str), l,
+                                          mincount - 1);
+                               SvCUR_set(last_str, SvCUR(last_str) * mincount);
+                               /* Add additional parts. */
+                               SvCUR_set(data->last_found,
+                                         SvCUR(data->last_found) - l);
+                               sv_catsv(data->last_found, last_str);
+                               {
+                                   SV * sv = data->last_found;
+                                   MAGIC *mg =
+                                       SvUTF8(sv) && SvMAGICAL(sv) ?
+                                       mg_find(sv, PERL_MAGIC_utf8) : NULL;
+                                   if (mg && mg->mg_len >= 0)
+                                       mg->mg_len += last_chrs * (mincount-1);
+                               }
+                                last_chrs *= mincount;
+                               data->last_end += l * (mincount - 1);
+                           }
+                       } else {
+                           /* start offset must point into the last copy */
+                           data->last_start_min += minnext * (mincount - 1);
+                           data->last_start_max =
+                              is_inf
+                               ? SSize_t_MAX
+                              : data->last_start_max +
+                                 (maxcount - 1) * (minnext + data->pos_delta);
+                       }
+                   }
+                   /* It is counted once already... */
+                   data->pos_min += minnext * (mincount - counted);
+#if 0
+PerlIO_printf(Perl_debug_log, "counted=%"UVuf" deltanext=%"UVuf
+                              " SSize_t_MAX=%"UVuf" minnext=%"UVuf
+                              " maxcount=%"UVuf" mincount=%"UVuf"\n",
+    (UV)counted, (UV)deltanext, (UV)SSize_t_MAX, (UV)minnext, (UV)maxcount,
+    (UV)mincount);
+if (deltanext != SSize_t_MAX)
+PerlIO_printf(Perl_debug_log, "LHS=%"UVuf" RHS=%"UVuf"\n",
+    (UV)(-counted * deltanext + (minnext + deltanext) * maxcount
+          - minnext * mincount), (UV)(SSize_t_MAX - data->pos_delta));
+#endif
+                   if (deltanext == SSize_t_MAX
+                        || -counted * deltanext + (minnext + deltanext) * maxcount - minnext * mincount >= SSize_t_MAX - data->pos_delta)
+                       data->pos_delta = SSize_t_MAX;
+                   else
+                       data->pos_delta += - counted * deltanext +
+                       (minnext + deltanext) * maxcount - minnext * mincount;
+                   if (mincount != maxcount) {
+                        /* Cannot extend fixed substrings found inside
+                           the group.  */
+                        scan_commit(pRExC_state, data, minlenp, is_inf);
+                       if (mincount && last_str) {
+                           SV * const sv = data->last_found;
+                           MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
+                               mg_find(sv, PERL_MAGIC_utf8) : NULL;
+
+                           if (mg)
+                               mg->mg_len = -1;
+                           sv_setsv(sv, last_str);
+                           data->last_end = data->pos_min;
+                           data->last_start_min = data->pos_min - last_chrs;
+                           data->last_start_max = is_inf
+                               ? SSize_t_MAX
+                               : data->pos_min + data->pos_delta - last_chrs;
+                       }
+                       data->longest = &(data->longest_float);
+                   }
+                   SvREFCNT_dec(last_str);
+               }
+               if (data && (fl & SF_HAS_EVAL))
+                   data->flags |= SF_HAS_EVAL;
+             optimize_curly_tail:
+               if (OP(oscan) != CURLYX) {
+                   while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
+                          && NEXT_OFF(next))
+                       NEXT_OFF(oscan) += NEXT_OFF(next);
+               }
+               continue;
+
+           default:
+#ifdef DEBUGGING
+                Perl_croak(aTHX_ "panic: unexpected varying REx opcode %d",
+                                                                    OP(scan));
+#endif
+            case REF:
+            case CLUMP:
+               if (flags & SCF_DO_SUBSTR) {
+                    /* Cannot expect anything... */
+                    scan_commit(pRExC_state, data, minlenp, is_inf);
+                   data->longest = &(data->longest_float);
+               }
+               is_inf = is_inf_internal = 1;
+               if (flags & SCF_DO_STCLASS_OR) {
+                    if (OP(scan) == CLUMP) {
+                        /* Actually is any start char, but very few code points
+                         * aren't start characters */
+                        ssc_match_all_cp(data->start_class);
+                    }
+                    else {
+                        ssc_anything(data->start_class);
+                    }
+                }
+               flags &= ~SCF_DO_STCLASS;
+               break;
+           }
+       }
+       else if (OP(scan) == LNBREAK) {
+           if (flags & SCF_DO_STCLASS) {
+               if (flags & SCF_DO_STCLASS_AND) {
+                    ssc_intersection(data->start_class,
+                                    PL_XPosix_ptrs[_CC_VERTSPACE], FALSE);
+                    ssc_clear_locale(data->start_class);
+                    ANYOF_FLAGS(data->start_class)
+                                                &= ~SSC_MATCHES_EMPTY_STRING;
+                }
+                else if (flags & SCF_DO_STCLASS_OR) {
+                    ssc_union(data->start_class,
+                              PL_XPosix_ptrs[_CC_VERTSPACE],
+                              FALSE);
+                   ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+
+                    /* See commit msg for
+                     * 749e076fceedeb708a624933726e7989f2302f6a */
+                    ANYOF_FLAGS(data->start_class)
+                                                &= ~SSC_MATCHES_EMPTY_STRING;
+                }
+               flags &= ~SCF_DO_STCLASS;
+            }
+           min++;
+            if (delta != SSize_t_MAX)
+                delta++;    /* Because of the 2 char string cr-lf */
+            if (flags & SCF_DO_SUBSTR) {
+                /* Cannot expect anything... */
+                scan_commit(pRExC_state, data, minlenp, is_inf);
+               data->pos_min += 1;
+               data->pos_delta += 1;
+               data->longest = &(data->longest_float);
+           }
+       }
+       else if (REGNODE_SIMPLE(OP(scan))) {
+
+           if (flags & SCF_DO_SUBSTR) {
+                scan_commit(pRExC_state, data, minlenp, is_inf);
+               data->pos_min++;
+           }
+           min++;
+           if (flags & SCF_DO_STCLASS) {
+                bool invert = 0;
+                SV* my_invlist = NULL;
+                U8 namedclass;
+
+                /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
+                ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+
+               /* Some of the logic below assumes that switching
+                  locale on will only add false positives. */
+               switch (OP(scan)) {
+
+               default:
+#ifdef DEBUGGING
+                   Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d",
+                                                                     OP(scan));
+#endif
+               case SANY:
+                   if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+                       ssc_match_all_cp(data->start_class);
+                   break;
+
+               case REG_ANY:
+                    {
+                        SV* REG_ANY_invlist = _new_invlist(2);
+                        REG_ANY_invlist = add_cp_to_invlist(REG_ANY_invlist,
+                                                            '\n');
+                        if (flags & SCF_DO_STCLASS_OR) {
+                            ssc_union(data->start_class,
+                                      REG_ANY_invlist,
+                                      TRUE /* TRUE => invert, hence all but \n
+                                            */
+                                      );
+                        }
+                        else if (flags & SCF_DO_STCLASS_AND) {
+                            ssc_intersection(data->start_class,
+                                             REG_ANY_invlist,
+                                             TRUE  /* TRUE => invert */
+                                             );
+                            ssc_clear_locale(data->start_class);
+                        }
+                        SvREFCNT_dec_NN(REG_ANY_invlist);
+                   }
+                   break;
+
+                case ANYOFL:
+                case ANYOF:
+                   if (flags & SCF_DO_STCLASS_AND)
+                       ssc_and(pRExC_state, data->start_class,
+                                (regnode_charclass *) scan);
+                   else
+                       ssc_or(pRExC_state, data->start_class,
+                                                          (regnode_charclass *) scan);
+                   break;
+
+               case NPOSIXL:
+                    invert = 1;
+                    /* FALLTHROUGH */
+
+               case POSIXL:
+                    namedclass = classnum_to_namedclass(FLAGS(scan)) + invert;
+                    if (flags & SCF_DO_STCLASS_AND) {
+                        bool was_there = cBOOL(
+                                          ANYOF_POSIXL_TEST(data->start_class,
+                                                                 namedclass));
+                        ANYOF_POSIXL_ZERO(data->start_class);
+                        if (was_there) {    /* Do an AND */
+                            ANYOF_POSIXL_SET(data->start_class, namedclass);
+                        }
+                        /* No individual code points can now match */
+                        data->start_class->invlist
+                                                = sv_2mortal(_new_invlist(0));
+                    }
+                    else {
+                        int complement = namedclass + ((invert) ? -1 : 1);
+
+                        assert(flags & SCF_DO_STCLASS_OR);
+
+                        /* If the complement of this class was already there,
+                         * the result is that they match all code points,
+                         * (\d + \D == everything).  Remove the classes from
+                         * future consideration.  Locale is not relevant in
+                         * this case */
+                        if (ANYOF_POSIXL_TEST(data->start_class, complement)) {
+                            ssc_match_all_cp(data->start_class);
+                            ANYOF_POSIXL_CLEAR(data->start_class, namedclass);
+                            ANYOF_POSIXL_CLEAR(data->start_class, complement);
+                        }
+                        else {  /* The usual case; just add this class to the
+                                   existing set */
+                            ANYOF_POSIXL_SET(data->start_class, namedclass);
+                        }
+                    }
+                    break;
+
+                case NPOSIXA:   /* For these, we always know the exact set of
+                                   what's matched */
+                    invert = 1;
+                    /* FALLTHROUGH */
+               case POSIXA:
+                    if (FLAGS(scan) == _CC_ASCII) {
+                        my_invlist = invlist_clone(PL_XPosix_ptrs[_CC_ASCII]);
+                    }
+                    else {
+                        _invlist_intersection(PL_XPosix_ptrs[FLAGS(scan)],
+                                              PL_XPosix_ptrs[_CC_ASCII],
+                                              &my_invlist);
+                    }
+                    goto join_posix;
+
+               case NPOSIXD:
+               case NPOSIXU:
+                    invert = 1;
+                    /* FALLTHROUGH */
+               case POSIXD:
+               case POSIXU:
+                    my_invlist = invlist_clone(PL_XPosix_ptrs[FLAGS(scan)]);
+
+                    /* NPOSIXD matches all upper Latin1 code points unless the
+                     * target string being matched is UTF-8, which is
+                     * unknowable until match time.  Since we are going to
+                     * invert, we want to get rid of all of them so that the
+                     * inversion will match all */
+                    if (OP(scan) == NPOSIXD) {
+                        _invlist_subtract(my_invlist, PL_UpperLatin1,
+                                          &my_invlist);
+                    }
+
+                  join_posix:
+
+                    if (flags & SCF_DO_STCLASS_AND) {
+                        ssc_intersection(data->start_class, my_invlist, invert);
+                        ssc_clear_locale(data->start_class);
+                    }
+                    else {
+                        assert(flags & SCF_DO_STCLASS_OR);
+                        ssc_union(data->start_class, my_invlist, invert);
+                    }
+                    SvREFCNT_dec(my_invlist);
+               }
+               if (flags & SCF_DO_STCLASS_OR)
+                   ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+               flags &= ~SCF_DO_STCLASS;
+           }
+       }
+       else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
+           data->flags |= (OP(scan) == MEOL
+                           ? SF_BEFORE_MEOL
+                           : SF_BEFORE_SEOL);
+            scan_commit(pRExC_state, data, minlenp, is_inf);
+
+       }
+       else if (  PL_regkind[OP(scan)] == BRANCHJ
+                /* Lookbehind, or need to calculate parens/evals/stclass: */
+                  && (scan->flags || data || (flags & SCF_DO_STCLASS))
+                  && (OP(scan) == IFMATCH || OP(scan) == UNLESSM))
+        {
+            if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
+                || OP(scan) == UNLESSM )
+            {
+                /* Negative Lookahead/lookbehind
+                   In this case we can't do fixed string optimisation.
+                */
+
+                SSize_t deltanext, minnext, fake = 0;
+                regnode *nscan;
+                regnode_ssc intrnl;
+                int f = 0;
+
+                StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+                if (data) {
+                    data_fake.whilem_c = data->whilem_c;
+                    data_fake.last_closep = data->last_closep;
+               }
+                else
+                    data_fake.last_closep = &fake;
+               data_fake.pos_delta = delta;
+                if ( flags & SCF_DO_STCLASS && !scan->flags
+                     && OP(scan) == IFMATCH ) { /* Lookahead */
+                    ssc_init(pRExC_state, &intrnl);
+                    data_fake.start_class = &intrnl;
+                    f |= SCF_DO_STCLASS_AND;
+               }
+                if (flags & SCF_WHILEM_VISITED_POS)
+                    f |= SCF_WHILEM_VISITED_POS;
+                next = regnext(scan);
+                nscan = NEXTOPER(NEXTOPER(scan));
+                minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
+                                      last, &data_fake, stopparen,
+                                      recursed_depth, NULL, f, depth+1);
+                if (scan->flags) {
+                    if (deltanext) {
+                       FAIL("Variable length lookbehind not implemented");
+                    }
+                    else if (minnext > (I32)U8_MAX) {
+                       FAIL2("Lookbehind longer than %"UVuf" not implemented",
+                              (UV)U8_MAX);
+                    }
+                    scan->flags = (U8)minnext;
+                }
+                if (data) {
+                    if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+                        pars++;
+                    if (data_fake.flags & SF_HAS_EVAL)
+                        data->flags |= SF_HAS_EVAL;
+                    data->whilem_c = data_fake.whilem_c;
+                }
+                if (f & SCF_DO_STCLASS_AND) {
+                   if (flags & SCF_DO_STCLASS_OR) {
+                       /* OR before, AND after: ideally we would recurse with
+                        * data_fake to get the AND applied by study of the
+                        * remainder of the pattern, and then derecurse;
+                        * *** HACK *** for now just treat as "no information".
+                        * See [perl #56690].
+                        */
+                       ssc_init(pRExC_state, data->start_class);
+                   }  else {
+                        /* AND before and after: combine and continue.  These
+                         * assertions are zero-length, so can match an EMPTY
+                         * string */
+                       ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &intrnl);
+                        ANYOF_FLAGS(data->start_class)
+                                                   |= SSC_MATCHES_EMPTY_STRING;
+                   }
+                }
+           }
+#if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
+            else {
+                /* Positive Lookahead/lookbehind
+                   In this case we can do fixed string optimisation,
+                   but we must be careful about it. Note in the case of
+                   lookbehind the positions will be offset by the minimum
+                   length of the pattern, something we won't know about
+                   until after the recurse.
+                */
+                SSize_t deltanext, fake = 0;
+                regnode *nscan;
+                regnode_ssc intrnl;
+                int f = 0;
+                /* We use SAVEFREEPV so that when the full compile
+                    is finished perl will clean up the allocated
+                    minlens when it's all done. This way we don't
+                    have to worry about freeing them when we know
+                    they wont be used, which would be a pain.
+                 */
+                SSize_t *minnextp;
+                Newx( minnextp, 1, SSize_t );
+                SAVEFREEPV(minnextp);
+
+                if (data) {
+                    StructCopy(data, &data_fake, scan_data_t);
+                    if ((flags & SCF_DO_SUBSTR) && data->last_found) {
+                        f |= SCF_DO_SUBSTR;
+                        if (scan->flags)
+                            scan_commit(pRExC_state, &data_fake, minlenp, is_inf);
+                        data_fake.last_found=newSVsv(data->last_found);
+                    }
+                }
+                else
+                    data_fake.last_closep = &fake;
+                data_fake.flags = 0;
+               data_fake.pos_delta = delta;
+                if (is_inf)
+                   data_fake.flags |= SF_IS_INF;
+                if ( flags & SCF_DO_STCLASS && !scan->flags
+                     && OP(scan) == IFMATCH ) { /* Lookahead */
+                    ssc_init(pRExC_state, &intrnl);
+                    data_fake.start_class = &intrnl;
+                    f |= SCF_DO_STCLASS_AND;
+                }
+                if (flags & SCF_WHILEM_VISITED_POS)
+                    f |= SCF_WHILEM_VISITED_POS;
+                next = regnext(scan);
+                nscan = NEXTOPER(NEXTOPER(scan));
+
+                *minnextp = study_chunk(pRExC_state, &nscan, minnextp,
+                                        &deltanext, last, &data_fake,
+                                        stopparen, recursed_depth, NULL,
+                                        f,depth+1);
+                if (scan->flags) {
+                    if (deltanext) {
+                       FAIL("Variable length lookbehind not implemented");
+                    }
+                    else if (*minnextp > (I32)U8_MAX) {
+                       FAIL2("Lookbehind longer than %"UVuf" not implemented",
+                              (UV)U8_MAX);
+                    }
+                    scan->flags = (U8)*minnextp;
+                }
+
+                *minnextp += min;
+
+                if (f & SCF_DO_STCLASS_AND) {
+                    ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &intrnl);
+                    ANYOF_FLAGS(data->start_class) |= SSC_MATCHES_EMPTY_STRING;
+                }
+                if (data) {
+                    if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+                        pars++;
+                    if (data_fake.flags & SF_HAS_EVAL)
+                        data->flags |= SF_HAS_EVAL;
+                    data->whilem_c = data_fake.whilem_c;
+                    if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
+                        if (RExC_rx->minlen<*minnextp)
+                            RExC_rx->minlen=*minnextp;
+                        scan_commit(pRExC_state, &data_fake, minnextp, is_inf);
+                        SvREFCNT_dec_NN(data_fake.last_found);
+
+                        if ( data_fake.minlen_fixed != minlenp )
+                        {
+                            data->offset_fixed= data_fake.offset_fixed;
+                            data->minlen_fixed= data_fake.minlen_fixed;
+                            data->lookbehind_fixed+= scan->flags;
+                        }
+                        if ( data_fake.minlen_float != minlenp )
+                        {
+                            data->minlen_float= data_fake.minlen_float;
+                            data->offset_float_min=data_fake.offset_float_min;
+                            data->offset_float_max=data_fake.offset_float_max;
+                            data->lookbehind_float+= scan->flags;
+                        }
+                    }
+                }
+           }
+#endif
+       }
+       else if (OP(scan) == OPEN) {
+           if (stopparen != (I32)ARG(scan))
+               pars++;
+       }
+       else if (OP(scan) == CLOSE) {
+           if (stopparen == (I32)ARG(scan)) {
+               break;
+           }
+           if ((I32)ARG(scan) == is_par) {
+               next = regnext(scan);
+
+               if ( next && (OP(next) != WHILEM) && next < last)
+                   is_par = 0;         /* Disable optimization */
+           }
+           if (data)
+               *(data->last_closep) = ARG(scan);
+       }
+       else if (OP(scan) == EVAL) {
+               if (data)
+                   data->flags |= SF_HAS_EVAL;
+       }
+       else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
+           if (flags & SCF_DO_SUBSTR) {
+                scan_commit(pRExC_state, data, minlenp, is_inf);
+               flags &= ~SCF_DO_SUBSTR;
+           }
+           if (data && OP(scan)==ACCEPT) {
+               data->flags |= SCF_SEEN_ACCEPT;
+               if (stopmin > min)
+                   stopmin = min;
+           }
+       }
+       else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
+       {
+               if (flags & SCF_DO_SUBSTR) {
+                    scan_commit(pRExC_state, data, minlenp, is_inf);
+                   data->longest = &(data->longest_float);
+               }
+               is_inf = is_inf_internal = 1;
+               if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+                   ssc_anything(data->start_class);
+               flags &= ~SCF_DO_STCLASS;
+       }
+       else if (OP(scan) == GPOS) {
+            if (!(RExC_rx->intflags & PREGf_GPOS_FLOAT) &&
+               !(delta || is_inf || (data && data->pos_delta)))
+           {
+                if (!(RExC_rx->intflags & PREGf_ANCH) && (flags & SCF_DO_SUBSTR))
+                    RExC_rx->intflags |= PREGf_ANCH_GPOS;
+               if (RExC_rx->gofs < (STRLEN)min)
+                   RExC_rx->gofs = min;
+            } else {
+                RExC_rx->intflags |= PREGf_GPOS_FLOAT;
+                RExC_rx->gofs = 0;
+            }
+       }
+#ifdef TRIE_STUDY_OPT
+#ifdef FULL_TRIE_STUDY
+        else if (PL_regkind[OP(scan)] == TRIE) {
+            /* NOTE - There is similar code to this block above for handling
+               BRANCH nodes on the initial study.  If you change stuff here
+               check there too. */
+            regnode *trie_node= scan;
+            regnode *tail= regnext(scan);
+            reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
+            SSize_t max1 = 0, min1 = SSize_t_MAX;
+            regnode_ssc accum;
+
+            if (flags & SCF_DO_SUBSTR) { /* XXXX Add !SUSPEND? */
+                /* Cannot merge strings after this. */
+                scan_commit(pRExC_state, data, minlenp, is_inf);
+            }
+            if (flags & SCF_DO_STCLASS)
+                ssc_init_zero(pRExC_state, &accum);
+
+            if (!trie->jump) {
+                min1= trie->minlen;
+                max1= trie->maxlen;
+            } else {
+                const regnode *nextbranch= NULL;
+                U32 word;
+
+                for ( word=1 ; word <= trie->wordcount ; word++)
+                {
+                    SSize_t deltanext=0, minnext=0, f = 0, fake;
+                    regnode_ssc this_class;
+
+                    StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+                    if (data) {
+                        data_fake.whilem_c = data->whilem_c;
+                        data_fake.last_closep = data->last_closep;
+                    }
+                    else
+                        data_fake.last_closep = &fake;
+                   data_fake.pos_delta = delta;
+                    if (flags & SCF_DO_STCLASS) {
+                        ssc_init(pRExC_state, &this_class);
+                        data_fake.start_class = &this_class;
+                        f = SCF_DO_STCLASS_AND;
+                    }
+                    if (flags & SCF_WHILEM_VISITED_POS)
+                        f |= SCF_WHILEM_VISITED_POS;
+
+                    if (trie->jump[word]) {
+                        if (!nextbranch)
+                            nextbranch = trie_node + trie->jump[0];
+                        scan= trie_node + trie->jump[word];
+                        /* We go from the jump point to the branch that follows
+                           it. Note this means we need the vestigal unused
+                           branches even though they arent otherwise used. */
+                        minnext = study_chunk(pRExC_state, &scan, minlenp,
+                            &deltanext, (regnode *)nextbranch, &data_fake,
+                            stopparen, recursed_depth, NULL, f,depth+1);
+                    }
+                    if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
+                        nextbranch= regnext((regnode*)nextbranch);
+
+                    if (min1 > (SSize_t)(minnext + trie->minlen))
+                        min1 = minnext + trie->minlen;
+                    if (deltanext == SSize_t_MAX) {
+                        is_inf = is_inf_internal = 1;
+                        max1 = SSize_t_MAX;
+                    } else if (max1 < (SSize_t)(minnext + deltanext + trie->maxlen))
+                        max1 = minnext + deltanext + trie->maxlen;
+
+                    if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+                        pars++;
+                    if (data_fake.flags & SCF_SEEN_ACCEPT) {
+                        if ( stopmin > min + min1)
+                           stopmin = min + min1;
+                       flags &= ~SCF_DO_SUBSTR;
+                       if (data)
+                           data->flags |= SCF_SEEN_ACCEPT;
+                   }
+                    if (data) {
+                        if (data_fake.flags & SF_HAS_EVAL)
+                            data->flags |= SF_HAS_EVAL;
+                        data->whilem_c = data_fake.whilem_c;
+                    }
+                    if (flags & SCF_DO_STCLASS)
+                        ssc_or(pRExC_state, &accum, (regnode_charclass *) &this_class);
+                }
+            }
+            if (flags & SCF_DO_SUBSTR) {
+                data->pos_min += min1;
+                data->pos_delta += max1 - min1;
+                if (max1 != min1 || is_inf)
+                    data->longest = &(data->longest_float);
+            }
+            min += min1;
+            if (delta != SSize_t_MAX)
+                delta += max1 - min1;
+            if (flags & SCF_DO_STCLASS_OR) {
+                ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &accum);
+                if (min1) {
+                    ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+                    flags &= ~SCF_DO_STCLASS;
+                }
+            }
+            else if (flags & SCF_DO_STCLASS_AND) {
+                if (min1) {
+                    ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
+                    flags &= ~SCF_DO_STCLASS;
+                }
+                else {
+                    /* Switch to OR mode: cache the old value of
+                     * data->start_class */
+                   INIT_AND_WITHP;
+                    StructCopy(data->start_class, and_withp, regnode_ssc);
+                    flags &= ~SCF_DO_STCLASS_AND;
+                    StructCopy(&accum, data->start_class, regnode_ssc);
+                    flags |= SCF_DO_STCLASS_OR;
+                }
+            }
+            scan= tail;
+            continue;
+        }
+#else
+       else if (PL_regkind[OP(scan)] == TRIE) {
+           reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
+           U8*bang=NULL;
+
+           min += trie->minlen;
+           delta += (trie->maxlen - trie->minlen);
+           flags &= ~SCF_DO_STCLASS; /* xxx */
+            if (flags & SCF_DO_SUBSTR) {
+                /* Cannot expect anything... */
+                scan_commit(pRExC_state, data, minlenp, is_inf);
+               data->pos_min += trie->minlen;
+               data->pos_delta += (trie->maxlen - trie->minlen);
+               if (trie->maxlen != trie->minlen)
+                   data->longest = &(data->longest_float);
+           }
+           if (trie->jump) /* no more substrings -- for now /grr*/
+               flags &= ~SCF_DO_SUBSTR;
+       }
+#endif /* old or new */
+#endif /* TRIE_STUDY_OPT */
+
+       /* Else: zero-length, ignore. */
+       scan = regnext(scan);
+    }
+    /* If we are exiting a recursion we can unset its recursed bit
+     * and allow ourselves to enter it again - no danger of an
+     * infinite loop there.
+    if (stopparen > -1 && recursed) {
+       DEBUG_STUDYDATA("unset:", data,depth);
+        PAREN_UNSET( recursed, stopparen);
+    }
+    */
+    if (frame) {
+        depth = depth - 1;
+
+        DEBUG_STUDYDATA("frame-end:",data,depth);
+        DEBUG_PEEP("fend", scan, depth);
+
+        /* restore previous context */
+        last = frame->last_regnode;
+        scan = frame->next_regnode;
+        stopparen = frame->stopparen;
+        recursed_depth = frame->prev_recursed_depth;
+
+        RExC_frame_last = frame->prev_frame;
+        frame = frame->this_prev_frame;
+        goto fake_study_recurse;
+    }
+
+  finish:
+    assert(!frame);
+    DEBUG_STUDYDATA("pre-fin:",data,depth);
+
+    *scanp = scan;
+    *deltap = is_inf_internal ? SSize_t_MAX : delta;
+
+    if (flags & SCF_DO_SUBSTR && is_inf)
+       data->pos_delta = SSize_t_MAX - data->pos_min;
+    if (is_par > (I32)U8_MAX)
+       is_par = 0;
+    if (is_par && pars==1 && data) {
+       data->flags |= SF_IN_PAR;
+       data->flags &= ~SF_HAS_PAR;
+    }
+    else if (pars && data) {
+       data->flags |= SF_HAS_PAR;
+       data->flags &= ~SF_IN_PAR;
+    }
+    if (flags & SCF_DO_STCLASS_OR)
+       ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+    if (flags & SCF_TRIE_RESTUDY)
+        data->flags |=         SCF_TRIE_RESTUDY;
+
+    DEBUG_STUDYDATA("post-fin:",data,depth);
+
+    {
+        SSize_t final_minlen= min < stopmin ? min : stopmin;
+
+        if (!(RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN)) {
+            if (final_minlen > SSize_t_MAX - delta)
+                RExC_maxlen = SSize_t_MAX;
+            else if (RExC_maxlen < final_minlen + delta)
+                RExC_maxlen = final_minlen + delta;
+        }
+        return final_minlen;
+    }
+    NOT_REACHED; /* NOTREACHED */
+}
+
+STATIC U32
+S_add_data(RExC_state_t* const pRExC_state, const char* const s, const U32 n)
+{
+    U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
+
+    PERL_ARGS_ASSERT_ADD_DATA;
+
+    Renewc(RExC_rxi->data,
+          sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
+          char, struct reg_data);
+    if(count)
+       Renew(RExC_rxi->data->what, count + n, U8);
+    else
+       Newx(RExC_rxi->data->what, n, U8);
+    RExC_rxi->data->count = count + n;
+    Copy(s, RExC_rxi->data->what + count, n, U8);
+    return count;
+}
+
+/*XXX: todo make this not included in a non debugging perl, but appears to be
+ * used anyway there, in 'use re' */
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_reginitcolors(pTHX)
+{
+    const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
+    if (s) {
+       char *t = savepv(s);
+       int i = 0;
+       PL_colors[0] = t;
+       while (++i < 6) {
+           t = strchr(t, '\t');
+           if (t) {
+               *t = '\0';
+               PL_colors[i] = ++t;
+           }
+           else
+               PL_colors[i] = t = (char *)"";
+       }
+    } else {
+       int i = 0;
+       while (i < 6)
+           PL_colors[i++] = (char *)"";
+    }
+    PL_colorset = 1;
+}
+#endif
+
+
+#ifdef TRIE_STUDY_OPT
+#define CHECK_RESTUDY_GOTO_butfirst(dOsomething)            \
+    STMT_START {                                            \
+        if (                                                \
+              (data.flags & SCF_TRIE_RESTUDY)               \
+              && ! restudied++                              \
+        ) {                                                 \
+            dOsomething;                                    \
+            goto reStudy;                                   \
+        }                                                   \
+    } STMT_END
+#else
+#define CHECK_RESTUDY_GOTO_butfirst
+#endif
+
+/*
+ * pregcomp - compile a regular expression into internal code
+ *
+ * Decides which engine's compiler to call based on the hint currently in
+ * scope
+ */
+
+#ifndef PERL_IN_XSUB_RE
+
+/* return the currently in-scope regex engine (or the default if none)  */
+
+regexp_engine const *
+Perl_current_re_engine(pTHX)
+{
+    if (IN_PERL_COMPILETIME) {
+       HV * const table = GvHV(PL_hintgv);
+       SV **ptr;
+
+       if (!table || !(PL_hints & HINT_LOCALIZE_HH))
+           return &PL_core_reg_engine;
+       ptr = hv_fetchs(table, "regcomp", FALSE);
+       if ( !(ptr && SvIOK(*ptr) && SvIV(*ptr)))
+           return &PL_core_reg_engine;
+       return INT2PTR(regexp_engine*,SvIV(*ptr));
+    }
+    else {
+       SV *ptr;
+       if (!PL_curcop->cop_hints_hash)
+           return &PL_core_reg_engine;
+       ptr = cop_hints_fetch_pvs(PL_curcop, "regcomp", 0);
+       if ( !(ptr && SvIOK(ptr) && SvIV(ptr)))
+           return &PL_core_reg_engine;
+       return INT2PTR(regexp_engine*,SvIV(ptr));
+    }
+}
+
+
+REGEXP *
+Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
+{
+    regexp_engine const *eng = current_re_engine();
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_PREGCOMP;
+
+    /* Dispatch a request to compile a regexp to correct regexp engine. */
+    DEBUG_COMPILE_r({
+       PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
+                       PTR2UV(eng));
+    });
+    return CALLREGCOMP_ENG(eng, pattern, flags);
+}
+#endif
+
+/* public(ish) entry point for the perl core's own regex compiling code.
+ * It's actually a wrapper for Perl_re_op_compile that only takes an SV
+ * pattern rather than a list of OPs, and uses the internal engine rather
+ * than the current one */
+
+REGEXP *
+Perl_re_compile(pTHX_ SV * const pattern, U32 rx_flags)
+{
+    SV *pat = pattern; /* defeat constness! */
+    PERL_ARGS_ASSERT_RE_COMPILE;
+    return Perl_re_op_compile(aTHX_ &pat, 1, NULL,
+#ifdef PERL_IN_XSUB_RE
+                                &my_reg_engine,
+#else
+                                &PL_core_reg_engine,
+#endif
+                                NULL, NULL, rx_flags, 0);
+}
+
+
+/* upgrade pattern pat_p of length plen_p to UTF8, and if there are code
+ * blocks, recalculate the indices. Update pat_p and plen_p in-place to
+ * point to the realloced string and length.
+ *
+ * This is essentially a copy of Perl_bytes_to_utf8() with the code index
+ * stuff added */
+
+static void
+S_pat_upgrade_to_utf8(pTHX_ RExC_state_t * const pRExC_state,
+                   char **pat_p, STRLEN *plen_p, int num_code_blocks)
+{
+    U8 *const src = (U8*)*pat_p;
+    U8 *dst, *d;
+    int n=0;
+    STRLEN s = 0;
+    bool do_end = 0;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+        "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
+
+    Newx(dst, *plen_p * 2 + 1, U8);
+    d = dst;
+
+    while (s < *plen_p) {
+        append_utf8_from_native_byte(src[s], &d);
+        if (n < num_code_blocks) {
+            if (!do_end && pRExC_state->code_blocks[n].start == s) {
+                pRExC_state->code_blocks[n].start = d - dst - 1;
+                assert(*(d - 1) == '(');
+                do_end = 1;
+            }
+            else if (do_end && pRExC_state->code_blocks[n].end == s) {
+                pRExC_state->code_blocks[n].end = d - dst - 1;
+                assert(*(d - 1) == ')');
+                do_end = 0;
+                n++;
+            }
+        }
+        s++;
+    }
+    *d = '\0';
+    *plen_p = d - dst;
+    *pat_p = (char*) dst;
+    SAVEFREEPV(*pat_p);
+    RExC_orig_utf8 = RExC_utf8 = 1;
+}
+
+
+
+/* S_concat_pat(): concatenate a list of args to the pattern string pat,
+ * while recording any code block indices, and handling overloading,
+ * nested qr// objects etc.  If pat is null, it will allocate a new
+ * string, or just return the first arg, if there's only one.
+ *
+ * Returns the malloced/updated pat.
+ * patternp and pat_count is the array of SVs to be concatted;
+ * oplist is the optional list of ops that generated the SVs;
+ * recompile_p is a pointer to a boolean that will be set if
+ *   the regex will need to be recompiled.
+ * delim, if non-null is an SV that will be inserted between each element
+ */
+
+static SV*
+S_concat_pat(pTHX_ RExC_state_t * const pRExC_state,
+                SV *pat, SV ** const patternp, int pat_count,
+                OP *oplist, bool *recompile_p, SV *delim)
+{
+    SV **svp;
+    int n = 0;
+    bool use_delim = FALSE;
+    bool alloced = FALSE;
+
+    /* if we know we have at least two args, create an empty string,
+     * then concatenate args to that. For no args, return an empty string */
+    if (!pat && pat_count != 1) {
+        pat = newSVpvs("");
+        SAVEFREESV(pat);
+        alloced = TRUE;
+    }
+
+    for (svp = patternp; svp < patternp + pat_count; svp++) {
+        SV *sv;
+        SV *rx  = NULL;
+        STRLEN orig_patlen = 0;
+        bool code = 0;
+        SV *msv = use_delim ? delim : *svp;
+        if (!msv) msv = &PL_sv_undef;
+
+        /* if we've got a delimiter, we go round the loop twice for each
+         * svp slot (except the last), using the delimiter the second
+         * time round */
+        if (use_delim) {
+            svp--;
+            use_delim = FALSE;
+        }
+        else if (delim)
+            use_delim = TRUE;
+
+        if (SvTYPE(msv) == SVt_PVAV) {
+            /* we've encountered an interpolated array within
+             * the pattern, e.g. /...@a..../. Expand the list of elements,
+             * then recursively append elements.
+             * The code in this block is based on S_pushav() */
+
+            AV *const av = (AV*)msv;
+            const SSize_t maxarg = AvFILL(av) + 1;
+            SV **array;
+
+            if (oplist) {
+                assert(oplist->op_type == OP_PADAV
+                    || oplist->op_type == OP_RV2AV);
+                oplist = OpSIBLING(oplist);
+            }
+
+            if (SvRMAGICAL(av)) {
+                SSize_t i;
+
+                Newx(array, maxarg, SV*);
+                SAVEFREEPV(array);
+                for (i=0; i < maxarg; i++) {
+                    SV ** const svp = av_fetch(av, i, FALSE);
+                    array[i] = svp ? *svp : &PL_sv_undef;
+                }
+            }
+            else
+                array = AvARRAY(av);
+
+            pat = S_concat_pat(aTHX_ pRExC_state, pat,
+                                array, maxarg, NULL, recompile_p,
+                                /* $" */
+                                GvSV((gv_fetchpvs("\"", GV_ADDMULTI, SVt_PV))));
+
+            continue;
+        }
+
+
+        /* we make the assumption here that each op in the list of
+         * op_siblings maps to one SV pushed onto the stack,
+         * except for code blocks, with have both an OP_NULL and
+         * and OP_CONST.
+         * This allows us to match up the list of SVs against the
+         * list of OPs to find the next code block.
+         *
+         * Note that       PUSHMARK PADSV PADSV ..
+         * is optimised to
+         *                 PADRANGE PADSV  PADSV  ..
+         * so the alignment still works. */
+
+        if (oplist) {
+            if (oplist->op_type == OP_NULL
+                && (oplist->op_flags & OPf_SPECIAL))
+            {
+                assert(n < pRExC_state->num_code_blocks);
+                pRExC_state->code_blocks[n].start = pat ? SvCUR(pat) : 0;
+                pRExC_state->code_blocks[n].block = oplist;
+                pRExC_state->code_blocks[n].src_regex = NULL;
+                n++;
+                code = 1;
+                oplist = OpSIBLING(oplist); /* skip CONST */
+                assert(oplist);
+            }
+            oplist = OpSIBLING(oplist);;
+        }
+
+       /* apply magic and QR overloading to arg */
+
+        SvGETMAGIC(msv);
+        if (SvROK(msv) && SvAMAGIC(msv)) {
+            SV *sv = AMG_CALLunary(msv, regexp_amg);
+            if (sv) {
+                if (SvROK(sv))
+                    sv = SvRV(sv);
+                if (SvTYPE(sv) != SVt_REGEXP)
+                    Perl_croak(aTHX_ "Overloaded qr did not return a REGEXP");
+                msv = sv;
+            }
+        }
+
+        /* try concatenation overload ... */
+        if (pat && (SvAMAGIC(pat) || SvAMAGIC(msv)) &&
+                (sv = amagic_call(pat, msv, concat_amg, AMGf_assign)))
+        {
+            sv_setsv(pat, sv);
+            /* overloading involved: all bets are off over literal
+             * code. Pretend we haven't seen it */
+            pRExC_state->num_code_blocks -= n;
+            n = 0;
+        }
+        else  {
+            /* ... or failing that, try "" overload */
+            while (SvAMAGIC(msv)
+                    && (sv = AMG_CALLunary(msv, string_amg))
+                    && sv != msv
+                    &&  !(   SvROK(msv)
+                          && SvROK(sv)
+                          && SvRV(msv) == SvRV(sv))
+            ) {
+                msv = sv;
+                SvGETMAGIC(msv);
+            }
+            if (SvROK(msv) && SvTYPE(SvRV(msv)) == SVt_REGEXP)
+                msv = SvRV(msv);
+
+            if (pat) {
+                /* this is a partially unrolled
+                 *     sv_catsv_nomg(pat, msv);
+                 * that allows us to adjust code block indices if
+                 * needed */
+                STRLEN dlen;
+                char *dst = SvPV_force_nomg(pat, dlen);
+                orig_patlen = dlen;
+                if (SvUTF8(msv) && !SvUTF8(pat)) {
+                    S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &dst, &dlen, n);
+                    sv_setpvn(pat, dst, dlen);
+                    SvUTF8_on(pat);
+                }
+                sv_catsv_nomg(pat, msv);
+                rx = msv;
+            }
+            else
+                pat = msv;
+
+            if (code)
+                pRExC_state->code_blocks[n-1].end = SvCUR(pat)-1;
+        }
+
+        /* extract any code blocks within any embedded qr//'s */
+        if (rx && SvTYPE(rx) == SVt_REGEXP
+            && RX_ENGINE((REGEXP*)rx)->op_comp)
+        {
+
+            RXi_GET_DECL(ReANY((REGEXP *)rx), ri);
+            if (ri->num_code_blocks) {
+                int i;
+                /* the presence of an embedded qr// with code means
+                 * we should always recompile: the text of the
+                 * qr// may not have changed, but it may be a
+                 * different closure than last time */
+                *recompile_p = 1;
+                Renew(pRExC_state->code_blocks,
+                    pRExC_state->num_code_blocks + ri->num_code_blocks,
+                    struct reg_code_block);
+                pRExC_state->num_code_blocks += ri->num_code_blocks;
+
+                for (i=0; i < ri->num_code_blocks; i++) {
+                    struct reg_code_block *src, *dst;
+                    STRLEN offset =  orig_patlen
+                        + ReANY((REGEXP *)rx)->pre_prefix;
+                    assert(n < pRExC_state->num_code_blocks);
+                    src = &ri->code_blocks[i];
+                    dst = &pRExC_state->code_blocks[n];
+                    dst->start     = src->start + offset;
+                    dst->end       = src->end   + offset;
+                    dst->block     = src->block;
+                    dst->src_regex  = (REGEXP*) SvREFCNT_inc( (SV*)
+                                            src->src_regex
+                                                ? src->src_regex
+                                                : (REGEXP*)rx);
+                    n++;
+                }
+            }
+        }
+    }
+    /* avoid calling magic multiple times on a single element e.g. =~ $qr */
+    if (alloced)
+        SvSETMAGIC(pat);
+
+    return pat;
+}
+
+
+
+/* see if there are any run-time code blocks in the pattern.
+ * False positives are allowed */
+
+static bool
+S_has_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
+                   char *pat, STRLEN plen)
+{
+    int n = 0;
+    STRLEN s;
+    
+    PERL_UNUSED_CONTEXT;
+
+    for (s = 0; s < plen; s++) {
+       if (n < pRExC_state->num_code_blocks
+           && s == pRExC_state->code_blocks[n].start)
+       {
+           s = pRExC_state->code_blocks[n].end;
+           n++;
+           continue;
+       }
+       /* TODO ideally should handle [..], (#..), /#.../x to reduce false
+        * positives here */
+       if (pat[s] == '(' && s+2 <= plen && pat[s+1] == '?' &&
+           (pat[s+2] == '{'
+                || (s + 2 <= plen && pat[s+2] == '?' && pat[s+3] == '{'))
+       )
+           return 1;
+    }
+    return 0;
+}
+
+/* Handle run-time code blocks. We will already have compiled any direct
+ * or indirect literal code blocks. Now, take the pattern 'pat' and make a
+ * copy of it, but with any literal code blocks blanked out and
+ * appropriate chars escaped; then feed it into
+ *
+ *    eval "qr'modified_pattern'"
+ *
+ * For example,
+ *
+ *       a\bc(?{"this was literal"})def'ghi\\jkl(?{"this is runtime"})mno
+ *
+ * becomes
+ *
+ *    qr'a\\bc_______________________def\'ghi\\\\jkl(?{"this is runtime"})mno'
+ *
+ * After eval_sv()-ing that, grab any new code blocks from the returned qr
+ * and merge them with any code blocks of the original regexp.
+ *
+ * If the pat is non-UTF8, while the evalled qr is UTF8, don't merge;
+ * instead, just save the qr and return FALSE; this tells our caller that
+ * the original pattern needs upgrading to utf8.
+ */
+
+static bool
+S_compile_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
+    char *pat, STRLEN plen)
+{
+    SV *qr;
+
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    if (pRExC_state->runtime_code_qr) {
+       /* this is the second time we've been called; this should
+        * only happen if the main pattern got upgraded to utf8
+        * during compilation; re-use the qr we compiled first time
+        * round (which should be utf8 too)
+        */
+       qr = pRExC_state->runtime_code_qr;
+       pRExC_state->runtime_code_qr = NULL;
+       assert(RExC_utf8 && SvUTF8(qr));
+    }
+    else {
+       int n = 0;
+       STRLEN s;
+       char *p, *newpat;
+       int newlen = plen + 6; /* allow for "qr''x\0" extra chars */
+       SV *sv, *qr_ref;
+       dSP;
+
+       /* determine how many extra chars we need for ' and \ escaping */
+       for (s = 0; s < plen; s++) {
+           if (pat[s] == '\'' || pat[s] == '\\')
+               newlen++;
+       }
+
+       Newx(newpat, newlen, char);
+       p = newpat;
+       *p++ = 'q'; *p++ = 'r'; *p++ = '\'';
+
+       for (s = 0; s < plen; s++) {
+           if (n < pRExC_state->num_code_blocks
+               && s == pRExC_state->code_blocks[n].start)
+           {
+               /* blank out literal code block */
+               assert(pat[s] == '(');
+               while (s <= pRExC_state->code_blocks[n].end) {
+                   *p++ = '_';
+                   s++;
+               }
+               s--;
+               n++;
+               continue;
+           }
+           if (pat[s] == '\'' || pat[s] == '\\')
+               *p++ = '\\';
+           *p++ = pat[s];
+       }
+       *p++ = '\'';
+       if (pRExC_state->pm_flags & RXf_PMf_EXTENDED)
+           *p++ = 'x';
+       *p++ = '\0';
+       DEBUG_COMPILE_r({
+           PerlIO_printf(Perl_debug_log,
+               "%sre-parsing pattern for runtime code:%s %s\n",
+               PL_colors[4],PL_colors[5],newpat);
+       });
+
+       sv = newSVpvn_flags(newpat, p-newpat-1, RExC_utf8 ? SVf_UTF8 : 0);
+       Safefree(newpat);
+
+       ENTER;
+       SAVETMPS;
+       save_re_context();
+       PUSHSTACKi(PERLSI_REQUIRE);
+        /* G_RE_REPARSING causes the toker to collapse \\ into \ when
+         * parsing qr''; normally only q'' does this. It also alters
+         * hints handling */
+       eval_sv(sv, G_SCALAR|G_RE_REPARSING);
+       SvREFCNT_dec_NN(sv);
+       SPAGAIN;
+       qr_ref = POPs;
+       PUTBACK;
+       {
+           SV * const errsv = ERRSV;
+           if (SvTRUE_NN(errsv))
+           {
+               Safefree(pRExC_state->code_blocks);
+                /* use croak_sv ? */
+               Perl_croak_nocontext("%"SVf, SVfARG(errsv));
+           }
+       }
+       assert(SvROK(qr_ref));
+       qr = SvRV(qr_ref);
+       assert(SvTYPE(qr) == SVt_REGEXP && RX_ENGINE((REGEXP*)qr)->op_comp);
+       /* the leaving below frees the tmp qr_ref.
+        * Give qr a life of its own */
+       SvREFCNT_inc(qr);
+       POPSTACK;
+       FREETMPS;
+       LEAVE;
+
+    }
+
+    if (!RExC_utf8 && SvUTF8(qr)) {
+       /* first time through; the pattern got upgraded; save the
+        * qr for the next time through */
+       assert(!pRExC_state->runtime_code_qr);
+       pRExC_state->runtime_code_qr = qr;
+       return 0;
+    }
+
+
+    /* extract any code blocks within the returned qr//  */
+
+
+    /* merge the main (r1) and run-time (r2) code blocks into one */
+    {
+       RXi_GET_DECL(ReANY((REGEXP *)qr), r2);
+       struct reg_code_block *new_block, *dst;
+       RExC_state_t * const r1 = pRExC_state; /* convenient alias */
+       int i1 = 0, i2 = 0;
+
+       if (!r2->num_code_blocks) /* we guessed wrong */
+       {
+           SvREFCNT_dec_NN(qr);
+           return 1;
+       }
+
+       Newx(new_block,
+           r1->num_code_blocks + r2->num_code_blocks,
+           struct reg_code_block);
+       dst = new_block;
+
+       while (    i1 < r1->num_code_blocks
+               || i2 < r2->num_code_blocks)
+       {
+           struct reg_code_block *src;
+           bool is_qr = 0;
+
+           if (i1 == r1->num_code_blocks) {
+               src = &r2->code_blocks[i2++];
+               is_qr = 1;
+           }
+           else if (i2 == r2->num_code_blocks)
+               src = &r1->code_blocks[i1++];
+           else if (  r1->code_blocks[i1].start
+                    < r2->code_blocks[i2].start)
+           {
+               src = &r1->code_blocks[i1++];
+               assert(src->end < r2->code_blocks[i2].start);
+           }
+           else {
+               assert(  r1->code_blocks[i1].start
+                      > r2->code_blocks[i2].start);
+               src = &r2->code_blocks[i2++];
+               is_qr = 1;
+               assert(src->end < r1->code_blocks[i1].start);
+           }
+
+           assert(pat[src->start] == '(');
+           assert(pat[src->end]   == ')');
+           dst->start      = src->start;
+           dst->end        = src->end;
+           dst->block      = src->block;
+           dst->src_regex  = is_qr ? (REGEXP*) SvREFCNT_inc( (SV*) qr)
+                                   : src->src_regex;
+           dst++;
+       }
+       r1->num_code_blocks += r2->num_code_blocks;
+       Safefree(r1->code_blocks);
+       r1->code_blocks = new_block;
+    }
+
+    SvREFCNT_dec_NN(qr);
+    return 1;
+}
+
+
+STATIC bool
+S_setup_longest(pTHX_ RExC_state_t *pRExC_state, SV* sv_longest,
+                      SV** rx_utf8, SV** rx_substr, SSize_t* rx_end_shift,
+                     SSize_t lookbehind, SSize_t offset, SSize_t *minlen,
+                      STRLEN longest_length, bool eol, bool meol)
+{
+    /* This is the common code for setting up the floating and fixed length
+     * string data extracted from Perl_re_op_compile() below.  Returns a boolean
+     * as to whether succeeded or not */
+
+    I32 t;
+    SSize_t ml;
+
+    if (! (longest_length
+           || (eol /* Can't have SEOL and MULTI */
+               && (! meol || (RExC_flags & RXf_PMf_MULTILINE)))
+          )
+            /* See comments for join_exact for why REG_UNFOLDED_MULTI_SEEN */
+        || (RExC_seen & REG_UNFOLDED_MULTI_SEEN))
+    {
+        return FALSE;
+    }
+
+    /* copy the information about the longest from the reg_scan_data
+        over to the program. */
+    if (SvUTF8(sv_longest)) {
+        *rx_utf8 = sv_longest;
+        *rx_substr = NULL;
+    } else {
+        *rx_substr = sv_longest;
+        *rx_utf8 = NULL;
+    }
+    /* end_shift is how many chars that must be matched that
+        follow this item. We calculate it ahead of time as once the
+        lookbehind offset is added in we lose the ability to correctly
+        calculate it.*/
+    ml = minlen ? *(minlen) : (SSize_t)longest_length;
+    *rx_end_shift = ml - offset
+        - longest_length + (SvTAIL(sv_longest) != 0)
+        + lookbehind;
+
+    t = (eol/* Can't have SEOL and MULTI */
+         && (! meol || (RExC_flags & RXf_PMf_MULTILINE)));
+    fbm_compile(sv_longest, t ? FBMcf_TAIL : 0);
+
+    return TRUE;
+}
+
+/*
+ * Perl_re_op_compile - the perl internal RE engine's function to compile a
+ * regular expression into internal code.
+ * The pattern may be passed either as:
+ *    a list of SVs (patternp plus pat_count)
+ *    a list of OPs (expr)
+ * If both are passed, the SV list is used, but the OP list indicates
+ * which SVs are actually pre-compiled code blocks
+ *
+ * The SVs in the list have magic and qr overloading applied to them (and
+ * the list may be modified in-place with replacement SVs in the latter
+ * case).
+ *
+ * If the pattern hasn't changed from old_re, then old_re will be
+ * returned.
+ *
+ * eng is the current engine. If that engine has an op_comp method, then
+ * handle directly (i.e. we assume that op_comp was us); otherwise, just
+ * do the initial concatenation of arguments and pass on to the external
+ * engine.
+ *
+ * If is_bare_re is not null, set it to a boolean indicating whether the
+ * arg list reduced (after overloading) to a single bare regex which has
+ * been returned (i.e. /$qr/).
+ *
+ * orig_rx_flags contains RXf_* flags. See perlreapi.pod for more details.
+ *
+ * pm_flags contains the PMf_* flags, typically based on those from the
+ * pm_flags field of the related PMOP. Currently we're only interested in
+ * PMf_HAS_CV, PMf_IS_QR, PMf_USE_RE_EVAL.
+ *
+ * We can't allocate space until we know how big the compiled form will be,
+ * but we can't compile it (and thus know how big it is) until we've got a
+ * place to put the code.  So we cheat:  we compile it twice, once with code
+ * generation turned off and size counting turned on, and once "for real".
+ * This also means that we don't allocate space until we are sure that the
+ * thing really will compile successfully, and we never have to move the
+ * code and thus invalidate pointers into it.  (Note that it has to be in
+ * one piece because free() must be able to free it all.) [NB: not true in perl]
+ *
+ * Beware that the optimization-preparation code in here knows about some
+ * of the structure of the compiled regexp.  [I'll say.]
+ */
+
+REGEXP *
+Perl_re_op_compile(pTHX_ SV ** const patternp, int pat_count,
+                   OP *expr, const regexp_engine* eng, REGEXP *old_re,
+                    bool *is_bare_re, U32 orig_rx_flags, U32 pm_flags)
+{
+    REGEXP *rx;
+    struct regexp *r;
+    regexp_internal *ri;
+    STRLEN plen;
+    char *exp;
+    regnode *scan;
+    I32 flags;
+    SSize_t minlen = 0;
+    U32 rx_flags;
+    SV *pat;
+    SV *code_blocksv = NULL;
+    SV** new_patternp = patternp;
+
+    /* these are all flags - maybe they should be turned
+     * into a single int with different bit masks */
+    I32 sawlookahead = 0;
+    I32 sawplus = 0;
+    I32 sawopen = 0;
+    I32 sawminmod = 0;
+
+    regex_charset initial_charset = get_regex_charset(orig_rx_flags);
+    bool recompile = 0;
+    bool runtime_code = 0;
+    scan_data_t data;
+    RExC_state_t RExC_state;
+    RExC_state_t * const pRExC_state = &RExC_state;
+#ifdef TRIE_STUDY_OPT
+    int restudied = 0;
+    RExC_state_t copyRExC_state;
+#endif
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_RE_OP_COMPILE;
+
+    DEBUG_r(if (!PL_colorset) reginitcolors());
+
+    /* Initialize these here instead of as-needed, as is quick and avoids
+     * having to test them each time otherwise */
+    if (! PL_AboveLatin1) {
+       PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist);
+       PL_Latin1 = _new_invlist_C_array(Latin1_invlist);
+       PL_UpperLatin1 = _new_invlist_C_array(UpperLatin1_invlist);
+        PL_utf8_foldable = _new_invlist_C_array(_Perl_Any_Folds_invlist);
+        PL_HasMultiCharFold =
+                       _new_invlist_C_array(_Perl_Folds_To_Multi_Char_invlist);
+
+        /* This is calculated here, because the Perl program that generates the
+         * static global ones doesn't currently have access to
+         * NUM_ANYOF_CODE_POINTS */
+       PL_InBitmap = _new_invlist(2);
+       PL_InBitmap = _add_range_to_invlist(PL_InBitmap, 0,
+                                                    NUM_ANYOF_CODE_POINTS - 1);
+    }
+
+    pRExC_state->code_blocks = NULL;
+    pRExC_state->num_code_blocks = 0;
+
+    if (is_bare_re)
+       *is_bare_re = FALSE;
+
+    if (expr && (expr->op_type == OP_LIST ||
+               (expr->op_type == OP_NULL && expr->op_targ == OP_LIST))) {
+       /* allocate code_blocks if needed */
+       OP *o;
+       int ncode = 0;
+
+       for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o))
+           if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL))
+               ncode++; /* count of DO blocks */
+       if (ncode) {
+           pRExC_state->num_code_blocks = ncode;
+           Newx(pRExC_state->code_blocks, ncode, struct reg_code_block);
+       }
+    }
+
+    if (!pat_count) {
+        /* compile-time pattern with just OP_CONSTs and DO blocks */
+
+        int n;
+        OP *o;
+
+        /* find how many CONSTs there are */
+        assert(expr);
+        n = 0;
+        if (expr->op_type == OP_CONST)
+            n = 1;
+        else
+            for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o)) {
+                if (o->op_type == OP_CONST)
+                    n++;
+            }
+
+        /* fake up an SV array */
+
+        assert(!new_patternp);
+        Newx(new_patternp, n, SV*);
+        SAVEFREEPV(new_patternp);
+        pat_count = n;
+
+        n = 0;
+        if (expr->op_type == OP_CONST)
+            new_patternp[n] = cSVOPx_sv(expr);
+        else
+            for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o)) {
+                if (o->op_type == OP_CONST)
+                    new_patternp[n++] = cSVOPo_sv;
+            }
+
+    }
+
+    DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+        "Assembling pattern from %d elements%s\n", pat_count,
+            orig_rx_flags & RXf_SPLIT ? " for split" : ""));
+
+    /* set expr to the first arg op */
+
+    if (pRExC_state->num_code_blocks
+         && expr->op_type != OP_CONST)
+    {
+            expr = cLISTOPx(expr)->op_first;
+            assert(   expr->op_type == OP_PUSHMARK
+                   || (expr->op_type == OP_NULL && expr->op_targ == OP_PUSHMARK)
+                   || expr->op_type == OP_PADRANGE);
+            expr = OpSIBLING(expr);
+    }
+
+    pat = S_concat_pat(aTHX_ pRExC_state, NULL, new_patternp, pat_count,
+                        expr, &recompile, NULL);
+
+    /* handle bare (possibly after overloading) regex: foo =~ $re */
+    {
+        SV *re = pat;
+        if (SvROK(re))
+            re = SvRV(re);
+        if (SvTYPE(re) == SVt_REGEXP) {
+            if (is_bare_re)
+                *is_bare_re = TRUE;
+            SvREFCNT_inc(re);
+            Safefree(pRExC_state->code_blocks);
+            DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+                "Precompiled pattern%s\n",
+                    orig_rx_flags & RXf_SPLIT ? " for split" : ""));
+
+            return (REGEXP*)re;
+        }
+    }
+
+    exp = SvPV_nomg(pat, plen);
+
+    if (!eng->op_comp) {
+       if ((SvUTF8(pat) && IN_BYTES)
+               || SvGMAGICAL(pat) || SvAMAGIC(pat))
+       {
+           /* make a temporary copy; either to convert to bytes,
+            * or to avoid repeating get-magic / overloaded stringify */
+           pat = newSVpvn_flags(exp, plen, SVs_TEMP |
+                                       (IN_BYTES ? 0 : SvUTF8(pat)));
+       }
+       Safefree(pRExC_state->code_blocks);
+       return CALLREGCOMP_ENG(eng, pat, orig_rx_flags);
+    }
+
+    /* ignore the utf8ness if the pattern is 0 length */
+    RExC_utf8 = RExC_orig_utf8 = (plen == 0 || IN_BYTES) ? 0 : SvUTF8(pat);
+    RExC_uni_semantics = 0;
+    RExC_contains_locale = 0;
+    RExC_contains_i = 0;
+    RExC_strict = cBOOL(pm_flags & RXf_PMf_STRICT);
+    pRExC_state->runtime_code_qr = NULL;
+    RExC_frame_head= NULL;
+    RExC_frame_last= NULL;
+    RExC_frame_count= 0;
+
+    DEBUG_r({
+        RExC_mysv1= sv_newmortal();
+        RExC_mysv2= sv_newmortal();
+    });
+    DEBUG_COMPILE_r({
+            SV *dsv= sv_newmortal();
+            RE_PV_QUOTED_DECL(s, RExC_utf8, dsv, exp, plen, 60);
+            PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
+                          PL_colors[4],PL_colors[5],s);
+        });
+
+  redo_first_pass:
+    /* we jump here if we upgrade the pattern to utf8 and have to
+     * recompile */
+
+    if ((pm_flags & PMf_USE_RE_EVAL)
+               /* this second condition covers the non-regex literal case,
+                * i.e.  $foo =~ '(?{})'. */
+               || (IN_PERL_COMPILETIME && (PL_hints & HINT_RE_EVAL))
+    )
+       runtime_code = S_has_runtime_code(aTHX_ pRExC_state, exp, plen);
+
+    /* return old regex if pattern hasn't changed */
+    /* XXX: note in the below we have to check the flags as well as the
+     * pattern.
+     *
+     * Things get a touch tricky as we have to compare the utf8 flag
+     * independently from the compile flags.  */
+
+    if (   old_re
+        && !recompile
+        && !!RX_UTF8(old_re) == !!RExC_utf8
+        && ( RX_COMPFLAGS(old_re) == ( orig_rx_flags & RXf_PMf_FLAGCOPYMASK ) )
+       && RX_PRECOMP(old_re)
+       && RX_PRELEN(old_re) == plen
+        && memEQ(RX_PRECOMP(old_re), exp, plen)
+       && !runtime_code /* with runtime code, always recompile */ )
+    {
+        Safefree(pRExC_state->code_blocks);
+        return old_re;
+    }
+
+    rx_flags = orig_rx_flags;
+
+    if (rx_flags & PMf_FOLD) {
+        RExC_contains_i = 1;
+    }
+    if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
+
+       /* Set to use unicode semantics if the pattern is in utf8 and has the
+        * 'depends' charset specified, as it means unicode when utf8  */
+       set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
+    }
+
+    RExC_precomp = exp;
+    RExC_flags = rx_flags;
+    RExC_pm_flags = pm_flags;
+
+    if (runtime_code) {
+       if (TAINTING_get && TAINT_get)
+           Perl_croak(aTHX_ "Eval-group in insecure regular expression");
+
+       if (!S_compile_runtime_code(aTHX_ pRExC_state, exp, plen)) {
+           /* whoops, we have a non-utf8 pattern, whilst run-time code
+            * got compiled as utf8. Try again with a utf8 pattern */
+            S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
+                                    pRExC_state->num_code_blocks);
+            goto redo_first_pass;
+       }
+    }
+    assert(!pRExC_state->runtime_code_qr);
+
+    RExC_sawback = 0;
+
+    RExC_seen = 0;
+    RExC_maxlen = 0;
+    RExC_in_lookbehind = 0;
+    RExC_seen_zerolen = *exp == '^' ? -1 : 0;
+    RExC_extralen = 0;
+    RExC_override_recoding = 0;
+#ifdef EBCDIC
+    RExC_recode_x_to_native = 0;
+#endif
+    RExC_in_multi_char_class = 0;
+
+    /* First pass: determine size, legality. */
+    RExC_parse = exp;
+    RExC_start = exp;
+    RExC_end = exp + plen;
+    RExC_naughty = 0;
+    RExC_npar = 1;
+    RExC_nestroot = 0;
+    RExC_size = 0L;
+    RExC_emit = (regnode *) &RExC_emit_dummy;
+    RExC_whilem_seen = 0;
+    RExC_open_parens = NULL;
+    RExC_close_parens = NULL;
+    RExC_opend = NULL;
+    RExC_paren_names = NULL;
+#ifdef DEBUGGING
+    RExC_paren_name_list = NULL;
+#endif
+    RExC_recurse = NULL;
+    RExC_study_chunk_recursed = NULL;
+    RExC_study_chunk_recursed_bytes= 0;
+    RExC_recurse_count = 0;
+    pRExC_state->code_index = 0;
+
+    DEBUG_PARSE_r(
+       PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n");
+        RExC_lastnum=0;
+        RExC_lastparse=NULL;
+    );
+    /* reg may croak on us, not giving us a chance to free
+       pRExC_state->code_blocks.  We cannot SAVEFREEPV it now, as we may
+       need it to survive as long as the regexp (qr/(?{})/).
+       We must check that code_blocksv is not already set, because we may
+       have jumped back to restart the sizing pass. */
+    if (pRExC_state->code_blocks && !code_blocksv) {
+       code_blocksv = newSV_type(SVt_PV);
+       SAVEFREESV(code_blocksv);
+       SvPV_set(code_blocksv, (char *)pRExC_state->code_blocks);
+       SvLEN_set(code_blocksv, 1); /*sufficient to make sv_clear free it*/
+    }
+    if (reg(pRExC_state, 0, &flags,1) == NULL) {
+        /* It's possible to write a regexp in ascii that represents Unicode
+        codepoints outside of the byte range, such as via \x{100}. If we
+        detect such a sequence we have to convert the entire pattern to utf8
+        and then recompile, as our sizing calculation will have been based
+        on 1 byte == 1 character, but we will need to use utf8 to encode
+        at least some part of the pattern, and therefore must convert the whole
+        thing.
+        -- dmq */
+        if (flags & RESTART_UTF8) {
+            S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
+                                    pRExC_state->num_code_blocks);
+            goto redo_first_pass;
+        }
+        Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for sizing pass, flags=%#"UVxf"", (UV) flags);
+    }
+    if (code_blocksv)
+       SvLEN_set(code_blocksv,0); /* no you can't have it, sv_clear */
+
+    DEBUG_PARSE_r({
+        PerlIO_printf(Perl_debug_log,
+            "Required size %"IVdf" nodes\n"
+            "Starting second pass (creation)\n",
+            (IV)RExC_size);
+        RExC_lastnum=0;
+        RExC_lastparse=NULL;
+    });
+
+    /* The first pass could have found things that force Unicode semantics */
+    if ((RExC_utf8 || RExC_uni_semantics)
+        && get_regex_charset(rx_flags) == REGEX_DEPENDS_CHARSET)
+    {
+       set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
+    }
+
+    /* Small enough for pointer-storage convention?
+       If extralen==0, this means that we will not need long jumps. */
+    if (RExC_size >= 0x10000L && RExC_extralen)
+        RExC_size += RExC_extralen;
+    else
+       RExC_extralen = 0;
+    if (RExC_whilem_seen > 15)
+       RExC_whilem_seen = 15;
+
+    /* Allocate space and zero-initialize. Note, the two step process
+       of zeroing when in debug mode, thus anything assigned has to
+       happen after that */
+    rx = (REGEXP*) newSV_type(SVt_REGEXP);
+    r = ReANY(rx);
+    Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
+        char, regexp_internal);
+    if ( r == NULL || ri == NULL )
+       FAIL("Regexp out of space");
+#ifdef DEBUGGING
+    /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
+    Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
+         char);
+#else
+    /* bulk initialize base fields with 0. */
+    Zero(ri, sizeof(regexp_internal), char);
+#endif
+
+    /* non-zero initialization begins here */
+    RXi_SET( r, ri );
+    r->engine= eng;
+    r->extflags = rx_flags;
+    RXp_COMPFLAGS(r) = orig_rx_flags & RXf_PMf_FLAGCOPYMASK;
+
+    if (pm_flags & PMf_IS_QR) {
+       ri->code_blocks = pRExC_state->code_blocks;
+       ri->num_code_blocks = pRExC_state->num_code_blocks;
+    }
+    else
+    {
+       int n;
+       for (n = 0; n < pRExC_state->num_code_blocks; n++)
+           if (pRExC_state->code_blocks[n].src_regex)
+               SAVEFREESV(pRExC_state->code_blocks[n].src_regex);
+       SAVEFREEPV(pRExC_state->code_blocks);
+    }
+
+    {
+        bool has_p     = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
+        bool has_charset = (get_regex_charset(r->extflags)
+                                                    != REGEX_DEPENDS_CHARSET);
+
+        /* The caret is output if there are any defaults: if not all the STD
+         * flags are set, or if no character set specifier is needed */
+        bool has_default =
+                    (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
+                    || ! has_charset);
+        bool has_runon = ((RExC_seen & REG_RUN_ON_COMMENT_SEEN)
+                                                   == REG_RUN_ON_COMMENT_SEEN);
+       U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
+                           >> RXf_PMf_STD_PMMOD_SHIFT);
+       const char *fptr = STD_PAT_MODS;        /*"msixn"*/
+       char *p;
+        /* Allocate for the worst case, which is all the std flags are turned
+         * on.  If more precision is desired, we could do a population count of
+         * the flags set.  This could be done with a small lookup table, or by
+         * shifting, masking and adding, or even, when available, assembly
+         * language for a machine-language population count.
+         * We never output a minus, as all those are defaults, so are
+         * covered by the caret */
+       const STRLEN wraplen = plen + has_p + has_runon
+            + has_default       /* If needs a caret */
+
+               /* If needs a character set specifier */
+           + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
+            + (sizeof(STD_PAT_MODS) - 1)
+            + (sizeof("(?:)") - 1);
+
+        Newx(p, wraplen + 1, char); /* +1 for the ending NUL */
+       r->xpv_len_u.xpvlenu_pv = p;
+       if (RExC_utf8)
+           SvFLAGS(rx) |= SVf_UTF8;
+        *p++='('; *p++='?';
+
+        /* If a default, cover it using the caret */
+        if (has_default) {
+            *p++= DEFAULT_PAT_MOD;
+        }
+        if (has_charset) {
+           STRLEN len;
+           const char* const name = get_regex_charset_name(r->extflags, &len);
+           Copy(name, p, len, char);
+           p += len;
+        }
+        if (has_p)
+            *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
+        {
+            char ch;
+            while((ch = *fptr++)) {
+                if(reganch & 1)
+                    *p++ = ch;
+                reganch >>= 1;
+            }
+        }
+
+        *p++ = ':';
+        Copy(RExC_precomp, p, plen, char);
+       assert ((RX_WRAPPED(rx) - p) < 16);
+       r->pre_prefix = p - RX_WRAPPED(rx);
+        p += plen;
+        if (has_runon)
+            *p++ = '\n';
+        *p++ = ')';
+        *p = 0;
+       SvCUR_set(rx, p - RX_WRAPPED(rx));
+    }
+
+    r->intflags = 0;
+    r->nparens = RExC_npar - 1;        /* set early to validate backrefs */
+
+    /* setup various meta data about recursion, this all requires
+     * RExC_npar to be correctly set, and a bit later on we clear it */
+    if (RExC_seen & REG_RECURSE_SEEN) {
+        Newxz(RExC_open_parens, RExC_npar,regnode *);
+        SAVEFREEPV(RExC_open_parens);
+        Newxz(RExC_close_parens,RExC_npar,regnode *);
+        SAVEFREEPV(RExC_close_parens);
+    }
+    if (RExC_seen & (REG_RECURSE_SEEN | REG_GOSTART_SEEN)) {
+        /* Note, RExC_npar is 1 + the number of parens in a pattern.
+         * So its 1 if there are no parens. */
+        RExC_study_chunk_recursed_bytes= (RExC_npar >> 3) +
+                                         ((RExC_npar & 0x07) != 0);
+        Newx(RExC_study_chunk_recursed,
+             RExC_study_chunk_recursed_bytes * RExC_npar, U8);
+        SAVEFREEPV(RExC_study_chunk_recursed);
+    }
+
+    /* Useful during FAIL. */
+#ifdef RE_TRACK_PATTERN_OFFSETS
+    Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
+    DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
+                          "%s %"UVuf" bytes for offset annotations.\n",
+                          ri->u.offsets ? "Got" : "Couldn't get",
+                          (UV)((2*RExC_size+1) * sizeof(U32))));
+#endif
+    SetProgLen(ri,RExC_size);
+    RExC_rx_sv = rx;
+    RExC_rx = r;
+    RExC_rxi = ri;
+
+    /* Second pass: emit code. */
+    RExC_flags = rx_flags;     /* don't let top level (?i) bleed */
+    RExC_pm_flags = pm_flags;
+    RExC_parse = exp;
+    RExC_end = exp + plen;
+    RExC_naughty = 0;
+    RExC_npar = 1;
+    RExC_emit_start = ri->program;
+    RExC_emit = ri->program;
+    RExC_emit_bound = ri->program + RExC_size + 1;
+    pRExC_state->code_index = 0;
+
+    *((char*) RExC_emit++) = (char) REG_MAGIC;
+    if (reg(pRExC_state, 0, &flags,1) == NULL) {
+       ReREFCNT_dec(rx);
+        Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for generation pass, flags=%#"UVxf"", (UV) flags);
+    }
+    /* XXXX To minimize changes to RE engine we always allocate
+       3-units-long substrs field. */
+    Newx(r->substrs, 1, struct reg_substr_data);
+    if (RExC_recurse_count) {
+        Newxz(RExC_recurse,RExC_recurse_count,regnode *);
+        SAVEFREEPV(RExC_recurse);
+    }
+
+  reStudy:
+    r->minlen = minlen = sawlookahead = sawplus = sawopen = sawminmod = 0;
+    DEBUG_r(
+        RExC_study_chunk_recursed_count= 0;
+    );
+    Zero(r->substrs, 1, struct reg_substr_data);
+    if (RExC_study_chunk_recursed) {
+        Zero(RExC_study_chunk_recursed,
+             RExC_study_chunk_recursed_bytes * RExC_npar, U8);
+    }
+
+
+#ifdef TRIE_STUDY_OPT
+    if (!restudied) {
+        StructCopy(&zero_scan_data, &data, scan_data_t);
+        copyRExC_state = RExC_state;
+    } else {
+        U32 seen=RExC_seen;
+        DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
+
+        RExC_state = copyRExC_state;
+        if (seen & REG_TOP_LEVEL_BRANCHES_SEEN)
+            RExC_seen |= REG_TOP_LEVEL_BRANCHES_SEEN;
+        else
+            RExC_seen &= ~REG_TOP_LEVEL_BRANCHES_SEEN;
+       StructCopy(&zero_scan_data, &data, scan_data_t);
+    }
+#else
+    StructCopy(&zero_scan_data, &data, scan_data_t);
+#endif
+
+    /* Dig out information for optimizations. */
+    r->extflags = RExC_flags; /* was pm_op */
+    /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
+
+    if (UTF)
+       SvUTF8_on(rx);  /* Unicode in it? */
+    ri->regstclass = NULL;
+    if (RExC_naughty >= TOO_NAUGHTY)   /* Probably an expensive pattern. */
+       r->intflags |= PREGf_NAUGHTY;
+    scan = ri->program + 1;            /* First BRANCH. */
+
+    /* testing for BRANCH here tells us whether there is "must appear"
+       data in the pattern. If there is then we can use it for optimisations */
+    if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN)) { /*  Only one top-level choice.
+                                                  */
+       SSize_t fake;
+       STRLEN longest_float_length, longest_fixed_length;
+       regnode_ssc ch_class; /* pointed to by data */
+       int stclass_flag;
+       SSize_t last_close = 0; /* pointed to by data */
+        regnode *first= scan;
+        regnode *first_next= regnext(first);
+       /*
+        * Skip introductions and multiplicators >= 1
+        * so that we can extract the 'meat' of the pattern that must
+        * match in the large if() sequence following.
+        * NOTE that EXACT is NOT covered here, as it is normally
+        * picked up by the optimiser separately.
+        *
+        * This is unfortunate as the optimiser isnt handling lookahead
+        * properly currently.
+        *
+        */
+       while ((OP(first) == OPEN && (sawopen = 1)) ||
+              /* An OR of *one* alternative - should not happen now. */
+           (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
+           /* for now we can't handle lookbehind IFMATCH*/
+           (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
+           (OP(first) == PLUS) ||
+           (OP(first) == MINMOD) ||
+              /* An {n,m} with n>0 */
+           (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
+           (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
+       {
+               /*
+                * the only op that could be a regnode is PLUS, all the rest
+                * will be regnode_1 or regnode_2.
+                *
+                 * (yves doesn't think this is true)
+                */
+               if (OP(first) == PLUS)
+                   sawplus = 1;
+                else {
+                    if (OP(first) == MINMOD)
+                        sawminmod = 1;
+                   first += regarglen[OP(first)];
+                }
+               first = NEXTOPER(first);
+               first_next= regnext(first);
+       }
+
+       /* Starting-point info. */
+      again:
+        DEBUG_PEEP("first:",first,0);
+        /* Ignore EXACT as we deal with it later. */
+       if (PL_regkind[OP(first)] == EXACT) {
+           if (OP(first) == EXACT || OP(first) == EXACTL)
+               NOOP;   /* Empty, get anchored substr later. */
+           else
+               ri->regstclass = first;
+       }
+#ifdef TRIE_STCLASS
+       else if (PL_regkind[OP(first)] == TRIE &&
+               ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
+       {
+            /* this can happen only on restudy */
+            ri->regstclass = construct_ahocorasick_from_trie(pRExC_state, (regnode *)first, 0);
+       }
+#endif
+       else if (REGNODE_SIMPLE(OP(first)))
+           ri->regstclass = first;
+       else if (PL_regkind[OP(first)] == BOUND ||
+                PL_regkind[OP(first)] == NBOUND)
+           ri->regstclass = first;
+       else if (PL_regkind[OP(first)] == BOL) {
+            r->intflags |= (OP(first) == MBOL
+                           ? PREGf_ANCH_MBOL
+                           : PREGf_ANCH_SBOL);
+           first = NEXTOPER(first);
+           goto again;
+       }
+       else if (OP(first) == GPOS) {
+            r->intflags |= PREGf_ANCH_GPOS;
+           first = NEXTOPER(first);
+           goto again;
+       }
+       else if ((!sawopen || !RExC_sawback) &&
+            !sawlookahead &&
+           (OP(first) == STAR &&
+           PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
+            !(r->intflags & PREGf_ANCH) && !pRExC_state->num_code_blocks)
+       {
+           /* turn .* into ^.* with an implied $*=1 */
+           const int type =
+               (OP(NEXTOPER(first)) == REG_ANY)
+                    ? PREGf_ANCH_MBOL
+                    : PREGf_ANCH_SBOL;
+            r->intflags |= (type | PREGf_IMPLICIT);
+           first = NEXTOPER(first);
+           goto again;
+       }
+        if (sawplus && !sawminmod && !sawlookahead
+            && (!sawopen || !RExC_sawback)
+           && !pRExC_state->num_code_blocks) /* May examine pos and $& */
+           /* x+ must match at the 1st pos of run of x's */
+           r->intflags |= PREGf_SKIP;
+
+       /* Scan is after the zeroth branch, first is atomic matcher. */
+#ifdef TRIE_STUDY_OPT
+       DEBUG_PARSE_r(
+           if (!restudied)
+               PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
+                             (IV)(first - scan + 1))
+        );
+#else
+       DEBUG_PARSE_r(
+           PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
+               (IV)(first - scan + 1))
+        );
+#endif
+
+
+       /*
+       * If there's something expensive in the r.e., find the
+       * longest literal string that must appear and make it the
+       * regmust.  Resolve ties in favor of later strings, since
+       * the regstart check works with the beginning of the r.e.
+       * and avoiding duplication strengthens checking.  Not a
+       * strong reason, but sufficient in the absence of others.
+       * [Now we resolve ties in favor of the earlier string if
+       * it happens that c_offset_min has been invalidated, since the
+       * earlier string may buy us something the later one won't.]
+       */
+
+       data.longest_fixed = newSVpvs("");
+       data.longest_float = newSVpvs("");
+       data.last_found = newSVpvs("");
+       data.longest = &(data.longest_fixed);
+       ENTER_with_name("study_chunk");
+       SAVEFREESV(data.longest_fixed);
+       SAVEFREESV(data.longest_float);
+       SAVEFREESV(data.last_found);
+       first = scan;
+       if (!ri->regstclass) {
+           ssc_init(pRExC_state, &ch_class);
+           data.start_class = &ch_class;
+           stclass_flag = SCF_DO_STCLASS_AND;
+       } else                          /* XXXX Check for BOUND? */
+           stclass_flag = 0;
+       data.last_closep = &last_close;
+
+        DEBUG_RExC_seen();
+       minlen = study_chunk(pRExC_state, &first, &minlen, &fake,
+                             scan + RExC_size, /* Up to end */
+            &data, -1, 0, NULL,
+            SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag
+                          | (restudied ? SCF_TRIE_DOING_RESTUDY : 0),
+            0);
+
+
+        CHECK_RESTUDY_GOTO_butfirst(LEAVE_with_name("study_chunk"));
+
+
+       if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
+            && data.last_start_min == 0 && data.last_end > 0
+            && !RExC_seen_zerolen
+             && !(RExC_seen & REG_VERBARG_SEEN)
+             && !(RExC_seen & REG_GPOS_SEEN)
+        ){
+           r->extflags |= RXf_CHECK_ALL;
+        }
+       scan_commit(pRExC_state, &data,&minlen,0);
+
+       longest_float_length = CHR_SVLEN(data.longest_float);
+
+        if (! ((SvCUR(data.longest_fixed)  /* ok to leave SvCUR */
+                   && data.offset_fixed == data.offset_float_min
+                   && SvCUR(data.longest_fixed) == SvCUR(data.longest_float)))
+            && S_setup_longest (aTHX_ pRExC_state,
+                                    data.longest_float,
+                                    &(r->float_utf8),
+                                    &(r->float_substr),
+                                    &(r->float_end_shift),
+                                    data.lookbehind_float,
+                                    data.offset_float_min,
+                                    data.minlen_float,
+                                    longest_float_length,
+                                    cBOOL(data.flags & SF_FL_BEFORE_EOL),
+                                    cBOOL(data.flags & SF_FL_BEFORE_MEOL)))
+        {
+           r->float_min_offset = data.offset_float_min - data.lookbehind_float;
+           r->float_max_offset = data.offset_float_max;
+           if (data.offset_float_max < SSize_t_MAX) /* Don't offset infinity */
+               r->float_max_offset -= data.lookbehind_float;
+           SvREFCNT_inc_simple_void_NN(data.longest_float);
+       }
+       else {
+           r->float_substr = r->float_utf8 = NULL;
+           longest_float_length = 0;
+       }
+
+       longest_fixed_length = CHR_SVLEN(data.longest_fixed);
+
+        if (S_setup_longest (aTHX_ pRExC_state,
+                                data.longest_fixed,
+                                &(r->anchored_utf8),
+                                &(r->anchored_substr),
+                                &(r->anchored_end_shift),
+                                data.lookbehind_fixed,
+                                data.offset_fixed,
+                                data.minlen_fixed,
+                                longest_fixed_length,
+                                cBOOL(data.flags & SF_FIX_BEFORE_EOL),
+                                cBOOL(data.flags & SF_FIX_BEFORE_MEOL)))
+        {
+           r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
+           SvREFCNT_inc_simple_void_NN(data.longest_fixed);
+       }
+       else {
+           r->anchored_substr = r->anchored_utf8 = NULL;
+           longest_fixed_length = 0;
+       }
+       LEAVE_with_name("study_chunk");
+
+       if (ri->regstclass
+           && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
+           ri->regstclass = NULL;
+
+       if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
+           && stclass_flag
+            && ! (ANYOF_FLAGS(data.start_class) & SSC_MATCHES_EMPTY_STRING)
+           && is_ssc_worth_it(pRExC_state, data.start_class))
+       {
+           const U32 n = add_data(pRExC_state, STR_WITH_LEN("f"));
+
+            ssc_finalize(pRExC_state, data.start_class);
+
+           Newx(RExC_rxi->data->data[n], 1, regnode_ssc);
+           StructCopy(data.start_class,
+                      (regnode_ssc*)RExC_rxi->data->data[n],
+                      regnode_ssc);
+           ri->regstclass = (regnode*)RExC_rxi->data->data[n];
+           r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
+           DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
+                      regprop(r, sv, (regnode*)data.start_class, NULL, pRExC_state);
+                     PerlIO_printf(Perl_debug_log,
+                                   "synthetic stclass \"%s\".\n",
+                                   SvPVX_const(sv));});
+            data.start_class = NULL;
+       }
+
+        /* A temporary algorithm prefers floated substr to fixed one to dig
+         * more info. */
+       if (longest_fixed_length > longest_float_length) {
+           r->substrs->check_ix = 0;
+           r->check_end_shift = r->anchored_end_shift;
+           r->check_substr = r->anchored_substr;
+           r->check_utf8 = r->anchored_utf8;
+           r->check_offset_min = r->check_offset_max = r->anchored_offset;
+            if (r->intflags & (PREGf_ANCH_SBOL|PREGf_ANCH_GPOS))
+                r->intflags |= PREGf_NOSCAN;
+       }
+       else {
+           r->substrs->check_ix = 1;
+           r->check_end_shift = r->float_end_shift;
+           r->check_substr = r->float_substr;
+           r->check_utf8 = r->float_utf8;
+           r->check_offset_min = r->float_min_offset;
+           r->check_offset_max = r->float_max_offset;
+       }
+       if ((r->check_substr || r->check_utf8) ) {
+           r->extflags |= RXf_USE_INTUIT;
+           if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
+               r->extflags |= RXf_INTUIT_TAIL;
+       }
+        r->substrs->data[0].max_offset = r->substrs->data[0].min_offset;
+
+       /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
+       if ( (STRLEN)minlen < longest_float_length )
+            minlen= longest_float_length;
+        if ( (STRLEN)minlen < longest_fixed_length )
+            minlen= longest_fixed_length;
+        */
+    }
+    else {
+       /* Several toplevels. Best we can is to set minlen. */
+       SSize_t fake;
+       regnode_ssc ch_class;
+       SSize_t last_close = 0;
+
+       DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
+
+       scan = ri->program + 1;
+       ssc_init(pRExC_state, &ch_class);
+       data.start_class = &ch_class;
+       data.last_closep = &last_close;
+
+        DEBUG_RExC_seen();
+       minlen = study_chunk(pRExC_state,
+            &scan, &minlen, &fake, scan + RExC_size, &data, -1, 0, NULL,
+            SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS|(restudied
+                                                      ? SCF_TRIE_DOING_RESTUDY
+                                                      : 0),
+            0);
+
+        CHECK_RESTUDY_GOTO_butfirst(NOOP);
+
+       r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
+               = r->float_substr = r->float_utf8 = NULL;
+
+        if (! (ANYOF_FLAGS(data.start_class) & SSC_MATCHES_EMPTY_STRING)
+           && is_ssc_worth_it(pRExC_state, data.start_class))
+        {
+           const U32 n = add_data(pRExC_state, STR_WITH_LEN("f"));
+
+            ssc_finalize(pRExC_state, data.start_class);
+
+           Newx(RExC_rxi->data->data[n], 1, regnode_ssc);
+           StructCopy(data.start_class,
+                      (regnode_ssc*)RExC_rxi->data->data[n],
+                      regnode_ssc);
+           ri->regstclass = (regnode*)RExC_rxi->data->data[n];
+           r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
+           DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
+                      regprop(r, sv, (regnode*)data.start_class, NULL, pRExC_state);
+                     PerlIO_printf(Perl_debug_log,
+                                   "synthetic stclass \"%s\".\n",
+                                   SvPVX_const(sv));});
+            data.start_class = NULL;
+       }
+    }
+
+    if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) {
+        r->extflags |= RXf_UNBOUNDED_QUANTIFIER_SEEN;
+        r->maxlen = REG_INFTY;
+    }
+    else {
+        r->maxlen = RExC_maxlen;
+    }
+
+    /* Guard against an embedded (?=) or (?<=) with a longer minlen than
+       the "real" pattern. */
+    DEBUG_OPTIMISE_r({
+        PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf" maxlen:%"IVdf"\n",
+                      (IV)minlen, (IV)r->minlen, (IV)RExC_maxlen);
+    });
+    r->minlenret = minlen;
+    if (r->minlen < minlen)
+        r->minlen = minlen;
+
+    if (RExC_seen & REG_GPOS_SEEN)
+        r->intflags |= PREGf_GPOS_SEEN;
+    if (RExC_seen & REG_LOOKBEHIND_SEEN)
+        r->extflags |= RXf_NO_INPLACE_SUBST; /* inplace might break the
+                                                lookbehind */
+    if (pRExC_state->num_code_blocks)
+       r->extflags |= RXf_EVAL_SEEN;
+    if (RExC_seen & REG_VERBARG_SEEN)
+    {
+       r->intflags |= PREGf_VERBARG_SEEN;
+        r->extflags |= RXf_NO_INPLACE_SUBST; /* don't understand this! Yves */
+    }
+    if (RExC_seen & REG_CUTGROUP_SEEN)
+       r->intflags |= PREGf_CUTGROUP_SEEN;
+    if (pm_flags & PMf_USE_RE_EVAL)
+       r->intflags |= PREGf_USE_RE_EVAL;
+    if (RExC_paren_names)
+        RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
+    else
+        RXp_PAREN_NAMES(r) = NULL;
+
+    /* If we have seen an anchor in our pattern then we set the extflag RXf_IS_ANCHORED
+     * so it can be used in pp.c */
+    if (r->intflags & PREGf_ANCH)
+        r->extflags |= RXf_IS_ANCHORED;
+
+
+    {
+        /* this is used to identify "special" patterns that might result
+         * in Perl NOT calling the regex engine and instead doing the match "itself",
+         * particularly special cases in split//. By having the regex compiler
+         * do this pattern matching at a regop level (instead of by inspecting the pattern)
+         * we avoid weird issues with equivalent patterns resulting in different behavior,
+         * AND we allow non Perl engines to get the same optimizations by the setting the
+         * flags appropriately - Yves */
+        regnode *first = ri->program + 1;
+        U8 fop = OP(first);
+        regnode *next = regnext(first);
+        U8 nop = OP(next);
+
+        if (PL_regkind[fop] == NOTHING && nop == END)
+            r->extflags |= RXf_NULL;
+        else if ((fop == MBOL || (fop == SBOL && !first->flags)) && nop == END)
+            /* when fop is SBOL first->flags will be true only when it was
+             * produced by parsing /\A/, and not when parsing /^/. This is
+             * very important for the split code as there we want to
+             * treat /^/ as /^/m, but we do not want to treat /\A/ as /^/m.
+             * See rt #122761 for more details. -- Yves */
+            r->extflags |= RXf_START_ONLY;
+        else if (fop == PLUS
+                 && PL_regkind[nop] == POSIXD && FLAGS(next) == _CC_SPACE
+                 && nop == END)
+            r->extflags |= RXf_WHITE;
+        else if ( r->extflags & RXf_SPLIT
+                  && (fop == EXACT || fop == EXACTL)
+                  && STR_LEN(first) == 1
+                  && *(STRING(first)) == ' '
+                  && nop == END )
+            r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
+
+    }
+
+    if (RExC_contains_locale) {
+        RXp_EXTFLAGS(r) |= RXf_TAINTED;
+    }
+
+#ifdef DEBUGGING
+    if (RExC_paren_names) {
+        ri->name_list_idx = add_data( pRExC_state, STR_WITH_LEN("a"));
+        ri->data->data[ri->name_list_idx]
+                                   = (void*)SvREFCNT_inc(RExC_paren_name_list);
+    } else
+#endif
+        ri->name_list_idx = 0;
+
+    if (RExC_recurse_count) {
+        for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
+            const regnode *scan = RExC_recurse[RExC_recurse_count-1];
+            ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
+        }
+    }
+    Newxz(r->offs, RExC_npar, regexp_paren_pair);
+    /* assume we don't need to swap parens around before we match */
+    DEBUG_TEST_r({
+        PerlIO_printf(Perl_debug_log,"study_chunk_recursed_count: %lu\n",
+            (unsigned long)RExC_study_chunk_recursed_count);
+    });
+    DEBUG_DUMP_r({
+        DEBUG_RExC_seen();
+        PerlIO_printf(Perl_debug_log,"Final program:\n");
+        regdump(r);
+    });
+#ifdef RE_TRACK_PATTERN_OFFSETS
+    DEBUG_OFFSETS_r(if (ri->u.offsets) {
+        const STRLEN len = ri->u.offsets[0];
+        STRLEN i;
+        GET_RE_DEBUG_FLAGS_DECL;
+        PerlIO_printf(Perl_debug_log,
+                      "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
+        for (i = 1; i <= len; i++) {
+            if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
+                PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
+                (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
+            }
+        PerlIO_printf(Perl_debug_log, "\n");
+    });
+#endif
+
+#ifdef USE_ITHREADS
+    /* under ithreads the ?pat? PMf_USED flag on the pmop is simulated
+     * by setting the regexp SV to readonly-only instead. If the
+     * pattern's been recompiled, the USEDness should remain. */
+    if (old_re && SvREADONLY(old_re))
+        SvREADONLY_on(rx);
+#endif
+    return rx;
+}
+
+
+SV*
+Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
+                    const U32 flags)
+{
+    PERL_ARGS_ASSERT_REG_NAMED_BUFF;
+
+    PERL_UNUSED_ARG(value);
+
+    if (flags & RXapif_FETCH) {
+        return reg_named_buff_fetch(rx, key, flags);
+    } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
+        Perl_croak_no_modify();
+        return NULL;
+    } else if (flags & RXapif_EXISTS) {
+        return reg_named_buff_exists(rx, key, flags)
+            ? &PL_sv_yes
+            : &PL_sv_no;
+    } else if (flags & RXapif_REGNAMES) {
+        return reg_named_buff_all(rx, flags);
+    } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
+        return reg_named_buff_scalar(rx, flags);
+    } else {
+        Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
+        return NULL;
+    }
+}
+
+SV*
+Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
+                         const U32 flags)
+{
+    PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
+    PERL_UNUSED_ARG(lastkey);
+
+    if (flags & RXapif_FIRSTKEY)
+        return reg_named_buff_firstkey(rx, flags);
+    else if (flags & RXapif_NEXTKEY)
+        return reg_named_buff_nextkey(rx, flags);
+    else {
+        Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter",
+                                            (int)flags);
+        return NULL;
+    }
+}
+
+SV*
+Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
+                         const U32 flags)
+{
+    AV *retarray = NULL;
+    SV *ret;
+    struct regexp *const rx = ReANY(r);
+
+    PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
+
+    if (flags & RXapif_ALL)
+        retarray=newAV();
+
+    if (rx && RXp_PAREN_NAMES(rx)) {
+        HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
+        if (he_str) {
+            IV i;
+            SV* sv_dat=HeVAL(he_str);
+            I32 *nums=(I32*)SvPVX(sv_dat);
+            for ( i=0; i<SvIVX(sv_dat); i++ ) {
+                if ((I32)(rx->nparens) >= nums[i]
+                    && rx->offs[nums[i]].start != -1
+                    && rx->offs[nums[i]].end != -1)
+                {
+                    ret = newSVpvs("");
+                    CALLREG_NUMBUF_FETCH(r,nums[i],ret);
+                    if (!retarray)
+                        return ret;
+                } else {
+                    if (retarray)
+                        ret = newSVsv(&PL_sv_undef);
+                }
+                if (retarray)
+                    av_push(retarray, ret);
+            }
+            if (retarray)
+                return newRV_noinc(MUTABLE_SV(retarray));
+        }
+    }
+    return NULL;
+}
+
+bool
+Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
+                           const U32 flags)
+{
+    struct regexp *const rx = ReANY(r);
+
+    PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
+
+    if (rx && RXp_PAREN_NAMES(rx)) {
+        if (flags & RXapif_ALL) {
+            return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
+        } else {
+           SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
+            if (sv) {
+               SvREFCNT_dec_NN(sv);
+                return TRUE;
+            } else {
+                return FALSE;
+            }
+        }
+    } else {
+        return FALSE;
+    }
+}
+
+SV*
+Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
+{
+    struct regexp *const rx = ReANY(r);
+
+    PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
+
+    if ( rx && RXp_PAREN_NAMES(rx) ) {
+       (void)hv_iterinit(RXp_PAREN_NAMES(rx));
+
+       return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
+    } else {
+       return FALSE;
+    }
+}
+
+SV*
+Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
+{
+    struct regexp *const rx = ReANY(r);
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
+
+    if (rx && RXp_PAREN_NAMES(rx)) {
+        HV *hv = RXp_PAREN_NAMES(rx);
+        HE *temphe;
+        while ( (temphe = hv_iternext_flags(hv,0)) ) {
+            IV i;
+            IV parno = 0;
+            SV* sv_dat = HeVAL(temphe);
+            I32 *nums = (I32*)SvPVX(sv_dat);
+            for ( i = 0; i < SvIVX(sv_dat); i++ ) {
+                if ((I32)(rx->lastparen) >= nums[i] &&
+                    rx->offs[nums[i]].start != -1 &&
+                    rx->offs[nums[i]].end != -1)
+                {
+                    parno = nums[i];
+                    break;
+                }
+            }
+            if (parno || flags & RXapif_ALL) {
+               return newSVhek(HeKEY_hek(temphe));
+            }
+        }
+    }
+    return NULL;
+}
+
+SV*
+Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
+{
+    SV *ret;
+    AV *av;
+    SSize_t length;
+    struct regexp *const rx = ReANY(r);
+
+    PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
+
+    if (rx && RXp_PAREN_NAMES(rx)) {
+        if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
+            return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
+        } else if (flags & RXapif_ONE) {
+            ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
+            av = MUTABLE_AV(SvRV(ret));
+            length = av_tindex(av);
+           SvREFCNT_dec_NN(ret);
+            return newSViv(length + 1);
+        } else {
+            Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar",
+                                                (int)flags);
+            return NULL;
+        }
+    }
+    return &PL_sv_undef;
+}
+
+SV*
+Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
+{
+    struct regexp *const rx = ReANY(r);
+    AV *av = newAV();
+
+    PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
+
+    if (rx && RXp_PAREN_NAMES(rx)) {
+        HV *hv= RXp_PAREN_NAMES(rx);
+        HE *temphe;
+        (void)hv_iterinit(hv);
+        while ( (temphe = hv_iternext_flags(hv,0)) ) {
+            IV i;
+            IV parno = 0;
+            SV* sv_dat = HeVAL(temphe);
+            I32 *nums = (I32*)SvPVX(sv_dat);
+            for ( i = 0; i < SvIVX(sv_dat); i++ ) {
+                if ((I32)(rx->lastparen) >= nums[i] &&
+                    rx->offs[nums[i]].start != -1 &&
+                    rx->offs[nums[i]].end != -1)
+                {
+                    parno = nums[i];
+                    break;
+                }
+            }
+            if (parno || flags & RXapif_ALL) {
+                av_push(av, newSVhek(HeKEY_hek(temphe)));
+            }
+        }
+    }
+
+    return newRV_noinc(MUTABLE_SV(av));
+}
+
+void
+Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
+                            SV * const sv)
+{
+    struct regexp *const rx = ReANY(r);
+    char *s = NULL;
+    SSize_t i = 0;
+    SSize_t s1, t1;
+    I32 n = paren;
+
+    PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
+
+    if (      n == RX_BUFF_IDX_CARET_PREMATCH
+           || n == RX_BUFF_IDX_CARET_FULLMATCH
+           || n == RX_BUFF_IDX_CARET_POSTMATCH
+       )
+    {
+        bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
+        if (!keepcopy) {
+            /* on something like
+             *    $r = qr/.../;
+             *    /$qr/p;
+             * the KEEPCOPY is set on the PMOP rather than the regex */
+            if (PL_curpm && r == PM_GETRE(PL_curpm))
+                 keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
+        }
+        if (!keepcopy)
+            goto ret_undef;
+    }
+
+    if (!rx->subbeg)
+        goto ret_undef;
+
+    if (n == RX_BUFF_IDX_CARET_FULLMATCH)
+        /* no need to distinguish between them any more */
+        n = RX_BUFF_IDX_FULLMATCH;
+
+    if ((n == RX_BUFF_IDX_PREMATCH || n == RX_BUFF_IDX_CARET_PREMATCH)
+        && rx->offs[0].start != -1)
+    {
+        /* $`, ${^PREMATCH} */
+       i = rx->offs[0].start;
+       s = rx->subbeg;
+    }
+    else
+    if ((n == RX_BUFF_IDX_POSTMATCH || n == RX_BUFF_IDX_CARET_POSTMATCH)
+        && rx->offs[0].end != -1)
+    {
+        /* $', ${^POSTMATCH} */
+       s = rx->subbeg - rx->suboffset + rx->offs[0].end;
+       i = rx->sublen + rx->suboffset - rx->offs[0].end;
+    }
+    else
+    if ( 0 <= n && n <= (I32)rx->nparens &&
+        (s1 = rx->offs[n].start) != -1 &&
+        (t1 = rx->offs[n].end) != -1)
+    {
+        /* $&, ${^MATCH},  $1 ... */
+        i = t1 - s1;
+        s = rx->subbeg + s1 - rx->suboffset;
+    } else {
+        goto ret_undef;
+    }
+
+    assert(s >= rx->subbeg);
+    assert((STRLEN)rx->sublen >= (STRLEN)((s - rx->subbeg) + i) );
+    if (i >= 0) {
+#ifdef NO_TAINT_SUPPORT
+        sv_setpvn(sv, s, i);
+#else
+        const int oldtainted = TAINT_get;
+        TAINT_NOT;
+        sv_setpvn(sv, s, i);
+        TAINT_set(oldtainted);
+#endif
+        if (RXp_MATCH_UTF8(rx))
+            SvUTF8_on(sv);
+        else
+            SvUTF8_off(sv);
+        if (TAINTING_get) {
+            if (RXp_MATCH_TAINTED(rx)) {
+                if (SvTYPE(sv) >= SVt_PVMG) {
+                    MAGIC* const mg = SvMAGIC(sv);
+                    MAGIC* mgt;
+                    TAINT;
+                    SvMAGIC_set(sv, mg->mg_moremagic);
+                    SvTAINT(sv);
+                    if ((mgt = SvMAGIC(sv))) {
+                        mg->mg_moremagic = mgt;
+                        SvMAGIC_set(sv, mg);
+                    }
+                } else {
+                    TAINT;
+                    SvTAINT(sv);
+                }
+            } else
+                SvTAINTED_off(sv);
+        }
+    } else {
+      ret_undef:
+        sv_setsv(sv,&PL_sv_undef);
+        return;
+    }
+}
+
+void
+Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
+                                                        SV const * const value)
+{
+    PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
+
+    PERL_UNUSED_ARG(rx);
+    PERL_UNUSED_ARG(paren);
+    PERL_UNUSED_ARG(value);
+
+    if (!PL_localizing)
+        Perl_croak_no_modify();
+}
+
+I32
+Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
+                              const I32 paren)
+{
+    struct regexp *const rx = ReANY(r);
+    I32 i;
+    I32 s1, t1;
+
+    PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
+
+    if (   paren == RX_BUFF_IDX_CARET_PREMATCH
+        || paren == RX_BUFF_IDX_CARET_FULLMATCH
+        || paren == RX_BUFF_IDX_CARET_POSTMATCH
+    )
+    {
+        bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
+        if (!keepcopy) {
+            /* on something like
+             *    $r = qr/.../;
+             *    /$qr/p;
+             * the KEEPCOPY is set on the PMOP rather than the regex */
+            if (PL_curpm && r == PM_GETRE(PL_curpm))
+                 keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
+        }
+        if (!keepcopy)
+            goto warn_undef;
+    }
+
+    /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
+    switch (paren) {
+      case RX_BUFF_IDX_CARET_PREMATCH: /* ${^PREMATCH} */
+      case RX_BUFF_IDX_PREMATCH:       /* $` */
+        if (rx->offs[0].start != -1) {
+                       i = rx->offs[0].start;
+                       if (i > 0) {
+                               s1 = 0;
+                               t1 = i;
+                               goto getlen;
+                       }
+           }
+        return 0;
+
+      case RX_BUFF_IDX_CARET_POSTMATCH: /* ${^POSTMATCH} */
+      case RX_BUFF_IDX_POSTMATCH:       /* $' */
+           if (rx->offs[0].end != -1) {
+                       i = rx->sublen - rx->offs[0].end;
+                       if (i > 0) {
+                               s1 = rx->offs[0].end;
+                               t1 = rx->sublen;
+                               goto getlen;
+                       }
+           }
+        return 0;
+
+      default: /* $& / ${^MATCH}, $1, $2, ... */
+           if (paren <= (I32)rx->nparens &&
+            (s1 = rx->offs[paren].start) != -1 &&
+            (t1 = rx->offs[paren].end) != -1)
+           {
+            i = t1 - s1;
+            goto getlen;
+        } else {
+          warn_undef:
+            if (ckWARN(WARN_UNINITIALIZED))
+                report_uninit((const SV *)sv);
+            return 0;
+        }
+    }
+  getlen:
+    if (i > 0 && RXp_MATCH_UTF8(rx)) {
+        const char * const s = rx->subbeg - rx->suboffset + s1;
+        const U8 *ep;
+        STRLEN el;
+
+        i = t1 - s1;
+        if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
+                       i = el;
+    }
+    return i;
+}
+
+SV*
+Perl_reg_qr_package(pTHX_ REGEXP * const rx)
+{
+    PERL_ARGS_ASSERT_REG_QR_PACKAGE;
+       PERL_UNUSED_ARG(rx);
+       if (0)
+           return NULL;
+       else
+           return newSVpvs("Regexp");
+}
+
+/* Scans the name of a named buffer from the pattern.
+ * If flags is REG_RSN_RETURN_NULL returns null.
+ * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
+ * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
+ * to the parsed name as looked up in the RExC_paren_names hash.
+ * If there is an error throws a vFAIL().. type exception.
+ */
+
+#define REG_RSN_RETURN_NULL    0
+#define REG_RSN_RETURN_NAME    1
+#define REG_RSN_RETURN_DATA    2
+
+STATIC SV*
+S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
+{
+    char *name_start = RExC_parse;
+
+    PERL_ARGS_ASSERT_REG_SCAN_NAME;
+
+    assert (RExC_parse <= RExC_end);
+    if (RExC_parse == RExC_end) NOOP;
+    else if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
+        /* skip IDFIRST by using do...while */
+       if (UTF)
+           do {
+               RExC_parse += UTF8SKIP(RExC_parse);
+           } while (isWORDCHAR_utf8((U8*)RExC_parse));
+       else
+           do {
+               RExC_parse++;
+           } while (isWORDCHAR(*RExC_parse));
+    } else {
+        RExC_parse++; /* so the <- from the vFAIL is after the offending
+                         character */
+        vFAIL("Group name must start with a non-digit word character");
+    }
+    if ( flags ) {
+        SV* sv_name
+           = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
+                            SVs_TEMP | (UTF ? SVf_UTF8 : 0));
+        if ( flags == REG_RSN_RETURN_NAME)
+            return sv_name;
+        else if (flags==REG_RSN_RETURN_DATA) {
+            HE *he_str = NULL;
+            SV *sv_dat = NULL;
+            if ( ! sv_name )      /* should not happen*/
+                Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
+            if (RExC_paren_names)
+                he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
+            if ( he_str )
+                sv_dat = HeVAL(he_str);
+            if ( ! sv_dat )
+                vFAIL("Reference to nonexistent named group");
+            return sv_dat;
+        }
+        else {
+            Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name",
+                      (unsigned long) flags);
+        }
+        NOT_REACHED; /* NOTREACHED */
+    }
+    return NULL;
+}
+
+#define DEBUG_PARSE_MSG(funcname)     DEBUG_PARSE_r({           \
+    int num;                                                    \
+    if (RExC_lastparse!=RExC_parse) {                           \
+        PerlIO_printf(Perl_debug_log, "%s",                     \
+            Perl_pv_pretty(aTHX_ RExC_mysv1, RExC_parse,        \
+                RExC_end - RExC_parse, 16,                      \
+                "", "",                                         \
+                PERL_PV_ESCAPE_UNI_DETECT |                     \
+                PERL_PV_PRETTY_ELLIPSES   |                     \
+                PERL_PV_PRETTY_LTGT       |                     \
+                PERL_PV_ESCAPE_RE         |                     \
+                PERL_PV_PRETTY_EXACTSIZE                        \
+            )                                                   \
+        );                                                      \
+    } else                                                      \
+        PerlIO_printf(Perl_debug_log,"%16s","");                \
+                                                                \
+    if (SIZE_ONLY)                                              \
+       num = RExC_size + 1;                                     \
+    else                                                        \
+       num=REG_NODE_NUM(RExC_emit);                             \
+    if (RExC_lastnum!=num)                                      \
+       PerlIO_printf(Perl_debug_log,"|%4d",num);                \
+    else                                                        \
+       PerlIO_printf(Perl_debug_log,"|%4s","");                 \
+    PerlIO_printf(Perl_debug_log,"|%*s%-4s",                    \
+        (int)((depth*2)), "",                                   \
+        (funcname)                                              \
+    );                                                          \
+    RExC_lastnum=num;                                           \
+    RExC_lastparse=RExC_parse;                                  \
+})
+
+
+
+#define DEBUG_PARSE(funcname)     DEBUG_PARSE_r({           \
+    DEBUG_PARSE_MSG((funcname));                            \
+    PerlIO_printf(Perl_debug_log,"%4s","\n");               \
+})
+#define DEBUG_PARSE_FMT(funcname,fmt,args)     DEBUG_PARSE_r({           \
+    DEBUG_PARSE_MSG((funcname));                            \
+    PerlIO_printf(Perl_debug_log,fmt "\n",args);               \
+})
+
+/* This section of code defines the inversion list object and its methods.  The
+ * interfaces are highly subject to change, so as much as possible is static to
+ * this file.  An inversion list is here implemented as a malloc'd C UV array
+ * as an SVt_INVLIST scalar.
+ *
+ * An inversion list for Unicode is an array of code points, sorted by ordinal
+ * number.  The zeroth element is the first code point in the list.  The 1th
+ * element is the first element beyond that not in the list.  In other words,
+ * the first range is
+ *  invlist[0]..(invlist[1]-1)
+ * The other ranges follow.  Thus every element whose index is divisible by two
+ * marks the beginning of a range that is in the list, and every element not
+ * divisible by two marks the beginning of a range not in the list.  A single
+ * element inversion list that contains the single code point N generally
+ * consists of two elements
+ *  invlist[0] == N
+ *  invlist[1] == N+1
+ * (The exception is when N is the highest representable value on the
+ * machine, in which case the list containing just it would be a single
+ * element, itself.  By extension, if the last range in the list extends to
+ * infinity, then the first element of that range will be in the inversion list
+ * at a position that is divisible by two, and is the final element in the
+ * list.)
+ * Taking the complement (inverting) an inversion list is quite simple, if the
+ * first element is 0, remove it; otherwise add a 0 element at the beginning.
+ * This implementation reserves an element at the beginning of each inversion
+ * list to always contain 0; there is an additional flag in the header which
+ * indicates if the list begins at the 0, or is offset to begin at the next
+ * element.
+ *
+ * More about inversion lists can be found in "Unicode Demystified"
+ * Chapter 13 by Richard Gillam, published by Addison-Wesley.
+ * More will be coming when functionality is added later.
+ *
+ * The inversion list data structure is currently implemented as an SV pointing
+ * to an array of UVs that the SV thinks are bytes.  This allows us to have an
+ * array of UV whose memory management is automatically handled by the existing
+ * facilities for SV's.
+ *
+ * Some of the methods should always be private to the implementation, and some
+ * should eventually be made public */
+
+/* The header definitions are in F<inline_invlist.c> */
+
+PERL_STATIC_INLINE UV*
+S__invlist_array_init(SV* const invlist, const bool will_have_0)
+{
+    /* Returns a pointer to the first element in the inversion list's array.
+     * This is called upon initialization of an inversion list.  Where the
+     * array begins depends on whether the list has the code point U+0000 in it
+     * or not.  The other parameter tells it whether the code that follows this
+     * call is about to put a 0 in the inversion list or not.  The first
+     * element is either the element reserved for 0, if TRUE, or the element
+     * after it, if FALSE */
+
+    bool* offset = get_invlist_offset_addr(invlist);
+    UV* zero_addr = (UV *) SvPVX(invlist);
+
+    PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
+
+    /* Must be empty */
+    assert(! _invlist_len(invlist));
+
+    *zero_addr = 0;
+
+    /* 1^1 = 0; 1^0 = 1 */
+    *offset = 1 ^ will_have_0;
+    return zero_addr + *offset;
+}
+
+PERL_STATIC_INLINE void
+S_invlist_set_len(pTHX_ SV* const invlist, const UV len, const bool offset)
+{
+    /* Sets the current number of elements stored in the inversion list.
+     * Updates SvCUR correspondingly */
+    PERL_UNUSED_CONTEXT;
+    PERL_ARGS_ASSERT_INVLIST_SET_LEN;
+
+    assert(SvTYPE(invlist) == SVt_INVLIST);
+
+    SvCUR_set(invlist,
+              (len == 0)
+               ? 0
+               : TO_INTERNAL_SIZE(len + offset));
+    assert(SvLEN(invlist) == 0 || SvCUR(invlist) <= SvLEN(invlist));
+}
+
+#ifndef PERL_IN_XSUB_RE
+
+PERL_STATIC_INLINE IV*
+S_get_invlist_previous_index_addr(SV* invlist)
+{
+    /* Return the address of the IV that is reserved to hold the cached index
+     * */
+    PERL_ARGS_ASSERT_GET_INVLIST_PREVIOUS_INDEX_ADDR;
+
+    assert(SvTYPE(invlist) == SVt_INVLIST);
+
+    return &(((XINVLIST*) SvANY(invlist))->prev_index);
+}
+
+PERL_STATIC_INLINE IV
+S_invlist_previous_index(SV* const invlist)
+{
+    /* Returns cached index of previous search */
+
+    PERL_ARGS_ASSERT_INVLIST_PREVIOUS_INDEX;
+
+    return *get_invlist_previous_index_addr(invlist);
+}
+
+PERL_STATIC_INLINE void
+S_invlist_set_previous_index(SV* const invlist, const IV index)
+{
+    /* Caches <index> for later retrieval */
+
+    PERL_ARGS_ASSERT_INVLIST_SET_PREVIOUS_INDEX;
+
+    assert(index == 0 || index < (int) _invlist_len(invlist));
+
+    *get_invlist_previous_index_addr(invlist) = index;
+}
+
+PERL_STATIC_INLINE void
+S_invlist_trim(SV* const invlist)
+{
+    PERL_ARGS_ASSERT_INVLIST_TRIM;
+
+    assert(SvTYPE(invlist) == SVt_INVLIST);
+
+    /* Change the length of the inversion list to how many entries it currently
+     * has */
+    SvPV_shrink_to_cur((SV *) invlist);
+}
+
+PERL_STATIC_INLINE bool
+S_invlist_is_iterating(SV* const invlist)
+{
+    PERL_ARGS_ASSERT_INVLIST_IS_ITERATING;
+
+    return *(get_invlist_iter_addr(invlist)) < (STRLEN) UV_MAX;
+}
+
+#endif /* ifndef PERL_IN_XSUB_RE */
+
+PERL_STATIC_INLINE UV
+S_invlist_max(SV* const invlist)
+{
+    /* Returns the maximum number of elements storable in the inversion list's
+     * array, without having to realloc() */
+
+    PERL_ARGS_ASSERT_INVLIST_MAX;
+
+    assert(SvTYPE(invlist) == SVt_INVLIST);
+
+    /* Assumes worst case, in which the 0 element is not counted in the
+     * inversion list, so subtracts 1 for that */
+    return SvLEN(invlist) == 0  /* This happens under _new_invlist_C_array */
+           ? FROM_INTERNAL_SIZE(SvCUR(invlist)) - 1
+           : FROM_INTERNAL_SIZE(SvLEN(invlist)) - 1;
+}
+
+#ifndef PERL_IN_XSUB_RE
+SV*
+Perl__new_invlist(pTHX_ IV initial_size)
+{
+
+    /* Return a pointer to a newly constructed inversion list, with enough
+     * space to store 'initial_size' elements.  If that number is negative, a
+     * system default is used instead */
+
+    SV* new_list;
+
+    if (initial_size < 0) {
+       initial_size = 10;
+    }
+
+    /* Allocate the initial space */
+    new_list = newSV_type(SVt_INVLIST);
+
+    /* First 1 is in case the zero element isn't in the list; second 1 is for
+     * trailing NUL */
+    SvGROW(new_list, TO_INTERNAL_SIZE(initial_size + 1) + 1);
+    invlist_set_len(new_list, 0, 0);
+
+    /* Force iterinit() to be used to get iteration to work */
+    *get_invlist_iter_addr(new_list) = (STRLEN) UV_MAX;
+
+    *get_invlist_previous_index_addr(new_list) = 0;
+
+    return new_list;
+}
+
+SV*
+Perl__new_invlist_C_array(pTHX_ const UV* const list)
+{
+    /* Return a pointer to a newly constructed inversion list, initialized to
+     * point to <list>, which has to be in the exact correct inversion list
+     * form, including internal fields.  Thus this is a dangerous routine that
+     * should not be used in the wrong hands.  The passed in 'list' contains
+     * several header fields at the beginning that are not part of the
+     * inversion list body proper */
+
+    const STRLEN length = (STRLEN) list[0];
+    const UV version_id =          list[1];
+    const bool offset   =    cBOOL(list[2]);
+#define HEADER_LENGTH 3
+    /* If any of the above changes in any way, you must change HEADER_LENGTH
+     * (if appropriate) and regenerate INVLIST_VERSION_ID by running
+     *      perl -E 'say int(rand 2**31-1)'
+     */
+#define INVLIST_VERSION_ID 148565664 /* This is a combination of a version and
+                                        data structure type, so that one being
+                                        passed in can be validated to be an
+                                        inversion list of the correct vintage.
+                                       */
+
+    SV* invlist = newSV_type(SVt_INVLIST);
+
+    PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY;
+
+    if (version_id != INVLIST_VERSION_ID) {
+        Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list");
+    }
+
+    /* The generated array passed in includes header elements that aren't part
+     * of the list proper, so start it just after them */
+    SvPV_set(invlist, (char *) (list + HEADER_LENGTH));
+
+    SvLEN_set(invlist, 0);  /* Means we own the contents, and the system
+                              shouldn't touch it */
+
+    *(get_invlist_offset_addr(invlist)) = offset;
+
+    /* The 'length' passed to us is the physical number of elements in the
+     * inversion list.  But if there is an offset the logical number is one
+     * less than that */
+    invlist_set_len(invlist, length  - offset, offset);
+
+    invlist_set_previous_index(invlist, 0);
+
+    /* Initialize the iteration pointer. */
+    invlist_iterfinish(invlist);
+
+    SvREADONLY_on(invlist);
+
+    return invlist;
+}
+#endif /* ifndef PERL_IN_XSUB_RE */
+
+STATIC void
+S_invlist_extend(pTHX_ SV* const invlist, const UV new_max)
+{
+    /* Grow the maximum size of an inversion list */
+
+    PERL_ARGS_ASSERT_INVLIST_EXTEND;
+
+    assert(SvTYPE(invlist) == SVt_INVLIST);
+
+    /* Add one to account for the zero element at the beginning which may not
+     * be counted by the calling parameters */
+    SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max + 1));
+}
+
+STATIC void
+S__append_range_to_invlist(pTHX_ SV* const invlist,
+                                 const UV start, const UV end)
+{
+   /* Subject to change or removal.  Append the range from 'start' to 'end' at
+    * the end of the inversion list.  The range must be above any existing
+    * ones. */
+
+    UV* array;
+    UV max = invlist_max(invlist);
+    UV len = _invlist_len(invlist);
+    bool offset;
+
+    PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
+
+    if (len == 0) { /* Empty lists must be initialized */
+        offset = start != 0;
+        array = _invlist_array_init(invlist, ! offset);
+    }
+    else {
+       /* Here, the existing list is non-empty. The current max entry in the
+        * list is generally the first value not in the set, except when the
+        * set extends to the end of permissible values, in which case it is
+        * the first entry in that final set, and so this call is an attempt to
+        * append out-of-order */
+
+       UV final_element = len - 1;
+       array = invlist_array(invlist);
+       if (array[final_element] > start
+           || ELEMENT_RANGE_MATCHES_INVLIST(final_element))
+       {
+           Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%"UVuf", start=%"UVuf", match=%c",
+                    array[final_element], start,
+                    ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f');
+       }
+
+       /* Here, it is a legal append.  If the new range begins with the first
+        * value not in the set, it is extending the set, so the new first
+        * value not in the set is one greater than the newly extended range.
+        * */
+        offset = *get_invlist_offset_addr(invlist);
+       if (array[final_element] == start) {
+           if (end != UV_MAX) {
+               array[final_element] = end + 1;
+           }
+           else {
+               /* But if the end is the maximum representable on the machine,
+                * just let the range that this would extend to have no end */
+               invlist_set_len(invlist, len - 1, offset);
+           }
+           return;
+       }
+    }
+
+    /* Here the new range doesn't extend any existing set.  Add it */
+
+    len += 2;  /* Includes an element each for the start and end of range */
+
+    /* If wll overflow the existing space, extend, which may cause the array to
+     * be moved */
+    if (max < len) {
+       invlist_extend(invlist, len);
+
+        /* Have to set len here to avoid assert failure in invlist_array() */
+        invlist_set_len(invlist, len, offset);
+
+       array = invlist_array(invlist);
+    }
+    else {
+       invlist_set_len(invlist, len, offset);
+    }
+
+    /* The next item on the list starts the range, the one after that is
+     * one past the new range.  */
+    array[len - 2] = start;
+    if (end != UV_MAX) {
+       array[len - 1] = end + 1;
+    }
+    else {
+       /* But if the end is the maximum representable on the machine, just let
+        * the range have no end */
+       invlist_set_len(invlist, len - 1, offset);
+    }
+}
+
+#ifndef PERL_IN_XSUB_RE
+
+IV
+Perl__invlist_search(SV* const invlist, const UV cp)
+{
+    /* Searches the inversion list for the entry that contains the input code
+     * point <cp>.  If <cp> is not in the list, -1 is returned.  Otherwise, the
+     * return value is the index into the list's array of the range that
+     * contains <cp> */
+
+    IV low = 0;
+    IV mid;
+    IV high = _invlist_len(invlist);
+    const IV highest_element = high - 1;
+    const UV* array;
+
+    PERL_ARGS_ASSERT__INVLIST_SEARCH;
+
+    /* If list is empty, return failure. */
+    if (high == 0) {
+       return -1;
+    }
+
+    /* (We can't get the array unless we know the list is non-empty) */
+    array = invlist_array(invlist);
+
+    mid = invlist_previous_index(invlist);
+    assert(mid >=0 && mid <= highest_element);
+
+    /* <mid> contains the cache of the result of the previous call to this
+     * function (0 the first time).  See if this call is for the same result,
+     * or if it is for mid-1.  This is under the theory that calls to this
+     * function will often be for related code points that are near each other.
+     * And benchmarks show that caching gives better results.  We also test
+     * here if the code point is within the bounds of the list.  These tests
+     * replace others that would have had to be made anyway to make sure that
+     * the array bounds were not exceeded, and these give us extra information
+     * at the same time */
+    if (cp >= array[mid]) {
+        if (cp >= array[highest_element]) {
+            return highest_element;
+        }
+
+        /* Here, array[mid] <= cp < array[highest_element].  This means that
+         * the final element is not the answer, so can exclude it; it also
+         * means that <mid> is not the final element, so can refer to 'mid + 1'
+         * safely */
+        if (cp < array[mid + 1]) {
+            return mid;
+        }
+        high--;
+        low = mid + 1;
+    }
+    else { /* cp < aray[mid] */
+        if (cp < array[0]) { /* Fail if outside the array */
+            return -1;
+        }
+        high = mid;
+        if (cp >= array[mid - 1]) {
+            goto found_entry;
+        }
+    }
+
+    /* Binary search.  What we are looking for is <i> such that
+     * array[i] <= cp < array[i+1]
+     * The loop below converges on the i+1.  Note that there may not be an
+     * (i+1)th element in the array, and things work nonetheless */
+    while (low < high) {
+       mid = (low + high) / 2;
+        assert(mid <= highest_element);
+       if (array[mid] <= cp) { /* cp >= array[mid] */
+           low = mid + 1;
+
+           /* We could do this extra test to exit the loop early.
+           if (cp < array[low]) {
+               return mid;
+           }
+           */
+       }
+       else { /* cp < array[mid] */
+           high = mid;
+       }
+    }
+
+  found_entry:
+    high--;
+    invlist_set_previous_index(invlist, high);
+    return high;
+}
+
+void
+Perl__invlist_populate_swatch(SV* const invlist,
+                              const UV start, const UV end, U8* swatch)
+{
+    /* populates a swatch of a swash the same way swatch_get() does in utf8.c,
+     * but is used when the swash has an inversion list.  This makes this much
+     * faster, as it uses a binary search instead of a linear one.  This is
+     * intimately tied to that function, and perhaps should be in utf8.c,
+     * except it is intimately tied to inversion lists as well.  It assumes
+     * that <swatch> is all 0's on input */
+
+    UV current = start;
+    const IV len = _invlist_len(invlist);
+    IV i;
+    const UV * array;
+
+    PERL_ARGS_ASSERT__INVLIST_POPULATE_SWATCH;
+
+    if (len == 0) { /* Empty inversion list */
+        return;
+    }
+
+    array = invlist_array(invlist);
+
+    /* Find which element it is */
+    i = _invlist_search(invlist, start);
+
+    /* We populate from <start> to <end> */
+    while (current < end) {
+        UV upper;
+
+       /* The inversion list gives the results for every possible code point
+        * after the first one in the list.  Only those ranges whose index is
+        * even are ones that the inversion list matches.  For the odd ones,
+        * and if the initial code point is not in the list, we have to skip
+        * forward to the next element */
+        if (i == -1 || ! ELEMENT_RANGE_MATCHES_INVLIST(i)) {
+            i++;
+            if (i >= len) { /* Finished if beyond the end of the array */
+                return;
+            }
+            current = array[i];
+           if (current >= end) {   /* Finished if beyond the end of what we
+                                      are populating */
+                if (LIKELY(end < UV_MAX)) {
+                    return;
+                }
+
+                /* We get here when the upper bound is the maximum
+                 * representable on the machine, and we are looking for just
+                 * that code point.  Have to special case it */
+                i = len;
+                goto join_end_of_list;
+            }
+        }
+        assert(current >= start);
+
+       /* The current range ends one below the next one, except don't go past
+        * <end> */
+        i++;
+        upper = (i < len && array[i] < end) ? array[i] : end;
+
+       /* Here we are in a range that matches.  Populate a bit in the 3-bit U8
+        * for each code point in it */
+        for (; current < upper; current++) {
+            const STRLEN offset = (STRLEN)(current - start);
+            swatch[offset >> 3] |= 1 << (offset & 7);
+        }
+
+      join_end_of_list:
+
+       /* Quit if at the end of the list */
+        if (i >= len) {
+
+           /* But first, have to deal with the highest possible code point on
+            * the platform.  The previous code assumes that <end> is one
+            * beyond where we want to populate, but that is impossible at the
+            * platform's infinity, so have to handle it specially */
+            if (UNLIKELY(end == UV_MAX && ELEMENT_RANGE_MATCHES_INVLIST(len-1)))
+           {
+                const STRLEN offset = (STRLEN)(end - start);
+                swatch[offset >> 3] |= 1 << (offset & 7);
+            }
+            return;
+        }
+
+       /* Advance to the next range, which will be for code points not in the
+        * inversion list */
+        current = array[i];
+    }
+
+    return;
+}
+
+void
+Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b,
+                                         const bool complement_b, SV** output)
+{
+    /* Take the union of two inversion lists and point <output> to it.  *output
+     * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
+     * the reference count to that list will be decremented if not already a
+     * temporary (mortal); otherwise *output will be made correspondingly
+     * mortal.  The first list, <a>, may be NULL, in which case a copy of the
+     * second list is returned.  If <complement_b> is TRUE, the union is taken
+     * of the complement (inversion) of <b> instead of b itself.
+     *
+     * The basis for this comes from "Unicode Demystified" Chapter 13 by
+     * Richard Gillam, published by Addison-Wesley, and explained at some
+     * length there.  The preface says to incorporate its examples into your
+     * code at your own risk.
+     *
+     * The algorithm is like a merge sort.
+     *
+     * XXX A potential performance improvement is to keep track as we go along
+     * if only one of the inputs contributes to the result, meaning the other
+     * is a subset of that one.  In that case, we can skip the final copy and
+     * return the larger of the input lists, but then outside code might need
+     * to keep track of whether to free the input list or not */
+
+    const UV* array_a;    /* a's array */
+    const UV* array_b;
+    UV len_a;      /* length of a's array */
+    UV len_b;
+
+    SV* u;                     /* the resulting union */
+    UV* array_u;
+    UV len_u;
+
+    UV i_a = 0;                    /* current index into a's array */
+    UV i_b = 0;
+    UV i_u = 0;
+
+    /* running count, as explained in the algorithm source book; items are
+     * stopped accumulating and are output when the count changes to/from 0.
+     * The count is incremented when we start a range that's in the set, and
+     * decremented when we start a range that's not in the set.  So its range
+     * is 0 to 2.  Only when the count is zero is something not in the set.
+     */
+    UV count = 0;
+
+    PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND;
+    assert(a != b);
+
+    /* If either one is empty, the union is the other one */
+    if (a == NULL || ((len_a = _invlist_len(a)) == 0)) {
+        bool make_temp = FALSE; /* Should we mortalize the result? */
+
+       if (*output == a) {
+            if (a != NULL) {
+                if (! (make_temp = cBOOL(SvTEMP(a)))) {
+                    SvREFCNT_dec_NN(a);
+                }
+            }
+       }
+       if (*output != b) {
+           *output = invlist_clone(b);
+            if (complement_b) {
+                _invlist_invert(*output);
+            }
+       } /* else *output already = b; */
+
+        if (make_temp) {
+            sv_2mortal(*output);
+        }
+       return;
+    }
+    else if ((len_b = _invlist_len(b)) == 0) {
+        bool make_temp = FALSE;
+       if (*output == b) {
+            if (! (make_temp = cBOOL(SvTEMP(b)))) {
+                SvREFCNT_dec_NN(b);
+            }
+       }
+
+        /* The complement of an empty list is a list that has everything in it,
+         * so the union with <a> includes everything too */
+        if (complement_b) {
+            if (a == *output) {
+                if (! (make_temp = cBOOL(SvTEMP(a)))) {
+                    SvREFCNT_dec_NN(a);
+                }
+            }
+            *output = _new_invlist(1);
+            _append_range_to_invlist(*output, 0, UV_MAX);
+        }
+        else if (*output != a) {
+            *output = invlist_clone(a);
+        }
+        /* else *output already = a; */
+
+        if (make_temp) {
+            sv_2mortal(*output);
+        }
+       return;
+    }
+
+    /* Here both lists exist and are non-empty */
+    array_a = invlist_array(a);
+    array_b = invlist_array(b);
+
+    /* If are to take the union of 'a' with the complement of b, set it
+     * up so are looking at b's complement. */
+    if (complement_b) {
+
+       /* To complement, we invert: if the first element is 0, remove it.  To
+        * do this, we just pretend the array starts one later */
+        if (array_b[0] == 0) {
+            array_b++;
+            len_b--;
+        }
+        else {
+
+            /* But if the first element is not zero, we pretend the list starts
+             * at the 0 that is always stored immediately before the array. */
+            array_b--;
+            len_b++;
+        }
+    }
+
+    /* Size the union for the worst case: that the sets are completely
+     * disjoint */
+    u = _new_invlist(len_a + len_b);
+
+    /* Will contain U+0000 if either component does */
+    array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0)
+                                     || (len_b > 0 && array_b[0] == 0));
+
+    /* Go through each list item by item, stopping when exhausted one of
+     * them */
+    while (i_a < len_a && i_b < len_b) {
+       UV cp;      /* The element to potentially add to the union's array */
+       bool cp_in_set;   /* is it in the the input list's set or not */
+
+       /* We need to take one or the other of the two inputs for the union.
+        * Since we are merging two sorted lists, we take the smaller of the
+        * next items.  In case of a tie, we take the one that is in its set
+        * first.  If we took one not in the set first, it would decrement the
+        * count, possibly to 0 which would cause it to be output as ending the
+        * range, and the next time through we would take the same number, and
+        * output it again as beginning the next range.  By doing it the
+        * opposite way, there is no possibility that the count will be
+        * momentarily decremented to 0, and thus the two adjoining ranges will
+        * be seamlessly merged.  (In a tie and both are in the set or both not
+        * in the set, it doesn't matter which we take first.) */
+       if (array_a[i_a] < array_b[i_b]
+           || (array_a[i_a] == array_b[i_b]
+               && ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
+       {
+           cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
+           cp= array_a[i_a++];
+       }
+       else {
+           cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
+           cp = array_b[i_b++];
+       }
+
+       /* Here, have chosen which of the two inputs to look at.  Only output
+        * if the running count changes to/from 0, which marks the
+        * beginning/end of a range in that's in the set */
+       if (cp_in_set) {
+           if (count == 0) {
+               array_u[i_u++] = cp;
+           }
+           count++;
+       }
+       else {
+           count--;
+           if (count == 0) {
+               array_u[i_u++] = cp;
+           }
+       }
+    }
+
+    /* Here, we are finished going through at least one of the lists, which
+     * means there is something remaining in at most one.  We check if the list
+     * that hasn't been exhausted is positioned such that we are in the middle
+     * of a range in its set or not.  (i_a and i_b point to the element beyond
+     * the one we care about.) If in the set, we decrement 'count'; if 0, there
+     * is potentially more to output.
+     * There are four cases:
+     * 1) Both weren't in their sets, count is 0, and remains 0.  What's left
+     *    in the union is entirely from the non-exhausted set.
+     * 2) Both were in their sets, count is 2.  Nothing further should
+     *    be output, as everything that remains will be in the exhausted
+     *    list's set, hence in the union; decrementing to 1 but not 0 insures
+     *    that
+     * 3) the exhausted was in its set, non-exhausted isn't, count is 1.
+     *    Nothing further should be output because the union includes
+     *    everything from the exhausted set.  Not decrementing ensures that.
+     * 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
+     *    decrementing to 0 insures that we look at the remainder of the
+     *    non-exhausted set */
+    if ((i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
+       || (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
+    {
+       count--;
+    }
+
+    /* The final length is what we've output so far, plus what else is about to
+     * be output.  (If 'count' is non-zero, then the input list we exhausted
+     * has everything remaining up to the machine's limit in its set, and hence
+     * in the union, so there will be no further output. */
+    len_u = i_u;
+    if (count == 0) {
+       /* At most one of the subexpressions will be non-zero */
+       len_u += (len_a - i_a) + (len_b - i_b);
+    }
+
+    /* Set result to final length, which can change the pointer to array_u, so
+     * re-find it */
+    if (len_u != _invlist_len(u)) {
+       invlist_set_len(u, len_u, *get_invlist_offset_addr(u));
+       invlist_trim(u);
+       array_u = invlist_array(u);
+    }
+
+    /* When 'count' is 0, the list that was exhausted (if one was shorter than
+     * the other) ended with everything above it not in its set.  That means
+     * that the remaining part of the union is precisely the same as the
+     * non-exhausted list, so can just copy it unchanged.  (If both list were
+     * exhausted at the same time, then the operations below will be both 0.)
+     */
+    if (count == 0) {
+       IV copy_count; /* At most one will have a non-zero copy count */
+       if ((copy_count = len_a - i_a) > 0) {
+           Copy(array_a + i_a, array_u + i_u, copy_count, UV);
+       }
+       else if ((copy_count = len_b - i_b) > 0) {
+           Copy(array_b + i_b, array_u + i_u, copy_count, UV);
+       }
+    }
+
+    /*  We may be removing a reference to one of the inputs.  If so, the output
+     *  is made mortal if the input was.  (Mortal SVs shouldn't have their ref
+     *  count decremented) */
+    if (a == *output || b == *output) {
+        assert(! invlist_is_iterating(*output));
+        if ((SvTEMP(*output))) {
+            sv_2mortal(u);
+        }
+        else {
+            SvREFCNT_dec_NN(*output);
+        }
+    }
+
+    *output = u;
+
+    return;
+}
+
+void
+Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b,
+                                               const bool complement_b, SV** i)
+{
+    /* Take the intersection of two inversion lists and point <i> to it.  *i
+     * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
+     * the reference count to that list will be decremented if not already a
+     * temporary (mortal); otherwise *i will be made correspondingly mortal.
+     * The first list, <a>, may be NULL, in which case an empty list is
+     * returned.  If <complement_b> is TRUE, the result will be the
+     * intersection of <a> and the complement (or inversion) of <b> instead of
+     * <b> directly.
+     *
+     * The basis for this comes from "Unicode Demystified" Chapter 13 by
+     * Richard Gillam, published by Addison-Wesley, and explained at some
+     * length there.  The preface says to incorporate its examples into your
+     * code at your own risk.  In fact, it had bugs
+     *
+     * The algorithm is like a merge sort, and is essentially the same as the
+     * union above
+     */
+
+    const UV* array_a;         /* a's array */
+    const UV* array_b;
+    UV len_a;  /* length of a's array */
+    UV len_b;
+
+    SV* r;                  /* the resulting intersection */
+    UV* array_r;
+    UV len_r;
+
+    UV i_a = 0;                    /* current index into a's array */
+    UV i_b = 0;
+    UV i_r = 0;
+
+    /* running count, as explained in the algorithm source book; items are
+     * stopped accumulating and are output when the count changes to/from 2.
+     * The count is incremented when we start a range that's in the set, and
+     * decremented when we start a range that's not in the set.  So its range
+     * is 0 to 2.  Only when the count is 2 is something in the intersection.
+     */
+    UV count = 0;
+
+    PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND;
+    assert(a != b);
+
+    /* Special case if either one is empty */
+    len_a = (a == NULL) ? 0 : _invlist_len(a);
+    if ((len_a == 0) || ((len_b = _invlist_len(b)) == 0)) {
+        bool make_temp = FALSE;
+
+        if (len_a != 0 && complement_b) {
+
+            /* Here, 'a' is not empty, therefore from the above 'if', 'b' must
+             * be empty.  Here, also we are using 'b's complement, which hence
+             * must be every possible code point.  Thus the intersection is
+             * simply 'a'. */
+            if (*i != a) {
+                if (*i == b) {
+                    if (! (make_temp = cBOOL(SvTEMP(b)))) {
+                        SvREFCNT_dec_NN(b);
+                    }
+                }
+
+                *i = invlist_clone(a);
+            }
+            /* else *i is already 'a' */
+
+            if (make_temp) {
+                sv_2mortal(*i);
+            }
+            return;
+        }
+
+        /* Here, 'a' or 'b' is empty and not using the complement of 'b'.  The
+         * intersection must be empty */
+       if (*i == a) {
+            if (! (make_temp = cBOOL(SvTEMP(a)))) {
+                SvREFCNT_dec_NN(a);
+            }
+       }
+       else if (*i == b) {
+            if (! (make_temp = cBOOL(SvTEMP(b)))) {
+                SvREFCNT_dec_NN(b);
+            }
+       }
+       *i = _new_invlist(0);
+        if (make_temp) {
+            sv_2mortal(*i);
+        }
+
+       return;
+    }
+
+    /* Here both lists exist and are non-empty */
+    array_a = invlist_array(a);
+    array_b = invlist_array(b);
+
+    /* If are to take the intersection of 'a' with the complement of b, set it
+     * up so are looking at b's complement. */
+    if (complement_b) {
+
+       /* To complement, we invert: if the first element is 0, remove it.  To
+        * do this, we just pretend the array starts one later */
+        if (array_b[0] == 0) {
+            array_b++;
+            len_b--;
+        }
+        else {
+
+            /* But if the first element is not zero, we pretend the list starts
+             * at the 0 that is always stored immediately before the array. */
+            array_b--;
+            len_b++;
+        }
+    }
+
+    /* Size the intersection for the worst case: that the intersection ends up
+     * fragmenting everything to be completely disjoint */
+    r= _new_invlist(len_a + len_b);
+
+    /* Will contain U+0000 iff both components do */
+    array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0
+                                    && len_b > 0 && array_b[0] == 0);
+
+    /* Go through each list item by item, stopping when exhausted one of
+     * them */
+    while (i_a < len_a && i_b < len_b) {
+       UV cp;      /* The element to potentially add to the intersection's
+                      array */
+       bool cp_in_set; /* Is it in the input list's set or not */
+
+       /* We need to take one or the other of the two inputs for the
+        * intersection.  Since we are merging two sorted lists, we take the
+        * smaller of the next items.  In case of a tie, we take the one that
+        * is not in its set first (a difference from the union algorithm).  If
+        * we took one in the set first, it would increment the count, possibly
+        * to 2 which would cause it to be output as starting a range in the
+        * intersection, and the next time through we would take that same
+        * number, and output it again as ending the set.  By doing it the
+        * opposite of this, there is no possibility that the count will be
+        * momentarily incremented to 2.  (In a tie and both are in the set or
+        * both not in the set, it doesn't matter which we take first.) */
+       if (array_a[i_a] < array_b[i_b]
+           || (array_a[i_a] == array_b[i_b]
+               && ! ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
+       {
+           cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
+           cp= array_a[i_a++];
+       }
+       else {
+           cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
+           cp= array_b[i_b++];
+       }
+
+       /* Here, have chosen which of the two inputs to look at.  Only output
+        * if the running count changes to/from 2, which marks the
+        * beginning/end of a range that's in the intersection */
+       if (cp_in_set) {
+           count++;
+           if (count == 2) {
+               array_r[i_r++] = cp;
+           }
+       }
+       else {
+           if (count == 2) {
+               array_r[i_r++] = cp;
+           }
+           count--;
+       }
+    }
+
+    /* Here, we are finished going through at least one of the lists, which
+     * means there is something remaining in at most one.  We check if the list
+     * that has been exhausted is positioned such that we are in the middle
+     * of a range in its set or not.  (i_a and i_b point to elements 1 beyond
+     * the ones we care about.)  There are four cases:
+     * 1) Both weren't in their sets, count is 0, and remains 0.  There's
+     *    nothing left in the intersection.
+     * 2) Both were in their sets, count is 2 and perhaps is incremented to
+     *    above 2.  What should be output is exactly that which is in the
+     *    non-exhausted set, as everything it has is also in the intersection
+     *    set, and everything it doesn't have can't be in the intersection
+     * 3) The exhausted was in its set, non-exhausted isn't, count is 1, and
+     *    gets incremented to 2.  Like the previous case, the intersection is
+     *    everything that remains in the non-exhausted set.
+     * 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
+     *    remains 1.  And the intersection has nothing more. */
+    if ((i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
+       || (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
+    {
+       count++;
+    }
+
+    /* The final length is what we've output so far plus what else is in the
+     * intersection.  At most one of the subexpressions below will be non-zero
+     * */
+    len_r = i_r;
+    if (count >= 2) {
+       len_r += (len_a - i_a) + (len_b - i_b);
+    }
+
+    /* Set result to final length, which can change the pointer to array_r, so
+     * re-find it */
+    if (len_r != _invlist_len(r)) {
+       invlist_set_len(r, len_r, *get_invlist_offset_addr(r));
+       invlist_trim(r);
+       array_r = invlist_array(r);
+    }
+
+    /* Finish outputting any remaining */
+    if (count >= 2) { /* At most one will have a non-zero copy count */
+       IV copy_count;
+       if ((copy_count = len_a - i_a) > 0) {
+           Copy(array_a + i_a, array_r + i_r, copy_count, UV);
+       }
+       else if ((copy_count = len_b - i_b) > 0) {
+           Copy(array_b + i_b, array_r + i_r, copy_count, UV);
+       }
+    }
+
+    /*  We may be removing a reference to one of the inputs.  If so, the output
+     *  is made mortal if the input was.  (Mortal SVs shouldn't have their ref
+     *  count decremented) */
+    if (a == *i || b == *i) {
+        assert(! invlist_is_iterating(*i));
+        if (SvTEMP(*i)) {
+            sv_2mortal(r);
+        }
+        else {
+            SvREFCNT_dec_NN(*i);
+        }
+    }
+
+    *i = r;
+
+    return;
+}
+
+SV*
+Perl__add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end)
+{
+    /* Add the range from 'start' to 'end' inclusive to the inversion list's
+     * set.  A pointer to the inversion list is returned.  This may actually be
+     * a new list, in which case the passed in one has been destroyed.  The
+     * passed-in inversion list can be NULL, in which case a new one is created
+     * with just the one range in it */
+
+    SV* range_invlist;
+    UV len;
+
+    if (invlist == NULL) {
+       invlist = _new_invlist(2);
+       len = 0;
+    }
+    else {
+       len = _invlist_len(invlist);
+    }
+
+    /* If comes after the final entry actually in the list, can just append it
+     * to the end, */
+    if (len == 0
+       || (! ELEMENT_RANGE_MATCHES_INVLIST(len - 1)
+            && start >= invlist_array(invlist)[len - 1]))
+    {
+       _append_range_to_invlist(invlist, start, end);
+       return invlist;
+    }
+
+    /* Here, can't just append things, create and return a new inversion list
+     * which is the union of this range and the existing inversion list */
+    range_invlist = _new_invlist(2);
+    _append_range_to_invlist(range_invlist, start, end);
+
+    _invlist_union(invlist, range_invlist, &invlist);
+
+    /* The temporary can be freed */
+    SvREFCNT_dec_NN(range_invlist);
+
+    return invlist;
+}
+
+SV*
+Perl__setup_canned_invlist(pTHX_ const STRLEN size, const UV element0,
+                                 UV** other_elements_ptr)
+{
+    /* Create and return an inversion list whose contents are to be populated
+     * by the caller.  The caller gives the number of elements (in 'size') and
+     * the very first element ('element0').  This function will set
+     * '*other_elements_ptr' to an array of UVs, where the remaining elements
+     * are to be placed.
+     *
+     * Obviously there is some trust involved that the caller will properly
+     * fill in the other elements of the array.
+     *
+     * (The first element needs to be passed in, as the underlying code does
+     * things differently depending on whether it is zero or non-zero) */
+
+    SV* invlist = _new_invlist(size);
+    bool offset;
+
+    PERL_ARGS_ASSERT__SETUP_CANNED_INVLIST;
+
+    _append_range_to_invlist(invlist, element0, element0);
+    offset = *get_invlist_offset_addr(invlist);
+
+    invlist_set_len(invlist, size, offset);
+    *other_elements_ptr = invlist_array(invlist) + 1;
+    return invlist;
+}
+
+#endif
+
+PERL_STATIC_INLINE SV*
+S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) {
+    return _add_range_to_invlist(invlist, cp, cp);
+}
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl__invlist_invert(pTHX_ SV* const invlist)
+{
+    /* Complement the input inversion list.  This adds a 0 if the list didn't
+     * have a zero; removes it otherwise.  As described above, the data
+     * structure is set up so that this is very efficient */
+
+    PERL_ARGS_ASSERT__INVLIST_INVERT;
+
+    assert(! invlist_is_iterating(invlist));
+
+    /* The inverse of matching nothing is matching everything */
+    if (_invlist_len(invlist) == 0) {
+       _append_range_to_invlist(invlist, 0, UV_MAX);
+       return;
+    }
+
+    *get_invlist_offset_addr(invlist) = ! *get_invlist_offset_addr(invlist);
+}
+
+#endif
+
+PERL_STATIC_INLINE SV*
+S_invlist_clone(pTHX_ SV* const invlist)
+{
+
+    /* Return a new inversion list that is a copy of the input one, which is
+     * unchanged.  The new list will not be mortal even if the old one was. */
+
+    /* Need to allocate extra space to accommodate Perl's addition of a
+     * trailing NUL to SvPV's, since it thinks they are always strings */
+    SV* new_invlist = _new_invlist(_invlist_len(invlist) + 1);
+    STRLEN physical_length = SvCUR(invlist);
+    bool offset = *(get_invlist_offset_addr(invlist));
+
+    PERL_ARGS_ASSERT_INVLIST_CLONE;
+
+    *(get_invlist_offset_addr(new_invlist)) = offset;
+    invlist_set_len(new_invlist, _invlist_len(invlist), offset);
+    Copy(SvPVX(invlist), SvPVX(new_invlist), physical_length, char);
+
+    return new_invlist;
+}
+
+PERL_STATIC_INLINE STRLEN*
+S_get_invlist_iter_addr(SV* invlist)
+{
+    /* Return the address of the UV that contains the current iteration
+     * position */
+
+    PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR;
+
+    assert(SvTYPE(invlist) == SVt_INVLIST);
+
+    return &(((XINVLIST*) SvANY(invlist))->iterator);
+}
+
+PERL_STATIC_INLINE void
+S_invlist_iterinit(SV* invlist)        /* Initialize iterator for invlist */
+{
+    PERL_ARGS_ASSERT_INVLIST_ITERINIT;
+
+    *get_invlist_iter_addr(invlist) = 0;
+}
+
+PERL_STATIC_INLINE void
+S_invlist_iterfinish(SV* invlist)
+{
+    /* Terminate iterator for invlist.  This is to catch development errors.
+     * Any iteration that is interrupted before completed should call this
+     * function.  Functions that add code points anywhere else but to the end
+     * of an inversion list assert that they are not in the middle of an
+     * iteration.  If they were, the addition would make the iteration
+     * problematical: if the iteration hadn't reached the place where things
+     * were being added, it would be ok */
+
+    PERL_ARGS_ASSERT_INVLIST_ITERFINISH;
+
+    *get_invlist_iter_addr(invlist) = (STRLEN) UV_MAX;
+}
+
+STATIC bool
+S_invlist_iternext(SV* invlist, UV* start, UV* end)
+{
+    /* An C<invlist_iterinit> call on <invlist> must be used to set this up.
+     * This call sets in <*start> and <*end>, the next range in <invlist>.
+     * Returns <TRUE> if successful and the next call will return the next
+     * range; <FALSE> if was already at the end of the list.  If the latter,
+     * <*start> and <*end> are unchanged, and the next call to this function
+     * will start over at the beginning of the list */
+
+    STRLEN* pos = get_invlist_iter_addr(invlist);
+    UV len = _invlist_len(invlist);
+    UV *array;
+
+    PERL_ARGS_ASSERT_INVLIST_ITERNEXT;
+
+    if (*pos >= len) {
+       *pos = (STRLEN) UV_MAX; /* Force iterinit() to be required next time */
+       return FALSE;
+    }
+
+    array = invlist_array(invlist);
+
+    *start = array[(*pos)++];
+
+    if (*pos >= len) {
+       *end = UV_MAX;
+    }
+    else {
+       *end = array[(*pos)++] - 1;
+    }
+
+    return TRUE;
+}
+
+PERL_STATIC_INLINE UV
+S_invlist_highest(SV* const invlist)
+{
+    /* Returns the highest code point that matches an inversion list.  This API
+     * has an ambiguity, as it returns 0 under either the highest is actually
+     * 0, or if the list is empty.  If this distinction matters to you, check
+     * for emptiness before calling this function */
+
+    UV len = _invlist_len(invlist);
+    UV *array;
+
+    PERL_ARGS_ASSERT_INVLIST_HIGHEST;
+
+    if (len == 0) {
+       return 0;
+    }
+
+    array = invlist_array(invlist);
+
+    /* The last element in the array in the inversion list always starts a
+     * range that goes to infinity.  That range may be for code points that are
+     * matched in the inversion list, or it may be for ones that aren't
+     * matched.  In the latter case, the highest code point in the set is one
+     * less than the beginning of this range; otherwise it is the final element
+     * of this range: infinity */
+    return (ELEMENT_RANGE_MATCHES_INVLIST(len - 1))
+           ? UV_MAX
+           : array[len - 1] - 1;
+}
+
+#ifndef PERL_IN_XSUB_RE
+SV *
+Perl__invlist_contents(pTHX_ SV* const invlist)
+{
+    /* Get the contents of an inversion list into a string SV so that they can
+     * be printed out.  It uses the format traditionally done for debug tracing
+     */
+
+    UV start, end;
+    SV* output = newSVpvs("\n");
+
+    PERL_ARGS_ASSERT__INVLIST_CONTENTS;
+
+    assert(! invlist_is_iterating(invlist));
+
+    invlist_iterinit(invlist);
+    while (invlist_iternext(invlist, &start, &end)) {
+       if (end == UV_MAX) {
+           Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\tINFINITY\n", start);
+       }
+       else if (end != start) {
+           Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\t%04"UVXf"\n",
+                   start,       end);
+       }
+       else {
+           Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\n", start);
+       }
+    }
+
+    return output;
+}
+#endif
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl__invlist_dump(pTHX_ PerlIO *file, I32 level,
+                         const char * const indent, SV* const invlist)
+{
+    /* Designed to be called only by do_sv_dump().  Dumps out the ranges of the
+     * inversion list 'invlist' to 'file' at 'level'  Each line is prefixed by
+     * the string 'indent'.  The output looks like this:
+         [0] 0x000A .. 0x000D
+         [2] 0x0085
+         [4] 0x2028 .. 0x2029
+         [6] 0x3104 .. INFINITY
+     * This means that the first range of code points matched by the list are
+     * 0xA through 0xD; the second range contains only the single code point
+     * 0x85, etc.  An inversion list is an array of UVs.  Two array elements
+     * are used to define each range (except if the final range extends to
+     * infinity, only a single element is needed).  The array index of the
+     * first element for the corresponding range is given in brackets. */
+
+    UV start, end;
+    STRLEN count = 0;
+
+    PERL_ARGS_ASSERT__INVLIST_DUMP;
+
+    if (invlist_is_iterating(invlist)) {
+        Perl_dump_indent(aTHX_ level, file,
+             "%sCan't dump inversion list because is in middle of iterating\n",
+             indent);
+        return;
+    }
+
+    invlist_iterinit(invlist);
+    while (invlist_iternext(invlist, &start, &end)) {
+       if (end == UV_MAX) {
+           Perl_dump_indent(aTHX_ level, file,
+                                       "%s[%"UVuf"] 0x%04"UVXf" .. INFINITY\n",
+                                   indent, (UV)count, start);
+       }
+       else if (end != start) {
+           Perl_dump_indent(aTHX_ level, file,
+                                    "%s[%"UVuf"] 0x%04"UVXf" .. 0x%04"UVXf"\n",
+                               indent, (UV)count, start,         end);
+       }
+       else {
+           Perl_dump_indent(aTHX_ level, file, "%s[%"UVuf"] 0x%04"UVXf"\n",
+                                            indent, (UV)count, start);
+       }
+        count += 2;
+    }
+}
+
+void
+Perl__load_PL_utf8_foldclosures (pTHX)
+{
+    assert(! PL_utf8_foldclosures);
+
+    /* If the folds haven't been read in, call a fold function
+     * to force that */
+    if (! PL_utf8_tofold) {
+        U8 dummy[UTF8_MAXBYTES_CASE+1];
+
+        /* This string is just a short named one above \xff */
+        to_utf8_fold((U8*) HYPHEN_UTF8, dummy, NULL);
+        assert(PL_utf8_tofold); /* Verify that worked */
+    }
+    PL_utf8_foldclosures = _swash_inversion_hash(PL_utf8_tofold);
+}
+#endif
+
+#ifdef PERL_ARGS_ASSERT__INVLISTEQ
+bool
+S__invlistEQ(pTHX_ SV* const a, SV* const b, const bool complement_b)
+{
+    /* Return a boolean as to if the two passed in inversion lists are
+     * identical.  The final argument, if TRUE, says to take the complement of
+     * the second inversion list before doing the comparison */
+
+    const UV* array_a = invlist_array(a);
+    const UV* array_b = invlist_array(b);
+    UV len_a = _invlist_len(a);
+    UV len_b = _invlist_len(b);
+
+    UV i = 0;              /* current index into the arrays */
+    bool retval = TRUE;     /* Assume are identical until proven otherwise */
+
+    PERL_ARGS_ASSERT__INVLISTEQ;
+
+    /* If are to compare 'a' with the complement of b, set it
+     * up so are looking at b's complement. */
+    if (complement_b) {
+
+        /* The complement of nothing is everything, so <a> would have to have
+         * just one element, starting at zero (ending at infinity) */
+        if (len_b == 0) {
+            return (len_a == 1 && array_a[0] == 0);
+        }
+        else if (array_b[0] == 0) {
+
+            /* Otherwise, to complement, we invert.  Here, the first element is
+             * 0, just remove it.  To do this, we just pretend the array starts
+             * one later */
+
+            array_b++;
+            len_b--;
+        }
+        else {
+
+            /* But if the first element is not zero, we pretend the list starts
+             * at the 0 that is always stored immediately before the array. */
+            array_b--;
+            len_b++;
+        }
+    }
+
+    /* Make sure that the lengths are the same, as well as the final element
+     * before looping through the remainder.  (Thus we test the length, final,
+     * and first elements right off the bat) */
+    if (len_a != len_b || array_a[len_a-1] != array_b[len_a-1]) {
+        retval = FALSE;
+    }
+    else for (i = 0; i < len_a - 1; i++) {
+        if (array_a[i] != array_b[i]) {
+            retval = FALSE;
+            break;
+        }
+    }
+
+    return retval;
+}
+#endif
+
+/*
+ * As best we can, determine the characters that can match the start of
+ * the given EXACTF-ish node.
+ *
+ * Returns the invlist as a new SV*; it is the caller's responsibility to
+ * call SvREFCNT_dec() when done with it.
+ */
+STATIC SV*
+S__make_exactf_invlist(pTHX_ RExC_state_t *pRExC_state, regnode *node)
+{
+    const U8 * s = (U8*)STRING(node);
+    SSize_t bytelen = STR_LEN(node);
+    UV uc;
+    /* Start out big enough for 2 separate code points */
+    SV* invlist = _new_invlist(4);
+
+    PERL_ARGS_ASSERT__MAKE_EXACTF_INVLIST;
+
+    if (! UTF) {
+        uc = *s;
+
+        /* We punt and assume can match anything if the node begins
+         * with a multi-character fold.  Things are complicated.  For
+         * example, /ffi/i could match any of:
+         *  "\N{LATIN SMALL LIGATURE FFI}"
+         *  "\N{LATIN SMALL LIGATURE FF}I"
+         *  "F\N{LATIN SMALL LIGATURE FI}"
+         *  plus several other things; and making sure we have all the
+         *  possibilities is hard. */
+        if (is_MULTI_CHAR_FOLD_latin1_safe(s, s + bytelen)) {
+            invlist = _add_range_to_invlist(invlist, 0, UV_MAX);
+        }
+        else {
+            /* Any Latin1 range character can potentially match any
+             * other depending on the locale */
+            if (OP(node) == EXACTFL) {
+                _invlist_union(invlist, PL_Latin1, &invlist);
+            }
+            else {
+                /* But otherwise, it matches at least itself.  We can
+                 * quickly tell if it has a distinct fold, and if so,
+                 * it matches that as well */
+                invlist = add_cp_to_invlist(invlist, uc);
+                if (IS_IN_SOME_FOLD_L1(uc))
+                    invlist = add_cp_to_invlist(invlist, PL_fold_latin1[uc]);
+            }
+
+            /* Some characters match above-Latin1 ones under /i.  This
+             * is true of EXACTFL ones when the locale is UTF-8 */
+            if (HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(uc)
+                && (! isASCII(uc) || (OP(node) != EXACTFA
+                                    && OP(node) != EXACTFA_NO_TRIE)))
+            {
+                add_above_Latin1_folds(pRExC_state, (U8) uc, &invlist);
+            }
+        }
+    }
+    else {  /* Pattern is UTF-8 */
+        U8 folded[UTF8_MAX_FOLD_CHAR_EXPAND * UTF8_MAXBYTES_CASE + 1] = { '\0' };
+        STRLEN foldlen = UTF8SKIP(s);
+        const U8* e = s + bytelen;
+        SV** listp;
+
+        uc = utf8_to_uvchr_buf(s, s + bytelen, NULL);
+
+        /* The only code points that aren't folded in a UTF EXACTFish
+         * node are are the problematic ones in EXACTFL nodes */
+        if (OP(node) == EXACTFL && is_PROBLEMATIC_LOCALE_FOLDEDS_START_cp(uc)) {
+            /* We need to check for the possibility that this EXACTFL
+             * node begins with a multi-char fold.  Therefore we fold
+             * the first few characters of it so that we can make that
+             * check */
+            U8 *d = folded;
+            int i;
+
+            for (i = 0; i < UTF8_MAX_FOLD_CHAR_EXPAND && s < e; i++) {
+                if (isASCII(*s)) {
+                    *(d++) = (U8) toFOLD(*s);
+                    s++;
+                }
+                else {
+                    STRLEN len;
+                    to_utf8_fold(s, d, &len);
+                    d += len;
+                    s += UTF8SKIP(s);
+                }
+            }
+
+            /* And set up so the code below that looks in this folded
+             * buffer instead of the node's string */
+            e = d;
+            foldlen = UTF8SKIP(folded);
+            s = folded;
+        }
+
+        /* When we reach here 's' points to the fold of the first
+         * character(s) of the node; and 'e' points to far enough along
+         * the folded string to be just past any possible multi-char
+         * fold. 'foldlen' is the length in bytes of the first
+         * character in 's'
+         *
+         * Unlike the non-UTF-8 case, the macro for determining if a
+         * string is a multi-char fold requires all the characters to
+         * already be folded.  This is because of all the complications
+         * if not.  Note that they are folded anyway, except in EXACTFL
+         * nodes.  Like the non-UTF case above, we punt if the node
+         * begins with a multi-char fold  */
+
+        if (is_MULTI_CHAR_FOLD_utf8_safe(s, e)) {
+            invlist = _add_range_to_invlist(invlist, 0, UV_MAX);
+        }
+        else {  /* Single char fold */
+
+            /* It matches all the things that fold to it, which are
+             * found in PL_utf8_foldclosures (including itself) */
+            invlist = add_cp_to_invlist(invlist, uc);
+            if (! PL_utf8_foldclosures)
+                _load_PL_utf8_foldclosures();
+            if ((listp = hv_fetch(PL_utf8_foldclosures,
+                                (char *) s, foldlen, FALSE)))
+            {
+                AV* list = (AV*) *listp;
+                IV k;
+                for (k = 0; k <= av_tindex(list); k++) {
+                    SV** c_p = av_fetch(list, k, FALSE);
+                    UV c;
+                    assert(c_p);
+
+                    c = SvUV(*c_p);
+
+                    /* /aa doesn't allow folds between ASCII and non- */
+                    if ((OP(node) == EXACTFA || OP(node) == EXACTFA_NO_TRIE)
+                        && isASCII(c) != isASCII(uc))
+                    {
+                        continue;
+                    }
+
+                    invlist = add_cp_to_invlist(invlist, c);
+                }
+            }
+        }
+    }
+
+    return invlist;
+}
+
+#undef HEADER_LENGTH
+#undef TO_INTERNAL_SIZE
+#undef FROM_INTERNAL_SIZE
+#undef INVLIST_VERSION_ID
+
+/* End of inversion list object */
+
+STATIC void
+S_parse_lparen_question_flags(pTHX_ RExC_state_t *pRExC_state)
+{
+    /* This parses the flags that are in either the '(?foo)' or '(?foo:bar)'
+     * constructs, and updates RExC_flags with them.  On input, RExC_parse
+     * should point to the first flag; it is updated on output to point to the
+     * final ')' or ':'.  There needs to be at least one flag, or this will
+     * abort */
+
+    /* for (?g), (?gc), and (?o) warnings; warning
+       about (?c) will warn about (?g) -- japhy    */
+
+#define WASTED_O  0x01
+#define WASTED_G  0x02
+#define WASTED_C  0x04
+#define WASTED_GC (WASTED_G|WASTED_C)
+    I32 wastedflags = 0x00;
+    U32 posflags = 0, negflags = 0;
+    U32 *flagsp = &posflags;
+    char has_charset_modifier = '\0';
+    regex_charset cs;
+    bool has_use_defaults = FALSE;
+    const char* const seqstart = RExC_parse - 1; /* Point to the '?' */
+    int x_mod_count = 0;
+
+    PERL_ARGS_ASSERT_PARSE_LPAREN_QUESTION_FLAGS;
+
+    /* '^' as an initial flag sets certain defaults */
+    if (UCHARAT(RExC_parse) == '^') {
+        RExC_parse++;
+        has_use_defaults = TRUE;
+        STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
+        set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
+                                        ? REGEX_UNICODE_CHARSET
+                                        : REGEX_DEPENDS_CHARSET);
+    }
+
+    cs = get_regex_charset(RExC_flags);
+    if (cs == REGEX_DEPENDS_CHARSET
+        && (RExC_utf8 || RExC_uni_semantics))
+    {
+        cs = REGEX_UNICODE_CHARSET;
+    }
+
+    while (*RExC_parse) {
+        /* && strchr("iogcmsx", *RExC_parse) */
+        /* (?g), (?gc) and (?o) are useless here
+           and must be globally applied -- japhy */
+        switch (*RExC_parse) {
+
+            /* Code for the imsxn flags */
+            CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp, x_mod_count);
+
+            case LOCALE_PAT_MOD:
+                if (has_charset_modifier) {
+                    goto excess_modifier;
+                }
+                else if (flagsp == &negflags) {
+                    goto neg_modifier;
+                }
+                cs = REGEX_LOCALE_CHARSET;
+                has_charset_modifier = LOCALE_PAT_MOD;
+                break;
+            case UNICODE_PAT_MOD:
+                if (has_charset_modifier) {
+                    goto excess_modifier;
+                }
+                else if (flagsp == &negflags) {
+                    goto neg_modifier;
+                }
+                cs = REGEX_UNICODE_CHARSET;
+                has_charset_modifier = UNICODE_PAT_MOD;
+                break;
+            case ASCII_RESTRICT_PAT_MOD:
+                if (flagsp == &negflags) {
+                    goto neg_modifier;
+                }
+                if (has_charset_modifier) {
+                    if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
+                        goto excess_modifier;
+                    }
+                    /* Doubled modifier implies more restricted */
+                    cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
+                }
+                else {
+                    cs = REGEX_ASCII_RESTRICTED_CHARSET;
+                }
+                has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
+                break;
+            case DEPENDS_PAT_MOD:
+                if (has_use_defaults) {
+                    goto fail_modifiers;
+                }
+                else if (flagsp == &negflags) {
+                    goto neg_modifier;
+                }
+                else if (has_charset_modifier) {
+                    goto excess_modifier;
+                }
+
+                /* The dual charset means unicode semantics if the
+                 * pattern (or target, not known until runtime) are
+                 * utf8, or something in the pattern indicates unicode
+                 * semantics */
+                cs = (RExC_utf8 || RExC_uni_semantics)
+                     ? REGEX_UNICODE_CHARSET
+                     : REGEX_DEPENDS_CHARSET;
+                has_charset_modifier = DEPENDS_PAT_MOD;
+                break;
+              excess_modifier:
+                RExC_parse++;
+                if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
+                    vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
+                }
+                else if (has_charset_modifier == *(RExC_parse - 1)) {
+                    vFAIL2("Regexp modifier \"%c\" may not appear twice",
+                                        *(RExC_parse - 1));
+                }
+                else {
+                    vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
+                }
+                NOT_REACHED; /*NOTREACHED*/
+              neg_modifier:
+                RExC_parse++;
+                vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"",
+                                    *(RExC_parse - 1));
+                NOT_REACHED; /*NOTREACHED*/
+            case ONCE_PAT_MOD: /* 'o' */
+            case GLOBAL_PAT_MOD: /* 'g' */
+                if (PASS2 && ckWARN(WARN_REGEXP)) {
+                    const I32 wflagbit = *RExC_parse == 'o'
+                                         ? WASTED_O
+                                         : WASTED_G;
+                    if (! (wastedflags & wflagbit) ) {
+                        wastedflags |= wflagbit;
+                       /* diag_listed_as: Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/ */
+                        vWARN5(
+                            RExC_parse + 1,
+                            "Useless (%s%c) - %suse /%c modifier",
+                            flagsp == &negflags ? "?-" : "?",
+                            *RExC_parse,
+                            flagsp == &negflags ? "don't " : "",
+                            *RExC_parse
+                        );
+                    }
+                }
+                break;
+
+            case CONTINUE_PAT_MOD: /* 'c' */
+                if (PASS2 && ckWARN(WARN_REGEXP)) {
+                    if (! (wastedflags & WASTED_C) ) {
+                        wastedflags |= WASTED_GC;
+                       /* diag_listed_as: Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/ */
+                        vWARN3(
+                            RExC_parse + 1,
+                            "Useless (%sc) - %suse /gc modifier",
+                            flagsp == &negflags ? "?-" : "?",
+                            flagsp == &negflags ? "don't " : ""
+                        );
+                    }
+                }
+                break;
+            case KEEPCOPY_PAT_MOD: /* 'p' */
+                if (flagsp == &negflags) {
+                    if (PASS2)
+                        ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
+                } else {
+                    *flagsp |= RXf_PMf_KEEPCOPY;
+                }
+                break;
+            case '-':
+                /* A flag is a default iff it is following a minus, so
+                 * if there is a minus, it means will be trying to
+                 * re-specify a default which is an error */
+                if (has_use_defaults || flagsp == &negflags) {
+                    goto fail_modifiers;
+                }
+                flagsp = &negflags;
+                wastedflags = 0;  /* reset so (?g-c) warns twice */
+                break;
+            case ':':
+            case ')':
+                RExC_flags |= posflags;
+                RExC_flags &= ~negflags;
+                set_regex_charset(&RExC_flags, cs);
+                if (RExC_flags & RXf_PMf_FOLD) {
+                    RExC_contains_i = 1;
+                }
+                if (PASS2) {
+                    STD_PMMOD_FLAGS_PARSE_X_WARN(x_mod_count);
+                }
+                return;
+                /*NOTREACHED*/
+            default:
+              fail_modifiers:
+                RExC_parse += SKIP_IF_CHAR(RExC_parse);
+               /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
+                vFAIL2utf8f("Sequence (%"UTF8f"...) not recognized",
+                      UTF8fARG(UTF, RExC_parse-seqstart, seqstart));
+                NOT_REACHED; /*NOTREACHED*/
+        }
+
+        ++RExC_parse;
+    }
+
+    if (PASS2) {
+        STD_PMMOD_FLAGS_PARSE_X_WARN(x_mod_count);
+    }
+}
+
+/*
+ - reg - regular expression, i.e. main body or parenthesized thing
+ *
+ * Caller must absorb opening parenthesis.
+ *
+ * Combining parenthesis handling with the base level of regular expression
+ * is a trifle forced, but the need to tie the tails of the branches to what
+ * follows makes it hard to avoid.
+ */
+#define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
+#ifdef DEBUGGING
+#define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
+#else
+#define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
+#endif
+
+/* Returns NULL, setting *flagp to TRYAGAIN at the end of (?) that only sets
+   flags. Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan
+   needs to be restarted.
+   Otherwise would only return NULL if regbranch() returns NULL, which
+   cannot happen.  */
+STATIC regnode *
+S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
+    /* paren: Parenthesized? 0=top; 1,2=inside '(': changed to letter.
+     * 2 is like 1, but indicates that nextchar() has been called to advance
+     * RExC_parse beyond the '('.  Things like '(?' are indivisible tokens, and
+     * this flag alerts us to the need to check for that */
+{
+    regnode *ret;              /* Will be the head of the group. */
+    regnode *br;
+    regnode *lastbr;
+    regnode *ender = NULL;
+    I32 parno = 0;
+    I32 flags;
+    U32 oregflags = RExC_flags;
+    bool have_branch = 0;
+    bool is_open = 0;
+    I32 freeze_paren = 0;
+    I32 after_freeze = 0;
+    I32 num; /* numeric backreferences */
+
+    char * parse_start = RExC_parse; /* MJD */
+    char * const oregcomp_parse = RExC_parse;
+
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REG;
+    DEBUG_PARSE("reg ");
+
+    *flagp = 0;                                /* Tentatively. */
+
+
+    /* Make an OPEN node, if parenthesized. */
+    if (paren) {
+
+        /* Under /x, space and comments can be gobbled up between the '(' and
+         * here (if paren ==2).  The forms '(*VERB' and '(?...' disallow such
+         * intervening space, as the sequence is a token, and a token should be
+         * indivisible */
+        bool has_intervening_patws = paren == 2 && *(RExC_parse - 1) != '(';
+
+        if ( *RExC_parse == '*') { /* (*VERB:ARG) */
+           char *start_verb = RExC_parse;
+           STRLEN verb_len = 0;
+           char *start_arg = NULL;
+           unsigned char op = 0;
+           int argok = 1;
+            int internal_argval = 0; /* internal_argval is only useful if
+                                        !argok */
+
+            if (has_intervening_patws) {
+                RExC_parse++;
+                vFAIL("In '(*VERB...)', the '(' and '*' must be adjacent");
+            }
+           while ( *RExC_parse && *RExC_parse != ')' ) {
+               if ( *RExC_parse == ':' ) {
+                   start_arg = RExC_parse + 1;
+                   break;
+               }
+               RExC_parse++;
+           }
+           ++start_verb;
+           verb_len = RExC_parse - start_verb;
+           if ( start_arg ) {
+               RExC_parse++;
+               while ( *RExC_parse && *RExC_parse != ')' )
+                   RExC_parse++;
+               if ( *RExC_parse != ')' )
+                   vFAIL("Unterminated verb pattern argument");
+               if ( RExC_parse == start_arg )
+                   start_arg = NULL;
+           } else {
+               if ( *RExC_parse != ')' )
+                   vFAIL("Unterminated verb pattern");
+           }
+
+           switch ( *start_verb ) {
+            case 'A':  /* (*ACCEPT) */
+                if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
+                   op = ACCEPT;
+                   internal_argval = RExC_nestroot;
+               }
+               break;
+            case 'C':  /* (*COMMIT) */
+                if ( memEQs(start_verb,verb_len,"COMMIT") )
+                    op = COMMIT;
+                break;
+            case 'F':  /* (*FAIL) */
+                if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
+                   op = OPFAIL;
+                   argok = 0;
+               }
+               break;
+            case ':':  /* (*:NAME) */
+           case 'M':  /* (*MARK:NAME) */
+               if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
+                    op = MARKPOINT;
+                    argok = -1;
+                }
+                break;
+            case 'P':  /* (*PRUNE) */
+                if ( memEQs(start_verb,verb_len,"PRUNE") )
+                    op = PRUNE;
+                break;
+            case 'S':   /* (*SKIP) */
+                if ( memEQs(start_verb,verb_len,"SKIP") )
+                    op = SKIP;
+                break;
+            case 'T':  /* (*THEN) */
+                /* [19:06] <TimToady> :: is then */
+                if ( memEQs(start_verb,verb_len,"THEN") ) {
+                    op = CUTGROUP;
+                    RExC_seen |= REG_CUTGROUP_SEEN;
+                }
+                break;
+           }
+           if ( ! op ) {
+               RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
+                vFAIL2utf8f(
+                    "Unknown verb pattern '%"UTF8f"'",
+                    UTF8fARG(UTF, verb_len, start_verb));
+           }
+           if ( argok ) {
+                if ( start_arg && internal_argval ) {
+                   vFAIL3("Verb pattern '%.*s' may not have an argument",
+                       verb_len, start_verb);
+               } else if ( argok < 0 && !start_arg ) {
+                    vFAIL3("Verb pattern '%.*s' has a mandatory argument",
+                       verb_len, start_verb);
+               } else {
+                   ret = reganode(pRExC_state, op, internal_argval);
+                   if ( ! internal_argval && ! SIZE_ONLY ) {
+                        if (start_arg) {
+                            SV *sv = newSVpvn( start_arg,
+                                               RExC_parse - start_arg);
+                            ARG(ret) = add_data( pRExC_state,
+                                                 STR_WITH_LEN("S"));
+                            RExC_rxi->data->data[ARG(ret)]=(void*)sv;
+                            ret->flags = 0;
+                        } else {
+                            ret->flags = 1;
+                        }
+                    }
+               }
+               if (!internal_argval)
+                    RExC_seen |= REG_VERBARG_SEEN;
+           } else if ( start_arg ) {
+               vFAIL3("Verb pattern '%.*s' may not have an argument",
+                       verb_len, start_verb);
+           } else {
+               ret = reg_node(pRExC_state, op);
+           }
+           nextchar(pRExC_state);
+           return ret;
+        }
+        else if (*RExC_parse == '?') { /* (?...) */
+           bool is_logical = 0;
+           const char * const seqstart = RExC_parse;
+            const char * endptr;
+            if (has_intervening_patws) {
+                RExC_parse++;
+                vFAIL("In '(?...)', the '(' and '?' must be adjacent");
+            }
+
+           RExC_parse++;
+           paren = *RExC_parse++;
+           ret = NULL;                 /* For look-ahead/behind. */
+           switch (paren) {
+
+           case 'P':   /* (?P...) variants for those used to PCRE/Python */
+               paren = *RExC_parse++;
+               if ( paren == '<')         /* (?P<...>) named capture */
+                   goto named_capture;
+                else if (paren == '>') {   /* (?P>name) named recursion */
+                    goto named_recursion;
+                }
+                else if (paren == '=') {   /* (?P=...)  named backref */
+                    /* this pretty much dupes the code for \k<NAME> in
+                     * regatom(), if you change this make sure you change that
+                     * */
+                    char* name_start = RExC_parse;
+                   U32 num = 0;
+                    SV *sv_dat = reg_scan_name(pRExC_state,
+                        SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+                    if (RExC_parse == name_start || *RExC_parse != ')')
+                        /* diag_listed_as: Sequence ?P=... not terminated in regex; marked by <-- HERE in m/%s/ */
+                        vFAIL2("Sequence %.3s... not terminated",parse_start);
+
+                    if (!SIZE_ONLY) {
+                        num = add_data( pRExC_state, STR_WITH_LEN("S"));
+                        RExC_rxi->data->data[num]=(void*)sv_dat;
+                        SvREFCNT_inc_simple_void(sv_dat);
+                    }
+                    RExC_sawback = 1;
+                   ret = reganode(pRExC_state,
+                                  ((! FOLD)
+                                    ? NREF
+                                    : (ASCII_FOLD_RESTRICTED)
+                                      ? NREFFA
+                                       : (AT_LEAST_UNI_SEMANTICS)
+                                         ? NREFFU
+                                         : (LOC)
+                                           ? NREFFL
+                                           : NREFF),
+                                   num);
+                    *flagp |= HASWIDTH;
+
+                    Set_Node_Offset(ret, parse_start+1);
+                    Set_Node_Cur_Length(ret, parse_start);
+
+                    nextchar(pRExC_state);
+                    return ret;
+                }
+                --RExC_parse;
+                RExC_parse += SKIP_IF_CHAR(RExC_parse);
+                /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
+               vFAIL3("Sequence (%.*s...) not recognized",
+                                RExC_parse-seqstart, seqstart);
+               NOT_REACHED; /*NOTREACHED*/
+            case '<':           /* (?<...) */
+               if (*RExC_parse == '!')
+                   paren = ',';
+               else if (*RExC_parse != '=')
+              named_capture:
+               {               /* (?<...>) */
+                   char *name_start;
+                   SV *svname;
+                   paren= '>';
+            case '\'':          /* (?'...') */
+                   name_start= RExC_parse;
+                   svname = reg_scan_name(pRExC_state,
+                        SIZE_ONLY    /* reverse test from the others */
+                        ? REG_RSN_RETURN_NAME
+                        : REG_RSN_RETURN_NULL);
+                   if (RExC_parse == name_start || *RExC_parse != paren)
+                       vFAIL2("Sequence (?%c... not terminated",
+                           paren=='>' ? '<' : paren);
+                   if (SIZE_ONLY) {
+                       HE *he_str;
+                       SV *sv_dat = NULL;
+                        if (!svname) /* shouldn't happen */
+                            Perl_croak(aTHX_
+                                "panic: reg_scan_name returned NULL");
+                        if (!RExC_paren_names) {
+                            RExC_paren_names= newHV();
+                            sv_2mortal(MUTABLE_SV(RExC_paren_names));
+#ifdef DEBUGGING
+                            RExC_paren_name_list= newAV();
+                            sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
+#endif
+                        }
+                        he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
+                        if ( he_str )
+                            sv_dat = HeVAL(he_str);
+                        if ( ! sv_dat ) {
+                            /* croak baby croak */
+                            Perl_croak(aTHX_
+                                "panic: paren_name hash element allocation failed");
+                        } else if ( SvPOK(sv_dat) ) {
+                            /* (?|...) can mean we have dupes so scan to check
+                               its already been stored. Maybe a flag indicating
+                               we are inside such a construct would be useful,
+                               but the arrays are likely to be quite small, so
+                               for now we punt -- dmq */
+                            IV count = SvIV(sv_dat);
+                            I32 *pv = (I32*)SvPVX(sv_dat);
+                            IV i;
+                            for ( i = 0 ; i < count ; i++ ) {
+                                if ( pv[i] == RExC_npar ) {
+                                    count = 0;
+                                    break;
+                                }
+                            }
+                            if ( count ) {
+                                pv = (I32*)SvGROW(sv_dat,
+                                                SvCUR(sv_dat) + sizeof(I32)+1);
+                                SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
+                                pv[count] = RExC_npar;
+                                SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
+                            }
+                        } else {
+                            (void)SvUPGRADE(sv_dat,SVt_PVNV);
+                            sv_setpvn(sv_dat, (char *)&(RExC_npar),
+                                                                sizeof(I32));
+                            SvIOK_on(sv_dat);
+                            SvIV_set(sv_dat, 1);
+                        }
+#ifdef DEBUGGING
+                        /* Yes this does cause a memory leak in debugging Perls
+                         * */
+                        if (!av_store(RExC_paren_name_list,
+                                      RExC_npar, SvREFCNT_inc(svname)))
+                            SvREFCNT_dec_NN(svname);
+#endif
+
+                        /*sv_dump(sv_dat);*/
+                    }
+                    nextchar(pRExC_state);
+                   paren = 1;
+                   goto capturing_parens;
+               }
+                RExC_seen |= REG_LOOKBEHIND_SEEN;
+               RExC_in_lookbehind++;
+               RExC_parse++;
+                /* FALLTHROUGH */
+           case '=':           /* (?=...) */
+               RExC_seen_zerolen++;
+                break;
+           case '!':           /* (?!...) */
+               RExC_seen_zerolen++;
+               /* check if we're really just a "FAIL" assertion */
+               --RExC_parse;
+               nextchar(pRExC_state);
+               if (*RExC_parse == ')') {
+                   ret=reg_node(pRExC_state, OPFAIL);
+                   nextchar(pRExC_state);
+                   return ret;
+               }
+               break;
+           case '|':           /* (?|...) */
+               /* branch reset, behave like a (?:...) except that
+                  buffers in alternations share the same numbers */
+               paren = ':';
+               after_freeze = freeze_paren = RExC_npar;
+               break;
+           case ':':           /* (?:...) */
+           case '>':           /* (?>...) */
+               break;
+           case '$':           /* (?$...) */
+           case '@':           /* (?@...) */
+               vFAIL2("Sequence (?%c...) not implemented", (int)paren);
+               break;
+           case '0' :           /* (?0) */
+           case 'R' :           /* (?R) */
+               if (*RExC_parse != ')')
+                   FAIL("Sequence (?R) not terminated");
+               ret = reg_node(pRExC_state, GOSTART);
+                    RExC_seen |= REG_GOSTART_SEEN;
+               *flagp |= POSTPONED;
+               nextchar(pRExC_state);
+               return ret;
+               /*notreached*/
+            /* named and numeric backreferences */
+            case '&':            /* (?&NAME) */
+                parse_start = RExC_parse - 1;
+              named_recursion:
+                {
+                   SV *sv_dat = reg_scan_name(pRExC_state,
+                       SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+                    num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
+                }
+                if (RExC_parse == RExC_end || *RExC_parse != ')')
+                    vFAIL("Sequence (?&... not terminated");
+                goto gen_recurse_regop;
+                /* NOTREACHED */
+            case '+':
+                if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
+                    RExC_parse++;
+                    vFAIL("Illegal pattern");
+                }
+                goto parse_recursion;
+                /* NOTREACHED*/
+            case '-': /* (?-1) */
+                if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
+                    RExC_parse--; /* rewind to let it be handled later */
+                    goto parse_flags;
+                }
+                /* FALLTHROUGH */
+            case '1': case '2': case '3': case '4': /* (?1) */
+           case '5': case '6': case '7': case '8': case '9':
+               RExC_parse--;
+              parse_recursion:
+                {
+                    bool is_neg = FALSE;
+                    UV unum;
+                    parse_start = RExC_parse - 1; /* MJD */
+                    if (*RExC_parse == '-') {
+                        RExC_parse++;
+                        is_neg = TRUE;
+                    }
+                    if (grok_atoUV(RExC_parse, &unum, &endptr)
+                        && unum <= I32_MAX
+                    ) {
+                        num = (I32)unum;
+                        RExC_parse = (char*)endptr;
+                    } else
+                        num = I32_MAX;
+                    if (is_neg) {
+                        /* Some limit for num? */
+                        num = -num;
+                    }
+                }
+               if (*RExC_parse!=')')
+                   vFAIL("Expecting close bracket");
+
+              gen_recurse_regop:
+                if ( paren == '-' ) {
+                    /*
+                    Diagram of capture buffer numbering.
+                    Top line is the normal capture buffer numbers
+                    Bottom line is the negative indexing as from
+                    the X (the (?-2))
+
+                    +   1 2    3 4 5 X          6 7
+                       /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
+                    -   5 4    3 2 1 X          x x
+
+                    */
+                    num = RExC_npar + num;
+                    if (num < 1)  {
+                        RExC_parse++;
+                        vFAIL("Reference to nonexistent group");
+                    }
+                } else if ( paren == '+' ) {
+                    num = RExC_npar + num - 1;
+                }
+
+                ret = reg2Lanode(pRExC_state, GOSUB, num, RExC_recurse_count);
+                if (!SIZE_ONLY) {
+                   if (num > (I32)RExC_rx->nparens) {
+                       RExC_parse++;
+                       vFAIL("Reference to nonexistent group");
+                   }
+                   RExC_recurse_count++;
+                   DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+                        "%*s%*s Recurse #%"UVuf" to %"IVdf"\n",
+                              22, "|    |", (int)(depth * 2 + 1), "",
+                              (UV)ARG(ret), (IV)ARG2L(ret)));
+                }
+                RExC_seen |= REG_RECURSE_SEEN;
+                Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
+               Set_Node_Offset(ret, parse_start); /* MJD */
+
+                *flagp |= POSTPONED;
+                nextchar(pRExC_state);
+                return ret;
+
+            /* NOTREACHED */
+
+           case '?':           /* (??...) */
+               is_logical = 1;
+               if (*RExC_parse != '{') {
+                    RExC_parse += SKIP_IF_CHAR(RExC_parse);
+                    /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
+                    vFAIL2utf8f(
+                        "Sequence (%"UTF8f"...) not recognized",
+                        UTF8fARG(UTF, RExC_parse-seqstart, seqstart));
+                   NOT_REACHED; /*NOTREACHED*/
+               }
+               *flagp |= POSTPONED;
+               paren = *RExC_parse++;
+               /* FALLTHROUGH */
+           case '{':           /* (?{...}) */
+           {
+               U32 n = 0;
+               struct reg_code_block *cb;
+
+               RExC_seen_zerolen++;
+
+               if (   !pRExC_state->num_code_blocks
+                   || pRExC_state->code_index >= pRExC_state->num_code_blocks
+                   || pRExC_state->code_blocks[pRExC_state->code_index].start
+                       != (STRLEN)((RExC_parse -3 - (is_logical ? 1 : 0))
+                           - RExC_start)
+               ) {
+                   if (RExC_pm_flags & PMf_USE_RE_EVAL)
+                       FAIL("panic: Sequence (?{...}): no code block found\n");
+                   FAIL("Eval-group not allowed at runtime, use re 'eval'");
+               }
+               /* this is a pre-compiled code block (?{...}) */
+               cb = &pRExC_state->code_blocks[pRExC_state->code_index];
+               RExC_parse = RExC_start + cb->end;
+               if (!SIZE_ONLY) {
+                   OP *o = cb->block;
+                   if (cb->src_regex) {
+                       n = add_data(pRExC_state, STR_WITH_LEN("rl"));
+                       RExC_rxi->data->data[n] =
+                           (void*)SvREFCNT_inc((SV*)cb->src_regex);
+                       RExC_rxi->data->data[n+1] = (void*)o;
+                   }
+                   else {
+                       n = add_data(pRExC_state,
+                              (RExC_pm_flags & PMf_HAS_CV) ? "L" : "l", 1);
+                       RExC_rxi->data->data[n] = (void*)o;
+                   }
+               }
+               pRExC_state->code_index++;
+               nextchar(pRExC_state);
+
+               if (is_logical) {
+                    regnode *eval;
+                   ret = reg_node(pRExC_state, LOGICAL);
+
+                    eval = reg2Lanode(pRExC_state, EVAL,
+                                       n,
+
+                                       /* for later propagation into (??{})
+                                        * return value */
+                                       RExC_flags & RXf_PMf_COMPILETIME
+                                      );
+                   if (!SIZE_ONLY) {
+                       ret->flags = 2;
+                    }
+                    REGTAIL(pRExC_state, ret, eval);
+                    /* deal with the length of this later - MJD */
+                   return ret;
+               }
+               ret = reg2Lanode(pRExC_state, EVAL, n, 0);
+               Set_Node_Length(ret, RExC_parse - parse_start + 1);
+               Set_Node_Offset(ret, parse_start);
+               return ret;
+           }
+           case '(':           /* (?(?{...})...) and (?(?=...)...) */
+           {
+               int is_define= 0;
+                const int DEFINE_len = sizeof("DEFINE") - 1;
+               if (RExC_parse[0] == '?') {        /* (?(?...)) */
+                   if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
+                       || RExC_parse[1] == '<'
+                       || RExC_parse[1] == '{') { /* Lookahead or eval. */
+                       I32 flag;
+                        regnode *tail;
+
+                       ret = reg_node(pRExC_state, LOGICAL);
+                       if (!SIZE_ONLY)
+                           ret->flags = 1;
+
+                        tail = reg(pRExC_state, 1, &flag, depth+1);
+                        if (flag & RESTART_UTF8) {
+                            *flagp = RESTART_UTF8;
+                            return NULL;
+                        }
+                        REGTAIL(pRExC_state, ret, tail);
+                       goto insert_if;
+                   }
+                   /* Fall through to ‘Unknown switch condition’ at the
+                      end of the if/else chain. */
+               }
+               else if ( RExC_parse[0] == '<'     /* (?(<NAME>)...) */
+                        || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
+               {
+                   char ch = RExC_parse[0] == '<' ? '>' : '\'';
+                   char *name_start= RExC_parse++;
+                   U32 num = 0;
+                   SV *sv_dat=reg_scan_name(pRExC_state,
+                       SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+                   if (RExC_parse == name_start || *RExC_parse != ch)
+                        vFAIL2("Sequence (?(%c... not terminated",
+                            (ch == '>' ? '<' : ch));
+                    RExC_parse++;
+                   if (!SIZE_ONLY) {
+                        num = add_data( pRExC_state, STR_WITH_LEN("S"));
+                        RExC_rxi->data->data[num]=(void*)sv_dat;
+                        SvREFCNT_inc_simple_void(sv_dat);
+                    }
+                    ret = reganode(pRExC_state,NGROUPP,num);
+                    goto insert_if_check_paren;
+               }
+               else if (RExC_end - RExC_parse >= DEFINE_len
+                        && strnEQ(RExC_parse, "DEFINE", DEFINE_len))
+                {
+                   ret = reganode(pRExC_state,DEFINEP,0);
+                   RExC_parse += DEFINE_len;
+                   is_define = 1;
+                   goto insert_if_check_paren;
+               }
+               else if (RExC_parse[0] == 'R') {
+                   RExC_parse++;
+                   parno = 0;
+                   if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
+                        UV uv;
+                        if (grok_atoUV(RExC_parse, &uv, &endptr)
+                            && uv <= I32_MAX
+                        ) {
+                            parno = (I32)uv;
+                            RExC_parse = (char*)endptr;
+                        }
+                        /* else "Switch condition not recognized" below */
+                   } else if (RExC_parse[0] == '&') {
+                       SV *sv_dat;
+                       RExC_parse++;
+                       sv_dat = reg_scan_name(pRExC_state,
+                            SIZE_ONLY
+                            ? REG_RSN_RETURN_NULL
+                            : REG_RSN_RETURN_DATA);
+                       parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
+                   }
+                   ret = reganode(pRExC_state,INSUBP,parno);
+                   goto insert_if_check_paren;
+               }
+               else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
+                    /* (?(1)...) */
+                   char c;
+                   char *tmp;
+                    UV uv;
+                    if (grok_atoUV(RExC_parse, &uv, &endptr)
+                        && uv <= I32_MAX
+                    ) {
+                        parno = (I32)uv;
+                        RExC_parse = (char*)endptr;
+                    }
+                    /* XXX else what? */
+                    ret = reganode(pRExC_state, GROUPP, parno);
+
+                 insert_if_check_paren:
+                   if (*(tmp = nextchar(pRExC_state)) != ')') {
+                        /* nextchar also skips comments, so undo its work
+                         * and skip over the the next character.
+                         */
+                        RExC_parse = tmp;
+                        RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
+                       vFAIL("Switch condition not recognized");
+                   }
+                 insert_if:
+                    REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
+                    br = regbranch(pRExC_state, &flags, 1,depth+1);
+                   if (br == NULL) {
+                        if (flags & RESTART_UTF8) {
+                            *flagp = RESTART_UTF8;
+                            return NULL;
+                        }
+                        FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"",
+                              (UV) flags);
+                    } else
+                        REGTAIL(pRExC_state, br, reganode(pRExC_state,
+                                                          LONGJMP, 0));
+                   c = *nextchar(pRExC_state);
+                   if (flags&HASWIDTH)
+                       *flagp |= HASWIDTH;
+                   if (c == '|') {
+                       if (is_define)
+                           vFAIL("(?(DEFINE)....) does not allow branches");
+
+                        /* Fake one for optimizer.  */
+                        lastbr = reganode(pRExC_state, IFTHEN, 0);
+
+                        if (!regbranch(pRExC_state, &flags, 1,depth+1)) {
+                            if (flags & RESTART_UTF8) {
+                                *flagp = RESTART_UTF8;
+                                return NULL;
+                            }
+                            FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"",
+                                  (UV) flags);
+                        }
+                        REGTAIL(pRExC_state, ret, lastbr);
+                       if (flags&HASWIDTH)
+                           *flagp |= HASWIDTH;
+                       c = *nextchar(pRExC_state);
+                   }
+                   else
+                       lastbr = NULL;
+                    if (c != ')') {
+                        if (RExC_parse>RExC_end)
+                            vFAIL("Switch (?(condition)... not terminated");
+                        else
+                            vFAIL("Switch (?(condition)... contains too many branches");
+                    }
+                   ender = reg_node(pRExC_state, TAIL);
+                    REGTAIL(pRExC_state, br, ender);
+                   if (lastbr) {
+                        REGTAIL(pRExC_state, lastbr, ender);
+                        REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
+                   }
+                   else
+                        REGTAIL(pRExC_state, ret, ender);
+                    RExC_size++; /* XXX WHY do we need this?!!
+                                    For large programs it seems to be required
+                                    but I can't figure out why. -- dmq*/
+                   return ret;
+               }
+                RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
+                vFAIL("Unknown switch condition (?(...))");
+           }
+           case '[':           /* (?[ ... ]) */
+                return handle_regex_sets(pRExC_state, NULL, flagp, depth,
+                                         oregcomp_parse);
+            case 0:
+               RExC_parse--; /* for vFAIL to print correctly */
+                vFAIL("Sequence (? incomplete");
+                break;
+           default: /* e.g., (?i) */
+               --RExC_parse;
+              parse_flags:
+               parse_lparen_question_flags(pRExC_state);
+                if (UCHARAT(RExC_parse) != ':') {
+                    if (*RExC_parse)
+                        nextchar(pRExC_state);
+                    *flagp = TRYAGAIN;
+                    return NULL;
+                }
+                paren = ':';
+                nextchar(pRExC_state);
+                ret = NULL;
+                goto parse_rest;
+            } /* end switch */
+       }
+       else if (!(RExC_flags & RXf_PMf_NOCAPTURE)) {   /* (...) */
+         capturing_parens:
+           parno = RExC_npar;
+           RExC_npar++;
+
+           ret = reganode(pRExC_state, OPEN, parno);
+           if (!SIZE_ONLY ){
+               if (!RExC_nestroot)
+                   RExC_nestroot = parno;
+                if (RExC_seen & REG_RECURSE_SEEN
+                   && !RExC_open_parens[parno-1])
+               {
+                   DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+                        "%*s%*s Setting open paren #%"IVdf" to %d\n",
+                        22, "|    |", (int)(depth * 2 + 1), "",
+                       (IV)parno, REG_NODE_NUM(ret)));
+                   RExC_open_parens[parno-1]= ret;
+               }
+           }
+            Set_Node_Length(ret, 1); /* MJD */
+            Set_Node_Offset(ret, RExC_parse); /* MJD */
+           is_open = 1;
+       } else {
+            /* with RXf_PMf_NOCAPTURE treat (...) as (?:...) */
+            paren = ':';
+           ret = NULL;
+       }
+    }
+    else                        /* ! paren */
+       ret = NULL;
+
+   parse_rest:
+    /* Pick up the branches, linking them together. */
+    parse_start = RExC_parse;   /* MJD */
+    br = regbranch(pRExC_state, &flags, 1,depth+1);
+
+    /*     branch_len = (paren != 0); */
+
+    if (br == NULL) {
+        if (flags & RESTART_UTF8) {
+            *flagp = RESTART_UTF8;
+            return NULL;
+        }
+        FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"", (UV) flags);
+    }
+    if (*RExC_parse == '|') {
+       if (!SIZE_ONLY && RExC_extralen) {
+           reginsert(pRExC_state, BRANCHJ, br, depth+1);
+       }
+       else {                  /* MJD */
+           reginsert(pRExC_state, BRANCH, br, depth+1);
+            Set_Node_Length(br, paren != 0);
+            Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
+        }
+       have_branch = 1;
+       if (SIZE_ONLY)
+           RExC_extralen += 1;         /* For BRANCHJ-BRANCH. */
+    }
+    else if (paren == ':') {
+       *flagp |= flags&SIMPLE;
+    }
+    if (is_open) {                             /* Starts with OPEN. */
+        REGTAIL(pRExC_state, ret, br);          /* OPEN -> first. */
+    }
+    else if (paren != '?')             /* Not Conditional */
+       ret = br;
+    *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
+    lastbr = br;
+    while (*RExC_parse == '|') {
+       if (!SIZE_ONLY && RExC_extralen) {
+           ender = reganode(pRExC_state, LONGJMP,0);
+
+            /* Append to the previous. */
+            REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
+       }
+       if (SIZE_ONLY)
+           RExC_extralen += 2;         /* Account for LONGJMP. */
+       nextchar(pRExC_state);
+       if (freeze_paren) {
+           if (RExC_npar > after_freeze)
+               after_freeze = RExC_npar;
+            RExC_npar = freeze_paren;
+        }
+        br = regbranch(pRExC_state, &flags, 0, depth+1);
+
+       if (br == NULL) {
+            if (flags & RESTART_UTF8) {
+                *flagp = RESTART_UTF8;
+                return NULL;
+            }
+            FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"", (UV) flags);
+        }
+        REGTAIL(pRExC_state, lastbr, br);               /* BRANCH -> BRANCH. */
+       lastbr = br;
+       *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
+    }
+
+    if (have_branch || paren != ':') {
+       /* Make a closing node, and hook it on the end. */
+       switch (paren) {
+       case ':':
+           ender = reg_node(pRExC_state, TAIL);
+           break;
+       case 1: case 2:
+           ender = reganode(pRExC_state, CLOSE, parno);
+            if (!SIZE_ONLY && RExC_seen & REG_RECURSE_SEEN) {
+               DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+                        "%*s%*s Setting close paren #%"IVdf" to %d\n",
+                        22, "|    |", (int)(depth * 2 + 1), "", (IV)parno, REG_NODE_NUM(ender)));
+               RExC_close_parens[parno-1]= ender;
+               if (RExC_nestroot == parno)
+                   RExC_nestroot = 0;
+           }
+            Set_Node_Offset(ender,RExC_parse+1); /* MJD */
+            Set_Node_Length(ender,1); /* MJD */
+           break;
+       case '<':
+       case ',':
+       case '=':
+       case '!':
+           *flagp &= ~HASWIDTH;
+           /* FALLTHROUGH */
+       case '>':
+           ender = reg_node(pRExC_state, SUCCEED);
+           break;
+       case 0:
+           ender = reg_node(pRExC_state, END);
+           if (!SIZE_ONLY) {
+                assert(!RExC_opend); /* there can only be one! */
+                RExC_opend = ender;
+            }
+           break;
+       }
+        DEBUG_PARSE_r(if (!SIZE_ONLY) {
+            DEBUG_PARSE_MSG("lsbr");
+            regprop(RExC_rx, RExC_mysv1, lastbr, NULL, pRExC_state);
+            regprop(RExC_rx, RExC_mysv2, ender, NULL, pRExC_state);
+            PerlIO_printf(Perl_debug_log, "~ tying lastbr %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
+                          SvPV_nolen_const(RExC_mysv1),
+                          (IV)REG_NODE_NUM(lastbr),
+                          SvPV_nolen_const(RExC_mysv2),
+                          (IV)REG_NODE_NUM(ender),
+                          (IV)(ender - lastbr)
+            );
+        });
+        REGTAIL(pRExC_state, lastbr, ender);
+
+       if (have_branch && !SIZE_ONLY) {
+            char is_nothing= 1;
+           if (depth==1)
+                RExC_seen |= REG_TOP_LEVEL_BRANCHES_SEEN;
+
+           /* Hook the tails of the branches to the closing node. */
+           for (br = ret; br; br = regnext(br)) {
+               const U8 op = PL_regkind[OP(br)];
+               if (op == BRANCH) {
+                    REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
+                    if ( OP(NEXTOPER(br)) != NOTHING
+                         || regnext(NEXTOPER(br)) != ender)
+                        is_nothing= 0;
+               }
+               else if (op == BRANCHJ) {
+                    REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
+                    /* for now we always disable this optimisation * /
+                    if ( OP(NEXTOPER(NEXTOPER(br))) != NOTHING
+                         || regnext(NEXTOPER(NEXTOPER(br))) != ender)
+                    */
+                        is_nothing= 0;
+               }
+           }
+            if (is_nothing) {
+                br= PL_regkind[OP(ret)] != BRANCH ? regnext(ret) : ret;
+                DEBUG_PARSE_r(if (!SIZE_ONLY) {
+                    DEBUG_PARSE_MSG("NADA");
+                    regprop(RExC_rx, RExC_mysv1, ret, NULL, pRExC_state);
+                    regprop(RExC_rx, RExC_mysv2, ender, NULL, pRExC_state);
+                    PerlIO_printf(Perl_debug_log, "~ converting ret %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
+                                  SvPV_nolen_const(RExC_mysv1),
+                                  (IV)REG_NODE_NUM(ret),
+                                  SvPV_nolen_const(RExC_mysv2),
+                                  (IV)REG_NODE_NUM(ender),
+                                  (IV)(ender - ret)
+                    );
+                });
+                OP(br)= NOTHING;
+                if (OP(ender) == TAIL) {
+                    NEXT_OFF(br)= 0;
+                    RExC_emit= br + 1;
+                } else {
+                    regnode *opt;
+                    for ( opt= br + 1; opt < ender ; opt++ )
+                        OP(opt)= OPTIMIZED;
+                    NEXT_OFF(br)= ender - br;
+                }
+            }
+       }
+    }
+
+    {
+        const char *p;
+        static const char parens[] = "=!<,>";
+
+       if (paren && (p = strchr(parens, paren))) {
+           U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
+           int flag = (p - parens) > 1;
+
+           if (paren == '>')
+               node = SUSPEND, flag = 0;
+           reginsert(pRExC_state, node,ret, depth+1);
+            Set_Node_Cur_Length(ret, parse_start);
+           Set_Node_Offset(ret, parse_start + 1);
+           ret->flags = flag;
+            REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
+       }
+    }
+
+    /* Check for proper termination. */
+    if (paren) {
+        /* restore original flags, but keep (?p) */
+       RExC_flags = oregflags | (RExC_flags & RXf_PMf_KEEPCOPY);
+       if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
+           RExC_parse = oregcomp_parse;
+           vFAIL("Unmatched (");
+       }
+    }
+    else if (!paren && RExC_parse < RExC_end) {
+       if (*RExC_parse == ')') {
+           RExC_parse++;
+           vFAIL("Unmatched )");
+       }
+       else
+           FAIL("Junk on end of regexp");      /* "Can't happen". */
+       NOT_REACHED; /* NOTREACHED */
+    }
+
+    if (RExC_in_lookbehind) {
+       RExC_in_lookbehind--;
+    }
+    if (after_freeze > RExC_npar)
+        RExC_npar = after_freeze;
+    return(ret);
+}
+
+/*
+ - regbranch - one alternative of an | operator
+ *
+ * Implements the concatenation operator.
+ *
+ * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
+ * restarted.
+ */
+STATIC regnode *
+S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
+{
+    regnode *ret;
+    regnode *chain = NULL;
+    regnode *latest;
+    I32 flags = 0, c = 0;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGBRANCH;
+
+    DEBUG_PARSE("brnc");
+
+    if (first)
+       ret = NULL;
+    else {
+       if (!SIZE_ONLY && RExC_extralen)
+           ret = reganode(pRExC_state, BRANCHJ,0);
+       else {
+           ret = reg_node(pRExC_state, BRANCH);
+            Set_Node_Length(ret, 1);
+        }
+    }
+
+    if (!first && SIZE_ONLY)
+       RExC_extralen += 1;                     /* BRANCHJ */
+
+    *flagp = WORST;                    /* Tentatively. */
+
+    RExC_parse--;
+    nextchar(pRExC_state);
+    while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
+       flags &= ~TRYAGAIN;
+        latest = regpiece(pRExC_state, &flags,depth+1);
+       if (latest == NULL) {
+           if (flags & TRYAGAIN)
+               continue;
+            if (flags & RESTART_UTF8) {
+                *flagp = RESTART_UTF8;
+                return NULL;
+            }
+            FAIL2("panic: regpiece returned NULL, flags=%#"UVxf"", (UV) flags);
+       }
+       else if (ret == NULL)
+           ret = latest;
+       *flagp |= flags&(HASWIDTH|POSTPONED);
+       if (chain == NULL)      /* First piece. */
+           *flagp |= flags&SPSTART;
+       else {
+           /* FIXME adding one for every branch after the first is probably
+            * excessive now we have TRIE support. (hv) */
+           MARK_NAUGHTY(1);
+            REGTAIL(pRExC_state, chain, latest);
+       }
+       chain = latest;
+       c++;
+    }
+    if (chain == NULL) {       /* Loop ran zero times. */
+       chain = reg_node(pRExC_state, NOTHING);
+       if (ret == NULL)
+           ret = chain;
+    }
+    if (c == 1) {
+       *flagp |= flags&SIMPLE;
+    }
+
+    return ret;
+}
+
+/*
+ - regpiece - something followed by possible [*+?]
+ *
+ * Note that the branching code sequences used for ? and the general cases
+ * of * and + are somewhat optimized:  they use the same NOTHING node as
+ * both the endmarker for their branch list and the body of the last branch.
+ * It might seem that this node could be dispensed with entirely, but the
+ * endmarker role is not redundant.
+ *
+ * Returns NULL, setting *flagp to TRYAGAIN if regatom() returns NULL with
+ * TRYAGAIN.
+ * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
+ * restarted.
+ */
+STATIC regnode *
+S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
+{
+    regnode *ret;
+    char op;
+    char *next;
+    I32 flags;
+    const char * const origparse = RExC_parse;
+    I32 min;
+    I32 max = REG_INFTY;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+    char *parse_start;
+#endif
+    const char *maxpos = NULL;
+    UV uv;
+
+    /* Save the original in case we change the emitted regop to a FAIL. */
+    regnode * const orig_emit = RExC_emit;
+
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGPIECE;
+
+    DEBUG_PARSE("piec");
+
+    ret = regatom(pRExC_state, &flags,depth+1);
+    if (ret == NULL) {
+       if (flags & (TRYAGAIN|RESTART_UTF8))
+           *flagp |= flags & (TRYAGAIN|RESTART_UTF8);
+        else
+            FAIL2("panic: regatom returned NULL, flags=%#"UVxf"", (UV) flags);
+       return(NULL);
+    }
+
+    op = *RExC_parse;
+
+    if (op == '{' && regcurly(RExC_parse)) {
+       maxpos = NULL;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+        parse_start = RExC_parse; /* MJD */
+#endif
+       next = RExC_parse + 1;
+       while (isDIGIT(*next) || *next == ',') {
+           if (*next == ',') {
+               if (maxpos)
+                   break;
+               else
+                   maxpos = next;
+           }
+           next++;
+       }
+       if (*next == '}') {             /* got one */
+            const char* endptr;
+           if (!maxpos)
+               maxpos = next;
+           RExC_parse++;
+            if (isDIGIT(*RExC_parse)) {
+                if (!grok_atoUV(RExC_parse, &uv, &endptr))
+                    vFAIL("Invalid quantifier in {,}");
+                if (uv >= REG_INFTY)
+                    vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
+                min = (I32)uv;
+            } else {
+                min = 0;
+            }
+           if (*maxpos == ',')
+               maxpos++;
+           else
+               maxpos = RExC_parse;
+            if (isDIGIT(*maxpos)) {
+                if (!grok_atoUV(maxpos, &uv, &endptr))
+                    vFAIL("Invalid quantifier in {,}");
+                if (uv >= REG_INFTY)
+                    vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
+                max = (I32)uv;
+            } else {
+               max = REG_INFTY;                /* meaning "infinity" */
+            }
+           RExC_parse = next;
+           nextchar(pRExC_state);
+            if (max < min) {    /* If can't match, warn and optimize to fail
+                                   unconditionally */
+                if (SIZE_ONLY) {
+
+                    /* We can't back off the size because we have to reserve
+                     * enough space for all the things we are about to throw
+                     * away, but we can shrink it by the ammount we are about
+                     * to re-use here */
+                    RExC_size = PREVOPER(RExC_size) - regarglen[(U8)OPFAIL];
+                }
+                else {
+                    ckWARNreg(RExC_parse, "Quantifier {n,m} with n > m can't match");
+                    RExC_emit = orig_emit;
+                }
+                ret = reg_node(pRExC_state, OPFAIL);
+                return ret;
+            }
+            else if (min == max
+                     && RExC_parse < RExC_end
+                     && (*RExC_parse == '?' || *RExC_parse == '+'))
+            {
+                if (PASS2) {
+                    ckWARN2reg(RExC_parse + 1,
+                               "Useless use of greediness modifier '%c'",
+                               *RExC_parse);
+                }
+                /* Absorb the modifier, so later code doesn't see nor use
+                    * it */
+                nextchar(pRExC_state);
+            }
+
+         do_curly:
+           if ((flags&SIMPLE)) {
+                MARK_NAUGHTY_EXP(2, 2);
+               reginsert(pRExC_state, CURLY, ret, depth+1);
+                Set_Node_Offset(ret, parse_start+1); /* MJD */
+                Set_Node_Cur_Length(ret, parse_start);
+           }
+           else {
+               regnode * const w = reg_node(pRExC_state, WHILEM);
+
+               w->flags = 0;
+                REGTAIL(pRExC_state, ret, w);
+               if (!SIZE_ONLY && RExC_extralen) {
+                   reginsert(pRExC_state, LONGJMP,ret, depth+1);
+                   reginsert(pRExC_state, NOTHING,ret, depth+1);
+                   NEXT_OFF(ret) = 3;  /* Go over LONGJMP. */
+               }
+               reginsert(pRExC_state, CURLYX,ret, depth+1);
+                                /* MJD hk */
+                Set_Node_Offset(ret, parse_start+1);
+                Set_Node_Length(ret,
+                                op == '{' ? (RExC_parse - parse_start) : 1);
+
+               if (!SIZE_ONLY && RExC_extralen)
+                   NEXT_OFF(ret) = 3;  /* Go over NOTHING to LONGJMP. */
+                REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
+               if (SIZE_ONLY)
+                   RExC_whilem_seen++, RExC_extralen += 3;
+                MARK_NAUGHTY_EXP(1, 4);     /* compound interest */
+           }
+           ret->flags = 0;
+
+           if (min > 0)
+               *flagp = WORST;
+           if (max > 0)
+               *flagp |= HASWIDTH;
+           if (!SIZE_ONLY) {
+               ARG1_SET(ret, (U16)min);
+               ARG2_SET(ret, (U16)max);
+           }
+            if (max == REG_INFTY)
+                RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
+
+           goto nest_check;
+       }
+    }
+
+    if (!ISMULT1(op)) {
+       *flagp = flags;
+       return(ret);
+    }
+
+#if 0                          /* Now runtime fix should be reliable. */
+
+    /* if this is reinstated, don't forget to put this back into perldiag:
+
+           =item Regexp *+ operand could be empty at {#} in regex m/%s/
+
+          (F) The part of the regexp subject to either the * or + quantifier
+           could match an empty string. The {#} shows in the regular
+           expression about where the problem was discovered.
+
+    */
+
+    if (!(flags&HASWIDTH) && op != '?')
+      vFAIL("Regexp *+ operand could be empty");
+#endif
+
+#ifdef RE_TRACK_PATTERN_OFFSETS
+    parse_start = RExC_parse;
+#endif
+    nextchar(pRExC_state);
+
+    *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
+
+    if (op == '*' && (flags&SIMPLE)) {
+       reginsert(pRExC_state, STAR, ret, depth+1);
+       ret->flags = 0;
+       MARK_NAUGHTY(4);
+        RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
+    }
+    else if (op == '*') {
+       min = 0;
+       goto do_curly;
+    }
+    else if (op == '+' && (flags&SIMPLE)) {
+       reginsert(pRExC_state, PLUS, ret, depth+1);
+       ret->flags = 0;
+       MARK_NAUGHTY(3);
+        RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
+    }
+    else if (op == '+') {
+       min = 1;
+       goto do_curly;
+    }
+    else if (op == '?') {
+       min = 0; max = 1;
+       goto do_curly;
+    }
+  nest_check:
+    if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
+       SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
+       ckWARN2reg(RExC_parse,
+                  "%"UTF8f" matches null string many times",
+                  UTF8fARG(UTF, (RExC_parse >= origparse
+                                 ? RExC_parse - origparse
+                                 : 0),
+                  origparse));
+       (void)ReREFCNT_inc(RExC_rx_sv);
+    }
+
+    if (RExC_parse < RExC_end && *RExC_parse == '?') {
+       nextchar(pRExC_state);
+       reginsert(pRExC_state, MINMOD, ret, depth+1);
+        REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
+    }
+    else
+    if (RExC_parse < RExC_end && *RExC_parse == '+') {
+        regnode *ender;
+        nextchar(pRExC_state);
+        ender = reg_node(pRExC_state, SUCCEED);
+        REGTAIL(pRExC_state, ret, ender);
+        reginsert(pRExC_state, SUSPEND, ret, depth+1);
+        ret->flags = 0;
+        ender = reg_node(pRExC_state, TAIL);
+        REGTAIL(pRExC_state, ret, ender);
+    }
+
+    if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
+       RExC_parse++;
+       vFAIL("Nested quantifiers");
+    }
+
+    return(ret);
+}
+
+STATIC bool
+S_grok_bslash_N(pTHX_ RExC_state_t *pRExC_state,
+                regnode ** node_p,
+                UV * code_point_p,
+                int * cp_count,
+                I32 * flagp,
+                const U32 depth
+    )
+{
+ /* This routine teases apart the various meanings of \N and returns
+  * accordingly.  The input parameters constrain which meaning(s) is/are valid
+  * in the current context.
+  *
+  * Exactly one of <node_p> and <code_point_p> must be non-NULL.
+  *
+  * If <code_point_p> is not NULL, the context is expecting the result to be a
+  * single code point.  If this \N instance turns out to a single code point,
+  * the function returns TRUE and sets *code_point_p to that code point.
+  *
+  * If <node_p> is not NULL, the context is expecting the result to be one of
+  * the things representable by a regnode.  If this \N instance turns out to be
+  * one such, the function generates the regnode, returns TRUE and sets *node_p
+  * to point to that regnode.
+  *
+  * If this instance of \N isn't legal in any context, this function will
+  * generate a fatal error and not return.
+  *
+  * On input, RExC_parse should point to the first char following the \N at the
+  * time of the call.  On successful return, RExC_parse will have been updated
+  * to point to just after the sequence identified by this routine.  Also
+  * *flagp has been updated as needed.
+  *
+  * When there is some problem with the current context and this \N instance,
+  * the function returns FALSE, without advancing RExC_parse, nor setting
+  * *node_p, nor *code_point_p, nor *flagp.
+  *
+  * If <cp_count> is not NULL, the caller wants to know the length (in code
+  * points) that this \N sequence matches.  This is set even if the function
+  * returns FALSE, as detailed below.
+  *
+  * There are 5 possibilities here, as detailed in the next 5 paragraphs.
+  *
+  * Probably the most common case is for the \N to specify a single code point.
+  * *cp_count will be set to 1, and *code_point_p will be set to that code
+  * point.
+  *
+  * Another possibility is for the input to be an empty \N{}, which for
+  * backwards compatibility we accept.  *cp_count will be set to 0. *node_p
+  * will be set to a generated NOTHING node.
+  *
+  * Still another possibility is for the \N to mean [^\n]. *cp_count will be
+  * set to 0. *node_p will be set to a generated REG_ANY node.
+  *
+  * The fourth possibility is that \N resolves to a sequence of more than one
+  * code points.  *cp_count will be set to the number of code points in the
+  * sequence. *node_p * will be set to a generated node returned by this
+  * function calling S_reg().
+  *
+  * The final possibility, which happens only when the fourth one would
+  * otherwise be in effect, is that one of those code points requires the
+  * pattern to be recompiled as UTF-8.  The function returns FALSE, and sets
+  * the RESTART_UTF8 flag in *flagp.  When this happens, the caller needs to
+  * desist from continuing parsing, and return this information to its caller.
+  * This is not set for when there is only one code point, as this can be
+  * called as part of an ANYOF node, and they can store above-Latin1 code
+  * points without the pattern having to be in UTF-8.
+  *
+  * For non-single-quoted regexes, the tokenizer has resolved character and
+  * sequence names inside \N{...} into their Unicode values, normalizing the
+  * result into what we should see here: '\N{U+c1.c2...}', where c1... are the
+  * hex-represented code points in the sequence.  This is done there because
+  * the names can vary based on what charnames pragma is in scope at the time,
+  * so we need a way to take a snapshot of what they resolve to at the time of
+  * the original parse. [perl #56444].
+  *
+  * That parsing is skipped for single-quoted regexes, so we may here get
+  * '\N{NAME}'.  This is a fatal error.  These names have to be resolved by the
+  * parser.  But if the single-quoted regex is something like '\N{U+41}', that
+  * is legal and handled here.  The code point is Unicode, and has to be
+  * translated into the native character set for non-ASCII platforms.
+  * the tokenizer passes the \N sequence through unchanged; this code will not
+  * attempt to determine this nor expand those, instead raising a syntax error.
+  */
+
+    char * endbrace;    /* points to '}' following the name */
+    char *endchar;     /* Points to '.' or '}' ending cur char in the input
+                           stream */
+    char* p;            /* Temporary */
+
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_GROK_BSLASH_N;
+
+    GET_RE_DEBUG_FLAGS;
+
+    assert(cBOOL(node_p) ^ cBOOL(code_point_p));  /* Exactly one should be set */
+    assert(! (node_p && cp_count));               /* At most 1 should be set */
+
+    if (cp_count) {     /* Initialize return for the most common case */
+        *cp_count = 1;
+    }
+
+    /* The [^\n] meaning of \N ignores spaces and comments under the /x
+     * modifier.  The other meanings do not, so use a temporary until we find
+     * out which we are being called with */
+    p = (RExC_flags & RXf_PMf_EXTENDED)
+       ? regpatws(pRExC_state, RExC_parse,
+                                TRUE) /* means recognize comments */
+       : RExC_parse;
+
+    /* Disambiguate between \N meaning a named character versus \N meaning
+     * [^\n].  The latter is assumed when the {...} following the \N is a legal
+     * quantifier, or there is no a '{' at all */
+    if (*p != '{' || regcurly(p)) {
+       RExC_parse = p;
+        if (cp_count) {
+            *cp_count = -1;
+        }
+
+       if (! node_p) {
+            return FALSE;
+        }
+        RExC_parse--;   /* Need to back off so nextchar() doesn't skip the
+                           current char */
+       nextchar(pRExC_state);
+       *node_p = reg_node(pRExC_state, REG_ANY);
+       *flagp |= HASWIDTH|SIMPLE;
+       MARK_NAUGHTY(1);
+        Set_Node_Length(*node_p, 1); /* MJD */
+       return TRUE;
+    }
+
+    /* Here, we have decided it should be a named character or sequence */
+
+    /* The test above made sure that the next real character is a '{', but
+     * under the /x modifier, it could be separated by space (or a comment and
+     * \n) and this is not allowed (for consistency with \x{...} and the
+     * tokenizer handling of \N{NAME}). */
+    if (*RExC_parse != '{') {
+       vFAIL("Missing braces on \\N{}");
+    }
+
+    RExC_parse++;      /* Skip past the '{' */
+
+    if (! (endbrace = strchr(RExC_parse, '}'))  /* no trailing brace */
+       || ! (endbrace == RExC_parse            /* nothing between the {} */
+              || (endbrace - RExC_parse >= 2   /* U+ (bad hex is checked... */
+                  && strnEQ(RExC_parse, "U+", 2)))) /* ... below for a better
+                                                       error msg) */
+    {
+       if (endbrace) RExC_parse = endbrace;    /* position msg's '<--HERE' */
+       vFAIL("\\N{NAME} must be resolved by the lexer");
+    }
+
+    RExC_uni_semantics = 1; /* Unicode named chars imply Unicode semantics */
+
+    if (endbrace == RExC_parse) {   /* empty: \N{} */
+        if (cp_count) {
+            *cp_count = 0;
+        }
+        nextchar(pRExC_state);
+       if (! node_p) {
+            return FALSE;
+        }
+
+        *node_p = reg_node(pRExC_state,NOTHING);
+        return TRUE;
+    }
+
+    RExC_parse += 2;   /* Skip past the 'U+' */
+
+    endchar = RExC_parse + strcspn(RExC_parse, ".}");
+
+    /* Code points are separated by dots.  If none, there is only one code
+     * point, and is terminated by the brace */
+
+    if (endchar >= endbrace) {
+       STRLEN length_of_hex;
+       I32 grok_hex_flags;
+
+        /* Here, exactly one code point.  If that isn't what is wanted, fail */
+        if (! code_point_p) {
+            RExC_parse = p;
+            return FALSE;
+        }
+
+        /* Convert code point from hex */
+       length_of_hex = (STRLEN)(endchar - RExC_parse);
+       grok_hex_flags = PERL_SCAN_ALLOW_UNDERSCORES
+                           | PERL_SCAN_DISALLOW_PREFIX
+
+                             /* No errors in the first pass (See [perl
+                              * #122671].)  We let the code below find the
+                              * errors when there are multiple chars. */
+                           | ((SIZE_ONLY)
+                              ? PERL_SCAN_SILENT_ILLDIGIT
+                              : 0);
+
+        /* This routine is the one place where both single- and double-quotish
+         * \N{U+xxxx} are evaluated.  The value is a Unicode code point which
+         * must be converted to native. */
+       *code_point_p = UNI_TO_NATIVE(grok_hex(RExC_parse,
+                                         &length_of_hex,
+                                         &grok_hex_flags,
+                                         NULL));
+
+       /* The tokenizer should have guaranteed validity, but it's possible to
+         * bypass it by using single quoting, so check.  Don't do the check
+         * here when there are multiple chars; we do it below anyway. */
+        if (length_of_hex == 0
+            || length_of_hex != (STRLEN)(endchar - RExC_parse) )
+        {
+            RExC_parse += length_of_hex;       /* Includes all the valid */
+            RExC_parse += (RExC_orig_utf8)     /* point to after 1st invalid */
+                            ? UTF8SKIP(RExC_parse)
+                            : 1;
+            /* Guard against malformed utf8 */
+            if (RExC_parse >= endchar) {
+                RExC_parse = endchar;
+            }
+            vFAIL("Invalid hexadecimal number in \\N{U+...}");
+        }
+
+        RExC_parse = endbrace + 1;
+        return TRUE;
+    }
+    else {  /* Is a multiple character sequence */
+       SV * substitute_parse;
+       STRLEN len;
+       char *orig_end = RExC_end;
+        I32 flags;
+
+        /* Count the code points, if desired, in the sequence */
+        if (cp_count) {
+            *cp_count = 0;
+            while (RExC_parse < endbrace) {
+                /* Point to the beginning of the next character in the sequence. */
+                RExC_parse = endchar + 1;
+                endchar = RExC_parse + strcspn(RExC_parse, ".}");
+                (*cp_count)++;
+            }
+        }
+
+        /* Fail if caller doesn't want to handle a multi-code-point sequence.
+         * But don't backup up the pointer if the caller want to know how many
+         * code points there are (they can then handle things) */
+        if (! node_p) {
+            if (! cp_count) {
+                RExC_parse = p;
+            }
+            return FALSE;
+        }
+
+       /* What is done here is to convert this to a sub-pattern of the form
+         * \x{char1}\x{char2}...  and then call reg recursively to parse it
+         * (enclosing in "(?: ... )" ).  That way, it retains its atomicness,
+         * while not having to worry about special handling that some code
+         * points may have. */
+
+       substitute_parse = newSVpvs("?:");
+
+       while (RExC_parse < endbrace) {
+
+           /* Convert to notation the rest of the code understands */
+           sv_catpv(substitute_parse, "\\x{");
+           sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
+           sv_catpv(substitute_parse, "}");
+
+           /* Point to the beginning of the next character in the sequence. */
+           RExC_parse = endchar + 1;
+           endchar = RExC_parse + strcspn(RExC_parse, ".}");
+
+       }
+        sv_catpv(substitute_parse, ")");
+
+       RExC_parse = SvPV(substitute_parse, len);
+
+       /* Don't allow empty number */
+       if (len < (STRLEN) 8) {
+            RExC_parse = endbrace;
+           vFAIL("Invalid hexadecimal number in \\N{U+...}");
+       }
+       RExC_end = RExC_parse + len;
+
+        /* The values are Unicode, and therefore not subject to recoding, but
+         * have to be converted to native on a non-Unicode (meaning non-ASCII)
+         * platform. */
+       RExC_override_recoding = 1;
+#ifdef EBCDIC
+        RExC_recode_x_to_native = 1;
+#endif
+
+        if (node_p) {
+            if (!(*node_p = reg(pRExC_state, 1, &flags, depth+1))) {
+                if (flags & RESTART_UTF8) {
+                    *flagp = RESTART_UTF8;
+                    return FALSE;
+                }
+                FAIL2("panic: reg returned NULL to grok_bslash_N, flags=%#"UVxf"",
+                    (UV) flags);
+            }
+            *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
+        }
+
+        /* Restore the saved values */
+       RExC_parse = endbrace;
+       RExC_end = orig_end;
+       RExC_override_recoding = 0;
+#ifdef EBCDIC
+        RExC_recode_x_to_native = 0;
+#endif
+
+        SvREFCNT_dec_NN(substitute_parse);
+        nextchar(pRExC_state);
+
+        return TRUE;
+    }
+}
+
+
+/*
+ * reg_recode
+ *
+ * It returns the code point in utf8 for the value in *encp.
+ *    value: a code value in the source encoding
+ *    encp:  a pointer to an Encode object
+ *
+ * If the result from Encode is not a single character,
+ * it returns U+FFFD (Replacement character) and sets *encp to NULL.
+ */
+STATIC UV
+S_reg_recode(pTHX_ const char value, SV **encp)
+{
+    STRLEN numlen = 1;
+    SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
+    const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
+    const STRLEN newlen = SvCUR(sv);
+    UV uv = UNICODE_REPLACEMENT;
+
+    PERL_ARGS_ASSERT_REG_RECODE;
+
+    if (newlen)
+       uv = SvUTF8(sv)
+            ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
+            : *(U8*)s;
+
+    if (!newlen || numlen != newlen) {
+       uv = UNICODE_REPLACEMENT;
+       *encp = NULL;
+    }
+    return uv;
+}
+
+PERL_STATIC_INLINE U8
+S_compute_EXACTish(RExC_state_t *pRExC_state)
+{
+    U8 op;
+
+    PERL_ARGS_ASSERT_COMPUTE_EXACTISH;
+
+    if (! FOLD) {
+        return (LOC)
+                ? EXACTL
+                : EXACT;
+    }
+
+    op = get_regex_charset(RExC_flags);
+    if (op >= REGEX_ASCII_RESTRICTED_CHARSET) {
+        op--; /* /a is same as /u, and map /aa's offset to what /a's would have
+                 been, so there is no hole */
+    }
+
+    return op + EXACTF;
+}
+
+PERL_STATIC_INLINE void
+S_alloc_maybe_populate_EXACT(pTHX_ RExC_state_t *pRExC_state,
+                         regnode *node, I32* flagp, STRLEN len, UV code_point,
+                         bool downgradable)
+{
+    /* This knows the details about sizing an EXACTish node, setting flags for
+     * it (by setting <*flagp>, and potentially populating it with a single
+     * character.
+     *
+     * If <len> (the length in bytes) is non-zero, this function assumes that
+     * the node has already been populated, and just does the sizing.  In this
+     * case <code_point> should be the final code point that has already been
+     * placed into the node.  This value will be ignored except that under some
+     * circumstances <*flagp> is set based on it.
+     *
+     * If <len> is zero, the function assumes that the node is to contain only
+     * the single character given by <code_point> and calculates what <len>
+     * should be.  In pass 1, it sizes the node appropriately.  In pass 2, it
+     * additionally will populate the node's STRING with <code_point> or its
+     * fold if folding.
+     *
+     * In both cases <*flagp> is appropriately set
+     *
+     * It knows that under FOLD, the Latin Sharp S and UTF characters above
+     * 255, must be folded (the former only when the rules indicate it can
+     * match 'ss')
+     *
+     * When it does the populating, it looks at the flag 'downgradable'.  If
+     * true with a node that folds, it checks if the single code point
+     * participates in a fold, and if not downgrades the node to an EXACT.
+     * This helps the optimizer */
+
+    bool len_passed_in = cBOOL(len != 0);
+    U8 character[UTF8_MAXBYTES_CASE+1];
+
+    PERL_ARGS_ASSERT_ALLOC_MAYBE_POPULATE_EXACT;
+
+    /* Don't bother to check for downgrading in PASS1, as it doesn't make any
+     * sizing difference, and is extra work that is thrown away */
+    if (downgradable && ! PASS2) {
+        downgradable = FALSE;
+    }
+
+    if (! len_passed_in) {
+        if (UTF) {
+            if (UVCHR_IS_INVARIANT(code_point)) {
+                if (LOC || ! FOLD) {    /* /l defers folding until runtime */
+                    *character = (U8) code_point;
+                }
+                else { /* Here is /i and not /l. (toFOLD() is defined on just
+                          ASCII, which isn't the same thing as INVARIANT on
+                          EBCDIC, but it works there, as the extra invariants
+                          fold to themselves) */
+                    *character = toFOLD((U8) code_point);
+
+                    /* We can downgrade to an EXACT node if this character
+                     * isn't a folding one.  Note that this assumes that
+                     * nothing above Latin1 folds to some other invariant than
+                     * one of these alphabetics; otherwise we would also have
+                     * to check:
+                     *  && (! HAS_NONLATIN1_FOLD_CLOSURE(code_point)
+                     *      || ASCII_FOLD_RESTRICTED))
+                     */
+                    if (downgradable && PL_fold[code_point] == code_point) {
+                        OP(node) = EXACT;
+                    }
+                }
+                len = 1;
+            }
+            else if (FOLD && (! LOC
+                              || ! is_PROBLEMATIC_LOCALE_FOLD_cp(code_point)))
+            {   /* Folding, and ok to do so now */
+                UV folded = _to_uni_fold_flags(
+                                   code_point,
+                                   character,
+                                   &len,
+                                   FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
+                                                      ? FOLD_FLAGS_NOMIX_ASCII
+                                                      : 0));
+                if (downgradable
+                    && folded == code_point /* This quickly rules out many
+                                               cases, avoiding the
+                                               _invlist_contains_cp() overhead
+                                               for those.  */
+                    && ! _invlist_contains_cp(PL_utf8_foldable, code_point))
+                {
+                    OP(node) = (LOC)
+                               ? EXACTL
+                               : EXACT;
+                }
+            }
+            else if (code_point <= MAX_UTF8_TWO_BYTE) {
+
+                /* Not folding this cp, and can output it directly */
+                *character = UTF8_TWO_BYTE_HI(code_point);
+                *(character + 1) = UTF8_TWO_BYTE_LO(code_point);
+                len = 2;
+            }
+            else {
+                uvchr_to_utf8( character, code_point);
+                len = UTF8SKIP(character);
+            }
+        } /* Else pattern isn't UTF8.  */
+        else if (! FOLD) {
+            *character = (U8) code_point;
+            len = 1;
+        } /* Else is folded non-UTF8 */
+        else if (LIKELY(code_point != LATIN_SMALL_LETTER_SHARP_S)) {
+
+            /* We don't fold any non-UTF8 except possibly the Sharp s  (see
+             * comments at join_exact()); */
+            *character = (U8) code_point;
+            len = 1;
+
+            /* Can turn into an EXACT node if we know the fold at compile time,
+             * and it folds to itself and doesn't particpate in other folds */
+            if (downgradable
+                && ! LOC
+                && PL_fold_latin1[code_point] == code_point
+                && (! HAS_NONLATIN1_FOLD_CLOSURE(code_point)
+                    || (isASCII(code_point) && ASCII_FOLD_RESTRICTED)))
+            {
+                OP(node) = EXACT;
+            }
+        } /* else is Sharp s.  May need to fold it */
+        else if (AT_LEAST_UNI_SEMANTICS && ! ASCII_FOLD_RESTRICTED) {
+            *character = 's';
+            *(character + 1) = 's';
+            len = 2;
+        }
+        else {
+            *character = LATIN_SMALL_LETTER_SHARP_S;
+            len = 1;
+        }
+    }
+
+    if (SIZE_ONLY) {
+        RExC_size += STR_SZ(len);
+    }
+    else {
+        RExC_emit += STR_SZ(len);
+        STR_LEN(node) = len;
+        if (! len_passed_in) {
+            Copy((char *) character, STRING(node), len, char);
+        }
+    }
+
+    *flagp |= HASWIDTH;
+
+    /* A single character node is SIMPLE, except for the special-cased SHARP S
+     * under /di. */
+    if ((len == 1 || (UTF && len == UNISKIP(code_point)))
+        && (code_point != LATIN_SMALL_LETTER_SHARP_S
+            || ! FOLD || ! DEPENDS_SEMANTICS))
+    {
+        *flagp |= SIMPLE;
+    }
+
+    /* The OP may not be well defined in PASS1 */
+    if (PASS2 && OP(node) == EXACTFL) {
+        RExC_contains_locale = 1;
+    }
+}
+
+
+/* Parse backref decimal value, unless it's too big to sensibly be a backref,
+ * in which case return I32_MAX (rather than possibly 32-bit wrapping) */
+
+static I32
+S_backref_value(char *p)
+{
+    const char* endptr;
+    UV val;
+    if (grok_atoUV(p, &val, &endptr) && val <= I32_MAX)
+        return (I32)val;
+    return I32_MAX;
+}
+
+
+/*
+ - regatom - the lowest level
+
+   Try to identify anything special at the start of the pattern. If there
+   is, then handle it as required. This may involve generating a single regop,
+   such as for an assertion; or it may involve recursing, such as to
+   handle a () structure.
+
+   If the string doesn't start with something special then we gobble up
+   as much literal text as we can.
+
+   Once we have been able to handle whatever type of thing started the
+   sequence, we return.
+
+   Note: we have to be careful with escapes, as they can be both literal
+   and special, and in the case of \10 and friends, context determines which.
+
+   A summary of the code structure is:
+
+   switch (first_byte) {
+       cases for each special:
+           handle this special;
+           break;
+       case '\\':
+           switch (2nd byte) {
+               cases for each unambiguous special:
+                   handle this special;
+                   break;
+               cases for each ambigous special/literal:
+                   disambiguate;
+                   if (special)  handle here
+                   else goto defchar;
+               default: // unambiguously literal:
+                   goto defchar;
+           }
+       default:  // is a literal char
+           // FALL THROUGH
+       defchar:
+           create EXACTish node for literal;
+           while (more input and node isn't full) {
+               switch (input_byte) {
+                  cases for each special;
+                       make sure parse pointer is set so that the next call to
+                           regatom will see this special first
+                       goto loopdone; // EXACTish node terminated by prev. char
+                  default:
+                      append char to EXACTISH node;
+               }
+               get next input byte;
+           }
+        loopdone:
+   }
+   return the generated node;
+
+   Specifically there are two separate switches for handling
+   escape sequences, with the one for handling literal escapes requiring
+   a dummy entry for all of the special escapes that are actually handled
+   by the other.
+
+   Returns NULL, setting *flagp to TRYAGAIN if reg() returns NULL with
+   TRYAGAIN.
+   Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
+   restarted.
+   Otherwise does not return NULL.
+*/
+
+STATIC regnode *
+S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
+{
+    regnode *ret = NULL;
+    I32 flags = 0;
+    char *parse_start = RExC_parse;
+    U8 op;
+    int invert = 0;
+    U8 arg;
+
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    *flagp = WORST;            /* Tentatively. */
+
+    DEBUG_PARSE("atom");
+
+    PERL_ARGS_ASSERT_REGATOM;
+
+  tryagain:
+    switch ((U8)*RExC_parse) {
+    case '^':
+       RExC_seen_zerolen++;
+       nextchar(pRExC_state);
+       if (RExC_flags & RXf_PMf_MULTILINE)
+           ret = reg_node(pRExC_state, MBOL);
+       else
+           ret = reg_node(pRExC_state, SBOL);
+        Set_Node_Length(ret, 1); /* MJD */
+       break;
+    case '$':
+       nextchar(pRExC_state);
+       if (*RExC_parse)
+           RExC_seen_zerolen++;
+       if (RExC_flags & RXf_PMf_MULTILINE)
+           ret = reg_node(pRExC_state, MEOL);
+       else
+           ret = reg_node(pRExC_state, SEOL);
+        Set_Node_Length(ret, 1); /* MJD */
+       break;
+    case '.':
+       nextchar(pRExC_state);
+       if (RExC_flags & RXf_PMf_SINGLELINE)
+           ret = reg_node(pRExC_state, SANY);
+       else
+           ret = reg_node(pRExC_state, REG_ANY);
+       *flagp |= HASWIDTH|SIMPLE;
+       MARK_NAUGHTY(1);
+        Set_Node_Length(ret, 1); /* MJD */
+       break;
+    case '[':
+    {
+       char * const oregcomp_parse = ++RExC_parse;
+        ret = regclass(pRExC_state, flagp,depth+1,
+                       FALSE, /* means parse the whole char class */
+                       TRUE, /* allow multi-char folds */
+                       FALSE, /* don't silence non-portable warnings. */
+                       (bool) RExC_strict,
+                       NULL);
+       if (*RExC_parse != ']') {
+           RExC_parse = oregcomp_parse;
+           vFAIL("Unmatched [");
+       }
+        if (ret == NULL) {
+            if (*flagp & RESTART_UTF8)
+                return NULL;
+            FAIL2("panic: regclass returned NULL to regatom, flags=%#"UVxf"",
+                  (UV) *flagp);
+        }
+       nextchar(pRExC_state);
+        Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
+       break;
+    }
+    case '(':
+       nextchar(pRExC_state);
+        ret = reg(pRExC_state, 2, &flags,depth+1);
+       if (ret == NULL) {
+               if (flags & TRYAGAIN) {
+                   if (RExC_parse == RExC_end) {
+                        /* Make parent create an empty node if needed. */
+                       *flagp |= TRYAGAIN;
+                       return(NULL);
+                   }
+                   goto tryagain;
+               }
+                if (flags & RESTART_UTF8) {
+                    *flagp = RESTART_UTF8;
+                    return NULL;
+                }
+                FAIL2("panic: reg returned NULL to regatom, flags=%#"UVxf"",
+                                                                 (UV) flags);
+       }
+       *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
+       break;
+    case '|':
+    case ')':
+       if (flags & TRYAGAIN) {
+           *flagp |= TRYAGAIN;
+           return NULL;
+       }
+       vFAIL("Internal urp");
+                               /* Supposed to be caught earlier. */
+       break;
+    case '?':
+    case '+':
+    case '*':
+       RExC_parse++;
+       vFAIL("Quantifier follows nothing");
+       break;
+    case '\\':
+       /* Special Escapes
+
+          This switch handles escape sequences that resolve to some kind
+          of special regop and not to literal text. Escape sequnces that
+          resolve to literal text are handled below in the switch marked
+          "Literal Escapes".
+
+          Every entry in this switch *must* have a corresponding entry
+          in the literal escape switch. However, the opposite is not
+          required, as the default for this switch is to jump to the
+          literal text handling code.
+       */
+       switch ((U8)*++RExC_parse) {
+       /* Special Escapes */
+       case 'A':
+           RExC_seen_zerolen++;
+           ret = reg_node(pRExC_state, SBOL);
+            /* SBOL is shared with /^/ so we set the flags so we can tell
+             * /\A/ from /^/ in split. We check ret because first pass we
+             * have no regop struct to set the flags on. */
+            if (PASS2)
+                ret->flags = 1;
+           *flagp |= SIMPLE;
+           goto finish_meta_pat;
+       case 'G':
+           ret = reg_node(pRExC_state, GPOS);
+            RExC_seen |= REG_GPOS_SEEN;
+           *flagp |= SIMPLE;
+           goto finish_meta_pat;
+       case 'K':
+           RExC_seen_zerolen++;
+           ret = reg_node(pRExC_state, KEEPS);
+           *flagp |= SIMPLE;
+           /* XXX:dmq : disabling in-place substitution seems to
+            * be necessary here to avoid cases of memory corruption, as
+            * with: C<$_="x" x 80; s/x\K/y/> -- rgs
+            */
+            RExC_seen |= REG_LOOKBEHIND_SEEN;
+           goto finish_meta_pat;
+       case 'Z':
+           ret = reg_node(pRExC_state, SEOL);
+           *flagp |= SIMPLE;
+           RExC_seen_zerolen++;                /* Do not optimize RE away */
+           goto finish_meta_pat;
+       case 'z':
+           ret = reg_node(pRExC_state, EOS);
+           *flagp |= SIMPLE;
+           RExC_seen_zerolen++;                /* Do not optimize RE away */
+           goto finish_meta_pat;
+       case 'C':
+           vFAIL("\\C no longer supported");
+       case 'X':
+           ret = reg_node(pRExC_state, CLUMP);
+           *flagp |= HASWIDTH;
+           goto finish_meta_pat;
+
+       case 'W':
+            invert = 1;
+            /* FALLTHROUGH */
+       case 'w':
+            arg = ANYOF_WORDCHAR;
+            goto join_posix;
+
+       case 'B':
+            invert = 1;
+            /* FALLTHROUGH */
+       case 'b':
+          {
+           regex_charset charset = get_regex_charset(RExC_flags);
+
+           RExC_seen_zerolen++;
+            RExC_seen |= REG_LOOKBEHIND_SEEN;
+           op = BOUND + charset;
+
+            if (op == BOUNDL) {
+                RExC_contains_locale = 1;
+            }
+
+           ret = reg_node(pRExC_state, op);
+           *flagp |= SIMPLE;
+           if (*(RExC_parse + 1) != '{') {
+                FLAGS(ret) = TRADITIONAL_BOUND;
+                if (PASS2 && op > BOUNDA) {  /* /aa is same as /a */
+                    OP(ret) = BOUNDA;
+                }
+            }
+            else {
+                STRLEN length;
+                char name = *RExC_parse;
+                char * endbrace;
+                RExC_parse += 2;
+                endbrace = strchr(RExC_parse, '}');
+
+                if (! endbrace) {
+                    vFAIL2("Missing right brace on \\%c{}", name);
+                }
+                /* XXX Need to decide whether to take spaces or not.  Should be
+                 * consistent with \p{}, but that currently is SPACE, which
+                 * means vertical too, which seems wrong
+                 * while (isBLANK(*RExC_parse)) {
+                    RExC_parse++;
+                }*/
+                if (endbrace == RExC_parse) {
+                    RExC_parse++;  /* After the '}' */
+                    vFAIL2("Empty \\%c{}", name);
+                }
+                length = endbrace - RExC_parse;
+                /*while (isBLANK(*(RExC_parse + length - 1))) {
+                    length--;
+                }*/
+                switch (*RExC_parse) {
+                    case 'g':
+                        if (length != 1
+                            && (length != 3 || strnNE(RExC_parse + 1, "cb", 2)))
+                        {
+                            goto bad_bound_type;
+                        }
+                        FLAGS(ret) = GCB_BOUND;
+                        break;
+                    case 's':
+                        if (length != 2 || *(RExC_parse + 1) != 'b') {
+                            goto bad_bound_type;
+                        }
+                        FLAGS(ret) = SB_BOUND;
+                        break;
+                    case 'w':
+                        if (length != 2 || *(RExC_parse + 1) != 'b') {
+                            goto bad_bound_type;
+                        }
+                        FLAGS(ret) = WB_BOUND;
+                        break;
+                    default:
+                      bad_bound_type:
+                        RExC_parse = endbrace;
+                       vFAIL2utf8f(
+                            "'%"UTF8f"' is an unknown bound type",
+                           UTF8fARG(UTF, length, endbrace - length));
+                        NOT_REACHED; /*NOTREACHED*/
+                }
+                RExC_parse = endbrace;
+                RExC_uni_semantics = 1;
+
+                if (PASS2 && op >= BOUNDA) {  /* /aa is same as /a */
+                    OP(ret) = BOUNDU;
+                    length += 4;
+
+                    /* Don't have to worry about UTF-8, in this message because
+                     * to get here the contents of the \b must be ASCII */
+                    ckWARN4reg(RExC_parse + 1,  /* Include the '}' in msg */
+                              "Using /u for '%.*s' instead of /%s",
+                              (unsigned) length,
+                              endbrace - length + 1,
+                              (charset == REGEX_ASCII_RESTRICTED_CHARSET)
+                              ? ASCII_RESTRICT_PAT_MODS
+                              : ASCII_MORE_RESTRICT_PAT_MODS);
+                }
+           }
+
+            if (PASS2 && invert) {
+                OP(ret) += NBOUND - BOUND;
+            }
+           goto finish_meta_pat;
+          }
+
+       case 'D':
+            invert = 1;
+            /* FALLTHROUGH */
+       case 'd':
+            arg = ANYOF_DIGIT;
+            if (! DEPENDS_SEMANTICS) {
+                goto join_posix;
+            }
+
+            /* \d doesn't have any matches in the upper Latin1 range, hence /d
+             * is equivalent to /u.  Changing to /u saves some branches at
+             * runtime */
+            op = POSIXU;
+            goto join_posix_op_known;
+
+       case 'R':
+           ret = reg_node(pRExC_state, LNBREAK);
+           *flagp |= HASWIDTH|SIMPLE;
+           goto finish_meta_pat;
+
+       case 'H':
+            invert = 1;
+            /* FALLTHROUGH */
+       case 'h':
+           arg = ANYOF_BLANK;
+            op = POSIXU;
+            goto join_posix_op_known;
+
+       case 'V':
+            invert = 1;
+            /* FALLTHROUGH */
+       case 'v':
+           arg = ANYOF_VERTWS;
+            op = POSIXU;
+            goto join_posix_op_known;
+
+       case 'S':
+            invert = 1;
+            /* FALLTHROUGH */
+       case 's':
+            arg = ANYOF_SPACE;
+
+          join_posix:
+
+           op = POSIXD + get_regex_charset(RExC_flags);
+            if (op > POSIXA) {  /* /aa is same as /a */
+                op = POSIXA;
+            }
+            else if (op == POSIXL) {
+                RExC_contains_locale = 1;
+            }
+
+          join_posix_op_known:
+
+            if (invert) {
+                op += NPOSIXD - POSIXD;
+            }
+
+           ret = reg_node(pRExC_state, op);
+            if (! SIZE_ONLY) {
+                FLAGS(ret) = namedclass_to_classnum(arg);
+            }
+
+           *flagp |= HASWIDTH|SIMPLE;
+            /* FALLTHROUGH */
+
+          finish_meta_pat:
+           nextchar(pRExC_state);
+            Set_Node_Length(ret, 2); /* MJD */
+           break;
+       case 'p':
+       case 'P':
+           {
+#ifdef DEBUGGING
+               char* parse_start = RExC_parse - 2;
+#endif
+
+               RExC_parse--;
+
+                ret = regclass(pRExC_state, flagp,depth+1,
+                               TRUE, /* means just parse this element */
+                               FALSE, /* don't allow multi-char folds */
+                               FALSE, /* don't silence non-portable warnings.
+                                         It would be a bug if these returned
+                                         non-portables */
+                               (bool) RExC_strict,
+                               NULL);
+                /* regclass() can only return RESTART_UTF8 if multi-char folds
+                   are allowed.  */
+                if (!ret)
+                    FAIL2("panic: regclass returned NULL to regatom, flags=%#"UVxf"",
+                          (UV) *flagp);
+
+               RExC_parse--;
+
+               Set_Node_Offset(ret, parse_start + 2);
+                Set_Node_Cur_Length(ret, parse_start);
+               nextchar(pRExC_state);
+           }
+           break;
+        case 'N':
+            /* Handle \N, \N{} and \N{NAMED SEQUENCE} (the latter meaning the
+             * \N{...} evaluates to a sequence of more than one code points).
+             * The function call below returns a regnode, which is our result.
+             * The parameters cause it to fail if the \N{} evaluates to a
+             * single code point; we handle those like any other literal.  The
+             * reason that the multicharacter case is handled here and not as
+             * part of the EXACtish code is because of quantifiers.  In
+             * /\N{BLAH}+/, the '+' applies to the whole thing, and doing it
+             * this way makes that Just Happen. dmq.
+             * join_exact() will join this up with adjacent EXACTish nodes
+             * later on, if appropriate. */
+            ++RExC_parse;
+            if (grok_bslash_N(pRExC_state,
+                              &ret,     /* Want a regnode returned */
+                              NULL,     /* Fail if evaluates to a single code
+                                           point */
+                              NULL,     /* Don't need a count of how many code
+                                           points */
+                              flagp,
+                              depth)
+            ) {
+                break;
+            }
+
+            if (*flagp & RESTART_UTF8)
+                return NULL;
+            RExC_parse--;
+            goto defchar;
+
+       case 'k':    /* Handle \k<NAME> and \k'NAME' */
+      parse_named_seq:
+        {
+            char ch= RExC_parse[1];
+           if (ch != '<' && ch != '\'' && ch != '{') {
+               RExC_parse++;
+               /* diag_listed_as: Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/ */
+               vFAIL2("Sequence %.2s... not terminated",parse_start);
+           } else {
+               /* this pretty much dupes the code for (?P=...) in reg(), if
+                   you change this make sure you change that */
+               char* name_start = (RExC_parse += 2);
+               U32 num = 0;
+                SV *sv_dat = reg_scan_name(pRExC_state,
+                    SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+                ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
+                if (RExC_parse == name_start || *RExC_parse != ch)
+                    /* diag_listed_as: Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/ */
+                    vFAIL2("Sequence %.3s... not terminated",parse_start);
+
+                if (!SIZE_ONLY) {
+                    num = add_data( pRExC_state, STR_WITH_LEN("S"));
+                    RExC_rxi->data->data[num]=(void*)sv_dat;
+                    SvREFCNT_inc_simple_void(sv_dat);
+                }
+
+                RExC_sawback = 1;
+                ret = reganode(pRExC_state,
+                               ((! FOLD)
+                                 ? NREF
+                                : (ASCII_FOLD_RESTRICTED)
+                                  ? NREFFA
+                                   : (AT_LEAST_UNI_SEMANTICS)
+                                     ? NREFFU
+                                     : (LOC)
+                                       ? NREFFL
+                                       : NREFF),
+                                num);
+                *flagp |= HASWIDTH;
+
+                /* override incorrect value set in reganode MJD */
+                Set_Node_Offset(ret, parse_start+1);
+                Set_Node_Cur_Length(ret, parse_start);
+                nextchar(pRExC_state);
+
+            }
+            break;
+       }
+       case 'g':
+       case '1': case '2': case '3': case '4':
+       case '5': case '6': case '7': case '8': case '9':
+           {
+               I32 num;
+               bool hasbrace = 0;
+
+               if (*RExC_parse == 'g') {
+                    bool isrel = 0;
+
+                   RExC_parse++;
+                   if (*RExC_parse == '{') {
+                       RExC_parse++;
+                       hasbrace = 1;
+                   }
+                   if (*RExC_parse == '-') {
+                       RExC_parse++;
+                       isrel = 1;
+                   }
+                   if (hasbrace && !isDIGIT(*RExC_parse)) {
+                       if (isrel) RExC_parse--;
+                        RExC_parse -= 2;
+                       goto parse_named_seq;
+                    }
+
+                    num = S_backref_value(RExC_parse);
+                    if (num == 0)
+                        vFAIL("Reference to invalid group 0");
+                    else if (num == I32_MAX) {
+                         if (isDIGIT(*RExC_parse))
+                           vFAIL("Reference to nonexistent group");
+                        else
+                            vFAIL("Unterminated \\g... pattern");
+                    }
+
+                    if (isrel) {
+                        num = RExC_npar - num;
+                        if (num < 1)
+                            vFAIL("Reference to nonexistent or unclosed group");
+                    }
+                }
+                else {
+                    num = S_backref_value(RExC_parse);
+                    /* bare \NNN might be backref or octal - if it is larger
+                     * than or equal RExC_npar then it is assumed to be an
+                     * octal escape. Note RExC_npar is +1 from the actual
+                     * number of parens. */
+                    /* Note we do NOT check if num == I32_MAX here, as that is
+                     * handled by the RExC_npar check */
+
+                    if (
+                        /* any numeric escape < 10 is always a backref */
+                        num > 9
+                        /* any numeric escape < RExC_npar is a backref */
+                        && num >= RExC_npar
+                        /* cannot be an octal escape if it starts with 8 */
+                        && *RExC_parse != '8'
+                        /* cannot be an octal escape it it starts with 9 */
+                        && *RExC_parse != '9'
+                    )
+                    {
+                        /* Probably not a backref, instead likely to be an
+                         * octal character escape, e.g. \35 or \777.
+                         * The above logic should make it obvious why using
+                         * octal escapes in patterns is problematic. - Yves */
+                        goto defchar;
+                    }
+                }
+
+                /* At this point RExC_parse points at a numeric escape like
+                 * \12 or \88 or something similar, which we should NOT treat
+                 * as an octal escape. It may or may not be a valid backref
+                 * escape. For instance \88888888 is unlikely to be a valid
+                 * backref. */
+               {
+#ifdef RE_TRACK_PATTERN_OFFSETS
+                   char * const parse_start = RExC_parse - 1; /* MJD */
+#endif
+                   while (isDIGIT(*RExC_parse))
+                       RExC_parse++;
+                    if (hasbrace) {
+                        if (*RExC_parse != '}')
+                            vFAIL("Unterminated \\g{...} pattern");
+                        RExC_parse++;
+                    }
+                   if (!SIZE_ONLY) {
+                       if (num > (I32)RExC_rx->nparens)
+                           vFAIL("Reference to nonexistent group");
+                   }
+                   RExC_sawback = 1;
+                   ret = reganode(pRExC_state,
+                                  ((! FOLD)
+                                    ? REF
+                                    : (ASCII_FOLD_RESTRICTED)
+                                      ? REFFA
+                                       : (AT_LEAST_UNI_SEMANTICS)
+                                         ? REFFU
+                                         : (LOC)
+                                           ? REFFL
+                                           : REFF),
+                                   num);
+                   *flagp |= HASWIDTH;
+
+                    /* override incorrect value set in reganode MJD */
+                    Set_Node_Offset(ret, parse_start+1);
+                    Set_Node_Cur_Length(ret, parse_start);
+                   RExC_parse--;
+                   nextchar(pRExC_state);
+               }
+           }
+           break;
+       case '\0':
+           if (RExC_parse >= RExC_end)
+               FAIL("Trailing \\");
+           /* FALLTHROUGH */
+       default:
+           /* Do not generate "unrecognized" warnings here, we fall
+              back into the quick-grab loop below */
+           parse_start--;
+           goto defchar;
+       }
+       break;
+
+    case '#':
+       if (RExC_flags & RXf_PMf_EXTENDED) {
+           RExC_parse = reg_skipcomment( pRExC_state, RExC_parse );
+           if (RExC_parse < RExC_end)
+               goto tryagain;
+       }
+       /* FALLTHROUGH */
+
+    default:
+
+            parse_start = RExC_parse - 1;
+
+           RExC_parse++;
+
+         defchar: {
+           STRLEN len = 0;
+           UV ender = 0;
+           char *p;
+           char *s;
+#define MAX_NODE_STRING_SIZE 127
+           char foldbuf[MAX_NODE_STRING_SIZE+UTF8_MAXBYTES_CASE];
+           char *s0;
+           U8 upper_parse = MAX_NODE_STRING_SIZE;
+            U8 node_type = compute_EXACTish(pRExC_state);
+            bool next_is_quantifier;
+            char * oldp = NULL;
+
+            /* We can convert EXACTF nodes to EXACTFU if they contain only
+             * characters that match identically regardless of the target
+             * string's UTF8ness.  The reason to do this is that EXACTF is not
+             * trie-able, EXACTFU is.
+             *
+             * Similarly, we can convert EXACTFL nodes to EXACTFU if they
+             * contain only above-Latin1 characters (hence must be in UTF8),
+             * which don't participate in folds with Latin1-range characters,
+             * as the latter's folds aren't known until runtime.  (We don't
+             * need to figure this out until pass 2) */
+            bool maybe_exactfu = PASS2
+                               && (node_type == EXACTF || node_type == EXACTFL);
+
+            /* If a folding node contains only code points that don't
+             * participate in folds, it can be changed into an EXACT node,
+             * which allows the optimizer more things to look for */
+            bool maybe_exact;
+
+           ret = reg_node(pRExC_state, node_type);
+
+            /* In pass1, folded, we use a temporary buffer instead of the
+             * actual node, as the node doesn't exist yet */
+           s = (SIZE_ONLY && FOLD) ? foldbuf : STRING(ret);
+
+            s0 = s;
+
+         reparse:
+
+            /* We do the EXACTFish to EXACT node only if folding.  (And we
+             * don't need to figure this out until pass 2) */
+            maybe_exact = FOLD && PASS2;
+
+           /* XXX The node can hold up to 255 bytes, yet this only goes to
+             * 127.  I (khw) do not know why.  Keeping it somewhat less than
+             * 255 allows us to not have to worry about overflow due to
+             * converting to utf8 and fold expansion, but that value is
+             * 255-UTF8_MAXBYTES_CASE.  join_exact() may join adjacent nodes
+             * split up by this limit into a single one using the real max of
+             * 255.  Even at 127, this breaks under rare circumstances.  If
+             * folding, we do not want to split a node at a character that is a
+             * non-final in a multi-char fold, as an input string could just
+             * happen to want to match across the node boundary.  The join
+             * would solve that problem if the join actually happens.  But a
+             * series of more than two nodes in a row each of 127 would cause
+             * the first join to succeed to get to 254, but then there wouldn't
+             * be room for the next one, which could at be one of those split
+             * multi-char folds.  I don't know of any fool-proof solution.  One
+             * could back off to end with only a code point that isn't such a
+             * non-final, but it is possible for there not to be any in the
+             * entire node. */
+           for (p = RExC_parse - 1;
+                len < upper_parse && p < RExC_end;
+                len++)
+           {
+               oldp = p;
+
+               if (RExC_flags & RXf_PMf_EXTENDED)
+                    p = regpatws(pRExC_state, p,
+                                          TRUE); /* means recognize comments */
+               switch ((U8)*p) {
+               case '^':
+               case '$':
+               case '.':
+               case '[':
+               case '(':
+               case ')':
+               case '|':
+                   goto loopdone;
+               case '\\':
+                   /* Literal Escapes Switch
+
+                      This switch is meant to handle escape sequences that
+                      resolve to a literal character.
+
+                      Every escape sequence that represents something
+                      else, like an assertion or a char class, is handled
+                      in the switch marked 'Special Escapes' above in this
+                      routine, but also has an entry here as anything that
+                      isn't explicitly mentioned here will be treated as
+                      an unescaped equivalent literal.
+                   */
+
+                   switch ((U8)*++p) {
+                   /* These are all the special escapes. */
+                   case 'A':             /* Start assertion */
+                   case 'b': case 'B':   /* Word-boundary assertion*/
+                   case 'C':             /* Single char !DANGEROUS! */
+                   case 'd': case 'D':   /* digit class */
+                   case 'g': case 'G':   /* generic-backref, pos assertion */
+                   case 'h': case 'H':   /* HORIZWS */
+                   case 'k': case 'K':   /* named backref, keep marker */
+                   case 'p': case 'P':   /* Unicode property */
+                             case 'R':   /* LNBREAK */
+                   case 's': case 'S':   /* space class */
+                   case 'v': case 'V':   /* VERTWS */
+                   case 'w': case 'W':   /* word class */
+                    case 'X':             /* eXtended Unicode "combining
+                                             character sequence" */
+                   case 'z': case 'Z':   /* End of line/string assertion */
+                       --p;
+                       goto loopdone;
+
+                   /* Anything after here is an escape that resolves to a
+                      literal. (Except digits, which may or may not)
+                    */
+                   case 'n':
+                       ender = '\n';
+                       p++;
+                       break;
+                   case 'N': /* Handle a single-code point named character. */
+                        RExC_parse = p + 1;
+                        if (! grok_bslash_N(pRExC_state,
+                                            NULL,   /* Fail if evaluates to
+                                                       anything other than a
+                                                       single code point */
+                                            &ender, /* The returned single code
+                                                       point */
+                                            NULL,   /* Don't need a count of
+                                                       how many code points */
+                                            flagp,
+                                            depth)
+                        ) {
+                            if (*flagp & RESTART_UTF8)
+                                FAIL("panic: grok_bslash_N set RESTART_UTF8");
+
+                            /* Here, it wasn't a single code point.  Go close
+                             * up this EXACTish node.  The switch() prior to
+                             * this switch handles the other cases */
+                            RExC_parse = p = oldp;
+                            goto loopdone;
+                        }
+                        p = RExC_parse;
+                        if (ender > 0xff) {
+                            REQUIRE_UTF8;
+                        }
+                        break;
+                   case 'r':
+                       ender = '\r';
+                       p++;
+                       break;
+                   case 't':
+                       ender = '\t';
+                       p++;
+                       break;
+                   case 'f':
+                       ender = '\f';
+                       p++;
+                       break;
+                   case 'e':
+                       ender = ESC_NATIVE;
+                       p++;
+                       break;
+                   case 'a':
+                       ender = '\a';
+                       p++;
+                       break;
+                   case 'o':
+                       {
+                           UV result;
+                           const char* error_msg;
+
+                           bool valid = grok_bslash_o(&p,
+                                                      &result,
+                                                      &error_msg,
+                                                      PASS2, /* out warnings */
+                                                       (bool) RExC_strict,
+                                                       TRUE, /* Output warnings
+                                                                for non-
+                                                                portables */
+                                                       UTF);
+                           if (! valid) {
+                               RExC_parse = p; /* going to die anyway; point
+                                                  to exact spot of failure */
+                               vFAIL(error_msg);
+                           }
+                            ender = result;
+                           if (IN_ENCODING && ender < 0x100) {
+                               goto recode_encoding;
+                           }
+                           if (ender > 0xff) {
+                               REQUIRE_UTF8;
+                           }
+                           break;
+                       }
+                   case 'x':
+                       {
+                            UV result = UV_MAX; /* initialize to erroneous
+                                                   value */
+                           const char* error_msg;
+
+                           bool valid = grok_bslash_x(&p,
+                                                      &result,
+                                                      &error_msg,
+                                                      PASS2, /* out warnings */
+                                                       (bool) RExC_strict,
+                                                       TRUE, /* Silence warnings
+                                                                for non-
+                                                                portables */
+                                                       UTF);
+                           if (! valid) {
+                               RExC_parse = p; /* going to die anyway; point
+                                                  to exact spot of failure */
+                               vFAIL(error_msg);
+                           }
+                            ender = result;
+
+                            if (ender < 0x100) {
+#ifdef EBCDIC
+                                if (RExC_recode_x_to_native) {
+                                    ender = LATIN1_TO_NATIVE(ender);
+                                }
+                                else
+#endif
+                                if (IN_ENCODING) {
+                                    goto recode_encoding;
+                                }
+                           }
+                            else {
+                               REQUIRE_UTF8;
+                           }
+                           break;
+                       }
+                   case 'c':
+                       p++;
+                       ender = grok_bslash_c(*p++, PASS2);
+                       break;
+                    case '8': case '9': /* must be a backreference */
+                        --p;
+                        /* we have an escape like \8 which cannot be an octal escape
+                         * so we exit the loop, and let the outer loop handle this
+                         * escape which may or may not be a legitimate backref. */
+                        goto loopdone;
+                    case '1': case '2': case '3':case '4':
+                   case '5': case '6': case '7':
+                        /* When we parse backslash escapes there is ambiguity
+                         * between backreferences and octal escapes. Any escape
+                         * from \1 - \9 is a backreference, any multi-digit
+                         * escape which does not start with 0 and which when
+                         * evaluated as decimal could refer to an already
+                         * parsed capture buffer is a back reference. Anything
+                         * else is octal.
+                         *
+                         * Note this implies that \118 could be interpreted as
+                         * 118 OR as "\11" . "8" depending on whether there
+                         * were 118 capture buffers defined already in the
+                         * pattern.  */
+
+                        /* NOTE, RExC_npar is 1 more than the actual number of
+                         * parens we have seen so far, hence the < RExC_npar below. */
+
+                        if ( !isDIGIT(p[1]) || S_backref_value(p) < RExC_npar)
+                        {  /* Not to be treated as an octal constant, go
+                                   find backref */
+                            --p;
+                            goto loopdone;
+                        }
+                        /* FALLTHROUGH */
+                    case '0':
+                       {
+                           I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
+                           STRLEN numlen = 3;
+                           ender = grok_oct(p, &numlen, &flags, NULL);
+                           if (ender > 0xff) {
+                               REQUIRE_UTF8;
+                           }
+                           p += numlen;
+                            if (PASS2   /* like \08, \178 */
+                                && numlen < 3
+                                && p < RExC_end
+                                && isDIGIT(*p) && ckWARN(WARN_REGEXP))
+                            {
+                               reg_warn_non_literal_string(
+                                         p + 1,
+                                         form_short_octal_warning(p, numlen));
+                            }
+                       }
+                       if (IN_ENCODING && ender < 0x100)
+                           goto recode_encoding;
+                       break;
+                     recode_encoding:
+                       if (! RExC_override_recoding) {
+                           SV* enc = _get_encoding();
+                           ender = reg_recode((const char)(U8)ender, &enc);
+                           if (!enc && PASS2)
+                               ckWARNreg(p, "Invalid escape in the specified encoding");
+                           REQUIRE_UTF8;
+                       }
+                       break;
+                   case '\0':
+                       if (p >= RExC_end)
+                           FAIL("Trailing \\");
+                       /* FALLTHROUGH */
+                   default:
+                       if (!SIZE_ONLY&& isALPHANUMERIC(*p)) {
+                           /* Include any { following the alpha to emphasize
+                            * that it could be part of an escape at some point
+                            * in the future */
+                           int len = (isALPHA(*p) && *(p + 1) == '{') ? 2 : 1;
+                           ckWARN3reg(p + len, "Unrecognized escape \\%.*s passed through", len, p);
+                       }
+                       goto normal_default;
+                   } /* End of switch on '\' */
+                   break;
+               case '{':
+                   /* Currently we don't warn when the lbrace is at the start
+                    * of a construct.  This catches it in the middle of a
+                    * literal string, or when its the first thing after
+                    * something like "\b" */
+                   if (! SIZE_ONLY
+                       && (len || (p > RExC_start && isALPHA_A(*(p -1)))))
+                   {
+                       ckWARNregdep(p + 1, "Unescaped left brace in regex is deprecated, passed through");
+                   }
+                   /*FALLTHROUGH*/
+               default:    /* A literal character */
+                 normal_default:
+                   if (UTF8_IS_START(*p) && UTF) {
+                       STRLEN numlen;
+                       ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
+                                              &numlen, UTF8_ALLOW_DEFAULT);
+                       p += numlen;
+                   }
+                   else
+                       ender = (U8) *p++;
+                   break;
+               } /* End of switch on the literal */
+
+               /* Here, have looked at the literal character and <ender>
+                * contains its ordinal, <p> points to the character after it
+                */
+
+               if ( RExC_flags & RXf_PMf_EXTENDED)
+                    p = regpatws(pRExC_state, p,
+                                          TRUE); /* means recognize comments */
+
+                /* If the next thing is a quantifier, it applies to this
+                 * character only, which means that this character has to be in
+                 * its own node and can't just be appended to the string in an
+                 * existing node, so if there are already other characters in
+                 * the node, close the node with just them, and set up to do
+                 * this character again next time through, when it will be the
+                 * only thing in its new node */
+                if ((next_is_quantifier = (p < RExC_end && ISMULT2(p))) && len)
+               {
+                    p = oldp;
+                    goto loopdone;
+                }
+
+                if (! FOLD) {  /* The simple case, just append the literal */
+
+                    /* In the sizing pass, we need only the size of the
+                     * character we are appending, hence we can delay getting
+                     * its representation until PASS2. */
+                    if (SIZE_ONLY) {
+                        if (UTF) {
+                            const STRLEN unilen = UNISKIP(ender);
+                            s += unilen;
+
+                            /* We have to subtract 1 just below (and again in
+                             * the corresponding PASS2 code) because the loop
+                             * increments <len> each time, as all but this path
+                             * (and one other) through it add a single byte to
+                             * the EXACTish node.  But these paths would change
+                             * len to be the correct final value, so cancel out
+                             * the increment that follows */
+                            len += unilen - 1;
+                        }
+                        else {
+                            s++;
+                        }
+                    } else { /* PASS2 */
+                      not_fold_common:
+                        if (UTF) {
+                            U8 * new_s = uvchr_to_utf8((U8*)s, ender);
+                            len += (char *) new_s - s - 1;
+                            s = (char *) new_s;
+                        }
+                        else {
+                            *(s++) = (char) ender;
+                        }
+                    }
+                }
+                else if (LOC && is_PROBLEMATIC_LOCALE_FOLD_cp(ender)) {
+
+                    /* Here are folding under /l, and the code point is
+                     * problematic.  First, we know we can't simplify things */
+                    maybe_exact = FALSE;
+                    maybe_exactfu = FALSE;
+
+                    /* A problematic code point in this context means that its
+                     * fold isn't known until runtime, so we can't fold it now.
+                     * (The non-problematic code points are the above-Latin1
+                     * ones that fold to also all above-Latin1.  Their folds
+                     * don't vary no matter what the locale is.) But here we
+                     * have characters whose fold depends on the locale.
+                     * Unlike the non-folding case above, we have to keep track
+                     * of these in the sizing pass, so that we can make sure we
+                     * don't split too-long nodes in the middle of a potential
+                     * multi-char fold.  And unlike the regular fold case
+                     * handled in the else clauses below, we don't actually
+                     * fold and don't have special cases to consider.  What we
+                     * do for both passes is the PASS2 code for non-folding */
+                    goto not_fold_common;
+                }
+                else /* A regular FOLD code point */
+                    if (! ( UTF
+                        /* See comments for join_exact() as to why we fold this
+                         * non-UTF at compile time */
+                        || (node_type == EXACTFU
+                            && ender == LATIN_SMALL_LETTER_SHARP_S)))
+                {
+                    /* Here, are folding and are not UTF-8 encoded; therefore
+                     * the character must be in the range 0-255, and is not /l
+                     * (Not /l because we already handled these under /l in
+                     * is_PROBLEMATIC_LOCALE_FOLD_cp) */
+                    if (IS_IN_SOME_FOLD_L1(ender)) {
+                        maybe_exact = FALSE;
+
+                        /* See if the character's fold differs between /d and
+                         * /u.  This includes the multi-char fold SHARP S to
+                         * 'ss' */
+                        if (maybe_exactfu
+                            && (PL_fold[ender] != PL_fold_latin1[ender]
+                                || ender == LATIN_SMALL_LETTER_SHARP_S
+                                || (len > 0
+                                   && isALPHA_FOLD_EQ(ender, 's')
+                                   && isALPHA_FOLD_EQ(*(s-1), 's'))))
+                        {
+                            maybe_exactfu = FALSE;
+                        }
+                    }
+
+                    /* Even when folding, we store just the input character, as
+                     * we have an array that finds its fold quickly */
+                    *(s++) = (char) ender;
+                }
+                else {  /* FOLD and UTF */
+                    /* Unlike the non-fold case, we do actually have to
+                     * calculate the results here in pass 1.  This is for two
+                     * reasons, the folded length may be longer than the
+                     * unfolded, and we have to calculate how many EXACTish
+                     * nodes it will take; and we may run out of room in a node
+                     * in the middle of a potential multi-char fold, and have
+                     * to back off accordingly.  */
+
+                    UV folded;
+                    if (isASCII_uni(ender)) {
+                        folded = toFOLD(ender);
+                        *(s)++ = (U8) folded;
+                    }
+                    else {
+                        STRLEN foldlen;
+
+                        folded = _to_uni_fold_flags(
+                                     ender,
+                                     (U8 *) s,
+                                     &foldlen,
+                                     FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
+                                                        ? FOLD_FLAGS_NOMIX_ASCII
+                                                        : 0));
+                        s += foldlen;
+
+                        /* The loop increments <len> each time, as all but this
+                         * path (and one other) through it add a single byte to
+                         * the EXACTish node.  But this one has changed len to
+                         * be the correct final value, so subtract one to
+                         * cancel out the increment that follows */
+                        len += foldlen - 1;
+                    }
+                    /* If this node only contains non-folding code points so
+                     * far, see if this new one is also non-folding */
+                    if (maybe_exact) {
+                        if (folded != ender) {
+                            maybe_exact = FALSE;
+                        }
+                        else {
+                            /* Here the fold is the original; we have to check
+                             * further to see if anything folds to it */
+                            if (_invlist_contains_cp(PL_utf8_foldable,
+                                                        ender))
+                            {
+                                maybe_exact = FALSE;
+                            }
+                        }
+                    }
+                    ender = folded;
+               }
+
+               if (next_is_quantifier) {
+
+                    /* Here, the next input is a quantifier, and to get here,
+                     * the current character is the only one in the node.
+                     * Also, here <len> doesn't include the final byte for this
+                     * character */
+                    len++;
+                    goto loopdone;
+               }
+
+           } /* End of loop through literal characters */
+
+            /* Here we have either exhausted the input or ran out of room in
+             * the node.  (If we encountered a character that can't be in the
+             * node, transfer is made directly to <loopdone>, and so we
+             * wouldn't have fallen off the end of the loop.)  In the latter
+             * case, we artificially have to split the node into two, because
+             * we just don't have enough space to hold everything.  This
+             * creates a problem if the final character participates in a
+             * multi-character fold in the non-final position, as a match that
+             * should have occurred won't, due to the way nodes are matched,
+             * and our artificial boundary.  So back off until we find a non-
+             * problematic character -- one that isn't at the beginning or
+             * middle of such a fold.  (Either it doesn't participate in any
+             * folds, or appears only in the final position of all the folds it
+             * does participate in.)  A better solution with far fewer false
+             * positives, and that would fill the nodes more completely, would
+             * be to actually have available all the multi-character folds to
+             * test against, and to back-off only far enough to be sure that
+             * this node isn't ending with a partial one.  <upper_parse> is set
+             * further below (if we need to reparse the node) to include just
+             * up through that final non-problematic character that this code
+             * identifies, so when it is set to less than the full node, we can
+             * skip the rest of this */
+            if (FOLD && p < RExC_end && upper_parse == MAX_NODE_STRING_SIZE) {
+
+                const STRLEN full_len = len;
+
+               assert(len >= MAX_NODE_STRING_SIZE);
+
+                /* Here, <s> points to the final byte of the final character.
+                 * Look backwards through the string until find a non-
+                 * problematic character */
+
+               if (! UTF) {
+
+                    /* This has no multi-char folds to non-UTF characters */
+                    if (ASCII_FOLD_RESTRICTED) {
+                        goto loopdone;
+                    }
+
+                    while (--s >= s0 && IS_NON_FINAL_FOLD(*s)) { }
+                    len = s - s0 + 1;
+               }
+                else {
+                    if (!  PL_NonL1NonFinalFold) {
+                        PL_NonL1NonFinalFold = _new_invlist_C_array(
+                                        NonL1_Perl_Non_Final_Folds_invlist);
+                    }
+
+                    /* Point to the first byte of the final character */
+                    s = (char *) utf8_hop((U8 *) s, -1);
+
+                    while (s >= s0) {   /* Search backwards until find
+                                           non-problematic char */
+                        if (UTF8_IS_INVARIANT(*s)) {
+
+                            /* There are no ascii characters that participate
+                             * in multi-char folds under /aa.  In EBCDIC, the
+                             * non-ascii invariants are all control characters,
+                             * so don't ever participate in any folds. */
+                            if (ASCII_FOLD_RESTRICTED
+                                || ! IS_NON_FINAL_FOLD(*s))
+                            {
+                                break;
+                            }
+                        }
+                        else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
+                            if (! IS_NON_FINAL_FOLD(TWO_BYTE_UTF8_TO_NATIVE(
+                                                                  *s, *(s+1))))
+                            {
+                                break;
+                            }
+                        }
+                        else if (! _invlist_contains_cp(
+                                        PL_NonL1NonFinalFold,
+                                        valid_utf8_to_uvchr((U8 *) s, NULL)))
+                        {
+                            break;
+                        }
+
+                        /* Here, the current character is problematic in that
+                         * it does occur in the non-final position of some
+                         * fold, so try the character before it, but have to
+                         * special case the very first byte in the string, so
+                         * we don't read outside the string */
+                        s = (s == s0) ? s -1 : (char *) utf8_hop((U8 *) s, -1);
+                    } /* End of loop backwards through the string */
+
+                    /* If there were only problematic characters in the string,
+                     * <s> will point to before s0, in which case the length
+                     * should be 0, otherwise include the length of the
+                     * non-problematic character just found */
+                    len = (s < s0) ? 0 : s - s0 + UTF8SKIP(s);
+               }
+
+                /* Here, have found the final character, if any, that is
+                 * non-problematic as far as ending the node without splitting
+                 * it across a potential multi-char fold.  <len> contains the
+                 * number of bytes in the node up-to and including that
+                 * character, or is 0 if there is no such character, meaning
+                 * the whole node contains only problematic characters.  In
+                 * this case, give up and just take the node as-is.  We can't
+                 * do any better */
+                if (len == 0) {
+                    len = full_len;
+
+                    /* If the node ends in an 's' we make sure it stays EXACTF,
+                     * as if it turns into an EXACTFU, it could later get
+                     * joined with another 's' that would then wrongly match
+                     * the sharp s */
+                    if (maybe_exactfu && isALPHA_FOLD_EQ(ender, 's'))
+                    {
+                        maybe_exactfu = FALSE;
+                    }
+                } else {
+
+                    /* Here, the node does contain some characters that aren't
+                     * problematic.  If one such is the final character in the
+                     * node, we are done */
+                    if (len == full_len) {
+                        goto loopdone;
+                    }
+                    else if (len + ((UTF) ? UTF8SKIP(s) : 1) == full_len) {
+
+                        /* If the final character is problematic, but the
+                         * penultimate is not, back-off that last character to
+                         * later start a new node with it */
+                        p = oldp;
+                        goto loopdone;
+                    }
+
+                    /* Here, the final non-problematic character is earlier
+                     * in the input than the penultimate character.  What we do
+                     * is reparse from the beginning, going up only as far as
+                     * this final ok one, thus guaranteeing that the node ends
+                     * in an acceptable character.  The reason we reparse is
+                     * that we know how far in the character is, but we don't
+                     * know how to correlate its position with the input parse.
+                     * An alternate implementation would be to build that
+                     * correlation as we go along during the original parse,
+                     * but that would entail extra work for every node, whereas
+                     * this code gets executed only when the string is too
+                     * large for the node, and the final two characters are
+                     * problematic, an infrequent occurrence.  Yet another
+                     * possible strategy would be to save the tail of the
+                     * string, and the next time regatom is called, initialize
+                     * with that.  The problem with this is that unless you
+                     * back off one more character, you won't be guaranteed
+                     * regatom will get called again, unless regbranch,
+                     * regpiece ... are also changed.  If you do back off that
+                     * extra character, so that there is input guaranteed to
+                     * force calling regatom, you can't handle the case where
+                     * just the first character in the node is acceptable.  I
+                     * (khw) decided to try this method which doesn't have that
+                     * pitfall; if performance issues are found, we can do a
+                     * combination of the current approach plus that one */
+                    upper_parse = len;
+                    len = 0;
+                    s = s0;
+                    goto reparse;
+                }
+           }   /* End of verifying node ends with an appropriate char */
+
+          loopdone:   /* Jumped to when encounters something that shouldn't be
+                         in the node */
+
+            /* I (khw) don't know if you can get here with zero length, but the
+             * old code handled this situation by creating a zero-length EXACT
+             * node.  Might as well be NOTHING instead */
+            if (len == 0) {
+                OP(ret) = NOTHING;
+            }
+            else {
+                if (FOLD) {
+                    /* If 'maybe_exact' is still set here, means there are no
+                     * code points in the node that participate in folds;
+                     * similarly for 'maybe_exactfu' and code points that match
+                     * differently depending on UTF8ness of the target string
+                     * (for /u), or depending on locale for /l */
+                    if (maybe_exact) {
+                        OP(ret) = (LOC)
+                                  ? EXACTL
+                                  : EXACT;
+                    }
+                    else if (maybe_exactfu) {
+                        OP(ret) = (LOC)
+                                  ? EXACTFLU8
+                                  : EXACTFU;
+                    }
+                }
+                alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, len, ender,
+                                           FALSE /* Don't look to see if could
+                                                    be turned into an EXACT
+                                                    node, as we have already
+                                                    computed that */
+                                          );
+            }
+
+           RExC_parse = p - 1;
+            Set_Node_Cur_Length(ret, parse_start);
+           nextchar(pRExC_state);
+           {
+               /* len is STRLEN which is unsigned, need to copy to signed */
+               IV iv = len;
+               if (iv < 0)
+                   vFAIL("Internal disaster");
+           }
+
+       } /* End of label 'defchar:' */
+       break;
+    } /* End of giant switch on input character */
+
+    return(ret);
+}
+
+STATIC char *
+S_regpatws(RExC_state_t *pRExC_state, char *p , const bool recognize_comment )
+{
+    /* Returns the next non-pattern-white space, non-comment character (the
+     * latter only if 'recognize_comment is true) in the string p, which is
+     * ended by RExC_end.  See also reg_skipcomment */
+    const char *e = RExC_end;
+
+    PERL_ARGS_ASSERT_REGPATWS;
+
+    while (p < e) {
+        STRLEN len;
+       if ((len = is_PATWS_safe(p, e, UTF))) {
+           p += len;
+        }
+       else if (recognize_comment && *p == '#') {
+            p = reg_skipcomment(pRExC_state, p);
+       }
+       else
+           break;
+    }
+    return p;
+}
+
+STATIC void
+S_populate_ANYOF_from_invlist(pTHX_ regnode *node, SV** invlist_ptr)
+{
+    /* Uses the inversion list '*invlist_ptr' to populate the ANYOF 'node'.  It
+     * sets up the bitmap and any flags, removing those code points from the
+     * inversion list, setting it to NULL should it become completely empty */
+
+    PERL_ARGS_ASSERT_POPULATE_ANYOF_FROM_INVLIST;
+    assert(PL_regkind[OP(node)] == ANYOF);
+
+    ANYOF_BITMAP_ZERO(node);
+    if (*invlist_ptr) {
+
+       /* This gets set if we actually need to modify things */
+       bool change_invlist = FALSE;
+
+       UV start, end;
+
+       /* Start looking through *invlist_ptr */
+       invlist_iterinit(*invlist_ptr);
+       while (invlist_iternext(*invlist_ptr, &start, &end)) {
+           UV high;
+           int i;
+
+            if (end == UV_MAX && start <= NUM_ANYOF_CODE_POINTS) {
+                ANYOF_FLAGS(node) |= ANYOF_MATCHES_ALL_ABOVE_BITMAP;
+            }
+            else if (end >= NUM_ANYOF_CODE_POINTS) {
+                ANYOF_FLAGS(node) |= ANYOF_HAS_UTF8_NONBITMAP_MATCHES;
+            }
+
+           /* Quit if are above what we should change */
+           if (start >= NUM_ANYOF_CODE_POINTS) {
+               break;
+           }
+
+           change_invlist = TRUE;
+
+           /* Set all the bits in the range, up to the max that we are doing */
+           high = (end < NUM_ANYOF_CODE_POINTS - 1)
+                   ? end
+                   : NUM_ANYOF_CODE_POINTS - 1;
+           for (i = start; i <= (int) high; i++) {
+               if (! ANYOF_BITMAP_TEST(node, i)) {
+                   ANYOF_BITMAP_SET(node, i);
+               }
+           }
+       }
+       invlist_iterfinish(*invlist_ptr);
+
+        /* Done with loop; remove any code points that are in the bitmap from
+         * *invlist_ptr; similarly for code points above the bitmap if we have
+         * a flag to match all of them anyways */
+       if (change_invlist) {
+           _invlist_subtract(*invlist_ptr, PL_InBitmap, invlist_ptr);
+       }
+        if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
+           _invlist_intersection(*invlist_ptr, PL_InBitmap, invlist_ptr);
+       }
+
+       /* If have completely emptied it, remove it completely */
+       if (_invlist_len(*invlist_ptr) == 0) {
+           SvREFCNT_dec_NN(*invlist_ptr);
+           *invlist_ptr = NULL;
+       }
+    }
+}
+
+/* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
+   Character classes ([:foo:]) can also be negated ([:^foo:]).
+   Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
+   Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
+   but trigger failures because they are currently unimplemented. */
+
+#define POSIXCC_DONE(c)   ((c) == ':')
+#define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
+#define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
+
+PERL_STATIC_INLINE I32
+S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value, const bool strict)
+{
+    I32 namedclass = OOB_NAMEDCLASS;
+
+    PERL_ARGS_ASSERT_REGPPOSIXCC;
+
+    if (value == '[' && RExC_parse + 1 < RExC_end &&
+       /* I smell either [: or [= or [. -- POSIX has been here, right? */
+       POSIXCC(UCHARAT(RExC_parse)))
+    {
+       const char c = UCHARAT(RExC_parse);
+       char* const s = RExC_parse++;
+
+       while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
+           RExC_parse++;
+       if (RExC_parse == RExC_end) {
+            if (strict) {
+
+                /* Try to give a better location for the error (than the end of
+                 * the string) by looking for the matching ']' */
+                RExC_parse = s;
+                while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
+                    RExC_parse++;
+                }
+                vFAIL2("Unmatched '%c' in POSIX class", c);
+            }
+           /* Grandfather lone [:, [=, [. */
+           RExC_parse = s;
+        }
+       else {
+           const char* const t = RExC_parse++; /* skip over the c */
+           assert(*t == c);
+
+           if (UCHARAT(RExC_parse) == ']') {
+               const char *posixcc = s + 1;
+               RExC_parse++; /* skip over the ending ] */
+
+               if (*s == ':') {
+                   const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
+                   const I32 skip = t - posixcc;
+
+                   /* Initially switch on the length of the name.  */
+                   switch (skip) {
+                   case 4:
+                        if (memEQ(posixcc, "word", 4)) /* this is not POSIX,
+                                                          this is the Perl \w
+                                                        */
+                           namedclass = ANYOF_WORDCHAR;
+                       break;
+                   case 5:
+                       /* Names all of length 5.  */
+                       /* alnum alpha ascii blank cntrl digit graph lower
+                          print punct space upper  */
+                       /* Offset 4 gives the best switch position.  */
+                       switch (posixcc[4]) {
+                       case 'a':
+                           if (memEQ(posixcc, "alph", 4)) /* alpha */
+                               namedclass = ANYOF_ALPHA;
+                           break;
+                       case 'e':
+                           if (memEQ(posixcc, "spac", 4)) /* space */
+                               namedclass = ANYOF_SPACE;
+                           break;
+                       case 'h':
+                           if (memEQ(posixcc, "grap", 4)) /* graph */
+                               namedclass = ANYOF_GRAPH;
+                           break;
+                       case 'i':
+                           if (memEQ(posixcc, "asci", 4)) /* ascii */
+                               namedclass = ANYOF_ASCII;
+                           break;
+                       case 'k':
+                           if (memEQ(posixcc, "blan", 4)) /* blank */
+                               namedclass = ANYOF_BLANK;
+                           break;
+                       case 'l':
+                           if (memEQ(posixcc, "cntr", 4)) /* cntrl */
+                               namedclass = ANYOF_CNTRL;
+                           break;
+                       case 'm':
+                           if (memEQ(posixcc, "alnu", 4)) /* alnum */
+                               namedclass = ANYOF_ALPHANUMERIC;
+                           break;
+                       case 'r':
+                           if (memEQ(posixcc, "lowe", 4)) /* lower */
+                               namedclass = (FOLD) ? ANYOF_CASED : ANYOF_LOWER;
+                           else if (memEQ(posixcc, "uppe", 4)) /* upper */
+                               namedclass = (FOLD) ? ANYOF_CASED : ANYOF_UPPER;
+                           break;
+                       case 't':
+                           if (memEQ(posixcc, "digi", 4)) /* digit */
+                               namedclass = ANYOF_DIGIT;
+                           else if (memEQ(posixcc, "prin", 4)) /* print */
+                               namedclass = ANYOF_PRINT;
+                           else if (memEQ(posixcc, "punc", 4)) /* punct */
+                               namedclass = ANYOF_PUNCT;
+                           break;
+                       }
+                       break;
+                   case 6:
+                       if (memEQ(posixcc, "xdigit", 6))
+                           namedclass = ANYOF_XDIGIT;
+                       break;
+                   }
+
+                   if (namedclass == OOB_NAMEDCLASS)
+                       vFAIL2utf8f(
+                            "POSIX class [:%"UTF8f":] unknown",
+                           UTF8fARG(UTF, t - s - 1, s + 1));
+
+                    /* The #defines are structured so each complement is +1 to
+                     * the normal one */
+                    if (complement) {
+                        namedclass++;
+                    }
+                   assert (posixcc[skip] == ':');
+                   assert (posixcc[skip+1] == ']');
+               } else if (!SIZE_ONLY) {
+                   /* [[=foo=]] and [[.foo.]] are still future. */
+
+                   /* adjust RExC_parse so the warning shows after
+                      the class closes */
+                   while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
+                       RExC_parse++;
+                   vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
+               }
+           } else {
+               /* Maternal grandfather:
+                * "[:" ending in ":" but not in ":]" */
+                if (strict) {
+                    vFAIL("Unmatched '[' in POSIX class");
+                }
+
+                /* Grandfather lone [:, [=, [. */
+               RExC_parse = s;
+           }
+       }
+    }
+
+    return namedclass;
+}
+
+STATIC bool
+S_could_it_be_a_POSIX_class(RExC_state_t *pRExC_state)
+{
+    /* This applies some heuristics at the current parse position (which should
+     * be at a '[') to see if what follows might be intended to be a [:posix:]
+     * class.  It returns true if it really is a posix class, of course, but it
+     * also can return true if it thinks that what was intended was a posix
+     * class that didn't quite make it.
+     *
+     * It will return true for
+     *      [:alphanumerics:
+     *      [:alphanumerics]  (as long as the ] isn't followed immediately by a
+     *                         ')' indicating the end of the (?[
+     *      [:any garbage including %^&$ punctuation:]
+     *
+     * This is designed to be called only from S_handle_regex_sets; it could be
+     * easily adapted to be called from the spot at the beginning of regclass()
+     * that checks to see in a normal bracketed class if the surrounding []
+     * have been omitted ([:word:] instead of [[:word:]]).  But doing so would
+     * change long-standing behavior, so I (khw) didn't do that */
+    char* p = RExC_parse + 1;
+    char first_char = *p;
+
+    PERL_ARGS_ASSERT_COULD_IT_BE_A_POSIX_CLASS;
+
+    assert(*(p - 1) == '[');
+
+    if (! POSIXCC(first_char)) {
+        return FALSE;
+    }
+
+    p++;
+    while (p < RExC_end && isWORDCHAR(*p)) p++;
+
+    if (p >= RExC_end) {
+        return FALSE;
+    }
+
+    if (p - RExC_parse > 2    /* Got at least 1 word character */
+        && (*p == first_char
+            || (*p == ']' && p + 1 < RExC_end && *(p + 1) != ')')))
+    {
+        return TRUE;
+    }
+
+    p = (char *) memchr(RExC_parse, ']', RExC_end - RExC_parse);
+
+    return (p
+            && p - RExC_parse > 2 /* [:] evaluates to colon;
+                                      [::] is a bad posix class. */
+            && first_char == *(p - 1));
+}
+
+STATIC unsigned  int
+S_regex_set_precedence(const U8 my_operator) {
+
+    /* Returns the precedence in the (?[...]) construct of the input operator,
+     * specified by its character representation.  The precedence follows
+     * general Perl rules, but it extends this so that ')' and ']' have (low)
+     * precedence even though they aren't really operators */
+
+    switch (my_operator) {
+        case '!':
+            return 5;
+        case '&':
+            return 4;
+        case '^':
+        case '|':
+        case '+':
+        case '-':
+            return 3;
+        case ')':
+            return 2;
+        case ']':
+            return 1;
+    }
+
+    NOT_REACHED; /* NOTREACHED */
+    return 0;   /* Silence compiler warning */
+}
+
+STATIC regnode *
+S_handle_regex_sets(pTHX_ RExC_state_t *pRExC_state, SV** return_invlist,
+                    I32 *flagp, U32 depth,
+                    char * const oregcomp_parse)
+{
+    /* Handle the (?[...]) construct to do set operations */
+
+    U8 curchar;                     /* Current character being parsed */
+    UV start, end;                 /* End points of code point ranges */
+    SV* final = NULL;               /* The end result inversion list */
+    SV* result_string;              /* 'final' stringified */
+    AV* stack;                      /* stack of operators and operands not yet
+                                       resolved */
+    AV* fence_stack = NULL;         /* A stack containing the positions in
+                                       'stack' of where the undealt-with left
+                                       parens would be if they were actually
+                                       put there */
+    IV fence = 0;                   /* Position of where most recent undealt-
+                                       with left paren in stack is; -1 if none.
+                                     */
+    STRLEN len;                     /* Temporary */
+    regnode* node;                  /* Temporary, and final regnode returned by
+                                       this function */
+    const bool save_fold = FOLD;    /* Temporary */
+    char *save_end, *save_parse;    /* Temporaries */
+
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_HANDLE_REGEX_SETS;
+
+    if (LOC) {  /* XXX could make valid in UTF-8 locales */
+        vFAIL("(?[...]) not valid in locale");
+    }
+    RExC_uni_semantics = 1;     /* The use of this operator implies /u.  This
+                                   is required so that the compile time values
+                                   are valid in all runtime cases */
+
+    /* This will return only an ANYOF regnode, or (unlikely) something smaller
+     * (such as EXACT).  Thus we can skip most everything if just sizing.  We
+     * call regclass to handle '[]' so as to not have to reinvent its parsing
+     * rules here (throwing away the size it computes each time).  And, we exit
+     * upon an unescaped ']' that isn't one ending a regclass.  To do both
+     * these things, we need to realize that something preceded by a backslash
+     * is escaped, so we have to keep track of backslashes */
+    if (SIZE_ONLY) {
+        UV depth = 0; /* how many nested (?[...]) constructs */
+
+        while (RExC_parse < RExC_end) {
+            SV* current = NULL;
+            RExC_parse = regpatws(pRExC_state, RExC_parse,
+                                          TRUE); /* means recognize comments */
+            switch (*RExC_parse) {
+                case '?':
+                    if (RExC_parse[1] == '[') depth++, RExC_parse++;
+                    /* FALLTHROUGH */
+                default:
+                    break;
+                case '\\':
+                    /* Skip the next byte (which could cause us to end up in
+                     * the middle of a UTF-8 character, but since none of those
+                     * are confusable with anything we currently handle in this
+                     * switch (invariants all), it's safe.  We'll just hit the
+                     * default: case next time and keep on incrementing until
+                     * we find one of the invariants we do handle. */
+                    RExC_parse++;
+                    break;
+                case '[':
+                {
+                    /* If this looks like it is a [:posix:] class, leave the
+                     * parse pointer at the '[' to fool regclass() into
+                     * thinking it is part of a '[[:posix:]]'.  That function
+                     * will use strict checking to force a syntax error if it
+                     * doesn't work out to a legitimate class */
+                    bool is_posix_class
+                                    = could_it_be_a_POSIX_class(pRExC_state);
+                    if (! is_posix_class) {
+                        RExC_parse++;
+                    }
+
+                    /* regclass() can only return RESTART_UTF8 if multi-char
+                       folds are allowed.  */
+                    if (!regclass(pRExC_state, flagp,depth+1,
+                                  is_posix_class, /* parse the whole char
+                                                     class only if not a
+                                                     posix class */
+                                  FALSE, /* don't allow multi-char folds */
+                                  TRUE, /* silence non-portable warnings. */
+                                  TRUE, /* strict */
+                                  &current
+                                 ))
+                        FAIL2("panic: regclass returned NULL to handle_sets, "
+                              "flags=%#"UVxf"", (UV) *flagp);
+
+                    /* function call leaves parse pointing to the ']', except
+                     * if we faked it */
+                    if (is_posix_class) {
+                        RExC_parse--;
+                    }
+
+                    SvREFCNT_dec(current);   /* In case it returned something */
+                    break;
+                }
+
+                case ']':
+                    if (depth--) break;
+                    RExC_parse++;
+                    if (RExC_parse < RExC_end
+                        && *RExC_parse == ')')
+                    {
+                        node = reganode(pRExC_state, ANYOF, 0);
+                        RExC_size += ANYOF_SKIP;
+                        nextchar(pRExC_state);
+                        Set_Node_Length(node,
+                                RExC_parse - oregcomp_parse + 1); /* MJD */
+                        return node;
+                    }
+                    goto no_close;
+            }
+            RExC_parse++;
+        }
+
+      no_close:
+        FAIL("Syntax error in (?[...])");
+    }
+
+    /* Pass 2 only after this. */
+    Perl_ck_warner_d(aTHX_
+        packWARN(WARN_EXPERIMENTAL__REGEX_SETS),
+        "The regex_sets feature is experimental" REPORT_LOCATION,
+            UTF8fARG(UTF, (RExC_parse - RExC_precomp), RExC_precomp),
+            UTF8fARG(UTF,
+                     RExC_end - RExC_start - (RExC_parse - RExC_precomp),
+                     RExC_precomp + (RExC_parse - RExC_precomp)));
+
+    /* Everything in this construct is a metacharacter.  Operands begin with
+     * either a '\' (for an escape sequence), or a '[' for a bracketed
+     * character class.  Any other character should be an operator, or
+     * parenthesis for grouping.  Both types of operands are handled by calling
+     * regclass() to parse them.  It is called with a parameter to indicate to
+     * return the computed inversion list.  The parsing here is implemented via
+     * a stack.  Each entry on the stack is a single character representing one
+     * of the operators; or else a pointer to an operand inversion list. */
+
+#define IS_OPERAND(a)  (! SvIOK(a))
+
+    /* The stack is kept in Łukasiewicz order.  (That's pronounced similar
+     * to luke-a-shave-itch (or -itz), but people who didn't want to bother
+     * with prounouncing it called it Reverse Polish instead, but now that YOU
+     * know how to prounounce it you can use the correct term, thus giving due
+     * credit to the person who invented it, and impressing your geek friends.
+     * Wikipedia says that the pronounciation of "Ł" has been changing so that
+     * it is now more like an English initial W (as in wonk) than an L.)
+     *
+     * This means that, for example, 'a | b & c' is stored on the stack as
+     *
+     * c  [4]
+     * b  [3]
+     * &  [2]
+     * a  [1]
+     * |  [0]
+     *
+     * where the numbers in brackets give the stack [array] element number.
+     * In this implementation, parentheses are not stored on the stack.
+     * Instead a '(' creates a "fence" so that the part of the stack below the
+     * fence is invisible except to the corresponding ')' (this allows us to
+     * replace testing for parens, by using instead subtraction of the fence
+     * position).  As new operands are processed they are pushed onto the stack
+     * (except as noted in the next paragraph).  New operators of higher
+     * precedence than the current final one are inserted on the stack before
+     * the lhs operand (so that when the rhs is pushed next, everything will be
+     * in the correct positions shown above.  When an operator of equal or
+     * lower precedence is encountered in parsing, all the stacked operations
+     * of equal or higher precedence are evaluated, leaving the result as the
+     * top entry on the stack.  This makes higher precedence operations
+     * evaluate before lower precedence ones, and causes operations of equal
+     * precedence to left associate.
+     *
+     * The only unary operator '!' is immediately pushed onto the stack when
+     * encountered.  When an operand is encountered, if the top of the stack is
+     * a '!", the complement is immediately performed, and the '!' popped.  The
+     * resulting value is treated as a new operand, and the logic in the
+     * previous paragraph is executed.  Thus in the expression
+     *      [a] + ! [b]
+     * the stack looks like
+     *
+     * !
+     * a
+     * +
+     *
+     * as 'b' gets parsed, the latter gets evaluated to '!b', and the stack
+     * becomes
+     *
+     * !b
+     * a
+     * +
+     *
+     * A ')' is treated as an operator with lower precedence than all the
+     * aforementioned ones, which causes all operations on the stack above the
+     * corresponding '(' to be evaluated down to a single resultant operand.
+     * Then the fence for the '(' is removed, and the operand goes through the
+     * algorithm above, without the fence.
+     *
+     * A separate stack is kept of the fence positions, so that the position of
+     * the latest so-far unbalanced '(' is at the top of it.
+     *
+     * The ']' ending the construct is treated as the lowest operator of all,
+     * so that everything gets evaluated down to a single operand, which is the
+     * result */
+
+    sv_2mortal((SV *)(stack = newAV()));
+    sv_2mortal((SV *)(fence_stack = newAV()));
+
+    while (RExC_parse < RExC_end) {
+        I32 top_index;              /* Index of top-most element in 'stack' */
+        SV** top_ptr;               /* Pointer to top 'stack' element */
+        SV* current = NULL;         /* To contain the current inversion list
+                                       operand */
+        SV* only_to_avoid_leaks;
+
+        /* Skip white space */
+        RExC_parse = regpatws(pRExC_state, RExC_parse,
+                TRUE /* means recognize comments */ );
+        if (RExC_parse >= RExC_end) {
+            Perl_croak(aTHX_ "panic: Read past end of '(?[ ])'");
+        }
+
+        curchar = UCHARAT(RExC_parse);
+
+redo_curchar:
+
+        top_index = av_tindex(stack);
+
+        switch (curchar) {
+            SV** stacked_ptr;       /* Ptr to something already on 'stack' */
+            char stacked_operator;  /* The topmost operator on the 'stack'. */
+            SV* lhs;                /* Operand to the left of the operator */
+            SV* rhs;                /* Operand to the right of the operator */
+            SV* fence_ptr;          /* Pointer to top element of the fence
+                                       stack */
+
+            case '(':
+
+                if (RExC_parse < RExC_end && (UCHARAT(RExC_parse + 1) == '?'))
+                {
+                    /* If is a '(?', could be an embedded '(?flags:(?[...])'.
+                     * This happens when we have some thing like
+                     *
+                     *   my $thai_or_lao = qr/(?[ \p{Thai} + \p{Lao} ])/;
+                     *   ...
+                     *   qr/(?[ \p{Digit} & $thai_or_lao ])/;
+                     *
+                     * Here we would be handling the interpolated
+                     * '$thai_or_lao'.  We handle this by a recursive call to
+                     * ourselves which returns the inversion list the
+                     * interpolated expression evaluates to.  We use the flags
+                     * from the interpolated pattern. */
+                    U32 save_flags = RExC_flags;
+                    const char * save_parse;
+
+                    RExC_parse += 2;        /* Skip past the '(?' */
+                    save_parse = RExC_parse;
+
+                    /* Parse any flags for the '(?' */
+                    parse_lparen_question_flags(pRExC_state);
+
+                    if (RExC_parse == save_parse  /* Makes sure there was at
+                                                     least one flag (or else
+                                                     this embedding wasn't
+                                                     compiled) */
+                        || RExC_parse >= RExC_end - 4
+                        || UCHARAT(RExC_parse) != ':'
+                        || UCHARAT(++RExC_parse) != '('
+                        || UCHARAT(++RExC_parse) != '?'
+                        || UCHARAT(++RExC_parse) != '[')
+                    {
+
+                        /* In combination with the above, this moves the
+                         * pointer to the point just after the first erroneous
+                         * character (or if there are no flags, to where they
+                         * should have been) */
+                        if (RExC_parse >= RExC_end - 4) {
+                            RExC_parse = RExC_end;
+                        }
+                        else if (RExC_parse != save_parse) {
+                            RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+                        }
+                        vFAIL("Expecting '(?flags:(?[...'");
+                    }
+
+                    /* Recurse, with the meat of the embedded expression */
+                    RExC_parse++;
+                    (void) handle_regex_sets(pRExC_state, &current, flagp,
+                                                    depth+1, oregcomp_parse);
+
+                    /* Here, 'current' contains the embedded expression's
+                     * inversion list, and RExC_parse points to the trailing
+                     * ']'; the next character should be the ')' */
+                    RExC_parse++;
+                    assert(RExC_parse < RExC_end && UCHARAT(RExC_parse) == ')');
+
+                    /* Then the ')' matching the original '(' handled by this
+                     * case: statement */
+                    RExC_parse++;
+                    assert(RExC_parse < RExC_end && UCHARAT(RExC_parse) == ')');
+
+                    RExC_parse++;
+                    RExC_flags = save_flags;
+                    goto handle_operand;
+                }
+
+                /* A regular '('.  Look behind for illegal syntax */
+                if (top_index - fence >= 0) {
+                    /* If the top entry on the stack is an operator, it had
+                     * better be a '!', otherwise the entry below the top
+                     * operand should be an operator */
+                    if ( ! (top_ptr = av_fetch(stack, top_index, FALSE))
+                        || (! IS_OPERAND(*top_ptr) && SvUV(*top_ptr) != '!')
+                        || top_index - fence < 1
+                        || ! (stacked_ptr = av_fetch(stack,
+                                                     top_index - 1,
+                                                     FALSE))
+                        || IS_OPERAND(*stacked_ptr))
+                    {
+                        RExC_parse++;
+                        vFAIL("Unexpected '(' with no preceding operator");
+                    }
+                }
+
+                /* Stack the position of this undealt-with left paren */
+                fence = top_index + 1;
+                av_push(fence_stack, newSViv(fence));
+                break;
+
+            case '\\':
+                /* regclass() can only return RESTART_UTF8 if multi-char
+                   folds are allowed.  */
+                if (!regclass(pRExC_state, flagp,depth+1,
+                              TRUE, /* means parse just the next thing */
+                              FALSE, /* don't allow multi-char folds */
+                              FALSE, /* don't silence non-portable warnings.  */
+                              TRUE,  /* strict */
+                              &current))
+                {
+                    FAIL2("panic: regclass returned NULL to handle_sets, "
+                          "flags=%#"UVxf"", (UV) *flagp);
+                }
+
+                /* regclass() will return with parsing just the \ sequence,
+                 * leaving the parse pointer at the next thing to parse */
+                RExC_parse--;
+                goto handle_operand;
+
+            case '[':   /* Is a bracketed character class */
+            {
+                bool is_posix_class = could_it_be_a_POSIX_class(pRExC_state);
+
+                if (! is_posix_class) {
+                    RExC_parse++;
+                }
+
+                /* regclass() can only return RESTART_UTF8 if multi-char
+                   folds are allowed.  */
+                if(!regclass(pRExC_state, flagp,depth+1,
+                             is_posix_class, /* parse the whole char class
+                                                only if not a posix class */
+                             FALSE, /* don't allow multi-char folds */
+                             FALSE, /* don't silence non-portable warnings.  */
+                             TRUE,   /* strict */
+                             &current
+                            ))
+                {
+                    FAIL2("panic: regclass returned NULL to handle_sets, "
+                          "flags=%#"UVxf"", (UV) *flagp);
+                }
+
+                /* function call leaves parse pointing to the ']', except if we
+                 * faked it */
+                if (is_posix_class) {
+                    RExC_parse--;
+                }
+
+                goto handle_operand;
+            }
+
+            case ']':
+                if (top_index >= 1) {
+                    goto join_operators;
+                }
+
+                /* Only a single operand on the stack: are done */
+                goto done;
+
+            case ')':
+                if (av_tindex(fence_stack) < 0) {
+                    RExC_parse++;
+                    vFAIL("Unexpected ')'");
+                }
+
+                 /* If at least two thing on the stack, treat this as an
+                  * operator */
+                if (top_index - fence >= 1) {
+                    goto join_operators;
+                }
+
+                /* Here only a single thing on the fenced stack, and there is a
+                 * fence.  Get rid of it */
+                fence_ptr = av_pop(fence_stack);
+                assert(fence_ptr);
+                fence = SvIV(fence_ptr) - 1;
+                SvREFCNT_dec_NN(fence_ptr);
+                fence_ptr = NULL;
+
+                if (fence < 0) {
+                    fence = 0;
+                }
+
+                /* Having gotten rid of the fence, we pop the operand at the
+                 * stack top and process it as a newly encountered operand */
+                current = av_pop(stack);
+                assert(IS_OPERAND(current));
+                goto handle_operand;
+
+            case '&':
+            case '|':
+            case '+':
+            case '-':
+            case '^':
+
+                /* These binary operators should have a left operand already
+                 * parsed */
+                if (   top_index - fence < 0
+                    || top_index - fence == 1
+                    || ( ! (top_ptr = av_fetch(stack, top_index, FALSE)))
+                    || ! IS_OPERAND(*top_ptr))
+                {
+                    goto unexpected_binary;
+                }
+
+                /* If only the one operand is on the part of the stack visible
+                 * to us, we just place this operator in the proper position */
+                if (top_index - fence < 2) {
+
+                    /* Place the operator before the operand */
+
+                    SV* lhs = av_pop(stack);
+                    av_push(stack, newSVuv(curchar));
+                    av_push(stack, lhs);
+                    break;
+                }
+
+                /* But if there is something else on the stack, we need to
+                 * process it before this new operator if and only if the
+                 * stacked operation has equal or higher precedence than the
+                 * new one */
+
+             join_operators:
+
+                /* The operator on the stack is supposed to be below both its
+                 * operands */
+                if (   ! (stacked_ptr = av_fetch(stack, top_index - 2, FALSE))
+                    || IS_OPERAND(*stacked_ptr))
+                {
+                    /* But if not, it's legal and indicates we are completely
+                     * done if and only if we're currently processing a ']',
+                     * which should be the final thing in the expression */
+                    if (curchar == ']') {
+                        goto done;
+                    }
+
+                  unexpected_binary:
+                    RExC_parse++;
+                    vFAIL2("Unexpected binary operator '%c' with no "
+                           "preceding operand", curchar);
+                }
+                stacked_operator = (char) SvUV(*stacked_ptr);
+
+                if (regex_set_precedence(curchar)
+                    > regex_set_precedence(stacked_operator))
+                {
+                    /* Here, the new operator has higher precedence than the
+                     * stacked one.  This means we need to add the new one to
+                     * the stack to await its rhs operand (and maybe more
+                     * stuff).  We put it before the lhs operand, leaving
+                     * untouched the stacked operator and everything below it
+                     * */
+                    lhs = av_pop(stack);
+                    assert(IS_OPERAND(lhs));
+
+                    av_push(stack, newSVuv(curchar));
+                    av_push(stack, lhs);
+                    break;
+                }
+
+                /* Here, the new operator has equal or lower precedence than
+                 * what's already there.  This means the operation already
+                 * there should be performed now, before the new one. */
+                rhs = av_pop(stack);
+                lhs = av_pop(stack);
+
+                assert(IS_OPERAND(rhs));
+                assert(IS_OPERAND(lhs));
+
+                switch (stacked_operator) {
+                    case '&':
+                        _invlist_intersection(lhs, rhs, &rhs);
+                        break;
+
+                    case '|':
+                    case '+':
+                        _invlist_union(lhs, rhs, &rhs);
+                        break;
+
+                    case '-':
+                        _invlist_subtract(lhs, rhs, &rhs);
+                        break;
+
+                    case '^':   /* The union minus the intersection */
+                    {
+                        SV* i = NULL;
+                        SV* u = NULL;
+                        SV* element;
+
+                        _invlist_union(lhs, rhs, &u);
+                        _invlist_intersection(lhs, rhs, &i);
+                        /* _invlist_subtract will overwrite rhs
+                            without freeing what it already contains */
+                        element = rhs;
+                        _invlist_subtract(u, i, &rhs);
+                        SvREFCNT_dec_NN(i);
+                        SvREFCNT_dec_NN(u);
+                        SvREFCNT_dec_NN(element);
+                        break;
+                    }
+                }
+                SvREFCNT_dec(lhs);
+
+                /* Here, the higher precedence operation has been done, and the
+                 * result is in 'rhs'.  We overwrite the stacked operator with
+                 * the result.  Then we redo this code to either push the new
+                 * operator onto the stack or perform any higher precedence
+                 * stacked operation */
+                only_to_avoid_leaks = av_pop(stack);
+                SvREFCNT_dec(only_to_avoid_leaks);
+                av_push(stack, rhs);
+                goto redo_curchar;
+
+            case '!':   /* Highest priority, right associative, so just push
+                           onto stack */
+                av_push(stack, newSVuv(curchar));
+                break;
+
+            default:
+                RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+                vFAIL("Unexpected character");
+
+          handle_operand:
+
+            /* Here 'current' is the operand.  If something is already on the
+             * stack, we have to check if it is a !. */
+            top_index = av_tindex(stack);   /* Code above may have altered the
+                                             * stack in the time since we
+                                             * earlier set 'top_index'. */
+            if (top_index - fence >= 0) {
+                /* If the top entry on the stack is an operator, it had better
+                 * be a '!', otherwise the entry below the top operand should
+                 * be an operator */
+                top_ptr = av_fetch(stack, top_index, FALSE);
+                assert(top_ptr);
+                if (! IS_OPERAND(*top_ptr)) {
+
+                    /* The only permissible operator at the top of the stack is
+                     * '!', which is applied immediately to this operand. */
+                    curchar = (char) SvUV(*top_ptr);
+                    if (curchar != '!') {
+                        SvREFCNT_dec(current);
+                        vFAIL2("Unexpected binary operator '%c' with no "
+                                "preceding operand", curchar);
+                    }
+
+                    _invlist_invert(current);
+
+                    only_to_avoid_leaks = av_pop(stack);
+                    SvREFCNT_dec(only_to_avoid_leaks);
+                    top_index = av_tindex(stack);
+
+                    /* And we redo with the inverted operand.  This allows
+                     * handling multiple ! in a row */
+                    goto handle_operand;
+                }
+                          /* Single operand is ok only for the non-binary ')'
+                           * operator */
+                else if ((top_index - fence == 0 && curchar != ')')
+                         || (top_index - fence > 0
+                             && (! (stacked_ptr = av_fetch(stack,
+                                                           top_index - 1,
+                                                           FALSE))
+                                 || IS_OPERAND(*stacked_ptr))))
+                {
+                    SvREFCNT_dec(current);
+                    vFAIL("Operand with no preceding operator");
+                }
+            }
+
+            /* Here there was nothing on the stack or the top element was
+             * another operand.  Just add this new one */
+            av_push(stack, current);
+
+        } /* End of switch on next parse token */
+
+        RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+    } /* End of loop parsing through the construct */
+
+  done:
+    if (av_tindex(fence_stack) >= 0) {
+        vFAIL("Unmatched (");
+    }
+
+    if (av_tindex(stack) < 0   /* Was empty */
+        || ((final = av_pop(stack)) == NULL)
+        || ! IS_OPERAND(final)
+        || av_tindex(stack) >= 0)  /* More left on stack */
+    {
+        SvREFCNT_dec(final);
+        vFAIL("Incomplete expression within '(?[ ])'");
+    }
+
+    /* Here, 'final' is the resultant inversion list from evaluating the
+     * expression.  Return it if so requested */
+    if (return_invlist) {
+        *return_invlist = final;
+        return END;
+    }
+
+    /* Otherwise generate a resultant node, based on 'final'.  regclass() is
+     * expecting a string of ranges and individual code points */
+    invlist_iterinit(final);
+    result_string = newSVpvs("");
+    while (invlist_iternext(final, &start, &end)) {
+        if (start == end) {
+            Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}", start);
+        }
+        else {
+            Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}-\\x{%"UVXf"}",
+                                                     start,          end);
+        }
+    }
+
+    /* About to generate an ANYOF (or similar) node from the inversion list we
+     * have calculated */
+    save_parse = RExC_parse;
+    RExC_parse = SvPV(result_string, len);
+    save_end = RExC_end;
+    RExC_end = RExC_parse + len;
+
+    /* We turn off folding around the call, as the class we have constructed
+     * already has all folding taken into consideration, and we don't want
+     * regclass() to add to that */
+    RExC_flags &= ~RXf_PMf_FOLD;
+    /* regclass() can only return RESTART_UTF8 if multi-char folds are allowed.
+     */
+    node = regclass(pRExC_state, flagp,depth+1,
+                    FALSE, /* means parse the whole char class */
+                    FALSE, /* don't allow multi-char folds */
+                    TRUE, /* silence non-portable warnings.  The above may very
+                             well have generated non-portable code points, but
+                             they're valid on this machine */
+                    FALSE, /* similarly, no need for strict */
+                    NULL
+                );
+    if (!node)
+        FAIL2("panic: regclass returned NULL to handle_sets, flags=%#"UVxf,
+                    PTR2UV(flagp));
+    if (save_fold) {
+        RExC_flags |= RXf_PMf_FOLD;
+    }
+    RExC_parse = save_parse + 1;
+    RExC_end = save_end;
+    SvREFCNT_dec_NN(final);
+    SvREFCNT_dec_NN(result_string);
+
+    nextchar(pRExC_state);
+    Set_Node_Length(node, RExC_parse - oregcomp_parse + 1); /* MJD */
+    return node;
+}
+#undef IS_OPERAND
+
+STATIC void
+S_add_above_Latin1_folds(pTHX_ RExC_state_t *pRExC_state, const U8 cp, SV** invlist)
+{
+    /* This hard-codes the Latin1/above-Latin1 folding rules, so that an
+     * innocent-looking character class, like /[ks]/i won't have to go out to
+     * disk to find the possible matches.
+     *
+     * This should be called only for a Latin1-range code points, cp, which is
+     * known to be involved in a simple fold with other code points above
+     * Latin1.  It would give false results if /aa has been specified.
+     * Multi-char folds are outside the scope of this, and must be handled
+     * specially.
+     *
+     * XXX It would be better to generate these via regen, in case a new
+     * version of the Unicode standard adds new mappings, though that is not
+     * really likely, and may be caught by the default: case of the switch
+     * below. */
+
+    PERL_ARGS_ASSERT_ADD_ABOVE_LATIN1_FOLDS;
+
+    assert(HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(cp));
+
+    switch (cp) {
+        case 'k':
+        case 'K':
+          *invlist =
+             add_cp_to_invlist(*invlist, KELVIN_SIGN);
+            break;
+        case 's':
+        case 'S':
+          *invlist = add_cp_to_invlist(*invlist, LATIN_SMALL_LETTER_LONG_S);
+            break;
+        case MICRO_SIGN:
+          *invlist = add_cp_to_invlist(*invlist, GREEK_CAPITAL_LETTER_MU);
+          *invlist = add_cp_to_invlist(*invlist, GREEK_SMALL_LETTER_MU);
+            break;
+        case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
+        case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
+          *invlist = add_cp_to_invlist(*invlist, ANGSTROM_SIGN);
+            break;
+        case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
+          *invlist = add_cp_to_invlist(*invlist,
+                                        LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
+            break;
+        case LATIN_SMALL_LETTER_SHARP_S:
+          *invlist = add_cp_to_invlist(*invlist, LATIN_CAPITAL_LETTER_SHARP_S);
+            break;
+        default:
+            /* Use deprecated warning to increase the chances of this being
+             * output */
+            if (PASS2) {
+                ckWARN2reg_d(RExC_parse, "Perl folding rules are not up-to-date for 0x%02X; please use the perlbug utility to report;", cp);
+            }
+            break;
+    }
+}
+
+STATIC AV *
+S_add_multi_match(pTHX_ AV* multi_char_matches, SV* multi_string, const STRLEN cp_count)
+{
+    /* This adds the string scalar <multi_string> to the array
+     * <multi_char_matches>.  <multi_string> is known to have exactly
+     * <cp_count> code points in it.  This is used when constructing a
+     * bracketed character class and we find something that needs to match more
+     * than a single character.
+     *
+     * <multi_char_matches> is actually an array of arrays.  Each top-level
+     * element is an array that contains all the strings known so far that are
+     * the same length.  And that length (in number of code points) is the same
+     * as the index of the top-level array.  Hence, the [2] element is an
+     * array, each element thereof is a string containing TWO code points;
+     * while element [3] is for strings of THREE characters, and so on.  Since
+     * this is for multi-char strings there can never be a [0] nor [1] element.
+     *
+     * When we rewrite the character class below, we will do so such that the
+     * longest strings are written first, so that it prefers the longest
+     * matching strings first.  This is done even if it turns out that any
+     * quantifier is non-greedy, out of this programmer's (khw) laziness.  Tom
+     * Christiansen has agreed that this is ok.  This makes the test for the
+     * ligature 'ffi' come before the test for 'ff', for example */
+
+    AV* this_array;
+    AV** this_array_ptr;
+
+    PERL_ARGS_ASSERT_ADD_MULTI_MATCH;
+
+    if (! multi_char_matches) {
+        multi_char_matches = newAV();
+    }
+
+    if (av_exists(multi_char_matches, cp_count)) {
+        this_array_ptr = (AV**) av_fetch(multi_char_matches, cp_count, FALSE);
+        this_array = *this_array_ptr;
+    }
+    else {
+        this_array = newAV();
+        av_store(multi_char_matches, cp_count,
+                 (SV*) this_array);
+    }
+    av_push(this_array, multi_string);
+
+    return multi_char_matches;
+}
+
+/* The names of properties whose definitions are not known at compile time are
+ * stored in this SV, after a constant heading.  So if the length has been
+ * changed since initialization, then there is a run-time definition. */
+#define HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION                            \
+                                        (SvCUR(listsv) != initial_listsv_len)
+
+STATIC regnode *
+S_regclass(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth,
+                 const bool stop_at_1,  /* Just parse the next thing, don't
+                                           look for a full character class */
+                 bool allow_multi_folds,
+                 const bool silence_non_portable,   /* Don't output warnings
+                                                       about too large
+                                                       characters */
+                 const bool strict,
+                 SV** ret_invlist  /* Return an inversion list, not a node */
+          )
+{
+    /* parse a bracketed class specification.  Most of these will produce an
+     * ANYOF node; but something like [a] will produce an EXACT node; [aA], an
+     * EXACTFish node; [[:ascii:]], a POSIXA node; etc.  It is more complex
+     * under /i with multi-character folds: it will be rewritten following the
+     * paradigm of this example, where the <multi-fold>s are characters which
+     * fold to multiple character sequences:
+     *      /[abc\x{multi-fold1}def\x{multi-fold2}ghi]/i
+     * gets effectively rewritten as:
+     *      /(?:\x{multi-fold1}|\x{multi-fold2}|[abcdefghi]/i
+     * reg() gets called (recursively) on the rewritten version, and this
+     * function will return what it constructs.  (Actually the <multi-fold>s
+     * aren't physically removed from the [abcdefghi], it's just that they are
+     * ignored in the recursion by means of a flag:
+     * <RExC_in_multi_char_class>.)
+     *
+     * ANYOF nodes contain a bit map for the first NUM_ANYOF_CODE_POINTS
+     * characters, with the corresponding bit set if that character is in the
+     * list.  For characters above this, a range list or swash is used.  There
+     * are extra bits for \w, etc. in locale ANYOFs, as what these match is not
+     * determinable at compile time
+     *
+     * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs
+     * to be restarted.  This can only happen if ret_invlist is non-NULL.
+     */
+
+    UV prevvalue = OOB_UNICODE, save_prevvalue = OOB_UNICODE;
+    IV range = 0;
+    UV value = OOB_UNICODE, save_value = OOB_UNICODE;
+    regnode *ret;
+    STRLEN numlen;
+    IV namedclass = OOB_NAMEDCLASS;
+    char *rangebegin = NULL;
+    bool need_class = 0;
+    SV *listsv = NULL;
+    STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
+                                     than just initialized.  */
+    SV* properties = NULL;    /* Code points that match \p{} \P{} */
+    SV* posixes = NULL;     /* Code points that match classes like [:word:],
+                               extended beyond the Latin1 range.  These have to
+                               be kept separate from other code points for much
+                               of this function because their handling  is
+                               different under /i, and for most classes under
+                               /d as well */
+    SV* nposixes = NULL;    /* Similarly for [:^word:].  These are kept
+                               separate for a while from the non-complemented
+                               versions because of complications with /d
+                               matching */
+    SV* simple_posixes = NULL; /* But under some conditions, the classes can be
+                                  treated more simply than the general case,
+                                  leading to less compilation and execution
+                                  work */
+    UV element_count = 0;   /* Number of distinct elements in the class.
+                              Optimizations may be possible if this is tiny */
+    AV * multi_char_matches = NULL; /* Code points that fold to more than one
+                                       character; used under /i */
+    UV n;
+    char * stop_ptr = RExC_end;    /* where to stop parsing */
+    const bool skip_white = cBOOL(ret_invlist); /* ignore unescaped white
+                                                   space? */
+
+    /* Unicode properties are stored in a swash; this holds the current one
+     * being parsed.  If this swash is the only above-latin1 component of the
+     * character class, an optimization is to pass it directly on to the
+     * execution engine.  Otherwise, it is set to NULL to indicate that there
+     * are other things in the class that have to be dealt with at execution
+     * time */
+    SV* swash = NULL;          /* Code points that match \p{} \P{} */
+
+    /* Set if a component of this character class is user-defined; just passed
+     * on to the engine */
+    bool has_user_defined_property = FALSE;
+
+    /* inversion list of code points this node matches only when the target
+     * string is in UTF-8.  (Because is under /d) */
+    SV* depends_list = NULL;
+
+    /* Inversion list of code points this node matches regardless of things
+     * like locale, folding, utf8ness of the target string */
+    SV* cp_list = NULL;
+
+    /* Like cp_list, but code points on this list need to be checked for things
+     * that fold to/from them under /i */
+    SV* cp_foldable_list = NULL;
+
+    /* Like cp_list, but code points on this list are valid only when the
+     * runtime locale is UTF-8 */
+    SV* only_utf8_locale_list = NULL;
+
+    /* In a range, if one of the endpoints is non-character-set portable,
+     * meaning that it hard-codes a code point that may mean a different
+     * charactger in ASCII vs. EBCDIC, as opposed to, say, a literal 'A' or a
+     * mnemonic '\t' which each mean the same character no matter which
+     * character set the platform is on. */
+    unsigned int non_portable_endpoint = 0;
+
+    /* Is the range unicode? which means on a platform that isn't 1-1 native
+     * to Unicode (i.e. non-ASCII), each code point in it should be considered
+     * to be a Unicode value.  */
+    bool unicode_range = FALSE;
+    bool invert = FALSE;    /* Is this class to be complemented */
+
+    bool warn_super = ALWAYS_WARN_SUPER;
+
+    regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
+        case we need to change the emitted regop to an EXACT. */
+    const char * orig_parse = RExC_parse;
+    const SSize_t orig_size = RExC_size;
+    bool posixl_matches_all = FALSE; /* Does /l class have both e.g. \W,\w ? */
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGCLASS;
+#ifndef DEBUGGING
+    PERL_UNUSED_ARG(depth);
+#endif
+
+    DEBUG_PARSE("clas");
+
+    /* Assume we are going to generate an ANYOF node. */
+    ret = reganode(pRExC_state,
+                   (LOC)
+                    ? ANYOFL
+                    : ANYOF,
+                   0);
+
+    if (SIZE_ONLY) {
+       RExC_size += ANYOF_SKIP;
+       listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
+    }
+    else {
+        ANYOF_FLAGS(ret) = 0;
+
+       RExC_emit += ANYOF_SKIP;
+       listsv = newSVpvs_flags("# comment\n", SVs_TEMP);
+       initial_listsv_len = SvCUR(listsv);
+        SvTEMP_off(listsv); /* Grr, TEMPs and mortals are conflated.  */
+    }
+
+    if (skip_white) {
+        RExC_parse = regpatws(pRExC_state, RExC_parse,
+                              FALSE /* means don't recognize comments */ );
+    }
+
+    if (UCHARAT(RExC_parse) == '^') {  /* Complement of range. */
+       RExC_parse++;
+        invert = TRUE;
+        allow_multi_folds = FALSE;
+        MARK_NAUGHTY(1);
+        if (skip_white) {
+            RExC_parse = regpatws(pRExC_state, RExC_parse,
+                                  FALSE /* means don't recognize comments */ );
+        }
+    }
+
+    /* Check that they didn't say [:posix:] instead of [[:posix:]] */
+    if (!SIZE_ONLY && RExC_parse < RExC_end && POSIXCC(UCHARAT(RExC_parse))) {
+       const char *s = RExC_parse;
+       const char  c = *s++;
+
+        if (*s == '^') {
+            s++;
+        }
+       while (isWORDCHAR(*s))
+           s++;
+       if (*s && c == *s && s[1] == ']') {
+           SAVEFREESV(RExC_rx_sv);
+           ckWARN3reg(s+2,
+                      "POSIX syntax [%c %c] belongs inside character classes",
+                      c, c);
+           (void)ReREFCNT_inc(RExC_rx_sv);
+       }
+    }
+
+    /* If the caller wants us to just parse a single element, accomplish this
+     * by faking the loop ending condition */
+    if (stop_at_1 && RExC_end > RExC_parse) {
+        stop_ptr = RExC_parse + 1;
+    }
+
+    /* allow 1st char to be ']' (allowing it to be '-' is dealt with later) */
+    if (UCHARAT(RExC_parse) == ']')
+       goto charclassloop;
+
+    while (1) {
+        if  (RExC_parse >= stop_ptr) {
+            break;
+        }
+
+        if (skip_white) {
+            RExC_parse = regpatws(pRExC_state, RExC_parse,
+                                  FALSE /* means don't recognize comments */ );
+        }
+
+        if  (UCHARAT(RExC_parse) == ']') {
+            break;
+        }
+
+      charclassloop:
+
+       namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
+        save_value = value;
+        save_prevvalue = prevvalue;
+
+       if (!range) {
+           rangebegin = RExC_parse;
+           element_count++;
+            non_portable_endpoint = 0;
+       }
+       if (UTF) {
+           value = utf8n_to_uvchr((U8*)RExC_parse,
+                                  RExC_end - RExC_parse,
+                                  &numlen, UTF8_ALLOW_DEFAULT);
+           RExC_parse += numlen;
+       }
+       else
+           value = UCHARAT(RExC_parse++);
+
+        if (value == '['
+            && RExC_parse < RExC_end
+            && POSIXCC(UCHARAT(RExC_parse)))
+        {
+            namedclass = regpposixcc(pRExC_state, value, strict);
+        }
+        else if (value == '\\') {
+            /* Is a backslash; get the code point of the char after it */
+           if (UTF && ! UTF8_IS_INVARIANT(UCHARAT(RExC_parse))) {
+               value = utf8n_to_uvchr((U8*)RExC_parse,
+                                  RExC_end - RExC_parse,
+                                  &numlen, UTF8_ALLOW_DEFAULT);
+               RExC_parse += numlen;
+           }
+           else
+               value = UCHARAT(RExC_parse++);
+
+           /* Some compilers cannot handle switching on 64-bit integer
+            * values, therefore value cannot be an UV.  Yes, this will
+            * be a problem later if we want switch on Unicode.
+            * A similar issue a little bit later when switching on
+            * namedclass. --jhi */
+
+            /* If the \ is escaping white space when white space is being
+             * skipped, it means that that white space is wanted literally, and
+             * is already in 'value'.  Otherwise, need to translate the escape
+             * into what it signifies. */
+            if (! skip_white || ! is_PATWS_cp(value)) switch ((I32)value) {
+
+           case 'w':   namedclass = ANYOF_WORDCHAR;    break;
+           case 'W':   namedclass = ANYOF_NWORDCHAR;   break;
+           case 's':   namedclass = ANYOF_SPACE;       break;
+           case 'S':   namedclass = ANYOF_NSPACE;      break;
+           case 'd':   namedclass = ANYOF_DIGIT;       break;
+           case 'D':   namedclass = ANYOF_NDIGIT;      break;
+           case 'v':   namedclass = ANYOF_VERTWS;      break;
+           case 'V':   namedclass = ANYOF_NVERTWS;     break;
+           case 'h':   namedclass = ANYOF_HORIZWS;     break;
+           case 'H':   namedclass = ANYOF_NHORIZWS;    break;
+            case 'N':  /* Handle \N{NAME} in class */
+                {
+                    const char * const backslash_N_beg = RExC_parse - 2;
+                    int cp_count;
+
+                    if (! grok_bslash_N(pRExC_state,
+                                        NULL,      /* No regnode */
+                                        &value,    /* Yes single value */
+                                        &cp_count, /* Multiple code pt count */
+                                        flagp,
+                                        depth)
+                    ) {
+
+                        if (*flagp & RESTART_UTF8)
+                            FAIL("panic: grok_bslash_N set RESTART_UTF8");
+
+                        if (cp_count < 0) {
+                            vFAIL("\\N in a character class must be a named character: \\N{...}");
+                        }
+                        else if (cp_count == 0) {
+                            if (strict) {
+                                RExC_parse++;   /* Position after the "}" */
+                                vFAIL("Zero length \\N{}");
+                            }
+                            else if (PASS2) {
+                                ckWARNreg(RExC_parse,
+                                        "Ignoring zero length \\N{} in character class");
+                            }
+                        }
+                        else { /* cp_count > 1 */
+                            if (! RExC_in_multi_char_class) {
+                                if (invert || range || *RExC_parse == '-') {
+                                    if (strict) {
+                                        RExC_parse--;
+                                        vFAIL("\\N{} in inverted character class or as a range end-point is restricted to one character");
+                                    }
+                                    else if (PASS2) {
+                                        ckWARNreg(RExC_parse, "Using just the first character returned by \\N{} in character class");
+                                    }
+                                    break; /* <value> contains the first code
+                                              point. Drop out of the switch to
+                                              process it */
+                                }
+                                else {
+                                    SV * multi_char_N = newSVpvn(backslash_N_beg,
+                                                 RExC_parse - backslash_N_beg);
+                                    multi_char_matches
+                                        = add_multi_match(multi_char_matches,
+                                                          multi_char_N,
+                                                          cp_count);
+                                }
+                            }
+                        } /* End of cp_count != 1 */
+
+                        /* This element should not be processed further in this
+                         * class */
+                        element_count--;
+                        value = save_value;
+                        prevvalue = save_prevvalue;
+                        continue;   /* Back to top of loop to get next char */
+                    }
+
+                    /* Here, is a single code point, and <value> contains it */
+                    unicode_range = TRUE;   /* \N{} are Unicode */
+                }
+                break;
+           case 'p':
+           case 'P':
+               {
+               char *e;
+
+                /* We will handle any undefined properties ourselves */
+                U8 swash_init_flags = _CORE_SWASH_INIT_RETURN_IF_UNDEF
+                                       /* And we actually would prefer to get
+                                        * the straight inversion list of the
+                                        * swash, since we will be accessing it
+                                        * anyway, to save a little time */
+                                      |_CORE_SWASH_INIT_ACCEPT_INVLIST;
+
+               if (RExC_parse >= RExC_end)
+                   vFAIL2("Empty \\%c{}", (U8)value);
+               if (*RExC_parse == '{') {
+                   const U8 c = (U8)value;
+                   e = strchr(RExC_parse++, '}');
+                    if (!e)
+                        vFAIL2("Missing right brace on \\%c{}", c);
+                   while (isSPACE(*RExC_parse))
+                       RExC_parse++;
+                    if (e == RExC_parse)
+                        vFAIL2("Empty \\%c{}", c);
+                   n = e - RExC_parse;
+                   while (isSPACE(*(RExC_parse + n - 1)))
+                       n--;
+               }
+               else {
+                   e = RExC_parse;
+                   n = 1;
+               }
+               if (!SIZE_ONLY) {
+                    SV* invlist;
+                    char* name;
+
+                   if (UCHARAT(RExC_parse) == '^') {
+                        RExC_parse++;
+                        n--;
+                         /* toggle.  (The rhs xor gets the single bit that
+                          * differs between P and p; the other xor inverts just
+                          * that bit) */
+                         value ^= 'P' ^ 'p';
+
+                        while (isSPACE(*RExC_parse)) {
+                             RExC_parse++;
+                             n--;
+                        }
+                   }
+                    /* Try to get the definition of the property into
+                     * <invlist>.  If /i is in effect, the effective property
+                     * will have its name be <__NAME_i>.  The design is
+                     * discussed in commit
+                     * 2f833f5208e26b208886e51e09e2c072b5eabb46 */
+                    name = savepv(Perl_form(aTHX_
+                                          "%s%.*s%s\n",
+                                          (FOLD) ? "__" : "",
+                                          (int)n,
+                                          RExC_parse,
+                                          (FOLD) ? "_i" : ""
+                                ));
+
+                    /* Look up the property name, and get its swash and
+                     * inversion list, if the property is found  */
+                    if (swash) {
+                        SvREFCNT_dec_NN(swash);
+                    }
+                    swash = _core_swash_init("utf8", name, &PL_sv_undef,
+                                             1, /* binary */
+                                             0, /* not tr/// */
+                                             NULL, /* No inversion list */
+                                             &swash_init_flags
+                                            );
+                    if (! swash || ! (invlist = _get_swash_invlist(swash))) {
+                        HV* curpkg = (IN_PERL_COMPILETIME)
+                                      ? PL_curstash
+                                      : CopSTASH(PL_curcop);
+                        if (swash) {
+                            SvREFCNT_dec_NN(swash);
+                            swash = NULL;
+                        }
+
+                        /* Here didn't find it.  It could be a user-defined
+                         * property that will be available at run-time.  If we
+                         * accept only compile-time properties, is an error;
+                         * otherwise add it to the list for run-time look up */
+                        if (ret_invlist) {
+                            RExC_parse = e + 1;
+                            vFAIL2utf8f(
+                                "Property '%"UTF8f"' is unknown",
+                                UTF8fARG(UTF, n, name));
+                        }
+
+                        /* If the property name doesn't already have a package
+                         * name, add the current one to it so that it can be
+                         * referred to outside it. [perl #121777] */
+                        if (curpkg && ! instr(name, "::")) {
+                            char* pkgname = HvNAME(curpkg);
+                            if (strNE(pkgname, "main")) {
+                                char* full_name = Perl_form(aTHX_
+                                                            "%s::%s",
+                                                            pkgname,
+                                                            name);
+                                n = strlen(full_name);
+                                Safefree(name);
+                                name = savepvn(full_name, n);
+                            }
+                        }
+                        Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%"UTF8f"\n",
+                                        (value == 'p' ? '+' : '!'),
+                                        UTF8fARG(UTF, n, name));
+                        has_user_defined_property = TRUE;
+
+                        /* We don't know yet, so have to assume that the
+                         * property could match something in the Latin1 range,
+                         * hence something that isn't utf8.  Note that this
+                         * would cause things in <depends_list> to match
+                         * inappropriately, except that any \p{}, including
+                         * this one forces Unicode semantics, which means there
+                         * is no <depends_list> */
+                        ANYOF_FLAGS(ret)
+                                      |= ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES;
+                    }
+                    else {
+
+                        /* Here, did get the swash and its inversion list.  If
+                         * the swash is from a user-defined property, then this
+                         * whole character class should be regarded as such */
+                        if (swash_init_flags
+                            & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY)
+                        {
+                            has_user_defined_property = TRUE;
+                        }
+                        else if
+                            /* We warn on matching an above-Unicode code point
+                             * if the match would return true, except don't
+                             * warn for \p{All}, which has exactly one element
+                             * = 0 */
+                            (_invlist_contains_cp(invlist, 0x110000)
+                                && (! (_invlist_len(invlist) == 1
+                                       && *invlist_array(invlist) == 0)))
+                        {
+                            warn_super = TRUE;
+                        }
+
+
+                        /* Invert if asking for the complement */
+                        if (value == 'P') {
+                           _invlist_union_complement_2nd(properties,
+                                                          invlist,
+                                                          &properties);
+
+                            /* The swash can't be used as-is, because we've
+                            * inverted things; delay removing it to here after
+                            * have copied its invlist above */
+                            SvREFCNT_dec_NN(swash);
+                            swash = NULL;
+                        }
+                        else {
+                            _invlist_union(properties, invlist, &properties);
+                       }
+                   }
+                   Safefree(name);
+               }
+               RExC_parse = e + 1;
+                namedclass = ANYOF_UNIPROP;  /* no official name, but it's
+                                                named */
+
+               /* \p means they want Unicode semantics */
+               RExC_uni_semantics = 1;
+               }
+               break;
+           case 'n':   value = '\n';                   break;
+           case 'r':   value = '\r';                   break;
+           case 't':   value = '\t';                   break;
+           case 'f':   value = '\f';                   break;
+           case 'b':   value = '\b';                   break;
+           case 'e':   value = ESC_NATIVE;             break;
+           case 'a':   value = '\a';                   break;
+           case 'o':
+               RExC_parse--;   /* function expects to be pointed at the 'o' */
+               {
+                   const char* error_msg;
+                   bool valid = grok_bslash_o(&RExC_parse,
+                                              &value,
+                                              &error_msg,
+                                               PASS2,   /* warnings only in
+                                                           pass 2 */
+                                               strict,
+                                               silence_non_portable,
+                                               UTF);
+                   if (! valid) {
+                       vFAIL(error_msg);
+                   }
+               }
+                non_portable_endpoint++;
+               if (IN_ENCODING && value < 0x100) {
+                   goto recode_encoding;
+               }
+               break;
+           case 'x':
+               RExC_parse--;   /* function expects to be pointed at the 'x' */
+               {
+                   const char* error_msg;
+                   bool valid = grok_bslash_x(&RExC_parse,
+                                              &value,
+                                              &error_msg,
+                                              PASS2, /* Output warnings */
+                                               strict,
+                                               silence_non_portable,
+                                               UTF);
+                    if (! valid) {
+                       vFAIL(error_msg);
+                   }
+               }
+                non_portable_endpoint++;
+               if (IN_ENCODING && value < 0x100)
+                   goto recode_encoding;
+               break;
+           case 'c':
+               value = grok_bslash_c(*RExC_parse++, PASS2);
+                non_portable_endpoint++;
+               break;
+           case '0': case '1': case '2': case '3': case '4':
+           case '5': case '6': case '7':
+               {
+                   /* Take 1-3 octal digits */
+                   I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
+                    numlen = (strict) ? 4 : 3;
+                    value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
+                   RExC_parse += numlen;
+                    if (numlen != 3) {
+                        if (strict) {
+                            RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+                            vFAIL("Need exactly 3 octal digits");
+                        }
+                        else if (! SIZE_ONLY /* like \08, \178 */
+                                 && numlen < 3
+                                 && RExC_parse < RExC_end
+                                 && isDIGIT(*RExC_parse)
+                                 && ckWARN(WARN_REGEXP))
+                        {
+                            SAVEFREESV(RExC_rx_sv);
+                            reg_warn_non_literal_string(
+                                 RExC_parse + 1,
+                                 form_short_octal_warning(RExC_parse, numlen));
+                            (void)ReREFCNT_inc(RExC_rx_sv);
+                        }
+                    }
+                    non_portable_endpoint++;
+                   if (IN_ENCODING && value < 0x100)
+                       goto recode_encoding;
+                   break;
+               }
+             recode_encoding:
+               if (! RExC_override_recoding) {
+                   SV* enc = _get_encoding();
+                   value = reg_recode((const char)(U8)value, &enc);
+                   if (!enc) {
+                        if (strict) {
+                            vFAIL("Invalid escape in the specified encoding");
+                        }
+                        else if (PASS2) {
+                            ckWARNreg(RExC_parse,
+                                 "Invalid escape in the specified encoding");
+                        }
+                    }
+                   break;
+               }
+           default:
+               /* Allow \_ to not give an error */
+               if (!SIZE_ONLY && isWORDCHAR(value) && value != '_') {
+                    if (strict) {
+                        vFAIL2("Unrecognized escape \\%c in character class",
+                               (int)value);
+                    }
+                    else {
+                        SAVEFREESV(RExC_rx_sv);
+                        ckWARN2reg(RExC_parse,
+                            "Unrecognized escape \\%c in character class passed through",
+                            (int)value);
+                        (void)ReREFCNT_inc(RExC_rx_sv);
+                    }
+               }
+               break;
+           }   /* End of switch on char following backslash */
+       } /* end of handling backslash escape sequences */
+
+        /* Here, we have the current token in 'value' */
+
+       if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
+            U8 classnum;
+
+           /* a bad range like a-\d, a-[:digit:].  The '-' is taken as a
+            * literal, as is the character that began the false range, i.e.
+            * the 'a' in the examples */
+           if (range) {
+               if (!SIZE_ONLY) {
+                   const int w = (RExC_parse >= rangebegin)
+                                  ? RExC_parse - rangebegin
+                                  : 0;
+                    if (strict) {
+                        vFAIL2utf8f(
+                            "False [] range \"%"UTF8f"\"",
+                            UTF8fARG(UTF, w, rangebegin));
+                    }
+                    else {
+                        SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
+                        ckWARN2reg(RExC_parse,
+                            "False [] range \"%"UTF8f"\"",
+                            UTF8fARG(UTF, w, rangebegin));
+                        (void)ReREFCNT_inc(RExC_rx_sv);
+                        cp_list = add_cp_to_invlist(cp_list, '-');
+                        cp_foldable_list = add_cp_to_invlist(cp_foldable_list,
+                                                             prevvalue);
+                    }
+               }
+
+               range = 0; /* this was not a true range */
+                element_count += 2; /* So counts for three values */
+           }
+
+            classnum = namedclass_to_classnum(namedclass);
+
+           if (LOC && namedclass < ANYOF_POSIXL_MAX
+#ifndef HAS_ISASCII
+                && classnum != _CC_ASCII
+#endif
+            ) {
+                /* What the Posix classes (like \w, [:space:]) match in locale
+                 * isn't knowable under locale until actual match time.  Room
+                 * must be reserved (one time per outer bracketed class) to
+                 * store such classes.  The space will contain a bit for each
+                 * named class that is to be matched against.  This isn't
+                 * needed for \p{} and pseudo-classes, as they are not affected
+                 * by locale, and hence are dealt with separately */
+                if (! need_class) {
+                    need_class = 1;
+                    if (SIZE_ONLY) {
+                        RExC_size += ANYOF_POSIXL_SKIP - ANYOF_SKIP;
+                    }
+                    else {
+                        RExC_emit += ANYOF_POSIXL_SKIP - ANYOF_SKIP;
+                    }
+                    ANYOF_FLAGS(ret) |= ANYOF_MATCHES_POSIXL;
+                    ANYOF_POSIXL_ZERO(ret);
+                }
+
+                /* Coverity thinks it is possible for this to be negative; both
+                 * jhi and khw think it's not, but be safer */
+                assert(! (ANYOF_FLAGS(ret) & ANYOF_MATCHES_POSIXL)
+                       || (namedclass + ((namedclass % 2) ? -1 : 1)) >= 0);
+
+                /* See if it already matches the complement of this POSIX
+                 * class */
+                if ((ANYOF_FLAGS(ret) & ANYOF_MATCHES_POSIXL)
+                    && ANYOF_POSIXL_TEST(ret, namedclass + ((namedclass % 2)
+                                                            ? -1
+                                                            : 1)))
+                {
+                    posixl_matches_all = TRUE;
+                    break;  /* No need to continue.  Since it matches both
+                               e.g., \w and \W, it matches everything, and the
+                               bracketed class can be optimized into qr/./s */
+                }
+
+                /* Add this class to those that should be checked at runtime */
+                ANYOF_POSIXL_SET(ret, namedclass);
+
+                /* The above-Latin1 characters are not subject to locale rules.
+                 * Just add them, in the second pass, to the
+                 * unconditionally-matched list */
+                if (! SIZE_ONLY) {
+                    SV* scratch_list = NULL;
+
+                    /* Get the list of the above-Latin1 code points this
+                     * matches */
+                    _invlist_intersection_maybe_complement_2nd(PL_AboveLatin1,
+                                          PL_XPosix_ptrs[classnum],
+
+                                          /* Odd numbers are complements, like
+                                           * NDIGIT, NASCII, ... */
+                                          namedclass % 2 != 0,
+                                          &scratch_list);
+                    /* Checking if 'cp_list' is NULL first saves an extra
+                     * clone.  Its reference count will be decremented at the
+                     * next union, etc, or if this is the only instance, at the
+                     * end of the routine */
+                    if (! cp_list) {
+                        cp_list = scratch_list;
+                    }
+                    else {
+                        _invlist_union(cp_list, scratch_list, &cp_list);
+                        SvREFCNT_dec_NN(scratch_list);
+                    }
+                    continue;   /* Go get next character */
+                }
+            }
+            else if (! SIZE_ONLY) {
+
+                /* Here, not in pass1 (in that pass we skip calculating the
+                 * contents of this class), and is /l, or is a POSIX class for
+                 * which /l doesn't matter (or is a Unicode property, which is
+                 * skipped here). */
+                if (namedclass >= ANYOF_POSIXL_MAX) {  /* If a special class */
+                    if (namedclass != ANYOF_UNIPROP) { /* UNIPROP = \p and \P */
+
+                        /* Here, should be \h, \H, \v, or \V.  None of /d, /i
+                         * nor /l make a difference in what these match,
+                         * therefore we just add what they match to cp_list. */
+                        if (classnum != _CC_VERTSPACE) {
+                            assert(   namedclass == ANYOF_HORIZWS
+                                   || namedclass == ANYOF_NHORIZWS);
+
+                            /* It turns out that \h is just a synonym for
+                             * XPosixBlank */
+                            classnum = _CC_BLANK;
+                        }
+
+                        _invlist_union_maybe_complement_2nd(
+                                cp_list,
+                                PL_XPosix_ptrs[classnum],
+                                namedclass % 2 != 0,    /* Complement if odd
+                                                          (NHORIZWS, NVERTWS)
+                                                        */
+                                &cp_list);
+                    }
+                }
+                else if (UNI_SEMANTICS
+                        || classnum == _CC_ASCII
+                        || (DEPENDS_SEMANTICS && (classnum == _CC_DIGIT
+                                                  || classnum == _CC_XDIGIT)))
+                {
+                    /* We usually have to worry about /d and /a affecting what
+                     * POSIX classes match, with special code needed for /d
+                     * because we won't know until runtime what all matches.
+                     * But there is no extra work needed under /u, and
+                     * [:ascii:] is unaffected by /a and /d; and :digit: and
+                     * :xdigit: don't have runtime differences under /d.  So we
+                     * can special case these, and avoid some extra work below,
+                     * and at runtime. */
+                    _invlist_union_maybe_complement_2nd(
+                                                     simple_posixes,
+                                                     PL_XPosix_ptrs[classnum],
+                                                     namedclass % 2 != 0,
+                                                     &simple_posixes);
+                }
+                else {  /* Garden variety class.  If is NUPPER, NALPHA, ...
+                           complement and use nposixes */
+                    SV** posixes_ptr = namedclass % 2 == 0
+                                       ? &posixes
+                                       : &nposixes;
+                    _invlist_union_maybe_complement_2nd(
+                                                     *posixes_ptr,
+                                                     PL_XPosix_ptrs[classnum],
+                                                     namedclass % 2 != 0,
+                                                     posixes_ptr);
+                }
+           }
+       } /* end of namedclass \blah */
+
+        if (skip_white) {
+            RExC_parse = regpatws(pRExC_state, RExC_parse,
+                                FALSE /* means don't recognize comments */ );
+        }
+
+        /* If 'range' is set, 'value' is the ending of a range--check its
+         * validity.  (If value isn't a single code point in the case of a
+         * range, we should have figured that out above in the code that
+         * catches false ranges).  Later, we will handle each individual code
+         * point in the range.  If 'range' isn't set, this could be the
+         * beginning of a range, so check for that by looking ahead to see if
+         * the next real character to be processed is the range indicator--the
+         * minus sign */
+
+       if (range) {
+#ifdef EBCDIC
+            /* For unicode ranges, we have to test that the Unicode as opposed
+             * to the native values are not decreasing.  (Above 255, there is
+             * no difference between native and Unicode) */
+           if (unicode_range && prevvalue < 255 && value < 255) {
+                if (NATIVE_TO_LATIN1(prevvalue) > NATIVE_TO_LATIN1(value)) {
+                    goto backwards_range;
+                }
+            }
+            else
+#endif
+           if (prevvalue > value) /* b-a */ {
+               int w;
+#ifdef EBCDIC
+              backwards_range:
+#endif
+                w = RExC_parse - rangebegin;
+                vFAIL2utf8f(
+                    "Invalid [] range \"%"UTF8f"\"",
+                    UTF8fARG(UTF, w, rangebegin));
+                NOT_REACHED; /* NOTREACHED */
+           }
+       }
+       else {
+            prevvalue = value; /* save the beginning of the potential range */
+            if (! stop_at_1     /* Can't be a range if parsing just one thing */
+                && *RExC_parse == '-')
+            {
+                char* next_char_ptr = RExC_parse + 1;
+                if (skip_white) {   /* Get the next real char after the '-' */
+                    next_char_ptr = regpatws(pRExC_state,
+                                             RExC_parse + 1,
+                                             FALSE); /* means don't recognize
+                                                        comments */
+                }
+
+                /* If the '-' is at the end of the class (just before the ']',
+                 * it is a literal minus; otherwise it is a range */
+                if (next_char_ptr < RExC_end && *next_char_ptr != ']') {
+                    RExC_parse = next_char_ptr;
+
+                    /* a bad range like \w-, [:word:]- ? */
+                    if (namedclass > OOB_NAMEDCLASS) {
+                        if (strict || (PASS2 && ckWARN(WARN_REGEXP))) {
+                            const int w = RExC_parse >= rangebegin
+                                          ?  RExC_parse - rangebegin
+                                          : 0;
+                            if (strict) {
+                                vFAIL4("False [] range \"%*.*s\"",
+                                    w, w, rangebegin);
+                            }
+                            else if (PASS2) {
+                                vWARN4(RExC_parse,
+                                    "False [] range \"%*.*s\"",
+                                    w, w, rangebegin);
+                            }
+                        }
+                        if (!SIZE_ONLY) {
+                            cp_list = add_cp_to_invlist(cp_list, '-');
+                        }
+                        element_count++;
+                    } else
+                        range = 1;     /* yeah, it's a range! */
+                    continue;  /* but do it the next time */
+                }
+           }
+       }
+
+        if (namedclass > OOB_NAMEDCLASS) {
+            continue;
+        }
+
+        /* Here, we have a single value this time through the loop, and
+         * <prevvalue> is the beginning of the range, if any; or <value> if
+         * not. */
+
+       /* non-Latin1 code point implies unicode semantics.  Must be set in
+        * pass1 so is there for the whole of pass 2 */
+       if (value > 255) {
+           RExC_uni_semantics = 1;
+       }
+
+        /* Ready to process either the single value, or the completed range.
+         * For single-valued non-inverted ranges, we consider the possibility
+         * of multi-char folds.  (We made a conscious decision to not do this
+         * for the other cases because it can often lead to non-intuitive
+         * results.  For example, you have the peculiar case that:
+         *  "s s" =~ /^[^\xDF]+$/i => Y
+         *  "ss"  =~ /^[^\xDF]+$/i => N
+         *
+         * See [perl #89750] */
+        if (FOLD && allow_multi_folds && value == prevvalue) {
+            if (value == LATIN_SMALL_LETTER_SHARP_S
+                || (value > 255 && _invlist_contains_cp(PL_HasMultiCharFold,
+                                                        value)))
+            {
+                /* Here <value> is indeed a multi-char fold.  Get what it is */
+
+                U8 foldbuf[UTF8_MAXBYTES_CASE];
+                STRLEN foldlen;
+
+                UV folded = _to_uni_fold_flags(
+                                value,
+                                foldbuf,
+                                &foldlen,
+                                FOLD_FLAGS_FULL | (ASCII_FOLD_RESTRICTED
+                                                   ? FOLD_FLAGS_NOMIX_ASCII
+                                                   : 0)
+                                );
+
+                /* Here, <folded> should be the first character of the
+                 * multi-char fold of <value>, with <foldbuf> containing the
+                 * whole thing.  But, if this fold is not allowed (because of
+                 * the flags), <fold> will be the same as <value>, and should
+                 * be processed like any other character, so skip the special
+                 * handling */
+                if (folded != value) {
+
+                    /* Skip if we are recursed, currently parsing the class
+                     * again.  Otherwise add this character to the list of
+                     * multi-char folds. */
+                    if (! RExC_in_multi_char_class) {
+                        STRLEN cp_count = utf8_length(foldbuf,
+                                                      foldbuf + foldlen);
+                        SV* multi_fold = sv_2mortal(newSVpvs(""));
+
+                        Perl_sv_catpvf(aTHX_ multi_fold, "\\x{%"UVXf"}", value);
+
+                        multi_char_matches
+                                        = add_multi_match(multi_char_matches,
+                                                          multi_fold,
+                                                          cp_count);
+
+                    }
+
+                    /* This element should not be processed further in this
+                     * class */
+                    element_count--;
+                    value = save_value;
+                    prevvalue = save_prevvalue;
+                    continue;
+                }
+            }
+        }
+
+        if (strict && PASS2 && ckWARN(WARN_REGEXP)) {
+            if (range) {
+
+                /* If the range starts above 255, everything is portable and
+                 * likely to be so for any forseeable character set, so don't
+                 * warn. */
+                if (unicode_range && non_portable_endpoint && prevvalue < 256) {
+                    vWARN(RExC_parse, "Both or neither range ends should be Unicode");
+                }
+                else if (prevvalue != value) {
+
+                    /* Under strict, ranges that stop and/or end in an ASCII
+                     * printable should have each end point be a portable value
+                     * for it (preferably like 'A', but we don't warn if it is
+                     * a (portable) Unicode name or code point), and the range
+                     * must be be all digits or all letters of the same case.
+                     * Otherwise, the range is non-portable and unclear as to
+                     * what it contains */
+                    if ((isPRINT_A(prevvalue) || isPRINT_A(value))
+                        && (non_portable_endpoint
+                            || ! ((isDIGIT_A(prevvalue) && isDIGIT_A(value))
+                                   || (isLOWER_A(prevvalue) && isLOWER_A(value))
+                                   || (isUPPER_A(prevvalue) && isUPPER_A(value)))))
+                    {
+                        vWARN(RExC_parse, "Ranges of ASCII printables should be some subset of \"0-9\", \"A-Z\", or \"a-z\"");
+                    }
+                    else if (prevvalue >= 0x660) { /* ARABIC_INDIC_DIGIT_ZERO */
+
+                        /* But the nature of Unicode and languages mean we
+                         * can't do the same checks for above-ASCII ranges,
+                         * except in the case of digit ones.  These should
+                         * contain only digits from the same group of 10.  The
+                         * ASCII case is handled just above.  0x660 is the
+                         * first digit character beyond ASCII.  Hence here, the
+                         * range could be a range of digits.  Find out.  */
+                        IV index_start = _invlist_search(PL_XPosix_ptrs[_CC_DIGIT],
+                                                         prevvalue);
+                        IV index_final = _invlist_search(PL_XPosix_ptrs[_CC_DIGIT],
+                                                         value);
+
+                        /* If the range start and final points are in the same
+                         * inversion list element, it means that either both
+                         * are not digits, or both are digits in a consecutive
+                         * sequence of digits.  (So far, Unicode has kept all
+                         * such sequences as distinct groups of 10, but assert
+                         * to make sure).  If the end points are not in the
+                         * same element, neither should be a digit. */
+                        if (index_start == index_final) {
+                            assert(! ELEMENT_RANGE_MATCHES_INVLIST(index_start)
+                            || (invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start+1]
+                               - invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
+                               == 10)
+                               /* But actually Unicode did have one group of 11
+                                * 'digits' in 5.2, so in case we are operating
+                                * on that version, let that pass */
+                            || (invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start+1]
+                               - invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
+                                == 11
+                               && invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
+                                == 0x19D0)
+                            );
+                        }
+                        else if ((index_start >= 0
+                                  && ELEMENT_RANGE_MATCHES_INVLIST(index_start))
+                                 || (index_final >= 0
+                                     && ELEMENT_RANGE_MATCHES_INVLIST(index_final)))
+                        {
+                            vWARN(RExC_parse, "Ranges of digits should be from the same group of 10");
+                        }
+                    }
+                }
+            }
+            if ((! range || prevvalue == value) && non_portable_endpoint) {
+                if (isPRINT_A(value)) {
+                    char literal[3];
+                    unsigned d = 0;
+                    if (isBACKSLASHED_PUNCT(value)) {
+                        literal[d++] = '\\';
+                    }
+                    literal[d++] = (char) value;
+                    literal[d++] = '\0';
+
+                    vWARN4(RExC_parse,
+                           "\"%.*s\" is more clearly written simply as \"%s\"",
+                           (int) (RExC_parse - rangebegin),
+                           rangebegin,
+                           literal
+                        );
+                }
+                else if isMNEMONIC_CNTRL(value) {
+                    vWARN4(RExC_parse,
+                           "\"%.*s\" is more clearly written simply as \"%s\"",
+                           (int) (RExC_parse - rangebegin),
+                           rangebegin,
+                           cntrl_to_mnemonic((char) value)
+                        );
+                }
+            }
+        }
+
+        /* Deal with this element of the class */
+       if (! SIZE_ONLY) {
+
+#ifndef EBCDIC
+            cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
+                                                     prevvalue, value);
+#else
+            /* On non-ASCII platforms, for ranges that span all of 0..255, and
+             * ones that don't require special handling, we can just add the
+             * range like we do for ASCII platforms */
+            if ((UNLIKELY(prevvalue == 0) && value >= 255)
+                || ! (prevvalue < 256
+                      && (unicode_range
+                          || (! non_portable_endpoint
+                              && ((isLOWER_A(prevvalue) && isLOWER_A(value))
+                                  || (isUPPER_A(prevvalue)
+                                      && isUPPER_A(value)))))))
+            {
+                cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
+                                                         prevvalue, value);
+            }
+            else {
+                /* Here, requires special handling.  This can be because it is
+                 * a range whose code points are considered to be Unicode, and
+                 * so must be individually translated into native, or because
+                 * its a subrange of 'A-Z' or 'a-z' which each aren't
+                 * contiguous in EBCDIC, but we have defined them to include
+                 * only the "expected" upper or lower case ASCII alphabetics.
+                 * Subranges above 255 are the same in native and Unicode, so
+                 * can be added as a range */
+                U8 start = NATIVE_TO_LATIN1(prevvalue);
+                unsigned j;
+                U8 end = (value < 256) ? NATIVE_TO_LATIN1(value) : 255;
+                for (j = start; j <= end; j++) {
+                    cp_foldable_list = add_cp_to_invlist(cp_foldable_list, LATIN1_TO_NATIVE(j));
+                }
+                if (value > 255) {
+                    cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
+                                                             256, value);
+                }
+            }
+#endif
+        }
+
+       range = 0; /* this range (if it was one) is done now */
+    } /* End of loop through all the text within the brackets */
+
+    /* If anything in the class expands to more than one character, we have to
+     * deal with them by building up a substitute parse string, and recursively
+     * calling reg() on it, instead of proceeding */
+    if (multi_char_matches) {
+       SV * substitute_parse = newSVpvn_flags("?:", 2, SVs_TEMP);
+        I32 cp_count;
+       STRLEN len;
+       char *save_end = RExC_end;
+       char *save_parse = RExC_parse;
+        bool first_time = TRUE;     /* First multi-char occurrence doesn't get
+                                       a "|" */
+        I32 reg_flags;
+
+        assert(! invert);
+#if 0   /* Have decided not to deal with multi-char folds in inverted classes,
+           because too confusing */
+        if (invert) {
+            sv_catpv(substitute_parse, "(?:");
+        }
+#endif
+
+        /* Look at the longest folds first */
+        for (cp_count = av_tindex(multi_char_matches); cp_count > 0; cp_count--) {
+
+            if (av_exists(multi_char_matches, cp_count)) {
+                AV** this_array_ptr;
+                SV* this_sequence;
+
+                this_array_ptr = (AV**) av_fetch(multi_char_matches,
+                                                 cp_count, FALSE);
+                while ((this_sequence = av_pop(*this_array_ptr)) !=
+                                                                &PL_sv_undef)
+                {
+                    if (! first_time) {
+                        sv_catpv(substitute_parse, "|");
+                    }
+                    first_time = FALSE;
+
+                    sv_catpv(substitute_parse, SvPVX(this_sequence));
+                }
+            }
+        }
+
+        /* If the character class contains anything else besides these
+         * multi-character folds, have to include it in recursive parsing */
+        if (element_count) {
+            sv_catpv(substitute_parse, "|[");
+            sv_catpvn(substitute_parse, orig_parse, RExC_parse - orig_parse);
+            sv_catpv(substitute_parse, "]");
+        }
+
+        sv_catpv(substitute_parse, ")");
+#if 0
+        if (invert) {
+            /* This is a way to get the parse to skip forward a whole named
+             * sequence instead of matching the 2nd character when it fails the
+             * first */
+            sv_catpv(substitute_parse, "(*THEN)(*SKIP)(*FAIL)|.)");
+        }
+#endif
+
+       RExC_parse = SvPV(substitute_parse, len);
+       RExC_end = RExC_parse + len;
+        RExC_in_multi_char_class = 1;
+       RExC_override_recoding = 1;
+        RExC_emit = (regnode *)orig_emit;
+
+       ret = reg(pRExC_state, 1, &reg_flags, depth+1);
+
+       *flagp |= reg_flags&(HASWIDTH|SIMPLE|SPSTART|POSTPONED|RESTART_UTF8);
+
+       RExC_parse = save_parse;
+       RExC_end = save_end;
+       RExC_in_multi_char_class = 0;
+       RExC_override_recoding = 0;
+        SvREFCNT_dec_NN(multi_char_matches);
+        return ret;
+    }
+
+    /* Here, we've gone through the entire class and dealt with multi-char
+     * folds.  We are now in a position that we can do some checks to see if we
+     * can optimize this ANYOF node into a simpler one, even in Pass 1.
+     * Currently we only do two checks:
+     * 1) is in the unlikely event that the user has specified both, eg. \w and
+     *    \W under /l, then the class matches everything.  (This optimization
+     *    is done only to make the optimizer code run later work.)
+     * 2) if the character class contains only a single element (including a
+     *    single range), we see if there is an equivalent node for it.
+     * Other checks are possible */
+    if (! ret_invlist   /* Can't optimize if returning the constructed
+                           inversion list */
+        && (UNLIKELY(posixl_matches_all) || element_count == 1))
+    {
+        U8 op = END;
+        U8 arg = 0;
+
+        if (UNLIKELY(posixl_matches_all)) {
+            op = SANY;
+        }
+        else if (namedclass > OOB_NAMEDCLASS) { /* this is a named class, like
+                                                   \w or [:digit:] or \p{foo}
+                                                 */
+
+            /* All named classes are mapped into POSIXish nodes, with its FLAG
+             * argument giving which class it is */
+            switch ((I32)namedclass) {
+                case ANYOF_UNIPROP:
+                    break;
+
+                /* These don't depend on the charset modifiers.  They always
+                 * match under /u rules */
+                case ANYOF_NHORIZWS:
+                case ANYOF_HORIZWS:
+                    namedclass = ANYOF_BLANK + namedclass - ANYOF_HORIZWS;
+                    /* FALLTHROUGH */
+
+                case ANYOF_NVERTWS:
+                case ANYOF_VERTWS:
+                    op = POSIXU;
+                    goto join_posix;
+
+                /* The actual POSIXish node for all the rest depends on the
+                 * charset modifier.  The ones in the first set depend only on
+                 * ASCII or, if available on this platform, also locale */
+                case ANYOF_ASCII:
+                case ANYOF_NASCII:
+#ifdef HAS_ISASCII
+                    op = (LOC) ? POSIXL : POSIXA;
+#else
+                    op = POSIXA;
+#endif
+                    goto join_posix;
+
+                /* The following don't have any matches in the upper Latin1
+                 * range, hence /d is equivalent to /u for them.  Making it /u
+                 * saves some branches at runtime */
+                case ANYOF_DIGIT:
+                case ANYOF_NDIGIT:
+                case ANYOF_XDIGIT:
+                case ANYOF_NXDIGIT:
+                    if (! DEPENDS_SEMANTICS) {
+                        goto treat_as_default;
+                    }
+
+                    op = POSIXU;
+                    goto join_posix;
+
+                /* The following change to CASED under /i */
+                case ANYOF_LOWER:
+                case ANYOF_NLOWER:
+                case ANYOF_UPPER:
+                case ANYOF_NUPPER:
+                    if (FOLD) {
+                        namedclass = ANYOF_CASED + (namedclass % 2);
+                    }
+                    /* FALLTHROUGH */
+
+                /* The rest have more possibilities depending on the charset.
+                 * We take advantage of the enum ordering of the charset
+                 * modifiers to get the exact node type, */
+                default:
+                  treat_as_default:
+                    op = POSIXD + get_regex_charset(RExC_flags);
+                    if (op > POSIXA) { /* /aa is same as /a */
+                        op = POSIXA;
+                    }
+
+                  join_posix:
+                    /* The odd numbered ones are the complements of the
+                     * next-lower even number one */
+                    if (namedclass % 2 == 1) {
+                        invert = ! invert;
+                        namedclass--;
+                    }
+                    arg = namedclass_to_classnum(namedclass);
+                    break;
+            }
+        }
+        else if (value == prevvalue) {
+
+            /* Here, the class consists of just a single code point */
+
+            if (invert) {
+                if (! LOC && value == '\n') {
+                    op = REG_ANY; /* Optimize [^\n] */
+                    *flagp |= HASWIDTH|SIMPLE;
+                    MARK_NAUGHTY(1);
+                }
+            }
+            else if (value < 256 || UTF) {
+
+                /* Optimize a single value into an EXACTish node, but not if it
+                 * would require converting the pattern to UTF-8. */
+                op = compute_EXACTish(pRExC_state);
+            }
+        } /* Otherwise is a range */
+        else if (! LOC) {   /* locale could vary these */
+            if (prevvalue == '0') {
+                if (value == '9') {
+                    arg = _CC_DIGIT;
+                    op = POSIXA;
+                }
+            }
+            else if (! FOLD || ASCII_FOLD_RESTRICTED) {
+                /* We can optimize A-Z or a-z, but not if they could match
+                 * something like the KELVIN SIGN under /i. */
+                if (prevvalue == 'A') {
+                    if (value == 'Z'
+#ifdef EBCDIC
+                        && ! non_portable_endpoint
+#endif
+                    ) {
+                        arg = (FOLD) ? _CC_ALPHA : _CC_UPPER;
+                        op = POSIXA;
+                    }
+                }
+                else if (prevvalue == 'a') {
+                    if (value == 'z'
+#ifdef EBCDIC
+                        && ! non_portable_endpoint
+#endif
+                    ) {
+                        arg = (FOLD) ? _CC_ALPHA : _CC_LOWER;
+                        op = POSIXA;
+                    }
+                }
+            }
+        }
+
+        /* Here, we have changed <op> away from its initial value iff we found
+         * an optimization */
+        if (op != END) {
+
+            /* Throw away this ANYOF regnode, and emit the calculated one,
+             * which should correspond to the beginning, not current, state of
+             * the parse */
+            const char * cur_parse = RExC_parse;
+            RExC_parse = (char *)orig_parse;
+            if ( SIZE_ONLY) {
+                if (! LOC) {
+
+                    /* To get locale nodes to not use the full ANYOF size would
+                     * require moving the code above that writes the portions
+                     * of it that aren't in other nodes to after this point.
+                     * e.g.  ANYOF_POSIXL_SET */
+                    RExC_size = orig_size;
+                }
+            }
+            else {
+                RExC_emit = (regnode *)orig_emit;
+                if (PL_regkind[op] == POSIXD) {
+                    if (op == POSIXL) {
+                        RExC_contains_locale = 1;
+                    }
+                    if (invert) {
+                        op += NPOSIXD - POSIXD;
+                    }
+                }
+            }
+
+            ret = reg_node(pRExC_state, op);
+
+            if (PL_regkind[op] == POSIXD || PL_regkind[op] == NPOSIXD) {
+                if (! SIZE_ONLY) {
+                    FLAGS(ret) = arg;
+                }
+                *flagp |= HASWIDTH|SIMPLE;
+            }
+            else if (PL_regkind[op] == EXACT) {
+                alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value,
+                                           TRUE /* downgradable to EXACT */
+                                           );
+            }
+
+            RExC_parse = (char *) cur_parse;
+
+            SvREFCNT_dec(posixes);
+            SvREFCNT_dec(nposixes);
+            SvREFCNT_dec(simple_posixes);
+            SvREFCNT_dec(cp_list);
+            SvREFCNT_dec(cp_foldable_list);
+            return ret;
+        }
+    }
+
+    if (SIZE_ONLY)
+        return ret;
+    /****** !SIZE_ONLY (Pass 2) AFTER HERE *********/
+
+    /* If folding, we calculate all characters that could fold to or from the
+     * ones already on the list */
+    if (cp_foldable_list) {
+        if (FOLD) {
+            UV start, end;     /* End points of code point ranges */
+
+            SV* fold_intersection = NULL;
+            SV** use_list;
+
+            /* Our calculated list will be for Unicode rules.  For locale
+             * matching, we have to keep a separate list that is consulted at
+             * runtime only when the locale indicates Unicode rules.  For
+             * non-locale, we just use to the general list */
+            if (LOC) {
+                use_list = &only_utf8_locale_list;
+            }
+            else {
+                use_list = &cp_list;
+            }
+
+            /* Only the characters in this class that participate in folds need
+             * be checked.  Get the intersection of this class and all the
+             * possible characters that are foldable.  This can quickly narrow
+             * down a large class */
+            _invlist_intersection(PL_utf8_foldable, cp_foldable_list,
+                                  &fold_intersection);
+
+            /* The folds for all the Latin1 characters are hard-coded into this
+             * program, but we have to go out to disk to get the others. */
+            if (invlist_highest(cp_foldable_list) >= 256) {
+
+                /* This is a hash that for a particular fold gives all
+                 * characters that are involved in it */
+                if (! PL_utf8_foldclosures) {
+                    _load_PL_utf8_foldclosures();
+                }
+            }
+
+            /* Now look at the foldable characters in this class individually */
+            invlist_iterinit(fold_intersection);
+            while (invlist_iternext(fold_intersection, &start, &end)) {
+                UV j;
+
+                /* Look at every character in the range */
+                for (j = start; j <= end; j++) {
+                    U8 foldbuf[UTF8_MAXBYTES_CASE+1];
+                    STRLEN foldlen;
+                    SV** listp;
+
+                    if (j < 256) {
+
+                        if (IS_IN_SOME_FOLD_L1(j)) {
+
+                            /* ASCII is always matched; non-ASCII is matched
+                             * only under Unicode rules (which could happen
+                             * under /l if the locale is a UTF-8 one */
+                            if (isASCII(j) || ! DEPENDS_SEMANTICS) {
+                                *use_list = add_cp_to_invlist(*use_list,
+                                                            PL_fold_latin1[j]);
+                            }
+                            else {
+                                depends_list =
+                                 add_cp_to_invlist(depends_list,
+                                                   PL_fold_latin1[j]);
+                            }
+                        }
+
+                        if (HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(j)
+                            && (! isASCII(j) || ! ASCII_FOLD_RESTRICTED))
+                        {
+                            add_above_Latin1_folds(pRExC_state,
+                                                   (U8) j,
+                                                   use_list);
+                        }
+                        continue;
+                    }
+
+                    /* Here is an above Latin1 character.  We don't have the
+                     * rules hard-coded for it.  First, get its fold.  This is
+                     * the simple fold, as the multi-character folds have been
+                     * handled earlier and separated out */
+                    _to_uni_fold_flags(j, foldbuf, &foldlen,
+                                                        (ASCII_FOLD_RESTRICTED)
+                                                        ? FOLD_FLAGS_NOMIX_ASCII
+                                                        : 0);
+
+                    /* Single character fold of above Latin1.  Add everything in
+                    * its fold closure to the list that this node should match.
+                    * The fold closures data structure is a hash with the keys
+                    * being the UTF-8 of every character that is folded to, like
+                    * 'k', and the values each an array of all code points that
+                    * fold to its key.  e.g. [ 'k', 'K', KELVIN_SIGN ].
+                    * Multi-character folds are not included */
+                    if ((listp = hv_fetch(PL_utf8_foldclosures,
+                                        (char *) foldbuf, foldlen, FALSE)))
+                    {
+                        AV* list = (AV*) *listp;
+                        IV k;
+                        for (k = 0; k <= av_tindex(list); k++) {
+                            SV** c_p = av_fetch(list, k, FALSE);
+                            UV c;
+                            assert(c_p);
+
+                            c = SvUV(*c_p);
+
+                            /* /aa doesn't allow folds between ASCII and non- */
+                            if ((ASCII_FOLD_RESTRICTED
+                                && (isASCII(c) != isASCII(j))))
+                            {
+                                continue;
+                            }
+
+                            /* Folds under /l which cross the 255/256 boundary
+                             * are added to a separate list.  (These are valid
+                             * only when the locale is UTF-8.) */
+                            if (c < 256 && LOC) {
+                                *use_list = add_cp_to_invlist(*use_list, c);
+                                continue;
+                            }
+
+                            if (isASCII(c) || c > 255 || AT_LEAST_UNI_SEMANTICS)
+                            {
+                                cp_list = add_cp_to_invlist(cp_list, c);
+                            }
+                            else {
+                                /* Similarly folds involving non-ascii Latin1
+                                * characters under /d are added to their list */
+                                depends_list = add_cp_to_invlist(depends_list,
+                                                                 c);
+                            }
+                        }
+                    }
+                }
+            }
+            SvREFCNT_dec_NN(fold_intersection);
+        }
+
+        /* Now that we have finished adding all the folds, there is no reason
+         * to keep the foldable list separate */
+        _invlist_union(cp_list, cp_foldable_list, &cp_list);
+       SvREFCNT_dec_NN(cp_foldable_list);
+    }
+
+    /* And combine the result (if any) with any inversion list from posix
+     * classes.  The lists are kept separate up to now because we don't want to
+     * fold the classes (folding of those is automatically handled by the swash
+     * fetching code) */
+    if (simple_posixes) {
+        _invlist_union(cp_list, simple_posixes, &cp_list);
+        SvREFCNT_dec_NN(simple_posixes);
+    }
+    if (posixes || nposixes) {
+        if (posixes && AT_LEAST_ASCII_RESTRICTED) {
+            /* Under /a and /aa, nothing above ASCII matches these */
+            _invlist_intersection(posixes,
+                                  PL_XPosix_ptrs[_CC_ASCII],
+                                  &posixes);
+        }
+        if (nposixes) {
+            if (DEPENDS_SEMANTICS) {
+                /* Under /d, everything in the upper half of the Latin1 range
+                 * matches these complements */
+                ANYOF_FLAGS(ret) |= ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII;
+            }
+            else if (AT_LEAST_ASCII_RESTRICTED) {
+                /* Under /a and /aa, everything above ASCII matches these
+                 * complements */
+                _invlist_union_complement_2nd(nposixes,
+                                              PL_XPosix_ptrs[_CC_ASCII],
+                                              &nposixes);
+            }
+            if (posixes) {
+                _invlist_union(posixes, nposixes, &posixes);
+                SvREFCNT_dec_NN(nposixes);
+            }
+            else {
+                posixes = nposixes;
+            }
+        }
+        if (! DEPENDS_SEMANTICS) {
+            if (cp_list) {
+                _invlist_union(cp_list, posixes, &cp_list);
+                SvREFCNT_dec_NN(posixes);
+            }
+            else {
+                cp_list = posixes;
+            }
+        }
+        else {
+            /* Under /d, we put into a separate list the Latin1 things that
+             * match only when the target string is utf8 */
+            SV* nonascii_but_latin1_properties = NULL;
+            _invlist_intersection(posixes, PL_UpperLatin1,
+                                  &nonascii_but_latin1_properties);
+            _invlist_subtract(posixes, nonascii_but_latin1_properties,
+                              &posixes);
+            if (cp_list) {
+                _invlist_union(cp_list, posixes, &cp_list);
+                SvREFCNT_dec_NN(posixes);
+            }
+            else {
+                cp_list = posixes;
+            }
+
+            if (depends_list) {
+                _invlist_union(depends_list, nonascii_but_latin1_properties,
+                               &depends_list);
+                SvREFCNT_dec_NN(nonascii_but_latin1_properties);
+            }
+            else {
+                depends_list = nonascii_but_latin1_properties;
+            }
+        }
+    }
+
+    /* And combine the result (if any) with any inversion list from properties.
+     * The lists are kept separate up to now so that we can distinguish the two
+     * in regards to matching above-Unicode.  A run-time warning is generated
+     * if a Unicode property is matched against a non-Unicode code point. But,
+     * we allow user-defined properties to match anything, without any warning,
+     * and we also suppress the warning if there is a portion of the character
+     * class that isn't a Unicode property, and which matches above Unicode, \W
+     * or [\x{110000}] for example.
+     * (Note that in this case, unlike the Posix one above, there is no
+     * <depends_list>, because having a Unicode property forces Unicode
+     * semantics */
+    if (properties) {
+        if (cp_list) {
+
+            /* If it matters to the final outcome, see if a non-property
+             * component of the class matches above Unicode.  If so, the
+             * warning gets suppressed.  This is true even if just a single
+             * such code point is specified, as though not strictly correct if
+             * another such code point is matched against, the fact that they
+             * are using above-Unicode code points indicates they should know
+             * the issues involved */
+            if (warn_super) {
+                warn_super = ! (invert
+                               ^ (invlist_highest(cp_list) > PERL_UNICODE_MAX));
+            }
+
+            _invlist_union(properties, cp_list, &cp_list);
+            SvREFCNT_dec_NN(properties);
+        }
+        else {
+            cp_list = properties;
+        }
+
+        if (warn_super) {
+            ANYOF_FLAGS(ret) |= ANYOF_WARN_SUPER;
+        }
+    }
+
+    /* Here, we have calculated what code points should be in the character
+     * class.
+     *
+     * Now we can see about various optimizations.  Fold calculation (which we
+     * did above) needs to take place before inversion.  Otherwise /[^k]/i
+     * would invert to include K, which under /i would match k, which it
+     * shouldn't.  Therefore we can't invert folded locale now, as it won't be
+     * folded until runtime */
+
+    /* If we didn't do folding, it's because some information isn't available
+     * until runtime; set the run-time fold flag for these.  (We don't have to
+     * worry about properties folding, as that is taken care of by the swash
+     * fetching).  We know to set the flag if we have a non-NULL list for UTF-8
+     * locales, or the class matches at least one 0-255 range code point */
+    if (LOC && FOLD) {
+        if (only_utf8_locale_list) {
+            ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD;
+        }
+        else if (cp_list) { /* Look to see if there a 0-255 code point is in
+                               the list */
+            UV start, end;
+            invlist_iterinit(cp_list);
+            if (invlist_iternext(cp_list, &start, &end) && start < 256) {
+                ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD;
+            }
+            invlist_iterfinish(cp_list);
+        }
+    }
+
+    /* Optimize inverted simple patterns (e.g. [^a-z]) when everything is known
+     * at compile time.  Besides not inverting folded locale now, we can't
+     * invert if there are things such as \w, which aren't known until runtime
+     * */
+    if (cp_list
+        && invert
+        && ! (ANYOF_FLAGS(ret) & (ANYOF_LOCALE_FLAGS))
+       && ! depends_list
+       && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
+    {
+        _invlist_invert(cp_list);
+
+        /* Any swash can't be used as-is, because we've inverted things */
+        if (swash) {
+            SvREFCNT_dec_NN(swash);
+            swash = NULL;
+        }
+
+       /* Clear the invert flag since have just done it here */
+       invert = FALSE;
+    }
+
+    if (ret_invlist) {
+        assert(cp_list);
+
+        *ret_invlist = cp_list;
+        SvREFCNT_dec(swash);
+
+        /* Discard the generated node */
+        if (SIZE_ONLY) {
+            RExC_size = orig_size;
+        }
+        else {
+            RExC_emit = orig_emit;
+        }
+        return orig_emit;
+    }
+
+    /* Some character classes are equivalent to other nodes.  Such nodes take
+     * up less room and generally fewer operations to execute than ANYOF nodes.
+     * Above, we checked for and optimized into some such equivalents for
+     * certain common classes that are easy to test.  Getting to this point in
+     * the code means that the class didn't get optimized there.  Since this
+     * code is only executed in Pass 2, it is too late to save space--it has
+     * been allocated in Pass 1, and currently isn't given back.  But turning
+     * things into an EXACTish node can allow the optimizer to join it to any
+     * adjacent such nodes.  And if the class is equivalent to things like /./,
+     * expensive run-time swashes can be avoided.  Now that we have more
+     * complete information, we can find things necessarily missed by the
+     * earlier code.  I (khw) am not sure how much to look for here.  It would
+     * be easy, but perhaps too slow, to check any candidates against all the
+     * node types they could possibly match using _invlistEQ(). */
+
+    if (cp_list
+        && ! invert
+        && ! depends_list
+        && ! (ANYOF_FLAGS(ret) & (ANYOF_LOCALE_FLAGS))
+        && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
+
+           /* We don't optimize if we are supposed to make sure all non-Unicode
+            * code points raise a warning, as only ANYOF nodes have this check.
+            * */
+        && ! ((ANYOF_FLAGS(ret) & ANYOF_WARN_SUPER) && ALWAYS_WARN_SUPER))
+    {
+        UV start, end;
+        U8 op = END;  /* The optimzation node-type */
+        const char * cur_parse= RExC_parse;
+
+        invlist_iterinit(cp_list);
+        if (! invlist_iternext(cp_list, &start, &end)) {
+
+            /* Here, the list is empty.  This happens, for example, when a
+             * Unicode property is the only thing in the character class, and
+             * it doesn't match anything.  (perluniprops.pod notes such
+             * properties) */
+            op = OPFAIL;
+            *flagp |= HASWIDTH|SIMPLE;
+        }
+        else if (start == end) {    /* The range is a single code point */
+            if (! invlist_iternext(cp_list, &start, &end)
+
+                    /* Don't do this optimization if it would require changing
+                     * the pattern to UTF-8 */
+                && (start < 256 || UTF))
+            {
+                /* Here, the list contains a single code point.  Can optimize
+                 * into an EXACTish node */
+
+                value = start;
+
+                if (! FOLD) {
+                    op = (LOC)
+                         ? EXACTL
+                         : EXACT;
+                }
+                else if (LOC) {
+
+                    /* A locale node under folding with one code point can be
+                     * an EXACTFL, as its fold won't be calculated until
+                     * runtime */
+                    op = EXACTFL;
+                }
+                else {
+
+                    /* Here, we are generally folding, but there is only one
+                     * code point to match.  If we have to, we use an EXACT
+                     * node, but it would be better for joining with adjacent
+                     * nodes in the optimization pass if we used the same
+                     * EXACTFish node that any such are likely to be.  We can
+                     * do this iff the code point doesn't participate in any
+                     * folds.  For example, an EXACTF of a colon is the same as
+                     * an EXACT one, since nothing folds to or from a colon. */
+                    if (value < 256) {
+                        if (IS_IN_SOME_FOLD_L1(value)) {
+                            op = EXACT;
+                        }
+                    }
+                    else {
+                        if (_invlist_contains_cp(PL_utf8_foldable, value)) {
+                            op = EXACT;
+                        }
+                    }
+
+                    /* If we haven't found the node type, above, it means we
+                     * can use the prevailing one */
+                    if (op == END) {
+                        op = compute_EXACTish(pRExC_state);
+                    }
+                }
+            }
+        }
+        else if (start == 0) {
+            if (end == UV_MAX) {
+                op = SANY;
+                *flagp |= HASWIDTH|SIMPLE;
+                MARK_NAUGHTY(1);
+            }
+            else if (end == '\n' - 1
+                    && invlist_iternext(cp_list, &start, &end)
+                    && start == '\n' + 1 && end == UV_MAX)
+            {
+                op = REG_ANY;
+                *flagp |= HASWIDTH|SIMPLE;
+                MARK_NAUGHTY(1);
+            }
+        }
+        invlist_iterfinish(cp_list);
+
+        if (op != END) {
+            RExC_parse = (char *)orig_parse;
+            RExC_emit = (regnode *)orig_emit;
+
+            ret = reg_node(pRExC_state, op);
+
+            RExC_parse = (char *)cur_parse;
+
+            if (PL_regkind[op] == EXACT) {
+                alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value,
+                                           TRUE /* downgradable to EXACT */
+                                          );
+            }
+
+            SvREFCNT_dec_NN(cp_list);
+            return ret;
+        }
+    }
+
+    /* Here, <cp_list> contains all the code points we can determine at
+     * compile time that match under all conditions.  Go through it, and
+     * for things that belong in the bitmap, put them there, and delete from
+     * <cp_list>.  While we are at it, see if everything above 255 is in the
+     * list, and if so, set a flag to speed up execution */
+
+    populate_ANYOF_from_invlist(ret, &cp_list);
+
+    if (invert) {
+        ANYOF_FLAGS(ret) |= ANYOF_INVERT;
+    }
+
+    /* Here, the bitmap has been populated with all the Latin1 code points that
+     * always match.  Can now add to the overall list those that match only
+     * when the target string is UTF-8 (<depends_list>). */
+    if (depends_list) {
+       if (cp_list) {
+           _invlist_union(cp_list, depends_list, &cp_list);
+           SvREFCNT_dec_NN(depends_list);
+       }
+       else {
+           cp_list = depends_list;
+       }
+        ANYOF_FLAGS(ret) |= ANYOF_HAS_UTF8_NONBITMAP_MATCHES;
+    }
+
+    /* If there is a swash and more than one element, we can't use the swash in
+     * the optimization below. */
+    if (swash && element_count > 1) {
+       SvREFCNT_dec_NN(swash);
+       swash = NULL;
+    }
+
+    /* Note that the optimization of using 'swash' if it is the only thing in
+     * the class doesn't have us change swash at all, so it can include things
+     * that are also in the bitmap; otherwise we have purposely deleted that
+     * duplicate information */
+    set_ANYOF_arg(pRExC_state, ret, cp_list,
+                  (HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
+                   ? listsv : NULL,
+                  only_utf8_locale_list,
+                  swash, has_user_defined_property);
+
+    *flagp |= HASWIDTH|SIMPLE;
+
+    if (ANYOF_FLAGS(ret) & ANYOF_LOCALE_FLAGS) {
+        RExC_contains_locale = 1;
+    }
+
+    return ret;
+}
+
+#undef HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
+
+STATIC void
+S_set_ANYOF_arg(pTHX_ RExC_state_t* const pRExC_state,
+                regnode* const node,
+                SV* const cp_list,
+                SV* const runtime_defns,
+                SV* const only_utf8_locale_list,
+                SV* const swash,
+                const bool has_user_defined_property)
+{
+    /* Sets the arg field of an ANYOF-type node 'node', using information about
+     * the node passed-in.  If there is nothing outside the node's bitmap, the
+     * arg is set to ANYOF_ONLY_HAS_BITMAP.  Otherwise, it sets the argument to
+     * the count returned by add_data(), having allocated and stored an array,
+     * av, that that count references, as follows:
+     *  av[0] stores the character class description in its textual form.
+     *        This is used later (regexec.c:Perl_regclass_swash()) to
+     *        initialize the appropriate swash, and is also useful for dumping
+     *        the regnode.  This is set to &PL_sv_undef if the textual
+     *        description is not needed at run-time (as happens if the other
+     *        elements completely define the class)
+     *  av[1] if &PL_sv_undef, is a placeholder to later contain the swash
+     *        computed from av[0].  But if no further computation need be done,
+     *        the swash is stored here now (and av[0] is &PL_sv_undef).
+     *  av[2] stores the inversion list of code points that match only if the
+     *        current locale is UTF-8
+     *  av[3] stores the cp_list inversion list for use in addition or instead
+     *        of av[0]; used only if cp_list exists and av[1] is &PL_sv_undef.
+     *        (Otherwise everything needed is already in av[0] and av[1])
+     *  av[4] is set if any component of the class is from a user-defined
+     *        property; used only if av[3] exists */
+
+    UV n;
+
+    PERL_ARGS_ASSERT_SET_ANYOF_ARG;
+
+    if (! cp_list && ! runtime_defns && ! only_utf8_locale_list) {
+        assert(! (ANYOF_FLAGS(node)
+                  & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+                     |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES)));
+       ARG_SET(node, ANYOF_ONLY_HAS_BITMAP);
+    }
+    else {
+       AV * const av = newAV();
+       SV *rv;
+
+        assert(ANYOF_FLAGS(node)
+               & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+                  |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES|ANYOF_LOC_FOLD));
+
+       av_store(av, 0, (runtime_defns)
+                       ? SvREFCNT_inc(runtime_defns) : &PL_sv_undef);
+       if (swash) {
+           assert(cp_list);
+           av_store(av, 1, swash);
+           SvREFCNT_dec_NN(cp_list);
+       }
+       else {
+           av_store(av, 1, &PL_sv_undef);
+           if (cp_list) {
+               av_store(av, 3, cp_list);
+               av_store(av, 4, newSVuv(has_user_defined_property));
+           }
+       }
+
+        if (only_utf8_locale_list) {
+           av_store(av, 2, only_utf8_locale_list);
+        }
+        else {
+           av_store(av, 2, &PL_sv_undef);
+        }
+
+       rv = newRV_noinc(MUTABLE_SV(av));
+       n = add_data(pRExC_state, STR_WITH_LEN("s"));
+       RExC_rxi->data->data[n] = (void*)rv;
+       ARG_SET(node, n);
+    }
+}
+
+#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
+SV *
+Perl__get_regclass_nonbitmap_data(pTHX_ const regexp *prog,
+                                        const regnode* node,
+                                        bool doinit,
+                                        SV** listsvp,
+                                        SV** only_utf8_locale_ptr,
+                                        SV*  exclude_list)
+
+{
+    /* For internal core use only.
+     * Returns the swash for the input 'node' in the regex 'prog'.
+     * If <doinit> is 'true', will attempt to create the swash if not already
+     *   done.
+     * If <listsvp> is non-null, will return the printable contents of the
+     *    swash.  This can be used to get debugging information even before the
+     *    swash exists, by calling this function with 'doinit' set to false, in
+     *    which case the components that will be used to eventually create the
+     *    swash are returned  (in a printable form).
+     * If <exclude_list> is not NULL, it is an inversion list of things to
+     *    exclude from what's returned in <listsvp>.
+     * Tied intimately to how S_set_ANYOF_arg sets up the data structure.  Note
+     * that, in spite of this function's name, the swash it returns may include
+     * the bitmap data as well */
+
+    SV *sw  = NULL;
+    SV *si  = NULL;         /* Input swash initialization string */
+    SV*  invlist = NULL;
+
+    RXi_GET_DECL(prog,progi);
+    const struct reg_data * const data = prog ? progi->data : NULL;
+
+    PERL_ARGS_ASSERT__GET_REGCLASS_NONBITMAP_DATA;
+
+    assert(ANYOF_FLAGS(node)
+        & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+           |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES|ANYOF_LOC_FOLD));
+
+    if (data && data->count) {
+       const U32 n = ARG(node);
+
+       if (data->what[n] == 's') {
+           SV * const rv = MUTABLE_SV(data->data[n]);
+           AV * const av = MUTABLE_AV(SvRV(rv));
+           SV **const ary = AvARRAY(av);
+           U8 swash_init_flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+
+           si = *ary;  /* ary[0] = the string to initialize the swash with */
+
+           /* Elements 3 and 4 are either both present or both absent. [3] is
+            * any inversion list generated at compile time; [4] indicates if
+            * that inversion list has any user-defined properties in it. */
+            if (av_tindex(av) >= 2) {
+                if (only_utf8_locale_ptr
+                    && ary[2]
+                    && ary[2] != &PL_sv_undef)
+                {
+                    *only_utf8_locale_ptr = ary[2];
+                }
+                else {
+                    assert(only_utf8_locale_ptr);
+                    *only_utf8_locale_ptr = NULL;
+                }
+
+                if (av_tindex(av) >= 3) {
+                    invlist = ary[3];
+                    if (SvUV(ary[4])) {
+                        swash_init_flags |= _CORE_SWASH_INIT_USER_DEFINED_PROPERTY;
+                    }
+                }
+                else {
+                    invlist = NULL;
+                }
+           }
+
+           /* Element [1] is reserved for the set-up swash.  If already there,
+            * return it; if not, create it and store it there */
+           if (ary[1] && SvROK(ary[1])) {
+               sw = ary[1];
+           }
+           else if (doinit && ((si && si != &PL_sv_undef)
+                                 || (invlist && invlist != &PL_sv_undef))) {
+               assert(si);
+               sw = _core_swash_init("utf8", /* the utf8 package */
+                                     "", /* nameless */
+                                     si,
+                                     1, /* binary */
+                                     0, /* not from tr/// */
+                                     invlist,
+                                     &swash_init_flags);
+               (void)av_store(av, 1, sw);
+           }
+       }
+    }
+
+    /* If requested, return a printable version of what this swash matches */
+    if (listsvp) {
+       SV* matches_string = newSVpvs("");
+
+        /* The swash should be used, if possible, to get the data, as it
+         * contains the resolved data.  But this function can be called at
+         * compile-time, before everything gets resolved, in which case we
+         * return the currently best available information, which is the string
+         * that will eventually be used to do that resolving, 'si' */
+       if ((! sw || (invlist = _get_swash_invlist(sw)) == NULL)
+            && (si && si != &PL_sv_undef))
+        {
+           sv_catsv(matches_string, si);
+       }
+
+       /* Add the inversion list to whatever we have.  This may have come from
+        * the swash, or from an input parameter */
+       if (invlist) {
+            if (exclude_list) {
+                SV* clone = invlist_clone(invlist);
+                _invlist_subtract(clone, exclude_list, &clone);
+                sv_catsv(matches_string, _invlist_contents(clone));
+                SvREFCNT_dec_NN(clone);
+            }
+            else {
+                sv_catsv(matches_string, _invlist_contents(invlist));
+            }
+       }
+       *listsvp = matches_string;
+    }
+
+    return sw;
+}
+#endif /* !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION) */
+
+/* reg_skipcomment()
+
+   Absorbs an /x style # comment from the input stream,
+   returning a pointer to the first character beyond the comment, or if the
+   comment terminates the pattern without anything following it, this returns
+   one past the final character of the pattern (in other words, RExC_end) and
+   sets the REG_RUN_ON_COMMENT_SEEN flag.
+
+   Note it's the callers responsibility to ensure that we are
+   actually in /x mode
+
+*/
+
+PERL_STATIC_INLINE char*
+S_reg_skipcomment(RExC_state_t *pRExC_state, char* p)
+{
+    PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
+
+    assert(*p == '#');
+
+    while (p < RExC_end) {
+        if (*(++p) == '\n') {
+            return p+1;
+        }
+    }
+
+    /* we ran off the end of the pattern without ending the comment, so we have
+     * to add an \n when wrapping */
+    RExC_seen |= REG_RUN_ON_COMMENT_SEEN;
+    return p;
+}
+
+/* nextchar()
+
+   Advances the parse position, and optionally absorbs
+   "whitespace" from the inputstream.
+
+   Without /x "whitespace" means (?#...) style comments only,
+   with /x this means (?#...) and # comments and whitespace proper.
+
+   Returns the RExC_parse point from BEFORE the scan occurs.
+
+   This is the /x friendly way of saying RExC_parse++.
+*/
+
+STATIC char*
+S_nextchar(pTHX_ RExC_state_t *pRExC_state)
+{
+    char* const retval = RExC_parse++;
+
+    PERL_ARGS_ASSERT_NEXTCHAR;
+
+    for (;;) {
+       if (RExC_end - RExC_parse >= 3
+           && *RExC_parse == '('
+           && RExC_parse[1] == '?'
+           && RExC_parse[2] == '#')
+       {
+           while (*RExC_parse != ')') {
+               if (RExC_parse == RExC_end)
+                   FAIL("Sequence (?#... not terminated");
+               RExC_parse++;
+           }
+           RExC_parse++;
+           continue;
+       }
+       if (RExC_flags & RXf_PMf_EXTENDED) {
+            char * p = regpatws(pRExC_state, RExC_parse,
+                                          TRUE); /* means recognize comments */
+            if (p != RExC_parse) {
+                RExC_parse = p;
+                continue;
+            }
+       }
+        return retval;
+    }
+}
+
+STATIC regnode *
+S_regnode_guts(pTHX_ RExC_state_t *pRExC_state, const U8 op, const STRLEN extra_size, const char* const name)
+{
+    /* Allocate a regnode for 'op' and returns it, with 'extra_size' extra
+     * space.  In pass1, it aligns and increments RExC_size; in pass2,
+     * RExC_emit */
+
+    regnode * const ret = RExC_emit;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGNODE_GUTS;
+
+    assert(extra_size >= regarglen[op]);
+
+    if (SIZE_ONLY) {
+       SIZE_ALIGN(RExC_size);
+       RExC_size += 1 + extra_size;
+       return(ret);
+    }
+    if (RExC_emit >= RExC_emit_bound)
+        Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
+                  op, (void*)RExC_emit, (void*)RExC_emit_bound);
+
+    NODE_ALIGN_FILL(ret);
+#ifndef RE_TRACK_PATTERN_OFFSETS
+    PERL_UNUSED_ARG(name);
+#else
+    if (RExC_offsets) {         /* MJD */
+       MJD_OFFSET_DEBUG(
+              ("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
+              name, __LINE__,
+              PL_reg_name[op],
+              (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
+               ? "Overwriting end of array!\n" : "OK",
+              (UV)(RExC_emit - RExC_emit_start),
+              (UV)(RExC_parse - RExC_start),
+              (UV)RExC_offsets[0]));
+       Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
+    }
+#endif
+    return(ret);
+}
+
+/*
+- reg_node - emit a node
+*/
+STATIC regnode *                       /* Location. */
+S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
+{
+    regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reg_node");
+
+    PERL_ARGS_ASSERT_REG_NODE;
+
+    assert(regarglen[op] == 0);
+
+    if (PASS2) {
+        regnode *ptr = ret;
+        FILL_ADVANCE_NODE(ptr, op);
+        RExC_emit = ptr;
+    }
+    return(ret);
+}
+
+/*
+- reganode - emit a node with an argument
+*/
+STATIC regnode *                       /* Location. */
+S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
+{
+    regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reganode");
+
+    PERL_ARGS_ASSERT_REGANODE;
+
+    assert(regarglen[op] == 1);
+
+    if (PASS2) {
+        regnode *ptr = ret;
+        FILL_ADVANCE_NODE_ARG(ptr, op, arg);
+        RExC_emit = ptr;
+    }
+    return(ret);
+}
+
+STATIC regnode *
+S_reg2Lanode(pTHX_ RExC_state_t *pRExC_state, const U8 op, const U32 arg1, const I32 arg2)
+{
+    /* emit a node with U32 and I32 arguments */
+
+    regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reg2Lanode");
+
+    PERL_ARGS_ASSERT_REG2LANODE;
+
+    assert(regarglen[op] == 2);
+
+    if (PASS2) {
+        regnode *ptr = ret;
+        FILL_ADVANCE_NODE_2L_ARG(ptr, op, arg1, arg2);
+        RExC_emit = ptr;
+    }
+    return(ret);
+}
+
+/*
+- reginsert - insert an operator in front of already-emitted operand
+*
+* Means relocating the operand.
+*/
+STATIC void
+S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
+{
+    regnode *src;
+    regnode *dst;
+    regnode *place;
+    const int offset = regarglen[(U8)op];
+    const int size = NODE_STEP_REGNODE + offset;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGINSERT;
+    PERL_UNUSED_CONTEXT;
+    PERL_UNUSED_ARG(depth);
+/* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
+    DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
+    if (SIZE_ONLY) {
+       RExC_size += size;
+       return;
+    }
+
+    src = RExC_emit;
+    RExC_emit += size;
+    dst = RExC_emit;
+    if (RExC_open_parens) {
+        int paren;
+        /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
+        for ( paren=0 ; paren < RExC_npar ; paren++ ) {
+            if ( RExC_open_parens[paren] >= opnd ) {
+                /*DEBUG_PARSE_FMT("open"," - %d",size);*/
+                RExC_open_parens[paren] += size;
+            } else {
+                /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
+            }
+            if ( RExC_close_parens[paren] >= opnd ) {
+                /*DEBUG_PARSE_FMT("close"," - %d",size);*/
+                RExC_close_parens[paren] += size;
+            } else {
+                /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
+            }
+        }
+    }
+
+    while (src > opnd) {
+       StructCopy(--src, --dst, regnode);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+        if (RExC_offsets) {     /* MJD 20010112 */
+           MJD_OFFSET_DEBUG(
+                 ("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
+                  "reg_insert",
+                 __LINE__,
+                 PL_reg_name[op],
+                  (UV)(dst - RExC_emit_start) > RExC_offsets[0]
+                   ? "Overwriting end of array!\n" : "OK",
+                  (UV)(src - RExC_emit_start),
+                  (UV)(dst - RExC_emit_start),
+                  (UV)RExC_offsets[0]));
+           Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
+           Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
+        }
+#endif
+    }
+
+
+    place = opnd;              /* Op node, where operand used to be. */
+#ifdef RE_TRACK_PATTERN_OFFSETS
+    if (RExC_offsets) {         /* MJD */
+       MJD_OFFSET_DEBUG(
+              ("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
+              "reginsert",
+             __LINE__,
+             PL_reg_name[op],
+              (UV)(place - RExC_emit_start) > RExC_offsets[0]
+              ? "Overwriting end of array!\n" : "OK",
+              (UV)(place - RExC_emit_start),
+              (UV)(RExC_parse - RExC_start),
+              (UV)RExC_offsets[0]));
+       Set_Node_Offset(place, RExC_parse);
+       Set_Node_Length(place, 1);
+    }
+#endif
+    src = NEXTOPER(place);
+    FILL_ADVANCE_NODE(place, op);
+    Zero(src, offset, regnode);
+}
+
+/*
+- regtail - set the next-pointer at the end of a node chain of p to val.
+- SEE ALSO: regtail_study
+*/
+/* TODO: All three parms should be const */
+STATIC void
+S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p,
+                const regnode *val,U32 depth)
+{
+    regnode *scan;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGTAIL;
+#ifndef DEBUGGING
+    PERL_UNUSED_ARG(depth);
+#endif
+
+    if (SIZE_ONLY)
+       return;
+
+    /* Find last node. */
+    scan = p;
+    for (;;) {
+       regnode * const temp = regnext(scan);
+        DEBUG_PARSE_r({
+            DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
+            regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
+            PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
+                SvPV_nolen_const(RExC_mysv), REG_NODE_NUM(scan),
+                    (temp == NULL ? "->" : ""),
+                    (temp == NULL ? PL_reg_name[OP(val)] : "")
+            );
+        });
+        if (temp == NULL)
+            break;
+        scan = temp;
+    }
+
+    if (reg_off_by_arg[OP(scan)]) {
+        ARG_SET(scan, val - scan);
+    }
+    else {
+        NEXT_OFF(scan) = val - scan;
+    }
+}
+
+#ifdef DEBUGGING
+/*
+- regtail_study - set the next-pointer at the end of a node chain of p to val.
+- Look for optimizable sequences at the same time.
+- currently only looks for EXACT chains.
+
+This is experimental code. The idea is to use this routine to perform
+in place optimizations on branches and groups as they are constructed,
+with the long term intention of removing optimization from study_chunk so
+that it is purely analytical.
+
+Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
+to control which is which.
+
+*/
+/* TODO: All four parms should be const */
+
+STATIC U8
+S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p,
+                      const regnode *val,U32 depth)
+{
+    regnode *scan;
+    U8 exact = PSEUDO;
+#ifdef EXPERIMENTAL_INPLACESCAN
+    I32 min = 0;
+#endif
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGTAIL_STUDY;
+
+
+    if (SIZE_ONLY)
+        return exact;
+
+    /* Find last node. */
+
+    scan = p;
+    for (;;) {
+        regnode * const temp = regnext(scan);
+#ifdef EXPERIMENTAL_INPLACESCAN
+        if (PL_regkind[OP(scan)] == EXACT) {
+           bool unfolded_multi_char;   /* Unexamined in this routine */
+            if (join_exact(pRExC_state, scan, &min,
+                           &unfolded_multi_char, 1, val, depth+1))
+                return EXACT;
+       }
+#endif
+        if ( exact ) {
+            switch (OP(scan)) {
+                case EXACT:
+                case EXACTL:
+                case EXACTF:
+                case EXACTFA_NO_TRIE:
+                case EXACTFA:
+                case EXACTFU:
+                case EXACTFLU8:
+                case EXACTFU_SS:
+                case EXACTFL:
+                        if( exact == PSEUDO )
+                            exact= OP(scan);
+                        else if ( exact != OP(scan) )
+                            exact= 0;
+                case NOTHING:
+                    break;
+                default:
+                    exact= 0;
+            }
+        }
+        DEBUG_PARSE_r({
+            DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
+            regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
+            PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
+                SvPV_nolen_const(RExC_mysv),
+                REG_NODE_NUM(scan),
+                PL_reg_name[exact]);
+        });
+       if (temp == NULL)
+           break;
+       scan = temp;
+    }
+    DEBUG_PARSE_r({
+        DEBUG_PARSE_MSG("");
+        regprop(RExC_rx, RExC_mysv, val, NULL, pRExC_state);
+        PerlIO_printf(Perl_debug_log,
+                      "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
+                     SvPV_nolen_const(RExC_mysv),
+                     (IV)REG_NODE_NUM(val),
+                     (IV)(val - scan)
+        );
+    });
+    if (reg_off_by_arg[OP(scan)]) {
+       ARG_SET(scan, val - scan);
+    }
+    else {
+       NEXT_OFF(scan) = val - scan;
+    }
+
+    return exact;
+}
+#endif
+
+/*
+ - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
+ */
+#ifdef DEBUGGING
+
+static void
+S_regdump_intflags(pTHX_ const char *lead, const U32 flags)
+{
+    int bit;
+    int set=0;
+
+    ASSUME(REG_INTFLAGS_NAME_SIZE <= sizeof(flags)*8);
+
+    for (bit=0; bit<REG_INTFLAGS_NAME_SIZE; bit++) {
+        if (flags & (1<<bit)) {
+            if (!set++ && lead)
+                PerlIO_printf(Perl_debug_log, "%s",lead);
+            PerlIO_printf(Perl_debug_log, "%s ",PL_reg_intflags_name[bit]);
+        }
+    }
+    if (lead)  {
+        if (set)
+            PerlIO_printf(Perl_debug_log, "\n");
+        else
+            PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
+    }
+}
+
+static void
+S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
+{
+    int bit;
+    int set=0;
+    regex_charset cs;
+
+    ASSUME(REG_EXTFLAGS_NAME_SIZE <= sizeof(flags)*8);
+
+    for (bit=0; bit<REG_EXTFLAGS_NAME_SIZE; bit++) {
+        if (flags & (1<<bit)) {
+           if ((1<<bit) & RXf_PMf_CHARSET) {   /* Output separately, below */
+               continue;
+           }
+            if (!set++ && lead)
+                PerlIO_printf(Perl_debug_log, "%s",lead);
+            PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
+        }
+    }
+    if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
+            if (!set++ && lead) {
+                PerlIO_printf(Perl_debug_log, "%s",lead);
+            }
+            switch (cs) {
+                case REGEX_UNICODE_CHARSET:
+                    PerlIO_printf(Perl_debug_log, "UNICODE");
+                    break;
+                case REGEX_LOCALE_CHARSET:
+                    PerlIO_printf(Perl_debug_log, "LOCALE");
+                    break;
+                case REGEX_ASCII_RESTRICTED_CHARSET:
+                    PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
+                    break;
+                case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+                    PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
+                    break;
+                default:
+                    PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
+                    break;
+            }
+    }
+    if (lead)  {
+        if (set)
+            PerlIO_printf(Perl_debug_log, "\n");
+        else
+            PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
+    }
+}
+#endif
+
+void
+Perl_regdump(pTHX_ const regexp *r)
+{
+#ifdef DEBUGGING
+    SV * const sv = sv_newmortal();
+    SV *dsv= sv_newmortal();
+    RXi_GET_DECL(r,ri);
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGDUMP;
+
+    (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
+
+    /* Header fields of interest. */
+    if (r->anchored_substr) {
+       RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
+           RE_SV_DUMPLEN(r->anchored_substr), 30);
+       PerlIO_printf(Perl_debug_log,
+                     "anchored %s%s at %"IVdf" ",
+                     s, RE_SV_TAIL(r->anchored_substr),
+                     (IV)r->anchored_offset);
+    } else if (r->anchored_utf8) {
+       RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
+           RE_SV_DUMPLEN(r->anchored_utf8), 30);
+       PerlIO_printf(Perl_debug_log,
+                     "anchored utf8 %s%s at %"IVdf" ",
+                     s, RE_SV_TAIL(r->anchored_utf8),
+                     (IV)r->anchored_offset);
+    }
+    if (r->float_substr) {
+       RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
+           RE_SV_DUMPLEN(r->float_substr), 30);
+       PerlIO_printf(Perl_debug_log,
+                     "floating %s%s at %"IVdf"..%"UVuf" ",
+                     s, RE_SV_TAIL(r->float_substr),
+                     (IV)r->float_min_offset, (UV)r->float_max_offset);
+    } else if (r->float_utf8) {
+       RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
+           RE_SV_DUMPLEN(r->float_utf8), 30);
+       PerlIO_printf(Perl_debug_log,
+                     "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
+                     s, RE_SV_TAIL(r->float_utf8),
+                     (IV)r->float_min_offset, (UV)r->float_max_offset);
+    }
+    if (r->check_substr || r->check_utf8)
+       PerlIO_printf(Perl_debug_log,
+                     (const char *)
+                     (r->check_substr == r->float_substr
+                      && r->check_utf8 == r->float_utf8
+                      ? "(checking floating" : "(checking anchored"));
+    if (r->intflags & PREGf_NOSCAN)
+       PerlIO_printf(Perl_debug_log, " noscan");
+    if (r->extflags & RXf_CHECK_ALL)
+       PerlIO_printf(Perl_debug_log, " isall");
+    if (r->check_substr || r->check_utf8)
+       PerlIO_printf(Perl_debug_log, ") ");
+
+    if (ri->regstclass) {
+        regprop(r, sv, ri->regstclass, NULL, NULL);
+       PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
+    }
+    if (r->intflags & PREGf_ANCH) {
+       PerlIO_printf(Perl_debug_log, "anchored");
+        if (r->intflags & PREGf_ANCH_MBOL)
+           PerlIO_printf(Perl_debug_log, "(MBOL)");
+        if (r->intflags & PREGf_ANCH_SBOL)
+           PerlIO_printf(Perl_debug_log, "(SBOL)");
+        if (r->intflags & PREGf_ANCH_GPOS)
+           PerlIO_printf(Perl_debug_log, "(GPOS)");
+       PerlIO_putc(Perl_debug_log, ' ');
+    }
+    if (r->intflags & PREGf_GPOS_SEEN)
+       PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
+    if (r->intflags & PREGf_SKIP)
+       PerlIO_printf(Perl_debug_log, "plus ");
+    if (r->intflags & PREGf_IMPLICIT)
+       PerlIO_printf(Perl_debug_log, "implicit ");
+    PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
+    if (r->extflags & RXf_EVAL_SEEN)
+       PerlIO_printf(Perl_debug_log, "with eval ");
+    PerlIO_printf(Perl_debug_log, "\n");
+    DEBUG_FLAGS_r({
+        regdump_extflags("r->extflags: ",r->extflags);
+        regdump_intflags("r->intflags: ",r->intflags);
+    });
+#else
+    PERL_ARGS_ASSERT_REGDUMP;
+    PERL_UNUSED_CONTEXT;
+    PERL_UNUSED_ARG(r);
+#endif /* DEBUGGING */
+}
+
+/*
+- regprop - printable representation of opcode, with run time support
+*/
+
+void
+Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o, const regmatch_info *reginfo, const RExC_state_t *pRExC_state)
+{
+#ifdef DEBUGGING
+    int k;
+
+    /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
+    static const char * const anyofs[] = {
+#if _CC_WORDCHAR != 0 || _CC_DIGIT != 1 || _CC_ALPHA != 2 || _CC_LOWER != 3 \
+    || _CC_UPPER != 4 || _CC_PUNCT != 5 || _CC_PRINT != 6                   \
+    || _CC_ALPHANUMERIC != 7 || _CC_GRAPH != 8 || _CC_CASED != 9            \
+    || _CC_SPACE != 10 || _CC_BLANK != 11 || _CC_XDIGIT != 12               \
+    || _CC_CNTRL != 13 || _CC_ASCII != 14 || _CC_VERTSPACE != 15
+  #error Need to adjust order of anyofs[]
+#endif
+        "\\w",
+        "\\W",
+        "\\d",
+        "\\D",
+        "[:alpha:]",
+        "[:^alpha:]",
+        "[:lower:]",
+        "[:^lower:]",
+        "[:upper:]",
+        "[:^upper:]",
+        "[:punct:]",
+        "[:^punct:]",
+        "[:print:]",
+        "[:^print:]",
+        "[:alnum:]",
+        "[:^alnum:]",
+        "[:graph:]",
+        "[:^graph:]",
+        "[:cased:]",
+        "[:^cased:]",
+        "\\s",
+        "\\S",
+        "[:blank:]",
+        "[:^blank:]",
+        "[:xdigit:]",
+        "[:^xdigit:]",
+        "[:cntrl:]",
+        "[:^cntrl:]",
+        "[:ascii:]",
+        "[:^ascii:]",
+        "\\v",
+        "\\V"
+    };
+    RXi_GET_DECL(prog,progi);
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGPROP;
+
+    sv_setpvn(sv, "", 0);
+
+    if (OP(o) > REGNODE_MAX)           /* regnode.type is unsigned */
+       /* It would be nice to FAIL() here, but this may be called from
+          regexec.c, and it would be hard to supply pRExC_state. */
+       Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d",
+                                              (int)OP(o), (int)REGNODE_MAX);
+    sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
+
+    k = PL_regkind[OP(o)];
+
+    if (k == EXACT) {
+       sv_catpvs(sv, " ");
+       /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
+        * is a crude hack but it may be the best for now since
+        * we have no flag "this EXACTish node was UTF-8"
+        * --jhi */
+       pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
+                 PERL_PV_ESCAPE_UNI_DETECT |
+                 PERL_PV_ESCAPE_NONASCII   |
+                 PERL_PV_PRETTY_ELLIPSES   |
+                 PERL_PV_PRETTY_LTGT       |
+                 PERL_PV_PRETTY_NOCLEAR
+                 );
+    } else if (k == TRIE) {
+       /* print the details of the trie in dumpuntil instead, as
+        * progi->data isn't available here */
+        const char op = OP(o);
+        const U32 n = ARG(o);
+        const reg_ac_data * const ac = IS_TRIE_AC(op) ?
+               (reg_ac_data *)progi->data->data[n] :
+               NULL;
+        const reg_trie_data * const trie
+           = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
+
+        Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
+        DEBUG_TRIE_COMPILE_r(
+          Perl_sv_catpvf(aTHX_ sv,
+            "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
+            (UV)trie->startstate,
+            (IV)trie->statecount-1, /* -1 because of the unused 0 element */
+            (UV)trie->wordcount,
+            (UV)trie->minlen,
+            (UV)trie->maxlen,
+            (UV)TRIE_CHARCOUNT(trie),
+            (UV)trie->uniquecharcount
+          );
+        );
+        if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
+            sv_catpvs(sv, "[");
+            (void) put_charclass_bitmap_innards(sv,
+                                                (IS_ANYOF_TRIE(op))
+                                                 ? ANYOF_BITMAP(o)
+                                                 : TRIE_BITMAP(trie),
+                                                NULL);
+            sv_catpvs(sv, "]");
+        }
+
+    } else if (k == CURLY) {
+       if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
+           Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
+       Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
+    }
+    else if (k == WHILEM && o->flags)                  /* Ordinal/of */
+       Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
+    else if (k == REF || k == OPEN || k == CLOSE
+             || k == GROUPP || OP(o)==ACCEPT)
+    {
+        AV *name_list= NULL;
+       Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o));    /* Parenth number */
+       if ( RXp_PAREN_NAMES(prog) ) {
+            name_list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
+        } else if ( pRExC_state ) {
+            name_list= RExC_paren_name_list;
+        }
+        if (name_list) {
+            if ( k != REF || (OP(o) < NREF)) {
+                SV **name= av_fetch(name_list, ARG(o), 0 );
+               if (name)
+                   Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+            }
+            else {
+                SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
+                I32 *nums=(I32*)SvPVX(sv_dat);
+                SV **name= av_fetch(name_list, nums[0], 0 );
+                I32 n;
+                if (name) {
+                    for ( n=0; n<SvIVX(sv_dat); n++ ) {
+                        Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
+                                   (n ? "," : ""), (IV)nums[n]);
+                    }
+                    Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+                }
+            }
+        }
+        if ( k == REF && reginfo) {
+            U32 n = ARG(o);  /* which paren pair */
+            I32 ln = prog->offs[n].start;
+            if (prog->lastparen < n || ln == -1)
+                Perl_sv_catpvf(aTHX_ sv, ": FAIL");
+            else if (ln == prog->offs[n].end)
+                Perl_sv_catpvf(aTHX_ sv, ": ACCEPT - EMPTY STRING");
+            else {
+                const char *s = reginfo->strbeg + ln;
+                Perl_sv_catpvf(aTHX_ sv, ": ");
+                Perl_pv_pretty( aTHX_ sv, s, prog->offs[n].end - prog->offs[n].start, 32, 0, 0,
+                    PERL_PV_ESCAPE_UNI_DETECT|PERL_PV_PRETTY_NOCLEAR|PERL_PV_PRETTY_ELLIPSES|PERL_PV_PRETTY_QUOTE );
+            }
+        }
+    } else if (k == GOSUB) {
+        AV *name_list= NULL;
+        if ( RXp_PAREN_NAMES(prog) ) {
+            name_list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
+        } else if ( pRExC_state ) {
+            name_list= RExC_paren_name_list;
+        }
+
+        /* Paren and offset */
+       Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o));
+        if (name_list) {
+            SV **name= av_fetch(name_list, ARG(o), 0 );
+            if (name)
+                Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+        }
+    }
+    else if (k == VERB) {
+        if (!o->flags)
+            Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
+                          SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
+    } else if (k == LOGICAL)
+        /* 2: embedded, otherwise 1 */
+       Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags);
+    else if (k == ANYOF) {
+       const U8 flags = ANYOF_FLAGS(o);
+       int do_sep = 0;
+        SV* bitmap_invlist;  /* Will hold what the bit map contains */
+
+
+       if (OP(o) == ANYOFL)
+           sv_catpvs(sv, "{loc}");
+       if (flags & ANYOF_LOC_FOLD)
+           sv_catpvs(sv, "{i}");
+       Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
+       if (flags & ANYOF_INVERT)
+           sv_catpvs(sv, "^");
+
+        /* output what the standard cp 0-NUM_ANYOF_CODE_POINTS-1 bitmap matches
+         * */
+        do_sep = put_charclass_bitmap_innards(sv, ANYOF_BITMAP(o),
+                                                            &bitmap_invlist);
+
+        /* output any special charclass tests (used entirely under use
+         * locale) * */
+       if (ANYOF_POSIXL_TEST_ANY_SET(o)) {
+            int i;
+           for (i = 0; i < ANYOF_POSIXL_MAX; i++) {
+               if (ANYOF_POSIXL_TEST(o,i)) {
+                   sv_catpv(sv, anyofs[i]);
+                   do_sep = 1;
+               }
+            }
+        }
+
+       if ((flags & (ANYOF_MATCHES_ALL_ABOVE_BITMAP
+                      |ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+                      |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES
+                      |ANYOF_LOC_FOLD)))
+        {
+            if (do_sep) {
+                Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]);
+                if (flags & ANYOF_INVERT)
+                    /*make sure the invert info is in each */
+                    sv_catpvs(sv, "^");
+            }
+
+            if (flags & ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII) {
+                sv_catpvs(sv, "{non-utf8-latin1-all}");
+            }
+
+            if (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP)
+                sv_catpvs(sv, "{above_bitmap_all}");
+
+            if (ARG(o) != ANYOF_ONLY_HAS_BITMAP) {
+                SV *lv; /* Set if there is something outside the bit map. */
+                bool byte_output = FALSE;   /* If something has been output */
+                SV *only_utf8_locale;
+
+                /* Get the stuff that wasn't in the bitmap.  'bitmap_invlist'
+                 * is used to guarantee that nothing in the bitmap gets
+                 * returned */
+                (void) _get_regclass_nonbitmap_data(prog, o, FALSE,
+                                                    &lv, &only_utf8_locale,
+                                                    bitmap_invlist);
+                if (lv && lv != &PL_sv_undef) {
+                    char *s = savesvpv(lv);
+                    char * const origs = s;
+
+                    while (*s && *s != '\n')
+                        s++;
+
+                    if (*s == '\n') {
+                        const char * const t = ++s;
+
+                        if (flags & ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES) {
+                            sv_catpvs(sv, "{outside bitmap}");
+                        }
+                        else {
+                            sv_catpvs(sv, "{utf8}");
+                        }
+
+                        if (byte_output) {
+                            sv_catpvs(sv, " ");
+                        }
+
+                        while (*s) {
+                            if (*s == '\n') {
+
+                                /* Truncate very long output */
+                                if (s - origs > 256) {
+                                    Perl_sv_catpvf(aTHX_ sv,
+                                                "%.*s...",
+                                                (int) (s - origs - 1),
+                                                t);
+                                    goto out_dump;
+                                }
+                                *s = ' ';
+                            }
+                            else if (*s == '\t') {
+                                *s = '-';
+                            }
+                            s++;
+                        }
+                        if (s[-1] == ' ')
+                            s[-1] = 0;
+
+                        sv_catpv(sv, t);
+                    }
+
+                  out_dump:
+
+                    Safefree(origs);
+                    SvREFCNT_dec_NN(lv);
+                }
+
+                if ((flags & ANYOF_LOC_FOLD)
+                     && only_utf8_locale
+                     && only_utf8_locale != &PL_sv_undef)
+                {
+                    UV start, end;
+                    int max_entries = 256;
+
+                    sv_catpvs(sv, "{utf8 locale}");
+                    invlist_iterinit(only_utf8_locale);
+                    while (invlist_iternext(only_utf8_locale,
+                                            &start, &end)) {
+                        put_range(sv, start, end, FALSE);
+                        max_entries --;
+                        if (max_entries < 0) {
+                            sv_catpvs(sv, "...");
+                            break;
+                        }
+                    }
+                    invlist_iterfinish(only_utf8_locale);
+                }
+            }
+       }
+        SvREFCNT_dec(bitmap_invlist);
+
+
+       Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
+    }
+    else if (k == POSIXD || k == NPOSIXD) {
+        U8 index = FLAGS(o) * 2;
+        if (index < C_ARRAY_LENGTH(anyofs)) {
+            if (*anyofs[index] != '[')  {
+                sv_catpv(sv, "[");
+            }
+            sv_catpv(sv, anyofs[index]);
+            if (*anyofs[index] != '[')  {
+                sv_catpv(sv, "]");
+            }
+        }
+        else {
+            Perl_sv_catpvf(aTHX_ sv, "[illegal type=%d])", index);
+        }
+    }
+    else if (k == BOUND || k == NBOUND) {
+        /* Must be synced with order of 'bound_type' in regcomp.h */
+        const char * const bounds[] = {
+            "",      /* Traditional */
+            "{gcb}",
+            "{sb}",
+            "{wb}"
+        };
+        sv_catpv(sv, bounds[FLAGS(o)]);
+    }
+    else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
+       Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
+    else if (OP(o) == SBOL)
+        Perl_sv_catpvf(aTHX_ sv, " /%s/", o->flags ? "\\A" : "^");
+#else
+    PERL_UNUSED_CONTEXT;
+    PERL_UNUSED_ARG(sv);
+    PERL_UNUSED_ARG(o);
+    PERL_UNUSED_ARG(prog);
+    PERL_UNUSED_ARG(reginfo);
+    PERL_UNUSED_ARG(pRExC_state);
+#endif /* DEBUGGING */
+}
+
+
+
+SV *
+Perl_re_intuit_string(pTHX_ REGEXP * const r)
+{                              /* Assume that RE_INTUIT is set */
+    struct regexp *const prog = ReANY(r);
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_RE_INTUIT_STRING;
+    PERL_UNUSED_CONTEXT;
+
+    DEBUG_COMPILE_r(
+       {
+           const char * const s = SvPV_nolen_const(RX_UTF8(r)
+                     ? prog->check_utf8 : prog->check_substr);
+
+           if (!PL_colorset) reginitcolors();
+           PerlIO_printf(Perl_debug_log,
+                     "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
+                     PL_colors[4],
+                     RX_UTF8(r) ? "utf8 " : "",
+                     PL_colors[5],PL_colors[0],
+                     s,
+                     PL_colors[1],
+                     (strlen(s) > 60 ? "..." : ""));
+       } );
+
+    /* use UTF8 check substring if regexp pattern itself is in UTF8 */
+    return RX_UTF8(r) ? prog->check_utf8 : prog->check_substr;
+}
+
+/*
+   pregfree()
+
+   handles refcounting and freeing the perl core regexp structure. When
+   it is necessary to actually free the structure the first thing it
+   does is call the 'free' method of the regexp_engine associated to
+   the regexp, allowing the handling of the void *pprivate; member
+   first. (This routine is not overridable by extensions, which is why
+   the extensions free is called first.)
+
+   See regdupe and regdupe_internal if you change anything here.
+*/
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_pregfree(pTHX_ REGEXP *r)
+{
+    SvREFCNT_dec(r);
+}
+
+void
+Perl_pregfree2(pTHX_ REGEXP *rx)
+{
+    struct regexp *const r = ReANY(rx);
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_PREGFREE2;
+
+    if (r->mother_re) {
+        ReREFCNT_dec(r->mother_re);
+    } else {
+        CALLREGFREE_PVT(rx); /* free the private data */
+        SvREFCNT_dec(RXp_PAREN_NAMES(r));
+       Safefree(r->xpv_len_u.xpvlenu_pv);
+    }
+    if (r->substrs) {
+        SvREFCNT_dec(r->anchored_substr);
+        SvREFCNT_dec(r->anchored_utf8);
+        SvREFCNT_dec(r->float_substr);
+        SvREFCNT_dec(r->float_utf8);
+       Safefree(r->substrs);
+    }
+    RX_MATCH_COPY_FREE(rx);
+#ifdef PERL_ANY_COW
+    SvREFCNT_dec(r->saved_copy);
+#endif
+    Safefree(r->offs);
+    SvREFCNT_dec(r->qr_anoncv);
+    rx->sv_u.svu_rx = 0;
+}
+
+/*  reg_temp_copy()
+
+    This is a hacky workaround to the structural issue of match results
+    being stored in the regexp structure which is in turn stored in
+    PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
+    could be PL_curpm in multiple contexts, and could require multiple
+    result sets being associated with the pattern simultaneously, such
+    as when doing a recursive match with (??{$qr})
+
+    The solution is to make a lightweight copy of the regexp structure
+    when a qr// is returned from the code executed by (??{$qr}) this
+    lightweight copy doesn't actually own any of its data except for
+    the starp/end and the actual regexp structure itself.
+
+*/
+
+
+REGEXP *
+Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
+{
+    struct regexp *ret;
+    struct regexp *const r = ReANY(rx);
+    const bool islv = ret_x && SvTYPE(ret_x) == SVt_PVLV;
+
+    PERL_ARGS_ASSERT_REG_TEMP_COPY;
+
+    if (!ret_x)
+       ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
+    else {
+       SvOK_off((SV *)ret_x);
+       if (islv) {
+           /* For PVLVs, SvANY points to the xpvlv body while sv_u points
+              to the regexp.  (For SVt_REGEXPs, sv_upgrade has already
+              made both spots point to the same regexp body.) */
+           REGEXP *temp = (REGEXP *)newSV_type(SVt_REGEXP);
+           assert(!SvPVX(ret_x));
+           ret_x->sv_u.svu_rx = temp->sv_any;
+           temp->sv_any = NULL;
+           SvFLAGS(temp) = (SvFLAGS(temp) & ~SVTYPEMASK) | SVt_NULL;
+           SvREFCNT_dec_NN(temp);
+           /* SvCUR still resides in the xpvlv struct, so the regexp copy-
+              ing below will not set it. */
+           SvCUR_set(ret_x, SvCUR(rx));
+       }
+    }
+    /* This ensures that SvTHINKFIRST(sv) is true, and hence that
+       sv_force_normal(sv) is called.  */
+    SvFAKE_on(ret_x);
+    ret = ReANY(ret_x);
+
+    SvFLAGS(ret_x) |= SvUTF8(rx);
+    /* We share the same string buffer as the original regexp, on which we
+       hold a reference count, incremented when mother_re is set below.
+       The string pointer is copied here, being part of the regexp struct.
+     */
+    memcpy(&(ret->xpv_cur), &(r->xpv_cur),
+          sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
+    if (r->offs) {
+        const I32 npar = r->nparens+1;
+        Newx(ret->offs, npar, regexp_paren_pair);
+        Copy(r->offs, ret->offs, npar, regexp_paren_pair);
+    }
+    if (r->substrs) {
+        Newx(ret->substrs, 1, struct reg_substr_data);
+       StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
+
+       SvREFCNT_inc_void(ret->anchored_substr);
+       SvREFCNT_inc_void(ret->anchored_utf8);
+       SvREFCNT_inc_void(ret->float_substr);
+       SvREFCNT_inc_void(ret->float_utf8);
+
+       /* check_substr and check_utf8, if non-NULL, point to either their
+          anchored or float namesakes, and don't hold a second reference.  */
+    }
+    RX_MATCH_COPIED_off(ret_x);
+#ifdef PERL_ANY_COW
+    ret->saved_copy = NULL;
+#endif
+    ret->mother_re = ReREFCNT_inc(r->mother_re ? r->mother_re : rx);
+    SvREFCNT_inc_void(ret->qr_anoncv);
+
+    return ret_x;
+}
+#endif
+
+/* regfree_internal()
+
+   Free the private data in a regexp. This is overloadable by
+   extensions. Perl takes care of the regexp structure in pregfree(),
+   this covers the *pprivate pointer which technically perl doesn't
+   know about, however of course we have to handle the
+   regexp_internal structure when no extension is in use.
+
+   Note this is called before freeing anything in the regexp
+   structure.
+ */
+
+void
+Perl_regfree_internal(pTHX_ REGEXP * const rx)
+{
+    struct regexp *const r = ReANY(rx);
+    RXi_GET_DECL(r,ri);
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGFREE_INTERNAL;
+
+    DEBUG_COMPILE_r({
+       if (!PL_colorset)
+           reginitcolors();
+       {
+           SV *dsv= sv_newmortal();
+            RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
+                dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
+            PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
+                PL_colors[4],PL_colors[5],s);
+        }
+    });
+#ifdef RE_TRACK_PATTERN_OFFSETS
+    if (ri->u.offsets)
+        Safefree(ri->u.offsets);             /* 20010421 MJD */
+#endif
+    if (ri->code_blocks) {
+       int n;
+       for (n = 0; n < ri->num_code_blocks; n++)
+           SvREFCNT_dec(ri->code_blocks[n].src_regex);
+       Safefree(ri->code_blocks);
+    }
+
+    if (ri->data) {
+       int n = ri->data->count;
+
+       while (--n >= 0) {
+          /* If you add a ->what type here, update the comment in regcomp.h */
+           switch (ri->data->what[n]) {
+           case 'a':
+           case 'r':
+           case 's':
+           case 'S':
+           case 'u':
+               SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
+               break;
+           case 'f':
+               Safefree(ri->data->data[n]);
+               break;
+           case 'l':
+           case 'L':
+               break;
+            case 'T':
+                { /* Aho Corasick add-on structure for a trie node.
+                     Used in stclass optimization only */
+                    U32 refcount;
+                    reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
+#ifdef USE_ITHREADS
+                    dVAR;
+#endif
+                    OP_REFCNT_LOCK;
+                    refcount = --aho->refcount;
+                    OP_REFCNT_UNLOCK;
+                    if ( !refcount ) {
+                        PerlMemShared_free(aho->states);
+                        PerlMemShared_free(aho->fail);
+                        /* do this last!!!! */
+                        PerlMemShared_free(ri->data->data[n]);
+                        /* we should only ever get called once, so
+                         * assert as much, and also guard the free
+                         * which /might/ happen twice. At the least
+                         * it will make code anlyzers happy and it
+                         * doesn't cost much. - Yves */
+                        assert(ri->regstclass);
+                        if (ri->regstclass) {
+                            PerlMemShared_free(ri->regstclass);
+                            ri->regstclass = 0;
+                        }
+                    }
+                }
+                break;
+           case 't':
+               {
+                   /* trie structure. */
+                   U32 refcount;
+                   reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
+#ifdef USE_ITHREADS
+                    dVAR;
+#endif
+                    OP_REFCNT_LOCK;
+                    refcount = --trie->refcount;
+                    OP_REFCNT_UNLOCK;
+                    if ( !refcount ) {
+                        PerlMemShared_free(trie->charmap);
+                        PerlMemShared_free(trie->states);
+                        PerlMemShared_free(trie->trans);
+                        if (trie->bitmap)
+                            PerlMemShared_free(trie->bitmap);
+                        if (trie->jump)
+                            PerlMemShared_free(trie->jump);
+                       PerlMemShared_free(trie->wordinfo);
+                        /* do this last!!!! */
+                        PerlMemShared_free(ri->data->data[n]);
+                   }
+               }
+               break;
+           default:
+               Perl_croak(aTHX_ "panic: regfree data code '%c'",
+                                                    ri->data->what[n]);
+           }
+       }
+       Safefree(ri->data->what);
+       Safefree(ri->data);
+    }
+
+    Safefree(ri);
+}
+
+#define av_dup_inc(s,t)        MUTABLE_AV(sv_dup_inc((const SV *)s,t))
+#define hv_dup_inc(s,t)        MUTABLE_HV(sv_dup_inc((const SV *)s,t))
+#define SAVEPVN(p,n)   ((p) ? savepvn(p,n) : NULL)
+
+/*
+   re_dup - duplicate a regexp.
+
+   This routine is expected to clone a given regexp structure. It is only
+   compiled under USE_ITHREADS.
+
+   After all of the core data stored in struct regexp is duplicated
+   the regexp_engine.dupe method is used to copy any private data
+   stored in the *pprivate pointer. This allows extensions to handle
+   any duplication it needs to do.
+
+   See pregfree() and regfree_internal() if you change anything here.
+*/
+#if defined(USE_ITHREADS)
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
+{
+    dVAR;
+    I32 npar;
+    const struct regexp *r = ReANY(sstr);
+    struct regexp *ret = ReANY(dstr);
+
+    PERL_ARGS_ASSERT_RE_DUP_GUTS;
+
+    npar = r->nparens+1;
+    Newx(ret->offs, npar, regexp_paren_pair);
+    Copy(r->offs, ret->offs, npar, regexp_paren_pair);
+
+    if (ret->substrs) {
+       /* Do it this way to avoid reading from *r after the StructCopy().
+          That way, if any of the sv_dup_inc()s dislodge *r from the L1
+          cache, it doesn't matter.  */
+       const bool anchored = r->check_substr
+           ? r->check_substr == r->anchored_substr
+           : r->check_utf8 == r->anchored_utf8;
+        Newx(ret->substrs, 1, struct reg_substr_data);
+       StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
+
+       ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
+       ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
+       ret->float_substr = sv_dup_inc(ret->float_substr, param);
+       ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
+
+       /* check_substr and check_utf8, if non-NULL, point to either their
+          anchored or float namesakes, and don't hold a second reference.  */
+
+       if (ret->check_substr) {
+           if (anchored) {
+               assert(r->check_utf8 == r->anchored_utf8);
+               ret->check_substr = ret->anchored_substr;
+               ret->check_utf8 = ret->anchored_utf8;
+           } else {
+               assert(r->check_substr == r->float_substr);
+               assert(r->check_utf8 == r->float_utf8);
+               ret->check_substr = ret->float_substr;
+               ret->check_utf8 = ret->float_utf8;
+           }
+       } else if (ret->check_utf8) {
+           if (anchored) {
+               ret->check_utf8 = ret->anchored_utf8;
+           } else {
+               ret->check_utf8 = ret->float_utf8;
+           }
+       }
+    }
+
+    RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
+    ret->qr_anoncv = MUTABLE_CV(sv_dup_inc((const SV *)ret->qr_anoncv, param));
+
+    if (ret->pprivate)
+       RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
+
+    if (RX_MATCH_COPIED(dstr))
+       ret->subbeg  = SAVEPVN(ret->subbeg, ret->sublen);
+    else
+       ret->subbeg = NULL;
+#ifdef PERL_ANY_COW
+    ret->saved_copy = NULL;
+#endif
+
+    /* Whether mother_re be set or no, we need to copy the string.  We
+       cannot refrain from copying it when the storage points directly to
+       our mother regexp, because that's
+              1: a buffer in a different thread
+              2: something we no longer hold a reference on
+              so we need to copy it locally.  */
+    RX_WRAPPED(dstr) = SAVEPVN(RX_WRAPPED(sstr), SvCUR(sstr)+1);
+    ret->mother_re   = NULL;
+}
+#endif /* PERL_IN_XSUB_RE */
+
+/*
+   regdupe_internal()
+
+   This is the internal complement to regdupe() which is used to copy
+   the structure pointed to by the *pprivate pointer in the regexp.
+   This is the core version of the extension overridable cloning hook.
+   The regexp structure being duplicated will be copied by perl prior
+   to this and will be provided as the regexp *r argument, however
+   with the /old/ structures pprivate pointer value. Thus this routine
+   may override any copying normally done by perl.
+
+   It returns a pointer to the new regexp_internal structure.
+*/
+
+void *
+Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
+{
+    dVAR;
+    struct regexp *const r = ReANY(rx);
+    regexp_internal *reti;
+    int len;
+    RXi_GET_DECL(r,ri);
+
+    PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
+
+    len = ProgLen(ri);
+
+    Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode),
+          char, regexp_internal);
+    Copy(ri->program, reti->program, len+1, regnode);
+
+    reti->num_code_blocks = ri->num_code_blocks;
+    if (ri->code_blocks) {
+       int n;
+       Newxc(reti->code_blocks, ri->num_code_blocks, struct reg_code_block,
+               struct reg_code_block);
+       Copy(ri->code_blocks, reti->code_blocks, ri->num_code_blocks,
+               struct reg_code_block);
+       for (n = 0; n < ri->num_code_blocks; n++)
+            reti->code_blocks[n].src_regex = (REGEXP*)
+                   sv_dup_inc((SV*)(ri->code_blocks[n].src_regex), param);
+    }
+    else
+       reti->code_blocks = NULL;
+
+    reti->regstclass = NULL;
+
+    if (ri->data) {
+       struct reg_data *d;
+        const int count = ri->data->count;
+       int i;
+
+       Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
+               char, struct reg_data);
+       Newx(d->what, count, U8);
+
+       d->count = count;
+       for (i = 0; i < count; i++) {
+           d->what[i] = ri->data->what[i];
+           switch (d->what[i]) {
+               /* see also regcomp.h and regfree_internal() */
+           case 'a': /* actually an AV, but the dup function is identical.  */
+           case 'r':
+           case 's':
+           case 'S':
+           case 'u': /* actually an HV, but the dup function is identical.  */
+               d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
+               break;
+           case 'f':
+               /* This is cheating. */
+               Newx(d->data[i], 1, regnode_ssc);
+               StructCopy(ri->data->data[i], d->data[i], regnode_ssc);
+               reti->regstclass = (regnode*)d->data[i];
+               break;
+           case 'T':
+               /* Trie stclasses are readonly and can thus be shared
+                * without duplication. We free the stclass in pregfree
+                * when the corresponding reg_ac_data struct is freed.
+                */
+               reti->regstclass= ri->regstclass;
+               /* FALLTHROUGH */
+           case 't':
+               OP_REFCNT_LOCK;
+               ((reg_trie_data*)ri->data->data[i])->refcount++;
+               OP_REFCNT_UNLOCK;
+               /* FALLTHROUGH */
+           case 'l':
+           case 'L':
+               d->data[i] = ri->data->data[i];
+               break;
+            default:
+               Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'",
+                                                           ri->data->what[i]);
+           }
+       }
+
+       reti->data = d;
+    }
+    else
+       reti->data = NULL;
+
+    reti->name_list_idx = ri->name_list_idx;
+
+#ifdef RE_TRACK_PATTERN_OFFSETS
+    if (ri->u.offsets) {
+        Newx(reti->u.offsets, 2*len+1, U32);
+        Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
+    }
+#else
+    SetProgLen(reti,len);
+#endif
+
+    return (void*)reti;
+}
+
+#endif    /* USE_ITHREADS */
+
+#ifndef PERL_IN_XSUB_RE
+
+/*
+ - regnext - dig the "next" pointer out of a node
+ */
+regnode *
+Perl_regnext(pTHX_ regnode *p)
+{
+    I32 offset;
+
+    if (!p)
+       return(NULL);
+
+    if (OP(p) > REGNODE_MAX) {         /* regnode.type is unsigned */
+       Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d",
+                                                (int)OP(p), (int)REGNODE_MAX);
+    }
+
+    offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
+    if (offset == 0)
+       return(NULL);
+
+    return(p+offset);
+}
+#endif
+
+STATIC void
+S_re_croak2(pTHX_ bool utf8, const char* pat1,const char* pat2,...)
+{
+    va_list args;
+    STRLEN l1 = strlen(pat1);
+    STRLEN l2 = strlen(pat2);
+    char buf[512];
+    SV *msv;
+    const char *message;
+
+    PERL_ARGS_ASSERT_RE_CROAK2;
+
+    if (l1 > 510)
+       l1 = 510;
+    if (l1 + l2 > 510)
+       l2 = 510 - l1;
+    Copy(pat1, buf, l1 , char);
+    Copy(pat2, buf + l1, l2 , char);
+    buf[l1 + l2] = '\n';
+    buf[l1 + l2 + 1] = '\0';
+    va_start(args, pat2);
+    msv = vmess(buf, &args);
+    va_end(args);
+    message = SvPV_const(msv,l1);
+    if (l1 > 512)
+       l1 = 512;
+    Copy(message, buf, l1 , char);
+    /* l1-1 to avoid \n */
+    Perl_croak(aTHX_ "%"UTF8f, UTF8fARG(utf8, l1-1, buf));
+}
+
+/* XXX Here's a total kludge.  But we need to re-enter for swash routines. */
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_save_re_context(pTHX)
+{
+    I32 nparens = -1;
+    I32 i;
+
+    /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
+
+    if (PL_curpm) {
+       const REGEXP * const rx = PM_GETRE(PL_curpm);
+       if (rx)
+            nparens = RX_NPARENS(rx);
+    }
+
+    /* RT #124109. This is a complete hack; in the SWASHNEW case we know
+     * that PL_curpm will be null, but that utf8.pm and the modules it
+     * loads will only use $1..$3.
+     * The t/porting/re_context.t test file checks this assumption.
+     */
+    if (nparens == -1)
+        nparens = 3;
+
+    for (i = 1; i <= nparens; i++) {
+        char digits[TYPE_CHARS(long)];
+        const STRLEN len = my_snprintf(digits, sizeof(digits),
+                                       "%lu", (long)i);
+        GV *const *const gvp
+            = (GV**)hv_fetch(PL_defstash, digits, len, 0);
+
+        if (gvp) {
+            GV * const gv = *gvp;
+            if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
+                save_scalar(gv);
+        }
+    }
+}
+#endif
+
+#ifdef DEBUGGING
+
+STATIC void
+S_put_code_point(pTHX_ SV *sv, UV c)
+{
+    PERL_ARGS_ASSERT_PUT_CODE_POINT;
+
+    if (c > 255) {
+        Perl_sv_catpvf(aTHX_ sv, "\\x{%04"UVXf"}", c);
+    }
+    else if (isPRINT(c)) {
+       const char string = (char) c;
+       if (isBACKSLASHED_PUNCT(c))
+           sv_catpvs(sv, "\\");
+       sv_catpvn(sv, &string, 1);
+    }
+    else {
+        const char * const mnemonic = cntrl_to_mnemonic((char) c);
+        if (mnemonic) {
+            Perl_sv_catpvf(aTHX_ sv, "%s", mnemonic);
+        }
+        else {
+            Perl_sv_catpvf(aTHX_ sv, "\\x{%02X}", (U8) c);
+        }
+    }
+}
+
+#define MAX_PRINT_A MAX_PRINT_A_FOR_USE_ONLY_BY_REGCOMP_DOT_C
+
+STATIC void
+S_put_range(pTHX_ SV *sv, UV start, const UV end, const bool allow_literals)
+{
+    /* Appends to 'sv' a displayable version of the range of code points from
+     * 'start' to 'end'.  It assumes that only ASCII printables are displayable
+     * as-is (though some of these will be escaped by put_code_point()). */
+
+    const unsigned int min_range_count = 3;
+
+    assert(start <= end);
+
+    PERL_ARGS_ASSERT_PUT_RANGE;
+
+    while (start <= end) {
+        UV this_end;
+        const char * format;
+
+        if (end - start < min_range_count) {
+
+            /* Individual chars in short ranges */
+            for (; start <= end; start++) {
+                put_code_point(sv, start);
+            }
+            break;
+        }
+
+        /* If permitted by the input options, and there is a possibility that
+         * this range contains a printable literal, look to see if there is
+         * one.  */
+        if (allow_literals && start <= MAX_PRINT_A) {
+
+            /* If the range begin isn't an ASCII printable, effectively split
+             * the range into two parts:
+             *  1) the portion before the first such printable,
+             *  2) the rest
+             * and output them separately. */
+            if (! isPRINT_A(start)) {
+                UV temp_end = start + 1;
+
+                /* There is no point looking beyond the final possible
+                 * printable, in MAX_PRINT_A */
+                UV max = MIN(end, MAX_PRINT_A);
+
+                while (temp_end <= max && ! isPRINT_A(temp_end)) {
+                    temp_end++;
+                }
+
+                /* Here, temp_end points to one beyond the first printable if
+                 * found, or to one beyond 'max' if not.  If none found, make
+                 * sure that we use the entire range */
+                if (temp_end > MAX_PRINT_A) {
+                    temp_end = end + 1;
+                }
+
+                /* Output the first part of the split range, the part that
+                 * doesn't have printables, with no looking for literals
+                 * (otherwise we would infinitely recurse) */
+                put_range(sv, start, temp_end - 1, FALSE);
+
+                /* The 2nd part of the range (if any) starts here. */
+                start = temp_end;
+
+                /* We continue instead of dropping down because even if the 2nd
+                 * part is non-empty, it could be so short that we want to
+                 * output it specially, as tested for at the top of this loop.
+                 * */
+                continue;
+            }
+
+            /* Here, 'start' is a printable ASCII.  If it is an alphanumeric,
+             * output a sub-range of just the digits or letters, then process
+             * the remaining portion as usual. */
+            if (isALPHANUMERIC_A(start)) {
+                UV mask = (isDIGIT_A(start))
+                           ? _CC_DIGIT
+                             : isUPPER_A(start)
+                               ? _CC_UPPER
+                               : _CC_LOWER;
+                UV temp_end = start + 1;
+
+                /* Find the end of the sub-range that includes just the
+                 * characters in the same class as the first character in it */
+                while (temp_end <= end && _generic_isCC_A(temp_end, mask)) {
+                    temp_end++;
+                }
+                temp_end--;
+
+                /* For short ranges, don't duplicate the code above to output
+                 * them; just call recursively */
+                if (temp_end - start < min_range_count) {
+                    put_range(sv, start, temp_end, FALSE);
+                }
+                else {  /* Output as a range */
+                    put_code_point(sv, start);
+                    sv_catpvs(sv, "-");
+                    put_code_point(sv, temp_end);
+                }
+                start = temp_end + 1;
+                continue;
+            }
+
+            /* We output any other printables as individual characters */
+            if (isPUNCT_A(start) || isSPACE_A(start)) {
+                while (start <= end && (isPUNCT_A(start)
+                                        || isSPACE_A(start)))
+                {
+                    put_code_point(sv, start);
+                    start++;
+                }
+                continue;
+            }
+        } /* End of looking for literals */
+
+        /* Here is not to output as a literal.  Some control characters have
+         * mnemonic names.  Split off any of those at the beginning and end of
+         * the range to print mnemonically.  It isn't possible for many of
+         * these to be in a row, so this won't overwhelm with output */
+        while (isMNEMONIC_CNTRL(start) && start <= end) {
+            put_code_point(sv, start);
+            start++;
+        }
+        if (start < end && isMNEMONIC_CNTRL(end)) {
+
+            /* Here, the final character in the range has a mnemonic name.
+             * Work backwards from the end to find the final non-mnemonic */
+            UV temp_end = end - 1;
+            while (isMNEMONIC_CNTRL(temp_end)) {
+                temp_end--;
+            }
+
+            /* And separately output the range that doesn't have mnemonics */
+            put_range(sv, start, temp_end, FALSE);
+
+            /* Then output the mnemonic trailing controls */
+            start = temp_end + 1;
+            while (start <= end) {
+                put_code_point(sv, start);
+                start++;
+            }
+            break;
+        }
+
+        /* As a final resort, output the range or subrange as hex. */
+
+        this_end = (end < NUM_ANYOF_CODE_POINTS)
+                    ? end
+                    : NUM_ANYOF_CODE_POINTS - 1;
+        format = (this_end < 256)
+                 ? "\\x{%02"UVXf"}-\\x{%02"UVXf"}"
+                 : "\\x{%04"UVXf"}-\\x{%04"UVXf"}";
+        GCC_DIAG_IGNORE(-Wformat-nonliteral);
+        Perl_sv_catpvf(aTHX_ sv, format, start, this_end);
+        GCC_DIAG_RESTORE;
+        break;
+    }
+}
+
+STATIC bool
+S_put_charclass_bitmap_innards(pTHX_ SV *sv, char *bitmap, SV** bitmap_invlist)
+{
+    /* Appends to 'sv' a displayable version of the innards of the bracketed
+     * character class whose bitmap is 'bitmap';  Returns 'TRUE' if it actually
+     * output anything, and bitmap_invlist, if not NULL, will point to an
+     * inversion list of what is in the bit map */
+
+    int i;
+    UV start, end;
+    unsigned int punct_count = 0;
+    SV* invlist = NULL;
+    SV** invlist_ptr;   /* Temporary, in case bitmap_invlist is NULL */
+    bool allow_literals = TRUE;
+
+    PERL_ARGS_ASSERT_PUT_CHARCLASS_BITMAP_INNARDS;
+
+    invlist_ptr = (bitmap_invlist) ? bitmap_invlist : &invlist;
+
+    /* Worst case is exactly every-other code point is in the list */
+    *invlist_ptr = _new_invlist(NUM_ANYOF_CODE_POINTS / 2);
+
+    /* Convert the bit map to an inversion list, keeping track of how many
+     * ASCII puncts are set, including an extra amount for the backslashed
+     * ones.  */
+    for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
+        if (BITMAP_TEST(bitmap, i)) {
+            *invlist_ptr = add_cp_to_invlist(*invlist_ptr, i);
+            if (isPUNCT_A(i)) {
+                punct_count++;
+                if isBACKSLASHED_PUNCT(i) {
+                    punct_count++;
+                }
+            }
+        }
+    }
+
+    /* Nothing to output */
+    if (_invlist_len(*invlist_ptr) == 0) {
+        SvREFCNT_dec(invlist);
+        return FALSE;
+    }
+
+    /* Generally, it is more readable if printable characters are output as
+     * literals, but if a range (nearly) spans all of them, it's best to output
+     * it as a single range.  This code will use a single range if all but 2
+     * printables are in it */
+    invlist_iterinit(*invlist_ptr);
+    while (invlist_iternext(*invlist_ptr, &start, &end)) {
+
+        /* If range starts beyond final printable, it doesn't have any in it */
+        if (start > MAX_PRINT_A) {
+            break;
+        }
+
+        /* In both ASCII and EBCDIC, a SPACE is the lowest printable.  To span
+         * all but two, the range must start and end no later than 2 from
+         * either end */
+        if (start < ' ' + 2 && end > MAX_PRINT_A - 2) {
+            if (end > MAX_PRINT_A) {
+                end = MAX_PRINT_A;
+            }
+            if (start < ' ') {
+                start = ' ';
+            }
+            if (end - start >= MAX_PRINT_A - ' ' - 2) {
+                allow_literals = FALSE;
+            }
+            break;
+        }
+    }
+    invlist_iterfinish(*invlist_ptr);
+
+    /* The legibility of the output depends mostly on how many punctuation
+     * characters are output.  There are 32 possible ASCII ones, and some have
+     * an additional backslash, bringing it to currently 36, so if any more
+     * than 18 are to be output, we can instead output it as its complement,
+     * yielding fewer puncts, and making it more legible.  But give some weight
+     * to the fact that outputting it as a complement is less legible than a
+     * straight output, so don't complement unless we are somewhat over the 18
+     * mark */
+    if (allow_literals && punct_count > 22) {
+        sv_catpvs(sv, "^");
+
+        /* Add everything remaining to the list, so when we invert it just
+         * below, it will be excluded */
+        _invlist_union_complement_2nd(*invlist_ptr, PL_InBitmap, invlist_ptr);
+        _invlist_invert(*invlist_ptr);
+    }
+
+    /* Here we have figured things out.  Output each range */
+    invlist_iterinit(*invlist_ptr);
+    while (invlist_iternext(*invlist_ptr, &start, &end)) {
+        if (start >= NUM_ANYOF_CODE_POINTS) {
+            break;
+        }
+        put_range(sv, start, end, allow_literals);
+    }
+    invlist_iterfinish(*invlist_ptr);
+
+    return TRUE;
+}
+
+#define CLEAR_OPTSTART \
+    if (optstart) STMT_START {                                               \
+        DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,                       \
+                              " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
+       optstart=NULL;                                                       \
+    } STMT_END
+
+#define DUMPUNTIL(b,e)                                                       \
+                    CLEAR_OPTSTART;                                          \
+                    node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
+
+STATIC const regnode *
+S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
+           const regnode *last, const regnode *plast,
+           SV* sv, I32 indent, U32 depth)
+{
+    U8 op = PSEUDO;    /* Arbitrary non-END op. */
+    const regnode *next;
+    const regnode *optstart= NULL;
+
+    RXi_GET_DECL(r,ri);
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_DUMPUNTIL;
+
+#ifdef DEBUG_DUMPUNTIL
+    PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
+        last ? last-start : 0,plast ? plast-start : 0);
+#endif
+
+    if (plast && plast < last)
+        last= plast;
+
+    while (PL_regkind[op] != END && (!last || node < last)) {
+        assert(node);
+       /* While that wasn't END last time... */
+       NODE_ALIGN(node);
+       op = OP(node);
+       if (op == CLOSE || op == WHILEM)
+           indent--;
+       next = regnext((regnode *)node);
+
+       /* Where, what. */
+       if (OP(node) == OPTIMIZED) {
+           if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
+               optstart = node;
+           else
+               goto after_print;
+       } else
+           CLEAR_OPTSTART;
+
+        regprop(r, sv, node, NULL, NULL);
+       PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
+                     (int)(2*indent + 1), "", SvPVX_const(sv));
+
+        if (OP(node) != OPTIMIZED) {
+            if (next == NULL)          /* Next ptr. */
+                PerlIO_printf(Perl_debug_log, " (0)");
+            else if (PL_regkind[(U8)op] == BRANCH
+                     && PL_regkind[OP(next)] != BRANCH )
+                PerlIO_printf(Perl_debug_log, " (FAIL)");
+            else
+                PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
+            (void)PerlIO_putc(Perl_debug_log, '\n');
+        }
+
+      after_print:
+       if (PL_regkind[(U8)op] == BRANCHJ) {
+           assert(next);
+           {
+                const regnode *nnode = (OP(next) == LONGJMP
+                                       ? regnext((regnode *)next)
+                                       : next);
+                if (last && nnode > last)
+                    nnode = last;
+                DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
+           }
+       }
+       else if (PL_regkind[(U8)op] == BRANCH) {
+           assert(next);
+           DUMPUNTIL(NEXTOPER(node), next);
+       }
+       else if ( PL_regkind[(U8)op]  == TRIE ) {
+           const regnode *this_trie = node;
+           const char op = OP(node);
+            const U32 n = ARG(node);
+           const reg_ac_data * const ac = op>=AHOCORASICK ?
+               (reg_ac_data *)ri->data->data[n] :
+               NULL;
+           const reg_trie_data * const trie =
+               (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
+#ifdef DEBUGGING
+           AV *const trie_words
+                           = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
+#endif
+           const regnode *nextbranch= NULL;
+           I32 word_idx;
+            sv_setpvs(sv, "");
+           for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
+               SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
+
+                PerlIO_printf(Perl_debug_log, "%*s%s ",
+                   (int)(2*(indent+3)), "",
+                    elem_ptr
+                    ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr),
+                                SvCUR(*elem_ptr), 60,
+                                PL_colors[0], PL_colors[1],
+                                (SvUTF8(*elem_ptr)
+                                 ? PERL_PV_ESCAPE_UNI
+                                 : 0)
+                                | PERL_PV_PRETTY_ELLIPSES
+                                | PERL_PV_PRETTY_LTGT
+                            )
+                    : "???"
+                );
+                if (trie->jump) {
+                    U16 dist= trie->jump[word_idx+1];
+                   PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
+                               (UV)((dist ? this_trie + dist : next) - start));
+                    if (dist) {
+                        if (!nextbranch)
+                            nextbranch= this_trie + trie->jump[0];
+                       DUMPUNTIL(this_trie + dist, nextbranch);
+                    }
+                    if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
+                        nextbranch= regnext((regnode *)nextbranch);
+                } else {
+                    PerlIO_printf(Perl_debug_log, "\n");
+               }
+           }
+           if (last && next > last)
+               node= last;
+           else
+               node= next;
+       }
+       else if ( op == CURLY ) {   /* "next" might be very big: optimizer */
+           DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
+                    NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
+       }
+       else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
+           assert(next);
+           DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
+       }
+       else if ( op == PLUS || op == STAR) {
+           DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
+       }
+       else if (PL_regkind[(U8)op] == ANYOF) {
+           /* arglen 1 + class block */
+           node += 1 + ((ANYOF_FLAGS(node) & ANYOF_MATCHES_POSIXL)
+                          ? ANYOF_POSIXL_SKIP
+                          : ANYOF_SKIP);
+           node = NEXTOPER(node);
+       }
+       else if (PL_regkind[(U8)op] == EXACT) {
+            /* Literal string, where present. */
+           node += NODE_SZ_STR(node) - 1;
+           node = NEXTOPER(node);
+       }
+       else {
+           node = NEXTOPER(node);
+           node += regarglen[(U8)op];
+       }
+       if (op == CURLYX || op == OPEN)
+           indent++;
+    }
+    CLEAR_OPTSTART;
+#ifdef DEBUG_DUMPUNTIL
+    PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
+#endif
+    return node;
+}
+
+#endif /* DEBUGGING */
+
+/*
+ * ex: set ts=8 sts=4 sw=4 et:
+ */
diff --git a/src/5023000/orig/regexec.c b/src/5023000/orig/regexec.c
new file mode 100644 (file)
index 0000000..eaa60bd
--- /dev/null
@@ -0,0 +1,9015 @@
+/*    regexec.c
+ */
+
+/*
+ *     One Ring to rule them all, One Ring to find them
+ &
+ *     [p.v of _The Lord of the Rings_, opening poem]
+ *     [p.50 of _The Lord of the Rings_, I/iii: "The Shadow of the Past"]
+ *     [p.254 of _The Lord of the Rings_, II/ii: "The Council of Elrond"]
+ */
+
+/* This file contains functions for executing a regular expression.  See
+ * also regcomp.c which funnily enough, contains functions for compiling
+ * a regular expression.
+ *
+ * This file is also copied at build time to ext/re/re_exec.c, where
+ * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
+ * This causes the main functions to be compiled under new names and with
+ * debugging support added, which makes "use re 'debug'" work.
+ */
+
+/* NOTE: this is derived from Henry Spencer's regexp code, and should not
+ * confused with the original package (see point 3 below).  Thanks, Henry!
+ */
+
+/* Additional note: this code is very heavily munged from Henry's version
+ * in places.  In some spots I've traded clarity for efficiency, so don't
+ * blame Henry for some of the lack of readability.
+ */
+
+/* The names of the functions have been changed from regcomp and
+ * regexec to  pregcomp and pregexec in order to avoid conflicts
+ * with the POSIX routines of the same names.
+*/
+
+#ifdef PERL_EXT_RE_BUILD
+#include "re_top.h"
+#endif
+
+#define B_ON_NON_UTF8_LOCALE_IS_WRONG            \
+      "Use of \\b{} or \\B{} for non-UTF-8 locale is wrong.  Assuming a UTF-8 locale"
+
+/*
+ * pregcomp and pregexec -- regsub and regerror are not used in perl
+ *
+ *     Copyright (c) 1986 by University of Toronto.
+ *     Written by Henry Spencer.  Not derived from licensed software.
+ *
+ *     Permission is granted to anyone to use this software for any
+ *     purpose on any computer system, and to redistribute it freely,
+ *     subject to the following restrictions:
+ *
+ *     1. The author is not responsible for the consequences of use of
+ *             this software, no matter how awful, even if they arise
+ *             from defects in it.
+ *
+ *     2. The origin of this software must not be misrepresented, either
+ *             by explicit claim or by omission.
+ *
+ *     3. Altered versions must be plainly marked as such, and must not
+ *             be misrepresented as being the original software.
+ *
+ ****    Alterations to Henry's code are...
+ ****
+ ****    Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ ****    2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ ****    by Larry Wall and others
+ ****
+ ****    You may distribute under the terms of either the GNU General Public
+ ****    License or the Artistic License, as specified in the README file.
+ *
+ * Beware that some of this code is subtly aware of the way operator
+ * precedence is structured in regular expressions.  Serious changes in
+ * regular-expression syntax might require a total rethink.
+ */
+#include "EXTERN.h"
+#define PERL_IN_REGEXEC_C
+#include "perl.h"
+
+#ifdef PERL_IN_XSUB_RE
+#  include "re_comp.h"
+#else
+#  include "regcomp.h"
+#endif
+
+#include "inline_invlist.c"
+#include "unicode_constants.h"
+
+#ifdef DEBUGGING
+/* At least one required character in the target string is expressible only in
+ * UTF-8. */
+static const char* const non_utf8_target_but_utf8_required
+                = "Can't match, because target string needs to be in UTF-8\n";
+#endif
+
+#define NON_UTF8_TARGET_BUT_UTF8_REQUIRED(target) STMT_START { \
+    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%s", non_utf8_target_but_utf8_required));\
+    goto target; \
+} STMT_END
+
+#define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
+
+#ifndef STATIC
+#define        STATIC  static
+#endif
+
+/* Valid only for non-utf8 strings: avoids the reginclass
+ * call if there are no complications: i.e., if everything matchable is
+ * straight forward in the bitmap */
+#define REGINCLASS(prog,p,c)  (ANYOF_FLAGS(p) ? reginclass(prog,p,c,c+1,0)   \
+                                             : ANYOF_BITMAP_TEST(p,*(c)))
+
+/*
+ * Forwards.
+ */
+
+#define CHR_SVLEN(sv) (utf8_target ? sv_len_utf8(sv) : SvCUR(sv))
+#define CHR_DIST(a,b) (reginfo->is_utf8_target ? utf8_distance(a,b) : a - b)
+
+#define HOPc(pos,off) \
+       (char *)(reginfo->is_utf8_target \
+           ? reghop3((U8*)pos, off, \
+                    (U8*)(off >= 0 ? reginfo->strend : reginfo->strbeg)) \
+           : (U8*)(pos + off))
+
+#define HOPBACKc(pos, off) \
+       (char*)(reginfo->is_utf8_target \
+           ? reghopmaybe3((U8*)pos, -off, (U8*)(reginfo->strbeg)) \
+           : (pos - off >= reginfo->strbeg)    \
+               ? (U8*)pos - off                \
+               : NULL)
+
+#define HOP3(pos,off,lim) (reginfo->is_utf8_target  ? reghop3((U8*)(pos), off, (U8*)(lim)) : (U8*)(pos + off))
+#define HOP3c(pos,off,lim) ((char*)HOP3(pos,off,lim))
+
+/* lim must be +ve. Returns NULL on overshoot */
+#define HOPMAYBE3(pos,off,lim) \
+       (reginfo->is_utf8_target                        \
+           ? reghopmaybe3((U8*)pos, off, (U8*)(lim))   \
+           : ((U8*)pos + off <= lim)                   \
+               ? (U8*)pos + off                        \
+               : NULL)
+
+/* like HOP3, but limits the result to <= lim even for the non-utf8 case.
+ * off must be >=0; args should be vars rather than expressions */
+#define HOP3lim(pos,off,lim) (reginfo->is_utf8_target \
+    ? reghop3((U8*)(pos), off, (U8*)(lim)) \
+    : (U8*)((pos + off) > lim ? lim : (pos + off)))
+
+#define HOP4(pos,off,llim, rlim) (reginfo->is_utf8_target \
+    ? reghop4((U8*)(pos), off, (U8*)(llim), (U8*)(rlim)) \
+    : (U8*)(pos + off))
+#define HOP4c(pos,off,llim, rlim) ((char*)HOP4(pos,off,llim, rlim))
+
+#define NEXTCHR_EOS -10 /* nextchr has fallen off the end */
+#define NEXTCHR_IS_EOS (nextchr < 0)
+
+#define SET_nextchr \
+    nextchr = ((locinput < reginfo->strend) ? UCHARAT(locinput) : NEXTCHR_EOS)
+
+#define SET_locinput(p) \
+    locinput = (p);  \
+    SET_nextchr
+
+
+#define LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist) STMT_START {   \
+        if (!swash_ptr) {                                                     \
+            U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;                       \
+            swash_ptr = _core_swash_init("utf8", property_name, &PL_sv_undef, \
+                                         1, 0, invlist, &flags);              \
+            assert(swash_ptr);                                                \
+        }                                                                     \
+    } STMT_END
+
+/* If in debug mode, we test that a known character properly matches */
+#ifdef DEBUGGING
+#   define LOAD_UTF8_CHARCLASS_DEBUG_TEST(swash_ptr,                          \
+                                          property_name,                      \
+                                          invlist,                            \
+                                          utf8_char_in_property)              \
+        LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist);               \
+        assert(swash_fetch(swash_ptr, (U8 *) utf8_char_in_property, TRUE));
+#else
+#   define LOAD_UTF8_CHARCLASS_DEBUG_TEST(swash_ptr,                          \
+                                          property_name,                      \
+                                          invlist,                            \
+                                          utf8_char_in_property)              \
+        LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist)
+#endif
+
+#define LOAD_UTF8_CHARCLASS_ALNUM() LOAD_UTF8_CHARCLASS_DEBUG_TEST(           \
+                                        PL_utf8_swash_ptrs[_CC_WORDCHAR],     \
+                                        "",                                   \
+                                        PL_XPosix_ptrs[_CC_WORDCHAR],         \
+                                        LATIN_CAPITAL_LETTER_SHARP_S_UTF8);
+
+#define PLACEHOLDER    /* Something for the preprocessor to grab onto */
+/* TODO: Combine JUMPABLE and HAS_TEXT to cache OP(rn) */
+
+/* for use after a quantifier and before an EXACT-like node -- japhy */
+/* it would be nice to rework regcomp.sym to generate this stuff. sigh
+ *
+ * NOTE that *nothing* that affects backtracking should be in here, specifically
+ * VERBS must NOT be included. JUMPABLE is used to determine  if we can ignore a
+ * node that is in between two EXACT like nodes when ascertaining what the required
+ * "follow" character is. This should probably be moved to regex compile time
+ * although it may be done at run time beause of the REF possibility - more
+ * investigation required. -- demerphq
+*/
+#define JUMPABLE(rn) (                                                             \
+    OP(rn) == OPEN ||                                                              \
+    (OP(rn) == CLOSE && (!cur_eval || cur_eval->u.eval.close_paren != ARG(rn))) || \
+    OP(rn) == EVAL ||                                                              \
+    OP(rn) == SUSPEND || OP(rn) == IFMATCH ||                                      \
+    OP(rn) == PLUS || OP(rn) == MINMOD ||                                          \
+    OP(rn) == KEEPS ||                                                             \
+    (PL_regkind[OP(rn)] == CURLY && ARG1(rn) > 0)                                  \
+)
+#define IS_EXACT(rn) (PL_regkind[OP(rn)] == EXACT)
+
+#define HAS_TEXT(rn) ( IS_EXACT(rn) || PL_regkind[OP(rn)] == REF )
+
+#if 0 
+/* Currently these are only used when PL_regkind[OP(rn)] == EXACT so
+   we don't need this definition.  XXX These are now out-of-sync*/
+#define IS_TEXT(rn)   ( OP(rn)==EXACT   || OP(rn)==REF   || OP(rn)==NREF   )
+#define IS_TEXTF(rn)  ( OP(rn)==EXACTFU || OP(rn)==EXACTFU_SS || OP(rn)==EXACTFA || OP(rn)==EXACTFA_NO_TRIE || OP(rn)==EXACTF || OP(rn)==REFF  || OP(rn)==NREFF )
+#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL || OP(rn)==REFFL || OP(rn)==NREFFL )
+
+#else
+/* ... so we use this as its faster. */
+#define IS_TEXT(rn)   ( OP(rn)==EXACT || OP(rn)==EXACTL )
+#define IS_TEXTFU(rn)  ( OP(rn)==EXACTFU || OP(rn)==EXACTFLU8 || OP(rn)==EXACTFU_SS || OP(rn) == EXACTFA || OP(rn) == EXACTFA_NO_TRIE)
+#define IS_TEXTF(rn)  ( OP(rn)==EXACTF  )
+#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL )
+
+#endif
+
+/*
+  Search for mandatory following text node; for lookahead, the text must
+  follow but for lookbehind (rn->flags != 0) we skip to the next step.
+*/
+#define FIND_NEXT_IMPT(rn) STMT_START {                                   \
+    while (JUMPABLE(rn)) { \
+       const OPCODE type = OP(rn); \
+       if (type == SUSPEND || PL_regkind[type] == CURLY) \
+           rn = NEXTOPER(NEXTOPER(rn)); \
+       else if (type == PLUS) \
+           rn = NEXTOPER(rn); \
+       else if (type == IFMATCH) \
+           rn = (rn->flags == 0) ? NEXTOPER(NEXTOPER(rn)) : rn + ARG(rn); \
+       else rn += NEXT_OFF(rn); \
+    } \
+} STMT_END 
+
+#define SLAB_FIRST(s) (&(s)->states[0])
+#define SLAB_LAST(s)  (&(s)->states[PERL_REGMATCH_SLAB_SLOTS-1])
+
+static void S_setup_eval_state(pTHX_ regmatch_info *const reginfo);
+static void S_cleanup_regmatch_info_aux(pTHX_ void *arg);
+static regmatch_state * S_push_slab(pTHX);
+
+#define REGCP_PAREN_ELEMS 3
+#define REGCP_OTHER_ELEMS 3
+#define REGCP_FRAME_ELEMS 1
+/* REGCP_FRAME_ELEMS are not part of the REGCP_OTHER_ELEMS and
+ * are needed for the regexp context stack bookkeeping. */
+
+STATIC CHECKPOINT
+S_regcppush(pTHX_ const regexp *rex, I32 parenfloor, U32 maxopenparen)
+{
+    const int retval = PL_savestack_ix;
+    const int paren_elems_to_push =
+                (maxopenparen - parenfloor) * REGCP_PAREN_ELEMS;
+    const UV total_elems = paren_elems_to_push + REGCP_OTHER_ELEMS;
+    const UV elems_shifted = total_elems << SAVE_TIGHT_SHIFT;
+    I32 p;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGCPPUSH;
+
+    if (paren_elems_to_push < 0)
+        Perl_croak(aTHX_ "panic: paren_elems_to_push, %i < 0, maxopenparen: %i parenfloor: %i REGCP_PAREN_ELEMS: %u",
+                   (int)paren_elems_to_push, (int)maxopenparen,
+                   (int)parenfloor, (unsigned)REGCP_PAREN_ELEMS);
+
+    if ((elems_shifted >> SAVE_TIGHT_SHIFT) != total_elems)
+       Perl_croak(aTHX_ "panic: paren_elems_to_push offset %"UVuf
+                  " out of range (%lu-%ld)",
+                  total_elems,
+                   (unsigned long)maxopenparen,
+                   (long)parenfloor);
+
+    SSGROW(total_elems + REGCP_FRAME_ELEMS);
+    
+    DEBUG_BUFFERS_r(
+       if ((int)maxopenparen > (int)parenfloor)
+           PerlIO_printf(Perl_debug_log,
+               "rex=0x%"UVxf" offs=0x%"UVxf": saving capture indices:\n",
+               PTR2UV(rex),
+               PTR2UV(rex->offs)
+           );
+    );
+    for (p = parenfloor+1; p <= (I32)maxopenparen;  p++) {
+/* REGCP_PARENS_ELEMS are pushed per pairs of parentheses. */
+       SSPUSHIV(rex->offs[p].end);
+       SSPUSHIV(rex->offs[p].start);
+       SSPUSHINT(rex->offs[p].start_tmp);
+       DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+           "    \\%"UVuf": %"IVdf"(%"IVdf")..%"IVdf"\n",
+           (UV)p,
+           (IV)rex->offs[p].start,
+           (IV)rex->offs[p].start_tmp,
+           (IV)rex->offs[p].end
+       ));
+    }
+/* REGCP_OTHER_ELEMS are pushed in any case, parentheses or no. */
+    SSPUSHINT(maxopenparen);
+    SSPUSHINT(rex->lastparen);
+    SSPUSHINT(rex->lastcloseparen);
+    SSPUSHUV(SAVEt_REGCONTEXT | elems_shifted); /* Magic cookie. */
+
+    return retval;
+}
+
+/* These are needed since we do not localize EVAL nodes: */
+#define REGCP_SET(cp)                                           \
+    DEBUG_STATE_r(                                              \
+            PerlIO_printf(Perl_debug_log,                      \
+               "  Setting an EVAL scope, savestack=%"IVdf"\n", \
+               (IV)PL_savestack_ix));                          \
+    cp = PL_savestack_ix
+
+#define REGCP_UNWIND(cp)                                        \
+    DEBUG_STATE_r(                                              \
+        if (cp != PL_savestack_ix)                             \
+           PerlIO_printf(Perl_debug_log,                       \
+               "  Clearing an EVAL scope, savestack=%"IVdf"..%"IVdf"\n", \
+               (IV)(cp), (IV)PL_savestack_ix));                \
+    regcpblow(cp)
+
+#define UNWIND_PAREN(lp, lcp)               \
+    for (n = rex->lastparen; n > lp; n--)   \
+        rex->offs[n].end = -1;              \
+    rex->lastparen = n;                     \
+    rex->lastcloseparen = lcp;
+
+
+STATIC void
+S_regcppop(pTHX_ regexp *rex, U32 *maxopenparen_p)
+{
+    UV i;
+    U32 paren;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGCPPOP;
+
+    /* Pop REGCP_OTHER_ELEMS before the parentheses loop starts. */
+    i = SSPOPUV;
+    assert((i & SAVE_MASK) == SAVEt_REGCONTEXT); /* Check that the magic cookie is there. */
+    i >>= SAVE_TIGHT_SHIFT; /* Parentheses elements to pop. */
+    rex->lastcloseparen = SSPOPINT;
+    rex->lastparen = SSPOPINT;
+    *maxopenparen_p = SSPOPINT;
+
+    i -= REGCP_OTHER_ELEMS;
+    /* Now restore the parentheses context. */
+    DEBUG_BUFFERS_r(
+       if (i || rex->lastparen + 1 <= rex->nparens)
+           PerlIO_printf(Perl_debug_log,
+               "rex=0x%"UVxf" offs=0x%"UVxf": restoring capture indices to:\n",
+               PTR2UV(rex),
+               PTR2UV(rex->offs)
+           );
+    );
+    paren = *maxopenparen_p;
+    for ( ; i > 0; i -= REGCP_PAREN_ELEMS) {
+       SSize_t tmps;
+       rex->offs[paren].start_tmp = SSPOPINT;
+       rex->offs[paren].start = SSPOPIV;
+       tmps = SSPOPIV;
+       if (paren <= rex->lastparen)
+           rex->offs[paren].end = tmps;
+       DEBUG_BUFFERS_r( PerlIO_printf(Perl_debug_log,
+           "    \\%"UVuf": %"IVdf"(%"IVdf")..%"IVdf"%s\n",
+           (UV)paren,
+           (IV)rex->offs[paren].start,
+           (IV)rex->offs[paren].start_tmp,
+           (IV)rex->offs[paren].end,
+           (paren > rex->lastparen ? "(skipped)" : ""));
+       );
+       paren--;
+    }
+#if 1
+    /* It would seem that the similar code in regtry()
+     * already takes care of this, and in fact it is in
+     * a better location to since this code can #if 0-ed out
+     * but the code in regtry() is needed or otherwise tests
+     * requiring null fields (pat.t#187 and split.t#{13,14}
+     * (as of patchlevel 7877)  will fail.  Then again,
+     * this code seems to be necessary or otherwise
+     * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
+     * --jhi updated by dapm */
+    for (i = rex->lastparen + 1; i <= rex->nparens; i++) {
+       if (i > *maxopenparen_p)
+           rex->offs[i].start = -1;
+       rex->offs[i].end = -1;
+       DEBUG_BUFFERS_r( PerlIO_printf(Perl_debug_log,
+           "    \\%"UVuf": %s   ..-1 undeffing\n",
+           (UV)i,
+           (i > *maxopenparen_p) ? "-1" : "  "
+       ));
+    }
+#endif
+}
+
+/* restore the parens and associated vars at savestack position ix,
+ * but without popping the stack */
+
+STATIC void
+S_regcp_restore(pTHX_ regexp *rex, I32 ix, U32 *maxopenparen_p)
+{
+    I32 tmpix = PL_savestack_ix;
+    PL_savestack_ix = ix;
+    regcppop(rex, maxopenparen_p);
+    PL_savestack_ix = tmpix;
+}
+
+#define regcpblow(cp) LEAVE_SCOPE(cp)  /* Ignores regcppush()ed data. */
+
+STATIC bool
+S_isFOO_lc(pTHX_ const U8 classnum, const U8 character)
+{
+    /* Returns a boolean as to whether or not 'character' is a member of the
+     * Posix character class given by 'classnum' that should be equivalent to a
+     * value in the typedef '_char_class_number'.
+     *
+     * Ideally this could be replaced by a just an array of function pointers
+     * to the C library functions that implement the macros this calls.
+     * However, to compile, the precise function signatures are required, and
+     * these may vary from platform to to platform.  To avoid having to figure
+     * out what those all are on each platform, I (khw) am using this method,
+     * which adds an extra layer of function call overhead (unless the C
+     * optimizer strips it away).  But we don't particularly care about
+     * performance with locales anyway. */
+
+    switch ((_char_class_number) classnum) {
+        case _CC_ENUM_ALPHANUMERIC: return isALPHANUMERIC_LC(character);
+        case _CC_ENUM_ALPHA:     return isALPHA_LC(character);
+        case _CC_ENUM_ASCII:     return isASCII_LC(character);
+        case _CC_ENUM_BLANK:     return isBLANK_LC(character);
+        case _CC_ENUM_CASED:     return isLOWER_LC(character)
+                                        || isUPPER_LC(character);
+        case _CC_ENUM_CNTRL:     return isCNTRL_LC(character);
+        case _CC_ENUM_DIGIT:     return isDIGIT_LC(character);
+        case _CC_ENUM_GRAPH:     return isGRAPH_LC(character);
+        case _CC_ENUM_LOWER:     return isLOWER_LC(character);
+        case _CC_ENUM_PRINT:     return isPRINT_LC(character);
+        case _CC_ENUM_PUNCT:     return isPUNCT_LC(character);
+        case _CC_ENUM_SPACE:     return isSPACE_LC(character);
+        case _CC_ENUM_UPPER:     return isUPPER_LC(character);
+        case _CC_ENUM_WORDCHAR:  return isWORDCHAR_LC(character);
+        case _CC_ENUM_XDIGIT:    return isXDIGIT_LC(character);
+        default:    /* VERTSPACE should never occur in locales */
+            Perl_croak(aTHX_ "panic: isFOO_lc() has an unexpected character class '%d'", classnum);
+    }
+
+    NOT_REACHED; /* NOTREACHED */
+    return FALSE;
+}
+
+STATIC bool
+S_isFOO_utf8_lc(pTHX_ const U8 classnum, const U8* character)
+{
+    /* Returns a boolean as to whether or not the (well-formed) UTF-8-encoded
+     * 'character' is a member of the Posix character class given by 'classnum'
+     * that should be equivalent to a value in the typedef
+     * '_char_class_number'.
+     *
+     * This just calls isFOO_lc on the code point for the character if it is in
+     * the range 0-255.  Outside that range, all characters use Unicode
+     * rules, ignoring any locale.  So use the Unicode function if this class
+     * requires a swash, and use the Unicode macro otherwise. */
+
+    PERL_ARGS_ASSERT_ISFOO_UTF8_LC;
+
+    if (UTF8_IS_INVARIANT(*character)) {
+        return isFOO_lc(classnum, *character);
+    }
+    else if (UTF8_IS_DOWNGRADEABLE_START(*character)) {
+        return isFOO_lc(classnum,
+                        TWO_BYTE_UTF8_TO_NATIVE(*character, *(character + 1)));
+    }
+
+    _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(character, character + UTF8SKIP(character));
+
+    if (classnum < _FIRST_NON_SWASH_CC) {
+
+        /* Initialize the swash unless done already */
+        if (! PL_utf8_swash_ptrs[classnum]) {
+            U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+            PL_utf8_swash_ptrs[classnum] =
+                    _core_swash_init("utf8",
+                                     "",
+                                     &PL_sv_undef, 1, 0,
+                                     PL_XPosix_ptrs[classnum], &flags);
+        }
+
+        return cBOOL(swash_fetch(PL_utf8_swash_ptrs[classnum], (U8 *)
+                                 character,
+                                 TRUE /* is UTF */ ));
+    }
+
+    switch ((_char_class_number) classnum) {
+        case _CC_ENUM_SPACE:     return is_XPERLSPACE_high(character);
+        case _CC_ENUM_BLANK:     return is_HORIZWS_high(character);
+        case _CC_ENUM_XDIGIT:    return is_XDIGIT_high(character);
+        case _CC_ENUM_VERTSPACE: return is_VERTWS_high(character);
+        default:                 break;
+    }
+
+    return FALSE; /* Things like CNTRL are always below 256 */
+}
+
+/*
+ * pregexec and friends
+ */
+
+#ifndef PERL_IN_XSUB_RE
+/*
+ - pregexec - match a regexp against a string
+ */
+I32
+Perl_pregexec(pTHX_ REGEXP * const prog, char* stringarg, char *strend,
+        char *strbeg, SSize_t minend, SV *screamer, U32 nosave)
+/* stringarg: the point in the string at which to begin matching */
+/* strend:    pointer to null at end of string */
+/* strbeg:    real beginning of string */
+/* minend:    end of match must be >= minend bytes after stringarg. */
+/* screamer:  SV being matched: only used for utf8 flag, pos() etc; string
+ *            itself is accessed via the pointers above */
+/* nosave:    For optimizations. */
+{
+    PERL_ARGS_ASSERT_PREGEXEC;
+
+    return
+       regexec_flags(prog, stringarg, strend, strbeg, minend, screamer, NULL,
+                     nosave ? 0 : REXEC_COPY_STR);
+}
+#endif
+
+
+
+/* re_intuit_start():
+ *
+ * Based on some optimiser hints, try to find the earliest position in the
+ * string where the regex could match.
+ *
+ *   rx:     the regex to match against
+ *   sv:     the SV being matched: only used for utf8 flag; the string
+ *           itself is accessed via the pointers below. Note that on
+ *           something like an overloaded SV, SvPOK(sv) may be false
+ *           and the string pointers may point to something unrelated to
+ *           the SV itself.
+ *   strbeg: real beginning of string
+ *   strpos: the point in the string at which to begin matching
+ *   strend: pointer to the byte following the last char of the string
+ *   flags   currently unused; set to 0
+ *   data:   currently unused; set to NULL
+ *
+ * The basic idea of re_intuit_start() is to use some known information
+ * about the pattern, namely:
+ *
+ *   a) the longest known anchored substring (i.e. one that's at a
+ *      constant offset from the beginning of the pattern; but not
+ *      necessarily at a fixed offset from the beginning of the
+ *      string);
+ *   b) the longest floating substring (i.e. one that's not at a constant
+ *      offset from the beginning of the pattern);
+ *   c) Whether the pattern is anchored to the string; either
+ *      an absolute anchor: /^../, or anchored to \n: /^.../m,
+ *      or anchored to pos(): /\G/;
+ *   d) A start class: a real or synthetic character class which
+ *      represents which characters are legal at the start of the pattern;
+ *
+ * to either quickly reject the match, or to find the earliest position
+ * within the string at which the pattern might match, thus avoiding
+ * running the full NFA engine at those earlier locations, only to
+ * eventually fail and retry further along.
+ *
+ * Returns NULL if the pattern can't match, or returns the address within
+ * the string which is the earliest place the match could occur.
+ *
+ * The longest of the anchored and floating substrings is called 'check'
+ * and is checked first. The other is called 'other' and is checked
+ * second. The 'other' substring may not be present.  For example,
+ *
+ *    /(abc|xyz)ABC\d{0,3}DEFG/
+ *
+ * will have
+ *
+ *   check substr (float)    = "DEFG", offset 6..9 chars
+ *   other substr (anchored) = "ABC",  offset 3..3 chars
+ *   stclass = [ax]
+ *
+ * Be aware that during the course of this function, sometimes 'anchored'
+ * refers to a substring being anchored relative to the start of the
+ * pattern, and sometimes to the pattern itself being anchored relative to
+ * the string. For example:
+ *
+ *   /\dabc/:   "abc" is anchored to the pattern;
+ *   /^\dabc/:  "abc" is anchored to the pattern and the string;
+ *   /\d+abc/:  "abc" is anchored to neither the pattern nor the string;
+ *   /^\d+abc/: "abc" is anchored to neither the pattern nor the string,
+ *                    but the pattern is anchored to the string.
+ */
+
+char *
+Perl_re_intuit_start(pTHX_
+                    REGEXP * const rx,
+                    SV *sv,
+                    const char * const strbeg,
+                    char *strpos,
+                    char *strend,
+                    const U32 flags,
+                    re_scream_pos_data *data)
+{
+    struct regexp *const prog = ReANY(rx);
+    SSize_t start_shift = prog->check_offset_min;
+    /* Should be nonnegative! */
+    SSize_t end_shift   = 0;
+    /* current lowest pos in string where the regex can start matching */
+    char *rx_origin = strpos;
+    SV *check;
+    const bool utf8_target = (sv && SvUTF8(sv)) ? 1 : 0; /* if no sv we have to assume bytes */
+    U8   other_ix = 1 - prog->substrs->check_ix;
+    bool ml_anch = 0;
+    char *other_last = strpos;/* latest pos 'other' substr already checked to */
+    char *check_at = NULL;             /* check substr found at this pos */
+    const I32 multiline = prog->extflags & RXf_PMf_MULTILINE;
+    RXi_GET_DECL(prog,progi);
+    regmatch_info reginfo_buf;  /* create some info to pass to find_byclass */
+    regmatch_info *const reginfo = &reginfo_buf;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_RE_INTUIT_START;
+    PERL_UNUSED_ARG(flags);
+    PERL_UNUSED_ARG(data);
+
+    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                "Intuit: trying to determine minimum start position...\n"));
+
+    /* for now, assume that all substr offsets are positive. If at some point
+     * in the future someone wants to do clever things with look-behind and
+     * -ve offsets, they'll need to fix up any code in this function
+     * which uses these offsets. See the thread beginning
+     * <20140113145929.GF27210@iabyn.com>
+     */
+    assert(prog->substrs->data[0].min_offset >= 0);
+    assert(prog->substrs->data[0].max_offset >= 0);
+    assert(prog->substrs->data[1].min_offset >= 0);
+    assert(prog->substrs->data[1].max_offset >= 0);
+    assert(prog->substrs->data[2].min_offset >= 0);
+    assert(prog->substrs->data[2].max_offset >= 0);
+
+    /* for now, assume that if both present, that the floating substring
+     * doesn't start before the anchored substring.
+     * If you break this assumption (e.g. doing better optimisations
+     * with lookahead/behind), then you'll need to audit the code in this
+     * function carefully first
+     */
+    assert(
+            ! (  (prog->anchored_utf8 || prog->anchored_substr)
+              && (prog->float_utf8    || prog->float_substr))
+           || (prog->float_min_offset >= prog->anchored_offset));
+
+    /* byte rather than char calculation for efficiency. It fails
+     * to quickly reject some cases that can't match, but will reject
+     * them later after doing full char arithmetic */
+    if (prog->minlen > strend - strpos) {
+       DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                             "  String too short...\n"));
+       goto fail;
+    }
+
+    RX_MATCH_UTF8_set(rx,utf8_target);
+    reginfo->is_utf8_target = cBOOL(utf8_target);
+    reginfo->info_aux = NULL;
+    reginfo->strbeg = strbeg;
+    reginfo->strend = strend;
+    reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx));
+    reginfo->intuit = 1;
+    /* not actually used within intuit, but zero for safety anyway */
+    reginfo->poscache_maxiter = 0;
+
+    if (utf8_target) {
+       if (!prog->check_utf8 && prog->check_substr)
+           to_utf8_substr(prog);
+       check = prog->check_utf8;
+    } else {
+       if (!prog->check_substr && prog->check_utf8) {
+           if (! to_byte_substr(prog)) {
+                NON_UTF8_TARGET_BUT_UTF8_REQUIRED(fail);
+            }
+        }
+       check = prog->check_substr;
+    }
+
+    /* dump the various substring data */
+    DEBUG_OPTIMISE_MORE_r({
+        int i;
+        for (i=0; i<=2; i++) {
+            SV *sv = (utf8_target ? prog->substrs->data[i].utf8_substr
+                                  : prog->substrs->data[i].substr);
+            if (!sv)
+                continue;
+
+            PerlIO_printf(Perl_debug_log,
+                "  substrs[%d]: min=%"IVdf" max=%"IVdf" end shift=%"IVdf
+                " useful=%"IVdf" utf8=%d [%s]\n",
+                i,
+                (IV)prog->substrs->data[i].min_offset,
+                (IV)prog->substrs->data[i].max_offset,
+                (IV)prog->substrs->data[i].end_shift,
+                BmUSEFUL(sv),
+                utf8_target ? 1 : 0,
+                SvPEEK(sv));
+        }
+    });
+
+    if (prog->intflags & PREGf_ANCH) { /* Match at \G, beg-of-str or after \n */
+
+        /* ml_anch: check after \n?
+         *
+         * A note about PREGf_IMPLICIT: on an un-anchored pattern beginning
+         * with /.*.../, these flags will have been added by the
+         * compiler:
+         *   /.*abc/, /.*abc/m:  PREGf_IMPLICIT | PREGf_ANCH_MBOL
+         *   /.*abc/s:           PREGf_IMPLICIT | PREGf_ANCH_SBOL
+         */
+       ml_anch =      (prog->intflags & PREGf_ANCH_MBOL)
+                   && !(prog->intflags & PREGf_IMPLICIT);
+
+       if (!ml_anch && !(prog->intflags & PREGf_IMPLICIT)) {
+            /* we are only allowed to match at BOS or \G */
+
+            /* trivially reject if there's a BOS anchor and we're not at BOS.
+             *
+             * Note that we don't try to do a similar quick reject for
+             * \G, since generally the caller will have calculated strpos
+             * based on pos() and gofs, so the string is already correctly
+             * anchored by definition; and handling the exceptions would
+             * be too fiddly (e.g. REXEC_IGNOREPOS).
+             */
+            if (   strpos != strbeg
+                && (prog->intflags & PREGf_ANCH_SBOL))
+            {
+               DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                                "  Not at start...\n"));
+               goto fail;
+           }
+
+            /* in the presence of an anchor, the anchored (relative to the
+             * start of the regex) substr must also be anchored relative
+             * to strpos. So quickly reject if substr isn't found there.
+             * This works for \G too, because the caller will already have
+             * subtracted gofs from pos, and gofs is the offset from the
+             * \G to the start of the regex. For example, in /.abc\Gdef/,
+             * where substr="abcdef", pos()=3, gofs=4, offset_min=1:
+             * caller will have set strpos=pos()-4; we look for the substr
+             * at position pos()-4+1, which lines up with the "a" */
+
+           if (prog->check_offset_min == prog->check_offset_max) {
+               /* Substring at constant offset from beg-of-str... */
+               SSize_t slen = SvCUR(check);
+                char *s = HOP3c(strpos, prog->check_offset_min, strend);
+           
+                DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                    "  Looking for check substr at fixed offset %"IVdf"...\n",
+                    (IV)prog->check_offset_min));
+
+               if (SvTAIL(check)) {
+                    /* In this case, the regex is anchored at the end too.
+                     * Unless it's a multiline match, the lengths must match
+                     * exactly, give or take a \n.  NB: slen >= 1 since
+                     * the last char of check is \n */
+                   if (!multiline
+                        && (   strend - s > slen
+                            || strend - s < slen - 1
+                            || (strend - s == slen && strend[-1] != '\n')))
+                    {
+                        DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                                            "  String too long...\n"));
+                        goto fail_finish;
+                    }
+                    /* Now should match s[0..slen-2] */
+                    slen--;
+                }
+                if (slen && (*SvPVX_const(check) != *s
+                    || (slen > 1 && memNE(SvPVX_const(check), s, slen))))
+                {
+                    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                                    "  String not equal...\n"));
+                    goto fail_finish;
+                }
+
+                check_at = s;
+                goto success_at_start;
+           }
+       }
+    }
+
+    end_shift = prog->check_end_shift;
+
+#ifdef DEBUGGING       /* 7/99: reports of failure (with the older version) */
+    if (end_shift < 0)
+       Perl_croak(aTHX_ "panic: end_shift: %"IVdf" pattern:\n%s\n ",
+                  (IV)end_shift, RX_PRECOMP(prog));
+#endif
+
+  restart:
+    
+    /* This is the (re)entry point of the main loop in this function.
+     * The goal of this loop is to:
+     * 1) find the "check" substring in the region rx_origin..strend
+     *    (adjusted by start_shift / end_shift). If not found, reject
+     *    immediately.
+     * 2) If it exists, look for the "other" substr too if defined; for
+     *    example, if the check substr maps to the anchored substr, then
+     *    check the floating substr, and vice-versa. If not found, go
+     *    back to (1) with rx_origin suitably incremented.
+     * 3) If we find an rx_origin position that doesn't contradict
+     *    either of the substrings, then check the possible additional
+     *    constraints on rx_origin of /^.../m or a known start class.
+     *    If these fail, then depending on which constraints fail, jump
+     *    back to here, or to various other re-entry points further along
+     *    that skip some of the first steps.
+     * 4) If we pass all those tests, update the BmUSEFUL() count on the
+     *    substring. If the start position was determined to be at the
+     *    beginning of the string  - so, not rejected, but not optimised,
+     *    since we have to run regmatch from position 0 - decrement the
+     *    BmUSEFUL() count. Otherwise increment it.
+     */
+
+
+    /* first, look for the 'check' substring */
+
+    {
+        U8* start_point;
+        U8* end_point;
+
+        DEBUG_OPTIMISE_MORE_r({
+            PerlIO_printf(Perl_debug_log,
+                "  At restart: rx_origin=%"IVdf" Check offset min: %"IVdf
+                " Start shift: %"IVdf" End shift %"IVdf
+                " Real end Shift: %"IVdf"\n",
+                (IV)(rx_origin - strbeg),
+                (IV)prog->check_offset_min,
+                (IV)start_shift,
+                (IV)end_shift,
+                (IV)prog->check_end_shift);
+        });
+        
+        end_point = HOP3(strend, -end_shift, strbeg);
+        start_point = HOPMAYBE3(rx_origin, start_shift, end_point);
+        if (!start_point)
+            goto fail_finish;
+
+
+        /* If the regex is absolutely anchored to either the start of the
+         * string (SBOL) or to pos() (ANCH_GPOS), then
+         * check_offset_max represents an upper bound on the string where
+         * the substr could start. For the ANCH_GPOS case, we assume that
+         * the caller of intuit will have already set strpos to
+         * pos()-gofs, so in this case strpos + offset_max will still be
+         * an upper bound on the substr.
+         */
+        if (!ml_anch
+            && prog->intflags & PREGf_ANCH
+            && prog->check_offset_max != SSize_t_MAX)
+        {
+            SSize_t len = SvCUR(check) - !!SvTAIL(check);
+            const char * const anchor =
+                        (prog->intflags & PREGf_ANCH_GPOS ? strpos : strbeg);
+
+            /* do a bytes rather than chars comparison. It's conservative;
+             * so it skips doing the HOP if the result can't possibly end
+             * up earlier than the old value of end_point.
+             */
+            if ((char*)end_point - anchor > prog->check_offset_max) {
+                end_point = HOP3lim((U8*)anchor,
+                                prog->check_offset_max,
+                                end_point -len)
+                            + len;
+            }
+        }
+
+       check_at = fbm_instr( start_point, end_point,
+                     check, multiline ? FBMrf_MULTILINE : 0);
+
+       DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+            "  doing 'check' fbm scan, [%"IVdf"..%"IVdf"] gave %"IVdf"\n",
+            (IV)((char*)start_point - strbeg),
+            (IV)((char*)end_point   - strbeg),
+            (IV)(check_at ? check_at - strbeg : -1)
+        ));
+
+        /* Update the count-of-usability, remove useless subpatterns,
+            unshift s.  */
+
+        DEBUG_EXECUTE_r({
+            RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+                SvPVX_const(check), RE_SV_DUMPLEN(check), 30);
+            PerlIO_printf(Perl_debug_log, "  %s %s substr %s%s%s",
+                              (check_at ? "Found" : "Did not find"),
+                (check == (utf8_target ? prog->anchored_utf8 : prog->anchored_substr)
+                    ? "anchored" : "floating"),
+                quoted,
+                RE_SV_TAIL(check),
+                (check_at ? " at offset " : "...\n") );
+        });
+
+        if (!check_at)
+            goto fail_finish;
+        /* set rx_origin to the minimum position where the regex could start
+         * matching, given the constraint of the just-matched check substring.
+         * But don't set it lower than previously.
+         */
+
+        if (check_at - rx_origin > prog->check_offset_max)
+            rx_origin = HOP3c(check_at, -prog->check_offset_max, rx_origin);
+        /* Finish the diagnostic message */
+        DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+            "%ld (rx_origin now %"IVdf")...\n",
+            (long)(check_at - strbeg),
+            (IV)(rx_origin - strbeg)
+        ));
+    }
+
+
+    /* now look for the 'other' substring if defined */
+
+    if (utf8_target ? prog->substrs->data[other_ix].utf8_substr
+                    : prog->substrs->data[other_ix].substr)
+    {
+       /* Take into account the "other" substring. */
+        char *last, *last1;
+        char *s;
+        SV* must;
+        struct reg_substr_datum *other;
+
+      do_other_substr:
+        other = &prog->substrs->data[other_ix];
+
+        /* if "other" is anchored:
+         * we've previously found a floating substr starting at check_at.
+         * This means that the regex origin must lie somewhere
+         * between min (rx_origin): HOP3(check_at, -check_offset_max)
+         * and max:                 HOP3(check_at, -check_offset_min)
+         * (except that min will be >= strpos)
+         * So the fixed  substr must lie somewhere between
+         *  HOP3(min, anchored_offset)
+         *  HOP3(max, anchored_offset) + SvCUR(substr)
+         */
+
+        /* if "other" is floating
+         * Calculate last1, the absolute latest point where the
+         * floating substr could start in the string, ignoring any
+         * constraints from the earlier fixed match. It is calculated
+         * as follows:
+         *
+         * strend - prog->minlen (in chars) is the absolute latest
+         * position within the string where the origin of the regex
+         * could appear. The latest start point for the floating
+         * substr is float_min_offset(*) on from the start of the
+         * regex.  last1 simply combines thee two offsets.
+         *
+         * (*) You might think the latest start point should be
+         * float_max_offset from the regex origin, and technically
+         * you'd be correct. However, consider
+         *    /a\d{2,4}bcd\w/
+         * Here, float min, max are 3,5 and minlen is 7.
+         * This can match either
+         *    /a\d\dbcd\w/
+         *    /a\d\d\dbcd\w/
+         *    /a\d\d\d\dbcd\w/
+         * In the first case, the regex matches minlen chars; in the
+         * second, minlen+1, in the third, minlen+2.
+         * In the first case, the floating offset is 3 (which equals
+         * float_min), in the second, 4, and in the third, 5 (which
+         * equals float_max). In all cases, the floating string bcd
+         * can never start more than 4 chars from the end of the
+         * string, which equals minlen - float_min. As the substring
+         * starts to match more than float_min from the start of the
+         * regex, it makes the regex match more than minlen chars,
+         * and the two cancel each other out. So we can always use
+         * float_min - minlen, rather than float_max - minlen for the
+         * latest position in the string.
+         *
+         * Note that -minlen + float_min_offset is equivalent (AFAIKT)
+         * to CHR_SVLEN(must) - !!SvTAIL(must) + prog->float_end_shift
+         */
+
+        assert(prog->minlen >= other->min_offset);
+        last1 = HOP3c(strend,
+                        other->min_offset - prog->minlen, strbeg);
+
+        if (other_ix) {/* i.e. if (other-is-float) */
+            /* last is the latest point where the floating substr could
+             * start, *given* any constraints from the earlier fixed
+             * match. This constraint is that the floating string starts
+             * <= float_max_offset chars from the regex origin (rx_origin).
+             * If this value is less than last1, use it instead.
+             */
+            assert(rx_origin <= last1);
+            last =
+                /* this condition handles the offset==infinity case, and
+                 * is a short-cut otherwise. Although it's comparing a
+                 * byte offset to a char length, it does so in a safe way,
+                 * since 1 char always occupies 1 or more bytes,
+                 * so if a string range is  (last1 - rx_origin) bytes,
+                 * it will be less than or equal to  (last1 - rx_origin)
+                 * chars; meaning it errs towards doing the accurate HOP3
+                 * rather than just using last1 as a short-cut */
+                (last1 - rx_origin) < other->max_offset
+                    ? last1
+                    : (char*)HOP3lim(rx_origin, other->max_offset, last1);
+        }
+        else {
+            assert(strpos + start_shift <= check_at);
+            last = HOP4c(check_at, other->min_offset - start_shift,
+                        strbeg, strend);
+        }
+
+        s = HOP3c(rx_origin, other->min_offset, strend);
+        if (s < other_last)    /* These positions already checked */
+            s = other_last;
+
+        must = utf8_target ? other->utf8_substr : other->substr;
+        assert(SvPOK(must));
+        {
+            char *from = s;
+            char *to   = last + SvCUR(must) - (SvTAIL(must)!=0);
+
+            if (from > to) {
+                s = NULL;
+                DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                    "  skipping 'other' fbm scan: %"IVdf" > %"IVdf"\n",
+                    (IV)(from - strbeg),
+                    (IV)(to   - strbeg)
+                ));
+            }
+            else {
+                s = fbm_instr(
+                    (unsigned char*)from,
+                    (unsigned char*)to,
+                    must,
+                    multiline ? FBMrf_MULTILINE : 0
+                );
+                DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                    "  doing 'other' fbm scan, [%"IVdf"..%"IVdf"] gave %"IVdf"\n",
+                    (IV)(from - strbeg),
+                    (IV)(to   - strbeg),
+                    (IV)(s ? s - strbeg : -1)
+                ));
+            }
+        }
+
+        DEBUG_EXECUTE_r({
+            RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+                SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+            PerlIO_printf(Perl_debug_log, "  %s %s substr %s%s",
+                s ? "Found" : "Contradicts",
+                other_ix ? "floating" : "anchored",
+                quoted, RE_SV_TAIL(must));
+        });
+
+
+        if (!s) {
+            /* last1 is latest possible substr location. If we didn't
+             * find it before there, we never will */
+            if (last >= last1) {
+                DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                                        "; giving up...\n"));
+                goto fail_finish;
+            }
+
+            /* try to find the check substr again at a later
+             * position. Maybe next time we'll find the "other" substr
+             * in range too */
+            other_last = HOP3c(last, 1, strend) /* highest failure */;
+            rx_origin =
+                other_ix /* i.e. if other-is-float */
+                    ? HOP3c(rx_origin, 1, strend)
+                    : HOP4c(last, 1 - other->min_offset, strbeg, strend);
+            DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                "; about to retry %s at offset %ld (rx_origin now %"IVdf")...\n",
+                (other_ix ? "floating" : "anchored"),
+                (long)(HOP3c(check_at, 1, strend) - strbeg),
+                (IV)(rx_origin - strbeg)
+            ));
+            goto restart;
+        }
+        else {
+            if (other_ix) { /* if (other-is-float) */
+                /* other_last is set to s, not s+1, since its possible for
+                 * a floating substr to fail first time, then succeed
+                 * second time at the same floating position; e.g.:
+                 *     "-AB--AABZ" =~ /\wAB\d*Z/
+                 * The first time round, anchored and float match at
+                 * "-(AB)--AAB(Z)" then fail on the initial \w character
+                 * class. Second time round, they match at "-AB--A(AB)(Z)".
+                 */
+                other_last = s;
+            }
+            else {
+                rx_origin = HOP3c(s, -other->min_offset, strbeg);
+                other_last = HOP3c(s, 1, strend);
+            }
+            DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                " at offset %ld (rx_origin now %"IVdf")...\n",
+                  (long)(s - strbeg),
+                (IV)(rx_origin - strbeg)
+              ));
+
+        }
+    }
+    else {
+        DEBUG_OPTIMISE_MORE_r(
+            PerlIO_printf(Perl_debug_log,
+                "  Check-only match: offset min:%"IVdf" max:%"IVdf
+                " check_at:%"IVdf" rx_origin:%"IVdf" rx_origin-check_at:%"IVdf
+                " strend:%"IVdf"\n",
+                (IV)prog->check_offset_min,
+                (IV)prog->check_offset_max,
+                (IV)(check_at-strbeg),
+                (IV)(rx_origin-strbeg),
+                (IV)(rx_origin-check_at),
+                (IV)(strend-strbeg)
+            )
+        );
+    }
+
+  postprocess_substr_matches:
+
+    /* handle the extra constraint of /^.../m if present */
+
+    if (ml_anch && rx_origin != strbeg && rx_origin[-1] != '\n') {
+        char *s;
+
+        DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                        "  looking for /^/m anchor"));
+
+        /* we have failed the constraint of a \n before rx_origin.
+         * Find the next \n, if any, even if it's beyond the current
+         * anchored and/or floating substrings. Whether we should be
+         * scanning ahead for the next \n or the next substr is debatable.
+         * On the one hand you'd expect rare substrings to appear less
+         * often than \n's. On the other hand, searching for \n means
+         * we're effectively flipping between check_substr and "\n" on each
+         * iteration as the current "rarest" string candidate, which
+         * means for example that we'll quickly reject the whole string if
+         * hasn't got a \n, rather than trying every substr position
+         * first
+         */
+
+        s = HOP3c(strend, - prog->minlen, strpos);
+        if (s <= rx_origin ||
+            ! ( rx_origin = (char *)memchr(rx_origin, '\n', s - rx_origin)))
+        {
+            DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                            "  Did not find /%s^%s/m...\n",
+                            PL_colors[0], PL_colors[1]));
+            goto fail_finish;
+        }
+
+        /* earliest possible origin is 1 char after the \n.
+         * (since *rx_origin == '\n', it's safe to ++ here rather than
+         * HOP(rx_origin, 1)) */
+        rx_origin++;
+
+        if (prog->substrs->check_ix == 0  /* check is anchored */
+            || rx_origin >= HOP3c(check_at,  - prog->check_offset_min, strpos))
+        {
+            /* Position contradicts check-string; either because
+             * check was anchored (and thus has no wiggle room),
+             * or check was float and rx_origin is above the float range */
+            DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                "  Found /%s^%s/m, about to restart lookup for check-string with rx_origin %ld...\n",
+                PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg)));
+            goto restart;
+        }
+
+        /* if we get here, the check substr must have been float,
+         * is in range, and we may or may not have had an anchored
+         * "other" substr which still contradicts */
+        assert(prog->substrs->check_ix); /* check is float */
+
+        if (utf8_target ? prog->anchored_utf8 : prog->anchored_substr) {
+            /* whoops, the anchored "other" substr exists, so we still
+             * contradict. On the other hand, the float "check" substr
+             * didn't contradict, so just retry the anchored "other"
+             * substr */
+            DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                "  Found /%s^%s/m, rescanning for anchored from offset %ld (rx_origin now %"IVdf")...\n",
+                PL_colors[0], PL_colors[1],
+                (long)(rx_origin - strbeg + prog->anchored_offset),
+                (long)(rx_origin - strbeg)
+            ));
+            goto do_other_substr;
+        }
+
+        /* success: we don't contradict the found floating substring
+         * (and there's no anchored substr). */
+        DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+            "  Found /%s^%s/m with rx_origin %ld...\n",
+            PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg)));
+    }
+    else {
+        DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+            "  (multiline anchor test skipped)\n"));
+    }
+
+  success_at_start:
+
+
+    /* if we have a starting character class, then test that extra constraint.
+     * (trie stclasses are too expensive to use here, we are better off to
+     * leave it to regmatch itself) */
+
+    if (progi->regstclass && PL_regkind[OP(progi->regstclass)]!=TRIE) {
+        const U8* const str = (U8*)STRING(progi->regstclass);
+
+        /* XXX this value could be pre-computed */
+        const int cl_l = (PL_regkind[OP(progi->regstclass)] == EXACT
+                   ?  (reginfo->is_utf8_pat
+                        ? utf8_distance(str + STR_LEN(progi->regstclass), str)
+                        : STR_LEN(progi->regstclass))
+                   : 1);
+       char * endpos;
+        char *s;
+        /* latest pos that a matching float substr constrains rx start to */
+        char *rx_max_float = NULL;
+
+        /* if the current rx_origin is anchored, either by satisfying an
+         * anchored substring constraint, or a /^.../m constraint, then we
+         * can reject the current origin if the start class isn't found
+         * at the current position. If we have a float-only match, then
+         * rx_origin is constrained to a range; so look for the start class
+         * in that range. if neither, then look for the start class in the
+         * whole rest of the string */
+
+        /* XXX DAPM it's not clear what the minlen test is for, and why
+         * it's not used in the floating case. Nothing in the test suite
+         * causes minlen == 0 here. See <20140313134639.GS12844@iabyn.com>.
+         * Here are some old comments, which may or may not be correct:
+         *
+        *   minlen == 0 is possible if regstclass is \b or \B,
+        *   and the fixed substr is ''$.
+         *   Since minlen is already taken into account, rx_origin+1 is
+         *   before strend; accidentally, minlen >= 1 guaranties no false
+         *   positives at rx_origin + 1 even for \b or \B.  But (minlen? 1 :
+         *   0) below assumes that regstclass does not come from lookahead...
+        *   If regstclass takes bytelength more than 1: If charlength==1, OK.
+         *   This leaves EXACTF-ish only, which are dealt with in
+         *   find_byclass().
+         */
+
+       if (prog->anchored_substr || prog->anchored_utf8 || ml_anch)
+            endpos= HOP3c(rx_origin, (prog->minlen ? cl_l : 0), strend);
+        else if (prog->float_substr || prog->float_utf8) {
+           rx_max_float = HOP3c(check_at, -start_shift, strbeg);
+           endpos= HOP3c(rx_max_float, cl_l, strend);
+        }
+        else 
+            endpos= strend;
+                   
+        DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+            "  looking for class: start_shift: %"IVdf" check_at: %"IVdf
+            " rx_origin: %"IVdf" endpos: %"IVdf"\n",
+              (IV)start_shift, (IV)(check_at - strbeg),
+              (IV)(rx_origin - strbeg), (IV)(endpos - strbeg)));
+
+        s = find_byclass(prog, progi->regstclass, rx_origin, endpos,
+                            reginfo);
+       if (!s) {
+           if (endpos == strend) {
+               DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+                               "  Could not match STCLASS...\n") );
+               goto fail;
+           }
+           DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+                               "  This position contradicts STCLASS...\n") );
+            if ((prog->intflags & PREGf_ANCH) && !ml_anch
+                        && !(prog->intflags & PREGf_IMPLICIT))
+               goto fail;
+
+           /* Contradict one of substrings */
+           if (prog->anchored_substr || prog->anchored_utf8) {
+                if (prog->substrs->check_ix == 1) { /* check is float */
+                    /* Have both, check_string is floating */
+                    assert(rx_origin + start_shift <= check_at);
+                    if (rx_origin + start_shift != check_at) {
+                        /* not at latest position float substr could match:
+                         * Recheck anchored substring, but not floating.
+                         * The condition above is in bytes rather than
+                         * chars for efficiency. It's conservative, in
+                         * that it errs on the side of doing 'goto
+                         * do_other_substr'. In this case, at worst,
+                         * an extra anchored search may get done, but in
+                         * practice the extra fbm_instr() is likely to
+                         * get skipped anyway. */
+                        DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+                            "  about to retry anchored at offset %ld (rx_origin now %"IVdf")...\n",
+                            (long)(other_last - strbeg),
+                            (IV)(rx_origin - strbeg)
+                        ));
+                        goto do_other_substr;
+                    }
+                }
+            }
+           else {
+                /* float-only */
+
+                if (ml_anch) {
+                    /* In the presence of ml_anch, we might be able to
+                     * find another \n without breaking the current float
+                     * constraint. */
+
+                    /* strictly speaking this should be HOP3c(..., 1, ...),
+                     * but since we goto a block of code that's going to
+                     * search for the next \n if any, its safe here */
+                    rx_origin++;
+                    DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+                              "  about to look for /%s^%s/m starting at rx_origin %ld...\n",
+                              PL_colors[0], PL_colors[1],
+                              (long)(rx_origin - strbeg)) );
+                    goto postprocess_substr_matches;
+                }
+
+                /* strictly speaking this can never be true; but might
+                 * be if we ever allow intuit without substrings */
+                if (!(utf8_target ? prog->float_utf8 : prog->float_substr))
+                    goto fail;
+
+                rx_origin = rx_max_float;
+            }
+
+            /* at this point, any matching substrings have been
+             * contradicted. Start again... */
+
+            rx_origin = HOP3c(rx_origin, 1, strend);
+
+            /* uses bytes rather than char calculations for efficiency.
+             * It's conservative: it errs on the side of doing 'goto restart',
+             * where there is code that does a proper char-based test */
+            if (rx_origin + start_shift + end_shift > strend) {
+                DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+                                       "  Could not match STCLASS...\n") );
+                goto fail;
+            }
+            DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+                "  about to look for %s substr starting at offset %ld (rx_origin now %"IVdf")...\n",
+                (prog->substrs->check_ix ? "floating" : "anchored"),
+                (long)(rx_origin + start_shift - strbeg),
+                (IV)(rx_origin - strbeg)
+            ));
+            goto restart;
+       }
+
+        /* Success !!! */
+
+       if (rx_origin != s) {
+            DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                       "  By STCLASS: moving %ld --> %ld\n",
+                                  (long)(rx_origin - strbeg), (long)(s - strbeg))
+                   );
+        }
+        else {
+            DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                                  "  Does not contradict STCLASS...\n");
+                   );
+        }
+    }
+
+    /* Decide whether using the substrings helped */
+
+    if (rx_origin != strpos) {
+       /* Fixed substring is found far enough so that the match
+          cannot start at strpos. */
+
+        DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "  try at offset...\n"));
+       ++BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr);        /* hooray/5 */
+    }
+    else {
+        /* The found rx_origin position does not prohibit matching at
+         * strpos, so calling intuit didn't gain us anything. Decrement
+         * the BmUSEFUL() count on the check substring, and if we reach
+         * zero, free it.  */
+       if (!(prog->intflags & PREGf_NAUGHTY)
+           && (utf8_target ? (
+               prog->check_utf8                /* Could be deleted already */
+               && --BmUSEFUL(prog->check_utf8) < 0
+               && (prog->check_utf8 == prog->float_utf8)
+           ) : (
+               prog->check_substr              /* Could be deleted already */
+               && --BmUSEFUL(prog->check_substr) < 0
+               && (prog->check_substr == prog->float_substr)
+           )))
+       {
+           /* If flags & SOMETHING - do not do it many times on the same match */
+           DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "  ... Disabling check substring...\n"));
+           /* XXX Does the destruction order has to change with utf8_target? */
+           SvREFCNT_dec(utf8_target ? prog->check_utf8 : prog->check_substr);
+           SvREFCNT_dec(utf8_target ? prog->check_substr : prog->check_utf8);
+           prog->check_substr = prog->check_utf8 = NULL;       /* disable */
+           prog->float_substr = prog->float_utf8 = NULL;       /* clear */
+           check = NULL;                       /* abort */
+           /* XXXX This is a remnant of the old implementation.  It
+                   looks wasteful, since now INTUIT can use many
+                   other heuristics. */
+           prog->extflags &= ~RXf_USE_INTUIT;
+       }
+    }
+
+    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+            "Intuit: %sSuccessfully guessed:%s match at offset %ld\n",
+             PL_colors[4], PL_colors[5], (long)(rx_origin - strbeg)) );
+
+    return rx_origin;
+
+  fail_finish:                         /* Substring not found */
+    if (prog->check_substr || prog->check_utf8)                /* could be removed already */
+       BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr) += 5; /* hooray */
+  fail:
+    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch rejected by optimizer%s\n",
+                         PL_colors[4], PL_colors[5]));
+    return NULL;
+}
+
+
+#define DECL_TRIE_TYPE(scan) \
+    const enum { trie_plain, trie_utf8, trie_utf8_fold, trie_latin_utf8_fold,       \
+                 trie_utf8_exactfa_fold, trie_latin_utf8_exactfa_fold,              \
+                 trie_utf8l, trie_flu8 }                                            \
+                    trie_type = ((scan->flags == EXACT)                             \
+                                 ? (utf8_target ? trie_utf8 : trie_plain)           \
+                                 : (scan->flags == EXACTL)                          \
+                                    ? (utf8_target ? trie_utf8l : trie_plain)       \
+                                    : (scan->flags == EXACTFA)                      \
+                                      ? (utf8_target                                \
+                                         ? trie_utf8_exactfa_fold                   \
+                                         : trie_latin_utf8_exactfa_fold)            \
+                                      : (scan->flags == EXACTFLU8                   \
+                                         ? trie_flu8                                \
+                                         : (utf8_target                             \
+                                           ? trie_utf8_fold                         \
+                                           :   trie_latin_utf8_fold)))
+
+#define REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc, uscan, len, uvc, charid, foldlen, foldbuf, uniflags) \
+STMT_START {                                                                        \
+    STRLEN skiplen;                                                                 \
+    U8 flags = FOLD_FLAGS_FULL;                                                     \
+    switch (trie_type) {                                                            \
+    case trie_flu8:                                                                 \
+        _CHECK_AND_WARN_PROBLEMATIC_LOCALE;                                         \
+        if (utf8_target && UTF8_IS_ABOVE_LATIN1(*uc)) {                             \
+            _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(uc, uc + UTF8SKIP(uc));          \
+        }                                                                           \
+        goto do_trie_utf8_fold;                                                     \
+    case trie_utf8_exactfa_fold:                                                    \
+        flags |= FOLD_FLAGS_NOMIX_ASCII;                                            \
+        /* FALLTHROUGH */                                                           \
+    case trie_utf8_fold:                                                            \
+      do_trie_utf8_fold:                                                            \
+        if ( foldlen>0 ) {                                                          \
+            uvc = utf8n_to_uvchr( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
+            foldlen -= len;                                                         \
+            uscan += len;                                                           \
+            len=0;                                                                  \
+        } else {                                                                    \
+            uvc = _to_utf8_fold_flags( (const U8*) uc, foldbuf, &foldlen, flags);   \
+            len = UTF8SKIP(uc);                                                     \
+            skiplen = UNISKIP( uvc );                                               \
+            foldlen -= skiplen;                                                     \
+            uscan = foldbuf + skiplen;                                              \
+        }                                                                           \
+        break;                                                                      \
+    case trie_latin_utf8_exactfa_fold:                                              \
+        flags |= FOLD_FLAGS_NOMIX_ASCII;                                            \
+        /* FALLTHROUGH */                                                           \
+    case trie_latin_utf8_fold:                                                      \
+        if ( foldlen>0 ) {                                                          \
+            uvc = utf8n_to_uvchr( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
+            foldlen -= len;                                                         \
+            uscan += len;                                                           \
+            len=0;                                                                  \
+        } else {                                                                    \
+            len = 1;                                                                \
+            uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, flags);             \
+            skiplen = UNISKIP( uvc );                                               \
+            foldlen -= skiplen;                                                     \
+            uscan = foldbuf + skiplen;                                              \
+        }                                                                           \
+        break;                                                                      \
+    case trie_utf8l:                                                                \
+        _CHECK_AND_WARN_PROBLEMATIC_LOCALE;                                         \
+        if (utf8_target && UTF8_IS_ABOVE_LATIN1(*uc)) {                             \
+            _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(uc, uc + UTF8SKIP(uc));          \
+        }                                                                           \
+        /* FALLTHROUGH */                                                           \
+    case trie_utf8:                                                                 \
+        uvc = utf8n_to_uvchr( (const U8*) uc, UTF8_MAXLEN, &len, uniflags );        \
+        break;                                                                      \
+    case trie_plain:                                                                \
+        uvc = (UV)*uc;                                                              \
+        len = 1;                                                                    \
+    }                                                                               \
+    if (uvc < 256) {                                                                \
+        charid = trie->charmap[ uvc ];                                              \
+    }                                                                               \
+    else {                                                                          \
+        charid = 0;                                                                 \
+        if (widecharmap) {                                                          \
+            SV** const svpp = hv_fetch(widecharmap,                                 \
+                        (char*)&uvc, sizeof(UV), 0);                                \
+            if (svpp)                                                               \
+                charid = (U16)SvIV(*svpp);                                          \
+        }                                                                           \
+    }                                                                               \
+} STMT_END
+
+#define DUMP_EXEC_POS(li,s,doutf8)                          \
+    dump_exec_pos(li,s,(reginfo->strend),(reginfo->strbeg), \
+                startpos, doutf8)
+
+#define REXEC_FBC_EXACTISH_SCAN(COND)                     \
+STMT_START {                                              \
+    while (s <= e) {                                      \
+       if ( (COND)                                       \
+            && (ln == 1 || folder(s, pat_string, ln))    \
+            && (reginfo->intuit || regtry(reginfo, &s)) )\
+           goto got_it;                                  \
+       s++;                                              \
+    }                                                     \
+} STMT_END
+
+#define REXEC_FBC_UTF8_SCAN(CODE)                     \
+STMT_START {                                          \
+    while (s < strend) {                              \
+       CODE                                          \
+       s += UTF8SKIP(s);                             \
+    }                                                 \
+} STMT_END
+
+#define REXEC_FBC_SCAN(CODE)                          \
+STMT_START {                                          \
+    while (s < strend) {                              \
+       CODE                                          \
+       s++;                                          \
+    }                                                 \
+} STMT_END
+
+#define REXEC_FBC_UTF8_CLASS_SCAN(COND)                        \
+REXEC_FBC_UTF8_SCAN( /* Loops while (s < strend) */            \
+    if (COND) {                                                \
+       if (tmp && (reginfo->intuit || regtry(reginfo, &s)))   \
+           goto got_it;                                       \
+       else                                                   \
+           tmp = doevery;                                     \
+    }                                                          \
+    else                                                       \
+       tmp = 1;                                               \
+)
+
+#define REXEC_FBC_CLASS_SCAN(COND)                             \
+REXEC_FBC_SCAN( /* Loops while (s < strend) */                 \
+    if (COND) {                                                \
+       if (tmp && (reginfo->intuit || regtry(reginfo, &s)))   \
+           goto got_it;                                       \
+       else                                                   \
+           tmp = doevery;                                     \
+    }                                                          \
+    else                                                       \
+       tmp = 1;                                               \
+)
+
+#define REXEC_FBC_CSCAN(CONDUTF8,COND)                         \
+    if (utf8_target) {                                         \
+       REXEC_FBC_UTF8_CLASS_SCAN(CONDUTF8);                   \
+    }                                                          \
+    else {                                                     \
+       REXEC_FBC_CLASS_SCAN(COND);                            \
+    }
+
+/* The three macros below are slightly different versions of the same logic.
+ *
+ * The first is for /a and /aa when the target string is UTF-8.  This can only
+ * match ascii, but it must advance based on UTF-8.   The other two handle the
+ * non-UTF-8 and the more generic UTF-8 cases.   In all three, we are looking
+ * for the boundary (or non-boundary) between a word and non-word character.
+ * The utf8 and non-utf8 cases have the same logic, but the details must be
+ * different.  Find the "wordness" of the character just prior to this one, and
+ * compare it with the wordness of this one.  If they differ, we have a
+ * boundary.  At the beginning of the string, pretend that the previous
+ * character was a new-line.
+ *
+ * All these macros uncleanly have side-effects with each other and outside
+ * variables.  So far it's been too much trouble to clean-up
+ *
+ * TEST_NON_UTF8 is the macro or function to call to test if its byte input is
+ *               a word character or not.
+ * IF_SUCCESS    is code to do if it finds that we are at a boundary between
+ *               word/non-word
+ * IF_FAIL       is code to do if we aren't at a boundary between word/non-word
+ *
+ * Exactly one of the two IF_FOO parameters is a no-op, depending on whether we
+ * are looking for a boundary or for a non-boundary.  If we are looking for a
+ * boundary, we want IF_FAIL to be the no-op, and for IF_SUCCESS to go out and
+ * see if this tentative match actually works, and if so, to quit the loop
+ * here.  And vice-versa if we are looking for a non-boundary.
+ *
+ * 'tmp' below in the next three macros in the REXEC_FBC_SCAN and
+ * REXEC_FBC_UTF8_SCAN loops is a loop invariant, a bool giving the return of
+ * TEST_NON_UTF8(s-1).  To see this, note that that's what it is defined to be
+ * at entry to the loop, and to get to the IF_FAIL branch, tmp must equal
+ * TEST_NON_UTF8(s), and in the opposite branch, IF_SUCCESS, tmp is that
+ * complement.  But in that branch we complement tmp, meaning that at the
+ * bottom of the loop tmp is always going to be equal to TEST_NON_UTF8(s),
+ * which means at the top of the loop in the next iteration, it is
+ * TEST_NON_UTF8(s-1) */
+#define FBC_UTF8_A(TEST_NON_UTF8, IF_SUCCESS, IF_FAIL)                         \
+    tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n';                      \
+    tmp = TEST_NON_UTF8(tmp);                                                  \
+    REXEC_FBC_UTF8_SCAN( /* advances s while s < strend */                     \
+        if (tmp == ! TEST_NON_UTF8((U8) *s)) {                                 \
+            tmp = !tmp;                                                        \
+            IF_SUCCESS; /* Is a boundary if values for s-1 and s differ */     \
+        }                                                                      \
+        else {                                                                 \
+            IF_FAIL;                                                           \
+        }                                                                      \
+    );                                                                         \
+
+/* Like FBC_UTF8_A, but TEST_UV is a macro which takes a UV as its input, and
+ * TEST_UTF8 is a macro that for the same input code points returns identically
+ * to TEST_UV, but takes a pointer to a UTF-8 encoded string instead */
+#define FBC_UTF8(TEST_UV, TEST_UTF8, IF_SUCCESS, IF_FAIL)                      \
+    if (s == reginfo->strbeg) {                                                \
+        tmp = '\n';                                                            \
+    }                                                                          \
+    else { /* Back-up to the start of the previous character */                \
+        U8 * const r = reghop3((U8*)s, -1, (U8*)reginfo->strbeg);              \
+        tmp = utf8n_to_uvchr(r, (U8*) reginfo->strend - r,                     \
+                                                       0, UTF8_ALLOW_DEFAULT); \
+    }                                                                          \
+    tmp = TEST_UV(tmp);                                                        \
+    LOAD_UTF8_CHARCLASS_ALNUM();                                               \
+    REXEC_FBC_UTF8_SCAN( /* advances s while s < strend */                     \
+        if (tmp == ! (TEST_UTF8((U8 *) s))) {                                  \
+            tmp = !tmp;                                                        \
+            IF_SUCCESS;                                                        \
+        }                                                                      \
+        else {                                                                 \
+            IF_FAIL;                                                           \
+        }                                                                      \
+    );
+
+/* Like the above two macros.  UTF8_CODE is the complete code for handling
+ * UTF-8.  Common to the BOUND and NBOUND cases, set-up by the FBC_BOUND, etc
+ * macros below */
+#define FBC_BOUND_COMMON(UTF8_CODE, TEST_NON_UTF8, IF_SUCCESS, IF_FAIL)        \
+    if (utf8_target) {                                                         \
+        UTF8_CODE                                                              \
+    }                                                                          \
+    else {  /* Not utf8 */                                                     \
+       tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n';                  \
+       tmp = TEST_NON_UTF8(tmp);                                              \
+       REXEC_FBC_SCAN( /* advances s while s < strend */                      \
+           if (tmp == ! TEST_NON_UTF8((U8) *s)) {                             \
+               IF_SUCCESS;                                                    \
+               tmp = !tmp;                                                    \
+           }                                                                  \
+           else {                                                             \
+               IF_FAIL;                                                       \
+           }                                                                  \
+       );                                                                     \
+    }                                                                          \
+    /* Here, things have been set up by the previous code so that tmp is the   \
+     * return of TEST_NON_UTF(s-1) or TEST_UTF8(s-1) (depending on the         \
+     * utf8ness of the target).  We also have to check if this matches against \
+     * the EOS, which we treat as a \n (which is the same value in both UTF-8  \
+     * or non-UTF8, so can use the non-utf8 test condition even for a UTF-8    \
+     * string */                                                               \
+    if (tmp == ! TEST_NON_UTF8('\n')) {                                        \
+        IF_SUCCESS;                                                            \
+    }                                                                          \
+    else {                                                                     \
+        IF_FAIL;                                                               \
+    }
+
+/* This is the macro to use when we want to see if something that looks like it
+ * could match, actually does, and if so exits the loop */
+#define REXEC_FBC_TRYIT                            \
+    if ((reginfo->intuit || regtry(reginfo, &s)))  \
+        goto got_it
+
+/* The only difference between the BOUND and NBOUND cases is that
+ * REXEC_FBC_TRYIT is called when matched in BOUND, and when non-matched in
+ * NBOUND.  This is accomplished by passing it as either the if or else clause,
+ * with the other one being empty (PLACEHOLDER is defined as empty).
+ *
+ * The TEST_FOO parameters are for operating on different forms of input, but
+ * all should be ones that return identically for the same underlying code
+ * points */
+#define FBC_BOUND(TEST_NON_UTF8, TEST_UV, TEST_UTF8)                           \
+    FBC_BOUND_COMMON(                                                          \
+          FBC_UTF8(TEST_UV, TEST_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER),          \
+          TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
+
+#define FBC_BOUND_A(TEST_NON_UTF8)                                             \
+    FBC_BOUND_COMMON(                                                          \
+            FBC_UTF8_A(TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER),           \
+            TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
+
+#define FBC_NBOUND(TEST_NON_UTF8, TEST_UV, TEST_UTF8)                          \
+    FBC_BOUND_COMMON(                                                          \
+          FBC_UTF8(TEST_UV, TEST_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT),          \
+          TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
+
+#define FBC_NBOUND_A(TEST_NON_UTF8)                                            \
+    FBC_BOUND_COMMON(                                                          \
+            FBC_UTF8_A(TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT),           \
+            TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
+
+/* Takes a pointer to an inversion list, a pointer to its corresponding
+ * inversion map, and a code point, and returns the code point's value
+ * according to the two arrays.  It assumes that all code points have a value.
+ * This is used as the base macro for macros for particular properties */
+#define _generic_GET_BREAK_VAL_CP(invlist, invmap, cp)              \
+                             invmap[_invlist_search(invlist, cp)]
+
+/* Same as above, but takes begin, end ptrs to a UTF-8 encoded string instead
+ * of a code point, returning the value for the first code point in the string.
+ * And it takes the particular macro name that finds the desired value given a
+ * code point.  Merely convert the UTF-8 to code point and call the cp macro */
+#define _generic_GET_BREAK_VAL_UTF8(cp_macro, pos, strend)                     \
+             (__ASSERT_(pos < strend)                                          \
+                 /* Note assumes is valid UTF-8 */                             \
+             (cp_macro(utf8_to_uvchr_buf((pos), (strend), NULL))))
+
+/* Returns the GCB value for the input code point */
+#define getGCB_VAL_CP(cp)                                                      \
+          _generic_GET_BREAK_VAL_CP(                                           \
+                                    PL_GCB_invlist,                            \
+                                    Grapheme_Cluster_Break_invmap,             \
+                                    (cp))
+
+/* Returns the GCB value for the first code point in the UTF-8 encoded string
+ * bounded by pos and strend */
+#define getGCB_VAL_UTF8(pos, strend)                                           \
+    _generic_GET_BREAK_VAL_UTF8(getGCB_VAL_CP, pos, strend)
+
+
+/* Returns the SB value for the input code point */
+#define getSB_VAL_CP(cp)                                                       \
+          _generic_GET_BREAK_VAL_CP(                                           \
+                                    PL_SB_invlist,                             \
+                                    Sentence_Break_invmap,                     \
+                                    (cp))
+
+/* Returns the SB value for the first code point in the UTF-8 encoded string
+ * bounded by pos and strend */
+#define getSB_VAL_UTF8(pos, strend)                                            \
+    _generic_GET_BREAK_VAL_UTF8(getSB_VAL_CP, pos, strend)
+
+/* Returns the WB value for the input code point */
+#define getWB_VAL_CP(cp)                                                       \
+          _generic_GET_BREAK_VAL_CP(                                           \
+                                    PL_WB_invlist,                             \
+                                    Word_Break_invmap,                         \
+                                    (cp))
+
+/* Returns the WB value for the first code point in the UTF-8 encoded string
+ * bounded by pos and strend */
+#define getWB_VAL_UTF8(pos, strend)                                            \
+    _generic_GET_BREAK_VAL_UTF8(getWB_VAL_CP, pos, strend)
+
+/* We know what class REx starts with.  Try to find this position... */
+/* if reginfo->intuit, its a dryrun */
+/* annoyingly all the vars in this routine have different names from their counterparts
+   in regmatch. /grrr */
+STATIC char *
+S_find_byclass(pTHX_ regexp * prog, const regnode *c, char *s, 
+    const char *strend, regmatch_info *reginfo)
+{
+    dVAR;
+    const I32 doevery = (prog->intflags & PREGf_SKIP) == 0;
+    char *pat_string;   /* The pattern's exactish string */
+    char *pat_end;         /* ptr to end char of pat_string */
+    re_fold_t folder;  /* Function for computing non-utf8 folds */
+    const U8 *fold_array;   /* array for folding ords < 256 */
+    STRLEN ln;
+    STRLEN lnc;
+    U8 c1;
+    U8 c2;
+    char *e;
+    I32 tmp = 1;       /* Scratch variable? */
+    const bool utf8_target = reginfo->is_utf8_target;
+    UV utf8_fold_flags = 0;
+    const bool is_utf8_pat = reginfo->is_utf8_pat;
+    bool to_complement = FALSE; /* Invert the result?  Taking the xor of this
+                                   with a result inverts that result, as 0^1 =
+                                   1 and 1^1 = 0 */
+    _char_class_number classnum;
+
+    RXi_GET_DECL(prog,progi);
+
+    PERL_ARGS_ASSERT_FIND_BYCLASS;
+
+    /* We know what class it must start with. */
+    switch (OP(c)) {
+    case ANYOFL:
+        _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+        /* FALLTHROUGH */
+    case ANYOF:
+        if (utf8_target) {
+            REXEC_FBC_UTF8_CLASS_SCAN(
+                      reginclass(prog, c, (U8*)s, (U8*) strend, utf8_target));
+        }
+        else {
+            REXEC_FBC_CLASS_SCAN(REGINCLASS(prog, c, (U8*)s));
+        }
+        break;
+
+    case EXACTFA_NO_TRIE:   /* This node only generated for non-utf8 patterns */
+        assert(! is_utf8_pat);
+       /* FALLTHROUGH */
+    case EXACTFA:
+        if (is_utf8_pat || utf8_target) {
+            utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+            goto do_exactf_utf8;
+        }
+        fold_array = PL_fold_latin1;    /* Latin1 folds are not affected by */
+        folder = foldEQ_latin1;                /* /a, except the sharp s one which */
+        goto do_exactf_non_utf8;       /* isn't dealt with by these */
+
+    case EXACTF:   /* This node only generated for non-utf8 patterns */
+        assert(! is_utf8_pat);
+        if (utf8_target) {
+            utf8_fold_flags = 0;
+            goto do_exactf_utf8;
+        }
+        fold_array = PL_fold;
+        folder = foldEQ;
+        goto do_exactf_non_utf8;
+
+    case EXACTFL:
+        _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+        if (is_utf8_pat || utf8_target || IN_UTF8_CTYPE_LOCALE) {
+            utf8_fold_flags = FOLDEQ_LOCALE;
+            goto do_exactf_utf8;
+        }
+        fold_array = PL_fold_locale;
+        folder = foldEQ_locale;
+        goto do_exactf_non_utf8;
+
+    case EXACTFU_SS:
+        if (is_utf8_pat) {
+            utf8_fold_flags = FOLDEQ_S2_ALREADY_FOLDED;
+        }
+        goto do_exactf_utf8;
+
+    case EXACTFLU8:
+            if (! utf8_target) {    /* All code points in this node require
+                                       UTF-8 to express.  */
+                break;
+            }
+            utf8_fold_flags =  FOLDEQ_LOCALE | FOLDEQ_S2_ALREADY_FOLDED
+                                             | FOLDEQ_S2_FOLDS_SANE;
+            goto do_exactf_utf8;
+
+    case EXACTFU:
+        if (is_utf8_pat || utf8_target) {
+            utf8_fold_flags = is_utf8_pat ? FOLDEQ_S2_ALREADY_FOLDED : 0;
+            goto do_exactf_utf8;
+        }
+
+        /* Any 'ss' in the pattern should have been replaced by regcomp,
+         * so we don't have to worry here about this single special case
+         * in the Latin1 range */
+        fold_array = PL_fold_latin1;
+        folder = foldEQ_latin1;
+
+        /* FALLTHROUGH */
+
+      do_exactf_non_utf8: /* Neither pattern nor string are UTF8, and there
+                           are no glitches with fold-length differences
+                           between the target string and pattern */
+
+        /* The idea in the non-utf8 EXACTF* cases is to first find the
+         * first character of the EXACTF* node and then, if necessary,
+         * case-insensitively compare the full text of the node.  c1 is the
+         * first character.  c2 is its fold.  This logic will not work for
+         * Unicode semantics and the german sharp ss, which hence should
+         * not be compiled into a node that gets here. */
+        pat_string = STRING(c);
+        ln  = STR_LEN(c);      /* length to match in octets/bytes */
+
+        /* We know that we have to match at least 'ln' bytes (which is the
+         * same as characters, since not utf8).  If we have to match 3
+         * characters, and there are only 2 availabe, we know without
+         * trying that it will fail; so don't start a match past the
+         * required minimum number from the far end */
+        e = HOP3c(strend, -((SSize_t)ln), s);
+
+        if (reginfo->intuit && e < s) {
+            e = s;                     /* Due to minlen logic of intuit() */
+        }
+
+        c1 = *pat_string;
+        c2 = fold_array[c1];
+        if (c1 == c2) { /* If char and fold are the same */
+            REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1);
+        }
+        else {
+            REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1 || *(U8*)s == c2);
+        }
+        break;
+
+      do_exactf_utf8:
+      {
+        unsigned expansion;
+
+        /* If one of the operands is in utf8, we can't use the simpler folding
+         * above, due to the fact that many different characters can have the
+         * same fold, or portion of a fold, or different- length fold */
+        pat_string = STRING(c);
+        ln  = STR_LEN(c);      /* length to match in octets/bytes */
+        pat_end = pat_string + ln;
+        lnc = is_utf8_pat       /* length to match in characters */
+                ? utf8_length((U8 *) pat_string, (U8 *) pat_end)
+                : ln;
+
+        /* We have 'lnc' characters to match in the pattern, but because of
+         * multi-character folding, each character in the target can match
+         * up to 3 characters (Unicode guarantees it will never exceed
+         * this) if it is utf8-encoded; and up to 2 if not (based on the
+         * fact that the Latin 1 folds are already determined, and the
+         * only multi-char fold in that range is the sharp-s folding to
+         * 'ss'.  Thus, a pattern character can match as little as 1/3 of a
+         * string character.  Adjust lnc accordingly, rounding up, so that
+         * if we need to match at least 4+1/3 chars, that really is 5. */
+        expansion = (utf8_target) ? UTF8_MAX_FOLD_CHAR_EXPAND : 2;
+        lnc = (lnc + expansion - 1) / expansion;
+
+        /* As in the non-UTF8 case, if we have to match 3 characters, and
+         * only 2 are left, it's guaranteed to fail, so don't start a
+         * match that would require us to go beyond the end of the string
+         */
+        e = HOP3c(strend, -((SSize_t)lnc), s);
+
+        if (reginfo->intuit && e < s) {
+            e = s;                     /* Due to minlen logic of intuit() */
+        }
+
+        /* XXX Note that we could recalculate e to stop the loop earlier,
+         * as the worst case expansion above will rarely be met, and as we
+         * go along we would usually find that e moves further to the left.
+         * This would happen only after we reached the point in the loop
+         * where if there were no expansion we should fail.  Unclear if
+         * worth the expense */
+
+        while (s <= e) {
+            char *my_strend= (char *)strend;
+            if (foldEQ_utf8_flags(s, &my_strend, 0,  utf8_target,
+                  pat_string, NULL, ln, is_utf8_pat, utf8_fold_flags)
+                && (reginfo->intuit || regtry(reginfo, &s)) )
+            {
+                goto got_it;
+            }
+            s += (utf8_target) ? UTF8SKIP(s) : 1;
+        }
+        break;
+    }
+
+    case BOUNDL:
+        _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+        if (FLAGS(c) != TRADITIONAL_BOUND) {
+            if (! IN_UTF8_CTYPE_LOCALE) {
+                Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
+                                                B_ON_NON_UTF8_LOCALE_IS_WRONG);
+            }
+            goto do_boundu;
+        }
+
+        FBC_BOUND(isWORDCHAR_LC, isWORDCHAR_LC_uvchr, isWORDCHAR_LC_utf8);
+        break;
+
+    case NBOUNDL:
+        _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+        if (FLAGS(c) != TRADITIONAL_BOUND) {
+            if (! IN_UTF8_CTYPE_LOCALE) {
+                Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
+                                                B_ON_NON_UTF8_LOCALE_IS_WRONG);
+            }
+            goto do_nboundu;
+        }
+
+        FBC_NBOUND(isWORDCHAR_LC, isWORDCHAR_LC_uvchr, isWORDCHAR_LC_utf8);
+        break;
+
+    case BOUND: /* regcomp.c makes sure that this only has the traditional \b
+                   meaning */
+        assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+        FBC_BOUND(isWORDCHAR, isWORDCHAR_uni, isWORDCHAR_utf8);
+        break;
+
+    case BOUNDA: /* regcomp.c makes sure that this only has the traditional \b
+                   meaning */
+        assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+        FBC_BOUND_A(isWORDCHAR_A);
+        break;
+
+    case NBOUND: /* regcomp.c makes sure that this only has the traditional \b
+                   meaning */
+        assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+        FBC_NBOUND(isWORDCHAR, isWORDCHAR_uni, isWORDCHAR_utf8);
+        break;
+
+    case NBOUNDA: /* regcomp.c makes sure that this only has the traditional \b
+                   meaning */
+        assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+        FBC_NBOUND_A(isWORDCHAR_A);
+        break;
+
+    case NBOUNDU:
+        if ((bound_type) FLAGS(c) == TRADITIONAL_BOUND) {
+            FBC_NBOUND(isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8);
+            break;
+        }
+
+      do_nboundu:
+
+        to_complement = 1;
+        /* FALLTHROUGH */
+
+    case BOUNDU:
+      do_boundu:
+        switch((bound_type) FLAGS(c)) {
+            case TRADITIONAL_BOUND:
+                FBC_BOUND(isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8);
+                break;
+            case GCB_BOUND:
+                if (s == reginfo->strbeg) { /* GCB always matches at begin and
+                                               end */
+                    if (to_complement ^ cBOOL(reginfo->intuit
+                                                      || regtry(reginfo, &s)))
+                    {
+                        goto got_it;
+                    }
+                    s += (utf8_target) ? UTF8SKIP(s) : 1;
+                }
+
+                if (utf8_target) {
+                    GCB_enum before = getGCB_VAL_UTF8(
+                                               reghop3((U8*)s, -1,
+                                                       (U8*)(reginfo->strbeg)),
+                                               (U8*) reginfo->strend);
+                    while (s < strend) {
+                        GCB_enum after = getGCB_VAL_UTF8((U8*) s,
+                                                        (U8*) reginfo->strend);
+                        if (to_complement ^ isGCB(before, after)) {
+                            if (reginfo->intuit || regtry(reginfo, &s)) {
+                                goto got_it;
+                            }
+                            before = after;
+                        }
+                        s += UTF8SKIP(s);
+                    }
+                }
+                else {  /* Not utf8.  Everything is a GCB except between CR and
+                           LF */
+                    while (s < strend) {
+                        if (to_complement ^ (UCHARAT(s - 1) != '\r'
+                                             || UCHARAT(s) != '\n'))
+                        {
+                            if (reginfo->intuit || regtry(reginfo, &s)) {
+                                goto got_it;
+                            }
+                            s++;
+                        }
+                    }
+                }
+
+                if (to_complement ^ cBOOL(reginfo->intuit || regtry(reginfo, &s))) {
+                    goto got_it;
+                }
+                break;
+
+            case SB_BOUND:
+                if (s == reginfo->strbeg) { /* SB always matches at beginning */
+                    if (to_complement
+                                ^ cBOOL(reginfo->intuit || regtry(reginfo, &s)))
+                    {
+                        goto got_it;
+                    }
+
+                    /* Didn't match.  Go try at the next position */
+                    s += (utf8_target) ? UTF8SKIP(s) : 1;
+                }
+
+                if (utf8_target) {
+                    SB_enum before = getSB_VAL_UTF8(reghop3((U8*)s,
+                                                        -1,
+                                                        (U8*)(reginfo->strbeg)),
+                                                      (U8*) reginfo->strend);
+                    while (s < strend) {
+                        SB_enum after = getSB_VAL_UTF8((U8*) s,
+                                                         (U8*) reginfo->strend);
+                        if (to_complement ^ isSB(before,
+                                                 after,
+                                                 (U8*) reginfo->strbeg,
+                                                 (U8*) s,
+                                                 (U8*) reginfo->strend,
+                                                 utf8_target))
+                        {
+                            if (reginfo->intuit || regtry(reginfo, &s)) {
+                                goto got_it;
+                            }
+                            before = after;
+                        }
+                        s += UTF8SKIP(s);
+                    }
+                }
+                else {  /* Not utf8. */
+                    SB_enum before = getSB_VAL_CP((U8) *(s -1));
+                    while (s < strend) {
+                        SB_enum after = getSB_VAL_CP((U8) *s);
+                        if (to_complement ^ isSB(before,
+                                                 after,
+                                                 (U8*) reginfo->strbeg,
+                                                 (U8*) s,
+                                                 (U8*) reginfo->strend,
+                                                 utf8_target))
+                        {
+                            if (reginfo->intuit || regtry(reginfo, &s)) {
+                                goto got_it;
+                            }
+                            before = after;
+                        }
+                        s++;
+                    }
+                }
+
+                /* Here are at the final position in the target string.  The SB
+                 * value is always true here, so matches, depending on other
+                 * constraints */
+                if (to_complement ^ cBOOL(reginfo->intuit
+                                                      || regtry(reginfo, &s)))
+                {
+                    goto got_it;
+                }
+
+                break;
+
+            case WB_BOUND:
+                if (s == reginfo->strbeg) {
+                    if (to_complement ^ cBOOL(reginfo->intuit
+                                              || regtry(reginfo, &s)))
+                    {
+                        goto got_it;
+                    }
+                    s += (utf8_target) ? UTF8SKIP(s) : 1;
+                }
+
+                if (utf8_target) {
+                    /* We are at a boundary between char_sub_0 and char_sub_1.
+                     * We also keep track of the value for char_sub_-1 as we
+                     * loop through the line.   Context may be needed to make a
+                     * determination, and if so, this can save having to
+                     * recalculate it */
+                    WB_enum previous = WB_UNKNOWN;
+                    WB_enum before = getWB_VAL_UTF8(
+                                              reghop3((U8*)s,
+                                                      -1,
+                                                      (U8*)(reginfo->strbeg)),
+                                              (U8*) reginfo->strend);
+                    while (s < strend) {
+                        WB_enum after = getWB_VAL_UTF8((U8*) s,
+                                                        (U8*) reginfo->strend);
+                        if (to_complement ^ isWB(previous,
+                                                 before,
+                                                 after,
+                                                 (U8*) reginfo->strbeg,
+                                                 (U8*) s,
+                                                 (U8*) reginfo->strend,
+                                                 utf8_target))
+                        {
+                            if (reginfo->intuit || regtry(reginfo, &s)) {
+                                goto got_it;
+                            }
+                            previous = before;
+                            before = after;
+                        }
+                        s += UTF8SKIP(s);
+                    }
+                }
+                else {  /* Not utf8. */
+                    WB_enum previous = WB_UNKNOWN;
+                    WB_enum before = getWB_VAL_CP((U8) *(s -1));
+                    while (s < strend) {
+                        WB_enum after = getWB_VAL_CP((U8) *s);
+                        if (to_complement ^ isWB(previous,
+                                                 before,
+                                                 after,
+                                                 (U8*) reginfo->strbeg,
+                                                 (U8*) s,
+                                                 (U8*) reginfo->strend,
+                                                 utf8_target))
+                        {
+                            if (reginfo->intuit || regtry(reginfo, &s)) {
+                                goto got_it;
+                            }
+                            previous = before;
+                            before = after;
+                        }
+                        s++;
+                    }
+                }
+
+                if (to_complement ^ cBOOL(reginfo->intuit
+                                          || regtry(reginfo, &s)))
+                {
+                    goto got_it;
+                }
+
+                break;
+        }
+        break;
+
+    case LNBREAK:
+        REXEC_FBC_CSCAN(is_LNBREAK_utf8_safe(s, strend),
+                        is_LNBREAK_latin1_safe(s, strend)
+        );
+        break;
+
+    /* The argument to all the POSIX node types is the class number to pass to
+     * _generic_isCC() to build a mask for searching in PL_charclass[] */
+
+    case NPOSIXL:
+        to_complement = 1;
+        /* FALLTHROUGH */
+
+    case POSIXL:
+        _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+        REXEC_FBC_CSCAN(to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(c), (U8 *) s)),
+                        to_complement ^ cBOOL(isFOO_lc(FLAGS(c), *s)));
+        break;
+
+    case NPOSIXD:
+        to_complement = 1;
+        /* FALLTHROUGH */
+
+    case POSIXD:
+        if (utf8_target) {
+            goto posix_utf8;
+        }
+        goto posixa;
+
+    case NPOSIXA:
+        if (utf8_target) {
+            /* The complement of something that matches only ASCII matches all
+             * non-ASCII, plus everything in ASCII that isn't in the class. */
+            REXEC_FBC_UTF8_CLASS_SCAN(! isASCII_utf8(s)
+                                      || ! _generic_isCC_A(*s, FLAGS(c)));
+            break;
+        }
+
+        to_complement = 1;
+        /* FALLTHROUGH */
+
+    case POSIXA:
+      posixa:
+        /* Don't need to worry about utf8, as it can match only a single
+         * byte invariant character. */
+        REXEC_FBC_CLASS_SCAN(
+                        to_complement ^ cBOOL(_generic_isCC_A(*s, FLAGS(c))));
+        break;
+
+    case NPOSIXU:
+        to_complement = 1;
+        /* FALLTHROUGH */
+
+    case POSIXU:
+        if (! utf8_target) {
+            REXEC_FBC_CLASS_SCAN(to_complement ^ cBOOL(_generic_isCC(*s,
+                                                                    FLAGS(c))));
+        }
+        else {
+
+          posix_utf8:
+            classnum = (_char_class_number) FLAGS(c);
+            if (classnum < _FIRST_NON_SWASH_CC) {
+                while (s < strend) {
+
+                    /* We avoid loading in the swash as long as possible, but
+                     * should we have to, we jump to a separate loop.  This
+                     * extra 'if' statement is what keeps this code from being
+                     * just a call to REXEC_FBC_UTF8_CLASS_SCAN() */
+                    if (UTF8_IS_ABOVE_LATIN1(*s)) {
+                        goto found_above_latin1;
+                    }
+                    if ((UTF8_IS_INVARIANT(*s)
+                         && to_complement ^ cBOOL(_generic_isCC((U8) *s,
+                                                                classnum)))
+                        || (UTF8_IS_DOWNGRADEABLE_START(*s)
+                            && to_complement ^ cBOOL(
+                                _generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(*s,
+                                                                      *(s + 1)),
+                                              classnum))))
+                    {
+                        if (tmp && (reginfo->intuit || regtry(reginfo, &s)))
+                            goto got_it;
+                        else {
+                            tmp = doevery;
+                        }
+                    }
+                    else {
+                        tmp = 1;
+                    }
+                    s += UTF8SKIP(s);
+                }
+            }
+            else switch (classnum) {    /* These classes are implemented as
+                                           macros */
+                case _CC_ENUM_SPACE:
+                    REXEC_FBC_UTF8_CLASS_SCAN(
+                                        to_complement ^ cBOOL(isSPACE_utf8(s)));
+                    break;
+
+                case _CC_ENUM_BLANK:
+                    REXEC_FBC_UTF8_CLASS_SCAN(
+                                        to_complement ^ cBOOL(isBLANK_utf8(s)));
+                    break;
+
+                case _CC_ENUM_XDIGIT:
+                    REXEC_FBC_UTF8_CLASS_SCAN(
+                                       to_complement ^ cBOOL(isXDIGIT_utf8(s)));
+                    break;
+
+                case _CC_ENUM_VERTSPACE:
+                    REXEC_FBC_UTF8_CLASS_SCAN(
+                                       to_complement ^ cBOOL(isVERTWS_utf8(s)));
+                    break;
+
+                case _CC_ENUM_CNTRL:
+                    REXEC_FBC_UTF8_CLASS_SCAN(
+                                        to_complement ^ cBOOL(isCNTRL_utf8(s)));
+                    break;
+
+                default:
+                    Perl_croak(aTHX_ "panic: find_byclass() node %d='%s' has an unexpected character class '%d'", OP(c), PL_reg_name[OP(c)], classnum);
+                    NOT_REACHED; /* NOTREACHED */
+            }
+        }
+        break;
+
+      found_above_latin1:   /* Here we have to load a swash to get the result
+                               for the current code point */
+        if (! PL_utf8_swash_ptrs[classnum]) {
+            U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+            PL_utf8_swash_ptrs[classnum] =
+                    _core_swash_init("utf8",
+                                     "",
+                                     &PL_sv_undef, 1, 0,
+                                     PL_XPosix_ptrs[classnum], &flags);
+        }
+
+        /* This is a copy of the loop above for swash classes, though using the
+         * FBC macro instead of being expanded out.  Since we've loaded the
+         * swash, we don't have to check for that each time through the loop */
+        REXEC_FBC_UTF8_CLASS_SCAN(
+                to_complement ^ cBOOL(_generic_utf8(
+                                      classnum,
+                                      s,
+                                      swash_fetch(PL_utf8_swash_ptrs[classnum],
+                                                  (U8 *) s, TRUE))));
+        break;
+
+    case AHOCORASICKC:
+    case AHOCORASICK:
+        {
+            DECL_TRIE_TYPE(c);
+            /* what trie are we using right now */
+            reg_ac_data *aho = (reg_ac_data*)progi->data->data[ ARG( c ) ];
+            reg_trie_data *trie = (reg_trie_data*)progi->data->data[ aho->trie ];
+            HV *widecharmap = MUTABLE_HV(progi->data->data[ aho->trie + 1 ]);
+
+            const char *last_start = strend - trie->minlen;
+#ifdef DEBUGGING
+            const char *real_start = s;
+#endif
+            STRLEN maxlen = trie->maxlen;
+            SV *sv_points;
+            U8 **points; /* map of where we were in the input string
+                            when reading a given char. For ASCII this
+                            is unnecessary overhead as the relationship
+                            is always 1:1, but for Unicode, especially
+                            case folded Unicode this is not true. */
+            U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+            U8 *bitmap=NULL;
+
+
+            GET_RE_DEBUG_FLAGS_DECL;
+
+            /* We can't just allocate points here. We need to wrap it in
+             * an SV so it gets freed properly if there is a croak while
+             * running the match */
+            ENTER;
+            SAVETMPS;
+            sv_points=newSV(maxlen * sizeof(U8 *));
+            SvCUR_set(sv_points,
+                maxlen * sizeof(U8 *));
+            SvPOK_on(sv_points);
+            sv_2mortal(sv_points);
+            points=(U8**)SvPV_nolen(sv_points );
+            if ( trie_type != trie_utf8_fold
+                 && (trie->bitmap || OP(c)==AHOCORASICKC) )
+            {
+                if (trie->bitmap)
+                    bitmap=(U8*)trie->bitmap;
+                else
+                    bitmap=(U8*)ANYOF_BITMAP(c);
+            }
+            /* this is the Aho-Corasick algorithm modified a touch
+               to include special handling for long "unknown char" sequences.
+               The basic idea being that we use AC as long as we are dealing
+               with a possible matching char, when we encounter an unknown char
+               (and we have not encountered an accepting state) we scan forward
+               until we find a legal starting char.
+               AC matching is basically that of trie matching, except that when
+               we encounter a failing transition, we fall back to the current
+               states "fail state", and try the current char again, a process
+               we repeat until we reach the root state, state 1, or a legal
+               transition. If we fail on the root state then we can either
+               terminate if we have reached an accepting state previously, or
+               restart the entire process from the beginning if we have not.
+
+             */
+            while (s <= last_start) {
+                const U32 uniflags = UTF8_ALLOW_DEFAULT;
+                U8 *uc = (U8*)s;
+                U16 charid = 0;
+                U32 base = 1;
+                U32 state = 1;
+                UV uvc = 0;
+                STRLEN len = 0;
+                STRLEN foldlen = 0;
+                U8 *uscan = (U8*)NULL;
+                U8 *leftmost = NULL;
+#ifdef DEBUGGING
+                U32 accepted_word= 0;
+#endif
+                U32 pointpos = 0;
+
+                while ( state && uc <= (U8*)strend ) {
+                    int failed=0;
+                    U32 word = aho->states[ state ].wordnum;
+
+                    if( state==1 ) {
+                        if ( bitmap ) {
+                            DEBUG_TRIE_EXECUTE_r(
+                                if ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+                                    dump_exec_pos( (char *)uc, c, strend, real_start,
+                                        (char *)uc, utf8_target );
+                                    PerlIO_printf( Perl_debug_log,
+                                        " Scanning for legal start char...\n");
+                                }
+                            );
+                            if (utf8_target) {
+                                while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+                                    uc += UTF8SKIP(uc);
+                                }
+                            } else {
+                                while ( uc <= (U8*)last_start  && !BITMAP_TEST(bitmap,*uc) ) {
+                                    uc++;
+                                }
+                            }
+                            s= (char *)uc;
+                        }
+                        if (uc >(U8*)last_start) break;
+                    }
+
+                    if ( word ) {
+                        U8 *lpos= points[ (pointpos - trie->wordinfo[word].len) % maxlen ];
+                        if (!leftmost || lpos < leftmost) {
+                            DEBUG_r(accepted_word=word);
+                            leftmost= lpos;
+                        }
+                        if (base==0) break;
+
+                    }
+                    points[pointpos++ % maxlen]= uc;
+                    if (foldlen || uc < (U8*)strend) {
+                        REXEC_TRIE_READ_CHAR(trie_type, trie,
+                                         widecharmap, uc,
+                                         uscan, len, uvc, charid, foldlen,
+                                         foldbuf, uniflags);
+                        DEBUG_TRIE_EXECUTE_r({
+                            dump_exec_pos( (char *)uc, c, strend,
+                                        real_start, s, utf8_target);
+                            PerlIO_printf(Perl_debug_log,
+                                " Charid:%3u CP:%4"UVxf" ",
+                                 charid, uvc);
+                        });
+                    }
+                    else {
+                        len = 0;
+                        charid = 0;
+                    }
+
+
+                    do {
+#ifdef DEBUGGING
+                        word = aho->states[ state ].wordnum;
+#endif
+                        base = aho->states[ state ].trans.base;
+
+                        DEBUG_TRIE_EXECUTE_r({
+                            if (failed)
+                                dump_exec_pos( (char *)uc, c, strend, real_start,
+                                    s,   utf8_target );
+                            PerlIO_printf( Perl_debug_log,
+                                "%sState: %4"UVxf", word=%"UVxf,
+                                failed ? " Fail transition to " : "",
+                                (UV)state, (UV)word);
+                        });
+                        if ( base ) {
+                            U32 tmp;
+                            I32 offset;
+                            if (charid &&
+                                 ( ((offset = base + charid
+                                    - 1 - trie->uniquecharcount)) >= 0)
+                                 && ((U32)offset < trie->lasttrans)
+                                 && trie->trans[offset].check == state
+                                 && (tmp=trie->trans[offset].next))
+                            {
+                                DEBUG_TRIE_EXECUTE_r(
+                                    PerlIO_printf( Perl_debug_log," - legal\n"));
+                                state = tmp;
+                                break;
+                            }
+                            else {
+                                DEBUG_TRIE_EXECUTE_r(
+                                    PerlIO_printf( Perl_debug_log," - fail\n"));
+                                failed = 1;
+                                state = aho->fail[state];
+                            }
+                        }
+                        else {
+                            /* we must be accepting here */
+                            DEBUG_TRIE_EXECUTE_r(
+                                    PerlIO_printf( Perl_debug_log," - accepting\n"));
+                            failed = 1;
+                            break;
+                        }
+                    } while(state);
+                    uc += len;
+                    if (failed) {
+                        if (leftmost)
+                            break;
+                        if (!state) state = 1;
+                    }
+                }
+                if ( aho->states[ state ].wordnum ) {
+                    U8 *lpos = points[ (pointpos - trie->wordinfo[aho->states[ state ].wordnum].len) % maxlen ];
+                    if (!leftmost || lpos < leftmost) {
+                        DEBUG_r(accepted_word=aho->states[ state ].wordnum);
+                        leftmost = lpos;
+                    }
+                }
+                if (leftmost) {
+                    s = (char*)leftmost;
+                    DEBUG_TRIE_EXECUTE_r({
+                        PerlIO_printf(
+                            Perl_debug_log,"Matches word #%"UVxf" at position %"IVdf". Trying full pattern...\n",
+                            (UV)accepted_word, (IV)(s - real_start)
+                        );
+                    });
+                    if (reginfo->intuit || regtry(reginfo, &s)) {
+                        FREETMPS;
+                        LEAVE;
+                        goto got_it;
+                    }
+                    s = HOPc(s,1);
+                    DEBUG_TRIE_EXECUTE_r({
+                        PerlIO_printf( Perl_debug_log,"Pattern failed. Looking for new start point...\n");
+                    });
+                } else {
+                    DEBUG_TRIE_EXECUTE_r(
+                        PerlIO_printf( Perl_debug_log,"No match.\n"));
+                    break;
+                }
+            }
+            FREETMPS;
+            LEAVE;
+        }
+        break;
+    default:
+        Perl_croak(aTHX_ "panic: unknown regstclass %d", (int)OP(c));
+    }
+    return 0;
+  got_it:
+    return s;
+}
+
+/* set RX_SAVED_COPY, RX_SUBBEG etc.
+ * flags have same meanings as with regexec_flags() */
+
+static void
+S_reg_set_capture_string(pTHX_ REGEXP * const rx,
+                            char *strbeg,
+                            char *strend,
+                            SV *sv,
+                            U32 flags,
+                            bool utf8_target)
+{
+    struct regexp *const prog = ReANY(rx);
+
+    if (flags & REXEC_COPY_STR) {
+#ifdef PERL_ANY_COW
+        if (SvCANCOW(sv)) {
+            if (DEBUG_C_TEST) {
+                PerlIO_printf(Perl_debug_log,
+                              "Copy on write: regexp capture, type %d\n",
+                              (int) SvTYPE(sv));
+            }
+            /* Create a new COW SV to share the match string and store
+             * in saved_copy, unless the current COW SV in saved_copy
+             * is valid and suitable for our purpose */
+            if ((   prog->saved_copy
+                 && SvIsCOW(prog->saved_copy)
+                 && SvPOKp(prog->saved_copy)
+                 && SvIsCOW(sv)
+                 && SvPOKp(sv)
+                 && SvPVX(sv) == SvPVX(prog->saved_copy)))
+            {
+                /* just reuse saved_copy SV */
+                if (RXp_MATCH_COPIED(prog)) {
+                    Safefree(prog->subbeg);
+                    RXp_MATCH_COPIED_off(prog);
+                }
+            }
+            else {
+                /* create new COW SV to share string */
+                RX_MATCH_COPY_FREE(rx);
+                prog->saved_copy = sv_setsv_cow(prog->saved_copy, sv);
+            }
+            prog->subbeg = (char *)SvPVX_const(prog->saved_copy);
+            assert (SvPOKp(prog->saved_copy));
+            prog->sublen  = strend - strbeg;
+            prog->suboffset = 0;
+            prog->subcoffset = 0;
+        } else
+#endif
+        {
+            SSize_t min = 0;
+            SSize_t max = strend - strbeg;
+            SSize_t sublen;
+
+            if (    (flags & REXEC_COPY_SKIP_POST)
+                && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */
+                && !(PL_sawampersand & SAWAMPERSAND_RIGHT)
+            ) { /* don't copy $' part of string */
+                U32 n = 0;
+                max = -1;
+                /* calculate the right-most part of the string covered
+                 * by a capture. Due to look-ahead, this may be to
+                 * the right of $&, so we have to scan all captures */
+                while (n <= prog->lastparen) {
+                    if (prog->offs[n].end > max)
+                        max = prog->offs[n].end;
+                    n++;
+                }
+                if (max == -1)
+                    max = (PL_sawampersand & SAWAMPERSAND_LEFT)
+                            ? prog->offs[0].start
+                            : 0;
+                assert(max >= 0 && max <= strend - strbeg);
+            }
+
+            if (    (flags & REXEC_COPY_SKIP_PRE)
+                && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */
+                && !(PL_sawampersand & SAWAMPERSAND_LEFT)
+            ) { /* don't copy $` part of string */
+                U32 n = 0;
+                min = max;
+                /* calculate the left-most part of the string covered
+                 * by a capture. Due to look-behind, this may be to
+                 * the left of $&, so we have to scan all captures */
+                while (min && n <= prog->lastparen) {
+                    if (   prog->offs[n].start != -1
+                        && prog->offs[n].start < min)
+                    {
+                        min = prog->offs[n].start;
+                    }
+                    n++;
+                }
+                if ((PL_sawampersand & SAWAMPERSAND_RIGHT)
+                    && min >  prog->offs[0].end
+                )
+                    min = prog->offs[0].end;
+
+            }
+
+            assert(min >= 0 && min <= max && min <= strend - strbeg);
+            sublen = max - min;
+
+            if (RX_MATCH_COPIED(rx)) {
+                if (sublen > prog->sublen)
+                    prog->subbeg =
+                            (char*)saferealloc(prog->subbeg, sublen+1);
+            }
+            else
+                prog->subbeg = (char*)safemalloc(sublen+1);
+            Copy(strbeg + min, prog->subbeg, sublen, char);
+            prog->subbeg[sublen] = '\0';
+            prog->suboffset = min;
+            prog->sublen = sublen;
+            RX_MATCH_COPIED_on(rx);
+        }
+        prog->subcoffset = prog->suboffset;
+        if (prog->suboffset && utf8_target) {
+            /* Convert byte offset to chars.
+             * XXX ideally should only compute this if @-/@+
+             * has been seen, a la PL_sawampersand ??? */
+
+            /* If there's a direct correspondence between the
+             * string which we're matching and the original SV,
+             * then we can use the utf8 len cache associated with
+             * the SV. In particular, it means that under //g,
+             * sv_pos_b2u() will use the previously cached
+             * position to speed up working out the new length of
+             * subcoffset, rather than counting from the start of
+             * the string each time. This stops
+             *   $x = "\x{100}" x 1E6; 1 while $x =~ /(.)/g;
+             * from going quadratic */
+            if (SvPOKp(sv) && SvPVX(sv) == strbeg)
+                prog->subcoffset = sv_pos_b2u_flags(sv, prog->subcoffset,
+                                                SV_GMAGIC|SV_CONST_RETURN);
+            else
+                prog->subcoffset = utf8_length((U8*)strbeg,
+                                    (U8*)(strbeg+prog->suboffset));
+        }
+    }
+    else {
+        RX_MATCH_COPY_FREE(rx);
+        prog->subbeg = strbeg;
+        prog->suboffset = 0;
+        prog->subcoffset = 0;
+        prog->sublen = strend - strbeg;
+    }
+}
+
+
+
+
+/*
+ - regexec_flags - match a regexp against a string
+ */
+I32
+Perl_regexec_flags(pTHX_ REGEXP * const rx, char *stringarg, char *strend,
+             char *strbeg, SSize_t minend, SV *sv, void *data, U32 flags)
+/* stringarg: the point in the string at which to begin matching */
+/* strend:    pointer to null at end of string */
+/* strbeg:    real beginning of string */
+/* minend:    end of match must be >= minend bytes after stringarg. */
+/* sv:        SV being matched: only used for utf8 flag, pos() etc; string
+ *            itself is accessed via the pointers above */
+/* data:      May be used for some additional optimizations.
+              Currently unused. */
+/* flags:     For optimizations. See REXEC_* in regexp.h */
+
+{
+    struct regexp *const prog = ReANY(rx);
+    char *s;
+    regnode *c;
+    char *startpos;
+    SSize_t minlen;            /* must match at least this many chars */
+    SSize_t dontbother = 0;    /* how many characters not to try at end */
+    const bool utf8_target = cBOOL(DO_UTF8(sv));
+    I32 multiline;
+    RXi_GET_DECL(prog,progi);
+    regmatch_info reginfo_buf;  /* create some info to pass to regtry etc */
+    regmatch_info *const reginfo = &reginfo_buf;
+    regexp_paren_pair *swap = NULL;
+    I32 oldsave;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGEXEC_FLAGS;
+    PERL_UNUSED_ARG(data);
+
+    /* Be paranoid... */
+    if (prog == NULL) {
+       Perl_croak(aTHX_ "NULL regexp parameter");
+    }
+
+    DEBUG_EXECUTE_r(
+        debug_start_match(rx, utf8_target, stringarg, strend,
+        "Matching");
+    );
+
+    startpos = stringarg;
+
+    if (prog->intflags & PREGf_GPOS_SEEN) {
+        MAGIC *mg;
+
+        /* set reginfo->ganch, the position where \G can match */
+
+        reginfo->ganch =
+            (flags & REXEC_IGNOREPOS)
+            ? stringarg /* use start pos rather than pos() */
+            : ((mg = mg_find_mglob(sv)) && mg->mg_len >= 0)
+              /* Defined pos(): */
+            ? strbeg + MgBYTEPOS(mg, sv, strbeg, strend-strbeg)
+            : strbeg; /* pos() not defined; use start of string */
+
+        DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+            "GPOS ganch set to strbeg[%"IVdf"]\n", (IV)(reginfo->ganch - strbeg)));
+
+        /* in the presence of \G, we may need to start looking earlier in
+         * the string than the suggested start point of stringarg:
+         * if prog->gofs is set, then that's a known, fixed minimum
+         * offset, such as
+         * /..\G/:   gofs = 2
+         * /ab|c\G/: gofs = 1
+         * or if the minimum offset isn't known, then we have to go back
+         * to the start of the string, e.g. /w+\G/
+         */
+
+        if (prog->intflags & PREGf_ANCH_GPOS) {
+            startpos  = reginfo->ganch - prog->gofs;
+            if (startpos <
+                ((flags & REXEC_FAIL_ON_UNDERFLOW) ? stringarg : strbeg))
+            {
+                DEBUG_r(PerlIO_printf(Perl_debug_log,
+                        "fail: ganch-gofs before earliest possible start\n"));
+                return 0;
+            }
+        }
+        else if (prog->gofs) {
+            if (startpos - prog->gofs < strbeg)
+                startpos = strbeg;
+            else
+                startpos -= prog->gofs;
+        }
+        else if (prog->intflags & PREGf_GPOS_FLOAT)
+            startpos = strbeg;
+    }
+
+    minlen = prog->minlen;
+    if ((startpos + minlen) > strend || startpos < strbeg) {
+        DEBUG_r(PerlIO_printf(Perl_debug_log,
+                    "Regex match can't succeed, so not even tried\n"));
+        return 0;
+    }
+
+    /* at the end of this function, we'll do a LEAVE_SCOPE(oldsave),
+     * which will call destuctors to reset PL_regmatch_state, free higher
+     * PL_regmatch_slabs, and clean up regmatch_info_aux and
+     * regmatch_info_aux_eval */
+
+    oldsave = PL_savestack_ix;
+
+    s = startpos;
+
+    if ((prog->extflags & RXf_USE_INTUIT)
+        && !(flags & REXEC_CHECKED))
+    {
+       s = re_intuit_start(rx, sv, strbeg, startpos, strend,
+                                    flags, NULL);
+       if (!s)
+           return 0;
+
+       if (prog->extflags & RXf_CHECK_ALL) {
+            /* we can match based purely on the result of INTUIT.
+             * Set up captures etc just for $& and $-[0]
+             * (an intuit-only match wont have $1,$2,..) */
+            assert(!prog->nparens);
+
+            /* s/// doesn't like it if $& is earlier than where we asked it to
+             * start searching (which can happen on something like /.\G/) */
+            if (       (flags & REXEC_FAIL_ON_UNDERFLOW)
+                    && (s < stringarg))
+            {
+                /* this should only be possible under \G */
+                assert(prog->intflags & PREGf_GPOS_SEEN);
+                DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                    "matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n"));
+                goto phooey;
+            }
+
+            /* match via INTUIT shouldn't have any captures.
+             * Let @-, @+, $^N know */
+            prog->lastparen = prog->lastcloseparen = 0;
+            RX_MATCH_UTF8_set(rx, utf8_target);
+            prog->offs[0].start = s - strbeg;
+            prog->offs[0].end = utf8_target
+                ? (char*)utf8_hop((U8*)s, prog->minlenret) - strbeg
+                : s - strbeg + prog->minlenret;
+            if ( !(flags & REXEC_NOT_FIRST) )
+                S_reg_set_capture_string(aTHX_ rx,
+                                        strbeg, strend,
+                                        sv, flags, utf8_target);
+
+           return 1;
+        }
+    }
+
+    multiline = prog->extflags & RXf_PMf_MULTILINE;
+    
+    if (strend - s < (minlen+(prog->check_offset_min<0?prog->check_offset_min:0))) {
+        DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                             "String too short [regexec_flags]...\n"));
+       goto phooey;
+    }
+    
+    /* Check validity of program. */
+    if (UCHARAT(progi->program) != REG_MAGIC) {
+       Perl_croak(aTHX_ "corrupted regexp program");
+    }
+
+    RX_MATCH_TAINTED_off(rx);
+    RX_MATCH_UTF8_set(rx, utf8_target);
+
+    reginfo->prog = rx;         /* Yes, sorry that this is confusing.  */
+    reginfo->intuit = 0;
+    reginfo->is_utf8_target = cBOOL(utf8_target);
+    reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx));
+    reginfo->warned = FALSE;
+    reginfo->strbeg  = strbeg;
+    reginfo->sv = sv;
+    reginfo->poscache_maxiter = 0; /* not yet started a countdown */
+    reginfo->strend = strend;
+    /* see how far we have to get to not match where we matched before */
+    reginfo->till = stringarg + minend;
+
+    if (prog->extflags & RXf_EVAL_SEEN && SvPADTMP(sv)) {
+        /* SAVEFREESV, not sv_mortalcopy, as this SV must last until after
+           S_cleanup_regmatch_info_aux has executed (registered by
+           SAVEDESTRUCTOR_X below).  S_cleanup_regmatch_info_aux modifies
+           magic belonging to this SV.
+           Not newSVsv, either, as it does not COW.
+        */
+        reginfo->sv = newSV(0);
+        SvSetSV_nosteal(reginfo->sv, sv);
+        SAVEFREESV(reginfo->sv);
+    }
+
+    /* reserve next 2 or 3 slots in PL_regmatch_state:
+     * slot N+0: may currently be in use: skip it
+     * slot N+1: use for regmatch_info_aux struct
+     * slot N+2: use for regmatch_info_aux_eval struct if we have (?{})'s
+     * slot N+3: ready for use by regmatch()
+     */
+
+    {
+        regmatch_state *old_regmatch_state;
+        regmatch_slab  *old_regmatch_slab;
+        int i, max = (prog->extflags & RXf_EVAL_SEEN) ? 2 : 1;
+
+        /* on first ever match, allocate first slab */
+        if (!PL_regmatch_slab) {
+            Newx(PL_regmatch_slab, 1, regmatch_slab);
+            PL_regmatch_slab->prev = NULL;
+            PL_regmatch_slab->next = NULL;
+            PL_regmatch_state = SLAB_FIRST(PL_regmatch_slab);
+        }
+
+        old_regmatch_state = PL_regmatch_state;
+        old_regmatch_slab  = PL_regmatch_slab;
+
+        for (i=0; i <= max; i++) {
+            if (i == 1)
+                reginfo->info_aux = &(PL_regmatch_state->u.info_aux);
+            else if (i ==2)
+                reginfo->info_aux_eval =
+                reginfo->info_aux->info_aux_eval =
+                            &(PL_regmatch_state->u.info_aux_eval);
+
+            if (++PL_regmatch_state >  SLAB_LAST(PL_regmatch_slab))
+                PL_regmatch_state = S_push_slab(aTHX);
+        }
+
+        /* note initial PL_regmatch_state position; at end of match we'll
+         * pop back to there and free any higher slabs */
+
+        reginfo->info_aux->old_regmatch_state = old_regmatch_state;
+        reginfo->info_aux->old_regmatch_slab  = old_regmatch_slab;
+        reginfo->info_aux->poscache = NULL;
+
+        SAVEDESTRUCTOR_X(S_cleanup_regmatch_info_aux, reginfo->info_aux);
+
+        if ((prog->extflags & RXf_EVAL_SEEN))
+            S_setup_eval_state(aTHX_ reginfo);
+        else
+            reginfo->info_aux_eval = reginfo->info_aux->info_aux_eval = NULL;
+    }
+
+    /* If there is a "must appear" string, look for it. */
+
+    if (PL_curpm && (PM_GETRE(PL_curpm) == rx)) {
+        /* We have to be careful. If the previous successful match
+           was from this regex we don't want a subsequent partially
+           successful match to clobber the old results.
+           So when we detect this possibility we add a swap buffer
+           to the re, and switch the buffer each match. If we fail,
+           we switch it back; otherwise we leave it swapped.
+        */
+        swap = prog->offs;
+        /* do we need a save destructor here for eval dies? */
+        Newxz(prog->offs, (prog->nparens + 1), regexp_paren_pair);
+       DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+           "rex=0x%"UVxf" saving  offs: orig=0x%"UVxf" new=0x%"UVxf"\n",
+           PTR2UV(prog),
+           PTR2UV(swap),
+           PTR2UV(prog->offs)
+       ));
+    }
+
+    /* Simplest case: anchored match need be tried only once, or with
+     * MBOL, only at the beginning of each line.
+     *
+     * Note that /.*.../ sets PREGf_IMPLICIT|MBOL, while /.*.../s sets
+     * PREGf_IMPLICIT|SBOL. The idea is that with /.*.../s, if it doesn't
+     * match at the start of the string then it won't match anywhere else
+     * either; while with /.*.../, if it doesn't match at the beginning,
+     * the earliest it could match is at the start of the next line */
+
+    if (prog->intflags & (PREGf_ANCH & ~PREGf_ANCH_GPOS)) {
+        char *end;
+
+       if (regtry(reginfo, &s))
+           goto got_it;
+
+        if (!(prog->intflags & PREGf_ANCH_MBOL))
+            goto phooey;
+
+        /* didn't match at start, try at other newline positions */
+
+        if (minlen)
+            dontbother = minlen - 1;
+        end = HOP3c(strend, -dontbother, strbeg) - 1;
+
+        /* skip to next newline */
+
+        while (s <= end) { /* note it could be possible to match at the end of the string */
+            /* NB: newlines are the same in unicode as they are in latin */
+            if (*s++ != '\n')
+                continue;
+            if (prog->check_substr || prog->check_utf8) {
+            /* note that with PREGf_IMPLICIT, intuit can only fail
+             * or return the start position, so it's of limited utility.
+             * Nevertheless, I made the decision that the potential for
+             * quick fail was still worth it - DAPM */
+                s = re_intuit_start(rx, sv, strbeg, s, strend, flags, NULL);
+                if (!s)
+                    goto phooey;
+            }
+            if (regtry(reginfo, &s))
+                goto got_it;
+        }
+        goto phooey;
+    } /* end anchored search */
+
+    if (prog->intflags & PREGf_ANCH_GPOS)
+    {
+        /* PREGf_ANCH_GPOS should never be true if PREGf_GPOS_SEEN is not true */
+        assert(prog->intflags & PREGf_GPOS_SEEN);
+        /* For anchored \G, the only position it can match from is
+         * (ganch-gofs); we already set startpos to this above; if intuit
+         * moved us on from there, we can't possibly succeed */
+        assert(startpos == reginfo->ganch - prog->gofs);
+       if (s == startpos && regtry(reginfo, &s))
+           goto got_it;
+       goto phooey;
+    }
+
+    /* Messy cases:  unanchored match. */
+    if ((prog->anchored_substr || prog->anchored_utf8) && prog->intflags & PREGf_SKIP) {
+       /* we have /x+whatever/ */
+       /* it must be a one character string (XXXX Except is_utf8_pat?) */
+       char ch;
+#ifdef DEBUGGING
+       int did_match = 0;
+#endif
+       if (utf8_target) {
+            if (! prog->anchored_utf8) {
+                to_utf8_substr(prog);
+            }
+            ch = SvPVX_const(prog->anchored_utf8)[0];
+           REXEC_FBC_SCAN(
+               if (*s == ch) {
+                   DEBUG_EXECUTE_r( did_match = 1 );
+                   if (regtry(reginfo, &s)) goto got_it;
+                   s += UTF8SKIP(s);
+                   while (s < strend && *s == ch)
+                       s += UTF8SKIP(s);
+               }
+           );
+
+       }
+       else {
+            if (! prog->anchored_substr) {
+                if (! to_byte_substr(prog)) {
+                    NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+                }
+            }
+            ch = SvPVX_const(prog->anchored_substr)[0];
+           REXEC_FBC_SCAN(
+               if (*s == ch) {
+                   DEBUG_EXECUTE_r( did_match = 1 );
+                   if (regtry(reginfo, &s)) goto got_it;
+                   s++;
+                   while (s < strend && *s == ch)
+                       s++;
+               }
+           );
+       }
+       DEBUG_EXECUTE_r(if (!did_match)
+               PerlIO_printf(Perl_debug_log,
+                                  "Did not find anchored character...\n")
+               );
+    }
+    else if (prog->anchored_substr != NULL
+             || prog->anchored_utf8 != NULL
+             || ((prog->float_substr != NULL || prog->float_utf8 != NULL)
+                 && prog->float_max_offset < strend - s)) {
+       SV *must;
+       SSize_t back_max;
+       SSize_t back_min;
+       char *last;
+       char *last1;            /* Last position checked before */
+#ifdef DEBUGGING
+       int did_match = 0;
+#endif
+       if (prog->anchored_substr || prog->anchored_utf8) {
+           if (utf8_target) {
+                if (! prog->anchored_utf8) {
+                    to_utf8_substr(prog);
+                }
+                must = prog->anchored_utf8;
+            }
+            else {
+                if (! prog->anchored_substr) {
+                    if (! to_byte_substr(prog)) {
+                        NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+                    }
+                }
+                must = prog->anchored_substr;
+            }
+           back_max = back_min = prog->anchored_offset;
+       } else {
+           if (utf8_target) {
+                if (! prog->float_utf8) {
+                    to_utf8_substr(prog);
+                }
+                must = prog->float_utf8;
+            }
+            else {
+                if (! prog->float_substr) {
+                    if (! to_byte_substr(prog)) {
+                        NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+                    }
+                }
+                must = prog->float_substr;
+            }
+           back_max = prog->float_max_offset;
+           back_min = prog->float_min_offset;
+       }
+           
+        if (back_min<0) {
+           last = strend;
+       } else {
+            last = HOP3c(strend,       /* Cannot start after this */
+                 -(SSize_t)(CHR_SVLEN(must)
+                        - (SvTAIL(must) != 0) + back_min), strbeg);
+        }
+       if (s > reginfo->strbeg)
+           last1 = HOPc(s, -1);
+       else
+           last1 = s - 1;      /* bogus */
+
+       /* XXXX check_substr already used to find "s", can optimize if
+          check_substr==must. */
+       dontbother = 0;
+       strend = HOPc(strend, -dontbother);
+       while ( (s <= last) &&
+               (s = fbm_instr((unsigned char*)HOP4c(s, back_min, strbeg,  strend),
+                                 (unsigned char*)strend, must,
+                                 multiline ? FBMrf_MULTILINE : 0)) ) {
+           DEBUG_EXECUTE_r( did_match = 1 );
+           if (HOPc(s, -back_max) > last1) {
+               last1 = HOPc(s, -back_min);
+               s = HOPc(s, -back_max);
+           }
+           else {
+               char * const t = (last1 >= reginfo->strbeg)
+                                    ? HOPc(last1, 1) : last1 + 1;
+
+               last1 = HOPc(s, -back_min);
+               s = t;
+           }
+           if (utf8_target) {
+               while (s <= last1) {
+                   if (regtry(reginfo, &s))
+                       goto got_it;
+                    if (s >= last1) {
+                        s++; /* to break out of outer loop */
+                        break;
+                    }
+                    s += UTF8SKIP(s);
+               }
+           }
+           else {
+               while (s <= last1) {
+                   if (regtry(reginfo, &s))
+                       goto got_it;
+                   s++;
+               }
+           }
+       }
+       DEBUG_EXECUTE_r(if (!did_match) {
+            RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+                SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+            PerlIO_printf(Perl_debug_log, "Did not find %s substr %s%s...\n",
+                             ((must == prog->anchored_substr || must == prog->anchored_utf8)
+                              ? "anchored" : "floating"),
+                quoted, RE_SV_TAIL(must));
+        });                
+       goto phooey;
+    }
+    else if ( (c = progi->regstclass) ) {
+       if (minlen) {
+           const OPCODE op = OP(progi->regstclass);
+           /* don't bother with what can't match */
+           if (PL_regkind[op] != EXACT && PL_regkind[op] != TRIE)
+               strend = HOPc(strend, -(minlen - 1));
+       }
+       DEBUG_EXECUTE_r({
+           SV * const prop = sv_newmortal();
+            regprop(prog, prop, c, reginfo, NULL);
+           {
+               RE_PV_QUOTED_DECL(quoted,utf8_target,PERL_DEBUG_PAD_ZERO(1),
+                   s,strend-s,60);
+               PerlIO_printf(Perl_debug_log,
+                   "Matching stclass %.*s against %s (%d bytes)\n",
+                   (int)SvCUR(prop), SvPVX_const(prop),
+                    quoted, (int)(strend - s));
+           }
+       });
+        if (find_byclass(prog, c, s, strend, reginfo))
+           goto got_it;
+       DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Contradicts stclass... [regexec_flags]\n"));
+    }
+    else {
+       dontbother = 0;
+       if (prog->float_substr != NULL || prog->float_utf8 != NULL) {
+           /* Trim the end. */
+           char *last= NULL;
+           SV* float_real;
+           STRLEN len;
+           const char *little;
+
+           if (utf8_target) {
+                if (! prog->float_utf8) {
+                    to_utf8_substr(prog);
+                }
+                float_real = prog->float_utf8;
+            }
+            else {
+                if (! prog->float_substr) {
+                    if (! to_byte_substr(prog)) {
+                        NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+                    }
+                }
+                float_real = prog->float_substr;
+            }
+
+            little = SvPV_const(float_real, len);
+           if (SvTAIL(float_real)) {
+                    /* This means that float_real contains an artificial \n on
+                     * the end due to the presence of something like this:
+                     * /foo$/ where we can match both "foo" and "foo\n" at the
+                     * end of the string.  So we have to compare the end of the
+                     * string first against the float_real without the \n and
+                     * then against the full float_real with the string.  We
+                     * have to watch out for cases where the string might be
+                     * smaller than the float_real or the float_real without
+                     * the \n. */
+                   char *checkpos= strend - len;
+                   DEBUG_OPTIMISE_r(
+                       PerlIO_printf(Perl_debug_log,
+                           "%sChecking for float_real.%s\n",
+                           PL_colors[4], PL_colors[5]));
+                   if (checkpos + 1 < strbeg) {
+                        /* can't match, even if we remove the trailing \n
+                         * string is too short to match */
+                       DEBUG_EXECUTE_r(
+                           PerlIO_printf(Perl_debug_log,
+                               "%sString shorter than required trailing substring, cannot match.%s\n",
+                               PL_colors[4], PL_colors[5]));
+                       goto phooey;
+                   } else if (memEQ(checkpos + 1, little, len - 1)) {
+                        /* can match, the end of the string matches without the
+                         * "\n" */
+                       last = checkpos + 1;
+                   } else if (checkpos < strbeg) {
+                        /* cant match, string is too short when the "\n" is
+                         * included */
+                       DEBUG_EXECUTE_r(
+                           PerlIO_printf(Perl_debug_log,
+                               "%sString does not contain required trailing substring, cannot match.%s\n",
+                               PL_colors[4], PL_colors[5]));
+                       goto phooey;
+                   } else if (!multiline) {
+                        /* non multiline match, so compare with the "\n" at the
+                         * end of the string */
+                       if (memEQ(checkpos, little, len)) {
+                           last= checkpos;
+                       } else {
+                           DEBUG_EXECUTE_r(
+                               PerlIO_printf(Perl_debug_log,
+                                   "%sString does not contain required trailing substring, cannot match.%s\n",
+                                   PL_colors[4], PL_colors[5]));
+                           goto phooey;
+                       }
+                   } else {
+                        /* multiline match, so we have to search for a place
+                         * where the full string is located */
+                       goto find_last;
+                   }
+           } else {
+                 find_last:
+                   if (len)
+                       last = rninstr(s, strend, little, little + len);
+                   else
+                       last = strend;  /* matching "$" */
+           }
+           if (!last) {
+                /* at one point this block contained a comment which was
+                 * probably incorrect, which said that this was a "should not
+                 * happen" case.  Even if it was true when it was written I am
+                 * pretty sure it is not anymore, so I have removed the comment
+                 * and replaced it with this one. Yves */
+               DEBUG_EXECUTE_r(
+                   PerlIO_printf(Perl_debug_log,
+                       "%sString does not contain required substring, cannot match.%s\n",
+                        PL_colors[4], PL_colors[5]
+                   ));
+               goto phooey;
+           }
+           dontbother = strend - last + prog->float_min_offset;
+       }
+       if (minlen && (dontbother < minlen))
+           dontbother = minlen - 1;
+       strend -= dontbother;              /* this one's always in bytes! */
+       /* We don't know much -- general case. */
+       if (utf8_target) {
+           for (;;) {
+               if (regtry(reginfo, &s))
+                   goto got_it;
+               if (s >= strend)
+                   break;
+               s += UTF8SKIP(s);
+           };
+       }
+       else {
+           do {
+               if (regtry(reginfo, &s))
+                   goto got_it;
+           } while (s++ < strend);
+       }
+    }
+
+    /* Failure. */
+    goto phooey;
+
+  got_it:
+    /* s/// doesn't like it if $& is earlier than where we asked it to
+     * start searching (which can happen on something like /.\G/) */
+    if (       (flags & REXEC_FAIL_ON_UNDERFLOW)
+            && (prog->offs[0].start < stringarg - strbeg))
+    {
+        /* this should only be possible under \G */
+        assert(prog->intflags & PREGf_GPOS_SEEN);
+        DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+            "matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n"));
+        goto phooey;
+    }
+
+    DEBUG_BUFFERS_r(
+       if (swap)
+           PerlIO_printf(Perl_debug_log,
+               "rex=0x%"UVxf" freeing offs: 0x%"UVxf"\n",
+               PTR2UV(prog),
+               PTR2UV(swap)
+           );
+    );
+    Safefree(swap);
+
+    /* clean up; this will trigger destructors that will free all slabs
+     * above the current one, and cleanup the regmatch_info_aux
+     * and regmatch_info_aux_eval sructs */
+
+    LEAVE_SCOPE(oldsave);
+
+    if (RXp_PAREN_NAMES(prog)) 
+        (void)hv_iterinit(RXp_PAREN_NAMES(prog));
+
+    /* make sure $`, $&, $', and $digit will work later */
+    if ( !(flags & REXEC_NOT_FIRST) )
+        S_reg_set_capture_string(aTHX_ rx,
+                                    strbeg, reginfo->strend,
+                                    sv, flags, utf8_target);
+
+    return 1;
+
+  phooey:
+    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch failed%s\n",
+                         PL_colors[4], PL_colors[5]));
+
+    /* clean up; this will trigger destructors that will free all slabs
+     * above the current one, and cleanup the regmatch_info_aux
+     * and regmatch_info_aux_eval sructs */
+
+    LEAVE_SCOPE(oldsave);
+
+    if (swap) {
+        /* we failed :-( roll it back */
+       DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+           "rex=0x%"UVxf" rolling back offs: freeing=0x%"UVxf" restoring=0x%"UVxf"\n",
+           PTR2UV(prog),
+           PTR2UV(prog->offs),
+           PTR2UV(swap)
+       ));
+        Safefree(prog->offs);
+        prog->offs = swap;
+    }
+    return 0;
+}
+
+
+/* Set which rex is pointed to by PL_reg_curpm, handling ref counting.
+ * Do inc before dec, in case old and new rex are the same */
+#define SET_reg_curpm(Re2)                          \
+    if (reginfo->info_aux_eval) {                   \
+       (void)ReREFCNT_inc(Re2);                    \
+       ReREFCNT_dec(PM_GETRE(PL_reg_curpm));       \
+       PM_SETRE((PL_reg_curpm), (Re2));            \
+    }
+
+
+/*
+ - regtry - try match at specific point
+ */
+STATIC I32                     /* 0 failure, 1 success */
+S_regtry(pTHX_ regmatch_info *reginfo, char **startposp)
+{
+    CHECKPOINT lastcp;
+    REGEXP *const rx = reginfo->prog;
+    regexp *const prog = ReANY(rx);
+    SSize_t result;
+    RXi_GET_DECL(prog,progi);
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGTRY;
+
+    reginfo->cutpoint=NULL;
+
+    prog->offs[0].start = *startposp - reginfo->strbeg;
+    prog->lastparen = 0;
+    prog->lastcloseparen = 0;
+
+    /* XXXX What this code is doing here?!!!  There should be no need
+       to do this again and again, prog->lastparen should take care of
+       this!  --ilya*/
+
+    /* Tests pat.t#187 and split.t#{13,14} seem to depend on this code.
+     * Actually, the code in regcppop() (which Ilya may be meaning by
+     * prog->lastparen), is not needed at all by the test suite
+     * (op/regexp, op/pat, op/split), but that code is needed otherwise
+     * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
+     * Meanwhile, this code *is* needed for the
+     * above-mentioned test suite tests to succeed.  The common theme
+     * on those tests seems to be returning null fields from matches.
+     * --jhi updated by dapm */
+#if 1
+    if (prog->nparens) {
+       regexp_paren_pair *pp = prog->offs;
+       I32 i;
+       for (i = prog->nparens; i > (I32)prog->lastparen; i--) {
+           ++pp;
+           pp->start = -1;
+           pp->end = -1;
+       }
+    }
+#endif
+    REGCP_SET(lastcp);
+    result = regmatch(reginfo, *startposp, progi->program + 1);
+    if (result != -1) {
+       prog->offs[0].end = result;
+       return 1;
+    }
+    if (reginfo->cutpoint)
+        *startposp= reginfo->cutpoint;
+    REGCP_UNWIND(lastcp);
+    return 0;
+}
+
+
+#define sayYES goto yes
+#define sayNO goto no
+#define sayNO_SILENT goto no_silent
+
+/* we dont use STMT_START/END here because it leads to 
+   "unreachable code" warnings, which are bogus, but distracting. */
+#define CACHEsayNO \
+    if (ST.cache_mask) \
+       reginfo->info_aux->poscache[ST.cache_offset] |= ST.cache_mask; \
+    sayNO
+
+/* this is used to determine how far from the left messages like
+   'failed...' are printed. It should be set such that messages 
+   are inline with the regop output that created them.
+*/
+#define REPORT_CODE_OFF 32
+
+
+#define CHRTEST_UNINIT -1001 /* c1/c2 haven't been calculated yet */
+#define CHRTEST_VOID   -1000 /* the c1/c2 "next char" test should be skipped */
+#define CHRTEST_NOT_A_CP_1 -999
+#define CHRTEST_NOT_A_CP_2 -998
+
+/* grab a new slab and return the first slot in it */
+
+STATIC regmatch_state *
+S_push_slab(pTHX)
+{
+#if PERL_VERSION < 9 && !defined(PERL_CORE)
+    dMY_CXT;
+#endif
+    regmatch_slab *s = PL_regmatch_slab->next;
+    if (!s) {
+       Newx(s, 1, regmatch_slab);
+       s->prev = PL_regmatch_slab;
+       s->next = NULL;
+       PL_regmatch_slab->next = s;
+    }
+    PL_regmatch_slab = s;
+    return SLAB_FIRST(s);
+}
+
+
+/* push a new state then goto it */
+
+#define PUSH_STATE_GOTO(state, node, input) \
+    pushinput = input; \
+    scan = node; \
+    st->resume_state = state; \
+    goto push_state;
+
+/* push a new state with success backtracking, then goto it */
+
+#define PUSH_YES_STATE_GOTO(state, node, input) \
+    pushinput = input; \
+    scan = node; \
+    st->resume_state = state; \
+    goto push_yes_state;
+
+
+
+
+/*
+
+regmatch() - main matching routine
+
+This is basically one big switch statement in a loop. We execute an op,
+set 'next' to point the next op, and continue. If we come to a point which
+we may need to backtrack to on failure such as (A|B|C), we push a
+backtrack state onto the backtrack stack. On failure, we pop the top
+state, and re-enter the loop at the state indicated. If there are no more
+states to pop, we return failure.
+
+Sometimes we also need to backtrack on success; for example /A+/, where
+after successfully matching one A, we need to go back and try to
+match another one; similarly for lookahead assertions: if the assertion
+completes successfully, we backtrack to the state just before the assertion
+and then carry on.  In these cases, the pushed state is marked as
+'backtrack on success too'. This marking is in fact done by a chain of
+pointers, each pointing to the previous 'yes' state. On success, we pop to
+the nearest yes state, discarding any intermediate failure-only states.
+Sometimes a yes state is pushed just to force some cleanup code to be
+called at the end of a successful match or submatch; e.g. (??{$re}) uses
+it to free the inner regex.
+
+Note that failure backtracking rewinds the cursor position, while
+success backtracking leaves it alone.
+
+A pattern is complete when the END op is executed, while a subpattern
+such as (?=foo) is complete when the SUCCESS op is executed. Both of these
+ops trigger the "pop to last yes state if any, otherwise return true"
+behaviour.
+
+A common convention in this function is to use A and B to refer to the two
+subpatterns (or to the first nodes thereof) in patterns like /A*B/: so A is
+the subpattern to be matched possibly multiple times, while B is the entire
+rest of the pattern. Variable and state names reflect this convention.
+
+The states in the main switch are the union of ops and failure/success of
+substates associated with with that op.  For example, IFMATCH is the op
+that does lookahead assertions /(?=A)B/ and so the IFMATCH state means
+'execute IFMATCH'; while IFMATCH_A is a state saying that we have just
+successfully matched A and IFMATCH_A_fail is a state saying that we have
+just failed to match A. Resume states always come in pairs. The backtrack
+state we push is marked as 'IFMATCH_A', but when that is popped, we resume
+at IFMATCH_A or IFMATCH_A_fail, depending on whether we are backtracking
+on success or failure.
+
+The struct that holds a backtracking state is actually a big union, with
+one variant for each major type of op. The variable st points to the
+top-most backtrack struct. To make the code clearer, within each
+block of code we #define ST to alias the relevant union.
+
+Here's a concrete example of a (vastly oversimplified) IFMATCH
+implementation:
+
+    switch (state) {
+    ....
+
+#define ST st->u.ifmatch
+
+    case IFMATCH: // we are executing the IFMATCH op, (?=A)B
+       ST.foo = ...; // some state we wish to save
+       ...
+       // push a yes backtrack state with a resume value of
+       // IFMATCH_A/IFMATCH_A_fail, then continue execution at the
+       // first node of A:
+       PUSH_YES_STATE_GOTO(IFMATCH_A, A, newinput);
+       // NOTREACHED
+
+    case IFMATCH_A: // we have successfully executed A; now continue with B
+       next = B;
+       bar = ST.foo; // do something with the preserved value
+       break;
+
+    case IFMATCH_A_fail: // A failed, so the assertion failed
+       ...;   // do some housekeeping, then ...
+       sayNO; // propagate the failure
+
+#undef ST
+
+    ...
+    }
+
+For any old-timers reading this who are familiar with the old recursive
+approach, the code above is equivalent to:
+
+    case IFMATCH: // we are executing the IFMATCH op, (?=A)B
+    {
+       int foo = ...
+       ...
+       if (regmatch(A)) {
+           next = B;
+           bar = foo;
+           break;
+       }
+       ...;   // do some housekeeping, then ...
+       sayNO; // propagate the failure
+    }
+
+The topmost backtrack state, pointed to by st, is usually free. If you
+want to claim it, populate any ST.foo fields in it with values you wish to
+save, then do one of
+
+       PUSH_STATE_GOTO(resume_state, node, newinput);
+       PUSH_YES_STATE_GOTO(resume_state, node, newinput);
+
+which sets that backtrack state's resume value to 'resume_state', pushes a
+new free entry to the top of the backtrack stack, then goes to 'node'.
+On backtracking, the free slot is popped, and the saved state becomes the
+new free state. An ST.foo field in this new top state can be temporarily
+accessed to retrieve values, but once the main loop is re-entered, it
+becomes available for reuse.
+
+Note that the depth of the backtrack stack constantly increases during the
+left-to-right execution of the pattern, rather than going up and down with
+the pattern nesting. For example the stack is at its maximum at Z at the
+end of the pattern, rather than at X in the following:
+
+    /(((X)+)+)+....(Y)+....Z/
+
+The only exceptions to this are lookahead/behind assertions and the cut,
+(?>A), which pop all the backtrack states associated with A before
+continuing.
+Backtrack state structs are allocated in slabs of about 4K in size.
+PL_regmatch_state and st always point to the currently active state,
+and PL_regmatch_slab points to the slab currently containing
+PL_regmatch_state.  The first time regmatch() is called, the first slab is
+allocated, and is never freed until interpreter destruction. When the slab
+is full, a new one is allocated and chained to the end. At exit from
+regmatch(), slabs allocated since entry are freed.
+
+*/
+
+#define DEBUG_STATE_pp(pp)                                 \
+    DEBUG_STATE_r({                                        \
+       DUMP_EXEC_POS(locinput, scan, utf8_target);         \
+       PerlIO_printf(Perl_debug_log,                       \
+           "    %*s"pp" %s%s%s%s%s\n",                     \
+           depth*2, "",                                    \
+           PL_reg_name[st->resume_state],                  \
+           ((st==yes_state||st==mark_state) ? "[" : ""),   \
+           ((st==yes_state) ? "Y" : ""),                   \
+           ((st==mark_state) ? "M" : ""),                  \
+           ((st==yes_state||st==mark_state) ? "]" : "")    \
+       );                                                  \
+    });
+
+
+#define REG_NODE_NUM(x) ((x) ? (int)((x)-prog) : -1)
+
+#ifdef DEBUGGING
+
+STATIC void
+S_debug_start_match(pTHX_ const REGEXP *prog, const bool utf8_target,
+    const char *start, const char *end, const char *blurb)
+{
+    const bool utf8_pat = RX_UTF8(prog) ? 1 : 0;
+
+    PERL_ARGS_ASSERT_DEBUG_START_MATCH;
+
+    if (!PL_colorset)   
+            reginitcolors();    
+    {
+        RE_PV_QUOTED_DECL(s0, utf8_pat, PERL_DEBUG_PAD_ZERO(0), 
+            RX_PRECOMP_const(prog), RX_PRELEN(prog), 60);   
+        
+        RE_PV_QUOTED_DECL(s1, utf8_target, PERL_DEBUG_PAD_ZERO(1),
+            start, end - start, 60); 
+        
+        PerlIO_printf(Perl_debug_log, 
+            "%s%s REx%s %s against %s\n", 
+                      PL_colors[4], blurb, PL_colors[5], s0, s1); 
+        
+        if (utf8_target||utf8_pat)
+            PerlIO_printf(Perl_debug_log, "UTF-8 %s%s%s...\n",
+                utf8_pat ? "pattern" : "",
+                utf8_pat && utf8_target ? " and " : "",
+                utf8_target ? "string" : ""
+            ); 
+    }
+}
+
+STATIC void
+S_dump_exec_pos(pTHX_ const char *locinput, 
+                      const regnode *scan, 
+                      const char *loc_regeol, 
+                      const char *loc_bostr, 
+                      const char *loc_reg_starttry,
+                      const bool utf8_target)
+{
+    const int docolor = *PL_colors[0] || *PL_colors[2] || *PL_colors[4];
+    const int taill = (docolor ? 10 : 7); /* 3 chars for "> <" */
+    int l = (loc_regeol - locinput) > taill ? taill : (loc_regeol - locinput);
+    /* The part of the string before starttry has one color
+       (pref0_len chars), between starttry and current
+       position another one (pref_len - pref0_len chars),
+       after the current position the third one.
+       We assume that pref0_len <= pref_len, otherwise we
+       decrease pref0_len.  */
+    int pref_len = (locinput - loc_bostr) > (5 + taill) - l
+       ? (5 + taill) - l : locinput - loc_bostr;
+    int pref0_len;
+
+    PERL_ARGS_ASSERT_DUMP_EXEC_POS;
+
+    while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput - pref_len)))
+       pref_len++;
+    pref0_len = pref_len  - (locinput - loc_reg_starttry);
+    if (l + pref_len < (5 + taill) && l < loc_regeol - locinput)
+       l = ( loc_regeol - locinput > (5 + taill) - pref_len
+             ? (5 + taill) - pref_len : loc_regeol - locinput);
+    while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput + l)))
+       l--;
+    if (pref0_len < 0)
+       pref0_len = 0;
+    if (pref0_len > pref_len)
+       pref0_len = pref_len;
+    {
+       const int is_uni = utf8_target ? 1 : 0;
+
+       RE_PV_COLOR_DECL(s0,len0,is_uni,PERL_DEBUG_PAD(0),
+           (locinput - pref_len),pref0_len, 60, 4, 5);
+       
+       RE_PV_COLOR_DECL(s1,len1,is_uni,PERL_DEBUG_PAD(1),
+                   (locinput - pref_len + pref0_len),
+                   pref_len - pref0_len, 60, 2, 3);
+       
+       RE_PV_COLOR_DECL(s2,len2,is_uni,PERL_DEBUG_PAD(2),
+                   locinput, loc_regeol - locinput, 10, 0, 1);
+
+       const STRLEN tlen=len0+len1+len2;
+       PerlIO_printf(Perl_debug_log,
+                   "%4"IVdf" <%.*s%.*s%s%.*s>%*s|",
+                   (IV)(locinput - loc_bostr),
+                   len0, s0,
+                   len1, s1,
+                   (docolor ? "" : "> <"),
+                   len2, s2,
+                   (int)(tlen > 19 ? 0 :  19 - tlen),
+                   "");
+    }
+}
+
+#endif
+
+/* reg_check_named_buff_matched()
+ * Checks to see if a named buffer has matched. The data array of 
+ * buffer numbers corresponding to the buffer is expected to reside
+ * in the regexp->data->data array in the slot stored in the ARG() of
+ * node involved. Note that this routine doesn't actually care about the
+ * name, that information is not preserved from compilation to execution.
+ * Returns the index of the leftmost defined buffer with the given name
+ * or 0 if non of the buffers matched.
+ */
+STATIC I32
+S_reg_check_named_buff_matched(const regexp *rex, const regnode *scan)
+{
+    I32 n;
+    RXi_GET_DECL(rex,rexi);
+    SV *sv_dat= MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+    I32 *nums=(I32*)SvPVX(sv_dat);
+
+    PERL_ARGS_ASSERT_REG_CHECK_NAMED_BUFF_MATCHED;
+
+    for ( n=0; n<SvIVX(sv_dat); n++ ) {
+        if ((I32)rex->lastparen >= nums[n] &&
+            rex->offs[nums[n]].end != -1)
+        {
+            return nums[n];
+        }
+    }
+    return 0;
+}
+
+
+static bool
+S_setup_EXACTISH_ST_c1_c2(pTHX_ const regnode * const text_node, int *c1p,
+        U8* c1_utf8, int *c2p, U8* c2_utf8, regmatch_info *reginfo)
+{
+    /* This function determines if there are one or two characters that match
+     * the first character of the passed-in EXACTish node <text_node>, and if
+     * so, returns them in the passed-in pointers.
+     *
+     * If it determines that no possible character in the target string can
+     * match, it returns FALSE; otherwise TRUE.  (The FALSE situation occurs if
+     * the first character in <text_node> requires UTF-8 to represent, and the
+     * target string isn't in UTF-8.)
+     *
+     * If there are more than two characters that could match the beginning of
+     * <text_node>, or if more context is required to determine a match or not,
+     * it sets both *<c1p> and *<c2p> to CHRTEST_VOID.
+     *
+     * The motiviation behind this function is to allow the caller to set up
+     * tight loops for matching.  If <text_node> is of type EXACT, there is
+     * only one possible character that can match its first character, and so
+     * the situation is quite simple.  But things get much more complicated if
+     * folding is involved.  It may be that the first character of an EXACTFish
+     * node doesn't participate in any possible fold, e.g., punctuation, so it
+     * can be matched only by itself.  The vast majority of characters that are
+     * in folds match just two things, their lower and upper-case equivalents.
+     * But not all are like that; some have multiple possible matches, or match
+     * sequences of more than one character.  This function sorts all that out.
+     *
+     * Consider the patterns A*B or A*?B where A and B are arbitrary.  In a
+     * loop of trying to match A*, we know we can't exit where the thing
+     * following it isn't a B.  And something can't be a B unless it is the
+     * beginning of B.  By putting a quick test for that beginning in a tight
+     * loop, we can rule out things that can't possibly be B without having to
+     * break out of the loop, thus avoiding work.  Similarly, if A is a single
+     * character, we can make a tight loop matching A*, using the outputs of
+     * this function.
+     *
+     * If the target string to match isn't in UTF-8, and there aren't
+     * complications which require CHRTEST_VOID, *<c1p> and *<c2p> are set to
+     * the one or two possible octets (which are characters in this situation)
+     * that can match.  In all cases, if there is only one character that can
+     * match, *<c1p> and *<c2p> will be identical.
+     *
+     * If the target string is in UTF-8, the buffers pointed to by <c1_utf8>
+     * and <c2_utf8> will contain the one or two UTF-8 sequences of bytes that
+     * can match the beginning of <text_node>.  They should be declared with at
+     * least length UTF8_MAXBYTES+1.  (If the target string isn't in UTF-8, it is
+     * undefined what these contain.)  If one or both of the buffers are
+     * invariant under UTF-8, *<c1p>, and *<c2p> will also be set to the
+     * corresponding invariant.  If variant, the corresponding *<c1p> and/or
+     * *<c2p> will be set to a negative number(s) that shouldn't match any code
+     * point (unless inappropriately coerced to unsigned).   *<c1p> will equal
+     * *<c2p> if and only if <c1_utf8> and <c2_utf8> are the same. */
+
+    const bool utf8_target = reginfo->is_utf8_target;
+
+    UV c1 = (UV)CHRTEST_NOT_A_CP_1;
+    UV c2 = (UV)CHRTEST_NOT_A_CP_2;
+    bool use_chrtest_void = FALSE;
+    const bool is_utf8_pat = reginfo->is_utf8_pat;
+
+    /* Used when we have both utf8 input and utf8 output, to avoid converting
+     * to/from code points */
+    bool utf8_has_been_setup = FALSE;
+
+    dVAR;
+
+    U8 *pat = (U8*)STRING(text_node);
+    U8 folded[UTF8_MAX_FOLD_CHAR_EXPAND * UTF8_MAXBYTES_CASE + 1] = { '\0' };
+
+    if (OP(text_node) == EXACT || OP(text_node) == EXACTL) {
+
+        /* In an exact node, only one thing can be matched, that first
+         * character.  If both the pat and the target are UTF-8, we can just
+         * copy the input to the output, avoiding finding the code point of
+         * that character */
+        if (!is_utf8_pat) {
+            c2 = c1 = *pat;
+        }
+        else if (utf8_target) {
+            Copy(pat, c1_utf8, UTF8SKIP(pat), U8);
+            Copy(pat, c2_utf8, UTF8SKIP(pat), U8);
+            utf8_has_been_setup = TRUE;
+        }
+        else {
+            c2 = c1 = valid_utf8_to_uvchr(pat, NULL);
+        }
+    }
+    else { /* an EXACTFish node */
+        U8 *pat_end = pat + STR_LEN(text_node);
+
+        /* An EXACTFL node has at least some characters unfolded, because what
+         * they match is not known until now.  So, now is the time to fold
+         * the first few of them, as many as are needed to determine 'c1' and
+         * 'c2' later in the routine.  If the pattern isn't UTF-8, we only need
+         * to fold if in a UTF-8 locale, and then only the Sharp S; everything
+         * else is 1-1 and isn't assumed to be folded.  In a UTF-8 pattern, we
+         * need to fold as many characters as a single character can fold to,
+         * so that later we can check if the first ones are such a multi-char
+         * fold.  But, in such a pattern only locale-problematic characters
+         * aren't folded, so we can skip this completely if the first character
+         * in the node isn't one of the tricky ones */
+        if (OP(text_node) == EXACTFL) {
+
+            if (! is_utf8_pat) {
+                if (IN_UTF8_CTYPE_LOCALE && *pat == LATIN_SMALL_LETTER_SHARP_S)
+                {
+                    folded[0] = folded[1] = 's';
+                    pat = folded;
+                    pat_end = folded + 2;
+                }
+            }
+            else if (is_PROBLEMATIC_LOCALE_FOLDEDS_START_utf8(pat)) {
+                U8 *s = pat;
+                U8 *d = folded;
+                int i;
+
+                for (i = 0; i < UTF8_MAX_FOLD_CHAR_EXPAND && s < pat_end; i++) {
+                    if (isASCII(*s)) {
+                        *(d++) = (U8) toFOLD_LC(*s);
+                        s++;
+                    }
+                    else {
+                        STRLEN len;
+                        _to_utf8_fold_flags(s,
+                                            d,
+                                            &len,
+                                            FOLD_FLAGS_FULL | FOLD_FLAGS_LOCALE);
+                        d += len;
+                        s += UTF8SKIP(s);
+                    }
+                }
+
+                pat = folded;
+                pat_end = d;
+            }
+        }
+
+        if ((is_utf8_pat && is_MULTI_CHAR_FOLD_utf8_safe(pat, pat_end))
+             || (!is_utf8_pat && is_MULTI_CHAR_FOLD_latin1_safe(pat, pat_end)))
+        {
+            /* Multi-character folds require more context to sort out.  Also
+             * PL_utf8_foldclosures used below doesn't handle them, so have to
+             * be handled outside this routine */
+            use_chrtest_void = TRUE;
+        }
+        else { /* an EXACTFish node which doesn't begin with a multi-char fold */
+            c1 = is_utf8_pat ? valid_utf8_to_uvchr(pat, NULL) : *pat;
+            if (c1 > 255) {
+                /* Load the folds hash, if not already done */
+                SV** listp;
+                if (! PL_utf8_foldclosures) {
+                    _load_PL_utf8_foldclosures();
+                }
+
+                /* The fold closures data structure is a hash with the keys
+                 * being the UTF-8 of every character that is folded to, like
+                 * 'k', and the values each an array of all code points that
+                 * fold to its key.  e.g. [ 'k', 'K', KELVIN_SIGN ].
+                 * Multi-character folds are not included */
+                if ((! (listp = hv_fetch(PL_utf8_foldclosures,
+                                        (char *) pat,
+                                        UTF8SKIP(pat),
+                                        FALSE))))
+                {
+                    /* Not found in the hash, therefore there are no folds
+                    * containing it, so there is only a single character that
+                    * could match */
+                    c2 = c1;
+                }
+                else {  /* Does participate in folds */
+                    AV* list = (AV*) *listp;
+                    if (av_tindex(list) != 1) {
+
+                        /* If there aren't exactly two folds to this, it is
+                         * outside the scope of this function */
+                        use_chrtest_void = TRUE;
+                    }
+                    else {  /* There are two.  Get them */
+                        SV** c_p = av_fetch(list, 0, FALSE);
+                        if (c_p == NULL) {
+                            Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
+                        }
+                        c1 = SvUV(*c_p);
+
+                        c_p = av_fetch(list, 1, FALSE);
+                        if (c_p == NULL) {
+                            Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
+                        }
+                        c2 = SvUV(*c_p);
+
+                        /* Folds that cross the 255/256 boundary are forbidden
+                         * if EXACTFL (and isnt a UTF8 locale), or EXACTFA and
+                         * one is ASCIII.  Since the pattern character is above
+                         * 255, and its only other match is below 256, the only
+                         * legal match will be to itself.  We have thrown away
+                         * the original, so have to compute which is the one
+                         * above 255. */
+                        if ((c1 < 256) != (c2 < 256)) {
+                            if ((OP(text_node) == EXACTFL
+                                 && ! IN_UTF8_CTYPE_LOCALE)
+                                || ((OP(text_node) == EXACTFA
+                                    || OP(text_node) == EXACTFA_NO_TRIE)
+                                    && (isASCII(c1) || isASCII(c2))))
+                            {
+                                if (c1 < 256) {
+                                    c1 = c2;
+                                }
+                                else {
+                                    c2 = c1;
+                                }
+                            }
+                        }
+                    }
+                }
+            }
+            else /* Here, c1 is <= 255 */
+                if (utf8_target
+                    && HAS_NONLATIN1_FOLD_CLOSURE(c1)
+                    && ( ! (OP(text_node) == EXACTFL && ! IN_UTF8_CTYPE_LOCALE))
+                    && ((OP(text_node) != EXACTFA
+                        && OP(text_node) != EXACTFA_NO_TRIE)
+                        || ! isASCII(c1)))
+            {
+                /* Here, there could be something above Latin1 in the target
+                 * which folds to this character in the pattern.  All such
+                 * cases except LATIN SMALL LETTER Y WITH DIAERESIS have more
+                 * than two characters involved in their folds, so are outside
+                 * the scope of this function */
+                if (UNLIKELY(c1 == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) {
+                    c2 = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS;
+                }
+                else {
+                    use_chrtest_void = TRUE;
+                }
+            }
+            else { /* Here nothing above Latin1 can fold to the pattern
+                      character */
+                switch (OP(text_node)) {
+
+                    case EXACTFL:   /* /l rules */
+                        c2 = PL_fold_locale[c1];
+                        break;
+
+                    case EXACTF:   /* This node only generated for non-utf8
+                                    patterns */
+                        assert(! is_utf8_pat);
+                        if (! utf8_target) {    /* /d rules */
+                            c2 = PL_fold[c1];
+                            break;
+                        }
+                        /* FALLTHROUGH */
+                        /* /u rules for all these.  This happens to work for
+                        * EXACTFA as nothing in Latin1 folds to ASCII */
+                    case EXACTFA_NO_TRIE:   /* This node only generated for
+                                            non-utf8 patterns */
+                        assert(! is_utf8_pat);
+                        /* FALLTHROUGH */
+                    case EXACTFA:
+                    case EXACTFU_SS:
+                    case EXACTFU:
+                        c2 = PL_fold_latin1[c1];
+                        break;
+
+                    default:
+                        Perl_croak(aTHX_ "panic: Unexpected op %u", OP(text_node));
+                        NOT_REACHED; /* NOTREACHED */
+                }
+            }
+        }
+    }
+
+    /* Here have figured things out.  Set up the returns */
+    if (use_chrtest_void) {
+        *c2p = *c1p = CHRTEST_VOID;
+    }
+    else if (utf8_target) {
+        if (! utf8_has_been_setup) {    /* Don't have the utf8; must get it */
+            uvchr_to_utf8(c1_utf8, c1);
+            uvchr_to_utf8(c2_utf8, c2);
+        }
+
+        /* Invariants are stored in both the utf8 and byte outputs; Use
+         * negative numbers otherwise for the byte ones.  Make sure that the
+         * byte ones are the same iff the utf8 ones are the same */
+        *c1p = (UTF8_IS_INVARIANT(*c1_utf8)) ? *c1_utf8 : CHRTEST_NOT_A_CP_1;
+        *c2p = (UTF8_IS_INVARIANT(*c2_utf8))
+                ? *c2_utf8
+                : (c1 == c2)
+                  ? CHRTEST_NOT_A_CP_1
+                  : CHRTEST_NOT_A_CP_2;
+    }
+    else if (c1 > 255) {
+       if (c2 > 255) {  /* both possibilities are above what a non-utf8 string
+                           can represent */
+           return FALSE;
+       }
+
+       *c1p = *c2p = c2;    /* c2 is the only representable value */
+    }
+    else {  /* c1 is representable; see about c2 */
+       *c1p = c1;
+       *c2p = (c2 < 256) ? c2 : c1;
+    }
+
+    return TRUE;
+}
+
+/* This creates a single number by combining two, with 'before' being like the
+ * 10's digit, but this isn't necessarily base 10; it is base however many
+ * elements of the enum there are */
+#define GCBcase(before, after) ((GCB_ENUM_COUNT * before) + after)
+
+STATIC bool
+S_isGCB(const GCB_enum before, const GCB_enum after)
+{
+    /* returns a boolean indicating if there is a Grapheme Cluster Boundary
+     * between the inputs.  See http://www.unicode.org/reports/tr29/ */
+
+    switch (GCBcase(before, after)) {
+
+        /*  Break at the start and end of text.
+            GB1.   sot ÷
+            GB2.   ÷ eot
+
+            Break before and after controls except between CR and LF
+            GB4.  ( Control | CR | LF )  ÷
+            GB5.   ÷  ( Control | CR | LF )
+
+            Otherwise, break everywhere.
+            GB10.  Any  ÷  Any */
+        default:
+            return TRUE;
+
+        /* Do not break between a CR and LF.
+            GB3.  CR  ×  LF */
+        case GCBcase(GCB_CR, GCB_LF):
+            return FALSE;
+
+        /* Do not break Hangul syllable sequences.
+            GB6.  L  ×  ( L | V | LV | LVT ) */
+        case GCBcase(GCB_L, GCB_L):
+        case GCBcase(GCB_L, GCB_V):
+        case GCBcase(GCB_L, GCB_LV):
+        case GCBcase(GCB_L, GCB_LVT):
+            return FALSE;
+
+        /*  GB7.  ( LV | V )  ×  ( V | T ) */
+        case GCBcase(GCB_LV, GCB_V):
+        case GCBcase(GCB_LV, GCB_T):
+        case GCBcase(GCB_V, GCB_V):
+        case GCBcase(GCB_V, GCB_T):
+            return FALSE;
+
+        /*  GB8.  ( LVT | T)  ×  T */
+        case GCBcase(GCB_LVT, GCB_T):
+        case GCBcase(GCB_T, GCB_T):
+            return FALSE;
+
+        /* Do not break between regional indicator symbols.
+            GB8a.  Regional_Indicator  ×  Regional_Indicator */
+        case GCBcase(GCB_Regional_Indicator, GCB_Regional_Indicator):
+            return FALSE;
+
+        /* Do not break before extending characters.
+            GB9.     ×  Extend */
+        case GCBcase(GCB_Other, GCB_Extend):
+        case GCBcase(GCB_Extend, GCB_Extend):
+        case GCBcase(GCB_L, GCB_Extend):
+        case GCBcase(GCB_LV, GCB_Extend):
+        case GCBcase(GCB_LVT, GCB_Extend):
+        case GCBcase(GCB_Prepend, GCB_Extend):
+        case GCBcase(GCB_Regional_Indicator, GCB_Extend):
+        case GCBcase(GCB_SpacingMark, GCB_Extend):
+        case GCBcase(GCB_T, GCB_Extend):
+        case GCBcase(GCB_V, GCB_Extend):
+            return FALSE;
+
+        /* Do not break before SpacingMarks, or after Prepend characters.
+            GB9a.     ×  SpacingMark */
+        case GCBcase(GCB_Other, GCB_SpacingMark):
+        case GCBcase(GCB_Extend, GCB_SpacingMark):
+        case GCBcase(GCB_L, GCB_SpacingMark):
+        case GCBcase(GCB_LV, GCB_SpacingMark):
+        case GCBcase(GCB_LVT, GCB_SpacingMark):
+        case GCBcase(GCB_Prepend, GCB_SpacingMark):
+        case GCBcase(GCB_Regional_Indicator, GCB_SpacingMark):
+        case GCBcase(GCB_SpacingMark, GCB_SpacingMark):
+        case GCBcase(GCB_T, GCB_SpacingMark):
+        case GCBcase(GCB_V, GCB_SpacingMark):
+            return FALSE;
+
+        /* GB9b.  Prepend  ×   */
+        case GCBcase(GCB_Prepend, GCB_Other):
+        case GCBcase(GCB_Prepend, GCB_L):
+        case GCBcase(GCB_Prepend, GCB_LV):
+        case GCBcase(GCB_Prepend, GCB_LVT):
+        case GCBcase(GCB_Prepend, GCB_Prepend):
+        case GCBcase(GCB_Prepend, GCB_Regional_Indicator):
+        case GCBcase(GCB_Prepend, GCB_T):
+        case GCBcase(GCB_Prepend, GCB_V):
+            return FALSE;
+    }
+
+    NOT_REACHED; /* NOTREACHED */
+}
+
+#define SBcase(before, after) ((SB_ENUM_COUNT * before) + after)
+
+STATIC bool
+S_isSB(pTHX_ SB_enum before,
+             SB_enum after,
+             const U8 * const strbeg,
+             const U8 * const curpos,
+             const U8 * const strend,
+             const bool utf8_target)
+{
+    /* returns a boolean indicating if there is a Sentence Boundary Break
+     * between the inputs.  See http://www.unicode.org/reports/tr29/ */
+
+    U8 * lpos = (U8 *) curpos;
+    U8 * temp_pos;
+    SB_enum backup;
+
+    PERL_ARGS_ASSERT_ISSB;
+
+    /* Break at the start and end of text.
+        SB1.  sot  ÷
+        SB2.  ÷  eot */
+    if (before == SB_EDGE || after == SB_EDGE) {
+        return TRUE;
+    }
+
+    /* SB 3: Do not break within CRLF. */
+    if (before == SB_CR && after == SB_LF) {
+        return FALSE;
+    }
+
+    /* Break after paragraph separators.  (though why CR and LF are considered
+     * so is beyond me (khw)
+       SB4.  Sep | CR | LF  ÷ */
+    if (before == SB_Sep || before == SB_CR || before == SB_LF) {
+        return TRUE;
+    }
+
+    /* Ignore Format and Extend characters, except after sot, Sep, CR, or LF.
+     * (See Section 6.2, Replacing Ignore Rules.)
+        SB5.  X (Extend | Format)*  →  X */
+    if (after == SB_Extend || after == SB_Format) {
+        return FALSE;
+    }
+
+    if (before == SB_Extend || before == SB_Format) {
+        before = backup_one_SB(strbeg, &lpos, utf8_target);
+    }
+
+    /* Do not break after ambiguous terminators like period, if they are
+     * immediately followed by a number or lowercase letter, if they are
+     * between uppercase letters, if the first following letter (optionally
+     * after certain punctuation) is lowercase, or if they are followed by
+     * "continuation" punctuation such as comma, colon, or semicolon. For
+     * example, a period may be an abbreviation or numeric period, and thus may
+     * not mark the end of a sentence.
+
+     * SB6. ATerm  ×  Numeric */
+    if (before == SB_ATerm && after == SB_Numeric) {
+        return FALSE;
+    }
+
+    /* SB7.  (Upper | Lower) ATerm  ×  Upper */
+    if (before == SB_ATerm && after == SB_Upper) {
+        temp_pos = lpos;
+        backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+        if (backup == SB_Upper || backup == SB_Lower) {
+            return FALSE;
+        }
+    }
+
+    /* SB8a.  (STerm | ATerm) Close* Sp*  ×  (SContinue | STerm | ATerm)
+     * SB10.  (STerm | ATerm) Close* Sp*  ×  ( Sp | Sep | CR | LF )      */
+    backup = before;
+    temp_pos = lpos;
+    while (backup == SB_Sp) {
+        backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+    }
+    while (backup == SB_Close) {
+        backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+    }
+    if ((backup == SB_STerm || backup == SB_ATerm)
+        && (   after == SB_SContinue
+            || after == SB_STerm
+            || after == SB_ATerm
+            || after == SB_Sp
+            || after == SB_Sep
+            || after == SB_CR
+            || after == SB_LF))
+    {
+        return FALSE;
+    }
+
+    /* SB8.  ATerm Close* Sp*  ×  ( ¬(OLetter | Upper | Lower | Sep | CR | LF |
+     *                                              STerm | ATerm) )* Lower */
+    if (backup == SB_ATerm) {
+        U8 * rpos = (U8 *) curpos;
+        SB_enum later = after;
+
+        while (    later != SB_OLetter
+                && later != SB_Upper
+                && later != SB_Lower
+                && later != SB_Sep
+                && later != SB_CR
+                && later != SB_LF
+                && later != SB_STerm
+                && later != SB_ATerm
+                && later != SB_EDGE)
+        {
+            later = advance_one_SB(&rpos, strend, utf8_target);
+        }
+        if (later == SB_Lower) {
+            return FALSE;
+        }
+    }
+
+    /* Break after sentence terminators, but include closing punctuation,
+     * trailing spaces, and a paragraph separator (if present). [See note
+     * below.]
+     * SB9.  ( STerm | ATerm ) Close*  ×  ( Close | Sp | Sep | CR | LF ) */
+    backup = before;
+    temp_pos = lpos;
+    while (backup == SB_Close) {
+        backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+    }
+    if ((backup == SB_STerm || backup == SB_ATerm)
+        && (   after == SB_Close
+            || after == SB_Sp
+            || after == SB_Sep
+            || after == SB_CR
+            || after == SB_LF))
+    {
+        return FALSE;
+    }
+
+
+    /* SB11.  ( STerm | ATerm ) Close* Sp* ( Sep | CR | LF )?  ÷ */
+    temp_pos = lpos;
+    backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+    if (   backup == SB_Sep
+        || backup == SB_CR
+        || backup == SB_LF)
+    {
+        lpos = temp_pos;
+    }
+    else {
+        backup = before;
+    }
+    while (backup == SB_Sp) {
+        backup = backup_one_SB(strbeg, &lpos, utf8_target);
+    }
+    while (backup == SB_Close) {
+        backup = backup_one_SB(strbeg, &lpos, utf8_target);
+    }
+    if (backup == SB_STerm || backup == SB_ATerm) {
+        return TRUE;
+    }
+
+    /* Otherwise, do not break.
+    SB12.  Any  ×  Any */
+
+    return FALSE;
+}
+
+STATIC SB_enum
+S_advance_one_SB(pTHX_ U8 ** curpos, const U8 * const strend, const bool utf8_target)
+{
+    SB_enum sb;
+
+    PERL_ARGS_ASSERT_ADVANCE_ONE_SB;
+
+    if (*curpos >= strend) {
+        return SB_EDGE;
+    }
+
+    if (utf8_target) {
+        do {
+            *curpos += UTF8SKIP(*curpos);
+            if (*curpos >= strend) {
+                return SB_EDGE;
+            }
+            sb = getSB_VAL_UTF8(*curpos, strend);
+        } while (sb == SB_Extend || sb == SB_Format);
+    }
+    else {
+        do {
+            (*curpos)++;
+            if (*curpos >= strend) {
+                return SB_EDGE;
+            }
+            sb = getSB_VAL_CP(**curpos);
+        } while (sb == SB_Extend || sb == SB_Format);
+    }
+
+    return sb;
+}
+
+STATIC SB_enum
+S_backup_one_SB(pTHX_ const U8 * const strbeg, U8 ** curpos, const bool utf8_target)
+{
+    SB_enum sb;
+
+    PERL_ARGS_ASSERT_BACKUP_ONE_SB;
+
+    if (*curpos < strbeg) {
+        return SB_EDGE;
+    }
+
+    if (utf8_target) {
+        U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg);
+        if (! prev_char_pos) {
+            return SB_EDGE;
+        }
+
+        /* Back up over Extend and Format.  curpos is always just to the right
+         * of the characater whose value we are getting */
+        do {
+            U8 * prev_prev_char_pos;
+            if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos, -1,
+                                                                      strbeg)))
+            {
+                sb = getSB_VAL_UTF8(prev_prev_char_pos, prev_char_pos);
+                *curpos = prev_char_pos;
+                prev_char_pos = prev_prev_char_pos;
+            }
+            else {
+                *curpos = (U8 *) strbeg;
+                return SB_EDGE;
+            }
+        } while (sb == SB_Extend || sb == SB_Format);
+    }
+    else {
+        do {
+            if (*curpos - 2 < strbeg) {
+                *curpos = (U8 *) strbeg;
+                return SB_EDGE;
+            }
+            (*curpos)--;
+            sb = getSB_VAL_CP(*(*curpos - 1));
+        } while (sb == SB_Extend || sb == SB_Format);
+    }
+
+    return sb;
+}
+
+#define WBcase(before, after) ((WB_ENUM_COUNT * before) + after)
+
+STATIC bool
+S_isWB(pTHX_ WB_enum previous,
+             WB_enum before,
+             WB_enum after,
+             const U8 * const strbeg,
+             const U8 * const curpos,
+             const U8 * const strend,
+             const bool utf8_target)
+{
+    /*  Return a boolean as to if the boundary between 'before' and 'after' is
+     *  a Unicode word break, using their published algorithm.  Context may be
+     *  needed to make this determination.  If the value for the character
+     *  before 'before' is known, it is passed as 'previous'; otherwise that
+     *  should be set to WB_UNKNOWN.  The other input parameters give the
+     *  boundaries and current position in the matching of the string.  That
+     *  is, 'curpos' marks the position where the character whose wb value is
+     *  'after' begins.  See http://www.unicode.org/reports/tr29/ */
+
+    U8 * before_pos = (U8 *) curpos;
+    U8 * after_pos = (U8 *) curpos;
+
+    PERL_ARGS_ASSERT_ISWB;
+
+    /* WB1 and WB2: Break at the start and end of text. */
+    if (before == WB_EDGE || after == WB_EDGE) {
+        return TRUE;
+    }
+
+    /* WB 3: Do not break within CRLF. */
+    if (before == WB_CR && after == WB_LF) {
+        return FALSE;
+    }
+
+    /* WB 3a and WB 3b: Otherwise break before and after Newlines (including CR
+     * and LF) */
+    if (   before == WB_CR || before == WB_LF || before == WB_Newline
+        || after ==  WB_CR || after ==  WB_LF || after ==  WB_Newline)
+    {
+        return TRUE;
+    }
+
+    /* Ignore Format and Extend characters, except when they appear at the
+     * beginning of a region of text.
+     * WB4.  X (Extend | Format)*  →  X. */
+
+    if (after == WB_Extend || after == WB_Format) {
+        return FALSE;
+    }
+
+    if (before == WB_Extend || before == WB_Format) {
+        before = backup_one_WB(&previous, strbeg, &before_pos, utf8_target);
+    }
+
+    switch (WBcase(before, after)) {
+            /* Otherwise, break everywhere (including around ideographs).
+                WB14.  Any  ÷  Any */
+            default:
+                return TRUE;
+
+            /* Do not break between most letters.
+                WB5.  (ALetter | Hebrew_Letter) × (ALetter | Hebrew_Letter) */
+            case WBcase(WB_ALetter, WB_ALetter):
+            case WBcase(WB_ALetter, WB_Hebrew_Letter):
+            case WBcase(WB_Hebrew_Letter, WB_ALetter):
+            case WBcase(WB_Hebrew_Letter, WB_Hebrew_Letter):
+                return FALSE;
+
+            /* Do not break letters across certain punctuation.
+                WB6.  (ALetter | Hebrew_Letter)
+                        × (MidLetter | MidNumLet | Single_Quote) (ALetter
+                                                            | Hebrew_Letter) */
+            case WBcase(WB_ALetter, WB_MidLetter):
+            case WBcase(WB_ALetter, WB_MidNumLet):
+            case WBcase(WB_ALetter, WB_Single_Quote):
+            case WBcase(WB_Hebrew_Letter, WB_MidLetter):
+            case WBcase(WB_Hebrew_Letter, WB_MidNumLet):
+            /*case WBcase(WB_Hebrew_Letter, WB_Single_Quote):*/
+                after = advance_one_WB(&after_pos, strend, utf8_target);
+                return after != WB_ALetter && after != WB_Hebrew_Letter;
+
+            /* WB7.  (ALetter | Hebrew_Letter) (MidLetter | MidNumLet |
+             *                    Single_Quote) ×  (ALetter | Hebrew_Letter) */
+            case WBcase(WB_MidLetter, WB_ALetter):
+            case WBcase(WB_MidLetter, WB_Hebrew_Letter):
+            case WBcase(WB_MidNumLet, WB_ALetter):
+            case WBcase(WB_MidNumLet, WB_Hebrew_Letter):
+            case WBcase(WB_Single_Quote, WB_ALetter):
+            case WBcase(WB_Single_Quote, WB_Hebrew_Letter):
+                before
+                  = backup_one_WB(&previous, strbeg, &before_pos, utf8_target);
+                return before != WB_ALetter && before != WB_Hebrew_Letter;
+
+            /* WB7a.  Hebrew_Letter  ×  Single_Quote */
+            case WBcase(WB_Hebrew_Letter, WB_Single_Quote):
+                return FALSE;
+
+            /* WB7b.  Hebrew_Letter  ×  Double_Quote Hebrew_Letter */
+            case WBcase(WB_Hebrew_Letter, WB_Double_Quote):
+                return advance_one_WB(&after_pos, strend, utf8_target)
+                                                        != WB_Hebrew_Letter;
+
+            /* WB7c.  Hebrew_Letter Double_Quote  ×  Hebrew_Letter */
+            case WBcase(WB_Double_Quote, WB_Hebrew_Letter):
+                return backup_one_WB(&previous, strbeg, &before_pos, utf8_target)
+                                                        != WB_Hebrew_Letter;
+
+            /* Do not break within sequences of digits, or digits adjacent to
+             * letters (“3a”, or “A3”).
+                WB8.  Numeric  ×  Numeric */
+            case WBcase(WB_Numeric, WB_Numeric):
+                return FALSE;
+
+            /* WB9.  (ALetter | Hebrew_Letter)  ×  Numeric */
+            case WBcase(WB_ALetter, WB_Numeric):
+            case WBcase(WB_Hebrew_Letter, WB_Numeric):
+                return FALSE;
+
+            /* WB10.  Numeric  ×  (ALetter | Hebrew_Letter) */
+            case WBcase(WB_Numeric, WB_ALetter):
+            case WBcase(WB_Numeric, WB_Hebrew_Letter):
+                return FALSE;
+
+            /* Do not break within sequences, such as “3.2” or “3,456.789”.
+                WB11.   Numeric (MidNum | MidNumLet | Single_Quote)  ×  Numeric
+             */
+            case WBcase(WB_MidNum, WB_Numeric):
+            case WBcase(WB_MidNumLet, WB_Numeric):
+            case WBcase(WB_Single_Quote, WB_Numeric):
+                return backup_one_WB(&previous, strbeg, &before_pos, utf8_target)
+                                                               != WB_Numeric;
+
+            /*  WB12.   Numeric  ×  (MidNum | MidNumLet | Single_Quote) Numeric
+             *  */
+            case WBcase(WB_Numeric, WB_MidNum):
+            case WBcase(WB_Numeric, WB_MidNumLet):
+            case WBcase(WB_Numeric, WB_Single_Quote):
+                return advance_one_WB(&after_pos, strend, utf8_target)
+                                                               != WB_Numeric;
+
+            /* Do not break between Katakana.
+               WB13.  Katakana  ×  Katakana */
+            case WBcase(WB_Katakana, WB_Katakana):
+                return FALSE;
+
+            /* Do not break from extenders.
+               WB13a.  (ALetter | Hebrew_Letter | Numeric | Katakana |
+                                            ExtendNumLet)  ×  ExtendNumLet */
+            case WBcase(WB_ALetter, WB_ExtendNumLet):
+            case WBcase(WB_Hebrew_Letter, WB_ExtendNumLet):
+            case WBcase(WB_Numeric, WB_ExtendNumLet):
+            case WBcase(WB_Katakana, WB_ExtendNumLet):
+            case WBcase(WB_ExtendNumLet, WB_ExtendNumLet):
+                return FALSE;
+
+            /* WB13b.  ExtendNumLet  ×  (ALetter | Hebrew_Letter | Numeric
+             *                                                 | Katakana) */
+            case WBcase(WB_ExtendNumLet, WB_ALetter):
+            case WBcase(WB_ExtendNumLet, WB_Hebrew_Letter):
+            case WBcase(WB_ExtendNumLet, WB_Numeric):
+            case WBcase(WB_ExtendNumLet, WB_Katakana):
+                return FALSE;
+
+            /* Do not break between regional indicator symbols.
+               WB13c.  Regional_Indicator  ×  Regional_Indicator */
+            case WBcase(WB_Regional_Indicator, WB_Regional_Indicator):
+                return FALSE;
+
+    }
+
+    NOT_REACHED; /* NOTREACHED */
+}
+
+STATIC WB_enum
+S_advance_one_WB(pTHX_ U8 ** curpos, const U8 * const strend, const bool utf8_target)
+{
+    WB_enum wb;
+
+    PERL_ARGS_ASSERT_ADVANCE_ONE_WB;
+
+    if (*curpos >= strend) {
+        return WB_EDGE;
+    }
+
+    if (utf8_target) {
+
+        /* Advance over Extend and Format */
+        do {
+            *curpos += UTF8SKIP(*curpos);
+            if (*curpos >= strend) {
+                return WB_EDGE;
+            }
+            wb = getWB_VAL_UTF8(*curpos, strend);
+        } while (wb == WB_Extend || wb == WB_Format);
+    }
+    else {
+        do {
+            (*curpos)++;
+            if (*curpos >= strend) {
+                return WB_EDGE;
+            }
+            wb = getWB_VAL_CP(**curpos);
+        } while (wb == WB_Extend || wb == WB_Format);
+    }
+
+    return wb;
+}
+
+STATIC WB_enum
+S_backup_one_WB(pTHX_ WB_enum * previous, const U8 * const strbeg, U8 ** curpos, const bool utf8_target)
+{
+    WB_enum wb;
+
+    PERL_ARGS_ASSERT_BACKUP_ONE_WB;
+
+    /* If we know what the previous character's break value is, don't have
+        * to look it up */
+    if (*previous != WB_UNKNOWN) {
+        wb = *previous;
+        *previous = WB_UNKNOWN;
+        /* XXX Note that doesn't change curpos, and maybe should */
+
+        /* But we always back up over these two types */
+        if (wb != WB_Extend && wb != WB_Format) {
+            return wb;
+        }
+    }
+
+    if (*curpos < strbeg) {
+        return WB_EDGE;
+    }
+
+    if (utf8_target) {
+        U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg);
+        if (! prev_char_pos) {
+            return WB_EDGE;
+        }
+
+        /* Back up over Extend and Format.  curpos is always just to the right
+         * of the characater whose value we are getting */
+        do {
+            U8 * prev_prev_char_pos;
+            if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos,
+                                                   -1,
+                                                   strbeg)))
+            {
+                wb = getWB_VAL_UTF8(prev_prev_char_pos, prev_char_pos);
+                *curpos = prev_char_pos;
+                prev_char_pos = prev_prev_char_pos;
+            }
+            else {
+                *curpos = (U8 *) strbeg;
+                return WB_EDGE;
+            }
+        } while (wb == WB_Extend || wb == WB_Format);
+    }
+    else {
+        do {
+            if (*curpos - 2 < strbeg) {
+                *curpos = (U8 *) strbeg;
+                return WB_EDGE;
+            }
+            (*curpos)--;
+            wb = getWB_VAL_CP(*(*curpos - 1));
+        } while (wb == WB_Extend || wb == WB_Format);
+    }
+
+    return wb;
+}
+
+/* returns -1 on failure, $+[0] on success */
+STATIC SSize_t
+S_regmatch(pTHX_ regmatch_info *reginfo, char *startpos, regnode *prog)
+{
+#if PERL_VERSION < 9 && !defined(PERL_CORE)
+    dMY_CXT;
+#endif
+    dVAR;
+    const bool utf8_target = reginfo->is_utf8_target;
+    const U32 uniflags = UTF8_ALLOW_DEFAULT;
+    REGEXP *rex_sv = reginfo->prog;
+    regexp *rex = ReANY(rex_sv);
+    RXi_GET_DECL(rex,rexi);
+    /* the current state. This is a cached copy of PL_regmatch_state */
+    regmatch_state *st;
+    /* cache heavy used fields of st in registers */
+    regnode *scan;
+    regnode *next;
+    U32 n = 0; /* general value; init to avoid compiler warning */
+    SSize_t ln = 0; /* len or last;  init to avoid compiler warning */
+    char *locinput = startpos;
+    char *pushinput; /* where to continue after a PUSH */
+    I32 nextchr;   /* is always set to UCHARAT(locinput) */
+
+    bool result = 0;       /* return value of S_regmatch */
+    int depth = 0;         /* depth of backtrack stack */
+    U32 nochange_depth = 0; /* depth of GOSUB recursion with nochange */
+    const U32 max_nochange_depth =
+        (3 * rex->nparens > MAX_RECURSE_EVAL_NOCHANGE_DEPTH) ?
+        3 * rex->nparens : MAX_RECURSE_EVAL_NOCHANGE_DEPTH;
+    regmatch_state *yes_state = NULL; /* state to pop to on success of
+                                                           subpattern */
+    /* mark_state piggy backs on the yes_state logic so that when we unwind 
+       the stack on success we can update the mark_state as we go */
+    regmatch_state *mark_state = NULL; /* last mark state we have seen */
+    regmatch_state *cur_eval = NULL; /* most recent EVAL_AB state */
+    struct regmatch_state  *cur_curlyx = NULL; /* most recent curlyx */
+    U32 state_num;
+    bool no_final = 0;      /* prevent failure from backtracking? */
+    bool do_cutgroup = 0;   /* no_final only until next branch/trie entry */
+    char *startpoint = locinput;
+    SV *popmark = NULL;     /* are we looking for a mark? */
+    SV *sv_commit = NULL;   /* last mark name seen in failure */
+    SV *sv_yes_mark = NULL; /* last mark name we have seen 
+                               during a successful match */
+    U32 lastopen = 0;       /* last open we saw */
+    bool has_cutgroup = RX_HAS_CUTGROUP(rex) ? 1 : 0;   
+    SV* const oreplsv = GvSVn(PL_replgv);
+    /* these three flags are set by various ops to signal information to
+     * the very next op. They have a useful lifetime of exactly one loop
+     * iteration, and are not preserved or restored by state pushes/pops
+     */
+    bool sw = 0;           /* the condition value in (?(cond)a|b) */
+    bool minmod = 0;       /* the next "{n,m}" is a "{n,m}?" */
+    int logical = 0;       /* the following EVAL is:
+                               0: (?{...})
+                               1: (?(?{...})X|Y)
+                               2: (??{...})
+                              or the following IFMATCH/UNLESSM is:
+                               false: plain (?=foo)
+                               true:  used as a condition: (?(?=foo))
+                           */
+    PAD* last_pad = NULL;
+    dMULTICALL;
+    I32 gimme = G_SCALAR;
+    CV *caller_cv = NULL;      /* who called us */
+    CV *last_pushed_cv = NULL; /* most recently called (?{}) CV */
+    CHECKPOINT runops_cp;      /* savestack position before executing EVAL */
+    U32 maxopenparen = 0;       /* max '(' index seen so far */
+    int to_complement;  /* Invert the result? */
+    _char_class_number classnum;
+    bool is_utf8_pat = reginfo->is_utf8_pat;
+    bool match = FALSE;
+
+
+#ifdef DEBUGGING
+    GET_RE_DEBUG_FLAGS_DECL;
+#endif
+
+    /* protect against undef(*^R) */
+    SAVEFREESV(SvREFCNT_inc_simple_NN(oreplsv));
+
+    /* shut up 'may be used uninitialized' compiler warnings for dMULTICALL */
+    multicall_oldcatch = 0;
+    multicall_cv = NULL;
+    cx = NULL;
+    PERL_UNUSED_VAR(multicall_cop);
+    PERL_UNUSED_VAR(newsp);
+
+
+    PERL_ARGS_ASSERT_REGMATCH;
+
+    DEBUG_OPTIMISE_r( DEBUG_EXECUTE_r({
+           PerlIO_printf(Perl_debug_log,"regmatch start\n");
+    }));
+
+    st = PL_regmatch_state;
+
+    /* Note that nextchr is a byte even in UTF */
+    SET_nextchr;
+    scan = prog;
+    while (scan != NULL) {
+
+        DEBUG_EXECUTE_r( {
+           SV * const prop = sv_newmortal();
+           regnode *rnext=regnext(scan);
+           DUMP_EXEC_POS( locinput, scan, utf8_target );
+            regprop(rex, prop, scan, reginfo, NULL);
+            
+           PerlIO_printf(Perl_debug_log,
+                   "%3"IVdf":%*s%s(%"IVdf")\n",
+                   (IV)(scan - rexi->program), depth*2, "",
+                   SvPVX_const(prop),
+                   (PL_regkind[OP(scan)] == END || !rnext) ? 
+                       0 : (IV)(rnext - rexi->program));
+       });
+
+       next = scan + NEXT_OFF(scan);
+       if (next == scan)
+           next = NULL;
+       state_num = OP(scan);
+
+      reenter_switch:
+        to_complement = 0;
+
+        SET_nextchr;
+        assert(nextchr < 256 && (nextchr >= 0 || nextchr == NEXTCHR_EOS));
+
+       switch (state_num) {
+       case SBOL: /*  /^../ and /\A../  */
+           if (locinput == reginfo->strbeg)
+               break;
+           sayNO;
+
+       case MBOL: /*  /^../m  */
+           if (locinput == reginfo->strbeg ||
+               (!NEXTCHR_IS_EOS && locinput[-1] == '\n'))
+           {
+               break;
+           }
+           sayNO;
+
+       case GPOS: /*  \G  */
+           if (locinput == reginfo->ganch)
+               break;
+           sayNO;
+
+       case KEEPS: /*   \K  */
+           /* update the startpoint */
+           st->u.keeper.val = rex->offs[0].start;
+           rex->offs[0].start = locinput - reginfo->strbeg;
+           PUSH_STATE_GOTO(KEEPS_next, next, locinput);
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+       case KEEPS_next_fail:
+           /* rollback the start point change */
+           rex->offs[0].start = st->u.keeper.val;
+           sayNO_SILENT;
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+       case MEOL: /* /..$/m  */
+           if (!NEXTCHR_IS_EOS && nextchr != '\n')
+               sayNO;
+           break;
+
+       case SEOL: /* /..$/  */
+           if (!NEXTCHR_IS_EOS && nextchr != '\n')
+               sayNO;
+           if (reginfo->strend - locinput > 1)
+               sayNO;
+           break;
+
+       case EOS: /*  \z  */
+           if (!NEXTCHR_IS_EOS)
+               sayNO;
+           break;
+
+       case SANY: /*  /./s  */
+           if (NEXTCHR_IS_EOS)
+               sayNO;
+            goto increment_locinput;
+
+       case REG_ANY: /*  /./  */
+           if ((NEXTCHR_IS_EOS) || nextchr == '\n')
+               sayNO;
+            goto increment_locinput;
+
+
+#undef  ST
+#define ST st->u.trie
+        case TRIEC: /* (ab|cd) with known charclass */
+            /* In this case the charclass data is available inline so
+               we can fail fast without a lot of extra overhead. 
+             */
+            if(!NEXTCHR_IS_EOS && !ANYOF_BITMAP_TEST(scan, nextchr)) {
+                DEBUG_EXECUTE_r(
+                    PerlIO_printf(Perl_debug_log,
+                              "%*s  %sfailed to match trie start class...%s\n",
+                              REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+                );
+                sayNO_SILENT;
+                /* NOTREACHED */
+                NOT_REACHED; /* NOTREACHED */
+            }
+            /* FALLTHROUGH */
+       case TRIE:  /* (ab|cd)  */
+           /* the basic plan of execution of the trie is:
+            * At the beginning, run though all the states, and
+            * find the longest-matching word. Also remember the position
+            * of the shortest matching word. For example, this pattern:
+            *    1  2 3 4    5
+            *    ab|a|x|abcd|abc
+            * when matched against the string "abcde", will generate
+            * accept states for all words except 3, with the longest
+            * matching word being 4, and the shortest being 2 (with
+            * the position being after char 1 of the string).
+            *
+            * Then for each matching word, in word order (i.e. 1,2,4,5),
+            * we run the remainder of the pattern; on each try setting
+            * the current position to the character following the word,
+            * returning to try the next word on failure.
+            *
+            * We avoid having to build a list of words at runtime by
+            * using a compile-time structure, wordinfo[].prev, which
+            * gives, for each word, the previous accepting word (if any).
+            * In the case above it would contain the mappings 1->2, 2->0,
+            * 3->0, 4->5, 5->1.  We can use this table to generate, from
+            * the longest word (4 above), a list of all words, by
+            * following the list of prev pointers; this gives us the
+            * unordered list 4,5,1,2. Then given the current word we have
+            * just tried, we can go through the list and find the
+            * next-biggest word to try (so if we just failed on word 2,
+            * the next in the list is 4).
+            *
+            * Since at runtime we don't record the matching position in
+            * the string for each word, we have to work that out for
+            * each word we're about to process. The wordinfo table holds
+            * the character length of each word; given that we recorded
+            * at the start: the position of the shortest word and its
+            * length in chars, we just need to move the pointer the
+            * difference between the two char lengths. Depending on
+            * Unicode status and folding, that's cheap or expensive.
+            *
+            * This algorithm is optimised for the case where are only a
+            * small number of accept states, i.e. 0,1, or maybe 2.
+            * With lots of accepts states, and having to try all of them,
+            * it becomes quadratic on number of accept states to find all
+            * the next words.
+            */
+
+           {
+                /* what type of TRIE am I? (utf8 makes this contextual) */
+                DECL_TRIE_TYPE(scan);
+
+                /* what trie are we using right now */
+               reg_trie_data * const trie
+                   = (reg_trie_data*)rexi->data->data[ ARG( scan ) ];
+               HV * widecharmap = MUTABLE_HV(rexi->data->data[ ARG( scan ) + 1 ]);
+                U32 state = trie->startstate;
+
+                if (scan->flags == EXACTL || scan->flags == EXACTFLU8) {
+                    _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+                    if (utf8_target
+                        && UTF8_IS_ABOVE_LATIN1(nextchr)
+                        && scan->flags == EXACTL)
+                    {
+                        /* We only output for EXACTL, as we let the folder
+                         * output this message for EXACTFLU8 to avoid
+                         * duplication */
+                        _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput,
+                                                               reginfo->strend);
+                    }
+                }
+                if (   trie->bitmap
+                    && (NEXTCHR_IS_EOS || !TRIE_BITMAP_TEST(trie, nextchr)))
+                {
+                   if (trie->states[ state ].wordnum) {
+                        DEBUG_EXECUTE_r(
+                            PerlIO_printf(Perl_debug_log,
+                                         "%*s  %smatched empty string...%s\n",
+                                         REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+                        );
+                       if (!trie->jump)
+                           break;
+                   } else {
+                       DEBUG_EXECUTE_r(
+                            PerlIO_printf(Perl_debug_log,
+                                         "%*s  %sfailed to match trie start class...%s\n",
+                                         REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+                        );
+                       sayNO_SILENT;
+                  }
+                }
+
+            { 
+               U8 *uc = ( U8* )locinput;
+
+               STRLEN len = 0;
+               STRLEN foldlen = 0;
+               U8 *uscan = (U8*)NULL;
+               U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+               U32 charcount = 0; /* how many input chars we have matched */
+               U32 accepted = 0; /* have we seen any accepting states? */
+
+               ST.jump = trie->jump;
+               ST.me = scan;
+               ST.firstpos = NULL;
+               ST.longfold = FALSE; /* char longer if folded => it's harder */
+               ST.nextword = 0;
+
+               /* fully traverse the TRIE; note the position of the
+                  shortest accept state and the wordnum of the longest
+                  accept state */
+
+               while ( state && uc <= (U8*)(reginfo->strend) ) {
+                    U32 base = trie->states[ state ].trans.base;
+                    UV uvc = 0;
+                    U16 charid = 0;
+                   U16 wordnum;
+                    wordnum = trie->states[ state ].wordnum;
+
+                   if (wordnum) { /* it's an accept state */
+                       if (!accepted) {
+                           accepted = 1;
+                           /* record first match position */
+                           if (ST.longfold) {
+                               ST.firstpos = (U8*)locinput;
+                               ST.firstchars = 0;
+                           }
+                           else {
+                               ST.firstpos = uc;
+                               ST.firstchars = charcount;
+                           }
+                       }
+                       if (!ST.nextword || wordnum < ST.nextword)
+                           ST.nextword = wordnum;
+                       ST.topword = wordnum;
+                   }
+
+                   DEBUG_TRIE_EXECUTE_r({
+                               DUMP_EXEC_POS( (char *)uc, scan, utf8_target );
+                               PerlIO_printf( Perl_debug_log,
+                                   "%*s  %sState: %4"UVxf" Accepted: %c ",
+                                   2+depth * 2, "", PL_colors[4],
+                                   (UV)state, (accepted ? 'Y' : 'N'));
+                   });
+
+                   /* read a char and goto next state */
+                   if ( base && (foldlen || uc < (U8*)(reginfo->strend))) {
+                       I32 offset;
+                       REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc,
+                                            uscan, len, uvc, charid, foldlen,
+                                            foldbuf, uniflags);
+                       charcount++;
+                       if (foldlen>0)
+                           ST.longfold = TRUE;
+                       if (charid &&
+                            ( ((offset =
+                             base + charid - 1 - trie->uniquecharcount)) >= 0)
+
+                            && ((U32)offset < trie->lasttrans)
+                            && trie->trans[offset].check == state)
+                       {
+                           state = trie->trans[offset].next;
+                       }
+                       else {
+                           state = 0;
+                       }
+                       uc += len;
+
+                   }
+                   else {
+                       state = 0;
+                   }
+                   DEBUG_TRIE_EXECUTE_r(
+                       PerlIO_printf( Perl_debug_log,
+                           "Charid:%3x CP:%4"UVxf" After State: %4"UVxf"%s\n",
+                           charid, uvc, (UV)state, PL_colors[5] );
+                   );
+               }
+               if (!accepted)
+                  sayNO;
+
+               /* calculate total number of accept states */
+               {
+                   U16 w = ST.topword;
+                   accepted = 0;
+                   while (w) {
+                       w = trie->wordinfo[w].prev;
+                       accepted++;
+                   }
+                   ST.accepted = accepted;
+               }
+
+               DEBUG_EXECUTE_r(
+                   PerlIO_printf( Perl_debug_log,
+                       "%*s  %sgot %"IVdf" possible matches%s\n",
+                       REPORT_CODE_OFF + depth * 2, "",
+                       PL_colors[4], (IV)ST.accepted, PL_colors[5] );
+               );
+               goto trie_first_try; /* jump into the fail handler */
+           }}
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+       case TRIE_next_fail: /* we failed - try next alternative */
+        {
+            U8 *uc;
+            if ( ST.jump) {
+                REGCP_UNWIND(ST.cp);
+                UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+           }
+           if (!--ST.accepted) {
+               DEBUG_EXECUTE_r({
+                   PerlIO_printf( Perl_debug_log,
+                       "%*s  %sTRIE failed...%s\n",
+                       REPORT_CODE_OFF+depth*2, "", 
+                       PL_colors[4],
+                       PL_colors[5] );
+               });
+               sayNO_SILENT;
+           }
+           {
+               /* Find next-highest word to process.  Note that this code
+                * is O(N^2) per trie run (O(N) per branch), so keep tight */
+               U16 min = 0;
+               U16 word;
+               U16 const nextword = ST.nextword;
+               reg_trie_wordinfo * const wordinfo
+                   = ((reg_trie_data*)rexi->data->data[ARG(ST.me)])->wordinfo;
+               for (word=ST.topword; word; word=wordinfo[word].prev) {
+                   if (word > nextword && (!min || word < min))
+                       min = word;
+               }
+               ST.nextword = min;
+           }
+
+          trie_first_try:
+            if (do_cutgroup) {
+                do_cutgroup = 0;
+                no_final = 0;
+            }
+
+            if ( ST.jump) {
+                ST.lastparen = rex->lastparen;
+                ST.lastcloseparen = rex->lastcloseparen;
+               REGCP_SET(ST.cp);
+            }
+
+           /* find start char of end of current word */
+           {
+               U32 chars; /* how many chars to skip */
+               reg_trie_data * const trie
+                   = (reg_trie_data*)rexi->data->data[ARG(ST.me)];
+
+               assert((trie->wordinfo[ST.nextword].len - trie->prefixlen)
+                           >=  ST.firstchars);
+               chars = (trie->wordinfo[ST.nextword].len - trie->prefixlen)
+                           - ST.firstchars;
+               uc = ST.firstpos;
+
+               if (ST.longfold) {
+                   /* the hard option - fold each char in turn and find
+                    * its folded length (which may be different */
+                   U8 foldbuf[UTF8_MAXBYTES_CASE + 1];
+                   STRLEN foldlen;
+                   STRLEN len;
+                   UV uvc;
+                   U8 *uscan;
+
+                   while (chars) {
+                       if (utf8_target) {
+                           uvc = utf8n_to_uvchr((U8*)uc, UTF8_MAXLEN, &len,
+                                                   uniflags);
+                           uc += len;
+                       }
+                       else {
+                           uvc = *uc;
+                           uc++;
+                       }
+                       uvc = to_uni_fold(uvc, foldbuf, &foldlen);
+                       uscan = foldbuf;
+                       while (foldlen) {
+                           if (!--chars)
+                               break;
+                           uvc = utf8n_to_uvchr(uscan, UTF8_MAXLEN, &len,
+                                           uniflags);
+                           uscan += len;
+                           foldlen -= len;
+                       }
+                   }
+               }
+               else {
+                   if (utf8_target)
+                       while (chars--)
+                           uc += UTF8SKIP(uc);
+                   else
+                       uc += chars;
+               }
+           }
+
+           scan = ST.me + ((ST.jump && ST.jump[ST.nextword])
+                           ? ST.jump[ST.nextword]
+                           : NEXT_OFF(ST.me));
+
+           DEBUG_EXECUTE_r({
+               PerlIO_printf( Perl_debug_log,
+                   "%*s  %sTRIE matched word #%d, continuing%s\n",
+                   REPORT_CODE_OFF+depth*2, "", 
+                   PL_colors[4],
+                   ST.nextword,
+                   PL_colors[5]
+                   );
+           });
+
+           if (ST.accepted > 1 || has_cutgroup) {
+               PUSH_STATE_GOTO(TRIE_next, scan, (char*)uc);
+                /* NOTREACHED */
+               NOT_REACHED; /* NOTREACHED */
+           }
+           /* only one choice left - just continue */
+           DEBUG_EXECUTE_r({
+               AV *const trie_words
+                   = MUTABLE_AV(rexi->data->data[ARG(ST.me)+TRIE_WORDS_OFFSET]);
+               SV ** const tmp = trie_words
+                        ? av_fetch(trie_words, ST.nextword - 1, 0) : NULL;
+               SV *sv= tmp ? sv_newmortal() : NULL;
+
+               PerlIO_printf( Perl_debug_log,
+                   "%*s  %sonly one match left, short-circuiting: #%d <%s>%s\n",
+                   REPORT_CODE_OFF+depth*2, "", PL_colors[4],
+                   ST.nextword,
+                   tmp ? pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 0,
+                           PL_colors[0], PL_colors[1],
+                           (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)|PERL_PV_ESCAPE_NONASCII
+                       ) 
+                   : "not compiled under -Dr",
+                   PL_colors[5] );
+           });
+
+           locinput = (char*)uc;
+           continue; /* execute rest of RE */
+            /* NOTREACHED */
+        }
+#undef  ST
+
+       case EXACTL:             /*  /abc/l       */
+            _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+
+            /* Complete checking would involve going through every character
+             * matched by the string to see if any is above latin1.  But the
+             * comparision otherwise might very well be a fast assembly
+             * language routine, and I (khw) don't think slowing things down
+             * just to check for this warning is worth it.  So this just checks
+             * the first character */
+            if (utf8_target && UTF8_IS_ABOVE_LATIN1(*locinput)) {
+                _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput, reginfo->strend);
+            }
+            /* FALLTHROUGH */
+       case EXACT: {            /*  /abc/        */
+           char *s = STRING(scan);
+           ln = STR_LEN(scan);
+           if (utf8_target != is_utf8_pat) {
+               /* The target and the pattern have differing utf8ness. */
+               char *l = locinput;
+               const char * const e = s + ln;
+
+               if (utf8_target) {
+                    /* The target is utf8, the pattern is not utf8.
+                     * Above-Latin1 code points can't match the pattern;
+                     * invariants match exactly, and the other Latin1 ones need
+                     * to be downgraded to a single byte in order to do the
+                     * comparison.  (If we could be confident that the target
+                     * is not malformed, this could be refactored to have fewer
+                     * tests by just assuming that if the first bytes match, it
+                     * is an invariant, but there are tests in the test suite
+                     * dealing with (??{...}) which violate this) */
+                   while (s < e) {
+                       if (l >= reginfo->strend
+                            || UTF8_IS_ABOVE_LATIN1(* (U8*) l))
+                        {
+                            sayNO;
+                        }
+                        if (UTF8_IS_INVARIANT(*(U8*)l)) {
+                           if (*l != *s) {
+                                sayNO;
+                            }
+                            l++;
+                        }
+                        else {
+                            if (TWO_BYTE_UTF8_TO_NATIVE(*l, *(l+1)) != * (U8*) s)
+                            {
+                                sayNO;
+                            }
+                            l += 2;
+                        }
+                       s++;
+                   }
+               }
+               else {
+                   /* The target is not utf8, the pattern is utf8. */
+                   while (s < e) {
+                        if (l >= reginfo->strend
+                            || UTF8_IS_ABOVE_LATIN1(* (U8*) s))
+                        {
+                            sayNO;
+                        }
+                        if (UTF8_IS_INVARIANT(*(U8*)s)) {
+                           if (*s != *l) {
+                                sayNO;
+                            }
+                            s++;
+                        }
+                        else {
+                            if (TWO_BYTE_UTF8_TO_NATIVE(*s, *(s+1)) != * (U8*) l)
+                            {
+                                sayNO;
+                            }
+                            s += 2;
+                        }
+                       l++;
+                   }
+               }
+               locinput = l;
+           }
+            else {
+                /* The target and the pattern have the same utf8ness. */
+                /* Inline the first character, for speed. */
+                if (reginfo->strend - locinput < ln
+                    || UCHARAT(s) != nextchr
+                    || (ln > 1 && memNE(s, locinput, ln)))
+                {
+                    sayNO;
+                }
+                locinput += ln;
+            }
+           break;
+           }
+
+       case EXACTFL: {          /*  /abc/il      */
+           re_fold_t folder;
+           const U8 * fold_array;
+           const char * s;
+           U32 fold_utf8_flags;
+
+            _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+            folder = foldEQ_locale;
+            fold_array = PL_fold_locale;
+           fold_utf8_flags = FOLDEQ_LOCALE;
+           goto do_exactf;
+
+        case EXACTFLU8:           /*  /abc/il; but all 'abc' are above 255, so
+                                      is effectively /u; hence to match, target
+                                      must be UTF-8. */
+            if (! utf8_target) {
+                sayNO;
+            }
+            fold_utf8_flags =  FOLDEQ_LOCALE | FOLDEQ_S1_ALREADY_FOLDED
+                                             | FOLDEQ_S1_FOLDS_SANE;
+           folder = foldEQ_latin1;
+           fold_array = PL_fold_latin1;
+           goto do_exactf;
+
+       case EXACTFU_SS:         /*  /\x{df}/iu   */
+       case EXACTFU:            /*  /abc/iu      */
+           folder = foldEQ_latin1;
+           fold_array = PL_fold_latin1;
+           fold_utf8_flags = is_utf8_pat ? FOLDEQ_S1_ALREADY_FOLDED : 0;
+           goto do_exactf;
+
+        case EXACTFA_NO_TRIE:   /* This node only generated for non-utf8
+                                   patterns */
+            assert(! is_utf8_pat);
+            /* FALLTHROUGH */
+       case EXACTFA:            /*  /abc/iaa     */
+           folder = foldEQ_latin1;
+           fold_array = PL_fold_latin1;
+           fold_utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+           goto do_exactf;
+
+        case EXACTF:             /*  /abc/i    This node only generated for
+                                               non-utf8 patterns */
+            assert(! is_utf8_pat);
+           folder = foldEQ;
+           fold_array = PL_fold;
+           fold_utf8_flags = 0;
+
+         do_exactf:
+           s = STRING(scan);
+           ln = STR_LEN(scan);
+
+           if (utf8_target
+                || is_utf8_pat
+                || state_num == EXACTFU_SS
+                || (state_num == EXACTFL && IN_UTF8_CTYPE_LOCALE))
+            {
+             /* Either target or the pattern are utf8, or has the issue where
+              * the fold lengths may differ. */
+               const char * const l = locinput;
+               char *e = reginfo->strend;
+
+               if (! foldEQ_utf8_flags(s, 0,  ln, is_utf8_pat,
+                                       l, &e, 0,  utf8_target, fold_utf8_flags))
+               {
+                   sayNO;
+               }
+               locinput = e;
+               break;
+           }
+
+           /* Neither the target nor the pattern are utf8 */
+           if (UCHARAT(s) != nextchr
+                && !NEXTCHR_IS_EOS
+               && UCHARAT(s) != fold_array[nextchr])
+           {
+               sayNO;
+           }
+           if (reginfo->strend - locinput < ln)
+               sayNO;
+           if (ln > 1 && ! folder(s, locinput, ln))
+               sayNO;
+           locinput += ln;
+           break;
+       }
+
+       case NBOUNDL: /*  /\B/l  */
+            to_complement = 1;
+            /* FALLTHROUGH */
+
+       case BOUNDL:  /*  /\b/l  */
+            _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+
+            if (FLAGS(scan) != TRADITIONAL_BOUND) {
+                if (! IN_UTF8_CTYPE_LOCALE) {
+                    Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
+                                                B_ON_NON_UTF8_LOCALE_IS_WRONG);
+                }
+                goto boundu;
+            }
+
+           if (utf8_target) {
+               if (locinput == reginfo->strbeg)
+                   ln = isWORDCHAR_LC('\n');
+               else {
+                    ln = isWORDCHAR_LC_utf8(reghop3((U8*)locinput, -1,
+                                                        (U8*)(reginfo->strbeg)));
+               }
+                n = (NEXTCHR_IS_EOS)
+                    ? isWORDCHAR_LC('\n')
+                    : isWORDCHAR_LC_utf8((U8*)locinput);
+           }
+           else { /* Here the string isn't utf8 */
+               ln = (locinput == reginfo->strbeg)
+                     ? isWORDCHAR_LC('\n')
+                     : isWORDCHAR_LC(UCHARAT(locinput - 1));
+                n = (NEXTCHR_IS_EOS)
+                    ? isWORDCHAR_LC('\n')
+                    : isWORDCHAR_LC(nextchr);
+           }
+            if (to_complement ^ (ln == n)) {
+                sayNO;
+            }
+           break;
+
+       case NBOUND:  /*  /\B/   */
+            to_complement = 1;
+            /* FALLTHROUGH */
+
+       case BOUND:   /*  /\b/   */
+           if (utf8_target) {
+                goto bound_utf8;
+            }
+            goto bound_ascii_match_only;
+
+       case NBOUNDA: /*  /\B/a  */
+            to_complement = 1;
+            /* FALLTHROUGH */
+
+       case BOUNDA:  /*  /\b/a  */
+
+          bound_ascii_match_only:
+            /* Here the string isn't utf8, or is utf8 and only ascii characters
+             * are to match \w.  In the latter case looking at the byte just
+             * prior to the current one may be just the final byte of a
+             * multi-byte character.  This is ok.  There are two cases:
+             * 1) it is a single byte character, and then the test is doing
+             *    just what it's supposed to.
+             * 2) it is a multi-byte character, in which case the final byte is
+             *    never mistakable for ASCII, and so the test will say it is
+             *    not a word character, which is the correct answer. */
+            ln = (locinput == reginfo->strbeg)
+                 ? isWORDCHAR_A('\n')
+                 : isWORDCHAR_A(UCHARAT(locinput - 1));
+            n = (NEXTCHR_IS_EOS)
+                ? isWORDCHAR_A('\n')
+                : isWORDCHAR_A(nextchr);
+            if (to_complement ^ (ln == n)) {
+                sayNO;
+            }
+           break;
+
+       case NBOUNDU: /*  /\B/u  */
+            to_complement = 1;
+            /* FALLTHROUGH */
+
+       case BOUNDU:  /*  /\b/u  */
+
+          boundu:
+           if (utf8_target) {
+
+              bound_utf8:
+                switch((bound_type) FLAGS(scan)) {
+                    case TRADITIONAL_BOUND:
+                        ln = (locinput == reginfo->strbeg)
+                             ? 0 /* isWORDCHAR_L1('\n') */
+                             : isWORDCHAR_utf8(reghop3((U8*)locinput, -1,
+                                                                (U8*)(reginfo->strbeg)));
+                        n = (NEXTCHR_IS_EOS)
+                            ? 0 /* isWORDCHAR_L1('\n') */
+                            : isWORDCHAR_utf8((U8*)locinput);
+                        match = cBOOL(ln != n);
+                        break;
+                    case GCB_BOUND:
+                        if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+                            match = TRUE; /* GCB always matches at begin and
+                                             end */
+                        }
+                        else {
+                            /* Find the gcb values of previous and current
+                             * chars, then see if is a break point */
+                            match = isGCB(getGCB_VAL_UTF8(
+                                                reghop3((U8*)locinput,
+                                                        -1,
+                                                        (U8*)(reginfo->strbeg)),
+                                                (U8*) reginfo->strend),
+                                          getGCB_VAL_UTF8((U8*) locinput,
+                                                        (U8*) reginfo->strend));
+                        }
+                        break;
+
+                    case SB_BOUND: /* Always matches at begin and end */
+                        if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+                            match = TRUE;
+                        }
+                        else {
+                            match = isSB(getSB_VAL_UTF8(
+                                                reghop3((U8*)locinput,
+                                                        -1,
+                                                        (U8*)(reginfo->strbeg)),
+                                                (U8*) reginfo->strend),
+                                          getSB_VAL_UTF8((U8*) locinput,
+                                                        (U8*) reginfo->strend),
+                                          (U8*) reginfo->strbeg,
+                                          (U8*) locinput,
+                                          (U8*) reginfo->strend,
+                                          utf8_target);
+                        }
+                        break;
+
+                    case WB_BOUND:
+                        if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+                            match = TRUE;
+                        }
+                        else {
+                            match = isWB(WB_UNKNOWN,
+                                         getWB_VAL_UTF8(
+                                                reghop3((U8*)locinput,
+                                                        -1,
+                                                        (U8*)(reginfo->strbeg)),
+                                                (U8*) reginfo->strend),
+                                          getWB_VAL_UTF8((U8*) locinput,
+                                                        (U8*) reginfo->strend),
+                                          (U8*) reginfo->strbeg,
+                                          (U8*) locinput,
+                                          (U8*) reginfo->strend,
+                                          utf8_target);
+                        }
+                        break;
+                }
+           }
+           else {  /* Not utf8 target */
+                switch((bound_type) FLAGS(scan)) {
+                    case TRADITIONAL_BOUND:
+                        ln = (locinput == reginfo->strbeg)
+                            ? 0 /* isWORDCHAR_L1('\n') */
+                            : isWORDCHAR_L1(UCHARAT(locinput - 1));
+                        n = (NEXTCHR_IS_EOS)
+                            ? 0 /* isWORDCHAR_L1('\n') */
+                            : isWORDCHAR_L1(nextchr);
+                        match = cBOOL(ln != n);
+                        break;
+
+                    case GCB_BOUND:
+                        if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+                            match = TRUE; /* GCB always matches at begin and
+                                             end */
+                        }
+                        else {  /* Only CR-LF combo isn't a GCB in 0-255
+                                   range */
+                            match =    UCHARAT(locinput - 1) != '\r'
+                                    || UCHARAT(locinput) != '\n';
+                        }
+                        break;
+
+                    case SB_BOUND: /* Always matches at begin and end */
+                        if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+                            match = TRUE;
+                        }
+                        else {
+                            match = isSB(getSB_VAL_CP(UCHARAT(locinput -1)),
+                                         getSB_VAL_CP(UCHARAT(locinput)),
+                                         (U8*) reginfo->strbeg,
+                                         (U8*) locinput,
+                                         (U8*) reginfo->strend,
+                                         utf8_target);
+                        }
+                        break;
+
+                    case WB_BOUND:
+                        if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+                            match = TRUE;
+                        }
+                        else {
+                            match = isWB(WB_UNKNOWN,
+                                         getWB_VAL_CP(UCHARAT(locinput -1)),
+                                         getWB_VAL_CP(UCHARAT(locinput)),
+                                         (U8*) reginfo->strbeg,
+                                         (U8*) locinput,
+                                         (U8*) reginfo->strend,
+                                         utf8_target);
+                        }
+                        break;
+                }
+           }
+
+            if (to_complement ^ ! match) {
+                sayNO;
+            }
+           break;
+
+       case ANYOFL:  /*  /[abc]/l      */
+            _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+            /* FALLTHROUGH */
+       case ANYOF:  /*   /[abc]/       */
+            if (NEXTCHR_IS_EOS)
+                sayNO;
+           if (utf8_target) {
+               if (!reginclass(rex, scan, (U8*)locinput, (U8*)reginfo->strend,
+                                                                   utf8_target))
+                   sayNO;
+               locinput += UTF8SKIP(locinput);
+           }
+           else {
+               if (!REGINCLASS(rex, scan, (U8*)locinput))
+                   sayNO;
+               locinput++;
+           }
+           break;
+
+        /* The argument (FLAGS) to all the POSIX node types is the class number
+         * */
+
+        case NPOSIXL:   /* \W or [:^punct:] etc. under /l */
+            to_complement = 1;
+            /* FALLTHROUGH */
+
+        case POSIXL:    /* \w or [:punct:] etc. under /l */
+            _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+            if (NEXTCHR_IS_EOS)
+                sayNO;
+
+            /* Use isFOO_lc() for characters within Latin1.  (Note that
+             * UTF8_IS_INVARIANT works even on non-UTF-8 strings, or else
+             * wouldn't be invariant) */
+            if (UTF8_IS_INVARIANT(nextchr) || ! utf8_target) {
+                if (! (to_complement ^ cBOOL(isFOO_lc(FLAGS(scan), (U8) nextchr)))) {
+                    sayNO;
+                }
+            }
+            else if (UTF8_IS_DOWNGRADEABLE_START(nextchr)) {
+                if (! (to_complement ^ cBOOL(isFOO_lc(FLAGS(scan),
+                                           (U8) TWO_BYTE_UTF8_TO_NATIVE(nextchr,
+                                                            *(locinput + 1))))))
+                {
+                    sayNO;
+                }
+            }
+            else { /* Here, must be an above Latin-1 code point */
+                _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput, reginfo->strend);
+                goto utf8_posix_above_latin1;
+            }
+
+            /* Here, must be utf8 */
+            locinput += UTF8SKIP(locinput);
+            break;
+
+        case NPOSIXD:   /* \W or [:^punct:] etc. under /d */
+            to_complement = 1;
+            /* FALLTHROUGH */
+
+        case POSIXD:    /* \w or [:punct:] etc. under /d */
+            if (utf8_target) {
+                goto utf8_posix;
+            }
+            goto posixa;
+
+        case NPOSIXA:   /* \W or [:^punct:] etc. under /a */
+
+            if (NEXTCHR_IS_EOS) {
+                sayNO;
+            }
+
+            /* All UTF-8 variants match */
+            if (! UTF8_IS_INVARIANT(nextchr)) {
+                goto increment_locinput;
+            }
+
+            to_complement = 1;
+            /* FALLTHROUGH */
+
+        case POSIXA:    /* \w or [:punct:] etc. under /a */
+
+          posixa:
+            /* We get here through POSIXD, NPOSIXD, and NPOSIXA when not in
+             * UTF-8, and also from NPOSIXA even in UTF-8 when the current
+             * character is a single byte */
+
+            if (NEXTCHR_IS_EOS
+                || ! (to_complement ^ cBOOL(_generic_isCC_A(nextchr,
+                                                            FLAGS(scan)))))
+            {
+                sayNO;
+            }
+
+            /* Here we are either not in utf8, or we matched a utf8-invariant,
+             * so the next char is the next byte */
+            locinput++;
+            break;
+
+        case NPOSIXU:   /* \W or [:^punct:] etc. under /u */
+            to_complement = 1;
+            /* FALLTHROUGH */
+
+        case POSIXU:    /* \w or [:punct:] etc. under /u */
+          utf8_posix:
+            if (NEXTCHR_IS_EOS) {
+                sayNO;
+            }
+
+            /* Use _generic_isCC() for characters within Latin1.  (Note that
+             * UTF8_IS_INVARIANT works even on non-UTF-8 strings, or else
+             * wouldn't be invariant) */
+            if (UTF8_IS_INVARIANT(nextchr) || ! utf8_target) {
+                if (! (to_complement ^ cBOOL(_generic_isCC(nextchr,
+                                                           FLAGS(scan)))))
+                {
+                    sayNO;
+                }
+                locinput++;
+            }
+            else if (UTF8_IS_DOWNGRADEABLE_START(nextchr)) {
+                if (! (to_complement
+                       ^ cBOOL(_generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(nextchr,
+                                                               *(locinput + 1)),
+                                             FLAGS(scan)))))
+                {
+                    sayNO;
+                }
+                locinput += 2;
+            }
+            else {  /* Handle above Latin-1 code points */
+              utf8_posix_above_latin1:
+                classnum = (_char_class_number) FLAGS(scan);
+                if (classnum < _FIRST_NON_SWASH_CC) {
+
+                    /* Here, uses a swash to find such code points.  Load if if
+                     * not done already */
+                    if (! PL_utf8_swash_ptrs[classnum]) {
+                        U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+                        PL_utf8_swash_ptrs[classnum]
+                                = _core_swash_init("utf8",
+                                        "",
+                                        &PL_sv_undef, 1, 0,
+                                        PL_XPosix_ptrs[classnum], &flags);
+                    }
+                    if (! (to_complement
+                           ^ cBOOL(swash_fetch(PL_utf8_swash_ptrs[classnum],
+                                               (U8 *) locinput, TRUE))))
+                    {
+                        sayNO;
+                    }
+                }
+                else {  /* Here, uses macros to find above Latin-1 code points */
+                    switch (classnum) {
+                        case _CC_ENUM_SPACE:
+                            if (! (to_complement
+                                        ^ cBOOL(is_XPERLSPACE_high(locinput))))
+                            {
+                                sayNO;
+                            }
+                            break;
+                        case _CC_ENUM_BLANK:
+                            if (! (to_complement
+                                            ^ cBOOL(is_HORIZWS_high(locinput))))
+                            {
+                                sayNO;
+                            }
+                            break;
+                        case _CC_ENUM_XDIGIT:
+                            if (! (to_complement
+                                            ^ cBOOL(is_XDIGIT_high(locinput))))
+                            {
+                                sayNO;
+                            }
+                            break;
+                        case _CC_ENUM_VERTSPACE:
+                            if (! (to_complement
+                                            ^ cBOOL(is_VERTWS_high(locinput))))
+                            {
+                                sayNO;
+                            }
+                            break;
+                        default:    /* The rest, e.g. [:cntrl:], can't match
+                                       above Latin1 */
+                            if (! to_complement) {
+                                sayNO;
+                            }
+                            break;
+                    }
+                }
+                locinput += UTF8SKIP(locinput);
+            }
+            break;
+
+       case CLUMP: /* Match \X: logical Unicode character.  This is defined as
+                      a Unicode extended Grapheme Cluster */
+           if (NEXTCHR_IS_EOS)
+               sayNO;
+           if  (! utf8_target) {
+
+               /* Match either CR LF  or '.', as all the other possibilities
+                * require utf8 */
+               locinput++;         /* Match the . or CR */
+               if (nextchr == '\r' /* And if it was CR, and the next is LF,
+                                      match the LF */
+                   && locinput < reginfo->strend
+                   && UCHARAT(locinput) == '\n')
+                {
+                    locinput++;
+                }
+           }
+           else {
+
+                /* Get the gcb type for the current character */
+                GCB_enum prev_gcb = getGCB_VAL_UTF8((U8*) locinput,
+                                                       (U8*) reginfo->strend);
+
+                /* Then scan through the input until we get to the first
+                 * character whose type is supposed to be a gcb with the
+                 * current character.  (There is always a break at the
+                 * end-of-input) */
+                locinput += UTF8SKIP(locinput);
+                while (locinput < reginfo->strend) {
+                    GCB_enum cur_gcb = getGCB_VAL_UTF8((U8*) locinput,
+                                                         (U8*) reginfo->strend);
+                    if (isGCB(prev_gcb, cur_gcb)) {
+                        break;
+                    }
+
+                    prev_gcb = cur_gcb;
+                    locinput += UTF8SKIP(locinput);
+                }
+
+
+           }
+           break;
+            
+       case NREFFL:  /*  /\g{name}/il  */
+       {   /* The capture buffer cases.  The ones beginning with N for the
+              named buffers just convert to the equivalent numbered and
+              pretend they were called as the corresponding numbered buffer
+              op.  */
+           /* don't initialize these in the declaration, it makes C++
+              unhappy */
+           const char *s;
+           char type;
+           re_fold_t folder;
+           const U8 *fold_array;
+           UV utf8_fold_flags;
+
+            _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+           folder = foldEQ_locale;
+           fold_array = PL_fold_locale;
+           type = REFFL;
+           utf8_fold_flags = FOLDEQ_LOCALE;
+           goto do_nref;
+
+       case NREFFA:  /*  /\g{name}/iaa  */
+           folder = foldEQ_latin1;
+           fold_array = PL_fold_latin1;
+           type = REFFA;
+           utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+           goto do_nref;
+
+       case NREFFU:  /*  /\g{name}/iu  */
+           folder = foldEQ_latin1;
+           fold_array = PL_fold_latin1;
+           type = REFFU;
+           utf8_fold_flags = 0;
+           goto do_nref;
+
+       case NREFF:  /*  /\g{name}/i  */
+           folder = foldEQ;
+           fold_array = PL_fold;
+           type = REFF;
+           utf8_fold_flags = 0;
+           goto do_nref;
+
+       case NREF:  /*  /\g{name}/   */
+           type = REF;
+           folder = NULL;
+           fold_array = NULL;
+           utf8_fold_flags = 0;
+         do_nref:
+
+           /* For the named back references, find the corresponding buffer
+            * number */
+           n = reg_check_named_buff_matched(rex,scan);
+
+            if ( ! n ) {
+                sayNO;
+           }
+           goto do_nref_ref_common;
+
+       case REFFL:  /*  /\1/il  */
+            _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+           folder = foldEQ_locale;
+           fold_array = PL_fold_locale;
+           utf8_fold_flags = FOLDEQ_LOCALE;
+           goto do_ref;
+
+       case REFFA:  /*  /\1/iaa  */
+           folder = foldEQ_latin1;
+           fold_array = PL_fold_latin1;
+           utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+           goto do_ref;
+
+       case REFFU:  /*  /\1/iu  */
+           folder = foldEQ_latin1;
+           fold_array = PL_fold_latin1;
+           utf8_fold_flags = 0;
+           goto do_ref;
+
+       case REFF:  /*  /\1/i  */
+           folder = foldEQ;
+           fold_array = PL_fold;
+           utf8_fold_flags = 0;
+           goto do_ref;
+
+        case REF:  /*  /\1/    */
+           folder = NULL;
+           fold_array = NULL;
+           utf8_fold_flags = 0;
+
+         do_ref:
+           type = OP(scan);
+           n = ARG(scan);  /* which paren pair */
+
+         do_nref_ref_common:
+           ln = rex->offs[n].start;
+           reginfo->poscache_iter = reginfo->poscache_maxiter; /* Void cache */
+           if (rex->lastparen < n || ln == -1)
+               sayNO;                  /* Do not match unless seen CLOSEn. */
+           if (ln == rex->offs[n].end)
+               break;
+
+           s = reginfo->strbeg + ln;
+           if (type != REF     /* REF can do byte comparison */
+               && (utf8_target || type == REFFU || type == REFFL))
+           {
+               char * limit = reginfo->strend;
+
+               /* This call case insensitively compares the entire buffer
+                   * at s, with the current input starting at locinput, but
+                    * not going off the end given by reginfo->strend, and
+                    * returns in <limit> upon success, how much of the
+                    * current input was matched */
+               if (! foldEQ_utf8_flags(s, NULL, rex->offs[n].end - ln, utf8_target,
+                                   locinput, &limit, 0, utf8_target, utf8_fold_flags))
+               {
+                   sayNO;
+               }
+               locinput = limit;
+               break;
+           }
+
+           /* Not utf8:  Inline the first character, for speed. */
+           if (!NEXTCHR_IS_EOS &&
+                UCHARAT(s) != nextchr &&
+               (type == REF ||
+                UCHARAT(s) != fold_array[nextchr]))
+               sayNO;
+           ln = rex->offs[n].end - ln;
+           if (locinput + ln > reginfo->strend)
+               sayNO;
+           if (ln > 1 && (type == REF
+                          ? memNE(s, locinput, ln)
+                          : ! folder(s, locinput, ln)))
+               sayNO;
+           locinput += ln;
+           break;
+       }
+
+       case NOTHING: /* null op; e.g. the 'nothing' following
+                       * the '*' in m{(a+|b)*}' */
+           break;
+       case TAIL: /* placeholder while compiling (A|B|C) */
+           break;
+
+#undef  ST
+#define ST st->u.eval
+       {
+           SV *ret;
+           REGEXP *re_sv;
+            regexp *re;
+            regexp_internal *rei;
+            regnode *startpoint;
+
+       case GOSTART: /*  (?R)  */
+       case GOSUB: /*    /(...(?1))/   /(...(?&foo))/   */
+           if (cur_eval && cur_eval->locinput==locinput) {
+                if (cur_eval->u.eval.close_paren == (U32)ARG(scan)) 
+                    Perl_croak(aTHX_ "Infinite recursion in regex");
+                if ( ++nochange_depth > max_nochange_depth )
+                    Perl_croak(aTHX_ 
+                        "Pattern subroutine nesting without pos change"
+                        " exceeded limit in regex");
+            } else {
+                nochange_depth = 0;
+            }
+           re_sv = rex_sv;
+            re = rex;
+            rei = rexi;
+            if (OP(scan)==GOSUB) {
+                startpoint = scan + ARG2L(scan);
+                ST.close_paren = ARG(scan);
+            } else {
+                startpoint = rei->program+1;
+                ST.close_paren = 0;
+            }
+
+            /* Save all the positions seen so far. */
+            ST.cp = regcppush(rex, 0, maxopenparen);
+            REGCP_SET(ST.lastcp);
+
+            /* and then jump to the code we share with EVAL */
+            goto eval_recurse_doit;
+            /* NOTREACHED */
+
+        case EVAL:  /*   /(?{A})B/   /(??{A})B/  and /(?(?{A})X|Y)B/   */        
+            if (cur_eval && cur_eval->locinput==locinput) {
+               if ( ++nochange_depth > max_nochange_depth )
+                    Perl_croak(aTHX_ "EVAL without pos change exceeded limit in regex");
+            } else {
+                nochange_depth = 0;
+            }    
+           {
+               /* execute the code in the {...} */
+
+               dSP;
+               IV before;
+               OP * const oop = PL_op;
+               COP * const ocurcop = PL_curcop;
+               OP *nop;
+               CV *newcv;
+
+               /* save *all* paren positions */
+               regcppush(rex, 0, maxopenparen);
+               REGCP_SET(runops_cp);
+
+               if (!caller_cv)
+                   caller_cv = find_runcv(NULL);
+
+               n = ARG(scan);
+
+               if (rexi->data->what[n] == 'r') { /* code from an external qr */
+                   newcv = (ReANY(
+                                               (REGEXP*)(rexi->data->data[n])
+                                           ))->qr_anoncv
+                                       ;
+                   nop = (OP*)rexi->data->data[n+1];
+               }
+               else if (rexi->data->what[n] == 'l') { /* literal code */
+                   newcv = caller_cv;
+                   nop = (OP*)rexi->data->data[n];
+                   assert(CvDEPTH(newcv));
+               }
+               else {
+                   /* literal with own CV */
+                   assert(rexi->data->what[n] == 'L');
+                   newcv = rex->qr_anoncv;
+                   nop = (OP*)rexi->data->data[n];
+               }
+
+               /* normally if we're about to execute code from the same
+                * CV that we used previously, we just use the existing
+                * CX stack entry. However, its possible that in the
+                * meantime we may have backtracked, popped from the save
+                * stack, and undone the SAVECOMPPAD(s) associated with
+                * PUSH_MULTICALL; in which case PL_comppad no longer
+                * points to newcv's pad. */
+               if (newcv != last_pushed_cv || PL_comppad != last_pad)
+               {
+                    U8 flags = (CXp_SUB_RE |
+                                ((newcv == caller_cv) ? CXp_SUB_RE_FAKE : 0));
+                   if (last_pushed_cv) {
+                       CHANGE_MULTICALL_FLAGS(newcv, flags);
+                   }
+                   else {
+                       PUSH_MULTICALL_FLAGS(newcv, flags);
+                   }
+                   last_pushed_cv = newcv;
+               }
+               else {
+                    /* these assignments are just to silence compiler
+                     * warnings */
+                   multicall_cop = NULL;
+                   newsp = NULL;
+               }
+               last_pad = PL_comppad;
+
+               /* the initial nextstate you would normally execute
+                * at the start of an eval (which would cause error
+                * messages to come from the eval), may be optimised
+                * away from the execution path in the regex code blocks;
+                * so manually set PL_curcop to it initially */
+               {
+                   OP *o = cUNOPx(nop)->op_first;
+                   assert(o->op_type == OP_NULL);
+                   if (o->op_targ == OP_SCOPE) {
+                       o = cUNOPo->op_first;
+                   }
+                   else {
+                       assert(o->op_targ == OP_LEAVE);
+                       o = cUNOPo->op_first;
+                       assert(o->op_type == OP_ENTER);
+                       o = OpSIBLING(o);
+                   }
+
+                   if (o->op_type != OP_STUB) {
+                       assert(    o->op_type == OP_NEXTSTATE
+                               || o->op_type == OP_DBSTATE
+                               || (o->op_type == OP_NULL
+                                   &&  (  o->op_targ == OP_NEXTSTATE
+                                       || o->op_targ == OP_DBSTATE
+                                       )
+                                   )
+                       );
+                       PL_curcop = (COP*)o;
+                   }
+               }
+               nop = nop->op_next;
+
+               DEBUG_STATE_r( PerlIO_printf(Perl_debug_log, 
+                   "  re EVAL PL_op=0x%"UVxf"\n", PTR2UV(nop)) );
+
+               rex->offs[0].end = locinput - reginfo->strbeg;
+                if (reginfo->info_aux_eval->pos_magic)
+                    MgBYTEPOS_set(reginfo->info_aux_eval->pos_magic,
+                                  reginfo->sv, reginfo->strbeg,
+                                  locinput - reginfo->strbeg);
+
+                if (sv_yes_mark) {
+                    SV *sv_mrk = get_sv("REGMARK", 1);
+                    sv_setsv(sv_mrk, sv_yes_mark);
+                }
+
+               /* we don't use MULTICALL here as we want to call the
+                * first op of the block of interest, rather than the
+                * first op of the sub */
+               before = (IV)(SP-PL_stack_base);
+               PL_op = nop;
+               CALLRUNOPS(aTHX);                       /* Scalar context. */
+               SPAGAIN;
+               if ((IV)(SP-PL_stack_base) == before)
+                   ret = &PL_sv_undef;   /* protect against empty (?{}) blocks. */
+               else {
+                   ret = POPs;
+                   PUTBACK;
+               }
+
+               /* before restoring everything, evaluate the returned
+                * value, so that 'uninit' warnings don't use the wrong
+                * PL_op or pad. Also need to process any magic vars
+                * (e.g. $1) *before* parentheses are restored */
+
+               PL_op = NULL;
+
+                re_sv = NULL;
+               if (logical == 0)        /*   (?{})/   */
+                   sv_setsv(save_scalar(PL_replgv), ret); /* $^R */
+               else if (logical == 1) { /*   /(?(?{...})X|Y)/    */
+                   sw = cBOOL(SvTRUE(ret));
+                   logical = 0;
+               }
+               else {                   /*  /(??{})  */
+                   /*  if its overloaded, let the regex compiler handle
+                    *  it; otherwise extract regex, or stringify  */
+                   if (SvGMAGICAL(ret))
+                       ret = sv_mortalcopy(ret);
+                   if (!SvAMAGIC(ret)) {
+                       SV *sv = ret;
+                       if (SvROK(sv))
+                           sv = SvRV(sv);
+                       if (SvTYPE(sv) == SVt_REGEXP)
+                           re_sv = (REGEXP*) sv;
+                       else if (SvSMAGICAL(ret)) {
+                           MAGIC *mg = mg_find(ret, PERL_MAGIC_qr);
+                           if (mg)
+                               re_sv = (REGEXP *) mg->mg_obj;
+                       }
+
+                       /* force any undef warnings here */
+                       if (!re_sv && !SvPOK(ret) && !SvNIOK(ret)) {
+                           ret = sv_mortalcopy(ret);
+                           (void) SvPV_force_nolen(ret);
+                       }
+                   }
+
+               }
+
+               /* *** Note that at this point we don't restore
+                * PL_comppad, (or pop the CxSUB) on the assumption it may
+                * be used again soon. This is safe as long as nothing
+                * in the regexp code uses the pad ! */
+               PL_op = oop;
+               PL_curcop = ocurcop;
+               S_regcp_restore(aTHX_ rex, runops_cp, &maxopenparen);
+               PL_curpm = PL_reg_curpm;
+
+               if (logical != 2)
+                   break;
+           }
+
+               /* only /(??{})/  from now on */
+               logical = 0;
+               {
+                   /* extract RE object from returned value; compiling if
+                    * necessary */
+
+                   if (re_sv) {
+                       re_sv = reg_temp_copy(NULL, re_sv);
+                   }
+                   else {
+                       U32 pm_flags = 0;
+
+                       if (SvUTF8(ret) && IN_BYTES) {
+                           /* In use 'bytes': make a copy of the octet
+                            * sequence, but without the flag on */
+                           STRLEN len;
+                           const char *const p = SvPV(ret, len);
+                           ret = newSVpvn_flags(p, len, SVs_TEMP);
+                       }
+                       if (rex->intflags & PREGf_USE_RE_EVAL)
+                           pm_flags |= PMf_USE_RE_EVAL;
+
+                       /* if we got here, it should be an engine which
+                        * supports compiling code blocks and stuff */
+                       assert(rex->engine && rex->engine->op_comp);
+                        assert(!(scan->flags & ~RXf_PMf_COMPILETIME));
+                       re_sv = rex->engine->op_comp(aTHX_ &ret, 1, NULL,
+                                   rex->engine, NULL, NULL,
+                                    /* copy /msixn etc to inner pattern */
+                                    ARG2L(scan),
+                                    pm_flags);
+
+                       if (!(SvFLAGS(ret)
+                             & (SVs_TEMP | SVs_GMG | SVf_ROK))
+                        && (!SvPADTMP(ret) || SvREADONLY(ret))) {
+                           /* This isn't a first class regexp. Instead, it's
+                              caching a regexp onto an existing, Perl visible
+                              scalar.  */
+                           sv_magic(ret, MUTABLE_SV(re_sv), PERL_MAGIC_qr, 0, 0);
+                       }
+                   }
+                   SAVEFREESV(re_sv);
+                   re = ReANY(re_sv);
+               }
+                RXp_MATCH_COPIED_off(re);
+                re->subbeg = rex->subbeg;
+                re->sublen = rex->sublen;
+                re->suboffset = rex->suboffset;
+                re->subcoffset = rex->subcoffset;
+                re->lastparen = 0;
+                re->lastcloseparen = 0;
+               rei = RXi_GET(re);
+                DEBUG_EXECUTE_r(
+                    debug_start_match(re_sv, utf8_target, locinput,
+                                    reginfo->strend, "Matching embedded");
+               );              
+               startpoint = rei->program + 1;
+                       ST.close_paren = 0; /* only used for GOSUB */
+                /* Save all the seen positions so far. */
+                ST.cp = regcppush(rex, 0, maxopenparen);
+                REGCP_SET(ST.lastcp);
+                /* and set maxopenparen to 0, since we are starting a "fresh" match */
+                maxopenparen = 0;
+                /* run the pattern returned from (??{...}) */
+
+              eval_recurse_doit: /* Share code with GOSUB below this line
+                            * At this point we expect the stack context to be
+                            * set up correctly */
+
+                /* invalidate the S-L poscache. We're now executing a
+                 * different set of WHILEM ops (and their associated
+                 * indexes) against the same string, so the bits in the
+                 * cache are meaningless. Setting maxiter to zero forces
+                 * the cache to be invalidated and zeroed before reuse.
+                * XXX This is too dramatic a measure. Ideally we should
+                 * save the old cache and restore when running the outer
+                 * pattern again */
+               reginfo->poscache_maxiter = 0;
+
+                /* the new regexp might have a different is_utf8_pat than we do */
+                is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(re_sv));
+
+               ST.prev_rex = rex_sv;
+               ST.prev_curlyx = cur_curlyx;
+               rex_sv = re_sv;
+               SET_reg_curpm(rex_sv);
+               rex = re;
+               rexi = rei;
+               cur_curlyx = NULL;
+               ST.B = next;
+               ST.prev_eval = cur_eval;
+               cur_eval = st;
+               /* now continue from first node in postoned RE */
+               PUSH_YES_STATE_GOTO(EVAL_AB, startpoint, locinput);
+                /* NOTREACHED */
+               NOT_REACHED; /* NOTREACHED */
+       }
+
+       case EVAL_AB: /* cleanup after a successful (??{A})B */
+           /* note: this is called twice; first after popping B, then A */
+           rex_sv = ST.prev_rex;
+            is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
+           SET_reg_curpm(rex_sv);
+           rex = ReANY(rex_sv);
+           rexi = RXi_GET(rex);
+            {
+                /* preserve $^R across LEAVE's. See Bug 121070. */
+                SV *save_sv= GvSV(PL_replgv);
+                SvREFCNT_inc(save_sv);
+                regcpblow(ST.cp); /* LEAVE in disguise */
+                sv_setsv(GvSV(PL_replgv), save_sv);
+                SvREFCNT_dec(save_sv);
+            }
+           cur_eval = ST.prev_eval;
+           cur_curlyx = ST.prev_curlyx;
+
+           /* Invalidate cache. See "invalidate" comment above. */
+           reginfo->poscache_maxiter = 0;
+            if ( nochange_depth )
+               nochange_depth--;
+           sayYES;
+
+
+       case EVAL_AB_fail: /* unsuccessfully ran A or B in (??{A})B */
+           /* note: this is called twice; first after popping B, then A */
+           rex_sv = ST.prev_rex;
+            is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
+           SET_reg_curpm(rex_sv);
+           rex = ReANY(rex_sv);
+           rexi = RXi_GET(rex); 
+
+           REGCP_UNWIND(ST.lastcp);
+           regcppop(rex, &maxopenparen);
+           cur_eval = ST.prev_eval;
+           cur_curlyx = ST.prev_curlyx;
+           /* Invalidate cache. See "invalidate" comment above. */
+           reginfo->poscache_maxiter = 0;
+           if ( nochange_depth )
+               nochange_depth--;
+           sayNO_SILENT;
+#undef ST
+
+       case OPEN: /*  (  */
+           n = ARG(scan);  /* which paren pair */
+           rex->offs[n].start_tmp = locinput - reginfo->strbeg;
+           if (n > maxopenparen)
+               maxopenparen = n;
+           DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+               "rex=0x%"UVxf" offs=0x%"UVxf": \\%"UVuf": set %"IVdf" tmp; maxopenparen=%"UVuf"\n",
+               PTR2UV(rex),
+               PTR2UV(rex->offs),
+               (UV)n,
+               (IV)rex->offs[n].start_tmp,
+               (UV)maxopenparen
+           ));
+            lastopen = n;
+           break;
+
+/* XXX really need to log other places start/end are set too */
+#define CLOSE_CAPTURE \
+    rex->offs[n].start = rex->offs[n].start_tmp; \
+    rex->offs[n].end = locinput - reginfo->strbeg; \
+    DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log, \
+       "rex=0x%"UVxf" offs=0x%"UVxf": \\%"UVuf": set %"IVdf"..%"IVdf"\n", \
+       PTR2UV(rex), \
+       PTR2UV(rex->offs), \
+       (UV)n, \
+       (IV)rex->offs[n].start, \
+       (IV)rex->offs[n].end \
+    ))
+
+       case CLOSE:  /*  )  */
+           n = ARG(scan);  /* which paren pair */
+           CLOSE_CAPTURE;
+           if (n > rex->lastparen)
+               rex->lastparen = n;
+           rex->lastcloseparen = n;
+            if (cur_eval && cur_eval->u.eval.close_paren == n) {
+               goto fake_end;
+           }    
+           break;
+
+        case ACCEPT:  /*  (*ACCEPT)  */
+            if (ARG(scan)){
+                regnode *cursor;
+                for (cursor=scan;
+                     cursor && OP(cursor)!=END; 
+                     cursor=regnext(cursor)) 
+                {
+                    if ( OP(cursor)==CLOSE ){
+                        n = ARG(cursor);
+                        if ( n <= lastopen ) {
+                           CLOSE_CAPTURE;
+                            if (n > rex->lastparen)
+                                rex->lastparen = n;
+                            rex->lastcloseparen = n;
+                            if ( n == ARG(scan) || (cur_eval &&
+                                cur_eval->u.eval.close_paren == n))
+                                break;
+                        }
+                    }
+                }
+            }
+           goto fake_end;
+           /* NOTREACHED */
+
+       case GROUPP:  /*  (?(1))  */
+           n = ARG(scan);  /* which paren pair */
+           sw = cBOOL(rex->lastparen >= n && rex->offs[n].end != -1);
+           break;
+
+       case NGROUPP:  /*  (?(<name>))  */
+           /* reg_check_named_buff_matched returns 0 for no match */
+           sw = cBOOL(0 < reg_check_named_buff_matched(rex,scan));
+           break;
+
+        case INSUBP:   /*  (?(R))  */
+            n = ARG(scan);
+            sw = (cur_eval && (!n || cur_eval->u.eval.close_paren == n));
+            break;
+
+        case DEFINEP:  /*  (?(DEFINE))  */
+            sw = 0;
+            break;
+
+       case IFTHEN:   /*  (?(cond)A|B)  */
+           reginfo->poscache_iter = reginfo->poscache_maxiter; /* Void cache */
+           if (sw)
+               next = NEXTOPER(NEXTOPER(scan));
+           else {
+               next = scan + ARG(scan);
+               if (OP(next) == IFTHEN) /* Fake one. */
+                   next = NEXTOPER(NEXTOPER(next));
+           }
+           break;
+
+       case LOGICAL:  /* modifier for EVAL and IFMATCH */
+           logical = scan->flags;
+           break;
+
+/*******************************************************************
+
+The CURLYX/WHILEM pair of ops handle the most generic case of the /A*B/
+pattern, where A and B are subpatterns. (For simple A, CURLYM or
+STAR/PLUS/CURLY/CURLYN are used instead.)
+
+A*B is compiled as <CURLYX><A><WHILEM><B>
+
+On entry to the subpattern, CURLYX is called. This pushes a CURLYX
+state, which contains the current count, initialised to -1. It also sets
+cur_curlyx to point to this state, with any previous value saved in the
+state block.
+
+CURLYX then jumps straight to the WHILEM op, rather than executing A,
+since the pattern may possibly match zero times (i.e. it's a while {} loop
+rather than a do {} while loop).
+
+Each entry to WHILEM represents a successful match of A. The count in the
+CURLYX block is incremented, another WHILEM state is pushed, and execution
+passes to A or B depending on greediness and the current count.
+
+For example, if matching against the string a1a2a3b (where the aN are
+substrings that match /A/), then the match progresses as follows: (the
+pushed states are interspersed with the bits of strings matched so far):
+
+    <CURLYX cnt=-1>
+    <CURLYX cnt=0><WHILEM>
+    <CURLYX cnt=1><WHILEM> a1 <WHILEM>
+    <CURLYX cnt=2><WHILEM> a1 <WHILEM> a2 <WHILEM>
+    <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM>
+    <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM> b
+
+(Contrast this with something like CURLYM, which maintains only a single
+backtrack state:
+
+    <CURLYM cnt=0> a1
+    a1 <CURLYM cnt=1> a2
+    a1 a2 <CURLYM cnt=2> a3
+    a1 a2 a3 <CURLYM cnt=3> b
+)
+
+Each WHILEM state block marks a point to backtrack to upon partial failure
+of A or B, and also contains some minor state data related to that
+iteration.  The CURLYX block, pointed to by cur_curlyx, contains the
+overall state, such as the count, and pointers to the A and B ops.
+
+This is complicated slightly by nested CURLYX/WHILEM's. Since cur_curlyx
+must always point to the *current* CURLYX block, the rules are:
+
+When executing CURLYX, save the old cur_curlyx in the CURLYX state block,
+and set cur_curlyx to point the new block.
+
+When popping the CURLYX block after a successful or unsuccessful match,
+restore the previous cur_curlyx.
+
+When WHILEM is about to execute B, save the current cur_curlyx, and set it
+to the outer one saved in the CURLYX block.
+
+When popping the WHILEM block after a successful or unsuccessful B match,
+restore the previous cur_curlyx.
+
+Here's an example for the pattern (AI* BI)*BO
+I and O refer to inner and outer, C and W refer to CURLYX and WHILEM:
+
+cur_
+curlyx backtrack stack
+------ ---------------
+NULL   
+CO     <CO prev=NULL> <WO>
+CI     <CO prev=NULL> <WO> <CI prev=CO> <WI> ai 
+CO     <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi 
+NULL   <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi <WO prev=CO> bo
+
+At this point the pattern succeeds, and we work back down the stack to
+clean up, restoring as we go:
+
+CO     <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi 
+CI     <CO prev=NULL> <WO> <CI prev=CO> <WI> ai 
+CO     <CO prev=NULL> <WO>
+NULL   
+
+*******************************************************************/
+
+#define ST st->u.curlyx
+
+       case CURLYX:    /* start of /A*B/  (for complex A) */
+       {
+           /* No need to save/restore up to this paren */
+           I32 parenfloor = scan->flags;
+           
+           assert(next); /* keep Coverity happy */
+           if (OP(PREVOPER(next)) == NOTHING) /* LONGJMP */
+               next += ARG(next);
+
+           /* XXXX Probably it is better to teach regpush to support
+              parenfloor > maxopenparen ... */
+           if (parenfloor > (I32)rex->lastparen)
+               parenfloor = rex->lastparen; /* Pessimization... */
+
+           ST.prev_curlyx= cur_curlyx;
+           cur_curlyx = st;
+           ST.cp = PL_savestack_ix;
+
+           /* these fields contain the state of the current curly.
+            * they are accessed by subsequent WHILEMs */
+           ST.parenfloor = parenfloor;
+           ST.me = scan;
+           ST.B = next;
+           ST.minmod = minmod;
+           minmod = 0;
+           ST.count = -1;      /* this will be updated by WHILEM */
+           ST.lastloc = NULL;  /* this will be updated by WHILEM */
+
+           PUSH_YES_STATE_GOTO(CURLYX_end, PREVOPER(next), locinput);
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+       }
+
+       case CURLYX_end: /* just finished matching all of A*B */
+           cur_curlyx = ST.prev_curlyx;
+           sayYES;
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+       case CURLYX_end_fail: /* just failed to match all of A*B */
+           regcpblow(ST.cp);
+           cur_curlyx = ST.prev_curlyx;
+           sayNO;
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+
+#undef ST
+#define ST st->u.whilem
+
+       case WHILEM:     /* just matched an A in /A*B/  (for complex A) */
+       {
+           /* see the discussion above about CURLYX/WHILEM */
+           I32 n;
+           int min, max;
+           regnode *A;
+
+           assert(cur_curlyx); /* keep Coverity happy */
+
+           min = ARG1(cur_curlyx->u.curlyx.me);
+           max = ARG2(cur_curlyx->u.curlyx.me);
+           A = NEXTOPER(cur_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS;
+           n = ++cur_curlyx->u.curlyx.count; /* how many A's matched */
+           ST.save_lastloc = cur_curlyx->u.curlyx.lastloc;
+           ST.cache_offset = 0;
+           ST.cache_mask = 0;
+           
+
+           DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+                 "%*s  whilem: matched %ld out of %d..%d\n",
+                 REPORT_CODE_OFF+depth*2, "", (long)n, min, max)
+           );
+
+           /* First just match a string of min A's. */
+
+           if (n < min) {
+               ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
+                                    maxopenparen);
+               cur_curlyx->u.curlyx.lastloc = locinput;
+               REGCP_SET(ST.lastcp);
+
+               PUSH_STATE_GOTO(WHILEM_A_pre, A, locinput);
+                /* NOTREACHED */
+               NOT_REACHED; /* NOTREACHED */
+           }
+
+           /* If degenerate A matches "", assume A done. */
+
+           if (locinput == cur_curlyx->u.curlyx.lastloc) {
+               DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+                  "%*s  whilem: empty match detected, trying continuation...\n",
+                  REPORT_CODE_OFF+depth*2, "")
+               );
+               goto do_whilem_B_max;
+           }
+
+           /* super-linear cache processing.
+             *
+             * The idea here is that for certain types of CURLYX/WHILEM -
+             * principally those whose upper bound is infinity (and
+             * excluding regexes that have things like \1 and other very
+             * non-regular expresssiony things), then if a pattern like
+             * /....A*.../ fails and we backtrack to the WHILEM, then we
+             * make a note that this particular WHILEM op was at string
+             * position 47 (say) when the rest of pattern failed. Then, if
+             * we ever find ourselves back at that WHILEM, and at string
+             * position 47 again, we can just fail immediately rather than
+             * running the rest of the pattern again.
+             *
+             * This is very handy when patterns start to go
+             * 'super-linear', like in (a+)*(a+)*(a+)*, where you end up
+             * with a combinatorial explosion of backtracking.
+             *
+             * The cache is implemented as a bit array, with one bit per
+             * string byte position per WHILEM op (up to 16) - so its
+             * between 0.25 and 2x the string size.
+             *
+             * To avoid allocating a poscache buffer every time, we do an
+             * initially countdown; only after we have  executed a WHILEM
+             * op (string-length x #WHILEMs) times do we allocate the
+             * cache.
+             *
+             * The top 4 bits of scan->flags byte say how many different
+             * relevant CURLLYX/WHILEM op pairs there are, while the
+             * bottom 4-bits is the identifying index number of this
+             * WHILEM.
+             */
+
+           if (scan->flags) {
+
+               if (!reginfo->poscache_maxiter) {
+                   /* start the countdown: Postpone detection until we
+                    * know the match is not *that* much linear. */
+                   reginfo->poscache_maxiter
+                        =    (reginfo->strend - reginfo->strbeg + 1)
+                           * (scan->flags>>4);
+                   /* possible overflow for long strings and many CURLYX's */
+                   if (reginfo->poscache_maxiter < 0)
+                       reginfo->poscache_maxiter = I32_MAX;
+                   reginfo->poscache_iter = reginfo->poscache_maxiter;
+               }
+
+               if (reginfo->poscache_iter-- == 0) {
+                   /* initialise cache */
+                   const SSize_t size = (reginfo->poscache_maxiter + 7)/8;
+                    regmatch_info_aux *const aux = reginfo->info_aux;
+                   if (aux->poscache) {
+                       if ((SSize_t)reginfo->poscache_size < size) {
+                           Renew(aux->poscache, size, char);
+                           reginfo->poscache_size = size;
+                       }
+                       Zero(aux->poscache, size, char);
+                   }
+                   else {
+                       reginfo->poscache_size = size;
+                       Newxz(aux->poscache, size, char);
+                   }
+                   DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+      "%swhilem: Detected a super-linear match, switching on caching%s...\n",
+                             PL_colors[4], PL_colors[5])
+                   );
+               }
+
+               if (reginfo->poscache_iter < 0) {
+                   /* have we already failed at this position? */
+                   SSize_t offset, mask;
+
+                    reginfo->poscache_iter = -1; /* stop eventual underflow */
+                   offset  = (scan->flags & 0xf) - 1
+                                +   (locinput - reginfo->strbeg)
+                                  * (scan->flags>>4);
+                   mask    = 1 << (offset % 8);
+                   offset /= 8;
+                   if (reginfo->info_aux->poscache[offset] & mask) {
+                       DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+                           "%*s  whilem: (cache) already tried at this position...\n",
+                           REPORT_CODE_OFF+depth*2, "")
+                       );
+                       sayNO; /* cache records failure */
+                   }
+                   ST.cache_offset = offset;
+                   ST.cache_mask   = mask;
+               }
+           }
+
+           /* Prefer B over A for minimal matching. */
+
+           if (cur_curlyx->u.curlyx.minmod) {
+               ST.save_curlyx = cur_curlyx;
+               cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
+               ST.cp = regcppush(rex, ST.save_curlyx->u.curlyx.parenfloor,
+                            maxopenparen);
+               REGCP_SET(ST.lastcp);
+               PUSH_YES_STATE_GOTO(WHILEM_B_min, ST.save_curlyx->u.curlyx.B,
+                                    locinput);
+                /* NOTREACHED */
+               NOT_REACHED; /* NOTREACHED */
+           }
+
+           /* Prefer A over B for maximal matching. */
+
+           if (n < max) { /* More greed allowed? */
+               ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
+                            maxopenparen);
+               cur_curlyx->u.curlyx.lastloc = locinput;
+               REGCP_SET(ST.lastcp);
+               PUSH_STATE_GOTO(WHILEM_A_max, A, locinput);
+                /* NOTREACHED */
+               NOT_REACHED; /* NOTREACHED */
+           }
+           goto do_whilem_B_max;
+       }
+        /* NOTREACHED */
+       NOT_REACHED; /* NOTREACHED */
+
+       case WHILEM_B_min: /* just matched B in a minimal match */
+       case WHILEM_B_max: /* just matched B in a maximal match */
+           cur_curlyx = ST.save_curlyx;
+           sayYES;
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+       case WHILEM_B_max_fail: /* just failed to match B in a maximal match */
+           cur_curlyx = ST.save_curlyx;
+           cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
+           cur_curlyx->u.curlyx.count--;
+           CACHEsayNO;
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+       case WHILEM_A_min_fail: /* just failed to match A in a minimal match */
+           /* FALLTHROUGH */
+       case WHILEM_A_pre_fail: /* just failed to match even minimal A */
+           REGCP_UNWIND(ST.lastcp);
+           regcppop(rex, &maxopenparen);
+           cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
+           cur_curlyx->u.curlyx.count--;
+           CACHEsayNO;
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+       case WHILEM_A_max_fail: /* just failed to match A in a maximal match */
+           REGCP_UNWIND(ST.lastcp);
+           regcppop(rex, &maxopenparen); /* Restore some previous $<digit>s? */
+           DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+               "%*s  whilem: failed, trying continuation...\n",
+               REPORT_CODE_OFF+depth*2, "")
+           );
+         do_whilem_B_max:
+           if (cur_curlyx->u.curlyx.count >= REG_INFTY
+               && ckWARN(WARN_REGEXP)
+               && !reginfo->warned)
+           {
+                reginfo->warned        = TRUE;
+               Perl_warner(aTHX_ packWARN(WARN_REGEXP),
+                    "Complex regular subexpression recursion limit (%d) "
+                    "exceeded",
+                    REG_INFTY - 1);
+           }
+
+           /* now try B */
+           ST.save_curlyx = cur_curlyx;
+           cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
+           PUSH_YES_STATE_GOTO(WHILEM_B_max, ST.save_curlyx->u.curlyx.B,
+                                locinput);
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+       case WHILEM_B_min_fail: /* just failed to match B in a minimal match */
+           cur_curlyx = ST.save_curlyx;
+           REGCP_UNWIND(ST.lastcp);
+           regcppop(rex, &maxopenparen);
+
+           if (cur_curlyx->u.curlyx.count >= /*max*/ARG2(cur_curlyx->u.curlyx.me)) {
+               /* Maximum greed exceeded */
+               if (cur_curlyx->u.curlyx.count >= REG_INFTY
+                   && ckWARN(WARN_REGEXP)
+                    && !reginfo->warned)
+               {
+                    reginfo->warned    = TRUE;
+                   Perl_warner(aTHX_ packWARN(WARN_REGEXP),
+                       "Complex regular subexpression recursion "
+                       "limit (%d) exceeded",
+                       REG_INFTY - 1);
+               }
+               cur_curlyx->u.curlyx.count--;
+               CACHEsayNO;
+           }
+
+           DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+               "%*s  trying longer...\n", REPORT_CODE_OFF+depth*2, "")
+           );
+           /* Try grabbing another A and see if it helps. */
+           cur_curlyx->u.curlyx.lastloc = locinput;
+           ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
+                            maxopenparen);
+           REGCP_SET(ST.lastcp);
+           PUSH_STATE_GOTO(WHILEM_A_min,
+               /*A*/ NEXTOPER(ST.save_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS,
+                locinput);
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+#undef  ST
+#define ST st->u.branch
+
+       case BRANCHJ:       /*  /(...|A|...)/ with long next pointer */
+           next = scan + ARG(scan);
+           if (next == scan)
+               next = NULL;
+           scan = NEXTOPER(scan);
+           /* FALLTHROUGH */
+
+       case BRANCH:        /*  /(...|A|...)/ */
+           scan = NEXTOPER(scan); /* scan now points to inner node */
+           ST.lastparen = rex->lastparen;
+           ST.lastcloseparen = rex->lastcloseparen;
+           ST.next_branch = next;
+           REGCP_SET(ST.cp);
+
+           /* Now go into the branch */
+           if (has_cutgroup) {
+               PUSH_YES_STATE_GOTO(BRANCH_next, scan, locinput);
+           } else {
+               PUSH_STATE_GOTO(BRANCH_next, scan, locinput);
+           }
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+        case CUTGROUP:  /*  /(*THEN)/  */
+            sv_yes_mark = st->u.mark.mark_name = scan->flags ? NULL :
+                MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+            PUSH_STATE_GOTO(CUTGROUP_next, next, locinput);
+            /* NOTREACHED */
+            NOT_REACHED; /* NOTREACHED */
+
+        case CUTGROUP_next_fail:
+            do_cutgroup = 1;
+            no_final = 1;
+            if (st->u.mark.mark_name)
+                sv_commit = st->u.mark.mark_name;
+            sayNO;         
+            /* NOTREACHED */
+            NOT_REACHED; /* NOTREACHED */
+
+        case BRANCH_next:
+            sayYES;
+            /* NOTREACHED */
+            NOT_REACHED; /* NOTREACHED */
+
+       case BRANCH_next_fail: /* that branch failed; try the next, if any */
+           if (do_cutgroup) {
+               do_cutgroup = 0;
+               no_final = 0;
+           }
+           REGCP_UNWIND(ST.cp);
+            UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+           scan = ST.next_branch;
+           /* no more branches? */
+           if (!scan || (OP(scan) != BRANCH && OP(scan) != BRANCHJ)) {
+               DEBUG_EXECUTE_r({
+                   PerlIO_printf( Perl_debug_log,
+                       "%*s  %sBRANCH failed...%s\n",
+                       REPORT_CODE_OFF+depth*2, "", 
+                       PL_colors[4],
+                       PL_colors[5] );
+               });
+               sayNO_SILENT;
+            }
+           continue; /* execute next BRANCH[J] op */
+            /* NOTREACHED */
+    
+       case MINMOD: /* next op will be non-greedy, e.g. A*?  */
+           minmod = 1;
+           break;
+
+#undef  ST
+#define ST st->u.curlym
+
+       case CURLYM:    /* /A{m,n}B/ where A is fixed-length */
+
+           /* This is an optimisation of CURLYX that enables us to push
+            * only a single backtracking state, no matter how many matches
+            * there are in {m,n}. It relies on the pattern being constant
+            * length, with no parens to influence future backrefs
+            */
+
+           ST.me = scan;
+           scan = NEXTOPER(scan) + NODE_STEP_REGNODE;
+
+           ST.lastparen      = rex->lastparen;
+           ST.lastcloseparen = rex->lastcloseparen;
+
+           /* if paren positive, emulate an OPEN/CLOSE around A */
+           if (ST.me->flags) {
+               U32 paren = ST.me->flags;
+               if (paren > maxopenparen)
+                   maxopenparen = paren;
+               scan += NEXT_OFF(scan); /* Skip former OPEN. */
+           }
+           ST.A = scan;
+           ST.B = next;
+           ST.alen = 0;
+           ST.count = 0;
+           ST.minmod = minmod;
+           minmod = 0;
+           ST.c1 = CHRTEST_UNINIT;
+           REGCP_SET(ST.cp);
+
+           if (!(ST.minmod ? ARG1(ST.me) : ARG2(ST.me))) /* min/max */
+               goto curlym_do_B;
+
+         curlym_do_A: /* execute the A in /A{m,n}B/  */
+           PUSH_YES_STATE_GOTO(CURLYM_A, ST.A, locinput); /* match A */
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+       case CURLYM_A: /* we've just matched an A */
+           ST.count++;
+           /* after first match, determine A's length: u.curlym.alen */
+           if (ST.count == 1) {
+               if (reginfo->is_utf8_target) {
+                   char *s = st->locinput;
+                   while (s < locinput) {
+                       ST.alen++;
+                       s += UTF8SKIP(s);
+                   }
+               }
+               else {
+                   ST.alen = locinput - st->locinput;
+               }
+               if (ST.alen == 0)
+                   ST.count = ST.minmod ? ARG1(ST.me) : ARG2(ST.me);
+           }
+           DEBUG_EXECUTE_r(
+               PerlIO_printf(Perl_debug_log,
+                         "%*s  CURLYM now matched %"IVdf" times, len=%"IVdf"...\n",
+                         (int)(REPORT_CODE_OFF+(depth*2)), "",
+                         (IV) ST.count, (IV)ST.alen)
+           );
+
+           if (cur_eval && cur_eval->u.eval.close_paren && 
+               cur_eval->u.eval.close_paren == (U32)ST.me->flags) 
+               goto fake_end;
+               
+           {
+               I32 max = (ST.minmod ? ARG1(ST.me) : ARG2(ST.me));
+               if ( max == REG_INFTY || ST.count < max )
+                   goto curlym_do_A; /* try to match another A */
+           }
+           goto curlym_do_B; /* try to match B */
+
+       case CURLYM_A_fail: /* just failed to match an A */
+           REGCP_UNWIND(ST.cp);
+
+           if (ST.minmod || ST.count < ARG1(ST.me) /* min*/ 
+               || (cur_eval && cur_eval->u.eval.close_paren &&
+                   cur_eval->u.eval.close_paren == (U32)ST.me->flags))
+               sayNO;
+
+         curlym_do_B: /* execute the B in /A{m,n}B/  */
+           if (ST.c1 == CHRTEST_UNINIT) {
+               /* calculate c1 and c2 for possible match of 1st char
+                * following curly */
+               ST.c1 = ST.c2 = CHRTEST_VOID;
+                assert(ST.B);
+               if (HAS_TEXT(ST.B) || JUMPABLE(ST.B)) {
+                   regnode *text_node = ST.B;
+                   if (! HAS_TEXT(text_node))
+                       FIND_NEXT_IMPT(text_node);
+                   /* this used to be 
+                       
+                       (HAS_TEXT(text_node) && PL_regkind[OP(text_node)] == EXACT)
+                       
+                       But the former is redundant in light of the latter.
+                       
+                       if this changes back then the macro for 
+                       IS_TEXT and friends need to change.
+                    */
+                   if (PL_regkind[OP(text_node)] == EXACT) {
+                        if (! S_setup_EXACTISH_ST_c1_c2(aTHX_
+                           text_node, &ST.c1, ST.c1_utf8, &ST.c2, ST.c2_utf8,
+                           reginfo))
+                        {
+                            sayNO;
+                        }
+                   }
+               }
+           }
+
+           DEBUG_EXECUTE_r(
+               PerlIO_printf(Perl_debug_log,
+                   "%*s  CURLYM trying tail with matches=%"IVdf"...\n",
+                   (int)(REPORT_CODE_OFF+(depth*2)),
+                   "", (IV)ST.count)
+               );
+           if (! NEXTCHR_IS_EOS && ST.c1 != CHRTEST_VOID) {
+                if (! UTF8_IS_INVARIANT(nextchr) && utf8_target) {
+                    if (memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput))
+                        && memNE(locinput, ST.c2_utf8, UTF8SKIP(locinput)))
+                    {
+                        /* simulate B failing */
+                        DEBUG_OPTIMISE_r(
+                            PerlIO_printf(Perl_debug_log,
+                                "%*s  CURLYM Fast bail next target=0x%"UVXf" c1=0x%"UVXf" c2=0x%"UVXf"\n",
+                                (int)(REPORT_CODE_OFF+(depth*2)),"",
+                                valid_utf8_to_uvchr((U8 *) locinput, NULL),
+                                valid_utf8_to_uvchr(ST.c1_utf8, NULL),
+                                valid_utf8_to_uvchr(ST.c2_utf8, NULL))
+                        );
+                        state_num = CURLYM_B_fail;
+                        goto reenter_switch;
+                    }
+                }
+                else if (nextchr != ST.c1 && nextchr != ST.c2) {
+                    /* simulate B failing */
+                    DEBUG_OPTIMISE_r(
+                        PerlIO_printf(Perl_debug_log,
+                            "%*s  CURLYM Fast bail next target=0x%X c1=0x%X c2=0x%X\n",
+                            (int)(REPORT_CODE_OFF+(depth*2)),"",
+                            (int) nextchr, ST.c1, ST.c2)
+                    );
+                    state_num = CURLYM_B_fail;
+                    goto reenter_switch;
+                }
+            }
+
+           if (ST.me->flags) {
+               /* emulate CLOSE: mark current A as captured */
+               I32 paren = ST.me->flags;
+               if (ST.count) {
+                   rex->offs[paren].start
+                       = HOPc(locinput, -ST.alen) - reginfo->strbeg;
+                   rex->offs[paren].end = locinput - reginfo->strbeg;
+                   if ((U32)paren > rex->lastparen)
+                       rex->lastparen = paren;
+                   rex->lastcloseparen = paren;
+               }
+               else
+                   rex->offs[paren].end = -1;
+               if (cur_eval && cur_eval->u.eval.close_paren &&
+                   cur_eval->u.eval.close_paren == (U32)ST.me->flags) 
+               {
+                   if (ST.count) 
+                       goto fake_end;
+                   else
+                       sayNO;
+               }
+           }
+           
+           PUSH_STATE_GOTO(CURLYM_B, ST.B, locinput); /* match B */
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+       case CURLYM_B_fail: /* just failed to match a B */
+           REGCP_UNWIND(ST.cp);
+            UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+           if (ST.minmod) {
+               I32 max = ARG2(ST.me);
+               if (max != REG_INFTY && ST.count == max)
+                   sayNO;
+               goto curlym_do_A; /* try to match a further A */
+           }
+           /* backtrack one A */
+           if (ST.count == ARG1(ST.me) /* min */)
+               sayNO;
+           ST.count--;
+           SET_locinput(HOPc(locinput, -ST.alen));
+           goto curlym_do_B; /* try to match B */
+
+#undef ST
+#define ST st->u.curly
+
+#define CURLY_SETPAREN(paren, success) \
+    if (paren) { \
+       if (success) { \
+           rex->offs[paren].start = HOPc(locinput, -1) - reginfo->strbeg; \
+           rex->offs[paren].end = locinput - reginfo->strbeg; \
+           if (paren > rex->lastparen) \
+               rex->lastparen = paren; \
+           rex->lastcloseparen = paren; \
+       } \
+       else { \
+           rex->offs[paren].end = -1; \
+           rex->lastparen      = ST.lastparen; \
+           rex->lastcloseparen = ST.lastcloseparen; \
+       } \
+    }
+
+        case STAR:             /*  /A*B/ where A is width 1 char */
+           ST.paren = 0;
+           ST.min = 0;
+           ST.max = REG_INFTY;
+           scan = NEXTOPER(scan);
+           goto repeat;
+
+        case PLUS:             /*  /A+B/ where A is width 1 char */
+           ST.paren = 0;
+           ST.min = 1;
+           ST.max = REG_INFTY;
+           scan = NEXTOPER(scan);
+           goto repeat;
+
+       case CURLYN:            /*  /(A){m,n}B/ where A is width 1 char */
+            ST.paren = scan->flags;    /* Which paren to set */
+            ST.lastparen      = rex->lastparen;
+           ST.lastcloseparen = rex->lastcloseparen;
+           if (ST.paren > maxopenparen)
+               maxopenparen = ST.paren;
+           ST.min = ARG1(scan);  /* min to match */
+           ST.max = ARG2(scan);  /* max to match */
+           if (cur_eval && cur_eval->u.eval.close_paren &&
+               cur_eval->u.eval.close_paren == (U32)ST.paren) {
+               ST.min=1;
+               ST.max=1;
+           }
+            scan = regnext(NEXTOPER(scan) + NODE_STEP_REGNODE);
+           goto repeat;
+
+       case CURLY:             /*  /A{m,n}B/ where A is width 1 char */
+           ST.paren = 0;
+           ST.min = ARG1(scan);  /* min to match */
+           ST.max = ARG2(scan);  /* max to match */
+           scan = NEXTOPER(scan) + NODE_STEP_REGNODE;
+         repeat:
+           /*
+           * Lookahead to avoid useless match attempts
+           * when we know what character comes next.
+           *
+           * Used to only do .*x and .*?x, but now it allows
+           * for )'s, ('s and (?{ ... })'s to be in the way
+           * of the quantifier and the EXACT-like node.  -- japhy
+           */
+
+           assert(ST.min <= ST.max);
+            if (! HAS_TEXT(next) && ! JUMPABLE(next)) {
+                ST.c1 = ST.c2 = CHRTEST_VOID;
+            }
+            else {
+               regnode *text_node = next;
+
+               if (! HAS_TEXT(text_node)) 
+                   FIND_NEXT_IMPT(text_node);
+
+               if (! HAS_TEXT(text_node))
+                   ST.c1 = ST.c2 = CHRTEST_VOID;
+               else {
+                   if ( PL_regkind[OP(text_node)] != EXACT ) {
+                       ST.c1 = ST.c2 = CHRTEST_VOID;
+                   }
+                   else {
+                    
+                    /*  Currently we only get here when 
+                        
+                        PL_rekind[OP(text_node)] == EXACT
+                    
+                        if this changes back then the macro for IS_TEXT and 
+                        friends need to change. */
+                        if (! S_setup_EXACTISH_ST_c1_c2(aTHX_
+                           text_node, &ST.c1, ST.c1_utf8, &ST.c2, ST.c2_utf8,
+                           reginfo))
+                        {
+                            sayNO;
+                        }
+                    }
+               }
+           }
+
+           ST.A = scan;
+           ST.B = next;
+           if (minmod) {
+                char *li = locinput;
+               minmod = 0;
+               if (ST.min &&
+                        regrepeat(rex, &li, ST.A, reginfo, ST.min, depth)
+                            < ST.min)
+                   sayNO;
+                SET_locinput(li);
+               ST.count = ST.min;
+               REGCP_SET(ST.cp);
+               if (ST.c1 == CHRTEST_VOID)
+                   goto curly_try_B_min;
+
+               ST.oldloc = locinput;
+
+               /* set ST.maxpos to the furthest point along the
+                * string that could possibly match */
+               if  (ST.max == REG_INFTY) {
+                   ST.maxpos = reginfo->strend - 1;
+                   if (utf8_target)
+                       while (UTF8_IS_CONTINUATION(*(U8*)ST.maxpos))
+                           ST.maxpos--;
+               }
+               else if (utf8_target) {
+                   int m = ST.max - ST.min;
+                   for (ST.maxpos = locinput;
+                        m >0 && ST.maxpos < reginfo->strend; m--)
+                       ST.maxpos += UTF8SKIP(ST.maxpos);
+               }
+               else {
+                   ST.maxpos = locinput + ST.max - ST.min;
+                   if (ST.maxpos >= reginfo->strend)
+                       ST.maxpos = reginfo->strend - 1;
+               }
+               goto curly_try_B_min_known;
+
+           }
+           else {
+                /* avoid taking address of locinput, so it can remain
+                 * a register var */
+                char *li = locinput;
+               ST.count = regrepeat(rex, &li, ST.A, reginfo, ST.max, depth);
+               if (ST.count < ST.min)
+                   sayNO;
+                SET_locinput(li);
+               if ((ST.count > ST.min)
+                   && (PL_regkind[OP(ST.B)] == EOL) && (OP(ST.B) != MEOL))
+               {
+                   /* A{m,n} must come at the end of the string, there's
+                    * no point in backing off ... */
+                   ST.min = ST.count;
+                   /* ...except that $ and \Z can match before *and* after
+                      newline at the end.  Consider "\n\n" =~ /\n+\Z\n/.
+                      We may back off by one in this case. */
+                   if (UCHARAT(locinput - 1) == '\n' && OP(ST.B) != EOS)
+                       ST.min--;
+               }
+               REGCP_SET(ST.cp);
+               goto curly_try_B_max;
+           }
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+       case CURLY_B_min_known_fail:
+           /* failed to find B in a non-greedy match where c1,c2 valid */
+
+           REGCP_UNWIND(ST.cp);
+            if (ST.paren) {
+                UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+            }
+           /* Couldn't or didn't -- move forward. */
+           ST.oldloc = locinput;
+           if (utf8_target)
+               locinput += UTF8SKIP(locinput);
+           else
+               locinput++;
+           ST.count++;
+         curly_try_B_min_known:
+            /* find the next place where 'B' could work, then call B */
+           {
+               int n;
+               if (utf8_target) {
+                   n = (ST.oldloc == locinput) ? 0 : 1;
+                   if (ST.c1 == ST.c2) {
+                       /* set n to utf8_distance(oldloc, locinput) */
+                       while (locinput <= ST.maxpos
+                              && memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput)))
+                        {
+                           locinput += UTF8SKIP(locinput);
+                           n++;
+                       }
+                   }
+                   else {
+                       /* set n to utf8_distance(oldloc, locinput) */
+                       while (locinput <= ST.maxpos
+                              && memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput))
+                              && memNE(locinput, ST.c2_utf8, UTF8SKIP(locinput)))
+                        {
+                           locinput += UTF8SKIP(locinput);
+                           n++;
+                       }
+                   }
+               }
+               else {  /* Not utf8_target */
+                   if (ST.c1 == ST.c2) {
+                       while (locinput <= ST.maxpos &&
+                              UCHARAT(locinput) != ST.c1)
+                           locinput++;
+                   }
+                   else {
+                       while (locinput <= ST.maxpos
+                              && UCHARAT(locinput) != ST.c1
+                              && UCHARAT(locinput) != ST.c2)
+                           locinput++;
+                   }
+                   n = locinput - ST.oldloc;
+               }
+               if (locinput > ST.maxpos)
+                   sayNO;
+               if (n) {
+                    /* In /a{m,n}b/, ST.oldloc is at "a" x m, locinput is
+                     * at b; check that everything between oldloc and
+                     * locinput matches */
+                    char *li = ST.oldloc;
+                   ST.count += n;
+                   if (regrepeat(rex, &li, ST.A, reginfo, n, depth) < n)
+                       sayNO;
+                    assert(n == REG_INFTY || locinput == li);
+               }
+               CURLY_SETPAREN(ST.paren, ST.count);
+               if (cur_eval && cur_eval->u.eval.close_paren && 
+                   cur_eval->u.eval.close_paren == (U32)ST.paren) {
+                   goto fake_end;
+               }
+               PUSH_STATE_GOTO(CURLY_B_min_known, ST.B, locinput);
+           }
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+       case CURLY_B_min_fail:
+           /* failed to find B in a non-greedy match where c1,c2 invalid */
+
+           REGCP_UNWIND(ST.cp);
+            if (ST.paren) {
+                UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+            }
+           /* failed -- move forward one */
+            {
+                char *li = locinput;
+                if (!regrepeat(rex, &li, ST.A, reginfo, 1, depth)) {
+                    sayNO;
+                }
+                locinput = li;
+            }
+            {
+               ST.count++;
+               if (ST.count <= ST.max || (ST.max == REG_INFTY &&
+                       ST.count > 0)) /* count overflow ? */
+               {
+                 curly_try_B_min:
+                   CURLY_SETPAREN(ST.paren, ST.count);
+                   if (cur_eval && cur_eval->u.eval.close_paren &&
+                       cur_eval->u.eval.close_paren == (U32)ST.paren) {
+                        goto fake_end;
+                    }
+                   PUSH_STATE_GOTO(CURLY_B_min, ST.B, locinput);
+               }
+           }
+            sayNO;
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+          curly_try_B_max:
+           /* a successful greedy match: now try to match B */
+            if (cur_eval && cur_eval->u.eval.close_paren &&
+                cur_eval->u.eval.close_paren == (U32)ST.paren) {
+                goto fake_end;
+            }
+           {
+               bool could_match = locinput < reginfo->strend;
+
+               /* If it could work, try it. */
+                if (ST.c1 != CHRTEST_VOID && could_match) {
+                    if (! UTF8_IS_INVARIANT(UCHARAT(locinput)) && utf8_target)
+                    {
+                        could_match = memEQ(locinput,
+                                            ST.c1_utf8,
+                                            UTF8SKIP(locinput))
+                                    || memEQ(locinput,
+                                             ST.c2_utf8,
+                                             UTF8SKIP(locinput));
+                    }
+                    else {
+                        could_match = UCHARAT(locinput) == ST.c1
+                                      || UCHARAT(locinput) == ST.c2;
+                    }
+                }
+                if (ST.c1 == CHRTEST_VOID || could_match) {
+                   CURLY_SETPAREN(ST.paren, ST.count);
+                   PUSH_STATE_GOTO(CURLY_B_max, ST.B, locinput);
+                    /* NOTREACHED */
+                   NOT_REACHED; /* NOTREACHED */
+               }
+           }
+           /* FALLTHROUGH */
+
+       case CURLY_B_max_fail:
+           /* failed to find B in a greedy match */
+
+           REGCP_UNWIND(ST.cp);
+            if (ST.paren) {
+                UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+            }
+           /*  back up. */
+           if (--ST.count < ST.min)
+               sayNO;
+           locinput = HOPc(locinput, -1);
+           goto curly_try_B_max;
+
+#undef ST
+
+       case END: /*  last op of main pattern  */
+          fake_end:
+           if (cur_eval) {
+               /* we've just finished A in /(??{A})B/; now continue with B */
+
+               st->u.eval.prev_rex = rex_sv;           /* inner */
+
+                /* Save *all* the positions. */
+               st->u.eval.cp = regcppush(rex, 0, maxopenparen);
+               rex_sv = cur_eval->u.eval.prev_rex;
+               is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
+               SET_reg_curpm(rex_sv);
+               rex = ReANY(rex_sv);
+               rexi = RXi_GET(rex);
+               cur_curlyx = cur_eval->u.eval.prev_curlyx;
+
+               REGCP_SET(st->u.eval.lastcp);
+
+               /* Restore parens of the outer rex without popping the
+                * savestack */
+               S_regcp_restore(aTHX_ rex, cur_eval->u.eval.lastcp,
+                                        &maxopenparen);
+
+               st->u.eval.prev_eval = cur_eval;
+               cur_eval = cur_eval->u.eval.prev_eval;
+               DEBUG_EXECUTE_r(
+                   PerlIO_printf(Perl_debug_log, "%*s  EVAL trying tail ... %"UVxf"\n",
+                                     REPORT_CODE_OFF+depth*2, "",PTR2UV(cur_eval)););
+                if ( nochange_depth )
+                   nochange_depth--;
+
+                PUSH_YES_STATE_GOTO(EVAL_AB, st->u.eval.prev_eval->u.eval.B,
+                                    locinput); /* match B */
+           }
+
+           if (locinput < reginfo->till) {
+               DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                                     "%sMatch possible, but length=%ld is smaller than requested=%ld, failing!%s\n",
+                                     PL_colors[4],
+                                     (long)(locinput - startpos),
+                                     (long)(reginfo->till - startpos),
+                                     PL_colors[5]));
+                                                     
+               sayNO_SILENT;           /* Cannot match: too short. */
+           }
+           sayYES;                     /* Success! */
+
+       case SUCCEED: /* successful SUSPEND/UNLESSM/IFMATCH/CURLYM */
+           DEBUG_EXECUTE_r(
+           PerlIO_printf(Perl_debug_log,
+               "%*s  %ssubpattern success...%s\n",
+               REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5]));
+           sayYES;                     /* Success! */
+
+#undef  ST
+#define ST st->u.ifmatch
+
+        {
+            char *newstart;
+
+       case SUSPEND:   /* (?>A) */
+           ST.wanted = 1;
+           newstart = locinput;
+           goto do_ifmatch;    
+
+       case UNLESSM:   /* -ve lookaround: (?!A), or with flags, (?<!A) */
+           ST.wanted = 0;
+           goto ifmatch_trivial_fail_test;
+
+       case IFMATCH:   /* +ve lookaround: (?=A), or with flags, (?<=A) */
+           ST.wanted = 1;
+         ifmatch_trivial_fail_test:
+           if (scan->flags) {
+               char * const s = HOPBACKc(locinput, scan->flags);
+               if (!s) {
+                   /* trivial fail */
+                   if (logical) {
+                       logical = 0;
+                       sw = 1 - cBOOL(ST.wanted);
+                   }
+                   else if (ST.wanted)
+                       sayNO;
+                   next = scan + ARG(scan);
+                   if (next == scan)
+                       next = NULL;
+                   break;
+               }
+               newstart = s;
+           }
+           else
+               newstart = locinput;
+
+         do_ifmatch:
+           ST.me = scan;
+           ST.logical = logical;
+           logical = 0; /* XXX: reset state of logical once it has been saved into ST */
+           
+           /* execute body of (?...A) */
+           PUSH_YES_STATE_GOTO(IFMATCH_A, NEXTOPER(NEXTOPER(scan)), newstart);
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+        }
+
+       case IFMATCH_A_fail: /* body of (?...A) failed */
+           ST.wanted = !ST.wanted;
+           /* FALLTHROUGH */
+
+       case IFMATCH_A: /* body of (?...A) succeeded */
+           if (ST.logical) {
+               sw = cBOOL(ST.wanted);
+           }
+           else if (!ST.wanted)
+               sayNO;
+
+           if (OP(ST.me) != SUSPEND) {
+                /* restore old position except for (?>...) */
+               locinput = st->locinput;
+           }
+           scan = ST.me + ARG(ST.me);
+           if (scan == ST.me)
+               scan = NULL;
+           continue; /* execute B */
+
+#undef ST
+
+       case LONGJMP: /*  alternative with many branches compiles to
+                       * (BRANCHJ; EXACT ...; LONGJMP ) x N */
+           next = scan + ARG(scan);
+           if (next == scan)
+               next = NULL;
+           break;
+
+       case COMMIT:  /*  (*COMMIT)  */
+           reginfo->cutpoint = reginfo->strend;
+           /* FALLTHROUGH */
+
+       case PRUNE:   /*  (*PRUNE)   */
+           if (!scan->flags)
+               sv_yes_mark = sv_commit = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+           PUSH_STATE_GOTO(COMMIT_next, next, locinput);
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+       case COMMIT_next_fail:
+           no_final = 1;    
+           /* FALLTHROUGH */       
+
+       case OPFAIL:   /* (*FAIL)  */
+           sayNO;
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+#define ST st->u.mark
+        case MARKPOINT: /*  (*MARK:foo)  */
+            ST.prev_mark = mark_state;
+            ST.mark_name = sv_commit = sv_yes_mark 
+                = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+            mark_state = st;
+            ST.mark_loc = locinput;
+            PUSH_YES_STATE_GOTO(MARKPOINT_next, next, locinput);
+            /* NOTREACHED */
+            NOT_REACHED; /* NOTREACHED */
+
+        case MARKPOINT_next:
+            mark_state = ST.prev_mark;
+            sayYES;
+            /* NOTREACHED */
+            NOT_REACHED; /* NOTREACHED */
+
+        case MARKPOINT_next_fail:
+            if (popmark && sv_eq(ST.mark_name,popmark)) 
+            {
+                if (ST.mark_loc > startpoint)
+                   reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
+                popmark = NULL; /* we found our mark */
+                sv_commit = ST.mark_name;
+
+                DEBUG_EXECUTE_r({
+                        PerlIO_printf(Perl_debug_log,
+                           "%*s  %ssetting cutpoint to mark:%"SVf"...%s\n",
+                           REPORT_CODE_OFF+depth*2, "", 
+                           PL_colors[4], SVfARG(sv_commit), PL_colors[5]);
+               });
+            }
+            mark_state = ST.prev_mark;
+            sv_yes_mark = mark_state ? 
+                mark_state->u.mark.mark_name : NULL;
+            sayNO;
+            /* NOTREACHED */
+            NOT_REACHED; /* NOTREACHED */
+
+        case SKIP:  /*  (*SKIP)  */
+            if (scan->flags) {
+                /* (*SKIP) : if we fail we cut here*/
+                ST.mark_name = NULL;
+                ST.mark_loc = locinput;
+                PUSH_STATE_GOTO(SKIP_next,next, locinput);
+            } else {
+                /* (*SKIP:NAME) : if there is a (*MARK:NAME) fail where it was, 
+                   otherwise do nothing.  Meaning we need to scan 
+                 */
+                regmatch_state *cur = mark_state;
+                SV *find = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+                
+                while (cur) {
+                    if ( sv_eq( cur->u.mark.mark_name, 
+                                find ) ) 
+                    {
+                        ST.mark_name = find;
+                        PUSH_STATE_GOTO( SKIP_next, next, locinput);
+                    }
+                    cur = cur->u.mark.prev_mark;
+                }
+            }    
+            /* Didn't find our (*MARK:NAME) so ignore this (*SKIP:NAME) */
+            break;    
+
+       case SKIP_next_fail:
+           if (ST.mark_name) {
+               /* (*CUT:NAME) - Set up to search for the name as we 
+                  collapse the stack*/
+               popmark = ST.mark_name;    
+           } else {
+               /* (*CUT) - No name, we cut here.*/
+               if (ST.mark_loc > startpoint)
+                   reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
+               /* but we set sv_commit to latest mark_name if there
+                  is one so they can test to see how things lead to this
+                  cut */    
+                if (mark_state) 
+                    sv_commit=mark_state->u.mark.mark_name;                
+            } 
+            no_final = 1; 
+            sayNO;
+            /* NOTREACHED */
+            NOT_REACHED; /* NOTREACHED */
+#undef ST
+
+        case LNBREAK: /* \R */
+            if ((n=is_LNBREAK_safe(locinput, reginfo->strend, utf8_target))) {
+                locinput += n;
+            } else
+                sayNO;
+            break;
+
+       default:
+           PerlIO_printf(Perl_error_log, "%"UVxf" %d\n",
+                         PTR2UV(scan), OP(scan));
+           Perl_croak(aTHX_ "regexp memory corruption");
+
+        /* this is a point to jump to in order to increment
+         * locinput by one character */
+          increment_locinput:
+            assert(!NEXTCHR_IS_EOS);
+            if (utf8_target) {
+                locinput += PL_utf8skip[nextchr];
+                /* locinput is allowed to go 1 char off the end, but not 2+ */
+                if (locinput > reginfo->strend)
+                    sayNO;
+            }
+            else
+                locinput++;
+            break;
+           
+       } /* end switch */ 
+
+        /* switch break jumps here */
+       scan = next; /* prepare to execute the next op and ... */
+       continue;    /* ... jump back to the top, reusing st */
+        /* NOTREACHED */
+
+      push_yes_state:
+       /* push a state that backtracks on success */
+       st->u.yes.prev_yes_state = yes_state;
+       yes_state = st;
+       /* FALLTHROUGH */
+      push_state:
+       /* push a new regex state, then continue at scan  */
+       {
+           regmatch_state *newst;
+
+           DEBUG_STACK_r({
+               regmatch_state *cur = st;
+               regmatch_state *curyes = yes_state;
+               int curd = depth;
+               regmatch_slab *slab = PL_regmatch_slab;
+                for (;curd > -1;cur--,curd--) {
+                    if (cur < SLAB_FIRST(slab)) {
+                       slab = slab->prev;
+                       cur = SLAB_LAST(slab);
+                    }
+                    PerlIO_printf(Perl_error_log, "%*s#%-3d %-10s %s\n",
+                        REPORT_CODE_OFF + 2 + depth * 2,"",
+                        curd, PL_reg_name[cur->resume_state],
+                        (curyes == cur) ? "yes" : ""
+                    );
+                    if (curyes == cur)
+                       curyes = cur->u.yes.prev_yes_state;
+                }
+            } else 
+                DEBUG_STATE_pp("push")
+            );
+           depth++;
+           st->locinput = locinput;
+           newst = st+1; 
+           if (newst >  SLAB_LAST(PL_regmatch_slab))
+               newst = S_push_slab(aTHX);
+           PL_regmatch_state = newst;
+
+           locinput = pushinput;
+           st = newst;
+           continue;
+            /* NOTREACHED */
+       }
+    }
+
+    /*
+    * We get here only if there's trouble -- normally "case END" is
+    * the terminating point.
+    */
+    Perl_croak(aTHX_ "corrupted regexp pointers");
+    /* NOTREACHED */
+    sayNO;
+    NOT_REACHED; /* NOTREACHED */
+
+  yes:
+    if (yes_state) {
+       /* we have successfully completed a subexpression, but we must now
+        * pop to the state marked by yes_state and continue from there */
+       assert(st != yes_state);
+#ifdef DEBUGGING
+       while (st != yes_state) {
+           st--;
+           if (st < SLAB_FIRST(PL_regmatch_slab)) {
+               PL_regmatch_slab = PL_regmatch_slab->prev;
+               st = SLAB_LAST(PL_regmatch_slab);
+           }
+           DEBUG_STATE_r({
+               if (no_final) {
+                   DEBUG_STATE_pp("pop (no final)");        
+               } else {
+                   DEBUG_STATE_pp("pop (yes)");
+               }
+           });
+           depth--;
+       }
+#else
+       while (yes_state < SLAB_FIRST(PL_regmatch_slab)
+           || yes_state > SLAB_LAST(PL_regmatch_slab))
+       {
+           /* not in this slab, pop slab */
+           depth -= (st - SLAB_FIRST(PL_regmatch_slab) + 1);
+           PL_regmatch_slab = PL_regmatch_slab->prev;
+           st = SLAB_LAST(PL_regmatch_slab);
+       }
+       depth -= (st - yes_state);
+#endif
+       st = yes_state;
+       yes_state = st->u.yes.prev_yes_state;
+       PL_regmatch_state = st;
+        
+        if (no_final)
+            locinput= st->locinput;
+       state_num = st->resume_state + no_final;
+       goto reenter_switch;
+    }
+
+    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch successful!%s\n",
+                         PL_colors[4], PL_colors[5]));
+
+    if (reginfo->info_aux_eval) {
+       /* each successfully executed (?{...}) block does the equivalent of
+        *   local $^R = do {...}
+        * When popping the save stack, all these locals would be undone;
+        * bypass this by setting the outermost saved $^R to the latest
+        * value */
+        /* I dont know if this is needed or works properly now.
+         * see code related to PL_replgv elsewhere in this file.
+         * Yves
+         */
+       if (oreplsv != GvSV(PL_replgv))
+           sv_setsv(oreplsv, GvSV(PL_replgv));
+    }
+    result = 1;
+    goto final_exit;
+
+  no:
+    DEBUG_EXECUTE_r(
+       PerlIO_printf(Perl_debug_log,
+            "%*s  %sfailed...%s\n",
+            REPORT_CODE_OFF+depth*2, "", 
+            PL_colors[4], PL_colors[5])
+       );
+
+  no_silent:
+    if (no_final) {
+        if (yes_state) {
+            goto yes;
+        } else {
+            goto final_exit;
+        }
+    }    
+    if (depth) {
+       /* there's a previous state to backtrack to */
+       st--;
+       if (st < SLAB_FIRST(PL_regmatch_slab)) {
+           PL_regmatch_slab = PL_regmatch_slab->prev;
+           st = SLAB_LAST(PL_regmatch_slab);
+       }
+       PL_regmatch_state = st;
+       locinput= st->locinput;
+
+       DEBUG_STATE_pp("pop");
+       depth--;
+       if (yes_state == st)
+           yes_state = st->u.yes.prev_yes_state;
+
+       state_num = st->resume_state + 1; /* failure = success + 1 */
+       goto reenter_switch;
+    }
+    result = 0;
+
+  final_exit:
+    if (rex->intflags & PREGf_VERBARG_SEEN) {
+        SV *sv_err = get_sv("REGERROR", 1);
+        SV *sv_mrk = get_sv("REGMARK", 1);
+        if (result) {
+            sv_commit = &PL_sv_no;
+            if (!sv_yes_mark) 
+                sv_yes_mark = &PL_sv_yes;
+        } else {
+            if (!sv_commit) 
+                sv_commit = &PL_sv_yes;
+            sv_yes_mark = &PL_sv_no;
+        }
+        assert(sv_err);
+        assert(sv_mrk);
+        sv_setsv(sv_err, sv_commit);
+        sv_setsv(sv_mrk, sv_yes_mark);
+    }
+
+
+    if (last_pushed_cv) {
+       dSP;
+       POP_MULTICALL;
+        PERL_UNUSED_VAR(SP);
+    }
+
+    assert(!result ||  locinput - reginfo->strbeg >= 0);
+    return result ?  locinput - reginfo->strbeg : -1;
+}
+
+/*
+ - regrepeat - repeatedly match something simple, report how many
+ *
+ * What 'simple' means is a node which can be the operand of a quantifier like
+ * '+', or {1,3}
+ *
+ * startposp - pointer a pointer to the start position.  This is updated
+ *             to point to the byte following the highest successful
+ *             match.
+ * p         - the regnode to be repeatedly matched against.
+ * reginfo   - struct holding match state, such as strend
+ * max       - maximum number of things to match.
+ * depth     - (for debugging) backtracking depth.
+ */
+STATIC I32
+S_regrepeat(pTHX_ regexp *prog, char **startposp, const regnode *p,
+            regmatch_info *const reginfo, I32 max, int depth)
+{
+    char *scan;     /* Pointer to current position in target string */
+    I32 c;
+    char *loceol = reginfo->strend;   /* local version */
+    I32 hardcount = 0;  /* How many matches so far */
+    bool utf8_target = reginfo->is_utf8_target;
+    unsigned int to_complement = 0;  /* Invert the result? */
+    UV utf8_flags;
+    _char_class_number classnum;
+#ifndef DEBUGGING
+    PERL_UNUSED_ARG(depth);
+#endif
+
+    PERL_ARGS_ASSERT_REGREPEAT;
+
+    scan = *startposp;
+    if (max == REG_INFTY)
+       max = I32_MAX;
+    else if (! utf8_target && loceol - scan > max)
+       loceol = scan + max;
+
+    /* Here, for the case of a non-UTF-8 target we have adjusted <loceol> down
+     * to the maximum of how far we should go in it (leaving it set to the real
+     * end, if the maximum permissible would take us beyond that).  This allows
+     * us to make the loop exit condition that we haven't gone past <loceol> to
+     * also mean that we haven't exceeded the max permissible count, saving a
+     * test each time through the loop.  But it assumes that the OP matches a
+     * single byte, which is true for most of the OPs below when applied to a
+     * non-UTF-8 target.  Those relatively few OPs that don't have this
+     * characteristic will have to compensate.
+     *
+     * There is no adjustment for UTF-8 targets, as the number of bytes per
+     * character varies.  OPs will have to test both that the count is less
+     * than the max permissible (using <hardcount> to keep track), and that we
+     * are still within the bounds of the string (using <loceol>.  A few OPs
+     * match a single byte no matter what the encoding.  They can omit the max
+     * test if, for the UTF-8 case, they do the adjustment that was skipped
+     * above.
+     *
+     * Thus, the code above sets things up for the common case; and exceptional
+     * cases need extra work; the common case is to make sure <scan> doesn't
+     * go past <loceol>, and for UTF-8 to also use <hardcount> to make sure the
+     * count doesn't exceed the maximum permissible */
+
+    switch (OP(p)) {
+    case REG_ANY:
+       if (utf8_target) {
+           while (scan < loceol && hardcount < max && *scan != '\n') {
+               scan += UTF8SKIP(scan);
+               hardcount++;
+           }
+       } else {
+           while (scan < loceol && *scan != '\n')
+               scan++;
+       }
+       break;
+    case SANY:
+        if (utf8_target) {
+           while (scan < loceol && hardcount < max) {
+               scan += UTF8SKIP(scan);
+               hardcount++;
+           }
+       }
+       else
+           scan = loceol;
+       break;
+    case EXACTL:
+        _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+        if (utf8_target && UTF8_IS_ABOVE_LATIN1(*scan)) {
+            _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(scan, loceol);
+        }
+        /* FALLTHROUGH */
+    case EXACT:
+        assert(STR_LEN(p) == reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1);
+
+       c = (U8)*STRING(p);
+
+        /* Can use a simple loop if the pattern char to match on is invariant
+         * under UTF-8, or both target and pattern aren't UTF-8.  Note that we
+         * can use UTF8_IS_INVARIANT() even if the pattern isn't UTF-8, as it's
+         * true iff it doesn't matter if the argument is in UTF-8 or not */
+        if (UTF8_IS_INVARIANT(c) || (! utf8_target && ! reginfo->is_utf8_pat)) {
+            if (utf8_target && loceol - scan > max) {
+                /* We didn't adjust <loceol> because is UTF-8, but ok to do so,
+                 * since here, to match at all, 1 char == 1 byte */
+                loceol = scan + max;
+            }
+           while (scan < loceol && UCHARAT(scan) == c) {
+               scan++;
+           }
+       }
+       else if (reginfo->is_utf8_pat) {
+            if (utf8_target) {
+                STRLEN scan_char_len;
+
+                /* When both target and pattern are UTF-8, we have to do
+                 * string EQ */
+                while (hardcount < max
+                       && scan < loceol
+                       && (scan_char_len = UTF8SKIP(scan)) <= STR_LEN(p)
+                       && memEQ(scan, STRING(p), scan_char_len))
+                {
+                    scan += scan_char_len;
+                    hardcount++;
+                }
+            }
+            else if (! UTF8_IS_ABOVE_LATIN1(c)) {
+
+                /* Target isn't utf8; convert the character in the UTF-8
+                 * pattern to non-UTF8, and do a simple loop */
+                c = TWO_BYTE_UTF8_TO_NATIVE(c, *(STRING(p) + 1));
+                while (scan < loceol && UCHARAT(scan) == c) {
+                    scan++;
+                }
+            } /* else pattern char is above Latin1, can't possibly match the
+                 non-UTF-8 target */
+        }
+        else {
+
+            /* Here, the string must be utf8; pattern isn't, and <c> is
+             * different in utf8 than not, so can't compare them directly.
+             * Outside the loop, find the two utf8 bytes that represent c, and
+             * then look for those in sequence in the utf8 string */
+           U8 high = UTF8_TWO_BYTE_HI(c);
+           U8 low = UTF8_TWO_BYTE_LO(c);
+
+           while (hardcount < max
+                   && scan + 1 < loceol
+                   && UCHARAT(scan) == high
+                   && UCHARAT(scan + 1) == low)
+           {
+               scan += 2;
+               hardcount++;
+           }
+       }
+       break;
+
+    case EXACTFA_NO_TRIE:   /* This node only generated for non-utf8 patterns */
+        assert(! reginfo->is_utf8_pat);
+        /* FALLTHROUGH */
+    case EXACTFA:
+        utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+       goto do_exactf;
+
+    case EXACTFL:
+        _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+       utf8_flags = FOLDEQ_LOCALE;
+       goto do_exactf;
+
+    case EXACTF:   /* This node only generated for non-utf8 patterns */
+        assert(! reginfo->is_utf8_pat);
+        utf8_flags = 0;
+        goto do_exactf;
+
+    case EXACTFLU8:
+        if (! utf8_target) {
+            break;
+        }
+        utf8_flags =  FOLDEQ_LOCALE | FOLDEQ_S2_ALREADY_FOLDED
+                                    | FOLDEQ_S2_FOLDS_SANE;
+        goto do_exactf;
+
+    case EXACTFU_SS:
+    case EXACTFU:
+       utf8_flags = reginfo->is_utf8_pat ? FOLDEQ_S2_ALREADY_FOLDED : 0;
+
+      do_exactf: {
+        int c1, c2;
+        U8 c1_utf8[UTF8_MAXBYTES+1], c2_utf8[UTF8_MAXBYTES+1];
+
+        assert(STR_LEN(p) == reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1);
+
+        if (S_setup_EXACTISH_ST_c1_c2(aTHX_ p, &c1, c1_utf8, &c2, c2_utf8,
+                                        reginfo))
+        {
+            if (c1 == CHRTEST_VOID) {
+                /* Use full Unicode fold matching */
+                char *tmpeol = reginfo->strend;
+                STRLEN pat_len = reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1;
+                while (hardcount < max
+                        && foldEQ_utf8_flags(scan, &tmpeol, 0, utf8_target,
+                                             STRING(p), NULL, pat_len,
+                                             reginfo->is_utf8_pat, utf8_flags))
+                {
+                    scan = tmpeol;
+                    tmpeol = reginfo->strend;
+                    hardcount++;
+                }
+            }
+            else if (utf8_target) {
+                if (c1 == c2) {
+                    while (scan < loceol
+                           && hardcount < max
+                           && memEQ(scan, c1_utf8, UTF8SKIP(scan)))
+                    {
+                        scan += UTF8SKIP(scan);
+                        hardcount++;
+                    }
+                }
+                else {
+                    while (scan < loceol
+                           && hardcount < max
+                           && (memEQ(scan, c1_utf8, UTF8SKIP(scan))
+                               || memEQ(scan, c2_utf8, UTF8SKIP(scan))))
+                    {
+                        scan += UTF8SKIP(scan);
+                        hardcount++;
+                    }
+                }
+            }
+            else if (c1 == c2) {
+                while (scan < loceol && UCHARAT(scan) == c1) {
+                    scan++;
+                }
+            }
+            else {
+                while (scan < loceol &&
+                    (UCHARAT(scan) == c1 || UCHARAT(scan) == c2))
+                {
+                    scan++;
+                }
+            }
+       }
+       break;
+    }
+    case ANYOFL:
+        _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+        /* FALLTHROUGH */
+    case ANYOF:
+       if (utf8_target) {
+           while (hardcount < max
+                   && scan < loceol
+                  && reginclass(prog, p, (U8*)scan, (U8*) loceol, utf8_target))
+           {
+               scan += UTF8SKIP(scan);
+               hardcount++;
+           }
+       } else {
+           while (scan < loceol && REGINCLASS(prog, p, (U8*)scan))
+               scan++;
+       }
+       break;
+
+    /* The argument (FLAGS) to all the POSIX node types is the class number */
+
+    case NPOSIXL:
+        to_complement = 1;
+        /* FALLTHROUGH */
+
+    case POSIXL:
+        _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+       if (! utf8_target) {
+           while (scan < loceol && to_complement ^ cBOOL(isFOO_lc(FLAGS(p),
+                                                                   *scan)))
+            {
+               scan++;
+            }
+       } else {
+           while (hardcount < max && scan < loceol
+                   && to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(p),
+                                                                  (U8 *) scan)))
+            {
+                scan += UTF8SKIP(scan);
+               hardcount++;
+           }
+       }
+       break;
+
+    case POSIXD:
+        if (utf8_target) {
+            goto utf8_posix;
+        }
+        /* FALLTHROUGH */
+
+    case POSIXA:
+        if (utf8_target && loceol - scan > max) {
+
+            /* We didn't adjust <loceol> at the beginning of this routine
+             * because is UTF-8, but it is actually ok to do so, since here, to
+             * match, 1 char == 1 byte. */
+            loceol = scan + max;
+        }
+        while (scan < loceol && _generic_isCC_A((U8) *scan, FLAGS(p))) {
+           scan++;
+       }
+       break;
+
+    case NPOSIXD:
+        if (utf8_target) {
+            to_complement = 1;
+            goto utf8_posix;
+        }
+        /* FALLTHROUGH */
+
+    case NPOSIXA:
+        if (! utf8_target) {
+            while (scan < loceol && ! _generic_isCC_A((U8) *scan, FLAGS(p))) {
+                scan++;
+            }
+        }
+        else {
+
+            /* The complement of something that matches only ASCII matches all
+             * non-ASCII, plus everything in ASCII that isn't in the class. */
+           while (hardcount < max && scan < loceol
+                   && (! isASCII_utf8(scan)
+                       || ! _generic_isCC_A((U8) *scan, FLAGS(p))))
+            {
+                scan += UTF8SKIP(scan);
+               hardcount++;
+           }
+        }
+        break;
+
+    case NPOSIXU:
+        to_complement = 1;
+        /* FALLTHROUGH */
+
+    case POSIXU:
+       if (! utf8_target) {
+            while (scan < loceol && to_complement
+                                ^ cBOOL(_generic_isCC((U8) *scan, FLAGS(p))))
+            {
+                scan++;
+            }
+       }
+       else {
+          utf8_posix:
+            classnum = (_char_class_number) FLAGS(p);
+            if (classnum < _FIRST_NON_SWASH_CC) {
+
+                /* Here, a swash is needed for above-Latin1 code points.
+                 * Process as many Latin1 code points using the built-in rules.
+                 * Go to another loop to finish processing upon encountering
+                 * the first Latin1 code point.  We could do that in this loop
+                 * as well, but the other way saves having to test if the swash
+                 * has been loaded every time through the loop: extra space to
+                 * save a test. */
+                while (hardcount < max && scan < loceol) {
+                    if (UTF8_IS_INVARIANT(*scan)) {
+                        if (! (to_complement ^ cBOOL(_generic_isCC((U8) *scan,
+                                                                   classnum))))
+                        {
+                            break;
+                        }
+                        scan++;
+                    }
+                    else if (UTF8_IS_DOWNGRADEABLE_START(*scan)) {
+                        if (! (to_complement
+                              ^ cBOOL(_generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(*scan,
+                                                                     *(scan + 1)),
+                                                    classnum))))
+                        {
+                            break;
+                        }
+                        scan += 2;
+                    }
+                    else {
+                        goto found_above_latin1;
+                    }
+
+                    hardcount++;
+                }
+            }
+            else {
+                /* For these character classes, the knowledge of how to handle
+                 * every code point is compiled in to Perl via a macro.  This
+                 * code is written for making the loops as tight as possible.
+                 * It could be refactored to save space instead */
+                switch (classnum) {
+                    case _CC_ENUM_SPACE:
+                        while (hardcount < max
+                               && scan < loceol
+                               && (to_complement ^ cBOOL(isSPACE_utf8(scan))))
+                        {
+                            scan += UTF8SKIP(scan);
+                            hardcount++;
+                        }
+                        break;
+                    case _CC_ENUM_BLANK:
+                        while (hardcount < max
+                               && scan < loceol
+                               && (to_complement ^ cBOOL(isBLANK_utf8(scan))))
+                        {
+                            scan += UTF8SKIP(scan);
+                            hardcount++;
+                        }
+                        break;
+                    case _CC_ENUM_XDIGIT:
+                        while (hardcount < max
+                               && scan < loceol
+                               && (to_complement ^ cBOOL(isXDIGIT_utf8(scan))))
+                        {
+                            scan += UTF8SKIP(scan);
+                            hardcount++;
+                        }
+                        break;
+                    case _CC_ENUM_VERTSPACE:
+                        while (hardcount < max
+                               && scan < loceol
+                               && (to_complement ^ cBOOL(isVERTWS_utf8(scan))))
+                        {
+                            scan += UTF8SKIP(scan);
+                            hardcount++;
+                        }
+                        break;
+                    case _CC_ENUM_CNTRL:
+                        while (hardcount < max
+                               && scan < loceol
+                               && (to_complement ^ cBOOL(isCNTRL_utf8(scan))))
+                        {
+                            scan += UTF8SKIP(scan);
+                            hardcount++;
+                        }
+                        break;
+                    default:
+                        Perl_croak(aTHX_ "panic: regrepeat() node %d='%s' has an unexpected character class '%d'", OP(p), PL_reg_name[OP(p)], classnum);
+                }
+            }
+       }
+        break;
+
+      found_above_latin1:   /* Continuation of POSIXU and NPOSIXU */
+
+        /* Load the swash if not already present */
+        if (! PL_utf8_swash_ptrs[classnum]) {
+            U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+            PL_utf8_swash_ptrs[classnum] = _core_swash_init(
+                                        "utf8",
+                                        "",
+                                        &PL_sv_undef, 1, 0,
+                                        PL_XPosix_ptrs[classnum], &flags);
+        }
+
+        while (hardcount < max && scan < loceol
+               && to_complement ^ cBOOL(_generic_utf8(
+                                       classnum,
+                                       scan,
+                                       swash_fetch(PL_utf8_swash_ptrs[classnum],
+                                                   (U8 *) scan,
+                                                   TRUE))))
+        {
+            scan += UTF8SKIP(scan);
+            hardcount++;
+        }
+        break;
+
+    case LNBREAK:
+        if (utf8_target) {
+           while (hardcount < max && scan < loceol &&
+                    (c=is_LNBREAK_utf8_safe(scan, loceol))) {
+               scan += c;
+               hardcount++;
+           }
+       } else {
+            /* LNBREAK can match one or two latin chars, which is ok, but we
+             * have to use hardcount in this situation, and throw away the
+             * adjustment to <loceol> done before the switch statement */
+            loceol = reginfo->strend;
+           while (scan < loceol && (c=is_LNBREAK_latin1_safe(scan, loceol))) {
+               scan+=c;
+               hardcount++;
+           }
+       }
+       break;
+
+    case BOUNDL:
+    case NBOUNDL:
+        _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+        /* FALLTHROUGH */
+    case BOUND:
+    case BOUNDA:
+    case BOUNDU:
+    case EOS:
+    case GPOS:
+    case KEEPS:
+    case NBOUND:
+    case NBOUNDA:
+    case NBOUNDU:
+    case OPFAIL:
+    case SBOL:
+    case SEOL:
+        /* These are all 0 width, so match right here or not at all. */
+        break;
+
+    default:
+        Perl_croak(aTHX_ "panic: regrepeat() called with unrecognized node type %d='%s'", OP(p), PL_reg_name[OP(p)]);
+        /* NOTREACHED */
+        NOT_REACHED; /* NOTREACHED */
+
+    }
+
+    if (hardcount)
+       c = hardcount;
+    else
+       c = scan - *startposp;
+    *startposp = scan;
+
+    DEBUG_r({
+       GET_RE_DEBUG_FLAGS_DECL;
+       DEBUG_EXECUTE_r({
+           SV * const prop = sv_newmortal();
+            regprop(prog, prop, p, reginfo, NULL);
+           PerlIO_printf(Perl_debug_log,
+                       "%*s  %s can match %"IVdf" times out of %"IVdf"...\n",
+                       REPORT_CODE_OFF + depth*2, "", SvPVX_const(prop),(IV)c,(IV)max);
+       });
+    });
+
+    return(c);
+}
+
+
+#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
+/*
+- regclass_swash - prepare the utf8 swash.  Wraps the shared core version to
+create a copy so that changes the caller makes won't change the shared one.
+If <altsvp> is non-null, will return NULL in it, for back-compat.
+ */
+SV *
+Perl_regclass_swash(pTHX_ const regexp *prog, const regnode* node, bool doinit, SV** listsvp, SV **altsvp)
+{
+    PERL_ARGS_ASSERT_REGCLASS_SWASH;
+
+    if (altsvp) {
+        *altsvp = NULL;
+    }
+
+    return newSVsv(_get_regclass_nonbitmap_data(prog, node, doinit, listsvp, NULL, NULL));
+}
+
+#endif /* !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION) */
+
+/*
+ - reginclass - determine if a character falls into a character class
+  n is the ANYOF-type regnode
+  p is the target string
+  p_end points to one byte beyond the end of the target string
+  utf8_target tells whether p is in UTF-8.
+
+  Returns true if matched; false otherwise.
+
+  Note that this can be a synthetic start class, a combination of various
+  nodes, so things you think might be mutually exclusive, such as locale,
+  aren't.  It can match both locale and non-locale
+
+ */
+
+STATIC bool
+S_reginclass(pTHX_ regexp * const prog, const regnode * const n, const U8* const p, const U8* const p_end, const bool utf8_target)
+{
+    dVAR;
+    const char flags = ANYOF_FLAGS(n);
+    bool match = FALSE;
+    UV c = *p;
+
+    PERL_ARGS_ASSERT_REGINCLASS;
+
+    /* If c is not already the code point, get it.  Note that
+     * UTF8_IS_INVARIANT() works even if not in UTF-8 */
+    if (! UTF8_IS_INVARIANT(c) && utf8_target) {
+        STRLEN c_len = 0;
+       c = utf8n_to_uvchr(p, p_end - p, &c_len,
+               (UTF8_ALLOW_DEFAULT & UTF8_ALLOW_ANYUV)
+               | UTF8_ALLOW_FFFF | UTF8_CHECK_ONLY);
+               /* see [perl #37836] for UTF8_ALLOW_ANYUV; [perl #38293] for
+                * UTF8_ALLOW_FFFF */
+       if (c_len == (STRLEN)-1)
+           Perl_croak(aTHX_ "Malformed UTF-8 character (fatal)");
+        if (c > 255 && OP(n) == ANYOFL && ! is_ANYOF_SYNTHETIC(n)) {
+            _CHECK_AND_OUTPUT_WIDE_LOCALE_CP_MSG(c);
+        }
+    }
+
+    /* If this character is potentially in the bitmap, check it */
+    if (c < NUM_ANYOF_CODE_POINTS) {
+       if (ANYOF_BITMAP_TEST(n, c))
+           match = TRUE;
+       else if ((flags & ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII)
+                 && ! utf8_target
+                 && ! isASCII(c))
+       {
+           match = TRUE;
+       }
+       else if (flags & ANYOF_LOCALE_FLAGS) {
+           if ((flags & ANYOF_LOC_FOLD)
+                && c < 256
+               && ANYOF_BITMAP_TEST(n, PL_fold_locale[c]))
+            {
+                match = TRUE;
+            }
+            else if (ANYOF_POSIXL_TEST_ANY_SET(n)
+                     && c < 256
+            ) {
+
+                /* The data structure is arranged so bits 0, 2, 4, ... are set
+                 * if the class includes the Posix character class given by
+                 * bit/2; and 1, 3, 5, ... are set if the class includes the
+                 * complemented Posix class given by int(bit/2).  So we loop
+                 * through the bits, each time changing whether we complement
+                 * the result or not.  Suppose for the sake of illustration
+                 * that bits 0-3 mean respectively, \w, \W, \s, \S.  If bit 0
+                 * is set, it means there is a match for this ANYOF node if the
+                 * character is in the class given by the expression (0 / 2 = 0
+                 * = \w).  If it is in that class, isFOO_lc() will return 1,
+                 * and since 'to_complement' is 0, the result will stay TRUE,
+                 * and we exit the loop.  Suppose instead that bit 0 is 0, but
+                 * bit 1 is 1.  That means there is a match if the character
+                 * matches \W.  We won't bother to call isFOO_lc() on bit 0,
+                 * but will on bit 1.  On the second iteration 'to_complement'
+                 * will be 1, so the exclusive or will reverse things, so we
+                 * are testing for \W.  On the third iteration, 'to_complement'
+                 * will be 0, and we would be testing for \s; the fourth
+                 * iteration would test for \S, etc.
+                 *
+                 * Note that this code assumes that all the classes are closed
+                 * under folding.  For example, if a character matches \w, then
+                 * its fold does too; and vice versa.  This should be true for
+                 * any well-behaved locale for all the currently defined Posix
+                 * classes, except for :lower: and :upper:, which are handled
+                 * by the pseudo-class :cased: which matches if either of the
+                 * other two does.  To get rid of this assumption, an outer
+                 * loop could be used below to iterate over both the source
+                 * character, and its fold (if different) */
+
+                int count = 0;
+                int to_complement = 0;
+
+                while (count < ANYOF_MAX) {
+                    if (ANYOF_POSIXL_TEST(n, count)
+                        && to_complement ^ cBOOL(isFOO_lc(count/2, (U8) c)))
+                    {
+                        match = TRUE;
+                        break;
+                    }
+                    count++;
+                    to_complement ^= 1;
+                }
+           }
+       }
+    }
+
+
+    /* If the bitmap didn't (or couldn't) match, and something outside the
+     * bitmap could match, try that. */
+    if (!match) {
+       if (c >= NUM_ANYOF_CODE_POINTS
+            && (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP))
+        {
+           match = TRUE;       /* Everything above the bitmap matches */
+       }
+       else if ((flags & ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES)
+                 || (utf8_target && (flags & ANYOF_HAS_UTF8_NONBITMAP_MATCHES))
+                  || ((flags & ANYOF_LOC_FOLD)
+                       && IN_UTF8_CTYPE_LOCALE
+                       && ARG(n) != ANYOF_ONLY_HAS_BITMAP))
+        {
+            SV* only_utf8_locale = NULL;
+           SV * const sw = _get_regclass_nonbitmap_data(prog, n, TRUE, 0,
+                                                       &only_utf8_locale, NULL);
+           if (sw) {
+                U8 utf8_buffer[2];
+               U8 * utf8_p;
+               if (utf8_target) {
+                   utf8_p = (U8 *) p;
+               } else { /* Convert to utf8 */
+                   utf8_p = utf8_buffer;
+                    append_utf8_from_native_byte(*p, &utf8_p);
+                   utf8_p = utf8_buffer;
+               }
+
+               if (swash_fetch(sw, utf8_p, TRUE)) {
+                   match = TRUE;
+                }
+           }
+            if (! match && only_utf8_locale && IN_UTF8_CTYPE_LOCALE) {
+                match = _invlist_contains_cp(only_utf8_locale, c);
+            }
+       }
+
+        if (UNICODE_IS_SUPER(c)
+            && (flags & ANYOF_WARN_SUPER)
+            && ckWARN_d(WARN_NON_UNICODE))
+        {
+            Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
+                "Matched non-Unicode code point 0x%04"UVXf" against Unicode property; may not be portable", c);
+        }
+    }
+
+#if ANYOF_INVERT != 1
+    /* Depending on compiler optimization cBOOL takes time, so if don't have to
+     * use it, don't */
+#   error ANYOF_INVERT needs to be set to 1, or guarded with cBOOL below,
+#endif
+
+    /* The xor complements the return if to invert: 1^1 = 0, 1^0 = 1 */
+    return (flags & ANYOF_INVERT) ^ match;
+}
+
+STATIC U8 *
+S_reghop3(U8 *s, SSize_t off, const U8* lim)
+{
+    /* return the position 'off' UTF-8 characters away from 's', forward if
+     * 'off' >= 0, backwards if negative.  But don't go outside of position
+     * 'lim', which better be < s  if off < 0 */
+
+    PERL_ARGS_ASSERT_REGHOP3;
+
+    if (off >= 0) {
+       while (off-- && s < lim) {
+           /* XXX could check well-formedness here */
+           s += UTF8SKIP(s);
+       }
+    }
+    else {
+        while (off++ && s > lim) {
+            s--;
+            if (UTF8_IS_CONTINUED(*s)) {
+                while (s > lim && UTF8_IS_CONTINUATION(*s))
+                    s--;
+           }
+            /* XXX could check well-formedness here */
+       }
+    }
+    return s;
+}
+
+STATIC U8 *
+S_reghop4(U8 *s, SSize_t off, const U8* llim, const U8* rlim)
+{
+    PERL_ARGS_ASSERT_REGHOP4;
+
+    if (off >= 0) {
+        while (off-- && s < rlim) {
+            /* XXX could check well-formedness here */
+            s += UTF8SKIP(s);
+        }
+    }
+    else {
+        while (off++ && s > llim) {
+            s--;
+            if (UTF8_IS_CONTINUED(*s)) {
+                while (s > llim && UTF8_IS_CONTINUATION(*s))
+                    s--;
+            }
+            /* XXX could check well-formedness here */
+        }
+    }
+    return s;
+}
+
+/* like reghop3, but returns NULL on overrun, rather than returning last
+ * char pos */
+
+STATIC U8 *
+S_reghopmaybe3(U8* s, SSize_t off, const U8* lim)
+{
+    PERL_ARGS_ASSERT_REGHOPMAYBE3;
+
+    if (off >= 0) {
+       while (off-- && s < lim) {
+           /* XXX could check well-formedness here */
+           s += UTF8SKIP(s);
+       }
+       if (off >= 0)
+           return NULL;
+    }
+    else {
+        while (off++ && s > lim) {
+            s--;
+            if (UTF8_IS_CONTINUED(*s)) {
+                while (s > lim && UTF8_IS_CONTINUATION(*s))
+                    s--;
+           }
+            /* XXX could check well-formedness here */
+       }
+       if (off <= 0)
+           return NULL;
+    }
+    return s;
+}
+
+
+/* when executing a regex that may have (?{}), extra stuff needs setting
+   up that will be visible to the called code, even before the current
+   match has finished. In particular:
+
+   * $_ is localised to the SV currently being matched;
+   * pos($_) is created if necessary, ready to be updated on each call-out
+     to code;
+   * a fake PMOP is created that can be set to PL_curpm (normally PL_curpm
+     isn't set until the current pattern is successfully finished), so that
+     $1 etc of the match-so-far can be seen;
+   * save the old values of subbeg etc of the current regex, and  set then
+     to the current string (again, this is normally only done at the end
+     of execution)
+*/
+
+static void
+S_setup_eval_state(pTHX_ regmatch_info *const reginfo)
+{
+    MAGIC *mg;
+    regexp *const rex = ReANY(reginfo->prog);
+    regmatch_info_aux_eval *eval_state = reginfo->info_aux_eval;
+
+    eval_state->rex = rex;
+
+    if (reginfo->sv) {
+        /* Make $_ available to executed code. */
+        if (reginfo->sv != DEFSV) {
+            SAVE_DEFSV;
+            DEFSV_set(reginfo->sv);
+        }
+
+        if (!(mg = mg_find_mglob(reginfo->sv))) {
+            /* prepare for quick setting of pos */
+            mg = sv_magicext_mglob(reginfo->sv);
+            mg->mg_len = -1;
+        }
+        eval_state->pos_magic = mg;
+        eval_state->pos       = mg->mg_len;
+        eval_state->pos_flags = mg->mg_flags;
+    }
+    else
+        eval_state->pos_magic = NULL;
+
+    if (!PL_reg_curpm) {
+        /* PL_reg_curpm is a fake PMOP that we can attach the current
+         * regex to and point PL_curpm at, so that $1 et al are visible
+         * within a /(?{})/. It's just allocated once per interpreter the
+         * first time its needed */
+        Newxz(PL_reg_curpm, 1, PMOP);
+#ifdef USE_ITHREADS
+        {
+            SV* const repointer = &PL_sv_undef;
+            /* this regexp is also owned by the new PL_reg_curpm, which
+               will try to free it.  */
+            av_push(PL_regex_padav, repointer);
+            PL_reg_curpm->op_pmoffset = av_tindex(PL_regex_padav);
+            PL_regex_pad = AvARRAY(PL_regex_padav);
+        }
+#endif
+    }
+    SET_reg_curpm(reginfo->prog);
+    eval_state->curpm = PL_curpm;
+    PL_curpm = PL_reg_curpm;
+    if (RXp_MATCH_COPIED(rex)) {
+        /*  Here is a serious problem: we cannot rewrite subbeg,
+            since it may be needed if this match fails.  Thus
+            $` inside (?{}) could fail... */
+        eval_state->subbeg     = rex->subbeg;
+        eval_state->sublen     = rex->sublen;
+        eval_state->suboffset  = rex->suboffset;
+        eval_state->subcoffset = rex->subcoffset;
+#ifdef PERL_ANY_COW
+        eval_state->saved_copy = rex->saved_copy;
+#endif
+        RXp_MATCH_COPIED_off(rex);
+    }
+    else
+        eval_state->subbeg = NULL;
+    rex->subbeg = (char *)reginfo->strbeg;
+    rex->suboffset = 0;
+    rex->subcoffset = 0;
+    rex->sublen = reginfo->strend - reginfo->strbeg;
+}
+
+
+/* destructor to clear up regmatch_info_aux and regmatch_info_aux_eval */
+
+static void
+S_cleanup_regmatch_info_aux(pTHX_ void *arg)
+{
+    regmatch_info_aux *aux = (regmatch_info_aux *) arg;
+    regmatch_info_aux_eval *eval_state =  aux->info_aux_eval;
+    regmatch_slab *s;
+
+    Safefree(aux->poscache);
+
+    if (eval_state) {
+
+        /* undo the effects of S_setup_eval_state() */
+
+        if (eval_state->subbeg) {
+            regexp * const rex = eval_state->rex;
+            rex->subbeg     = eval_state->subbeg;
+            rex->sublen     = eval_state->sublen;
+            rex->suboffset  = eval_state->suboffset;
+            rex->subcoffset = eval_state->subcoffset;
+#ifdef PERL_ANY_COW
+            rex->saved_copy = eval_state->saved_copy;
+#endif
+            RXp_MATCH_COPIED_on(rex);
+        }
+        if (eval_state->pos_magic)
+        {
+            eval_state->pos_magic->mg_len = eval_state->pos;
+            eval_state->pos_magic->mg_flags =
+                 (eval_state->pos_magic->mg_flags & ~MGf_BYTES)
+               | (eval_state->pos_flags & MGf_BYTES);
+        }
+
+        PL_curpm = eval_state->curpm;
+    }
+
+    PL_regmatch_state = aux->old_regmatch_state;
+    PL_regmatch_slab  = aux->old_regmatch_slab;
+
+    /* free all slabs above current one - this must be the last action
+     * of this function, as aux and eval_state are allocated within
+     * slabs and may be freed here */
+
+    s = PL_regmatch_slab->next;
+    if (s) {
+        PL_regmatch_slab->next = NULL;
+        while (s) {
+            regmatch_slab * const osl = s;
+            s = s->next;
+            Safefree(osl);
+        }
+    }
+}
+
+
+STATIC void
+S_to_utf8_substr(pTHX_ regexp *prog)
+{
+    /* Converts substr fields in prog from bytes to UTF-8, calling fbm_compile
+     * on the converted value */
+
+    int i = 1;
+
+    PERL_ARGS_ASSERT_TO_UTF8_SUBSTR;
+
+    do {
+       if (prog->substrs->data[i].substr
+           && !prog->substrs->data[i].utf8_substr) {
+           SV* const sv = newSVsv(prog->substrs->data[i].substr);
+           prog->substrs->data[i].utf8_substr = sv;
+           sv_utf8_upgrade(sv);
+           if (SvVALID(prog->substrs->data[i].substr)) {
+               if (SvTAIL(prog->substrs->data[i].substr)) {
+                   /* Trim the trailing \n that fbm_compile added last
+                      time.  */
+                   SvCUR_set(sv, SvCUR(sv) - 1);
+                   /* Whilst this makes the SV technically "invalid" (as its
+                      buffer is no longer followed by "\0") when fbm_compile()
+                      adds the "\n" back, a "\0" is restored.  */
+                   fbm_compile(sv, FBMcf_TAIL);
+               } else
+                   fbm_compile(sv, 0);
+           }
+           if (prog->substrs->data[i].substr == prog->check_substr)
+               prog->check_utf8 = sv;
+       }
+    } while (i--);
+}
+
+STATIC bool
+S_to_byte_substr(pTHX_ regexp *prog)
+{
+    /* Converts substr fields in prog from UTF-8 to bytes, calling fbm_compile
+     * on the converted value; returns FALSE if can't be converted. */
+
+    int i = 1;
+
+    PERL_ARGS_ASSERT_TO_BYTE_SUBSTR;
+
+    do {
+       if (prog->substrs->data[i].utf8_substr
+           && !prog->substrs->data[i].substr) {
+           SV* sv = newSVsv(prog->substrs->data[i].utf8_substr);
+           if (! sv_utf8_downgrade(sv, TRUE)) {
+                return FALSE;
+            }
+            if (SvVALID(prog->substrs->data[i].utf8_substr)) {
+                if (SvTAIL(prog->substrs->data[i].utf8_substr)) {
+                    /* Trim the trailing \n that fbm_compile added last
+                        time.  */
+                    SvCUR_set(sv, SvCUR(sv) - 1);
+                    fbm_compile(sv, FBMcf_TAIL);
+                } else
+                    fbm_compile(sv, 0);
+            }
+           prog->substrs->data[i].substr = sv;
+           if (prog->substrs->data[i].utf8_substr == prog->check_utf8)
+               prog->check_substr = sv;
+       }
+    } while (i--);
+
+    return TRUE;
+}
+
+/*
+ * ex: set ts=8 sts=4 sw=4 et:
+ */
diff --git a/src/5023000/regcomp.c b/src/5023000/regcomp.c
new file mode 100644 (file)
index 0000000..621e795
--- /dev/null
@@ -0,0 +1,18210 @@
+/*    regcomp.c
+ */
+
+/*
+ * 'A fair jaw-cracker dwarf-language must be.'            --Samwise Gamgee
+ *
+ *     [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
+ */
+
+/* This file contains functions for compiling a regular expression.  See
+ * also regexec.c which funnily enough, contains functions for executing
+ * a regular expression.
+ *
+ * This file is also copied at build time to ext/re/re_comp.c, where
+ * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
+ * This causes the main functions to be compiled under new names and with
+ * debugging support added, which makes "use re 'debug'" work.
+ */
+
+/* NOTE: this is derived from Henry Spencer's regexp code, and should not
+ * confused with the original package (see point 3 below).  Thanks, Henry!
+ */
+
+/* Additional note: this code is very heavily munged from Henry's version
+ * in places.  In some spots I've traded clarity for efficiency, so don't
+ * blame Henry for some of the lack of readability.
+ */
+
+/* The names of the functions have been changed from regcomp and
+ * regexec to pregcomp and pregexec in order to avoid conflicts
+ * with the POSIX routines of the same names.
+*/
+
+#ifdef PERL_EXT_RE_BUILD
+#include "re_top.h"
+#endif
+
+/*
+ * pregcomp and pregexec -- regsub and regerror are not used in perl
+ *
+ * Copyright (c) 1986 by University of Toronto.
+ * Written by Henry Spencer.  Not derived from licensed software.
+ *
+ * Permission is granted to anyone to use this software for any
+ * purpose on any computer system, and to redistribute it freely,
+ * subject to the following restrictions:
+ *
+ * 1. The author is not responsible for the consequences of use of
+ *  this software, no matter how awful, even if they arise
+ *  from defects in it.
+ *
+ * 2. The origin of this software must not be misrepresented, either
+ *  by explicit claim or by omission.
+ *
+ * 3. Altered versions must be plainly marked as such, and must not
+ *  be misrepresented as being the original software.
+ *
+ *
+ ****    Alterations to Henry's code are...
+ ****
+ ****    Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ ****    2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ ****    by Larry Wall and others
+ ****
+ ****    You may distribute under the terms of either the GNU General Public
+ ****    License or the Artistic License, as specified in the README file.
+
+ *
+ * Beware that some of this code is subtly aware of the way operator
+ * precedence is structured in regular expressions.  Serious changes in
+ * regular-expression syntax might require a total rethink.
+ */
+#include "EXTERN.h"
+#define PERL_IN_REGCOMP_C
+#undef PERL_IN_XSUB_RE
+#define PERL_IN_XSUB_RE 1
+#include "perl.h"
+#undef PERL_IN_XSUB_RE
+
+#ifndef PERL_IN_XSUB_RE
+#include "re_defs.h"
+#endif
+
+#define REG_COMP_C
+#ifdef PERL_IN_XSUB_RE
+#  include "re_comp.h"
+EXTERN_C const struct regexp_engine my_reg_engine;
+#else
+#  include "regcomp.h"
+#endif
+
+#include "dquote_static.c"
+#include "inline_invlist.c"
+#include "unicode_constants.h"
+
+#define HAS_NONLATIN1_FOLD_CLOSURE(i) \
+ _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
+#define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(i) \
+ _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
+#define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
+#define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
+
+#ifndef STATIC
+#define STATIC static
+#endif
+
+#ifndef MIN
+#define MIN(a,b) ((a) < (b) ? (a) : (b))
+#endif
+
+/* this is a chain of data about sub patterns we are processing that
+   need to be handled separately/specially in study_chunk. Its so
+   we can simulate recursion without losing state.  */
+struct scan_frame;
+typedef struct scan_frame {
+ regnode *last_regnode;      /* last node to process in this frame */
+ regnode *next_regnode;      /* next node to process when last is reached */
+ U32 prev_recursed_depth;
+ I32 stopparen;              /* what stopparen do we use */
+ U32 is_top_frame;           /* what flags do we use? */
+
+ struct scan_frame *this_prev_frame; /* this previous frame */
+ struct scan_frame *prev_frame;      /* previous frame */
+ struct scan_frame *next_frame;      /* next frame */
+} scan_frame;
+
+/* Certain characters are output as a sequence with the first being a
+ * backslash. */
+#define isBACKSLASHED_PUNCT(c)                                              \
+     ((c) == '-' || (c) == ']' || (c) == '\\' || (c) == '^')
+
+
+struct RExC_state_t {
+ U32  flags;   /* RXf_* are we folding, multilining? */
+ U32  pm_flags;  /* PMf_* stuff from the calling PMOP */
+ char *precomp;  /* uncompiled string. */
+ REGEXP *rx_sv;   /* The SV that is the regexp. */
+ regexp *rx;                    /* perl core regexp structure */
+ regexp_internal *rxi;           /* internal data for regexp object
+          pprivate field */
+ char *start;   /* Start of input for compile */
+ char *end;   /* End of input for compile */
+ char *parse;   /* Input-scan pointer. */
+ SSize_t whilem_seen;  /* number of WHILEM in this expr */
+ regnode *emit_start;  /* Start of emitted-code area */
+ regnode *emit_bound;  /* First regnode outside of the
+          allocated space */
+ regnode *emit;   /* Code-emit pointer; if = &emit_dummy,
+          implies compiling, so don't emit */
+ regnode_ssc emit_dummy;  /* placeholder for emit to point to;
+          large enough for the largest
+          non-EXACTish node, so can use it as
+          scratch in pass1 */
+ I32  naughty;  /* How bad is this pattern? */
+ I32  sawback;  /* Did we see \1, ...? */
+ U32  seen;
+ SSize_t size;   /* Code size. */
+ I32                npar;            /* Capture buffer count, (OPEN) plus
+          one. ("par" 0 is the whole
+          pattern)*/
+ I32  nestroot;  /* root parens we are in - used by
+          accept */
+ I32  extralen;
+ I32  seen_zerolen;
+ regnode **open_parens;  /* pointers to open parens */
+ regnode **close_parens;  /* pointers to close parens */
+ regnode *opend;   /* END node in program */
+ I32  utf8;  /* whether the pattern is utf8 or not */
+ I32  orig_utf8; /* whether the pattern was originally in utf8 */
+        /* XXX use this for future optimisation of case
+        * where pattern must be upgraded to utf8. */
+ I32  uni_semantics; /* If a d charset modifier should use unicode
+        rules, even if the pattern is not in
+        utf8 */
+ HV  *paren_names;  /* Paren names */
+
+ regnode **recurse;  /* Recurse regops */
+ I32  recurse_count;  /* Number of recurse regops */
+ U8          *study_chunk_recursed;  /* bitmap of which subs we have moved
+          through */
+ U32         study_chunk_recursed_bytes;  /* bytes in bitmap */
+ I32  in_lookbehind;
+ I32  contains_locale;
+ I32  contains_i;
+ I32  override_recoding;
+#ifdef EBCDIC
+ I32  recode_x_to_native;
+#endif
+ I32  in_multi_char_class;
+ struct reg_code_block *code_blocks; /* positions of literal (?{})
+           within pattern */
+ int  num_code_blocks; /* size of code_blocks[] */
+ int  code_index;  /* next code_blocks[] slot */
+ SSize_t     maxlen;                        /* mininum possible number of chars in string to match */
+ scan_frame *frame_head;
+ scan_frame *frame_last;
+ U32         frame_count;
+ U32         strict;
+#ifdef ADD_TO_REGEXEC
+ char  *starttry;  /* -Dr: where regtry was called. */
+#define RExC_starttry (pRExC_state->starttry)
+#endif
+ SV  *runtime_code_qr; /* qr with the runtime code blocks */
+#ifdef DEBUGGING
+ const char  *lastparse;
+ I32         lastnum;
+ AV          *paren_name_list;       /* idx -> name */
+ U32         study_chunk_recursed_count;
+ SV          *mysv1;
+ SV          *mysv2;
+#define RExC_lastparse (pRExC_state->lastparse)
+#define RExC_lastnum (pRExC_state->lastnum)
+#define RExC_paren_name_list    (pRExC_state->paren_name_list)
+#define RExC_study_chunk_recursed_count    (pRExC_state->study_chunk_recursed_count)
+#define RExC_mysv (pRExC_state->mysv1)
+#define RExC_mysv1 (pRExC_state->mysv1)
+#define RExC_mysv2 (pRExC_state->mysv2)
+
+#endif
+};
+
+#define RExC_flags (pRExC_state->flags)
+#define RExC_pm_flags (pRExC_state->pm_flags)
+#define RExC_precomp (pRExC_state->precomp)
+#define RExC_rx_sv (pRExC_state->rx_sv)
+#define RExC_rx  (pRExC_state->rx)
+#define RExC_rxi (pRExC_state->rxi)
+#define RExC_start (pRExC_state->start)
+#define RExC_end (pRExC_state->end)
+#define RExC_parse (pRExC_state->parse)
+#define RExC_whilem_seen (pRExC_state->whilem_seen)
+#ifdef RE_TRACK_PATTERN_OFFSETS
+#define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the
+              others */
+#endif
+#define RExC_emit (pRExC_state->emit)
+#define RExC_emit_dummy (pRExC_state->emit_dummy)
+#define RExC_emit_start (pRExC_state->emit_start)
+#define RExC_emit_bound (pRExC_state->emit_bound)
+#define RExC_sawback (pRExC_state->sawback)
+#define RExC_seen (pRExC_state->seen)
+#define RExC_size (pRExC_state->size)
+#define RExC_maxlen        (pRExC_state->maxlen)
+#define RExC_npar (pRExC_state->npar)
+#define RExC_nestroot   (pRExC_state->nestroot)
+#define RExC_extralen (pRExC_state->extralen)
+#define RExC_seen_zerolen (pRExC_state->seen_zerolen)
+#define RExC_utf8 (pRExC_state->utf8)
+#define RExC_uni_semantics (pRExC_state->uni_semantics)
+#define RExC_orig_utf8 (pRExC_state->orig_utf8)
+#define RExC_open_parens (pRExC_state->open_parens)
+#define RExC_close_parens (pRExC_state->close_parens)
+#define RExC_opend (pRExC_state->opend)
+#define RExC_paren_names (pRExC_state->paren_names)
+#define RExC_recurse (pRExC_state->recurse)
+#define RExC_recurse_count (pRExC_state->recurse_count)
+#define RExC_study_chunk_recursed        (pRExC_state->study_chunk_recursed)
+#define RExC_study_chunk_recursed_bytes  \
+        (pRExC_state->study_chunk_recursed_bytes)
+#define RExC_in_lookbehind (pRExC_state->in_lookbehind)
+#define RExC_contains_locale (pRExC_state->contains_locale)
+#define RExC_contains_i (pRExC_state->contains_i)
+#define RExC_override_recoding (pRExC_state->override_recoding)
+#ifdef EBCDIC
+#   define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)
+#endif
+#define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
+#define RExC_frame_head (pRExC_state->frame_head)
+#define RExC_frame_last (pRExC_state->frame_last)
+#define RExC_frame_count (pRExC_state->frame_count)
+#define RExC_strict (pRExC_state->strict)
+
+/* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
+ * a flag to disable back-off on the fixed/floating substrings - if it's
+ * a high complexity pattern we assume the benefit of avoiding a full match
+ * is worth the cost of checking for the substrings even if they rarely help.
+ */
+#define RExC_naughty (pRExC_state->naughty)
+#define TOO_NAUGHTY (10)
+#define MARK_NAUGHTY(add) \
+ if (RExC_naughty < TOO_NAUGHTY) \
+  RExC_naughty += (add)
+#define MARK_NAUGHTY_EXP(exp, add) \
+ if (RExC_naughty < TOO_NAUGHTY) \
+  RExC_naughty += RExC_naughty / (exp) + (add)
+
+#define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
+#define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
+  ((*s) == '{' && regcurly(s)))
+
+/*
+ * Flags to be passed up and down.
+ */
+#define WORST  0 /* Worst case. */
+#define HASWIDTH 0x01 /* Known to match non-null strings. */
+
+/* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
+ * character.  (There needs to be a case: in the switch statement in regexec.c
+ * for any node marked SIMPLE.)  Note that this is not the same thing as
+ * REGNODE_SIMPLE */
+#define SIMPLE  0x02
+#define SPSTART  0x04 /* Starts with * or + */
+#define POSTPONED 0x08    /* (?1),(?&name), (??{...}) or similar */
+#define TRYAGAIN 0x10 /* Weeded out a declaration. */
+#define RESTART_UTF8    0x20    /* Restart, need to calcuate sizes as UTF-8 */
+
+#define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
+
+/* whether trie related optimizations are enabled */
+#if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
+#define TRIE_STUDY_OPT
+#define FULL_TRIE_STUDY
+#define TRIE_STCLASS
+#endif
+
+
+
+#define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
+#define PBITVAL(paren) (1 << ((paren) & 7))
+#define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
+#define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
+#define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
+
+#define REQUIRE_UTF8 STMT_START {                                       \
+         if (!UTF) {                           \
+          *flagp = RESTART_UTF8;            \
+          return NULL;                      \
+         }                                     \
+      } STMT_END
+
+/* This converts the named class defined in regcomp.h to its equivalent class
+ * number defined in handy.h. */
+#define namedclass_to_classnum(class)  ((int) ((class) / 2))
+#define classnum_to_namedclass(classnum)  ((classnum) * 2)
+
+#define _invlist_union_complement_2nd(a, b, output) \
+      _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
+#define _invlist_intersection_complement_2nd(a, b, output) \
+    _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
+
+/* About scan_data_t.
+
+  During optimisation we recurse through the regexp program performing
+  various inplace (keyhole style) optimisations. In addition study_chunk
+  and scan_commit populate this data structure with information about
+  what strings MUST appear in the pattern. We look for the longest
+  string that must appear at a fixed location, and we look for the
+  longest string that may appear at a floating location. So for instance
+  in the pattern:
+
+ /FOO[xX]A.*B[xX]BAR/
+
+  Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
+  strings (because they follow a .* construct). study_chunk will identify
+  both FOO and BAR as being the longest fixed and floating strings respectively.
+
+  The strings can be composites, for instance
+
+ /(f)(o)(o)/
+
+  will result in a composite fixed substring 'foo'.
+
+  For each string some basic information is maintained:
+
+  - offset or min_offset
+ This is the position the string must appear at, or not before.
+ It also implicitly (when combined with minlenp) tells us how many
+ characters must match before the string we are searching for.
+ Likewise when combined with minlenp and the length of the string it
+ tells us how many characters must appear after the string we have
+ found.
+
+  - max_offset
+ Only used for floating strings. This is the rightmost point that
+ the string can appear at. If set to SSize_t_MAX it indicates that the
+ string can occur infinitely far to the right.
+
+  - minlenp
+ A pointer to the minimum number of characters of the pattern that the
+ string was found inside. This is important as in the case of positive
+ lookahead or positive lookbehind we can have multiple patterns
+ involved. Consider
+
+ /(?=FOO).*F/
+
+ The minimum length of the pattern overall is 3, the minimum length
+ of the lookahead part is 3, but the minimum length of the part that
+ will actually match is 1. So 'FOO's minimum length is 3, but the
+ minimum length for the F is 1. This is important as the minimum length
+ is used to determine offsets in front of and behind the string being
+ looked for.  Since strings can be composites this is the length of the
+ pattern at the time it was committed with a scan_commit. Note that
+ the length is calculated by study_chunk, so that the minimum lengths
+ are not known until the full pattern has been compiled, thus the
+ pointer to the value.
+
+  - lookbehind
+
+ In the case of lookbehind the string being searched for can be
+ offset past the start point of the final matching string.
+ If this value was just blithely removed from the min_offset it would
+ invalidate some of the calculations for how many chars must match
+ before or after (as they are derived from min_offset and minlen and
+ the length of the string being searched for).
+ When the final pattern is compiled and the data is moved from the
+ scan_data_t structure into the regexp structure the information
+ about lookbehind is factored in, with the information that would
+ have been lost precalculated in the end_shift field for the
+ associated string.
+
+  The fields pos_min and pos_delta are used to store the minimum offset
+  and the delta to the maximum offset at the current point in the pattern.
+
+*/
+
+typedef struct scan_data_t {
+ /*I32 len_min;      unused */
+ /*I32 len_delta;    unused */
+ SSize_t pos_min;
+ SSize_t pos_delta;
+ SV *last_found;
+ SSize_t last_end;     /* min value, <0 unless valid. */
+ SSize_t last_start_min;
+ SSize_t last_start_max;
+ SV **longest;     /* Either &l_fixed, or &l_float. */
+ SV *longest_fixed;      /* longest fixed string found in pattern */
+ SSize_t offset_fixed;   /* offset where it starts */
+ SSize_t *minlen_fixed;  /* pointer to the minlen relevant to the string */
+ I32 lookbehind_fixed;   /* is the position of the string modfied by LB */
+ SV *longest_float;      /* longest floating string found in pattern */
+ SSize_t offset_float_min; /* earliest point in string it can appear */
+ SSize_t offset_float_max; /* latest point in string it can appear */
+ SSize_t *minlen_float;  /* pointer to the minlen relevant to the string */
+ SSize_t lookbehind_float; /* is the pos of the string modified by LB */
+ I32 flags;
+ I32 whilem_c;
+ SSize_t *last_closep;
+ regnode_ssc *start_class;
+} scan_data_t;
+
+/*
+ * Forward declarations for pregcomp()'s friends.
+ */
+
+static const scan_data_t zero_scan_data =
+  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
+
+#define SF_BEFORE_EOL  (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
+#define SF_BEFORE_SEOL  0x0001
+#define SF_BEFORE_MEOL  0x0002
+#define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
+#define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
+
+#define SF_FIX_SHIFT_EOL (+2)
+#define SF_FL_SHIFT_EOL  (+4)
+
+#define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
+#define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
+
+#define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
+#define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
+#define SF_IS_INF  0x0040
+#define SF_HAS_PAR  0x0080
+#define SF_IN_PAR  0x0100
+#define SF_HAS_EVAL  0x0200
+#define SCF_DO_SUBSTR  0x0400
+#define SCF_DO_STCLASS_AND 0x0800
+#define SCF_DO_STCLASS_OR 0x1000
+#define SCF_DO_STCLASS  (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
+#define SCF_WHILEM_VISITED_POS 0x2000
+
+#define SCF_TRIE_RESTUDY        0x4000 /* Do restudy? */
+#define SCF_SEEN_ACCEPT         0x8000
+#define SCF_TRIE_DOING_RESTUDY 0x10000
+#define SCF_IN_DEFINE          0x20000
+
+
+
+
+#define UTF cBOOL(RExC_utf8)
+
+/* The enums for all these are ordered so things work out correctly */
+#define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
+#define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags)                    \
+             == REGEX_DEPENDS_CHARSET)
+#define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
+#define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags)                \
+             >= REGEX_UNICODE_CHARSET)
+#define ASCII_RESTRICTED (get_regex_charset(RExC_flags)                      \
+           == REGEX_ASCII_RESTRICTED_CHARSET)
+#define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags)             \
+           >= REGEX_ASCII_RESTRICTED_CHARSET)
+#define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags)                 \
+          == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
+
+#define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
+
+/* For programs that want to be strictly Unicode compatible by dying if any
+ * attempt is made to match a non-Unicode code point against a Unicode
+ * property.  */
+#define ALWAYS_WARN_SUPER  ckDEAD(packWARN(WARN_NON_UNICODE))
+
+#define OOB_NAMEDCLASS  -1
+
+/* There is no code point that is out-of-bounds, so this is problematic.  But
+ * its only current use is to initialize a variable that is always set before
+ * looked at. */
+#define OOB_UNICODE  0xDEADBEEF
+
+#define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
+#define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
+
+
+/* length of regex to show in messages that don't mark a position within */
+#define RegexLengthToShowInErrorMessages 127
+
+/*
+ * If MARKER[12] are adjusted, be sure to adjust the constants at the top
+ * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
+ * op/pragma/warn/regcomp.
+ */
+#define MARKER1 "<-- HERE"    /* marker as it appears in the description */
+#define MARKER2 " <-- HERE "  /* marker as it appears within the regex */
+
+#define REPORT_LOCATION " in regex; marked by " MARKER1    \
+      " in m/%"UTF8f MARKER2 "%"UTF8f"/"
+
+#define REPORT_LOCATION_ARGS(offset)            \
+    UTF8fARG(UTF, offset, RExC_precomp), \
+    UTF8fARG(UTF, RExC_end - RExC_precomp - offset, RExC_precomp + offset)
+
+/* Used to point after bad bytes for an error message, but avoid skipping
+ * past a nul byte. */
+#define SKIP_IF_CHAR(s) (!*(s) ? 0 : UTF ? UTF8SKIP(s) : 1)
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
+ * arg. Show regex, up to a maximum length. If it's too long, chop and add
+ * "...".
+ */
+#define _FAIL(code) STMT_START {     \
+ const char *ellipses = "";      \
+ IV len = RExC_end - RExC_precomp;     \
+                  \
+ if (!SIZE_ONLY)       \
+  SAVEFREESV(RExC_rx_sv);      \
+ if (len > RegexLengthToShowInErrorMessages) {   \
+  /* chop 10 shorter than the max, to ensure meaning of "..." */ \
+  len = RegexLengthToShowInErrorMessages - 10;   \
+  ellipses = "...";      \
+ }         \
+ code;                                                               \
+} STMT_END
+
+#define FAIL(msg) _FAIL(       \
+ Perl_croak(aTHX_ "%s in regex m/%"UTF8f"%s/",     \
+   msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
+
+#define FAIL2(msg,arg) _FAIL(       \
+ Perl_croak(aTHX_ msg " in regex m/%"UTF8f"%s/",     \
+   arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
+
+/*
+ * Simple_vFAIL -- like FAIL, but marks the current location in the scan
+ */
+#define Simple_vFAIL(m) STMT_START {     \
+ const IV offset =                                                   \
+  (RExC_parse > RExC_end ? RExC_end : RExC_parse) - RExC_precomp; \
+ Perl_croak(aTHX_ "%s" REPORT_LOCATION,    \
+   m, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
+ */
+#define vFAIL(m) STMT_START {    \
+ if (!SIZE_ONLY)     \
+  SAVEFREESV(RExC_rx_sv);    \
+ Simple_vFAIL(m);     \
+} STMT_END
+
+/*
+ * Like Simple_vFAIL(), but accepts two arguments.
+ */
+#define Simple_vFAIL2(m,a1) STMT_START {   \
+ const IV offset = RExC_parse - RExC_precomp;   \
+ S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1,   \
+     REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
+ */
+#define vFAIL2(m,a1) STMT_START {   \
+ if (!SIZE_ONLY)     \
+  SAVEFREESV(RExC_rx_sv);    \
+ Simple_vFAIL2(m, a1);    \
+} STMT_END
+
+
+/*
+ * Like Simple_vFAIL(), but accepts three arguments.
+ */
+#define Simple_vFAIL3(m, a1, a2) STMT_START {   \
+ const IV offset = RExC_parse - RExC_precomp;  \
+ S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2,  \
+   REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
+ */
+#define vFAIL3(m,a1,a2) STMT_START {   \
+ if (!SIZE_ONLY)     \
+  SAVEFREESV(RExC_rx_sv);    \
+ Simple_vFAIL3(m, a1, a2);    \
+} STMT_END
+
+/*
+ * Like Simple_vFAIL(), but accepts four arguments.
+ */
+#define Simple_vFAIL4(m, a1, a2, a3) STMT_START {  \
+ const IV offset = RExC_parse - RExC_precomp;  \
+ S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, a3,  \
+   REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vFAIL4(m,a1,a2,a3) STMT_START {   \
+ if (!SIZE_ONLY)     \
+  SAVEFREESV(RExC_rx_sv);    \
+ Simple_vFAIL4(m, a1, a2, a3);   \
+} STMT_END
+
+/* A specialized version of vFAIL2 that works with UTF8f */
+#define vFAIL2utf8f(m, a1) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp;   \
+ if (!SIZE_ONLY)                                \
+  SAVEFREESV(RExC_rx_sv);                    \
+ S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
+   REPORT_LOCATION_ARGS(offset));         \
+} STMT_END
+
+/* These have asserts in them because of [perl #122671] Many warnings in
+ * regcomp.c can occur twice.  If they get output in pass1 and later in that
+ * pass, the pattern has to be converted to UTF-8 and the pass restarted, they
+ * would get output again.  So they should be output in pass2, and these
+ * asserts make sure new warnings follow that paradigm. */
+
+/* m is not necessarily a "literal string", in this macro */
+#define reg_warn_non_literal_string(loc, m) STMT_START {                \
+ const IV offset = loc - RExC_precomp;                               \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s" REPORT_LOCATION,      \
+   m, REPORT_LOCATION_ARGS(offset));       \
+} STMT_END
+
+#define ckWARNreg(loc,m) STMT_START {     \
+ const IV offset = loc - RExC_precomp;    \
+ __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+   REPORT_LOCATION_ARGS(offset));  \
+} STMT_END
+
+#define vWARN(loc, m) STMT_START {            \
+ const IV offset = loc - RExC_precomp;    \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+   REPORT_LOCATION_ARGS(offset));         \
+} STMT_END
+
+#define vWARN_dep(loc, m) STMT_START {            \
+ const IV offset = loc - RExC_precomp;    \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), m REPORT_LOCATION, \
+   REPORT_LOCATION_ARGS(offset));         \
+} STMT_END
+
+#define ckWARNdep(loc,m) STMT_START {            \
+ const IV offset = loc - RExC_precomp;    \
+ __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED),                 \
+   m REPORT_LOCATION,      \
+   REPORT_LOCATION_ARGS(offset));  \
+} STMT_END
+
+#define ckWARNregdep(loc,m) STMT_START {    \
+ const IV offset = loc - RExC_precomp;    \
+ __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
+   m REPORT_LOCATION,      \
+   REPORT_LOCATION_ARGS(offset));  \
+} STMT_END
+
+#define ckWARN2reg_d(loc,m, a1) STMT_START {    \
+ const IV offset = loc - RExC_precomp;    \
+ __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP),   \
+   m REPORT_LOCATION,      \
+   a1, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARN2reg(loc, m, a1) STMT_START {    \
+ const IV offset = loc - RExC_precomp;    \
+ __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+   a1, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vWARN3(loc, m, a1, a2) STMT_START {    \
+ const IV offset = loc - RExC_precomp;    \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,  \
+   a1, a2, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARN3reg(loc, m, a1, a2) STMT_START {    \
+ const IV offset = loc - RExC_precomp;    \
+ __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+   a1, a2, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vWARN4(loc, m, a1, a2, a3) STMT_START {    \
+ const IV offset = loc - RExC_precomp;    \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,  \
+   a1, a2, a3, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARN4reg(loc, m, a1, a2, a3) STMT_START {   \
+ const IV offset = loc - RExC_precomp;    \
+ __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+   a1, a2, a3, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vWARN5(loc, m, a1, a2, a3, a4) STMT_START {   \
+ const IV offset = loc - RExC_precomp;    \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,  \
+   a1, a2, a3, a4, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/* Macros for recording node offsets.   20001227 mjd@plover.com
+ * Nodes are numbered 1, 2, 3, 4.  Node #n's position is recorded in
+ * element 2*n-1 of the array.  Element #2n holds the byte length node #n.
+ * Element 0 holds the number n.
+ * Position is 1 indexed.
+ */
+#ifndef RE_TRACK_PATTERN_OFFSETS
+#define Set_Node_Offset_To_R(node,byte)
+#define Set_Node_Offset(node,byte)
+#define Set_Cur_Node_Offset
+#define Set_Node_Length_To_R(node,len)
+#define Set_Node_Length(node,len)
+#define Set_Node_Cur_Length(node,start)
+#define Node_Offset(n)
+#define Node_Length(n)
+#define Set_Node_Offset_Length(node,offset,len)
+#define ProgLen(ri) ri->u.proglen
+#define SetProgLen(ri,x) ri->u.proglen = x
+#else
+#define ProgLen(ri) ri->u.offsets[0]
+#define SetProgLen(ri,x) ri->u.offsets[0] = x
+#define Set_Node_Offset_To_R(node,byte) STMT_START {   \
+ if (! SIZE_ONLY) {       \
+  MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n",  \
+     __LINE__, (int)(node), (int)(byte)));  \
+  if((node) < 0) {      \
+   Perl_croak(aTHX_ "value of node is %d in Offset macro",     \
+          (int)(node));                  \
+  } else {       \
+   RExC_offsets[2*(node)-1] = (byte);    \
+  }        \
+ }         \
+} STMT_END
+
+#define Set_Node_Offset(node,byte) \
+ Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
+#define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
+
+#define Set_Node_Length_To_R(node,len) STMT_START {   \
+ if (! SIZE_ONLY) {       \
+  MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n",  \
+    __LINE__, (int)(node), (int)(len)));   \
+  if((node) < 0) {      \
+   Perl_croak(aTHX_ "value of node is %d in Length macro",     \
+          (int)(node));                  \
+  } else {       \
+   RExC_offsets[2*(node)] = (len);    \
+  }        \
+ }         \
+} STMT_END
+
+#define Set_Node_Length(node,len) \
+ Set_Node_Length_To_R((node)-RExC_emit_start, len)
+#define Set_Node_Cur_Length(node, start)                \
+ Set_Node_Length(node, RExC_parse - start)
+
+/* Get offsets and lengths */
+#define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
+#define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
+
+#define Set_Node_Offset_Length(node,offset,len) STMT_START { \
+ Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
+ Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
+} STMT_END
+#endif
+
+#if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
+#define EXPERIMENTAL_INPLACESCAN
+#endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
+
+#define DEBUG_RExC_seen() \
+  DEBUG_OPTIMISE_MORE_r({                                             \
+   PerlIO_printf(Perl_debug_log,"RExC_seen: ");                    \
+                   \
+   if (RExC_seen & REG_ZERO_LEN_SEEN)                              \
+    PerlIO_printf(Perl_debug_log,"REG_ZERO_LEN_SEEN ");         \
+                   \
+   if (RExC_seen & REG_LOOKBEHIND_SEEN)                            \
+    PerlIO_printf(Perl_debug_log,"REG_LOOKBEHIND_SEEN ");       \
+                   \
+   if (RExC_seen & REG_GPOS_SEEN)                                  \
+    PerlIO_printf(Perl_debug_log,"REG_GPOS_SEEN ");             \
+                   \
+   if (RExC_seen & REG_RECURSE_SEEN)                               \
+    PerlIO_printf(Perl_debug_log,"REG_RECURSE_SEEN ");          \
+                   \
+   if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN)                         \
+    PerlIO_printf(Perl_debug_log,"REG_TOP_LEVEL_BRANCHES_SEEN ");    \
+                   \
+   if (RExC_seen & REG_VERBARG_SEEN)                               \
+    PerlIO_printf(Perl_debug_log,"REG_VERBARG_SEEN ");          \
+                   \
+   if (RExC_seen & REG_CUTGROUP_SEEN)                              \
+    PerlIO_printf(Perl_debug_log,"REG_CUTGROUP_SEEN ");         \
+                   \
+   if (RExC_seen & REG_RUN_ON_COMMENT_SEEN)                        \
+    PerlIO_printf(Perl_debug_log,"REG_RUN_ON_COMMENT_SEEN ");   \
+                   \
+   if (RExC_seen & REG_UNFOLDED_MULTI_SEEN)                        \
+    PerlIO_printf(Perl_debug_log,"REG_UNFOLDED_MULTI_SEEN ");   \
+                   \
+   if (RExC_seen & REG_GOSTART_SEEN)                               \
+    PerlIO_printf(Perl_debug_log,"REG_GOSTART_SEEN ");          \
+                   \
+   if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN)                               \
+    PerlIO_printf(Perl_debug_log,"REG_UNBOUNDED_QUANTIFIER_SEEN ");          \
+                   \
+   PerlIO_printf(Perl_debug_log,"\n");                             \
+  });
+
+#define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
+  if ((flags) & flag) PerlIO_printf(Perl_debug_log, "%s ", #flag)
+
+#define DEBUG_SHOW_STUDY_FLAGS(flags,open_str,close_str)                    \
+ if ( ( flags ) ) {                                                      \
+  PerlIO_printf(Perl_debug_log, "%s", open_str);                      \
+  DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_SEOL);                     \
+  DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_MEOL);                     \
+  DEBUG_SHOW_STUDY_FLAG(flags,SF_IS_INF);                             \
+  DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_PAR);                            \
+  DEBUG_SHOW_STUDY_FLAG(flags,SF_IN_PAR);                             \
+  DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_EVAL);                           \
+  DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_SUBSTR);                         \
+  DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_AND);                    \
+  DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_OR);                     \
+  DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS);                        \
+  DEBUG_SHOW_STUDY_FLAG(flags,SCF_WHILEM_VISITED_POS);                \
+  DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_RESTUDY);                      \
+  DEBUG_SHOW_STUDY_FLAG(flags,SCF_SEEN_ACCEPT);                       \
+  DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_DOING_RESTUDY);                \
+  DEBUG_SHOW_STUDY_FLAG(flags,SCF_IN_DEFINE);                         \
+  PerlIO_printf(Perl_debug_log, "%s", close_str);                     \
+ }
+
+
+#define DEBUG_STUDYDATA(str,data,depth)                              \
+DEBUG_OPTIMISE_MORE_r(if(data){                                      \
+ PerlIO_printf(Perl_debug_log,                                    \
+  "%*s" str "Pos:%"IVdf"/%"IVdf                                \
+  " Flags: 0x%"UVXf,                                           \
+  (int)(depth)*2, "",                                          \
+  (IV)((data)->pos_min),                                       \
+  (IV)((data)->pos_delta),                                     \
+  (UV)((data)->flags)                                          \
+ );                                                               \
+ DEBUG_SHOW_STUDY_FLAGS((data)->flags," [ ","]");                 \
+ PerlIO_printf(Perl_debug_log,                                    \
+  " Whilem_c: %"IVdf" Lcp: %"IVdf" %s",                        \
+  (IV)((data)->whilem_c),                                      \
+  (IV)((data)->last_closep ? *((data)->last_closep) : -1),     \
+  is_inf ? "INF " : ""                                         \
+ );                                                               \
+ if ((data)->last_found)                                          \
+  PerlIO_printf(Perl_debug_log,                                \
+   "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
+   " %sFloat: '%s' @ %"IVdf"/%"IVdf"",                      \
+   SvPVX_const((data)->last_found),                         \
+   (IV)((data)->last_end),                                  \
+   (IV)((data)->last_start_min),                            \
+   (IV)((data)->last_start_max),                            \
+   ((data)->longest &&                                      \
+   (data)->longest==&((data)->longest_fixed)) ? "*" : "",  \
+   SvPVX_const((data)->longest_fixed),                      \
+   (IV)((data)->offset_fixed),                              \
+   ((data)->longest &&                                      \
+   (data)->longest==&((data)->longest_float)) ? "*" : "",  \
+   SvPVX_const((data)->longest_float),                      \
+   (IV)((data)->offset_float_min),                          \
+   (IV)((data)->offset_float_max)                           \
+  );                                                           \
+ PerlIO_printf(Perl_debug_log,"\n");                              \
+});
+
+/* is c a control character for which we have a mnemonic? */
+#define isMNEMONIC_CNTRL(c) _IS_MNEMONIC_CNTRL_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
+
+STATIC const char *
+S_cntrl_to_mnemonic(const U8 c)
+{
+ /* Returns the mnemonic string that represents character 'c', if one
+ * exists; NULL otherwise.  The only ones that exist for the purposes of
+ * this routine are a few control characters */
+
+ switch (c) {
+  case '\a':       return "\\a";
+  case '\b':       return "\\b";
+  case ESC_NATIVE: return "\\e";
+  case '\f':       return "\\f";
+  case '\n':       return "\\n";
+  case '\r':       return "\\r";
+  case '\t':       return "\\t";
+ }
+
+ return NULL;
+}
+
+/* Mark that we cannot extend a found fixed substring at this point.
+   Update the longest found anchored substring and the longest found
+   floating substrings if needed. */
+
+STATIC void
+S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
+     SSize_t *minlenp, int is_inf)
+{
+ const STRLEN l = CHR_SVLEN(data->last_found);
+ const STRLEN old_l = CHR_SVLEN(*data->longest);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_SCAN_COMMIT;
+
+ if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
+  SvSetMagicSV(*data->longest, data->last_found);
+  if (*data->longest == data->longest_fixed) {
+   data->offset_fixed = l ? data->last_start_min : data->pos_min;
+   if (data->flags & SF_BEFORE_EOL)
+    data->flags
+     |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
+   else
+    data->flags &= ~SF_FIX_BEFORE_EOL;
+   data->minlen_fixed=minlenp;
+   data->lookbehind_fixed=0;
+  }
+  else { /* *data->longest == data->longest_float */
+   data->offset_float_min = l ? data->last_start_min : data->pos_min;
+   data->offset_float_max = (l
+      ? data->last_start_max
+      : (data->pos_delta > SSize_t_MAX - data->pos_min
+          ? SSize_t_MAX
+          : data->pos_min + data->pos_delta));
+   if (is_inf
+    || (STRLEN)data->offset_float_max > (STRLEN)SSize_t_MAX)
+    data->offset_float_max = SSize_t_MAX;
+   if (data->flags & SF_BEFORE_EOL)
+    data->flags
+     |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
+   else
+    data->flags &= ~SF_FL_BEFORE_EOL;
+   data->minlen_float=minlenp;
+   data->lookbehind_float=0;
+  }
+ }
+ SvCUR_set(data->last_found, 0);
+ {
+  SV * const sv = data->last_found;
+  if (SvUTF8(sv) && SvMAGICAL(sv)) {
+   MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
+   if (mg)
+    mg->mg_len = 0;
+  }
+ }
+ data->last_end = -1;
+ data->flags &= ~SF_BEFORE_EOL;
+ DEBUG_STUDYDATA("commit: ",data,0);
+}
+
+/* An SSC is just a regnode_charclass_posix with an extra field: the inversion
+ * list that describes which code points it matches */
+
+STATIC void
+S_ssc_anything(pTHX_ regnode_ssc *ssc)
+{
+ /* Set the SSC 'ssc' to match an empty string or any code point */
+
+ PERL_ARGS_ASSERT_SSC_ANYTHING;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ ssc->invlist = sv_2mortal(_new_invlist(2)); /* mortalize so won't leak */
+ _append_range_to_invlist(ssc->invlist, 0, UV_MAX);
+ ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING;  /* Plus matches empty */
+}
+
+STATIC int
+S_ssc_is_anything(const regnode_ssc *ssc)
+{
+ /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
+ * point; FALSE otherwise.  Thus, this is used to see if using 'ssc' buys
+ * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
+ * in any way, so there's no point in using it */
+
+ UV start, end;
+ bool ret;
+
+ PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
+  return FALSE;
+ }
+
+ /* See if the list consists solely of the range 0 - Infinity */
+ invlist_iterinit(ssc->invlist);
+ ret = invlist_iternext(ssc->invlist, &start, &end)
+  && start == 0
+  && end == UV_MAX;
+
+ invlist_iterfinish(ssc->invlist);
+
+ if (ret) {
+  return TRUE;
+ }
+
+ /* If e.g., both \w and \W are set, matches everything */
+ if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+  int i;
+  for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
+   if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
+    return TRUE;
+   }
+  }
+ }
+
+ return FALSE;
+}
+
+STATIC void
+S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
+{
+ /* Initializes the SSC 'ssc'.  This includes setting it to match an empty
+ * string, any code point, or any posix class under locale */
+
+ PERL_ARGS_ASSERT_SSC_INIT;
+
+ Zero(ssc, 1, regnode_ssc);
+ set_ANYOF_SYNTHETIC(ssc);
+ ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
+ ssc_anything(ssc);
+
+ /* If any portion of the regex is to operate under locale rules that aren't
+ * fully known at compile time, initialization includes it.  The reason
+ * this isn't done for all regexes is that the optimizer was written under
+ * the assumption that locale was all-or-nothing.  Given the complexity and
+ * lack of documentation in the optimizer, and that there are inadequate
+ * test cases for locale, many parts of it may not work properly, it is
+ * safest to avoid locale unless necessary. */
+ if (RExC_contains_locale) {
+  ANYOF_POSIXL_SETALL(ssc);
+ }
+ else {
+  ANYOF_POSIXL_ZERO(ssc);
+ }
+}
+
+STATIC int
+S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
+      const regnode_ssc *ssc)
+{
+ /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
+ * to the list of code points matched, and locale posix classes; hence does
+ * not check its flags) */
+
+ UV start, end;
+ bool ret;
+
+ PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ invlist_iterinit(ssc->invlist);
+ ret = invlist_iternext(ssc->invlist, &start, &end)
+  && start == 0
+  && end == UV_MAX;
+
+ invlist_iterfinish(ssc->invlist);
+
+ if (! ret) {
+  return FALSE;
+ }
+
+ if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
+  return FALSE;
+ }
+
+ return TRUE;
+}
+
+STATIC SV*
+S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
+       const regnode_charclass* const node)
+{
+ /* Returns a mortal inversion list defining which code points are matched
+ * by 'node', which is of type ANYOF.  Handles complementing the result if
+ * appropriate.  If some code points aren't knowable at this time, the
+ * returned list must, and will, contain every code point that is a
+ * possibility. */
+
+ SV* invlist = sv_2mortal(_new_invlist(0));
+ SV* only_utf8_locale_invlist = NULL;
+ unsigned int i;
+ const U32 n = ARG(node);
+ bool new_node_has_latin1 = FALSE;
+
+ PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
+
+ /* Look at the data structure created by S_set_ANYOF_arg() */
+ if (n != ANYOF_ONLY_HAS_BITMAP) {
+  SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
+  AV * const av = MUTABLE_AV(SvRV(rv));
+  SV **const ary = AvARRAY(av);
+  assert(RExC_rxi->data->what[n] == 's');
+
+  if (ary[1] && ary[1] != &PL_sv_undef) { /* Has compile-time swash */
+   invlist = sv_2mortal(invlist_clone(_get_swash_invlist(ary[1])));
+  }
+  else if (ary[0] && ary[0] != &PL_sv_undef) {
+
+   /* Here, no compile-time swash, and there are things that won't be
+   * known until runtime -- we have to assume it could be anything */
+   return _add_range_to_invlist(invlist, 0, UV_MAX);
+  }
+  else if (ary[3] && ary[3] != &PL_sv_undef) {
+
+   /* Here no compile-time swash, and no run-time only data.  Use the
+   * node's inversion list */
+   invlist = sv_2mortal(invlist_clone(ary[3]));
+  }
+
+  /* Get the code points valid only under UTF-8 locales */
+  if ((ANYOF_FLAGS(node) & ANYOF_LOC_FOLD)
+   && ary[2] && ary[2] != &PL_sv_undef)
+  {
+   only_utf8_locale_invlist = ary[2];
+  }
+ }
+
+ /* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
+ * code points, and an inversion list for the others, but if there are code
+ * points that should match only conditionally on the target string being
+ * UTF-8, those are placed in the inversion list, and not the bitmap.
+ * Since there are circumstances under which they could match, they are
+ * included in the SSC.  But if the ANYOF node is to be inverted, we have
+ * to exclude them here, so that when we invert below, the end result
+ * actually does include them.  (Think about "\xe0" =~ /[^\xc0]/di;).  We
+ * have to do this here before we add the unconditionally matched code
+ * points */
+ if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
+  _invlist_intersection_complement_2nd(invlist,
+           PL_UpperLatin1,
+           &invlist);
+ }
+
+ /* Add in the points from the bit map */
+ for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
+  if (ANYOF_BITMAP_TEST(node, i)) {
+   invlist = add_cp_to_invlist(invlist, i);
+   new_node_has_latin1 = TRUE;
+  }
+ }
+
+ /* If this can match all upper Latin1 code points, have to add them
+ * as well */
+ if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII) {
+  _invlist_union(invlist, PL_UpperLatin1, &invlist);
+ }
+
+ /* Similarly for these */
+ if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
+  _invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
+ }
+
+ if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
+  _invlist_invert(invlist);
+ }
+ else if (new_node_has_latin1 && ANYOF_FLAGS(node) & ANYOF_LOC_FOLD) {
+
+  /* Under /li, any 0-255 could fold to any other 0-255, depending on the
+  * locale.  We can skip this if there are no 0-255 at all. */
+  _invlist_union(invlist, PL_Latin1, &invlist);
+ }
+
+ /* Similarly add the UTF-8 locale possible matches.  These have to be
+ * deferred until after the non-UTF-8 locale ones are taken care of just
+ * above, or it leads to wrong results under ANYOF_INVERT */
+ if (only_utf8_locale_invlist) {
+  _invlist_union_maybe_complement_2nd(invlist,
+           only_utf8_locale_invlist,
+           ANYOF_FLAGS(node) & ANYOF_INVERT,
+           &invlist);
+ }
+
+ return invlist;
+}
+
+/* These two functions currently do the exact same thing */
+#define ssc_init_zero  ssc_init
+
+#define ssc_add_cp(ssc, cp)   ssc_add_range((ssc), (cp), (cp))
+#define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
+
+/* 'AND' a given class with another one.  Can create false positives.  'ssc'
+ * should not be inverted.  'and_with->flags & ANYOF_MATCHES_POSIXL' should be
+ * 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */
+
+STATIC void
+S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
+    const regnode_charclass *and_with)
+{
+ /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
+ * another SSC or a regular ANYOF class.  Can create false positives. */
+
+ SV* anded_cp_list;
+ U8  anded_flags;
+
+ PERL_ARGS_ASSERT_SSC_AND;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
+ * the code point inversion list and just the relevant flags */
+ if (is_ANYOF_SYNTHETIC(and_with)) {
+  anded_cp_list = ((regnode_ssc *)and_with)->invlist;
+  anded_flags = ANYOF_FLAGS(and_with);
+
+  /* XXX This is a kludge around what appears to be deficiencies in the
+  * optimizer.  If we make S_ssc_anything() add in the WARN_SUPER flag,
+  * there are paths through the optimizer where it doesn't get weeded
+  * out when it should.  And if we don't make some extra provision for
+  * it like the code just below, it doesn't get added when it should.
+  * This solution is to add it only when AND'ing, which is here, and
+  * only when what is being AND'ed is the pristine, original node
+  * matching anything.  Thus it is like adding it to ssc_anything() but
+  * only when the result is to be AND'ed.  Probably the same solution
+  * could be adopted for the same problem we have with /l matching,
+  * which is solved differently in S_ssc_init(), and that would lead to
+  * fewer false positives than that solution has.  But if this solution
+  * creates bugs, the consequences are only that a warning isn't raised
+  * that should be; while the consequences for having /l bugs is
+  * incorrect matches */
+  if (ssc_is_anything((regnode_ssc *)and_with)) {
+   anded_flags |= ANYOF_WARN_SUPER;
+  }
+ }
+ else {
+  anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
+  anded_flags = ANYOF_FLAGS(and_with) & ANYOF_COMMON_FLAGS;
+ }
+
+ ANYOF_FLAGS(ssc) &= anded_flags;
+
+ /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
+ * C2 is the list of code points in 'and-with'; P2, its posix classes.
+ * 'and_with' may be inverted.  When not inverted, we have the situation of
+ * computing:
+ *  (C1 | P1) & (C2 | P2)
+ *                     =  (C1 & (C2 | P2)) | (P1 & (C2 | P2))
+ *                     =  ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
+ *                    <=  ((C1 & C2) |       P2)) | ( P1       | (P1 & P2))
+ *                    <=  ((C1 & C2) | P1 | P2)
+ * Alternatively, the last few steps could be:
+ *                     =  ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
+ *                    <=  ((C1 & C2) |  C1      ) | (      C2  | (P1 & P2))
+ *                    <=  (C1 | C2 | (P1 & P2))
+ * We favor the second approach if either P1 or P2 is non-empty.  This is
+ * because these components are a barrier to doing optimizations, as what
+ * they match cannot be known until the moment of matching as they are
+ * dependent on the current locale, 'AND"ing them likely will reduce or
+ * eliminate them.
+ * But we can do better if we know that C1,P1 are in their initial state (a
+ * frequent occurrence), each matching everything:
+ *  (<everything>) & (C2 | P2) =  C2 | P2
+ * Similarly, if C2,P2 are in their initial state (again a frequent
+ * occurrence), the result is a no-op
+ *  (C1 | P1) & (<everything>) =  C1 | P1
+ *
+ * Inverted, we have
+ *  (C1 | P1) & ~(C2 | P2)  =  (C1 | P1) & (~C2 & ~P2)
+ *                          =  (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
+ *                         <=  (C1 & ~C2) | (P1 & ~P2)
+ * */
+
+ if ((ANYOF_FLAGS(and_with) & ANYOF_INVERT)
+  && ! is_ANYOF_SYNTHETIC(and_with))
+ {
+  unsigned int i;
+
+  ssc_intersection(ssc,
+      anded_cp_list,
+      FALSE /* Has already been inverted */
+      );
+
+  /* If either P1 or P2 is empty, the intersection will be also; can skip
+  * the loop */
+  if (! (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL)) {
+   ANYOF_POSIXL_ZERO(ssc);
+  }
+  else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+
+   /* Note that the Posix class component P from 'and_with' actually
+   * looks like:
+   *      P = Pa | Pb | ... | Pn
+   * where each component is one posix class, such as in [\w\s].
+   * Thus
+   *      ~P = ~(Pa | Pb | ... | Pn)
+   *         = ~Pa & ~Pb & ... & ~Pn
+   *        <= ~Pa | ~Pb | ... | ~Pn
+   * The last is something we can easily calculate, but unfortunately
+   * is likely to have many false positives.  We could do better
+   * in some (but certainly not all) instances if two classes in
+   * P have known relationships.  For example
+   *      :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
+   * So
+   *      :lower: & :print: = :lower:
+   * And similarly for classes that must be disjoint.  For example,
+   * since \s and \w can have no elements in common based on rules in
+   * the POSIX standard,
+   *      \w & ^\S = nothing
+   * Unfortunately, some vendor locales do not meet the Posix
+   * standard, in particular almost everything by Microsoft.
+   * The loop below just changes e.g., \w into \W and vice versa */
+
+   regnode_charclass_posixl temp;
+   int add = 1;    /* To calculate the index of the complement */
+
+   ANYOF_POSIXL_ZERO(&temp);
+   for (i = 0; i < ANYOF_MAX; i++) {
+    assert(i % 2 != 0
+     || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
+     || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
+
+    if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
+     ANYOF_POSIXL_SET(&temp, i + add);
+    }
+    add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
+   }
+   ANYOF_POSIXL_AND(&temp, ssc);
+
+  } /* else ssc already has no posixes */
+ } /* else: Not inverted.  This routine is a no-op if 'and_with' is an SSC
+  in its initial state */
+ else if (! is_ANYOF_SYNTHETIC(and_with)
+   || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
+ {
+  /* But if 'ssc' is in its initial state, the result is just 'and_with';
+  * copy it over 'ssc' */
+  if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
+   if (is_ANYOF_SYNTHETIC(and_with)) {
+    StructCopy(and_with, ssc, regnode_ssc);
+   }
+   else {
+    ssc->invlist = anded_cp_list;
+    ANYOF_POSIXL_ZERO(ssc);
+    if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
+     ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
+    }
+   }
+  }
+  else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
+    || (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL))
+  {
+   /* One or the other of P1, P2 is non-empty. */
+   if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
+    ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
+   }
+   ssc_union(ssc, anded_cp_list, FALSE);
+  }
+  else { /* P1 = P2 = empty */
+   ssc_intersection(ssc, anded_cp_list, FALSE);
+  }
+ }
+}
+
+STATIC void
+S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
+   const regnode_charclass *or_with)
+{
+ /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
+ * another SSC or a regular ANYOF class.  Can create false positives if
+ * 'or_with' is to be inverted. */
+
+ SV* ored_cp_list;
+ U8 ored_flags;
+
+ PERL_ARGS_ASSERT_SSC_OR;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
+ * the code point inversion list and just the relevant flags */
+ if (is_ANYOF_SYNTHETIC(or_with)) {
+  ored_cp_list = ((regnode_ssc*) or_with)->invlist;
+  ored_flags = ANYOF_FLAGS(or_with);
+ }
+ else {
+  ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
+  ored_flags = ANYOF_FLAGS(or_with) & ANYOF_COMMON_FLAGS;
+ }
+
+ ANYOF_FLAGS(ssc) |= ored_flags;
+
+ /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
+ * C2 is the list of code points in 'or-with'; P2, its posix classes.
+ * 'or_with' may be inverted.  When not inverted, we have the simple
+ * situation of computing:
+ *  (C1 | P1) | (C2 | P2)  =  (C1 | C2) | (P1 | P2)
+ * If P1|P2 yields a situation with both a class and its complement are
+ * set, like having both \w and \W, this matches all code points, and we
+ * can delete these from the P component of the ssc going forward.  XXX We
+ * might be able to delete all the P components, but I (khw) am not certain
+ * about this, and it is better to be safe.
+ *
+ * Inverted, we have
+ *  (C1 | P1) | ~(C2 | P2)  =  (C1 | P1) | (~C2 & ~P2)
+ *                         <=  (C1 | P1) | ~C2
+ *                         <=  (C1 | ~C2) | P1
+ * (which results in actually simpler code than the non-inverted case)
+ * */
+
+ if ((ANYOF_FLAGS(or_with) & ANYOF_INVERT)
+  && ! is_ANYOF_SYNTHETIC(or_with))
+ {
+  /* We ignore P2, leaving P1 going forward */
+ }   /* else  Not inverted */
+ else if (ANYOF_FLAGS(or_with) & ANYOF_MATCHES_POSIXL) {
+  ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
+  if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+   unsigned int i;
+   for (i = 0; i < ANYOF_MAX; i += 2) {
+    if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
+    {
+     ssc_match_all_cp(ssc);
+     ANYOF_POSIXL_CLEAR(ssc, i);
+     ANYOF_POSIXL_CLEAR(ssc, i+1);
+    }
+   }
+  }
+ }
+
+ ssc_union(ssc,
+   ored_cp_list,
+   FALSE /* Already has been inverted */
+   );
+}
+
+PERL_STATIC_INLINE void
+S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
+{
+ PERL_ARGS_ASSERT_SSC_UNION;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ _invlist_union_maybe_complement_2nd(ssc->invlist,
+          invlist,
+          invert2nd,
+          &ssc->invlist);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_intersection(pTHX_ regnode_ssc *ssc,
+      SV* const invlist,
+      const bool invert2nd)
+{
+ PERL_ARGS_ASSERT_SSC_INTERSECTION;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ _invlist_intersection_maybe_complement_2nd(ssc->invlist,
+           invlist,
+           invert2nd,
+           &ssc->invlist);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
+{
+ PERL_ARGS_ASSERT_SSC_ADD_RANGE;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
+{
+ /* AND just the single code point 'cp' into the SSC 'ssc' */
+
+ SV* cp_list = _new_invlist(2);
+
+ PERL_ARGS_ASSERT_SSC_CP_AND;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ cp_list = add_cp_to_invlist(cp_list, cp);
+ ssc_intersection(ssc, cp_list,
+     FALSE /* Not inverted */
+     );
+ SvREFCNT_dec_NN(cp_list);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_clear_locale(regnode_ssc *ssc)
+{
+ /* Set the SSC 'ssc' to not match any locale things */
+ PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ ANYOF_POSIXL_ZERO(ssc);
+ ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
+}
+
+#define NON_OTHER_COUNT   NON_OTHER_COUNT_FOR_USE_ONLY_BY_REGCOMP_DOT_C
+
+STATIC bool
+S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
+{
+ /* The synthetic start class is used to hopefully quickly winnow down
+ * places where a pattern could start a match in the target string.  If it
+ * doesn't really narrow things down that much, there isn't much point to
+ * having the overhead of using it.  This function uses some very crude
+ * heuristics to decide if to use the ssc or not.
+ *
+ * It returns TRUE if 'ssc' rules out more than half what it considers to
+ * be the "likely" possible matches, but of course it doesn't know what the
+ * actual things being matched are going to be; these are only guesses
+ *
+ * For /l matches, it assumes that the only likely matches are going to be
+ *      in the 0-255 range, uniformly distributed, so half of that is 127
+ * For /a and /d matches, it assumes that the likely matches will be just
+ *      the ASCII range, so half of that is 63
+ * For /u and there isn't anything matching above the Latin1 range, it
+ *      assumes that that is the only range likely to be matched, and uses
+ *      half that as the cut-off: 127.  If anything matches above Latin1,
+ *      it assumes that all of Unicode could match (uniformly), except for
+ *      non-Unicode code points and things in the General Category "Other"
+ *      (unassigned, private use, surrogates, controls and formats).  This
+ *      is a much large number. */
+
+ const U32 max_match = (LOC)
+      ? 127
+      : (! UNI_SEMANTICS)
+       ? 63
+       : (invlist_highest(ssc->invlist) < 256)
+       ? 127
+       : ((NON_OTHER_COUNT + 1) / 2) - 1;
+ U32 count = 0;      /* Running total of number of code points matched by
+      'ssc' */
+ UV start, end;      /* Start and end points of current range in inversion
+      list */
+
+ PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;
+
+ invlist_iterinit(ssc->invlist);
+ while (invlist_iternext(ssc->invlist, &start, &end)) {
+
+  /* /u is the only thing that we expect to match above 255; so if not /u
+  * and even if there are matches above 255, ignore them.  This catches
+  * things like \d under /d which does match the digits above 255, but
+  * since the pattern is /d, it is not likely to be expecting them */
+  if (! UNI_SEMANTICS) {
+   if (start > 255) {
+    break;
+   }
+   end = MIN(end, 255);
+  }
+  count += end - start + 1;
+  if (count > max_match) {
+   invlist_iterfinish(ssc->invlist);
+   return FALSE;
+  }
+ }
+
+ return TRUE;
+}
+
+
+STATIC void
+S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
+{
+ /* The inversion list in the SSC is marked mortal; now we need a more
+ * permanent copy, which is stored the same way that is done in a regular
+ * ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
+ * map */
+
+ SV* invlist = invlist_clone(ssc->invlist);
+
+ PERL_ARGS_ASSERT_SSC_FINALIZE;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ /* The code in this file assumes that all but these flags aren't relevant
+ * to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
+ * by the time we reach here */
+ assert(! (ANYOF_FLAGS(ssc) & ~ANYOF_COMMON_FLAGS));
+
+ populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
+
+ set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist,
+        NULL, NULL, NULL, FALSE);
+
+ /* Make sure is clone-safe */
+ ssc->invlist = NULL;
+
+ if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+  ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
+ }
+
+ assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
+}
+
+#define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
+#define TRIE_LIST_CUR(state)  ( TRIE_LIST_ITEM( state, 0 ).forid )
+#define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
+#define TRIE_LIST_USED(idx)  ( trie->states[state].trans.list         \
+       ? (TRIE_LIST_CUR( idx ) - 1)           \
+       : 0 )
+
+
+#ifdef DEBUGGING
+/*
+   dump_trie(trie,widecharmap,revcharmap)
+   dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
+   dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
+
+   These routines dump out a trie in a somewhat readable format.
+   The _interim_ variants are used for debugging the interim
+   tables that are used to generate the final compressed
+   representation which is what dump_trie expects.
+
+   Part of the reason for their existence is to provide a form
+   of documentation as to how the different representations function.
+
+*/
+
+/*
+  Dumps the final compressed table form of the trie to Perl_debug_log.
+  Used for debugging make_trie().
+*/
+
+STATIC void
+S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
+   AV *revcharmap, U32 depth)
+{
+ U32 state;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ U16 word;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE;
+
+ PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
+  (int)depth * 2 + 2,"",
+  "Match","Base","Ofs" );
+
+ for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
+  SV ** const tmp = av_fetch( revcharmap, state, 0);
+  if ( tmp ) {
+   PerlIO_printf( Perl_debug_log, "%*s",
+    colwidth,
+    pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+       PL_colors[0], PL_colors[1],
+       (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+       PERL_PV_ESCAPE_FIRSTCHAR
+    )
+   );
+  }
+ }
+ PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
+  (int)depth * 2 + 2,"");
+
+ for( state = 0 ; state < trie->uniquecharcount ; state++ )
+  PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
+ PerlIO_printf( Perl_debug_log, "\n");
+
+ for( state = 1 ; state < trie->statecount ; state++ ) {
+  const U32 base = trie->states[ state ].trans.base;
+
+  PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|",
+         (int)depth * 2 + 2,"", (UV)state);
+
+  if ( trie->states[ state ].wordnum ) {
+   PerlIO_printf( Perl_debug_log, " W%4X",
+          trie->states[ state ].wordnum );
+  } else {
+   PerlIO_printf( Perl_debug_log, "%6s", "" );
+  }
+
+  PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
+
+  if ( base ) {
+   U32 ofs = 0;
+
+   while( ( base + ofs  < trie->uniquecharcount ) ||
+    ( base + ofs - trie->uniquecharcount < trie->lasttrans
+     && trie->trans[ base + ofs - trie->uniquecharcount ].check
+                 != state))
+     ofs++;
+
+   PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
+
+   for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
+    if ( ( base + ofs >= trie->uniquecharcount )
+      && ( base + ofs - trie->uniquecharcount
+              < trie->lasttrans )
+      && trie->trans[ base + ofs
+         - trie->uniquecharcount ].check == state )
+    {
+    PerlIO_printf( Perl_debug_log, "%*"UVXf,
+     colwidth,
+     (UV)trie->trans[ base + ofs
+           - trie->uniquecharcount ].next );
+    } else {
+     PerlIO_printf( Perl_debug_log, "%*s",colwidth,"   ." );
+    }
+   }
+
+   PerlIO_printf( Perl_debug_log, "]");
+
+  }
+  PerlIO_printf( Perl_debug_log, "\n" );
+ }
+ PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=",
+        (int)depth*2, "");
+ for (word=1; word <= trie->wordcount; word++) {
+  PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
+   (int)word, (int)(trie->wordinfo[word].prev),
+   (int)(trie->wordinfo[word].len));
+ }
+ PerlIO_printf(Perl_debug_log, "\n" );
+}
+/*
+  Dumps a fully constructed but uncompressed trie in list form.
+  List tries normally only are used for construction when the number of
+  possible chars (trie->uniquecharcount) is very high.
+  Used for debugging make_trie().
+*/
+STATIC void
+S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
+      HV *widecharmap, AV *revcharmap, U32 next_alloc,
+      U32 depth)
+{
+ U32 state;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
+
+ /* print out the table precompression.  */
+ PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
+  (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
+  "------:-----+-----------------\n" );
+
+ for( state=1 ; state < next_alloc ; state ++ ) {
+  U16 charid;
+
+  PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
+   (int)depth * 2 + 2,"", (UV)state  );
+  if ( ! trie->states[ state ].wordnum ) {
+   PerlIO_printf( Perl_debug_log, "%5s| ","");
+  } else {
+   PerlIO_printf( Perl_debug_log, "W%4x| ",
+    trie->states[ state ].wordnum
+   );
+  }
+  for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
+   SV ** const tmp = av_fetch( revcharmap,
+          TRIE_LIST_ITEM(state,charid).forid, 0);
+   if ( tmp ) {
+    PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
+     colwidth,
+     pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
+       colwidth,
+       PL_colors[0], PL_colors[1],
+       (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
+       | PERL_PV_ESCAPE_FIRSTCHAR
+     ) ,
+     TRIE_LIST_ITEM(state,charid).forid,
+     (UV)TRIE_LIST_ITEM(state,charid).newstate
+    );
+    if (!(charid % 10))
+     PerlIO_printf(Perl_debug_log, "\n%*s| ",
+      (int)((depth * 2) + 14), "");
+   }
+  }
+  PerlIO_printf( Perl_debug_log, "\n");
+ }
+}
+
+/*
+  Dumps a fully constructed but uncompressed trie in table form.
+  This is the normal DFA style state transition table, with a few
+  twists to facilitate compression later.
+  Used for debugging make_trie().
+*/
+STATIC void
+S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
+      HV *widecharmap, AV *revcharmap, U32 next_alloc,
+      U32 depth)
+{
+ U32 state;
+ U16 charid;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
+
+ /*
+ print out the table precompression so that we can do a visual check
+ that they are identical.
+ */
+
+ PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
+
+ for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
+  SV ** const tmp = av_fetch( revcharmap, charid, 0);
+  if ( tmp ) {
+   PerlIO_printf( Perl_debug_log, "%*s",
+    colwidth,
+    pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+       PL_colors[0], PL_colors[1],
+       (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+       PERL_PV_ESCAPE_FIRSTCHAR
+    )
+   );
+  }
+ }
+
+ PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
+
+ for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
+  PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
+ }
+
+ PerlIO_printf( Perl_debug_log, "\n" );
+
+ for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
+
+  PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
+   (int)depth * 2 + 2,"",
+   (UV)TRIE_NODENUM( state ) );
+
+  for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
+   UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
+   if (v)
+    PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
+   else
+    PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
+  }
+  if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
+   PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n",
+           (UV)trie->trans[ state ].check );
+  } else {
+   PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n",
+           (UV)trie->trans[ state ].check,
+   trie->states[ TRIE_NODENUM( state ) ].wordnum );
+  }
+ }
+}
+
+#endif
+
+
+/* make_trie(startbranch,first,last,tail,word_count,flags,depth)
+  startbranch: the first branch in the whole branch sequence
+  first      : start branch of sequence of branch-exact nodes.
+   May be the same as startbranch
+  last       : Thing following the last branch.
+   May be the same as tail.
+  tail       : item following the branch sequence
+  count      : words in the sequence
+  flags      : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
+  depth      : indent depth
+
+Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
+
+A trie is an N'ary tree where the branches are determined by digital
+decomposition of the key. IE, at the root node you look up the 1st character and
+follow that branch repeat until you find the end of the branches. Nodes can be
+marked as "accepting" meaning they represent a complete word. Eg:
+
+  /he|she|his|hers/
+
+would convert into the following structure. Numbers represent states, letters
+following numbers represent valid transitions on the letter from that state, if
+the number is in square brackets it represents an accepting state, otherwise it
+will be in parenthesis.
+
+ +-h->+-e->[3]-+-r->(8)-+-s->[9]
+ |    |
+ |   (2)
+ |    |
+ (1)   +-i->(6)-+-s->[7]
+ |
+ +-s->(3)-+-h->(4)-+-e->[5]
+
+ Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
+
+This shows that when matching against the string 'hers' we will begin at state 1
+read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
+then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
+is also accepting. Thus we know that we can match both 'he' and 'hers' with a
+single traverse. We store a mapping from accepting to state to which word was
+matched, and then when we have multiple possibilities we try to complete the
+rest of the regex in the order in which they occurred in the alternation.
+
+The only prior NFA like behaviour that would be changed by the TRIE support is
+the silent ignoring of duplicate alternations which are of the form:
+
+ / (DUPE|DUPE) X? (?{ ... }) Y /x
+
+Thus EVAL blocks following a trie may be called a different number of times with
+and without the optimisation. With the optimisations dupes will be silently
+ignored. This inconsistent behaviour of EVAL type nodes is well established as
+the following demonstrates:
+
+ 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
+
+which prints out 'word' three times, but
+
+ 'words'=~/(word|word|word)(?{ print $1 })S/
+
+which doesnt print it out at all. This is due to other optimisations kicking in.
+
+Example of what happens on a structural level:
+
+The regexp /(ac|ad|ab)+/ will produce the following debug output:
+
+   1: CURLYM[1] {1,32767}(18)
+   5:   BRANCH(8)
+   6:     EXACT <ac>(16)
+   8:   BRANCH(11)
+   9:     EXACT <ad>(16)
+  11:   BRANCH(14)
+  12:     EXACT <ab>(16)
+  16:   SUCCEED(0)
+  17:   NOTHING(18)
+  18: END(0)
+
+This would be optimizable with startbranch=5, first=5, last=16, tail=16
+and should turn into:
+
+   1: CURLYM[1] {1,32767}(18)
+   5:   TRIE(16)
+  [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
+  <ac>
+  <ad>
+  <ab>
+  16:   SUCCEED(0)
+  17:   NOTHING(18)
+  18: END(0)
+
+Cases where tail != last would be like /(?foo|bar)baz/:
+
+   1: BRANCH(4)
+   2:   EXACT <foo>(8)
+   4: BRANCH(7)
+   5:   EXACT <bar>(8)
+   7: TAIL(8)
+   8: EXACT <baz>(10)
+  10: END(0)
+
+which would be optimizable with startbranch=1, first=1, last=7, tail=8
+and would end up looking like:
+
+ 1: TRIE(8)
+ [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
+  <foo>
+  <bar>
+   7: TAIL(8)
+   8: EXACT <baz>(10)
+  10: END(0)
+
+ d = uvchr_to_utf8_flags(d, uv, 0);
+
+is the recommended Unicode-aware way of saying
+
+ *(d++) = uv;
+*/
+
+#define TRIE_STORE_REVCHAR(val)                                            \
+ STMT_START {                                                           \
+  if (UTF) {          \
+   SV *zlopp = newSV(7); /* XXX: optimize me */                   \
+   unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp);    \
+   unsigned const char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
+   SvCUR_set(zlopp, kapow - flrbbbbb);       \
+   SvPOK_on(zlopp);         \
+   SvUTF8_on(zlopp);         \
+   av_push(revcharmap, zlopp);        \
+  } else {          \
+   char ooooff = (char)val;                                           \
+   av_push(revcharmap, newSVpvn(&ooooff, 1));      \
+  }           \
+  } STMT_END
+
+/* This gets the next character from the input, folding it if not already
+ * folded. */
+#define TRIE_READ_CHAR STMT_START {                                           \
+ wordlen++;                                                                \
+ if ( UTF ) {                                                              \
+  /* if it is UTF then it is either already folded, or does not need    \
+  * folding */                                                         \
+  uvc = valid_utf8_to_uvchr( (const U8*) uc, &len);                     \
+ }                                                                         \
+ else if (folder == PL_fold_latin1) {                                      \
+  /* This folder implies Unicode rules, which in the range expressible  \
+  *  by not UTF is the lower case, with the two exceptions, one of     \
+  *  which should have been taken care of before calling this */       \
+  assert(*uc != LATIN_SMALL_LETTER_SHARP_S);                            \
+  uvc = toLOWER_L1(*uc);                                                \
+  if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU;         \
+  len = 1;                                                              \
+ } else {                                                                  \
+  /* raw data, will be folded later if needed */                        \
+  uvc = (U32)*uc;                                                       \
+  len = 1;                                                              \
+ }                                                                         \
+} STMT_END
+
+
+
+#define TRIE_LIST_PUSH(state,fid,ns) STMT_START {               \
+ if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) {    \
+  U32 ging = TRIE_LIST_LEN( state ) *= 2;                 \
+  Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
+ }                                                           \
+ TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid;     \
+ TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns;   \
+ TRIE_LIST_CUR( state )++;                                   \
+} STMT_END
+
+#define TRIE_LIST_NEW(state) STMT_START {                       \
+ Newxz( trie->states[ state ].trans.list,               \
+  4, reg_trie_trans_le );                                 \
+ TRIE_LIST_CUR( state ) = 1;                                \
+ TRIE_LIST_LEN( state ) = 4;                                \
+} STMT_END
+
+#define TRIE_HANDLE_WORD(state) STMT_START {                    \
+ U16 dupe= trie->states[ state ].wordnum;                    \
+ regnode * const noper_next = regnext( noper );              \
+                \
+ DEBUG_r({                                                   \
+  /* store the word for dumping */                        \
+  SV* tmp;                                                \
+  if (OP(noper) != NOTHING)                               \
+   tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
+  else                                                    \
+   tmp = newSVpvn_utf8( "", 0, UTF );   \
+  av_push( trie_words, tmp );                             \
+ });                                                         \
+                \
+ curword++;                                                  \
+ trie->wordinfo[curword].prev   = 0;                         \
+ trie->wordinfo[curword].len    = wordlen;                   \
+ trie->wordinfo[curword].accept = state;                     \
+                \
+ if ( noper_next < tail ) {                                  \
+  if (!trie->jump)                                        \
+   trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
+            sizeof(U16) ); \
+  trie->jump[curword] = (U16)(noper_next - convert);      \
+  if (!jumper)                                            \
+   jumper = noper_next;                                \
+  if (!nextbranch)                                        \
+   nextbranch= regnext(cur);                           \
+ }                                                           \
+                \
+ if ( dupe ) {                                               \
+  /* It's a dupe. Pre-insert into the wordinfo[].prev   */\
+  /* chain, so that when the bits of chain are later    */\
+  /* linked together, the dups appear in the chain      */\
+  trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
+  trie->wordinfo[dupe].prev = curword;                    \
+ } else {                                                    \
+  /* we haven't inserted this word yet.                */ \
+  trie->states[ state ].wordnum = curword;                \
+ }                                                           \
+} STMT_END
+
+
+#define TRIE_TRANS_STATE(state,base,ucharcount,charid,special)  \
+ ( ( base + charid >=  ucharcount     \
+  && base + charid < ubound     \
+  && state == trie->trans[ base - ucharcount + charid ].check \
+  && trie->trans[ base - ucharcount + charid ].next )  \
+  ? trie->trans[ base - ucharcount + charid ].next  \
+  : ( state==1 ? special : 0 )     \
+ )
+
+#define MADE_TRIE       1
+#define MADE_JUMP_TRIE  2
+#define MADE_EXACT_TRIE 4
+
+STATIC I32
+S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
+    regnode *first, regnode *last, regnode *tail,
+    U32 word_count, U32 flags, U32 depth)
+{
+ /* first pass, loop through and scan words */
+ reg_trie_data *trie;
+ HV *widecharmap = NULL;
+ AV *revcharmap = newAV();
+ regnode *cur;
+ STRLEN len = 0;
+ UV uvc = 0;
+ U16 curword = 0;
+ U32 next_alloc = 0;
+ regnode *jumper = NULL;
+ regnode *nextbranch = NULL;
+ regnode *convert = NULL;
+ U32 *prev_states; /* temp array mapping each state to previous one */
+ /* we just use folder as a flag in utf8 */
+ const U8 * folder = NULL;
+
+#ifdef DEBUGGING
+ const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuuu"));
+ AV *trie_words = NULL;
+ /* along with revcharmap, this only used during construction but both are
+ * useful during debugging so we store them in the struct when debugging.
+ */
+#else
+ const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
+ STRLEN trie_charcount=0;
+#endif
+ SV *re_trie_maxbuff;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_MAKE_TRIE;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ switch (flags) {
+  case EXACT: case EXACTL: break;
+  case EXACTFA:
+  case EXACTFU_SS:
+  case EXACTFU:
+  case EXACTFLU8: folder = PL_fold_latin1; break;
+  case EXACTF:  folder = PL_fold; break;
+  default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
+ }
+
+ trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
+ trie->refcount = 1;
+ trie->startstate = 1;
+ trie->wordcount = word_count;
+ RExC_rxi->data->data[ data_slot ] = (void*)trie;
+ trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
+ if (flags == EXACT || flags == EXACTL)
+  trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
+ trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
+     trie->wordcount+1, sizeof(reg_trie_wordinfo));
+
+ DEBUG_r({
+  trie_words = newAV();
+ });
+
+ re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
+ assert(re_trie_maxbuff);
+ if (!SvIOK(re_trie_maxbuff)) {
+  sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
+ }
+ DEBUG_TRIE_COMPILE_r({
+  PerlIO_printf( Perl_debug_log,
+  "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
+  (int)depth * 2 + 2, "",
+  REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
+  REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
+ });
+
+   /* Find the node we are going to overwrite */
+ if ( first == startbranch && OP( last ) != BRANCH ) {
+  /* whole branch chain */
+  convert = first;
+ } else {
+  /* branch sub-chain */
+  convert = NEXTOPER( first );
+ }
+
+ /*  -- First loop and Setup --
+
+ We first traverse the branches and scan each word to determine if it
+ contains widechars, and how many unique chars there are, this is
+ important as we have to build a table with at least as many columns as we
+ have unique chars.
+
+ We use an array of integers to represent the character codes 0..255
+ (trie->charmap) and we use a an HV* to store Unicode characters. We use
+ the native representation of the character value as the key and IV's for
+ the coded index.
+
+ *TODO* If we keep track of how many times each character is used we can
+ remap the columns so that the table compression later on is more
+ efficient in terms of memory by ensuring the most common value is in the
+ middle and the least common are on the outside.  IMO this would be better
+ than a most to least common mapping as theres a decent chance the most
+ common letter will share a node with the least common, meaning the node
+ will not be compressible. With a middle is most common approach the worst
+ case is when we have the least common nodes twice.
+
+ */
+
+ for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+  regnode *noper = NEXTOPER( cur );
+  const U8 *uc = (U8*)STRING( noper );
+  const U8 *e  = uc + STR_LEN( noper );
+  int foldlen = 0;
+  U32 wordlen      = 0;         /* required init */
+  STRLEN minchars = 0;
+  STRLEN maxchars = 0;
+  bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
+           bitmap?*/
+
+  if (OP(noper) == NOTHING) {
+   regnode *noper_next= regnext(noper);
+   if (noper_next != tail && OP(noper_next) == flags) {
+    noper = noper_next;
+    uc= (U8*)STRING(noper);
+    e= uc + STR_LEN(noper);
+    trie->minlen= STR_LEN(noper);
+   } else {
+    trie->minlen= 0;
+    continue;
+   }
+  }
+
+  if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
+   TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
+          regardless of encoding */
+   if (OP( noper ) == EXACTFU_SS) {
+    /* false positives are ok, so just set this */
+    TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
+   }
+  }
+  for ( ; uc < e ; uc += len ) {  /* Look at each char in the current
+          branch */
+   TRIE_CHARCOUNT(trie)++;
+   TRIE_READ_CHAR;
+
+   /* TRIE_READ_CHAR returns the current character, or its fold if /i
+   * is in effect.  Under /i, this character can match itself, or
+   * anything that folds to it.  If not under /i, it can match just
+   * itself.  Most folds are 1-1, for example k, K, and KELVIN SIGN
+   * all fold to k, and all are single characters.   But some folds
+   * expand to more than one character, so for example LATIN SMALL
+   * LIGATURE FFI folds to the three character sequence 'ffi'.  If
+   * the string beginning at 'uc' is 'ffi', it could be matched by
+   * three characters, or just by the one ligature character. (It
+   * could also be matched by two characters: LATIN SMALL LIGATURE FF
+   * followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
+   * (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
+   * match.)  The trie needs to know the minimum and maximum number
+   * of characters that could match so that it can use size alone to
+   * quickly reject many match attempts.  The max is simple: it is
+   * the number of folded characters in this branch (since a fold is
+   * never shorter than what folds to it. */
+
+   maxchars++;
+
+   /* And the min is equal to the max if not under /i (indicated by
+   * 'folder' being NULL), or there are no multi-character folds.  If
+   * there is a multi-character fold, the min is incremented just
+   * once, for the character that folds to the sequence.  Each
+   * character in the sequence needs to be added to the list below of
+   * characters in the trie, but we count only the first towards the
+   * min number of characters needed.  This is done through the
+   * variable 'foldlen', which is returned by the macros that look
+   * for these sequences as the number of bytes the sequence
+   * occupies.  Each time through the loop, we decrement 'foldlen' by
+   * how many bytes the current char occupies.  Only when it reaches
+   * 0 do we increment 'minchars' or look for another multi-character
+   * sequence. */
+   if (folder == NULL) {
+    minchars++;
+   }
+   else if (foldlen > 0) {
+    foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
+   }
+   else {
+    minchars++;
+
+    /* See if *uc is the beginning of a multi-character fold.  If
+    * so, we decrement the length remaining to look at, to account
+    * for the current character this iteration.  (We can use 'uc'
+    * instead of the fold returned by TRIE_READ_CHAR because for
+    * non-UTF, the latin1_safe macro is smart enough to account
+    * for all the unfolded characters, and because for UTF, the
+    * string will already have been folded earlier in the
+    * compilation process */
+    if (UTF) {
+     if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
+      foldlen -= UTF8SKIP(uc);
+     }
+    }
+    else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
+     foldlen--;
+    }
+   }
+
+   /* The current character (and any potential folds) should be added
+   * to the possible matching characters for this position in this
+   * branch */
+   if ( uvc < 256 ) {
+    if ( folder ) {
+     U8 folded= folder[ (U8) uvc ];
+     if ( !trie->charmap[ folded ] ) {
+      trie->charmap[ folded ]=( ++trie->uniquecharcount );
+      TRIE_STORE_REVCHAR( folded );
+     }
+    }
+    if ( !trie->charmap[ uvc ] ) {
+     trie->charmap[ uvc ]=( ++trie->uniquecharcount );
+     TRIE_STORE_REVCHAR( uvc );
+    }
+    if ( set_bit ) {
+     /* store the codepoint in the bitmap, and its folded
+     * equivalent. */
+     TRIE_BITMAP_SET(trie, uvc);
+
+     /* store the folded codepoint */
+     if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
+
+     if ( !UTF ) {
+      /* store first byte of utf8 representation of
+      variant codepoints */
+      if (! UVCHR_IS_INVARIANT(uvc)) {
+       TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
+      }
+     }
+     set_bit = 0; /* We've done our bit :-) */
+    }
+   } else {
+
+    /* XXX We could come up with the list of code points that fold
+    * to this using PL_utf8_foldclosures, except not for
+    * multi-char folds, as there may be multiple combinations
+    * there that could work, which needs to wait until runtime to
+    * resolve (The comment about LIGATURE FFI above is such an
+    * example */
+
+    SV** svpp;
+    if ( !widecharmap )
+     widecharmap = newHV();
+
+    svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
+
+    if ( !svpp )
+     Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
+
+    if ( !SvTRUE( *svpp ) ) {
+     sv_setiv( *svpp, ++trie->uniquecharcount );
+     TRIE_STORE_REVCHAR(uvc);
+    }
+   }
+  } /* end loop through characters in this branch of the trie */
+
+  /* We take the min and max for this branch and combine to find the min
+  * and max for all branches processed so far */
+  if( cur == first ) {
+   trie->minlen = minchars;
+   trie->maxlen = maxchars;
+  } else if (minchars < trie->minlen) {
+   trie->minlen = minchars;
+  } else if (maxchars > trie->maxlen) {
+   trie->maxlen = maxchars;
+  }
+ } /* end first pass */
+ DEBUG_TRIE_COMPILE_r(
+  PerlIO_printf( Perl_debug_log,
+    "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
+    (int)depth * 2 + 2,"",
+    ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
+    (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
+    (int)trie->minlen, (int)trie->maxlen )
+ );
+
+ /*
+  We now know what we are dealing with in terms of unique chars and
+  string sizes so we can calculate how much memory a naive
+  representation using a flat table  will take. If it's over a reasonable
+  limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
+  conservative but potentially much slower representation using an array
+  of lists.
+
+  At the end we convert both representations into the same compressed
+  form that will be used in regexec.c for matching with. The latter
+  is a form that cannot be used to construct with but has memory
+  properties similar to the list form and access properties similar
+  to the table form making it both suitable for fast searches and
+  small enough that its feasable to store for the duration of a program.
+
+  See the comment in the code where the compressed table is produced
+  inplace from the flat tabe representation for an explanation of how
+  the compression works.
+
+ */
+
+
+ Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
+ prev_states[1] = 0;
+
+ if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
+             > SvIV(re_trie_maxbuff) )
+ {
+  /*
+   Second Pass -- Array Of Lists Representation
+
+   Each state will be represented by a list of charid:state records
+   (reg_trie_trans_le) the first such element holds the CUR and LEN
+   points of the allocated array. (See defines above).
+
+   We build the initial structure using the lists, and then convert
+   it into the compressed table form which allows faster lookups
+   (but cant be modified once converted).
+  */
+
+  STRLEN transcount = 1;
+
+  DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
+   "%*sCompiling trie using list compiler\n",
+   (int)depth * 2 + 2, ""));
+
+  trie->states = (reg_trie_state *)
+   PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
+        sizeof(reg_trie_state) );
+  TRIE_LIST_NEW(1);
+  next_alloc = 2;
+
+  for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+
+   regnode *noper   = NEXTOPER( cur );
+   U8 *uc           = (U8*)STRING( noper );
+   const U8 *e      = uc + STR_LEN( noper );
+   U32 state        = 1;         /* required init */
+   U16 charid       = 0;         /* sanity init */
+   U32 wordlen      = 0;         /* required init */
+
+   if (OP(noper) == NOTHING) {
+    regnode *noper_next= regnext(noper);
+    if (noper_next != tail && OP(noper_next) == flags) {
+     noper = noper_next;
+     uc= (U8*)STRING(noper);
+     e= uc + STR_LEN(noper);
+    }
+   }
+
+   if (OP(noper) != NOTHING) {
+    for ( ; uc < e ; uc += len ) {
+
+     TRIE_READ_CHAR;
+
+     if ( uvc < 256 ) {
+      charid = trie->charmap[ uvc ];
+     } else {
+      SV** const svpp = hv_fetch( widecharmap,
+             (char*)&uvc,
+             sizeof( UV ),
+             0);
+      if ( !svpp ) {
+       charid = 0;
+      } else {
+       charid=(U16)SvIV( *svpp );
+      }
+     }
+     /* charid is now 0 if we dont know the char read, or
+     * nonzero if we do */
+     if ( charid ) {
+
+      U16 check;
+      U32 newstate = 0;
+
+      charid--;
+      if ( !trie->states[ state ].trans.list ) {
+       TRIE_LIST_NEW( state );
+      }
+      for ( check = 1;
+       check <= TRIE_LIST_USED( state );
+       check++ )
+      {
+       if ( TRIE_LIST_ITEM( state, check ).forid
+                 == charid )
+       {
+        newstate = TRIE_LIST_ITEM( state, check ).newstate;
+        break;
+       }
+      }
+      if ( ! newstate ) {
+       newstate = next_alloc++;
+       prev_states[newstate] = state;
+       TRIE_LIST_PUSH( state, charid, newstate );
+       transcount++;
+      }
+      state = newstate;
+     } else {
+      Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
+     }
+    }
+   }
+   TRIE_HANDLE_WORD(state);
+
+  } /* end second pass */
+
+  /* next alloc is the NEXT state to be allocated */
+  trie->statecount = next_alloc;
+  trie->states = (reg_trie_state *)
+   PerlMemShared_realloc( trie->states,
+        next_alloc
+        * sizeof(reg_trie_state) );
+
+  /* and now dump it out before we compress it */
+  DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
+              revcharmap, next_alloc,
+              depth+1)
+  );
+
+  trie->trans = (reg_trie_trans *)
+   PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
+  {
+   U32 state;
+   U32 tp = 0;
+   U32 zp = 0;
+
+
+   for( state=1 ; state < next_alloc ; state ++ ) {
+    U32 base=0;
+
+    /*
+    DEBUG_TRIE_COMPILE_MORE_r(
+     PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
+    );
+    */
+
+    if (trie->states[state].trans.list) {
+     U16 minid=TRIE_LIST_ITEM( state, 1).forid;
+     U16 maxid=minid;
+     U16 idx;
+
+     for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
+      const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
+      if ( forid < minid ) {
+       minid=forid;
+      } else if ( forid > maxid ) {
+       maxid=forid;
+      }
+     }
+     if ( transcount < tp + maxid - minid + 1) {
+      transcount *= 2;
+      trie->trans = (reg_trie_trans *)
+       PerlMemShared_realloc( trie->trans,
+             transcount
+             * sizeof(reg_trie_trans) );
+      Zero( trie->trans + (transcount / 2),
+       transcount / 2,
+       reg_trie_trans );
+     }
+     base = trie->uniquecharcount + tp - minid;
+     if ( maxid == minid ) {
+      U32 set = 0;
+      for ( ; zp < tp ; zp++ ) {
+       if ( ! trie->trans[ zp ].next ) {
+        base = trie->uniquecharcount + zp - minid;
+        trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
+                1).newstate;
+        trie->trans[ zp ].check = state;
+        set = 1;
+        break;
+       }
+      }
+      if ( !set ) {
+       trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
+                1).newstate;
+       trie->trans[ tp ].check = state;
+       tp++;
+       zp = tp;
+      }
+     } else {
+      for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
+       const U32 tid = base
+          - trie->uniquecharcount
+          + TRIE_LIST_ITEM( state, idx ).forid;
+       trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
+                idx ).newstate;
+       trie->trans[ tid ].check = state;
+      }
+      tp += ( maxid - minid + 1 );
+     }
+     Safefree(trie->states[ state ].trans.list);
+    }
+    /*
+    DEBUG_TRIE_COMPILE_MORE_r(
+     PerlIO_printf( Perl_debug_log, " base: %d\n",base);
+    );
+    */
+    trie->states[ state ].trans.base=base;
+   }
+   trie->lasttrans = tp + 1;
+  }
+ } else {
+  /*
+  Second Pass -- Flat Table Representation.
+
+  we dont use the 0 slot of either trans[] or states[] so we add 1 to
+  each.  We know that we will need Charcount+1 trans at most to store
+  the data (one row per char at worst case) So we preallocate both
+  structures assuming worst case.
+
+  We then construct the trie using only the .next slots of the entry
+  structs.
+
+  We use the .check field of the first entry of the node temporarily
+  to make compression both faster and easier by keeping track of how
+  many non zero fields are in the node.
+
+  Since trans are numbered from 1 any 0 pointer in the table is a FAIL
+  transition.
+
+  There are two terms at use here: state as a TRIE_NODEIDX() which is
+  a number representing the first entry of the node, and state as a
+  TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
+  and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
+  if there are 2 entrys per node. eg:
+
+   A B       A B
+  1. 2 4    1. 3 7
+  2. 0 3    3. 0 5
+  3. 0 0    5. 0 0
+  4. 0 0    7. 0 0
+
+  The table is internally in the right hand, idx form. However as we
+  also have to deal with the states array which is indexed by nodenum
+  we have to use TRIE_NODENUM() to convert.
+
+  */
+  DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
+   "%*sCompiling trie using table compiler\n",
+   (int)depth * 2 + 2, ""));
+
+  trie->trans = (reg_trie_trans *)
+   PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
+        * trie->uniquecharcount + 1,
+        sizeof(reg_trie_trans) );
+  trie->states = (reg_trie_state *)
+   PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
+        sizeof(reg_trie_state) );
+  next_alloc = trie->uniquecharcount + 1;
+
+
+  for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+
+   regnode *noper   = NEXTOPER( cur );
+   const U8 *uc     = (U8*)STRING( noper );
+   const U8 *e      = uc + STR_LEN( noper );
+
+   U32 state        = 1;         /* required init */
+
+   U16 charid       = 0;         /* sanity init */
+   U32 accept_state = 0;         /* sanity init */
+
+   U32 wordlen      = 0;         /* required init */
+
+   if (OP(noper) == NOTHING) {
+    regnode *noper_next= regnext(noper);
+    if (noper_next != tail && OP(noper_next) == flags) {
+     noper = noper_next;
+     uc= (U8*)STRING(noper);
+     e= uc + STR_LEN(noper);
+    }
+   }
+
+   if ( OP(noper) != NOTHING ) {
+    for ( ; uc < e ; uc += len ) {
+
+     TRIE_READ_CHAR;
+
+     if ( uvc < 256 ) {
+      charid = trie->charmap[ uvc ];
+     } else {
+      SV* const * const svpp = hv_fetch( widecharmap,
+              (char*)&uvc,
+              sizeof( UV ),
+              0);
+      charid = svpp ? (U16)SvIV(*svpp) : 0;
+     }
+     if ( charid ) {
+      charid--;
+      if ( !trie->trans[ state + charid ].next ) {
+       trie->trans[ state + charid ].next = next_alloc;
+       trie->trans[ state ].check++;
+       prev_states[TRIE_NODENUM(next_alloc)]
+         = TRIE_NODENUM(state);
+       next_alloc += trie->uniquecharcount;
+      }
+      state = trie->trans[ state + charid ].next;
+     } else {
+      Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
+     }
+     /* charid is now 0 if we dont know the char read, or
+     * nonzero if we do */
+    }
+   }
+   accept_state = TRIE_NODENUM( state );
+   TRIE_HANDLE_WORD(accept_state);
+
+  } /* end second pass */
+
+  /* and now dump it out before we compress it */
+  DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
+              revcharmap,
+              next_alloc, depth+1));
+
+  {
+  /*
+  * Inplace compress the table.*
+
+  For sparse data sets the table constructed by the trie algorithm will
+  be mostly 0/FAIL transitions or to put it another way mostly empty.
+  (Note that leaf nodes will not contain any transitions.)
+
+  This algorithm compresses the tables by eliminating most such
+  transitions, at the cost of a modest bit of extra work during lookup:
+
+  - Each states[] entry contains a .base field which indicates the
+  index in the state[] array wheres its transition data is stored.
+
+  - If .base is 0 there are no valid transitions from that node.
+
+  - If .base is nonzero then charid is added to it to find an entry in
+  the trans array.
+
+  -If trans[states[state].base+charid].check!=state then the
+  transition is taken to be a 0/Fail transition. Thus if there are fail
+  transitions at the front of the node then the .base offset will point
+  somewhere inside the previous nodes data (or maybe even into a node
+  even earlier), but the .check field determines if the transition is
+  valid.
+
+  XXX - wrong maybe?
+  The following process inplace converts the table to the compressed
+  table: We first do not compress the root node 1,and mark all its
+  .check pointers as 1 and set its .base pointer as 1 as well. This
+  allows us to do a DFA construction from the compressed table later,
+  and ensures that any .base pointers we calculate later are greater
+  than 0.
+
+  - We set 'pos' to indicate the first entry of the second node.
+
+  - We then iterate over the columns of the node, finding the first and
+  last used entry at l and m. We then copy l..m into pos..(pos+m-l),
+  and set the .check pointers accordingly, and advance pos
+  appropriately and repreat for the next node. Note that when we copy
+  the next pointers we have to convert them from the original
+  NODEIDX form to NODENUM form as the former is not valid post
+  compression.
+
+  - If a node has no transitions used we mark its base as 0 and do not
+  advance the pos pointer.
+
+  - If a node only has one transition we use a second pointer into the
+  structure to fill in allocated fail transitions from other states.
+  This pointer is independent of the main pointer and scans forward
+  looking for null transitions that are allocated to a state. When it
+  finds one it writes the single transition into the "hole".  If the
+  pointer doesnt find one the single transition is appended as normal.
+
+  - Once compressed we can Renew/realloc the structures to release the
+  excess space.
+
+  See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
+  specifically Fig 3.47 and the associated pseudocode.
+
+  demq
+  */
+  const U32 laststate = TRIE_NODENUM( next_alloc );
+  U32 state, charid;
+  U32 pos = 0, zp=0;
+  trie->statecount = laststate;
+
+  for ( state = 1 ; state < laststate ; state++ ) {
+   U8 flag = 0;
+   const U32 stateidx = TRIE_NODEIDX( state );
+   const U32 o_used = trie->trans[ stateidx ].check;
+   U32 used = trie->trans[ stateidx ].check;
+   trie->trans[ stateidx ].check = 0;
+
+   for ( charid = 0;
+    used && charid < trie->uniquecharcount;
+    charid++ )
+   {
+    if ( flag || trie->trans[ stateidx + charid ].next ) {
+     if ( trie->trans[ stateidx + charid ].next ) {
+      if (o_used == 1) {
+       for ( ; zp < pos ; zp++ ) {
+        if ( ! trie->trans[ zp ].next ) {
+         break;
+        }
+       }
+       trie->states[ state ].trans.base
+             = zp
+             + trie->uniquecharcount
+             - charid ;
+       trie->trans[ zp ].next
+        = SAFE_TRIE_NODENUM( trie->trans[ stateidx
+               + charid ].next );
+       trie->trans[ zp ].check = state;
+       if ( ++zp > pos ) pos = zp;
+       break;
+      }
+      used--;
+     }
+     if ( !flag ) {
+      flag = 1;
+      trie->states[ state ].trans.base
+         = pos + trie->uniquecharcount - charid ;
+     }
+     trie->trans[ pos ].next
+      = SAFE_TRIE_NODENUM(
+         trie->trans[ stateidx + charid ].next );
+     trie->trans[ pos ].check = state;
+     pos++;
+    }
+   }
+  }
+  trie->lasttrans = pos + 1;
+  trie->states = (reg_trie_state *)
+   PerlMemShared_realloc( trie->states, laststate
+        * sizeof(reg_trie_state) );
+  DEBUG_TRIE_COMPILE_MORE_r(
+   PerlIO_printf( Perl_debug_log,
+    "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
+    (int)depth * 2 + 2,"",
+    (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
+     + 1 ),
+    (IV)next_alloc,
+    (IV)pos,
+    ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
+   );
+
+  } /* end table compress */
+ }
+ DEBUG_TRIE_COMPILE_MORE_r(
+   PerlIO_printf(Perl_debug_log,
+    "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
+    (int)depth * 2 + 2, "",
+    (UV)trie->statecount,
+    (UV)trie->lasttrans)
+ );
+ /* resize the trans array to remove unused space */
+ trie->trans = (reg_trie_trans *)
+  PerlMemShared_realloc( trie->trans, trie->lasttrans
+       * sizeof(reg_trie_trans) );
+
+ {   /* Modify the program and insert the new TRIE node */
+  U8 nodetype =(U8)(flags & 0xFF);
+  char *str=NULL;
+
+#ifdef DEBUGGING
+  regnode *optimize = NULL;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+
+  U32 mjd_offset = 0;
+  U32 mjd_nodelen = 0;
+#endif /* RE_TRACK_PATTERN_OFFSETS */
+#endif /* DEBUGGING */
+  /*
+  This means we convert either the first branch or the first Exact,
+  depending on whether the thing following (in 'last') is a branch
+  or not and whther first is the startbranch (ie is it a sub part of
+  the alternation or is it the whole thing.)
+  Assuming its a sub part we convert the EXACT otherwise we convert
+  the whole branch sequence, including the first.
+  */
+  /* Find the node we are going to overwrite */
+  if ( first != startbranch || OP( last ) == BRANCH ) {
+   /* branch sub-chain */
+   NEXT_OFF( first ) = (U16)(last - first);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+   DEBUG_r({
+    mjd_offset= Node_Offset((convert));
+    mjd_nodelen= Node_Length((convert));
+   });
+#endif
+   /* whole branch chain */
+  }
+#ifdef RE_TRACK_PATTERN_OFFSETS
+  else {
+   DEBUG_r({
+    const  regnode *nop = NEXTOPER( convert );
+    mjd_offset= Node_Offset((nop));
+    mjd_nodelen= Node_Length((nop));
+   });
+  }
+  DEBUG_OPTIMISE_r(
+   PerlIO_printf(Perl_debug_log,
+    "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
+    (int)depth * 2 + 2, "",
+    (UV)mjd_offset, (UV)mjd_nodelen)
+  );
+#endif
+  /* But first we check to see if there is a common prefix we can
+  split out as an EXACT and put in front of the TRIE node.  */
+  trie->startstate= 1;
+  if ( trie->bitmap && !widecharmap && !trie->jump  ) {
+   U32 state;
+   for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
+    U32 ofs = 0;
+    I32 idx = -1;
+    U32 count = 0;
+    const U32 base = trie->states[ state ].trans.base;
+
+    if ( trie->states[state].wordnum )
+      count = 1;
+
+    for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
+     if ( ( base + ofs >= trie->uniquecharcount ) &&
+      ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
+      trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
+     {
+      if ( ++count > 1 ) {
+       SV **tmp = av_fetch( revcharmap, ofs, 0);
+       const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
+       if ( state == 1 ) break;
+       if ( count == 2 ) {
+        Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
+        DEBUG_OPTIMISE_r(
+         PerlIO_printf(Perl_debug_log,
+          "%*sNew Start State=%"UVuf" Class: [",
+          (int)depth * 2 + 2, "",
+          (UV)state));
+        if (idx >= 0) {
+         SV ** const tmp = av_fetch( revcharmap, idx, 0);
+         const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
+
+         TRIE_BITMAP_SET(trie,*ch);
+         if ( folder )
+          TRIE_BITMAP_SET(trie, folder[ *ch ]);
+         DEBUG_OPTIMISE_r(
+          PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
+         );
+        }
+       }
+       TRIE_BITMAP_SET(trie,*ch);
+       if ( folder )
+        TRIE_BITMAP_SET(trie,folder[ *ch ]);
+       DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
+      }
+      idx = ofs;
+     }
+    }
+    if ( count == 1 ) {
+     SV **tmp = av_fetch( revcharmap, idx, 0);
+     STRLEN len;
+     char *ch = SvPV( *tmp, len );
+     DEBUG_OPTIMISE_r({
+      SV *sv=sv_newmortal();
+      PerlIO_printf( Perl_debug_log,
+       "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
+       (int)depth * 2 + 2, "",
+       (UV)state, (UV)idx,
+       pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
+        PL_colors[0], PL_colors[1],
+        (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+        PERL_PV_ESCAPE_FIRSTCHAR
+       )
+      );
+     });
+     if ( state==1 ) {
+      OP( convert ) = nodetype;
+      str=STRING(convert);
+      STR_LEN(convert)=0;
+     }
+     STR_LEN(convert) += len;
+     while (len--)
+      *str++ = *ch++;
+    } else {
+#ifdef DEBUGGING
+     if (state>1)
+      DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
+#endif
+     break;
+    }
+   }
+   trie->prefixlen = (state-1);
+   if (str) {
+    regnode *n = convert+NODE_SZ_STR(convert);
+    NEXT_OFF(convert) = NODE_SZ_STR(convert);
+    trie->startstate = state;
+    trie->minlen -= (state - 1);
+    trie->maxlen -= (state - 1);
+#ifdef DEBUGGING
+   /* At least the UNICOS C compiler choked on this
+    * being argument to DEBUG_r(), so let's just have
+    * it right here. */
+   if (
+#ifdef PERL_EXT_RE_BUILD
+    1
+#else
+    DEBUG_r_TEST
+#endif
+    ) {
+    regnode *fix = convert;
+    U32 word = trie->wordcount;
+    mjd_nodelen++;
+    Set_Node_Offset_Length(convert, mjd_offset, state - 1);
+    while( ++fix < n ) {
+     Set_Node_Offset_Length(fix, 0, 0);
+    }
+    while (word--) {
+     SV ** const tmp = av_fetch( trie_words, word, 0 );
+     if (tmp) {
+      if ( STR_LEN(convert) <= SvCUR(*tmp) )
+       sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
+      else
+       sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
+     }
+    }
+   }
+#endif
+    if (trie->maxlen) {
+     convert = n;
+    } else {
+     NEXT_OFF(convert) = (U16)(tail - convert);
+     DEBUG_r(optimize= n);
+    }
+   }
+  }
+  if (!jumper)
+   jumper = last;
+  if ( trie->maxlen ) {
+   NEXT_OFF( convert ) = (U16)(tail - convert);
+   ARG_SET( convert, data_slot );
+   /* Store the offset to the first unabsorbed branch in
+   jump[0], which is otherwise unused by the jump logic.
+   We use this when dumping a trie and during optimisation. */
+   if (trie->jump)
+    trie->jump[0] = (U16)(nextbranch - convert);
+
+   /* If the start state is not accepting (meaning there is no empty string/NOTHING)
+   *   and there is a bitmap
+   *   and the first "jump target" node we found leaves enough room
+   * then convert the TRIE node into a TRIEC node, with the bitmap
+   * embedded inline in the opcode - this is hypothetically faster.
+   */
+   if ( !trie->states[trie->startstate].wordnum
+    && trie->bitmap
+    && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
+   {
+    OP( convert ) = TRIEC;
+    Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
+    PerlMemShared_free(trie->bitmap);
+    trie->bitmap= NULL;
+   } else
+    OP( convert ) = TRIE;
+
+   /* store the type in the flags */
+   convert->flags = nodetype;
+   DEBUG_r({
+   optimize = convert
+     + NODE_STEP_REGNODE
+     + regarglen[ OP( convert ) ];
+   });
+   /* XXX We really should free up the resource in trie now,
+    as we won't use them - (which resources?) dmq */
+  }
+  /* needed for dumping*/
+  DEBUG_r(if (optimize) {
+   regnode *opt = convert;
+
+   while ( ++opt < optimize) {
+    Set_Node_Offset_Length(opt,0,0);
+   }
+   /*
+    Try to clean up some of the debris left after the
+    optimisation.
+   */
+   while( optimize < jumper ) {
+    mjd_nodelen += Node_Length((optimize));
+    OP( optimize ) = OPTIMIZED;
+    Set_Node_Offset_Length(optimize,0,0);
+    optimize++;
+   }
+   Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
+  });
+ } /* end node insert */
+ REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, convert);
+
+ /*  Finish populating the prev field of the wordinfo array.  Walk back
+ *  from each accept state until we find another accept state, and if
+ *  so, point the first word's .prev field at the second word. If the
+ *  second already has a .prev field set, stop now. This will be the
+ *  case either if we've already processed that word's accept state,
+ *  or that state had multiple words, and the overspill words were
+ *  already linked up earlier.
+ */
+ {
+  U16 word;
+  U32 state;
+  U16 prev;
+
+  for (word=1; word <= trie->wordcount; word++) {
+   prev = 0;
+   if (trie->wordinfo[word].prev)
+    continue;
+   state = trie->wordinfo[word].accept;
+   while (state) {
+    state = prev_states[state];
+    if (!state)
+     break;
+    prev = trie->states[state].wordnum;
+    if (prev)
+     break;
+   }
+   trie->wordinfo[word].prev = prev;
+  }
+  Safefree(prev_states);
+ }
+
+
+ /* and now dump out the compressed format */
+ DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
+
+ RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
+#ifdef DEBUGGING
+ RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
+ RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
+#else
+ SvREFCNT_dec_NN(revcharmap);
+#endif
+ return trie->jump
+  ? MADE_JUMP_TRIE
+  : trie->startstate>1
+   ? MADE_EXACT_TRIE
+   : MADE_TRIE;
+}
+
+STATIC regnode *
+S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
+{
+/* The Trie is constructed and compressed now so we can build a fail array if
+ * it's needed
+
+   This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
+   3.32 in the
+   "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
+   Ullman 1985/88
+   ISBN 0-201-10088-6
+
+   We find the fail state for each state in the trie, this state is the longest
+   proper suffix of the current state's 'word' that is also a proper prefix of
+   another word in our trie. State 1 represents the word '' and is thus the
+   default fail state. This allows the DFA not to have to restart after its
+   tried and failed a word at a given point, it simply continues as though it
+   had been matching the other word in the first place.
+   Consider
+ 'abcdgu'=~/abcdefg|cdgu/
+   When we get to 'd' we are still matching the first word, we would encounter
+   'g' which would fail, which would bring us to the state representing 'd' in
+   the second word where we would try 'g' and succeed, proceeding to match
+   'cdgu'.
+ */
+ /* add a fail transition */
+ const U32 trie_offset = ARG(source);
+ reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
+ U32 *q;
+ const U32 ucharcount = trie->uniquecharcount;
+ const U32 numstates = trie->statecount;
+ const U32 ubound = trie->lasttrans + ucharcount;
+ U32 q_read = 0;
+ U32 q_write = 0;
+ U32 charid;
+ U32 base = trie->states[ 1 ].trans.base;
+ U32 *fail;
+ reg_ac_data *aho;
+ const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
+ regnode *stclass;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
+ PERL_UNUSED_CONTEXT;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ if ( OP(source) == TRIE ) {
+  struct regnode_1 *op = (struct regnode_1 *)
+   PerlMemShared_calloc(1, sizeof(struct regnode_1));
+  StructCopy(source,op,struct regnode_1);
+  stclass = (regnode *)op;
+ } else {
+  struct regnode_charclass *op = (struct regnode_charclass *)
+   PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
+  StructCopy(source,op,struct regnode_charclass);
+  stclass = (regnode *)op;
+ }
+ OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */
+
+ ARG_SET( stclass, data_slot );
+ aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
+ RExC_rxi->data->data[ data_slot ] = (void*)aho;
+ aho->trie=trie_offset;
+ aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
+ Copy( trie->states, aho->states, numstates, reg_trie_state );
+ Newxz( q, numstates, U32);
+ aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
+ aho->refcount = 1;
+ fail = aho->fail;
+ /* initialize fail[0..1] to be 1 so that we always have
+ a valid final fail state */
+ fail[ 0 ] = fail[ 1 ] = 1;
+
+ for ( charid = 0; charid < ucharcount ; charid++ ) {
+  const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
+  if ( newstate ) {
+   q[ q_write ] = newstate;
+   /* set to point at the root */
+   fail[ q[ q_write++ ] ]=1;
+  }
+ }
+ while ( q_read < q_write) {
+  const U32 cur = q[ q_read++ % numstates ];
+  base = trie->states[ cur ].trans.base;
+
+  for ( charid = 0 ; charid < ucharcount ; charid++ ) {
+   const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
+   if (ch_state) {
+    U32 fail_state = cur;
+    U32 fail_base;
+    do {
+     fail_state = fail[ fail_state ];
+     fail_base = aho->states[ fail_state ].trans.base;
+    } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
+
+    fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
+    fail[ ch_state ] = fail_state;
+    if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
+    {
+      aho->states[ ch_state ].wordnum =  aho->states[ fail_state ].wordnum;
+    }
+    q[ q_write++ % numstates] = ch_state;
+   }
+  }
+ }
+ /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
+ when we fail in state 1, this allows us to use the
+ charclass scan to find a valid start char. This is based on the principle
+ that theres a good chance the string being searched contains lots of stuff
+ that cant be a start char.
+ */
+ fail[ 0 ] = fail[ 1 ] = 0;
+ DEBUG_TRIE_COMPILE_r({
+  PerlIO_printf(Perl_debug_log,
+     "%*sStclass Failtable (%"UVuf" states): 0",
+     (int)(depth * 2), "", (UV)numstates
+  );
+  for( q_read=1; q_read<numstates; q_read++ ) {
+   PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
+  }
+  PerlIO_printf(Perl_debug_log, "\n");
+ });
+ Safefree(q);
+ /*RExC_seen |= REG_TRIEDFA_SEEN;*/
+ return stclass;
+}
+
+
+#define DEBUG_PEEP(str,scan,depth) \
+ DEBUG_OPTIMISE_r({if (scan){ \
+ regnode *Next = regnext(scan); \
+ regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state); \
+ PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)", \
+  (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),\
+  Next ? (REG_NODE_NUM(Next)) : 0 ); \
+ DEBUG_SHOW_STUDY_FLAGS(flags," [ ","]");\
+ PerlIO_printf(Perl_debug_log, "\n"); \
+   }});
+
+/* The below joins as many adjacent EXACTish nodes as possible into a single
+ * one.  The regop may be changed if the node(s) contain certain sequences that
+ * require special handling.  The joining is only done if:
+ * 1) there is room in the current conglomerated node to entirely contain the
+ *    next one.
+ * 2) they are the exact same node type
+ *
+ * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
+ * these get optimized out
+ *
+ * If a node is to match under /i (folded), the number of characters it matches
+ * can be different than its character length if it contains a multi-character
+ * fold.  *min_subtract is set to the total delta number of characters of the
+ * input nodes.
+ *
+ * And *unfolded_multi_char is set to indicate whether or not the node contains
+ * an unfolded multi-char fold.  This happens when whether the fold is valid or
+ * not won't be known until runtime; namely for EXACTF nodes that contain LATIN
+ * SMALL LETTER SHARP S, as only if the target string being matched against
+ * turns out to be UTF-8 is that fold valid; and also for EXACTFL nodes whose
+ * folding rules depend on the locale in force at runtime.  (Multi-char folds
+ * whose components are all above the Latin1 range are not run-time locale
+ * dependent, and have already been folded by the time this function is
+ * called.)
+ *
+ * This is as good a place as any to discuss the design of handling these
+ * multi-character fold sequences.  It's been wrong in Perl for a very long
+ * time.  There are three code points in Unicode whose multi-character folds
+ * were long ago discovered to mess things up.  The previous designs for
+ * dealing with these involved assigning a special node for them.  This
+ * approach doesn't always work, as evidenced by this example:
+ *      "\xDFs" =~ /s\xDF/ui    # Used to fail before these patches
+ * Both sides fold to "sss", but if the pattern is parsed to create a node that
+ * would match just the \xDF, it won't be able to handle the case where a
+ * successful match would have to cross the node's boundary.  The new approach
+ * that hopefully generally solves the problem generates an EXACTFU_SS node
+ * that is "sss" in this case.
+ *
+ * It turns out that there are problems with all multi-character folds, and not
+ * just these three.  Now the code is general, for all such cases.  The
+ * approach taken is:
+ * 1)   This routine examines each EXACTFish node that could contain multi-
+ *      character folded sequences.  Since a single character can fold into
+ *      such a sequence, the minimum match length for this node is less than
+ *      the number of characters in the node.  This routine returns in
+ *      *min_subtract how many characters to subtract from the the actual
+ *      length of the string to get a real minimum match length; it is 0 if
+ *      there are no multi-char foldeds.  This delta is used by the caller to
+ *      adjust the min length of the match, and the delta between min and max,
+ *      so that the optimizer doesn't reject these possibilities based on size
+ *      constraints.
+ * 2)   For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
+ *      is used for an EXACTFU node that contains at least one "ss" sequence in
+ *      it.  For non-UTF-8 patterns and strings, this is the only case where
+ *      there is a possible fold length change.  That means that a regular
+ *      EXACTFU node without UTF-8 involvement doesn't have to concern itself
+ *      with length changes, and so can be processed faster.  regexec.c takes
+ *      advantage of this.  Generally, an EXACTFish node that is in UTF-8 is
+ *      pre-folded by regcomp.c (except EXACTFL, some of whose folds aren't
+ *      known until runtime).  This saves effort in regex matching.  However,
+ *      the pre-folding isn't done for non-UTF8 patterns because the fold of
+ *      the MICRO SIGN requires UTF-8, and we don't want to slow things down by
+ *      forcing the pattern into UTF8 unless necessary.  Also what EXACTF (and,
+ *      again, EXACTFL) nodes fold to isn't known until runtime.  The fold
+ *      possibilities for the non-UTF8 patterns are quite simple, except for
+ *      the sharp s.  All the ones that don't involve a UTF-8 target string are
+ *      members of a fold-pair, and arrays are set up for all of them so that
+ *      the other member of the pair can be found quickly.  Code elsewhere in
+ *      this file makes sure that in EXACTFU nodes, the sharp s gets folded to
+ *      'ss', even if the pattern isn't UTF-8.  This avoids the issues
+ *      described in the next item.
+ * 3)   A problem remains for unfolded multi-char folds. (These occur when the
+ *      validity of the fold won't be known until runtime, and so must remain
+ *      unfolded for now.  This happens for the sharp s in EXACTF and EXACTFA
+ *      nodes when the pattern isn't in UTF-8.  (Note, BTW, that there cannot
+ *      be an EXACTF node with a UTF-8 pattern.)  They also occur for various
+ *      folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
+ *      The reason this is a problem is that the optimizer part of regexec.c
+ *      (probably unwittingly, in Perl_regexec_flags()) makes an assumption
+ *      that a character in the pattern corresponds to at most a single
+ *      character in the target string.  (And I do mean character, and not byte
+ *      here, unlike other parts of the documentation that have never been
+ *      updated to account for multibyte Unicode.)  sharp s in EXACTF and
+ *      EXACTFL nodes can match the two character string 'ss'; in EXACTFA nodes
+ *      it can match "\x{17F}\x{17F}".  These, along with other ones in EXACTFL
+ *      nodes, violate the assumption, and they are the only instances where it
+ *      is violated.  I'm reluctant to try to change the assumption, as the
+ *      code involved is impenetrable to me (khw), so instead the code here
+ *      punts.  This routine examines EXACTFL nodes, and (when the pattern
+ *      isn't UTF-8) EXACTF and EXACTFA for such unfolded folds, and returns a
+ *      boolean indicating whether or not the node contains such a fold.  When
+ *      it is true, the caller sets a flag that later causes the optimizer in
+ *      this file to not set values for the floating and fixed string lengths,
+ *      and thus avoids the optimizer code in regexec.c that makes the invalid
+ *      assumption.  Thus, there is no optimization based on string lengths for
+ *      EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
+ *      EXACTF and EXACTFA nodes that contain the sharp s.  (The reason the
+ *      assumption is wrong only in these cases is that all other non-UTF-8
+ *      folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
+ *      their expanded versions.  (Again, we can't prefold sharp s to 'ss' in
+ *      EXACTF nodes because we don't know at compile time if it actually
+ *      matches 'ss' or not.  For EXACTF nodes it will match iff the target
+ *      string is in UTF-8.  This is in contrast to EXACTFU nodes, where it
+ *      always matches; and EXACTFA where it never does.  In an EXACTFA node in
+ *      a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
+ *      problem; but in a non-UTF8 pattern, folding it to that above-Latin1
+ *      string would require the pattern to be forced into UTF-8, the overhead
+ *      of which we want to avoid.  Similarly the unfolded multi-char folds in
+ *      EXACTFL nodes will match iff the locale at the time of match is a UTF-8
+ *      locale.)
+ *
+ *      Similarly, the code that generates tries doesn't currently handle
+ *      not-already-folded multi-char folds, and it looks like a pain to change
+ *      that.  Therefore, trie generation of EXACTFA nodes with the sharp s
+ *      doesn't work.  Instead, such an EXACTFA is turned into a new regnode,
+ *      EXACTFA_NO_TRIE, which the trie code knows not to handle.  Most people
+ *      using /iaa matching will be doing so almost entirely with ASCII
+ *      strings, so this should rarely be encountered in practice */
+
+#define JOIN_EXACT(scan,min_subtract,unfolded_multi_char, flags) \
+ if (PL_regkind[OP(scan)] == EXACT) \
+  join_exact(pRExC_state,(scan),(min_subtract),unfolded_multi_char, (flags),NULL,depth+1)
+
+STATIC U32
+S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan,
+    UV *min_subtract, bool *unfolded_multi_char,
+    U32 flags,regnode *val, U32 depth)
+{
+ /* Merge several consecutive EXACTish nodes into one. */
+ regnode *n = regnext(scan);
+ U32 stringok = 1;
+ regnode *next = scan + NODE_SZ_STR(scan);
+ U32 merged = 0;
+ U32 stopnow = 0;
+#ifdef DEBUGGING
+ regnode *stop = scan;
+ GET_RE_DEBUG_FLAGS_DECL;
+#else
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ PERL_ARGS_ASSERT_JOIN_EXACT;
+#ifndef EXPERIMENTAL_INPLACESCAN
+ PERL_UNUSED_ARG(flags);
+ PERL_UNUSED_ARG(val);
+#endif
+ DEBUG_PEEP("join",scan,depth);
+
+ /* Look through the subsequent nodes in the chain.  Skip NOTHING, merge
+ * EXACT ones that are mergeable to the current one. */
+ while (n
+  && (PL_regkind[OP(n)] == NOTHING
+   || (stringok && OP(n) == OP(scan)))
+  && NEXT_OFF(n)
+  && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
+ {
+
+  if (OP(n) == TAIL || n > next)
+   stringok = 0;
+  if (PL_regkind[OP(n)] == NOTHING) {
+   DEBUG_PEEP("skip:",n,depth);
+   NEXT_OFF(scan) += NEXT_OFF(n);
+   next = n + NODE_STEP_REGNODE;
+#ifdef DEBUGGING
+   if (stringok)
+    stop = n;
+#endif
+   n = regnext(n);
+  }
+  else if (stringok) {
+   const unsigned int oldl = STR_LEN(scan);
+   regnode * const nnext = regnext(n);
+
+   /* XXX I (khw) kind of doubt that this works on platforms (should
+   * Perl ever run on one) where U8_MAX is above 255 because of lots
+   * of other assumptions */
+   /* Don't join if the sum can't fit into a single node */
+   if (oldl + STR_LEN(n) > U8_MAX)
+    break;
+
+   DEBUG_PEEP("merg",n,depth);
+   merged++;
+
+   NEXT_OFF(scan) += NEXT_OFF(n);
+   STR_LEN(scan) += STR_LEN(n);
+   next = n + NODE_SZ_STR(n);
+   /* Now we can overwrite *n : */
+   Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
+#ifdef DEBUGGING
+   stop = next - 1;
+#endif
+   n = nnext;
+   if (stopnow) break;
+  }
+
+#ifdef EXPERIMENTAL_INPLACESCAN
+  if (flags && !NEXT_OFF(n)) {
+   DEBUG_PEEP("atch", val, depth);
+   if (reg_off_by_arg[OP(n)]) {
+    ARG_SET(n, val - n);
+   }
+   else {
+    NEXT_OFF(n) = val - n;
+   }
+   stopnow = 1;
+  }
+#endif
+ }
+
+ *min_subtract = 0;
+ *unfolded_multi_char = FALSE;
+
+ /* Here, all the adjacent mergeable EXACTish nodes have been merged.  We
+ * can now analyze for sequences of problematic code points.  (Prior to
+ * this final joining, sequences could have been split over boundaries, and
+ * hence missed).  The sequences only happen in folding, hence for any
+ * non-EXACT EXACTish node */
+ if (OP(scan) != EXACT && OP(scan) != EXACTL) {
+  U8* s0 = (U8*) STRING(scan);
+  U8* s = s0;
+  U8* s_end = s0 + STR_LEN(scan);
+
+  int total_count_delta = 0;  /* Total delta number of characters that
+         multi-char folds expand to */
+
+  /* One pass is made over the node's string looking for all the
+  * possibilities.  To avoid some tests in the loop, there are two main
+  * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
+  * non-UTF-8 */
+  if (UTF) {
+   U8* folded = NULL;
+
+   if (OP(scan) == EXACTFL) {
+    U8 *d;
+
+    /* An EXACTFL node would already have been changed to another
+    * node type unless there is at least one character in it that
+    * is problematic; likely a character whose fold definition
+    * won't be known until runtime, and so has yet to be folded.
+    * For all but the UTF-8 locale, folds are 1-1 in length, but
+    * to handle the UTF-8 case, we need to create a temporary
+    * folded copy using UTF-8 locale rules in order to analyze it.
+    * This is because our macros that look to see if a sequence is
+    * a multi-char fold assume everything is folded (otherwise the
+    * tests in those macros would be too complicated and slow).
+    * Note that here, the non-problematic folds will have already
+    * been done, so we can just copy such characters.  We actually
+    * don't completely fold the EXACTFL string.  We skip the
+    * unfolded multi-char folds, as that would just create work
+    * below to figure out the size they already are */
+
+    Newx(folded, UTF8_MAX_FOLD_CHAR_EXPAND * STR_LEN(scan) + 1, U8);
+    d = folded;
+    while (s < s_end) {
+     STRLEN s_len = UTF8SKIP(s);
+     if (! is_PROBLEMATIC_LOCALE_FOLD_utf8(s)) {
+      Copy(s, d, s_len, U8);
+      d += s_len;
+     }
+     else if (is_FOLDS_TO_MULTI_utf8(s)) {
+      *unfolded_multi_char = TRUE;
+      Copy(s, d, s_len, U8);
+      d += s_len;
+     }
+     else if (isASCII(*s)) {
+      *(d++) = toFOLD(*s);
+     }
+     else {
+      STRLEN len;
+      _to_utf8_fold_flags(s, d, &len, FOLD_FLAGS_FULL);
+      d += len;
+     }
+     s += s_len;
+    }
+
+    /* Point the remainder of the routine to look at our temporary
+    * folded copy */
+    s = folded;
+    s_end = d;
+   } /* End of creating folded copy of EXACTFL string */
+
+   /* Examine the string for a multi-character fold sequence.  UTF-8
+   * patterns have all characters pre-folded by the time this code is
+   * executed */
+   while (s < s_end - 1) /* Can stop 1 before the end, as minimum
+         length sequence we are looking for is 2 */
+   {
+    int count = 0;  /* How many characters in a multi-char fold */
+    int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
+    if (! len) {    /* Not a multi-char fold: get next char */
+     s += UTF8SKIP(s);
+     continue;
+    }
+
+    /* Nodes with 'ss' require special handling, except for
+    * EXACTFA-ish for which there is no multi-char fold to this */
+    if (len == 2 && *s == 's' && *(s+1) == 's'
+     && OP(scan) != EXACTFA
+     && OP(scan) != EXACTFA_NO_TRIE)
+    {
+     count = 2;
+     if (OP(scan) != EXACTFL) {
+      OP(scan) = EXACTFU_SS;
+     }
+     s += 2;
+    }
+    else { /* Here is a generic multi-char fold. */
+     U8* multi_end  = s + len;
+
+     /* Count how many characters are in it.  In the case of
+     * /aa, no folds which contain ASCII code points are
+     * allowed, so check for those, and skip if found. */
+     if (OP(scan) != EXACTFA && OP(scan) != EXACTFA_NO_TRIE) {
+      count = utf8_length(s, multi_end);
+      s = multi_end;
+     }
+     else {
+      while (s < multi_end) {
+       if (isASCII(*s)) {
+        s++;
+        goto next_iteration;
+       }
+       else {
+        s += UTF8SKIP(s);
+       }
+       count++;
+      }
+     }
+    }
+
+    /* The delta is how long the sequence is minus 1 (1 is how long
+    * the character that folds to the sequence is) */
+    total_count_delta += count - 1;
+   next_iteration: ;
+   }
+
+   /* We created a temporary folded copy of the string in EXACTFL
+   * nodes.  Therefore we need to be sure it doesn't go below zero,
+   * as the real string could be shorter */
+   if (OP(scan) == EXACTFL) {
+    int total_chars = utf8_length((U8*) STRING(scan),
+          (U8*) STRING(scan) + STR_LEN(scan));
+    if (total_count_delta > total_chars) {
+     total_count_delta = total_chars;
+    }
+   }
+
+   *min_subtract += total_count_delta;
+   Safefree(folded);
+  }
+  else if (OP(scan) == EXACTFA) {
+
+   /* Non-UTF-8 pattern, EXACTFA node.  There can't be a multi-char
+   * fold to the ASCII range (and there are no existing ones in the
+   * upper latin1 range).  But, as outlined in the comments preceding
+   * this function, we need to flag any occurrences of the sharp s.
+   * This character forbids trie formation (because of added
+   * complexity) */
+   while (s < s_end) {
+    if (*s == LATIN_SMALL_LETTER_SHARP_S) {
+     OP(scan) = EXACTFA_NO_TRIE;
+     *unfolded_multi_char = TRUE;
+     break;
+    }
+    s++;
+    continue;
+   }
+  }
+  else {
+
+   /* Non-UTF-8 pattern, not EXACTFA node.  Look for the multi-char
+   * folds that are all Latin1.  As explained in the comments
+   * preceding this function, we look also for the sharp s in EXACTF
+   * and EXACTFL nodes; it can be in the final position.  Otherwise
+   * we can stop looking 1 byte earlier because have to find at least
+   * two characters for a multi-fold */
+   const U8* upper = (OP(scan) == EXACTF || OP(scan) == EXACTFL)
+       ? s_end
+       : s_end -1;
+
+   while (s < upper) {
+    int len = is_MULTI_CHAR_FOLD_latin1_safe(s, s_end);
+    if (! len) {    /* Not a multi-char fold. */
+     if (*s == LATIN_SMALL_LETTER_SHARP_S
+      && (OP(scan) == EXACTF || OP(scan) == EXACTFL))
+     {
+      *unfolded_multi_char = TRUE;
+     }
+     s++;
+     continue;
+    }
+
+    if (len == 2
+     && isALPHA_FOLD_EQ(*s, 's')
+     && isALPHA_FOLD_EQ(*(s+1), 's'))
+    {
+
+     /* EXACTF nodes need to know that the minimum length
+     * changed so that a sharp s in the string can match this
+     * ss in the pattern, but they remain EXACTF nodes, as they
+     * won't match this unless the target string is is UTF-8,
+     * which we don't know until runtime.  EXACTFL nodes can't
+     * transform into EXACTFU nodes */
+     if (OP(scan) != EXACTF && OP(scan) != EXACTFL) {
+      OP(scan) = EXACTFU_SS;
+     }
+    }
+
+    *min_subtract += len - 1;
+    s += len;
+   }
+  }
+ }
+
+#ifdef DEBUGGING
+ /* Allow dumping but overwriting the collection of skipped
+ * ops and/or strings with fake optimized ops */
+ n = scan + NODE_SZ_STR(scan);
+ while (n <= stop) {
+  OP(n) = OPTIMIZED;
+  FLAGS(n) = 0;
+  NEXT_OFF(n) = 0;
+  n++;
+ }
+#endif
+ DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
+ return stopnow;
+}
+
+/* REx optimizer.  Converts nodes into quicker variants "in place".
+   Finds fixed substrings.  */
+
+/* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
+   to the position after last scanned or to NULL. */
+
+#define INIT_AND_WITHP \
+ assert(!and_withp); \
+ Newx(and_withp,1, regnode_ssc); \
+ SAVEFREEPV(and_withp)
+
+
+static void
+S_unwind_scan_frames(pTHX_ const void *p)
+{
+ scan_frame *f= (scan_frame *)p;
+ do {
+  scan_frame *n= f->next_frame;
+  Safefree(f);
+  f= n;
+ } while (f);
+}
+
+
+STATIC SSize_t
+S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
+      SSize_t *minlenp, SSize_t *deltap,
+      regnode *last,
+      scan_data_t *data,
+      I32 stopparen,
+      U32 recursed_depth,
+      regnode_ssc *and_withp,
+      U32 flags, U32 depth)
+      /* scanp: Start here (read-write). */
+      /* deltap: Write maxlen-minlen here. */
+      /* last: Stop before this one. */
+      /* data: string data about the pattern */
+      /* stopparen: treat close N as END */
+      /* recursed: which subroutines have we recursed into */
+      /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
+{
+ /* There must be at least this number of characters to match */
+ SSize_t min = 0;
+ I32 pars = 0, code;
+ regnode *scan = *scanp, *next;
+ SSize_t delta = 0;
+ int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
+ int is_inf_internal = 0;  /* The studied chunk is infinite */
+ I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
+ scan_data_t data_fake;
+ SV *re_trie_maxbuff = NULL;
+ regnode *first_non_open = scan;
+ SSize_t stopmin = SSize_t_MAX;
+ scan_frame *frame = NULL;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_STUDY_CHUNK;
+
+
+ if ( depth == 0 ) {
+  while (first_non_open && OP(first_non_open) == OPEN)
+   first_non_open=regnext(first_non_open);
+ }
+
+
+  fake_study_recurse:
+ DEBUG_r(
+  RExC_study_chunk_recursed_count++;
+ );
+ DEBUG_OPTIMISE_MORE_r(
+ {
+  PerlIO_printf(Perl_debug_log,
+   "%*sstudy_chunk stopparen=%ld recursed_count=%lu depth=%lu recursed_depth=%lu scan=%p last=%p",
+   (int)(depth*2), "", (long)stopparen,
+   (unsigned long)RExC_study_chunk_recursed_count,
+   (unsigned long)depth, (unsigned long)recursed_depth,
+   scan,
+   last);
+  if (recursed_depth) {
+   U32 i;
+   U32 j;
+   for ( j = 0 ; j < recursed_depth ; j++ ) {
+    for ( i = 0 ; i < (U32)RExC_npar ; i++ ) {
+     if (
+      PAREN_TEST(RExC_study_chunk_recursed +
+        ( j * RExC_study_chunk_recursed_bytes), i )
+      && (
+       !j ||
+       !PAREN_TEST(RExC_study_chunk_recursed +
+        (( j - 1 ) * RExC_study_chunk_recursed_bytes), i)
+      )
+     ) {
+      PerlIO_printf(Perl_debug_log," %d",(int)i);
+      break;
+     }
+    }
+    if ( j + 1 < recursed_depth ) {
+     PerlIO_printf(Perl_debug_log, ",");
+    }
+   }
+  }
+  PerlIO_printf(Perl_debug_log,"\n");
+ }
+ );
+ while ( scan && OP(scan) != END && scan < last ){
+  UV min_subtract = 0;    /* How mmany chars to subtract from the minimum
+        node length to get a real minimum (because
+        the folded version may be shorter) */
+  bool unfolded_multi_char = FALSE;
+  /* Peephole optimizer: */
+  DEBUG_STUDYDATA("Peep:", data, depth);
+  DEBUG_PEEP("Peep", scan, depth);
+
+
+  /* The reason we do this here we need to deal with things like /(?:f)(?:o)(?:o)/
+  * which cant be dealt with by the normal EXACT parsing code, as each (?:..) is handled
+  * by a different invocation of reg() -- Yves
+  */
+  JOIN_EXACT(scan,&min_subtract, &unfolded_multi_char, 0);
+
+  /* Follow the next-chain of the current node and optimize
+  away all the NOTHINGs from it.  */
+  if (OP(scan) != CURLYX) {
+   const int max = (reg_off_by_arg[OP(scan)]
+     ? I32_MAX
+     /* I32 may be smaller than U16 on CRAYs! */
+     : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
+   int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
+   int noff;
+   regnode *n = scan;
+
+   /* Skip NOTHING and LONGJMP. */
+   while ((n = regnext(n))
+    && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
+     || ((OP(n) == LONGJMP) && (noff = ARG(n))))
+    && off + noff < max)
+    off += noff;
+   if (reg_off_by_arg[OP(scan)])
+    ARG(scan) = off;
+   else
+    NEXT_OFF(scan) = off;
+  }
+
+  /* The principal pseudo-switch.  Cannot be a switch, since we
+  look into several different things.  */
+  if ( OP(scan) == DEFINEP ) {
+   SSize_t minlen = 0;
+   SSize_t deltanext = 0;
+   SSize_t fake_last_close = 0;
+   I32 f = SCF_IN_DEFINE;
+
+   StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+   scan = regnext(scan);
+   assert( OP(scan) == IFTHEN );
+   DEBUG_PEEP("expect IFTHEN", scan, depth);
+
+   data_fake.last_closep= &fake_last_close;
+   minlen = *minlenp;
+   next = regnext(scan);
+   scan = NEXTOPER(NEXTOPER(scan));
+   DEBUG_PEEP("scan", scan, depth);
+   DEBUG_PEEP("next", next, depth);
+
+   /* we suppose the run is continuous, last=next...
+   * NOTE we dont use the return here! */
+   (void)study_chunk(pRExC_state, &scan, &minlen,
+       &deltanext, next, &data_fake, stopparen,
+       recursed_depth, NULL, f, depth+1);
+
+   scan = next;
+  } else
+  if (
+   OP(scan) == BRANCH  ||
+   OP(scan) == BRANCHJ ||
+   OP(scan) == IFTHEN
+  ) {
+   next = regnext(scan);
+   code = OP(scan);
+
+   /* The op(next)==code check below is to see if we
+   * have "BRANCH-BRANCH", "BRANCHJ-BRANCHJ", "IFTHEN-IFTHEN"
+   * IFTHEN is special as it might not appear in pairs.
+   * Not sure whether BRANCH-BRANCHJ is possible, regardless
+   * we dont handle it cleanly. */
+   if (OP(next) == code || code == IFTHEN) {
+    /* NOTE - There is similar code to this block below for
+    * handling TRIE nodes on a re-study.  If you change stuff here
+    * check there too. */
+    SSize_t max1 = 0, min1 = SSize_t_MAX, num = 0;
+    regnode_ssc accum;
+    regnode * const startbranch=scan;
+
+    if (flags & SCF_DO_SUBSTR) {
+     /* Cannot merge strings after this. */
+     scan_commit(pRExC_state, data, minlenp, is_inf);
+    }
+
+    if (flags & SCF_DO_STCLASS)
+     ssc_init_zero(pRExC_state, &accum);
+
+    while (OP(scan) == code) {
+     SSize_t deltanext, minnext, fake;
+     I32 f = 0;
+     regnode_ssc this_class;
+
+     DEBUG_PEEP("Branch", scan, depth);
+
+     num++;
+     StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+     if (data) {
+      data_fake.whilem_c = data->whilem_c;
+      data_fake.last_closep = data->last_closep;
+     }
+     else
+      data_fake.last_closep = &fake;
+
+     data_fake.pos_delta = delta;
+     next = regnext(scan);
+
+     scan = NEXTOPER(scan); /* everything */
+     if (code != BRANCH)    /* everything but BRANCH */
+      scan = NEXTOPER(scan);
+
+     if (flags & SCF_DO_STCLASS) {
+      ssc_init(pRExC_state, &this_class);
+      data_fake.start_class = &this_class;
+      f = SCF_DO_STCLASS_AND;
+     }
+     if (flags & SCF_WHILEM_VISITED_POS)
+      f |= SCF_WHILEM_VISITED_POS;
+
+     /* we suppose the run is continuous, last=next...*/
+     minnext = study_chunk(pRExC_state, &scan, minlenp,
+         &deltanext, next, &data_fake, stopparen,
+         recursed_depth, NULL, f,depth+1);
+
+     if (min1 > minnext)
+      min1 = minnext;
+     if (deltanext == SSize_t_MAX) {
+      is_inf = is_inf_internal = 1;
+      max1 = SSize_t_MAX;
+     } else if (max1 < minnext + deltanext)
+      max1 = minnext + deltanext;
+     scan = next;
+     if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+      pars++;
+     if (data_fake.flags & SCF_SEEN_ACCEPT) {
+      if ( stopmin > minnext)
+       stopmin = min + min1;
+      flags &= ~SCF_DO_SUBSTR;
+      if (data)
+       data->flags |= SCF_SEEN_ACCEPT;
+     }
+     if (data) {
+      if (data_fake.flags & SF_HAS_EVAL)
+       data->flags |= SF_HAS_EVAL;
+      data->whilem_c = data_fake.whilem_c;
+     }
+     if (flags & SCF_DO_STCLASS)
+      ssc_or(pRExC_state, &accum, (regnode_charclass*)&this_class);
+    }
+    if (code == IFTHEN && num < 2) /* Empty ELSE branch */
+     min1 = 0;
+    if (flags & SCF_DO_SUBSTR) {
+     data->pos_min += min1;
+     if (data->pos_delta >= SSize_t_MAX - (max1 - min1))
+      data->pos_delta = SSize_t_MAX;
+     else
+      data->pos_delta += max1 - min1;
+     if (max1 != min1 || is_inf)
+      data->longest = &(data->longest_float);
+    }
+    min += min1;
+    if (delta == SSize_t_MAX
+    || SSize_t_MAX - delta - (max1 - min1) < 0)
+     delta = SSize_t_MAX;
+    else
+     delta += max1 - min1;
+    if (flags & SCF_DO_STCLASS_OR) {
+     ssc_or(pRExC_state, data->start_class, (regnode_charclass*) &accum);
+     if (min1) {
+      ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+      flags &= ~SCF_DO_STCLASS;
+     }
+    }
+    else if (flags & SCF_DO_STCLASS_AND) {
+     if (min1) {
+      ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
+      flags &= ~SCF_DO_STCLASS;
+     }
+     else {
+      /* Switch to OR mode: cache the old value of
+      * data->start_class */
+      INIT_AND_WITHP;
+      StructCopy(data->start_class, and_withp, regnode_ssc);
+      flags &= ~SCF_DO_STCLASS_AND;
+      StructCopy(&accum, data->start_class, regnode_ssc);
+      flags |= SCF_DO_STCLASS_OR;
+     }
+    }
+
+    if (PERL_ENABLE_TRIE_OPTIMISATION &&
+      OP( startbranch ) == BRANCH )
+    {
+    /* demq.
+
+    Assuming this was/is a branch we are dealing with: 'scan'
+    now points at the item that follows the branch sequence,
+    whatever it is. We now start at the beginning of the
+    sequence and look for subsequences of
+
+    BRANCH->EXACT=>x1
+    BRANCH->EXACT=>x2
+    tail
+
+    which would be constructed from a pattern like
+    /A|LIST|OF|WORDS/
+
+    If we can find such a subsequence we need to turn the first
+    element into a trie and then add the subsequent branch exact
+    strings to the trie.
+
+    We have two cases
+
+     1. patterns where the whole set of branches can be
+      converted.
+
+     2. patterns where only a subset can be converted.
+
+    In case 1 we can replace the whole set with a single regop
+    for the trie. In case 2 we need to keep the start and end
+    branches so
+
+     'BRANCH EXACT; BRANCH EXACT; BRANCH X'
+     becomes BRANCH TRIE; BRANCH X;
+
+    There is an additional case, that being where there is a
+    common prefix, which gets split out into an EXACT like node
+    preceding the TRIE node.
+
+    If x(1..n)==tail then we can do a simple trie, if not we make
+    a "jump" trie, such that when we match the appropriate word
+    we "jump" to the appropriate tail node. Essentially we turn
+    a nested if into a case structure of sorts.
+
+    */
+
+     int made=0;
+     if (!re_trie_maxbuff) {
+      re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
+      if (!SvIOK(re_trie_maxbuff))
+       sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
+     }
+     if ( SvIV(re_trie_maxbuff)>=0  ) {
+      regnode *cur;
+      regnode *first = (regnode *)NULL;
+      regnode *last = (regnode *)NULL;
+      regnode *tail = scan;
+      U8 trietype = 0;
+      U32 count=0;
+
+      /* var tail is used because there may be a TAIL
+      regop in the way. Ie, the exacts will point to the
+      thing following the TAIL, but the last branch will
+      point at the TAIL. So we advance tail. If we
+      have nested (?:) we may have to move through several
+      tails.
+      */
+
+      while ( OP( tail ) == TAIL ) {
+       /* this is the TAIL generated by (?:) */
+       tail = regnext( tail );
+      }
+
+
+      DEBUG_TRIE_COMPILE_r({
+       regprop(RExC_rx, RExC_mysv, tail, NULL, pRExC_state);
+       PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
+       (int)depth * 2 + 2, "",
+       "Looking for TRIE'able sequences. Tail node is: ",
+       SvPV_nolen_const( RExC_mysv )
+       );
+      });
+
+      /*
+
+       Step through the branches
+        cur represents each branch,
+        noper is the first thing to be matched as part
+         of that branch
+        noper_next is the regnext() of that node.
+
+       We normally handle a case like this
+       /FOO[xyz]|BAR[pqr]/ via a "jump trie" but we also
+       support building with NOJUMPTRIE, which restricts
+       the trie logic to structures like /FOO|BAR/.
+
+       If noper is a trieable nodetype then the branch is
+       a possible optimization target. If we are building
+       under NOJUMPTRIE then we require that noper_next is
+       the same as scan (our current position in the regex
+       program).
+
+       Once we have two or more consecutive such branches
+       we can create a trie of the EXACT's contents and
+       stitch it in place into the program.
+
+       If the sequence represents all of the branches in
+       the alternation we replace the entire thing with a
+       single TRIE node.
+
+       Otherwise when it is a subsequence we need to
+       stitch it in place and replace only the relevant
+       branches. This means the first branch has to remain
+       as it is used by the alternation logic, and its
+       next pointer, and needs to be repointed at the item
+       on the branch chain following the last branch we
+       have optimized away.
+
+       This could be either a BRANCH, in which case the
+       subsequence is internal, or it could be the item
+       following the branch sequence in which case the
+       subsequence is at the end (which does not
+       necessarily mean the first node is the start of the
+       alternation).
+
+       TRIE_TYPE(X) is a define which maps the optype to a
+       trietype.
+
+        optype          |  trietype
+        ----------------+-----------
+        NOTHING         | NOTHING
+        EXACT           | EXACT
+        EXACTFU         | EXACTFU
+        EXACTFU_SS      | EXACTFU
+        EXACTFA         | EXACTFA
+        EXACTL          | EXACTL
+        EXACTFLU8       | EXACTFLU8
+
+
+      */
+#define TRIE_TYPE(X) ( ( NOTHING == (X) )                                   \
+     ? NOTHING                                            \
+     : ( EXACT == (X) )                                   \
+      ? EXACT                                            \
+      : ( EXACTFU == (X) || EXACTFU_SS == (X) )          \
+      ? EXACTFU                                        \
+      : ( EXACTFA == (X) )                             \
+       ? EXACTFA                                      \
+       : ( EXACTL == (X) )                            \
+       ? EXACTL                                     \
+       : ( EXACTFLU8 == (X) )                        \
+        ? EXACTFLU8                                 \
+        : 0 )
+
+      /* dont use tail as the end marker for this traverse */
+      for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
+       regnode * const noper = NEXTOPER( cur );
+       U8 noper_type = OP( noper );
+       U8 noper_trietype = TRIE_TYPE( noper_type );
+#if defined(DEBUGGING) || defined(NOJUMPTRIE)
+       regnode * const noper_next = regnext( noper );
+       U8 noper_next_type = (noper_next && noper_next != tail) ? OP(noper_next) : 0;
+       U8 noper_next_trietype = (noper_next && noper_next != tail) ? TRIE_TYPE( noper_next_type ) :0;
+#endif
+
+       DEBUG_TRIE_COMPILE_r({
+        regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
+        PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
+        (int)depth * 2 + 2,"", SvPV_nolen_const( RExC_mysv ), REG_NODE_NUM(cur) );
+
+        regprop(RExC_rx, RExC_mysv, noper, NULL, pRExC_state);
+        PerlIO_printf( Perl_debug_log, " -> %s",
+         SvPV_nolen_const(RExC_mysv));
+
+        if ( noper_next ) {
+        regprop(RExC_rx, RExC_mysv, noper_next, NULL, pRExC_state);
+        PerlIO_printf( Perl_debug_log,"\t=> %s\t",
+         SvPV_nolen_const(RExC_mysv));
+        }
+        PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d,tt==%s,nt==%s,nnt==%s)\n",
+        REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur),
+        PL_reg_name[trietype], PL_reg_name[noper_trietype], PL_reg_name[noper_next_trietype]
+        );
+       });
+
+       /* Is noper a trieable nodetype that can be merged
+       * with the current trie (if there is one)? */
+       if ( noper_trietype
+        &&
+        (
+          ( noper_trietype == NOTHING)
+          || ( trietype == NOTHING )
+          || ( trietype == noper_trietype )
+        )
+#ifdef NOJUMPTRIE
+        && noper_next == tail
+#endif
+        && count < U16_MAX)
+       {
+        /* Handle mergable triable node Either we are
+        * the first node in a new trieable sequence,
+        * in which case we do some bookkeeping,
+        * otherwise we update the end pointer. */
+        if ( !first ) {
+         first = cur;
+         if ( noper_trietype == NOTHING ) {
+#if !defined(DEBUGGING) && !defined(NOJUMPTRIE)
+          regnode * const noper_next = regnext( noper );
+          U8 noper_next_type = (noper_next && noper_next!=tail) ? OP(noper_next) : 0;
+          U8 noper_next_trietype = noper_next_type ? TRIE_TYPE( noper_next_type ) :0;
+#endif
+
+          if ( noper_next_trietype ) {
+           trietype = noper_next_trietype;
+          } else if (noper_next_type)  {
+           /* a NOTHING regop is 1 regop wide.
+           * We need at least two for a trie
+           * so we can't merge this in */
+           first = NULL;
+          }
+         } else {
+          trietype = noper_trietype;
+         }
+        } else {
+         if ( trietype == NOTHING )
+          trietype = noper_trietype;
+         last = cur;
+        }
+        if (first)
+         count++;
+       } /* end handle mergable triable node */
+       else {
+        /* handle unmergable node -
+        * noper may either be a triable node which can
+        * not be tried together with the current trie,
+        * or a non triable node */
+        if ( last ) {
+         /* If last is set and trietype is not
+         * NOTHING then we have found at least two
+         * triable branch sequences in a row of a
+         * similar trietype so we can turn them
+         * into a trie. If/when we allow NOTHING to
+         * start a trie sequence this condition
+         * will be required, and it isn't expensive
+         * so we leave it in for now. */
+         if ( trietype && trietype != NOTHING )
+          make_trie( pRExC_state,
+            startbranch, first, cur, tail,
+            count, trietype, depth+1 );
+         last = NULL; /* note: we clear/update
+             first, trietype etc below,
+             so we dont do it here */
+        }
+        if ( noper_trietype
+#ifdef NOJUMPTRIE
+         && noper_next == tail
+#endif
+        ){
+         /* noper is triable, so we can start a new
+         * trie sequence */
+         count = 1;
+         first = cur;
+         trietype = noper_trietype;
+        } else if (first) {
+         /* if we already saw a first but the
+         * current node is not triable then we have
+         * to reset the first information. */
+         count = 0;
+         first = NULL;
+         trietype = 0;
+        }
+       } /* end handle unmergable node */
+      } /* loop over branches */
+      DEBUG_TRIE_COMPILE_r({
+       regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
+       PerlIO_printf( Perl_debug_log,
+       "%*s- %s (%d) <SCAN FINISHED>\n",
+       (int)depth * 2 + 2,
+       "", SvPV_nolen_const( RExC_mysv ),REG_NODE_NUM(cur));
+
+      });
+      if ( last && trietype ) {
+       if ( trietype != NOTHING ) {
+        /* the last branch of the sequence was part of
+        * a trie, so we have to construct it here
+        * outside of the loop */
+        made= make_trie( pRExC_state, startbranch,
+            first, scan, tail, count,
+            trietype, depth+1 );
+#ifdef TRIE_STUDY_OPT
+        if ( ((made == MADE_EXACT_TRIE &&
+         startbranch == first)
+         || ( first_non_open == first )) &&
+         depth==0 ) {
+         flags |= SCF_TRIE_RESTUDY;
+         if ( startbranch == first
+          && scan == tail )
+         {
+          RExC_seen &=~REG_TOP_LEVEL_BRANCHES_SEEN;
+         }
+        }
+#endif
+       } else {
+        /* at this point we know whatever we have is a
+        * NOTHING sequence/branch AND if 'startbranch'
+        * is 'first' then we can turn the whole thing
+        * into a NOTHING
+        */
+        if ( startbranch == first ) {
+         regnode *opt;
+         /* the entire thing is a NOTHING sequence,
+         * something like this: (?:|) So we can
+         * turn it into a plain NOTHING op. */
+         DEBUG_TRIE_COMPILE_r({
+          regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
+          PerlIO_printf( Perl_debug_log,
+          "%*s- %s (%d) <NOTHING BRANCH SEQUENCE>\n", (int)depth * 2 + 2,
+          "", SvPV_nolen_const( RExC_mysv ),REG_NODE_NUM(cur));
+
+         });
+         OP(startbranch)= NOTHING;
+         NEXT_OFF(startbranch)= tail - startbranch;
+         for ( opt= startbranch + 1; opt < tail ; opt++ )
+          OP(opt)= OPTIMIZED;
+        }
+       }
+      } /* end if ( last) */
+     } /* TRIE_MAXBUF is non zero */
+
+    } /* do trie */
+
+   }
+   else if ( code == BRANCHJ ) {  /* single branch is optimized. */
+    scan = NEXTOPER(NEXTOPER(scan));
+   } else   /* single branch is optimized. */
+    scan = NEXTOPER(scan);
+   continue;
+  } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
+   I32 paren = 0;
+   regnode *start = NULL;
+   regnode *end = NULL;
+   U32 my_recursed_depth= recursed_depth;
+
+
+   if (OP(scan) != SUSPEND) { /* GOSUB/GOSTART */
+    /* Do setup, note this code has side effects beyond
+    * the rest of this block. Specifically setting
+    * RExC_recurse[] must happen at least once during
+    * study_chunk(). */
+    if (OP(scan) == GOSUB) {
+     paren = ARG(scan);
+     RExC_recurse[ARG2L(scan)] = scan;
+     start = RExC_open_parens[paren-1];
+     end   = RExC_close_parens[paren-1];
+    } else {
+     start = RExC_rxi->program + 1;
+     end   = RExC_opend;
+    }
+    /* NOTE we MUST always execute the above code, even
+    * if we do nothing with a GOSUB/GOSTART */
+    if (
+     ( flags & SCF_IN_DEFINE )
+     ||
+     (
+      (is_inf_internal || is_inf || (data && data->flags & SF_IS_INF))
+      &&
+      ( (flags & (SCF_DO_STCLASS | SCF_DO_SUBSTR)) == 0 )
+     )
+    ) {
+     /* no need to do anything here if we are in a define. */
+     /* or we are after some kind of infinite construct
+     * so we can skip recursing into this item.
+     * Since it is infinite we will not change the maxlen
+     * or delta, and if we miss something that might raise
+     * the minlen it will merely pessimise a little.
+     *
+     * Iow /(?(DEFINE)(?<foo>foo|food))a+(?&foo)/
+     * might result in a minlen of 1 and not of 4,
+     * but this doesn't make us mismatch, just try a bit
+     * harder than we should.
+     * */
+     scan= regnext(scan);
+     continue;
+    }
+
+    if (
+     !recursed_depth
+     ||
+     !PAREN_TEST(RExC_study_chunk_recursed + ((recursed_depth-1) * RExC_study_chunk_recursed_bytes), paren)
+    ) {
+     /* it is quite possible that there are more efficient ways
+     * to do this. We maintain a bitmap per level of recursion
+     * of which patterns we have entered so we can detect if a
+     * pattern creates a possible infinite loop. When we
+     * recurse down a level we copy the previous levels bitmap
+     * down. When we are at recursion level 0 we zero the top
+     * level bitmap. It would be nice to implement a different
+     * more efficient way of doing this. In particular the top
+     * level bitmap may be unnecessary.
+     */
+     if (!recursed_depth) {
+      Zero(RExC_study_chunk_recursed, RExC_study_chunk_recursed_bytes, U8);
+     } else {
+      Copy(RExC_study_chunk_recursed + ((recursed_depth-1) * RExC_study_chunk_recursed_bytes),
+       RExC_study_chunk_recursed + (recursed_depth * RExC_study_chunk_recursed_bytes),
+       RExC_study_chunk_recursed_bytes, U8);
+     }
+     /* we havent recursed into this paren yet, so recurse into it */
+     DEBUG_STUDYDATA("set:", data,depth);
+     PAREN_SET(RExC_study_chunk_recursed + (recursed_depth * RExC_study_chunk_recursed_bytes), paren);
+     my_recursed_depth= recursed_depth + 1;
+    } else {
+     DEBUG_STUDYDATA("inf:", data,depth);
+     /* some form of infinite recursion, assume infinite length
+     * */
+     if (flags & SCF_DO_SUBSTR) {
+      scan_commit(pRExC_state, data, minlenp, is_inf);
+      data->longest = &(data->longest_float);
+     }
+     is_inf = is_inf_internal = 1;
+     if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+      ssc_anything(data->start_class);
+     flags &= ~SCF_DO_STCLASS;
+
+     start= NULL; /* reset start so we dont recurse later on. */
+    }
+   } else {
+    paren = stopparen;
+    start = scan + 2;
+    end = regnext(scan);
+   }
+   if (start) {
+    scan_frame *newframe;
+    assert(end);
+    if (!RExC_frame_last) {
+     Newxz(newframe, 1, scan_frame);
+     SAVEDESTRUCTOR_X(S_unwind_scan_frames, newframe);
+     RExC_frame_head= newframe;
+     RExC_frame_count++;
+    } else if (!RExC_frame_last->next_frame) {
+     Newxz(newframe,1,scan_frame);
+     RExC_frame_last->next_frame= newframe;
+     newframe->prev_frame= RExC_frame_last;
+     RExC_frame_count++;
+    } else {
+     newframe= RExC_frame_last->next_frame;
+    }
+    RExC_frame_last= newframe;
+
+    newframe->next_regnode = regnext(scan);
+    newframe->last_regnode = last;
+    newframe->stopparen = stopparen;
+    newframe->prev_recursed_depth = recursed_depth;
+    newframe->this_prev_frame= frame;
+
+    DEBUG_STUDYDATA("frame-new:",data,depth);
+    DEBUG_PEEP("fnew", scan, depth);
+
+    frame = newframe;
+    scan =  start;
+    stopparen = paren;
+    last = end;
+    depth = depth + 1;
+    recursed_depth= my_recursed_depth;
+
+    continue;
+   }
+  }
+  else if (OP(scan) == EXACT || OP(scan) == EXACTL) {
+   SSize_t l = STR_LEN(scan);
+   UV uc;
+   if (UTF) {
+    const U8 * const s = (U8*)STRING(scan);
+    uc = utf8_to_uvchr_buf(s, s + l, NULL);
+    l = utf8_length(s, s + l);
+   } else {
+    uc = *((U8*)STRING(scan));
+   }
+   min += l;
+   if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
+    /* The code below prefers earlier match for fixed
+    offset, later match for variable offset.  */
+    if (data->last_end == -1) { /* Update the start info. */
+     data->last_start_min = data->pos_min;
+     data->last_start_max = is_inf
+      ? SSize_t_MAX : data->pos_min + data->pos_delta;
+    }
+    sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
+    if (UTF)
+     SvUTF8_on(data->last_found);
+    {
+     SV * const sv = data->last_found;
+     MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
+      mg_find(sv, PERL_MAGIC_utf8) : NULL;
+     if (mg && mg->mg_len >= 0)
+      mg->mg_len += utf8_length((U8*)STRING(scan),
+           (U8*)STRING(scan)+STR_LEN(scan));
+    }
+    data->last_end = data->pos_min + l;
+    data->pos_min += l; /* As in the first entry. */
+    data->flags &= ~SF_BEFORE_EOL;
+   }
+
+   /* ANDing the code point leaves at most it, and not in locale, and
+   * can't match null string */
+   if (flags & SCF_DO_STCLASS_AND) {
+    ssc_cp_and(data->start_class, uc);
+    ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+    ssc_clear_locale(data->start_class);
+   }
+   else if (flags & SCF_DO_STCLASS_OR) {
+    ssc_add_cp(data->start_class, uc);
+    ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+
+    /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
+    ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+   }
+   flags &= ~SCF_DO_STCLASS;
+  }
+  else if (PL_regkind[OP(scan)] == EXACT) {
+   /* But OP != EXACT!, so is EXACTFish */
+   SSize_t l = STR_LEN(scan);
+   const U8 * s = (U8*)STRING(scan);
+
+   /* Search for fixed substrings supports EXACT only. */
+   if (flags & SCF_DO_SUBSTR) {
+    assert(data);
+    scan_commit(pRExC_state, data, minlenp, is_inf);
+   }
+   if (UTF) {
+    l = utf8_length(s, s + l);
+   }
+   if (unfolded_multi_char) {
+    RExC_seen |= REG_UNFOLDED_MULTI_SEEN;
+   }
+   min += l - min_subtract;
+   assert (min >= 0);
+   delta += min_subtract;
+   if (flags & SCF_DO_SUBSTR) {
+    data->pos_min += l - min_subtract;
+    if (data->pos_min < 0) {
+     data->pos_min = 0;
+    }
+    data->pos_delta += min_subtract;
+    if (min_subtract) {
+     data->longest = &(data->longest_float);
+    }
+   }
+
+   if (flags & SCF_DO_STCLASS) {
+    SV* EXACTF_invlist = _make_exactf_invlist(pRExC_state, scan);
+
+    assert(EXACTF_invlist);
+    if (flags & SCF_DO_STCLASS_AND) {
+     if (OP(scan) != EXACTFL)
+      ssc_clear_locale(data->start_class);
+     ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+     ANYOF_POSIXL_ZERO(data->start_class);
+     ssc_intersection(data->start_class, EXACTF_invlist, FALSE);
+    }
+    else {  /* SCF_DO_STCLASS_OR */
+     ssc_union(data->start_class, EXACTF_invlist, FALSE);
+     ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+
+     /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
+     ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+    }
+    flags &= ~SCF_DO_STCLASS;
+    SvREFCNT_dec(EXACTF_invlist);
+   }
+  }
+  else if (REGNODE_VARIES(OP(scan))) {
+   SSize_t mincount, maxcount, minnext, deltanext, pos_before = 0;
+   I32 fl = 0, f = flags;
+   regnode * const oscan = scan;
+   regnode_ssc this_class;
+   regnode_ssc *oclass = NULL;
+   I32 next_is_eval = 0;
+
+   switch (PL_regkind[OP(scan)]) {
+   case WHILEM:  /* End of (?:...)* . */
+    scan = NEXTOPER(scan);
+    goto finish;
+   case PLUS:
+    if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
+     next = NEXTOPER(scan);
+     if (OP(next) == EXACT
+      || OP(next) == EXACTL
+      || (flags & SCF_DO_STCLASS))
+     {
+      mincount = 1;
+      maxcount = REG_INFTY;
+      next = regnext(scan);
+      scan = NEXTOPER(scan);
+      goto do_curly;
+     }
+    }
+    if (flags & SCF_DO_SUBSTR)
+     data->pos_min++;
+    min++;
+    /* FALLTHROUGH */
+   case STAR:
+    if (flags & SCF_DO_STCLASS) {
+     mincount = 0;
+     maxcount = REG_INFTY;
+     next = regnext(scan);
+     scan = NEXTOPER(scan);
+     goto do_curly;
+    }
+    if (flags & SCF_DO_SUBSTR) {
+     scan_commit(pRExC_state, data, minlenp, is_inf);
+     /* Cannot extend fixed substrings */
+     data->longest = &(data->longest_float);
+    }
+    is_inf = is_inf_internal = 1;
+    scan = regnext(scan);
+    goto optimize_curly_tail;
+   case CURLY:
+    if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
+     && (scan->flags == stopparen))
+    {
+     mincount = 1;
+     maxcount = 1;
+    } else {
+     mincount = ARG1(scan);
+     maxcount = ARG2(scan);
+    }
+    next = regnext(scan);
+    if (OP(scan) == CURLYX) {
+     I32 lp = (data ? *(data->last_closep) : 0);
+     scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
+    }
+    scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
+    next_is_eval = (OP(scan) == EVAL);
+   do_curly:
+    if (flags & SCF_DO_SUBSTR) {
+     if (mincount == 0)
+      scan_commit(pRExC_state, data, minlenp, is_inf);
+     /* Cannot extend fixed substrings */
+     pos_before = data->pos_min;
+    }
+    if (data) {
+     fl = data->flags;
+     data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
+     if (is_inf)
+      data->flags |= SF_IS_INF;
+    }
+    if (flags & SCF_DO_STCLASS) {
+     ssc_init(pRExC_state, &this_class);
+     oclass = data->start_class;
+     data->start_class = &this_class;
+     f |= SCF_DO_STCLASS_AND;
+     f &= ~SCF_DO_STCLASS_OR;
+    }
+    /* Exclude from super-linear cache processing any {n,m}
+    regops for which the combination of input pos and regex
+    pos is not enough information to determine if a match
+    will be possible.
+
+    For example, in the regex /foo(bar\s*){4,8}baz/ with the
+    regex pos at the \s*, the prospects for a match depend not
+    only on the input position but also on how many (bar\s*)
+    repeats into the {4,8} we are. */
+   if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
+     f &= ~SCF_WHILEM_VISITED_POS;
+
+    /* This will finish on WHILEM, setting scan, or on NULL: */
+    minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
+        last, data, stopparen, recursed_depth, NULL,
+        (mincount == 0
+        ? (f & ~SCF_DO_SUBSTR)
+        : f)
+        ,depth+1);
+
+    if (flags & SCF_DO_STCLASS)
+     data->start_class = oclass;
+    if (mincount == 0 || minnext == 0) {
+     if (flags & SCF_DO_STCLASS_OR) {
+      ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
+     }
+     else if (flags & SCF_DO_STCLASS_AND) {
+      /* Switch to OR mode: cache the old value of
+      * data->start_class */
+      INIT_AND_WITHP;
+      StructCopy(data->start_class, and_withp, regnode_ssc);
+      flags &= ~SCF_DO_STCLASS_AND;
+      StructCopy(&this_class, data->start_class, regnode_ssc);
+      flags |= SCF_DO_STCLASS_OR;
+      ANYOF_FLAGS(data->start_class)
+            |= SSC_MATCHES_EMPTY_STRING;
+     }
+    } else {  /* Non-zero len */
+     if (flags & SCF_DO_STCLASS_OR) {
+      ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
+      ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+     }
+     else if (flags & SCF_DO_STCLASS_AND)
+      ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
+     flags &= ~SCF_DO_STCLASS;
+    }
+    if (!scan)   /* It was not CURLYX, but CURLY. */
+     scan = next;
+    if (!(flags & SCF_TRIE_DOING_RESTUDY)
+     /* ? quantifier ok, except for (?{ ... }) */
+     && (next_is_eval || !(mincount == 0 && maxcount == 1))
+     && (minnext == 0) && (deltanext == 0)
+     && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
+     && maxcount <= REG_INFTY/3) /* Complement check for big
+            count */
+    {
+     /* Fatal warnings may leak the regexp without this: */
+     SAVEFREESV(RExC_rx_sv);
+     Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP),
+      "Quantifier unexpected on zero-length expression "
+      "in regex m/%"UTF8f"/",
+      UTF8fARG(UTF, RExC_end - RExC_precomp,
+        RExC_precomp));
+     (void)ReREFCNT_inc(RExC_rx_sv);
+    }
+
+    min += minnext * mincount;
+    is_inf_internal |= deltanext == SSize_t_MAX
+      || (maxcount == REG_INFTY && minnext + deltanext > 0);
+    is_inf |= is_inf_internal;
+    if (is_inf) {
+     delta = SSize_t_MAX;
+    } else {
+     delta += (minnext + deltanext) * maxcount
+       - minnext * mincount;
+    }
+    /* Try powerful optimization CURLYX => CURLYN. */
+    if (  OP(oscan) == CURLYX && data
+     && data->flags & SF_IN_PAR
+     && !(data->flags & SF_HAS_EVAL)
+     && !deltanext && minnext == 1 ) {
+     /* Try to optimize to CURLYN.  */
+     regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
+     regnode * const nxt1 = nxt;
+#ifdef DEBUGGING
+     regnode *nxt2;
+#endif
+
+     /* Skip open. */
+     nxt = regnext(nxt);
+     if (!REGNODE_SIMPLE(OP(nxt))
+      && !(PL_regkind[OP(nxt)] == EXACT
+       && STR_LEN(nxt) == 1))
+      goto nogo;
+#ifdef DEBUGGING
+     nxt2 = nxt;
+#endif
+     nxt = regnext(nxt);
+     if (OP(nxt) != CLOSE)
+      goto nogo;
+     if (RExC_open_parens) {
+      RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
+      RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
+     }
+     /* Now we know that nxt2 is the only contents: */
+     oscan->flags = (U8)ARG(nxt);
+     OP(oscan) = CURLYN;
+     OP(nxt1) = NOTHING; /* was OPEN. */
+
+#ifdef DEBUGGING
+     OP(nxt1 + 1) = OPTIMIZED; /* was count. */
+     NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
+     NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
+     OP(nxt) = OPTIMIZED; /* was CLOSE. */
+     OP(nxt + 1) = OPTIMIZED; /* was count. */
+     NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
+#endif
+    }
+   nogo:
+
+    /* Try optimization CURLYX => CURLYM. */
+    if (  OP(oscan) == CURLYX && data
+     && !(data->flags & SF_HAS_PAR)
+     && !(data->flags & SF_HAS_EVAL)
+     && !deltanext /* atom is fixed width */
+     && minnext != 0 /* CURLYM can't handle zero width */
+
+      /* Nor characters whose fold at run-time may be
+      * multi-character */
+     && ! (RExC_seen & REG_UNFOLDED_MULTI_SEEN)
+    ) {
+     /* XXXX How to optimize if data == 0? */
+     /* Optimize to a simpler form.  */
+     regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
+     regnode *nxt2;
+
+     OP(oscan) = CURLYM;
+     while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
+       && (OP(nxt2) != WHILEM))
+      nxt = nxt2;
+     OP(nxt2)  = SUCCEED; /* Whas WHILEM */
+     /* Need to optimize away parenths. */
+     if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
+      /* Set the parenth number.  */
+      regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
+
+      oscan->flags = (U8)ARG(nxt);
+      if (RExC_open_parens) {
+       RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
+       RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
+      }
+      OP(nxt1) = OPTIMIZED; /* was OPEN. */
+      OP(nxt) = OPTIMIZED; /* was CLOSE. */
+
+#ifdef DEBUGGING
+      OP(nxt1 + 1) = OPTIMIZED; /* was count. */
+      OP(nxt + 1) = OPTIMIZED; /* was count. */
+      NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
+      NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
+#endif
+#if 0
+      while ( nxt1 && (OP(nxt1) != WHILEM)) {
+       regnode *nnxt = regnext(nxt1);
+       if (nnxt == nxt) {
+        if (reg_off_by_arg[OP(nxt1)])
+         ARG_SET(nxt1, nxt2 - nxt1);
+        else if (nxt2 - nxt1 < U16_MAX)
+         NEXT_OFF(nxt1) = nxt2 - nxt1;
+        else
+         OP(nxt) = NOTHING; /* Cannot beautify */
+       }
+       nxt1 = nnxt;
+      }
+#endif
+      /* Optimize again: */
+      study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
+         NULL, stopparen, recursed_depth, NULL, 0,depth+1);
+     }
+     else
+      oscan->flags = 0;
+    }
+    else if ((OP(oscan) == CURLYX)
+      && (flags & SCF_WHILEM_VISITED_POS)
+      /* See the comment on a similar expression above.
+       However, this time it's not a subexpression
+       we care about, but the expression itself. */
+      && (maxcount == REG_INFTY)
+      && data && ++data->whilem_c < 16) {
+     /* This stays as CURLYX, we can put the count/of pair. */
+     /* Find WHILEM (as in regexec.c) */
+     regnode *nxt = oscan + NEXT_OFF(oscan);
+
+     if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
+      nxt += ARG(nxt);
+     PREVOPER(nxt)->flags = (U8)(data->whilem_c
+      | (RExC_whilem_seen << 4)); /* On WHILEM */
+    }
+    if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
+     pars++;
+    if (flags & SCF_DO_SUBSTR) {
+     SV *last_str = NULL;
+     STRLEN last_chrs = 0;
+     int counted = mincount != 0;
+
+     if (data->last_end > 0 && mincount != 0) { /* Ends with a
+                string. */
+      SSize_t b = pos_before >= data->last_start_min
+       ? pos_before : data->last_start_min;
+      STRLEN l;
+      const char * const s = SvPV_const(data->last_found, l);
+      SSize_t old = b - data->last_start_min;
+
+      if (UTF)
+       old = utf8_hop((U8*)s, old) - (U8*)s;
+      l -= old;
+      /* Get the added string: */
+      last_str = newSVpvn_utf8(s  + old, l, UTF);
+      last_chrs = UTF ? utf8_length((U8*)(s + old),
+           (U8*)(s + old + l)) : l;
+      if (deltanext == 0 && pos_before == b) {
+       /* What was added is a constant string */
+       if (mincount > 1) {
+
+        SvGROW(last_str, (mincount * l) + 1);
+        repeatcpy(SvPVX(last_str) + l,
+          SvPVX_const(last_str), l,
+          mincount - 1);
+        SvCUR_set(last_str, SvCUR(last_str) * mincount);
+        /* Add additional parts. */
+        SvCUR_set(data->last_found,
+          SvCUR(data->last_found) - l);
+        sv_catsv(data->last_found, last_str);
+        {
+         SV * sv = data->last_found;
+         MAGIC *mg =
+          SvUTF8(sv) && SvMAGICAL(sv) ?
+          mg_find(sv, PERL_MAGIC_utf8) : NULL;
+         if (mg && mg->mg_len >= 0)
+          mg->mg_len += last_chrs * (mincount-1);
+        }
+        last_chrs *= mincount;
+        data->last_end += l * (mincount - 1);
+       }
+      } else {
+       /* start offset must point into the last copy */
+       data->last_start_min += minnext * (mincount - 1);
+       data->last_start_max =
+       is_inf
+       ? SSize_t_MAX
+       : data->last_start_max +
+        (maxcount - 1) * (minnext + data->pos_delta);
+      }
+     }
+     /* It is counted once already... */
+     data->pos_min += minnext * (mincount - counted);
+#if 0
+PerlIO_printf(Perl_debug_log, "counted=%"UVuf" deltanext=%"UVuf
+       " SSize_t_MAX=%"UVuf" minnext=%"UVuf
+       " maxcount=%"UVuf" mincount=%"UVuf"\n",
+ (UV)counted, (UV)deltanext, (UV)SSize_t_MAX, (UV)minnext, (UV)maxcount,
+ (UV)mincount);
+if (deltanext != SSize_t_MAX)
+PerlIO_printf(Perl_debug_log, "LHS=%"UVuf" RHS=%"UVuf"\n",
+ (UV)(-counted * deltanext + (minnext + deltanext) * maxcount
+  - minnext * mincount), (UV)(SSize_t_MAX - data->pos_delta));
+#endif
+     if (deltanext == SSize_t_MAX
+      || -counted * deltanext + (minnext + deltanext) * maxcount - minnext * mincount >= SSize_t_MAX - data->pos_delta)
+      data->pos_delta = SSize_t_MAX;
+     else
+      data->pos_delta += - counted * deltanext +
+      (minnext + deltanext) * maxcount - minnext * mincount;
+     if (mincount != maxcount) {
+      /* Cannot extend fixed substrings found inside
+       the group.  */
+      scan_commit(pRExC_state, data, minlenp, is_inf);
+      if (mincount && last_str) {
+       SV * const sv = data->last_found;
+       MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
+        mg_find(sv, PERL_MAGIC_utf8) : NULL;
+
+       if (mg)
+        mg->mg_len = -1;
+       sv_setsv(sv, last_str);
+       data->last_end = data->pos_min;
+       data->last_start_min = data->pos_min - last_chrs;
+       data->last_start_max = is_inf
+        ? SSize_t_MAX
+        : data->pos_min + data->pos_delta - last_chrs;
+      }
+      data->longest = &(data->longest_float);
+     }
+     SvREFCNT_dec(last_str);
+    }
+    if (data && (fl & SF_HAS_EVAL))
+     data->flags |= SF_HAS_EVAL;
+   optimize_curly_tail:
+    if (OP(oscan) != CURLYX) {
+     while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
+      && NEXT_OFF(next))
+      NEXT_OFF(oscan) += NEXT_OFF(next);
+    }
+    continue;
+
+   default:
+#ifdef DEBUGGING
+    Perl_croak(aTHX_ "panic: unexpected varying REx opcode %d",
+                 OP(scan));
+#endif
+   case REF:
+   case CLUMP:
+    if (flags & SCF_DO_SUBSTR) {
+     /* Cannot expect anything... */
+     scan_commit(pRExC_state, data, minlenp, is_inf);
+     data->longest = &(data->longest_float);
+    }
+    is_inf = is_inf_internal = 1;
+    if (flags & SCF_DO_STCLASS_OR) {
+     if (OP(scan) == CLUMP) {
+      /* Actually is any start char, but very few code points
+      * aren't start characters */
+      ssc_match_all_cp(data->start_class);
+     }
+     else {
+      ssc_anything(data->start_class);
+     }
+    }
+    flags &= ~SCF_DO_STCLASS;
+    break;
+   }
+  }
+  else if (OP(scan) == LNBREAK) {
+   if (flags & SCF_DO_STCLASS) {
+     if (flags & SCF_DO_STCLASS_AND) {
+     ssc_intersection(data->start_class,
+         PL_XPosix_ptrs[_CC_VERTSPACE], FALSE);
+     ssc_clear_locale(data->start_class);
+     ANYOF_FLAGS(data->start_class)
+            &= ~SSC_MATCHES_EMPTY_STRING;
+    }
+    else if (flags & SCF_DO_STCLASS_OR) {
+     ssc_union(data->start_class,
+       PL_XPosix_ptrs[_CC_VERTSPACE],
+       FALSE);
+     ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+
+     /* See commit msg for
+     * 749e076fceedeb708a624933726e7989f2302f6a */
+     ANYOF_FLAGS(data->start_class)
+            &= ~SSC_MATCHES_EMPTY_STRING;
+    }
+    flags &= ~SCF_DO_STCLASS;
+   }
+   min++;
+   if (delta != SSize_t_MAX)
+    delta++;    /* Because of the 2 char string cr-lf */
+   if (flags & SCF_DO_SUBSTR) {
+    /* Cannot expect anything... */
+    scan_commit(pRExC_state, data, minlenp, is_inf);
+     data->pos_min += 1;
+    data->pos_delta += 1;
+    data->longest = &(data->longest_float);
+    }
+  }
+  else if (REGNODE_SIMPLE(OP(scan))) {
+
+   if (flags & SCF_DO_SUBSTR) {
+    scan_commit(pRExC_state, data, minlenp, is_inf);
+    data->pos_min++;
+   }
+   min++;
+   if (flags & SCF_DO_STCLASS) {
+    bool invert = 0;
+    SV* my_invlist = NULL;
+    U8 namedclass;
+
+    /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
+    ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+
+    /* Some of the logic below assumes that switching
+    locale on will only add false positives. */
+    switch (OP(scan)) {
+
+    default:
+#ifdef DEBUGGING
+    Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d",
+                 OP(scan));
+#endif
+    case SANY:
+     if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+      ssc_match_all_cp(data->start_class);
+     break;
+
+    case REG_ANY:
+     {
+      SV* REG_ANY_invlist = _new_invlist(2);
+      REG_ANY_invlist = add_cp_to_invlist(REG_ANY_invlist,
+               '\n');
+      if (flags & SCF_DO_STCLASS_OR) {
+       ssc_union(data->start_class,
+         REG_ANY_invlist,
+         TRUE /* TRUE => invert, hence all but \n
+           */
+         );
+      }
+      else if (flags & SCF_DO_STCLASS_AND) {
+       ssc_intersection(data->start_class,
+           REG_ANY_invlist,
+           TRUE  /* TRUE => invert */
+           );
+       ssc_clear_locale(data->start_class);
+      }
+      SvREFCNT_dec_NN(REG_ANY_invlist);
+     }
+     break;
+
+    case ANYOFL:
+    case ANYOF:
+     if (flags & SCF_DO_STCLASS_AND)
+      ssc_and(pRExC_state, data->start_class,
+        (regnode_charclass *) scan);
+     else
+      ssc_or(pRExC_state, data->start_class,
+              (regnode_charclass *) scan);
+     break;
+
+    case NPOSIXL:
+     invert = 1;
+     /* FALLTHROUGH */
+
+    case POSIXL:
+     namedclass = classnum_to_namedclass(FLAGS(scan)) + invert;
+     if (flags & SCF_DO_STCLASS_AND) {
+      bool was_there = cBOOL(
+          ANYOF_POSIXL_TEST(data->start_class,
+                namedclass));
+      ANYOF_POSIXL_ZERO(data->start_class);
+      if (was_there) {    /* Do an AND */
+       ANYOF_POSIXL_SET(data->start_class, namedclass);
+      }
+      /* No individual code points can now match */
+      data->start_class->invlist
+            = sv_2mortal(_new_invlist(0));
+     }
+     else {
+      int complement = namedclass + ((invert) ? -1 : 1);
+
+      assert(flags & SCF_DO_STCLASS_OR);
+
+      /* If the complement of this class was already there,
+      * the result is that they match all code points,
+      * (\d + \D == everything).  Remove the classes from
+      * future consideration.  Locale is not relevant in
+      * this case */
+      if (ANYOF_POSIXL_TEST(data->start_class, complement)) {
+       ssc_match_all_cp(data->start_class);
+       ANYOF_POSIXL_CLEAR(data->start_class, namedclass);
+       ANYOF_POSIXL_CLEAR(data->start_class, complement);
+      }
+      else {  /* The usual case; just add this class to the
+        existing set */
+       ANYOF_POSIXL_SET(data->start_class, namedclass);
+      }
+     }
+     break;
+
+    case NPOSIXA:   /* For these, we always know the exact set of
+        what's matched */
+     invert = 1;
+     /* FALLTHROUGH */
+    case POSIXA:
+     if (FLAGS(scan) == _CC_ASCII) {
+      my_invlist = invlist_clone(PL_XPosix_ptrs[_CC_ASCII]);
+     }
+     else {
+      _invlist_intersection(PL_XPosix_ptrs[FLAGS(scan)],
+           PL_XPosix_ptrs[_CC_ASCII],
+           &my_invlist);
+     }
+     goto join_posix;
+
+    case NPOSIXD:
+    case NPOSIXU:
+     invert = 1;
+     /* FALLTHROUGH */
+    case POSIXD:
+    case POSIXU:
+     my_invlist = invlist_clone(PL_XPosix_ptrs[FLAGS(scan)]);
+
+     /* NPOSIXD matches all upper Latin1 code points unless the
+     * target string being matched is UTF-8, which is
+     * unknowable until match time.  Since we are going to
+     * invert, we want to get rid of all of them so that the
+     * inversion will match all */
+     if (OP(scan) == NPOSIXD) {
+      _invlist_subtract(my_invlist, PL_UpperLatin1,
+          &my_invlist);
+     }
+
+    join_posix:
+
+     if (flags & SCF_DO_STCLASS_AND) {
+      ssc_intersection(data->start_class, my_invlist, invert);
+      ssc_clear_locale(data->start_class);
+     }
+     else {
+      assert(flags & SCF_DO_STCLASS_OR);
+      ssc_union(data->start_class, my_invlist, invert);
+     }
+     SvREFCNT_dec(my_invlist);
+    }
+    if (flags & SCF_DO_STCLASS_OR)
+     ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+    flags &= ~SCF_DO_STCLASS;
+   }
+  }
+  else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
+   data->flags |= (OP(scan) == MEOL
+       ? SF_BEFORE_MEOL
+       : SF_BEFORE_SEOL);
+   scan_commit(pRExC_state, data, minlenp, is_inf);
+
+  }
+  else if (  PL_regkind[OP(scan)] == BRANCHJ
+    /* Lookbehind, or need to calculate parens/evals/stclass: */
+    && (scan->flags || data || (flags & SCF_DO_STCLASS))
+    && (OP(scan) == IFMATCH || OP(scan) == UNLESSM))
+  {
+   if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
+    || OP(scan) == UNLESSM )
+   {
+    /* Negative Lookahead/lookbehind
+    In this case we can't do fixed string optimisation.
+    */
+
+    SSize_t deltanext, minnext, fake = 0;
+    regnode *nscan;
+    regnode_ssc intrnl;
+    int f = 0;
+
+    StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+    if (data) {
+     data_fake.whilem_c = data->whilem_c;
+     data_fake.last_closep = data->last_closep;
+    }
+    else
+     data_fake.last_closep = &fake;
+    data_fake.pos_delta = delta;
+    if ( flags & SCF_DO_STCLASS && !scan->flags
+     && OP(scan) == IFMATCH ) { /* Lookahead */
+     ssc_init(pRExC_state, &intrnl);
+     data_fake.start_class = &intrnl;
+     f |= SCF_DO_STCLASS_AND;
+    }
+    if (flags & SCF_WHILEM_VISITED_POS)
+     f |= SCF_WHILEM_VISITED_POS;
+    next = regnext(scan);
+    nscan = NEXTOPER(NEXTOPER(scan));
+    minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
+         last, &data_fake, stopparen,
+         recursed_depth, NULL, f, depth+1);
+    if (scan->flags) {
+     if (deltanext) {
+      FAIL("Variable length lookbehind not implemented");
+     }
+     else if (minnext > (I32)U8_MAX) {
+      FAIL2("Lookbehind longer than %"UVuf" not implemented",
+       (UV)U8_MAX);
+     }
+     scan->flags = (U8)minnext;
+    }
+    if (data) {
+     if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+      pars++;
+     if (data_fake.flags & SF_HAS_EVAL)
+      data->flags |= SF_HAS_EVAL;
+     data->whilem_c = data_fake.whilem_c;
+    }
+    if (f & SCF_DO_STCLASS_AND) {
+     if (flags & SCF_DO_STCLASS_OR) {
+      /* OR before, AND after: ideally we would recurse with
+      * data_fake to get the AND applied by study of the
+      * remainder of the pattern, and then derecurse;
+      * *** HACK *** for now just treat as "no information".
+      * See [perl #56690].
+      */
+      ssc_init(pRExC_state, data->start_class);
+     }  else {
+      /* AND before and after: combine and continue.  These
+      * assertions are zero-length, so can match an EMPTY
+      * string */
+      ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &intrnl);
+      ANYOF_FLAGS(data->start_class)
+            |= SSC_MATCHES_EMPTY_STRING;
+     }
+    }
+   }
+#if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
+   else {
+    /* Positive Lookahead/lookbehind
+    In this case we can do fixed string optimisation,
+    but we must be careful about it. Note in the case of
+    lookbehind the positions will be offset by the minimum
+    length of the pattern, something we won't know about
+    until after the recurse.
+    */
+    SSize_t deltanext, fake = 0;
+    regnode *nscan;
+    regnode_ssc intrnl;
+    int f = 0;
+    /* We use SAVEFREEPV so that when the full compile
+     is finished perl will clean up the allocated
+     minlens when it's all done. This way we don't
+     have to worry about freeing them when we know
+     they wont be used, which would be a pain.
+    */
+    SSize_t *minnextp;
+    Newx( minnextp, 1, SSize_t );
+    SAVEFREEPV(minnextp);
+
+    if (data) {
+     StructCopy(data, &data_fake, scan_data_t);
+     if ((flags & SCF_DO_SUBSTR) && data->last_found) {
+      f |= SCF_DO_SUBSTR;
+      if (scan->flags)
+       scan_commit(pRExC_state, &data_fake, minlenp, is_inf);
+      data_fake.last_found=newSVsv(data->last_found);
+     }
+    }
+    else
+     data_fake.last_closep = &fake;
+    data_fake.flags = 0;
+    data_fake.pos_delta = delta;
+    if (is_inf)
+     data_fake.flags |= SF_IS_INF;
+    if ( flags & SCF_DO_STCLASS && !scan->flags
+     && OP(scan) == IFMATCH ) { /* Lookahead */
+     ssc_init(pRExC_state, &intrnl);
+     data_fake.start_class = &intrnl;
+     f |= SCF_DO_STCLASS_AND;
+    }
+    if (flags & SCF_WHILEM_VISITED_POS)
+     f |= SCF_WHILEM_VISITED_POS;
+    next = regnext(scan);
+    nscan = NEXTOPER(NEXTOPER(scan));
+
+    *minnextp = study_chunk(pRExC_state, &nscan, minnextp,
+          &deltanext, last, &data_fake,
+          stopparen, recursed_depth, NULL,
+          f,depth+1);
+    if (scan->flags) {
+     if (deltanext) {
+      FAIL("Variable length lookbehind not implemented");
+     }
+     else if (*minnextp > (I32)U8_MAX) {
+      FAIL2("Lookbehind longer than %"UVuf" not implemented",
+       (UV)U8_MAX);
+     }
+     scan->flags = (U8)*minnextp;
+    }
+
+    *minnextp += min;
+
+    if (f & SCF_DO_STCLASS_AND) {
+     ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &intrnl);
+     ANYOF_FLAGS(data->start_class) |= SSC_MATCHES_EMPTY_STRING;
+    }
+    if (data) {
+     if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+      pars++;
+     if (data_fake.flags & SF_HAS_EVAL)
+      data->flags |= SF_HAS_EVAL;
+     data->whilem_c = data_fake.whilem_c;
+     if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
+      if (RExC_rx->minlen<*minnextp)
+       RExC_rx->minlen=*minnextp;
+      scan_commit(pRExC_state, &data_fake, minnextp, is_inf);
+      SvREFCNT_dec_NN(data_fake.last_found);
+
+      if ( data_fake.minlen_fixed != minlenp )
+      {
+       data->offset_fixed= data_fake.offset_fixed;
+       data->minlen_fixed= data_fake.minlen_fixed;
+       data->lookbehind_fixed+= scan->flags;
+      }
+      if ( data_fake.minlen_float != minlenp )
+      {
+       data->minlen_float= data_fake.minlen_float;
+       data->offset_float_min=data_fake.offset_float_min;
+       data->offset_float_max=data_fake.offset_float_max;
+       data->lookbehind_float+= scan->flags;
+      }
+     }
+    }
+   }
+#endif
+  }
+  else if (OP(scan) == OPEN) {
+   if (stopparen != (I32)ARG(scan))
+    pars++;
+  }
+  else if (OP(scan) == CLOSE) {
+   if (stopparen == (I32)ARG(scan)) {
+    break;
+   }
+   if ((I32)ARG(scan) == is_par) {
+    next = regnext(scan);
+
+    if ( next && (OP(next) != WHILEM) && next < last)
+     is_par = 0;  /* Disable optimization */
+   }
+   if (data)
+    *(data->last_closep) = ARG(scan);
+  }
+  else if (OP(scan) == EVAL) {
+    if (data)
+     data->flags |= SF_HAS_EVAL;
+  }
+  else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
+   if (flags & SCF_DO_SUBSTR) {
+    scan_commit(pRExC_state, data, minlenp, is_inf);
+    flags &= ~SCF_DO_SUBSTR;
+   }
+   if (data && OP(scan)==ACCEPT) {
+    data->flags |= SCF_SEEN_ACCEPT;
+    if (stopmin > min)
+     stopmin = min;
+   }
+  }
+  else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
+  {
+    if (flags & SCF_DO_SUBSTR) {
+     scan_commit(pRExC_state, data, minlenp, is_inf);
+     data->longest = &(data->longest_float);
+    }
+    is_inf = is_inf_internal = 1;
+    if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+     ssc_anything(data->start_class);
+    flags &= ~SCF_DO_STCLASS;
+  }
+  else if (OP(scan) == GPOS) {
+   if (!(RExC_rx->intflags & PREGf_GPOS_FLOAT) &&
+    !(delta || is_inf || (data && data->pos_delta)))
+   {
+    if (!(RExC_rx->intflags & PREGf_ANCH) && (flags & SCF_DO_SUBSTR))
+     RExC_rx->intflags |= PREGf_ANCH_GPOS;
+    if (RExC_rx->gofs < (STRLEN)min)
+     RExC_rx->gofs = min;
+   } else {
+    RExC_rx->intflags |= PREGf_GPOS_FLOAT;
+    RExC_rx->gofs = 0;
+   }
+  }
+#ifdef TRIE_STUDY_OPT
+#ifdef FULL_TRIE_STUDY
+  else if (PL_regkind[OP(scan)] == TRIE) {
+   /* NOTE - There is similar code to this block above for handling
+   BRANCH nodes on the initial study.  If you change stuff here
+   check there too. */
+   regnode *trie_node= scan;
+   regnode *tail= regnext(scan);
+   reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
+   SSize_t max1 = 0, min1 = SSize_t_MAX;
+   regnode_ssc accum;
+
+   if (flags & SCF_DO_SUBSTR) { /* XXXX Add !SUSPEND? */
+    /* Cannot merge strings after this. */
+    scan_commit(pRExC_state, data, minlenp, is_inf);
+   }
+   if (flags & SCF_DO_STCLASS)
+    ssc_init_zero(pRExC_state, &accum);
+
+   if (!trie->jump) {
+    min1= trie->minlen;
+    max1= trie->maxlen;
+   } else {
+    const regnode *nextbranch= NULL;
+    U32 word;
+
+    for ( word=1 ; word <= trie->wordcount ; word++)
+    {
+     SSize_t deltanext=0, minnext=0, f = 0, fake;
+     regnode_ssc this_class;
+
+     StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+     if (data) {
+      data_fake.whilem_c = data->whilem_c;
+      data_fake.last_closep = data->last_closep;
+     }
+     else
+      data_fake.last_closep = &fake;
+     data_fake.pos_delta = delta;
+     if (flags & SCF_DO_STCLASS) {
+      ssc_init(pRExC_state, &this_class);
+      data_fake.start_class = &this_class;
+      f = SCF_DO_STCLASS_AND;
+     }
+     if (flags & SCF_WHILEM_VISITED_POS)
+      f |= SCF_WHILEM_VISITED_POS;
+
+     if (trie->jump[word]) {
+      if (!nextbranch)
+       nextbranch = trie_node + trie->jump[0];
+      scan= trie_node + trie->jump[word];
+      /* We go from the jump point to the branch that follows
+      it. Note this means we need the vestigal unused
+      branches even though they arent otherwise used. */
+      minnext = study_chunk(pRExC_state, &scan, minlenp,
+       &deltanext, (regnode *)nextbranch, &data_fake,
+       stopparen, recursed_depth, NULL, f,depth+1);
+     }
+     if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
+      nextbranch= regnext((regnode*)nextbranch);
+
+     if (min1 > (SSize_t)(minnext + trie->minlen))
+      min1 = minnext + trie->minlen;
+     if (deltanext == SSize_t_MAX) {
+      is_inf = is_inf_internal = 1;
+      max1 = SSize_t_MAX;
+     } else if (max1 < (SSize_t)(minnext + deltanext + trie->maxlen))
+      max1 = minnext + deltanext + trie->maxlen;
+
+     if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+      pars++;
+     if (data_fake.flags & SCF_SEEN_ACCEPT) {
+      if ( stopmin > min + min1)
+       stopmin = min + min1;
+      flags &= ~SCF_DO_SUBSTR;
+      if (data)
+       data->flags |= SCF_SEEN_ACCEPT;
+     }
+     if (data) {
+      if (data_fake.flags & SF_HAS_EVAL)
+       data->flags |= SF_HAS_EVAL;
+      data->whilem_c = data_fake.whilem_c;
+     }
+     if (flags & SCF_DO_STCLASS)
+      ssc_or(pRExC_state, &accum, (regnode_charclass *) &this_class);
+    }
+   }
+   if (flags & SCF_DO_SUBSTR) {
+    data->pos_min += min1;
+    data->pos_delta += max1 - min1;
+    if (max1 != min1 || is_inf)
+     data->longest = &(data->longest_float);
+   }
+   min += min1;
+   if (delta != SSize_t_MAX)
+    delta += max1 - min1;
+   if (flags & SCF_DO_STCLASS_OR) {
+    ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &accum);
+    if (min1) {
+     ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+     flags &= ~SCF_DO_STCLASS;
+    }
+   }
+   else if (flags & SCF_DO_STCLASS_AND) {
+    if (min1) {
+     ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
+     flags &= ~SCF_DO_STCLASS;
+    }
+    else {
+     /* Switch to OR mode: cache the old value of
+     * data->start_class */
+     INIT_AND_WITHP;
+     StructCopy(data->start_class, and_withp, regnode_ssc);
+     flags &= ~SCF_DO_STCLASS_AND;
+     StructCopy(&accum, data->start_class, regnode_ssc);
+     flags |= SCF_DO_STCLASS_OR;
+    }
+   }
+   scan= tail;
+   continue;
+  }
+#else
+  else if (PL_regkind[OP(scan)] == TRIE) {
+   reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
+   U8*bang=NULL;
+
+   min += trie->minlen;
+   delta += (trie->maxlen - trie->minlen);
+   flags &= ~SCF_DO_STCLASS; /* xxx */
+   if (flags & SCF_DO_SUBSTR) {
+    /* Cannot expect anything... */
+    scan_commit(pRExC_state, data, minlenp, is_inf);
+     data->pos_min += trie->minlen;
+     data->pos_delta += (trie->maxlen - trie->minlen);
+    if (trie->maxlen != trie->minlen)
+     data->longest = &(data->longest_float);
+    }
+    if (trie->jump) /* no more substrings -- for now /grr*/
+   flags &= ~SCF_DO_SUBSTR;
+  }
+#endif /* old or new */
+#endif /* TRIE_STUDY_OPT */
+
+  /* Else: zero-length, ignore. */
+  scan = regnext(scan);
+ }
+ /* If we are exiting a recursion we can unset its recursed bit
+ * and allow ourselves to enter it again - no danger of an
+ * infinite loop there.
+ if (stopparen > -1 && recursed) {
+  DEBUG_STUDYDATA("unset:", data,depth);
+  PAREN_UNSET( recursed, stopparen);
+ }
+ */
+ if (frame) {
+  depth = depth - 1;
+
+  DEBUG_STUDYDATA("frame-end:",data,depth);
+  DEBUG_PEEP("fend", scan, depth);
+
+  /* restore previous context */
+  last = frame->last_regnode;
+  scan = frame->next_regnode;
+  stopparen = frame->stopparen;
+  recursed_depth = frame->prev_recursed_depth;
+
+  RExC_frame_last = frame->prev_frame;
+  frame = frame->this_prev_frame;
+  goto fake_study_recurse;
+ }
+
+  finish:
+ assert(!frame);
+ DEBUG_STUDYDATA("pre-fin:",data,depth);
+
+ *scanp = scan;
+ *deltap = is_inf_internal ? SSize_t_MAX : delta;
+
+ if (flags & SCF_DO_SUBSTR && is_inf)
+  data->pos_delta = SSize_t_MAX - data->pos_min;
+ if (is_par > (I32)U8_MAX)
+  is_par = 0;
+ if (is_par && pars==1 && data) {
+  data->flags |= SF_IN_PAR;
+  data->flags &= ~SF_HAS_PAR;
+ }
+ else if (pars && data) {
+  data->flags |= SF_HAS_PAR;
+  data->flags &= ~SF_IN_PAR;
+ }
+ if (flags & SCF_DO_STCLASS_OR)
+  ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+ if (flags & SCF_TRIE_RESTUDY)
+  data->flags |=  SCF_TRIE_RESTUDY;
+
+ DEBUG_STUDYDATA("post-fin:",data,depth);
+
+ {
+  SSize_t final_minlen= min < stopmin ? min : stopmin;
+
+  if (!(RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN)) {
+   if (final_minlen > SSize_t_MAX - delta)
+    RExC_maxlen = SSize_t_MAX;
+   else if (RExC_maxlen < final_minlen + delta)
+    RExC_maxlen = final_minlen + delta;
+  }
+  return final_minlen;
+ }
+ NOT_REACHED; /* NOTREACHED */
+}
+
+STATIC U32
+S_add_data(RExC_state_t* const pRExC_state, const char* const s, const U32 n)
+{
+ U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
+
+ PERL_ARGS_ASSERT_ADD_DATA;
+
+ Renewc(RExC_rxi->data,
+  sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
+  char, struct reg_data);
+ if(count)
+  Renew(RExC_rxi->data->what, count + n, U8);
+ else
+  Newx(RExC_rxi->data->what, n, U8);
+ RExC_rxi->data->count = count + n;
+ Copy(s, RExC_rxi->data->what + count, n, U8);
+ return count;
+}
+
+/*XXX: todo make this not included in a non debugging perl, but appears to be
+ * used anyway there, in 'use re' */
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_reginitcolors(pTHX)
+{
+ const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
+ if (s) {
+  char *t = savepv(s);
+  int i = 0;
+  PL_colors[0] = t;
+  while (++i < 6) {
+   t = strchr(t, '\t');
+   if (t) {
+    *t = '\0';
+    PL_colors[i] = ++t;
+   }
+   else
+    PL_colors[i] = t = (char *)"";
+  }
+ } else {
+  int i = 0;
+  while (i < 6)
+   PL_colors[i++] = (char *)"";
+ }
+ PL_colorset = 1;
+}
+#endif
+
+
+#ifdef TRIE_STUDY_OPT
+#define CHECK_RESTUDY_GOTO_butfirst(dOsomething)            \
+ STMT_START {                                            \
+  if (                                                \
+   (data.flags & SCF_TRIE_RESTUDY)               \
+   && ! restudied++                              \
+  ) {                                                 \
+   dOsomething;                                    \
+   goto reStudy;                                   \
+  }                                                   \
+ } STMT_END
+#else
+#define CHECK_RESTUDY_GOTO_butfirst
+#endif
+
+/*
+ * pregcomp - compile a regular expression into internal code
+ *
+ * Decides which engine's compiler to call based on the hint currently in
+ * scope
+ */
+
+#ifndef PERL_IN_XSUB_RE
+
+/* return the currently in-scope regex engine (or the default if none)  */
+
+regexp_engine const *
+Perl_current_re_engine(pTHX)
+{
+ if (IN_PERL_COMPILETIME) {
+  HV * const table = GvHV(PL_hintgv);
+  SV **ptr;
+
+  if (!table || !(PL_hints & HINT_LOCALIZE_HH))
+   return &reh_regexp_engine;
+  ptr = hv_fetchs(table, "regcomp", FALSE);
+  if ( !(ptr && SvIOK(*ptr) && SvIV(*ptr)))
+   return &reh_regexp_engine;
+  return INT2PTR(regexp_engine*,SvIV(*ptr));
+ }
+ else {
+  SV *ptr;
+  if (!PL_curcop->cop_hints_hash)
+   return &reh_regexp_engine;
+  ptr = cop_hints_fetch_pvs(PL_curcop, "regcomp", 0);
+  if ( !(ptr && SvIOK(ptr) && SvIV(ptr)))
+   return &reh_regexp_engine;
+  return INT2PTR(regexp_engine*,SvIV(ptr));
+ }
+}
+
+
+REGEXP *
+Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
+{
+ regexp_engine const *eng = current_re_engine();
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_PREGCOMP;
+
+ /* Dispatch a request to compile a regexp to correct regexp engine. */
+ DEBUG_COMPILE_r({
+  PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
+      PTR2UV(eng));
+ });
+ return CALLREGCOMP_ENG(eng, pattern, flags);
+}
+#endif
+
+/* public(ish) entry point for the perl core's own regex compiling code.
+ * It's actually a wrapper for Perl_re_op_compile that only takes an SV
+ * pattern rather than a list of OPs, and uses the internal engine rather
+ * than the current one */
+
+REGEXP *
+Perl_re_compile(pTHX_ SV * const pattern, U32 rx_flags)
+{
+ SV *pat = pattern; /* defeat constness! */
+ PERL_ARGS_ASSERT_RE_COMPILE;
+ return Perl_re_op_compile(aTHX_ &pat, 1, NULL,
+#ifdef PERL_IN_XSUB_RE
+        &my_reg_engine,
+#else
+        &reh_regexp_engine,
+#endif
+        NULL, NULL, rx_flags, 0);
+}
+
+
+/* upgrade pattern pat_p of length plen_p to UTF8, and if there are code
+ * blocks, recalculate the indices. Update pat_p and plen_p in-place to
+ * point to the realloced string and length.
+ *
+ * This is essentially a copy of Perl_bytes_to_utf8() with the code index
+ * stuff added */
+
+static void
+S_pat_upgrade_to_utf8(pTHX_ RExC_state_t * const pRExC_state,
+     char **pat_p, STRLEN *plen_p, int num_code_blocks)
+{
+ U8 *const src = (U8*)*pat_p;
+ U8 *dst, *d;
+ int n=0;
+ STRLEN s = 0;
+ bool do_end = 0;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+  "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
+
+ Newx(dst, *plen_p * 2 + 1, U8);
+ d = dst;
+
+ while (s < *plen_p) {
+  append_utf8_from_native_byte(src[s], &d);
+  if (n < num_code_blocks) {
+   if (!do_end && pRExC_state->code_blocks[n].start == s) {
+    pRExC_state->code_blocks[n].start = d - dst - 1;
+    assert(*(d - 1) == '(');
+    do_end = 1;
+   }
+   else if (do_end && pRExC_state->code_blocks[n].end == s) {
+    pRExC_state->code_blocks[n].end = d - dst - 1;
+    assert(*(d - 1) == ')');
+    do_end = 0;
+    n++;
+   }
+  }
+  s++;
+ }
+ *d = '\0';
+ *plen_p = d - dst;
+ *pat_p = (char*) dst;
+ SAVEFREEPV(*pat_p);
+ RExC_orig_utf8 = RExC_utf8 = 1;
+}
+
+
+
+/* S_concat_pat(): concatenate a list of args to the pattern string pat,
+ * while recording any code block indices, and handling overloading,
+ * nested qr// objects etc.  If pat is null, it will allocate a new
+ * string, or just return the first arg, if there's only one.
+ *
+ * Returns the malloced/updated pat.
+ * patternp and pat_count is the array of SVs to be concatted;
+ * oplist is the optional list of ops that generated the SVs;
+ * recompile_p is a pointer to a boolean that will be set if
+ *   the regex will need to be recompiled.
+ * delim, if non-null is an SV that will be inserted between each element
+ */
+
+static SV*
+S_concat_pat(pTHX_ RExC_state_t * const pRExC_state,
+    SV *pat, SV ** const patternp, int pat_count,
+    OP *oplist, bool *recompile_p, SV *delim)
+{
+ SV **svp;
+ int n = 0;
+ bool use_delim = FALSE;
+ bool alloced = FALSE;
+
+ /* if we know we have at least two args, create an empty string,
+ * then concatenate args to that. For no args, return an empty string */
+ if (!pat && pat_count != 1) {
+  pat = newSVpvs("");
+  SAVEFREESV(pat);
+  alloced = TRUE;
+ }
+
+ for (svp = patternp; svp < patternp + pat_count; svp++) {
+  SV *sv;
+  SV *rx  = NULL;
+  STRLEN orig_patlen = 0;
+  bool code = 0;
+  SV *msv = use_delim ? delim : *svp;
+  if (!msv) msv = &PL_sv_undef;
+
+  /* if we've got a delimiter, we go round the loop twice for each
+  * svp slot (except the last), using the delimiter the second
+  * time round */
+  if (use_delim) {
+   svp--;
+   use_delim = FALSE;
+  }
+  else if (delim)
+   use_delim = TRUE;
+
+  if (SvTYPE(msv) == SVt_PVAV) {
+   /* we've encountered an interpolated array within
+   * the pattern, e.g. /...@a..../. Expand the list of elements,
+   * then recursively append elements.
+   * The code in this block is based on S_pushav() */
+
+   AV *const av = (AV*)msv;
+   const SSize_t maxarg = AvFILL(av) + 1;
+   SV **array;
+
+   if (oplist) {
+    assert(oplist->op_type == OP_PADAV
+     || oplist->op_type == OP_RV2AV);
+    oplist = OpSIBLING(oplist);
+   }
+
+   if (SvRMAGICAL(av)) {
+    SSize_t i;
+
+    Newx(array, maxarg, SV*);
+    SAVEFREEPV(array);
+    for (i=0; i < maxarg; i++) {
+     SV ** const svp = av_fetch(av, i, FALSE);
+     array[i] = svp ? *svp : &PL_sv_undef;
+    }
+   }
+   else
+    array = AvARRAY(av);
+
+   pat = S_concat_pat(aTHX_ pRExC_state, pat,
+        array, maxarg, NULL, recompile_p,
+        /* $" */
+        GvSV((gv_fetchpvs("\"", GV_ADDMULTI, SVt_PV))));
+
+   continue;
+  }
+
+
+  /* we make the assumption here that each op in the list of
+  * op_siblings maps to one SV pushed onto the stack,
+  * except for code blocks, with have both an OP_NULL and
+  * and OP_CONST.
+  * This allows us to match up the list of SVs against the
+  * list of OPs to find the next code block.
+  *
+  * Note that       PUSHMARK PADSV PADSV ..
+  * is optimised to
+  *                 PADRANGE PADSV  PADSV  ..
+  * so the alignment still works. */
+
+  if (oplist) {
+   if (oplist->op_type == OP_NULL
+    && (oplist->op_flags & OPf_SPECIAL))
+   {
+    assert(n < pRExC_state->num_code_blocks);
+    pRExC_state->code_blocks[n].start = pat ? SvCUR(pat) : 0;
+    pRExC_state->code_blocks[n].block = oplist;
+    pRExC_state->code_blocks[n].src_regex = NULL;
+    n++;
+    code = 1;
+    oplist = OpSIBLING(oplist); /* skip CONST */
+    assert(oplist);
+   }
+   oplist = OpSIBLING(oplist);;
+  }
+
+  /* apply magic and QR overloading to arg */
+
+  SvGETMAGIC(msv);
+  if (SvROK(msv) && SvAMAGIC(msv)) {
+   SV *sv = AMG_CALLunary(msv, regexp_amg);
+   if (sv) {
+    if (SvROK(sv))
+     sv = SvRV(sv);
+    if (SvTYPE(sv) != SVt_REGEXP)
+     Perl_croak(aTHX_ "Overloaded qr did not return a REGEXP");
+    msv = sv;
+   }
+  }
+
+  /* try concatenation overload ... */
+  if (pat && (SvAMAGIC(pat) || SvAMAGIC(msv)) &&
+    (sv = amagic_call(pat, msv, concat_amg, AMGf_assign)))
+  {
+   sv_setsv(pat, sv);
+   /* overloading involved: all bets are off over literal
+   * code. Pretend we haven't seen it */
+   pRExC_state->num_code_blocks -= n;
+   n = 0;
+  }
+  else  {
+   /* ... or failing that, try "" overload */
+   while (SvAMAGIC(msv)
+     && (sv = AMG_CALLunary(msv, string_amg))
+     && sv != msv
+     &&  !(   SvROK(msv)
+      && SvROK(sv)
+      && SvRV(msv) == SvRV(sv))
+   ) {
+    msv = sv;
+    SvGETMAGIC(msv);
+   }
+   if (SvROK(msv) && SvTYPE(SvRV(msv)) == SVt_REGEXP)
+    msv = SvRV(msv);
+
+   if (pat) {
+    /* this is a partially unrolled
+    *     sv_catsv_nomg(pat, msv);
+    * that allows us to adjust code block indices if
+    * needed */
+    STRLEN dlen;
+    char *dst = SvPV_force_nomg(pat, dlen);
+    orig_patlen = dlen;
+    if (SvUTF8(msv) && !SvUTF8(pat)) {
+     S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &dst, &dlen, n);
+     sv_setpvn(pat, dst, dlen);
+     SvUTF8_on(pat);
+    }
+    sv_catsv_nomg(pat, msv);
+    rx = msv;
+   }
+   else
+    pat = msv;
+
+   if (code)
+    pRExC_state->code_blocks[n-1].end = SvCUR(pat)-1;
+  }
+
+  /* extract any code blocks within any embedded qr//'s */
+  if (rx && SvTYPE(rx) == SVt_REGEXP
+   && RX_ENGINE((REGEXP*)rx)->op_comp)
+  {
+
+   RXi_GET_DECL(ReANY((REGEXP *)rx), ri);
+   if (ri->num_code_blocks) {
+    int i;
+    /* the presence of an embedded qr// with code means
+    * we should always recompile: the text of the
+    * qr// may not have changed, but it may be a
+    * different closure than last time */
+    *recompile_p = 1;
+    Renew(pRExC_state->code_blocks,
+     pRExC_state->num_code_blocks + ri->num_code_blocks,
+     struct reg_code_block);
+    pRExC_state->num_code_blocks += ri->num_code_blocks;
+
+    for (i=0; i < ri->num_code_blocks; i++) {
+     struct reg_code_block *src, *dst;
+     STRLEN offset =  orig_patlen
+      + ReANY((REGEXP *)rx)->pre_prefix;
+     assert(n < pRExC_state->num_code_blocks);
+     src = &ri->code_blocks[i];
+     dst = &pRExC_state->code_blocks[n];
+     dst->start     = src->start + offset;
+     dst->end     = src->end   + offset;
+     dst->block     = src->block;
+     dst->src_regex  = (REGEXP*) SvREFCNT_inc( (SV*)
+           src->src_regex
+            ? src->src_regex
+            : (REGEXP*)rx);
+     n++;
+    }
+   }
+  }
+ }
+ /* avoid calling magic multiple times on a single element e.g. =~ $qr */
+ if (alloced)
+  SvSETMAGIC(pat);
+
+ return pat;
+}
+
+
+
+/* see if there are any run-time code blocks in the pattern.
+ * False positives are allowed */
+
+static bool
+S_has_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
+     char *pat, STRLEN plen)
+{
+ int n = 0;
+ STRLEN s;
+
+ PERL_UNUSED_CONTEXT;
+
+ for (s = 0; s < plen; s++) {
+  if (n < pRExC_state->num_code_blocks
+   && s == pRExC_state->code_blocks[n].start)
+  {
+   s = pRExC_state->code_blocks[n].end;
+   n++;
+   continue;
+  }
+  /* TODO ideally should handle [..], (#..), /#.../x to reduce false
+  * positives here */
+  if (pat[s] == '(' && s+2 <= plen && pat[s+1] == '?' &&
+   (pat[s+2] == '{'
+    || (s + 2 <= plen && pat[s+2] == '?' && pat[s+3] == '{'))
+  )
+   return 1;
+ }
+ return 0;
+}
+
+/* Handle run-time code blocks. We will already have compiled any direct
+ * or indirect literal code blocks. Now, take the pattern 'pat' and make a
+ * copy of it, but with any literal code blocks blanked out and
+ * appropriate chars escaped; then feed it into
+ *
+ *    eval "qr'modified_pattern'"
+ *
+ * For example,
+ *
+ *       a\bc(?{"this was literal"})def'ghi\\jkl(?{"this is runtime"})mno
+ *
+ * becomes
+ *
+ *    qr'a\\bc_______________________def\'ghi\\\\jkl(?{"this is runtime"})mno'
+ *
+ * After eval_sv()-ing that, grab any new code blocks from the returned qr
+ * and merge them with any code blocks of the original regexp.
+ *
+ * If the pat is non-UTF8, while the evalled qr is UTF8, don't merge;
+ * instead, just save the qr and return FALSE; this tells our caller that
+ * the original pattern needs upgrading to utf8.
+ */
+
+static bool
+S_compile_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
+ char *pat, STRLEN plen)
+{
+ SV *qr;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ if (pRExC_state->runtime_code_qr) {
+  /* this is the second time we've been called; this should
+  * only happen if the main pattern got upgraded to utf8
+  * during compilation; re-use the qr we compiled first time
+  * round (which should be utf8 too)
+  */
+  qr = pRExC_state->runtime_code_qr;
+  pRExC_state->runtime_code_qr = NULL;
+  assert(RExC_utf8 && SvUTF8(qr));
+ }
+ else {
+  int n = 0;
+  STRLEN s;
+  char *p, *newpat;
+  int newlen = plen + 6; /* allow for "qr''x\0" extra chars */
+  SV *sv, *qr_ref;
+  dSP;
+
+  /* determine how many extra chars we need for ' and \ escaping */
+  for (s = 0; s < plen; s++) {
+   if (pat[s] == '\'' || pat[s] == '\\')
+    newlen++;
+  }
+
+  Newx(newpat, newlen, char);
+  p = newpat;
+  *p++ = 'q'; *p++ = 'r'; *p++ = '\'';
+
+  for (s = 0; s < plen; s++) {
+   if (n < pRExC_state->num_code_blocks
+    && s == pRExC_state->code_blocks[n].start)
+   {
+    /* blank out literal code block */
+    assert(pat[s] == '(');
+    while (s <= pRExC_state->code_blocks[n].end) {
+     *p++ = '_';
+     s++;
+    }
+    s--;
+    n++;
+    continue;
+   }
+   if (pat[s] == '\'' || pat[s] == '\\')
+    *p++ = '\\';
+   *p++ = pat[s];
+  }
+  *p++ = '\'';
+  if (pRExC_state->pm_flags & RXf_PMf_EXTENDED)
+   *p++ = 'x';
+  *p++ = '\0';
+  DEBUG_COMPILE_r({
+   PerlIO_printf(Perl_debug_log,
+    "%sre-parsing pattern for runtime code:%s %s\n",
+    PL_colors[4],PL_colors[5],newpat);
+  });
+
+  sv = newSVpvn_flags(newpat, p-newpat-1, RExC_utf8 ? SVf_UTF8 : 0);
+  Safefree(newpat);
+
+  ENTER;
+  SAVETMPS;
+  save_re_context();
+  PUSHSTACKi(PERLSI_REQUIRE);
+  /* G_RE_REPARSING causes the toker to collapse \\ into \ when
+  * parsing qr''; normally only q'' does this. It also alters
+  * hints handling */
+  eval_sv(sv, G_SCALAR|G_RE_REPARSING);
+  SvREFCNT_dec_NN(sv);
+  SPAGAIN;
+  qr_ref = POPs;
+  PUTBACK;
+  {
+   SV * const errsv = ERRSV;
+   if (SvTRUE_NN(errsv))
+   {
+    Safefree(pRExC_state->code_blocks);
+    /* use croak_sv ? */
+    Perl_croak_nocontext("%"SVf, SVfARG(errsv));
+   }
+  }
+  assert(SvROK(qr_ref));
+  qr = SvRV(qr_ref);
+  assert(SvTYPE(qr) == SVt_REGEXP && RX_ENGINE((REGEXP*)qr)->op_comp);
+  /* the leaving below frees the tmp qr_ref.
+  * Give qr a life of its own */
+  SvREFCNT_inc(qr);
+  POPSTACK;
+  FREETMPS;
+  LEAVE;
+
+ }
+
+ if (!RExC_utf8 && SvUTF8(qr)) {
+  /* first time through; the pattern got upgraded; save the
+  * qr for the next time through */
+  assert(!pRExC_state->runtime_code_qr);
+  pRExC_state->runtime_code_qr = qr;
+  return 0;
+ }
+
+
+ /* extract any code blocks within the returned qr//  */
+
+
+ /* merge the main (r1) and run-time (r2) code blocks into one */
+ {
+  RXi_GET_DECL(ReANY((REGEXP *)qr), r2);
+  struct reg_code_block *new_block, *dst;
+  RExC_state_t * const r1 = pRExC_state; /* convenient alias */
+  int i1 = 0, i2 = 0;
+
+  if (!r2->num_code_blocks) /* we guessed wrong */
+  {
+   SvREFCNT_dec_NN(qr);
+   return 1;
+  }
+
+  Newx(new_block,
+   r1->num_code_blocks + r2->num_code_blocks,
+   struct reg_code_block);
+  dst = new_block;
+
+  while (    i1 < r1->num_code_blocks
+    || i2 < r2->num_code_blocks)
+  {
+   struct reg_code_block *src;
+   bool is_qr = 0;
+
+   if (i1 == r1->num_code_blocks) {
+    src = &r2->code_blocks[i2++];
+    is_qr = 1;
+   }
+   else if (i2 == r2->num_code_blocks)
+    src = &r1->code_blocks[i1++];
+   else if (  r1->code_blocks[i1].start
+     < r2->code_blocks[i2].start)
+   {
+    src = &r1->code_blocks[i1++];
+    assert(src->end < r2->code_blocks[i2].start);
+   }
+   else {
+    assert(  r1->code_blocks[i1].start
+     > r2->code_blocks[i2].start);
+    src = &r2->code_blocks[i2++];
+    is_qr = 1;
+    assert(src->end < r1->code_blocks[i1].start);
+   }
+
+   assert(pat[src->start] == '(');
+   assert(pat[src->end]   == ')');
+   dst->start     = src->start;
+   dst->end     = src->end;
+   dst->block     = src->block;
+   dst->src_regex  = is_qr ? (REGEXP*) SvREFCNT_inc( (SV*) qr)
+         : src->src_regex;
+   dst++;
+  }
+  r1->num_code_blocks += r2->num_code_blocks;
+  Safefree(r1->code_blocks);
+  r1->code_blocks = new_block;
+ }
+
+ SvREFCNT_dec_NN(qr);
+ return 1;
+}
+
+
+STATIC bool
+S_setup_longest(pTHX_ RExC_state_t *pRExC_state, SV* sv_longest,
+     SV** rx_utf8, SV** rx_substr, SSize_t* rx_end_shift,
+     SSize_t lookbehind, SSize_t offset, SSize_t *minlen,
+     STRLEN longest_length, bool eol, bool meol)
+{
+ /* This is the common code for setting up the floating and fixed length
+ * string data extracted from Perl_re_op_compile() below.  Returns a boolean
+ * as to whether succeeded or not */
+
+ I32 t;
+ SSize_t ml;
+
+ if (! (longest_length
+  || (eol /* Can't have SEOL and MULTI */
+   && (! meol || (RExC_flags & RXf_PMf_MULTILINE)))
+  )
+   /* See comments for join_exact for why REG_UNFOLDED_MULTI_SEEN */
+  || (RExC_seen & REG_UNFOLDED_MULTI_SEEN))
+ {
+  return FALSE;
+ }
+
+ /* copy the information about the longest from the reg_scan_data
+  over to the program. */
+ if (SvUTF8(sv_longest)) {
+  *rx_utf8 = sv_longest;
+  *rx_substr = NULL;
+ } else {
+  *rx_substr = sv_longest;
+  *rx_utf8 = NULL;
+ }
+ /* end_shift is how many chars that must be matched that
+  follow this item. We calculate it ahead of time as once the
+  lookbehind offset is added in we lose the ability to correctly
+  calculate it.*/
+ ml = minlen ? *(minlen) : (SSize_t)longest_length;
+ *rx_end_shift = ml - offset
+  - longest_length + (SvTAIL(sv_longest) != 0)
+  + lookbehind;
+
+ t = (eol/* Can't have SEOL and MULTI */
+  && (! meol || (RExC_flags & RXf_PMf_MULTILINE)));
+ fbm_compile(sv_longest, t ? FBMcf_TAIL : 0);
+
+ return TRUE;
+}
+
+/*
+ * Perl_re_op_compile - the perl internal RE engine's function to compile a
+ * regular expression into internal code.
+ * The pattern may be passed either as:
+ *    a list of SVs (patternp plus pat_count)
+ *    a list of OPs (expr)
+ * If both are passed, the SV list is used, but the OP list indicates
+ * which SVs are actually pre-compiled code blocks
+ *
+ * The SVs in the list have magic and qr overloading applied to them (and
+ * the list may be modified in-place with replacement SVs in the latter
+ * case).
+ *
+ * If the pattern hasn't changed from old_re, then old_re will be
+ * returned.
+ *
+ * eng is the current engine. If that engine has an op_comp method, then
+ * handle directly (i.e. we assume that op_comp was us); otherwise, just
+ * do the initial concatenation of arguments and pass on to the external
+ * engine.
+ *
+ * If is_bare_re is not null, set it to a boolean indicating whether the
+ * arg list reduced (after overloading) to a single bare regex which has
+ * been returned (i.e. /$qr/).
+ *
+ * orig_rx_flags contains RXf_* flags. See perlreapi.pod for more details.
+ *
+ * pm_flags contains the PMf_* flags, typically based on those from the
+ * pm_flags field of the related PMOP. Currently we're only interested in
+ * PMf_HAS_CV, PMf_IS_QR, PMf_USE_RE_EVAL.
+ *
+ * We can't allocate space until we know how big the compiled form will be,
+ * but we can't compile it (and thus know how big it is) until we've got a
+ * place to put the code.  So we cheat:  we compile it twice, once with code
+ * generation turned off and size counting turned on, and once "for real".
+ * This also means that we don't allocate space until we are sure that the
+ * thing really will compile successfully, and we never have to move the
+ * code and thus invalidate pointers into it.  (Note that it has to be in
+ * one piece because free() must be able to free it all.) [NB: not true in perl]
+ *
+ * Beware that the optimization-preparation code in here knows about some
+ * of the structure of the compiled regexp.  [I'll say.]
+ */
+
+REGEXP *
+Perl_re_op_compile(pTHX_ SV ** const patternp, int pat_count,
+     OP *expr, const regexp_engine* eng, REGEXP *old_re,
+     bool *is_bare_re, U32 orig_rx_flags, U32 pm_flags)
+{
+ REGEXP *rx;
+ struct regexp *r;
+ regexp_internal *ri;
+ STRLEN plen;
+ char *exp;
+ regnode *scan;
+ I32 flags;
+ SSize_t minlen = 0;
+ U32 rx_flags;
+ SV *pat;
+ SV *code_blocksv = NULL;
+ SV** new_patternp = patternp;
+
+ /* these are all flags - maybe they should be turned
+ * into a single int with different bit masks */
+ I32 sawlookahead = 0;
+ I32 sawplus = 0;
+ I32 sawopen = 0;
+ I32 sawminmod = 0;
+
+ regex_charset initial_charset = get_regex_charset(orig_rx_flags);
+ bool recompile = 0;
+ bool runtime_code = 0;
+ scan_data_t data;
+ RExC_state_t RExC_state;
+ RExC_state_t * const pRExC_state = &RExC_state;
+#ifdef TRIE_STUDY_OPT
+ int restudied = 0;
+ RExC_state_t copyRExC_state;
+#endif
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_OP_COMPILE;
+
+ DEBUG_r(if (!PL_colorset) reginitcolors());
+
+ /* Initialize these here instead of as-needed, as is quick and avoids
+ * having to test them each time otherwise */
+ if (! PL_AboveLatin1) {
+  PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist);
+  PL_Latin1 = _new_invlist_C_array(Latin1_invlist);
+  PL_UpperLatin1 = _new_invlist_C_array(UpperLatin1_invlist);
+  PL_utf8_foldable = _new_invlist_C_array(_Perl_Any_Folds_invlist);
+  PL_HasMultiCharFold =
+     _new_invlist_C_array(_Perl_Folds_To_Multi_Char_invlist);
+
+  /* This is calculated here, because the Perl program that generates the
+  * static global ones doesn't currently have access to
+  * NUM_ANYOF_CODE_POINTS */
+  PL_InBitmap = _new_invlist(2);
+  PL_InBitmap = _add_range_to_invlist(PL_InBitmap, 0,
+             NUM_ANYOF_CODE_POINTS - 1);
+ }
+
+ pRExC_state->code_blocks = NULL;
+ pRExC_state->num_code_blocks = 0;
+
+ if (is_bare_re)
+  *is_bare_re = FALSE;
+
+ if (expr && (expr->op_type == OP_LIST ||
+    (expr->op_type == OP_NULL && expr->op_targ == OP_LIST))) {
+  /* allocate code_blocks if needed */
+  OP *o;
+  int ncode = 0;
+
+  for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o))
+   if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL))
+    ncode++; /* count of DO blocks */
+  if (ncode) {
+   pRExC_state->num_code_blocks = ncode;
+   Newx(pRExC_state->code_blocks, ncode, struct reg_code_block);
+  }
+ }
+
+ if (!pat_count) {
+  /* compile-time pattern with just OP_CONSTs and DO blocks */
+
+  int n;
+  OP *o;
+
+  /* find how many CONSTs there are */
+  assert(expr);
+  n = 0;
+  if (expr->op_type == OP_CONST)
+   n = 1;
+  else
+   for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o)) {
+    if (o->op_type == OP_CONST)
+     n++;
+   }
+
+  /* fake up an SV array */
+
+  assert(!new_patternp);
+  Newx(new_patternp, n, SV*);
+  SAVEFREEPV(new_patternp);
+  pat_count = n;
+
+  n = 0;
+  if (expr->op_type == OP_CONST)
+   new_patternp[n] = cSVOPx_sv(expr);
+  else
+   for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o)) {
+    if (o->op_type == OP_CONST)
+     new_patternp[n++] = cSVOPo_sv;
+   }
+
+ }
+
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+  "Assembling pattern from %d elements%s\n", pat_count,
+   orig_rx_flags & RXf_SPLIT ? " for split" : ""));
+
+ /* set expr to the first arg op */
+
+ if (pRExC_state->num_code_blocks
+  && expr->op_type != OP_CONST)
+ {
+   expr = cLISTOPx(expr)->op_first;
+   assert(   expr->op_type == OP_PUSHMARK
+    || (expr->op_type == OP_NULL && expr->op_targ == OP_PUSHMARK)
+    || expr->op_type == OP_PADRANGE);
+   expr = OpSIBLING(expr);
+ }
+
+ pat = S_concat_pat(aTHX_ pRExC_state, NULL, new_patternp, pat_count,
+      expr, &recompile, NULL);
+
+ /* handle bare (possibly after overloading) regex: foo =~ $re */
+ {
+  SV *re = pat;
+  if (SvROK(re))
+   re = SvRV(re);
+  if (SvTYPE(re) == SVt_REGEXP) {
+   if (is_bare_re)
+    *is_bare_re = TRUE;
+   SvREFCNT_inc(re);
+   Safefree(pRExC_state->code_blocks);
+   DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+    "Precompiled pattern%s\n",
+     orig_rx_flags & RXf_SPLIT ? " for split" : ""));
+
+   return (REGEXP*)re;
+  }
+ }
+
+ exp = SvPV_nomg(pat, plen);
+
+ if (!eng->op_comp) {
+  if ((SvUTF8(pat) && IN_BYTES)
+    || SvGMAGICAL(pat) || SvAMAGIC(pat))
+  {
+   /* make a temporary copy; either to convert to bytes,
+   * or to avoid repeating get-magic / overloaded stringify */
+   pat = newSVpvn_flags(exp, plen, SVs_TEMP |
+          (IN_BYTES ? 0 : SvUTF8(pat)));
+  }
+  Safefree(pRExC_state->code_blocks);
+  return CALLREGCOMP_ENG(eng, pat, orig_rx_flags);
+ }
+
+ /* ignore the utf8ness if the pattern is 0 length */
+ RExC_utf8 = RExC_orig_utf8 = (plen == 0 || IN_BYTES) ? 0 : SvUTF8(pat);
+ RExC_uni_semantics = 0;
+ RExC_contains_locale = 0;
+ RExC_contains_i = 0;
+ RExC_strict = cBOOL(pm_flags & RXf_PMf_STRICT);
+ pRExC_state->runtime_code_qr = NULL;
+ RExC_frame_head= NULL;
+ RExC_frame_last= NULL;
+ RExC_frame_count= 0;
+
+ DEBUG_r({
+  RExC_mysv1= sv_newmortal();
+  RExC_mysv2= sv_newmortal();
+ });
+ DEBUG_COMPILE_r({
+   SV *dsv= sv_newmortal();
+   RE_PV_QUOTED_DECL(s, RExC_utf8, dsv, exp, plen, 60);
+   PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
+      PL_colors[4],PL_colors[5],s);
+  });
+
+  redo_first_pass:
+ /* we jump here if we upgrade the pattern to utf8 and have to
+ * recompile */
+
+ if ((pm_flags & PMf_USE_RE_EVAL)
+    /* this second condition covers the non-regex literal case,
+    * i.e.  $foo =~ '(?{})'. */
+    || (IN_PERL_COMPILETIME && (PL_hints & HINT_RE_EVAL))
+ )
+  runtime_code = S_has_runtime_code(aTHX_ pRExC_state, exp, plen);
+
+ /* return old regex if pattern hasn't changed */
+ /* XXX: note in the below we have to check the flags as well as the
+ * pattern.
+ *
+ * Things get a touch tricky as we have to compare the utf8 flag
+ * independently from the compile flags.  */
+
+ if (   old_re
+  && !recompile
+  && !!RX_UTF8(old_re) == !!RExC_utf8
+  && ( RX_COMPFLAGS(old_re) == ( orig_rx_flags & RXf_PMf_FLAGCOPYMASK ) )
+  && RX_PRECOMP(old_re)
+  && RX_PRELEN(old_re) == plen
+  && memEQ(RX_PRECOMP(old_re), exp, plen)
+  && !runtime_code /* with runtime code, always recompile */ )
+ {
+  Safefree(pRExC_state->code_blocks);
+  return old_re;
+ }
+
+ rx_flags = orig_rx_flags;
+
+ if (rx_flags & PMf_FOLD) {
+  RExC_contains_i = 1;
+ }
+ if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
+
+  /* Set to use unicode semantics if the pattern is in utf8 and has the
+  * 'depends' charset specified, as it means unicode when utf8  */
+  set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
+ }
+
+ RExC_precomp = exp;
+ RExC_flags = rx_flags;
+ RExC_pm_flags = pm_flags;
+
+ if (runtime_code) {
+  if (TAINTING_get && TAINT_get)
+   Perl_croak(aTHX_ "Eval-group in insecure regular expression");
+
+  if (!S_compile_runtime_code(aTHX_ pRExC_state, exp, plen)) {
+   /* whoops, we have a non-utf8 pattern, whilst run-time code
+   * got compiled as utf8. Try again with a utf8 pattern */
+   S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
+         pRExC_state->num_code_blocks);
+   goto redo_first_pass;
+  }
+ }
+ assert(!pRExC_state->runtime_code_qr);
+
+ RExC_sawback = 0;
+
+ RExC_seen = 0;
+ RExC_maxlen = 0;
+ RExC_in_lookbehind = 0;
+ RExC_seen_zerolen = *exp == '^' ? -1 : 0;
+ RExC_extralen = 0;
+ RExC_override_recoding = 0;
+#ifdef EBCDIC
+ RExC_recode_x_to_native = 0;
+#endif
+ RExC_in_multi_char_class = 0;
+
+ /* First pass: determine size, legality. */
+ RExC_parse = exp;
+ RExC_start = exp;
+ RExC_end = exp + plen;
+ RExC_naughty = 0;
+ RExC_npar = 1;
+ RExC_nestroot = 0;
+ RExC_size = 0L;
+ RExC_emit = (regnode *) &RExC_emit_dummy;
+ RExC_whilem_seen = 0;
+ RExC_open_parens = NULL;
+ RExC_close_parens = NULL;
+ RExC_opend = NULL;
+ RExC_paren_names = NULL;
+#ifdef DEBUGGING
+ RExC_paren_name_list = NULL;
+#endif
+ RExC_recurse = NULL;
+ RExC_study_chunk_recursed = NULL;
+ RExC_study_chunk_recursed_bytes= 0;
+ RExC_recurse_count = 0;
+ pRExC_state->code_index = 0;
+
+ DEBUG_PARSE_r(
+  PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n");
+  RExC_lastnum=0;
+  RExC_lastparse=NULL;
+ );
+ /* reg may croak on us, not giving us a chance to free
+ pRExC_state->code_blocks.  We cannot SAVEFREEPV it now, as we may
+ need it to survive as long as the regexp (qr/(?{})/).
+ We must check that code_blocksv is not already set, because we may
+ have jumped back to restart the sizing pass. */
+ if (pRExC_state->code_blocks && !code_blocksv) {
+  code_blocksv = newSV_type(SVt_PV);
+  SAVEFREESV(code_blocksv);
+  SvPV_set(code_blocksv, (char *)pRExC_state->code_blocks);
+  SvLEN_set(code_blocksv, 1); /*sufficient to make sv_clear free it*/
+ }
+ if (reg(pRExC_state, 0, &flags,1) == NULL) {
+  /* It's possible to write a regexp in ascii that represents Unicode
+  codepoints outside of the byte range, such as via \x{100}. If we
+  detect such a sequence we have to convert the entire pattern to utf8
+  and then recompile, as our sizing calculation will have been based
+  on 1 byte == 1 character, but we will need to use utf8 to encode
+  at least some part of the pattern, and therefore must convert the whole
+  thing.
+  -- dmq */
+  if (flags & RESTART_UTF8) {
+   S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
+         pRExC_state->num_code_blocks);
+   goto redo_first_pass;
+  }
+  Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for sizing pass, flags=%#"UVxf"", (UV) flags);
+ }
+ if (code_blocksv)
+  SvLEN_set(code_blocksv,0); /* no you can't have it, sv_clear */
+
+ DEBUG_PARSE_r({
+  PerlIO_printf(Perl_debug_log,
+   "Required size %"IVdf" nodes\n"
+   "Starting second pass (creation)\n",
+   (IV)RExC_size);
+  RExC_lastnum=0;
+  RExC_lastparse=NULL;
+ });
+
+ /* The first pass could have found things that force Unicode semantics */
+ if ((RExC_utf8 || RExC_uni_semantics)
+  && get_regex_charset(rx_flags) == REGEX_DEPENDS_CHARSET)
+ {
+  set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
+ }
+
+ /* Small enough for pointer-storage convention?
+ If extralen==0, this means that we will not need long jumps. */
+ if (RExC_size >= 0x10000L && RExC_extralen)
+  RExC_size += RExC_extralen;
+ else
+  RExC_extralen = 0;
+ if (RExC_whilem_seen > 15)
+  RExC_whilem_seen = 15;
+
+ /* Allocate space and zero-initialize. Note, the two step process
+ of zeroing when in debug mode, thus anything assigned has to
+ happen after that */
+ rx = (REGEXP*) newSV_type(SVt_REGEXP);
+ r = ReANY(rx);
+ Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
+  char, regexp_internal);
+ if ( r == NULL || ri == NULL )
+  FAIL("Regexp out of space");
+#ifdef DEBUGGING
+ /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
+ Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
+  char);
+#else
+ /* bulk initialize base fields with 0. */
+ Zero(ri, sizeof(regexp_internal), char);
+#endif
+
+ /* non-zero initialization begins here */
+ RXi_SET( r, ri );
+ r->engine= eng;
+ r->extflags = rx_flags;
+ RXp_COMPFLAGS(r) = orig_rx_flags & RXf_PMf_FLAGCOPYMASK;
+
+ if (pm_flags & PMf_IS_QR) {
+  ri->code_blocks = pRExC_state->code_blocks;
+  ri->num_code_blocks = pRExC_state->num_code_blocks;
+ }
+ else
+ {
+  int n;
+  for (n = 0; n < pRExC_state->num_code_blocks; n++)
+   if (pRExC_state->code_blocks[n].src_regex)
+    SAVEFREESV(pRExC_state->code_blocks[n].src_regex);
+  SAVEFREEPV(pRExC_state->code_blocks);
+ }
+
+ {
+  bool has_p     = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
+  bool has_charset = (get_regex_charset(r->extflags)
+             != REGEX_DEPENDS_CHARSET);
+
+  /* The caret is output if there are any defaults: if not all the STD
+  * flags are set, or if no character set specifier is needed */
+  bool has_default =
+     (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
+     || ! has_charset);
+  bool has_runon = ((RExC_seen & REG_RUN_ON_COMMENT_SEEN)
+            == REG_RUN_ON_COMMENT_SEEN);
+  U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
+       >> RXf_PMf_STD_PMMOD_SHIFT);
+  const char *fptr = STD_PAT_MODS;        /*"msixn"*/
+  char *p;
+  /* Allocate for the worst case, which is all the std flags are turned
+  * on.  If more precision is desired, we could do a population count of
+  * the flags set.  This could be done with a small lookup table, or by
+  * shifting, masking and adding, or even, when available, assembly
+  * language for a machine-language population count.
+  * We never output a minus, as all those are defaults, so are
+  * covered by the caret */
+  const STRLEN wraplen = plen + has_p + has_runon
+   + has_default       /* If needs a caret */
+
+    /* If needs a character set specifier */
+   + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
+   + (sizeof(STD_PAT_MODS) - 1)
+   + (sizeof("(?:)") - 1);
+
+  Newx(p, wraplen + 1, char); /* +1 for the ending NUL */
+  r->xpv_len_u.xpvlenu_pv = p;
+  if (RExC_utf8)
+   SvFLAGS(rx) |= SVf_UTF8;
+  *p++='('; *p++='?';
+
+  /* If a default, cover it using the caret */
+  if (has_default) {
+   *p++= DEFAULT_PAT_MOD;
+  }
+  if (has_charset) {
+   STRLEN len;
+   const char* const name = get_regex_charset_name(r->extflags, &len);
+   Copy(name, p, len, char);
+   p += len;
+  }
+  if (has_p)
+   *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
+  {
+   char ch;
+   while((ch = *fptr++)) {
+    if(reganch & 1)
+     *p++ = ch;
+    reganch >>= 1;
+   }
+  }
+
+  *p++ = ':';
+  Copy(RExC_precomp, p, plen, char);
+  assert ((RX_WRAPPED(rx) - p) < 16);
+  r->pre_prefix = p - RX_WRAPPED(rx);
+  p += plen;
+  if (has_runon)
+   *p++ = '\n';
+  *p++ = ')';
+  *p = 0;
+  SvCUR_set(rx, p - RX_WRAPPED(rx));
+ }
+
+ r->intflags = 0;
+ r->nparens = RExC_npar - 1; /* set early to validate backrefs */
+
+ /* setup various meta data about recursion, this all requires
+ * RExC_npar to be correctly set, and a bit later on we clear it */
+ if (RExC_seen & REG_RECURSE_SEEN) {
+  Newxz(RExC_open_parens, RExC_npar,regnode *);
+  SAVEFREEPV(RExC_open_parens);
+  Newxz(RExC_close_parens,RExC_npar,regnode *);
+  SAVEFREEPV(RExC_close_parens);
+ }
+ if (RExC_seen & (REG_RECURSE_SEEN | REG_GOSTART_SEEN)) {
+  /* Note, RExC_npar is 1 + the number of parens in a pattern.
+  * So its 1 if there are no parens. */
+  RExC_study_chunk_recursed_bytes= (RExC_npar >> 3) +
+          ((RExC_npar & 0x07) != 0);
+  Newx(RExC_study_chunk_recursed,
+   RExC_study_chunk_recursed_bytes * RExC_npar, U8);
+  SAVEFREEPV(RExC_study_chunk_recursed);
+ }
+
+ /* Useful during FAIL. */
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
+ DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
+      "%s %"UVuf" bytes for offset annotations.\n",
+      ri->u.offsets ? "Got" : "Couldn't get",
+      (UV)((2*RExC_size+1) * sizeof(U32))));
+#endif
+ SetProgLen(ri,RExC_size);
+ RExC_rx_sv = rx;
+ RExC_rx = r;
+ RExC_rxi = ri;
+ REH_CALL_COMP_BEGIN_HOOK(pRExC_state->rx);
+
+ /* Second pass: emit code. */
+ RExC_flags = rx_flags; /* don't let top level (?i) bleed */
+ RExC_pm_flags = pm_flags;
+ RExC_parse = exp;
+ RExC_end = exp + plen;
+ RExC_naughty = 0;
+ RExC_npar = 1;
+ RExC_emit_start = ri->program;
+ RExC_emit = ri->program;
+ RExC_emit_bound = ri->program + RExC_size + 1;
+ pRExC_state->code_index = 0;
+
+ *((char*) RExC_emit++) = (char) REG_MAGIC;
+ if (reg(pRExC_state, 0, &flags,1) == NULL) {
+  ReREFCNT_dec(rx);
+  Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for generation pass, flags=%#"UVxf"", (UV) flags);
+ }
+ /* XXXX To minimize changes to RE engine we always allocate
+ 3-units-long substrs field. */
+ Newx(r->substrs, 1, struct reg_substr_data);
+ if (RExC_recurse_count) {
+  Newxz(RExC_recurse,RExC_recurse_count,regnode *);
+  SAVEFREEPV(RExC_recurse);
+ }
+
+  reStudy:
+ r->minlen = minlen = sawlookahead = sawplus = sawopen = sawminmod = 0;
+ DEBUG_r(
+  RExC_study_chunk_recursed_count= 0;
+ );
+ Zero(r->substrs, 1, struct reg_substr_data);
+ if (RExC_study_chunk_recursed) {
+  Zero(RExC_study_chunk_recursed,
+   RExC_study_chunk_recursed_bytes * RExC_npar, U8);
+ }
+
+
+#ifdef TRIE_STUDY_OPT
+ if (!restudied) {
+  StructCopy(&zero_scan_data, &data, scan_data_t);
+  copyRExC_state = RExC_state;
+ } else {
+  U32 seen=RExC_seen;
+  DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
+
+  RExC_state = copyRExC_state;
+  if (seen & REG_TOP_LEVEL_BRANCHES_SEEN)
+   RExC_seen |= REG_TOP_LEVEL_BRANCHES_SEEN;
+  else
+   RExC_seen &= ~REG_TOP_LEVEL_BRANCHES_SEEN;
+  StructCopy(&zero_scan_data, &data, scan_data_t);
+ }
+#else
+ StructCopy(&zero_scan_data, &data, scan_data_t);
+#endif
+
+ /* Dig out information for optimizations. */
+ r->extflags = RExC_flags; /* was pm_op */
+ /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
+
+ if (UTF)
+  SvUTF8_on(rx); /* Unicode in it? */
+ ri->regstclass = NULL;
+ if (RExC_naughty >= TOO_NAUGHTY) /* Probably an expensive pattern. */
+  r->intflags |= PREGf_NAUGHTY;
+ scan = ri->program + 1;  /* First BRANCH. */
+
+ /* testing for BRANCH here tells us whether there is "must appear"
+ data in the pattern. If there is then we can use it for optimisations */
+ if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN)) { /*  Only one top-level choice.
+            */
+  SSize_t fake;
+  STRLEN longest_float_length, longest_fixed_length;
+  regnode_ssc ch_class; /* pointed to by data */
+  int stclass_flag;
+  SSize_t last_close = 0; /* pointed to by data */
+  regnode *first= scan;
+  regnode *first_next= regnext(first);
+  /*
+  * Skip introductions and multiplicators >= 1
+  * so that we can extract the 'meat' of the pattern that must
+  * match in the large if() sequence following.
+  * NOTE that EXACT is NOT covered here, as it is normally
+  * picked up by the optimiser separately.
+  *
+  * This is unfortunate as the optimiser isnt handling lookahead
+  * properly currently.
+  *
+  */
+  while ((OP(first) == OPEN && (sawopen = 1)) ||
+   /* An OR of *one* alternative - should not happen now. */
+   (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
+   /* for now we can't handle lookbehind IFMATCH*/
+   (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
+   (OP(first) == PLUS) ||
+   (OP(first) == MINMOD) ||
+   /* An {n,m} with n>0 */
+   (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
+   (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
+  {
+    /*
+    * the only op that could be a regnode is PLUS, all the rest
+    * will be regnode_1 or regnode_2.
+    *
+    * (yves doesn't think this is true)
+    */
+    if (OP(first) == PLUS)
+     sawplus = 1;
+    else {
+     if (OP(first) == MINMOD)
+      sawminmod = 1;
+     first += regarglen[OP(first)];
+    }
+    first = NEXTOPER(first);
+    first_next= regnext(first);
+  }
+
+  /* Starting-point info. */
+ again:
+  DEBUG_PEEP("first:",first,0);
+  /* Ignore EXACT as we deal with it later. */
+  if (PL_regkind[OP(first)] == EXACT) {
+   if (OP(first) == EXACT || OP(first) == EXACTL)
+    NOOP; /* Empty, get anchored substr later. */
+   else
+    ri->regstclass = first;
+  }
+#ifdef TRIE_STCLASS
+  else if (PL_regkind[OP(first)] == TRIE &&
+    ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
+  {
+   /* this can happen only on restudy */
+   ri->regstclass = construct_ahocorasick_from_trie(pRExC_state, (regnode *)first, 0);
+  }
+#endif
+  else if (REGNODE_SIMPLE(OP(first)))
+   ri->regstclass = first;
+  else if (PL_regkind[OP(first)] == BOUND ||
+    PL_regkind[OP(first)] == NBOUND)
+   ri->regstclass = first;
+  else if (PL_regkind[OP(first)] == BOL) {
+   r->intflags |= (OP(first) == MBOL
+      ? PREGf_ANCH_MBOL
+      : PREGf_ANCH_SBOL);
+   first = NEXTOPER(first);
+   goto again;
+  }
+  else if (OP(first) == GPOS) {
+   r->intflags |= PREGf_ANCH_GPOS;
+   first = NEXTOPER(first);
+   goto again;
+  }
+  else if ((!sawopen || !RExC_sawback) &&
+   !sawlookahead &&
+   (OP(first) == STAR &&
+   PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
+   !(r->intflags & PREGf_ANCH) && !pRExC_state->num_code_blocks)
+  {
+   /* turn .* into ^.* with an implied $*=1 */
+   const int type =
+    (OP(NEXTOPER(first)) == REG_ANY)
+     ? PREGf_ANCH_MBOL
+     : PREGf_ANCH_SBOL;
+   r->intflags |= (type | PREGf_IMPLICIT);
+   first = NEXTOPER(first);
+   goto again;
+  }
+  if (sawplus && !sawminmod && !sawlookahead
+   && (!sawopen || !RExC_sawback)
+   && !pRExC_state->num_code_blocks) /* May examine pos and $& */
+   /* x+ must match at the 1st pos of run of x's */
+   r->intflags |= PREGf_SKIP;
+
+  /* Scan is after the zeroth branch, first is atomic matcher. */
+#ifdef TRIE_STUDY_OPT
+  DEBUG_PARSE_r(
+   if (!restudied)
+    PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
+       (IV)(first - scan + 1))
+  );
+#else
+  DEBUG_PARSE_r(
+   PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
+    (IV)(first - scan + 1))
+  );
+#endif
+
+
+  /*
+  * If there's something expensive in the r.e., find the
+  * longest literal string that must appear and make it the
+  * regmust.  Resolve ties in favor of later strings, since
+  * the regstart check works with the beginning of the r.e.
+  * and avoiding duplication strengthens checking.  Not a
+  * strong reason, but sufficient in the absence of others.
+  * [Now we resolve ties in favor of the earlier string if
+  * it happens that c_offset_min has been invalidated, since the
+  * earlier string may buy us something the later one won't.]
+  */
+
+  data.longest_fixed = newSVpvs("");
+  data.longest_float = newSVpvs("");
+  data.last_found = newSVpvs("");
+  data.longest = &(data.longest_fixed);
+  ENTER_with_name("study_chunk");
+  SAVEFREESV(data.longest_fixed);
+  SAVEFREESV(data.longest_float);
+  SAVEFREESV(data.last_found);
+  first = scan;
+  if (!ri->regstclass) {
+   ssc_init(pRExC_state, &ch_class);
+   data.start_class = &ch_class;
+   stclass_flag = SCF_DO_STCLASS_AND;
+  } else    /* XXXX Check for BOUND? */
+   stclass_flag = 0;
+  data.last_closep = &last_close;
+
+  DEBUG_RExC_seen();
+  minlen = study_chunk(pRExC_state, &first, &minlen, &fake,
+       scan + RExC_size, /* Up to end */
+   &data, -1, 0, NULL,
+   SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag
+      | (restudied ? SCF_TRIE_DOING_RESTUDY : 0),
+   0);
+
+
+  CHECK_RESTUDY_GOTO_butfirst(LEAVE_with_name("study_chunk"));
+
+
+  if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
+   && data.last_start_min == 0 && data.last_end > 0
+   && !RExC_seen_zerolen
+   && !(RExC_seen & REG_VERBARG_SEEN)
+   && !(RExC_seen & REG_GPOS_SEEN)
+  ){
+   r->extflags |= RXf_CHECK_ALL;
+  }
+  scan_commit(pRExC_state, &data,&minlen,0);
+
+  longest_float_length = CHR_SVLEN(data.longest_float);
+
+  if (! ((SvCUR(data.longest_fixed)  /* ok to leave SvCUR */
+    && data.offset_fixed == data.offset_float_min
+    && SvCUR(data.longest_fixed) == SvCUR(data.longest_float)))
+   && S_setup_longest (aTHX_ pRExC_state,
+         data.longest_float,
+         &(r->float_utf8),
+         &(r->float_substr),
+         &(r->float_end_shift),
+         data.lookbehind_float,
+         data.offset_float_min,
+         data.minlen_float,
+         longest_float_length,
+         cBOOL(data.flags & SF_FL_BEFORE_EOL),
+         cBOOL(data.flags & SF_FL_BEFORE_MEOL)))
+  {
+   r->float_min_offset = data.offset_float_min - data.lookbehind_float;
+   r->float_max_offset = data.offset_float_max;
+   if (data.offset_float_max < SSize_t_MAX) /* Don't offset infinity */
+    r->float_max_offset -= data.lookbehind_float;
+   SvREFCNT_inc_simple_void_NN(data.longest_float);
+  }
+  else {
+   r->float_substr = r->float_utf8 = NULL;
+   longest_float_length = 0;
+  }
+
+  longest_fixed_length = CHR_SVLEN(data.longest_fixed);
+
+  if (S_setup_longest (aTHX_ pRExC_state,
+        data.longest_fixed,
+        &(r->anchored_utf8),
+        &(r->anchored_substr),
+        &(r->anchored_end_shift),
+        data.lookbehind_fixed,
+        data.offset_fixed,
+        data.minlen_fixed,
+        longest_fixed_length,
+        cBOOL(data.flags & SF_FIX_BEFORE_EOL),
+        cBOOL(data.flags & SF_FIX_BEFORE_MEOL)))
+  {
+   r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
+   SvREFCNT_inc_simple_void_NN(data.longest_fixed);
+  }
+  else {
+   r->anchored_substr = r->anchored_utf8 = NULL;
+   longest_fixed_length = 0;
+  }
+  LEAVE_with_name("study_chunk");
+
+  if (ri->regstclass
+   && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
+   ri->regstclass = NULL;
+
+  if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
+   && stclass_flag
+   && ! (ANYOF_FLAGS(data.start_class) & SSC_MATCHES_EMPTY_STRING)
+   && is_ssc_worth_it(pRExC_state, data.start_class))
+  {
+   const U32 n = add_data(pRExC_state, STR_WITH_LEN("f"));
+
+   ssc_finalize(pRExC_state, data.start_class);
+
+   Newx(RExC_rxi->data->data[n], 1, regnode_ssc);
+   StructCopy(data.start_class,
+     (regnode_ssc*)RExC_rxi->data->data[n],
+     regnode_ssc);
+   ri->regstclass = (regnode*)RExC_rxi->data->data[n];
+   r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
+   DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
+     regprop(r, sv, (regnode*)data.start_class, NULL, pRExC_state);
+     PerlIO_printf(Perl_debug_log,
+         "synthetic stclass \"%s\".\n",
+         SvPVX_const(sv));});
+   data.start_class = NULL;
+  }
+
+  /* A temporary algorithm prefers floated substr to fixed one to dig
+  * more info. */
+  if (longest_fixed_length > longest_float_length) {
+   r->substrs->check_ix = 0;
+   r->check_end_shift = r->anchored_end_shift;
+   r->check_substr = r->anchored_substr;
+   r->check_utf8 = r->anchored_utf8;
+   r->check_offset_min = r->check_offset_max = r->anchored_offset;
+   if (r->intflags & (PREGf_ANCH_SBOL|PREGf_ANCH_GPOS))
+    r->intflags |= PREGf_NOSCAN;
+  }
+  else {
+   r->substrs->check_ix = 1;
+   r->check_end_shift = r->float_end_shift;
+   r->check_substr = r->float_substr;
+   r->check_utf8 = r->float_utf8;
+   r->check_offset_min = r->float_min_offset;
+   r->check_offset_max = r->float_max_offset;
+  }
+  if ((r->check_substr || r->check_utf8) ) {
+   r->extflags |= RXf_USE_INTUIT;
+   if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
+    r->extflags |= RXf_INTUIT_TAIL;
+  }
+  r->substrs->data[0].max_offset = r->substrs->data[0].min_offset;
+
+  /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
+  if ( (STRLEN)minlen < longest_float_length )
+   minlen= longest_float_length;
+  if ( (STRLEN)minlen < longest_fixed_length )
+   minlen= longest_fixed_length;
+  */
+ }
+ else {
+  /* Several toplevels. Best we can is to set minlen. */
+  SSize_t fake;
+  regnode_ssc ch_class;
+  SSize_t last_close = 0;
+
+  DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
+
+  scan = ri->program + 1;
+  ssc_init(pRExC_state, &ch_class);
+  data.start_class = &ch_class;
+  data.last_closep = &last_close;
+
+  DEBUG_RExC_seen();
+  minlen = study_chunk(pRExC_state,
+   &scan, &minlen, &fake, scan + RExC_size, &data, -1, 0, NULL,
+   SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS|(restudied
+             ? SCF_TRIE_DOING_RESTUDY
+             : 0),
+   0);
+
+  CHECK_RESTUDY_GOTO_butfirst(NOOP);
+
+  r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
+    = r->float_substr = r->float_utf8 = NULL;
+
+  if (! (ANYOF_FLAGS(data.start_class) & SSC_MATCHES_EMPTY_STRING)
+   && is_ssc_worth_it(pRExC_state, data.start_class))
+  {
+   const U32 n = add_data(pRExC_state, STR_WITH_LEN("f"));
+
+   ssc_finalize(pRExC_state, data.start_class);
+
+   Newx(RExC_rxi->data->data[n], 1, regnode_ssc);
+   StructCopy(data.start_class,
+     (regnode_ssc*)RExC_rxi->data->data[n],
+     regnode_ssc);
+   ri->regstclass = (regnode*)RExC_rxi->data->data[n];
+   r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
+   DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
+     regprop(r, sv, (regnode*)data.start_class, NULL, pRExC_state);
+     PerlIO_printf(Perl_debug_log,
+         "synthetic stclass \"%s\".\n",
+         SvPVX_const(sv));});
+   data.start_class = NULL;
+  }
+ }
+
+ if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) {
+  r->extflags |= RXf_UNBOUNDED_QUANTIFIER_SEEN;
+  r->maxlen = REG_INFTY;
+ }
+ else {
+  r->maxlen = RExC_maxlen;
+ }
+
+ /* Guard against an embedded (?=) or (?<=) with a longer minlen than
+ the "real" pattern. */
+ DEBUG_OPTIMISE_r({
+  PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf" maxlen:%"IVdf"\n",
+     (IV)minlen, (IV)r->minlen, (IV)RExC_maxlen);
+ });
+ r->minlenret = minlen;
+ if (r->minlen < minlen)
+  r->minlen = minlen;
+
+ if (RExC_seen & REG_GPOS_SEEN)
+  r->intflags |= PREGf_GPOS_SEEN;
+ if (RExC_seen & REG_LOOKBEHIND_SEEN)
+  r->extflags |= RXf_NO_INPLACE_SUBST; /* inplace might break the
+            lookbehind */
+ if (pRExC_state->num_code_blocks)
+  r->extflags |= RXf_EVAL_SEEN;
+ if (RExC_seen & REG_VERBARG_SEEN)
+ {
+  r->intflags |= PREGf_VERBARG_SEEN;
+  r->extflags |= RXf_NO_INPLACE_SUBST; /* don't understand this! Yves */
+ }
+ if (RExC_seen & REG_CUTGROUP_SEEN)
+  r->intflags |= PREGf_CUTGROUP_SEEN;
+ if (pm_flags & PMf_USE_RE_EVAL)
+  r->intflags |= PREGf_USE_RE_EVAL;
+ if (RExC_paren_names)
+  RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
+ else
+  RXp_PAREN_NAMES(r) = NULL;
+
+ /* If we have seen an anchor in our pattern then we set the extflag RXf_IS_ANCHORED
+ * so it can be used in pp.c */
+ if (r->intflags & PREGf_ANCH)
+  r->extflags |= RXf_IS_ANCHORED;
+
+
+ {
+  /* this is used to identify "special" patterns that might result
+  * in Perl NOT calling the regex engine and instead doing the match "itself",
+  * particularly special cases in split//. By having the regex compiler
+  * do this pattern matching at a regop level (instead of by inspecting the pattern)
+  * we avoid weird issues with equivalent patterns resulting in different behavior,
+  * AND we allow non Perl engines to get the same optimizations by the setting the
+  * flags appropriately - Yves */
+  regnode *first = ri->program + 1;
+  U8 fop = OP(first);
+  regnode *next = regnext(first);
+  U8 nop = OP(next);
+
+  if (PL_regkind[fop] == NOTHING && nop == END)
+   r->extflags |= RXf_NULL;
+  else if ((fop == MBOL || (fop == SBOL && !first->flags)) && nop == END)
+   /* when fop is SBOL first->flags will be true only when it was
+   * produced by parsing /\A/, and not when parsing /^/. This is
+   * very important for the split code as there we want to
+   * treat /^/ as /^/m, but we do not want to treat /\A/ as /^/m.
+   * See rt #122761 for more details. -- Yves */
+   r->extflags |= RXf_START_ONLY;
+  else if (fop == PLUS
+    && PL_regkind[nop] == POSIXD && FLAGS(next) == _CC_SPACE
+    && nop == END)
+   r->extflags |= RXf_WHITE;
+  else if ( r->extflags & RXf_SPLIT
+    && (fop == EXACT || fop == EXACTL)
+    && STR_LEN(first) == 1
+    && *(STRING(first)) == ' '
+    && nop == END )
+   r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
+
+ }
+
+ if (RExC_contains_locale) {
+  RXp_EXTFLAGS(r) |= RXf_TAINTED;
+ }
+
+#ifdef DEBUGGING
+ if (RExC_paren_names) {
+  ri->name_list_idx = add_data( pRExC_state, STR_WITH_LEN("a"));
+  ri->data->data[ri->name_list_idx]
+        = (void*)SvREFCNT_inc(RExC_paren_name_list);
+ } else
+#endif
+  ri->name_list_idx = 0;
+
+ if (RExC_recurse_count) {
+  for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
+   const regnode *scan = RExC_recurse[RExC_recurse_count-1];
+   ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
+  }
+ }
+ Newxz(r->offs, RExC_npar, regexp_paren_pair);
+ /* assume we don't need to swap parens around before we match */
+ DEBUG_TEST_r({
+  PerlIO_printf(Perl_debug_log,"study_chunk_recursed_count: %lu\n",
+   (unsigned long)RExC_study_chunk_recursed_count);
+ });
+ DEBUG_DUMP_r({
+  DEBUG_RExC_seen();
+  PerlIO_printf(Perl_debug_log,"Final program:\n");
+  regdump(r);
+ });
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ DEBUG_OFFSETS_r(if (ri->u.offsets) {
+  const STRLEN len = ri->u.offsets[0];
+  STRLEN i;
+  GET_RE_DEBUG_FLAGS_DECL;
+  PerlIO_printf(Perl_debug_log,
+     "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
+  for (i = 1; i <= len; i++) {
+   if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
+    PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
+    (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
+   }
+  PerlIO_printf(Perl_debug_log, "\n");
+ });
+#endif
+
+#ifdef USE_ITHREADS
+ /* under ithreads the ?pat? PMf_USED flag on the pmop is simulated
+ * by setting the regexp SV to readonly-only instead. If the
+ * pattern's been recompiled, the USEDness should remain. */
+ if (old_re && SvREADONLY(old_re))
+  SvREADONLY_on(rx);
+#endif
+ return rx;
+}
+
+
+SV*
+Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
+     const U32 flags)
+{
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF;
+
+ PERL_UNUSED_ARG(value);
+
+ if (flags & RXapif_FETCH) {
+  return reg_named_buff_fetch(rx, key, flags);
+ } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
+  Perl_croak_no_modify();
+  return NULL;
+ } else if (flags & RXapif_EXISTS) {
+  return reg_named_buff_exists(rx, key, flags)
+   ? &PL_sv_yes
+   : &PL_sv_no;
+ } else if (flags & RXapif_REGNAMES) {
+  return reg_named_buff_all(rx, flags);
+ } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
+  return reg_named_buff_scalar(rx, flags);
+ } else {
+  Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
+  return NULL;
+ }
+}
+
+SV*
+Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
+      const U32 flags)
+{
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
+ PERL_UNUSED_ARG(lastkey);
+
+ if (flags & RXapif_FIRSTKEY)
+  return reg_named_buff_firstkey(rx, flags);
+ else if (flags & RXapif_NEXTKEY)
+  return reg_named_buff_nextkey(rx, flags);
+ else {
+  Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter",
+           (int)flags);
+  return NULL;
+ }
+}
+
+SV*
+Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
+      const U32 flags)
+{
+ AV *retarray = NULL;
+ SV *ret;
+ struct regexp *const rx = ReANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
+
+ if (flags & RXapif_ALL)
+  retarray=newAV();
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+  HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
+  if (he_str) {
+   IV i;
+   SV* sv_dat=HeVAL(he_str);
+   I32 *nums=(I32*)SvPVX(sv_dat);
+   for ( i=0; i<SvIVX(sv_dat); i++ ) {
+    if ((I32)(rx->nparens) >= nums[i]
+     && rx->offs[nums[i]].start != -1
+     && rx->offs[nums[i]].end != -1)
+    {
+     ret = newSVpvs("");
+     CALLREG_NUMBUF_FETCH(r,nums[i],ret);
+     if (!retarray)
+      return ret;
+    } else {
+     if (retarray)
+      ret = newSVsv(&PL_sv_undef);
+    }
+    if (retarray)
+     av_push(retarray, ret);
+   }
+   if (retarray)
+    return newRV_noinc(MUTABLE_SV(retarray));
+  }
+ }
+ return NULL;
+}
+
+bool
+Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
+      const U32 flags)
+{
+ struct regexp *const rx = ReANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+  if (flags & RXapif_ALL) {
+   return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
+  } else {
+   SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
+   if (sv) {
+    SvREFCNT_dec_NN(sv);
+    return TRUE;
+   } else {
+    return FALSE;
+   }
+  }
+ } else {
+  return FALSE;
+ }
+}
+
+SV*
+Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = ReANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
+
+ if ( rx && RXp_PAREN_NAMES(rx) ) {
+  (void)hv_iterinit(RXp_PAREN_NAMES(rx));
+
+  return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
+ } else {
+  return FALSE;
+ }
+}
+
+SV*
+Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = ReANY(r);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+  HV *hv = RXp_PAREN_NAMES(rx);
+  HE *temphe;
+  while ( (temphe = hv_iternext_flags(hv,0)) ) {
+   IV i;
+   IV parno = 0;
+   SV* sv_dat = HeVAL(temphe);
+   I32 *nums = (I32*)SvPVX(sv_dat);
+   for ( i = 0; i < SvIVX(sv_dat); i++ ) {
+    if ((I32)(rx->lastparen) >= nums[i] &&
+     rx->offs[nums[i]].start != -1 &&
+     rx->offs[nums[i]].end != -1)
+    {
+     parno = nums[i];
+     break;
+    }
+   }
+   if (parno || flags & RXapif_ALL) {
+    return newSVhek(HeKEY_hek(temphe));
+   }
+  }
+ }
+ return NULL;
+}
+
+SV*
+Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
+{
+ SV *ret;
+ AV *av;
+ SSize_t length;
+ struct regexp *const rx = ReANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+  if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
+   return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
+  } else if (flags & RXapif_ONE) {
+   ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
+   av = MUTABLE_AV(SvRV(ret));
+   length = av_tindex(av);
+   SvREFCNT_dec_NN(ret);
+   return newSViv(length + 1);
+  } else {
+   Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar",
+            (int)flags);
+   return NULL;
+  }
+ }
+ return &PL_sv_undef;
+}
+
+SV*
+Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = ReANY(r);
+ AV *av = newAV();
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+  HV *hv= RXp_PAREN_NAMES(rx);
+  HE *temphe;
+  (void)hv_iterinit(hv);
+  while ( (temphe = hv_iternext_flags(hv,0)) ) {
+   IV i;
+   IV parno = 0;
+   SV* sv_dat = HeVAL(temphe);
+   I32 *nums = (I32*)SvPVX(sv_dat);
+   for ( i = 0; i < SvIVX(sv_dat); i++ ) {
+    if ((I32)(rx->lastparen) >= nums[i] &&
+     rx->offs[nums[i]].start != -1 &&
+     rx->offs[nums[i]].end != -1)
+    {
+     parno = nums[i];
+     break;
+    }
+   }
+   if (parno || flags & RXapif_ALL) {
+    av_push(av, newSVhek(HeKEY_hek(temphe)));
+   }
+  }
+ }
+
+ return newRV_noinc(MUTABLE_SV(av));
+}
+
+void
+Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
+       SV * const sv)
+{
+ struct regexp *const rx = ReANY(r);
+ char *s = NULL;
+ SSize_t i = 0;
+ SSize_t s1, t1;
+ I32 n = paren;
+
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
+
+ if (      n == RX_BUFF_IDX_CARET_PREMATCH
+  || n == RX_BUFF_IDX_CARET_FULLMATCH
+  || n == RX_BUFF_IDX_CARET_POSTMATCH
+ )
+ {
+  bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
+  if (!keepcopy) {
+   /* on something like
+   *    $r = qr/.../;
+   *    /$qr/p;
+   * the KEEPCOPY is set on the PMOP rather than the regex */
+   if (PL_curpm && r == PM_GETRE(PL_curpm))
+    keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
+  }
+  if (!keepcopy)
+   goto ret_undef;
+ }
+
+ if (!rx->subbeg)
+  goto ret_undef;
+
+ if (n == RX_BUFF_IDX_CARET_FULLMATCH)
+  /* no need to distinguish between them any more */
+  n = RX_BUFF_IDX_FULLMATCH;
+
+ if ((n == RX_BUFF_IDX_PREMATCH || n == RX_BUFF_IDX_CARET_PREMATCH)
+  && rx->offs[0].start != -1)
+ {
+  /* $`, ${^PREMATCH} */
+  i = rx->offs[0].start;
+  s = rx->subbeg;
+ }
+ else
+ if ((n == RX_BUFF_IDX_POSTMATCH || n == RX_BUFF_IDX_CARET_POSTMATCH)
+  && rx->offs[0].end != -1)
+ {
+  /* $', ${^POSTMATCH} */
+  s = rx->subbeg - rx->suboffset + rx->offs[0].end;
+  i = rx->sublen + rx->suboffset - rx->offs[0].end;
+ }
+ else
+ if ( 0 <= n && n <= (I32)rx->nparens &&
+  (s1 = rx->offs[n].start) != -1 &&
+  (t1 = rx->offs[n].end) != -1)
+ {
+  /* $&, ${^MATCH},  $1 ... */
+  i = t1 - s1;
+  s = rx->subbeg + s1 - rx->suboffset;
+ } else {
+  goto ret_undef;
+ }
+
+ assert(s >= rx->subbeg);
+ assert((STRLEN)rx->sublen >= (STRLEN)((s - rx->subbeg) + i) );
+ if (i >= 0) {
+#ifdef NO_TAINT_SUPPORT
+  sv_setpvn(sv, s, i);
+#else
+  const int oldtainted = TAINT_get;
+  TAINT_NOT;
+  sv_setpvn(sv, s, i);
+  TAINT_set(oldtainted);
+#endif
+  if (RXp_MATCH_UTF8(rx))
+   SvUTF8_on(sv);
+  else
+   SvUTF8_off(sv);
+  if (TAINTING_get) {
+   if (RXp_MATCH_TAINTED(rx)) {
+    if (SvTYPE(sv) >= SVt_PVMG) {
+     MAGIC* const mg = SvMAGIC(sv);
+     MAGIC* mgt;
+     TAINT;
+     SvMAGIC_set(sv, mg->mg_moremagic);
+     SvTAINT(sv);
+     if ((mgt = SvMAGIC(sv))) {
+      mg->mg_moremagic = mgt;
+      SvMAGIC_set(sv, mg);
+     }
+    } else {
+     TAINT;
+     SvTAINT(sv);
+    }
+   } else
+    SvTAINTED_off(sv);
+  }
+ } else {
+ ret_undef:
+  sv_setsv(sv,&PL_sv_undef);
+  return;
+ }
+}
+
+void
+Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
+              SV const * const value)
+{
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
+
+ PERL_UNUSED_ARG(rx);
+ PERL_UNUSED_ARG(paren);
+ PERL_UNUSED_ARG(value);
+
+ if (!PL_localizing)
+  Perl_croak_no_modify();
+}
+
+I32
+Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
+       const I32 paren)
+{
+ struct regexp *const rx = ReANY(r);
+ I32 i;
+ I32 s1, t1;
+
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
+
+ if (   paren == RX_BUFF_IDX_CARET_PREMATCH
+  || paren == RX_BUFF_IDX_CARET_FULLMATCH
+  || paren == RX_BUFF_IDX_CARET_POSTMATCH
+ )
+ {
+  bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
+  if (!keepcopy) {
+   /* on something like
+   *    $r = qr/.../;
+   *    /$qr/p;
+   * the KEEPCOPY is set on the PMOP rather than the regex */
+   if (PL_curpm && r == PM_GETRE(PL_curpm))
+    keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
+  }
+  if (!keepcopy)
+   goto warn_undef;
+ }
+
+ /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
+ switch (paren) {
+ case RX_BUFF_IDX_CARET_PREMATCH: /* ${^PREMATCH} */
+ case RX_BUFF_IDX_PREMATCH:       /* $` */
+  if (rx->offs[0].start != -1) {
+      i = rx->offs[0].start;
+      if (i > 0) {
+        s1 = 0;
+        t1 = i;
+        goto getlen;
+      }
+   }
+  return 0;
+
+ case RX_BUFF_IDX_CARET_POSTMATCH: /* ${^POSTMATCH} */
+ case RX_BUFF_IDX_POSTMATCH:       /* $' */
+   if (rx->offs[0].end != -1) {
+      i = rx->sublen - rx->offs[0].end;
+      if (i > 0) {
+        s1 = rx->offs[0].end;
+        t1 = rx->sublen;
+        goto getlen;
+      }
+   }
+  return 0;
+
+ default: /* $& / ${^MATCH}, $1, $2, ... */
+   if (paren <= (I32)rx->nparens &&
+   (s1 = rx->offs[paren].start) != -1 &&
+   (t1 = rx->offs[paren].end) != -1)
+   {
+   i = t1 - s1;
+   goto getlen;
+  } else {
+  warn_undef:
+   if (ckWARN(WARN_UNINITIALIZED))
+    report_uninit((const SV *)sv);
+   return 0;
+  }
+ }
+  getlen:
+ if (i > 0 && RXp_MATCH_UTF8(rx)) {
+  const char * const s = rx->subbeg - rx->suboffset + s1;
+  const U8 *ep;
+  STRLEN el;
+
+  i = t1 - s1;
+  if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
+      i = el;
+ }
+ return i;
+}
+
+SV*
+Perl_reg_qr_package(pTHX_ REGEXP * const rx)
+{
+ PERL_ARGS_ASSERT_REG_QR_PACKAGE;
+  PERL_UNUSED_ARG(rx);
+  if (0)
+   return NULL;
+  else
+   return newSVpvs("Regexp");
+}
+
+/* Scans the name of a named buffer from the pattern.
+ * If flags is REG_RSN_RETURN_NULL returns null.
+ * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
+ * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
+ * to the parsed name as looked up in the RExC_paren_names hash.
+ * If there is an error throws a vFAIL().. type exception.
+ */
+
+#define REG_RSN_RETURN_NULL    0
+#define REG_RSN_RETURN_NAME    1
+#define REG_RSN_RETURN_DATA    2
+
+STATIC SV*
+S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
+{
+ char *name_start = RExC_parse;
+
+ PERL_ARGS_ASSERT_REG_SCAN_NAME;
+
+ assert (RExC_parse <= RExC_end);
+ if (RExC_parse == RExC_end) NOOP;
+ else if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
+  /* skip IDFIRST by using do...while */
+  if (UTF)
+   do {
+    RExC_parse += UTF8SKIP(RExC_parse);
+   } while (isWORDCHAR_utf8((U8*)RExC_parse));
+  else
+   do {
+    RExC_parse++;
+   } while (isWORDCHAR(*RExC_parse));
+ } else {
+  RExC_parse++; /* so the <- from the vFAIL is after the offending
+      character */
+  vFAIL("Group name must start with a non-digit word character");
+ }
+ if ( flags ) {
+  SV* sv_name
+   = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
+       SVs_TEMP | (UTF ? SVf_UTF8 : 0));
+  if ( flags == REG_RSN_RETURN_NAME)
+   return sv_name;
+  else if (flags==REG_RSN_RETURN_DATA) {
+   HE *he_str = NULL;
+   SV *sv_dat = NULL;
+   if ( ! sv_name )      /* should not happen*/
+    Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
+   if (RExC_paren_names)
+    he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
+   if ( he_str )
+    sv_dat = HeVAL(he_str);
+   if ( ! sv_dat )
+    vFAIL("Reference to nonexistent named group");
+   return sv_dat;
+  }
+  else {
+   Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name",
+     (unsigned long) flags);
+  }
+  NOT_REACHED; /* NOTREACHED */
+ }
+ return NULL;
+}
+
+#define DEBUG_PARSE_MSG(funcname)     DEBUG_PARSE_r({           \
+ int num;                                                    \
+ if (RExC_lastparse!=RExC_parse) {                           \
+  PerlIO_printf(Perl_debug_log, "%s",                     \
+   Perl_pv_pretty(aTHX_ RExC_mysv1, RExC_parse,        \
+    RExC_end - RExC_parse, 16,                      \
+    "", "",                                         \
+    PERL_PV_ESCAPE_UNI_DETECT |                     \
+    PERL_PV_PRETTY_ELLIPSES   |                     \
+    PERL_PV_PRETTY_LTGT       |                     \
+    PERL_PV_ESCAPE_RE         |                     \
+    PERL_PV_PRETTY_EXACTSIZE                        \
+   )                                                   \
+  );                                                      \
+ } else                                                      \
+  PerlIO_printf(Perl_debug_log,"%16s","");                \
+                \
+ if (SIZE_ONLY)                                              \
+ num = RExC_size + 1;                                     \
+ else                                                        \
+ num=REG_NODE_NUM(RExC_emit);                             \
+ if (RExC_lastnum!=num)                                      \
+ PerlIO_printf(Perl_debug_log,"|%4d",num);                \
+ else                                                        \
+ PerlIO_printf(Perl_debug_log,"|%4s","");                 \
+ PerlIO_printf(Perl_debug_log,"|%*s%-4s",                    \
+  (int)((depth*2)), "",                                   \
+  (funcname)                                              \
+ );                                                          \
+ RExC_lastnum=num;                                           \
+ RExC_lastparse=RExC_parse;                                  \
+})
+
+
+
+#define DEBUG_PARSE(funcname)     DEBUG_PARSE_r({           \
+ DEBUG_PARSE_MSG((funcname));                            \
+ PerlIO_printf(Perl_debug_log,"%4s","\n");               \
+})
+#define DEBUG_PARSE_FMT(funcname,fmt,args)     DEBUG_PARSE_r({           \
+ DEBUG_PARSE_MSG((funcname));                            \
+ PerlIO_printf(Perl_debug_log,fmt "\n",args);               \
+})
+
+/* This section of code defines the inversion list object and its methods.  The
+ * interfaces are highly subject to change, so as much as possible is static to
+ * this file.  An inversion list is here implemented as a malloc'd C UV array
+ * as an SVt_INVLIST scalar.
+ *
+ * An inversion list for Unicode is an array of code points, sorted by ordinal
+ * number.  The zeroth element is the first code point in the list.  The 1th
+ * element is the first element beyond that not in the list.  In other words,
+ * the first range is
+ *  invlist[0]..(invlist[1]-1)
+ * The other ranges follow.  Thus every element whose index is divisible by two
+ * marks the beginning of a range that is in the list, and every element not
+ * divisible by two marks the beginning of a range not in the list.  A single
+ * element inversion list that contains the single code point N generally
+ * consists of two elements
+ *  invlist[0] == N
+ *  invlist[1] == N+1
+ * (The exception is when N is the highest representable value on the
+ * machine, in which case the list containing just it would be a single
+ * element, itself.  By extension, if the last range in the list extends to
+ * infinity, then the first element of that range will be in the inversion list
+ * at a position that is divisible by two, and is the final element in the
+ * list.)
+ * Taking the complement (inverting) an inversion list is quite simple, if the
+ * first element is 0, remove it; otherwise add a 0 element at the beginning.
+ * This implementation reserves an element at the beginning of each inversion
+ * list to always contain 0; there is an additional flag in the header which
+ * indicates if the list begins at the 0, or is offset to begin at the next
+ * element.
+ *
+ * More about inversion lists can be found in "Unicode Demystified"
+ * Chapter 13 by Richard Gillam, published by Addison-Wesley.
+ * More will be coming when functionality is added later.
+ *
+ * The inversion list data structure is currently implemented as an SV pointing
+ * to an array of UVs that the SV thinks are bytes.  This allows us to have an
+ * array of UV whose memory management is automatically handled by the existing
+ * facilities for SV's.
+ *
+ * Some of the methods should always be private to the implementation, and some
+ * should eventually be made public */
+
+/* The header definitions are in F<inline_invlist.c> */
+
+PERL_STATIC_INLINE UV*
+S__invlist_array_init(SV* const invlist, const bool will_have_0)
+{
+ /* Returns a pointer to the first element in the inversion list's array.
+ * This is called upon initialization of an inversion list.  Where the
+ * array begins depends on whether the list has the code point U+0000 in it
+ * or not.  The other parameter tells it whether the code that follows this
+ * call is about to put a 0 in the inversion list or not.  The first
+ * element is either the element reserved for 0, if TRUE, or the element
+ * after it, if FALSE */
+
+ bool* offset = get_invlist_offset_addr(invlist);
+ UV* zero_addr = (UV *) SvPVX(invlist);
+
+ PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
+
+ /* Must be empty */
+ assert(! _invlist_len(invlist));
+
+ *zero_addr = 0;
+
+ /* 1^1 = 0; 1^0 = 1 */
+ *offset = 1 ^ will_have_0;
+ return zero_addr + *offset;
+}
+
+PERL_STATIC_INLINE void
+S_invlist_set_len(pTHX_ SV* const invlist, const UV len, const bool offset)
+{
+ /* Sets the current number of elements stored in the inversion list.
+ * Updates SvCUR correspondingly */
+ PERL_UNUSED_CONTEXT;
+ PERL_ARGS_ASSERT_INVLIST_SET_LEN;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ SvCUR_set(invlist,
+   (len == 0)
+   ? 0
+   : TO_INTERNAL_SIZE(len + offset));
+ assert(SvLEN(invlist) == 0 || SvCUR(invlist) <= SvLEN(invlist));
+}
+
+#ifndef PERL_IN_XSUB_RE
+
+PERL_STATIC_INLINE IV*
+S_get_invlist_previous_index_addr(SV* invlist)
+{
+ /* Return the address of the IV that is reserved to hold the cached index
+ * */
+ PERL_ARGS_ASSERT_GET_INVLIST_PREVIOUS_INDEX_ADDR;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ return &(((XINVLIST*) SvANY(invlist))->prev_index);
+}
+
+PERL_STATIC_INLINE IV
+S_invlist_previous_index(SV* const invlist)
+{
+ /* Returns cached index of previous search */
+
+ PERL_ARGS_ASSERT_INVLIST_PREVIOUS_INDEX;
+
+ return *get_invlist_previous_index_addr(invlist);
+}
+
+PERL_STATIC_INLINE void
+S_invlist_set_previous_index(SV* const invlist, const IV index)
+{
+ /* Caches <index> for later retrieval */
+
+ PERL_ARGS_ASSERT_INVLIST_SET_PREVIOUS_INDEX;
+
+ assert(index == 0 || index < (int) _invlist_len(invlist));
+
+ *get_invlist_previous_index_addr(invlist) = index;
+}
+
+PERL_STATIC_INLINE void
+S_invlist_trim(SV* const invlist)
+{
+ PERL_ARGS_ASSERT_INVLIST_TRIM;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ /* Change the length of the inversion list to how many entries it currently
+ * has */
+ SvPV_shrink_to_cur((SV *) invlist);
+}
+
+PERL_STATIC_INLINE bool
+S_invlist_is_iterating(SV* const invlist)
+{
+ PERL_ARGS_ASSERT_INVLIST_IS_ITERATING;
+
+ return *(get_invlist_iter_addr(invlist)) < (STRLEN) UV_MAX;
+}
+
+#endif /* ifndef PERL_IN_XSUB_RE */
+
+PERL_STATIC_INLINE UV
+S_invlist_max(SV* const invlist)
+{
+ /* Returns the maximum number of elements storable in the inversion list's
+ * array, without having to realloc() */
+
+ PERL_ARGS_ASSERT_INVLIST_MAX;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ /* Assumes worst case, in which the 0 element is not counted in the
+ * inversion list, so subtracts 1 for that */
+ return SvLEN(invlist) == 0  /* This happens under _new_invlist_C_array */
+  ? FROM_INTERNAL_SIZE(SvCUR(invlist)) - 1
+  : FROM_INTERNAL_SIZE(SvLEN(invlist)) - 1;
+}
+
+#ifndef PERL_IN_XSUB_RE
+SV*
+Perl__new_invlist(pTHX_ IV initial_size)
+{
+
+ /* Return a pointer to a newly constructed inversion list, with enough
+ * space to store 'initial_size' elements.  If that number is negative, a
+ * system default is used instead */
+
+ SV* new_list;
+
+ if (initial_size < 0) {
+  initial_size = 10;
+ }
+
+ /* Allocate the initial space */
+ new_list = newSV_type(SVt_INVLIST);
+
+ /* First 1 is in case the zero element isn't in the list; second 1 is for
+ * trailing NUL */
+ SvGROW(new_list, TO_INTERNAL_SIZE(initial_size + 1) + 1);
+ invlist_set_len(new_list, 0, 0);
+
+ /* Force iterinit() to be used to get iteration to work */
+ *get_invlist_iter_addr(new_list) = (STRLEN) UV_MAX;
+
+ *get_invlist_previous_index_addr(new_list) = 0;
+
+ return new_list;
+}
+
+SV*
+Perl__new_invlist_C_array(pTHX_ const UV* const list)
+{
+ /* Return a pointer to a newly constructed inversion list, initialized to
+ * point to <list>, which has to be in the exact correct inversion list
+ * form, including internal fields.  Thus this is a dangerous routine that
+ * should not be used in the wrong hands.  The passed in 'list' contains
+ * several header fields at the beginning that are not part of the
+ * inversion list body proper */
+
+ const STRLEN length = (STRLEN) list[0];
+ const UV version_id =          list[1];
+ const bool offset   =    cBOOL(list[2]);
+#define HEADER_LENGTH 3
+ /* If any of the above changes in any way, you must change HEADER_LENGTH
+ * (if appropriate) and regenerate INVLIST_VERSION_ID by running
+ *      perl -E 'say int(rand 2**31-1)'
+ */
+#define INVLIST_VERSION_ID 148565664 /* This is a combination of a version and
+          data structure type, so that one being
+          passed in can be validated to be an
+          inversion list of the correct vintage.
+         */
+
+ SV* invlist = newSV_type(SVt_INVLIST);
+
+ PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY;
+
+ if (version_id != INVLIST_VERSION_ID) {
+  Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list");
+ }
+
+ /* The generated array passed in includes header elements that aren't part
+ * of the list proper, so start it just after them */
+ SvPV_set(invlist, (char *) (list + HEADER_LENGTH));
+
+ SvLEN_set(invlist, 0);  /* Means we own the contents, and the system
+       shouldn't touch it */
+
+ *(get_invlist_offset_addr(invlist)) = offset;
+
+ /* The 'length' passed to us is the physical number of elements in the
+ * inversion list.  But if there is an offset the logical number is one
+ * less than that */
+ invlist_set_len(invlist, length  - offset, offset);
+
+ invlist_set_previous_index(invlist, 0);
+
+ /* Initialize the iteration pointer. */
+ invlist_iterfinish(invlist);
+
+ SvREADONLY_on(invlist);
+
+ return invlist;
+}
+#endif /* ifndef PERL_IN_XSUB_RE */
+
+STATIC void
+S_invlist_extend(pTHX_ SV* const invlist, const UV new_max)
+{
+ /* Grow the maximum size of an inversion list */
+
+ PERL_ARGS_ASSERT_INVLIST_EXTEND;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ /* Add one to account for the zero element at the beginning which may not
+ * be counted by the calling parameters */
+ SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max + 1));
+}
+
+STATIC void
+S__append_range_to_invlist(pTHX_ SV* const invlist,
+        const UV start, const UV end)
+{
+   /* Subject to change or removal.  Append the range from 'start' to 'end' at
+ * the end of the inversion list.  The range must be above any existing
+ * ones. */
+
+ UV* array;
+ UV max = invlist_max(invlist);
+ UV len = _invlist_len(invlist);
+ bool offset;
+
+ PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
+
+ if (len == 0) { /* Empty lists must be initialized */
+  offset = start != 0;
+  array = _invlist_array_init(invlist, ! offset);
+ }
+ else {
+  /* Here, the existing list is non-empty. The current max entry in the
+  * list is generally the first value not in the set, except when the
+  * set extends to the end of permissible values, in which case it is
+  * the first entry in that final set, and so this call is an attempt to
+  * append out-of-order */
+
+  UV final_element = len - 1;
+  array = invlist_array(invlist);
+  if (array[final_element] > start
+   || ELEMENT_RANGE_MATCHES_INVLIST(final_element))
+  {
+   Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%"UVuf", start=%"UVuf", match=%c",
+     array[final_element], start,
+     ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f');
+  }
+
+  /* Here, it is a legal append.  If the new range begins with the first
+  * value not in the set, it is extending the set, so the new first
+  * value not in the set is one greater than the newly extended range.
+  * */
+  offset = *get_invlist_offset_addr(invlist);
+  if (array[final_element] == start) {
+   if (end != UV_MAX) {
+    array[final_element] = end + 1;
+   }
+   else {
+    /* But if the end is the maximum representable on the machine,
+    * just let the range that this would extend to have no end */
+    invlist_set_len(invlist, len - 1, offset);
+   }
+   return;
+  }
+ }
+
+ /* Here the new range doesn't extend any existing set.  Add it */
+
+ len += 2; /* Includes an element each for the start and end of range */
+
+ /* If wll overflow the existing space, extend, which may cause the array to
+ * be moved */
+ if (max < len) {
+  invlist_extend(invlist, len);
+
+  /* Have to set len here to avoid assert failure in invlist_array() */
+  invlist_set_len(invlist, len, offset);
+
+  array = invlist_array(invlist);
+ }
+ else {
+  invlist_set_len(invlist, len, offset);
+ }
+
+ /* The next item on the list starts the range, the one after that is
+ * one past the new range.  */
+ array[len - 2] = start;
+ if (end != UV_MAX) {
+  array[len - 1] = end + 1;
+ }
+ else {
+  /* But if the end is the maximum representable on the machine, just let
+  * the range have no end */
+  invlist_set_len(invlist, len - 1, offset);
+ }
+}
+
+#ifndef PERL_IN_XSUB_RE
+
+IV
+Perl__invlist_search(SV* const invlist, const UV cp)
+{
+ /* Searches the inversion list for the entry that contains the input code
+ * point <cp>.  If <cp> is not in the list, -1 is returned.  Otherwise, the
+ * return value is the index into the list's array of the range that
+ * contains <cp> */
+
+ IV low = 0;
+ IV mid;
+ IV high = _invlist_len(invlist);
+ const IV highest_element = high - 1;
+ const UV* array;
+
+ PERL_ARGS_ASSERT__INVLIST_SEARCH;
+
+ /* If list is empty, return failure. */
+ if (high == 0) {
+  return -1;
+ }
+
+ /* (We can't get the array unless we know the list is non-empty) */
+ array = invlist_array(invlist);
+
+ mid = invlist_previous_index(invlist);
+ assert(mid >=0 && mid <= highest_element);
+
+ /* <mid> contains the cache of the result of the previous call to this
+ * function (0 the first time).  See if this call is for the same result,
+ * or if it is for mid-1.  This is under the theory that calls to this
+ * function will often be for related code points that are near each other.
+ * And benchmarks show that caching gives better results.  We also test
+ * here if the code point is within the bounds of the list.  These tests
+ * replace others that would have had to be made anyway to make sure that
+ * the array bounds were not exceeded, and these give us extra information
+ * at the same time */
+ if (cp >= array[mid]) {
+  if (cp >= array[highest_element]) {
+   return highest_element;
+  }
+
+  /* Here, array[mid] <= cp < array[highest_element].  This means that
+  * the final element is not the answer, so can exclude it; it also
+  * means that <mid> is not the final element, so can refer to 'mid + 1'
+  * safely */
+  if (cp < array[mid + 1]) {
+   return mid;
+  }
+  high--;
+  low = mid + 1;
+ }
+ else { /* cp < aray[mid] */
+  if (cp < array[0]) { /* Fail if outside the array */
+   return -1;
+  }
+  high = mid;
+  if (cp >= array[mid - 1]) {
+   goto found_entry;
+  }
+ }
+
+ /* Binary search.  What we are looking for is <i> such that
+ * array[i] <= cp < array[i+1]
+ * The loop below converges on the i+1.  Note that there may not be an
+ * (i+1)th element in the array, and things work nonetheless */
+ while (low < high) {
+  mid = (low + high) / 2;
+  assert(mid <= highest_element);
+  if (array[mid] <= cp) { /* cp >= array[mid] */
+   low = mid + 1;
+
+   /* We could do this extra test to exit the loop early.
+   if (cp < array[low]) {
+    return mid;
+   }
+   */
+  }
+  else { /* cp < array[mid] */
+   high = mid;
+  }
+ }
+
+  found_entry:
+ high--;
+ invlist_set_previous_index(invlist, high);
+ return high;
+}
+
+void
+Perl__invlist_populate_swatch(SV* const invlist,
+       const UV start, const UV end, U8* swatch)
+{
+ /* populates a swatch of a swash the same way swatch_get() does in utf8.c,
+ * but is used when the swash has an inversion list.  This makes this much
+ * faster, as it uses a binary search instead of a linear one.  This is
+ * intimately tied to that function, and perhaps should be in utf8.c,
+ * except it is intimately tied to inversion lists as well.  It assumes
+ * that <swatch> is all 0's on input */
+
+ UV current = start;
+ const IV len = _invlist_len(invlist);
+ IV i;
+ const UV * array;
+
+ PERL_ARGS_ASSERT__INVLIST_POPULATE_SWATCH;
+
+ if (len == 0) { /* Empty inversion list */
+  return;
+ }
+
+ array = invlist_array(invlist);
+
+ /* Find which element it is */
+ i = _invlist_search(invlist, start);
+
+ /* We populate from <start> to <end> */
+ while (current < end) {
+  UV upper;
+
+  /* The inversion list gives the results for every possible code point
+  * after the first one in the list.  Only those ranges whose index is
+  * even are ones that the inversion list matches.  For the odd ones,
+  * and if the initial code point is not in the list, we have to skip
+  * forward to the next element */
+  if (i == -1 || ! ELEMENT_RANGE_MATCHES_INVLIST(i)) {
+   i++;
+   if (i >= len) { /* Finished if beyond the end of the array */
+    return;
+   }
+   current = array[i];
+   if (current >= end) {   /* Finished if beyond the end of what we
+         are populating */
+    if (LIKELY(end < UV_MAX)) {
+     return;
+    }
+
+    /* We get here when the upper bound is the maximum
+    * representable on the machine, and we are looking for just
+    * that code point.  Have to special case it */
+    i = len;
+    goto join_end_of_list;
+   }
+  }
+  assert(current >= start);
+
+  /* The current range ends one below the next one, except don't go past
+  * <end> */
+  i++;
+  upper = (i < len && array[i] < end) ? array[i] : end;
+
+  /* Here we are in a range that matches.  Populate a bit in the 3-bit U8
+  * for each code point in it */
+  for (; current < upper; current++) {
+   const STRLEN offset = (STRLEN)(current - start);
+   swatch[offset >> 3] |= 1 << (offset & 7);
+  }
+
+ join_end_of_list:
+
+  /* Quit if at the end of the list */
+  if (i >= len) {
+
+   /* But first, have to deal with the highest possible code point on
+   * the platform.  The previous code assumes that <end> is one
+   * beyond where we want to populate, but that is impossible at the
+   * platform's infinity, so have to handle it specially */
+   if (UNLIKELY(end == UV_MAX && ELEMENT_RANGE_MATCHES_INVLIST(len-1)))
+   {
+    const STRLEN offset = (STRLEN)(end - start);
+    swatch[offset >> 3] |= 1 << (offset & 7);
+   }
+   return;
+  }
+
+  /* Advance to the next range, which will be for code points not in the
+  * inversion list */
+  current = array[i];
+ }
+
+ return;
+}
+
+void
+Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b,
+          const bool complement_b, SV** output)
+{
+ /* Take the union of two inversion lists and point <output> to it.  *output
+ * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
+ * the reference count to that list will be decremented if not already a
+ * temporary (mortal); otherwise *output will be made correspondingly
+ * mortal.  The first list, <a>, may be NULL, in which case a copy of the
+ * second list is returned.  If <complement_b> is TRUE, the union is taken
+ * of the complement (inversion) of <b> instead of b itself.
+ *
+ * The basis for this comes from "Unicode Demystified" Chapter 13 by
+ * Richard Gillam, published by Addison-Wesley, and explained at some
+ * length there.  The preface says to incorporate its examples into your
+ * code at your own risk.
+ *
+ * The algorithm is like a merge sort.
+ *
+ * XXX A potential performance improvement is to keep track as we go along
+ * if only one of the inputs contributes to the result, meaning the other
+ * is a subset of that one.  In that case, we can skip the final copy and
+ * return the larger of the input lists, but then outside code might need
+ * to keep track of whether to free the input list or not */
+
+ const UV* array_a;    /* a's array */
+ const UV* array_b;
+ UV len_a;     /* length of a's array */
+ UV len_b;
+
+ SV* u;   /* the resulting union */
+ UV* array_u;
+ UV len_u;
+
+ UV i_a = 0;      /* current index into a's array */
+ UV i_b = 0;
+ UV i_u = 0;
+
+ /* running count, as explained in the algorithm source book; items are
+ * stopped accumulating and are output when the count changes to/from 0.
+ * The count is incremented when we start a range that's in the set, and
+ * decremented when we start a range that's not in the set.  So its range
+ * is 0 to 2.  Only when the count is zero is something not in the set.
+ */
+ UV count = 0;
+
+ PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND;
+ assert(a != b);
+
+ /* If either one is empty, the union is the other one */
+ if (a == NULL || ((len_a = _invlist_len(a)) == 0)) {
+  bool make_temp = FALSE; /* Should we mortalize the result? */
+
+  if (*output == a) {
+   if (a != NULL) {
+    if (! (make_temp = cBOOL(SvTEMP(a)))) {
+     SvREFCNT_dec_NN(a);
+    }
+   }
+  }
+  if (*output != b) {
+   *output = invlist_clone(b);
+   if (complement_b) {
+    _invlist_invert(*output);
+   }
+  } /* else *output already = b; */
+
+  if (make_temp) {
+   sv_2mortal(*output);
+  }
+  return;
+ }
+ else if ((len_b = _invlist_len(b)) == 0) {
+  bool make_temp = FALSE;
+  if (*output == b) {
+   if (! (make_temp = cBOOL(SvTEMP(b)))) {
+    SvREFCNT_dec_NN(b);
+   }
+  }
+
+  /* The complement of an empty list is a list that has everything in it,
+  * so the union with <a> includes everything too */
+  if (complement_b) {
+   if (a == *output) {
+    if (! (make_temp = cBOOL(SvTEMP(a)))) {
+     SvREFCNT_dec_NN(a);
+    }
+   }
+   *output = _new_invlist(1);
+   _append_range_to_invlist(*output, 0, UV_MAX);
+  }
+  else if (*output != a) {
+   *output = invlist_clone(a);
+  }
+  /* else *output already = a; */
+
+  if (make_temp) {
+   sv_2mortal(*output);
+  }
+  return;
+ }
+
+ /* Here both lists exist and are non-empty */
+ array_a = invlist_array(a);
+ array_b = invlist_array(b);
+
+ /* If are to take the union of 'a' with the complement of b, set it
+ * up so are looking at b's complement. */
+ if (complement_b) {
+
+  /* To complement, we invert: if the first element is 0, remove it.  To
+  * do this, we just pretend the array starts one later */
+  if (array_b[0] == 0) {
+   array_b++;
+   len_b--;
+  }
+  else {
+
+   /* But if the first element is not zero, we pretend the list starts
+   * at the 0 that is always stored immediately before the array. */
+   array_b--;
+   len_b++;
+  }
+ }
+
+ /* Size the union for the worst case: that the sets are completely
+ * disjoint */
+ u = _new_invlist(len_a + len_b);
+
+ /* Will contain U+0000 if either component does */
+ array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0)
+         || (len_b > 0 && array_b[0] == 0));
+
+ /* Go through each list item by item, stopping when exhausted one of
+ * them */
+ while (i_a < len_a && i_b < len_b) {
+  UV cp;     /* The element to potentially add to the union's array */
+  bool cp_in_set;   /* is it in the the input list's set or not */
+
+  /* We need to take one or the other of the two inputs for the union.
+  * Since we are merging two sorted lists, we take the smaller of the
+  * next items.  In case of a tie, we take the one that is in its set
+  * first.  If we took one not in the set first, it would decrement the
+  * count, possibly to 0 which would cause it to be output as ending the
+  * range, and the next time through we would take the same number, and
+  * output it again as beginning the next range.  By doing it the
+  * opposite way, there is no possibility that the count will be
+  * momentarily decremented to 0, and thus the two adjoining ranges will
+  * be seamlessly merged.  (In a tie and both are in the set or both not
+  * in the set, it doesn't matter which we take first.) */
+  if (array_a[i_a] < array_b[i_b]
+   || (array_a[i_a] == array_b[i_b]
+    && ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
+  {
+   cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
+   cp= array_a[i_a++];
+  }
+  else {
+   cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
+   cp = array_b[i_b++];
+  }
+
+  /* Here, have chosen which of the two inputs to look at.  Only output
+  * if the running count changes to/from 0, which marks the
+  * beginning/end of a range in that's in the set */
+  if (cp_in_set) {
+   if (count == 0) {
+    array_u[i_u++] = cp;
+   }
+   count++;
+  }
+  else {
+   count--;
+   if (count == 0) {
+    array_u[i_u++] = cp;
+   }
+  }
+ }
+
+ /* Here, we are finished going through at least one of the lists, which
+ * means there is something remaining in at most one.  We check if the list
+ * that hasn't been exhausted is positioned such that we are in the middle
+ * of a range in its set or not.  (i_a and i_b point to the element beyond
+ * the one we care about.) If in the set, we decrement 'count'; if 0, there
+ * is potentially more to output.
+ * There are four cases:
+ * 1) Both weren't in their sets, count is 0, and remains 0.  What's left
+ *    in the union is entirely from the non-exhausted set.
+ * 2) Both were in their sets, count is 2.  Nothing further should
+ *    be output, as everything that remains will be in the exhausted
+ *    list's set, hence in the union; decrementing to 1 but not 0 insures
+ *    that
+ * 3) the exhausted was in its set, non-exhausted isn't, count is 1.
+ *    Nothing further should be output because the union includes
+ *    everything from the exhausted set.  Not decrementing ensures that.
+ * 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
+ *    decrementing to 0 insures that we look at the remainder of the
+ *    non-exhausted set */
+ if ((i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
+  || (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
+ {
+  count--;
+ }
+
+ /* The final length is what we've output so far, plus what else is about to
+ * be output.  (If 'count' is non-zero, then the input list we exhausted
+ * has everything remaining up to the machine's limit in its set, and hence
+ * in the union, so there will be no further output. */
+ len_u = i_u;
+ if (count == 0) {
+  /* At most one of the subexpressions will be non-zero */
+  len_u += (len_a - i_a) + (len_b - i_b);
+ }
+
+ /* Set result to final length, which can change the pointer to array_u, so
+ * re-find it */
+ if (len_u != _invlist_len(u)) {
+  invlist_set_len(u, len_u, *get_invlist_offset_addr(u));
+  invlist_trim(u);
+  array_u = invlist_array(u);
+ }
+
+ /* When 'count' is 0, the list that was exhausted (if one was shorter than
+ * the other) ended with everything above it not in its set.  That means
+ * that the remaining part of the union is precisely the same as the
+ * non-exhausted list, so can just copy it unchanged.  (If both list were
+ * exhausted at the same time, then the operations below will be both 0.)
+ */
+ if (count == 0) {
+  IV copy_count; /* At most one will have a non-zero copy count */
+  if ((copy_count = len_a - i_a) > 0) {
+   Copy(array_a + i_a, array_u + i_u, copy_count, UV);
+  }
+  else if ((copy_count = len_b - i_b) > 0) {
+   Copy(array_b + i_b, array_u + i_u, copy_count, UV);
+  }
+ }
+
+ /*  We may be removing a reference to one of the inputs.  If so, the output
+ *  is made mortal if the input was.  (Mortal SVs shouldn't have their ref
+ *  count decremented) */
+ if (a == *output || b == *output) {
+  assert(! invlist_is_iterating(*output));
+  if ((SvTEMP(*output))) {
+   sv_2mortal(u);
+  }
+  else {
+   SvREFCNT_dec_NN(*output);
+  }
+ }
+
+ *output = u;
+
+ return;
+}
+
+void
+Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b,
+           const bool complement_b, SV** i)
+{
+ /* Take the intersection of two inversion lists and point <i> to it.  *i
+ * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
+ * the reference count to that list will be decremented if not already a
+ * temporary (mortal); otherwise *i will be made correspondingly mortal.
+ * The first list, <a>, may be NULL, in which case an empty list is
+ * returned.  If <complement_b> is TRUE, the result will be the
+ * intersection of <a> and the complement (or inversion) of <b> instead of
+ * <b> directly.
+ *
+ * The basis for this comes from "Unicode Demystified" Chapter 13 by
+ * Richard Gillam, published by Addison-Wesley, and explained at some
+ * length there.  The preface says to incorporate its examples into your
+ * code at your own risk.  In fact, it had bugs
+ *
+ * The algorithm is like a merge sort, and is essentially the same as the
+ * union above
+ */
+
+ const UV* array_a;  /* a's array */
+ const UV* array_b;
+ UV len_a; /* length of a's array */
+ UV len_b;
+
+ SV* r;       /* the resulting intersection */
+ UV* array_r;
+ UV len_r;
+
+ UV i_a = 0;      /* current index into a's array */
+ UV i_b = 0;
+ UV i_r = 0;
+
+ /* running count, as explained in the algorithm source book; items are
+ * stopped accumulating and are output when the count changes to/from 2.
+ * The count is incremented when we start a range that's in the set, and
+ * decremented when we start a range that's not in the set.  So its range
+ * is 0 to 2.  Only when the count is 2 is something in the intersection.
+ */
+ UV count = 0;
+
+ PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND;
+ assert(a != b);
+
+ /* Special case if either one is empty */
+ len_a = (a == NULL) ? 0 : _invlist_len(a);
+ if ((len_a == 0) || ((len_b = _invlist_len(b)) == 0)) {
+  bool make_temp = FALSE;
+
+  if (len_a != 0 && complement_b) {
+
+   /* Here, 'a' is not empty, therefore from the above 'if', 'b' must
+   * be empty.  Here, also we are using 'b's complement, which hence
+   * must be every possible code point.  Thus the intersection is
+   * simply 'a'. */
+   if (*i != a) {
+    if (*i == b) {
+     if (! (make_temp = cBOOL(SvTEMP(b)))) {
+      SvREFCNT_dec_NN(b);
+     }
+    }
+
+    *i = invlist_clone(a);
+   }
+   /* else *i is already 'a' */
+
+   if (make_temp) {
+    sv_2mortal(*i);
+   }
+   return;
+  }
+
+  /* Here, 'a' or 'b' is empty and not using the complement of 'b'.  The
+  * intersection must be empty */
+  if (*i == a) {
+   if (! (make_temp = cBOOL(SvTEMP(a)))) {
+    SvREFCNT_dec_NN(a);
+   }
+  }
+  else if (*i == b) {
+   if (! (make_temp = cBOOL(SvTEMP(b)))) {
+    SvREFCNT_dec_NN(b);
+   }
+  }
+  *i = _new_invlist(0);
+  if (make_temp) {
+   sv_2mortal(*i);
+  }
+
+  return;
+ }
+
+ /* Here both lists exist and are non-empty */
+ array_a = invlist_array(a);
+ array_b = invlist_array(b);
+
+ /* If are to take the intersection of 'a' with the complement of b, set it
+ * up so are looking at b's complement. */
+ if (complement_b) {
+
+  /* To complement, we invert: if the first element is 0, remove it.  To
+  * do this, we just pretend the array starts one later */
+  if (array_b[0] == 0) {
+   array_b++;
+   len_b--;
+  }
+  else {
+
+   /* But if the first element is not zero, we pretend the list starts
+   * at the 0 that is always stored immediately before the array. */
+   array_b--;
+   len_b++;
+  }
+ }
+
+ /* Size the intersection for the worst case: that the intersection ends up
+ * fragmenting everything to be completely disjoint */
+ r= _new_invlist(len_a + len_b);
+
+ /* Will contain U+0000 iff both components do */
+ array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0
+         && len_b > 0 && array_b[0] == 0);
+
+ /* Go through each list item by item, stopping when exhausted one of
+ * them */
+ while (i_a < len_a && i_b < len_b) {
+  UV cp;     /* The element to potentially add to the intersection's
+     array */
+  bool cp_in_set; /* Is it in the input list's set or not */
+
+  /* We need to take one or the other of the two inputs for the
+  * intersection.  Since we are merging two sorted lists, we take the
+  * smaller of the next items.  In case of a tie, we take the one that
+  * is not in its set first (a difference from the union algorithm).  If
+  * we took one in the set first, it would increment the count, possibly
+  * to 2 which would cause it to be output as starting a range in the
+  * intersection, and the next time through we would take that same
+  * number, and output it again as ending the set.  By doing it the
+  * opposite of this, there is no possibility that the count will be
+  * momentarily incremented to 2.  (In a tie and both are in the set or
+  * both not in the set, it doesn't matter which we take first.) */
+  if (array_a[i_a] < array_b[i_b]
+   || (array_a[i_a] == array_b[i_b]
+    && ! ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
+  {
+   cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
+   cp= array_a[i_a++];
+  }
+  else {
+   cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
+   cp= array_b[i_b++];
+  }
+
+  /* Here, have chosen which of the two inputs to look at.  Only output
+  * if the running count changes to/from 2, which marks the
+  * beginning/end of a range that's in the intersection */
+  if (cp_in_set) {
+   count++;
+   if (count == 2) {
+    array_r[i_r++] = cp;
+   }
+  }
+  else {
+   if (count == 2) {
+    array_r[i_r++] = cp;
+   }
+   count--;
+  }
+ }
+
+ /* Here, we are finished going through at least one of the lists, which
+ * means there is something remaining in at most one.  We check if the list
+ * that has been exhausted is positioned such that we are in the middle
+ * of a range in its set or not.  (i_a and i_b point to elements 1 beyond
+ * the ones we care about.)  There are four cases:
+ * 1) Both weren't in their sets, count is 0, and remains 0.  There's
+ *    nothing left in the intersection.
+ * 2) Both were in their sets, count is 2 and perhaps is incremented to
+ *    above 2.  What should be output is exactly that which is in the
+ *    non-exhausted set, as everything it has is also in the intersection
+ *    set, and everything it doesn't have can't be in the intersection
+ * 3) The exhausted was in its set, non-exhausted isn't, count is 1, and
+ *    gets incremented to 2.  Like the previous case, the intersection is
+ *    everything that remains in the non-exhausted set.
+ * 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
+ *    remains 1.  And the intersection has nothing more. */
+ if ((i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
+  || (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
+ {
+  count++;
+ }
+
+ /* The final length is what we've output so far plus what else is in the
+ * intersection.  At most one of the subexpressions below will be non-zero
+ * */
+ len_r = i_r;
+ if (count >= 2) {
+  len_r += (len_a - i_a) + (len_b - i_b);
+ }
+
+ /* Set result to final length, which can change the pointer to array_r, so
+ * re-find it */
+ if (len_r != _invlist_len(r)) {
+  invlist_set_len(r, len_r, *get_invlist_offset_addr(r));
+  invlist_trim(r);
+  array_r = invlist_array(r);
+ }
+
+ /* Finish outputting any remaining */
+ if (count >= 2) { /* At most one will have a non-zero copy count */
+  IV copy_count;
+  if ((copy_count = len_a - i_a) > 0) {
+   Copy(array_a + i_a, array_r + i_r, copy_count, UV);
+  }
+  else if ((copy_count = len_b - i_b) > 0) {
+   Copy(array_b + i_b, array_r + i_r, copy_count, UV);
+  }
+ }
+
+ /*  We may be removing a reference to one of the inputs.  If so, the output
+ *  is made mortal if the input was.  (Mortal SVs shouldn't have their ref
+ *  count decremented) */
+ if (a == *i || b == *i) {
+  assert(! invlist_is_iterating(*i));
+  if (SvTEMP(*i)) {
+   sv_2mortal(r);
+  }
+  else {
+   SvREFCNT_dec_NN(*i);
+  }
+ }
+
+ *i = r;
+
+ return;
+}
+
+SV*
+Perl__add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end)
+{
+ /* Add the range from 'start' to 'end' inclusive to the inversion list's
+ * set.  A pointer to the inversion list is returned.  This may actually be
+ * a new list, in which case the passed in one has been destroyed.  The
+ * passed-in inversion list can be NULL, in which case a new one is created
+ * with just the one range in it */
+
+ SV* range_invlist;
+ UV len;
+
+ if (invlist == NULL) {
+  invlist = _new_invlist(2);
+  len = 0;
+ }
+ else {
+  len = _invlist_len(invlist);
+ }
+
+ /* If comes after the final entry actually in the list, can just append it
+ * to the end, */
+ if (len == 0
+  || (! ELEMENT_RANGE_MATCHES_INVLIST(len - 1)
+   && start >= invlist_array(invlist)[len - 1]))
+ {
+  _append_range_to_invlist(invlist, start, end);
+  return invlist;
+ }
+
+ /* Here, can't just append things, create and return a new inversion list
+ * which is the union of this range and the existing inversion list */
+ range_invlist = _new_invlist(2);
+ _append_range_to_invlist(range_invlist, start, end);
+
+ _invlist_union(invlist, range_invlist, &invlist);
+
+ /* The temporary can be freed */
+ SvREFCNT_dec_NN(range_invlist);
+
+ return invlist;
+}
+
+SV*
+Perl__setup_canned_invlist(pTHX_ const STRLEN size, const UV element0,
+        UV** other_elements_ptr)
+{
+ /* Create and return an inversion list whose contents are to be populated
+ * by the caller.  The caller gives the number of elements (in 'size') and
+ * the very first element ('element0').  This function will set
+ * '*other_elements_ptr' to an array of UVs, where the remaining elements
+ * are to be placed.
+ *
+ * Obviously there is some trust involved that the caller will properly
+ * fill in the other elements of the array.
+ *
+ * (The first element needs to be passed in, as the underlying code does
+ * things differently depending on whether it is zero or non-zero) */
+
+ SV* invlist = _new_invlist(size);
+ bool offset;
+
+ PERL_ARGS_ASSERT__SETUP_CANNED_INVLIST;
+
+ _append_range_to_invlist(invlist, element0, element0);
+ offset = *get_invlist_offset_addr(invlist);
+
+ invlist_set_len(invlist, size, offset);
+ *other_elements_ptr = invlist_array(invlist) + 1;
+ return invlist;
+}
+
+#endif
+
+PERL_STATIC_INLINE SV*
+S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) {
+ return _add_range_to_invlist(invlist, cp, cp);
+}
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl__invlist_invert(pTHX_ SV* const invlist)
+{
+ /* Complement the input inversion list.  This adds a 0 if the list didn't
+ * have a zero; removes it otherwise.  As described above, the data
+ * structure is set up so that this is very efficient */
+
+ PERL_ARGS_ASSERT__INVLIST_INVERT;
+
+ assert(! invlist_is_iterating(invlist));
+
+ /* The inverse of matching nothing is matching everything */
+ if (_invlist_len(invlist) == 0) {
+  _append_range_to_invlist(invlist, 0, UV_MAX);
+  return;
+ }
+
+ *get_invlist_offset_addr(invlist) = ! *get_invlist_offset_addr(invlist);
+}
+
+#endif
+
+PERL_STATIC_INLINE SV*
+S_invlist_clone(pTHX_ SV* const invlist)
+{
+
+ /* Return a new inversion list that is a copy of the input one, which is
+ * unchanged.  The new list will not be mortal even if the old one was. */
+
+ /* Need to allocate extra space to accommodate Perl's addition of a
+ * trailing NUL to SvPV's, since it thinks they are always strings */
+ SV* new_invlist = _new_invlist(_invlist_len(invlist) + 1);
+ STRLEN physical_length = SvCUR(invlist);
+ bool offset = *(get_invlist_offset_addr(invlist));
+
+ PERL_ARGS_ASSERT_INVLIST_CLONE;
+
+ *(get_invlist_offset_addr(new_invlist)) = offset;
+ invlist_set_len(new_invlist, _invlist_len(invlist), offset);
+ Copy(SvPVX(invlist), SvPVX(new_invlist), physical_length, char);
+
+ return new_invlist;
+}
+
+PERL_STATIC_INLINE STRLEN*
+S_get_invlist_iter_addr(SV* invlist)
+{
+ /* Return the address of the UV that contains the current iteration
+ * position */
+
+ PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ return &(((XINVLIST*) SvANY(invlist))->iterator);
+}
+
+PERL_STATIC_INLINE void
+S_invlist_iterinit(SV* invlist) /* Initialize iterator for invlist */
+{
+ PERL_ARGS_ASSERT_INVLIST_ITERINIT;
+
+ *get_invlist_iter_addr(invlist) = 0;
+}
+
+PERL_STATIC_INLINE void
+S_invlist_iterfinish(SV* invlist)
+{
+ /* Terminate iterator for invlist.  This is to catch development errors.
+ * Any iteration that is interrupted before completed should call this
+ * function.  Functions that add code points anywhere else but to the end
+ * of an inversion list assert that they are not in the middle of an
+ * iteration.  If they were, the addition would make the iteration
+ * problematical: if the iteration hadn't reached the place where things
+ * were being added, it would be ok */
+
+ PERL_ARGS_ASSERT_INVLIST_ITERFINISH;
+
+ *get_invlist_iter_addr(invlist) = (STRLEN) UV_MAX;
+}
+
+STATIC bool
+S_invlist_iternext(SV* invlist, UV* start, UV* end)
+{
+ /* An C<invlist_iterinit> call on <invlist> must be used to set this up.
+ * This call sets in <*start> and <*end>, the next range in <invlist>.
+ * Returns <TRUE> if successful and the next call will return the next
+ * range; <FALSE> if was already at the end of the list.  If the latter,
+ * <*start> and <*end> are unchanged, and the next call to this function
+ * will start over at the beginning of the list */
+
+ STRLEN* pos = get_invlist_iter_addr(invlist);
+ UV len = _invlist_len(invlist);
+ UV *array;
+
+ PERL_ARGS_ASSERT_INVLIST_ITERNEXT;
+
+ if (*pos >= len) {
+  *pos = (STRLEN) UV_MAX; /* Force iterinit() to be required next time */
+  return FALSE;
+ }
+
+ array = invlist_array(invlist);
+
+ *start = array[(*pos)++];
+
+ if (*pos >= len) {
+  *end = UV_MAX;
+ }
+ else {
+  *end = array[(*pos)++] - 1;
+ }
+
+ return TRUE;
+}
+
+PERL_STATIC_INLINE UV
+S_invlist_highest(SV* const invlist)
+{
+ /* Returns the highest code point that matches an inversion list.  This API
+ * has an ambiguity, as it returns 0 under either the highest is actually
+ * 0, or if the list is empty.  If this distinction matters to you, check
+ * for emptiness before calling this function */
+
+ UV len = _invlist_len(invlist);
+ UV *array;
+
+ PERL_ARGS_ASSERT_INVLIST_HIGHEST;
+
+ if (len == 0) {
+  return 0;
+ }
+
+ array = invlist_array(invlist);
+
+ /* The last element in the array in the inversion list always starts a
+ * range that goes to infinity.  That range may be for code points that are
+ * matched in the inversion list, or it may be for ones that aren't
+ * matched.  In the latter case, the highest code point in the set is one
+ * less than the beginning of this range; otherwise it is the final element
+ * of this range: infinity */
+ return (ELEMENT_RANGE_MATCHES_INVLIST(len - 1))
+  ? UV_MAX
+  : array[len - 1] - 1;
+}
+
+#ifndef PERL_IN_XSUB_RE
+SV *
+Perl__invlist_contents(pTHX_ SV* const invlist)
+{
+ /* Get the contents of an inversion list into a string SV so that they can
+ * be printed out.  It uses the format traditionally done for debug tracing
+ */
+
+ UV start, end;
+ SV* output = newSVpvs("\n");
+
+ PERL_ARGS_ASSERT__INVLIST_CONTENTS;
+
+ assert(! invlist_is_iterating(invlist));
+
+ invlist_iterinit(invlist);
+ while (invlist_iternext(invlist, &start, &end)) {
+  if (end == UV_MAX) {
+   Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\tINFINITY\n", start);
+  }
+  else if (end != start) {
+   Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\t%04"UVXf"\n",
+     start,       end);
+  }
+  else {
+   Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\n", start);
+  }
+ }
+
+ return output;
+}
+#endif
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl__invlist_dump(pTHX_ PerlIO *file, I32 level,
+      const char * const indent, SV* const invlist)
+{
+ /* Designed to be called only by do_sv_dump().  Dumps out the ranges of the
+ * inversion list 'invlist' to 'file' at 'level'  Each line is prefixed by
+ * the string 'indent'.  The output looks like this:
+  [0] 0x000A .. 0x000D
+  [2] 0x0085
+  [4] 0x2028 .. 0x2029
+  [6] 0x3104 .. INFINITY
+ * This means that the first range of code points matched by the list are
+ * 0xA through 0xD; the second range contains only the single code point
+ * 0x85, etc.  An inversion list is an array of UVs.  Two array elements
+ * are used to define each range (except if the final range extends to
+ * infinity, only a single element is needed).  The array index of the
+ * first element for the corresponding range is given in brackets. */
+
+ UV start, end;
+ STRLEN count = 0;
+
+ PERL_ARGS_ASSERT__INVLIST_DUMP;
+
+ if (invlist_is_iterating(invlist)) {
+  Perl_dump_indent(aTHX_ level, file,
+   "%sCan't dump inversion list because is in middle of iterating\n",
+   indent);
+  return;
+ }
+
+ invlist_iterinit(invlist);
+ while (invlist_iternext(invlist, &start, &end)) {
+  if (end == UV_MAX) {
+   Perl_dump_indent(aTHX_ level, file,
+         "%s[%"UVuf"] 0x%04"UVXf" .. INFINITY\n",
+        indent, (UV)count, start);
+  }
+  else if (end != start) {
+   Perl_dump_indent(aTHX_ level, file,
+         "%s[%"UVuf"] 0x%04"UVXf" .. 0x%04"UVXf"\n",
+        indent, (UV)count, start,         end);
+  }
+  else {
+   Perl_dump_indent(aTHX_ level, file, "%s[%"UVuf"] 0x%04"UVXf"\n",
+           indent, (UV)count, start);
+  }
+  count += 2;
+ }
+}
+
+void
+Perl__load_PL_utf8_foldclosures (pTHX)
+{
+ assert(! PL_utf8_foldclosures);
+
+ /* If the folds haven't been read in, call a fold function
+ * to force that */
+ if (! PL_utf8_tofold) {
+  U8 dummy[UTF8_MAXBYTES_CASE+1];
+
+  /* This string is just a short named one above \xff */
+  to_utf8_fold((U8*) HYPHEN_UTF8, dummy, NULL);
+  assert(PL_utf8_tofold); /* Verify that worked */
+ }
+ PL_utf8_foldclosures = _swash_inversion_hash(PL_utf8_tofold);
+}
+#endif
+
+#ifdef PERL_ARGS_ASSERT__INVLISTEQ
+bool
+S__invlistEQ(pTHX_ SV* const a, SV* const b, const bool complement_b)
+{
+ /* Return a boolean as to if the two passed in inversion lists are
+ * identical.  The final argument, if TRUE, says to take the complement of
+ * the second inversion list before doing the comparison */
+
+ const UV* array_a = invlist_array(a);
+ const UV* array_b = invlist_array(b);
+ UV len_a = _invlist_len(a);
+ UV len_b = _invlist_len(b);
+
+ UV i = 0;      /* current index into the arrays */
+ bool retval = TRUE;     /* Assume are identical until proven otherwise */
+
+ PERL_ARGS_ASSERT__INVLISTEQ;
+
+ /* If are to compare 'a' with the complement of b, set it
+ * up so are looking at b's complement. */
+ if (complement_b) {
+
+  /* The complement of nothing is everything, so <a> would have to have
+  * just one element, starting at zero (ending at infinity) */
+  if (len_b == 0) {
+   return (len_a == 1 && array_a[0] == 0);
+  }
+  else if (array_b[0] == 0) {
+
+   /* Otherwise, to complement, we invert.  Here, the first element is
+   * 0, just remove it.  To do this, we just pretend the array starts
+   * one later */
+
+   array_b++;
+   len_b--;
+  }
+  else {
+
+   /* But if the first element is not zero, we pretend the list starts
+   * at the 0 that is always stored immediately before the array. */
+   array_b--;
+   len_b++;
+  }
+ }
+
+ /* Make sure that the lengths are the same, as well as the final element
+ * before looping through the remainder.  (Thus we test the length, final,
+ * and first elements right off the bat) */
+ if (len_a != len_b || array_a[len_a-1] != array_b[len_a-1]) {
+  retval = FALSE;
+ }
+ else for (i = 0; i < len_a - 1; i++) {
+  if (array_a[i] != array_b[i]) {
+   retval = FALSE;
+   break;
+  }
+ }
+
+ return retval;
+}
+#endif
+
+/*
+ * As best we can, determine the characters that can match the start of
+ * the given EXACTF-ish node.
+ *
+ * Returns the invlist as a new SV*; it is the caller's responsibility to
+ * call SvREFCNT_dec() when done with it.
+ */
+STATIC SV*
+S__make_exactf_invlist(pTHX_ RExC_state_t *pRExC_state, regnode *node)
+{
+ const U8 * s = (U8*)STRING(node);
+ SSize_t bytelen = STR_LEN(node);
+ UV uc;
+ /* Start out big enough for 2 separate code points */
+ SV* invlist = _new_invlist(4);
+
+ PERL_ARGS_ASSERT__MAKE_EXACTF_INVLIST;
+
+ if (! UTF) {
+  uc = *s;
+
+  /* We punt and assume can match anything if the node begins
+  * with a multi-character fold.  Things are complicated.  For
+  * example, /ffi/i could match any of:
+  *  "\N{LATIN SMALL LIGATURE FFI}"
+  *  "\N{LATIN SMALL LIGATURE FF}I"
+  *  "F\N{LATIN SMALL LIGATURE FI}"
+  *  plus several other things; and making sure we have all the
+  *  possibilities is hard. */
+  if (is_MULTI_CHAR_FOLD_latin1_safe(s, s + bytelen)) {
+   invlist = _add_range_to_invlist(invlist, 0, UV_MAX);
+  }
+  else {
+   /* Any Latin1 range character can potentially match any
+   * other depending on the locale */
+   if (OP(node) == EXACTFL) {
+    _invlist_union(invlist, PL_Latin1, &invlist);
+   }
+   else {
+    /* But otherwise, it matches at least itself.  We can
+    * quickly tell if it has a distinct fold, and if so,
+    * it matches that as well */
+    invlist = add_cp_to_invlist(invlist, uc);
+    if (IS_IN_SOME_FOLD_L1(uc))
+     invlist = add_cp_to_invlist(invlist, PL_fold_latin1[uc]);
+   }
+
+   /* Some characters match above-Latin1 ones under /i.  This
+   * is true of EXACTFL ones when the locale is UTF-8 */
+   if (HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(uc)
+    && (! isASCII(uc) || (OP(node) != EXACTFA
+         && OP(node) != EXACTFA_NO_TRIE)))
+   {
+    add_above_Latin1_folds(pRExC_state, (U8) uc, &invlist);
+   }
+  }
+ }
+ else {  /* Pattern is UTF-8 */
+  U8 folded[UTF8_MAX_FOLD_CHAR_EXPAND * UTF8_MAXBYTES_CASE + 1] = { '\0' };
+  STRLEN foldlen = UTF8SKIP(s);
+  const U8* e = s + bytelen;
+  SV** listp;
+
+  uc = utf8_to_uvchr_buf(s, s + bytelen, NULL);
+
+  /* The only code points that aren't folded in a UTF EXACTFish
+  * node are are the problematic ones in EXACTFL nodes */
+  if (OP(node) == EXACTFL && is_PROBLEMATIC_LOCALE_FOLDEDS_START_cp(uc)) {
+   /* We need to check for the possibility that this EXACTFL
+   * node begins with a multi-char fold.  Therefore we fold
+   * the first few characters of it so that we can make that
+   * check */
+   U8 *d = folded;
+   int i;
+
+   for (i = 0; i < UTF8_MAX_FOLD_CHAR_EXPAND && s < e; i++) {
+    if (isASCII(*s)) {
+     *(d++) = (U8) toFOLD(*s);
+     s++;
+    }
+    else {
+     STRLEN len;
+     to_utf8_fold(s, d, &len);
+     d += len;
+     s += UTF8SKIP(s);
+    }
+   }
+
+   /* And set up so the code below that looks in this folded
+   * buffer instead of the node's string */
+   e = d;
+   foldlen = UTF8SKIP(folded);
+   s = folded;
+  }
+
+  /* When we reach here 's' points to the fold of the first
+  * character(s) of the node; and 'e' points to far enough along
+  * the folded string to be just past any possible multi-char
+  * fold. 'foldlen' is the length in bytes of the first
+  * character in 's'
+  *
+  * Unlike the non-UTF-8 case, the macro for determining if a
+  * string is a multi-char fold requires all the characters to
+  * already be folded.  This is because of all the complications
+  * if not.  Note that they are folded anyway, except in EXACTFL
+  * nodes.  Like the non-UTF case above, we punt if the node
+  * begins with a multi-char fold  */
+
+  if (is_MULTI_CHAR_FOLD_utf8_safe(s, e)) {
+   invlist = _add_range_to_invlist(invlist, 0, UV_MAX);
+  }
+  else {  /* Single char fold */
+
+   /* It matches all the things that fold to it, which are
+   * found in PL_utf8_foldclosures (including itself) */
+   invlist = add_cp_to_invlist(invlist, uc);
+   if (! PL_utf8_foldclosures)
+    _load_PL_utf8_foldclosures();
+   if ((listp = hv_fetch(PL_utf8_foldclosures,
+        (char *) s, foldlen, FALSE)))
+   {
+    AV* list = (AV*) *listp;
+    IV k;
+    for (k = 0; k <= av_tindex(list); k++) {
+     SV** c_p = av_fetch(list, k, FALSE);
+     UV c;
+     assert(c_p);
+
+     c = SvUV(*c_p);
+
+     /* /aa doesn't allow folds between ASCII and non- */
+     if ((OP(node) == EXACTFA || OP(node) == EXACTFA_NO_TRIE)
+      && isASCII(c) != isASCII(uc))
+     {
+      continue;
+     }
+
+     invlist = add_cp_to_invlist(invlist, c);
+    }
+   }
+  }
+ }
+
+ return invlist;
+}
+
+#undef HEADER_LENGTH
+#undef TO_INTERNAL_SIZE
+#undef FROM_INTERNAL_SIZE
+#undef INVLIST_VERSION_ID
+
+/* End of inversion list object */
+
+STATIC void
+S_parse_lparen_question_flags(pTHX_ RExC_state_t *pRExC_state)
+{
+ /* This parses the flags that are in either the '(?foo)' or '(?foo:bar)'
+ * constructs, and updates RExC_flags with them.  On input, RExC_parse
+ * should point to the first flag; it is updated on output to point to the
+ * final ')' or ':'.  There needs to be at least one flag, or this will
+ * abort */
+
+ /* for (?g), (?gc), and (?o) warnings; warning
+ about (?c) will warn about (?g) -- japhy    */
+
+#define WASTED_O  0x01
+#define WASTED_G  0x02
+#define WASTED_C  0x04
+#define WASTED_GC (WASTED_G|WASTED_C)
+ I32 wastedflags = 0x00;
+ U32 posflags = 0, negflags = 0;
+ U32 *flagsp = &posflags;
+ char has_charset_modifier = '\0';
+ regex_charset cs;
+ bool has_use_defaults = FALSE;
+ const char* const seqstart = RExC_parse - 1; /* Point to the '?' */
+ int x_mod_count = 0;
+
+ PERL_ARGS_ASSERT_PARSE_LPAREN_QUESTION_FLAGS;
+
+ /* '^' as an initial flag sets certain defaults */
+ if (UCHARAT(RExC_parse) == '^') {
+  RExC_parse++;
+  has_use_defaults = TRUE;
+  STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
+  set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
+          ? REGEX_UNICODE_CHARSET
+          : REGEX_DEPENDS_CHARSET);
+ }
+
+ cs = get_regex_charset(RExC_flags);
+ if (cs == REGEX_DEPENDS_CHARSET
+  && (RExC_utf8 || RExC_uni_semantics))
+ {
+  cs = REGEX_UNICODE_CHARSET;
+ }
+
+ while (*RExC_parse) {
+  /* && strchr("iogcmsx", *RExC_parse) */
+  /* (?g), (?gc) and (?o) are useless here
+  and must be globally applied -- japhy */
+  switch (*RExC_parse) {
+
+   /* Code for the imsxn flags */
+   CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp, x_mod_count);
+
+   case LOCALE_PAT_MOD:
+    if (has_charset_modifier) {
+     goto excess_modifier;
+    }
+    else if (flagsp == &negflags) {
+     goto neg_modifier;
+    }
+    cs = REGEX_LOCALE_CHARSET;
+    has_charset_modifier = LOCALE_PAT_MOD;
+    break;
+   case UNICODE_PAT_MOD:
+    if (has_charset_modifier) {
+     goto excess_modifier;
+    }
+    else if (flagsp == &negflags) {
+     goto neg_modifier;
+    }
+    cs = REGEX_UNICODE_CHARSET;
+    has_charset_modifier = UNICODE_PAT_MOD;
+    break;
+   case ASCII_RESTRICT_PAT_MOD:
+    if (flagsp == &negflags) {
+     goto neg_modifier;
+    }
+    if (has_charset_modifier) {
+     if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
+      goto excess_modifier;
+     }
+     /* Doubled modifier implies more restricted */
+     cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
+    }
+    else {
+     cs = REGEX_ASCII_RESTRICTED_CHARSET;
+    }
+    has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
+    break;
+   case DEPENDS_PAT_MOD:
+    if (has_use_defaults) {
+     goto fail_modifiers;
+    }
+    else if (flagsp == &negflags) {
+     goto neg_modifier;
+    }
+    else if (has_charset_modifier) {
+     goto excess_modifier;
+    }
+
+    /* The dual charset means unicode semantics if the
+    * pattern (or target, not known until runtime) are
+    * utf8, or something in the pattern indicates unicode
+    * semantics */
+    cs = (RExC_utf8 || RExC_uni_semantics)
+     ? REGEX_UNICODE_CHARSET
+     : REGEX_DEPENDS_CHARSET;
+    has_charset_modifier = DEPENDS_PAT_MOD;
+    break;
+   excess_modifier:
+    RExC_parse++;
+    if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
+     vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
+    }
+    else if (has_charset_modifier == *(RExC_parse - 1)) {
+     vFAIL2("Regexp modifier \"%c\" may not appear twice",
+          *(RExC_parse - 1));
+    }
+    else {
+     vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
+    }
+    NOT_REACHED; /*NOTREACHED*/
+   neg_modifier:
+    RExC_parse++;
+    vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"",
+         *(RExC_parse - 1));
+    NOT_REACHED; /*NOTREACHED*/
+   case ONCE_PAT_MOD: /* 'o' */
+   case GLOBAL_PAT_MOD: /* 'g' */
+    if (PASS2 && ckWARN(WARN_REGEXP)) {
+     const I32 wflagbit = *RExC_parse == 'o'
+          ? WASTED_O
+          : WASTED_G;
+     if (! (wastedflags & wflagbit) ) {
+      wastedflags |= wflagbit;
+      /* diag_listed_as: Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/ */
+      vWARN5(
+       RExC_parse + 1,
+       "Useless (%s%c) - %suse /%c modifier",
+       flagsp == &negflags ? "?-" : "?",
+       *RExC_parse,
+       flagsp == &negflags ? "don't " : "",
+       *RExC_parse
+      );
+     }
+    }
+    break;
+
+   case CONTINUE_PAT_MOD: /* 'c' */
+    if (PASS2 && ckWARN(WARN_REGEXP)) {
+     if (! (wastedflags & WASTED_C) ) {
+      wastedflags |= WASTED_GC;
+      /* diag_listed_as: Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/ */
+      vWARN3(
+       RExC_parse + 1,
+       "Useless (%sc) - %suse /gc modifier",
+       flagsp == &negflags ? "?-" : "?",
+       flagsp == &negflags ? "don't " : ""
+      );
+     }
+    }
+    break;
+   case KEEPCOPY_PAT_MOD: /* 'p' */
+    if (flagsp == &negflags) {
+     if (PASS2)
+      ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
+    } else {
+     *flagsp |= RXf_PMf_KEEPCOPY;
+    }
+    break;
+   case '-':
+    /* A flag is a default iff it is following a minus, so
+    * if there is a minus, it means will be trying to
+    * re-specify a default which is an error */
+    if (has_use_defaults || flagsp == &negflags) {
+     goto fail_modifiers;
+    }
+    flagsp = &negflags;
+    wastedflags = 0;  /* reset so (?g-c) warns twice */
+    break;
+   case ':':
+   case ')':
+    RExC_flags |= posflags;
+    RExC_flags &= ~negflags;
+    set_regex_charset(&RExC_flags, cs);
+    if (RExC_flags & RXf_PMf_FOLD) {
+     RExC_contains_i = 1;
+    }
+    if (PASS2) {
+     STD_PMMOD_FLAGS_PARSE_X_WARN(x_mod_count);
+    }
+    return;
+    /*NOTREACHED*/
+   default:
+   fail_modifiers:
+    RExC_parse += SKIP_IF_CHAR(RExC_parse);
+    /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
+    vFAIL2utf8f("Sequence (%"UTF8f"...) not recognized",
+     UTF8fARG(UTF, RExC_parse-seqstart, seqstart));
+    NOT_REACHED; /*NOTREACHED*/
+  }
+
+  ++RExC_parse;
+ }
+
+ if (PASS2) {
+  STD_PMMOD_FLAGS_PARSE_X_WARN(x_mod_count);
+ }
+}
+
+/*
+ - reg - regular expression, i.e. main body or parenthesized thing
+ *
+ * Caller must absorb opening parenthesis.
+ *
+ * Combining parenthesis handling with the base level of regular expression
+ * is a trifle forced, but the need to tie the tails of the branches to what
+ * follows makes it hard to avoid.
+ */
+#define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
+#ifdef DEBUGGING
+#define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
+#else
+#define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
+#endif
+
+/* Returns NULL, setting *flagp to TRYAGAIN at the end of (?) that only sets
+   flags. Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan
+   needs to be restarted.
+   Otherwise would only return NULL if regbranch() returns NULL, which
+   cannot happen.  */
+STATIC regnode *
+S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
+ /* paren: Parenthesized? 0=top; 1,2=inside '(': changed to letter.
+ * 2 is like 1, but indicates that nextchar() has been called to advance
+ * RExC_parse beyond the '('.  Things like '(?' are indivisible tokens, and
+ * this flag alerts us to the need to check for that */
+{
+ regnode *ret;  /* Will be the head of the group. */
+ regnode *br;
+ regnode *lastbr;
+ regnode *ender = NULL;
+ I32 parno = 0;
+ I32 flags;
+ U32 oregflags = RExC_flags;
+ bool have_branch = 0;
+ bool is_open = 0;
+ I32 freeze_paren = 0;
+ I32 after_freeze = 0;
+ I32 num; /* numeric backreferences */
+
+ char * parse_start = RExC_parse; /* MJD */
+ char * const oregcomp_parse = RExC_parse;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG;
+ DEBUG_PARSE("reg ");
+
+ *flagp = 0;    /* Tentatively. */
+
+
+ /* Make an OPEN node, if parenthesized. */
+ if (paren) {
+
+  /* Under /x, space and comments can be gobbled up between the '(' and
+  * here (if paren ==2).  The forms '(*VERB' and '(?...' disallow such
+  * intervening space, as the sequence is a token, and a token should be
+  * indivisible */
+  bool has_intervening_patws = paren == 2 && *(RExC_parse - 1) != '(';
+
+  if ( *RExC_parse == '*') { /* (*VERB:ARG) */
+   char *start_verb = RExC_parse;
+   STRLEN verb_len = 0;
+   char *start_arg = NULL;
+   unsigned char op = 0;
+   int argok = 1;
+   int internal_argval = 0; /* internal_argval is only useful if
+          !argok */
+
+   if (has_intervening_patws) {
+    RExC_parse++;
+    vFAIL("In '(*VERB...)', the '(' and '*' must be adjacent");
+   }
+   while ( *RExC_parse && *RExC_parse != ')' ) {
+    if ( *RExC_parse == ':' ) {
+     start_arg = RExC_parse + 1;
+     break;
+    }
+    RExC_parse++;
+   }
+   ++start_verb;
+   verb_len = RExC_parse - start_verb;
+   if ( start_arg ) {
+    RExC_parse++;
+    while ( *RExC_parse && *RExC_parse != ')' )
+     RExC_parse++;
+    if ( *RExC_parse != ')' )
+     vFAIL("Unterminated verb pattern argument");
+    if ( RExC_parse == start_arg )
+     start_arg = NULL;
+   } else {
+    if ( *RExC_parse != ')' )
+     vFAIL("Unterminated verb pattern");
+   }
+
+   switch ( *start_verb ) {
+   case 'A':  /* (*ACCEPT) */
+    if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
+     op = ACCEPT;
+     internal_argval = RExC_nestroot;
+    }
+    break;
+   case 'C':  /* (*COMMIT) */
+    if ( memEQs(start_verb,verb_len,"COMMIT") )
+     op = COMMIT;
+    break;
+   case 'F':  /* (*FAIL) */
+    if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
+     op = OPFAIL;
+     argok = 0;
+    }
+    break;
+   case ':':  /* (*:NAME) */
+   case 'M':  /* (*MARK:NAME) */
+    if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
+     op = MARKPOINT;
+     argok = -1;
+    }
+    break;
+   case 'P':  /* (*PRUNE) */
+    if ( memEQs(start_verb,verb_len,"PRUNE") )
+     op = PRUNE;
+    break;
+   case 'S':   /* (*SKIP) */
+    if ( memEQs(start_verb,verb_len,"SKIP") )
+     op = SKIP;
+    break;
+   case 'T':  /* (*THEN) */
+    /* [19:06] <TimToady> :: is then */
+    if ( memEQs(start_verb,verb_len,"THEN") ) {
+     op = CUTGROUP;
+     RExC_seen |= REG_CUTGROUP_SEEN;
+    }
+    break;
+   }
+   if ( ! op ) {
+    RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
+    vFAIL2utf8f(
+     "Unknown verb pattern '%"UTF8f"'",
+     UTF8fARG(UTF, verb_len, start_verb));
+   }
+   if ( argok ) {
+    if ( start_arg && internal_argval ) {
+     vFAIL3("Verb pattern '%.*s' may not have an argument",
+      verb_len, start_verb);
+    } else if ( argok < 0 && !start_arg ) {
+     vFAIL3("Verb pattern '%.*s' has a mandatory argument",
+      verb_len, start_verb);
+    } else {
+     ret = reganode(pRExC_state, op, internal_argval);
+     if ( ! internal_argval && ! SIZE_ONLY ) {
+      if (start_arg) {
+       SV *sv = newSVpvn( start_arg,
+           RExC_parse - start_arg);
+       ARG(ret) = add_data( pRExC_state,
+            STR_WITH_LEN("S"));
+       RExC_rxi->data->data[ARG(ret)]=(void*)sv;
+       ret->flags = 0;
+      } else {
+       ret->flags = 1;
+      }
+     }
+    }
+    if (!internal_argval)
+     RExC_seen |= REG_VERBARG_SEEN;
+   } else if ( start_arg ) {
+    vFAIL3("Verb pattern '%.*s' may not have an argument",
+      verb_len, start_verb);
+   } else {
+    ret = reg_node(pRExC_state, op);
+   }
+   nextchar(pRExC_state);
+   return ret;
+  }
+  else if (*RExC_parse == '?') { /* (?...) */
+   bool is_logical = 0;
+   const char * const seqstart = RExC_parse;
+   const char * endptr;
+   if (has_intervening_patws) {
+    RExC_parse++;
+    vFAIL("In '(?...)', the '(' and '?' must be adjacent");
+   }
+
+   RExC_parse++;
+   paren = *RExC_parse++;
+   ret = NULL;   /* For look-ahead/behind. */
+   switch (paren) {
+
+   case 'P': /* (?P...) variants for those used to PCRE/Python */
+    paren = *RExC_parse++;
+    if ( paren == '<')         /* (?P<...>) named capture */
+     goto named_capture;
+    else if (paren == '>') {   /* (?P>name) named recursion */
+     goto named_recursion;
+    }
+    else if (paren == '=') {   /* (?P=...)  named backref */
+     /* this pretty much dupes the code for \k<NAME> in
+     * regatom(), if you change this make sure you change that
+     * */
+     char* name_start = RExC_parse;
+     U32 num = 0;
+     SV *sv_dat = reg_scan_name(pRExC_state,
+      SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+     if (RExC_parse == name_start || *RExC_parse != ')')
+      /* diag_listed_as: Sequence ?P=... not terminated in regex; marked by <-- HERE in m/%s/ */
+      vFAIL2("Sequence %.3s... not terminated",parse_start);
+
+     if (!SIZE_ONLY) {
+      num = add_data( pRExC_state, STR_WITH_LEN("S"));
+      RExC_rxi->data->data[num]=(void*)sv_dat;
+      SvREFCNT_inc_simple_void(sv_dat);
+     }
+     RExC_sawback = 1;
+     ret = reganode(pRExC_state,
+        ((! FOLD)
+         ? NREF
+         : (ASCII_FOLD_RESTRICTED)
+         ? NREFFA
+         : (AT_LEAST_UNI_SEMANTICS)
+          ? NREFFU
+          : (LOC)
+          ? NREFFL
+          : NREFF),
+         num);
+     *flagp |= HASWIDTH;
+
+     Set_Node_Offset(ret, parse_start+1);
+     Set_Node_Cur_Length(ret, parse_start);
+
+     nextchar(pRExC_state);
+     return ret;
+    }
+    --RExC_parse;
+    RExC_parse += SKIP_IF_CHAR(RExC_parse);
+    /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
+    vFAIL3("Sequence (%.*s...) not recognized",
+        RExC_parse-seqstart, seqstart);
+    NOT_REACHED; /*NOTREACHED*/
+   case '<':           /* (?<...) */
+    if (*RExC_parse == '!')
+     paren = ',';
+    else if (*RExC_parse != '=')
+   named_capture:
+    {               /* (?<...>) */
+     char *name_start;
+     SV *svname;
+     paren= '>';
+   case '\'':          /* (?'...') */
+      name_start= RExC_parse;
+      svname = reg_scan_name(pRExC_state,
+      SIZE_ONLY    /* reverse test from the others */
+      ? REG_RSN_RETURN_NAME
+      : REG_RSN_RETURN_NULL);
+     if (RExC_parse == name_start || *RExC_parse != paren)
+      vFAIL2("Sequence (?%c... not terminated",
+       paren=='>' ? '<' : paren);
+     if (SIZE_ONLY) {
+      HE *he_str;
+      SV *sv_dat = NULL;
+      if (!svname) /* shouldn't happen */
+       Perl_croak(aTHX_
+        "panic: reg_scan_name returned NULL");
+      if (!RExC_paren_names) {
+       RExC_paren_names= newHV();
+       sv_2mortal(MUTABLE_SV(RExC_paren_names));
+#ifdef DEBUGGING
+       RExC_paren_name_list= newAV();
+       sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
+#endif
+      }
+      he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
+      if ( he_str )
+       sv_dat = HeVAL(he_str);
+      if ( ! sv_dat ) {
+       /* croak baby croak */
+       Perl_croak(aTHX_
+        "panic: paren_name hash element allocation failed");
+      } else if ( SvPOK(sv_dat) ) {
+       /* (?|...) can mean we have dupes so scan to check
+       its already been stored. Maybe a flag indicating
+       we are inside such a construct would be useful,
+       but the arrays are likely to be quite small, so
+       for now we punt -- dmq */
+       IV count = SvIV(sv_dat);
+       I32 *pv = (I32*)SvPVX(sv_dat);
+       IV i;
+       for ( i = 0 ; i < count ; i++ ) {
+        if ( pv[i] == RExC_npar ) {
+         count = 0;
+         break;
+        }
+       }
+       if ( count ) {
+        pv = (I32*)SvGROW(sv_dat,
+            SvCUR(sv_dat) + sizeof(I32)+1);
+        SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
+        pv[count] = RExC_npar;
+        SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
+       }
+      } else {
+       (void)SvUPGRADE(sv_dat,SVt_PVNV);
+       sv_setpvn(sv_dat, (char *)&(RExC_npar),
+                sizeof(I32));
+       SvIOK_on(sv_dat);
+       SvIV_set(sv_dat, 1);
+      }
+#ifdef DEBUGGING
+      /* Yes this does cause a memory leak in debugging Perls
+      * */
+      if (!av_store(RExC_paren_name_list,
+         RExC_npar, SvREFCNT_inc(svname)))
+       SvREFCNT_dec_NN(svname);
+#endif
+
+      /*sv_dump(sv_dat);*/
+     }
+     nextchar(pRExC_state);
+     paren = 1;
+     goto capturing_parens;
+    }
+    RExC_seen |= REG_LOOKBEHIND_SEEN;
+    RExC_in_lookbehind++;
+    RExC_parse++;
+    /* FALLTHROUGH */
+   case '=':           /* (?=...) */
+    RExC_seen_zerolen++;
+    break;
+   case '!':           /* (?!...) */
+    RExC_seen_zerolen++;
+    /* check if we're really just a "FAIL" assertion */
+    --RExC_parse;
+    nextchar(pRExC_state);
+    if (*RExC_parse == ')') {
+     ret=reg_node(pRExC_state, OPFAIL);
+     nextchar(pRExC_state);
+     return ret;
+    }
+    break;
+   case '|':           /* (?|...) */
+    /* branch reset, behave like a (?:...) except that
+    buffers in alternations share the same numbers */
+    paren = ':';
+    after_freeze = freeze_paren = RExC_npar;
+    break;
+   case ':':           /* (?:...) */
+   case '>':           /* (?>...) */
+    break;
+   case '$':           /* (?$...) */
+   case '@':           /* (?@...) */
+    vFAIL2("Sequence (?%c...) not implemented", (int)paren);
+    break;
+   case '0' :           /* (?0) */
+   case 'R' :           /* (?R) */
+    if (*RExC_parse != ')')
+     FAIL("Sequence (?R) not terminated");
+    ret = reg_node(pRExC_state, GOSTART);
+     RExC_seen |= REG_GOSTART_SEEN;
+    *flagp |= POSTPONED;
+    nextchar(pRExC_state);
+    return ret;
+    /*notreached*/
+   /* named and numeric backreferences */
+   case '&':            /* (?&NAME) */
+    parse_start = RExC_parse - 1;
+   named_recursion:
+    {
+      SV *sv_dat = reg_scan_name(pRExC_state,
+       SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+      num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
+    }
+    if (RExC_parse == RExC_end || *RExC_parse != ')')
+     vFAIL("Sequence (?&... not terminated");
+    goto gen_recurse_regop;
+    /* NOTREACHED */
+   case '+':
+    if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
+     RExC_parse++;
+     vFAIL("Illegal pattern");
+    }
+    goto parse_recursion;
+    /* NOTREACHED*/
+   case '-': /* (?-1) */
+    if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
+     RExC_parse--; /* rewind to let it be handled later */
+     goto parse_flags;
+    }
+    /* FALLTHROUGH */
+   case '1': case '2': case '3': case '4': /* (?1) */
+   case '5': case '6': case '7': case '8': case '9':
+    RExC_parse--;
+   parse_recursion:
+    {
+     bool is_neg = FALSE;
+     UV unum;
+     parse_start = RExC_parse - 1; /* MJD */
+     if (*RExC_parse == '-') {
+      RExC_parse++;
+      is_neg = TRUE;
+     }
+     if (grok_atoUV(RExC_parse, &unum, &endptr)
+      && unum <= I32_MAX
+     ) {
+      num = (I32)unum;
+      RExC_parse = (char*)endptr;
+     } else
+      num = I32_MAX;
+     if (is_neg) {
+      /* Some limit for num? */
+      num = -num;
+     }
+    }
+    if (*RExC_parse!=')')
+     vFAIL("Expecting close bracket");
+
+   gen_recurse_regop:
+    if ( paren == '-' ) {
+     /*
+     Diagram of capture buffer numbering.
+     Top line is the normal capture buffer numbers
+     Bottom line is the negative indexing as from
+     the X (the (?-2))
+
+     +   1 2    3 4 5 X          6 7
+     /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
+     -   5 4    3 2 1 X          x x
+
+     */
+     num = RExC_npar + num;
+     if (num < 1)  {
+      RExC_parse++;
+      vFAIL("Reference to nonexistent group");
+     }
+    } else if ( paren == '+' ) {
+     num = RExC_npar + num - 1;
+    }
+
+    ret = reg2Lanode(pRExC_state, GOSUB, num, RExC_recurse_count);
+    if (!SIZE_ONLY) {
+     if (num > (I32)RExC_rx->nparens) {
+      RExC_parse++;
+      vFAIL("Reference to nonexistent group");
+     }
+     RExC_recurse_count++;
+     DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+      "%*s%*s Recurse #%"UVuf" to %"IVdf"\n",
+       22, "|    |", (int)(depth * 2 + 1), "",
+       (UV)ARG(ret), (IV)ARG2L(ret)));
+    }
+    RExC_seen |= REG_RECURSE_SEEN;
+    Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
+    Set_Node_Offset(ret, parse_start); /* MJD */
+
+    *flagp |= POSTPONED;
+    nextchar(pRExC_state);
+    return ret;
+
+   /* NOTREACHED */
+
+   case '?':           /* (??...) */
+    is_logical = 1;
+    if (*RExC_parse != '{') {
+     RExC_parse += SKIP_IF_CHAR(RExC_parse);
+     /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
+     vFAIL2utf8f(
+      "Sequence (%"UTF8f"...) not recognized",
+      UTF8fARG(UTF, RExC_parse-seqstart, seqstart));
+     NOT_REACHED; /*NOTREACHED*/
+    }
+    *flagp |= POSTPONED;
+    paren = *RExC_parse++;
+    /* FALLTHROUGH */
+   case '{':           /* (?{...}) */
+   {
+    U32 n = 0;
+    struct reg_code_block *cb;
+
+    RExC_seen_zerolen++;
+
+    if (   !pRExC_state->num_code_blocks
+     || pRExC_state->code_index >= pRExC_state->num_code_blocks
+     || pRExC_state->code_blocks[pRExC_state->code_index].start
+      != (STRLEN)((RExC_parse -3 - (is_logical ? 1 : 0))
+       - RExC_start)
+    ) {
+     if (RExC_pm_flags & PMf_USE_RE_EVAL)
+      FAIL("panic: Sequence (?{...}): no code block found\n");
+     FAIL("Eval-group not allowed at runtime, use re 'eval'");
+    }
+    /* this is a pre-compiled code block (?{...}) */
+    cb = &pRExC_state->code_blocks[pRExC_state->code_index];
+    RExC_parse = RExC_start + cb->end;
+    if (!SIZE_ONLY) {
+     OP *o = cb->block;
+     if (cb->src_regex) {
+      n = add_data(pRExC_state, STR_WITH_LEN("rl"));
+      RExC_rxi->data->data[n] =
+       (void*)SvREFCNT_inc((SV*)cb->src_regex);
+      RExC_rxi->data->data[n+1] = (void*)o;
+     }
+     else {
+      n = add_data(pRExC_state,
+       (RExC_pm_flags & PMf_HAS_CV) ? "L" : "l", 1);
+      RExC_rxi->data->data[n] = (void*)o;
+     }
+    }
+    pRExC_state->code_index++;
+    nextchar(pRExC_state);
+
+    if (is_logical) {
+     regnode *eval;
+     ret = reg_node(pRExC_state, LOGICAL);
+
+     eval = reg2Lanode(pRExC_state, EVAL,
+         n,
+
+         /* for later propagation into (??{})
+          * return value */
+         RExC_flags & RXf_PMf_COMPILETIME
+         );
+     if (!SIZE_ONLY) {
+      ret->flags = 2;
+     }
+     REGTAIL(pRExC_state, ret, eval);
+     /* deal with the length of this later - MJD */
+     return ret;
+    }
+    ret = reg2Lanode(pRExC_state, EVAL, n, 0);
+    Set_Node_Length(ret, RExC_parse - parse_start + 1);
+    Set_Node_Offset(ret, parse_start);
+    return ret;
+   }
+   case '(':           /* (?(?{...})...) and (?(?=...)...) */
+   {
+    int is_define= 0;
+    const int DEFINE_len = sizeof("DEFINE") - 1;
+    if (RExC_parse[0] == '?') {        /* (?(?...)) */
+     if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
+      || RExC_parse[1] == '<'
+      || RExC_parse[1] == '{') { /* Lookahead or eval. */
+      I32 flag;
+      regnode *tail;
+
+      ret = reg_node(pRExC_state, LOGICAL);
+      if (!SIZE_ONLY)
+       ret->flags = 1;
+
+      tail = reg(pRExC_state, 1, &flag, depth+1);
+      if (flag & RESTART_UTF8) {
+       *flagp = RESTART_UTF8;
+       return NULL;
+      }
+      REGTAIL(pRExC_state, ret, tail);
+      goto insert_if;
+     }
+     /* Fall through to ‘Unknown switch condition’ at the
+     end of the if/else chain. */
+    }
+    else if ( RExC_parse[0] == '<'     /* (?(<NAME>)...) */
+      || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
+    {
+     char ch = RExC_parse[0] == '<' ? '>' : '\'';
+     char *name_start= RExC_parse++;
+     U32 num = 0;
+     SV *sv_dat=reg_scan_name(pRExC_state,
+      SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+     if (RExC_parse == name_start || *RExC_parse != ch)
+      vFAIL2("Sequence (?(%c... not terminated",
+       (ch == '>' ? '<' : ch));
+     RExC_parse++;
+     if (!SIZE_ONLY) {
+      num = add_data( pRExC_state, STR_WITH_LEN("S"));
+      RExC_rxi->data->data[num]=(void*)sv_dat;
+      SvREFCNT_inc_simple_void(sv_dat);
+     }
+     ret = reganode(pRExC_state,NGROUPP,num);
+     goto insert_if_check_paren;
+    }
+    else if (RExC_end - RExC_parse >= DEFINE_len
+      && strnEQ(RExC_parse, "DEFINE", DEFINE_len))
+    {
+     ret = reganode(pRExC_state,DEFINEP,0);
+     RExC_parse += DEFINE_len;
+     is_define = 1;
+     goto insert_if_check_paren;
+    }
+    else if (RExC_parse[0] == 'R') {
+     RExC_parse++;
+     parno = 0;
+     if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
+      UV uv;
+      if (grok_atoUV(RExC_parse, &uv, &endptr)
+       && uv <= I32_MAX
+      ) {
+       parno = (I32)uv;
+       RExC_parse = (char*)endptr;
+      }
+      /* else "Switch condition not recognized" below */
+     } else if (RExC_parse[0] == '&') {
+      SV *sv_dat;
+      RExC_parse++;
+      sv_dat = reg_scan_name(pRExC_state,
+       SIZE_ONLY
+       ? REG_RSN_RETURN_NULL
+       : REG_RSN_RETURN_DATA);
+       parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
+     }
+     ret = reganode(pRExC_state,INSUBP,parno);
+     goto insert_if_check_paren;
+    }
+    else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
+     /* (?(1)...) */
+     char c;
+     char *tmp;
+     UV uv;
+     if (grok_atoUV(RExC_parse, &uv, &endptr)
+      && uv <= I32_MAX
+     ) {
+      parno = (I32)uv;
+      RExC_parse = (char*)endptr;
+     }
+     /* XXX else what? */
+     ret = reganode(pRExC_state, GROUPP, parno);
+
+    insert_if_check_paren:
+     if (*(tmp = nextchar(pRExC_state)) != ')') {
+      /* nextchar also skips comments, so undo its work
+      * and skip over the the next character.
+      */
+      RExC_parse = tmp;
+      RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
+      vFAIL("Switch condition not recognized");
+     }
+    insert_if:
+     REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
+     br = regbranch(pRExC_state, &flags, 1,depth+1);
+     if (br == NULL) {
+      if (flags & RESTART_UTF8) {
+       *flagp = RESTART_UTF8;
+       return NULL;
+      }
+      FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"",
+       (UV) flags);
+     } else
+      REGTAIL(pRExC_state, br, reganode(pRExC_state,
+              LONGJMP, 0));
+     c = *nextchar(pRExC_state);
+     if (flags&HASWIDTH)
+      *flagp |= HASWIDTH;
+     if (c == '|') {
+      if (is_define)
+       vFAIL("(?(DEFINE)....) does not allow branches");
+
+      /* Fake one for optimizer.  */
+      lastbr = reganode(pRExC_state, IFTHEN, 0);
+
+      if (!regbranch(pRExC_state, &flags, 1,depth+1)) {
+       if (flags & RESTART_UTF8) {
+        *flagp = RESTART_UTF8;
+        return NULL;
+       }
+       FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"",
+        (UV) flags);
+      }
+      REGTAIL(pRExC_state, ret, lastbr);
+      if (flags&HASWIDTH)
+       *flagp |= HASWIDTH;
+      c = *nextchar(pRExC_state);
+     }
+     else
+      lastbr = NULL;
+     if (c != ')') {
+      if (RExC_parse>RExC_end)
+       vFAIL("Switch (?(condition)... not terminated");
+      else
+       vFAIL("Switch (?(condition)... contains too many branches");
+     }
+     ender = reg_node(pRExC_state, TAIL);
+     REGTAIL(pRExC_state, br, ender);
+     if (lastbr) {
+      REGTAIL(pRExC_state, lastbr, ender);
+      REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
+     }
+     else
+      REGTAIL(pRExC_state, ret, ender);
+     RExC_size++; /* XXX WHY do we need this?!!
+         For large programs it seems to be required
+         but I can't figure out why. -- dmq*/
+     return ret;
+    }
+    RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
+    vFAIL("Unknown switch condition (?(...))");
+   }
+   case '[':           /* (?[ ... ]) */
+    return handle_regex_sets(pRExC_state, NULL, flagp, depth,
+          oregcomp_parse);
+   case 0:
+    RExC_parse--; /* for vFAIL to print correctly */
+    vFAIL("Sequence (? incomplete");
+    break;
+   default: /* e.g., (?i) */
+    --RExC_parse;
+   parse_flags:
+    parse_lparen_question_flags(pRExC_state);
+    if (UCHARAT(RExC_parse) != ':') {
+     if (*RExC_parse)
+      nextchar(pRExC_state);
+     *flagp = TRYAGAIN;
+     return NULL;
+    }
+    paren = ':';
+    nextchar(pRExC_state);
+    ret = NULL;
+    goto parse_rest;
+   } /* end switch */
+  }
+  else if (!(RExC_flags & RXf_PMf_NOCAPTURE)) {   /* (...) */
+  capturing_parens:
+   parno = RExC_npar;
+   RExC_npar++;
+
+   ret = reganode(pRExC_state, OPEN, parno);
+   if (!SIZE_ONLY ){
+    if (!RExC_nestroot)
+     RExC_nestroot = parno;
+    if (RExC_seen & REG_RECURSE_SEEN
+     && !RExC_open_parens[parno-1])
+    {
+     DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+      "%*s%*s Setting open paren #%"IVdf" to %d\n",
+      22, "|    |", (int)(depth * 2 + 1), "",
+      (IV)parno, REG_NODE_NUM(ret)));
+     RExC_open_parens[parno-1]= ret;
+    }
+   }
+   Set_Node_Length(ret, 1); /* MJD */
+   Set_Node_Offset(ret, RExC_parse); /* MJD */
+   is_open = 1;
+  } else {
+   /* with RXf_PMf_NOCAPTURE treat (...) as (?:...) */
+   paren = ':';
+   ret = NULL;
+  }
+ }
+ else                        /* ! paren */
+  ret = NULL;
+
+   parse_rest:
+ /* Pick up the branches, linking them together. */
+ parse_start = RExC_parse;   /* MJD */
+ br = regbranch(pRExC_state, &flags, 1,depth+1);
+
+ /*     branch_len = (paren != 0); */
+
+ if (br == NULL) {
+  if (flags & RESTART_UTF8) {
+   *flagp = RESTART_UTF8;
+   return NULL;
+  }
+  FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"", (UV) flags);
+ }
+ if (*RExC_parse == '|') {
+  if (!SIZE_ONLY && RExC_extralen) {
+   reginsert(pRExC_state, BRANCHJ, br, depth+1);
+  }
+  else {                  /* MJD */
+   reginsert(pRExC_state, BRANCH, br, depth+1);
+   Set_Node_Length(br, paren != 0);
+   Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
+  }
+  have_branch = 1;
+  if (SIZE_ONLY)
+   RExC_extralen += 1;  /* For BRANCHJ-BRANCH. */
+ }
+ else if (paren == ':') {
+  *flagp |= flags&SIMPLE;
+ }
+ if (is_open) {    /* Starts with OPEN. */
+  REGTAIL(pRExC_state, ret, br);          /* OPEN -> first. */
+ }
+ else if (paren != '?')  /* Not Conditional */
+  ret = br;
+ *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
+ lastbr = br;
+ while (*RExC_parse == '|') {
+  if (!SIZE_ONLY && RExC_extralen) {
+   ender = reganode(pRExC_state, LONGJMP,0);
+
+   /* Append to the previous. */
+   REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
+  }
+  if (SIZE_ONLY)
+   RExC_extralen += 2;  /* Account for LONGJMP. */
+  nextchar(pRExC_state);
+  if (freeze_paren) {
+   if (RExC_npar > after_freeze)
+    after_freeze = RExC_npar;
+   RExC_npar = freeze_paren;
+  }
+  br = regbranch(pRExC_state, &flags, 0, depth+1);
+
+  if (br == NULL) {
+   if (flags & RESTART_UTF8) {
+    *flagp = RESTART_UTF8;
+    return NULL;
+   }
+   FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"", (UV) flags);
+  }
+  REGTAIL(pRExC_state, lastbr, br);               /* BRANCH -> BRANCH. */
+  lastbr = br;
+  *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
+ }
+
+ if (have_branch || paren != ':') {
+  /* Make a closing node, and hook it on the end. */
+  switch (paren) {
+  case ':':
+   ender = reg_node(pRExC_state, TAIL);
+   break;
+  case 1: case 2:
+   ender = reganode(pRExC_state, CLOSE, parno);
+   if (!SIZE_ONLY && RExC_seen & REG_RECURSE_SEEN) {
+    DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+      "%*s%*s Setting close paren #%"IVdf" to %d\n",
+      22, "|    |", (int)(depth * 2 + 1), "", (IV)parno, REG_NODE_NUM(ender)));
+    RExC_close_parens[parno-1]= ender;
+    if (RExC_nestroot == parno)
+     RExC_nestroot = 0;
+   }
+   Set_Node_Offset(ender,RExC_parse+1); /* MJD */
+   Set_Node_Length(ender,1); /* MJD */
+   break;
+  case '<':
+  case ',':
+  case '=':
+  case '!':
+   *flagp &= ~HASWIDTH;
+   /* FALLTHROUGH */
+  case '>':
+   ender = reg_node(pRExC_state, SUCCEED);
+   break;
+  case 0:
+   ender = reg_node(pRExC_state, END);
+   if (!SIZE_ONLY) {
+    assert(!RExC_opend); /* there can only be one! */
+    RExC_opend = ender;
+   }
+   break;
+  }
+  DEBUG_PARSE_r(if (!SIZE_ONLY) {
+   DEBUG_PARSE_MSG("lsbr");
+   regprop(RExC_rx, RExC_mysv1, lastbr, NULL, pRExC_state);
+   regprop(RExC_rx, RExC_mysv2, ender, NULL, pRExC_state);
+   PerlIO_printf(Perl_debug_log, "~ tying lastbr %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
+      SvPV_nolen_const(RExC_mysv1),
+      (IV)REG_NODE_NUM(lastbr),
+      SvPV_nolen_const(RExC_mysv2),
+      (IV)REG_NODE_NUM(ender),
+      (IV)(ender - lastbr)
+   );
+  });
+  REGTAIL(pRExC_state, lastbr, ender);
+
+  if (have_branch && !SIZE_ONLY) {
+   char is_nothing= 1;
+   if (depth==1)
+    RExC_seen |= REG_TOP_LEVEL_BRANCHES_SEEN;
+
+   /* Hook the tails of the branches to the closing node. */
+   for (br = ret; br; br = regnext(br)) {
+    const U8 op = PL_regkind[OP(br)];
+    if (op == BRANCH) {
+     REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
+     if ( OP(NEXTOPER(br)) != NOTHING
+      || regnext(NEXTOPER(br)) != ender)
+      is_nothing= 0;
+    }
+    else if (op == BRANCHJ) {
+     REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
+     /* for now we always disable this optimisation * /
+     if ( OP(NEXTOPER(NEXTOPER(br))) != NOTHING
+      || regnext(NEXTOPER(NEXTOPER(br))) != ender)
+     */
+      is_nothing= 0;
+    }
+   }
+   if (is_nothing) {
+    br= PL_regkind[OP(ret)] != BRANCH ? regnext(ret) : ret;
+    DEBUG_PARSE_r(if (!SIZE_ONLY) {
+     DEBUG_PARSE_MSG("NADA");
+     regprop(RExC_rx, RExC_mysv1, ret, NULL, pRExC_state);
+     regprop(RExC_rx, RExC_mysv2, ender, NULL, pRExC_state);
+     PerlIO_printf(Perl_debug_log, "~ converting ret %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
+        SvPV_nolen_const(RExC_mysv1),
+        (IV)REG_NODE_NUM(ret),
+        SvPV_nolen_const(RExC_mysv2),
+        (IV)REG_NODE_NUM(ender),
+        (IV)(ender - ret)
+     );
+    });
+    OP(br)= NOTHING;
+    if (OP(ender) == TAIL) {
+     NEXT_OFF(br)= 0;
+     RExC_emit= br + 1;
+    } else {
+     regnode *opt;
+     for ( opt= br + 1; opt < ender ; opt++ )
+      OP(opt)= OPTIMIZED;
+     NEXT_OFF(br)= ender - br;
+    }
+   }
+  }
+ }
+
+ {
+  const char *p;
+  static const char parens[] = "=!<,>";
+
+  if (paren && (p = strchr(parens, paren))) {
+   U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
+   int flag = (p - parens) > 1;
+
+   if (paren == '>')
+    node = SUSPEND, flag = 0;
+   reginsert(pRExC_state, node,ret, depth+1);
+   Set_Node_Cur_Length(ret, parse_start);
+   Set_Node_Offset(ret, parse_start + 1);
+   ret->flags = flag;
+   REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
+  }
+ }
+
+ /* Check for proper termination. */
+ if (paren) {
+  /* restore original flags, but keep (?p) */
+  RExC_flags = oregflags | (RExC_flags & RXf_PMf_KEEPCOPY);
+  if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
+   RExC_parse = oregcomp_parse;
+   vFAIL("Unmatched (");
+  }
+ }
+ else if (!paren && RExC_parse < RExC_end) {
+  if (*RExC_parse == ')') {
+   RExC_parse++;
+   vFAIL("Unmatched )");
+  }
+  else
+   FAIL("Junk on end of regexp"); /* "Can't happen". */
+  NOT_REACHED; /* NOTREACHED */
+ }
+
+ if (RExC_in_lookbehind) {
+  RExC_in_lookbehind--;
+ }
+ if (after_freeze > RExC_npar)
+  RExC_npar = after_freeze;
+ return(ret);
+}
+
+/*
+ - regbranch - one alternative of an | operator
+ *
+ * Implements the concatenation operator.
+ *
+ * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
+ * restarted.
+ */
+STATIC regnode *
+S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
+{
+ regnode *ret;
+ regnode *chain = NULL;
+ regnode *latest;
+ I32 flags = 0, c = 0;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGBRANCH;
+
+ DEBUG_PARSE("brnc");
+
+ if (first)
+  ret = NULL;
+ else {
+  if (!SIZE_ONLY && RExC_extralen)
+   ret = reganode(pRExC_state, BRANCHJ,0);
+  else {
+   ret = reg_node(pRExC_state, BRANCH);
+   Set_Node_Length(ret, 1);
+  }
+ }
+
+ if (!first && SIZE_ONLY)
+  RExC_extralen += 1;   /* BRANCHJ */
+
+ *flagp = WORST;   /* Tentatively. */
+
+ RExC_parse--;
+ nextchar(pRExC_state);
+ while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
+  flags &= ~TRYAGAIN;
+  latest = regpiece(pRExC_state, &flags,depth+1);
+  if (latest == NULL) {
+   if (flags & TRYAGAIN)
+    continue;
+   if (flags & RESTART_UTF8) {
+    *flagp = RESTART_UTF8;
+    return NULL;
+   }
+   FAIL2("panic: regpiece returned NULL, flags=%#"UVxf"", (UV) flags);
+  }
+  else if (ret == NULL)
+   ret = latest;
+  *flagp |= flags&(HASWIDTH|POSTPONED);
+  if (chain == NULL)  /* First piece. */
+   *flagp |= flags&SPSTART;
+  else {
+   /* FIXME adding one for every branch after the first is probably
+   * excessive now we have TRIE support. (hv) */
+   MARK_NAUGHTY(1);
+   REGTAIL(pRExC_state, chain, latest);
+  }
+  chain = latest;
+  c++;
+ }
+ if (chain == NULL) { /* Loop ran zero times. */
+  chain = reg_node(pRExC_state, NOTHING);
+  if (ret == NULL)
+   ret = chain;
+ }
+ if (c == 1) {
+  *flagp |= flags&SIMPLE;
+ }
+
+ return ret;
+}
+
+/*
+ - regpiece - something followed by possible [*+?]
+ *
+ * Note that the branching code sequences used for ? and the general cases
+ * of * and + are somewhat optimized:  they use the same NOTHING node as
+ * both the endmarker for their branch list and the body of the last branch.
+ * It might seem that this node could be dispensed with entirely, but the
+ * endmarker role is not redundant.
+ *
+ * Returns NULL, setting *flagp to TRYAGAIN if regatom() returns NULL with
+ * TRYAGAIN.
+ * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
+ * restarted.
+ */
+STATIC regnode *
+S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
+{
+ regnode *ret;
+ char op;
+ char *next;
+ I32 flags;
+ const char * const origparse = RExC_parse;
+ I32 min;
+ I32 max = REG_INFTY;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ char *parse_start;
+#endif
+ const char *maxpos = NULL;
+ UV uv;
+
+ /* Save the original in case we change the emitted regop to a FAIL. */
+ regnode * const orig_emit = RExC_emit;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGPIECE;
+
+ DEBUG_PARSE("piec");
+
+ ret = regatom(pRExC_state, &flags,depth+1);
+ if (ret == NULL) {
+  if (flags & (TRYAGAIN|RESTART_UTF8))
+   *flagp |= flags & (TRYAGAIN|RESTART_UTF8);
+  else
+   FAIL2("panic: regatom returned NULL, flags=%#"UVxf"", (UV) flags);
+  return(NULL);
+ }
+
+ op = *RExC_parse;
+
+ if (op == '{' && regcurly(RExC_parse)) {
+  maxpos = NULL;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+  parse_start = RExC_parse; /* MJD */
+#endif
+  next = RExC_parse + 1;
+  while (isDIGIT(*next) || *next == ',') {
+   if (*next == ',') {
+    if (maxpos)
+     break;
+    else
+     maxpos = next;
+   }
+   next++;
+  }
+  if (*next == '}') {  /* got one */
+   const char* endptr;
+   if (!maxpos)
+    maxpos = next;
+   RExC_parse++;
+   if (isDIGIT(*RExC_parse)) {
+    if (!grok_atoUV(RExC_parse, &uv, &endptr))
+     vFAIL("Invalid quantifier in {,}");
+    if (uv >= REG_INFTY)
+     vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
+    min = (I32)uv;
+   } else {
+    min = 0;
+   }
+   if (*maxpos == ',')
+    maxpos++;
+   else
+    maxpos = RExC_parse;
+   if (isDIGIT(*maxpos)) {
+    if (!grok_atoUV(maxpos, &uv, &endptr))
+     vFAIL("Invalid quantifier in {,}");
+    if (uv >= REG_INFTY)
+     vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
+    max = (I32)uv;
+   } else {
+    max = REG_INFTY;  /* meaning "infinity" */
+   }
+   RExC_parse = next;
+   nextchar(pRExC_state);
+   if (max < min) {    /* If can't match, warn and optimize to fail
+        unconditionally */
+    if (SIZE_ONLY) {
+
+     /* We can't back off the size because we have to reserve
+     * enough space for all the things we are about to throw
+     * away, but we can shrink it by the ammount we are about
+     * to re-use here */
+     RExC_size = PREVOPER(RExC_size) - regarglen[(U8)OPFAIL];
+    }
+    else {
+     ckWARNreg(RExC_parse, "Quantifier {n,m} with n > m can't match");
+     RExC_emit = orig_emit;
+    }
+    ret = reg_node(pRExC_state, OPFAIL);
+    return ret;
+   }
+   else if (min == max
+     && RExC_parse < RExC_end
+     && (*RExC_parse == '?' || *RExC_parse == '+'))
+   {
+    if (PASS2) {
+     ckWARN2reg(RExC_parse + 1,
+       "Useless use of greediness modifier '%c'",
+       *RExC_parse);
+    }
+    /* Absorb the modifier, so later code doesn't see nor use
+     * it */
+    nextchar(pRExC_state);
+   }
+
+  do_curly:
+   if ((flags&SIMPLE)) {
+    MARK_NAUGHTY_EXP(2, 2);
+    reginsert(pRExC_state, CURLY, ret, depth+1);
+    Set_Node_Offset(ret, parse_start+1); /* MJD */
+    Set_Node_Cur_Length(ret, parse_start);
+   }
+   else {
+    regnode * const w = reg_node(pRExC_state, WHILEM);
+
+    w->flags = 0;
+    REGTAIL(pRExC_state, ret, w);
+    if (!SIZE_ONLY && RExC_extralen) {
+     reginsert(pRExC_state, LONGJMP,ret, depth+1);
+     reginsert(pRExC_state, NOTHING,ret, depth+1);
+     NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
+    }
+    reginsert(pRExC_state, CURLYX,ret, depth+1);
+        /* MJD hk */
+    Set_Node_Offset(ret, parse_start+1);
+    Set_Node_Length(ret,
+        op == '{' ? (RExC_parse - parse_start) : 1);
+
+    if (!SIZE_ONLY && RExC_extralen)
+     NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
+    REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
+    if (SIZE_ONLY)
+     RExC_whilem_seen++, RExC_extralen += 3;
+    MARK_NAUGHTY_EXP(1, 4);     /* compound interest */
+   }
+   ret->flags = 0;
+
+   if (min > 0)
+    *flagp = WORST;
+   if (max > 0)
+    *flagp |= HASWIDTH;
+   if (!SIZE_ONLY) {
+    ARG1_SET(ret, (U16)min);
+    ARG2_SET(ret, (U16)max);
+   }
+   if (max == REG_INFTY)
+    RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
+
+   goto nest_check;
+  }
+ }
+
+ if (!ISMULT1(op)) {
+  *flagp = flags;
+  return(ret);
+ }
+
+#if 0    /* Now runtime fix should be reliable. */
+
+ /* if this is reinstated, don't forget to put this back into perldiag:
+
+   =item Regexp *+ operand could be empty at {#} in regex m/%s/
+
+  (F) The part of the regexp subject to either the * or + quantifier
+  could match an empty string. The {#} shows in the regular
+  expression about where the problem was discovered.
+
+ */
+
+ if (!(flags&HASWIDTH) && op != '?')
+ vFAIL("Regexp *+ operand could be empty");
+#endif
+
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ parse_start = RExC_parse;
+#endif
+ nextchar(pRExC_state);
+
+ *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
+
+ if (op == '*' && (flags&SIMPLE)) {
+  reginsert(pRExC_state, STAR, ret, depth+1);
+  ret->flags = 0;
+  MARK_NAUGHTY(4);
+  RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
+ }
+ else if (op == '*') {
+  min = 0;
+  goto do_curly;
+ }
+ else if (op == '+' && (flags&SIMPLE)) {
+  reginsert(pRExC_state, PLUS, ret, depth+1);
+  ret->flags = 0;
+  MARK_NAUGHTY(3);
+  RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
+ }
+ else if (op == '+') {
+  min = 1;
+  goto do_curly;
+ }
+ else if (op == '?') {
+  min = 0; max = 1;
+  goto do_curly;
+ }
+  nest_check:
+ if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
+  SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
+  ckWARN2reg(RExC_parse,
+    "%"UTF8f" matches null string many times",
+    UTF8fARG(UTF, (RExC_parse >= origparse
+        ? RExC_parse - origparse
+        : 0),
+    origparse));
+  (void)ReREFCNT_inc(RExC_rx_sv);
+ }
+
+ if (RExC_parse < RExC_end && *RExC_parse == '?') {
+  nextchar(pRExC_state);
+  reginsert(pRExC_state, MINMOD, ret, depth+1);
+  REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
+ }
+ else
+ if (RExC_parse < RExC_end && *RExC_parse == '+') {
+  regnode *ender;
+  nextchar(pRExC_state);
+  ender = reg_node(pRExC_state, SUCCEED);
+  REGTAIL(pRExC_state, ret, ender);
+  reginsert(pRExC_state, SUSPEND, ret, depth+1);
+  ret->flags = 0;
+  ender = reg_node(pRExC_state, TAIL);
+  REGTAIL(pRExC_state, ret, ender);
+ }
+
+ if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
+  RExC_parse++;
+  vFAIL("Nested quantifiers");
+ }
+
+ return(ret);
+}
+
+STATIC bool
+S_grok_bslash_N(pTHX_ RExC_state_t *pRExC_state,
+    regnode ** node_p,
+    UV * code_point_p,
+    int * cp_count,
+    I32 * flagp,
+    const U32 depth
+ )
+{
+ /* This routine teases apart the various meanings of \N and returns
+  * accordingly.  The input parameters constrain which meaning(s) is/are valid
+  * in the current context.
+  *
+  * Exactly one of <node_p> and <code_point_p> must be non-NULL.
+  *
+  * If <code_point_p> is not NULL, the context is expecting the result to be a
+  * single code point.  If this \N instance turns out to a single code point,
+  * the function returns TRUE and sets *code_point_p to that code point.
+  *
+  * If <node_p> is not NULL, the context is expecting the result to be one of
+  * the things representable by a regnode.  If this \N instance turns out to be
+  * one such, the function generates the regnode, returns TRUE and sets *node_p
+  * to point to that regnode.
+  *
+  * If this instance of \N isn't legal in any context, this function will
+  * generate a fatal error and not return.
+  *
+  * On input, RExC_parse should point to the first char following the \N at the
+  * time of the call.  On successful return, RExC_parse will have been updated
+  * to point to just after the sequence identified by this routine.  Also
+  * *flagp has been updated as needed.
+  *
+  * When there is some problem with the current context and this \N instance,
+  * the function returns FALSE, without advancing RExC_parse, nor setting
+  * *node_p, nor *code_point_p, nor *flagp.
+  *
+  * If <cp_count> is not NULL, the caller wants to know the length (in code
+  * points) that this \N sequence matches.  This is set even if the function
+  * returns FALSE, as detailed below.
+  *
+  * There are 5 possibilities here, as detailed in the next 5 paragraphs.
+  *
+  * Probably the most common case is for the \N to specify a single code point.
+  * *cp_count will be set to 1, and *code_point_p will be set to that code
+  * point.
+  *
+  * Another possibility is for the input to be an empty \N{}, which for
+  * backwards compatibility we accept.  *cp_count will be set to 0. *node_p
+  * will be set to a generated NOTHING node.
+  *
+  * Still another possibility is for the \N to mean [^\n]. *cp_count will be
+  * set to 0. *node_p will be set to a generated REG_ANY node.
+  *
+  * The fourth possibility is that \N resolves to a sequence of more than one
+  * code points.  *cp_count will be set to the number of code points in the
+  * sequence. *node_p * will be set to a generated node returned by this
+  * function calling S_reg().
+  *
+  * The final possibility, which happens only when the fourth one would
+  * otherwise be in effect, is that one of those code points requires the
+  * pattern to be recompiled as UTF-8.  The function returns FALSE, and sets
+  * the RESTART_UTF8 flag in *flagp.  When this happens, the caller needs to
+  * desist from continuing parsing, and return this information to its caller.
+  * This is not set for when there is only one code point, as this can be
+  * called as part of an ANYOF node, and they can store above-Latin1 code
+  * points without the pattern having to be in UTF-8.
+  *
+  * For non-single-quoted regexes, the tokenizer has resolved character and
+  * sequence names inside \N{...} into their Unicode values, normalizing the
+  * result into what we should see here: '\N{U+c1.c2...}', where c1... are the
+  * hex-represented code points in the sequence.  This is done there because
+  * the names can vary based on what charnames pragma is in scope at the time,
+  * so we need a way to take a snapshot of what they resolve to at the time of
+  * the original parse. [perl #56444].
+  *
+  * That parsing is skipped for single-quoted regexes, so we may here get
+  * '\N{NAME}'.  This is a fatal error.  These names have to be resolved by the
+  * parser.  But if the single-quoted regex is something like '\N{U+41}', that
+  * is legal and handled here.  The code point is Unicode, and has to be
+  * translated into the native character set for non-ASCII platforms.
+  * the tokenizer passes the \N sequence through unchanged; this code will not
+  * attempt to determine this nor expand those, instead raising a syntax error.
+  */
+
+ char * endbrace;    /* points to '}' following the name */
+ char *endchar; /* Points to '.' or '}' ending cur char in the input
+      stream */
+ char* p;            /* Temporary */
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_GROK_BSLASH_N;
+
+ GET_RE_DEBUG_FLAGS;
+
+ assert(cBOOL(node_p) ^ cBOOL(code_point_p));  /* Exactly one should be set */
+ assert(! (node_p && cp_count));               /* At most 1 should be set */
+
+ if (cp_count) {     /* Initialize return for the most common case */
+  *cp_count = 1;
+ }
+
+ /* The [^\n] meaning of \N ignores spaces and comments under the /x
+ * modifier.  The other meanings do not, so use a temporary until we find
+ * out which we are being called with */
+ p = (RExC_flags & RXf_PMf_EXTENDED)
+  ? regpatws(pRExC_state, RExC_parse,
+        TRUE) /* means recognize comments */
+  : RExC_parse;
+
+ /* Disambiguate between \N meaning a named character versus \N meaning
+ * [^\n].  The latter is assumed when the {...} following the \N is a legal
+ * quantifier, or there is no a '{' at all */
+ if (*p != '{' || regcurly(p)) {
+  RExC_parse = p;
+  if (cp_count) {
+   *cp_count = -1;
+  }
+
+  if (! node_p) {
+   return FALSE;
+  }
+  RExC_parse--;   /* Need to back off so nextchar() doesn't skip the
+      current char */
+  nextchar(pRExC_state);
+  *node_p = reg_node(pRExC_state, REG_ANY);
+  *flagp |= HASWIDTH|SIMPLE;
+  MARK_NAUGHTY(1);
+  Set_Node_Length(*node_p, 1); /* MJD */
+  return TRUE;
+ }
+
+ /* Here, we have decided it should be a named character or sequence */
+
+ /* The test above made sure that the next real character is a '{', but
+ * under the /x modifier, it could be separated by space (or a comment and
+ * \n) and this is not allowed (for consistency with \x{...} and the
+ * tokenizer handling of \N{NAME}). */
+ if (*RExC_parse != '{') {
+  vFAIL("Missing braces on \\N{}");
+ }
+
+ RExC_parse++; /* Skip past the '{' */
+
+ if (! (endbrace = strchr(RExC_parse, '}'))  /* no trailing brace */
+  || ! (endbrace == RExC_parse  /* nothing between the {} */
+   || (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked... */
+    && strnEQ(RExC_parse, "U+", 2)))) /* ... below for a better
+             error msg) */
+ {
+  if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
+  vFAIL("\\N{NAME} must be resolved by the lexer");
+ }
+
+ RExC_uni_semantics = 1; /* Unicode named chars imply Unicode semantics */
+
+ if (endbrace == RExC_parse) {   /* empty: \N{} */
+  if (cp_count) {
+   *cp_count = 0;
+  }
+  nextchar(pRExC_state);
+  if (! node_p) {
+   return FALSE;
+  }
+
+  *node_p = reg_node(pRExC_state,NOTHING);
+  return TRUE;
+ }
+
+ RExC_parse += 2; /* Skip past the 'U+' */
+
+ endchar = RExC_parse + strcspn(RExC_parse, ".}");
+
+ /* Code points are separated by dots.  If none, there is only one code
+ * point, and is terminated by the brace */
+
+ if (endchar >= endbrace) {
+  STRLEN length_of_hex;
+  I32 grok_hex_flags;
+
+  /* Here, exactly one code point.  If that isn't what is wanted, fail */
+  if (! code_point_p) {
+   RExC_parse = p;
+   return FALSE;
+  }
+
+  /* Convert code point from hex */
+  length_of_hex = (STRLEN)(endchar - RExC_parse);
+  grok_hex_flags = PERL_SCAN_ALLOW_UNDERSCORES
+      | PERL_SCAN_DISALLOW_PREFIX
+
+       /* No errors in the first pass (See [perl
+       * #122671].)  We let the code below find the
+       * errors when there are multiple chars. */
+      | ((SIZE_ONLY)
+       ? PERL_SCAN_SILENT_ILLDIGIT
+       : 0);
+
+  /* This routine is the one place where both single- and double-quotish
+  * \N{U+xxxx} are evaluated.  The value is a Unicode code point which
+  * must be converted to native. */
+  *code_point_p = UNI_TO_NATIVE(grok_hex(RExC_parse,
+          &length_of_hex,
+          &grok_hex_flags,
+          NULL));
+
+  /* The tokenizer should have guaranteed validity, but it's possible to
+  * bypass it by using single quoting, so check.  Don't do the check
+  * here when there are multiple chars; we do it below anyway. */
+  if (length_of_hex == 0
+   || length_of_hex != (STRLEN)(endchar - RExC_parse) )
+  {
+   RExC_parse += length_of_hex; /* Includes all the valid */
+   RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
+       ? UTF8SKIP(RExC_parse)
+       : 1;
+   /* Guard against malformed utf8 */
+   if (RExC_parse >= endchar) {
+    RExC_parse = endchar;
+   }
+   vFAIL("Invalid hexadecimal number in \\N{U+...}");
+  }
+
+  RExC_parse = endbrace + 1;
+  return TRUE;
+ }
+ else {  /* Is a multiple character sequence */
+  SV * substitute_parse;
+  STRLEN len;
+  char *orig_end = RExC_end;
+  I32 flags;
+
+  /* Count the code points, if desired, in the sequence */
+  if (cp_count) {
+   *cp_count = 0;
+   while (RExC_parse < endbrace) {
+    /* Point to the beginning of the next character in the sequence. */
+    RExC_parse = endchar + 1;
+    endchar = RExC_parse + strcspn(RExC_parse, ".}");
+    (*cp_count)++;
+   }
+  }
+
+  /* Fail if caller doesn't want to handle a multi-code-point sequence.
+  * But don't backup up the pointer if the caller want to know how many
+  * code points there are (they can then handle things) */
+  if (! node_p) {
+   if (! cp_count) {
+    RExC_parse = p;
+   }
+   return FALSE;
+  }
+
+  /* What is done here is to convert this to a sub-pattern of the form
+  * \x{char1}\x{char2}...  and then call reg recursively to parse it
+  * (enclosing in "(?: ... )" ).  That way, it retains its atomicness,
+  * while not having to worry about special handling that some code
+  * points may have. */
+
+  substitute_parse = newSVpvs("?:");
+
+  while (RExC_parse < endbrace) {
+
+   /* Convert to notation the rest of the code understands */
+   sv_catpv(substitute_parse, "\\x{");
+   sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
+   sv_catpv(substitute_parse, "}");
+
+   /* Point to the beginning of the next character in the sequence. */
+   RExC_parse = endchar + 1;
+   endchar = RExC_parse + strcspn(RExC_parse, ".}");
+
+  }
+  sv_catpv(substitute_parse, ")");
+
+  RExC_parse = SvPV(substitute_parse, len);
+
+  /* Don't allow empty number */
+  if (len < (STRLEN) 8) {
+   RExC_parse = endbrace;
+   vFAIL("Invalid hexadecimal number in \\N{U+...}");
+  }
+  RExC_end = RExC_parse + len;
+
+  /* The values are Unicode, and therefore not subject to recoding, but
+  * have to be converted to native on a non-Unicode (meaning non-ASCII)
+  * platform. */
+  RExC_override_recoding = 1;
+#ifdef EBCDIC
+  RExC_recode_x_to_native = 1;
+#endif
+
+  if (node_p) {
+   if (!(*node_p = reg(pRExC_state, 1, &flags, depth+1))) {
+    if (flags & RESTART_UTF8) {
+     *flagp = RESTART_UTF8;
+     return FALSE;
+    }
+    FAIL2("panic: reg returned NULL to grok_bslash_N, flags=%#"UVxf"",
+     (UV) flags);
+   }
+   *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
+  }
+
+  /* Restore the saved values */
+  RExC_parse = endbrace;
+  RExC_end = orig_end;
+  RExC_override_recoding = 0;
+#ifdef EBCDIC
+  RExC_recode_x_to_native = 0;
+#endif
+
+  SvREFCNT_dec_NN(substitute_parse);
+  nextchar(pRExC_state);
+
+  return TRUE;
+ }
+}
+
+
+/*
+ * reg_recode
+ *
+ * It returns the code point in utf8 for the value in *encp.
+ *    value: a code value in the source encoding
+ *    encp:  a pointer to an Encode object
+ *
+ * If the result from Encode is not a single character,
+ * it returns U+FFFD (Replacement character) and sets *encp to NULL.
+ */
+STATIC UV
+S_reg_recode(pTHX_ const char value, SV **encp)
+{
+ STRLEN numlen = 1;
+ SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
+ const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
+ const STRLEN newlen = SvCUR(sv);
+ UV uv = UNICODE_REPLACEMENT;
+
+ PERL_ARGS_ASSERT_REG_RECODE;
+
+ if (newlen)
+  uv = SvUTF8(sv)
+   ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
+   : *(U8*)s;
+
+ if (!newlen || numlen != newlen) {
+  uv = UNICODE_REPLACEMENT;
+  *encp = NULL;
+ }
+ return uv;
+}
+
+PERL_STATIC_INLINE U8
+S_compute_EXACTish(RExC_state_t *pRExC_state)
+{
+ U8 op;
+
+ PERL_ARGS_ASSERT_COMPUTE_EXACTISH;
+
+ if (! FOLD) {
+  return (LOC)
+    ? EXACTL
+    : EXACT;
+ }
+
+ op = get_regex_charset(RExC_flags);
+ if (op >= REGEX_ASCII_RESTRICTED_CHARSET) {
+  op--; /* /a is same as /u, and map /aa's offset to what /a's would have
+    been, so there is no hole */
+ }
+
+ return op + EXACTF;
+}
+
+PERL_STATIC_INLINE void
+S_alloc_maybe_populate_EXACT(pTHX_ RExC_state_t *pRExC_state,
+      regnode *node, I32* flagp, STRLEN len, UV code_point,
+      bool downgradable)
+{
+ /* This knows the details about sizing an EXACTish node, setting flags for
+ * it (by setting <*flagp>, and potentially populating it with a single
+ * character.
+ *
+ * If <len> (the length in bytes) is non-zero, this function assumes that
+ * the node has already been populated, and just does the sizing.  In this
+ * case <code_point> should be the final code point that has already been
+ * placed into the node.  This value will be ignored except that under some
+ * circumstances <*flagp> is set based on it.
+ *
+ * If <len> is zero, the function assumes that the node is to contain only
+ * the single character given by <code_point> and calculates what <len>
+ * should be.  In pass 1, it sizes the node appropriately.  In pass 2, it
+ * additionally will populate the node's STRING with <code_point> or its
+ * fold if folding.
+ *
+ * In both cases <*flagp> is appropriately set
+ *
+ * It knows that under FOLD, the Latin Sharp S and UTF characters above
+ * 255, must be folded (the former only when the rules indicate it can
+ * match 'ss')
+ *
+ * When it does the populating, it looks at the flag 'downgradable'.  If
+ * true with a node that folds, it checks if the single code point
+ * participates in a fold, and if not downgrades the node to an EXACT.
+ * This helps the optimizer */
+
+ bool len_passed_in = cBOOL(len != 0);
+ U8 character[UTF8_MAXBYTES_CASE+1];
+
+ PERL_ARGS_ASSERT_ALLOC_MAYBE_POPULATE_EXACT;
+
+ /* Don't bother to check for downgrading in PASS1, as it doesn't make any
+ * sizing difference, and is extra work that is thrown away */
+ if (downgradable && ! PASS2) {
+  downgradable = FALSE;
+ }
+
+ if (! len_passed_in) {
+  if (UTF) {
+   if (UVCHR_IS_INVARIANT(code_point)) {
+    if (LOC || ! FOLD) {    /* /l defers folding until runtime */
+     *character = (U8) code_point;
+    }
+    else { /* Here is /i and not /l. (toFOLD() is defined on just
+      ASCII, which isn't the same thing as INVARIANT on
+      EBCDIC, but it works there, as the extra invariants
+      fold to themselves) */
+     *character = toFOLD((U8) code_point);
+
+     /* We can downgrade to an EXACT node if this character
+     * isn't a folding one.  Note that this assumes that
+     * nothing above Latin1 folds to some other invariant than
+     * one of these alphabetics; otherwise we would also have
+     * to check:
+     *  && (! HAS_NONLATIN1_FOLD_CLOSURE(code_point)
+     *      || ASCII_FOLD_RESTRICTED))
+     */
+     if (downgradable && PL_fold[code_point] == code_point) {
+      OP(node) = EXACT;
+     }
+    }
+    len = 1;
+   }
+   else if (FOLD && (! LOC
+       || ! is_PROBLEMATIC_LOCALE_FOLD_cp(code_point)))
+   {   /* Folding, and ok to do so now */
+    UV folded = _to_uni_fold_flags(
+        code_point,
+        character,
+        &len,
+        FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
+             ? FOLD_FLAGS_NOMIX_ASCII
+             : 0));
+    if (downgradable
+     && folded == code_point /* This quickly rules out many
+           cases, avoiding the
+           _invlist_contains_cp() overhead
+           for those.  */
+     && ! _invlist_contains_cp(PL_utf8_foldable, code_point))
+    {
+     OP(node) = (LOC)
+       ? EXACTL
+       : EXACT;
+    }
+   }
+   else if (code_point <= MAX_UTF8_TWO_BYTE) {
+
+    /* Not folding this cp, and can output it directly */
+    *character = UTF8_TWO_BYTE_HI(code_point);
+    *(character + 1) = UTF8_TWO_BYTE_LO(code_point);
+    len = 2;
+   }
+   else {
+    uvchr_to_utf8( character, code_point);
+    len = UTF8SKIP(character);
+   }
+  } /* Else pattern isn't UTF8.  */
+  else if (! FOLD) {
+   *character = (U8) code_point;
+   len = 1;
+  } /* Else is folded non-UTF8 */
+  else if (LIKELY(code_point != LATIN_SMALL_LETTER_SHARP_S)) {
+
+   /* We don't fold any non-UTF8 except possibly the Sharp s  (see
+   * comments at join_exact()); */
+   *character = (U8) code_point;
+   len = 1;
+
+   /* Can turn into an EXACT node if we know the fold at compile time,
+   * and it folds to itself and doesn't particpate in other folds */
+   if (downgradable
+    && ! LOC
+    && PL_fold_latin1[code_point] == code_point
+    && (! HAS_NONLATIN1_FOLD_CLOSURE(code_point)
+     || (isASCII(code_point) && ASCII_FOLD_RESTRICTED)))
+   {
+    OP(node) = EXACT;
+   }
+  } /* else is Sharp s.  May need to fold it */
+  else if (AT_LEAST_UNI_SEMANTICS && ! ASCII_FOLD_RESTRICTED) {
+   *character = 's';
+   *(character + 1) = 's';
+   len = 2;
+  }
+  else {
+   *character = LATIN_SMALL_LETTER_SHARP_S;
+   len = 1;
+  }
+ }
+
+ if (SIZE_ONLY) {
+  RExC_size += STR_SZ(len);
+ }
+ else {
+  RExC_emit += STR_SZ(len);
+  STR_LEN(node) = len;
+  if (! len_passed_in) {
+   Copy((char *) character, STRING(node), len, char);
+  }
+ }
+
+ *flagp |= HASWIDTH;
+
+ /* A single character node is SIMPLE, except for the special-cased SHARP S
+ * under /di. */
+ if ((len == 1 || (UTF && len == UNISKIP(code_point)))
+  && (code_point != LATIN_SMALL_LETTER_SHARP_S
+   || ! FOLD || ! DEPENDS_SEMANTICS))
+ {
+  *flagp |= SIMPLE;
+ }
+
+ /* The OP may not be well defined in PASS1 */
+ if (PASS2 && OP(node) == EXACTFL) {
+  RExC_contains_locale = 1;
+ }
+}
+
+
+/* Parse backref decimal value, unless it's too big to sensibly be a backref,
+ * in which case return I32_MAX (rather than possibly 32-bit wrapping) */
+
+static I32
+S_backref_value(char *p)
+{
+ const char* endptr;
+ UV val;
+ if (grok_atoUV(p, &val, &endptr) && val <= I32_MAX)
+  return (I32)val;
+ return I32_MAX;
+}
+
+
+/*
+ - regatom - the lowest level
+
+   Try to identify anything special at the start of the pattern. If there
+   is, then handle it as required. This may involve generating a single regop,
+   such as for an assertion; or it may involve recursing, such as to
+   handle a () structure.
+
+   If the string doesn't start with something special then we gobble up
+   as much literal text as we can.
+
+   Once we have been able to handle whatever type of thing started the
+   sequence, we return.
+
+   Note: we have to be careful with escapes, as they can be both literal
+   and special, and in the case of \10 and friends, context determines which.
+
+   A summary of the code structure is:
+
+   switch (first_byte) {
+  cases for each special:
+   handle this special;
+   break;
+  case '\\':
+   switch (2nd byte) {
+    cases for each unambiguous special:
+     handle this special;
+     break;
+    cases for each ambigous special/literal:
+     disambiguate;
+     if (special)  handle here
+     else goto defchar;
+    default: // unambiguously literal:
+     goto defchar;
+   }
+  default:  // is a literal char
+   // FALL THROUGH
+  defchar:
+   create EXACTish node for literal;
+   while (more input and node isn't full) {
+    switch (input_byte) {
+    cases for each special;
+     make sure parse pointer is set so that the next call to
+      regatom will see this special first
+     goto loopdone; // EXACTish node terminated by prev. char
+    default:
+     append char to EXACTISH node;
+    }
+    get next input byte;
+   }
+  loopdone:
+   }
+   return the generated node;
+
+   Specifically there are two separate switches for handling
+   escape sequences, with the one for handling literal escapes requiring
+   a dummy entry for all of the special escapes that are actually handled
+   by the other.
+
+   Returns NULL, setting *flagp to TRYAGAIN if reg() returns NULL with
+   TRYAGAIN.
+   Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
+   restarted.
+   Otherwise does not return NULL.
+*/
+
+STATIC regnode *
+S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
+{
+ regnode *ret = NULL;
+ I32 flags = 0;
+ char *parse_start = RExC_parse;
+ U8 op;
+ int invert = 0;
+ U8 arg;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ *flagp = WORST;  /* Tentatively. */
+
+ DEBUG_PARSE("atom");
+
+ PERL_ARGS_ASSERT_REGATOM;
+
+  tryagain:
+ switch ((U8)*RExC_parse) {
+ case '^':
+  RExC_seen_zerolen++;
+  nextchar(pRExC_state);
+  if (RExC_flags & RXf_PMf_MULTILINE)
+   ret = reg_node(pRExC_state, MBOL);
+  else
+   ret = reg_node(pRExC_state, SBOL);
+  Set_Node_Length(ret, 1); /* MJD */
+  break;
+ case '$':
+  nextchar(pRExC_state);
+  if (*RExC_parse)
+   RExC_seen_zerolen++;
+  if (RExC_flags & RXf_PMf_MULTILINE)
+   ret = reg_node(pRExC_state, MEOL);
+  else
+   ret = reg_node(pRExC_state, SEOL);
+  Set_Node_Length(ret, 1); /* MJD */
+  break;
+ case '.':
+  nextchar(pRExC_state);
+  if (RExC_flags & RXf_PMf_SINGLELINE)
+   ret = reg_node(pRExC_state, SANY);
+  else
+   ret = reg_node(pRExC_state, REG_ANY);
+  *flagp |= HASWIDTH|SIMPLE;
+  MARK_NAUGHTY(1);
+  Set_Node_Length(ret, 1); /* MJD */
+  break;
+ case '[':
+ {
+  char * const oregcomp_parse = ++RExC_parse;
+  ret = regclass(pRExC_state, flagp,depth+1,
+     FALSE, /* means parse the whole char class */
+     TRUE, /* allow multi-char folds */
+     FALSE, /* don't silence non-portable warnings. */
+     (bool) RExC_strict,
+     NULL);
+  if (*RExC_parse != ']') {
+   RExC_parse = oregcomp_parse;
+   vFAIL("Unmatched [");
+  }
+  if (ret == NULL) {
+   if (*flagp & RESTART_UTF8)
+    return NULL;
+   FAIL2("panic: regclass returned NULL to regatom, flags=%#"UVxf"",
+    (UV) *flagp);
+  }
+  nextchar(pRExC_state);
+  Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
+  break;
+ }
+ case '(':
+  nextchar(pRExC_state);
+  ret = reg(pRExC_state, 2, &flags,depth+1);
+  if (ret == NULL) {
+    if (flags & TRYAGAIN) {
+     if (RExC_parse == RExC_end) {
+      /* Make parent create an empty node if needed. */
+      *flagp |= TRYAGAIN;
+      return(NULL);
+     }
+     goto tryagain;
+    }
+    if (flags & RESTART_UTF8) {
+     *flagp = RESTART_UTF8;
+     return NULL;
+    }
+    FAIL2("panic: reg returned NULL to regatom, flags=%#"UVxf"",
+                (UV) flags);
+  }
+  *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
+  break;
+ case '|':
+ case ')':
+  if (flags & TRYAGAIN) {
+   *flagp |= TRYAGAIN;
+   return NULL;
+  }
+  vFAIL("Internal urp");
+        /* Supposed to be caught earlier. */
+  break;
+ case '?':
+ case '+':
+ case '*':
+  RExC_parse++;
+  vFAIL("Quantifier follows nothing");
+  break;
+ case '\\':
+  /* Special Escapes
+
+  This switch handles escape sequences that resolve to some kind
+  of special regop and not to literal text. Escape sequnces that
+  resolve to literal text are handled below in the switch marked
+  "Literal Escapes".
+
+  Every entry in this switch *must* have a corresponding entry
+  in the literal escape switch. However, the opposite is not
+  required, as the default for this switch is to jump to the
+  literal text handling code.
+  */
+  switch ((U8)*++RExC_parse) {
+  /* Special Escapes */
+  case 'A':
+   RExC_seen_zerolen++;
+   ret = reg_node(pRExC_state, SBOL);
+   /* SBOL is shared with /^/ so we set the flags so we can tell
+   * /\A/ from /^/ in split. We check ret because first pass we
+   * have no regop struct to set the flags on. */
+   if (PASS2)
+    ret->flags = 1;
+   *flagp |= SIMPLE;
+   goto finish_meta_pat;
+  case 'G':
+   ret = reg_node(pRExC_state, GPOS);
+   RExC_seen |= REG_GPOS_SEEN;
+   *flagp |= SIMPLE;
+   goto finish_meta_pat;
+  case 'K':
+   RExC_seen_zerolen++;
+   ret = reg_node(pRExC_state, KEEPS);
+   *flagp |= SIMPLE;
+   /* XXX:dmq : disabling in-place substitution seems to
+   * be necessary here to avoid cases of memory corruption, as
+   * with: C<$_="x" x 80; s/x\K/y/> -- rgs
+   */
+   RExC_seen |= REG_LOOKBEHIND_SEEN;
+   goto finish_meta_pat;
+  case 'Z':
+   ret = reg_node(pRExC_state, SEOL);
+   *flagp |= SIMPLE;
+   RExC_seen_zerolen++;  /* Do not optimize RE away */
+   goto finish_meta_pat;
+  case 'z':
+   ret = reg_node(pRExC_state, EOS);
+   *flagp |= SIMPLE;
+   RExC_seen_zerolen++;  /* Do not optimize RE away */
+   goto finish_meta_pat;
+  case 'C':
+   vFAIL("\\C no longer supported");
+  case 'X':
+   ret = reg_node(pRExC_state, CLUMP);
+   *flagp |= HASWIDTH;
+   goto finish_meta_pat;
+
+  case 'W':
+   invert = 1;
+   /* FALLTHROUGH */
+  case 'w':
+   arg = ANYOF_WORDCHAR;
+   goto join_posix;
+
+  case 'B':
+   invert = 1;
+   /* FALLTHROUGH */
+  case 'b':
+  {
+   regex_charset charset = get_regex_charset(RExC_flags);
+
+   RExC_seen_zerolen++;
+   RExC_seen |= REG_LOOKBEHIND_SEEN;
+   op = BOUND + charset;
+
+   if (op == BOUNDL) {
+    RExC_contains_locale = 1;
+   }
+
+   ret = reg_node(pRExC_state, op);
+   *flagp |= SIMPLE;
+   if (*(RExC_parse + 1) != '{') {
+    FLAGS(ret) = TRADITIONAL_BOUND;
+    if (PASS2 && op > BOUNDA) {  /* /aa is same as /a */
+     OP(ret) = BOUNDA;
+    }
+   }
+   else {
+    STRLEN length;
+    char name = *RExC_parse;
+    char * endbrace;
+    RExC_parse += 2;
+    endbrace = strchr(RExC_parse, '}');
+
+    if (! endbrace) {
+     vFAIL2("Missing right brace on \\%c{}", name);
+    }
+    /* XXX Need to decide whether to take spaces or not.  Should be
+    * consistent with \p{}, but that currently is SPACE, which
+    * means vertical too, which seems wrong
+    * while (isBLANK(*RExC_parse)) {
+     RExC_parse++;
+    }*/
+    if (endbrace == RExC_parse) {
+     RExC_parse++;  /* After the '}' */
+     vFAIL2("Empty \\%c{}", name);
+    }
+    length = endbrace - RExC_parse;
+    /*while (isBLANK(*(RExC_parse + length - 1))) {
+     length--;
+    }*/
+    switch (*RExC_parse) {
+     case 'g':
+      if (length != 1
+       && (length != 3 || strnNE(RExC_parse + 1, "cb", 2)))
+      {
+       goto bad_bound_type;
+      }
+      FLAGS(ret) = GCB_BOUND;
+      break;
+     case 's':
+      if (length != 2 || *(RExC_parse + 1) != 'b') {
+       goto bad_bound_type;
+      }
+      FLAGS(ret) = SB_BOUND;
+      break;
+     case 'w':
+      if (length != 2 || *(RExC_parse + 1) != 'b') {
+       goto bad_bound_type;
+      }
+      FLAGS(ret) = WB_BOUND;
+      break;
+     default:
+     bad_bound_type:
+      RExC_parse = endbrace;
+      vFAIL2utf8f(
+       "'%"UTF8f"' is an unknown bound type",
+       UTF8fARG(UTF, length, endbrace - length));
+      NOT_REACHED; /*NOTREACHED*/
+    }
+    RExC_parse = endbrace;
+    RExC_uni_semantics = 1;
+
+    if (PASS2 && op >= BOUNDA) {  /* /aa is same as /a */
+     OP(ret) = BOUNDU;
+     length += 4;
+
+     /* Don't have to worry about UTF-8, in this message because
+     * to get here the contents of the \b must be ASCII */
+     ckWARN4reg(RExC_parse + 1,  /* Include the '}' in msg */
+       "Using /u for '%.*s' instead of /%s",
+       (unsigned) length,
+       endbrace - length + 1,
+       (charset == REGEX_ASCII_RESTRICTED_CHARSET)
+       ? ASCII_RESTRICT_PAT_MODS
+       : ASCII_MORE_RESTRICT_PAT_MODS);
+    }
+   }
+
+   if (PASS2 && invert) {
+    OP(ret) += NBOUND - BOUND;
+   }
+   goto finish_meta_pat;
+  }
+
+  case 'D':
+   invert = 1;
+   /* FALLTHROUGH */
+  case 'd':
+   arg = ANYOF_DIGIT;
+   if (! DEPENDS_SEMANTICS) {
+    goto join_posix;
+   }
+
+   /* \d doesn't have any matches in the upper Latin1 range, hence /d
+   * is equivalent to /u.  Changing to /u saves some branches at
+   * runtime */
+   op = POSIXU;
+   goto join_posix_op_known;
+
+  case 'R':
+   ret = reg_node(pRExC_state, LNBREAK);
+   *flagp |= HASWIDTH|SIMPLE;
+   goto finish_meta_pat;
+
+  case 'H':
+   invert = 1;
+   /* FALLTHROUGH */
+  case 'h':
+   arg = ANYOF_BLANK;
+   op = POSIXU;
+   goto join_posix_op_known;
+
+  case 'V':
+   invert = 1;
+   /* FALLTHROUGH */
+  case 'v':
+   arg = ANYOF_VERTWS;
+   op = POSIXU;
+   goto join_posix_op_known;
+
+  case 'S':
+   invert = 1;
+   /* FALLTHROUGH */
+  case 's':
+   arg = ANYOF_SPACE;
+
+  join_posix:
+
+   op = POSIXD + get_regex_charset(RExC_flags);
+   if (op > POSIXA) {  /* /aa is same as /a */
+    op = POSIXA;
+   }
+   else if (op == POSIXL) {
+    RExC_contains_locale = 1;
+   }
+
+  join_posix_op_known:
+
+   if (invert) {
+    op += NPOSIXD - POSIXD;
+   }
+
+   ret = reg_node(pRExC_state, op);
+   if (! SIZE_ONLY) {
+    FLAGS(ret) = namedclass_to_classnum(arg);
+   }
+
+   *flagp |= HASWIDTH|SIMPLE;
+   /* FALLTHROUGH */
+
+  finish_meta_pat:
+   nextchar(pRExC_state);
+   Set_Node_Length(ret, 2); /* MJD */
+   break;
+  case 'p':
+  case 'P':
+   {
+#ifdef DEBUGGING
+    char* parse_start = RExC_parse - 2;
+#endif
+
+    RExC_parse--;
+
+    ret = regclass(pRExC_state, flagp,depth+1,
+       TRUE, /* means just parse this element */
+       FALSE, /* don't allow multi-char folds */
+       FALSE, /* don't silence non-portable warnings.
+          It would be a bug if these returned
+          non-portables */
+       (bool) RExC_strict,
+       NULL);
+    /* regclass() can only return RESTART_UTF8 if multi-char folds
+    are allowed.  */
+    if (!ret)
+     FAIL2("panic: regclass returned NULL to regatom, flags=%#"UVxf"",
+      (UV) *flagp);
+
+    RExC_parse--;
+
+    Set_Node_Offset(ret, parse_start + 2);
+    Set_Node_Cur_Length(ret, parse_start);
+    nextchar(pRExC_state);
+   }
+   break;
+  case 'N':
+   /* Handle \N, \N{} and \N{NAMED SEQUENCE} (the latter meaning the
+   * \N{...} evaluates to a sequence of more than one code points).
+   * The function call below returns a regnode, which is our result.
+   * The parameters cause it to fail if the \N{} evaluates to a
+   * single code point; we handle those like any other literal.  The
+   * reason that the multicharacter case is handled here and not as
+   * part of the EXACtish code is because of quantifiers.  In
+   * /\N{BLAH}+/, the '+' applies to the whole thing, and doing it
+   * this way makes that Just Happen. dmq.
+   * join_exact() will join this up with adjacent EXACTish nodes
+   * later on, if appropriate. */
+   ++RExC_parse;
+   if (grok_bslash_N(pRExC_state,
+       &ret,     /* Want a regnode returned */
+       NULL,     /* Fail if evaluates to a single code
+          point */
+       NULL,     /* Don't need a count of how many code
+          points */
+       flagp,
+       depth)
+   ) {
+    break;
+   }
+
+   if (*flagp & RESTART_UTF8)
+    return NULL;
+   RExC_parse--;
+   goto defchar;
+
+  case 'k':    /* Handle \k<NAME> and \k'NAME' */
+ parse_named_seq:
+  {
+   char ch= RExC_parse[1];
+   if (ch != '<' && ch != '\'' && ch != '{') {
+    RExC_parse++;
+    /* diag_listed_as: Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/ */
+    vFAIL2("Sequence %.2s... not terminated",parse_start);
+   } else {
+    /* this pretty much dupes the code for (?P=...) in reg(), if
+    you change this make sure you change that */
+    char* name_start = (RExC_parse += 2);
+    U32 num = 0;
+    SV *sv_dat = reg_scan_name(pRExC_state,
+     SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+    ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
+    if (RExC_parse == name_start || *RExC_parse != ch)
+     /* diag_listed_as: Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/ */
+     vFAIL2("Sequence %.3s... not terminated",parse_start);
+
+    if (!SIZE_ONLY) {
+     num = add_data( pRExC_state, STR_WITH_LEN("S"));
+     RExC_rxi->data->data[num]=(void*)sv_dat;
+     SvREFCNT_inc_simple_void(sv_dat);
+    }
+
+    RExC_sawback = 1;
+    ret = reganode(pRExC_state,
+       ((! FOLD)
+        ? NREF
+        : (ASCII_FOLD_RESTRICTED)
+        ? NREFFA
+        : (AT_LEAST_UNI_SEMANTICS)
+         ? NREFFU
+         : (LOC)
+         ? NREFFL
+         : NREFF),
+        num);
+    *flagp |= HASWIDTH;
+
+    /* override incorrect value set in reganode MJD */
+    Set_Node_Offset(ret, parse_start+1);
+    Set_Node_Cur_Length(ret, parse_start);
+    nextchar(pRExC_state);
+
+   }
+   break;
+  }
+  case 'g':
+  case '1': case '2': case '3': case '4':
+  case '5': case '6': case '7': case '8': case '9':
+   {
+    I32 num;
+    bool hasbrace = 0;
+
+    if (*RExC_parse == 'g') {
+     bool isrel = 0;
+
+     RExC_parse++;
+     if (*RExC_parse == '{') {
+      RExC_parse++;
+      hasbrace = 1;
+     }
+     if (*RExC_parse == '-') {
+      RExC_parse++;
+      isrel = 1;
+     }
+     if (hasbrace && !isDIGIT(*RExC_parse)) {
+      if (isrel) RExC_parse--;
+      RExC_parse -= 2;
+      goto parse_named_seq;
+     }
+
+     num = S_backref_value(RExC_parse);
+     if (num == 0)
+      vFAIL("Reference to invalid group 0");
+     else if (num == I32_MAX) {
+      if (isDIGIT(*RExC_parse))
+       vFAIL("Reference to nonexistent group");
+      else
+       vFAIL("Unterminated \\g... pattern");
+     }
+
+     if (isrel) {
+      num = RExC_npar - num;
+      if (num < 1)
+       vFAIL("Reference to nonexistent or unclosed group");
+     }
+    }
+    else {
+     num = S_backref_value(RExC_parse);
+     /* bare \NNN might be backref or octal - if it is larger
+     * than or equal RExC_npar then it is assumed to be an
+     * octal escape. Note RExC_npar is +1 from the actual
+     * number of parens. */
+     /* Note we do NOT check if num == I32_MAX here, as that is
+     * handled by the RExC_npar check */
+
+     if (
+      /* any numeric escape < 10 is always a backref */
+      num > 9
+      /* any numeric escape < RExC_npar is a backref */
+      && num >= RExC_npar
+      /* cannot be an octal escape if it starts with 8 */
+      && *RExC_parse != '8'
+      /* cannot be an octal escape it it starts with 9 */
+      && *RExC_parse != '9'
+     )
+     {
+      /* Probably not a backref, instead likely to be an
+      * octal character escape, e.g. \35 or \777.
+      * The above logic should make it obvious why using
+      * octal escapes in patterns is problematic. - Yves */
+      goto defchar;
+     }
+    }
+
+    /* At this point RExC_parse points at a numeric escape like
+    * \12 or \88 or something similar, which we should NOT treat
+    * as an octal escape. It may or may not be a valid backref
+    * escape. For instance \88888888 is unlikely to be a valid
+    * backref. */
+    {
+#ifdef RE_TRACK_PATTERN_OFFSETS
+     char * const parse_start = RExC_parse - 1; /* MJD */
+#endif
+     while (isDIGIT(*RExC_parse))
+      RExC_parse++;
+     if (hasbrace) {
+      if (*RExC_parse != '}')
+       vFAIL("Unterminated \\g{...} pattern");
+      RExC_parse++;
+     }
+     if (!SIZE_ONLY) {
+      if (num > (I32)RExC_rx->nparens)
+       vFAIL("Reference to nonexistent group");
+     }
+     RExC_sawback = 1;
+     ret = reganode(pRExC_state,
+        ((! FOLD)
+         ? REF
+         : (ASCII_FOLD_RESTRICTED)
+         ? REFFA
+         : (AT_LEAST_UNI_SEMANTICS)
+          ? REFFU
+          : (LOC)
+          ? REFFL
+          : REFF),
+         num);
+     *flagp |= HASWIDTH;
+
+     /* override incorrect value set in reganode MJD */
+     Set_Node_Offset(ret, parse_start+1);
+     Set_Node_Cur_Length(ret, parse_start);
+     RExC_parse--;
+     nextchar(pRExC_state);
+    }
+   }
+   break;
+  case '\0':
+   if (RExC_parse >= RExC_end)
+    FAIL("Trailing \\");
+   /* FALLTHROUGH */
+  default:
+   /* Do not generate "unrecognized" warnings here, we fall
+   back into the quick-grab loop below */
+   parse_start--;
+   goto defchar;
+  }
+  break;
+
+ case '#':
+  if (RExC_flags & RXf_PMf_EXTENDED) {
+   RExC_parse = reg_skipcomment( pRExC_state, RExC_parse );
+   if (RExC_parse < RExC_end)
+    goto tryagain;
+  }
+  /* FALLTHROUGH */
+
+ default:
+
+   parse_start = RExC_parse - 1;
+
+   RExC_parse++;
+
+  defchar: {
+   STRLEN len = 0;
+   UV ender = 0;
+   char *p;
+   char *s;
+#define MAX_NODE_STRING_SIZE 127
+   char foldbuf[MAX_NODE_STRING_SIZE+UTF8_MAXBYTES_CASE];
+   char *s0;
+   U8 upper_parse = MAX_NODE_STRING_SIZE;
+   U8 node_type = compute_EXACTish(pRExC_state);
+   bool next_is_quantifier;
+   char * oldp = NULL;
+
+   /* We can convert EXACTF nodes to EXACTFU if they contain only
+   * characters that match identically regardless of the target
+   * string's UTF8ness.  The reason to do this is that EXACTF is not
+   * trie-able, EXACTFU is.
+   *
+   * Similarly, we can convert EXACTFL nodes to EXACTFU if they
+   * contain only above-Latin1 characters (hence must be in UTF8),
+   * which don't participate in folds with Latin1-range characters,
+   * as the latter's folds aren't known until runtime.  (We don't
+   * need to figure this out until pass 2) */
+   bool maybe_exactfu = PASS2
+       && (node_type == EXACTF || node_type == EXACTFL);
+
+   /* If a folding node contains only code points that don't
+   * participate in folds, it can be changed into an EXACT node,
+   * which allows the optimizer more things to look for */
+   bool maybe_exact;
+
+   ret = reg_node(pRExC_state, node_type);
+
+   /* In pass1, folded, we use a temporary buffer instead of the
+   * actual node, as the node doesn't exist yet */
+   s = (SIZE_ONLY && FOLD) ? foldbuf : STRING(ret);
+
+   s0 = s;
+
+  reparse:
+
+   /* We do the EXACTFish to EXACT node only if folding.  (And we
+   * don't need to figure this out until pass 2) */
+   maybe_exact = FOLD && PASS2;
+
+   /* XXX The node can hold up to 255 bytes, yet this only goes to
+   * 127.  I (khw) do not know why.  Keeping it somewhat less than
+   * 255 allows us to not have to worry about overflow due to
+   * converting to utf8 and fold expansion, but that value is
+   * 255-UTF8_MAXBYTES_CASE.  join_exact() may join adjacent nodes
+   * split up by this limit into a single one using the real max of
+   * 255.  Even at 127, this breaks under rare circumstances.  If
+   * folding, we do not want to split a node at a character that is a
+   * non-final in a multi-char fold, as an input string could just
+   * happen to want to match across the node boundary.  The join
+   * would solve that problem if the join actually happens.  But a
+   * series of more than two nodes in a row each of 127 would cause
+   * the first join to succeed to get to 254, but then there wouldn't
+   * be room for the next one, which could at be one of those split
+   * multi-char folds.  I don't know of any fool-proof solution.  One
+   * could back off to end with only a code point that isn't such a
+   * non-final, but it is possible for there not to be any in the
+   * entire node. */
+   for (p = RExC_parse - 1;
+    len < upper_parse && p < RExC_end;
+    len++)
+   {
+    oldp = p;
+
+    if (RExC_flags & RXf_PMf_EXTENDED)
+     p = regpatws(pRExC_state, p,
+          TRUE); /* means recognize comments */
+    switch ((U8)*p) {
+    case '^':
+    case '$':
+    case '.':
+    case '[':
+    case '(':
+    case ')':
+    case '|':
+     goto loopdone;
+    case '\\':
+     /* Literal Escapes Switch
+
+     This switch is meant to handle escape sequences that
+     resolve to a literal character.
+
+     Every escape sequence that represents something
+     else, like an assertion or a char class, is handled
+     in the switch marked 'Special Escapes' above in this
+     routine, but also has an entry here as anything that
+     isn't explicitly mentioned here will be treated as
+     an unescaped equivalent literal.
+     */
+
+     switch ((U8)*++p) {
+     /* These are all the special escapes. */
+     case 'A':             /* Start assertion */
+     case 'b': case 'B':   /* Word-boundary assertion*/
+     case 'C':             /* Single char !DANGEROUS! */
+     case 'd': case 'D':   /* digit class */
+     case 'g': case 'G':   /* generic-backref, pos assertion */
+     case 'h': case 'H':   /* HORIZWS */
+     case 'k': case 'K':   /* named backref, keep marker */
+     case 'p': case 'P':   /* Unicode property */
+       case 'R':   /* LNBREAK */
+     case 's': case 'S':   /* space class */
+     case 'v': case 'V':   /* VERTWS */
+     case 'w': case 'W':   /* word class */
+     case 'X':             /* eXtended Unicode "combining
+           character sequence" */
+     case 'z': case 'Z':   /* End of line/string assertion */
+      --p;
+      goto loopdone;
+
+     /* Anything after here is an escape that resolves to a
+     literal. (Except digits, which may or may not)
+     */
+     case 'n':
+      ender = '\n';
+      p++;
+      break;
+     case 'N': /* Handle a single-code point named character. */
+      RExC_parse = p + 1;
+      if (! grok_bslash_N(pRExC_state,
+           NULL,   /* Fail if evaluates to
+             anything other than a
+             single code point */
+           &ender, /* The returned single code
+             point */
+           NULL,   /* Don't need a count of
+             how many code points */
+           flagp,
+           depth)
+      ) {
+       if (*flagp & RESTART_UTF8)
+        FAIL("panic: grok_bslash_N set RESTART_UTF8");
+
+       /* Here, it wasn't a single code point.  Go close
+       * up this EXACTish node.  The switch() prior to
+       * this switch handles the other cases */
+       RExC_parse = p = oldp;
+       goto loopdone;
+      }
+      p = RExC_parse;
+      if (ender > 0xff) {
+       REQUIRE_UTF8;
+      }
+      break;
+     case 'r':
+      ender = '\r';
+      p++;
+      break;
+     case 't':
+      ender = '\t';
+      p++;
+      break;
+     case 'f':
+      ender = '\f';
+      p++;
+      break;
+     case 'e':
+      ender = ESC_NATIVE;
+      p++;
+      break;
+     case 'a':
+      ender = '\a';
+      p++;
+      break;
+     case 'o':
+      {
+       UV result;
+       const char* error_msg;
+
+       bool valid = grok_bslash_o(&p,
+             &result,
+             &error_msg,
+             PASS2, /* out warnings */
+             (bool) RExC_strict,
+             TRUE, /* Output warnings
+                for non-
+                portables */
+             UTF);
+       if (! valid) {
+        RExC_parse = p; /* going to die anyway; point
+            to exact spot of failure */
+        vFAIL(error_msg);
+       }
+       ender = result;
+       if (IN_ENCODING && ender < 0x100) {
+        goto recode_encoding;
+       }
+       if (ender > 0xff) {
+        REQUIRE_UTF8;
+       }
+       break;
+      }
+     case 'x':
+      {
+       UV result = UV_MAX; /* initialize to erroneous
+            value */
+       const char* error_msg;
+
+       bool valid = grok_bslash_x(&p,
+             &result,
+             &error_msg,
+             PASS2, /* out warnings */
+             (bool) RExC_strict,
+             TRUE, /* Silence warnings
+                for non-
+                portables */
+             UTF);
+       if (! valid) {
+        RExC_parse = p; /* going to die anyway; point
+            to exact spot of failure */
+        vFAIL(error_msg);
+       }
+       ender = result;
+
+       if (ender < 0x100) {
+#ifdef EBCDIC
+        if (RExC_recode_x_to_native) {
+         ender = LATIN1_TO_NATIVE(ender);
+        }
+        else
+#endif
+        if (IN_ENCODING) {
+         goto recode_encoding;
+        }
+       }
+       else {
+        REQUIRE_UTF8;
+       }
+       break;
+      }
+     case 'c':
+      p++;
+      ender = grok_bslash_c(*p++, PASS2);
+      break;
+     case '8': case '9': /* must be a backreference */
+      --p;
+      /* we have an escape like \8 which cannot be an octal escape
+      * so we exit the loop, and let the outer loop handle this
+      * escape which may or may not be a legitimate backref. */
+      goto loopdone;
+     case '1': case '2': case '3':case '4':
+     case '5': case '6': case '7':
+      /* When we parse backslash escapes there is ambiguity
+      * between backreferences and octal escapes. Any escape
+      * from \1 - \9 is a backreference, any multi-digit
+      * escape which does not start with 0 and which when
+      * evaluated as decimal could refer to an already
+      * parsed capture buffer is a back reference. Anything
+      * else is octal.
+      *
+      * Note this implies that \118 could be interpreted as
+      * 118 OR as "\11" . "8" depending on whether there
+      * were 118 capture buffers defined already in the
+      * pattern.  */
+
+      /* NOTE, RExC_npar is 1 more than the actual number of
+      * parens we have seen so far, hence the < RExC_npar below. */
+
+      if ( !isDIGIT(p[1]) || S_backref_value(p) < RExC_npar)
+      {  /* Not to be treated as an octal constant, go
+        find backref */
+       --p;
+       goto loopdone;
+      }
+      /* FALLTHROUGH */
+     case '0':
+      {
+       I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
+       STRLEN numlen = 3;
+       ender = grok_oct(p, &numlen, &flags, NULL);
+       if (ender > 0xff) {
+        REQUIRE_UTF8;
+       }
+       p += numlen;
+       if (PASS2   /* like \08, \178 */
+        && numlen < 3
+        && p < RExC_end
+        && isDIGIT(*p) && ckWARN(WARN_REGEXP))
+       {
+        reg_warn_non_literal_string(
+          p + 1,
+          form_short_octal_warning(p, numlen));
+       }
+      }
+      if (IN_ENCODING && ender < 0x100)
+       goto recode_encoding;
+      break;
+     recode_encoding:
+      if (! RExC_override_recoding) {
+       SV* enc = _get_encoding();
+       ender = reg_recode((const char)(U8)ender, &enc);
+       if (!enc && PASS2)
+        ckWARNreg(p, "Invalid escape in the specified encoding");
+       REQUIRE_UTF8;
+      }
+      break;
+     case '\0':
+      if (p >= RExC_end)
+       FAIL("Trailing \\");
+      /* FALLTHROUGH */
+     default:
+      if (!SIZE_ONLY&& isALPHANUMERIC(*p)) {
+       /* Include any { following the alpha to emphasize
+       * that it could be part of an escape at some point
+       * in the future */
+       int len = (isALPHA(*p) && *(p + 1) == '{') ? 2 : 1;
+       ckWARN3reg(p + len, "Unrecognized escape \\%.*s passed through", len, p);
+      }
+      goto normal_default;
+     } /* End of switch on '\' */
+     break;
+    case '{':
+     /* Currently we don't warn when the lbrace is at the start
+     * of a construct.  This catches it in the middle of a
+     * literal string, or when its the first thing after
+     * something like "\b" */
+     if (! SIZE_ONLY
+      && (len || (p > RExC_start && isALPHA_A(*(p -1)))))
+     {
+      ckWARNregdep(p + 1, "Unescaped left brace in regex is deprecated, passed through");
+     }
+     /*FALLTHROUGH*/
+    default:    /* A literal character */
+    normal_default:
+     if (UTF8_IS_START(*p) && UTF) {
+      STRLEN numlen;
+      ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
+           &numlen, UTF8_ALLOW_DEFAULT);
+      p += numlen;
+     }
+     else
+      ender = (U8) *p++;
+     break;
+    } /* End of switch on the literal */
+
+    /* Here, have looked at the literal character and <ender>
+    * contains its ordinal, <p> points to the character after it
+    */
+
+    if ( RExC_flags & RXf_PMf_EXTENDED)
+     p = regpatws(pRExC_state, p,
+          TRUE); /* means recognize comments */
+
+    /* If the next thing is a quantifier, it applies to this
+    * character only, which means that this character has to be in
+    * its own node and can't just be appended to the string in an
+    * existing node, so if there are already other characters in
+    * the node, close the node with just them, and set up to do
+    * this character again next time through, when it will be the
+    * only thing in its new node */
+    if ((next_is_quantifier = (p < RExC_end && ISMULT2(p))) && len)
+    {
+     p = oldp;
+     goto loopdone;
+    }
+
+    if (! FOLD) {  /* The simple case, just append the literal */
+
+     /* In the sizing pass, we need only the size of the
+     * character we are appending, hence we can delay getting
+     * its representation until PASS2. */
+     if (SIZE_ONLY) {
+      if (UTF) {
+       const STRLEN unilen = UNISKIP(ender);
+       s += unilen;
+
+       /* We have to subtract 1 just below (and again in
+       * the corresponding PASS2 code) because the loop
+       * increments <len> each time, as all but this path
+       * (and one other) through it add a single byte to
+       * the EXACTish node.  But these paths would change
+       * len to be the correct final value, so cancel out
+       * the increment that follows */
+       len += unilen - 1;
+      }
+      else {
+       s++;
+      }
+     } else { /* PASS2 */
+     not_fold_common:
+      if (UTF) {
+       U8 * new_s = uvchr_to_utf8((U8*)s, ender);
+       len += (char *) new_s - s - 1;
+       s = (char *) new_s;
+      }
+      else {
+       *(s++) = (char) ender;
+      }
+     }
+    }
+    else if (LOC && is_PROBLEMATIC_LOCALE_FOLD_cp(ender)) {
+
+     /* Here are folding under /l, and the code point is
+     * problematic.  First, we know we can't simplify things */
+     maybe_exact = FALSE;
+     maybe_exactfu = FALSE;
+
+     /* A problematic code point in this context means that its
+     * fold isn't known until runtime, so we can't fold it now.
+     * (The non-problematic code points are the above-Latin1
+     * ones that fold to also all above-Latin1.  Their folds
+     * don't vary no matter what the locale is.) But here we
+     * have characters whose fold depends on the locale.
+     * Unlike the non-folding case above, we have to keep track
+     * of these in the sizing pass, so that we can make sure we
+     * don't split too-long nodes in the middle of a potential
+     * multi-char fold.  And unlike the regular fold case
+     * handled in the else clauses below, we don't actually
+     * fold and don't have special cases to consider.  What we
+     * do for both passes is the PASS2 code for non-folding */
+     goto not_fold_common;
+    }
+    else /* A regular FOLD code point */
+     if (! ( UTF
+      /* See comments for join_exact() as to why we fold this
+      * non-UTF at compile time */
+      || (node_type == EXACTFU
+       && ender == LATIN_SMALL_LETTER_SHARP_S)))
+    {
+     /* Here, are folding and are not UTF-8 encoded; therefore
+     * the character must be in the range 0-255, and is not /l
+     * (Not /l because we already handled these under /l in
+     * is_PROBLEMATIC_LOCALE_FOLD_cp) */
+     if (IS_IN_SOME_FOLD_L1(ender)) {
+      maybe_exact = FALSE;
+
+      /* See if the character's fold differs between /d and
+      * /u.  This includes the multi-char fold SHARP S to
+      * 'ss' */
+      if (maybe_exactfu
+       && (PL_fold[ender] != PL_fold_latin1[ender]
+        || ender == LATIN_SMALL_LETTER_SHARP_S
+        || (len > 0
+        && isALPHA_FOLD_EQ(ender, 's')
+        && isALPHA_FOLD_EQ(*(s-1), 's'))))
+      {
+       maybe_exactfu = FALSE;
+      }
+     }
+
+     /* Even when folding, we store just the input character, as
+     * we have an array that finds its fold quickly */
+     *(s++) = (char) ender;
+    }
+    else {  /* FOLD and UTF */
+     /* Unlike the non-fold case, we do actually have to
+     * calculate the results here in pass 1.  This is for two
+     * reasons, the folded length may be longer than the
+     * unfolded, and we have to calculate how many EXACTish
+     * nodes it will take; and we may run out of room in a node
+     * in the middle of a potential multi-char fold, and have
+     * to back off accordingly.  */
+
+     UV folded;
+     if (isASCII_uni(ender)) {
+      folded = toFOLD(ender);
+      *(s)++ = (U8) folded;
+     }
+     else {
+      STRLEN foldlen;
+
+      folded = _to_uni_fold_flags(
+         ender,
+         (U8 *) s,
+         &foldlen,
+         FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
+              ? FOLD_FLAGS_NOMIX_ASCII
+              : 0));
+      s += foldlen;
+
+      /* The loop increments <len> each time, as all but this
+      * path (and one other) through it add a single byte to
+      * the EXACTish node.  But this one has changed len to
+      * be the correct final value, so subtract one to
+      * cancel out the increment that follows */
+      len += foldlen - 1;
+     }
+     /* If this node only contains non-folding code points so
+     * far, see if this new one is also non-folding */
+     if (maybe_exact) {
+      if (folded != ender) {
+       maybe_exact = FALSE;
+      }
+      else {
+       /* Here the fold is the original; we have to check
+       * further to see if anything folds to it */
+       if (_invlist_contains_cp(PL_utf8_foldable,
+              ender))
+       {
+        maybe_exact = FALSE;
+       }
+      }
+     }
+     ender = folded;
+    }
+
+    if (next_is_quantifier) {
+
+     /* Here, the next input is a quantifier, and to get here,
+     * the current character is the only one in the node.
+     * Also, here <len> doesn't include the final byte for this
+     * character */
+     len++;
+     goto loopdone;
+    }
+
+   } /* End of loop through literal characters */
+
+   /* Here we have either exhausted the input or ran out of room in
+   * the node.  (If we encountered a character that can't be in the
+   * node, transfer is made directly to <loopdone>, and so we
+   * wouldn't have fallen off the end of the loop.)  In the latter
+   * case, we artificially have to split the node into two, because
+   * we just don't have enough space to hold everything.  This
+   * creates a problem if the final character participates in a
+   * multi-character fold in the non-final position, as a match that
+   * should have occurred won't, due to the way nodes are matched,
+   * and our artificial boundary.  So back off until we find a non-
+   * problematic character -- one that isn't at the beginning or
+   * middle of such a fold.  (Either it doesn't participate in any
+   * folds, or appears only in the final position of all the folds it
+   * does participate in.)  A better solution with far fewer false
+   * positives, and that would fill the nodes more completely, would
+   * be to actually have available all the multi-character folds to
+   * test against, and to back-off only far enough to be sure that
+   * this node isn't ending with a partial one.  <upper_parse> is set
+   * further below (if we need to reparse the node) to include just
+   * up through that final non-problematic character that this code
+   * identifies, so when it is set to less than the full node, we can
+   * skip the rest of this */
+   if (FOLD && p < RExC_end && upper_parse == MAX_NODE_STRING_SIZE) {
+
+    const STRLEN full_len = len;
+
+    assert(len >= MAX_NODE_STRING_SIZE);
+
+    /* Here, <s> points to the final byte of the final character.
+    * Look backwards through the string until find a non-
+    * problematic character */
+
+    if (! UTF) {
+
+     /* This has no multi-char folds to non-UTF characters */
+     if (ASCII_FOLD_RESTRICTED) {
+      goto loopdone;
+     }
+
+     while (--s >= s0 && IS_NON_FINAL_FOLD(*s)) { }
+     len = s - s0 + 1;
+    }
+    else {
+     if (!  PL_NonL1NonFinalFold) {
+      PL_NonL1NonFinalFold = _new_invlist_C_array(
+          NonL1_Perl_Non_Final_Folds_invlist);
+     }
+
+     /* Point to the first byte of the final character */
+     s = (char *) utf8_hop((U8 *) s, -1);
+
+     while (s >= s0) {   /* Search backwards until find
+          non-problematic char */
+      if (UTF8_IS_INVARIANT(*s)) {
+
+       /* There are no ascii characters that participate
+       * in multi-char folds under /aa.  In EBCDIC, the
+       * non-ascii invariants are all control characters,
+       * so don't ever participate in any folds. */
+       if (ASCII_FOLD_RESTRICTED
+        || ! IS_NON_FINAL_FOLD(*s))
+       {
+        break;
+       }
+      }
+      else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
+       if (! IS_NON_FINAL_FOLD(TWO_BYTE_UTF8_TO_NATIVE(
+                *s, *(s+1))))
+       {
+        break;
+       }
+      }
+      else if (! _invlist_contains_cp(
+          PL_NonL1NonFinalFold,
+          valid_utf8_to_uvchr((U8 *) s, NULL)))
+      {
+       break;
+      }
+
+      /* Here, the current character is problematic in that
+      * it does occur in the non-final position of some
+      * fold, so try the character before it, but have to
+      * special case the very first byte in the string, so
+      * we don't read outside the string */
+      s = (s == s0) ? s -1 : (char *) utf8_hop((U8 *) s, -1);
+     } /* End of loop backwards through the string */
+
+     /* If there were only problematic characters in the string,
+     * <s> will point to before s0, in which case the length
+     * should be 0, otherwise include the length of the
+     * non-problematic character just found */
+     len = (s < s0) ? 0 : s - s0 + UTF8SKIP(s);
+    }
+
+    /* Here, have found the final character, if any, that is
+    * non-problematic as far as ending the node without splitting
+    * it across a potential multi-char fold.  <len> contains the
+    * number of bytes in the node up-to and including that
+    * character, or is 0 if there is no such character, meaning
+    * the whole node contains only problematic characters.  In
+    * this case, give up and just take the node as-is.  We can't
+    * do any better */
+    if (len == 0) {
+     len = full_len;
+
+     /* If the node ends in an 's' we make sure it stays EXACTF,
+     * as if it turns into an EXACTFU, it could later get
+     * joined with another 's' that would then wrongly match
+     * the sharp s */
+     if (maybe_exactfu && isALPHA_FOLD_EQ(ender, 's'))
+     {
+      maybe_exactfu = FALSE;
+     }
+    } else {
+
+     /* Here, the node does contain some characters that aren't
+     * problematic.  If one such is the final character in the
+     * node, we are done */
+     if (len == full_len) {
+      goto loopdone;
+     }
+     else if (len + ((UTF) ? UTF8SKIP(s) : 1) == full_len) {
+
+      /* If the final character is problematic, but the
+      * penultimate is not, back-off that last character to
+      * later start a new node with it */
+      p = oldp;
+      goto loopdone;
+     }
+
+     /* Here, the final non-problematic character is earlier
+     * in the input than the penultimate character.  What we do
+     * is reparse from the beginning, going up only as far as
+     * this final ok one, thus guaranteeing that the node ends
+     * in an acceptable character.  The reason we reparse is
+     * that we know how far in the character is, but we don't
+     * know how to correlate its position with the input parse.
+     * An alternate implementation would be to build that
+     * correlation as we go along during the original parse,
+     * but that would entail extra work for every node, whereas
+     * this code gets executed only when the string is too
+     * large for the node, and the final two characters are
+     * problematic, an infrequent occurrence.  Yet another
+     * possible strategy would be to save the tail of the
+     * string, and the next time regatom is called, initialize
+     * with that.  The problem with this is that unless you
+     * back off one more character, you won't be guaranteed
+     * regatom will get called again, unless regbranch,
+     * regpiece ... are also changed.  If you do back off that
+     * extra character, so that there is input guaranteed to
+     * force calling regatom, you can't handle the case where
+     * just the first character in the node is acceptable.  I
+     * (khw) decided to try this method which doesn't have that
+     * pitfall; if performance issues are found, we can do a
+     * combination of the current approach plus that one */
+     upper_parse = len;
+     len = 0;
+     s = s0;
+     goto reparse;
+    }
+   }   /* End of verifying node ends with an appropriate char */
+
+  loopdone:   /* Jumped to when encounters something that shouldn't be
+      in the node */
+
+   /* I (khw) don't know if you can get here with zero length, but the
+   * old code handled this situation by creating a zero-length EXACT
+   * node.  Might as well be NOTHING instead */
+   if (len == 0) {
+    OP(ret) = NOTHING;
+   }
+   else {
+    if (FOLD) {
+     /* If 'maybe_exact' is still set here, means there are no
+     * code points in the node that participate in folds;
+     * similarly for 'maybe_exactfu' and code points that match
+     * differently depending on UTF8ness of the target string
+     * (for /u), or depending on locale for /l */
+     if (maybe_exact) {
+      OP(ret) = (LOC)
+        ? EXACTL
+        : EXACT;
+     }
+     else if (maybe_exactfu) {
+      OP(ret) = (LOC)
+        ? EXACTFLU8
+        : EXACTFU;
+     }
+    }
+    alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, len, ender,
+          FALSE /* Don't look to see if could
+             be turned into an EXACT
+             node, as we have already
+             computed that */
+          );
+   }
+
+   RExC_parse = p - 1;
+   Set_Node_Cur_Length(ret, parse_start);
+   nextchar(pRExC_state);
+   {
+    /* len is STRLEN which is unsigned, need to copy to signed */
+    IV iv = len;
+    if (iv < 0)
+     vFAIL("Internal disaster");
+   }
+
+  } /* End of label 'defchar:' */
+  break;
+ } /* End of giant switch on input character */
+
+ return(ret);
+}
+
+STATIC char *
+S_regpatws(RExC_state_t *pRExC_state, char *p , const bool recognize_comment )
+{
+ /* Returns the next non-pattern-white space, non-comment character (the
+ * latter only if 'recognize_comment is true) in the string p, which is
+ * ended by RExC_end.  See also reg_skipcomment */
+ const char *e = RExC_end;
+
+ PERL_ARGS_ASSERT_REGPATWS;
+
+ while (p < e) {
+  STRLEN len;
+  if ((len = is_PATWS_safe(p, e, UTF))) {
+   p += len;
+  }
+  else if (recognize_comment && *p == '#') {
+   p = reg_skipcomment(pRExC_state, p);
+  }
+  else
+   break;
+ }
+ return p;
+}
+
+STATIC void
+S_populate_ANYOF_from_invlist(pTHX_ regnode *node, SV** invlist_ptr)
+{
+ /* Uses the inversion list '*invlist_ptr' to populate the ANYOF 'node'.  It
+ * sets up the bitmap and any flags, removing those code points from the
+ * inversion list, setting it to NULL should it become completely empty */
+
+ PERL_ARGS_ASSERT_POPULATE_ANYOF_FROM_INVLIST;
+ assert(PL_regkind[OP(node)] == ANYOF);
+
+ ANYOF_BITMAP_ZERO(node);
+ if (*invlist_ptr) {
+
+  /* This gets set if we actually need to modify things */
+  bool change_invlist = FALSE;
+
+  UV start, end;
+
+  /* Start looking through *invlist_ptr */
+  invlist_iterinit(*invlist_ptr);
+  while (invlist_iternext(*invlist_ptr, &start, &end)) {
+   UV high;
+   int i;
+
+   if (end == UV_MAX && start <= NUM_ANYOF_CODE_POINTS) {
+    ANYOF_FLAGS(node) |= ANYOF_MATCHES_ALL_ABOVE_BITMAP;
+   }
+   else if (end >= NUM_ANYOF_CODE_POINTS) {
+    ANYOF_FLAGS(node) |= ANYOF_HAS_UTF8_NONBITMAP_MATCHES;
+   }
+
+   /* Quit if are above what we should change */
+   if (start >= NUM_ANYOF_CODE_POINTS) {
+    break;
+   }
+
+   change_invlist = TRUE;
+
+   /* Set all the bits in the range, up to the max that we are doing */
+   high = (end < NUM_ANYOF_CODE_POINTS - 1)
+    ? end
+    : NUM_ANYOF_CODE_POINTS - 1;
+   for (i = start; i <= (int) high; i++) {
+    if (! ANYOF_BITMAP_TEST(node, i)) {
+     ANYOF_BITMAP_SET(node, i);
+    }
+   }
+  }
+  invlist_iterfinish(*invlist_ptr);
+
+  /* Done with loop; remove any code points that are in the bitmap from
+  * *invlist_ptr; similarly for code points above the bitmap if we have
+  * a flag to match all of them anyways */
+  if (change_invlist) {
+   _invlist_subtract(*invlist_ptr, PL_InBitmap, invlist_ptr);
+  }
+  if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
+   _invlist_intersection(*invlist_ptr, PL_InBitmap, invlist_ptr);
+  }
+
+  /* If have completely emptied it, remove it completely */
+  if (_invlist_len(*invlist_ptr) == 0) {
+   SvREFCNT_dec_NN(*invlist_ptr);
+   *invlist_ptr = NULL;
+  }
+ }
+}
+
+/* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
+   Character classes ([:foo:]) can also be negated ([:^foo:]).
+   Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
+   Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
+   but trigger failures because they are currently unimplemented. */
+
+#define POSIXCC_DONE(c)   ((c) == ':')
+#define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
+#define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
+
+PERL_STATIC_INLINE I32
+S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value, const bool strict)
+{
+ I32 namedclass = OOB_NAMEDCLASS;
+
+ PERL_ARGS_ASSERT_REGPPOSIXCC;
+
+ if (value == '[' && RExC_parse + 1 < RExC_end &&
+  /* I smell either [: or [= or [. -- POSIX has been here, right? */
+  POSIXCC(UCHARAT(RExC_parse)))
+ {
+  const char c = UCHARAT(RExC_parse);
+  char* const s = RExC_parse++;
+
+  while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
+   RExC_parse++;
+  if (RExC_parse == RExC_end) {
+   if (strict) {
+
+    /* Try to give a better location for the error (than the end of
+    * the string) by looking for the matching ']' */
+    RExC_parse = s;
+    while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
+     RExC_parse++;
+    }
+    vFAIL2("Unmatched '%c' in POSIX class", c);
+   }
+   /* Grandfather lone [:, [=, [. */
+   RExC_parse = s;
+  }
+  else {
+   const char* const t = RExC_parse++; /* skip over the c */
+   assert(*t == c);
+
+   if (UCHARAT(RExC_parse) == ']') {
+    const char *posixcc = s + 1;
+    RExC_parse++; /* skip over the ending ] */
+
+    if (*s == ':') {
+     const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
+     const I32 skip = t - posixcc;
+
+     /* Initially switch on the length of the name.  */
+     switch (skip) {
+     case 4:
+      if (memEQ(posixcc, "word", 4)) /* this is not POSIX,
+              this is the Perl \w
+              */
+       namedclass = ANYOF_WORDCHAR;
+      break;
+     case 5:
+      /* Names all of length 5.  */
+      /* alnum alpha ascii blank cntrl digit graph lower
+      print punct space upper  */
+      /* Offset 4 gives the best switch position.  */
+      switch (posixcc[4]) {
+      case 'a':
+       if (memEQ(posixcc, "alph", 4)) /* alpha */
+        namedclass = ANYOF_ALPHA;
+       break;
+      case 'e':
+       if (memEQ(posixcc, "spac", 4)) /* space */
+        namedclass = ANYOF_SPACE;
+       break;
+      case 'h':
+       if (memEQ(posixcc, "grap", 4)) /* graph */
+        namedclass = ANYOF_GRAPH;
+       break;
+      case 'i':
+       if (memEQ(posixcc, "asci", 4)) /* ascii */
+        namedclass = ANYOF_ASCII;
+       break;
+      case 'k':
+       if (memEQ(posixcc, "blan", 4)) /* blank */
+        namedclass = ANYOF_BLANK;
+       break;
+      case 'l':
+       if (memEQ(posixcc, "cntr", 4)) /* cntrl */
+        namedclass = ANYOF_CNTRL;
+       break;
+      case 'm':
+       if (memEQ(posixcc, "alnu", 4)) /* alnum */
+        namedclass = ANYOF_ALPHANUMERIC;
+       break;
+      case 'r':
+       if (memEQ(posixcc, "lowe", 4)) /* lower */
+        namedclass = (FOLD) ? ANYOF_CASED : ANYOF_LOWER;
+       else if (memEQ(posixcc, "uppe", 4)) /* upper */
+        namedclass = (FOLD) ? ANYOF_CASED : ANYOF_UPPER;
+       break;
+      case 't':
+       if (memEQ(posixcc, "digi", 4)) /* digit */
+        namedclass = ANYOF_DIGIT;
+       else if (memEQ(posixcc, "prin", 4)) /* print */
+        namedclass = ANYOF_PRINT;
+       else if (memEQ(posixcc, "punc", 4)) /* punct */
+        namedclass = ANYOF_PUNCT;
+       break;
+      }
+      break;
+     case 6:
+      if (memEQ(posixcc, "xdigit", 6))
+       namedclass = ANYOF_XDIGIT;
+      break;
+     }
+
+     if (namedclass == OOB_NAMEDCLASS)
+      vFAIL2utf8f(
+       "POSIX class [:%"UTF8f":] unknown",
+       UTF8fARG(UTF, t - s - 1, s + 1));
+
+     /* The #defines are structured so each complement is +1 to
+     * the normal one */
+     if (complement) {
+      namedclass++;
+     }
+     assert (posixcc[skip] == ':');
+     assert (posixcc[skip+1] == ']');
+    } else if (!SIZE_ONLY) {
+     /* [[=foo=]] and [[.foo.]] are still future. */
+
+     /* adjust RExC_parse so the warning shows after
+     the class closes */
+     while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
+      RExC_parse++;
+     vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
+    }
+   } else {
+    /* Maternal grandfather:
+    * "[:" ending in ":" but not in ":]" */
+    if (strict) {
+     vFAIL("Unmatched '[' in POSIX class");
+    }
+
+    /* Grandfather lone [:, [=, [. */
+    RExC_parse = s;
+   }
+  }
+ }
+
+ return namedclass;
+}
+
+STATIC bool
+S_could_it_be_a_POSIX_class(RExC_state_t *pRExC_state)
+{
+ /* This applies some heuristics at the current parse position (which should
+ * be at a '[') to see if what follows might be intended to be a [:posix:]
+ * class.  It returns true if it really is a posix class, of course, but it
+ * also can return true if it thinks that what was intended was a posix
+ * class that didn't quite make it.
+ *
+ * It will return true for
+ *      [:alphanumerics:
+ *      [:alphanumerics]  (as long as the ] isn't followed immediately by a
+ *                         ')' indicating the end of the (?[
+ *      [:any garbage including %^&$ punctuation:]
+ *
+ * This is designed to be called only from S_handle_regex_sets; it could be
+ * easily adapted to be called from the spot at the beginning of regclass()
+ * that checks to see in a normal bracketed class if the surrounding []
+ * have been omitted ([:word:] instead of [[:word:]]).  But doing so would
+ * change long-standing behavior, so I (khw) didn't do that */
+ char* p = RExC_parse + 1;
+ char first_char = *p;
+
+ PERL_ARGS_ASSERT_COULD_IT_BE_A_POSIX_CLASS;
+
+ assert(*(p - 1) == '[');
+
+ if (! POSIXCC(first_char)) {
+  return FALSE;
+ }
+
+ p++;
+ while (p < RExC_end && isWORDCHAR(*p)) p++;
+
+ if (p >= RExC_end) {
+  return FALSE;
+ }
+
+ if (p - RExC_parse > 2    /* Got at least 1 word character */
+  && (*p == first_char
+   || (*p == ']' && p + 1 < RExC_end && *(p + 1) != ')')))
+ {
+  return TRUE;
+ }
+
+ p = (char *) memchr(RExC_parse, ']', RExC_end - RExC_parse);
+
+ return (p
+   && p - RExC_parse > 2 /* [:] evaluates to colon;
+         [::] is a bad posix class. */
+   && first_char == *(p - 1));
+}
+
+STATIC unsigned  int
+S_regex_set_precedence(const U8 my_operator) {
+
+ /* Returns the precedence in the (?[...]) construct of the input operator,
+ * specified by its character representation.  The precedence follows
+ * general Perl rules, but it extends this so that ')' and ']' have (low)
+ * precedence even though they aren't really operators */
+
+ switch (my_operator) {
+  case '!':
+   return 5;
+  case '&':
+   return 4;
+  case '^':
+  case '|':
+  case '+':
+  case '-':
+   return 3;
+  case ')':
+   return 2;
+  case ']':
+   return 1;
+ }
+
+ NOT_REACHED; /* NOTREACHED */
+ return 0;   /* Silence compiler warning */
+}
+
+STATIC regnode *
+S_handle_regex_sets(pTHX_ RExC_state_t *pRExC_state, SV** return_invlist,
+     I32 *flagp, U32 depth,
+     char * const oregcomp_parse)
+{
+ /* Handle the (?[...]) construct to do set operations */
+
+ U8 curchar;                     /* Current character being parsed */
+ UV start, end;             /* End points of code point ranges */
+ SV* final = NULL;               /* The end result inversion list */
+ SV* result_string;              /* 'final' stringified */
+ AV* stack;                      /* stack of operators and operands not yet
+         resolved */
+ AV* fence_stack = NULL;         /* A stack containing the positions in
+         'stack' of where the undealt-with left
+         parens would be if they were actually
+         put there */
+ IV fence = 0;                   /* Position of where most recent undealt-
+         with left paren in stack is; -1 if none.
+         */
+ STRLEN len;                     /* Temporary */
+ regnode* node;                  /* Temporary, and final regnode returned by
+         this function */
+ const bool save_fold = FOLD;    /* Temporary */
+ char *save_end, *save_parse;    /* Temporaries */
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_HANDLE_REGEX_SETS;
+
+ if (LOC) {  /* XXX could make valid in UTF-8 locales */
+  vFAIL("(?[...]) not valid in locale");
+ }
+ RExC_uni_semantics = 1;     /* The use of this operator implies /u.  This
+        is required so that the compile time values
+        are valid in all runtime cases */
+
+ /* This will return only an ANYOF regnode, or (unlikely) something smaller
+ * (such as EXACT).  Thus we can skip most everything if just sizing.  We
+ * call regclass to handle '[]' so as to not have to reinvent its parsing
+ * rules here (throwing away the size it computes each time).  And, we exit
+ * upon an unescaped ']' that isn't one ending a regclass.  To do both
+ * these things, we need to realize that something preceded by a backslash
+ * is escaped, so we have to keep track of backslashes */
+ if (SIZE_ONLY) {
+  UV depth = 0; /* how many nested (?[...]) constructs */
+
+  while (RExC_parse < RExC_end) {
+   SV* current = NULL;
+   RExC_parse = regpatws(pRExC_state, RExC_parse,
+          TRUE); /* means recognize comments */
+   switch (*RExC_parse) {
+    case '?':
+     if (RExC_parse[1] == '[') depth++, RExC_parse++;
+     /* FALLTHROUGH */
+    default:
+     break;
+    case '\\':
+     /* Skip the next byte (which could cause us to end up in
+     * the middle of a UTF-8 character, but since none of those
+     * are confusable with anything we currently handle in this
+     * switch (invariants all), it's safe.  We'll just hit the
+     * default: case next time and keep on incrementing until
+     * we find one of the invariants we do handle. */
+     RExC_parse++;
+     break;
+    case '[':
+    {
+     /* If this looks like it is a [:posix:] class, leave the
+     * parse pointer at the '[' to fool regclass() into
+     * thinking it is part of a '[[:posix:]]'.  That function
+     * will use strict checking to force a syntax error if it
+     * doesn't work out to a legitimate class */
+     bool is_posix_class
+         = could_it_be_a_POSIX_class(pRExC_state);
+     if (! is_posix_class) {
+      RExC_parse++;
+     }
+
+     /* regclass() can only return RESTART_UTF8 if multi-char
+     folds are allowed.  */
+     if (!regclass(pRExC_state, flagp,depth+1,
+        is_posix_class, /* parse the whole char
+             class only if not a
+             posix class */
+        FALSE, /* don't allow multi-char folds */
+        TRUE, /* silence non-portable warnings. */
+        TRUE, /* strict */
+        &current
+        ))
+      FAIL2("panic: regclass returned NULL to handle_sets, "
+       "flags=%#"UVxf"", (UV) *flagp);
+
+     /* function call leaves parse pointing to the ']', except
+     * if we faked it */
+     if (is_posix_class) {
+      RExC_parse--;
+     }
+
+     SvREFCNT_dec(current);   /* In case it returned something */
+     break;
+    }
+
+    case ']':
+     if (depth--) break;
+     RExC_parse++;
+     if (RExC_parse < RExC_end
+      && *RExC_parse == ')')
+     {
+      node = reganode(pRExC_state, ANYOF, 0);
+      RExC_size += ANYOF_SKIP;
+      nextchar(pRExC_state);
+      Set_Node_Length(node,
+        RExC_parse - oregcomp_parse + 1); /* MJD */
+      return node;
+     }
+     goto no_close;
+   }
+   RExC_parse++;
+  }
+
+ no_close:
+  FAIL("Syntax error in (?[...])");
+ }
+
+ /* Pass 2 only after this. */
+ Perl_ck_warner_d(aTHX_
+  packWARN(WARN_EXPERIMENTAL__REGEX_SETS),
+  "The regex_sets feature is experimental" REPORT_LOCATION,
+   UTF8fARG(UTF, (RExC_parse - RExC_precomp), RExC_precomp),
+   UTF8fARG(UTF,
+     RExC_end - RExC_start - (RExC_parse - RExC_precomp),
+     RExC_precomp + (RExC_parse - RExC_precomp)));
+
+ /* Everything in this construct is a metacharacter.  Operands begin with
+ * either a '\' (for an escape sequence), or a '[' for a bracketed
+ * character class.  Any other character should be an operator, or
+ * parenthesis for grouping.  Both types of operands are handled by calling
+ * regclass() to parse them.  It is called with a parameter to indicate to
+ * return the computed inversion list.  The parsing here is implemented via
+ * a stack.  Each entry on the stack is a single character representing one
+ * of the operators; or else a pointer to an operand inversion list. */
+
+#define IS_OPERAND(a)  (! SvIOK(a))
+
+ /* The stack is kept in Łukasiewicz order.  (That's pronounced similar
+ * to luke-a-shave-itch (or -itz), but people who didn't want to bother
+ * with prounouncing it called it Reverse Polish instead, but now that YOU
+ * know how to prounounce it you can use the correct term, thus giving due
+ * credit to the person who invented it, and impressing your geek friends.
+ * Wikipedia says that the pronounciation of "Ł" has been changing so that
+ * it is now more like an English initial W (as in wonk) than an L.)
+ *
+ * This means that, for example, 'a | b & c' is stored on the stack as
+ *
+ * c  [4]
+ * b  [3]
+ * &  [2]
+ * a  [1]
+ * |  [0]
+ *
+ * where the numbers in brackets give the stack [array] element number.
+ * In this implementation, parentheses are not stored on the stack.
+ * Instead a '(' creates a "fence" so that the part of the stack below the
+ * fence is invisible except to the corresponding ')' (this allows us to
+ * replace testing for parens, by using instead subtraction of the fence
+ * position).  As new operands are processed they are pushed onto the stack
+ * (except as noted in the next paragraph).  New operators of higher
+ * precedence than the current final one are inserted on the stack before
+ * the lhs operand (so that when the rhs is pushed next, everything will be
+ * in the correct positions shown above.  When an operator of equal or
+ * lower precedence is encountered in parsing, all the stacked operations
+ * of equal or higher precedence are evaluated, leaving the result as the
+ * top entry on the stack.  This makes higher precedence operations
+ * evaluate before lower precedence ones, and causes operations of equal
+ * precedence to left associate.
+ *
+ * The only unary operator '!' is immediately pushed onto the stack when
+ * encountered.  When an operand is encountered, if the top of the stack is
+ * a '!", the complement is immediately performed, and the '!' popped.  The
+ * resulting value is treated as a new operand, and the logic in the
+ * previous paragraph is executed.  Thus in the expression
+ *      [a] + ! [b]
+ * the stack looks like
+ *
+ * !
+ * a
+ * +
+ *
+ * as 'b' gets parsed, the latter gets evaluated to '!b', and the stack
+ * becomes
+ *
+ * !b
+ * a
+ * +
+ *
+ * A ')' is treated as an operator with lower precedence than all the
+ * aforementioned ones, which causes all operations on the stack above the
+ * corresponding '(' to be evaluated down to a single resultant operand.
+ * Then the fence for the '(' is removed, and the operand goes through the
+ * algorithm above, without the fence.
+ *
+ * A separate stack is kept of the fence positions, so that the position of
+ * the latest so-far unbalanced '(' is at the top of it.
+ *
+ * The ']' ending the construct is treated as the lowest operator of all,
+ * so that everything gets evaluated down to a single operand, which is the
+ * result */
+
+ sv_2mortal((SV *)(stack = newAV()));
+ sv_2mortal((SV *)(fence_stack = newAV()));
+
+ while (RExC_parse < RExC_end) {
+  I32 top_index;              /* Index of top-most element in 'stack' */
+  SV** top_ptr;               /* Pointer to top 'stack' element */
+  SV* current = NULL;         /* To contain the current inversion list
+         operand */
+  SV* only_to_avoid_leaks;
+
+  /* Skip white space */
+  RExC_parse = regpatws(pRExC_state, RExC_parse,
+    TRUE /* means recognize comments */ );
+  if (RExC_parse >= RExC_end) {
+   Perl_croak(aTHX_ "panic: Read past end of '(?[ ])'");
+  }
+
+  curchar = UCHARAT(RExC_parse);
+
+redo_curchar:
+
+  top_index = av_tindex(stack);
+
+  switch (curchar) {
+   SV** stacked_ptr;       /* Ptr to something already on 'stack' */
+   char stacked_operator;  /* The topmost operator on the 'stack'. */
+   SV* lhs;                /* Operand to the left of the operator */
+   SV* rhs;                /* Operand to the right of the operator */
+   SV* fence_ptr;          /* Pointer to top element of the fence
+         stack */
+
+   case '(':
+
+    if (RExC_parse < RExC_end && (UCHARAT(RExC_parse + 1) == '?'))
+    {
+     /* If is a '(?', could be an embedded '(?flags:(?[...])'.
+     * This happens when we have some thing like
+     *
+     *   my $thai_or_lao = qr/(?[ \p{Thai} + \p{Lao} ])/;
+     *   ...
+     *   qr/(?[ \p{Digit} & $thai_or_lao ])/;
+     *
+     * Here we would be handling the interpolated
+     * '$thai_or_lao'.  We handle this by a recursive call to
+     * ourselves which returns the inversion list the
+     * interpolated expression evaluates to.  We use the flags
+     * from the interpolated pattern. */
+     U32 save_flags = RExC_flags;
+     const char * save_parse;
+
+     RExC_parse += 2;        /* Skip past the '(?' */
+     save_parse = RExC_parse;
+
+     /* Parse any flags for the '(?' */
+     parse_lparen_question_flags(pRExC_state);
+
+     if (RExC_parse == save_parse  /* Makes sure there was at
+             least one flag (or else
+             this embedding wasn't
+             compiled) */
+      || RExC_parse >= RExC_end - 4
+      || UCHARAT(RExC_parse) != ':'
+      || UCHARAT(++RExC_parse) != '('
+      || UCHARAT(++RExC_parse) != '?'
+      || UCHARAT(++RExC_parse) != '[')
+     {
+
+      /* In combination with the above, this moves the
+      * pointer to the point just after the first erroneous
+      * character (or if there are no flags, to where they
+      * should have been) */
+      if (RExC_parse >= RExC_end - 4) {
+       RExC_parse = RExC_end;
+      }
+      else if (RExC_parse != save_parse) {
+       RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+      }
+      vFAIL("Expecting '(?flags:(?[...'");
+     }
+
+     /* Recurse, with the meat of the embedded expression */
+     RExC_parse++;
+     (void) handle_regex_sets(pRExC_state, &current, flagp,
+             depth+1, oregcomp_parse);
+
+     /* Here, 'current' contains the embedded expression's
+     * inversion list, and RExC_parse points to the trailing
+     * ']'; the next character should be the ')' */
+     RExC_parse++;
+     assert(RExC_parse < RExC_end && UCHARAT(RExC_parse) == ')');
+
+     /* Then the ')' matching the original '(' handled by this
+     * case: statement */
+     RExC_parse++;
+     assert(RExC_parse < RExC_end && UCHARAT(RExC_parse) == ')');
+
+     RExC_parse++;
+     RExC_flags = save_flags;
+     goto handle_operand;
+    }
+
+    /* A regular '('.  Look behind for illegal syntax */
+    if (top_index - fence >= 0) {
+     /* If the top entry on the stack is an operator, it had
+     * better be a '!', otherwise the entry below the top
+     * operand should be an operator */
+     if ( ! (top_ptr = av_fetch(stack, top_index, FALSE))
+      || (! IS_OPERAND(*top_ptr) && SvUV(*top_ptr) != '!')
+      || top_index - fence < 1
+      || ! (stacked_ptr = av_fetch(stack,
+             top_index - 1,
+             FALSE))
+      || IS_OPERAND(*stacked_ptr))
+     {
+      RExC_parse++;
+      vFAIL("Unexpected '(' with no preceding operator");
+     }
+    }
+
+    /* Stack the position of this undealt-with left paren */
+    fence = top_index + 1;
+    av_push(fence_stack, newSViv(fence));
+    break;
+
+   case '\\':
+    /* regclass() can only return RESTART_UTF8 if multi-char
+    folds are allowed.  */
+    if (!regclass(pRExC_state, flagp,depth+1,
+       TRUE, /* means parse just the next thing */
+       FALSE, /* don't allow multi-char folds */
+       FALSE, /* don't silence non-portable warnings.  */
+       TRUE,  /* strict */
+       &current))
+    {
+     FAIL2("panic: regclass returned NULL to handle_sets, "
+      "flags=%#"UVxf"", (UV) *flagp);
+    }
+
+    /* regclass() will return with parsing just the \ sequence,
+    * leaving the parse pointer at the next thing to parse */
+    RExC_parse--;
+    goto handle_operand;
+
+   case '[':   /* Is a bracketed character class */
+   {
+    bool is_posix_class = could_it_be_a_POSIX_class(pRExC_state);
+
+    if (! is_posix_class) {
+     RExC_parse++;
+    }
+
+    /* regclass() can only return RESTART_UTF8 if multi-char
+    folds are allowed.  */
+    if(!regclass(pRExC_state, flagp,depth+1,
+       is_posix_class, /* parse the whole char class
+            only if not a posix class */
+       FALSE, /* don't allow multi-char folds */
+       FALSE, /* don't silence non-portable warnings.  */
+       TRUE,   /* strict */
+       &current
+       ))
+    {
+     FAIL2("panic: regclass returned NULL to handle_sets, "
+      "flags=%#"UVxf"", (UV) *flagp);
+    }
+
+    /* function call leaves parse pointing to the ']', except if we
+    * faked it */
+    if (is_posix_class) {
+     RExC_parse--;
+    }
+
+    goto handle_operand;
+   }
+
+   case ']':
+    if (top_index >= 1) {
+     goto join_operators;
+    }
+
+    /* Only a single operand on the stack: are done */
+    goto done;
+
+   case ')':
+    if (av_tindex(fence_stack) < 0) {
+     RExC_parse++;
+     vFAIL("Unexpected ')'");
+    }
+
+    /* If at least two thing on the stack, treat this as an
+    * operator */
+    if (top_index - fence >= 1) {
+     goto join_operators;
+    }
+
+    /* Here only a single thing on the fenced stack, and there is a
+    * fence.  Get rid of it */
+    fence_ptr = av_pop(fence_stack);
+    assert(fence_ptr);
+    fence = SvIV(fence_ptr) - 1;
+    SvREFCNT_dec_NN(fence_ptr);
+    fence_ptr = NULL;
+
+    if (fence < 0) {
+     fence = 0;
+    }
+
+    /* Having gotten rid of the fence, we pop the operand at the
+    * stack top and process it as a newly encountered operand */
+    current = av_pop(stack);
+    assert(IS_OPERAND(current));
+    goto handle_operand;
+
+   case '&':
+   case '|':
+   case '+':
+   case '-':
+   case '^':
+
+    /* These binary operators should have a left operand already
+    * parsed */
+    if (   top_index - fence < 0
+     || top_index - fence == 1
+     || ( ! (top_ptr = av_fetch(stack, top_index, FALSE)))
+     || ! IS_OPERAND(*top_ptr))
+    {
+     goto unexpected_binary;
+    }
+
+    /* If only the one operand is on the part of the stack visible
+    * to us, we just place this operator in the proper position */
+    if (top_index - fence < 2) {
+
+     /* Place the operator before the operand */
+
+     SV* lhs = av_pop(stack);
+     av_push(stack, newSVuv(curchar));
+     av_push(stack, lhs);
+     break;
+    }
+
+    /* But if there is something else on the stack, we need to
+    * process it before this new operator if and only if the
+    * stacked operation has equal or higher precedence than the
+    * new one */
+
+   join_operators:
+
+    /* The operator on the stack is supposed to be below both its
+    * operands */
+    if (   ! (stacked_ptr = av_fetch(stack, top_index - 2, FALSE))
+     || IS_OPERAND(*stacked_ptr))
+    {
+     /* But if not, it's legal and indicates we are completely
+     * done if and only if we're currently processing a ']',
+     * which should be the final thing in the expression */
+     if (curchar == ']') {
+      goto done;
+     }
+
+    unexpected_binary:
+     RExC_parse++;
+     vFAIL2("Unexpected binary operator '%c' with no "
+      "preceding operand", curchar);
+    }
+    stacked_operator = (char) SvUV(*stacked_ptr);
+
+    if (regex_set_precedence(curchar)
+     > regex_set_precedence(stacked_operator))
+    {
+     /* Here, the new operator has higher precedence than the
+     * stacked one.  This means we need to add the new one to
+     * the stack to await its rhs operand (and maybe more
+     * stuff).  We put it before the lhs operand, leaving
+     * untouched the stacked operator and everything below it
+     * */
+     lhs = av_pop(stack);
+     assert(IS_OPERAND(lhs));
+
+     av_push(stack, newSVuv(curchar));
+     av_push(stack, lhs);
+     break;
+    }
+
+    /* Here, the new operator has equal or lower precedence than
+    * what's already there.  This means the operation already
+    * there should be performed now, before the new one. */
+    rhs = av_pop(stack);
+    lhs = av_pop(stack);
+
+    assert(IS_OPERAND(rhs));
+    assert(IS_OPERAND(lhs));
+
+    switch (stacked_operator) {
+     case '&':
+      _invlist_intersection(lhs, rhs, &rhs);
+      break;
+
+     case '|':
+     case '+':
+      _invlist_union(lhs, rhs, &rhs);
+      break;
+
+     case '-':
+      _invlist_subtract(lhs, rhs, &rhs);
+      break;
+
+     case '^':   /* The union minus the intersection */
+     {
+      SV* i = NULL;
+      SV* u = NULL;
+      SV* element;
+
+      _invlist_union(lhs, rhs, &u);
+      _invlist_intersection(lhs, rhs, &i);
+      /* _invlist_subtract will overwrite rhs
+       without freeing what it already contains */
+      element = rhs;
+      _invlist_subtract(u, i, &rhs);
+      SvREFCNT_dec_NN(i);
+      SvREFCNT_dec_NN(u);
+      SvREFCNT_dec_NN(element);
+      break;
+     }
+    }
+    SvREFCNT_dec(lhs);
+
+    /* Here, the higher precedence operation has been done, and the
+    * result is in 'rhs'.  We overwrite the stacked operator with
+    * the result.  Then we redo this code to either push the new
+    * operator onto the stack or perform any higher precedence
+    * stacked operation */
+    only_to_avoid_leaks = av_pop(stack);
+    SvREFCNT_dec(only_to_avoid_leaks);
+    av_push(stack, rhs);
+    goto redo_curchar;
+
+   case '!':   /* Highest priority, right associative, so just push
+      onto stack */
+    av_push(stack, newSVuv(curchar));
+    break;
+
+   default:
+    RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+    vFAIL("Unexpected character");
+
+  handle_operand:
+
+   /* Here 'current' is the operand.  If something is already on the
+   * stack, we have to check if it is a !. */
+   top_index = av_tindex(stack);   /* Code above may have altered the
+           * stack in the time since we
+           * earlier set 'top_index'. */
+   if (top_index - fence >= 0) {
+    /* If the top entry on the stack is an operator, it had better
+    * be a '!', otherwise the entry below the top operand should
+    * be an operator */
+    top_ptr = av_fetch(stack, top_index, FALSE);
+    assert(top_ptr);
+    if (! IS_OPERAND(*top_ptr)) {
+
+     /* The only permissible operator at the top of the stack is
+     * '!', which is applied immediately to this operand. */
+     curchar = (char) SvUV(*top_ptr);
+     if (curchar != '!') {
+      SvREFCNT_dec(current);
+      vFAIL2("Unexpected binary operator '%c' with no "
+        "preceding operand", curchar);
+     }
+
+     _invlist_invert(current);
+
+     only_to_avoid_leaks = av_pop(stack);
+     SvREFCNT_dec(only_to_avoid_leaks);
+     top_index = av_tindex(stack);
+
+     /* And we redo with the inverted operand.  This allows
+     * handling multiple ! in a row */
+     goto handle_operand;
+    }
+      /* Single operand is ok only for the non-binary ')'
+      * operator */
+    else if ((top_index - fence == 0 && curchar != ')')
+      || (top_index - fence > 0
+       && (! (stacked_ptr = av_fetch(stack,
+              top_index - 1,
+              FALSE))
+        || IS_OPERAND(*stacked_ptr))))
+    {
+     SvREFCNT_dec(current);
+     vFAIL("Operand with no preceding operator");
+    }
+   }
+
+   /* Here there was nothing on the stack or the top element was
+   * another operand.  Just add this new one */
+   av_push(stack, current);
+
+  } /* End of switch on next parse token */
+
+  RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+ } /* End of loop parsing through the construct */
+
+  done:
+ if (av_tindex(fence_stack) >= 0) {
+  vFAIL("Unmatched (");
+ }
+
+ if (av_tindex(stack) < 0   /* Was empty */
+  || ((final = av_pop(stack)) == NULL)
+  || ! IS_OPERAND(final)
+  || av_tindex(stack) >= 0)  /* More left on stack */
+ {
+  SvREFCNT_dec(final);
+  vFAIL("Incomplete expression within '(?[ ])'");
+ }
+
+ /* Here, 'final' is the resultant inversion list from evaluating the
+ * expression.  Return it if so requested */
+ if (return_invlist) {
+  *return_invlist = final;
+  return END;
+ }
+
+ /* Otherwise generate a resultant node, based on 'final'.  regclass() is
+ * expecting a string of ranges and individual code points */
+ invlist_iterinit(final);
+ result_string = newSVpvs("");
+ while (invlist_iternext(final, &start, &end)) {
+  if (start == end) {
+   Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}", start);
+  }
+  else {
+   Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}-\\x{%"UVXf"}",
+             start,          end);
+  }
+ }
+
+ /* About to generate an ANYOF (or similar) node from the inversion list we
+ * have calculated */
+ save_parse = RExC_parse;
+ RExC_parse = SvPV(result_string, len);
+ save_end = RExC_end;
+ RExC_end = RExC_parse + len;
+
+ /* We turn off folding around the call, as the class we have constructed
+ * already has all folding taken into consideration, and we don't want
+ * regclass() to add to that */
+ RExC_flags &= ~RXf_PMf_FOLD;
+ /* regclass() can only return RESTART_UTF8 if multi-char folds are allowed.
+ */
+ node = regclass(pRExC_state, flagp,depth+1,
+     FALSE, /* means parse the whole char class */
+     FALSE, /* don't allow multi-char folds */
+     TRUE, /* silence non-portable warnings.  The above may very
+       well have generated non-portable code points, but
+       they're valid on this machine */
+     FALSE, /* similarly, no need for strict */
+     NULL
+    );
+ if (!node)
+  FAIL2("panic: regclass returned NULL to handle_sets, flags=%#"UVxf,
+     PTR2UV(flagp));
+ if (save_fold) {
+  RExC_flags |= RXf_PMf_FOLD;
+ }
+ RExC_parse = save_parse + 1;
+ RExC_end = save_end;
+ SvREFCNT_dec_NN(final);
+ SvREFCNT_dec_NN(result_string);
+
+ nextchar(pRExC_state);
+ Set_Node_Length(node, RExC_parse - oregcomp_parse + 1); /* MJD */
+ return node;
+}
+#undef IS_OPERAND
+
+STATIC void
+S_add_above_Latin1_folds(pTHX_ RExC_state_t *pRExC_state, const U8 cp, SV** invlist)
+{
+ /* This hard-codes the Latin1/above-Latin1 folding rules, so that an
+ * innocent-looking character class, like /[ks]/i won't have to go out to
+ * disk to find the possible matches.
+ *
+ * This should be called only for a Latin1-range code points, cp, which is
+ * known to be involved in a simple fold with other code points above
+ * Latin1.  It would give false results if /aa has been specified.
+ * Multi-char folds are outside the scope of this, and must be handled
+ * specially.
+ *
+ * XXX It would be better to generate these via regen, in case a new
+ * version of the Unicode standard adds new mappings, though that is not
+ * really likely, and may be caught by the default: case of the switch
+ * below. */
+
+ PERL_ARGS_ASSERT_ADD_ABOVE_LATIN1_FOLDS;
+
+ assert(HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(cp));
+
+ switch (cp) {
+  case 'k':
+  case 'K':
+  *invlist =
+   add_cp_to_invlist(*invlist, KELVIN_SIGN);
+   break;
+  case 's':
+  case 'S':
+  *invlist = add_cp_to_invlist(*invlist, LATIN_SMALL_LETTER_LONG_S);
+   break;
+  case MICRO_SIGN:
+  *invlist = add_cp_to_invlist(*invlist, GREEK_CAPITAL_LETTER_MU);
+  *invlist = add_cp_to_invlist(*invlist, GREEK_SMALL_LETTER_MU);
+   break;
+  case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
+  case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
+  *invlist = add_cp_to_invlist(*invlist, ANGSTROM_SIGN);
+   break;
+  case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
+  *invlist = add_cp_to_invlist(*invlist,
+          LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
+   break;
+  case LATIN_SMALL_LETTER_SHARP_S:
+  *invlist = add_cp_to_invlist(*invlist, LATIN_CAPITAL_LETTER_SHARP_S);
+   break;
+  default:
+   /* Use deprecated warning to increase the chances of this being
+   * output */
+   if (PASS2) {
+    ckWARN2reg_d(RExC_parse, "Perl folding rules are not up-to-date for 0x%02X; please use the perlbug utility to report;", cp);
+   }
+   break;
+ }
+}
+
+STATIC AV *
+S_add_multi_match(pTHX_ AV* multi_char_matches, SV* multi_string, const STRLEN cp_count)
+{
+ /* This adds the string scalar <multi_string> to the array
+ * <multi_char_matches>.  <multi_string> is known to have exactly
+ * <cp_count> code points in it.  This is used when constructing a
+ * bracketed character class and we find something that needs to match more
+ * than a single character.
+ *
+ * <multi_char_matches> is actually an array of arrays.  Each top-level
+ * element is an array that contains all the strings known so far that are
+ * the same length.  And that length (in number of code points) is the same
+ * as the index of the top-level array.  Hence, the [2] element is an
+ * array, each element thereof is a string containing TWO code points;
+ * while element [3] is for strings of THREE characters, and so on.  Since
+ * this is for multi-char strings there can never be a [0] nor [1] element.
+ *
+ * When we rewrite the character class below, we will do so such that the
+ * longest strings are written first, so that it prefers the longest
+ * matching strings first.  This is done even if it turns out that any
+ * quantifier is non-greedy, out of this programmer's (khw) laziness.  Tom
+ * Christiansen has agreed that this is ok.  This makes the test for the
+ * ligature 'ffi' come before the test for 'ff', for example */
+
+ AV* this_array;
+ AV** this_array_ptr;
+
+ PERL_ARGS_ASSERT_ADD_MULTI_MATCH;
+
+ if (! multi_char_matches) {
+  multi_char_matches = newAV();
+ }
+
+ if (av_exists(multi_char_matches, cp_count)) {
+  this_array_ptr = (AV**) av_fetch(multi_char_matches, cp_count, FALSE);
+  this_array = *this_array_ptr;
+ }
+ else {
+  this_array = newAV();
+  av_store(multi_char_matches, cp_count,
+    (SV*) this_array);
+ }
+ av_push(this_array, multi_string);
+
+ return multi_char_matches;
+}
+
+/* The names of properties whose definitions are not known at compile time are
+ * stored in this SV, after a constant heading.  So if the length has been
+ * changed since initialization, then there is a run-time definition. */
+#define HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION                            \
+          (SvCUR(listsv) != initial_listsv_len)
+
+STATIC regnode *
+S_regclass(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth,
+    const bool stop_at_1,  /* Just parse the next thing, don't
+          look for a full character class */
+    bool allow_multi_folds,
+    const bool silence_non_portable,   /* Don't output warnings
+             about too large
+             characters */
+    const bool strict,
+    SV** ret_invlist  /* Return an inversion list, not a node */
+  )
+{
+ /* parse a bracketed class specification.  Most of these will produce an
+ * ANYOF node; but something like [a] will produce an EXACT node; [aA], an
+ * EXACTFish node; [[:ascii:]], a POSIXA node; etc.  It is more complex
+ * under /i with multi-character folds: it will be rewritten following the
+ * paradigm of this example, where the <multi-fold>s are characters which
+ * fold to multiple character sequences:
+ *      /[abc\x{multi-fold1}def\x{multi-fold2}ghi]/i
+ * gets effectively rewritten as:
+ *      /(?:\x{multi-fold1}|\x{multi-fold2}|[abcdefghi]/i
+ * reg() gets called (recursively) on the rewritten version, and this
+ * function will return what it constructs.  (Actually the <multi-fold>s
+ * aren't physically removed from the [abcdefghi], it's just that they are
+ * ignored in the recursion by means of a flag:
+ * <RExC_in_multi_char_class>.)
+ *
+ * ANYOF nodes contain a bit map for the first NUM_ANYOF_CODE_POINTS
+ * characters, with the corresponding bit set if that character is in the
+ * list.  For characters above this, a range list or swash is used.  There
+ * are extra bits for \w, etc. in locale ANYOFs, as what these match is not
+ * determinable at compile time
+ *
+ * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs
+ * to be restarted.  This can only happen if ret_invlist is non-NULL.
+ */
+
+ UV prevvalue = OOB_UNICODE, save_prevvalue = OOB_UNICODE;
+ IV range = 0;
+ UV value = OOB_UNICODE, save_value = OOB_UNICODE;
+ regnode *ret;
+ STRLEN numlen;
+ IV namedclass = OOB_NAMEDCLASS;
+ char *rangebegin = NULL;
+ bool need_class = 0;
+ SV *listsv = NULL;
+ STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
+         than just initialized.  */
+ SV* properties = NULL;    /* Code points that match \p{} \P{} */
+ SV* posixes = NULL;     /* Code points that match classes like [:word:],
+       extended beyond the Latin1 range.  These have to
+       be kept separate from other code points for much
+       of this function because their handling  is
+       different under /i, and for most classes under
+       /d as well */
+ SV* nposixes = NULL;    /* Similarly for [:^word:].  These are kept
+       separate for a while from the non-complemented
+       versions because of complications with /d
+       matching */
+ SV* simple_posixes = NULL; /* But under some conditions, the classes can be
+        treated more simply than the general case,
+        leading to less compilation and execution
+        work */
+ UV element_count = 0;   /* Number of distinct elements in the class.
+       Optimizations may be possible if this is tiny */
+ AV * multi_char_matches = NULL; /* Code points that fold to more than one
+         character; used under /i */
+ UV n;
+ char * stop_ptr = RExC_end;    /* where to stop parsing */
+ const bool skip_white = cBOOL(ret_invlist); /* ignore unescaped white
+            space? */
+
+ /* Unicode properties are stored in a swash; this holds the current one
+ * being parsed.  If this swash is the only above-latin1 component of the
+ * character class, an optimization is to pass it directly on to the
+ * execution engine.  Otherwise, it is set to NULL to indicate that there
+ * are other things in the class that have to be dealt with at execution
+ * time */
+ SV* swash = NULL;  /* Code points that match \p{} \P{} */
+
+ /* Set if a component of this character class is user-defined; just passed
+ * on to the engine */
+ bool has_user_defined_property = FALSE;
+
+ /* inversion list of code points this node matches only when the target
+ * string is in UTF-8.  (Because is under /d) */
+ SV* depends_list = NULL;
+
+ /* Inversion list of code points this node matches regardless of things
+ * like locale, folding, utf8ness of the target string */
+ SV* cp_list = NULL;
+
+ /* Like cp_list, but code points on this list need to be checked for things
+ * that fold to/from them under /i */
+ SV* cp_foldable_list = NULL;
+
+ /* Like cp_list, but code points on this list are valid only when the
+ * runtime locale is UTF-8 */
+ SV* only_utf8_locale_list = NULL;
+
+ /* In a range, if one of the endpoints is non-character-set portable,
+ * meaning that it hard-codes a code point that may mean a different
+ * charactger in ASCII vs. EBCDIC, as opposed to, say, a literal 'A' or a
+ * mnemonic '\t' which each mean the same character no matter which
+ * character set the platform is on. */
+ unsigned int non_portable_endpoint = 0;
+
+ /* Is the range unicode? which means on a platform that isn't 1-1 native
+ * to Unicode (i.e. non-ASCII), each code point in it should be considered
+ * to be a Unicode value.  */
+ bool unicode_range = FALSE;
+ bool invert = FALSE;    /* Is this class to be complemented */
+
+ bool warn_super = ALWAYS_WARN_SUPER;
+
+ regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
+  case we need to change the emitted regop to an EXACT. */
+ const char * orig_parse = RExC_parse;
+ const SSize_t orig_size = RExC_size;
+ bool posixl_matches_all = FALSE; /* Does /l class have both e.g. \W,\w ? */
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGCLASS;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ DEBUG_PARSE("clas");
+
+ /* Assume we are going to generate an ANYOF node. */
+ ret = reganode(pRExC_state,
+    (LOC)
+     ? ANYOFL
+     : ANYOF,
+    0);
+
+ if (SIZE_ONLY) {
+  RExC_size += ANYOF_SKIP;
+  listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
+ }
+ else {
+  ANYOF_FLAGS(ret) = 0;
+
+  RExC_emit += ANYOF_SKIP;
+  listsv = newSVpvs_flags("# comment\n", SVs_TEMP);
+  initial_listsv_len = SvCUR(listsv);
+  SvTEMP_off(listsv); /* Grr, TEMPs and mortals are conflated.  */
+ }
+
+ if (skip_white) {
+  RExC_parse = regpatws(pRExC_state, RExC_parse,
+       FALSE /* means don't recognize comments */ );
+ }
+
+ if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
+  RExC_parse++;
+  invert = TRUE;
+  allow_multi_folds = FALSE;
+  MARK_NAUGHTY(1);
+  if (skip_white) {
+   RExC_parse = regpatws(pRExC_state, RExC_parse,
+        FALSE /* means don't recognize comments */ );
+  }
+ }
+
+ /* Check that they didn't say [:posix:] instead of [[:posix:]] */
+ if (!SIZE_ONLY && RExC_parse < RExC_end && POSIXCC(UCHARAT(RExC_parse))) {
+  const char *s = RExC_parse;
+  const char  c = *s++;
+
+  if (*s == '^') {
+   s++;
+  }
+  while (isWORDCHAR(*s))
+   s++;
+  if (*s && c == *s && s[1] == ']') {
+   SAVEFREESV(RExC_rx_sv);
+   ckWARN3reg(s+2,
+     "POSIX syntax [%c %c] belongs inside character classes",
+     c, c);
+   (void)ReREFCNT_inc(RExC_rx_sv);
+  }
+ }
+
+ /* If the caller wants us to just parse a single element, accomplish this
+ * by faking the loop ending condition */
+ if (stop_at_1 && RExC_end > RExC_parse) {
+  stop_ptr = RExC_parse + 1;
+ }
+
+ /* allow 1st char to be ']' (allowing it to be '-' is dealt with later) */
+ if (UCHARAT(RExC_parse) == ']')
+  goto charclassloop;
+
+ while (1) {
+  if  (RExC_parse >= stop_ptr) {
+   break;
+  }
+
+  if (skip_white) {
+   RExC_parse = regpatws(pRExC_state, RExC_parse,
+        FALSE /* means don't recognize comments */ );
+  }
+
+  if  (UCHARAT(RExC_parse) == ']') {
+   break;
+  }
+
+ charclassloop:
+
+  namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
+  save_value = value;
+  save_prevvalue = prevvalue;
+
+  if (!range) {
+   rangebegin = RExC_parse;
+   element_count++;
+   non_portable_endpoint = 0;
+  }
+  if (UTF) {
+   value = utf8n_to_uvchr((U8*)RExC_parse,
+        RExC_end - RExC_parse,
+        &numlen, UTF8_ALLOW_DEFAULT);
+   RExC_parse += numlen;
+  }
+  else
+   value = UCHARAT(RExC_parse++);
+
+  if (value == '['
+   && RExC_parse < RExC_end
+   && POSIXCC(UCHARAT(RExC_parse)))
+  {
+   namedclass = regpposixcc(pRExC_state, value, strict);
+  }
+  else if (value == '\\') {
+   /* Is a backslash; get the code point of the char after it */
+   if (UTF && ! UTF8_IS_INVARIANT(UCHARAT(RExC_parse))) {
+    value = utf8n_to_uvchr((U8*)RExC_parse,
+        RExC_end - RExC_parse,
+        &numlen, UTF8_ALLOW_DEFAULT);
+    RExC_parse += numlen;
+   }
+   else
+    value = UCHARAT(RExC_parse++);
+
+   /* Some compilers cannot handle switching on 64-bit integer
+   * values, therefore value cannot be an UV.  Yes, this will
+   * be a problem later if we want switch on Unicode.
+   * A similar issue a little bit later when switching on
+   * namedclass. --jhi */
+
+   /* If the \ is escaping white space when white space is being
+   * skipped, it means that that white space is wanted literally, and
+   * is already in 'value'.  Otherwise, need to translate the escape
+   * into what it signifies. */
+   if (! skip_white || ! is_PATWS_cp(value)) switch ((I32)value) {
+
+   case 'w': namedclass = ANYOF_WORDCHAR; break;
+   case 'W': namedclass = ANYOF_NWORDCHAR; break;
+   case 's': namedclass = ANYOF_SPACE; break;
+   case 'S': namedclass = ANYOF_NSPACE; break;
+   case 'd': namedclass = ANYOF_DIGIT; break;
+   case 'D': namedclass = ANYOF_NDIGIT; break;
+   case 'v': namedclass = ANYOF_VERTWS; break;
+   case 'V': namedclass = ANYOF_NVERTWS; break;
+   case 'h': namedclass = ANYOF_HORIZWS; break;
+   case 'H': namedclass = ANYOF_NHORIZWS; break;
+   case 'N':  /* Handle \N{NAME} in class */
+    {
+     const char * const backslash_N_beg = RExC_parse - 2;
+     int cp_count;
+
+     if (! grok_bslash_N(pRExC_state,
+          NULL,      /* No regnode */
+          &value,    /* Yes single value */
+          &cp_count, /* Multiple code pt count */
+          flagp,
+          depth)
+     ) {
+
+      if (*flagp & RESTART_UTF8)
+       FAIL("panic: grok_bslash_N set RESTART_UTF8");
+
+      if (cp_count < 0) {
+       vFAIL("\\N in a character class must be a named character: \\N{...}");
+      }
+      else if (cp_count == 0) {
+       if (strict) {
+        RExC_parse++;   /* Position after the "}" */
+        vFAIL("Zero length \\N{}");
+       }
+       else if (PASS2) {
+        ckWARNreg(RExC_parse,
+          "Ignoring zero length \\N{} in character class");
+       }
+      }
+      else { /* cp_count > 1 */
+       if (! RExC_in_multi_char_class) {
+        if (invert || range || *RExC_parse == '-') {
+         if (strict) {
+          RExC_parse--;
+          vFAIL("\\N{} in inverted character class or as a range end-point is restricted to one character");
+         }
+         else if (PASS2) {
+          ckWARNreg(RExC_parse, "Using just the first character returned by \\N{} in character class");
+         }
+         break; /* <value> contains the first code
+           point. Drop out of the switch to
+           process it */
+        }
+        else {
+         SV * multi_char_N = newSVpvn(backslash_N_beg,
+            RExC_parse - backslash_N_beg);
+         multi_char_matches
+          = add_multi_match(multi_char_matches,
+              multi_char_N,
+              cp_count);
+        }
+       }
+      } /* End of cp_count != 1 */
+
+      /* This element should not be processed further in this
+      * class */
+      element_count--;
+      value = save_value;
+      prevvalue = save_prevvalue;
+      continue;   /* Back to top of loop to get next char */
+     }
+
+     /* Here, is a single code point, and <value> contains it */
+     unicode_range = TRUE;   /* \N{} are Unicode */
+    }
+    break;
+   case 'p':
+   case 'P':
+    {
+    char *e;
+
+    /* We will handle any undefined properties ourselves */
+    U8 swash_init_flags = _CORE_SWASH_INIT_RETURN_IF_UNDEF
+         /* And we actually would prefer to get
+          * the straight inversion list of the
+          * swash, since we will be accessing it
+          * anyway, to save a little time */
+         |_CORE_SWASH_INIT_ACCEPT_INVLIST;
+
+    if (RExC_parse >= RExC_end)
+     vFAIL2("Empty \\%c{}", (U8)value);
+    if (*RExC_parse == '{') {
+     const U8 c = (U8)value;
+     e = strchr(RExC_parse++, '}');
+     if (!e)
+      vFAIL2("Missing right brace on \\%c{}", c);
+     while (isSPACE(*RExC_parse))
+      RExC_parse++;
+     if (e == RExC_parse)
+      vFAIL2("Empty \\%c{}", c);
+     n = e - RExC_parse;
+     while (isSPACE(*(RExC_parse + n - 1)))
+      n--;
+    }
+    else {
+     e = RExC_parse;
+     n = 1;
+    }
+    if (!SIZE_ONLY) {
+     SV* invlist;
+     char* name;
+
+     if (UCHARAT(RExC_parse) == '^') {
+      RExC_parse++;
+      n--;
+      /* toggle.  (The rhs xor gets the single bit that
+      * differs between P and p; the other xor inverts just
+      * that bit) */
+      value ^= 'P' ^ 'p';
+
+      while (isSPACE(*RExC_parse)) {
+       RExC_parse++;
+       n--;
+      }
+     }
+     /* Try to get the definition of the property into
+     * <invlist>.  If /i is in effect, the effective property
+     * will have its name be <__NAME_i>.  The design is
+     * discussed in commit
+     * 2f833f5208e26b208886e51e09e2c072b5eabb46 */
+     name = savepv(Perl_form(aTHX_
+          "%s%.*s%s\n",
+          (FOLD) ? "__" : "",
+          (int)n,
+          RExC_parse,
+          (FOLD) ? "_i" : ""
+        ));
+
+     /* Look up the property name, and get its swash and
+     * inversion list, if the property is found  */
+     if (swash) {
+      SvREFCNT_dec_NN(swash);
+     }
+     swash = _core_swash_init("utf8", name, &PL_sv_undef,
+           1, /* binary */
+           0, /* not tr/// */
+           NULL, /* No inversion list */
+           &swash_init_flags
+           );
+     if (! swash || ! (invlist = _get_swash_invlist(swash))) {
+      HV* curpkg = (IN_PERL_COMPILETIME)
+         ? PL_curstash
+         : CopSTASH(PL_curcop);
+      if (swash) {
+       SvREFCNT_dec_NN(swash);
+       swash = NULL;
+      }
+
+      /* Here didn't find it.  It could be a user-defined
+      * property that will be available at run-time.  If we
+      * accept only compile-time properties, is an error;
+      * otherwise add it to the list for run-time look up */
+      if (ret_invlist) {
+       RExC_parse = e + 1;
+       vFAIL2utf8f(
+        "Property '%"UTF8f"' is unknown",
+        UTF8fARG(UTF, n, name));
+      }
+
+      /* If the property name doesn't already have a package
+      * name, add the current one to it so that it can be
+      * referred to outside it. [perl #121777] */
+      if (curpkg && ! instr(name, "::")) {
+       char* pkgname = HvNAME(curpkg);
+       if (strNE(pkgname, "main")) {
+        char* full_name = Perl_form(aTHX_
+               "%s::%s",
+               pkgname,
+               name);
+        n = strlen(full_name);
+        Safefree(name);
+        name = savepvn(full_name, n);
+       }
+      }
+      Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%"UTF8f"\n",
+          (value == 'p' ? '+' : '!'),
+          UTF8fARG(UTF, n, name));
+      has_user_defined_property = TRUE;
+
+      /* We don't know yet, so have to assume that the
+      * property could match something in the Latin1 range,
+      * hence something that isn't utf8.  Note that this
+      * would cause things in <depends_list> to match
+      * inappropriately, except that any \p{}, including
+      * this one forces Unicode semantics, which means there
+      * is no <depends_list> */
+      ANYOF_FLAGS(ret)
+         |= ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES;
+     }
+     else {
+
+      /* Here, did get the swash and its inversion list.  If
+      * the swash is from a user-defined property, then this
+      * whole character class should be regarded as such */
+      if (swash_init_flags
+       & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY)
+      {
+       has_user_defined_property = TRUE;
+      }
+      else if
+       /* We warn on matching an above-Unicode code point
+       * if the match would return true, except don't
+       * warn for \p{All}, which has exactly one element
+       * = 0 */
+       (_invlist_contains_cp(invlist, 0x110000)
+        && (! (_invlist_len(invlist) == 1
+         && *invlist_array(invlist) == 0)))
+      {
+       warn_super = TRUE;
+      }
+
+
+      /* Invert if asking for the complement */
+      if (value == 'P') {
+       _invlist_union_complement_2nd(properties,
+              invlist,
+              &properties);
+
+       /* The swash can't be used as-is, because we've
+       * inverted things; delay removing it to here after
+       * have copied its invlist above */
+       SvREFCNT_dec_NN(swash);
+       swash = NULL;
+      }
+      else {
+       _invlist_union(properties, invlist, &properties);
+      }
+     }
+     Safefree(name);
+    }
+    RExC_parse = e + 1;
+    namedclass = ANYOF_UNIPROP;  /* no official name, but it's
+            named */
+
+    /* \p means they want Unicode semantics */
+    RExC_uni_semantics = 1;
+    }
+    break;
+   case 'n': value = '\n';   break;
+   case 'r': value = '\r';   break;
+   case 't': value = '\t';   break;
+   case 'f': value = '\f';   break;
+   case 'b': value = '\b';   break;
+   case 'e': value = ESC_NATIVE;             break;
+   case 'a': value = '\a';                   break;
+   case 'o':
+    RExC_parse--; /* function expects to be pointed at the 'o' */
+    {
+     const char* error_msg;
+     bool valid = grok_bslash_o(&RExC_parse,
+           &value,
+           &error_msg,
+           PASS2,   /* warnings only in
+              pass 2 */
+           strict,
+           silence_non_portable,
+           UTF);
+     if (! valid) {
+      vFAIL(error_msg);
+     }
+    }
+    non_portable_endpoint++;
+    if (IN_ENCODING && value < 0x100) {
+     goto recode_encoding;
+    }
+    break;
+   case 'x':
+    RExC_parse--; /* function expects to be pointed at the 'x' */
+    {
+     const char* error_msg;
+     bool valid = grok_bslash_x(&RExC_parse,
+           &value,
+           &error_msg,
+           PASS2, /* Output warnings */
+           strict,
+           silence_non_portable,
+           UTF);
+     if (! valid) {
+      vFAIL(error_msg);
+     }
+    }
+    non_portable_endpoint++;
+    if (IN_ENCODING && value < 0x100)
+     goto recode_encoding;
+    break;
+   case 'c':
+    value = grok_bslash_c(*RExC_parse++, PASS2);
+    non_portable_endpoint++;
+    break;
+   case '0': case '1': case '2': case '3': case '4':
+   case '5': case '6': case '7':
+    {
+     /* Take 1-3 octal digits */
+     I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
+     numlen = (strict) ? 4 : 3;
+     value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
+     RExC_parse += numlen;
+     if (numlen != 3) {
+      if (strict) {
+       RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+       vFAIL("Need exactly 3 octal digits");
+      }
+      else if (! SIZE_ONLY /* like \08, \178 */
+        && numlen < 3
+        && RExC_parse < RExC_end
+        && isDIGIT(*RExC_parse)
+        && ckWARN(WARN_REGEXP))
+      {
+       SAVEFREESV(RExC_rx_sv);
+       reg_warn_non_literal_string(
+        RExC_parse + 1,
+        form_short_octal_warning(RExC_parse, numlen));
+       (void)ReREFCNT_inc(RExC_rx_sv);
+      }
+     }
+     non_portable_endpoint++;
+     if (IN_ENCODING && value < 0x100)
+      goto recode_encoding;
+     break;
+    }
+   recode_encoding:
+    if (! RExC_override_recoding) {
+     SV* enc = _get_encoding();
+     value = reg_recode((const char)(U8)value, &enc);
+     if (!enc) {
+      if (strict) {
+       vFAIL("Invalid escape in the specified encoding");
+      }
+      else if (PASS2) {
+       ckWARNreg(RExC_parse,
+        "Invalid escape in the specified encoding");
+      }
+     }
+     break;
+    }
+   default:
+    /* Allow \_ to not give an error */
+    if (!SIZE_ONLY && isWORDCHAR(value) && value != '_') {
+     if (strict) {
+      vFAIL2("Unrecognized escape \\%c in character class",
+       (int)value);
+     }
+     else {
+      SAVEFREESV(RExC_rx_sv);
+      ckWARN2reg(RExC_parse,
+       "Unrecognized escape \\%c in character class passed through",
+       (int)value);
+      (void)ReREFCNT_inc(RExC_rx_sv);
+     }
+    }
+    break;
+   }   /* End of switch on char following backslash */
+  } /* end of handling backslash escape sequences */
+
+  /* Here, we have the current token in 'value' */
+
+  if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
+   U8 classnum;
+
+   /* a bad range like a-\d, a-[:digit:].  The '-' is taken as a
+   * literal, as is the character that began the false range, i.e.
+   * the 'a' in the examples */
+   if (range) {
+    if (!SIZE_ONLY) {
+     const int w = (RExC_parse >= rangebegin)
+        ? RExC_parse - rangebegin
+        : 0;
+     if (strict) {
+      vFAIL2utf8f(
+       "False [] range \"%"UTF8f"\"",
+       UTF8fARG(UTF, w, rangebegin));
+     }
+     else {
+      SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
+      ckWARN2reg(RExC_parse,
+       "False [] range \"%"UTF8f"\"",
+       UTF8fARG(UTF, w, rangebegin));
+      (void)ReREFCNT_inc(RExC_rx_sv);
+      cp_list = add_cp_to_invlist(cp_list, '-');
+      cp_foldable_list = add_cp_to_invlist(cp_foldable_list,
+               prevvalue);
+     }
+    }
+
+    range = 0; /* this was not a true range */
+    element_count += 2; /* So counts for three values */
+   }
+
+   classnum = namedclass_to_classnum(namedclass);
+
+   if (LOC && namedclass < ANYOF_POSIXL_MAX
+#ifndef HAS_ISASCII
+    && classnum != _CC_ASCII
+#endif
+   ) {
+    /* What the Posix classes (like \w, [:space:]) match in locale
+    * isn't knowable under locale until actual match time.  Room
+    * must be reserved (one time per outer bracketed class) to
+    * store such classes.  The space will contain a bit for each
+    * named class that is to be matched against.  This isn't
+    * needed for \p{} and pseudo-classes, as they are not affected
+    * by locale, and hence are dealt with separately */
+    if (! need_class) {
+     need_class = 1;
+     if (SIZE_ONLY) {
+      RExC_size += ANYOF_POSIXL_SKIP - ANYOF_SKIP;
+     }
+     else {
+      RExC_emit += ANYOF_POSIXL_SKIP - ANYOF_SKIP;
+     }
+     ANYOF_FLAGS(ret) |= ANYOF_MATCHES_POSIXL;
+     ANYOF_POSIXL_ZERO(ret);
+    }
+
+    /* Coverity thinks it is possible for this to be negative; both
+    * jhi and khw think it's not, but be safer */
+    assert(! (ANYOF_FLAGS(ret) & ANYOF_MATCHES_POSIXL)
+     || (namedclass + ((namedclass % 2) ? -1 : 1)) >= 0);
+
+    /* See if it already matches the complement of this POSIX
+    * class */
+    if ((ANYOF_FLAGS(ret) & ANYOF_MATCHES_POSIXL)
+     && ANYOF_POSIXL_TEST(ret, namedclass + ((namedclass % 2)
+               ? -1
+               : 1)))
+    {
+     posixl_matches_all = TRUE;
+     break;  /* No need to continue.  Since it matches both
+       e.g., \w and \W, it matches everything, and the
+       bracketed class can be optimized into qr/./s */
+    }
+
+    /* Add this class to those that should be checked at runtime */
+    ANYOF_POSIXL_SET(ret, namedclass);
+
+    /* The above-Latin1 characters are not subject to locale rules.
+    * Just add them, in the second pass, to the
+    * unconditionally-matched list */
+    if (! SIZE_ONLY) {
+     SV* scratch_list = NULL;
+
+     /* Get the list of the above-Latin1 code points this
+     * matches */
+     _invlist_intersection_maybe_complement_2nd(PL_AboveLatin1,
+          PL_XPosix_ptrs[classnum],
+
+          /* Odd numbers are complements, like
+          * NDIGIT, NASCII, ... */
+          namedclass % 2 != 0,
+          &scratch_list);
+     /* Checking if 'cp_list' is NULL first saves an extra
+     * clone.  Its reference count will be decremented at the
+     * next union, etc, or if this is the only instance, at the
+     * end of the routine */
+     if (! cp_list) {
+      cp_list = scratch_list;
+     }
+     else {
+      _invlist_union(cp_list, scratch_list, &cp_list);
+      SvREFCNT_dec_NN(scratch_list);
+     }
+     continue;   /* Go get next character */
+    }
+   }
+   else if (! SIZE_ONLY) {
+
+    /* Here, not in pass1 (in that pass we skip calculating the
+    * contents of this class), and is /l, or is a POSIX class for
+    * which /l doesn't matter (or is a Unicode property, which is
+    * skipped here). */
+    if (namedclass >= ANYOF_POSIXL_MAX) {  /* If a special class */
+     if (namedclass != ANYOF_UNIPROP) { /* UNIPROP = \p and \P */
+
+      /* Here, should be \h, \H, \v, or \V.  None of /d, /i
+      * nor /l make a difference in what these match,
+      * therefore we just add what they match to cp_list. */
+      if (classnum != _CC_VERTSPACE) {
+       assert(   namedclass == ANYOF_HORIZWS
+        || namedclass == ANYOF_NHORIZWS);
+
+       /* It turns out that \h is just a synonym for
+       * XPosixBlank */
+       classnum = _CC_BLANK;
+      }
+
+      _invlist_union_maybe_complement_2nd(
+        cp_list,
+        PL_XPosix_ptrs[classnum],
+        namedclass % 2 != 0,    /* Complement if odd
+              (NHORIZWS, NVERTWS)
+              */
+        &cp_list);
+     }
+    }
+    else if (UNI_SEMANTICS
+      || classnum == _CC_ASCII
+      || (DEPENDS_SEMANTICS && (classnum == _CC_DIGIT
+            || classnum == _CC_XDIGIT)))
+    {
+     /* We usually have to worry about /d and /a affecting what
+     * POSIX classes match, with special code needed for /d
+     * because we won't know until runtime what all matches.
+     * But there is no extra work needed under /u, and
+     * [:ascii:] is unaffected by /a and /d; and :digit: and
+     * :xdigit: don't have runtime differences under /d.  So we
+     * can special case these, and avoid some extra work below,
+     * and at runtime. */
+     _invlist_union_maybe_complement_2nd(
+             simple_posixes,
+             PL_XPosix_ptrs[classnum],
+             namedclass % 2 != 0,
+             &simple_posixes);
+    }
+    else {  /* Garden variety class.  If is NUPPER, NALPHA, ...
+      complement and use nposixes */
+     SV** posixes_ptr = namedclass % 2 == 0
+         ? &posixes
+         : &nposixes;
+     _invlist_union_maybe_complement_2nd(
+             *posixes_ptr,
+             PL_XPosix_ptrs[classnum],
+             namedclass % 2 != 0,
+             posixes_ptr);
+    }
+   }
+  } /* end of namedclass \blah */
+
+  if (skip_white) {
+   RExC_parse = regpatws(pRExC_state, RExC_parse,
+        FALSE /* means don't recognize comments */ );
+  }
+
+  /* If 'range' is set, 'value' is the ending of a range--check its
+  * validity.  (If value isn't a single code point in the case of a
+  * range, we should have figured that out above in the code that
+  * catches false ranges).  Later, we will handle each individual code
+  * point in the range.  If 'range' isn't set, this could be the
+  * beginning of a range, so check for that by looking ahead to see if
+  * the next real character to be processed is the range indicator--the
+  * minus sign */
+
+  if (range) {
+#ifdef EBCDIC
+   /* For unicode ranges, we have to test that the Unicode as opposed
+   * to the native values are not decreasing.  (Above 255, there is
+   * no difference between native and Unicode) */
+   if (unicode_range && prevvalue < 255 && value < 255) {
+    if (NATIVE_TO_LATIN1(prevvalue) > NATIVE_TO_LATIN1(value)) {
+     goto backwards_range;
+    }
+   }
+   else
+#endif
+   if (prevvalue > value) /* b-a */ {
+    int w;
+#ifdef EBCDIC
+   backwards_range:
+#endif
+    w = RExC_parse - rangebegin;
+    vFAIL2utf8f(
+     "Invalid [] range \"%"UTF8f"\"",
+     UTF8fARG(UTF, w, rangebegin));
+    NOT_REACHED; /* NOTREACHED */
+   }
+  }
+  else {
+   prevvalue = value; /* save the beginning of the potential range */
+   if (! stop_at_1     /* Can't be a range if parsing just one thing */
+    && *RExC_parse == '-')
+   {
+    char* next_char_ptr = RExC_parse + 1;
+    if (skip_white) {   /* Get the next real char after the '-' */
+     next_char_ptr = regpatws(pRExC_state,
+           RExC_parse + 1,
+           FALSE); /* means don't recognize
+              comments */
+    }
+
+    /* If the '-' is at the end of the class (just before the ']',
+    * it is a literal minus; otherwise it is a range */
+    if (next_char_ptr < RExC_end && *next_char_ptr != ']') {
+     RExC_parse = next_char_ptr;
+
+     /* a bad range like \w-, [:word:]- ? */
+     if (namedclass > OOB_NAMEDCLASS) {
+      if (strict || (PASS2 && ckWARN(WARN_REGEXP))) {
+       const int w = RExC_parse >= rangebegin
+          ?  RExC_parse - rangebegin
+          : 0;
+       if (strict) {
+        vFAIL4("False [] range \"%*.*s\"",
+         w, w, rangebegin);
+       }
+       else if (PASS2) {
+        vWARN4(RExC_parse,
+         "False [] range \"%*.*s\"",
+         w, w, rangebegin);
+       }
+      }
+      if (!SIZE_ONLY) {
+       cp_list = add_cp_to_invlist(cp_list, '-');
+      }
+      element_count++;
+     } else
+      range = 1; /* yeah, it's a range! */
+     continue; /* but do it the next time */
+    }
+   }
+  }
+
+  if (namedclass > OOB_NAMEDCLASS) {
+   continue;
+  }
+
+  /* Here, we have a single value this time through the loop, and
+  * <prevvalue> is the beginning of the range, if any; or <value> if
+  * not. */
+
+  /* non-Latin1 code point implies unicode semantics.  Must be set in
+  * pass1 so is there for the whole of pass 2 */
+  if (value > 255) {
+   RExC_uni_semantics = 1;
+  }
+
+  /* Ready to process either the single value, or the completed range.
+  * For single-valued non-inverted ranges, we consider the possibility
+  * of multi-char folds.  (We made a conscious decision to not do this
+  * for the other cases because it can often lead to non-intuitive
+  * results.  For example, you have the peculiar case that:
+  *  "s s" =~ /^[^\xDF]+$/i => Y
+  *  "ss"  =~ /^[^\xDF]+$/i => N
+  *
+  * See [perl #89750] */
+  if (FOLD && allow_multi_folds && value == prevvalue) {
+   if (value == LATIN_SMALL_LETTER_SHARP_S
+    || (value > 255 && _invlist_contains_cp(PL_HasMultiCharFold,
+              value)))
+   {
+    /* Here <value> is indeed a multi-char fold.  Get what it is */
+
+    U8 foldbuf[UTF8_MAXBYTES_CASE];
+    STRLEN foldlen;
+
+    UV folded = _to_uni_fold_flags(
+        value,
+        foldbuf,
+        &foldlen,
+        FOLD_FLAGS_FULL | (ASCII_FOLD_RESTRICTED
+            ? FOLD_FLAGS_NOMIX_ASCII
+            : 0)
+        );
+
+    /* Here, <folded> should be the first character of the
+    * multi-char fold of <value>, with <foldbuf> containing the
+    * whole thing.  But, if this fold is not allowed (because of
+    * the flags), <fold> will be the same as <value>, and should
+    * be processed like any other character, so skip the special
+    * handling */
+    if (folded != value) {
+
+     /* Skip if we are recursed, currently parsing the class
+     * again.  Otherwise add this character to the list of
+     * multi-char folds. */
+     if (! RExC_in_multi_char_class) {
+      STRLEN cp_count = utf8_length(foldbuf,
+             foldbuf + foldlen);
+      SV* multi_fold = sv_2mortal(newSVpvs(""));
+
+      Perl_sv_catpvf(aTHX_ multi_fold, "\\x{%"UVXf"}", value);
+
+      multi_char_matches
+          = add_multi_match(multi_char_matches,
+              multi_fold,
+              cp_count);
+
+     }
+
+     /* This element should not be processed further in this
+     * class */
+     element_count--;
+     value = save_value;
+     prevvalue = save_prevvalue;
+     continue;
+    }
+   }
+  }
+
+  if (strict && PASS2 && ckWARN(WARN_REGEXP)) {
+   if (range) {
+
+    /* If the range starts above 255, everything is portable and
+    * likely to be so for any forseeable character set, so don't
+    * warn. */
+    if (unicode_range && non_portable_endpoint && prevvalue < 256) {
+     vWARN(RExC_parse, "Both or neither range ends should be Unicode");
+    }
+    else if (prevvalue != value) {
+
+     /* Under strict, ranges that stop and/or end in an ASCII
+     * printable should have each end point be a portable value
+     * for it (preferably like 'A', but we don't warn if it is
+     * a (portable) Unicode name or code point), and the range
+     * must be be all digits or all letters of the same case.
+     * Otherwise, the range is non-portable and unclear as to
+     * what it contains */
+     if ((isPRINT_A(prevvalue) || isPRINT_A(value))
+      && (non_portable_endpoint
+       || ! ((isDIGIT_A(prevvalue) && isDIGIT_A(value))
+        || (isLOWER_A(prevvalue) && isLOWER_A(value))
+        || (isUPPER_A(prevvalue) && isUPPER_A(value)))))
+     {
+      vWARN(RExC_parse, "Ranges of ASCII printables should be some subset of \"0-9\", \"A-Z\", or \"a-z\"");
+     }
+     else if (prevvalue >= 0x660) { /* ARABIC_INDIC_DIGIT_ZERO */
+
+      /* But the nature of Unicode and languages mean we
+      * can't do the same checks for above-ASCII ranges,
+      * except in the case of digit ones.  These should
+      * contain only digits from the same group of 10.  The
+      * ASCII case is handled just above.  0x660 is the
+      * first digit character beyond ASCII.  Hence here, the
+      * range could be a range of digits.  Find out.  */
+      IV index_start = _invlist_search(PL_XPosix_ptrs[_CC_DIGIT],
+              prevvalue);
+      IV index_final = _invlist_search(PL_XPosix_ptrs[_CC_DIGIT],
+              value);
+
+      /* If the range start and final points are in the same
+      * inversion list element, it means that either both
+      * are not digits, or both are digits in a consecutive
+      * sequence of digits.  (So far, Unicode has kept all
+      * such sequences as distinct groups of 10, but assert
+      * to make sure).  If the end points are not in the
+      * same element, neither should be a digit. */
+      if (index_start == index_final) {
+       assert(! ELEMENT_RANGE_MATCHES_INVLIST(index_start)
+       || (invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start+1]
+       - invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
+       == 10)
+       /* But actually Unicode did have one group of 11
+        * 'digits' in 5.2, so in case we are operating
+        * on that version, let that pass */
+       || (invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start+1]
+       - invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
+        == 11
+       && invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
+        == 0x19D0)
+       );
+      }
+      else if ((index_start >= 0
+        && ELEMENT_RANGE_MATCHES_INVLIST(index_start))
+        || (index_final >= 0
+         && ELEMENT_RANGE_MATCHES_INVLIST(index_final)))
+      {
+       vWARN(RExC_parse, "Ranges of digits should be from the same group of 10");
+      }
+     }
+    }
+   }
+   if ((! range || prevvalue == value) && non_portable_endpoint) {
+    if (isPRINT_A(value)) {
+     char literal[3];
+     unsigned d = 0;
+     if (isBACKSLASHED_PUNCT(value)) {
+      literal[d++] = '\\';
+     }
+     literal[d++] = (char) value;
+     literal[d++] = '\0';
+
+     vWARN4(RExC_parse,
+      "\"%.*s\" is more clearly written simply as \"%s\"",
+      (int) (RExC_parse - rangebegin),
+      rangebegin,
+      literal
+      );
+    }
+    else if isMNEMONIC_CNTRL(value) {
+     vWARN4(RExC_parse,
+      "\"%.*s\" is more clearly written simply as \"%s\"",
+      (int) (RExC_parse - rangebegin),
+      rangebegin,
+      cntrl_to_mnemonic((char) value)
+      );
+    }
+   }
+  }
+
+  /* Deal with this element of the class */
+  if (! SIZE_ONLY) {
+
+#ifndef EBCDIC
+   cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
+             prevvalue, value);
+#else
+   /* On non-ASCII platforms, for ranges that span all of 0..255, and
+   * ones that don't require special handling, we can just add the
+   * range like we do for ASCII platforms */
+   if ((UNLIKELY(prevvalue == 0) && value >= 255)
+    || ! (prevvalue < 256
+     && (unicode_range
+      || (! non_portable_endpoint
+       && ((isLOWER_A(prevvalue) && isLOWER_A(value))
+        || (isUPPER_A(prevvalue)
+         && isUPPER_A(value)))))))
+   {
+    cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
+              prevvalue, value);
+   }
+   else {
+    /* Here, requires special handling.  This can be because it is
+    * a range whose code points are considered to be Unicode, and
+    * so must be individually translated into native, or because
+    * its a subrange of 'A-Z' or 'a-z' which each aren't
+    * contiguous in EBCDIC, but we have defined them to include
+    * only the "expected" upper or lower case ASCII alphabetics.
+    * Subranges above 255 are the same in native and Unicode, so
+    * can be added as a range */
+    U8 start = NATIVE_TO_LATIN1(prevvalue);
+    unsigned j;
+    U8 end = (value < 256) ? NATIVE_TO_LATIN1(value) : 255;
+    for (j = start; j <= end; j++) {
+     cp_foldable_list = add_cp_to_invlist(cp_foldable_list, LATIN1_TO_NATIVE(j));
+    }
+    if (value > 255) {
+     cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
+               256, value);
+    }
+   }
+#endif
+  }
+
+  range = 0; /* this range (if it was one) is done now */
+ } /* End of loop through all the text within the brackets */
+
+ /* If anything in the class expands to more than one character, we have to
+ * deal with them by building up a substitute parse string, and recursively
+ * calling reg() on it, instead of proceeding */
+ if (multi_char_matches) {
+  SV * substitute_parse = newSVpvn_flags("?:", 2, SVs_TEMP);
+  I32 cp_count;
+  STRLEN len;
+  char *save_end = RExC_end;
+  char *save_parse = RExC_parse;
+  bool first_time = TRUE;     /* First multi-char occurrence doesn't get
+         a "|" */
+  I32 reg_flags;
+
+  assert(! invert);
+#if 0   /* Have decided not to deal with multi-char folds in inverted classes,
+  because too confusing */
+  if (invert) {
+   sv_catpv(substitute_parse, "(?:");
+  }
+#endif
+
+  /* Look at the longest folds first */
+  for (cp_count = av_tindex(multi_char_matches); cp_count > 0; cp_count--) {
+
+   if (av_exists(multi_char_matches, cp_count)) {
+    AV** this_array_ptr;
+    SV* this_sequence;
+
+    this_array_ptr = (AV**) av_fetch(multi_char_matches,
+            cp_count, FALSE);
+    while ((this_sequence = av_pop(*this_array_ptr)) !=
+                &PL_sv_undef)
+    {
+     if (! first_time) {
+      sv_catpv(substitute_parse, "|");
+     }
+     first_time = FALSE;
+
+     sv_catpv(substitute_parse, SvPVX(this_sequence));
+    }
+   }
+  }
+
+  /* If the character class contains anything else besides these
+  * multi-character folds, have to include it in recursive parsing */
+  if (element_count) {
+   sv_catpv(substitute_parse, "|[");
+   sv_catpvn(substitute_parse, orig_parse, RExC_parse - orig_parse);
+   sv_catpv(substitute_parse, "]");
+  }
+
+  sv_catpv(substitute_parse, ")");
+#if 0
+  if (invert) {
+   /* This is a way to get the parse to skip forward a whole named
+   * sequence instead of matching the 2nd character when it fails the
+   * first */
+   sv_catpv(substitute_parse, "(*THEN)(*SKIP)(*FAIL)|.)");
+  }
+#endif
+
+  RExC_parse = SvPV(substitute_parse, len);
+  RExC_end = RExC_parse + len;
+  RExC_in_multi_char_class = 1;
+  RExC_override_recoding = 1;
+  RExC_emit = (regnode *)orig_emit;
+
+  ret = reg(pRExC_state, 1, &reg_flags, depth+1);
+
+  *flagp |= reg_flags&(HASWIDTH|SIMPLE|SPSTART|POSTPONED|RESTART_UTF8);
+
+  RExC_parse = save_parse;
+  RExC_end = save_end;
+  RExC_in_multi_char_class = 0;
+  RExC_override_recoding = 0;
+  SvREFCNT_dec_NN(multi_char_matches);
+  return ret;
+ }
+
+ /* Here, we've gone through the entire class and dealt with multi-char
+ * folds.  We are now in a position that we can do some checks to see if we
+ * can optimize this ANYOF node into a simpler one, even in Pass 1.
+ * Currently we only do two checks:
+ * 1) is in the unlikely event that the user has specified both, eg. \w and
+ *    \W under /l, then the class matches everything.  (This optimization
+ *    is done only to make the optimizer code run later work.)
+ * 2) if the character class contains only a single element (including a
+ *    single range), we see if there is an equivalent node for it.
+ * Other checks are possible */
+ if (! ret_invlist   /* Can't optimize if returning the constructed
+      inversion list */
+  && (UNLIKELY(posixl_matches_all) || element_count == 1))
+ {
+  U8 op = END;
+  U8 arg = 0;
+
+  if (UNLIKELY(posixl_matches_all)) {
+   op = SANY;
+  }
+  else if (namedclass > OOB_NAMEDCLASS) { /* this is a named class, like
+            \w or [:digit:] or \p{foo}
+            */
+
+   /* All named classes are mapped into POSIXish nodes, with its FLAG
+   * argument giving which class it is */
+   switch ((I32)namedclass) {
+    case ANYOF_UNIPROP:
+     break;
+
+    /* These don't depend on the charset modifiers.  They always
+    * match under /u rules */
+    case ANYOF_NHORIZWS:
+    case ANYOF_HORIZWS:
+     namedclass = ANYOF_BLANK + namedclass - ANYOF_HORIZWS;
+     /* FALLTHROUGH */
+
+    case ANYOF_NVERTWS:
+    case ANYOF_VERTWS:
+     op = POSIXU;
+     goto join_posix;
+
+    /* The actual POSIXish node for all the rest depends on the
+    * charset modifier.  The ones in the first set depend only on
+    * ASCII or, if available on this platform, also locale */
+    case ANYOF_ASCII:
+    case ANYOF_NASCII:
+#ifdef HAS_ISASCII
+     op = (LOC) ? POSIXL : POSIXA;
+#else
+     op = POSIXA;
+#endif
+     goto join_posix;
+
+    /* The following don't have any matches in the upper Latin1
+    * range, hence /d is equivalent to /u for them.  Making it /u
+    * saves some branches at runtime */
+    case ANYOF_DIGIT:
+    case ANYOF_NDIGIT:
+    case ANYOF_XDIGIT:
+    case ANYOF_NXDIGIT:
+     if (! DEPENDS_SEMANTICS) {
+      goto treat_as_default;
+     }
+
+     op = POSIXU;
+     goto join_posix;
+
+    /* The following change to CASED under /i */
+    case ANYOF_LOWER:
+    case ANYOF_NLOWER:
+    case ANYOF_UPPER:
+    case ANYOF_NUPPER:
+     if (FOLD) {
+      namedclass = ANYOF_CASED + (namedclass % 2);
+     }
+     /* FALLTHROUGH */
+
+    /* The rest have more possibilities depending on the charset.
+    * We take advantage of the enum ordering of the charset
+    * modifiers to get the exact node type, */
+    default:
+    treat_as_default:
+     op = POSIXD + get_regex_charset(RExC_flags);
+     if (op > POSIXA) { /* /aa is same as /a */
+      op = POSIXA;
+     }
+
+    join_posix:
+     /* The odd numbered ones are the complements of the
+     * next-lower even number one */
+     if (namedclass % 2 == 1) {
+      invert = ! invert;
+      namedclass--;
+     }
+     arg = namedclass_to_classnum(namedclass);
+     break;
+   }
+  }
+  else if (value == prevvalue) {
+
+   /* Here, the class consists of just a single code point */
+
+   if (invert) {
+    if (! LOC && value == '\n') {
+     op = REG_ANY; /* Optimize [^\n] */
+     *flagp |= HASWIDTH|SIMPLE;
+     MARK_NAUGHTY(1);
+    }
+   }
+   else if (value < 256 || UTF) {
+
+    /* Optimize a single value into an EXACTish node, but not if it
+    * would require converting the pattern to UTF-8. */
+    op = compute_EXACTish(pRExC_state);
+   }
+  } /* Otherwise is a range */
+  else if (! LOC) {   /* locale could vary these */
+   if (prevvalue == '0') {
+    if (value == '9') {
+     arg = _CC_DIGIT;
+     op = POSIXA;
+    }
+   }
+   else if (! FOLD || ASCII_FOLD_RESTRICTED) {
+    /* We can optimize A-Z or a-z, but not if they could match
+    * something like the KELVIN SIGN under /i. */
+    if (prevvalue == 'A') {
+     if (value == 'Z'
+#ifdef EBCDIC
+      && ! non_portable_endpoint
+#endif
+     ) {
+      arg = (FOLD) ? _CC_ALPHA : _CC_UPPER;
+      op = POSIXA;
+     }
+    }
+    else if (prevvalue == 'a') {
+     if (value == 'z'
+#ifdef EBCDIC
+      && ! non_portable_endpoint
+#endif
+     ) {
+      arg = (FOLD) ? _CC_ALPHA : _CC_LOWER;
+      op = POSIXA;
+     }
+    }
+   }
+  }
+
+  /* Here, we have changed <op> away from its initial value iff we found
+  * an optimization */
+  if (op != END) {
+
+   /* Throw away this ANYOF regnode, and emit the calculated one,
+   * which should correspond to the beginning, not current, state of
+   * the parse */
+   const char * cur_parse = RExC_parse;
+   RExC_parse = (char *)orig_parse;
+   if ( SIZE_ONLY) {
+    if (! LOC) {
+
+     /* To get locale nodes to not use the full ANYOF size would
+     * require moving the code above that writes the portions
+     * of it that aren't in other nodes to after this point.
+     * e.g.  ANYOF_POSIXL_SET */
+     RExC_size = orig_size;
+    }
+   }
+   else {
+    RExC_emit = (regnode *)orig_emit;
+    if (PL_regkind[op] == POSIXD) {
+     if (op == POSIXL) {
+      RExC_contains_locale = 1;
+     }
+     if (invert) {
+      op += NPOSIXD - POSIXD;
+     }
+    }
+   }
+
+   ret = reg_node(pRExC_state, op);
+
+   if (PL_regkind[op] == POSIXD || PL_regkind[op] == NPOSIXD) {
+    if (! SIZE_ONLY) {
+     FLAGS(ret) = arg;
+    }
+    *flagp |= HASWIDTH|SIMPLE;
+   }
+   else if (PL_regkind[op] == EXACT) {
+    alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value,
+          TRUE /* downgradable to EXACT */
+          );
+   }
+
+   RExC_parse = (char *) cur_parse;
+
+   SvREFCNT_dec(posixes);
+   SvREFCNT_dec(nposixes);
+   SvREFCNT_dec(simple_posixes);
+   SvREFCNT_dec(cp_list);
+   SvREFCNT_dec(cp_foldable_list);
+   return ret;
+  }
+ }
+
+ if (SIZE_ONLY)
+  return ret;
+ /****** !SIZE_ONLY (Pass 2) AFTER HERE *********/
+
+ /* If folding, we calculate all characters that could fold to or from the
+ * ones already on the list */
+ if (cp_foldable_list) {
+  if (FOLD) {
+   UV start, end; /* End points of code point ranges */
+
+   SV* fold_intersection = NULL;
+   SV** use_list;
+
+   /* Our calculated list will be for Unicode rules.  For locale
+   * matching, we have to keep a separate list that is consulted at
+   * runtime only when the locale indicates Unicode rules.  For
+   * non-locale, we just use to the general list */
+   if (LOC) {
+    use_list = &only_utf8_locale_list;
+   }
+   else {
+    use_list = &cp_list;
+   }
+
+   /* Only the characters in this class that participate in folds need
+   * be checked.  Get the intersection of this class and all the
+   * possible characters that are foldable.  This can quickly narrow
+   * down a large class */
+   _invlist_intersection(PL_utf8_foldable, cp_foldable_list,
+        &fold_intersection);
+
+   /* The folds for all the Latin1 characters are hard-coded into this
+   * program, but we have to go out to disk to get the others. */
+   if (invlist_highest(cp_foldable_list) >= 256) {
+
+    /* This is a hash that for a particular fold gives all
+    * characters that are involved in it */
+    if (! PL_utf8_foldclosures) {
+     _load_PL_utf8_foldclosures();
+    }
+   }
+
+   /* Now look at the foldable characters in this class individually */
+   invlist_iterinit(fold_intersection);
+   while (invlist_iternext(fold_intersection, &start, &end)) {
+    UV j;
+
+    /* Look at every character in the range */
+    for (j = start; j <= end; j++) {
+     U8 foldbuf[UTF8_MAXBYTES_CASE+1];
+     STRLEN foldlen;
+     SV** listp;
+
+     if (j < 256) {
+
+      if (IS_IN_SOME_FOLD_L1(j)) {
+
+       /* ASCII is always matched; non-ASCII is matched
+       * only under Unicode rules (which could happen
+       * under /l if the locale is a UTF-8 one */
+       if (isASCII(j) || ! DEPENDS_SEMANTICS) {
+        *use_list = add_cp_to_invlist(*use_list,
+               PL_fold_latin1[j]);
+       }
+       else {
+        depends_list =
+        add_cp_to_invlist(depends_list,
+            PL_fold_latin1[j]);
+       }
+      }
+
+      if (HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(j)
+       && (! isASCII(j) || ! ASCII_FOLD_RESTRICTED))
+      {
+       add_above_Latin1_folds(pRExC_state,
+            (U8) j,
+            use_list);
+      }
+      continue;
+     }
+
+     /* Here is an above Latin1 character.  We don't have the
+     * rules hard-coded for it.  First, get its fold.  This is
+     * the simple fold, as the multi-character folds have been
+     * handled earlier and separated out */
+     _to_uni_fold_flags(j, foldbuf, &foldlen,
+              (ASCII_FOLD_RESTRICTED)
+              ? FOLD_FLAGS_NOMIX_ASCII
+              : 0);
+
+     /* Single character fold of above Latin1.  Add everything in
+     * its fold closure to the list that this node should match.
+     * The fold closures data structure is a hash with the keys
+     * being the UTF-8 of every character that is folded to, like
+     * 'k', and the values each an array of all code points that
+     * fold to its key.  e.g. [ 'k', 'K', KELVIN_SIGN ].
+     * Multi-character folds are not included */
+     if ((listp = hv_fetch(PL_utf8_foldclosures,
+          (char *) foldbuf, foldlen, FALSE)))
+     {
+      AV* list = (AV*) *listp;
+      IV k;
+      for (k = 0; k <= av_tindex(list); k++) {
+       SV** c_p = av_fetch(list, k, FALSE);
+       UV c;
+       assert(c_p);
+
+       c = SvUV(*c_p);
+
+       /* /aa doesn't allow folds between ASCII and non- */
+       if ((ASCII_FOLD_RESTRICTED
+        && (isASCII(c) != isASCII(j))))
+       {
+        continue;
+       }
+
+       /* Folds under /l which cross the 255/256 boundary
+       * are added to a separate list.  (These are valid
+       * only when the locale is UTF-8.) */
+       if (c < 256 && LOC) {
+        *use_list = add_cp_to_invlist(*use_list, c);
+        continue;
+       }
+
+       if (isASCII(c) || c > 255 || AT_LEAST_UNI_SEMANTICS)
+       {
+        cp_list = add_cp_to_invlist(cp_list, c);
+       }
+       else {
+        /* Similarly folds involving non-ascii Latin1
+        * characters under /d are added to their list */
+        depends_list = add_cp_to_invlist(depends_list,
+                c);
+       }
+      }
+     }
+    }
+   }
+   SvREFCNT_dec_NN(fold_intersection);
+  }
+
+  /* Now that we have finished adding all the folds, there is no reason
+  * to keep the foldable list separate */
+  _invlist_union(cp_list, cp_foldable_list, &cp_list);
+  SvREFCNT_dec_NN(cp_foldable_list);
+ }
+
+ /* And combine the result (if any) with any inversion list from posix
+ * classes.  The lists are kept separate up to now because we don't want to
+ * fold the classes (folding of those is automatically handled by the swash
+ * fetching code) */
+ if (simple_posixes) {
+  _invlist_union(cp_list, simple_posixes, &cp_list);
+  SvREFCNT_dec_NN(simple_posixes);
+ }
+ if (posixes || nposixes) {
+  if (posixes && AT_LEAST_ASCII_RESTRICTED) {
+   /* Under /a and /aa, nothing above ASCII matches these */
+   _invlist_intersection(posixes,
+        PL_XPosix_ptrs[_CC_ASCII],
+        &posixes);
+  }
+  if (nposixes) {
+   if (DEPENDS_SEMANTICS) {
+    /* Under /d, everything in the upper half of the Latin1 range
+    * matches these complements */
+    ANYOF_FLAGS(ret) |= ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII;
+   }
+   else if (AT_LEAST_ASCII_RESTRICTED) {
+    /* Under /a and /aa, everything above ASCII matches these
+    * complements */
+    _invlist_union_complement_2nd(nposixes,
+           PL_XPosix_ptrs[_CC_ASCII],
+           &nposixes);
+   }
+   if (posixes) {
+    _invlist_union(posixes, nposixes, &posixes);
+    SvREFCNT_dec_NN(nposixes);
+   }
+   else {
+    posixes = nposixes;
+   }
+  }
+  if (! DEPENDS_SEMANTICS) {
+   if (cp_list) {
+    _invlist_union(cp_list, posixes, &cp_list);
+    SvREFCNT_dec_NN(posixes);
+   }
+   else {
+    cp_list = posixes;
+   }
+  }
+  else {
+   /* Under /d, we put into a separate list the Latin1 things that
+   * match only when the target string is utf8 */
+   SV* nonascii_but_latin1_properties = NULL;
+   _invlist_intersection(posixes, PL_UpperLatin1,
+        &nonascii_but_latin1_properties);
+   _invlist_subtract(posixes, nonascii_but_latin1_properties,
+       &posixes);
+   if (cp_list) {
+    _invlist_union(cp_list, posixes, &cp_list);
+    SvREFCNT_dec_NN(posixes);
+   }
+   else {
+    cp_list = posixes;
+   }
+
+   if (depends_list) {
+    _invlist_union(depends_list, nonascii_but_latin1_properties,
+       &depends_list);
+    SvREFCNT_dec_NN(nonascii_but_latin1_properties);
+   }
+   else {
+    depends_list = nonascii_but_latin1_properties;
+   }
+  }
+ }
+
+ /* And combine the result (if any) with any inversion list from properties.
+ * The lists are kept separate up to now so that we can distinguish the two
+ * in regards to matching above-Unicode.  A run-time warning is generated
+ * if a Unicode property is matched against a non-Unicode code point. But,
+ * we allow user-defined properties to match anything, without any warning,
+ * and we also suppress the warning if there is a portion of the character
+ * class that isn't a Unicode property, and which matches above Unicode, \W
+ * or [\x{110000}] for example.
+ * (Note that in this case, unlike the Posix one above, there is no
+ * <depends_list>, because having a Unicode property forces Unicode
+ * semantics */
+ if (properties) {
+  if (cp_list) {
+
+   /* If it matters to the final outcome, see if a non-property
+   * component of the class matches above Unicode.  If so, the
+   * warning gets suppressed.  This is true even if just a single
+   * such code point is specified, as though not strictly correct if
+   * another such code point is matched against, the fact that they
+   * are using above-Unicode code points indicates they should know
+   * the issues involved */
+   if (warn_super) {
+    warn_super = ! (invert
+       ^ (invlist_highest(cp_list) > PERL_UNICODE_MAX));
+   }
+
+   _invlist_union(properties, cp_list, &cp_list);
+   SvREFCNT_dec_NN(properties);
+  }
+  else {
+   cp_list = properties;
+  }
+
+  if (warn_super) {
+   ANYOF_FLAGS(ret) |= ANYOF_WARN_SUPER;
+  }
+ }
+
+ /* Here, we have calculated what code points should be in the character
+ * class.
+ *
+ * Now we can see about various optimizations.  Fold calculation (which we
+ * did above) needs to take place before inversion.  Otherwise /[^k]/i
+ * would invert to include K, which under /i would match k, which it
+ * shouldn't.  Therefore we can't invert folded locale now, as it won't be
+ * folded until runtime */
+
+ /* If we didn't do folding, it's because some information isn't available
+ * until runtime; set the run-time fold flag for these.  (We don't have to
+ * worry about properties folding, as that is taken care of by the swash
+ * fetching).  We know to set the flag if we have a non-NULL list for UTF-8
+ * locales, or the class matches at least one 0-255 range code point */
+ if (LOC && FOLD) {
+  if (only_utf8_locale_list) {
+   ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD;
+  }
+  else if (cp_list) { /* Look to see if there a 0-255 code point is in
+       the list */
+   UV start, end;
+   invlist_iterinit(cp_list);
+   if (invlist_iternext(cp_list, &start, &end) && start < 256) {
+    ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD;
+   }
+   invlist_iterfinish(cp_list);
+  }
+ }
+
+ /* Optimize inverted simple patterns (e.g. [^a-z]) when everything is known
+ * at compile time.  Besides not inverting folded locale now, we can't
+ * invert if there are things such as \w, which aren't known until runtime
+ * */
+ if (cp_list
+  && invert
+  && ! (ANYOF_FLAGS(ret) & (ANYOF_LOCALE_FLAGS))
+  && ! depends_list
+  && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
+ {
+  _invlist_invert(cp_list);
+
+  /* Any swash can't be used as-is, because we've inverted things */
+  if (swash) {
+   SvREFCNT_dec_NN(swash);
+   swash = NULL;
+  }
+
+  /* Clear the invert flag since have just done it here */
+  invert = FALSE;
+ }
+
+ if (ret_invlist) {
+  assert(cp_list);
+
+  *ret_invlist = cp_list;
+  SvREFCNT_dec(swash);
+
+  /* Discard the generated node */
+  if (SIZE_ONLY) {
+   RExC_size = orig_size;
+  }
+  else {
+   RExC_emit = orig_emit;
+  }
+  return orig_emit;
+ }
+
+ /* Some character classes are equivalent to other nodes.  Such nodes take
+ * up less room and generally fewer operations to execute than ANYOF nodes.
+ * Above, we checked for and optimized into some such equivalents for
+ * certain common classes that are easy to test.  Getting to this point in
+ * the code means that the class didn't get optimized there.  Since this
+ * code is only executed in Pass 2, it is too late to save space--it has
+ * been allocated in Pass 1, and currently isn't given back.  But turning
+ * things into an EXACTish node can allow the optimizer to join it to any
+ * adjacent such nodes.  And if the class is equivalent to things like /./,
+ * expensive run-time swashes can be avoided.  Now that we have more
+ * complete information, we can find things necessarily missed by the
+ * earlier code.  I (khw) am not sure how much to look for here.  It would
+ * be easy, but perhaps too slow, to check any candidates against all the
+ * node types they could possibly match using _invlistEQ(). */
+
+ if (cp_list
+  && ! invert
+  && ! depends_list
+  && ! (ANYOF_FLAGS(ret) & (ANYOF_LOCALE_FLAGS))
+  && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
+
+  /* We don't optimize if we are supposed to make sure all non-Unicode
+   * code points raise a warning, as only ANYOF nodes have this check.
+   * */
+  && ! ((ANYOF_FLAGS(ret) & ANYOF_WARN_SUPER) && ALWAYS_WARN_SUPER))
+ {
+  UV start, end;
+  U8 op = END;  /* The optimzation node-type */
+  const char * cur_parse= RExC_parse;
+
+  invlist_iterinit(cp_list);
+  if (! invlist_iternext(cp_list, &start, &end)) {
+
+   /* Here, the list is empty.  This happens, for example, when a
+   * Unicode property is the only thing in the character class, and
+   * it doesn't match anything.  (perluniprops.pod notes such
+   * properties) */
+   op = OPFAIL;
+   *flagp |= HASWIDTH|SIMPLE;
+  }
+  else if (start == end) {    /* The range is a single code point */
+   if (! invlist_iternext(cp_list, &start, &end)
+
+     /* Don't do this optimization if it would require changing
+     * the pattern to UTF-8 */
+    && (start < 256 || UTF))
+   {
+    /* Here, the list contains a single code point.  Can optimize
+    * into an EXACTish node */
+
+    value = start;
+
+    if (! FOLD) {
+     op = (LOC)
+      ? EXACTL
+      : EXACT;
+    }
+    else if (LOC) {
+
+     /* A locale node under folding with one code point can be
+     * an EXACTFL, as its fold won't be calculated until
+     * runtime */
+     op = EXACTFL;
+    }
+    else {
+
+     /* Here, we are generally folding, but there is only one
+     * code point to match.  If we have to, we use an EXACT
+     * node, but it would be better for joining with adjacent
+     * nodes in the optimization pass if we used the same
+     * EXACTFish node that any such are likely to be.  We can
+     * do this iff the code point doesn't participate in any
+     * folds.  For example, an EXACTF of a colon is the same as
+     * an EXACT one, since nothing folds to or from a colon. */
+     if (value < 256) {
+      if (IS_IN_SOME_FOLD_L1(value)) {
+       op = EXACT;
+      }
+     }
+     else {
+      if (_invlist_contains_cp(PL_utf8_foldable, value)) {
+       op = EXACT;
+      }
+     }
+
+     /* If we haven't found the node type, above, it means we
+     * can use the prevailing one */
+     if (op == END) {
+      op = compute_EXACTish(pRExC_state);
+     }
+    }
+   }
+  }
+  else if (start == 0) {
+   if (end == UV_MAX) {
+    op = SANY;
+    *flagp |= HASWIDTH|SIMPLE;
+    MARK_NAUGHTY(1);
+   }
+   else if (end == '\n' - 1
+     && invlist_iternext(cp_list, &start, &end)
+     && start == '\n' + 1 && end == UV_MAX)
+   {
+    op = REG_ANY;
+    *flagp |= HASWIDTH|SIMPLE;
+    MARK_NAUGHTY(1);
+   }
+  }
+  invlist_iterfinish(cp_list);
+
+  if (op != END) {
+   RExC_parse = (char *)orig_parse;
+   RExC_emit = (regnode *)orig_emit;
+
+   ret = reg_node(pRExC_state, op);
+
+   RExC_parse = (char *)cur_parse;
+
+   if (PL_regkind[op] == EXACT) {
+    alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value,
+          TRUE /* downgradable to EXACT */
+          );
+   }
+
+   SvREFCNT_dec_NN(cp_list);
+   return ret;
+  }
+ }
+
+ /* Here, <cp_list> contains all the code points we can determine at
+ * compile time that match under all conditions.  Go through it, and
+ * for things that belong in the bitmap, put them there, and delete from
+ * <cp_list>.  While we are at it, see if everything above 255 is in the
+ * list, and if so, set a flag to speed up execution */
+
+ populate_ANYOF_from_invlist(ret, &cp_list);
+
+ if (invert) {
+  ANYOF_FLAGS(ret) |= ANYOF_INVERT;
+ }
+
+ /* Here, the bitmap has been populated with all the Latin1 code points that
+ * always match.  Can now add to the overall list those that match only
+ * when the target string is UTF-8 (<depends_list>). */
+ if (depends_list) {
+  if (cp_list) {
+   _invlist_union(cp_list, depends_list, &cp_list);
+   SvREFCNT_dec_NN(depends_list);
+  }
+  else {
+   cp_list = depends_list;
+  }
+  ANYOF_FLAGS(ret) |= ANYOF_HAS_UTF8_NONBITMAP_MATCHES;
+ }
+
+ /* If there is a swash and more than one element, we can't use the swash in
+ * the optimization below. */
+ if (swash && element_count > 1) {
+  SvREFCNT_dec_NN(swash);
+  swash = NULL;
+ }
+
+ /* Note that the optimization of using 'swash' if it is the only thing in
+ * the class doesn't have us change swash at all, so it can include things
+ * that are also in the bitmap; otherwise we have purposely deleted that
+ * duplicate information */
+ set_ANYOF_arg(pRExC_state, ret, cp_list,
+    (HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
+    ? listsv : NULL,
+    only_utf8_locale_list,
+    swash, has_user_defined_property);
+
+ *flagp |= HASWIDTH|SIMPLE;
+
+ if (ANYOF_FLAGS(ret) & ANYOF_LOCALE_FLAGS) {
+  RExC_contains_locale = 1;
+ }
+
+ return ret;
+}
+
+#undef HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
+
+STATIC void
+S_set_ANYOF_arg(pTHX_ RExC_state_t* const pRExC_state,
+    regnode* const node,
+    SV* const cp_list,
+    SV* const runtime_defns,
+    SV* const only_utf8_locale_list,
+    SV* const swash,
+    const bool has_user_defined_property)
+{
+ /* Sets the arg field of an ANYOF-type node 'node', using information about
+ * the node passed-in.  If there is nothing outside the node's bitmap, the
+ * arg is set to ANYOF_ONLY_HAS_BITMAP.  Otherwise, it sets the argument to
+ * the count returned by add_data(), having allocated and stored an array,
+ * av, that that count references, as follows:
+ *  av[0] stores the character class description in its textual form.
+ *        This is used later (regexec.c:Perl_regclass_swash()) to
+ *        initialize the appropriate swash, and is also useful for dumping
+ *        the regnode.  This is set to &PL_sv_undef if the textual
+ *        description is not needed at run-time (as happens if the other
+ *        elements completely define the class)
+ *  av[1] if &PL_sv_undef, is a placeholder to later contain the swash
+ *        computed from av[0].  But if no further computation need be done,
+ *        the swash is stored here now (and av[0] is &PL_sv_undef).
+ *  av[2] stores the inversion list of code points that match only if the
+ *        current locale is UTF-8
+ *  av[3] stores the cp_list inversion list for use in addition or instead
+ *        of av[0]; used only if cp_list exists and av[1] is &PL_sv_undef.
+ *        (Otherwise everything needed is already in av[0] and av[1])
+ *  av[4] is set if any component of the class is from a user-defined
+ *        property; used only if av[3] exists */
+
+ UV n;
+
+ PERL_ARGS_ASSERT_SET_ANYOF_ARG;
+
+ if (! cp_list && ! runtime_defns && ! only_utf8_locale_list) {
+  assert(! (ANYOF_FLAGS(node)
+    & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+     |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES)));
+  ARG_SET(node, ANYOF_ONLY_HAS_BITMAP);
+ }
+ else {
+  AV * const av = newAV();
+  SV *rv;
+
+  assert(ANYOF_FLAGS(node)
+   & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+    |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES|ANYOF_LOC_FOLD));
+
+  av_store(av, 0, (runtime_defns)
+      ? SvREFCNT_inc(runtime_defns) : &PL_sv_undef);
+  if (swash) {
+   assert(cp_list);
+   av_store(av, 1, swash);
+   SvREFCNT_dec_NN(cp_list);
+  }
+  else {
+   av_store(av, 1, &PL_sv_undef);
+   if (cp_list) {
+    av_store(av, 3, cp_list);
+    av_store(av, 4, newSVuv(has_user_defined_property));
+   }
+  }
+
+  if (only_utf8_locale_list) {
+   av_store(av, 2, only_utf8_locale_list);
+  }
+  else {
+   av_store(av, 2, &PL_sv_undef);
+  }
+
+  rv = newRV_noinc(MUTABLE_SV(av));
+  n = add_data(pRExC_state, STR_WITH_LEN("s"));
+  RExC_rxi->data->data[n] = (void*)rv;
+  ARG_SET(node, n);
+ }
+}
+
+#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
+SV *
+Perl__get_regclass_nonbitmap_data(pTHX_ const regexp *prog,
+          const regnode* node,
+          bool doinit,
+          SV** listsvp,
+          SV** only_utf8_locale_ptr,
+          SV*  exclude_list)
+
+{
+ /* For internal core use only.
+ * Returns the swash for the input 'node' in the regex 'prog'.
+ * If <doinit> is 'true', will attempt to create the swash if not already
+ *   done.
+ * If <listsvp> is non-null, will return the printable contents of the
+ *    swash.  This can be used to get debugging information even before the
+ *    swash exists, by calling this function with 'doinit' set to false, in
+ *    which case the components that will be used to eventually create the
+ *    swash are returned  (in a printable form).
+ * If <exclude_list> is not NULL, it is an inversion list of things to
+ *    exclude from what's returned in <listsvp>.
+ * Tied intimately to how S_set_ANYOF_arg sets up the data structure.  Note
+ * that, in spite of this function's name, the swash it returns may include
+ * the bitmap data as well */
+
+ SV *sw  = NULL;
+ SV *si  = NULL;         /* Input swash initialization string */
+ SV*  invlist = NULL;
+
+ RXi_GET_DECL(prog,progi);
+ const struct reg_data * const data = prog ? progi->data : NULL;
+
+ PERL_ARGS_ASSERT__GET_REGCLASS_NONBITMAP_DATA;
+
+ assert(ANYOF_FLAGS(node)
+  & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+  |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES|ANYOF_LOC_FOLD));
+
+ if (data && data->count) {
+  const U32 n = ARG(node);
+
+  if (data->what[n] == 's') {
+   SV * const rv = MUTABLE_SV(data->data[n]);
+   AV * const av = MUTABLE_AV(SvRV(rv));
+   SV **const ary = AvARRAY(av);
+   U8 swash_init_flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+
+   si = *ary; /* ary[0] = the string to initialize the swash with */
+
+   /* Elements 3 and 4 are either both present or both absent. [3] is
+   * any inversion list generated at compile time; [4] indicates if
+   * that inversion list has any user-defined properties in it. */
+   if (av_tindex(av) >= 2) {
+    if (only_utf8_locale_ptr
+     && ary[2]
+     && ary[2] != &PL_sv_undef)
+    {
+     *only_utf8_locale_ptr = ary[2];
+    }
+    else {
+     assert(only_utf8_locale_ptr);
+     *only_utf8_locale_ptr = NULL;
+    }
+
+    if (av_tindex(av) >= 3) {
+     invlist = ary[3];
+     if (SvUV(ary[4])) {
+      swash_init_flags |= _CORE_SWASH_INIT_USER_DEFINED_PROPERTY;
+     }
+    }
+    else {
+     invlist = NULL;
+    }
+   }
+
+   /* Element [1] is reserved for the set-up swash.  If already there,
+   * return it; if not, create it and store it there */
+   if (ary[1] && SvROK(ary[1])) {
+    sw = ary[1];
+   }
+   else if (doinit && ((si && si != &PL_sv_undef)
+        || (invlist && invlist != &PL_sv_undef))) {
+    assert(si);
+    sw = _core_swash_init("utf8", /* the utf8 package */
+         "", /* nameless */
+         si,
+         1, /* binary */
+         0, /* not from tr/// */
+         invlist,
+         &swash_init_flags);
+    (void)av_store(av, 1, sw);
+   }
+  }
+ }
+
+ /* If requested, return a printable version of what this swash matches */
+ if (listsvp) {
+  SV* matches_string = newSVpvs("");
+
+  /* The swash should be used, if possible, to get the data, as it
+  * contains the resolved data.  But this function can be called at
+  * compile-time, before everything gets resolved, in which case we
+  * return the currently best available information, which is the string
+  * that will eventually be used to do that resolving, 'si' */
+  if ((! sw || (invlist = _get_swash_invlist(sw)) == NULL)
+   && (si && si != &PL_sv_undef))
+  {
+   sv_catsv(matches_string, si);
+  }
+
+  /* Add the inversion list to whatever we have.  This may have come from
+  * the swash, or from an input parameter */
+  if (invlist) {
+   if (exclude_list) {
+    SV* clone = invlist_clone(invlist);
+    _invlist_subtract(clone, exclude_list, &clone);
+    sv_catsv(matches_string, _invlist_contents(clone));
+    SvREFCNT_dec_NN(clone);
+   }
+   else {
+    sv_catsv(matches_string, _invlist_contents(invlist));
+   }
+  }
+  *listsvp = matches_string;
+ }
+
+ return sw;
+}
+#endif /* !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION) */
+
+/* reg_skipcomment()
+
+   Absorbs an /x style # comment from the input stream,
+   returning a pointer to the first character beyond the comment, or if the
+   comment terminates the pattern without anything following it, this returns
+   one past the final character of the pattern (in other words, RExC_end) and
+   sets the REG_RUN_ON_COMMENT_SEEN flag.
+
+   Note it's the callers responsibility to ensure that we are
+   actually in /x mode
+
+*/
+
+PERL_STATIC_INLINE char*
+S_reg_skipcomment(RExC_state_t *pRExC_state, char* p)
+{
+ PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
+
+ assert(*p == '#');
+
+ while (p < RExC_end) {
+  if (*(++p) == '\n') {
+   return p+1;
+  }
+ }
+
+ /* we ran off the end of the pattern without ending the comment, so we have
+ * to add an \n when wrapping */
+ RExC_seen |= REG_RUN_ON_COMMENT_SEEN;
+ return p;
+}
+
+/* nextchar()
+
+   Advances the parse position, and optionally absorbs
+   "whitespace" from the inputstream.
+
+   Without /x "whitespace" means (?#...) style comments only,
+   with /x this means (?#...) and # comments and whitespace proper.
+
+   Returns the RExC_parse point from BEFORE the scan occurs.
+
+   This is the /x friendly way of saying RExC_parse++.
+*/
+
+STATIC char*
+S_nextchar(pTHX_ RExC_state_t *pRExC_state)
+{
+ char* const retval = RExC_parse++;
+
+ PERL_ARGS_ASSERT_NEXTCHAR;
+
+ for (;;) {
+  if (RExC_end - RExC_parse >= 3
+   && *RExC_parse == '('
+   && RExC_parse[1] == '?'
+   && RExC_parse[2] == '#')
+  {
+   while (*RExC_parse != ')') {
+    if (RExC_parse == RExC_end)
+     FAIL("Sequence (?#... not terminated");
+    RExC_parse++;
+   }
+   RExC_parse++;
+   continue;
+  }
+  if (RExC_flags & RXf_PMf_EXTENDED) {
+   char * p = regpatws(pRExC_state, RExC_parse,
+          TRUE); /* means recognize comments */
+   if (p != RExC_parse) {
+    RExC_parse = p;
+    continue;
+   }
+  }
+  return retval;
+ }
+}
+
+STATIC regnode *
+S_regnode_guts(pTHX_ RExC_state_t *pRExC_state, const U8 op, const STRLEN extra_size, const char* const name)
+{
+ /* Allocate a regnode for 'op' and returns it, with 'extra_size' extra
+ * space.  In pass1, it aligns and increments RExC_size; in pass2,
+ * RExC_emit */
+
+ regnode * const ret = RExC_emit;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGNODE_GUTS;
+
+ assert(extra_size >= regarglen[op]);
+
+ if (SIZE_ONLY) {
+  SIZE_ALIGN(RExC_size);
+  RExC_size += 1 + extra_size;
+  return(ret);
+ }
+ if (RExC_emit >= RExC_emit_bound)
+  Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
+    op, (void*)RExC_emit, (void*)RExC_emit_bound);
+
+ NODE_ALIGN_FILL(ret);
+#ifndef RE_TRACK_PATTERN_OFFSETS
+ PERL_UNUSED_ARG(name);
+#else
+ if (RExC_offsets) {         /* MJD */
+  MJD_OFFSET_DEBUG(
+   ("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
+   name, __LINE__,
+   PL_reg_name[op],
+   (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
+    ? "Overwriting end of array!\n" : "OK",
+   (UV)(RExC_emit - RExC_emit_start),
+   (UV)(RExC_parse - RExC_start),
+   (UV)RExC_offsets[0]));
+  Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
+ }
+#endif
+ return(ret);
+}
+
+/*
+- reg_node - emit a node
+*/
+STATIC regnode *   /* Location. */
+S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
+{
+ regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reg_node");
+
+ PERL_ARGS_ASSERT_REG_NODE;
+
+ assert(regarglen[op] == 0);
+
+ if (PASS2) {
+  regnode *ptr = ret;
+  FILL_ADVANCE_NODE(ptr, op);
+ REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 1);
+  RExC_emit = ptr;
+ }
+ return(ret);
+}
+
+/*
+- reganode - emit a node with an argument
+*/
+STATIC regnode *   /* Location. */
+S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
+{
+ regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reganode");
+
+ PERL_ARGS_ASSERT_REGANODE;
+
+ assert(regarglen[op] == 1);
+
+ if (PASS2) {
+  regnode *ptr = ret;
+  FILL_ADVANCE_NODE_ARG(ptr, op, arg);
+ REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 2);
+  RExC_emit = ptr;
+ }
+ return(ret);
+}
+
+STATIC regnode *
+S_reg2Lanode(pTHX_ RExC_state_t *pRExC_state, const U8 op, const U32 arg1, const I32 arg2)
+{
+ /* emit a node with U32 and I32 arguments */
+
+ regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reg2Lanode");
+
+ PERL_ARGS_ASSERT_REG2LANODE;
+
+ assert(regarglen[op] == 2);
+
+ if (PASS2) {
+  regnode *ptr = ret;
+  FILL_ADVANCE_NODE_2L_ARG(ptr, op, arg1, arg2);
+  RExC_emit = ptr;
+ }
+ return(ret);
+}
+
+/*
+- reginsert - insert an operator in front of already-emitted operand
+*
+* Means relocating the operand.
+*/
+STATIC void
+S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
+{
+ regnode *src;
+ regnode *dst;
+ regnode *place;
+ const int offset = regarglen[(U8)op];
+ const int size = NODE_STEP_REGNODE + offset;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGINSERT;
+ PERL_UNUSED_CONTEXT;
+ PERL_UNUSED_ARG(depth);
+/* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
+ DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
+ if (SIZE_ONLY) {
+  RExC_size += size;
+  return;
+ }
+
+ src = RExC_emit;
+ RExC_emit += size;
+ dst = RExC_emit;
+ if (RExC_open_parens) {
+  int paren;
+  /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
+  for ( paren=0 ; paren < RExC_npar ; paren++ ) {
+   if ( RExC_open_parens[paren] >= opnd ) {
+    /*DEBUG_PARSE_FMT("open"," - %d",size);*/
+    RExC_open_parens[paren] += size;
+   } else {
+    /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
+   }
+   if ( RExC_close_parens[paren] >= opnd ) {
+    /*DEBUG_PARSE_FMT("close"," - %d",size);*/
+    RExC_close_parens[paren] += size;
+   } else {
+    /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
+   }
+  }
+ }
+
+ while (src > opnd) {
+  StructCopy(--src, --dst, regnode);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+  if (RExC_offsets) {     /* MJD 20010112 */
+   MJD_OFFSET_DEBUG(
+    ("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
+    "reg_insert",
+    __LINE__,
+    PL_reg_name[op],
+    (UV)(dst - RExC_emit_start) > RExC_offsets[0]
+     ? "Overwriting end of array!\n" : "OK",
+    (UV)(src - RExC_emit_start),
+    (UV)(dst - RExC_emit_start),
+    (UV)RExC_offsets[0]));
+   Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
+   Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
+  }
+#endif
+ }
+
+
+ place = opnd;  /* Op node, where operand used to be. */
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (RExC_offsets) {         /* MJD */
+  MJD_OFFSET_DEBUG(
+   ("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
+   "reginsert",
+   __LINE__,
+   PL_reg_name[op],
+   (UV)(place - RExC_emit_start) > RExC_offsets[0]
+   ? "Overwriting end of array!\n" : "OK",
+   (UV)(place - RExC_emit_start),
+   (UV)(RExC_parse - RExC_start),
+   (UV)RExC_offsets[0]));
+  Set_Node_Offset(place, RExC_parse);
+  Set_Node_Length(place, 1);
+ }
+#endif
+ src = NEXTOPER(place);
+ FILL_ADVANCE_NODE(place, op);
+ REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (place) - 1);
+ Zero(src, offset, regnode);
+}
+
+/*
+- regtail - set the next-pointer at the end of a node chain of p to val.
+- SEE ALSO: regtail_study
+*/
+/* TODO: All three parms should be const */
+STATIC void
+S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p,
+    const regnode *val,U32 depth)
+{
+ regnode *scan;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTAIL;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ if (SIZE_ONLY)
+  return;
+
+ /* Find last node. */
+ scan = p;
+ for (;;) {
+  regnode * const temp = regnext(scan);
+  DEBUG_PARSE_r({
+   DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
+   regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
+   PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
+    SvPV_nolen_const(RExC_mysv), REG_NODE_NUM(scan),
+     (temp == NULL ? "->" : ""),
+     (temp == NULL ? PL_reg_name[OP(val)] : "")
+   );
+  });
+  if (temp == NULL)
+   break;
+  scan = temp;
+ }
+
+ if (reg_off_by_arg[OP(scan)]) {
+  ARG_SET(scan, val - scan);
+ }
+ else {
+  NEXT_OFF(scan) = val - scan;
+ }
+}
+
+#ifdef DEBUGGING
+/*
+- regtail_study - set the next-pointer at the end of a node chain of p to val.
+- Look for optimizable sequences at the same time.
+- currently only looks for EXACT chains.
+
+This is experimental code. The idea is to use this routine to perform
+in place optimizations on branches and groups as they are constructed,
+with the long term intention of removing optimization from study_chunk so
+that it is purely analytical.
+
+Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
+to control which is which.
+
+*/
+/* TODO: All four parms should be const */
+
+STATIC U8
+S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p,
+     const regnode *val,U32 depth)
+{
+ regnode *scan;
+ U8 exact = PSEUDO;
+#ifdef EXPERIMENTAL_INPLACESCAN
+ I32 min = 0;
+#endif
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTAIL_STUDY;
+
+
+ if (SIZE_ONLY)
+  return exact;
+
+ /* Find last node. */
+
+ scan = p;
+ for (;;) {
+  regnode * const temp = regnext(scan);
+#ifdef EXPERIMENTAL_INPLACESCAN
+  if (PL_regkind[OP(scan)] == EXACT) {
+   bool unfolded_multi_char; /* Unexamined in this routine */
+   if (join_exact(pRExC_state, scan, &min,
+      &unfolded_multi_char, 1, val, depth+1))
+    return EXACT;
+  }
+#endif
+  if ( exact ) {
+   switch (OP(scan)) {
+    case EXACT:
+    case EXACTL:
+    case EXACTF:
+    case EXACTFA_NO_TRIE:
+    case EXACTFA:
+    case EXACTFU:
+    case EXACTFLU8:
+    case EXACTFU_SS:
+    case EXACTFL:
+      if( exact == PSEUDO )
+       exact= OP(scan);
+      else if ( exact != OP(scan) )
+       exact= 0;
+    case NOTHING:
+     break;
+    default:
+     exact= 0;
+   }
+  }
+  DEBUG_PARSE_r({
+   DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
+   regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
+   PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
+    SvPV_nolen_const(RExC_mysv),
+    REG_NODE_NUM(scan),
+    PL_reg_name[exact]);
+  });
+  if (temp == NULL)
+   break;
+  scan = temp;
+ }
+ DEBUG_PARSE_r({
+  DEBUG_PARSE_MSG("");
+  regprop(RExC_rx, RExC_mysv, val, NULL, pRExC_state);
+  PerlIO_printf(Perl_debug_log,
+     "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
+     SvPV_nolen_const(RExC_mysv),
+     (IV)REG_NODE_NUM(val),
+     (IV)(val - scan)
+  );
+ });
+ if (reg_off_by_arg[OP(scan)]) {
+  ARG_SET(scan, val - scan);
+ }
+ else {
+  NEXT_OFF(scan) = val - scan;
+ }
+
+ return exact;
+}
+#endif
+
+/*
+ - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
+ */
+#ifdef DEBUGGING
+
+static void
+S_regdump_intflags(pTHX_ const char *lead, const U32 flags)
+{
+ int bit;
+ int set=0;
+
+ ASSUME(REG_INTFLAGS_NAME_SIZE <= sizeof(flags)*8);
+
+ for (bit=0; bit<REG_INTFLAGS_NAME_SIZE; bit++) {
+  if (flags & (1<<bit)) {
+   if (!set++ && lead)
+    PerlIO_printf(Perl_debug_log, "%s",lead);
+   PerlIO_printf(Perl_debug_log, "%s ",PL_reg_intflags_name[bit]);
+  }
+ }
+ if (lead)  {
+  if (set)
+   PerlIO_printf(Perl_debug_log, "\n");
+  else
+   PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
+ }
+}
+
+static void
+S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
+{
+ int bit;
+ int set=0;
+ regex_charset cs;
+
+ ASSUME(REG_EXTFLAGS_NAME_SIZE <= sizeof(flags)*8);
+
+ for (bit=0; bit<REG_EXTFLAGS_NAME_SIZE; bit++) {
+  if (flags & (1<<bit)) {
+   if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
+    continue;
+   }
+   if (!set++ && lead)
+    PerlIO_printf(Perl_debug_log, "%s",lead);
+   PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
+  }
+ }
+ if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
+   if (!set++ && lead) {
+    PerlIO_printf(Perl_debug_log, "%s",lead);
+   }
+   switch (cs) {
+    case REGEX_UNICODE_CHARSET:
+     PerlIO_printf(Perl_debug_log, "UNICODE");
+     break;
+    case REGEX_LOCALE_CHARSET:
+     PerlIO_printf(Perl_debug_log, "LOCALE");
+     break;
+    case REGEX_ASCII_RESTRICTED_CHARSET:
+     PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
+     break;
+    case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+     PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
+     break;
+    default:
+     PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
+     break;
+   }
+ }
+ if (lead)  {
+  if (set)
+   PerlIO_printf(Perl_debug_log, "\n");
+  else
+   PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
+ }
+}
+#endif
+
+void
+Perl_regdump(pTHX_ const regexp *r)
+{
+#ifdef DEBUGGING
+ SV * const sv = sv_newmortal();
+ SV *dsv= sv_newmortal();
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGDUMP;
+
+ (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
+
+ /* Header fields of interest. */
+ if (r->anchored_substr) {
+  RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
+   RE_SV_DUMPLEN(r->anchored_substr), 30);
+  PerlIO_printf(Perl_debug_log,
+     "anchored %s%s at %"IVdf" ",
+     s, RE_SV_TAIL(r->anchored_substr),
+     (IV)r->anchored_offset);
+ } else if (r->anchored_utf8) {
+  RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
+   RE_SV_DUMPLEN(r->anchored_utf8), 30);
+  PerlIO_printf(Perl_debug_log,
+     "anchored utf8 %s%s at %"IVdf" ",
+     s, RE_SV_TAIL(r->anchored_utf8),
+     (IV)r->anchored_offset);
+ }
+ if (r->float_substr) {
+  RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
+   RE_SV_DUMPLEN(r->float_substr), 30);
+  PerlIO_printf(Perl_debug_log,
+     "floating %s%s at %"IVdf"..%"UVuf" ",
+     s, RE_SV_TAIL(r->float_substr),
+     (IV)r->float_min_offset, (UV)r->float_max_offset);
+ } else if (r->float_utf8) {
+  RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
+   RE_SV_DUMPLEN(r->float_utf8), 30);
+  PerlIO_printf(Perl_debug_log,
+     "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
+     s, RE_SV_TAIL(r->float_utf8),
+     (IV)r->float_min_offset, (UV)r->float_max_offset);
+ }
+ if (r->check_substr || r->check_utf8)
+  PerlIO_printf(Perl_debug_log,
+     (const char *)
+     (r->check_substr == r->float_substr
+     && r->check_utf8 == r->float_utf8
+     ? "(checking floating" : "(checking anchored"));
+ if (r->intflags & PREGf_NOSCAN)
+  PerlIO_printf(Perl_debug_log, " noscan");
+ if (r->extflags & RXf_CHECK_ALL)
+  PerlIO_printf(Perl_debug_log, " isall");
+ if (r->check_substr || r->check_utf8)
+  PerlIO_printf(Perl_debug_log, ") ");
+
+ if (ri->regstclass) {
+  regprop(r, sv, ri->regstclass, NULL, NULL);
+  PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
+ }
+ if (r->intflags & PREGf_ANCH) {
+  PerlIO_printf(Perl_debug_log, "anchored");
+  if (r->intflags & PREGf_ANCH_MBOL)
+   PerlIO_printf(Perl_debug_log, "(MBOL)");
+  if (r->intflags & PREGf_ANCH_SBOL)
+   PerlIO_printf(Perl_debug_log, "(SBOL)");
+  if (r->intflags & PREGf_ANCH_GPOS)
+   PerlIO_printf(Perl_debug_log, "(GPOS)");
+  PerlIO_putc(Perl_debug_log, ' ');
+ }
+ if (r->intflags & PREGf_GPOS_SEEN)
+  PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
+ if (r->intflags & PREGf_SKIP)
+  PerlIO_printf(Perl_debug_log, "plus ");
+ if (r->intflags & PREGf_IMPLICIT)
+  PerlIO_printf(Perl_debug_log, "implicit ");
+ PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
+ if (r->extflags & RXf_EVAL_SEEN)
+  PerlIO_printf(Perl_debug_log, "with eval ");
+ PerlIO_printf(Perl_debug_log, "\n");
+ DEBUG_FLAGS_r({
+  regdump_extflags("r->extflags: ",r->extflags);
+  regdump_intflags("r->intflags: ",r->intflags);
+ });
+#else
+ PERL_ARGS_ASSERT_REGDUMP;
+ PERL_UNUSED_CONTEXT;
+ PERL_UNUSED_ARG(r);
+#endif /* DEBUGGING */
+}
+
+/*
+- regprop - printable representation of opcode, with run time support
+*/
+
+void
+Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o, const regmatch_info *reginfo, const RExC_state_t *pRExC_state)
+{
+#ifdef DEBUGGING
+ int k;
+
+ /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
+ static const char * const anyofs[] = {
+#if _CC_WORDCHAR != 0 || _CC_DIGIT != 1 || _CC_ALPHA != 2 || _CC_LOWER != 3 \
+ || _CC_UPPER != 4 || _CC_PUNCT != 5 || _CC_PRINT != 6                   \
+ || _CC_ALPHANUMERIC != 7 || _CC_GRAPH != 8 || _CC_CASED != 9            \
+ || _CC_SPACE != 10 || _CC_BLANK != 11 || _CC_XDIGIT != 12               \
+ || _CC_CNTRL != 13 || _CC_ASCII != 14 || _CC_VERTSPACE != 15
+  #error Need to adjust order of anyofs[]
+#endif
+  "\\w",
+  "\\W",
+  "\\d",
+  "\\D",
+  "[:alpha:]",
+  "[:^alpha:]",
+  "[:lower:]",
+  "[:^lower:]",
+  "[:upper:]",
+  "[:^upper:]",
+  "[:punct:]",
+  "[:^punct:]",
+  "[:print:]",
+  "[:^print:]",
+  "[:alnum:]",
+  "[:^alnum:]",
+  "[:graph:]",
+  "[:^graph:]",
+  "[:cased:]",
+  "[:^cased:]",
+  "\\s",
+  "\\S",
+  "[:blank:]",
+  "[:^blank:]",
+  "[:xdigit:]",
+  "[:^xdigit:]",
+  "[:cntrl:]",
+  "[:^cntrl:]",
+  "[:ascii:]",
+  "[:^ascii:]",
+  "\\v",
+  "\\V"
+ };
+ RXi_GET_DECL(prog,progi);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGPROP;
+
+ sv_setpvn(sv, "", 0);
+
+ if (OP(o) > REGNODE_MAX)  /* regnode.type is unsigned */
+  /* It would be nice to FAIL() here, but this may be called from
+  regexec.c, and it would be hard to supply pRExC_state. */
+  Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d",
+           (int)OP(o), (int)REGNODE_MAX);
+ sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
+
+ k = PL_regkind[OP(o)];
+
+ if (k == EXACT) {
+  sv_catpvs(sv, " ");
+  /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
+  * is a crude hack but it may be the best for now since
+  * we have no flag "this EXACTish node was UTF-8"
+  * --jhi */
+  pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
+    PERL_PV_ESCAPE_UNI_DETECT |
+    PERL_PV_ESCAPE_NONASCII   |
+    PERL_PV_PRETTY_ELLIPSES   |
+    PERL_PV_PRETTY_LTGT       |
+    PERL_PV_PRETTY_NOCLEAR
+    );
+ } else if (k == TRIE) {
+  /* print the details of the trie in dumpuntil instead, as
+  * progi->data isn't available here */
+  const char op = OP(o);
+  const U32 n = ARG(o);
+  const reg_ac_data * const ac = IS_TRIE_AC(op) ?
+   (reg_ac_data *)progi->data->data[n] :
+   NULL;
+  const reg_trie_data * const trie
+   = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
+
+  Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
+  DEBUG_TRIE_COMPILE_r(
+  Perl_sv_catpvf(aTHX_ sv,
+   "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
+   (UV)trie->startstate,
+   (IV)trie->statecount-1, /* -1 because of the unused 0 element */
+   (UV)trie->wordcount,
+   (UV)trie->minlen,
+   (UV)trie->maxlen,
+   (UV)TRIE_CHARCOUNT(trie),
+   (UV)trie->uniquecharcount
+  );
+  );
+  if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
+   sv_catpvs(sv, "[");
+   (void) put_charclass_bitmap_innards(sv,
+            (IS_ANYOF_TRIE(op))
+            ? ANYOF_BITMAP(o)
+            : TRIE_BITMAP(trie),
+            NULL);
+   sv_catpvs(sv, "]");
+  }
+
+ } else if (k == CURLY) {
+  if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
+   Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
+  Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
+ }
+ else if (k == WHILEM && o->flags)   /* Ordinal/of */
+  Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
+ else if (k == REF || k == OPEN || k == CLOSE
+   || k == GROUPP || OP(o)==ACCEPT)
+ {
+  AV *name_list= NULL;
+  Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
+  if ( RXp_PAREN_NAMES(prog) ) {
+   name_list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
+  } else if ( pRExC_state ) {
+   name_list= RExC_paren_name_list;
+  }
+  if (name_list) {
+   if ( k != REF || (OP(o) < NREF)) {
+    SV **name= av_fetch(name_list, ARG(o), 0 );
+    if (name)
+     Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+   }
+   else {
+    SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
+    I32 *nums=(I32*)SvPVX(sv_dat);
+    SV **name= av_fetch(name_list, nums[0], 0 );
+    I32 n;
+    if (name) {
+     for ( n=0; n<SvIVX(sv_dat); n++ ) {
+      Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
+         (n ? "," : ""), (IV)nums[n]);
+     }
+     Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+    }
+   }
+  }
+  if ( k == REF && reginfo) {
+   U32 n = ARG(o);  /* which paren pair */
+   I32 ln = prog->offs[n].start;
+   if (prog->lastparen < n || ln == -1)
+    Perl_sv_catpvf(aTHX_ sv, ": FAIL");
+   else if (ln == prog->offs[n].end)
+    Perl_sv_catpvf(aTHX_ sv, ": ACCEPT - EMPTY STRING");
+   else {
+    const char *s = reginfo->strbeg + ln;
+    Perl_sv_catpvf(aTHX_ sv, ": ");
+    Perl_pv_pretty( aTHX_ sv, s, prog->offs[n].end - prog->offs[n].start, 32, 0, 0,
+     PERL_PV_ESCAPE_UNI_DETECT|PERL_PV_PRETTY_NOCLEAR|PERL_PV_PRETTY_ELLIPSES|PERL_PV_PRETTY_QUOTE );
+   }
+  }
+ } else if (k == GOSUB) {
+  AV *name_list= NULL;
+  if ( RXp_PAREN_NAMES(prog) ) {
+   name_list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
+  } else if ( pRExC_state ) {
+   name_list= RExC_paren_name_list;
+  }
+
+  /* Paren and offset */
+  Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o));
+  if (name_list) {
+   SV **name= av_fetch(name_list, ARG(o), 0 );
+   if (name)
+    Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+  }
+ }
+ else if (k == VERB) {
+  if (!o->flags)
+   Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
+      SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
+ } else if (k == LOGICAL)
+  /* 2: embedded, otherwise 1 */
+  Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags);
+ else if (k == ANYOF) {
+  const U8 flags = ANYOF_FLAGS(o);
+  int do_sep = 0;
+  SV* bitmap_invlist;  /* Will hold what the bit map contains */
+
+
+  if (OP(o) == ANYOFL)
+   sv_catpvs(sv, "{loc}");
+  if (flags & ANYOF_LOC_FOLD)
+   sv_catpvs(sv, "{i}");
+  Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
+  if (flags & ANYOF_INVERT)
+   sv_catpvs(sv, "^");
+
+  /* output what the standard cp 0-NUM_ANYOF_CODE_POINTS-1 bitmap matches
+  * */
+  do_sep = put_charclass_bitmap_innards(sv, ANYOF_BITMAP(o),
+               &bitmap_invlist);
+
+  /* output any special charclass tests (used entirely under use
+  * locale) * */
+  if (ANYOF_POSIXL_TEST_ANY_SET(o)) {
+   int i;
+   for (i = 0; i < ANYOF_POSIXL_MAX; i++) {
+    if (ANYOF_POSIXL_TEST(o,i)) {
+     sv_catpv(sv, anyofs[i]);
+     do_sep = 1;
+    }
+   }
+  }
+
+  if ((flags & (ANYOF_MATCHES_ALL_ABOVE_BITMAP
+     |ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+     |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES
+     |ANYOF_LOC_FOLD)))
+  {
+   if (do_sep) {
+    Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]);
+    if (flags & ANYOF_INVERT)
+     /*make sure the invert info is in each */
+     sv_catpvs(sv, "^");
+   }
+
+   if (flags & ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII) {
+    sv_catpvs(sv, "{non-utf8-latin1-all}");
+   }
+
+   if (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP)
+    sv_catpvs(sv, "{above_bitmap_all}");
+
+   if (ARG(o) != ANYOF_ONLY_HAS_BITMAP) {
+    SV *lv; /* Set if there is something outside the bit map. */
+    bool byte_output = FALSE;   /* If something has been output */
+    SV *only_utf8_locale;
+
+    /* Get the stuff that wasn't in the bitmap.  'bitmap_invlist'
+    * is used to guarantee that nothing in the bitmap gets
+    * returned */
+    (void) _get_regclass_nonbitmap_data(prog, o, FALSE,
+             &lv, &only_utf8_locale,
+             bitmap_invlist);
+    if (lv && lv != &PL_sv_undef) {
+     char *s = savesvpv(lv);
+     char * const origs = s;
+
+     while (*s && *s != '\n')
+      s++;
+
+     if (*s == '\n') {
+      const char * const t = ++s;
+
+      if (flags & ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES) {
+       sv_catpvs(sv, "{outside bitmap}");
+      }
+      else {
+       sv_catpvs(sv, "{utf8}");
+      }
+
+      if (byte_output) {
+       sv_catpvs(sv, " ");
+      }
+
+      while (*s) {
+       if (*s == '\n') {
+
+        /* Truncate very long output */
+        if (s - origs > 256) {
+         Perl_sv_catpvf(aTHX_ sv,
+            "%.*s...",
+            (int) (s - origs - 1),
+            t);
+         goto out_dump;
+        }
+        *s = ' ';
+       }
+       else if (*s == '\t') {
+        *s = '-';
+       }
+       s++;
+      }
+      if (s[-1] == ' ')
+       s[-1] = 0;
+
+      sv_catpv(sv, t);
+     }
+
+    out_dump:
+
+     Safefree(origs);
+     SvREFCNT_dec_NN(lv);
+    }
+
+    if ((flags & ANYOF_LOC_FOLD)
+     && only_utf8_locale
+     && only_utf8_locale != &PL_sv_undef)
+    {
+     UV start, end;
+     int max_entries = 256;
+
+     sv_catpvs(sv, "{utf8 locale}");
+     invlist_iterinit(only_utf8_locale);
+     while (invlist_iternext(only_utf8_locale,
+           &start, &end)) {
+      put_range(sv, start, end, FALSE);
+      max_entries --;
+      if (max_entries < 0) {
+       sv_catpvs(sv, "...");
+       break;
+      }
+     }
+     invlist_iterfinish(only_utf8_locale);
+    }
+   }
+  }
+  SvREFCNT_dec(bitmap_invlist);
+
+
+  Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
+ }
+ else if (k == POSIXD || k == NPOSIXD) {
+  U8 index = FLAGS(o) * 2;
+  if (index < C_ARRAY_LENGTH(anyofs)) {
+   if (*anyofs[index] != '[')  {
+    sv_catpv(sv, "[");
+   }
+   sv_catpv(sv, anyofs[index]);
+   if (*anyofs[index] != '[')  {
+    sv_catpv(sv, "]");
+   }
+  }
+  else {
+   Perl_sv_catpvf(aTHX_ sv, "[illegal type=%d])", index);
+  }
+ }
+ else if (k == BOUND || k == NBOUND) {
+  /* Must be synced with order of 'bound_type' in regcomp.h */
+  const char * const bounds[] = {
+   "",      /* Traditional */
+   "{gcb}",
+   "{sb}",
+   "{wb}"
+  };
+  sv_catpv(sv, bounds[FLAGS(o)]);
+ }
+ else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
+  Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
+ else if (OP(o) == SBOL)
+  Perl_sv_catpvf(aTHX_ sv, " /%s/", o->flags ? "\\A" : "^");
+#else
+ PERL_UNUSED_CONTEXT;
+ PERL_UNUSED_ARG(sv);
+ PERL_UNUSED_ARG(o);
+ PERL_UNUSED_ARG(prog);
+ PERL_UNUSED_ARG(reginfo);
+ PERL_UNUSED_ARG(pRExC_state);
+#endif /* DEBUGGING */
+}
+
+
+
+SV *
+Perl_re_intuit_string(pTHX_ REGEXP * const r)
+{    /* Assume that RE_INTUIT is set */
+ struct regexp *const prog = ReANY(r);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_INTUIT_STRING;
+ PERL_UNUSED_CONTEXT;
+
+ DEBUG_COMPILE_r(
+  {
+   const char * const s = SvPV_nolen_const(RX_UTF8(r)
+     ? prog->check_utf8 : prog->check_substr);
+
+   if (!PL_colorset) reginitcolors();
+   PerlIO_printf(Perl_debug_log,
+     "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
+     PL_colors[4],
+     RX_UTF8(r) ? "utf8 " : "",
+     PL_colors[5],PL_colors[0],
+     s,
+     PL_colors[1],
+     (strlen(s) > 60 ? "..." : ""));
+  } );
+
+ /* use UTF8 check substring if regexp pattern itself is in UTF8 */
+ return RX_UTF8(r) ? prog->check_utf8 : prog->check_substr;
+}
+
+/*
+   pregfree()
+
+   handles refcounting and freeing the perl core regexp structure. When
+   it is necessary to actually free the structure the first thing it
+   does is call the 'free' method of the regexp_engine associated to
+   the regexp, allowing the handling of the void *pprivate; member
+   first. (This routine is not overridable by extensions, which is why
+   the extensions free is called first.)
+
+   See regdupe and regdupe_internal if you change anything here.
+*/
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_pregfree(pTHX_ REGEXP *r)
+{
+ SvREFCNT_dec(r);
+}
+
+void
+Perl_pregfree2(pTHX_ REGEXP *rx)
+{
+ struct regexp *const r = ReANY(rx);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_PREGFREE2;
+
+ if (r->mother_re) {
+  ReREFCNT_dec(r->mother_re);
+ } else {
+  CALLREGFREE_PVT(rx); /* free the private data */
+  SvREFCNT_dec(RXp_PAREN_NAMES(r));
+  Safefree(r->xpv_len_u.xpvlenu_pv);
+ }
+ if (r->substrs) {
+  SvREFCNT_dec(r->anchored_substr);
+  SvREFCNT_dec(r->anchored_utf8);
+  SvREFCNT_dec(r->float_substr);
+  SvREFCNT_dec(r->float_utf8);
+  Safefree(r->substrs);
+ }
+ RX_MATCH_COPY_FREE(rx);
+#ifdef PERL_ANY_COW
+ SvREFCNT_dec(r->saved_copy);
+#endif
+ Safefree(r->offs);
+ SvREFCNT_dec(r->qr_anoncv);
+ rx->sv_u.svu_rx = 0;
+}
+
+/*  reg_temp_copy()
+
+ This is a hacky workaround to the structural issue of match results
+ being stored in the regexp structure which is in turn stored in
+ PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
+ could be PL_curpm in multiple contexts, and could require multiple
+ result sets being associated with the pattern simultaneously, such
+ as when doing a recursive match with (??{$qr})
+
+ The solution is to make a lightweight copy of the regexp structure
+ when a qr// is returned from the code executed by (??{$qr}) this
+ lightweight copy doesn't actually own any of its data except for
+ the starp/end and the actual regexp structure itself.
+
+*/
+
+
+REGEXP *
+Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
+{
+ struct regexp *ret;
+ struct regexp *const r = ReANY(rx);
+ const bool islv = ret_x && SvTYPE(ret_x) == SVt_PVLV;
+
+ PERL_ARGS_ASSERT_REG_TEMP_COPY;
+
+ if (!ret_x)
+  ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
+ else {
+  SvOK_off((SV *)ret_x);
+  if (islv) {
+   /* For PVLVs, SvANY points to the xpvlv body while sv_u points
+   to the regexp.  (For SVt_REGEXPs, sv_upgrade has already
+   made both spots point to the same regexp body.) */
+   REGEXP *temp = (REGEXP *)newSV_type(SVt_REGEXP);
+   assert(!SvPVX(ret_x));
+   ret_x->sv_u.svu_rx = temp->sv_any;
+   temp->sv_any = NULL;
+   SvFLAGS(temp) = (SvFLAGS(temp) & ~SVTYPEMASK) | SVt_NULL;
+   SvREFCNT_dec_NN(temp);
+   /* SvCUR still resides in the xpvlv struct, so the regexp copy-
+   ing below will not set it. */
+   SvCUR_set(ret_x, SvCUR(rx));
+  }
+ }
+ /* This ensures that SvTHINKFIRST(sv) is true, and hence that
+ sv_force_normal(sv) is called.  */
+ SvFAKE_on(ret_x);
+ ret = ReANY(ret_x);
+
+ SvFLAGS(ret_x) |= SvUTF8(rx);
+ /* We share the same string buffer as the original regexp, on which we
+ hold a reference count, incremented when mother_re is set below.
+ The string pointer is copied here, being part of the regexp struct.
+ */
+ memcpy(&(ret->xpv_cur), &(r->xpv_cur),
+  sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
+ if (r->offs) {
+  const I32 npar = r->nparens+1;
+  Newx(ret->offs, npar, regexp_paren_pair);
+  Copy(r->offs, ret->offs, npar, regexp_paren_pair);
+ }
+ if (r->substrs) {
+  Newx(ret->substrs, 1, struct reg_substr_data);
+  StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
+
+  SvREFCNT_inc_void(ret->anchored_substr);
+  SvREFCNT_inc_void(ret->anchored_utf8);
+  SvREFCNT_inc_void(ret->float_substr);
+  SvREFCNT_inc_void(ret->float_utf8);
+
+  /* check_substr and check_utf8, if non-NULL, point to either their
+  anchored or float namesakes, and don't hold a second reference.  */
+ }
+ RX_MATCH_COPIED_off(ret_x);
+#ifdef PERL_ANY_COW
+ ret->saved_copy = NULL;
+#endif
+ ret->mother_re = ReREFCNT_inc(r->mother_re ? r->mother_re : rx);
+ SvREFCNT_inc_void(ret->qr_anoncv);
+
+ return ret_x;
+}
+#endif
+
+/* regfree_internal()
+
+   Free the private data in a regexp. This is overloadable by
+   extensions. Perl takes care of the regexp structure in pregfree(),
+   this covers the *pprivate pointer which technically perl doesn't
+   know about, however of course we have to handle the
+   regexp_internal structure when no extension is in use.
+
+   Note this is called before freeing anything in the regexp
+   structure.
+ */
+
+void
+Perl_regfree_internal(pTHX_ REGEXP * const rx)
+{
+ struct regexp *const r = ReANY(rx);
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGFREE_INTERNAL;
+
+ DEBUG_COMPILE_r({
+  if (!PL_colorset)
+   reginitcolors();
+  {
+   SV *dsv= sv_newmortal();
+   RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
+    dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
+   PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
+    PL_colors[4],PL_colors[5],s);
+  }
+ });
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (ri->u.offsets)
+  Safefree(ri->u.offsets);             /* 20010421 MJD */
+#endif
+ if (ri->code_blocks) {
+  int n;
+  for (n = 0; n < ri->num_code_blocks; n++)
+   SvREFCNT_dec(ri->code_blocks[n].src_regex);
+  Safefree(ri->code_blocks);
+ }
+
+ if (ri->data) {
+  int n = ri->data->count;
+
+  while (--n >= 0) {
+  /* If you add a ->what type here, update the comment in regcomp.h */
+   switch (ri->data->what[n]) {
+   case 'a':
+   case 'r':
+   case 's':
+   case 'S':
+   case 'u':
+    SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
+    break;
+   case 'f':
+    Safefree(ri->data->data[n]);
+    break;
+   case 'l':
+   case 'L':
+    break;
+   case 'T':
+    { /* Aho Corasick add-on structure for a trie node.
+     Used in stclass optimization only */
+     U32 refcount;
+     reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
+#ifdef USE_ITHREADS
+     dVAR;
+#endif
+     OP_REFCNT_LOCK;
+     refcount = --aho->refcount;
+     OP_REFCNT_UNLOCK;
+     if ( !refcount ) {
+      PerlMemShared_free(aho->states);
+      PerlMemShared_free(aho->fail);
+      /* do this last!!!! */
+      PerlMemShared_free(ri->data->data[n]);
+      /* we should only ever get called once, so
+      * assert as much, and also guard the free
+      * which /might/ happen twice. At the least
+      * it will make code anlyzers happy and it
+      * doesn't cost much. - Yves */
+      assert(ri->regstclass);
+      if (ri->regstclass) {
+       PerlMemShared_free(ri->regstclass);
+       ri->regstclass = 0;
+      }
+     }
+    }
+    break;
+   case 't':
+    {
+     /* trie structure. */
+     U32 refcount;
+     reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
+#ifdef USE_ITHREADS
+     dVAR;
+#endif
+     OP_REFCNT_LOCK;
+     refcount = --trie->refcount;
+     OP_REFCNT_UNLOCK;
+     if ( !refcount ) {
+      PerlMemShared_free(trie->charmap);
+      PerlMemShared_free(trie->states);
+      PerlMemShared_free(trie->trans);
+      if (trie->bitmap)
+       PerlMemShared_free(trie->bitmap);
+      if (trie->jump)
+       PerlMemShared_free(trie->jump);
+      PerlMemShared_free(trie->wordinfo);
+      /* do this last!!!! */
+      PerlMemShared_free(ri->data->data[n]);
+     }
+    }
+    break;
+   default:
+    Perl_croak(aTHX_ "panic: regfree data code '%c'",
+             ri->data->what[n]);
+   }
+  }
+  Safefree(ri->data->what);
+  Safefree(ri->data);
+ }
+
+ Safefree(ri);
+}
+
+#define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
+#define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
+#define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
+
+/*
+   re_dup - duplicate a regexp.
+
+   This routine is expected to clone a given regexp structure. It is only
+   compiled under USE_ITHREADS.
+
+   After all of the core data stored in struct regexp is duplicated
+   the regexp_engine.dupe method is used to copy any private data
+   stored in the *pprivate pointer. This allows extensions to handle
+   any duplication it needs to do.
+
+   See pregfree() and regfree_internal() if you change anything here.
+*/
+#if defined(USE_ITHREADS)
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
+{
+ dVAR;
+ I32 npar;
+ const struct regexp *r = ReANY(sstr);
+ struct regexp *ret = ReANY(dstr);
+
+ PERL_ARGS_ASSERT_RE_DUP_GUTS;
+
+ npar = r->nparens+1;
+ Newx(ret->offs, npar, regexp_paren_pair);
+ Copy(r->offs, ret->offs, npar, regexp_paren_pair);
+
+ if (ret->substrs) {
+  /* Do it this way to avoid reading from *r after the StructCopy().
+  That way, if any of the sv_dup_inc()s dislodge *r from the L1
+  cache, it doesn't matter.  */
+  const bool anchored = r->check_substr
+   ? r->check_substr == r->anchored_substr
+   : r->check_utf8 == r->anchored_utf8;
+  Newx(ret->substrs, 1, struct reg_substr_data);
+  StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
+
+  ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
+  ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
+  ret->float_substr = sv_dup_inc(ret->float_substr, param);
+  ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
+
+  /* check_substr and check_utf8, if non-NULL, point to either their
+  anchored or float namesakes, and don't hold a second reference.  */
+
+  if (ret->check_substr) {
+   if (anchored) {
+    assert(r->check_utf8 == r->anchored_utf8);
+    ret->check_substr = ret->anchored_substr;
+    ret->check_utf8 = ret->anchored_utf8;
+   } else {
+    assert(r->check_substr == r->float_substr);
+    assert(r->check_utf8 == r->float_utf8);
+    ret->check_substr = ret->float_substr;
+    ret->check_utf8 = ret->float_utf8;
+   }
+  } else if (ret->check_utf8) {
+   if (anchored) {
+    ret->check_utf8 = ret->anchored_utf8;
+   } else {
+    ret->check_utf8 = ret->float_utf8;
+   }
+  }
+ }
+
+ RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
+ ret->qr_anoncv = MUTABLE_CV(sv_dup_inc((const SV *)ret->qr_anoncv, param));
+
+ if (ret->pprivate)
+  RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
+
+ if (RX_MATCH_COPIED(dstr))
+  ret->subbeg  = SAVEPVN(ret->subbeg, ret->sublen);
+ else
+  ret->subbeg = NULL;
+#ifdef PERL_ANY_COW
+ ret->saved_copy = NULL;
+#endif
+
+ /* Whether mother_re be set or no, we need to copy the string.  We
+ cannot refrain from copying it when the storage points directly to
+ our mother regexp, because that's
+   1: a buffer in a different thread
+   2: something we no longer hold a reference on
+   so we need to copy it locally.  */
+ RX_WRAPPED(dstr) = SAVEPVN(RX_WRAPPED(sstr), SvCUR(sstr)+1);
+ ret->mother_re   = NULL;
+}
+#endif /* PERL_IN_XSUB_RE */
+
+/*
+   regdupe_internal()
+
+   This is the internal complement to regdupe() which is used to copy
+   the structure pointed to by the *pprivate pointer in the regexp.
+   This is the core version of the extension overridable cloning hook.
+   The regexp structure being duplicated will be copied by perl prior
+   to this and will be provided as the regexp *r argument, however
+   with the /old/ structures pprivate pointer value. Thus this routine
+   may override any copying normally done by perl.
+
+   It returns a pointer to the new regexp_internal structure.
+*/
+
+void *
+Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
+{
+ dVAR;
+ struct regexp *const r = ReANY(rx);
+ regexp_internal *reti;
+ int len;
+ RXi_GET_DECL(r,ri);
+
+ PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
+
+ len = ProgLen(ri);
+
+ Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode),
+  char, regexp_internal);
+ Copy(ri->program, reti->program, len+1, regnode);
+
+ reti->num_code_blocks = ri->num_code_blocks;
+ if (ri->code_blocks) {
+  int n;
+  Newxc(reti->code_blocks, ri->num_code_blocks, struct reg_code_block,
+    struct reg_code_block);
+  Copy(ri->code_blocks, reti->code_blocks, ri->num_code_blocks,
+    struct reg_code_block);
+  for (n = 0; n < ri->num_code_blocks; n++)
+   reti->code_blocks[n].src_regex = (REGEXP*)
+     sv_dup_inc((SV*)(ri->code_blocks[n].src_regex), param);
+ }
+ else
+  reti->code_blocks = NULL;
+
+ reti->regstclass = NULL;
+
+ if (ri->data) {
+  struct reg_data *d;
+  const int count = ri->data->count;
+  int i;
+
+  Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
+    char, struct reg_data);
+  Newx(d->what, count, U8);
+
+  d->count = count;
+  for (i = 0; i < count; i++) {
+   d->what[i] = ri->data->what[i];
+   switch (d->what[i]) {
+    /* see also regcomp.h and regfree_internal() */
+   case 'a': /* actually an AV, but the dup function is identical.  */
+   case 'r':
+   case 's':
+   case 'S':
+   case 'u': /* actually an HV, but the dup function is identical.  */
+    d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
+    break;
+   case 'f':
+    /* This is cheating. */
+    Newx(d->data[i], 1, regnode_ssc);
+    StructCopy(ri->data->data[i], d->data[i], regnode_ssc);
+    reti->regstclass = (regnode*)d->data[i];
+    break;
+   case 'T':
+    /* Trie stclasses are readonly and can thus be shared
+    * without duplication. We free the stclass in pregfree
+    * when the corresponding reg_ac_data struct is freed.
+    */
+    reti->regstclass= ri->regstclass;
+    /* FALLTHROUGH */
+   case 't':
+    OP_REFCNT_LOCK;
+    ((reg_trie_data*)ri->data->data[i])->refcount++;
+    OP_REFCNT_UNLOCK;
+    /* FALLTHROUGH */
+   case 'l':
+   case 'L':
+    d->data[i] = ri->data->data[i];
+    break;
+   default:
+    Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'",
+              ri->data->what[i]);
+   }
+  }
+
+  reti->data = d;
+ }
+ else
+  reti->data = NULL;
+
+ reti->name_list_idx = ri->name_list_idx;
+
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (ri->u.offsets) {
+  Newx(reti->u.offsets, 2*len+1, U32);
+  Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
+ }
+#else
+ SetProgLen(reti,len);
+#endif
+
+ return (void*)reti;
+}
+
+#endif    /* USE_ITHREADS */
+
+#ifndef PERL_IN_XSUB_RE
+
+/*
+ - regnext - dig the "next" pointer out of a node
+ */
+regnode *
+Perl_regnext(pTHX_ regnode *p)
+{
+ I32 offset;
+
+ if (!p)
+  return(NULL);
+
+ if (OP(p) > REGNODE_MAX) {  /* regnode.type is unsigned */
+  Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d",
+            (int)OP(p), (int)REGNODE_MAX);
+ }
+
+ offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
+ if (offset == 0)
+  return(NULL);
+
+ return(p+offset);
+}
+#endif
+
+STATIC void
+S_re_croak2(pTHX_ bool utf8, const char* pat1,const char* pat2,...)
+{
+ va_list args;
+ STRLEN l1 = strlen(pat1);
+ STRLEN l2 = strlen(pat2);
+ char buf[512];
+ SV *msv;
+ const char *message;
+
+ PERL_ARGS_ASSERT_RE_CROAK2;
+
+ if (l1 > 510)
+  l1 = 510;
+ if (l1 + l2 > 510)
+  l2 = 510 - l1;
+ Copy(pat1, buf, l1 , char);
+ Copy(pat2, buf + l1, l2 , char);
+ buf[l1 + l2] = '\n';
+ buf[l1 + l2 + 1] = '\0';
+ va_start(args, pat2);
+ msv = vmess(buf, &args);
+ va_end(args);
+ message = SvPV_const(msv,l1);
+ if (l1 > 512)
+  l1 = 512;
+ Copy(message, buf, l1 , char);
+ /* l1-1 to avoid \n */
+ Perl_croak(aTHX_ "%"UTF8f, UTF8fARG(utf8, l1-1, buf));
+}
+
+/* XXX Here's a total kludge.  But we need to re-enter for swash routines. */
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_save_re_context(pTHX)
+{
+ I32 nparens = -1;
+ I32 i;
+
+ /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
+
+ if (PL_curpm) {
+  const REGEXP * const rx = PM_GETRE(PL_curpm);
+  if (rx)
+   nparens = RX_NPARENS(rx);
+ }
+
+ /* RT #124109. This is a complete hack; in the SWASHNEW case we know
+ * that PL_curpm will be null, but that utf8.pm and the modules it
+ * loads will only use $1..$3.
+ * The t/porting/re_context.t test file checks this assumption.
+ */
+ if (nparens == -1)
+  nparens = 3;
+
+ for (i = 1; i <= nparens; i++) {
+  char digits[TYPE_CHARS(long)];
+  const STRLEN len = my_snprintf(digits, sizeof(digits),
+         "%lu", (long)i);
+  GV *const *const gvp
+   = (GV**)hv_fetch(PL_defstash, digits, len, 0);
+
+  if (gvp) {
+   GV * const gv = *gvp;
+   if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
+    save_scalar(gv);
+  }
+ }
+}
+#endif
+
+#ifdef DEBUGGING
+
+STATIC void
+S_put_code_point(pTHX_ SV *sv, UV c)
+{
+ PERL_ARGS_ASSERT_PUT_CODE_POINT;
+
+ if (c > 255) {
+  Perl_sv_catpvf(aTHX_ sv, "\\x{%04"UVXf"}", c);
+ }
+ else if (isPRINT(c)) {
+  const char string = (char) c;
+  if (isBACKSLASHED_PUNCT(c))
+   sv_catpvs(sv, "\\");
+  sv_catpvn(sv, &string, 1);
+ }
+ else {
+  const char * const mnemonic = cntrl_to_mnemonic((char) c);
+  if (mnemonic) {
+   Perl_sv_catpvf(aTHX_ sv, "%s", mnemonic);
+  }
+  else {
+   Perl_sv_catpvf(aTHX_ sv, "\\x{%02X}", (U8) c);
+  }
+ }
+}
+
+#define MAX_PRINT_A MAX_PRINT_A_FOR_USE_ONLY_BY_REGCOMP_DOT_C
+
+STATIC void
+S_put_range(pTHX_ SV *sv, UV start, const UV end, const bool allow_literals)
+{
+ /* Appends to 'sv' a displayable version of the range of code points from
+ * 'start' to 'end'.  It assumes that only ASCII printables are displayable
+ * as-is (though some of these will be escaped by put_code_point()). */
+
+ const unsigned int min_range_count = 3;
+
+ assert(start <= end);
+
+ PERL_ARGS_ASSERT_PUT_RANGE;
+
+ while (start <= end) {
+  UV this_end;
+  const char * format;
+
+  if (end - start < min_range_count) {
+
+   /* Individual chars in short ranges */
+   for (; start <= end; start++) {
+    put_code_point(sv, start);
+   }
+   break;
+  }
+
+  /* If permitted by the input options, and there is a possibility that
+  * this range contains a printable literal, look to see if there is
+  * one.  */
+  if (allow_literals && start <= MAX_PRINT_A) {
+
+   /* If the range begin isn't an ASCII printable, effectively split
+   * the range into two parts:
+   *  1) the portion before the first such printable,
+   *  2) the rest
+   * and output them separately. */
+   if (! isPRINT_A(start)) {
+    UV temp_end = start + 1;
+
+    /* There is no point looking beyond the final possible
+    * printable, in MAX_PRINT_A */
+    UV max = MIN(end, MAX_PRINT_A);
+
+    while (temp_end <= max && ! isPRINT_A(temp_end)) {
+     temp_end++;
+    }
+
+    /* Here, temp_end points to one beyond the first printable if
+    * found, or to one beyond 'max' if not.  If none found, make
+    * sure that we use the entire range */
+    if (temp_end > MAX_PRINT_A) {
+     temp_end = end + 1;
+    }
+
+    /* Output the first part of the split range, the part that
+    * doesn't have printables, with no looking for literals
+    * (otherwise we would infinitely recurse) */
+    put_range(sv, start, temp_end - 1, FALSE);
+
+    /* The 2nd part of the range (if any) starts here. */
+    start = temp_end;
+
+    /* We continue instead of dropping down because even if the 2nd
+    * part is non-empty, it could be so short that we want to
+    * output it specially, as tested for at the top of this loop.
+    * */
+    continue;
+   }
+
+   /* Here, 'start' is a printable ASCII.  If it is an alphanumeric,
+   * output a sub-range of just the digits or letters, then process
+   * the remaining portion as usual. */
+   if (isALPHANUMERIC_A(start)) {
+    UV mask = (isDIGIT_A(start))
+      ? _CC_DIGIT
+       : isUPPER_A(start)
+       ? _CC_UPPER
+       : _CC_LOWER;
+    UV temp_end = start + 1;
+
+    /* Find the end of the sub-range that includes just the
+    * characters in the same class as the first character in it */
+    while (temp_end <= end && _generic_isCC_A(temp_end, mask)) {
+     temp_end++;
+    }
+    temp_end--;
+
+    /* For short ranges, don't duplicate the code above to output
+    * them; just call recursively */
+    if (temp_end - start < min_range_count) {
+     put_range(sv, start, temp_end, FALSE);
+    }
+    else {  /* Output as a range */
+     put_code_point(sv, start);
+     sv_catpvs(sv, "-");
+     put_code_point(sv, temp_end);
+    }
+    start = temp_end + 1;
+    continue;
+   }
+
+   /* We output any other printables as individual characters */
+   if (isPUNCT_A(start) || isSPACE_A(start)) {
+    while (start <= end && (isPUNCT_A(start)
+          || isSPACE_A(start)))
+    {
+     put_code_point(sv, start);
+     start++;
+    }
+    continue;
+   }
+  } /* End of looking for literals */
+
+  /* Here is not to output as a literal.  Some control characters have
+  * mnemonic names.  Split off any of those at the beginning and end of
+  * the range to print mnemonically.  It isn't possible for many of
+  * these to be in a row, so this won't overwhelm with output */
+  while (isMNEMONIC_CNTRL(start) && start <= end) {
+   put_code_point(sv, start);
+   start++;
+  }
+  if (start < end && isMNEMONIC_CNTRL(end)) {
+
+   /* Here, the final character in the range has a mnemonic name.
+   * Work backwards from the end to find the final non-mnemonic */
+   UV temp_end = end - 1;
+   while (isMNEMONIC_CNTRL(temp_end)) {
+    temp_end--;
+   }
+
+   /* And separately output the range that doesn't have mnemonics */
+   put_range(sv, start, temp_end, FALSE);
+
+   /* Then output the mnemonic trailing controls */
+   start = temp_end + 1;
+   while (start <= end) {
+    put_code_point(sv, start);
+    start++;
+   }
+   break;
+  }
+
+  /* As a final resort, output the range or subrange as hex. */
+
+  this_end = (end < NUM_ANYOF_CODE_POINTS)
+     ? end
+     : NUM_ANYOF_CODE_POINTS - 1;
+  format = (this_end < 256)
+    ? "\\x{%02"UVXf"}-\\x{%02"UVXf"}"
+    : "\\x{%04"UVXf"}-\\x{%04"UVXf"}";
+  GCC_DIAG_IGNORE(-Wformat-nonliteral);
+  Perl_sv_catpvf(aTHX_ sv, format, start, this_end);
+  GCC_DIAG_RESTORE;
+  break;
+ }
+}
+
+STATIC bool
+S_put_charclass_bitmap_innards(pTHX_ SV *sv, char *bitmap, SV** bitmap_invlist)
+{
+ /* Appends to 'sv' a displayable version of the innards of the bracketed
+ * character class whose bitmap is 'bitmap';  Returns 'TRUE' if it actually
+ * output anything, and bitmap_invlist, if not NULL, will point to an
+ * inversion list of what is in the bit map */
+
+ int i;
+ UV start, end;
+ unsigned int punct_count = 0;
+ SV* invlist = NULL;
+ SV** invlist_ptr;   /* Temporary, in case bitmap_invlist is NULL */
+ bool allow_literals = TRUE;
+
+ PERL_ARGS_ASSERT_PUT_CHARCLASS_BITMAP_INNARDS;
+
+ invlist_ptr = (bitmap_invlist) ? bitmap_invlist : &invlist;
+
+ /* Worst case is exactly every-other code point is in the list */
+ *invlist_ptr = _new_invlist(NUM_ANYOF_CODE_POINTS / 2);
+
+ /* Convert the bit map to an inversion list, keeping track of how many
+ * ASCII puncts are set, including an extra amount for the backslashed
+ * ones.  */
+ for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
+  if (BITMAP_TEST(bitmap, i)) {
+   *invlist_ptr = add_cp_to_invlist(*invlist_ptr, i);
+   if (isPUNCT_A(i)) {
+    punct_count++;
+    if isBACKSLASHED_PUNCT(i) {
+     punct_count++;
+    }
+   }
+  }
+ }
+
+ /* Nothing to output */
+ if (_invlist_len(*invlist_ptr) == 0) {
+  SvREFCNT_dec(invlist);
+  return FALSE;
+ }
+
+ /* Generally, it is more readable if printable characters are output as
+ * literals, but if a range (nearly) spans all of them, it's best to output
+ * it as a single range.  This code will use a single range if all but 2
+ * printables are in it */
+ invlist_iterinit(*invlist_ptr);
+ while (invlist_iternext(*invlist_ptr, &start, &end)) {
+
+  /* If range starts beyond final printable, it doesn't have any in it */
+  if (start > MAX_PRINT_A) {
+   break;
+  }
+
+  /* In both ASCII and EBCDIC, a SPACE is the lowest printable.  To span
+  * all but two, the range must start and end no later than 2 from
+  * either end */
+  if (start < ' ' + 2 && end > MAX_PRINT_A - 2) {
+   if (end > MAX_PRINT_A) {
+    end = MAX_PRINT_A;
+   }
+   if (start < ' ') {
+    start = ' ';
+   }
+   if (end - start >= MAX_PRINT_A - ' ' - 2) {
+    allow_literals = FALSE;
+   }
+   break;
+  }
+ }
+ invlist_iterfinish(*invlist_ptr);
+
+ /* The legibility of the output depends mostly on how many punctuation
+ * characters are output.  There are 32 possible ASCII ones, and some have
+ * an additional backslash, bringing it to currently 36, so if any more
+ * than 18 are to be output, we can instead output it as its complement,
+ * yielding fewer puncts, and making it more legible.  But give some weight
+ * to the fact that outputting it as a complement is less legible than a
+ * straight output, so don't complement unless we are somewhat over the 18
+ * mark */
+ if (allow_literals && punct_count > 22) {
+  sv_catpvs(sv, "^");
+
+  /* Add everything remaining to the list, so when we invert it just
+  * below, it will be excluded */
+  _invlist_union_complement_2nd(*invlist_ptr, PL_InBitmap, invlist_ptr);
+  _invlist_invert(*invlist_ptr);
+ }
+
+ /* Here we have figured things out.  Output each range */
+ invlist_iterinit(*invlist_ptr);
+ while (invlist_iternext(*invlist_ptr, &start, &end)) {
+  if (start >= NUM_ANYOF_CODE_POINTS) {
+   break;
+  }
+  put_range(sv, start, end, allow_literals);
+ }
+ invlist_iterfinish(*invlist_ptr);
+
+ return TRUE;
+}
+
+#define CLEAR_OPTSTART \
+ if (optstart) STMT_START {                                               \
+  DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,                       \
+       " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
+  optstart=NULL;                                                       \
+ } STMT_END
+
+#define DUMPUNTIL(b,e)                                                       \
+     CLEAR_OPTSTART;                                          \
+     node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
+
+STATIC const regnode *
+S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
+   const regnode *last, const regnode *plast,
+   SV* sv, I32 indent, U32 depth)
+{
+ U8 op = PSEUDO; /* Arbitrary non-END op. */
+ const regnode *next;
+ const regnode *optstart= NULL;
+
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMPUNTIL;
+
+#ifdef DEBUG_DUMPUNTIL
+ PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
+  last ? last-start : 0,plast ? plast-start : 0);
+#endif
+
+ if (plast && plast < last)
+  last= plast;
+
+ while (PL_regkind[op] != END && (!last || node < last)) {
+  assert(node);
+  /* While that wasn't END last time... */
+  NODE_ALIGN(node);
+  op = OP(node);
+  if (op == CLOSE || op == WHILEM)
+   indent--;
+  next = regnext((regnode *)node);
+
+  /* Where, what. */
+  if (OP(node) == OPTIMIZED) {
+   if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
+    optstart = node;
+   else
+    goto after_print;
+  } else
+   CLEAR_OPTSTART;
+
+  regprop(r, sv, node, NULL, NULL);
+  PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
+     (int)(2*indent + 1), "", SvPVX_const(sv));
+
+  if (OP(node) != OPTIMIZED) {
+   if (next == NULL)  /* Next ptr. */
+    PerlIO_printf(Perl_debug_log, " (0)");
+   else if (PL_regkind[(U8)op] == BRANCH
+     && PL_regkind[OP(next)] != BRANCH )
+    PerlIO_printf(Perl_debug_log, " (FAIL)");
+   else
+    PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
+   (void)PerlIO_putc(Perl_debug_log, '\n');
+  }
+
+ after_print:
+  if (PL_regkind[(U8)op] == BRANCHJ) {
+   assert(next);
+   {
+    const regnode *nnode = (OP(next) == LONGJMP
+         ? regnext((regnode *)next)
+         : next);
+    if (last && nnode > last)
+     nnode = last;
+    DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
+   }
+  }
+  else if (PL_regkind[(U8)op] == BRANCH) {
+   assert(next);
+   DUMPUNTIL(NEXTOPER(node), next);
+  }
+  else if ( PL_regkind[(U8)op]  == TRIE ) {
+   const regnode *this_trie = node;
+   const char op = OP(node);
+   const U32 n = ARG(node);
+   const reg_ac_data * const ac = op>=AHOCORASICK ?
+   (reg_ac_data *)ri->data->data[n] :
+   NULL;
+   const reg_trie_data * const trie =
+    (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
+#ifdef DEBUGGING
+   AV *const trie_words
+      = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
+#endif
+   const regnode *nextbranch= NULL;
+   I32 word_idx;
+   sv_setpvs(sv, "");
+   for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
+    SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
+
+    PerlIO_printf(Perl_debug_log, "%*s%s ",
+    (int)(2*(indent+3)), "",
+     elem_ptr
+     ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr),
+        SvCUR(*elem_ptr), 60,
+        PL_colors[0], PL_colors[1],
+        (SvUTF8(*elem_ptr)
+        ? PERL_PV_ESCAPE_UNI
+        : 0)
+        | PERL_PV_PRETTY_ELLIPSES
+        | PERL_PV_PRETTY_LTGT
+       )
+     : "???"
+    );
+    if (trie->jump) {
+     U16 dist= trie->jump[word_idx+1];
+     PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
+       (UV)((dist ? this_trie + dist : next) - start));
+     if (dist) {
+      if (!nextbranch)
+       nextbranch= this_trie + trie->jump[0];
+      DUMPUNTIL(this_trie + dist, nextbranch);
+     }
+     if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
+      nextbranch= regnext((regnode *)nextbranch);
+    } else {
+     PerlIO_printf(Perl_debug_log, "\n");
+    }
+   }
+   if (last && next > last)
+    node= last;
+   else
+    node= next;
+  }
+  else if ( op == CURLY ) {   /* "next" might be very big: optimizer */
+   DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
+     NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
+  }
+  else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
+   assert(next);
+   DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
+  }
+  else if ( op == PLUS || op == STAR) {
+   DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
+  }
+  else if (PL_regkind[(U8)op] == ANYOF) {
+   /* arglen 1 + class block */
+   node += 1 + ((ANYOF_FLAGS(node) & ANYOF_MATCHES_POSIXL)
+      ? ANYOF_POSIXL_SKIP
+      : ANYOF_SKIP);
+   node = NEXTOPER(node);
+  }
+  else if (PL_regkind[(U8)op] == EXACT) {
+   /* Literal string, where present. */
+   node += NODE_SZ_STR(node) - 1;
+   node = NEXTOPER(node);
+  }
+  else {
+   node = NEXTOPER(node);
+   node += regarglen[(U8)op];
+  }
+  if (op == CURLYX || op == OPEN)
+   indent++;
+ }
+ CLEAR_OPTSTART;
+#ifdef DEBUG_DUMPUNTIL
+ PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
+#endif
+ return node;
+}
+
+#endif /* DEBUGGING */
+
+/*
+ * ex: set ts=8 sts=4 sw=4 et:
+ */
diff --git a/src/5023000/regexec.c b/src/5023000/regexec.c
new file mode 100644 (file)
index 0000000..af8afde
--- /dev/null
@@ -0,0 +1,9020 @@
+/*    regexec.c
+ */
+
+/*
+ *  One Ring to rule them all, One Ring to find them
+ &
+ *     [p.v of _The Lord of the Rings_, opening poem]
+ *     [p.50 of _The Lord of the Rings_, I/iii: "The Shadow of the Past"]
+ *     [p.254 of _The Lord of the Rings_, II/ii: "The Council of Elrond"]
+ */
+
+/* This file contains functions for executing a regular expression.  See
+ * also regcomp.c which funnily enough, contains functions for compiling
+ * a regular expression.
+ *
+ * This file is also copied at build time to ext/re/re_exec.c, where
+ * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
+ * This causes the main functions to be compiled under new names and with
+ * debugging support added, which makes "use re 'debug'" work.
+ */
+
+/* NOTE: this is derived from Henry Spencer's regexp code, and should not
+ * confused with the original package (see point 3 below).  Thanks, Henry!
+ */
+
+/* Additional note: this code is very heavily munged from Henry's version
+ * in places.  In some spots I've traded clarity for efficiency, so don't
+ * blame Henry for some of the lack of readability.
+ */
+
+/* The names of the functions have been changed from regcomp and
+ * regexec to  pregcomp and pregexec in order to avoid conflicts
+ * with the POSIX routines of the same names.
+*/
+
+#ifdef PERL_EXT_RE_BUILD
+#include "re_top.h"
+#endif
+
+#define B_ON_NON_UTF8_LOCALE_IS_WRONG            \
+ "Use of \\b{} or \\B{} for non-UTF-8 locale is wrong.  Assuming a UTF-8 locale"
+
+/*
+ * pregcomp and pregexec -- regsub and regerror are not used in perl
+ *
+ * Copyright (c) 1986 by University of Toronto.
+ * Written by Henry Spencer.  Not derived from licensed software.
+ *
+ * Permission is granted to anyone to use this software for any
+ * purpose on any computer system, and to redistribute it freely,
+ * subject to the following restrictions:
+ *
+ * 1. The author is not responsible for the consequences of use of
+ *  this software, no matter how awful, even if they arise
+ *  from defects in it.
+ *
+ * 2. The origin of this software must not be misrepresented, either
+ *  by explicit claim or by omission.
+ *
+ * 3. Altered versions must be plainly marked as such, and must not
+ *  be misrepresented as being the original software.
+ *
+ ****    Alterations to Henry's code are...
+ ****
+ ****    Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ ****    2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ ****    by Larry Wall and others
+ ****
+ ****    You may distribute under the terms of either the GNU General Public
+ ****    License or the Artistic License, as specified in the README file.
+ *
+ * Beware that some of this code is subtly aware of the way operator
+ * precedence is structured in regular expressions.  Serious changes in
+ * regular-expression syntax might require a total rethink.
+ */
+#include "EXTERN.h"
+#define PERL_IN_REGEXEC_C
+#undef PERL_IN_XSUB_RE
+#define PERL_IN_XSUB_RE 1
+#include "perl.h"
+#include "re_defs.h"
+#undef PERL_IN_XSUB_RE
+
+#ifdef PERL_IN_XSUB_RE
+#  include "re_comp.h"
+#else
+#  include "regcomp.h"
+#endif
+
+#include "inline_invlist.c"
+#include "unicode_constants.h"
+
+#ifdef DEBUGGING
+/* At least one required character in the target string is expressible only in
+ * UTF-8. */
+static const char* const non_utf8_target_but_utf8_required
+    = "Can't match, because target string needs to be in UTF-8\n";
+#endif
+
+#define NON_UTF8_TARGET_BUT_UTF8_REQUIRED(target) STMT_START { \
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%s", non_utf8_target_but_utf8_required));\
+ goto target; \
+} STMT_END
+
+#define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
+
+#ifndef STATIC
+#define STATIC static
+#endif
+
+/* Valid only for non-utf8 strings: avoids the reginclass
+ * call if there are no complications: i.e., if everything matchable is
+ * straight forward in the bitmap */
+#define REGINCLASS(prog,p,c)  (ANYOF_FLAGS(p) ? reginclass(prog,p,c,c+1,0)   \
+           : ANYOF_BITMAP_TEST(p,*(c)))
+
+/*
+ * Forwards.
+ */
+
+#define CHR_SVLEN(sv) (utf8_target ? sv_len_utf8(sv) : SvCUR(sv))
+#define CHR_DIST(a,b) (reginfo->is_utf8_target ? utf8_distance(a,b) : a - b)
+
+#define HOPc(pos,off) \
+  (char *)(reginfo->is_utf8_target \
+   ? reghop3((U8*)pos, off, \
+     (U8*)(off >= 0 ? reginfo->strend : reginfo->strbeg)) \
+   : (U8*)(pos + off))
+
+#define HOPBACKc(pos, off) \
+  (char*)(reginfo->is_utf8_target \
+   ? reghopmaybe3((U8*)pos, -off, (U8*)(reginfo->strbeg)) \
+   : (pos - off >= reginfo->strbeg) \
+    ? (U8*)pos - off  \
+    : NULL)
+
+#define HOP3(pos,off,lim) (reginfo->is_utf8_target  ? reghop3((U8*)(pos), off, (U8*)(lim)) : (U8*)(pos + off))
+#define HOP3c(pos,off,lim) ((char*)HOP3(pos,off,lim))
+
+/* lim must be +ve. Returns NULL on overshoot */
+#define HOPMAYBE3(pos,off,lim) \
+  (reginfo->is_utf8_target                        \
+   ? reghopmaybe3((U8*)pos, off, (U8*)(lim))   \
+   : ((U8*)pos + off <= lim)                   \
+    ? (U8*)pos + off                        \
+    : NULL)
+
+/* like HOP3, but limits the result to <= lim even for the non-utf8 case.
+ * off must be >=0; args should be vars rather than expressions */
+#define HOP3lim(pos,off,lim) (reginfo->is_utf8_target \
+ ? reghop3((U8*)(pos), off, (U8*)(lim)) \
+ : (U8*)((pos + off) > lim ? lim : (pos + off)))
+
+#define HOP4(pos,off,llim, rlim) (reginfo->is_utf8_target \
+ ? reghop4((U8*)(pos), off, (U8*)(llim), (U8*)(rlim)) \
+ : (U8*)(pos + off))
+#define HOP4c(pos,off,llim, rlim) ((char*)HOP4(pos,off,llim, rlim))
+
+#define NEXTCHR_EOS -10 /* nextchr has fallen off the end */
+#define NEXTCHR_IS_EOS (nextchr < 0)
+
+#define SET_nextchr \
+ nextchr = ((locinput < reginfo->strend) ? UCHARAT(locinput) : NEXTCHR_EOS)
+
+#define SET_locinput(p) \
+ locinput = (p);  \
+ SET_nextchr
+
+
+#define LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist) STMT_START {   \
+  if (!swash_ptr) {                                                     \
+   U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;                       \
+   swash_ptr = _core_swash_init("utf8", property_name, &PL_sv_undef, \
+          1, 0, invlist, &flags);              \
+   assert(swash_ptr);                                                \
+  }                                                                     \
+ } STMT_END
+
+/* If in debug mode, we test that a known character properly matches */
+#ifdef DEBUGGING
+#   define LOAD_UTF8_CHARCLASS_DEBUG_TEST(swash_ptr,                          \
+          property_name,                      \
+          invlist,                            \
+          utf8_char_in_property)              \
+  LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist);               \
+  assert(swash_fetch(swash_ptr, (U8 *) utf8_char_in_property, TRUE));
+#else
+#   define LOAD_UTF8_CHARCLASS_DEBUG_TEST(swash_ptr,                          \
+          property_name,                      \
+          invlist,                            \
+          utf8_char_in_property)              \
+  LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist)
+#endif
+
+#define LOAD_UTF8_CHARCLASS_ALNUM() LOAD_UTF8_CHARCLASS_DEBUG_TEST(           \
+          PL_utf8_swash_ptrs[_CC_WORDCHAR],     \
+          "",                                   \
+          PL_XPosix_ptrs[_CC_WORDCHAR],         \
+          LATIN_CAPITAL_LETTER_SHARP_S_UTF8);
+
+#define PLACEHOLDER /* Something for the preprocessor to grab onto */
+/* TODO: Combine JUMPABLE and HAS_TEXT to cache OP(rn) */
+
+/* for use after a quantifier and before an EXACT-like node -- japhy */
+/* it would be nice to rework regcomp.sym to generate this stuff. sigh
+ *
+ * NOTE that *nothing* that affects backtracking should be in here, specifically
+ * VERBS must NOT be included. JUMPABLE is used to determine  if we can ignore a
+ * node that is in between two EXACT like nodes when ascertaining what the required
+ * "follow" character is. This should probably be moved to regex compile time
+ * although it may be done at run time beause of the REF possibility - more
+ * investigation required. -- demerphq
+*/
+#define JUMPABLE(rn) (                                                             \
+ OP(rn) == OPEN ||                                                              \
+ (OP(rn) == CLOSE && (!cur_eval || cur_eval->u.eval.close_paren != ARG(rn))) || \
+ OP(rn) == EVAL ||                                                              \
+ OP(rn) == SUSPEND || OP(rn) == IFMATCH ||                                      \
+ OP(rn) == PLUS || OP(rn) == MINMOD ||                                          \
+ OP(rn) == KEEPS ||                                                             \
+ (PL_regkind[OP(rn)] == CURLY && ARG1(rn) > 0)                                  \
+)
+#define IS_EXACT(rn) (PL_regkind[OP(rn)] == EXACT)
+
+#define HAS_TEXT(rn) ( IS_EXACT(rn) || PL_regkind[OP(rn)] == REF )
+
+#if 0
+/* Currently these are only used when PL_regkind[OP(rn)] == EXACT so
+   we don't need this definition.  XXX These are now out-of-sync*/
+#define IS_TEXT(rn)   ( OP(rn)==EXACT   || OP(rn)==REF   || OP(rn)==NREF   )
+#define IS_TEXTF(rn)  ( OP(rn)==EXACTFU || OP(rn)==EXACTFU_SS || OP(rn)==EXACTFA || OP(rn)==EXACTFA_NO_TRIE || OP(rn)==EXACTF || OP(rn)==REFF  || OP(rn)==NREFF )
+#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL || OP(rn)==REFFL || OP(rn)==NREFFL )
+
+#else
+/* ... so we use this as its faster. */
+#define IS_TEXT(rn)   ( OP(rn)==EXACT || OP(rn)==EXACTL )
+#define IS_TEXTFU(rn)  ( OP(rn)==EXACTFU || OP(rn)==EXACTFLU8 || OP(rn)==EXACTFU_SS || OP(rn) == EXACTFA || OP(rn) == EXACTFA_NO_TRIE)
+#define IS_TEXTF(rn)  ( OP(rn)==EXACTF  )
+#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL )
+
+#endif
+
+/*
+  Search for mandatory following text node; for lookahead, the text must
+  follow but for lookbehind (rn->flags != 0) we skip to the next step.
+*/
+#define FIND_NEXT_IMPT(rn) STMT_START {                                   \
+ while (JUMPABLE(rn)) { \
+  const OPCODE type = OP(rn); \
+  if (type == SUSPEND || PL_regkind[type] == CURLY) \
+   rn = NEXTOPER(NEXTOPER(rn)); \
+  else if (type == PLUS) \
+   rn = NEXTOPER(rn); \
+  else if (type == IFMATCH) \
+   rn = (rn->flags == 0) ? NEXTOPER(NEXTOPER(rn)) : rn + ARG(rn); \
+  else rn += NEXT_OFF(rn); \
+ } \
+} STMT_END
+
+#define SLAB_FIRST(s) (&(s)->states[0])
+#define SLAB_LAST(s)  (&(s)->states[PERL_REGMATCH_SLAB_SLOTS-1])
+
+static void S_setup_eval_state(pTHX_ regmatch_info *const reginfo);
+static void S_cleanup_regmatch_info_aux(pTHX_ void *arg);
+static regmatch_state * S_push_slab(pTHX);
+
+#define REGCP_PAREN_ELEMS 3
+#define REGCP_OTHER_ELEMS 3
+#define REGCP_FRAME_ELEMS 1
+/* REGCP_FRAME_ELEMS are not part of the REGCP_OTHER_ELEMS and
+ * are needed for the regexp context stack bookkeeping. */
+
+STATIC CHECKPOINT
+S_regcppush(pTHX_ const regexp *rex, I32 parenfloor, U32 maxopenparen)
+{
+ const int retval = PL_savestack_ix;
+ const int paren_elems_to_push =
+    (maxopenparen - parenfloor) * REGCP_PAREN_ELEMS;
+ const UV total_elems = paren_elems_to_push + REGCP_OTHER_ELEMS;
+ const UV elems_shifted = total_elems << SAVE_TIGHT_SHIFT;
+ I32 p;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGCPPUSH;
+
+ if (paren_elems_to_push < 0)
+  Perl_croak(aTHX_ "panic: paren_elems_to_push, %i < 0, maxopenparen: %i parenfloor: %i REGCP_PAREN_ELEMS: %u",
+    (int)paren_elems_to_push, (int)maxopenparen,
+    (int)parenfloor, (unsigned)REGCP_PAREN_ELEMS);
+
+ if ((elems_shifted >> SAVE_TIGHT_SHIFT) != total_elems)
+  Perl_croak(aTHX_ "panic: paren_elems_to_push offset %"UVuf
+    " out of range (%lu-%ld)",
+    total_elems,
+    (unsigned long)maxopenparen,
+    (long)parenfloor);
+
+ SSGROW(total_elems + REGCP_FRAME_ELEMS);
+
+ DEBUG_BUFFERS_r(
+  if ((int)maxopenparen > (int)parenfloor)
+   PerlIO_printf(Perl_debug_log,
+    "rex=0x%"UVxf" offs=0x%"UVxf": saving capture indices:\n",
+    PTR2UV(rex),
+    PTR2UV(rex->offs)
+   );
+ );
+ for (p = parenfloor+1; p <= (I32)maxopenparen;  p++) {
+/* REGCP_PARENS_ELEMS are pushed per pairs of parentheses. */
+  SSPUSHIV(rex->offs[p].end);
+  SSPUSHIV(rex->offs[p].start);
+  SSPUSHINT(rex->offs[p].start_tmp);
+  DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+   "    \\%"UVuf": %"IVdf"(%"IVdf")..%"IVdf"\n",
+   (UV)p,
+   (IV)rex->offs[p].start,
+   (IV)rex->offs[p].start_tmp,
+   (IV)rex->offs[p].end
+  ));
+ }
+/* REGCP_OTHER_ELEMS are pushed in any case, parentheses or no. */
+ SSPUSHINT(maxopenparen);
+ SSPUSHINT(rex->lastparen);
+ SSPUSHINT(rex->lastcloseparen);
+ SSPUSHUV(SAVEt_REGCONTEXT | elems_shifted); /* Magic cookie. */
+
+ return retval;
+}
+
+/* These are needed since we do not localize EVAL nodes: */
+#define REGCP_SET(cp)                                           \
+ DEBUG_STATE_r(                                              \
+   PerlIO_printf(Perl_debug_log,          \
+    "  Setting an EVAL scope, savestack=%"IVdf"\n", \
+    (IV)PL_savestack_ix));                          \
+ cp = PL_savestack_ix
+
+#define REGCP_UNWIND(cp)                                        \
+ DEBUG_STATE_r(                                              \
+  if (cp != PL_savestack_ix)                   \
+    PerlIO_printf(Perl_debug_log,          \
+    "  Clearing an EVAL scope, savestack=%"IVdf"..%"IVdf"\n", \
+    (IV)(cp), (IV)PL_savestack_ix));                \
+ regcpblow(cp)
+
+#define UNWIND_PAREN(lp, lcp)               \
+ for (n = rex->lastparen; n > lp; n--)   \
+  rex->offs[n].end = -1;              \
+ rex->lastparen = n;                     \
+ rex->lastcloseparen = lcp;
+
+
+STATIC void
+S_regcppop(pTHX_ regexp *rex, U32 *maxopenparen_p)
+{
+ UV i;
+ U32 paren;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGCPPOP;
+
+ /* Pop REGCP_OTHER_ELEMS before the parentheses loop starts. */
+ i = SSPOPUV;
+ assert((i & SAVE_MASK) == SAVEt_REGCONTEXT); /* Check that the magic cookie is there. */
+ i >>= SAVE_TIGHT_SHIFT; /* Parentheses elements to pop. */
+ rex->lastcloseparen = SSPOPINT;
+ rex->lastparen = SSPOPINT;
+ *maxopenparen_p = SSPOPINT;
+
+ i -= REGCP_OTHER_ELEMS;
+ /* Now restore the parentheses context. */
+ DEBUG_BUFFERS_r(
+  if (i || rex->lastparen + 1 <= rex->nparens)
+   PerlIO_printf(Perl_debug_log,
+    "rex=0x%"UVxf" offs=0x%"UVxf": restoring capture indices to:\n",
+    PTR2UV(rex),
+    PTR2UV(rex->offs)
+   );
+ );
+ paren = *maxopenparen_p;
+ for ( ; i > 0; i -= REGCP_PAREN_ELEMS) {
+  SSize_t tmps;
+  rex->offs[paren].start_tmp = SSPOPINT;
+  rex->offs[paren].start = SSPOPIV;
+  tmps = SSPOPIV;
+  if (paren <= rex->lastparen)
+   rex->offs[paren].end = tmps;
+  DEBUG_BUFFERS_r( PerlIO_printf(Perl_debug_log,
+   "    \\%"UVuf": %"IVdf"(%"IVdf")..%"IVdf"%s\n",
+   (UV)paren,
+   (IV)rex->offs[paren].start,
+   (IV)rex->offs[paren].start_tmp,
+   (IV)rex->offs[paren].end,
+   (paren > rex->lastparen ? "(skipped)" : ""));
+  );
+  paren--;
+ }
+#if 1
+ /* It would seem that the similar code in regtry()
+ * already takes care of this, and in fact it is in
+ * a better location to since this code can #if 0-ed out
+ * but the code in regtry() is needed or otherwise tests
+ * requiring null fields (pat.t#187 and split.t#{13,14}
+ * (as of patchlevel 7877)  will fail.  Then again,
+ * this code seems to be necessary or otherwise
+ * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
+ * --jhi updated by dapm */
+ for (i = rex->lastparen + 1; i <= rex->nparens; i++) {
+  if (i > *maxopenparen_p)
+   rex->offs[i].start = -1;
+  rex->offs[i].end = -1;
+  DEBUG_BUFFERS_r( PerlIO_printf(Perl_debug_log,
+   "    \\%"UVuf": %s   ..-1 undeffing\n",
+   (UV)i,
+   (i > *maxopenparen_p) ? "-1" : "  "
+  ));
+ }
+#endif
+}
+
+/* restore the parens and associated vars at savestack position ix,
+ * but without popping the stack */
+
+STATIC void
+S_regcp_restore(pTHX_ regexp *rex, I32 ix, U32 *maxopenparen_p)
+{
+ I32 tmpix = PL_savestack_ix;
+ PL_savestack_ix = ix;
+ regcppop(rex, maxopenparen_p);
+ PL_savestack_ix = tmpix;
+}
+
+#define regcpblow(cp) LEAVE_SCOPE(cp) /* Ignores regcppush()ed data. */
+
+STATIC bool
+S_isFOO_lc(pTHX_ const U8 classnum, const U8 character)
+{
+ /* Returns a boolean as to whether or not 'character' is a member of the
+ * Posix character class given by 'classnum' that should be equivalent to a
+ * value in the typedef '_char_class_number'.
+ *
+ * Ideally this could be replaced by a just an array of function pointers
+ * to the C library functions that implement the macros this calls.
+ * However, to compile, the precise function signatures are required, and
+ * these may vary from platform to to platform.  To avoid having to figure
+ * out what those all are on each platform, I (khw) am using this method,
+ * which adds an extra layer of function call overhead (unless the C
+ * optimizer strips it away).  But we don't particularly care about
+ * performance with locales anyway. */
+
+ switch ((_char_class_number) classnum) {
+  case _CC_ENUM_ALPHANUMERIC: return isALPHANUMERIC_LC(character);
+  case _CC_ENUM_ALPHA:     return isALPHA_LC(character);
+  case _CC_ENUM_ASCII:     return isASCII_LC(character);
+  case _CC_ENUM_BLANK:     return isBLANK_LC(character);
+  case _CC_ENUM_CASED:     return isLOWER_LC(character)
+          || isUPPER_LC(character);
+  case _CC_ENUM_CNTRL:     return isCNTRL_LC(character);
+  case _CC_ENUM_DIGIT:     return isDIGIT_LC(character);
+  case _CC_ENUM_GRAPH:     return isGRAPH_LC(character);
+  case _CC_ENUM_LOWER:     return isLOWER_LC(character);
+  case _CC_ENUM_PRINT:     return isPRINT_LC(character);
+  case _CC_ENUM_PUNCT:     return isPUNCT_LC(character);
+  case _CC_ENUM_SPACE:     return isSPACE_LC(character);
+  case _CC_ENUM_UPPER:     return isUPPER_LC(character);
+  case _CC_ENUM_WORDCHAR:  return isWORDCHAR_LC(character);
+  case _CC_ENUM_XDIGIT:    return isXDIGIT_LC(character);
+  default:    /* VERTSPACE should never occur in locales */
+   Perl_croak(aTHX_ "panic: isFOO_lc() has an unexpected character class '%d'", classnum);
+ }
+
+ NOT_REACHED; /* NOTREACHED */
+ return FALSE;
+}
+
+STATIC bool
+S_isFOO_utf8_lc(pTHX_ const U8 classnum, const U8* character)
+{
+ /* Returns a boolean as to whether or not the (well-formed) UTF-8-encoded
+ * 'character' is a member of the Posix character class given by 'classnum'
+ * that should be equivalent to a value in the typedef
+ * '_char_class_number'.
+ *
+ * This just calls isFOO_lc on the code point for the character if it is in
+ * the range 0-255.  Outside that range, all characters use Unicode
+ * rules, ignoring any locale.  So use the Unicode function if this class
+ * requires a swash, and use the Unicode macro otherwise. */
+
+ PERL_ARGS_ASSERT_ISFOO_UTF8_LC;
+
+ if (UTF8_IS_INVARIANT(*character)) {
+  return isFOO_lc(classnum, *character);
+ }
+ else if (UTF8_IS_DOWNGRADEABLE_START(*character)) {
+  return isFOO_lc(classnum,
+      TWO_BYTE_UTF8_TO_NATIVE(*character, *(character + 1)));
+ }
+
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(character, character + UTF8SKIP(character));
+
+ if (classnum < _FIRST_NON_SWASH_CC) {
+
+  /* Initialize the swash unless done already */
+  if (! PL_utf8_swash_ptrs[classnum]) {
+   U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+   PL_utf8_swash_ptrs[classnum] =
+     _core_swash_init("utf8",
+         "",
+         &PL_sv_undef, 1, 0,
+         PL_XPosix_ptrs[classnum], &flags);
+  }
+
+  return cBOOL(swash_fetch(PL_utf8_swash_ptrs[classnum], (U8 *)
+        character,
+        TRUE /* is UTF */ ));
+ }
+
+ switch ((_char_class_number) classnum) {
+  case _CC_ENUM_SPACE:     return is_XPERLSPACE_high(character);
+  case _CC_ENUM_BLANK:     return is_HORIZWS_high(character);
+  case _CC_ENUM_XDIGIT:    return is_XDIGIT_high(character);
+  case _CC_ENUM_VERTSPACE: return is_VERTWS_high(character);
+  default:                 break;
+ }
+
+ return FALSE; /* Things like CNTRL are always below 256 */
+}
+
+/*
+ * pregexec and friends
+ */
+
+#ifndef PERL_IN_XSUB_RE
+/*
+ - pregexec - match a regexp against a string
+ */
+I32
+Perl_pregexec(pTHX_ REGEXP * const prog, char* stringarg, char *strend,
+  char *strbeg, SSize_t minend, SV *screamer, U32 nosave)
+/* stringarg: the point in the string at which to begin matching */
+/* strend:    pointer to null at end of string */
+/* strbeg:    real beginning of string */
+/* minend:    end of match must be >= minend bytes after stringarg. */
+/* screamer:  SV being matched: only used for utf8 flag, pos() etc; string
+ *            itself is accessed via the pointers above */
+/* nosave:    For optimizations. */
+{
+ PERL_ARGS_ASSERT_PREGEXEC;
+
+ return
+  regexec_flags(prog, stringarg, strend, strbeg, minend, screamer, NULL,
+     nosave ? 0 : REXEC_COPY_STR);
+}
+#endif
+
+
+
+/* re_intuit_start():
+ *
+ * Based on some optimiser hints, try to find the earliest position in the
+ * string where the regex could match.
+ *
+ *   rx:     the regex to match against
+ *   sv:     the SV being matched: only used for utf8 flag; the string
+ *           itself is accessed via the pointers below. Note that on
+ *           something like an overloaded SV, SvPOK(sv) may be false
+ *           and the string pointers may point to something unrelated to
+ *           the SV itself.
+ *   strbeg: real beginning of string
+ *   strpos: the point in the string at which to begin matching
+ *   strend: pointer to the byte following the last char of the string
+ *   flags   currently unused; set to 0
+ *   data:   currently unused; set to NULL
+ *
+ * The basic idea of re_intuit_start() is to use some known information
+ * about the pattern, namely:
+ *
+ *   a) the longest known anchored substring (i.e. one that's at a
+ *      constant offset from the beginning of the pattern; but not
+ *      necessarily at a fixed offset from the beginning of the
+ *      string);
+ *   b) the longest floating substring (i.e. one that's not at a constant
+ *      offset from the beginning of the pattern);
+ *   c) Whether the pattern is anchored to the string; either
+ *      an absolute anchor: /^../, or anchored to \n: /^.../m,
+ *      or anchored to pos(): /\G/;
+ *   d) A start class: a real or synthetic character class which
+ *      represents which characters are legal at the start of the pattern;
+ *
+ * to either quickly reject the match, or to find the earliest position
+ * within the string at which the pattern might match, thus avoiding
+ * running the full NFA engine at those earlier locations, only to
+ * eventually fail and retry further along.
+ *
+ * Returns NULL if the pattern can't match, or returns the address within
+ * the string which is the earliest place the match could occur.
+ *
+ * The longest of the anchored and floating substrings is called 'check'
+ * and is checked first. The other is called 'other' and is checked
+ * second. The 'other' substring may not be present.  For example,
+ *
+ *    /(abc|xyz)ABC\d{0,3}DEFG/
+ *
+ * will have
+ *
+ *   check substr (float)    = "DEFG", offset 6..9 chars
+ *   other substr (anchored) = "ABC",  offset 3..3 chars
+ *   stclass = [ax]
+ *
+ * Be aware that during the course of this function, sometimes 'anchored'
+ * refers to a substring being anchored relative to the start of the
+ * pattern, and sometimes to the pattern itself being anchored relative to
+ * the string. For example:
+ *
+ *   /\dabc/:   "abc" is anchored to the pattern;
+ *   /^\dabc/:  "abc" is anchored to the pattern and the string;
+ *   /\d+abc/:  "abc" is anchored to neither the pattern nor the string;
+ *   /^\d+abc/: "abc" is anchored to neither the pattern nor the string,
+ *                    but the pattern is anchored to the string.
+ */
+
+char *
+Perl_re_intuit_start(pTHX_
+     REGEXP * const rx,
+     SV *sv,
+     const char * const strbeg,
+     char *strpos,
+     char *strend,
+     const U32 flags,
+     re_scream_pos_data *data)
+{
+ struct regexp *const prog = ReANY(rx);
+ SSize_t start_shift = prog->check_offset_min;
+ /* Should be nonnegative! */
+ SSize_t end_shift   = 0;
+ /* current lowest pos in string where the regex can start matching */
+ char *rx_origin = strpos;
+ SV *check;
+ const bool utf8_target = (sv && SvUTF8(sv)) ? 1 : 0; /* if no sv we have to assume bytes */
+ U8   other_ix = 1 - prog->substrs->check_ix;
+ bool ml_anch = 0;
+ char *other_last = strpos;/* latest pos 'other' substr already checked to */
+ char *check_at = NULL;  /* check substr found at this pos */
+ const I32 multiline = prog->extflags & RXf_PMf_MULTILINE;
+ RXi_GET_DECL(prog,progi);
+ regmatch_info reginfo_buf;  /* create some info to pass to find_byclass */
+ regmatch_info *const reginfo = &reginfo_buf;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_INTUIT_START;
+ PERL_UNUSED_ARG(flags);
+ PERL_UNUSED_ARG(data);
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+    "Intuit: trying to determine minimum start position...\n"));
+
+ /* for now, assume that all substr offsets are positive. If at some point
+ * in the future someone wants to do clever things with look-behind and
+ * -ve offsets, they'll need to fix up any code in this function
+ * which uses these offsets. See the thread beginning
+ * <20140113145929.GF27210@iabyn.com>
+ */
+ assert(prog->substrs->data[0].min_offset >= 0);
+ assert(prog->substrs->data[0].max_offset >= 0);
+ assert(prog->substrs->data[1].min_offset >= 0);
+ assert(prog->substrs->data[1].max_offset >= 0);
+ assert(prog->substrs->data[2].min_offset >= 0);
+ assert(prog->substrs->data[2].max_offset >= 0);
+
+ /* for now, assume that if both present, that the floating substring
+ * doesn't start before the anchored substring.
+ * If you break this assumption (e.g. doing better optimisations
+ * with lookahead/behind), then you'll need to audit the code in this
+ * function carefully first
+ */
+ assert(
+   ! (  (prog->anchored_utf8 || prog->anchored_substr)
+   && (prog->float_utf8    || prog->float_substr))
+  || (prog->float_min_offset >= prog->anchored_offset));
+
+ /* byte rather than char calculation for efficiency. It fails
+ * to quickly reject some cases that can't match, but will reject
+ * them later after doing full char arithmetic */
+ if (prog->minlen > strend - strpos) {
+  DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+       "  String too short...\n"));
+  goto fail;
+ }
+
+ RX_MATCH_UTF8_set(rx,utf8_target);
+ reginfo->is_utf8_target = cBOOL(utf8_target);
+ reginfo->info_aux = NULL;
+ reginfo->strbeg = strbeg;
+ reginfo->strend = strend;
+ reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx));
+ reginfo->intuit = 1;
+ /* not actually used within intuit, but zero for safety anyway */
+ reginfo->poscache_maxiter = 0;
+
+ if (utf8_target) {
+  if (!prog->check_utf8 && prog->check_substr)
+   to_utf8_substr(prog);
+  check = prog->check_utf8;
+ } else {
+  if (!prog->check_substr && prog->check_utf8) {
+   if (! to_byte_substr(prog)) {
+    NON_UTF8_TARGET_BUT_UTF8_REQUIRED(fail);
+   }
+  }
+  check = prog->check_substr;
+ }
+
+ /* dump the various substring data */
+ DEBUG_OPTIMISE_MORE_r({
+  int i;
+  for (i=0; i<=2; i++) {
+   SV *sv = (utf8_target ? prog->substrs->data[i].utf8_substr
+        : prog->substrs->data[i].substr);
+   if (!sv)
+    continue;
+
+   PerlIO_printf(Perl_debug_log,
+    "  substrs[%d]: min=%"IVdf" max=%"IVdf" end shift=%"IVdf
+    " useful=%"IVdf" utf8=%d [%s]\n",
+    i,
+    (IV)prog->substrs->data[i].min_offset,
+    (IV)prog->substrs->data[i].max_offset,
+    (IV)prog->substrs->data[i].end_shift,
+    BmUSEFUL(sv),
+    utf8_target ? 1 : 0,
+    SvPEEK(sv));
+  }
+ });
+
+ if (prog->intflags & PREGf_ANCH) { /* Match at \G, beg-of-str or after \n */
+
+  /* ml_anch: check after \n?
+  *
+  * A note about PREGf_IMPLICIT: on an un-anchored pattern beginning
+  * with /.*.../, these flags will have been added by the
+  * compiler:
+  *   /.*abc/, /.*abc/m:  PREGf_IMPLICIT | PREGf_ANCH_MBOL
+  *   /.*abc/s:           PREGf_IMPLICIT | PREGf_ANCH_SBOL
+  */
+  ml_anch =      (prog->intflags & PREGf_ANCH_MBOL)
+    && !(prog->intflags & PREGf_IMPLICIT);
+
+  if (!ml_anch && !(prog->intflags & PREGf_IMPLICIT)) {
+   /* we are only allowed to match at BOS or \G */
+
+   /* trivially reject if there's a BOS anchor and we're not at BOS.
+   *
+   * Note that we don't try to do a similar quick reject for
+   * \G, since generally the caller will have calculated strpos
+   * based on pos() and gofs, so the string is already correctly
+   * anchored by definition; and handling the exceptions would
+   * be too fiddly (e.g. REXEC_IGNOREPOS).
+   */
+   if (   strpos != strbeg
+    && (prog->intflags & PREGf_ANCH_SBOL))
+   {
+    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+        "  Not at start...\n"));
+    goto fail;
+   }
+
+   /* in the presence of an anchor, the anchored (relative to the
+   * start of the regex) substr must also be anchored relative
+   * to strpos. So quickly reject if substr isn't found there.
+   * This works for \G too, because the caller will already have
+   * subtracted gofs from pos, and gofs is the offset from the
+   * \G to the start of the regex. For example, in /.abc\Gdef/,
+   * where substr="abcdef", pos()=3, gofs=4, offset_min=1:
+   * caller will have set strpos=pos()-4; we look for the substr
+   * at position pos()-4+1, which lines up with the "a" */
+
+   if (prog->check_offset_min == prog->check_offset_max) {
+    /* Substring at constant offset from beg-of-str... */
+    SSize_t slen = SvCUR(check);
+    char *s = HOP3c(strpos, prog->check_offset_min, strend);
+
+    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+     "  Looking for check substr at fixed offset %"IVdf"...\n",
+     (IV)prog->check_offset_min));
+
+    if (SvTAIL(check)) {
+     /* In this case, the regex is anchored at the end too.
+     * Unless it's a multiline match, the lengths must match
+     * exactly, give or take a \n.  NB: slen >= 1 since
+     * the last char of check is \n */
+     if (!multiline
+      && (   strend - s > slen
+       || strend - s < slen - 1
+       || (strend - s == slen && strend[-1] != '\n')))
+     {
+      DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+           "  String too long...\n"));
+      goto fail_finish;
+     }
+     /* Now should match s[0..slen-2] */
+     slen--;
+    }
+    if (slen && (*SvPVX_const(check) != *s
+     || (slen > 1 && memNE(SvPVX_const(check), s, slen))))
+    {
+     DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+         "  String not equal...\n"));
+     goto fail_finish;
+    }
+
+    check_at = s;
+    goto success_at_start;
+   }
+  }
+ }
+
+ end_shift = prog->check_end_shift;
+
+#ifdef DEBUGGING /* 7/99: reports of failure (with the older version) */
+ if (end_shift < 0)
+  Perl_croak(aTHX_ "panic: end_shift: %"IVdf" pattern:\n%s\n ",
+    (IV)end_shift, RX_PRECOMP(prog));
+#endif
+
+  restart:
+
+ /* This is the (re)entry point of the main loop in this function.
+ * The goal of this loop is to:
+ * 1) find the "check" substring in the region rx_origin..strend
+ *    (adjusted by start_shift / end_shift). If not found, reject
+ *    immediately.
+ * 2) If it exists, look for the "other" substr too if defined; for
+ *    example, if the check substr maps to the anchored substr, then
+ *    check the floating substr, and vice-versa. If not found, go
+ *    back to (1) with rx_origin suitably incremented.
+ * 3) If we find an rx_origin position that doesn't contradict
+ *    either of the substrings, then check the possible additional
+ *    constraints on rx_origin of /^.../m or a known start class.
+ *    If these fail, then depending on which constraints fail, jump
+ *    back to here, or to various other re-entry points further along
+ *    that skip some of the first steps.
+ * 4) If we pass all those tests, update the BmUSEFUL() count on the
+ *    substring. If the start position was determined to be at the
+ *    beginning of the string  - so, not rejected, but not optimised,
+ *    since we have to run regmatch from position 0 - decrement the
+ *    BmUSEFUL() count. Otherwise increment it.
+ */
+
+
+ /* first, look for the 'check' substring */
+
+ {
+  U8* start_point;
+  U8* end_point;
+
+  DEBUG_OPTIMISE_MORE_r({
+   PerlIO_printf(Perl_debug_log,
+    "  At restart: rx_origin=%"IVdf" Check offset min: %"IVdf
+    " Start shift: %"IVdf" End shift %"IVdf
+    " Real end Shift: %"IVdf"\n",
+    (IV)(rx_origin - strbeg),
+    (IV)prog->check_offset_min,
+    (IV)start_shift,
+    (IV)end_shift,
+    (IV)prog->check_end_shift);
+  });
+
+  end_point = HOP3(strend, -end_shift, strbeg);
+  start_point = HOPMAYBE3(rx_origin, start_shift, end_point);
+  if (!start_point)
+   goto fail_finish;
+
+
+  /* If the regex is absolutely anchored to either the start of the
+  * string (SBOL) or to pos() (ANCH_GPOS), then
+  * check_offset_max represents an upper bound on the string where
+  * the substr could start. For the ANCH_GPOS case, we assume that
+  * the caller of intuit will have already set strpos to
+  * pos()-gofs, so in this case strpos + offset_max will still be
+  * an upper bound on the substr.
+  */
+  if (!ml_anch
+   && prog->intflags & PREGf_ANCH
+   && prog->check_offset_max != SSize_t_MAX)
+  {
+   SSize_t len = SvCUR(check) - !!SvTAIL(check);
+   const char * const anchor =
+      (prog->intflags & PREGf_ANCH_GPOS ? strpos : strbeg);
+
+   /* do a bytes rather than chars comparison. It's conservative;
+   * so it skips doing the HOP if the result can't possibly end
+   * up earlier than the old value of end_point.
+   */
+   if ((char*)end_point - anchor > prog->check_offset_max) {
+    end_point = HOP3lim((U8*)anchor,
+        prog->check_offset_max,
+        end_point -len)
+       + len;
+   }
+  }
+
+  check_at = fbm_instr( start_point, end_point,
+     check, multiline ? FBMrf_MULTILINE : 0);
+
+  DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+   "  doing 'check' fbm scan, [%"IVdf"..%"IVdf"] gave %"IVdf"\n",
+   (IV)((char*)start_point - strbeg),
+   (IV)((char*)end_point   - strbeg),
+   (IV)(check_at ? check_at - strbeg : -1)
+  ));
+
+  /* Update the count-of-usability, remove useless subpatterns,
+   unshift s.  */
+
+  DEBUG_EXECUTE_r({
+   RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+    SvPVX_const(check), RE_SV_DUMPLEN(check), 30);
+   PerlIO_printf(Perl_debug_log, "  %s %s substr %s%s%s",
+       (check_at ? "Found" : "Did not find"),
+    (check == (utf8_target ? prog->anchored_utf8 : prog->anchored_substr)
+     ? "anchored" : "floating"),
+    quoted,
+    RE_SV_TAIL(check),
+    (check_at ? " at offset " : "...\n") );
+  });
+
+  if (!check_at)
+   goto fail_finish;
+  /* set rx_origin to the minimum position where the regex could start
+  * matching, given the constraint of the just-matched check substring.
+  * But don't set it lower than previously.
+  */
+
+  if (check_at - rx_origin > prog->check_offset_max)
+   rx_origin = HOP3c(check_at, -prog->check_offset_max, rx_origin);
+  /* Finish the diagnostic message */
+  DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+   "%ld (rx_origin now %"IVdf")...\n",
+   (long)(check_at - strbeg),
+   (IV)(rx_origin - strbeg)
+  ));
+ }
+
+
+ /* now look for the 'other' substring if defined */
+
+ if (utf8_target ? prog->substrs->data[other_ix].utf8_substr
+     : prog->substrs->data[other_ix].substr)
+ {
+  /* Take into account the "other" substring. */
+  char *last, *last1;
+  char *s;
+  SV* must;
+  struct reg_substr_datum *other;
+
+ do_other_substr:
+  other = &prog->substrs->data[other_ix];
+
+  /* if "other" is anchored:
+  * we've previously found a floating substr starting at check_at.
+  * This means that the regex origin must lie somewhere
+  * between min (rx_origin): HOP3(check_at, -check_offset_max)
+  * and max:                 HOP3(check_at, -check_offset_min)
+  * (except that min will be >= strpos)
+  * So the fixed  substr must lie somewhere between
+  *  HOP3(min, anchored_offset)
+  *  HOP3(max, anchored_offset) + SvCUR(substr)
+  */
+
+  /* if "other" is floating
+  * Calculate last1, the absolute latest point where the
+  * floating substr could start in the string, ignoring any
+  * constraints from the earlier fixed match. It is calculated
+  * as follows:
+  *
+  * strend - prog->minlen (in chars) is the absolute latest
+  * position within the string where the origin of the regex
+  * could appear. The latest start point for the floating
+  * substr is float_min_offset(*) on from the start of the
+  * regex.  last1 simply combines thee two offsets.
+  *
+  * (*) You might think the latest start point should be
+  * float_max_offset from the regex origin, and technically
+  * you'd be correct. However, consider
+  *    /a\d{2,4}bcd\w/
+  * Here, float min, max are 3,5 and minlen is 7.
+  * This can match either
+  *    /a\d\dbcd\w/
+  *    /a\d\d\dbcd\w/
+  *    /a\d\d\d\dbcd\w/
+  * In the first case, the regex matches minlen chars; in the
+  * second, minlen+1, in the third, minlen+2.
+  * In the first case, the floating offset is 3 (which equals
+  * float_min), in the second, 4, and in the third, 5 (which
+  * equals float_max). In all cases, the floating string bcd
+  * can never start more than 4 chars from the end of the
+  * string, which equals minlen - float_min. As the substring
+  * starts to match more than float_min from the start of the
+  * regex, it makes the regex match more than minlen chars,
+  * and the two cancel each other out. So we can always use
+  * float_min - minlen, rather than float_max - minlen for the
+  * latest position in the string.
+  *
+  * Note that -minlen + float_min_offset is equivalent (AFAIKT)
+  * to CHR_SVLEN(must) - !!SvTAIL(must) + prog->float_end_shift
+  */
+
+  assert(prog->minlen >= other->min_offset);
+  last1 = HOP3c(strend,
+      other->min_offset - prog->minlen, strbeg);
+
+  if (other_ix) {/* i.e. if (other-is-float) */
+   /* last is the latest point where the floating substr could
+   * start, *given* any constraints from the earlier fixed
+   * match. This constraint is that the floating string starts
+   * <= float_max_offset chars from the regex origin (rx_origin).
+   * If this value is less than last1, use it instead.
+   */
+   assert(rx_origin <= last1);
+   last =
+    /* this condition handles the offset==infinity case, and
+    * is a short-cut otherwise. Although it's comparing a
+    * byte offset to a char length, it does so in a safe way,
+    * since 1 char always occupies 1 or more bytes,
+    * so if a string range is  (last1 - rx_origin) bytes,
+    * it will be less than or equal to  (last1 - rx_origin)
+    * chars; meaning it errs towards doing the accurate HOP3
+    * rather than just using last1 as a short-cut */
+    (last1 - rx_origin) < other->max_offset
+     ? last1
+     : (char*)HOP3lim(rx_origin, other->max_offset, last1);
+  }
+  else {
+   assert(strpos + start_shift <= check_at);
+   last = HOP4c(check_at, other->min_offset - start_shift,
+      strbeg, strend);
+  }
+
+  s = HOP3c(rx_origin, other->min_offset, strend);
+  if (s < other_last) /* These positions already checked */
+   s = other_last;
+
+  must = utf8_target ? other->utf8_substr : other->substr;
+  assert(SvPOK(must));
+  {
+   char *from = s;
+   char *to   = last + SvCUR(must) - (SvTAIL(must)!=0);
+
+   if (from > to) {
+    s = NULL;
+    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+     "  skipping 'other' fbm scan: %"IVdf" > %"IVdf"\n",
+     (IV)(from - strbeg),
+     (IV)(to   - strbeg)
+    ));
+   }
+   else {
+    s = fbm_instr(
+     (unsigned char*)from,
+     (unsigned char*)to,
+     must,
+     multiline ? FBMrf_MULTILINE : 0
+    );
+    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+     "  doing 'other' fbm scan, [%"IVdf"..%"IVdf"] gave %"IVdf"\n",
+     (IV)(from - strbeg),
+     (IV)(to   - strbeg),
+     (IV)(s ? s - strbeg : -1)
+    ));
+   }
+  }
+
+  DEBUG_EXECUTE_r({
+   RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+    SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+   PerlIO_printf(Perl_debug_log, "  %s %s substr %s%s",
+    s ? "Found" : "Contradicts",
+    other_ix ? "floating" : "anchored",
+    quoted, RE_SV_TAIL(must));
+  });
+
+
+  if (!s) {
+   /* last1 is latest possible substr location. If we didn't
+   * find it before there, we never will */
+   if (last >= last1) {
+    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+          "; giving up...\n"));
+    goto fail_finish;
+   }
+
+   /* try to find the check substr again at a later
+   * position. Maybe next time we'll find the "other" substr
+   * in range too */
+   other_last = HOP3c(last, 1, strend) /* highest failure */;
+   rx_origin =
+    other_ix /* i.e. if other-is-float */
+     ? HOP3c(rx_origin, 1, strend)
+     : HOP4c(last, 1 - other->min_offset, strbeg, strend);
+   DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+    "; about to retry %s at offset %ld (rx_origin now %"IVdf")...\n",
+    (other_ix ? "floating" : "anchored"),
+    (long)(HOP3c(check_at, 1, strend) - strbeg),
+    (IV)(rx_origin - strbeg)
+   ));
+   goto restart;
+  }
+  else {
+   if (other_ix) { /* if (other-is-float) */
+    /* other_last is set to s, not s+1, since its possible for
+    * a floating substr to fail first time, then succeed
+    * second time at the same floating position; e.g.:
+    *     "-AB--AABZ" =~ /\wAB\d*Z/
+    * The first time round, anchored and float match at
+    * "-(AB)--AAB(Z)" then fail on the initial \w character
+    * class. Second time round, they match at "-AB--A(AB)(Z)".
+    */
+    other_last = s;
+   }
+   else {
+    rx_origin = HOP3c(s, -other->min_offset, strbeg);
+    other_last = HOP3c(s, 1, strend);
+   }
+   DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+    " at offset %ld (rx_origin now %"IVdf")...\n",
+    (long)(s - strbeg),
+    (IV)(rx_origin - strbeg)
+   ));
+
+  }
+ }
+ else {
+  DEBUG_OPTIMISE_MORE_r(
+   PerlIO_printf(Perl_debug_log,
+    "  Check-only match: offset min:%"IVdf" max:%"IVdf
+    " check_at:%"IVdf" rx_origin:%"IVdf" rx_origin-check_at:%"IVdf
+    " strend:%"IVdf"\n",
+    (IV)prog->check_offset_min,
+    (IV)prog->check_offset_max,
+    (IV)(check_at-strbeg),
+    (IV)(rx_origin-strbeg),
+    (IV)(rx_origin-check_at),
+    (IV)(strend-strbeg)
+   )
+  );
+ }
+
+  postprocess_substr_matches:
+
+ /* handle the extra constraint of /^.../m if present */
+
+ if (ml_anch && rx_origin != strbeg && rx_origin[-1] != '\n') {
+  char *s;
+
+  DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+      "  looking for /^/m anchor"));
+
+  /* we have failed the constraint of a \n before rx_origin.
+  * Find the next \n, if any, even if it's beyond the current
+  * anchored and/or floating substrings. Whether we should be
+  * scanning ahead for the next \n or the next substr is debatable.
+  * On the one hand you'd expect rare substrings to appear less
+  * often than \n's. On the other hand, searching for \n means
+  * we're effectively flipping between check_substr and "\n" on each
+  * iteration as the current "rarest" string candidate, which
+  * means for example that we'll quickly reject the whole string if
+  * hasn't got a \n, rather than trying every substr position
+  * first
+  */
+
+  s = HOP3c(strend, - prog->minlen, strpos);
+  if (s <= rx_origin ||
+   ! ( rx_origin = (char *)memchr(rx_origin, '\n', s - rx_origin)))
+  {
+   DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+       "  Did not find /%s^%s/m...\n",
+       PL_colors[0], PL_colors[1]));
+   goto fail_finish;
+  }
+
+  /* earliest possible origin is 1 char after the \n.
+  * (since *rx_origin == '\n', it's safe to ++ here rather than
+  * HOP(rx_origin, 1)) */
+  rx_origin++;
+
+  if (prog->substrs->check_ix == 0  /* check is anchored */
+   || rx_origin >= HOP3c(check_at,  - prog->check_offset_min, strpos))
+  {
+   /* Position contradicts check-string; either because
+   * check was anchored (and thus has no wiggle room),
+   * or check was float and rx_origin is above the float range */
+   DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+    "  Found /%s^%s/m, about to restart lookup for check-string with rx_origin %ld...\n",
+    PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg)));
+   goto restart;
+  }
+
+  /* if we get here, the check substr must have been float,
+  * is in range, and we may or may not have had an anchored
+  * "other" substr which still contradicts */
+  assert(prog->substrs->check_ix); /* check is float */
+
+  if (utf8_target ? prog->anchored_utf8 : prog->anchored_substr) {
+   /* whoops, the anchored "other" substr exists, so we still
+   * contradict. On the other hand, the float "check" substr
+   * didn't contradict, so just retry the anchored "other"
+   * substr */
+   DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+    "  Found /%s^%s/m, rescanning for anchored from offset %ld (rx_origin now %"IVdf")...\n",
+    PL_colors[0], PL_colors[1],
+    (long)(rx_origin - strbeg + prog->anchored_offset),
+    (long)(rx_origin - strbeg)
+   ));
+   goto do_other_substr;
+  }
+
+  /* success: we don't contradict the found floating substring
+  * (and there's no anchored substr). */
+  DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+   "  Found /%s^%s/m with rx_origin %ld...\n",
+   PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg)));
+ }
+ else {
+  DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+   "  (multiline anchor test skipped)\n"));
+ }
+
+  success_at_start:
+
+
+ /* if we have a starting character class, then test that extra constraint.
+ * (trie stclasses are too expensive to use here, we are better off to
+ * leave it to regmatch itself) */
+
+ if (progi->regstclass && PL_regkind[OP(progi->regstclass)]!=TRIE) {
+  const U8* const str = (U8*)STRING(progi->regstclass);
+
+  /* XXX this value could be pre-computed */
+  const int cl_l = (PL_regkind[OP(progi->regstclass)] == EXACT
+     ?  (reginfo->is_utf8_pat
+      ? utf8_distance(str + STR_LEN(progi->regstclass), str)
+      : STR_LEN(progi->regstclass))
+     : 1);
+  char * endpos;
+  char *s;
+  /* latest pos that a matching float substr constrains rx start to */
+  char *rx_max_float = NULL;
+
+  /* if the current rx_origin is anchored, either by satisfying an
+  * anchored substring constraint, or a /^.../m constraint, then we
+  * can reject the current origin if the start class isn't found
+  * at the current position. If we have a float-only match, then
+  * rx_origin is constrained to a range; so look for the start class
+  * in that range. if neither, then look for the start class in the
+  * whole rest of the string */
+
+  /* XXX DAPM it's not clear what the minlen test is for, and why
+  * it's not used in the floating case. Nothing in the test suite
+  * causes minlen == 0 here. See <20140313134639.GS12844@iabyn.com>.
+  * Here are some old comments, which may or may not be correct:
+  *
+  *   minlen == 0 is possible if regstclass is \b or \B,
+  *   and the fixed substr is ''$.
+  *   Since minlen is already taken into account, rx_origin+1 is
+  *   before strend; accidentally, minlen >= 1 guaranties no false
+  *   positives at rx_origin + 1 even for \b or \B.  But (minlen? 1 :
+  *   0) below assumes that regstclass does not come from lookahead...
+  *   If regstclass takes bytelength more than 1: If charlength==1, OK.
+  *   This leaves EXACTF-ish only, which are dealt with in
+  *   find_byclass().
+  */
+
+  if (prog->anchored_substr || prog->anchored_utf8 || ml_anch)
+   endpos= HOP3c(rx_origin, (prog->minlen ? cl_l : 0), strend);
+  else if (prog->float_substr || prog->float_utf8) {
+   rx_max_float = HOP3c(check_at, -start_shift, strbeg);
+   endpos= HOP3c(rx_max_float, cl_l, strend);
+  }
+  else
+   endpos= strend;
+
+  DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+   "  looking for class: start_shift: %"IVdf" check_at: %"IVdf
+   " rx_origin: %"IVdf" endpos: %"IVdf"\n",
+   (IV)start_shift, (IV)(check_at - strbeg),
+   (IV)(rx_origin - strbeg), (IV)(endpos - strbeg)));
+
+  s = find_byclass(prog, progi->regstclass, rx_origin, endpos,
+       reginfo);
+  if (!s) {
+   if (endpos == strend) {
+    DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+        "  Could not match STCLASS...\n") );
+    goto fail;
+   }
+   DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+       "  This position contradicts STCLASS...\n") );
+   if ((prog->intflags & PREGf_ANCH) && !ml_anch
+      && !(prog->intflags & PREGf_IMPLICIT))
+    goto fail;
+
+   /* Contradict one of substrings */
+   if (prog->anchored_substr || prog->anchored_utf8) {
+    if (prog->substrs->check_ix == 1) { /* check is float */
+     /* Have both, check_string is floating */
+     assert(rx_origin + start_shift <= check_at);
+     if (rx_origin + start_shift != check_at) {
+      /* not at latest position float substr could match:
+      * Recheck anchored substring, but not floating.
+      * The condition above is in bytes rather than
+      * chars for efficiency. It's conservative, in
+      * that it errs on the side of doing 'goto
+      * do_other_substr'. In this case, at worst,
+      * an extra anchored search may get done, but in
+      * practice the extra fbm_instr() is likely to
+      * get skipped anyway. */
+      DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+       "  about to retry anchored at offset %ld (rx_origin now %"IVdf")...\n",
+       (long)(other_last - strbeg),
+       (IV)(rx_origin - strbeg)
+      ));
+      goto do_other_substr;
+     }
+    }
+   }
+   else {
+    /* float-only */
+
+    if (ml_anch) {
+     /* In the presence of ml_anch, we might be able to
+     * find another \n without breaking the current float
+     * constraint. */
+
+     /* strictly speaking this should be HOP3c(..., 1, ...),
+     * but since we goto a block of code that's going to
+     * search for the next \n if any, its safe here */
+     rx_origin++;
+     DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+       "  about to look for /%s^%s/m starting at rx_origin %ld...\n",
+       PL_colors[0], PL_colors[1],
+       (long)(rx_origin - strbeg)) );
+     goto postprocess_substr_matches;
+    }
+
+    /* strictly speaking this can never be true; but might
+    * be if we ever allow intuit without substrings */
+    if (!(utf8_target ? prog->float_utf8 : prog->float_substr))
+     goto fail;
+
+    rx_origin = rx_max_float;
+   }
+
+   /* at this point, any matching substrings have been
+   * contradicted. Start again... */
+
+   rx_origin = HOP3c(rx_origin, 1, strend);
+
+   /* uses bytes rather than char calculations for efficiency.
+   * It's conservative: it errs on the side of doing 'goto restart',
+   * where there is code that does a proper char-based test */
+   if (rx_origin + start_shift + end_shift > strend) {
+    DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+         "  Could not match STCLASS...\n") );
+    goto fail;
+   }
+   DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+    "  about to look for %s substr starting at offset %ld (rx_origin now %"IVdf")...\n",
+    (prog->substrs->check_ix ? "floating" : "anchored"),
+    (long)(rx_origin + start_shift - strbeg),
+    (IV)(rx_origin - strbeg)
+   ));
+   goto restart;
+  }
+
+  /* Success !!! */
+
+  if (rx_origin != s) {
+   DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+      "  By STCLASS: moving %ld --> %ld\n",
+        (long)(rx_origin - strbeg), (long)(s - strbeg))
+    );
+  }
+  else {
+   DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+        "  Does not contradict STCLASS...\n");
+    );
+  }
+ }
+
+ /* Decide whether using the substrings helped */
+
+ if (rx_origin != strpos) {
+  /* Fixed substring is found far enough so that the match
+  cannot start at strpos. */
+
+  DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "  try at offset...\n"));
+  ++BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr); /* hooray/5 */
+ }
+ else {
+  /* The found rx_origin position does not prohibit matching at
+  * strpos, so calling intuit didn't gain us anything. Decrement
+  * the BmUSEFUL() count on the check substring, and if we reach
+  * zero, free it.  */
+  if (!(prog->intflags & PREGf_NAUGHTY)
+   && (utf8_target ? (
+    prog->check_utf8  /* Could be deleted already */
+    && --BmUSEFUL(prog->check_utf8) < 0
+    && (prog->check_utf8 == prog->float_utf8)
+   ) : (
+    prog->check_substr  /* Could be deleted already */
+    && --BmUSEFUL(prog->check_substr) < 0
+    && (prog->check_substr == prog->float_substr)
+   )))
+  {
+   /* If flags & SOMETHING - do not do it many times on the same match */
+   DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "  ... Disabling check substring...\n"));
+   /* XXX Does the destruction order has to change with utf8_target? */
+   SvREFCNT_dec(utf8_target ? prog->check_utf8 : prog->check_substr);
+   SvREFCNT_dec(utf8_target ? prog->check_substr : prog->check_utf8);
+   prog->check_substr = prog->check_utf8 = NULL; /* disable */
+   prog->float_substr = prog->float_utf8 = NULL; /* clear */
+   check = NULL;   /* abort */
+   /* XXXX This is a remnant of the old implementation.  It
+     looks wasteful, since now INTUIT can use many
+     other heuristics. */
+   prog->extflags &= ~RXf_USE_INTUIT;
+  }
+ }
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+   "Intuit: %sSuccessfully guessed:%s match at offset %ld\n",
+   PL_colors[4], PL_colors[5], (long)(rx_origin - strbeg)) );
+
+ return rx_origin;
+
+  fail_finish:    /* Substring not found */
+ if (prog->check_substr || prog->check_utf8)  /* could be removed already */
+  BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr) += 5; /* hooray */
+  fail:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch rejected by optimizer%s\n",
+      PL_colors[4], PL_colors[5]));
+ return NULL;
+}
+
+
+#define DECL_TRIE_TYPE(scan) \
+ const enum { trie_plain, trie_utf8, trie_utf8_fold, trie_latin_utf8_fold,       \
+    trie_utf8_exactfa_fold, trie_latin_utf8_exactfa_fold,              \
+    trie_utf8l, trie_flu8 }                                            \
+     trie_type = ((scan->flags == EXACT)                             \
+        ? (utf8_target ? trie_utf8 : trie_plain)           \
+        : (scan->flags == EXACTL)                          \
+         ? (utf8_target ? trie_utf8l : trie_plain)       \
+         : (scan->flags == EXACTFA)                      \
+         ? (utf8_target                                \
+          ? trie_utf8_exactfa_fold                   \
+          : trie_latin_utf8_exactfa_fold)            \
+         : (scan->flags == EXACTFLU8                   \
+          ? trie_flu8                                \
+          : (utf8_target                             \
+          ? trie_utf8_fold                         \
+          :   trie_latin_utf8_fold)))
+
+#define REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc, uscan, len, uvc, charid, foldlen, foldbuf, uniflags) \
+STMT_START {                                                                        \
+ STRLEN skiplen;                                                                 \
+ U8 flags = FOLD_FLAGS_FULL;                                                     \
+ switch (trie_type) {                                                            \
+ case trie_flu8:                                                                 \
+  _CHECK_AND_WARN_PROBLEMATIC_LOCALE;                                         \
+  if (utf8_target && UTF8_IS_ABOVE_LATIN1(*uc)) {                             \
+   _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(uc, uc + UTF8SKIP(uc));          \
+  }                                                                           \
+  goto do_trie_utf8_fold;                                                     \
+ case trie_utf8_exactfa_fold:                                                    \
+  flags |= FOLD_FLAGS_NOMIX_ASCII;                                            \
+  /* FALLTHROUGH */                                                           \
+ case trie_utf8_fold:                                                            \
+ do_trie_utf8_fold:                                                            \
+  if ( foldlen>0 ) {                                                          \
+   uvc = utf8n_to_uvchr( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
+   foldlen -= len;                                                         \
+   uscan += len;                                                           \
+   len=0;                                                                  \
+  } else {                                                                    \
+   uvc = _to_utf8_fold_flags( (const U8*) uc, foldbuf, &foldlen, flags);   \
+   len = UTF8SKIP(uc);                                                     \
+   skiplen = UNISKIP( uvc );                                               \
+   foldlen -= skiplen;                                                     \
+   uscan = foldbuf + skiplen;                                              \
+  }                                                                           \
+  break;                                                                      \
+ case trie_latin_utf8_exactfa_fold:                                              \
+  flags |= FOLD_FLAGS_NOMIX_ASCII;                                            \
+  /* FALLTHROUGH */                                                           \
+ case trie_latin_utf8_fold:                                                      \
+  if ( foldlen>0 ) {                                                          \
+   uvc = utf8n_to_uvchr( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
+   foldlen -= len;                                                         \
+   uscan += len;                                                           \
+   len=0;                                                                  \
+  } else {                                                                    \
+   len = 1;                                                                \
+   uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, flags);             \
+   skiplen = UNISKIP( uvc );                                               \
+   foldlen -= skiplen;                                                     \
+   uscan = foldbuf + skiplen;                                              \
+  }                                                                           \
+  break;                                                                      \
+ case trie_utf8l:                                                                \
+  _CHECK_AND_WARN_PROBLEMATIC_LOCALE;                                         \
+  if (utf8_target && UTF8_IS_ABOVE_LATIN1(*uc)) {                             \
+   _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(uc, uc + UTF8SKIP(uc));          \
+  }                                                                           \
+  /* FALLTHROUGH */                                                           \
+ case trie_utf8:                                                                 \
+  uvc = utf8n_to_uvchr( (const U8*) uc, UTF8_MAXLEN, &len, uniflags );        \
+  break;                                                                      \
+ case trie_plain:                                                                \
+  uvc = (UV)*uc;                                                              \
+  len = 1;                                                                    \
+ }                                                                               \
+ if (uvc < 256) {                                                                \
+  charid = trie->charmap[ uvc ];                                              \
+ }                                                                               \
+ else {                                                                          \
+  charid = 0;                                                                 \
+  if (widecharmap) {                                                          \
+   SV** const svpp = hv_fetch(widecharmap,                                 \
+      (char*)&uvc, sizeof(UV), 0);                                \
+   if (svpp)                                                               \
+    charid = (U16)SvIV(*svpp);                                          \
+  }                                                                           \
+ }                                                                               \
+} STMT_END
+
+#define DUMP_EXEC_POS(li,s,doutf8)                          \
+ dump_exec_pos(li,s,(reginfo->strend),(reginfo->strbeg), \
+    startpos, doutf8)
+
+#define REXEC_FBC_EXACTISH_SCAN(COND)                     \
+STMT_START {                                              \
+ while (s <= e) {                                      \
+  if ( (COND)                                       \
+   && (ln == 1 || folder(s, pat_string, ln))    \
+   && (reginfo->intuit || regtry(reginfo, &s)) )\
+   goto got_it;                                  \
+  s++;                                              \
+ }                                                     \
+} STMT_END
+
+#define REXEC_FBC_UTF8_SCAN(CODE)                     \
+STMT_START {                                          \
+ while (s < strend) {                              \
+  CODE                                          \
+  s += UTF8SKIP(s);                             \
+ }                                                 \
+} STMT_END
+
+#define REXEC_FBC_SCAN(CODE)                          \
+STMT_START {                                          \
+ while (s < strend) {                              \
+  CODE                                          \
+  s++;                                          \
+ }                                                 \
+} STMT_END
+
+#define REXEC_FBC_UTF8_CLASS_SCAN(COND)                        \
+REXEC_FBC_UTF8_SCAN( /* Loops while (s < strend) */            \
+ if (COND) {                                                \
+  if (tmp && (reginfo->intuit || regtry(reginfo, &s)))   \
+   goto got_it;                                       \
+  else                                                   \
+   tmp = doevery;                                     \
+ }                                                          \
+ else                                                       \
+  tmp = 1;                                               \
+)
+
+#define REXEC_FBC_CLASS_SCAN(COND)                             \
+REXEC_FBC_SCAN( /* Loops while (s < strend) */                 \
+ if (COND) {                                                \
+  if (tmp && (reginfo->intuit || regtry(reginfo, &s)))   \
+   goto got_it;                                       \
+  else                                                   \
+   tmp = doevery;                                     \
+ }                                                          \
+ else                                                       \
+  tmp = 1;                                               \
+)
+
+#define REXEC_FBC_CSCAN(CONDUTF8,COND)                         \
+ if (utf8_target) {                                         \
+  REXEC_FBC_UTF8_CLASS_SCAN(CONDUTF8);                   \
+ }                                                          \
+ else {                                                     \
+  REXEC_FBC_CLASS_SCAN(COND);                            \
+ }
+
+/* The three macros below are slightly different versions of the same logic.
+ *
+ * The first is for /a and /aa when the target string is UTF-8.  This can only
+ * match ascii, but it must advance based on UTF-8.   The other two handle the
+ * non-UTF-8 and the more generic UTF-8 cases.   In all three, we are looking
+ * for the boundary (or non-boundary) between a word and non-word character.
+ * The utf8 and non-utf8 cases have the same logic, but the details must be
+ * different.  Find the "wordness" of the character just prior to this one, and
+ * compare it with the wordness of this one.  If they differ, we have a
+ * boundary.  At the beginning of the string, pretend that the previous
+ * character was a new-line.
+ *
+ * All these macros uncleanly have side-effects with each other and outside
+ * variables.  So far it's been too much trouble to clean-up
+ *
+ * TEST_NON_UTF8 is the macro or function to call to test if its byte input is
+ *               a word character or not.
+ * IF_SUCCESS    is code to do if it finds that we are at a boundary between
+ *               word/non-word
+ * IF_FAIL       is code to do if we aren't at a boundary between word/non-word
+ *
+ * Exactly one of the two IF_FOO parameters is a no-op, depending on whether we
+ * are looking for a boundary or for a non-boundary.  If we are looking for a
+ * boundary, we want IF_FAIL to be the no-op, and for IF_SUCCESS to go out and
+ * see if this tentative match actually works, and if so, to quit the loop
+ * here.  And vice-versa if we are looking for a non-boundary.
+ *
+ * 'tmp' below in the next three macros in the REXEC_FBC_SCAN and
+ * REXEC_FBC_UTF8_SCAN loops is a loop invariant, a bool giving the return of
+ * TEST_NON_UTF8(s-1).  To see this, note that that's what it is defined to be
+ * at entry to the loop, and to get to the IF_FAIL branch, tmp must equal
+ * TEST_NON_UTF8(s), and in the opposite branch, IF_SUCCESS, tmp is that
+ * complement.  But in that branch we complement tmp, meaning that at the
+ * bottom of the loop tmp is always going to be equal to TEST_NON_UTF8(s),
+ * which means at the top of the loop in the next iteration, it is
+ * TEST_NON_UTF8(s-1) */
+#define FBC_UTF8_A(TEST_NON_UTF8, IF_SUCCESS, IF_FAIL)                         \
+ tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n';                      \
+ tmp = TEST_NON_UTF8(tmp);                                                  \
+ REXEC_FBC_UTF8_SCAN( /* advances s while s < strend */                     \
+  if (tmp == ! TEST_NON_UTF8((U8) *s)) {                                 \
+   tmp = !tmp;                                                        \
+   IF_SUCCESS; /* Is a boundary if values for s-1 and s differ */     \
+  }                                                                      \
+  else {                                                                 \
+   IF_FAIL;                                                           \
+  }                                                                      \
+ );                                                                         \
+
+/* Like FBC_UTF8_A, but TEST_UV is a macro which takes a UV as its input, and
+ * TEST_UTF8 is a macro that for the same input code points returns identically
+ * to TEST_UV, but takes a pointer to a UTF-8 encoded string instead */
+#define FBC_UTF8(TEST_UV, TEST_UTF8, IF_SUCCESS, IF_FAIL)                      \
+ if (s == reginfo->strbeg) {                                                \
+  tmp = '\n';                                                            \
+ }                                                                          \
+ else { /* Back-up to the start of the previous character */                \
+  U8 * const r = reghop3((U8*)s, -1, (U8*)reginfo->strbeg);              \
+  tmp = utf8n_to_uvchr(r, (U8*) reginfo->strend - r,                     \
+             0, UTF8_ALLOW_DEFAULT); \
+ }                                                                          \
+ tmp = TEST_UV(tmp);                                                        \
+ LOAD_UTF8_CHARCLASS_ALNUM();                                               \
+ REXEC_FBC_UTF8_SCAN( /* advances s while s < strend */                     \
+  if (tmp == ! (TEST_UTF8((U8 *) s))) {                                  \
+   tmp = !tmp;                                                        \
+   IF_SUCCESS;                                                        \
+  }                                                                      \
+  else {                                                                 \
+   IF_FAIL;                                                           \
+  }                                                                      \
+ );
+
+/* Like the above two macros.  UTF8_CODE is the complete code for handling
+ * UTF-8.  Common to the BOUND and NBOUND cases, set-up by the FBC_BOUND, etc
+ * macros below */
+#define FBC_BOUND_COMMON(UTF8_CODE, TEST_NON_UTF8, IF_SUCCESS, IF_FAIL)        \
+ if (utf8_target) {                                                         \
+  UTF8_CODE                                                              \
+ }                                                                          \
+ else {  /* Not utf8 */                                                     \
+  tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n';                  \
+  tmp = TEST_NON_UTF8(tmp);                                              \
+  REXEC_FBC_SCAN( /* advances s while s < strend */                      \
+   if (tmp == ! TEST_NON_UTF8((U8) *s)) {                             \
+    IF_SUCCESS;                                                    \
+    tmp = !tmp;                                                    \
+   }                                                                  \
+   else {                                                             \
+    IF_FAIL;                                                       \
+   }                                                                  \
+  );                                                                     \
+ }                                                                          \
+ /* Here, things have been set up by the previous code so that tmp is the   \
+ * return of TEST_NON_UTF(s-1) or TEST_UTF8(s-1) (depending on the         \
+ * utf8ness of the target).  We also have to check if this matches against \
+ * the EOS, which we treat as a \n (which is the same value in both UTF-8  \
+ * or non-UTF8, so can use the non-utf8 test condition even for a UTF-8    \
+ * string */                                                               \
+ if (tmp == ! TEST_NON_UTF8('\n')) {                                        \
+  IF_SUCCESS;                                                            \
+ }                                                                          \
+ else {                                                                     \
+  IF_FAIL;                                                               \
+ }
+
+/* This is the macro to use when we want to see if something that looks like it
+ * could match, actually does, and if so exits the loop */
+#define REXEC_FBC_TRYIT                            \
+ if ((reginfo->intuit || regtry(reginfo, &s)))  \
+  goto got_it
+
+/* The only difference between the BOUND and NBOUND cases is that
+ * REXEC_FBC_TRYIT is called when matched in BOUND, and when non-matched in
+ * NBOUND.  This is accomplished by passing it as either the if or else clause,
+ * with the other one being empty (PLACEHOLDER is defined as empty).
+ *
+ * The TEST_FOO parameters are for operating on different forms of input, but
+ * all should be ones that return identically for the same underlying code
+ * points */
+#define FBC_BOUND(TEST_NON_UTF8, TEST_UV, TEST_UTF8)                           \
+ FBC_BOUND_COMMON(                                                          \
+  FBC_UTF8(TEST_UV, TEST_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER),          \
+  TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
+
+#define FBC_BOUND_A(TEST_NON_UTF8)                                             \
+ FBC_BOUND_COMMON(                                                          \
+   FBC_UTF8_A(TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER),           \
+   TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
+
+#define FBC_NBOUND(TEST_NON_UTF8, TEST_UV, TEST_UTF8)                          \
+ FBC_BOUND_COMMON(                                                          \
+  FBC_UTF8(TEST_UV, TEST_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT),          \
+  TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
+
+#define FBC_NBOUND_A(TEST_NON_UTF8)                                            \
+ FBC_BOUND_COMMON(                                                          \
+   FBC_UTF8_A(TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT),           \
+   TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
+
+/* Takes a pointer to an inversion list, a pointer to its corresponding
+ * inversion map, and a code point, and returns the code point's value
+ * according to the two arrays.  It assumes that all code points have a value.
+ * This is used as the base macro for macros for particular properties */
+#define _generic_GET_BREAK_VAL_CP(invlist, invmap, cp)              \
+       invmap[_invlist_search(invlist, cp)]
+
+/* Same as above, but takes begin, end ptrs to a UTF-8 encoded string instead
+ * of a code point, returning the value for the first code point in the string.
+ * And it takes the particular macro name that finds the desired value given a
+ * code point.  Merely convert the UTF-8 to code point and call the cp macro */
+#define _generic_GET_BREAK_VAL_UTF8(cp_macro, pos, strend)                     \
+   (__ASSERT_(pos < strend)                                          \
+    /* Note assumes is valid UTF-8 */                             \
+   (cp_macro(utf8_to_uvchr_buf((pos), (strend), NULL))))
+
+/* Returns the GCB value for the input code point */
+#define getGCB_VAL_CP(cp)                                                      \
+  _generic_GET_BREAK_VAL_CP(                                           \
+         PL_GCB_invlist,                            \
+         Grapheme_Cluster_Break_invmap,             \
+         (cp))
+
+/* Returns the GCB value for the first code point in the UTF-8 encoded string
+ * bounded by pos and strend */
+#define getGCB_VAL_UTF8(pos, strend)                                           \
+ _generic_GET_BREAK_VAL_UTF8(getGCB_VAL_CP, pos, strend)
+
+
+/* Returns the SB value for the input code point */
+#define getSB_VAL_CP(cp)                                                       \
+  _generic_GET_BREAK_VAL_CP(                                           \
+         PL_SB_invlist,                             \
+         Sentence_Break_invmap,                     \
+         (cp))
+
+/* Returns the SB value for the first code point in the UTF-8 encoded string
+ * bounded by pos and strend */
+#define getSB_VAL_UTF8(pos, strend)                                            \
+ _generic_GET_BREAK_VAL_UTF8(getSB_VAL_CP, pos, strend)
+
+/* Returns the WB value for the input code point */
+#define getWB_VAL_CP(cp)                                                       \
+  _generic_GET_BREAK_VAL_CP(                                           \
+         PL_WB_invlist,                             \
+         Word_Break_invmap,                         \
+         (cp))
+
+/* Returns the WB value for the first code point in the UTF-8 encoded string
+ * bounded by pos and strend */
+#define getWB_VAL_UTF8(pos, strend)                                            \
+ _generic_GET_BREAK_VAL_UTF8(getWB_VAL_CP, pos, strend)
+
+/* We know what class REx starts with.  Try to find this position... */
+/* if reginfo->intuit, its a dryrun */
+/* annoyingly all the vars in this routine have different names from their counterparts
+   in regmatch. /grrr */
+STATIC char *
+S_find_byclass(pTHX_ regexp * prog, const regnode *c, char *s,
+ const char *strend, regmatch_info *reginfo)
+{
+ dVAR;
+ const I32 doevery = (prog->intflags & PREGf_SKIP) == 0;
+ char *pat_string;   /* The pattern's exactish string */
+ char *pat_end;     /* ptr to end char of pat_string */
+ re_fold_t folder; /* Function for computing non-utf8 folds */
+ const U8 *fold_array;   /* array for folding ords < 256 */
+ STRLEN ln;
+ STRLEN lnc;
+ U8 c1;
+ U8 c2;
+ char *e;
+ I32 tmp = 1; /* Scratch variable? */
+ const bool utf8_target = reginfo->is_utf8_target;
+ UV utf8_fold_flags = 0;
+ const bool is_utf8_pat = reginfo->is_utf8_pat;
+ bool to_complement = FALSE; /* Invert the result?  Taking the xor of this
+        with a result inverts that result, as 0^1 =
+        1 and 1^1 = 0 */
+ _char_class_number classnum;
+
+ RXi_GET_DECL(prog,progi);
+
+ PERL_ARGS_ASSERT_FIND_BYCLASS;
+
+ /* We know what class it must start with. */
+ switch (OP(c)) {
+ case ANYOFL:
+  _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+  /* FALLTHROUGH */
+ case ANYOF:
+  if (utf8_target) {
+   REXEC_FBC_UTF8_CLASS_SCAN(
+     reginclass(prog, c, (U8*)s, (U8*) strend, utf8_target));
+  }
+  else {
+   REXEC_FBC_CLASS_SCAN(REGINCLASS(prog, c, (U8*)s));
+  }
+  break;
+
+ case EXACTFA_NO_TRIE:   /* This node only generated for non-utf8 patterns */
+  assert(! is_utf8_pat);
+  /* FALLTHROUGH */
+ case EXACTFA:
+  if (is_utf8_pat || utf8_target) {
+   utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+   goto do_exactf_utf8;
+  }
+  fold_array = PL_fold_latin1;    /* Latin1 folds are not affected by */
+  folder = foldEQ_latin1;         /* /a, except the sharp s one which */
+  goto do_exactf_non_utf8; /* isn't dealt with by these */
+
+ case EXACTF:   /* This node only generated for non-utf8 patterns */
+  assert(! is_utf8_pat);
+  if (utf8_target) {
+   utf8_fold_flags = 0;
+   goto do_exactf_utf8;
+  }
+  fold_array = PL_fold;
+  folder = foldEQ;
+  goto do_exactf_non_utf8;
+
+ case EXACTFL:
+  _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+  if (is_utf8_pat || utf8_target || IN_UTF8_CTYPE_LOCALE) {
+   utf8_fold_flags = FOLDEQ_LOCALE;
+   goto do_exactf_utf8;
+  }
+  fold_array = PL_fold_locale;
+  folder = foldEQ_locale;
+  goto do_exactf_non_utf8;
+
+ case EXACTFU_SS:
+  if (is_utf8_pat) {
+   utf8_fold_flags = FOLDEQ_S2_ALREADY_FOLDED;
+  }
+  goto do_exactf_utf8;
+
+ case EXACTFLU8:
+   if (! utf8_target) {    /* All code points in this node require
+         UTF-8 to express.  */
+    break;
+   }
+   utf8_fold_flags =  FOLDEQ_LOCALE | FOLDEQ_S2_ALREADY_FOLDED
+           | FOLDEQ_S2_FOLDS_SANE;
+   goto do_exactf_utf8;
+
+ case EXACTFU:
+  if (is_utf8_pat || utf8_target) {
+   utf8_fold_flags = is_utf8_pat ? FOLDEQ_S2_ALREADY_FOLDED : 0;
+   goto do_exactf_utf8;
+  }
+
+  /* Any 'ss' in the pattern should have been replaced by regcomp,
+  * so we don't have to worry here about this single special case
+  * in the Latin1 range */
+  fold_array = PL_fold_latin1;
+  folder = foldEQ_latin1;
+
+  /* FALLTHROUGH */
+
+ do_exactf_non_utf8: /* Neither pattern nor string are UTF8, and there
+      are no glitches with fold-length differences
+      between the target string and pattern */
+
+  /* The idea in the non-utf8 EXACTF* cases is to first find the
+  * first character of the EXACTF* node and then, if necessary,
+  * case-insensitively compare the full text of the node.  c1 is the
+  * first character.  c2 is its fold.  This logic will not work for
+  * Unicode semantics and the german sharp ss, which hence should
+  * not be compiled into a node that gets here. */
+  pat_string = STRING(c);
+  ln  = STR_LEN(c); /* length to match in octets/bytes */
+
+  /* We know that we have to match at least 'ln' bytes (which is the
+  * same as characters, since not utf8).  If we have to match 3
+  * characters, and there are only 2 availabe, we know without
+  * trying that it will fail; so don't start a match past the
+  * required minimum number from the far end */
+  e = HOP3c(strend, -((SSize_t)ln), s);
+
+  if (reginfo->intuit && e < s) {
+   e = s;   /* Due to minlen logic of intuit() */
+  }
+
+  c1 = *pat_string;
+  c2 = fold_array[c1];
+  if (c1 == c2) { /* If char and fold are the same */
+   REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1);
+  }
+  else {
+   REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1 || *(U8*)s == c2);
+  }
+  break;
+
+ do_exactf_utf8:
+ {
+  unsigned expansion;
+
+  /* If one of the operands is in utf8, we can't use the simpler folding
+  * above, due to the fact that many different characters can have the
+  * same fold, or portion of a fold, or different- length fold */
+  pat_string = STRING(c);
+  ln  = STR_LEN(c); /* length to match in octets/bytes */
+  pat_end = pat_string + ln;
+  lnc = is_utf8_pat       /* length to match in characters */
+    ? utf8_length((U8 *) pat_string, (U8 *) pat_end)
+    : ln;
+
+  /* We have 'lnc' characters to match in the pattern, but because of
+  * multi-character folding, each character in the target can match
+  * up to 3 characters (Unicode guarantees it will never exceed
+  * this) if it is utf8-encoded; and up to 2 if not (based on the
+  * fact that the Latin 1 folds are already determined, and the
+  * only multi-char fold in that range is the sharp-s folding to
+  * 'ss'.  Thus, a pattern character can match as little as 1/3 of a
+  * string character.  Adjust lnc accordingly, rounding up, so that
+  * if we need to match at least 4+1/3 chars, that really is 5. */
+  expansion = (utf8_target) ? UTF8_MAX_FOLD_CHAR_EXPAND : 2;
+  lnc = (lnc + expansion - 1) / expansion;
+
+  /* As in the non-UTF8 case, if we have to match 3 characters, and
+  * only 2 are left, it's guaranteed to fail, so don't start a
+  * match that would require us to go beyond the end of the string
+  */
+  e = HOP3c(strend, -((SSize_t)lnc), s);
+
+  if (reginfo->intuit && e < s) {
+   e = s;   /* Due to minlen logic of intuit() */
+  }
+
+  /* XXX Note that we could recalculate e to stop the loop earlier,
+  * as the worst case expansion above will rarely be met, and as we
+  * go along we would usually find that e moves further to the left.
+  * This would happen only after we reached the point in the loop
+  * where if there were no expansion we should fail.  Unclear if
+  * worth the expense */
+
+  while (s <= e) {
+   char *my_strend= (char *)strend;
+   if (foldEQ_utf8_flags(s, &my_strend, 0,  utf8_target,
+    pat_string, NULL, ln, is_utf8_pat, utf8_fold_flags)
+    && (reginfo->intuit || regtry(reginfo, &s)) )
+   {
+    goto got_it;
+   }
+   s += (utf8_target) ? UTF8SKIP(s) : 1;
+  }
+  break;
+ }
+
+ case BOUNDL:
+  _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+  if (FLAGS(c) != TRADITIONAL_BOUND) {
+   if (! IN_UTF8_CTYPE_LOCALE) {
+    Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
+            B_ON_NON_UTF8_LOCALE_IS_WRONG);
+   }
+   goto do_boundu;
+  }
+
+  FBC_BOUND(isWORDCHAR_LC, isWORDCHAR_LC_uvchr, isWORDCHAR_LC_utf8);
+  break;
+
+ case NBOUNDL:
+  _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+  if (FLAGS(c) != TRADITIONAL_BOUND) {
+   if (! IN_UTF8_CTYPE_LOCALE) {
+    Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
+            B_ON_NON_UTF8_LOCALE_IS_WRONG);
+   }
+   goto do_nboundu;
+  }
+
+  FBC_NBOUND(isWORDCHAR_LC, isWORDCHAR_LC_uvchr, isWORDCHAR_LC_utf8);
+  break;
+
+ case BOUND: /* regcomp.c makes sure that this only has the traditional \b
+    meaning */
+  assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+  FBC_BOUND(isWORDCHAR, isWORDCHAR_uni, isWORDCHAR_utf8);
+  break;
+
+ case BOUNDA: /* regcomp.c makes sure that this only has the traditional \b
+    meaning */
+  assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+  FBC_BOUND_A(isWORDCHAR_A);
+  break;
+
+ case NBOUND: /* regcomp.c makes sure that this only has the traditional \b
+    meaning */
+  assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+  FBC_NBOUND(isWORDCHAR, isWORDCHAR_uni, isWORDCHAR_utf8);
+  break;
+
+ case NBOUNDA: /* regcomp.c makes sure that this only has the traditional \b
+    meaning */
+  assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+  FBC_NBOUND_A(isWORDCHAR_A);
+  break;
+
+ case NBOUNDU:
+  if ((bound_type) FLAGS(c) == TRADITIONAL_BOUND) {
+   FBC_NBOUND(isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8);
+   break;
+  }
+
+ do_nboundu:
+
+  to_complement = 1;
+  /* FALLTHROUGH */
+
+ case BOUNDU:
+ do_boundu:
+  switch((bound_type) FLAGS(c)) {
+   case TRADITIONAL_BOUND:
+    FBC_BOUND(isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8);
+    break;
+   case GCB_BOUND:
+    if (s == reginfo->strbeg) { /* GCB always matches at begin and
+           end */
+     if (to_complement ^ cBOOL(reginfo->intuit
+             || regtry(reginfo, &s)))
+     {
+      goto got_it;
+     }
+     s += (utf8_target) ? UTF8SKIP(s) : 1;
+    }
+
+    if (utf8_target) {
+     GCB_enum before = getGCB_VAL_UTF8(
+           reghop3((U8*)s, -1,
+             (U8*)(reginfo->strbeg)),
+           (U8*) reginfo->strend);
+     while (s < strend) {
+      GCB_enum after = getGCB_VAL_UTF8((U8*) s,
+              (U8*) reginfo->strend);
+      if (to_complement ^ isGCB(before, after)) {
+       if (reginfo->intuit || regtry(reginfo, &s)) {
+        goto got_it;
+       }
+       before = after;
+      }
+      s += UTF8SKIP(s);
+     }
+    }
+    else {  /* Not utf8.  Everything is a GCB except between CR and
+      LF */
+     while (s < strend) {
+      if (to_complement ^ (UCHARAT(s - 1) != '\r'
+           || UCHARAT(s) != '\n'))
+      {
+       if (reginfo->intuit || regtry(reginfo, &s)) {
+        goto got_it;
+       }
+       s++;
+      }
+     }
+    }
+
+    if (to_complement ^ cBOOL(reginfo->intuit || regtry(reginfo, &s))) {
+     goto got_it;
+    }
+    break;
+
+   case SB_BOUND:
+    if (s == reginfo->strbeg) { /* SB always matches at beginning */
+     if (to_complement
+        ^ cBOOL(reginfo->intuit || regtry(reginfo, &s)))
+     {
+      goto got_it;
+     }
+
+     /* Didn't match.  Go try at the next position */
+     s += (utf8_target) ? UTF8SKIP(s) : 1;
+    }
+
+    if (utf8_target) {
+     SB_enum before = getSB_VAL_UTF8(reghop3((U8*)s,
+              -1,
+              (U8*)(reginfo->strbeg)),
+             (U8*) reginfo->strend);
+     while (s < strend) {
+      SB_enum after = getSB_VAL_UTF8((U8*) s,
+              (U8*) reginfo->strend);
+      if (to_complement ^ isSB(before,
+            after,
+            (U8*) reginfo->strbeg,
+            (U8*) s,
+            (U8*) reginfo->strend,
+            utf8_target))
+      {
+       if (reginfo->intuit || regtry(reginfo, &s)) {
+        goto got_it;
+       }
+       before = after;
+      }
+      s += UTF8SKIP(s);
+     }
+    }
+    else {  /* Not utf8. */
+     SB_enum before = getSB_VAL_CP((U8) *(s -1));
+     while (s < strend) {
+      SB_enum after = getSB_VAL_CP((U8) *s);
+      if (to_complement ^ isSB(before,
+            after,
+            (U8*) reginfo->strbeg,
+            (U8*) s,
+            (U8*) reginfo->strend,
+            utf8_target))
+      {
+       if (reginfo->intuit || regtry(reginfo, &s)) {
+        goto got_it;
+       }
+       before = after;
+      }
+      s++;
+     }
+    }
+
+    /* Here are at the final position in the target string.  The SB
+    * value is always true here, so matches, depending on other
+    * constraints */
+    if (to_complement ^ cBOOL(reginfo->intuit
+             || regtry(reginfo, &s)))
+    {
+     goto got_it;
+    }
+
+    break;
+
+   case WB_BOUND:
+    if (s == reginfo->strbeg) {
+     if (to_complement ^ cBOOL(reginfo->intuit
+           || regtry(reginfo, &s)))
+     {
+      goto got_it;
+     }
+     s += (utf8_target) ? UTF8SKIP(s) : 1;
+    }
+
+    if (utf8_target) {
+     /* We are at a boundary between char_sub_0 and char_sub_1.
+     * We also keep track of the value for char_sub_-1 as we
+     * loop through the line.   Context may be needed to make a
+     * determination, and if so, this can save having to
+     * recalculate it */
+     WB_enum previous = WB_UNKNOWN;
+     WB_enum before = getWB_VAL_UTF8(
+           reghop3((U8*)s,
+             -1,
+             (U8*)(reginfo->strbeg)),
+           (U8*) reginfo->strend);
+     while (s < strend) {
+      WB_enum after = getWB_VAL_UTF8((U8*) s,
+              (U8*) reginfo->strend);
+      if (to_complement ^ isWB(previous,
+            before,
+            after,
+            (U8*) reginfo->strbeg,
+            (U8*) s,
+            (U8*) reginfo->strend,
+            utf8_target))
+      {
+       if (reginfo->intuit || regtry(reginfo, &s)) {
+        goto got_it;
+       }
+       previous = before;
+       before = after;
+      }
+      s += UTF8SKIP(s);
+     }
+    }
+    else {  /* Not utf8. */
+     WB_enum previous = WB_UNKNOWN;
+     WB_enum before = getWB_VAL_CP((U8) *(s -1));
+     while (s < strend) {
+      WB_enum after = getWB_VAL_CP((U8) *s);
+      if (to_complement ^ isWB(previous,
+            before,
+            after,
+            (U8*) reginfo->strbeg,
+            (U8*) s,
+            (U8*) reginfo->strend,
+            utf8_target))
+      {
+       if (reginfo->intuit || regtry(reginfo, &s)) {
+        goto got_it;
+       }
+       previous = before;
+       before = after;
+      }
+      s++;
+     }
+    }
+
+    if (to_complement ^ cBOOL(reginfo->intuit
+          || regtry(reginfo, &s)))
+    {
+     goto got_it;
+    }
+
+    break;
+  }
+  break;
+
+ case LNBREAK:
+  REXEC_FBC_CSCAN(is_LNBREAK_utf8_safe(s, strend),
+      is_LNBREAK_latin1_safe(s, strend)
+  );
+  break;
+
+ /* The argument to all the POSIX node types is the class number to pass to
+ * _generic_isCC() to build a mask for searching in PL_charclass[] */
+
+ case NPOSIXL:
+  to_complement = 1;
+  /* FALLTHROUGH */
+
+ case POSIXL:
+  _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+  REXEC_FBC_CSCAN(to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(c), (U8 *) s)),
+      to_complement ^ cBOOL(isFOO_lc(FLAGS(c), *s)));
+  break;
+
+ case NPOSIXD:
+  to_complement = 1;
+  /* FALLTHROUGH */
+
+ case POSIXD:
+  if (utf8_target) {
+   goto posix_utf8;
+  }
+  goto posixa;
+
+ case NPOSIXA:
+  if (utf8_target) {
+   /* The complement of something that matches only ASCII matches all
+   * non-ASCII, plus everything in ASCII that isn't in the class. */
+   REXEC_FBC_UTF8_CLASS_SCAN(! isASCII_utf8(s)
+         || ! _generic_isCC_A(*s, FLAGS(c)));
+   break;
+  }
+
+  to_complement = 1;
+  /* FALLTHROUGH */
+
+ case POSIXA:
+ posixa:
+  /* Don't need to worry about utf8, as it can match only a single
+  * byte invariant character. */
+  REXEC_FBC_CLASS_SCAN(
+      to_complement ^ cBOOL(_generic_isCC_A(*s, FLAGS(c))));
+  break;
+
+ case NPOSIXU:
+  to_complement = 1;
+  /* FALLTHROUGH */
+
+ case POSIXU:
+  if (! utf8_target) {
+   REXEC_FBC_CLASS_SCAN(to_complement ^ cBOOL(_generic_isCC(*s,
+                 FLAGS(c))));
+  }
+  else {
+
+  posix_utf8:
+   classnum = (_char_class_number) FLAGS(c);
+   if (classnum < _FIRST_NON_SWASH_CC) {
+    while (s < strend) {
+
+     /* We avoid loading in the swash as long as possible, but
+     * should we have to, we jump to a separate loop.  This
+     * extra 'if' statement is what keeps this code from being
+     * just a call to REXEC_FBC_UTF8_CLASS_SCAN() */
+     if (UTF8_IS_ABOVE_LATIN1(*s)) {
+      goto found_above_latin1;
+     }
+     if ((UTF8_IS_INVARIANT(*s)
+      && to_complement ^ cBOOL(_generic_isCC((U8) *s,
+                classnum)))
+      || (UTF8_IS_DOWNGRADEABLE_START(*s)
+       && to_complement ^ cBOOL(
+        _generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(*s,
+                 *(s + 1)),
+           classnum))))
+     {
+      if (tmp && (reginfo->intuit || regtry(reginfo, &s)))
+       goto got_it;
+      else {
+       tmp = doevery;
+      }
+     }
+     else {
+      tmp = 1;
+     }
+     s += UTF8SKIP(s);
+    }
+   }
+   else switch (classnum) {    /* These classes are implemented as
+          macros */
+    case _CC_ENUM_SPACE:
+     REXEC_FBC_UTF8_CLASS_SCAN(
+          to_complement ^ cBOOL(isSPACE_utf8(s)));
+     break;
+
+    case _CC_ENUM_BLANK:
+     REXEC_FBC_UTF8_CLASS_SCAN(
+          to_complement ^ cBOOL(isBLANK_utf8(s)));
+     break;
+
+    case _CC_ENUM_XDIGIT:
+     REXEC_FBC_UTF8_CLASS_SCAN(
+         to_complement ^ cBOOL(isXDIGIT_utf8(s)));
+     break;
+
+    case _CC_ENUM_VERTSPACE:
+     REXEC_FBC_UTF8_CLASS_SCAN(
+         to_complement ^ cBOOL(isVERTWS_utf8(s)));
+     break;
+
+    case _CC_ENUM_CNTRL:
+     REXEC_FBC_UTF8_CLASS_SCAN(
+          to_complement ^ cBOOL(isCNTRL_utf8(s)));
+     break;
+
+    default:
+     Perl_croak(aTHX_ "panic: find_byclass() node %d='%s' has an unexpected character class '%d'", OP(c), PL_reg_name[OP(c)], classnum);
+     NOT_REACHED; /* NOTREACHED */
+   }
+  }
+  break;
+
+ found_above_latin1:   /* Here we have to load a swash to get the result
+       for the current code point */
+  if (! PL_utf8_swash_ptrs[classnum]) {
+   U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+   PL_utf8_swash_ptrs[classnum] =
+     _core_swash_init("utf8",
+         "",
+         &PL_sv_undef, 1, 0,
+         PL_XPosix_ptrs[classnum], &flags);
+  }
+
+  /* This is a copy of the loop above for swash classes, though using the
+  * FBC macro instead of being expanded out.  Since we've loaded the
+  * swash, we don't have to check for that each time through the loop */
+  REXEC_FBC_UTF8_CLASS_SCAN(
+    to_complement ^ cBOOL(_generic_utf8(
+         classnum,
+         s,
+         swash_fetch(PL_utf8_swash_ptrs[classnum],
+            (U8 *) s, TRUE))));
+  break;
+
+ case AHOCORASICKC:
+ case AHOCORASICK:
+  {
+   DECL_TRIE_TYPE(c);
+   /* what trie are we using right now */
+   reg_ac_data *aho = (reg_ac_data*)progi->data->data[ ARG( c ) ];
+   reg_trie_data *trie = (reg_trie_data*)progi->data->data[ aho->trie ];
+   HV *widecharmap = MUTABLE_HV(progi->data->data[ aho->trie + 1 ]);
+
+   const char *last_start = strend - trie->minlen;
+#ifdef DEBUGGING
+   const char *real_start = s;
+#endif
+   STRLEN maxlen = trie->maxlen;
+   SV *sv_points;
+   U8 **points; /* map of where we were in the input string
+       when reading a given char. For ASCII this
+       is unnecessary overhead as the relationship
+       is always 1:1, but for Unicode, especially
+       case folded Unicode this is not true. */
+   U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+   U8 *bitmap=NULL;
+
+
+   GET_RE_DEBUG_FLAGS_DECL;
+
+   /* We can't just allocate points here. We need to wrap it in
+   * an SV so it gets freed properly if there is a croak while
+   * running the match */
+   ENTER;
+   SAVETMPS;
+   sv_points=newSV(maxlen * sizeof(U8 *));
+   SvCUR_set(sv_points,
+    maxlen * sizeof(U8 *));
+   SvPOK_on(sv_points);
+   sv_2mortal(sv_points);
+   points=(U8**)SvPV_nolen(sv_points );
+   if ( trie_type != trie_utf8_fold
+    && (trie->bitmap || OP(c)==AHOCORASICKC) )
+   {
+    if (trie->bitmap)
+     bitmap=(U8*)trie->bitmap;
+    else
+     bitmap=(U8*)ANYOF_BITMAP(c);
+   }
+   /* this is the Aho-Corasick algorithm modified a touch
+   to include special handling for long "unknown char" sequences.
+   The basic idea being that we use AC as long as we are dealing
+   with a possible matching char, when we encounter an unknown char
+   (and we have not encountered an accepting state) we scan forward
+   until we find a legal starting char.
+   AC matching is basically that of trie matching, except that when
+   we encounter a failing transition, we fall back to the current
+   states "fail state", and try the current char again, a process
+   we repeat until we reach the root state, state 1, or a legal
+   transition. If we fail on the root state then we can either
+   terminate if we have reached an accepting state previously, or
+   restart the entire process from the beginning if we have not.
+
+   */
+   while (s <= last_start) {
+    const U32 uniflags = UTF8_ALLOW_DEFAULT;
+    U8 *uc = (U8*)s;
+    U16 charid = 0;
+    U32 base = 1;
+    U32 state = 1;
+    UV uvc = 0;
+    STRLEN len = 0;
+    STRLEN foldlen = 0;
+    U8 *uscan = (U8*)NULL;
+    U8 *leftmost = NULL;
+#ifdef DEBUGGING
+    U32 accepted_word= 0;
+#endif
+    U32 pointpos = 0;
+
+    while ( state && uc <= (U8*)strend ) {
+     int failed=0;
+     U32 word = aho->states[ state ].wordnum;
+
+     if( state==1 ) {
+      if ( bitmap ) {
+       DEBUG_TRIE_EXECUTE_r(
+        if ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+         dump_exec_pos( (char *)uc, c, strend, real_start,
+          (char *)uc, utf8_target );
+         PerlIO_printf( Perl_debug_log,
+          " Scanning for legal start char...\n");
+        }
+       );
+       if (utf8_target) {
+        while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+         uc += UTF8SKIP(uc);
+        }
+       } else {
+        while ( uc <= (U8*)last_start  && !BITMAP_TEST(bitmap,*uc) ) {
+         uc++;
+        }
+       }
+       s= (char *)uc;
+      }
+      if (uc >(U8*)last_start) break;
+     }
+
+     if ( word ) {
+      U8 *lpos= points[ (pointpos - trie->wordinfo[word].len) % maxlen ];
+      if (!leftmost || lpos < leftmost) {
+       DEBUG_r(accepted_word=word);
+       leftmost= lpos;
+      }
+      if (base==0) break;
+
+     }
+     points[pointpos++ % maxlen]= uc;
+     if (foldlen || uc < (U8*)strend) {
+      REXEC_TRIE_READ_CHAR(trie_type, trie,
+          widecharmap, uc,
+          uscan, len, uvc, charid, foldlen,
+          foldbuf, uniflags);
+      DEBUG_TRIE_EXECUTE_r({
+       dump_exec_pos( (char *)uc, c, strend,
+          real_start, s, utf8_target);
+       PerlIO_printf(Perl_debug_log,
+        " Charid:%3u CP:%4"UVxf" ",
+        charid, uvc);
+      });
+     }
+     else {
+      len = 0;
+      charid = 0;
+     }
+
+
+     do {
+#ifdef DEBUGGING
+      word = aho->states[ state ].wordnum;
+#endif
+      base = aho->states[ state ].trans.base;
+
+      DEBUG_TRIE_EXECUTE_r({
+       if (failed)
+        dump_exec_pos( (char *)uc, c, strend, real_start,
+         s,   utf8_target );
+       PerlIO_printf( Perl_debug_log,
+        "%sState: %4"UVxf", word=%"UVxf,
+        failed ? " Fail transition to " : "",
+        (UV)state, (UV)word);
+      });
+      if ( base ) {
+       U32 tmp;
+       I32 offset;
+       if (charid &&
+        ( ((offset = base + charid
+         - 1 - trie->uniquecharcount)) >= 0)
+        && ((U32)offset < trie->lasttrans)
+        && trie->trans[offset].check == state
+        && (tmp=trie->trans[offset].next))
+       {
+        DEBUG_TRIE_EXECUTE_r(
+         PerlIO_printf( Perl_debug_log," - legal\n"));
+        state = tmp;
+        break;
+       }
+       else {
+        DEBUG_TRIE_EXECUTE_r(
+         PerlIO_printf( Perl_debug_log," - fail\n"));
+        failed = 1;
+        state = aho->fail[state];
+       }
+      }
+      else {
+       /* we must be accepting here */
+       DEBUG_TRIE_EXECUTE_r(
+         PerlIO_printf( Perl_debug_log," - accepting\n"));
+       failed = 1;
+       break;
+      }
+     } while(state);
+     uc += len;
+     if (failed) {
+      if (leftmost)
+       break;
+      if (!state) state = 1;
+     }
+    }
+    if ( aho->states[ state ].wordnum ) {
+     U8 *lpos = points[ (pointpos - trie->wordinfo[aho->states[ state ].wordnum].len) % maxlen ];
+     if (!leftmost || lpos < leftmost) {
+      DEBUG_r(accepted_word=aho->states[ state ].wordnum);
+      leftmost = lpos;
+     }
+    }
+    if (leftmost) {
+     s = (char*)leftmost;
+     DEBUG_TRIE_EXECUTE_r({
+      PerlIO_printf(
+       Perl_debug_log,"Matches word #%"UVxf" at position %"IVdf". Trying full pattern...\n",
+       (UV)accepted_word, (IV)(s - real_start)
+      );
+     });
+     if (reginfo->intuit || regtry(reginfo, &s)) {
+      FREETMPS;
+      LEAVE;
+      goto got_it;
+     }
+     s = HOPc(s,1);
+     DEBUG_TRIE_EXECUTE_r({
+      PerlIO_printf( Perl_debug_log,"Pattern failed. Looking for new start point...\n");
+     });
+    } else {
+     DEBUG_TRIE_EXECUTE_r(
+      PerlIO_printf( Perl_debug_log,"No match.\n"));
+     break;
+    }
+   }
+   FREETMPS;
+   LEAVE;
+  }
+  break;
+ default:
+  Perl_croak(aTHX_ "panic: unknown regstclass %d", (int)OP(c));
+ }
+ return 0;
+  got_it:
+ return s;
+}
+
+/* set RX_SAVED_COPY, RX_SUBBEG etc.
+ * flags have same meanings as with regexec_flags() */
+
+static void
+S_reg_set_capture_string(pTHX_ REGEXP * const rx,
+       char *strbeg,
+       char *strend,
+       SV *sv,
+       U32 flags,
+       bool utf8_target)
+{
+ struct regexp *const prog = ReANY(rx);
+
+ if (flags & REXEC_COPY_STR) {
+#ifdef PERL_ANY_COW
+  if (SvCANCOW(sv)) {
+   if (DEBUG_C_TEST) {
+    PerlIO_printf(Perl_debug_log,
+       "Copy on write: regexp capture, type %d\n",
+       (int) SvTYPE(sv));
+   }
+   /* Create a new COW SV to share the match string and store
+   * in saved_copy, unless the current COW SV in saved_copy
+   * is valid and suitable for our purpose */
+   if ((   prog->saved_copy
+    && SvIsCOW(prog->saved_copy)
+    && SvPOKp(prog->saved_copy)
+    && SvIsCOW(sv)
+    && SvPOKp(sv)
+    && SvPVX(sv) == SvPVX(prog->saved_copy)))
+   {
+    /* just reuse saved_copy SV */
+    if (RXp_MATCH_COPIED(prog)) {
+     Safefree(prog->subbeg);
+     RXp_MATCH_COPIED_off(prog);
+    }
+   }
+   else {
+    /* create new COW SV to share string */
+    RX_MATCH_COPY_FREE(rx);
+    prog->saved_copy = sv_setsv_cow(prog->saved_copy, sv);
+   }
+   prog->subbeg = (char *)SvPVX_const(prog->saved_copy);
+   assert (SvPOKp(prog->saved_copy));
+   prog->sublen  = strend - strbeg;
+   prog->suboffset = 0;
+   prog->subcoffset = 0;
+  } else
+#endif
+  {
+   SSize_t min = 0;
+   SSize_t max = strend - strbeg;
+   SSize_t sublen;
+
+   if (    (flags & REXEC_COPY_SKIP_POST)
+    && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */
+    && !(PL_sawampersand & SAWAMPERSAND_RIGHT)
+   ) { /* don't copy $' part of string */
+    U32 n = 0;
+    max = -1;
+    /* calculate the right-most part of the string covered
+    * by a capture. Due to look-ahead, this may be to
+    * the right of $&, so we have to scan all captures */
+    while (n <= prog->lastparen) {
+     if (prog->offs[n].end > max)
+      max = prog->offs[n].end;
+     n++;
+    }
+    if (max == -1)
+     max = (PL_sawampersand & SAWAMPERSAND_LEFT)
+       ? prog->offs[0].start
+       : 0;
+    assert(max >= 0 && max <= strend - strbeg);
+   }
+
+   if (    (flags & REXEC_COPY_SKIP_PRE)
+    && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */
+    && !(PL_sawampersand & SAWAMPERSAND_LEFT)
+   ) { /* don't copy $` part of string */
+    U32 n = 0;
+    min = max;
+    /* calculate the left-most part of the string covered
+    * by a capture. Due to look-behind, this may be to
+    * the left of $&, so we have to scan all captures */
+    while (min && n <= prog->lastparen) {
+     if (   prog->offs[n].start != -1
+      && prog->offs[n].start < min)
+     {
+      min = prog->offs[n].start;
+     }
+     n++;
+    }
+    if ((PL_sawampersand & SAWAMPERSAND_RIGHT)
+     && min >  prog->offs[0].end
+    )
+     min = prog->offs[0].end;
+
+   }
+
+   assert(min >= 0 && min <= max && min <= strend - strbeg);
+   sublen = max - min;
+
+   if (RX_MATCH_COPIED(rx)) {
+    if (sublen > prog->sublen)
+     prog->subbeg =
+       (char*)saferealloc(prog->subbeg, sublen+1);
+   }
+   else
+    prog->subbeg = (char*)safemalloc(sublen+1);
+   Copy(strbeg + min, prog->subbeg, sublen, char);
+   prog->subbeg[sublen] = '\0';
+   prog->suboffset = min;
+   prog->sublen = sublen;
+   RX_MATCH_COPIED_on(rx);
+  }
+  prog->subcoffset = prog->suboffset;
+  if (prog->suboffset && utf8_target) {
+   /* Convert byte offset to chars.
+   * XXX ideally should only compute this if @-/@+
+   * has been seen, a la PL_sawampersand ??? */
+
+   /* If there's a direct correspondence between the
+   * string which we're matching and the original SV,
+   * then we can use the utf8 len cache associated with
+   * the SV. In particular, it means that under //g,
+   * sv_pos_b2u() will use the previously cached
+   * position to speed up working out the new length of
+   * subcoffset, rather than counting from the start of
+   * the string each time. This stops
+   *   $x = "\x{100}" x 1E6; 1 while $x =~ /(.)/g;
+   * from going quadratic */
+   if (SvPOKp(sv) && SvPVX(sv) == strbeg)
+    prog->subcoffset = sv_pos_b2u_flags(sv, prog->subcoffset,
+            SV_GMAGIC|SV_CONST_RETURN);
+   else
+    prog->subcoffset = utf8_length((U8*)strbeg,
+         (U8*)(strbeg+prog->suboffset));
+  }
+ }
+ else {
+  RX_MATCH_COPY_FREE(rx);
+  prog->subbeg = strbeg;
+  prog->suboffset = 0;
+  prog->subcoffset = 0;
+  prog->sublen = strend - strbeg;
+ }
+}
+
+
+
+
+/*
+ - regexec_flags - match a regexp against a string
+ */
+I32
+Perl_regexec_flags(pTHX_ REGEXP * const rx, char *stringarg, char *strend,
+   char *strbeg, SSize_t minend, SV *sv, void *data, U32 flags)
+/* stringarg: the point in the string at which to begin matching */
+/* strend:    pointer to null at end of string */
+/* strbeg:    real beginning of string */
+/* minend:    end of match must be >= minend bytes after stringarg. */
+/* sv:        SV being matched: only used for utf8 flag, pos() etc; string
+ *            itself is accessed via the pointers above */
+/* data:      May be used for some additional optimizations.
+   Currently unused. */
+/* flags:     For optimizations. See REXEC_* in regexp.h */
+
+{
+ struct regexp *const prog = ReANY(rx);
+ char *s;
+ regnode *c;
+ char *startpos;
+ SSize_t minlen;  /* must match at least this many chars */
+ SSize_t dontbother = 0; /* how many characters not to try at end */
+ const bool utf8_target = cBOOL(DO_UTF8(sv));
+ I32 multiline;
+ RXi_GET_DECL(prog,progi);
+ regmatch_info reginfo_buf;  /* create some info to pass to regtry etc */
+ regmatch_info *const reginfo = &reginfo_buf;
+ regexp_paren_pair *swap = NULL;
+ I32 oldsave;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGEXEC_FLAGS;
+ PERL_UNUSED_ARG(data);
+
+ /* Be paranoid... */
+ if (prog == NULL) {
+  Perl_croak(aTHX_ "NULL regexp parameter");
+ }
+
+ DEBUG_EXECUTE_r(
+  debug_start_match(rx, utf8_target, stringarg, strend,
+  "Matching");
+ );
+
+ startpos = stringarg;
+
+ if (prog->intflags & PREGf_GPOS_SEEN) {
+  MAGIC *mg;
+
+  /* set reginfo->ganch, the position where \G can match */
+
+  reginfo->ganch =
+   (flags & REXEC_IGNOREPOS)
+   ? stringarg /* use start pos rather than pos() */
+   : ((mg = mg_find_mglob(sv)) && mg->mg_len >= 0)
+   /* Defined pos(): */
+   ? strbeg + MgBYTEPOS(mg, sv, strbeg, strend-strbeg)
+   : strbeg; /* pos() not defined; use start of string */
+
+  DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+   "GPOS ganch set to strbeg[%"IVdf"]\n", (IV)(reginfo->ganch - strbeg)));
+
+  /* in the presence of \G, we may need to start looking earlier in
+  * the string than the suggested start point of stringarg:
+  * if prog->gofs is set, then that's a known, fixed minimum
+  * offset, such as
+  * /..\G/:   gofs = 2
+  * /ab|c\G/: gofs = 1
+  * or if the minimum offset isn't known, then we have to go back
+  * to the start of the string, e.g. /w+\G/
+  */
+
+  if (prog->intflags & PREGf_ANCH_GPOS) {
+   startpos  = reginfo->ganch - prog->gofs;
+   if (startpos <
+    ((flags & REXEC_FAIL_ON_UNDERFLOW) ? stringarg : strbeg))
+   {
+    DEBUG_r(PerlIO_printf(Perl_debug_log,
+      "fail: ganch-gofs before earliest possible start\n"));
+    return 0;
+   }
+  }
+  else if (prog->gofs) {
+   if (startpos - prog->gofs < strbeg)
+    startpos = strbeg;
+   else
+    startpos -= prog->gofs;
+  }
+  else if (prog->intflags & PREGf_GPOS_FLOAT)
+   startpos = strbeg;
+ }
+
+ minlen = prog->minlen;
+ if ((startpos + minlen) > strend || startpos < strbeg) {
+  DEBUG_r(PerlIO_printf(Perl_debug_log,
+     "Regex match can't succeed, so not even tried\n"));
+  return 0;
+ }
+
+ /* at the end of this function, we'll do a LEAVE_SCOPE(oldsave),
+ * which will call destuctors to reset PL_regmatch_state, free higher
+ * PL_regmatch_slabs, and clean up regmatch_info_aux and
+ * regmatch_info_aux_eval */
+
+ oldsave = PL_savestack_ix;
+
+ s = startpos;
+
+ if ((prog->extflags & RXf_USE_INTUIT)
+  && !(flags & REXEC_CHECKED))
+ {
+  s = re_intuit_start(rx, sv, strbeg, startpos, strend,
+         flags, NULL);
+  if (!s)
+   return 0;
+
+  if (prog->extflags & RXf_CHECK_ALL) {
+   /* we can match based purely on the result of INTUIT.
+   * Set up captures etc just for $& and $-[0]
+   * (an intuit-only match wont have $1,$2,..) */
+   assert(!prog->nparens);
+
+   /* s/// doesn't like it if $& is earlier than where we asked it to
+   * start searching (which can happen on something like /.\G/) */
+   if (       (flags & REXEC_FAIL_ON_UNDERFLOW)
+     && (s < stringarg))
+   {
+    /* this should only be possible under \G */
+    assert(prog->intflags & PREGf_GPOS_SEEN);
+    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+     "matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n"));
+    goto phooey;
+   }
+
+   /* match via INTUIT shouldn't have any captures.
+   * Let @-, @+, $^N know */
+   prog->lastparen = prog->lastcloseparen = 0;
+   RX_MATCH_UTF8_set(rx, utf8_target);
+   prog->offs[0].start = s - strbeg;
+   prog->offs[0].end = utf8_target
+    ? (char*)utf8_hop((U8*)s, prog->minlenret) - strbeg
+    : s - strbeg + prog->minlenret;
+   if ( !(flags & REXEC_NOT_FIRST) )
+    S_reg_set_capture_string(aTHX_ rx,
+          strbeg, strend,
+          sv, flags, utf8_target);
+
+   return 1;
+  }
+ }
+
+ multiline = prog->extflags & RXf_PMf_MULTILINE;
+
+ if (strend - s < (minlen+(prog->check_offset_min<0?prog->check_offset_min:0))) {
+  DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+       "String too short [regexec_flags]...\n"));
+  goto phooey;
+ }
+
+ /* Check validity of program. */
+ if (UCHARAT(progi->program) != REG_MAGIC) {
+  Perl_croak(aTHX_ "corrupted regexp program");
+ }
+
+ RX_MATCH_TAINTED_off(rx);
+ RX_MATCH_UTF8_set(rx, utf8_target);
+
+ reginfo->prog = rx;  /* Yes, sorry that this is confusing.  */
+ reginfo->intuit = 0;
+ reginfo->is_utf8_target = cBOOL(utf8_target);
+ reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx));
+ reginfo->warned = FALSE;
+ reginfo->strbeg  = strbeg;
+ reginfo->sv = sv;
+ reginfo->poscache_maxiter = 0; /* not yet started a countdown */
+ reginfo->strend = strend;
+ /* see how far we have to get to not match where we matched before */
+ reginfo->till = stringarg + minend;
+
+ if (prog->extflags & RXf_EVAL_SEEN && SvPADTMP(sv)) {
+  /* SAVEFREESV, not sv_mortalcopy, as this SV must last until after
+  S_cleanup_regmatch_info_aux has executed (registered by
+  SAVEDESTRUCTOR_X below).  S_cleanup_regmatch_info_aux modifies
+  magic belonging to this SV.
+  Not newSVsv, either, as it does not COW.
+  */
+  reginfo->sv = newSV(0);
+  SvSetSV_nosteal(reginfo->sv, sv);
+  SAVEFREESV(reginfo->sv);
+ }
+
+ /* reserve next 2 or 3 slots in PL_regmatch_state:
+ * slot N+0: may currently be in use: skip it
+ * slot N+1: use for regmatch_info_aux struct
+ * slot N+2: use for regmatch_info_aux_eval struct if we have (?{})'s
+ * slot N+3: ready for use by regmatch()
+ */
+
+ {
+  regmatch_state *old_regmatch_state;
+  regmatch_slab  *old_regmatch_slab;
+  int i, max = (prog->extflags & RXf_EVAL_SEEN) ? 2 : 1;
+
+  /* on first ever match, allocate first slab */
+  if (!PL_regmatch_slab) {
+   Newx(PL_regmatch_slab, 1, regmatch_slab);
+   PL_regmatch_slab->prev = NULL;
+   PL_regmatch_slab->next = NULL;
+   PL_regmatch_state = SLAB_FIRST(PL_regmatch_slab);
+  }
+
+  old_regmatch_state = PL_regmatch_state;
+  old_regmatch_slab  = PL_regmatch_slab;
+
+  for (i=0; i <= max; i++) {
+   if (i == 1)
+    reginfo->info_aux = &(PL_regmatch_state->u.info_aux);
+   else if (i ==2)
+    reginfo->info_aux_eval =
+    reginfo->info_aux->info_aux_eval =
+       &(PL_regmatch_state->u.info_aux_eval);
+
+   if (++PL_regmatch_state >  SLAB_LAST(PL_regmatch_slab))
+    PL_regmatch_state = S_push_slab(aTHX);
+  }
+
+  /* note initial PL_regmatch_state position; at end of match we'll
+  * pop back to there and free any higher slabs */
+
+  reginfo->info_aux->old_regmatch_state = old_regmatch_state;
+  reginfo->info_aux->old_regmatch_slab  = old_regmatch_slab;
+  reginfo->info_aux->poscache = NULL;
+
+  SAVEDESTRUCTOR_X(S_cleanup_regmatch_info_aux, reginfo->info_aux);
+
+  if ((prog->extflags & RXf_EVAL_SEEN))
+   S_setup_eval_state(aTHX_ reginfo);
+  else
+   reginfo->info_aux_eval = reginfo->info_aux->info_aux_eval = NULL;
+ }
+
+ /* If there is a "must appear" string, look for it. */
+
+ if (PL_curpm && (PM_GETRE(PL_curpm) == rx)) {
+  /* We have to be careful. If the previous successful match
+  was from this regex we don't want a subsequent partially
+  successful match to clobber the old results.
+  So when we detect this possibility we add a swap buffer
+  to the re, and switch the buffer each match. If we fail,
+  we switch it back; otherwise we leave it swapped.
+  */
+  swap = prog->offs;
+  /* do we need a save destructor here for eval dies? */
+  Newxz(prog->offs, (prog->nparens + 1), regexp_paren_pair);
+  DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+   "rex=0x%"UVxf" saving  offs: orig=0x%"UVxf" new=0x%"UVxf"\n",
+   PTR2UV(prog),
+   PTR2UV(swap),
+   PTR2UV(prog->offs)
+  ));
+ }
+
+ /* Simplest case: anchored match need be tried only once, or with
+ * MBOL, only at the beginning of each line.
+ *
+ * Note that /.*.../ sets PREGf_IMPLICIT|MBOL, while /.*.../s sets
+ * PREGf_IMPLICIT|SBOL. The idea is that with /.*.../s, if it doesn't
+ * match at the start of the string then it won't match anywhere else
+ * either; while with /.*.../, if it doesn't match at the beginning,
+ * the earliest it could match is at the start of the next line */
+
+ if (prog->intflags & (PREGf_ANCH & ~PREGf_ANCH_GPOS)) {
+  char *end;
+
+  if (regtry(reginfo, &s))
+   goto got_it;
+
+  if (!(prog->intflags & PREGf_ANCH_MBOL))
+   goto phooey;
+
+  /* didn't match at start, try at other newline positions */
+
+  if (minlen)
+   dontbother = minlen - 1;
+  end = HOP3c(strend, -dontbother, strbeg) - 1;
+
+  /* skip to next newline */
+
+  while (s <= end) { /* note it could be possible to match at the end of the string */
+   /* NB: newlines are the same in unicode as they are in latin */
+   if (*s++ != '\n')
+    continue;
+   if (prog->check_substr || prog->check_utf8) {
+   /* note that with PREGf_IMPLICIT, intuit can only fail
+   * or return the start position, so it's of limited utility.
+   * Nevertheless, I made the decision that the potential for
+   * quick fail was still worth it - DAPM */
+    s = re_intuit_start(rx, sv, strbeg, s, strend, flags, NULL);
+    if (!s)
+     goto phooey;
+   }
+   if (regtry(reginfo, &s))
+    goto got_it;
+  }
+  goto phooey;
+ } /* end anchored search */
+
+ if (prog->intflags & PREGf_ANCH_GPOS)
+ {
+  /* PREGf_ANCH_GPOS should never be true if PREGf_GPOS_SEEN is not true */
+  assert(prog->intflags & PREGf_GPOS_SEEN);
+  /* For anchored \G, the only position it can match from is
+  * (ganch-gofs); we already set startpos to this above; if intuit
+  * moved us on from there, we can't possibly succeed */
+  assert(startpos == reginfo->ganch - prog->gofs);
+  if (s == startpos && regtry(reginfo, &s))
+   goto got_it;
+  goto phooey;
+ }
+
+ /* Messy cases:  unanchored match. */
+ if ((prog->anchored_substr || prog->anchored_utf8) && prog->intflags & PREGf_SKIP) {
+  /* we have /x+whatever/ */
+  /* it must be a one character string (XXXX Except is_utf8_pat?) */
+  char ch;
+#ifdef DEBUGGING
+  int did_match = 0;
+#endif
+  if (utf8_target) {
+   if (! prog->anchored_utf8) {
+    to_utf8_substr(prog);
+   }
+   ch = SvPVX_const(prog->anchored_utf8)[0];
+   REXEC_FBC_SCAN(
+    if (*s == ch) {
+     DEBUG_EXECUTE_r( did_match = 1 );
+     if (regtry(reginfo, &s)) goto got_it;
+     s += UTF8SKIP(s);
+     while (s < strend && *s == ch)
+      s += UTF8SKIP(s);
+    }
+   );
+
+  }
+  else {
+   if (! prog->anchored_substr) {
+    if (! to_byte_substr(prog)) {
+     NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+    }
+   }
+   ch = SvPVX_const(prog->anchored_substr)[0];
+   REXEC_FBC_SCAN(
+    if (*s == ch) {
+     DEBUG_EXECUTE_r( did_match = 1 );
+     if (regtry(reginfo, &s)) goto got_it;
+     s++;
+     while (s < strend && *s == ch)
+      s++;
+    }
+   );
+  }
+  DEBUG_EXECUTE_r(if (!did_match)
+    PerlIO_printf(Perl_debug_log,
+        "Did not find anchored character...\n")
+   );
+ }
+ else if (prog->anchored_substr != NULL
+   || prog->anchored_utf8 != NULL
+   || ((prog->float_substr != NULL || prog->float_utf8 != NULL)
+    && prog->float_max_offset < strend - s)) {
+  SV *must;
+  SSize_t back_max;
+  SSize_t back_min;
+  char *last;
+  char *last1;  /* Last position checked before */
+#ifdef DEBUGGING
+  int did_match = 0;
+#endif
+  if (prog->anchored_substr || prog->anchored_utf8) {
+   if (utf8_target) {
+    if (! prog->anchored_utf8) {
+     to_utf8_substr(prog);
+    }
+    must = prog->anchored_utf8;
+   }
+   else {
+    if (! prog->anchored_substr) {
+     if (! to_byte_substr(prog)) {
+      NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+     }
+    }
+    must = prog->anchored_substr;
+   }
+   back_max = back_min = prog->anchored_offset;
+  } else {
+   if (utf8_target) {
+    if (! prog->float_utf8) {
+     to_utf8_substr(prog);
+    }
+    must = prog->float_utf8;
+   }
+   else {
+    if (! prog->float_substr) {
+     if (! to_byte_substr(prog)) {
+      NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+     }
+    }
+    must = prog->float_substr;
+   }
+   back_max = prog->float_max_offset;
+   back_min = prog->float_min_offset;
+  }
+
+  if (back_min<0) {
+   last = strend;
+  } else {
+   last = HOP3c(strend, /* Cannot start after this */
+    -(SSize_t)(CHR_SVLEN(must)
+      - (SvTAIL(must) != 0) + back_min), strbeg);
+  }
+  if (s > reginfo->strbeg)
+   last1 = HOPc(s, -1);
+  else
+   last1 = s - 1; /* bogus */
+
+  /* XXXX check_substr already used to find "s", can optimize if
+  check_substr==must. */
+  dontbother = 0;
+  strend = HOPc(strend, -dontbother);
+  while ( (s <= last) &&
+    (s = fbm_instr((unsigned char*)HOP4c(s, back_min, strbeg,  strend),
+        (unsigned char*)strend, must,
+        multiline ? FBMrf_MULTILINE : 0)) ) {
+   DEBUG_EXECUTE_r( did_match = 1 );
+   if (HOPc(s, -back_max) > last1) {
+    last1 = HOPc(s, -back_min);
+    s = HOPc(s, -back_max);
+   }
+   else {
+    char * const t = (last1 >= reginfo->strbeg)
+         ? HOPc(last1, 1) : last1 + 1;
+
+    last1 = HOPc(s, -back_min);
+    s = t;
+   }
+   if (utf8_target) {
+    while (s <= last1) {
+     if (regtry(reginfo, &s))
+      goto got_it;
+     if (s >= last1) {
+      s++; /* to break out of outer loop */
+      break;
+     }
+     s += UTF8SKIP(s);
+    }
+   }
+   else {
+    while (s <= last1) {
+     if (regtry(reginfo, &s))
+      goto got_it;
+     s++;
+    }
+   }
+  }
+  DEBUG_EXECUTE_r(if (!did_match) {
+   RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+    SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+   PerlIO_printf(Perl_debug_log, "Did not find %s substr %s%s...\n",
+       ((must == prog->anchored_substr || must == prog->anchored_utf8)
+       ? "anchored" : "floating"),
+    quoted, RE_SV_TAIL(must));
+  });
+  goto phooey;
+ }
+ else if ( (c = progi->regstclass) ) {
+  if (minlen) {
+   const OPCODE op = OP(progi->regstclass);
+   /* don't bother with what can't match */
+   if (PL_regkind[op] != EXACT && PL_regkind[op] != TRIE)
+    strend = HOPc(strend, -(minlen - 1));
+  }
+  DEBUG_EXECUTE_r({
+   SV * const prop = sv_newmortal();
+   regprop(prog, prop, c, reginfo, NULL);
+   {
+    RE_PV_QUOTED_DECL(quoted,utf8_target,PERL_DEBUG_PAD_ZERO(1),
+     s,strend-s,60);
+    PerlIO_printf(Perl_debug_log,
+     "Matching stclass %.*s against %s (%d bytes)\n",
+     (int)SvCUR(prop), SvPVX_const(prop),
+     quoted, (int)(strend - s));
+   }
+  });
+  if (find_byclass(prog, c, s, strend, reginfo))
+   goto got_it;
+  DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Contradicts stclass... [regexec_flags]\n"));
+ }
+ else {
+  dontbother = 0;
+  if (prog->float_substr != NULL || prog->float_utf8 != NULL) {
+   /* Trim the end. */
+   char *last= NULL;
+   SV* float_real;
+   STRLEN len;
+   const char *little;
+
+   if (utf8_target) {
+    if (! prog->float_utf8) {
+     to_utf8_substr(prog);
+    }
+    float_real = prog->float_utf8;
+   }
+   else {
+    if (! prog->float_substr) {
+     if (! to_byte_substr(prog)) {
+      NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+     }
+    }
+    float_real = prog->float_substr;
+   }
+
+   little = SvPV_const(float_real, len);
+   if (SvTAIL(float_real)) {
+     /* This means that float_real contains an artificial \n on
+     * the end due to the presence of something like this:
+     * /foo$/ where we can match both "foo" and "foo\n" at the
+     * end of the string.  So we have to compare the end of the
+     * string first against the float_real without the \n and
+     * then against the full float_real with the string.  We
+     * have to watch out for cases where the string might be
+     * smaller than the float_real or the float_real without
+     * the \n. */
+     char *checkpos= strend - len;
+     DEBUG_OPTIMISE_r(
+      PerlIO_printf(Perl_debug_log,
+       "%sChecking for float_real.%s\n",
+       PL_colors[4], PL_colors[5]));
+     if (checkpos + 1 < strbeg) {
+      /* can't match, even if we remove the trailing \n
+      * string is too short to match */
+      DEBUG_EXECUTE_r(
+       PerlIO_printf(Perl_debug_log,
+        "%sString shorter than required trailing substring, cannot match.%s\n",
+        PL_colors[4], PL_colors[5]));
+      goto phooey;
+     } else if (memEQ(checkpos + 1, little, len - 1)) {
+      /* can match, the end of the string matches without the
+      * "\n" */
+      last = checkpos + 1;
+     } else if (checkpos < strbeg) {
+      /* cant match, string is too short when the "\n" is
+      * included */
+      DEBUG_EXECUTE_r(
+       PerlIO_printf(Perl_debug_log,
+        "%sString does not contain required trailing substring, cannot match.%s\n",
+        PL_colors[4], PL_colors[5]));
+      goto phooey;
+     } else if (!multiline) {
+      /* non multiline match, so compare with the "\n" at the
+      * end of the string */
+      if (memEQ(checkpos, little, len)) {
+       last= checkpos;
+      } else {
+       DEBUG_EXECUTE_r(
+        PerlIO_printf(Perl_debug_log,
+         "%sString does not contain required trailing substring, cannot match.%s\n",
+         PL_colors[4], PL_colors[5]));
+       goto phooey;
+      }
+     } else {
+      /* multiline match, so we have to search for a place
+      * where the full string is located */
+      goto find_last;
+     }
+   } else {
+    find_last:
+     if (len)
+      last = rninstr(s, strend, little, little + len);
+     else
+      last = strend; /* matching "$" */
+   }
+   if (!last) {
+    /* at one point this block contained a comment which was
+    * probably incorrect, which said that this was a "should not
+    * happen" case.  Even if it was true when it was written I am
+    * pretty sure it is not anymore, so I have removed the comment
+    * and replaced it with this one. Yves */
+    DEBUG_EXECUTE_r(
+     PerlIO_printf(Perl_debug_log,
+      "%sString does not contain required substring, cannot match.%s\n",
+      PL_colors[4], PL_colors[5]
+     ));
+    goto phooey;
+   }
+   dontbother = strend - last + prog->float_min_offset;
+  }
+  if (minlen && (dontbother < minlen))
+   dontbother = minlen - 1;
+  strend -= dontbother;      /* this one's always in bytes! */
+  /* We don't know much -- general case. */
+  if (utf8_target) {
+   for (;;) {
+    if (regtry(reginfo, &s))
+     goto got_it;
+    if (s >= strend)
+     break;
+    s += UTF8SKIP(s);
+   };
+  }
+  else {
+   do {
+    if (regtry(reginfo, &s))
+     goto got_it;
+   } while (s++ < strend);
+  }
+ }
+
+ /* Failure. */
+ goto phooey;
+
+  got_it:
+ /* s/// doesn't like it if $& is earlier than where we asked it to
+ * start searching (which can happen on something like /.\G/) */
+ if (       (flags & REXEC_FAIL_ON_UNDERFLOW)
+   && (prog->offs[0].start < stringarg - strbeg))
+ {
+  /* this should only be possible under \G */
+  assert(prog->intflags & PREGf_GPOS_SEEN);
+  DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+   "matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n"));
+  goto phooey;
+ }
+
+ DEBUG_BUFFERS_r(
+  if (swap)
+   PerlIO_printf(Perl_debug_log,
+    "rex=0x%"UVxf" freeing offs: 0x%"UVxf"\n",
+    PTR2UV(prog),
+    PTR2UV(swap)
+   );
+ );
+ Safefree(swap);
+
+ /* clean up; this will trigger destructors that will free all slabs
+ * above the current one, and cleanup the regmatch_info_aux
+ * and regmatch_info_aux_eval sructs */
+
+ LEAVE_SCOPE(oldsave);
+
+ if (RXp_PAREN_NAMES(prog))
+  (void)hv_iterinit(RXp_PAREN_NAMES(prog));
+
+ /* make sure $`, $&, $', and $digit will work later */
+ if ( !(flags & REXEC_NOT_FIRST) )
+  S_reg_set_capture_string(aTHX_ rx,
+         strbeg, reginfo->strend,
+         sv, flags, utf8_target);
+
+ return 1;
+
+  phooey:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch failed%s\n",
+      PL_colors[4], PL_colors[5]));
+
+ /* clean up; this will trigger destructors that will free all slabs
+ * above the current one, and cleanup the regmatch_info_aux
+ * and regmatch_info_aux_eval sructs */
+
+ LEAVE_SCOPE(oldsave);
+
+ if (swap) {
+  /* we failed :-( roll it back */
+  DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+   "rex=0x%"UVxf" rolling back offs: freeing=0x%"UVxf" restoring=0x%"UVxf"\n",
+   PTR2UV(prog),
+   PTR2UV(prog->offs),
+   PTR2UV(swap)
+  ));
+  Safefree(prog->offs);
+  prog->offs = swap;
+ }
+ return 0;
+}
+
+
+/* Set which rex is pointed to by PL_reg_curpm, handling ref counting.
+ * Do inc before dec, in case old and new rex are the same */
+#define SET_reg_curpm(Re2)                          \
+ if (reginfo->info_aux_eval) {                   \
+  (void)ReREFCNT_inc(Re2);      \
+  ReREFCNT_dec(PM_GETRE(PL_reg_curpm));     \
+  PM_SETRE((PL_reg_curpm), (Re2));     \
+ }
+
+
+/*
+ - regtry - try match at specific point
+ */
+STATIC I32   /* 0 failure, 1 success */
+S_regtry(pTHX_ regmatch_info *reginfo, char **startposp)
+{
+ CHECKPOINT lastcp;
+ REGEXP *const rx = reginfo->prog;
+ regexp *const prog = ReANY(rx);
+ SSize_t result;
+ RXi_GET_DECL(prog,progi);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTRY;
+
+ reginfo->cutpoint=NULL;
+
+ prog->offs[0].start = *startposp - reginfo->strbeg;
+ prog->lastparen = 0;
+ prog->lastcloseparen = 0;
+
+ /* XXXX What this code is doing here?!!!  There should be no need
+ to do this again and again, prog->lastparen should take care of
+ this!  --ilya*/
+
+ /* Tests pat.t#187 and split.t#{13,14} seem to depend on this code.
+ * Actually, the code in regcppop() (which Ilya may be meaning by
+ * prog->lastparen), is not needed at all by the test suite
+ * (op/regexp, op/pat, op/split), but that code is needed otherwise
+ * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
+ * Meanwhile, this code *is* needed for the
+ * above-mentioned test suite tests to succeed.  The common theme
+ * on those tests seems to be returning null fields from matches.
+ * --jhi updated by dapm */
+#if 1
+ if (prog->nparens) {
+  regexp_paren_pair *pp = prog->offs;
+  I32 i;
+  for (i = prog->nparens; i > (I32)prog->lastparen; i--) {
+   ++pp;
+   pp->start = -1;
+   pp->end = -1;
+  }
+ }
+#endif
+ REGCP_SET(lastcp);
+ result = regmatch(reginfo, *startposp, progi->program + 1);
+ if (result != -1) {
+  prog->offs[0].end = result;
+  return 1;
+ }
+ if (reginfo->cutpoint)
+  *startposp= reginfo->cutpoint;
+ REGCP_UNWIND(lastcp);
+ return 0;
+}
+
+
+#define sayYES goto yes
+#define sayNO goto no
+#define sayNO_SILENT goto no_silent
+
+/* we dont use STMT_START/END here because it leads to
+   "unreachable code" warnings, which are bogus, but distracting. */
+#define CACHEsayNO \
+ if (ST.cache_mask) \
+ reginfo->info_aux->poscache[ST.cache_offset] |= ST.cache_mask; \
+ sayNO
+
+/* this is used to determine how far from the left messages like
+   'failed...' are printed. It should be set such that messages
+   are inline with the regop output that created them.
+*/
+#define REPORT_CODE_OFF 32
+
+
+#define CHRTEST_UNINIT -1001 /* c1/c2 haven't been calculated yet */
+#define CHRTEST_VOID   -1000 /* the c1/c2 "next char" test should be skipped */
+#define CHRTEST_NOT_A_CP_1 -999
+#define CHRTEST_NOT_A_CP_2 -998
+
+/* grab a new slab and return the first slot in it */
+
+STATIC regmatch_state *
+S_push_slab(pTHX)
+{
+#if PERL_VERSION < 9 && !defined(PERL_CORE)
+ dMY_CXT;
+#endif
+ regmatch_slab *s = PL_regmatch_slab->next;
+ if (!s) {
+  Newx(s, 1, regmatch_slab);
+  s->prev = PL_regmatch_slab;
+  s->next = NULL;
+  PL_regmatch_slab->next = s;
+ }
+ PL_regmatch_slab = s;
+ return SLAB_FIRST(s);
+}
+
+
+/* push a new state then goto it */
+
+#define PUSH_STATE_GOTO(state, node, input) \
+ pushinput = input; \
+ scan = node; \
+ st->resume_state = state; \
+ goto push_state;
+
+/* push a new state with success backtracking, then goto it */
+
+#define PUSH_YES_STATE_GOTO(state, node, input) \
+ pushinput = input; \
+ scan = node; \
+ st->resume_state = state; \
+ goto push_yes_state;
+
+
+
+
+/*
+
+regmatch() - main matching routine
+
+This is basically one big switch statement in a loop. We execute an op,
+set 'next' to point the next op, and continue. If we come to a point which
+we may need to backtrack to on failure such as (A|B|C), we push a
+backtrack state onto the backtrack stack. On failure, we pop the top
+state, and re-enter the loop at the state indicated. If there are no more
+states to pop, we return failure.
+
+Sometimes we also need to backtrack on success; for example /A+/, where
+after successfully matching one A, we need to go back and try to
+match another one; similarly for lookahead assertions: if the assertion
+completes successfully, we backtrack to the state just before the assertion
+and then carry on.  In these cases, the pushed state is marked as
+'backtrack on success too'. This marking is in fact done by a chain of
+pointers, each pointing to the previous 'yes' state. On success, we pop to
+the nearest yes state, discarding any intermediate failure-only states.
+Sometimes a yes state is pushed just to force some cleanup code to be
+called at the end of a successful match or submatch; e.g. (??{$re}) uses
+it to free the inner regex.
+
+Note that failure backtracking rewinds the cursor position, while
+success backtracking leaves it alone.
+
+A pattern is complete when the END op is executed, while a subpattern
+such as (?=foo) is complete when the SUCCESS op is executed. Both of these
+ops trigger the "pop to last yes state if any, otherwise return true"
+behaviour.
+
+A common convention in this function is to use A and B to refer to the two
+subpatterns (or to the first nodes thereof) in patterns like /A*B/: so A is
+the subpattern to be matched possibly multiple times, while B is the entire
+rest of the pattern. Variable and state names reflect this convention.
+
+The states in the main switch are the union of ops and failure/success of
+substates associated with with that op.  For example, IFMATCH is the op
+that does lookahead assertions /(?=A)B/ and so the IFMATCH state means
+'execute IFMATCH'; while IFMATCH_A is a state saying that we have just
+successfully matched A and IFMATCH_A_fail is a state saying that we have
+just failed to match A. Resume states always come in pairs. The backtrack
+state we push is marked as 'IFMATCH_A', but when that is popped, we resume
+at IFMATCH_A or IFMATCH_A_fail, depending on whether we are backtracking
+on success or failure.
+
+The struct that holds a backtracking state is actually a big union, with
+one variant for each major type of op. The variable st points to the
+top-most backtrack struct. To make the code clearer, within each
+block of code we #define ST to alias the relevant union.
+
+Here's a concrete example of a (vastly oversimplified) IFMATCH
+implementation:
+
+ switch (state) {
+ ....
+
+#define ST st->u.ifmatch
+
+ case IFMATCH: // we are executing the IFMATCH op, (?=A)B
+  ST.foo = ...; // some state we wish to save
+  ...
+  // push a yes backtrack state with a resume value of
+  // IFMATCH_A/IFMATCH_A_fail, then continue execution at the
+  // first node of A:
+  PUSH_YES_STATE_GOTO(IFMATCH_A, A, newinput);
+  // NOTREACHED
+
+ case IFMATCH_A: // we have successfully executed A; now continue with B
+  next = B;
+  bar = ST.foo; // do something with the preserved value
+  break;
+
+ case IFMATCH_A_fail: // A failed, so the assertion failed
+  ...;   // do some housekeeping, then ...
+  sayNO; // propagate the failure
+
+#undef ST
+
+ ...
+ }
+
+For any old-timers reading this who are familiar with the old recursive
+approach, the code above is equivalent to:
+
+ case IFMATCH: // we are executing the IFMATCH op, (?=A)B
+ {
+  int foo = ...
+  ...
+  if (regmatch(A)) {
+   next = B;
+   bar = foo;
+   break;
+  }
+  ...;   // do some housekeeping, then ...
+  sayNO; // propagate the failure
+ }
+
+The topmost backtrack state, pointed to by st, is usually free. If you
+want to claim it, populate any ST.foo fields in it with values you wish to
+save, then do one of
+
+  PUSH_STATE_GOTO(resume_state, node, newinput);
+  PUSH_YES_STATE_GOTO(resume_state, node, newinput);
+
+which sets that backtrack state's resume value to 'resume_state', pushes a
+new free entry to the top of the backtrack stack, then goes to 'node'.
+On backtracking, the free slot is popped, and the saved state becomes the
+new free state. An ST.foo field in this new top state can be temporarily
+accessed to retrieve values, but once the main loop is re-entered, it
+becomes available for reuse.
+
+Note that the depth of the backtrack stack constantly increases during the
+left-to-right execution of the pattern, rather than going up and down with
+the pattern nesting. For example the stack is at its maximum at Z at the
+end of the pattern, rather than at X in the following:
+
+ /(((X)+)+)+....(Y)+....Z/
+
+The only exceptions to this are lookahead/behind assertions and the cut,
+(?>A), which pop all the backtrack states associated with A before
+continuing.
+
+Backtrack state structs are allocated in slabs of about 4K in size.
+PL_regmatch_state and st always point to the currently active state,
+and PL_regmatch_slab points to the slab currently containing
+PL_regmatch_state.  The first time regmatch() is called, the first slab is
+allocated, and is never freed until interpreter destruction. When the slab
+is full, a new one is allocated and chained to the end. At exit from
+regmatch(), slabs allocated since entry are freed.
+
+*/
+
+
+#define DEBUG_STATE_pp(pp)        \
+ DEBUG_STATE_r({         \
+  DUMP_EXEC_POS(locinput, scan, utf8_target);         \
+  PerlIO_printf(Perl_debug_log,       \
+   "    %*s"pp" %s%s%s%s%s\n",       \
+   depth*2, "",        \
+   PL_reg_name[st->resume_state],                  \
+   ((st==yes_state||st==mark_state) ? "[" : ""),   \
+   ((st==yes_state) ? "Y" : ""),                   \
+   ((st==mark_state) ? "M" : ""),                  \
+   ((st==yes_state||st==mark_state) ? "]" : "")    \
+  );                                                  \
+ });
+
+
+#define REG_NODE_NUM(x) ((x) ? (int)((x)-prog) : -1)
+
+#ifdef DEBUGGING
+
+STATIC void
+S_debug_start_match(pTHX_ const REGEXP *prog, const bool utf8_target,
+ const char *start, const char *end, const char *blurb)
+{
+ const bool utf8_pat = RX_UTF8(prog) ? 1 : 0;
+
+ PERL_ARGS_ASSERT_DEBUG_START_MATCH;
+
+ if (!PL_colorset)
+   reginitcolors();
+ {
+  RE_PV_QUOTED_DECL(s0, utf8_pat, PERL_DEBUG_PAD_ZERO(0),
+   RX_PRECOMP_const(prog), RX_PRELEN(prog), 60);
+
+  RE_PV_QUOTED_DECL(s1, utf8_target, PERL_DEBUG_PAD_ZERO(1),
+   start, end - start, 60);
+
+  PerlIO_printf(Perl_debug_log,
+   "%s%s REx%s %s against %s\n",
+     PL_colors[4], blurb, PL_colors[5], s0, s1);
+
+  if (utf8_target||utf8_pat)
+   PerlIO_printf(Perl_debug_log, "UTF-8 %s%s%s...\n",
+    utf8_pat ? "pattern" : "",
+    utf8_pat && utf8_target ? " and " : "",
+    utf8_target ? "string" : ""
+   );
+ }
+}
+
+STATIC void
+S_dump_exec_pos(pTHX_ const char *locinput,
+     const regnode *scan,
+     const char *loc_regeol,
+     const char *loc_bostr,
+     const char *loc_reg_starttry,
+     const bool utf8_target)
+{
+ const int docolor = *PL_colors[0] || *PL_colors[2] || *PL_colors[4];
+ const int taill = (docolor ? 10 : 7); /* 3 chars for "> <" */
+ int l = (loc_regeol - locinput) > taill ? taill : (loc_regeol - locinput);
+ /* The part of the string before starttry has one color
+ (pref0_len chars), between starttry and current
+ position another one (pref_len - pref0_len chars),
+ after the current position the third one.
+ We assume that pref0_len <= pref_len, otherwise we
+ decrease pref0_len.  */
+ int pref_len = (locinput - loc_bostr) > (5 + taill) - l
+  ? (5 + taill) - l : locinput - loc_bostr;
+ int pref0_len;
+
+ PERL_ARGS_ASSERT_DUMP_EXEC_POS;
+
+ while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput - pref_len)))
+  pref_len++;
+ pref0_len = pref_len  - (locinput - loc_reg_starttry);
+ if (l + pref_len < (5 + taill) && l < loc_regeol - locinput)
+  l = ( loc_regeol - locinput > (5 + taill) - pref_len
+   ? (5 + taill) - pref_len : loc_regeol - locinput);
+ while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput + l)))
+  l--;
+ if (pref0_len < 0)
+  pref0_len = 0;
+ if (pref0_len > pref_len)
+  pref0_len = pref_len;
+ {
+  const int is_uni = utf8_target ? 1 : 0;
+
+  RE_PV_COLOR_DECL(s0,len0,is_uni,PERL_DEBUG_PAD(0),
+   (locinput - pref_len),pref0_len, 60, 4, 5);
+
+  RE_PV_COLOR_DECL(s1,len1,is_uni,PERL_DEBUG_PAD(1),
+     (locinput - pref_len + pref0_len),
+     pref_len - pref0_len, 60, 2, 3);
+
+  RE_PV_COLOR_DECL(s2,len2,is_uni,PERL_DEBUG_PAD(2),
+     locinput, loc_regeol - locinput, 10, 0, 1);
+
+  const STRLEN tlen=len0+len1+len2;
+  PerlIO_printf(Perl_debug_log,
+     "%4"IVdf" <%.*s%.*s%s%.*s>%*s|",
+     (IV)(locinput - loc_bostr),
+     len0, s0,
+     len1, s1,
+     (docolor ? "" : "> <"),
+     len2, s2,
+     (int)(tlen > 19 ? 0 :  19 - tlen),
+     "");
+ }
+}
+
+#endif
+
+/* reg_check_named_buff_matched()
+ * Checks to see if a named buffer has matched. The data array of
+ * buffer numbers corresponding to the buffer is expected to reside
+ * in the regexp->data->data array in the slot stored in the ARG() of
+ * node involved. Note that this routine doesn't actually care about the
+ * name, that information is not preserved from compilation to execution.
+ * Returns the index of the leftmost defined buffer with the given name
+ * or 0 if non of the buffers matched.
+ */
+STATIC I32
+S_reg_check_named_buff_matched(const regexp *rex, const regnode *scan)
+{
+ I32 n;
+ RXi_GET_DECL(rex,rexi);
+ SV *sv_dat= MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ I32 *nums=(I32*)SvPVX(sv_dat);
+
+ PERL_ARGS_ASSERT_REG_CHECK_NAMED_BUFF_MATCHED;
+
+ for ( n=0; n<SvIVX(sv_dat); n++ ) {
+  if ((I32)rex->lastparen >= nums[n] &&
+   rex->offs[nums[n]].end != -1)
+  {
+   return nums[n];
+  }
+ }
+ return 0;
+}
+
+
+static bool
+S_setup_EXACTISH_ST_c1_c2(pTHX_ const regnode * const text_node, int *c1p,
+  U8* c1_utf8, int *c2p, U8* c2_utf8, regmatch_info *reginfo)
+{
+ /* This function determines if there are one or two characters that match
+ * the first character of the passed-in EXACTish node <text_node>, and if
+ * so, returns them in the passed-in pointers.
+ *
+ * If it determines that no possible character in the target string can
+ * match, it returns FALSE; otherwise TRUE.  (The FALSE situation occurs if
+ * the first character in <text_node> requires UTF-8 to represent, and the
+ * target string isn't in UTF-8.)
+ *
+ * If there are more than two characters that could match the beginning of
+ * <text_node>, or if more context is required to determine a match or not,
+ * it sets both *<c1p> and *<c2p> to CHRTEST_VOID.
+ *
+ * The motiviation behind this function is to allow the caller to set up
+ * tight loops for matching.  If <text_node> is of type EXACT, there is
+ * only one possible character that can match its first character, and so
+ * the situation is quite simple.  But things get much more complicated if
+ * folding is involved.  It may be that the first character of an EXACTFish
+ * node doesn't participate in any possible fold, e.g., punctuation, so it
+ * can be matched only by itself.  The vast majority of characters that are
+ * in folds match just two things, their lower and upper-case equivalents.
+ * But not all are like that; some have multiple possible matches, or match
+ * sequences of more than one character.  This function sorts all that out.
+ *
+ * Consider the patterns A*B or A*?B where A and B are arbitrary.  In a
+ * loop of trying to match A*, we know we can't exit where the thing
+ * following it isn't a B.  And something can't be a B unless it is the
+ * beginning of B.  By putting a quick test for that beginning in a tight
+ * loop, we can rule out things that can't possibly be B without having to
+ * break out of the loop, thus avoiding work.  Similarly, if A is a single
+ * character, we can make a tight loop matching A*, using the outputs of
+ * this function.
+ *
+ * If the target string to match isn't in UTF-8, and there aren't
+ * complications which require CHRTEST_VOID, *<c1p> and *<c2p> are set to
+ * the one or two possible octets (which are characters in this situation)
+ * that can match.  In all cases, if there is only one character that can
+ * match, *<c1p> and *<c2p> will be identical.
+ *
+ * If the target string is in UTF-8, the buffers pointed to by <c1_utf8>
+ * and <c2_utf8> will contain the one or two UTF-8 sequences of bytes that
+ * can match the beginning of <text_node>.  They should be declared with at
+ * least length UTF8_MAXBYTES+1.  (If the target string isn't in UTF-8, it is
+ * undefined what these contain.)  If one or both of the buffers are
+ * invariant under UTF-8, *<c1p>, and *<c2p> will also be set to the
+ * corresponding invariant.  If variant, the corresponding *<c1p> and/or
+ * *<c2p> will be set to a negative number(s) that shouldn't match any code
+ * point (unless inappropriately coerced to unsigned).   *<c1p> will equal
+ * *<c2p> if and only if <c1_utf8> and <c2_utf8> are the same. */
+
+ const bool utf8_target = reginfo->is_utf8_target;
+
+ UV c1 = (UV)CHRTEST_NOT_A_CP_1;
+ UV c2 = (UV)CHRTEST_NOT_A_CP_2;
+ bool use_chrtest_void = FALSE;
+ const bool is_utf8_pat = reginfo->is_utf8_pat;
+
+ /* Used when we have both utf8 input and utf8 output, to avoid converting
+ * to/from code points */
+ bool utf8_has_been_setup = FALSE;
+
+ dVAR;
+
+ U8 *pat = (U8*)STRING(text_node);
+ U8 folded[UTF8_MAX_FOLD_CHAR_EXPAND * UTF8_MAXBYTES_CASE + 1] = { '\0' };
+
+ if (OP(text_node) == EXACT || OP(text_node) == EXACTL) {
+
+  /* In an exact node, only one thing can be matched, that first
+  * character.  If both the pat and the target are UTF-8, we can just
+  * copy the input to the output, avoiding finding the code point of
+  * that character */
+  if (!is_utf8_pat) {
+   c2 = c1 = *pat;
+  }
+  else if (utf8_target) {
+   Copy(pat, c1_utf8, UTF8SKIP(pat), U8);
+   Copy(pat, c2_utf8, UTF8SKIP(pat), U8);
+   utf8_has_been_setup = TRUE;
+  }
+  else {
+   c2 = c1 = valid_utf8_to_uvchr(pat, NULL);
+  }
+ }
+ else { /* an EXACTFish node */
+  U8 *pat_end = pat + STR_LEN(text_node);
+
+  /* An EXACTFL node has at least some characters unfolded, because what
+  * they match is not known until now.  So, now is the time to fold
+  * the first few of them, as many as are needed to determine 'c1' and
+  * 'c2' later in the routine.  If the pattern isn't UTF-8, we only need
+  * to fold if in a UTF-8 locale, and then only the Sharp S; everything
+  * else is 1-1 and isn't assumed to be folded.  In a UTF-8 pattern, we
+  * need to fold as many characters as a single character can fold to,
+  * so that later we can check if the first ones are such a multi-char
+  * fold.  But, in such a pattern only locale-problematic characters
+  * aren't folded, so we can skip this completely if the first character
+  * in the node isn't one of the tricky ones */
+  if (OP(text_node) == EXACTFL) {
+
+   if (! is_utf8_pat) {
+    if (IN_UTF8_CTYPE_LOCALE && *pat == LATIN_SMALL_LETTER_SHARP_S)
+    {
+     folded[0] = folded[1] = 's';
+     pat = folded;
+     pat_end = folded + 2;
+    }
+   }
+   else if (is_PROBLEMATIC_LOCALE_FOLDEDS_START_utf8(pat)) {
+    U8 *s = pat;
+    U8 *d = folded;
+    int i;
+
+    for (i = 0; i < UTF8_MAX_FOLD_CHAR_EXPAND && s < pat_end; i++) {
+     if (isASCII(*s)) {
+      *(d++) = (U8) toFOLD_LC(*s);
+      s++;
+     }
+     else {
+      STRLEN len;
+      _to_utf8_fold_flags(s,
+           d,
+           &len,
+           FOLD_FLAGS_FULL | FOLD_FLAGS_LOCALE);
+      d += len;
+      s += UTF8SKIP(s);
+     }
+    }
+
+    pat = folded;
+    pat_end = d;
+   }
+  }
+
+  if ((is_utf8_pat && is_MULTI_CHAR_FOLD_utf8_safe(pat, pat_end))
+   || (!is_utf8_pat && is_MULTI_CHAR_FOLD_latin1_safe(pat, pat_end)))
+  {
+   /* Multi-character folds require more context to sort out.  Also
+   * PL_utf8_foldclosures used below doesn't handle them, so have to
+   * be handled outside this routine */
+   use_chrtest_void = TRUE;
+  }
+  else { /* an EXACTFish node which doesn't begin with a multi-char fold */
+   c1 = is_utf8_pat ? valid_utf8_to_uvchr(pat, NULL) : *pat;
+   if (c1 > 255) {
+    /* Load the folds hash, if not already done */
+    SV** listp;
+    if (! PL_utf8_foldclosures) {
+     _load_PL_utf8_foldclosures();
+    }
+
+    /* The fold closures data structure is a hash with the keys
+    * being the UTF-8 of every character that is folded to, like
+    * 'k', and the values each an array of all code points that
+    * fold to its key.  e.g. [ 'k', 'K', KELVIN_SIGN ].
+    * Multi-character folds are not included */
+    if ((! (listp = hv_fetch(PL_utf8_foldclosures,
+          (char *) pat,
+          UTF8SKIP(pat),
+          FALSE))))
+    {
+     /* Not found in the hash, therefore there are no folds
+     * containing it, so there is only a single character that
+     * could match */
+     c2 = c1;
+    }
+    else {  /* Does participate in folds */
+     AV* list = (AV*) *listp;
+     if (av_tindex(list) != 1) {
+
+      /* If there aren't exactly two folds to this, it is
+      * outside the scope of this function */
+      use_chrtest_void = TRUE;
+     }
+     else {  /* There are two.  Get them */
+      SV** c_p = av_fetch(list, 0, FALSE);
+      if (c_p == NULL) {
+       Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
+      }
+      c1 = SvUV(*c_p);
+
+      c_p = av_fetch(list, 1, FALSE);
+      if (c_p == NULL) {
+       Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
+      }
+      c2 = SvUV(*c_p);
+
+      /* Folds that cross the 255/256 boundary are forbidden
+      * if EXACTFL (and isnt a UTF8 locale), or EXACTFA and
+      * one is ASCIII.  Since the pattern character is above
+      * 255, and its only other match is below 256, the only
+      * legal match will be to itself.  We have thrown away
+      * the original, so have to compute which is the one
+      * above 255. */
+      if ((c1 < 256) != (c2 < 256)) {
+       if ((OP(text_node) == EXACTFL
+        && ! IN_UTF8_CTYPE_LOCALE)
+        || ((OP(text_node) == EXACTFA
+         || OP(text_node) == EXACTFA_NO_TRIE)
+         && (isASCII(c1) || isASCII(c2))))
+       {
+        if (c1 < 256) {
+         c1 = c2;
+        }
+        else {
+         c2 = c1;
+        }
+       }
+      }
+     }
+    }
+   }
+   else /* Here, c1 is <= 255 */
+    if (utf8_target
+     && HAS_NONLATIN1_FOLD_CLOSURE(c1)
+     && ( ! (OP(text_node) == EXACTFL && ! IN_UTF8_CTYPE_LOCALE))
+     && ((OP(text_node) != EXACTFA
+      && OP(text_node) != EXACTFA_NO_TRIE)
+      || ! isASCII(c1)))
+   {
+    /* Here, there could be something above Latin1 in the target
+    * which folds to this character in the pattern.  All such
+    * cases except LATIN SMALL LETTER Y WITH DIAERESIS have more
+    * than two characters involved in their folds, so are outside
+    * the scope of this function */
+    if (UNLIKELY(c1 == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) {
+     c2 = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS;
+    }
+    else {
+     use_chrtest_void = TRUE;
+    }
+   }
+   else { /* Here nothing above Latin1 can fold to the pattern
+     character */
+    switch (OP(text_node)) {
+
+     case EXACTFL:   /* /l rules */
+      c2 = PL_fold_locale[c1];
+      break;
+
+     case EXACTF:   /* This node only generated for non-utf8
+         patterns */
+      assert(! is_utf8_pat);
+      if (! utf8_target) {    /* /d rules */
+       c2 = PL_fold[c1];
+       break;
+      }
+      /* FALLTHROUGH */
+      /* /u rules for all these.  This happens to work for
+      * EXACTFA as nothing in Latin1 folds to ASCII */
+     case EXACTFA_NO_TRIE:   /* This node only generated for
+           non-utf8 patterns */
+      assert(! is_utf8_pat);
+      /* FALLTHROUGH */
+     case EXACTFA:
+     case EXACTFU_SS:
+     case EXACTFU:
+      c2 = PL_fold_latin1[c1];
+      break;
+
+     default:
+      Perl_croak(aTHX_ "panic: Unexpected op %u", OP(text_node));
+      NOT_REACHED; /* NOTREACHED */
+    }
+   }
+  }
+ }
+
+ /* Here have figured things out.  Set up the returns */
+ if (use_chrtest_void) {
+  *c2p = *c1p = CHRTEST_VOID;
+ }
+ else if (utf8_target) {
+  if (! utf8_has_been_setup) {    /* Don't have the utf8; must get it */
+   uvchr_to_utf8(c1_utf8, c1);
+   uvchr_to_utf8(c2_utf8, c2);
+  }
+
+  /* Invariants are stored in both the utf8 and byte outputs; Use
+  * negative numbers otherwise for the byte ones.  Make sure that the
+  * byte ones are the same iff the utf8 ones are the same */
+  *c1p = (UTF8_IS_INVARIANT(*c1_utf8)) ? *c1_utf8 : CHRTEST_NOT_A_CP_1;
+  *c2p = (UTF8_IS_INVARIANT(*c2_utf8))
+    ? *c2_utf8
+    : (c1 == c2)
+    ? CHRTEST_NOT_A_CP_1
+    : CHRTEST_NOT_A_CP_2;
+ }
+ else if (c1 > 255) {
+ if (c2 > 255) {  /* both possibilities are above what a non-utf8 string
+      can represent */
+  return FALSE;
+ }
+
+ *c1p = *c2p = c2;    /* c2 is the only representable value */
+ }
+ else {  /* c1 is representable; see about c2 */
+ *c1p = c1;
+ *c2p = (c2 < 256) ? c2 : c1;
+ }
+
+ return TRUE;
+}
+
+/* This creates a single number by combining two, with 'before' being like the
+ * 10's digit, but this isn't necessarily base 10; it is base however many
+ * elements of the enum there are */
+#define GCBcase(before, after) ((GCB_ENUM_COUNT * before) + after)
+
+STATIC bool
+S_isGCB(const GCB_enum before, const GCB_enum after)
+{
+ /* returns a boolean indicating if there is a Grapheme Cluster Boundary
+ * between the inputs.  See http://www.unicode.org/reports/tr29/ */
+
+ switch (GCBcase(before, after)) {
+
+  /*  Break at the start and end of text.
+   GB1.   sot ÷
+   GB2.   ÷ eot
+
+   Break before and after controls except between CR and LF
+   GB4.  ( Control | CR | LF )  ÷
+   GB5.   ÷  ( Control | CR | LF )
+
+   Otherwise, break everywhere.
+   GB10.  Any  ÷  Any */
+  default:
+   return TRUE;
+
+  /* Do not break between a CR and LF.
+   GB3.  CR  ×  LF */
+  case GCBcase(GCB_CR, GCB_LF):
+   return FALSE;
+
+  /* Do not break Hangul syllable sequences.
+   GB6.  L  ×  ( L | V | LV | LVT ) */
+  case GCBcase(GCB_L, GCB_L):
+  case GCBcase(GCB_L, GCB_V):
+  case GCBcase(GCB_L, GCB_LV):
+  case GCBcase(GCB_L, GCB_LVT):
+   return FALSE;
+
+  /*  GB7.  ( LV | V )  ×  ( V | T ) */
+  case GCBcase(GCB_LV, GCB_V):
+  case GCBcase(GCB_LV, GCB_T):
+  case GCBcase(GCB_V, GCB_V):
+  case GCBcase(GCB_V, GCB_T):
+   return FALSE;
+
+  /*  GB8.  ( LVT | T)  ×  T */
+  case GCBcase(GCB_LVT, GCB_T):
+  case GCBcase(GCB_T, GCB_T):
+   return FALSE;
+
+  /* Do not break between regional indicator symbols.
+   GB8a.  Regional_Indicator  ×  Regional_Indicator */
+  case GCBcase(GCB_Regional_Indicator, GCB_Regional_Indicator):
+   return FALSE;
+
+  /* Do not break before extending characters.
+   GB9.     ×  Extend */
+  case GCBcase(GCB_Other, GCB_Extend):
+  case GCBcase(GCB_Extend, GCB_Extend):
+  case GCBcase(GCB_L, GCB_Extend):
+  case GCBcase(GCB_LV, GCB_Extend):
+  case GCBcase(GCB_LVT, GCB_Extend):
+  case GCBcase(GCB_Prepend, GCB_Extend):
+  case GCBcase(GCB_Regional_Indicator, GCB_Extend):
+  case GCBcase(GCB_SpacingMark, GCB_Extend):
+  case GCBcase(GCB_T, GCB_Extend):
+  case GCBcase(GCB_V, GCB_Extend):
+   return FALSE;
+
+  /* Do not break before SpacingMarks, or after Prepend characters.
+   GB9a.     ×  SpacingMark */
+  case GCBcase(GCB_Other, GCB_SpacingMark):
+  case GCBcase(GCB_Extend, GCB_SpacingMark):
+  case GCBcase(GCB_L, GCB_SpacingMark):
+  case GCBcase(GCB_LV, GCB_SpacingMark):
+  case GCBcase(GCB_LVT, GCB_SpacingMark):
+  case GCBcase(GCB_Prepend, GCB_SpacingMark):
+  case GCBcase(GCB_Regional_Indicator, GCB_SpacingMark):
+  case GCBcase(GCB_SpacingMark, GCB_SpacingMark):
+  case GCBcase(GCB_T, GCB_SpacingMark):
+  case GCBcase(GCB_V, GCB_SpacingMark):
+   return FALSE;
+
+  /* GB9b.  Prepend  ×   */
+  case GCBcase(GCB_Prepend, GCB_Other):
+  case GCBcase(GCB_Prepend, GCB_L):
+  case GCBcase(GCB_Prepend, GCB_LV):
+  case GCBcase(GCB_Prepend, GCB_LVT):
+  case GCBcase(GCB_Prepend, GCB_Prepend):
+  case GCBcase(GCB_Prepend, GCB_Regional_Indicator):
+  case GCBcase(GCB_Prepend, GCB_T):
+  case GCBcase(GCB_Prepend, GCB_V):
+   return FALSE;
+ }
+
+ NOT_REACHED; /* NOTREACHED */
+}
+
+#define SBcase(before, after) ((SB_ENUM_COUNT * before) + after)
+
+STATIC bool
+S_isSB(pTHX_ SB_enum before,
+   SB_enum after,
+   const U8 * const strbeg,
+   const U8 * const curpos,
+   const U8 * const strend,
+   const bool utf8_target)
+{
+ /* returns a boolean indicating if there is a Sentence Boundary Break
+ * between the inputs.  See http://www.unicode.org/reports/tr29/ */
+
+ U8 * lpos = (U8 *) curpos;
+ U8 * temp_pos;
+ SB_enum backup;
+
+ PERL_ARGS_ASSERT_ISSB;
+
+ /* Break at the start and end of text.
+  SB1.  sot  ÷
+  SB2.  ÷  eot */
+ if (before == SB_EDGE || after == SB_EDGE) {
+  return TRUE;
+ }
+
+ /* SB 3: Do not break within CRLF. */
+ if (before == SB_CR && after == SB_LF) {
+  return FALSE;
+ }
+
+ /* Break after paragraph separators.  (though why CR and LF are considered
+ * so is beyond me (khw)
+ SB4.  Sep | CR | LF  ÷ */
+ if (before == SB_Sep || before == SB_CR || before == SB_LF) {
+  return TRUE;
+ }
+
+ /* Ignore Format and Extend characters, except after sot, Sep, CR, or LF.
+ * (See Section 6.2, Replacing Ignore Rules.)
+  SB5.  X (Extend | Format)*  →  X */
+ if (after == SB_Extend || after == SB_Format) {
+  return FALSE;
+ }
+
+ if (before == SB_Extend || before == SB_Format) {
+  before = backup_one_SB(strbeg, &lpos, utf8_target);
+ }
+
+ /* Do not break after ambiguous terminators like period, if they are
+ * immediately followed by a number or lowercase letter, if they are
+ * between uppercase letters, if the first following letter (optionally
+ * after certain punctuation) is lowercase, or if they are followed by
+ * "continuation" punctuation such as comma, colon, or semicolon. For
+ * example, a period may be an abbreviation or numeric period, and thus may
+ * not mark the end of a sentence.
+
+ * SB6. ATerm  ×  Numeric */
+ if (before == SB_ATerm && after == SB_Numeric) {
+  return FALSE;
+ }
+
+ /* SB7.  (Upper | Lower) ATerm  ×  Upper */
+ if (before == SB_ATerm && after == SB_Upper) {
+  temp_pos = lpos;
+  backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+  if (backup == SB_Upper || backup == SB_Lower) {
+   return FALSE;
+  }
+ }
+
+ /* SB8a.  (STerm | ATerm) Close* Sp*  ×  (SContinue | STerm | ATerm)
+ * SB10.  (STerm | ATerm) Close* Sp*  ×  ( Sp | Sep | CR | LF )      */
+ backup = before;
+ temp_pos = lpos;
+ while (backup == SB_Sp) {
+  backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ }
+ while (backup == SB_Close) {
+  backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ }
+ if ((backup == SB_STerm || backup == SB_ATerm)
+  && (   after == SB_SContinue
+   || after == SB_STerm
+   || after == SB_ATerm
+   || after == SB_Sp
+   || after == SB_Sep
+   || after == SB_CR
+   || after == SB_LF))
+ {
+  return FALSE;
+ }
+
+ /* SB8.  ATerm Close* Sp*  ×  ( ¬(OLetter | Upper | Lower | Sep | CR | LF |
+ *                                              STerm | ATerm) )* Lower */
+ if (backup == SB_ATerm) {
+  U8 * rpos = (U8 *) curpos;
+  SB_enum later = after;
+
+  while (    later != SB_OLetter
+    && later != SB_Upper
+    && later != SB_Lower
+    && later != SB_Sep
+    && later != SB_CR
+    && later != SB_LF
+    && later != SB_STerm
+    && later != SB_ATerm
+    && later != SB_EDGE)
+  {
+   later = advance_one_SB(&rpos, strend, utf8_target);
+  }
+  if (later == SB_Lower) {
+   return FALSE;
+  }
+ }
+
+ /* Break after sentence terminators, but include closing punctuation,
+ * trailing spaces, and a paragraph separator (if present). [See note
+ * below.]
+ * SB9.  ( STerm | ATerm ) Close*  ×  ( Close | Sp | Sep | CR | LF ) */
+ backup = before;
+ temp_pos = lpos;
+ while (backup == SB_Close) {
+  backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ }
+ if ((backup == SB_STerm || backup == SB_ATerm)
+  && (   after == SB_Close
+   || after == SB_Sp
+   || after == SB_Sep
+   || after == SB_CR
+   || after == SB_LF))
+ {
+  return FALSE;
+ }
+
+
+ /* SB11.  ( STerm | ATerm ) Close* Sp* ( Sep | CR | LF )?  ÷ */
+ temp_pos = lpos;
+ backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ if (   backup == SB_Sep
+  || backup == SB_CR
+  || backup == SB_LF)
+ {
+  lpos = temp_pos;
+ }
+ else {
+  backup = before;
+ }
+ while (backup == SB_Sp) {
+  backup = backup_one_SB(strbeg, &lpos, utf8_target);
+ }
+ while (backup == SB_Close) {
+  backup = backup_one_SB(strbeg, &lpos, utf8_target);
+ }
+ if (backup == SB_STerm || backup == SB_ATerm) {
+  return TRUE;
+ }
+
+ /* Otherwise, do not break.
+ SB12.  Any  ×  Any */
+
+ return FALSE;
+}
+
+STATIC SB_enum
+S_advance_one_SB(pTHX_ U8 ** curpos, const U8 * const strend, const bool utf8_target)
+{
+ SB_enum sb;
+
+ PERL_ARGS_ASSERT_ADVANCE_ONE_SB;
+
+ if (*curpos >= strend) {
+  return SB_EDGE;
+ }
+
+ if (utf8_target) {
+  do {
+   *curpos += UTF8SKIP(*curpos);
+   if (*curpos >= strend) {
+    return SB_EDGE;
+   }
+   sb = getSB_VAL_UTF8(*curpos, strend);
+  } while (sb == SB_Extend || sb == SB_Format);
+ }
+ else {
+  do {
+   (*curpos)++;
+   if (*curpos >= strend) {
+    return SB_EDGE;
+   }
+   sb = getSB_VAL_CP(**curpos);
+  } while (sb == SB_Extend || sb == SB_Format);
+ }
+
+ return sb;
+}
+
+STATIC SB_enum
+S_backup_one_SB(pTHX_ const U8 * const strbeg, U8 ** curpos, const bool utf8_target)
+{
+ SB_enum sb;
+
+ PERL_ARGS_ASSERT_BACKUP_ONE_SB;
+
+ if (*curpos < strbeg) {
+  return SB_EDGE;
+ }
+
+ if (utf8_target) {
+  U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg);
+  if (! prev_char_pos) {
+   return SB_EDGE;
+  }
+
+  /* Back up over Extend and Format.  curpos is always just to the right
+  * of the characater whose value we are getting */
+  do {
+   U8 * prev_prev_char_pos;
+   if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos, -1,
+                 strbeg)))
+   {
+    sb = getSB_VAL_UTF8(prev_prev_char_pos, prev_char_pos);
+    *curpos = prev_char_pos;
+    prev_char_pos = prev_prev_char_pos;
+   }
+   else {
+    *curpos = (U8 *) strbeg;
+    return SB_EDGE;
+   }
+  } while (sb == SB_Extend || sb == SB_Format);
+ }
+ else {
+  do {
+   if (*curpos - 2 < strbeg) {
+    *curpos = (U8 *) strbeg;
+    return SB_EDGE;
+   }
+   (*curpos)--;
+   sb = getSB_VAL_CP(*(*curpos - 1));
+  } while (sb == SB_Extend || sb == SB_Format);
+ }
+
+ return sb;
+}
+
+#define WBcase(before, after) ((WB_ENUM_COUNT * before) + after)
+
+STATIC bool
+S_isWB(pTHX_ WB_enum previous,
+   WB_enum before,
+   WB_enum after,
+   const U8 * const strbeg,
+   const U8 * const curpos,
+   const U8 * const strend,
+   const bool utf8_target)
+{
+ /*  Return a boolean as to if the boundary between 'before' and 'after' is
+ *  a Unicode word break, using their published algorithm.  Context may be
+ *  needed to make this determination.  If the value for the character
+ *  before 'before' is known, it is passed as 'previous'; otherwise that
+ *  should be set to WB_UNKNOWN.  The other input parameters give the
+ *  boundaries and current position in the matching of the string.  That
+ *  is, 'curpos' marks the position where the character whose wb value is
+ *  'after' begins.  See http://www.unicode.org/reports/tr29/ */
+
+ U8 * before_pos = (U8 *) curpos;
+ U8 * after_pos = (U8 *) curpos;
+
+ PERL_ARGS_ASSERT_ISWB;
+
+ /* WB1 and WB2: Break at the start and end of text. */
+ if (before == WB_EDGE || after == WB_EDGE) {
+  return TRUE;
+ }
+
+ /* WB 3: Do not break within CRLF. */
+ if (before == WB_CR && after == WB_LF) {
+  return FALSE;
+ }
+
+ /* WB 3a and WB 3b: Otherwise break before and after Newlines (including CR
+ * and LF) */
+ if (   before == WB_CR || before == WB_LF || before == WB_Newline
+  || after ==  WB_CR || after ==  WB_LF || after ==  WB_Newline)
+ {
+  return TRUE;
+ }
+
+ /* Ignore Format and Extend characters, except when they appear at the
+ * beginning of a region of text.
+ * WB4.  X (Extend | Format)*  →  X. */
+
+ if (after == WB_Extend || after == WB_Format) {
+  return FALSE;
+ }
+
+ if (before == WB_Extend || before == WB_Format) {
+  before = backup_one_WB(&previous, strbeg, &before_pos, utf8_target);
+ }
+
+ switch (WBcase(before, after)) {
+   /* Otherwise, break everywhere (including around ideographs).
+    WB14.  Any  ÷  Any */
+   default:
+    return TRUE;
+
+   /* Do not break between most letters.
+    WB5.  (ALetter | Hebrew_Letter) × (ALetter | Hebrew_Letter) */
+   case WBcase(WB_ALetter, WB_ALetter):
+   case WBcase(WB_ALetter, WB_Hebrew_Letter):
+   case WBcase(WB_Hebrew_Letter, WB_ALetter):
+   case WBcase(WB_Hebrew_Letter, WB_Hebrew_Letter):
+    return FALSE;
+
+   /* Do not break letters across certain punctuation.
+    WB6.  (ALetter | Hebrew_Letter)
+      × (MidLetter | MidNumLet | Single_Quote) (ALetter
+               | Hebrew_Letter) */
+   case WBcase(WB_ALetter, WB_MidLetter):
+   case WBcase(WB_ALetter, WB_MidNumLet):
+   case WBcase(WB_ALetter, WB_Single_Quote):
+   case WBcase(WB_Hebrew_Letter, WB_MidLetter):
+   case WBcase(WB_Hebrew_Letter, WB_MidNumLet):
+   /*case WBcase(WB_Hebrew_Letter, WB_Single_Quote):*/
+    after = advance_one_WB(&after_pos, strend, utf8_target);
+    return after != WB_ALetter && after != WB_Hebrew_Letter;
+
+   /* WB7.  (ALetter | Hebrew_Letter) (MidLetter | MidNumLet |
+   *                    Single_Quote) ×  (ALetter | Hebrew_Letter) */
+   case WBcase(WB_MidLetter, WB_ALetter):
+   case WBcase(WB_MidLetter, WB_Hebrew_Letter):
+   case WBcase(WB_MidNumLet, WB_ALetter):
+   case WBcase(WB_MidNumLet, WB_Hebrew_Letter):
+   case WBcase(WB_Single_Quote, WB_ALetter):
+   case WBcase(WB_Single_Quote, WB_Hebrew_Letter):
+    before
+    = backup_one_WB(&previous, strbeg, &before_pos, utf8_target);
+    return before != WB_ALetter && before != WB_Hebrew_Letter;
+
+   /* WB7a.  Hebrew_Letter  ×  Single_Quote */
+   case WBcase(WB_Hebrew_Letter, WB_Single_Quote):
+    return FALSE;
+
+   /* WB7b.  Hebrew_Letter  ×  Double_Quote Hebrew_Letter */
+   case WBcase(WB_Hebrew_Letter, WB_Double_Quote):
+    return advance_one_WB(&after_pos, strend, utf8_target)
+              != WB_Hebrew_Letter;
+
+   /* WB7c.  Hebrew_Letter Double_Quote  ×  Hebrew_Letter */
+   case WBcase(WB_Double_Quote, WB_Hebrew_Letter):
+    return backup_one_WB(&previous, strbeg, &before_pos, utf8_target)
+              != WB_Hebrew_Letter;
+
+   /* Do not break within sequences of digits, or digits adjacent to
+   * letters (“3a”, or “A3”).
+    WB8.  Numeric  ×  Numeric */
+   case WBcase(WB_Numeric, WB_Numeric):
+    return FALSE;
+
+   /* WB9.  (ALetter | Hebrew_Letter)  ×  Numeric */
+   case WBcase(WB_ALetter, WB_Numeric):
+   case WBcase(WB_Hebrew_Letter, WB_Numeric):
+    return FALSE;
+
+   /* WB10.  Numeric  ×  (ALetter | Hebrew_Letter) */
+   case WBcase(WB_Numeric, WB_ALetter):
+   case WBcase(WB_Numeric, WB_Hebrew_Letter):
+    return FALSE;
+
+   /* Do not break within sequences, such as “3.2” or “3,456.789”.
+    WB11.   Numeric (MidNum | MidNumLet | Single_Quote)  ×  Numeric
+   */
+   case WBcase(WB_MidNum, WB_Numeric):
+   case WBcase(WB_MidNumLet, WB_Numeric):
+   case WBcase(WB_Single_Quote, WB_Numeric):
+    return backup_one_WB(&previous, strbeg, &before_pos, utf8_target)
+               != WB_Numeric;
+
+   /*  WB12.   Numeric  ×  (MidNum | MidNumLet | Single_Quote) Numeric
+   *  */
+   case WBcase(WB_Numeric, WB_MidNum):
+   case WBcase(WB_Numeric, WB_MidNumLet):
+   case WBcase(WB_Numeric, WB_Single_Quote):
+    return advance_one_WB(&after_pos, strend, utf8_target)
+               != WB_Numeric;
+
+   /* Do not break between Katakana.
+   WB13.  Katakana  ×  Katakana */
+   case WBcase(WB_Katakana, WB_Katakana):
+    return FALSE;
+
+   /* Do not break from extenders.
+   WB13a.  (ALetter | Hebrew_Letter | Numeric | Katakana |
+           ExtendNumLet)  ×  ExtendNumLet */
+   case WBcase(WB_ALetter, WB_ExtendNumLet):
+   case WBcase(WB_Hebrew_Letter, WB_ExtendNumLet):
+   case WBcase(WB_Numeric, WB_ExtendNumLet):
+   case WBcase(WB_Katakana, WB_ExtendNumLet):
+   case WBcase(WB_ExtendNumLet, WB_ExtendNumLet):
+    return FALSE;
+
+   /* WB13b.  ExtendNumLet  ×  (ALetter | Hebrew_Letter | Numeric
+   *                                                 | Katakana) */
+   case WBcase(WB_ExtendNumLet, WB_ALetter):
+   case WBcase(WB_ExtendNumLet, WB_Hebrew_Letter):
+   case WBcase(WB_ExtendNumLet, WB_Numeric):
+   case WBcase(WB_ExtendNumLet, WB_Katakana):
+    return FALSE;
+
+   /* Do not break between regional indicator symbols.
+   WB13c.  Regional_Indicator  ×  Regional_Indicator */
+   case WBcase(WB_Regional_Indicator, WB_Regional_Indicator):
+    return FALSE;
+
+ }
+
+ NOT_REACHED; /* NOTREACHED */
+}
+
+STATIC WB_enum
+S_advance_one_WB(pTHX_ U8 ** curpos, const U8 * const strend, const bool utf8_target)
+{
+ WB_enum wb;
+
+ PERL_ARGS_ASSERT_ADVANCE_ONE_WB;
+
+ if (*curpos >= strend) {
+  return WB_EDGE;
+ }
+
+ if (utf8_target) {
+
+  /* Advance over Extend and Format */
+  do {
+   *curpos += UTF8SKIP(*curpos);
+   if (*curpos >= strend) {
+    return WB_EDGE;
+   }
+   wb = getWB_VAL_UTF8(*curpos, strend);
+  } while (wb == WB_Extend || wb == WB_Format);
+ }
+ else {
+  do {
+   (*curpos)++;
+   if (*curpos >= strend) {
+    return WB_EDGE;
+   }
+   wb = getWB_VAL_CP(**curpos);
+  } while (wb == WB_Extend || wb == WB_Format);
+ }
+
+ return wb;
+}
+
+STATIC WB_enum
+S_backup_one_WB(pTHX_ WB_enum * previous, const U8 * const strbeg, U8 ** curpos, const bool utf8_target)
+{
+ WB_enum wb;
+
+ PERL_ARGS_ASSERT_BACKUP_ONE_WB;
+
+ /* If we know what the previous character's break value is, don't have
+  * to look it up */
+ if (*previous != WB_UNKNOWN) {
+  wb = *previous;
+  *previous = WB_UNKNOWN;
+  /* XXX Note that doesn't change curpos, and maybe should */
+
+  /* But we always back up over these two types */
+  if (wb != WB_Extend && wb != WB_Format) {
+   return wb;
+  }
+ }
+
+ if (*curpos < strbeg) {
+  return WB_EDGE;
+ }
+
+ if (utf8_target) {
+  U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg);
+  if (! prev_char_pos) {
+   return WB_EDGE;
+  }
+
+  /* Back up over Extend and Format.  curpos is always just to the right
+  * of the characater whose value we are getting */
+  do {
+   U8 * prev_prev_char_pos;
+   if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos,
+            -1,
+            strbeg)))
+   {
+    wb = getWB_VAL_UTF8(prev_prev_char_pos, prev_char_pos);
+    *curpos = prev_char_pos;
+    prev_char_pos = prev_prev_char_pos;
+   }
+   else {
+    *curpos = (U8 *) strbeg;
+    return WB_EDGE;
+   }
+  } while (wb == WB_Extend || wb == WB_Format);
+ }
+ else {
+  do {
+   if (*curpos - 2 < strbeg) {
+    *curpos = (U8 *) strbeg;
+    return WB_EDGE;
+   }
+   (*curpos)--;
+   wb = getWB_VAL_CP(*(*curpos - 1));
+  } while (wb == WB_Extend || wb == WB_Format);
+ }
+
+ return wb;
+}
+
+/* returns -1 on failure, $+[0] on success */
+STATIC SSize_t
+S_regmatch(pTHX_ regmatch_info *reginfo, char *startpos, regnode *prog)
+{
+#if PERL_VERSION < 9 && !defined(PERL_CORE)
+ dMY_CXT;
+#endif
+ dVAR;
+ const bool utf8_target = reginfo->is_utf8_target;
+ const U32 uniflags = UTF8_ALLOW_DEFAULT;
+ REGEXP *rex_sv = reginfo->prog;
+ regexp *rex = ReANY(rex_sv);
+ RXi_GET_DECL(rex,rexi);
+ /* the current state. This is a cached copy of PL_regmatch_state */
+ regmatch_state *st;
+ /* cache heavy used fields of st in registers */
+ regnode *scan;
+ regnode *next;
+ U32 n = 0; /* general value; init to avoid compiler warning */
+ SSize_t ln = 0; /* len or last;  init to avoid compiler warning */
+ char *locinput = startpos;
+ char *pushinput; /* where to continue after a PUSH */
+ I32 nextchr;   /* is always set to UCHARAT(locinput) */
+
+ bool result = 0;     /* return value of S_regmatch */
+ int depth = 0;     /* depth of backtrack stack */
+ U32 nochange_depth = 0; /* depth of GOSUB recursion with nochange */
+ const U32 max_nochange_depth =
+  (3 * rex->nparens > MAX_RECURSE_EVAL_NOCHANGE_DEPTH) ?
+  3 * rex->nparens : MAX_RECURSE_EVAL_NOCHANGE_DEPTH;
+ regmatch_state *yes_state = NULL; /* state to pop to on success of
+               subpattern */
+ /* mark_state piggy backs on the yes_state logic so that when we unwind
+ the stack on success we can update the mark_state as we go */
+ regmatch_state *mark_state = NULL; /* last mark state we have seen */
+ regmatch_state *cur_eval = NULL; /* most recent EVAL_AB state */
+ struct regmatch_state  *cur_curlyx = NULL; /* most recent curlyx */
+ U32 state_num;
+ bool no_final = 0;      /* prevent failure from backtracking? */
+ bool do_cutgroup = 0;   /* no_final only until next branch/trie entry */
+ char *startpoint = locinput;
+ SV *popmark = NULL;     /* are we looking for a mark? */
+ SV *sv_commit = NULL;   /* last mark name seen in failure */
+ SV *sv_yes_mark = NULL; /* last mark name we have seen
+       during a successful match */
+ U32 lastopen = 0;       /* last open we saw */
+ bool has_cutgroup = RX_HAS_CUTGROUP(rex) ? 1 : 0;
+ SV* const oreplsv = GvSVn(PL_replgv);
+ /* these three flags are set by various ops to signal information to
+ * the very next op. They have a useful lifetime of exactly one loop
+ * iteration, and are not preserved or restored by state pushes/pops
+ */
+ bool sw = 0;     /* the condition value in (?(cond)a|b) */
+ bool minmod = 0;     /* the next "{n,m}" is a "{n,m}?" */
+ int logical = 0;     /* the following EVAL is:
+        0: (?{...})
+        1: (?(?{...})X|Y)
+        2: (??{...})
+       or the following IFMATCH/UNLESSM is:
+        false: plain (?=foo)
+        true:  used as a condition: (?(?=foo))
+       */
+ PAD* last_pad = NULL;
+ dMULTICALL;
+ I32 gimme = G_SCALAR;
+ CV *caller_cv = NULL; /* who called us */
+ CV *last_pushed_cv = NULL; /* most recently called (?{}) CV */
+ CHECKPOINT runops_cp; /* savestack position before executing EVAL */
+ U32 maxopenparen = 0;       /* max '(' index seen so far */
+ int to_complement;  /* Invert the result? */
+ _char_class_number classnum;
+ bool is_utf8_pat = reginfo->is_utf8_pat;
+ bool match = FALSE;
+
+
+#ifdef DEBUGGING
+ GET_RE_DEBUG_FLAGS_DECL;
+#endif
+
+ /* protect against undef(*^R) */
+ SAVEFREESV(SvREFCNT_inc_simple_NN(oreplsv));
+
+ /* shut up 'may be used uninitialized' compiler warnings for dMULTICALL */
+ multicall_oldcatch = 0;
+ multicall_cv = NULL;
+ cx = NULL;
+ PERL_UNUSED_VAR(multicall_cop);
+ PERL_UNUSED_VAR(newsp);
+
+
+ PERL_ARGS_ASSERT_REGMATCH;
+
+ DEBUG_OPTIMISE_r( DEBUG_EXECUTE_r({
+   PerlIO_printf(Perl_debug_log,"regmatch start\n");
+ }));
+
+ st = PL_regmatch_state;
+
+ /* Note that nextchr is a byte even in UTF */
+ SET_nextchr;
+ scan = prog;
+ while (scan != NULL) {
+
+  DEBUG_EXECUTE_r( {
+   SV * const prop = sv_newmortal();
+   regnode *rnext=regnext(scan);
+   DUMP_EXEC_POS( locinput, scan, utf8_target );
+   regprop(rex, prop, scan, reginfo, NULL);
+
+   PerlIO_printf(Perl_debug_log,
+     "%3"IVdf":%*s%s(%"IVdf")\n",
+     (IV)(scan - rexi->program), depth*2, "",
+     SvPVX_const(prop),
+     (PL_regkind[OP(scan)] == END || !rnext) ?
+      0 : (IV)(rnext - rexi->program));
+  });
+
+  next = scan + NEXT_OFF(scan);
+  if (next == scan)
+   next = NULL;
+  state_num = OP(scan);
+
+  REH_CALL_EXEC_NODE_HOOK(rex, scan, reginfo, st);
+ reenter_switch:
+  to_complement = 0;
+
+  SET_nextchr;
+  assert(nextchr < 256 && (nextchr >= 0 || nextchr == NEXTCHR_EOS));
+
+  switch (state_num) {
+  case SBOL: /*  /^../ and /\A../  */
+   if (locinput == reginfo->strbeg)
+    break;
+   sayNO;
+
+  case MBOL: /*  /^../m  */
+   if (locinput == reginfo->strbeg ||
+    (!NEXTCHR_IS_EOS && locinput[-1] == '\n'))
+   {
+    break;
+   }
+   sayNO;
+
+  case GPOS: /*  \G  */
+   if (locinput == reginfo->ganch)
+    break;
+   sayNO;
+
+  case KEEPS: /*   \K  */
+   /* update the startpoint */
+   st->u.keeper.val = rex->offs[0].start;
+   rex->offs[0].start = locinput - reginfo->strbeg;
+   PUSH_STATE_GOTO(KEEPS_next, next, locinput);
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case KEEPS_next_fail:
+   /* rollback the start point change */
+   rex->offs[0].start = st->u.keeper.val;
+   sayNO_SILENT;
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case MEOL: /* /..$/m  */
+   if (!NEXTCHR_IS_EOS && nextchr != '\n')
+    sayNO;
+   break;
+
+  case SEOL: /* /..$/  */
+   if (!NEXTCHR_IS_EOS && nextchr != '\n')
+    sayNO;
+   if (reginfo->strend - locinput > 1)
+    sayNO;
+   break;
+
+  case EOS: /*  \z  */
+   if (!NEXTCHR_IS_EOS)
+    sayNO;
+   break;
+
+  case SANY: /*  /./s  */
+   if (NEXTCHR_IS_EOS)
+    sayNO;
+   goto increment_locinput;
+
+  case REG_ANY: /*  /./  */
+   if ((NEXTCHR_IS_EOS) || nextchr == '\n')
+    sayNO;
+   goto increment_locinput;
+
+
+#undef  ST
+#define ST st->u.trie
+  case TRIEC: /* (ab|cd) with known charclass */
+   /* In this case the charclass data is available inline so
+   we can fail fast without a lot of extra overhead.
+   */
+   if(!NEXTCHR_IS_EOS && !ANYOF_BITMAP_TEST(scan, nextchr)) {
+    DEBUG_EXECUTE_r(
+     PerlIO_printf(Perl_debug_log,
+       "%*s  %sfailed to match trie start class...%s\n",
+       REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+    );
+    sayNO_SILENT;
+    /* NOTREACHED */
+    NOT_REACHED; /* NOTREACHED */
+   }
+   /* FALLTHROUGH */
+  case TRIE:  /* (ab|cd)  */
+   /* the basic plan of execution of the trie is:
+   * At the beginning, run though all the states, and
+   * find the longest-matching word. Also remember the position
+   * of the shortest matching word. For example, this pattern:
+   *    1  2 3 4    5
+   *    ab|a|x|abcd|abc
+   * when matched against the string "abcde", will generate
+   * accept states for all words except 3, with the longest
+   * matching word being 4, and the shortest being 2 (with
+   * the position being after char 1 of the string).
+   *
+   * Then for each matching word, in word order (i.e. 1,2,4,5),
+   * we run the remainder of the pattern; on each try setting
+   * the current position to the character following the word,
+   * returning to try the next word on failure.
+   *
+   * We avoid having to build a list of words at runtime by
+   * using a compile-time structure, wordinfo[].prev, which
+   * gives, for each word, the previous accepting word (if any).
+   * In the case above it would contain the mappings 1->2, 2->0,
+   * 3->0, 4->5, 5->1.  We can use this table to generate, from
+   * the longest word (4 above), a list of all words, by
+   * following the list of prev pointers; this gives us the
+   * unordered list 4,5,1,2. Then given the current word we have
+   * just tried, we can go through the list and find the
+   * next-biggest word to try (so if we just failed on word 2,
+   * the next in the list is 4).
+   *
+   * Since at runtime we don't record the matching position in
+   * the string for each word, we have to work that out for
+   * each word we're about to process. The wordinfo table holds
+   * the character length of each word; given that we recorded
+   * at the start: the position of the shortest word and its
+   * length in chars, we just need to move the pointer the
+   * difference between the two char lengths. Depending on
+   * Unicode status and folding, that's cheap or expensive.
+   *
+   * This algorithm is optimised for the case where are only a
+   * small number of accept states, i.e. 0,1, or maybe 2.
+   * With lots of accepts states, and having to try all of them,
+   * it becomes quadratic on number of accept states to find all
+   * the next words.
+   */
+
+   {
+    /* what type of TRIE am I? (utf8 makes this contextual) */
+    DECL_TRIE_TYPE(scan);
+
+    /* what trie are we using right now */
+    reg_trie_data * const trie
+     = (reg_trie_data*)rexi->data->data[ ARG( scan ) ];
+    HV * widecharmap = MUTABLE_HV(rexi->data->data[ ARG( scan ) + 1 ]);
+    U32 state = trie->startstate;
+
+    if (scan->flags == EXACTL || scan->flags == EXACTFLU8) {
+     _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+     if (utf8_target
+      && UTF8_IS_ABOVE_LATIN1(nextchr)
+      && scan->flags == EXACTL)
+     {
+      /* We only output for EXACTL, as we let the folder
+      * output this message for EXACTFLU8 to avoid
+      * duplication */
+      _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput,
+               reginfo->strend);
+     }
+    }
+    if (   trie->bitmap
+     && (NEXTCHR_IS_EOS || !TRIE_BITMAP_TEST(trie, nextchr)))
+    {
+     if (trie->states[ state ].wordnum) {
+      DEBUG_EXECUTE_r(
+       PerlIO_printf(Perl_debug_log,
+          "%*s  %smatched empty string...%s\n",
+          REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+      );
+      if (!trie->jump)
+       break;
+     } else {
+      DEBUG_EXECUTE_r(
+       PerlIO_printf(Perl_debug_log,
+          "%*s  %sfailed to match trie start class...%s\n",
+          REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+      );
+      sayNO_SILENT;
+    }
+    }
+
+   {
+    U8 *uc = ( U8* )locinput;
+
+    STRLEN len = 0;
+    STRLEN foldlen = 0;
+    U8 *uscan = (U8*)NULL;
+    U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+    U32 charcount = 0; /* how many input chars we have matched */
+    U32 accepted = 0; /* have we seen any accepting states? */
+
+    ST.jump = trie->jump;
+    ST.me = scan;
+    ST.firstpos = NULL;
+    ST.longfold = FALSE; /* char longer if folded => it's harder */
+    ST.nextword = 0;
+
+    /* fully traverse the TRIE; note the position of the
+    shortest accept state and the wordnum of the longest
+    accept state */
+
+    while ( state && uc <= (U8*)(reginfo->strend) ) {
+     U32 base = trie->states[ state ].trans.base;
+     UV uvc = 0;
+     U16 charid = 0;
+     U16 wordnum;
+     wordnum = trie->states[ state ].wordnum;
+
+     if (wordnum) { /* it's an accept state */
+      if (!accepted) {
+       accepted = 1;
+       /* record first match position */
+       if (ST.longfold) {
+        ST.firstpos = (U8*)locinput;
+        ST.firstchars = 0;
+       }
+       else {
+        ST.firstpos = uc;
+        ST.firstchars = charcount;
+       }
+      }
+      if (!ST.nextword || wordnum < ST.nextword)
+       ST.nextword = wordnum;
+      ST.topword = wordnum;
+     }
+
+     DEBUG_TRIE_EXECUTE_r({
+        DUMP_EXEC_POS( (char *)uc, scan, utf8_target );
+        PerlIO_printf( Perl_debug_log,
+         "%*s  %sState: %4"UVxf" Accepted: %c ",
+         2+depth * 2, "", PL_colors[4],
+         (UV)state, (accepted ? 'Y' : 'N'));
+     });
+
+     /* read a char and goto next state */
+     if ( base && (foldlen || uc < (U8*)(reginfo->strend))) {
+      I32 offset;
+      REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc,
+           uscan, len, uvc, charid, foldlen,
+           foldbuf, uniflags);
+      charcount++;
+      if (foldlen>0)
+       ST.longfold = TRUE;
+      if (charid &&
+       ( ((offset =
+       base + charid - 1 - trie->uniquecharcount)) >= 0)
+
+       && ((U32)offset < trie->lasttrans)
+       && trie->trans[offset].check == state)
+      {
+       state = trie->trans[offset].next;
+      }
+      else {
+       state = 0;
+      }
+      uc += len;
+
+     }
+     else {
+      state = 0;
+     }
+     DEBUG_TRIE_EXECUTE_r(
+      PerlIO_printf( Perl_debug_log,
+       "Charid:%3x CP:%4"UVxf" After State: %4"UVxf"%s\n",
+       charid, uvc, (UV)state, PL_colors[5] );
+     );
+    }
+    if (!accepted)
+    sayNO;
+
+    /* calculate total number of accept states */
+    {
+     U16 w = ST.topword;
+     accepted = 0;
+     while (w) {
+      w = trie->wordinfo[w].prev;
+      accepted++;
+     }
+     ST.accepted = accepted;
+    }
+
+    DEBUG_EXECUTE_r(
+     PerlIO_printf( Perl_debug_log,
+      "%*s  %sgot %"IVdf" possible matches%s\n",
+      REPORT_CODE_OFF + depth * 2, "",
+      PL_colors[4], (IV)ST.accepted, PL_colors[5] );
+    );
+    goto trie_first_try; /* jump into the fail handler */
+   }}
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case TRIE_next_fail: /* we failed - try next alternative */
+  {
+   U8 *uc;
+   if ( ST.jump) {
+    REGCP_UNWIND(ST.cp);
+    UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+   }
+   if (!--ST.accepted) {
+    DEBUG_EXECUTE_r({
+     PerlIO_printf( Perl_debug_log,
+      "%*s  %sTRIE failed...%s\n",
+      REPORT_CODE_OFF+depth*2, "",
+      PL_colors[4],
+      PL_colors[5] );
+    });
+    sayNO_SILENT;
+   }
+   {
+    /* Find next-highest word to process.  Note that this code
+    * is O(N^2) per trie run (O(N) per branch), so keep tight */
+    U16 min = 0;
+    U16 word;
+    U16 const nextword = ST.nextword;
+    reg_trie_wordinfo * const wordinfo
+     = ((reg_trie_data*)rexi->data->data[ARG(ST.me)])->wordinfo;
+    for (word=ST.topword; word; word=wordinfo[word].prev) {
+     if (word > nextword && (!min || word < min))
+      min = word;
+    }
+    ST.nextword = min;
+   }
+
+  trie_first_try:
+   if (do_cutgroup) {
+    do_cutgroup = 0;
+    no_final = 0;
+   }
+
+   if ( ST.jump) {
+    ST.lastparen = rex->lastparen;
+    ST.lastcloseparen = rex->lastcloseparen;
+    REGCP_SET(ST.cp);
+   }
+
+   /* find start char of end of current word */
+   {
+    U32 chars; /* how many chars to skip */
+    reg_trie_data * const trie
+     = (reg_trie_data*)rexi->data->data[ARG(ST.me)];
+
+    assert((trie->wordinfo[ST.nextword].len - trie->prefixlen)
+       >=  ST.firstchars);
+    chars = (trie->wordinfo[ST.nextword].len - trie->prefixlen)
+       - ST.firstchars;
+    uc = ST.firstpos;
+
+    if (ST.longfold) {
+     /* the hard option - fold each char in turn and find
+     * its folded length (which may be different */
+     U8 foldbuf[UTF8_MAXBYTES_CASE + 1];
+     STRLEN foldlen;
+     STRLEN len;
+     UV uvc;
+     U8 *uscan;
+
+     while (chars) {
+      if (utf8_target) {
+       uvc = utf8n_to_uvchr((U8*)uc, UTF8_MAXLEN, &len,
+             uniflags);
+       uc += len;
+      }
+      else {
+       uvc = *uc;
+       uc++;
+      }
+      uvc = to_uni_fold(uvc, foldbuf, &foldlen);
+      uscan = foldbuf;
+      while (foldlen) {
+       if (!--chars)
+        break;
+       uvc = utf8n_to_uvchr(uscan, UTF8_MAXLEN, &len,
+           uniflags);
+       uscan += len;
+       foldlen -= len;
+      }
+     }
+    }
+    else {
+     if (utf8_target)
+      while (chars--)
+       uc += UTF8SKIP(uc);
+     else
+      uc += chars;
+    }
+   }
+
+   scan = ST.me + ((ST.jump && ST.jump[ST.nextword])
+       ? ST.jump[ST.nextword]
+       : NEXT_OFF(ST.me));
+
+   DEBUG_EXECUTE_r({
+    PerlIO_printf( Perl_debug_log,
+     "%*s  %sTRIE matched word #%d, continuing%s\n",
+     REPORT_CODE_OFF+depth*2, "",
+     PL_colors[4],
+     ST.nextword,
+     PL_colors[5]
+     );
+   });
+
+   if (ST.accepted > 1 || has_cutgroup) {
+    PUSH_STATE_GOTO(TRIE_next, scan, (char*)uc);
+    /* NOTREACHED */
+    NOT_REACHED; /* NOTREACHED */
+   }
+   /* only one choice left - just continue */
+   DEBUG_EXECUTE_r({
+    AV *const trie_words
+     = MUTABLE_AV(rexi->data->data[ARG(ST.me)+TRIE_WORDS_OFFSET]);
+    SV ** const tmp = trie_words
+      ? av_fetch(trie_words, ST.nextword - 1, 0) : NULL;
+    SV *sv= tmp ? sv_newmortal() : NULL;
+
+    PerlIO_printf( Perl_debug_log,
+     "%*s  %sonly one match left, short-circuiting: #%d <%s>%s\n",
+     REPORT_CODE_OFF+depth*2, "", PL_colors[4],
+     ST.nextword,
+     tmp ? pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 0,
+       PL_colors[0], PL_colors[1],
+       (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)|PERL_PV_ESCAPE_NONASCII
+      )
+     : "not compiled under -Dr",
+     PL_colors[5] );
+   });
+
+   locinput = (char*)uc;
+   continue; /* execute rest of RE */
+   /* NOTREACHED */
+  }
+#undef  ST
+
+  case EXACTL:             /*  /abc/l       */
+   _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+
+   /* Complete checking would involve going through every character
+   * matched by the string to see if any is above latin1.  But the
+   * comparision otherwise might very well be a fast assembly
+   * language routine, and I (khw) don't think slowing things down
+   * just to check for this warning is worth it.  So this just checks
+   * the first character */
+   if (utf8_target && UTF8_IS_ABOVE_LATIN1(*locinput)) {
+    _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput, reginfo->strend);
+   }
+   /* FALLTHROUGH */
+  case EXACT: {            /*  /abc/        */
+   char *s = STRING(scan);
+   ln = STR_LEN(scan);
+   if (utf8_target != is_utf8_pat) {
+    /* The target and the pattern have differing utf8ness. */
+    char *l = locinput;
+    const char * const e = s + ln;
+
+    if (utf8_target) {
+     /* The target is utf8, the pattern is not utf8.
+     * Above-Latin1 code points can't match the pattern;
+     * invariants match exactly, and the other Latin1 ones need
+     * to be downgraded to a single byte in order to do the
+     * comparison.  (If we could be confident that the target
+     * is not malformed, this could be refactored to have fewer
+     * tests by just assuming that if the first bytes match, it
+     * is an invariant, but there are tests in the test suite
+     * dealing with (??{...}) which violate this) */
+     while (s < e) {
+      if (l >= reginfo->strend
+       || UTF8_IS_ABOVE_LATIN1(* (U8*) l))
+      {
+       sayNO;
+      }
+      if (UTF8_IS_INVARIANT(*(U8*)l)) {
+       if (*l != *s) {
+        sayNO;
+       }
+       l++;
+      }
+      else {
+       if (TWO_BYTE_UTF8_TO_NATIVE(*l, *(l+1)) != * (U8*) s)
+       {
+        sayNO;
+       }
+       l += 2;
+      }
+      s++;
+     }
+    }
+    else {
+     /* The target is not utf8, the pattern is utf8. */
+     while (s < e) {
+      if (l >= reginfo->strend
+       || UTF8_IS_ABOVE_LATIN1(* (U8*) s))
+      {
+       sayNO;
+      }
+      if (UTF8_IS_INVARIANT(*(U8*)s)) {
+       if (*s != *l) {
+        sayNO;
+       }
+       s++;
+      }
+      else {
+       if (TWO_BYTE_UTF8_TO_NATIVE(*s, *(s+1)) != * (U8*) l)
+       {
+        sayNO;
+       }
+       s += 2;
+      }
+      l++;
+     }
+    }
+    locinput = l;
+   }
+   else {
+    /* The target and the pattern have the same utf8ness. */
+    /* Inline the first character, for speed. */
+    if (reginfo->strend - locinput < ln
+     || UCHARAT(s) != nextchr
+     || (ln > 1 && memNE(s, locinput, ln)))
+    {
+     sayNO;
+    }
+    locinput += ln;
+   }
+   break;
+   }
+
+  case EXACTFL: {          /*  /abc/il      */
+   re_fold_t folder;
+   const U8 * fold_array;
+   const char * s;
+   U32 fold_utf8_flags;
+
+   _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+   folder = foldEQ_locale;
+   fold_array = PL_fold_locale;
+   fold_utf8_flags = FOLDEQ_LOCALE;
+   goto do_exactf;
+
+  case EXACTFLU8:           /*  /abc/il; but all 'abc' are above 255, so
+         is effectively /u; hence to match, target
+         must be UTF-8. */
+   if (! utf8_target) {
+    sayNO;
+   }
+   fold_utf8_flags =  FOLDEQ_LOCALE | FOLDEQ_S1_ALREADY_FOLDED
+           | FOLDEQ_S1_FOLDS_SANE;
+   folder = foldEQ_latin1;
+   fold_array = PL_fold_latin1;
+   goto do_exactf;
+
+  case EXACTFU_SS:         /*  /\x{df}/iu   */
+  case EXACTFU:            /*  /abc/iu      */
+   folder = foldEQ_latin1;
+   fold_array = PL_fold_latin1;
+   fold_utf8_flags = is_utf8_pat ? FOLDEQ_S1_ALREADY_FOLDED : 0;
+   goto do_exactf;
+
+  case EXACTFA_NO_TRIE:   /* This node only generated for non-utf8
+        patterns */
+   assert(! is_utf8_pat);
+   /* FALLTHROUGH */
+  case EXACTFA:            /*  /abc/iaa     */
+   folder = foldEQ_latin1;
+   fold_array = PL_fold_latin1;
+   fold_utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+   goto do_exactf;
+
+  case EXACTF:             /*  /abc/i    This node only generated for
+           non-utf8 patterns */
+   assert(! is_utf8_pat);
+   folder = foldEQ;
+   fold_array = PL_fold;
+   fold_utf8_flags = 0;
+
+  do_exactf:
+   s = STRING(scan);
+   ln = STR_LEN(scan);
+
+   if (utf8_target
+    || is_utf8_pat
+    || state_num == EXACTFU_SS
+    || (state_num == EXACTFL && IN_UTF8_CTYPE_LOCALE))
+   {
+   /* Either target or the pattern are utf8, or has the issue where
+   * the fold lengths may differ. */
+    const char * const l = locinput;
+    char *e = reginfo->strend;
+
+    if (! foldEQ_utf8_flags(s, 0,  ln, is_utf8_pat,
+          l, &e, 0,  utf8_target, fold_utf8_flags))
+    {
+     sayNO;
+    }
+    locinput = e;
+    break;
+   }
+
+   /* Neither the target nor the pattern are utf8 */
+   if (UCHARAT(s) != nextchr
+    && !NEXTCHR_IS_EOS
+    && UCHARAT(s) != fold_array[nextchr])
+   {
+    sayNO;
+   }
+   if (reginfo->strend - locinput < ln)
+    sayNO;
+   if (ln > 1 && ! folder(s, locinput, ln))
+    sayNO;
+   locinput += ln;
+   break;
+  }
+
+  case NBOUNDL: /*  /\B/l  */
+   to_complement = 1;
+   /* FALLTHROUGH */
+
+  case BOUNDL:  /*  /\b/l  */
+   _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+
+   if (FLAGS(scan) != TRADITIONAL_BOUND) {
+    if (! IN_UTF8_CTYPE_LOCALE) {
+     Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
+            B_ON_NON_UTF8_LOCALE_IS_WRONG);
+    }
+    goto boundu;
+   }
+
+   if (utf8_target) {
+    if (locinput == reginfo->strbeg)
+     ln = isWORDCHAR_LC('\n');
+    else {
+     ln = isWORDCHAR_LC_utf8(reghop3((U8*)locinput, -1,
+              (U8*)(reginfo->strbeg)));
+    }
+    n = (NEXTCHR_IS_EOS)
+     ? isWORDCHAR_LC('\n')
+     : isWORDCHAR_LC_utf8((U8*)locinput);
+   }
+   else { /* Here the string isn't utf8 */
+    ln = (locinput == reginfo->strbeg)
+     ? isWORDCHAR_LC('\n')
+     : isWORDCHAR_LC(UCHARAT(locinput - 1));
+    n = (NEXTCHR_IS_EOS)
+     ? isWORDCHAR_LC('\n')
+     : isWORDCHAR_LC(nextchr);
+   }
+   if (to_complement ^ (ln == n)) {
+    sayNO;
+   }
+   break;
+
+  case NBOUND:  /*  /\B/   */
+   to_complement = 1;
+   /* FALLTHROUGH */
+
+  case BOUND:   /*  /\b/   */
+   if (utf8_target) {
+    goto bound_utf8;
+   }
+   goto bound_ascii_match_only;
+
+  case NBOUNDA: /*  /\B/a  */
+   to_complement = 1;
+   /* FALLTHROUGH */
+
+  case BOUNDA:  /*  /\b/a  */
+
+  bound_ascii_match_only:
+   /* Here the string isn't utf8, or is utf8 and only ascii characters
+   * are to match \w.  In the latter case looking at the byte just
+   * prior to the current one may be just the final byte of a
+   * multi-byte character.  This is ok.  There are two cases:
+   * 1) it is a single byte character, and then the test is doing
+   *    just what it's supposed to.
+   * 2) it is a multi-byte character, in which case the final byte is
+   *    never mistakable for ASCII, and so the test will say it is
+   *    not a word character, which is the correct answer. */
+   ln = (locinput == reginfo->strbeg)
+    ? isWORDCHAR_A('\n')
+    : isWORDCHAR_A(UCHARAT(locinput - 1));
+   n = (NEXTCHR_IS_EOS)
+    ? isWORDCHAR_A('\n')
+    : isWORDCHAR_A(nextchr);
+   if (to_complement ^ (ln == n)) {
+    sayNO;
+   }
+   break;
+
+  case NBOUNDU: /*  /\B/u  */
+   to_complement = 1;
+   /* FALLTHROUGH */
+
+  case BOUNDU:  /*  /\b/u  */
+
+  boundu:
+   if (utf8_target) {
+
+   bound_utf8:
+    switch((bound_type) FLAGS(scan)) {
+     case TRADITIONAL_BOUND:
+      ln = (locinput == reginfo->strbeg)
+       ? 0 /* isWORDCHAR_L1('\n') */
+       : isWORDCHAR_utf8(reghop3((U8*)locinput, -1,
+                (U8*)(reginfo->strbeg)));
+      n = (NEXTCHR_IS_EOS)
+       ? 0 /* isWORDCHAR_L1('\n') */
+       : isWORDCHAR_utf8((U8*)locinput);
+      match = cBOOL(ln != n);
+      break;
+     case GCB_BOUND:
+      if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+       match = TRUE; /* GCB always matches at begin and
+           end */
+      }
+      else {
+       /* Find the gcb values of previous and current
+       * chars, then see if is a break point */
+       match = isGCB(getGCB_VAL_UTF8(
+            reghop3((U8*)locinput,
+              -1,
+              (U8*)(reginfo->strbeg)),
+            (U8*) reginfo->strend),
+          getGCB_VAL_UTF8((U8*) locinput,
+              (U8*) reginfo->strend));
+      }
+      break;
+
+     case SB_BOUND: /* Always matches at begin and end */
+      if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+       match = TRUE;
+      }
+      else {
+       match = isSB(getSB_VAL_UTF8(
+            reghop3((U8*)locinput,
+              -1,
+              (U8*)(reginfo->strbeg)),
+            (U8*) reginfo->strend),
+          getSB_VAL_UTF8((U8*) locinput,
+              (U8*) reginfo->strend),
+          (U8*) reginfo->strbeg,
+          (U8*) locinput,
+          (U8*) reginfo->strend,
+          utf8_target);
+      }
+      break;
+
+     case WB_BOUND:
+      if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+       match = TRUE;
+      }
+      else {
+       match = isWB(WB_UNKNOWN,
+          getWB_VAL_UTF8(
+            reghop3((U8*)locinput,
+              -1,
+              (U8*)(reginfo->strbeg)),
+            (U8*) reginfo->strend),
+          getWB_VAL_UTF8((U8*) locinput,
+              (U8*) reginfo->strend),
+          (U8*) reginfo->strbeg,
+          (U8*) locinput,
+          (U8*) reginfo->strend,
+          utf8_target);
+      }
+      break;
+    }
+   }
+   else {  /* Not utf8 target */
+    switch((bound_type) FLAGS(scan)) {
+     case TRADITIONAL_BOUND:
+      ln = (locinput == reginfo->strbeg)
+       ? 0 /* isWORDCHAR_L1('\n') */
+       : isWORDCHAR_L1(UCHARAT(locinput - 1));
+      n = (NEXTCHR_IS_EOS)
+       ? 0 /* isWORDCHAR_L1('\n') */
+       : isWORDCHAR_L1(nextchr);
+      match = cBOOL(ln != n);
+      break;
+
+     case GCB_BOUND:
+      if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+       match = TRUE; /* GCB always matches at begin and
+           end */
+      }
+      else {  /* Only CR-LF combo isn't a GCB in 0-255
+        range */
+       match =    UCHARAT(locinput - 1) != '\r'
+         || UCHARAT(locinput) != '\n';
+      }
+      break;
+
+     case SB_BOUND: /* Always matches at begin and end */
+      if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+       match = TRUE;
+      }
+      else {
+       match = isSB(getSB_VAL_CP(UCHARAT(locinput -1)),
+          getSB_VAL_CP(UCHARAT(locinput)),
+          (U8*) reginfo->strbeg,
+          (U8*) locinput,
+          (U8*) reginfo->strend,
+          utf8_target);
+      }
+      break;
+
+     case WB_BOUND:
+      if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+       match = TRUE;
+      }
+      else {
+       match = isWB(WB_UNKNOWN,
+          getWB_VAL_CP(UCHARAT(locinput -1)),
+          getWB_VAL_CP(UCHARAT(locinput)),
+          (U8*) reginfo->strbeg,
+          (U8*) locinput,
+          (U8*) reginfo->strend,
+          utf8_target);
+      }
+      break;
+    }
+   }
+
+   if (to_complement ^ ! match) {
+    sayNO;
+   }
+   break;
+
+  case ANYOFL:  /*  /[abc]/l      */
+   _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+   /* FALLTHROUGH */
+  case ANYOF:  /*   /[abc]/       */
+   if (NEXTCHR_IS_EOS)
+    sayNO;
+   if (utf8_target) {
+    if (!reginclass(rex, scan, (U8*)locinput, (U8*)reginfo->strend,
+                utf8_target))
+     sayNO;
+    locinput += UTF8SKIP(locinput);
+   }
+   else {
+    if (!REGINCLASS(rex, scan, (U8*)locinput))
+     sayNO;
+    locinput++;
+   }
+   break;
+
+  /* The argument (FLAGS) to all the POSIX node types is the class number
+  * */
+
+  case NPOSIXL:   /* \W or [:^punct:] etc. under /l */
+   to_complement = 1;
+   /* FALLTHROUGH */
+
+  case POSIXL:    /* \w or [:punct:] etc. under /l */
+   _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+   if (NEXTCHR_IS_EOS)
+    sayNO;
+
+   /* Use isFOO_lc() for characters within Latin1.  (Note that
+   * UTF8_IS_INVARIANT works even on non-UTF-8 strings, or else
+   * wouldn't be invariant) */
+   if (UTF8_IS_INVARIANT(nextchr) || ! utf8_target) {
+    if (! (to_complement ^ cBOOL(isFOO_lc(FLAGS(scan), (U8) nextchr)))) {
+     sayNO;
+    }
+   }
+   else if (UTF8_IS_DOWNGRADEABLE_START(nextchr)) {
+    if (! (to_complement ^ cBOOL(isFOO_lc(FLAGS(scan),
+          (U8) TWO_BYTE_UTF8_TO_NATIVE(nextchr,
+               *(locinput + 1))))))
+    {
+     sayNO;
+    }
+   }
+   else { /* Here, must be an above Latin-1 code point */
+    _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput, reginfo->strend);
+    goto utf8_posix_above_latin1;
+   }
+
+   /* Here, must be utf8 */
+   locinput += UTF8SKIP(locinput);
+   break;
+
+  case NPOSIXD:   /* \W or [:^punct:] etc. under /d */
+   to_complement = 1;
+   /* FALLTHROUGH */
+
+  case POSIXD:    /* \w or [:punct:] etc. under /d */
+   if (utf8_target) {
+    goto utf8_posix;
+   }
+   goto posixa;
+
+  case NPOSIXA:   /* \W or [:^punct:] etc. under /a */
+
+   if (NEXTCHR_IS_EOS) {
+    sayNO;
+   }
+
+   /* All UTF-8 variants match */
+   if (! UTF8_IS_INVARIANT(nextchr)) {
+    goto increment_locinput;
+   }
+
+   to_complement = 1;
+   /* FALLTHROUGH */
+
+  case POSIXA:    /* \w or [:punct:] etc. under /a */
+
+  posixa:
+   /* We get here through POSIXD, NPOSIXD, and NPOSIXA when not in
+   * UTF-8, and also from NPOSIXA even in UTF-8 when the current
+   * character is a single byte */
+
+   if (NEXTCHR_IS_EOS
+    || ! (to_complement ^ cBOOL(_generic_isCC_A(nextchr,
+               FLAGS(scan)))))
+   {
+    sayNO;
+   }
+
+   /* Here we are either not in utf8, or we matched a utf8-invariant,
+   * so the next char is the next byte */
+   locinput++;
+   break;
+
+  case NPOSIXU:   /* \W or [:^punct:] etc. under /u */
+   to_complement = 1;
+   /* FALLTHROUGH */
+
+  case POSIXU:    /* \w or [:punct:] etc. under /u */
+  utf8_posix:
+   if (NEXTCHR_IS_EOS) {
+    sayNO;
+   }
+
+   /* Use _generic_isCC() for characters within Latin1.  (Note that
+   * UTF8_IS_INVARIANT works even on non-UTF-8 strings, or else
+   * wouldn't be invariant) */
+   if (UTF8_IS_INVARIANT(nextchr) || ! utf8_target) {
+    if (! (to_complement ^ cBOOL(_generic_isCC(nextchr,
+              FLAGS(scan)))))
+    {
+     sayNO;
+    }
+    locinput++;
+   }
+   else if (UTF8_IS_DOWNGRADEABLE_START(nextchr)) {
+    if (! (to_complement
+     ^ cBOOL(_generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(nextchr,
+               *(locinput + 1)),
+           FLAGS(scan)))))
+    {
+     sayNO;
+    }
+    locinput += 2;
+   }
+   else {  /* Handle above Latin-1 code points */
+   utf8_posix_above_latin1:
+    classnum = (_char_class_number) FLAGS(scan);
+    if (classnum < _FIRST_NON_SWASH_CC) {
+
+     /* Here, uses a swash to find such code points.  Load if if
+     * not done already */
+     if (! PL_utf8_swash_ptrs[classnum]) {
+      U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+      PL_utf8_swash_ptrs[classnum]
+        = _core_swash_init("utf8",
+          "",
+          &PL_sv_undef, 1, 0,
+          PL_XPosix_ptrs[classnum], &flags);
+     }
+     if (! (to_complement
+      ^ cBOOL(swash_fetch(PL_utf8_swash_ptrs[classnum],
+           (U8 *) locinput, TRUE))))
+     {
+      sayNO;
+     }
+    }
+    else {  /* Here, uses macros to find above Latin-1 code points */
+     switch (classnum) {
+      case _CC_ENUM_SPACE:
+       if (! (to_complement
+          ^ cBOOL(is_XPERLSPACE_high(locinput))))
+       {
+        sayNO;
+       }
+       break;
+      case _CC_ENUM_BLANK:
+       if (! (to_complement
+           ^ cBOOL(is_HORIZWS_high(locinput))))
+       {
+        sayNO;
+       }
+       break;
+      case _CC_ENUM_XDIGIT:
+       if (! (to_complement
+           ^ cBOOL(is_XDIGIT_high(locinput))))
+       {
+        sayNO;
+       }
+       break;
+      case _CC_ENUM_VERTSPACE:
+       if (! (to_complement
+           ^ cBOOL(is_VERTWS_high(locinput))))
+       {
+        sayNO;
+       }
+       break;
+      default:    /* The rest, e.g. [:cntrl:], can't match
+         above Latin1 */
+       if (! to_complement) {
+        sayNO;
+       }
+       break;
+     }
+    }
+    locinput += UTF8SKIP(locinput);
+   }
+   break;
+
+  case CLUMP: /* Match \X: logical Unicode character.  This is defined as
+     a Unicode extended Grapheme Cluster */
+   if (NEXTCHR_IS_EOS)
+    sayNO;
+   if  (! utf8_target) {
+
+    /* Match either CR LF  or '.', as all the other possibilities
+    * require utf8 */
+    locinput++;     /* Match the . or CR */
+    if (nextchr == '\r' /* And if it was CR, and the next is LF,
+         match the LF */
+     && locinput < reginfo->strend
+     && UCHARAT(locinput) == '\n')
+    {
+     locinput++;
+    }
+   }
+   else {
+
+    /* Get the gcb type for the current character */
+    GCB_enum prev_gcb = getGCB_VAL_UTF8((U8*) locinput,
+             (U8*) reginfo->strend);
+
+    /* Then scan through the input until we get to the first
+    * character whose type is supposed to be a gcb with the
+    * current character.  (There is always a break at the
+    * end-of-input) */
+    locinput += UTF8SKIP(locinput);
+    while (locinput < reginfo->strend) {
+     GCB_enum cur_gcb = getGCB_VAL_UTF8((U8*) locinput,
+              (U8*) reginfo->strend);
+     if (isGCB(prev_gcb, cur_gcb)) {
+      break;
+     }
+
+     prev_gcb = cur_gcb;
+     locinput += UTF8SKIP(locinput);
+    }
+
+
+   }
+   break;
+
+  case NREFFL:  /*  /\g{name}/il  */
+  {   /* The capture buffer cases.  The ones beginning with N for the
+   named buffers just convert to the equivalent numbered and
+   pretend they were called as the corresponding numbered buffer
+   op.  */
+   /* don't initialize these in the declaration, it makes C++
+   unhappy */
+   const char *s;
+   char type;
+   re_fold_t folder;
+   const U8 *fold_array;
+   UV utf8_fold_flags;
+
+   _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+   folder = foldEQ_locale;
+   fold_array = PL_fold_locale;
+   type = REFFL;
+   utf8_fold_flags = FOLDEQ_LOCALE;
+   goto do_nref;
+
+  case NREFFA:  /*  /\g{name}/iaa  */
+   folder = foldEQ_latin1;
+   fold_array = PL_fold_latin1;
+   type = REFFA;
+   utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+   goto do_nref;
+
+  case NREFFU:  /*  /\g{name}/iu  */
+   folder = foldEQ_latin1;
+   fold_array = PL_fold_latin1;
+   type = REFFU;
+   utf8_fold_flags = 0;
+   goto do_nref;
+
+  case NREFF:  /*  /\g{name}/i  */
+   folder = foldEQ;
+   fold_array = PL_fold;
+   type = REFF;
+   utf8_fold_flags = 0;
+   goto do_nref;
+
+  case NREF:  /*  /\g{name}/   */
+   type = REF;
+   folder = NULL;
+   fold_array = NULL;
+   utf8_fold_flags = 0;
+  do_nref:
+
+   /* For the named back references, find the corresponding buffer
+   * number */
+   n = reg_check_named_buff_matched(rex,scan);
+
+   if ( ! n ) {
+    sayNO;
+   }
+   goto do_nref_ref_common;
+
+  case REFFL:  /*  /\1/il  */
+   _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+   folder = foldEQ_locale;
+   fold_array = PL_fold_locale;
+   utf8_fold_flags = FOLDEQ_LOCALE;
+   goto do_ref;
+
+  case REFFA:  /*  /\1/iaa  */
+   folder = foldEQ_latin1;
+   fold_array = PL_fold_latin1;
+   utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+   goto do_ref;
+
+  case REFFU:  /*  /\1/iu  */
+   folder = foldEQ_latin1;
+   fold_array = PL_fold_latin1;
+   utf8_fold_flags = 0;
+   goto do_ref;
+
+  case REFF:  /*  /\1/i  */
+   folder = foldEQ;
+   fold_array = PL_fold;
+   utf8_fold_flags = 0;
+   goto do_ref;
+
+  case REF:  /*  /\1/    */
+   folder = NULL;
+   fold_array = NULL;
+   utf8_fold_flags = 0;
+
+  do_ref:
+   type = OP(scan);
+   n = ARG(scan);  /* which paren pair */
+
+  do_nref_ref_common:
+   ln = rex->offs[n].start;
+   reginfo->poscache_iter = reginfo->poscache_maxiter; /* Void cache */
+   if (rex->lastparen < n || ln == -1)
+    sayNO;   /* Do not match unless seen CLOSEn. */
+   if (ln == rex->offs[n].end)
+    break;
+
+   s = reginfo->strbeg + ln;
+   if (type != REF /* REF can do byte comparison */
+    && (utf8_target || type == REFFU || type == REFFL))
+   {
+    char * limit = reginfo->strend;
+
+    /* This call case insensitively compares the entire buffer
+     * at s, with the current input starting at locinput, but
+     * not going off the end given by reginfo->strend, and
+     * returns in <limit> upon success, how much of the
+     * current input was matched */
+    if (! foldEQ_utf8_flags(s, NULL, rex->offs[n].end - ln, utf8_target,
+         locinput, &limit, 0, utf8_target, utf8_fold_flags))
+    {
+     sayNO;
+    }
+    locinput = limit;
+    break;
+   }
+
+   /* Not utf8:  Inline the first character, for speed. */
+   if (!NEXTCHR_IS_EOS &&
+    UCHARAT(s) != nextchr &&
+    (type == REF ||
+    UCHARAT(s) != fold_array[nextchr]))
+    sayNO;
+   ln = rex->offs[n].end - ln;
+   if (locinput + ln > reginfo->strend)
+    sayNO;
+   if (ln > 1 && (type == REF
+      ? memNE(s, locinput, ln)
+      : ! folder(s, locinput, ln)))
+    sayNO;
+   locinput += ln;
+   break;
+  }
+
+  case NOTHING: /* null op; e.g. the 'nothing' following
+     * the '*' in m{(a+|b)*}' */
+   break;
+  case TAIL: /* placeholder while compiling (A|B|C) */
+   break;
+
+#undef  ST
+#define ST st->u.eval
+  {
+   SV *ret;
+   REGEXP *re_sv;
+   regexp *re;
+   regexp_internal *rei;
+   regnode *startpoint;
+
+  case GOSTART: /*  (?R)  */
+  case GOSUB: /*    /(...(?1))/   /(...(?&foo))/   */
+   if (cur_eval && cur_eval->locinput==locinput) {
+    if (cur_eval->u.eval.close_paren == (U32)ARG(scan))
+     Perl_croak(aTHX_ "Infinite recursion in regex");
+    if ( ++nochange_depth > max_nochange_depth )
+     Perl_croak(aTHX_
+      "Pattern subroutine nesting without pos change"
+      " exceeded limit in regex");
+   } else {
+    nochange_depth = 0;
+   }
+   re_sv = rex_sv;
+   re = rex;
+   rei = rexi;
+   if (OP(scan)==GOSUB) {
+    startpoint = scan + ARG2L(scan);
+    ST.close_paren = ARG(scan);
+   } else {
+    startpoint = rei->program+1;
+    ST.close_paren = 0;
+   }
+
+   /* Save all the positions seen so far. */
+   ST.cp = regcppush(rex, 0, maxopenparen);
+   REGCP_SET(ST.lastcp);
+
+   /* and then jump to the code we share with EVAL */
+   goto eval_recurse_doit;
+   /* NOTREACHED */
+
+  case EVAL:  /*   /(?{A})B/   /(??{A})B/  and /(?(?{A})X|Y)B/   */
+   if (cur_eval && cur_eval->locinput==locinput) {
+    if ( ++nochange_depth > max_nochange_depth )
+     Perl_croak(aTHX_ "EVAL without pos change exceeded limit in regex");
+   } else {
+    nochange_depth = 0;
+   }
+   {
+    /* execute the code in the {...} */
+
+    dSP;
+    IV before;
+    OP * const oop = PL_op;
+    COP * const ocurcop = PL_curcop;
+    OP *nop;
+    CV *newcv;
+
+    /* save *all* paren positions */
+    regcppush(rex, 0, maxopenparen);
+    REGCP_SET(runops_cp);
+
+    if (!caller_cv)
+     caller_cv = find_runcv(NULL);
+
+    n = ARG(scan);
+
+    if (rexi->data->what[n] == 'r') { /* code from an external qr */
+     newcv = (ReANY(
+            (REGEXP*)(rexi->data->data[n])
+           ))->qr_anoncv
+          ;
+     nop = (OP*)rexi->data->data[n+1];
+    }
+    else if (rexi->data->what[n] == 'l') { /* literal code */
+     newcv = caller_cv;
+     nop = (OP*)rexi->data->data[n];
+     assert(CvDEPTH(newcv));
+    }
+    else {
+     /* literal with own CV */
+     assert(rexi->data->what[n] == 'L');
+     newcv = rex->qr_anoncv;
+     nop = (OP*)rexi->data->data[n];
+    }
+
+    /* normally if we're about to execute code from the same
+    * CV that we used previously, we just use the existing
+    * CX stack entry. However, its possible that in the
+    * meantime we may have backtracked, popped from the save
+    * stack, and undone the SAVECOMPPAD(s) associated with
+    * PUSH_MULTICALL; in which case PL_comppad no longer
+    * points to newcv's pad. */
+    if (newcv != last_pushed_cv || PL_comppad != last_pad)
+    {
+     U8 flags = (CXp_SUB_RE |
+        ((newcv == caller_cv) ? CXp_SUB_RE_FAKE : 0));
+     if (last_pushed_cv) {
+      CHANGE_MULTICALL_FLAGS(newcv, flags);
+     }
+     else {
+      PUSH_MULTICALL_FLAGS(newcv, flags);
+     }
+     last_pushed_cv = newcv;
+    }
+    else {
+     /* these assignments are just to silence compiler
+     * warnings */
+     multicall_cop = NULL;
+     newsp = NULL;
+    }
+    last_pad = PL_comppad;
+
+    /* the initial nextstate you would normally execute
+    * at the start of an eval (which would cause error
+    * messages to come from the eval), may be optimised
+    * away from the execution path in the regex code blocks;
+    * so manually set PL_curcop to it initially */
+    {
+     OP *o = cUNOPx(nop)->op_first;
+     assert(o->op_type == OP_NULL);
+     if (o->op_targ == OP_SCOPE) {
+      o = cUNOPo->op_first;
+     }
+     else {
+      assert(o->op_targ == OP_LEAVE);
+      o = cUNOPo->op_first;
+      assert(o->op_type == OP_ENTER);
+      o = OpSIBLING(o);
+     }
+
+     if (o->op_type != OP_STUB) {
+      assert(    o->op_type == OP_NEXTSTATE
+        || o->op_type == OP_DBSTATE
+        || (o->op_type == OP_NULL
+         &&  (  o->op_targ == OP_NEXTSTATE
+          || o->op_targ == OP_DBSTATE
+          )
+         )
+      );
+      PL_curcop = (COP*)o;
+     }
+    }
+    nop = nop->op_next;
+
+    DEBUG_STATE_r( PerlIO_printf(Perl_debug_log,
+     "  re EVAL PL_op=0x%"UVxf"\n", PTR2UV(nop)) );
+
+    rex->offs[0].end = locinput - reginfo->strbeg;
+    if (reginfo->info_aux_eval->pos_magic)
+     MgBYTEPOS_set(reginfo->info_aux_eval->pos_magic,
+        reginfo->sv, reginfo->strbeg,
+        locinput - reginfo->strbeg);
+
+    if (sv_yes_mark) {
+     SV *sv_mrk = get_sv("REGMARK", 1);
+     sv_setsv(sv_mrk, sv_yes_mark);
+    }
+
+    /* we don't use MULTICALL here as we want to call the
+    * first op of the block of interest, rather than the
+    * first op of the sub */
+    before = (IV)(SP-PL_stack_base);
+    PL_op = nop;
+    CALLRUNOPS(aTHX);   /* Scalar context. */
+    SPAGAIN;
+    if ((IV)(SP-PL_stack_base) == before)
+     ret = &PL_sv_undef;   /* protect against empty (?{}) blocks. */
+    else {
+     ret = POPs;
+     PUTBACK;
+    }
+
+    /* before restoring everything, evaluate the returned
+    * value, so that 'uninit' warnings don't use the wrong
+    * PL_op or pad. Also need to process any magic vars
+    * (e.g. $1) *before* parentheses are restored */
+
+    PL_op = NULL;
+
+    re_sv = NULL;
+    if (logical == 0)        /*   (?{})/   */
+     sv_setsv(save_scalar(PL_replgv), ret); /* $^R */
+    else if (logical == 1) { /*   /(?(?{...})X|Y)/    */
+     sw = cBOOL(SvTRUE(ret));
+     logical = 0;
+    }
+    else {                   /*  /(??{})  */
+     /*  if its overloaded, let the regex compiler handle
+     *  it; otherwise extract regex, or stringify  */
+     if (SvGMAGICAL(ret))
+      ret = sv_mortalcopy(ret);
+     if (!SvAMAGIC(ret)) {
+      SV *sv = ret;
+      if (SvROK(sv))
+       sv = SvRV(sv);
+      if (SvTYPE(sv) == SVt_REGEXP)
+       re_sv = (REGEXP*) sv;
+      else if (SvSMAGICAL(ret)) {
+       MAGIC *mg = mg_find(ret, PERL_MAGIC_qr);
+       if (mg)
+        re_sv = (REGEXP *) mg->mg_obj;
+      }
+
+      /* force any undef warnings here */
+      if (!re_sv && !SvPOK(ret) && !SvNIOK(ret)) {
+       ret = sv_mortalcopy(ret);
+       (void) SvPV_force_nolen(ret);
+      }
+     }
+
+    }
+
+    /* *** Note that at this point we don't restore
+    * PL_comppad, (or pop the CxSUB) on the assumption it may
+    * be used again soon. This is safe as long as nothing
+    * in the regexp code uses the pad ! */
+    PL_op = oop;
+    PL_curcop = ocurcop;
+    S_regcp_restore(aTHX_ rex, runops_cp, &maxopenparen);
+    PL_curpm = PL_reg_curpm;
+
+    if (logical != 2)
+     break;
+   }
+
+    /* only /(??{})/  from now on */
+    logical = 0;
+    {
+     /* extract RE object from returned value; compiling if
+     * necessary */
+
+     if (re_sv) {
+      re_sv = reg_temp_copy(NULL, re_sv);
+     }
+     else {
+      U32 pm_flags = 0;
+
+      if (SvUTF8(ret) && IN_BYTES) {
+       /* In use 'bytes': make a copy of the octet
+       * sequence, but without the flag on */
+       STRLEN len;
+       const char *const p = SvPV(ret, len);
+       ret = newSVpvn_flags(p, len, SVs_TEMP);
+      }
+      if (rex->intflags & PREGf_USE_RE_EVAL)
+       pm_flags |= PMf_USE_RE_EVAL;
+
+      /* if we got here, it should be an engine which
+      * supports compiling code blocks and stuff */
+      assert(rex->engine && rex->engine->op_comp);
+      assert(!(scan->flags & ~RXf_PMf_COMPILETIME));
+      re_sv = rex->engine->op_comp(aTHX_ &ret, 1, NULL,
+         rex->engine, NULL, NULL,
+         /* copy /msixn etc to inner pattern */
+         ARG2L(scan),
+         pm_flags);
+
+      if (!(SvFLAGS(ret)
+       & (SVs_TEMP | SVs_GMG | SVf_ROK))
+      && (!SvPADTMP(ret) || SvREADONLY(ret))) {
+       /* This isn't a first class regexp. Instead, it's
+       caching a regexp onto an existing, Perl visible
+       scalar.  */
+       sv_magic(ret, MUTABLE_SV(re_sv), PERL_MAGIC_qr, 0, 0);
+      }
+     }
+     SAVEFREESV(re_sv);
+     re = ReANY(re_sv);
+    }
+    RXp_MATCH_COPIED_off(re);
+    re->subbeg = rex->subbeg;
+    re->sublen = rex->sublen;
+    re->suboffset = rex->suboffset;
+    re->subcoffset = rex->subcoffset;
+    re->lastparen = 0;
+    re->lastcloseparen = 0;
+    rei = RXi_GET(re);
+    DEBUG_EXECUTE_r(
+     debug_start_match(re_sv, utf8_target, locinput,
+         reginfo->strend, "Matching embedded");
+    );
+    startpoint = rei->program + 1;
+     ST.close_paren = 0; /* only used for GOSUB */
+    /* Save all the seen positions so far. */
+    ST.cp = regcppush(rex, 0, maxopenparen);
+    REGCP_SET(ST.lastcp);
+    /* and set maxopenparen to 0, since we are starting a "fresh" match */
+    maxopenparen = 0;
+    /* run the pattern returned from (??{...}) */
+
+   eval_recurse_doit: /* Share code with GOSUB below this line
+       * At this point we expect the stack context to be
+       * set up correctly */
+
+    /* invalidate the S-L poscache. We're now executing a
+    * different set of WHILEM ops (and their associated
+    * indexes) against the same string, so the bits in the
+    * cache are meaningless. Setting maxiter to zero forces
+    * the cache to be invalidated and zeroed before reuse.
+    * XXX This is too dramatic a measure. Ideally we should
+    * save the old cache and restore when running the outer
+    * pattern again */
+    reginfo->poscache_maxiter = 0;
+
+    /* the new regexp might have a different is_utf8_pat than we do */
+    is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(re_sv));
+
+    ST.prev_rex = rex_sv;
+    ST.prev_curlyx = cur_curlyx;
+    rex_sv = re_sv;
+    SET_reg_curpm(rex_sv);
+    rex = re;
+    rexi = rei;
+    cur_curlyx = NULL;
+    ST.B = next;
+    ST.prev_eval = cur_eval;
+    cur_eval = st;
+    /* now continue from first node in postoned RE */
+    PUSH_YES_STATE_GOTO(EVAL_AB, startpoint, locinput);
+    /* NOTREACHED */
+    NOT_REACHED; /* NOTREACHED */
+  }
+
+  case EVAL_AB: /* cleanup after a successful (??{A})B */
+   /* note: this is called twice; first after popping B, then A */
+   rex_sv = ST.prev_rex;
+   is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
+   SET_reg_curpm(rex_sv);
+   rex = ReANY(rex_sv);
+   rexi = RXi_GET(rex);
+   {
+    /* preserve $^R across LEAVE's. See Bug 121070. */
+    SV *save_sv= GvSV(PL_replgv);
+    SvREFCNT_inc(save_sv);
+    regcpblow(ST.cp); /* LEAVE in disguise */
+    sv_setsv(GvSV(PL_replgv), save_sv);
+    SvREFCNT_dec(save_sv);
+   }
+   cur_eval = ST.prev_eval;
+   cur_curlyx = ST.prev_curlyx;
+
+   /* Invalidate cache. See "invalidate" comment above. */
+   reginfo->poscache_maxiter = 0;
+   if ( nochange_depth )
+    nochange_depth--;
+   sayYES;
+
+
+  case EVAL_AB_fail: /* unsuccessfully ran A or B in (??{A})B */
+   /* note: this is called twice; first after popping B, then A */
+   rex_sv = ST.prev_rex;
+   is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
+   SET_reg_curpm(rex_sv);
+   rex = ReANY(rex_sv);
+   rexi = RXi_GET(rex);
+
+   REGCP_UNWIND(ST.lastcp);
+   regcppop(rex, &maxopenparen);
+   cur_eval = ST.prev_eval;
+   cur_curlyx = ST.prev_curlyx;
+   /* Invalidate cache. See "invalidate" comment above. */
+   reginfo->poscache_maxiter = 0;
+   if ( nochange_depth )
+    nochange_depth--;
+   sayNO_SILENT;
+#undef ST
+
+  case OPEN: /*  (  */
+   n = ARG(scan);  /* which paren pair */
+   rex->offs[n].start_tmp = locinput - reginfo->strbeg;
+   if (n > maxopenparen)
+    maxopenparen = n;
+   DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+    "rex=0x%"UVxf" offs=0x%"UVxf": \\%"UVuf": set %"IVdf" tmp; maxopenparen=%"UVuf"\n",
+    PTR2UV(rex),
+    PTR2UV(rex->offs),
+    (UV)n,
+    (IV)rex->offs[n].start_tmp,
+    (UV)maxopenparen
+   ));
+   lastopen = n;
+   break;
+
+/* XXX really need to log other places start/end are set too */
+#define CLOSE_CAPTURE \
+ rex->offs[n].start = rex->offs[n].start_tmp; \
+ rex->offs[n].end = locinput - reginfo->strbeg; \
+ DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log, \
+  "rex=0x%"UVxf" offs=0x%"UVxf": \\%"UVuf": set %"IVdf"..%"IVdf"\n", \
+  PTR2UV(rex), \
+  PTR2UV(rex->offs), \
+  (UV)n, \
+  (IV)rex->offs[n].start, \
+  (IV)rex->offs[n].end \
+ ))
+
+  case CLOSE:  /*  )  */
+   n = ARG(scan);  /* which paren pair */
+   CLOSE_CAPTURE;
+   if (n > rex->lastparen)
+    rex->lastparen = n;
+   rex->lastcloseparen = n;
+   if (cur_eval && cur_eval->u.eval.close_paren == n) {
+    goto fake_end;
+   }
+   break;
+
+  case ACCEPT:  /*  (*ACCEPT)  */
+   if (ARG(scan)){
+    regnode *cursor;
+    for (cursor=scan;
+     cursor && OP(cursor)!=END;
+     cursor=regnext(cursor))
+    {
+     if ( OP(cursor)==CLOSE ){
+      n = ARG(cursor);
+      if ( n <= lastopen ) {
+       CLOSE_CAPTURE;
+       if (n > rex->lastparen)
+        rex->lastparen = n;
+       rex->lastcloseparen = n;
+       if ( n == ARG(scan) || (cur_eval &&
+        cur_eval->u.eval.close_paren == n))
+        break;
+      }
+     }
+    }
+   }
+   goto fake_end;
+   /* NOTREACHED */
+
+  case GROUPP:  /*  (?(1))  */
+   n = ARG(scan);  /* which paren pair */
+   sw = cBOOL(rex->lastparen >= n && rex->offs[n].end != -1);
+   break;
+
+  case NGROUPP:  /*  (?(<name>))  */
+   /* reg_check_named_buff_matched returns 0 for no match */
+   sw = cBOOL(0 < reg_check_named_buff_matched(rex,scan));
+   break;
+
+  case INSUBP:   /*  (?(R))  */
+   n = ARG(scan);
+   sw = (cur_eval && (!n || cur_eval->u.eval.close_paren == n));
+   break;
+
+  case DEFINEP:  /*  (?(DEFINE))  */
+   sw = 0;
+   break;
+
+  case IFTHEN:   /*  (?(cond)A|B)  */
+   reginfo->poscache_iter = reginfo->poscache_maxiter; /* Void cache */
+   if (sw)
+    next = NEXTOPER(NEXTOPER(scan));
+   else {
+    next = scan + ARG(scan);
+    if (OP(next) == IFTHEN) /* Fake one. */
+     next = NEXTOPER(NEXTOPER(next));
+   }
+   break;
+
+  case LOGICAL:  /* modifier for EVAL and IFMATCH */
+   logical = scan->flags;
+   break;
+
+/*******************************************************************
+
+The CURLYX/WHILEM pair of ops handle the most generic case of the /A*B/
+pattern, where A and B are subpatterns. (For simple A, CURLYM or
+STAR/PLUS/CURLY/CURLYN are used instead.)
+
+A*B is compiled as <CURLYX><A><WHILEM><B>
+
+On entry to the subpattern, CURLYX is called. This pushes a CURLYX
+state, which contains the current count, initialised to -1. It also sets
+cur_curlyx to point to this state, with any previous value saved in the
+state block.
+
+CURLYX then jumps straight to the WHILEM op, rather than executing A,
+since the pattern may possibly match zero times (i.e. it's a while {} loop
+rather than a do {} while loop).
+
+Each entry to WHILEM represents a successful match of A. The count in the
+CURLYX block is incremented, another WHILEM state is pushed, and execution
+passes to A or B depending on greediness and the current count.
+
+For example, if matching against the string a1a2a3b (where the aN are
+substrings that match /A/), then the match progresses as follows: (the
+pushed states are interspersed with the bits of strings matched so far):
+
+ <CURLYX cnt=-1>
+ <CURLYX cnt=0><WHILEM>
+ <CURLYX cnt=1><WHILEM> a1 <WHILEM>
+ <CURLYX cnt=2><WHILEM> a1 <WHILEM> a2 <WHILEM>
+ <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM>
+ <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM> b
+
+(Contrast this with something like CURLYM, which maintains only a single
+backtrack state:
+
+ <CURLYM cnt=0> a1
+ a1 <CURLYM cnt=1> a2
+ a1 a2 <CURLYM cnt=2> a3
+ a1 a2 a3 <CURLYM cnt=3> b
+)
+
+Each WHILEM state block marks a point to backtrack to upon partial failure
+of A or B, and also contains some minor state data related to that
+iteration.  The CURLYX block, pointed to by cur_curlyx, contains the
+overall state, such as the count, and pointers to the A and B ops.
+
+This is complicated slightly by nested CURLYX/WHILEM's. Since cur_curlyx
+must always point to the *current* CURLYX block, the rules are:
+
+When executing CURLYX, save the old cur_curlyx in the CURLYX state block,
+and set cur_curlyx to point the new block.
+
+When popping the CURLYX block after a successful or unsuccessful match,
+restore the previous cur_curlyx.
+
+When WHILEM is about to execute B, save the current cur_curlyx, and set it
+to the outer one saved in the CURLYX block.
+
+When popping the WHILEM block after a successful or unsuccessful B match,
+restore the previous cur_curlyx.
+
+Here's an example for the pattern (AI* BI)*BO
+I and O refer to inner and outer, C and W refer to CURLYX and WHILEM:
+
+cur_
+curlyx backtrack stack
+------ ---------------
+NULL
+CO     <CO prev=NULL> <WO>
+CI     <CO prev=NULL> <WO> <CI prev=CO> <WI> ai
+CO     <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi
+NULL   <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi <WO prev=CO> bo
+
+At this point the pattern succeeds, and we work back down the stack to
+clean up, restoring as we go:
+
+CO     <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi
+CI     <CO prev=NULL> <WO> <CI prev=CO> <WI> ai
+CO     <CO prev=NULL> <WO>
+NULL
+
+*******************************************************************/
+
+#define ST st->u.curlyx
+
+  case CURLYX:    /* start of /A*B/  (for complex A) */
+  {
+   /* No need to save/restore up to this paren */
+   I32 parenfloor = scan->flags;
+
+   assert(next); /* keep Coverity happy */
+   if (OP(PREVOPER(next)) == NOTHING) /* LONGJMP */
+    next += ARG(next);
+
+   /* XXXX Probably it is better to teach regpush to support
+   parenfloor > maxopenparen ... */
+   if (parenfloor > (I32)rex->lastparen)
+    parenfloor = rex->lastparen; /* Pessimization... */
+
+   ST.prev_curlyx= cur_curlyx;
+   cur_curlyx = st;
+   ST.cp = PL_savestack_ix;
+
+   /* these fields contain the state of the current curly.
+   * they are accessed by subsequent WHILEMs */
+   ST.parenfloor = parenfloor;
+   ST.me = scan;
+   ST.B = next;
+   ST.minmod = minmod;
+   minmod = 0;
+   ST.count = -1; /* this will be updated by WHILEM */
+   ST.lastloc = NULL;  /* this will be updated by WHILEM */
+
+   PUSH_YES_STATE_GOTO(CURLYX_end, PREVOPER(next), locinput);
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+  }
+
+  case CURLYX_end: /* just finished matching all of A*B */
+   cur_curlyx = ST.prev_curlyx;
+   sayYES;
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case CURLYX_end_fail: /* just failed to match all of A*B */
+   regcpblow(ST.cp);
+   cur_curlyx = ST.prev_curlyx;
+   sayNO;
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+
+#undef ST
+#define ST st->u.whilem
+
+  case WHILEM:     /* just matched an A in /A*B/  (for complex A) */
+  {
+   /* see the discussion above about CURLYX/WHILEM */
+   I32 n;
+   int min, max;
+   regnode *A;
+
+   assert(cur_curlyx); /* keep Coverity happy */
+
+   min = ARG1(cur_curlyx->u.curlyx.me);
+   max = ARG2(cur_curlyx->u.curlyx.me);
+   A = NEXTOPER(cur_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS;
+   n = ++cur_curlyx->u.curlyx.count; /* how many A's matched */
+   ST.save_lastloc = cur_curlyx->u.curlyx.lastloc;
+   ST.cache_offset = 0;
+   ST.cache_mask = 0;
+
+
+   DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+    "%*s  whilem: matched %ld out of %d..%d\n",
+    REPORT_CODE_OFF+depth*2, "", (long)n, min, max)
+   );
+
+   /* First just match a string of min A's. */
+
+   if (n < min) {
+    ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
+         maxopenparen);
+    cur_curlyx->u.curlyx.lastloc = locinput;
+    REGCP_SET(ST.lastcp);
+
+    PUSH_STATE_GOTO(WHILEM_A_pre, A, locinput);
+    /* NOTREACHED */
+    NOT_REACHED; /* NOTREACHED */
+   }
+
+   /* If degenerate A matches "", assume A done. */
+
+   if (locinput == cur_curlyx->u.curlyx.lastloc) {
+    DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+    "%*s  whilem: empty match detected, trying continuation...\n",
+    REPORT_CODE_OFF+depth*2, "")
+    );
+    goto do_whilem_B_max;
+   }
+
+   /* super-linear cache processing.
+   *
+   * The idea here is that for certain types of CURLYX/WHILEM -
+   * principally those whose upper bound is infinity (and
+   * excluding regexes that have things like \1 and other very
+   * non-regular expresssiony things), then if a pattern like
+   * /....A*.../ fails and we backtrack to the WHILEM, then we
+   * make a note that this particular WHILEM op was at string
+   * position 47 (say) when the rest of pattern failed. Then, if
+   * we ever find ourselves back at that WHILEM, and at string
+   * position 47 again, we can just fail immediately rather than
+   * running the rest of the pattern again.
+   *
+   * This is very handy when patterns start to go
+   * 'super-linear', like in (a+)*(a+)*(a+)*, where you end up
+   * with a combinatorial explosion of backtracking.
+   *
+   * The cache is implemented as a bit array, with one bit per
+   * string byte position per WHILEM op (up to 16) - so its
+   * between 0.25 and 2x the string size.
+   *
+   * To avoid allocating a poscache buffer every time, we do an
+   * initially countdown; only after we have  executed a WHILEM
+   * op (string-length x #WHILEMs) times do we allocate the
+   * cache.
+   *
+   * The top 4 bits of scan->flags byte say how many different
+   * relevant CURLLYX/WHILEM op pairs there are, while the
+   * bottom 4-bits is the identifying index number of this
+   * WHILEM.
+   */
+
+   if (scan->flags) {
+
+    if (!reginfo->poscache_maxiter) {
+     /* start the countdown: Postpone detection until we
+     * know the match is not *that* much linear. */
+     reginfo->poscache_maxiter
+      =    (reginfo->strend - reginfo->strbeg + 1)
+      * (scan->flags>>4);
+     /* possible overflow for long strings and many CURLYX's */
+     if (reginfo->poscache_maxiter < 0)
+      reginfo->poscache_maxiter = I32_MAX;
+     reginfo->poscache_iter = reginfo->poscache_maxiter;
+    }
+
+    if (reginfo->poscache_iter-- == 0) {
+     /* initialise cache */
+     const SSize_t size = (reginfo->poscache_maxiter + 7)/8;
+     regmatch_info_aux *const aux = reginfo->info_aux;
+     if (aux->poscache) {
+      if ((SSize_t)reginfo->poscache_size < size) {
+       Renew(aux->poscache, size, char);
+       reginfo->poscache_size = size;
+      }
+      Zero(aux->poscache, size, char);
+     }
+     else {
+      reginfo->poscache_size = size;
+      Newxz(aux->poscache, size, char);
+     }
+     DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%swhilem: Detected a super-linear match, switching on caching%s...\n",
+       PL_colors[4], PL_colors[5])
+     );
+    }
+
+    if (reginfo->poscache_iter < 0) {
+     /* have we already failed at this position? */
+     SSize_t offset, mask;
+
+     reginfo->poscache_iter = -1; /* stop eventual underflow */
+     offset  = (scan->flags & 0xf) - 1
+        +   (locinput - reginfo->strbeg)
+        * (scan->flags>>4);
+     mask    = 1 << (offset % 8);
+     offset /= 8;
+     if (reginfo->info_aux->poscache[offset] & mask) {
+      DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+       "%*s  whilem: (cache) already tried at this position...\n",
+       REPORT_CODE_OFF+depth*2, "")
+      );
+      sayNO; /* cache records failure */
+     }
+     ST.cache_offset = offset;
+     ST.cache_mask   = mask;
+    }
+   }
+
+   /* Prefer B over A for minimal matching. */
+
+   if (cur_curlyx->u.curlyx.minmod) {
+    ST.save_curlyx = cur_curlyx;
+    cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
+    ST.cp = regcppush(rex, ST.save_curlyx->u.curlyx.parenfloor,
+       maxopenparen);
+    REGCP_SET(ST.lastcp);
+    PUSH_YES_STATE_GOTO(WHILEM_B_min, ST.save_curlyx->u.curlyx.B,
+         locinput);
+    /* NOTREACHED */
+    NOT_REACHED; /* NOTREACHED */
+   }
+
+   /* Prefer A over B for maximal matching. */
+
+   if (n < max) { /* More greed allowed? */
+    ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
+       maxopenparen);
+    cur_curlyx->u.curlyx.lastloc = locinput;
+    REGCP_SET(ST.lastcp);
+    PUSH_STATE_GOTO(WHILEM_A_max, A, locinput);
+    /* NOTREACHED */
+    NOT_REACHED; /* NOTREACHED */
+   }
+   goto do_whilem_B_max;
+  }
+  /* NOTREACHED */
+  NOT_REACHED; /* NOTREACHED */
+
+  case WHILEM_B_min: /* just matched B in a minimal match */
+  case WHILEM_B_max: /* just matched B in a maximal match */
+   cur_curlyx = ST.save_curlyx;
+   sayYES;
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case WHILEM_B_max_fail: /* just failed to match B in a maximal match */
+   cur_curlyx = ST.save_curlyx;
+   cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
+   cur_curlyx->u.curlyx.count--;
+   CACHEsayNO;
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case WHILEM_A_min_fail: /* just failed to match A in a minimal match */
+   /* FALLTHROUGH */
+  case WHILEM_A_pre_fail: /* just failed to match even minimal A */
+   REGCP_UNWIND(ST.lastcp);
+   regcppop(rex, &maxopenparen);
+   cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
+   cur_curlyx->u.curlyx.count--;
+   CACHEsayNO;
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case WHILEM_A_max_fail: /* just failed to match A in a maximal match */
+   REGCP_UNWIND(ST.lastcp);
+   regcppop(rex, &maxopenparen); /* Restore some previous $<digit>s? */
+   DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+    "%*s  whilem: failed, trying continuation...\n",
+    REPORT_CODE_OFF+depth*2, "")
+   );
+  do_whilem_B_max:
+   if (cur_curlyx->u.curlyx.count >= REG_INFTY
+    && ckWARN(WARN_REGEXP)
+    && !reginfo->warned)
+   {
+    reginfo->warned = TRUE;
+    Perl_warner(aTHX_ packWARN(WARN_REGEXP),
+     "Complex regular subexpression recursion limit (%d) "
+     "exceeded",
+     REG_INFTY - 1);
+   }
+
+   /* now try B */
+   ST.save_curlyx = cur_curlyx;
+   cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
+   PUSH_YES_STATE_GOTO(WHILEM_B_max, ST.save_curlyx->u.curlyx.B,
+        locinput);
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case WHILEM_B_min_fail: /* just failed to match B in a minimal match */
+   cur_curlyx = ST.save_curlyx;
+   REGCP_UNWIND(ST.lastcp);
+   regcppop(rex, &maxopenparen);
+
+   if (cur_curlyx->u.curlyx.count >= /*max*/ARG2(cur_curlyx->u.curlyx.me)) {
+    /* Maximum greed exceeded */
+    if (cur_curlyx->u.curlyx.count >= REG_INFTY
+     && ckWARN(WARN_REGEXP)
+     && !reginfo->warned)
+    {
+     reginfo->warned = TRUE;
+     Perl_warner(aTHX_ packWARN(WARN_REGEXP),
+      "Complex regular subexpression recursion "
+      "limit (%d) exceeded",
+      REG_INFTY - 1);
+    }
+    cur_curlyx->u.curlyx.count--;
+    CACHEsayNO;
+   }
+
+   DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+    "%*s  trying longer...\n", REPORT_CODE_OFF+depth*2, "")
+   );
+   /* Try grabbing another A and see if it helps. */
+   cur_curlyx->u.curlyx.lastloc = locinput;
+   ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
+       maxopenparen);
+   REGCP_SET(ST.lastcp);
+   PUSH_STATE_GOTO(WHILEM_A_min,
+    /*A*/ NEXTOPER(ST.save_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS,
+    locinput);
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+#undef  ST
+#define ST st->u.branch
+
+  case BRANCHJ:     /*  /(...|A|...)/ with long next pointer */
+   next = scan + ARG(scan);
+   if (next == scan)
+    next = NULL;
+   scan = NEXTOPER(scan);
+   /* FALLTHROUGH */
+
+  case BRANCH:     /*  /(...|A|...)/ */
+   scan = NEXTOPER(scan); /* scan now points to inner node */
+   ST.lastparen = rex->lastparen;
+   ST.lastcloseparen = rex->lastcloseparen;
+   ST.next_branch = next;
+   REGCP_SET(ST.cp);
+
+   /* Now go into the branch */
+   if (has_cutgroup) {
+    PUSH_YES_STATE_GOTO(BRANCH_next, scan, locinput);
+   } else {
+    PUSH_STATE_GOTO(BRANCH_next, scan, locinput);
+   }
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case CUTGROUP:  /*  /(*THEN)/  */
+   sv_yes_mark = st->u.mark.mark_name = scan->flags ? NULL :
+    MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+   PUSH_STATE_GOTO(CUTGROUP_next, next, locinput);
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case CUTGROUP_next_fail:
+   do_cutgroup = 1;
+   no_final = 1;
+   if (st->u.mark.mark_name)
+    sv_commit = st->u.mark.mark_name;
+   sayNO;
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case BRANCH_next:
+   sayYES;
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case BRANCH_next_fail: /* that branch failed; try the next, if any */
+   if (do_cutgroup) {
+    do_cutgroup = 0;
+    no_final = 0;
+   }
+   REGCP_UNWIND(ST.cp);
+   UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+   scan = ST.next_branch;
+   /* no more branches? */
+   if (!scan || (OP(scan) != BRANCH && OP(scan) != BRANCHJ)) {
+    DEBUG_EXECUTE_r({
+     PerlIO_printf( Perl_debug_log,
+      "%*s  %sBRANCH failed...%s\n",
+      REPORT_CODE_OFF+depth*2, "",
+      PL_colors[4],
+      PL_colors[5] );
+    });
+    sayNO_SILENT;
+   }
+   continue; /* execute next BRANCH[J] op */
+   /* NOTREACHED */
+
+  case MINMOD: /* next op will be non-greedy, e.g. A*?  */
+   minmod = 1;
+   break;
+
+#undef  ST
+#define ST st->u.curlym
+
+  case CURLYM: /* /A{m,n}B/ where A is fixed-length */
+
+   /* This is an optimisation of CURLYX that enables us to push
+   * only a single backtracking state, no matter how many matches
+   * there are in {m,n}. It relies on the pattern being constant
+   * length, with no parens to influence future backrefs
+   */
+
+   ST.me = scan;
+   scan = NEXTOPER(scan) + NODE_STEP_REGNODE;
+
+   ST.lastparen      = rex->lastparen;
+   ST.lastcloseparen = rex->lastcloseparen;
+
+   /* if paren positive, emulate an OPEN/CLOSE around A */
+   if (ST.me->flags) {
+    U32 paren = ST.me->flags;
+    if (paren > maxopenparen)
+     maxopenparen = paren;
+    scan += NEXT_OFF(scan); /* Skip former OPEN. */
+   }
+   ST.A = scan;
+   ST.B = next;
+   ST.alen = 0;
+   ST.count = 0;
+   ST.minmod = minmod;
+   minmod = 0;
+   ST.c1 = CHRTEST_UNINIT;
+   REGCP_SET(ST.cp);
+
+   if (!(ST.minmod ? ARG1(ST.me) : ARG2(ST.me))) /* min/max */
+    goto curlym_do_B;
+
+  curlym_do_A: /* execute the A in /A{m,n}B/  */
+   PUSH_YES_STATE_GOTO(CURLYM_A, ST.A, locinput); /* match A */
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case CURLYM_A: /* we've just matched an A */
+   ST.count++;
+   /* after first match, determine A's length: u.curlym.alen */
+   if (ST.count == 1) {
+    if (reginfo->is_utf8_target) {
+     char *s = st->locinput;
+     while (s < locinput) {
+      ST.alen++;
+      s += UTF8SKIP(s);
+     }
+    }
+    else {
+     ST.alen = locinput - st->locinput;
+    }
+    if (ST.alen == 0)
+     ST.count = ST.minmod ? ARG1(ST.me) : ARG2(ST.me);
+   }
+   DEBUG_EXECUTE_r(
+    PerlIO_printf(Perl_debug_log,
+      "%*s  CURLYM now matched %"IVdf" times, len=%"IVdf"...\n",
+      (int)(REPORT_CODE_OFF+(depth*2)), "",
+      (IV) ST.count, (IV)ST.alen)
+   );
+
+   if (cur_eval && cur_eval->u.eval.close_paren &&
+    cur_eval->u.eval.close_paren == (U32)ST.me->flags)
+    goto fake_end;
+
+   {
+    I32 max = (ST.minmod ? ARG1(ST.me) : ARG2(ST.me));
+    if ( max == REG_INFTY || ST.count < max )
+     goto curlym_do_A; /* try to match another A */
+   }
+   goto curlym_do_B; /* try to match B */
+
+  case CURLYM_A_fail: /* just failed to match an A */
+   REGCP_UNWIND(ST.cp);
+
+   if (ST.minmod || ST.count < ARG1(ST.me) /* min*/
+    || (cur_eval && cur_eval->u.eval.close_paren &&
+     cur_eval->u.eval.close_paren == (U32)ST.me->flags))
+    sayNO;
+
+  curlym_do_B: /* execute the B in /A{m,n}B/  */
+   if (ST.c1 == CHRTEST_UNINIT) {
+    /* calculate c1 and c2 for possible match of 1st char
+    * following curly */
+    ST.c1 = ST.c2 = CHRTEST_VOID;
+    assert(ST.B);
+    if (HAS_TEXT(ST.B) || JUMPABLE(ST.B)) {
+     regnode *text_node = ST.B;
+     if (! HAS_TEXT(text_node))
+      FIND_NEXT_IMPT(text_node);
+     /* this used to be
+
+      (HAS_TEXT(text_node) && PL_regkind[OP(text_node)] == EXACT)
+
+       But the former is redundant in light of the latter.
+
+       if this changes back then the macro for
+       IS_TEXT and friends need to change.
+     */
+     if (PL_regkind[OP(text_node)] == EXACT) {
+      if (! S_setup_EXACTISH_ST_c1_c2(aTHX_
+      text_node, &ST.c1, ST.c1_utf8, &ST.c2, ST.c2_utf8,
+      reginfo))
+      {
+       sayNO;
+      }
+     }
+    }
+   }
+
+   DEBUG_EXECUTE_r(
+    PerlIO_printf(Perl_debug_log,
+     "%*s  CURLYM trying tail with matches=%"IVdf"...\n",
+     (int)(REPORT_CODE_OFF+(depth*2)),
+     "", (IV)ST.count)
+    );
+   if (! NEXTCHR_IS_EOS && ST.c1 != CHRTEST_VOID) {
+    if (! UTF8_IS_INVARIANT(nextchr) && utf8_target) {
+     if (memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput))
+      && memNE(locinput, ST.c2_utf8, UTF8SKIP(locinput)))
+     {
+      /* simulate B failing */
+      DEBUG_OPTIMISE_r(
+       PerlIO_printf(Perl_debug_log,
+        "%*s  CURLYM Fast bail next target=0x%"UVXf" c1=0x%"UVXf" c2=0x%"UVXf"\n",
+        (int)(REPORT_CODE_OFF+(depth*2)),"",
+        valid_utf8_to_uvchr((U8 *) locinput, NULL),
+        valid_utf8_to_uvchr(ST.c1_utf8, NULL),
+        valid_utf8_to_uvchr(ST.c2_utf8, NULL))
+      );
+      state_num = CURLYM_B_fail;
+      goto reenter_switch;
+     }
+    }
+    else if (nextchr != ST.c1 && nextchr != ST.c2) {
+     /* simulate B failing */
+     DEBUG_OPTIMISE_r(
+      PerlIO_printf(Perl_debug_log,
+       "%*s  CURLYM Fast bail next target=0x%X c1=0x%X c2=0x%X\n",
+       (int)(REPORT_CODE_OFF+(depth*2)),"",
+       (int) nextchr, ST.c1, ST.c2)
+     );
+     state_num = CURLYM_B_fail;
+     goto reenter_switch;
+    }
+   }
+
+   if (ST.me->flags) {
+    /* emulate CLOSE: mark current A as captured */
+    I32 paren = ST.me->flags;
+    if (ST.count) {
+     rex->offs[paren].start
+      = HOPc(locinput, -ST.alen) - reginfo->strbeg;
+     rex->offs[paren].end = locinput - reginfo->strbeg;
+     if ((U32)paren > rex->lastparen)
+      rex->lastparen = paren;
+     rex->lastcloseparen = paren;
+    }
+    else
+     rex->offs[paren].end = -1;
+    if (cur_eval && cur_eval->u.eval.close_paren &&
+     cur_eval->u.eval.close_paren == (U32)ST.me->flags)
+    {
+     if (ST.count)
+      goto fake_end;
+     else
+      sayNO;
+    }
+   }
+
+   PUSH_STATE_GOTO(CURLYM_B, ST.B, locinput); /* match B */
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case CURLYM_B_fail: /* just failed to match a B */
+   REGCP_UNWIND(ST.cp);
+   UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+   if (ST.minmod) {
+    I32 max = ARG2(ST.me);
+    if (max != REG_INFTY && ST.count == max)
+     sayNO;
+    goto curlym_do_A; /* try to match a further A */
+   }
+   /* backtrack one A */
+   if (ST.count == ARG1(ST.me) /* min */)
+    sayNO;
+   ST.count--;
+   SET_locinput(HOPc(locinput, -ST.alen));
+   goto curlym_do_B; /* try to match B */
+
+#undef ST
+#define ST st->u.curly
+
+#define CURLY_SETPAREN(paren, success) \
+ if (paren) { \
+  if (success) { \
+   rex->offs[paren].start = HOPc(locinput, -1) - reginfo->strbeg; \
+   rex->offs[paren].end = locinput - reginfo->strbeg; \
+   if (paren > rex->lastparen) \
+    rex->lastparen = paren; \
+   rex->lastcloseparen = paren; \
+  } \
+  else { \
+   rex->offs[paren].end = -1; \
+   rex->lastparen      = ST.lastparen; \
+   rex->lastcloseparen = ST.lastcloseparen; \
+  } \
+ }
+
+  case STAR:  /*  /A*B/ where A is width 1 char */
+   ST.paren = 0;
+   ST.min = 0;
+   ST.max = REG_INFTY;
+   scan = NEXTOPER(scan);
+   goto repeat;
+
+  case PLUS:  /*  /A+B/ where A is width 1 char */
+   ST.paren = 0;
+   ST.min = 1;
+   ST.max = REG_INFTY;
+   scan = NEXTOPER(scan);
+   goto repeat;
+
+  case CURLYN:  /*  /(A){m,n}B/ where A is width 1 char */
+   ST.paren = scan->flags; /* Which paren to set */
+   ST.lastparen      = rex->lastparen;
+   ST.lastcloseparen = rex->lastcloseparen;
+   if (ST.paren > maxopenparen)
+    maxopenparen = ST.paren;
+   ST.min = ARG1(scan);  /* min to match */
+   ST.max = ARG2(scan);  /* max to match */
+   if (cur_eval && cur_eval->u.eval.close_paren &&
+    cur_eval->u.eval.close_paren == (U32)ST.paren) {
+    ST.min=1;
+    ST.max=1;
+   }
+   scan = regnext(NEXTOPER(scan) + NODE_STEP_REGNODE);
+   goto repeat;
+
+  case CURLY:  /*  /A{m,n}B/ where A is width 1 char */
+   ST.paren = 0;
+   ST.min = ARG1(scan);  /* min to match */
+   ST.max = ARG2(scan);  /* max to match */
+   scan = NEXTOPER(scan) + NODE_STEP_REGNODE;
+  repeat:
+   /*
+   * Lookahead to avoid useless match attempts
+   * when we know what character comes next.
+   *
+   * Used to only do .*x and .*?x, but now it allows
+   * for )'s, ('s and (?{ ... })'s to be in the way
+   * of the quantifier and the EXACT-like node.  -- japhy
+   */
+
+   assert(ST.min <= ST.max);
+   if (! HAS_TEXT(next) && ! JUMPABLE(next)) {
+    ST.c1 = ST.c2 = CHRTEST_VOID;
+   }
+   else {
+    regnode *text_node = next;
+
+    if (! HAS_TEXT(text_node))
+     FIND_NEXT_IMPT(text_node);
+
+    if (! HAS_TEXT(text_node))
+     ST.c1 = ST.c2 = CHRTEST_VOID;
+    else {
+     if ( PL_regkind[OP(text_node)] != EXACT ) {
+      ST.c1 = ST.c2 = CHRTEST_VOID;
+     }
+     else {
+
+     /*  Currently we only get here when
+
+      PL_rekind[OP(text_node)] == EXACT
+
+      if this changes back then the macro for IS_TEXT and
+      friends need to change. */
+      if (! S_setup_EXACTISH_ST_c1_c2(aTHX_
+      text_node, &ST.c1, ST.c1_utf8, &ST.c2, ST.c2_utf8,
+      reginfo))
+      {
+       sayNO;
+      }
+     }
+    }
+   }
+
+   ST.A = scan;
+   ST.B = next;
+   if (minmod) {
+    char *li = locinput;
+    minmod = 0;
+    if (ST.min &&
+      regrepeat(rex, &li, ST.A, reginfo, ST.min, depth)
+       < ST.min)
+     sayNO;
+    SET_locinput(li);
+    ST.count = ST.min;
+    REGCP_SET(ST.cp);
+    if (ST.c1 == CHRTEST_VOID)
+     goto curly_try_B_min;
+
+    ST.oldloc = locinput;
+
+    /* set ST.maxpos to the furthest point along the
+    * string that could possibly match */
+    if  (ST.max == REG_INFTY) {
+     ST.maxpos = reginfo->strend - 1;
+     if (utf8_target)
+      while (UTF8_IS_CONTINUATION(*(U8*)ST.maxpos))
+       ST.maxpos--;
+    }
+    else if (utf8_target) {
+     int m = ST.max - ST.min;
+     for (ST.maxpos = locinput;
+      m >0 && ST.maxpos < reginfo->strend; m--)
+      ST.maxpos += UTF8SKIP(ST.maxpos);
+    }
+    else {
+     ST.maxpos = locinput + ST.max - ST.min;
+     if (ST.maxpos >= reginfo->strend)
+      ST.maxpos = reginfo->strend - 1;
+    }
+    goto curly_try_B_min_known;
+
+   }
+   else {
+    /* avoid taking address of locinput, so it can remain
+    * a register var */
+    char *li = locinput;
+    ST.count = regrepeat(rex, &li, ST.A, reginfo, ST.max, depth);
+    if (ST.count < ST.min)
+     sayNO;
+    SET_locinput(li);
+    if ((ST.count > ST.min)
+     && (PL_regkind[OP(ST.B)] == EOL) && (OP(ST.B) != MEOL))
+    {
+     /* A{m,n} must come at the end of the string, there's
+     * no point in backing off ... */
+     ST.min = ST.count;
+     /* ...except that $ and \Z can match before *and* after
+     newline at the end.  Consider "\n\n" =~ /\n+\Z\n/.
+     We may back off by one in this case. */
+     if (UCHARAT(locinput - 1) == '\n' && OP(ST.B) != EOS)
+      ST.min--;
+    }
+    REGCP_SET(ST.cp);
+    goto curly_try_B_max;
+   }
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case CURLY_B_min_known_fail:
+   /* failed to find B in a non-greedy match where c1,c2 valid */
+
+   REGCP_UNWIND(ST.cp);
+   if (ST.paren) {
+    UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+   }
+   /* Couldn't or didn't -- move forward. */
+   ST.oldloc = locinput;
+   if (utf8_target)
+    locinput += UTF8SKIP(locinput);
+   else
+    locinput++;
+   ST.count++;
+  curly_try_B_min_known:
+   /* find the next place where 'B' could work, then call B */
+   {
+    int n;
+    if (utf8_target) {
+     n = (ST.oldloc == locinput) ? 0 : 1;
+     if (ST.c1 == ST.c2) {
+      /* set n to utf8_distance(oldloc, locinput) */
+      while (locinput <= ST.maxpos
+       && memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput)))
+      {
+       locinput += UTF8SKIP(locinput);
+       n++;
+      }
+     }
+     else {
+      /* set n to utf8_distance(oldloc, locinput) */
+      while (locinput <= ST.maxpos
+       && memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput))
+       && memNE(locinput, ST.c2_utf8, UTF8SKIP(locinput)))
+      {
+       locinput += UTF8SKIP(locinput);
+       n++;
+      }
+     }
+    }
+    else {  /* Not utf8_target */
+     if (ST.c1 == ST.c2) {
+      while (locinput <= ST.maxpos &&
+       UCHARAT(locinput) != ST.c1)
+       locinput++;
+     }
+     else {
+      while (locinput <= ST.maxpos
+       && UCHARAT(locinput) != ST.c1
+       && UCHARAT(locinput) != ST.c2)
+       locinput++;
+     }
+     n = locinput - ST.oldloc;
+    }
+    if (locinput > ST.maxpos)
+     sayNO;
+    if (n) {
+     /* In /a{m,n}b/, ST.oldloc is at "a" x m, locinput is
+     * at b; check that everything between oldloc and
+     * locinput matches */
+     char *li = ST.oldloc;
+     ST.count += n;
+     if (regrepeat(rex, &li, ST.A, reginfo, n, depth) < n)
+      sayNO;
+     assert(n == REG_INFTY || locinput == li);
+    }
+    CURLY_SETPAREN(ST.paren, ST.count);
+    if (cur_eval && cur_eval->u.eval.close_paren &&
+     cur_eval->u.eval.close_paren == (U32)ST.paren) {
+     goto fake_end;
+    }
+    PUSH_STATE_GOTO(CURLY_B_min_known, ST.B, locinput);
+   }
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case CURLY_B_min_fail:
+   /* failed to find B in a non-greedy match where c1,c2 invalid */
+
+   REGCP_UNWIND(ST.cp);
+   if (ST.paren) {
+    UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+   }
+   /* failed -- move forward one */
+   {
+    char *li = locinput;
+    if (!regrepeat(rex, &li, ST.A, reginfo, 1, depth)) {
+     sayNO;
+    }
+    locinput = li;
+   }
+   {
+    ST.count++;
+    if (ST.count <= ST.max || (ST.max == REG_INFTY &&
+      ST.count > 0)) /* count overflow ? */
+    {
+    curly_try_B_min:
+     CURLY_SETPAREN(ST.paren, ST.count);
+     if (cur_eval && cur_eval->u.eval.close_paren &&
+      cur_eval->u.eval.close_paren == (U32)ST.paren) {
+      goto fake_end;
+     }
+     PUSH_STATE_GOTO(CURLY_B_min, ST.B, locinput);
+    }
+   }
+   sayNO;
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  curly_try_B_max:
+   /* a successful greedy match: now try to match B */
+   if (cur_eval && cur_eval->u.eval.close_paren &&
+    cur_eval->u.eval.close_paren == (U32)ST.paren) {
+    goto fake_end;
+   }
+   {
+    bool could_match = locinput < reginfo->strend;
+
+    /* If it could work, try it. */
+    if (ST.c1 != CHRTEST_VOID && could_match) {
+     if (! UTF8_IS_INVARIANT(UCHARAT(locinput)) && utf8_target)
+     {
+      could_match = memEQ(locinput,
+           ST.c1_utf8,
+           UTF8SKIP(locinput))
+         || memEQ(locinput,
+           ST.c2_utf8,
+           UTF8SKIP(locinput));
+     }
+     else {
+      could_match = UCHARAT(locinput) == ST.c1
+         || UCHARAT(locinput) == ST.c2;
+     }
+    }
+    if (ST.c1 == CHRTEST_VOID || could_match) {
+     CURLY_SETPAREN(ST.paren, ST.count);
+     PUSH_STATE_GOTO(CURLY_B_max, ST.B, locinput);
+     /* NOTREACHED */
+     NOT_REACHED; /* NOTREACHED */
+    }
+   }
+   /* FALLTHROUGH */
+
+  case CURLY_B_max_fail:
+   /* failed to find B in a greedy match */
+
+   REGCP_UNWIND(ST.cp);
+   if (ST.paren) {
+    UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+   }
+   /*  back up. */
+   if (--ST.count < ST.min)
+    sayNO;
+   locinput = HOPc(locinput, -1);
+   goto curly_try_B_max;
+
+#undef ST
+
+  case END: /*  last op of main pattern  */
+  fake_end:
+   if (cur_eval) {
+    /* we've just finished A in /(??{A})B/; now continue with B */
+
+    st->u.eval.prev_rex = rex_sv;  /* inner */
+
+    /* Save *all* the positions. */
+    st->u.eval.cp = regcppush(rex, 0, maxopenparen);
+    rex_sv = cur_eval->u.eval.prev_rex;
+    is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
+    SET_reg_curpm(rex_sv);
+    rex = ReANY(rex_sv);
+    rexi = RXi_GET(rex);
+    cur_curlyx = cur_eval->u.eval.prev_curlyx;
+
+    REGCP_SET(st->u.eval.lastcp);
+
+    /* Restore parens of the outer rex without popping the
+    * savestack */
+    S_regcp_restore(aTHX_ rex, cur_eval->u.eval.lastcp,
+          &maxopenparen);
+
+    st->u.eval.prev_eval = cur_eval;
+    cur_eval = cur_eval->u.eval.prev_eval;
+    DEBUG_EXECUTE_r(
+     PerlIO_printf(Perl_debug_log, "%*s  EVAL trying tail ... %"UVxf"\n",
+         REPORT_CODE_OFF+depth*2, "",PTR2UV(cur_eval)););
+    if ( nochange_depth )
+     nochange_depth--;
+
+    PUSH_YES_STATE_GOTO(EVAL_AB, st->u.eval.prev_eval->u.eval.B,
+         locinput); /* match B */
+   }
+
+   if (locinput < reginfo->till) {
+    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+         "%sMatch possible, but length=%ld is smaller than requested=%ld, failing!%s\n",
+         PL_colors[4],
+         (long)(locinput - startpos),
+         (long)(reginfo->till - startpos),
+         PL_colors[5]));
+
+    sayNO_SILENT;  /* Cannot match: too short. */
+   }
+   sayYES;   /* Success! */
+
+  case SUCCEED: /* successful SUSPEND/UNLESSM/IFMATCH/CURLYM */
+   DEBUG_EXECUTE_r(
+   PerlIO_printf(Perl_debug_log,
+    "%*s  %ssubpattern success...%s\n",
+    REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5]));
+   sayYES;   /* Success! */
+
+#undef  ST
+#define ST st->u.ifmatch
+
+  {
+   char *newstart;
+
+  case SUSPEND: /* (?>A) */
+   ST.wanted = 1;
+   newstart = locinput;
+   goto do_ifmatch;
+
+  case UNLESSM: /* -ve lookaround: (?!A), or with flags, (?<!A) */
+   ST.wanted = 0;
+   goto ifmatch_trivial_fail_test;
+
+  case IFMATCH: /* +ve lookaround: (?=A), or with flags, (?<=A) */
+   ST.wanted = 1;
+  ifmatch_trivial_fail_test:
+   if (scan->flags) {
+    char * const s = HOPBACKc(locinput, scan->flags);
+    if (!s) {
+     /* trivial fail */
+     if (logical) {
+      logical = 0;
+      sw = 1 - cBOOL(ST.wanted);
+     }
+     else if (ST.wanted)
+      sayNO;
+     next = scan + ARG(scan);
+     if (next == scan)
+      next = NULL;
+     break;
+    }
+    newstart = s;
+   }
+   else
+    newstart = locinput;
+
+  do_ifmatch:
+   ST.me = scan;
+   ST.logical = logical;
+   logical = 0; /* XXX: reset state of logical once it has been saved into ST */
+
+   /* execute body of (?...A) */
+   PUSH_YES_STATE_GOTO(IFMATCH_A, NEXTOPER(NEXTOPER(scan)), newstart);
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+  }
+
+  case IFMATCH_A_fail: /* body of (?...A) failed */
+   ST.wanted = !ST.wanted;
+   /* FALLTHROUGH */
+
+  case IFMATCH_A: /* body of (?...A) succeeded */
+   if (ST.logical) {
+    sw = cBOOL(ST.wanted);
+   }
+   else if (!ST.wanted)
+    sayNO;
+
+   if (OP(ST.me) != SUSPEND) {
+    /* restore old position except for (?>...) */
+    locinput = st->locinput;
+   }
+   scan = ST.me + ARG(ST.me);
+   if (scan == ST.me)
+    scan = NULL;
+   continue; /* execute B */
+
+#undef ST
+
+  case LONGJMP: /*  alternative with many branches compiles to
+     * (BRANCHJ; EXACT ...; LONGJMP ) x N */
+   next = scan + ARG(scan);
+   if (next == scan)
+    next = NULL;
+   break;
+
+  case COMMIT:  /*  (*COMMIT)  */
+   reginfo->cutpoint = reginfo->strend;
+   /* FALLTHROUGH */
+
+  case PRUNE:   /*  (*PRUNE)   */
+   if (!scan->flags)
+    sv_yes_mark = sv_commit = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+   PUSH_STATE_GOTO(COMMIT_next, next, locinput);
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case COMMIT_next_fail:
+   no_final = 1;
+   /* FALLTHROUGH */
+
+  case OPFAIL:   /* (*FAIL)  */
+   sayNO;
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+#define ST st->u.mark
+  case MARKPOINT: /*  (*MARK:foo)  */
+   ST.prev_mark = mark_state;
+   ST.mark_name = sv_commit = sv_yes_mark
+    = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+   mark_state = st;
+   ST.mark_loc = locinput;
+   PUSH_YES_STATE_GOTO(MARKPOINT_next, next, locinput);
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case MARKPOINT_next:
+   mark_state = ST.prev_mark;
+   sayYES;
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case MARKPOINT_next_fail:
+   if (popmark && sv_eq(ST.mark_name,popmark))
+   {
+    if (ST.mark_loc > startpoint)
+     reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
+    popmark = NULL; /* we found our mark */
+    sv_commit = ST.mark_name;
+
+    DEBUG_EXECUTE_r({
+      PerlIO_printf(Perl_debug_log,
+       "%*s  %ssetting cutpoint to mark:%"SVf"...%s\n",
+       REPORT_CODE_OFF+depth*2, "",
+       PL_colors[4], SVfARG(sv_commit), PL_colors[5]);
+    });
+   }
+   mark_state = ST.prev_mark;
+   sv_yes_mark = mark_state ?
+    mark_state->u.mark.mark_name : NULL;
+   sayNO;
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case SKIP:  /*  (*SKIP)  */
+   if (scan->flags) {
+    /* (*SKIP) : if we fail we cut here*/
+    ST.mark_name = NULL;
+    ST.mark_loc = locinput;
+    PUSH_STATE_GOTO(SKIP_next,next, locinput);
+   } else {
+    /* (*SKIP:NAME) : if there is a (*MARK:NAME) fail where it was,
+    otherwise do nothing.  Meaning we need to scan
+    */
+    regmatch_state *cur = mark_state;
+    SV *find = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+
+    while (cur) {
+     if ( sv_eq( cur->u.mark.mark_name,
+        find ) )
+     {
+      ST.mark_name = find;
+      PUSH_STATE_GOTO( SKIP_next, next, locinput);
+     }
+     cur = cur->u.mark.prev_mark;
+    }
+   }
+   /* Didn't find our (*MARK:NAME) so ignore this (*SKIP:NAME) */
+   break;
+
+  case SKIP_next_fail:
+   if (ST.mark_name) {
+    /* (*CUT:NAME) - Set up to search for the name as we
+    collapse the stack*/
+    popmark = ST.mark_name;
+   } else {
+    /* (*CUT) - No name, we cut here.*/
+    if (ST.mark_loc > startpoint)
+     reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
+    /* but we set sv_commit to latest mark_name if there
+    is one so they can test to see how things lead to this
+    cut */
+    if (mark_state)
+     sv_commit=mark_state->u.mark.mark_name;
+   }
+   no_final = 1;
+   sayNO;
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+#undef ST
+
+  case LNBREAK: /* \R */
+   if ((n=is_LNBREAK_safe(locinput, reginfo->strend, utf8_target))) {
+    locinput += n;
+   } else
+    sayNO;
+   break;
+
+  default:
+   PerlIO_printf(Perl_error_log, "%"UVxf" %d\n",
+      PTR2UV(scan), OP(scan));
+   Perl_croak(aTHX_ "regexp memory corruption");
+
+  /* this is a point to jump to in order to increment
+  * locinput by one character */
+  increment_locinput:
+   assert(!NEXTCHR_IS_EOS);
+   if (utf8_target) {
+    locinput += PL_utf8skip[nextchr];
+    /* locinput is allowed to go 1 char off the end, but not 2+ */
+    if (locinput > reginfo->strend)
+     sayNO;
+   }
+   else
+    locinput++;
+   break;
+
+  } /* end switch */
+
+  /* switch break jumps here */
+  scan = next; /* prepare to execute the next op and ... */
+  continue;    /* ... jump back to the top, reusing st */
+  /* NOTREACHED */
+
+ push_yes_state:
+  /* push a state that backtracks on success */
+  st->u.yes.prev_yes_state = yes_state;
+  yes_state = st;
+  /* FALLTHROUGH */
+ push_state:
+  /* push a new regex state, then continue at scan  */
+  {
+   regmatch_state *newst;
+
+   DEBUG_STACK_r({
+    regmatch_state *cur = st;
+    regmatch_state *curyes = yes_state;
+    int curd = depth;
+    regmatch_slab *slab = PL_regmatch_slab;
+    for (;curd > -1;cur--,curd--) {
+     if (cur < SLAB_FIRST(slab)) {
+      slab = slab->prev;
+      cur = SLAB_LAST(slab);
+     }
+     PerlIO_printf(Perl_error_log, "%*s#%-3d %-10s %s\n",
+      REPORT_CODE_OFF + 2 + depth * 2,"",
+      curd, PL_reg_name[cur->resume_state],
+      (curyes == cur) ? "yes" : ""
+     );
+     if (curyes == cur)
+      curyes = cur->u.yes.prev_yes_state;
+    }
+   } else
+    DEBUG_STATE_pp("push")
+   );
+   depth++;
+   st->locinput = locinput;
+   newst = st+1;
+   if (newst >  SLAB_LAST(PL_regmatch_slab))
+    newst = S_push_slab(aTHX);
+   PL_regmatch_state = newst;
+
+   locinput = pushinput;
+   st = newst;
+   continue;
+   /* NOTREACHED */
+  }
+ }
+
+ /*
+ * We get here only if there's trouble -- normally "case END" is
+ * the terminating point.
+ */
+ Perl_croak(aTHX_ "corrupted regexp pointers");
+ /* NOTREACHED */
+ sayNO;
+ NOT_REACHED; /* NOTREACHED */
+
+  yes:
+ if (yes_state) {
+  /* we have successfully completed a subexpression, but we must now
+  * pop to the state marked by yes_state and continue from there */
+  assert(st != yes_state);
+#ifdef DEBUGGING
+  while (st != yes_state) {
+   st--;
+   if (st < SLAB_FIRST(PL_regmatch_slab)) {
+    PL_regmatch_slab = PL_regmatch_slab->prev;
+    st = SLAB_LAST(PL_regmatch_slab);
+   }
+   DEBUG_STATE_r({
+    if (no_final) {
+     DEBUG_STATE_pp("pop (no final)");
+    } else {
+     DEBUG_STATE_pp("pop (yes)");
+    }
+   });
+   depth--;
+  }
+#else
+  while (yes_state < SLAB_FIRST(PL_regmatch_slab)
+   || yes_state > SLAB_LAST(PL_regmatch_slab))
+  {
+   /* not in this slab, pop slab */
+   depth -= (st - SLAB_FIRST(PL_regmatch_slab) + 1);
+   PL_regmatch_slab = PL_regmatch_slab->prev;
+   st = SLAB_LAST(PL_regmatch_slab);
+  }
+  depth -= (st - yes_state);
+#endif
+  st = yes_state;
+  yes_state = st->u.yes.prev_yes_state;
+  PL_regmatch_state = st;
+
+  if (no_final)
+   locinput= st->locinput;
+  state_num = st->resume_state + no_final;
+  goto reenter_switch;
+ }
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch successful!%s\n",
+      PL_colors[4], PL_colors[5]));
+
+ if (reginfo->info_aux_eval) {
+  /* each successfully executed (?{...}) block does the equivalent of
+  *   local $^R = do {...}
+  * When popping the save stack, all these locals would be undone;
+  * bypass this by setting the outermost saved $^R to the latest
+  * value */
+  /* I dont know if this is needed or works properly now.
+  * see code related to PL_replgv elsewhere in this file.
+  * Yves
+  */
+  if (oreplsv != GvSV(PL_replgv))
+   sv_setsv(oreplsv, GvSV(PL_replgv));
+ }
+ result = 1;
+ goto final_exit;
+
+  no:
+ DEBUG_EXECUTE_r(
+  PerlIO_printf(Perl_debug_log,
+   "%*s  %sfailed...%s\n",
+   REPORT_CODE_OFF+depth*2, "",
+   PL_colors[4], PL_colors[5])
+  );
+
+  no_silent:
+ if (no_final) {
+  if (yes_state) {
+   goto yes;
+  } else {
+   goto final_exit;
+  }
+ }
+ if (depth) {
+  /* there's a previous state to backtrack to */
+  st--;
+  if (st < SLAB_FIRST(PL_regmatch_slab)) {
+   PL_regmatch_slab = PL_regmatch_slab->prev;
+   st = SLAB_LAST(PL_regmatch_slab);
+  }
+  PL_regmatch_state = st;
+  locinput= st->locinput;
+
+  DEBUG_STATE_pp("pop");
+  depth--;
+  if (yes_state == st)
+   yes_state = st->u.yes.prev_yes_state;
+
+  state_num = st->resume_state + 1; /* failure = success + 1 */
+  goto reenter_switch;
+ }
+ result = 0;
+
+  final_exit:
+ if (rex->intflags & PREGf_VERBARG_SEEN) {
+  SV *sv_err = get_sv("REGERROR", 1);
+  SV *sv_mrk = get_sv("REGMARK", 1);
+  if (result) {
+   sv_commit = &PL_sv_no;
+   if (!sv_yes_mark)
+    sv_yes_mark = &PL_sv_yes;
+  } else {
+   if (!sv_commit)
+    sv_commit = &PL_sv_yes;
+   sv_yes_mark = &PL_sv_no;
+  }
+  assert(sv_err);
+  assert(sv_mrk);
+  sv_setsv(sv_err, sv_commit);
+  sv_setsv(sv_mrk, sv_yes_mark);
+ }
+
+
+ if (last_pushed_cv) {
+  dSP;
+  POP_MULTICALL;
+  PERL_UNUSED_VAR(SP);
+ }
+
+ assert(!result ||  locinput - reginfo->strbeg >= 0);
+ return result ?  locinput - reginfo->strbeg : -1;
+}
+
+/*
+ - regrepeat - repeatedly match something simple, report how many
+ *
+ * What 'simple' means is a node which can be the operand of a quantifier like
+ * '+', or {1,3}
+ *
+ * startposp - pointer a pointer to the start position.  This is updated
+ *             to point to the byte following the highest successful
+ *             match.
+ * p         - the regnode to be repeatedly matched against.
+ * reginfo   - struct holding match state, such as strend
+ * max       - maximum number of things to match.
+ * depth     - (for debugging) backtracking depth.
+ */
+STATIC I32
+S_regrepeat(pTHX_ regexp *prog, char **startposp, const regnode *p,
+   regmatch_info *const reginfo, I32 max, int depth)
+{
+ char *scan;     /* Pointer to current position in target string */
+ I32 c;
+ char *loceol = reginfo->strend;   /* local version */
+ I32 hardcount = 0;  /* How many matches so far */
+ bool utf8_target = reginfo->is_utf8_target;
+ unsigned int to_complement = 0;  /* Invert the result? */
+ UV utf8_flags;
+ _char_class_number classnum;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ PERL_ARGS_ASSERT_REGREPEAT;
+
+ scan = *startposp;
+ if (max == REG_INFTY)
+  max = I32_MAX;
+ else if (! utf8_target && loceol - scan > max)
+  loceol = scan + max;
+
+ /* Here, for the case of a non-UTF-8 target we have adjusted <loceol> down
+ * to the maximum of how far we should go in it (leaving it set to the real
+ * end, if the maximum permissible would take us beyond that).  This allows
+ * us to make the loop exit condition that we haven't gone past <loceol> to
+ * also mean that we haven't exceeded the max permissible count, saving a
+ * test each time through the loop.  But it assumes that the OP matches a
+ * single byte, which is true for most of the OPs below when applied to a
+ * non-UTF-8 target.  Those relatively few OPs that don't have this
+ * characteristic will have to compensate.
+ *
+ * There is no adjustment for UTF-8 targets, as the number of bytes per
+ * character varies.  OPs will have to test both that the count is less
+ * than the max permissible (using <hardcount> to keep track), and that we
+ * are still within the bounds of the string (using <loceol>.  A few OPs
+ * match a single byte no matter what the encoding.  They can omit the max
+ * test if, for the UTF-8 case, they do the adjustment that was skipped
+ * above.
+ *
+ * Thus, the code above sets things up for the common case; and exceptional
+ * cases need extra work; the common case is to make sure <scan> doesn't
+ * go past <loceol>, and for UTF-8 to also use <hardcount> to make sure the
+ * count doesn't exceed the maximum permissible */
+
+ switch (OP(p)) {
+ case REG_ANY:
+  if (utf8_target) {
+   while (scan < loceol && hardcount < max && *scan != '\n') {
+    scan += UTF8SKIP(scan);
+    hardcount++;
+   }
+  } else {
+   while (scan < loceol && *scan != '\n')
+    scan++;
+  }
+  break;
+ case SANY:
+  if (utf8_target) {
+   while (scan < loceol && hardcount < max) {
+    scan += UTF8SKIP(scan);
+    hardcount++;
+   }
+  }
+  else
+   scan = loceol;
+  break;
+ case EXACTL:
+  _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+  if (utf8_target && UTF8_IS_ABOVE_LATIN1(*scan)) {
+   _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(scan, loceol);
+  }
+  /* FALLTHROUGH */
+ case EXACT:
+  assert(STR_LEN(p) == reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1);
+
+  c = (U8)*STRING(p);
+
+  /* Can use a simple loop if the pattern char to match on is invariant
+  * under UTF-8, or both target and pattern aren't UTF-8.  Note that we
+  * can use UTF8_IS_INVARIANT() even if the pattern isn't UTF-8, as it's
+  * true iff it doesn't matter if the argument is in UTF-8 or not */
+  if (UTF8_IS_INVARIANT(c) || (! utf8_target && ! reginfo->is_utf8_pat)) {
+   if (utf8_target && loceol - scan > max) {
+    /* We didn't adjust <loceol> because is UTF-8, but ok to do so,
+    * since here, to match at all, 1 char == 1 byte */
+    loceol = scan + max;
+   }
+   while (scan < loceol && UCHARAT(scan) == c) {
+    scan++;
+   }
+  }
+  else if (reginfo->is_utf8_pat) {
+   if (utf8_target) {
+    STRLEN scan_char_len;
+
+    /* When both target and pattern are UTF-8, we have to do
+    * string EQ */
+    while (hardcount < max
+     && scan < loceol
+     && (scan_char_len = UTF8SKIP(scan)) <= STR_LEN(p)
+     && memEQ(scan, STRING(p), scan_char_len))
+    {
+     scan += scan_char_len;
+     hardcount++;
+    }
+   }
+   else if (! UTF8_IS_ABOVE_LATIN1(c)) {
+
+    /* Target isn't utf8; convert the character in the UTF-8
+    * pattern to non-UTF8, and do a simple loop */
+    c = TWO_BYTE_UTF8_TO_NATIVE(c, *(STRING(p) + 1));
+    while (scan < loceol && UCHARAT(scan) == c) {
+     scan++;
+    }
+   } /* else pattern char is above Latin1, can't possibly match the
+    non-UTF-8 target */
+  }
+  else {
+
+   /* Here, the string must be utf8; pattern isn't, and <c> is
+   * different in utf8 than not, so can't compare them directly.
+   * Outside the loop, find the two utf8 bytes that represent c, and
+   * then look for those in sequence in the utf8 string */
+   U8 high = UTF8_TWO_BYTE_HI(c);
+   U8 low = UTF8_TWO_BYTE_LO(c);
+
+   while (hardcount < max
+     && scan + 1 < loceol
+     && UCHARAT(scan) == high
+     && UCHARAT(scan + 1) == low)
+   {
+    scan += 2;
+    hardcount++;
+   }
+  }
+  break;
+
+ case EXACTFA_NO_TRIE:   /* This node only generated for non-utf8 patterns */
+  assert(! reginfo->is_utf8_pat);
+  /* FALLTHROUGH */
+ case EXACTFA:
+  utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+  goto do_exactf;
+
+ case EXACTFL:
+  _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+  utf8_flags = FOLDEQ_LOCALE;
+  goto do_exactf;
+
+ case EXACTF:   /* This node only generated for non-utf8 patterns */
+  assert(! reginfo->is_utf8_pat);
+  utf8_flags = 0;
+  goto do_exactf;
+
+ case EXACTFLU8:
+  if (! utf8_target) {
+   break;
+  }
+  utf8_flags =  FOLDEQ_LOCALE | FOLDEQ_S2_ALREADY_FOLDED
+         | FOLDEQ_S2_FOLDS_SANE;
+  goto do_exactf;
+
+ case EXACTFU_SS:
+ case EXACTFU:
+  utf8_flags = reginfo->is_utf8_pat ? FOLDEQ_S2_ALREADY_FOLDED : 0;
+
+ do_exactf: {
+  int c1, c2;
+  U8 c1_utf8[UTF8_MAXBYTES+1], c2_utf8[UTF8_MAXBYTES+1];
+
+  assert(STR_LEN(p) == reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1);
+
+  if (S_setup_EXACTISH_ST_c1_c2(aTHX_ p, &c1, c1_utf8, &c2, c2_utf8,
+          reginfo))
+  {
+   if (c1 == CHRTEST_VOID) {
+    /* Use full Unicode fold matching */
+    char *tmpeol = reginfo->strend;
+    STRLEN pat_len = reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1;
+    while (hardcount < max
+      && foldEQ_utf8_flags(scan, &tmpeol, 0, utf8_target,
+           STRING(p), NULL, pat_len,
+           reginfo->is_utf8_pat, utf8_flags))
+    {
+     scan = tmpeol;
+     tmpeol = reginfo->strend;
+     hardcount++;
+    }
+   }
+   else if (utf8_target) {
+    if (c1 == c2) {
+     while (scan < loceol
+      && hardcount < max
+      && memEQ(scan, c1_utf8, UTF8SKIP(scan)))
+     {
+      scan += UTF8SKIP(scan);
+      hardcount++;
+     }
+    }
+    else {
+     while (scan < loceol
+      && hardcount < max
+      && (memEQ(scan, c1_utf8, UTF8SKIP(scan))
+       || memEQ(scan, c2_utf8, UTF8SKIP(scan))))
+     {
+      scan += UTF8SKIP(scan);
+      hardcount++;
+     }
+    }
+   }
+   else if (c1 == c2) {
+    while (scan < loceol && UCHARAT(scan) == c1) {
+     scan++;
+    }
+   }
+   else {
+    while (scan < loceol &&
+     (UCHARAT(scan) == c1 || UCHARAT(scan) == c2))
+    {
+     scan++;
+    }
+   }
+  }
+  break;
+ }
+ case ANYOFL:
+  _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+  /* FALLTHROUGH */
+ case ANYOF:
+  if (utf8_target) {
+   while (hardcount < max
+    && scan < loceol
+    && reginclass(prog, p, (U8*)scan, (U8*) loceol, utf8_target))
+   {
+    scan += UTF8SKIP(scan);
+    hardcount++;
+   }
+  } else {
+   while (scan < loceol && REGINCLASS(prog, p, (U8*)scan))
+    scan++;
+  }
+  break;
+
+ /* The argument (FLAGS) to all the POSIX node types is the class number */
+
+ case NPOSIXL:
+  to_complement = 1;
+  /* FALLTHROUGH */
+
+ case POSIXL:
+  _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+  if (! utf8_target) {
+   while (scan < loceol && to_complement ^ cBOOL(isFOO_lc(FLAGS(p),
+                *scan)))
+   {
+    scan++;
+   }
+  } else {
+   while (hardcount < max && scan < loceol
+    && to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(p),
+                (U8 *) scan)))
+   {
+    scan += UTF8SKIP(scan);
+    hardcount++;
+   }
+  }
+  break;
+
+ case POSIXD:
+  if (utf8_target) {
+   goto utf8_posix;
+  }
+  /* FALLTHROUGH */
+
+ case POSIXA:
+  if (utf8_target && loceol - scan > max) {
+
+   /* We didn't adjust <loceol> at the beginning of this routine
+   * because is UTF-8, but it is actually ok to do so, since here, to
+   * match, 1 char == 1 byte. */
+   loceol = scan + max;
+  }
+  while (scan < loceol && _generic_isCC_A((U8) *scan, FLAGS(p))) {
+   scan++;
+  }
+  break;
+
+ case NPOSIXD:
+  if (utf8_target) {
+   to_complement = 1;
+   goto utf8_posix;
+  }
+  /* FALLTHROUGH */
+
+ case NPOSIXA:
+  if (! utf8_target) {
+   while (scan < loceol && ! _generic_isCC_A((U8) *scan, FLAGS(p))) {
+    scan++;
+   }
+  }
+  else {
+
+   /* The complement of something that matches only ASCII matches all
+   * non-ASCII, plus everything in ASCII that isn't in the class. */
+   while (hardcount < max && scan < loceol
+    && (! isASCII_utf8(scan)
+     || ! _generic_isCC_A((U8) *scan, FLAGS(p))))
+   {
+    scan += UTF8SKIP(scan);
+    hardcount++;
+   }
+  }
+  break;
+
+ case NPOSIXU:
+  to_complement = 1;
+  /* FALLTHROUGH */
+
+ case POSIXU:
+  if (! utf8_target) {
+   while (scan < loceol && to_complement
+        ^ cBOOL(_generic_isCC((U8) *scan, FLAGS(p))))
+   {
+    scan++;
+   }
+  }
+  else {
+  utf8_posix:
+   classnum = (_char_class_number) FLAGS(p);
+   if (classnum < _FIRST_NON_SWASH_CC) {
+
+    /* Here, a swash is needed for above-Latin1 code points.
+    * Process as many Latin1 code points using the built-in rules.
+    * Go to another loop to finish processing upon encountering
+    * the first Latin1 code point.  We could do that in this loop
+    * as well, but the other way saves having to test if the swash
+    * has been loaded every time through the loop: extra space to
+    * save a test. */
+    while (hardcount < max && scan < loceol) {
+     if (UTF8_IS_INVARIANT(*scan)) {
+      if (! (to_complement ^ cBOOL(_generic_isCC((U8) *scan,
+                classnum))))
+      {
+       break;
+      }
+      scan++;
+     }
+     else if (UTF8_IS_DOWNGRADEABLE_START(*scan)) {
+      if (! (to_complement
+       ^ cBOOL(_generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(*scan,
+                 *(scan + 1)),
+             classnum))))
+      {
+       break;
+      }
+      scan += 2;
+     }
+     else {
+      goto found_above_latin1;
+     }
+
+     hardcount++;
+    }
+   }
+   else {
+    /* For these character classes, the knowledge of how to handle
+    * every code point is compiled in to Perl via a macro.  This
+    * code is written for making the loops as tight as possible.
+    * It could be refactored to save space instead */
+    switch (classnum) {
+     case _CC_ENUM_SPACE:
+      while (hardcount < max
+       && scan < loceol
+       && (to_complement ^ cBOOL(isSPACE_utf8(scan))))
+      {
+       scan += UTF8SKIP(scan);
+       hardcount++;
+      }
+      break;
+     case _CC_ENUM_BLANK:
+      while (hardcount < max
+       && scan < loceol
+       && (to_complement ^ cBOOL(isBLANK_utf8(scan))))
+      {
+       scan += UTF8SKIP(scan);
+       hardcount++;
+      }
+      break;
+     case _CC_ENUM_XDIGIT:
+      while (hardcount < max
+       && scan < loceol
+       && (to_complement ^ cBOOL(isXDIGIT_utf8(scan))))
+      {
+       scan += UTF8SKIP(scan);
+       hardcount++;
+      }
+      break;
+     case _CC_ENUM_VERTSPACE:
+      while (hardcount < max
+       && scan < loceol
+       && (to_complement ^ cBOOL(isVERTWS_utf8(scan))))
+      {
+       scan += UTF8SKIP(scan);
+       hardcount++;
+      }
+      break;
+     case _CC_ENUM_CNTRL:
+      while (hardcount < max
+       && scan < loceol
+       && (to_complement ^ cBOOL(isCNTRL_utf8(scan))))
+      {
+       scan += UTF8SKIP(scan);
+       hardcount++;
+      }
+      break;
+     default:
+      Perl_croak(aTHX_ "panic: regrepeat() node %d='%s' has an unexpected character class '%d'", OP(p), PL_reg_name[OP(p)], classnum);
+    }
+   }
+  }
+  break;
+
+ found_above_latin1:   /* Continuation of POSIXU and NPOSIXU */
+
+  /* Load the swash if not already present */
+  if (! PL_utf8_swash_ptrs[classnum]) {
+   U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+   PL_utf8_swash_ptrs[classnum] = _core_swash_init(
+          "utf8",
+          "",
+          &PL_sv_undef, 1, 0,
+          PL_XPosix_ptrs[classnum], &flags);
+  }
+
+  while (hardcount < max && scan < loceol
+   && to_complement ^ cBOOL(_generic_utf8(
+         classnum,
+         scan,
+         swash_fetch(PL_utf8_swash_ptrs[classnum],
+            (U8 *) scan,
+            TRUE))))
+  {
+   scan += UTF8SKIP(scan);
+   hardcount++;
+  }
+  break;
+
+ case LNBREAK:
+  if (utf8_target) {
+   while (hardcount < max && scan < loceol &&
+     (c=is_LNBREAK_utf8_safe(scan, loceol))) {
+    scan += c;
+    hardcount++;
+   }
+  } else {
+   /* LNBREAK can match one or two latin chars, which is ok, but we
+   * have to use hardcount in this situation, and throw away the
+   * adjustment to <loceol> done before the switch statement */
+   loceol = reginfo->strend;
+   while (scan < loceol && (c=is_LNBREAK_latin1_safe(scan, loceol))) {
+    scan+=c;
+    hardcount++;
+   }
+  }
+  break;
+
+ case BOUNDL:
+ case NBOUNDL:
+  _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+  /* FALLTHROUGH */
+ case BOUND:
+ case BOUNDA:
+ case BOUNDU:
+ case EOS:
+ case GPOS:
+ case KEEPS:
+ case NBOUND:
+ case NBOUNDA:
+ case NBOUNDU:
+ case OPFAIL:
+ case SBOL:
+ case SEOL:
+  /* These are all 0 width, so match right here or not at all. */
+  break;
+
+ default:
+  Perl_croak(aTHX_ "panic: regrepeat() called with unrecognized node type %d='%s'", OP(p), PL_reg_name[OP(p)]);
+  /* NOTREACHED */
+  NOT_REACHED; /* NOTREACHED */
+
+ }
+
+ if (hardcount)
+  c = hardcount;
+ else
+  c = scan - *startposp;
+ *startposp = scan;
+
+ DEBUG_r({
+  GET_RE_DEBUG_FLAGS_DECL;
+  DEBUG_EXECUTE_r({
+   SV * const prop = sv_newmortal();
+   regprop(prog, prop, p, reginfo, NULL);
+   PerlIO_printf(Perl_debug_log,
+      "%*s  %s can match %"IVdf" times out of %"IVdf"...\n",
+      REPORT_CODE_OFF + depth*2, "", SvPVX_const(prop),(IV)c,(IV)max);
+  });
+ });
+
+ return(c);
+}
+
+
+#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
+/*
+- regclass_swash - prepare the utf8 swash.  Wraps the shared core version to
+create a copy so that changes the caller makes won't change the shared one.
+If <altsvp> is non-null, will return NULL in it, for back-compat.
+ */
+SV *
+Perl_regclass_swash(pTHX_ const regexp *prog, const regnode* node, bool doinit, SV** listsvp, SV **altsvp)
+{
+ PERL_ARGS_ASSERT_REGCLASS_SWASH;
+
+ if (altsvp) {
+  *altsvp = NULL;
+ }
+
+ return newSVsv(_get_regclass_nonbitmap_data(prog, node, doinit, listsvp, NULL, NULL));
+}
+
+#endif /* !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION) */
+
+/*
+ - reginclass - determine if a character falls into a character class
+
+  n is the ANYOF-type regnode
+  p is the target string
+  p_end points to one byte beyond the end of the target string
+  utf8_target tells whether p is in UTF-8.
+
+  Returns true if matched; false otherwise.
+
+  Note that this can be a synthetic start class, a combination of various
+  nodes, so things you think might be mutually exclusive, such as locale,
+  aren't.  It can match both locale and non-locale
+
+ */
+
+STATIC bool
+S_reginclass(pTHX_ regexp * const prog, const regnode * const n, const U8* const p, const U8* const p_end, const bool utf8_target)
+{
+ dVAR;
+ const char flags = ANYOF_FLAGS(n);
+ bool match = FALSE;
+ UV c = *p;
+
+ PERL_ARGS_ASSERT_REGINCLASS;
+
+ /* If c is not already the code point, get it.  Note that
+ * UTF8_IS_INVARIANT() works even if not in UTF-8 */
+ if (! UTF8_IS_INVARIANT(c) && utf8_target) {
+  STRLEN c_len = 0;
+  c = utf8n_to_uvchr(p, p_end - p, &c_len,
+    (UTF8_ALLOW_DEFAULT & UTF8_ALLOW_ANYUV)
+    | UTF8_ALLOW_FFFF | UTF8_CHECK_ONLY);
+    /* see [perl #37836] for UTF8_ALLOW_ANYUV; [perl #38293] for
+    * UTF8_ALLOW_FFFF */
+  if (c_len == (STRLEN)-1)
+   Perl_croak(aTHX_ "Malformed UTF-8 character (fatal)");
+  if (c > 255 && OP(n) == ANYOFL && ! is_ANYOF_SYNTHETIC(n)) {
+   _CHECK_AND_OUTPUT_WIDE_LOCALE_CP_MSG(c);
+  }
+ }
+
+ /* If this character is potentially in the bitmap, check it */
+ if (c < NUM_ANYOF_CODE_POINTS) {
+  if (ANYOF_BITMAP_TEST(n, c))
+   match = TRUE;
+  else if ((flags & ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII)
+    && ! utf8_target
+    && ! isASCII(c))
+  {
+   match = TRUE;
+  }
+  else if (flags & ANYOF_LOCALE_FLAGS) {
+   if ((flags & ANYOF_LOC_FOLD)
+    && c < 256
+    && ANYOF_BITMAP_TEST(n, PL_fold_locale[c]))
+   {
+    match = TRUE;
+   }
+   else if (ANYOF_POSIXL_TEST_ANY_SET(n)
+     && c < 256
+   ) {
+
+    /* The data structure is arranged so bits 0, 2, 4, ... are set
+    * if the class includes the Posix character class given by
+    * bit/2; and 1, 3, 5, ... are set if the class includes the
+    * complemented Posix class given by int(bit/2).  So we loop
+    * through the bits, each time changing whether we complement
+    * the result or not.  Suppose for the sake of illustration
+    * that bits 0-3 mean respectively, \w, \W, \s, \S.  If bit 0
+    * is set, it means there is a match for this ANYOF node if the
+    * character is in the class given by the expression (0 / 2 = 0
+    * = \w).  If it is in that class, isFOO_lc() will return 1,
+    * and since 'to_complement' is 0, the result will stay TRUE,
+    * and we exit the loop.  Suppose instead that bit 0 is 0, but
+    * bit 1 is 1.  That means there is a match if the character
+    * matches \W.  We won't bother to call isFOO_lc() on bit 0,
+    * but will on bit 1.  On the second iteration 'to_complement'
+    * will be 1, so the exclusive or will reverse things, so we
+    * are testing for \W.  On the third iteration, 'to_complement'
+    * will be 0, and we would be testing for \s; the fourth
+    * iteration would test for \S, etc.
+    *
+    * Note that this code assumes that all the classes are closed
+    * under folding.  For example, if a character matches \w, then
+    * its fold does too; and vice versa.  This should be true for
+    * any well-behaved locale for all the currently defined Posix
+    * classes, except for :lower: and :upper:, which are handled
+    * by the pseudo-class :cased: which matches if either of the
+    * other two does.  To get rid of this assumption, an outer
+    * loop could be used below to iterate over both the source
+    * character, and its fold (if different) */
+
+    int count = 0;
+    int to_complement = 0;
+
+    while (count < ANYOF_MAX) {
+     if (ANYOF_POSIXL_TEST(n, count)
+      && to_complement ^ cBOOL(isFOO_lc(count/2, (U8) c)))
+     {
+      match = TRUE;
+      break;
+     }
+     count++;
+     to_complement ^= 1;
+    }
+   }
+  }
+ }
+
+
+ /* If the bitmap didn't (or couldn't) match, and something outside the
+ * bitmap could match, try that. */
+ if (!match) {
+  if (c >= NUM_ANYOF_CODE_POINTS
+   && (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP))
+  {
+   match = TRUE; /* Everything above the bitmap matches */
+  }
+  else if ((flags & ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES)
+    || (utf8_target && (flags & ANYOF_HAS_UTF8_NONBITMAP_MATCHES))
+    || ((flags & ANYOF_LOC_FOLD)
+     && IN_UTF8_CTYPE_LOCALE
+     && ARG(n) != ANYOF_ONLY_HAS_BITMAP))
+  {
+   SV* only_utf8_locale = NULL;
+   SV * const sw = _get_regclass_nonbitmap_data(prog, n, TRUE, 0,
+             &only_utf8_locale, NULL);
+   if (sw) {
+    U8 utf8_buffer[2];
+    U8 * utf8_p;
+    if (utf8_target) {
+     utf8_p = (U8 *) p;
+    } else { /* Convert to utf8 */
+     utf8_p = utf8_buffer;
+     append_utf8_from_native_byte(*p, &utf8_p);
+     utf8_p = utf8_buffer;
+    }
+
+    if (swash_fetch(sw, utf8_p, TRUE)) {
+     match = TRUE;
+    }
+   }
+   if (! match && only_utf8_locale && IN_UTF8_CTYPE_LOCALE) {
+    match = _invlist_contains_cp(only_utf8_locale, c);
+   }
+  }
+
+  if (UNICODE_IS_SUPER(c)
+   && (flags & ANYOF_WARN_SUPER)
+   && ckWARN_d(WARN_NON_UNICODE))
+  {
+   Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
+    "Matched non-Unicode code point 0x%04"UVXf" against Unicode property; may not be portable", c);
+  }
+ }
+
+#if ANYOF_INVERT != 1
+ /* Depending on compiler optimization cBOOL takes time, so if don't have to
+ * use it, don't */
+#   error ANYOF_INVERT needs to be set to 1, or guarded with cBOOL below,
+#endif
+
+ /* The xor complements the return if to invert: 1^1 = 0, 1^0 = 1 */
+ return (flags & ANYOF_INVERT) ^ match;
+}
+
+STATIC U8 *
+S_reghop3(U8 *s, SSize_t off, const U8* lim)
+{
+ /* return the position 'off' UTF-8 characters away from 's', forward if
+ * 'off' >= 0, backwards if negative.  But don't go outside of position
+ * 'lim', which better be < s  if off < 0 */
+
+ PERL_ARGS_ASSERT_REGHOP3;
+
+ if (off >= 0) {
+  while (off-- && s < lim) {
+   /* XXX could check well-formedness here */
+   s += UTF8SKIP(s);
+  }
+ }
+ else {
+  while (off++ && s > lim) {
+   s--;
+   if (UTF8_IS_CONTINUED(*s)) {
+    while (s > lim && UTF8_IS_CONTINUATION(*s))
+     s--;
+   }
+   /* XXX could check well-formedness here */
+  }
+ }
+ return s;
+}
+
+STATIC U8 *
+S_reghop4(U8 *s, SSize_t off, const U8* llim, const U8* rlim)
+{
+ PERL_ARGS_ASSERT_REGHOP4;
+
+ if (off >= 0) {
+  while (off-- && s < rlim) {
+   /* XXX could check well-formedness here */
+   s += UTF8SKIP(s);
+  }
+ }
+ else {
+  while (off++ && s > llim) {
+   s--;
+   if (UTF8_IS_CONTINUED(*s)) {
+    while (s > llim && UTF8_IS_CONTINUATION(*s))
+     s--;
+   }
+   /* XXX could check well-formedness here */
+  }
+ }
+ return s;
+}
+
+/* like reghop3, but returns NULL on overrun, rather than returning last
+ * char pos */
+
+STATIC U8 *
+S_reghopmaybe3(U8* s, SSize_t off, const U8* lim)
+{
+ PERL_ARGS_ASSERT_REGHOPMAYBE3;
+
+ if (off >= 0) {
+  while (off-- && s < lim) {
+   /* XXX could check well-formedness here */
+   s += UTF8SKIP(s);
+  }
+  if (off >= 0)
+   return NULL;
+ }
+ else {
+  while (off++ && s > lim) {
+   s--;
+   if (UTF8_IS_CONTINUED(*s)) {
+    while (s > lim && UTF8_IS_CONTINUATION(*s))
+     s--;
+   }
+   /* XXX could check well-formedness here */
+  }
+  if (off <= 0)
+   return NULL;
+ }
+ return s;
+}
+
+
+/* when executing a regex that may have (?{}), extra stuff needs setting
+   up that will be visible to the called code, even before the current
+   match has finished. In particular:
+
+   * $_ is localised to the SV currently being matched;
+   * pos($_) is created if necessary, ready to be updated on each call-out
+ to code;
+   * a fake PMOP is created that can be set to PL_curpm (normally PL_curpm
+ isn't set until the current pattern is successfully finished), so that
+ $1 etc of the match-so-far can be seen;
+   * save the old values of subbeg etc of the current regex, and  set then
+ to the current string (again, this is normally only done at the end
+ of execution)
+*/
+
+static void
+S_setup_eval_state(pTHX_ regmatch_info *const reginfo)
+{
+ MAGIC *mg;
+ regexp *const rex = ReANY(reginfo->prog);
+ regmatch_info_aux_eval *eval_state = reginfo->info_aux_eval;
+
+ eval_state->rex = rex;
+
+ if (reginfo->sv) {
+  /* Make $_ available to executed code. */
+  if (reginfo->sv != DEFSV) {
+   SAVE_DEFSV;
+   DEFSV_set(reginfo->sv);
+  }
+
+  if (!(mg = mg_find_mglob(reginfo->sv))) {
+   /* prepare for quick setting of pos */
+   mg = sv_magicext_mglob(reginfo->sv);
+   mg->mg_len = -1;
+  }
+  eval_state->pos_magic = mg;
+  eval_state->pos       = mg->mg_len;
+  eval_state->pos_flags = mg->mg_flags;
+ }
+ else
+  eval_state->pos_magic = NULL;
+
+ if (!PL_reg_curpm) {
+  /* PL_reg_curpm is a fake PMOP that we can attach the current
+  * regex to and point PL_curpm at, so that $1 et al are visible
+  * within a /(?{})/. It's just allocated once per interpreter the
+  * first time its needed */
+  Newxz(PL_reg_curpm, 1, PMOP);
+#ifdef USE_ITHREADS
+  {
+   SV* const repointer = &PL_sv_undef;
+   /* this regexp is also owned by the new PL_reg_curpm, which
+   will try to free it.  */
+   av_push(PL_regex_padav, repointer);
+   PL_reg_curpm->op_pmoffset = av_tindex(PL_regex_padav);
+   PL_regex_pad = AvARRAY(PL_regex_padav);
+  }
+#endif
+ }
+ SET_reg_curpm(reginfo->prog);
+ eval_state->curpm = PL_curpm;
+ PL_curpm = PL_reg_curpm;
+ if (RXp_MATCH_COPIED(rex)) {
+  /*  Here is a serious problem: we cannot rewrite subbeg,
+   since it may be needed if this match fails.  Thus
+   $` inside (?{}) could fail... */
+  eval_state->subbeg     = rex->subbeg;
+  eval_state->sublen     = rex->sublen;
+  eval_state->suboffset  = rex->suboffset;
+  eval_state->subcoffset = rex->subcoffset;
+#ifdef PERL_ANY_COW
+  eval_state->saved_copy = rex->saved_copy;
+#endif
+  RXp_MATCH_COPIED_off(rex);
+ }
+ else
+  eval_state->subbeg = NULL;
+ rex->subbeg = (char *)reginfo->strbeg;
+ rex->suboffset = 0;
+ rex->subcoffset = 0;
+ rex->sublen = reginfo->strend - reginfo->strbeg;
+}
+
+
+/* destructor to clear up regmatch_info_aux and regmatch_info_aux_eval */
+
+static void
+S_cleanup_regmatch_info_aux(pTHX_ void *arg)
+{
+ regmatch_info_aux *aux = (regmatch_info_aux *) arg;
+ regmatch_info_aux_eval *eval_state =  aux->info_aux_eval;
+ regmatch_slab *s;
+
+ Safefree(aux->poscache);
+
+ if (eval_state) {
+
+  /* undo the effects of S_setup_eval_state() */
+
+  if (eval_state->subbeg) {
+   regexp * const rex = eval_state->rex;
+   rex->subbeg     = eval_state->subbeg;
+   rex->sublen     = eval_state->sublen;
+   rex->suboffset  = eval_state->suboffset;
+   rex->subcoffset = eval_state->subcoffset;
+#ifdef PERL_ANY_COW
+   rex->saved_copy = eval_state->saved_copy;
+#endif
+   RXp_MATCH_COPIED_on(rex);
+  }
+  if (eval_state->pos_magic)
+  {
+   eval_state->pos_magic->mg_len = eval_state->pos;
+   eval_state->pos_magic->mg_flags =
+    (eval_state->pos_magic->mg_flags & ~MGf_BYTES)
+   | (eval_state->pos_flags & MGf_BYTES);
+  }
+
+  PL_curpm = eval_state->curpm;
+ }
+
+ PL_regmatch_state = aux->old_regmatch_state;
+ PL_regmatch_slab  = aux->old_regmatch_slab;
+
+ /* free all slabs above current one - this must be the last action
+ * of this function, as aux and eval_state are allocated within
+ * slabs and may be freed here */
+
+ s = PL_regmatch_slab->next;
+ if (s) {
+  PL_regmatch_slab->next = NULL;
+  while (s) {
+   regmatch_slab * const osl = s;
+   s = s->next;
+   Safefree(osl);
+  }
+ }
+}
+
+
+STATIC void
+S_to_utf8_substr(pTHX_ regexp *prog)
+{
+ /* Converts substr fields in prog from bytes to UTF-8, calling fbm_compile
+ * on the converted value */
+
+ int i = 1;
+
+ PERL_ARGS_ASSERT_TO_UTF8_SUBSTR;
+
+ do {
+  if (prog->substrs->data[i].substr
+   && !prog->substrs->data[i].utf8_substr) {
+   SV* const sv = newSVsv(prog->substrs->data[i].substr);
+   prog->substrs->data[i].utf8_substr = sv;
+   sv_utf8_upgrade(sv);
+   if (SvVALID(prog->substrs->data[i].substr)) {
+    if (SvTAIL(prog->substrs->data[i].substr)) {
+     /* Trim the trailing \n that fbm_compile added last
+     time.  */
+     SvCUR_set(sv, SvCUR(sv) - 1);
+     /* Whilst this makes the SV technically "invalid" (as its
+     buffer is no longer followed by "\0") when fbm_compile()
+     adds the "\n" back, a "\0" is restored.  */
+     fbm_compile(sv, FBMcf_TAIL);
+    } else
+     fbm_compile(sv, 0);
+   }
+   if (prog->substrs->data[i].substr == prog->check_substr)
+    prog->check_utf8 = sv;
+  }
+ } while (i--);
+}
+
+STATIC bool
+S_to_byte_substr(pTHX_ regexp *prog)
+{
+ /* Converts substr fields in prog from UTF-8 to bytes, calling fbm_compile
+ * on the converted value; returns FALSE if can't be converted. */
+
+ int i = 1;
+
+ PERL_ARGS_ASSERT_TO_BYTE_SUBSTR;
+
+ do {
+  if (prog->substrs->data[i].utf8_substr
+   && !prog->substrs->data[i].substr) {
+   SV* sv = newSVsv(prog->substrs->data[i].utf8_substr);
+   if (! sv_utf8_downgrade(sv, TRUE)) {
+    return FALSE;
+   }
+   if (SvVALID(prog->substrs->data[i].utf8_substr)) {
+    if (SvTAIL(prog->substrs->data[i].utf8_substr)) {
+     /* Trim the trailing \n that fbm_compile added last
+      time.  */
+     SvCUR_set(sv, SvCUR(sv) - 1);
+     fbm_compile(sv, FBMcf_TAIL);
+    } else
+     fbm_compile(sv, 0);
+   }
+   prog->substrs->data[i].substr = sv;
+   if (prog->substrs->data[i].utf8_substr == prog->check_utf8)
+    prog->check_substr = sv;
+  }
+ } while (i--);
+
+ return TRUE;
+}
+
+/*
+ * ex: set ts=8 sts=4 sw=4 et:
+ */
diff --git a/src/5023001/dquote_static.c b/src/5023001/dquote_static.c
new file mode 100644 (file)
index 0000000..95c2a56
--- /dev/null
@@ -0,0 +1,348 @@
+/*    dquote_static.c
+ *
+ * This file contains static functions that are related to
+ * parsing double-quotish expressions, but are used in more than
+ * one file.
+ *
+ * It is currently #included by regcomp.c and toke.c.
+*/
+
+#define PERL_IN_DQUOTE_STATIC_C
+#include "embed.h"
+
+/*
+ - regcurly - a little FSA that accepts {\d+,?\d*}
+ Pulled from regcomp.c.
+ */
+PERL_STATIC_INLINE I32
+S_regcurly(const char *s)
+{
+ PERL_ARGS_ASSERT_REGCURLY;
+
+ if (*s++ != '{')
+  return FALSE;
+ if (!isDIGIT(*s))
+  return FALSE;
+ while (isDIGIT(*s))
+  s++;
+ if (*s == ',') {
+  s++;
+  while (isDIGIT(*s))
+   s++;
+ }
+
+ return *s == '}';
+}
+
+/* XXX Add documentation after final interface and behavior is decided */
+/* May want to show context for error, so would pass Perl_bslash_c(pTHX_ const char* current, const char* start, const bool output_warning)
+ U8 source = *current;
+*/
+
+STATIC char
+S_grok_bslash_c(pTHX_ const char source, const bool output_warning)
+{
+
+ U8 result;
+
+ if (! isPRINT_A(source)) {
+  Perl_croak(aTHX_ "%s",
+      "Character following \"\\c\" must be printable ASCII");
+ }
+ else if (source == '{') {
+  const char control = toCTRL('{');
+  if (isPRINT_A(control)) {
+   /* diag_listed_as: Use "%s" instead of "%s" */
+   Perl_croak(aTHX_ "Use \"%c\" instead of \"\\c{\"", control);
+  }
+  else {
+   Perl_croak(aTHX_ "Sequence \"\\c{\" invalid");
+  }
+ }
+
+ result = toCTRL(source);
+ if (output_warning && isPRINT_A(result)) {
+  U8 clearer[3];
+  U8 i = 0;
+  if (! isWORDCHAR(result)) {
+   clearer[i++] = '\\';
+  }
+  clearer[i++] = result;
+  clearer[i++] = '\0';
+
+  Perl_ck_warner(aTHX_ packWARN(WARN_SYNTAX),
+      "\"\\c%c\" is more clearly written simply as \"%s\"",
+      source,
+      clearer);
+ }
+
+ return result;
+}
+
+STATIC bool
+S_grok_bslash_o(pTHX_ char **s, UV *uv, const char** error_msg,
+     const bool output_warning, const bool strict,
+     const bool silence_non_portable,
+     const bool UTF)
+{
+
+/*  Documentation to be supplied when interface nailed down finally
+ *  This returns FALSE if there is an error which the caller need not recover
+ *  from; otherwise TRUE.  In either case the caller should look at *len [???].
+ *  It guarantees that the returned codepoint, *uv, when expressed as
+ *  utf8 bytes, would fit within the skipped "\o{...}" bytes.
+ *  On input:
+ * s   is the address of a pointer to a NULL terminated string that begins
+ *     with 'o', and the previous character was a backslash.  At exit, *s
+ *     will be advanced to the byte just after those absorbed by this
+ *     function.  Hence the caller can continue parsing from there.  In
+ *     the case of an error, this routine has generally positioned *s to
+ *     point just to the right of the first bad spot, so that a message
+ *     that has a "<--" to mark the spot will be correctly positioned.
+ * uv  points to a UV that will hold the output value, valid only if the
+ *     return from the function is TRUE
+ *      error_msg is a pointer that will be set to an internal buffer giving an
+ *     error message upon failure (the return is FALSE).  Untouched if
+ *     function succeeds
+ * output_warning says whether to output any warning messages, or suppress
+ *     them
+ * strict is true if this should fail instead of warn if there are
+ *     non-octal digits within the braces
+ *      silence_non_portable is true if to suppress warnings about the code
+ *          point returned being too large to fit on all platforms.
+ * UTF is true iff the string *s is encoded in UTF-8.
+ */
+ char* e;
+ STRLEN numbers_len;
+ I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
+    | PERL_SCAN_DISALLOW_PREFIX
+    /* XXX Until the message is improved in grok_oct, handle errors
+    * ourselves */
+    | PERL_SCAN_SILENT_ILLDIGIT;
+
+#ifdef DEBUGGING
+ char *start = *s - 1;
+ assert(*start == '\\');
+#endif
+
+ PERL_ARGS_ASSERT_GROK_BSLASH_O;
+
+
+ assert(**s == 'o');
+ (*s)++;
+
+ if (**s != '{') {
+  *error_msg = "Missing braces on \\o{}";
+  return FALSE;
+ }
+
+ e = strchr(*s, '}');
+ if (!e) {
+  (*s)++;  /* Move past the '{' */
+  while (isOCTAL(**s)) { /* Position beyond the legal digits */
+   (*s)++;
+  }
+  *error_msg = "Missing right brace on \\o{";
+  return FALSE;
+ }
+
+ (*s)++;    /* Point to expected first digit (could be first byte of utf8
+    sequence if not a digit) */
+ numbers_len = e - *s;
+ if (numbers_len == 0) {
+  (*s)++;    /* Move past the } */
+  *error_msg = "Number with no digits";
+  return FALSE;
+ }
+
+ if (silence_non_portable) {
+  flags |= PERL_SCAN_SILENT_NON_PORTABLE;
+ }
+
+ *uv = grok_oct(*s, &numbers_len, &flags, NULL);
+ /* Note that if has non-octal, will ignore everything starting with that up
+ * to the '}' */
+
+ if (numbers_len != (STRLEN) (e - *s)) {
+  if (strict) {
+   *s += numbers_len;
+   *s += (UTF) ? UTF8SKIP(*s) : (STRLEN) 1;
+   *error_msg = "Non-octal character";
+   return FALSE;
+  }
+  else if (output_warning) {
+   Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
+   /* diag_listed_as: Non-octal character '%c'.  Resolved as "%s" */
+      "Non-octal character '%c'.  Resolved as \"\\o{%.*s}\"",
+      *(*s + numbers_len),
+      (int) numbers_len,
+      *s);
+  }
+ }
+
+ /* Return past the '}' */
+ *s = e + 1;
+
+ /* guarantee replacing "\o{...}" with utf8 bytes fits within
+ * existing space */
+ assert(OFFUNISKIP(*uv) < *s - start);
+
+ return TRUE;
+}
+
+PERL_STATIC_INLINE bool
+S_grok_bslash_x(pTHX_ char **s, UV *uv, const char** error_msg,
+     const bool output_warning, const bool strict,
+     const bool silence_non_portable,
+     const bool UTF)
+{
+
+/*  Documentation to be supplied when interface nailed down finally
+ *  This returns FALSE if there is an error which the caller need not recover
+ *  from; otherwise TRUE.
+ *  It guarantees that the returned codepoint, *uv, when expressed as
+ *  utf8 bytes, would fit within the skipped "\x{...}" bytes.
+ *
+ *  On input:
+ * s   is the address of a pointer to a NULL terminated string that begins
+ *     with 'x', and the previous character was a backslash.  At exit, *s
+ *     will be advanced to the byte just after those absorbed by this
+ *     function.  Hence the caller can continue parsing from there.  In
+ *     the case of an error, this routine has generally positioned *s to
+ *     point just to the right of the first bad spot, so that a message
+ *     that has a "<--" to mark the spot will be correctly positioned.
+ * uv  points to a UV that will hold the output value, valid only if the
+ *     return from the function is TRUE
+ *      error_msg is a pointer that will be set to an internal buffer giving an
+ *     error message upon failure (the return is FALSE).  Untouched if
+ *     function succeeds
+ * output_warning says whether to output any warning messages, or suppress
+ *     them
+ * strict is true if anything out of the ordinary should cause this to
+ *     fail instead of warn or be silent.  For example, it requires
+ *     exactly 2 digits following the \x (when there are no braces).
+ *     3 digits could be a mistake, so is forbidden in this mode.
+ *      silence_non_portable is true if to suppress warnings about the code
+ *          point returned being too large to fit on all platforms.
+ * UTF is true iff the string *s is encoded in UTF-8.
+ */
+ char* e;
+ STRLEN numbers_len;
+ I32 flags = PERL_SCAN_DISALLOW_PREFIX;
+#ifdef DEBUGGING
+ char *start = *s - 1;
+ assert(*start == '\\');
+#endif
+
+ PERL_ARGS_ASSERT_GROK_BSLASH_X;
+
+ assert(**s == 'x');
+ (*s)++;
+
+ if (strict || ! output_warning) {
+  flags |= PERL_SCAN_SILENT_ILLDIGIT;
+ }
+
+ if (**s != '{') {
+  STRLEN len = (strict) ? 3 : 2;
+
+  *uv = grok_hex(*s, &len, &flags, NULL);
+  *s += len;
+  if (strict && len != 2) {
+   if (len < 2) {
+    *s += (UTF) ? UTF8SKIP(*s) : 1;
+    *error_msg = "Non-hex character";
+   }
+   else {
+    *error_msg = "Use \\x{...} for more than two hex characters";
+   }
+   return FALSE;
+  }
+  goto ok;
+ }
+
+ e = strchr(*s, '}');
+ if (!e) {
+  (*s)++;  /* Move past the '{' */
+  while (isXDIGIT(**s)) { /* Position beyond the legal digits */
+   (*s)++;
+  }
+  /* XXX The corresponding message above for \o is just '\\o{'; other
+  * messages for other constructs include the '}', so are inconsistent.
+  */
+  *error_msg = "Missing right brace on \\x{}";
+  return FALSE;
+ }
+
+ (*s)++;    /* Point to expected first digit (could be first byte of utf8
+    sequence if not a digit) */
+ numbers_len = e - *s;
+ if (numbers_len == 0) {
+  if (strict) {
+   (*s)++;    /* Move past the } */
+   *error_msg = "Number with no digits";
+   return FALSE;
+  }
+  *s = e + 1;
+  *uv = 0;
+  goto ok;
+ }
+
+ flags |= PERL_SCAN_ALLOW_UNDERSCORES;
+ if (silence_non_portable) {
+  flags |= PERL_SCAN_SILENT_NON_PORTABLE;
+ }
+
+ *uv = grok_hex(*s, &numbers_len, &flags, NULL);
+ /* Note that if has non-hex, will ignore everything starting with that up
+ * to the '}' */
+
+ if (strict && numbers_len != (STRLEN) (e - *s)) {
+  *s += numbers_len;
+  *s += (UTF) ? UTF8SKIP(*s) : 1;
+  *error_msg = "Non-hex character";
+  return FALSE;
+ }
+
+ /* Return past the '}' */
+ *s = e + 1;
+
+  ok:
+ /* guarantee replacing "\x{...}" with utf8 bytes fits within
+ * existing space */
+ assert(OFFUNISKIP(*uv) < *s - start);
+ return TRUE;
+}
+
+STATIC char*
+S_form_short_octal_warning(pTHX_
+      const char * const s, /* Points to first non-octal */
+      const STRLEN len      /* Length of octals string, so
+             (s-len) points to first
+             octal */
+) {
+ /* Return a character string consisting of a warning message for when a
+ * string constant in octal is weird, like "\078".  */
+
+ const char * sans_leading_zeros = s - len;
+
+ PERL_ARGS_ASSERT_FORM_SHORT_OCTAL_WARNING;
+
+ assert(*s == '8' || *s == '9');
+
+ /* Remove the leading zeros, retaining one zero so won't be zero length */
+ while (*sans_leading_zeros == '0') sans_leading_zeros++;
+ if (sans_leading_zeros == s) {
+  sans_leading_zeros--;
+ }
+
+ return Perl_form(aTHX_
+     "'%.*s' resolved to '\\o{%.*s}%c'",
+     (int) (len + 2), s - len - 1,
+     (int) (s - sans_leading_zeros), sans_leading_zeros,
+     *s);
+}
+
+/*
+ * ex: set ts=8 sts=4 sw=4 et:
+ */
diff --git a/src/5023001/inline_invlist.c b/src/5023001/inline_invlist.c
new file mode 100644 (file)
index 0000000..450e1be
--- /dev/null
@@ -0,0 +1,87 @@
+/*    inline_invlist.c
+ *
+ *    Copyright (C) 2012 by Larry Wall and others
+ *
+ *    You may distribute under the terms of either the GNU General Public
+ *    License or the Artistic License, as specified in the README file.
+ */
+
+#if defined(PERL_IN_UTF8_C) || defined(PERL_IN_REGCOMP_C) || defined(PERL_IN_REGEXEC_C)
+
+/* An element is in an inversion list iff its index is even numbered: 0, 2, 4,
+ * etc */
+#define ELEMENT_RANGE_MATCHES_INVLIST(i) (! ((i) & 1))
+#define PREV_RANGE_MATCHES_INVLIST(i) (! ELEMENT_RANGE_MATCHES_INVLIST(i))
+
+/* This converts to/from our UVs to what the SV code is expecting: bytes. */
+#define TO_INTERNAL_SIZE(x) ((x) * sizeof(UV))
+#define FROM_INTERNAL_SIZE(x) ((x)/ sizeof(UV))
+
+PERL_STATIC_INLINE bool*
+S_get_invlist_offset_addr(SV* invlist)
+{
+ /* Return the address of the field that says whether the inversion list is
+ * offset (it contains 1) or not (contains 0) */
+ PERL_ARGS_ASSERT_GET_INVLIST_OFFSET_ADDR;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ return &(((XINVLIST*) SvANY(invlist))->is_offset);
+}
+
+PERL_STATIC_INLINE UV
+S__invlist_len(SV* const invlist)
+{
+ /* Returns the current number of elements stored in the inversion list's
+ * array */
+
+ PERL_ARGS_ASSERT__INVLIST_LEN;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ return (SvCUR(invlist) == 0)
+  ? 0
+  : FROM_INTERNAL_SIZE(SvCUR(invlist)) - *get_invlist_offset_addr(invlist);
+}
+
+PERL_STATIC_INLINE bool
+S__invlist_contains_cp(SV* const invlist, const UV cp)
+{
+ /* Does <invlist> contain code point <cp> as part of the set? */
+
+ IV index = _invlist_search(invlist, cp);
+
+ PERL_ARGS_ASSERT__INVLIST_CONTAINS_CP;
+
+ return index >= 0 && ELEMENT_RANGE_MATCHES_INVLIST(index);
+}
+
+PERL_STATIC_INLINE UV*
+S_invlist_array(SV* const invlist)
+{
+ /* Returns the pointer to the inversion list's array.  Every time the
+ * length changes, this needs to be called in case malloc or realloc moved
+ * it */
+
+ PERL_ARGS_ASSERT_INVLIST_ARRAY;
+
+ /* Must not be empty.  If these fail, you probably didn't check for <len>
+ * being non-zero before trying to get the array */
+ assert(_invlist_len(invlist));
+
+ /* The very first element always contains zero, The array begins either
+ * there, or if the inversion list is offset, at the element after it.
+ * The offset header field determines which; it contains 0 or 1 to indicate
+ * how much additionally to add */
+ assert(0 == *(SvPVX(invlist)));
+ return ((UV *) SvPVX(invlist) + *get_invlist_offset_addr(invlist));
+}
+
+#   if defined(PERL_IN_UTF8_C) || defined(PERL_IN_REGEXEC_C)
+
+/* These symbols are only needed later in regcomp.c */
+#       undef TO_INTERNAL_SIZE
+#       undef FROM_INTERNAL_SIZE
+#   endif
+
+#endif
diff --git a/src/5023001/orig/dquote_static.c b/src/5023001/orig/dquote_static.c
new file mode 100644 (file)
index 0000000..885ba06
--- /dev/null
@@ -0,0 +1,348 @@
+/*    dquote_static.c
+ *
+ * This file contains static functions that are related to
+ * parsing double-quotish expressions, but are used in more than
+ * one file.
+ *
+ * It is currently #included by regcomp.c and toke.c.
+*/
+
+#define PERL_IN_DQUOTE_STATIC_C
+#include "embed.h"
+
+/*
+ - regcurly - a little FSA that accepts {\d+,?\d*}
+    Pulled from regcomp.c.
+ */
+PERL_STATIC_INLINE I32
+S_regcurly(const char *s)
+{
+    PERL_ARGS_ASSERT_REGCURLY;
+
+    if (*s++ != '{')
+       return FALSE;
+    if (!isDIGIT(*s))
+       return FALSE;
+    while (isDIGIT(*s))
+       s++;
+    if (*s == ',') {
+       s++;
+       while (isDIGIT(*s))
+           s++;
+    }
+
+    return *s == '}';
+}
+
+/* XXX Add documentation after final interface and behavior is decided */
+/* May want to show context for error, so would pass Perl_bslash_c(pTHX_ const char* current, const char* start, const bool output_warning)
+    U8 source = *current;
+*/
+
+STATIC char
+S_grok_bslash_c(pTHX_ const char source, const bool output_warning)
+{
+
+    U8 result;
+
+    if (! isPRINT_A(source)) {
+        Perl_croak(aTHX_ "%s",
+                        "Character following \"\\c\" must be printable ASCII");
+    }
+    else if (source == '{') {
+        const char control = toCTRL('{');
+        if (isPRINT_A(control)) {
+            /* diag_listed_as: Use "%s" instead of "%s" */
+            Perl_croak(aTHX_ "Use \"%c\" instead of \"\\c{\"", control);
+        }
+        else {
+            Perl_croak(aTHX_ "Sequence \"\\c{\" invalid");
+        }
+    }
+
+    result = toCTRL(source);
+    if (output_warning && isPRINT_A(result)) {
+        U8 clearer[3];
+        U8 i = 0;
+        if (! isWORDCHAR(result)) {
+            clearer[i++] = '\\';
+        }
+        clearer[i++] = result;
+        clearer[i++] = '\0';
+
+        Perl_ck_warner(aTHX_ packWARN(WARN_SYNTAX),
+                        "\"\\c%c\" is more clearly written simply as \"%s\"",
+                        source,
+                        clearer);
+    }
+
+    return result;
+}
+
+STATIC bool
+S_grok_bslash_o(pTHX_ char **s, UV *uv, const char** error_msg,
+                      const bool output_warning, const bool strict,
+                      const bool silence_non_portable,
+                      const bool UTF)
+{
+
+/*  Documentation to be supplied when interface nailed down finally
+ *  This returns FALSE if there is an error which the caller need not recover
+ *  from; otherwise TRUE.  In either case the caller should look at *len [???].
+ *  It guarantees that the returned codepoint, *uv, when expressed as
+ *  utf8 bytes, would fit within the skipped "\o{...}" bytes.
+ *  On input:
+ *     s   is the address of a pointer to a NULL terminated string that begins
+ *         with 'o', and the previous character was a backslash.  At exit, *s
+ *         will be advanced to the byte just after those absorbed by this
+ *         function.  Hence the caller can continue parsing from there.  In
+ *         the case of an error, this routine has generally positioned *s to
+ *         point just to the right of the first bad spot, so that a message
+ *         that has a "<--" to mark the spot will be correctly positioned.
+ *     uv  points to a UV that will hold the output value, valid only if the
+ *         return from the function is TRUE
+ *      error_msg is a pointer that will be set to an internal buffer giving an
+ *         error message upon failure (the return is FALSE).  Untouched if
+ *         function succeeds
+ *     output_warning says whether to output any warning messages, or suppress
+ *         them
+ *     strict is true if this should fail instead of warn if there are
+ *         non-octal digits within the braces
+ *      silence_non_portable is true if to suppress warnings about the code
+ *          point returned being too large to fit on all platforms.
+ *     UTF is true iff the string *s is encoded in UTF-8.
+ */
+    char* e;
+    STRLEN numbers_len;
+    I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
+               | PERL_SCAN_DISALLOW_PREFIX
+               /* XXX Until the message is improved in grok_oct, handle errors
+                * ourselves */
+               | PERL_SCAN_SILENT_ILLDIGIT;
+
+#ifdef DEBUGGING
+    char *start = *s - 1;
+    assert(*start == '\\');
+#endif
+
+    PERL_ARGS_ASSERT_GROK_BSLASH_O;
+
+
+    assert(**s == 'o');
+    (*s)++;
+
+    if (**s != '{') {
+       *error_msg = "Missing braces on \\o{}";
+       return FALSE;
+    }
+
+    e = strchr(*s, '}');
+    if (!e) {
+        (*s)++;  /* Move past the '{' */
+        while (isOCTAL(**s)) { /* Position beyond the legal digits */
+            (*s)++;
+        }
+        *error_msg = "Missing right brace on \\o{";
+       return FALSE;
+    }
+
+    (*s)++;    /* Point to expected first digit (could be first byte of utf8
+                  sequence if not a digit) */
+    numbers_len = e - *s;
+    if (numbers_len == 0) {
+        (*s)++;    /* Move past the } */
+       *error_msg = "Number with no digits";
+       return FALSE;
+    }
+
+    if (silence_non_portable) {
+        flags |= PERL_SCAN_SILENT_NON_PORTABLE;
+    }
+
+    *uv = grok_oct(*s, &numbers_len, &flags, NULL);
+    /* Note that if has non-octal, will ignore everything starting with that up
+     * to the '}' */
+
+    if (numbers_len != (STRLEN) (e - *s)) {
+        if (strict) {
+            *s += numbers_len;
+            *s += (UTF) ? UTF8SKIP(*s) : (STRLEN) 1;
+            *error_msg = "Non-octal character";
+            return FALSE;
+        }
+        else if (output_warning) {
+            Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
+            /* diag_listed_as: Non-octal character '%c'.  Resolved as "%s" */
+                        "Non-octal character '%c'.  Resolved as \"\\o{%.*s}\"",
+                        *(*s + numbers_len),
+                        (int) numbers_len,
+                        *s);
+        }
+    }
+
+    /* Return past the '}' */
+    *s = e + 1;
+
+    /* guarantee replacing "\o{...}" with utf8 bytes fits within
+     * existing space */
+    assert(OFFUNISKIP(*uv) < *s - start);
+
+    return TRUE;
+}
+
+PERL_STATIC_INLINE bool
+S_grok_bslash_x(pTHX_ char **s, UV *uv, const char** error_msg,
+                      const bool output_warning, const bool strict,
+                      const bool silence_non_portable,
+                      const bool UTF)
+{
+
+/*  Documentation to be supplied when interface nailed down finally
+ *  This returns FALSE if there is an error which the caller need not recover
+ *  from; otherwise TRUE.
+ *  It guarantees that the returned codepoint, *uv, when expressed as
+ *  utf8 bytes, would fit within the skipped "\x{...}" bytes.
+ *
+ *  On input:
+ *     s   is the address of a pointer to a NULL terminated string that begins
+ *         with 'x', and the previous character was a backslash.  At exit, *s
+ *         will be advanced to the byte just after those absorbed by this
+ *         function.  Hence the caller can continue parsing from there.  In
+ *         the case of an error, this routine has generally positioned *s to
+ *         point just to the right of the first bad spot, so that a message
+ *         that has a "<--" to mark the spot will be correctly positioned.
+ *     uv  points to a UV that will hold the output value, valid only if the
+ *         return from the function is TRUE
+ *      error_msg is a pointer that will be set to an internal buffer giving an
+ *         error message upon failure (the return is FALSE).  Untouched if
+ *         function succeeds
+ *     output_warning says whether to output any warning messages, or suppress
+ *         them
+ *     strict is true if anything out of the ordinary should cause this to
+ *         fail instead of warn or be silent.  For example, it requires
+ *         exactly 2 digits following the \x (when there are no braces).
+ *         3 digits could be a mistake, so is forbidden in this mode.
+ *      silence_non_portable is true if to suppress warnings about the code
+ *          point returned being too large to fit on all platforms.
+ *     UTF is true iff the string *s is encoded in UTF-8.
+ */
+    char* e;
+    STRLEN numbers_len;
+    I32 flags = PERL_SCAN_DISALLOW_PREFIX;
+#ifdef DEBUGGING
+    char *start = *s - 1;
+    assert(*start == '\\');
+#endif
+
+    PERL_ARGS_ASSERT_GROK_BSLASH_X;
+
+    assert(**s == 'x');
+    (*s)++;
+
+    if (strict || ! output_warning) {
+        flags |= PERL_SCAN_SILENT_ILLDIGIT;
+    }
+
+    if (**s != '{') {
+        STRLEN len = (strict) ? 3 : 2;
+
+       *uv = grok_hex(*s, &len, &flags, NULL);
+       *s += len;
+        if (strict && len != 2) {
+            if (len < 2) {
+                *s += (UTF) ? UTF8SKIP(*s) : 1;
+                *error_msg = "Non-hex character";
+            }
+            else {
+                *error_msg = "Use \\x{...} for more than two hex characters";
+            }
+            return FALSE;
+        }
+       goto ok;
+    }
+
+    e = strchr(*s, '}');
+    if (!e) {
+        (*s)++;  /* Move past the '{' */
+        while (isXDIGIT(**s)) { /* Position beyond the legal digits */
+            (*s)++;
+        }
+        /* XXX The corresponding message above for \o is just '\\o{'; other
+         * messages for other constructs include the '}', so are inconsistent.
+         */
+       *error_msg = "Missing right brace on \\x{}";
+       return FALSE;
+    }
+
+    (*s)++;    /* Point to expected first digit (could be first byte of utf8
+                  sequence if not a digit) */
+    numbers_len = e - *s;
+    if (numbers_len == 0) {
+        if (strict) {
+            (*s)++;    /* Move past the } */
+            *error_msg = "Number with no digits";
+            return FALSE;
+        }
+        *s = e + 1;
+        *uv = 0;
+        goto ok;
+    }
+
+    flags |= PERL_SCAN_ALLOW_UNDERSCORES;
+    if (silence_non_portable) {
+        flags |= PERL_SCAN_SILENT_NON_PORTABLE;
+    }
+
+    *uv = grok_hex(*s, &numbers_len, &flags, NULL);
+    /* Note that if has non-hex, will ignore everything starting with that up
+     * to the '}' */
+
+    if (strict && numbers_len != (STRLEN) (e - *s)) {
+        *s += numbers_len;
+        *s += (UTF) ? UTF8SKIP(*s) : 1;
+        *error_msg = "Non-hex character";
+        return FALSE;
+    }
+
+    /* Return past the '}' */
+    *s = e + 1;
+
+  ok:
+    /* guarantee replacing "\x{...}" with utf8 bytes fits within
+     * existing space */
+    assert(OFFUNISKIP(*uv) < *s - start);
+    return TRUE;
+}
+
+STATIC char*
+S_form_short_octal_warning(pTHX_
+                           const char * const s, /* Points to first non-octal */
+                           const STRLEN len      /* Length of octals string, so
+                                                    (s-len) points to first
+                                                    octal */
+) {
+    /* Return a character string consisting of a warning message for when a
+     * string constant in octal is weird, like "\078".  */
+
+    const char * sans_leading_zeros = s - len;
+
+    PERL_ARGS_ASSERT_FORM_SHORT_OCTAL_WARNING;
+
+    assert(*s == '8' || *s == '9');
+
+    /* Remove the leading zeros, retaining one zero so won't be zero length */
+    while (*sans_leading_zeros == '0') sans_leading_zeros++;
+    if (sans_leading_zeros == s) {
+        sans_leading_zeros--;
+    }
+
+    return Perl_form(aTHX_
+                     "'%.*s' resolved to '\\o{%.*s}%c'",
+                     (int) (len + 2), s - len - 1,
+                     (int) (s - sans_leading_zeros), sans_leading_zeros,
+                     *s);
+}
+
+/*
+ * ex: set ts=8 sts=4 sw=4 et:
+ */
diff --git a/src/5023001/orig/inline_invlist.c b/src/5023001/orig/inline_invlist.c
new file mode 100644 (file)
index 0000000..1589f95
--- /dev/null
@@ -0,0 +1,87 @@
+/*    inline_invlist.c
+ *
+ *    Copyright (C) 2012 by Larry Wall and others
+ *
+ *    You may distribute under the terms of either the GNU General Public
+ *    License or the Artistic License, as specified in the README file.
+ */
+
+#if defined(PERL_IN_UTF8_C) || defined(PERL_IN_REGCOMP_C) || defined(PERL_IN_REGEXEC_C)
+
+/* An element is in an inversion list iff its index is even numbered: 0, 2, 4,
+ * etc */
+#define ELEMENT_RANGE_MATCHES_INVLIST(i) (! ((i) & 1))
+#define PREV_RANGE_MATCHES_INVLIST(i) (! ELEMENT_RANGE_MATCHES_INVLIST(i))
+
+/* This converts to/from our UVs to what the SV code is expecting: bytes. */
+#define TO_INTERNAL_SIZE(x) ((x) * sizeof(UV))
+#define FROM_INTERNAL_SIZE(x) ((x)/ sizeof(UV))
+
+PERL_STATIC_INLINE bool*
+S_get_invlist_offset_addr(SV* invlist)
+{
+    /* Return the address of the field that says whether the inversion list is
+     * offset (it contains 1) or not (contains 0) */
+    PERL_ARGS_ASSERT_GET_INVLIST_OFFSET_ADDR;
+
+    assert(SvTYPE(invlist) == SVt_INVLIST);
+
+    return &(((XINVLIST*) SvANY(invlist))->is_offset);
+}
+
+PERL_STATIC_INLINE UV
+S__invlist_len(SV* const invlist)
+{
+    /* Returns the current number of elements stored in the inversion list's
+     * array */
+
+    PERL_ARGS_ASSERT__INVLIST_LEN;
+
+    assert(SvTYPE(invlist) == SVt_INVLIST);
+
+    return (SvCUR(invlist) == 0)
+           ? 0
+           : FROM_INTERNAL_SIZE(SvCUR(invlist)) - *get_invlist_offset_addr(invlist);
+}
+
+PERL_STATIC_INLINE bool
+S__invlist_contains_cp(SV* const invlist, const UV cp)
+{
+    /* Does <invlist> contain code point <cp> as part of the set? */
+
+    IV index = _invlist_search(invlist, cp);
+
+    PERL_ARGS_ASSERT__INVLIST_CONTAINS_CP;
+
+    return index >= 0 && ELEMENT_RANGE_MATCHES_INVLIST(index);
+}
+
+PERL_STATIC_INLINE UV*
+S_invlist_array(SV* const invlist)
+{
+    /* Returns the pointer to the inversion list's array.  Every time the
+     * length changes, this needs to be called in case malloc or realloc moved
+     * it */
+
+    PERL_ARGS_ASSERT_INVLIST_ARRAY;
+
+    /* Must not be empty.  If these fail, you probably didn't check for <len>
+     * being non-zero before trying to get the array */
+    assert(_invlist_len(invlist));
+
+    /* The very first element always contains zero, The array begins either
+     * there, or if the inversion list is offset, at the element after it.
+     * The offset header field determines which; it contains 0 or 1 to indicate
+     * how much additionally to add */
+    assert(0 == *(SvPVX(invlist)));
+    return ((UV *) SvPVX(invlist) + *get_invlist_offset_addr(invlist));
+}
+
+#   if defined(PERL_IN_UTF8_C) || defined(PERL_IN_REGEXEC_C)
+
+/* These symbols are only needed later in regcomp.c */
+#       undef TO_INTERNAL_SIZE
+#       undef FROM_INTERNAL_SIZE
+#   endif
+
+#endif
diff --git a/src/5023001/orig/regcomp.c b/src/5023001/orig/regcomp.c
new file mode 100644 (file)
index 0000000..3e6ac62
--- /dev/null
@@ -0,0 +1,18202 @@
+/*    regcomp.c
+ */
+
+/*
+ * 'A fair jaw-cracker dwarf-language must be.'            --Samwise Gamgee
+ *
+ *     [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
+ */
+
+/* This file contains functions for compiling a regular expression.  See
+ * also regexec.c which funnily enough, contains functions for executing
+ * a regular expression.
+ *
+ * This file is also copied at build time to ext/re/re_comp.c, where
+ * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
+ * This causes the main functions to be compiled under new names and with
+ * debugging support added, which makes "use re 'debug'" work.
+ */
+
+/* NOTE: this is derived from Henry Spencer's regexp code, and should not
+ * confused with the original package (see point 3 below).  Thanks, Henry!
+ */
+
+/* Additional note: this code is very heavily munged from Henry's version
+ * in places.  In some spots I've traded clarity for efficiency, so don't
+ * blame Henry for some of the lack of readability.
+ */
+
+/* The names of the functions have been changed from regcomp and
+ * regexec to pregcomp and pregexec in order to avoid conflicts
+ * with the POSIX routines of the same names.
+*/
+
+#ifdef PERL_EXT_RE_BUILD
+#include "re_top.h"
+#endif
+
+/*
+ * pregcomp and pregexec -- regsub and regerror are not used in perl
+ *
+ *     Copyright (c) 1986 by University of Toronto.
+ *     Written by Henry Spencer.  Not derived from licensed software.
+ *
+ *     Permission is granted to anyone to use this software for any
+ *     purpose on any computer system, and to redistribute it freely,
+ *     subject to the following restrictions:
+ *
+ *     1. The author is not responsible for the consequences of use of
+ *             this software, no matter how awful, even if they arise
+ *             from defects in it.
+ *
+ *     2. The origin of this software must not be misrepresented, either
+ *             by explicit claim or by omission.
+ *
+ *     3. Altered versions must be plainly marked as such, and must not
+ *             be misrepresented as being the original software.
+ *
+ *
+ ****    Alterations to Henry's code are...
+ ****
+ ****    Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ ****    2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ ****    by Larry Wall and others
+ ****
+ ****    You may distribute under the terms of either the GNU General Public
+ ****    License or the Artistic License, as specified in the README file.
+
+ *
+ * Beware that some of this code is subtly aware of the way operator
+ * precedence is structured in regular expressions.  Serious changes in
+ * regular-expression syntax might require a total rethink.
+ */
+#include "EXTERN.h"
+#define PERL_IN_REGCOMP_C
+#include "perl.h"
+
+#ifndef PERL_IN_XSUB_RE
+#  include "INTERN.h"
+#endif
+
+#define REG_COMP_C
+#ifdef PERL_IN_XSUB_RE
+#  include "re_comp.h"
+EXTERN_C const struct regexp_engine my_reg_engine;
+#else
+#  include "regcomp.h"
+#endif
+
+#include "dquote_static.c"
+#include "inline_invlist.c"
+#include "unicode_constants.h"
+
+#define HAS_NONLATIN1_FOLD_CLOSURE(i) \
+ _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
+#define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(i) \
+ _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
+#define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
+#define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
+
+#ifndef STATIC
+#define        STATIC  static
+#endif
+
+#ifndef MIN
+#define MIN(a,b) ((a) < (b) ? (a) : (b))
+#endif
+
+/* this is a chain of data about sub patterns we are processing that
+   need to be handled separately/specially in study_chunk. Its so
+   we can simulate recursion without losing state.  */
+struct scan_frame;
+typedef struct scan_frame {
+    regnode *last_regnode;      /* last node to process in this frame */
+    regnode *next_regnode;      /* next node to process when last is reached */
+    U32 prev_recursed_depth;
+    I32 stopparen;              /* what stopparen do we use */
+    U32 is_top_frame;           /* what flags do we use? */
+
+    struct scan_frame *this_prev_frame; /* this previous frame */
+    struct scan_frame *prev_frame;      /* previous frame */
+    struct scan_frame *next_frame;      /* next frame */
+} scan_frame;
+
+/* Certain characters are output as a sequence with the first being a
+ * backslash. */
+#define isBACKSLASHED_PUNCT(c)                                              \
+                    ((c) == '-' || (c) == ']' || (c) == '\\' || (c) == '^')
+
+
+struct RExC_state_t {
+    U32                flags;                  /* RXf_* are we folding, multilining? */
+    U32                pm_flags;               /* PMf_* stuff from the calling PMOP */
+    char       *precomp;               /* uncompiled string. */
+    REGEXP     *rx_sv;                 /* The SV that is the regexp. */
+    regexp     *rx;                    /* perl core regexp structure */
+    regexp_internal    *rxi;           /* internal data for regexp object
+                                           pprivate field */
+    char       *start;                 /* Start of input for compile */
+    char       *end;                   /* End of input for compile */
+    char       *parse;                 /* Input-scan pointer. */
+    SSize_t    whilem_seen;            /* number of WHILEM in this expr */
+    regnode    *emit_start;            /* Start of emitted-code area */
+    regnode    *emit_bound;            /* First regnode outside of the
+                                           allocated space */
+    regnode    *emit;                  /* Code-emit pointer; if = &emit_dummy,
+                                           implies compiling, so don't emit */
+    regnode_ssc        emit_dummy;             /* placeholder for emit to point to;
+                                           large enough for the largest
+                                           non-EXACTish node, so can use it as
+                                           scratch in pass1 */
+    I32                naughty;                /* How bad is this pattern? */
+    I32                sawback;                /* Did we see \1, ...? */
+    U32                seen;
+    SSize_t    size;                   /* Code size. */
+    I32                npar;            /* Capture buffer count, (OPEN) plus
+                                           one. ("par" 0 is the whole
+                                           pattern)*/
+    I32                nestroot;               /* root parens we are in - used by
+                                           accept */
+    I32                extralen;
+    I32                seen_zerolen;
+    regnode    **open_parens;          /* pointers to open parens */
+    regnode    **close_parens;         /* pointers to close parens */
+    regnode    *opend;                 /* END node in program */
+    I32                utf8;           /* whether the pattern is utf8 or not */
+    I32                orig_utf8;      /* whether the pattern was originally in utf8 */
+                               /* XXX use this for future optimisation of case
+                                * where pattern must be upgraded to utf8. */
+    I32                uni_semantics;  /* If a d charset modifier should use unicode
+                                  rules, even if the pattern is not in
+                                  utf8 */
+    HV         *paren_names;           /* Paren names */
+
+    regnode    **recurse;              /* Recurse regops */
+    I32                recurse_count;          /* Number of recurse regops */
+    U8          *study_chunk_recursed;  /* bitmap of which subs we have moved
+                                           through */
+    U32         study_chunk_recursed_bytes;  /* bytes in bitmap */
+    I32                in_lookbehind;
+    I32                contains_locale;
+    I32                contains_i;
+    I32                override_recoding;
+#ifdef EBCDIC
+    I32                recode_x_to_native;
+#endif
+    I32                in_multi_char_class;
+    struct reg_code_block *code_blocks;        /* positions of literal (?{})
+                                           within pattern */
+    int                num_code_blocks;        /* size of code_blocks[] */
+    int                code_index;             /* next code_blocks[] slot */
+    SSize_t     maxlen;                        /* mininum possible number of chars in string to match */
+    scan_frame *frame_head;
+    scan_frame *frame_last;
+    U32         frame_count;
+    U32         strict;
+#ifdef ADD_TO_REGEXEC
+    char       *starttry;              /* -Dr: where regtry was called. */
+#define RExC_starttry  (pRExC_state->starttry)
+#endif
+    SV         *runtime_code_qr;       /* qr with the runtime code blocks */
+#ifdef DEBUGGING
+    const char  *lastparse;
+    I32         lastnum;
+    AV          *paren_name_list;       /* idx -> name */
+    U32         study_chunk_recursed_count;
+    SV          *mysv1;
+    SV          *mysv2;
+#define RExC_lastparse (pRExC_state->lastparse)
+#define RExC_lastnum   (pRExC_state->lastnum)
+#define RExC_paren_name_list    (pRExC_state->paren_name_list)
+#define RExC_study_chunk_recursed_count    (pRExC_state->study_chunk_recursed_count)
+#define RExC_mysv      (pRExC_state->mysv1)
+#define RExC_mysv1     (pRExC_state->mysv1)
+#define RExC_mysv2     (pRExC_state->mysv2)
+
+#endif
+};
+
+#define RExC_flags     (pRExC_state->flags)
+#define RExC_pm_flags  (pRExC_state->pm_flags)
+#define RExC_precomp   (pRExC_state->precomp)
+#define RExC_rx_sv     (pRExC_state->rx_sv)
+#define RExC_rx                (pRExC_state->rx)
+#define RExC_rxi       (pRExC_state->rxi)
+#define RExC_start     (pRExC_state->start)
+#define RExC_end       (pRExC_state->end)
+#define RExC_parse     (pRExC_state->parse)
+#define RExC_whilem_seen       (pRExC_state->whilem_seen)
+#ifdef RE_TRACK_PATTERN_OFFSETS
+#define RExC_offsets   (pRExC_state->rxi->u.offsets) /* I am not like the
+                                                         others */
+#endif
+#define RExC_emit      (pRExC_state->emit)
+#define RExC_emit_dummy        (pRExC_state->emit_dummy)
+#define RExC_emit_start        (pRExC_state->emit_start)
+#define RExC_emit_bound        (pRExC_state->emit_bound)
+#define RExC_sawback   (pRExC_state->sawback)
+#define RExC_seen      (pRExC_state->seen)
+#define RExC_size      (pRExC_state->size)
+#define RExC_maxlen        (pRExC_state->maxlen)
+#define RExC_npar      (pRExC_state->npar)
+#define RExC_nestroot   (pRExC_state->nestroot)
+#define RExC_extralen  (pRExC_state->extralen)
+#define RExC_seen_zerolen      (pRExC_state->seen_zerolen)
+#define RExC_utf8      (pRExC_state->utf8)
+#define RExC_uni_semantics     (pRExC_state->uni_semantics)
+#define RExC_orig_utf8 (pRExC_state->orig_utf8)
+#define RExC_open_parens       (pRExC_state->open_parens)
+#define RExC_close_parens      (pRExC_state->close_parens)
+#define RExC_opend     (pRExC_state->opend)
+#define RExC_paren_names       (pRExC_state->paren_names)
+#define RExC_recurse   (pRExC_state->recurse)
+#define RExC_recurse_count     (pRExC_state->recurse_count)
+#define RExC_study_chunk_recursed        (pRExC_state->study_chunk_recursed)
+#define RExC_study_chunk_recursed_bytes  \
+                                   (pRExC_state->study_chunk_recursed_bytes)
+#define RExC_in_lookbehind     (pRExC_state->in_lookbehind)
+#define RExC_contains_locale   (pRExC_state->contains_locale)
+#define RExC_contains_i (pRExC_state->contains_i)
+#define RExC_override_recoding (pRExC_state->override_recoding)
+#ifdef EBCDIC
+#   define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)
+#endif
+#define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
+#define RExC_frame_head (pRExC_state->frame_head)
+#define RExC_frame_last (pRExC_state->frame_last)
+#define RExC_frame_count (pRExC_state->frame_count)
+#define RExC_strict (pRExC_state->strict)
+
+/* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
+ * a flag to disable back-off on the fixed/floating substrings - if it's
+ * a high complexity pattern we assume the benefit of avoiding a full match
+ * is worth the cost of checking for the substrings even if they rarely help.
+ */
+#define RExC_naughty   (pRExC_state->naughty)
+#define TOO_NAUGHTY (10)
+#define MARK_NAUGHTY(add) \
+    if (RExC_naughty < TOO_NAUGHTY) \
+        RExC_naughty += (add)
+#define MARK_NAUGHTY_EXP(exp, add) \
+    if (RExC_naughty < TOO_NAUGHTY) \
+        RExC_naughty += RExC_naughty / (exp) + (add)
+
+#define        ISMULT1(c)      ((c) == '*' || (c) == '+' || (c) == '?')
+#define        ISMULT2(s)      ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
+       ((*s) == '{' && regcurly(s)))
+
+/*
+ * Flags to be passed up and down.
+ */
+#define        WORST           0       /* Worst case. */
+#define        HASWIDTH        0x01    /* Known to match non-null strings. */
+
+/* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
+ * character.  (There needs to be a case: in the switch statement in regexec.c
+ * for any node marked SIMPLE.)  Note that this is not the same thing as
+ * REGNODE_SIMPLE */
+#define        SIMPLE          0x02
+#define        SPSTART         0x04    /* Starts with * or + */
+#define POSTPONED      0x08    /* (?1),(?&name), (??{...}) or similar */
+#define TRYAGAIN       0x10    /* Weeded out a declaration. */
+#define RESTART_UTF8    0x20    /* Restart, need to calcuate sizes as UTF-8 */
+
+#define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
+
+/* whether trie related optimizations are enabled */
+#if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
+#define TRIE_STUDY_OPT
+#define FULL_TRIE_STUDY
+#define TRIE_STCLASS
+#endif
+
+
+
+#define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
+#define PBITVAL(paren) (1 << ((paren) & 7))
+#define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
+#define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
+#define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
+
+#define REQUIRE_UTF8   STMT_START {                                       \
+                                     if (!UTF) {                           \
+                                         *flagp = RESTART_UTF8;            \
+                                         return NULL;                      \
+                                     }                                     \
+                        } STMT_END
+
+/* This converts the named class defined in regcomp.h to its equivalent class
+ * number defined in handy.h. */
+#define namedclass_to_classnum(class)  ((int) ((class) / 2))
+#define classnum_to_namedclass(classnum)  ((classnum) * 2)
+
+#define _invlist_union_complement_2nd(a, b, output) \
+                        _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
+#define _invlist_intersection_complement_2nd(a, b, output) \
+                 _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
+
+/* About scan_data_t.
+
+  During optimisation we recurse through the regexp program performing
+  various inplace (keyhole style) optimisations. In addition study_chunk
+  and scan_commit populate this data structure with information about
+  what strings MUST appear in the pattern. We look for the longest
+  string that must appear at a fixed location, and we look for the
+  longest string that may appear at a floating location. So for instance
+  in the pattern:
+
+    /FOO[xX]A.*B[xX]BAR/
+
+  Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
+  strings (because they follow a .* construct). study_chunk will identify
+  both FOO and BAR as being the longest fixed and floating strings respectively.
+
+  The strings can be composites, for instance
+
+     /(f)(o)(o)/
+
+  will result in a composite fixed substring 'foo'.
+
+  For each string some basic information is maintained:
+
+  - offset or min_offset
+    This is the position the string must appear at, or not before.
+    It also implicitly (when combined with minlenp) tells us how many
+    characters must match before the string we are searching for.
+    Likewise when combined with minlenp and the length of the string it
+    tells us how many characters must appear after the string we have
+    found.
+
+  - max_offset
+    Only used for floating strings. This is the rightmost point that
+    the string can appear at. If set to SSize_t_MAX it indicates that the
+    string can occur infinitely far to the right.
+
+  - minlenp
+    A pointer to the minimum number of characters of the pattern that the
+    string was found inside. This is important as in the case of positive
+    lookahead or positive lookbehind we can have multiple patterns
+    involved. Consider
+
+    /(?=FOO).*F/
+
+    The minimum length of the pattern overall is 3, the minimum length
+    of the lookahead part is 3, but the minimum length of the part that
+    will actually match is 1. So 'FOO's minimum length is 3, but the
+    minimum length for the F is 1. This is important as the minimum length
+    is used to determine offsets in front of and behind the string being
+    looked for.  Since strings can be composites this is the length of the
+    pattern at the time it was committed with a scan_commit. Note that
+    the length is calculated by study_chunk, so that the minimum lengths
+    are not known until the full pattern has been compiled, thus the
+    pointer to the value.
+
+  - lookbehind
+
+    In the case of lookbehind the string being searched for can be
+    offset past the start point of the final matching string.
+    If this value was just blithely removed from the min_offset it would
+    invalidate some of the calculations for how many chars must match
+    before or after (as they are derived from min_offset and minlen and
+    the length of the string being searched for).
+    When the final pattern is compiled and the data is moved from the
+    scan_data_t structure into the regexp structure the information
+    about lookbehind is factored in, with the information that would
+    have been lost precalculated in the end_shift field for the
+    associated string.
+
+  The fields pos_min and pos_delta are used to store the minimum offset
+  and the delta to the maximum offset at the current point in the pattern.
+
+*/
+
+typedef struct scan_data_t {
+    /*I32 len_min;      unused */
+    /*I32 len_delta;    unused */
+    SSize_t pos_min;
+    SSize_t pos_delta;
+    SV *last_found;
+    SSize_t last_end;      /* min value, <0 unless valid. */
+    SSize_t last_start_min;
+    SSize_t last_start_max;
+    SV **longest;          /* Either &l_fixed, or &l_float. */
+    SV *longest_fixed;      /* longest fixed string found in pattern */
+    SSize_t offset_fixed;   /* offset where it starts */
+    SSize_t *minlen_fixed;  /* pointer to the minlen relevant to the string */
+    I32 lookbehind_fixed;   /* is the position of the string modfied by LB */
+    SV *longest_float;      /* longest floating string found in pattern */
+    SSize_t offset_float_min; /* earliest point in string it can appear */
+    SSize_t offset_float_max; /* latest point in string it can appear */
+    SSize_t *minlen_float;  /* pointer to the minlen relevant to the string */
+    SSize_t lookbehind_float; /* is the pos of the string modified by LB */
+    I32 flags;
+    I32 whilem_c;
+    SSize_t *last_closep;
+    regnode_ssc *start_class;
+} scan_data_t;
+
+/*
+ * Forward declarations for pregcomp()'s friends.
+ */
+
+static const scan_data_t zero_scan_data =
+  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
+
+#define SF_BEFORE_EOL          (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
+#define SF_BEFORE_SEOL         0x0001
+#define SF_BEFORE_MEOL         0x0002
+#define SF_FIX_BEFORE_EOL      (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
+#define SF_FL_BEFORE_EOL       (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
+
+#define SF_FIX_SHIFT_EOL       (+2)
+#define SF_FL_SHIFT_EOL                (+4)
+
+#define SF_FIX_BEFORE_SEOL     (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
+#define SF_FIX_BEFORE_MEOL     (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
+
+#define SF_FL_BEFORE_SEOL      (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
+#define SF_FL_BEFORE_MEOL      (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
+#define SF_IS_INF              0x0040
+#define SF_HAS_PAR             0x0080
+#define SF_IN_PAR              0x0100
+#define SF_HAS_EVAL            0x0200
+#define SCF_DO_SUBSTR          0x0400
+#define SCF_DO_STCLASS_AND     0x0800
+#define SCF_DO_STCLASS_OR      0x1000
+#define SCF_DO_STCLASS         (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
+#define SCF_WHILEM_VISITED_POS 0x2000
+
+#define SCF_TRIE_RESTUDY        0x4000 /* Do restudy? */
+#define SCF_SEEN_ACCEPT         0x8000
+#define SCF_TRIE_DOING_RESTUDY 0x10000
+#define SCF_IN_DEFINE          0x20000
+
+
+
+
+#define UTF cBOOL(RExC_utf8)
+
+/* The enums for all these are ordered so things work out correctly */
+#define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
+#define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags)                    \
+                                                     == REGEX_DEPENDS_CHARSET)
+#define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
+#define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags)                \
+                                                     >= REGEX_UNICODE_CHARSET)
+#define ASCII_RESTRICTED (get_regex_charset(RExC_flags)                      \
+                                            == REGEX_ASCII_RESTRICTED_CHARSET)
+#define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags)             \
+                                            >= REGEX_ASCII_RESTRICTED_CHARSET)
+#define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags)                 \
+                                        == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
+
+#define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
+
+/* For programs that want to be strictly Unicode compatible by dying if any
+ * attempt is made to match a non-Unicode code point against a Unicode
+ * property.  */
+#define ALWAYS_WARN_SUPER  ckDEAD(packWARN(WARN_NON_UNICODE))
+
+#define OOB_NAMEDCLASS         -1
+
+/* There is no code point that is out-of-bounds, so this is problematic.  But
+ * its only current use is to initialize a variable that is always set before
+ * looked at. */
+#define OOB_UNICODE            0xDEADBEEF
+
+#define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
+#define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
+
+
+/* length of regex to show in messages that don't mark a position within */
+#define RegexLengthToShowInErrorMessages 127
+
+/*
+ * If MARKER[12] are adjusted, be sure to adjust the constants at the top
+ * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
+ * op/pragma/warn/regcomp.
+ */
+#define MARKER1 "<-- HERE"    /* marker as it appears in the description */
+#define MARKER2 " <-- HERE "  /* marker as it appears within the regex */
+
+#define REPORT_LOCATION " in regex; marked by " MARKER1    \
+                        " in m/%"UTF8f MARKER2 "%"UTF8f"/"
+
+#define REPORT_LOCATION_ARGS(offset)            \
+                UTF8fARG(UTF, offset, RExC_precomp), \
+                UTF8fARG(UTF, RExC_end - RExC_precomp - offset, RExC_precomp + offset)
+
+/* Used to point after bad bytes for an error message, but avoid skipping
+ * past a nul byte. */
+#define SKIP_IF_CHAR(s) (!*(s) ? 0 : UTF ? UTF8SKIP(s) : 1)
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
+ * arg. Show regex, up to a maximum length. If it's too long, chop and add
+ * "...".
+ */
+#define _FAIL(code) STMT_START {                                       \
+    const char *ellipses = "";                                         \
+    IV len = RExC_end - RExC_precomp;                                  \
+                                                                       \
+    if (!SIZE_ONLY)                                                    \
+       SAVEFREESV(RExC_rx_sv);                                         \
+    if (len > RegexLengthToShowInErrorMessages) {                      \
+       /* chop 10 shorter than the max, to ensure meaning of "..." */  \
+       len = RegexLengthToShowInErrorMessages - 10;                    \
+       ellipses = "...";                                               \
+    }                                                                  \
+    code;                                                               \
+} STMT_END
+
+#define        FAIL(msg) _FAIL(                            \
+    Perl_croak(aTHX_ "%s in regex m/%"UTF8f"%s/",          \
+           msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
+
+#define        FAIL2(msg,arg) _FAIL(                       \
+    Perl_croak(aTHX_ msg " in regex m/%"UTF8f"%s/",        \
+           arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
+
+/*
+ * Simple_vFAIL -- like FAIL, but marks the current location in the scan
+ */
+#define        Simple_vFAIL(m) STMT_START {                                    \
+    const IV offset =                                                   \
+        (RExC_parse > RExC_end ? RExC_end : RExC_parse) - RExC_precomp; \
+    Perl_croak(aTHX_ "%s" REPORT_LOCATION,                             \
+           m, REPORT_LOCATION_ARGS(offset));   \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
+ */
+#define        vFAIL(m) STMT_START {                           \
+    if (!SIZE_ONLY)                                    \
+       SAVEFREESV(RExC_rx_sv);                         \
+    Simple_vFAIL(m);                                   \
+} STMT_END
+
+/*
+ * Like Simple_vFAIL(), but accepts two arguments.
+ */
+#define        Simple_vFAIL2(m,a1) STMT_START {                        \
+    const IV offset = RExC_parse - RExC_precomp;                       \
+    S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1,                     \
+                      REPORT_LOCATION_ARGS(offset));   \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
+ */
+#define        vFAIL2(m,a1) STMT_START {                       \
+    if (!SIZE_ONLY)                                    \
+       SAVEFREESV(RExC_rx_sv);                         \
+    Simple_vFAIL2(m, a1);                              \
+} STMT_END
+
+
+/*
+ * Like Simple_vFAIL(), but accepts three arguments.
+ */
+#define        Simple_vFAIL3(m, a1, a2) STMT_START {                   \
+    const IV offset = RExC_parse - RExC_precomp;               \
+    S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2,         \
+           REPORT_LOCATION_ARGS(offset));      \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
+ */
+#define        vFAIL3(m,a1,a2) STMT_START {                    \
+    if (!SIZE_ONLY)                                    \
+       SAVEFREESV(RExC_rx_sv);                         \
+    Simple_vFAIL3(m, a1, a2);                          \
+} STMT_END
+
+/*
+ * Like Simple_vFAIL(), but accepts four arguments.
+ */
+#define        Simple_vFAIL4(m, a1, a2, a3) STMT_START {               \
+    const IV offset = RExC_parse - RExC_precomp;               \
+    S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, a3,             \
+           REPORT_LOCATION_ARGS(offset));      \
+} STMT_END
+
+#define        vFAIL4(m,a1,a2,a3) STMT_START {                 \
+    if (!SIZE_ONLY)                                    \
+       SAVEFREESV(RExC_rx_sv);                         \
+    Simple_vFAIL4(m, a1, a2, a3);                      \
+} STMT_END
+
+/* A specialized version of vFAIL2 that works with UTF8f */
+#define vFAIL2utf8f(m, a1) STMT_START { \
+    const IV offset = RExC_parse - RExC_precomp;   \
+    if (!SIZE_ONLY)                                \
+        SAVEFREESV(RExC_rx_sv);                    \
+    S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
+            REPORT_LOCATION_ARGS(offset));         \
+} STMT_END
+
+/* These have asserts in them because of [perl #122671] Many warnings in
+ * regcomp.c can occur twice.  If they get output in pass1 and later in that
+ * pass, the pattern has to be converted to UTF-8 and the pass restarted, they
+ * would get output again.  So they should be output in pass2, and these
+ * asserts make sure new warnings follow that paradigm. */
+
+/* m is not necessarily a "literal string", in this macro */
+#define reg_warn_non_literal_string(loc, m) STMT_START {                \
+    const IV offset = loc - RExC_precomp;                               \
+    __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s" REPORT_LOCATION,      \
+            m, REPORT_LOCATION_ARGS(offset));       \
+} STMT_END
+
+#define        ckWARNreg(loc,m) STMT_START {                                   \
+    const IV offset = loc - RExC_precomp;                              \
+    __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,    \
+           REPORT_LOCATION_ARGS(offset));              \
+} STMT_END
+
+#define        vWARN(loc, m) STMT_START {                                      \
+    const IV offset = loc - RExC_precomp;                              \
+    __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,       \
+           REPORT_LOCATION_ARGS(offset));              \
+} STMT_END
+
+#define        vWARN_dep(loc, m) STMT_START {                                  \
+    const IV offset = loc - RExC_precomp;                              \
+    __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), m REPORT_LOCATION,   \
+           REPORT_LOCATION_ARGS(offset));              \
+} STMT_END
+
+#define        ckWARNdep(loc,m) STMT_START {                                   \
+    const IV offset = loc - RExC_precomp;                              \
+    __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED),                 \
+           m REPORT_LOCATION,                                          \
+           REPORT_LOCATION_ARGS(offset));              \
+} STMT_END
+
+#define        ckWARNregdep(loc,m) STMT_START {                                \
+    const IV offset = loc - RExC_precomp;                              \
+    __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP),   \
+           m REPORT_LOCATION,                                          \
+           REPORT_LOCATION_ARGS(offset));              \
+} STMT_END
+
+#define        ckWARN2reg_d(loc,m, a1) STMT_START {                            \
+    const IV offset = loc - RExC_precomp;                              \
+    __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP),                     \
+           m REPORT_LOCATION,                                          \
+           a1, REPORT_LOCATION_ARGS(offset));  \
+} STMT_END
+
+#define        ckWARN2reg(loc, m, a1) STMT_START {                             \
+    const IV offset = loc - RExC_precomp;                              \
+    __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,    \
+           a1, REPORT_LOCATION_ARGS(offset));  \
+} STMT_END
+
+#define        vWARN3(loc, m, a1, a2) STMT_START {                             \
+    const IV offset = loc - RExC_precomp;                              \
+    __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,               \
+           a1, a2, REPORT_LOCATION_ARGS(offset));      \
+} STMT_END
+
+#define        ckWARN3reg(loc, m, a1, a2) STMT_START {                         \
+    const IV offset = loc - RExC_precomp;                              \
+    __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,    \
+           a1, a2, REPORT_LOCATION_ARGS(offset));      \
+} STMT_END
+
+#define        vWARN4(loc, m, a1, a2, a3) STMT_START {                         \
+    const IV offset = loc - RExC_precomp;                              \
+    __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,               \
+           a1, a2, a3, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define        ckWARN4reg(loc, m, a1, a2, a3) STMT_START {                     \
+    const IV offset = loc - RExC_precomp;                              \
+    __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,    \
+           a1, a2, a3, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define        vWARN5(loc, m, a1, a2, a3, a4) STMT_START {                     \
+    const IV offset = loc - RExC_precomp;                              \
+    __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,               \
+           a1, a2, a3, a4, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/* Macros for recording node offsets.   20001227 mjd@plover.com
+ * Nodes are numbered 1, 2, 3, 4.  Node #n's position is recorded in
+ * element 2*n-1 of the array.  Element #2n holds the byte length node #n.
+ * Element 0 holds the number n.
+ * Position is 1 indexed.
+ */
+#ifndef RE_TRACK_PATTERN_OFFSETS
+#define Set_Node_Offset_To_R(node,byte)
+#define Set_Node_Offset(node,byte)
+#define Set_Cur_Node_Offset
+#define Set_Node_Length_To_R(node,len)
+#define Set_Node_Length(node,len)
+#define Set_Node_Cur_Length(node,start)
+#define Node_Offset(n)
+#define Node_Length(n)
+#define Set_Node_Offset_Length(node,offset,len)
+#define ProgLen(ri) ri->u.proglen
+#define SetProgLen(ri,x) ri->u.proglen = x
+#else
+#define ProgLen(ri) ri->u.offsets[0]
+#define SetProgLen(ri,x) ri->u.offsets[0] = x
+#define Set_Node_Offset_To_R(node,byte) STMT_START {                   \
+    if (! SIZE_ONLY) {                                                 \
+       MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n",         \
+                   __LINE__, (int)(node), (int)(byte)));               \
+       if((node) < 0) {                                                \
+           Perl_croak(aTHX_ "value of node is %d in Offset macro",     \
+                                         (int)(node));                  \
+       } else {                                                        \
+           RExC_offsets[2*(node)-1] = (byte);                          \
+       }                                                               \
+    }                                                                  \
+} STMT_END
+
+#define Set_Node_Offset(node,byte) \
+    Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
+#define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
+
+#define Set_Node_Length_To_R(node,len) STMT_START {                    \
+    if (! SIZE_ONLY) {                                                 \
+       MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n",           \
+               __LINE__, (int)(node), (int)(len)));                    \
+       if((node) < 0) {                                                \
+           Perl_croak(aTHX_ "value of node is %d in Length macro",     \
+                                         (int)(node));                  \
+       } else {                                                        \
+           RExC_offsets[2*(node)] = (len);                             \
+       }                                                               \
+    }                                                                  \
+} STMT_END
+
+#define Set_Node_Length(node,len) \
+    Set_Node_Length_To_R((node)-RExC_emit_start, len)
+#define Set_Node_Cur_Length(node, start)                \
+    Set_Node_Length(node, RExC_parse - start)
+
+/* Get offsets and lengths */
+#define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
+#define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
+
+#define Set_Node_Offset_Length(node,offset,len) STMT_START {   \
+    Set_Node_Offset_To_R((node)-RExC_emit_start, (offset));    \
+    Set_Node_Length_To_R((node)-RExC_emit_start, (len));       \
+} STMT_END
+#endif
+
+#if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
+#define EXPERIMENTAL_INPLACESCAN
+#endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
+
+#define DEBUG_RExC_seen() \
+        DEBUG_OPTIMISE_MORE_r({                                             \
+            PerlIO_printf(Perl_debug_log,"RExC_seen: ");                    \
+                                                                            \
+            if (RExC_seen & REG_ZERO_LEN_SEEN)                              \
+                PerlIO_printf(Perl_debug_log,"REG_ZERO_LEN_SEEN ");         \
+                                                                            \
+            if (RExC_seen & REG_LOOKBEHIND_SEEN)                            \
+                PerlIO_printf(Perl_debug_log,"REG_LOOKBEHIND_SEEN ");       \
+                                                                            \
+            if (RExC_seen & REG_GPOS_SEEN)                                  \
+                PerlIO_printf(Perl_debug_log,"REG_GPOS_SEEN ");             \
+                                                                            \
+            if (RExC_seen & REG_RECURSE_SEEN)                               \
+                PerlIO_printf(Perl_debug_log,"REG_RECURSE_SEEN ");          \
+                                                                            \
+            if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN)                         \
+                PerlIO_printf(Perl_debug_log,"REG_TOP_LEVEL_BRANCHES_SEEN ");    \
+                                                                            \
+            if (RExC_seen & REG_VERBARG_SEEN)                               \
+                PerlIO_printf(Perl_debug_log,"REG_VERBARG_SEEN ");          \
+                                                                            \
+            if (RExC_seen & REG_CUTGROUP_SEEN)                              \
+                PerlIO_printf(Perl_debug_log,"REG_CUTGROUP_SEEN ");         \
+                                                                            \
+            if (RExC_seen & REG_RUN_ON_COMMENT_SEEN)                        \
+                PerlIO_printf(Perl_debug_log,"REG_RUN_ON_COMMENT_SEEN ");   \
+                                                                            \
+            if (RExC_seen & REG_UNFOLDED_MULTI_SEEN)                        \
+                PerlIO_printf(Perl_debug_log,"REG_UNFOLDED_MULTI_SEEN ");   \
+                                                                            \
+            if (RExC_seen & REG_GOSTART_SEEN)                               \
+                PerlIO_printf(Perl_debug_log,"REG_GOSTART_SEEN ");          \
+                                                                            \
+            if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN)                               \
+                PerlIO_printf(Perl_debug_log,"REG_UNBOUNDED_QUANTIFIER_SEEN ");          \
+                                                                            \
+            PerlIO_printf(Perl_debug_log,"\n");                             \
+        });
+
+#define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
+  if ((flags) & flag) PerlIO_printf(Perl_debug_log, "%s ", #flag)
+
+#define DEBUG_SHOW_STUDY_FLAGS(flags,open_str,close_str)                    \
+    if ( ( flags ) ) {                                                      \
+        PerlIO_printf(Perl_debug_log, "%s", open_str);                      \
+        DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_SEOL);                     \
+        DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_MEOL);                     \
+        DEBUG_SHOW_STUDY_FLAG(flags,SF_IS_INF);                             \
+        DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_PAR);                            \
+        DEBUG_SHOW_STUDY_FLAG(flags,SF_IN_PAR);                             \
+        DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_EVAL);                           \
+        DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_SUBSTR);                         \
+        DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_AND);                    \
+        DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_OR);                     \
+        DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS);                        \
+        DEBUG_SHOW_STUDY_FLAG(flags,SCF_WHILEM_VISITED_POS);                \
+        DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_RESTUDY);                      \
+        DEBUG_SHOW_STUDY_FLAG(flags,SCF_SEEN_ACCEPT);                       \
+        DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_DOING_RESTUDY);                \
+        DEBUG_SHOW_STUDY_FLAG(flags,SCF_IN_DEFINE);                         \
+        PerlIO_printf(Perl_debug_log, "%s", close_str);                     \
+    }
+
+
+#define DEBUG_STUDYDATA(str,data,depth)                              \
+DEBUG_OPTIMISE_MORE_r(if(data){                                      \
+    PerlIO_printf(Perl_debug_log,                                    \
+        "%*s" str "Pos:%"IVdf"/%"IVdf                                \
+        " Flags: 0x%"UVXf,                                           \
+        (int)(depth)*2, "",                                          \
+        (IV)((data)->pos_min),                                       \
+        (IV)((data)->pos_delta),                                     \
+        (UV)((data)->flags)                                          \
+    );                                                               \
+    DEBUG_SHOW_STUDY_FLAGS((data)->flags," [ ","]");                 \
+    PerlIO_printf(Perl_debug_log,                                    \
+        " Whilem_c: %"IVdf" Lcp: %"IVdf" %s",                        \
+        (IV)((data)->whilem_c),                                      \
+        (IV)((data)->last_closep ? *((data)->last_closep) : -1),     \
+        is_inf ? "INF " : ""                                         \
+    );                                                               \
+    if ((data)->last_found)                                          \
+        PerlIO_printf(Perl_debug_log,                                \
+            "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
+            " %sFloat: '%s' @ %"IVdf"/%"IVdf"",                      \
+            SvPVX_const((data)->last_found),                         \
+            (IV)((data)->last_end),                                  \
+            (IV)((data)->last_start_min),                            \
+            (IV)((data)->last_start_max),                            \
+            ((data)->longest &&                                      \
+             (data)->longest==&((data)->longest_fixed)) ? "*" : "",  \
+            SvPVX_const((data)->longest_fixed),                      \
+            (IV)((data)->offset_fixed),                              \
+            ((data)->longest &&                                      \
+             (data)->longest==&((data)->longest_float)) ? "*" : "",  \
+            SvPVX_const((data)->longest_float),                      \
+            (IV)((data)->offset_float_min),                          \
+            (IV)((data)->offset_float_max)                           \
+        );                                                           \
+    PerlIO_printf(Perl_debug_log,"\n");                              \
+});
+
+/* is c a control character for which we have a mnemonic? */
+#define isMNEMONIC_CNTRL(c) _IS_MNEMONIC_CNTRL_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
+
+STATIC const char *
+S_cntrl_to_mnemonic(const U8 c)
+{
+    /* Returns the mnemonic string that represents character 'c', if one
+     * exists; NULL otherwise.  The only ones that exist for the purposes of
+     * this routine are a few control characters */
+
+    switch (c) {
+        case '\a':       return "\\a";
+        case '\b':       return "\\b";
+        case ESC_NATIVE: return "\\e";
+        case '\f':       return "\\f";
+        case '\n':       return "\\n";
+        case '\r':       return "\\r";
+        case '\t':       return "\\t";
+    }
+
+    return NULL;
+}
+
+/* Mark that we cannot extend a found fixed substring at this point.
+   Update the longest found anchored substring and the longest found
+   floating substrings if needed. */
+
+STATIC void
+S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
+                    SSize_t *minlenp, int is_inf)
+{
+    const STRLEN l = CHR_SVLEN(data->last_found);
+    const STRLEN old_l = CHR_SVLEN(*data->longest);
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_SCAN_COMMIT;
+
+    if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
+       SvSetMagicSV(*data->longest, data->last_found);
+       if (*data->longest == data->longest_fixed) {
+           data->offset_fixed = l ? data->last_start_min : data->pos_min;
+           if (data->flags & SF_BEFORE_EOL)
+               data->flags
+                   |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
+           else
+               data->flags &= ~SF_FIX_BEFORE_EOL;
+           data->minlen_fixed=minlenp;
+           data->lookbehind_fixed=0;
+       }
+       else { /* *data->longest == data->longest_float */
+           data->offset_float_min = l ? data->last_start_min : data->pos_min;
+           data->offset_float_max = (l
+                          ? data->last_start_max
+                          : (data->pos_delta > SSize_t_MAX - data->pos_min
+                                        ? SSize_t_MAX
+                                        : data->pos_min + data->pos_delta));
+           if (is_inf
+                || (STRLEN)data->offset_float_max > (STRLEN)SSize_t_MAX)
+               data->offset_float_max = SSize_t_MAX;
+           if (data->flags & SF_BEFORE_EOL)
+               data->flags
+                   |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
+           else
+               data->flags &= ~SF_FL_BEFORE_EOL;
+            data->minlen_float=minlenp;
+            data->lookbehind_float=0;
+       }
+    }
+    SvCUR_set(data->last_found, 0);
+    {
+       SV * const sv = data->last_found;
+       if (SvUTF8(sv) && SvMAGICAL(sv)) {
+           MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
+           if (mg)
+               mg->mg_len = 0;
+       }
+    }
+    data->last_end = -1;
+    data->flags &= ~SF_BEFORE_EOL;
+    DEBUG_STUDYDATA("commit: ",data,0);
+}
+
+/* An SSC is just a regnode_charclass_posix with an extra field: the inversion
+ * list that describes which code points it matches */
+
+STATIC void
+S_ssc_anything(pTHX_ regnode_ssc *ssc)
+{
+    /* Set the SSC 'ssc' to match an empty string or any code point */
+
+    PERL_ARGS_ASSERT_SSC_ANYTHING;
+
+    assert(is_ANYOF_SYNTHETIC(ssc));
+
+    ssc->invlist = sv_2mortal(_new_invlist(2)); /* mortalize so won't leak */
+    _append_range_to_invlist(ssc->invlist, 0, UV_MAX);
+    ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING;  /* Plus matches empty */
+}
+
+STATIC int
+S_ssc_is_anything(const regnode_ssc *ssc)
+{
+    /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
+     * point; FALSE otherwise.  Thus, this is used to see if using 'ssc' buys
+     * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
+     * in any way, so there's no point in using it */
+
+    UV start, end;
+    bool ret;
+
+    PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
+
+    assert(is_ANYOF_SYNTHETIC(ssc));
+
+    if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
+        return FALSE;
+    }
+
+    /* See if the list consists solely of the range 0 - Infinity */
+    invlist_iterinit(ssc->invlist);
+    ret = invlist_iternext(ssc->invlist, &start, &end)
+          && start == 0
+          && end == UV_MAX;
+
+    invlist_iterfinish(ssc->invlist);
+
+    if (ret) {
+        return TRUE;
+    }
+
+    /* If e.g., both \w and \W are set, matches everything */
+    if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+        int i;
+        for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
+            if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
+                return TRUE;
+            }
+        }
+    }
+
+    return FALSE;
+}
+
+STATIC void
+S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
+{
+    /* Initializes the SSC 'ssc'.  This includes setting it to match an empty
+     * string, any code point, or any posix class under locale */
+
+    PERL_ARGS_ASSERT_SSC_INIT;
+
+    Zero(ssc, 1, regnode_ssc);
+    set_ANYOF_SYNTHETIC(ssc);
+    ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
+    ssc_anything(ssc);
+
+    /* If any portion of the regex is to operate under locale rules that aren't
+     * fully known at compile time, initialization includes it.  The reason
+     * this isn't done for all regexes is that the optimizer was written under
+     * the assumption that locale was all-or-nothing.  Given the complexity and
+     * lack of documentation in the optimizer, and that there are inadequate
+     * test cases for locale, many parts of it may not work properly, it is
+     * safest to avoid locale unless necessary. */
+    if (RExC_contains_locale) {
+       ANYOF_POSIXL_SETALL(ssc);
+    }
+    else {
+       ANYOF_POSIXL_ZERO(ssc);
+    }
+}
+
+STATIC int
+S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
+                        const regnode_ssc *ssc)
+{
+    /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
+     * to the list of code points matched, and locale posix classes; hence does
+     * not check its flags) */
+
+    UV start, end;
+    bool ret;
+
+    PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
+
+    assert(is_ANYOF_SYNTHETIC(ssc));
+
+    invlist_iterinit(ssc->invlist);
+    ret = invlist_iternext(ssc->invlist, &start, &end)
+          && start == 0
+          && end == UV_MAX;
+
+    invlist_iterfinish(ssc->invlist);
+
+    if (! ret) {
+        return FALSE;
+    }
+
+    if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
+        return FALSE;
+    }
+
+    return TRUE;
+}
+
+STATIC SV*
+S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
+                               const regnode_charclass* const node)
+{
+    /* Returns a mortal inversion list defining which code points are matched
+     * by 'node', which is of type ANYOF.  Handles complementing the result if
+     * appropriate.  If some code points aren't knowable at this time, the
+     * returned list must, and will, contain every code point that is a
+     * possibility. */
+
+    SV* invlist = sv_2mortal(_new_invlist(0));
+    SV* only_utf8_locale_invlist = NULL;
+    unsigned int i;
+    const U32 n = ARG(node);
+    bool new_node_has_latin1 = FALSE;
+
+    PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
+
+    /* Look at the data structure created by S_set_ANYOF_arg() */
+    if (n != ANYOF_ONLY_HAS_BITMAP) {
+        SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
+        AV * const av = MUTABLE_AV(SvRV(rv));
+        SV **const ary = AvARRAY(av);
+        assert(RExC_rxi->data->what[n] == 's');
+
+        if (ary[1] && ary[1] != &PL_sv_undef) { /* Has compile-time swash */
+            invlist = sv_2mortal(invlist_clone(_get_swash_invlist(ary[1])));
+        }
+        else if (ary[0] && ary[0] != &PL_sv_undef) {
+
+            /* Here, no compile-time swash, and there are things that won't be
+             * known until runtime -- we have to assume it could be anything */
+            return _add_range_to_invlist(invlist, 0, UV_MAX);
+        }
+        else if (ary[3] && ary[3] != &PL_sv_undef) {
+
+            /* Here no compile-time swash, and no run-time only data.  Use the
+             * node's inversion list */
+            invlist = sv_2mortal(invlist_clone(ary[3]));
+        }
+
+        /* Get the code points valid only under UTF-8 locales */
+        if ((ANYOF_FLAGS(node) & ANYOF_LOC_FOLD)
+            && ary[2] && ary[2] != &PL_sv_undef)
+        {
+            only_utf8_locale_invlist = ary[2];
+        }
+    }
+
+    /* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
+     * code points, and an inversion list for the others, but if there are code
+     * points that should match only conditionally on the target string being
+     * UTF-8, those are placed in the inversion list, and not the bitmap.
+     * Since there are circumstances under which they could match, they are
+     * included in the SSC.  But if the ANYOF node is to be inverted, we have
+     * to exclude them here, so that when we invert below, the end result
+     * actually does include them.  (Think about "\xe0" =~ /[^\xc0]/di;).  We
+     * have to do this here before we add the unconditionally matched code
+     * points */
+    if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
+        _invlist_intersection_complement_2nd(invlist,
+                                             PL_UpperLatin1,
+                                             &invlist);
+    }
+
+    /* Add in the points from the bit map */
+    for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
+        if (ANYOF_BITMAP_TEST(node, i)) {
+            invlist = add_cp_to_invlist(invlist, i);
+            new_node_has_latin1 = TRUE;
+        }
+    }
+
+    /* If this can match all upper Latin1 code points, have to add them
+     * as well */
+    if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII) {
+        _invlist_union(invlist, PL_UpperLatin1, &invlist);
+    }
+
+    /* Similarly for these */
+    if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
+        _invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
+    }
+
+    if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
+        _invlist_invert(invlist);
+    }
+    else if (new_node_has_latin1 && ANYOF_FLAGS(node) & ANYOF_LOC_FOLD) {
+
+        /* Under /li, any 0-255 could fold to any other 0-255, depending on the
+         * locale.  We can skip this if there are no 0-255 at all. */
+        _invlist_union(invlist, PL_Latin1, &invlist);
+    }
+
+    /* Similarly add the UTF-8 locale possible matches.  These have to be
+     * deferred until after the non-UTF-8 locale ones are taken care of just
+     * above, or it leads to wrong results under ANYOF_INVERT */
+    if (only_utf8_locale_invlist) {
+        _invlist_union_maybe_complement_2nd(invlist,
+                                            only_utf8_locale_invlist,
+                                            ANYOF_FLAGS(node) & ANYOF_INVERT,
+                                            &invlist);
+    }
+
+    return invlist;
+}
+
+/* These two functions currently do the exact same thing */
+#define ssc_init_zero          ssc_init
+
+#define ssc_add_cp(ssc, cp)   ssc_add_range((ssc), (cp), (cp))
+#define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
+
+/* 'AND' a given class with another one.  Can create false positives.  'ssc'
+ * should not be inverted.  'and_with->flags & ANYOF_MATCHES_POSIXL' should be
+ * 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */
+
+STATIC void
+S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
+                const regnode_charclass *and_with)
+{
+    /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
+     * another SSC or a regular ANYOF class.  Can create false positives. */
+
+    SV* anded_cp_list;
+    U8  anded_flags;
+
+    PERL_ARGS_ASSERT_SSC_AND;
+
+    assert(is_ANYOF_SYNTHETIC(ssc));
+
+    /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
+     * the code point inversion list and just the relevant flags */
+    if (is_ANYOF_SYNTHETIC(and_with)) {
+        anded_cp_list = ((regnode_ssc *)and_with)->invlist;
+        anded_flags = ANYOF_FLAGS(and_with);
+
+        /* XXX This is a kludge around what appears to be deficiencies in the
+         * optimizer.  If we make S_ssc_anything() add in the WARN_SUPER flag,
+         * there are paths through the optimizer where it doesn't get weeded
+         * out when it should.  And if we don't make some extra provision for
+         * it like the code just below, it doesn't get added when it should.
+         * This solution is to add it only when AND'ing, which is here, and
+         * only when what is being AND'ed is the pristine, original node
+         * matching anything.  Thus it is like adding it to ssc_anything() but
+         * only when the result is to be AND'ed.  Probably the same solution
+         * could be adopted for the same problem we have with /l matching,
+         * which is solved differently in S_ssc_init(), and that would lead to
+         * fewer false positives than that solution has.  But if this solution
+         * creates bugs, the consequences are only that a warning isn't raised
+         * that should be; while the consequences for having /l bugs is
+         * incorrect matches */
+        if (ssc_is_anything((regnode_ssc *)and_with)) {
+            anded_flags |= ANYOF_WARN_SUPER;
+        }
+    }
+    else {
+        anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
+        anded_flags = ANYOF_FLAGS(and_with) & ANYOF_COMMON_FLAGS;
+    }
+
+    ANYOF_FLAGS(ssc) &= anded_flags;
+
+    /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
+     * C2 is the list of code points in 'and-with'; P2, its posix classes.
+     * 'and_with' may be inverted.  When not inverted, we have the situation of
+     * computing:
+     *  (C1 | P1) & (C2 | P2)
+     *                     =  (C1 & (C2 | P2)) | (P1 & (C2 | P2))
+     *                     =  ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
+     *                    <=  ((C1 & C2) |       P2)) | ( P1       | (P1 & P2))
+     *                    <=  ((C1 & C2) | P1 | P2)
+     * Alternatively, the last few steps could be:
+     *                     =  ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
+     *                    <=  ((C1 & C2) |  C1      ) | (      C2  | (P1 & P2))
+     *                    <=  (C1 | C2 | (P1 & P2))
+     * We favor the second approach if either P1 or P2 is non-empty.  This is
+     * because these components are a barrier to doing optimizations, as what
+     * they match cannot be known until the moment of matching as they are
+     * dependent on the current locale, 'AND"ing them likely will reduce or
+     * eliminate them.
+     * But we can do better if we know that C1,P1 are in their initial state (a
+     * frequent occurrence), each matching everything:
+     *  (<everything>) & (C2 | P2) =  C2 | P2
+     * Similarly, if C2,P2 are in their initial state (again a frequent
+     * occurrence), the result is a no-op
+     *  (C1 | P1) & (<everything>) =  C1 | P1
+     *
+     * Inverted, we have
+     *  (C1 | P1) & ~(C2 | P2)  =  (C1 | P1) & (~C2 & ~P2)
+     *                          =  (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
+     *                         <=  (C1 & ~C2) | (P1 & ~P2)
+     * */
+
+    if ((ANYOF_FLAGS(and_with) & ANYOF_INVERT)
+        && ! is_ANYOF_SYNTHETIC(and_with))
+    {
+        unsigned int i;
+
+        ssc_intersection(ssc,
+                         anded_cp_list,
+                         FALSE /* Has already been inverted */
+                         );
+
+        /* If either P1 or P2 is empty, the intersection will be also; can skip
+         * the loop */
+        if (! (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL)) {
+            ANYOF_POSIXL_ZERO(ssc);
+        }
+        else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+
+            /* Note that the Posix class component P from 'and_with' actually
+             * looks like:
+             *      P = Pa | Pb | ... | Pn
+             * where each component is one posix class, such as in [\w\s].
+             * Thus
+             *      ~P = ~(Pa | Pb | ... | Pn)
+             *         = ~Pa & ~Pb & ... & ~Pn
+             *        <= ~Pa | ~Pb | ... | ~Pn
+             * The last is something we can easily calculate, but unfortunately
+             * is likely to have many false positives.  We could do better
+             * in some (but certainly not all) instances if two classes in
+             * P have known relationships.  For example
+             *      :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
+             * So
+             *      :lower: & :print: = :lower:
+             * And similarly for classes that must be disjoint.  For example,
+             * since \s and \w can have no elements in common based on rules in
+             * the POSIX standard,
+             *      \w & ^\S = nothing
+             * Unfortunately, some vendor locales do not meet the Posix
+             * standard, in particular almost everything by Microsoft.
+             * The loop below just changes e.g., \w into \W and vice versa */
+
+            regnode_charclass_posixl temp;
+            int add = 1;    /* To calculate the index of the complement */
+
+            ANYOF_POSIXL_ZERO(&temp);
+            for (i = 0; i < ANYOF_MAX; i++) {
+                assert(i % 2 != 0
+                       || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
+                       || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
+
+                if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
+                    ANYOF_POSIXL_SET(&temp, i + add);
+                }
+                add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
+            }
+            ANYOF_POSIXL_AND(&temp, ssc);
+
+        } /* else ssc already has no posixes */
+    } /* else: Not inverted.  This routine is a no-op if 'and_with' is an SSC
+         in its initial state */
+    else if (! is_ANYOF_SYNTHETIC(and_with)
+             || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
+    {
+        /* But if 'ssc' is in its initial state, the result is just 'and_with';
+         * copy it over 'ssc' */
+        if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
+            if (is_ANYOF_SYNTHETIC(and_with)) {
+                StructCopy(and_with, ssc, regnode_ssc);
+            }
+            else {
+                ssc->invlist = anded_cp_list;
+                ANYOF_POSIXL_ZERO(ssc);
+                if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
+                    ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
+                }
+            }
+        }
+        else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
+                 || (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL))
+        {
+            /* One or the other of P1, P2 is non-empty. */
+            if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
+                ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
+            }
+            ssc_union(ssc, anded_cp_list, FALSE);
+        }
+        else { /* P1 = P2 = empty */
+            ssc_intersection(ssc, anded_cp_list, FALSE);
+        }
+    }
+}
+
+STATIC void
+S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
+               const regnode_charclass *or_with)
+{
+    /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
+     * another SSC or a regular ANYOF class.  Can create false positives if
+     * 'or_with' is to be inverted. */
+
+    SV* ored_cp_list;
+    U8 ored_flags;
+
+    PERL_ARGS_ASSERT_SSC_OR;
+
+    assert(is_ANYOF_SYNTHETIC(ssc));
+
+    /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
+     * the code point inversion list and just the relevant flags */
+    if (is_ANYOF_SYNTHETIC(or_with)) {
+        ored_cp_list = ((regnode_ssc*) or_with)->invlist;
+        ored_flags = ANYOF_FLAGS(or_with);
+    }
+    else {
+        ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
+        ored_flags = ANYOF_FLAGS(or_with) & ANYOF_COMMON_FLAGS;
+    }
+
+    ANYOF_FLAGS(ssc) |= ored_flags;
+
+    /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
+     * C2 is the list of code points in 'or-with'; P2, its posix classes.
+     * 'or_with' may be inverted.  When not inverted, we have the simple
+     * situation of computing:
+     *  (C1 | P1) | (C2 | P2)  =  (C1 | C2) | (P1 | P2)
+     * If P1|P2 yields a situation with both a class and its complement are
+     * set, like having both \w and \W, this matches all code points, and we
+     * can delete these from the P component of the ssc going forward.  XXX We
+     * might be able to delete all the P components, but I (khw) am not certain
+     * about this, and it is better to be safe.
+     *
+     * Inverted, we have
+     *  (C1 | P1) | ~(C2 | P2)  =  (C1 | P1) | (~C2 & ~P2)
+     *                         <=  (C1 | P1) | ~C2
+     *                         <=  (C1 | ~C2) | P1
+     * (which results in actually simpler code than the non-inverted case)
+     * */
+
+    if ((ANYOF_FLAGS(or_with) & ANYOF_INVERT)
+        && ! is_ANYOF_SYNTHETIC(or_with))
+    {
+        /* We ignore P2, leaving P1 going forward */
+    }   /* else  Not inverted */
+    else if (ANYOF_FLAGS(or_with) & ANYOF_MATCHES_POSIXL) {
+        ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
+        if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+            unsigned int i;
+            for (i = 0; i < ANYOF_MAX; i += 2) {
+                if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
+                {
+                    ssc_match_all_cp(ssc);
+                    ANYOF_POSIXL_CLEAR(ssc, i);
+                    ANYOF_POSIXL_CLEAR(ssc, i+1);
+                }
+            }
+        }
+    }
+
+    ssc_union(ssc,
+              ored_cp_list,
+              FALSE /* Already has been inverted */
+              );
+}
+
+PERL_STATIC_INLINE void
+S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
+{
+    PERL_ARGS_ASSERT_SSC_UNION;
+
+    assert(is_ANYOF_SYNTHETIC(ssc));
+
+    _invlist_union_maybe_complement_2nd(ssc->invlist,
+                                        invlist,
+                                        invert2nd,
+                                        &ssc->invlist);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_intersection(pTHX_ regnode_ssc *ssc,
+                         SV* const invlist,
+                         const bool invert2nd)
+{
+    PERL_ARGS_ASSERT_SSC_INTERSECTION;
+
+    assert(is_ANYOF_SYNTHETIC(ssc));
+
+    _invlist_intersection_maybe_complement_2nd(ssc->invlist,
+                                               invlist,
+                                               invert2nd,
+                                               &ssc->invlist);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
+{
+    PERL_ARGS_ASSERT_SSC_ADD_RANGE;
+
+    assert(is_ANYOF_SYNTHETIC(ssc));
+
+    ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
+{
+    /* AND just the single code point 'cp' into the SSC 'ssc' */
+
+    SV* cp_list = _new_invlist(2);
+
+    PERL_ARGS_ASSERT_SSC_CP_AND;
+
+    assert(is_ANYOF_SYNTHETIC(ssc));
+
+    cp_list = add_cp_to_invlist(cp_list, cp);
+    ssc_intersection(ssc, cp_list,
+                     FALSE /* Not inverted */
+                     );
+    SvREFCNT_dec_NN(cp_list);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_clear_locale(regnode_ssc *ssc)
+{
+    /* Set the SSC 'ssc' to not match any locale things */
+    PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
+
+    assert(is_ANYOF_SYNTHETIC(ssc));
+
+    ANYOF_POSIXL_ZERO(ssc);
+    ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
+}
+
+#define NON_OTHER_COUNT   NON_OTHER_COUNT_FOR_USE_ONLY_BY_REGCOMP_DOT_C
+
+STATIC bool
+S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
+{
+    /* The synthetic start class is used to hopefully quickly winnow down
+     * places where a pattern could start a match in the target string.  If it
+     * doesn't really narrow things down that much, there isn't much point to
+     * having the overhead of using it.  This function uses some very crude
+     * heuristics to decide if to use the ssc or not.
+     *
+     * It returns TRUE if 'ssc' rules out more than half what it considers to
+     * be the "likely" possible matches, but of course it doesn't know what the
+     * actual things being matched are going to be; these are only guesses
+     *
+     * For /l matches, it assumes that the only likely matches are going to be
+     *      in the 0-255 range, uniformly distributed, so half of that is 127
+     * For /a and /d matches, it assumes that the likely matches will be just
+     *      the ASCII range, so half of that is 63
+     * For /u and there isn't anything matching above the Latin1 range, it
+     *      assumes that that is the only range likely to be matched, and uses
+     *      half that as the cut-off: 127.  If anything matches above Latin1,
+     *      it assumes that all of Unicode could match (uniformly), except for
+     *      non-Unicode code points and things in the General Category "Other"
+     *      (unassigned, private use, surrogates, controls and formats).  This
+     *      is a much large number. */
+
+    const U32 max_match = (LOC)
+                          ? 127
+                          : (! UNI_SEMANTICS)
+                            ? 63
+                            : (invlist_highest(ssc->invlist) < 256)
+                              ? 127
+                              : ((NON_OTHER_COUNT + 1) / 2) - 1;
+    U32 count = 0;      /* Running total of number of code points matched by
+                           'ssc' */
+    UV start, end;      /* Start and end points of current range in inversion
+                           list */
+
+    PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;
+
+    invlist_iterinit(ssc->invlist);
+    while (invlist_iternext(ssc->invlist, &start, &end)) {
+
+        /* /u is the only thing that we expect to match above 255; so if not /u
+         * and even if there are matches above 255, ignore them.  This catches
+         * things like \d under /d which does match the digits above 255, but
+         * since the pattern is /d, it is not likely to be expecting them */
+        if (! UNI_SEMANTICS) {
+            if (start > 255) {
+                break;
+            }
+            end = MIN(end, 255);
+        }
+        count += end - start + 1;
+        if (count > max_match) {
+            invlist_iterfinish(ssc->invlist);
+            return FALSE;
+        }
+    }
+
+    return TRUE;
+}
+
+
+STATIC void
+S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
+{
+    /* The inversion list in the SSC is marked mortal; now we need a more
+     * permanent copy, which is stored the same way that is done in a regular
+     * ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
+     * map */
+
+    SV* invlist = invlist_clone(ssc->invlist);
+
+    PERL_ARGS_ASSERT_SSC_FINALIZE;
+
+    assert(is_ANYOF_SYNTHETIC(ssc));
+
+    /* The code in this file assumes that all but these flags aren't relevant
+     * to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
+     * by the time we reach here */
+    assert(! (ANYOF_FLAGS(ssc) & ~ANYOF_COMMON_FLAGS));
+
+    populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
+
+    set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist,
+                                NULL, NULL, NULL, FALSE);
+
+    /* Make sure is clone-safe */
+    ssc->invlist = NULL;
+
+    if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+        ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
+    }
+
+    assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
+}
+
+#define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
+#define TRIE_LIST_CUR(state)  ( TRIE_LIST_ITEM( state, 0 ).forid )
+#define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
+#define TRIE_LIST_USED(idx)  ( trie->states[state].trans.list         \
+                               ? (TRIE_LIST_CUR( idx ) - 1)           \
+                               : 0 )
+
+
+#ifdef DEBUGGING
+/*
+   dump_trie(trie,widecharmap,revcharmap)
+   dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
+   dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
+
+   These routines dump out a trie in a somewhat readable format.
+   The _interim_ variants are used for debugging the interim
+   tables that are used to generate the final compressed
+   representation which is what dump_trie expects.
+
+   Part of the reason for their existence is to provide a form
+   of documentation as to how the different representations function.
+
+*/
+
+/*
+  Dumps the final compressed table form of the trie to Perl_debug_log.
+  Used for debugging make_trie().
+*/
+
+STATIC void
+S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
+           AV *revcharmap, U32 depth)
+{
+    U32 state;
+    SV *sv=sv_newmortal();
+    int colwidth= widecharmap ? 6 : 4;
+    U16 word;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_DUMP_TRIE;
+
+    PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
+        (int)depth * 2 + 2,"",
+        "Match","Base","Ofs" );
+
+    for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
+       SV ** const tmp = av_fetch( revcharmap, state, 0);
+        if ( tmp ) {
+            PerlIO_printf( Perl_debug_log, "%*s",
+                colwidth,
+                pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+                           PL_colors[0], PL_colors[1],
+                           (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+                           PERL_PV_ESCAPE_FIRSTCHAR
+                )
+            );
+        }
+    }
+    PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
+        (int)depth * 2 + 2,"");
+
+    for( state = 0 ; state < trie->uniquecharcount ; state++ )
+        PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
+    PerlIO_printf( Perl_debug_log, "\n");
+
+    for( state = 1 ; state < trie->statecount ; state++ ) {
+       const U32 base = trie->states[ state ].trans.base;
+
+        PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|",
+                                       (int)depth * 2 + 2,"", (UV)state);
+
+        if ( trie->states[ state ].wordnum ) {
+            PerlIO_printf( Perl_debug_log, " W%4X",
+                                           trie->states[ state ].wordnum );
+        } else {
+            PerlIO_printf( Perl_debug_log, "%6s", "" );
+        }
+
+        PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
+
+        if ( base ) {
+            U32 ofs = 0;
+
+            while( ( base + ofs  < trie->uniquecharcount ) ||
+                   ( base + ofs - trie->uniquecharcount < trie->lasttrans
+                     && trie->trans[ base + ofs - trie->uniquecharcount ].check
+                                                                    != state))
+                    ofs++;
+
+            PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
+
+            for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
+                if ( ( base + ofs >= trie->uniquecharcount )
+                        && ( base + ofs - trie->uniquecharcount
+                                                        < trie->lasttrans )
+                        && trie->trans[ base + ofs
+                                    - trie->uniquecharcount ].check == state )
+                {
+                   PerlIO_printf( Perl_debug_log, "%*"UVXf,
+                    colwidth,
+                    (UV)trie->trans[ base + ofs
+                                             - trie->uniquecharcount ].next );
+                } else {
+                    PerlIO_printf( Perl_debug_log, "%*s",colwidth,"   ." );
+                }
+            }
+
+            PerlIO_printf( Perl_debug_log, "]");
+
+        }
+        PerlIO_printf( Perl_debug_log, "\n" );
+    }
+    PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=",
+                                (int)depth*2, "");
+    for (word=1; word <= trie->wordcount; word++) {
+       PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
+           (int)word, (int)(trie->wordinfo[word].prev),
+           (int)(trie->wordinfo[word].len));
+    }
+    PerlIO_printf(Perl_debug_log, "\n" );
+}
+/*
+  Dumps a fully constructed but uncompressed trie in list form.
+  List tries normally only are used for construction when the number of
+  possible chars (trie->uniquecharcount) is very high.
+  Used for debugging make_trie().
+*/
+STATIC void
+S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
+                        HV *widecharmap, AV *revcharmap, U32 next_alloc,
+                        U32 depth)
+{
+    U32 state;
+    SV *sv=sv_newmortal();
+    int colwidth= widecharmap ? 6 : 4;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
+
+    /* print out the table precompression.  */
+    PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
+        (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
+        "------:-----+-----------------\n" );
+
+    for( state=1 ; state < next_alloc ; state ++ ) {
+        U16 charid;
+
+        PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
+            (int)depth * 2 + 2,"", (UV)state  );
+        if ( ! trie->states[ state ].wordnum ) {
+            PerlIO_printf( Perl_debug_log, "%5s| ","");
+        } else {
+            PerlIO_printf( Perl_debug_log, "W%4x| ",
+                trie->states[ state ].wordnum
+            );
+        }
+        for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
+           SV ** const tmp = av_fetch( revcharmap,
+                                        TRIE_LIST_ITEM(state,charid).forid, 0);
+           if ( tmp ) {
+                PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
+                    colwidth,
+                    pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
+                              colwidth,
+                              PL_colors[0], PL_colors[1],
+                              (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
+                              | PERL_PV_ESCAPE_FIRSTCHAR
+                    ) ,
+                    TRIE_LIST_ITEM(state,charid).forid,
+                    (UV)TRIE_LIST_ITEM(state,charid).newstate
+                );
+                if (!(charid % 10))
+                    PerlIO_printf(Perl_debug_log, "\n%*s| ",
+                        (int)((depth * 2) + 14), "");
+            }
+        }
+        PerlIO_printf( Perl_debug_log, "\n");
+    }
+}
+
+/*
+  Dumps a fully constructed but uncompressed trie in table form.
+  This is the normal DFA style state transition table, with a few
+  twists to facilitate compression later.
+  Used for debugging make_trie().
+*/
+STATIC void
+S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
+                         HV *widecharmap, AV *revcharmap, U32 next_alloc,
+                         U32 depth)
+{
+    U32 state;
+    U16 charid;
+    SV *sv=sv_newmortal();
+    int colwidth= widecharmap ? 6 : 4;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
+
+    /*
+       print out the table precompression so that we can do a visual check
+       that they are identical.
+     */
+
+    PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
+
+    for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
+       SV ** const tmp = av_fetch( revcharmap, charid, 0);
+        if ( tmp ) {
+            PerlIO_printf( Perl_debug_log, "%*s",
+                colwidth,
+                pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+                           PL_colors[0], PL_colors[1],
+                           (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+                           PERL_PV_ESCAPE_FIRSTCHAR
+                )
+            );
+        }
+    }
+
+    PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
+
+    for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
+        PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
+    }
+
+    PerlIO_printf( Perl_debug_log, "\n" );
+
+    for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
+
+        PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
+            (int)depth * 2 + 2,"",
+            (UV)TRIE_NODENUM( state ) );
+
+        for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
+            UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
+            if (v)
+                PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
+            else
+                PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
+        }
+        if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
+            PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n",
+                                            (UV)trie->trans[ state ].check );
+        } else {
+            PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n",
+                                            (UV)trie->trans[ state ].check,
+            trie->states[ TRIE_NODENUM( state ) ].wordnum );
+        }
+    }
+}
+
+#endif
+
+
+/* make_trie(startbranch,first,last,tail,word_count,flags,depth)
+  startbranch: the first branch in the whole branch sequence
+  first      : start branch of sequence of branch-exact nodes.
+              May be the same as startbranch
+  last       : Thing following the last branch.
+              May be the same as tail.
+  tail       : item following the branch sequence
+  count      : words in the sequence
+  flags      : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
+  depth      : indent depth
+
+Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
+
+A trie is an N'ary tree where the branches are determined by digital
+decomposition of the key. IE, at the root node you look up the 1st character and
+follow that branch repeat until you find the end of the branches. Nodes can be
+marked as "accepting" meaning they represent a complete word. Eg:
+
+  /he|she|his|hers/
+
+would convert into the following structure. Numbers represent states, letters
+following numbers represent valid transitions on the letter from that state, if
+the number is in square brackets it represents an accepting state, otherwise it
+will be in parenthesis.
+
+      +-h->+-e->[3]-+-r->(8)-+-s->[9]
+      |    |
+      |   (2)
+      |    |
+     (1)   +-i->(6)-+-s->[7]
+      |
+      +-s->(3)-+-h->(4)-+-e->[5]
+
+      Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
+
+This shows that when matching against the string 'hers' we will begin at state 1
+read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
+then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
+is also accepting. Thus we know that we can match both 'he' and 'hers' with a
+single traverse. We store a mapping from accepting to state to which word was
+matched, and then when we have multiple possibilities we try to complete the
+rest of the regex in the order in which they occurred in the alternation.
+
+The only prior NFA like behaviour that would be changed by the TRIE support is
+the silent ignoring of duplicate alternations which are of the form:
+
+ / (DUPE|DUPE) X? (?{ ... }) Y /x
+
+Thus EVAL blocks following a trie may be called a different number of times with
+and without the optimisation. With the optimisations dupes will be silently
+ignored. This inconsistent behaviour of EVAL type nodes is well established as
+the following demonstrates:
+
+ 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
+
+which prints out 'word' three times, but
+
+ 'words'=~/(word|word|word)(?{ print $1 })S/
+
+which doesnt print it out at all. This is due to other optimisations kicking in.
+
+Example of what happens on a structural level:
+
+The regexp /(ac|ad|ab)+/ will produce the following debug output:
+
+   1: CURLYM[1] {1,32767}(18)
+   5:   BRANCH(8)
+   6:     EXACT <ac>(16)
+   8:   BRANCH(11)
+   9:     EXACT <ad>(16)
+  11:   BRANCH(14)
+  12:     EXACT <ab>(16)
+  16:   SUCCEED(0)
+  17:   NOTHING(18)
+  18: END(0)
+
+This would be optimizable with startbranch=5, first=5, last=16, tail=16
+and should turn into:
+
+   1: CURLYM[1] {1,32767}(18)
+   5:   TRIE(16)
+       [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
+         <ac>
+         <ad>
+         <ab>
+  16:   SUCCEED(0)
+  17:   NOTHING(18)
+  18: END(0)
+
+Cases where tail != last would be like /(?foo|bar)baz/:
+
+   1: BRANCH(4)
+   2:   EXACT <foo>(8)
+   4: BRANCH(7)
+   5:   EXACT <bar>(8)
+   7: TAIL(8)
+   8: EXACT <baz>(10)
+  10: END(0)
+
+which would be optimizable with startbranch=1, first=1, last=7, tail=8
+and would end up looking like:
+
+    1: TRIE(8)
+      [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
+       <foo>
+       <bar>
+   7: TAIL(8)
+   8: EXACT <baz>(10)
+  10: END(0)
+
+    d = uvchr_to_utf8_flags(d, uv, 0);
+
+is the recommended Unicode-aware way of saying
+
+    *(d++) = uv;
+*/
+
+#define TRIE_STORE_REVCHAR(val)                                            \
+    STMT_START {                                                           \
+       if (UTF) {                                                         \
+            SV *zlopp = newSV(7); /* XXX: optimize me */                   \
+           unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp);      \
+            unsigned const char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
+           SvCUR_set(zlopp, kapow - flrbbbbb);                            \
+           SvPOK_on(zlopp);                                               \
+           SvUTF8_on(zlopp);                                              \
+           av_push(revcharmap, zlopp);                                    \
+       } else {                                                           \
+            char ooooff = (char)val;                                           \
+           av_push(revcharmap, newSVpvn(&ooooff, 1));                     \
+       }                                                                  \
+        } STMT_END
+
+/* This gets the next character from the input, folding it if not already
+ * folded. */
+#define TRIE_READ_CHAR STMT_START {                                           \
+    wordlen++;                                                                \
+    if ( UTF ) {                                                              \
+        /* if it is UTF then it is either already folded, or does not need    \
+         * folding */                                                         \
+        uvc = valid_utf8_to_uvchr( (const U8*) uc, &len);                     \
+    }                                                                         \
+    else if (folder == PL_fold_latin1) {                                      \
+        /* This folder implies Unicode rules, which in the range expressible  \
+         *  by not UTF is the lower case, with the two exceptions, one of     \
+         *  which should have been taken care of before calling this */       \
+        assert(*uc != LATIN_SMALL_LETTER_SHARP_S);                            \
+        uvc = toLOWER_L1(*uc);                                                \
+        if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU;         \
+        len = 1;                                                              \
+    } else {                                                                  \
+        /* raw data, will be folded later if needed */                        \
+        uvc = (U32)*uc;                                                       \
+        len = 1;                                                              \
+    }                                                                         \
+} STMT_END
+
+
+
+#define TRIE_LIST_PUSH(state,fid,ns) STMT_START {               \
+    if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) {    \
+       U32 ging = TRIE_LIST_LEN( state ) *= 2;                 \
+       Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
+    }                                                           \
+    TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid;     \
+    TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns;   \
+    TRIE_LIST_CUR( state )++;                                   \
+} STMT_END
+
+#define TRIE_LIST_NEW(state) STMT_START {                       \
+    Newxz( trie->states[ state ].trans.list,               \
+       4, reg_trie_trans_le );                                 \
+     TRIE_LIST_CUR( state ) = 1;                                \
+     TRIE_LIST_LEN( state ) = 4;                                \
+} STMT_END
+
+#define TRIE_HANDLE_WORD(state) STMT_START {                    \
+    U16 dupe= trie->states[ state ].wordnum;                    \
+    regnode * const noper_next = regnext( noper );              \
+                                                                \
+    DEBUG_r({                                                   \
+        /* store the word for dumping */                        \
+        SV* tmp;                                                \
+        if (OP(noper) != NOTHING)                               \
+            tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF);   \
+        else                                                    \
+            tmp = newSVpvn_utf8( "", 0, UTF );                 \
+        av_push( trie_words, tmp );                             \
+    });                                                         \
+                                                                \
+    curword++;                                                  \
+    trie->wordinfo[curword].prev   = 0;                         \
+    trie->wordinfo[curword].len    = wordlen;                   \
+    trie->wordinfo[curword].accept = state;                     \
+                                                                \
+    if ( noper_next < tail ) {                                  \
+        if (!trie->jump)                                        \
+            trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
+                                                 sizeof(U16) ); \
+        trie->jump[curword] = (U16)(noper_next - convert);      \
+        if (!jumper)                                            \
+            jumper = noper_next;                                \
+        if (!nextbranch)                                        \
+            nextbranch= regnext(cur);                           \
+    }                                                           \
+                                                                \
+    if ( dupe ) {                                               \
+        /* It's a dupe. Pre-insert into the wordinfo[].prev   */\
+        /* chain, so that when the bits of chain are later    */\
+        /* linked together, the dups appear in the chain      */\
+       trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
+       trie->wordinfo[dupe].prev = curword;                    \
+    } else {                                                    \
+        /* we haven't inserted this word yet.                */ \
+        trie->states[ state ].wordnum = curword;                \
+    }                                                           \
+} STMT_END
+
+
+#define TRIE_TRANS_STATE(state,base,ucharcount,charid,special)         \
+     ( ( base + charid >=  ucharcount                                  \
+         && base + charid < ubound                                     \
+         && state == trie->trans[ base - ucharcount + charid ].check   \
+         && trie->trans[ base - ucharcount + charid ].next )           \
+           ? trie->trans[ base - ucharcount + charid ].next            \
+           : ( state==1 ? special : 0 )                                        \
+      )
+
+#define MADE_TRIE       1
+#define MADE_JUMP_TRIE  2
+#define MADE_EXACT_TRIE 4
+
+STATIC I32
+S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
+                  regnode *first, regnode *last, regnode *tail,
+                  U32 word_count, U32 flags, U32 depth)
+{
+    /* first pass, loop through and scan words */
+    reg_trie_data *trie;
+    HV *widecharmap = NULL;
+    AV *revcharmap = newAV();
+    regnode *cur;
+    STRLEN len = 0;
+    UV uvc = 0;
+    U16 curword = 0;
+    U32 next_alloc = 0;
+    regnode *jumper = NULL;
+    regnode *nextbranch = NULL;
+    regnode *convert = NULL;
+    U32 *prev_states; /* temp array mapping each state to previous one */
+    /* we just use folder as a flag in utf8 */
+    const U8 * folder = NULL;
+
+#ifdef DEBUGGING
+    const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuuu"));
+    AV *trie_words = NULL;
+    /* along with revcharmap, this only used during construction but both are
+     * useful during debugging so we store them in the struct when debugging.
+     */
+#else
+    const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
+    STRLEN trie_charcount=0;
+#endif
+    SV *re_trie_maxbuff;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_MAKE_TRIE;
+#ifndef DEBUGGING
+    PERL_UNUSED_ARG(depth);
+#endif
+
+    switch (flags) {
+        case EXACT: case EXACTL: break;
+       case EXACTFA:
+        case EXACTFU_SS:
+       case EXACTFU:
+       case EXACTFLU8: folder = PL_fold_latin1; break;
+       case EXACTF:  folder = PL_fold; break;
+        default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
+    }
+
+    trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
+    trie->refcount = 1;
+    trie->startstate = 1;
+    trie->wordcount = word_count;
+    RExC_rxi->data->data[ data_slot ] = (void*)trie;
+    trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
+    if (flags == EXACT || flags == EXACTL)
+       trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
+    trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
+                       trie->wordcount+1, sizeof(reg_trie_wordinfo));
+
+    DEBUG_r({
+        trie_words = newAV();
+    });
+
+    re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
+    assert(re_trie_maxbuff);
+    if (!SvIOK(re_trie_maxbuff)) {
+        sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
+    }
+    DEBUG_TRIE_COMPILE_r({
+        PerlIO_printf( Perl_debug_log,
+          "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
+          (int)depth * 2 + 2, "",
+          REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
+          REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
+    });
+
+   /* Find the node we are going to overwrite */
+    if ( first == startbranch && OP( last ) != BRANCH ) {
+        /* whole branch chain */
+        convert = first;
+    } else {
+        /* branch sub-chain */
+        convert = NEXTOPER( first );
+    }
+
+    /*  -- First loop and Setup --
+
+       We first traverse the branches and scan each word to determine if it
+       contains widechars, and how many unique chars there are, this is
+       important as we have to build a table with at least as many columns as we
+       have unique chars.
+
+       We use an array of integers to represent the character codes 0..255
+       (trie->charmap) and we use a an HV* to store Unicode characters. We use
+       the native representation of the character value as the key and IV's for
+       the coded index.
+
+       *TODO* If we keep track of how many times each character is used we can
+       remap the columns so that the table compression later on is more
+       efficient in terms of memory by ensuring the most common value is in the
+       middle and the least common are on the outside.  IMO this would be better
+       than a most to least common mapping as theres a decent chance the most
+       common letter will share a node with the least common, meaning the node
+       will not be compressible. With a middle is most common approach the worst
+       case is when we have the least common nodes twice.
+
+     */
+
+    for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+        regnode *noper = NEXTOPER( cur );
+        const U8 *uc = (U8*)STRING( noper );
+        const U8 *e  = uc + STR_LEN( noper );
+        int foldlen = 0;
+        U32 wordlen      = 0;         /* required init */
+        STRLEN minchars = 0;
+        STRLEN maxchars = 0;
+        bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
+                                               bitmap?*/
+
+        if (OP(noper) == NOTHING) {
+            regnode *noper_next= regnext(noper);
+            if (noper_next != tail && OP(noper_next) == flags) {
+                noper = noper_next;
+                uc= (U8*)STRING(noper);
+                e= uc + STR_LEN(noper);
+               trie->minlen= STR_LEN(noper);
+            } else {
+               trie->minlen= 0;
+               continue;
+           }
+        }
+
+        if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
+            TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
+                                          regardless of encoding */
+            if (OP( noper ) == EXACTFU_SS) {
+                /* false positives are ok, so just set this */
+                TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
+            }
+        }
+        for ( ; uc < e ; uc += len ) {  /* Look at each char in the current
+                                           branch */
+            TRIE_CHARCOUNT(trie)++;
+            TRIE_READ_CHAR;
+
+            /* TRIE_READ_CHAR returns the current character, or its fold if /i
+             * is in effect.  Under /i, this character can match itself, or
+             * anything that folds to it.  If not under /i, it can match just
+             * itself.  Most folds are 1-1, for example k, K, and KELVIN SIGN
+             * all fold to k, and all are single characters.   But some folds
+             * expand to more than one character, so for example LATIN SMALL
+             * LIGATURE FFI folds to the three character sequence 'ffi'.  If
+             * the string beginning at 'uc' is 'ffi', it could be matched by
+             * three characters, or just by the one ligature character. (It
+             * could also be matched by two characters: LATIN SMALL LIGATURE FF
+             * followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
+             * (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
+             * match.)  The trie needs to know the minimum and maximum number
+             * of characters that could match so that it can use size alone to
+             * quickly reject many match attempts.  The max is simple: it is
+             * the number of folded characters in this branch (since a fold is
+             * never shorter than what folds to it. */
+
+            maxchars++;
+
+            /* And the min is equal to the max if not under /i (indicated by
+             * 'folder' being NULL), or there are no multi-character folds.  If
+             * there is a multi-character fold, the min is incremented just
+             * once, for the character that folds to the sequence.  Each
+             * character in the sequence needs to be added to the list below of
+             * characters in the trie, but we count only the first towards the
+             * min number of characters needed.  This is done through the
+             * variable 'foldlen', which is returned by the macros that look
+             * for these sequences as the number of bytes the sequence
+             * occupies.  Each time through the loop, we decrement 'foldlen' by
+             * how many bytes the current char occupies.  Only when it reaches
+             * 0 do we increment 'minchars' or look for another multi-character
+             * sequence. */
+            if (folder == NULL) {
+                minchars++;
+            }
+            else if (foldlen > 0) {
+                foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
+            }
+            else {
+                minchars++;
+
+                /* See if *uc is the beginning of a multi-character fold.  If
+                 * so, we decrement the length remaining to look at, to account
+                 * for the current character this iteration.  (We can use 'uc'
+                 * instead of the fold returned by TRIE_READ_CHAR because for
+                 * non-UTF, the latin1_safe macro is smart enough to account
+                 * for all the unfolded characters, and because for UTF, the
+                 * string will already have been folded earlier in the
+                 * compilation process */
+                if (UTF) {
+                    if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
+                        foldlen -= UTF8SKIP(uc);
+                    }
+                }
+                else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
+                    foldlen--;
+                }
+            }
+
+            /* The current character (and any potential folds) should be added
+             * to the possible matching characters for this position in this
+             * branch */
+            if ( uvc < 256 ) {
+                if ( folder ) {
+                    U8 folded= folder[ (U8) uvc ];
+                    if ( !trie->charmap[ folded ] ) {
+                        trie->charmap[ folded ]=( ++trie->uniquecharcount );
+                        TRIE_STORE_REVCHAR( folded );
+                    }
+                }
+                if ( !trie->charmap[ uvc ] ) {
+                    trie->charmap[ uvc ]=( ++trie->uniquecharcount );
+                    TRIE_STORE_REVCHAR( uvc );
+                }
+                if ( set_bit ) {
+                   /* store the codepoint in the bitmap, and its folded
+                    * equivalent. */
+                    TRIE_BITMAP_SET(trie, uvc);
+
+                   /* store the folded codepoint */
+                    if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
+
+                   if ( !UTF ) {
+                       /* store first byte of utf8 representation of
+                          variant codepoints */
+                       if (! UVCHR_IS_INVARIANT(uvc)) {
+                           TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
+                       }
+                   }
+                    set_bit = 0; /* We've done our bit :-) */
+                }
+            } else {
+
+                /* XXX We could come up with the list of code points that fold
+                 * to this using PL_utf8_foldclosures, except not for
+                 * multi-char folds, as there may be multiple combinations
+                 * there that could work, which needs to wait until runtime to
+                 * resolve (The comment about LIGATURE FFI above is such an
+                 * example */
+
+                SV** svpp;
+                if ( !widecharmap )
+                    widecharmap = newHV();
+
+                svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
+
+                if ( !svpp )
+                    Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
+
+                if ( !SvTRUE( *svpp ) ) {
+                    sv_setiv( *svpp, ++trie->uniquecharcount );
+                    TRIE_STORE_REVCHAR(uvc);
+                }
+            }
+        } /* end loop through characters in this branch of the trie */
+
+        /* We take the min and max for this branch and combine to find the min
+         * and max for all branches processed so far */
+        if( cur == first ) {
+            trie->minlen = minchars;
+            trie->maxlen = maxchars;
+        } else if (minchars < trie->minlen) {
+            trie->minlen = minchars;
+        } else if (maxchars > trie->maxlen) {
+            trie->maxlen = maxchars;
+        }
+    } /* end first pass */
+    DEBUG_TRIE_COMPILE_r(
+        PerlIO_printf( Perl_debug_log,
+                "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
+                (int)depth * 2 + 2,"",
+                ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
+               (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
+               (int)trie->minlen, (int)trie->maxlen )
+    );
+
+    /*
+        We now know what we are dealing with in terms of unique chars and
+        string sizes so we can calculate how much memory a naive
+        representation using a flat table  will take. If it's over a reasonable
+        limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
+        conservative but potentially much slower representation using an array
+        of lists.
+
+        At the end we convert both representations into the same compressed
+        form that will be used in regexec.c for matching with. The latter
+        is a form that cannot be used to construct with but has memory
+        properties similar to the list form and access properties similar
+        to the table form making it both suitable for fast searches and
+        small enough that its feasable to store for the duration of a program.
+
+        See the comment in the code where the compressed table is produced
+        inplace from the flat tabe representation for an explanation of how
+        the compression works.
+
+    */
+
+
+    Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
+    prev_states[1] = 0;
+
+    if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
+                                                    > SvIV(re_trie_maxbuff) )
+    {
+        /*
+            Second Pass -- Array Of Lists Representation
+
+            Each state will be represented by a list of charid:state records
+            (reg_trie_trans_le) the first such element holds the CUR and LEN
+            points of the allocated array. (See defines above).
+
+            We build the initial structure using the lists, and then convert
+            it into the compressed table form which allows faster lookups
+            (but cant be modified once converted).
+        */
+
+        STRLEN transcount = 1;
+
+        DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
+            "%*sCompiling trie using list compiler\n",
+            (int)depth * 2 + 2, ""));
+
+       trie->states = (reg_trie_state *)
+           PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
+                                 sizeof(reg_trie_state) );
+        TRIE_LIST_NEW(1);
+        next_alloc = 2;
+
+        for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+
+            regnode *noper   = NEXTOPER( cur );
+           U8 *uc           = (U8*)STRING( noper );
+            const U8 *e      = uc + STR_LEN( noper );
+           U32 state        = 1;         /* required init */
+           U16 charid       = 0;         /* sanity init */
+            U32 wordlen      = 0;         /* required init */
+
+            if (OP(noper) == NOTHING) {
+                regnode *noper_next= regnext(noper);
+                if (noper_next != tail && OP(noper_next) == flags) {
+                    noper = noper_next;
+                    uc= (U8*)STRING(noper);
+                    e= uc + STR_LEN(noper);
+                }
+            }
+
+            if (OP(noper) != NOTHING) {
+                for ( ; uc < e ; uc += len ) {
+
+                    TRIE_READ_CHAR;
+
+                    if ( uvc < 256 ) {
+                        charid = trie->charmap[ uvc ];
+                   } else {
+                        SV** const svpp = hv_fetch( widecharmap,
+                                                    (char*)&uvc,
+                                                    sizeof( UV ),
+                                                    0);
+                        if ( !svpp ) {
+                            charid = 0;
+                        } else {
+                            charid=(U16)SvIV( *svpp );
+                        }
+                   }
+                    /* charid is now 0 if we dont know the char read, or
+                     * nonzero if we do */
+                    if ( charid ) {
+
+                        U16 check;
+                        U32 newstate = 0;
+
+                        charid--;
+                        if ( !trie->states[ state ].trans.list ) {
+                            TRIE_LIST_NEW( state );
+                       }
+                        for ( check = 1;
+                              check <= TRIE_LIST_USED( state );
+                              check++ )
+                        {
+                            if ( TRIE_LIST_ITEM( state, check ).forid
+                                                                    == charid )
+                            {
+                                newstate = TRIE_LIST_ITEM( state, check ).newstate;
+                                break;
+                            }
+                        }
+                        if ( ! newstate ) {
+                            newstate = next_alloc++;
+                           prev_states[newstate] = state;
+                            TRIE_LIST_PUSH( state, charid, newstate );
+                            transcount++;
+                        }
+                        state = newstate;
+                    } else {
+                        Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
+                   }
+               }
+           }
+            TRIE_HANDLE_WORD(state);
+
+        } /* end second pass */
+
+        /* next alloc is the NEXT state to be allocated */
+        trie->statecount = next_alloc;
+        trie->states = (reg_trie_state *)
+           PerlMemShared_realloc( trie->states,
+                                  next_alloc
+                                  * sizeof(reg_trie_state) );
+
+        /* and now dump it out before we compress it */
+        DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
+                                                        revcharmap, next_alloc,
+                                                        depth+1)
+        );
+
+        trie->trans = (reg_trie_trans *)
+           PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
+        {
+            U32 state;
+            U32 tp = 0;
+            U32 zp = 0;
+
+
+            for( state=1 ; state < next_alloc ; state ++ ) {
+                U32 base=0;
+
+                /*
+                DEBUG_TRIE_COMPILE_MORE_r(
+                    PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
+                );
+                */
+
+                if (trie->states[state].trans.list) {
+                    U16 minid=TRIE_LIST_ITEM( state, 1).forid;
+                    U16 maxid=minid;
+                   U16 idx;
+
+                    for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
+                       const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
+                       if ( forid < minid ) {
+                           minid=forid;
+                       } else if ( forid > maxid ) {
+                           maxid=forid;
+                       }
+                    }
+                    if ( transcount < tp + maxid - minid + 1) {
+                        transcount *= 2;
+                       trie->trans = (reg_trie_trans *)
+                           PerlMemShared_realloc( trie->trans,
+                                                    transcount
+                                                    * sizeof(reg_trie_trans) );
+                        Zero( trie->trans + (transcount / 2),
+                              transcount / 2,
+                              reg_trie_trans );
+                    }
+                    base = trie->uniquecharcount + tp - minid;
+                    if ( maxid == minid ) {
+                        U32 set = 0;
+                        for ( ; zp < tp ; zp++ ) {
+                            if ( ! trie->trans[ zp ].next ) {
+                                base = trie->uniquecharcount + zp - minid;
+                                trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
+                                                                   1).newstate;
+                                trie->trans[ zp ].check = state;
+                                set = 1;
+                                break;
+                            }
+                        }
+                        if ( !set ) {
+                            trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
+                                                                   1).newstate;
+                            trie->trans[ tp ].check = state;
+                            tp++;
+                            zp = tp;
+                        }
+                    } else {
+                        for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
+                            const U32 tid = base
+                                           - trie->uniquecharcount
+                                           + TRIE_LIST_ITEM( state, idx ).forid;
+                            trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
+                                                                idx ).newstate;
+                            trie->trans[ tid ].check = state;
+                        }
+                        tp += ( maxid - minid + 1 );
+                    }
+                    Safefree(trie->states[ state ].trans.list);
+                }
+                /*
+                DEBUG_TRIE_COMPILE_MORE_r(
+                    PerlIO_printf( Perl_debug_log, " base: %d\n",base);
+                );
+                */
+                trie->states[ state ].trans.base=base;
+            }
+            trie->lasttrans = tp + 1;
+        }
+    } else {
+        /*
+           Second Pass -- Flat Table Representation.
+
+           we dont use the 0 slot of either trans[] or states[] so we add 1 to
+           each.  We know that we will need Charcount+1 trans at most to store
+           the data (one row per char at worst case) So we preallocate both
+           structures assuming worst case.
+
+           We then construct the trie using only the .next slots of the entry
+           structs.
+
+           We use the .check field of the first entry of the node temporarily
+           to make compression both faster and easier by keeping track of how
+           many non zero fields are in the node.
+
+           Since trans are numbered from 1 any 0 pointer in the table is a FAIL
+           transition.
+
+           There are two terms at use here: state as a TRIE_NODEIDX() which is
+           a number representing the first entry of the node, and state as a
+           TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
+           and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
+           if there are 2 entrys per node. eg:
+
+             A B       A B
+          1. 2 4    1. 3 7
+          2. 0 3    3. 0 5
+          3. 0 0    5. 0 0
+          4. 0 0    7. 0 0
+
+           The table is internally in the right hand, idx form. However as we
+           also have to deal with the states array which is indexed by nodenum
+           we have to use TRIE_NODENUM() to convert.
+
+        */
+        DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
+            "%*sCompiling trie using table compiler\n",
+            (int)depth * 2 + 2, ""));
+
+       trie->trans = (reg_trie_trans *)
+           PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
+                                 * trie->uniquecharcount + 1,
+                                 sizeof(reg_trie_trans) );
+        trie->states = (reg_trie_state *)
+           PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
+                                 sizeof(reg_trie_state) );
+        next_alloc = trie->uniquecharcount + 1;
+
+
+        for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+
+            regnode *noper   = NEXTOPER( cur );
+           const U8 *uc     = (U8*)STRING( noper );
+            const U8 *e      = uc + STR_LEN( noper );
+
+            U32 state        = 1;         /* required init */
+
+            U16 charid       = 0;         /* sanity init */
+            U32 accept_state = 0;         /* sanity init */
+
+            U32 wordlen      = 0;         /* required init */
+
+            if (OP(noper) == NOTHING) {
+                regnode *noper_next= regnext(noper);
+                if (noper_next != tail && OP(noper_next) == flags) {
+                    noper = noper_next;
+                    uc= (U8*)STRING(noper);
+                    e= uc + STR_LEN(noper);
+                }
+            }
+
+            if ( OP(noper) != NOTHING ) {
+                for ( ; uc < e ; uc += len ) {
+
+                    TRIE_READ_CHAR;
+
+                    if ( uvc < 256 ) {
+                        charid = trie->charmap[ uvc ];
+                    } else {
+                        SV* const * const svpp = hv_fetch( widecharmap,
+                                                           (char*)&uvc,
+                                                           sizeof( UV ),
+                                                           0);
+                        charid = svpp ? (U16)SvIV(*svpp) : 0;
+                    }
+                    if ( charid ) {
+                        charid--;
+                        if ( !trie->trans[ state + charid ].next ) {
+                            trie->trans[ state + charid ].next = next_alloc;
+                            trie->trans[ state ].check++;
+                           prev_states[TRIE_NODENUM(next_alloc)]
+                                   = TRIE_NODENUM(state);
+                            next_alloc += trie->uniquecharcount;
+                        }
+                        state = trie->trans[ state + charid ].next;
+                    } else {
+                        Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
+                    }
+                    /* charid is now 0 if we dont know the char read, or
+                     * nonzero if we do */
+                }
+            }
+            accept_state = TRIE_NODENUM( state );
+            TRIE_HANDLE_WORD(accept_state);
+
+        } /* end second pass */
+
+        /* and now dump it out before we compress it */
+        DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
+                                                         revcharmap,
+                                                         next_alloc, depth+1));
+
+        {
+        /*
+           * Inplace compress the table.*
+
+           For sparse data sets the table constructed by the trie algorithm will
+           be mostly 0/FAIL transitions or to put it another way mostly empty.
+           (Note that leaf nodes will not contain any transitions.)
+
+           This algorithm compresses the tables by eliminating most such
+           transitions, at the cost of a modest bit of extra work during lookup:
+
+           - Each states[] entry contains a .base field which indicates the
+           index in the state[] array wheres its transition data is stored.
+
+           - If .base is 0 there are no valid transitions from that node.
+
+           - If .base is nonzero then charid is added to it to find an entry in
+           the trans array.
+
+           -If trans[states[state].base+charid].check!=state then the
+           transition is taken to be a 0/Fail transition. Thus if there are fail
+           transitions at the front of the node then the .base offset will point
+           somewhere inside the previous nodes data (or maybe even into a node
+           even earlier), but the .check field determines if the transition is
+           valid.
+
+           XXX - wrong maybe?
+           The following process inplace converts the table to the compressed
+           table: We first do not compress the root node 1,and mark all its
+           .check pointers as 1 and set its .base pointer as 1 as well. This
+           allows us to do a DFA construction from the compressed table later,
+           and ensures that any .base pointers we calculate later are greater
+           than 0.
+
+           - We set 'pos' to indicate the first entry of the second node.
+
+           - We then iterate over the columns of the node, finding the first and
+           last used entry at l and m. We then copy l..m into pos..(pos+m-l),
+           and set the .check pointers accordingly, and advance pos
+           appropriately and repreat for the next node. Note that when we copy
+           the next pointers we have to convert them from the original
+           NODEIDX form to NODENUM form as the former is not valid post
+           compression.
+
+           - If a node has no transitions used we mark its base as 0 and do not
+           advance the pos pointer.
+
+           - If a node only has one transition we use a second pointer into the
+           structure to fill in allocated fail transitions from other states.
+           This pointer is independent of the main pointer and scans forward
+           looking for null transitions that are allocated to a state. When it
+           finds one it writes the single transition into the "hole".  If the
+           pointer doesnt find one the single transition is appended as normal.
+
+           - Once compressed we can Renew/realloc the structures to release the
+           excess space.
+
+           See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
+           specifically Fig 3.47 and the associated pseudocode.
+
+           demq
+        */
+        const U32 laststate = TRIE_NODENUM( next_alloc );
+       U32 state, charid;
+        U32 pos = 0, zp=0;
+        trie->statecount = laststate;
+
+        for ( state = 1 ; state < laststate ; state++ ) {
+            U8 flag = 0;
+           const U32 stateidx = TRIE_NODEIDX( state );
+           const U32 o_used = trie->trans[ stateidx ].check;
+           U32 used = trie->trans[ stateidx ].check;
+            trie->trans[ stateidx ].check = 0;
+
+            for ( charid = 0;
+                  used && charid < trie->uniquecharcount;
+                  charid++ )
+            {
+                if ( flag || trie->trans[ stateidx + charid ].next ) {
+                    if ( trie->trans[ stateidx + charid ].next ) {
+                        if (o_used == 1) {
+                            for ( ; zp < pos ; zp++ ) {
+                                if ( ! trie->trans[ zp ].next ) {
+                                    break;
+                                }
+                            }
+                            trie->states[ state ].trans.base
+                                                    = zp
+                                                      + trie->uniquecharcount
+                                                      - charid ;
+                            trie->trans[ zp ].next
+                                = SAFE_TRIE_NODENUM( trie->trans[ stateidx
+                                                             + charid ].next );
+                            trie->trans[ zp ].check = state;
+                            if ( ++zp > pos ) pos = zp;
+                            break;
+                        }
+                        used--;
+                    }
+                    if ( !flag ) {
+                        flag = 1;
+                        trie->states[ state ].trans.base
+                                       = pos + trie->uniquecharcount - charid ;
+                    }
+                    trie->trans[ pos ].next
+                        = SAFE_TRIE_NODENUM(
+                                       trie->trans[ stateidx + charid ].next );
+                    trie->trans[ pos ].check = state;
+                    pos++;
+                }
+            }
+        }
+        trie->lasttrans = pos + 1;
+        trie->states = (reg_trie_state *)
+           PerlMemShared_realloc( trie->states, laststate
+                                  * sizeof(reg_trie_state) );
+        DEBUG_TRIE_COMPILE_MORE_r(
+            PerlIO_printf( Perl_debug_log,
+                "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
+                (int)depth * 2 + 2,"",
+                (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
+                       + 1 ),
+                (IV)next_alloc,
+                (IV)pos,
+                ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
+            );
+
+        } /* end table compress */
+    }
+    DEBUG_TRIE_COMPILE_MORE_r(
+            PerlIO_printf(Perl_debug_log,
+                "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
+                (int)depth * 2 + 2, "",
+                (UV)trie->statecount,
+                (UV)trie->lasttrans)
+    );
+    /* resize the trans array to remove unused space */
+    trie->trans = (reg_trie_trans *)
+       PerlMemShared_realloc( trie->trans, trie->lasttrans
+                              * sizeof(reg_trie_trans) );
+
+    {   /* Modify the program and insert the new TRIE node */
+        U8 nodetype =(U8)(flags & 0xFF);
+        char *str=NULL;
+
+#ifdef DEBUGGING
+        regnode *optimize = NULL;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+
+        U32 mjd_offset = 0;
+        U32 mjd_nodelen = 0;
+#endif /* RE_TRACK_PATTERN_OFFSETS */
+#endif /* DEBUGGING */
+        /*
+           This means we convert either the first branch or the first Exact,
+           depending on whether the thing following (in 'last') is a branch
+           or not and whther first is the startbranch (ie is it a sub part of
+           the alternation or is it the whole thing.)
+           Assuming its a sub part we convert the EXACT otherwise we convert
+           the whole branch sequence, including the first.
+         */
+        /* Find the node we are going to overwrite */
+        if ( first != startbranch || OP( last ) == BRANCH ) {
+            /* branch sub-chain */
+            NEXT_OFF( first ) = (U16)(last - first);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+            DEBUG_r({
+                mjd_offset= Node_Offset((convert));
+                mjd_nodelen= Node_Length((convert));
+            });
+#endif
+            /* whole branch chain */
+        }
+#ifdef RE_TRACK_PATTERN_OFFSETS
+        else {
+            DEBUG_r({
+                const  regnode *nop = NEXTOPER( convert );
+                mjd_offset= Node_Offset((nop));
+                mjd_nodelen= Node_Length((nop));
+            });
+        }
+        DEBUG_OPTIMISE_r(
+            PerlIO_printf(Perl_debug_log,
+                "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
+                (int)depth * 2 + 2, "",
+                (UV)mjd_offset, (UV)mjd_nodelen)
+        );
+#endif
+        /* But first we check to see if there is a common prefix we can
+           split out as an EXACT and put in front of the TRIE node.  */
+        trie->startstate= 1;
+        if ( trie->bitmap && !widecharmap && !trie->jump  ) {
+            U32 state;
+            for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
+                U32 ofs = 0;
+                I32 idx = -1;
+                U32 count = 0;
+                const U32 base = trie->states[ state ].trans.base;
+
+                if ( trie->states[state].wordnum )
+                        count = 1;
+
+                for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
+                    if ( ( base + ofs >= trie->uniquecharcount ) &&
+                         ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
+                         trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
+                    {
+                        if ( ++count > 1 ) {
+                            SV **tmp = av_fetch( revcharmap, ofs, 0);
+                           const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
+                            if ( state == 1 ) break;
+                            if ( count == 2 ) {
+                                Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
+                                DEBUG_OPTIMISE_r(
+                                    PerlIO_printf(Perl_debug_log,
+                                       "%*sNew Start State=%"UVuf" Class: [",
+                                        (int)depth * 2 + 2, "",
+                                        (UV)state));
+                               if (idx >= 0) {
+                                   SV ** const tmp = av_fetch( revcharmap, idx, 0);
+                                   const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
+
+                                    TRIE_BITMAP_SET(trie,*ch);
+                                    if ( folder )
+                                        TRIE_BITMAP_SET(trie, folder[ *ch ]);
+                                    DEBUG_OPTIMISE_r(
+                                        PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
+                                    );
+                               }
+                           }
+                           TRIE_BITMAP_SET(trie,*ch);
+                           if ( folder )
+                               TRIE_BITMAP_SET(trie,folder[ *ch ]);
+                           DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
+                       }
+                        idx = ofs;
+                   }
+                }
+                if ( count == 1 ) {
+                    SV **tmp = av_fetch( revcharmap, idx, 0);
+                    STRLEN len;
+                    char *ch = SvPV( *tmp, len );
+                    DEBUG_OPTIMISE_r({
+                        SV *sv=sv_newmortal();
+                        PerlIO_printf( Perl_debug_log,
+                           "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
+                            (int)depth * 2 + 2, "",
+                            (UV)state, (UV)idx,
+                            pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
+                               PL_colors[0], PL_colors[1],
+                               (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+                               PERL_PV_ESCAPE_FIRSTCHAR
+                            )
+                        );
+                    });
+                    if ( state==1 ) {
+                        OP( convert ) = nodetype;
+                        str=STRING(convert);
+                        STR_LEN(convert)=0;
+                    }
+                    STR_LEN(convert) += len;
+                    while (len--)
+                        *str++ = *ch++;
+               } else {
+#ifdef DEBUGGING
+                   if (state>1)
+                       DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
+#endif
+                   break;
+               }
+           }
+           trie->prefixlen = (state-1);
+            if (str) {
+                regnode *n = convert+NODE_SZ_STR(convert);
+                NEXT_OFF(convert) = NODE_SZ_STR(convert);
+                trie->startstate = state;
+                trie->minlen -= (state - 1);
+                trie->maxlen -= (state - 1);
+#ifdef DEBUGGING
+               /* At least the UNICOS C compiler choked on this
+                * being argument to DEBUG_r(), so let's just have
+                * it right here. */
+               if (
+#ifdef PERL_EXT_RE_BUILD
+                   1
+#else
+                   DEBUG_r_TEST
+#endif
+                   ) {
+                   regnode *fix = convert;
+                   U32 word = trie->wordcount;
+                   mjd_nodelen++;
+                   Set_Node_Offset_Length(convert, mjd_offset, state - 1);
+                   while( ++fix < n ) {
+                       Set_Node_Offset_Length(fix, 0, 0);
+                   }
+                   while (word--) {
+                       SV ** const tmp = av_fetch( trie_words, word, 0 );
+                       if (tmp) {
+                           if ( STR_LEN(convert) <= SvCUR(*tmp) )
+                               sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
+                           else
+                               sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
+                       }
+                   }
+               }
+#endif
+                if (trie->maxlen) {
+                    convert = n;
+               } else {
+                    NEXT_OFF(convert) = (U16)(tail - convert);
+                    DEBUG_r(optimize= n);
+                }
+            }
+        }
+        if (!jumper)
+            jumper = last;
+        if ( trie->maxlen ) {
+           NEXT_OFF( convert ) = (U16)(tail - convert);
+           ARG_SET( convert, data_slot );
+           /* Store the offset to the first unabsorbed branch in
+              jump[0], which is otherwise unused by the jump logic.
+              We use this when dumping a trie and during optimisation. */
+           if (trie->jump)
+               trie->jump[0] = (U16)(nextbranch - convert);
+
+            /* If the start state is not accepting (meaning there is no empty string/NOTHING)
+            *   and there is a bitmap
+            *   and the first "jump target" node we found leaves enough room
+            * then convert the TRIE node into a TRIEC node, with the bitmap
+            * embedded inline in the opcode - this is hypothetically faster.
+            */
+            if ( !trie->states[trie->startstate].wordnum
+                && trie->bitmap
+                && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
+            {
+                OP( convert ) = TRIEC;
+                Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
+                PerlMemShared_free(trie->bitmap);
+                trie->bitmap= NULL;
+            } else
+                OP( convert ) = TRIE;
+
+            /* store the type in the flags */
+            convert->flags = nodetype;
+            DEBUG_r({
+            optimize = convert
+                      + NODE_STEP_REGNODE
+                      + regarglen[ OP( convert ) ];
+            });
+            /* XXX We really should free up the resource in trie now,
+                   as we won't use them - (which resources?) dmq */
+        }
+        /* needed for dumping*/
+        DEBUG_r(if (optimize) {
+            regnode *opt = convert;
+
+            while ( ++opt < optimize) {
+                Set_Node_Offset_Length(opt,0,0);
+            }
+            /*
+                Try to clean up some of the debris left after the
+                optimisation.
+             */
+            while( optimize < jumper ) {
+                mjd_nodelen += Node_Length((optimize));
+                OP( optimize ) = OPTIMIZED;
+                Set_Node_Offset_Length(optimize,0,0);
+                optimize++;
+            }
+            Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
+        });
+    } /* end node insert */
+
+    /*  Finish populating the prev field of the wordinfo array.  Walk back
+     *  from each accept state until we find another accept state, and if
+     *  so, point the first word's .prev field at the second word. If the
+     *  second already has a .prev field set, stop now. This will be the
+     *  case either if we've already processed that word's accept state,
+     *  or that state had multiple words, and the overspill words were
+     *  already linked up earlier.
+     */
+    {
+       U16 word;
+       U32 state;
+       U16 prev;
+
+       for (word=1; word <= trie->wordcount; word++) {
+           prev = 0;
+           if (trie->wordinfo[word].prev)
+               continue;
+           state = trie->wordinfo[word].accept;
+           while (state) {
+               state = prev_states[state];
+               if (!state)
+                   break;
+               prev = trie->states[state].wordnum;
+               if (prev)
+                   break;
+           }
+           trie->wordinfo[word].prev = prev;
+       }
+       Safefree(prev_states);
+    }
+
+
+    /* and now dump out the compressed format */
+    DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
+
+    RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
+#ifdef DEBUGGING
+    RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
+    RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
+#else
+    SvREFCNT_dec_NN(revcharmap);
+#endif
+    return trie->jump
+           ? MADE_JUMP_TRIE
+           : trie->startstate>1
+             ? MADE_EXACT_TRIE
+             : MADE_TRIE;
+}
+
+STATIC regnode *
+S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
+{
+/* The Trie is constructed and compressed now so we can build a fail array if
+ * it's needed
+
+   This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
+   3.32 in the
+   "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
+   Ullman 1985/88
+   ISBN 0-201-10088-6
+
+   We find the fail state for each state in the trie, this state is the longest
+   proper suffix of the current state's 'word' that is also a proper prefix of
+   another word in our trie. State 1 represents the word '' and is thus the
+   default fail state. This allows the DFA not to have to restart after its
+   tried and failed a word at a given point, it simply continues as though it
+   had been matching the other word in the first place.
+   Consider
+      'abcdgu'=~/abcdefg|cdgu/
+   When we get to 'd' we are still matching the first word, we would encounter
+   'g' which would fail, which would bring us to the state representing 'd' in
+   the second word where we would try 'g' and succeed, proceeding to match
+   'cdgu'.
+ */
+ /* add a fail transition */
+    const U32 trie_offset = ARG(source);
+    reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
+    U32 *q;
+    const U32 ucharcount = trie->uniquecharcount;
+    const U32 numstates = trie->statecount;
+    const U32 ubound = trie->lasttrans + ucharcount;
+    U32 q_read = 0;
+    U32 q_write = 0;
+    U32 charid;
+    U32 base = trie->states[ 1 ].trans.base;
+    U32 *fail;
+    reg_ac_data *aho;
+    const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
+    regnode *stclass;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
+    PERL_UNUSED_CONTEXT;
+#ifndef DEBUGGING
+    PERL_UNUSED_ARG(depth);
+#endif
+
+    if ( OP(source) == TRIE ) {
+        struct regnode_1 *op = (struct regnode_1 *)
+            PerlMemShared_calloc(1, sizeof(struct regnode_1));
+        StructCopy(source,op,struct regnode_1);
+        stclass = (regnode *)op;
+    } else {
+        struct regnode_charclass *op = (struct regnode_charclass *)
+            PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
+        StructCopy(source,op,struct regnode_charclass);
+        stclass = (regnode *)op;
+    }
+    OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */
+
+    ARG_SET( stclass, data_slot );
+    aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
+    RExC_rxi->data->data[ data_slot ] = (void*)aho;
+    aho->trie=trie_offset;
+    aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
+    Copy( trie->states, aho->states, numstates, reg_trie_state );
+    Newxz( q, numstates, U32);
+    aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
+    aho->refcount = 1;
+    fail = aho->fail;
+    /* initialize fail[0..1] to be 1 so that we always have
+       a valid final fail state */
+    fail[ 0 ] = fail[ 1 ] = 1;
+
+    for ( charid = 0; charid < ucharcount ; charid++ ) {
+       const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
+       if ( newstate ) {
+            q[ q_write ] = newstate;
+            /* set to point at the root */
+            fail[ q[ q_write++ ] ]=1;
+        }
+    }
+    while ( q_read < q_write) {
+       const U32 cur = q[ q_read++ % numstates ];
+        base = trie->states[ cur ].trans.base;
+
+        for ( charid = 0 ; charid < ucharcount ; charid++ ) {
+           const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
+           if (ch_state) {
+                U32 fail_state = cur;
+                U32 fail_base;
+                do {
+                    fail_state = fail[ fail_state ];
+                    fail_base = aho->states[ fail_state ].trans.base;
+                } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
+
+                fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
+                fail[ ch_state ] = fail_state;
+                if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
+                {
+                        aho->states[ ch_state ].wordnum =  aho->states[ fail_state ].wordnum;
+                }
+                q[ q_write++ % numstates] = ch_state;
+            }
+        }
+    }
+    /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
+       when we fail in state 1, this allows us to use the
+       charclass scan to find a valid start char. This is based on the principle
+       that theres a good chance the string being searched contains lots of stuff
+       that cant be a start char.
+     */
+    fail[ 0 ] = fail[ 1 ] = 0;
+    DEBUG_TRIE_COMPILE_r({
+        PerlIO_printf(Perl_debug_log,
+                     "%*sStclass Failtable (%"UVuf" states): 0",
+                     (int)(depth * 2), "", (UV)numstates
+        );
+        for( q_read=1; q_read<numstates; q_read++ ) {
+            PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
+        }
+        PerlIO_printf(Perl_debug_log, "\n");
+    });
+    Safefree(q);
+    /*RExC_seen |= REG_TRIEDFA_SEEN;*/
+    return stclass;
+}
+
+
+#define DEBUG_PEEP(str,scan,depth) \
+    DEBUG_OPTIMISE_r({if (scan){ \
+       regnode *Next = regnext(scan); \
+       regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state); \
+       PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)", \
+           (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),\
+           Next ? (REG_NODE_NUM(Next)) : 0 ); \
+       DEBUG_SHOW_STUDY_FLAGS(flags," [ ","]");\
+       PerlIO_printf(Perl_debug_log, "\n"); \
+   }});
+
+/* The below joins as many adjacent EXACTish nodes as possible into a single
+ * one.  The regop may be changed if the node(s) contain certain sequences that
+ * require special handling.  The joining is only done if:
+ * 1) there is room in the current conglomerated node to entirely contain the
+ *    next one.
+ * 2) they are the exact same node type
+ *
+ * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
+ * these get optimized out
+ *
+ * If a node is to match under /i (folded), the number of characters it matches
+ * can be different than its character length if it contains a multi-character
+ * fold.  *min_subtract is set to the total delta number of characters of the
+ * input nodes.
+ *
+ * And *unfolded_multi_char is set to indicate whether or not the node contains
+ * an unfolded multi-char fold.  This happens when whether the fold is valid or
+ * not won't be known until runtime; namely for EXACTF nodes that contain LATIN
+ * SMALL LETTER SHARP S, as only if the target string being matched against
+ * turns out to be UTF-8 is that fold valid; and also for EXACTFL nodes whose
+ * folding rules depend on the locale in force at runtime.  (Multi-char folds
+ * whose components are all above the Latin1 range are not run-time locale
+ * dependent, and have already been folded by the time this function is
+ * called.)
+ *
+ * This is as good a place as any to discuss the design of handling these
+ * multi-character fold sequences.  It's been wrong in Perl for a very long
+ * time.  There are three code points in Unicode whose multi-character folds
+ * were long ago discovered to mess things up.  The previous designs for
+ * dealing with these involved assigning a special node for them.  This
+ * approach doesn't always work, as evidenced by this example:
+ *      "\xDFs" =~ /s\xDF/ui    # Used to fail before these patches
+ * Both sides fold to "sss", but if the pattern is parsed to create a node that
+ * would match just the \xDF, it won't be able to handle the case where a
+ * successful match would have to cross the node's boundary.  The new approach
+ * that hopefully generally solves the problem generates an EXACTFU_SS node
+ * that is "sss" in this case.
+ *
+ * It turns out that there are problems with all multi-character folds, and not
+ * just these three.  Now the code is general, for all such cases.  The
+ * approach taken is:
+ * 1)   This routine examines each EXACTFish node that could contain multi-
+ *      character folded sequences.  Since a single character can fold into
+ *      such a sequence, the minimum match length for this node is less than
+ *      the number of characters in the node.  This routine returns in
+ *      *min_subtract how many characters to subtract from the the actual
+ *      length of the string to get a real minimum match length; it is 0 if
+ *      there are no multi-char foldeds.  This delta is used by the caller to
+ *      adjust the min length of the match, and the delta between min and max,
+ *      so that the optimizer doesn't reject these possibilities based on size
+ *      constraints.
+ * 2)   For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
+ *      is used for an EXACTFU node that contains at least one "ss" sequence in
+ *      it.  For non-UTF-8 patterns and strings, this is the only case where
+ *      there is a possible fold length change.  That means that a regular
+ *      EXACTFU node without UTF-8 involvement doesn't have to concern itself
+ *      with length changes, and so can be processed faster.  regexec.c takes
+ *      advantage of this.  Generally, an EXACTFish node that is in UTF-8 is
+ *      pre-folded by regcomp.c (except EXACTFL, some of whose folds aren't
+ *      known until runtime).  This saves effort in regex matching.  However,
+ *      the pre-folding isn't done for non-UTF8 patterns because the fold of
+ *      the MICRO SIGN requires UTF-8, and we don't want to slow things down by
+ *      forcing the pattern into UTF8 unless necessary.  Also what EXACTF (and,
+ *      again, EXACTFL) nodes fold to isn't known until runtime.  The fold
+ *      possibilities for the non-UTF8 patterns are quite simple, except for
+ *      the sharp s.  All the ones that don't involve a UTF-8 target string are
+ *      members of a fold-pair, and arrays are set up for all of them so that
+ *      the other member of the pair can be found quickly.  Code elsewhere in
+ *      this file makes sure that in EXACTFU nodes, the sharp s gets folded to
+ *      'ss', even if the pattern isn't UTF-8.  This avoids the issues
+ *      described in the next item.
+ * 3)   A problem remains for unfolded multi-char folds. (These occur when the
+ *      validity of the fold won't be known until runtime, and so must remain
+ *      unfolded for now.  This happens for the sharp s in EXACTF and EXACTFA
+ *      nodes when the pattern isn't in UTF-8.  (Note, BTW, that there cannot
+ *      be an EXACTF node with a UTF-8 pattern.)  They also occur for various
+ *      folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
+ *      The reason this is a problem is that the optimizer part of regexec.c
+ *      (probably unwittingly, in Perl_regexec_flags()) makes an assumption
+ *      that a character in the pattern corresponds to at most a single
+ *      character in the target string.  (And I do mean character, and not byte
+ *      here, unlike other parts of the documentation that have never been
+ *      updated to account for multibyte Unicode.)  sharp s in EXACTF and
+ *      EXACTFL nodes can match the two character string 'ss'; in EXACTFA nodes
+ *      it can match "\x{17F}\x{17F}".  These, along with other ones in EXACTFL
+ *      nodes, violate the assumption, and they are the only instances where it
+ *      is violated.  I'm reluctant to try to change the assumption, as the
+ *      code involved is impenetrable to me (khw), so instead the code here
+ *      punts.  This routine examines EXACTFL nodes, and (when the pattern
+ *      isn't UTF-8) EXACTF and EXACTFA for such unfolded folds, and returns a
+ *      boolean indicating whether or not the node contains such a fold.  When
+ *      it is true, the caller sets a flag that later causes the optimizer in
+ *      this file to not set values for the floating and fixed string lengths,
+ *      and thus avoids the optimizer code in regexec.c that makes the invalid
+ *      assumption.  Thus, there is no optimization based on string lengths for
+ *      EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
+ *      EXACTF and EXACTFA nodes that contain the sharp s.  (The reason the
+ *      assumption is wrong only in these cases is that all other non-UTF-8
+ *      folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
+ *      their expanded versions.  (Again, we can't prefold sharp s to 'ss' in
+ *      EXACTF nodes because we don't know at compile time if it actually
+ *      matches 'ss' or not.  For EXACTF nodes it will match iff the target
+ *      string is in UTF-8.  This is in contrast to EXACTFU nodes, where it
+ *      always matches; and EXACTFA where it never does.  In an EXACTFA node in
+ *      a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
+ *      problem; but in a non-UTF8 pattern, folding it to that above-Latin1
+ *      string would require the pattern to be forced into UTF-8, the overhead
+ *      of which we want to avoid.  Similarly the unfolded multi-char folds in
+ *      EXACTFL nodes will match iff the locale at the time of match is a UTF-8
+ *      locale.)
+ *
+ *      Similarly, the code that generates tries doesn't currently handle
+ *      not-already-folded multi-char folds, and it looks like a pain to change
+ *      that.  Therefore, trie generation of EXACTFA nodes with the sharp s
+ *      doesn't work.  Instead, such an EXACTFA is turned into a new regnode,
+ *      EXACTFA_NO_TRIE, which the trie code knows not to handle.  Most people
+ *      using /iaa matching will be doing so almost entirely with ASCII
+ *      strings, so this should rarely be encountered in practice */
+
+#define JOIN_EXACT(scan,min_subtract,unfolded_multi_char, flags) \
+    if (PL_regkind[OP(scan)] == EXACT) \
+        join_exact(pRExC_state,(scan),(min_subtract),unfolded_multi_char, (flags),NULL,depth+1)
+
+STATIC U32
+S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan,
+                   UV *min_subtract, bool *unfolded_multi_char,
+                   U32 flags,regnode *val, U32 depth)
+{
+    /* Merge several consecutive EXACTish nodes into one. */
+    regnode *n = regnext(scan);
+    U32 stringok = 1;
+    regnode *next = scan + NODE_SZ_STR(scan);
+    U32 merged = 0;
+    U32 stopnow = 0;
+#ifdef DEBUGGING
+    regnode *stop = scan;
+    GET_RE_DEBUG_FLAGS_DECL;
+#else
+    PERL_UNUSED_ARG(depth);
+#endif
+
+    PERL_ARGS_ASSERT_JOIN_EXACT;
+#ifndef EXPERIMENTAL_INPLACESCAN
+    PERL_UNUSED_ARG(flags);
+    PERL_UNUSED_ARG(val);
+#endif
+    DEBUG_PEEP("join",scan,depth);
+
+    /* Look through the subsequent nodes in the chain.  Skip NOTHING, merge
+     * EXACT ones that are mergeable to the current one. */
+    while (n
+           && (PL_regkind[OP(n)] == NOTHING
+               || (stringok && OP(n) == OP(scan)))
+           && NEXT_OFF(n)
+           && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
+    {
+
+        if (OP(n) == TAIL || n > next)
+            stringok = 0;
+        if (PL_regkind[OP(n)] == NOTHING) {
+            DEBUG_PEEP("skip:",n,depth);
+            NEXT_OFF(scan) += NEXT_OFF(n);
+            next = n + NODE_STEP_REGNODE;
+#ifdef DEBUGGING
+            if (stringok)
+                stop = n;
+#endif
+            n = regnext(n);
+        }
+        else if (stringok) {
+            const unsigned int oldl = STR_LEN(scan);
+            regnode * const nnext = regnext(n);
+
+            /* XXX I (khw) kind of doubt that this works on platforms (should
+             * Perl ever run on one) where U8_MAX is above 255 because of lots
+             * of other assumptions */
+            /* Don't join if the sum can't fit into a single node */
+            if (oldl + STR_LEN(n) > U8_MAX)
+                break;
+
+            DEBUG_PEEP("merg",n,depth);
+            merged++;
+
+            NEXT_OFF(scan) += NEXT_OFF(n);
+            STR_LEN(scan) += STR_LEN(n);
+            next = n + NODE_SZ_STR(n);
+            /* Now we can overwrite *n : */
+            Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
+#ifdef DEBUGGING
+            stop = next - 1;
+#endif
+            n = nnext;
+            if (stopnow) break;
+        }
+
+#ifdef EXPERIMENTAL_INPLACESCAN
+       if (flags && !NEXT_OFF(n)) {
+           DEBUG_PEEP("atch", val, depth);
+           if (reg_off_by_arg[OP(n)]) {
+               ARG_SET(n, val - n);
+           }
+           else {
+               NEXT_OFF(n) = val - n;
+           }
+           stopnow = 1;
+       }
+#endif
+    }
+
+    *min_subtract = 0;
+    *unfolded_multi_char = FALSE;
+
+    /* Here, all the adjacent mergeable EXACTish nodes have been merged.  We
+     * can now analyze for sequences of problematic code points.  (Prior to
+     * this final joining, sequences could have been split over boundaries, and
+     * hence missed).  The sequences only happen in folding, hence for any
+     * non-EXACT EXACTish node */
+    if (OP(scan) != EXACT && OP(scan) != EXACTL) {
+        U8* s0 = (U8*) STRING(scan);
+        U8* s = s0;
+        U8* s_end = s0 + STR_LEN(scan);
+
+        int total_count_delta = 0;  /* Total delta number of characters that
+                                       multi-char folds expand to */
+
+       /* One pass is made over the node's string looking for all the
+        * possibilities.  To avoid some tests in the loop, there are two main
+        * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
+        * non-UTF-8 */
+       if (UTF) {
+            U8* folded = NULL;
+
+            if (OP(scan) == EXACTFL) {
+                U8 *d;
+
+                /* An EXACTFL node would already have been changed to another
+                 * node type unless there is at least one character in it that
+                 * is problematic; likely a character whose fold definition
+                 * won't be known until runtime, and so has yet to be folded.
+                 * For all but the UTF-8 locale, folds are 1-1 in length, but
+                 * to handle the UTF-8 case, we need to create a temporary
+                 * folded copy using UTF-8 locale rules in order to analyze it.
+                 * This is because our macros that look to see if a sequence is
+                 * a multi-char fold assume everything is folded (otherwise the
+                 * tests in those macros would be too complicated and slow).
+                 * Note that here, the non-problematic folds will have already
+                 * been done, so we can just copy such characters.  We actually
+                 * don't completely fold the EXACTFL string.  We skip the
+                 * unfolded multi-char folds, as that would just create work
+                 * below to figure out the size they already are */
+
+                Newx(folded, UTF8_MAX_FOLD_CHAR_EXPAND * STR_LEN(scan) + 1, U8);
+                d = folded;
+                while (s < s_end) {
+                    STRLEN s_len = UTF8SKIP(s);
+                    if (! is_PROBLEMATIC_LOCALE_FOLD_utf8(s)) {
+                        Copy(s, d, s_len, U8);
+                        d += s_len;
+                    }
+                    else if (is_FOLDS_TO_MULTI_utf8(s)) {
+                        *unfolded_multi_char = TRUE;
+                        Copy(s, d, s_len, U8);
+                        d += s_len;
+                    }
+                    else if (isASCII(*s)) {
+                        *(d++) = toFOLD(*s);
+                    }
+                    else {
+                        STRLEN len;
+                        _to_utf8_fold_flags(s, d, &len, FOLD_FLAGS_FULL);
+                        d += len;
+                    }
+                    s += s_len;
+                }
+
+                /* Point the remainder of the routine to look at our temporary
+                 * folded copy */
+                s = folded;
+                s_end = d;
+            } /* End of creating folded copy of EXACTFL string */
+
+            /* Examine the string for a multi-character fold sequence.  UTF-8
+             * patterns have all characters pre-folded by the time this code is
+             * executed */
+            while (s < s_end - 1) /* Can stop 1 before the end, as minimum
+                                     length sequence we are looking for is 2 */
+           {
+                int count = 0;  /* How many characters in a multi-char fold */
+                int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
+                if (! len) {    /* Not a multi-char fold: get next char */
+                    s += UTF8SKIP(s);
+                    continue;
+                }
+
+                /* Nodes with 'ss' require special handling, except for
+                 * EXACTFA-ish for which there is no multi-char fold to this */
+                if (len == 2 && *s == 's' && *(s+1) == 's'
+                    && OP(scan) != EXACTFA
+                    && OP(scan) != EXACTFA_NO_TRIE)
+                {
+                    count = 2;
+                    if (OP(scan) != EXACTFL) {
+                        OP(scan) = EXACTFU_SS;
+                    }
+                    s += 2;
+                }
+                else { /* Here is a generic multi-char fold. */
+                    U8* multi_end  = s + len;
+
+                    /* Count how many characters are in it.  In the case of
+                     * /aa, no folds which contain ASCII code points are
+                     * allowed, so check for those, and skip if found. */
+                    if (OP(scan) != EXACTFA && OP(scan) != EXACTFA_NO_TRIE) {
+                        count = utf8_length(s, multi_end);
+                        s = multi_end;
+                    }
+                    else {
+                        while (s < multi_end) {
+                            if (isASCII(*s)) {
+                                s++;
+                                goto next_iteration;
+                            }
+                            else {
+                                s += UTF8SKIP(s);
+                            }
+                            count++;
+                        }
+                    }
+                }
+
+                /* The delta is how long the sequence is minus 1 (1 is how long
+                 * the character that folds to the sequence is) */
+                total_count_delta += count - 1;
+              next_iteration: ;
+           }
+
+            /* We created a temporary folded copy of the string in EXACTFL
+             * nodes.  Therefore we need to be sure it doesn't go below zero,
+             * as the real string could be shorter */
+            if (OP(scan) == EXACTFL) {
+                int total_chars = utf8_length((U8*) STRING(scan),
+                                           (U8*) STRING(scan) + STR_LEN(scan));
+                if (total_count_delta > total_chars) {
+                    total_count_delta = total_chars;
+                }
+            }
+
+            *min_subtract += total_count_delta;
+            Safefree(folded);
+       }
+       else if (OP(scan) == EXACTFA) {
+
+            /* Non-UTF-8 pattern, EXACTFA node.  There can't be a multi-char
+             * fold to the ASCII range (and there are no existing ones in the
+             * upper latin1 range).  But, as outlined in the comments preceding
+             * this function, we need to flag any occurrences of the sharp s.
+             * This character forbids trie formation (because of added
+             * complexity) */
+           while (s < s_end) {
+                if (*s == LATIN_SMALL_LETTER_SHARP_S) {
+                    OP(scan) = EXACTFA_NO_TRIE;
+                    *unfolded_multi_char = TRUE;
+                    break;
+                }
+                s++;
+                continue;
+            }
+        }
+       else {
+
+            /* Non-UTF-8 pattern, not EXACTFA node.  Look for the multi-char
+             * folds that are all Latin1.  As explained in the comments
+             * preceding this function, we look also for the sharp s in EXACTF
+             * and EXACTFL nodes; it can be in the final position.  Otherwise
+             * we can stop looking 1 byte earlier because have to find at least
+             * two characters for a multi-fold */
+           const U8* upper = (OP(scan) == EXACTF || OP(scan) == EXACTFL)
+                              ? s_end
+                              : s_end -1;
+
+           while (s < upper) {
+                int len = is_MULTI_CHAR_FOLD_latin1_safe(s, s_end);
+                if (! len) {    /* Not a multi-char fold. */
+                    if (*s == LATIN_SMALL_LETTER_SHARP_S
+                        && (OP(scan) == EXACTF || OP(scan) == EXACTFL))
+                    {
+                        *unfolded_multi_char = TRUE;
+                    }
+                    s++;
+                    continue;
+                }
+
+                if (len == 2
+                    && isALPHA_FOLD_EQ(*s, 's')
+                    && isALPHA_FOLD_EQ(*(s+1), 's'))
+                {
+
+                    /* EXACTF nodes need to know that the minimum length
+                     * changed so that a sharp s in the string can match this
+                     * ss in the pattern, but they remain EXACTF nodes, as they
+                     * won't match this unless the target string is is UTF-8,
+                     * which we don't know until runtime.  EXACTFL nodes can't
+                     * transform into EXACTFU nodes */
+                    if (OP(scan) != EXACTF && OP(scan) != EXACTFL) {
+                        OP(scan) = EXACTFU_SS;
+                    }
+               }
+
+                *min_subtract += len - 1;
+                s += len;
+           }
+       }
+    }
+
+#ifdef DEBUGGING
+    /* Allow dumping but overwriting the collection of skipped
+     * ops and/or strings with fake optimized ops */
+    n = scan + NODE_SZ_STR(scan);
+    while (n <= stop) {
+       OP(n) = OPTIMIZED;
+       FLAGS(n) = 0;
+       NEXT_OFF(n) = 0;
+        n++;
+    }
+#endif
+    DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
+    return stopnow;
+}
+
+/* REx optimizer.  Converts nodes into quicker variants "in place".
+   Finds fixed substrings.  */
+
+/* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
+   to the position after last scanned or to NULL. */
+
+#define INIT_AND_WITHP \
+    assert(!and_withp); \
+    Newx(and_withp,1, regnode_ssc); \
+    SAVEFREEPV(and_withp)
+
+
+static void
+S_unwind_scan_frames(pTHX_ const void *p)
+{
+    scan_frame *f= (scan_frame *)p;
+    do {
+        scan_frame *n= f->next_frame;
+        Safefree(f);
+        f= n;
+    } while (f);
+}
+
+
+STATIC SSize_t
+S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
+                        SSize_t *minlenp, SSize_t *deltap,
+                       regnode *last,
+                       scan_data_t *data,
+                       I32 stopparen,
+                        U32 recursed_depth,
+                       regnode_ssc *and_withp,
+                       U32 flags, U32 depth)
+                       /* scanp: Start here (read-write). */
+                       /* deltap: Write maxlen-minlen here. */
+                       /* last: Stop before this one. */
+                       /* data: string data about the pattern */
+                       /* stopparen: treat close N as END */
+                       /* recursed: which subroutines have we recursed into */
+                       /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
+{
+    /* There must be at least this number of characters to match */
+    SSize_t min = 0;
+    I32 pars = 0, code;
+    regnode *scan = *scanp, *next;
+    SSize_t delta = 0;
+    int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
+    int is_inf_internal = 0;           /* The studied chunk is infinite */
+    I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
+    scan_data_t data_fake;
+    SV *re_trie_maxbuff = NULL;
+    regnode *first_non_open = scan;
+    SSize_t stopmin = SSize_t_MAX;
+    scan_frame *frame = NULL;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_STUDY_CHUNK;
+
+
+    if ( depth == 0 ) {
+        while (first_non_open && OP(first_non_open) == OPEN)
+            first_non_open=regnext(first_non_open);
+    }
+
+
+  fake_study_recurse:
+    DEBUG_r(
+        RExC_study_chunk_recursed_count++;
+    );
+    DEBUG_OPTIMISE_MORE_r(
+    {
+        PerlIO_printf(Perl_debug_log,
+            "%*sstudy_chunk stopparen=%ld recursed_count=%lu depth=%lu recursed_depth=%lu scan=%p last=%p",
+            (int)(depth*2), "", (long)stopparen,
+            (unsigned long)RExC_study_chunk_recursed_count,
+            (unsigned long)depth, (unsigned long)recursed_depth,
+            scan,
+            last);
+        if (recursed_depth) {
+            U32 i;
+            U32 j;
+            for ( j = 0 ; j < recursed_depth ; j++ ) {
+                for ( i = 0 ; i < (U32)RExC_npar ; i++ ) {
+                    if (
+                        PAREN_TEST(RExC_study_chunk_recursed +
+                                   ( j * RExC_study_chunk_recursed_bytes), i )
+                        && (
+                            !j ||
+                            !PAREN_TEST(RExC_study_chunk_recursed +
+                                   (( j - 1 ) * RExC_study_chunk_recursed_bytes), i)
+                        )
+                    ) {
+                        PerlIO_printf(Perl_debug_log," %d",(int)i);
+                        break;
+                    }
+                }
+                if ( j + 1 < recursed_depth ) {
+                    PerlIO_printf(Perl_debug_log, ",");
+                }
+            }
+        }
+        PerlIO_printf(Perl_debug_log,"\n");
+    }
+    );
+    while ( scan && OP(scan) != END && scan < last ){
+        UV min_subtract = 0;    /* How mmany chars to subtract from the minimum
+                                   node length to get a real minimum (because
+                                   the folded version may be shorter) */
+       bool unfolded_multi_char = FALSE;
+       /* Peephole optimizer: */
+        DEBUG_STUDYDATA("Peep:", data, depth);
+        DEBUG_PEEP("Peep", scan, depth);
+
+
+        /* The reason we do this here we need to deal with things like /(?:f)(?:o)(?:o)/
+         * which cant be dealt with by the normal EXACT parsing code, as each (?:..) is handled
+         * by a different invocation of reg() -- Yves
+         */
+        JOIN_EXACT(scan,&min_subtract, &unfolded_multi_char, 0);
+
+       /* Follow the next-chain of the current node and optimize
+          away all the NOTHINGs from it.  */
+       if (OP(scan) != CURLYX) {
+           const int max = (reg_off_by_arg[OP(scan)]
+                      ? I32_MAX
+                      /* I32 may be smaller than U16 on CRAYs! */
+                      : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
+           int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
+           int noff;
+           regnode *n = scan;
+
+           /* Skip NOTHING and LONGJMP. */
+           while ((n = regnext(n))
+                  && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
+                      || ((OP(n) == LONGJMP) && (noff = ARG(n))))
+                  && off + noff < max)
+               off += noff;
+           if (reg_off_by_arg[OP(scan)])
+               ARG(scan) = off;
+           else
+               NEXT_OFF(scan) = off;
+       }
+
+       /* The principal pseudo-switch.  Cannot be a switch, since we
+          look into several different things.  */
+        if ( OP(scan) == DEFINEP ) {
+            SSize_t minlen = 0;
+            SSize_t deltanext = 0;
+            SSize_t fake_last_close = 0;
+            I32 f = SCF_IN_DEFINE;
+
+            StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+            scan = regnext(scan);
+            assert( OP(scan) == IFTHEN );
+            DEBUG_PEEP("expect IFTHEN", scan, depth);
+
+            data_fake.last_closep= &fake_last_close;
+            minlen = *minlenp;
+            next = regnext(scan);
+            scan = NEXTOPER(NEXTOPER(scan));
+            DEBUG_PEEP("scan", scan, depth);
+            DEBUG_PEEP("next", next, depth);
+
+            /* we suppose the run is continuous, last=next...
+             * NOTE we dont use the return here! */
+            (void)study_chunk(pRExC_state, &scan, &minlen,
+                              &deltanext, next, &data_fake, stopparen,
+                              recursed_depth, NULL, f, depth+1);
+
+            scan = next;
+        } else
+        if (
+            OP(scan) == BRANCH  ||
+            OP(scan) == BRANCHJ ||
+            OP(scan) == IFTHEN
+        ) {
+           next = regnext(scan);
+           code = OP(scan);
+
+            /* The op(next)==code check below is to see if we
+             * have "BRANCH-BRANCH", "BRANCHJ-BRANCHJ", "IFTHEN-IFTHEN"
+             * IFTHEN is special as it might not appear in pairs.
+             * Not sure whether BRANCH-BRANCHJ is possible, regardless
+             * we dont handle it cleanly. */
+           if (OP(next) == code || code == IFTHEN) {
+                /* NOTE - There is similar code to this block below for
+                 * handling TRIE nodes on a re-study.  If you change stuff here
+                 * check there too. */
+               SSize_t max1 = 0, min1 = SSize_t_MAX, num = 0;
+               regnode_ssc accum;
+               regnode * const startbranch=scan;
+
+                if (flags & SCF_DO_SUBSTR) {
+                    /* Cannot merge strings after this. */
+                    scan_commit(pRExC_state, data, minlenp, is_inf);
+                }
+
+                if (flags & SCF_DO_STCLASS)
+                   ssc_init_zero(pRExC_state, &accum);
+
+               while (OP(scan) == code) {
+                   SSize_t deltanext, minnext, fake;
+                   I32 f = 0;
+                   regnode_ssc this_class;
+
+                    DEBUG_PEEP("Branch", scan, depth);
+
+                   num++;
+                    StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+                   if (data) {
+                       data_fake.whilem_c = data->whilem_c;
+                       data_fake.last_closep = data->last_closep;
+                   }
+                   else
+                       data_fake.last_closep = &fake;
+
+                   data_fake.pos_delta = delta;
+                   next = regnext(scan);
+
+                    scan = NEXTOPER(scan); /* everything */
+                    if (code != BRANCH)    /* everything but BRANCH */
+                       scan = NEXTOPER(scan);
+
+                   if (flags & SCF_DO_STCLASS) {
+                       ssc_init(pRExC_state, &this_class);
+                       data_fake.start_class = &this_class;
+                       f = SCF_DO_STCLASS_AND;
+                   }
+                   if (flags & SCF_WHILEM_VISITED_POS)
+                       f |= SCF_WHILEM_VISITED_POS;
+
+                   /* we suppose the run is continuous, last=next...*/
+                   minnext = study_chunk(pRExC_state, &scan, minlenp,
+                                      &deltanext, next, &data_fake, stopparen,
+                                      recursed_depth, NULL, f,depth+1);
+
+                   if (min1 > minnext)
+                       min1 = minnext;
+                   if (deltanext == SSize_t_MAX) {
+                       is_inf = is_inf_internal = 1;
+                       max1 = SSize_t_MAX;
+                   } else if (max1 < minnext + deltanext)
+                       max1 = minnext + deltanext;
+                   scan = next;
+                   if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+                       pars++;
+                   if (data_fake.flags & SCF_SEEN_ACCEPT) {
+                       if ( stopmin > minnext)
+                           stopmin = min + min1;
+                       flags &= ~SCF_DO_SUBSTR;
+                       if (data)
+                           data->flags |= SCF_SEEN_ACCEPT;
+                   }
+                   if (data) {
+                       if (data_fake.flags & SF_HAS_EVAL)
+                           data->flags |= SF_HAS_EVAL;
+                       data->whilem_c = data_fake.whilem_c;
+                   }
+                   if (flags & SCF_DO_STCLASS)
+                       ssc_or(pRExC_state, &accum, (regnode_charclass*)&this_class);
+               }
+               if (code == IFTHEN && num < 2) /* Empty ELSE branch */
+                   min1 = 0;
+               if (flags & SCF_DO_SUBSTR) {
+                   data->pos_min += min1;
+                   if (data->pos_delta >= SSize_t_MAX - (max1 - min1))
+                       data->pos_delta = SSize_t_MAX;
+                   else
+                       data->pos_delta += max1 - min1;
+                   if (max1 != min1 || is_inf)
+                       data->longest = &(data->longest_float);
+               }
+               min += min1;
+               if (delta == SSize_t_MAX
+                || SSize_t_MAX - delta - (max1 - min1) < 0)
+                   delta = SSize_t_MAX;
+               else
+                   delta += max1 - min1;
+               if (flags & SCF_DO_STCLASS_OR) {
+                   ssc_or(pRExC_state, data->start_class, (regnode_charclass*) &accum);
+                   if (min1) {
+                       ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+                       flags &= ~SCF_DO_STCLASS;
+                   }
+               }
+               else if (flags & SCF_DO_STCLASS_AND) {
+                   if (min1) {
+                       ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
+                       flags &= ~SCF_DO_STCLASS;
+                   }
+                   else {
+                       /* Switch to OR mode: cache the old value of
+                        * data->start_class */
+                       INIT_AND_WITHP;
+                       StructCopy(data->start_class, and_withp, regnode_ssc);
+                       flags &= ~SCF_DO_STCLASS_AND;
+                       StructCopy(&accum, data->start_class, regnode_ssc);
+                       flags |= SCF_DO_STCLASS_OR;
+                   }
+               }
+
+                if (PERL_ENABLE_TRIE_OPTIMISATION &&
+                        OP( startbranch ) == BRANCH )
+                {
+               /* demq.
+
+                   Assuming this was/is a branch we are dealing with: 'scan'
+                   now points at the item that follows the branch sequence,
+                   whatever it is. We now start at the beginning of the
+                   sequence and look for subsequences of
+
+                  BRANCH->EXACT=>x1
+                  BRANCH->EXACT=>x2
+                  tail
+
+                   which would be constructed from a pattern like
+                   /A|LIST|OF|WORDS/
+
+                  If we can find such a subsequence we need to turn the first
+                  element into a trie and then add the subsequent branch exact
+                  strings to the trie.
+
+                  We have two cases
+
+                     1. patterns where the whole set of branches can be
+                        converted.
+
+                    2. patterns where only a subset can be converted.
+
+                  In case 1 we can replace the whole set with a single regop
+                  for the trie. In case 2 we need to keep the start and end
+                  branches so
+
+                    'BRANCH EXACT; BRANCH EXACT; BRANCH X'
+                    becomes BRANCH TRIE; BRANCH X;
+
+                 There is an additional case, that being where there is a
+                 common prefix, which gets split out into an EXACT like node
+                 preceding the TRIE node.
+
+                 If x(1..n)==tail then we can do a simple trie, if not we make
+                 a "jump" trie, such that when we match the appropriate word
+                 we "jump" to the appropriate tail node. Essentially we turn
+                 a nested if into a case structure of sorts.
+
+               */
+
+                   int made=0;
+                   if (!re_trie_maxbuff) {
+                       re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
+                       if (!SvIOK(re_trie_maxbuff))
+                           sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
+                   }
+                    if ( SvIV(re_trie_maxbuff)>=0  ) {
+                        regnode *cur;
+                        regnode *first = (regnode *)NULL;
+                        regnode *last = (regnode *)NULL;
+                        regnode *tail = scan;
+                        U8 trietype = 0;
+                        U32 count=0;
+
+                        /* var tail is used because there may be a TAIL
+                           regop in the way. Ie, the exacts will point to the
+                           thing following the TAIL, but the last branch will
+                           point at the TAIL. So we advance tail. If we
+                           have nested (?:) we may have to move through several
+                           tails.
+                         */
+
+                        while ( OP( tail ) == TAIL ) {
+                            /* this is the TAIL generated by (?:) */
+                            tail = regnext( tail );
+                        }
+
+
+                        DEBUG_TRIE_COMPILE_r({
+                            regprop(RExC_rx, RExC_mysv, tail, NULL, pRExC_state);
+                            PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
+                              (int)depth * 2 + 2, "",
+                              "Looking for TRIE'able sequences. Tail node is: ",
+                              SvPV_nolen_const( RExC_mysv )
+                            );
+                        });
+
+                        /*
+
+                            Step through the branches
+                                cur represents each branch,
+                                noper is the first thing to be matched as part
+                                      of that branch
+                                noper_next is the regnext() of that node.
+
+                            We normally handle a case like this
+                            /FOO[xyz]|BAR[pqr]/ via a "jump trie" but we also
+                            support building with NOJUMPTRIE, which restricts
+                            the trie logic to structures like /FOO|BAR/.
+
+                            If noper is a trieable nodetype then the branch is
+                            a possible optimization target. If we are building
+                            under NOJUMPTRIE then we require that noper_next is
+                            the same as scan (our current position in the regex
+                            program).
+
+                            Once we have two or more consecutive such branches
+                            we can create a trie of the EXACT's contents and
+                            stitch it in place into the program.
+
+                            If the sequence represents all of the branches in
+                            the alternation we replace the entire thing with a
+                            single TRIE node.
+
+                            Otherwise when it is a subsequence we need to
+                            stitch it in place and replace only the relevant
+                            branches. This means the first branch has to remain
+                            as it is used by the alternation logic, and its
+                            next pointer, and needs to be repointed at the item
+                            on the branch chain following the last branch we
+                            have optimized away.
+
+                            This could be either a BRANCH, in which case the
+                            subsequence is internal, or it could be the item
+                            following the branch sequence in which case the
+                            subsequence is at the end (which does not
+                            necessarily mean the first node is the start of the
+                            alternation).
+
+                            TRIE_TYPE(X) is a define which maps the optype to a
+                            trietype.
+
+                                optype          |  trietype
+                                ----------------+-----------
+                                NOTHING         | NOTHING
+                                EXACT           | EXACT
+                                EXACTFU         | EXACTFU
+                                EXACTFU_SS      | EXACTFU
+                                EXACTFA         | EXACTFA
+                                EXACTL          | EXACTL
+                                EXACTFLU8       | EXACTFLU8
+
+
+                        */
+#define TRIE_TYPE(X) ( ( NOTHING == (X) )                                   \
+                       ? NOTHING                                            \
+                       : ( EXACT == (X) )                                   \
+                         ? EXACT                                            \
+                         : ( EXACTFU == (X) || EXACTFU_SS == (X) )          \
+                           ? EXACTFU                                        \
+                           : ( EXACTFA == (X) )                             \
+                             ? EXACTFA                                      \
+                             : ( EXACTL == (X) )                            \
+                               ? EXACTL                                     \
+                               : ( EXACTFLU8 == (X) )                        \
+                                 ? EXACTFLU8                                 \
+                                 : 0 )
+
+                        /* dont use tail as the end marker for this traverse */
+                        for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
+                            regnode * const noper = NEXTOPER( cur );
+                            U8 noper_type = OP( noper );
+                            U8 noper_trietype = TRIE_TYPE( noper_type );
+#if defined(DEBUGGING) || defined(NOJUMPTRIE)
+                            regnode * const noper_next = regnext( noper );
+                           U8 noper_next_type = (noper_next && noper_next != tail) ? OP(noper_next) : 0;
+                           U8 noper_next_trietype = (noper_next && noper_next != tail) ? TRIE_TYPE( noper_next_type ) :0;
+#endif
+
+                            DEBUG_TRIE_COMPILE_r({
+                                regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
+                                PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
+                                   (int)depth * 2 + 2,"", SvPV_nolen_const( RExC_mysv ), REG_NODE_NUM(cur) );
+
+                                regprop(RExC_rx, RExC_mysv, noper, NULL, pRExC_state);
+                                PerlIO_printf( Perl_debug_log, " -> %s",
+                                    SvPV_nolen_const(RExC_mysv));
+
+                                if ( noper_next ) {
+                                  regprop(RExC_rx, RExC_mysv, noper_next, NULL, pRExC_state);
+                                  PerlIO_printf( Perl_debug_log,"\t=> %s\t",
+                                    SvPV_nolen_const(RExC_mysv));
+                                }
+                                PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d,tt==%s,nt==%s,nnt==%s)\n",
+                                   REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur),
+                                  PL_reg_name[trietype], PL_reg_name[noper_trietype], PL_reg_name[noper_next_trietype]
+                               );
+                            });
+
+                            /* Is noper a trieable nodetype that can be merged
+                             * with the current trie (if there is one)? */
+                            if ( noper_trietype
+                                  &&
+                                  (
+                                        ( noper_trietype == NOTHING)
+                                        || ( trietype == NOTHING )
+                                        || ( trietype == noper_trietype )
+                                  )
+#ifdef NOJUMPTRIE
+                                  && noper_next == tail
+#endif
+                                  && count < U16_MAX)
+                            {
+                                /* Handle mergable triable node Either we are
+                                 * the first node in a new trieable sequence,
+                                 * in which case we do some bookkeeping,
+                                 * otherwise we update the end pointer. */
+                                if ( !first ) {
+                                    first = cur;
+                                   if ( noper_trietype == NOTHING ) {
+#if !defined(DEBUGGING) && !defined(NOJUMPTRIE)
+                                       regnode * const noper_next = regnext( noper );
+                                        U8 noper_next_type = (noper_next && noper_next!=tail) ? OP(noper_next) : 0;
+                                       U8 noper_next_trietype = noper_next_type ? TRIE_TYPE( noper_next_type ) :0;
+#endif
+
+                                        if ( noper_next_trietype ) {
+                                           trietype = noper_next_trietype;
+                                        } else if (noper_next_type)  {
+                                            /* a NOTHING regop is 1 regop wide.
+                                             * We need at least two for a trie
+                                             * so we can't merge this in */
+                                            first = NULL;
+                                        }
+                                    } else {
+                                        trietype = noper_trietype;
+                                    }
+                                } else {
+                                    if ( trietype == NOTHING )
+                                        trietype = noper_trietype;
+                                    last = cur;
+                                }
+                               if (first)
+                                   count++;
+                            } /* end handle mergable triable node */
+                            else {
+                                /* handle unmergable node -
+                                 * noper may either be a triable node which can
+                                 * not be tried together with the current trie,
+                                 * or a non triable node */
+                                if ( last ) {
+                                    /* If last is set and trietype is not
+                                     * NOTHING then we have found at least two
+                                     * triable branch sequences in a row of a
+                                     * similar trietype so we can turn them
+                                     * into a trie. If/when we allow NOTHING to
+                                     * start a trie sequence this condition
+                                     * will be required, and it isn't expensive
+                                     * so we leave it in for now. */
+                                    if ( trietype && trietype != NOTHING )
+                                        make_trie( pRExC_state,
+                                                startbranch, first, cur, tail,
+                                                count, trietype, depth+1 );
+                                    last = NULL; /* note: we clear/update
+                                                    first, trietype etc below,
+                                                    so we dont do it here */
+                                }
+                                if ( noper_trietype
+#ifdef NOJUMPTRIE
+                                     && noper_next == tail
+#endif
+                                ){
+                                    /* noper is triable, so we can start a new
+                                     * trie sequence */
+                                    count = 1;
+                                    first = cur;
+                                    trietype = noper_trietype;
+                                } else if (first) {
+                                    /* if we already saw a first but the
+                                     * current node is not triable then we have
+                                     * to reset the first information. */
+                                    count = 0;
+                                    first = NULL;
+                                    trietype = 0;
+                                }
+                            } /* end handle unmergable node */
+                        } /* loop over branches */
+                        DEBUG_TRIE_COMPILE_r({
+                            regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
+                            PerlIO_printf( Perl_debug_log,
+                              "%*s- %s (%d) <SCAN FINISHED>\n",
+                              (int)depth * 2 + 2,
+                              "", SvPV_nolen_const( RExC_mysv ),REG_NODE_NUM(cur));
+
+                        });
+                        if ( last && trietype ) {
+                            if ( trietype != NOTHING ) {
+                                /* the last branch of the sequence was part of
+                                 * a trie, so we have to construct it here
+                                 * outside of the loop */
+                                made= make_trie( pRExC_state, startbranch,
+                                                 first, scan, tail, count,
+                                                 trietype, depth+1 );
+#ifdef TRIE_STUDY_OPT
+                                if ( ((made == MADE_EXACT_TRIE &&
+                                     startbranch == first)
+                                     || ( first_non_open == first )) &&
+                                     depth==0 ) {
+                                    flags |= SCF_TRIE_RESTUDY;
+                                    if ( startbranch == first
+                                         && scan == tail )
+                                    {
+                                        RExC_seen &=~REG_TOP_LEVEL_BRANCHES_SEEN;
+                                    }
+                                }
+#endif
+                            } else {
+                                /* at this point we know whatever we have is a
+                                 * NOTHING sequence/branch AND if 'startbranch'
+                                 * is 'first' then we can turn the whole thing
+                                 * into a NOTHING
+                                 */
+                                if ( startbranch == first ) {
+                                    regnode *opt;
+                                    /* the entire thing is a NOTHING sequence,
+                                     * something like this: (?:|) So we can
+                                     * turn it into a plain NOTHING op. */
+                                    DEBUG_TRIE_COMPILE_r({
+                                        regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
+                                        PerlIO_printf( Perl_debug_log,
+                                          "%*s- %s (%d) <NOTHING BRANCH SEQUENCE>\n", (int)depth * 2 + 2,
+                                          "", SvPV_nolen_const( RExC_mysv ),REG_NODE_NUM(cur));
+
+                                    });
+                                    OP(startbranch)= NOTHING;
+                                    NEXT_OFF(startbranch)= tail - startbranch;
+                                    for ( opt= startbranch + 1; opt < tail ; opt++ )
+                                        OP(opt)= OPTIMIZED;
+                                }
+                            }
+                        } /* end if ( last) */
+                    } /* TRIE_MAXBUF is non zero */
+
+                } /* do trie */
+
+           }
+           else if ( code == BRANCHJ ) {  /* single branch is optimized. */
+               scan = NEXTOPER(NEXTOPER(scan));
+           } else                      /* single branch is optimized. */
+               scan = NEXTOPER(scan);
+           continue;
+       } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
+            I32 paren = 0;
+            regnode *start = NULL;
+            regnode *end = NULL;
+            U32 my_recursed_depth= recursed_depth;
+
+
+            if (OP(scan) != SUSPEND) { /* GOSUB/GOSTART */
+                /* Do setup, note this code has side effects beyond
+                 * the rest of this block. Specifically setting
+                 * RExC_recurse[] must happen at least once during
+                 * study_chunk(). */
+               if (OP(scan) == GOSUB) {
+                   paren = ARG(scan);
+                   RExC_recurse[ARG2L(scan)] = scan;
+                    start = RExC_open_parens[paren-1];
+                    end   = RExC_close_parens[paren-1];
+                } else {
+                    start = RExC_rxi->program + 1;
+                    end   = RExC_opend;
+                }
+                /* NOTE we MUST always execute the above code, even
+                 * if we do nothing with a GOSUB/GOSTART */
+                if (
+                    ( flags & SCF_IN_DEFINE )
+                    ||
+                    (
+                        (is_inf_internal || is_inf || (data && data->flags & SF_IS_INF))
+                        &&
+                        ( (flags & (SCF_DO_STCLASS | SCF_DO_SUBSTR)) == 0 )
+                    )
+                ) {
+                    /* no need to do anything here if we are in a define. */
+                    /* or we are after some kind of infinite construct
+                     * so we can skip recursing into this item.
+                     * Since it is infinite we will not change the maxlen
+                     * or delta, and if we miss something that might raise
+                     * the minlen it will merely pessimise a little.
+                     *
+                     * Iow /(?(DEFINE)(?<foo>foo|food))a+(?&foo)/
+                     * might result in a minlen of 1 and not of 4,
+                     * but this doesn't make us mismatch, just try a bit
+                     * harder than we should.
+                     * */
+                    scan= regnext(scan);
+                    continue;
+                }
+
+                if (
+                    !recursed_depth
+                    ||
+                    !PAREN_TEST(RExC_study_chunk_recursed + ((recursed_depth-1) * RExC_study_chunk_recursed_bytes), paren)
+                ) {
+                    /* it is quite possible that there are more efficient ways
+                     * to do this. We maintain a bitmap per level of recursion
+                     * of which patterns we have entered so we can detect if a
+                     * pattern creates a possible infinite loop. When we
+                     * recurse down a level we copy the previous levels bitmap
+                     * down. When we are at recursion level 0 we zero the top
+                     * level bitmap. It would be nice to implement a different
+                     * more efficient way of doing this. In particular the top
+                     * level bitmap may be unnecessary.
+                     */
+                    if (!recursed_depth) {
+                        Zero(RExC_study_chunk_recursed, RExC_study_chunk_recursed_bytes, U8);
+                    } else {
+                        Copy(RExC_study_chunk_recursed + ((recursed_depth-1) * RExC_study_chunk_recursed_bytes),
+                             RExC_study_chunk_recursed + (recursed_depth * RExC_study_chunk_recursed_bytes),
+                             RExC_study_chunk_recursed_bytes, U8);
+                    }
+                    /* we havent recursed into this paren yet, so recurse into it */
+                   DEBUG_STUDYDATA("set:", data,depth);
+                    PAREN_SET(RExC_study_chunk_recursed + (recursed_depth * RExC_study_chunk_recursed_bytes), paren);
+                    my_recursed_depth= recursed_depth + 1;
+                } else {
+                   DEBUG_STUDYDATA("inf:", data,depth);
+                    /* some form of infinite recursion, assume infinite length
+                     * */
+                    if (flags & SCF_DO_SUBSTR) {
+                        scan_commit(pRExC_state, data, minlenp, is_inf);
+                        data->longest = &(data->longest_float);
+                    }
+                    is_inf = is_inf_internal = 1;
+                    if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+                        ssc_anything(data->start_class);
+                    flags &= ~SCF_DO_STCLASS;
+
+                    start= NULL; /* reset start so we dont recurse later on. */
+               }
+            } else {
+               paren = stopparen;
+                start = scan + 2;
+               end = regnext(scan);
+           }
+            if (start) {
+                scan_frame *newframe;
+                assert(end);
+                if (!RExC_frame_last) {
+                    Newxz(newframe, 1, scan_frame);
+                    SAVEDESTRUCTOR_X(S_unwind_scan_frames, newframe);
+                    RExC_frame_head= newframe;
+                    RExC_frame_count++;
+                } else if (!RExC_frame_last->next_frame) {
+                    Newxz(newframe,1,scan_frame);
+                    RExC_frame_last->next_frame= newframe;
+                    newframe->prev_frame= RExC_frame_last;
+                    RExC_frame_count++;
+                } else {
+                    newframe= RExC_frame_last->next_frame;
+                }
+                RExC_frame_last= newframe;
+
+                newframe->next_regnode = regnext(scan);
+                newframe->last_regnode = last;
+                newframe->stopparen = stopparen;
+                newframe->prev_recursed_depth = recursed_depth;
+                newframe->this_prev_frame= frame;
+
+                DEBUG_STUDYDATA("frame-new:",data,depth);
+                DEBUG_PEEP("fnew", scan, depth);
+
+               frame = newframe;
+               scan =  start;
+               stopparen = paren;
+               last = end;
+                depth = depth + 1;
+                recursed_depth= my_recursed_depth;
+
+               continue;
+           }
+       }
+       else if (OP(scan) == EXACT || OP(scan) == EXACTL) {
+           SSize_t l = STR_LEN(scan);
+           UV uc;
+           if (UTF) {
+               const U8 * const s = (U8*)STRING(scan);
+               uc = utf8_to_uvchr_buf(s, s + l, NULL);
+               l = utf8_length(s, s + l);
+           } else {
+               uc = *((U8*)STRING(scan));
+           }
+           min += l;
+           if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
+               /* The code below prefers earlier match for fixed
+                  offset, later match for variable offset.  */
+               if (data->last_end == -1) { /* Update the start info. */
+                   data->last_start_min = data->pos_min;
+                   data->last_start_max = is_inf
+                       ? SSize_t_MAX : data->pos_min + data->pos_delta;
+               }
+               sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
+               if (UTF)
+                   SvUTF8_on(data->last_found);
+               {
+                   SV * const sv = data->last_found;
+                   MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
+                       mg_find(sv, PERL_MAGIC_utf8) : NULL;
+                   if (mg && mg->mg_len >= 0)
+                       mg->mg_len += utf8_length((U8*)STRING(scan),
+                                              (U8*)STRING(scan)+STR_LEN(scan));
+               }
+               data->last_end = data->pos_min + l;
+               data->pos_min += l; /* As in the first entry. */
+               data->flags &= ~SF_BEFORE_EOL;
+           }
+
+            /* ANDing the code point leaves at most it, and not in locale, and
+             * can't match null string */
+           if (flags & SCF_DO_STCLASS_AND) {
+                ssc_cp_and(data->start_class, uc);
+                ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+                ssc_clear_locale(data->start_class);
+           }
+           else if (flags & SCF_DO_STCLASS_OR) {
+                ssc_add_cp(data->start_class, uc);
+               ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+
+                /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
+                ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+           }
+           flags &= ~SCF_DO_STCLASS;
+       }
+        else if (PL_regkind[OP(scan)] == EXACT) {
+            /* But OP != EXACT!, so is EXACTFish */
+           SSize_t l = STR_LEN(scan);
+            const U8 * s = (U8*)STRING(scan);
+
+           /* Search for fixed substrings supports EXACT only. */
+           if (flags & SCF_DO_SUBSTR) {
+               assert(data);
+                scan_commit(pRExC_state, data, minlenp, is_inf);
+           }
+           if (UTF) {
+               l = utf8_length(s, s + l);
+           }
+           if (unfolded_multi_char) {
+                RExC_seen |= REG_UNFOLDED_MULTI_SEEN;
+           }
+           min += l - min_subtract;
+            assert (min >= 0);
+            delta += min_subtract;
+           if (flags & SCF_DO_SUBSTR) {
+               data->pos_min += l - min_subtract;
+               if (data->pos_min < 0) {
+                    data->pos_min = 0;
+                }
+                data->pos_delta += min_subtract;
+               if (min_subtract) {
+                   data->longest = &(data->longest_float);
+               }
+           }
+
+            if (flags & SCF_DO_STCLASS) {
+                SV* EXACTF_invlist = _make_exactf_invlist(pRExC_state, scan);
+
+                assert(EXACTF_invlist);
+                if (flags & SCF_DO_STCLASS_AND) {
+                    if (OP(scan) != EXACTFL)
+                        ssc_clear_locale(data->start_class);
+                    ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+                    ANYOF_POSIXL_ZERO(data->start_class);
+                    ssc_intersection(data->start_class, EXACTF_invlist, FALSE);
+                }
+                else {  /* SCF_DO_STCLASS_OR */
+                    ssc_union(data->start_class, EXACTF_invlist, FALSE);
+                    ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+
+                    /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
+                    ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+                }
+                flags &= ~SCF_DO_STCLASS;
+                SvREFCNT_dec(EXACTF_invlist);
+            }
+       }
+       else if (REGNODE_VARIES(OP(scan))) {
+           SSize_t mincount, maxcount, minnext, deltanext, pos_before = 0;
+           I32 fl = 0, f = flags;
+           regnode * const oscan = scan;
+           regnode_ssc this_class;
+           regnode_ssc *oclass = NULL;
+           I32 next_is_eval = 0;
+
+           switch (PL_regkind[OP(scan)]) {
+           case WHILEM:                /* End of (?:...)* . */
+               scan = NEXTOPER(scan);
+               goto finish;
+           case PLUS:
+               if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
+                   next = NEXTOPER(scan);
+                   if (OP(next) == EXACT
+                        || OP(next) == EXACTL
+                        || (flags & SCF_DO_STCLASS))
+                    {
+                       mincount = 1;
+                       maxcount = REG_INFTY;
+                       next = regnext(scan);
+                       scan = NEXTOPER(scan);
+                       goto do_curly;
+                   }
+               }
+               if (flags & SCF_DO_SUBSTR)
+                   data->pos_min++;
+               min++;
+               /* FALLTHROUGH */
+           case STAR:
+               if (flags & SCF_DO_STCLASS) {
+                   mincount = 0;
+                   maxcount = REG_INFTY;
+                   next = regnext(scan);
+                   scan = NEXTOPER(scan);
+                   goto do_curly;
+               }
+               if (flags & SCF_DO_SUBSTR) {
+                    scan_commit(pRExC_state, data, minlenp, is_inf);
+                    /* Cannot extend fixed substrings */
+                   data->longest = &(data->longest_float);
+               }
+                is_inf = is_inf_internal = 1;
+                scan = regnext(scan);
+               goto optimize_curly_tail;
+           case CURLY:
+               if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
+                   && (scan->flags == stopparen))
+               {
+                   mincount = 1;
+                   maxcount = 1;
+               } else {
+                   mincount = ARG1(scan);
+                   maxcount = ARG2(scan);
+               }
+               next = regnext(scan);
+               if (OP(scan) == CURLYX) {
+                   I32 lp = (data ? *(data->last_closep) : 0);
+                   scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
+               }
+               scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
+               next_is_eval = (OP(scan) == EVAL);
+             do_curly:
+               if (flags & SCF_DO_SUBSTR) {
+                    if (mincount == 0)
+                        scan_commit(pRExC_state, data, minlenp, is_inf);
+                    /* Cannot extend fixed substrings */
+                   pos_before = data->pos_min;
+               }
+               if (data) {
+                   fl = data->flags;
+                   data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
+                   if (is_inf)
+                       data->flags |= SF_IS_INF;
+               }
+               if (flags & SCF_DO_STCLASS) {
+                   ssc_init(pRExC_state, &this_class);
+                   oclass = data->start_class;
+                   data->start_class = &this_class;
+                   f |= SCF_DO_STCLASS_AND;
+                   f &= ~SCF_DO_STCLASS_OR;
+               }
+               /* Exclude from super-linear cache processing any {n,m}
+                  regops for which the combination of input pos and regex
+                  pos is not enough information to determine if a match
+                  will be possible.
+
+                  For example, in the regex /foo(bar\s*){4,8}baz/ with the
+                  regex pos at the \s*, the prospects for a match depend not
+                  only on the input position but also on how many (bar\s*)
+                  repeats into the {4,8} we are. */
+               if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
+                   f &= ~SCF_WHILEM_VISITED_POS;
+
+               /* This will finish on WHILEM, setting scan, or on NULL: */
+               minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
+                                  last, data, stopparen, recursed_depth, NULL,
+                                  (mincount == 0
+                                   ? (f & ~SCF_DO_SUBSTR)
+                                   : f)
+                                  ,depth+1);
+
+               if (flags & SCF_DO_STCLASS)
+                   data->start_class = oclass;
+               if (mincount == 0 || minnext == 0) {
+                   if (flags & SCF_DO_STCLASS_OR) {
+                       ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
+                   }
+                   else if (flags & SCF_DO_STCLASS_AND) {
+                       /* Switch to OR mode: cache the old value of
+                        * data->start_class */
+                       INIT_AND_WITHP;
+                       StructCopy(data->start_class, and_withp, regnode_ssc);
+                       flags &= ~SCF_DO_STCLASS_AND;
+                       StructCopy(&this_class, data->start_class, regnode_ssc);
+                       flags |= SCF_DO_STCLASS_OR;
+                        ANYOF_FLAGS(data->start_class)
+                                                |= SSC_MATCHES_EMPTY_STRING;
+                   }
+               } else {                /* Non-zero len */
+                   if (flags & SCF_DO_STCLASS_OR) {
+                       ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
+                       ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+                   }
+                   else if (flags & SCF_DO_STCLASS_AND)
+                       ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
+                   flags &= ~SCF_DO_STCLASS;
+               }
+               if (!scan)              /* It was not CURLYX, but CURLY. */
+                   scan = next;
+               if (!(flags & SCF_TRIE_DOING_RESTUDY)
+                   /* ? quantifier ok, except for (?{ ... }) */
+                   && (next_is_eval || !(mincount == 0 && maxcount == 1))
+                   && (minnext == 0) && (deltanext == 0)
+                   && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
+                    && maxcount <= REG_INFTY/3) /* Complement check for big
+                                                   count */
+               {
+                   /* Fatal warnings may leak the regexp without this: */
+                   SAVEFREESV(RExC_rx_sv);
+                   Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP),
+                       "Quantifier unexpected on zero-length expression "
+                       "in regex m/%"UTF8f"/",
+                        UTF8fARG(UTF, RExC_end - RExC_precomp,
+                                 RExC_precomp));
+                   (void)ReREFCNT_inc(RExC_rx_sv);
+               }
+
+               min += minnext * mincount;
+               is_inf_internal |= deltanext == SSize_t_MAX
+                         || (maxcount == REG_INFTY && minnext + deltanext > 0);
+               is_inf |= is_inf_internal;
+                if (is_inf) {
+                   delta = SSize_t_MAX;
+                } else {
+                   delta += (minnext + deltanext) * maxcount
+                             - minnext * mincount;
+                }
+               /* Try powerful optimization CURLYX => CURLYN. */
+               if (  OP(oscan) == CURLYX && data
+                     && data->flags & SF_IN_PAR
+                     && !(data->flags & SF_HAS_EVAL)
+                     && !deltanext && minnext == 1 ) {
+                   /* Try to optimize to CURLYN.  */
+                   regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
+                   regnode * const nxt1 = nxt;
+#ifdef DEBUGGING
+                   regnode *nxt2;
+#endif
+
+                   /* Skip open. */
+                   nxt = regnext(nxt);
+                   if (!REGNODE_SIMPLE(OP(nxt))
+                       && !(PL_regkind[OP(nxt)] == EXACT
+                            && STR_LEN(nxt) == 1))
+                       goto nogo;
+#ifdef DEBUGGING
+                   nxt2 = nxt;
+#endif
+                   nxt = regnext(nxt);
+                   if (OP(nxt) != CLOSE)
+                       goto nogo;
+                   if (RExC_open_parens) {
+                       RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
+                       RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
+                   }
+                   /* Now we know that nxt2 is the only contents: */
+                   oscan->flags = (U8)ARG(nxt);
+                   OP(oscan) = CURLYN;
+                   OP(nxt1) = NOTHING; /* was OPEN. */
+
+#ifdef DEBUGGING
+                   OP(nxt1 + 1) = OPTIMIZED; /* was count. */
+                   NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
+                   NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
+                   OP(nxt) = OPTIMIZED;        /* was CLOSE. */
+                   OP(nxt + 1) = OPTIMIZED; /* was count. */
+                   NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
+#endif
+               }
+             nogo:
+
+               /* Try optimization CURLYX => CURLYM. */
+               if (  OP(oscan) == CURLYX && data
+                     && !(data->flags & SF_HAS_PAR)
+                     && !(data->flags & SF_HAS_EVAL)
+                     && !deltanext     /* atom is fixed width */
+                     && minnext != 0   /* CURLYM can't handle zero width */
+
+                         /* Nor characters whose fold at run-time may be
+                          * multi-character */
+                      && ! (RExC_seen & REG_UNFOLDED_MULTI_SEEN)
+               ) {
+                   /* XXXX How to optimize if data == 0? */
+                   /* Optimize to a simpler form.  */
+                   regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
+                   regnode *nxt2;
+
+                   OP(oscan) = CURLYM;
+                   while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
+                           && (OP(nxt2) != WHILEM))
+                       nxt = nxt2;
+                   OP(nxt2)  = SUCCEED; /* Whas WHILEM */
+                   /* Need to optimize away parenths. */
+                   if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
+                       /* Set the parenth number.  */
+                       regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
+
+                       oscan->flags = (U8)ARG(nxt);
+                       if (RExC_open_parens) {
+                           RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
+                           RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
+                       }
+                       OP(nxt1) = OPTIMIZED;   /* was OPEN. */
+                       OP(nxt) = OPTIMIZED;    /* was CLOSE. */
+
+#ifdef DEBUGGING
+                       OP(nxt1 + 1) = OPTIMIZED; /* was count. */
+                       OP(nxt + 1) = OPTIMIZED; /* was count. */
+                       NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
+                       NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
+#endif
+#if 0
+                       while ( nxt1 && (OP(nxt1) != WHILEM)) {
+                           regnode *nnxt = regnext(nxt1);
+                           if (nnxt == nxt) {
+                               if (reg_off_by_arg[OP(nxt1)])
+                                   ARG_SET(nxt1, nxt2 - nxt1);
+                               else if (nxt2 - nxt1 < U16_MAX)
+                                   NEXT_OFF(nxt1) = nxt2 - nxt1;
+                               else
+                                   OP(nxt) = NOTHING;  /* Cannot beautify */
+                           }
+                           nxt1 = nnxt;
+                       }
+#endif
+                       /* Optimize again: */
+                       study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
+                                    NULL, stopparen, recursed_depth, NULL, 0,depth+1);
+                   }
+                   else
+                       oscan->flags = 0;
+               }
+               else if ((OP(oscan) == CURLYX)
+                        && (flags & SCF_WHILEM_VISITED_POS)
+                        /* See the comment on a similar expression above.
+                           However, this time it's not a subexpression
+                           we care about, but the expression itself. */
+                        && (maxcount == REG_INFTY)
+                        && data && ++data->whilem_c < 16) {
+                   /* This stays as CURLYX, we can put the count/of pair. */
+                   /* Find WHILEM (as in regexec.c) */
+                   regnode *nxt = oscan + NEXT_OFF(oscan);
+
+                   if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
+                       nxt += ARG(nxt);
+                   PREVOPER(nxt)->flags = (U8)(data->whilem_c
+                       | (RExC_whilem_seen << 4)); /* On WHILEM */
+               }
+               if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
+                   pars++;
+               if (flags & SCF_DO_SUBSTR) {
+                   SV *last_str = NULL;
+                    STRLEN last_chrs = 0;
+                   int counted = mincount != 0;
+
+                    if (data->last_end > 0 && mincount != 0) { /* Ends with a
+                                                                  string. */
+                       SSize_t b = pos_before >= data->last_start_min
+                           ? pos_before : data->last_start_min;
+                       STRLEN l;
+                       const char * const s = SvPV_const(data->last_found, l);
+                       SSize_t old = b - data->last_start_min;
+
+                       if (UTF)
+                           old = utf8_hop((U8*)s, old) - (U8*)s;
+                       l -= old;
+                       /* Get the added string: */
+                       last_str = newSVpvn_utf8(s  + old, l, UTF);
+                        last_chrs = UTF ? utf8_length((U8*)(s + old),
+                                            (U8*)(s + old + l)) : l;
+                       if (deltanext == 0 && pos_before == b) {
+                           /* What was added is a constant string */
+                           if (mincount > 1) {
+
+                               SvGROW(last_str, (mincount * l) + 1);
+                               repeatcpy(SvPVX(last_str) + l,
+                                         SvPVX_const(last_str), l,
+                                          mincount - 1);
+                               SvCUR_set(last_str, SvCUR(last_str) * mincount);
+                               /* Add additional parts. */
+                               SvCUR_set(data->last_found,
+                                         SvCUR(data->last_found) - l);
+                               sv_catsv(data->last_found, last_str);
+                               {
+                                   SV * sv = data->last_found;
+                                   MAGIC *mg =
+                                       SvUTF8(sv) && SvMAGICAL(sv) ?
+                                       mg_find(sv, PERL_MAGIC_utf8) : NULL;
+                                   if (mg && mg->mg_len >= 0)
+                                       mg->mg_len += last_chrs * (mincount-1);
+                               }
+                                last_chrs *= mincount;
+                               data->last_end += l * (mincount - 1);
+                           }
+                       } else {
+                           /* start offset must point into the last copy */
+                           data->last_start_min += minnext * (mincount - 1);
+                           data->last_start_max =
+                              is_inf
+                               ? SSize_t_MAX
+                              : data->last_start_max +
+                                 (maxcount - 1) * (minnext + data->pos_delta);
+                       }
+                   }
+                   /* It is counted once already... */
+                   data->pos_min += minnext * (mincount - counted);
+#if 0
+PerlIO_printf(Perl_debug_log, "counted=%"UVuf" deltanext=%"UVuf
+                              " SSize_t_MAX=%"UVuf" minnext=%"UVuf
+                              " maxcount=%"UVuf" mincount=%"UVuf"\n",
+    (UV)counted, (UV)deltanext, (UV)SSize_t_MAX, (UV)minnext, (UV)maxcount,
+    (UV)mincount);
+if (deltanext != SSize_t_MAX)
+PerlIO_printf(Perl_debug_log, "LHS=%"UVuf" RHS=%"UVuf"\n",
+    (UV)(-counted * deltanext + (minnext + deltanext) * maxcount
+          - minnext * mincount), (UV)(SSize_t_MAX - data->pos_delta));
+#endif
+                   if (deltanext == SSize_t_MAX
+                        || -counted * deltanext + (minnext + deltanext) * maxcount - minnext * mincount >= SSize_t_MAX - data->pos_delta)
+                       data->pos_delta = SSize_t_MAX;
+                   else
+                       data->pos_delta += - counted * deltanext +
+                       (minnext + deltanext) * maxcount - minnext * mincount;
+                   if (mincount != maxcount) {
+                        /* Cannot extend fixed substrings found inside
+                           the group.  */
+                        scan_commit(pRExC_state, data, minlenp, is_inf);
+                       if (mincount && last_str) {
+                           SV * const sv = data->last_found;
+                           MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
+                               mg_find(sv, PERL_MAGIC_utf8) : NULL;
+
+                           if (mg)
+                               mg->mg_len = -1;
+                           sv_setsv(sv, last_str);
+                           data->last_end = data->pos_min;
+                           data->last_start_min = data->pos_min - last_chrs;
+                           data->last_start_max = is_inf
+                               ? SSize_t_MAX
+                               : data->pos_min + data->pos_delta - last_chrs;
+                       }
+                       data->longest = &(data->longest_float);
+                   }
+                   SvREFCNT_dec(last_str);
+               }
+               if (data && (fl & SF_HAS_EVAL))
+                   data->flags |= SF_HAS_EVAL;
+             optimize_curly_tail:
+               if (OP(oscan) != CURLYX) {
+                   while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
+                          && NEXT_OFF(next))
+                       NEXT_OFF(oscan) += NEXT_OFF(next);
+               }
+               continue;
+
+           default:
+#ifdef DEBUGGING
+                Perl_croak(aTHX_ "panic: unexpected varying REx opcode %d",
+                                                                    OP(scan));
+#endif
+            case REF:
+            case CLUMP:
+               if (flags & SCF_DO_SUBSTR) {
+                    /* Cannot expect anything... */
+                    scan_commit(pRExC_state, data, minlenp, is_inf);
+                   data->longest = &(data->longest_float);
+               }
+               is_inf = is_inf_internal = 1;
+               if (flags & SCF_DO_STCLASS_OR) {
+                    if (OP(scan) == CLUMP) {
+                        /* Actually is any start char, but very few code points
+                         * aren't start characters */
+                        ssc_match_all_cp(data->start_class);
+                    }
+                    else {
+                        ssc_anything(data->start_class);
+                    }
+                }
+               flags &= ~SCF_DO_STCLASS;
+               break;
+           }
+       }
+       else if (OP(scan) == LNBREAK) {
+           if (flags & SCF_DO_STCLASS) {
+               if (flags & SCF_DO_STCLASS_AND) {
+                    ssc_intersection(data->start_class,
+                                    PL_XPosix_ptrs[_CC_VERTSPACE], FALSE);
+                    ssc_clear_locale(data->start_class);
+                    ANYOF_FLAGS(data->start_class)
+                                                &= ~SSC_MATCHES_EMPTY_STRING;
+                }
+                else if (flags & SCF_DO_STCLASS_OR) {
+                    ssc_union(data->start_class,
+                              PL_XPosix_ptrs[_CC_VERTSPACE],
+                              FALSE);
+                   ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+
+                    /* See commit msg for
+                     * 749e076fceedeb708a624933726e7989f2302f6a */
+                    ANYOF_FLAGS(data->start_class)
+                                                &= ~SSC_MATCHES_EMPTY_STRING;
+                }
+               flags &= ~SCF_DO_STCLASS;
+            }
+           min++;
+            if (delta != SSize_t_MAX)
+                delta++;    /* Because of the 2 char string cr-lf */
+            if (flags & SCF_DO_SUBSTR) {
+                /* Cannot expect anything... */
+                scan_commit(pRExC_state, data, minlenp, is_inf);
+               data->pos_min += 1;
+               data->pos_delta += 1;
+               data->longest = &(data->longest_float);
+           }
+       }
+       else if (REGNODE_SIMPLE(OP(scan))) {
+
+           if (flags & SCF_DO_SUBSTR) {
+                scan_commit(pRExC_state, data, minlenp, is_inf);
+               data->pos_min++;
+           }
+           min++;
+           if (flags & SCF_DO_STCLASS) {
+                bool invert = 0;
+                SV* my_invlist = NULL;
+                U8 namedclass;
+
+                /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
+                ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+
+               /* Some of the logic below assumes that switching
+                  locale on will only add false positives. */
+               switch (OP(scan)) {
+
+               default:
+#ifdef DEBUGGING
+                   Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d",
+                                                                     OP(scan));
+#endif
+               case SANY:
+                   if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+                       ssc_match_all_cp(data->start_class);
+                   break;
+
+               case REG_ANY:
+                    {
+                        SV* REG_ANY_invlist = _new_invlist(2);
+                        REG_ANY_invlist = add_cp_to_invlist(REG_ANY_invlist,
+                                                            '\n');
+                        if (flags & SCF_DO_STCLASS_OR) {
+                            ssc_union(data->start_class,
+                                      REG_ANY_invlist,
+                                      TRUE /* TRUE => invert, hence all but \n
+                                            */
+                                      );
+                        }
+                        else if (flags & SCF_DO_STCLASS_AND) {
+                            ssc_intersection(data->start_class,
+                                             REG_ANY_invlist,
+                                             TRUE  /* TRUE => invert */
+                                             );
+                            ssc_clear_locale(data->start_class);
+                        }
+                        SvREFCNT_dec_NN(REG_ANY_invlist);
+                   }
+                   break;
+
+                case ANYOFL:
+                case ANYOF:
+                   if (flags & SCF_DO_STCLASS_AND)
+                       ssc_and(pRExC_state, data->start_class,
+                                (regnode_charclass *) scan);
+                   else
+                       ssc_or(pRExC_state, data->start_class,
+                                                          (regnode_charclass *) scan);
+                   break;
+
+               case NPOSIXL:
+                    invert = 1;
+                    /* FALLTHROUGH */
+
+               case POSIXL:
+                    namedclass = classnum_to_namedclass(FLAGS(scan)) + invert;
+                    if (flags & SCF_DO_STCLASS_AND) {
+                        bool was_there = cBOOL(
+                                          ANYOF_POSIXL_TEST(data->start_class,
+                                                                 namedclass));
+                        ANYOF_POSIXL_ZERO(data->start_class);
+                        if (was_there) {    /* Do an AND */
+                            ANYOF_POSIXL_SET(data->start_class, namedclass);
+                        }
+                        /* No individual code points can now match */
+                        data->start_class->invlist
+                                                = sv_2mortal(_new_invlist(0));
+                    }
+                    else {
+                        int complement = namedclass + ((invert) ? -1 : 1);
+
+                        assert(flags & SCF_DO_STCLASS_OR);
+
+                        /* If the complement of this class was already there,
+                         * the result is that they match all code points,
+                         * (\d + \D == everything).  Remove the classes from
+                         * future consideration.  Locale is not relevant in
+                         * this case */
+                        if (ANYOF_POSIXL_TEST(data->start_class, complement)) {
+                            ssc_match_all_cp(data->start_class);
+                            ANYOF_POSIXL_CLEAR(data->start_class, namedclass);
+                            ANYOF_POSIXL_CLEAR(data->start_class, complement);
+                        }
+                        else {  /* The usual case; just add this class to the
+                                   existing set */
+                            ANYOF_POSIXL_SET(data->start_class, namedclass);
+                        }
+                    }
+                    break;
+
+                case NPOSIXA:   /* For these, we always know the exact set of
+                                   what's matched */
+                    invert = 1;
+                    /* FALLTHROUGH */
+               case POSIXA:
+                    if (FLAGS(scan) == _CC_ASCII) {
+                        my_invlist = invlist_clone(PL_XPosix_ptrs[_CC_ASCII]);
+                    }
+                    else {
+                        _invlist_intersection(PL_XPosix_ptrs[FLAGS(scan)],
+                                              PL_XPosix_ptrs[_CC_ASCII],
+                                              &my_invlist);
+                    }
+                    goto join_posix;
+
+               case NPOSIXD:
+               case NPOSIXU:
+                    invert = 1;
+                    /* FALLTHROUGH */
+               case POSIXD:
+               case POSIXU:
+                    my_invlist = invlist_clone(PL_XPosix_ptrs[FLAGS(scan)]);
+
+                    /* NPOSIXD matches all upper Latin1 code points unless the
+                     * target string being matched is UTF-8, which is
+                     * unknowable until match time.  Since we are going to
+                     * invert, we want to get rid of all of them so that the
+                     * inversion will match all */
+                    if (OP(scan) == NPOSIXD) {
+                        _invlist_subtract(my_invlist, PL_UpperLatin1,
+                                          &my_invlist);
+                    }
+
+                  join_posix:
+
+                    if (flags & SCF_DO_STCLASS_AND) {
+                        ssc_intersection(data->start_class, my_invlist, invert);
+                        ssc_clear_locale(data->start_class);
+                    }
+                    else {
+                        assert(flags & SCF_DO_STCLASS_OR);
+                        ssc_union(data->start_class, my_invlist, invert);
+                    }
+                    SvREFCNT_dec(my_invlist);
+               }
+               if (flags & SCF_DO_STCLASS_OR)
+                   ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+               flags &= ~SCF_DO_STCLASS;
+           }
+       }
+       else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
+           data->flags |= (OP(scan) == MEOL
+                           ? SF_BEFORE_MEOL
+                           : SF_BEFORE_SEOL);
+            scan_commit(pRExC_state, data, minlenp, is_inf);
+
+       }
+       else if (  PL_regkind[OP(scan)] == BRANCHJ
+                /* Lookbehind, or need to calculate parens/evals/stclass: */
+                  && (scan->flags || data || (flags & SCF_DO_STCLASS))
+                  && (OP(scan) == IFMATCH || OP(scan) == UNLESSM))
+        {
+            if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
+                || OP(scan) == UNLESSM )
+            {
+                /* Negative Lookahead/lookbehind
+                   In this case we can't do fixed string optimisation.
+                */
+
+                SSize_t deltanext, minnext, fake = 0;
+                regnode *nscan;
+                regnode_ssc intrnl;
+                int f = 0;
+
+                StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+                if (data) {
+                    data_fake.whilem_c = data->whilem_c;
+                    data_fake.last_closep = data->last_closep;
+               }
+                else
+                    data_fake.last_closep = &fake;
+               data_fake.pos_delta = delta;
+                if ( flags & SCF_DO_STCLASS && !scan->flags
+                     && OP(scan) == IFMATCH ) { /* Lookahead */
+                    ssc_init(pRExC_state, &intrnl);
+                    data_fake.start_class = &intrnl;
+                    f |= SCF_DO_STCLASS_AND;
+               }
+                if (flags & SCF_WHILEM_VISITED_POS)
+                    f |= SCF_WHILEM_VISITED_POS;
+                next = regnext(scan);
+                nscan = NEXTOPER(NEXTOPER(scan));
+                minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
+                                      last, &data_fake, stopparen,
+                                      recursed_depth, NULL, f, depth+1);
+                if (scan->flags) {
+                    if (deltanext) {
+                       FAIL("Variable length lookbehind not implemented");
+                    }
+                    else if (minnext > (I32)U8_MAX) {
+                       FAIL2("Lookbehind longer than %"UVuf" not implemented",
+                              (UV)U8_MAX);
+                    }
+                    scan->flags = (U8)minnext;
+                }
+                if (data) {
+                    if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+                        pars++;
+                    if (data_fake.flags & SF_HAS_EVAL)
+                        data->flags |= SF_HAS_EVAL;
+                    data->whilem_c = data_fake.whilem_c;
+                }
+                if (f & SCF_DO_STCLASS_AND) {
+                   if (flags & SCF_DO_STCLASS_OR) {
+                       /* OR before, AND after: ideally we would recurse with
+                        * data_fake to get the AND applied by study of the
+                        * remainder of the pattern, and then derecurse;
+                        * *** HACK *** for now just treat as "no information".
+                        * See [perl #56690].
+                        */
+                       ssc_init(pRExC_state, data->start_class);
+                   }  else {
+                        /* AND before and after: combine and continue.  These
+                         * assertions are zero-length, so can match an EMPTY
+                         * string */
+                       ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &intrnl);
+                        ANYOF_FLAGS(data->start_class)
+                                                   |= SSC_MATCHES_EMPTY_STRING;
+                   }
+                }
+           }
+#if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
+            else {
+                /* Positive Lookahead/lookbehind
+                   In this case we can do fixed string optimisation,
+                   but we must be careful about it. Note in the case of
+                   lookbehind the positions will be offset by the minimum
+                   length of the pattern, something we won't know about
+                   until after the recurse.
+                */
+                SSize_t deltanext, fake = 0;
+                regnode *nscan;
+                regnode_ssc intrnl;
+                int f = 0;
+                /* We use SAVEFREEPV so that when the full compile
+                    is finished perl will clean up the allocated
+                    minlens when it's all done. This way we don't
+                    have to worry about freeing them when we know
+                    they wont be used, which would be a pain.
+                 */
+                SSize_t *minnextp;
+                Newx( minnextp, 1, SSize_t );
+                SAVEFREEPV(minnextp);
+
+                if (data) {
+                    StructCopy(data, &data_fake, scan_data_t);
+                    if ((flags & SCF_DO_SUBSTR) && data->last_found) {
+                        f |= SCF_DO_SUBSTR;
+                        if (scan->flags)
+                            scan_commit(pRExC_state, &data_fake, minlenp, is_inf);
+                        data_fake.last_found=newSVsv(data->last_found);
+                    }
+                }
+                else
+                    data_fake.last_closep = &fake;
+                data_fake.flags = 0;
+               data_fake.pos_delta = delta;
+                if (is_inf)
+                   data_fake.flags |= SF_IS_INF;
+                if ( flags & SCF_DO_STCLASS && !scan->flags
+                     && OP(scan) == IFMATCH ) { /* Lookahead */
+                    ssc_init(pRExC_state, &intrnl);
+                    data_fake.start_class = &intrnl;
+                    f |= SCF_DO_STCLASS_AND;
+                }
+                if (flags & SCF_WHILEM_VISITED_POS)
+                    f |= SCF_WHILEM_VISITED_POS;
+                next = regnext(scan);
+                nscan = NEXTOPER(NEXTOPER(scan));
+
+                *minnextp = study_chunk(pRExC_state, &nscan, minnextp,
+                                        &deltanext, last, &data_fake,
+                                        stopparen, recursed_depth, NULL,
+                                        f,depth+1);
+                if (scan->flags) {
+                    if (deltanext) {
+                       FAIL("Variable length lookbehind not implemented");
+                    }
+                    else if (*minnextp > (I32)U8_MAX) {
+                       FAIL2("Lookbehind longer than %"UVuf" not implemented",
+                              (UV)U8_MAX);
+                    }
+                    scan->flags = (U8)*minnextp;
+                }
+
+                *minnextp += min;
+
+                if (f & SCF_DO_STCLASS_AND) {
+                    ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &intrnl);
+                    ANYOF_FLAGS(data->start_class) |= SSC_MATCHES_EMPTY_STRING;
+                }
+                if (data) {
+                    if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+                        pars++;
+                    if (data_fake.flags & SF_HAS_EVAL)
+                        data->flags |= SF_HAS_EVAL;
+                    data->whilem_c = data_fake.whilem_c;
+                    if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
+                        if (RExC_rx->minlen<*minnextp)
+                            RExC_rx->minlen=*minnextp;
+                        scan_commit(pRExC_state, &data_fake, minnextp, is_inf);
+                        SvREFCNT_dec_NN(data_fake.last_found);
+
+                        if ( data_fake.minlen_fixed != minlenp )
+                        {
+                            data->offset_fixed= data_fake.offset_fixed;
+                            data->minlen_fixed= data_fake.minlen_fixed;
+                            data->lookbehind_fixed+= scan->flags;
+                        }
+                        if ( data_fake.minlen_float != minlenp )
+                        {
+                            data->minlen_float= data_fake.minlen_float;
+                            data->offset_float_min=data_fake.offset_float_min;
+                            data->offset_float_max=data_fake.offset_float_max;
+                            data->lookbehind_float+= scan->flags;
+                        }
+                    }
+                }
+           }
+#endif
+       }
+       else if (OP(scan) == OPEN) {
+           if (stopparen != (I32)ARG(scan))
+               pars++;
+       }
+       else if (OP(scan) == CLOSE) {
+           if (stopparen == (I32)ARG(scan)) {
+               break;
+           }
+           if ((I32)ARG(scan) == is_par) {
+               next = regnext(scan);
+
+               if ( next && (OP(next) != WHILEM) && next < last)
+                   is_par = 0;         /* Disable optimization */
+           }
+           if (data)
+               *(data->last_closep) = ARG(scan);
+       }
+       else if (OP(scan) == EVAL) {
+               if (data)
+                   data->flags |= SF_HAS_EVAL;
+       }
+       else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
+           if (flags & SCF_DO_SUBSTR) {
+                scan_commit(pRExC_state, data, minlenp, is_inf);
+               flags &= ~SCF_DO_SUBSTR;
+           }
+           if (data && OP(scan)==ACCEPT) {
+               data->flags |= SCF_SEEN_ACCEPT;
+               if (stopmin > min)
+                   stopmin = min;
+           }
+       }
+       else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
+       {
+               if (flags & SCF_DO_SUBSTR) {
+                    scan_commit(pRExC_state, data, minlenp, is_inf);
+                   data->longest = &(data->longest_float);
+               }
+               is_inf = is_inf_internal = 1;
+               if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+                   ssc_anything(data->start_class);
+               flags &= ~SCF_DO_STCLASS;
+       }
+       else if (OP(scan) == GPOS) {
+            if (!(RExC_rx->intflags & PREGf_GPOS_FLOAT) &&
+               !(delta || is_inf || (data && data->pos_delta)))
+           {
+                if (!(RExC_rx->intflags & PREGf_ANCH) && (flags & SCF_DO_SUBSTR))
+                    RExC_rx->intflags |= PREGf_ANCH_GPOS;
+               if (RExC_rx->gofs < (STRLEN)min)
+                   RExC_rx->gofs = min;
+            } else {
+                RExC_rx->intflags |= PREGf_GPOS_FLOAT;
+                RExC_rx->gofs = 0;
+            }
+       }
+#ifdef TRIE_STUDY_OPT
+#ifdef FULL_TRIE_STUDY
+        else if (PL_regkind[OP(scan)] == TRIE) {
+            /* NOTE - There is similar code to this block above for handling
+               BRANCH nodes on the initial study.  If you change stuff here
+               check there too. */
+            regnode *trie_node= scan;
+            regnode *tail= regnext(scan);
+            reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
+            SSize_t max1 = 0, min1 = SSize_t_MAX;
+            regnode_ssc accum;
+
+            if (flags & SCF_DO_SUBSTR) { /* XXXX Add !SUSPEND? */
+                /* Cannot merge strings after this. */
+                scan_commit(pRExC_state, data, minlenp, is_inf);
+            }
+            if (flags & SCF_DO_STCLASS)
+                ssc_init_zero(pRExC_state, &accum);
+
+            if (!trie->jump) {
+                min1= trie->minlen;
+                max1= trie->maxlen;
+            } else {
+                const regnode *nextbranch= NULL;
+                U32 word;
+
+                for ( word=1 ; word <= trie->wordcount ; word++)
+                {
+                    SSize_t deltanext=0, minnext=0, f = 0, fake;
+                    regnode_ssc this_class;
+
+                    StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+                    if (data) {
+                        data_fake.whilem_c = data->whilem_c;
+                        data_fake.last_closep = data->last_closep;
+                    }
+                    else
+                        data_fake.last_closep = &fake;
+                   data_fake.pos_delta = delta;
+                    if (flags & SCF_DO_STCLASS) {
+                        ssc_init(pRExC_state, &this_class);
+                        data_fake.start_class = &this_class;
+                        f = SCF_DO_STCLASS_AND;
+                    }
+                    if (flags & SCF_WHILEM_VISITED_POS)
+                        f |= SCF_WHILEM_VISITED_POS;
+
+                    if (trie->jump[word]) {
+                        if (!nextbranch)
+                            nextbranch = trie_node + trie->jump[0];
+                        scan= trie_node + trie->jump[word];
+                        /* We go from the jump point to the branch that follows
+                           it. Note this means we need the vestigal unused
+                           branches even though they arent otherwise used. */
+                        minnext = study_chunk(pRExC_state, &scan, minlenp,
+                            &deltanext, (regnode *)nextbranch, &data_fake,
+                            stopparen, recursed_depth, NULL, f,depth+1);
+                    }
+                    if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
+                        nextbranch= regnext((regnode*)nextbranch);
+
+                    if (min1 > (SSize_t)(minnext + trie->minlen))
+                        min1 = minnext + trie->minlen;
+                    if (deltanext == SSize_t_MAX) {
+                        is_inf = is_inf_internal = 1;
+                        max1 = SSize_t_MAX;
+                    } else if (max1 < (SSize_t)(minnext + deltanext + trie->maxlen))
+                        max1 = minnext + deltanext + trie->maxlen;
+
+                    if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+                        pars++;
+                    if (data_fake.flags & SCF_SEEN_ACCEPT) {
+                        if ( stopmin > min + min1)
+                           stopmin = min + min1;
+                       flags &= ~SCF_DO_SUBSTR;
+                       if (data)
+                           data->flags |= SCF_SEEN_ACCEPT;
+                   }
+                    if (data) {
+                        if (data_fake.flags & SF_HAS_EVAL)
+                            data->flags |= SF_HAS_EVAL;
+                        data->whilem_c = data_fake.whilem_c;
+                    }
+                    if (flags & SCF_DO_STCLASS)
+                        ssc_or(pRExC_state, &accum, (regnode_charclass *) &this_class);
+                }
+            }
+            if (flags & SCF_DO_SUBSTR) {
+                data->pos_min += min1;
+                data->pos_delta += max1 - min1;
+                if (max1 != min1 || is_inf)
+                    data->longest = &(data->longest_float);
+            }
+            min += min1;
+            if (delta != SSize_t_MAX)
+                delta += max1 - min1;
+            if (flags & SCF_DO_STCLASS_OR) {
+                ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &accum);
+                if (min1) {
+                    ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+                    flags &= ~SCF_DO_STCLASS;
+                }
+            }
+            else if (flags & SCF_DO_STCLASS_AND) {
+                if (min1) {
+                    ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
+                    flags &= ~SCF_DO_STCLASS;
+                }
+                else {
+                    /* Switch to OR mode: cache the old value of
+                     * data->start_class */
+                   INIT_AND_WITHP;
+                    StructCopy(data->start_class, and_withp, regnode_ssc);
+                    flags &= ~SCF_DO_STCLASS_AND;
+                    StructCopy(&accum, data->start_class, regnode_ssc);
+                    flags |= SCF_DO_STCLASS_OR;
+                }
+            }
+            scan= tail;
+            continue;
+        }
+#else
+       else if (PL_regkind[OP(scan)] == TRIE) {
+           reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
+           U8*bang=NULL;
+
+           min += trie->minlen;
+           delta += (trie->maxlen - trie->minlen);
+           flags &= ~SCF_DO_STCLASS; /* xxx */
+            if (flags & SCF_DO_SUBSTR) {
+                /* Cannot expect anything... */
+                scan_commit(pRExC_state, data, minlenp, is_inf);
+               data->pos_min += trie->minlen;
+               data->pos_delta += (trie->maxlen - trie->minlen);
+               if (trie->maxlen != trie->minlen)
+                   data->longest = &(data->longest_float);
+           }
+           if (trie->jump) /* no more substrings -- for now /grr*/
+               flags &= ~SCF_DO_SUBSTR;
+       }
+#endif /* old or new */
+#endif /* TRIE_STUDY_OPT */
+
+       /* Else: zero-length, ignore. */
+       scan = regnext(scan);
+    }
+    /* If we are exiting a recursion we can unset its recursed bit
+     * and allow ourselves to enter it again - no danger of an
+     * infinite loop there.
+    if (stopparen > -1 && recursed) {
+       DEBUG_STUDYDATA("unset:", data,depth);
+        PAREN_UNSET( recursed, stopparen);
+    }
+    */
+    if (frame) {
+        depth = depth - 1;
+
+        DEBUG_STUDYDATA("frame-end:",data,depth);
+        DEBUG_PEEP("fend", scan, depth);
+
+        /* restore previous context */
+        last = frame->last_regnode;
+        scan = frame->next_regnode;
+        stopparen = frame->stopparen;
+        recursed_depth = frame->prev_recursed_depth;
+
+        RExC_frame_last = frame->prev_frame;
+        frame = frame->this_prev_frame;
+        goto fake_study_recurse;
+    }
+
+  finish:
+    assert(!frame);
+    DEBUG_STUDYDATA("pre-fin:",data,depth);
+
+    *scanp = scan;
+    *deltap = is_inf_internal ? SSize_t_MAX : delta;
+
+    if (flags & SCF_DO_SUBSTR && is_inf)
+       data->pos_delta = SSize_t_MAX - data->pos_min;
+    if (is_par > (I32)U8_MAX)
+       is_par = 0;
+    if (is_par && pars==1 && data) {
+       data->flags |= SF_IN_PAR;
+       data->flags &= ~SF_HAS_PAR;
+    }
+    else if (pars && data) {
+       data->flags |= SF_HAS_PAR;
+       data->flags &= ~SF_IN_PAR;
+    }
+    if (flags & SCF_DO_STCLASS_OR)
+       ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+    if (flags & SCF_TRIE_RESTUDY)
+        data->flags |=         SCF_TRIE_RESTUDY;
+
+    DEBUG_STUDYDATA("post-fin:",data,depth);
+
+    {
+        SSize_t final_minlen= min < stopmin ? min : stopmin;
+
+        if (!(RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN)) {
+            if (final_minlen > SSize_t_MAX - delta)
+                RExC_maxlen = SSize_t_MAX;
+            else if (RExC_maxlen < final_minlen + delta)
+                RExC_maxlen = final_minlen + delta;
+        }
+        return final_minlen;
+    }
+    NOT_REACHED; /* NOTREACHED */
+}
+
+STATIC U32
+S_add_data(RExC_state_t* const pRExC_state, const char* const s, const U32 n)
+{
+    U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
+
+    PERL_ARGS_ASSERT_ADD_DATA;
+
+    Renewc(RExC_rxi->data,
+          sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
+          char, struct reg_data);
+    if(count)
+       Renew(RExC_rxi->data->what, count + n, U8);
+    else
+       Newx(RExC_rxi->data->what, n, U8);
+    RExC_rxi->data->count = count + n;
+    Copy(s, RExC_rxi->data->what + count, n, U8);
+    return count;
+}
+
+/*XXX: todo make this not included in a non debugging perl, but appears to be
+ * used anyway there, in 'use re' */
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_reginitcolors(pTHX)
+{
+    const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
+    if (s) {
+       char *t = savepv(s);
+       int i = 0;
+       PL_colors[0] = t;
+       while (++i < 6) {
+           t = strchr(t, '\t');
+           if (t) {
+               *t = '\0';
+               PL_colors[i] = ++t;
+           }
+           else
+               PL_colors[i] = t = (char *)"";
+       }
+    } else {
+       int i = 0;
+       while (i < 6)
+           PL_colors[i++] = (char *)"";
+    }
+    PL_colorset = 1;
+}
+#endif
+
+
+#ifdef TRIE_STUDY_OPT
+#define CHECK_RESTUDY_GOTO_butfirst(dOsomething)            \
+    STMT_START {                                            \
+        if (                                                \
+              (data.flags & SCF_TRIE_RESTUDY)               \
+              && ! restudied++                              \
+        ) {                                                 \
+            dOsomething;                                    \
+            goto reStudy;                                   \
+        }                                                   \
+    } STMT_END
+#else
+#define CHECK_RESTUDY_GOTO_butfirst
+#endif
+
+/*
+ * pregcomp - compile a regular expression into internal code
+ *
+ * Decides which engine's compiler to call based on the hint currently in
+ * scope
+ */
+
+#ifndef PERL_IN_XSUB_RE
+
+/* return the currently in-scope regex engine (or the default if none)  */
+
+regexp_engine const *
+Perl_current_re_engine(pTHX)
+{
+    if (IN_PERL_COMPILETIME) {
+       HV * const table = GvHV(PL_hintgv);
+       SV **ptr;
+
+       if (!table || !(PL_hints & HINT_LOCALIZE_HH))
+           return &PL_core_reg_engine;
+       ptr = hv_fetchs(table, "regcomp", FALSE);
+       if ( !(ptr && SvIOK(*ptr) && SvIV(*ptr)))
+           return &PL_core_reg_engine;
+       return INT2PTR(regexp_engine*,SvIV(*ptr));
+    }
+    else {
+       SV *ptr;
+       if (!PL_curcop->cop_hints_hash)
+           return &PL_core_reg_engine;
+       ptr = cop_hints_fetch_pvs(PL_curcop, "regcomp", 0);
+       if ( !(ptr && SvIOK(ptr) && SvIV(ptr)))
+           return &PL_core_reg_engine;
+       return INT2PTR(regexp_engine*,SvIV(ptr));
+    }
+}
+
+
+REGEXP *
+Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
+{
+    regexp_engine const *eng = current_re_engine();
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_PREGCOMP;
+
+    /* Dispatch a request to compile a regexp to correct regexp engine. */
+    DEBUG_COMPILE_r({
+       PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
+                       PTR2UV(eng));
+    });
+    return CALLREGCOMP_ENG(eng, pattern, flags);
+}
+#endif
+
+/* public(ish) entry point for the perl core's own regex compiling code.
+ * It's actually a wrapper for Perl_re_op_compile that only takes an SV
+ * pattern rather than a list of OPs, and uses the internal engine rather
+ * than the current one */
+
+REGEXP *
+Perl_re_compile(pTHX_ SV * const pattern, U32 rx_flags)
+{
+    SV *pat = pattern; /* defeat constness! */
+    PERL_ARGS_ASSERT_RE_COMPILE;
+    return Perl_re_op_compile(aTHX_ &pat, 1, NULL,
+#ifdef PERL_IN_XSUB_RE
+                                &my_reg_engine,
+#else
+                                &PL_core_reg_engine,
+#endif
+                                NULL, NULL, rx_flags, 0);
+}
+
+
+/* upgrade pattern pat_p of length plen_p to UTF8, and if there are code
+ * blocks, recalculate the indices. Update pat_p and plen_p in-place to
+ * point to the realloced string and length.
+ *
+ * This is essentially a copy of Perl_bytes_to_utf8() with the code index
+ * stuff added */
+
+static void
+S_pat_upgrade_to_utf8(pTHX_ RExC_state_t * const pRExC_state,
+                   char **pat_p, STRLEN *plen_p, int num_code_blocks)
+{
+    U8 *const src = (U8*)*pat_p;
+    U8 *dst, *d;
+    int n=0;
+    STRLEN s = 0;
+    bool do_end = 0;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+        "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
+
+    Newx(dst, *plen_p * 2 + 1, U8);
+    d = dst;
+
+    while (s < *plen_p) {
+        append_utf8_from_native_byte(src[s], &d);
+        if (n < num_code_blocks) {
+            if (!do_end && pRExC_state->code_blocks[n].start == s) {
+                pRExC_state->code_blocks[n].start = d - dst - 1;
+                assert(*(d - 1) == '(');
+                do_end = 1;
+            }
+            else if (do_end && pRExC_state->code_blocks[n].end == s) {
+                pRExC_state->code_blocks[n].end = d - dst - 1;
+                assert(*(d - 1) == ')');
+                do_end = 0;
+                n++;
+            }
+        }
+        s++;
+    }
+    *d = '\0';
+    *plen_p = d - dst;
+    *pat_p = (char*) dst;
+    SAVEFREEPV(*pat_p);
+    RExC_orig_utf8 = RExC_utf8 = 1;
+}
+
+
+
+/* S_concat_pat(): concatenate a list of args to the pattern string pat,
+ * while recording any code block indices, and handling overloading,
+ * nested qr// objects etc.  If pat is null, it will allocate a new
+ * string, or just return the first arg, if there's only one.
+ *
+ * Returns the malloced/updated pat.
+ * patternp and pat_count is the array of SVs to be concatted;
+ * oplist is the optional list of ops that generated the SVs;
+ * recompile_p is a pointer to a boolean that will be set if
+ *   the regex will need to be recompiled.
+ * delim, if non-null is an SV that will be inserted between each element
+ */
+
+static SV*
+S_concat_pat(pTHX_ RExC_state_t * const pRExC_state,
+                SV *pat, SV ** const patternp, int pat_count,
+                OP *oplist, bool *recompile_p, SV *delim)
+{
+    SV **svp;
+    int n = 0;
+    bool use_delim = FALSE;
+    bool alloced = FALSE;
+
+    /* if we know we have at least two args, create an empty string,
+     * then concatenate args to that. For no args, return an empty string */
+    if (!pat && pat_count != 1) {
+        pat = newSVpvs("");
+        SAVEFREESV(pat);
+        alloced = TRUE;
+    }
+
+    for (svp = patternp; svp < patternp + pat_count; svp++) {
+        SV *sv;
+        SV *rx  = NULL;
+        STRLEN orig_patlen = 0;
+        bool code = 0;
+        SV *msv = use_delim ? delim : *svp;
+        if (!msv) msv = &PL_sv_undef;
+
+        /* if we've got a delimiter, we go round the loop twice for each
+         * svp slot (except the last), using the delimiter the second
+         * time round */
+        if (use_delim) {
+            svp--;
+            use_delim = FALSE;
+        }
+        else if (delim)
+            use_delim = TRUE;
+
+        if (SvTYPE(msv) == SVt_PVAV) {
+            /* we've encountered an interpolated array within
+             * the pattern, e.g. /...@a..../. Expand the list of elements,
+             * then recursively append elements.
+             * The code in this block is based on S_pushav() */
+
+            AV *const av = (AV*)msv;
+            const SSize_t maxarg = AvFILL(av) + 1;
+            SV **array;
+
+            if (oplist) {
+                assert(oplist->op_type == OP_PADAV
+                    || oplist->op_type == OP_RV2AV);
+                oplist = OpSIBLING(oplist);
+            }
+
+            if (SvRMAGICAL(av)) {
+                SSize_t i;
+
+                Newx(array, maxarg, SV*);
+                SAVEFREEPV(array);
+                for (i=0; i < maxarg; i++) {
+                    SV ** const svp = av_fetch(av, i, FALSE);
+                    array[i] = svp ? *svp : &PL_sv_undef;
+                }
+            }
+            else
+                array = AvARRAY(av);
+
+            pat = S_concat_pat(aTHX_ pRExC_state, pat,
+                                array, maxarg, NULL, recompile_p,
+                                /* $" */
+                                GvSV((gv_fetchpvs("\"", GV_ADDMULTI, SVt_PV))));
+
+            continue;
+        }
+
+
+        /* we make the assumption here that each op in the list of
+         * op_siblings maps to one SV pushed onto the stack,
+         * except for code blocks, with have both an OP_NULL and
+         * and OP_CONST.
+         * This allows us to match up the list of SVs against the
+         * list of OPs to find the next code block.
+         *
+         * Note that       PUSHMARK PADSV PADSV ..
+         * is optimised to
+         *                 PADRANGE PADSV  PADSV  ..
+         * so the alignment still works. */
+
+        if (oplist) {
+            if (oplist->op_type == OP_NULL
+                && (oplist->op_flags & OPf_SPECIAL))
+            {
+                assert(n < pRExC_state->num_code_blocks);
+                pRExC_state->code_blocks[n].start = pat ? SvCUR(pat) : 0;
+                pRExC_state->code_blocks[n].block = oplist;
+                pRExC_state->code_blocks[n].src_regex = NULL;
+                n++;
+                code = 1;
+                oplist = OpSIBLING(oplist); /* skip CONST */
+                assert(oplist);
+            }
+            oplist = OpSIBLING(oplist);;
+        }
+
+       /* apply magic and QR overloading to arg */
+
+        SvGETMAGIC(msv);
+        if (SvROK(msv) && SvAMAGIC(msv)) {
+            SV *sv = AMG_CALLunary(msv, regexp_amg);
+            if (sv) {
+                if (SvROK(sv))
+                    sv = SvRV(sv);
+                if (SvTYPE(sv) != SVt_REGEXP)
+                    Perl_croak(aTHX_ "Overloaded qr did not return a REGEXP");
+                msv = sv;
+            }
+        }
+
+        /* try concatenation overload ... */
+        if (pat && (SvAMAGIC(pat) || SvAMAGIC(msv)) &&
+                (sv = amagic_call(pat, msv, concat_amg, AMGf_assign)))
+        {
+            sv_setsv(pat, sv);
+            /* overloading involved: all bets are off over literal
+             * code. Pretend we haven't seen it */
+            pRExC_state->num_code_blocks -= n;
+            n = 0;
+        }
+        else  {
+            /* ... or failing that, try "" overload */
+            while (SvAMAGIC(msv)
+                    && (sv = AMG_CALLunary(msv, string_amg))
+                    && sv != msv
+                    &&  !(   SvROK(msv)
+                          && SvROK(sv)
+                          && SvRV(msv) == SvRV(sv))
+            ) {
+                msv = sv;
+                SvGETMAGIC(msv);
+            }
+            if (SvROK(msv) && SvTYPE(SvRV(msv)) == SVt_REGEXP)
+                msv = SvRV(msv);
+
+            if (pat) {
+                /* this is a partially unrolled
+                 *     sv_catsv_nomg(pat, msv);
+                 * that allows us to adjust code block indices if
+                 * needed */
+                STRLEN dlen;
+                char *dst = SvPV_force_nomg(pat, dlen);
+                orig_patlen = dlen;
+                if (SvUTF8(msv) && !SvUTF8(pat)) {
+                    S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &dst, &dlen, n);
+                    sv_setpvn(pat, dst, dlen);
+                    SvUTF8_on(pat);
+                }
+                sv_catsv_nomg(pat, msv);
+                rx = msv;
+            }
+            else
+                pat = msv;
+
+            if (code)
+                pRExC_state->code_blocks[n-1].end = SvCUR(pat)-1;
+        }
+
+        /* extract any code blocks within any embedded qr//'s */
+        if (rx && SvTYPE(rx) == SVt_REGEXP
+            && RX_ENGINE((REGEXP*)rx)->op_comp)
+        {
+
+            RXi_GET_DECL(ReANY((REGEXP *)rx), ri);
+            if (ri->num_code_blocks) {
+                int i;
+                /* the presence of an embedded qr// with code means
+                 * we should always recompile: the text of the
+                 * qr// may not have changed, but it may be a
+                 * different closure than last time */
+                *recompile_p = 1;
+                Renew(pRExC_state->code_blocks,
+                    pRExC_state->num_code_blocks + ri->num_code_blocks,
+                    struct reg_code_block);
+                pRExC_state->num_code_blocks += ri->num_code_blocks;
+
+                for (i=0; i < ri->num_code_blocks; i++) {
+                    struct reg_code_block *src, *dst;
+                    STRLEN offset =  orig_patlen
+                        + ReANY((REGEXP *)rx)->pre_prefix;
+                    assert(n < pRExC_state->num_code_blocks);
+                    src = &ri->code_blocks[i];
+                    dst = &pRExC_state->code_blocks[n];
+                    dst->start     = src->start + offset;
+                    dst->end       = src->end   + offset;
+                    dst->block     = src->block;
+                    dst->src_regex  = (REGEXP*) SvREFCNT_inc( (SV*)
+                                            src->src_regex
+                                                ? src->src_regex
+                                                : (REGEXP*)rx);
+                    n++;
+                }
+            }
+        }
+    }
+    /* avoid calling magic multiple times on a single element e.g. =~ $qr */
+    if (alloced)
+        SvSETMAGIC(pat);
+
+    return pat;
+}
+
+
+
+/* see if there are any run-time code blocks in the pattern.
+ * False positives are allowed */
+
+static bool
+S_has_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
+                   char *pat, STRLEN plen)
+{
+    int n = 0;
+    STRLEN s;
+    
+    PERL_UNUSED_CONTEXT;
+
+    for (s = 0; s < plen; s++) {
+       if (n < pRExC_state->num_code_blocks
+           && s == pRExC_state->code_blocks[n].start)
+       {
+           s = pRExC_state->code_blocks[n].end;
+           n++;
+           continue;
+       }
+       /* TODO ideally should handle [..], (#..), /#.../x to reduce false
+        * positives here */
+       if (pat[s] == '(' && s+2 <= plen && pat[s+1] == '?' &&
+           (pat[s+2] == '{'
+                || (s + 2 <= plen && pat[s+2] == '?' && pat[s+3] == '{'))
+       )
+           return 1;
+    }
+    return 0;
+}
+
+/* Handle run-time code blocks. We will already have compiled any direct
+ * or indirect literal code blocks. Now, take the pattern 'pat' and make a
+ * copy of it, but with any literal code blocks blanked out and
+ * appropriate chars escaped; then feed it into
+ *
+ *    eval "qr'modified_pattern'"
+ *
+ * For example,
+ *
+ *       a\bc(?{"this was literal"})def'ghi\\jkl(?{"this is runtime"})mno
+ *
+ * becomes
+ *
+ *    qr'a\\bc_______________________def\'ghi\\\\jkl(?{"this is runtime"})mno'
+ *
+ * After eval_sv()-ing that, grab any new code blocks from the returned qr
+ * and merge them with any code blocks of the original regexp.
+ *
+ * If the pat is non-UTF8, while the evalled qr is UTF8, don't merge;
+ * instead, just save the qr and return FALSE; this tells our caller that
+ * the original pattern needs upgrading to utf8.
+ */
+
+static bool
+S_compile_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
+    char *pat, STRLEN plen)
+{
+    SV *qr;
+
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    if (pRExC_state->runtime_code_qr) {
+       /* this is the second time we've been called; this should
+        * only happen if the main pattern got upgraded to utf8
+        * during compilation; re-use the qr we compiled first time
+        * round (which should be utf8 too)
+        */
+       qr = pRExC_state->runtime_code_qr;
+       pRExC_state->runtime_code_qr = NULL;
+       assert(RExC_utf8 && SvUTF8(qr));
+    }
+    else {
+       int n = 0;
+       STRLEN s;
+       char *p, *newpat;
+       int newlen = plen + 6; /* allow for "qr''x\0" extra chars */
+       SV *sv, *qr_ref;
+       dSP;
+
+       /* determine how many extra chars we need for ' and \ escaping */
+       for (s = 0; s < plen; s++) {
+           if (pat[s] == '\'' || pat[s] == '\\')
+               newlen++;
+       }
+
+       Newx(newpat, newlen, char);
+       p = newpat;
+       *p++ = 'q'; *p++ = 'r'; *p++ = '\'';
+
+       for (s = 0; s < plen; s++) {
+           if (n < pRExC_state->num_code_blocks
+               && s == pRExC_state->code_blocks[n].start)
+           {
+               /* blank out literal code block */
+               assert(pat[s] == '(');
+               while (s <= pRExC_state->code_blocks[n].end) {
+                   *p++ = '_';
+                   s++;
+               }
+               s--;
+               n++;
+               continue;
+           }
+           if (pat[s] == '\'' || pat[s] == '\\')
+               *p++ = '\\';
+           *p++ = pat[s];
+       }
+       *p++ = '\'';
+       if (pRExC_state->pm_flags & RXf_PMf_EXTENDED)
+           *p++ = 'x';
+       *p++ = '\0';
+       DEBUG_COMPILE_r({
+           PerlIO_printf(Perl_debug_log,
+               "%sre-parsing pattern for runtime code:%s %s\n",
+               PL_colors[4],PL_colors[5],newpat);
+       });
+
+       sv = newSVpvn_flags(newpat, p-newpat-1, RExC_utf8 ? SVf_UTF8 : 0);
+       Safefree(newpat);
+
+       ENTER;
+       SAVETMPS;
+       save_re_context();
+       PUSHSTACKi(PERLSI_REQUIRE);
+        /* G_RE_REPARSING causes the toker to collapse \\ into \ when
+         * parsing qr''; normally only q'' does this. It also alters
+         * hints handling */
+       eval_sv(sv, G_SCALAR|G_RE_REPARSING);
+       SvREFCNT_dec_NN(sv);
+       SPAGAIN;
+       qr_ref = POPs;
+       PUTBACK;
+       {
+           SV * const errsv = ERRSV;
+           if (SvTRUE_NN(errsv))
+           {
+               Safefree(pRExC_state->code_blocks);
+                /* use croak_sv ? */
+               Perl_croak_nocontext("%"SVf, SVfARG(errsv));
+           }
+       }
+       assert(SvROK(qr_ref));
+       qr = SvRV(qr_ref);
+       assert(SvTYPE(qr) == SVt_REGEXP && RX_ENGINE((REGEXP*)qr)->op_comp);
+       /* the leaving below frees the tmp qr_ref.
+        * Give qr a life of its own */
+       SvREFCNT_inc(qr);
+       POPSTACK;
+       FREETMPS;
+       LEAVE;
+
+    }
+
+    if (!RExC_utf8 && SvUTF8(qr)) {
+       /* first time through; the pattern got upgraded; save the
+        * qr for the next time through */
+       assert(!pRExC_state->runtime_code_qr);
+       pRExC_state->runtime_code_qr = qr;
+       return 0;
+    }
+
+
+    /* extract any code blocks within the returned qr//  */
+
+
+    /* merge the main (r1) and run-time (r2) code blocks into one */
+    {
+       RXi_GET_DECL(ReANY((REGEXP *)qr), r2);
+       struct reg_code_block *new_block, *dst;
+       RExC_state_t * const r1 = pRExC_state; /* convenient alias */
+       int i1 = 0, i2 = 0;
+
+       if (!r2->num_code_blocks) /* we guessed wrong */
+       {
+           SvREFCNT_dec_NN(qr);
+           return 1;
+       }
+
+       Newx(new_block,
+           r1->num_code_blocks + r2->num_code_blocks,
+           struct reg_code_block);
+       dst = new_block;
+
+       while (    i1 < r1->num_code_blocks
+               || i2 < r2->num_code_blocks)
+       {
+           struct reg_code_block *src;
+           bool is_qr = 0;
+
+           if (i1 == r1->num_code_blocks) {
+               src = &r2->code_blocks[i2++];
+               is_qr = 1;
+           }
+           else if (i2 == r2->num_code_blocks)
+               src = &r1->code_blocks[i1++];
+           else if (  r1->code_blocks[i1].start
+                    < r2->code_blocks[i2].start)
+           {
+               src = &r1->code_blocks[i1++];
+               assert(src->end < r2->code_blocks[i2].start);
+           }
+           else {
+               assert(  r1->code_blocks[i1].start
+                      > r2->code_blocks[i2].start);
+               src = &r2->code_blocks[i2++];
+               is_qr = 1;
+               assert(src->end < r1->code_blocks[i1].start);
+           }
+
+           assert(pat[src->start] == '(');
+           assert(pat[src->end]   == ')');
+           dst->start      = src->start;
+           dst->end        = src->end;
+           dst->block      = src->block;
+           dst->src_regex  = is_qr ? (REGEXP*) SvREFCNT_inc( (SV*) qr)
+                                   : src->src_regex;
+           dst++;
+       }
+       r1->num_code_blocks += r2->num_code_blocks;
+       Safefree(r1->code_blocks);
+       r1->code_blocks = new_block;
+    }
+
+    SvREFCNT_dec_NN(qr);
+    return 1;
+}
+
+
+STATIC bool
+S_setup_longest(pTHX_ RExC_state_t *pRExC_state, SV* sv_longest,
+                      SV** rx_utf8, SV** rx_substr, SSize_t* rx_end_shift,
+                     SSize_t lookbehind, SSize_t offset, SSize_t *minlen,
+                      STRLEN longest_length, bool eol, bool meol)
+{
+    /* This is the common code for setting up the floating and fixed length
+     * string data extracted from Perl_re_op_compile() below.  Returns a boolean
+     * as to whether succeeded or not */
+
+    I32 t;
+    SSize_t ml;
+
+    if (! (longest_length
+           || (eol /* Can't have SEOL and MULTI */
+               && (! meol || (RExC_flags & RXf_PMf_MULTILINE)))
+          )
+            /* See comments for join_exact for why REG_UNFOLDED_MULTI_SEEN */
+        || (RExC_seen & REG_UNFOLDED_MULTI_SEEN))
+    {
+        return FALSE;
+    }
+
+    /* copy the information about the longest from the reg_scan_data
+        over to the program. */
+    if (SvUTF8(sv_longest)) {
+        *rx_utf8 = sv_longest;
+        *rx_substr = NULL;
+    } else {
+        *rx_substr = sv_longest;
+        *rx_utf8 = NULL;
+    }
+    /* end_shift is how many chars that must be matched that
+        follow this item. We calculate it ahead of time as once the
+        lookbehind offset is added in we lose the ability to correctly
+        calculate it.*/
+    ml = minlen ? *(minlen) : (SSize_t)longest_length;
+    *rx_end_shift = ml - offset
+        - longest_length + (SvTAIL(sv_longest) != 0)
+        + lookbehind;
+
+    t = (eol/* Can't have SEOL and MULTI */
+         && (! meol || (RExC_flags & RXf_PMf_MULTILINE)));
+    fbm_compile(sv_longest, t ? FBMcf_TAIL : 0);
+
+    return TRUE;
+}
+
+/*
+ * Perl_re_op_compile - the perl internal RE engine's function to compile a
+ * regular expression into internal code.
+ * The pattern may be passed either as:
+ *    a list of SVs (patternp plus pat_count)
+ *    a list of OPs (expr)
+ * If both are passed, the SV list is used, but the OP list indicates
+ * which SVs are actually pre-compiled code blocks
+ *
+ * The SVs in the list have magic and qr overloading applied to them (and
+ * the list may be modified in-place with replacement SVs in the latter
+ * case).
+ *
+ * If the pattern hasn't changed from old_re, then old_re will be
+ * returned.
+ *
+ * eng is the current engine. If that engine has an op_comp method, then
+ * handle directly (i.e. we assume that op_comp was us); otherwise, just
+ * do the initial concatenation of arguments and pass on to the external
+ * engine.
+ *
+ * If is_bare_re is not null, set it to a boolean indicating whether the
+ * arg list reduced (after overloading) to a single bare regex which has
+ * been returned (i.e. /$qr/).
+ *
+ * orig_rx_flags contains RXf_* flags. See perlreapi.pod for more details.
+ *
+ * pm_flags contains the PMf_* flags, typically based on those from the
+ * pm_flags field of the related PMOP. Currently we're only interested in
+ * PMf_HAS_CV, PMf_IS_QR, PMf_USE_RE_EVAL.
+ *
+ * We can't allocate space until we know how big the compiled form will be,
+ * but we can't compile it (and thus know how big it is) until we've got a
+ * place to put the code.  So we cheat:  we compile it twice, once with code
+ * generation turned off and size counting turned on, and once "for real".
+ * This also means that we don't allocate space until we are sure that the
+ * thing really will compile successfully, and we never have to move the
+ * code and thus invalidate pointers into it.  (Note that it has to be in
+ * one piece because free() must be able to free it all.) [NB: not true in perl]
+ *
+ * Beware that the optimization-preparation code in here knows about some
+ * of the structure of the compiled regexp.  [I'll say.]
+ */
+
+REGEXP *
+Perl_re_op_compile(pTHX_ SV ** const patternp, int pat_count,
+                   OP *expr, const regexp_engine* eng, REGEXP *old_re,
+                    bool *is_bare_re, U32 orig_rx_flags, U32 pm_flags)
+{
+    REGEXP *rx;
+    struct regexp *r;
+    regexp_internal *ri;
+    STRLEN plen;
+    char *exp;
+    regnode *scan;
+    I32 flags;
+    SSize_t minlen = 0;
+    U32 rx_flags;
+    SV *pat;
+    SV *code_blocksv = NULL;
+    SV** new_patternp = patternp;
+
+    /* these are all flags - maybe they should be turned
+     * into a single int with different bit masks */
+    I32 sawlookahead = 0;
+    I32 sawplus = 0;
+    I32 sawopen = 0;
+    I32 sawminmod = 0;
+
+    regex_charset initial_charset = get_regex_charset(orig_rx_flags);
+    bool recompile = 0;
+    bool runtime_code = 0;
+    scan_data_t data;
+    RExC_state_t RExC_state;
+    RExC_state_t * const pRExC_state = &RExC_state;
+#ifdef TRIE_STUDY_OPT
+    int restudied = 0;
+    RExC_state_t copyRExC_state;
+#endif
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_RE_OP_COMPILE;
+
+    DEBUG_r(if (!PL_colorset) reginitcolors());
+
+    /* Initialize these here instead of as-needed, as is quick and avoids
+     * having to test them each time otherwise */
+    if (! PL_AboveLatin1) {
+       PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist);
+       PL_Latin1 = _new_invlist_C_array(Latin1_invlist);
+       PL_UpperLatin1 = _new_invlist_C_array(UpperLatin1_invlist);
+        PL_utf8_foldable = _new_invlist_C_array(_Perl_Any_Folds_invlist);
+        PL_HasMultiCharFold =
+                       _new_invlist_C_array(_Perl_Folds_To_Multi_Char_invlist);
+
+        /* This is calculated here, because the Perl program that generates the
+         * static global ones doesn't currently have access to
+         * NUM_ANYOF_CODE_POINTS */
+       PL_InBitmap = _new_invlist(2);
+       PL_InBitmap = _add_range_to_invlist(PL_InBitmap, 0,
+                                                    NUM_ANYOF_CODE_POINTS - 1);
+    }
+
+    pRExC_state->code_blocks = NULL;
+    pRExC_state->num_code_blocks = 0;
+
+    if (is_bare_re)
+       *is_bare_re = FALSE;
+
+    if (expr && (expr->op_type == OP_LIST ||
+               (expr->op_type == OP_NULL && expr->op_targ == OP_LIST))) {
+       /* allocate code_blocks if needed */
+       OP *o;
+       int ncode = 0;
+
+       for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o))
+           if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL))
+               ncode++; /* count of DO blocks */
+       if (ncode) {
+           pRExC_state->num_code_blocks = ncode;
+           Newx(pRExC_state->code_blocks, ncode, struct reg_code_block);
+       }
+    }
+
+    if (!pat_count) {
+        /* compile-time pattern with just OP_CONSTs and DO blocks */
+
+        int n;
+        OP *o;
+
+        /* find how many CONSTs there are */
+        assert(expr);
+        n = 0;
+        if (expr->op_type == OP_CONST)
+            n = 1;
+        else
+            for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o)) {
+                if (o->op_type == OP_CONST)
+                    n++;
+            }
+
+        /* fake up an SV array */
+
+        assert(!new_patternp);
+        Newx(new_patternp, n, SV*);
+        SAVEFREEPV(new_patternp);
+        pat_count = n;
+
+        n = 0;
+        if (expr->op_type == OP_CONST)
+            new_patternp[n] = cSVOPx_sv(expr);
+        else
+            for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o)) {
+                if (o->op_type == OP_CONST)
+                    new_patternp[n++] = cSVOPo_sv;
+            }
+
+    }
+
+    DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+        "Assembling pattern from %d elements%s\n", pat_count,
+            orig_rx_flags & RXf_SPLIT ? " for split" : ""));
+
+    /* set expr to the first arg op */
+
+    if (pRExC_state->num_code_blocks
+         && expr->op_type != OP_CONST)
+    {
+            expr = cLISTOPx(expr)->op_first;
+            assert(   expr->op_type == OP_PUSHMARK
+                   || (expr->op_type == OP_NULL && expr->op_targ == OP_PUSHMARK)
+                   || expr->op_type == OP_PADRANGE);
+            expr = OpSIBLING(expr);
+    }
+
+    pat = S_concat_pat(aTHX_ pRExC_state, NULL, new_patternp, pat_count,
+                        expr, &recompile, NULL);
+
+    /* handle bare (possibly after overloading) regex: foo =~ $re */
+    {
+        SV *re = pat;
+        if (SvROK(re))
+            re = SvRV(re);
+        if (SvTYPE(re) == SVt_REGEXP) {
+            if (is_bare_re)
+                *is_bare_re = TRUE;
+            SvREFCNT_inc(re);
+            Safefree(pRExC_state->code_blocks);
+            DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+                "Precompiled pattern%s\n",
+                    orig_rx_flags & RXf_SPLIT ? " for split" : ""));
+
+            return (REGEXP*)re;
+        }
+    }
+
+    exp = SvPV_nomg(pat, plen);
+
+    if (!eng->op_comp) {
+       if ((SvUTF8(pat) && IN_BYTES)
+               || SvGMAGICAL(pat) || SvAMAGIC(pat))
+       {
+           /* make a temporary copy; either to convert to bytes,
+            * or to avoid repeating get-magic / overloaded stringify */
+           pat = newSVpvn_flags(exp, plen, SVs_TEMP |
+                                       (IN_BYTES ? 0 : SvUTF8(pat)));
+       }
+       Safefree(pRExC_state->code_blocks);
+       return CALLREGCOMP_ENG(eng, pat, orig_rx_flags);
+    }
+
+    /* ignore the utf8ness if the pattern is 0 length */
+    RExC_utf8 = RExC_orig_utf8 = (plen == 0 || IN_BYTES) ? 0 : SvUTF8(pat);
+    RExC_uni_semantics = 0;
+    RExC_contains_locale = 0;
+    RExC_contains_i = 0;
+    RExC_strict = cBOOL(pm_flags & RXf_PMf_STRICT);
+    pRExC_state->runtime_code_qr = NULL;
+    RExC_frame_head= NULL;
+    RExC_frame_last= NULL;
+    RExC_frame_count= 0;
+
+    DEBUG_r({
+        RExC_mysv1= sv_newmortal();
+        RExC_mysv2= sv_newmortal();
+    });
+    DEBUG_COMPILE_r({
+            SV *dsv= sv_newmortal();
+            RE_PV_QUOTED_DECL(s, RExC_utf8, dsv, exp, plen, 60);
+            PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
+                          PL_colors[4],PL_colors[5],s);
+        });
+
+  redo_first_pass:
+    /* we jump here if we upgrade the pattern to utf8 and have to
+     * recompile */
+
+    if ((pm_flags & PMf_USE_RE_EVAL)
+               /* this second condition covers the non-regex literal case,
+                * i.e.  $foo =~ '(?{})'. */
+               || (IN_PERL_COMPILETIME && (PL_hints & HINT_RE_EVAL))
+    )
+       runtime_code = S_has_runtime_code(aTHX_ pRExC_state, exp, plen);
+
+    /* return old regex if pattern hasn't changed */
+    /* XXX: note in the below we have to check the flags as well as the
+     * pattern.
+     *
+     * Things get a touch tricky as we have to compare the utf8 flag
+     * independently from the compile flags.  */
+
+    if (   old_re
+        && !recompile
+        && !!RX_UTF8(old_re) == !!RExC_utf8
+        && ( RX_COMPFLAGS(old_re) == ( orig_rx_flags & RXf_PMf_FLAGCOPYMASK ) )
+       && RX_PRECOMP(old_re)
+       && RX_PRELEN(old_re) == plen
+        && memEQ(RX_PRECOMP(old_re), exp, plen)
+       && !runtime_code /* with runtime code, always recompile */ )
+    {
+        Safefree(pRExC_state->code_blocks);
+        return old_re;
+    }
+
+    rx_flags = orig_rx_flags;
+
+    if (rx_flags & PMf_FOLD) {
+        RExC_contains_i = 1;
+    }
+    if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
+
+       /* Set to use unicode semantics if the pattern is in utf8 and has the
+        * 'depends' charset specified, as it means unicode when utf8  */
+       set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
+    }
+
+    RExC_precomp = exp;
+    RExC_flags = rx_flags;
+    RExC_pm_flags = pm_flags;
+
+    if (runtime_code) {
+       if (TAINTING_get && TAINT_get)
+           Perl_croak(aTHX_ "Eval-group in insecure regular expression");
+
+       if (!S_compile_runtime_code(aTHX_ pRExC_state, exp, plen)) {
+           /* whoops, we have a non-utf8 pattern, whilst run-time code
+            * got compiled as utf8. Try again with a utf8 pattern */
+            S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
+                                    pRExC_state->num_code_blocks);
+            goto redo_first_pass;
+       }
+    }
+    assert(!pRExC_state->runtime_code_qr);
+
+    RExC_sawback = 0;
+
+    RExC_seen = 0;
+    RExC_maxlen = 0;
+    RExC_in_lookbehind = 0;
+    RExC_seen_zerolen = *exp == '^' ? -1 : 0;
+    RExC_extralen = 0;
+    RExC_override_recoding = 0;
+#ifdef EBCDIC
+    RExC_recode_x_to_native = 0;
+#endif
+    RExC_in_multi_char_class = 0;
+
+    /* First pass: determine size, legality. */
+    RExC_parse = exp;
+    RExC_start = exp;
+    RExC_end = exp + plen;
+    RExC_naughty = 0;
+    RExC_npar = 1;
+    RExC_nestroot = 0;
+    RExC_size = 0L;
+    RExC_emit = (regnode *) &RExC_emit_dummy;
+    RExC_whilem_seen = 0;
+    RExC_open_parens = NULL;
+    RExC_close_parens = NULL;
+    RExC_opend = NULL;
+    RExC_paren_names = NULL;
+#ifdef DEBUGGING
+    RExC_paren_name_list = NULL;
+#endif
+    RExC_recurse = NULL;
+    RExC_study_chunk_recursed = NULL;
+    RExC_study_chunk_recursed_bytes= 0;
+    RExC_recurse_count = 0;
+    pRExC_state->code_index = 0;
+
+    DEBUG_PARSE_r(
+       PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n");
+        RExC_lastnum=0;
+        RExC_lastparse=NULL;
+    );
+    /* reg may croak on us, not giving us a chance to free
+       pRExC_state->code_blocks.  We cannot SAVEFREEPV it now, as we may
+       need it to survive as long as the regexp (qr/(?{})/).
+       We must check that code_blocksv is not already set, because we may
+       have jumped back to restart the sizing pass. */
+    if (pRExC_state->code_blocks && !code_blocksv) {
+       code_blocksv = newSV_type(SVt_PV);
+       SAVEFREESV(code_blocksv);
+       SvPV_set(code_blocksv, (char *)pRExC_state->code_blocks);
+       SvLEN_set(code_blocksv, 1); /*sufficient to make sv_clear free it*/
+    }
+    if (reg(pRExC_state, 0, &flags,1) == NULL) {
+        /* It's possible to write a regexp in ascii that represents Unicode
+        codepoints outside of the byte range, such as via \x{100}. If we
+        detect such a sequence we have to convert the entire pattern to utf8
+        and then recompile, as our sizing calculation will have been based
+        on 1 byte == 1 character, but we will need to use utf8 to encode
+        at least some part of the pattern, and therefore must convert the whole
+        thing.
+        -- dmq */
+        if (flags & RESTART_UTF8) {
+            S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
+                                    pRExC_state->num_code_blocks);
+            goto redo_first_pass;
+        }
+        Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for sizing pass, flags=%#"UVxf"", (UV) flags);
+    }
+    if (code_blocksv)
+       SvLEN_set(code_blocksv,0); /* no you can't have it, sv_clear */
+
+    DEBUG_PARSE_r({
+        PerlIO_printf(Perl_debug_log,
+            "Required size %"IVdf" nodes\n"
+            "Starting second pass (creation)\n",
+            (IV)RExC_size);
+        RExC_lastnum=0;
+        RExC_lastparse=NULL;
+    });
+
+    /* The first pass could have found things that force Unicode semantics */
+    if ((RExC_utf8 || RExC_uni_semantics)
+        && get_regex_charset(rx_flags) == REGEX_DEPENDS_CHARSET)
+    {
+       set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
+    }
+
+    /* Small enough for pointer-storage convention?
+       If extralen==0, this means that we will not need long jumps. */
+    if (RExC_size >= 0x10000L && RExC_extralen)
+        RExC_size += RExC_extralen;
+    else
+       RExC_extralen = 0;
+    if (RExC_whilem_seen > 15)
+       RExC_whilem_seen = 15;
+
+    /* Allocate space and zero-initialize. Note, the two step process
+       of zeroing when in debug mode, thus anything assigned has to
+       happen after that */
+    rx = (REGEXP*) newSV_type(SVt_REGEXP);
+    r = ReANY(rx);
+    Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
+        char, regexp_internal);
+    if ( r == NULL || ri == NULL )
+       FAIL("Regexp out of space");
+#ifdef DEBUGGING
+    /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
+    Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
+         char);
+#else
+    /* bulk initialize base fields with 0. */
+    Zero(ri, sizeof(regexp_internal), char);
+#endif
+
+    /* non-zero initialization begins here */
+    RXi_SET( r, ri );
+    r->engine= eng;
+    r->extflags = rx_flags;
+    RXp_COMPFLAGS(r) = orig_rx_flags & RXf_PMf_FLAGCOPYMASK;
+
+    if (pm_flags & PMf_IS_QR) {
+       ri->code_blocks = pRExC_state->code_blocks;
+       ri->num_code_blocks = pRExC_state->num_code_blocks;
+    }
+    else
+    {
+       int n;
+       for (n = 0; n < pRExC_state->num_code_blocks; n++)
+           if (pRExC_state->code_blocks[n].src_regex)
+               SAVEFREESV(pRExC_state->code_blocks[n].src_regex);
+       SAVEFREEPV(pRExC_state->code_blocks);
+    }
+
+    {
+        bool has_p     = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
+        bool has_charset = (get_regex_charset(r->extflags)
+                                                    != REGEX_DEPENDS_CHARSET);
+
+        /* The caret is output if there are any defaults: if not all the STD
+         * flags are set, or if no character set specifier is needed */
+        bool has_default =
+                    (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
+                    || ! has_charset);
+        bool has_runon = ((RExC_seen & REG_RUN_ON_COMMENT_SEEN)
+                                                   == REG_RUN_ON_COMMENT_SEEN);
+       U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
+                           >> RXf_PMf_STD_PMMOD_SHIFT);
+       const char *fptr = STD_PAT_MODS;        /*"msixn"*/
+       char *p;
+        /* Allocate for the worst case, which is all the std flags are turned
+         * on.  If more precision is desired, we could do a population count of
+         * the flags set.  This could be done with a small lookup table, or by
+         * shifting, masking and adding, or even, when available, assembly
+         * language for a machine-language population count.
+         * We never output a minus, as all those are defaults, so are
+         * covered by the caret */
+       const STRLEN wraplen = plen + has_p + has_runon
+            + has_default       /* If needs a caret */
+
+               /* If needs a character set specifier */
+           + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
+            + (sizeof(STD_PAT_MODS) - 1)
+            + (sizeof("(?:)") - 1);
+
+        Newx(p, wraplen + 1, char); /* +1 for the ending NUL */
+       r->xpv_len_u.xpvlenu_pv = p;
+       if (RExC_utf8)
+           SvFLAGS(rx) |= SVf_UTF8;
+        *p++='('; *p++='?';
+
+        /* If a default, cover it using the caret */
+        if (has_default) {
+            *p++= DEFAULT_PAT_MOD;
+        }
+        if (has_charset) {
+           STRLEN len;
+           const char* const name = get_regex_charset_name(r->extflags, &len);
+           Copy(name, p, len, char);
+           p += len;
+        }
+        if (has_p)
+            *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
+        {
+            char ch;
+            while((ch = *fptr++)) {
+                if(reganch & 1)
+                    *p++ = ch;
+                reganch >>= 1;
+            }
+        }
+
+        *p++ = ':';
+        Copy(RExC_precomp, p, plen, char);
+       assert ((RX_WRAPPED(rx) - p) < 16);
+       r->pre_prefix = p - RX_WRAPPED(rx);
+        p += plen;
+        if (has_runon)
+            *p++ = '\n';
+        *p++ = ')';
+        *p = 0;
+       SvCUR_set(rx, p - RX_WRAPPED(rx));
+    }
+
+    r->intflags = 0;
+    r->nparens = RExC_npar - 1;        /* set early to validate backrefs */
+
+    /* setup various meta data about recursion, this all requires
+     * RExC_npar to be correctly set, and a bit later on we clear it */
+    if (RExC_seen & REG_RECURSE_SEEN) {
+        Newxz(RExC_open_parens, RExC_npar,regnode *);
+        SAVEFREEPV(RExC_open_parens);
+        Newxz(RExC_close_parens,RExC_npar,regnode *);
+        SAVEFREEPV(RExC_close_parens);
+    }
+    if (RExC_seen & (REG_RECURSE_SEEN | REG_GOSTART_SEEN)) {
+        /* Note, RExC_npar is 1 + the number of parens in a pattern.
+         * So its 1 if there are no parens. */
+        RExC_study_chunk_recursed_bytes= (RExC_npar >> 3) +
+                                         ((RExC_npar & 0x07) != 0);
+        Newx(RExC_study_chunk_recursed,
+             RExC_study_chunk_recursed_bytes * RExC_npar, U8);
+        SAVEFREEPV(RExC_study_chunk_recursed);
+    }
+
+    /* Useful during FAIL. */
+#ifdef RE_TRACK_PATTERN_OFFSETS
+    Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
+    DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
+                          "%s %"UVuf" bytes for offset annotations.\n",
+                          ri->u.offsets ? "Got" : "Couldn't get",
+                          (UV)((2*RExC_size+1) * sizeof(U32))));
+#endif
+    SetProgLen(ri,RExC_size);
+    RExC_rx_sv = rx;
+    RExC_rx = r;
+    RExC_rxi = ri;
+
+    /* Second pass: emit code. */
+    RExC_flags = rx_flags;     /* don't let top level (?i) bleed */
+    RExC_pm_flags = pm_flags;
+    RExC_parse = exp;
+    RExC_end = exp + plen;
+    RExC_naughty = 0;
+    RExC_npar = 1;
+    RExC_emit_start = ri->program;
+    RExC_emit = ri->program;
+    RExC_emit_bound = ri->program + RExC_size + 1;
+    pRExC_state->code_index = 0;
+
+    *((char*) RExC_emit++) = (char) REG_MAGIC;
+    if (reg(pRExC_state, 0, &flags,1) == NULL) {
+       ReREFCNT_dec(rx);
+        Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for generation pass, flags=%#"UVxf"", (UV) flags);
+    }
+    /* XXXX To minimize changes to RE engine we always allocate
+       3-units-long substrs field. */
+    Newx(r->substrs, 1, struct reg_substr_data);
+    if (RExC_recurse_count) {
+        Newxz(RExC_recurse,RExC_recurse_count,regnode *);
+        SAVEFREEPV(RExC_recurse);
+    }
+
+  reStudy:
+    r->minlen = minlen = sawlookahead = sawplus = sawopen = sawminmod = 0;
+    DEBUG_r(
+        RExC_study_chunk_recursed_count= 0;
+    );
+    Zero(r->substrs, 1, struct reg_substr_data);
+    if (RExC_study_chunk_recursed) {
+        Zero(RExC_study_chunk_recursed,
+             RExC_study_chunk_recursed_bytes * RExC_npar, U8);
+    }
+
+
+#ifdef TRIE_STUDY_OPT
+    if (!restudied) {
+        StructCopy(&zero_scan_data, &data, scan_data_t);
+        copyRExC_state = RExC_state;
+    } else {
+        U32 seen=RExC_seen;
+        DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
+
+        RExC_state = copyRExC_state;
+        if (seen & REG_TOP_LEVEL_BRANCHES_SEEN)
+            RExC_seen |= REG_TOP_LEVEL_BRANCHES_SEEN;
+        else
+            RExC_seen &= ~REG_TOP_LEVEL_BRANCHES_SEEN;
+       StructCopy(&zero_scan_data, &data, scan_data_t);
+    }
+#else
+    StructCopy(&zero_scan_data, &data, scan_data_t);
+#endif
+
+    /* Dig out information for optimizations. */
+    r->extflags = RExC_flags; /* was pm_op */
+    /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
+
+    if (UTF)
+       SvUTF8_on(rx);  /* Unicode in it? */
+    ri->regstclass = NULL;
+    if (RExC_naughty >= TOO_NAUGHTY)   /* Probably an expensive pattern. */
+       r->intflags |= PREGf_NAUGHTY;
+    scan = ri->program + 1;            /* First BRANCH. */
+
+    /* testing for BRANCH here tells us whether there is "must appear"
+       data in the pattern. If there is then we can use it for optimisations */
+    if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN)) { /*  Only one top-level choice.
+                                                  */
+       SSize_t fake;
+       STRLEN longest_float_length, longest_fixed_length;
+       regnode_ssc ch_class; /* pointed to by data */
+       int stclass_flag;
+       SSize_t last_close = 0; /* pointed to by data */
+        regnode *first= scan;
+        regnode *first_next= regnext(first);
+       /*
+        * Skip introductions and multiplicators >= 1
+        * so that we can extract the 'meat' of the pattern that must
+        * match in the large if() sequence following.
+        * NOTE that EXACT is NOT covered here, as it is normally
+        * picked up by the optimiser separately.
+        *
+        * This is unfortunate as the optimiser isnt handling lookahead
+        * properly currently.
+        *
+        */
+       while ((OP(first) == OPEN && (sawopen = 1)) ||
+              /* An OR of *one* alternative - should not happen now. */
+           (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
+           /* for now we can't handle lookbehind IFMATCH*/
+           (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
+           (OP(first) == PLUS) ||
+           (OP(first) == MINMOD) ||
+              /* An {n,m} with n>0 */
+           (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
+           (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
+       {
+               /*
+                * the only op that could be a regnode is PLUS, all the rest
+                * will be regnode_1 or regnode_2.
+                *
+                 * (yves doesn't think this is true)
+                */
+               if (OP(first) == PLUS)
+                   sawplus = 1;
+                else {
+                    if (OP(first) == MINMOD)
+                        sawminmod = 1;
+                   first += regarglen[OP(first)];
+                }
+               first = NEXTOPER(first);
+               first_next= regnext(first);
+       }
+
+       /* Starting-point info. */
+      again:
+        DEBUG_PEEP("first:",first,0);
+        /* Ignore EXACT as we deal with it later. */
+       if (PL_regkind[OP(first)] == EXACT) {
+           if (OP(first) == EXACT || OP(first) == EXACTL)
+               NOOP;   /* Empty, get anchored substr later. */
+           else
+               ri->regstclass = first;
+       }
+#ifdef TRIE_STCLASS
+       else if (PL_regkind[OP(first)] == TRIE &&
+               ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
+       {
+            /* this can happen only on restudy */
+            ri->regstclass = construct_ahocorasick_from_trie(pRExC_state, (regnode *)first, 0);
+       }
+#endif
+       else if (REGNODE_SIMPLE(OP(first)))
+           ri->regstclass = first;
+       else if (PL_regkind[OP(first)] == BOUND ||
+                PL_regkind[OP(first)] == NBOUND)
+           ri->regstclass = first;
+       else if (PL_regkind[OP(first)] == BOL) {
+            r->intflags |= (OP(first) == MBOL
+                           ? PREGf_ANCH_MBOL
+                           : PREGf_ANCH_SBOL);
+           first = NEXTOPER(first);
+           goto again;
+       }
+       else if (OP(first) == GPOS) {
+            r->intflags |= PREGf_ANCH_GPOS;
+           first = NEXTOPER(first);
+           goto again;
+       }
+       else if ((!sawopen || !RExC_sawback) &&
+            !sawlookahead &&
+           (OP(first) == STAR &&
+           PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
+            !(r->intflags & PREGf_ANCH) && !pRExC_state->num_code_blocks)
+       {
+           /* turn .* into ^.* with an implied $*=1 */
+           const int type =
+               (OP(NEXTOPER(first)) == REG_ANY)
+                    ? PREGf_ANCH_MBOL
+                    : PREGf_ANCH_SBOL;
+            r->intflags |= (type | PREGf_IMPLICIT);
+           first = NEXTOPER(first);
+           goto again;
+       }
+        if (sawplus && !sawminmod && !sawlookahead
+            && (!sawopen || !RExC_sawback)
+           && !pRExC_state->num_code_blocks) /* May examine pos and $& */
+           /* x+ must match at the 1st pos of run of x's */
+           r->intflags |= PREGf_SKIP;
+
+       /* Scan is after the zeroth branch, first is atomic matcher. */
+#ifdef TRIE_STUDY_OPT
+       DEBUG_PARSE_r(
+           if (!restudied)
+               PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
+                             (IV)(first - scan + 1))
+        );
+#else
+       DEBUG_PARSE_r(
+           PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
+               (IV)(first - scan + 1))
+        );
+#endif
+
+
+       /*
+       * If there's something expensive in the r.e., find the
+       * longest literal string that must appear and make it the
+       * regmust.  Resolve ties in favor of later strings, since
+       * the regstart check works with the beginning of the r.e.
+       * and avoiding duplication strengthens checking.  Not a
+       * strong reason, but sufficient in the absence of others.
+       * [Now we resolve ties in favor of the earlier string if
+       * it happens that c_offset_min has been invalidated, since the
+       * earlier string may buy us something the later one won't.]
+       */
+
+       data.longest_fixed = newSVpvs("");
+       data.longest_float = newSVpvs("");
+       data.last_found = newSVpvs("");
+       data.longest = &(data.longest_fixed);
+       ENTER_with_name("study_chunk");
+       SAVEFREESV(data.longest_fixed);
+       SAVEFREESV(data.longest_float);
+       SAVEFREESV(data.last_found);
+       first = scan;
+       if (!ri->regstclass) {
+           ssc_init(pRExC_state, &ch_class);
+           data.start_class = &ch_class;
+           stclass_flag = SCF_DO_STCLASS_AND;
+       } else                          /* XXXX Check for BOUND? */
+           stclass_flag = 0;
+       data.last_closep = &last_close;
+
+        DEBUG_RExC_seen();
+       minlen = study_chunk(pRExC_state, &first, &minlen, &fake,
+                             scan + RExC_size, /* Up to end */
+            &data, -1, 0, NULL,
+            SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag
+                          | (restudied ? SCF_TRIE_DOING_RESTUDY : 0),
+            0);
+
+
+        CHECK_RESTUDY_GOTO_butfirst(LEAVE_with_name("study_chunk"));
+
+
+       if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
+            && data.last_start_min == 0 && data.last_end > 0
+            && !RExC_seen_zerolen
+             && !(RExC_seen & REG_VERBARG_SEEN)
+             && !(RExC_seen & REG_GPOS_SEEN)
+        ){
+           r->extflags |= RXf_CHECK_ALL;
+        }
+       scan_commit(pRExC_state, &data,&minlen,0);
+
+       longest_float_length = CHR_SVLEN(data.longest_float);
+
+        if (! ((SvCUR(data.longest_fixed)  /* ok to leave SvCUR */
+                   && data.offset_fixed == data.offset_float_min
+                   && SvCUR(data.longest_fixed) == SvCUR(data.longest_float)))
+            && S_setup_longest (aTHX_ pRExC_state,
+                                    data.longest_float,
+                                    &(r->float_utf8),
+                                    &(r->float_substr),
+                                    &(r->float_end_shift),
+                                    data.lookbehind_float,
+                                    data.offset_float_min,
+                                    data.minlen_float,
+                                    longest_float_length,
+                                    cBOOL(data.flags & SF_FL_BEFORE_EOL),
+                                    cBOOL(data.flags & SF_FL_BEFORE_MEOL)))
+        {
+           r->float_min_offset = data.offset_float_min - data.lookbehind_float;
+           r->float_max_offset = data.offset_float_max;
+           if (data.offset_float_max < SSize_t_MAX) /* Don't offset infinity */
+               r->float_max_offset -= data.lookbehind_float;
+           SvREFCNT_inc_simple_void_NN(data.longest_float);
+       }
+       else {
+           r->float_substr = r->float_utf8 = NULL;
+           longest_float_length = 0;
+       }
+
+       longest_fixed_length = CHR_SVLEN(data.longest_fixed);
+
+        if (S_setup_longest (aTHX_ pRExC_state,
+                                data.longest_fixed,
+                                &(r->anchored_utf8),
+                                &(r->anchored_substr),
+                                &(r->anchored_end_shift),
+                                data.lookbehind_fixed,
+                                data.offset_fixed,
+                                data.minlen_fixed,
+                                longest_fixed_length,
+                                cBOOL(data.flags & SF_FIX_BEFORE_EOL),
+                                cBOOL(data.flags & SF_FIX_BEFORE_MEOL)))
+        {
+           r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
+           SvREFCNT_inc_simple_void_NN(data.longest_fixed);
+       }
+       else {
+           r->anchored_substr = r->anchored_utf8 = NULL;
+           longest_fixed_length = 0;
+       }
+       LEAVE_with_name("study_chunk");
+
+       if (ri->regstclass
+           && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
+           ri->regstclass = NULL;
+
+       if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
+           && stclass_flag
+            && ! (ANYOF_FLAGS(data.start_class) & SSC_MATCHES_EMPTY_STRING)
+           && is_ssc_worth_it(pRExC_state, data.start_class))
+       {
+           const U32 n = add_data(pRExC_state, STR_WITH_LEN("f"));
+
+            ssc_finalize(pRExC_state, data.start_class);
+
+           Newx(RExC_rxi->data->data[n], 1, regnode_ssc);
+           StructCopy(data.start_class,
+                      (regnode_ssc*)RExC_rxi->data->data[n],
+                      regnode_ssc);
+           ri->regstclass = (regnode*)RExC_rxi->data->data[n];
+           r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
+           DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
+                      regprop(r, sv, (regnode*)data.start_class, NULL, pRExC_state);
+                     PerlIO_printf(Perl_debug_log,
+                                   "synthetic stclass \"%s\".\n",
+                                   SvPVX_const(sv));});
+            data.start_class = NULL;
+       }
+
+        /* A temporary algorithm prefers floated substr to fixed one to dig
+         * more info. */
+       if (longest_fixed_length > longest_float_length) {
+           r->substrs->check_ix = 0;
+           r->check_end_shift = r->anchored_end_shift;
+           r->check_substr = r->anchored_substr;
+           r->check_utf8 = r->anchored_utf8;
+           r->check_offset_min = r->check_offset_max = r->anchored_offset;
+            if (r->intflags & (PREGf_ANCH_SBOL|PREGf_ANCH_GPOS))
+                r->intflags |= PREGf_NOSCAN;
+       }
+       else {
+           r->substrs->check_ix = 1;
+           r->check_end_shift = r->float_end_shift;
+           r->check_substr = r->float_substr;
+           r->check_utf8 = r->float_utf8;
+           r->check_offset_min = r->float_min_offset;
+           r->check_offset_max = r->float_max_offset;
+       }
+       if ((r->check_substr || r->check_utf8) ) {
+           r->extflags |= RXf_USE_INTUIT;
+           if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
+               r->extflags |= RXf_INTUIT_TAIL;
+       }
+        r->substrs->data[0].max_offset = r->substrs->data[0].min_offset;
+
+       /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
+       if ( (STRLEN)minlen < longest_float_length )
+            minlen= longest_float_length;
+        if ( (STRLEN)minlen < longest_fixed_length )
+            minlen= longest_fixed_length;
+        */
+    }
+    else {
+       /* Several toplevels. Best we can is to set minlen. */
+       SSize_t fake;
+       regnode_ssc ch_class;
+       SSize_t last_close = 0;
+
+       DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
+
+       scan = ri->program + 1;
+       ssc_init(pRExC_state, &ch_class);
+       data.start_class = &ch_class;
+       data.last_closep = &last_close;
+
+        DEBUG_RExC_seen();
+       minlen = study_chunk(pRExC_state,
+            &scan, &minlen, &fake, scan + RExC_size, &data, -1, 0, NULL,
+            SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS|(restudied
+                                                      ? SCF_TRIE_DOING_RESTUDY
+                                                      : 0),
+            0);
+
+        CHECK_RESTUDY_GOTO_butfirst(NOOP);
+
+       r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
+               = r->float_substr = r->float_utf8 = NULL;
+
+        if (! (ANYOF_FLAGS(data.start_class) & SSC_MATCHES_EMPTY_STRING)
+           && is_ssc_worth_it(pRExC_state, data.start_class))
+        {
+           const U32 n = add_data(pRExC_state, STR_WITH_LEN("f"));
+
+            ssc_finalize(pRExC_state, data.start_class);
+
+           Newx(RExC_rxi->data->data[n], 1, regnode_ssc);
+           StructCopy(data.start_class,
+                      (regnode_ssc*)RExC_rxi->data->data[n],
+                      regnode_ssc);
+           ri->regstclass = (regnode*)RExC_rxi->data->data[n];
+           r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
+           DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
+                      regprop(r, sv, (regnode*)data.start_class, NULL, pRExC_state);
+                     PerlIO_printf(Perl_debug_log,
+                                   "synthetic stclass \"%s\".\n",
+                                   SvPVX_const(sv));});
+            data.start_class = NULL;
+       }
+    }
+
+    if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) {
+        r->extflags |= RXf_UNBOUNDED_QUANTIFIER_SEEN;
+        r->maxlen = REG_INFTY;
+    }
+    else {
+        r->maxlen = RExC_maxlen;
+    }
+
+    /* Guard against an embedded (?=) or (?<=) with a longer minlen than
+       the "real" pattern. */
+    DEBUG_OPTIMISE_r({
+        PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf" maxlen:%"IVdf"\n",
+                      (IV)minlen, (IV)r->minlen, (IV)RExC_maxlen);
+    });
+    r->minlenret = minlen;
+    if (r->minlen < minlen)
+        r->minlen = minlen;
+
+    if (RExC_seen & REG_GPOS_SEEN)
+        r->intflags |= PREGf_GPOS_SEEN;
+    if (RExC_seen & REG_LOOKBEHIND_SEEN)
+        r->extflags |= RXf_NO_INPLACE_SUBST; /* inplace might break the
+                                                lookbehind */
+    if (pRExC_state->num_code_blocks)
+       r->extflags |= RXf_EVAL_SEEN;
+    if (RExC_seen & REG_VERBARG_SEEN)
+    {
+       r->intflags |= PREGf_VERBARG_SEEN;
+        r->extflags |= RXf_NO_INPLACE_SUBST; /* don't understand this! Yves */
+    }
+    if (RExC_seen & REG_CUTGROUP_SEEN)
+       r->intflags |= PREGf_CUTGROUP_SEEN;
+    if (pm_flags & PMf_USE_RE_EVAL)
+       r->intflags |= PREGf_USE_RE_EVAL;
+    if (RExC_paren_names)
+        RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
+    else
+        RXp_PAREN_NAMES(r) = NULL;
+
+    /* If we have seen an anchor in our pattern then we set the extflag RXf_IS_ANCHORED
+     * so it can be used in pp.c */
+    if (r->intflags & PREGf_ANCH)
+        r->extflags |= RXf_IS_ANCHORED;
+
+
+    {
+        /* this is used to identify "special" patterns that might result
+         * in Perl NOT calling the regex engine and instead doing the match "itself",
+         * particularly special cases in split//. By having the regex compiler
+         * do this pattern matching at a regop level (instead of by inspecting the pattern)
+         * we avoid weird issues with equivalent patterns resulting in different behavior,
+         * AND we allow non Perl engines to get the same optimizations by the setting the
+         * flags appropriately - Yves */
+        regnode *first = ri->program + 1;
+        U8 fop = OP(first);
+        regnode *next = regnext(first);
+        U8 nop = OP(next);
+
+        if (PL_regkind[fop] == NOTHING && nop == END)
+            r->extflags |= RXf_NULL;
+        else if ((fop == MBOL || (fop == SBOL && !first->flags)) && nop == END)
+            /* when fop is SBOL first->flags will be true only when it was
+             * produced by parsing /\A/, and not when parsing /^/. This is
+             * very important for the split code as there we want to
+             * treat /^/ as /^/m, but we do not want to treat /\A/ as /^/m.
+             * See rt #122761 for more details. -- Yves */
+            r->extflags |= RXf_START_ONLY;
+        else if (fop == PLUS
+                 && PL_regkind[nop] == POSIXD && FLAGS(next) == _CC_SPACE
+                 && nop == END)
+            r->extflags |= RXf_WHITE;
+        else if ( r->extflags & RXf_SPLIT
+                  && (fop == EXACT || fop == EXACTL)
+                  && STR_LEN(first) == 1
+                  && *(STRING(first)) == ' '
+                  && nop == END )
+            r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
+
+    }
+
+    if (RExC_contains_locale) {
+        RXp_EXTFLAGS(r) |= RXf_TAINTED;
+    }
+
+#ifdef DEBUGGING
+    if (RExC_paren_names) {
+        ri->name_list_idx = add_data( pRExC_state, STR_WITH_LEN("a"));
+        ri->data->data[ri->name_list_idx]
+                                   = (void*)SvREFCNT_inc(RExC_paren_name_list);
+    } else
+#endif
+        ri->name_list_idx = 0;
+
+    if (RExC_recurse_count) {
+        for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
+            const regnode *scan = RExC_recurse[RExC_recurse_count-1];
+            ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
+        }
+    }
+    Newxz(r->offs, RExC_npar, regexp_paren_pair);
+    /* assume we don't need to swap parens around before we match */
+    DEBUG_TEST_r({
+        PerlIO_printf(Perl_debug_log,"study_chunk_recursed_count: %lu\n",
+            (unsigned long)RExC_study_chunk_recursed_count);
+    });
+    DEBUG_DUMP_r({
+        DEBUG_RExC_seen();
+        PerlIO_printf(Perl_debug_log,"Final program:\n");
+        regdump(r);
+    });
+#ifdef RE_TRACK_PATTERN_OFFSETS
+    DEBUG_OFFSETS_r(if (ri->u.offsets) {
+        const STRLEN len = ri->u.offsets[0];
+        STRLEN i;
+        GET_RE_DEBUG_FLAGS_DECL;
+        PerlIO_printf(Perl_debug_log,
+                      "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
+        for (i = 1; i <= len; i++) {
+            if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
+                PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
+                (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
+            }
+        PerlIO_printf(Perl_debug_log, "\n");
+    });
+#endif
+
+#ifdef USE_ITHREADS
+    /* under ithreads the ?pat? PMf_USED flag on the pmop is simulated
+     * by setting the regexp SV to readonly-only instead. If the
+     * pattern's been recompiled, the USEDness should remain. */
+    if (old_re && SvREADONLY(old_re))
+        SvREADONLY_on(rx);
+#endif
+    return rx;
+}
+
+
+SV*
+Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
+                    const U32 flags)
+{
+    PERL_ARGS_ASSERT_REG_NAMED_BUFF;
+
+    PERL_UNUSED_ARG(value);
+
+    if (flags & RXapif_FETCH) {
+        return reg_named_buff_fetch(rx, key, flags);
+    } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
+        Perl_croak_no_modify();
+        return NULL;
+    } else if (flags & RXapif_EXISTS) {
+        return reg_named_buff_exists(rx, key, flags)
+            ? &PL_sv_yes
+            : &PL_sv_no;
+    } else if (flags & RXapif_REGNAMES) {
+        return reg_named_buff_all(rx, flags);
+    } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
+        return reg_named_buff_scalar(rx, flags);
+    } else {
+        Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
+        return NULL;
+    }
+}
+
+SV*
+Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
+                         const U32 flags)
+{
+    PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
+    PERL_UNUSED_ARG(lastkey);
+
+    if (flags & RXapif_FIRSTKEY)
+        return reg_named_buff_firstkey(rx, flags);
+    else if (flags & RXapif_NEXTKEY)
+        return reg_named_buff_nextkey(rx, flags);
+    else {
+        Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter",
+                                            (int)flags);
+        return NULL;
+    }
+}
+
+SV*
+Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
+                         const U32 flags)
+{
+    AV *retarray = NULL;
+    SV *ret;
+    struct regexp *const rx = ReANY(r);
+
+    PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
+
+    if (flags & RXapif_ALL)
+        retarray=newAV();
+
+    if (rx && RXp_PAREN_NAMES(rx)) {
+        HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
+        if (he_str) {
+            IV i;
+            SV* sv_dat=HeVAL(he_str);
+            I32 *nums=(I32*)SvPVX(sv_dat);
+            for ( i=0; i<SvIVX(sv_dat); i++ ) {
+                if ((I32)(rx->nparens) >= nums[i]
+                    && rx->offs[nums[i]].start != -1
+                    && rx->offs[nums[i]].end != -1)
+                {
+                    ret = newSVpvs("");
+                    CALLREG_NUMBUF_FETCH(r,nums[i],ret);
+                    if (!retarray)
+                        return ret;
+                } else {
+                    if (retarray)
+                        ret = newSVsv(&PL_sv_undef);
+                }
+                if (retarray)
+                    av_push(retarray, ret);
+            }
+            if (retarray)
+                return newRV_noinc(MUTABLE_SV(retarray));
+        }
+    }
+    return NULL;
+}
+
+bool
+Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
+                           const U32 flags)
+{
+    struct regexp *const rx = ReANY(r);
+
+    PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
+
+    if (rx && RXp_PAREN_NAMES(rx)) {
+        if (flags & RXapif_ALL) {
+            return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
+        } else {
+           SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
+            if (sv) {
+               SvREFCNT_dec_NN(sv);
+                return TRUE;
+            } else {
+                return FALSE;
+            }
+        }
+    } else {
+        return FALSE;
+    }
+}
+
+SV*
+Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
+{
+    struct regexp *const rx = ReANY(r);
+
+    PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
+
+    if ( rx && RXp_PAREN_NAMES(rx) ) {
+       (void)hv_iterinit(RXp_PAREN_NAMES(rx));
+
+       return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
+    } else {
+       return FALSE;
+    }
+}
+
+SV*
+Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
+{
+    struct regexp *const rx = ReANY(r);
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
+
+    if (rx && RXp_PAREN_NAMES(rx)) {
+        HV *hv = RXp_PAREN_NAMES(rx);
+        HE *temphe;
+        while ( (temphe = hv_iternext_flags(hv,0)) ) {
+            IV i;
+            IV parno = 0;
+            SV* sv_dat = HeVAL(temphe);
+            I32 *nums = (I32*)SvPVX(sv_dat);
+            for ( i = 0; i < SvIVX(sv_dat); i++ ) {
+                if ((I32)(rx->lastparen) >= nums[i] &&
+                    rx->offs[nums[i]].start != -1 &&
+                    rx->offs[nums[i]].end != -1)
+                {
+                    parno = nums[i];
+                    break;
+                }
+            }
+            if (parno || flags & RXapif_ALL) {
+               return newSVhek(HeKEY_hek(temphe));
+            }
+        }
+    }
+    return NULL;
+}
+
+SV*
+Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
+{
+    SV *ret;
+    AV *av;
+    SSize_t length;
+    struct regexp *const rx = ReANY(r);
+
+    PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
+
+    if (rx && RXp_PAREN_NAMES(rx)) {
+        if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
+            return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
+        } else if (flags & RXapif_ONE) {
+            ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
+            av = MUTABLE_AV(SvRV(ret));
+            length = av_tindex(av);
+           SvREFCNT_dec_NN(ret);
+            return newSViv(length + 1);
+        } else {
+            Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar",
+                                                (int)flags);
+            return NULL;
+        }
+    }
+    return &PL_sv_undef;
+}
+
+SV*
+Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
+{
+    struct regexp *const rx = ReANY(r);
+    AV *av = newAV();
+
+    PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
+
+    if (rx && RXp_PAREN_NAMES(rx)) {
+        HV *hv= RXp_PAREN_NAMES(rx);
+        HE *temphe;
+        (void)hv_iterinit(hv);
+        while ( (temphe = hv_iternext_flags(hv,0)) ) {
+            IV i;
+            IV parno = 0;
+            SV* sv_dat = HeVAL(temphe);
+            I32 *nums = (I32*)SvPVX(sv_dat);
+            for ( i = 0; i < SvIVX(sv_dat); i++ ) {
+                if ((I32)(rx->lastparen) >= nums[i] &&
+                    rx->offs[nums[i]].start != -1 &&
+                    rx->offs[nums[i]].end != -1)
+                {
+                    parno = nums[i];
+                    break;
+                }
+            }
+            if (parno || flags & RXapif_ALL) {
+                av_push(av, newSVhek(HeKEY_hek(temphe)));
+            }
+        }
+    }
+
+    return newRV_noinc(MUTABLE_SV(av));
+}
+
+void
+Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
+                            SV * const sv)
+{
+    struct regexp *const rx = ReANY(r);
+    char *s = NULL;
+    SSize_t i = 0;
+    SSize_t s1, t1;
+    I32 n = paren;
+
+    PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
+
+    if (      n == RX_BUFF_IDX_CARET_PREMATCH
+           || n == RX_BUFF_IDX_CARET_FULLMATCH
+           || n == RX_BUFF_IDX_CARET_POSTMATCH
+       )
+    {
+        bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
+        if (!keepcopy) {
+            /* on something like
+             *    $r = qr/.../;
+             *    /$qr/p;
+             * the KEEPCOPY is set on the PMOP rather than the regex */
+            if (PL_curpm && r == PM_GETRE(PL_curpm))
+                 keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
+        }
+        if (!keepcopy)
+            goto ret_undef;
+    }
+
+    if (!rx->subbeg)
+        goto ret_undef;
+
+    if (n == RX_BUFF_IDX_CARET_FULLMATCH)
+        /* no need to distinguish between them any more */
+        n = RX_BUFF_IDX_FULLMATCH;
+
+    if ((n == RX_BUFF_IDX_PREMATCH || n == RX_BUFF_IDX_CARET_PREMATCH)
+        && rx->offs[0].start != -1)
+    {
+        /* $`, ${^PREMATCH} */
+       i = rx->offs[0].start;
+       s = rx->subbeg;
+    }
+    else
+    if ((n == RX_BUFF_IDX_POSTMATCH || n == RX_BUFF_IDX_CARET_POSTMATCH)
+        && rx->offs[0].end != -1)
+    {
+        /* $', ${^POSTMATCH} */
+       s = rx->subbeg - rx->suboffset + rx->offs[0].end;
+       i = rx->sublen + rx->suboffset - rx->offs[0].end;
+    }
+    else
+    if ( 0 <= n && n <= (I32)rx->nparens &&
+        (s1 = rx->offs[n].start) != -1 &&
+        (t1 = rx->offs[n].end) != -1)
+    {
+        /* $&, ${^MATCH},  $1 ... */
+        i = t1 - s1;
+        s = rx->subbeg + s1 - rx->suboffset;
+    } else {
+        goto ret_undef;
+    }
+
+    assert(s >= rx->subbeg);
+    assert((STRLEN)rx->sublen >= (STRLEN)((s - rx->subbeg) + i) );
+    if (i >= 0) {
+#ifdef NO_TAINT_SUPPORT
+        sv_setpvn(sv, s, i);
+#else
+        const int oldtainted = TAINT_get;
+        TAINT_NOT;
+        sv_setpvn(sv, s, i);
+        TAINT_set(oldtainted);
+#endif
+        if (RXp_MATCH_UTF8(rx))
+            SvUTF8_on(sv);
+        else
+            SvUTF8_off(sv);
+        if (TAINTING_get) {
+            if (RXp_MATCH_TAINTED(rx)) {
+                if (SvTYPE(sv) >= SVt_PVMG) {
+                    MAGIC* const mg = SvMAGIC(sv);
+                    MAGIC* mgt;
+                    TAINT;
+                    SvMAGIC_set(sv, mg->mg_moremagic);
+                    SvTAINT(sv);
+                    if ((mgt = SvMAGIC(sv))) {
+                        mg->mg_moremagic = mgt;
+                        SvMAGIC_set(sv, mg);
+                    }
+                } else {
+                    TAINT;
+                    SvTAINT(sv);
+                }
+            } else
+                SvTAINTED_off(sv);
+        }
+    } else {
+      ret_undef:
+        sv_setsv(sv,&PL_sv_undef);
+        return;
+    }
+}
+
+void
+Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
+                                                        SV const * const value)
+{
+    PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
+
+    PERL_UNUSED_ARG(rx);
+    PERL_UNUSED_ARG(paren);
+    PERL_UNUSED_ARG(value);
+
+    if (!PL_localizing)
+        Perl_croak_no_modify();
+}
+
+I32
+Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
+                              const I32 paren)
+{
+    struct regexp *const rx = ReANY(r);
+    I32 i;
+    I32 s1, t1;
+
+    PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
+
+    if (   paren == RX_BUFF_IDX_CARET_PREMATCH
+        || paren == RX_BUFF_IDX_CARET_FULLMATCH
+        || paren == RX_BUFF_IDX_CARET_POSTMATCH
+    )
+    {
+        bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
+        if (!keepcopy) {
+            /* on something like
+             *    $r = qr/.../;
+             *    /$qr/p;
+             * the KEEPCOPY is set on the PMOP rather than the regex */
+            if (PL_curpm && r == PM_GETRE(PL_curpm))
+                 keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
+        }
+        if (!keepcopy)
+            goto warn_undef;
+    }
+
+    /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
+    switch (paren) {
+      case RX_BUFF_IDX_CARET_PREMATCH: /* ${^PREMATCH} */
+      case RX_BUFF_IDX_PREMATCH:       /* $` */
+        if (rx->offs[0].start != -1) {
+                       i = rx->offs[0].start;
+                       if (i > 0) {
+                               s1 = 0;
+                               t1 = i;
+                               goto getlen;
+                       }
+           }
+        return 0;
+
+      case RX_BUFF_IDX_CARET_POSTMATCH: /* ${^POSTMATCH} */
+      case RX_BUFF_IDX_POSTMATCH:       /* $' */
+           if (rx->offs[0].end != -1) {
+                       i = rx->sublen - rx->offs[0].end;
+                       if (i > 0) {
+                               s1 = rx->offs[0].end;
+                               t1 = rx->sublen;
+                               goto getlen;
+                       }
+           }
+        return 0;
+
+      default: /* $& / ${^MATCH}, $1, $2, ... */
+           if (paren <= (I32)rx->nparens &&
+            (s1 = rx->offs[paren].start) != -1 &&
+            (t1 = rx->offs[paren].end) != -1)
+           {
+            i = t1 - s1;
+            goto getlen;
+        } else {
+          warn_undef:
+            if (ckWARN(WARN_UNINITIALIZED))
+                report_uninit((const SV *)sv);
+            return 0;
+        }
+    }
+  getlen:
+    if (i > 0 && RXp_MATCH_UTF8(rx)) {
+        const char * const s = rx->subbeg - rx->suboffset + s1;
+        const U8 *ep;
+        STRLEN el;
+
+        i = t1 - s1;
+        if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
+                       i = el;
+    }
+    return i;
+}
+
+SV*
+Perl_reg_qr_package(pTHX_ REGEXP * const rx)
+{
+    PERL_ARGS_ASSERT_REG_QR_PACKAGE;
+       PERL_UNUSED_ARG(rx);
+       if (0)
+           return NULL;
+       else
+           return newSVpvs("Regexp");
+}
+
+/* Scans the name of a named buffer from the pattern.
+ * If flags is REG_RSN_RETURN_NULL returns null.
+ * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
+ * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
+ * to the parsed name as looked up in the RExC_paren_names hash.
+ * If there is an error throws a vFAIL().. type exception.
+ */
+
+#define REG_RSN_RETURN_NULL    0
+#define REG_RSN_RETURN_NAME    1
+#define REG_RSN_RETURN_DATA    2
+
+STATIC SV*
+S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
+{
+    char *name_start = RExC_parse;
+
+    PERL_ARGS_ASSERT_REG_SCAN_NAME;
+
+    assert (RExC_parse <= RExC_end);
+    if (RExC_parse == RExC_end) NOOP;
+    else if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
+        /* skip IDFIRST by using do...while */
+       if (UTF)
+           do {
+               RExC_parse += UTF8SKIP(RExC_parse);
+           } while (isWORDCHAR_utf8((U8*)RExC_parse));
+       else
+           do {
+               RExC_parse++;
+           } while (isWORDCHAR(*RExC_parse));
+    } else {
+        RExC_parse++; /* so the <- from the vFAIL is after the offending
+                         character */
+        vFAIL("Group name must start with a non-digit word character");
+    }
+    if ( flags ) {
+        SV* sv_name
+           = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
+                            SVs_TEMP | (UTF ? SVf_UTF8 : 0));
+        if ( flags == REG_RSN_RETURN_NAME)
+            return sv_name;
+        else if (flags==REG_RSN_RETURN_DATA) {
+            HE *he_str = NULL;
+            SV *sv_dat = NULL;
+            if ( ! sv_name )      /* should not happen*/
+                Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
+            if (RExC_paren_names)
+                he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
+            if ( he_str )
+                sv_dat = HeVAL(he_str);
+            if ( ! sv_dat )
+                vFAIL("Reference to nonexistent named group");
+            return sv_dat;
+        }
+        else {
+            Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name",
+                      (unsigned long) flags);
+        }
+        NOT_REACHED; /* NOTREACHED */
+    }
+    return NULL;
+}
+
+#define DEBUG_PARSE_MSG(funcname)     DEBUG_PARSE_r({           \
+    int num;                                                    \
+    if (RExC_lastparse!=RExC_parse) {                           \
+        PerlIO_printf(Perl_debug_log, "%s",                     \
+            Perl_pv_pretty(aTHX_ RExC_mysv1, RExC_parse,        \
+                RExC_end - RExC_parse, 16,                      \
+                "", "",                                         \
+                PERL_PV_ESCAPE_UNI_DETECT |                     \
+                PERL_PV_PRETTY_ELLIPSES   |                     \
+                PERL_PV_PRETTY_LTGT       |                     \
+                PERL_PV_ESCAPE_RE         |                     \
+                PERL_PV_PRETTY_EXACTSIZE                        \
+            )                                                   \
+        );                                                      \
+    } else                                                      \
+        PerlIO_printf(Perl_debug_log,"%16s","");                \
+                                                                \
+    if (SIZE_ONLY)                                              \
+       num = RExC_size + 1;                                     \
+    else                                                        \
+       num=REG_NODE_NUM(RExC_emit);                             \
+    if (RExC_lastnum!=num)                                      \
+       PerlIO_printf(Perl_debug_log,"|%4d",num);                \
+    else                                                        \
+       PerlIO_printf(Perl_debug_log,"|%4s","");                 \
+    PerlIO_printf(Perl_debug_log,"|%*s%-4s",                    \
+        (int)((depth*2)), "",                                   \
+        (funcname)                                              \
+    );                                                          \
+    RExC_lastnum=num;                                           \
+    RExC_lastparse=RExC_parse;                                  \
+})
+
+
+
+#define DEBUG_PARSE(funcname)     DEBUG_PARSE_r({           \
+    DEBUG_PARSE_MSG((funcname));                            \
+    PerlIO_printf(Perl_debug_log,"%4s","\n");               \
+})
+#define DEBUG_PARSE_FMT(funcname,fmt,args)     DEBUG_PARSE_r({           \
+    DEBUG_PARSE_MSG((funcname));                            \
+    PerlIO_printf(Perl_debug_log,fmt "\n",args);               \
+})
+
+/* This section of code defines the inversion list object and its methods.  The
+ * interfaces are highly subject to change, so as much as possible is static to
+ * this file.  An inversion list is here implemented as a malloc'd C UV array
+ * as an SVt_INVLIST scalar.
+ *
+ * An inversion list for Unicode is an array of code points, sorted by ordinal
+ * number.  The zeroth element is the first code point in the list.  The 1th
+ * element is the first element beyond that not in the list.  In other words,
+ * the first range is
+ *  invlist[0]..(invlist[1]-1)
+ * The other ranges follow.  Thus every element whose index is divisible by two
+ * marks the beginning of a range that is in the list, and every element not
+ * divisible by two marks the beginning of a range not in the list.  A single
+ * element inversion list that contains the single code point N generally
+ * consists of two elements
+ *  invlist[0] == N
+ *  invlist[1] == N+1
+ * (The exception is when N is the highest representable value on the
+ * machine, in which case the list containing just it would be a single
+ * element, itself.  By extension, if the last range in the list extends to
+ * infinity, then the first element of that range will be in the inversion list
+ * at a position that is divisible by two, and is the final element in the
+ * list.)
+ * Taking the complement (inverting) an inversion list is quite simple, if the
+ * first element is 0, remove it; otherwise add a 0 element at the beginning.
+ * This implementation reserves an element at the beginning of each inversion
+ * list to always contain 0; there is an additional flag in the header which
+ * indicates if the list begins at the 0, or is offset to begin at the next
+ * element.
+ *
+ * More about inversion lists can be found in "Unicode Demystified"
+ * Chapter 13 by Richard Gillam, published by Addison-Wesley.
+ * More will be coming when functionality is added later.
+ *
+ * The inversion list data structure is currently implemented as an SV pointing
+ * to an array of UVs that the SV thinks are bytes.  This allows us to have an
+ * array of UV whose memory management is automatically handled by the existing
+ * facilities for SV's.
+ *
+ * Some of the methods should always be private to the implementation, and some
+ * should eventually be made public */
+
+/* The header definitions are in F<inline_invlist.c> */
+
+PERL_STATIC_INLINE UV*
+S__invlist_array_init(SV* const invlist, const bool will_have_0)
+{
+    /* Returns a pointer to the first element in the inversion list's array.
+     * This is called upon initialization of an inversion list.  Where the
+     * array begins depends on whether the list has the code point U+0000 in it
+     * or not.  The other parameter tells it whether the code that follows this
+     * call is about to put a 0 in the inversion list or not.  The first
+     * element is either the element reserved for 0, if TRUE, or the element
+     * after it, if FALSE */
+
+    bool* offset = get_invlist_offset_addr(invlist);
+    UV* zero_addr = (UV *) SvPVX(invlist);
+
+    PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
+
+    /* Must be empty */
+    assert(! _invlist_len(invlist));
+
+    *zero_addr = 0;
+
+    /* 1^1 = 0; 1^0 = 1 */
+    *offset = 1 ^ will_have_0;
+    return zero_addr + *offset;
+}
+
+PERL_STATIC_INLINE void
+S_invlist_set_len(pTHX_ SV* const invlist, const UV len, const bool offset)
+{
+    /* Sets the current number of elements stored in the inversion list.
+     * Updates SvCUR correspondingly */
+    PERL_UNUSED_CONTEXT;
+    PERL_ARGS_ASSERT_INVLIST_SET_LEN;
+
+    assert(SvTYPE(invlist) == SVt_INVLIST);
+
+    SvCUR_set(invlist,
+              (len == 0)
+               ? 0
+               : TO_INTERNAL_SIZE(len + offset));
+    assert(SvLEN(invlist) == 0 || SvCUR(invlist) <= SvLEN(invlist));
+}
+
+#ifndef PERL_IN_XSUB_RE
+
+PERL_STATIC_INLINE IV*
+S_get_invlist_previous_index_addr(SV* invlist)
+{
+    /* Return the address of the IV that is reserved to hold the cached index
+     * */
+    PERL_ARGS_ASSERT_GET_INVLIST_PREVIOUS_INDEX_ADDR;
+
+    assert(SvTYPE(invlist) == SVt_INVLIST);
+
+    return &(((XINVLIST*) SvANY(invlist))->prev_index);
+}
+
+PERL_STATIC_INLINE IV
+S_invlist_previous_index(SV* const invlist)
+{
+    /* Returns cached index of previous search */
+
+    PERL_ARGS_ASSERT_INVLIST_PREVIOUS_INDEX;
+
+    return *get_invlist_previous_index_addr(invlist);
+}
+
+PERL_STATIC_INLINE void
+S_invlist_set_previous_index(SV* const invlist, const IV index)
+{
+    /* Caches <index> for later retrieval */
+
+    PERL_ARGS_ASSERT_INVLIST_SET_PREVIOUS_INDEX;
+
+    assert(index == 0 || index < (int) _invlist_len(invlist));
+
+    *get_invlist_previous_index_addr(invlist) = index;
+}
+
+PERL_STATIC_INLINE void
+S_invlist_trim(SV* const invlist)
+{
+    PERL_ARGS_ASSERT_INVLIST_TRIM;
+
+    assert(SvTYPE(invlist) == SVt_INVLIST);
+
+    /* Change the length of the inversion list to how many entries it currently
+     * has */
+    SvPV_shrink_to_cur((SV *) invlist);
+}
+
+PERL_STATIC_INLINE bool
+S_invlist_is_iterating(SV* const invlist)
+{
+    PERL_ARGS_ASSERT_INVLIST_IS_ITERATING;
+
+    return *(get_invlist_iter_addr(invlist)) < (STRLEN) UV_MAX;
+}
+
+#endif /* ifndef PERL_IN_XSUB_RE */
+
+PERL_STATIC_INLINE UV
+S_invlist_max(SV* const invlist)
+{
+    /* Returns the maximum number of elements storable in the inversion list's
+     * array, without having to realloc() */
+
+    PERL_ARGS_ASSERT_INVLIST_MAX;
+
+    assert(SvTYPE(invlist) == SVt_INVLIST);
+
+    /* Assumes worst case, in which the 0 element is not counted in the
+     * inversion list, so subtracts 1 for that */
+    return SvLEN(invlist) == 0  /* This happens under _new_invlist_C_array */
+           ? FROM_INTERNAL_SIZE(SvCUR(invlist)) - 1
+           : FROM_INTERNAL_SIZE(SvLEN(invlist)) - 1;
+}
+
+#ifndef PERL_IN_XSUB_RE
+SV*
+Perl__new_invlist(pTHX_ IV initial_size)
+{
+
+    /* Return a pointer to a newly constructed inversion list, with enough
+     * space to store 'initial_size' elements.  If that number is negative, a
+     * system default is used instead */
+
+    SV* new_list;
+
+    if (initial_size < 0) {
+       initial_size = 10;
+    }
+
+    /* Allocate the initial space */
+    new_list = newSV_type(SVt_INVLIST);
+
+    /* First 1 is in case the zero element isn't in the list; second 1 is for
+     * trailing NUL */
+    SvGROW(new_list, TO_INTERNAL_SIZE(initial_size + 1) + 1);
+    invlist_set_len(new_list, 0, 0);
+
+    /* Force iterinit() to be used to get iteration to work */
+    *get_invlist_iter_addr(new_list) = (STRLEN) UV_MAX;
+
+    *get_invlist_previous_index_addr(new_list) = 0;
+
+    return new_list;
+}
+
+SV*
+Perl__new_invlist_C_array(pTHX_ const UV* const list)
+{
+    /* Return a pointer to a newly constructed inversion list, initialized to
+     * point to <list>, which has to be in the exact correct inversion list
+     * form, including internal fields.  Thus this is a dangerous routine that
+     * should not be used in the wrong hands.  The passed in 'list' contains
+     * several header fields at the beginning that are not part of the
+     * inversion list body proper */
+
+    const STRLEN length = (STRLEN) list[0];
+    const UV version_id =          list[1];
+    const bool offset   =    cBOOL(list[2]);
+#define HEADER_LENGTH 3
+    /* If any of the above changes in any way, you must change HEADER_LENGTH
+     * (if appropriate) and regenerate INVLIST_VERSION_ID by running
+     *      perl -E 'say int(rand 2**31-1)'
+     */
+#define INVLIST_VERSION_ID 148565664 /* This is a combination of a version and
+                                        data structure type, so that one being
+                                        passed in can be validated to be an
+                                        inversion list of the correct vintage.
+                                       */
+
+    SV* invlist = newSV_type(SVt_INVLIST);
+
+    PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY;
+
+    if (version_id != INVLIST_VERSION_ID) {
+        Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list");
+    }
+
+    /* The generated array passed in includes header elements that aren't part
+     * of the list proper, so start it just after them */
+    SvPV_set(invlist, (char *) (list + HEADER_LENGTH));
+
+    SvLEN_set(invlist, 0);  /* Means we own the contents, and the system
+                              shouldn't touch it */
+
+    *(get_invlist_offset_addr(invlist)) = offset;
+
+    /* The 'length' passed to us is the physical number of elements in the
+     * inversion list.  But if there is an offset the logical number is one
+     * less than that */
+    invlist_set_len(invlist, length  - offset, offset);
+
+    invlist_set_previous_index(invlist, 0);
+
+    /* Initialize the iteration pointer. */
+    invlist_iterfinish(invlist);
+
+    SvREADONLY_on(invlist);
+
+    return invlist;
+}
+#endif /* ifndef PERL_IN_XSUB_RE */
+
+STATIC void
+S_invlist_extend(pTHX_ SV* const invlist, const UV new_max)
+{
+    /* Grow the maximum size of an inversion list */
+
+    PERL_ARGS_ASSERT_INVLIST_EXTEND;
+
+    assert(SvTYPE(invlist) == SVt_INVLIST);
+
+    /* Add one to account for the zero element at the beginning which may not
+     * be counted by the calling parameters */
+    SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max + 1));
+}
+
+STATIC void
+S__append_range_to_invlist(pTHX_ SV* const invlist,
+                                 const UV start, const UV end)
+{
+   /* Subject to change or removal.  Append the range from 'start' to 'end' at
+    * the end of the inversion list.  The range must be above any existing
+    * ones. */
+
+    UV* array;
+    UV max = invlist_max(invlist);
+    UV len = _invlist_len(invlist);
+    bool offset;
+
+    PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
+
+    if (len == 0) { /* Empty lists must be initialized */
+        offset = start != 0;
+        array = _invlist_array_init(invlist, ! offset);
+    }
+    else {
+       /* Here, the existing list is non-empty. The current max entry in the
+        * list is generally the first value not in the set, except when the
+        * set extends to the end of permissible values, in which case it is
+        * the first entry in that final set, and so this call is an attempt to
+        * append out-of-order */
+
+       UV final_element = len - 1;
+       array = invlist_array(invlist);
+       if (array[final_element] > start
+           || ELEMENT_RANGE_MATCHES_INVLIST(final_element))
+       {
+           Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%"UVuf", start=%"UVuf", match=%c",
+                    array[final_element], start,
+                    ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f');
+       }
+
+       /* Here, it is a legal append.  If the new range begins with the first
+        * value not in the set, it is extending the set, so the new first
+        * value not in the set is one greater than the newly extended range.
+        * */
+        offset = *get_invlist_offset_addr(invlist);
+       if (array[final_element] == start) {
+           if (end != UV_MAX) {
+               array[final_element] = end + 1;
+           }
+           else {
+               /* But if the end is the maximum representable on the machine,
+                * just let the range that this would extend to have no end */
+               invlist_set_len(invlist, len - 1, offset);
+           }
+           return;
+       }
+    }
+
+    /* Here the new range doesn't extend any existing set.  Add it */
+
+    len += 2;  /* Includes an element each for the start and end of range */
+
+    /* If wll overflow the existing space, extend, which may cause the array to
+     * be moved */
+    if (max < len) {
+       invlist_extend(invlist, len);
+
+        /* Have to set len here to avoid assert failure in invlist_array() */
+        invlist_set_len(invlist, len, offset);
+
+       array = invlist_array(invlist);
+    }
+    else {
+       invlist_set_len(invlist, len, offset);
+    }
+
+    /* The next item on the list starts the range, the one after that is
+     * one past the new range.  */
+    array[len - 2] = start;
+    if (end != UV_MAX) {
+       array[len - 1] = end + 1;
+    }
+    else {
+       /* But if the end is the maximum representable on the machine, just let
+        * the range have no end */
+       invlist_set_len(invlist, len - 1, offset);
+    }
+}
+
+#ifndef PERL_IN_XSUB_RE
+
+IV
+Perl__invlist_search(SV* const invlist, const UV cp)
+{
+    /* Searches the inversion list for the entry that contains the input code
+     * point <cp>.  If <cp> is not in the list, -1 is returned.  Otherwise, the
+     * return value is the index into the list's array of the range that
+     * contains <cp> */
+
+    IV low = 0;
+    IV mid;
+    IV high = _invlist_len(invlist);
+    const IV highest_element = high - 1;
+    const UV* array;
+
+    PERL_ARGS_ASSERT__INVLIST_SEARCH;
+
+    /* If list is empty, return failure. */
+    if (high == 0) {
+       return -1;
+    }
+
+    /* (We can't get the array unless we know the list is non-empty) */
+    array = invlist_array(invlist);
+
+    mid = invlist_previous_index(invlist);
+    assert(mid >=0 && mid <= highest_element);
+
+    /* <mid> contains the cache of the result of the previous call to this
+     * function (0 the first time).  See if this call is for the same result,
+     * or if it is for mid-1.  This is under the theory that calls to this
+     * function will often be for related code points that are near each other.
+     * And benchmarks show that caching gives better results.  We also test
+     * here if the code point is within the bounds of the list.  These tests
+     * replace others that would have had to be made anyway to make sure that
+     * the array bounds were not exceeded, and these give us extra information
+     * at the same time */
+    if (cp >= array[mid]) {
+        if (cp >= array[highest_element]) {
+            return highest_element;
+        }
+
+        /* Here, array[mid] <= cp < array[highest_element].  This means that
+         * the final element is not the answer, so can exclude it; it also
+         * means that <mid> is not the final element, so can refer to 'mid + 1'
+         * safely */
+        if (cp < array[mid + 1]) {
+            return mid;
+        }
+        high--;
+        low = mid + 1;
+    }
+    else { /* cp < aray[mid] */
+        if (cp < array[0]) { /* Fail if outside the array */
+            return -1;
+        }
+        high = mid;
+        if (cp >= array[mid - 1]) {
+            goto found_entry;
+        }
+    }
+
+    /* Binary search.  What we are looking for is <i> such that
+     * array[i] <= cp < array[i+1]
+     * The loop below converges on the i+1.  Note that there may not be an
+     * (i+1)th element in the array, and things work nonetheless */
+    while (low < high) {
+       mid = (low + high) / 2;
+        assert(mid <= highest_element);
+       if (array[mid] <= cp) { /* cp >= array[mid] */
+           low = mid + 1;
+
+           /* We could do this extra test to exit the loop early.
+           if (cp < array[low]) {
+               return mid;
+           }
+           */
+       }
+       else { /* cp < array[mid] */
+           high = mid;
+       }
+    }
+
+  found_entry:
+    high--;
+    invlist_set_previous_index(invlist, high);
+    return high;
+}
+
+void
+Perl__invlist_populate_swatch(SV* const invlist,
+                              const UV start, const UV end, U8* swatch)
+{
+    /* populates a swatch of a swash the same way swatch_get() does in utf8.c,
+     * but is used when the swash has an inversion list.  This makes this much
+     * faster, as it uses a binary search instead of a linear one.  This is
+     * intimately tied to that function, and perhaps should be in utf8.c,
+     * except it is intimately tied to inversion lists as well.  It assumes
+     * that <swatch> is all 0's on input */
+
+    UV current = start;
+    const IV len = _invlist_len(invlist);
+    IV i;
+    const UV * array;
+
+    PERL_ARGS_ASSERT__INVLIST_POPULATE_SWATCH;
+
+    if (len == 0) { /* Empty inversion list */
+        return;
+    }
+
+    array = invlist_array(invlist);
+
+    /* Find which element it is */
+    i = _invlist_search(invlist, start);
+
+    /* We populate from <start> to <end> */
+    while (current < end) {
+        UV upper;
+
+       /* The inversion list gives the results for every possible code point
+        * after the first one in the list.  Only those ranges whose index is
+        * even are ones that the inversion list matches.  For the odd ones,
+        * and if the initial code point is not in the list, we have to skip
+        * forward to the next element */
+        if (i == -1 || ! ELEMENT_RANGE_MATCHES_INVLIST(i)) {
+            i++;
+            if (i >= len) { /* Finished if beyond the end of the array */
+                return;
+            }
+            current = array[i];
+           if (current >= end) {   /* Finished if beyond the end of what we
+                                      are populating */
+                if (LIKELY(end < UV_MAX)) {
+                    return;
+                }
+
+                /* We get here when the upper bound is the maximum
+                 * representable on the machine, and we are looking for just
+                 * that code point.  Have to special case it */
+                i = len;
+                goto join_end_of_list;
+            }
+        }
+        assert(current >= start);
+
+       /* The current range ends one below the next one, except don't go past
+        * <end> */
+        i++;
+        upper = (i < len && array[i] < end) ? array[i] : end;
+
+       /* Here we are in a range that matches.  Populate a bit in the 3-bit U8
+        * for each code point in it */
+        for (; current < upper; current++) {
+            const STRLEN offset = (STRLEN)(current - start);
+            swatch[offset >> 3] |= 1 << (offset & 7);
+        }
+
+      join_end_of_list:
+
+       /* Quit if at the end of the list */
+        if (i >= len) {
+
+           /* But first, have to deal with the highest possible code point on
+            * the platform.  The previous code assumes that <end> is one
+            * beyond where we want to populate, but that is impossible at the
+            * platform's infinity, so have to handle it specially */
+            if (UNLIKELY(end == UV_MAX && ELEMENT_RANGE_MATCHES_INVLIST(len-1)))
+           {
+                const STRLEN offset = (STRLEN)(end - start);
+                swatch[offset >> 3] |= 1 << (offset & 7);
+            }
+            return;
+        }
+
+       /* Advance to the next range, which will be for code points not in the
+        * inversion list */
+        current = array[i];
+    }
+
+    return;
+}
+
+void
+Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b,
+                                         const bool complement_b, SV** output)
+{
+    /* Take the union of two inversion lists and point <output> to it.  *output
+     * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
+     * the reference count to that list will be decremented if not already a
+     * temporary (mortal); otherwise *output will be made correspondingly
+     * mortal.  The first list, <a>, may be NULL, in which case a copy of the
+     * second list is returned.  If <complement_b> is TRUE, the union is taken
+     * of the complement (inversion) of <b> instead of b itself.
+     *
+     * The basis for this comes from "Unicode Demystified" Chapter 13 by
+     * Richard Gillam, published by Addison-Wesley, and explained at some
+     * length there.  The preface says to incorporate its examples into your
+     * code at your own risk.
+     *
+     * The algorithm is like a merge sort.
+     *
+     * XXX A potential performance improvement is to keep track as we go along
+     * if only one of the inputs contributes to the result, meaning the other
+     * is a subset of that one.  In that case, we can skip the final copy and
+     * return the larger of the input lists, but then outside code might need
+     * to keep track of whether to free the input list or not */
+
+    const UV* array_a;    /* a's array */
+    const UV* array_b;
+    UV len_a;      /* length of a's array */
+    UV len_b;
+
+    SV* u;                     /* the resulting union */
+    UV* array_u;
+    UV len_u;
+
+    UV i_a = 0;                    /* current index into a's array */
+    UV i_b = 0;
+    UV i_u = 0;
+
+    /* running count, as explained in the algorithm source book; items are
+     * stopped accumulating and are output when the count changes to/from 0.
+     * The count is incremented when we start a range that's in the set, and
+     * decremented when we start a range that's not in the set.  So its range
+     * is 0 to 2.  Only when the count is zero is something not in the set.
+     */
+    UV count = 0;
+
+    PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND;
+    assert(a != b);
+
+    /* If either one is empty, the union is the other one */
+    if (a == NULL || ((len_a = _invlist_len(a)) == 0)) {
+        bool make_temp = FALSE; /* Should we mortalize the result? */
+
+       if (*output == a) {
+            if (a != NULL) {
+                if (! (make_temp = cBOOL(SvTEMP(a)))) {
+                    SvREFCNT_dec_NN(a);
+                }
+            }
+       }
+       if (*output != b) {
+           *output = invlist_clone(b);
+            if (complement_b) {
+                _invlist_invert(*output);
+            }
+       } /* else *output already = b; */
+
+        if (make_temp) {
+            sv_2mortal(*output);
+        }
+       return;
+    }
+    else if ((len_b = _invlist_len(b)) == 0) {
+        bool make_temp = FALSE;
+       if (*output == b) {
+            if (! (make_temp = cBOOL(SvTEMP(b)))) {
+                SvREFCNT_dec_NN(b);
+            }
+       }
+
+        /* The complement of an empty list is a list that has everything in it,
+         * so the union with <a> includes everything too */
+        if (complement_b) {
+            if (a == *output) {
+                if (! (make_temp = cBOOL(SvTEMP(a)))) {
+                    SvREFCNT_dec_NN(a);
+                }
+            }
+            *output = _new_invlist(1);
+            _append_range_to_invlist(*output, 0, UV_MAX);
+        }
+        else if (*output != a) {
+            *output = invlist_clone(a);
+        }
+        /* else *output already = a; */
+
+        if (make_temp) {
+            sv_2mortal(*output);
+        }
+       return;
+    }
+
+    /* Here both lists exist and are non-empty */
+    array_a = invlist_array(a);
+    array_b = invlist_array(b);
+
+    /* If are to take the union of 'a' with the complement of b, set it
+     * up so are looking at b's complement. */
+    if (complement_b) {
+
+       /* To complement, we invert: if the first element is 0, remove it.  To
+        * do this, we just pretend the array starts one later */
+        if (array_b[0] == 0) {
+            array_b++;
+            len_b--;
+        }
+        else {
+
+            /* But if the first element is not zero, we pretend the list starts
+             * at the 0 that is always stored immediately before the array. */
+            array_b--;
+            len_b++;
+        }
+    }
+
+    /* Size the union for the worst case: that the sets are completely
+     * disjoint */
+    u = _new_invlist(len_a + len_b);
+
+    /* Will contain U+0000 if either component does */
+    array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0)
+                                     || (len_b > 0 && array_b[0] == 0));
+
+    /* Go through each list item by item, stopping when exhausted one of
+     * them */
+    while (i_a < len_a && i_b < len_b) {
+       UV cp;      /* The element to potentially add to the union's array */
+       bool cp_in_set;   /* is it in the the input list's set or not */
+
+       /* We need to take one or the other of the two inputs for the union.
+        * Since we are merging two sorted lists, we take the smaller of the
+        * next items.  In case of a tie, we take the one that is in its set
+        * first.  If we took one not in the set first, it would decrement the
+        * count, possibly to 0 which would cause it to be output as ending the
+        * range, and the next time through we would take the same number, and
+        * output it again as beginning the next range.  By doing it the
+        * opposite way, there is no possibility that the count will be
+        * momentarily decremented to 0, and thus the two adjoining ranges will
+        * be seamlessly merged.  (In a tie and both are in the set or both not
+        * in the set, it doesn't matter which we take first.) */
+       if (array_a[i_a] < array_b[i_b]
+           || (array_a[i_a] == array_b[i_b]
+               && ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
+       {
+           cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
+           cp= array_a[i_a++];
+       }
+       else {
+           cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
+           cp = array_b[i_b++];
+       }
+
+       /* Here, have chosen which of the two inputs to look at.  Only output
+        * if the running count changes to/from 0, which marks the
+        * beginning/end of a range in that's in the set */
+       if (cp_in_set) {
+           if (count == 0) {
+               array_u[i_u++] = cp;
+           }
+           count++;
+       }
+       else {
+           count--;
+           if (count == 0) {
+               array_u[i_u++] = cp;
+           }
+       }
+    }
+
+    /* Here, we are finished going through at least one of the lists, which
+     * means there is something remaining in at most one.  We check if the list
+     * that hasn't been exhausted is positioned such that we are in the middle
+     * of a range in its set or not.  (i_a and i_b point to the element beyond
+     * the one we care about.) If in the set, we decrement 'count'; if 0, there
+     * is potentially more to output.
+     * There are four cases:
+     * 1) Both weren't in their sets, count is 0, and remains 0.  What's left
+     *    in the union is entirely from the non-exhausted set.
+     * 2) Both were in their sets, count is 2.  Nothing further should
+     *    be output, as everything that remains will be in the exhausted
+     *    list's set, hence in the union; decrementing to 1 but not 0 insures
+     *    that
+     * 3) the exhausted was in its set, non-exhausted isn't, count is 1.
+     *    Nothing further should be output because the union includes
+     *    everything from the exhausted set.  Not decrementing ensures that.
+     * 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
+     *    decrementing to 0 insures that we look at the remainder of the
+     *    non-exhausted set */
+    if ((i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
+       || (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
+    {
+       count--;
+    }
+
+    /* The final length is what we've output so far, plus what else is about to
+     * be output.  (If 'count' is non-zero, then the input list we exhausted
+     * has everything remaining up to the machine's limit in its set, and hence
+     * in the union, so there will be no further output. */
+    len_u = i_u;
+    if (count == 0) {
+       /* At most one of the subexpressions will be non-zero */
+       len_u += (len_a - i_a) + (len_b - i_b);
+    }
+
+    /* Set result to final length, which can change the pointer to array_u, so
+     * re-find it */
+    if (len_u != _invlist_len(u)) {
+       invlist_set_len(u, len_u, *get_invlist_offset_addr(u));
+       invlist_trim(u);
+       array_u = invlist_array(u);
+    }
+
+    /* When 'count' is 0, the list that was exhausted (if one was shorter than
+     * the other) ended with everything above it not in its set.  That means
+     * that the remaining part of the union is precisely the same as the
+     * non-exhausted list, so can just copy it unchanged.  (If both list were
+     * exhausted at the same time, then the operations below will be both 0.)
+     */
+    if (count == 0) {
+       IV copy_count; /* At most one will have a non-zero copy count */
+       if ((copy_count = len_a - i_a) > 0) {
+           Copy(array_a + i_a, array_u + i_u, copy_count, UV);
+       }
+       else if ((copy_count = len_b - i_b) > 0) {
+           Copy(array_b + i_b, array_u + i_u, copy_count, UV);
+       }
+    }
+
+    /*  We may be removing a reference to one of the inputs.  If so, the output
+     *  is made mortal if the input was.  (Mortal SVs shouldn't have their ref
+     *  count decremented) */
+    if (a == *output || b == *output) {
+        assert(! invlist_is_iterating(*output));
+        if ((SvTEMP(*output))) {
+            sv_2mortal(u);
+        }
+        else {
+            SvREFCNT_dec_NN(*output);
+        }
+    }
+
+    *output = u;
+
+    return;
+}
+
+void
+Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b,
+                                               const bool complement_b, SV** i)
+{
+    /* Take the intersection of two inversion lists and point <i> to it.  *i
+     * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
+     * the reference count to that list will be decremented if not already a
+     * temporary (mortal); otherwise *i will be made correspondingly mortal.
+     * The first list, <a>, may be NULL, in which case an empty list is
+     * returned.  If <complement_b> is TRUE, the result will be the
+     * intersection of <a> and the complement (or inversion) of <b> instead of
+     * <b> directly.
+     *
+     * The basis for this comes from "Unicode Demystified" Chapter 13 by
+     * Richard Gillam, published by Addison-Wesley, and explained at some
+     * length there.  The preface says to incorporate its examples into your
+     * code at your own risk.  In fact, it had bugs
+     *
+     * The algorithm is like a merge sort, and is essentially the same as the
+     * union above
+     */
+
+    const UV* array_a;         /* a's array */
+    const UV* array_b;
+    UV len_a;  /* length of a's array */
+    UV len_b;
+
+    SV* r;                  /* the resulting intersection */
+    UV* array_r;
+    UV len_r;
+
+    UV i_a = 0;                    /* current index into a's array */
+    UV i_b = 0;
+    UV i_r = 0;
+
+    /* running count, as explained in the algorithm source book; items are
+     * stopped accumulating and are output when the count changes to/from 2.
+     * The count is incremented when we start a range that's in the set, and
+     * decremented when we start a range that's not in the set.  So its range
+     * is 0 to 2.  Only when the count is 2 is something in the intersection.
+     */
+    UV count = 0;
+
+    PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND;
+    assert(a != b);
+
+    /* Special case if either one is empty */
+    len_a = (a == NULL) ? 0 : _invlist_len(a);
+    if ((len_a == 0) || ((len_b = _invlist_len(b)) == 0)) {
+        bool make_temp = FALSE;
+
+        if (len_a != 0 && complement_b) {
+
+            /* Here, 'a' is not empty, therefore from the above 'if', 'b' must
+             * be empty.  Here, also we are using 'b's complement, which hence
+             * must be every possible code point.  Thus the intersection is
+             * simply 'a'. */
+            if (*i != a) {
+                if (*i == b) {
+                    if (! (make_temp = cBOOL(SvTEMP(b)))) {
+                        SvREFCNT_dec_NN(b);
+                    }
+                }
+
+                *i = invlist_clone(a);
+            }
+            /* else *i is already 'a' */
+
+            if (make_temp) {
+                sv_2mortal(*i);
+            }
+            return;
+        }
+
+        /* Here, 'a' or 'b' is empty and not using the complement of 'b'.  The
+         * intersection must be empty */
+       if (*i == a) {
+            if (! (make_temp = cBOOL(SvTEMP(a)))) {
+                SvREFCNT_dec_NN(a);
+            }
+       }
+       else if (*i == b) {
+            if (! (make_temp = cBOOL(SvTEMP(b)))) {
+                SvREFCNT_dec_NN(b);
+            }
+       }
+       *i = _new_invlist(0);
+        if (make_temp) {
+            sv_2mortal(*i);
+        }
+
+       return;
+    }
+
+    /* Here both lists exist and are non-empty */
+    array_a = invlist_array(a);
+    array_b = invlist_array(b);
+
+    /* If are to take the intersection of 'a' with the complement of b, set it
+     * up so are looking at b's complement. */
+    if (complement_b) {
+
+       /* To complement, we invert: if the first element is 0, remove it.  To
+        * do this, we just pretend the array starts one later */
+        if (array_b[0] == 0) {
+            array_b++;
+            len_b--;
+        }
+        else {
+
+            /* But if the first element is not zero, we pretend the list starts
+             * at the 0 that is always stored immediately before the array. */
+            array_b--;
+            len_b++;
+        }
+    }
+
+    /* Size the intersection for the worst case: that the intersection ends up
+     * fragmenting everything to be completely disjoint */
+    r= _new_invlist(len_a + len_b);
+
+    /* Will contain U+0000 iff both components do */
+    array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0
+                                    && len_b > 0 && array_b[0] == 0);
+
+    /* Go through each list item by item, stopping when exhausted one of
+     * them */
+    while (i_a < len_a && i_b < len_b) {
+       UV cp;      /* The element to potentially add to the intersection's
+                      array */
+       bool cp_in_set; /* Is it in the input list's set or not */
+
+       /* We need to take one or the other of the two inputs for the
+        * intersection.  Since we are merging two sorted lists, we take the
+        * smaller of the next items.  In case of a tie, we take the one that
+        * is not in its set first (a difference from the union algorithm).  If
+        * we took one in the set first, it would increment the count, possibly
+        * to 2 which would cause it to be output as starting a range in the
+        * intersection, and the next time through we would take that same
+        * number, and output it again as ending the set.  By doing it the
+        * opposite of this, there is no possibility that the count will be
+        * momentarily incremented to 2.  (In a tie and both are in the set or
+        * both not in the set, it doesn't matter which we take first.) */
+       if (array_a[i_a] < array_b[i_b]
+           || (array_a[i_a] == array_b[i_b]
+               && ! ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
+       {
+           cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
+           cp= array_a[i_a++];
+       }
+       else {
+           cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
+           cp= array_b[i_b++];
+       }
+
+       /* Here, have chosen which of the two inputs to look at.  Only output
+        * if the running count changes to/from 2, which marks the
+        * beginning/end of a range that's in the intersection */
+       if (cp_in_set) {
+           count++;
+           if (count == 2) {
+               array_r[i_r++] = cp;
+           }
+       }
+       else {
+           if (count == 2) {
+               array_r[i_r++] = cp;
+           }
+           count--;
+       }
+    }
+
+    /* Here, we are finished going through at least one of the lists, which
+     * means there is something remaining in at most one.  We check if the list
+     * that has been exhausted is positioned such that we are in the middle
+     * of a range in its set or not.  (i_a and i_b point to elements 1 beyond
+     * the ones we care about.)  There are four cases:
+     * 1) Both weren't in their sets, count is 0, and remains 0.  There's
+     *    nothing left in the intersection.
+     * 2) Both were in their sets, count is 2 and perhaps is incremented to
+     *    above 2.  What should be output is exactly that which is in the
+     *    non-exhausted set, as everything it has is also in the intersection
+     *    set, and everything it doesn't have can't be in the intersection
+     * 3) The exhausted was in its set, non-exhausted isn't, count is 1, and
+     *    gets incremented to 2.  Like the previous case, the intersection is
+     *    everything that remains in the non-exhausted set.
+     * 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
+     *    remains 1.  And the intersection has nothing more. */
+    if ((i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
+       || (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
+    {
+       count++;
+    }
+
+    /* The final length is what we've output so far plus what else is in the
+     * intersection.  At most one of the subexpressions below will be non-zero
+     * */
+    len_r = i_r;
+    if (count >= 2) {
+       len_r += (len_a - i_a) + (len_b - i_b);
+    }
+
+    /* Set result to final length, which can change the pointer to array_r, so
+     * re-find it */
+    if (len_r != _invlist_len(r)) {
+       invlist_set_len(r, len_r, *get_invlist_offset_addr(r));
+       invlist_trim(r);
+       array_r = invlist_array(r);
+    }
+
+    /* Finish outputting any remaining */
+    if (count >= 2) { /* At most one will have a non-zero copy count */
+       IV copy_count;
+       if ((copy_count = len_a - i_a) > 0) {
+           Copy(array_a + i_a, array_r + i_r, copy_count, UV);
+       }
+       else if ((copy_count = len_b - i_b) > 0) {
+           Copy(array_b + i_b, array_r + i_r, copy_count, UV);
+       }
+    }
+
+    /*  We may be removing a reference to one of the inputs.  If so, the output
+     *  is made mortal if the input was.  (Mortal SVs shouldn't have their ref
+     *  count decremented) */
+    if (a == *i || b == *i) {
+        assert(! invlist_is_iterating(*i));
+        if (SvTEMP(*i)) {
+            sv_2mortal(r);
+        }
+        else {
+            SvREFCNT_dec_NN(*i);
+        }
+    }
+
+    *i = r;
+
+    return;
+}
+
+SV*
+Perl__add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end)
+{
+    /* Add the range from 'start' to 'end' inclusive to the inversion list's
+     * set.  A pointer to the inversion list is returned.  This may actually be
+     * a new list, in which case the passed in one has been destroyed.  The
+     * passed-in inversion list can be NULL, in which case a new one is created
+     * with just the one range in it */
+
+    SV* range_invlist;
+    UV len;
+
+    if (invlist == NULL) {
+       invlist = _new_invlist(2);
+       len = 0;
+    }
+    else {
+       len = _invlist_len(invlist);
+    }
+
+    /* If comes after the final entry actually in the list, can just append it
+     * to the end, */
+    if (len == 0
+       || (! ELEMENT_RANGE_MATCHES_INVLIST(len - 1)
+            && start >= invlist_array(invlist)[len - 1]))
+    {
+       _append_range_to_invlist(invlist, start, end);
+       return invlist;
+    }
+
+    /* Here, can't just append things, create and return a new inversion list
+     * which is the union of this range and the existing inversion list */
+    range_invlist = _new_invlist(2);
+    _append_range_to_invlist(range_invlist, start, end);
+
+    _invlist_union(invlist, range_invlist, &invlist);
+
+    /* The temporary can be freed */
+    SvREFCNT_dec_NN(range_invlist);
+
+    return invlist;
+}
+
+SV*
+Perl__setup_canned_invlist(pTHX_ const STRLEN size, const UV element0,
+                                 UV** other_elements_ptr)
+{
+    /* Create and return an inversion list whose contents are to be populated
+     * by the caller.  The caller gives the number of elements (in 'size') and
+     * the very first element ('element0').  This function will set
+     * '*other_elements_ptr' to an array of UVs, where the remaining elements
+     * are to be placed.
+     *
+     * Obviously there is some trust involved that the caller will properly
+     * fill in the other elements of the array.
+     *
+     * (The first element needs to be passed in, as the underlying code does
+     * things differently depending on whether it is zero or non-zero) */
+
+    SV* invlist = _new_invlist(size);
+    bool offset;
+
+    PERL_ARGS_ASSERT__SETUP_CANNED_INVLIST;
+
+    _append_range_to_invlist(invlist, element0, element0);
+    offset = *get_invlist_offset_addr(invlist);
+
+    invlist_set_len(invlist, size, offset);
+    *other_elements_ptr = invlist_array(invlist) + 1;
+    return invlist;
+}
+
+#endif
+
+PERL_STATIC_INLINE SV*
+S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) {
+    return _add_range_to_invlist(invlist, cp, cp);
+}
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl__invlist_invert(pTHX_ SV* const invlist)
+{
+    /* Complement the input inversion list.  This adds a 0 if the list didn't
+     * have a zero; removes it otherwise.  As described above, the data
+     * structure is set up so that this is very efficient */
+
+    PERL_ARGS_ASSERT__INVLIST_INVERT;
+
+    assert(! invlist_is_iterating(invlist));
+
+    /* The inverse of matching nothing is matching everything */
+    if (_invlist_len(invlist) == 0) {
+       _append_range_to_invlist(invlist, 0, UV_MAX);
+       return;
+    }
+
+    *get_invlist_offset_addr(invlist) = ! *get_invlist_offset_addr(invlist);
+}
+
+#endif
+
+PERL_STATIC_INLINE SV*
+S_invlist_clone(pTHX_ SV* const invlist)
+{
+
+    /* Return a new inversion list that is a copy of the input one, which is
+     * unchanged.  The new list will not be mortal even if the old one was. */
+
+    /* Need to allocate extra space to accommodate Perl's addition of a
+     * trailing NUL to SvPV's, since it thinks they are always strings */
+    SV* new_invlist = _new_invlist(_invlist_len(invlist) + 1);
+    STRLEN physical_length = SvCUR(invlist);
+    bool offset = *(get_invlist_offset_addr(invlist));
+
+    PERL_ARGS_ASSERT_INVLIST_CLONE;
+
+    *(get_invlist_offset_addr(new_invlist)) = offset;
+    invlist_set_len(new_invlist, _invlist_len(invlist), offset);
+    Copy(SvPVX(invlist), SvPVX(new_invlist), physical_length, char);
+
+    return new_invlist;
+}
+
+PERL_STATIC_INLINE STRLEN*
+S_get_invlist_iter_addr(SV* invlist)
+{
+    /* Return the address of the UV that contains the current iteration
+     * position */
+
+    PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR;
+
+    assert(SvTYPE(invlist) == SVt_INVLIST);
+
+    return &(((XINVLIST*) SvANY(invlist))->iterator);
+}
+
+PERL_STATIC_INLINE void
+S_invlist_iterinit(SV* invlist)        /* Initialize iterator for invlist */
+{
+    PERL_ARGS_ASSERT_INVLIST_ITERINIT;
+
+    *get_invlist_iter_addr(invlist) = 0;
+}
+
+PERL_STATIC_INLINE void
+S_invlist_iterfinish(SV* invlist)
+{
+    /* Terminate iterator for invlist.  This is to catch development errors.
+     * Any iteration that is interrupted before completed should call this
+     * function.  Functions that add code points anywhere else but to the end
+     * of an inversion list assert that they are not in the middle of an
+     * iteration.  If they were, the addition would make the iteration
+     * problematical: if the iteration hadn't reached the place where things
+     * were being added, it would be ok */
+
+    PERL_ARGS_ASSERT_INVLIST_ITERFINISH;
+
+    *get_invlist_iter_addr(invlist) = (STRLEN) UV_MAX;
+}
+
+STATIC bool
+S_invlist_iternext(SV* invlist, UV* start, UV* end)
+{
+    /* An C<invlist_iterinit> call on <invlist> must be used to set this up.
+     * This call sets in <*start> and <*end>, the next range in <invlist>.
+     * Returns <TRUE> if successful and the next call will return the next
+     * range; <FALSE> if was already at the end of the list.  If the latter,
+     * <*start> and <*end> are unchanged, and the next call to this function
+     * will start over at the beginning of the list */
+
+    STRLEN* pos = get_invlist_iter_addr(invlist);
+    UV len = _invlist_len(invlist);
+    UV *array;
+
+    PERL_ARGS_ASSERT_INVLIST_ITERNEXT;
+
+    if (*pos >= len) {
+       *pos = (STRLEN) UV_MAX; /* Force iterinit() to be required next time */
+       return FALSE;
+    }
+
+    array = invlist_array(invlist);
+
+    *start = array[(*pos)++];
+
+    if (*pos >= len) {
+       *end = UV_MAX;
+    }
+    else {
+       *end = array[(*pos)++] - 1;
+    }
+
+    return TRUE;
+}
+
+PERL_STATIC_INLINE UV
+S_invlist_highest(SV* const invlist)
+{
+    /* Returns the highest code point that matches an inversion list.  This API
+     * has an ambiguity, as it returns 0 under either the highest is actually
+     * 0, or if the list is empty.  If this distinction matters to you, check
+     * for emptiness before calling this function */
+
+    UV len = _invlist_len(invlist);
+    UV *array;
+
+    PERL_ARGS_ASSERT_INVLIST_HIGHEST;
+
+    if (len == 0) {
+       return 0;
+    }
+
+    array = invlist_array(invlist);
+
+    /* The last element in the array in the inversion list always starts a
+     * range that goes to infinity.  That range may be for code points that are
+     * matched in the inversion list, or it may be for ones that aren't
+     * matched.  In the latter case, the highest code point in the set is one
+     * less than the beginning of this range; otherwise it is the final element
+     * of this range: infinity */
+    return (ELEMENT_RANGE_MATCHES_INVLIST(len - 1))
+           ? UV_MAX
+           : array[len - 1] - 1;
+}
+
+#ifndef PERL_IN_XSUB_RE
+SV *
+Perl__invlist_contents(pTHX_ SV* const invlist)
+{
+    /* Get the contents of an inversion list into a string SV so that they can
+     * be printed out.  It uses the format traditionally done for debug tracing
+     */
+
+    UV start, end;
+    SV* output = newSVpvs("\n");
+
+    PERL_ARGS_ASSERT__INVLIST_CONTENTS;
+
+    assert(! invlist_is_iterating(invlist));
+
+    invlist_iterinit(invlist);
+    while (invlist_iternext(invlist, &start, &end)) {
+       if (end == UV_MAX) {
+           Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\tINFINITY\n", start);
+       }
+       else if (end != start) {
+           Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\t%04"UVXf"\n",
+                   start,       end);
+       }
+       else {
+           Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\n", start);
+       }
+    }
+
+    return output;
+}
+#endif
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl__invlist_dump(pTHX_ PerlIO *file, I32 level,
+                         const char * const indent, SV* const invlist)
+{
+    /* Designed to be called only by do_sv_dump().  Dumps out the ranges of the
+     * inversion list 'invlist' to 'file' at 'level'  Each line is prefixed by
+     * the string 'indent'.  The output looks like this:
+         [0] 0x000A .. 0x000D
+         [2] 0x0085
+         [4] 0x2028 .. 0x2029
+         [6] 0x3104 .. INFINITY
+     * This means that the first range of code points matched by the list are
+     * 0xA through 0xD; the second range contains only the single code point
+     * 0x85, etc.  An inversion list is an array of UVs.  Two array elements
+     * are used to define each range (except if the final range extends to
+     * infinity, only a single element is needed).  The array index of the
+     * first element for the corresponding range is given in brackets. */
+
+    UV start, end;
+    STRLEN count = 0;
+
+    PERL_ARGS_ASSERT__INVLIST_DUMP;
+
+    if (invlist_is_iterating(invlist)) {
+        Perl_dump_indent(aTHX_ level, file,
+             "%sCan't dump inversion list because is in middle of iterating\n",
+             indent);
+        return;
+    }
+
+    invlist_iterinit(invlist);
+    while (invlist_iternext(invlist, &start, &end)) {
+       if (end == UV_MAX) {
+           Perl_dump_indent(aTHX_ level, file,
+                                       "%s[%"UVuf"] 0x%04"UVXf" .. INFINITY\n",
+                                   indent, (UV)count, start);
+       }
+       else if (end != start) {
+           Perl_dump_indent(aTHX_ level, file,
+                                    "%s[%"UVuf"] 0x%04"UVXf" .. 0x%04"UVXf"\n",
+                               indent, (UV)count, start,         end);
+       }
+       else {
+           Perl_dump_indent(aTHX_ level, file, "%s[%"UVuf"] 0x%04"UVXf"\n",
+                                            indent, (UV)count, start);
+       }
+        count += 2;
+    }
+}
+
+void
+Perl__load_PL_utf8_foldclosures (pTHX)
+{
+    assert(! PL_utf8_foldclosures);
+
+    /* If the folds haven't been read in, call a fold function
+     * to force that */
+    if (! PL_utf8_tofold) {
+        U8 dummy[UTF8_MAXBYTES_CASE+1];
+
+        /* This string is just a short named one above \xff */
+        to_utf8_fold((U8*) HYPHEN_UTF8, dummy, NULL);
+        assert(PL_utf8_tofold); /* Verify that worked */
+    }
+    PL_utf8_foldclosures = _swash_inversion_hash(PL_utf8_tofold);
+}
+#endif
+
+#ifdef PERL_ARGS_ASSERT__INVLISTEQ
+bool
+S__invlistEQ(pTHX_ SV* const a, SV* const b, const bool complement_b)
+{
+    /* Return a boolean as to if the two passed in inversion lists are
+     * identical.  The final argument, if TRUE, says to take the complement of
+     * the second inversion list before doing the comparison */
+
+    const UV* array_a = invlist_array(a);
+    const UV* array_b = invlist_array(b);
+    UV len_a = _invlist_len(a);
+    UV len_b = _invlist_len(b);
+
+    UV i = 0;              /* current index into the arrays */
+    bool retval = TRUE;     /* Assume are identical until proven otherwise */
+
+    PERL_ARGS_ASSERT__INVLISTEQ;
+
+    /* If are to compare 'a' with the complement of b, set it
+     * up so are looking at b's complement. */
+    if (complement_b) {
+
+        /* The complement of nothing is everything, so <a> would have to have
+         * just one element, starting at zero (ending at infinity) */
+        if (len_b == 0) {
+            return (len_a == 1 && array_a[0] == 0);
+        }
+        else if (array_b[0] == 0) {
+
+            /* Otherwise, to complement, we invert.  Here, the first element is
+             * 0, just remove it.  To do this, we just pretend the array starts
+             * one later */
+
+            array_b++;
+            len_b--;
+        }
+        else {
+
+            /* But if the first element is not zero, we pretend the list starts
+             * at the 0 that is always stored immediately before the array. */
+            array_b--;
+            len_b++;
+        }
+    }
+
+    /* Make sure that the lengths are the same, as well as the final element
+     * before looping through the remainder.  (Thus we test the length, final,
+     * and first elements right off the bat) */
+    if (len_a != len_b || array_a[len_a-1] != array_b[len_a-1]) {
+        retval = FALSE;
+    }
+    else for (i = 0; i < len_a - 1; i++) {
+        if (array_a[i] != array_b[i]) {
+            retval = FALSE;
+            break;
+        }
+    }
+
+    return retval;
+}
+#endif
+
+/*
+ * As best we can, determine the characters that can match the start of
+ * the given EXACTF-ish node.
+ *
+ * Returns the invlist as a new SV*; it is the caller's responsibility to
+ * call SvREFCNT_dec() when done with it.
+ */
+STATIC SV*
+S__make_exactf_invlist(pTHX_ RExC_state_t *pRExC_state, regnode *node)
+{
+    const U8 * s = (U8*)STRING(node);
+    SSize_t bytelen = STR_LEN(node);
+    UV uc;
+    /* Start out big enough for 2 separate code points */
+    SV* invlist = _new_invlist(4);
+
+    PERL_ARGS_ASSERT__MAKE_EXACTF_INVLIST;
+
+    if (! UTF) {
+        uc = *s;
+
+        /* We punt and assume can match anything if the node begins
+         * with a multi-character fold.  Things are complicated.  For
+         * example, /ffi/i could match any of:
+         *  "\N{LATIN SMALL LIGATURE FFI}"
+         *  "\N{LATIN SMALL LIGATURE FF}I"
+         *  "F\N{LATIN SMALL LIGATURE FI}"
+         *  plus several other things; and making sure we have all the
+         *  possibilities is hard. */
+        if (is_MULTI_CHAR_FOLD_latin1_safe(s, s + bytelen)) {
+            invlist = _add_range_to_invlist(invlist, 0, UV_MAX);
+        }
+        else {
+            /* Any Latin1 range character can potentially match any
+             * other depending on the locale */
+            if (OP(node) == EXACTFL) {
+                _invlist_union(invlist, PL_Latin1, &invlist);
+            }
+            else {
+                /* But otherwise, it matches at least itself.  We can
+                 * quickly tell if it has a distinct fold, and if so,
+                 * it matches that as well */
+                invlist = add_cp_to_invlist(invlist, uc);
+                if (IS_IN_SOME_FOLD_L1(uc))
+                    invlist = add_cp_to_invlist(invlist, PL_fold_latin1[uc]);
+            }
+
+            /* Some characters match above-Latin1 ones under /i.  This
+             * is true of EXACTFL ones when the locale is UTF-8 */
+            if (HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(uc)
+                && (! isASCII(uc) || (OP(node) != EXACTFA
+                                    && OP(node) != EXACTFA_NO_TRIE)))
+            {
+                add_above_Latin1_folds(pRExC_state, (U8) uc, &invlist);
+            }
+        }
+    }
+    else {  /* Pattern is UTF-8 */
+        U8 folded[UTF8_MAX_FOLD_CHAR_EXPAND * UTF8_MAXBYTES_CASE + 1] = { '\0' };
+        STRLEN foldlen = UTF8SKIP(s);
+        const U8* e = s + bytelen;
+        SV** listp;
+
+        uc = utf8_to_uvchr_buf(s, s + bytelen, NULL);
+
+        /* The only code points that aren't folded in a UTF EXACTFish
+         * node are are the problematic ones in EXACTFL nodes */
+        if (OP(node) == EXACTFL && is_PROBLEMATIC_LOCALE_FOLDEDS_START_cp(uc)) {
+            /* We need to check for the possibility that this EXACTFL
+             * node begins with a multi-char fold.  Therefore we fold
+             * the first few characters of it so that we can make that
+             * check */
+            U8 *d = folded;
+            int i;
+
+            for (i = 0; i < UTF8_MAX_FOLD_CHAR_EXPAND && s < e; i++) {
+                if (isASCII(*s)) {
+                    *(d++) = (U8) toFOLD(*s);
+                    s++;
+                }
+                else {
+                    STRLEN len;
+                    to_utf8_fold(s, d, &len);
+                    d += len;
+                    s += UTF8SKIP(s);
+                }
+            }
+
+            /* And set up so the code below that looks in this folded
+             * buffer instead of the node's string */
+            e = d;
+            foldlen = UTF8SKIP(folded);
+            s = folded;
+        }
+
+        /* When we reach here 's' points to the fold of the first
+         * character(s) of the node; and 'e' points to far enough along
+         * the folded string to be just past any possible multi-char
+         * fold. 'foldlen' is the length in bytes of the first
+         * character in 's'
+         *
+         * Unlike the non-UTF-8 case, the macro for determining if a
+         * string is a multi-char fold requires all the characters to
+         * already be folded.  This is because of all the complications
+         * if not.  Note that they are folded anyway, except in EXACTFL
+         * nodes.  Like the non-UTF case above, we punt if the node
+         * begins with a multi-char fold  */
+
+        if (is_MULTI_CHAR_FOLD_utf8_safe(s, e)) {
+            invlist = _add_range_to_invlist(invlist, 0, UV_MAX);
+        }
+        else {  /* Single char fold */
+
+            /* It matches all the things that fold to it, which are
+             * found in PL_utf8_foldclosures (including itself) */
+            invlist = add_cp_to_invlist(invlist, uc);
+            if (! PL_utf8_foldclosures)
+                _load_PL_utf8_foldclosures();
+            if ((listp = hv_fetch(PL_utf8_foldclosures,
+                                (char *) s, foldlen, FALSE)))
+            {
+                AV* list = (AV*) *listp;
+                IV k;
+                for (k = 0; k <= av_tindex(list); k++) {
+                    SV** c_p = av_fetch(list, k, FALSE);
+                    UV c;
+                    assert(c_p);
+
+                    c = SvUV(*c_p);
+
+                    /* /aa doesn't allow folds between ASCII and non- */
+                    if ((OP(node) == EXACTFA || OP(node) == EXACTFA_NO_TRIE)
+                        && isASCII(c) != isASCII(uc))
+                    {
+                        continue;
+                    }
+
+                    invlist = add_cp_to_invlist(invlist, c);
+                }
+            }
+        }
+    }
+
+    return invlist;
+}
+
+#undef HEADER_LENGTH
+#undef TO_INTERNAL_SIZE
+#undef FROM_INTERNAL_SIZE
+#undef INVLIST_VERSION_ID
+
+/* End of inversion list object */
+
+STATIC void
+S_parse_lparen_question_flags(pTHX_ RExC_state_t *pRExC_state)
+{
+    /* This parses the flags that are in either the '(?foo)' or '(?foo:bar)'
+     * constructs, and updates RExC_flags with them.  On input, RExC_parse
+     * should point to the first flag; it is updated on output to point to the
+     * final ')' or ':'.  There needs to be at least one flag, or this will
+     * abort */
+
+    /* for (?g), (?gc), and (?o) warnings; warning
+       about (?c) will warn about (?g) -- japhy    */
+
+#define WASTED_O  0x01
+#define WASTED_G  0x02
+#define WASTED_C  0x04
+#define WASTED_GC (WASTED_G|WASTED_C)
+    I32 wastedflags = 0x00;
+    U32 posflags = 0, negflags = 0;
+    U32 *flagsp = &posflags;
+    char has_charset_modifier = '\0';
+    regex_charset cs;
+    bool has_use_defaults = FALSE;
+    const char* const seqstart = RExC_parse - 1; /* Point to the '?' */
+    int x_mod_count = 0;
+
+    PERL_ARGS_ASSERT_PARSE_LPAREN_QUESTION_FLAGS;
+
+    /* '^' as an initial flag sets certain defaults */
+    if (UCHARAT(RExC_parse) == '^') {
+        RExC_parse++;
+        has_use_defaults = TRUE;
+        STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
+        set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
+                                        ? REGEX_UNICODE_CHARSET
+                                        : REGEX_DEPENDS_CHARSET);
+    }
+
+    cs = get_regex_charset(RExC_flags);
+    if (cs == REGEX_DEPENDS_CHARSET
+        && (RExC_utf8 || RExC_uni_semantics))
+    {
+        cs = REGEX_UNICODE_CHARSET;
+    }
+
+    while (*RExC_parse) {
+        /* && strchr("iogcmsx", *RExC_parse) */
+        /* (?g), (?gc) and (?o) are useless here
+           and must be globally applied -- japhy */
+        switch (*RExC_parse) {
+
+            /* Code for the imsxn flags */
+            CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp, x_mod_count);
+
+            case LOCALE_PAT_MOD:
+                if (has_charset_modifier) {
+                    goto excess_modifier;
+                }
+                else if (flagsp == &negflags) {
+                    goto neg_modifier;
+                }
+                cs = REGEX_LOCALE_CHARSET;
+                has_charset_modifier = LOCALE_PAT_MOD;
+                break;
+            case UNICODE_PAT_MOD:
+                if (has_charset_modifier) {
+                    goto excess_modifier;
+                }
+                else if (flagsp == &negflags) {
+                    goto neg_modifier;
+                }
+                cs = REGEX_UNICODE_CHARSET;
+                has_charset_modifier = UNICODE_PAT_MOD;
+                break;
+            case ASCII_RESTRICT_PAT_MOD:
+                if (flagsp == &negflags) {
+                    goto neg_modifier;
+                }
+                if (has_charset_modifier) {
+                    if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
+                        goto excess_modifier;
+                    }
+                    /* Doubled modifier implies more restricted */
+                    cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
+                }
+                else {
+                    cs = REGEX_ASCII_RESTRICTED_CHARSET;
+                }
+                has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
+                break;
+            case DEPENDS_PAT_MOD:
+                if (has_use_defaults) {
+                    goto fail_modifiers;
+                }
+                else if (flagsp == &negflags) {
+                    goto neg_modifier;
+                }
+                else if (has_charset_modifier) {
+                    goto excess_modifier;
+                }
+
+                /* The dual charset means unicode semantics if the
+                 * pattern (or target, not known until runtime) are
+                 * utf8, or something in the pattern indicates unicode
+                 * semantics */
+                cs = (RExC_utf8 || RExC_uni_semantics)
+                     ? REGEX_UNICODE_CHARSET
+                     : REGEX_DEPENDS_CHARSET;
+                has_charset_modifier = DEPENDS_PAT_MOD;
+                break;
+              excess_modifier:
+                RExC_parse++;
+                if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
+                    vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
+                }
+                else if (has_charset_modifier == *(RExC_parse - 1)) {
+                    vFAIL2("Regexp modifier \"%c\" may not appear twice",
+                                        *(RExC_parse - 1));
+                }
+                else {
+                    vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
+                }
+                NOT_REACHED; /*NOTREACHED*/
+              neg_modifier:
+                RExC_parse++;
+                vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"",
+                                    *(RExC_parse - 1));
+                NOT_REACHED; /*NOTREACHED*/
+            case ONCE_PAT_MOD: /* 'o' */
+            case GLOBAL_PAT_MOD: /* 'g' */
+                if (PASS2 && ckWARN(WARN_REGEXP)) {
+                    const I32 wflagbit = *RExC_parse == 'o'
+                                         ? WASTED_O
+                                         : WASTED_G;
+                    if (! (wastedflags & wflagbit) ) {
+                        wastedflags |= wflagbit;
+                       /* diag_listed_as: Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/ */
+                        vWARN5(
+                            RExC_parse + 1,
+                            "Useless (%s%c) - %suse /%c modifier",
+                            flagsp == &negflags ? "?-" : "?",
+                            *RExC_parse,
+                            flagsp == &negflags ? "don't " : "",
+                            *RExC_parse
+                        );
+                    }
+                }
+                break;
+
+            case CONTINUE_PAT_MOD: /* 'c' */
+                if (PASS2 && ckWARN(WARN_REGEXP)) {
+                    if (! (wastedflags & WASTED_C) ) {
+                        wastedflags |= WASTED_GC;
+                       /* diag_listed_as: Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/ */
+                        vWARN3(
+                            RExC_parse + 1,
+                            "Useless (%sc) - %suse /gc modifier",
+                            flagsp == &negflags ? "?-" : "?",
+                            flagsp == &negflags ? "don't " : ""
+                        );
+                    }
+                }
+                break;
+            case KEEPCOPY_PAT_MOD: /* 'p' */
+                if (flagsp == &negflags) {
+                    if (PASS2)
+                        ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
+                } else {
+                    *flagsp |= RXf_PMf_KEEPCOPY;
+                }
+                break;
+            case '-':
+                /* A flag is a default iff it is following a minus, so
+                 * if there is a minus, it means will be trying to
+                 * re-specify a default which is an error */
+                if (has_use_defaults || flagsp == &negflags) {
+                    goto fail_modifiers;
+                }
+                flagsp = &negflags;
+                wastedflags = 0;  /* reset so (?g-c) warns twice */
+                break;
+            case ':':
+            case ')':
+                RExC_flags |= posflags;
+                RExC_flags &= ~negflags;
+                set_regex_charset(&RExC_flags, cs);
+                if (RExC_flags & RXf_PMf_FOLD) {
+                    RExC_contains_i = 1;
+                }
+                if (PASS2) {
+                    STD_PMMOD_FLAGS_PARSE_X_WARN(x_mod_count);
+                }
+                return;
+                /*NOTREACHED*/
+            default:
+              fail_modifiers:
+                RExC_parse += SKIP_IF_CHAR(RExC_parse);
+               /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
+                vFAIL2utf8f("Sequence (%"UTF8f"...) not recognized",
+                      UTF8fARG(UTF, RExC_parse-seqstart, seqstart));
+                NOT_REACHED; /*NOTREACHED*/
+        }
+
+        ++RExC_parse;
+    }
+
+    if (PASS2) {
+        STD_PMMOD_FLAGS_PARSE_X_WARN(x_mod_count);
+    }
+}
+
+/*
+ - reg - regular expression, i.e. main body or parenthesized thing
+ *
+ * Caller must absorb opening parenthesis.
+ *
+ * Combining parenthesis handling with the base level of regular expression
+ * is a trifle forced, but the need to tie the tails of the branches to what
+ * follows makes it hard to avoid.
+ */
+#define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
+#ifdef DEBUGGING
+#define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
+#else
+#define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
+#endif
+
+/* Returns NULL, setting *flagp to TRYAGAIN at the end of (?) that only sets
+   flags. Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan
+   needs to be restarted.
+   Otherwise would only return NULL if regbranch() returns NULL, which
+   cannot happen.  */
+STATIC regnode *
+S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
+    /* paren: Parenthesized? 0=top; 1,2=inside '(': changed to letter.
+     * 2 is like 1, but indicates that nextchar() has been called to advance
+     * RExC_parse beyond the '('.  Things like '(?' are indivisible tokens, and
+     * this flag alerts us to the need to check for that */
+{
+    regnode *ret;              /* Will be the head of the group. */
+    regnode *br;
+    regnode *lastbr;
+    regnode *ender = NULL;
+    I32 parno = 0;
+    I32 flags;
+    U32 oregflags = RExC_flags;
+    bool have_branch = 0;
+    bool is_open = 0;
+    I32 freeze_paren = 0;
+    I32 after_freeze = 0;
+    I32 num; /* numeric backreferences */
+
+    char * parse_start = RExC_parse; /* MJD */
+    char * const oregcomp_parse = RExC_parse;
+
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REG;
+    DEBUG_PARSE("reg ");
+
+    *flagp = 0;                                /* Tentatively. */
+
+
+    /* Make an OPEN node, if parenthesized. */
+    if (paren) {
+
+        /* Under /x, space and comments can be gobbled up between the '(' and
+         * here (if paren ==2).  The forms '(*VERB' and '(?...' disallow such
+         * intervening space, as the sequence is a token, and a token should be
+         * indivisible */
+        bool has_intervening_patws = paren == 2 && *(RExC_parse - 1) != '(';
+
+        if ( *RExC_parse == '*') { /* (*VERB:ARG) */
+           char *start_verb = RExC_parse;
+           STRLEN verb_len = 0;
+           char *start_arg = NULL;
+           unsigned char op = 0;
+           int argok = 1;
+            int internal_argval = 0; /* internal_argval is only useful if
+                                        !argok */
+
+            if (has_intervening_patws) {
+                RExC_parse++;
+                vFAIL("In '(*VERB...)', the '(' and '*' must be adjacent");
+            }
+           while ( *RExC_parse && *RExC_parse != ')' ) {
+               if ( *RExC_parse == ':' ) {
+                   start_arg = RExC_parse + 1;
+                   break;
+               }
+               RExC_parse++;
+           }
+           ++start_verb;
+           verb_len = RExC_parse - start_verb;
+           if ( start_arg ) {
+               RExC_parse++;
+               while ( *RExC_parse && *RExC_parse != ')' )
+                   RExC_parse++;
+               if ( *RExC_parse != ')' )
+                   vFAIL("Unterminated verb pattern argument");
+               if ( RExC_parse == start_arg )
+                   start_arg = NULL;
+           } else {
+               if ( *RExC_parse != ')' )
+                   vFAIL("Unterminated verb pattern");
+           }
+
+           switch ( *start_verb ) {
+            case 'A':  /* (*ACCEPT) */
+                if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
+                   op = ACCEPT;
+                   internal_argval = RExC_nestroot;
+               }
+               break;
+            case 'C':  /* (*COMMIT) */
+                if ( memEQs(start_verb,verb_len,"COMMIT") )
+                    op = COMMIT;
+                break;
+            case 'F':  /* (*FAIL) */
+                if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
+                   op = OPFAIL;
+                   argok = 0;
+               }
+               break;
+            case ':':  /* (*:NAME) */
+           case 'M':  /* (*MARK:NAME) */
+               if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
+                    op = MARKPOINT;
+                    argok = -1;
+                }
+                break;
+            case 'P':  /* (*PRUNE) */
+                if ( memEQs(start_verb,verb_len,"PRUNE") )
+                    op = PRUNE;
+                break;
+            case 'S':   /* (*SKIP) */
+                if ( memEQs(start_verb,verb_len,"SKIP") )
+                    op = SKIP;
+                break;
+            case 'T':  /* (*THEN) */
+                /* [19:06] <TimToady> :: is then */
+                if ( memEQs(start_verb,verb_len,"THEN") ) {
+                    op = CUTGROUP;
+                    RExC_seen |= REG_CUTGROUP_SEEN;
+                }
+                break;
+           }
+           if ( ! op ) {
+               RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
+                vFAIL2utf8f(
+                    "Unknown verb pattern '%"UTF8f"'",
+                    UTF8fARG(UTF, verb_len, start_verb));
+           }
+           if ( argok ) {
+                if ( start_arg && internal_argval ) {
+                   vFAIL3("Verb pattern '%.*s' may not have an argument",
+                       verb_len, start_verb);
+               } else if ( argok < 0 && !start_arg ) {
+                    vFAIL3("Verb pattern '%.*s' has a mandatory argument",
+                       verb_len, start_verb);
+               } else {
+                   ret = reganode(pRExC_state, op, internal_argval);
+                   if ( ! internal_argval && ! SIZE_ONLY ) {
+                        if (start_arg) {
+                            SV *sv = newSVpvn( start_arg,
+                                               RExC_parse - start_arg);
+                            ARG(ret) = add_data( pRExC_state,
+                                                 STR_WITH_LEN("S"));
+                            RExC_rxi->data->data[ARG(ret)]=(void*)sv;
+                            ret->flags = 0;
+                        } else {
+                            ret->flags = 1;
+                        }
+                    }
+               }
+               if (!internal_argval)
+                    RExC_seen |= REG_VERBARG_SEEN;
+           } else if ( start_arg ) {
+               vFAIL3("Verb pattern '%.*s' may not have an argument",
+                       verb_len, start_verb);
+           } else {
+               ret = reg_node(pRExC_state, op);
+           }
+           nextchar(pRExC_state);
+           return ret;
+        }
+        else if (*RExC_parse == '?') { /* (?...) */
+           bool is_logical = 0;
+           const char * const seqstart = RExC_parse;
+            const char * endptr;
+            if (has_intervening_patws) {
+                RExC_parse++;
+                vFAIL("In '(?...)', the '(' and '?' must be adjacent");
+            }
+
+           RExC_parse++;
+           paren = *RExC_parse++;
+           ret = NULL;                 /* For look-ahead/behind. */
+           switch (paren) {
+
+           case 'P':   /* (?P...) variants for those used to PCRE/Python */
+               paren = *RExC_parse++;
+               if ( paren == '<')         /* (?P<...>) named capture */
+                   goto named_capture;
+                else if (paren == '>') {   /* (?P>name) named recursion */
+                    goto named_recursion;
+                }
+                else if (paren == '=') {   /* (?P=...)  named backref */
+                    /* this pretty much dupes the code for \k<NAME> in
+                     * regatom(), if you change this make sure you change that
+                     * */
+                    char* name_start = RExC_parse;
+                   U32 num = 0;
+                    SV *sv_dat = reg_scan_name(pRExC_state,
+                        SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+                    if (RExC_parse == name_start || *RExC_parse != ')')
+                        /* diag_listed_as: Sequence ?P=... not terminated in regex; marked by <-- HERE in m/%s/ */
+                        vFAIL2("Sequence %.3s... not terminated",parse_start);
+
+                    if (!SIZE_ONLY) {
+                        num = add_data( pRExC_state, STR_WITH_LEN("S"));
+                        RExC_rxi->data->data[num]=(void*)sv_dat;
+                        SvREFCNT_inc_simple_void(sv_dat);
+                    }
+                    RExC_sawback = 1;
+                   ret = reganode(pRExC_state,
+                                  ((! FOLD)
+                                    ? NREF
+                                    : (ASCII_FOLD_RESTRICTED)
+                                      ? NREFFA
+                                       : (AT_LEAST_UNI_SEMANTICS)
+                                         ? NREFFU
+                                         : (LOC)
+                                           ? NREFFL
+                                           : NREFF),
+                                   num);
+                    *flagp |= HASWIDTH;
+
+                    Set_Node_Offset(ret, parse_start+1);
+                    Set_Node_Cur_Length(ret, parse_start);
+
+                    nextchar(pRExC_state);
+                    return ret;
+                }
+                --RExC_parse;
+                RExC_parse += SKIP_IF_CHAR(RExC_parse);
+                /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
+               vFAIL3("Sequence (%.*s...) not recognized",
+                                RExC_parse-seqstart, seqstart);
+               NOT_REACHED; /*NOTREACHED*/
+            case '<':           /* (?<...) */
+               if (*RExC_parse == '!')
+                   paren = ',';
+               else if (*RExC_parse != '=')
+              named_capture:
+               {               /* (?<...>) */
+                   char *name_start;
+                   SV *svname;
+                   paren= '>';
+            case '\'':          /* (?'...') */
+                   name_start= RExC_parse;
+                   svname = reg_scan_name(pRExC_state,
+                        SIZE_ONLY    /* reverse test from the others */
+                        ? REG_RSN_RETURN_NAME
+                        : REG_RSN_RETURN_NULL);
+                   if (RExC_parse == name_start || *RExC_parse != paren)
+                       vFAIL2("Sequence (?%c... not terminated",
+                           paren=='>' ? '<' : paren);
+                   if (SIZE_ONLY) {
+                       HE *he_str;
+                       SV *sv_dat = NULL;
+                        if (!svname) /* shouldn't happen */
+                            Perl_croak(aTHX_
+                                "panic: reg_scan_name returned NULL");
+                        if (!RExC_paren_names) {
+                            RExC_paren_names= newHV();
+                            sv_2mortal(MUTABLE_SV(RExC_paren_names));
+#ifdef DEBUGGING
+                            RExC_paren_name_list= newAV();
+                            sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
+#endif
+                        }
+                        he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
+                        if ( he_str )
+                            sv_dat = HeVAL(he_str);
+                        if ( ! sv_dat ) {
+                            /* croak baby croak */
+                            Perl_croak(aTHX_
+                                "panic: paren_name hash element allocation failed");
+                        } else if ( SvPOK(sv_dat) ) {
+                            /* (?|...) can mean we have dupes so scan to check
+                               its already been stored. Maybe a flag indicating
+                               we are inside such a construct would be useful,
+                               but the arrays are likely to be quite small, so
+                               for now we punt -- dmq */
+                            IV count = SvIV(sv_dat);
+                            I32 *pv = (I32*)SvPVX(sv_dat);
+                            IV i;
+                            for ( i = 0 ; i < count ; i++ ) {
+                                if ( pv[i] == RExC_npar ) {
+                                    count = 0;
+                                    break;
+                                }
+                            }
+                            if ( count ) {
+                                pv = (I32*)SvGROW(sv_dat,
+                                                SvCUR(sv_dat) + sizeof(I32)+1);
+                                SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
+                                pv[count] = RExC_npar;
+                                SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
+                            }
+                        } else {
+                            (void)SvUPGRADE(sv_dat,SVt_PVNV);
+                            sv_setpvn(sv_dat, (char *)&(RExC_npar),
+                                                                sizeof(I32));
+                            SvIOK_on(sv_dat);
+                            SvIV_set(sv_dat, 1);
+                        }
+#ifdef DEBUGGING
+                        /* Yes this does cause a memory leak in debugging Perls
+                         * */
+                        if (!av_store(RExC_paren_name_list,
+                                      RExC_npar, SvREFCNT_inc(svname)))
+                            SvREFCNT_dec_NN(svname);
+#endif
+
+                        /*sv_dump(sv_dat);*/
+                    }
+                    nextchar(pRExC_state);
+                   paren = 1;
+                   goto capturing_parens;
+               }
+                RExC_seen |= REG_LOOKBEHIND_SEEN;
+               RExC_in_lookbehind++;
+               RExC_parse++;
+                /* FALLTHROUGH */
+           case '=':           /* (?=...) */
+               RExC_seen_zerolen++;
+                break;
+           case '!':           /* (?!...) */
+               RExC_seen_zerolen++;
+               /* check if we're really just a "FAIL" assertion */
+               --RExC_parse;
+               nextchar(pRExC_state);
+               if (*RExC_parse == ')') {
+                   ret=reg_node(pRExC_state, OPFAIL);
+                   nextchar(pRExC_state);
+                   return ret;
+               }
+               break;
+           case '|':           /* (?|...) */
+               /* branch reset, behave like a (?:...) except that
+                  buffers in alternations share the same numbers */
+               paren = ':';
+               after_freeze = freeze_paren = RExC_npar;
+               break;
+           case ':':           /* (?:...) */
+           case '>':           /* (?>...) */
+               break;
+           case '$':           /* (?$...) */
+           case '@':           /* (?@...) */
+               vFAIL2("Sequence (?%c...) not implemented", (int)paren);
+               break;
+           case '0' :           /* (?0) */
+           case 'R' :           /* (?R) */
+               if (*RExC_parse != ')')
+                   FAIL("Sequence (?R) not terminated");
+               ret = reg_node(pRExC_state, GOSTART);
+                    RExC_seen |= REG_GOSTART_SEEN;
+               *flagp |= POSTPONED;
+               nextchar(pRExC_state);
+               return ret;
+               /*notreached*/
+            /* named and numeric backreferences */
+            case '&':            /* (?&NAME) */
+                parse_start = RExC_parse - 1;
+              named_recursion:
+                {
+                   SV *sv_dat = reg_scan_name(pRExC_state,
+                       SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+                    num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
+                }
+                if (RExC_parse == RExC_end || *RExC_parse != ')')
+                    vFAIL("Sequence (?&... not terminated");
+                goto gen_recurse_regop;
+                /* NOTREACHED */
+            case '+':
+                if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
+                    RExC_parse++;
+                    vFAIL("Illegal pattern");
+                }
+                goto parse_recursion;
+                /* NOTREACHED*/
+            case '-': /* (?-1) */
+                if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
+                    RExC_parse--; /* rewind to let it be handled later */
+                    goto parse_flags;
+                }
+                /* FALLTHROUGH */
+            case '1': case '2': case '3': case '4': /* (?1) */
+           case '5': case '6': case '7': case '8': case '9':
+               RExC_parse--;
+              parse_recursion:
+                {
+                    bool is_neg = FALSE;
+                    UV unum;
+                    parse_start = RExC_parse - 1; /* MJD */
+                    if (*RExC_parse == '-') {
+                        RExC_parse++;
+                        is_neg = TRUE;
+                    }
+                    if (grok_atoUV(RExC_parse, &unum, &endptr)
+                        && unum <= I32_MAX
+                    ) {
+                        num = (I32)unum;
+                        RExC_parse = (char*)endptr;
+                    } else
+                        num = I32_MAX;
+                    if (is_neg) {
+                        /* Some limit for num? */
+                        num = -num;
+                    }
+                }
+               if (*RExC_parse!=')')
+                   vFAIL("Expecting close bracket");
+
+              gen_recurse_regop:
+                if ( paren == '-' ) {
+                    /*
+                    Diagram of capture buffer numbering.
+                    Top line is the normal capture buffer numbers
+                    Bottom line is the negative indexing as from
+                    the X (the (?-2))
+
+                    +   1 2    3 4 5 X          6 7
+                       /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
+                    -   5 4    3 2 1 X          x x
+
+                    */
+                    num = RExC_npar + num;
+                    if (num < 1)  {
+                        RExC_parse++;
+                        vFAIL("Reference to nonexistent group");
+                    }
+                } else if ( paren == '+' ) {
+                    num = RExC_npar + num - 1;
+                }
+
+                ret = reg2Lanode(pRExC_state, GOSUB, num, RExC_recurse_count);
+                if (!SIZE_ONLY) {
+                   if (num > (I32)RExC_rx->nparens) {
+                       RExC_parse++;
+                       vFAIL("Reference to nonexistent group");
+                   }
+                   RExC_recurse_count++;
+                   DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+                        "%*s%*s Recurse #%"UVuf" to %"IVdf"\n",
+                              22, "|    |", (int)(depth * 2 + 1), "",
+                              (UV)ARG(ret), (IV)ARG2L(ret)));
+                }
+                RExC_seen |= REG_RECURSE_SEEN;
+                Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
+               Set_Node_Offset(ret, parse_start); /* MJD */
+
+                *flagp |= POSTPONED;
+                nextchar(pRExC_state);
+                return ret;
+
+            /* NOTREACHED */
+
+           case '?':           /* (??...) */
+               is_logical = 1;
+               if (*RExC_parse != '{') {
+                    RExC_parse += SKIP_IF_CHAR(RExC_parse);
+                    /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
+                    vFAIL2utf8f(
+                        "Sequence (%"UTF8f"...) not recognized",
+                        UTF8fARG(UTF, RExC_parse-seqstart, seqstart));
+                   NOT_REACHED; /*NOTREACHED*/
+               }
+               *flagp |= POSTPONED;
+               paren = *RExC_parse++;
+               /* FALLTHROUGH */
+           case '{':           /* (?{...}) */
+           {
+               U32 n = 0;
+               struct reg_code_block *cb;
+
+               RExC_seen_zerolen++;
+
+               if (   !pRExC_state->num_code_blocks
+                   || pRExC_state->code_index >= pRExC_state->num_code_blocks
+                   || pRExC_state->code_blocks[pRExC_state->code_index].start
+                       != (STRLEN)((RExC_parse -3 - (is_logical ? 1 : 0))
+                           - RExC_start)
+               ) {
+                   if (RExC_pm_flags & PMf_USE_RE_EVAL)
+                       FAIL("panic: Sequence (?{...}): no code block found\n");
+                   FAIL("Eval-group not allowed at runtime, use re 'eval'");
+               }
+               /* this is a pre-compiled code block (?{...}) */
+               cb = &pRExC_state->code_blocks[pRExC_state->code_index];
+               RExC_parse = RExC_start + cb->end;
+               if (!SIZE_ONLY) {
+                   OP *o = cb->block;
+                   if (cb->src_regex) {
+                       n = add_data(pRExC_state, STR_WITH_LEN("rl"));
+                       RExC_rxi->data->data[n] =
+                           (void*)SvREFCNT_inc((SV*)cb->src_regex);
+                       RExC_rxi->data->data[n+1] = (void*)o;
+                   }
+                   else {
+                       n = add_data(pRExC_state,
+                              (RExC_pm_flags & PMf_HAS_CV) ? "L" : "l", 1);
+                       RExC_rxi->data->data[n] = (void*)o;
+                   }
+               }
+               pRExC_state->code_index++;
+               nextchar(pRExC_state);
+
+               if (is_logical) {
+                    regnode *eval;
+                   ret = reg_node(pRExC_state, LOGICAL);
+
+                    eval = reg2Lanode(pRExC_state, EVAL,
+                                       n,
+
+                                       /* for later propagation into (??{})
+                                        * return value */
+                                       RExC_flags & RXf_PMf_COMPILETIME
+                                      );
+                   if (!SIZE_ONLY) {
+                       ret->flags = 2;
+                    }
+                    REGTAIL(pRExC_state, ret, eval);
+                    /* deal with the length of this later - MJD */
+                   return ret;
+               }
+               ret = reg2Lanode(pRExC_state, EVAL, n, 0);
+               Set_Node_Length(ret, RExC_parse - parse_start + 1);
+               Set_Node_Offset(ret, parse_start);
+               return ret;
+           }
+           case '(':           /* (?(?{...})...) and (?(?=...)...) */
+           {
+               int is_define= 0;
+                const int DEFINE_len = sizeof("DEFINE") - 1;
+               if (RExC_parse[0] == '?') {        /* (?(?...)) */
+                   if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
+                       || RExC_parse[1] == '<'
+                       || RExC_parse[1] == '{') { /* Lookahead or eval. */
+                       I32 flag;
+                        regnode *tail;
+
+                       ret = reg_node(pRExC_state, LOGICAL);
+                       if (!SIZE_ONLY)
+                           ret->flags = 1;
+
+                        tail = reg(pRExC_state, 1, &flag, depth+1);
+                        if (flag & RESTART_UTF8) {
+                            *flagp = RESTART_UTF8;
+                            return NULL;
+                        }
+                        REGTAIL(pRExC_state, ret, tail);
+                       goto insert_if;
+                   }
+                   /* Fall through to ‘Unknown switch condition’ at the
+                      end of the if/else chain. */
+               }
+               else if ( RExC_parse[0] == '<'     /* (?(<NAME>)...) */
+                        || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
+               {
+                   char ch = RExC_parse[0] == '<' ? '>' : '\'';
+                   char *name_start= RExC_parse++;
+                   U32 num = 0;
+                   SV *sv_dat=reg_scan_name(pRExC_state,
+                       SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+                   if (RExC_parse == name_start || *RExC_parse != ch)
+                        vFAIL2("Sequence (?(%c... not terminated",
+                            (ch == '>' ? '<' : ch));
+                    RExC_parse++;
+                   if (!SIZE_ONLY) {
+                        num = add_data( pRExC_state, STR_WITH_LEN("S"));
+                        RExC_rxi->data->data[num]=(void*)sv_dat;
+                        SvREFCNT_inc_simple_void(sv_dat);
+                    }
+                    ret = reganode(pRExC_state,NGROUPP,num);
+                    goto insert_if_check_paren;
+               }
+               else if (RExC_end - RExC_parse >= DEFINE_len
+                        && strnEQ(RExC_parse, "DEFINE", DEFINE_len))
+                {
+                   ret = reganode(pRExC_state,DEFINEP,0);
+                   RExC_parse += DEFINE_len;
+                   is_define = 1;
+                   goto insert_if_check_paren;
+               }
+               else if (RExC_parse[0] == 'R') {
+                   RExC_parse++;
+                   parno = 0;
+                   if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
+                        UV uv;
+                        if (grok_atoUV(RExC_parse, &uv, &endptr)
+                            && uv <= I32_MAX
+                        ) {
+                            parno = (I32)uv;
+                            RExC_parse = (char*)endptr;
+                        }
+                        /* else "Switch condition not recognized" below */
+                   } else if (RExC_parse[0] == '&') {
+                       SV *sv_dat;
+                       RExC_parse++;
+                       sv_dat = reg_scan_name(pRExC_state,
+                            SIZE_ONLY
+                            ? REG_RSN_RETURN_NULL
+                            : REG_RSN_RETURN_DATA);
+                       parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
+                   }
+                   ret = reganode(pRExC_state,INSUBP,parno);
+                   goto insert_if_check_paren;
+               }
+               else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
+                    /* (?(1)...) */
+                   char c;
+                   char *tmp;
+                    UV uv;
+                    if (grok_atoUV(RExC_parse, &uv, &endptr)
+                        && uv <= I32_MAX
+                    ) {
+                        parno = (I32)uv;
+                        RExC_parse = (char*)endptr;
+                    }
+                    /* XXX else what? */
+                    ret = reganode(pRExC_state, GROUPP, parno);
+
+                 insert_if_check_paren:
+                   if (*(tmp = nextchar(pRExC_state)) != ')') {
+                        /* nextchar also skips comments, so undo its work
+                         * and skip over the the next character.
+                         */
+                        RExC_parse = tmp;
+                        RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
+                       vFAIL("Switch condition not recognized");
+                   }
+                 insert_if:
+                    REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
+                    br = regbranch(pRExC_state, &flags, 1,depth+1);
+                   if (br == NULL) {
+                        if (flags & RESTART_UTF8) {
+                            *flagp = RESTART_UTF8;
+                            return NULL;
+                        }
+                        FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"",
+                              (UV) flags);
+                    } else
+                        REGTAIL(pRExC_state, br, reganode(pRExC_state,
+                                                          LONGJMP, 0));
+                   c = *nextchar(pRExC_state);
+                   if (flags&HASWIDTH)
+                       *flagp |= HASWIDTH;
+                   if (c == '|') {
+                       if (is_define)
+                           vFAIL("(?(DEFINE)....) does not allow branches");
+
+                        /* Fake one for optimizer.  */
+                        lastbr = reganode(pRExC_state, IFTHEN, 0);
+
+                        if (!regbranch(pRExC_state, &flags, 1,depth+1)) {
+                            if (flags & RESTART_UTF8) {
+                                *flagp = RESTART_UTF8;
+                                return NULL;
+                            }
+                            FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"",
+                                  (UV) flags);
+                        }
+                        REGTAIL(pRExC_state, ret, lastbr);
+                       if (flags&HASWIDTH)
+                           *flagp |= HASWIDTH;
+                       c = *nextchar(pRExC_state);
+                   }
+                   else
+                       lastbr = NULL;
+                    if (c != ')') {
+                        if (RExC_parse>RExC_end)
+                            vFAIL("Switch (?(condition)... not terminated");
+                        else
+                            vFAIL("Switch (?(condition)... contains too many branches");
+                    }
+                   ender = reg_node(pRExC_state, TAIL);
+                    REGTAIL(pRExC_state, br, ender);
+                   if (lastbr) {
+                        REGTAIL(pRExC_state, lastbr, ender);
+                        REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
+                   }
+                   else
+                        REGTAIL(pRExC_state, ret, ender);
+                    RExC_size++; /* XXX WHY do we need this?!!
+                                    For large programs it seems to be required
+                                    but I can't figure out why. -- dmq*/
+                   return ret;
+               }
+                RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
+                vFAIL("Unknown switch condition (?(...))");
+           }
+           case '[':           /* (?[ ... ]) */
+                return handle_regex_sets(pRExC_state, NULL, flagp, depth,
+                                         oregcomp_parse);
+            case 0:
+               RExC_parse--; /* for vFAIL to print correctly */
+                vFAIL("Sequence (? incomplete");
+                break;
+           default: /* e.g., (?i) */
+               --RExC_parse;
+              parse_flags:
+               parse_lparen_question_flags(pRExC_state);
+                if (UCHARAT(RExC_parse) != ':') {
+                    if (*RExC_parse)
+                        nextchar(pRExC_state);
+                    *flagp = TRYAGAIN;
+                    return NULL;
+                }
+                paren = ':';
+                nextchar(pRExC_state);
+                ret = NULL;
+                goto parse_rest;
+            } /* end switch */
+       }
+       else if (!(RExC_flags & RXf_PMf_NOCAPTURE)) {   /* (...) */
+         capturing_parens:
+           parno = RExC_npar;
+           RExC_npar++;
+
+           ret = reganode(pRExC_state, OPEN, parno);
+           if (!SIZE_ONLY ){
+               if (!RExC_nestroot)
+                   RExC_nestroot = parno;
+                if (RExC_seen & REG_RECURSE_SEEN
+                   && !RExC_open_parens[parno-1])
+               {
+                   DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+                        "%*s%*s Setting open paren #%"IVdf" to %d\n",
+                        22, "|    |", (int)(depth * 2 + 1), "",
+                       (IV)parno, REG_NODE_NUM(ret)));
+                   RExC_open_parens[parno-1]= ret;
+               }
+           }
+            Set_Node_Length(ret, 1); /* MJD */
+            Set_Node_Offset(ret, RExC_parse); /* MJD */
+           is_open = 1;
+       } else {
+            /* with RXf_PMf_NOCAPTURE treat (...) as (?:...) */
+            paren = ':';
+           ret = NULL;
+       }
+    }
+    else                        /* ! paren */
+       ret = NULL;
+
+   parse_rest:
+    /* Pick up the branches, linking them together. */
+    parse_start = RExC_parse;   /* MJD */
+    br = regbranch(pRExC_state, &flags, 1,depth+1);
+
+    /*     branch_len = (paren != 0); */
+
+    if (br == NULL) {
+        if (flags & RESTART_UTF8) {
+            *flagp = RESTART_UTF8;
+            return NULL;
+        }
+        FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"", (UV) flags);
+    }
+    if (*RExC_parse == '|') {
+       if (!SIZE_ONLY && RExC_extralen) {
+           reginsert(pRExC_state, BRANCHJ, br, depth+1);
+       }
+       else {                  /* MJD */
+           reginsert(pRExC_state, BRANCH, br, depth+1);
+            Set_Node_Length(br, paren != 0);
+            Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
+        }
+       have_branch = 1;
+       if (SIZE_ONLY)
+           RExC_extralen += 1;         /* For BRANCHJ-BRANCH. */
+    }
+    else if (paren == ':') {
+       *flagp |= flags&SIMPLE;
+    }
+    if (is_open) {                             /* Starts with OPEN. */
+        REGTAIL(pRExC_state, ret, br);          /* OPEN -> first. */
+    }
+    else if (paren != '?')             /* Not Conditional */
+       ret = br;
+    *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
+    lastbr = br;
+    while (*RExC_parse == '|') {
+       if (!SIZE_ONLY && RExC_extralen) {
+           ender = reganode(pRExC_state, LONGJMP,0);
+
+            /* Append to the previous. */
+            REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
+       }
+       if (SIZE_ONLY)
+           RExC_extralen += 2;         /* Account for LONGJMP. */
+       nextchar(pRExC_state);
+       if (freeze_paren) {
+           if (RExC_npar > after_freeze)
+               after_freeze = RExC_npar;
+            RExC_npar = freeze_paren;
+        }
+        br = regbranch(pRExC_state, &flags, 0, depth+1);
+
+       if (br == NULL) {
+            if (flags & RESTART_UTF8) {
+                *flagp = RESTART_UTF8;
+                return NULL;
+            }
+            FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"", (UV) flags);
+        }
+        REGTAIL(pRExC_state, lastbr, br);               /* BRANCH -> BRANCH. */
+       lastbr = br;
+       *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
+    }
+
+    if (have_branch || paren != ':') {
+       /* Make a closing node, and hook it on the end. */
+       switch (paren) {
+       case ':':
+           ender = reg_node(pRExC_state, TAIL);
+           break;
+       case 1: case 2:
+           ender = reganode(pRExC_state, CLOSE, parno);
+            if (!SIZE_ONLY && RExC_seen & REG_RECURSE_SEEN) {
+               DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+                        "%*s%*s Setting close paren #%"IVdf" to %d\n",
+                        22, "|    |", (int)(depth * 2 + 1), "", (IV)parno, REG_NODE_NUM(ender)));
+               RExC_close_parens[parno-1]= ender;
+               if (RExC_nestroot == parno)
+                   RExC_nestroot = 0;
+           }
+            Set_Node_Offset(ender,RExC_parse+1); /* MJD */
+            Set_Node_Length(ender,1); /* MJD */
+           break;
+       case '<':
+       case ',':
+       case '=':
+       case '!':
+           *flagp &= ~HASWIDTH;
+           /* FALLTHROUGH */
+       case '>':
+           ender = reg_node(pRExC_state, SUCCEED);
+           break;
+       case 0:
+           ender = reg_node(pRExC_state, END);
+           if (!SIZE_ONLY) {
+                assert(!RExC_opend); /* there can only be one! */
+                RExC_opend = ender;
+            }
+           break;
+       }
+        DEBUG_PARSE_r(if (!SIZE_ONLY) {
+            DEBUG_PARSE_MSG("lsbr");
+            regprop(RExC_rx, RExC_mysv1, lastbr, NULL, pRExC_state);
+            regprop(RExC_rx, RExC_mysv2, ender, NULL, pRExC_state);
+            PerlIO_printf(Perl_debug_log, "~ tying lastbr %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
+                          SvPV_nolen_const(RExC_mysv1),
+                          (IV)REG_NODE_NUM(lastbr),
+                          SvPV_nolen_const(RExC_mysv2),
+                          (IV)REG_NODE_NUM(ender),
+                          (IV)(ender - lastbr)
+            );
+        });
+        REGTAIL(pRExC_state, lastbr, ender);
+
+       if (have_branch && !SIZE_ONLY) {
+            char is_nothing= 1;
+           if (depth==1)
+                RExC_seen |= REG_TOP_LEVEL_BRANCHES_SEEN;
+
+           /* Hook the tails of the branches to the closing node. */
+           for (br = ret; br; br = regnext(br)) {
+               const U8 op = PL_regkind[OP(br)];
+               if (op == BRANCH) {
+                    REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
+                    if ( OP(NEXTOPER(br)) != NOTHING
+                         || regnext(NEXTOPER(br)) != ender)
+                        is_nothing= 0;
+               }
+               else if (op == BRANCHJ) {
+                    REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
+                    /* for now we always disable this optimisation * /
+                    if ( OP(NEXTOPER(NEXTOPER(br))) != NOTHING
+                         || regnext(NEXTOPER(NEXTOPER(br))) != ender)
+                    */
+                        is_nothing= 0;
+               }
+           }
+            if (is_nothing) {
+                br= PL_regkind[OP(ret)] != BRANCH ? regnext(ret) : ret;
+                DEBUG_PARSE_r(if (!SIZE_ONLY) {
+                    DEBUG_PARSE_MSG("NADA");
+                    regprop(RExC_rx, RExC_mysv1, ret, NULL, pRExC_state);
+                    regprop(RExC_rx, RExC_mysv2, ender, NULL, pRExC_state);
+                    PerlIO_printf(Perl_debug_log, "~ converting ret %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
+                                  SvPV_nolen_const(RExC_mysv1),
+                                  (IV)REG_NODE_NUM(ret),
+                                  SvPV_nolen_const(RExC_mysv2),
+                                  (IV)REG_NODE_NUM(ender),
+                                  (IV)(ender - ret)
+                    );
+                });
+                OP(br)= NOTHING;
+                if (OP(ender) == TAIL) {
+                    NEXT_OFF(br)= 0;
+                    RExC_emit= br + 1;
+                } else {
+                    regnode *opt;
+                    for ( opt= br + 1; opt < ender ; opt++ )
+                        OP(opt)= OPTIMIZED;
+                    NEXT_OFF(br)= ender - br;
+                }
+            }
+       }
+    }
+
+    {
+        const char *p;
+        static const char parens[] = "=!<,>";
+
+       if (paren && (p = strchr(parens, paren))) {
+           U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
+           int flag = (p - parens) > 1;
+
+           if (paren == '>')
+               node = SUSPEND, flag = 0;
+           reginsert(pRExC_state, node,ret, depth+1);
+            Set_Node_Cur_Length(ret, parse_start);
+           Set_Node_Offset(ret, parse_start + 1);
+           ret->flags = flag;
+            REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
+       }
+    }
+
+    /* Check for proper termination. */
+    if (paren) {
+        /* restore original flags, but keep (?p) */
+       RExC_flags = oregflags | (RExC_flags & RXf_PMf_KEEPCOPY);
+       if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
+           RExC_parse = oregcomp_parse;
+           vFAIL("Unmatched (");
+       }
+    }
+    else if (!paren && RExC_parse < RExC_end) {
+       if (*RExC_parse == ')') {
+           RExC_parse++;
+           vFAIL("Unmatched )");
+       }
+       else
+           FAIL("Junk on end of regexp");      /* "Can't happen". */
+       NOT_REACHED; /* NOTREACHED */
+    }
+
+    if (RExC_in_lookbehind) {
+       RExC_in_lookbehind--;
+    }
+    if (after_freeze > RExC_npar)
+        RExC_npar = after_freeze;
+    return(ret);
+}
+
+/*
+ - regbranch - one alternative of an | operator
+ *
+ * Implements the concatenation operator.
+ *
+ * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
+ * restarted.
+ */
+STATIC regnode *
+S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
+{
+    regnode *ret;
+    regnode *chain = NULL;
+    regnode *latest;
+    I32 flags = 0, c = 0;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGBRANCH;
+
+    DEBUG_PARSE("brnc");
+
+    if (first)
+       ret = NULL;
+    else {
+       if (!SIZE_ONLY && RExC_extralen)
+           ret = reganode(pRExC_state, BRANCHJ,0);
+       else {
+           ret = reg_node(pRExC_state, BRANCH);
+            Set_Node_Length(ret, 1);
+        }
+    }
+
+    if (!first && SIZE_ONLY)
+       RExC_extralen += 1;                     /* BRANCHJ */
+
+    *flagp = WORST;                    /* Tentatively. */
+
+    RExC_parse--;
+    nextchar(pRExC_state);
+    while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
+       flags &= ~TRYAGAIN;
+        latest = regpiece(pRExC_state, &flags,depth+1);
+       if (latest == NULL) {
+           if (flags & TRYAGAIN)
+               continue;
+            if (flags & RESTART_UTF8) {
+                *flagp = RESTART_UTF8;
+                return NULL;
+            }
+            FAIL2("panic: regpiece returned NULL, flags=%#"UVxf"", (UV) flags);
+       }
+       else if (ret == NULL)
+           ret = latest;
+       *flagp |= flags&(HASWIDTH|POSTPONED);
+       if (chain == NULL)      /* First piece. */
+           *flagp |= flags&SPSTART;
+       else {
+           /* FIXME adding one for every branch after the first is probably
+            * excessive now we have TRIE support. (hv) */
+           MARK_NAUGHTY(1);
+            REGTAIL(pRExC_state, chain, latest);
+       }
+       chain = latest;
+       c++;
+    }
+    if (chain == NULL) {       /* Loop ran zero times. */
+       chain = reg_node(pRExC_state, NOTHING);
+       if (ret == NULL)
+           ret = chain;
+    }
+    if (c == 1) {
+       *flagp |= flags&SIMPLE;
+    }
+
+    return ret;
+}
+
+/*
+ - regpiece - something followed by possible [*+?]
+ *
+ * Note that the branching code sequences used for ? and the general cases
+ * of * and + are somewhat optimized:  they use the same NOTHING node as
+ * both the endmarker for their branch list and the body of the last branch.
+ * It might seem that this node could be dispensed with entirely, but the
+ * endmarker role is not redundant.
+ *
+ * Returns NULL, setting *flagp to TRYAGAIN if regatom() returns NULL with
+ * TRYAGAIN.
+ * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
+ * restarted.
+ */
+STATIC regnode *
+S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
+{
+    regnode *ret;
+    char op;
+    char *next;
+    I32 flags;
+    const char * const origparse = RExC_parse;
+    I32 min;
+    I32 max = REG_INFTY;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+    char *parse_start;
+#endif
+    const char *maxpos = NULL;
+    UV uv;
+
+    /* Save the original in case we change the emitted regop to a FAIL. */
+    regnode * const orig_emit = RExC_emit;
+
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGPIECE;
+
+    DEBUG_PARSE("piec");
+
+    ret = regatom(pRExC_state, &flags,depth+1);
+    if (ret == NULL) {
+       if (flags & (TRYAGAIN|RESTART_UTF8))
+           *flagp |= flags & (TRYAGAIN|RESTART_UTF8);
+        else
+            FAIL2("panic: regatom returned NULL, flags=%#"UVxf"", (UV) flags);
+       return(NULL);
+    }
+
+    op = *RExC_parse;
+
+    if (op == '{' && regcurly(RExC_parse)) {
+       maxpos = NULL;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+        parse_start = RExC_parse; /* MJD */
+#endif
+       next = RExC_parse + 1;
+       while (isDIGIT(*next) || *next == ',') {
+           if (*next == ',') {
+               if (maxpos)
+                   break;
+               else
+                   maxpos = next;
+           }
+           next++;
+       }
+       if (*next == '}') {             /* got one */
+            const char* endptr;
+           if (!maxpos)
+               maxpos = next;
+           RExC_parse++;
+            if (isDIGIT(*RExC_parse)) {
+                if (!grok_atoUV(RExC_parse, &uv, &endptr))
+                    vFAIL("Invalid quantifier in {,}");
+                if (uv >= REG_INFTY)
+                    vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
+                min = (I32)uv;
+            } else {
+                min = 0;
+            }
+           if (*maxpos == ',')
+               maxpos++;
+           else
+               maxpos = RExC_parse;
+            if (isDIGIT(*maxpos)) {
+                if (!grok_atoUV(maxpos, &uv, &endptr))
+                    vFAIL("Invalid quantifier in {,}");
+                if (uv >= REG_INFTY)
+                    vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
+                max = (I32)uv;
+            } else {
+               max = REG_INFTY;                /* meaning "infinity" */
+            }
+           RExC_parse = next;
+           nextchar(pRExC_state);
+            if (max < min) {    /* If can't match, warn and optimize to fail
+                                   unconditionally */
+                if (SIZE_ONLY) {
+
+                    /* We can't back off the size because we have to reserve
+                     * enough space for all the things we are about to throw
+                     * away, but we can shrink it by the ammount we are about
+                     * to re-use here */
+                    RExC_size = PREVOPER(RExC_size) - regarglen[(U8)OPFAIL];
+                }
+                else {
+                    ckWARNreg(RExC_parse, "Quantifier {n,m} with n > m can't match");
+                    RExC_emit = orig_emit;
+                }
+                ret = reg_node(pRExC_state, OPFAIL);
+                return ret;
+            }
+            else if (min == max
+                     && RExC_parse < RExC_end
+                     && (*RExC_parse == '?' || *RExC_parse == '+'))
+            {
+                if (PASS2) {
+                    ckWARN2reg(RExC_parse + 1,
+                               "Useless use of greediness modifier '%c'",
+                               *RExC_parse);
+                }
+                /* Absorb the modifier, so later code doesn't see nor use
+                    * it */
+                nextchar(pRExC_state);
+            }
+
+         do_curly:
+           if ((flags&SIMPLE)) {
+                MARK_NAUGHTY_EXP(2, 2);
+               reginsert(pRExC_state, CURLY, ret, depth+1);
+                Set_Node_Offset(ret, parse_start+1); /* MJD */
+                Set_Node_Cur_Length(ret, parse_start);
+           }
+           else {
+               regnode * const w = reg_node(pRExC_state, WHILEM);
+
+               w->flags = 0;
+                REGTAIL(pRExC_state, ret, w);
+               if (!SIZE_ONLY && RExC_extralen) {
+                   reginsert(pRExC_state, LONGJMP,ret, depth+1);
+                   reginsert(pRExC_state, NOTHING,ret, depth+1);
+                   NEXT_OFF(ret) = 3;  /* Go over LONGJMP. */
+               }
+               reginsert(pRExC_state, CURLYX,ret, depth+1);
+                                /* MJD hk */
+                Set_Node_Offset(ret, parse_start+1);
+                Set_Node_Length(ret,
+                                op == '{' ? (RExC_parse - parse_start) : 1);
+
+               if (!SIZE_ONLY && RExC_extralen)
+                   NEXT_OFF(ret) = 3;  /* Go over NOTHING to LONGJMP. */
+                REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
+               if (SIZE_ONLY)
+                   RExC_whilem_seen++, RExC_extralen += 3;
+                MARK_NAUGHTY_EXP(1, 4);     /* compound interest */
+           }
+           ret->flags = 0;
+
+           if (min > 0)
+               *flagp = WORST;
+           if (max > 0)
+               *flagp |= HASWIDTH;
+           if (!SIZE_ONLY) {
+               ARG1_SET(ret, (U16)min);
+               ARG2_SET(ret, (U16)max);
+           }
+            if (max == REG_INFTY)
+                RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
+
+           goto nest_check;
+       }
+    }
+
+    if (!ISMULT1(op)) {
+       *flagp = flags;
+       return(ret);
+    }
+
+#if 0                          /* Now runtime fix should be reliable. */
+
+    /* if this is reinstated, don't forget to put this back into perldiag:
+
+           =item Regexp *+ operand could be empty at {#} in regex m/%s/
+
+          (F) The part of the regexp subject to either the * or + quantifier
+           could match an empty string. The {#} shows in the regular
+           expression about where the problem was discovered.
+
+    */
+
+    if (!(flags&HASWIDTH) && op != '?')
+      vFAIL("Regexp *+ operand could be empty");
+#endif
+
+#ifdef RE_TRACK_PATTERN_OFFSETS
+    parse_start = RExC_parse;
+#endif
+    nextchar(pRExC_state);
+
+    *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
+
+    if (op == '*' && (flags&SIMPLE)) {
+       reginsert(pRExC_state, STAR, ret, depth+1);
+       ret->flags = 0;
+       MARK_NAUGHTY(4);
+        RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
+    }
+    else if (op == '*') {
+       min = 0;
+       goto do_curly;
+    }
+    else if (op == '+' && (flags&SIMPLE)) {
+       reginsert(pRExC_state, PLUS, ret, depth+1);
+       ret->flags = 0;
+       MARK_NAUGHTY(3);
+        RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
+    }
+    else if (op == '+') {
+       min = 1;
+       goto do_curly;
+    }
+    else if (op == '?') {
+       min = 0; max = 1;
+       goto do_curly;
+    }
+  nest_check:
+    if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
+       SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
+       ckWARN2reg(RExC_parse,
+                  "%"UTF8f" matches null string many times",
+                  UTF8fARG(UTF, (RExC_parse >= origparse
+                                 ? RExC_parse - origparse
+                                 : 0),
+                  origparse));
+       (void)ReREFCNT_inc(RExC_rx_sv);
+    }
+
+    if (RExC_parse < RExC_end && *RExC_parse == '?') {
+       nextchar(pRExC_state);
+       reginsert(pRExC_state, MINMOD, ret, depth+1);
+        REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
+    }
+    else
+    if (RExC_parse < RExC_end && *RExC_parse == '+') {
+        regnode *ender;
+        nextchar(pRExC_state);
+        ender = reg_node(pRExC_state, SUCCEED);
+        REGTAIL(pRExC_state, ret, ender);
+        reginsert(pRExC_state, SUSPEND, ret, depth+1);
+        ret->flags = 0;
+        ender = reg_node(pRExC_state, TAIL);
+        REGTAIL(pRExC_state, ret, ender);
+    }
+
+    if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
+       RExC_parse++;
+       vFAIL("Nested quantifiers");
+    }
+
+    return(ret);
+}
+
+STATIC bool
+S_grok_bslash_N(pTHX_ RExC_state_t *pRExC_state,
+                regnode ** node_p,
+                UV * code_point_p,
+                int * cp_count,
+                I32 * flagp,
+                const U32 depth
+    )
+{
+ /* This routine teases apart the various meanings of \N and returns
+  * accordingly.  The input parameters constrain which meaning(s) is/are valid
+  * in the current context.
+  *
+  * Exactly one of <node_p> and <code_point_p> must be non-NULL.
+  *
+  * If <code_point_p> is not NULL, the context is expecting the result to be a
+  * single code point.  If this \N instance turns out to a single code point,
+  * the function returns TRUE and sets *code_point_p to that code point.
+  *
+  * If <node_p> is not NULL, the context is expecting the result to be one of
+  * the things representable by a regnode.  If this \N instance turns out to be
+  * one such, the function generates the regnode, returns TRUE and sets *node_p
+  * to point to that regnode.
+  *
+  * If this instance of \N isn't legal in any context, this function will
+  * generate a fatal error and not return.
+  *
+  * On input, RExC_parse should point to the first char following the \N at the
+  * time of the call.  On successful return, RExC_parse will have been updated
+  * to point to just after the sequence identified by this routine.  Also
+  * *flagp has been updated as needed.
+  *
+  * When there is some problem with the current context and this \N instance,
+  * the function returns FALSE, without advancing RExC_parse, nor setting
+  * *node_p, nor *code_point_p, nor *flagp.
+  *
+  * If <cp_count> is not NULL, the caller wants to know the length (in code
+  * points) that this \N sequence matches.  This is set even if the function
+  * returns FALSE, as detailed below.
+  *
+  * There are 5 possibilities here, as detailed in the next 5 paragraphs.
+  *
+  * Probably the most common case is for the \N to specify a single code point.
+  * *cp_count will be set to 1, and *code_point_p will be set to that code
+  * point.
+  *
+  * Another possibility is for the input to be an empty \N{}, which for
+  * backwards compatibility we accept.  *cp_count will be set to 0. *node_p
+  * will be set to a generated NOTHING node.
+  *
+  * Still another possibility is for the \N to mean [^\n]. *cp_count will be
+  * set to 0. *node_p will be set to a generated REG_ANY node.
+  *
+  * The fourth possibility is that \N resolves to a sequence of more than one
+  * code points.  *cp_count will be set to the number of code points in the
+  * sequence. *node_p * will be set to a generated node returned by this
+  * function calling S_reg().
+  *
+  * The final possibility, which happens only when the fourth one would
+  * otherwise be in effect, is that one of those code points requires the
+  * pattern to be recompiled as UTF-8.  The function returns FALSE, and sets
+  * the RESTART_UTF8 flag in *flagp.  When this happens, the caller needs to
+  * desist from continuing parsing, and return this information to its caller.
+  * This is not set for when there is only one code point, as this can be
+  * called as part of an ANYOF node, and they can store above-Latin1 code
+  * points without the pattern having to be in UTF-8.
+  *
+  * For non-single-quoted regexes, the tokenizer has resolved character and
+  * sequence names inside \N{...} into their Unicode values, normalizing the
+  * result into what we should see here: '\N{U+c1.c2...}', where c1... are the
+  * hex-represented code points in the sequence.  This is done there because
+  * the names can vary based on what charnames pragma is in scope at the time,
+  * so we need a way to take a snapshot of what they resolve to at the time of
+  * the original parse. [perl #56444].
+  *
+  * That parsing is skipped for single-quoted regexes, so we may here get
+  * '\N{NAME}'.  This is a fatal error.  These names have to be resolved by the
+  * parser.  But if the single-quoted regex is something like '\N{U+41}', that
+  * is legal and handled here.  The code point is Unicode, and has to be
+  * translated into the native character set for non-ASCII platforms.
+  * the tokenizer passes the \N sequence through unchanged; this code will not
+  * attempt to determine this nor expand those, instead raising a syntax error.
+  */
+
+    char * endbrace;    /* points to '}' following the name */
+    char *endchar;     /* Points to '.' or '}' ending cur char in the input
+                           stream */
+    char* p;            /* Temporary */
+
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_GROK_BSLASH_N;
+
+    GET_RE_DEBUG_FLAGS;
+
+    assert(cBOOL(node_p) ^ cBOOL(code_point_p));  /* Exactly one should be set */
+    assert(! (node_p && cp_count));               /* At most 1 should be set */
+
+    if (cp_count) {     /* Initialize return for the most common case */
+        *cp_count = 1;
+    }
+
+    /* The [^\n] meaning of \N ignores spaces and comments under the /x
+     * modifier.  The other meanings do not, so use a temporary until we find
+     * out which we are being called with */
+    p = (RExC_flags & RXf_PMf_EXTENDED)
+       ? regpatws(pRExC_state, RExC_parse,
+                                TRUE) /* means recognize comments */
+       : RExC_parse;
+
+    /* Disambiguate between \N meaning a named character versus \N meaning
+     * [^\n].  The latter is assumed when the {...} following the \N is a legal
+     * quantifier, or there is no a '{' at all */
+    if (*p != '{' || regcurly(p)) {
+       RExC_parse = p;
+        if (cp_count) {
+            *cp_count = -1;
+        }
+
+       if (! node_p) {
+            return FALSE;
+        }
+        RExC_parse--;   /* Need to back off so nextchar() doesn't skip the
+                           current char */
+       nextchar(pRExC_state);
+       *node_p = reg_node(pRExC_state, REG_ANY);
+       *flagp |= HASWIDTH|SIMPLE;
+       MARK_NAUGHTY(1);
+        Set_Node_Length(*node_p, 1); /* MJD */
+       return TRUE;
+    }
+
+    /* Here, we have decided it should be a named character or sequence */
+
+    /* The test above made sure that the next real character is a '{', but
+     * under the /x modifier, it could be separated by space (or a comment and
+     * \n) and this is not allowed (for consistency with \x{...} and the
+     * tokenizer handling of \N{NAME}). */
+    if (*RExC_parse != '{') {
+       vFAIL("Missing braces on \\N{}");
+    }
+
+    RExC_parse++;      /* Skip past the '{' */
+
+    if (! (endbrace = strchr(RExC_parse, '}'))  /* no trailing brace */
+       || ! (endbrace == RExC_parse            /* nothing between the {} */
+              || (endbrace - RExC_parse >= 2   /* U+ (bad hex is checked... */
+                  && strnEQ(RExC_parse, "U+", 2)))) /* ... below for a better
+                                                       error msg) */
+    {
+       if (endbrace) RExC_parse = endbrace;    /* position msg's '<--HERE' */
+       vFAIL("\\N{NAME} must be resolved by the lexer");
+    }
+
+    RExC_uni_semantics = 1; /* Unicode named chars imply Unicode semantics */
+
+    if (endbrace == RExC_parse) {   /* empty: \N{} */
+        if (cp_count) {
+            *cp_count = 0;
+        }
+        nextchar(pRExC_state);
+       if (! node_p) {
+            return FALSE;
+        }
+
+        *node_p = reg_node(pRExC_state,NOTHING);
+        return TRUE;
+    }
+
+    RExC_parse += 2;   /* Skip past the 'U+' */
+
+    endchar = RExC_parse + strcspn(RExC_parse, ".}");
+
+    /* Code points are separated by dots.  If none, there is only one code
+     * point, and is terminated by the brace */
+
+    if (endchar >= endbrace) {
+       STRLEN length_of_hex;
+       I32 grok_hex_flags;
+
+        /* Here, exactly one code point.  If that isn't what is wanted, fail */
+        if (! code_point_p) {
+            RExC_parse = p;
+            return FALSE;
+        }
+
+        /* Convert code point from hex */
+       length_of_hex = (STRLEN)(endchar - RExC_parse);
+       grok_hex_flags = PERL_SCAN_ALLOW_UNDERSCORES
+                           | PERL_SCAN_DISALLOW_PREFIX
+
+                             /* No errors in the first pass (See [perl
+                              * #122671].)  We let the code below find the
+                              * errors when there are multiple chars. */
+                           | ((SIZE_ONLY)
+                              ? PERL_SCAN_SILENT_ILLDIGIT
+                              : 0);
+
+        /* This routine is the one place where both single- and double-quotish
+         * \N{U+xxxx} are evaluated.  The value is a Unicode code point which
+         * must be converted to native. */
+       *code_point_p = UNI_TO_NATIVE(grok_hex(RExC_parse,
+                                         &length_of_hex,
+                                         &grok_hex_flags,
+                                         NULL));
+
+       /* The tokenizer should have guaranteed validity, but it's possible to
+         * bypass it by using single quoting, so check.  Don't do the check
+         * here when there are multiple chars; we do it below anyway. */
+        if (length_of_hex == 0
+            || length_of_hex != (STRLEN)(endchar - RExC_parse) )
+        {
+            RExC_parse += length_of_hex;       /* Includes all the valid */
+            RExC_parse += (RExC_orig_utf8)     /* point to after 1st invalid */
+                            ? UTF8SKIP(RExC_parse)
+                            : 1;
+            /* Guard against malformed utf8 */
+            if (RExC_parse >= endchar) {
+                RExC_parse = endchar;
+            }
+            vFAIL("Invalid hexadecimal number in \\N{U+...}");
+        }
+
+        RExC_parse = endbrace + 1;
+        return TRUE;
+    }
+    else {  /* Is a multiple character sequence */
+       SV * substitute_parse;
+       STRLEN len;
+       char *orig_end = RExC_end;
+        I32 flags;
+
+        /* Count the code points, if desired, in the sequence */
+        if (cp_count) {
+            *cp_count = 0;
+            while (RExC_parse < endbrace) {
+                /* Point to the beginning of the next character in the sequence. */
+                RExC_parse = endchar + 1;
+                endchar = RExC_parse + strcspn(RExC_parse, ".}");
+                (*cp_count)++;
+            }
+        }
+
+        /* Fail if caller doesn't want to handle a multi-code-point sequence.
+         * But don't backup up the pointer if the caller want to know how many
+         * code points there are (they can then handle things) */
+        if (! node_p) {
+            if (! cp_count) {
+                RExC_parse = p;
+            }
+            return FALSE;
+        }
+
+       /* What is done here is to convert this to a sub-pattern of the form
+         * \x{char1}\x{char2}...  and then call reg recursively to parse it
+         * (enclosing in "(?: ... )" ).  That way, it retains its atomicness,
+         * while not having to worry about special handling that some code
+         * points may have. */
+
+       substitute_parse = newSVpvs("?:");
+
+       while (RExC_parse < endbrace) {
+
+           /* Convert to notation the rest of the code understands */
+           sv_catpv(substitute_parse, "\\x{");
+           sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
+           sv_catpv(substitute_parse, "}");
+
+           /* Point to the beginning of the next character in the sequence. */
+           RExC_parse = endchar + 1;
+           endchar = RExC_parse + strcspn(RExC_parse, ".}");
+
+       }
+        sv_catpv(substitute_parse, ")");
+
+       RExC_parse = SvPV(substitute_parse, len);
+
+       /* Don't allow empty number */
+       if (len < (STRLEN) 8) {
+            RExC_parse = endbrace;
+           vFAIL("Invalid hexadecimal number in \\N{U+...}");
+       }
+       RExC_end = RExC_parse + len;
+
+        /* The values are Unicode, and therefore not subject to recoding, but
+         * have to be converted to native on a non-Unicode (meaning non-ASCII)
+         * platform. */
+       RExC_override_recoding = 1;
+#ifdef EBCDIC
+        RExC_recode_x_to_native = 1;
+#endif
+
+        if (node_p) {
+            if (!(*node_p = reg(pRExC_state, 1, &flags, depth+1))) {
+                if (flags & RESTART_UTF8) {
+                    *flagp = RESTART_UTF8;
+                    return FALSE;
+                }
+                FAIL2("panic: reg returned NULL to grok_bslash_N, flags=%#"UVxf"",
+                    (UV) flags);
+            }
+            *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
+        }
+
+        /* Restore the saved values */
+       RExC_parse = endbrace;
+       RExC_end = orig_end;
+       RExC_override_recoding = 0;
+#ifdef EBCDIC
+        RExC_recode_x_to_native = 0;
+#endif
+
+        SvREFCNT_dec_NN(substitute_parse);
+        nextchar(pRExC_state);
+
+        return TRUE;
+    }
+}
+
+
+/*
+ * reg_recode
+ *
+ * It returns the code point in utf8 for the value in *encp.
+ *    value: a code value in the source encoding
+ *    encp:  a pointer to an Encode object
+ *
+ * If the result from Encode is not a single character,
+ * it returns U+FFFD (Replacement character) and sets *encp to NULL.
+ */
+STATIC UV
+S_reg_recode(pTHX_ const char value, SV **encp)
+{
+    STRLEN numlen = 1;
+    SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
+    const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
+    const STRLEN newlen = SvCUR(sv);
+    UV uv = UNICODE_REPLACEMENT;
+
+    PERL_ARGS_ASSERT_REG_RECODE;
+
+    if (newlen)
+       uv = SvUTF8(sv)
+            ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
+            : *(U8*)s;
+
+    if (!newlen || numlen != newlen) {
+       uv = UNICODE_REPLACEMENT;
+       *encp = NULL;
+    }
+    return uv;
+}
+
+PERL_STATIC_INLINE U8
+S_compute_EXACTish(RExC_state_t *pRExC_state)
+{
+    U8 op;
+
+    PERL_ARGS_ASSERT_COMPUTE_EXACTISH;
+
+    if (! FOLD) {
+        return (LOC)
+                ? EXACTL
+                : EXACT;
+    }
+
+    op = get_regex_charset(RExC_flags);
+    if (op >= REGEX_ASCII_RESTRICTED_CHARSET) {
+        op--; /* /a is same as /u, and map /aa's offset to what /a's would have
+                 been, so there is no hole */
+    }
+
+    return op + EXACTF;
+}
+
+PERL_STATIC_INLINE void
+S_alloc_maybe_populate_EXACT(pTHX_ RExC_state_t *pRExC_state,
+                         regnode *node, I32* flagp, STRLEN len, UV code_point,
+                         bool downgradable)
+{
+    /* This knows the details about sizing an EXACTish node, setting flags for
+     * it (by setting <*flagp>, and potentially populating it with a single
+     * character.
+     *
+     * If <len> (the length in bytes) is non-zero, this function assumes that
+     * the node has already been populated, and just does the sizing.  In this
+     * case <code_point> should be the final code point that has already been
+     * placed into the node.  This value will be ignored except that under some
+     * circumstances <*flagp> is set based on it.
+     *
+     * If <len> is zero, the function assumes that the node is to contain only
+     * the single character given by <code_point> and calculates what <len>
+     * should be.  In pass 1, it sizes the node appropriately.  In pass 2, it
+     * additionally will populate the node's STRING with <code_point> or its
+     * fold if folding.
+     *
+     * In both cases <*flagp> is appropriately set
+     *
+     * It knows that under FOLD, the Latin Sharp S and UTF characters above
+     * 255, must be folded (the former only when the rules indicate it can
+     * match 'ss')
+     *
+     * When it does the populating, it looks at the flag 'downgradable'.  If
+     * true with a node that folds, it checks if the single code point
+     * participates in a fold, and if not downgrades the node to an EXACT.
+     * This helps the optimizer */
+
+    bool len_passed_in = cBOOL(len != 0);
+    U8 character[UTF8_MAXBYTES_CASE+1];
+
+    PERL_ARGS_ASSERT_ALLOC_MAYBE_POPULATE_EXACT;
+
+    /* Don't bother to check for downgrading in PASS1, as it doesn't make any
+     * sizing difference, and is extra work that is thrown away */
+    if (downgradable && ! PASS2) {
+        downgradable = FALSE;
+    }
+
+    if (! len_passed_in) {
+        if (UTF) {
+            if (UVCHR_IS_INVARIANT(code_point)) {
+                if (LOC || ! FOLD) {    /* /l defers folding until runtime */
+                    *character = (U8) code_point;
+                }
+                else { /* Here is /i and not /l. (toFOLD() is defined on just
+                          ASCII, which isn't the same thing as INVARIANT on
+                          EBCDIC, but it works there, as the extra invariants
+                          fold to themselves) */
+                    *character = toFOLD((U8) code_point);
+
+                    /* We can downgrade to an EXACT node if this character
+                     * isn't a folding one.  Note that this assumes that
+                     * nothing above Latin1 folds to some other invariant than
+                     * one of these alphabetics; otherwise we would also have
+                     * to check:
+                     *  && (! HAS_NONLATIN1_FOLD_CLOSURE(code_point)
+                     *      || ASCII_FOLD_RESTRICTED))
+                     */
+                    if (downgradable && PL_fold[code_point] == code_point) {
+                        OP(node) = EXACT;
+                    }
+                }
+                len = 1;
+            }
+            else if (FOLD && (! LOC
+                              || ! is_PROBLEMATIC_LOCALE_FOLD_cp(code_point)))
+            {   /* Folding, and ok to do so now */
+                UV folded = _to_uni_fold_flags(
+                                   code_point,
+                                   character,
+                                   &len,
+                                   FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
+                                                      ? FOLD_FLAGS_NOMIX_ASCII
+                                                      : 0));
+                if (downgradable
+                    && folded == code_point /* This quickly rules out many
+                                               cases, avoiding the
+                                               _invlist_contains_cp() overhead
+                                               for those.  */
+                    && ! _invlist_contains_cp(PL_utf8_foldable, code_point))
+                {
+                    OP(node) = (LOC)
+                               ? EXACTL
+                               : EXACT;
+                }
+            }
+            else if (code_point <= MAX_UTF8_TWO_BYTE) {
+
+                /* Not folding this cp, and can output it directly */
+                *character = UTF8_TWO_BYTE_HI(code_point);
+                *(character + 1) = UTF8_TWO_BYTE_LO(code_point);
+                len = 2;
+            }
+            else {
+                uvchr_to_utf8( character, code_point);
+                len = UTF8SKIP(character);
+            }
+        } /* Else pattern isn't UTF8.  */
+        else if (! FOLD) {
+            *character = (U8) code_point;
+            len = 1;
+        } /* Else is folded non-UTF8 */
+        else if (LIKELY(code_point != LATIN_SMALL_LETTER_SHARP_S)) {
+
+            /* We don't fold any non-UTF8 except possibly the Sharp s  (see
+             * comments at join_exact()); */
+            *character = (U8) code_point;
+            len = 1;
+
+            /* Can turn into an EXACT node if we know the fold at compile time,
+             * and it folds to itself and doesn't particpate in other folds */
+            if (downgradable
+                && ! LOC
+                && PL_fold_latin1[code_point] == code_point
+                && (! HAS_NONLATIN1_FOLD_CLOSURE(code_point)
+                    || (isASCII(code_point) && ASCII_FOLD_RESTRICTED)))
+            {
+                OP(node) = EXACT;
+            }
+        } /* else is Sharp s.  May need to fold it */
+        else if (AT_LEAST_UNI_SEMANTICS && ! ASCII_FOLD_RESTRICTED) {
+            *character = 's';
+            *(character + 1) = 's';
+            len = 2;
+        }
+        else {
+            *character = LATIN_SMALL_LETTER_SHARP_S;
+            len = 1;
+        }
+    }
+
+    if (SIZE_ONLY) {
+        RExC_size += STR_SZ(len);
+    }
+    else {
+        RExC_emit += STR_SZ(len);
+        STR_LEN(node) = len;
+        if (! len_passed_in) {
+            Copy((char *) character, STRING(node), len, char);
+        }
+    }
+
+    *flagp |= HASWIDTH;
+
+    /* A single character node is SIMPLE, except for the special-cased SHARP S
+     * under /di. */
+    if ((len == 1 || (UTF && len == UNISKIP(code_point)))
+        && (code_point != LATIN_SMALL_LETTER_SHARP_S
+            || ! FOLD || ! DEPENDS_SEMANTICS))
+    {
+        *flagp |= SIMPLE;
+    }
+
+    /* The OP may not be well defined in PASS1 */
+    if (PASS2 && OP(node) == EXACTFL) {
+        RExC_contains_locale = 1;
+    }
+}
+
+
+/* Parse backref decimal value, unless it's too big to sensibly be a backref,
+ * in which case return I32_MAX (rather than possibly 32-bit wrapping) */
+
+static I32
+S_backref_value(char *p)
+{
+    const char* endptr;
+    UV val;
+    if (grok_atoUV(p, &val, &endptr) && val <= I32_MAX)
+        return (I32)val;
+    return I32_MAX;
+}
+
+
+/*
+ - regatom - the lowest level
+
+   Try to identify anything special at the start of the pattern. If there
+   is, then handle it as required. This may involve generating a single regop,
+   such as for an assertion; or it may involve recursing, such as to
+   handle a () structure.
+
+   If the string doesn't start with something special then we gobble up
+   as much literal text as we can.
+
+   Once we have been able to handle whatever type of thing started the
+   sequence, we return.
+
+   Note: we have to be careful with escapes, as they can be both literal
+   and special, and in the case of \10 and friends, context determines which.
+
+   A summary of the code structure is:
+
+   switch (first_byte) {
+       cases for each special:
+           handle this special;
+           break;
+       case '\\':
+           switch (2nd byte) {
+               cases for each unambiguous special:
+                   handle this special;
+                   break;
+               cases for each ambigous special/literal:
+                   disambiguate;
+                   if (special)  handle here
+                   else goto defchar;
+               default: // unambiguously literal:
+                   goto defchar;
+           }
+       default:  // is a literal char
+           // FALL THROUGH
+       defchar:
+           create EXACTish node for literal;
+           while (more input and node isn't full) {
+               switch (input_byte) {
+                  cases for each special;
+                       make sure parse pointer is set so that the next call to
+                           regatom will see this special first
+                       goto loopdone; // EXACTish node terminated by prev. char
+                  default:
+                      append char to EXACTISH node;
+               }
+               get next input byte;
+           }
+        loopdone:
+   }
+   return the generated node;
+
+   Specifically there are two separate switches for handling
+   escape sequences, with the one for handling literal escapes requiring
+   a dummy entry for all of the special escapes that are actually handled
+   by the other.
+
+   Returns NULL, setting *flagp to TRYAGAIN if reg() returns NULL with
+   TRYAGAIN.
+   Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
+   restarted.
+   Otherwise does not return NULL.
+*/
+
+STATIC regnode *
+S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
+{
+    regnode *ret = NULL;
+    I32 flags = 0;
+    char *parse_start = RExC_parse;
+    U8 op;
+    int invert = 0;
+    U8 arg;
+
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    *flagp = WORST;            /* Tentatively. */
+
+    DEBUG_PARSE("atom");
+
+    PERL_ARGS_ASSERT_REGATOM;
+
+  tryagain:
+    switch ((U8)*RExC_parse) {
+    case '^':
+       RExC_seen_zerolen++;
+       nextchar(pRExC_state);
+       if (RExC_flags & RXf_PMf_MULTILINE)
+           ret = reg_node(pRExC_state, MBOL);
+       else
+           ret = reg_node(pRExC_state, SBOL);
+        Set_Node_Length(ret, 1); /* MJD */
+       break;
+    case '$':
+       nextchar(pRExC_state);
+       if (*RExC_parse)
+           RExC_seen_zerolen++;
+       if (RExC_flags & RXf_PMf_MULTILINE)
+           ret = reg_node(pRExC_state, MEOL);
+       else
+           ret = reg_node(pRExC_state, SEOL);
+        Set_Node_Length(ret, 1); /* MJD */
+       break;
+    case '.':
+       nextchar(pRExC_state);
+       if (RExC_flags & RXf_PMf_SINGLELINE)
+           ret = reg_node(pRExC_state, SANY);
+       else
+           ret = reg_node(pRExC_state, REG_ANY);
+       *flagp |= HASWIDTH|SIMPLE;
+       MARK_NAUGHTY(1);
+        Set_Node_Length(ret, 1); /* MJD */
+       break;
+    case '[':
+    {
+       char * const oregcomp_parse = ++RExC_parse;
+        ret = regclass(pRExC_state, flagp,depth+1,
+                       FALSE, /* means parse the whole char class */
+                       TRUE, /* allow multi-char folds */
+                       FALSE, /* don't silence non-portable warnings. */
+                       (bool) RExC_strict,
+                       NULL);
+       if (*RExC_parse != ']') {
+           RExC_parse = oregcomp_parse;
+           vFAIL("Unmatched [");
+       }
+        if (ret == NULL) {
+            if (*flagp & RESTART_UTF8)
+                return NULL;
+            FAIL2("panic: regclass returned NULL to regatom, flags=%#"UVxf"",
+                  (UV) *flagp);
+        }
+       nextchar(pRExC_state);
+        Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
+       break;
+    }
+    case '(':
+       nextchar(pRExC_state);
+        ret = reg(pRExC_state, 2, &flags,depth+1);
+       if (ret == NULL) {
+               if (flags & TRYAGAIN) {
+                   if (RExC_parse == RExC_end) {
+                        /* Make parent create an empty node if needed. */
+                       *flagp |= TRYAGAIN;
+                       return(NULL);
+                   }
+                   goto tryagain;
+               }
+                if (flags & RESTART_UTF8) {
+                    *flagp = RESTART_UTF8;
+                    return NULL;
+                }
+                FAIL2("panic: reg returned NULL to regatom, flags=%#"UVxf"",
+                                                                 (UV) flags);
+       }
+       *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
+       break;
+    case '|':
+    case ')':
+       if (flags & TRYAGAIN) {
+           *flagp |= TRYAGAIN;
+           return NULL;
+       }
+       vFAIL("Internal urp");
+                               /* Supposed to be caught earlier. */
+       break;
+    case '?':
+    case '+':
+    case '*':
+       RExC_parse++;
+       vFAIL("Quantifier follows nothing");
+       break;
+    case '\\':
+       /* Special Escapes
+
+          This switch handles escape sequences that resolve to some kind
+          of special regop and not to literal text. Escape sequnces that
+          resolve to literal text are handled below in the switch marked
+          "Literal Escapes".
+
+          Every entry in this switch *must* have a corresponding entry
+          in the literal escape switch. However, the opposite is not
+          required, as the default for this switch is to jump to the
+          literal text handling code.
+       */
+       switch ((U8)*++RExC_parse) {
+       /* Special Escapes */
+       case 'A':
+           RExC_seen_zerolen++;
+           ret = reg_node(pRExC_state, SBOL);
+            /* SBOL is shared with /^/ so we set the flags so we can tell
+             * /\A/ from /^/ in split. We check ret because first pass we
+             * have no regop struct to set the flags on. */
+            if (PASS2)
+                ret->flags = 1;
+           *flagp |= SIMPLE;
+           goto finish_meta_pat;
+       case 'G':
+           ret = reg_node(pRExC_state, GPOS);
+            RExC_seen |= REG_GPOS_SEEN;
+           *flagp |= SIMPLE;
+           goto finish_meta_pat;
+       case 'K':
+           RExC_seen_zerolen++;
+           ret = reg_node(pRExC_state, KEEPS);
+           *flagp |= SIMPLE;
+           /* XXX:dmq : disabling in-place substitution seems to
+            * be necessary here to avoid cases of memory corruption, as
+            * with: C<$_="x" x 80; s/x\K/y/> -- rgs
+            */
+            RExC_seen |= REG_LOOKBEHIND_SEEN;
+           goto finish_meta_pat;
+       case 'Z':
+           ret = reg_node(pRExC_state, SEOL);
+           *flagp |= SIMPLE;
+           RExC_seen_zerolen++;                /* Do not optimize RE away */
+           goto finish_meta_pat;
+       case 'z':
+           ret = reg_node(pRExC_state, EOS);
+           *flagp |= SIMPLE;
+           RExC_seen_zerolen++;                /* Do not optimize RE away */
+           goto finish_meta_pat;
+       case 'C':
+           vFAIL("\\C no longer supported");
+       case 'X':
+           ret = reg_node(pRExC_state, CLUMP);
+           *flagp |= HASWIDTH;
+           goto finish_meta_pat;
+
+       case 'W':
+            invert = 1;
+            /* FALLTHROUGH */
+       case 'w':
+            arg = ANYOF_WORDCHAR;
+            goto join_posix;
+
+       case 'B':
+            invert = 1;
+            /* FALLTHROUGH */
+       case 'b':
+          {
+           regex_charset charset = get_regex_charset(RExC_flags);
+
+           RExC_seen_zerolen++;
+            RExC_seen |= REG_LOOKBEHIND_SEEN;
+           op = BOUND + charset;
+
+            if (op == BOUNDL) {
+                RExC_contains_locale = 1;
+            }
+
+           ret = reg_node(pRExC_state, op);
+           *flagp |= SIMPLE;
+           if (*(RExC_parse + 1) != '{') {
+                FLAGS(ret) = TRADITIONAL_BOUND;
+                if (PASS2 && op > BOUNDA) {  /* /aa is same as /a */
+                    OP(ret) = BOUNDA;
+                }
+            }
+            else {
+                STRLEN length;
+                char name = *RExC_parse;
+                char * endbrace;
+                RExC_parse += 2;
+                endbrace = strchr(RExC_parse, '}');
+
+                if (! endbrace) {
+                    vFAIL2("Missing right brace on \\%c{}", name);
+                }
+                /* XXX Need to decide whether to take spaces or not.  Should be
+                 * consistent with \p{}, but that currently is SPACE, which
+                 * means vertical too, which seems wrong
+                 * while (isBLANK(*RExC_parse)) {
+                    RExC_parse++;
+                }*/
+                if (endbrace == RExC_parse) {
+                    RExC_parse++;  /* After the '}' */
+                    vFAIL2("Empty \\%c{}", name);
+                }
+                length = endbrace - RExC_parse;
+                /*while (isBLANK(*(RExC_parse + length - 1))) {
+                    length--;
+                }*/
+                switch (*RExC_parse) {
+                    case 'g':
+                        if (length != 1
+                            && (length != 3 || strnNE(RExC_parse + 1, "cb", 2)))
+                        {
+                            goto bad_bound_type;
+                        }
+                        FLAGS(ret) = GCB_BOUND;
+                        break;
+                    case 's':
+                        if (length != 2 || *(RExC_parse + 1) != 'b') {
+                            goto bad_bound_type;
+                        }
+                        FLAGS(ret) = SB_BOUND;
+                        break;
+                    case 'w':
+                        if (length != 2 || *(RExC_parse + 1) != 'b') {
+                            goto bad_bound_type;
+                        }
+                        FLAGS(ret) = WB_BOUND;
+                        break;
+                    default:
+                      bad_bound_type:
+                        RExC_parse = endbrace;
+                       vFAIL2utf8f(
+                            "'%"UTF8f"' is an unknown bound type",
+                           UTF8fARG(UTF, length, endbrace - length));
+                        NOT_REACHED; /*NOTREACHED*/
+                }
+                RExC_parse = endbrace;
+                RExC_uni_semantics = 1;
+
+                if (PASS2 && op >= BOUNDA) {  /* /aa is same as /a */
+                    OP(ret) = BOUNDU;
+                    length += 4;
+
+                    /* Don't have to worry about UTF-8, in this message because
+                     * to get here the contents of the \b must be ASCII */
+                    ckWARN4reg(RExC_parse + 1,  /* Include the '}' in msg */
+                              "Using /u for '%.*s' instead of /%s",
+                              (unsigned) length,
+                              endbrace - length + 1,
+                              (charset == REGEX_ASCII_RESTRICTED_CHARSET)
+                              ? ASCII_RESTRICT_PAT_MODS
+                              : ASCII_MORE_RESTRICT_PAT_MODS);
+                }
+           }
+
+            if (PASS2 && invert) {
+                OP(ret) += NBOUND - BOUND;
+            }
+           goto finish_meta_pat;
+          }
+
+       case 'D':
+            invert = 1;
+            /* FALLTHROUGH */
+       case 'd':
+            arg = ANYOF_DIGIT;
+            if (! DEPENDS_SEMANTICS) {
+                goto join_posix;
+            }
+
+            /* \d doesn't have any matches in the upper Latin1 range, hence /d
+             * is equivalent to /u.  Changing to /u saves some branches at
+             * runtime */
+            op = POSIXU;
+            goto join_posix_op_known;
+
+       case 'R':
+           ret = reg_node(pRExC_state, LNBREAK);
+           *flagp |= HASWIDTH|SIMPLE;
+           goto finish_meta_pat;
+
+       case 'H':
+            invert = 1;
+            /* FALLTHROUGH */
+       case 'h':
+           arg = ANYOF_BLANK;
+            op = POSIXU;
+            goto join_posix_op_known;
+
+       case 'V':
+            invert = 1;
+            /* FALLTHROUGH */
+       case 'v':
+           arg = ANYOF_VERTWS;
+            op = POSIXU;
+            goto join_posix_op_known;
+
+       case 'S':
+            invert = 1;
+            /* FALLTHROUGH */
+       case 's':
+            arg = ANYOF_SPACE;
+
+          join_posix:
+
+           op = POSIXD + get_regex_charset(RExC_flags);
+            if (op > POSIXA) {  /* /aa is same as /a */
+                op = POSIXA;
+            }
+            else if (op == POSIXL) {
+                RExC_contains_locale = 1;
+            }
+
+          join_posix_op_known:
+
+            if (invert) {
+                op += NPOSIXD - POSIXD;
+            }
+
+           ret = reg_node(pRExC_state, op);
+            if (! SIZE_ONLY) {
+                FLAGS(ret) = namedclass_to_classnum(arg);
+            }
+
+           *flagp |= HASWIDTH|SIMPLE;
+            /* FALLTHROUGH */
+
+          finish_meta_pat:
+           nextchar(pRExC_state);
+            Set_Node_Length(ret, 2); /* MJD */
+           break;
+       case 'p':
+       case 'P':
+           {
+#ifdef DEBUGGING
+               char* parse_start = RExC_parse - 2;
+#endif
+
+               RExC_parse--;
+
+                ret = regclass(pRExC_state, flagp,depth+1,
+                               TRUE, /* means just parse this element */
+                               FALSE, /* don't allow multi-char folds */
+                               FALSE, /* don't silence non-portable warnings.
+                                         It would be a bug if these returned
+                                         non-portables */
+                               (bool) RExC_strict,
+                               NULL);
+                /* regclass() can only return RESTART_UTF8 if multi-char folds
+                   are allowed.  */
+                if (!ret)
+                    FAIL2("panic: regclass returned NULL to regatom, flags=%#"UVxf"",
+                          (UV) *flagp);
+
+               RExC_parse--;
+
+               Set_Node_Offset(ret, parse_start + 2);
+                Set_Node_Cur_Length(ret, parse_start);
+               nextchar(pRExC_state);
+           }
+           break;
+        case 'N':
+            /* Handle \N, \N{} and \N{NAMED SEQUENCE} (the latter meaning the
+             * \N{...} evaluates to a sequence of more than one code points).
+             * The function call below returns a regnode, which is our result.
+             * The parameters cause it to fail if the \N{} evaluates to a
+             * single code point; we handle those like any other literal.  The
+             * reason that the multicharacter case is handled here and not as
+             * part of the EXACtish code is because of quantifiers.  In
+             * /\N{BLAH}+/, the '+' applies to the whole thing, and doing it
+             * this way makes that Just Happen. dmq.
+             * join_exact() will join this up with adjacent EXACTish nodes
+             * later on, if appropriate. */
+            ++RExC_parse;
+            if (grok_bslash_N(pRExC_state,
+                              &ret,     /* Want a regnode returned */
+                              NULL,     /* Fail if evaluates to a single code
+                                           point */
+                              NULL,     /* Don't need a count of how many code
+                                           points */
+                              flagp,
+                              depth)
+            ) {
+                break;
+            }
+
+            if (*flagp & RESTART_UTF8)
+                return NULL;
+            RExC_parse--;
+            goto defchar;
+
+       case 'k':    /* Handle \k<NAME> and \k'NAME' */
+      parse_named_seq:
+        {
+            char ch= RExC_parse[1];
+           if (ch != '<' && ch != '\'' && ch != '{') {
+               RExC_parse++;
+               /* diag_listed_as: Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/ */
+               vFAIL2("Sequence %.2s... not terminated",parse_start);
+           } else {
+               /* this pretty much dupes the code for (?P=...) in reg(), if
+                   you change this make sure you change that */
+               char* name_start = (RExC_parse += 2);
+               U32 num = 0;
+                SV *sv_dat = reg_scan_name(pRExC_state,
+                    SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+                ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
+                if (RExC_parse == name_start || *RExC_parse != ch)
+                    /* diag_listed_as: Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/ */
+                    vFAIL2("Sequence %.3s... not terminated",parse_start);
+
+                if (!SIZE_ONLY) {
+                    num = add_data( pRExC_state, STR_WITH_LEN("S"));
+                    RExC_rxi->data->data[num]=(void*)sv_dat;
+                    SvREFCNT_inc_simple_void(sv_dat);
+                }
+
+                RExC_sawback = 1;
+                ret = reganode(pRExC_state,
+                               ((! FOLD)
+                                 ? NREF
+                                : (ASCII_FOLD_RESTRICTED)
+                                  ? NREFFA
+                                   : (AT_LEAST_UNI_SEMANTICS)
+                                     ? NREFFU
+                                     : (LOC)
+                                       ? NREFFL
+                                       : NREFF),
+                                num);
+                *flagp |= HASWIDTH;
+
+                /* override incorrect value set in reganode MJD */
+                Set_Node_Offset(ret, parse_start+1);
+                Set_Node_Cur_Length(ret, parse_start);
+                nextchar(pRExC_state);
+
+            }
+            break;
+       }
+       case 'g':
+       case '1': case '2': case '3': case '4':
+       case '5': case '6': case '7': case '8': case '9':
+           {
+               I32 num;
+               bool hasbrace = 0;
+
+               if (*RExC_parse == 'g') {
+                    bool isrel = 0;
+
+                   RExC_parse++;
+                   if (*RExC_parse == '{') {
+                       RExC_parse++;
+                       hasbrace = 1;
+                   }
+                   if (*RExC_parse == '-') {
+                       RExC_parse++;
+                       isrel = 1;
+                   }
+                   if (hasbrace && !isDIGIT(*RExC_parse)) {
+                       if (isrel) RExC_parse--;
+                        RExC_parse -= 2;
+                       goto parse_named_seq;
+                    }
+
+                    num = S_backref_value(RExC_parse);
+                    if (num == 0)
+                        vFAIL("Reference to invalid group 0");
+                    else if (num == I32_MAX) {
+                         if (isDIGIT(*RExC_parse))
+                           vFAIL("Reference to nonexistent group");
+                        else
+                            vFAIL("Unterminated \\g... pattern");
+                    }
+
+                    if (isrel) {
+                        num = RExC_npar - num;
+                        if (num < 1)
+                            vFAIL("Reference to nonexistent or unclosed group");
+                    }
+                }
+                else {
+                    num = S_backref_value(RExC_parse);
+                    /* bare \NNN might be backref or octal - if it is larger
+                     * than or equal RExC_npar then it is assumed to be an
+                     * octal escape. Note RExC_npar is +1 from the actual
+                     * number of parens. */
+                    /* Note we do NOT check if num == I32_MAX here, as that is
+                     * handled by the RExC_npar check */
+
+                    if (
+                        /* any numeric escape < 10 is always a backref */
+                        num > 9
+                        /* any numeric escape < RExC_npar is a backref */
+                        && num >= RExC_npar
+                        /* cannot be an octal escape if it starts with 8 */
+                        && *RExC_parse != '8'
+                        /* cannot be an octal escape it it starts with 9 */
+                        && *RExC_parse != '9'
+                    )
+                    {
+                        /* Probably not a backref, instead likely to be an
+                         * octal character escape, e.g. \35 or \777.
+                         * The above logic should make it obvious why using
+                         * octal escapes in patterns is problematic. - Yves */
+                        goto defchar;
+                    }
+                }
+
+                /* At this point RExC_parse points at a numeric escape like
+                 * \12 or \88 or something similar, which we should NOT treat
+                 * as an octal escape. It may or may not be a valid backref
+                 * escape. For instance \88888888 is unlikely to be a valid
+                 * backref. */
+               {
+#ifdef RE_TRACK_PATTERN_OFFSETS
+                   char * const parse_start = RExC_parse - 1; /* MJD */
+#endif
+                   while (isDIGIT(*RExC_parse))
+                       RExC_parse++;
+                    if (hasbrace) {
+                        if (*RExC_parse != '}')
+                            vFAIL("Unterminated \\g{...} pattern");
+                        RExC_parse++;
+                    }
+                   if (!SIZE_ONLY) {
+                       if (num > (I32)RExC_rx->nparens)
+                           vFAIL("Reference to nonexistent group");
+                   }
+                   RExC_sawback = 1;
+                   ret = reganode(pRExC_state,
+                                  ((! FOLD)
+                                    ? REF
+                                    : (ASCII_FOLD_RESTRICTED)
+                                      ? REFFA
+                                       : (AT_LEAST_UNI_SEMANTICS)
+                                         ? REFFU
+                                         : (LOC)
+                                           ? REFFL
+                                           : REFF),
+                                   num);
+                   *flagp |= HASWIDTH;
+
+                    /* override incorrect value set in reganode MJD */
+                    Set_Node_Offset(ret, parse_start+1);
+                    Set_Node_Cur_Length(ret, parse_start);
+                   RExC_parse--;
+                   nextchar(pRExC_state);
+               }
+           }
+           break;
+       case '\0':
+           if (RExC_parse >= RExC_end)
+               FAIL("Trailing \\");
+           /* FALLTHROUGH */
+       default:
+           /* Do not generate "unrecognized" warnings here, we fall
+              back into the quick-grab loop below */
+           parse_start--;
+           goto defchar;
+       }
+       break;
+
+    case '#':
+       if (RExC_flags & RXf_PMf_EXTENDED) {
+           RExC_parse = reg_skipcomment( pRExC_state, RExC_parse );
+           if (RExC_parse < RExC_end)
+               goto tryagain;
+       }
+       /* FALLTHROUGH */
+
+    default:
+
+            parse_start = RExC_parse - 1;
+
+           RExC_parse++;
+
+         defchar: {
+           STRLEN len = 0;
+           UV ender = 0;
+           char *p;
+           char *s;
+#define MAX_NODE_STRING_SIZE 127
+           char foldbuf[MAX_NODE_STRING_SIZE+UTF8_MAXBYTES_CASE];
+           char *s0;
+           U8 upper_parse = MAX_NODE_STRING_SIZE;
+            U8 node_type = compute_EXACTish(pRExC_state);
+            bool next_is_quantifier;
+            char * oldp = NULL;
+
+            /* We can convert EXACTF nodes to EXACTFU if they contain only
+             * characters that match identically regardless of the target
+             * string's UTF8ness.  The reason to do this is that EXACTF is not
+             * trie-able, EXACTFU is.
+             *
+             * Similarly, we can convert EXACTFL nodes to EXACTFU if they
+             * contain only above-Latin1 characters (hence must be in UTF8),
+             * which don't participate in folds with Latin1-range characters,
+             * as the latter's folds aren't known until runtime.  (We don't
+             * need to figure this out until pass 2) */
+            bool maybe_exactfu = PASS2
+                               && (node_type == EXACTF || node_type == EXACTFL);
+
+            /* If a folding node contains only code points that don't
+             * participate in folds, it can be changed into an EXACT node,
+             * which allows the optimizer more things to look for */
+            bool maybe_exact;
+
+           ret = reg_node(pRExC_state, node_type);
+
+            /* In pass1, folded, we use a temporary buffer instead of the
+             * actual node, as the node doesn't exist yet */
+           s = (SIZE_ONLY && FOLD) ? foldbuf : STRING(ret);
+
+            s0 = s;
+
+         reparse:
+
+            /* We do the EXACTFish to EXACT node only if folding.  (And we
+             * don't need to figure this out until pass 2) */
+            maybe_exact = FOLD && PASS2;
+
+           /* XXX The node can hold up to 255 bytes, yet this only goes to
+             * 127.  I (khw) do not know why.  Keeping it somewhat less than
+             * 255 allows us to not have to worry about overflow due to
+             * converting to utf8 and fold expansion, but that value is
+             * 255-UTF8_MAXBYTES_CASE.  join_exact() may join adjacent nodes
+             * split up by this limit into a single one using the real max of
+             * 255.  Even at 127, this breaks under rare circumstances.  If
+             * folding, we do not want to split a node at a character that is a
+             * non-final in a multi-char fold, as an input string could just
+             * happen to want to match across the node boundary.  The join
+             * would solve that problem if the join actually happens.  But a
+             * series of more than two nodes in a row each of 127 would cause
+             * the first join to succeed to get to 254, but then there wouldn't
+             * be room for the next one, which could at be one of those split
+             * multi-char folds.  I don't know of any fool-proof solution.  One
+             * could back off to end with only a code point that isn't such a
+             * non-final, but it is possible for there not to be any in the
+             * entire node. */
+           for (p = RExC_parse - 1;
+                len < upper_parse && p < RExC_end;
+                len++)
+           {
+               oldp = p;
+
+               if (RExC_flags & RXf_PMf_EXTENDED)
+                    p = regpatws(pRExC_state, p,
+                                          TRUE); /* means recognize comments */
+               switch ((U8)*p) {
+               case '^':
+               case '$':
+               case '.':
+               case '[':
+               case '(':
+               case ')':
+               case '|':
+                   goto loopdone;
+               case '\\':
+                   /* Literal Escapes Switch
+
+                      This switch is meant to handle escape sequences that
+                      resolve to a literal character.
+
+                      Every escape sequence that represents something
+                      else, like an assertion or a char class, is handled
+                      in the switch marked 'Special Escapes' above in this
+                      routine, but also has an entry here as anything that
+                      isn't explicitly mentioned here will be treated as
+                      an unescaped equivalent literal.
+                   */
+
+                   switch ((U8)*++p) {
+                   /* These are all the special escapes. */
+                   case 'A':             /* Start assertion */
+                   case 'b': case 'B':   /* Word-boundary assertion*/
+                   case 'C':             /* Single char !DANGEROUS! */
+                   case 'd': case 'D':   /* digit class */
+                   case 'g': case 'G':   /* generic-backref, pos assertion */
+                   case 'h': case 'H':   /* HORIZWS */
+                   case 'k': case 'K':   /* named backref, keep marker */
+                   case 'p': case 'P':   /* Unicode property */
+                             case 'R':   /* LNBREAK */
+                   case 's': case 'S':   /* space class */
+                   case 'v': case 'V':   /* VERTWS */
+                   case 'w': case 'W':   /* word class */
+                    case 'X':             /* eXtended Unicode "combining
+                                             character sequence" */
+                   case 'z': case 'Z':   /* End of line/string assertion */
+                       --p;
+                       goto loopdone;
+
+                   /* Anything after here is an escape that resolves to a
+                      literal. (Except digits, which may or may not)
+                    */
+                   case 'n':
+                       ender = '\n';
+                       p++;
+                       break;
+                   case 'N': /* Handle a single-code point named character. */
+                        RExC_parse = p + 1;
+                        if (! grok_bslash_N(pRExC_state,
+                                            NULL,   /* Fail if evaluates to
+                                                       anything other than a
+                                                       single code point */
+                                            &ender, /* The returned single code
+                                                       point */
+                                            NULL,   /* Don't need a count of
+                                                       how many code points */
+                                            flagp,
+                                            depth)
+                        ) {
+                            if (*flagp & RESTART_UTF8)
+                                FAIL("panic: grok_bslash_N set RESTART_UTF8");
+
+                            /* Here, it wasn't a single code point.  Go close
+                             * up this EXACTish node.  The switch() prior to
+                             * this switch handles the other cases */
+                            RExC_parse = p = oldp;
+                            goto loopdone;
+                        }
+                        p = RExC_parse;
+                        if (ender > 0xff) {
+                            REQUIRE_UTF8;
+                        }
+                        break;
+                   case 'r':
+                       ender = '\r';
+                       p++;
+                       break;
+                   case 't':
+                       ender = '\t';
+                       p++;
+                       break;
+                   case 'f':
+                       ender = '\f';
+                       p++;
+                       break;
+                   case 'e':
+                       ender = ESC_NATIVE;
+                       p++;
+                       break;
+                   case 'a':
+                       ender = '\a';
+                       p++;
+                       break;
+                   case 'o':
+                       {
+                           UV result;
+                           const char* error_msg;
+
+                           bool valid = grok_bslash_o(&p,
+                                                      &result,
+                                                      &error_msg,
+                                                      PASS2, /* out warnings */
+                                                       (bool) RExC_strict,
+                                                       TRUE, /* Output warnings
+                                                                for non-
+                                                                portables */
+                                                       UTF);
+                           if (! valid) {
+                               RExC_parse = p; /* going to die anyway; point
+                                                  to exact spot of failure */
+                               vFAIL(error_msg);
+                           }
+                            ender = result;
+                           if (IN_ENCODING && ender < 0x100) {
+                               goto recode_encoding;
+                           }
+                           if (ender > 0xff) {
+                               REQUIRE_UTF8;
+                           }
+                           break;
+                       }
+                   case 'x':
+                       {
+                            UV result = UV_MAX; /* initialize to erroneous
+                                                   value */
+                           const char* error_msg;
+
+                           bool valid = grok_bslash_x(&p,
+                                                      &result,
+                                                      &error_msg,
+                                                      PASS2, /* out warnings */
+                                                       (bool) RExC_strict,
+                                                       TRUE, /* Silence warnings
+                                                                for non-
+                                                                portables */
+                                                       UTF);
+                           if (! valid) {
+                               RExC_parse = p; /* going to die anyway; point
+                                                  to exact spot of failure */
+                               vFAIL(error_msg);
+                           }
+                            ender = result;
+
+                            if (ender < 0x100) {
+#ifdef EBCDIC
+                                if (RExC_recode_x_to_native) {
+                                    ender = LATIN1_TO_NATIVE(ender);
+                                }
+                                else
+#endif
+                                if (IN_ENCODING) {
+                                    goto recode_encoding;
+                                }
+                           }
+                            else {
+                               REQUIRE_UTF8;
+                           }
+                           break;
+                       }
+                   case 'c':
+                       p++;
+                       ender = grok_bslash_c(*p++, PASS2);
+                       break;
+                    case '8': case '9': /* must be a backreference */
+                        --p;
+                        /* we have an escape like \8 which cannot be an octal escape
+                         * so we exit the loop, and let the outer loop handle this
+                         * escape which may or may not be a legitimate backref. */
+                        goto loopdone;
+                    case '1': case '2': case '3':case '4':
+                   case '5': case '6': case '7':
+                        /* When we parse backslash escapes there is ambiguity
+                         * between backreferences and octal escapes. Any escape
+                         * from \1 - \9 is a backreference, any multi-digit
+                         * escape which does not start with 0 and which when
+                         * evaluated as decimal could refer to an already
+                         * parsed capture buffer is a back reference. Anything
+                         * else is octal.
+                         *
+                         * Note this implies that \118 could be interpreted as
+                         * 118 OR as "\11" . "8" depending on whether there
+                         * were 118 capture buffers defined already in the
+                         * pattern.  */
+
+                        /* NOTE, RExC_npar is 1 more than the actual number of
+                         * parens we have seen so far, hence the < RExC_npar below. */
+
+                        if ( !isDIGIT(p[1]) || S_backref_value(p) < RExC_npar)
+                        {  /* Not to be treated as an octal constant, go
+                                   find backref */
+                            --p;
+                            goto loopdone;
+                        }
+                        /* FALLTHROUGH */
+                    case '0':
+                       {
+                           I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
+                           STRLEN numlen = 3;
+                           ender = grok_oct(p, &numlen, &flags, NULL);
+                           if (ender > 0xff) {
+                               REQUIRE_UTF8;
+                           }
+                           p += numlen;
+                            if (PASS2   /* like \08, \178 */
+                                && numlen < 3
+                                && p < RExC_end
+                                && isDIGIT(*p) && ckWARN(WARN_REGEXP))
+                            {
+                               reg_warn_non_literal_string(
+                                         p + 1,
+                                         form_short_octal_warning(p, numlen));
+                            }
+                       }
+                       if (IN_ENCODING && ender < 0x100)
+                           goto recode_encoding;
+                       break;
+                     recode_encoding:
+                       if (! RExC_override_recoding) {
+                           SV* enc = _get_encoding();
+                           ender = reg_recode((const char)(U8)ender, &enc);
+                           if (!enc && PASS2)
+                               ckWARNreg(p, "Invalid escape in the specified encoding");
+                           REQUIRE_UTF8;
+                       }
+                       break;
+                   case '\0':
+                       if (p >= RExC_end)
+                           FAIL("Trailing \\");
+                       /* FALLTHROUGH */
+                   default:
+                       if (!SIZE_ONLY&& isALPHANUMERIC(*p)) {
+                           /* Include any { following the alpha to emphasize
+                            * that it could be part of an escape at some point
+                            * in the future */
+                           int len = (isALPHA(*p) && *(p + 1) == '{') ? 2 : 1;
+                           ckWARN3reg(p + len, "Unrecognized escape \\%.*s passed through", len, p);
+                       }
+                       goto normal_default;
+                   } /* End of switch on '\' */
+                   break;
+               case '{':
+                   /* Currently we don't warn when the lbrace is at the start
+                    * of a construct.  This catches it in the middle of a
+                    * literal string, or when its the first thing after
+                    * something like "\b" */
+                   if (! SIZE_ONLY
+                       && (len || (p > RExC_start && isALPHA_A(*(p -1)))))
+                   {
+                       ckWARNregdep(p + 1, "Unescaped left brace in regex is deprecated, passed through");
+                   }
+                   /*FALLTHROUGH*/
+               default:    /* A literal character */
+                 normal_default:
+                   if (UTF8_IS_START(*p) && UTF) {
+                       STRLEN numlen;
+                       ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
+                                              &numlen, UTF8_ALLOW_DEFAULT);
+                       p += numlen;
+                   }
+                   else
+                       ender = (U8) *p++;
+                   break;
+               } /* End of switch on the literal */
+
+               /* Here, have looked at the literal character and <ender>
+                * contains its ordinal, <p> points to the character after it
+                */
+
+               if ( RExC_flags & RXf_PMf_EXTENDED)
+                    p = regpatws(pRExC_state, p,
+                                          TRUE); /* means recognize comments */
+
+                /* If the next thing is a quantifier, it applies to this
+                 * character only, which means that this character has to be in
+                 * its own node and can't just be appended to the string in an
+                 * existing node, so if there are already other characters in
+                 * the node, close the node with just them, and set up to do
+                 * this character again next time through, when it will be the
+                 * only thing in its new node */
+                if ((next_is_quantifier = (p < RExC_end && ISMULT2(p))) && len)
+               {
+                    p = oldp;
+                    goto loopdone;
+                }
+
+                if (! FOLD) {  /* The simple case, just append the literal */
+
+                    /* In the sizing pass, we need only the size of the
+                     * character we are appending, hence we can delay getting
+                     * its representation until PASS2. */
+                    if (SIZE_ONLY) {
+                        if (UTF) {
+                            const STRLEN unilen = UNISKIP(ender);
+                            s += unilen;
+
+                            /* We have to subtract 1 just below (and again in
+                             * the corresponding PASS2 code) because the loop
+                             * increments <len> each time, as all but this path
+                             * (and one other) through it add a single byte to
+                             * the EXACTish node.  But these paths would change
+                             * len to be the correct final value, so cancel out
+                             * the increment that follows */
+                            len += unilen - 1;
+                        }
+                        else {
+                            s++;
+                        }
+                    } else { /* PASS2 */
+                      not_fold_common:
+                        if (UTF) {
+                            U8 * new_s = uvchr_to_utf8((U8*)s, ender);
+                            len += (char *) new_s - s - 1;
+                            s = (char *) new_s;
+                        }
+                        else {
+                            *(s++) = (char) ender;
+                        }
+                    }
+                }
+                else if (LOC && is_PROBLEMATIC_LOCALE_FOLD_cp(ender)) {
+
+                    /* Here are folding under /l, and the code point is
+                     * problematic.  First, we know we can't simplify things */
+                    maybe_exact = FALSE;
+                    maybe_exactfu = FALSE;
+
+                    /* A problematic code point in this context means that its
+                     * fold isn't known until runtime, so we can't fold it now.
+                     * (The non-problematic code points are the above-Latin1
+                     * ones that fold to also all above-Latin1.  Their folds
+                     * don't vary no matter what the locale is.) But here we
+                     * have characters whose fold depends on the locale.
+                     * Unlike the non-folding case above, we have to keep track
+                     * of these in the sizing pass, so that we can make sure we
+                     * don't split too-long nodes in the middle of a potential
+                     * multi-char fold.  And unlike the regular fold case
+                     * handled in the else clauses below, we don't actually
+                     * fold and don't have special cases to consider.  What we
+                     * do for both passes is the PASS2 code for non-folding */
+                    goto not_fold_common;
+                }
+                else /* A regular FOLD code point */
+                    if (! ( UTF
+                        /* See comments for join_exact() as to why we fold this
+                         * non-UTF at compile time */
+                        || (node_type == EXACTFU
+                            && ender == LATIN_SMALL_LETTER_SHARP_S)))
+                {
+                    /* Here, are folding and are not UTF-8 encoded; therefore
+                     * the character must be in the range 0-255, and is not /l
+                     * (Not /l because we already handled these under /l in
+                     * is_PROBLEMATIC_LOCALE_FOLD_cp) */
+                    if (IS_IN_SOME_FOLD_L1(ender)) {
+                        maybe_exact = FALSE;
+
+                        /* See if the character's fold differs between /d and
+                         * /u.  This includes the multi-char fold SHARP S to
+                         * 'ss' */
+                        if (maybe_exactfu
+                            && (PL_fold[ender] != PL_fold_latin1[ender]
+                                || ender == LATIN_SMALL_LETTER_SHARP_S
+                                || (len > 0
+                                   && isALPHA_FOLD_EQ(ender, 's')
+                                   && isALPHA_FOLD_EQ(*(s-1), 's'))))
+                        {
+                            maybe_exactfu = FALSE;
+                        }
+                    }
+
+                    /* Even when folding, we store just the input character, as
+                     * we have an array that finds its fold quickly */
+                    *(s++) = (char) ender;
+                }
+                else {  /* FOLD and UTF */
+                    /* Unlike the non-fold case, we do actually have to
+                     * calculate the results here in pass 1.  This is for two
+                     * reasons, the folded length may be longer than the
+                     * unfolded, and we have to calculate how many EXACTish
+                     * nodes it will take; and we may run out of room in a node
+                     * in the middle of a potential multi-char fold, and have
+                     * to back off accordingly.  */
+
+                    UV folded;
+                    if (isASCII_uni(ender)) {
+                        folded = toFOLD(ender);
+                        *(s)++ = (U8) folded;
+                    }
+                    else {
+                        STRLEN foldlen;
+
+                        folded = _to_uni_fold_flags(
+                                     ender,
+                                     (U8 *) s,
+                                     &foldlen,
+                                     FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
+                                                        ? FOLD_FLAGS_NOMIX_ASCII
+                                                        : 0));
+                        s += foldlen;
+
+                        /* The loop increments <len> each time, as all but this
+                         * path (and one other) through it add a single byte to
+                         * the EXACTish node.  But this one has changed len to
+                         * be the correct final value, so subtract one to
+                         * cancel out the increment that follows */
+                        len += foldlen - 1;
+                    }
+                    /* If this node only contains non-folding code points so
+                     * far, see if this new one is also non-folding */
+                    if (maybe_exact) {
+                        if (folded != ender) {
+                            maybe_exact = FALSE;
+                        }
+                        else {
+                            /* Here the fold is the original; we have to check
+                             * further to see if anything folds to it */
+                            if (_invlist_contains_cp(PL_utf8_foldable,
+                                                        ender))
+                            {
+                                maybe_exact = FALSE;
+                            }
+                        }
+                    }
+                    ender = folded;
+               }
+
+               if (next_is_quantifier) {
+
+                    /* Here, the next input is a quantifier, and to get here,
+                     * the current character is the only one in the node.
+                     * Also, here <len> doesn't include the final byte for this
+                     * character */
+                    len++;
+                    goto loopdone;
+               }
+
+           } /* End of loop through literal characters */
+
+            /* Here we have either exhausted the input or ran out of room in
+             * the node.  (If we encountered a character that can't be in the
+             * node, transfer is made directly to <loopdone>, and so we
+             * wouldn't have fallen off the end of the loop.)  In the latter
+             * case, we artificially have to split the node into two, because
+             * we just don't have enough space to hold everything.  This
+             * creates a problem if the final character participates in a
+             * multi-character fold in the non-final position, as a match that
+             * should have occurred won't, due to the way nodes are matched,
+             * and our artificial boundary.  So back off until we find a non-
+             * problematic character -- one that isn't at the beginning or
+             * middle of such a fold.  (Either it doesn't participate in any
+             * folds, or appears only in the final position of all the folds it
+             * does participate in.)  A better solution with far fewer false
+             * positives, and that would fill the nodes more completely, would
+             * be to actually have available all the multi-character folds to
+             * test against, and to back-off only far enough to be sure that
+             * this node isn't ending with a partial one.  <upper_parse> is set
+             * further below (if we need to reparse the node) to include just
+             * up through that final non-problematic character that this code
+             * identifies, so when it is set to less than the full node, we can
+             * skip the rest of this */
+            if (FOLD && p < RExC_end && upper_parse == MAX_NODE_STRING_SIZE) {
+
+                const STRLEN full_len = len;
+
+               assert(len >= MAX_NODE_STRING_SIZE);
+
+                /* Here, <s> points to the final byte of the final character.
+                 * Look backwards through the string until find a non-
+                 * problematic character */
+
+               if (! UTF) {
+
+                    /* This has no multi-char folds to non-UTF characters */
+                    if (ASCII_FOLD_RESTRICTED) {
+                        goto loopdone;
+                    }
+
+                    while (--s >= s0 && IS_NON_FINAL_FOLD(*s)) { }
+                    len = s - s0 + 1;
+               }
+                else {
+                    if (!  PL_NonL1NonFinalFold) {
+                        PL_NonL1NonFinalFold = _new_invlist_C_array(
+                                        NonL1_Perl_Non_Final_Folds_invlist);
+                    }
+
+                    /* Point to the first byte of the final character */
+                    s = (char *) utf8_hop((U8 *) s, -1);
+
+                    while (s >= s0) {   /* Search backwards until find
+                                           non-problematic char */
+                        if (UTF8_IS_INVARIANT(*s)) {
+
+                            /* There are no ascii characters that participate
+                             * in multi-char folds under /aa.  In EBCDIC, the
+                             * non-ascii invariants are all control characters,
+                             * so don't ever participate in any folds. */
+                            if (ASCII_FOLD_RESTRICTED
+                                || ! IS_NON_FINAL_FOLD(*s))
+                            {
+                                break;
+                            }
+                        }
+                        else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
+                            if (! IS_NON_FINAL_FOLD(TWO_BYTE_UTF8_TO_NATIVE(
+                                                                  *s, *(s+1))))
+                            {
+                                break;
+                            }
+                        }
+                        else if (! _invlist_contains_cp(
+                                        PL_NonL1NonFinalFold,
+                                        valid_utf8_to_uvchr((U8 *) s, NULL)))
+                        {
+                            break;
+                        }
+
+                        /* Here, the current character is problematic in that
+                         * it does occur in the non-final position of some
+                         * fold, so try the character before it, but have to
+                         * special case the very first byte in the string, so
+                         * we don't read outside the string */
+                        s = (s == s0) ? s -1 : (char *) utf8_hop((U8 *) s, -1);
+                    } /* End of loop backwards through the string */
+
+                    /* If there were only problematic characters in the string,
+                     * <s> will point to before s0, in which case the length
+                     * should be 0, otherwise include the length of the
+                     * non-problematic character just found */
+                    len = (s < s0) ? 0 : s - s0 + UTF8SKIP(s);
+               }
+
+                /* Here, have found the final character, if any, that is
+                 * non-problematic as far as ending the node without splitting
+                 * it across a potential multi-char fold.  <len> contains the
+                 * number of bytes in the node up-to and including that
+                 * character, or is 0 if there is no such character, meaning
+                 * the whole node contains only problematic characters.  In
+                 * this case, give up and just take the node as-is.  We can't
+                 * do any better */
+                if (len == 0) {
+                    len = full_len;
+
+                    /* If the node ends in an 's' we make sure it stays EXACTF,
+                     * as if it turns into an EXACTFU, it could later get
+                     * joined with another 's' that would then wrongly match
+                     * the sharp s */
+                    if (maybe_exactfu && isALPHA_FOLD_EQ(ender, 's'))
+                    {
+                        maybe_exactfu = FALSE;
+                    }
+                } else {
+
+                    /* Here, the node does contain some characters that aren't
+                     * problematic.  If one such is the final character in the
+                     * node, we are done */
+                    if (len == full_len) {
+                        goto loopdone;
+                    }
+                    else if (len + ((UTF) ? UTF8SKIP(s) : 1) == full_len) {
+
+                        /* If the final character is problematic, but the
+                         * penultimate is not, back-off that last character to
+                         * later start a new node with it */
+                        p = oldp;
+                        goto loopdone;
+                    }
+
+                    /* Here, the final non-problematic character is earlier
+                     * in the input than the penultimate character.  What we do
+                     * is reparse from the beginning, going up only as far as
+                     * this final ok one, thus guaranteeing that the node ends
+                     * in an acceptable character.  The reason we reparse is
+                     * that we know how far in the character is, but we don't
+                     * know how to correlate its position with the input parse.
+                     * An alternate implementation would be to build that
+                     * correlation as we go along during the original parse,
+                     * but that would entail extra work for every node, whereas
+                     * this code gets executed only when the string is too
+                     * large for the node, and the final two characters are
+                     * problematic, an infrequent occurrence.  Yet another
+                     * possible strategy would be to save the tail of the
+                     * string, and the next time regatom is called, initialize
+                     * with that.  The problem with this is that unless you
+                     * back off one more character, you won't be guaranteed
+                     * regatom will get called again, unless regbranch,
+                     * regpiece ... are also changed.  If you do back off that
+                     * extra character, so that there is input guaranteed to
+                     * force calling regatom, you can't handle the case where
+                     * just the first character in the node is acceptable.  I
+                     * (khw) decided to try this method which doesn't have that
+                     * pitfall; if performance issues are found, we can do a
+                     * combination of the current approach plus that one */
+                    upper_parse = len;
+                    len = 0;
+                    s = s0;
+                    goto reparse;
+                }
+           }   /* End of verifying node ends with an appropriate char */
+
+          loopdone:   /* Jumped to when encounters something that shouldn't be
+                         in the node */
+
+            /* I (khw) don't know if you can get here with zero length, but the
+             * old code handled this situation by creating a zero-length EXACT
+             * node.  Might as well be NOTHING instead */
+            if (len == 0) {
+                OP(ret) = NOTHING;
+            }
+            else {
+                if (FOLD) {
+                    /* If 'maybe_exact' is still set here, means there are no
+                     * code points in the node that participate in folds;
+                     * similarly for 'maybe_exactfu' and code points that match
+                     * differently depending on UTF8ness of the target string
+                     * (for /u), or depending on locale for /l */
+                    if (maybe_exact) {
+                        OP(ret) = (LOC)
+                                  ? EXACTL
+                                  : EXACT;
+                    }
+                    else if (maybe_exactfu) {
+                        OP(ret) = (LOC)
+                                  ? EXACTFLU8
+                                  : EXACTFU;
+                    }
+                }
+                alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, len, ender,
+                                           FALSE /* Don't look to see if could
+                                                    be turned into an EXACT
+                                                    node, as we have already
+                                                    computed that */
+                                          );
+            }
+
+           RExC_parse = p - 1;
+            Set_Node_Cur_Length(ret, parse_start);
+           nextchar(pRExC_state);
+           {
+               /* len is STRLEN which is unsigned, need to copy to signed */
+               IV iv = len;
+               if (iv < 0)
+                   vFAIL("Internal disaster");
+           }
+
+       } /* End of label 'defchar:' */
+       break;
+    } /* End of giant switch on input character */
+
+    return(ret);
+}
+
+STATIC char *
+S_regpatws(RExC_state_t *pRExC_state, char *p , const bool recognize_comment )
+{
+    /* Returns the next non-pattern-white space, non-comment character (the
+     * latter only if 'recognize_comment is true) in the string p, which is
+     * ended by RExC_end.  See also reg_skipcomment */
+    const char *e = RExC_end;
+
+    PERL_ARGS_ASSERT_REGPATWS;
+
+    while (p < e) {
+        STRLEN len;
+       if ((len = is_PATWS_safe(p, e, UTF))) {
+           p += len;
+        }
+       else if (recognize_comment && *p == '#') {
+            p = reg_skipcomment(pRExC_state, p);
+       }
+       else
+           break;
+    }
+    return p;
+}
+
+STATIC void
+S_populate_ANYOF_from_invlist(pTHX_ regnode *node, SV** invlist_ptr)
+{
+    /* Uses the inversion list '*invlist_ptr' to populate the ANYOF 'node'.  It
+     * sets up the bitmap and any flags, removing those code points from the
+     * inversion list, setting it to NULL should it become completely empty */
+
+    PERL_ARGS_ASSERT_POPULATE_ANYOF_FROM_INVLIST;
+    assert(PL_regkind[OP(node)] == ANYOF);
+
+    ANYOF_BITMAP_ZERO(node);
+    if (*invlist_ptr) {
+
+       /* This gets set if we actually need to modify things */
+       bool change_invlist = FALSE;
+
+       UV start, end;
+
+       /* Start looking through *invlist_ptr */
+       invlist_iterinit(*invlist_ptr);
+       while (invlist_iternext(*invlist_ptr, &start, &end)) {
+           UV high;
+           int i;
+
+            if (end == UV_MAX && start <= NUM_ANYOF_CODE_POINTS) {
+                ANYOF_FLAGS(node) |= ANYOF_MATCHES_ALL_ABOVE_BITMAP;
+            }
+            else if (end >= NUM_ANYOF_CODE_POINTS) {
+                ANYOF_FLAGS(node) |= ANYOF_HAS_UTF8_NONBITMAP_MATCHES;
+            }
+
+           /* Quit if are above what we should change */
+           if (start >= NUM_ANYOF_CODE_POINTS) {
+               break;
+           }
+
+           change_invlist = TRUE;
+
+           /* Set all the bits in the range, up to the max that we are doing */
+           high = (end < NUM_ANYOF_CODE_POINTS - 1)
+                   ? end
+                   : NUM_ANYOF_CODE_POINTS - 1;
+           for (i = start; i <= (int) high; i++) {
+               if (! ANYOF_BITMAP_TEST(node, i)) {
+                   ANYOF_BITMAP_SET(node, i);
+               }
+           }
+       }
+       invlist_iterfinish(*invlist_ptr);
+
+        /* Done with loop; remove any code points that are in the bitmap from
+         * *invlist_ptr; similarly for code points above the bitmap if we have
+         * a flag to match all of them anyways */
+       if (change_invlist) {
+           _invlist_subtract(*invlist_ptr, PL_InBitmap, invlist_ptr);
+       }
+        if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
+           _invlist_intersection(*invlist_ptr, PL_InBitmap, invlist_ptr);
+       }
+
+       /* If have completely emptied it, remove it completely */
+       if (_invlist_len(*invlist_ptr) == 0) {
+           SvREFCNT_dec_NN(*invlist_ptr);
+           *invlist_ptr = NULL;
+       }
+    }
+}
+
+/* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
+   Character classes ([:foo:]) can also be negated ([:^foo:]).
+   Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
+   Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
+   but trigger failures because they are currently unimplemented. */
+
+#define POSIXCC_DONE(c)   ((c) == ':')
+#define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
+#define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
+
+PERL_STATIC_INLINE I32
+S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value, const bool strict)
+{
+    I32 namedclass = OOB_NAMEDCLASS;
+
+    PERL_ARGS_ASSERT_REGPPOSIXCC;
+
+    if (value == '[' && RExC_parse + 1 < RExC_end &&
+       /* I smell either [: or [= or [. -- POSIX has been here, right? */
+       POSIXCC(UCHARAT(RExC_parse)))
+    {
+       const char c = UCHARAT(RExC_parse);
+       char* const s = RExC_parse++;
+
+       while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
+           RExC_parse++;
+       if (RExC_parse == RExC_end) {
+            if (strict) {
+
+                /* Try to give a better location for the error (than the end of
+                 * the string) by looking for the matching ']' */
+                RExC_parse = s;
+                while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
+                    RExC_parse++;
+                }
+                vFAIL2("Unmatched '%c' in POSIX class", c);
+            }
+           /* Grandfather lone [:, [=, [. */
+           RExC_parse = s;
+        }
+       else {
+           const char* const t = RExC_parse++; /* skip over the c */
+           assert(*t == c);
+
+           if (UCHARAT(RExC_parse) == ']') {
+               const char *posixcc = s + 1;
+               RExC_parse++; /* skip over the ending ] */
+
+               if (*s == ':') {
+                   const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
+                   const I32 skip = t - posixcc;
+
+                   /* Initially switch on the length of the name.  */
+                   switch (skip) {
+                   case 4:
+                        if (memEQ(posixcc, "word", 4)) /* this is not POSIX,
+                                                          this is the Perl \w
+                                                        */
+                           namedclass = ANYOF_WORDCHAR;
+                       break;
+                   case 5:
+                       /* Names all of length 5.  */
+                       /* alnum alpha ascii blank cntrl digit graph lower
+                          print punct space upper  */
+                       /* Offset 4 gives the best switch position.  */
+                       switch (posixcc[4]) {
+                       case 'a':
+                           if (memEQ(posixcc, "alph", 4)) /* alpha */
+                               namedclass = ANYOF_ALPHA;
+                           break;
+                       case 'e':
+                           if (memEQ(posixcc, "spac", 4)) /* space */
+                               namedclass = ANYOF_SPACE;
+                           break;
+                       case 'h':
+                           if (memEQ(posixcc, "grap", 4)) /* graph */
+                               namedclass = ANYOF_GRAPH;
+                           break;
+                       case 'i':
+                           if (memEQ(posixcc, "asci", 4)) /* ascii */
+                               namedclass = ANYOF_ASCII;
+                           break;
+                       case 'k':
+                           if (memEQ(posixcc, "blan", 4)) /* blank */
+                               namedclass = ANYOF_BLANK;
+                           break;
+                       case 'l':
+                           if (memEQ(posixcc, "cntr", 4)) /* cntrl */
+                               namedclass = ANYOF_CNTRL;
+                           break;
+                       case 'm':
+                           if (memEQ(posixcc, "alnu", 4)) /* alnum */
+                               namedclass = ANYOF_ALPHANUMERIC;
+                           break;
+                       case 'r':
+                           if (memEQ(posixcc, "lowe", 4)) /* lower */
+                               namedclass = (FOLD) ? ANYOF_CASED : ANYOF_LOWER;
+                           else if (memEQ(posixcc, "uppe", 4)) /* upper */
+                               namedclass = (FOLD) ? ANYOF_CASED : ANYOF_UPPER;
+                           break;
+                       case 't':
+                           if (memEQ(posixcc, "digi", 4)) /* digit */
+                               namedclass = ANYOF_DIGIT;
+                           else if (memEQ(posixcc, "prin", 4)) /* print */
+                               namedclass = ANYOF_PRINT;
+                           else if (memEQ(posixcc, "punc", 4)) /* punct */
+                               namedclass = ANYOF_PUNCT;
+                           break;
+                       }
+                       break;
+                   case 6:
+                       if (memEQ(posixcc, "xdigit", 6))
+                           namedclass = ANYOF_XDIGIT;
+                       break;
+                   }
+
+                   if (namedclass == OOB_NAMEDCLASS)
+                       vFAIL2utf8f(
+                            "POSIX class [:%"UTF8f":] unknown",
+                           UTF8fARG(UTF, t - s - 1, s + 1));
+
+                    /* The #defines are structured so each complement is +1 to
+                     * the normal one */
+                    if (complement) {
+                        namedclass++;
+                    }
+                   assert (posixcc[skip] == ':');
+                   assert (posixcc[skip+1] == ']');
+               } else if (!SIZE_ONLY) {
+                   /* [[=foo=]] and [[.foo.]] are still future. */
+
+                   /* adjust RExC_parse so the warning shows after
+                      the class closes */
+                   while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
+                       RExC_parse++;
+                   vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
+               }
+           } else {
+               /* Maternal grandfather:
+                * "[:" ending in ":" but not in ":]" */
+                if (strict) {
+                    vFAIL("Unmatched '[' in POSIX class");
+                }
+
+                /* Grandfather lone [:, [=, [. */
+               RExC_parse = s;
+           }
+       }
+    }
+
+    return namedclass;
+}
+
+STATIC bool
+S_could_it_be_a_POSIX_class(RExC_state_t *pRExC_state)
+{
+    /* This applies some heuristics at the current parse position (which should
+     * be at a '[') to see if what follows might be intended to be a [:posix:]
+     * class.  It returns true if it really is a posix class, of course, but it
+     * also can return true if it thinks that what was intended was a posix
+     * class that didn't quite make it.
+     *
+     * It will return true for
+     *      [:alphanumerics:
+     *      [:alphanumerics]  (as long as the ] isn't followed immediately by a
+     *                         ')' indicating the end of the (?[
+     *      [:any garbage including %^&$ punctuation:]
+     *
+     * This is designed to be called only from S_handle_regex_sets; it could be
+     * easily adapted to be called from the spot at the beginning of regclass()
+     * that checks to see in a normal bracketed class if the surrounding []
+     * have been omitted ([:word:] instead of [[:word:]]).  But doing so would
+     * change long-standing behavior, so I (khw) didn't do that */
+    char* p = RExC_parse + 1;
+    char first_char = *p;
+
+    PERL_ARGS_ASSERT_COULD_IT_BE_A_POSIX_CLASS;
+
+    assert(*(p - 1) == '[');
+
+    if (! POSIXCC(first_char)) {
+        return FALSE;
+    }
+
+    p++;
+    while (p < RExC_end && isWORDCHAR(*p)) p++;
+
+    if (p >= RExC_end) {
+        return FALSE;
+    }
+
+    if (p - RExC_parse > 2    /* Got at least 1 word character */
+        && (*p == first_char
+            || (*p == ']' && p + 1 < RExC_end && *(p + 1) != ')')))
+    {
+        return TRUE;
+    }
+
+    p = (char *) memchr(RExC_parse, ']', RExC_end - RExC_parse);
+
+    return (p
+            && p - RExC_parse > 2 /* [:] evaluates to colon;
+                                      [::] is a bad posix class. */
+            && first_char == *(p - 1));
+}
+
+STATIC unsigned  int
+S_regex_set_precedence(const U8 my_operator) {
+
+    /* Returns the precedence in the (?[...]) construct of the input operator,
+     * specified by its character representation.  The precedence follows
+     * general Perl rules, but it extends this so that ')' and ']' have (low)
+     * precedence even though they aren't really operators */
+
+    switch (my_operator) {
+        case '!':
+            return 5;
+        case '&':
+            return 4;
+        case '^':
+        case '|':
+        case '+':
+        case '-':
+            return 3;
+        case ')':
+            return 2;
+        case ']':
+            return 1;
+    }
+
+    NOT_REACHED; /* NOTREACHED */
+    return 0;   /* Silence compiler warning */
+}
+
+STATIC regnode *
+S_handle_regex_sets(pTHX_ RExC_state_t *pRExC_state, SV** return_invlist,
+                    I32 *flagp, U32 depth,
+                    char * const oregcomp_parse)
+{
+    /* Handle the (?[...]) construct to do set operations */
+
+    U8 curchar;                     /* Current character being parsed */
+    UV start, end;                 /* End points of code point ranges */
+    SV* final = NULL;               /* The end result inversion list */
+    SV* result_string;              /* 'final' stringified */
+    AV* stack;                      /* stack of operators and operands not yet
+                                       resolved */
+    AV* fence_stack = NULL;         /* A stack containing the positions in
+                                       'stack' of where the undealt-with left
+                                       parens would be if they were actually
+                                       put there */
+    IV fence = 0;                   /* Position of where most recent undealt-
+                                       with left paren in stack is; -1 if none.
+                                     */
+    STRLEN len;                     /* Temporary */
+    regnode* node;                  /* Temporary, and final regnode returned by
+                                       this function */
+    const bool save_fold = FOLD;    /* Temporary */
+    char *save_end, *save_parse;    /* Temporaries */
+
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_HANDLE_REGEX_SETS;
+
+    if (LOC) {  /* XXX could make valid in UTF-8 locales */
+        vFAIL("(?[...]) not valid in locale");
+    }
+    RExC_uni_semantics = 1;     /* The use of this operator implies /u.  This
+                                   is required so that the compile time values
+                                   are valid in all runtime cases */
+
+    /* This will return only an ANYOF regnode, or (unlikely) something smaller
+     * (such as EXACT).  Thus we can skip most everything if just sizing.  We
+     * call regclass to handle '[]' so as to not have to reinvent its parsing
+     * rules here (throwing away the size it computes each time).  And, we exit
+     * upon an unescaped ']' that isn't one ending a regclass.  To do both
+     * these things, we need to realize that something preceded by a backslash
+     * is escaped, so we have to keep track of backslashes */
+    if (SIZE_ONLY) {
+        UV depth = 0; /* how many nested (?[...]) constructs */
+
+        while (RExC_parse < RExC_end) {
+            SV* current = NULL;
+            RExC_parse = regpatws(pRExC_state, RExC_parse,
+                                          TRUE); /* means recognize comments */
+            switch (*RExC_parse) {
+                case '?':
+                    if (RExC_parse[1] == '[') depth++, RExC_parse++;
+                    /* FALLTHROUGH */
+                default:
+                    break;
+                case '\\':
+                    /* Skip the next byte (which could cause us to end up in
+                     * the middle of a UTF-8 character, but since none of those
+                     * are confusable with anything we currently handle in this
+                     * switch (invariants all), it's safe.  We'll just hit the
+                     * default: case next time and keep on incrementing until
+                     * we find one of the invariants we do handle. */
+                    RExC_parse++;
+                    break;
+                case '[':
+                {
+                    /* If this looks like it is a [:posix:] class, leave the
+                     * parse pointer at the '[' to fool regclass() into
+                     * thinking it is part of a '[[:posix:]]'.  That function
+                     * will use strict checking to force a syntax error if it
+                     * doesn't work out to a legitimate class */
+                    bool is_posix_class
+                                    = could_it_be_a_POSIX_class(pRExC_state);
+                    if (! is_posix_class) {
+                        RExC_parse++;
+                    }
+
+                    /* regclass() can only return RESTART_UTF8 if multi-char
+                       folds are allowed.  */
+                    if (!regclass(pRExC_state, flagp,depth+1,
+                                  is_posix_class, /* parse the whole char
+                                                     class only if not a
+                                                     posix class */
+                                  FALSE, /* don't allow multi-char folds */
+                                  TRUE, /* silence non-portable warnings. */
+                                  TRUE, /* strict */
+                                  &current
+                                 ))
+                        FAIL2("panic: regclass returned NULL to handle_sets, "
+                              "flags=%#"UVxf"", (UV) *flagp);
+
+                    /* function call leaves parse pointing to the ']', except
+                     * if we faked it */
+                    if (is_posix_class) {
+                        RExC_parse--;
+                    }
+
+                    SvREFCNT_dec(current);   /* In case it returned something */
+                    break;
+                }
+
+                case ']':
+                    if (depth--) break;
+                    RExC_parse++;
+                    if (RExC_parse < RExC_end
+                        && *RExC_parse == ')')
+                    {
+                        node = reganode(pRExC_state, ANYOF, 0);
+                        RExC_size += ANYOF_SKIP;
+                        nextchar(pRExC_state);
+                        Set_Node_Length(node,
+                                RExC_parse - oregcomp_parse + 1); /* MJD */
+                        return node;
+                    }
+                    goto no_close;
+            }
+            RExC_parse++;
+        }
+
+      no_close:
+        FAIL("Syntax error in (?[...])");
+    }
+
+    /* Pass 2 only after this. */
+    Perl_ck_warner_d(aTHX_
+        packWARN(WARN_EXPERIMENTAL__REGEX_SETS),
+        "The regex_sets feature is experimental" REPORT_LOCATION,
+            UTF8fARG(UTF, (RExC_parse - RExC_precomp), RExC_precomp),
+            UTF8fARG(UTF,
+                     RExC_end - RExC_start - (RExC_parse - RExC_precomp),
+                     RExC_precomp + (RExC_parse - RExC_precomp)));
+
+    /* Everything in this construct is a metacharacter.  Operands begin with
+     * either a '\' (for an escape sequence), or a '[' for a bracketed
+     * character class.  Any other character should be an operator, or
+     * parenthesis for grouping.  Both types of operands are handled by calling
+     * regclass() to parse them.  It is called with a parameter to indicate to
+     * return the computed inversion list.  The parsing here is implemented via
+     * a stack.  Each entry on the stack is a single character representing one
+     * of the operators; or else a pointer to an operand inversion list. */
+
+#define IS_OPERAND(a)  (! SvIOK(a))
+
+    /* The stack is kept in Łukasiewicz order.  (That's pronounced similar
+     * to luke-a-shave-itch (or -itz), but people who didn't want to bother
+     * with prounouncing it called it Reverse Polish instead, but now that YOU
+     * know how to prounounce it you can use the correct term, thus giving due
+     * credit to the person who invented it, and impressing your geek friends.
+     * Wikipedia says that the pronounciation of "Ł" has been changing so that
+     * it is now more like an English initial W (as in wonk) than an L.)
+     *
+     * This means that, for example, 'a | b & c' is stored on the stack as
+     *
+     * c  [4]
+     * b  [3]
+     * &  [2]
+     * a  [1]
+     * |  [0]
+     *
+     * where the numbers in brackets give the stack [array] element number.
+     * In this implementation, parentheses are not stored on the stack.
+     * Instead a '(' creates a "fence" so that the part of the stack below the
+     * fence is invisible except to the corresponding ')' (this allows us to
+     * replace testing for parens, by using instead subtraction of the fence
+     * position).  As new operands are processed they are pushed onto the stack
+     * (except as noted in the next paragraph).  New operators of higher
+     * precedence than the current final one are inserted on the stack before
+     * the lhs operand (so that when the rhs is pushed next, everything will be
+     * in the correct positions shown above.  When an operator of equal or
+     * lower precedence is encountered in parsing, all the stacked operations
+     * of equal or higher precedence are evaluated, leaving the result as the
+     * top entry on the stack.  This makes higher precedence operations
+     * evaluate before lower precedence ones, and causes operations of equal
+     * precedence to left associate.
+     *
+     * The only unary operator '!' is immediately pushed onto the stack when
+     * encountered.  When an operand is encountered, if the top of the stack is
+     * a '!", the complement is immediately performed, and the '!' popped.  The
+     * resulting value is treated as a new operand, and the logic in the
+     * previous paragraph is executed.  Thus in the expression
+     *      [a] + ! [b]
+     * the stack looks like
+     *
+     * !
+     * a
+     * +
+     *
+     * as 'b' gets parsed, the latter gets evaluated to '!b', and the stack
+     * becomes
+     *
+     * !b
+     * a
+     * +
+     *
+     * A ')' is treated as an operator with lower precedence than all the
+     * aforementioned ones, which causes all operations on the stack above the
+     * corresponding '(' to be evaluated down to a single resultant operand.
+     * Then the fence for the '(' is removed, and the operand goes through the
+     * algorithm above, without the fence.
+     *
+     * A separate stack is kept of the fence positions, so that the position of
+     * the latest so-far unbalanced '(' is at the top of it.
+     *
+     * The ']' ending the construct is treated as the lowest operator of all,
+     * so that everything gets evaluated down to a single operand, which is the
+     * result */
+
+    sv_2mortal((SV *)(stack = newAV()));
+    sv_2mortal((SV *)(fence_stack = newAV()));
+
+    while (RExC_parse < RExC_end) {
+        I32 top_index;              /* Index of top-most element in 'stack' */
+        SV** top_ptr;               /* Pointer to top 'stack' element */
+        SV* current = NULL;         /* To contain the current inversion list
+                                       operand */
+        SV* only_to_avoid_leaks;
+
+        /* Skip white space */
+        RExC_parse = regpatws(pRExC_state, RExC_parse,
+                TRUE /* means recognize comments */ );
+        if (RExC_parse >= RExC_end) {
+            Perl_croak(aTHX_ "panic: Read past end of '(?[ ])'");
+        }
+
+        curchar = UCHARAT(RExC_parse);
+
+redo_curchar:
+
+        top_index = av_tindex(stack);
+
+        switch (curchar) {
+            SV** stacked_ptr;       /* Ptr to something already on 'stack' */
+            char stacked_operator;  /* The topmost operator on the 'stack'. */
+            SV* lhs;                /* Operand to the left of the operator */
+            SV* rhs;                /* Operand to the right of the operator */
+            SV* fence_ptr;          /* Pointer to top element of the fence
+                                       stack */
+
+            case '(':
+
+                if (RExC_parse < RExC_end && (UCHARAT(RExC_parse + 1) == '?'))
+                {
+                    /* If is a '(?', could be an embedded '(?flags:(?[...])'.
+                     * This happens when we have some thing like
+                     *
+                     *   my $thai_or_lao = qr/(?[ \p{Thai} + \p{Lao} ])/;
+                     *   ...
+                     *   qr/(?[ \p{Digit} & $thai_or_lao ])/;
+                     *
+                     * Here we would be handling the interpolated
+                     * '$thai_or_lao'.  We handle this by a recursive call to
+                     * ourselves which returns the inversion list the
+                     * interpolated expression evaluates to.  We use the flags
+                     * from the interpolated pattern. */
+                    U32 save_flags = RExC_flags;
+                    const char * save_parse;
+
+                    RExC_parse += 2;        /* Skip past the '(?' */
+                    save_parse = RExC_parse;
+
+                    /* Parse any flags for the '(?' */
+                    parse_lparen_question_flags(pRExC_state);
+
+                    if (RExC_parse == save_parse  /* Makes sure there was at
+                                                     least one flag (or else
+                                                     this embedding wasn't
+                                                     compiled) */
+                        || RExC_parse >= RExC_end - 4
+                        || UCHARAT(RExC_parse) != ':'
+                        || UCHARAT(++RExC_parse) != '('
+                        || UCHARAT(++RExC_parse) != '?'
+                        || UCHARAT(++RExC_parse) != '[')
+                    {
+
+                        /* In combination with the above, this moves the
+                         * pointer to the point just after the first erroneous
+                         * character (or if there are no flags, to where they
+                         * should have been) */
+                        if (RExC_parse >= RExC_end - 4) {
+                            RExC_parse = RExC_end;
+                        }
+                        else if (RExC_parse != save_parse) {
+                            RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+                        }
+                        vFAIL("Expecting '(?flags:(?[...'");
+                    }
+
+                    /* Recurse, with the meat of the embedded expression */
+                    RExC_parse++;
+                    (void) handle_regex_sets(pRExC_state, &current, flagp,
+                                                    depth+1, oregcomp_parse);
+
+                    /* Here, 'current' contains the embedded expression's
+                     * inversion list, and RExC_parse points to the trailing
+                     * ']'; the next character should be the ')' */
+                    RExC_parse++;
+                    assert(RExC_parse < RExC_end && UCHARAT(RExC_parse) == ')');
+
+                    /* Then the ')' matching the original '(' handled by this
+                     * case: statement */
+                    RExC_parse++;
+                    assert(RExC_parse < RExC_end && UCHARAT(RExC_parse) == ')');
+
+                    RExC_parse++;
+                    RExC_flags = save_flags;
+                    goto handle_operand;
+                }
+
+                /* A regular '('.  Look behind for illegal syntax */
+                if (top_index - fence >= 0) {
+                    /* If the top entry on the stack is an operator, it had
+                     * better be a '!', otherwise the entry below the top
+                     * operand should be an operator */
+                    if ( ! (top_ptr = av_fetch(stack, top_index, FALSE))
+                        || (! IS_OPERAND(*top_ptr) && SvUV(*top_ptr) != '!')
+                        || top_index - fence < 1
+                        || ! (stacked_ptr = av_fetch(stack,
+                                                     top_index - 1,
+                                                     FALSE))
+                        || IS_OPERAND(*stacked_ptr))
+                    {
+                        RExC_parse++;
+                        vFAIL("Unexpected '(' with no preceding operator");
+                    }
+                }
+
+                /* Stack the position of this undealt-with left paren */
+                fence = top_index + 1;
+                av_push(fence_stack, newSViv(fence));
+                break;
+
+            case '\\':
+                /* regclass() can only return RESTART_UTF8 if multi-char
+                   folds are allowed.  */
+                if (!regclass(pRExC_state, flagp,depth+1,
+                              TRUE, /* means parse just the next thing */
+                              FALSE, /* don't allow multi-char folds */
+                              FALSE, /* don't silence non-portable warnings.  */
+                              TRUE,  /* strict */
+                              &current))
+                {
+                    FAIL2("panic: regclass returned NULL to handle_sets, "
+                          "flags=%#"UVxf"", (UV) *flagp);
+                }
+
+                /* regclass() will return with parsing just the \ sequence,
+                 * leaving the parse pointer at the next thing to parse */
+                RExC_parse--;
+                goto handle_operand;
+
+            case '[':   /* Is a bracketed character class */
+            {
+                bool is_posix_class = could_it_be_a_POSIX_class(pRExC_state);
+
+                if (! is_posix_class) {
+                    RExC_parse++;
+                }
+
+                /* regclass() can only return RESTART_UTF8 if multi-char
+                   folds are allowed.  */
+                if(!regclass(pRExC_state, flagp,depth+1,
+                             is_posix_class, /* parse the whole char class
+                                                only if not a posix class */
+                             FALSE, /* don't allow multi-char folds */
+                             FALSE, /* don't silence non-portable warnings.  */
+                             TRUE,   /* strict */
+                             &current
+                            ))
+                {
+                    FAIL2("panic: regclass returned NULL to handle_sets, "
+                          "flags=%#"UVxf"", (UV) *flagp);
+                }
+
+                /* function call leaves parse pointing to the ']', except if we
+                 * faked it */
+                if (is_posix_class) {
+                    RExC_parse--;
+                }
+
+                goto handle_operand;
+            }
+
+            case ']':
+                if (top_index >= 1) {
+                    goto join_operators;
+                }
+
+                /* Only a single operand on the stack: are done */
+                goto done;
+
+            case ')':
+                if (av_tindex(fence_stack) < 0) {
+                    RExC_parse++;
+                    vFAIL("Unexpected ')'");
+                }
+
+                 /* If at least two thing on the stack, treat this as an
+                  * operator */
+                if (top_index - fence >= 1) {
+                    goto join_operators;
+                }
+
+                /* Here only a single thing on the fenced stack, and there is a
+                 * fence.  Get rid of it */
+                fence_ptr = av_pop(fence_stack);
+                assert(fence_ptr);
+                fence = SvIV(fence_ptr) - 1;
+                SvREFCNT_dec_NN(fence_ptr);
+                fence_ptr = NULL;
+
+                if (fence < 0) {
+                    fence = 0;
+                }
+
+                /* Having gotten rid of the fence, we pop the operand at the
+                 * stack top and process it as a newly encountered operand */
+                current = av_pop(stack);
+                assert(IS_OPERAND(current));
+                goto handle_operand;
+
+            case '&':
+            case '|':
+            case '+':
+            case '-':
+            case '^':
+
+                /* These binary operators should have a left operand already
+                 * parsed */
+                if (   top_index - fence < 0
+                    || top_index - fence == 1
+                    || ( ! (top_ptr = av_fetch(stack, top_index, FALSE)))
+                    || ! IS_OPERAND(*top_ptr))
+                {
+                    goto unexpected_binary;
+                }
+
+                /* If only the one operand is on the part of the stack visible
+                 * to us, we just place this operator in the proper position */
+                if (top_index - fence < 2) {
+
+                    /* Place the operator before the operand */
+
+                    SV* lhs = av_pop(stack);
+                    av_push(stack, newSVuv(curchar));
+                    av_push(stack, lhs);
+                    break;
+                }
+
+                /* But if there is something else on the stack, we need to
+                 * process it before this new operator if and only if the
+                 * stacked operation has equal or higher precedence than the
+                 * new one */
+
+             join_operators:
+
+                /* The operator on the stack is supposed to be below both its
+                 * operands */
+                if (   ! (stacked_ptr = av_fetch(stack, top_index - 2, FALSE))
+                    || IS_OPERAND(*stacked_ptr))
+                {
+                    /* But if not, it's legal and indicates we are completely
+                     * done if and only if we're currently processing a ']',
+                     * which should be the final thing in the expression */
+                    if (curchar == ']') {
+                        goto done;
+                    }
+
+                  unexpected_binary:
+                    RExC_parse++;
+                    vFAIL2("Unexpected binary operator '%c' with no "
+                           "preceding operand", curchar);
+                }
+                stacked_operator = (char) SvUV(*stacked_ptr);
+
+                if (regex_set_precedence(curchar)
+                    > regex_set_precedence(stacked_operator))
+                {
+                    /* Here, the new operator has higher precedence than the
+                     * stacked one.  This means we need to add the new one to
+                     * the stack to await its rhs operand (and maybe more
+                     * stuff).  We put it before the lhs operand, leaving
+                     * untouched the stacked operator and everything below it
+                     * */
+                    lhs = av_pop(stack);
+                    assert(IS_OPERAND(lhs));
+
+                    av_push(stack, newSVuv(curchar));
+                    av_push(stack, lhs);
+                    break;
+                }
+
+                /* Here, the new operator has equal or lower precedence than
+                 * what's already there.  This means the operation already
+                 * there should be performed now, before the new one. */
+                rhs = av_pop(stack);
+                lhs = av_pop(stack);
+
+                assert(IS_OPERAND(rhs));
+                assert(IS_OPERAND(lhs));
+
+                switch (stacked_operator) {
+                    case '&':
+                        _invlist_intersection(lhs, rhs, &rhs);
+                        break;
+
+                    case '|':
+                    case '+':
+                        _invlist_union(lhs, rhs, &rhs);
+                        break;
+
+                    case '-':
+                        _invlist_subtract(lhs, rhs, &rhs);
+                        break;
+
+                    case '^':   /* The union minus the intersection */
+                    {
+                        SV* i = NULL;
+                        SV* u = NULL;
+                        SV* element;
+
+                        _invlist_union(lhs, rhs, &u);
+                        _invlist_intersection(lhs, rhs, &i);
+                        /* _invlist_subtract will overwrite rhs
+                            without freeing what it already contains */
+                        element = rhs;
+                        _invlist_subtract(u, i, &rhs);
+                        SvREFCNT_dec_NN(i);
+                        SvREFCNT_dec_NN(u);
+                        SvREFCNT_dec_NN(element);
+                        break;
+                    }
+                }
+                SvREFCNT_dec(lhs);
+
+                /* Here, the higher precedence operation has been done, and the
+                 * result is in 'rhs'.  We overwrite the stacked operator with
+                 * the result.  Then we redo this code to either push the new
+                 * operator onto the stack or perform any higher precedence
+                 * stacked operation */
+                only_to_avoid_leaks = av_pop(stack);
+                SvREFCNT_dec(only_to_avoid_leaks);
+                av_push(stack, rhs);
+                goto redo_curchar;
+
+            case '!':   /* Highest priority, right associative, so just push
+                           onto stack */
+                av_push(stack, newSVuv(curchar));
+                break;
+
+            default:
+                RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+                vFAIL("Unexpected character");
+
+          handle_operand:
+
+            /* Here 'current' is the operand.  If something is already on the
+             * stack, we have to check if it is a !. */
+            top_index = av_tindex(stack);   /* Code above may have altered the
+                                             * stack in the time since we
+                                             * earlier set 'top_index'. */
+            if (top_index - fence >= 0) {
+                /* If the top entry on the stack is an operator, it had better
+                 * be a '!', otherwise the entry below the top operand should
+                 * be an operator */
+                top_ptr = av_fetch(stack, top_index, FALSE);
+                assert(top_ptr);
+                if (! IS_OPERAND(*top_ptr)) {
+
+                    /* The only permissible operator at the top of the stack is
+                     * '!', which is applied immediately to this operand. */
+                    curchar = (char) SvUV(*top_ptr);
+                    if (curchar != '!') {
+                        SvREFCNT_dec(current);
+                        vFAIL2("Unexpected binary operator '%c' with no "
+                                "preceding operand", curchar);
+                    }
+
+                    _invlist_invert(current);
+
+                    only_to_avoid_leaks = av_pop(stack);
+                    SvREFCNT_dec(only_to_avoid_leaks);
+                    top_index = av_tindex(stack);
+
+                    /* And we redo with the inverted operand.  This allows
+                     * handling multiple ! in a row */
+                    goto handle_operand;
+                }
+                          /* Single operand is ok only for the non-binary ')'
+                           * operator */
+                else if ((top_index - fence == 0 && curchar != ')')
+                         || (top_index - fence > 0
+                             && (! (stacked_ptr = av_fetch(stack,
+                                                           top_index - 1,
+                                                           FALSE))
+                                 || IS_OPERAND(*stacked_ptr))))
+                {
+                    SvREFCNT_dec(current);
+                    vFAIL("Operand with no preceding operator");
+                }
+            }
+
+            /* Here there was nothing on the stack or the top element was
+             * another operand.  Just add this new one */
+            av_push(stack, current);
+
+        } /* End of switch on next parse token */
+
+        RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+    } /* End of loop parsing through the construct */
+
+  done:
+    if (av_tindex(fence_stack) >= 0) {
+        vFAIL("Unmatched (");
+    }
+
+    if (av_tindex(stack) < 0   /* Was empty */
+        || ((final = av_pop(stack)) == NULL)
+        || ! IS_OPERAND(final)
+        || av_tindex(stack) >= 0)  /* More left on stack */
+    {
+        SvREFCNT_dec(final);
+        vFAIL("Incomplete expression within '(?[ ])'");
+    }
+
+    /* Here, 'final' is the resultant inversion list from evaluating the
+     * expression.  Return it if so requested */
+    if (return_invlist) {
+        *return_invlist = final;
+        return END;
+    }
+
+    /* Otherwise generate a resultant node, based on 'final'.  regclass() is
+     * expecting a string of ranges and individual code points */
+    invlist_iterinit(final);
+    result_string = newSVpvs("");
+    while (invlist_iternext(final, &start, &end)) {
+        if (start == end) {
+            Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}", start);
+        }
+        else {
+            Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}-\\x{%"UVXf"}",
+                                                     start,          end);
+        }
+    }
+
+    /* About to generate an ANYOF (or similar) node from the inversion list we
+     * have calculated */
+    save_parse = RExC_parse;
+    RExC_parse = SvPV(result_string, len);
+    save_end = RExC_end;
+    RExC_end = RExC_parse + len;
+
+    /* We turn off folding around the call, as the class we have constructed
+     * already has all folding taken into consideration, and we don't want
+     * regclass() to add to that */
+    RExC_flags &= ~RXf_PMf_FOLD;
+    /* regclass() can only return RESTART_UTF8 if multi-char folds are allowed.
+     */
+    node = regclass(pRExC_state, flagp,depth+1,
+                    FALSE, /* means parse the whole char class */
+                    FALSE, /* don't allow multi-char folds */
+                    TRUE, /* silence non-portable warnings.  The above may very
+                             well have generated non-portable code points, but
+                             they're valid on this machine */
+                    FALSE, /* similarly, no need for strict */
+                    NULL
+                );
+    if (!node)
+        FAIL2("panic: regclass returned NULL to handle_sets, flags=%#"UVxf,
+                    PTR2UV(flagp));
+    if (save_fold) {
+        RExC_flags |= RXf_PMf_FOLD;
+    }
+    RExC_parse = save_parse + 1;
+    RExC_end = save_end;
+    SvREFCNT_dec_NN(final);
+    SvREFCNT_dec_NN(result_string);
+
+    nextchar(pRExC_state);
+    Set_Node_Length(node, RExC_parse - oregcomp_parse + 1); /* MJD */
+    return node;
+}
+#undef IS_OPERAND
+
+STATIC void
+S_add_above_Latin1_folds(pTHX_ RExC_state_t *pRExC_state, const U8 cp, SV** invlist)
+{
+    /* This hard-codes the Latin1/above-Latin1 folding rules, so that an
+     * innocent-looking character class, like /[ks]/i won't have to go out to
+     * disk to find the possible matches.
+     *
+     * This should be called only for a Latin1-range code points, cp, which is
+     * known to be involved in a simple fold with other code points above
+     * Latin1.  It would give false results if /aa has been specified.
+     * Multi-char folds are outside the scope of this, and must be handled
+     * specially.
+     *
+     * XXX It would be better to generate these via regen, in case a new
+     * version of the Unicode standard adds new mappings, though that is not
+     * really likely, and may be caught by the default: case of the switch
+     * below. */
+
+    PERL_ARGS_ASSERT_ADD_ABOVE_LATIN1_FOLDS;
+
+    assert(HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(cp));
+
+    switch (cp) {
+        case 'k':
+        case 'K':
+          *invlist =
+             add_cp_to_invlist(*invlist, KELVIN_SIGN);
+            break;
+        case 's':
+        case 'S':
+          *invlist = add_cp_to_invlist(*invlist, LATIN_SMALL_LETTER_LONG_S);
+            break;
+        case MICRO_SIGN:
+          *invlist = add_cp_to_invlist(*invlist, GREEK_CAPITAL_LETTER_MU);
+          *invlist = add_cp_to_invlist(*invlist, GREEK_SMALL_LETTER_MU);
+            break;
+        case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
+        case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
+          *invlist = add_cp_to_invlist(*invlist, ANGSTROM_SIGN);
+            break;
+        case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
+          *invlist = add_cp_to_invlist(*invlist,
+                                        LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
+            break;
+        case LATIN_SMALL_LETTER_SHARP_S:
+          *invlist = add_cp_to_invlist(*invlist, LATIN_CAPITAL_LETTER_SHARP_S);
+            break;
+        default:
+            /* Use deprecated warning to increase the chances of this being
+             * output */
+            if (PASS2) {
+                ckWARN2reg_d(RExC_parse, "Perl folding rules are not up-to-date for 0x%02X; please use the perlbug utility to report;", cp);
+            }
+            break;
+    }
+}
+
+STATIC AV *
+S_add_multi_match(pTHX_ AV* multi_char_matches, SV* multi_string, const STRLEN cp_count)
+{
+    /* This adds the string scalar <multi_string> to the array
+     * <multi_char_matches>.  <multi_string> is known to have exactly
+     * <cp_count> code points in it.  This is used when constructing a
+     * bracketed character class and we find something that needs to match more
+     * than a single character.
+     *
+     * <multi_char_matches> is actually an array of arrays.  Each top-level
+     * element is an array that contains all the strings known so far that are
+     * the same length.  And that length (in number of code points) is the same
+     * as the index of the top-level array.  Hence, the [2] element is an
+     * array, each element thereof is a string containing TWO code points;
+     * while element [3] is for strings of THREE characters, and so on.  Since
+     * this is for multi-char strings there can never be a [0] nor [1] element.
+     *
+     * When we rewrite the character class below, we will do so such that the
+     * longest strings are written first, so that it prefers the longest
+     * matching strings first.  This is done even if it turns out that any
+     * quantifier is non-greedy, out of this programmer's (khw) laziness.  Tom
+     * Christiansen has agreed that this is ok.  This makes the test for the
+     * ligature 'ffi' come before the test for 'ff', for example */
+
+    AV* this_array;
+    AV** this_array_ptr;
+
+    PERL_ARGS_ASSERT_ADD_MULTI_MATCH;
+
+    if (! multi_char_matches) {
+        multi_char_matches = newAV();
+    }
+
+    if (av_exists(multi_char_matches, cp_count)) {
+        this_array_ptr = (AV**) av_fetch(multi_char_matches, cp_count, FALSE);
+        this_array = *this_array_ptr;
+    }
+    else {
+        this_array = newAV();
+        av_store(multi_char_matches, cp_count,
+                 (SV*) this_array);
+    }
+    av_push(this_array, multi_string);
+
+    return multi_char_matches;
+}
+
+/* The names of properties whose definitions are not known at compile time are
+ * stored in this SV, after a constant heading.  So if the length has been
+ * changed since initialization, then there is a run-time definition. */
+#define HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION                            \
+                                        (SvCUR(listsv) != initial_listsv_len)
+
+STATIC regnode *
+S_regclass(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth,
+                 const bool stop_at_1,  /* Just parse the next thing, don't
+                                           look for a full character class */
+                 bool allow_multi_folds,
+                 const bool silence_non_portable,   /* Don't output warnings
+                                                       about too large
+                                                       characters */
+                 const bool strict,
+                 SV** ret_invlist  /* Return an inversion list, not a node */
+          )
+{
+    /* parse a bracketed class specification.  Most of these will produce an
+     * ANYOF node; but something like [a] will produce an EXACT node; [aA], an
+     * EXACTFish node; [[:ascii:]], a POSIXA node; etc.  It is more complex
+     * under /i with multi-character folds: it will be rewritten following the
+     * paradigm of this example, where the <multi-fold>s are characters which
+     * fold to multiple character sequences:
+     *      /[abc\x{multi-fold1}def\x{multi-fold2}ghi]/i
+     * gets effectively rewritten as:
+     *      /(?:\x{multi-fold1}|\x{multi-fold2}|[abcdefghi]/i
+     * reg() gets called (recursively) on the rewritten version, and this
+     * function will return what it constructs.  (Actually the <multi-fold>s
+     * aren't physically removed from the [abcdefghi], it's just that they are
+     * ignored in the recursion by means of a flag:
+     * <RExC_in_multi_char_class>.)
+     *
+     * ANYOF nodes contain a bit map for the first NUM_ANYOF_CODE_POINTS
+     * characters, with the corresponding bit set if that character is in the
+     * list.  For characters above this, a range list or swash is used.  There
+     * are extra bits for \w, etc. in locale ANYOFs, as what these match is not
+     * determinable at compile time
+     *
+     * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs
+     * to be restarted.  This can only happen if ret_invlist is non-NULL.
+     */
+
+    UV prevvalue = OOB_UNICODE, save_prevvalue = OOB_UNICODE;
+    IV range = 0;
+    UV value = OOB_UNICODE, save_value = OOB_UNICODE;
+    regnode *ret;
+    STRLEN numlen;
+    IV namedclass = OOB_NAMEDCLASS;
+    char *rangebegin = NULL;
+    bool need_class = 0;
+    SV *listsv = NULL;
+    STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
+                                     than just initialized.  */
+    SV* properties = NULL;    /* Code points that match \p{} \P{} */
+    SV* posixes = NULL;     /* Code points that match classes like [:word:],
+                               extended beyond the Latin1 range.  These have to
+                               be kept separate from other code points for much
+                               of this function because their handling  is
+                               different under /i, and for most classes under
+                               /d as well */
+    SV* nposixes = NULL;    /* Similarly for [:^word:].  These are kept
+                               separate for a while from the non-complemented
+                               versions because of complications with /d
+                               matching */
+    SV* simple_posixes = NULL; /* But under some conditions, the classes can be
+                                  treated more simply than the general case,
+                                  leading to less compilation and execution
+                                  work */
+    UV element_count = 0;   /* Number of distinct elements in the class.
+                              Optimizations may be possible if this is tiny */
+    AV * multi_char_matches = NULL; /* Code points that fold to more than one
+                                       character; used under /i */
+    UV n;
+    char * stop_ptr = RExC_end;    /* where to stop parsing */
+    const bool skip_white = cBOOL(ret_invlist); /* ignore unescaped white
+                                                   space? */
+
+    /* Unicode properties are stored in a swash; this holds the current one
+     * being parsed.  If this swash is the only above-latin1 component of the
+     * character class, an optimization is to pass it directly on to the
+     * execution engine.  Otherwise, it is set to NULL to indicate that there
+     * are other things in the class that have to be dealt with at execution
+     * time */
+    SV* swash = NULL;          /* Code points that match \p{} \P{} */
+
+    /* Set if a component of this character class is user-defined; just passed
+     * on to the engine */
+    bool has_user_defined_property = FALSE;
+
+    /* inversion list of code points this node matches only when the target
+     * string is in UTF-8.  (Because is under /d) */
+    SV* depends_list = NULL;
+
+    /* Inversion list of code points this node matches regardless of things
+     * like locale, folding, utf8ness of the target string */
+    SV* cp_list = NULL;
+
+    /* Like cp_list, but code points on this list need to be checked for things
+     * that fold to/from them under /i */
+    SV* cp_foldable_list = NULL;
+
+    /* Like cp_list, but code points on this list are valid only when the
+     * runtime locale is UTF-8 */
+    SV* only_utf8_locale_list = NULL;
+
+    /* In a range, if one of the endpoints is non-character-set portable,
+     * meaning that it hard-codes a code point that may mean a different
+     * charactger in ASCII vs. EBCDIC, as opposed to, say, a literal 'A' or a
+     * mnemonic '\t' which each mean the same character no matter which
+     * character set the platform is on. */
+    unsigned int non_portable_endpoint = 0;
+
+    /* Is the range unicode? which means on a platform that isn't 1-1 native
+     * to Unicode (i.e. non-ASCII), each code point in it should be considered
+     * to be a Unicode value.  */
+    bool unicode_range = FALSE;
+    bool invert = FALSE;    /* Is this class to be complemented */
+
+    bool warn_super = ALWAYS_WARN_SUPER;
+
+    regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
+        case we need to change the emitted regop to an EXACT. */
+    const char * orig_parse = RExC_parse;
+    const SSize_t orig_size = RExC_size;
+    bool posixl_matches_all = FALSE; /* Does /l class have both e.g. \W,\w ? */
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGCLASS;
+#ifndef DEBUGGING
+    PERL_UNUSED_ARG(depth);
+#endif
+
+    DEBUG_PARSE("clas");
+
+    /* Assume we are going to generate an ANYOF node. */
+    ret = reganode(pRExC_state,
+                   (LOC)
+                    ? ANYOFL
+                    : ANYOF,
+                   0);
+
+    if (SIZE_ONLY) {
+       RExC_size += ANYOF_SKIP;
+       listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
+    }
+    else {
+        ANYOF_FLAGS(ret) = 0;
+
+       RExC_emit += ANYOF_SKIP;
+       listsv = newSVpvs_flags("# comment\n", SVs_TEMP);
+       initial_listsv_len = SvCUR(listsv);
+        SvTEMP_off(listsv); /* Grr, TEMPs and mortals are conflated.  */
+    }
+
+    if (skip_white) {
+        RExC_parse = regpatws(pRExC_state, RExC_parse,
+                              FALSE /* means don't recognize comments */ );
+    }
+
+    if (UCHARAT(RExC_parse) == '^') {  /* Complement of range. */
+       RExC_parse++;
+        invert = TRUE;
+        allow_multi_folds = FALSE;
+        MARK_NAUGHTY(1);
+        if (skip_white) {
+            RExC_parse = regpatws(pRExC_state, RExC_parse,
+                                  FALSE /* means don't recognize comments */ );
+        }
+    }
+
+    /* Check that they didn't say [:posix:] instead of [[:posix:]] */
+    if (!SIZE_ONLY && RExC_parse < RExC_end && POSIXCC(UCHARAT(RExC_parse))) {
+       const char *s = RExC_parse;
+       const char  c = *s++;
+
+        if (*s == '^') {
+            s++;
+        }
+       while (isWORDCHAR(*s))
+           s++;
+       if (*s && c == *s && s[1] == ']') {
+           SAVEFREESV(RExC_rx_sv);
+           ckWARN3reg(s+2,
+                      "POSIX syntax [%c %c] belongs inside character classes",
+                      c, c);
+           (void)ReREFCNT_inc(RExC_rx_sv);
+       }
+    }
+
+    /* If the caller wants us to just parse a single element, accomplish this
+     * by faking the loop ending condition */
+    if (stop_at_1 && RExC_end > RExC_parse) {
+        stop_ptr = RExC_parse + 1;
+    }
+
+    /* allow 1st char to be ']' (allowing it to be '-' is dealt with later) */
+    if (UCHARAT(RExC_parse) == ']')
+       goto charclassloop;
+
+    while (1) {
+        if  (RExC_parse >= stop_ptr) {
+            break;
+        }
+
+        if (skip_white) {
+            RExC_parse = regpatws(pRExC_state, RExC_parse,
+                                  FALSE /* means don't recognize comments */ );
+        }
+
+        if  (UCHARAT(RExC_parse) == ']') {
+            break;
+        }
+
+      charclassloop:
+
+       namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
+        save_value = value;
+        save_prevvalue = prevvalue;
+
+       if (!range) {
+           rangebegin = RExC_parse;
+           element_count++;
+            non_portable_endpoint = 0;
+       }
+       if (UTF) {
+           value = utf8n_to_uvchr((U8*)RExC_parse,
+                                  RExC_end - RExC_parse,
+                                  &numlen, UTF8_ALLOW_DEFAULT);
+           RExC_parse += numlen;
+       }
+       else
+           value = UCHARAT(RExC_parse++);
+
+        if (value == '['
+            && RExC_parse < RExC_end
+            && POSIXCC(UCHARAT(RExC_parse)))
+        {
+            namedclass = regpposixcc(pRExC_state, value, strict);
+        }
+        else if (value == '\\') {
+            /* Is a backslash; get the code point of the char after it */
+           if (UTF && ! UTF8_IS_INVARIANT(UCHARAT(RExC_parse))) {
+               value = utf8n_to_uvchr((U8*)RExC_parse,
+                                  RExC_end - RExC_parse,
+                                  &numlen, UTF8_ALLOW_DEFAULT);
+               RExC_parse += numlen;
+           }
+           else
+               value = UCHARAT(RExC_parse++);
+
+           /* Some compilers cannot handle switching on 64-bit integer
+            * values, therefore value cannot be an UV.  Yes, this will
+            * be a problem later if we want switch on Unicode.
+            * A similar issue a little bit later when switching on
+            * namedclass. --jhi */
+
+            /* If the \ is escaping white space when white space is being
+             * skipped, it means that that white space is wanted literally, and
+             * is already in 'value'.  Otherwise, need to translate the escape
+             * into what it signifies. */
+            if (! skip_white || ! is_PATWS_cp(value)) switch ((I32)value) {
+
+           case 'w':   namedclass = ANYOF_WORDCHAR;    break;
+           case 'W':   namedclass = ANYOF_NWORDCHAR;   break;
+           case 's':   namedclass = ANYOF_SPACE;       break;
+           case 'S':   namedclass = ANYOF_NSPACE;      break;
+           case 'd':   namedclass = ANYOF_DIGIT;       break;
+           case 'D':   namedclass = ANYOF_NDIGIT;      break;
+           case 'v':   namedclass = ANYOF_VERTWS;      break;
+           case 'V':   namedclass = ANYOF_NVERTWS;     break;
+           case 'h':   namedclass = ANYOF_HORIZWS;     break;
+           case 'H':   namedclass = ANYOF_NHORIZWS;    break;
+            case 'N':  /* Handle \N{NAME} in class */
+                {
+                    const char * const backslash_N_beg = RExC_parse - 2;
+                    int cp_count;
+
+                    if (! grok_bslash_N(pRExC_state,
+                                        NULL,      /* No regnode */
+                                        &value,    /* Yes single value */
+                                        &cp_count, /* Multiple code pt count */
+                                        flagp,
+                                        depth)
+                    ) {
+
+                        if (*flagp & RESTART_UTF8)
+                            FAIL("panic: grok_bslash_N set RESTART_UTF8");
+
+                        if (cp_count < 0) {
+                            vFAIL("\\N in a character class must be a named character: \\N{...}");
+                        }
+                        else if (cp_count == 0) {
+                            if (strict) {
+                                RExC_parse++;   /* Position after the "}" */
+                                vFAIL("Zero length \\N{}");
+                            }
+                            else if (PASS2) {
+                                ckWARNreg(RExC_parse,
+                                        "Ignoring zero length \\N{} in character class");
+                            }
+                        }
+                        else { /* cp_count > 1 */
+                            if (! RExC_in_multi_char_class) {
+                                if (invert || range || *RExC_parse == '-') {
+                                    if (strict) {
+                                        RExC_parse--;
+                                        vFAIL("\\N{} in inverted character class or as a range end-point is restricted to one character");
+                                    }
+                                    else if (PASS2) {
+                                        ckWARNreg(RExC_parse, "Using just the first character returned by \\N{} in character class");
+                                    }
+                                    break; /* <value> contains the first code
+                                              point. Drop out of the switch to
+                                              process it */
+                                }
+                                else {
+                                    SV * multi_char_N = newSVpvn(backslash_N_beg,
+                                                 RExC_parse - backslash_N_beg);
+                                    multi_char_matches
+                                        = add_multi_match(multi_char_matches,
+                                                          multi_char_N,
+                                                          cp_count);
+                                }
+                            }
+                        } /* End of cp_count != 1 */
+
+                        /* This element should not be processed further in this
+                         * class */
+                        element_count--;
+                        value = save_value;
+                        prevvalue = save_prevvalue;
+                        continue;   /* Back to top of loop to get next char */
+                    }
+
+                    /* Here, is a single code point, and <value> contains it */
+                    unicode_range = TRUE;   /* \N{} are Unicode */
+                }
+                break;
+           case 'p':
+           case 'P':
+               {
+               char *e;
+
+                /* We will handle any undefined properties ourselves */
+                U8 swash_init_flags = _CORE_SWASH_INIT_RETURN_IF_UNDEF
+                                       /* And we actually would prefer to get
+                                        * the straight inversion list of the
+                                        * swash, since we will be accessing it
+                                        * anyway, to save a little time */
+                                      |_CORE_SWASH_INIT_ACCEPT_INVLIST;
+
+               if (RExC_parse >= RExC_end)
+                   vFAIL2("Empty \\%c{}", (U8)value);
+               if (*RExC_parse == '{') {
+                   const U8 c = (U8)value;
+                   e = strchr(RExC_parse++, '}');
+                    if (!e)
+                        vFAIL2("Missing right brace on \\%c{}", c);
+                   while (isSPACE(*RExC_parse))
+                       RExC_parse++;
+                    if (e == RExC_parse)
+                        vFAIL2("Empty \\%c{}", c);
+                   n = e - RExC_parse;
+                   while (isSPACE(*(RExC_parse + n - 1)))
+                       n--;
+               }
+               else {
+                   e = RExC_parse;
+                   n = 1;
+               }
+               if (!SIZE_ONLY) {
+                    SV* invlist;
+                    char* name;
+
+                   if (UCHARAT(RExC_parse) == '^') {
+                        RExC_parse++;
+                        n--;
+                         /* toggle.  (The rhs xor gets the single bit that
+                          * differs between P and p; the other xor inverts just
+                          * that bit) */
+                         value ^= 'P' ^ 'p';
+
+                        while (isSPACE(*RExC_parse)) {
+                             RExC_parse++;
+                             n--;
+                        }
+                   }
+                    /* Try to get the definition of the property into
+                     * <invlist>.  If /i is in effect, the effective property
+                     * will have its name be <__NAME_i>.  The design is
+                     * discussed in commit
+                     * 2f833f5208e26b208886e51e09e2c072b5eabb46 */
+                    name = savepv(Perl_form(aTHX_
+                                          "%s%.*s%s\n",
+                                          (FOLD) ? "__" : "",
+                                          (int)n,
+                                          RExC_parse,
+                                          (FOLD) ? "_i" : ""
+                                ));
+
+                    /* Look up the property name, and get its swash and
+                     * inversion list, if the property is found  */
+                    if (swash) {
+                        SvREFCNT_dec_NN(swash);
+                    }
+                    swash = _core_swash_init("utf8", name, &PL_sv_undef,
+                                             1, /* binary */
+                                             0, /* not tr/// */
+                                             NULL, /* No inversion list */
+                                             &swash_init_flags
+                                            );
+                    if (! swash || ! (invlist = _get_swash_invlist(swash))) {
+                        HV* curpkg = (IN_PERL_COMPILETIME)
+                                      ? PL_curstash
+                                      : CopSTASH(PL_curcop);
+                        if (swash) {
+                            SvREFCNT_dec_NN(swash);
+                            swash = NULL;
+                        }
+
+                        /* Here didn't find it.  It could be a user-defined
+                         * property that will be available at run-time.  If we
+                         * accept only compile-time properties, is an error;
+                         * otherwise add it to the list for run-time look up */
+                        if (ret_invlist) {
+                            RExC_parse = e + 1;
+                            vFAIL2utf8f(
+                                "Property '%"UTF8f"' is unknown",
+                                UTF8fARG(UTF, n, name));
+                        }
+
+                        /* If the property name doesn't already have a package
+                         * name, add the current one to it so that it can be
+                         * referred to outside it. [perl #121777] */
+                        if (curpkg && ! instr(name, "::")) {
+                            char* pkgname = HvNAME(curpkg);
+                            if (strNE(pkgname, "main")) {
+                                char* full_name = Perl_form(aTHX_
+                                                            "%s::%s",
+                                                            pkgname,
+                                                            name);
+                                n = strlen(full_name);
+                                Safefree(name);
+                                name = savepvn(full_name, n);
+                            }
+                        }
+                        Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%"UTF8f"\n",
+                                        (value == 'p' ? '+' : '!'),
+                                        UTF8fARG(UTF, n, name));
+                        has_user_defined_property = TRUE;
+
+                        /* We don't know yet, so have to assume that the
+                         * property could match something in the Latin1 range,
+                         * hence something that isn't utf8.  Note that this
+                         * would cause things in <depends_list> to match
+                         * inappropriately, except that any \p{}, including
+                         * this one forces Unicode semantics, which means there
+                         * is no <depends_list> */
+                        ANYOF_FLAGS(ret)
+                                      |= ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES;
+                    }
+                    else {
+
+                        /* Here, did get the swash and its inversion list.  If
+                         * the swash is from a user-defined property, then this
+                         * whole character class should be regarded as such */
+                        if (swash_init_flags
+                            & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY)
+                        {
+                            has_user_defined_property = TRUE;
+                        }
+                        else if
+                            /* We warn on matching an above-Unicode code point
+                             * if the match would return true, except don't
+                             * warn for \p{All}, which has exactly one element
+                             * = 0 */
+                            (_invlist_contains_cp(invlist, 0x110000)
+                                && (! (_invlist_len(invlist) == 1
+                                       && *invlist_array(invlist) == 0)))
+                        {
+                            warn_super = TRUE;
+                        }
+
+
+                        /* Invert if asking for the complement */
+                        if (value == 'P') {
+                           _invlist_union_complement_2nd(properties,
+                                                          invlist,
+                                                          &properties);
+
+                            /* The swash can't be used as-is, because we've
+                            * inverted things; delay removing it to here after
+                            * have copied its invlist above */
+                            SvREFCNT_dec_NN(swash);
+                            swash = NULL;
+                        }
+                        else {
+                            _invlist_union(properties, invlist, &properties);
+                       }
+                   }
+                   Safefree(name);
+               }
+               RExC_parse = e + 1;
+                namedclass = ANYOF_UNIPROP;  /* no official name, but it's
+                                                named */
+
+               /* \p means they want Unicode semantics */
+               RExC_uni_semantics = 1;
+               }
+               break;
+           case 'n':   value = '\n';                   break;
+           case 'r':   value = '\r';                   break;
+           case 't':   value = '\t';                   break;
+           case 'f':   value = '\f';                   break;
+           case 'b':   value = '\b';                   break;
+           case 'e':   value = ESC_NATIVE;             break;
+           case 'a':   value = '\a';                   break;
+           case 'o':
+               RExC_parse--;   /* function expects to be pointed at the 'o' */
+               {
+                   const char* error_msg;
+                   bool valid = grok_bslash_o(&RExC_parse,
+                                              &value,
+                                              &error_msg,
+                                               PASS2,   /* warnings only in
+                                                           pass 2 */
+                                               strict,
+                                               silence_non_portable,
+                                               UTF);
+                   if (! valid) {
+                       vFAIL(error_msg);
+                   }
+               }
+                non_portable_endpoint++;
+               if (IN_ENCODING && value < 0x100) {
+                   goto recode_encoding;
+               }
+               break;
+           case 'x':
+               RExC_parse--;   /* function expects to be pointed at the 'x' */
+               {
+                   const char* error_msg;
+                   bool valid = grok_bslash_x(&RExC_parse,
+                                              &value,
+                                              &error_msg,
+                                              PASS2, /* Output warnings */
+                                               strict,
+                                               silence_non_portable,
+                                               UTF);
+                    if (! valid) {
+                       vFAIL(error_msg);
+                   }
+               }
+                non_portable_endpoint++;
+               if (IN_ENCODING && value < 0x100)
+                   goto recode_encoding;
+               break;
+           case 'c':
+               value = grok_bslash_c(*RExC_parse++, PASS2);
+                non_portable_endpoint++;
+               break;
+           case '0': case '1': case '2': case '3': case '4':
+           case '5': case '6': case '7':
+               {
+                   /* Take 1-3 octal digits */
+                   I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
+                    numlen = (strict) ? 4 : 3;
+                    value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
+                   RExC_parse += numlen;
+                    if (numlen != 3) {
+                        if (strict) {
+                            RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+                            vFAIL("Need exactly 3 octal digits");
+                        }
+                        else if (! SIZE_ONLY /* like \08, \178 */
+                                 && numlen < 3
+                                 && RExC_parse < RExC_end
+                                 && isDIGIT(*RExC_parse)
+                                 && ckWARN(WARN_REGEXP))
+                        {
+                            SAVEFREESV(RExC_rx_sv);
+                            reg_warn_non_literal_string(
+                                 RExC_parse + 1,
+                                 form_short_octal_warning(RExC_parse, numlen));
+                            (void)ReREFCNT_inc(RExC_rx_sv);
+                        }
+                    }
+                    non_portable_endpoint++;
+                   if (IN_ENCODING && value < 0x100)
+                       goto recode_encoding;
+                   break;
+               }
+             recode_encoding:
+               if (! RExC_override_recoding) {
+                   SV* enc = _get_encoding();
+                   value = reg_recode((const char)(U8)value, &enc);
+                   if (!enc) {
+                        if (strict) {
+                            vFAIL("Invalid escape in the specified encoding");
+                        }
+                        else if (PASS2) {
+                            ckWARNreg(RExC_parse,
+                                 "Invalid escape in the specified encoding");
+                        }
+                    }
+                   break;
+               }
+           default:
+               /* Allow \_ to not give an error */
+               if (!SIZE_ONLY && isWORDCHAR(value) && value != '_') {
+                    if (strict) {
+                        vFAIL2("Unrecognized escape \\%c in character class",
+                               (int)value);
+                    }
+                    else {
+                        SAVEFREESV(RExC_rx_sv);
+                        ckWARN2reg(RExC_parse,
+                            "Unrecognized escape \\%c in character class passed through",
+                            (int)value);
+                        (void)ReREFCNT_inc(RExC_rx_sv);
+                    }
+               }
+               break;
+           }   /* End of switch on char following backslash */
+       } /* end of handling backslash escape sequences */
+
+        /* Here, we have the current token in 'value' */
+
+       if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
+            U8 classnum;
+
+           /* a bad range like a-\d, a-[:digit:].  The '-' is taken as a
+            * literal, as is the character that began the false range, i.e.
+            * the 'a' in the examples */
+           if (range) {
+               if (!SIZE_ONLY) {
+                   const int w = (RExC_parse >= rangebegin)
+                                  ? RExC_parse - rangebegin
+                                  : 0;
+                    if (strict) {
+                        vFAIL2utf8f(
+                            "False [] range \"%"UTF8f"\"",
+                            UTF8fARG(UTF, w, rangebegin));
+                    }
+                    else {
+                        SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
+                        ckWARN2reg(RExC_parse,
+                            "False [] range \"%"UTF8f"\"",
+                            UTF8fARG(UTF, w, rangebegin));
+                        (void)ReREFCNT_inc(RExC_rx_sv);
+                        cp_list = add_cp_to_invlist(cp_list, '-');
+                        cp_foldable_list = add_cp_to_invlist(cp_foldable_list,
+                                                             prevvalue);
+                    }
+               }
+
+               range = 0; /* this was not a true range */
+                element_count += 2; /* So counts for three values */
+           }
+
+            classnum = namedclass_to_classnum(namedclass);
+
+           if (LOC && namedclass < ANYOF_POSIXL_MAX
+#ifndef HAS_ISASCII
+                && classnum != _CC_ASCII
+#endif
+            ) {
+                /* What the Posix classes (like \w, [:space:]) match in locale
+                 * isn't knowable under locale until actual match time.  Room
+                 * must be reserved (one time per outer bracketed class) to
+                 * store such classes.  The space will contain a bit for each
+                 * named class that is to be matched against.  This isn't
+                 * needed for \p{} and pseudo-classes, as they are not affected
+                 * by locale, and hence are dealt with separately */
+                if (! need_class) {
+                    need_class = 1;
+                    if (SIZE_ONLY) {
+                        RExC_size += ANYOF_POSIXL_SKIP - ANYOF_SKIP;
+                    }
+                    else {
+                        RExC_emit += ANYOF_POSIXL_SKIP - ANYOF_SKIP;
+                    }
+                    ANYOF_FLAGS(ret) |= ANYOF_MATCHES_POSIXL;
+                    ANYOF_POSIXL_ZERO(ret);
+                }
+
+                /* Coverity thinks it is possible for this to be negative; both
+                 * jhi and khw think it's not, but be safer */
+                assert(! (ANYOF_FLAGS(ret) & ANYOF_MATCHES_POSIXL)
+                       || (namedclass + ((namedclass % 2) ? -1 : 1)) >= 0);
+
+                /* See if it already matches the complement of this POSIX
+                 * class */
+                if ((ANYOF_FLAGS(ret) & ANYOF_MATCHES_POSIXL)
+                    && ANYOF_POSIXL_TEST(ret, namedclass + ((namedclass % 2)
+                                                            ? -1
+                                                            : 1)))
+                {
+                    posixl_matches_all = TRUE;
+                    break;  /* No need to continue.  Since it matches both
+                               e.g., \w and \W, it matches everything, and the
+                               bracketed class can be optimized into qr/./s */
+                }
+
+                /* Add this class to those that should be checked at runtime */
+                ANYOF_POSIXL_SET(ret, namedclass);
+
+                /* The above-Latin1 characters are not subject to locale rules.
+                 * Just add them, in the second pass, to the
+                 * unconditionally-matched list */
+                if (! SIZE_ONLY) {
+                    SV* scratch_list = NULL;
+
+                    /* Get the list of the above-Latin1 code points this
+                     * matches */
+                    _invlist_intersection_maybe_complement_2nd(PL_AboveLatin1,
+                                          PL_XPosix_ptrs[classnum],
+
+                                          /* Odd numbers are complements, like
+                                           * NDIGIT, NASCII, ... */
+                                          namedclass % 2 != 0,
+                                          &scratch_list);
+                    /* Checking if 'cp_list' is NULL first saves an extra
+                     * clone.  Its reference count will be decremented at the
+                     * next union, etc, or if this is the only instance, at the
+                     * end of the routine */
+                    if (! cp_list) {
+                        cp_list = scratch_list;
+                    }
+                    else {
+                        _invlist_union(cp_list, scratch_list, &cp_list);
+                        SvREFCNT_dec_NN(scratch_list);
+                    }
+                    continue;   /* Go get next character */
+                }
+            }
+            else if (! SIZE_ONLY) {
+
+                /* Here, not in pass1 (in that pass we skip calculating the
+                 * contents of this class), and is /l, or is a POSIX class for
+                 * which /l doesn't matter (or is a Unicode property, which is
+                 * skipped here). */
+                if (namedclass >= ANYOF_POSIXL_MAX) {  /* If a special class */
+                    if (namedclass != ANYOF_UNIPROP) { /* UNIPROP = \p and \P */
+
+                        /* Here, should be \h, \H, \v, or \V.  None of /d, /i
+                         * nor /l make a difference in what these match,
+                         * therefore we just add what they match to cp_list. */
+                        if (classnum != _CC_VERTSPACE) {
+                            assert(   namedclass == ANYOF_HORIZWS
+                                   || namedclass == ANYOF_NHORIZWS);
+
+                            /* It turns out that \h is just a synonym for
+                             * XPosixBlank */
+                            classnum = _CC_BLANK;
+                        }
+
+                        _invlist_union_maybe_complement_2nd(
+                                cp_list,
+                                PL_XPosix_ptrs[classnum],
+                                namedclass % 2 != 0,    /* Complement if odd
+                                                          (NHORIZWS, NVERTWS)
+                                                        */
+                                &cp_list);
+                    }
+                }
+                else if (UNI_SEMANTICS
+                        || classnum == _CC_ASCII
+                        || (DEPENDS_SEMANTICS && (classnum == _CC_DIGIT
+                                                  || classnum == _CC_XDIGIT)))
+                {
+                    /* We usually have to worry about /d and /a affecting what
+                     * POSIX classes match, with special code needed for /d
+                     * because we won't know until runtime what all matches.
+                     * But there is no extra work needed under /u, and
+                     * [:ascii:] is unaffected by /a and /d; and :digit: and
+                     * :xdigit: don't have runtime differences under /d.  So we
+                     * can special case these, and avoid some extra work below,
+                     * and at runtime. */
+                    _invlist_union_maybe_complement_2nd(
+                                                     simple_posixes,
+                                                     PL_XPosix_ptrs[classnum],
+                                                     namedclass % 2 != 0,
+                                                     &simple_posixes);
+                }
+                else {  /* Garden variety class.  If is NUPPER, NALPHA, ...
+                           complement and use nposixes */
+                    SV** posixes_ptr = namedclass % 2 == 0
+                                       ? &posixes
+                                       : &nposixes;
+                    _invlist_union_maybe_complement_2nd(
+                                                     *posixes_ptr,
+                                                     PL_XPosix_ptrs[classnum],
+                                                     namedclass % 2 != 0,
+                                                     posixes_ptr);
+                }
+           }
+       } /* end of namedclass \blah */
+
+        if (skip_white) {
+            RExC_parse = regpatws(pRExC_state, RExC_parse,
+                                FALSE /* means don't recognize comments */ );
+        }
+
+        /* If 'range' is set, 'value' is the ending of a range--check its
+         * validity.  (If value isn't a single code point in the case of a
+         * range, we should have figured that out above in the code that
+         * catches false ranges).  Later, we will handle each individual code
+         * point in the range.  If 'range' isn't set, this could be the
+         * beginning of a range, so check for that by looking ahead to see if
+         * the next real character to be processed is the range indicator--the
+         * minus sign */
+
+       if (range) {
+#ifdef EBCDIC
+            /* For unicode ranges, we have to test that the Unicode as opposed
+             * to the native values are not decreasing.  (Above 255, there is
+             * no difference between native and Unicode) */
+           if (unicode_range && prevvalue < 255 && value < 255) {
+                if (NATIVE_TO_LATIN1(prevvalue) > NATIVE_TO_LATIN1(value)) {
+                    goto backwards_range;
+                }
+            }
+            else
+#endif
+           if (prevvalue > value) /* b-a */ {
+               int w;
+#ifdef EBCDIC
+              backwards_range:
+#endif
+                w = RExC_parse - rangebegin;
+                vFAIL2utf8f(
+                    "Invalid [] range \"%"UTF8f"\"",
+                    UTF8fARG(UTF, w, rangebegin));
+                NOT_REACHED; /* NOTREACHED */
+           }
+       }
+       else {
+            prevvalue = value; /* save the beginning of the potential range */
+            if (! stop_at_1     /* Can't be a range if parsing just one thing */
+                && *RExC_parse == '-')
+            {
+                char* next_char_ptr = RExC_parse + 1;
+                if (skip_white) {   /* Get the next real char after the '-' */
+                    next_char_ptr = regpatws(pRExC_state,
+                                             RExC_parse + 1,
+                                             FALSE); /* means don't recognize
+                                                        comments */
+                }
+
+                /* If the '-' is at the end of the class (just before the ']',
+                 * it is a literal minus; otherwise it is a range */
+                if (next_char_ptr < RExC_end && *next_char_ptr != ']') {
+                    RExC_parse = next_char_ptr;
+
+                    /* a bad range like \w-, [:word:]- ? */
+                    if (namedclass > OOB_NAMEDCLASS) {
+                        if (strict || (PASS2 && ckWARN(WARN_REGEXP))) {
+                            const int w = RExC_parse >= rangebegin
+                                          ?  RExC_parse - rangebegin
+                                          : 0;
+                            if (strict) {
+                                vFAIL4("False [] range \"%*.*s\"",
+                                    w, w, rangebegin);
+                            }
+                            else if (PASS2) {
+                                vWARN4(RExC_parse,
+                                    "False [] range \"%*.*s\"",
+                                    w, w, rangebegin);
+                            }
+                        }
+                        if (!SIZE_ONLY) {
+                            cp_list = add_cp_to_invlist(cp_list, '-');
+                        }
+                        element_count++;
+                    } else
+                        range = 1;     /* yeah, it's a range! */
+                    continue;  /* but do it the next time */
+                }
+           }
+       }
+
+        if (namedclass > OOB_NAMEDCLASS) {
+            continue;
+        }
+
+        /* Here, we have a single value this time through the loop, and
+         * <prevvalue> is the beginning of the range, if any; or <value> if
+         * not. */
+
+       /* non-Latin1 code point implies unicode semantics.  Must be set in
+        * pass1 so is there for the whole of pass 2 */
+       if (value > 255) {
+           RExC_uni_semantics = 1;
+       }
+
+        /* Ready to process either the single value, or the completed range.
+         * For single-valued non-inverted ranges, we consider the possibility
+         * of multi-char folds.  (We made a conscious decision to not do this
+         * for the other cases because it can often lead to non-intuitive
+         * results.  For example, you have the peculiar case that:
+         *  "s s" =~ /^[^\xDF]+$/i => Y
+         *  "ss"  =~ /^[^\xDF]+$/i => N
+         *
+         * See [perl #89750] */
+        if (FOLD && allow_multi_folds && value == prevvalue) {
+            if (value == LATIN_SMALL_LETTER_SHARP_S
+                || (value > 255 && _invlist_contains_cp(PL_HasMultiCharFold,
+                                                        value)))
+            {
+                /* Here <value> is indeed a multi-char fold.  Get what it is */
+
+                U8 foldbuf[UTF8_MAXBYTES_CASE];
+                STRLEN foldlen;
+
+                UV folded = _to_uni_fold_flags(
+                                value,
+                                foldbuf,
+                                &foldlen,
+                                FOLD_FLAGS_FULL | (ASCII_FOLD_RESTRICTED
+                                                   ? FOLD_FLAGS_NOMIX_ASCII
+                                                   : 0)
+                                );
+
+                /* Here, <folded> should be the first character of the
+                 * multi-char fold of <value>, with <foldbuf> containing the
+                 * whole thing.  But, if this fold is not allowed (because of
+                 * the flags), <fold> will be the same as <value>, and should
+                 * be processed like any other character, so skip the special
+                 * handling */
+                if (folded != value) {
+
+                    /* Skip if we are recursed, currently parsing the class
+                     * again.  Otherwise add this character to the list of
+                     * multi-char folds. */
+                    if (! RExC_in_multi_char_class) {
+                        STRLEN cp_count = utf8_length(foldbuf,
+                                                      foldbuf + foldlen);
+                        SV* multi_fold = sv_2mortal(newSVpvs(""));
+
+                        Perl_sv_catpvf(aTHX_ multi_fold, "\\x{%"UVXf"}", value);
+
+                        multi_char_matches
+                                        = add_multi_match(multi_char_matches,
+                                                          multi_fold,
+                                                          cp_count);
+
+                    }
+
+                    /* This element should not be processed further in this
+                     * class */
+                    element_count--;
+                    value = save_value;
+                    prevvalue = save_prevvalue;
+                    continue;
+                }
+            }
+        }
+
+        if (strict && PASS2 && ckWARN(WARN_REGEXP)) {
+            if (range) {
+
+                /* If the range starts above 255, everything is portable and
+                 * likely to be so for any forseeable character set, so don't
+                 * warn. */
+                if (unicode_range && non_portable_endpoint && prevvalue < 256) {
+                    vWARN(RExC_parse, "Both or neither range ends should be Unicode");
+                }
+                else if (prevvalue != value) {
+
+                    /* Under strict, ranges that stop and/or end in an ASCII
+                     * printable should have each end point be a portable value
+                     * for it (preferably like 'A', but we don't warn if it is
+                     * a (portable) Unicode name or code point), and the range
+                     * must be be all digits or all letters of the same case.
+                     * Otherwise, the range is non-portable and unclear as to
+                     * what it contains */
+                    if ((isPRINT_A(prevvalue) || isPRINT_A(value))
+                        && (non_portable_endpoint
+                            || ! ((isDIGIT_A(prevvalue) && isDIGIT_A(value))
+                                   || (isLOWER_A(prevvalue) && isLOWER_A(value))
+                                   || (isUPPER_A(prevvalue) && isUPPER_A(value)))))
+                    {
+                        vWARN(RExC_parse, "Ranges of ASCII printables should be some subset of \"0-9\", \"A-Z\", or \"a-z\"");
+                    }
+                    else if (prevvalue >= 0x660) { /* ARABIC_INDIC_DIGIT_ZERO */
+
+                        /* But the nature of Unicode and languages mean we
+                         * can't do the same checks for above-ASCII ranges,
+                         * except in the case of digit ones.  These should
+                         * contain only digits from the same group of 10.  The
+                         * ASCII case is handled just above.  0x660 is the
+                         * first digit character beyond ASCII.  Hence here, the
+                         * range could be a range of digits.  Find out.  */
+                        IV index_start = _invlist_search(PL_XPosix_ptrs[_CC_DIGIT],
+                                                         prevvalue);
+                        IV index_final = _invlist_search(PL_XPosix_ptrs[_CC_DIGIT],
+                                                         value);
+
+                        /* If the range start and final points are in the same
+                         * inversion list element, it means that either both
+                         * are not digits, or both are digits in a consecutive
+                         * sequence of digits.  (So far, Unicode has kept all
+                         * such sequences as distinct groups of 10, but assert
+                         * to make sure).  If the end points are not in the
+                         * same element, neither should be a digit. */
+                        if (index_start == index_final) {
+                            assert(! ELEMENT_RANGE_MATCHES_INVLIST(index_start)
+                            || (invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start+1]
+                               - invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
+                               == 10)
+                               /* But actually Unicode did have one group of 11
+                                * 'digits' in 5.2, so in case we are operating
+                                * on that version, let that pass */
+                            || (invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start+1]
+                               - invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
+                                == 11
+                               && invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
+                                == 0x19D0)
+                            );
+                        }
+                        else if ((index_start >= 0
+                                  && ELEMENT_RANGE_MATCHES_INVLIST(index_start))
+                                 || (index_final >= 0
+                                     && ELEMENT_RANGE_MATCHES_INVLIST(index_final)))
+                        {
+                            vWARN(RExC_parse, "Ranges of digits should be from the same group of 10");
+                        }
+                    }
+                }
+            }
+            if ((! range || prevvalue == value) && non_portable_endpoint) {
+                if (isPRINT_A(value)) {
+                    char literal[3];
+                    unsigned d = 0;
+                    if (isBACKSLASHED_PUNCT(value)) {
+                        literal[d++] = '\\';
+                    }
+                    literal[d++] = (char) value;
+                    literal[d++] = '\0';
+
+                    vWARN4(RExC_parse,
+                           "\"%.*s\" is more clearly written simply as \"%s\"",
+                           (int) (RExC_parse - rangebegin),
+                           rangebegin,
+                           literal
+                        );
+                }
+                else if isMNEMONIC_CNTRL(value) {
+                    vWARN4(RExC_parse,
+                           "\"%.*s\" is more clearly written simply as \"%s\"",
+                           (int) (RExC_parse - rangebegin),
+                           rangebegin,
+                           cntrl_to_mnemonic((char) value)
+                        );
+                }
+            }
+        }
+
+        /* Deal with this element of the class */
+       if (! SIZE_ONLY) {
+
+#ifndef EBCDIC
+            cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
+                                                     prevvalue, value);
+#else
+            /* On non-ASCII platforms, for ranges that span all of 0..255, and
+             * ones that don't require special handling, we can just add the
+             * range like we do for ASCII platforms */
+            if ((UNLIKELY(prevvalue == 0) && value >= 255)
+                || ! (prevvalue < 256
+                      && (unicode_range
+                          || (! non_portable_endpoint
+                              && ((isLOWER_A(prevvalue) && isLOWER_A(value))
+                                  || (isUPPER_A(prevvalue)
+                                      && isUPPER_A(value)))))))
+            {
+                cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
+                                                         prevvalue, value);
+            }
+            else {
+                /* Here, requires special handling.  This can be because it is
+                 * a range whose code points are considered to be Unicode, and
+                 * so must be individually translated into native, or because
+                 * its a subrange of 'A-Z' or 'a-z' which each aren't
+                 * contiguous in EBCDIC, but we have defined them to include
+                 * only the "expected" upper or lower case ASCII alphabetics.
+                 * Subranges above 255 are the same in native and Unicode, so
+                 * can be added as a range */
+                U8 start = NATIVE_TO_LATIN1(prevvalue);
+                unsigned j;
+                U8 end = (value < 256) ? NATIVE_TO_LATIN1(value) : 255;
+                for (j = start; j <= end; j++) {
+                    cp_foldable_list = add_cp_to_invlist(cp_foldable_list, LATIN1_TO_NATIVE(j));
+                }
+                if (value > 255) {
+                    cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
+                                                             256, value);
+                }
+            }
+#endif
+        }
+
+       range = 0; /* this range (if it was one) is done now */
+    } /* End of loop through all the text within the brackets */
+
+    /* If anything in the class expands to more than one character, we have to
+     * deal with them by building up a substitute parse string, and recursively
+     * calling reg() on it, instead of proceeding */
+    if (multi_char_matches) {
+       SV * substitute_parse = newSVpvn_flags("?:", 2, SVs_TEMP);
+        I32 cp_count;
+       STRLEN len;
+       char *save_end = RExC_end;
+       char *save_parse = RExC_parse;
+        bool first_time = TRUE;     /* First multi-char occurrence doesn't get
+                                       a "|" */
+        I32 reg_flags;
+
+        assert(! invert);
+#if 0   /* Have decided not to deal with multi-char folds in inverted classes,
+           because too confusing */
+        if (invert) {
+            sv_catpv(substitute_parse, "(?:");
+        }
+#endif
+
+        /* Look at the longest folds first */
+        for (cp_count = av_tindex(multi_char_matches); cp_count > 0; cp_count--) {
+
+            if (av_exists(multi_char_matches, cp_count)) {
+                AV** this_array_ptr;
+                SV* this_sequence;
+
+                this_array_ptr = (AV**) av_fetch(multi_char_matches,
+                                                 cp_count, FALSE);
+                while ((this_sequence = av_pop(*this_array_ptr)) !=
+                                                                &PL_sv_undef)
+                {
+                    if (! first_time) {
+                        sv_catpv(substitute_parse, "|");
+                    }
+                    first_time = FALSE;
+
+                    sv_catpv(substitute_parse, SvPVX(this_sequence));
+                }
+            }
+        }
+
+        /* If the character class contains anything else besides these
+         * multi-character folds, have to include it in recursive parsing */
+        if (element_count) {
+            sv_catpv(substitute_parse, "|[");
+            sv_catpvn(substitute_parse, orig_parse, RExC_parse - orig_parse);
+            sv_catpv(substitute_parse, "]");
+        }
+
+        sv_catpv(substitute_parse, ")");
+#if 0
+        if (invert) {
+            /* This is a way to get the parse to skip forward a whole named
+             * sequence instead of matching the 2nd character when it fails the
+             * first */
+            sv_catpv(substitute_parse, "(*THEN)(*SKIP)(*FAIL)|.)");
+        }
+#endif
+
+       RExC_parse = SvPV(substitute_parse, len);
+       RExC_end = RExC_parse + len;
+        RExC_in_multi_char_class = 1;
+       RExC_override_recoding = 1;
+        RExC_emit = (regnode *)orig_emit;
+
+       ret = reg(pRExC_state, 1, &reg_flags, depth+1);
+
+       *flagp |= reg_flags&(HASWIDTH|SIMPLE|SPSTART|POSTPONED|RESTART_UTF8);
+
+       RExC_parse = save_parse;
+       RExC_end = save_end;
+       RExC_in_multi_char_class = 0;
+       RExC_override_recoding = 0;
+        SvREFCNT_dec_NN(multi_char_matches);
+        return ret;
+    }
+
+    /* Here, we've gone through the entire class and dealt with multi-char
+     * folds.  We are now in a position that we can do some checks to see if we
+     * can optimize this ANYOF node into a simpler one, even in Pass 1.
+     * Currently we only do two checks:
+     * 1) is in the unlikely event that the user has specified both, eg. \w and
+     *    \W under /l, then the class matches everything.  (This optimization
+     *    is done only to make the optimizer code run later work.)
+     * 2) if the character class contains only a single element (including a
+     *    single range), we see if there is an equivalent node for it.
+     * Other checks are possible */
+    if (! ret_invlist   /* Can't optimize if returning the constructed
+                           inversion list */
+        && (UNLIKELY(posixl_matches_all) || element_count == 1))
+    {
+        U8 op = END;
+        U8 arg = 0;
+
+        if (UNLIKELY(posixl_matches_all)) {
+            op = SANY;
+        }
+        else if (namedclass > OOB_NAMEDCLASS) { /* this is a named class, like
+                                                   \w or [:digit:] or \p{foo}
+                                                 */
+
+            /* All named classes are mapped into POSIXish nodes, with its FLAG
+             * argument giving which class it is */
+            switch ((I32)namedclass) {
+                case ANYOF_UNIPROP:
+                    break;
+
+                /* These don't depend on the charset modifiers.  They always
+                 * match under /u rules */
+                case ANYOF_NHORIZWS:
+                case ANYOF_HORIZWS:
+                    namedclass = ANYOF_BLANK + namedclass - ANYOF_HORIZWS;
+                    /* FALLTHROUGH */
+
+                case ANYOF_NVERTWS:
+                case ANYOF_VERTWS:
+                    op = POSIXU;
+                    goto join_posix;
+
+                /* The actual POSIXish node for all the rest depends on the
+                 * charset modifier.  The ones in the first set depend only on
+                 * ASCII or, if available on this platform, also locale */
+                case ANYOF_ASCII:
+                case ANYOF_NASCII:
+#ifdef HAS_ISASCII
+                    op = (LOC) ? POSIXL : POSIXA;
+#else
+                    op = POSIXA;
+#endif
+                    goto join_posix;
+
+                /* The following don't have any matches in the upper Latin1
+                 * range, hence /d is equivalent to /u for them.  Making it /u
+                 * saves some branches at runtime */
+                case ANYOF_DIGIT:
+                case ANYOF_NDIGIT:
+                case ANYOF_XDIGIT:
+                case ANYOF_NXDIGIT:
+                    if (! DEPENDS_SEMANTICS) {
+                        goto treat_as_default;
+                    }
+
+                    op = POSIXU;
+                    goto join_posix;
+
+                /* The following change to CASED under /i */
+                case ANYOF_LOWER:
+                case ANYOF_NLOWER:
+                case ANYOF_UPPER:
+                case ANYOF_NUPPER:
+                    if (FOLD) {
+                        namedclass = ANYOF_CASED + (namedclass % 2);
+                    }
+                    /* FALLTHROUGH */
+
+                /* The rest have more possibilities depending on the charset.
+                 * We take advantage of the enum ordering of the charset
+                 * modifiers to get the exact node type, */
+                default:
+                  treat_as_default:
+                    op = POSIXD + get_regex_charset(RExC_flags);
+                    if (op > POSIXA) { /* /aa is same as /a */
+                        op = POSIXA;
+                    }
+
+                  join_posix:
+                    /* The odd numbered ones are the complements of the
+                     * next-lower even number one */
+                    if (namedclass % 2 == 1) {
+                        invert = ! invert;
+                        namedclass--;
+                    }
+                    arg = namedclass_to_classnum(namedclass);
+                    break;
+            }
+        }
+        else if (value == prevvalue) {
+
+            /* Here, the class consists of just a single code point */
+
+            if (invert) {
+                if (! LOC && value == '\n') {
+                    op = REG_ANY; /* Optimize [^\n] */
+                    *flagp |= HASWIDTH|SIMPLE;
+                    MARK_NAUGHTY(1);
+                }
+            }
+            else if (value < 256 || UTF) {
+
+                /* Optimize a single value into an EXACTish node, but not if it
+                 * would require converting the pattern to UTF-8. */
+                op = compute_EXACTish(pRExC_state);
+            }
+        } /* Otherwise is a range */
+        else if (! LOC) {   /* locale could vary these */
+            if (prevvalue == '0') {
+                if (value == '9') {
+                    arg = _CC_DIGIT;
+                    op = POSIXA;
+                }
+            }
+            else if (! FOLD || ASCII_FOLD_RESTRICTED) {
+                /* We can optimize A-Z or a-z, but not if they could match
+                 * something like the KELVIN SIGN under /i. */
+                if (prevvalue == 'A') {
+                    if (value == 'Z'
+#ifdef EBCDIC
+                        && ! non_portable_endpoint
+#endif
+                    ) {
+                        arg = (FOLD) ? _CC_ALPHA : _CC_UPPER;
+                        op = POSIXA;
+                    }
+                }
+                else if (prevvalue == 'a') {
+                    if (value == 'z'
+#ifdef EBCDIC
+                        && ! non_portable_endpoint
+#endif
+                    ) {
+                        arg = (FOLD) ? _CC_ALPHA : _CC_LOWER;
+                        op = POSIXA;
+                    }
+                }
+            }
+        }
+
+        /* Here, we have changed <op> away from its initial value iff we found
+         * an optimization */
+        if (op != END) {
+
+            /* Throw away this ANYOF regnode, and emit the calculated one,
+             * which should correspond to the beginning, not current, state of
+             * the parse */
+            const char * cur_parse = RExC_parse;
+            RExC_parse = (char *)orig_parse;
+            if ( SIZE_ONLY) {
+                if (! LOC) {
+
+                    /* To get locale nodes to not use the full ANYOF size would
+                     * require moving the code above that writes the portions
+                     * of it that aren't in other nodes to after this point.
+                     * e.g.  ANYOF_POSIXL_SET */
+                    RExC_size = orig_size;
+                }
+            }
+            else {
+                RExC_emit = (regnode *)orig_emit;
+                if (PL_regkind[op] == POSIXD) {
+                    if (op == POSIXL) {
+                        RExC_contains_locale = 1;
+                    }
+                    if (invert) {
+                        op += NPOSIXD - POSIXD;
+                    }
+                }
+            }
+
+            ret = reg_node(pRExC_state, op);
+
+            if (PL_regkind[op] == POSIXD || PL_regkind[op] == NPOSIXD) {
+                if (! SIZE_ONLY) {
+                    FLAGS(ret) = arg;
+                }
+                *flagp |= HASWIDTH|SIMPLE;
+            }
+            else if (PL_regkind[op] == EXACT) {
+                alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value,
+                                           TRUE /* downgradable to EXACT */
+                                           );
+            }
+
+            RExC_parse = (char *) cur_parse;
+
+            SvREFCNT_dec(posixes);
+            SvREFCNT_dec(nposixes);
+            SvREFCNT_dec(simple_posixes);
+            SvREFCNT_dec(cp_list);
+            SvREFCNT_dec(cp_foldable_list);
+            return ret;
+        }
+    }
+
+    if (SIZE_ONLY)
+        return ret;
+    /****** !SIZE_ONLY (Pass 2) AFTER HERE *********/
+
+    /* If folding, we calculate all characters that could fold to or from the
+     * ones already on the list */
+    if (cp_foldable_list) {
+        if (FOLD) {
+            UV start, end;     /* End points of code point ranges */
+
+            SV* fold_intersection = NULL;
+            SV** use_list;
+
+            /* Our calculated list will be for Unicode rules.  For locale
+             * matching, we have to keep a separate list that is consulted at
+             * runtime only when the locale indicates Unicode rules.  For
+             * non-locale, we just use to the general list */
+            if (LOC) {
+                use_list = &only_utf8_locale_list;
+            }
+            else {
+                use_list = &cp_list;
+            }
+
+            /* Only the characters in this class that participate in folds need
+             * be checked.  Get the intersection of this class and all the
+             * possible characters that are foldable.  This can quickly narrow
+             * down a large class */
+            _invlist_intersection(PL_utf8_foldable, cp_foldable_list,
+                                  &fold_intersection);
+
+            /* The folds for all the Latin1 characters are hard-coded into this
+             * program, but we have to go out to disk to get the others. */
+            if (invlist_highest(cp_foldable_list) >= 256) {
+
+                /* This is a hash that for a particular fold gives all
+                 * characters that are involved in it */
+                if (! PL_utf8_foldclosures) {
+                    _load_PL_utf8_foldclosures();
+                }
+            }
+
+            /* Now look at the foldable characters in this class individually */
+            invlist_iterinit(fold_intersection);
+            while (invlist_iternext(fold_intersection, &start, &end)) {
+                UV j;
+
+                /* Look at every character in the range */
+                for (j = start; j <= end; j++) {
+                    U8 foldbuf[UTF8_MAXBYTES_CASE+1];
+                    STRLEN foldlen;
+                    SV** listp;
+
+                    if (j < 256) {
+
+                        if (IS_IN_SOME_FOLD_L1(j)) {
+
+                            /* ASCII is always matched; non-ASCII is matched
+                             * only under Unicode rules (which could happen
+                             * under /l if the locale is a UTF-8 one */
+                            if (isASCII(j) || ! DEPENDS_SEMANTICS) {
+                                *use_list = add_cp_to_invlist(*use_list,
+                                                            PL_fold_latin1[j]);
+                            }
+                            else {
+                                depends_list =
+                                 add_cp_to_invlist(depends_list,
+                                                   PL_fold_latin1[j]);
+                            }
+                        }
+
+                        if (HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(j)
+                            && (! isASCII(j) || ! ASCII_FOLD_RESTRICTED))
+                        {
+                            add_above_Latin1_folds(pRExC_state,
+                                                   (U8) j,
+                                                   use_list);
+                        }
+                        continue;
+                    }
+
+                    /* Here is an above Latin1 character.  We don't have the
+                     * rules hard-coded for it.  First, get its fold.  This is
+                     * the simple fold, as the multi-character folds have been
+                     * handled earlier and separated out */
+                    _to_uni_fold_flags(j, foldbuf, &foldlen,
+                                                        (ASCII_FOLD_RESTRICTED)
+                                                        ? FOLD_FLAGS_NOMIX_ASCII
+                                                        : 0);
+
+                    /* Single character fold of above Latin1.  Add everything in
+                    * its fold closure to the list that this node should match.
+                    * The fold closures data structure is a hash with the keys
+                    * being the UTF-8 of every character that is folded to, like
+                    * 'k', and the values each an array of all code points that
+                    * fold to its key.  e.g. [ 'k', 'K', KELVIN_SIGN ].
+                    * Multi-character folds are not included */
+                    if ((listp = hv_fetch(PL_utf8_foldclosures,
+                                        (char *) foldbuf, foldlen, FALSE)))
+                    {
+                        AV* list = (AV*) *listp;
+                        IV k;
+                        for (k = 0; k <= av_tindex(list); k++) {
+                            SV** c_p = av_fetch(list, k, FALSE);
+                            UV c;
+                            assert(c_p);
+
+                            c = SvUV(*c_p);
+
+                            /* /aa doesn't allow folds between ASCII and non- */
+                            if ((ASCII_FOLD_RESTRICTED
+                                && (isASCII(c) != isASCII(j))))
+                            {
+                                continue;
+                            }
+
+                            /* Folds under /l which cross the 255/256 boundary
+                             * are added to a separate list.  (These are valid
+                             * only when the locale is UTF-8.) */
+                            if (c < 256 && LOC) {
+                                *use_list = add_cp_to_invlist(*use_list, c);
+                                continue;
+                            }
+
+                            if (isASCII(c) || c > 255 || AT_LEAST_UNI_SEMANTICS)
+                            {
+                                cp_list = add_cp_to_invlist(cp_list, c);
+                            }
+                            else {
+                                /* Similarly folds involving non-ascii Latin1
+                                * characters under /d are added to their list */
+                                depends_list = add_cp_to_invlist(depends_list,
+                                                                 c);
+                            }
+                        }
+                    }
+                }
+            }
+            SvREFCNT_dec_NN(fold_intersection);
+        }
+
+        /* Now that we have finished adding all the folds, there is no reason
+         * to keep the foldable list separate */
+        _invlist_union(cp_list, cp_foldable_list, &cp_list);
+       SvREFCNT_dec_NN(cp_foldable_list);
+    }
+
+    /* And combine the result (if any) with any inversion list from posix
+     * classes.  The lists are kept separate up to now because we don't want to
+     * fold the classes (folding of those is automatically handled by the swash
+     * fetching code) */
+    if (simple_posixes) {
+        _invlist_union(cp_list, simple_posixes, &cp_list);
+        SvREFCNT_dec_NN(simple_posixes);
+    }
+    if (posixes || nposixes) {
+        if (posixes && AT_LEAST_ASCII_RESTRICTED) {
+            /* Under /a and /aa, nothing above ASCII matches these */
+            _invlist_intersection(posixes,
+                                  PL_XPosix_ptrs[_CC_ASCII],
+                                  &posixes);
+        }
+        if (nposixes) {
+            if (DEPENDS_SEMANTICS) {
+                /* Under /d, everything in the upper half of the Latin1 range
+                 * matches these complements */
+                ANYOF_FLAGS(ret) |= ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII;
+            }
+            else if (AT_LEAST_ASCII_RESTRICTED) {
+                /* Under /a and /aa, everything above ASCII matches these
+                 * complements */
+                _invlist_union_complement_2nd(nposixes,
+                                              PL_XPosix_ptrs[_CC_ASCII],
+                                              &nposixes);
+            }
+            if (posixes) {
+                _invlist_union(posixes, nposixes, &posixes);
+                SvREFCNT_dec_NN(nposixes);
+            }
+            else {
+                posixes = nposixes;
+            }
+        }
+        if (! DEPENDS_SEMANTICS) {
+            if (cp_list) {
+                _invlist_union(cp_list, posixes, &cp_list);
+                SvREFCNT_dec_NN(posixes);
+            }
+            else {
+                cp_list = posixes;
+            }
+        }
+        else {
+            /* Under /d, we put into a separate list the Latin1 things that
+             * match only when the target string is utf8 */
+            SV* nonascii_but_latin1_properties = NULL;
+            _invlist_intersection(posixes, PL_UpperLatin1,
+                                  &nonascii_but_latin1_properties);
+            _invlist_subtract(posixes, nonascii_but_latin1_properties,
+                              &posixes);
+            if (cp_list) {
+                _invlist_union(cp_list, posixes, &cp_list);
+                SvREFCNT_dec_NN(posixes);
+            }
+            else {
+                cp_list = posixes;
+            }
+
+            if (depends_list) {
+                _invlist_union(depends_list, nonascii_but_latin1_properties,
+                               &depends_list);
+                SvREFCNT_dec_NN(nonascii_but_latin1_properties);
+            }
+            else {
+                depends_list = nonascii_but_latin1_properties;
+            }
+        }
+    }
+
+    /* And combine the result (if any) with any inversion list from properties.
+     * The lists are kept separate up to now so that we can distinguish the two
+     * in regards to matching above-Unicode.  A run-time warning is generated
+     * if a Unicode property is matched against a non-Unicode code point. But,
+     * we allow user-defined properties to match anything, without any warning,
+     * and we also suppress the warning if there is a portion of the character
+     * class that isn't a Unicode property, and which matches above Unicode, \W
+     * or [\x{110000}] for example.
+     * (Note that in this case, unlike the Posix one above, there is no
+     * <depends_list>, because having a Unicode property forces Unicode
+     * semantics */
+    if (properties) {
+        if (cp_list) {
+
+            /* If it matters to the final outcome, see if a non-property
+             * component of the class matches above Unicode.  If so, the
+             * warning gets suppressed.  This is true even if just a single
+             * such code point is specified, as though not strictly correct if
+             * another such code point is matched against, the fact that they
+             * are using above-Unicode code points indicates they should know
+             * the issues involved */
+            if (warn_super) {
+                warn_super = ! (invert
+                               ^ (invlist_highest(cp_list) > PERL_UNICODE_MAX));
+            }
+
+            _invlist_union(properties, cp_list, &cp_list);
+            SvREFCNT_dec_NN(properties);
+        }
+        else {
+            cp_list = properties;
+        }
+
+        if (warn_super) {
+            ANYOF_FLAGS(ret) |= ANYOF_WARN_SUPER;
+        }
+    }
+
+    /* Here, we have calculated what code points should be in the character
+     * class.
+     *
+     * Now we can see about various optimizations.  Fold calculation (which we
+     * did above) needs to take place before inversion.  Otherwise /[^k]/i
+     * would invert to include K, which under /i would match k, which it
+     * shouldn't.  Therefore we can't invert folded locale now, as it won't be
+     * folded until runtime */
+
+    /* If we didn't do folding, it's because some information isn't available
+     * until runtime; set the run-time fold flag for these.  (We don't have to
+     * worry about properties folding, as that is taken care of by the swash
+     * fetching).  We know to set the flag if we have a non-NULL list for UTF-8
+     * locales, or the class matches at least one 0-255 range code point */
+    if (LOC && FOLD) {
+        if (only_utf8_locale_list) {
+            ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD;
+        }
+        else if (cp_list) { /* Look to see if there a 0-255 code point is in
+                               the list */
+            UV start, end;
+            invlist_iterinit(cp_list);
+            if (invlist_iternext(cp_list, &start, &end) && start < 256) {
+                ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD;
+            }
+            invlist_iterfinish(cp_list);
+        }
+    }
+
+    /* Optimize inverted simple patterns (e.g. [^a-z]) when everything is known
+     * at compile time.  Besides not inverting folded locale now, we can't
+     * invert if there are things such as \w, which aren't known until runtime
+     * */
+    if (cp_list
+        && invert
+        && ! (ANYOF_FLAGS(ret) & (ANYOF_LOCALE_FLAGS))
+       && ! depends_list
+       && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
+    {
+        _invlist_invert(cp_list);
+
+        /* Any swash can't be used as-is, because we've inverted things */
+        if (swash) {
+            SvREFCNT_dec_NN(swash);
+            swash = NULL;
+        }
+
+       /* Clear the invert flag since have just done it here */
+       invert = FALSE;
+    }
+
+    if (ret_invlist) {
+        assert(cp_list);
+
+        *ret_invlist = cp_list;
+        SvREFCNT_dec(swash);
+
+        /* Discard the generated node */
+        if (SIZE_ONLY) {
+            RExC_size = orig_size;
+        }
+        else {
+            RExC_emit = orig_emit;
+        }
+        return orig_emit;
+    }
+
+    /* Some character classes are equivalent to other nodes.  Such nodes take
+     * up less room and generally fewer operations to execute than ANYOF nodes.
+     * Above, we checked for and optimized into some such equivalents for
+     * certain common classes that are easy to test.  Getting to this point in
+     * the code means that the class didn't get optimized there.  Since this
+     * code is only executed in Pass 2, it is too late to save space--it has
+     * been allocated in Pass 1, and currently isn't given back.  But turning
+     * things into an EXACTish node can allow the optimizer to join it to any
+     * adjacent such nodes.  And if the class is equivalent to things like /./,
+     * expensive run-time swashes can be avoided.  Now that we have more
+     * complete information, we can find things necessarily missed by the
+     * earlier code.  I (khw) am not sure how much to look for here.  It would
+     * be easy, but perhaps too slow, to check any candidates against all the
+     * node types they could possibly match using _invlistEQ(). */
+
+    if (cp_list
+        && ! invert
+        && ! depends_list
+        && ! (ANYOF_FLAGS(ret) & (ANYOF_LOCALE_FLAGS))
+        && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
+
+           /* We don't optimize if we are supposed to make sure all non-Unicode
+            * code points raise a warning, as only ANYOF nodes have this check.
+            * */
+        && ! ((ANYOF_FLAGS(ret) & ANYOF_WARN_SUPER) && ALWAYS_WARN_SUPER))
+    {
+        UV start, end;
+        U8 op = END;  /* The optimzation node-type */
+        const char * cur_parse= RExC_parse;
+
+        invlist_iterinit(cp_list);
+        if (! invlist_iternext(cp_list, &start, &end)) {
+
+            /* Here, the list is empty.  This happens, for example, when a
+             * Unicode property is the only thing in the character class, and
+             * it doesn't match anything.  (perluniprops.pod notes such
+             * properties) */
+            op = OPFAIL;
+            *flagp |= HASWIDTH|SIMPLE;
+        }
+        else if (start == end) {    /* The range is a single code point */
+            if (! invlist_iternext(cp_list, &start, &end)
+
+                    /* Don't do this optimization if it would require changing
+                     * the pattern to UTF-8 */
+                && (start < 256 || UTF))
+            {
+                /* Here, the list contains a single code point.  Can optimize
+                 * into an EXACTish node */
+
+                value = start;
+
+                if (! FOLD) {
+                    op = (LOC)
+                         ? EXACTL
+                         : EXACT;
+                }
+                else if (LOC) {
+
+                    /* A locale node under folding with one code point can be
+                     * an EXACTFL, as its fold won't be calculated until
+                     * runtime */
+                    op = EXACTFL;
+                }
+                else {
+
+                    /* Here, we are generally folding, but there is only one
+                     * code point to match.  If we have to, we use an EXACT
+                     * node, but it would be better for joining with adjacent
+                     * nodes in the optimization pass if we used the same
+                     * EXACTFish node that any such are likely to be.  We can
+                     * do this iff the code point doesn't participate in any
+                     * folds.  For example, an EXACTF of a colon is the same as
+                     * an EXACT one, since nothing folds to or from a colon. */
+                    if (value < 256) {
+                        if (IS_IN_SOME_FOLD_L1(value)) {
+                            op = EXACT;
+                        }
+                    }
+                    else {
+                        if (_invlist_contains_cp(PL_utf8_foldable, value)) {
+                            op = EXACT;
+                        }
+                    }
+
+                    /* If we haven't found the node type, above, it means we
+                     * can use the prevailing one */
+                    if (op == END) {
+                        op = compute_EXACTish(pRExC_state);
+                    }
+                }
+            }
+        }
+        else if (start == 0) {
+            if (end == UV_MAX) {
+                op = SANY;
+                *flagp |= HASWIDTH|SIMPLE;
+                MARK_NAUGHTY(1);
+            }
+            else if (end == '\n' - 1
+                    && invlist_iternext(cp_list, &start, &end)
+                    && start == '\n' + 1 && end == UV_MAX)
+            {
+                op = REG_ANY;
+                *flagp |= HASWIDTH|SIMPLE;
+                MARK_NAUGHTY(1);
+            }
+        }
+        invlist_iterfinish(cp_list);
+
+        if (op != END) {
+            RExC_parse = (char *)orig_parse;
+            RExC_emit = (regnode *)orig_emit;
+
+            ret = reg_node(pRExC_state, op);
+
+            RExC_parse = (char *)cur_parse;
+
+            if (PL_regkind[op] == EXACT) {
+                alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value,
+                                           TRUE /* downgradable to EXACT */
+                                          );
+            }
+
+            SvREFCNT_dec_NN(cp_list);
+            return ret;
+        }
+    }
+
+    /* Here, <cp_list> contains all the code points we can determine at
+     * compile time that match under all conditions.  Go through it, and
+     * for things that belong in the bitmap, put them there, and delete from
+     * <cp_list>.  While we are at it, see if everything above 255 is in the
+     * list, and if so, set a flag to speed up execution */
+
+    populate_ANYOF_from_invlist(ret, &cp_list);
+
+    if (invert) {
+        ANYOF_FLAGS(ret) |= ANYOF_INVERT;
+    }
+
+    /* Here, the bitmap has been populated with all the Latin1 code points that
+     * always match.  Can now add to the overall list those that match only
+     * when the target string is UTF-8 (<depends_list>). */
+    if (depends_list) {
+       if (cp_list) {
+           _invlist_union(cp_list, depends_list, &cp_list);
+           SvREFCNT_dec_NN(depends_list);
+       }
+       else {
+           cp_list = depends_list;
+       }
+        ANYOF_FLAGS(ret) |= ANYOF_HAS_UTF8_NONBITMAP_MATCHES;
+    }
+
+    /* If there is a swash and more than one element, we can't use the swash in
+     * the optimization below. */
+    if (swash && element_count > 1) {
+       SvREFCNT_dec_NN(swash);
+       swash = NULL;
+    }
+
+    /* Note that the optimization of using 'swash' if it is the only thing in
+     * the class doesn't have us change swash at all, so it can include things
+     * that are also in the bitmap; otherwise we have purposely deleted that
+     * duplicate information */
+    set_ANYOF_arg(pRExC_state, ret, cp_list,
+                  (HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
+                   ? listsv : NULL,
+                  only_utf8_locale_list,
+                  swash, has_user_defined_property);
+
+    *flagp |= HASWIDTH|SIMPLE;
+
+    if (ANYOF_FLAGS(ret) & ANYOF_LOCALE_FLAGS) {
+        RExC_contains_locale = 1;
+    }
+
+    return ret;
+}
+
+#undef HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
+
+STATIC void
+S_set_ANYOF_arg(pTHX_ RExC_state_t* const pRExC_state,
+                regnode* const node,
+                SV* const cp_list,
+                SV* const runtime_defns,
+                SV* const only_utf8_locale_list,
+                SV* const swash,
+                const bool has_user_defined_property)
+{
+    /* Sets the arg field of an ANYOF-type node 'node', using information about
+     * the node passed-in.  If there is nothing outside the node's bitmap, the
+     * arg is set to ANYOF_ONLY_HAS_BITMAP.  Otherwise, it sets the argument to
+     * the count returned by add_data(), having allocated and stored an array,
+     * av, that that count references, as follows:
+     *  av[0] stores the character class description in its textual form.
+     *        This is used later (regexec.c:Perl_regclass_swash()) to
+     *        initialize the appropriate swash, and is also useful for dumping
+     *        the regnode.  This is set to &PL_sv_undef if the textual
+     *        description is not needed at run-time (as happens if the other
+     *        elements completely define the class)
+     *  av[1] if &PL_sv_undef, is a placeholder to later contain the swash
+     *        computed from av[0].  But if no further computation need be done,
+     *        the swash is stored here now (and av[0] is &PL_sv_undef).
+     *  av[2] stores the inversion list of code points that match only if the
+     *        current locale is UTF-8
+     *  av[3] stores the cp_list inversion list for use in addition or instead
+     *        of av[0]; used only if cp_list exists and av[1] is &PL_sv_undef.
+     *        (Otherwise everything needed is already in av[0] and av[1])
+     *  av[4] is set if any component of the class is from a user-defined
+     *        property; used only if av[3] exists */
+
+    UV n;
+
+    PERL_ARGS_ASSERT_SET_ANYOF_ARG;
+
+    if (! cp_list && ! runtime_defns && ! only_utf8_locale_list) {
+        assert(! (ANYOF_FLAGS(node)
+                  & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+                     |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES)));
+       ARG_SET(node, ANYOF_ONLY_HAS_BITMAP);
+    }
+    else {
+       AV * const av = newAV();
+       SV *rv;
+
+        assert(ANYOF_FLAGS(node)
+               & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+                  |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES|ANYOF_LOC_FOLD));
+
+       av_store(av, 0, (runtime_defns)
+                       ? SvREFCNT_inc(runtime_defns) : &PL_sv_undef);
+       if (swash) {
+           assert(cp_list);
+           av_store(av, 1, swash);
+           SvREFCNT_dec_NN(cp_list);
+       }
+       else {
+           av_store(av, 1, &PL_sv_undef);
+           if (cp_list) {
+               av_store(av, 3, cp_list);
+               av_store(av, 4, newSVuv(has_user_defined_property));
+           }
+       }
+
+        if (only_utf8_locale_list) {
+           av_store(av, 2, only_utf8_locale_list);
+        }
+        else {
+           av_store(av, 2, &PL_sv_undef);
+        }
+
+       rv = newRV_noinc(MUTABLE_SV(av));
+       n = add_data(pRExC_state, STR_WITH_LEN("s"));
+       RExC_rxi->data->data[n] = (void*)rv;
+       ARG_SET(node, n);
+    }
+}
+
+#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
+SV *
+Perl__get_regclass_nonbitmap_data(pTHX_ const regexp *prog,
+                                        const regnode* node,
+                                        bool doinit,
+                                        SV** listsvp,
+                                        SV** only_utf8_locale_ptr,
+                                        SV*  exclude_list)
+
+{
+    /* For internal core use only.
+     * Returns the swash for the input 'node' in the regex 'prog'.
+     * If <doinit> is 'true', will attempt to create the swash if not already
+     *   done.
+     * If <listsvp> is non-null, will return the printable contents of the
+     *    swash.  This can be used to get debugging information even before the
+     *    swash exists, by calling this function with 'doinit' set to false, in
+     *    which case the components that will be used to eventually create the
+     *    swash are returned  (in a printable form).
+     * If <exclude_list> is not NULL, it is an inversion list of things to
+     *    exclude from what's returned in <listsvp>.
+     * Tied intimately to how S_set_ANYOF_arg sets up the data structure.  Note
+     * that, in spite of this function's name, the swash it returns may include
+     * the bitmap data as well */
+
+    SV *sw  = NULL;
+    SV *si  = NULL;         /* Input swash initialization string */
+    SV*  invlist = NULL;
+
+    RXi_GET_DECL(prog,progi);
+    const struct reg_data * const data = prog ? progi->data : NULL;
+
+    PERL_ARGS_ASSERT__GET_REGCLASS_NONBITMAP_DATA;
+
+    assert(ANYOF_FLAGS(node)
+        & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+           |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES|ANYOF_LOC_FOLD));
+
+    if (data && data->count) {
+       const U32 n = ARG(node);
+
+       if (data->what[n] == 's') {
+           SV * const rv = MUTABLE_SV(data->data[n]);
+           AV * const av = MUTABLE_AV(SvRV(rv));
+           SV **const ary = AvARRAY(av);
+           U8 swash_init_flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+
+           si = *ary;  /* ary[0] = the string to initialize the swash with */
+
+           /* Elements 3 and 4 are either both present or both absent. [3] is
+            * any inversion list generated at compile time; [4] indicates if
+            * that inversion list has any user-defined properties in it. */
+            if (av_tindex(av) >= 2) {
+                if (only_utf8_locale_ptr
+                    && ary[2]
+                    && ary[2] != &PL_sv_undef)
+                {
+                    *only_utf8_locale_ptr = ary[2];
+                }
+                else {
+                    assert(only_utf8_locale_ptr);
+                    *only_utf8_locale_ptr = NULL;
+                }
+
+                if (av_tindex(av) >= 3) {
+                    invlist = ary[3];
+                    if (SvUV(ary[4])) {
+                        swash_init_flags |= _CORE_SWASH_INIT_USER_DEFINED_PROPERTY;
+                    }
+                }
+                else {
+                    invlist = NULL;
+                }
+           }
+
+           /* Element [1] is reserved for the set-up swash.  If already there,
+            * return it; if not, create it and store it there */
+           if (ary[1] && SvROK(ary[1])) {
+               sw = ary[1];
+           }
+           else if (doinit && ((si && si != &PL_sv_undef)
+                                 || (invlist && invlist != &PL_sv_undef))) {
+               assert(si);
+               sw = _core_swash_init("utf8", /* the utf8 package */
+                                     "", /* nameless */
+                                     si,
+                                     1, /* binary */
+                                     0, /* not from tr/// */
+                                     invlist,
+                                     &swash_init_flags);
+               (void)av_store(av, 1, sw);
+           }
+       }
+    }
+
+    /* If requested, return a printable version of what this swash matches */
+    if (listsvp) {
+       SV* matches_string = newSVpvs("");
+
+        /* The swash should be used, if possible, to get the data, as it
+         * contains the resolved data.  But this function can be called at
+         * compile-time, before everything gets resolved, in which case we
+         * return the currently best available information, which is the string
+         * that will eventually be used to do that resolving, 'si' */
+       if ((! sw || (invlist = _get_swash_invlist(sw)) == NULL)
+            && (si && si != &PL_sv_undef))
+        {
+           sv_catsv(matches_string, si);
+       }
+
+       /* Add the inversion list to whatever we have.  This may have come from
+        * the swash, or from an input parameter */
+       if (invlist) {
+            if (exclude_list) {
+                SV* clone = invlist_clone(invlist);
+                _invlist_subtract(clone, exclude_list, &clone);
+                sv_catsv(matches_string, _invlist_contents(clone));
+                SvREFCNT_dec_NN(clone);
+            }
+            else {
+                sv_catsv(matches_string, _invlist_contents(invlist));
+            }
+       }
+       *listsvp = matches_string;
+    }
+
+    return sw;
+}
+#endif /* !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION) */
+
+/* reg_skipcomment()
+
+   Absorbs an /x style # comment from the input stream,
+   returning a pointer to the first character beyond the comment, or if the
+   comment terminates the pattern without anything following it, this returns
+   one past the final character of the pattern (in other words, RExC_end) and
+   sets the REG_RUN_ON_COMMENT_SEEN flag.
+
+   Note it's the callers responsibility to ensure that we are
+   actually in /x mode
+
+*/
+
+PERL_STATIC_INLINE char*
+S_reg_skipcomment(RExC_state_t *pRExC_state, char* p)
+{
+    PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
+
+    assert(*p == '#');
+
+    while (p < RExC_end) {
+        if (*(++p) == '\n') {
+            return p+1;
+        }
+    }
+
+    /* we ran off the end of the pattern without ending the comment, so we have
+     * to add an \n when wrapping */
+    RExC_seen |= REG_RUN_ON_COMMENT_SEEN;
+    return p;
+}
+
+/* nextchar()
+
+   Advances the parse position, and optionally absorbs
+   "whitespace" from the inputstream.
+
+   Without /x "whitespace" means (?#...) style comments only,
+   with /x this means (?#...) and # comments and whitespace proper.
+
+   Returns the RExC_parse point from BEFORE the scan occurs.
+
+   This is the /x friendly way of saying RExC_parse++.
+*/
+
+STATIC char*
+S_nextchar(pTHX_ RExC_state_t *pRExC_state)
+{
+    char* const retval = RExC_parse++;
+
+    PERL_ARGS_ASSERT_NEXTCHAR;
+
+    for (;;) {
+       if (RExC_end - RExC_parse >= 3
+           && *RExC_parse == '('
+           && RExC_parse[1] == '?'
+           && RExC_parse[2] == '#')
+       {
+           while (*RExC_parse != ')') {
+               if (RExC_parse == RExC_end)
+                   FAIL("Sequence (?#... not terminated");
+               RExC_parse++;
+           }
+           RExC_parse++;
+           continue;
+       }
+       if (RExC_flags & RXf_PMf_EXTENDED) {
+            char * p = regpatws(pRExC_state, RExC_parse,
+                                          TRUE); /* means recognize comments */
+            if (p != RExC_parse) {
+                RExC_parse = p;
+                continue;
+            }
+       }
+        return retval;
+    }
+}
+
+STATIC regnode *
+S_regnode_guts(pTHX_ RExC_state_t *pRExC_state, const U8 op, const STRLEN extra_size, const char* const name)
+{
+    /* Allocate a regnode for 'op' and returns it, with 'extra_size' extra
+     * space.  In pass1, it aligns and increments RExC_size; in pass2,
+     * RExC_emit */
+
+    regnode * const ret = RExC_emit;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGNODE_GUTS;
+
+    assert(extra_size >= regarglen[op]);
+
+    if (SIZE_ONLY) {
+       SIZE_ALIGN(RExC_size);
+       RExC_size += 1 + extra_size;
+       return(ret);
+    }
+    if (RExC_emit >= RExC_emit_bound)
+        Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
+                  op, (void*)RExC_emit, (void*)RExC_emit_bound);
+
+    NODE_ALIGN_FILL(ret);
+#ifndef RE_TRACK_PATTERN_OFFSETS
+    PERL_UNUSED_ARG(name);
+#else
+    if (RExC_offsets) {         /* MJD */
+       MJD_OFFSET_DEBUG(
+              ("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
+              name, __LINE__,
+              PL_reg_name[op],
+              (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
+               ? "Overwriting end of array!\n" : "OK",
+              (UV)(RExC_emit - RExC_emit_start),
+              (UV)(RExC_parse - RExC_start),
+              (UV)RExC_offsets[0]));
+       Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
+    }
+#endif
+    return(ret);
+}
+
+/*
+- reg_node - emit a node
+*/
+STATIC regnode *                       /* Location. */
+S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
+{
+    regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reg_node");
+
+    PERL_ARGS_ASSERT_REG_NODE;
+
+    assert(regarglen[op] == 0);
+
+    if (PASS2) {
+        regnode *ptr = ret;
+        FILL_ADVANCE_NODE(ptr, op);
+        RExC_emit = ptr;
+    }
+    return(ret);
+}
+
+/*
+- reganode - emit a node with an argument
+*/
+STATIC regnode *                       /* Location. */
+S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
+{
+    regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reganode");
+
+    PERL_ARGS_ASSERT_REGANODE;
+
+    assert(regarglen[op] == 1);
+
+    if (PASS2) {
+        regnode *ptr = ret;
+        FILL_ADVANCE_NODE_ARG(ptr, op, arg);
+        RExC_emit = ptr;
+    }
+    return(ret);
+}
+
+STATIC regnode *
+S_reg2Lanode(pTHX_ RExC_state_t *pRExC_state, const U8 op, const U32 arg1, const I32 arg2)
+{
+    /* emit a node with U32 and I32 arguments */
+
+    regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reg2Lanode");
+
+    PERL_ARGS_ASSERT_REG2LANODE;
+
+    assert(regarglen[op] == 2);
+
+    if (PASS2) {
+        regnode *ptr = ret;
+        FILL_ADVANCE_NODE_2L_ARG(ptr, op, arg1, arg2);
+        RExC_emit = ptr;
+    }
+    return(ret);
+}
+
+/*
+- reginsert - insert an operator in front of already-emitted operand
+*
+* Means relocating the operand.
+*/
+STATIC void
+S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
+{
+    regnode *src;
+    regnode *dst;
+    regnode *place;
+    const int offset = regarglen[(U8)op];
+    const int size = NODE_STEP_REGNODE + offset;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGINSERT;
+    PERL_UNUSED_CONTEXT;
+    PERL_UNUSED_ARG(depth);
+/* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
+    DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
+    if (SIZE_ONLY) {
+       RExC_size += size;
+       return;
+    }
+
+    src = RExC_emit;
+    RExC_emit += size;
+    dst = RExC_emit;
+    if (RExC_open_parens) {
+        int paren;
+        /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
+        for ( paren=0 ; paren < RExC_npar ; paren++ ) {
+            if ( RExC_open_parens[paren] >= opnd ) {
+                /*DEBUG_PARSE_FMT("open"," - %d",size);*/
+                RExC_open_parens[paren] += size;
+            } else {
+                /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
+            }
+            if ( RExC_close_parens[paren] >= opnd ) {
+                /*DEBUG_PARSE_FMT("close"," - %d",size);*/
+                RExC_close_parens[paren] += size;
+            } else {
+                /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
+            }
+        }
+    }
+
+    while (src > opnd) {
+       StructCopy(--src, --dst, regnode);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+        if (RExC_offsets) {     /* MJD 20010112 */
+           MJD_OFFSET_DEBUG(
+                 ("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
+                  "reg_insert",
+                 __LINE__,
+                 PL_reg_name[op],
+                  (UV)(dst - RExC_emit_start) > RExC_offsets[0]
+                   ? "Overwriting end of array!\n" : "OK",
+                  (UV)(src - RExC_emit_start),
+                  (UV)(dst - RExC_emit_start),
+                  (UV)RExC_offsets[0]));
+           Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
+           Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
+        }
+#endif
+    }
+
+
+    place = opnd;              /* Op node, where operand used to be. */
+#ifdef RE_TRACK_PATTERN_OFFSETS
+    if (RExC_offsets) {         /* MJD */
+       MJD_OFFSET_DEBUG(
+              ("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
+              "reginsert",
+             __LINE__,
+             PL_reg_name[op],
+              (UV)(place - RExC_emit_start) > RExC_offsets[0]
+              ? "Overwriting end of array!\n" : "OK",
+              (UV)(place - RExC_emit_start),
+              (UV)(RExC_parse - RExC_start),
+              (UV)RExC_offsets[0]));
+       Set_Node_Offset(place, RExC_parse);
+       Set_Node_Length(place, 1);
+    }
+#endif
+    src = NEXTOPER(place);
+    FILL_ADVANCE_NODE(place, op);
+    Zero(src, offset, regnode);
+}
+
+/*
+- regtail - set the next-pointer at the end of a node chain of p to val.
+- SEE ALSO: regtail_study
+*/
+/* TODO: All three parms should be const */
+STATIC void
+S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p,
+                const regnode *val,U32 depth)
+{
+    regnode *scan;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGTAIL;
+#ifndef DEBUGGING
+    PERL_UNUSED_ARG(depth);
+#endif
+
+    if (SIZE_ONLY)
+       return;
+
+    /* Find last node. */
+    scan = p;
+    for (;;) {
+       regnode * const temp = regnext(scan);
+        DEBUG_PARSE_r({
+            DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
+            regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
+            PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
+                SvPV_nolen_const(RExC_mysv), REG_NODE_NUM(scan),
+                    (temp == NULL ? "->" : ""),
+                    (temp == NULL ? PL_reg_name[OP(val)] : "")
+            );
+        });
+        if (temp == NULL)
+            break;
+        scan = temp;
+    }
+
+    if (reg_off_by_arg[OP(scan)]) {
+        ARG_SET(scan, val - scan);
+    }
+    else {
+        NEXT_OFF(scan) = val - scan;
+    }
+}
+
+#ifdef DEBUGGING
+/*
+- regtail_study - set the next-pointer at the end of a node chain of p to val.
+- Look for optimizable sequences at the same time.
+- currently only looks for EXACT chains.
+
+This is experimental code. The idea is to use this routine to perform
+in place optimizations on branches and groups as they are constructed,
+with the long term intention of removing optimization from study_chunk so
+that it is purely analytical.
+
+Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
+to control which is which.
+
+*/
+/* TODO: All four parms should be const */
+
+STATIC U8
+S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p,
+                      const regnode *val,U32 depth)
+{
+    regnode *scan;
+    U8 exact = PSEUDO;
+#ifdef EXPERIMENTAL_INPLACESCAN
+    I32 min = 0;
+#endif
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGTAIL_STUDY;
+
+
+    if (SIZE_ONLY)
+        return exact;
+
+    /* Find last node. */
+
+    scan = p;
+    for (;;) {
+        regnode * const temp = regnext(scan);
+#ifdef EXPERIMENTAL_INPLACESCAN
+        if (PL_regkind[OP(scan)] == EXACT) {
+           bool unfolded_multi_char;   /* Unexamined in this routine */
+            if (join_exact(pRExC_state, scan, &min,
+                           &unfolded_multi_char, 1, val, depth+1))
+                return EXACT;
+       }
+#endif
+        if ( exact ) {
+            switch (OP(scan)) {
+                case EXACT:
+                case EXACTL:
+                case EXACTF:
+                case EXACTFA_NO_TRIE:
+                case EXACTFA:
+                case EXACTFU:
+                case EXACTFLU8:
+                case EXACTFU_SS:
+                case EXACTFL:
+                        if( exact == PSEUDO )
+                            exact= OP(scan);
+                        else if ( exact != OP(scan) )
+                            exact= 0;
+                case NOTHING:
+                    break;
+                default:
+                    exact= 0;
+            }
+        }
+        DEBUG_PARSE_r({
+            DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
+            regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
+            PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
+                SvPV_nolen_const(RExC_mysv),
+                REG_NODE_NUM(scan),
+                PL_reg_name[exact]);
+        });
+       if (temp == NULL)
+           break;
+       scan = temp;
+    }
+    DEBUG_PARSE_r({
+        DEBUG_PARSE_MSG("");
+        regprop(RExC_rx, RExC_mysv, val, NULL, pRExC_state);
+        PerlIO_printf(Perl_debug_log,
+                      "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
+                     SvPV_nolen_const(RExC_mysv),
+                     (IV)REG_NODE_NUM(val),
+                     (IV)(val - scan)
+        );
+    });
+    if (reg_off_by_arg[OP(scan)]) {
+       ARG_SET(scan, val - scan);
+    }
+    else {
+       NEXT_OFF(scan) = val - scan;
+    }
+
+    return exact;
+}
+#endif
+
+/*
+ - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
+ */
+#ifdef DEBUGGING
+
+static void
+S_regdump_intflags(pTHX_ const char *lead, const U32 flags)
+{
+    int bit;
+    int set=0;
+
+    ASSUME(REG_INTFLAGS_NAME_SIZE <= sizeof(flags)*8);
+
+    for (bit=0; bit<REG_INTFLAGS_NAME_SIZE; bit++) {
+        if (flags & (1<<bit)) {
+            if (!set++ && lead)
+                PerlIO_printf(Perl_debug_log, "%s",lead);
+            PerlIO_printf(Perl_debug_log, "%s ",PL_reg_intflags_name[bit]);
+        }
+    }
+    if (lead)  {
+        if (set)
+            PerlIO_printf(Perl_debug_log, "\n");
+        else
+            PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
+    }
+}
+
+static void
+S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
+{
+    int bit;
+    int set=0;
+    regex_charset cs;
+
+    ASSUME(REG_EXTFLAGS_NAME_SIZE <= sizeof(flags)*8);
+
+    for (bit=0; bit<REG_EXTFLAGS_NAME_SIZE; bit++) {
+        if (flags & (1<<bit)) {
+           if ((1<<bit) & RXf_PMf_CHARSET) {   /* Output separately, below */
+               continue;
+           }
+            if (!set++ && lead)
+                PerlIO_printf(Perl_debug_log, "%s",lead);
+            PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
+        }
+    }
+    if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
+            if (!set++ && lead) {
+                PerlIO_printf(Perl_debug_log, "%s",lead);
+            }
+            switch (cs) {
+                case REGEX_UNICODE_CHARSET:
+                    PerlIO_printf(Perl_debug_log, "UNICODE");
+                    break;
+                case REGEX_LOCALE_CHARSET:
+                    PerlIO_printf(Perl_debug_log, "LOCALE");
+                    break;
+                case REGEX_ASCII_RESTRICTED_CHARSET:
+                    PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
+                    break;
+                case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+                    PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
+                    break;
+                default:
+                    PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
+                    break;
+            }
+    }
+    if (lead)  {
+        if (set)
+            PerlIO_printf(Perl_debug_log, "\n");
+        else
+            PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
+    }
+}
+#endif
+
+void
+Perl_regdump(pTHX_ const regexp *r)
+{
+#ifdef DEBUGGING
+    SV * const sv = sv_newmortal();
+    SV *dsv= sv_newmortal();
+    RXi_GET_DECL(r,ri);
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGDUMP;
+
+    (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
+
+    /* Header fields of interest. */
+    if (r->anchored_substr) {
+       RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
+           RE_SV_DUMPLEN(r->anchored_substr), 30);
+       PerlIO_printf(Perl_debug_log,
+                     "anchored %s%s at %"IVdf" ",
+                     s, RE_SV_TAIL(r->anchored_substr),
+                     (IV)r->anchored_offset);
+    } else if (r->anchored_utf8) {
+       RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
+           RE_SV_DUMPLEN(r->anchored_utf8), 30);
+       PerlIO_printf(Perl_debug_log,
+                     "anchored utf8 %s%s at %"IVdf" ",
+                     s, RE_SV_TAIL(r->anchored_utf8),
+                     (IV)r->anchored_offset);
+    }
+    if (r->float_substr) {
+       RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
+           RE_SV_DUMPLEN(r->float_substr), 30);
+       PerlIO_printf(Perl_debug_log,
+                     "floating %s%s at %"IVdf"..%"UVuf" ",
+                     s, RE_SV_TAIL(r->float_substr),
+                     (IV)r->float_min_offset, (UV)r->float_max_offset);
+    } else if (r->float_utf8) {
+       RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
+           RE_SV_DUMPLEN(r->float_utf8), 30);
+       PerlIO_printf(Perl_debug_log,
+                     "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
+                     s, RE_SV_TAIL(r->float_utf8),
+                     (IV)r->float_min_offset, (UV)r->float_max_offset);
+    }
+    if (r->check_substr || r->check_utf8)
+       PerlIO_printf(Perl_debug_log,
+                     (const char *)
+                     (r->check_substr == r->float_substr
+                      && r->check_utf8 == r->float_utf8
+                      ? "(checking floating" : "(checking anchored"));
+    if (r->intflags & PREGf_NOSCAN)
+       PerlIO_printf(Perl_debug_log, " noscan");
+    if (r->extflags & RXf_CHECK_ALL)
+       PerlIO_printf(Perl_debug_log, " isall");
+    if (r->check_substr || r->check_utf8)
+       PerlIO_printf(Perl_debug_log, ") ");
+
+    if (ri->regstclass) {
+        regprop(r, sv, ri->regstclass, NULL, NULL);
+       PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
+    }
+    if (r->intflags & PREGf_ANCH) {
+       PerlIO_printf(Perl_debug_log, "anchored");
+        if (r->intflags & PREGf_ANCH_MBOL)
+           PerlIO_printf(Perl_debug_log, "(MBOL)");
+        if (r->intflags & PREGf_ANCH_SBOL)
+           PerlIO_printf(Perl_debug_log, "(SBOL)");
+        if (r->intflags & PREGf_ANCH_GPOS)
+           PerlIO_printf(Perl_debug_log, "(GPOS)");
+       (void)PerlIO_putc(Perl_debug_log, ' ');
+    }
+    if (r->intflags & PREGf_GPOS_SEEN)
+       PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
+    if (r->intflags & PREGf_SKIP)
+       PerlIO_printf(Perl_debug_log, "plus ");
+    if (r->intflags & PREGf_IMPLICIT)
+       PerlIO_printf(Perl_debug_log, "implicit ");
+    PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
+    if (r->extflags & RXf_EVAL_SEEN)
+       PerlIO_printf(Perl_debug_log, "with eval ");
+    PerlIO_printf(Perl_debug_log, "\n");
+    DEBUG_FLAGS_r({
+        regdump_extflags("r->extflags: ",r->extflags);
+        regdump_intflags("r->intflags: ",r->intflags);
+    });
+#else
+    PERL_ARGS_ASSERT_REGDUMP;
+    PERL_UNUSED_CONTEXT;
+    PERL_UNUSED_ARG(r);
+#endif /* DEBUGGING */
+}
+
+/*
+- regprop - printable representation of opcode, with run time support
+*/
+
+void
+Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o, const regmatch_info *reginfo, const RExC_state_t *pRExC_state)
+{
+#ifdef DEBUGGING
+    int k;
+
+    /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
+    static const char * const anyofs[] = {
+#if _CC_WORDCHAR != 0 || _CC_DIGIT != 1 || _CC_ALPHA != 2 || _CC_LOWER != 3 \
+    || _CC_UPPER != 4 || _CC_PUNCT != 5 || _CC_PRINT != 6                   \
+    || _CC_ALPHANUMERIC != 7 || _CC_GRAPH != 8 || _CC_CASED != 9            \
+    || _CC_SPACE != 10 || _CC_BLANK != 11 || _CC_XDIGIT != 12               \
+    || _CC_CNTRL != 13 || _CC_ASCII != 14 || _CC_VERTSPACE != 15
+  #error Need to adjust order of anyofs[]
+#endif
+        "\\w",
+        "\\W",
+        "\\d",
+        "\\D",
+        "[:alpha:]",
+        "[:^alpha:]",
+        "[:lower:]",
+        "[:^lower:]",
+        "[:upper:]",
+        "[:^upper:]",
+        "[:punct:]",
+        "[:^punct:]",
+        "[:print:]",
+        "[:^print:]",
+        "[:alnum:]",
+        "[:^alnum:]",
+        "[:graph:]",
+        "[:^graph:]",
+        "[:cased:]",
+        "[:^cased:]",
+        "\\s",
+        "\\S",
+        "[:blank:]",
+        "[:^blank:]",
+        "[:xdigit:]",
+        "[:^xdigit:]",
+        "[:cntrl:]",
+        "[:^cntrl:]",
+        "[:ascii:]",
+        "[:^ascii:]",
+        "\\v",
+        "\\V"
+    };
+    RXi_GET_DECL(prog,progi);
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGPROP;
+
+    sv_setpvn(sv, "", 0);
+
+    if (OP(o) > REGNODE_MAX)           /* regnode.type is unsigned */
+       /* It would be nice to FAIL() here, but this may be called from
+          regexec.c, and it would be hard to supply pRExC_state. */
+       Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d",
+                                              (int)OP(o), (int)REGNODE_MAX);
+    sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
+
+    k = PL_regkind[OP(o)];
+
+    if (k == EXACT) {
+       sv_catpvs(sv, " ");
+       /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
+        * is a crude hack but it may be the best for now since
+        * we have no flag "this EXACTish node was UTF-8"
+        * --jhi */
+       pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
+                 PERL_PV_ESCAPE_UNI_DETECT |
+                 PERL_PV_ESCAPE_NONASCII   |
+                 PERL_PV_PRETTY_ELLIPSES   |
+                 PERL_PV_PRETTY_LTGT       |
+                 PERL_PV_PRETTY_NOCLEAR
+                 );
+    } else if (k == TRIE) {
+       /* print the details of the trie in dumpuntil instead, as
+        * progi->data isn't available here */
+        const char op = OP(o);
+        const U32 n = ARG(o);
+        const reg_ac_data * const ac = IS_TRIE_AC(op) ?
+               (reg_ac_data *)progi->data->data[n] :
+               NULL;
+        const reg_trie_data * const trie
+           = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
+
+        Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
+        DEBUG_TRIE_COMPILE_r(
+          Perl_sv_catpvf(aTHX_ sv,
+            "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
+            (UV)trie->startstate,
+            (IV)trie->statecount-1, /* -1 because of the unused 0 element */
+            (UV)trie->wordcount,
+            (UV)trie->minlen,
+            (UV)trie->maxlen,
+            (UV)TRIE_CHARCOUNT(trie),
+            (UV)trie->uniquecharcount
+          );
+        );
+        if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
+            sv_catpvs(sv, "[");
+            (void) put_charclass_bitmap_innards(sv,
+                                                (IS_ANYOF_TRIE(op))
+                                                 ? ANYOF_BITMAP(o)
+                                                 : TRIE_BITMAP(trie),
+                                                NULL);
+            sv_catpvs(sv, "]");
+        }
+
+    } else if (k == CURLY) {
+       if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
+           Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
+       Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
+    }
+    else if (k == WHILEM && o->flags)                  /* Ordinal/of */
+       Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
+    else if (k == REF || k == OPEN || k == CLOSE
+             || k == GROUPP || OP(o)==ACCEPT)
+    {
+        AV *name_list= NULL;
+       Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o));    /* Parenth number */
+       if ( RXp_PAREN_NAMES(prog) ) {
+            name_list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
+        } else if ( pRExC_state ) {
+            name_list= RExC_paren_name_list;
+        }
+        if (name_list) {
+            if ( k != REF || (OP(o) < NREF)) {
+                SV **name= av_fetch(name_list, ARG(o), 0 );
+               if (name)
+                   Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+            }
+            else {
+                SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
+                I32 *nums=(I32*)SvPVX(sv_dat);
+                SV **name= av_fetch(name_list, nums[0], 0 );
+                I32 n;
+                if (name) {
+                    for ( n=0; n<SvIVX(sv_dat); n++ ) {
+                        Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
+                                   (n ? "," : ""), (IV)nums[n]);
+                    }
+                    Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+                }
+            }
+        }
+        if ( k == REF && reginfo) {
+            U32 n = ARG(o);  /* which paren pair */
+            I32 ln = prog->offs[n].start;
+            if (prog->lastparen < n || ln == -1)
+                Perl_sv_catpvf(aTHX_ sv, ": FAIL");
+            else if (ln == prog->offs[n].end)
+                Perl_sv_catpvf(aTHX_ sv, ": ACCEPT - EMPTY STRING");
+            else {
+                const char *s = reginfo->strbeg + ln;
+                Perl_sv_catpvf(aTHX_ sv, ": ");
+                Perl_pv_pretty( aTHX_ sv, s, prog->offs[n].end - prog->offs[n].start, 32, 0, 0,
+                    PERL_PV_ESCAPE_UNI_DETECT|PERL_PV_PRETTY_NOCLEAR|PERL_PV_PRETTY_ELLIPSES|PERL_PV_PRETTY_QUOTE );
+            }
+        }
+    } else if (k == GOSUB) {
+        AV *name_list= NULL;
+        if ( RXp_PAREN_NAMES(prog) ) {
+            name_list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
+        } else if ( pRExC_state ) {
+            name_list= RExC_paren_name_list;
+        }
+
+        /* Paren and offset */
+       Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o));
+        if (name_list) {
+            SV **name= av_fetch(name_list, ARG(o), 0 );
+            if (name)
+                Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+        }
+    }
+    else if (k == VERB) {
+        if (!o->flags)
+            Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
+                          SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
+    } else if (k == LOGICAL)
+        /* 2: embedded, otherwise 1 */
+       Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags);
+    else if (k == ANYOF) {
+       const U8 flags = ANYOF_FLAGS(o);
+       int do_sep = 0;
+        SV* bitmap_invlist;  /* Will hold what the bit map contains */
+
+
+       if (OP(o) == ANYOFL)
+           sv_catpvs(sv, "{loc}");
+       if (flags & ANYOF_LOC_FOLD)
+           sv_catpvs(sv, "{i}");
+       Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
+       if (flags & ANYOF_INVERT)
+           sv_catpvs(sv, "^");
+
+        /* output what the standard cp 0-NUM_ANYOF_CODE_POINTS-1 bitmap matches
+         * */
+        do_sep = put_charclass_bitmap_innards(sv, ANYOF_BITMAP(o),
+                                                            &bitmap_invlist);
+
+        /* output any special charclass tests (used entirely under use
+         * locale) * */
+       if (ANYOF_POSIXL_TEST_ANY_SET(o)) {
+            int i;
+           for (i = 0; i < ANYOF_POSIXL_MAX; i++) {
+               if (ANYOF_POSIXL_TEST(o,i)) {
+                   sv_catpv(sv, anyofs[i]);
+                   do_sep = 1;
+               }
+            }
+        }
+
+       if ((flags & (ANYOF_MATCHES_ALL_ABOVE_BITMAP
+                      |ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+                      |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES
+                      |ANYOF_LOC_FOLD)))
+        {
+            if (do_sep) {
+                Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]);
+                if (flags & ANYOF_INVERT)
+                    /*make sure the invert info is in each */
+                    sv_catpvs(sv, "^");
+            }
+
+            if (flags & ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII) {
+                sv_catpvs(sv, "{non-utf8-latin1-all}");
+            }
+
+            if (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP)
+                sv_catpvs(sv, "{above_bitmap_all}");
+
+            if (ARG(o) != ANYOF_ONLY_HAS_BITMAP) {
+                SV *lv; /* Set if there is something outside the bit map. */
+                bool byte_output = FALSE;   /* If something has been output */
+                SV *only_utf8_locale;
+
+                /* Get the stuff that wasn't in the bitmap.  'bitmap_invlist'
+                 * is used to guarantee that nothing in the bitmap gets
+                 * returned */
+                (void) _get_regclass_nonbitmap_data(prog, o, FALSE,
+                                                    &lv, &only_utf8_locale,
+                                                    bitmap_invlist);
+                if (lv && lv != &PL_sv_undef) {
+                    char *s = savesvpv(lv);
+                    char * const origs = s;
+
+                    while (*s && *s != '\n')
+                        s++;
+
+                    if (*s == '\n') {
+                        const char * const t = ++s;
+
+                        if (flags & ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES) {
+                            sv_catpvs(sv, "{outside bitmap}");
+                        }
+                        else {
+                            sv_catpvs(sv, "{utf8}");
+                        }
+
+                        if (byte_output) {
+                            sv_catpvs(sv, " ");
+                        }
+
+                        while (*s) {
+                            if (*s == '\n') {
+
+                                /* Truncate very long output */
+                                if (s - origs > 256) {
+                                    Perl_sv_catpvf(aTHX_ sv,
+                                                "%.*s...",
+                                                (int) (s - origs - 1),
+                                                t);
+                                    goto out_dump;
+                                }
+                                *s = ' ';
+                            }
+                            else if (*s == '\t') {
+                                *s = '-';
+                            }
+                            s++;
+                        }
+                        if (s[-1] == ' ')
+                            s[-1] = 0;
+
+                        sv_catpv(sv, t);
+                    }
+
+                  out_dump:
+
+                    Safefree(origs);
+                    SvREFCNT_dec_NN(lv);
+                }
+
+                if ((flags & ANYOF_LOC_FOLD)
+                     && only_utf8_locale
+                     && only_utf8_locale != &PL_sv_undef)
+                {
+                    UV start, end;
+                    int max_entries = 256;
+
+                    sv_catpvs(sv, "{utf8 locale}");
+                    invlist_iterinit(only_utf8_locale);
+                    while (invlist_iternext(only_utf8_locale,
+                                            &start, &end)) {
+                        put_range(sv, start, end, FALSE);
+                        max_entries --;
+                        if (max_entries < 0) {
+                            sv_catpvs(sv, "...");
+                            break;
+                        }
+                    }
+                    invlist_iterfinish(only_utf8_locale);
+                }
+            }
+       }
+        SvREFCNT_dec(bitmap_invlist);
+
+
+       Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
+    }
+    else if (k == POSIXD || k == NPOSIXD) {
+        U8 index = FLAGS(o) * 2;
+        if (index < C_ARRAY_LENGTH(anyofs)) {
+            if (*anyofs[index] != '[')  {
+                sv_catpv(sv, "[");
+            }
+            sv_catpv(sv, anyofs[index]);
+            if (*anyofs[index] != '[')  {
+                sv_catpv(sv, "]");
+            }
+        }
+        else {
+            Perl_sv_catpvf(aTHX_ sv, "[illegal type=%d])", index);
+        }
+    }
+    else if (k == BOUND || k == NBOUND) {
+        /* Must be synced with order of 'bound_type' in regcomp.h */
+        const char * const bounds[] = {
+            "",      /* Traditional */
+            "{gcb}",
+            "{sb}",
+            "{wb}"
+        };
+        sv_catpv(sv, bounds[FLAGS(o)]);
+    }
+    else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
+       Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
+    else if (OP(o) == SBOL)
+        Perl_sv_catpvf(aTHX_ sv, " /%s/", o->flags ? "\\A" : "^");
+#else
+    PERL_UNUSED_CONTEXT;
+    PERL_UNUSED_ARG(sv);
+    PERL_UNUSED_ARG(o);
+    PERL_UNUSED_ARG(prog);
+    PERL_UNUSED_ARG(reginfo);
+    PERL_UNUSED_ARG(pRExC_state);
+#endif /* DEBUGGING */
+}
+
+
+
+SV *
+Perl_re_intuit_string(pTHX_ REGEXP * const r)
+{                              /* Assume that RE_INTUIT is set */
+    struct regexp *const prog = ReANY(r);
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_RE_INTUIT_STRING;
+    PERL_UNUSED_CONTEXT;
+
+    DEBUG_COMPILE_r(
+       {
+           const char * const s = SvPV_nolen_const(RX_UTF8(r)
+                     ? prog->check_utf8 : prog->check_substr);
+
+           if (!PL_colorset) reginitcolors();
+           PerlIO_printf(Perl_debug_log,
+                     "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
+                     PL_colors[4],
+                     RX_UTF8(r) ? "utf8 " : "",
+                     PL_colors[5],PL_colors[0],
+                     s,
+                     PL_colors[1],
+                     (strlen(s) > 60 ? "..." : ""));
+       } );
+
+    /* use UTF8 check substring if regexp pattern itself is in UTF8 */
+    return RX_UTF8(r) ? prog->check_utf8 : prog->check_substr;
+}
+
+/*
+   pregfree()
+
+   handles refcounting and freeing the perl core regexp structure. When
+   it is necessary to actually free the structure the first thing it
+   does is call the 'free' method of the regexp_engine associated to
+   the regexp, allowing the handling of the void *pprivate; member
+   first. (This routine is not overridable by extensions, which is why
+   the extensions free is called first.)
+
+   See regdupe and regdupe_internal if you change anything here.
+*/
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_pregfree(pTHX_ REGEXP *r)
+{
+    SvREFCNT_dec(r);
+}
+
+void
+Perl_pregfree2(pTHX_ REGEXP *rx)
+{
+    struct regexp *const r = ReANY(rx);
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_PREGFREE2;
+
+    if (r->mother_re) {
+        ReREFCNT_dec(r->mother_re);
+    } else {
+        CALLREGFREE_PVT(rx); /* free the private data */
+        SvREFCNT_dec(RXp_PAREN_NAMES(r));
+       Safefree(r->xpv_len_u.xpvlenu_pv);
+    }
+    if (r->substrs) {
+        SvREFCNT_dec(r->anchored_substr);
+        SvREFCNT_dec(r->anchored_utf8);
+        SvREFCNT_dec(r->float_substr);
+        SvREFCNT_dec(r->float_utf8);
+       Safefree(r->substrs);
+    }
+    RX_MATCH_COPY_FREE(rx);
+#ifdef PERL_ANY_COW
+    SvREFCNT_dec(r->saved_copy);
+#endif
+    Safefree(r->offs);
+    SvREFCNT_dec(r->qr_anoncv);
+    rx->sv_u.svu_rx = 0;
+}
+
+/*  reg_temp_copy()
+
+    This is a hacky workaround to the structural issue of match results
+    being stored in the regexp structure which is in turn stored in
+    PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
+    could be PL_curpm in multiple contexts, and could require multiple
+    result sets being associated with the pattern simultaneously, such
+    as when doing a recursive match with (??{$qr})
+
+    The solution is to make a lightweight copy of the regexp structure
+    when a qr// is returned from the code executed by (??{$qr}) this
+    lightweight copy doesn't actually own any of its data except for
+    the starp/end and the actual regexp structure itself.
+
+*/
+
+
+REGEXP *
+Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
+{
+    struct regexp *ret;
+    struct regexp *const r = ReANY(rx);
+    const bool islv = ret_x && SvTYPE(ret_x) == SVt_PVLV;
+
+    PERL_ARGS_ASSERT_REG_TEMP_COPY;
+
+    if (!ret_x)
+       ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
+    else {
+       SvOK_off((SV *)ret_x);
+       if (islv) {
+           /* For PVLVs, SvANY points to the xpvlv body while sv_u points
+              to the regexp.  (For SVt_REGEXPs, sv_upgrade has already
+              made both spots point to the same regexp body.) */
+           REGEXP *temp = (REGEXP *)newSV_type(SVt_REGEXP);
+           assert(!SvPVX(ret_x));
+           ret_x->sv_u.svu_rx = temp->sv_any;
+           temp->sv_any = NULL;
+           SvFLAGS(temp) = (SvFLAGS(temp) & ~SVTYPEMASK) | SVt_NULL;
+           SvREFCNT_dec_NN(temp);
+           /* SvCUR still resides in the xpvlv struct, so the regexp copy-
+              ing below will not set it. */
+           SvCUR_set(ret_x, SvCUR(rx));
+       }
+    }
+    /* This ensures that SvTHINKFIRST(sv) is true, and hence that
+       sv_force_normal(sv) is called.  */
+    SvFAKE_on(ret_x);
+    ret = ReANY(ret_x);
+
+    SvFLAGS(ret_x) |= SvUTF8(rx);
+    /* We share the same string buffer as the original regexp, on which we
+       hold a reference count, incremented when mother_re is set below.
+       The string pointer is copied here, being part of the regexp struct.
+     */
+    memcpy(&(ret->xpv_cur), &(r->xpv_cur),
+          sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
+    if (r->offs) {
+        const I32 npar = r->nparens+1;
+        Newx(ret->offs, npar, regexp_paren_pair);
+        Copy(r->offs, ret->offs, npar, regexp_paren_pair);
+    }
+    if (r->substrs) {
+        Newx(ret->substrs, 1, struct reg_substr_data);
+       StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
+
+       SvREFCNT_inc_void(ret->anchored_substr);
+       SvREFCNT_inc_void(ret->anchored_utf8);
+       SvREFCNT_inc_void(ret->float_substr);
+       SvREFCNT_inc_void(ret->float_utf8);
+
+       /* check_substr and check_utf8, if non-NULL, point to either their
+          anchored or float namesakes, and don't hold a second reference.  */
+    }
+    RX_MATCH_COPIED_off(ret_x);
+#ifdef PERL_ANY_COW
+    ret->saved_copy = NULL;
+#endif
+    ret->mother_re = ReREFCNT_inc(r->mother_re ? r->mother_re : rx);
+    SvREFCNT_inc_void(ret->qr_anoncv);
+
+    return ret_x;
+}
+#endif
+
+/* regfree_internal()
+
+   Free the private data in a regexp. This is overloadable by
+   extensions. Perl takes care of the regexp structure in pregfree(),
+   this covers the *pprivate pointer which technically perl doesn't
+   know about, however of course we have to handle the
+   regexp_internal structure when no extension is in use.
+
+   Note this is called before freeing anything in the regexp
+   structure.
+ */
+
+void
+Perl_regfree_internal(pTHX_ REGEXP * const rx)
+{
+    struct regexp *const r = ReANY(rx);
+    RXi_GET_DECL(r,ri);
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGFREE_INTERNAL;
+
+    DEBUG_COMPILE_r({
+       if (!PL_colorset)
+           reginitcolors();
+       {
+           SV *dsv= sv_newmortal();
+            RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
+                dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
+            PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
+                PL_colors[4],PL_colors[5],s);
+        }
+    });
+#ifdef RE_TRACK_PATTERN_OFFSETS
+    if (ri->u.offsets)
+        Safefree(ri->u.offsets);             /* 20010421 MJD */
+#endif
+    if (ri->code_blocks) {
+       int n;
+       for (n = 0; n < ri->num_code_blocks; n++)
+           SvREFCNT_dec(ri->code_blocks[n].src_regex);
+       Safefree(ri->code_blocks);
+    }
+
+    if (ri->data) {
+       int n = ri->data->count;
+
+       while (--n >= 0) {
+          /* If you add a ->what type here, update the comment in regcomp.h */
+           switch (ri->data->what[n]) {
+           case 'a':
+           case 'r':
+           case 's':
+           case 'S':
+           case 'u':
+               SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
+               break;
+           case 'f':
+               Safefree(ri->data->data[n]);
+               break;
+           case 'l':
+           case 'L':
+               break;
+            case 'T':
+                { /* Aho Corasick add-on structure for a trie node.
+                     Used in stclass optimization only */
+                    U32 refcount;
+                    reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
+#ifdef USE_ITHREADS
+                    dVAR;
+#endif
+                    OP_REFCNT_LOCK;
+                    refcount = --aho->refcount;
+                    OP_REFCNT_UNLOCK;
+                    if ( !refcount ) {
+                        PerlMemShared_free(aho->states);
+                        PerlMemShared_free(aho->fail);
+                        /* do this last!!!! */
+                        PerlMemShared_free(ri->data->data[n]);
+                        /* we should only ever get called once, so
+                         * assert as much, and also guard the free
+                         * which /might/ happen twice. At the least
+                         * it will make code anlyzers happy and it
+                         * doesn't cost much. - Yves */
+                        assert(ri->regstclass);
+                        if (ri->regstclass) {
+                            PerlMemShared_free(ri->regstclass);
+                            ri->regstclass = 0;
+                        }
+                    }
+                }
+                break;
+           case 't':
+               {
+                   /* trie structure. */
+                   U32 refcount;
+                   reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
+#ifdef USE_ITHREADS
+                    dVAR;
+#endif
+                    OP_REFCNT_LOCK;
+                    refcount = --trie->refcount;
+                    OP_REFCNT_UNLOCK;
+                    if ( !refcount ) {
+                        PerlMemShared_free(trie->charmap);
+                        PerlMemShared_free(trie->states);
+                        PerlMemShared_free(trie->trans);
+                        if (trie->bitmap)
+                            PerlMemShared_free(trie->bitmap);
+                        if (trie->jump)
+                            PerlMemShared_free(trie->jump);
+                       PerlMemShared_free(trie->wordinfo);
+                        /* do this last!!!! */
+                        PerlMemShared_free(ri->data->data[n]);
+                   }
+               }
+               break;
+           default:
+               Perl_croak(aTHX_ "panic: regfree data code '%c'",
+                                                    ri->data->what[n]);
+           }
+       }
+       Safefree(ri->data->what);
+       Safefree(ri->data);
+    }
+
+    Safefree(ri);
+}
+
+#define av_dup_inc(s,t)        MUTABLE_AV(sv_dup_inc((const SV *)s,t))
+#define hv_dup_inc(s,t)        MUTABLE_HV(sv_dup_inc((const SV *)s,t))
+#define SAVEPVN(p,n)   ((p) ? savepvn(p,n) : NULL)
+
+/*
+   re_dup - duplicate a regexp.
+
+   This routine is expected to clone a given regexp structure. It is only
+   compiled under USE_ITHREADS.
+
+   After all of the core data stored in struct regexp is duplicated
+   the regexp_engine.dupe method is used to copy any private data
+   stored in the *pprivate pointer. This allows extensions to handle
+   any duplication it needs to do.
+
+   See pregfree() and regfree_internal() if you change anything here.
+*/
+#if defined(USE_ITHREADS)
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
+{
+    dVAR;
+    I32 npar;
+    const struct regexp *r = ReANY(sstr);
+    struct regexp *ret = ReANY(dstr);
+
+    PERL_ARGS_ASSERT_RE_DUP_GUTS;
+
+    npar = r->nparens+1;
+    Newx(ret->offs, npar, regexp_paren_pair);
+    Copy(r->offs, ret->offs, npar, regexp_paren_pair);
+
+    if (ret->substrs) {
+       /* Do it this way to avoid reading from *r after the StructCopy().
+          That way, if any of the sv_dup_inc()s dislodge *r from the L1
+          cache, it doesn't matter.  */
+       const bool anchored = r->check_substr
+           ? r->check_substr == r->anchored_substr
+           : r->check_utf8 == r->anchored_utf8;
+        Newx(ret->substrs, 1, struct reg_substr_data);
+       StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
+
+       ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
+       ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
+       ret->float_substr = sv_dup_inc(ret->float_substr, param);
+       ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
+
+       /* check_substr and check_utf8, if non-NULL, point to either their
+          anchored or float namesakes, and don't hold a second reference.  */
+
+       if (ret->check_substr) {
+           if (anchored) {
+               assert(r->check_utf8 == r->anchored_utf8);
+               ret->check_substr = ret->anchored_substr;
+               ret->check_utf8 = ret->anchored_utf8;
+           } else {
+               assert(r->check_substr == r->float_substr);
+               assert(r->check_utf8 == r->float_utf8);
+               ret->check_substr = ret->float_substr;
+               ret->check_utf8 = ret->float_utf8;
+           }
+       } else if (ret->check_utf8) {
+           if (anchored) {
+               ret->check_utf8 = ret->anchored_utf8;
+           } else {
+               ret->check_utf8 = ret->float_utf8;
+           }
+       }
+    }
+
+    RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
+    ret->qr_anoncv = MUTABLE_CV(sv_dup_inc((const SV *)ret->qr_anoncv, param));
+
+    if (ret->pprivate)
+       RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
+
+    if (RX_MATCH_COPIED(dstr))
+       ret->subbeg  = SAVEPVN(ret->subbeg, ret->sublen);
+    else
+       ret->subbeg = NULL;
+#ifdef PERL_ANY_COW
+    ret->saved_copy = NULL;
+#endif
+
+    /* Whether mother_re be set or no, we need to copy the string.  We
+       cannot refrain from copying it when the storage points directly to
+       our mother regexp, because that's
+              1: a buffer in a different thread
+              2: something we no longer hold a reference on
+              so we need to copy it locally.  */
+    RX_WRAPPED(dstr) = SAVEPVN(RX_WRAPPED(sstr), SvCUR(sstr)+1);
+    ret->mother_re   = NULL;
+}
+#endif /* PERL_IN_XSUB_RE */
+
+/*
+   regdupe_internal()
+
+   This is the internal complement to regdupe() which is used to copy
+   the structure pointed to by the *pprivate pointer in the regexp.
+   This is the core version of the extension overridable cloning hook.
+   The regexp structure being duplicated will be copied by perl prior
+   to this and will be provided as the regexp *r argument, however
+   with the /old/ structures pprivate pointer value. Thus this routine
+   may override any copying normally done by perl.
+
+   It returns a pointer to the new regexp_internal structure.
+*/
+
+void *
+Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
+{
+    dVAR;
+    struct regexp *const r = ReANY(rx);
+    regexp_internal *reti;
+    int len;
+    RXi_GET_DECL(r,ri);
+
+    PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
+
+    len = ProgLen(ri);
+
+    Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode),
+          char, regexp_internal);
+    Copy(ri->program, reti->program, len+1, regnode);
+
+    reti->num_code_blocks = ri->num_code_blocks;
+    if (ri->code_blocks) {
+       int n;
+       Newxc(reti->code_blocks, ri->num_code_blocks, struct reg_code_block,
+               struct reg_code_block);
+       Copy(ri->code_blocks, reti->code_blocks, ri->num_code_blocks,
+               struct reg_code_block);
+       for (n = 0; n < ri->num_code_blocks; n++)
+            reti->code_blocks[n].src_regex = (REGEXP*)
+                   sv_dup_inc((SV*)(ri->code_blocks[n].src_regex), param);
+    }
+    else
+       reti->code_blocks = NULL;
+
+    reti->regstclass = NULL;
+
+    if (ri->data) {
+       struct reg_data *d;
+        const int count = ri->data->count;
+       int i;
+
+       Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
+               char, struct reg_data);
+       Newx(d->what, count, U8);
+
+       d->count = count;
+       for (i = 0; i < count; i++) {
+           d->what[i] = ri->data->what[i];
+           switch (d->what[i]) {
+               /* see also regcomp.h and regfree_internal() */
+           case 'a': /* actually an AV, but the dup function is identical.  */
+           case 'r':
+           case 's':
+           case 'S':
+           case 'u': /* actually an HV, but the dup function is identical.  */
+               d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
+               break;
+           case 'f':
+               /* This is cheating. */
+               Newx(d->data[i], 1, regnode_ssc);
+               StructCopy(ri->data->data[i], d->data[i], regnode_ssc);
+               reti->regstclass = (regnode*)d->data[i];
+               break;
+           case 'T':
+               /* Trie stclasses are readonly and can thus be shared
+                * without duplication. We free the stclass in pregfree
+                * when the corresponding reg_ac_data struct is freed.
+                */
+               reti->regstclass= ri->regstclass;
+               /* FALLTHROUGH */
+           case 't':
+               OP_REFCNT_LOCK;
+               ((reg_trie_data*)ri->data->data[i])->refcount++;
+               OP_REFCNT_UNLOCK;
+               /* FALLTHROUGH */
+           case 'l':
+           case 'L':
+               d->data[i] = ri->data->data[i];
+               break;
+            default:
+               Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'",
+                                                           ri->data->what[i]);
+           }
+       }
+
+       reti->data = d;
+    }
+    else
+       reti->data = NULL;
+
+    reti->name_list_idx = ri->name_list_idx;
+
+#ifdef RE_TRACK_PATTERN_OFFSETS
+    if (ri->u.offsets) {
+        Newx(reti->u.offsets, 2*len+1, U32);
+        Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
+    }
+#else
+    SetProgLen(reti,len);
+#endif
+
+    return (void*)reti;
+}
+
+#endif    /* USE_ITHREADS */
+
+#ifndef PERL_IN_XSUB_RE
+
+/*
+ - regnext - dig the "next" pointer out of a node
+ */
+regnode *
+Perl_regnext(pTHX_ regnode *p)
+{
+    I32 offset;
+
+    if (!p)
+       return(NULL);
+
+    if (OP(p) > REGNODE_MAX) {         /* regnode.type is unsigned */
+       Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d",
+                                                (int)OP(p), (int)REGNODE_MAX);
+    }
+
+    offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
+    if (offset == 0)
+       return(NULL);
+
+    return(p+offset);
+}
+#endif
+
+STATIC void
+S_re_croak2(pTHX_ bool utf8, const char* pat1,const char* pat2,...)
+{
+    va_list args;
+    STRLEN l1 = strlen(pat1);
+    STRLEN l2 = strlen(pat2);
+    char buf[512];
+    SV *msv;
+    const char *message;
+
+    PERL_ARGS_ASSERT_RE_CROAK2;
+
+    if (l1 > 510)
+       l1 = 510;
+    if (l1 + l2 > 510)
+       l2 = 510 - l1;
+    Copy(pat1, buf, l1 , char);
+    Copy(pat2, buf + l1, l2 , char);
+    buf[l1 + l2] = '\n';
+    buf[l1 + l2 + 1] = '\0';
+    va_start(args, pat2);
+    msv = vmess(buf, &args);
+    va_end(args);
+    message = SvPV_const(msv,l1);
+    if (l1 > 512)
+       l1 = 512;
+    Copy(message, buf, l1 , char);
+    /* l1-1 to avoid \n */
+    Perl_croak(aTHX_ "%"UTF8f, UTF8fARG(utf8, l1-1, buf));
+}
+
+/* XXX Here's a total kludge.  But we need to re-enter for swash routines. */
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_save_re_context(pTHX)
+{
+    I32 nparens = -1;
+    I32 i;
+
+    /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
+
+    if (PL_curpm) {
+       const REGEXP * const rx = PM_GETRE(PL_curpm);
+       if (rx)
+            nparens = RX_NPARENS(rx);
+    }
+
+    /* RT #124109. This is a complete hack; in the SWASHNEW case we know
+     * that PL_curpm will be null, but that utf8.pm and the modules it
+     * loads will only use $1..$3.
+     * The t/porting/re_context.t test file checks this assumption.
+     */
+    if (nparens == -1)
+        nparens = 3;
+
+    for (i = 1; i <= nparens; i++) {
+        char digits[TYPE_CHARS(long)];
+        const STRLEN len = my_snprintf(digits, sizeof(digits),
+                                       "%lu", (long)i);
+        GV *const *const gvp
+            = (GV**)hv_fetch(PL_defstash, digits, len, 0);
+
+        if (gvp) {
+            GV * const gv = *gvp;
+            if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
+                save_scalar(gv);
+        }
+    }
+}
+#endif
+
+#ifdef DEBUGGING
+
+STATIC void
+S_put_code_point(pTHX_ SV *sv, UV c)
+{
+    PERL_ARGS_ASSERT_PUT_CODE_POINT;
+
+    if (c > 255) {
+        Perl_sv_catpvf(aTHX_ sv, "\\x{%04"UVXf"}", c);
+    }
+    else if (isPRINT(c)) {
+       const char string = (char) c;
+       if (isBACKSLASHED_PUNCT(c))
+           sv_catpvs(sv, "\\");
+       sv_catpvn(sv, &string, 1);
+    }
+    else {
+        const char * const mnemonic = cntrl_to_mnemonic((char) c);
+        if (mnemonic) {
+            Perl_sv_catpvf(aTHX_ sv, "%s", mnemonic);
+        }
+        else {
+            Perl_sv_catpvf(aTHX_ sv, "\\x{%02X}", (U8) c);
+        }
+    }
+}
+
+#define MAX_PRINT_A MAX_PRINT_A_FOR_USE_ONLY_BY_REGCOMP_DOT_C
+
+STATIC void
+S_put_range(pTHX_ SV *sv, UV start, const UV end, const bool allow_literals)
+{
+    /* Appends to 'sv' a displayable version of the range of code points from
+     * 'start' to 'end'.  It assumes that only ASCII printables are displayable
+     * as-is (though some of these will be escaped by put_code_point()). */
+
+    const unsigned int min_range_count = 3;
+
+    assert(start <= end);
+
+    PERL_ARGS_ASSERT_PUT_RANGE;
+
+    while (start <= end) {
+        UV this_end;
+        const char * format;
+
+        if (end - start < min_range_count) {
+
+            /* Individual chars in short ranges */
+            for (; start <= end; start++) {
+                put_code_point(sv, start);
+            }
+            break;
+        }
+
+        /* If permitted by the input options, and there is a possibility that
+         * this range contains a printable literal, look to see if there is
+         * one.  */
+        if (allow_literals && start <= MAX_PRINT_A) {
+
+            /* If the range begin isn't an ASCII printable, effectively split
+             * the range into two parts:
+             *  1) the portion before the first such printable,
+             *  2) the rest
+             * and output them separately. */
+            if (! isPRINT_A(start)) {
+                UV temp_end = start + 1;
+
+                /* There is no point looking beyond the final possible
+                 * printable, in MAX_PRINT_A */
+                UV max = MIN(end, MAX_PRINT_A);
+
+                while (temp_end <= max && ! isPRINT_A(temp_end)) {
+                    temp_end++;
+                }
+
+                /* Here, temp_end points to one beyond the first printable if
+                 * found, or to one beyond 'max' if not.  If none found, make
+                 * sure that we use the entire range */
+                if (temp_end > MAX_PRINT_A) {
+                    temp_end = end + 1;
+                }
+
+                /* Output the first part of the split range, the part that
+                 * doesn't have printables, with no looking for literals
+                 * (otherwise we would infinitely recurse) */
+                put_range(sv, start, temp_end - 1, FALSE);
+
+                /* The 2nd part of the range (if any) starts here. */
+                start = temp_end;
+
+                /* We continue instead of dropping down because even if the 2nd
+                 * part is non-empty, it could be so short that we want to
+                 * output it specially, as tested for at the top of this loop.
+                 * */
+                continue;
+            }
+
+            /* Here, 'start' is a printable ASCII.  If it is an alphanumeric,
+             * output a sub-range of just the digits or letters, then process
+             * the remaining portion as usual. */
+            if (isALPHANUMERIC_A(start)) {
+                UV mask = (isDIGIT_A(start))
+                           ? _CC_DIGIT
+                             : isUPPER_A(start)
+                               ? _CC_UPPER
+                               : _CC_LOWER;
+                UV temp_end = start + 1;
+
+                /* Find the end of the sub-range that includes just the
+                 * characters in the same class as the first character in it */
+                while (temp_end <= end && _generic_isCC_A(temp_end, mask)) {
+                    temp_end++;
+                }
+                temp_end--;
+
+                /* For short ranges, don't duplicate the code above to output
+                 * them; just call recursively */
+                if (temp_end - start < min_range_count) {
+                    put_range(sv, start, temp_end, FALSE);
+                }
+                else {  /* Output as a range */
+                    put_code_point(sv, start);
+                    sv_catpvs(sv, "-");
+                    put_code_point(sv, temp_end);
+                }
+                start = temp_end + 1;
+                continue;
+            }
+
+            /* We output any other printables as individual characters */
+            if (isPUNCT_A(start) || isSPACE_A(start)) {
+                while (start <= end && (isPUNCT_A(start)
+                                        || isSPACE_A(start)))
+                {
+                    put_code_point(sv, start);
+                    start++;
+                }
+                continue;
+            }
+        } /* End of looking for literals */
+
+        /* Here is not to output as a literal.  Some control characters have
+         * mnemonic names.  Split off any of those at the beginning and end of
+         * the range to print mnemonically.  It isn't possible for many of
+         * these to be in a row, so this won't overwhelm with output */
+        while (isMNEMONIC_CNTRL(start) && start <= end) {
+            put_code_point(sv, start);
+            start++;
+        }
+        if (start < end && isMNEMONIC_CNTRL(end)) {
+
+            /* Here, the final character in the range has a mnemonic name.
+             * Work backwards from the end to find the final non-mnemonic */
+            UV temp_end = end - 1;
+            while (isMNEMONIC_CNTRL(temp_end)) {
+                temp_end--;
+            }
+
+            /* And separately output the range that doesn't have mnemonics */
+            put_range(sv, start, temp_end, FALSE);
+
+            /* Then output the mnemonic trailing controls */
+            start = temp_end + 1;
+            while (start <= end) {
+                put_code_point(sv, start);
+                start++;
+            }
+            break;
+        }
+
+        /* As a final resort, output the range or subrange as hex. */
+
+        this_end = (end < NUM_ANYOF_CODE_POINTS)
+                    ? end
+                    : NUM_ANYOF_CODE_POINTS - 1;
+        format = (this_end < 256)
+                 ? "\\x{%02"UVXf"}-\\x{%02"UVXf"}"
+                 : "\\x{%04"UVXf"}-\\x{%04"UVXf"}";
+        GCC_DIAG_IGNORE(-Wformat-nonliteral);
+        Perl_sv_catpvf(aTHX_ sv, format, start, this_end);
+        GCC_DIAG_RESTORE;
+        break;
+    }
+}
+
+STATIC bool
+S_put_charclass_bitmap_innards(pTHX_ SV *sv, char *bitmap, SV** bitmap_invlist)
+{
+    /* Appends to 'sv' a displayable version of the innards of the bracketed
+     * character class whose bitmap is 'bitmap';  Returns 'TRUE' if it actually
+     * output anything, and bitmap_invlist, if not NULL, will point to an
+     * inversion list of what is in the bit map */
+
+    int i;
+    UV start, end;
+    unsigned int punct_count = 0;
+    SV* invlist = NULL;
+    SV** invlist_ptr;   /* Temporary, in case bitmap_invlist is NULL */
+    bool allow_literals = TRUE;
+
+    PERL_ARGS_ASSERT_PUT_CHARCLASS_BITMAP_INNARDS;
+
+    invlist_ptr = (bitmap_invlist) ? bitmap_invlist : &invlist;
+
+    /* Worst case is exactly every-other code point is in the list */
+    *invlist_ptr = _new_invlist(NUM_ANYOF_CODE_POINTS / 2);
+
+    /* Convert the bit map to an inversion list, keeping track of how many
+     * ASCII puncts are set, including an extra amount for the backslashed
+     * ones.  */
+    for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
+        if (BITMAP_TEST(bitmap, i)) {
+            *invlist_ptr = add_cp_to_invlist(*invlist_ptr, i);
+            if (isPUNCT_A(i)) {
+                punct_count++;
+                if isBACKSLASHED_PUNCT(i) {
+                    punct_count++;
+                }
+            }
+        }
+    }
+
+    /* Nothing to output */
+    if (_invlist_len(*invlist_ptr) == 0) {
+        SvREFCNT_dec(invlist);
+        return FALSE;
+    }
+
+    /* Generally, it is more readable if printable characters are output as
+     * literals, but if a range (nearly) spans all of them, it's best to output
+     * it as a single range.  This code will use a single range if all but 2
+     * printables are in it */
+    invlist_iterinit(*invlist_ptr);
+    while (invlist_iternext(*invlist_ptr, &start, &end)) {
+
+        /* If range starts beyond final printable, it doesn't have any in it */
+        if (start > MAX_PRINT_A) {
+            break;
+        }
+
+        /* In both ASCII and EBCDIC, a SPACE is the lowest printable.  To span
+         * all but two, the range must start and end no later than 2 from
+         * either end */
+        if (start < ' ' + 2 && end > MAX_PRINT_A - 2) {
+            if (end > MAX_PRINT_A) {
+                end = MAX_PRINT_A;
+            }
+            if (start < ' ') {
+                start = ' ';
+            }
+            if (end - start >= MAX_PRINT_A - ' ' - 2) {
+                allow_literals = FALSE;
+            }
+            break;
+        }
+    }
+    invlist_iterfinish(*invlist_ptr);
+
+    /* The legibility of the output depends mostly on how many punctuation
+     * characters are output.  There are 32 possible ASCII ones, and some have
+     * an additional backslash, bringing it to currently 36, so if any more
+     * than 18 are to be output, we can instead output it as its complement,
+     * yielding fewer puncts, and making it more legible.  But give some weight
+     * to the fact that outputting it as a complement is less legible than a
+     * straight output, so don't complement unless we are somewhat over the 18
+     * mark */
+    if (allow_literals && punct_count > 22) {
+        sv_catpvs(sv, "^");
+
+        /* Add everything remaining to the list, so when we invert it just
+         * below, it will be excluded */
+        _invlist_union_complement_2nd(*invlist_ptr, PL_InBitmap, invlist_ptr);
+        _invlist_invert(*invlist_ptr);
+    }
+
+    /* Here we have figured things out.  Output each range */
+    invlist_iterinit(*invlist_ptr);
+    while (invlist_iternext(*invlist_ptr, &start, &end)) {
+        if (start >= NUM_ANYOF_CODE_POINTS) {
+            break;
+        }
+        put_range(sv, start, end, allow_literals);
+    }
+    invlist_iterfinish(*invlist_ptr);
+
+    return TRUE;
+}
+
+#define CLEAR_OPTSTART \
+    if (optstart) STMT_START {                                               \
+        DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,                       \
+                              " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
+       optstart=NULL;                                                       \
+    } STMT_END
+
+#define DUMPUNTIL(b,e)                                                       \
+                    CLEAR_OPTSTART;                                          \
+                    node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
+
+STATIC const regnode *
+S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
+           const regnode *last, const regnode *plast,
+           SV* sv, I32 indent, U32 depth)
+{
+    U8 op = PSEUDO;    /* Arbitrary non-END op. */
+    const regnode *next;
+    const regnode *optstart= NULL;
+
+    RXi_GET_DECL(r,ri);
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_DUMPUNTIL;
+
+#ifdef DEBUG_DUMPUNTIL
+    PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
+        last ? last-start : 0,plast ? plast-start : 0);
+#endif
+
+    if (plast && plast < last)
+        last= plast;
+
+    while (PL_regkind[op] != END && (!last || node < last)) {
+        assert(node);
+       /* While that wasn't END last time... */
+       NODE_ALIGN(node);
+       op = OP(node);
+       if (op == CLOSE || op == WHILEM)
+           indent--;
+       next = regnext((regnode *)node);
+
+       /* Where, what. */
+       if (OP(node) == OPTIMIZED) {
+           if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
+               optstart = node;
+           else
+               goto after_print;
+       } else
+           CLEAR_OPTSTART;
+
+        regprop(r, sv, node, NULL, NULL);
+       PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
+                     (int)(2*indent + 1), "", SvPVX_const(sv));
+
+        if (OP(node) != OPTIMIZED) {
+            if (next == NULL)          /* Next ptr. */
+                PerlIO_printf(Perl_debug_log, " (0)");
+            else if (PL_regkind[(U8)op] == BRANCH
+                     && PL_regkind[OP(next)] != BRANCH )
+                PerlIO_printf(Perl_debug_log, " (FAIL)");
+            else
+                PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
+            (void)PerlIO_putc(Perl_debug_log, '\n');
+        }
+
+      after_print:
+       if (PL_regkind[(U8)op] == BRANCHJ) {
+           assert(next);
+           {
+                const regnode *nnode = (OP(next) == LONGJMP
+                                       ? regnext((regnode *)next)
+                                       : next);
+                if (last && nnode > last)
+                    nnode = last;
+                DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
+           }
+       }
+       else if (PL_regkind[(U8)op] == BRANCH) {
+           assert(next);
+           DUMPUNTIL(NEXTOPER(node), next);
+       }
+       else if ( PL_regkind[(U8)op]  == TRIE ) {
+           const regnode *this_trie = node;
+           const char op = OP(node);
+            const U32 n = ARG(node);
+           const reg_ac_data * const ac = op>=AHOCORASICK ?
+               (reg_ac_data *)ri->data->data[n] :
+               NULL;
+           const reg_trie_data * const trie =
+               (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
+#ifdef DEBUGGING
+           AV *const trie_words
+                           = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
+#endif
+           const regnode *nextbranch= NULL;
+           I32 word_idx;
+            sv_setpvs(sv, "");
+           for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
+               SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
+
+                PerlIO_printf(Perl_debug_log, "%*s%s ",
+                   (int)(2*(indent+3)), "",
+                    elem_ptr
+                    ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr),
+                                SvCUR(*elem_ptr), 60,
+                                PL_colors[0], PL_colors[1],
+                                (SvUTF8(*elem_ptr)
+                                 ? PERL_PV_ESCAPE_UNI
+                                 : 0)
+                                | PERL_PV_PRETTY_ELLIPSES
+                                | PERL_PV_PRETTY_LTGT
+                            )
+                    : "???"
+                );
+                if (trie->jump) {
+                    U16 dist= trie->jump[word_idx+1];
+                   PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
+                               (UV)((dist ? this_trie + dist : next) - start));
+                    if (dist) {
+                        if (!nextbranch)
+                            nextbranch= this_trie + trie->jump[0];
+                       DUMPUNTIL(this_trie + dist, nextbranch);
+                    }
+                    if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
+                        nextbranch= regnext((regnode *)nextbranch);
+                } else {
+                    PerlIO_printf(Perl_debug_log, "\n");
+               }
+           }
+           if (last && next > last)
+               node= last;
+           else
+               node= next;
+       }
+       else if ( op == CURLY ) {   /* "next" might be very big: optimizer */
+           DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
+                    NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
+       }
+       else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
+           assert(next);
+           DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
+       }
+       else if ( op == PLUS || op == STAR) {
+           DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
+       }
+       else if (PL_regkind[(U8)op] == ANYOF) {
+           /* arglen 1 + class block */
+           node += 1 + ((ANYOF_FLAGS(node) & ANYOF_MATCHES_POSIXL)
+                          ? ANYOF_POSIXL_SKIP
+                          : ANYOF_SKIP);
+           node = NEXTOPER(node);
+       }
+       else if (PL_regkind[(U8)op] == EXACT) {
+            /* Literal string, where present. */
+           node += NODE_SZ_STR(node) - 1;
+           node = NEXTOPER(node);
+       }
+       else {
+           node = NEXTOPER(node);
+           node += regarglen[(U8)op];
+       }
+       if (op == CURLYX || op == OPEN)
+           indent++;
+    }
+    CLEAR_OPTSTART;
+#ifdef DEBUG_DUMPUNTIL
+    PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
+#endif
+    return node;
+}
+
+#endif /* DEBUGGING */
+
+/*
+ * ex: set ts=8 sts=4 sw=4 et:
+ */
diff --git a/src/5023001/orig/regexec.c b/src/5023001/orig/regexec.c
new file mode 100644 (file)
index 0000000..3455498
--- /dev/null
@@ -0,0 +1,9015 @@
+/*    regexec.c
+ */
+
+/*
+ *     One Ring to rule them all, One Ring to find them
+ *
+ *     [p.v of _The Lord of the Rings_, opening poem]
+ *     [p.50 of _The Lord of the Rings_, I/iii: "The Shadow of the Past"]
+ *     [p.254 of _The Lord of the Rings_, II/ii: "The Council of Elrond"]
+ */
+
+/* This file contains functions for executing a regular expression.  See
+ * also regcomp.c which funnily enough, contains functions for compiling
+ * a regular expression.
+ *
+ * This file is also copied at build time to ext/re/re_exec.c, where
+ * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
+ * This causes the main functions to be compiled under new names and with
+ * debugging support added, which makes "use re 'debug'" work.
+ */
+
+/* NOTE: this is derived from Henry Spencer's regexp code, and should not
+ * confused with the original package (see point 3 below).  Thanks, Henry!
+ */
+
+/* Additional note: this code is very heavily munged from Henry's version
+ * in places.  In some spots I've traded clarity for efficiency, so don't
+ * blame Henry for some of the lack of readability.
+ */
+
+/* The names of the functions have been changed from regcomp and
+ * regexec to  pregcomp and pregexec in order to avoid conflicts
+ * with the POSIX routines of the same names.
+*/
+
+#ifdef PERL_EXT_RE_BUILD
+#include "re_top.h"
+#endif
+
+#define B_ON_NON_UTF8_LOCALE_IS_WRONG            \
+      "Use of \\b{} or \\B{} for non-UTF-8 locale is wrong.  Assuming a UTF-8 locale"
+
+/*
+ * pregcomp and pregexec -- regsub and regerror are not used in perl
+ *
+ *     Copyright (c) 1986 by University of Toronto.
+ *     Written by Henry Spencer.  Not derived from licensed software.
+ *
+ *     Permission is granted to anyone to use this software for any
+ *     purpose on any computer system, and to redistribute it freely,
+ *     subject to the following restrictions:
+ *
+ *     1. The author is not responsible for the consequences of use of
+ *             this software, no matter how awful, even if they arise
+ *             from defects in it.
+ *
+ *     2. The origin of this software must not be misrepresented, either
+ *             by explicit claim or by omission.
+ *
+ *     3. Altered versions must be plainly marked as such, and must not
+ *             be misrepresented as being the original software.
+ *
+ ****    Alterations to Henry's code are...
+ ****
+ ****    Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ ****    2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ ****    by Larry Wall and others
+ ****
+ ****    You may distribute under the terms of either the GNU General Public
+ ****    License or the Artistic License, as specified in the README file.
+ *
+ * Beware that some of this code is subtly aware of the way operator
+ * precedence is structured in regular expressions.  Serious changes in
+ * regular-expression syntax might require a total rethink.
+ */
+#include "EXTERN.h"
+#define PERL_IN_REGEXEC_C
+#include "perl.h"
+
+#ifdef PERL_IN_XSUB_RE
+#  include "re_comp.h"
+#else
+#  include "regcomp.h"
+#endif
+
+#include "inline_invlist.c"
+#include "unicode_constants.h"
+
+#ifdef DEBUGGING
+/* At least one required character in the target string is expressible only in
+ * UTF-8. */
+static const char* const non_utf8_target_but_utf8_required
+                = "Can't match, because target string needs to be in UTF-8\n";
+#endif
+
+#define NON_UTF8_TARGET_BUT_UTF8_REQUIRED(target) STMT_START { \
+    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%s", non_utf8_target_but_utf8_required));\
+    goto target; \
+} STMT_END
+
+#define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
+
+#ifndef STATIC
+#define        STATIC  static
+#endif
+
+/* Valid only for non-utf8 strings: avoids the reginclass
+ * call if there are no complications: i.e., if everything matchable is
+ * straight forward in the bitmap */
+#define REGINCLASS(prog,p,c)  (ANYOF_FLAGS(p) ? reginclass(prog,p,c,c+1,0)   \
+                                             : ANYOF_BITMAP_TEST(p,*(c)))
+
+/*
+ * Forwards.
+ */
+
+#define CHR_SVLEN(sv) (utf8_target ? sv_len_utf8(sv) : SvCUR(sv))
+#define CHR_DIST(a,b) (reginfo->is_utf8_target ? utf8_distance(a,b) : a - b)
+
+#define HOPc(pos,off) \
+       (char *)(reginfo->is_utf8_target \
+           ? reghop3((U8*)pos, off, \
+                    (U8*)(off >= 0 ? reginfo->strend : reginfo->strbeg)) \
+           : (U8*)(pos + off))
+
+#define HOPBACKc(pos, off) \
+       (char*)(reginfo->is_utf8_target \
+           ? reghopmaybe3((U8*)pos, -off, (U8*)(reginfo->strbeg)) \
+           : (pos - off >= reginfo->strbeg)    \
+               ? (U8*)pos - off                \
+               : NULL)
+
+#define HOP3(pos,off,lim) (reginfo->is_utf8_target  ? reghop3((U8*)(pos), off, (U8*)(lim)) : (U8*)(pos + off))
+#define HOP3c(pos,off,lim) ((char*)HOP3(pos,off,lim))
+
+/* lim must be +ve. Returns NULL on overshoot */
+#define HOPMAYBE3(pos,off,lim) \
+       (reginfo->is_utf8_target                        \
+           ? reghopmaybe3((U8*)pos, off, (U8*)(lim))   \
+           : ((U8*)pos + off <= lim)                   \
+               ? (U8*)pos + off                        \
+               : NULL)
+
+/* like HOP3, but limits the result to <= lim even for the non-utf8 case.
+ * off must be >=0; args should be vars rather than expressions */
+#define HOP3lim(pos,off,lim) (reginfo->is_utf8_target \
+    ? reghop3((U8*)(pos), off, (U8*)(lim)) \
+    : (U8*)((pos + off) > lim ? lim : (pos + off)))
+
+#define HOP4(pos,off,llim, rlim) (reginfo->is_utf8_target \
+    ? reghop4((U8*)(pos), off, (U8*)(llim), (U8*)(rlim)) \
+    : (U8*)(pos + off))
+#define HOP4c(pos,off,llim, rlim) ((char*)HOP4(pos,off,llim, rlim))
+
+#define NEXTCHR_EOS -10 /* nextchr has fallen off the end */
+#define NEXTCHR_IS_EOS (nextchr < 0)
+
+#define SET_nextchr \
+    nextchr = ((locinput < reginfo->strend) ? UCHARAT(locinput) : NEXTCHR_EOS)
+
+#define SET_locinput(p) \
+    locinput = (p);  \
+    SET_nextchr
+
+
+#define LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist) STMT_START {   \
+        if (!swash_ptr) {                                                     \
+            U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;                       \
+            swash_ptr = _core_swash_init("utf8", property_name, &PL_sv_undef, \
+                                         1, 0, invlist, &flags);              \
+            assert(swash_ptr);                                                \
+        }                                                                     \
+    } STMT_END
+
+/* If in debug mode, we test that a known character properly matches */
+#ifdef DEBUGGING
+#   define LOAD_UTF8_CHARCLASS_DEBUG_TEST(swash_ptr,                          \
+                                          property_name,                      \
+                                          invlist,                            \
+                                          utf8_char_in_property)              \
+        LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist);               \
+        assert(swash_fetch(swash_ptr, (U8 *) utf8_char_in_property, TRUE));
+#else
+#   define LOAD_UTF8_CHARCLASS_DEBUG_TEST(swash_ptr,                          \
+                                          property_name,                      \
+                                          invlist,                            \
+                                          utf8_char_in_property)              \
+        LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist)
+#endif
+
+#define LOAD_UTF8_CHARCLASS_ALNUM() LOAD_UTF8_CHARCLASS_DEBUG_TEST(           \
+                                        PL_utf8_swash_ptrs[_CC_WORDCHAR],     \
+                                        "",                                   \
+                                        PL_XPosix_ptrs[_CC_WORDCHAR],         \
+                                        LATIN_CAPITAL_LETTER_SHARP_S_UTF8);
+
+#define PLACEHOLDER    /* Something for the preprocessor to grab onto */
+/* TODO: Combine JUMPABLE and HAS_TEXT to cache OP(rn) */
+
+/* for use after a quantifier and before an EXACT-like node -- japhy */
+/* it would be nice to rework regcomp.sym to generate this stuff. sigh
+ *
+ * NOTE that *nothing* that affects backtracking should be in here, specifically
+ * VERBS must NOT be included. JUMPABLE is used to determine  if we can ignore a
+ * node that is in between two EXACT like nodes when ascertaining what the required
+ * "follow" character is. This should probably be moved to regex compile time
+ * although it may be done at run time beause of the REF possibility - more
+ * investigation required. -- demerphq
+*/
+#define JUMPABLE(rn) (                                                             \
+    OP(rn) == OPEN ||                                                              \
+    (OP(rn) == CLOSE && (!cur_eval || cur_eval->u.eval.close_paren != ARG(rn))) || \
+    OP(rn) == EVAL ||                                                              \
+    OP(rn) == SUSPEND || OP(rn) == IFMATCH ||                                      \
+    OP(rn) == PLUS || OP(rn) == MINMOD ||                                          \
+    OP(rn) == KEEPS ||                                                             \
+    (PL_regkind[OP(rn)] == CURLY && ARG1(rn) > 0)                                  \
+)
+#define IS_EXACT(rn) (PL_regkind[OP(rn)] == EXACT)
+
+#define HAS_TEXT(rn) ( IS_EXACT(rn) || PL_regkind[OP(rn)] == REF )
+
+#if 0 
+/* Currently these are only used when PL_regkind[OP(rn)] == EXACT so
+   we don't need this definition.  XXX These are now out-of-sync*/
+#define IS_TEXT(rn)   ( OP(rn)==EXACT   || OP(rn)==REF   || OP(rn)==NREF   )
+#define IS_TEXTF(rn)  ( OP(rn)==EXACTFU || OP(rn)==EXACTFU_SS || OP(rn)==EXACTFA || OP(rn)==EXACTFA_NO_TRIE || OP(rn)==EXACTF || OP(rn)==REFF  || OP(rn)==NREFF )
+#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL || OP(rn)==REFFL || OP(rn)==NREFFL )
+
+#else
+/* ... so we use this as its faster. */
+#define IS_TEXT(rn)   ( OP(rn)==EXACT || OP(rn)==EXACTL )
+#define IS_TEXTFU(rn)  ( OP(rn)==EXACTFU || OP(rn)==EXACTFLU8 || OP(rn)==EXACTFU_SS || OP(rn) == EXACTFA || OP(rn) == EXACTFA_NO_TRIE)
+#define IS_TEXTF(rn)  ( OP(rn)==EXACTF  )
+#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL )
+
+#endif
+
+/*
+  Search for mandatory following text node; for lookahead, the text must
+  follow but for lookbehind (rn->flags != 0) we skip to the next step.
+*/
+#define FIND_NEXT_IMPT(rn) STMT_START {                                   \
+    while (JUMPABLE(rn)) { \
+       const OPCODE type = OP(rn); \
+       if (type == SUSPEND || PL_regkind[type] == CURLY) \
+           rn = NEXTOPER(NEXTOPER(rn)); \
+       else if (type == PLUS) \
+           rn = NEXTOPER(rn); \
+       else if (type == IFMATCH) \
+           rn = (rn->flags == 0) ? NEXTOPER(NEXTOPER(rn)) : rn + ARG(rn); \
+       else rn += NEXT_OFF(rn); \
+    } \
+} STMT_END 
+
+#define SLAB_FIRST(s) (&(s)->states[0])
+#define SLAB_LAST(s)  (&(s)->states[PERL_REGMATCH_SLAB_SLOTS-1])
+
+static void S_setup_eval_state(pTHX_ regmatch_info *const reginfo);
+static void S_cleanup_regmatch_info_aux(pTHX_ void *arg);
+static regmatch_state * S_push_slab(pTHX);
+
+#define REGCP_PAREN_ELEMS 3
+#define REGCP_OTHER_ELEMS 3
+#define REGCP_FRAME_ELEMS 1
+/* REGCP_FRAME_ELEMS are not part of the REGCP_OTHER_ELEMS and
+ * are needed for the regexp context stack bookkeeping. */
+
+STATIC CHECKPOINT
+S_regcppush(pTHX_ const regexp *rex, I32 parenfloor, U32 maxopenparen)
+{
+    const int retval = PL_savestack_ix;
+    const int paren_elems_to_push =
+                (maxopenparen - parenfloor) * REGCP_PAREN_ELEMS;
+    const UV total_elems = paren_elems_to_push + REGCP_OTHER_ELEMS;
+    const UV elems_shifted = total_elems << SAVE_TIGHT_SHIFT;
+    I32 p;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGCPPUSH;
+
+    if (paren_elems_to_push < 0)
+        Perl_croak(aTHX_ "panic: paren_elems_to_push, %i < 0, maxopenparen: %i parenfloor: %i REGCP_PAREN_ELEMS: %u",
+                   (int)paren_elems_to_push, (int)maxopenparen,
+                   (int)parenfloor, (unsigned)REGCP_PAREN_ELEMS);
+
+    if ((elems_shifted >> SAVE_TIGHT_SHIFT) != total_elems)
+       Perl_croak(aTHX_ "panic: paren_elems_to_push offset %"UVuf
+                  " out of range (%lu-%ld)",
+                  total_elems,
+                   (unsigned long)maxopenparen,
+                   (long)parenfloor);
+
+    SSGROW(total_elems + REGCP_FRAME_ELEMS);
+    
+    DEBUG_BUFFERS_r(
+       if ((int)maxopenparen > (int)parenfloor)
+           PerlIO_printf(Perl_debug_log,
+               "rex=0x%"UVxf" offs=0x%"UVxf": saving capture indices:\n",
+               PTR2UV(rex),
+               PTR2UV(rex->offs)
+           );
+    );
+    for (p = parenfloor+1; p <= (I32)maxopenparen;  p++) {
+/* REGCP_PARENS_ELEMS are pushed per pairs of parentheses. */
+       SSPUSHIV(rex->offs[p].end);
+       SSPUSHIV(rex->offs[p].start);
+       SSPUSHINT(rex->offs[p].start_tmp);
+       DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+           "    \\%"UVuf": %"IVdf"(%"IVdf")..%"IVdf"\n",
+           (UV)p,
+           (IV)rex->offs[p].start,
+           (IV)rex->offs[p].start_tmp,
+           (IV)rex->offs[p].end
+       ));
+    }
+/* REGCP_OTHER_ELEMS are pushed in any case, parentheses or no. */
+    SSPUSHINT(maxopenparen);
+    SSPUSHINT(rex->lastparen);
+    SSPUSHINT(rex->lastcloseparen);
+    SSPUSHUV(SAVEt_REGCONTEXT | elems_shifted); /* Magic cookie. */
+
+    return retval;
+}
+
+/* These are needed since we do not localize EVAL nodes: */
+#define REGCP_SET(cp)                                           \
+    DEBUG_STATE_r(                                              \
+            PerlIO_printf(Perl_debug_log,                      \
+               "  Setting an EVAL scope, savestack=%"IVdf"\n", \
+               (IV)PL_savestack_ix));                          \
+    cp = PL_savestack_ix
+
+#define REGCP_UNWIND(cp)                                        \
+    DEBUG_STATE_r(                                              \
+        if (cp != PL_savestack_ix)                             \
+           PerlIO_printf(Perl_debug_log,                       \
+               "  Clearing an EVAL scope, savestack=%"IVdf"..%"IVdf"\n", \
+               (IV)(cp), (IV)PL_savestack_ix));                \
+    regcpblow(cp)
+
+#define UNWIND_PAREN(lp, lcp)               \
+    for (n = rex->lastparen; n > lp; n--)   \
+        rex->offs[n].end = -1;              \
+    rex->lastparen = n;                     \
+    rex->lastcloseparen = lcp;
+
+
+STATIC void
+S_regcppop(pTHX_ regexp *rex, U32 *maxopenparen_p)
+{
+    UV i;
+    U32 paren;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGCPPOP;
+
+    /* Pop REGCP_OTHER_ELEMS before the parentheses loop starts. */
+    i = SSPOPUV;
+    assert((i & SAVE_MASK) == SAVEt_REGCONTEXT); /* Check that the magic cookie is there. */
+    i >>= SAVE_TIGHT_SHIFT; /* Parentheses elements to pop. */
+    rex->lastcloseparen = SSPOPINT;
+    rex->lastparen = SSPOPINT;
+    *maxopenparen_p = SSPOPINT;
+
+    i -= REGCP_OTHER_ELEMS;
+    /* Now restore the parentheses context. */
+    DEBUG_BUFFERS_r(
+       if (i || rex->lastparen + 1 <= rex->nparens)
+           PerlIO_printf(Perl_debug_log,
+               "rex=0x%"UVxf" offs=0x%"UVxf": restoring capture indices to:\n",
+               PTR2UV(rex),
+               PTR2UV(rex->offs)
+           );
+    );
+    paren = *maxopenparen_p;
+    for ( ; i > 0; i -= REGCP_PAREN_ELEMS) {
+       SSize_t tmps;
+       rex->offs[paren].start_tmp = SSPOPINT;
+       rex->offs[paren].start = SSPOPIV;
+       tmps = SSPOPIV;
+       if (paren <= rex->lastparen)
+           rex->offs[paren].end = tmps;
+       DEBUG_BUFFERS_r( PerlIO_printf(Perl_debug_log,
+           "    \\%"UVuf": %"IVdf"(%"IVdf")..%"IVdf"%s\n",
+           (UV)paren,
+           (IV)rex->offs[paren].start,
+           (IV)rex->offs[paren].start_tmp,
+           (IV)rex->offs[paren].end,
+           (paren > rex->lastparen ? "(skipped)" : ""));
+       );
+       paren--;
+    }
+#if 1
+    /* It would seem that the similar code in regtry()
+     * already takes care of this, and in fact it is in
+     * a better location to since this code can #if 0-ed out
+     * but the code in regtry() is needed or otherwise tests
+     * requiring null fields (pat.t#187 and split.t#{13,14}
+     * (as of patchlevel 7877)  will fail.  Then again,
+     * this code seems to be necessary or otherwise
+     * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
+     * --jhi updated by dapm */
+    for (i = rex->lastparen + 1; i <= rex->nparens; i++) {
+       if (i > *maxopenparen_p)
+           rex->offs[i].start = -1;
+       rex->offs[i].end = -1;
+       DEBUG_BUFFERS_r( PerlIO_printf(Perl_debug_log,
+           "    \\%"UVuf": %s   ..-1 undeffing\n",
+           (UV)i,
+           (i > *maxopenparen_p) ? "-1" : "  "
+       ));
+    }
+#endif
+}
+
+/* restore the parens and associated vars at savestack position ix,
+ * but without popping the stack */
+
+STATIC void
+S_regcp_restore(pTHX_ regexp *rex, I32 ix, U32 *maxopenparen_p)
+{
+    I32 tmpix = PL_savestack_ix;
+    PL_savestack_ix = ix;
+    regcppop(rex, maxopenparen_p);
+    PL_savestack_ix = tmpix;
+}
+
+#define regcpblow(cp) LEAVE_SCOPE(cp)  /* Ignores regcppush()ed data. */
+
+STATIC bool
+S_isFOO_lc(pTHX_ const U8 classnum, const U8 character)
+{
+    /* Returns a boolean as to whether or not 'character' is a member of the
+     * Posix character class given by 'classnum' that should be equivalent to a
+     * value in the typedef '_char_class_number'.
+     *
+     * Ideally this could be replaced by a just an array of function pointers
+     * to the C library functions that implement the macros this calls.
+     * However, to compile, the precise function signatures are required, and
+     * these may vary from platform to to platform.  To avoid having to figure
+     * out what those all are on each platform, I (khw) am using this method,
+     * which adds an extra layer of function call overhead (unless the C
+     * optimizer strips it away).  But we don't particularly care about
+     * performance with locales anyway. */
+
+    switch ((_char_class_number) classnum) {
+        case _CC_ENUM_ALPHANUMERIC: return isALPHANUMERIC_LC(character);
+        case _CC_ENUM_ALPHA:     return isALPHA_LC(character);
+        case _CC_ENUM_ASCII:     return isASCII_LC(character);
+        case _CC_ENUM_BLANK:     return isBLANK_LC(character);
+        case _CC_ENUM_CASED:     return isLOWER_LC(character)
+                                        || isUPPER_LC(character);
+        case _CC_ENUM_CNTRL:     return isCNTRL_LC(character);
+        case _CC_ENUM_DIGIT:     return isDIGIT_LC(character);
+        case _CC_ENUM_GRAPH:     return isGRAPH_LC(character);
+        case _CC_ENUM_LOWER:     return isLOWER_LC(character);
+        case _CC_ENUM_PRINT:     return isPRINT_LC(character);
+        case _CC_ENUM_PUNCT:     return isPUNCT_LC(character);
+        case _CC_ENUM_SPACE:     return isSPACE_LC(character);
+        case _CC_ENUM_UPPER:     return isUPPER_LC(character);
+        case _CC_ENUM_WORDCHAR:  return isWORDCHAR_LC(character);
+        case _CC_ENUM_XDIGIT:    return isXDIGIT_LC(character);
+        default:    /* VERTSPACE should never occur in locales */
+            Perl_croak(aTHX_ "panic: isFOO_lc() has an unexpected character class '%d'", classnum);
+    }
+
+    NOT_REACHED; /* NOTREACHED */
+    return FALSE;
+}
+
+STATIC bool
+S_isFOO_utf8_lc(pTHX_ const U8 classnum, const U8* character)
+{
+    /* Returns a boolean as to whether or not the (well-formed) UTF-8-encoded
+     * 'character' is a member of the Posix character class given by 'classnum'
+     * that should be equivalent to a value in the typedef
+     * '_char_class_number'.
+     *
+     * This just calls isFOO_lc on the code point for the character if it is in
+     * the range 0-255.  Outside that range, all characters use Unicode
+     * rules, ignoring any locale.  So use the Unicode function if this class
+     * requires a swash, and use the Unicode macro otherwise. */
+
+    PERL_ARGS_ASSERT_ISFOO_UTF8_LC;
+
+    if (UTF8_IS_INVARIANT(*character)) {
+        return isFOO_lc(classnum, *character);
+    }
+    else if (UTF8_IS_DOWNGRADEABLE_START(*character)) {
+        return isFOO_lc(classnum,
+                        TWO_BYTE_UTF8_TO_NATIVE(*character, *(character + 1)));
+    }
+
+    _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(character, character + UTF8SKIP(character));
+
+    if (classnum < _FIRST_NON_SWASH_CC) {
+
+        /* Initialize the swash unless done already */
+        if (! PL_utf8_swash_ptrs[classnum]) {
+            U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+            PL_utf8_swash_ptrs[classnum] =
+                    _core_swash_init("utf8",
+                                     "",
+                                     &PL_sv_undef, 1, 0,
+                                     PL_XPosix_ptrs[classnum], &flags);
+        }
+
+        return cBOOL(swash_fetch(PL_utf8_swash_ptrs[classnum], (U8 *)
+                                 character,
+                                 TRUE /* is UTF */ ));
+    }
+
+    switch ((_char_class_number) classnum) {
+        case _CC_ENUM_SPACE:     return is_XPERLSPACE_high(character);
+        case _CC_ENUM_BLANK:     return is_HORIZWS_high(character);
+        case _CC_ENUM_XDIGIT:    return is_XDIGIT_high(character);
+        case _CC_ENUM_VERTSPACE: return is_VERTWS_high(character);
+        default:                 break;
+    }
+
+    return FALSE; /* Things like CNTRL are always below 256 */
+}
+
+/*
+ * pregexec and friends
+ */
+
+#ifndef PERL_IN_XSUB_RE
+/*
+ - pregexec - match a regexp against a string
+ */
+I32
+Perl_pregexec(pTHX_ REGEXP * const prog, char* stringarg, char *strend,
+        char *strbeg, SSize_t minend, SV *screamer, U32 nosave)
+/* stringarg: the point in the string at which to begin matching */
+/* strend:    pointer to null at end of string */
+/* strbeg:    real beginning of string */
+/* minend:    end of match must be >= minend bytes after stringarg. */
+/* screamer:  SV being matched: only used for utf8 flag, pos() etc; string
+ *            itself is accessed via the pointers above */
+/* nosave:    For optimizations. */
+{
+    PERL_ARGS_ASSERT_PREGEXEC;
+
+    return
+       regexec_flags(prog, stringarg, strend, strbeg, minend, screamer, NULL,
+                     nosave ? 0 : REXEC_COPY_STR);
+}
+#endif
+
+
+
+/* re_intuit_start():
+ *
+ * Based on some optimiser hints, try to find the earliest position in the
+ * string where the regex could match.
+ *
+ *   rx:     the regex to match against
+ *   sv:     the SV being matched: only used for utf8 flag; the string
+ *           itself is accessed via the pointers below. Note that on
+ *           something like an overloaded SV, SvPOK(sv) may be false
+ *           and the string pointers may point to something unrelated to
+ *           the SV itself.
+ *   strbeg: real beginning of string
+ *   strpos: the point in the string at which to begin matching
+ *   strend: pointer to the byte following the last char of the string
+ *   flags   currently unused; set to 0
+ *   data:   currently unused; set to NULL
+ *
+ * The basic idea of re_intuit_start() is to use some known information
+ * about the pattern, namely:
+ *
+ *   a) the longest known anchored substring (i.e. one that's at a
+ *      constant offset from the beginning of the pattern; but not
+ *      necessarily at a fixed offset from the beginning of the
+ *      string);
+ *   b) the longest floating substring (i.e. one that's not at a constant
+ *      offset from the beginning of the pattern);
+ *   c) Whether the pattern is anchored to the string; either
+ *      an absolute anchor: /^../, or anchored to \n: /^.../m,
+ *      or anchored to pos(): /\G/;
+ *   d) A start class: a real or synthetic character class which
+ *      represents which characters are legal at the start of the pattern;
+ *
+ * to either quickly reject the match, or to find the earliest position
+ * within the string at which the pattern might match, thus avoiding
+ * running the full NFA engine at those earlier locations, only to
+ * eventually fail and retry further along.
+ *
+ * Returns NULL if the pattern can't match, or returns the address within
+ * the string which is the earliest place the match could occur.
+ *
+ * The longest of the anchored and floating substrings is called 'check'
+ * and is checked first. The other is called 'other' and is checked
+ * second. The 'other' substring may not be present.  For example,
+ *
+ *    /(abc|xyz)ABC\d{0,3}DEFG/
+ *
+ * will have
+ *
+ *   check substr (float)    = "DEFG", offset 6..9 chars
+ *   other substr (anchored) = "ABC",  offset 3..3 chars
+ *   stclass = [ax]
+ *
+ * Be aware that during the course of this function, sometimes 'anchored'
+ * refers to a substring being anchored relative to the start of the
+ * pattern, and sometimes to the pattern itself being anchored relative to
+ * the string. For example:
+ *
+ *   /\dabc/:   "abc" is anchored to the pattern;
+ *   /^\dabc/:  "abc" is anchored to the pattern and the string;
+ *   /\d+abc/:  "abc" is anchored to neither the pattern nor the string;
+ *   /^\d+abc/: "abc" is anchored to neither the pattern nor the string,
+ *                    but the pattern is anchored to the string.
+ */
+
+char *
+Perl_re_intuit_start(pTHX_
+                    REGEXP * const rx,
+                    SV *sv,
+                    const char * const strbeg,
+                    char *strpos,
+                    char *strend,
+                    const U32 flags,
+                    re_scream_pos_data *data)
+{
+    struct regexp *const prog = ReANY(rx);
+    SSize_t start_shift = prog->check_offset_min;
+    /* Should be nonnegative! */
+    SSize_t end_shift   = 0;
+    /* current lowest pos in string where the regex can start matching */
+    char *rx_origin = strpos;
+    SV *check;
+    const bool utf8_target = (sv && SvUTF8(sv)) ? 1 : 0; /* if no sv we have to assume bytes */
+    U8   other_ix = 1 - prog->substrs->check_ix;
+    bool ml_anch = 0;
+    char *other_last = strpos;/* latest pos 'other' substr already checked to */
+    char *check_at = NULL;             /* check substr found at this pos */
+    const I32 multiline = prog->extflags & RXf_PMf_MULTILINE;
+    RXi_GET_DECL(prog,progi);
+    regmatch_info reginfo_buf;  /* create some info to pass to find_byclass */
+    regmatch_info *const reginfo = &reginfo_buf;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_RE_INTUIT_START;
+    PERL_UNUSED_ARG(flags);
+    PERL_UNUSED_ARG(data);
+
+    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                "Intuit: trying to determine minimum start position...\n"));
+
+    /* for now, assume that all substr offsets are positive. If at some point
+     * in the future someone wants to do clever things with look-behind and
+     * -ve offsets, they'll need to fix up any code in this function
+     * which uses these offsets. See the thread beginning
+     * <20140113145929.GF27210@iabyn.com>
+     */
+    assert(prog->substrs->data[0].min_offset >= 0);
+    assert(prog->substrs->data[0].max_offset >= 0);
+    assert(prog->substrs->data[1].min_offset >= 0);
+    assert(prog->substrs->data[1].max_offset >= 0);
+    assert(prog->substrs->data[2].min_offset >= 0);
+    assert(prog->substrs->data[2].max_offset >= 0);
+
+    /* for now, assume that if both present, that the floating substring
+     * doesn't start before the anchored substring.
+     * If you break this assumption (e.g. doing better optimisations
+     * with lookahead/behind), then you'll need to audit the code in this
+     * function carefully first
+     */
+    assert(
+            ! (  (prog->anchored_utf8 || prog->anchored_substr)
+              && (prog->float_utf8    || prog->float_substr))
+           || (prog->float_min_offset >= prog->anchored_offset));
+
+    /* byte rather than char calculation for efficiency. It fails
+     * to quickly reject some cases that can't match, but will reject
+     * them later after doing full char arithmetic */
+    if (prog->minlen > strend - strpos) {
+       DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                             "  String too short...\n"));
+       goto fail;
+    }
+
+    RX_MATCH_UTF8_set(rx,utf8_target);
+    reginfo->is_utf8_target = cBOOL(utf8_target);
+    reginfo->info_aux = NULL;
+    reginfo->strbeg = strbeg;
+    reginfo->strend = strend;
+    reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx));
+    reginfo->intuit = 1;
+    /* not actually used within intuit, but zero for safety anyway */
+    reginfo->poscache_maxiter = 0;
+
+    if (utf8_target) {
+       if (!prog->check_utf8 && prog->check_substr)
+           to_utf8_substr(prog);
+       check = prog->check_utf8;
+    } else {
+       if (!prog->check_substr && prog->check_utf8) {
+           if (! to_byte_substr(prog)) {
+                NON_UTF8_TARGET_BUT_UTF8_REQUIRED(fail);
+            }
+        }
+       check = prog->check_substr;
+    }
+
+    /* dump the various substring data */
+    DEBUG_OPTIMISE_MORE_r({
+        int i;
+        for (i=0; i<=2; i++) {
+            SV *sv = (utf8_target ? prog->substrs->data[i].utf8_substr
+                                  : prog->substrs->data[i].substr);
+            if (!sv)
+                continue;
+
+            PerlIO_printf(Perl_debug_log,
+                "  substrs[%d]: min=%"IVdf" max=%"IVdf" end shift=%"IVdf
+                " useful=%"IVdf" utf8=%d [%s]\n",
+                i,
+                (IV)prog->substrs->data[i].min_offset,
+                (IV)prog->substrs->data[i].max_offset,
+                (IV)prog->substrs->data[i].end_shift,
+                BmUSEFUL(sv),
+                utf8_target ? 1 : 0,
+                SvPEEK(sv));
+        }
+    });
+
+    if (prog->intflags & PREGf_ANCH) { /* Match at \G, beg-of-str or after \n */
+
+        /* ml_anch: check after \n?
+         *
+         * A note about PREGf_IMPLICIT: on an un-anchored pattern beginning
+         * with /.*.../, these flags will have been added by the
+         * compiler:
+         *   /.*abc/, /.*abc/m:  PREGf_IMPLICIT | PREGf_ANCH_MBOL
+         *   /.*abc/s:           PREGf_IMPLICIT | PREGf_ANCH_SBOL
+         */
+       ml_anch =      (prog->intflags & PREGf_ANCH_MBOL)
+                   && !(prog->intflags & PREGf_IMPLICIT);
+
+       if (!ml_anch && !(prog->intflags & PREGf_IMPLICIT)) {
+            /* we are only allowed to match at BOS or \G */
+
+            /* trivially reject if there's a BOS anchor and we're not at BOS.
+             *
+             * Note that we don't try to do a similar quick reject for
+             * \G, since generally the caller will have calculated strpos
+             * based on pos() and gofs, so the string is already correctly
+             * anchored by definition; and handling the exceptions would
+             * be too fiddly (e.g. REXEC_IGNOREPOS).
+             */
+            if (   strpos != strbeg
+                && (prog->intflags & PREGf_ANCH_SBOL))
+            {
+               DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                                "  Not at start...\n"));
+               goto fail;
+           }
+
+            /* in the presence of an anchor, the anchored (relative to the
+             * start of the regex) substr must also be anchored relative
+             * to strpos. So quickly reject if substr isn't found there.
+             * This works for \G too, because the caller will already have
+             * subtracted gofs from pos, and gofs is the offset from the
+             * \G to the start of the regex. For example, in /.abc\Gdef/,
+             * where substr="abcdef", pos()=3, gofs=4, offset_min=1:
+             * caller will have set strpos=pos()-4; we look for the substr
+             * at position pos()-4+1, which lines up with the "a" */
+
+           if (prog->check_offset_min == prog->check_offset_max) {
+               /* Substring at constant offset from beg-of-str... */
+               SSize_t slen = SvCUR(check);
+                char *s = HOP3c(strpos, prog->check_offset_min, strend);
+           
+                DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                    "  Looking for check substr at fixed offset %"IVdf"...\n",
+                    (IV)prog->check_offset_min));
+
+               if (SvTAIL(check)) {
+                    /* In this case, the regex is anchored at the end too.
+                     * Unless it's a multiline match, the lengths must match
+                     * exactly, give or take a \n.  NB: slen >= 1 since
+                     * the last char of check is \n */
+                   if (!multiline
+                        && (   strend - s > slen
+                            || strend - s < slen - 1
+                            || (strend - s == slen && strend[-1] != '\n')))
+                    {
+                        DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                                            "  String too long...\n"));
+                        goto fail_finish;
+                    }
+                    /* Now should match s[0..slen-2] */
+                    slen--;
+                }
+                if (slen && (*SvPVX_const(check) != *s
+                    || (slen > 1 && memNE(SvPVX_const(check), s, slen))))
+                {
+                    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                                    "  String not equal...\n"));
+                    goto fail_finish;
+                }
+
+                check_at = s;
+                goto success_at_start;
+           }
+       }
+    }
+
+    end_shift = prog->check_end_shift;
+
+#ifdef DEBUGGING       /* 7/99: reports of failure (with the older version) */
+    if (end_shift < 0)
+       Perl_croak(aTHX_ "panic: end_shift: %"IVdf" pattern:\n%s\n ",
+                  (IV)end_shift, RX_PRECOMP(prog));
+#endif
+
+  restart:
+    
+    /* This is the (re)entry point of the main loop in this function.
+     * The goal of this loop is to:
+     * 1) find the "check" substring in the region rx_origin..strend
+     *    (adjusted by start_shift / end_shift). If not found, reject
+     *    immediately.
+     * 2) If it exists, look for the "other" substr too if defined; for
+     *    example, if the check substr maps to the anchored substr, then
+     *    check the floating substr, and vice-versa. If not found, go
+     *    back to (1) with rx_origin suitably incremented.
+     * 3) If we find an rx_origin position that doesn't contradict
+     *    either of the substrings, then check the possible additional
+     *    constraints on rx_origin of /^.../m or a known start class.
+     *    If these fail, then depending on which constraints fail, jump
+     *    back to here, or to various other re-entry points further along
+     *    that skip some of the first steps.
+     * 4) If we pass all those tests, update the BmUSEFUL() count on the
+     *    substring. If the start position was determined to be at the
+     *    beginning of the string  - so, not rejected, but not optimised,
+     *    since we have to run regmatch from position 0 - decrement the
+     *    BmUSEFUL() count. Otherwise increment it.
+     */
+
+
+    /* first, look for the 'check' substring */
+
+    {
+        U8* start_point;
+        U8* end_point;
+
+        DEBUG_OPTIMISE_MORE_r({
+            PerlIO_printf(Perl_debug_log,
+                "  At restart: rx_origin=%"IVdf" Check offset min: %"IVdf
+                " Start shift: %"IVdf" End shift %"IVdf
+                " Real end Shift: %"IVdf"\n",
+                (IV)(rx_origin - strbeg),
+                (IV)prog->check_offset_min,
+                (IV)start_shift,
+                (IV)end_shift,
+                (IV)prog->check_end_shift);
+        });
+        
+        end_point = HOP3(strend, -end_shift, strbeg);
+        start_point = HOPMAYBE3(rx_origin, start_shift, end_point);
+        if (!start_point)
+            goto fail_finish;
+
+
+        /* If the regex is absolutely anchored to either the start of the
+         * string (SBOL) or to pos() (ANCH_GPOS), then
+         * check_offset_max represents an upper bound on the string where
+         * the substr could start. For the ANCH_GPOS case, we assume that
+         * the caller of intuit will have already set strpos to
+         * pos()-gofs, so in this case strpos + offset_max will still be
+         * an upper bound on the substr.
+         */
+        if (!ml_anch
+            && prog->intflags & PREGf_ANCH
+            && prog->check_offset_max != SSize_t_MAX)
+        {
+            SSize_t len = SvCUR(check) - !!SvTAIL(check);
+            const char * const anchor =
+                        (prog->intflags & PREGf_ANCH_GPOS ? strpos : strbeg);
+
+            /* do a bytes rather than chars comparison. It's conservative;
+             * so it skips doing the HOP if the result can't possibly end
+             * up earlier than the old value of end_point.
+             */
+            if ((char*)end_point - anchor > prog->check_offset_max) {
+                end_point = HOP3lim((U8*)anchor,
+                                prog->check_offset_max,
+                                end_point -len)
+                            + len;
+            }
+        }
+
+       check_at = fbm_instr( start_point, end_point,
+                     check, multiline ? FBMrf_MULTILINE : 0);
+
+       DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+            "  doing 'check' fbm scan, [%"IVdf"..%"IVdf"] gave %"IVdf"\n",
+            (IV)((char*)start_point - strbeg),
+            (IV)((char*)end_point   - strbeg),
+            (IV)(check_at ? check_at - strbeg : -1)
+        ));
+
+        /* Update the count-of-usability, remove useless subpatterns,
+            unshift s.  */
+
+        DEBUG_EXECUTE_r({
+            RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+                SvPVX_const(check), RE_SV_DUMPLEN(check), 30);
+            PerlIO_printf(Perl_debug_log, "  %s %s substr %s%s%s",
+                              (check_at ? "Found" : "Did not find"),
+                (check == (utf8_target ? prog->anchored_utf8 : prog->anchored_substr)
+                    ? "anchored" : "floating"),
+                quoted,
+                RE_SV_TAIL(check),
+                (check_at ? " at offset " : "...\n") );
+        });
+
+        if (!check_at)
+            goto fail_finish;
+        /* set rx_origin to the minimum position where the regex could start
+         * matching, given the constraint of the just-matched check substring.
+         * But don't set it lower than previously.
+         */
+
+        if (check_at - rx_origin > prog->check_offset_max)
+            rx_origin = HOP3c(check_at, -prog->check_offset_max, rx_origin);
+        /* Finish the diagnostic message */
+        DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+            "%ld (rx_origin now %"IVdf")...\n",
+            (long)(check_at - strbeg),
+            (IV)(rx_origin - strbeg)
+        ));
+    }
+
+
+    /* now look for the 'other' substring if defined */
+
+    if (utf8_target ? prog->substrs->data[other_ix].utf8_substr
+                    : prog->substrs->data[other_ix].substr)
+    {
+       /* Take into account the "other" substring. */
+        char *last, *last1;
+        char *s;
+        SV* must;
+        struct reg_substr_datum *other;
+
+      do_other_substr:
+        other = &prog->substrs->data[other_ix];
+
+        /* if "other" is anchored:
+         * we've previously found a floating substr starting at check_at.
+         * This means that the regex origin must lie somewhere
+         * between min (rx_origin): HOP3(check_at, -check_offset_max)
+         * and max:                 HOP3(check_at, -check_offset_min)
+         * (except that min will be >= strpos)
+         * So the fixed  substr must lie somewhere between
+         *  HOP3(min, anchored_offset)
+         *  HOP3(max, anchored_offset) + SvCUR(substr)
+         */
+
+        /* if "other" is floating
+         * Calculate last1, the absolute latest point where the
+         * floating substr could start in the string, ignoring any
+         * constraints from the earlier fixed match. It is calculated
+         * as follows:
+         *
+         * strend - prog->minlen (in chars) is the absolute latest
+         * position within the string where the origin of the regex
+         * could appear. The latest start point for the floating
+         * substr is float_min_offset(*) on from the start of the
+         * regex.  last1 simply combines thee two offsets.
+         *
+         * (*) You might think the latest start point should be
+         * float_max_offset from the regex origin, and technically
+         * you'd be correct. However, consider
+         *    /a\d{2,4}bcd\w/
+         * Here, float min, max are 3,5 and minlen is 7.
+         * This can match either
+         *    /a\d\dbcd\w/
+         *    /a\d\d\dbcd\w/
+         *    /a\d\d\d\dbcd\w/
+         * In the first case, the regex matches minlen chars; in the
+         * second, minlen+1, in the third, minlen+2.
+         * In the first case, the floating offset is 3 (which equals
+         * float_min), in the second, 4, and in the third, 5 (which
+         * equals float_max). In all cases, the floating string bcd
+         * can never start more than 4 chars from the end of the
+         * string, which equals minlen - float_min. As the substring
+         * starts to match more than float_min from the start of the
+         * regex, it makes the regex match more than minlen chars,
+         * and the two cancel each other out. So we can always use
+         * float_min - minlen, rather than float_max - minlen for the
+         * latest position in the string.
+         *
+         * Note that -minlen + float_min_offset is equivalent (AFAIKT)
+         * to CHR_SVLEN(must) - !!SvTAIL(must) + prog->float_end_shift
+         */
+
+        assert(prog->minlen >= other->min_offset);
+        last1 = HOP3c(strend,
+                        other->min_offset - prog->minlen, strbeg);
+
+        if (other_ix) {/* i.e. if (other-is-float) */
+            /* last is the latest point where the floating substr could
+             * start, *given* any constraints from the earlier fixed
+             * match. This constraint is that the floating string starts
+             * <= float_max_offset chars from the regex origin (rx_origin).
+             * If this value is less than last1, use it instead.
+             */
+            assert(rx_origin <= last1);
+            last =
+                /* this condition handles the offset==infinity case, and
+                 * is a short-cut otherwise. Although it's comparing a
+                 * byte offset to a char length, it does so in a safe way,
+                 * since 1 char always occupies 1 or more bytes,
+                 * so if a string range is  (last1 - rx_origin) bytes,
+                 * it will be less than or equal to  (last1 - rx_origin)
+                 * chars; meaning it errs towards doing the accurate HOP3
+                 * rather than just using last1 as a short-cut */
+                (last1 - rx_origin) < other->max_offset
+                    ? last1
+                    : (char*)HOP3lim(rx_origin, other->max_offset, last1);
+        }
+        else {
+            assert(strpos + start_shift <= check_at);
+            last = HOP4c(check_at, other->min_offset - start_shift,
+                        strbeg, strend);
+        }
+
+        s = HOP3c(rx_origin, other->min_offset, strend);
+        if (s < other_last)    /* These positions already checked */
+            s = other_last;
+
+        must = utf8_target ? other->utf8_substr : other->substr;
+        assert(SvPOK(must));
+        {
+            char *from = s;
+            char *to   = last + SvCUR(must) - (SvTAIL(must)!=0);
+
+            if (from > to) {
+                s = NULL;
+                DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                    "  skipping 'other' fbm scan: %"IVdf" > %"IVdf"\n",
+                    (IV)(from - strbeg),
+                    (IV)(to   - strbeg)
+                ));
+            }
+            else {
+                s = fbm_instr(
+                    (unsigned char*)from,
+                    (unsigned char*)to,
+                    must,
+                    multiline ? FBMrf_MULTILINE : 0
+                );
+                DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                    "  doing 'other' fbm scan, [%"IVdf"..%"IVdf"] gave %"IVdf"\n",
+                    (IV)(from - strbeg),
+                    (IV)(to   - strbeg),
+                    (IV)(s ? s - strbeg : -1)
+                ));
+            }
+        }
+
+        DEBUG_EXECUTE_r({
+            RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+                SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+            PerlIO_printf(Perl_debug_log, "  %s %s substr %s%s",
+                s ? "Found" : "Contradicts",
+                other_ix ? "floating" : "anchored",
+                quoted, RE_SV_TAIL(must));
+        });
+
+
+        if (!s) {
+            /* last1 is latest possible substr location. If we didn't
+             * find it before there, we never will */
+            if (last >= last1) {
+                DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                                        "; giving up...\n"));
+                goto fail_finish;
+            }
+
+            /* try to find the check substr again at a later
+             * position. Maybe next time we'll find the "other" substr
+             * in range too */
+            other_last = HOP3c(last, 1, strend) /* highest failure */;
+            rx_origin =
+                other_ix /* i.e. if other-is-float */
+                    ? HOP3c(rx_origin, 1, strend)
+                    : HOP4c(last, 1 - other->min_offset, strbeg, strend);
+            DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                "; about to retry %s at offset %ld (rx_origin now %"IVdf")...\n",
+                (other_ix ? "floating" : "anchored"),
+                (long)(HOP3c(check_at, 1, strend) - strbeg),
+                (IV)(rx_origin - strbeg)
+            ));
+            goto restart;
+        }
+        else {
+            if (other_ix) { /* if (other-is-float) */
+                /* other_last is set to s, not s+1, since its possible for
+                 * a floating substr to fail first time, then succeed
+                 * second time at the same floating position; e.g.:
+                 *     "-AB--AABZ" =~ /\wAB\d*Z/
+                 * The first time round, anchored and float match at
+                 * "-(AB)--AAB(Z)" then fail on the initial \w character
+                 * class. Second time round, they match at "-AB--A(AB)(Z)".
+                 */
+                other_last = s;
+            }
+            else {
+                rx_origin = HOP3c(s, -other->min_offset, strbeg);
+                other_last = HOP3c(s, 1, strend);
+            }
+            DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                " at offset %ld (rx_origin now %"IVdf")...\n",
+                  (long)(s - strbeg),
+                (IV)(rx_origin - strbeg)
+              ));
+
+        }
+    }
+    else {
+        DEBUG_OPTIMISE_MORE_r(
+            PerlIO_printf(Perl_debug_log,
+                "  Check-only match: offset min:%"IVdf" max:%"IVdf
+                " check_at:%"IVdf" rx_origin:%"IVdf" rx_origin-check_at:%"IVdf
+                " strend:%"IVdf"\n",
+                (IV)prog->check_offset_min,
+                (IV)prog->check_offset_max,
+                (IV)(check_at-strbeg),
+                (IV)(rx_origin-strbeg),
+                (IV)(rx_origin-check_at),
+                (IV)(strend-strbeg)
+            )
+        );
+    }
+
+  postprocess_substr_matches:
+
+    /* handle the extra constraint of /^.../m if present */
+
+    if (ml_anch && rx_origin != strbeg && rx_origin[-1] != '\n') {
+        char *s;
+
+        DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                        "  looking for /^/m anchor"));
+
+        /* we have failed the constraint of a \n before rx_origin.
+         * Find the next \n, if any, even if it's beyond the current
+         * anchored and/or floating substrings. Whether we should be
+         * scanning ahead for the next \n or the next substr is debatable.
+         * On the one hand you'd expect rare substrings to appear less
+         * often than \n's. On the other hand, searching for \n means
+         * we're effectively flipping between check_substr and "\n" on each
+         * iteration as the current "rarest" string candidate, which
+         * means for example that we'll quickly reject the whole string if
+         * hasn't got a \n, rather than trying every substr position
+         * first
+         */
+
+        s = HOP3c(strend, - prog->minlen, strpos);
+        if (s <= rx_origin ||
+            ! ( rx_origin = (char *)memchr(rx_origin, '\n', s - rx_origin)))
+        {
+            DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                            "  Did not find /%s^%s/m...\n",
+                            PL_colors[0], PL_colors[1]));
+            goto fail_finish;
+        }
+
+        /* earliest possible origin is 1 char after the \n.
+         * (since *rx_origin == '\n', it's safe to ++ here rather than
+         * HOP(rx_origin, 1)) */
+        rx_origin++;
+
+        if (prog->substrs->check_ix == 0  /* check is anchored */
+            || rx_origin >= HOP3c(check_at,  - prog->check_offset_min, strpos))
+        {
+            /* Position contradicts check-string; either because
+             * check was anchored (and thus has no wiggle room),
+             * or check was float and rx_origin is above the float range */
+            DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                "  Found /%s^%s/m, about to restart lookup for check-string with rx_origin %ld...\n",
+                PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg)));
+            goto restart;
+        }
+
+        /* if we get here, the check substr must have been float,
+         * is in range, and we may or may not have had an anchored
+         * "other" substr which still contradicts */
+        assert(prog->substrs->check_ix); /* check is float */
+
+        if (utf8_target ? prog->anchored_utf8 : prog->anchored_substr) {
+            /* whoops, the anchored "other" substr exists, so we still
+             * contradict. On the other hand, the float "check" substr
+             * didn't contradict, so just retry the anchored "other"
+             * substr */
+            DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                "  Found /%s^%s/m, rescanning for anchored from offset %ld (rx_origin now %"IVdf")...\n",
+                PL_colors[0], PL_colors[1],
+                (long)(rx_origin - strbeg + prog->anchored_offset),
+                (long)(rx_origin - strbeg)
+            ));
+            goto do_other_substr;
+        }
+
+        /* success: we don't contradict the found floating substring
+         * (and there's no anchored substr). */
+        DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+            "  Found /%s^%s/m with rx_origin %ld...\n",
+            PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg)));
+    }
+    else {
+        DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+            "  (multiline anchor test skipped)\n"));
+    }
+
+  success_at_start:
+
+
+    /* if we have a starting character class, then test that extra constraint.
+     * (trie stclasses are too expensive to use here, we are better off to
+     * leave it to regmatch itself) */
+
+    if (progi->regstclass && PL_regkind[OP(progi->regstclass)]!=TRIE) {
+        const U8* const str = (U8*)STRING(progi->regstclass);
+
+        /* XXX this value could be pre-computed */
+        const int cl_l = (PL_regkind[OP(progi->regstclass)] == EXACT
+                   ?  (reginfo->is_utf8_pat
+                        ? utf8_distance(str + STR_LEN(progi->regstclass), str)
+                        : STR_LEN(progi->regstclass))
+                   : 1);
+       char * endpos;
+        char *s;
+        /* latest pos that a matching float substr constrains rx start to */
+        char *rx_max_float = NULL;
+
+        /* if the current rx_origin is anchored, either by satisfying an
+         * anchored substring constraint, or a /^.../m constraint, then we
+         * can reject the current origin if the start class isn't found
+         * at the current position. If we have a float-only match, then
+         * rx_origin is constrained to a range; so look for the start class
+         * in that range. if neither, then look for the start class in the
+         * whole rest of the string */
+
+        /* XXX DAPM it's not clear what the minlen test is for, and why
+         * it's not used in the floating case. Nothing in the test suite
+         * causes minlen == 0 here. See <20140313134639.GS12844@iabyn.com>.
+         * Here are some old comments, which may or may not be correct:
+         *
+        *   minlen == 0 is possible if regstclass is \b or \B,
+        *   and the fixed substr is ''$.
+         *   Since minlen is already taken into account, rx_origin+1 is
+         *   before strend; accidentally, minlen >= 1 guaranties no false
+         *   positives at rx_origin + 1 even for \b or \B.  But (minlen? 1 :
+         *   0) below assumes that regstclass does not come from lookahead...
+        *   If regstclass takes bytelength more than 1: If charlength==1, OK.
+         *   This leaves EXACTF-ish only, which are dealt with in
+         *   find_byclass().
+         */
+
+       if (prog->anchored_substr || prog->anchored_utf8 || ml_anch)
+            endpos= HOP3c(rx_origin, (prog->minlen ? cl_l : 0), strend);
+        else if (prog->float_substr || prog->float_utf8) {
+           rx_max_float = HOP3c(check_at, -start_shift, strbeg);
+           endpos= HOP3c(rx_max_float, cl_l, strend);
+        }
+        else 
+            endpos= strend;
+                   
+        DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+            "  looking for class: start_shift: %"IVdf" check_at: %"IVdf
+            " rx_origin: %"IVdf" endpos: %"IVdf"\n",
+              (IV)start_shift, (IV)(check_at - strbeg),
+              (IV)(rx_origin - strbeg), (IV)(endpos - strbeg)));
+
+        s = find_byclass(prog, progi->regstclass, rx_origin, endpos,
+                            reginfo);
+       if (!s) {
+           if (endpos == strend) {
+               DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+                               "  Could not match STCLASS...\n") );
+               goto fail;
+           }
+           DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+                               "  This position contradicts STCLASS...\n") );
+            if ((prog->intflags & PREGf_ANCH) && !ml_anch
+                        && !(prog->intflags & PREGf_IMPLICIT))
+               goto fail;
+
+           /* Contradict one of substrings */
+           if (prog->anchored_substr || prog->anchored_utf8) {
+                if (prog->substrs->check_ix == 1) { /* check is float */
+                    /* Have both, check_string is floating */
+                    assert(rx_origin + start_shift <= check_at);
+                    if (rx_origin + start_shift != check_at) {
+                        /* not at latest position float substr could match:
+                         * Recheck anchored substring, but not floating.
+                         * The condition above is in bytes rather than
+                         * chars for efficiency. It's conservative, in
+                         * that it errs on the side of doing 'goto
+                         * do_other_substr'. In this case, at worst,
+                         * an extra anchored search may get done, but in
+                         * practice the extra fbm_instr() is likely to
+                         * get skipped anyway. */
+                        DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+                            "  about to retry anchored at offset %ld (rx_origin now %"IVdf")...\n",
+                            (long)(other_last - strbeg),
+                            (IV)(rx_origin - strbeg)
+                        ));
+                        goto do_other_substr;
+                    }
+                }
+            }
+           else {
+                /* float-only */
+
+                if (ml_anch) {
+                    /* In the presence of ml_anch, we might be able to
+                     * find another \n without breaking the current float
+                     * constraint. */
+
+                    /* strictly speaking this should be HOP3c(..., 1, ...),
+                     * but since we goto a block of code that's going to
+                     * search for the next \n if any, its safe here */
+                    rx_origin++;
+                    DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+                              "  about to look for /%s^%s/m starting at rx_origin %ld...\n",
+                              PL_colors[0], PL_colors[1],
+                              (long)(rx_origin - strbeg)) );
+                    goto postprocess_substr_matches;
+                }
+
+                /* strictly speaking this can never be true; but might
+                 * be if we ever allow intuit without substrings */
+                if (!(utf8_target ? prog->float_utf8 : prog->float_substr))
+                    goto fail;
+
+                rx_origin = rx_max_float;
+            }
+
+            /* at this point, any matching substrings have been
+             * contradicted. Start again... */
+
+            rx_origin = HOP3c(rx_origin, 1, strend);
+
+            /* uses bytes rather than char calculations for efficiency.
+             * It's conservative: it errs on the side of doing 'goto restart',
+             * where there is code that does a proper char-based test */
+            if (rx_origin + start_shift + end_shift > strend) {
+                DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+                                       "  Could not match STCLASS...\n") );
+                goto fail;
+            }
+            DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+                "  about to look for %s substr starting at offset %ld (rx_origin now %"IVdf")...\n",
+                (prog->substrs->check_ix ? "floating" : "anchored"),
+                (long)(rx_origin + start_shift - strbeg),
+                (IV)(rx_origin - strbeg)
+            ));
+            goto restart;
+       }
+
+        /* Success !!! */
+
+       if (rx_origin != s) {
+            DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                       "  By STCLASS: moving %ld --> %ld\n",
+                                  (long)(rx_origin - strbeg), (long)(s - strbeg))
+                   );
+        }
+        else {
+            DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                                  "  Does not contradict STCLASS...\n");
+                   );
+        }
+    }
+
+    /* Decide whether using the substrings helped */
+
+    if (rx_origin != strpos) {
+       /* Fixed substring is found far enough so that the match
+          cannot start at strpos. */
+
+        DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "  try at offset...\n"));
+       ++BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr);        /* hooray/5 */
+    }
+    else {
+        /* The found rx_origin position does not prohibit matching at
+         * strpos, so calling intuit didn't gain us anything. Decrement
+         * the BmUSEFUL() count on the check substring, and if we reach
+         * zero, free it.  */
+       if (!(prog->intflags & PREGf_NAUGHTY)
+           && (utf8_target ? (
+               prog->check_utf8                /* Could be deleted already */
+               && --BmUSEFUL(prog->check_utf8) < 0
+               && (prog->check_utf8 == prog->float_utf8)
+           ) : (
+               prog->check_substr              /* Could be deleted already */
+               && --BmUSEFUL(prog->check_substr) < 0
+               && (prog->check_substr == prog->float_substr)
+           )))
+       {
+           /* If flags & SOMETHING - do not do it many times on the same match */
+           DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "  ... Disabling check substring...\n"));
+           /* XXX Does the destruction order has to change with utf8_target? */
+           SvREFCNT_dec(utf8_target ? prog->check_utf8 : prog->check_substr);
+           SvREFCNT_dec(utf8_target ? prog->check_substr : prog->check_utf8);
+           prog->check_substr = prog->check_utf8 = NULL;       /* disable */
+           prog->float_substr = prog->float_utf8 = NULL;       /* clear */
+           check = NULL;                       /* abort */
+           /* XXXX This is a remnant of the old implementation.  It
+                   looks wasteful, since now INTUIT can use many
+                   other heuristics. */
+           prog->extflags &= ~RXf_USE_INTUIT;
+       }
+    }
+
+    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+            "Intuit: %sSuccessfully guessed:%s match at offset %ld\n",
+             PL_colors[4], PL_colors[5], (long)(rx_origin - strbeg)) );
+
+    return rx_origin;
+
+  fail_finish:                         /* Substring not found */
+    if (prog->check_substr || prog->check_utf8)                /* could be removed already */
+       BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr) += 5; /* hooray */
+  fail:
+    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch rejected by optimizer%s\n",
+                         PL_colors[4], PL_colors[5]));
+    return NULL;
+}
+
+
+#define DECL_TRIE_TYPE(scan) \
+    const enum { trie_plain, trie_utf8, trie_utf8_fold, trie_latin_utf8_fold,       \
+                 trie_utf8_exactfa_fold, trie_latin_utf8_exactfa_fold,              \
+                 trie_utf8l, trie_flu8 }                                            \
+                    trie_type = ((scan->flags == EXACT)                             \
+                                 ? (utf8_target ? trie_utf8 : trie_plain)           \
+                                 : (scan->flags == EXACTL)                          \
+                                    ? (utf8_target ? trie_utf8l : trie_plain)       \
+                                    : (scan->flags == EXACTFA)                      \
+                                      ? (utf8_target                                \
+                                         ? trie_utf8_exactfa_fold                   \
+                                         : trie_latin_utf8_exactfa_fold)            \
+                                      : (scan->flags == EXACTFLU8                   \
+                                         ? trie_flu8                                \
+                                         : (utf8_target                             \
+                                           ? trie_utf8_fold                         \
+                                           :   trie_latin_utf8_fold)))
+
+#define REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc, uscan, len, uvc, charid, foldlen, foldbuf, uniflags) \
+STMT_START {                                                                        \
+    STRLEN skiplen;                                                                 \
+    U8 flags = FOLD_FLAGS_FULL;                                                     \
+    switch (trie_type) {                                                            \
+    case trie_flu8:                                                                 \
+        _CHECK_AND_WARN_PROBLEMATIC_LOCALE;                                         \
+        if (utf8_target && UTF8_IS_ABOVE_LATIN1(*uc)) {                             \
+            _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(uc, uc + UTF8SKIP(uc));          \
+        }                                                                           \
+        goto do_trie_utf8_fold;                                                     \
+    case trie_utf8_exactfa_fold:                                                    \
+        flags |= FOLD_FLAGS_NOMIX_ASCII;                                            \
+        /* FALLTHROUGH */                                                           \
+    case trie_utf8_fold:                                                            \
+      do_trie_utf8_fold:                                                            \
+        if ( foldlen>0 ) {                                                          \
+            uvc = utf8n_to_uvchr( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
+            foldlen -= len;                                                         \
+            uscan += len;                                                           \
+            len=0;                                                                  \
+        } else {                                                                    \
+            uvc = _to_utf8_fold_flags( (const U8*) uc, foldbuf, &foldlen, flags);   \
+            len = UTF8SKIP(uc);                                                     \
+            skiplen = UNISKIP( uvc );                                               \
+            foldlen -= skiplen;                                                     \
+            uscan = foldbuf + skiplen;                                              \
+        }                                                                           \
+        break;                                                                      \
+    case trie_latin_utf8_exactfa_fold:                                              \
+        flags |= FOLD_FLAGS_NOMIX_ASCII;                                            \
+        /* FALLTHROUGH */                                                           \
+    case trie_latin_utf8_fold:                                                      \
+        if ( foldlen>0 ) {                                                          \
+            uvc = utf8n_to_uvchr( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
+            foldlen -= len;                                                         \
+            uscan += len;                                                           \
+            len=0;                                                                  \
+        } else {                                                                    \
+            len = 1;                                                                \
+            uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, flags);             \
+            skiplen = UNISKIP( uvc );                                               \
+            foldlen -= skiplen;                                                     \
+            uscan = foldbuf + skiplen;                                              \
+        }                                                                           \
+        break;                                                                      \
+    case trie_utf8l:                                                                \
+        _CHECK_AND_WARN_PROBLEMATIC_LOCALE;                                         \
+        if (utf8_target && UTF8_IS_ABOVE_LATIN1(*uc)) {                             \
+            _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(uc, uc + UTF8SKIP(uc));          \
+        }                                                                           \
+        /* FALLTHROUGH */                                                           \
+    case trie_utf8:                                                                 \
+        uvc = utf8n_to_uvchr( (const U8*) uc, UTF8_MAXLEN, &len, uniflags );        \
+        break;                                                                      \
+    case trie_plain:                                                                \
+        uvc = (UV)*uc;                                                              \
+        len = 1;                                                                    \
+    }                                                                               \
+    if (uvc < 256) {                                                                \
+        charid = trie->charmap[ uvc ];                                              \
+    }                                                                               \
+    else {                                                                          \
+        charid = 0;                                                                 \
+        if (widecharmap) {                                                          \
+            SV** const svpp = hv_fetch(widecharmap,                                 \
+                        (char*)&uvc, sizeof(UV), 0);                                \
+            if (svpp)                                                               \
+                charid = (U16)SvIV(*svpp);                                          \
+        }                                                                           \
+    }                                                                               \
+} STMT_END
+
+#define DUMP_EXEC_POS(li,s,doutf8)                          \
+    dump_exec_pos(li,s,(reginfo->strend),(reginfo->strbeg), \
+                startpos, doutf8)
+
+#define REXEC_FBC_EXACTISH_SCAN(COND)                     \
+STMT_START {                                              \
+    while (s <= e) {                                      \
+       if ( (COND)                                       \
+            && (ln == 1 || folder(s, pat_string, ln))    \
+            && (reginfo->intuit || regtry(reginfo, &s)) )\
+           goto got_it;                                  \
+       s++;                                              \
+    }                                                     \
+} STMT_END
+
+#define REXEC_FBC_UTF8_SCAN(CODE)                     \
+STMT_START {                                          \
+    while (s < strend) {                              \
+       CODE                                          \
+       s += UTF8SKIP(s);                             \
+    }                                                 \
+} STMT_END
+
+#define REXEC_FBC_SCAN(CODE)                          \
+STMT_START {                                          \
+    while (s < strend) {                              \
+       CODE                                          \
+       s++;                                          \
+    }                                                 \
+} STMT_END
+
+#define REXEC_FBC_UTF8_CLASS_SCAN(COND)                        \
+REXEC_FBC_UTF8_SCAN( /* Loops while (s < strend) */            \
+    if (COND) {                                                \
+       if (tmp && (reginfo->intuit || regtry(reginfo, &s)))   \
+           goto got_it;                                       \
+       else                                                   \
+           tmp = doevery;                                     \
+    }                                                          \
+    else                                                       \
+       tmp = 1;                                               \
+)
+
+#define REXEC_FBC_CLASS_SCAN(COND)                             \
+REXEC_FBC_SCAN( /* Loops while (s < strend) */                 \
+    if (COND) {                                                \
+       if (tmp && (reginfo->intuit || regtry(reginfo, &s)))   \
+           goto got_it;                                       \
+       else                                                   \
+           tmp = doevery;                                     \
+    }                                                          \
+    else                                                       \
+       tmp = 1;                                               \
+)
+
+#define REXEC_FBC_CSCAN(CONDUTF8,COND)                         \
+    if (utf8_target) {                                         \
+       REXEC_FBC_UTF8_CLASS_SCAN(CONDUTF8);                   \
+    }                                                          \
+    else {                                                     \
+       REXEC_FBC_CLASS_SCAN(COND);                            \
+    }
+
+/* The three macros below are slightly different versions of the same logic.
+ *
+ * The first is for /a and /aa when the target string is UTF-8.  This can only
+ * match ascii, but it must advance based on UTF-8.   The other two handle the
+ * non-UTF-8 and the more generic UTF-8 cases.   In all three, we are looking
+ * for the boundary (or non-boundary) between a word and non-word character.
+ * The utf8 and non-utf8 cases have the same logic, but the details must be
+ * different.  Find the "wordness" of the character just prior to this one, and
+ * compare it with the wordness of this one.  If they differ, we have a
+ * boundary.  At the beginning of the string, pretend that the previous
+ * character was a new-line.
+ *
+ * All these macros uncleanly have side-effects with each other and outside
+ * variables.  So far it's been too much trouble to clean-up
+ *
+ * TEST_NON_UTF8 is the macro or function to call to test if its byte input is
+ *               a word character or not.
+ * IF_SUCCESS    is code to do if it finds that we are at a boundary between
+ *               word/non-word
+ * IF_FAIL       is code to do if we aren't at a boundary between word/non-word
+ *
+ * Exactly one of the two IF_FOO parameters is a no-op, depending on whether we
+ * are looking for a boundary or for a non-boundary.  If we are looking for a
+ * boundary, we want IF_FAIL to be the no-op, and for IF_SUCCESS to go out and
+ * see if this tentative match actually works, and if so, to quit the loop
+ * here.  And vice-versa if we are looking for a non-boundary.
+ *
+ * 'tmp' below in the next three macros in the REXEC_FBC_SCAN and
+ * REXEC_FBC_UTF8_SCAN loops is a loop invariant, a bool giving the return of
+ * TEST_NON_UTF8(s-1).  To see this, note that that's what it is defined to be
+ * at entry to the loop, and to get to the IF_FAIL branch, tmp must equal
+ * TEST_NON_UTF8(s), and in the opposite branch, IF_SUCCESS, tmp is that
+ * complement.  But in that branch we complement tmp, meaning that at the
+ * bottom of the loop tmp is always going to be equal to TEST_NON_UTF8(s),
+ * which means at the top of the loop in the next iteration, it is
+ * TEST_NON_UTF8(s-1) */
+#define FBC_UTF8_A(TEST_NON_UTF8, IF_SUCCESS, IF_FAIL)                         \
+    tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n';                      \
+    tmp = TEST_NON_UTF8(tmp);                                                  \
+    REXEC_FBC_UTF8_SCAN( /* advances s while s < strend */                     \
+        if (tmp == ! TEST_NON_UTF8((U8) *s)) {                                 \
+            tmp = !tmp;                                                        \
+            IF_SUCCESS; /* Is a boundary if values for s-1 and s differ */     \
+        }                                                                      \
+        else {                                                                 \
+            IF_FAIL;                                                           \
+        }                                                                      \
+    );                                                                         \
+
+/* Like FBC_UTF8_A, but TEST_UV is a macro which takes a UV as its input, and
+ * TEST_UTF8 is a macro that for the same input code points returns identically
+ * to TEST_UV, but takes a pointer to a UTF-8 encoded string instead */
+#define FBC_UTF8(TEST_UV, TEST_UTF8, IF_SUCCESS, IF_FAIL)                      \
+    if (s == reginfo->strbeg) {                                                \
+        tmp = '\n';                                                            \
+    }                                                                          \
+    else { /* Back-up to the start of the previous character */                \
+        U8 * const r = reghop3((U8*)s, -1, (U8*)reginfo->strbeg);              \
+        tmp = utf8n_to_uvchr(r, (U8*) reginfo->strend - r,                     \
+                                                       0, UTF8_ALLOW_DEFAULT); \
+    }                                                                          \
+    tmp = TEST_UV(tmp);                                                        \
+    LOAD_UTF8_CHARCLASS_ALNUM();                                               \
+    REXEC_FBC_UTF8_SCAN( /* advances s while s < strend */                     \
+        if (tmp == ! (TEST_UTF8((U8 *) s))) {                                  \
+            tmp = !tmp;                                                        \
+            IF_SUCCESS;                                                        \
+        }                                                                      \
+        else {                                                                 \
+            IF_FAIL;                                                           \
+        }                                                                      \
+    );
+
+/* Like the above two macros.  UTF8_CODE is the complete code for handling
+ * UTF-8.  Common to the BOUND and NBOUND cases, set-up by the FBC_BOUND, etc
+ * macros below */
+#define FBC_BOUND_COMMON(UTF8_CODE, TEST_NON_UTF8, IF_SUCCESS, IF_FAIL)        \
+    if (utf8_target) {                                                         \
+        UTF8_CODE                                                              \
+    }                                                                          \
+    else {  /* Not utf8 */                                                     \
+       tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n';                  \
+       tmp = TEST_NON_UTF8(tmp);                                              \
+       REXEC_FBC_SCAN( /* advances s while s < strend */                      \
+           if (tmp == ! TEST_NON_UTF8((U8) *s)) {                             \
+               IF_SUCCESS;                                                    \
+               tmp = !tmp;                                                    \
+           }                                                                  \
+           else {                                                             \
+               IF_FAIL;                                                       \
+           }                                                                  \
+       );                                                                     \
+    }                                                                          \
+    /* Here, things have been set up by the previous code so that tmp is the   \
+     * return of TEST_NON_UTF(s-1) or TEST_UTF8(s-1) (depending on the         \
+     * utf8ness of the target).  We also have to check if this matches against \
+     * the EOS, which we treat as a \n (which is the same value in both UTF-8  \
+     * or non-UTF8, so can use the non-utf8 test condition even for a UTF-8    \
+     * string */                                                               \
+    if (tmp == ! TEST_NON_UTF8('\n')) {                                        \
+        IF_SUCCESS;                                                            \
+    }                                                                          \
+    else {                                                                     \
+        IF_FAIL;                                                               \
+    }
+
+/* This is the macro to use when we want to see if something that looks like it
+ * could match, actually does, and if so exits the loop */
+#define REXEC_FBC_TRYIT                            \
+    if ((reginfo->intuit || regtry(reginfo, &s)))  \
+        goto got_it
+
+/* The only difference between the BOUND and NBOUND cases is that
+ * REXEC_FBC_TRYIT is called when matched in BOUND, and when non-matched in
+ * NBOUND.  This is accomplished by passing it as either the if or else clause,
+ * with the other one being empty (PLACEHOLDER is defined as empty).
+ *
+ * The TEST_FOO parameters are for operating on different forms of input, but
+ * all should be ones that return identically for the same underlying code
+ * points */
+#define FBC_BOUND(TEST_NON_UTF8, TEST_UV, TEST_UTF8)                           \
+    FBC_BOUND_COMMON(                                                          \
+          FBC_UTF8(TEST_UV, TEST_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER),          \
+          TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
+
+#define FBC_BOUND_A(TEST_NON_UTF8)                                             \
+    FBC_BOUND_COMMON(                                                          \
+            FBC_UTF8_A(TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER),           \
+            TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
+
+#define FBC_NBOUND(TEST_NON_UTF8, TEST_UV, TEST_UTF8)                          \
+    FBC_BOUND_COMMON(                                                          \
+          FBC_UTF8(TEST_UV, TEST_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT),          \
+          TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
+
+#define FBC_NBOUND_A(TEST_NON_UTF8)                                            \
+    FBC_BOUND_COMMON(                                                          \
+            FBC_UTF8_A(TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT),           \
+            TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
+
+/* Takes a pointer to an inversion list, a pointer to its corresponding
+ * inversion map, and a code point, and returns the code point's value
+ * according to the two arrays.  It assumes that all code points have a value.
+ * This is used as the base macro for macros for particular properties */
+#define _generic_GET_BREAK_VAL_CP(invlist, invmap, cp)              \
+                             invmap[_invlist_search(invlist, cp)]
+
+/* Same as above, but takes begin, end ptrs to a UTF-8 encoded string instead
+ * of a code point, returning the value for the first code point in the string.
+ * And it takes the particular macro name that finds the desired value given a
+ * code point.  Merely convert the UTF-8 to code point and call the cp macro */
+#define _generic_GET_BREAK_VAL_UTF8(cp_macro, pos, strend)                     \
+             (__ASSERT_(pos < strend)                                          \
+                 /* Note assumes is valid UTF-8 */                             \
+             (cp_macro(utf8_to_uvchr_buf((pos), (strend), NULL))))
+
+/* Returns the GCB value for the input code point */
+#define getGCB_VAL_CP(cp)                                                      \
+          _generic_GET_BREAK_VAL_CP(                                           \
+                                    PL_GCB_invlist,                            \
+                                    Grapheme_Cluster_Break_invmap,             \
+                                    (cp))
+
+/* Returns the GCB value for the first code point in the UTF-8 encoded string
+ * bounded by pos and strend */
+#define getGCB_VAL_UTF8(pos, strend)                                           \
+    _generic_GET_BREAK_VAL_UTF8(getGCB_VAL_CP, pos, strend)
+
+
+/* Returns the SB value for the input code point */
+#define getSB_VAL_CP(cp)                                                       \
+          _generic_GET_BREAK_VAL_CP(                                           \
+                                    PL_SB_invlist,                             \
+                                    Sentence_Break_invmap,                     \
+                                    (cp))
+
+/* Returns the SB value for the first code point in the UTF-8 encoded string
+ * bounded by pos and strend */
+#define getSB_VAL_UTF8(pos, strend)                                            \
+    _generic_GET_BREAK_VAL_UTF8(getSB_VAL_CP, pos, strend)
+
+/* Returns the WB value for the input code point */
+#define getWB_VAL_CP(cp)                                                       \
+          _generic_GET_BREAK_VAL_CP(                                           \
+                                    PL_WB_invlist,                             \
+                                    Word_Break_invmap,                         \
+                                    (cp))
+
+/* Returns the WB value for the first code point in the UTF-8 encoded string
+ * bounded by pos and strend */
+#define getWB_VAL_UTF8(pos, strend)                                            \
+    _generic_GET_BREAK_VAL_UTF8(getWB_VAL_CP, pos, strend)
+
+/* We know what class REx starts with.  Try to find this position... */
+/* if reginfo->intuit, its a dryrun */
+/* annoyingly all the vars in this routine have different names from their counterparts
+   in regmatch. /grrr */
+STATIC char *
+S_find_byclass(pTHX_ regexp * prog, const regnode *c, char *s, 
+    const char *strend, regmatch_info *reginfo)
+{
+    dVAR;
+    const I32 doevery = (prog->intflags & PREGf_SKIP) == 0;
+    char *pat_string;   /* The pattern's exactish string */
+    char *pat_end;         /* ptr to end char of pat_string */
+    re_fold_t folder;  /* Function for computing non-utf8 folds */
+    const U8 *fold_array;   /* array for folding ords < 256 */
+    STRLEN ln;
+    STRLEN lnc;
+    U8 c1;
+    U8 c2;
+    char *e;
+    I32 tmp = 1;       /* Scratch variable? */
+    const bool utf8_target = reginfo->is_utf8_target;
+    UV utf8_fold_flags = 0;
+    const bool is_utf8_pat = reginfo->is_utf8_pat;
+    bool to_complement = FALSE; /* Invert the result?  Taking the xor of this
+                                   with a result inverts that result, as 0^1 =
+                                   1 and 1^1 = 0 */
+    _char_class_number classnum;
+
+    RXi_GET_DECL(prog,progi);
+
+    PERL_ARGS_ASSERT_FIND_BYCLASS;
+
+    /* We know what class it must start with. */
+    switch (OP(c)) {
+    case ANYOFL:
+        _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+        /* FALLTHROUGH */
+    case ANYOF:
+        if (utf8_target) {
+            REXEC_FBC_UTF8_CLASS_SCAN(
+                      reginclass(prog, c, (U8*)s, (U8*) strend, utf8_target));
+        }
+        else {
+            REXEC_FBC_CLASS_SCAN(REGINCLASS(prog, c, (U8*)s));
+        }
+        break;
+
+    case EXACTFA_NO_TRIE:   /* This node only generated for non-utf8 patterns */
+        assert(! is_utf8_pat);
+       /* FALLTHROUGH */
+    case EXACTFA:
+        if (is_utf8_pat || utf8_target) {
+            utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+            goto do_exactf_utf8;
+        }
+        fold_array = PL_fold_latin1;    /* Latin1 folds are not affected by */
+        folder = foldEQ_latin1;                /* /a, except the sharp s one which */
+        goto do_exactf_non_utf8;       /* isn't dealt with by these */
+
+    case EXACTF:   /* This node only generated for non-utf8 patterns */
+        assert(! is_utf8_pat);
+        if (utf8_target) {
+            utf8_fold_flags = 0;
+            goto do_exactf_utf8;
+        }
+        fold_array = PL_fold;
+        folder = foldEQ;
+        goto do_exactf_non_utf8;
+
+    case EXACTFL:
+        _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+        if (is_utf8_pat || utf8_target || IN_UTF8_CTYPE_LOCALE) {
+            utf8_fold_flags = FOLDEQ_LOCALE;
+            goto do_exactf_utf8;
+        }
+        fold_array = PL_fold_locale;
+        folder = foldEQ_locale;
+        goto do_exactf_non_utf8;
+
+    case EXACTFU_SS:
+        if (is_utf8_pat) {
+            utf8_fold_flags = FOLDEQ_S2_ALREADY_FOLDED;
+        }
+        goto do_exactf_utf8;
+
+    case EXACTFLU8:
+            if (! utf8_target) {    /* All code points in this node require
+                                       UTF-8 to express.  */
+                break;
+            }
+            utf8_fold_flags =  FOLDEQ_LOCALE | FOLDEQ_S2_ALREADY_FOLDED
+                                             | FOLDEQ_S2_FOLDS_SANE;
+            goto do_exactf_utf8;
+
+    case EXACTFU:
+        if (is_utf8_pat || utf8_target) {
+            utf8_fold_flags = is_utf8_pat ? FOLDEQ_S2_ALREADY_FOLDED : 0;
+            goto do_exactf_utf8;
+        }
+
+        /* Any 'ss' in the pattern should have been replaced by regcomp,
+         * so we don't have to worry here about this single special case
+         * in the Latin1 range */
+        fold_array = PL_fold_latin1;
+        folder = foldEQ_latin1;
+
+        /* FALLTHROUGH */
+
+      do_exactf_non_utf8: /* Neither pattern nor string are UTF8, and there
+                           are no glitches with fold-length differences
+                           between the target string and pattern */
+
+        /* The idea in the non-utf8 EXACTF* cases is to first find the
+         * first character of the EXACTF* node and then, if necessary,
+         * case-insensitively compare the full text of the node.  c1 is the
+         * first character.  c2 is its fold.  This logic will not work for
+         * Unicode semantics and the german sharp ss, which hence should
+         * not be compiled into a node that gets here. */
+        pat_string = STRING(c);
+        ln  = STR_LEN(c);      /* length to match in octets/bytes */
+
+        /* We know that we have to match at least 'ln' bytes (which is the
+         * same as characters, since not utf8).  If we have to match 3
+         * characters, and there are only 2 availabe, we know without
+         * trying that it will fail; so don't start a match past the
+         * required minimum number from the far end */
+        e = HOP3c(strend, -((SSize_t)ln), s);
+
+        if (reginfo->intuit && e < s) {
+            e = s;                     /* Due to minlen logic of intuit() */
+        }
+
+        c1 = *pat_string;
+        c2 = fold_array[c1];
+        if (c1 == c2) { /* If char and fold are the same */
+            REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1);
+        }
+        else {
+            REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1 || *(U8*)s == c2);
+        }
+        break;
+
+      do_exactf_utf8:
+      {
+        unsigned expansion;
+
+        /* If one of the operands is in utf8, we can't use the simpler folding
+         * above, due to the fact that many different characters can have the
+         * same fold, or portion of a fold, or different- length fold */
+        pat_string = STRING(c);
+        ln  = STR_LEN(c);      /* length to match in octets/bytes */
+        pat_end = pat_string + ln;
+        lnc = is_utf8_pat       /* length to match in characters */
+                ? utf8_length((U8 *) pat_string, (U8 *) pat_end)
+                : ln;
+
+        /* We have 'lnc' characters to match in the pattern, but because of
+         * multi-character folding, each character in the target can match
+         * up to 3 characters (Unicode guarantees it will never exceed
+         * this) if it is utf8-encoded; and up to 2 if not (based on the
+         * fact that the Latin 1 folds are already determined, and the
+         * only multi-char fold in that range is the sharp-s folding to
+         * 'ss'.  Thus, a pattern character can match as little as 1/3 of a
+         * string character.  Adjust lnc accordingly, rounding up, so that
+         * if we need to match at least 4+1/3 chars, that really is 5. */
+        expansion = (utf8_target) ? UTF8_MAX_FOLD_CHAR_EXPAND : 2;
+        lnc = (lnc + expansion - 1) / expansion;
+
+        /* As in the non-UTF8 case, if we have to match 3 characters, and
+         * only 2 are left, it's guaranteed to fail, so don't start a
+         * match that would require us to go beyond the end of the string
+         */
+        e = HOP3c(strend, -((SSize_t)lnc), s);
+
+        if (reginfo->intuit && e < s) {
+            e = s;                     /* Due to minlen logic of intuit() */
+        }
+
+        /* XXX Note that we could recalculate e to stop the loop earlier,
+         * as the worst case expansion above will rarely be met, and as we
+         * go along we would usually find that e moves further to the left.
+         * This would happen only after we reached the point in the loop
+         * where if there were no expansion we should fail.  Unclear if
+         * worth the expense */
+
+        while (s <= e) {
+            char *my_strend= (char *)strend;
+            if (foldEQ_utf8_flags(s, &my_strend, 0,  utf8_target,
+                  pat_string, NULL, ln, is_utf8_pat, utf8_fold_flags)
+                && (reginfo->intuit || regtry(reginfo, &s)) )
+            {
+                goto got_it;
+            }
+            s += (utf8_target) ? UTF8SKIP(s) : 1;
+        }
+        break;
+    }
+
+    case BOUNDL:
+        _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+        if (FLAGS(c) != TRADITIONAL_BOUND) {
+            if (! IN_UTF8_CTYPE_LOCALE) {
+                Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
+                                                B_ON_NON_UTF8_LOCALE_IS_WRONG);
+            }
+            goto do_boundu;
+        }
+
+        FBC_BOUND(isWORDCHAR_LC, isWORDCHAR_LC_uvchr, isWORDCHAR_LC_utf8);
+        break;
+
+    case NBOUNDL:
+        _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+        if (FLAGS(c) != TRADITIONAL_BOUND) {
+            if (! IN_UTF8_CTYPE_LOCALE) {
+                Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
+                                                B_ON_NON_UTF8_LOCALE_IS_WRONG);
+            }
+            goto do_nboundu;
+        }
+
+        FBC_NBOUND(isWORDCHAR_LC, isWORDCHAR_LC_uvchr, isWORDCHAR_LC_utf8);
+        break;
+
+    case BOUND: /* regcomp.c makes sure that this only has the traditional \b
+                   meaning */
+        assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+        FBC_BOUND(isWORDCHAR, isWORDCHAR_uni, isWORDCHAR_utf8);
+        break;
+
+    case BOUNDA: /* regcomp.c makes sure that this only has the traditional \b
+                   meaning */
+        assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+        FBC_BOUND_A(isWORDCHAR_A);
+        break;
+
+    case NBOUND: /* regcomp.c makes sure that this only has the traditional \b
+                   meaning */
+        assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+        FBC_NBOUND(isWORDCHAR, isWORDCHAR_uni, isWORDCHAR_utf8);
+        break;
+
+    case NBOUNDA: /* regcomp.c makes sure that this only has the traditional \b
+                   meaning */
+        assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+        FBC_NBOUND_A(isWORDCHAR_A);
+        break;
+
+    case NBOUNDU:
+        if ((bound_type) FLAGS(c) == TRADITIONAL_BOUND) {
+            FBC_NBOUND(isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8);
+            break;
+        }
+
+      do_nboundu:
+
+        to_complement = 1;
+        /* FALLTHROUGH */
+
+    case BOUNDU:
+      do_boundu:
+        switch((bound_type) FLAGS(c)) {
+            case TRADITIONAL_BOUND:
+                FBC_BOUND(isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8);
+                break;
+            case GCB_BOUND:
+                if (s == reginfo->strbeg) { /* GCB always matches at begin and
+                                               end */
+                    if (to_complement ^ cBOOL(reginfo->intuit
+                                                      || regtry(reginfo, &s)))
+                    {
+                        goto got_it;
+                    }
+                    s += (utf8_target) ? UTF8SKIP(s) : 1;
+                }
+
+                if (utf8_target) {
+                    GCB_enum before = getGCB_VAL_UTF8(
+                                               reghop3((U8*)s, -1,
+                                                       (U8*)(reginfo->strbeg)),
+                                               (U8*) reginfo->strend);
+                    while (s < strend) {
+                        GCB_enum after = getGCB_VAL_UTF8((U8*) s,
+                                                        (U8*) reginfo->strend);
+                        if (to_complement ^ isGCB(before, after)) {
+                            if (reginfo->intuit || regtry(reginfo, &s)) {
+                                goto got_it;
+                            }
+                            before = after;
+                        }
+                        s += UTF8SKIP(s);
+                    }
+                }
+                else {  /* Not utf8.  Everything is a GCB except between CR and
+                           LF */
+                    while (s < strend) {
+                        if (to_complement ^ (UCHARAT(s - 1) != '\r'
+                                             || UCHARAT(s) != '\n'))
+                        {
+                            if (reginfo->intuit || regtry(reginfo, &s)) {
+                                goto got_it;
+                            }
+                            s++;
+                        }
+                    }
+                }
+
+                if (to_complement ^ cBOOL(reginfo->intuit || regtry(reginfo, &s))) {
+                    goto got_it;
+                }
+                break;
+
+            case SB_BOUND:
+                if (s == reginfo->strbeg) { /* SB always matches at beginning */
+                    if (to_complement
+                                ^ cBOOL(reginfo->intuit || regtry(reginfo, &s)))
+                    {
+                        goto got_it;
+                    }
+
+                    /* Didn't match.  Go try at the next position */
+                    s += (utf8_target) ? UTF8SKIP(s) : 1;
+                }
+
+                if (utf8_target) {
+                    SB_enum before = getSB_VAL_UTF8(reghop3((U8*)s,
+                                                        -1,
+                                                        (U8*)(reginfo->strbeg)),
+                                                      (U8*) reginfo->strend);
+                    while (s < strend) {
+                        SB_enum after = getSB_VAL_UTF8((U8*) s,
+                                                         (U8*) reginfo->strend);
+                        if (to_complement ^ isSB(before,
+                                                 after,
+                                                 (U8*) reginfo->strbeg,
+                                                 (U8*) s,
+                                                 (U8*) reginfo->strend,
+                                                 utf8_target))
+                        {
+                            if (reginfo->intuit || regtry(reginfo, &s)) {
+                                goto got_it;
+                            }
+                            before = after;
+                        }
+                        s += UTF8SKIP(s);
+                    }
+                }
+                else {  /* Not utf8. */
+                    SB_enum before = getSB_VAL_CP((U8) *(s -1));
+                    while (s < strend) {
+                        SB_enum after = getSB_VAL_CP((U8) *s);
+                        if (to_complement ^ isSB(before,
+                                                 after,
+                                                 (U8*) reginfo->strbeg,
+                                                 (U8*) s,
+                                                 (U8*) reginfo->strend,
+                                                 utf8_target))
+                        {
+                            if (reginfo->intuit || regtry(reginfo, &s)) {
+                                goto got_it;
+                            }
+                            before = after;
+                        }
+                        s++;
+                    }
+                }
+
+                /* Here are at the final position in the target string.  The SB
+                 * value is always true here, so matches, depending on other
+                 * constraints */
+                if (to_complement ^ cBOOL(reginfo->intuit
+                                                      || regtry(reginfo, &s)))
+                {
+                    goto got_it;
+                }
+
+                break;
+
+            case WB_BOUND:
+                if (s == reginfo->strbeg) {
+                    if (to_complement ^ cBOOL(reginfo->intuit
+                                              || regtry(reginfo, &s)))
+                    {
+                        goto got_it;
+                    }
+                    s += (utf8_target) ? UTF8SKIP(s) : 1;
+                }
+
+                if (utf8_target) {
+                    /* We are at a boundary between char_sub_0 and char_sub_1.
+                     * We also keep track of the value for char_sub_-1 as we
+                     * loop through the line.   Context may be needed to make a
+                     * determination, and if so, this can save having to
+                     * recalculate it */
+                    WB_enum previous = WB_UNKNOWN;
+                    WB_enum before = getWB_VAL_UTF8(
+                                              reghop3((U8*)s,
+                                                      -1,
+                                                      (U8*)(reginfo->strbeg)),
+                                              (U8*) reginfo->strend);
+                    while (s < strend) {
+                        WB_enum after = getWB_VAL_UTF8((U8*) s,
+                                                        (U8*) reginfo->strend);
+                        if (to_complement ^ isWB(previous,
+                                                 before,
+                                                 after,
+                                                 (U8*) reginfo->strbeg,
+                                                 (U8*) s,
+                                                 (U8*) reginfo->strend,
+                                                 utf8_target))
+                        {
+                            if (reginfo->intuit || regtry(reginfo, &s)) {
+                                goto got_it;
+                            }
+                            previous = before;
+                            before = after;
+                        }
+                        s += UTF8SKIP(s);
+                    }
+                }
+                else {  /* Not utf8. */
+                    WB_enum previous = WB_UNKNOWN;
+                    WB_enum before = getWB_VAL_CP((U8) *(s -1));
+                    while (s < strend) {
+                        WB_enum after = getWB_VAL_CP((U8) *s);
+                        if (to_complement ^ isWB(previous,
+                                                 before,
+                                                 after,
+                                                 (U8*) reginfo->strbeg,
+                                                 (U8*) s,
+                                                 (U8*) reginfo->strend,
+                                                 utf8_target))
+                        {
+                            if (reginfo->intuit || regtry(reginfo, &s)) {
+                                goto got_it;
+                            }
+                            previous = before;
+                            before = after;
+                        }
+                        s++;
+                    }
+                }
+
+                if (to_complement ^ cBOOL(reginfo->intuit
+                                          || regtry(reginfo, &s)))
+                {
+                    goto got_it;
+                }
+
+                break;
+        }
+        break;
+
+    case LNBREAK:
+        REXEC_FBC_CSCAN(is_LNBREAK_utf8_safe(s, strend),
+                        is_LNBREAK_latin1_safe(s, strend)
+        );
+        break;
+
+    /* The argument to all the POSIX node types is the class number to pass to
+     * _generic_isCC() to build a mask for searching in PL_charclass[] */
+
+    case NPOSIXL:
+        to_complement = 1;
+        /* FALLTHROUGH */
+
+    case POSIXL:
+        _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+        REXEC_FBC_CSCAN(to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(c), (U8 *) s)),
+                        to_complement ^ cBOOL(isFOO_lc(FLAGS(c), *s)));
+        break;
+
+    case NPOSIXD:
+        to_complement = 1;
+        /* FALLTHROUGH */
+
+    case POSIXD:
+        if (utf8_target) {
+            goto posix_utf8;
+        }
+        goto posixa;
+
+    case NPOSIXA:
+        if (utf8_target) {
+            /* The complement of something that matches only ASCII matches all
+             * non-ASCII, plus everything in ASCII that isn't in the class. */
+            REXEC_FBC_UTF8_CLASS_SCAN(! isASCII_utf8(s)
+                                      || ! _generic_isCC_A(*s, FLAGS(c)));
+            break;
+        }
+
+        to_complement = 1;
+        /* FALLTHROUGH */
+
+    case POSIXA:
+      posixa:
+        /* Don't need to worry about utf8, as it can match only a single
+         * byte invariant character. */
+        REXEC_FBC_CLASS_SCAN(
+                        to_complement ^ cBOOL(_generic_isCC_A(*s, FLAGS(c))));
+        break;
+
+    case NPOSIXU:
+        to_complement = 1;
+        /* FALLTHROUGH */
+
+    case POSIXU:
+        if (! utf8_target) {
+            REXEC_FBC_CLASS_SCAN(to_complement ^ cBOOL(_generic_isCC(*s,
+                                                                    FLAGS(c))));
+        }
+        else {
+
+          posix_utf8:
+            classnum = (_char_class_number) FLAGS(c);
+            if (classnum < _FIRST_NON_SWASH_CC) {
+                while (s < strend) {
+
+                    /* We avoid loading in the swash as long as possible, but
+                     * should we have to, we jump to a separate loop.  This
+                     * extra 'if' statement is what keeps this code from being
+                     * just a call to REXEC_FBC_UTF8_CLASS_SCAN() */
+                    if (UTF8_IS_ABOVE_LATIN1(*s)) {
+                        goto found_above_latin1;
+                    }
+                    if ((UTF8_IS_INVARIANT(*s)
+                         && to_complement ^ cBOOL(_generic_isCC((U8) *s,
+                                                                classnum)))
+                        || (UTF8_IS_DOWNGRADEABLE_START(*s)
+                            && to_complement ^ cBOOL(
+                                _generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(*s,
+                                                                      *(s + 1)),
+                                              classnum))))
+                    {
+                        if (tmp && (reginfo->intuit || regtry(reginfo, &s)))
+                            goto got_it;
+                        else {
+                            tmp = doevery;
+                        }
+                    }
+                    else {
+                        tmp = 1;
+                    }
+                    s += UTF8SKIP(s);
+                }
+            }
+            else switch (classnum) {    /* These classes are implemented as
+                                           macros */
+                case _CC_ENUM_SPACE:
+                    REXEC_FBC_UTF8_CLASS_SCAN(
+                                        to_complement ^ cBOOL(isSPACE_utf8(s)));
+                    break;
+
+                case _CC_ENUM_BLANK:
+                    REXEC_FBC_UTF8_CLASS_SCAN(
+                                        to_complement ^ cBOOL(isBLANK_utf8(s)));
+                    break;
+
+                case _CC_ENUM_XDIGIT:
+                    REXEC_FBC_UTF8_CLASS_SCAN(
+                                       to_complement ^ cBOOL(isXDIGIT_utf8(s)));
+                    break;
+
+                case _CC_ENUM_VERTSPACE:
+                    REXEC_FBC_UTF8_CLASS_SCAN(
+                                       to_complement ^ cBOOL(isVERTWS_utf8(s)));
+                    break;
+
+                case _CC_ENUM_CNTRL:
+                    REXEC_FBC_UTF8_CLASS_SCAN(
+                                        to_complement ^ cBOOL(isCNTRL_utf8(s)));
+                    break;
+
+                default:
+                    Perl_croak(aTHX_ "panic: find_byclass() node %d='%s' has an unexpected character class '%d'", OP(c), PL_reg_name[OP(c)], classnum);
+                    NOT_REACHED; /* NOTREACHED */
+            }
+        }
+        break;
+
+      found_above_latin1:   /* Here we have to load a swash to get the result
+                               for the current code point */
+        if (! PL_utf8_swash_ptrs[classnum]) {
+            U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+            PL_utf8_swash_ptrs[classnum] =
+                    _core_swash_init("utf8",
+                                     "",
+                                     &PL_sv_undef, 1, 0,
+                                     PL_XPosix_ptrs[classnum], &flags);
+        }
+
+        /* This is a copy of the loop above for swash classes, though using the
+         * FBC macro instead of being expanded out.  Since we've loaded the
+         * swash, we don't have to check for that each time through the loop */
+        REXEC_FBC_UTF8_CLASS_SCAN(
+                to_complement ^ cBOOL(_generic_utf8(
+                                      classnum,
+                                      s,
+                                      swash_fetch(PL_utf8_swash_ptrs[classnum],
+                                                  (U8 *) s, TRUE))));
+        break;
+
+    case AHOCORASICKC:
+    case AHOCORASICK:
+        {
+            DECL_TRIE_TYPE(c);
+            /* what trie are we using right now */
+            reg_ac_data *aho = (reg_ac_data*)progi->data->data[ ARG( c ) ];
+            reg_trie_data *trie = (reg_trie_data*)progi->data->data[ aho->trie ];
+            HV *widecharmap = MUTABLE_HV(progi->data->data[ aho->trie + 1 ]);
+
+            const char *last_start = strend - trie->minlen;
+#ifdef DEBUGGING
+            const char *real_start = s;
+#endif
+            STRLEN maxlen = trie->maxlen;
+            SV *sv_points;
+            U8 **points; /* map of where we were in the input string
+                            when reading a given char. For ASCII this
+                            is unnecessary overhead as the relationship
+                            is always 1:1, but for Unicode, especially
+                            case folded Unicode this is not true. */
+            U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+            U8 *bitmap=NULL;
+
+
+            GET_RE_DEBUG_FLAGS_DECL;
+
+            /* We can't just allocate points here. We need to wrap it in
+             * an SV so it gets freed properly if there is a croak while
+             * running the match */
+            ENTER;
+            SAVETMPS;
+            sv_points=newSV(maxlen * sizeof(U8 *));
+            SvCUR_set(sv_points,
+                maxlen * sizeof(U8 *));
+            SvPOK_on(sv_points);
+            sv_2mortal(sv_points);
+            points=(U8**)SvPV_nolen(sv_points );
+            if ( trie_type != trie_utf8_fold
+                 && (trie->bitmap || OP(c)==AHOCORASICKC) )
+            {
+                if (trie->bitmap)
+                    bitmap=(U8*)trie->bitmap;
+                else
+                    bitmap=(U8*)ANYOF_BITMAP(c);
+            }
+            /* this is the Aho-Corasick algorithm modified a touch
+               to include special handling for long "unknown char" sequences.
+               The basic idea being that we use AC as long as we are dealing
+               with a possible matching char, when we encounter an unknown char
+               (and we have not encountered an accepting state) we scan forward
+               until we find a legal starting char.
+               AC matching is basically that of trie matching, except that when
+               we encounter a failing transition, we fall back to the current
+               states "fail state", and try the current char again, a process
+               we repeat until we reach the root state, state 1, or a legal
+               transition. If we fail on the root state then we can either
+               terminate if we have reached an accepting state previously, or
+               restart the entire process from the beginning if we have not.
+
+             */
+            while (s <= last_start) {
+                const U32 uniflags = UTF8_ALLOW_DEFAULT;
+                U8 *uc = (U8*)s;
+                U16 charid = 0;
+                U32 base = 1;
+                U32 state = 1;
+                UV uvc = 0;
+                STRLEN len = 0;
+                STRLEN foldlen = 0;
+                U8 *uscan = (U8*)NULL;
+                U8 *leftmost = NULL;
+#ifdef DEBUGGING
+                U32 accepted_word= 0;
+#endif
+                U32 pointpos = 0;
+
+                while ( state && uc <= (U8*)strend ) {
+                    int failed=0;
+                    U32 word = aho->states[ state ].wordnum;
+
+                    if( state==1 ) {
+                        if ( bitmap ) {
+                            DEBUG_TRIE_EXECUTE_r(
+                                if ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+                                    dump_exec_pos( (char *)uc, c, strend, real_start,
+                                        (char *)uc, utf8_target );
+                                    PerlIO_printf( Perl_debug_log,
+                                        " Scanning for legal start char...\n");
+                                }
+                            );
+                            if (utf8_target) {
+                                while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+                                    uc += UTF8SKIP(uc);
+                                }
+                            } else {
+                                while ( uc <= (U8*)last_start  && !BITMAP_TEST(bitmap,*uc) ) {
+                                    uc++;
+                                }
+                            }
+                            s= (char *)uc;
+                        }
+                        if (uc >(U8*)last_start) break;
+                    }
+
+                    if ( word ) {
+                        U8 *lpos= points[ (pointpos - trie->wordinfo[word].len) % maxlen ];
+                        if (!leftmost || lpos < leftmost) {
+                            DEBUG_r(accepted_word=word);
+                            leftmost= lpos;
+                        }
+                        if (base==0) break;
+
+                    }
+                    points[pointpos++ % maxlen]= uc;
+                    if (foldlen || uc < (U8*)strend) {
+                        REXEC_TRIE_READ_CHAR(trie_type, trie,
+                                         widecharmap, uc,
+                                         uscan, len, uvc, charid, foldlen,
+                                         foldbuf, uniflags);
+                        DEBUG_TRIE_EXECUTE_r({
+                            dump_exec_pos( (char *)uc, c, strend,
+                                        real_start, s, utf8_target);
+                            PerlIO_printf(Perl_debug_log,
+                                " Charid:%3u CP:%4"UVxf" ",
+                                 charid, uvc);
+                        });
+                    }
+                    else {
+                        len = 0;
+                        charid = 0;
+                    }
+
+
+                    do {
+#ifdef DEBUGGING
+                        word = aho->states[ state ].wordnum;
+#endif
+                        base = aho->states[ state ].trans.base;
+
+                        DEBUG_TRIE_EXECUTE_r({
+                            if (failed)
+                                dump_exec_pos( (char *)uc, c, strend, real_start,
+                                    s,   utf8_target );
+                            PerlIO_printf( Perl_debug_log,
+                                "%sState: %4"UVxf", word=%"UVxf,
+                                failed ? " Fail transition to " : "",
+                                (UV)state, (UV)word);
+                        });
+                        if ( base ) {
+                            U32 tmp;
+                            I32 offset;
+                            if (charid &&
+                                 ( ((offset = base + charid
+                                    - 1 - trie->uniquecharcount)) >= 0)
+                                 && ((U32)offset < trie->lasttrans)
+                                 && trie->trans[offset].check == state
+                                 && (tmp=trie->trans[offset].next))
+                            {
+                                DEBUG_TRIE_EXECUTE_r(
+                                    PerlIO_printf( Perl_debug_log," - legal\n"));
+                                state = tmp;
+                                break;
+                            }
+                            else {
+                                DEBUG_TRIE_EXECUTE_r(
+                                    PerlIO_printf( Perl_debug_log," - fail\n"));
+                                failed = 1;
+                                state = aho->fail[state];
+                            }
+                        }
+                        else {
+                            /* we must be accepting here */
+                            DEBUG_TRIE_EXECUTE_r(
+                                    PerlIO_printf( Perl_debug_log," - accepting\n"));
+                            failed = 1;
+                            break;
+                        }
+                    } while(state);
+                    uc += len;
+                    if (failed) {
+                        if (leftmost)
+                            break;
+                        if (!state) state = 1;
+                    }
+                }
+                if ( aho->states[ state ].wordnum ) {
+                    U8 *lpos = points[ (pointpos - trie->wordinfo[aho->states[ state ].wordnum].len) % maxlen ];
+                    if (!leftmost || lpos < leftmost) {
+                        DEBUG_r(accepted_word=aho->states[ state ].wordnum);
+                        leftmost = lpos;
+                    }
+                }
+                if (leftmost) {
+                    s = (char*)leftmost;
+                    DEBUG_TRIE_EXECUTE_r({
+                        PerlIO_printf(
+                            Perl_debug_log,"Matches word #%"UVxf" at position %"IVdf". Trying full pattern...\n",
+                            (UV)accepted_word, (IV)(s - real_start)
+                        );
+                    });
+                    if (reginfo->intuit || regtry(reginfo, &s)) {
+                        FREETMPS;
+                        LEAVE;
+                        goto got_it;
+                    }
+                    s = HOPc(s,1);
+                    DEBUG_TRIE_EXECUTE_r({
+                        PerlIO_printf( Perl_debug_log,"Pattern failed. Looking for new start point...\n");
+                    });
+                } else {
+                    DEBUG_TRIE_EXECUTE_r(
+                        PerlIO_printf( Perl_debug_log,"No match.\n"));
+                    break;
+                }
+            }
+            FREETMPS;
+            LEAVE;
+        }
+        break;
+    default:
+        Perl_croak(aTHX_ "panic: unknown regstclass %d", (int)OP(c));
+    }
+    return 0;
+  got_it:
+    return s;
+}
+
+/* set RX_SAVED_COPY, RX_SUBBEG etc.
+ * flags have same meanings as with regexec_flags() */
+
+static void
+S_reg_set_capture_string(pTHX_ REGEXP * const rx,
+                            char *strbeg,
+                            char *strend,
+                            SV *sv,
+                            U32 flags,
+                            bool utf8_target)
+{
+    struct regexp *const prog = ReANY(rx);
+
+    if (flags & REXEC_COPY_STR) {
+#ifdef PERL_ANY_COW
+        if (SvCANCOW(sv)) {
+            if (DEBUG_C_TEST) {
+                PerlIO_printf(Perl_debug_log,
+                              "Copy on write: regexp capture, type %d\n",
+                              (int) SvTYPE(sv));
+            }
+            /* Create a new COW SV to share the match string and store
+             * in saved_copy, unless the current COW SV in saved_copy
+             * is valid and suitable for our purpose */
+            if ((   prog->saved_copy
+                 && SvIsCOW(prog->saved_copy)
+                 && SvPOKp(prog->saved_copy)
+                 && SvIsCOW(sv)
+                 && SvPOKp(sv)
+                 && SvPVX(sv) == SvPVX(prog->saved_copy)))
+            {
+                /* just reuse saved_copy SV */
+                if (RXp_MATCH_COPIED(prog)) {
+                    Safefree(prog->subbeg);
+                    RXp_MATCH_COPIED_off(prog);
+                }
+            }
+            else {
+                /* create new COW SV to share string */
+                RX_MATCH_COPY_FREE(rx);
+                prog->saved_copy = sv_setsv_cow(prog->saved_copy, sv);
+            }
+            prog->subbeg = (char *)SvPVX_const(prog->saved_copy);
+            assert (SvPOKp(prog->saved_copy));
+            prog->sublen  = strend - strbeg;
+            prog->suboffset = 0;
+            prog->subcoffset = 0;
+        } else
+#endif
+        {
+            SSize_t min = 0;
+            SSize_t max = strend - strbeg;
+            SSize_t sublen;
+
+            if (    (flags & REXEC_COPY_SKIP_POST)
+                && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */
+                && !(PL_sawampersand & SAWAMPERSAND_RIGHT)
+            ) { /* don't copy $' part of string */
+                U32 n = 0;
+                max = -1;
+                /* calculate the right-most part of the string covered
+                 * by a capture. Due to look-ahead, this may be to
+                 * the right of $&, so we have to scan all captures */
+                while (n <= prog->lastparen) {
+                    if (prog->offs[n].end > max)
+                        max = prog->offs[n].end;
+                    n++;
+                }
+                if (max == -1)
+                    max = (PL_sawampersand & SAWAMPERSAND_LEFT)
+                            ? prog->offs[0].start
+                            : 0;
+                assert(max >= 0 && max <= strend - strbeg);
+            }
+
+            if (    (flags & REXEC_COPY_SKIP_PRE)
+                && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */
+                && !(PL_sawampersand & SAWAMPERSAND_LEFT)
+            ) { /* don't copy $` part of string */
+                U32 n = 0;
+                min = max;
+                /* calculate the left-most part of the string covered
+                 * by a capture. Due to look-behind, this may be to
+                 * the left of $&, so we have to scan all captures */
+                while (min && n <= prog->lastparen) {
+                    if (   prog->offs[n].start != -1
+                        && prog->offs[n].start < min)
+                    {
+                        min = prog->offs[n].start;
+                    }
+                    n++;
+                }
+                if ((PL_sawampersand & SAWAMPERSAND_RIGHT)
+                    && min >  prog->offs[0].end
+                )
+                    min = prog->offs[0].end;
+
+            }
+
+            assert(min >= 0 && min <= max && min <= strend - strbeg);
+            sublen = max - min;
+
+            if (RX_MATCH_COPIED(rx)) {
+                if (sublen > prog->sublen)
+                    prog->subbeg =
+                            (char*)saferealloc(prog->subbeg, sublen+1);
+            }
+            else
+                prog->subbeg = (char*)safemalloc(sublen+1);
+            Copy(strbeg + min, prog->subbeg, sublen, char);
+            prog->subbeg[sublen] = '\0';
+            prog->suboffset = min;
+            prog->sublen = sublen;
+            RX_MATCH_COPIED_on(rx);
+        }
+        prog->subcoffset = prog->suboffset;
+        if (prog->suboffset && utf8_target) {
+            /* Convert byte offset to chars.
+             * XXX ideally should only compute this if @-/@+
+             * has been seen, a la PL_sawampersand ??? */
+
+            /* If there's a direct correspondence between the
+             * string which we're matching and the original SV,
+             * then we can use the utf8 len cache associated with
+             * the SV. In particular, it means that under //g,
+             * sv_pos_b2u() will use the previously cached
+             * position to speed up working out the new length of
+             * subcoffset, rather than counting from the start of
+             * the string each time. This stops
+             *   $x = "\x{100}" x 1E6; 1 while $x =~ /(.)/g;
+             * from going quadratic */
+            if (SvPOKp(sv) && SvPVX(sv) == strbeg)
+                prog->subcoffset = sv_pos_b2u_flags(sv, prog->subcoffset,
+                                                SV_GMAGIC|SV_CONST_RETURN);
+            else
+                prog->subcoffset = utf8_length((U8*)strbeg,
+                                    (U8*)(strbeg+prog->suboffset));
+        }
+    }
+    else {
+        RX_MATCH_COPY_FREE(rx);
+        prog->subbeg = strbeg;
+        prog->suboffset = 0;
+        prog->subcoffset = 0;
+        prog->sublen = strend - strbeg;
+    }
+}
+
+
+
+
+/*
+ - regexec_flags - match a regexp against a string
+ */
+I32
+Perl_regexec_flags(pTHX_ REGEXP * const rx, char *stringarg, char *strend,
+             char *strbeg, SSize_t minend, SV *sv, void *data, U32 flags)
+/* stringarg: the point in the string at which to begin matching */
+/* strend:    pointer to null at end of string */
+/* strbeg:    real beginning of string */
+/* minend:    end of match must be >= minend bytes after stringarg. */
+/* sv:        SV being matched: only used for utf8 flag, pos() etc; string
+ *            itself is accessed via the pointers above */
+/* data:      May be used for some additional optimizations.
+              Currently unused. */
+/* flags:     For optimizations. See REXEC_* in regexp.h */
+
+{
+    struct regexp *const prog = ReANY(rx);
+    char *s;
+    regnode *c;
+    char *startpos;
+    SSize_t minlen;            /* must match at least this many chars */
+    SSize_t dontbother = 0;    /* how many characters not to try at end */
+    const bool utf8_target = cBOOL(DO_UTF8(sv));
+    I32 multiline;
+    RXi_GET_DECL(prog,progi);
+    regmatch_info reginfo_buf;  /* create some info to pass to regtry etc */
+    regmatch_info *const reginfo = &reginfo_buf;
+    regexp_paren_pair *swap = NULL;
+    I32 oldsave;
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGEXEC_FLAGS;
+    PERL_UNUSED_ARG(data);
+
+    /* Be paranoid... */
+    if (prog == NULL) {
+       Perl_croak(aTHX_ "NULL regexp parameter");
+    }
+
+    DEBUG_EXECUTE_r(
+        debug_start_match(rx, utf8_target, stringarg, strend,
+        "Matching");
+    );
+
+    startpos = stringarg;
+
+    if (prog->intflags & PREGf_GPOS_SEEN) {
+        MAGIC *mg;
+
+        /* set reginfo->ganch, the position where \G can match */
+
+        reginfo->ganch =
+            (flags & REXEC_IGNOREPOS)
+            ? stringarg /* use start pos rather than pos() */
+            : ((mg = mg_find_mglob(sv)) && mg->mg_len >= 0)
+              /* Defined pos(): */
+            ? strbeg + MgBYTEPOS(mg, sv, strbeg, strend-strbeg)
+            : strbeg; /* pos() not defined; use start of string */
+
+        DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+            "GPOS ganch set to strbeg[%"IVdf"]\n", (IV)(reginfo->ganch - strbeg)));
+
+        /* in the presence of \G, we may need to start looking earlier in
+         * the string than the suggested start point of stringarg:
+         * if prog->gofs is set, then that's a known, fixed minimum
+         * offset, such as
+         * /..\G/:   gofs = 2
+         * /ab|c\G/: gofs = 1
+         * or if the minimum offset isn't known, then we have to go back
+         * to the start of the string, e.g. /w+\G/
+         */
+
+        if (prog->intflags & PREGf_ANCH_GPOS) {
+            startpos  = reginfo->ganch - prog->gofs;
+            if (startpos <
+                ((flags & REXEC_FAIL_ON_UNDERFLOW) ? stringarg : strbeg))
+            {
+                DEBUG_r(PerlIO_printf(Perl_debug_log,
+                        "fail: ganch-gofs before earliest possible start\n"));
+                return 0;
+            }
+        }
+        else if (prog->gofs) {
+            if (startpos - prog->gofs < strbeg)
+                startpos = strbeg;
+            else
+                startpos -= prog->gofs;
+        }
+        else if (prog->intflags & PREGf_GPOS_FLOAT)
+            startpos = strbeg;
+    }
+
+    minlen = prog->minlen;
+    if ((startpos + minlen) > strend || startpos < strbeg) {
+        DEBUG_r(PerlIO_printf(Perl_debug_log,
+                    "Regex match can't succeed, so not even tried\n"));
+        return 0;
+    }
+
+    /* at the end of this function, we'll do a LEAVE_SCOPE(oldsave),
+     * which will call destuctors to reset PL_regmatch_state, free higher
+     * PL_regmatch_slabs, and clean up regmatch_info_aux and
+     * regmatch_info_aux_eval */
+
+    oldsave = PL_savestack_ix;
+
+    s = startpos;
+
+    if ((prog->extflags & RXf_USE_INTUIT)
+        && !(flags & REXEC_CHECKED))
+    {
+       s = re_intuit_start(rx, sv, strbeg, startpos, strend,
+                                    flags, NULL);
+       if (!s)
+           return 0;
+
+       if (prog->extflags & RXf_CHECK_ALL) {
+            /* we can match based purely on the result of INTUIT.
+             * Set up captures etc just for $& and $-[0]
+             * (an intuit-only match wont have $1,$2,..) */
+            assert(!prog->nparens);
+
+            /* s/// doesn't like it if $& is earlier than where we asked it to
+             * start searching (which can happen on something like /.\G/) */
+            if (       (flags & REXEC_FAIL_ON_UNDERFLOW)
+                    && (s < stringarg))
+            {
+                /* this should only be possible under \G */
+                assert(prog->intflags & PREGf_GPOS_SEEN);
+                DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                    "matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n"));
+                goto phooey;
+            }
+
+            /* match via INTUIT shouldn't have any captures.
+             * Let @-, @+, $^N know */
+            prog->lastparen = prog->lastcloseparen = 0;
+            RX_MATCH_UTF8_set(rx, utf8_target);
+            prog->offs[0].start = s - strbeg;
+            prog->offs[0].end = utf8_target
+                ? (char*)utf8_hop((U8*)s, prog->minlenret) - strbeg
+                : s - strbeg + prog->minlenret;
+            if ( !(flags & REXEC_NOT_FIRST) )
+                S_reg_set_capture_string(aTHX_ rx,
+                                        strbeg, strend,
+                                        sv, flags, utf8_target);
+
+           return 1;
+        }
+    }
+
+    multiline = prog->extflags & RXf_PMf_MULTILINE;
+    
+    if (strend - s < (minlen+(prog->check_offset_min<0?prog->check_offset_min:0))) {
+        DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                             "String too short [regexec_flags]...\n"));
+       goto phooey;
+    }
+    
+    /* Check validity of program. */
+    if (UCHARAT(progi->program) != REG_MAGIC) {
+       Perl_croak(aTHX_ "corrupted regexp program");
+    }
+
+    RX_MATCH_TAINTED_off(rx);
+    RX_MATCH_UTF8_set(rx, utf8_target);
+
+    reginfo->prog = rx;         /* Yes, sorry that this is confusing.  */
+    reginfo->intuit = 0;
+    reginfo->is_utf8_target = cBOOL(utf8_target);
+    reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx));
+    reginfo->warned = FALSE;
+    reginfo->strbeg  = strbeg;
+    reginfo->sv = sv;
+    reginfo->poscache_maxiter = 0; /* not yet started a countdown */
+    reginfo->strend = strend;
+    /* see how far we have to get to not match where we matched before */
+    reginfo->till = stringarg + minend;
+
+    if (prog->extflags & RXf_EVAL_SEEN && SvPADTMP(sv)) {
+        /* SAVEFREESV, not sv_mortalcopy, as this SV must last until after
+           S_cleanup_regmatch_info_aux has executed (registered by
+           SAVEDESTRUCTOR_X below).  S_cleanup_regmatch_info_aux modifies
+           magic belonging to this SV.
+           Not newSVsv, either, as it does not COW.
+        */
+        reginfo->sv = newSV(0);
+        SvSetSV_nosteal(reginfo->sv, sv);
+        SAVEFREESV(reginfo->sv);
+    }
+
+    /* reserve next 2 or 3 slots in PL_regmatch_state:
+     * slot N+0: may currently be in use: skip it
+     * slot N+1: use for regmatch_info_aux struct
+     * slot N+2: use for regmatch_info_aux_eval struct if we have (?{})'s
+     * slot N+3: ready for use by regmatch()
+     */
+
+    {
+        regmatch_state *old_regmatch_state;
+        regmatch_slab  *old_regmatch_slab;
+        int i, max = (prog->extflags & RXf_EVAL_SEEN) ? 2 : 1;
+
+        /* on first ever match, allocate first slab */
+        if (!PL_regmatch_slab) {
+            Newx(PL_regmatch_slab, 1, regmatch_slab);
+            PL_regmatch_slab->prev = NULL;
+            PL_regmatch_slab->next = NULL;
+            PL_regmatch_state = SLAB_FIRST(PL_regmatch_slab);
+        }
+
+        old_regmatch_state = PL_regmatch_state;
+        old_regmatch_slab  = PL_regmatch_slab;
+
+        for (i=0; i <= max; i++) {
+            if (i == 1)
+                reginfo->info_aux = &(PL_regmatch_state->u.info_aux);
+            else if (i ==2)
+                reginfo->info_aux_eval =
+                reginfo->info_aux->info_aux_eval =
+                            &(PL_regmatch_state->u.info_aux_eval);
+
+            if (++PL_regmatch_state >  SLAB_LAST(PL_regmatch_slab))
+                PL_regmatch_state = S_push_slab(aTHX);
+        }
+
+        /* note initial PL_regmatch_state position; at end of match we'll
+         * pop back to there and free any higher slabs */
+
+        reginfo->info_aux->old_regmatch_state = old_regmatch_state;
+        reginfo->info_aux->old_regmatch_slab  = old_regmatch_slab;
+        reginfo->info_aux->poscache = NULL;
+
+        SAVEDESTRUCTOR_X(S_cleanup_regmatch_info_aux, reginfo->info_aux);
+
+        if ((prog->extflags & RXf_EVAL_SEEN))
+            S_setup_eval_state(aTHX_ reginfo);
+        else
+            reginfo->info_aux_eval = reginfo->info_aux->info_aux_eval = NULL;
+    }
+
+    /* If there is a "must appear" string, look for it. */
+
+    if (PL_curpm && (PM_GETRE(PL_curpm) == rx)) {
+        /* We have to be careful. If the previous successful match
+           was from this regex we don't want a subsequent partially
+           successful match to clobber the old results.
+           So when we detect this possibility we add a swap buffer
+           to the re, and switch the buffer each match. If we fail,
+           we switch it back; otherwise we leave it swapped.
+        */
+        swap = prog->offs;
+        /* do we need a save destructor here for eval dies? */
+        Newxz(prog->offs, (prog->nparens + 1), regexp_paren_pair);
+       DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+           "rex=0x%"UVxf" saving  offs: orig=0x%"UVxf" new=0x%"UVxf"\n",
+           PTR2UV(prog),
+           PTR2UV(swap),
+           PTR2UV(prog->offs)
+       ));
+    }
+
+    /* Simplest case: anchored match need be tried only once, or with
+     * MBOL, only at the beginning of each line.
+     *
+     * Note that /.*.../ sets PREGf_IMPLICIT|MBOL, while /.*.../s sets
+     * PREGf_IMPLICIT|SBOL. The idea is that with /.*.../s, if it doesn't
+     * match at the start of the string then it won't match anywhere else
+     * either; while with /.*.../, if it doesn't match at the beginning,
+     * the earliest it could match is at the start of the next line */
+
+    if (prog->intflags & (PREGf_ANCH & ~PREGf_ANCH_GPOS)) {
+        char *end;
+
+       if (regtry(reginfo, &s))
+           goto got_it;
+
+        if (!(prog->intflags & PREGf_ANCH_MBOL))
+            goto phooey;
+
+        /* didn't match at start, try at other newline positions */
+
+        if (minlen)
+            dontbother = minlen - 1;
+        end = HOP3c(strend, -dontbother, strbeg) - 1;
+
+        /* skip to next newline */
+
+        while (s <= end) { /* note it could be possible to match at the end of the string */
+            /* NB: newlines are the same in unicode as they are in latin */
+            if (*s++ != '\n')
+                continue;
+            if (prog->check_substr || prog->check_utf8) {
+            /* note that with PREGf_IMPLICIT, intuit can only fail
+             * or return the start position, so it's of limited utility.
+             * Nevertheless, I made the decision that the potential for
+             * quick fail was still worth it - DAPM */
+                s = re_intuit_start(rx, sv, strbeg, s, strend, flags, NULL);
+                if (!s)
+                    goto phooey;
+            }
+            if (regtry(reginfo, &s))
+                goto got_it;
+        }
+        goto phooey;
+    } /* end anchored search */
+
+    if (prog->intflags & PREGf_ANCH_GPOS)
+    {
+        /* PREGf_ANCH_GPOS should never be true if PREGf_GPOS_SEEN is not true */
+        assert(prog->intflags & PREGf_GPOS_SEEN);
+        /* For anchored \G, the only position it can match from is
+         * (ganch-gofs); we already set startpos to this above; if intuit
+         * moved us on from there, we can't possibly succeed */
+        assert(startpos == reginfo->ganch - prog->gofs);
+       if (s == startpos && regtry(reginfo, &s))
+           goto got_it;
+       goto phooey;
+    }
+
+    /* Messy cases:  unanchored match. */
+    if ((prog->anchored_substr || prog->anchored_utf8) && prog->intflags & PREGf_SKIP) {
+       /* we have /x+whatever/ */
+       /* it must be a one character string (XXXX Except is_utf8_pat?) */
+       char ch;
+#ifdef DEBUGGING
+       int did_match = 0;
+#endif
+       if (utf8_target) {
+            if (! prog->anchored_utf8) {
+                to_utf8_substr(prog);
+            }
+            ch = SvPVX_const(prog->anchored_utf8)[0];
+           REXEC_FBC_SCAN(
+               if (*s == ch) {
+                   DEBUG_EXECUTE_r( did_match = 1 );
+                   if (regtry(reginfo, &s)) goto got_it;
+                   s += UTF8SKIP(s);
+                   while (s < strend && *s == ch)
+                       s += UTF8SKIP(s);
+               }
+           );
+
+       }
+       else {
+            if (! prog->anchored_substr) {
+                if (! to_byte_substr(prog)) {
+                    NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+                }
+            }
+            ch = SvPVX_const(prog->anchored_substr)[0];
+           REXEC_FBC_SCAN(
+               if (*s == ch) {
+                   DEBUG_EXECUTE_r( did_match = 1 );
+                   if (regtry(reginfo, &s)) goto got_it;
+                   s++;
+                   while (s < strend && *s == ch)
+                       s++;
+               }
+           );
+       }
+       DEBUG_EXECUTE_r(if (!did_match)
+               PerlIO_printf(Perl_debug_log,
+                                  "Did not find anchored character...\n")
+               );
+    }
+    else if (prog->anchored_substr != NULL
+             || prog->anchored_utf8 != NULL
+             || ((prog->float_substr != NULL || prog->float_utf8 != NULL)
+                 && prog->float_max_offset < strend - s)) {
+       SV *must;
+       SSize_t back_max;
+       SSize_t back_min;
+       char *last;
+       char *last1;            /* Last position checked before */
+#ifdef DEBUGGING
+       int did_match = 0;
+#endif
+       if (prog->anchored_substr || prog->anchored_utf8) {
+           if (utf8_target) {
+                if (! prog->anchored_utf8) {
+                    to_utf8_substr(prog);
+                }
+                must = prog->anchored_utf8;
+            }
+            else {
+                if (! prog->anchored_substr) {
+                    if (! to_byte_substr(prog)) {
+                        NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+                    }
+                }
+                must = prog->anchored_substr;
+            }
+           back_max = back_min = prog->anchored_offset;
+       } else {
+           if (utf8_target) {
+                if (! prog->float_utf8) {
+                    to_utf8_substr(prog);
+                }
+                must = prog->float_utf8;
+            }
+            else {
+                if (! prog->float_substr) {
+                    if (! to_byte_substr(prog)) {
+                        NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+                    }
+                }
+                must = prog->float_substr;
+            }
+           back_max = prog->float_max_offset;
+           back_min = prog->float_min_offset;
+       }
+           
+        if (back_min<0) {
+           last = strend;
+       } else {
+            last = HOP3c(strend,       /* Cannot start after this */
+                 -(SSize_t)(CHR_SVLEN(must)
+                        - (SvTAIL(must) != 0) + back_min), strbeg);
+        }
+       if (s > reginfo->strbeg)
+           last1 = HOPc(s, -1);
+       else
+           last1 = s - 1;      /* bogus */
+
+       /* XXXX check_substr already used to find "s", can optimize if
+          check_substr==must. */
+       dontbother = 0;
+       strend = HOPc(strend, -dontbother);
+       while ( (s <= last) &&
+               (s = fbm_instr((unsigned char*)HOP4c(s, back_min, strbeg,  strend),
+                                 (unsigned char*)strend, must,
+                                 multiline ? FBMrf_MULTILINE : 0)) ) {
+           DEBUG_EXECUTE_r( did_match = 1 );
+           if (HOPc(s, -back_max) > last1) {
+               last1 = HOPc(s, -back_min);
+               s = HOPc(s, -back_max);
+           }
+           else {
+               char * const t = (last1 >= reginfo->strbeg)
+                                    ? HOPc(last1, 1) : last1 + 1;
+
+               last1 = HOPc(s, -back_min);
+               s = t;
+           }
+           if (utf8_target) {
+               while (s <= last1) {
+                   if (regtry(reginfo, &s))
+                       goto got_it;
+                    if (s >= last1) {
+                        s++; /* to break out of outer loop */
+                        break;
+                    }
+                    s += UTF8SKIP(s);
+               }
+           }
+           else {
+               while (s <= last1) {
+                   if (regtry(reginfo, &s))
+                       goto got_it;
+                   s++;
+               }
+           }
+       }
+       DEBUG_EXECUTE_r(if (!did_match) {
+            RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+                SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+            PerlIO_printf(Perl_debug_log, "Did not find %s substr %s%s...\n",
+                             ((must == prog->anchored_substr || must == prog->anchored_utf8)
+                              ? "anchored" : "floating"),
+                quoted, RE_SV_TAIL(must));
+        });                
+       goto phooey;
+    }
+    else if ( (c = progi->regstclass) ) {
+       if (minlen) {
+           const OPCODE op = OP(progi->regstclass);
+           /* don't bother with what can't match */
+           if (PL_regkind[op] != EXACT && PL_regkind[op] != TRIE)
+               strend = HOPc(strend, -(minlen - 1));
+       }
+       DEBUG_EXECUTE_r({
+           SV * const prop = sv_newmortal();
+            regprop(prog, prop, c, reginfo, NULL);
+           {
+               RE_PV_QUOTED_DECL(quoted,utf8_target,PERL_DEBUG_PAD_ZERO(1),
+                   s,strend-s,60);
+               PerlIO_printf(Perl_debug_log,
+                   "Matching stclass %.*s against %s (%d bytes)\n",
+                   (int)SvCUR(prop), SvPVX_const(prop),
+                    quoted, (int)(strend - s));
+           }
+       });
+        if (find_byclass(prog, c, s, strend, reginfo))
+           goto got_it;
+       DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Contradicts stclass... [regexec_flags]\n"));
+    }
+    else {
+       dontbother = 0;
+       if (prog->float_substr != NULL || prog->float_utf8 != NULL) {
+           /* Trim the end. */
+           char *last= NULL;
+           SV* float_real;
+           STRLEN len;
+           const char *little;
+
+           if (utf8_target) {
+                if (! prog->float_utf8) {
+                    to_utf8_substr(prog);
+                }
+                float_real = prog->float_utf8;
+            }
+            else {
+                if (! prog->float_substr) {
+                    if (! to_byte_substr(prog)) {
+                        NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+                    }
+                }
+                float_real = prog->float_substr;
+            }
+
+            little = SvPV_const(float_real, len);
+           if (SvTAIL(float_real)) {
+                    /* This means that float_real contains an artificial \n on
+                     * the end due to the presence of something like this:
+                     * /foo$/ where we can match both "foo" and "foo\n" at the
+                     * end of the string.  So we have to compare the end of the
+                     * string first against the float_real without the \n and
+                     * then against the full float_real with the string.  We
+                     * have to watch out for cases where the string might be
+                     * smaller than the float_real or the float_real without
+                     * the \n. */
+                   char *checkpos= strend - len;
+                   DEBUG_OPTIMISE_r(
+                       PerlIO_printf(Perl_debug_log,
+                           "%sChecking for float_real.%s\n",
+                           PL_colors[4], PL_colors[5]));
+                   if (checkpos + 1 < strbeg) {
+                        /* can't match, even if we remove the trailing \n
+                         * string is too short to match */
+                       DEBUG_EXECUTE_r(
+                           PerlIO_printf(Perl_debug_log,
+                               "%sString shorter than required trailing substring, cannot match.%s\n",
+                               PL_colors[4], PL_colors[5]));
+                       goto phooey;
+                   } else if (memEQ(checkpos + 1, little, len - 1)) {
+                        /* can match, the end of the string matches without the
+                         * "\n" */
+                       last = checkpos + 1;
+                   } else if (checkpos < strbeg) {
+                        /* cant match, string is too short when the "\n" is
+                         * included */
+                       DEBUG_EXECUTE_r(
+                           PerlIO_printf(Perl_debug_log,
+                               "%sString does not contain required trailing substring, cannot match.%s\n",
+                               PL_colors[4], PL_colors[5]));
+                       goto phooey;
+                   } else if (!multiline) {
+                        /* non multiline match, so compare with the "\n" at the
+                         * end of the string */
+                       if (memEQ(checkpos, little, len)) {
+                           last= checkpos;
+                       } else {
+                           DEBUG_EXECUTE_r(
+                               PerlIO_printf(Perl_debug_log,
+                                   "%sString does not contain required trailing substring, cannot match.%s\n",
+                                   PL_colors[4], PL_colors[5]));
+                           goto phooey;
+                       }
+                   } else {
+                        /* multiline match, so we have to search for a place
+                         * where the full string is located */
+                       goto find_last;
+                   }
+           } else {
+                 find_last:
+                   if (len)
+                       last = rninstr(s, strend, little, little + len);
+                   else
+                       last = strend;  /* matching "$" */
+           }
+           if (!last) {
+                /* at one point this block contained a comment which was
+                 * probably incorrect, which said that this was a "should not
+                 * happen" case.  Even if it was true when it was written I am
+                 * pretty sure it is not anymore, so I have removed the comment
+                 * and replaced it with this one. Yves */
+               DEBUG_EXECUTE_r(
+                   PerlIO_printf(Perl_debug_log,
+                       "%sString does not contain required substring, cannot match.%s\n",
+                        PL_colors[4], PL_colors[5]
+                   ));
+               goto phooey;
+           }
+           dontbother = strend - last + prog->float_min_offset;
+       }
+       if (minlen && (dontbother < minlen))
+           dontbother = minlen - 1;
+       strend -= dontbother;              /* this one's always in bytes! */
+       /* We don't know much -- general case. */
+       if (utf8_target) {
+           for (;;) {
+               if (regtry(reginfo, &s))
+                   goto got_it;
+               if (s >= strend)
+                   break;
+               s += UTF8SKIP(s);
+           };
+       }
+       else {
+           do {
+               if (regtry(reginfo, &s))
+                   goto got_it;
+           } while (s++ < strend);
+       }
+    }
+
+    /* Failure. */
+    goto phooey;
+
+  got_it:
+    /* s/// doesn't like it if $& is earlier than where we asked it to
+     * start searching (which can happen on something like /.\G/) */
+    if (       (flags & REXEC_FAIL_ON_UNDERFLOW)
+            && (prog->offs[0].start < stringarg - strbeg))
+    {
+        /* this should only be possible under \G */
+        assert(prog->intflags & PREGf_GPOS_SEEN);
+        DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+            "matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n"));
+        goto phooey;
+    }
+
+    DEBUG_BUFFERS_r(
+       if (swap)
+           PerlIO_printf(Perl_debug_log,
+               "rex=0x%"UVxf" freeing offs: 0x%"UVxf"\n",
+               PTR2UV(prog),
+               PTR2UV(swap)
+           );
+    );
+    Safefree(swap);
+
+    /* clean up; this will trigger destructors that will free all slabs
+     * above the current one, and cleanup the regmatch_info_aux
+     * and regmatch_info_aux_eval sructs */
+
+    LEAVE_SCOPE(oldsave);
+
+    if (RXp_PAREN_NAMES(prog)) 
+        (void)hv_iterinit(RXp_PAREN_NAMES(prog));
+
+    /* make sure $`, $&, $', and $digit will work later */
+    if ( !(flags & REXEC_NOT_FIRST) )
+        S_reg_set_capture_string(aTHX_ rx,
+                                    strbeg, reginfo->strend,
+                                    sv, flags, utf8_target);
+
+    return 1;
+
+  phooey:
+    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch failed%s\n",
+                         PL_colors[4], PL_colors[5]));
+
+    /* clean up; this will trigger destructors that will free all slabs
+     * above the current one, and cleanup the regmatch_info_aux
+     * and regmatch_info_aux_eval sructs */
+
+    LEAVE_SCOPE(oldsave);
+
+    if (swap) {
+        /* we failed :-( roll it back */
+       DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+           "rex=0x%"UVxf" rolling back offs: freeing=0x%"UVxf" restoring=0x%"UVxf"\n",
+           PTR2UV(prog),
+           PTR2UV(prog->offs),
+           PTR2UV(swap)
+       ));
+        Safefree(prog->offs);
+        prog->offs = swap;
+    }
+    return 0;
+}
+
+
+/* Set which rex is pointed to by PL_reg_curpm, handling ref counting.
+ * Do inc before dec, in case old and new rex are the same */
+#define SET_reg_curpm(Re2)                          \
+    if (reginfo->info_aux_eval) {                   \
+       (void)ReREFCNT_inc(Re2);                    \
+       ReREFCNT_dec(PM_GETRE(PL_reg_curpm));       \
+       PM_SETRE((PL_reg_curpm), (Re2));            \
+    }
+
+
+/*
+ - regtry - try match at specific point
+ */
+STATIC I32                     /* 0 failure, 1 success */
+S_regtry(pTHX_ regmatch_info *reginfo, char **startposp)
+{
+    CHECKPOINT lastcp;
+    REGEXP *const rx = reginfo->prog;
+    regexp *const prog = ReANY(rx);
+    SSize_t result;
+    RXi_GET_DECL(prog,progi);
+    GET_RE_DEBUG_FLAGS_DECL;
+
+    PERL_ARGS_ASSERT_REGTRY;
+
+    reginfo->cutpoint=NULL;
+
+    prog->offs[0].start = *startposp - reginfo->strbeg;
+    prog->lastparen = 0;
+    prog->lastcloseparen = 0;
+
+    /* XXXX What this code is doing here?!!!  There should be no need
+       to do this again and again, prog->lastparen should take care of
+       this!  --ilya*/
+
+    /* Tests pat.t#187 and split.t#{13,14} seem to depend on this code.
+     * Actually, the code in regcppop() (which Ilya may be meaning by
+     * prog->lastparen), is not needed at all by the test suite
+     * (op/regexp, op/pat, op/split), but that code is needed otherwise
+     * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
+     * Meanwhile, this code *is* needed for the
+     * above-mentioned test suite tests to succeed.  The common theme
+     * on those tests seems to be returning null fields from matches.
+     * --jhi updated by dapm */
+#if 1
+    if (prog->nparens) {
+       regexp_paren_pair *pp = prog->offs;
+       I32 i;
+       for (i = prog->nparens; i > (I32)prog->lastparen; i--) {
+           ++pp;
+           pp->start = -1;
+           pp->end = -1;
+       }
+    }
+#endif
+    REGCP_SET(lastcp);
+    result = regmatch(reginfo, *startposp, progi->program + 1);
+    if (result != -1) {
+       prog->offs[0].end = result;
+       return 1;
+    }
+    if (reginfo->cutpoint)
+        *startposp= reginfo->cutpoint;
+    REGCP_UNWIND(lastcp);
+    return 0;
+}
+
+
+#define sayYES goto yes
+#define sayNO goto no
+#define sayNO_SILENT goto no_silent
+
+/* we dont use STMT_START/END here because it leads to 
+   "unreachable code" warnings, which are bogus, but distracting. */
+#define CACHEsayNO \
+    if (ST.cache_mask) \
+       reginfo->info_aux->poscache[ST.cache_offset] |= ST.cache_mask; \
+    sayNO
+
+/* this is used to determine how far from the left messages like
+   'failed...' are printed. It should be set such that messages 
+   are inline with the regop output that created them.
+*/
+#define REPORT_CODE_OFF 32
+
+
+#define CHRTEST_UNINIT -1001 /* c1/c2 haven't been calculated yet */
+#define CHRTEST_VOID   -1000 /* the c1/c2 "next char" test should be skipped */
+#define CHRTEST_NOT_A_CP_1 -999
+#define CHRTEST_NOT_A_CP_2 -998
+
+/* grab a new slab and return the first slot in it */
+
+STATIC regmatch_state *
+S_push_slab(pTHX)
+{
+#if PERL_VERSION < 9 && !defined(PERL_CORE)
+    dMY_CXT;
+#endif
+    regmatch_slab *s = PL_regmatch_slab->next;
+    if (!s) {
+       Newx(s, 1, regmatch_slab);
+       s->prev = PL_regmatch_slab;
+       s->next = NULL;
+       PL_regmatch_slab->next = s;
+    }
+    PL_regmatch_slab = s;
+    return SLAB_FIRST(s);
+}
+
+
+/* push a new state then goto it */
+
+#define PUSH_STATE_GOTO(state, node, input) \
+    pushinput = input; \
+    scan = node; \
+    st->resume_state = state; \
+    goto push_state;
+
+/* push a new state with success backtracking, then goto it */
+
+#define PUSH_YES_STATE_GOTO(state, node, input) \
+    pushinput = input; \
+    scan = node; \
+    st->resume_state = state; \
+    goto push_yes_state;
+
+
+
+
+/*
+
+regmatch() - main matching routine
+
+This is basically one big switch statement in a loop. We execute an op,
+set 'next' to point the next op, and continue. If we come to a point which
+we may need to backtrack to on failure such as (A|B|C), we push a
+backtrack state onto the backtrack stack. On failure, we pop the top
+state, and re-enter the loop at the state indicated. If there are no more
+states to pop, we return failure.
+
+Sometimes we also need to backtrack on success; for example /A+/, where
+after successfully matching one A, we need to go back and try to
+match another one; similarly for lookahead assertions: if the assertion
+completes successfully, we backtrack to the state just before the assertion
+and then carry on.  In these cases, the pushed state is marked as
+'backtrack on success too'. This marking is in fact done by a chain of
+pointers, each pointing to the previous 'yes' state. On success, we pop to
+the nearest yes state, discarding any intermediate failure-only states.
+Sometimes a yes state is pushed just to force some cleanup code to be
+called at the end of a successful match or submatch; e.g. (??{$re}) uses
+it to free the inner regex.
+
+Note that failure backtracking rewinds the cursor position, while
+success backtracking leaves it alone.
+
+A pattern is complete when the END op is executed, while a subpattern
+such as (?=foo) is complete when the SUCCESS op is executed. Both of these
+ops trigger the "pop to last yes state if any, otherwise return true"
+behaviour.
+
+A common convention in this function is to use A and B to refer to the two
+subpatterns (or to the first nodes thereof) in patterns like /A*B/: so A is
+the subpattern to be matched possibly multiple times, while B is the entire
+rest of the pattern. Variable and state names reflect this convention.
+
+The states in the main switch are the union of ops and failure/success of
+substates associated with with that op.  For example, IFMATCH is the op
+that does lookahead assertions /(?=A)B/ and so the IFMATCH state means
+'execute IFMATCH'; while IFMATCH_A is a state saying that we have just
+successfully matched A and IFMATCH_A_fail is a state saying that we have
+just failed to match A. Resume states always come in pairs. The backtrack
+state we push is marked as 'IFMATCH_A', but when that is popped, we resume
+at IFMATCH_A or IFMATCH_A_fail, depending on whether we are backtracking
+on success or failure.
+
+The struct that holds a backtracking state is actually a big union, with
+one variant for each major type of op. The variable st points to the
+top-most backtrack struct. To make the code clearer, within each
+block of code we #define ST to alias the relevant union.
+
+Here's a concrete example of a (vastly oversimplified) IFMATCH
+implementation:
+
+    switch (state) {
+    ....
+
+#define ST st->u.ifmatch
+
+    case IFMATCH: // we are executing the IFMATCH op, (?=A)B
+       ST.foo = ...; // some state we wish to save
+       ...
+       // push a yes backtrack state with a resume value of
+       // IFMATCH_A/IFMATCH_A_fail, then continue execution at the
+       // first node of A:
+       PUSH_YES_STATE_GOTO(IFMATCH_A, A, newinput);
+       // NOTREACHED
+
+    case IFMATCH_A: // we have successfully executed A; now continue with B
+       next = B;
+       bar = ST.foo; // do something with the preserved value
+       break;
+
+    case IFMATCH_A_fail: // A failed, so the assertion failed
+       ...;   // do some housekeeping, then ...
+       sayNO; // propagate the failure
+
+#undef ST
+
+    ...
+    }
+
+For any old-timers reading this who are familiar with the old recursive
+approach, the code above is equivalent to:
+
+    case IFMATCH: // we are executing the IFMATCH op, (?=A)B
+    {
+       int foo = ...
+       ...
+       if (regmatch(A)) {
+           next = B;
+           bar = foo;
+           break;
+       }
+       ...;   // do some housekeeping, then ...
+       sayNO; // propagate the failure
+    }
+
+The topmost backtrack state, pointed to by st, is usually free. If you
+want to claim it, populate any ST.foo fields in it with values you wish to
+save, then do one of
+
+       PUSH_STATE_GOTO(resume_state, node, newinput);
+       PUSH_YES_STATE_GOTO(resume_state, node, newinput);
+
+which sets that backtrack state's resume value to 'resume_state', pushes a
+new free entry to the top of the backtrack stack, then goes to 'node'.
+On backtracking, the free slot is popped, and the saved state becomes the
+new free state. An ST.foo field in this new top state can be temporarily
+accessed to retrieve values, but once the main loop is re-entered, it
+becomes available for reuse.
+
+Note that the depth of the backtrack stack constantly increases during the
+left-to-right execution of the pattern, rather than going up and down with
+the pattern nesting. For example the stack is at its maximum at Z at the
+end of the pattern, rather than at X in the following:
+
+    /(((X)+)+)+....(Y)+....Z/
+
+The only exceptions to this are lookahead/behind assertions and the cut,
+(?>A), which pop all the backtrack states associated with A before
+continuing.
+Backtrack state structs are allocated in slabs of about 4K in size.
+PL_regmatch_state and st always point to the currently active state,
+and PL_regmatch_slab points to the slab currently containing
+PL_regmatch_state.  The first time regmatch() is called, the first slab is
+allocated, and is never freed until interpreter destruction. When the slab
+is full, a new one is allocated and chained to the end. At exit from
+regmatch(), slabs allocated since entry are freed.
+
+*/
+
+#define DEBUG_STATE_pp(pp)                                 \
+    DEBUG_STATE_r({                                        \
+       DUMP_EXEC_POS(locinput, scan, utf8_target);         \
+       PerlIO_printf(Perl_debug_log,                       \
+           "    %*s"pp" %s%s%s%s%s\n",                     \
+           depth*2, "",                                    \
+           PL_reg_name[st->resume_state],                  \
+           ((st==yes_state||st==mark_state) ? "[" : ""),   \
+           ((st==yes_state) ? "Y" : ""),                   \
+           ((st==mark_state) ? "M" : ""),                  \
+           ((st==yes_state||st==mark_state) ? "]" : "")    \
+       );                                                  \
+    });
+
+
+#define REG_NODE_NUM(x) ((x) ? (int)((x)-prog) : -1)
+
+#ifdef DEBUGGING
+
+STATIC void
+S_debug_start_match(pTHX_ const REGEXP *prog, const bool utf8_target,
+    const char *start, const char *end, const char *blurb)
+{
+    const bool utf8_pat = RX_UTF8(prog) ? 1 : 0;
+
+    PERL_ARGS_ASSERT_DEBUG_START_MATCH;
+
+    if (!PL_colorset)   
+            reginitcolors();    
+    {
+        RE_PV_QUOTED_DECL(s0, utf8_pat, PERL_DEBUG_PAD_ZERO(0), 
+            RX_PRECOMP_const(prog), RX_PRELEN(prog), 60);   
+        
+        RE_PV_QUOTED_DECL(s1, utf8_target, PERL_DEBUG_PAD_ZERO(1),
+            start, end - start, 60); 
+        
+        PerlIO_printf(Perl_debug_log, 
+            "%s%s REx%s %s against %s\n", 
+                      PL_colors[4], blurb, PL_colors[5], s0, s1); 
+        
+        if (utf8_target||utf8_pat)
+            PerlIO_printf(Perl_debug_log, "UTF-8 %s%s%s...\n",
+                utf8_pat ? "pattern" : "",
+                utf8_pat && utf8_target ? " and " : "",
+                utf8_target ? "string" : ""
+            ); 
+    }
+}
+
+STATIC void
+S_dump_exec_pos(pTHX_ const char *locinput, 
+                      const regnode *scan, 
+                      const char *loc_regeol, 
+                      const char *loc_bostr, 
+                      const char *loc_reg_starttry,
+                      const bool utf8_target)
+{
+    const int docolor = *PL_colors[0] || *PL_colors[2] || *PL_colors[4];
+    const int taill = (docolor ? 10 : 7); /* 3 chars for "> <" */
+    int l = (loc_regeol - locinput) > taill ? taill : (loc_regeol - locinput);
+    /* The part of the string before starttry has one color
+       (pref0_len chars), between starttry and current
+       position another one (pref_len - pref0_len chars),
+       after the current position the third one.
+       We assume that pref0_len <= pref_len, otherwise we
+       decrease pref0_len.  */
+    int pref_len = (locinput - loc_bostr) > (5 + taill) - l
+       ? (5 + taill) - l : locinput - loc_bostr;
+    int pref0_len;
+
+    PERL_ARGS_ASSERT_DUMP_EXEC_POS;
+
+    while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput - pref_len)))
+       pref_len++;
+    pref0_len = pref_len  - (locinput - loc_reg_starttry);
+    if (l + pref_len < (5 + taill) && l < loc_regeol - locinput)
+       l = ( loc_regeol - locinput > (5 + taill) - pref_len
+             ? (5 + taill) - pref_len : loc_regeol - locinput);
+    while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput + l)))
+       l--;
+    if (pref0_len < 0)
+       pref0_len = 0;
+    if (pref0_len > pref_len)
+       pref0_len = pref_len;
+    {
+       const int is_uni = utf8_target ? 1 : 0;
+
+       RE_PV_COLOR_DECL(s0,len0,is_uni,PERL_DEBUG_PAD(0),
+           (locinput - pref_len),pref0_len, 60, 4, 5);
+       
+       RE_PV_COLOR_DECL(s1,len1,is_uni,PERL_DEBUG_PAD(1),
+                   (locinput - pref_len + pref0_len),
+                   pref_len - pref0_len, 60, 2, 3);
+       
+       RE_PV_COLOR_DECL(s2,len2,is_uni,PERL_DEBUG_PAD(2),
+                   locinput, loc_regeol - locinput, 10, 0, 1);
+
+       const STRLEN tlen=len0+len1+len2;
+       PerlIO_printf(Perl_debug_log,
+                   "%4"IVdf" <%.*s%.*s%s%.*s>%*s|",
+                   (IV)(locinput - loc_bostr),
+                   len0, s0,
+                   len1, s1,
+                   (docolor ? "" : "> <"),
+                   len2, s2,
+                   (int)(tlen > 19 ? 0 :  19 - tlen),
+                   "");
+    }
+}
+
+#endif
+
+/* reg_check_named_buff_matched()
+ * Checks to see if a named buffer has matched. The data array of 
+ * buffer numbers corresponding to the buffer is expected to reside
+ * in the regexp->data->data array in the slot stored in the ARG() of
+ * node involved. Note that this routine doesn't actually care about the
+ * name, that information is not preserved from compilation to execution.
+ * Returns the index of the leftmost defined buffer with the given name
+ * or 0 if non of the buffers matched.
+ */
+STATIC I32
+S_reg_check_named_buff_matched(const regexp *rex, const regnode *scan)
+{
+    I32 n;
+    RXi_GET_DECL(rex,rexi);
+    SV *sv_dat= MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+    I32 *nums=(I32*)SvPVX(sv_dat);
+
+    PERL_ARGS_ASSERT_REG_CHECK_NAMED_BUFF_MATCHED;
+
+    for ( n=0; n<SvIVX(sv_dat); n++ ) {
+        if ((I32)rex->lastparen >= nums[n] &&
+            rex->offs[nums[n]].end != -1)
+        {
+            return nums[n];
+        }
+    }
+    return 0;
+}
+
+
+static bool
+S_setup_EXACTISH_ST_c1_c2(pTHX_ const regnode * const text_node, int *c1p,
+        U8* c1_utf8, int *c2p, U8* c2_utf8, regmatch_info *reginfo)
+{
+    /* This function determines if there are one or two characters that match
+     * the first character of the passed-in EXACTish node <text_node>, and if
+     * so, returns them in the passed-in pointers.
+     *
+     * If it determines that no possible character in the target string can
+     * match, it returns FALSE; otherwise TRUE.  (The FALSE situation occurs if
+     * the first character in <text_node> requires UTF-8 to represent, and the
+     * target string isn't in UTF-8.)
+     *
+     * If there are more than two characters that could match the beginning of
+     * <text_node>, or if more context is required to determine a match or not,
+     * it sets both *<c1p> and *<c2p> to CHRTEST_VOID.
+     *
+     * The motiviation behind this function is to allow the caller to set up
+     * tight loops for matching.  If <text_node> is of type EXACT, there is
+     * only one possible character that can match its first character, and so
+     * the situation is quite simple.  But things get much more complicated if
+     * folding is involved.  It may be that the first character of an EXACTFish
+     * node doesn't participate in any possible fold, e.g., punctuation, so it
+     * can be matched only by itself.  The vast majority of characters that are
+     * in folds match just two things, their lower and upper-case equivalents.
+     * But not all are like that; some have multiple possible matches, or match
+     * sequences of more than one character.  This function sorts all that out.
+     *
+     * Consider the patterns A*B or A*?B where A and B are arbitrary.  In a
+     * loop of trying to match A*, we know we can't exit where the thing
+     * following it isn't a B.  And something can't be a B unless it is the
+     * beginning of B.  By putting a quick test for that beginning in a tight
+     * loop, we can rule out things that can't possibly be B without having to
+     * break out of the loop, thus avoiding work.  Similarly, if A is a single
+     * character, we can make a tight loop matching A*, using the outputs of
+     * this function.
+     *
+     * If the target string to match isn't in UTF-8, and there aren't
+     * complications which require CHRTEST_VOID, *<c1p> and *<c2p> are set to
+     * the one or two possible octets (which are characters in this situation)
+     * that can match.  In all cases, if there is only one character that can
+     * match, *<c1p> and *<c2p> will be identical.
+     *
+     * If the target string is in UTF-8, the buffers pointed to by <c1_utf8>
+     * and <c2_utf8> will contain the one or two UTF-8 sequences of bytes that
+     * can match the beginning of <text_node>.  They should be declared with at
+     * least length UTF8_MAXBYTES+1.  (If the target string isn't in UTF-8, it is
+     * undefined what these contain.)  If one or both of the buffers are
+     * invariant under UTF-8, *<c1p>, and *<c2p> will also be set to the
+     * corresponding invariant.  If variant, the corresponding *<c1p> and/or
+     * *<c2p> will be set to a negative number(s) that shouldn't match any code
+     * point (unless inappropriately coerced to unsigned).   *<c1p> will equal
+     * *<c2p> if and only if <c1_utf8> and <c2_utf8> are the same. */
+
+    const bool utf8_target = reginfo->is_utf8_target;
+
+    UV c1 = (UV)CHRTEST_NOT_A_CP_1;
+    UV c2 = (UV)CHRTEST_NOT_A_CP_2;
+    bool use_chrtest_void = FALSE;
+    const bool is_utf8_pat = reginfo->is_utf8_pat;
+
+    /* Used when we have both utf8 input and utf8 output, to avoid converting
+     * to/from code points */
+    bool utf8_has_been_setup = FALSE;
+
+    dVAR;
+
+    U8 *pat = (U8*)STRING(text_node);
+    U8 folded[UTF8_MAX_FOLD_CHAR_EXPAND * UTF8_MAXBYTES_CASE + 1] = { '\0' };
+
+    if (OP(text_node) == EXACT || OP(text_node) == EXACTL) {
+
+        /* In an exact node, only one thing can be matched, that first
+         * character.  If both the pat and the target are UTF-8, we can just
+         * copy the input to the output, avoiding finding the code point of
+         * that character */
+        if (!is_utf8_pat) {
+            c2 = c1 = *pat;
+        }
+        else if (utf8_target) {
+            Copy(pat, c1_utf8, UTF8SKIP(pat), U8);
+            Copy(pat, c2_utf8, UTF8SKIP(pat), U8);
+            utf8_has_been_setup = TRUE;
+        }
+        else {
+            c2 = c1 = valid_utf8_to_uvchr(pat, NULL);
+        }
+    }
+    else { /* an EXACTFish node */
+        U8 *pat_end = pat + STR_LEN(text_node);
+
+        /* An EXACTFL node has at least some characters unfolded, because what
+         * they match is not known until now.  So, now is the time to fold
+         * the first few of them, as many as are needed to determine 'c1' and
+         * 'c2' later in the routine.  If the pattern isn't UTF-8, we only need
+         * to fold if in a UTF-8 locale, and then only the Sharp S; everything
+         * else is 1-1 and isn't assumed to be folded.  In a UTF-8 pattern, we
+         * need to fold as many characters as a single character can fold to,
+         * so that later we can check if the first ones are such a multi-char
+         * fold.  But, in such a pattern only locale-problematic characters
+         * aren't folded, so we can skip this completely if the first character
+         * in the node isn't one of the tricky ones */
+        if (OP(text_node) == EXACTFL) {
+
+            if (! is_utf8_pat) {
+                if (IN_UTF8_CTYPE_LOCALE && *pat == LATIN_SMALL_LETTER_SHARP_S)
+                {
+                    folded[0] = folded[1] = 's';
+                    pat = folded;
+                    pat_end = folded + 2;
+                }
+            }
+            else if (is_PROBLEMATIC_LOCALE_FOLDEDS_START_utf8(pat)) {
+                U8 *s = pat;
+                U8 *d = folded;
+                int i;
+
+                for (i = 0; i < UTF8_MAX_FOLD_CHAR_EXPAND && s < pat_end; i++) {
+                    if (isASCII(*s)) {
+                        *(d++) = (U8) toFOLD_LC(*s);
+                        s++;
+                    }
+                    else {
+                        STRLEN len;
+                        _to_utf8_fold_flags(s,
+                                            d,
+                                            &len,
+                                            FOLD_FLAGS_FULL | FOLD_FLAGS_LOCALE);
+                        d += len;
+                        s += UTF8SKIP(s);
+                    }
+                }
+
+                pat = folded;
+                pat_end = d;
+            }
+        }
+
+        if ((is_utf8_pat && is_MULTI_CHAR_FOLD_utf8_safe(pat, pat_end))
+             || (!is_utf8_pat && is_MULTI_CHAR_FOLD_latin1_safe(pat, pat_end)))
+        {
+            /* Multi-character folds require more context to sort out.  Also
+             * PL_utf8_foldclosures used below doesn't handle them, so have to
+             * be handled outside this routine */
+            use_chrtest_void = TRUE;
+        }
+        else { /* an EXACTFish node which doesn't begin with a multi-char fold */
+            c1 = is_utf8_pat ? valid_utf8_to_uvchr(pat, NULL) : *pat;
+            if (c1 > 255) {
+                /* Load the folds hash, if not already done */
+                SV** listp;
+                if (! PL_utf8_foldclosures) {
+                    _load_PL_utf8_foldclosures();
+                }
+
+                /* The fold closures data structure is a hash with the keys
+                 * being the UTF-8 of every character that is folded to, like
+                 * 'k', and the values each an array of all code points that
+                 * fold to its key.  e.g. [ 'k', 'K', KELVIN_SIGN ].
+                 * Multi-character folds are not included */
+                if ((! (listp = hv_fetch(PL_utf8_foldclosures,
+                                        (char *) pat,
+                                        UTF8SKIP(pat),
+                                        FALSE))))
+                {
+                    /* Not found in the hash, therefore there are no folds
+                    * containing it, so there is only a single character that
+                    * could match */
+                    c2 = c1;
+                }
+                else {  /* Does participate in folds */
+                    AV* list = (AV*) *listp;
+                    if (av_tindex(list) != 1) {
+
+                        /* If there aren't exactly two folds to this, it is
+                         * outside the scope of this function */
+                        use_chrtest_void = TRUE;
+                    }
+                    else {  /* There are two.  Get them */
+                        SV** c_p = av_fetch(list, 0, FALSE);
+                        if (c_p == NULL) {
+                            Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
+                        }
+                        c1 = SvUV(*c_p);
+
+                        c_p = av_fetch(list, 1, FALSE);
+                        if (c_p == NULL) {
+                            Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
+                        }
+                        c2 = SvUV(*c_p);
+
+                        /* Folds that cross the 255/256 boundary are forbidden
+                         * if EXACTFL (and isnt a UTF8 locale), or EXACTFA and
+                         * one is ASCIII.  Since the pattern character is above
+                         * 255, and its only other match is below 256, the only
+                         * legal match will be to itself.  We have thrown away
+                         * the original, so have to compute which is the one
+                         * above 255. */
+                        if ((c1 < 256) != (c2 < 256)) {
+                            if ((OP(text_node) == EXACTFL
+                                 && ! IN_UTF8_CTYPE_LOCALE)
+                                || ((OP(text_node) == EXACTFA
+                                    || OP(text_node) == EXACTFA_NO_TRIE)
+                                    && (isASCII(c1) || isASCII(c2))))
+                            {
+                                if (c1 < 256) {
+                                    c1 = c2;
+                                }
+                                else {
+                                    c2 = c1;
+                                }
+                            }
+                        }
+                    }
+                }
+            }
+            else /* Here, c1 is <= 255 */
+                if (utf8_target
+                    && HAS_NONLATIN1_FOLD_CLOSURE(c1)
+                    && ( ! (OP(text_node) == EXACTFL && ! IN_UTF8_CTYPE_LOCALE))
+                    && ((OP(text_node) != EXACTFA
+                        && OP(text_node) != EXACTFA_NO_TRIE)
+                        || ! isASCII(c1)))
+            {
+                /* Here, there could be something above Latin1 in the target
+                 * which folds to this character in the pattern.  All such
+                 * cases except LATIN SMALL LETTER Y WITH DIAERESIS have more
+                 * than two characters involved in their folds, so are outside
+                 * the scope of this function */
+                if (UNLIKELY(c1 == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) {
+                    c2 = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS;
+                }
+                else {
+                    use_chrtest_void = TRUE;
+                }
+            }
+            else { /* Here nothing above Latin1 can fold to the pattern
+                      character */
+                switch (OP(text_node)) {
+
+                    case EXACTFL:   /* /l rules */
+                        c2 = PL_fold_locale[c1];
+                        break;
+
+                    case EXACTF:   /* This node only generated for non-utf8
+                                    patterns */
+                        assert(! is_utf8_pat);
+                        if (! utf8_target) {    /* /d rules */
+                            c2 = PL_fold[c1];
+                            break;
+                        }
+                        /* FALLTHROUGH */
+                        /* /u rules for all these.  This happens to work for
+                        * EXACTFA as nothing in Latin1 folds to ASCII */
+                    case EXACTFA_NO_TRIE:   /* This node only generated for
+                                            non-utf8 patterns */
+                        assert(! is_utf8_pat);
+                        /* FALLTHROUGH */
+                    case EXACTFA:
+                    case EXACTFU_SS:
+                    case EXACTFU:
+                        c2 = PL_fold_latin1[c1];
+                        break;
+
+                    default:
+                        Perl_croak(aTHX_ "panic: Unexpected op %u", OP(text_node));
+                        NOT_REACHED; /* NOTREACHED */
+                }
+            }
+        }
+    }
+
+    /* Here have figured things out.  Set up the returns */
+    if (use_chrtest_void) {
+        *c2p = *c1p = CHRTEST_VOID;
+    }
+    else if (utf8_target) {
+        if (! utf8_has_been_setup) {    /* Don't have the utf8; must get it */
+            uvchr_to_utf8(c1_utf8, c1);
+            uvchr_to_utf8(c2_utf8, c2);
+        }
+
+        /* Invariants are stored in both the utf8 and byte outputs; Use
+         * negative numbers otherwise for the byte ones.  Make sure that the
+         * byte ones are the same iff the utf8 ones are the same */
+        *c1p = (UTF8_IS_INVARIANT(*c1_utf8)) ? *c1_utf8 : CHRTEST_NOT_A_CP_1;
+        *c2p = (UTF8_IS_INVARIANT(*c2_utf8))
+                ? *c2_utf8
+                : (c1 == c2)
+                  ? CHRTEST_NOT_A_CP_1
+                  : CHRTEST_NOT_A_CP_2;
+    }
+    else if (c1 > 255) {
+       if (c2 > 255) {  /* both possibilities are above what a non-utf8 string
+                           can represent */
+           return FALSE;
+       }
+
+       *c1p = *c2p = c2;    /* c2 is the only representable value */
+    }
+    else {  /* c1 is representable; see about c2 */
+       *c1p = c1;
+       *c2p = (c2 < 256) ? c2 : c1;
+    }
+
+    return TRUE;
+}
+
+/* This creates a single number by combining two, with 'before' being like the
+ * 10's digit, but this isn't necessarily base 10; it is base however many
+ * elements of the enum there are */
+#define GCBcase(before, after) ((GCB_ENUM_COUNT * before) + after)
+
+STATIC bool
+S_isGCB(const GCB_enum before, const GCB_enum after)
+{
+    /* returns a boolean indicating if there is a Grapheme Cluster Boundary
+     * between the inputs.  See http://www.unicode.org/reports/tr29/ */
+
+    switch (GCBcase(before, after)) {
+
+        /*  Break at the start and end of text.
+            GB1.   sot ÷
+            GB2.   ÷ eot
+
+            Break before and after controls except between CR and LF
+            GB4.  ( Control | CR | LF )  ÷
+            GB5.   ÷  ( Control | CR | LF )
+
+            Otherwise, break everywhere.
+            GB10.  Any  ÷  Any */
+        default:
+            return TRUE;
+
+        /* Do not break between a CR and LF.
+            GB3.  CR  ×  LF */
+        case GCBcase(GCB_CR, GCB_LF):
+            return FALSE;
+
+        /* Do not break Hangul syllable sequences.
+            GB6.  L  ×  ( L | V | LV | LVT ) */
+        case GCBcase(GCB_L, GCB_L):
+        case GCBcase(GCB_L, GCB_V):
+        case GCBcase(GCB_L, GCB_LV):
+        case GCBcase(GCB_L, GCB_LVT):
+            return FALSE;
+
+        /*  GB7.  ( LV | V )  ×  ( V | T ) */
+        case GCBcase(GCB_LV, GCB_V):
+        case GCBcase(GCB_LV, GCB_T):
+        case GCBcase(GCB_V, GCB_V):
+        case GCBcase(GCB_V, GCB_T):
+            return FALSE;
+
+        /*  GB8.  ( LVT | T)  ×  T */
+        case GCBcase(GCB_LVT, GCB_T):
+        case GCBcase(GCB_T, GCB_T):
+            return FALSE;
+
+        /* Do not break between regional indicator symbols.
+            GB8a.  Regional_Indicator  ×  Regional_Indicator */
+        case GCBcase(GCB_Regional_Indicator, GCB_Regional_Indicator):
+            return FALSE;
+
+        /* Do not break before extending characters.
+            GB9.     ×  Extend */
+        case GCBcase(GCB_Other, GCB_Extend):
+        case GCBcase(GCB_Extend, GCB_Extend):
+        case GCBcase(GCB_L, GCB_Extend):
+        case GCBcase(GCB_LV, GCB_Extend):
+        case GCBcase(GCB_LVT, GCB_Extend):
+        case GCBcase(GCB_Prepend, GCB_Extend):
+        case GCBcase(GCB_Regional_Indicator, GCB_Extend):
+        case GCBcase(GCB_SpacingMark, GCB_Extend):
+        case GCBcase(GCB_T, GCB_Extend):
+        case GCBcase(GCB_V, GCB_Extend):
+            return FALSE;
+
+        /* Do not break before SpacingMarks, or after Prepend characters.
+            GB9a.     ×  SpacingMark */
+        case GCBcase(GCB_Other, GCB_SpacingMark):
+        case GCBcase(GCB_Extend, GCB_SpacingMark):
+        case GCBcase(GCB_L, GCB_SpacingMark):
+        case GCBcase(GCB_LV, GCB_SpacingMark):
+        case GCBcase(GCB_LVT, GCB_SpacingMark):
+        case GCBcase(GCB_Prepend, GCB_SpacingMark):
+        case GCBcase(GCB_Regional_Indicator, GCB_SpacingMark):
+        case GCBcase(GCB_SpacingMark, GCB_SpacingMark):
+        case GCBcase(GCB_T, GCB_SpacingMark):
+        case GCBcase(GCB_V, GCB_SpacingMark):
+            return FALSE;
+
+        /* GB9b.  Prepend  ×   */
+        case GCBcase(GCB_Prepend, GCB_Other):
+        case GCBcase(GCB_Prepend, GCB_L):
+        case GCBcase(GCB_Prepend, GCB_LV):
+        case GCBcase(GCB_Prepend, GCB_LVT):
+        case GCBcase(GCB_Prepend, GCB_Prepend):
+        case GCBcase(GCB_Prepend, GCB_Regional_Indicator):
+        case GCBcase(GCB_Prepend, GCB_T):
+        case GCBcase(GCB_Prepend, GCB_V):
+            return FALSE;
+    }
+
+    NOT_REACHED; /* NOTREACHED */
+}
+
+#define SBcase(before, after) ((SB_ENUM_COUNT * before) + after)
+
+STATIC bool
+S_isSB(pTHX_ SB_enum before,
+             SB_enum after,
+             const U8 * const strbeg,
+             const U8 * const curpos,
+             const U8 * const strend,
+             const bool utf8_target)
+{
+    /* returns a boolean indicating if there is a Sentence Boundary Break
+     * between the inputs.  See http://www.unicode.org/reports/tr29/ */
+
+    U8 * lpos = (U8 *) curpos;
+    U8 * temp_pos;
+    SB_enum backup;
+
+    PERL_ARGS_ASSERT_ISSB;
+
+    /* Break at the start and end of text.
+        SB1.  sot  ÷
+        SB2.  ÷  eot */
+    if (before == SB_EDGE || after == SB_EDGE) {
+        return TRUE;
+    }
+
+    /* SB 3: Do not break within CRLF. */
+    if (before == SB_CR && after == SB_LF) {
+        return FALSE;
+    }
+
+    /* Break after paragraph separators.  (though why CR and LF are considered
+     * so is beyond me (khw)
+       SB4.  Sep | CR | LF  ÷ */
+    if (before == SB_Sep || before == SB_CR || before == SB_LF) {
+        return TRUE;
+    }
+
+    /* Ignore Format and Extend characters, except after sot, Sep, CR, or LF.
+     * (See Section 6.2, Replacing Ignore Rules.)
+        SB5.  X (Extend | Format)*  →  X */
+    if (after == SB_Extend || after == SB_Format) {
+        return FALSE;
+    }
+
+    if (before == SB_Extend || before == SB_Format) {
+        before = backup_one_SB(strbeg, &lpos, utf8_target);
+    }
+
+    /* Do not break after ambiguous terminators like period, if they are
+     * immediately followed by a number or lowercase letter, if they are
+     * between uppercase letters, if the first following letter (optionally
+     * after certain punctuation) is lowercase, or if they are followed by
+     * "continuation" punctuation such as comma, colon, or semicolon. For
+     * example, a period may be an abbreviation or numeric period, and thus may
+     * not mark the end of a sentence.
+
+     * SB6. ATerm  ×  Numeric */
+    if (before == SB_ATerm && after == SB_Numeric) {
+        return FALSE;
+    }
+
+    /* SB7.  (Upper | Lower) ATerm  ×  Upper */
+    if (before == SB_ATerm && after == SB_Upper) {
+        temp_pos = lpos;
+        backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+        if (backup == SB_Upper || backup == SB_Lower) {
+            return FALSE;
+        }
+    }
+
+    /* SB8a.  (STerm | ATerm) Close* Sp*  ×  (SContinue | STerm | ATerm)
+     * SB10.  (STerm | ATerm) Close* Sp*  ×  ( Sp | Sep | CR | LF )      */
+    backup = before;
+    temp_pos = lpos;
+    while (backup == SB_Sp) {
+        backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+    }
+    while (backup == SB_Close) {
+        backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+    }
+    if ((backup == SB_STerm || backup == SB_ATerm)
+        && (   after == SB_SContinue
+            || after == SB_STerm
+            || after == SB_ATerm
+            || after == SB_Sp
+            || after == SB_Sep
+            || after == SB_CR
+            || after == SB_LF))
+    {
+        return FALSE;
+    }
+
+    /* SB8.  ATerm Close* Sp*  ×  ( ¬(OLetter | Upper | Lower | Sep | CR | LF |
+     *                                              STerm | ATerm) )* Lower */
+    if (backup == SB_ATerm) {
+        U8 * rpos = (U8 *) curpos;
+        SB_enum later = after;
+
+        while (    later != SB_OLetter
+                && later != SB_Upper
+                && later != SB_Lower
+                && later != SB_Sep
+                && later != SB_CR
+                && later != SB_LF
+                && later != SB_STerm
+                && later != SB_ATerm
+                && later != SB_EDGE)
+        {
+            later = advance_one_SB(&rpos, strend, utf8_target);
+        }
+        if (later == SB_Lower) {
+            return FALSE;
+        }
+    }
+
+    /* Break after sentence terminators, but include closing punctuation,
+     * trailing spaces, and a paragraph separator (if present). [See note
+     * below.]
+     * SB9.  ( STerm | ATerm ) Close*  ×  ( Close | Sp | Sep | CR | LF ) */
+    backup = before;
+    temp_pos = lpos;
+    while (backup == SB_Close) {
+        backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+    }
+    if ((backup == SB_STerm || backup == SB_ATerm)
+        && (   after == SB_Close
+            || after == SB_Sp
+            || after == SB_Sep
+            || after == SB_CR
+            || after == SB_LF))
+    {
+        return FALSE;
+    }
+
+
+    /* SB11.  ( STerm | ATerm ) Close* Sp* ( Sep | CR | LF )?  ÷ */
+    temp_pos = lpos;
+    backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+    if (   backup == SB_Sep
+        || backup == SB_CR
+        || backup == SB_LF)
+    {
+        lpos = temp_pos;
+    }
+    else {
+        backup = before;
+    }
+    while (backup == SB_Sp) {
+        backup = backup_one_SB(strbeg, &lpos, utf8_target);
+    }
+    while (backup == SB_Close) {
+        backup = backup_one_SB(strbeg, &lpos, utf8_target);
+    }
+    if (backup == SB_STerm || backup == SB_ATerm) {
+        return TRUE;
+    }
+
+    /* Otherwise, do not break.
+    SB12.  Any  ×  Any */
+
+    return FALSE;
+}
+
+STATIC SB_enum
+S_advance_one_SB(pTHX_ U8 ** curpos, const U8 * const strend, const bool utf8_target)
+{
+    SB_enum sb;
+
+    PERL_ARGS_ASSERT_ADVANCE_ONE_SB;
+
+    if (*curpos >= strend) {
+        return SB_EDGE;
+    }
+
+    if (utf8_target) {
+        do {
+            *curpos += UTF8SKIP(*curpos);
+            if (*curpos >= strend) {
+                return SB_EDGE;
+            }
+            sb = getSB_VAL_UTF8(*curpos, strend);
+        } while (sb == SB_Extend || sb == SB_Format);
+    }
+    else {
+        do {
+            (*curpos)++;
+            if (*curpos >= strend) {
+                return SB_EDGE;
+            }
+            sb = getSB_VAL_CP(**curpos);
+        } while (sb == SB_Extend || sb == SB_Format);
+    }
+
+    return sb;
+}
+
+STATIC SB_enum
+S_backup_one_SB(pTHX_ const U8 * const strbeg, U8 ** curpos, const bool utf8_target)
+{
+    SB_enum sb;
+
+    PERL_ARGS_ASSERT_BACKUP_ONE_SB;
+
+    if (*curpos < strbeg) {
+        return SB_EDGE;
+    }
+
+    if (utf8_target) {
+        U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg);
+        if (! prev_char_pos) {
+            return SB_EDGE;
+        }
+
+        /* Back up over Extend and Format.  curpos is always just to the right
+         * of the characater whose value we are getting */
+        do {
+            U8 * prev_prev_char_pos;
+            if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos, -1,
+                                                                      strbeg)))
+            {
+                sb = getSB_VAL_UTF8(prev_prev_char_pos, prev_char_pos);
+                *curpos = prev_char_pos;
+                prev_char_pos = prev_prev_char_pos;
+            }
+            else {
+                *curpos = (U8 *) strbeg;
+                return SB_EDGE;
+            }
+        } while (sb == SB_Extend || sb == SB_Format);
+    }
+    else {
+        do {
+            if (*curpos - 2 < strbeg) {
+                *curpos = (U8 *) strbeg;
+                return SB_EDGE;
+            }
+            (*curpos)--;
+            sb = getSB_VAL_CP(*(*curpos - 1));
+        } while (sb == SB_Extend || sb == SB_Format);
+    }
+
+    return sb;
+}
+
+#define WBcase(before, after) ((WB_ENUM_COUNT * before) + after)
+
+STATIC bool
+S_isWB(pTHX_ WB_enum previous,
+             WB_enum before,
+             WB_enum after,
+             const U8 * const strbeg,
+             const U8 * const curpos,
+             const U8 * const strend,
+             const bool utf8_target)
+{
+    /*  Return a boolean as to if the boundary between 'before' and 'after' is
+     *  a Unicode word break, using their published algorithm.  Context may be
+     *  needed to make this determination.  If the value for the character
+     *  before 'before' is known, it is passed as 'previous'; otherwise that
+     *  should be set to WB_UNKNOWN.  The other input parameters give the
+     *  boundaries and current position in the matching of the string.  That
+     *  is, 'curpos' marks the position where the character whose wb value is
+     *  'after' begins.  See http://www.unicode.org/reports/tr29/ */
+
+    U8 * before_pos = (U8 *) curpos;
+    U8 * after_pos = (U8 *) curpos;
+
+    PERL_ARGS_ASSERT_ISWB;
+
+    /* WB1 and WB2: Break at the start and end of text. */
+    if (before == WB_EDGE || after == WB_EDGE) {
+        return TRUE;
+    }
+
+    /* WB 3: Do not break within CRLF. */
+    if (before == WB_CR && after == WB_LF) {
+        return FALSE;
+    }
+
+    /* WB 3a and WB 3b: Otherwise break before and after Newlines (including CR
+     * and LF) */
+    if (   before == WB_CR || before == WB_LF || before == WB_Newline
+        || after ==  WB_CR || after ==  WB_LF || after ==  WB_Newline)
+    {
+        return TRUE;
+    }
+
+    /* Ignore Format and Extend characters, except when they appear at the
+     * beginning of a region of text.
+     * WB4.  X (Extend | Format)*  →  X. */
+
+    if (after == WB_Extend || after == WB_Format) {
+        return FALSE;
+    }
+
+    if (before == WB_Extend || before == WB_Format) {
+        before = backup_one_WB(&previous, strbeg, &before_pos, utf8_target);
+    }
+
+    switch (WBcase(before, after)) {
+            /* Otherwise, break everywhere (including around ideographs).
+                WB14.  Any  ÷  Any */
+            default:
+                return TRUE;
+
+            /* Do not break between most letters.
+                WB5.  (ALetter | Hebrew_Letter) × (ALetter | Hebrew_Letter) */
+            case WBcase(WB_ALetter, WB_ALetter):
+            case WBcase(WB_ALetter, WB_Hebrew_Letter):
+            case WBcase(WB_Hebrew_Letter, WB_ALetter):
+            case WBcase(WB_Hebrew_Letter, WB_Hebrew_Letter):
+                return FALSE;
+
+            /* Do not break letters across certain punctuation.
+                WB6.  (ALetter | Hebrew_Letter)
+                        × (MidLetter | MidNumLet | Single_Quote) (ALetter
+                                                            | Hebrew_Letter) */
+            case WBcase(WB_ALetter, WB_MidLetter):
+            case WBcase(WB_ALetter, WB_MidNumLet):
+            case WBcase(WB_ALetter, WB_Single_Quote):
+            case WBcase(WB_Hebrew_Letter, WB_MidLetter):
+            case WBcase(WB_Hebrew_Letter, WB_MidNumLet):
+            /*case WBcase(WB_Hebrew_Letter, WB_Single_Quote):*/
+                after = advance_one_WB(&after_pos, strend, utf8_target);
+                return after != WB_ALetter && after != WB_Hebrew_Letter;
+
+            /* WB7.  (ALetter | Hebrew_Letter) (MidLetter | MidNumLet |
+             *                    Single_Quote) ×  (ALetter | Hebrew_Letter) */
+            case WBcase(WB_MidLetter, WB_ALetter):
+            case WBcase(WB_MidLetter, WB_Hebrew_Letter):
+            case WBcase(WB_MidNumLet, WB_ALetter):
+            case WBcase(WB_MidNumLet, WB_Hebrew_Letter):
+            case WBcase(WB_Single_Quote, WB_ALetter):
+            case WBcase(WB_Single_Quote, WB_Hebrew_Letter):
+                before
+                  = backup_one_WB(&previous, strbeg, &before_pos, utf8_target);
+                return before != WB_ALetter && before != WB_Hebrew_Letter;
+
+            /* WB7a.  Hebrew_Letter  ×  Single_Quote */
+            case WBcase(WB_Hebrew_Letter, WB_Single_Quote):
+                return FALSE;
+
+            /* WB7b.  Hebrew_Letter  ×  Double_Quote Hebrew_Letter */
+            case WBcase(WB_Hebrew_Letter, WB_Double_Quote):
+                return advance_one_WB(&after_pos, strend, utf8_target)
+                                                        != WB_Hebrew_Letter;
+
+            /* WB7c.  Hebrew_Letter Double_Quote  ×  Hebrew_Letter */
+            case WBcase(WB_Double_Quote, WB_Hebrew_Letter):
+                return backup_one_WB(&previous, strbeg, &before_pos, utf8_target)
+                                                        != WB_Hebrew_Letter;
+
+            /* Do not break within sequences of digits, or digits adjacent to
+             * letters (“3a”, or “A3”).
+                WB8.  Numeric  ×  Numeric */
+            case WBcase(WB_Numeric, WB_Numeric):
+                return FALSE;
+
+            /* WB9.  (ALetter | Hebrew_Letter)  ×  Numeric */
+            case WBcase(WB_ALetter, WB_Numeric):
+            case WBcase(WB_Hebrew_Letter, WB_Numeric):
+                return FALSE;
+
+            /* WB10.  Numeric  ×  (ALetter | Hebrew_Letter) */
+            case WBcase(WB_Numeric, WB_ALetter):
+            case WBcase(WB_Numeric, WB_Hebrew_Letter):
+                return FALSE;
+
+            /* Do not break within sequences, such as “3.2” or “3,456.789”.
+                WB11.   Numeric (MidNum | MidNumLet | Single_Quote)  ×  Numeric
+             */
+            case WBcase(WB_MidNum, WB_Numeric):
+            case WBcase(WB_MidNumLet, WB_Numeric):
+            case WBcase(WB_Single_Quote, WB_Numeric):
+                return backup_one_WB(&previous, strbeg, &before_pos, utf8_target)
+                                                               != WB_Numeric;
+
+            /*  WB12.   Numeric  ×  (MidNum | MidNumLet | Single_Quote) Numeric
+             *  */
+            case WBcase(WB_Numeric, WB_MidNum):
+            case WBcase(WB_Numeric, WB_MidNumLet):
+            case WBcase(WB_Numeric, WB_Single_Quote):
+                return advance_one_WB(&after_pos, strend, utf8_target)
+                                                               != WB_Numeric;
+
+            /* Do not break between Katakana.
+               WB13.  Katakana  ×  Katakana */
+            case WBcase(WB_Katakana, WB_Katakana):
+                return FALSE;
+
+            /* Do not break from extenders.
+               WB13a.  (ALetter | Hebrew_Letter | Numeric | Katakana |
+                                            ExtendNumLet)  ×  ExtendNumLet */
+            case WBcase(WB_ALetter, WB_ExtendNumLet):
+            case WBcase(WB_Hebrew_Letter, WB_ExtendNumLet):
+            case WBcase(WB_Numeric, WB_ExtendNumLet):
+            case WBcase(WB_Katakana, WB_ExtendNumLet):
+            case WBcase(WB_ExtendNumLet, WB_ExtendNumLet):
+                return FALSE;
+
+            /* WB13b.  ExtendNumLet  ×  (ALetter | Hebrew_Letter | Numeric
+             *                                                 | Katakana) */
+            case WBcase(WB_ExtendNumLet, WB_ALetter):
+            case WBcase(WB_ExtendNumLet, WB_Hebrew_Letter):
+            case WBcase(WB_ExtendNumLet, WB_Numeric):
+            case WBcase(WB_ExtendNumLet, WB_Katakana):
+                return FALSE;
+
+            /* Do not break between regional indicator symbols.
+               WB13c.  Regional_Indicator  ×  Regional_Indicator */
+            case WBcase(WB_Regional_Indicator, WB_Regional_Indicator):
+                return FALSE;
+
+    }
+
+    NOT_REACHED; /* NOTREACHED */
+}
+
+STATIC WB_enum
+S_advance_one_WB(pTHX_ U8 ** curpos, const U8 * const strend, const bool utf8_target)
+{
+    WB_enum wb;
+
+    PERL_ARGS_ASSERT_ADVANCE_ONE_WB;
+
+    if (*curpos >= strend) {
+        return WB_EDGE;
+    }
+
+    if (utf8_target) {
+
+        /* Advance over Extend and Format */
+        do {
+            *curpos += UTF8SKIP(*curpos);
+            if (*curpos >= strend) {
+                return WB_EDGE;
+            }
+            wb = getWB_VAL_UTF8(*curpos, strend);
+        } while (wb == WB_Extend || wb == WB_Format);
+    }
+    else {
+        do {
+            (*curpos)++;
+            if (*curpos >= strend) {
+                return WB_EDGE;
+            }
+            wb = getWB_VAL_CP(**curpos);
+        } while (wb == WB_Extend || wb == WB_Format);
+    }
+
+    return wb;
+}
+
+STATIC WB_enum
+S_backup_one_WB(pTHX_ WB_enum * previous, const U8 * const strbeg, U8 ** curpos, const bool utf8_target)
+{
+    WB_enum wb;
+
+    PERL_ARGS_ASSERT_BACKUP_ONE_WB;
+
+    /* If we know what the previous character's break value is, don't have
+        * to look it up */
+    if (*previous != WB_UNKNOWN) {
+        wb = *previous;
+        *previous = WB_UNKNOWN;
+        /* XXX Note that doesn't change curpos, and maybe should */
+
+        /* But we always back up over these two types */
+        if (wb != WB_Extend && wb != WB_Format) {
+            return wb;
+        }
+    }
+
+    if (*curpos < strbeg) {
+        return WB_EDGE;
+    }
+
+    if (utf8_target) {
+        U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg);
+        if (! prev_char_pos) {
+            return WB_EDGE;
+        }
+
+        /* Back up over Extend and Format.  curpos is always just to the right
+         * of the characater whose value we are getting */
+        do {
+            U8 * prev_prev_char_pos;
+            if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos,
+                                                   -1,
+                                                   strbeg)))
+            {
+                wb = getWB_VAL_UTF8(prev_prev_char_pos, prev_char_pos);
+                *curpos = prev_char_pos;
+                prev_char_pos = prev_prev_char_pos;
+            }
+            else {
+                *curpos = (U8 *) strbeg;
+                return WB_EDGE;
+            }
+        } while (wb == WB_Extend || wb == WB_Format);
+    }
+    else {
+        do {
+            if (*curpos - 2 < strbeg) {
+                *curpos = (U8 *) strbeg;
+                return WB_EDGE;
+            }
+            (*curpos)--;
+            wb = getWB_VAL_CP(*(*curpos - 1));
+        } while (wb == WB_Extend || wb == WB_Format);
+    }
+
+    return wb;
+}
+
+/* returns -1 on failure, $+[0] on success */
+STATIC SSize_t
+S_regmatch(pTHX_ regmatch_info *reginfo, char *startpos, regnode *prog)
+{
+#if PERL_VERSION < 9 && !defined(PERL_CORE)
+    dMY_CXT;
+#endif
+    dVAR;
+    const bool utf8_target = reginfo->is_utf8_target;
+    const U32 uniflags = UTF8_ALLOW_DEFAULT;
+    REGEXP *rex_sv = reginfo->prog;
+    regexp *rex = ReANY(rex_sv);
+    RXi_GET_DECL(rex,rexi);
+    /* the current state. This is a cached copy of PL_regmatch_state */
+    regmatch_state *st;
+    /* cache heavy used fields of st in registers */
+    regnode *scan;
+    regnode *next;
+    U32 n = 0; /* general value; init to avoid compiler warning */
+    SSize_t ln = 0; /* len or last;  init to avoid compiler warning */
+    char *locinput = startpos;
+    char *pushinput; /* where to continue after a PUSH */
+    I32 nextchr;   /* is always set to UCHARAT(locinput) */
+
+    bool result = 0;       /* return value of S_regmatch */
+    int depth = 0;         /* depth of backtrack stack */
+    U32 nochange_depth = 0; /* depth of GOSUB recursion with nochange */
+    const U32 max_nochange_depth =
+        (3 * rex->nparens > MAX_RECURSE_EVAL_NOCHANGE_DEPTH) ?
+        3 * rex->nparens : MAX_RECURSE_EVAL_NOCHANGE_DEPTH;
+    regmatch_state *yes_state = NULL; /* state to pop to on success of
+                                                           subpattern */
+    /* mark_state piggy backs on the yes_state logic so that when we unwind 
+       the stack on success we can update the mark_state as we go */
+    regmatch_state *mark_state = NULL; /* last mark state we have seen */
+    regmatch_state *cur_eval = NULL; /* most recent EVAL_AB state */
+    struct regmatch_state  *cur_curlyx = NULL; /* most recent curlyx */
+    U32 state_num;
+    bool no_final = 0;      /* prevent failure from backtracking? */
+    bool do_cutgroup = 0;   /* no_final only until next branch/trie entry */
+    char *startpoint = locinput;
+    SV *popmark = NULL;     /* are we looking for a mark? */
+    SV *sv_commit = NULL;   /* last mark name seen in failure */
+    SV *sv_yes_mark = NULL; /* last mark name we have seen 
+                               during a successful match */
+    U32 lastopen = 0;       /* last open we saw */
+    bool has_cutgroup = RX_HAS_CUTGROUP(rex) ? 1 : 0;   
+    SV* const oreplsv = GvSVn(PL_replgv);
+    /* these three flags are set by various ops to signal information to
+     * the very next op. They have a useful lifetime of exactly one loop
+     * iteration, and are not preserved or restored by state pushes/pops
+     */
+    bool sw = 0;           /* the condition value in (?(cond)a|b) */
+    bool minmod = 0;       /* the next "{n,m}" is a "{n,m}?" */
+    int logical = 0;       /* the following EVAL is:
+                               0: (?{...})
+                               1: (?(?{...})X|Y)
+                               2: (??{...})
+                              or the following IFMATCH/UNLESSM is:
+                               false: plain (?=foo)
+                               true:  used as a condition: (?(?=foo))
+                           */
+    PAD* last_pad = NULL;
+    dMULTICALL;
+    I32 gimme = G_SCALAR;
+    CV *caller_cv = NULL;      /* who called us */
+    CV *last_pushed_cv = NULL; /* most recently called (?{}) CV */
+    CHECKPOINT runops_cp;      /* savestack position before executing EVAL */
+    U32 maxopenparen = 0;       /* max '(' index seen so far */
+    int to_complement;  /* Invert the result? */
+    _char_class_number classnum;
+    bool is_utf8_pat = reginfo->is_utf8_pat;
+    bool match = FALSE;
+
+
+#ifdef DEBUGGING
+    GET_RE_DEBUG_FLAGS_DECL;
+#endif
+
+    /* protect against undef(*^R) */
+    SAVEFREESV(SvREFCNT_inc_simple_NN(oreplsv));
+
+    /* shut up 'may be used uninitialized' compiler warnings for dMULTICALL */
+    multicall_oldcatch = 0;
+    multicall_cv = NULL;
+    cx = NULL;
+    PERL_UNUSED_VAR(multicall_cop);
+    PERL_UNUSED_VAR(newsp);
+
+
+    PERL_ARGS_ASSERT_REGMATCH;
+
+    DEBUG_OPTIMISE_r( DEBUG_EXECUTE_r({
+           PerlIO_printf(Perl_debug_log,"regmatch start\n");
+    }));
+
+    st = PL_regmatch_state;
+
+    /* Note that nextchr is a byte even in UTF */
+    SET_nextchr;
+    scan = prog;
+    while (scan != NULL) {
+
+        DEBUG_EXECUTE_r( {
+           SV * const prop = sv_newmortal();
+           regnode *rnext=regnext(scan);
+           DUMP_EXEC_POS( locinput, scan, utf8_target );
+            regprop(rex, prop, scan, reginfo, NULL);
+            
+           PerlIO_printf(Perl_debug_log,
+                   "%3"IVdf":%*s%s(%"IVdf")\n",
+                   (IV)(scan - rexi->program), depth*2, "",
+                   SvPVX_const(prop),
+                   (PL_regkind[OP(scan)] == END || !rnext) ? 
+                       0 : (IV)(rnext - rexi->program));
+       });
+
+       next = scan + NEXT_OFF(scan);
+       if (next == scan)
+           next = NULL;
+       state_num = OP(scan);
+
+      reenter_switch:
+        to_complement = 0;
+
+        SET_nextchr;
+        assert(nextchr < 256 && (nextchr >= 0 || nextchr == NEXTCHR_EOS));
+
+       switch (state_num) {
+       case SBOL: /*  /^../ and /\A../  */
+           if (locinput == reginfo->strbeg)
+               break;
+           sayNO;
+
+       case MBOL: /*  /^../m  */
+           if (locinput == reginfo->strbeg ||
+               (!NEXTCHR_IS_EOS && locinput[-1] == '\n'))
+           {
+               break;
+           }
+           sayNO;
+
+       case GPOS: /*  \G  */
+           if (locinput == reginfo->ganch)
+               break;
+           sayNO;
+
+       case KEEPS: /*   \K  */
+           /* update the startpoint */
+           st->u.keeper.val = rex->offs[0].start;
+           rex->offs[0].start = locinput - reginfo->strbeg;
+           PUSH_STATE_GOTO(KEEPS_next, next, locinput);
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+       case KEEPS_next_fail:
+           /* rollback the start point change */
+           rex->offs[0].start = st->u.keeper.val;
+           sayNO_SILENT;
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+       case MEOL: /* /..$/m  */
+           if (!NEXTCHR_IS_EOS && nextchr != '\n')
+               sayNO;
+           break;
+
+       case SEOL: /* /..$/  */
+           if (!NEXTCHR_IS_EOS && nextchr != '\n')
+               sayNO;
+           if (reginfo->strend - locinput > 1)
+               sayNO;
+           break;
+
+       case EOS: /*  \z  */
+           if (!NEXTCHR_IS_EOS)
+               sayNO;
+           break;
+
+       case SANY: /*  /./s  */
+           if (NEXTCHR_IS_EOS)
+               sayNO;
+            goto increment_locinput;
+
+       case REG_ANY: /*  /./  */
+           if ((NEXTCHR_IS_EOS) || nextchr == '\n')
+               sayNO;
+            goto increment_locinput;
+
+
+#undef  ST
+#define ST st->u.trie
+        case TRIEC: /* (ab|cd) with known charclass */
+            /* In this case the charclass data is available inline so
+               we can fail fast without a lot of extra overhead. 
+             */
+            if(!NEXTCHR_IS_EOS && !ANYOF_BITMAP_TEST(scan, nextchr)) {
+                DEBUG_EXECUTE_r(
+                    PerlIO_printf(Perl_debug_log,
+                              "%*s  %sfailed to match trie start class...%s\n",
+                              REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+                );
+                sayNO_SILENT;
+                /* NOTREACHED */
+                NOT_REACHED; /* NOTREACHED */
+            }
+            /* FALLTHROUGH */
+       case TRIE:  /* (ab|cd)  */
+           /* the basic plan of execution of the trie is:
+            * At the beginning, run though all the states, and
+            * find the longest-matching word. Also remember the position
+            * of the shortest matching word. For example, this pattern:
+            *    1  2 3 4    5
+            *    ab|a|x|abcd|abc
+            * when matched against the string "abcde", will generate
+            * accept states for all words except 3, with the longest
+            * matching word being 4, and the shortest being 2 (with
+            * the position being after char 1 of the string).
+            *
+            * Then for each matching word, in word order (i.e. 1,2,4,5),
+            * we run the remainder of the pattern; on each try setting
+            * the current position to the character following the word,
+            * returning to try the next word on failure.
+            *
+            * We avoid having to build a list of words at runtime by
+            * using a compile-time structure, wordinfo[].prev, which
+            * gives, for each word, the previous accepting word (if any).
+            * In the case above it would contain the mappings 1->2, 2->0,
+            * 3->0, 4->5, 5->1.  We can use this table to generate, from
+            * the longest word (4 above), a list of all words, by
+            * following the list of prev pointers; this gives us the
+            * unordered list 4,5,1,2. Then given the current word we have
+            * just tried, we can go through the list and find the
+            * next-biggest word to try (so if we just failed on word 2,
+            * the next in the list is 4).
+            *
+            * Since at runtime we don't record the matching position in
+            * the string for each word, we have to work that out for
+            * each word we're about to process. The wordinfo table holds
+            * the character length of each word; given that we recorded
+            * at the start: the position of the shortest word and its
+            * length in chars, we just need to move the pointer the
+            * difference between the two char lengths. Depending on
+            * Unicode status and folding, that's cheap or expensive.
+            *
+            * This algorithm is optimised for the case where are only a
+            * small number of accept states, i.e. 0,1, or maybe 2.
+            * With lots of accepts states, and having to try all of them,
+            * it becomes quadratic on number of accept states to find all
+            * the next words.
+            */
+
+           {
+                /* what type of TRIE am I? (utf8 makes this contextual) */
+                DECL_TRIE_TYPE(scan);
+
+                /* what trie are we using right now */
+               reg_trie_data * const trie
+                   = (reg_trie_data*)rexi->data->data[ ARG( scan ) ];
+               HV * widecharmap = MUTABLE_HV(rexi->data->data[ ARG( scan ) + 1 ]);
+                U32 state = trie->startstate;
+
+                if (scan->flags == EXACTL || scan->flags == EXACTFLU8) {
+                    _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+                    if (utf8_target
+                        && UTF8_IS_ABOVE_LATIN1(nextchr)
+                        && scan->flags == EXACTL)
+                    {
+                        /* We only output for EXACTL, as we let the folder
+                         * output this message for EXACTFLU8 to avoid
+                         * duplication */
+                        _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput,
+                                                               reginfo->strend);
+                    }
+                }
+                if (   trie->bitmap
+                    && (NEXTCHR_IS_EOS || !TRIE_BITMAP_TEST(trie, nextchr)))
+                {
+                   if (trie->states[ state ].wordnum) {
+                        DEBUG_EXECUTE_r(
+                            PerlIO_printf(Perl_debug_log,
+                                         "%*s  %smatched empty string...%s\n",
+                                         REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+                        );
+                       if (!trie->jump)
+                           break;
+                   } else {
+                       DEBUG_EXECUTE_r(
+                            PerlIO_printf(Perl_debug_log,
+                                         "%*s  %sfailed to match trie start class...%s\n",
+                                         REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+                        );
+                       sayNO_SILENT;
+                  }
+                }
+
+            { 
+               U8 *uc = ( U8* )locinput;
+
+               STRLEN len = 0;
+               STRLEN foldlen = 0;
+               U8 *uscan = (U8*)NULL;
+               U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+               U32 charcount = 0; /* how many input chars we have matched */
+               U32 accepted = 0; /* have we seen any accepting states? */
+
+               ST.jump = trie->jump;
+               ST.me = scan;
+               ST.firstpos = NULL;
+               ST.longfold = FALSE; /* char longer if folded => it's harder */
+               ST.nextword = 0;
+
+               /* fully traverse the TRIE; note the position of the
+                  shortest accept state and the wordnum of the longest
+                  accept state */
+
+               while ( state && uc <= (U8*)(reginfo->strend) ) {
+                    U32 base = trie->states[ state ].trans.base;
+                    UV uvc = 0;
+                    U16 charid = 0;
+                   U16 wordnum;
+                    wordnum = trie->states[ state ].wordnum;
+
+                   if (wordnum) { /* it's an accept state */
+                       if (!accepted) {
+                           accepted = 1;
+                           /* record first match position */
+                           if (ST.longfold) {
+                               ST.firstpos = (U8*)locinput;
+                               ST.firstchars = 0;
+                           }
+                           else {
+                               ST.firstpos = uc;
+                               ST.firstchars = charcount;
+                           }
+                       }
+                       if (!ST.nextword || wordnum < ST.nextword)
+                           ST.nextword = wordnum;
+                       ST.topword = wordnum;
+                   }
+
+                   DEBUG_TRIE_EXECUTE_r({
+                               DUMP_EXEC_POS( (char *)uc, scan, utf8_target );
+                               PerlIO_printf( Perl_debug_log,
+                                   "%*s  %sState: %4"UVxf" Accepted: %c ",
+                                   2+depth * 2, "", PL_colors[4],
+                                   (UV)state, (accepted ? 'Y' : 'N'));
+                   });
+
+                   /* read a char and goto next state */
+                   if ( base && (foldlen || uc < (U8*)(reginfo->strend))) {
+                       I32 offset;
+                       REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc,
+                                            uscan, len, uvc, charid, foldlen,
+                                            foldbuf, uniflags);
+                       charcount++;
+                       if (foldlen>0)
+                           ST.longfold = TRUE;
+                       if (charid &&
+                            ( ((offset =
+                             base + charid - 1 - trie->uniquecharcount)) >= 0)
+
+                            && ((U32)offset < trie->lasttrans)
+                            && trie->trans[offset].check == state)
+                       {
+                           state = trie->trans[offset].next;
+                       }
+                       else {
+                           state = 0;
+                       }
+                       uc += len;
+
+                   }
+                   else {
+                       state = 0;
+                   }
+                   DEBUG_TRIE_EXECUTE_r(
+                       PerlIO_printf( Perl_debug_log,
+                           "Charid:%3x CP:%4"UVxf" After State: %4"UVxf"%s\n",
+                           charid, uvc, (UV)state, PL_colors[5] );
+                   );
+               }
+               if (!accepted)
+                  sayNO;
+
+               /* calculate total number of accept states */
+               {
+                   U16 w = ST.topword;
+                   accepted = 0;
+                   while (w) {
+                       w = trie->wordinfo[w].prev;
+                       accepted++;
+                   }
+                   ST.accepted = accepted;
+               }
+
+               DEBUG_EXECUTE_r(
+                   PerlIO_printf( Perl_debug_log,
+                       "%*s  %sgot %"IVdf" possible matches%s\n",
+                       REPORT_CODE_OFF + depth * 2, "",
+                       PL_colors[4], (IV)ST.accepted, PL_colors[5] );
+               );
+               goto trie_first_try; /* jump into the fail handler */
+           }}
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+       case TRIE_next_fail: /* we failed - try next alternative */
+        {
+            U8 *uc;
+            if ( ST.jump) {
+                REGCP_UNWIND(ST.cp);
+                UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+           }
+           if (!--ST.accepted) {
+               DEBUG_EXECUTE_r({
+                   PerlIO_printf( Perl_debug_log,
+                       "%*s  %sTRIE failed...%s\n",
+                       REPORT_CODE_OFF+depth*2, "", 
+                       PL_colors[4],
+                       PL_colors[5] );
+               });
+               sayNO_SILENT;
+           }
+           {
+               /* Find next-highest word to process.  Note that this code
+                * is O(N^2) per trie run (O(N) per branch), so keep tight */
+               U16 min = 0;
+               U16 word;
+               U16 const nextword = ST.nextword;
+               reg_trie_wordinfo * const wordinfo
+                   = ((reg_trie_data*)rexi->data->data[ARG(ST.me)])->wordinfo;
+               for (word=ST.topword; word; word=wordinfo[word].prev) {
+                   if (word > nextword && (!min || word < min))
+                       min = word;
+               }
+               ST.nextword = min;
+           }
+
+          trie_first_try:
+            if (do_cutgroup) {
+                do_cutgroup = 0;
+                no_final = 0;
+            }
+
+            if ( ST.jump) {
+                ST.lastparen = rex->lastparen;
+                ST.lastcloseparen = rex->lastcloseparen;
+               REGCP_SET(ST.cp);
+            }
+
+           /* find start char of end of current word */
+           {
+               U32 chars; /* how many chars to skip */
+               reg_trie_data * const trie
+                   = (reg_trie_data*)rexi->data->data[ARG(ST.me)];
+
+               assert((trie->wordinfo[ST.nextword].len - trie->prefixlen)
+                           >=  ST.firstchars);
+               chars = (trie->wordinfo[ST.nextword].len - trie->prefixlen)
+                           - ST.firstchars;
+               uc = ST.firstpos;
+
+               if (ST.longfold) {
+                   /* the hard option - fold each char in turn and find
+                    * its folded length (which may be different */
+                   U8 foldbuf[UTF8_MAXBYTES_CASE + 1];
+                   STRLEN foldlen;
+                   STRLEN len;
+                   UV uvc;
+                   U8 *uscan;
+
+                   while (chars) {
+                       if (utf8_target) {
+                           uvc = utf8n_to_uvchr((U8*)uc, UTF8_MAXLEN, &len,
+                                                   uniflags);
+                           uc += len;
+                       }
+                       else {
+                           uvc = *uc;
+                           uc++;
+                       }
+                       uvc = to_uni_fold(uvc, foldbuf, &foldlen);
+                       uscan = foldbuf;
+                       while (foldlen) {
+                           if (!--chars)
+                               break;
+                           uvc = utf8n_to_uvchr(uscan, UTF8_MAXLEN, &len,
+                                           uniflags);
+                           uscan += len;
+                           foldlen -= len;
+                       }
+                   }
+               }
+               else {
+                   if (utf8_target)
+                       while (chars--)
+                           uc += UTF8SKIP(uc);
+                   else
+                       uc += chars;
+               }
+           }
+
+           scan = ST.me + ((ST.jump && ST.jump[ST.nextword])
+                           ? ST.jump[ST.nextword]
+                           : NEXT_OFF(ST.me));
+
+           DEBUG_EXECUTE_r({
+               PerlIO_printf( Perl_debug_log,
+                   "%*s  %sTRIE matched word #%d, continuing%s\n",
+                   REPORT_CODE_OFF+depth*2, "", 
+                   PL_colors[4],
+                   ST.nextword,
+                   PL_colors[5]
+                   );
+           });
+
+           if (ST.accepted > 1 || has_cutgroup) {
+               PUSH_STATE_GOTO(TRIE_next, scan, (char*)uc);
+                /* NOTREACHED */
+               NOT_REACHED; /* NOTREACHED */
+           }
+           /* only one choice left - just continue */
+           DEBUG_EXECUTE_r({
+               AV *const trie_words
+                   = MUTABLE_AV(rexi->data->data[ARG(ST.me)+TRIE_WORDS_OFFSET]);
+               SV ** const tmp = trie_words
+                        ? av_fetch(trie_words, ST.nextword - 1, 0) : NULL;
+               SV *sv= tmp ? sv_newmortal() : NULL;
+
+               PerlIO_printf( Perl_debug_log,
+                   "%*s  %sonly one match left, short-circuiting: #%d <%s>%s\n",
+                   REPORT_CODE_OFF+depth*2, "", PL_colors[4],
+                   ST.nextword,
+                   tmp ? pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 0,
+                           PL_colors[0], PL_colors[1],
+                           (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)|PERL_PV_ESCAPE_NONASCII
+                       ) 
+                   : "not compiled under -Dr",
+                   PL_colors[5] );
+           });
+
+           locinput = (char*)uc;
+           continue; /* execute rest of RE */
+            /* NOTREACHED */
+        }
+#undef  ST
+
+       case EXACTL:             /*  /abc/l       */
+            _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+
+            /* Complete checking would involve going through every character
+             * matched by the string to see if any is above latin1.  But the
+             * comparision otherwise might very well be a fast assembly
+             * language routine, and I (khw) don't think slowing things down
+             * just to check for this warning is worth it.  So this just checks
+             * the first character */
+            if (utf8_target && UTF8_IS_ABOVE_LATIN1(*locinput)) {
+                _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput, reginfo->strend);
+            }
+            /* FALLTHROUGH */
+       case EXACT: {            /*  /abc/        */
+           char *s = STRING(scan);
+           ln = STR_LEN(scan);
+           if (utf8_target != is_utf8_pat) {
+               /* The target and the pattern have differing utf8ness. */
+               char *l = locinput;
+               const char * const e = s + ln;
+
+               if (utf8_target) {
+                    /* The target is utf8, the pattern is not utf8.
+                     * Above-Latin1 code points can't match the pattern;
+                     * invariants match exactly, and the other Latin1 ones need
+                     * to be downgraded to a single byte in order to do the
+                     * comparison.  (If we could be confident that the target
+                     * is not malformed, this could be refactored to have fewer
+                     * tests by just assuming that if the first bytes match, it
+                     * is an invariant, but there are tests in the test suite
+                     * dealing with (??{...}) which violate this) */
+                   while (s < e) {
+                       if (l >= reginfo->strend
+                            || UTF8_IS_ABOVE_LATIN1(* (U8*) l))
+                        {
+                            sayNO;
+                        }
+                        if (UTF8_IS_INVARIANT(*(U8*)l)) {
+                           if (*l != *s) {
+                                sayNO;
+                            }
+                            l++;
+                        }
+                        else {
+                            if (TWO_BYTE_UTF8_TO_NATIVE(*l, *(l+1)) != * (U8*) s)
+                            {
+                                sayNO;
+                            }
+                            l += 2;
+                        }
+                       s++;
+                   }
+               }
+               else {
+                   /* The target is not utf8, the pattern is utf8. */
+                   while (s < e) {
+                        if (l >= reginfo->strend
+                            || UTF8_IS_ABOVE_LATIN1(* (U8*) s))
+                        {
+                            sayNO;
+                        }
+                        if (UTF8_IS_INVARIANT(*(U8*)s)) {
+                           if (*s != *l) {
+                                sayNO;
+                            }
+                            s++;
+                        }
+                        else {
+                            if (TWO_BYTE_UTF8_TO_NATIVE(*s, *(s+1)) != * (U8*) l)
+                            {
+                                sayNO;
+                            }
+                            s += 2;
+                        }
+                       l++;
+                   }
+               }
+               locinput = l;
+           }
+            else {
+                /* The target and the pattern have the same utf8ness. */
+                /* Inline the first character, for speed. */
+                if (reginfo->strend - locinput < ln
+                    || UCHARAT(s) != nextchr
+                    || (ln > 1 && memNE(s, locinput, ln)))
+                {
+                    sayNO;
+                }
+                locinput += ln;
+            }
+           break;
+           }
+
+       case EXACTFL: {          /*  /abc/il      */
+           re_fold_t folder;
+           const U8 * fold_array;
+           const char * s;
+           U32 fold_utf8_flags;
+
+            _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+            folder = foldEQ_locale;
+            fold_array = PL_fold_locale;
+           fold_utf8_flags = FOLDEQ_LOCALE;
+           goto do_exactf;
+
+        case EXACTFLU8:           /*  /abc/il; but all 'abc' are above 255, so
+                                      is effectively /u; hence to match, target
+                                      must be UTF-8. */
+            if (! utf8_target) {
+                sayNO;
+            }
+            fold_utf8_flags =  FOLDEQ_LOCALE | FOLDEQ_S1_ALREADY_FOLDED
+                                             | FOLDEQ_S1_FOLDS_SANE;
+           folder = foldEQ_latin1;
+           fold_array = PL_fold_latin1;
+           goto do_exactf;
+
+       case EXACTFU_SS:         /*  /\x{df}/iu   */
+       case EXACTFU:            /*  /abc/iu      */
+           folder = foldEQ_latin1;
+           fold_array = PL_fold_latin1;
+           fold_utf8_flags = is_utf8_pat ? FOLDEQ_S1_ALREADY_FOLDED : 0;
+           goto do_exactf;
+
+        case EXACTFA_NO_TRIE:   /* This node only generated for non-utf8
+                                   patterns */
+            assert(! is_utf8_pat);
+            /* FALLTHROUGH */
+       case EXACTFA:            /*  /abc/iaa     */
+           folder = foldEQ_latin1;
+           fold_array = PL_fold_latin1;
+           fold_utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+           goto do_exactf;
+
+        case EXACTF:             /*  /abc/i    This node only generated for
+                                               non-utf8 patterns */
+            assert(! is_utf8_pat);
+           folder = foldEQ;
+           fold_array = PL_fold;
+           fold_utf8_flags = 0;
+
+         do_exactf:
+           s = STRING(scan);
+           ln = STR_LEN(scan);
+
+           if (utf8_target
+                || is_utf8_pat
+                || state_num == EXACTFU_SS
+                || (state_num == EXACTFL && IN_UTF8_CTYPE_LOCALE))
+            {
+             /* Either target or the pattern are utf8, or has the issue where
+              * the fold lengths may differ. */
+               const char * const l = locinput;
+               char *e = reginfo->strend;
+
+               if (! foldEQ_utf8_flags(s, 0,  ln, is_utf8_pat,
+                                       l, &e, 0,  utf8_target, fold_utf8_flags))
+               {
+                   sayNO;
+               }
+               locinput = e;
+               break;
+           }
+
+           /* Neither the target nor the pattern are utf8 */
+           if (UCHARAT(s) != nextchr
+                && !NEXTCHR_IS_EOS
+               && UCHARAT(s) != fold_array[nextchr])
+           {
+               sayNO;
+           }
+           if (reginfo->strend - locinput < ln)
+               sayNO;
+           if (ln > 1 && ! folder(s, locinput, ln))
+               sayNO;
+           locinput += ln;
+           break;
+       }
+
+       case NBOUNDL: /*  /\B/l  */
+            to_complement = 1;
+            /* FALLTHROUGH */
+
+       case BOUNDL:  /*  /\b/l  */
+            _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+
+            if (FLAGS(scan) != TRADITIONAL_BOUND) {
+                if (! IN_UTF8_CTYPE_LOCALE) {
+                    Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
+                                                B_ON_NON_UTF8_LOCALE_IS_WRONG);
+                }
+                goto boundu;
+            }
+
+           if (utf8_target) {
+               if (locinput == reginfo->strbeg)
+                   ln = isWORDCHAR_LC('\n');
+               else {
+                    ln = isWORDCHAR_LC_utf8(reghop3((U8*)locinput, -1,
+                                                        (U8*)(reginfo->strbeg)));
+               }
+                n = (NEXTCHR_IS_EOS)
+                    ? isWORDCHAR_LC('\n')
+                    : isWORDCHAR_LC_utf8((U8*)locinput);
+           }
+           else { /* Here the string isn't utf8 */
+               ln = (locinput == reginfo->strbeg)
+                     ? isWORDCHAR_LC('\n')
+                     : isWORDCHAR_LC(UCHARAT(locinput - 1));
+                n = (NEXTCHR_IS_EOS)
+                    ? isWORDCHAR_LC('\n')
+                    : isWORDCHAR_LC(nextchr);
+           }
+            if (to_complement ^ (ln == n)) {
+                sayNO;
+            }
+           break;
+
+       case NBOUND:  /*  /\B/   */
+            to_complement = 1;
+            /* FALLTHROUGH */
+
+       case BOUND:   /*  /\b/   */
+           if (utf8_target) {
+                goto bound_utf8;
+            }
+            goto bound_ascii_match_only;
+
+       case NBOUNDA: /*  /\B/a  */
+            to_complement = 1;
+            /* FALLTHROUGH */
+
+       case BOUNDA:  /*  /\b/a  */
+
+          bound_ascii_match_only:
+            /* Here the string isn't utf8, or is utf8 and only ascii characters
+             * are to match \w.  In the latter case looking at the byte just
+             * prior to the current one may be just the final byte of a
+             * multi-byte character.  This is ok.  There are two cases:
+             * 1) it is a single byte character, and then the test is doing
+             *    just what it's supposed to.
+             * 2) it is a multi-byte character, in which case the final byte is
+             *    never mistakable for ASCII, and so the test will say it is
+             *    not a word character, which is the correct answer. */
+            ln = (locinput == reginfo->strbeg)
+                 ? isWORDCHAR_A('\n')
+                 : isWORDCHAR_A(UCHARAT(locinput - 1));
+            n = (NEXTCHR_IS_EOS)
+                ? isWORDCHAR_A('\n')
+                : isWORDCHAR_A(nextchr);
+            if (to_complement ^ (ln == n)) {
+                sayNO;
+            }
+           break;
+
+       case NBOUNDU: /*  /\B/u  */
+            to_complement = 1;
+            /* FALLTHROUGH */
+
+       case BOUNDU:  /*  /\b/u  */
+
+          boundu:
+           if (utf8_target) {
+
+              bound_utf8:
+                switch((bound_type) FLAGS(scan)) {
+                    case TRADITIONAL_BOUND:
+                        ln = (locinput == reginfo->strbeg)
+                             ? 0 /* isWORDCHAR_L1('\n') */
+                             : isWORDCHAR_utf8(reghop3((U8*)locinput, -1,
+                                                                (U8*)(reginfo->strbeg)));
+                        n = (NEXTCHR_IS_EOS)
+                            ? 0 /* isWORDCHAR_L1('\n') */
+                            : isWORDCHAR_utf8((U8*)locinput);
+                        match = cBOOL(ln != n);
+                        break;
+                    case GCB_BOUND:
+                        if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+                            match = TRUE; /* GCB always matches at begin and
+                                             end */
+                        }
+                        else {
+                            /* Find the gcb values of previous and current
+                             * chars, then see if is a break point */
+                            match = isGCB(getGCB_VAL_UTF8(
+                                                reghop3((U8*)locinput,
+                                                        -1,
+                                                        (U8*)(reginfo->strbeg)),
+                                                (U8*) reginfo->strend),
+                                          getGCB_VAL_UTF8((U8*) locinput,
+                                                        (U8*) reginfo->strend));
+                        }
+                        break;
+
+                    case SB_BOUND: /* Always matches at begin and end */
+                        if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+                            match = TRUE;
+                        }
+                        else {
+                            match = isSB(getSB_VAL_UTF8(
+                                                reghop3((U8*)locinput,
+                                                        -1,
+                                                        (U8*)(reginfo->strbeg)),
+                                                (U8*) reginfo->strend),
+                                          getSB_VAL_UTF8((U8*) locinput,
+                                                        (U8*) reginfo->strend),
+                                          (U8*) reginfo->strbeg,
+                                          (U8*) locinput,
+                                          (U8*) reginfo->strend,
+                                          utf8_target);
+                        }
+                        break;
+
+                    case WB_BOUND:
+                        if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+                            match = TRUE;
+                        }
+                        else {
+                            match = isWB(WB_UNKNOWN,
+                                         getWB_VAL_UTF8(
+                                                reghop3((U8*)locinput,
+                                                        -1,
+                                                        (U8*)(reginfo->strbeg)),
+                                                (U8*) reginfo->strend),
+                                          getWB_VAL_UTF8((U8*) locinput,
+                                                        (U8*) reginfo->strend),
+                                          (U8*) reginfo->strbeg,
+                                          (U8*) locinput,
+                                          (U8*) reginfo->strend,
+                                          utf8_target);
+                        }
+                        break;
+                }
+           }
+           else {  /* Not utf8 target */
+                switch((bound_type) FLAGS(scan)) {
+                    case TRADITIONAL_BOUND:
+                        ln = (locinput == reginfo->strbeg)
+                            ? 0 /* isWORDCHAR_L1('\n') */
+                            : isWORDCHAR_L1(UCHARAT(locinput - 1));
+                        n = (NEXTCHR_IS_EOS)
+                            ? 0 /* isWORDCHAR_L1('\n') */
+                            : isWORDCHAR_L1(nextchr);
+                        match = cBOOL(ln != n);
+                        break;
+
+                    case GCB_BOUND:
+                        if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+                            match = TRUE; /* GCB always matches at begin and
+                                             end */
+                        }
+                        else {  /* Only CR-LF combo isn't a GCB in 0-255
+                                   range */
+                            match =    UCHARAT(locinput - 1) != '\r'
+                                    || UCHARAT(locinput) != '\n';
+                        }
+                        break;
+
+                    case SB_BOUND: /* Always matches at begin and end */
+                        if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+                            match = TRUE;
+                        }
+                        else {
+                            match = isSB(getSB_VAL_CP(UCHARAT(locinput -1)),
+                                         getSB_VAL_CP(UCHARAT(locinput)),
+                                         (U8*) reginfo->strbeg,
+                                         (U8*) locinput,
+                                         (U8*) reginfo->strend,
+                                         utf8_target);
+                        }
+                        break;
+
+                    case WB_BOUND:
+                        if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+                            match = TRUE;
+                        }
+                        else {
+                            match = isWB(WB_UNKNOWN,
+                                         getWB_VAL_CP(UCHARAT(locinput -1)),
+                                         getWB_VAL_CP(UCHARAT(locinput)),
+                                         (U8*) reginfo->strbeg,
+                                         (U8*) locinput,
+                                         (U8*) reginfo->strend,
+                                         utf8_target);
+                        }
+                        break;
+                }
+           }
+
+            if (to_complement ^ ! match) {
+                sayNO;
+            }
+           break;
+
+       case ANYOFL:  /*  /[abc]/l      */
+            _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+            /* FALLTHROUGH */
+       case ANYOF:  /*   /[abc]/       */
+            if (NEXTCHR_IS_EOS)
+                sayNO;
+           if (utf8_target) {
+               if (!reginclass(rex, scan, (U8*)locinput, (U8*)reginfo->strend,
+                                                                   utf8_target))
+                   sayNO;
+               locinput += UTF8SKIP(locinput);
+           }
+           else {
+               if (!REGINCLASS(rex, scan, (U8*)locinput))
+                   sayNO;
+               locinput++;
+           }
+           break;
+
+        /* The argument (FLAGS) to all the POSIX node types is the class number
+         * */
+
+        case NPOSIXL:   /* \W or [:^punct:] etc. under /l */
+            to_complement = 1;
+            /* FALLTHROUGH */
+
+        case POSIXL:    /* \w or [:punct:] etc. under /l */
+            _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+            if (NEXTCHR_IS_EOS)
+                sayNO;
+
+            /* Use isFOO_lc() for characters within Latin1.  (Note that
+             * UTF8_IS_INVARIANT works even on non-UTF-8 strings, or else
+             * wouldn't be invariant) */
+            if (UTF8_IS_INVARIANT(nextchr) || ! utf8_target) {
+                if (! (to_complement ^ cBOOL(isFOO_lc(FLAGS(scan), (U8) nextchr)))) {
+                    sayNO;
+                }
+            }
+            else if (UTF8_IS_DOWNGRADEABLE_START(nextchr)) {
+                if (! (to_complement ^ cBOOL(isFOO_lc(FLAGS(scan),
+                                           (U8) TWO_BYTE_UTF8_TO_NATIVE(nextchr,
+                                                            *(locinput + 1))))))
+                {
+                    sayNO;
+                }
+            }
+            else { /* Here, must be an above Latin-1 code point */
+                _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput, reginfo->strend);
+                goto utf8_posix_above_latin1;
+            }
+
+            /* Here, must be utf8 */
+            locinput += UTF8SKIP(locinput);
+            break;
+
+        case NPOSIXD:   /* \W or [:^punct:] etc. under /d */
+            to_complement = 1;
+            /* FALLTHROUGH */
+
+        case POSIXD:    /* \w or [:punct:] etc. under /d */
+            if (utf8_target) {
+                goto utf8_posix;
+            }
+            goto posixa;
+
+        case NPOSIXA:   /* \W or [:^punct:] etc. under /a */
+
+            if (NEXTCHR_IS_EOS) {
+                sayNO;
+            }
+
+            /* All UTF-8 variants match */
+            if (! UTF8_IS_INVARIANT(nextchr)) {
+                goto increment_locinput;
+            }
+
+            to_complement = 1;
+            /* FALLTHROUGH */
+
+        case POSIXA:    /* \w or [:punct:] etc. under /a */
+
+          posixa:
+            /* We get here through POSIXD, NPOSIXD, and NPOSIXA when not in
+             * UTF-8, and also from NPOSIXA even in UTF-8 when the current
+             * character is a single byte */
+
+            if (NEXTCHR_IS_EOS
+                || ! (to_complement ^ cBOOL(_generic_isCC_A(nextchr,
+                                                            FLAGS(scan)))))
+            {
+                sayNO;
+            }
+
+            /* Here we are either not in utf8, or we matched a utf8-invariant,
+             * so the next char is the next byte */
+            locinput++;
+            break;
+
+        case NPOSIXU:   /* \W or [:^punct:] etc. under /u */
+            to_complement = 1;
+            /* FALLTHROUGH */
+
+        case POSIXU:    /* \w or [:punct:] etc. under /u */
+          utf8_posix:
+            if (NEXTCHR_IS_EOS) {
+                sayNO;
+            }
+
+            /* Use _generic_isCC() for characters within Latin1.  (Note that
+             * UTF8_IS_INVARIANT works even on non-UTF-8 strings, or else
+             * wouldn't be invariant) */
+            if (UTF8_IS_INVARIANT(nextchr) || ! utf8_target) {
+                if (! (to_complement ^ cBOOL(_generic_isCC(nextchr,
+                                                           FLAGS(scan)))))
+                {
+                    sayNO;
+                }
+                locinput++;
+            }
+            else if (UTF8_IS_DOWNGRADEABLE_START(nextchr)) {
+                if (! (to_complement
+                       ^ cBOOL(_generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(nextchr,
+                                                               *(locinput + 1)),
+                                             FLAGS(scan)))))
+                {
+                    sayNO;
+                }
+                locinput += 2;
+            }
+            else {  /* Handle above Latin-1 code points */
+              utf8_posix_above_latin1:
+                classnum = (_char_class_number) FLAGS(scan);
+                if (classnum < _FIRST_NON_SWASH_CC) {
+
+                    /* Here, uses a swash to find such code points.  Load if if
+                     * not done already */
+                    if (! PL_utf8_swash_ptrs[classnum]) {
+                        U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+                        PL_utf8_swash_ptrs[classnum]
+                                = _core_swash_init("utf8",
+                                        "",
+                                        &PL_sv_undef, 1, 0,
+                                        PL_XPosix_ptrs[classnum], &flags);
+                    }
+                    if (! (to_complement
+                           ^ cBOOL(swash_fetch(PL_utf8_swash_ptrs[classnum],
+                                               (U8 *) locinput, TRUE))))
+                    {
+                        sayNO;
+                    }
+                }
+                else {  /* Here, uses macros to find above Latin-1 code points */
+                    switch (classnum) {
+                        case _CC_ENUM_SPACE:
+                            if (! (to_complement
+                                        ^ cBOOL(is_XPERLSPACE_high(locinput))))
+                            {
+                                sayNO;
+                            }
+                            break;
+                        case _CC_ENUM_BLANK:
+                            if (! (to_complement
+                                            ^ cBOOL(is_HORIZWS_high(locinput))))
+                            {
+                                sayNO;
+                            }
+                            break;
+                        case _CC_ENUM_XDIGIT:
+                            if (! (to_complement
+                                            ^ cBOOL(is_XDIGIT_high(locinput))))
+                            {
+                                sayNO;
+                            }
+                            break;
+                        case _CC_ENUM_VERTSPACE:
+                            if (! (to_complement
+                                            ^ cBOOL(is_VERTWS_high(locinput))))
+                            {
+                                sayNO;
+                            }
+                            break;
+                        default:    /* The rest, e.g. [:cntrl:], can't match
+                                       above Latin1 */
+                            if (! to_complement) {
+                                sayNO;
+                            }
+                            break;
+                    }
+                }
+                locinput += UTF8SKIP(locinput);
+            }
+            break;
+
+       case CLUMP: /* Match \X: logical Unicode character.  This is defined as
+                      a Unicode extended Grapheme Cluster */
+           if (NEXTCHR_IS_EOS)
+               sayNO;
+           if  (! utf8_target) {
+
+               /* Match either CR LF  or '.', as all the other possibilities
+                * require utf8 */
+               locinput++;         /* Match the . or CR */
+               if (nextchr == '\r' /* And if it was CR, and the next is LF,
+                                      match the LF */
+                   && locinput < reginfo->strend
+                   && UCHARAT(locinput) == '\n')
+                {
+                    locinput++;
+                }
+           }
+           else {
+
+                /* Get the gcb type for the current character */
+                GCB_enum prev_gcb = getGCB_VAL_UTF8((U8*) locinput,
+                                                       (U8*) reginfo->strend);
+
+                /* Then scan through the input until we get to the first
+                 * character whose type is supposed to be a gcb with the
+                 * current character.  (There is always a break at the
+                 * end-of-input) */
+                locinput += UTF8SKIP(locinput);
+                while (locinput < reginfo->strend) {
+                    GCB_enum cur_gcb = getGCB_VAL_UTF8((U8*) locinput,
+                                                         (U8*) reginfo->strend);
+                    if (isGCB(prev_gcb, cur_gcb)) {
+                        break;
+                    }
+
+                    prev_gcb = cur_gcb;
+                    locinput += UTF8SKIP(locinput);
+                }
+
+
+           }
+           break;
+            
+       case NREFFL:  /*  /\g{name}/il  */
+       {   /* The capture buffer cases.  The ones beginning with N for the
+              named buffers just convert to the equivalent numbered and
+              pretend they were called as the corresponding numbered buffer
+              op.  */
+           /* don't initialize these in the declaration, it makes C++
+              unhappy */
+           const char *s;
+           char type;
+           re_fold_t folder;
+           const U8 *fold_array;
+           UV utf8_fold_flags;
+
+            _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+           folder = foldEQ_locale;
+           fold_array = PL_fold_locale;
+           type = REFFL;
+           utf8_fold_flags = FOLDEQ_LOCALE;
+           goto do_nref;
+
+       case NREFFA:  /*  /\g{name}/iaa  */
+           folder = foldEQ_latin1;
+           fold_array = PL_fold_latin1;
+           type = REFFA;
+           utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+           goto do_nref;
+
+       case NREFFU:  /*  /\g{name}/iu  */
+           folder = foldEQ_latin1;
+           fold_array = PL_fold_latin1;
+           type = REFFU;
+           utf8_fold_flags = 0;
+           goto do_nref;
+
+       case NREFF:  /*  /\g{name}/i  */
+           folder = foldEQ;
+           fold_array = PL_fold;
+           type = REFF;
+           utf8_fold_flags = 0;
+           goto do_nref;
+
+       case NREF:  /*  /\g{name}/   */
+           type = REF;
+           folder = NULL;
+           fold_array = NULL;
+           utf8_fold_flags = 0;
+         do_nref:
+
+           /* For the named back references, find the corresponding buffer
+            * number */
+           n = reg_check_named_buff_matched(rex,scan);
+
+            if ( ! n ) {
+                sayNO;
+           }
+           goto do_nref_ref_common;
+
+       case REFFL:  /*  /\1/il  */
+            _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+           folder = foldEQ_locale;
+           fold_array = PL_fold_locale;
+           utf8_fold_flags = FOLDEQ_LOCALE;
+           goto do_ref;
+
+       case REFFA:  /*  /\1/iaa  */
+           folder = foldEQ_latin1;
+           fold_array = PL_fold_latin1;
+           utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+           goto do_ref;
+
+       case REFFU:  /*  /\1/iu  */
+           folder = foldEQ_latin1;
+           fold_array = PL_fold_latin1;
+           utf8_fold_flags = 0;
+           goto do_ref;
+
+       case REFF:  /*  /\1/i  */
+           folder = foldEQ;
+           fold_array = PL_fold;
+           utf8_fold_flags = 0;
+           goto do_ref;
+
+        case REF:  /*  /\1/    */
+           folder = NULL;
+           fold_array = NULL;
+           utf8_fold_flags = 0;
+
+         do_ref:
+           type = OP(scan);
+           n = ARG(scan);  /* which paren pair */
+
+         do_nref_ref_common:
+           ln = rex->offs[n].start;
+           reginfo->poscache_iter = reginfo->poscache_maxiter; /* Void cache */
+           if (rex->lastparen < n || ln == -1)
+               sayNO;                  /* Do not match unless seen CLOSEn. */
+           if (ln == rex->offs[n].end)
+               break;
+
+           s = reginfo->strbeg + ln;
+           if (type != REF     /* REF can do byte comparison */
+               && (utf8_target || type == REFFU || type == REFFL))
+           {
+               char * limit = reginfo->strend;
+
+               /* This call case insensitively compares the entire buffer
+                   * at s, with the current input starting at locinput, but
+                    * not going off the end given by reginfo->strend, and
+                    * returns in <limit> upon success, how much of the
+                    * current input was matched */
+               if (! foldEQ_utf8_flags(s, NULL, rex->offs[n].end - ln, utf8_target,
+                                   locinput, &limit, 0, utf8_target, utf8_fold_flags))
+               {
+                   sayNO;
+               }
+               locinput = limit;
+               break;
+           }
+
+           /* Not utf8:  Inline the first character, for speed. */
+           if (!NEXTCHR_IS_EOS &&
+                UCHARAT(s) != nextchr &&
+               (type == REF ||
+                UCHARAT(s) != fold_array[nextchr]))
+               sayNO;
+           ln = rex->offs[n].end - ln;
+           if (locinput + ln > reginfo->strend)
+               sayNO;
+           if (ln > 1 && (type == REF
+                          ? memNE(s, locinput, ln)
+                          : ! folder(s, locinput, ln)))
+               sayNO;
+           locinput += ln;
+           break;
+       }
+
+       case NOTHING: /* null op; e.g. the 'nothing' following
+                       * the '*' in m{(a+|b)*}' */
+           break;
+       case TAIL: /* placeholder while compiling (A|B|C) */
+           break;
+
+#undef  ST
+#define ST st->u.eval
+       {
+           SV *ret;
+           REGEXP *re_sv;
+            regexp *re;
+            regexp_internal *rei;
+            regnode *startpoint;
+
+       case GOSTART: /*  (?R)  */
+       case GOSUB: /*    /(...(?1))/   /(...(?&foo))/   */
+           if (cur_eval && cur_eval->locinput==locinput) {
+                if (cur_eval->u.eval.close_paren == (U32)ARG(scan)) 
+                    Perl_croak(aTHX_ "Infinite recursion in regex");
+                if ( ++nochange_depth > max_nochange_depth )
+                    Perl_croak(aTHX_ 
+                        "Pattern subroutine nesting without pos change"
+                        " exceeded limit in regex");
+            } else {
+                nochange_depth = 0;
+            }
+           re_sv = rex_sv;
+            re = rex;
+            rei = rexi;
+            if (OP(scan)==GOSUB) {
+                startpoint = scan + ARG2L(scan);
+                ST.close_paren = ARG(scan);
+            } else {
+                startpoint = rei->program+1;
+                ST.close_paren = 0;
+            }
+
+            /* Save all the positions seen so far. */
+            ST.cp = regcppush(rex, 0, maxopenparen);
+            REGCP_SET(ST.lastcp);
+
+            /* and then jump to the code we share with EVAL */
+            goto eval_recurse_doit;
+            /* NOTREACHED */
+
+        case EVAL:  /*   /(?{A})B/   /(??{A})B/  and /(?(?{A})X|Y)B/   */        
+            if (cur_eval && cur_eval->locinput==locinput) {
+               if ( ++nochange_depth > max_nochange_depth )
+                    Perl_croak(aTHX_ "EVAL without pos change exceeded limit in regex");
+            } else {
+                nochange_depth = 0;
+            }    
+           {
+               /* execute the code in the {...} */
+
+               dSP;
+               IV before;
+               OP * const oop = PL_op;
+               COP * const ocurcop = PL_curcop;
+               OP *nop;
+               CV *newcv;
+
+               /* save *all* paren positions */
+               regcppush(rex, 0, maxopenparen);
+               REGCP_SET(runops_cp);
+
+               if (!caller_cv)
+                   caller_cv = find_runcv(NULL);
+
+               n = ARG(scan);
+
+               if (rexi->data->what[n] == 'r') { /* code from an external qr */
+                   newcv = (ReANY(
+                                               (REGEXP*)(rexi->data->data[n])
+                                           ))->qr_anoncv
+                                       ;
+                   nop = (OP*)rexi->data->data[n+1];
+               }
+               else if (rexi->data->what[n] == 'l') { /* literal code */
+                   newcv = caller_cv;
+                   nop = (OP*)rexi->data->data[n];
+                   assert(CvDEPTH(newcv));
+               }
+               else {
+                   /* literal with own CV */
+                   assert(rexi->data->what[n] == 'L');
+                   newcv = rex->qr_anoncv;
+                   nop = (OP*)rexi->data->data[n];
+               }
+
+               /* normally if we're about to execute code from the same
+                * CV that we used previously, we just use the existing
+                * CX stack entry. However, its possible that in the
+                * meantime we may have backtracked, popped from the save
+                * stack, and undone the SAVECOMPPAD(s) associated with
+                * PUSH_MULTICALL; in which case PL_comppad no longer
+                * points to newcv's pad. */
+               if (newcv != last_pushed_cv || PL_comppad != last_pad)
+               {
+                    U8 flags = (CXp_SUB_RE |
+                                ((newcv == caller_cv) ? CXp_SUB_RE_FAKE : 0));
+                   if (last_pushed_cv) {
+                       CHANGE_MULTICALL_FLAGS(newcv, flags);
+                   }
+                   else {
+                       PUSH_MULTICALL_FLAGS(newcv, flags);
+                   }
+                   last_pushed_cv = newcv;
+               }
+               else {
+                    /* these assignments are just to silence compiler
+                     * warnings */
+                   multicall_cop = NULL;
+                   newsp = NULL;
+               }
+               last_pad = PL_comppad;
+
+               /* the initial nextstate you would normally execute
+                * at the start of an eval (which would cause error
+                * messages to come from the eval), may be optimised
+                * away from the execution path in the regex code blocks;
+                * so manually set PL_curcop to it initially */
+               {
+                   OP *o = cUNOPx(nop)->op_first;
+                   assert(o->op_type == OP_NULL);
+                   if (o->op_targ == OP_SCOPE) {
+                       o = cUNOPo->op_first;
+                   }
+                   else {
+                       assert(o->op_targ == OP_LEAVE);
+                       o = cUNOPo->op_first;
+                       assert(o->op_type == OP_ENTER);
+                       o = OpSIBLING(o);
+                   }
+
+                   if (o->op_type != OP_STUB) {
+                       assert(    o->op_type == OP_NEXTSTATE
+                               || o->op_type == OP_DBSTATE
+                               || (o->op_type == OP_NULL
+                                   &&  (  o->op_targ == OP_NEXTSTATE
+                                       || o->op_targ == OP_DBSTATE
+                                       )
+                                   )
+                       );
+                       PL_curcop = (COP*)o;
+                   }
+               }
+               nop = nop->op_next;
+
+               DEBUG_STATE_r( PerlIO_printf(Perl_debug_log, 
+                   "  re EVAL PL_op=0x%"UVxf"\n", PTR2UV(nop)) );
+
+               rex->offs[0].end = locinput - reginfo->strbeg;
+                if (reginfo->info_aux_eval->pos_magic)
+                    MgBYTEPOS_set(reginfo->info_aux_eval->pos_magic,
+                                  reginfo->sv, reginfo->strbeg,
+                                  locinput - reginfo->strbeg);
+
+                if (sv_yes_mark) {
+                    SV *sv_mrk = get_sv("REGMARK", 1);
+                    sv_setsv(sv_mrk, sv_yes_mark);
+                }
+
+               /* we don't use MULTICALL here as we want to call the
+                * first op of the block of interest, rather than the
+                * first op of the sub */
+               before = (IV)(SP-PL_stack_base);
+               PL_op = nop;
+               CALLRUNOPS(aTHX);                       /* Scalar context. */
+               SPAGAIN;
+               if ((IV)(SP-PL_stack_base) == before)
+                   ret = &PL_sv_undef;   /* protect against empty (?{}) blocks. */
+               else {
+                   ret = POPs;
+                   PUTBACK;
+               }
+
+               /* before restoring everything, evaluate the returned
+                * value, so that 'uninit' warnings don't use the wrong
+                * PL_op or pad. Also need to process any magic vars
+                * (e.g. $1) *before* parentheses are restored */
+
+               PL_op = NULL;
+
+                re_sv = NULL;
+               if (logical == 0)        /*   (?{})/   */
+                   sv_setsv(save_scalar(PL_replgv), ret); /* $^R */
+               else if (logical == 1) { /*   /(?(?{...})X|Y)/    */
+                   sw = cBOOL(SvTRUE(ret));
+                   logical = 0;
+               }
+               else {                   /*  /(??{})  */
+                   /*  if its overloaded, let the regex compiler handle
+                    *  it; otherwise extract regex, or stringify  */
+                   if (SvGMAGICAL(ret))
+                       ret = sv_mortalcopy(ret);
+                   if (!SvAMAGIC(ret)) {
+                       SV *sv = ret;
+                       if (SvROK(sv))
+                           sv = SvRV(sv);
+                       if (SvTYPE(sv) == SVt_REGEXP)
+                           re_sv = (REGEXP*) sv;
+                       else if (SvSMAGICAL(ret)) {
+                           MAGIC *mg = mg_find(ret, PERL_MAGIC_qr);
+                           if (mg)
+                               re_sv = (REGEXP *) mg->mg_obj;
+                       }
+
+                       /* force any undef warnings here */
+                       if (!re_sv && !SvPOK(ret) && !SvNIOK(ret)) {
+                           ret = sv_mortalcopy(ret);
+                           (void) SvPV_force_nolen(ret);
+                       }
+                   }
+
+               }
+
+               /* *** Note that at this point we don't restore
+                * PL_comppad, (or pop the CxSUB) on the assumption it may
+                * be used again soon. This is safe as long as nothing
+                * in the regexp code uses the pad ! */
+               PL_op = oop;
+               PL_curcop = ocurcop;
+               S_regcp_restore(aTHX_ rex, runops_cp, &maxopenparen);
+               PL_curpm = PL_reg_curpm;
+
+               if (logical != 2)
+                   break;
+           }
+
+               /* only /(??{})/  from now on */
+               logical = 0;
+               {
+                   /* extract RE object from returned value; compiling if
+                    * necessary */
+
+                   if (re_sv) {
+                       re_sv = reg_temp_copy(NULL, re_sv);
+                   }
+                   else {
+                       U32 pm_flags = 0;
+
+                       if (SvUTF8(ret) && IN_BYTES) {
+                           /* In use 'bytes': make a copy of the octet
+                            * sequence, but without the flag on */
+                           STRLEN len;
+                           const char *const p = SvPV(ret, len);
+                           ret = newSVpvn_flags(p, len, SVs_TEMP);
+                       }
+                       if (rex->intflags & PREGf_USE_RE_EVAL)
+                           pm_flags |= PMf_USE_RE_EVAL;
+
+                       /* if we got here, it should be an engine which
+                        * supports compiling code blocks and stuff */
+                       assert(rex->engine && rex->engine->op_comp);
+                        assert(!(scan->flags & ~RXf_PMf_COMPILETIME));
+                       re_sv = rex->engine->op_comp(aTHX_ &ret, 1, NULL,
+                                   rex->engine, NULL, NULL,
+                                    /* copy /msixn etc to inner pattern */
+                                    ARG2L(scan),
+                                    pm_flags);
+
+                       if (!(SvFLAGS(ret)
+                             & (SVs_TEMP | SVs_GMG | SVf_ROK))
+                        && (!SvPADTMP(ret) || SvREADONLY(ret))) {
+                           /* This isn't a first class regexp. Instead, it's
+                              caching a regexp onto an existing, Perl visible
+                              scalar.  */
+                           sv_magic(ret, MUTABLE_SV(re_sv), PERL_MAGIC_qr, 0, 0);
+                       }
+                   }
+                   SAVEFREESV(re_sv);
+                   re = ReANY(re_sv);
+               }
+                RXp_MATCH_COPIED_off(re);
+                re->subbeg = rex->subbeg;
+                re->sublen = rex->sublen;
+                re->suboffset = rex->suboffset;
+                re->subcoffset = rex->subcoffset;
+                re->lastparen = 0;
+                re->lastcloseparen = 0;
+               rei = RXi_GET(re);
+                DEBUG_EXECUTE_r(
+                    debug_start_match(re_sv, utf8_target, locinput,
+                                    reginfo->strend, "Matching embedded");
+               );              
+               startpoint = rei->program + 1;
+                       ST.close_paren = 0; /* only used for GOSUB */
+                /* Save all the seen positions so far. */
+                ST.cp = regcppush(rex, 0, maxopenparen);
+                REGCP_SET(ST.lastcp);
+                /* and set maxopenparen to 0, since we are starting a "fresh" match */
+                maxopenparen = 0;
+                /* run the pattern returned from (??{...}) */
+
+              eval_recurse_doit: /* Share code with GOSUB below this line
+                            * At this point we expect the stack context to be
+                            * set up correctly */
+
+                /* invalidate the S-L poscache. We're now executing a
+                 * different set of WHILEM ops (and their associated
+                 * indexes) against the same string, so the bits in the
+                 * cache are meaningless. Setting maxiter to zero forces
+                 * the cache to be invalidated and zeroed before reuse.
+                * XXX This is too dramatic a measure. Ideally we should
+                 * save the old cache and restore when running the outer
+                 * pattern again */
+               reginfo->poscache_maxiter = 0;
+
+                /* the new regexp might have a different is_utf8_pat than we do */
+                is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(re_sv));
+
+               ST.prev_rex = rex_sv;
+               ST.prev_curlyx = cur_curlyx;
+               rex_sv = re_sv;
+               SET_reg_curpm(rex_sv);
+               rex = re;
+               rexi = rei;
+               cur_curlyx = NULL;
+               ST.B = next;
+               ST.prev_eval = cur_eval;
+               cur_eval = st;
+               /* now continue from first node in postoned RE */
+               PUSH_YES_STATE_GOTO(EVAL_AB, startpoint, locinput);
+                /* NOTREACHED */
+               NOT_REACHED; /* NOTREACHED */
+       }
+
+       case EVAL_AB: /* cleanup after a successful (??{A})B */
+           /* note: this is called twice; first after popping B, then A */
+           rex_sv = ST.prev_rex;
+            is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
+           SET_reg_curpm(rex_sv);
+           rex = ReANY(rex_sv);
+           rexi = RXi_GET(rex);
+            {
+                /* preserve $^R across LEAVE's. See Bug 121070. */
+                SV *save_sv= GvSV(PL_replgv);
+                SvREFCNT_inc(save_sv);
+                regcpblow(ST.cp); /* LEAVE in disguise */
+                sv_setsv(GvSV(PL_replgv), save_sv);
+                SvREFCNT_dec(save_sv);
+            }
+           cur_eval = ST.prev_eval;
+           cur_curlyx = ST.prev_curlyx;
+
+           /* Invalidate cache. See "invalidate" comment above. */
+           reginfo->poscache_maxiter = 0;
+            if ( nochange_depth )
+               nochange_depth--;
+           sayYES;
+
+
+       case EVAL_AB_fail: /* unsuccessfully ran A or B in (??{A})B */
+           /* note: this is called twice; first after popping B, then A */
+           rex_sv = ST.prev_rex;
+            is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
+           SET_reg_curpm(rex_sv);
+           rex = ReANY(rex_sv);
+           rexi = RXi_GET(rex); 
+
+           REGCP_UNWIND(ST.lastcp);
+           regcppop(rex, &maxopenparen);
+           cur_eval = ST.prev_eval;
+           cur_curlyx = ST.prev_curlyx;
+           /* Invalidate cache. See "invalidate" comment above. */
+           reginfo->poscache_maxiter = 0;
+           if ( nochange_depth )
+               nochange_depth--;
+           sayNO_SILENT;
+#undef ST
+
+       case OPEN: /*  (  */
+           n = ARG(scan);  /* which paren pair */
+           rex->offs[n].start_tmp = locinput - reginfo->strbeg;
+           if (n > maxopenparen)
+               maxopenparen = n;
+           DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+               "rex=0x%"UVxf" offs=0x%"UVxf": \\%"UVuf": set %"IVdf" tmp; maxopenparen=%"UVuf"\n",
+               PTR2UV(rex),
+               PTR2UV(rex->offs),
+               (UV)n,
+               (IV)rex->offs[n].start_tmp,
+               (UV)maxopenparen
+           ));
+            lastopen = n;
+           break;
+
+/* XXX really need to log other places start/end are set too */
+#define CLOSE_CAPTURE \
+    rex->offs[n].start = rex->offs[n].start_tmp; \
+    rex->offs[n].end = locinput - reginfo->strbeg; \
+    DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log, \
+       "rex=0x%"UVxf" offs=0x%"UVxf": \\%"UVuf": set %"IVdf"..%"IVdf"\n", \
+       PTR2UV(rex), \
+       PTR2UV(rex->offs), \
+       (UV)n, \
+       (IV)rex->offs[n].start, \
+       (IV)rex->offs[n].end \
+    ))
+
+       case CLOSE:  /*  )  */
+           n = ARG(scan);  /* which paren pair */
+           CLOSE_CAPTURE;
+           if (n > rex->lastparen)
+               rex->lastparen = n;
+           rex->lastcloseparen = n;
+            if (cur_eval && cur_eval->u.eval.close_paren == n) {
+               goto fake_end;
+           }    
+           break;
+
+        case ACCEPT:  /*  (*ACCEPT)  */
+            if (ARG(scan)){
+                regnode *cursor;
+                for (cursor=scan;
+                     cursor && OP(cursor)!=END; 
+                     cursor=regnext(cursor)) 
+                {
+                    if ( OP(cursor)==CLOSE ){
+                        n = ARG(cursor);
+                        if ( n <= lastopen ) {
+                           CLOSE_CAPTURE;
+                            if (n > rex->lastparen)
+                                rex->lastparen = n;
+                            rex->lastcloseparen = n;
+                            if ( n == ARG(scan) || (cur_eval &&
+                                cur_eval->u.eval.close_paren == n))
+                                break;
+                        }
+                    }
+                }
+            }
+           goto fake_end;
+           /* NOTREACHED */
+
+       case GROUPP:  /*  (?(1))  */
+           n = ARG(scan);  /* which paren pair */
+           sw = cBOOL(rex->lastparen >= n && rex->offs[n].end != -1);
+           break;
+
+       case NGROUPP:  /*  (?(<name>))  */
+           /* reg_check_named_buff_matched returns 0 for no match */
+           sw = cBOOL(0 < reg_check_named_buff_matched(rex,scan));
+           break;
+
+        case INSUBP:   /*  (?(R))  */
+            n = ARG(scan);
+            sw = (cur_eval && (!n || cur_eval->u.eval.close_paren == n));
+            break;
+
+        case DEFINEP:  /*  (?(DEFINE))  */
+            sw = 0;
+            break;
+
+       case IFTHEN:   /*  (?(cond)A|B)  */
+           reginfo->poscache_iter = reginfo->poscache_maxiter; /* Void cache */
+           if (sw)
+               next = NEXTOPER(NEXTOPER(scan));
+           else {
+               next = scan + ARG(scan);
+               if (OP(next) == IFTHEN) /* Fake one. */
+                   next = NEXTOPER(NEXTOPER(next));
+           }
+           break;
+
+       case LOGICAL:  /* modifier for EVAL and IFMATCH */
+           logical = scan->flags;
+           break;
+
+/*******************************************************************
+
+The CURLYX/WHILEM pair of ops handle the most generic case of the /A*B/
+pattern, where A and B are subpatterns. (For simple A, CURLYM or
+STAR/PLUS/CURLY/CURLYN are used instead.)
+
+A*B is compiled as <CURLYX><A><WHILEM><B>
+
+On entry to the subpattern, CURLYX is called. This pushes a CURLYX
+state, which contains the current count, initialised to -1. It also sets
+cur_curlyx to point to this state, with any previous value saved in the
+state block.
+
+CURLYX then jumps straight to the WHILEM op, rather than executing A,
+since the pattern may possibly match zero times (i.e. it's a while {} loop
+rather than a do {} while loop).
+
+Each entry to WHILEM represents a successful match of A. The count in the
+CURLYX block is incremented, another WHILEM state is pushed, and execution
+passes to A or B depending on greediness and the current count.
+
+For example, if matching against the string a1a2a3b (where the aN are
+substrings that match /A/), then the match progresses as follows: (the
+pushed states are interspersed with the bits of strings matched so far):
+
+    <CURLYX cnt=-1>
+    <CURLYX cnt=0><WHILEM>
+    <CURLYX cnt=1><WHILEM> a1 <WHILEM>
+    <CURLYX cnt=2><WHILEM> a1 <WHILEM> a2 <WHILEM>
+    <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM>
+    <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM> b
+
+(Contrast this with something like CURLYM, which maintains only a single
+backtrack state:
+
+    <CURLYM cnt=0> a1
+    a1 <CURLYM cnt=1> a2
+    a1 a2 <CURLYM cnt=2> a3
+    a1 a2 a3 <CURLYM cnt=3> b
+)
+
+Each WHILEM state block marks a point to backtrack to upon partial failure
+of A or B, and also contains some minor state data related to that
+iteration.  The CURLYX block, pointed to by cur_curlyx, contains the
+overall state, such as the count, and pointers to the A and B ops.
+
+This is complicated slightly by nested CURLYX/WHILEM's. Since cur_curlyx
+must always point to the *current* CURLYX block, the rules are:
+
+When executing CURLYX, save the old cur_curlyx in the CURLYX state block,
+and set cur_curlyx to point the new block.
+
+When popping the CURLYX block after a successful or unsuccessful match,
+restore the previous cur_curlyx.
+
+When WHILEM is about to execute B, save the current cur_curlyx, and set it
+to the outer one saved in the CURLYX block.
+
+When popping the WHILEM block after a successful or unsuccessful B match,
+restore the previous cur_curlyx.
+
+Here's an example for the pattern (AI* BI)*BO
+I and O refer to inner and outer, C and W refer to CURLYX and WHILEM:
+
+cur_
+curlyx backtrack stack
+------ ---------------
+NULL   
+CO     <CO prev=NULL> <WO>
+CI     <CO prev=NULL> <WO> <CI prev=CO> <WI> ai 
+CO     <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi 
+NULL   <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi <WO prev=CO> bo
+
+At this point the pattern succeeds, and we work back down the stack to
+clean up, restoring as we go:
+
+CO     <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi 
+CI     <CO prev=NULL> <WO> <CI prev=CO> <WI> ai 
+CO     <CO prev=NULL> <WO>
+NULL   
+
+*******************************************************************/
+
+#define ST st->u.curlyx
+
+       case CURLYX:    /* start of /A*B/  (for complex A) */
+       {
+           /* No need to save/restore up to this paren */
+           I32 parenfloor = scan->flags;
+           
+           assert(next); /* keep Coverity happy */
+           if (OP(PREVOPER(next)) == NOTHING) /* LONGJMP */
+               next += ARG(next);
+
+           /* XXXX Probably it is better to teach regpush to support
+              parenfloor > maxopenparen ... */
+           if (parenfloor > (I32)rex->lastparen)
+               parenfloor = rex->lastparen; /* Pessimization... */
+
+           ST.prev_curlyx= cur_curlyx;
+           cur_curlyx = st;
+           ST.cp = PL_savestack_ix;
+
+           /* these fields contain the state of the current curly.
+            * they are accessed by subsequent WHILEMs */
+           ST.parenfloor = parenfloor;
+           ST.me = scan;
+           ST.B = next;
+           ST.minmod = minmod;
+           minmod = 0;
+           ST.count = -1;      /* this will be updated by WHILEM */
+           ST.lastloc = NULL;  /* this will be updated by WHILEM */
+
+           PUSH_YES_STATE_GOTO(CURLYX_end, PREVOPER(next), locinput);
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+       }
+
+       case CURLYX_end: /* just finished matching all of A*B */
+           cur_curlyx = ST.prev_curlyx;
+           sayYES;
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+       case CURLYX_end_fail: /* just failed to match all of A*B */
+           regcpblow(ST.cp);
+           cur_curlyx = ST.prev_curlyx;
+           sayNO;
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+
+#undef ST
+#define ST st->u.whilem
+
+       case WHILEM:     /* just matched an A in /A*B/  (for complex A) */
+       {
+           /* see the discussion above about CURLYX/WHILEM */
+           I32 n;
+           int min, max;
+           regnode *A;
+
+           assert(cur_curlyx); /* keep Coverity happy */
+
+           min = ARG1(cur_curlyx->u.curlyx.me);
+           max = ARG2(cur_curlyx->u.curlyx.me);
+           A = NEXTOPER(cur_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS;
+           n = ++cur_curlyx->u.curlyx.count; /* how many A's matched */
+           ST.save_lastloc = cur_curlyx->u.curlyx.lastloc;
+           ST.cache_offset = 0;
+           ST.cache_mask = 0;
+           
+
+           DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+                 "%*s  whilem: matched %ld out of %d..%d\n",
+                 REPORT_CODE_OFF+depth*2, "", (long)n, min, max)
+           );
+
+           /* First just match a string of min A's. */
+
+           if (n < min) {
+               ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
+                                    maxopenparen);
+               cur_curlyx->u.curlyx.lastloc = locinput;
+               REGCP_SET(ST.lastcp);
+
+               PUSH_STATE_GOTO(WHILEM_A_pre, A, locinput);
+                /* NOTREACHED */
+               NOT_REACHED; /* NOTREACHED */
+           }
+
+           /* If degenerate A matches "", assume A done. */
+
+           if (locinput == cur_curlyx->u.curlyx.lastloc) {
+               DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+                  "%*s  whilem: empty match detected, trying continuation...\n",
+                  REPORT_CODE_OFF+depth*2, "")
+               );
+               goto do_whilem_B_max;
+           }
+
+           /* super-linear cache processing.
+             *
+             * The idea here is that for certain types of CURLYX/WHILEM -
+             * principally those whose upper bound is infinity (and
+             * excluding regexes that have things like \1 and other very
+             * non-regular expresssiony things), then if a pattern like
+             * /....A*.../ fails and we backtrack to the WHILEM, then we
+             * make a note that this particular WHILEM op was at string
+             * position 47 (say) when the rest of pattern failed. Then, if
+             * we ever find ourselves back at that WHILEM, and at string
+             * position 47 again, we can just fail immediately rather than
+             * running the rest of the pattern again.
+             *
+             * This is very handy when patterns start to go
+             * 'super-linear', like in (a+)*(a+)*(a+)*, where you end up
+             * with a combinatorial explosion of backtracking.
+             *
+             * The cache is implemented as a bit array, with one bit per
+             * string byte position per WHILEM op (up to 16) - so its
+             * between 0.25 and 2x the string size.
+             *
+             * To avoid allocating a poscache buffer every time, we do an
+             * initially countdown; only after we have  executed a WHILEM
+             * op (string-length x #WHILEMs) times do we allocate the
+             * cache.
+             *
+             * The top 4 bits of scan->flags byte say how many different
+             * relevant CURLLYX/WHILEM op pairs there are, while the
+             * bottom 4-bits is the identifying index number of this
+             * WHILEM.
+             */
+
+           if (scan->flags) {
+
+               if (!reginfo->poscache_maxiter) {
+                   /* start the countdown: Postpone detection until we
+                    * know the match is not *that* much linear. */
+                   reginfo->poscache_maxiter
+                        =    (reginfo->strend - reginfo->strbeg + 1)
+                           * (scan->flags>>4);
+                   /* possible overflow for long strings and many CURLYX's */
+                   if (reginfo->poscache_maxiter < 0)
+                       reginfo->poscache_maxiter = I32_MAX;
+                   reginfo->poscache_iter = reginfo->poscache_maxiter;
+               }
+
+               if (reginfo->poscache_iter-- == 0) {
+                   /* initialise cache */
+                   const SSize_t size = (reginfo->poscache_maxiter + 7)/8;
+                    regmatch_info_aux *const aux = reginfo->info_aux;
+                   if (aux->poscache) {
+                       if ((SSize_t)reginfo->poscache_size < size) {
+                           Renew(aux->poscache, size, char);
+                           reginfo->poscache_size = size;
+                       }
+                       Zero(aux->poscache, size, char);
+                   }
+                   else {
+                       reginfo->poscache_size = size;
+                       Newxz(aux->poscache, size, char);
+                   }
+                   DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+      "%swhilem: Detected a super-linear match, switching on caching%s...\n",
+                             PL_colors[4], PL_colors[5])
+                   );
+               }
+
+               if (reginfo->poscache_iter < 0) {
+                   /* have we already failed at this position? */
+                   SSize_t offset, mask;
+
+                    reginfo->poscache_iter = -1; /* stop eventual underflow */
+                   offset  = (scan->flags & 0xf) - 1
+                                +   (locinput - reginfo->strbeg)
+                                  * (scan->flags>>4);
+                   mask    = 1 << (offset % 8);
+                   offset /= 8;
+                   if (reginfo->info_aux->poscache[offset] & mask) {
+                       DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+                           "%*s  whilem: (cache) already tried at this position...\n",
+                           REPORT_CODE_OFF+depth*2, "")
+                       );
+                       sayNO; /* cache records failure */
+                   }
+                   ST.cache_offset = offset;
+                   ST.cache_mask   = mask;
+               }
+           }
+
+           /* Prefer B over A for minimal matching. */
+
+           if (cur_curlyx->u.curlyx.minmod) {
+               ST.save_curlyx = cur_curlyx;
+               cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
+               ST.cp = regcppush(rex, ST.save_curlyx->u.curlyx.parenfloor,
+                            maxopenparen);
+               REGCP_SET(ST.lastcp);
+               PUSH_YES_STATE_GOTO(WHILEM_B_min, ST.save_curlyx->u.curlyx.B,
+                                    locinput);
+                /* NOTREACHED */
+               NOT_REACHED; /* NOTREACHED */
+           }
+
+           /* Prefer A over B for maximal matching. */
+
+           if (n < max) { /* More greed allowed? */
+               ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
+                            maxopenparen);
+               cur_curlyx->u.curlyx.lastloc = locinput;
+               REGCP_SET(ST.lastcp);
+               PUSH_STATE_GOTO(WHILEM_A_max, A, locinput);
+                /* NOTREACHED */
+               NOT_REACHED; /* NOTREACHED */
+           }
+           goto do_whilem_B_max;
+       }
+        /* NOTREACHED */
+       NOT_REACHED; /* NOTREACHED */
+
+       case WHILEM_B_min: /* just matched B in a minimal match */
+       case WHILEM_B_max: /* just matched B in a maximal match */
+           cur_curlyx = ST.save_curlyx;
+           sayYES;
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+       case WHILEM_B_max_fail: /* just failed to match B in a maximal match */
+           cur_curlyx = ST.save_curlyx;
+           cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
+           cur_curlyx->u.curlyx.count--;
+           CACHEsayNO;
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+       case WHILEM_A_min_fail: /* just failed to match A in a minimal match */
+           /* FALLTHROUGH */
+       case WHILEM_A_pre_fail: /* just failed to match even minimal A */
+           REGCP_UNWIND(ST.lastcp);
+           regcppop(rex, &maxopenparen);
+           cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
+           cur_curlyx->u.curlyx.count--;
+           CACHEsayNO;
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+       case WHILEM_A_max_fail: /* just failed to match A in a maximal match */
+           REGCP_UNWIND(ST.lastcp);
+           regcppop(rex, &maxopenparen); /* Restore some previous $<digit>s? */
+           DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+               "%*s  whilem: failed, trying continuation...\n",
+               REPORT_CODE_OFF+depth*2, "")
+           );
+         do_whilem_B_max:
+           if (cur_curlyx->u.curlyx.count >= REG_INFTY
+               && ckWARN(WARN_REGEXP)
+               && !reginfo->warned)
+           {
+                reginfo->warned        = TRUE;
+               Perl_warner(aTHX_ packWARN(WARN_REGEXP),
+                    "Complex regular subexpression recursion limit (%d) "
+                    "exceeded",
+                    REG_INFTY - 1);
+           }
+
+           /* now try B */
+           ST.save_curlyx = cur_curlyx;
+           cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
+           PUSH_YES_STATE_GOTO(WHILEM_B_max, ST.save_curlyx->u.curlyx.B,
+                                locinput);
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+       case WHILEM_B_min_fail: /* just failed to match B in a minimal match */
+           cur_curlyx = ST.save_curlyx;
+           REGCP_UNWIND(ST.lastcp);
+           regcppop(rex, &maxopenparen);
+
+           if (cur_curlyx->u.curlyx.count >= /*max*/ARG2(cur_curlyx->u.curlyx.me)) {
+               /* Maximum greed exceeded */
+               if (cur_curlyx->u.curlyx.count >= REG_INFTY
+                   && ckWARN(WARN_REGEXP)
+                    && !reginfo->warned)
+               {
+                    reginfo->warned    = TRUE;
+                   Perl_warner(aTHX_ packWARN(WARN_REGEXP),
+                       "Complex regular subexpression recursion "
+                       "limit (%d) exceeded",
+                       REG_INFTY - 1);
+               }
+               cur_curlyx->u.curlyx.count--;
+               CACHEsayNO;
+           }
+
+           DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+               "%*s  trying longer...\n", REPORT_CODE_OFF+depth*2, "")
+           );
+           /* Try grabbing another A and see if it helps. */
+           cur_curlyx->u.curlyx.lastloc = locinput;
+           ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
+                            maxopenparen);
+           REGCP_SET(ST.lastcp);
+           PUSH_STATE_GOTO(WHILEM_A_min,
+               /*A*/ NEXTOPER(ST.save_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS,
+                locinput);
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+#undef  ST
+#define ST st->u.branch
+
+       case BRANCHJ:       /*  /(...|A|...)/ with long next pointer */
+           next = scan + ARG(scan);
+           if (next == scan)
+               next = NULL;
+           scan = NEXTOPER(scan);
+           /* FALLTHROUGH */
+
+       case BRANCH:        /*  /(...|A|...)/ */
+           scan = NEXTOPER(scan); /* scan now points to inner node */
+           ST.lastparen = rex->lastparen;
+           ST.lastcloseparen = rex->lastcloseparen;
+           ST.next_branch = next;
+           REGCP_SET(ST.cp);
+
+           /* Now go into the branch */
+           if (has_cutgroup) {
+               PUSH_YES_STATE_GOTO(BRANCH_next, scan, locinput);
+           } else {
+               PUSH_STATE_GOTO(BRANCH_next, scan, locinput);
+           }
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+        case CUTGROUP:  /*  /(*THEN)/  */
+            sv_yes_mark = st->u.mark.mark_name = scan->flags ? NULL :
+                MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+            PUSH_STATE_GOTO(CUTGROUP_next, next, locinput);
+            /* NOTREACHED */
+            NOT_REACHED; /* NOTREACHED */
+
+        case CUTGROUP_next_fail:
+            do_cutgroup = 1;
+            no_final = 1;
+            if (st->u.mark.mark_name)
+                sv_commit = st->u.mark.mark_name;
+            sayNO;         
+            /* NOTREACHED */
+            NOT_REACHED; /* NOTREACHED */
+
+        case BRANCH_next:
+            sayYES;
+            /* NOTREACHED */
+            NOT_REACHED; /* NOTREACHED */
+
+       case BRANCH_next_fail: /* that branch failed; try the next, if any */
+           if (do_cutgroup) {
+               do_cutgroup = 0;
+               no_final = 0;
+           }
+           REGCP_UNWIND(ST.cp);
+            UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+           scan = ST.next_branch;
+           /* no more branches? */
+           if (!scan || (OP(scan) != BRANCH && OP(scan) != BRANCHJ)) {
+               DEBUG_EXECUTE_r({
+                   PerlIO_printf( Perl_debug_log,
+                       "%*s  %sBRANCH failed...%s\n",
+                       REPORT_CODE_OFF+depth*2, "", 
+                       PL_colors[4],
+                       PL_colors[5] );
+               });
+               sayNO_SILENT;
+            }
+           continue; /* execute next BRANCH[J] op */
+            /* NOTREACHED */
+    
+       case MINMOD: /* next op will be non-greedy, e.g. A*?  */
+           minmod = 1;
+           break;
+
+#undef  ST
+#define ST st->u.curlym
+
+       case CURLYM:    /* /A{m,n}B/ where A is fixed-length */
+
+           /* This is an optimisation of CURLYX that enables us to push
+            * only a single backtracking state, no matter how many matches
+            * there are in {m,n}. It relies on the pattern being constant
+            * length, with no parens to influence future backrefs
+            */
+
+           ST.me = scan;
+           scan = NEXTOPER(scan) + NODE_STEP_REGNODE;
+
+           ST.lastparen      = rex->lastparen;
+           ST.lastcloseparen = rex->lastcloseparen;
+
+           /* if paren positive, emulate an OPEN/CLOSE around A */
+           if (ST.me->flags) {
+               U32 paren = ST.me->flags;
+               if (paren > maxopenparen)
+                   maxopenparen = paren;
+               scan += NEXT_OFF(scan); /* Skip former OPEN. */
+           }
+           ST.A = scan;
+           ST.B = next;
+           ST.alen = 0;
+           ST.count = 0;
+           ST.minmod = minmod;
+           minmod = 0;
+           ST.c1 = CHRTEST_UNINIT;
+           REGCP_SET(ST.cp);
+
+           if (!(ST.minmod ? ARG1(ST.me) : ARG2(ST.me))) /* min/max */
+               goto curlym_do_B;
+
+         curlym_do_A: /* execute the A in /A{m,n}B/  */
+           PUSH_YES_STATE_GOTO(CURLYM_A, ST.A, locinput); /* match A */
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+       case CURLYM_A: /* we've just matched an A */
+           ST.count++;
+           /* after first match, determine A's length: u.curlym.alen */
+           if (ST.count == 1) {
+               if (reginfo->is_utf8_target) {
+                   char *s = st->locinput;
+                   while (s < locinput) {
+                       ST.alen++;
+                       s += UTF8SKIP(s);
+                   }
+               }
+               else {
+                   ST.alen = locinput - st->locinput;
+               }
+               if (ST.alen == 0)
+                   ST.count = ST.minmod ? ARG1(ST.me) : ARG2(ST.me);
+           }
+           DEBUG_EXECUTE_r(
+               PerlIO_printf(Perl_debug_log,
+                         "%*s  CURLYM now matched %"IVdf" times, len=%"IVdf"...\n",
+                         (int)(REPORT_CODE_OFF+(depth*2)), "",
+                         (IV) ST.count, (IV)ST.alen)
+           );
+
+           if (cur_eval && cur_eval->u.eval.close_paren && 
+               cur_eval->u.eval.close_paren == (U32)ST.me->flags) 
+               goto fake_end;
+               
+           {
+               I32 max = (ST.minmod ? ARG1(ST.me) : ARG2(ST.me));
+               if ( max == REG_INFTY || ST.count < max )
+                   goto curlym_do_A; /* try to match another A */
+           }
+           goto curlym_do_B; /* try to match B */
+
+       case CURLYM_A_fail: /* just failed to match an A */
+           REGCP_UNWIND(ST.cp);
+
+           if (ST.minmod || ST.count < ARG1(ST.me) /* min*/ 
+               || (cur_eval && cur_eval->u.eval.close_paren &&
+                   cur_eval->u.eval.close_paren == (U32)ST.me->flags))
+               sayNO;
+
+         curlym_do_B: /* execute the B in /A{m,n}B/  */
+           if (ST.c1 == CHRTEST_UNINIT) {
+               /* calculate c1 and c2 for possible match of 1st char
+                * following curly */
+               ST.c1 = ST.c2 = CHRTEST_VOID;
+                assert(ST.B);
+               if (HAS_TEXT(ST.B) || JUMPABLE(ST.B)) {
+                   regnode *text_node = ST.B;
+                   if (! HAS_TEXT(text_node))
+                       FIND_NEXT_IMPT(text_node);
+                   /* this used to be 
+                       
+                       (HAS_TEXT(text_node) && PL_regkind[OP(text_node)] == EXACT)
+                       
+                       But the former is redundant in light of the latter.
+                       
+                       if this changes back then the macro for 
+                       IS_TEXT and friends need to change.
+                    */
+                   if (PL_regkind[OP(text_node)] == EXACT) {
+                        if (! S_setup_EXACTISH_ST_c1_c2(aTHX_
+                           text_node, &ST.c1, ST.c1_utf8, &ST.c2, ST.c2_utf8,
+                           reginfo))
+                        {
+                            sayNO;
+                        }
+                   }
+               }
+           }
+
+           DEBUG_EXECUTE_r(
+               PerlIO_printf(Perl_debug_log,
+                   "%*s  CURLYM trying tail with matches=%"IVdf"...\n",
+                   (int)(REPORT_CODE_OFF+(depth*2)),
+                   "", (IV)ST.count)
+               );
+           if (! NEXTCHR_IS_EOS && ST.c1 != CHRTEST_VOID) {
+                if (! UTF8_IS_INVARIANT(nextchr) && utf8_target) {
+                    if (memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput))
+                        && memNE(locinput, ST.c2_utf8, UTF8SKIP(locinput)))
+                    {
+                        /* simulate B failing */
+                        DEBUG_OPTIMISE_r(
+                            PerlIO_printf(Perl_debug_log,
+                                "%*s  CURLYM Fast bail next target=0x%"UVXf" c1=0x%"UVXf" c2=0x%"UVXf"\n",
+                                (int)(REPORT_CODE_OFF+(depth*2)),"",
+                                valid_utf8_to_uvchr((U8 *) locinput, NULL),
+                                valid_utf8_to_uvchr(ST.c1_utf8, NULL),
+                                valid_utf8_to_uvchr(ST.c2_utf8, NULL))
+                        );
+                        state_num = CURLYM_B_fail;
+                        goto reenter_switch;
+                    }
+                }
+                else if (nextchr != ST.c1 && nextchr != ST.c2) {
+                    /* simulate B failing */
+                    DEBUG_OPTIMISE_r(
+                        PerlIO_printf(Perl_debug_log,
+                            "%*s  CURLYM Fast bail next target=0x%X c1=0x%X c2=0x%X\n",
+                            (int)(REPORT_CODE_OFF+(depth*2)),"",
+                            (int) nextchr, ST.c1, ST.c2)
+                    );
+                    state_num = CURLYM_B_fail;
+                    goto reenter_switch;
+                }
+            }
+
+           if (ST.me->flags) {
+               /* emulate CLOSE: mark current A as captured */
+               I32 paren = ST.me->flags;
+               if (ST.count) {
+                   rex->offs[paren].start
+                       = HOPc(locinput, -ST.alen) - reginfo->strbeg;
+                   rex->offs[paren].end = locinput - reginfo->strbeg;
+                   if ((U32)paren > rex->lastparen)
+                       rex->lastparen = paren;
+                   rex->lastcloseparen = paren;
+               }
+               else
+                   rex->offs[paren].end = -1;
+               if (cur_eval && cur_eval->u.eval.close_paren &&
+                   cur_eval->u.eval.close_paren == (U32)ST.me->flags) 
+               {
+                   if (ST.count) 
+                       goto fake_end;
+                   else
+                       sayNO;
+               }
+           }
+           
+           PUSH_STATE_GOTO(CURLYM_B, ST.B, locinput); /* match B */
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+       case CURLYM_B_fail: /* just failed to match a B */
+           REGCP_UNWIND(ST.cp);
+            UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+           if (ST.minmod) {
+               I32 max = ARG2(ST.me);
+               if (max != REG_INFTY && ST.count == max)
+                   sayNO;
+               goto curlym_do_A; /* try to match a further A */
+           }
+           /* backtrack one A */
+           if (ST.count == ARG1(ST.me) /* min */)
+               sayNO;
+           ST.count--;
+           SET_locinput(HOPc(locinput, -ST.alen));
+           goto curlym_do_B; /* try to match B */
+
+#undef ST
+#define ST st->u.curly
+
+#define CURLY_SETPAREN(paren, success) \
+    if (paren) { \
+       if (success) { \
+           rex->offs[paren].start = HOPc(locinput, -1) - reginfo->strbeg; \
+           rex->offs[paren].end = locinput - reginfo->strbeg; \
+           if (paren > rex->lastparen) \
+               rex->lastparen = paren; \
+           rex->lastcloseparen = paren; \
+       } \
+       else { \
+           rex->offs[paren].end = -1; \
+           rex->lastparen      = ST.lastparen; \
+           rex->lastcloseparen = ST.lastcloseparen; \
+       } \
+    }
+
+        case STAR:             /*  /A*B/ where A is width 1 char */
+           ST.paren = 0;
+           ST.min = 0;
+           ST.max = REG_INFTY;
+           scan = NEXTOPER(scan);
+           goto repeat;
+
+        case PLUS:             /*  /A+B/ where A is width 1 char */
+           ST.paren = 0;
+           ST.min = 1;
+           ST.max = REG_INFTY;
+           scan = NEXTOPER(scan);
+           goto repeat;
+
+       case CURLYN:            /*  /(A){m,n}B/ where A is width 1 char */
+            ST.paren = scan->flags;    /* Which paren to set */
+            ST.lastparen      = rex->lastparen;
+           ST.lastcloseparen = rex->lastcloseparen;
+           if (ST.paren > maxopenparen)
+               maxopenparen = ST.paren;
+           ST.min = ARG1(scan);  /* min to match */
+           ST.max = ARG2(scan);  /* max to match */
+           if (cur_eval && cur_eval->u.eval.close_paren &&
+               cur_eval->u.eval.close_paren == (U32)ST.paren) {
+               ST.min=1;
+               ST.max=1;
+           }
+            scan = regnext(NEXTOPER(scan) + NODE_STEP_REGNODE);
+           goto repeat;
+
+       case CURLY:             /*  /A{m,n}B/ where A is width 1 char */
+           ST.paren = 0;
+           ST.min = ARG1(scan);  /* min to match */
+           ST.max = ARG2(scan);  /* max to match */
+           scan = NEXTOPER(scan) + NODE_STEP_REGNODE;
+         repeat:
+           /*
+           * Lookahead to avoid useless match attempts
+           * when we know what character comes next.
+           *
+           * Used to only do .*x and .*?x, but now it allows
+           * for )'s, ('s and (?{ ... })'s to be in the way
+           * of the quantifier and the EXACT-like node.  -- japhy
+           */
+
+           assert(ST.min <= ST.max);
+            if (! HAS_TEXT(next) && ! JUMPABLE(next)) {
+                ST.c1 = ST.c2 = CHRTEST_VOID;
+            }
+            else {
+               regnode *text_node = next;
+
+               if (! HAS_TEXT(text_node)) 
+                   FIND_NEXT_IMPT(text_node);
+
+               if (! HAS_TEXT(text_node))
+                   ST.c1 = ST.c2 = CHRTEST_VOID;
+               else {
+                   if ( PL_regkind[OP(text_node)] != EXACT ) {
+                       ST.c1 = ST.c2 = CHRTEST_VOID;
+                   }
+                   else {
+                    
+                    /*  Currently we only get here when 
+                        
+                        PL_rekind[OP(text_node)] == EXACT
+                    
+                        if this changes back then the macro for IS_TEXT and 
+                        friends need to change. */
+                        if (! S_setup_EXACTISH_ST_c1_c2(aTHX_
+                           text_node, &ST.c1, ST.c1_utf8, &ST.c2, ST.c2_utf8,
+                           reginfo))
+                        {
+                            sayNO;
+                        }
+                    }
+               }
+           }
+
+           ST.A = scan;
+           ST.B = next;
+           if (minmod) {
+                char *li = locinput;
+               minmod = 0;
+               if (ST.min &&
+                        regrepeat(rex, &li, ST.A, reginfo, ST.min, depth)
+                            < ST.min)
+                   sayNO;
+                SET_locinput(li);
+               ST.count = ST.min;
+               REGCP_SET(ST.cp);
+               if (ST.c1 == CHRTEST_VOID)
+                   goto curly_try_B_min;
+
+               ST.oldloc = locinput;
+
+               /* set ST.maxpos to the furthest point along the
+                * string that could possibly match */
+               if  (ST.max == REG_INFTY) {
+                   ST.maxpos = reginfo->strend - 1;
+                   if (utf8_target)
+                       while (UTF8_IS_CONTINUATION(*(U8*)ST.maxpos))
+                           ST.maxpos--;
+               }
+               else if (utf8_target) {
+                   int m = ST.max - ST.min;
+                   for (ST.maxpos = locinput;
+                        m >0 && ST.maxpos < reginfo->strend; m--)
+                       ST.maxpos += UTF8SKIP(ST.maxpos);
+               }
+               else {
+                   ST.maxpos = locinput + ST.max - ST.min;
+                   if (ST.maxpos >= reginfo->strend)
+                       ST.maxpos = reginfo->strend - 1;
+               }
+               goto curly_try_B_min_known;
+
+           }
+           else {
+                /* avoid taking address of locinput, so it can remain
+                 * a register var */
+                char *li = locinput;
+               ST.count = regrepeat(rex, &li, ST.A, reginfo, ST.max, depth);
+               if (ST.count < ST.min)
+                   sayNO;
+                SET_locinput(li);
+               if ((ST.count > ST.min)
+                   && (PL_regkind[OP(ST.B)] == EOL) && (OP(ST.B) != MEOL))
+               {
+                   /* A{m,n} must come at the end of the string, there's
+                    * no point in backing off ... */
+                   ST.min = ST.count;
+                   /* ...except that $ and \Z can match before *and* after
+                      newline at the end.  Consider "\n\n" =~ /\n+\Z\n/.
+                      We may back off by one in this case. */
+                   if (UCHARAT(locinput - 1) == '\n' && OP(ST.B) != EOS)
+                       ST.min--;
+               }
+               REGCP_SET(ST.cp);
+               goto curly_try_B_max;
+           }
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+       case CURLY_B_min_known_fail:
+           /* failed to find B in a non-greedy match where c1,c2 valid */
+
+           REGCP_UNWIND(ST.cp);
+            if (ST.paren) {
+                UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+            }
+           /* Couldn't or didn't -- move forward. */
+           ST.oldloc = locinput;
+           if (utf8_target)
+               locinput += UTF8SKIP(locinput);
+           else
+               locinput++;
+           ST.count++;
+         curly_try_B_min_known:
+            /* find the next place where 'B' could work, then call B */
+           {
+               int n;
+               if (utf8_target) {
+                   n = (ST.oldloc == locinput) ? 0 : 1;
+                   if (ST.c1 == ST.c2) {
+                       /* set n to utf8_distance(oldloc, locinput) */
+                       while (locinput <= ST.maxpos
+                              && memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput)))
+                        {
+                           locinput += UTF8SKIP(locinput);
+                           n++;
+                       }
+                   }
+                   else {
+                       /* set n to utf8_distance(oldloc, locinput) */
+                       while (locinput <= ST.maxpos
+                              && memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput))
+                              && memNE(locinput, ST.c2_utf8, UTF8SKIP(locinput)))
+                        {
+                           locinput += UTF8SKIP(locinput);
+                           n++;
+                       }
+                   }
+               }
+               else {  /* Not utf8_target */
+                   if (ST.c1 == ST.c2) {
+                       while (locinput <= ST.maxpos &&
+                              UCHARAT(locinput) != ST.c1)
+                           locinput++;
+                   }
+                   else {
+                       while (locinput <= ST.maxpos
+                              && UCHARAT(locinput) != ST.c1
+                              && UCHARAT(locinput) != ST.c2)
+                           locinput++;
+                   }
+                   n = locinput - ST.oldloc;
+               }
+               if (locinput > ST.maxpos)
+                   sayNO;
+               if (n) {
+                    /* In /a{m,n}b/, ST.oldloc is at "a" x m, locinput is
+                     * at b; check that everything between oldloc and
+                     * locinput matches */
+                    char *li = ST.oldloc;
+                   ST.count += n;
+                   if (regrepeat(rex, &li, ST.A, reginfo, n, depth) < n)
+                       sayNO;
+                    assert(n == REG_INFTY || locinput == li);
+               }
+               CURLY_SETPAREN(ST.paren, ST.count);
+               if (cur_eval && cur_eval->u.eval.close_paren && 
+                   cur_eval->u.eval.close_paren == (U32)ST.paren) {
+                   goto fake_end;
+               }
+               PUSH_STATE_GOTO(CURLY_B_min_known, ST.B, locinput);
+           }
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+       case CURLY_B_min_fail:
+           /* failed to find B in a non-greedy match where c1,c2 invalid */
+
+           REGCP_UNWIND(ST.cp);
+            if (ST.paren) {
+                UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+            }
+           /* failed -- move forward one */
+            {
+                char *li = locinput;
+                if (!regrepeat(rex, &li, ST.A, reginfo, 1, depth)) {
+                    sayNO;
+                }
+                locinput = li;
+            }
+            {
+               ST.count++;
+               if (ST.count <= ST.max || (ST.max == REG_INFTY &&
+                       ST.count > 0)) /* count overflow ? */
+               {
+                 curly_try_B_min:
+                   CURLY_SETPAREN(ST.paren, ST.count);
+                   if (cur_eval && cur_eval->u.eval.close_paren &&
+                       cur_eval->u.eval.close_paren == (U32)ST.paren) {
+                        goto fake_end;
+                    }
+                   PUSH_STATE_GOTO(CURLY_B_min, ST.B, locinput);
+               }
+           }
+            sayNO;
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+          curly_try_B_max:
+           /* a successful greedy match: now try to match B */
+            if (cur_eval && cur_eval->u.eval.close_paren &&
+                cur_eval->u.eval.close_paren == (U32)ST.paren) {
+                goto fake_end;
+            }
+           {
+               bool could_match = locinput < reginfo->strend;
+
+               /* If it could work, try it. */
+                if (ST.c1 != CHRTEST_VOID && could_match) {
+                    if (! UTF8_IS_INVARIANT(UCHARAT(locinput)) && utf8_target)
+                    {
+                        could_match = memEQ(locinput,
+                                            ST.c1_utf8,
+                                            UTF8SKIP(locinput))
+                                    || memEQ(locinput,
+                                             ST.c2_utf8,
+                                             UTF8SKIP(locinput));
+                    }
+                    else {
+                        could_match = UCHARAT(locinput) == ST.c1
+                                      || UCHARAT(locinput) == ST.c2;
+                    }
+                }
+                if (ST.c1 == CHRTEST_VOID || could_match) {
+                   CURLY_SETPAREN(ST.paren, ST.count);
+                   PUSH_STATE_GOTO(CURLY_B_max, ST.B, locinput);
+                    /* NOTREACHED */
+                   NOT_REACHED; /* NOTREACHED */
+               }
+           }
+           /* FALLTHROUGH */
+
+       case CURLY_B_max_fail:
+           /* failed to find B in a greedy match */
+
+           REGCP_UNWIND(ST.cp);
+            if (ST.paren) {
+                UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+            }
+           /*  back up. */
+           if (--ST.count < ST.min)
+               sayNO;
+           locinput = HOPc(locinput, -1);
+           goto curly_try_B_max;
+
+#undef ST
+
+       case END: /*  last op of main pattern  */
+          fake_end:
+           if (cur_eval) {
+               /* we've just finished A in /(??{A})B/; now continue with B */
+
+               st->u.eval.prev_rex = rex_sv;           /* inner */
+
+                /* Save *all* the positions. */
+               st->u.eval.cp = regcppush(rex, 0, maxopenparen);
+               rex_sv = cur_eval->u.eval.prev_rex;
+               is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
+               SET_reg_curpm(rex_sv);
+               rex = ReANY(rex_sv);
+               rexi = RXi_GET(rex);
+               cur_curlyx = cur_eval->u.eval.prev_curlyx;
+
+               REGCP_SET(st->u.eval.lastcp);
+
+               /* Restore parens of the outer rex without popping the
+                * savestack */
+               S_regcp_restore(aTHX_ rex, cur_eval->u.eval.lastcp,
+                                        &maxopenparen);
+
+               st->u.eval.prev_eval = cur_eval;
+               cur_eval = cur_eval->u.eval.prev_eval;
+               DEBUG_EXECUTE_r(
+                   PerlIO_printf(Perl_debug_log, "%*s  EVAL trying tail ... %"UVxf"\n",
+                                     REPORT_CODE_OFF+depth*2, "",PTR2UV(cur_eval)););
+                if ( nochange_depth )
+                   nochange_depth--;
+
+                PUSH_YES_STATE_GOTO(EVAL_AB, st->u.eval.prev_eval->u.eval.B,
+                                    locinput); /* match B */
+           }
+
+           if (locinput < reginfo->till) {
+               DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+                                     "%sMatch possible, but length=%ld is smaller than requested=%ld, failing!%s\n",
+                                     PL_colors[4],
+                                     (long)(locinput - startpos),
+                                     (long)(reginfo->till - startpos),
+                                     PL_colors[5]));
+                                                     
+               sayNO_SILENT;           /* Cannot match: too short. */
+           }
+           sayYES;                     /* Success! */
+
+       case SUCCEED: /* successful SUSPEND/UNLESSM/IFMATCH/CURLYM */
+           DEBUG_EXECUTE_r(
+           PerlIO_printf(Perl_debug_log,
+               "%*s  %ssubpattern success...%s\n",
+               REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5]));
+           sayYES;                     /* Success! */
+
+#undef  ST
+#define ST st->u.ifmatch
+
+        {
+            char *newstart;
+
+       case SUSPEND:   /* (?>A) */
+           ST.wanted = 1;
+           newstart = locinput;
+           goto do_ifmatch;    
+
+       case UNLESSM:   /* -ve lookaround: (?!A), or with flags, (?<!A) */
+           ST.wanted = 0;
+           goto ifmatch_trivial_fail_test;
+
+       case IFMATCH:   /* +ve lookaround: (?=A), or with flags, (?<=A) */
+           ST.wanted = 1;
+         ifmatch_trivial_fail_test:
+           if (scan->flags) {
+               char * const s = HOPBACKc(locinput, scan->flags);
+               if (!s) {
+                   /* trivial fail */
+                   if (logical) {
+                       logical = 0;
+                       sw = 1 - cBOOL(ST.wanted);
+                   }
+                   else if (ST.wanted)
+                       sayNO;
+                   next = scan + ARG(scan);
+                   if (next == scan)
+                       next = NULL;
+                   break;
+               }
+               newstart = s;
+           }
+           else
+               newstart = locinput;
+
+         do_ifmatch:
+           ST.me = scan;
+           ST.logical = logical;
+           logical = 0; /* XXX: reset state of logical once it has been saved into ST */
+           
+           /* execute body of (?...A) */
+           PUSH_YES_STATE_GOTO(IFMATCH_A, NEXTOPER(NEXTOPER(scan)), newstart);
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+        }
+
+       case IFMATCH_A_fail: /* body of (?...A) failed */
+           ST.wanted = !ST.wanted;
+           /* FALLTHROUGH */
+
+       case IFMATCH_A: /* body of (?...A) succeeded */
+           if (ST.logical) {
+               sw = cBOOL(ST.wanted);
+           }
+           else if (!ST.wanted)
+               sayNO;
+
+           if (OP(ST.me) != SUSPEND) {
+                /* restore old position except for (?>...) */
+               locinput = st->locinput;
+           }
+           scan = ST.me + ARG(ST.me);
+           if (scan == ST.me)
+               scan = NULL;
+           continue; /* execute B */
+
+#undef ST
+
+       case LONGJMP: /*  alternative with many branches compiles to
+                       * (BRANCHJ; EXACT ...; LONGJMP ) x N */
+           next = scan + ARG(scan);
+           if (next == scan)
+               next = NULL;
+           break;
+
+       case COMMIT:  /*  (*COMMIT)  */
+           reginfo->cutpoint = reginfo->strend;
+           /* FALLTHROUGH */
+
+       case PRUNE:   /*  (*PRUNE)   */
+           if (!scan->flags)
+               sv_yes_mark = sv_commit = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+           PUSH_STATE_GOTO(COMMIT_next, next, locinput);
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+       case COMMIT_next_fail:
+           no_final = 1;    
+           /* FALLTHROUGH */       
+
+       case OPFAIL:   /* (*FAIL)  */
+           sayNO;
+            /* NOTREACHED */
+           NOT_REACHED; /* NOTREACHED */
+
+#define ST st->u.mark
+        case MARKPOINT: /*  (*MARK:foo)  */
+            ST.prev_mark = mark_state;
+            ST.mark_name = sv_commit = sv_yes_mark 
+                = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+            mark_state = st;
+            ST.mark_loc = locinput;
+            PUSH_YES_STATE_GOTO(MARKPOINT_next, next, locinput);
+            /* NOTREACHED */
+            NOT_REACHED; /* NOTREACHED */
+
+        case MARKPOINT_next:
+            mark_state = ST.prev_mark;
+            sayYES;
+            /* NOTREACHED */
+            NOT_REACHED; /* NOTREACHED */
+
+        case MARKPOINT_next_fail:
+            if (popmark && sv_eq(ST.mark_name,popmark)) 
+            {
+                if (ST.mark_loc > startpoint)
+                   reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
+                popmark = NULL; /* we found our mark */
+                sv_commit = ST.mark_name;
+
+                DEBUG_EXECUTE_r({
+                        PerlIO_printf(Perl_debug_log,
+                           "%*s  %ssetting cutpoint to mark:%"SVf"...%s\n",
+                           REPORT_CODE_OFF+depth*2, "", 
+                           PL_colors[4], SVfARG(sv_commit), PL_colors[5]);
+               });
+            }
+            mark_state = ST.prev_mark;
+            sv_yes_mark = mark_state ? 
+                mark_state->u.mark.mark_name : NULL;
+            sayNO;
+            /* NOTREACHED */
+            NOT_REACHED; /* NOTREACHED */
+
+        case SKIP:  /*  (*SKIP)  */
+            if (scan->flags) {
+                /* (*SKIP) : if we fail we cut here*/
+                ST.mark_name = NULL;
+                ST.mark_loc = locinput;
+                PUSH_STATE_GOTO(SKIP_next,next, locinput);
+            } else {
+                /* (*SKIP:NAME) : if there is a (*MARK:NAME) fail where it was, 
+                   otherwise do nothing.  Meaning we need to scan 
+                 */
+                regmatch_state *cur = mark_state;
+                SV *find = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+                
+                while (cur) {
+                    if ( sv_eq( cur->u.mark.mark_name, 
+                                find ) ) 
+                    {
+                        ST.mark_name = find;
+                        PUSH_STATE_GOTO( SKIP_next, next, locinput);
+                    }
+                    cur = cur->u.mark.prev_mark;
+                }
+            }    
+            /* Didn't find our (*MARK:NAME) so ignore this (*SKIP:NAME) */
+            break;    
+
+       case SKIP_next_fail:
+           if (ST.mark_name) {
+               /* (*CUT:NAME) - Set up to search for the name as we 
+                  collapse the stack*/
+               popmark = ST.mark_name;    
+           } else {
+               /* (*CUT) - No name, we cut here.*/
+               if (ST.mark_loc > startpoint)
+                   reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
+               /* but we set sv_commit to latest mark_name if there
+                  is one so they can test to see how things lead to this
+                  cut */    
+                if (mark_state) 
+                    sv_commit=mark_state->u.mark.mark_name;                
+            } 
+            no_final = 1; 
+            sayNO;
+            /* NOTREACHED */
+            NOT_REACHED; /* NOTREACHED */
+#undef ST
+
+        case LNBREAK: /* \R */
+            if ((n=is_LNBREAK_safe(locinput, reginfo->strend, utf8_target))) {
+                locinput += n;
+            } else
+                sayNO;
+            break;
+
+       default:
+           PerlIO_printf(Perl_error_log, "%"UVxf" %d\n",
+                         PTR2UV(scan), OP(scan));
+           Perl_croak(aTHX_ "regexp memory corruption");
+
+        /* this is a point to jump to in order to increment
+         * locinput by one character */
+          increment_locinput:
+            assert(!NEXTCHR_IS_EOS);
+            if (utf8_target) {
+                locinput += PL_utf8skip[nextchr];
+                /* locinput is allowed to go 1 char off the end, but not 2+ */
+                if (locinput > reginfo->strend)
+                    sayNO;
+            }
+            else
+                locinput++;
+            break;
+           
+       } /* end switch */ 
+
+        /* switch break jumps here */
+       scan = next; /* prepare to execute the next op and ... */
+       continue;    /* ... jump back to the top, reusing st */
+        /* NOTREACHED */
+
+      push_yes_state:
+       /* push a state that backtracks on success */
+       st->u.yes.prev_yes_state = yes_state;
+       yes_state = st;
+       /* FALLTHROUGH */
+      push_state:
+       /* push a new regex state, then continue at scan  */
+       {
+           regmatch_state *newst;
+
+           DEBUG_STACK_r({
+               regmatch_state *cur = st;
+               regmatch_state *curyes = yes_state;
+               int curd = depth;
+               regmatch_slab *slab = PL_regmatch_slab;
+                for (;curd > -1;cur--,curd--) {
+                    if (cur < SLAB_FIRST(slab)) {
+                       slab = slab->prev;
+                       cur = SLAB_LAST(slab);
+                    }
+                    PerlIO_printf(Perl_error_log, "%*s#%-3d %-10s %s\n",
+                        REPORT_CODE_OFF + 2 + depth * 2,"",
+                        curd, PL_reg_name[cur->resume_state],
+                        (curyes == cur) ? "yes" : ""
+                    );
+                    if (curyes == cur)
+                       curyes = cur->u.yes.prev_yes_state;
+                }
+            } else 
+                DEBUG_STATE_pp("push")
+            );
+           depth++;
+           st->locinput = locinput;
+           newst = st+1; 
+           if (newst >  SLAB_LAST(PL_regmatch_slab))
+               newst = S_push_slab(aTHX);
+           PL_regmatch_state = newst;
+
+           locinput = pushinput;
+           st = newst;
+           continue;
+            /* NOTREACHED */
+       }
+    }
+
+    /*
+    * We get here only if there's trouble -- normally "case END" is
+    * the terminating point.
+    */
+    Perl_croak(aTHX_ "corrupted regexp pointers");
+    /* NOTREACHED */
+    sayNO;
+    NOT_REACHED; /* NOTREACHED */
+
+  yes:
+    if (yes_state) {
+       /* we have successfully completed a subexpression, but we must now
+        * pop to the state marked by yes_state and continue from there */
+       assert(st != yes_state);
+#ifdef DEBUGGING
+       while (st != yes_state) {
+           st--;
+           if (st < SLAB_FIRST(PL_regmatch_slab)) {
+               PL_regmatch_slab = PL_regmatch_slab->prev;
+               st = SLAB_LAST(PL_regmatch_slab);
+           }
+           DEBUG_STATE_r({
+               if (no_final) {
+                   DEBUG_STATE_pp("pop (no final)");        
+               } else {
+                   DEBUG_STATE_pp("pop (yes)");
+               }
+           });
+           depth--;
+       }
+#else
+       while (yes_state < SLAB_FIRST(PL_regmatch_slab)
+           || yes_state > SLAB_LAST(PL_regmatch_slab))
+       {
+           /* not in this slab, pop slab */
+           depth -= (st - SLAB_FIRST(PL_regmatch_slab) + 1);
+           PL_regmatch_slab = PL_regmatch_slab->prev;
+           st = SLAB_LAST(PL_regmatch_slab);
+       }
+       depth -= (st - yes_state);
+#endif
+       st = yes_state;
+       yes_state = st->u.yes.prev_yes_state;
+       PL_regmatch_state = st;
+        
+        if (no_final)
+            locinput= st->locinput;
+       state_num = st->resume_state + no_final;
+       goto reenter_switch;
+    }
+
+    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch successful!%s\n",
+                         PL_colors[4], PL_colors[5]));
+
+    if (reginfo->info_aux_eval) {
+       /* each successfully executed (?{...}) block does the equivalent of
+        *   local $^R = do {...}
+        * When popping the save stack, all these locals would be undone;
+        * bypass this by setting the outermost saved $^R to the latest
+        * value */
+        /* I dont know if this is needed or works properly now.
+         * see code related to PL_replgv elsewhere in this file.
+         * Yves
+         */
+       if (oreplsv != GvSV(PL_replgv))
+           sv_setsv(oreplsv, GvSV(PL_replgv));
+    }
+    result = 1;
+    goto final_exit;
+
+  no:
+    DEBUG_EXECUTE_r(
+       PerlIO_printf(Perl_debug_log,
+            "%*s  %sfailed...%s\n",
+            REPORT_CODE_OFF+depth*2, "", 
+            PL_colors[4], PL_colors[5])
+       );
+
+  no_silent:
+    if (no_final) {
+        if (yes_state) {
+            goto yes;
+        } else {
+            goto final_exit;
+        }
+    }    
+    if (depth) {
+       /* there's a previous state to backtrack to */
+       st--;
+       if (st < SLAB_FIRST(PL_regmatch_slab)) {
+           PL_regmatch_slab = PL_regmatch_slab->prev;
+           st = SLAB_LAST(PL_regmatch_slab);
+       }
+       PL_regmatch_state = st;
+       locinput= st->locinput;
+
+       DEBUG_STATE_pp("pop");
+       depth--;
+       if (yes_state == st)
+           yes_state = st->u.yes.prev_yes_state;
+
+       state_num = st->resume_state + 1; /* failure = success + 1 */
+       goto reenter_switch;
+    }
+    result = 0;
+
+  final_exit:
+    if (rex->intflags & PREGf_VERBARG_SEEN) {
+        SV *sv_err = get_sv("REGERROR", 1);
+        SV *sv_mrk = get_sv("REGMARK", 1);
+        if (result) {
+            sv_commit = &PL_sv_no;
+            if (!sv_yes_mark) 
+                sv_yes_mark = &PL_sv_yes;
+        } else {
+            if (!sv_commit) 
+                sv_commit = &PL_sv_yes;
+            sv_yes_mark = &PL_sv_no;
+        }
+        assert(sv_err);
+        assert(sv_mrk);
+        sv_setsv(sv_err, sv_commit);
+        sv_setsv(sv_mrk, sv_yes_mark);
+    }
+
+
+    if (last_pushed_cv) {
+       dSP;
+       POP_MULTICALL;
+        PERL_UNUSED_VAR(SP);
+    }
+
+    assert(!result ||  locinput - reginfo->strbeg >= 0);
+    return result ?  locinput - reginfo->strbeg : -1;
+}
+
+/*
+ - regrepeat - repeatedly match something simple, report how many
+ *
+ * What 'simple' means is a node which can be the operand of a quantifier like
+ * '+', or {1,3}
+ *
+ * startposp - pointer a pointer to the start position.  This is updated
+ *             to point to the byte following the highest successful
+ *             match.
+ * p         - the regnode to be repeatedly matched against.
+ * reginfo   - struct holding match state, such as strend
+ * max       - maximum number of things to match.
+ * depth     - (for debugging) backtracking depth.
+ */
+STATIC I32
+S_regrepeat(pTHX_ regexp *prog, char **startposp, const regnode *p,
+            regmatch_info *const reginfo, I32 max, int depth)
+{
+    char *scan;     /* Pointer to current position in target string */
+    I32 c;
+    char *loceol = reginfo->strend;   /* local version */
+    I32 hardcount = 0;  /* How many matches so far */
+    bool utf8_target = reginfo->is_utf8_target;
+    unsigned int to_complement = 0;  /* Invert the result? */
+    UV utf8_flags;
+    _char_class_number classnum;
+#ifndef DEBUGGING
+    PERL_UNUSED_ARG(depth);
+#endif
+
+    PERL_ARGS_ASSERT_REGREPEAT;
+
+    scan = *startposp;
+    if (max == REG_INFTY)
+       max = I32_MAX;
+    else if (! utf8_target && loceol - scan > max)
+       loceol = scan + max;
+
+    /* Here, for the case of a non-UTF-8 target we have adjusted <loceol> down
+     * to the maximum of how far we should go in it (leaving it set to the real
+     * end, if the maximum permissible would take us beyond that).  This allows
+     * us to make the loop exit condition that we haven't gone past <loceol> to
+     * also mean that we haven't exceeded the max permissible count, saving a
+     * test each time through the loop.  But it assumes that the OP matches a
+     * single byte, which is true for most of the OPs below when applied to a
+     * non-UTF-8 target.  Those relatively few OPs that don't have this
+     * characteristic will have to compensate.
+     *
+     * There is no adjustment for UTF-8 targets, as the number of bytes per
+     * character varies.  OPs will have to test both that the count is less
+     * than the max permissible (using <hardcount> to keep track), and that we
+     * are still within the bounds of the string (using <loceol>.  A few OPs
+     * match a single byte no matter what the encoding.  They can omit the max
+     * test if, for the UTF-8 case, they do the adjustment that was skipped
+     * above.
+     *
+     * Thus, the code above sets things up for the common case; and exceptional
+     * cases need extra work; the common case is to make sure <scan> doesn't
+     * go past <loceol>, and for UTF-8 to also use <hardcount> to make sure the
+     * count doesn't exceed the maximum permissible */
+
+    switch (OP(p)) {
+    case REG_ANY:
+       if (utf8_target) {
+           while (scan < loceol && hardcount < max && *scan != '\n') {
+               scan += UTF8SKIP(scan);
+               hardcount++;
+           }
+       } else {
+           while (scan < loceol && *scan != '\n')
+               scan++;
+       }
+       break;
+    case SANY:
+        if (utf8_target) {
+           while (scan < loceol && hardcount < max) {
+               scan += UTF8SKIP(scan);
+               hardcount++;
+           }
+       }
+       else
+           scan = loceol;
+       break;
+    case EXACTL:
+        _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+        if (utf8_target && UTF8_IS_ABOVE_LATIN1(*scan)) {
+            _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(scan, loceol);
+        }
+        /* FALLTHROUGH */
+    case EXACT:
+        assert(STR_LEN(p) == reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1);
+
+       c = (U8)*STRING(p);
+
+        /* Can use a simple loop if the pattern char to match on is invariant
+         * under UTF-8, or both target and pattern aren't UTF-8.  Note that we
+         * can use UTF8_IS_INVARIANT() even if the pattern isn't UTF-8, as it's
+         * true iff it doesn't matter if the argument is in UTF-8 or not */
+        if (UTF8_IS_INVARIANT(c) || (! utf8_target && ! reginfo->is_utf8_pat)) {
+            if (utf8_target && loceol - scan > max) {
+                /* We didn't adjust <loceol> because is UTF-8, but ok to do so,
+                 * since here, to match at all, 1 char == 1 byte */
+                loceol = scan + max;
+            }
+           while (scan < loceol && UCHARAT(scan) == c) {
+               scan++;
+           }
+       }
+       else if (reginfo->is_utf8_pat) {
+            if (utf8_target) {
+                STRLEN scan_char_len;
+
+                /* When both target and pattern are UTF-8, we have to do
+                 * string EQ */
+                while (hardcount < max
+                       && scan < loceol
+                       && (scan_char_len = UTF8SKIP(scan)) <= STR_LEN(p)
+                       && memEQ(scan, STRING(p), scan_char_len))
+                {
+                    scan += scan_char_len;
+                    hardcount++;
+                }
+            }
+            else if (! UTF8_IS_ABOVE_LATIN1(c)) {
+
+                /* Target isn't utf8; convert the character in the UTF-8
+                 * pattern to non-UTF8, and do a simple loop */
+                c = TWO_BYTE_UTF8_TO_NATIVE(c, *(STRING(p) + 1));
+                while (scan < loceol && UCHARAT(scan) == c) {
+                    scan++;
+                }
+            } /* else pattern char is above Latin1, can't possibly match the
+                 non-UTF-8 target */
+        }
+        else {
+
+            /* Here, the string must be utf8; pattern isn't, and <c> is
+             * different in utf8 than not, so can't compare them directly.
+             * Outside the loop, find the two utf8 bytes that represent c, and
+             * then look for those in sequence in the utf8 string */
+           U8 high = UTF8_TWO_BYTE_HI(c);
+           U8 low = UTF8_TWO_BYTE_LO(c);
+
+           while (hardcount < max
+                   && scan + 1 < loceol
+                   && UCHARAT(scan) == high
+                   && UCHARAT(scan + 1) == low)
+           {
+               scan += 2;
+               hardcount++;
+           }
+       }
+       break;
+
+    case EXACTFA_NO_TRIE:   /* This node only generated for non-utf8 patterns */
+        assert(! reginfo->is_utf8_pat);
+        /* FALLTHROUGH */
+    case EXACTFA:
+        utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+       goto do_exactf;
+
+    case EXACTFL:
+        _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+       utf8_flags = FOLDEQ_LOCALE;
+       goto do_exactf;
+
+    case EXACTF:   /* This node only generated for non-utf8 patterns */
+        assert(! reginfo->is_utf8_pat);
+        utf8_flags = 0;
+        goto do_exactf;
+
+    case EXACTFLU8:
+        if (! utf8_target) {
+            break;
+        }
+        utf8_flags =  FOLDEQ_LOCALE | FOLDEQ_S2_ALREADY_FOLDED
+                                    | FOLDEQ_S2_FOLDS_SANE;
+        goto do_exactf;
+
+    case EXACTFU_SS:
+    case EXACTFU:
+       utf8_flags = reginfo->is_utf8_pat ? FOLDEQ_S2_ALREADY_FOLDED : 0;
+
+      do_exactf: {
+        int c1, c2;
+        U8 c1_utf8[UTF8_MAXBYTES+1], c2_utf8[UTF8_MAXBYTES+1];
+
+        assert(STR_LEN(p) == reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1);
+
+        if (S_setup_EXACTISH_ST_c1_c2(aTHX_ p, &c1, c1_utf8, &c2, c2_utf8,
+                                        reginfo))
+        {
+            if (c1 == CHRTEST_VOID) {
+                /* Use full Unicode fold matching */
+                char *tmpeol = reginfo->strend;
+                STRLEN pat_len = reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1;
+                while (hardcount < max
+                        && foldEQ_utf8_flags(scan, &tmpeol, 0, utf8_target,
+                                             STRING(p), NULL, pat_len,
+                                             reginfo->is_utf8_pat, utf8_flags))
+                {
+                    scan = tmpeol;
+                    tmpeol = reginfo->strend;
+                    hardcount++;
+                }
+            }
+            else if (utf8_target) {
+                if (c1 == c2) {
+                    while (scan < loceol
+                           && hardcount < max
+                           && memEQ(scan, c1_utf8, UTF8SKIP(scan)))
+                    {
+                        scan += UTF8SKIP(scan);
+                        hardcount++;
+                    }
+                }
+                else {
+                    while (scan < loceol
+                           && hardcount < max
+                           && (memEQ(scan, c1_utf8, UTF8SKIP(scan))
+                               || memEQ(scan, c2_utf8, UTF8SKIP(scan))))
+                    {
+                        scan += UTF8SKIP(scan);
+                        hardcount++;
+                    }
+                }
+            }
+            else if (c1 == c2) {
+                while (scan < loceol && UCHARAT(scan) == c1) {
+                    scan++;
+                }
+            }
+            else {
+                while (scan < loceol &&
+                    (UCHARAT(scan) == c1 || UCHARAT(scan) == c2))
+                {
+                    scan++;
+                }
+            }
+       }
+       break;
+    }
+    case ANYOFL:
+        _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+        /* FALLTHROUGH */
+    case ANYOF:
+       if (utf8_target) {
+           while (hardcount < max
+                   && scan < loceol
+                  && reginclass(prog, p, (U8*)scan, (U8*) loceol, utf8_target))
+           {
+               scan += UTF8SKIP(scan);
+               hardcount++;
+           }
+       } else {
+           while (scan < loceol && REGINCLASS(prog, p, (U8*)scan))
+               scan++;
+       }
+       break;
+
+    /* The argument (FLAGS) to all the POSIX node types is the class number */
+
+    case NPOSIXL:
+        to_complement = 1;
+        /* FALLTHROUGH */
+
+    case POSIXL:
+        _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+       if (! utf8_target) {
+           while (scan < loceol && to_complement ^ cBOOL(isFOO_lc(FLAGS(p),
+                                                                   *scan)))
+            {
+               scan++;
+            }
+       } else {
+           while (hardcount < max && scan < loceol
+                   && to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(p),
+                                                                  (U8 *) scan)))
+            {
+                scan += UTF8SKIP(scan);
+               hardcount++;
+           }
+       }
+       break;
+
+    case POSIXD:
+        if (utf8_target) {
+            goto utf8_posix;
+        }
+        /* FALLTHROUGH */
+
+    case POSIXA:
+        if (utf8_target && loceol - scan > max) {
+
+            /* We didn't adjust <loceol> at the beginning of this routine
+             * because is UTF-8, but it is actually ok to do so, since here, to
+             * match, 1 char == 1 byte. */
+            loceol = scan + max;
+        }
+        while (scan < loceol && _generic_isCC_A((U8) *scan, FLAGS(p))) {
+           scan++;
+       }
+       break;
+
+    case NPOSIXD:
+        if (utf8_target) {
+            to_complement = 1;
+            goto utf8_posix;
+        }
+        /* FALLTHROUGH */
+
+    case NPOSIXA:
+        if (! utf8_target) {
+            while (scan < loceol && ! _generic_isCC_A((U8) *scan, FLAGS(p))) {
+                scan++;
+            }
+        }
+        else {
+
+            /* The complement of something that matches only ASCII matches all
+             * non-ASCII, plus everything in ASCII that isn't in the class. */
+           while (hardcount < max && scan < loceol
+                   && (! isASCII_utf8(scan)
+                       || ! _generic_isCC_A((U8) *scan, FLAGS(p))))
+            {
+                scan += UTF8SKIP(scan);
+               hardcount++;
+           }
+        }
+        break;
+
+    case NPOSIXU:
+        to_complement = 1;
+        /* FALLTHROUGH */
+
+    case POSIXU:
+       if (! utf8_target) {
+            while (scan < loceol && to_complement
+                                ^ cBOOL(_generic_isCC((U8) *scan, FLAGS(p))))
+            {
+                scan++;
+            }
+       }
+       else {
+          utf8_posix:
+            classnum = (_char_class_number) FLAGS(p);
+            if (classnum < _FIRST_NON_SWASH_CC) {
+
+                /* Here, a swash is needed for above-Latin1 code points.
+                 * Process as many Latin1 code points using the built-in rules.
+                 * Go to another loop to finish processing upon encountering
+                 * the first Latin1 code point.  We could do that in this loop
+                 * as well, but the other way saves having to test if the swash
+                 * has been loaded every time through the loop: extra space to
+                 * save a test. */
+                while (hardcount < max && scan < loceol) {
+                    if (UTF8_IS_INVARIANT(*scan)) {
+                        if (! (to_complement ^ cBOOL(_generic_isCC((U8) *scan,
+                                                                   classnum))))
+                        {
+                            break;
+                        }
+                        scan++;
+                    }
+                    else if (UTF8_IS_DOWNGRADEABLE_START(*scan)) {
+                        if (! (to_complement
+                              ^ cBOOL(_generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(*scan,
+                                                                     *(scan + 1)),
+                                                    classnum))))
+                        {
+                            break;
+                        }
+                        scan += 2;
+                    }
+                    else {
+                        goto found_above_latin1;
+                    }
+
+                    hardcount++;
+                }
+            }
+            else {
+                /* For these character classes, the knowledge of how to handle
+                 * every code point is compiled in to Perl via a macro.  This
+                 * code is written for making the loops as tight as possible.
+                 * It could be refactored to save space instead */
+                switch (classnum) {
+                    case _CC_ENUM_SPACE:
+                        while (hardcount < max
+                               && scan < loceol
+                               && (to_complement ^ cBOOL(isSPACE_utf8(scan))))
+                        {
+                            scan += UTF8SKIP(scan);
+                            hardcount++;
+                        }
+                        break;
+                    case _CC_ENUM_BLANK:
+                        while (hardcount < max
+                               && scan < loceol
+                               && (to_complement ^ cBOOL(isBLANK_utf8(scan))))
+                        {
+                            scan += UTF8SKIP(scan);
+                            hardcount++;
+                        }
+                        break;
+                    case _CC_ENUM_XDIGIT:
+                        while (hardcount < max
+                               && scan < loceol
+                               && (to_complement ^ cBOOL(isXDIGIT_utf8(scan))))
+                        {
+                            scan += UTF8SKIP(scan);
+                            hardcount++;
+                        }
+                        break;
+                    case _CC_ENUM_VERTSPACE:
+                        while (hardcount < max
+                               && scan < loceol
+                               && (to_complement ^ cBOOL(isVERTWS_utf8(scan))))
+                        {
+                            scan += UTF8SKIP(scan);
+                            hardcount++;
+                        }
+                        break;
+                    case _CC_ENUM_CNTRL:
+                        while (hardcount < max
+                               && scan < loceol
+                               && (to_complement ^ cBOOL(isCNTRL_utf8(scan))))
+                        {
+                            scan += UTF8SKIP(scan);
+                            hardcount++;
+                        }
+                        break;
+                    default:
+                        Perl_croak(aTHX_ "panic: regrepeat() node %d='%s' has an unexpected character class '%d'", OP(p), PL_reg_name[OP(p)], classnum);
+                }
+            }
+       }
+        break;
+
+      found_above_latin1:   /* Continuation of POSIXU and NPOSIXU */
+
+        /* Load the swash if not already present */
+        if (! PL_utf8_swash_ptrs[classnum]) {
+            U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+            PL_utf8_swash_ptrs[classnum] = _core_swash_init(
+                                        "utf8",
+                                        "",
+                                        &PL_sv_undef, 1, 0,
+                                        PL_XPosix_ptrs[classnum], &flags);
+        }
+
+        while (hardcount < max && scan < loceol
+               && to_complement ^ cBOOL(_generic_utf8(
+                                       classnum,
+                                       scan,
+                                       swash_fetch(PL_utf8_swash_ptrs[classnum],
+                                                   (U8 *) scan,
+                                                   TRUE))))
+        {
+            scan += UTF8SKIP(scan);
+            hardcount++;
+        }
+        break;
+
+    case LNBREAK:
+        if (utf8_target) {
+           while (hardcount < max && scan < loceol &&
+                    (c=is_LNBREAK_utf8_safe(scan, loceol))) {
+               scan += c;
+               hardcount++;
+           }
+       } else {
+            /* LNBREAK can match one or two latin chars, which is ok, but we
+             * have to use hardcount in this situation, and throw away the
+             * adjustment to <loceol> done before the switch statement */
+            loceol = reginfo->strend;
+           while (scan < loceol && (c=is_LNBREAK_latin1_safe(scan, loceol))) {
+               scan+=c;
+               hardcount++;
+           }
+       }
+       break;
+
+    case BOUNDL:
+    case NBOUNDL:
+        _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+        /* FALLTHROUGH */
+    case BOUND:
+    case BOUNDA:
+    case BOUNDU:
+    case EOS:
+    case GPOS:
+    case KEEPS:
+    case NBOUND:
+    case NBOUNDA:
+    case NBOUNDU:
+    case OPFAIL:
+    case SBOL:
+    case SEOL:
+        /* These are all 0 width, so match right here or not at all. */
+        break;
+
+    default:
+        Perl_croak(aTHX_ "panic: regrepeat() called with unrecognized node type %d='%s'", OP(p), PL_reg_name[OP(p)]);
+        /* NOTREACHED */
+        NOT_REACHED; /* NOTREACHED */
+
+    }
+
+    if (hardcount)
+       c = hardcount;
+    else
+       c = scan - *startposp;
+    *startposp = scan;
+
+    DEBUG_r({
+       GET_RE_DEBUG_FLAGS_DECL;
+       DEBUG_EXECUTE_r({
+           SV * const prop = sv_newmortal();
+            regprop(prog, prop, p, reginfo, NULL);
+           PerlIO_printf(Perl_debug_log,
+                       "%*s  %s can match %"IVdf" times out of %"IVdf"...\n",
+                       REPORT_CODE_OFF + depth*2, "", SvPVX_const(prop),(IV)c,(IV)max);
+       });
+    });
+
+    return(c);
+}
+
+
+#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
+/*
+- regclass_swash - prepare the utf8 swash.  Wraps the shared core version to
+create a copy so that changes the caller makes won't change the shared one.
+If <altsvp> is non-null, will return NULL in it, for back-compat.
+ */
+SV *
+Perl_regclass_swash(pTHX_ const regexp *prog, const regnode* node, bool doinit, SV** listsvp, SV **altsvp)
+{
+    PERL_ARGS_ASSERT_REGCLASS_SWASH;
+
+    if (altsvp) {
+        *altsvp = NULL;
+    }
+
+    return newSVsv(_get_regclass_nonbitmap_data(prog, node, doinit, listsvp, NULL, NULL));
+}
+
+#endif /* !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION) */
+
+/*
+ - reginclass - determine if a character falls into a character class
+  n is the ANYOF-type regnode
+  p is the target string
+  p_end points to one byte beyond the end of the target string
+  utf8_target tells whether p is in UTF-8.
+
+  Returns true if matched; false otherwise.
+
+  Note that this can be a synthetic start class, a combination of various
+  nodes, so things you think might be mutually exclusive, such as locale,
+  aren't.  It can match both locale and non-locale
+
+ */
+
+STATIC bool
+S_reginclass(pTHX_ regexp * const prog, const regnode * const n, const U8* const p, const U8* const p_end, const bool utf8_target)
+{
+    dVAR;
+    const char flags = ANYOF_FLAGS(n);
+    bool match = FALSE;
+    UV c = *p;
+
+    PERL_ARGS_ASSERT_REGINCLASS;
+
+    /* If c is not already the code point, get it.  Note that
+     * UTF8_IS_INVARIANT() works even if not in UTF-8 */
+    if (! UTF8_IS_INVARIANT(c) && utf8_target) {
+        STRLEN c_len = 0;
+       c = utf8n_to_uvchr(p, p_end - p, &c_len,
+               (UTF8_ALLOW_DEFAULT & UTF8_ALLOW_ANYUV)
+               | UTF8_ALLOW_FFFF | UTF8_CHECK_ONLY);
+               /* see [perl #37836] for UTF8_ALLOW_ANYUV; [perl #38293] for
+                * UTF8_ALLOW_FFFF */
+       if (c_len == (STRLEN)-1)
+           Perl_croak(aTHX_ "Malformed UTF-8 character (fatal)");
+        if (c > 255 && OP(n) == ANYOFL && ! is_ANYOF_SYNTHETIC(n)) {
+            _CHECK_AND_OUTPUT_WIDE_LOCALE_CP_MSG(c);
+        }
+    }
+
+    /* If this character is potentially in the bitmap, check it */
+    if (c < NUM_ANYOF_CODE_POINTS) {
+       if (ANYOF_BITMAP_TEST(n, c))
+           match = TRUE;
+       else if ((flags & ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII)
+                 && ! utf8_target
+                 && ! isASCII(c))
+       {
+           match = TRUE;
+       }
+       else if (flags & ANYOF_LOCALE_FLAGS) {
+           if ((flags & ANYOF_LOC_FOLD)
+                && c < 256
+               && ANYOF_BITMAP_TEST(n, PL_fold_locale[c]))
+            {
+                match = TRUE;
+            }
+            else if (ANYOF_POSIXL_TEST_ANY_SET(n)
+                     && c < 256
+            ) {
+
+                /* The data structure is arranged so bits 0, 2, 4, ... are set
+                 * if the class includes the Posix character class given by
+                 * bit/2; and 1, 3, 5, ... are set if the class includes the
+                 * complemented Posix class given by int(bit/2).  So we loop
+                 * through the bits, each time changing whether we complement
+                 * the result or not.  Suppose for the sake of illustration
+                 * that bits 0-3 mean respectively, \w, \W, \s, \S.  If bit 0
+                 * is set, it means there is a match for this ANYOF node if the
+                 * character is in the class given by the expression (0 / 2 = 0
+                 * = \w).  If it is in that class, isFOO_lc() will return 1,
+                 * and since 'to_complement' is 0, the result will stay TRUE,
+                 * and we exit the loop.  Suppose instead that bit 0 is 0, but
+                 * bit 1 is 1.  That means there is a match if the character
+                 * matches \W.  We won't bother to call isFOO_lc() on bit 0,
+                 * but will on bit 1.  On the second iteration 'to_complement'
+                 * will be 1, so the exclusive or will reverse things, so we
+                 * are testing for \W.  On the third iteration, 'to_complement'
+                 * will be 0, and we would be testing for \s; the fourth
+                 * iteration would test for \S, etc.
+                 *
+                 * Note that this code assumes that all the classes are closed
+                 * under folding.  For example, if a character matches \w, then
+                 * its fold does too; and vice versa.  This should be true for
+                 * any well-behaved locale for all the currently defined Posix
+                 * classes, except for :lower: and :upper:, which are handled
+                 * by the pseudo-class :cased: which matches if either of the
+                 * other two does.  To get rid of this assumption, an outer
+                 * loop could be used below to iterate over both the source
+                 * character, and its fold (if different) */
+
+                int count = 0;
+                int to_complement = 0;
+
+                while (count < ANYOF_MAX) {
+                    if (ANYOF_POSIXL_TEST(n, count)
+                        && to_complement ^ cBOOL(isFOO_lc(count/2, (U8) c)))
+                    {
+                        match = TRUE;
+                        break;
+                    }
+                    count++;
+                    to_complement ^= 1;
+                }
+           }
+       }
+    }
+
+
+    /* If the bitmap didn't (or couldn't) match, and something outside the
+     * bitmap could match, try that. */
+    if (!match) {
+       if (c >= NUM_ANYOF_CODE_POINTS
+            && (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP))
+        {
+           match = TRUE;       /* Everything above the bitmap matches */
+       }
+       else if ((flags & ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES)
+                 || (utf8_target && (flags & ANYOF_HAS_UTF8_NONBITMAP_MATCHES))
+                  || ((flags & ANYOF_LOC_FOLD)
+                       && IN_UTF8_CTYPE_LOCALE
+                       && ARG(n) != ANYOF_ONLY_HAS_BITMAP))
+        {
+            SV* only_utf8_locale = NULL;
+           SV * const sw = _get_regclass_nonbitmap_data(prog, n, TRUE, 0,
+                                                       &only_utf8_locale, NULL);
+           if (sw) {
+                U8 utf8_buffer[2];
+               U8 * utf8_p;
+               if (utf8_target) {
+                   utf8_p = (U8 *) p;
+               } else { /* Convert to utf8 */
+                   utf8_p = utf8_buffer;
+                    append_utf8_from_native_byte(*p, &utf8_p);
+                   utf8_p = utf8_buffer;
+               }
+
+               if (swash_fetch(sw, utf8_p, TRUE)) {
+                   match = TRUE;
+                }
+           }
+            if (! match && only_utf8_locale && IN_UTF8_CTYPE_LOCALE) {
+                match = _invlist_contains_cp(only_utf8_locale, c);
+            }
+       }
+
+        if (UNICODE_IS_SUPER(c)
+            && (flags & ANYOF_WARN_SUPER)
+            && ckWARN_d(WARN_NON_UNICODE))
+        {
+            Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
+                "Matched non-Unicode code point 0x%04"UVXf" against Unicode property; may not be portable", c);
+        }
+    }
+
+#if ANYOF_INVERT != 1
+    /* Depending on compiler optimization cBOOL takes time, so if don't have to
+     * use it, don't */
+#   error ANYOF_INVERT needs to be set to 1, or guarded with cBOOL below,
+#endif
+
+    /* The xor complements the return if to invert: 1^1 = 0, 1^0 = 1 */
+    return (flags & ANYOF_INVERT) ^ match;
+}
+
+STATIC U8 *
+S_reghop3(U8 *s, SSize_t off, const U8* lim)
+{
+    /* return the position 'off' UTF-8 characters away from 's', forward if
+     * 'off' >= 0, backwards if negative.  But don't go outside of position
+     * 'lim', which better be < s  if off < 0 */
+
+    PERL_ARGS_ASSERT_REGHOP3;
+
+    if (off >= 0) {
+       while (off-- && s < lim) {
+           /* XXX could check well-formedness here */
+           s += UTF8SKIP(s);
+       }
+    }
+    else {
+        while (off++ && s > lim) {
+            s--;
+            if (UTF8_IS_CONTINUED(*s)) {
+                while (s > lim && UTF8_IS_CONTINUATION(*s))
+                    s--;
+           }
+            /* XXX could check well-formedness here */
+       }
+    }
+    return s;
+}
+
+STATIC U8 *
+S_reghop4(U8 *s, SSize_t off, const U8* llim, const U8* rlim)
+{
+    PERL_ARGS_ASSERT_REGHOP4;
+
+    if (off >= 0) {
+        while (off-- && s < rlim) {
+            /* XXX could check well-formedness here */
+            s += UTF8SKIP(s);
+        }
+    }
+    else {
+        while (off++ && s > llim) {
+            s--;
+            if (UTF8_IS_CONTINUED(*s)) {
+                while (s > llim && UTF8_IS_CONTINUATION(*s))
+                    s--;
+            }
+            /* XXX could check well-formedness here */
+        }
+    }
+    return s;
+}
+
+/* like reghop3, but returns NULL on overrun, rather than returning last
+ * char pos */
+
+STATIC U8 *
+S_reghopmaybe3(U8* s, SSize_t off, const U8* lim)
+{
+    PERL_ARGS_ASSERT_REGHOPMAYBE3;
+
+    if (off >= 0) {
+       while (off-- && s < lim) {
+           /* XXX could check well-formedness here */
+           s += UTF8SKIP(s);
+       }
+       if (off >= 0)
+           return NULL;
+    }
+    else {
+        while (off++ && s > lim) {
+            s--;
+            if (UTF8_IS_CONTINUED(*s)) {
+                while (s > lim && UTF8_IS_CONTINUATION(*s))
+                    s--;
+           }
+            /* XXX could check well-formedness here */
+       }
+       if (off <= 0)
+           return NULL;
+    }
+    return s;
+}
+
+
+/* when executing a regex that may have (?{}), extra stuff needs setting
+   up that will be visible to the called code, even before the current
+   match has finished. In particular:
+
+   * $_ is localised to the SV currently being matched;
+   * pos($_) is created if necessary, ready to be updated on each call-out
+     to code;
+   * a fake PMOP is created that can be set to PL_curpm (normally PL_curpm
+     isn't set until the current pattern is successfully finished), so that
+     $1 etc of the match-so-far can be seen;
+   * save the old values of subbeg etc of the current regex, and  set then
+     to the current string (again, this is normally only done at the end
+     of execution)
+*/
+
+static void
+S_setup_eval_state(pTHX_ regmatch_info *const reginfo)
+{
+    MAGIC *mg;
+    regexp *const rex = ReANY(reginfo->prog);
+    regmatch_info_aux_eval *eval_state = reginfo->info_aux_eval;
+
+    eval_state->rex = rex;
+
+    if (reginfo->sv) {
+        /* Make $_ available to executed code. */
+        if (reginfo->sv != DEFSV) {
+            SAVE_DEFSV;
+            DEFSV_set(reginfo->sv);
+        }
+
+        if (!(mg = mg_find_mglob(reginfo->sv))) {
+            /* prepare for quick setting of pos */
+            mg = sv_magicext_mglob(reginfo->sv);
+            mg->mg_len = -1;
+        }
+        eval_state->pos_magic = mg;
+        eval_state->pos       = mg->mg_len;
+        eval_state->pos_flags = mg->mg_flags;
+    }
+    else
+        eval_state->pos_magic = NULL;
+
+    if (!PL_reg_curpm) {
+        /* PL_reg_curpm is a fake PMOP that we can attach the current
+         * regex to and point PL_curpm at, so that $1 et al are visible
+         * within a /(?{})/. It's just allocated once per interpreter the
+         * first time its needed */
+        Newxz(PL_reg_curpm, 1, PMOP);
+#ifdef USE_ITHREADS
+        {
+            SV* const repointer = &PL_sv_undef;
+            /* this regexp is also owned by the new PL_reg_curpm, which
+               will try to free it.  */
+            av_push(PL_regex_padav, repointer);
+            PL_reg_curpm->op_pmoffset = av_tindex(PL_regex_padav);
+            PL_regex_pad = AvARRAY(PL_regex_padav);
+        }
+#endif
+    }
+    SET_reg_curpm(reginfo->prog);
+    eval_state->curpm = PL_curpm;
+    PL_curpm = PL_reg_curpm;
+    if (RXp_MATCH_COPIED(rex)) {
+        /*  Here is a serious problem: we cannot rewrite subbeg,
+            since it may be needed if this match fails.  Thus
+            $` inside (?{}) could fail... */
+        eval_state->subbeg     = rex->subbeg;
+        eval_state->sublen     = rex->sublen;
+        eval_state->suboffset  = rex->suboffset;
+        eval_state->subcoffset = rex->subcoffset;
+#ifdef PERL_ANY_COW
+        eval_state->saved_copy = rex->saved_copy;
+#endif
+        RXp_MATCH_COPIED_off(rex);
+    }
+    else
+        eval_state->subbeg = NULL;
+    rex->subbeg = (char *)reginfo->strbeg;
+    rex->suboffset = 0;
+    rex->subcoffset = 0;
+    rex->sublen = reginfo->strend - reginfo->strbeg;
+}
+
+
+/* destructor to clear up regmatch_info_aux and regmatch_info_aux_eval */
+
+static void
+S_cleanup_regmatch_info_aux(pTHX_ void *arg)
+{
+    regmatch_info_aux *aux = (regmatch_info_aux *) arg;
+    regmatch_info_aux_eval *eval_state =  aux->info_aux_eval;
+    regmatch_slab *s;
+
+    Safefree(aux->poscache);
+
+    if (eval_state) {
+
+        /* undo the effects of S_setup_eval_state() */
+
+        if (eval_state->subbeg) {
+            regexp * const rex = eval_state->rex;
+            rex->subbeg     = eval_state->subbeg;
+            rex->sublen     = eval_state->sublen;
+            rex->suboffset  = eval_state->suboffset;
+            rex->subcoffset = eval_state->subcoffset;
+#ifdef PERL_ANY_COW
+            rex->saved_copy = eval_state->saved_copy;
+#endif
+            RXp_MATCH_COPIED_on(rex);
+        }
+        if (eval_state->pos_magic)
+        {
+            eval_state->pos_magic->mg_len = eval_state->pos;
+            eval_state->pos_magic->mg_flags =
+                 (eval_state->pos_magic->mg_flags & ~MGf_BYTES)
+               | (eval_state->pos_flags & MGf_BYTES);
+        }
+
+        PL_curpm = eval_state->curpm;
+    }
+
+    PL_regmatch_state = aux->old_regmatch_state;
+    PL_regmatch_slab  = aux->old_regmatch_slab;
+
+    /* free all slabs above current one - this must be the last action
+     * of this function, as aux and eval_state are allocated within
+     * slabs and may be freed here */
+
+    s = PL_regmatch_slab->next;
+    if (s) {
+        PL_regmatch_slab->next = NULL;
+        while (s) {
+            regmatch_slab * const osl = s;
+            s = s->next;
+            Safefree(osl);
+        }
+    }
+}
+
+
+STATIC void
+S_to_utf8_substr(pTHX_ regexp *prog)
+{
+    /* Converts substr fields in prog from bytes to UTF-8, calling fbm_compile
+     * on the converted value */
+
+    int i = 1;
+
+    PERL_ARGS_ASSERT_TO_UTF8_SUBSTR;
+
+    do {
+       if (prog->substrs->data[i].substr
+           && !prog->substrs->data[i].utf8_substr) {
+           SV* const sv = newSVsv(prog->substrs->data[i].substr);
+           prog->substrs->data[i].utf8_substr = sv;
+           sv_utf8_upgrade(sv);
+           if (SvVALID(prog->substrs->data[i].substr)) {
+               if (SvTAIL(prog->substrs->data[i].substr)) {
+                   /* Trim the trailing \n that fbm_compile added last
+                      time.  */
+                   SvCUR_set(sv, SvCUR(sv) - 1);
+                   /* Whilst this makes the SV technically "invalid" (as its
+                      buffer is no longer followed by "\0") when fbm_compile()
+                      adds the "\n" back, a "\0" is restored.  */
+                   fbm_compile(sv, FBMcf_TAIL);
+               } else
+                   fbm_compile(sv, 0);
+           }
+           if (prog->substrs->data[i].substr == prog->check_substr)
+               prog->check_utf8 = sv;
+       }
+    } while (i--);
+}
+
+STATIC bool
+S_to_byte_substr(pTHX_ regexp *prog)
+{
+    /* Converts substr fields in prog from UTF-8 to bytes, calling fbm_compile
+     * on the converted value; returns FALSE if can't be converted. */
+
+    int i = 1;
+
+    PERL_ARGS_ASSERT_TO_BYTE_SUBSTR;
+
+    do {
+       if (prog->substrs->data[i].utf8_substr
+           && !prog->substrs->data[i].substr) {
+           SV* sv = newSVsv(prog->substrs->data[i].utf8_substr);
+           if (! sv_utf8_downgrade(sv, TRUE)) {
+                return FALSE;
+            }
+            if (SvVALID(prog->substrs->data[i].utf8_substr)) {
+                if (SvTAIL(prog->substrs->data[i].utf8_substr)) {
+                    /* Trim the trailing \n that fbm_compile added last
+                        time.  */
+                    SvCUR_set(sv, SvCUR(sv) - 1);
+                    fbm_compile(sv, FBMcf_TAIL);
+                } else
+                    fbm_compile(sv, 0);
+            }
+           prog->substrs->data[i].substr = sv;
+           if (prog->substrs->data[i].utf8_substr == prog->check_utf8)
+               prog->check_substr = sv;
+       }
+    } while (i--);
+
+    return TRUE;
+}
+
+/*
+ * ex: set ts=8 sts=4 sw=4 et:
+ */
diff --git a/src/5023001/regcomp.c b/src/5023001/regcomp.c
new file mode 100644 (file)
index 0000000..2cc5fdb
--- /dev/null
@@ -0,0 +1,18210 @@
+/*    regcomp.c
+ */
+
+/*
+ * 'A fair jaw-cracker dwarf-language must be.'            --Samwise Gamgee
+ *
+ *     [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
+ */
+
+/* This file contains functions for compiling a regular expression.  See
+ * also regexec.c which funnily enough, contains functions for executing
+ * a regular expression.
+ *
+ * This file is also copied at build time to ext/re/re_comp.c, where
+ * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
+ * This causes the main functions to be compiled under new names and with
+ * debugging support added, which makes "use re 'debug'" work.
+ */
+
+/* NOTE: this is derived from Henry Spencer's regexp code, and should not
+ * confused with the original package (see point 3 below).  Thanks, Henry!
+ */
+
+/* Additional note: this code is very heavily munged from Henry's version
+ * in places.  In some spots I've traded clarity for efficiency, so don't
+ * blame Henry for some of the lack of readability.
+ */
+
+/* The names of the functions have been changed from regcomp and
+ * regexec to pregcomp and pregexec in order to avoid conflicts
+ * with the POSIX routines of the same names.
+*/
+
+#ifdef PERL_EXT_RE_BUILD
+#include "re_top.h"
+#endif
+
+/*
+ * pregcomp and pregexec -- regsub and regerror are not used in perl
+ *
+ * Copyright (c) 1986 by University of Toronto.
+ * Written by Henry Spencer.  Not derived from licensed software.
+ *
+ * Permission is granted to anyone to use this software for any
+ * purpose on any computer system, and to redistribute it freely,
+ * subject to the following restrictions:
+ *
+ * 1. The author is not responsible for the consequences of use of
+ *  this software, no matter how awful, even if they arise
+ *  from defects in it.
+ *
+ * 2. The origin of this software must not be misrepresented, either
+ *  by explicit claim or by omission.
+ *
+ * 3. Altered versions must be plainly marked as such, and must not
+ *  be misrepresented as being the original software.
+ *
+ *
+ ****    Alterations to Henry's code are...
+ ****
+ ****    Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ ****    2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ ****    by Larry Wall and others
+ ****
+ ****    You may distribute under the terms of either the GNU General Public
+ ****    License or the Artistic License, as specified in the README file.
+
+ *
+ * Beware that some of this code is subtly aware of the way operator
+ * precedence is structured in regular expressions.  Serious changes in
+ * regular-expression syntax might require a total rethink.
+ */
+#include "EXTERN.h"
+#define PERL_IN_REGCOMP_C
+#undef PERL_IN_XSUB_RE
+#define PERL_IN_XSUB_RE 1
+#include "perl.h"
+#undef PERL_IN_XSUB_RE
+
+#ifndef PERL_IN_XSUB_RE
+#include "re_defs.h"
+#endif
+
+#define REG_COMP_C
+#ifdef PERL_IN_XSUB_RE
+#  include "re_comp.h"
+EXTERN_C const struct regexp_engine my_reg_engine;
+#else
+#  include "regcomp.h"
+#endif
+
+#include "dquote_static.c"
+#include "inline_invlist.c"
+#include "unicode_constants.h"
+
+#define HAS_NONLATIN1_FOLD_CLOSURE(i) \
+ _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
+#define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(i) \
+ _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
+#define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
+#define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
+
+#ifndef STATIC
+#define STATIC static
+#endif
+
+#ifndef MIN
+#define MIN(a,b) ((a) < (b) ? (a) : (b))
+#endif
+
+/* this is a chain of data about sub patterns we are processing that
+   need to be handled separately/specially in study_chunk. Its so
+   we can simulate recursion without losing state.  */
+struct scan_frame;
+typedef struct scan_frame {
+ regnode *last_regnode;      /* last node to process in this frame */
+ regnode *next_regnode;      /* next node to process when last is reached */
+ U32 prev_recursed_depth;
+ I32 stopparen;              /* what stopparen do we use */
+ U32 is_top_frame;           /* what flags do we use? */
+
+ struct scan_frame *this_prev_frame; /* this previous frame */
+ struct scan_frame *prev_frame;      /* previous frame */
+ struct scan_frame *next_frame;      /* next frame */
+} scan_frame;
+
+/* Certain characters are output as a sequence with the first being a
+ * backslash. */
+#define isBACKSLASHED_PUNCT(c)                                              \
+     ((c) == '-' || (c) == ']' || (c) == '\\' || (c) == '^')
+
+
+struct RExC_state_t {
+ U32  flags;   /* RXf_* are we folding, multilining? */
+ U32  pm_flags;  /* PMf_* stuff from the calling PMOP */
+ char *precomp;  /* uncompiled string. */
+ REGEXP *rx_sv;   /* The SV that is the regexp. */
+ regexp *rx;                    /* perl core regexp structure */
+ regexp_internal *rxi;           /* internal data for regexp object
+          pprivate field */
+ char *start;   /* Start of input for compile */
+ char *end;   /* End of input for compile */
+ char *parse;   /* Input-scan pointer. */
+ SSize_t whilem_seen;  /* number of WHILEM in this expr */
+ regnode *emit_start;  /* Start of emitted-code area */
+ regnode *emit_bound;  /* First regnode outside of the
+          allocated space */
+ regnode *emit;   /* Code-emit pointer; if = &emit_dummy,
+          implies compiling, so don't emit */
+ regnode_ssc emit_dummy;  /* placeholder for emit to point to;
+          large enough for the largest
+          non-EXACTish node, so can use it as
+          scratch in pass1 */
+ I32  naughty;  /* How bad is this pattern? */
+ I32  sawback;  /* Did we see \1, ...? */
+ U32  seen;
+ SSize_t size;   /* Code size. */
+ I32                npar;            /* Capture buffer count, (OPEN) plus
+          one. ("par" 0 is the whole
+          pattern)*/
+ I32  nestroot;  /* root parens we are in - used by
+          accept */
+ I32  extralen;
+ I32  seen_zerolen;
+ regnode **open_parens;  /* pointers to open parens */
+ regnode **close_parens;  /* pointers to close parens */
+ regnode *opend;   /* END node in program */
+ I32  utf8;  /* whether the pattern is utf8 or not */
+ I32  orig_utf8; /* whether the pattern was originally in utf8 */
+        /* XXX use this for future optimisation of case
+        * where pattern must be upgraded to utf8. */
+ I32  uni_semantics; /* If a d charset modifier should use unicode
+        rules, even if the pattern is not in
+        utf8 */
+ HV  *paren_names;  /* Paren names */
+
+ regnode **recurse;  /* Recurse regops */
+ I32  recurse_count;  /* Number of recurse regops */
+ U8          *study_chunk_recursed;  /* bitmap of which subs we have moved
+          through */
+ U32         study_chunk_recursed_bytes;  /* bytes in bitmap */
+ I32  in_lookbehind;
+ I32  contains_locale;
+ I32  contains_i;
+ I32  override_recoding;
+#ifdef EBCDIC
+ I32  recode_x_to_native;
+#endif
+ I32  in_multi_char_class;
+ struct reg_code_block *code_blocks; /* positions of literal (?{})
+           within pattern */
+ int  num_code_blocks; /* size of code_blocks[] */
+ int  code_index;  /* next code_blocks[] slot */
+ SSize_t     maxlen;                        /* mininum possible number of chars in string to match */
+ scan_frame *frame_head;
+ scan_frame *frame_last;
+ U32         frame_count;
+ U32         strict;
+#ifdef ADD_TO_REGEXEC
+ char  *starttry;  /* -Dr: where regtry was called. */
+#define RExC_starttry (pRExC_state->starttry)
+#endif
+ SV  *runtime_code_qr; /* qr with the runtime code blocks */
+#ifdef DEBUGGING
+ const char  *lastparse;
+ I32         lastnum;
+ AV          *paren_name_list;       /* idx -> name */
+ U32         study_chunk_recursed_count;
+ SV          *mysv1;
+ SV          *mysv2;
+#define RExC_lastparse (pRExC_state->lastparse)
+#define RExC_lastnum (pRExC_state->lastnum)
+#define RExC_paren_name_list    (pRExC_state->paren_name_list)
+#define RExC_study_chunk_recursed_count    (pRExC_state->study_chunk_recursed_count)
+#define RExC_mysv (pRExC_state->mysv1)
+#define RExC_mysv1 (pRExC_state->mysv1)
+#define RExC_mysv2 (pRExC_state->mysv2)
+
+#endif
+};
+
+#define RExC_flags (pRExC_state->flags)
+#define RExC_pm_flags (pRExC_state->pm_flags)
+#define RExC_precomp (pRExC_state->precomp)
+#define RExC_rx_sv (pRExC_state->rx_sv)
+#define RExC_rx  (pRExC_state->rx)
+#define RExC_rxi (pRExC_state->rxi)
+#define RExC_start (pRExC_state->start)
+#define RExC_end (pRExC_state->end)
+#define RExC_parse (pRExC_state->parse)
+#define RExC_whilem_seen (pRExC_state->whilem_seen)
+#ifdef RE_TRACK_PATTERN_OFFSETS
+#define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the
+              others */
+#endif
+#define RExC_emit (pRExC_state->emit)
+#define RExC_emit_dummy (pRExC_state->emit_dummy)
+#define RExC_emit_start (pRExC_state->emit_start)
+#define RExC_emit_bound (pRExC_state->emit_bound)
+#define RExC_sawback (pRExC_state->sawback)
+#define RExC_seen (pRExC_state->seen)
+#define RExC_size (pRExC_state->size)
+#define RExC_maxlen        (pRExC_state->maxlen)
+#define RExC_npar (pRExC_state->npar)
+#define RExC_nestroot   (pRExC_state->nestroot)
+#define RExC_extralen (pRExC_state->extralen)
+#define RExC_seen_zerolen (pRExC_state->seen_zerolen)
+#define RExC_utf8 (pRExC_state->utf8)
+#define RExC_uni_semantics (pRExC_state->uni_semantics)
+#define RExC_orig_utf8 (pRExC_state->orig_utf8)
+#define RExC_open_parens (pRExC_state->open_parens)
+#define RExC_close_parens (pRExC_state->close_parens)
+#define RExC_opend (pRExC_state->opend)
+#define RExC_paren_names (pRExC_state->paren_names)
+#define RExC_recurse (pRExC_state->recurse)
+#define RExC_recurse_count (pRExC_state->recurse_count)
+#define RExC_study_chunk_recursed        (pRExC_state->study_chunk_recursed)
+#define RExC_study_chunk_recursed_bytes  \
+        (pRExC_state->study_chunk_recursed_bytes)
+#define RExC_in_lookbehind (pRExC_state->in_lookbehind)
+#define RExC_contains_locale (pRExC_state->contains_locale)
+#define RExC_contains_i (pRExC_state->contains_i)
+#define RExC_override_recoding (pRExC_state->override_recoding)
+#ifdef EBCDIC
+#   define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)
+#endif
+#define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
+#define RExC_frame_head (pRExC_state->frame_head)
+#define RExC_frame_last (pRExC_state->frame_last)
+#define RExC_frame_count (pRExC_state->frame_count)
+#define RExC_strict (pRExC_state->strict)
+
+/* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
+ * a flag to disable back-off on the fixed/floating substrings - if it's
+ * a high complexity pattern we assume the benefit of avoiding a full match
+ * is worth the cost of checking for the substrings even if they rarely help.
+ */
+#define RExC_naughty (pRExC_state->naughty)
+#define TOO_NAUGHTY (10)
+#define MARK_NAUGHTY(add) \
+ if (RExC_naughty < TOO_NAUGHTY) \
+  RExC_naughty += (add)
+#define MARK_NAUGHTY_EXP(exp, add) \
+ if (RExC_naughty < TOO_NAUGHTY) \
+  RExC_naughty += RExC_naughty / (exp) + (add)
+
+#define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
+#define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
+  ((*s) == '{' && regcurly(s)))
+
+/*
+ * Flags to be passed up and down.
+ */
+#define WORST  0 /* Worst case. */
+#define HASWIDTH 0x01 /* Known to match non-null strings. */
+
+/* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
+ * character.  (There needs to be a case: in the switch statement in regexec.c
+ * for any node marked SIMPLE.)  Note that this is not the same thing as
+ * REGNODE_SIMPLE */
+#define SIMPLE  0x02
+#define SPSTART  0x04 /* Starts with * or + */
+#define POSTPONED 0x08    /* (?1),(?&name), (??{...}) or similar */
+#define TRYAGAIN 0x10 /* Weeded out a declaration. */
+#define RESTART_UTF8    0x20    /* Restart, need to calcuate sizes as UTF-8 */
+
+#define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
+
+/* whether trie related optimizations are enabled */
+#if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
+#define TRIE_STUDY_OPT
+#define FULL_TRIE_STUDY
+#define TRIE_STCLASS
+#endif
+
+
+
+#define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
+#define PBITVAL(paren) (1 << ((paren) & 7))
+#define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
+#define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
+#define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
+
+#define REQUIRE_UTF8 STMT_START {                                       \
+         if (!UTF) {                           \
+          *flagp = RESTART_UTF8;            \
+          return NULL;                      \
+         }                                     \
+      } STMT_END
+
+/* This converts the named class defined in regcomp.h to its equivalent class
+ * number defined in handy.h. */
+#define namedclass_to_classnum(class)  ((int) ((class) / 2))
+#define classnum_to_namedclass(classnum)  ((classnum) * 2)
+
+#define _invlist_union_complement_2nd(a, b, output) \
+      _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
+#define _invlist_intersection_complement_2nd(a, b, output) \
+    _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
+
+/* About scan_data_t.
+
+  During optimisation we recurse through the regexp program performing
+  various inplace (keyhole style) optimisations. In addition study_chunk
+  and scan_commit populate this data structure with information about
+  what strings MUST appear in the pattern. We look for the longest
+  string that must appear at a fixed location, and we look for the
+  longest string that may appear at a floating location. So for instance
+  in the pattern:
+
+ /FOO[xX]A.*B[xX]BAR/
+
+  Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
+  strings (because they follow a .* construct). study_chunk will identify
+  both FOO and BAR as being the longest fixed and floating strings respectively.
+
+  The strings can be composites, for instance
+
+ /(f)(o)(o)/
+
+  will result in a composite fixed substring 'foo'.
+
+  For each string some basic information is maintained:
+
+  - offset or min_offset
+ This is the position the string must appear at, or not before.
+ It also implicitly (when combined with minlenp) tells us how many
+ characters must match before the string we are searching for.
+ Likewise when combined with minlenp and the length of the string it
+ tells us how many characters must appear after the string we have
+ found.
+
+  - max_offset
+ Only used for floating strings. This is the rightmost point that
+ the string can appear at. If set to SSize_t_MAX it indicates that the
+ string can occur infinitely far to the right.
+
+  - minlenp
+ A pointer to the minimum number of characters of the pattern that the
+ string was found inside. This is important as in the case of positive
+ lookahead or positive lookbehind we can have multiple patterns
+ involved. Consider
+
+ /(?=FOO).*F/
+
+ The minimum length of the pattern overall is 3, the minimum length
+ of the lookahead part is 3, but the minimum length of the part that
+ will actually match is 1. So 'FOO's minimum length is 3, but the
+ minimum length for the F is 1. This is important as the minimum length
+ is used to determine offsets in front of and behind the string being
+ looked for.  Since strings can be composites this is the length of the
+ pattern at the time it was committed with a scan_commit. Note that
+ the length is calculated by study_chunk, so that the minimum lengths
+ are not known until the full pattern has been compiled, thus the
+ pointer to the value.
+
+  - lookbehind
+
+ In the case of lookbehind the string being searched for can be
+ offset past the start point of the final matching string.
+ If this value was just blithely removed from the min_offset it would
+ invalidate some of the calculations for how many chars must match
+ before or after (as they are derived from min_offset and minlen and
+ the length of the string being searched for).
+ When the final pattern is compiled and the data is moved from the
+ scan_data_t structure into the regexp structure the information
+ about lookbehind is factored in, with the information that would
+ have been lost precalculated in the end_shift field for the
+ associated string.
+
+  The fields pos_min and pos_delta are used to store the minimum offset
+  and the delta to the maximum offset at the current point in the pattern.
+
+*/
+
+typedef struct scan_data_t {
+ /*I32 len_min;      unused */
+ /*I32 len_delta;    unused */
+ SSize_t pos_min;
+ SSize_t pos_delta;
+ SV *last_found;
+ SSize_t last_end;     /* min value, <0 unless valid. */
+ SSize_t last_start_min;
+ SSize_t last_start_max;
+ SV **longest;     /* Either &l_fixed, or &l_float. */
+ SV *longest_fixed;      /* longest fixed string found in pattern */
+ SSize_t offset_fixed;   /* offset where it starts */
+ SSize_t *minlen_fixed;  /* pointer to the minlen relevant to the string */
+ I32 lookbehind_fixed;   /* is the position of the string modfied by LB */
+ SV *longest_float;      /* longest floating string found in pattern */
+ SSize_t offset_float_min; /* earliest point in string it can appear */
+ SSize_t offset_float_max; /* latest point in string it can appear */
+ SSize_t *minlen_float;  /* pointer to the minlen relevant to the string */
+ SSize_t lookbehind_float; /* is the pos of the string modified by LB */
+ I32 flags;
+ I32 whilem_c;
+ SSize_t *last_closep;
+ regnode_ssc *start_class;
+} scan_data_t;
+
+/*
+ * Forward declarations for pregcomp()'s friends.
+ */
+
+static const scan_data_t zero_scan_data =
+  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
+
+#define SF_BEFORE_EOL  (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
+#define SF_BEFORE_SEOL  0x0001
+#define SF_BEFORE_MEOL  0x0002
+#define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
+#define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
+
+#define SF_FIX_SHIFT_EOL (+2)
+#define SF_FL_SHIFT_EOL  (+4)
+
+#define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
+#define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
+
+#define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
+#define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
+#define SF_IS_INF  0x0040
+#define SF_HAS_PAR  0x0080
+#define SF_IN_PAR  0x0100
+#define SF_HAS_EVAL  0x0200
+#define SCF_DO_SUBSTR  0x0400
+#define SCF_DO_STCLASS_AND 0x0800
+#define SCF_DO_STCLASS_OR 0x1000
+#define SCF_DO_STCLASS  (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
+#define SCF_WHILEM_VISITED_POS 0x2000
+
+#define SCF_TRIE_RESTUDY        0x4000 /* Do restudy? */
+#define SCF_SEEN_ACCEPT         0x8000
+#define SCF_TRIE_DOING_RESTUDY 0x10000
+#define SCF_IN_DEFINE          0x20000
+
+
+
+
+#define UTF cBOOL(RExC_utf8)
+
+/* The enums for all these are ordered so things work out correctly */
+#define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
+#define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags)                    \
+             == REGEX_DEPENDS_CHARSET)
+#define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
+#define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags)                \
+             >= REGEX_UNICODE_CHARSET)
+#define ASCII_RESTRICTED (get_regex_charset(RExC_flags)                      \
+           == REGEX_ASCII_RESTRICTED_CHARSET)
+#define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags)             \
+           >= REGEX_ASCII_RESTRICTED_CHARSET)
+#define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags)                 \
+          == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
+
+#define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
+
+/* For programs that want to be strictly Unicode compatible by dying if any
+ * attempt is made to match a non-Unicode code point against a Unicode
+ * property.  */
+#define ALWAYS_WARN_SUPER  ckDEAD(packWARN(WARN_NON_UNICODE))
+
+#define OOB_NAMEDCLASS  -1
+
+/* There is no code point that is out-of-bounds, so this is problematic.  But
+ * its only current use is to initialize a variable that is always set before
+ * looked at. */
+#define OOB_UNICODE  0xDEADBEEF
+
+#define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
+#define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
+
+
+/* length of regex to show in messages that don't mark a position within */
+#define RegexLengthToShowInErrorMessages 127
+
+/*
+ * If MARKER[12] are adjusted, be sure to adjust the constants at the top
+ * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
+ * op/pragma/warn/regcomp.
+ */
+#define MARKER1 "<-- HERE"    /* marker as it appears in the description */
+#define MARKER2 " <-- HERE "  /* marker as it appears within the regex */
+
+#define REPORT_LOCATION " in regex; marked by " MARKER1    \
+      " in m/%"UTF8f MARKER2 "%"UTF8f"/"
+
+#define REPORT_LOCATION_ARGS(offset)            \
+    UTF8fARG(UTF, offset, RExC_precomp), \
+    UTF8fARG(UTF, RExC_end - RExC_precomp - offset, RExC_precomp + offset)
+
+/* Used to point after bad bytes for an error message, but avoid skipping
+ * past a nul byte. */
+#define SKIP_IF_CHAR(s) (!*(s) ? 0 : UTF ? UTF8SKIP(s) : 1)
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
+ * arg. Show regex, up to a maximum length. If it's too long, chop and add
+ * "...".
+ */
+#define _FAIL(code) STMT_START {     \
+ const char *ellipses = "";      \
+ IV len = RExC_end - RExC_precomp;     \
+                  \
+ if (!SIZE_ONLY)       \
+  SAVEFREESV(RExC_rx_sv);      \
+ if (len > RegexLengthToShowInErrorMessages) {   \
+  /* chop 10 shorter than the max, to ensure meaning of "..." */ \
+  len = RegexLengthToShowInErrorMessages - 10;   \
+  ellipses = "...";      \
+ }         \
+ code;                                                               \
+} STMT_END
+
+#define FAIL(msg) _FAIL(       \
+ Perl_croak(aTHX_ "%s in regex m/%"UTF8f"%s/",     \
+   msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
+
+#define FAIL2(msg,arg) _FAIL(       \
+ Perl_croak(aTHX_ msg " in regex m/%"UTF8f"%s/",     \
+   arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
+
+/*
+ * Simple_vFAIL -- like FAIL, but marks the current location in the scan
+ */
+#define Simple_vFAIL(m) STMT_START {     \
+ const IV offset =                                                   \
+  (RExC_parse > RExC_end ? RExC_end : RExC_parse) - RExC_precomp; \
+ Perl_croak(aTHX_ "%s" REPORT_LOCATION,    \
+   m, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
+ */
+#define vFAIL(m) STMT_START {    \
+ if (!SIZE_ONLY)     \
+  SAVEFREESV(RExC_rx_sv);    \
+ Simple_vFAIL(m);     \
+} STMT_END
+
+/*
+ * Like Simple_vFAIL(), but accepts two arguments.
+ */
+#define Simple_vFAIL2(m,a1) STMT_START {   \
+ const IV offset = RExC_parse - RExC_precomp;   \
+ S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1,   \
+     REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
+ */
+#define vFAIL2(m,a1) STMT_START {   \
+ if (!SIZE_ONLY)     \
+  SAVEFREESV(RExC_rx_sv);    \
+ Simple_vFAIL2(m, a1);    \
+} STMT_END
+
+
+/*
+ * Like Simple_vFAIL(), but accepts three arguments.
+ */
+#define Simple_vFAIL3(m, a1, a2) STMT_START {   \
+ const IV offset = RExC_parse - RExC_precomp;  \
+ S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2,  \
+   REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
+ */
+#define vFAIL3(m,a1,a2) STMT_START {   \
+ if (!SIZE_ONLY)     \
+  SAVEFREESV(RExC_rx_sv);    \
+ Simple_vFAIL3(m, a1, a2);    \
+} STMT_END
+
+/*
+ * Like Simple_vFAIL(), but accepts four arguments.
+ */
+#define Simple_vFAIL4(m, a1, a2, a3) STMT_START {  \
+ const IV offset = RExC_parse - RExC_precomp;  \
+ S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, a3,  \
+   REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vFAIL4(m,a1,a2,a3) STMT_START {   \
+ if (!SIZE_ONLY)     \
+  SAVEFREESV(RExC_rx_sv);    \
+ Simple_vFAIL4(m, a1, a2, a3);   \
+} STMT_END
+
+/* A specialized version of vFAIL2 that works with UTF8f */
+#define vFAIL2utf8f(m, a1) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp;   \
+ if (!SIZE_ONLY)                                \
+  SAVEFREESV(RExC_rx_sv);                    \
+ S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
+   REPORT_LOCATION_ARGS(offset));         \
+} STMT_END
+
+/* These have asserts in them because of [perl #122671] Many warnings in
+ * regcomp.c can occur twice.  If they get output in pass1 and later in that
+ * pass, the pattern has to be converted to UTF-8 and the pass restarted, they
+ * would get output again.  So they should be output in pass2, and these
+ * asserts make sure new warnings follow that paradigm. */
+
+/* m is not necessarily a "literal string", in this macro */
+#define reg_warn_non_literal_string(loc, m) STMT_START {                \
+ const IV offset = loc - RExC_precomp;                               \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s" REPORT_LOCATION,      \
+   m, REPORT_LOCATION_ARGS(offset));       \
+} STMT_END
+
+#define ckWARNreg(loc,m) STMT_START {     \
+ const IV offset = loc - RExC_precomp;    \
+ __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+   REPORT_LOCATION_ARGS(offset));  \
+} STMT_END
+
+#define vWARN(loc, m) STMT_START {            \
+ const IV offset = loc - RExC_precomp;    \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+   REPORT_LOCATION_ARGS(offset));         \
+} STMT_END
+
+#define vWARN_dep(loc, m) STMT_START {            \
+ const IV offset = loc - RExC_precomp;    \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), m REPORT_LOCATION, \
+   REPORT_LOCATION_ARGS(offset));         \
+} STMT_END
+
+#define ckWARNdep(loc,m) STMT_START {            \
+ const IV offset = loc - RExC_precomp;    \
+ __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED),                 \
+   m REPORT_LOCATION,      \
+   REPORT_LOCATION_ARGS(offset));  \
+} STMT_END
+
+#define ckWARNregdep(loc,m) STMT_START {    \
+ const IV offset = loc - RExC_precomp;    \
+ __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
+   m REPORT_LOCATION,      \
+   REPORT_LOCATION_ARGS(offset));  \
+} STMT_END
+
+#define ckWARN2reg_d(loc,m, a1) STMT_START {    \
+ const IV offset = loc - RExC_precomp;    \
+ __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP),   \
+   m REPORT_LOCATION,      \
+   a1, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARN2reg(loc, m, a1) STMT_START {    \
+ const IV offset = loc - RExC_precomp;    \
+ __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+   a1, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vWARN3(loc, m, a1, a2) STMT_START {    \
+ const IV offset = loc - RExC_precomp;    \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,  \
+   a1, a2, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARN3reg(loc, m, a1, a2) STMT_START {    \
+ const IV offset = loc - RExC_precomp;    \
+ __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+   a1, a2, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vWARN4(loc, m, a1, a2, a3) STMT_START {    \
+ const IV offset = loc - RExC_precomp;    \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,  \
+   a1, a2, a3, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARN4reg(loc, m, a1, a2, a3) STMT_START {   \
+ const IV offset = loc - RExC_precomp;    \
+ __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+   a1, a2, a3, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vWARN5(loc, m, a1, a2, a3, a4) STMT_START {   \
+ const IV offset = loc - RExC_precomp;    \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION,  \
+   a1, a2, a3, a4, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/* Macros for recording node offsets.   20001227 mjd@plover.com
+ * Nodes are numbered 1, 2, 3, 4.  Node #n's position is recorded in
+ * element 2*n-1 of the array.  Element #2n holds the byte length node #n.
+ * Element 0 holds the number n.
+ * Position is 1 indexed.
+ */
+#ifndef RE_TRACK_PATTERN_OFFSETS
+#define Set_Node_Offset_To_R(node,byte)
+#define Set_Node_Offset(node,byte)
+#define Set_Cur_Node_Offset
+#define Set_Node_Length_To_R(node,len)
+#define Set_Node_Length(node,len)
+#define Set_Node_Cur_Length(node,start)
+#define Node_Offset(n)
+#define Node_Length(n)
+#define Set_Node_Offset_Length(node,offset,len)
+#define ProgLen(ri) ri->u.proglen
+#define SetProgLen(ri,x) ri->u.proglen = x
+#else
+#define ProgLen(ri) ri->u.offsets[0]
+#define SetProgLen(ri,x) ri->u.offsets[0] = x
+#define Set_Node_Offset_To_R(node,byte) STMT_START {   \
+ if (! SIZE_ONLY) {       \
+  MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n",  \
+     __LINE__, (int)(node), (int)(byte)));  \
+  if((node) < 0) {      \
+   Perl_croak(aTHX_ "value of node is %d in Offset macro",     \
+          (int)(node));                  \
+  } else {       \
+   RExC_offsets[2*(node)-1] = (byte);    \
+  }        \
+ }         \
+} STMT_END
+
+#define Set_Node_Offset(node,byte) \
+ Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
+#define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
+
+#define Set_Node_Length_To_R(node,len) STMT_START {   \
+ if (! SIZE_ONLY) {       \
+  MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n",  \
+    __LINE__, (int)(node), (int)(len)));   \
+  if((node) < 0) {      \
+   Perl_croak(aTHX_ "value of node is %d in Length macro",     \
+          (int)(node));                  \
+  } else {       \
+   RExC_offsets[2*(node)] = (len);    \
+  }        \
+ }         \
+} STMT_END
+
+#define Set_Node_Length(node,len) \
+ Set_Node_Length_To_R((node)-RExC_emit_start, len)
+#define Set_Node_Cur_Length(node, start)                \
+ Set_Node_Length(node, RExC_parse - start)
+
+/* Get offsets and lengths */
+#define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
+#define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
+
+#define Set_Node_Offset_Length(node,offset,len) STMT_START { \
+ Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
+ Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
+} STMT_END
+#endif
+
+#if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
+#define EXPERIMENTAL_INPLACESCAN
+#endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
+
+#define DEBUG_RExC_seen() \
+  DEBUG_OPTIMISE_MORE_r({                                             \
+   PerlIO_printf(Perl_debug_log,"RExC_seen: ");                    \
+                   \
+   if (RExC_seen & REG_ZERO_LEN_SEEN)                              \
+    PerlIO_printf(Perl_debug_log,"REG_ZERO_LEN_SEEN ");         \
+                   \
+   if (RExC_seen & REG_LOOKBEHIND_SEEN)                            \
+    PerlIO_printf(Perl_debug_log,"REG_LOOKBEHIND_SEEN ");       \
+                   \
+   if (RExC_seen & REG_GPOS_SEEN)                                  \
+    PerlIO_printf(Perl_debug_log,"REG_GPOS_SEEN ");             \
+                   \
+   if (RExC_seen & REG_RECURSE_SEEN)                               \
+    PerlIO_printf(Perl_debug_log,"REG_RECURSE_SEEN ");          \
+                   \
+   if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN)                         \
+    PerlIO_printf(Perl_debug_log,"REG_TOP_LEVEL_BRANCHES_SEEN ");    \
+                   \
+   if (RExC_seen & REG_VERBARG_SEEN)                               \
+    PerlIO_printf(Perl_debug_log,"REG_VERBARG_SEEN ");          \
+                   \
+   if (RExC_seen & REG_CUTGROUP_SEEN)                              \
+    PerlIO_printf(Perl_debug_log,"REG_CUTGROUP_SEEN ");         \
+                   \
+   if (RExC_seen & REG_RUN_ON_COMMENT_SEEN)                        \
+    PerlIO_printf(Perl_debug_log,"REG_RUN_ON_COMMENT_SEEN ");   \
+                   \
+   if (RExC_seen & REG_UNFOLDED_MULTI_SEEN)                        \
+    PerlIO_printf(Perl_debug_log,"REG_UNFOLDED_MULTI_SEEN ");   \
+                   \
+   if (RExC_seen & REG_GOSTART_SEEN)                               \
+    PerlIO_printf(Perl_debug_log,"REG_GOSTART_SEEN ");          \
+                   \
+   if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN)                               \
+    PerlIO_printf(Perl_debug_log,"REG_UNBOUNDED_QUANTIFIER_SEEN ");          \
+                   \
+   PerlIO_printf(Perl_debug_log,"\n");                             \
+  });
+
+#define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
+  if ((flags) & flag) PerlIO_printf(Perl_debug_log, "%s ", #flag)
+
+#define DEBUG_SHOW_STUDY_FLAGS(flags,open_str,close_str)                    \
+ if ( ( flags ) ) {                                                      \
+  PerlIO_printf(Perl_debug_log, "%s", open_str);                      \
+  DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_SEOL);                     \
+  DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_MEOL);                     \
+  DEBUG_SHOW_STUDY_FLAG(flags,SF_IS_INF);                             \
+  DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_PAR);                            \
+  DEBUG_SHOW_STUDY_FLAG(flags,SF_IN_PAR);                             \
+  DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_EVAL);                           \
+  DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_SUBSTR);                         \
+  DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_AND);                    \
+  DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_OR);                     \
+  DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS);                        \
+  DEBUG_SHOW_STUDY_FLAG(flags,SCF_WHILEM_VISITED_POS);                \
+  DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_RESTUDY);                      \
+  DEBUG_SHOW_STUDY_FLAG(flags,SCF_SEEN_ACCEPT);                       \
+  DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_DOING_RESTUDY);                \
+  DEBUG_SHOW_STUDY_FLAG(flags,SCF_IN_DEFINE);                         \
+  PerlIO_printf(Perl_debug_log, "%s", close_str);                     \
+ }
+
+
+#define DEBUG_STUDYDATA(str,data,depth)                              \
+DEBUG_OPTIMISE_MORE_r(if(data){                                      \
+ PerlIO_printf(Perl_debug_log,                                    \
+  "%*s" str "Pos:%"IVdf"/%"IVdf                                \
+  " Flags: 0x%"UVXf,                                           \
+  (int)(depth)*2, "",                                          \
+  (IV)((data)->pos_min),                                       \
+  (IV)((data)->pos_delta),                                     \
+  (UV)((data)->flags)                                          \
+ );                                                               \
+ DEBUG_SHOW_STUDY_FLAGS((data)->flags," [ ","]");                 \
+ PerlIO_printf(Perl_debug_log,                                    \
+  " Whilem_c: %"IVdf" Lcp: %"IVdf" %s",                        \
+  (IV)((data)->whilem_c),                                      \
+  (IV)((data)->last_closep ? *((data)->last_closep) : -1),     \
+  is_inf ? "INF " : ""                                         \
+ );                                                               \
+ if ((data)->last_found)                                          \
+  PerlIO_printf(Perl_debug_log,                                \
+   "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
+   " %sFloat: '%s' @ %"IVdf"/%"IVdf"",                      \
+   SvPVX_const((data)->last_found),                         \
+   (IV)((data)->last_end),                                  \
+   (IV)((data)->last_start_min),                            \
+   (IV)((data)->last_start_max),                            \
+   ((data)->longest &&                                      \
+   (data)->longest==&((data)->longest_fixed)) ? "*" : "",  \
+   SvPVX_const((data)->longest_fixed),                      \
+   (IV)((data)->offset_fixed),                              \
+   ((data)->longest &&                                      \
+   (data)->longest==&((data)->longest_float)) ? "*" : "",  \
+   SvPVX_const((data)->longest_float),                      \
+   (IV)((data)->offset_float_min),                          \
+   (IV)((data)->offset_float_max)                           \
+  );                                                           \
+ PerlIO_printf(Perl_debug_log,"\n");                              \
+});
+
+/* is c a control character for which we have a mnemonic? */
+#define isMNEMONIC_CNTRL(c) _IS_MNEMONIC_CNTRL_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
+
+STATIC const char *
+S_cntrl_to_mnemonic(const U8 c)
+{
+ /* Returns the mnemonic string that represents character 'c', if one
+ * exists; NULL otherwise.  The only ones that exist for the purposes of
+ * this routine are a few control characters */
+
+ switch (c) {
+  case '\a':       return "\\a";
+  case '\b':       return "\\b";
+  case ESC_NATIVE: return "\\e";
+  case '\f':       return "\\f";
+  case '\n':       return "\\n";
+  case '\r':       return "\\r";
+  case '\t':       return "\\t";
+ }
+
+ return NULL;
+}
+
+/* Mark that we cannot extend a found fixed substring at this point.
+   Update the longest found anchored substring and the longest found
+   floating substrings if needed. */
+
+STATIC void
+S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
+     SSize_t *minlenp, int is_inf)
+{
+ const STRLEN l = CHR_SVLEN(data->last_found);
+ const STRLEN old_l = CHR_SVLEN(*data->longest);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_SCAN_COMMIT;
+
+ if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
+  SvSetMagicSV(*data->longest, data->last_found);
+  if (*data->longest == data->longest_fixed) {
+   data->offset_fixed = l ? data->last_start_min : data->pos_min;
+   if (data->flags & SF_BEFORE_EOL)
+    data->flags
+     |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
+   else
+    data->flags &= ~SF_FIX_BEFORE_EOL;
+   data->minlen_fixed=minlenp;
+   data->lookbehind_fixed=0;
+  }
+  else { /* *data->longest == data->longest_float */
+   data->offset_float_min = l ? data->last_start_min : data->pos_min;
+   data->offset_float_max = (l
+      ? data->last_start_max
+      : (data->pos_delta > SSize_t_MAX - data->pos_min
+          ? SSize_t_MAX
+          : data->pos_min + data->pos_delta));
+   if (is_inf
+    || (STRLEN)data->offset_float_max > (STRLEN)SSize_t_MAX)
+    data->offset_float_max = SSize_t_MAX;
+   if (data->flags & SF_BEFORE_EOL)
+    data->flags
+     |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
+   else
+    data->flags &= ~SF_FL_BEFORE_EOL;
+   data->minlen_float=minlenp;
+   data->lookbehind_float=0;
+  }
+ }
+ SvCUR_set(data->last_found, 0);
+ {
+  SV * const sv = data->last_found;
+  if (SvUTF8(sv) && SvMAGICAL(sv)) {
+   MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
+   if (mg)
+    mg->mg_len = 0;
+  }
+ }
+ data->last_end = -1;
+ data->flags &= ~SF_BEFORE_EOL;
+ DEBUG_STUDYDATA("commit: ",data,0);
+}
+
+/* An SSC is just a regnode_charclass_posix with an extra field: the inversion
+ * list that describes which code points it matches */
+
+STATIC void
+S_ssc_anything(pTHX_ regnode_ssc *ssc)
+{
+ /* Set the SSC 'ssc' to match an empty string or any code point */
+
+ PERL_ARGS_ASSERT_SSC_ANYTHING;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ ssc->invlist = sv_2mortal(_new_invlist(2)); /* mortalize so won't leak */
+ _append_range_to_invlist(ssc->invlist, 0, UV_MAX);
+ ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING;  /* Plus matches empty */
+}
+
+STATIC int
+S_ssc_is_anything(const regnode_ssc *ssc)
+{
+ /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
+ * point; FALSE otherwise.  Thus, this is used to see if using 'ssc' buys
+ * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
+ * in any way, so there's no point in using it */
+
+ UV start, end;
+ bool ret;
+
+ PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
+  return FALSE;
+ }
+
+ /* See if the list consists solely of the range 0 - Infinity */
+ invlist_iterinit(ssc->invlist);
+ ret = invlist_iternext(ssc->invlist, &start, &end)
+  && start == 0
+  && end == UV_MAX;
+
+ invlist_iterfinish(ssc->invlist);
+
+ if (ret) {
+  return TRUE;
+ }
+
+ /* If e.g., both \w and \W are set, matches everything */
+ if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+  int i;
+  for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
+   if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
+    return TRUE;
+   }
+  }
+ }
+
+ return FALSE;
+}
+
+STATIC void
+S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
+{
+ /* Initializes the SSC 'ssc'.  This includes setting it to match an empty
+ * string, any code point, or any posix class under locale */
+
+ PERL_ARGS_ASSERT_SSC_INIT;
+
+ Zero(ssc, 1, regnode_ssc);
+ set_ANYOF_SYNTHETIC(ssc);
+ ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
+ ssc_anything(ssc);
+
+ /* If any portion of the regex is to operate under locale rules that aren't
+ * fully known at compile time, initialization includes it.  The reason
+ * this isn't done for all regexes is that the optimizer was written under
+ * the assumption that locale was all-or-nothing.  Given the complexity and
+ * lack of documentation in the optimizer, and that there are inadequate
+ * test cases for locale, many parts of it may not work properly, it is
+ * safest to avoid locale unless necessary. */
+ if (RExC_contains_locale) {
+  ANYOF_POSIXL_SETALL(ssc);
+ }
+ else {
+  ANYOF_POSIXL_ZERO(ssc);
+ }
+}
+
+STATIC int
+S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
+      const regnode_ssc *ssc)
+{
+ /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
+ * to the list of code points matched, and locale posix classes; hence does
+ * not check its flags) */
+
+ UV start, end;
+ bool ret;
+
+ PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ invlist_iterinit(ssc->invlist);
+ ret = invlist_iternext(ssc->invlist, &start, &end)
+  && start == 0
+  && end == UV_MAX;
+
+ invlist_iterfinish(ssc->invlist);
+
+ if (! ret) {
+  return FALSE;
+ }
+
+ if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
+  return FALSE;
+ }
+
+ return TRUE;
+}
+
+STATIC SV*
+S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
+       const regnode_charclass* const node)
+{
+ /* Returns a mortal inversion list defining which code points are matched
+ * by 'node', which is of type ANYOF.  Handles complementing the result if
+ * appropriate.  If some code points aren't knowable at this time, the
+ * returned list must, and will, contain every code point that is a
+ * possibility. */
+
+ SV* invlist = sv_2mortal(_new_invlist(0));
+ SV* only_utf8_locale_invlist = NULL;
+ unsigned int i;
+ const U32 n = ARG(node);
+ bool new_node_has_latin1 = FALSE;
+
+ PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
+
+ /* Look at the data structure created by S_set_ANYOF_arg() */
+ if (n != ANYOF_ONLY_HAS_BITMAP) {
+  SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
+  AV * const av = MUTABLE_AV(SvRV(rv));
+  SV **const ary = AvARRAY(av);
+  assert(RExC_rxi->data->what[n] == 's');
+
+  if (ary[1] && ary[1] != &PL_sv_undef) { /* Has compile-time swash */
+   invlist = sv_2mortal(invlist_clone(_get_swash_invlist(ary[1])));
+  }
+  else if (ary[0] && ary[0] != &PL_sv_undef) {
+
+   /* Here, no compile-time swash, and there are things that won't be
+   * known until runtime -- we have to assume it could be anything */
+   return _add_range_to_invlist(invlist, 0, UV_MAX);
+  }
+  else if (ary[3] && ary[3] != &PL_sv_undef) {
+
+   /* Here no compile-time swash, and no run-time only data.  Use the
+   * node's inversion list */
+   invlist = sv_2mortal(invlist_clone(ary[3]));
+  }
+
+  /* Get the code points valid only under UTF-8 locales */
+  if ((ANYOF_FLAGS(node) & ANYOF_LOC_FOLD)
+   && ary[2] && ary[2] != &PL_sv_undef)
+  {
+   only_utf8_locale_invlist = ary[2];
+  }
+ }
+
+ /* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
+ * code points, and an inversion list for the others, but if there are code
+ * points that should match only conditionally on the target string being
+ * UTF-8, those are placed in the inversion list, and not the bitmap.
+ * Since there are circumstances under which they could match, they are
+ * included in the SSC.  But if the ANYOF node is to be inverted, we have
+ * to exclude them here, so that when we invert below, the end result
+ * actually does include them.  (Think about "\xe0" =~ /[^\xc0]/di;).  We
+ * have to do this here before we add the unconditionally matched code
+ * points */
+ if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
+  _invlist_intersection_complement_2nd(invlist,
+           PL_UpperLatin1,
+           &invlist);
+ }
+
+ /* Add in the points from the bit map */
+ for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
+  if (ANYOF_BITMAP_TEST(node, i)) {
+   invlist = add_cp_to_invlist(invlist, i);
+   new_node_has_latin1 = TRUE;
+  }
+ }
+
+ /* If this can match all upper Latin1 code points, have to add them
+ * as well */
+ if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII) {
+  _invlist_union(invlist, PL_UpperLatin1, &invlist);
+ }
+
+ /* Similarly for these */
+ if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
+  _invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
+ }
+
+ if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
+  _invlist_invert(invlist);
+ }
+ else if (new_node_has_latin1 && ANYOF_FLAGS(node) & ANYOF_LOC_FOLD) {
+
+  /* Under /li, any 0-255 could fold to any other 0-255, depending on the
+  * locale.  We can skip this if there are no 0-255 at all. */
+  _invlist_union(invlist, PL_Latin1, &invlist);
+ }
+
+ /* Similarly add the UTF-8 locale possible matches.  These have to be
+ * deferred until after the non-UTF-8 locale ones are taken care of just
+ * above, or it leads to wrong results under ANYOF_INVERT */
+ if (only_utf8_locale_invlist) {
+  _invlist_union_maybe_complement_2nd(invlist,
+           only_utf8_locale_invlist,
+           ANYOF_FLAGS(node) & ANYOF_INVERT,
+           &invlist);
+ }
+
+ return invlist;
+}
+
+/* These two functions currently do the exact same thing */
+#define ssc_init_zero  ssc_init
+
+#define ssc_add_cp(ssc, cp)   ssc_add_range((ssc), (cp), (cp))
+#define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
+
+/* 'AND' a given class with another one.  Can create false positives.  'ssc'
+ * should not be inverted.  'and_with->flags & ANYOF_MATCHES_POSIXL' should be
+ * 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */
+
+STATIC void
+S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
+    const regnode_charclass *and_with)
+{
+ /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
+ * another SSC or a regular ANYOF class.  Can create false positives. */
+
+ SV* anded_cp_list;
+ U8  anded_flags;
+
+ PERL_ARGS_ASSERT_SSC_AND;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
+ * the code point inversion list and just the relevant flags */
+ if (is_ANYOF_SYNTHETIC(and_with)) {
+  anded_cp_list = ((regnode_ssc *)and_with)->invlist;
+  anded_flags = ANYOF_FLAGS(and_with);
+
+  /* XXX This is a kludge around what appears to be deficiencies in the
+  * optimizer.  If we make S_ssc_anything() add in the WARN_SUPER flag,
+  * there are paths through the optimizer where it doesn't get weeded
+  * out when it should.  And if we don't make some extra provision for
+  * it like the code just below, it doesn't get added when it should.
+  * This solution is to add it only when AND'ing, which is here, and
+  * only when what is being AND'ed is the pristine, original node
+  * matching anything.  Thus it is like adding it to ssc_anything() but
+  * only when the result is to be AND'ed.  Probably the same solution
+  * could be adopted for the same problem we have with /l matching,
+  * which is solved differently in S_ssc_init(), and that would lead to
+  * fewer false positives than that solution has.  But if this solution
+  * creates bugs, the consequences are only that a warning isn't raised
+  * that should be; while the consequences for having /l bugs is
+  * incorrect matches */
+  if (ssc_is_anything((regnode_ssc *)and_with)) {
+   anded_flags |= ANYOF_WARN_SUPER;
+  }
+ }
+ else {
+  anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
+  anded_flags = ANYOF_FLAGS(and_with) & ANYOF_COMMON_FLAGS;
+ }
+
+ ANYOF_FLAGS(ssc) &= anded_flags;
+
+ /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
+ * C2 is the list of code points in 'and-with'; P2, its posix classes.
+ * 'and_with' may be inverted.  When not inverted, we have the situation of
+ * computing:
+ *  (C1 | P1) & (C2 | P2)
+ *                     =  (C1 & (C2 | P2)) | (P1 & (C2 | P2))
+ *                     =  ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
+ *                    <=  ((C1 & C2) |       P2)) | ( P1       | (P1 & P2))
+ *                    <=  ((C1 & C2) | P1 | P2)
+ * Alternatively, the last few steps could be:
+ *                     =  ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
+ *                    <=  ((C1 & C2) |  C1      ) | (      C2  | (P1 & P2))
+ *                    <=  (C1 | C2 | (P1 & P2))
+ * We favor the second approach if either P1 or P2 is non-empty.  This is
+ * because these components are a barrier to doing optimizations, as what
+ * they match cannot be known until the moment of matching as they are
+ * dependent on the current locale, 'AND"ing them likely will reduce or
+ * eliminate them.
+ * But we can do better if we know that C1,P1 are in their initial state (a
+ * frequent occurrence), each matching everything:
+ *  (<everything>) & (C2 | P2) =  C2 | P2
+ * Similarly, if C2,P2 are in their initial state (again a frequent
+ * occurrence), the result is a no-op
+ *  (C1 | P1) & (<everything>) =  C1 | P1
+ *
+ * Inverted, we have
+ *  (C1 | P1) & ~(C2 | P2)  =  (C1 | P1) & (~C2 & ~P2)
+ *                          =  (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
+ *                         <=  (C1 & ~C2) | (P1 & ~P2)
+ * */
+
+ if ((ANYOF_FLAGS(and_with) & ANYOF_INVERT)
+  && ! is_ANYOF_SYNTHETIC(and_with))
+ {
+  unsigned int i;
+
+  ssc_intersection(ssc,
+      anded_cp_list,
+      FALSE /* Has already been inverted */
+      );
+
+  /* If either P1 or P2 is empty, the intersection will be also; can skip
+  * the loop */
+  if (! (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL)) {
+   ANYOF_POSIXL_ZERO(ssc);
+  }
+  else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+
+   /* Note that the Posix class component P from 'and_with' actually
+   * looks like:
+   *      P = Pa | Pb | ... | Pn
+   * where each component is one posix class, such as in [\w\s].
+   * Thus
+   *      ~P = ~(Pa | Pb | ... | Pn)
+   *         = ~Pa & ~Pb & ... & ~Pn
+   *        <= ~Pa | ~Pb | ... | ~Pn
+   * The last is something we can easily calculate, but unfortunately
+   * is likely to have many false positives.  We could do better
+   * in some (but certainly not all) instances if two classes in
+   * P have known relationships.  For example
+   *      :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
+   * So
+   *      :lower: & :print: = :lower:
+   * And similarly for classes that must be disjoint.  For example,
+   * since \s and \w can have no elements in common based on rules in
+   * the POSIX standard,
+   *      \w & ^\S = nothing
+   * Unfortunately, some vendor locales do not meet the Posix
+   * standard, in particular almost everything by Microsoft.
+   * The loop below just changes e.g., \w into \W and vice versa */
+
+   regnode_charclass_posixl temp;
+   int add = 1;    /* To calculate the index of the complement */
+
+   ANYOF_POSIXL_ZERO(&temp);
+   for (i = 0; i < ANYOF_MAX; i++) {
+    assert(i % 2 != 0
+     || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
+     || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
+
+    if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
+     ANYOF_POSIXL_SET(&temp, i + add);
+    }
+    add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
+   }
+   ANYOF_POSIXL_AND(&temp, ssc);
+
+  } /* else ssc already has no posixes */
+ } /* else: Not inverted.  This routine is a no-op if 'and_with' is an SSC
+  in its initial state */
+ else if (! is_ANYOF_SYNTHETIC(and_with)
+   || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
+ {
+  /* But if 'ssc' is in its initial state, the result is just 'and_with';
+  * copy it over 'ssc' */
+  if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
+   if (is_ANYOF_SYNTHETIC(and_with)) {
+    StructCopy(and_with, ssc, regnode_ssc);
+   }
+   else {
+    ssc->invlist = anded_cp_list;
+    ANYOF_POSIXL_ZERO(ssc);
+    if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
+     ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
+    }
+   }
+  }
+  else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
+    || (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL))
+  {
+   /* One or the other of P1, P2 is non-empty. */
+   if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
+    ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
+   }
+   ssc_union(ssc, anded_cp_list, FALSE);
+  }
+  else { /* P1 = P2 = empty */
+   ssc_intersection(ssc, anded_cp_list, FALSE);
+  }
+ }
+}
+
+STATIC void
+S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
+   const regnode_charclass *or_with)
+{
+ /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
+ * another SSC or a regular ANYOF class.  Can create false positives if
+ * 'or_with' is to be inverted. */
+
+ SV* ored_cp_list;
+ U8 ored_flags;
+
+ PERL_ARGS_ASSERT_SSC_OR;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
+ * the code point inversion list and just the relevant flags */
+ if (is_ANYOF_SYNTHETIC(or_with)) {
+  ored_cp_list = ((regnode_ssc*) or_with)->invlist;
+  ored_flags = ANYOF_FLAGS(or_with);
+ }
+ else {
+  ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
+  ored_flags = ANYOF_FLAGS(or_with) & ANYOF_COMMON_FLAGS;
+ }
+
+ ANYOF_FLAGS(ssc) |= ored_flags;
+
+ /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
+ * C2 is the list of code points in 'or-with'; P2, its posix classes.
+ * 'or_with' may be inverted.  When not inverted, we have the simple
+ * situation of computing:
+ *  (C1 | P1) | (C2 | P2)  =  (C1 | C2) | (P1 | P2)
+ * If P1|P2 yields a situation with both a class and its complement are
+ * set, like having both \w and \W, this matches all code points, and we
+ * can delete these from the P component of the ssc going forward.  XXX We
+ * might be able to delete all the P components, but I (khw) am not certain
+ * about this, and it is better to be safe.
+ *
+ * Inverted, we have
+ *  (C1 | P1) | ~(C2 | P2)  =  (C1 | P1) | (~C2 & ~P2)
+ *                         <=  (C1 | P1) | ~C2
+ *                         <=  (C1 | ~C2) | P1
+ * (which results in actually simpler code than the non-inverted case)
+ * */
+
+ if ((ANYOF_FLAGS(or_with) & ANYOF_INVERT)
+  && ! is_ANYOF_SYNTHETIC(or_with))
+ {
+  /* We ignore P2, leaving P1 going forward */
+ }   /* else  Not inverted */
+ else if (ANYOF_FLAGS(or_with) & ANYOF_MATCHES_POSIXL) {
+  ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
+  if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+   unsigned int i;
+   for (i = 0; i < ANYOF_MAX; i += 2) {
+    if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
+    {
+     ssc_match_all_cp(ssc);
+     ANYOF_POSIXL_CLEAR(ssc, i);
+     ANYOF_POSIXL_CLEAR(ssc, i+1);
+    }
+   }
+  }
+ }
+
+ ssc_union(ssc,
+   ored_cp_list,
+   FALSE /* Already has been inverted */
+   );
+}
+
+PERL_STATIC_INLINE void
+S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
+{
+ PERL_ARGS_ASSERT_SSC_UNION;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ _invlist_union_maybe_complement_2nd(ssc->invlist,
+          invlist,
+          invert2nd,
+          &ssc->invlist);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_intersection(pTHX_ regnode_ssc *ssc,
+      SV* const invlist,
+      const bool invert2nd)
+{
+ PERL_ARGS_ASSERT_SSC_INTERSECTION;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ _invlist_intersection_maybe_complement_2nd(ssc->invlist,
+           invlist,
+           invert2nd,
+           &ssc->invlist);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
+{
+ PERL_ARGS_ASSERT_SSC_ADD_RANGE;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
+{
+ /* AND just the single code point 'cp' into the SSC 'ssc' */
+
+ SV* cp_list = _new_invlist(2);
+
+ PERL_ARGS_ASSERT_SSC_CP_AND;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ cp_list = add_cp_to_invlist(cp_list, cp);
+ ssc_intersection(ssc, cp_list,
+     FALSE /* Not inverted */
+     );
+ SvREFCNT_dec_NN(cp_list);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_clear_locale(regnode_ssc *ssc)
+{
+ /* Set the SSC 'ssc' to not match any locale things */
+ PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ ANYOF_POSIXL_ZERO(ssc);
+ ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
+}
+
+#define NON_OTHER_COUNT   NON_OTHER_COUNT_FOR_USE_ONLY_BY_REGCOMP_DOT_C
+
+STATIC bool
+S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
+{
+ /* The synthetic start class is used to hopefully quickly winnow down
+ * places where a pattern could start a match in the target string.  If it
+ * doesn't really narrow things down that much, there isn't much point to
+ * having the overhead of using it.  This function uses some very crude
+ * heuristics to decide if to use the ssc or not.
+ *
+ * It returns TRUE if 'ssc' rules out more than half what it considers to
+ * be the "likely" possible matches, but of course it doesn't know what the
+ * actual things being matched are going to be; these are only guesses
+ *
+ * For /l matches, it assumes that the only likely matches are going to be
+ *      in the 0-255 range, uniformly distributed, so half of that is 127
+ * For /a and /d matches, it assumes that the likely matches will be just
+ *      the ASCII range, so half of that is 63
+ * For /u and there isn't anything matching above the Latin1 range, it
+ *      assumes that that is the only range likely to be matched, and uses
+ *      half that as the cut-off: 127.  If anything matches above Latin1,
+ *      it assumes that all of Unicode could match (uniformly), except for
+ *      non-Unicode code points and things in the General Category "Other"
+ *      (unassigned, private use, surrogates, controls and formats).  This
+ *      is a much large number. */
+
+ const U32 max_match = (LOC)
+      ? 127
+      : (! UNI_SEMANTICS)
+       ? 63
+       : (invlist_highest(ssc->invlist) < 256)
+       ? 127
+       : ((NON_OTHER_COUNT + 1) / 2) - 1;
+ U32 count = 0;      /* Running total of number of code points matched by
+      'ssc' */
+ UV start, end;      /* Start and end points of current range in inversion
+      list */
+
+ PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;
+
+ invlist_iterinit(ssc->invlist);
+ while (invlist_iternext(ssc->invlist, &start, &end)) {
+
+  /* /u is the only thing that we expect to match above 255; so if not /u
+  * and even if there are matches above 255, ignore them.  This catches
+  * things like \d under /d which does match the digits above 255, but
+  * since the pattern is /d, it is not likely to be expecting them */
+  if (! UNI_SEMANTICS) {
+   if (start > 255) {
+    break;
+   }
+   end = MIN(end, 255);
+  }
+  count += end - start + 1;
+  if (count > max_match) {
+   invlist_iterfinish(ssc->invlist);
+   return FALSE;
+  }
+ }
+
+ return TRUE;
+}
+
+
+STATIC void
+S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
+{
+ /* The inversion list in the SSC is marked mortal; now we need a more
+ * permanent copy, which is stored the same way that is done in a regular
+ * ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
+ * map */
+
+ SV* invlist = invlist_clone(ssc->invlist);
+
+ PERL_ARGS_ASSERT_SSC_FINALIZE;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ /* The code in this file assumes that all but these flags aren't relevant
+ * to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
+ * by the time we reach here */
+ assert(! (ANYOF_FLAGS(ssc) & ~ANYOF_COMMON_FLAGS));
+
+ populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
+
+ set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist,
+        NULL, NULL, NULL, FALSE);
+
+ /* Make sure is clone-safe */
+ ssc->invlist = NULL;
+
+ if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+  ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
+ }
+
+ assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
+}
+
+#define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
+#define TRIE_LIST_CUR(state)  ( TRIE_LIST_ITEM( state, 0 ).forid )
+#define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
+#define TRIE_LIST_USED(idx)  ( trie->states[state].trans.list         \
+       ? (TRIE_LIST_CUR( idx ) - 1)           \
+       : 0 )
+
+
+#ifdef DEBUGGING
+/*
+   dump_trie(trie,widecharmap,revcharmap)
+   dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
+   dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
+
+   These routines dump out a trie in a somewhat readable format.
+   The _interim_ variants are used for debugging the interim
+   tables that are used to generate the final compressed
+   representation which is what dump_trie expects.
+
+   Part of the reason for their existence is to provide a form
+   of documentation as to how the different representations function.
+
+*/
+
+/*
+  Dumps the final compressed table form of the trie to Perl_debug_log.
+  Used for debugging make_trie().
+*/
+
+STATIC void
+S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
+   AV *revcharmap, U32 depth)
+{
+ U32 state;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ U16 word;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE;
+
+ PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
+  (int)depth * 2 + 2,"",
+  "Match","Base","Ofs" );
+
+ for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
+  SV ** const tmp = av_fetch( revcharmap, state, 0);
+  if ( tmp ) {
+   PerlIO_printf( Perl_debug_log, "%*s",
+    colwidth,
+    pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+       PL_colors[0], PL_colors[1],
+       (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+       PERL_PV_ESCAPE_FIRSTCHAR
+    )
+   );
+  }
+ }
+ PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
+  (int)depth * 2 + 2,"");
+
+ for( state = 0 ; state < trie->uniquecharcount ; state++ )
+  PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
+ PerlIO_printf( Perl_debug_log, "\n");
+
+ for( state = 1 ; state < trie->statecount ; state++ ) {
+  const U32 base = trie->states[ state ].trans.base;
+
+  PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|",
+         (int)depth * 2 + 2,"", (UV)state);
+
+  if ( trie->states[ state ].wordnum ) {
+   PerlIO_printf( Perl_debug_log, " W%4X",
+          trie->states[ state ].wordnum );
+  } else {
+   PerlIO_printf( Perl_debug_log, "%6s", "" );
+  }
+
+  PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
+
+  if ( base ) {
+   U32 ofs = 0;
+
+   while( ( base + ofs  < trie->uniquecharcount ) ||
+    ( base + ofs - trie->uniquecharcount < trie->lasttrans
+     && trie->trans[ base + ofs - trie->uniquecharcount ].check
+                 != state))
+     ofs++;
+
+   PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
+
+   for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
+    if ( ( base + ofs >= trie->uniquecharcount )
+      && ( base + ofs - trie->uniquecharcount
+              < trie->lasttrans )
+      && trie->trans[ base + ofs
+         - trie->uniquecharcount ].check == state )
+    {
+    PerlIO_printf( Perl_debug_log, "%*"UVXf,
+     colwidth,
+     (UV)trie->trans[ base + ofs
+           - trie->uniquecharcount ].next );
+    } else {
+     PerlIO_printf( Perl_debug_log, "%*s",colwidth,"   ." );
+    }
+   }
+
+   PerlIO_printf( Perl_debug_log, "]");
+
+  }
+  PerlIO_printf( Perl_debug_log, "\n" );
+ }
+ PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=",
+        (int)depth*2, "");
+ for (word=1; word <= trie->wordcount; word++) {
+  PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
+   (int)word, (int)(trie->wordinfo[word].prev),
+   (int)(trie->wordinfo[word].len));
+ }
+ PerlIO_printf(Perl_debug_log, "\n" );
+}
+/*
+  Dumps a fully constructed but uncompressed trie in list form.
+  List tries normally only are used for construction when the number of
+  possible chars (trie->uniquecharcount) is very high.
+  Used for debugging make_trie().
+*/
+STATIC void
+S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
+      HV *widecharmap, AV *revcharmap, U32 next_alloc,
+      U32 depth)
+{
+ U32 state;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
+
+ /* print out the table precompression.  */
+ PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
+  (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
+  "------:-----+-----------------\n" );
+
+ for( state=1 ; state < next_alloc ; state ++ ) {
+  U16 charid;
+
+  PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
+   (int)depth * 2 + 2,"", (UV)state  );
+  if ( ! trie->states[ state ].wordnum ) {
+   PerlIO_printf( Perl_debug_log, "%5s| ","");
+  } else {
+   PerlIO_printf( Perl_debug_log, "W%4x| ",
+    trie->states[ state ].wordnum
+   );
+  }
+  for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
+   SV ** const tmp = av_fetch( revcharmap,
+          TRIE_LIST_ITEM(state,charid).forid, 0);
+   if ( tmp ) {
+    PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
+     colwidth,
+     pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
+       colwidth,
+       PL_colors[0], PL_colors[1],
+       (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
+       | PERL_PV_ESCAPE_FIRSTCHAR
+     ) ,
+     TRIE_LIST_ITEM(state,charid).forid,
+     (UV)TRIE_LIST_ITEM(state,charid).newstate
+    );
+    if (!(charid % 10))
+     PerlIO_printf(Perl_debug_log, "\n%*s| ",
+      (int)((depth * 2) + 14), "");
+   }
+  }
+  PerlIO_printf( Perl_debug_log, "\n");
+ }
+}
+
+/*
+  Dumps a fully constructed but uncompressed trie in table form.
+  This is the normal DFA style state transition table, with a few
+  twists to facilitate compression later.
+  Used for debugging make_trie().
+*/
+STATIC void
+S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
+      HV *widecharmap, AV *revcharmap, U32 next_alloc,
+      U32 depth)
+{
+ U32 state;
+ U16 charid;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
+
+ /*
+ print out the table precompression so that we can do a visual check
+ that they are identical.
+ */
+
+ PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
+
+ for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
+  SV ** const tmp = av_fetch( revcharmap, charid, 0);
+  if ( tmp ) {
+   PerlIO_printf( Perl_debug_log, "%*s",
+    colwidth,
+    pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+       PL_colors[0], PL_colors[1],
+       (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+       PERL_PV_ESCAPE_FIRSTCHAR
+    )
+   );
+  }
+ }
+
+ PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
+
+ for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
+  PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
+ }
+
+ PerlIO_printf( Perl_debug_log, "\n" );
+
+ for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
+
+  PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
+   (int)depth * 2 + 2,"",
+   (UV)TRIE_NODENUM( state ) );
+
+  for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
+   UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
+   if (v)
+    PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
+   else
+    PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
+  }
+  if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
+   PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n",
+           (UV)trie->trans[ state ].check );
+  } else {
+   PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n",
+           (UV)trie->trans[ state ].check,
+   trie->states[ TRIE_NODENUM( state ) ].wordnum );
+  }
+ }
+}
+
+#endif
+
+
+/* make_trie(startbranch,first,last,tail,word_count,flags,depth)
+  startbranch: the first branch in the whole branch sequence
+  first      : start branch of sequence of branch-exact nodes.
+   May be the same as startbranch
+  last       : Thing following the last branch.
+   May be the same as tail.
+  tail       : item following the branch sequence
+  count      : words in the sequence
+  flags      : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
+  depth      : indent depth
+
+Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
+
+A trie is an N'ary tree where the branches are determined by digital
+decomposition of the key. IE, at the root node you look up the 1st character and
+follow that branch repeat until you find the end of the branches. Nodes can be
+marked as "accepting" meaning they represent a complete word. Eg:
+
+  /he|she|his|hers/
+
+would convert into the following structure. Numbers represent states, letters
+following numbers represent valid transitions on the letter from that state, if
+the number is in square brackets it represents an accepting state, otherwise it
+will be in parenthesis.
+
+ +-h->+-e->[3]-+-r->(8)-+-s->[9]
+ |    |
+ |   (2)
+ |    |
+ (1)   +-i->(6)-+-s->[7]
+ |
+ +-s->(3)-+-h->(4)-+-e->[5]
+
+ Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
+
+This shows that when matching against the string 'hers' we will begin at state 1
+read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
+then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
+is also accepting. Thus we know that we can match both 'he' and 'hers' with a
+single traverse. We store a mapping from accepting to state to which word was
+matched, and then when we have multiple possibilities we try to complete the
+rest of the regex in the order in which they occurred in the alternation.
+
+The only prior NFA like behaviour that would be changed by the TRIE support is
+the silent ignoring of duplicate alternations which are of the form:
+
+ / (DUPE|DUPE) X? (?{ ... }) Y /x
+
+Thus EVAL blocks following a trie may be called a different number of times with
+and without the optimisation. With the optimisations dupes will be silently
+ignored. This inconsistent behaviour of EVAL type nodes is well established as
+the following demonstrates:
+
+ 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
+
+which prints out 'word' three times, but
+
+ 'words'=~/(word|word|word)(?{ print $1 })S/
+
+which doesnt print it out at all. This is due to other optimisations kicking in.
+
+Example of what happens on a structural level:
+
+The regexp /(ac|ad|ab)+/ will produce the following debug output:
+
+   1: CURLYM[1] {1,32767}(18)
+   5:   BRANCH(8)
+   6:     EXACT <ac>(16)
+   8:   BRANCH(11)
+   9:     EXACT <ad>(16)
+  11:   BRANCH(14)
+  12:     EXACT <ab>(16)
+  16:   SUCCEED(0)
+  17:   NOTHING(18)
+  18: END(0)
+
+This would be optimizable with startbranch=5, first=5, last=16, tail=16
+and should turn into:
+
+   1: CURLYM[1] {1,32767}(18)
+   5:   TRIE(16)
+  [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
+  <ac>
+  <ad>
+  <ab>
+  16:   SUCCEED(0)
+  17:   NOTHING(18)
+  18: END(0)
+
+Cases where tail != last would be like /(?foo|bar)baz/:
+
+   1: BRANCH(4)
+   2:   EXACT <foo>(8)
+   4: BRANCH(7)
+   5:   EXACT <bar>(8)
+   7: TAIL(8)
+   8: EXACT <baz>(10)
+  10: END(0)
+
+which would be optimizable with startbranch=1, first=1, last=7, tail=8
+and would end up looking like:
+
+ 1: TRIE(8)
+ [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
+  <foo>
+  <bar>
+   7: TAIL(8)
+   8: EXACT <baz>(10)
+  10: END(0)
+
+ d = uvchr_to_utf8_flags(d, uv, 0);
+
+is the recommended Unicode-aware way of saying
+
+ *(d++) = uv;
+*/
+
+#define TRIE_STORE_REVCHAR(val)                                            \
+ STMT_START {                                                           \
+  if (UTF) {          \
+   SV *zlopp = newSV(7); /* XXX: optimize me */                   \
+   unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp);    \
+   unsigned const char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
+   SvCUR_set(zlopp, kapow - flrbbbbb);       \
+   SvPOK_on(zlopp);         \
+   SvUTF8_on(zlopp);         \
+   av_push(revcharmap, zlopp);        \
+  } else {          \
+   char ooooff = (char)val;                                           \
+   av_push(revcharmap, newSVpvn(&ooooff, 1));      \
+  }           \
+  } STMT_END
+
+/* This gets the next character from the input, folding it if not already
+ * folded. */
+#define TRIE_READ_CHAR STMT_START {                                           \
+ wordlen++;                                                                \
+ if ( UTF ) {                                                              \
+  /* if it is UTF then it is either already folded, or does not need    \
+  * folding */                                                         \
+  uvc = valid_utf8_to_uvchr( (const U8*) uc, &len);                     \
+ }                                                                         \
+ else if (folder == PL_fold_latin1) {                                      \
+  /* This folder implies Unicode rules, which in the range expressible  \
+  *  by not UTF is the lower case, with the two exceptions, one of     \
+  *  which should have been taken care of before calling this */       \
+  assert(*uc != LATIN_SMALL_LETTER_SHARP_S);                            \
+  uvc = toLOWER_L1(*uc);                                                \
+  if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU;         \
+  len = 1;                                                              \
+ } else {                                                                  \
+  /* raw data, will be folded later if needed */                        \
+  uvc = (U32)*uc;                                                       \
+  len = 1;                                                              \
+ }                                                                         \
+} STMT_END
+
+
+
+#define TRIE_LIST_PUSH(state,fid,ns) STMT_START {               \
+ if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) {    \
+  U32 ging = TRIE_LIST_LEN( state ) *= 2;                 \
+  Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
+ }                                                           \
+ TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid;     \
+ TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns;   \
+ TRIE_LIST_CUR( state )++;                                   \
+} STMT_END
+
+#define TRIE_LIST_NEW(state) STMT_START {                       \
+ Newxz( trie->states[ state ].trans.list,               \
+  4, reg_trie_trans_le );                                 \
+ TRIE_LIST_CUR( state ) = 1;                                \
+ TRIE_LIST_LEN( state ) = 4;                                \
+} STMT_END
+
+#define TRIE_HANDLE_WORD(state) STMT_START {                    \
+ U16 dupe= trie->states[ state ].wordnum;                    \
+ regnode * const noper_next = regnext( noper );              \
+                \
+ DEBUG_r({                                                   \
+  /* store the word for dumping */                        \
+  SV* tmp;                                                \
+  if (OP(noper) != NOTHING)                               \
+   tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
+  else                                                    \
+   tmp = newSVpvn_utf8( "", 0, UTF );   \
+  av_push( trie_words, tmp );                             \
+ });                                                         \
+                \
+ curword++;                                                  \
+ trie->wordinfo[curword].prev   = 0;                         \
+ trie->wordinfo[curword].len    = wordlen;                   \
+ trie->wordinfo[curword].accept = state;                     \
+                \
+ if ( noper_next < tail ) {                                  \
+  if (!trie->jump)                                        \
+   trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
+            sizeof(U16) ); \
+  trie->jump[curword] = (U16)(noper_next - convert);      \
+  if (!jumper)                                            \
+   jumper = noper_next;                                \
+  if (!nextbranch)                                        \
+   nextbranch= regnext(cur);                           \
+ }                                                           \
+                \
+ if ( dupe ) {                                               \
+  /* It's a dupe. Pre-insert into the wordinfo[].prev   */\
+  /* chain, so that when the bits of chain are later    */\
+  /* linked together, the dups appear in the chain      */\
+  trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
+  trie->wordinfo[dupe].prev = curword;                    \
+ } else {                                                    \
+  /* we haven't inserted this word yet.                */ \
+  trie->states[ state ].wordnum = curword;                \
+ }                                                           \
+} STMT_END
+
+
+#define TRIE_TRANS_STATE(state,base,ucharcount,charid,special)  \
+ ( ( base + charid >=  ucharcount     \
+  && base + charid < ubound     \
+  && state == trie->trans[ base - ucharcount + charid ].check \
+  && trie->trans[ base - ucharcount + charid ].next )  \
+  ? trie->trans[ base - ucharcount + charid ].next  \
+  : ( state==1 ? special : 0 )     \
+ )
+
+#define MADE_TRIE       1
+#define MADE_JUMP_TRIE  2
+#define MADE_EXACT_TRIE 4
+
+STATIC I32
+S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
+    regnode *first, regnode *last, regnode *tail,
+    U32 word_count, U32 flags, U32 depth)
+{
+ /* first pass, loop through and scan words */
+ reg_trie_data *trie;
+ HV *widecharmap = NULL;
+ AV *revcharmap = newAV();
+ regnode *cur;
+ STRLEN len = 0;
+ UV uvc = 0;
+ U16 curword = 0;
+ U32 next_alloc = 0;
+ regnode *jumper = NULL;
+ regnode *nextbranch = NULL;
+ regnode *convert = NULL;
+ U32 *prev_states; /* temp array mapping each state to previous one */
+ /* we just use folder as a flag in utf8 */
+ const U8 * folder = NULL;
+
+#ifdef DEBUGGING
+ const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuuu"));
+ AV *trie_words = NULL;
+ /* along with revcharmap, this only used during construction but both are
+ * useful during debugging so we store them in the struct when debugging.
+ */
+#else
+ const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
+ STRLEN trie_charcount=0;
+#endif
+ SV *re_trie_maxbuff;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_MAKE_TRIE;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ switch (flags) {
+  case EXACT: case EXACTL: break;
+  case EXACTFA:
+  case EXACTFU_SS:
+  case EXACTFU:
+  case EXACTFLU8: folder = PL_fold_latin1; break;
+  case EXACTF:  folder = PL_fold; break;
+  default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
+ }
+
+ trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
+ trie->refcount = 1;
+ trie->startstate = 1;
+ trie->wordcount = word_count;
+ RExC_rxi->data->data[ data_slot ] = (void*)trie;
+ trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
+ if (flags == EXACT || flags == EXACTL)
+  trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
+ trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
+     trie->wordcount+1, sizeof(reg_trie_wordinfo));
+
+ DEBUG_r({
+  trie_words = newAV();
+ });
+
+ re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
+ assert(re_trie_maxbuff);
+ if (!SvIOK(re_trie_maxbuff)) {
+  sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
+ }
+ DEBUG_TRIE_COMPILE_r({
+  PerlIO_printf( Perl_debug_log,
+  "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
+  (int)depth * 2 + 2, "",
+  REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
+  REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
+ });
+
+   /* Find the node we are going to overwrite */
+ if ( first == startbranch && OP( last ) != BRANCH ) {
+  /* whole branch chain */
+  convert = first;
+ } else {
+  /* branch sub-chain */
+  convert = NEXTOPER( first );
+ }
+
+ /*  -- First loop and Setup --
+
+ We first traverse the branches and scan each word to determine if it
+ contains widechars, and how many unique chars there are, this is
+ important as we have to build a table with at least as many columns as we
+ have unique chars.
+
+ We use an array of integers to represent the character codes 0..255
+ (trie->charmap) and we use a an HV* to store Unicode characters. We use
+ the native representation of the character value as the key and IV's for
+ the coded index.
+
+ *TODO* If we keep track of how many times each character is used we can
+ remap the columns so that the table compression later on is more
+ efficient in terms of memory by ensuring the most common value is in the
+ middle and the least common are on the outside.  IMO this would be better
+ than a most to least common mapping as theres a decent chance the most
+ common letter will share a node with the least common, meaning the node
+ will not be compressible. With a middle is most common approach the worst
+ case is when we have the least common nodes twice.
+
+ */
+
+ for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+  regnode *noper = NEXTOPER( cur );
+  const U8 *uc = (U8*)STRING( noper );
+  const U8 *e  = uc + STR_LEN( noper );
+  int foldlen = 0;
+  U32 wordlen      = 0;         /* required init */
+  STRLEN minchars = 0;
+  STRLEN maxchars = 0;
+  bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
+           bitmap?*/
+
+  if (OP(noper) == NOTHING) {
+   regnode *noper_next= regnext(noper);
+   if (noper_next != tail && OP(noper_next) == flags) {
+    noper = noper_next;
+    uc= (U8*)STRING(noper);
+    e= uc + STR_LEN(noper);
+    trie->minlen= STR_LEN(noper);
+   } else {
+    trie->minlen= 0;
+    continue;
+   }
+  }
+
+  if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
+   TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
+          regardless of encoding */
+   if (OP( noper ) == EXACTFU_SS) {
+    /* false positives are ok, so just set this */
+    TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
+   }
+  }
+  for ( ; uc < e ; uc += len ) {  /* Look at each char in the current
+          branch */
+   TRIE_CHARCOUNT(trie)++;
+   TRIE_READ_CHAR;
+
+   /* TRIE_READ_CHAR returns the current character, or its fold if /i
+   * is in effect.  Under /i, this character can match itself, or
+   * anything that folds to it.  If not under /i, it can match just
+   * itself.  Most folds are 1-1, for example k, K, and KELVIN SIGN
+   * all fold to k, and all are single characters.   But some folds
+   * expand to more than one character, so for example LATIN SMALL
+   * LIGATURE FFI folds to the three character sequence 'ffi'.  If
+   * the string beginning at 'uc' is 'ffi', it could be matched by
+   * three characters, or just by the one ligature character. (It
+   * could also be matched by two characters: LATIN SMALL LIGATURE FF
+   * followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
+   * (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
+   * match.)  The trie needs to know the minimum and maximum number
+   * of characters that could match so that it can use size alone to
+   * quickly reject many match attempts.  The max is simple: it is
+   * the number of folded characters in this branch (since a fold is
+   * never shorter than what folds to it. */
+
+   maxchars++;
+
+   /* And the min is equal to the max if not under /i (indicated by
+   * 'folder' being NULL), or there are no multi-character folds.  If
+   * there is a multi-character fold, the min is incremented just
+   * once, for the character that folds to the sequence.  Each
+   * character in the sequence needs to be added to the list below of
+   * characters in the trie, but we count only the first towards the
+   * min number of characters needed.  This is done through the
+   * variable 'foldlen', which is returned by the macros that look
+   * for these sequences as the number of bytes the sequence
+   * occupies.  Each time through the loop, we decrement 'foldlen' by
+   * how many bytes the current char occupies.  Only when it reaches
+   * 0 do we increment 'minchars' or look for another multi-character
+   * sequence. */
+   if (folder == NULL) {
+    minchars++;
+   }
+   else if (foldlen > 0) {
+    foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
+   }
+   else {
+    minchars++;
+
+    /* See if *uc is the beginning of a multi-character fold.  If
+    * so, we decrement the length remaining to look at, to account
+    * for the current character this iteration.  (We can use 'uc'
+    * instead of the fold returned by TRIE_READ_CHAR because for
+    * non-UTF, the latin1_safe macro is smart enough to account
+    * for all the unfolded characters, and because for UTF, the
+    * string will already have been folded earlier in the
+    * compilation process */
+    if (UTF) {
+     if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
+      foldlen -= UTF8SKIP(uc);
+     }
+    }
+    else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
+     foldlen--;
+    }
+   }
+
+   /* The current character (and any potential folds) should be added
+   * to the possible matching characters for this position in this
+   * branch */
+   if ( uvc < 256 ) {
+    if ( folder ) {
+     U8 folded= folder[ (U8) uvc ];
+     if ( !trie->charmap[ folded ] ) {
+      trie->charmap[ folded ]=( ++trie->uniquecharcount );
+      TRIE_STORE_REVCHAR( folded );
+     }
+    }
+    if ( !trie->charmap[ uvc ] ) {
+     trie->charmap[ uvc ]=( ++trie->uniquecharcount );
+     TRIE_STORE_REVCHAR( uvc );
+    }
+    if ( set_bit ) {
+     /* store the codepoint in the bitmap, and its folded
+     * equivalent. */
+     TRIE_BITMAP_SET(trie, uvc);
+
+     /* store the folded codepoint */
+     if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
+
+     if ( !UTF ) {
+      /* store first byte of utf8 representation of
+      variant codepoints */
+      if (! UVCHR_IS_INVARIANT(uvc)) {
+       TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
+      }
+     }
+     set_bit = 0; /* We've done our bit :-) */
+    }
+   } else {
+
+    /* XXX We could come up with the list of code points that fold
+    * to this using PL_utf8_foldclosures, except not for
+    * multi-char folds, as there may be multiple combinations
+    * there that could work, which needs to wait until runtime to
+    * resolve (The comment about LIGATURE FFI above is such an
+    * example */
+
+    SV** svpp;
+    if ( !widecharmap )
+     widecharmap = newHV();
+
+    svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
+
+    if ( !svpp )
+     Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
+
+    if ( !SvTRUE( *svpp ) ) {
+     sv_setiv( *svpp, ++trie->uniquecharcount );
+     TRIE_STORE_REVCHAR(uvc);
+    }
+   }
+  } /* end loop through characters in this branch of the trie */
+
+  /* We take the min and max for this branch and combine to find the min
+  * and max for all branches processed so far */
+  if( cur == first ) {
+   trie->minlen = minchars;
+   trie->maxlen = maxchars;
+  } else if (minchars < trie->minlen) {
+   trie->minlen = minchars;
+  } else if (maxchars > trie->maxlen) {
+   trie->maxlen = maxchars;
+  }
+ } /* end first pass */
+ DEBUG_TRIE_COMPILE_r(
+  PerlIO_printf( Perl_debug_log,
+    "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
+    (int)depth * 2 + 2,"",
+    ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
+    (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
+    (int)trie->minlen, (int)trie->maxlen )
+ );
+
+ /*
+  We now know what we are dealing with in terms of unique chars and
+  string sizes so we can calculate how much memory a naive
+  representation using a flat table  will take. If it's over a reasonable
+  limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
+  conservative but potentially much slower representation using an array
+  of lists.
+
+  At the end we convert both representations into the same compressed
+  form that will be used in regexec.c for matching with. The latter
+  is a form that cannot be used to construct with but has memory
+  properties similar to the list form and access properties similar
+  to the table form making it both suitable for fast searches and
+  small enough that its feasable to store for the duration of a program.
+
+  See the comment in the code where the compressed table is produced
+  inplace from the flat tabe representation for an explanation of how
+  the compression works.
+
+ */
+
+
+ Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
+ prev_states[1] = 0;
+
+ if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
+             > SvIV(re_trie_maxbuff) )
+ {
+  /*
+   Second Pass -- Array Of Lists Representation
+
+   Each state will be represented by a list of charid:state records
+   (reg_trie_trans_le) the first such element holds the CUR and LEN
+   points of the allocated array. (See defines above).
+
+   We build the initial structure using the lists, and then convert
+   it into the compressed table form which allows faster lookups
+   (but cant be modified once converted).
+  */
+
+  STRLEN transcount = 1;
+
+  DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
+   "%*sCompiling trie using list compiler\n",
+   (int)depth * 2 + 2, ""));
+
+  trie->states = (reg_trie_state *)
+   PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
+        sizeof(reg_trie_state) );
+  TRIE_LIST_NEW(1);
+  next_alloc = 2;
+
+  for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+
+   regnode *noper   = NEXTOPER( cur );
+   U8 *uc           = (U8*)STRING( noper );
+   const U8 *e      = uc + STR_LEN( noper );
+   U32 state        = 1;         /* required init */
+   U16 charid       = 0;         /* sanity init */
+   U32 wordlen      = 0;         /* required init */
+
+   if (OP(noper) == NOTHING) {
+    regnode *noper_next= regnext(noper);
+    if (noper_next != tail && OP(noper_next) == flags) {
+     noper = noper_next;
+     uc= (U8*)STRING(noper);
+     e= uc + STR_LEN(noper);
+    }
+   }
+
+   if (OP(noper) != NOTHING) {
+    for ( ; uc < e ; uc += len ) {
+
+     TRIE_READ_CHAR;
+
+     if ( uvc < 256 ) {
+      charid = trie->charmap[ uvc ];
+     } else {
+      SV** const svpp = hv_fetch( widecharmap,
+             (char*)&uvc,
+             sizeof( UV ),
+             0);
+      if ( !svpp ) {
+       charid = 0;
+      } else {
+       charid=(U16)SvIV( *svpp );
+      }
+     }
+     /* charid is now 0 if we dont know the char read, or
+     * nonzero if we do */
+     if ( charid ) {
+
+      U16 check;
+      U32 newstate = 0;
+
+      charid--;
+      if ( !trie->states[ state ].trans.list ) {
+       TRIE_LIST_NEW( state );
+      }
+      for ( check = 1;
+       check <= TRIE_LIST_USED( state );
+       check++ )
+      {
+       if ( TRIE_LIST_ITEM( state, check ).forid
+                 == charid )
+       {
+        newstate = TRIE_LIST_ITEM( state, check ).newstate;
+        break;
+       }
+      }
+      if ( ! newstate ) {
+       newstate = next_alloc++;
+       prev_states[newstate] = state;
+       TRIE_LIST_PUSH( state, charid, newstate );
+       transcount++;
+      }
+      state = newstate;
+     } else {
+      Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
+     }
+    }
+   }
+   TRIE_HANDLE_WORD(state);
+
+  } /* end second pass */
+
+  /* next alloc is the NEXT state to be allocated */
+  trie->statecount = next_alloc;
+  trie->states = (reg_trie_state *)
+   PerlMemShared_realloc( trie->states,
+        next_alloc
+        * sizeof(reg_trie_state) );
+
+  /* and now dump it out before we compress it */
+  DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
+              revcharmap, next_alloc,
+              depth+1)
+  );
+
+  trie->trans = (reg_trie_trans *)
+   PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
+  {
+   U32 state;
+   U32 tp = 0;
+   U32 zp = 0;
+
+
+   for( state=1 ; state < next_alloc ; state ++ ) {
+    U32 base=0;
+
+    /*
+    DEBUG_TRIE_COMPILE_MORE_r(
+     PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
+    );
+    */
+
+    if (trie->states[state].trans.list) {
+     U16 minid=TRIE_LIST_ITEM( state, 1).forid;
+     U16 maxid=minid;
+     U16 idx;
+
+     for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
+      const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
+      if ( forid < minid ) {
+       minid=forid;
+      } else if ( forid > maxid ) {
+       maxid=forid;
+      }
+     }
+     if ( transcount < tp + maxid - minid + 1) {
+      transcount *= 2;
+      trie->trans = (reg_trie_trans *)
+       PerlMemShared_realloc( trie->trans,
+             transcount
+             * sizeof(reg_trie_trans) );
+      Zero( trie->trans + (transcount / 2),
+       transcount / 2,
+       reg_trie_trans );
+     }
+     base = trie->uniquecharcount + tp - minid;
+     if ( maxid == minid ) {
+      U32 set = 0;
+      for ( ; zp < tp ; zp++ ) {
+       if ( ! trie->trans[ zp ].next ) {
+        base = trie->uniquecharcount + zp - minid;
+        trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
+                1).newstate;
+        trie->trans[ zp ].check = state;
+        set = 1;
+        break;
+       }
+      }
+      if ( !set ) {
+       trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
+                1).newstate;
+       trie->trans[ tp ].check = state;
+       tp++;
+       zp = tp;
+      }
+     } else {
+      for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
+       const U32 tid = base
+          - trie->uniquecharcount
+          + TRIE_LIST_ITEM( state, idx ).forid;
+       trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
+                idx ).newstate;
+       trie->trans[ tid ].check = state;
+      }
+      tp += ( maxid - minid + 1 );
+     }
+     Safefree(trie->states[ state ].trans.list);
+    }
+    /*
+    DEBUG_TRIE_COMPILE_MORE_r(
+     PerlIO_printf( Perl_debug_log, " base: %d\n",base);
+    );
+    */
+    trie->states[ state ].trans.base=base;
+   }
+   trie->lasttrans = tp + 1;
+  }
+ } else {
+  /*
+  Second Pass -- Flat Table Representation.
+
+  we dont use the 0 slot of either trans[] or states[] so we add 1 to
+  each.  We know that we will need Charcount+1 trans at most to store
+  the data (one row per char at worst case) So we preallocate both
+  structures assuming worst case.
+
+  We then construct the trie using only the .next slots of the entry
+  structs.
+
+  We use the .check field of the first entry of the node temporarily
+  to make compression both faster and easier by keeping track of how
+  many non zero fields are in the node.
+
+  Since trans are numbered from 1 any 0 pointer in the table is a FAIL
+  transition.
+
+  There are two terms at use here: state as a TRIE_NODEIDX() which is
+  a number representing the first entry of the node, and state as a
+  TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
+  and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
+  if there are 2 entrys per node. eg:
+
+   A B       A B
+  1. 2 4    1. 3 7
+  2. 0 3    3. 0 5
+  3. 0 0    5. 0 0
+  4. 0 0    7. 0 0
+
+  The table is internally in the right hand, idx form. However as we
+  also have to deal with the states array which is indexed by nodenum
+  we have to use TRIE_NODENUM() to convert.
+
+  */
+  DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
+   "%*sCompiling trie using table compiler\n",
+   (int)depth * 2 + 2, ""));
+
+  trie->trans = (reg_trie_trans *)
+   PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
+        * trie->uniquecharcount + 1,
+        sizeof(reg_trie_trans) );
+  trie->states = (reg_trie_state *)
+   PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
+        sizeof(reg_trie_state) );
+  next_alloc = trie->uniquecharcount + 1;
+
+
+  for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+
+   regnode *noper   = NEXTOPER( cur );
+   const U8 *uc     = (U8*)STRING( noper );
+   const U8 *e      = uc + STR_LEN( noper );
+
+   U32 state        = 1;         /* required init */
+
+   U16 charid       = 0;         /* sanity init */
+   U32 accept_state = 0;         /* sanity init */
+
+   U32 wordlen      = 0;         /* required init */
+
+   if (OP(noper) == NOTHING) {
+    regnode *noper_next= regnext(noper);
+    if (noper_next != tail && OP(noper_next) == flags) {
+     noper = noper_next;
+     uc= (U8*)STRING(noper);
+     e= uc + STR_LEN(noper);
+    }
+   }
+
+   if ( OP(noper) != NOTHING ) {
+    for ( ; uc < e ; uc += len ) {
+
+     TRIE_READ_CHAR;
+
+     if ( uvc < 256 ) {
+      charid = trie->charmap[ uvc ];
+     } else {
+      SV* const * const svpp = hv_fetch( widecharmap,
+              (char*)&uvc,
+              sizeof( UV ),
+              0);
+      charid = svpp ? (U16)SvIV(*svpp) : 0;
+     }
+     if ( charid ) {
+      charid--;
+      if ( !trie->trans[ state + charid ].next ) {
+       trie->trans[ state + charid ].next = next_alloc;
+       trie->trans[ state ].check++;
+       prev_states[TRIE_NODENUM(next_alloc)]
+         = TRIE_NODENUM(state);
+       next_alloc += trie->uniquecharcount;
+      }
+      state = trie->trans[ state + charid ].next;
+     } else {
+      Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
+     }
+     /* charid is now 0 if we dont know the char read, or
+     * nonzero if we do */
+    }
+   }
+   accept_state = TRIE_NODENUM( state );
+   TRIE_HANDLE_WORD(accept_state);
+
+  } /* end second pass */
+
+  /* and now dump it out before we compress it */
+  DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
+              revcharmap,
+              next_alloc, depth+1));
+
+  {
+  /*
+  * Inplace compress the table.*
+
+  For sparse data sets the table constructed by the trie algorithm will
+  be mostly 0/FAIL transitions or to put it another way mostly empty.
+  (Note that leaf nodes will not contain any transitions.)
+
+  This algorithm compresses the tables by eliminating most such
+  transitions, at the cost of a modest bit of extra work during lookup:
+
+  - Each states[] entry contains a .base field which indicates the
+  index in the state[] array wheres its transition data is stored.
+
+  - If .base is 0 there are no valid transitions from that node.
+
+  - If .base is nonzero then charid is added to it to find an entry in
+  the trans array.
+
+  -If trans[states[state].base+charid].check!=state then the
+  transition is taken to be a 0/Fail transition. Thus if there are fail
+  transitions at the front of the node then the .base offset will point
+  somewhere inside the previous nodes data (or maybe even into a node
+  even earlier), but the .check field determines if the transition is
+  valid.
+
+  XXX - wrong maybe?
+  The following process inplace converts the table to the compressed
+  table: We first do not compress the root node 1,and mark all its
+  .check pointers as 1 and set its .base pointer as 1 as well. This
+  allows us to do a DFA construction from the compressed table later,
+  and ensures that any .base pointers we calculate later are greater
+  than 0.
+
+  - We set 'pos' to indicate the first entry of the second node.
+
+  - We then iterate over the columns of the node, finding the first and
+  last used entry at l and m. We then copy l..m into pos..(pos+m-l),
+  and set the .check pointers accordingly, and advance pos
+  appropriately and repreat for the next node. Note that when we copy
+  the next pointers we have to convert them from the original
+  NODEIDX form to NODENUM form as the former is not valid post
+  compression.
+
+  - If a node has no transitions used we mark its base as 0 and do not
+  advance the pos pointer.
+
+  - If a node only has one transition we use a second pointer into the
+  structure to fill in allocated fail transitions from other states.
+  This pointer is independent of the main pointer and scans forward
+  looking for null transitions that are allocated to a state. When it
+  finds one it writes the single transition into the "hole".  If the
+  pointer doesnt find one the single transition is appended as normal.
+
+  - Once compressed we can Renew/realloc the structures to release the
+  excess space.
+
+  See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
+  specifically Fig 3.47 and the associated pseudocode.
+
+  demq
+  */
+  const U32 laststate = TRIE_NODENUM( next_alloc );
+  U32 state, charid;
+  U32 pos = 0, zp=0;
+  trie->statecount = laststate;
+
+  for ( state = 1 ; state < laststate ; state++ ) {
+   U8 flag = 0;
+   const U32 stateidx = TRIE_NODEIDX( state );
+   const U32 o_used = trie->trans[ stateidx ].check;
+   U32 used = trie->trans[ stateidx ].check;
+   trie->trans[ stateidx ].check = 0;
+
+   for ( charid = 0;
+    used && charid < trie->uniquecharcount;
+    charid++ )
+   {
+    if ( flag || trie->trans[ stateidx + charid ].next ) {
+     if ( trie->trans[ stateidx + charid ].next ) {
+      if (o_used == 1) {
+       for ( ; zp < pos ; zp++ ) {
+        if ( ! trie->trans[ zp ].next ) {
+         break;
+        }
+       }
+       trie->states[ state ].trans.base
+             = zp
+             + trie->uniquecharcount
+             - charid ;
+       trie->trans[ zp ].next
+        = SAFE_TRIE_NODENUM( trie->trans[ stateidx
+               + charid ].next );
+       trie->trans[ zp ].check = state;
+       if ( ++zp > pos ) pos = zp;
+       break;
+      }
+      used--;
+     }
+     if ( !flag ) {
+      flag = 1;
+      trie->states[ state ].trans.base
+         = pos + trie->uniquecharcount - charid ;
+     }
+     trie->trans[ pos ].next
+      = SAFE_TRIE_NODENUM(
+         trie->trans[ stateidx + charid ].next );
+     trie->trans[ pos ].check = state;
+     pos++;
+    }
+   }
+  }
+  trie->lasttrans = pos + 1;
+  trie->states = (reg_trie_state *)
+   PerlMemShared_realloc( trie->states, laststate
+        * sizeof(reg_trie_state) );
+  DEBUG_TRIE_COMPILE_MORE_r(
+   PerlIO_printf( Perl_debug_log,
+    "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
+    (int)depth * 2 + 2,"",
+    (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
+     + 1 ),
+    (IV)next_alloc,
+    (IV)pos,
+    ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
+   );
+
+  } /* end table compress */
+ }
+ DEBUG_TRIE_COMPILE_MORE_r(
+   PerlIO_printf(Perl_debug_log,
+    "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
+    (int)depth * 2 + 2, "",
+    (UV)trie->statecount,
+    (UV)trie->lasttrans)
+ );
+ /* resize the trans array to remove unused space */
+ trie->trans = (reg_trie_trans *)
+  PerlMemShared_realloc( trie->trans, trie->lasttrans
+       * sizeof(reg_trie_trans) );
+
+ {   /* Modify the program and insert the new TRIE node */
+  U8 nodetype =(U8)(flags & 0xFF);
+  char *str=NULL;
+
+#ifdef DEBUGGING
+  regnode *optimize = NULL;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+
+  U32 mjd_offset = 0;
+  U32 mjd_nodelen = 0;
+#endif /* RE_TRACK_PATTERN_OFFSETS */
+#endif /* DEBUGGING */
+  /*
+  This means we convert either the first branch or the first Exact,
+  depending on whether the thing following (in 'last') is a branch
+  or not and whther first is the startbranch (ie is it a sub part of
+  the alternation or is it the whole thing.)
+  Assuming its a sub part we convert the EXACT otherwise we convert
+  the whole branch sequence, including the first.
+  */
+  /* Find the node we are going to overwrite */
+  if ( first != startbranch || OP( last ) == BRANCH ) {
+   /* branch sub-chain */
+   NEXT_OFF( first ) = (U16)(last - first);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+   DEBUG_r({
+    mjd_offset= Node_Offset((convert));
+    mjd_nodelen= Node_Length((convert));
+   });
+#endif
+   /* whole branch chain */
+  }
+#ifdef RE_TRACK_PATTERN_OFFSETS
+  else {
+   DEBUG_r({
+    const  regnode *nop = NEXTOPER( convert );
+    mjd_offset= Node_Offset((nop));
+    mjd_nodelen= Node_Length((nop));
+   });
+  }
+  DEBUG_OPTIMISE_r(
+   PerlIO_printf(Perl_debug_log,
+    "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
+    (int)depth * 2 + 2, "",
+    (UV)mjd_offset, (UV)mjd_nodelen)
+  );
+#endif
+  /* But first we check to see if there is a common prefix we can
+  split out as an EXACT and put in front of the TRIE node.  */
+  trie->startstate= 1;
+  if ( trie->bitmap && !widecharmap && !trie->jump  ) {
+   U32 state;
+   for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
+    U32 ofs = 0;
+    I32 idx = -1;
+    U32 count = 0;
+    const U32 base = trie->states[ state ].trans.base;
+
+    if ( trie->states[state].wordnum )
+      count = 1;
+
+    for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
+     if ( ( base + ofs >= trie->uniquecharcount ) &&
+      ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
+      trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
+     {
+      if ( ++count > 1 ) {
+       SV **tmp = av_fetch( revcharmap, ofs, 0);
+       const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
+       if ( state == 1 ) break;
+       if ( count == 2 ) {
+        Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
+        DEBUG_OPTIMISE_r(
+         PerlIO_printf(Perl_debug_log,
+          "%*sNew Start State=%"UVuf" Class: [",
+          (int)depth * 2 + 2, "",
+          (UV)state));
+        if (idx >= 0) {
+         SV ** const tmp = av_fetch( revcharmap, idx, 0);
+         const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
+
+         TRIE_BITMAP_SET(trie,*ch);
+         if ( folder )
+          TRIE_BITMAP_SET(trie, folder[ *ch ]);
+         DEBUG_OPTIMISE_r(
+          PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
+         );
+        }
+       }
+       TRIE_BITMAP_SET(trie,*ch);
+       if ( folder )
+        TRIE_BITMAP_SET(trie,folder[ *ch ]);
+       DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
+      }
+      idx = ofs;
+     }
+    }
+    if ( count == 1 ) {
+     SV **tmp = av_fetch( revcharmap, idx, 0);
+     STRLEN len;
+     char *ch = SvPV( *tmp, len );
+     DEBUG_OPTIMISE_r({
+      SV *sv=sv_newmortal();
+      PerlIO_printf( Perl_debug_log,
+       "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
+       (int)depth * 2 + 2, "",
+       (UV)state, (UV)idx,
+       pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
+        PL_colors[0], PL_colors[1],
+        (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+        PERL_PV_ESCAPE_FIRSTCHAR
+       )
+      );
+     });
+     if ( state==1 ) {
+      OP( convert ) = nodetype;
+      str=STRING(convert);
+      STR_LEN(convert)=0;
+     }
+     STR_LEN(convert) += len;
+     while (len--)
+      *str++ = *ch++;
+    } else {
+#ifdef DEBUGGING
+     if (state>1)
+      DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
+#endif
+     break;
+    }
+   }
+   trie->prefixlen = (state-1);
+   if (str) {
+    regnode *n = convert+NODE_SZ_STR(convert);
+    NEXT_OFF(convert) = NODE_SZ_STR(convert);
+    trie->startstate = state;
+    trie->minlen -= (state - 1);
+    trie->maxlen -= (state - 1);
+#ifdef DEBUGGING
+   /* At least the UNICOS C compiler choked on this
+    * being argument to DEBUG_r(), so let's just have
+    * it right here. */
+   if (
+#ifdef PERL_EXT_RE_BUILD
+    1
+#else
+    DEBUG_r_TEST
+#endif
+    ) {
+    regnode *fix = convert;
+    U32 word = trie->wordcount;
+    mjd_nodelen++;
+    Set_Node_Offset_Length(convert, mjd_offset, state - 1);
+    while( ++fix < n ) {
+     Set_Node_Offset_Length(fix, 0, 0);
+    }
+    while (word--) {
+     SV ** const tmp = av_fetch( trie_words, word, 0 );
+     if (tmp) {
+      if ( STR_LEN(convert) <= SvCUR(*tmp) )
+       sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
+      else
+       sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
+     }
+    }
+   }
+#endif
+    if (trie->maxlen) {
+     convert = n;
+    } else {
+     NEXT_OFF(convert) = (U16)(tail - convert);
+     DEBUG_r(optimize= n);
+    }
+   }
+  }
+  if (!jumper)
+   jumper = last;
+  if ( trie->maxlen ) {
+   NEXT_OFF( convert ) = (U16)(tail - convert);
+   ARG_SET( convert, data_slot );
+   /* Store the offset to the first unabsorbed branch in
+   jump[0], which is otherwise unused by the jump logic.
+   We use this when dumping a trie and during optimisation. */
+   if (trie->jump)
+    trie->jump[0] = (U16)(nextbranch - convert);
+
+   /* If the start state is not accepting (meaning there is no empty string/NOTHING)
+   *   and there is a bitmap
+   *   and the first "jump target" node we found leaves enough room
+   * then convert the TRIE node into a TRIEC node, with the bitmap
+   * embedded inline in the opcode - this is hypothetically faster.
+   */
+   if ( !trie->states[trie->startstate].wordnum
+    && trie->bitmap
+    && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
+   {
+    OP( convert ) = TRIEC;
+    Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
+    PerlMemShared_free(trie->bitmap);
+    trie->bitmap= NULL;
+   } else
+    OP( convert ) = TRIE;
+
+   /* store the type in the flags */
+   convert->flags = nodetype;
+   DEBUG_r({
+   optimize = convert
+     + NODE_STEP_REGNODE
+     + regarglen[ OP( convert ) ];
+   });
+   /* XXX We really should free up the resource in trie now,
+    as we won't use them - (which resources?) dmq */
+  }
+  /* needed for dumping*/
+  DEBUG_r(if (optimize) {
+   regnode *opt = convert;
+
+   while ( ++opt < optimize) {
+    Set_Node_Offset_Length(opt,0,0);
+   }
+   /*
+    Try to clean up some of the debris left after the
+    optimisation.
+   */
+   while( optimize < jumper ) {
+    mjd_nodelen += Node_Length((optimize));
+    OP( optimize ) = OPTIMIZED;
+    Set_Node_Offset_Length(optimize,0,0);
+    optimize++;
+   }
+   Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
+  });
+ } /* end node insert */
+ REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, convert);
+
+ /*  Finish populating the prev field of the wordinfo array.  Walk back
+ *  from each accept state until we find another accept state, and if
+ *  so, point the first word's .prev field at the second word. If the
+ *  second already has a .prev field set, stop now. This will be the
+ *  case either if we've already processed that word's accept state,
+ *  or that state had multiple words, and the overspill words were
+ *  already linked up earlier.
+ */
+ {
+  U16 word;
+  U32 state;
+  U16 prev;
+
+  for (word=1; word <= trie->wordcount; word++) {
+   prev = 0;
+   if (trie->wordinfo[word].prev)
+    continue;
+   state = trie->wordinfo[word].accept;
+   while (state) {
+    state = prev_states[state];
+    if (!state)
+     break;
+    prev = trie->states[state].wordnum;
+    if (prev)
+     break;
+   }
+   trie->wordinfo[word].prev = prev;
+  }
+  Safefree(prev_states);
+ }
+
+
+ /* and now dump out the compressed format */
+ DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
+
+ RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
+#ifdef DEBUGGING
+ RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
+ RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
+#else
+ SvREFCNT_dec_NN(revcharmap);
+#endif
+ return trie->jump
+  ? MADE_JUMP_TRIE
+  : trie->startstate>1
+   ? MADE_EXACT_TRIE
+   : MADE_TRIE;
+}
+
+STATIC regnode *
+S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
+{
+/* The Trie is constructed and compressed now so we can build a fail array if
+ * it's needed
+
+   This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
+   3.32 in the
+   "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
+   Ullman 1985/88
+   ISBN 0-201-10088-6
+
+   We find the fail state for each state in the trie, this state is the longest
+   proper suffix of the current state's 'word' that is also a proper prefix of
+   another word in our trie. State 1 represents the word '' and is thus the
+   default fail state. This allows the DFA not to have to restart after its
+   tried and failed a word at a given point, it simply continues as though it
+   had been matching the other word in the first place.
+   Consider
+ 'abcdgu'=~/abcdefg|cdgu/
+   When we get to 'd' we are still matching the first word, we would encounter
+   'g' which would fail, which would bring us to the state representing 'd' in
+   the second word where we would try 'g' and succeed, proceeding to match
+   'cdgu'.
+ */
+ /* add a fail transition */
+ const U32 trie_offset = ARG(source);
+ reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
+ U32 *q;
+ const U32 ucharcount = trie->uniquecharcount;
+ const U32 numstates = trie->statecount;
+ const U32 ubound = trie->lasttrans + ucharcount;
+ U32 q_read = 0;
+ U32 q_write = 0;
+ U32 charid;
+ U32 base = trie->states[ 1 ].trans.base;
+ U32 *fail;
+ reg_ac_data *aho;
+ const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
+ regnode *stclass;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
+ PERL_UNUSED_CONTEXT;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ if ( OP(source) == TRIE ) {
+  struct regnode_1 *op = (struct regnode_1 *)
+   PerlMemShared_calloc(1, sizeof(struct regnode_1));
+  StructCopy(source,op,struct regnode_1);
+  stclass = (regnode *)op;
+ } else {
+  struct regnode_charclass *op = (struct regnode_charclass *)
+   PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
+  StructCopy(source,op,struct regnode_charclass);
+  stclass = (regnode *)op;
+ }
+ OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */
+
+ ARG_SET( stclass, data_slot );
+ aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
+ RExC_rxi->data->data[ data_slot ] = (void*)aho;
+ aho->trie=trie_offset;
+ aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
+ Copy( trie->states, aho->states, numstates, reg_trie_state );
+ Newxz( q, numstates, U32);
+ aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
+ aho->refcount = 1;
+ fail = aho->fail;
+ /* initialize fail[0..1] to be 1 so that we always have
+ a valid final fail state */
+ fail[ 0 ] = fail[ 1 ] = 1;
+
+ for ( charid = 0; charid < ucharcount ; charid++ ) {
+  const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
+  if ( newstate ) {
+   q[ q_write ] = newstate;
+   /* set to point at the root */
+   fail[ q[ q_write++ ] ]=1;
+  }
+ }
+ while ( q_read < q_write) {
+  const U32 cur = q[ q_read++ % numstates ];
+  base = trie->states[ cur ].trans.base;
+
+  for ( charid = 0 ; charid < ucharcount ; charid++ ) {
+   const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
+   if (ch_state) {
+    U32 fail_state = cur;
+    U32 fail_base;
+    do {
+     fail_state = fail[ fail_state ];
+     fail_base = aho->states[ fail_state ].trans.base;
+    } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
+
+    fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
+    fail[ ch_state ] = fail_state;
+    if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
+    {
+      aho->states[ ch_state ].wordnum =  aho->states[ fail_state ].wordnum;
+    }
+    q[ q_write++ % numstates] = ch_state;
+   }
+  }
+ }
+ /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
+ when we fail in state 1, this allows us to use the
+ charclass scan to find a valid start char. This is based on the principle
+ that theres a good chance the string being searched contains lots of stuff
+ that cant be a start char.
+ */
+ fail[ 0 ] = fail[ 1 ] = 0;
+ DEBUG_TRIE_COMPILE_r({
+  PerlIO_printf(Perl_debug_log,
+     "%*sStclass Failtable (%"UVuf" states): 0",
+     (int)(depth * 2), "", (UV)numstates
+  );
+  for( q_read=1; q_read<numstates; q_read++ ) {
+   PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
+  }
+  PerlIO_printf(Perl_debug_log, "\n");
+ });
+ Safefree(q);
+ /*RExC_seen |= REG_TRIEDFA_SEEN;*/
+ return stclass;
+}
+
+
+#define DEBUG_PEEP(str,scan,depth) \
+ DEBUG_OPTIMISE_r({if (scan){ \
+ regnode *Next = regnext(scan); \
+ regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state); \
+ PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)", \
+  (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),\
+  Next ? (REG_NODE_NUM(Next)) : 0 ); \
+ DEBUG_SHOW_STUDY_FLAGS(flags," [ ","]");\
+ PerlIO_printf(Perl_debug_log, "\n"); \
+   }});
+
+/* The below joins as many adjacent EXACTish nodes as possible into a single
+ * one.  The regop may be changed if the node(s) contain certain sequences that
+ * require special handling.  The joining is only done if:
+ * 1) there is room in the current conglomerated node to entirely contain the
+ *    next one.
+ * 2) they are the exact same node type
+ *
+ * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
+ * these get optimized out
+ *
+ * If a node is to match under /i (folded), the number of characters it matches
+ * can be different than its character length if it contains a multi-character
+ * fold.  *min_subtract is set to the total delta number of characters of the
+ * input nodes.
+ *
+ * And *unfolded_multi_char is set to indicate whether or not the node contains
+ * an unfolded multi-char fold.  This happens when whether the fold is valid or
+ * not won't be known until runtime; namely for EXACTF nodes that contain LATIN
+ * SMALL LETTER SHARP S, as only if the target string being matched against
+ * turns out to be UTF-8 is that fold valid; and also for EXACTFL nodes whose
+ * folding rules depend on the locale in force at runtime.  (Multi-char folds
+ * whose components are all above the Latin1 range are not run-time locale
+ * dependent, and have already been folded by the time this function is
+ * called.)
+ *
+ * This is as good a place as any to discuss the design of handling these
+ * multi-character fold sequences.  It's been wrong in Perl for a very long
+ * time.  There are three code points in Unicode whose multi-character folds
+ * were long ago discovered to mess things up.  The previous designs for
+ * dealing with these involved assigning a special node for them.  This
+ * approach doesn't always work, as evidenced by this example:
+ *      "\xDFs" =~ /s\xDF/ui    # Used to fail before these patches
+ * Both sides fold to "sss", but if the pattern is parsed to create a node that
+ * would match just the \xDF, it won't be able to handle the case where a
+ * successful match would have to cross the node's boundary.  The new approach
+ * that hopefully generally solves the problem generates an EXACTFU_SS node
+ * that is "sss" in this case.
+ *
+ * It turns out that there are problems with all multi-character folds, and not
+ * just these three.  Now the code is general, for all such cases.  The
+ * approach taken is:
+ * 1)   This routine examines each EXACTFish node that could contain multi-
+ *      character folded sequences.  Since a single character can fold into
+ *      such a sequence, the minimum match length for this node is less than
+ *      the number of characters in the node.  This routine returns in
+ *      *min_subtract how many characters to subtract from the the actual
+ *      length of the string to get a real minimum match length; it is 0 if
+ *      there are no multi-char foldeds.  This delta is used by the caller to
+ *      adjust the min length of the match, and the delta between min and max,
+ *      so that the optimizer doesn't reject these possibilities based on size
+ *      constraints.
+ * 2)   For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
+ *      is used for an EXACTFU node that contains at least one "ss" sequence in
+ *      it.  For non-UTF-8 patterns and strings, this is the only case where
+ *      there is a possible fold length change.  That means that a regular
+ *      EXACTFU node without UTF-8 involvement doesn't have to concern itself
+ *      with length changes, and so can be processed faster.  regexec.c takes
+ *      advantage of this.  Generally, an EXACTFish node that is in UTF-8 is
+ *      pre-folded by regcomp.c (except EXACTFL, some of whose folds aren't
+ *      known until runtime).  This saves effort in regex matching.  However,
+ *      the pre-folding isn't done for non-UTF8 patterns because the fold of
+ *      the MICRO SIGN requires UTF-8, and we don't want to slow things down by
+ *      forcing the pattern into UTF8 unless necessary.  Also what EXACTF (and,
+ *      again, EXACTFL) nodes fold to isn't known until runtime.  The fold
+ *      possibilities for the non-UTF8 patterns are quite simple, except for
+ *      the sharp s.  All the ones that don't involve a UTF-8 target string are
+ *      members of a fold-pair, and arrays are set up for all of them so that
+ *      the other member of the pair can be found quickly.  Code elsewhere in
+ *      this file makes sure that in EXACTFU nodes, the sharp s gets folded to
+ *      'ss', even if the pattern isn't UTF-8.  This avoids the issues
+ *      described in the next item.
+ * 3)   A problem remains for unfolded multi-char folds. (These occur when the
+ *      validity of the fold won't be known until runtime, and so must remain
+ *      unfolded for now.  This happens for the sharp s in EXACTF and EXACTFA
+ *      nodes when the pattern isn't in UTF-8.  (Note, BTW, that there cannot
+ *      be an EXACTF node with a UTF-8 pattern.)  They also occur for various
+ *      folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
+ *      The reason this is a problem is that the optimizer part of regexec.c
+ *      (probably unwittingly, in Perl_regexec_flags()) makes an assumption
+ *      that a character in the pattern corresponds to at most a single
+ *      character in the target string.  (And I do mean character, and not byte
+ *      here, unlike other parts of the documentation that have never been
+ *      updated to account for multibyte Unicode.)  sharp s in EXACTF and
+ *      EXACTFL nodes can match the two character string 'ss'; in EXACTFA nodes
+ *      it can match "\x{17F}\x{17F}".  These, along with other ones in EXACTFL
+ *      nodes, violate the assumption, and they are the only instances where it
+ *      is violated.  I'm reluctant to try to change the assumption, as the
+ *      code involved is impenetrable to me (khw), so instead the code here
+ *      punts.  This routine examines EXACTFL nodes, and (when the pattern
+ *      isn't UTF-8) EXACTF and EXACTFA for such unfolded folds, and returns a
+ *      boolean indicating whether or not the node contains such a fold.  When
+ *      it is true, the caller sets a flag that later causes the optimizer in
+ *      this file to not set values for the floating and fixed string lengths,
+ *      and thus avoids the optimizer code in regexec.c that makes the invalid
+ *      assumption.  Thus, there is no optimization based on string lengths for
+ *      EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
+ *      EXACTF and EXACTFA nodes that contain the sharp s.  (The reason the
+ *      assumption is wrong only in these cases is that all other non-UTF-8
+ *      folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
+ *      their expanded versions.  (Again, we can't prefold sharp s to 'ss' in
+ *      EXACTF nodes because we don't know at compile time if it actually
+ *      matches 'ss' or not.  For EXACTF nodes it will match iff the target
+ *      string is in UTF-8.  This is in contrast to EXACTFU nodes, where it
+ *      always matches; and EXACTFA where it never does.  In an EXACTFA node in
+ *      a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
+ *      problem; but in a non-UTF8 pattern, folding it to that above-Latin1
+ *      string would require the pattern to be forced into UTF-8, the overhead
+ *      of which we want to avoid.  Similarly the unfolded multi-char folds in
+ *      EXACTFL nodes will match iff the locale at the time of match is a UTF-8
+ *      locale.)
+ *
+ *      Similarly, the code that generates tries doesn't currently handle
+ *      not-already-folded multi-char folds, and it looks like a pain to change
+ *      that.  Therefore, trie generation of EXACTFA nodes with the sharp s
+ *      doesn't work.  Instead, such an EXACTFA is turned into a new regnode,
+ *      EXACTFA_NO_TRIE, which the trie code knows not to handle.  Most people
+ *      using /iaa matching will be doing so almost entirely with ASCII
+ *      strings, so this should rarely be encountered in practice */
+
+#define JOIN_EXACT(scan,min_subtract,unfolded_multi_char, flags) \
+ if (PL_regkind[OP(scan)] == EXACT) \
+  join_exact(pRExC_state,(scan),(min_subtract),unfolded_multi_char, (flags),NULL,depth+1)
+
+STATIC U32
+S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan,
+    UV *min_subtract, bool *unfolded_multi_char,
+    U32 flags,regnode *val, U32 depth)
+{
+ /* Merge several consecutive EXACTish nodes into one. */
+ regnode *n = regnext(scan);
+ U32 stringok = 1;
+ regnode *next = scan + NODE_SZ_STR(scan);
+ U32 merged = 0;
+ U32 stopnow = 0;
+#ifdef DEBUGGING
+ regnode *stop = scan;
+ GET_RE_DEBUG_FLAGS_DECL;
+#else
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ PERL_ARGS_ASSERT_JOIN_EXACT;
+#ifndef EXPERIMENTAL_INPLACESCAN
+ PERL_UNUSED_ARG(flags);
+ PERL_UNUSED_ARG(val);
+#endif
+ DEBUG_PEEP("join",scan,depth);
+
+ /* Look through the subsequent nodes in the chain.  Skip NOTHING, merge
+ * EXACT ones that are mergeable to the current one. */
+ while (n
+  && (PL_regkind[OP(n)] == NOTHING
+   || (stringok && OP(n) == OP(scan)))
+  && NEXT_OFF(n)
+  && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
+ {
+
+  if (OP(n) == TAIL || n > next)
+   stringok = 0;
+  if (PL_regkind[OP(n)] == NOTHING) {
+   DEBUG_PEEP("skip:",n,depth);
+   NEXT_OFF(scan) += NEXT_OFF(n);
+   next = n + NODE_STEP_REGNODE;
+#ifdef DEBUGGING
+   if (stringok)
+    stop = n;
+#endif
+   n = regnext(n);
+  }
+  else if (stringok) {
+   const unsigned int oldl = STR_LEN(scan);
+   regnode * const nnext = regnext(n);
+
+   /* XXX I (khw) kind of doubt that this works on platforms (should
+   * Perl ever run on one) where U8_MAX is above 255 because of lots
+   * of other assumptions */
+   /* Don't join if the sum can't fit into a single node */
+   if (oldl + STR_LEN(n) > U8_MAX)
+    break;
+
+   DEBUG_PEEP("merg",n,depth);
+   merged++;
+
+   NEXT_OFF(scan) += NEXT_OFF(n);
+   STR_LEN(scan) += STR_LEN(n);
+   next = n + NODE_SZ_STR(n);
+   /* Now we can overwrite *n : */
+   Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
+#ifdef DEBUGGING
+   stop = next - 1;
+#endif
+   n = nnext;
+   if (stopnow) break;
+  }
+
+#ifdef EXPERIMENTAL_INPLACESCAN
+  if (flags && !NEXT_OFF(n)) {
+   DEBUG_PEEP("atch", val, depth);
+   if (reg_off_by_arg[OP(n)]) {
+    ARG_SET(n, val - n);
+   }
+   else {
+    NEXT_OFF(n) = val - n;
+   }
+   stopnow = 1;
+  }
+#endif
+ }
+
+ *min_subtract = 0;
+ *unfolded_multi_char = FALSE;
+
+ /* Here, all the adjacent mergeable EXACTish nodes have been merged.  We
+ * can now analyze for sequences of problematic code points.  (Prior to
+ * this final joining, sequences could have been split over boundaries, and
+ * hence missed).  The sequences only happen in folding, hence for any
+ * non-EXACT EXACTish node */
+ if (OP(scan) != EXACT && OP(scan) != EXACTL) {
+  U8* s0 = (U8*) STRING(scan);
+  U8* s = s0;
+  U8* s_end = s0 + STR_LEN(scan);
+
+  int total_count_delta = 0;  /* Total delta number of characters that
+         multi-char folds expand to */
+
+  /* One pass is made over the node's string looking for all the
+  * possibilities.  To avoid some tests in the loop, there are two main
+  * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
+  * non-UTF-8 */
+  if (UTF) {
+   U8* folded = NULL;
+
+   if (OP(scan) == EXACTFL) {
+    U8 *d;
+
+    /* An EXACTFL node would already have been changed to another
+    * node type unless there is at least one character in it that
+    * is problematic; likely a character whose fold definition
+    * won't be known until runtime, and so has yet to be folded.
+    * For all but the UTF-8 locale, folds are 1-1 in length, but
+    * to handle the UTF-8 case, we need to create a temporary
+    * folded copy using UTF-8 locale rules in order to analyze it.
+    * This is because our macros that look to see if a sequence is
+    * a multi-char fold assume everything is folded (otherwise the
+    * tests in those macros would be too complicated and slow).
+    * Note that here, the non-problematic folds will have already
+    * been done, so we can just copy such characters.  We actually
+    * don't completely fold the EXACTFL string.  We skip the
+    * unfolded multi-char folds, as that would just create work
+    * below to figure out the size they already are */
+
+    Newx(folded, UTF8_MAX_FOLD_CHAR_EXPAND * STR_LEN(scan) + 1, U8);
+    d = folded;
+    while (s < s_end) {
+     STRLEN s_len = UTF8SKIP(s);
+     if (! is_PROBLEMATIC_LOCALE_FOLD_utf8(s)) {
+      Copy(s, d, s_len, U8);
+      d += s_len;
+     }
+     else if (is_FOLDS_TO_MULTI_utf8(s)) {
+      *unfolded_multi_char = TRUE;
+      Copy(s, d, s_len, U8);
+      d += s_len;
+     }
+     else if (isASCII(*s)) {
+      *(d++) = toFOLD(*s);
+     }
+     else {
+      STRLEN len;
+      _to_utf8_fold_flags(s, d, &len, FOLD_FLAGS_FULL);
+      d += len;
+     }
+     s += s_len;
+    }
+
+    /* Point the remainder of the routine to look at our temporary
+    * folded copy */
+    s = folded;
+    s_end = d;
+   } /* End of creating folded copy of EXACTFL string */
+
+   /* Examine the string for a multi-character fold sequence.  UTF-8
+   * patterns have all characters pre-folded by the time this code is
+   * executed */
+   while (s < s_end - 1) /* Can stop 1 before the end, as minimum
+         length sequence we are looking for is 2 */
+   {
+    int count = 0;  /* How many characters in a multi-char fold */
+    int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
+    if (! len) {    /* Not a multi-char fold: get next char */
+     s += UTF8SKIP(s);
+     continue;
+    }
+
+    /* Nodes with 'ss' require special handling, except for
+    * EXACTFA-ish for which there is no multi-char fold to this */
+    if (len == 2 && *s == 's' && *(s+1) == 's'
+     && OP(scan) != EXACTFA
+     && OP(scan) != EXACTFA_NO_TRIE)
+    {
+     count = 2;
+     if (OP(scan) != EXACTFL) {
+      OP(scan) = EXACTFU_SS;
+     }
+     s += 2;
+    }
+    else { /* Here is a generic multi-char fold. */
+     U8* multi_end  = s + len;
+
+     /* Count how many characters are in it.  In the case of
+     * /aa, no folds which contain ASCII code points are
+     * allowed, so check for those, and skip if found. */
+     if (OP(scan) != EXACTFA && OP(scan) != EXACTFA_NO_TRIE) {
+      count = utf8_length(s, multi_end);
+      s = multi_end;
+     }
+     else {
+      while (s < multi_end) {
+       if (isASCII(*s)) {
+        s++;
+        goto next_iteration;
+       }
+       else {
+        s += UTF8SKIP(s);
+       }
+       count++;
+      }
+     }
+    }
+
+    /* The delta is how long the sequence is minus 1 (1 is how long
+    * the character that folds to the sequence is) */
+    total_count_delta += count - 1;
+   next_iteration: ;
+   }
+
+   /* We created a temporary folded copy of the string in EXACTFL
+   * nodes.  Therefore we need to be sure it doesn't go below zero,
+   * as the real string could be shorter */
+   if (OP(scan) == EXACTFL) {
+    int total_chars = utf8_length((U8*) STRING(scan),
+          (U8*) STRING(scan) + STR_LEN(scan));
+    if (total_count_delta > total_chars) {
+     total_count_delta = total_chars;
+    }
+   }
+
+   *min_subtract += total_count_delta;
+   Safefree(folded);
+  }
+  else if (OP(scan) == EXACTFA) {
+
+   /* Non-UTF-8 pattern, EXACTFA node.  There can't be a multi-char
+   * fold to the ASCII range (and there are no existing ones in the
+   * upper latin1 range).  But, as outlined in the comments preceding
+   * this function, we need to flag any occurrences of the sharp s.
+   * This character forbids trie formation (because of added
+   * complexity) */
+   while (s < s_end) {
+    if (*s == LATIN_SMALL_LETTER_SHARP_S) {
+     OP(scan) = EXACTFA_NO_TRIE;
+     *unfolded_multi_char = TRUE;
+     break;
+    }
+    s++;
+    continue;
+   }
+  }
+  else {
+
+   /* Non-UTF-8 pattern, not EXACTFA node.  Look for the multi-char
+   * folds that are all Latin1.  As explained in the comments
+   * preceding this function, we look also for the sharp s in EXACTF
+   * and EXACTFL nodes; it can be in the final position.  Otherwise
+   * we can stop looking 1 byte earlier because have to find at least
+   * two characters for a multi-fold */
+   const U8* upper = (OP(scan) == EXACTF || OP(scan) == EXACTFL)
+       ? s_end
+       : s_end -1;
+
+   while (s < upper) {
+    int len = is_MULTI_CHAR_FOLD_latin1_safe(s, s_end);
+    if (! len) {    /* Not a multi-char fold. */
+     if (*s == LATIN_SMALL_LETTER_SHARP_S
+      && (OP(scan) == EXACTF || OP(scan) == EXACTFL))
+     {
+      *unfolded_multi_char = TRUE;
+     }
+     s++;
+     continue;
+    }
+
+    if (len == 2
+     && isALPHA_FOLD_EQ(*s, 's')
+     && isALPHA_FOLD_EQ(*(s+1), 's'))
+    {
+
+     /* EXACTF nodes need to know that the minimum length
+     * changed so that a sharp s in the string can match this
+     * ss in the pattern, but they remain EXACTF nodes, as they
+     * won't match this unless the target string is is UTF-8,
+     * which we don't know until runtime.  EXACTFL nodes can't
+     * transform into EXACTFU nodes */
+     if (OP(scan) != EXACTF && OP(scan) != EXACTFL) {
+      OP(scan) = EXACTFU_SS;
+     }
+    }
+
+    *min_subtract += len - 1;
+    s += len;
+   }
+  }
+ }
+
+#ifdef DEBUGGING
+ /* Allow dumping but overwriting the collection of skipped
+ * ops and/or strings with fake optimized ops */
+ n = scan + NODE_SZ_STR(scan);
+ while (n <= stop) {
+  OP(n) = OPTIMIZED;
+  FLAGS(n) = 0;
+  NEXT_OFF(n) = 0;
+  n++;
+ }
+#endif
+ DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
+ return stopnow;
+}
+
+/* REx optimizer.  Converts nodes into quicker variants "in place".
+   Finds fixed substrings.  */
+
+/* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
+   to the position after last scanned or to NULL. */
+
+#define INIT_AND_WITHP \
+ assert(!and_withp); \
+ Newx(and_withp,1, regnode_ssc); \
+ SAVEFREEPV(and_withp)
+
+
+static void
+S_unwind_scan_frames(pTHX_ const void *p)
+{
+ scan_frame *f= (scan_frame *)p;
+ do {
+  scan_frame *n= f->next_frame;
+  Safefree(f);
+  f= n;
+ } while (f);
+}
+
+
+STATIC SSize_t
+S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
+      SSize_t *minlenp, SSize_t *deltap,
+      regnode *last,
+      scan_data_t *data,
+      I32 stopparen,
+      U32 recursed_depth,
+      regnode_ssc *and_withp,
+      U32 flags, U32 depth)
+      /* scanp: Start here (read-write). */
+      /* deltap: Write maxlen-minlen here. */
+      /* last: Stop before this one. */
+      /* data: string data about the pattern */
+      /* stopparen: treat close N as END */
+      /* recursed: which subroutines have we recursed into */
+      /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
+{
+ /* There must be at least this number of characters to match */
+ SSize_t min = 0;
+ I32 pars = 0, code;
+ regnode *scan = *scanp, *next;
+ SSize_t delta = 0;
+ int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
+ int is_inf_internal = 0;  /* The studied chunk is infinite */
+ I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
+ scan_data_t data_fake;
+ SV *re_trie_maxbuff = NULL;
+ regnode *first_non_open = scan;
+ SSize_t stopmin = SSize_t_MAX;
+ scan_frame *frame = NULL;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_STUDY_CHUNK;
+
+
+ if ( depth == 0 ) {
+  while (first_non_open && OP(first_non_open) == OPEN)
+   first_non_open=regnext(first_non_open);
+ }
+
+
+  fake_study_recurse:
+ DEBUG_r(
+  RExC_study_chunk_recursed_count++;
+ );
+ DEBUG_OPTIMISE_MORE_r(
+ {
+  PerlIO_printf(Perl_debug_log,
+   "%*sstudy_chunk stopparen=%ld recursed_count=%lu depth=%lu recursed_depth=%lu scan=%p last=%p",
+   (int)(depth*2), "", (long)stopparen,
+   (unsigned long)RExC_study_chunk_recursed_count,
+   (unsigned long)depth, (unsigned long)recursed_depth,
+   scan,
+   last);
+  if (recursed_depth) {
+   U32 i;
+   U32 j;
+   for ( j = 0 ; j < recursed_depth ; j++ ) {
+    for ( i = 0 ; i < (U32)RExC_npar ; i++ ) {
+     if (
+      PAREN_TEST(RExC_study_chunk_recursed +
+        ( j * RExC_study_chunk_recursed_bytes), i )
+      && (
+       !j ||
+       !PAREN_TEST(RExC_study_chunk_recursed +
+        (( j - 1 ) * RExC_study_chunk_recursed_bytes), i)
+      )
+     ) {
+      PerlIO_printf(Perl_debug_log," %d",(int)i);
+      break;
+     }
+    }
+    if ( j + 1 < recursed_depth ) {
+     PerlIO_printf(Perl_debug_log, ",");
+    }
+   }
+  }
+  PerlIO_printf(Perl_debug_log,"\n");
+ }
+ );
+ while ( scan && OP(scan) != END && scan < last ){
+  UV min_subtract = 0;    /* How mmany chars to subtract from the minimum
+        node length to get a real minimum (because
+        the folded version may be shorter) */
+  bool unfolded_multi_char = FALSE;
+  /* Peephole optimizer: */
+  DEBUG_STUDYDATA("Peep:", data, depth);
+  DEBUG_PEEP("Peep", scan, depth);
+
+
+  /* The reason we do this here we need to deal with things like /(?:f)(?:o)(?:o)/
+  * which cant be dealt with by the normal EXACT parsing code, as each (?:..) is handled
+  * by a different invocation of reg() -- Yves
+  */
+  JOIN_EXACT(scan,&min_subtract, &unfolded_multi_char, 0);
+
+  /* Follow the next-chain of the current node and optimize
+  away all the NOTHINGs from it.  */
+  if (OP(scan) != CURLYX) {
+   const int max = (reg_off_by_arg[OP(scan)]
+     ? I32_MAX
+     /* I32 may be smaller than U16 on CRAYs! */
+     : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
+   int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
+   int noff;
+   regnode *n = scan;
+
+   /* Skip NOTHING and LONGJMP. */
+   while ((n = regnext(n))
+    && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
+     || ((OP(n) == LONGJMP) && (noff = ARG(n))))
+    && off + noff < max)
+    off += noff;
+   if (reg_off_by_arg[OP(scan)])
+    ARG(scan) = off;
+   else
+    NEXT_OFF(scan) = off;
+  }
+
+  /* The principal pseudo-switch.  Cannot be a switch, since we
+  look into several different things.  */
+  if ( OP(scan) == DEFINEP ) {
+   SSize_t minlen = 0;
+   SSize_t deltanext = 0;
+   SSize_t fake_last_close = 0;
+   I32 f = SCF_IN_DEFINE;
+
+   StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+   scan = regnext(scan);
+   assert( OP(scan) == IFTHEN );
+   DEBUG_PEEP("expect IFTHEN", scan, depth);
+
+   data_fake.last_closep= &fake_last_close;
+   minlen = *minlenp;
+   next = regnext(scan);
+   scan = NEXTOPER(NEXTOPER(scan));
+   DEBUG_PEEP("scan", scan, depth);
+   DEBUG_PEEP("next", next, depth);
+
+   /* we suppose the run is continuous, last=next...
+   * NOTE we dont use the return here! */
+   (void)study_chunk(pRExC_state, &scan, &minlen,
+       &deltanext, next, &data_fake, stopparen,
+       recursed_depth, NULL, f, depth+1);
+
+   scan = next;
+  } else
+  if (
+   OP(scan) == BRANCH  ||
+   OP(scan) == BRANCHJ ||
+   OP(scan) == IFTHEN
+  ) {
+   next = regnext(scan);
+   code = OP(scan);
+
+   /* The op(next)==code check below is to see if we
+   * have "BRANCH-BRANCH", "BRANCHJ-BRANCHJ", "IFTHEN-IFTHEN"
+   * IFTHEN is special as it might not appear in pairs.
+   * Not sure whether BRANCH-BRANCHJ is possible, regardless
+   * we dont handle it cleanly. */
+   if (OP(next) == code || code == IFTHEN) {
+    /* NOTE - There is similar code to this block below for
+    * handling TRIE nodes on a re-study.  If you change stuff here
+    * check there too. */
+    SSize_t max1 = 0, min1 = SSize_t_MAX, num = 0;
+    regnode_ssc accum;
+    regnode * const startbranch=scan;
+
+    if (flags & SCF_DO_SUBSTR) {
+     /* Cannot merge strings after this. */
+     scan_commit(pRExC_state, data, minlenp, is_inf);
+    }
+
+    if (flags & SCF_DO_STCLASS)
+     ssc_init_zero(pRExC_state, &accum);
+
+    while (OP(scan) == code) {
+     SSize_t deltanext, minnext, fake;
+     I32 f = 0;
+     regnode_ssc this_class;
+
+     DEBUG_PEEP("Branch", scan, depth);
+
+     num++;
+     StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+     if (data) {
+      data_fake.whilem_c = data->whilem_c;
+      data_fake.last_closep = data->last_closep;
+     }
+     else
+      data_fake.last_closep = &fake;
+
+     data_fake.pos_delta = delta;
+     next = regnext(scan);
+
+     scan = NEXTOPER(scan); /* everything */
+     if (code != BRANCH)    /* everything but BRANCH */
+      scan = NEXTOPER(scan);
+
+     if (flags & SCF_DO_STCLASS) {
+      ssc_init(pRExC_state, &this_class);
+      data_fake.start_class = &this_class;
+      f = SCF_DO_STCLASS_AND;
+     }
+     if (flags & SCF_WHILEM_VISITED_POS)
+      f |= SCF_WHILEM_VISITED_POS;
+
+     /* we suppose the run is continuous, last=next...*/
+     minnext = study_chunk(pRExC_state, &scan, minlenp,
+         &deltanext, next, &data_fake, stopparen,
+         recursed_depth, NULL, f,depth+1);
+
+     if (min1 > minnext)
+      min1 = minnext;
+     if (deltanext == SSize_t_MAX) {
+      is_inf = is_inf_internal = 1;
+      max1 = SSize_t_MAX;
+     } else if (max1 < minnext + deltanext)
+      max1 = minnext + deltanext;
+     scan = next;
+     if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+      pars++;
+     if (data_fake.flags & SCF_SEEN_ACCEPT) {
+      if ( stopmin > minnext)
+       stopmin = min + min1;
+      flags &= ~SCF_DO_SUBSTR;
+      if (data)
+       data->flags |= SCF_SEEN_ACCEPT;
+     }
+     if (data) {
+      if (data_fake.flags & SF_HAS_EVAL)
+       data->flags |= SF_HAS_EVAL;
+      data->whilem_c = data_fake.whilem_c;
+     }
+     if (flags & SCF_DO_STCLASS)
+      ssc_or(pRExC_state, &accum, (regnode_charclass*)&this_class);
+    }
+    if (code == IFTHEN && num < 2) /* Empty ELSE branch */
+     min1 = 0;
+    if (flags & SCF_DO_SUBSTR) {
+     data->pos_min += min1;
+     if (data->pos_delta >= SSize_t_MAX - (max1 - min1))
+      data->pos_delta = SSize_t_MAX;
+     else
+      data->pos_delta += max1 - min1;
+     if (max1 != min1 || is_inf)
+      data->longest = &(data->longest_float);
+    }
+    min += min1;
+    if (delta == SSize_t_MAX
+    || SSize_t_MAX - delta - (max1 - min1) < 0)
+     delta = SSize_t_MAX;
+    else
+     delta += max1 - min1;
+    if (flags & SCF_DO_STCLASS_OR) {
+     ssc_or(pRExC_state, data->start_class, (regnode_charclass*) &accum);
+     if (min1) {
+      ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+      flags &= ~SCF_DO_STCLASS;
+     }
+    }
+    else if (flags & SCF_DO_STCLASS_AND) {
+     if (min1) {
+      ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
+      flags &= ~SCF_DO_STCLASS;
+     }
+     else {
+      /* Switch to OR mode: cache the old value of
+      * data->start_class */
+      INIT_AND_WITHP;
+      StructCopy(data->start_class, and_withp, regnode_ssc);
+      flags &= ~SCF_DO_STCLASS_AND;
+      StructCopy(&accum, data->start_class, regnode_ssc);
+      flags |= SCF_DO_STCLASS_OR;
+     }
+    }
+
+    if (PERL_ENABLE_TRIE_OPTIMISATION &&
+      OP( startbranch ) == BRANCH )
+    {
+    /* demq.
+
+    Assuming this was/is a branch we are dealing with: 'scan'
+    now points at the item that follows the branch sequence,
+    whatever it is. We now start at the beginning of the
+    sequence and look for subsequences of
+
+    BRANCH->EXACT=>x1
+    BRANCH->EXACT=>x2
+    tail
+
+    which would be constructed from a pattern like
+    /A|LIST|OF|WORDS/
+
+    If we can find such a subsequence we need to turn the first
+    element into a trie and then add the subsequent branch exact
+    strings to the trie.
+
+    We have two cases
+
+     1. patterns where the whole set of branches can be
+      converted.
+
+     2. patterns where only a subset can be converted.
+
+    In case 1 we can replace the whole set with a single regop
+    for the trie. In case 2 we need to keep the start and end
+    branches so
+
+     'BRANCH EXACT; BRANCH EXACT; BRANCH X'
+     becomes BRANCH TRIE; BRANCH X;
+
+    There is an additional case, that being where there is a
+    common prefix, which gets split out into an EXACT like node
+    preceding the TRIE node.
+
+    If x(1..n)==tail then we can do a simple trie, if not we make
+    a "jump" trie, such that when we match the appropriate word
+    we "jump" to the appropriate tail node. Essentially we turn
+    a nested if into a case structure of sorts.
+
+    */
+
+     int made=0;
+     if (!re_trie_maxbuff) {
+      re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
+      if (!SvIOK(re_trie_maxbuff))
+       sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
+     }
+     if ( SvIV(re_trie_maxbuff)>=0  ) {
+      regnode *cur;
+      regnode *first = (regnode *)NULL;
+      regnode *last = (regnode *)NULL;
+      regnode *tail = scan;
+      U8 trietype = 0;
+      U32 count=0;
+
+      /* var tail is used because there may be a TAIL
+      regop in the way. Ie, the exacts will point to the
+      thing following the TAIL, but the last branch will
+      point at the TAIL. So we advance tail. If we
+      have nested (?:) we may have to move through several
+      tails.
+      */
+
+      while ( OP( tail ) == TAIL ) {
+       /* this is the TAIL generated by (?:) */
+       tail = regnext( tail );
+      }
+
+
+      DEBUG_TRIE_COMPILE_r({
+       regprop(RExC_rx, RExC_mysv, tail, NULL, pRExC_state);
+       PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
+       (int)depth * 2 + 2, "",
+       "Looking for TRIE'able sequences. Tail node is: ",
+       SvPV_nolen_const( RExC_mysv )
+       );
+      });
+
+      /*
+
+       Step through the branches
+        cur represents each branch,
+        noper is the first thing to be matched as part
+         of that branch
+        noper_next is the regnext() of that node.
+
+       We normally handle a case like this
+       /FOO[xyz]|BAR[pqr]/ via a "jump trie" but we also
+       support building with NOJUMPTRIE, which restricts
+       the trie logic to structures like /FOO|BAR/.
+
+       If noper is a trieable nodetype then the branch is
+       a possible optimization target. If we are building
+       under NOJUMPTRIE then we require that noper_next is
+       the same as scan (our current position in the regex
+       program).
+
+       Once we have two or more consecutive such branches
+       we can create a trie of the EXACT's contents and
+       stitch it in place into the program.
+
+       If the sequence represents all of the branches in
+       the alternation we replace the entire thing with a
+       single TRIE node.
+
+       Otherwise when it is a subsequence we need to
+       stitch it in place and replace only the relevant
+       branches. This means the first branch has to remain
+       as it is used by the alternation logic, and its
+       next pointer, and needs to be repointed at the item
+       on the branch chain following the last branch we
+       have optimized away.
+
+       This could be either a BRANCH, in which case the
+       subsequence is internal, or it could be the item
+       following the branch sequence in which case the
+       subsequence is at the end (which does not
+       necessarily mean the first node is the start of the
+       alternation).
+
+       TRIE_TYPE(X) is a define which maps the optype to a
+       trietype.
+
+        optype          |  trietype
+        ----------------+-----------
+        NOTHING         | NOTHING
+        EXACT           | EXACT
+        EXACTFU         | EXACTFU
+        EXACTFU_SS      | EXACTFU
+        EXACTFA         | EXACTFA
+        EXACTL          | EXACTL
+        EXACTFLU8       | EXACTFLU8
+
+
+      */
+#define TRIE_TYPE(X) ( ( NOTHING == (X) )                                   \
+     ? NOTHING                                            \
+     : ( EXACT == (X) )                                   \
+      ? EXACT                                            \
+      : ( EXACTFU == (X) || EXACTFU_SS == (X) )          \
+      ? EXACTFU                                        \
+      : ( EXACTFA == (X) )                             \
+       ? EXACTFA                                      \
+       : ( EXACTL == (X) )                            \
+       ? EXACTL                                     \
+       : ( EXACTFLU8 == (X) )                        \
+        ? EXACTFLU8                                 \
+        : 0 )
+
+      /* dont use tail as the end marker for this traverse */
+      for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
+       regnode * const noper = NEXTOPER( cur );
+       U8 noper_type = OP( noper );
+       U8 noper_trietype = TRIE_TYPE( noper_type );
+#if defined(DEBUGGING) || defined(NOJUMPTRIE)
+       regnode * const noper_next = regnext( noper );
+       U8 noper_next_type = (noper_next && noper_next != tail) ? OP(noper_next) : 0;
+       U8 noper_next_trietype = (noper_next && noper_next != tail) ? TRIE_TYPE( noper_next_type ) :0;
+#endif
+
+       DEBUG_TRIE_COMPILE_r({
+        regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
+        PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
+        (int)depth * 2 + 2,"", SvPV_nolen_const( RExC_mysv ), REG_NODE_NUM(cur) );
+
+        regprop(RExC_rx, RExC_mysv, noper, NULL, pRExC_state);
+        PerlIO_printf( Perl_debug_log, " -> %s",
+         SvPV_nolen_const(RExC_mysv));
+
+        if ( noper_next ) {
+        regprop(RExC_rx, RExC_mysv, noper_next, NULL, pRExC_state);
+        PerlIO_printf( Perl_debug_log,"\t=> %s\t",
+         SvPV_nolen_const(RExC_mysv));
+        }
+        PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d,tt==%s,nt==%s,nnt==%s)\n",
+        REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur),
+        PL_reg_name[trietype], PL_reg_name[noper_trietype], PL_reg_name[noper_next_trietype]
+        );
+       });
+
+       /* Is noper a trieable nodetype that can be merged
+       * with the current trie (if there is one)? */
+       if ( noper_trietype
+        &&
+        (
+          ( noper_trietype == NOTHING)
+          || ( trietype == NOTHING )
+          || ( trietype == noper_trietype )
+        )
+#ifdef NOJUMPTRIE
+        && noper_next == tail
+#endif
+        && count < U16_MAX)
+       {
+        /* Handle mergable triable node Either we are
+        * the first node in a new trieable sequence,
+        * in which case we do some bookkeeping,
+        * otherwise we update the end pointer. */
+        if ( !first ) {
+         first = cur;
+         if ( noper_trietype == NOTHING ) {
+#if !defined(DEBUGGING) && !defined(NOJUMPTRIE)
+          regnode * const noper_next = regnext( noper );
+          U8 noper_next_type = (noper_next && noper_next!=tail) ? OP(noper_next) : 0;
+          U8 noper_next_trietype = noper_next_type ? TRIE_TYPE( noper_next_type ) :0;
+#endif
+
+          if ( noper_next_trietype ) {
+           trietype = noper_next_trietype;
+          } else if (noper_next_type)  {
+           /* a NOTHING regop is 1 regop wide.
+           * We need at least two for a trie
+           * so we can't merge this in */
+           first = NULL;
+          }
+         } else {
+          trietype = noper_trietype;
+         }
+        } else {
+         if ( trietype == NOTHING )
+          trietype = noper_trietype;
+         last = cur;
+        }
+        if (first)
+         count++;
+       } /* end handle mergable triable node */
+       else {
+        /* handle unmergable node -
+        * noper may either be a triable node which can
+        * not be tried together with the current trie,
+        * or a non triable node */
+        if ( last ) {
+         /* If last is set and trietype is not
+         * NOTHING then we have found at least two
+         * triable branch sequences in a row of a
+         * similar trietype so we can turn them
+         * into a trie. If/when we allow NOTHING to
+         * start a trie sequence this condition
+         * will be required, and it isn't expensive
+         * so we leave it in for now. */
+         if ( trietype && trietype != NOTHING )
+          make_trie( pRExC_state,
+            startbranch, first, cur, tail,
+            count, trietype, depth+1 );
+         last = NULL; /* note: we clear/update
+             first, trietype etc below,
+             so we dont do it here */
+        }
+        if ( noper_trietype
+#ifdef NOJUMPTRIE
+         && noper_next == tail
+#endif
+        ){
+         /* noper is triable, so we can start a new
+         * trie sequence */
+         count = 1;
+         first = cur;
+         trietype = noper_trietype;
+        } else if (first) {
+         /* if we already saw a first but the
+         * current node is not triable then we have
+         * to reset the first information. */
+         count = 0;
+         first = NULL;
+         trietype = 0;
+        }
+       } /* end handle unmergable node */
+      } /* loop over branches */
+      DEBUG_TRIE_COMPILE_r({
+       regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
+       PerlIO_printf( Perl_debug_log,
+       "%*s- %s (%d) <SCAN FINISHED>\n",
+       (int)depth * 2 + 2,
+       "", SvPV_nolen_const( RExC_mysv ),REG_NODE_NUM(cur));
+
+      });
+      if ( last && trietype ) {
+       if ( trietype != NOTHING ) {
+        /* the last branch of the sequence was part of
+        * a trie, so we have to construct it here
+        * outside of the loop */
+        made= make_trie( pRExC_state, startbranch,
+            first, scan, tail, count,
+            trietype, depth+1 );
+#ifdef TRIE_STUDY_OPT
+        if ( ((made == MADE_EXACT_TRIE &&
+         startbranch == first)
+         || ( first_non_open == first )) &&
+         depth==0 ) {
+         flags |= SCF_TRIE_RESTUDY;
+         if ( startbranch == first
+          && scan == tail )
+         {
+          RExC_seen &=~REG_TOP_LEVEL_BRANCHES_SEEN;
+         }
+        }
+#endif
+       } else {
+        /* at this point we know whatever we have is a
+        * NOTHING sequence/branch AND if 'startbranch'
+        * is 'first' then we can turn the whole thing
+        * into a NOTHING
+        */
+        if ( startbranch == first ) {
+         regnode *opt;
+         /* the entire thing is a NOTHING sequence,
+         * something like this: (?:|) So we can
+         * turn it into a plain NOTHING op. */
+         DEBUG_TRIE_COMPILE_r({
+          regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
+          PerlIO_printf( Perl_debug_log,
+          "%*s- %s (%d) <NOTHING BRANCH SEQUENCE>\n", (int)depth * 2 + 2,
+          "", SvPV_nolen_const( RExC_mysv ),REG_NODE_NUM(cur));
+
+         });
+         OP(startbranch)= NOTHING;
+         NEXT_OFF(startbranch)= tail - startbranch;
+         for ( opt= startbranch + 1; opt < tail ; opt++ )
+          OP(opt)= OPTIMIZED;
+        }
+       }
+      } /* end if ( last) */
+     } /* TRIE_MAXBUF is non zero */
+
+    } /* do trie */
+
+   }
+   else if ( code == BRANCHJ ) {  /* single branch is optimized. */
+    scan = NEXTOPER(NEXTOPER(scan));
+   } else   /* single branch is optimized. */
+    scan = NEXTOPER(scan);
+   continue;
+  } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
+   I32 paren = 0;
+   regnode *start = NULL;
+   regnode *end = NULL;
+   U32 my_recursed_depth= recursed_depth;
+
+
+   if (OP(scan) != SUSPEND) { /* GOSUB/GOSTART */
+    /* Do setup, note this code has side effects beyond
+    * the rest of this block. Specifically setting
+    * RExC_recurse[] must happen at least once during
+    * study_chunk(). */
+    if (OP(scan) == GOSUB) {
+     paren = ARG(scan);
+     RExC_recurse[ARG2L(scan)] = scan;
+     start = RExC_open_parens[paren-1];
+     end   = RExC_close_parens[paren-1];
+    } else {
+     start = RExC_rxi->program + 1;
+     end   = RExC_opend;
+    }
+    /* NOTE we MUST always execute the above code, even
+    * if we do nothing with a GOSUB/GOSTART */
+    if (
+     ( flags & SCF_IN_DEFINE )
+     ||
+     (
+      (is_inf_internal || is_inf || (data && data->flags & SF_IS_INF))
+      &&
+      ( (flags & (SCF_DO_STCLASS | SCF_DO_SUBSTR)) == 0 )
+     )
+    ) {
+     /* no need to do anything here if we are in a define. */
+     /* or we are after some kind of infinite construct
+     * so we can skip recursing into this item.
+     * Since it is infinite we will not change the maxlen
+     * or delta, and if we miss something that might raise
+     * the minlen it will merely pessimise a little.
+     *
+     * Iow /(?(DEFINE)(?<foo>foo|food))a+(?&foo)/
+     * might result in a minlen of 1 and not of 4,
+     * but this doesn't make us mismatch, just try a bit
+     * harder than we should.
+     * */
+     scan= regnext(scan);
+     continue;
+    }
+
+    if (
+     !recursed_depth
+     ||
+     !PAREN_TEST(RExC_study_chunk_recursed + ((recursed_depth-1) * RExC_study_chunk_recursed_bytes), paren)
+    ) {
+     /* it is quite possible that there are more efficient ways
+     * to do this. We maintain a bitmap per level of recursion
+     * of which patterns we have entered so we can detect if a
+     * pattern creates a possible infinite loop. When we
+     * recurse down a level we copy the previous levels bitmap
+     * down. When we are at recursion level 0 we zero the top
+     * level bitmap. It would be nice to implement a different
+     * more efficient way of doing this. In particular the top
+     * level bitmap may be unnecessary.
+     */
+     if (!recursed_depth) {
+      Zero(RExC_study_chunk_recursed, RExC_study_chunk_recursed_bytes, U8);
+     } else {
+      Copy(RExC_study_chunk_recursed + ((recursed_depth-1) * RExC_study_chunk_recursed_bytes),
+       RExC_study_chunk_recursed + (recursed_depth * RExC_study_chunk_recursed_bytes),
+       RExC_study_chunk_recursed_bytes, U8);
+     }
+     /* we havent recursed into this paren yet, so recurse into it */
+     DEBUG_STUDYDATA("set:", data,depth);
+     PAREN_SET(RExC_study_chunk_recursed + (recursed_depth * RExC_study_chunk_recursed_bytes), paren);
+     my_recursed_depth= recursed_depth + 1;
+    } else {
+     DEBUG_STUDYDATA("inf:", data,depth);
+     /* some form of infinite recursion, assume infinite length
+     * */
+     if (flags & SCF_DO_SUBSTR) {
+      scan_commit(pRExC_state, data, minlenp, is_inf);
+      data->longest = &(data->longest_float);
+     }
+     is_inf = is_inf_internal = 1;
+     if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+      ssc_anything(data->start_class);
+     flags &= ~SCF_DO_STCLASS;
+
+     start= NULL; /* reset start so we dont recurse later on. */
+    }
+   } else {
+    paren = stopparen;
+    start = scan + 2;
+    end = regnext(scan);
+   }
+   if (start) {
+    scan_frame *newframe;
+    assert(end);
+    if (!RExC_frame_last) {
+     Newxz(newframe, 1, scan_frame);
+     SAVEDESTRUCTOR_X(S_unwind_scan_frames, newframe);
+     RExC_frame_head= newframe;
+     RExC_frame_count++;
+    } else if (!RExC_frame_last->next_frame) {
+     Newxz(newframe,1,scan_frame);
+     RExC_frame_last->next_frame= newframe;
+     newframe->prev_frame= RExC_frame_last;
+     RExC_frame_count++;
+    } else {
+     newframe= RExC_frame_last->next_frame;
+    }
+    RExC_frame_last= newframe;
+
+    newframe->next_regnode = regnext(scan);
+    newframe->last_regnode = last;
+    newframe->stopparen = stopparen;
+    newframe->prev_recursed_depth = recursed_depth;
+    newframe->this_prev_frame= frame;
+
+    DEBUG_STUDYDATA("frame-new:",data,depth);
+    DEBUG_PEEP("fnew", scan, depth);
+
+    frame = newframe;
+    scan =  start;
+    stopparen = paren;
+    last = end;
+    depth = depth + 1;
+    recursed_depth= my_recursed_depth;
+
+    continue;
+   }
+  }
+  else if (OP(scan) == EXACT || OP(scan) == EXACTL) {
+   SSize_t l = STR_LEN(scan);
+   UV uc;
+   if (UTF) {
+    const U8 * const s = (U8*)STRING(scan);
+    uc = utf8_to_uvchr_buf(s, s + l, NULL);
+    l = utf8_length(s, s + l);
+   } else {
+    uc = *((U8*)STRING(scan));
+   }
+   min += l;
+   if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
+    /* The code below prefers earlier match for fixed
+    offset, later match for variable offset.  */
+    if (data->last_end == -1) { /* Update the start info. */
+     data->last_start_min = data->pos_min;
+     data->last_start_max = is_inf
+      ? SSize_t_MAX : data->pos_min + data->pos_delta;
+    }
+    sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
+    if (UTF)
+     SvUTF8_on(data->last_found);
+    {
+     SV * const sv = data->last_found;
+     MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
+      mg_find(sv, PERL_MAGIC_utf8) : NULL;
+     if (mg && mg->mg_len >= 0)
+      mg->mg_len += utf8_length((U8*)STRING(scan),
+           (U8*)STRING(scan)+STR_LEN(scan));
+    }
+    data->last_end = data->pos_min + l;
+    data->pos_min += l; /* As in the first entry. */
+    data->flags &= ~SF_BEFORE_EOL;
+   }
+
+   /* ANDing the code point leaves at most it, and not in locale, and
+   * can't match null string */
+   if (flags & SCF_DO_STCLASS_AND) {
+    ssc_cp_and(data->start_class, uc);
+    ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+    ssc_clear_locale(data->start_class);
+   }
+   else if (flags & SCF_DO_STCLASS_OR) {
+    ssc_add_cp(data->start_class, uc);
+    ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+
+    /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
+    ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+   }
+   flags &= ~SCF_DO_STCLASS;
+  }
+  else if (PL_regkind[OP(scan)] == EXACT) {
+   /* But OP != EXACT!, so is EXACTFish */
+   SSize_t l = STR_LEN(scan);
+   const U8 * s = (U8*)STRING(scan);
+
+   /* Search for fixed substrings supports EXACT only. */
+   if (flags & SCF_DO_SUBSTR) {
+    assert(data);
+    scan_commit(pRExC_state, data, minlenp, is_inf);
+   }
+   if (UTF) {
+    l = utf8_length(s, s + l);
+   }
+   if (unfolded_multi_char) {
+    RExC_seen |= REG_UNFOLDED_MULTI_SEEN;
+   }
+   min += l - min_subtract;
+   assert (min >= 0);
+   delta += min_subtract;
+   if (flags & SCF_DO_SUBSTR) {
+    data->pos_min += l - min_subtract;
+    if (data->pos_min < 0) {
+     data->pos_min = 0;
+    }
+    data->pos_delta += min_subtract;
+    if (min_subtract) {
+     data->longest = &(data->longest_float);
+    }
+   }
+
+   if (flags & SCF_DO_STCLASS) {
+    SV* EXACTF_invlist = _make_exactf_invlist(pRExC_state, scan);
+
+    assert(EXACTF_invlist);
+    if (flags & SCF_DO_STCLASS_AND) {
+     if (OP(scan) != EXACTFL)
+      ssc_clear_locale(data->start_class);
+     ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+     ANYOF_POSIXL_ZERO(data->start_class);
+     ssc_intersection(data->start_class, EXACTF_invlist, FALSE);
+    }
+    else {  /* SCF_DO_STCLASS_OR */
+     ssc_union(data->start_class, EXACTF_invlist, FALSE);
+     ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+
+     /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
+     ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+    }
+    flags &= ~SCF_DO_STCLASS;
+    SvREFCNT_dec(EXACTF_invlist);
+   }
+  }
+  else if (REGNODE_VARIES(OP(scan))) {
+   SSize_t mincount, maxcount, minnext, deltanext, pos_before = 0;
+   I32 fl = 0, f = flags;
+   regnode * const oscan = scan;
+   regnode_ssc this_class;
+   regnode_ssc *oclass = NULL;
+   I32 next_is_eval = 0;
+
+   switch (PL_regkind[OP(scan)]) {
+   case WHILEM:  /* End of (?:...)* . */
+    scan = NEXTOPER(scan);
+    goto finish;
+   case PLUS:
+    if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
+     next = NEXTOPER(scan);
+     if (OP(next) == EXACT
+      || OP(next) == EXACTL
+      || (flags & SCF_DO_STCLASS))
+     {
+      mincount = 1;
+      maxcount = REG_INFTY;
+      next = regnext(scan);
+      scan = NEXTOPER(scan);
+      goto do_curly;
+     }
+    }
+    if (flags & SCF_DO_SUBSTR)
+     data->pos_min++;
+    min++;
+    /* FALLTHROUGH */
+   case STAR:
+    if (flags & SCF_DO_STCLASS) {
+     mincount = 0;
+     maxcount = REG_INFTY;
+     next = regnext(scan);
+     scan = NEXTOPER(scan);
+     goto do_curly;
+    }
+    if (flags & SCF_DO_SUBSTR) {
+     scan_commit(pRExC_state, data, minlenp, is_inf);
+     /* Cannot extend fixed substrings */
+     data->longest = &(data->longest_float);
+    }
+    is_inf = is_inf_internal = 1;
+    scan = regnext(scan);
+    goto optimize_curly_tail;
+   case CURLY:
+    if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
+     && (scan->flags == stopparen))
+    {
+     mincount = 1;
+     maxcount = 1;
+    } else {
+     mincount = ARG1(scan);
+     maxcount = ARG2(scan);
+    }
+    next = regnext(scan);
+    if (OP(scan) == CURLYX) {
+     I32 lp = (data ? *(data->last_closep) : 0);
+     scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
+    }
+    scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
+    next_is_eval = (OP(scan) == EVAL);
+   do_curly:
+    if (flags & SCF_DO_SUBSTR) {
+     if (mincount == 0)
+      scan_commit(pRExC_state, data, minlenp, is_inf);
+     /* Cannot extend fixed substrings */
+     pos_before = data->pos_min;
+    }
+    if (data) {
+     fl = data->flags;
+     data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
+     if (is_inf)
+      data->flags |= SF_IS_INF;
+    }
+    if (flags & SCF_DO_STCLASS) {
+     ssc_init(pRExC_state, &this_class);
+     oclass = data->start_class;
+     data->start_class = &this_class;
+     f |= SCF_DO_STCLASS_AND;
+     f &= ~SCF_DO_STCLASS_OR;
+    }
+    /* Exclude from super-linear cache processing any {n,m}
+    regops for which the combination of input pos and regex
+    pos is not enough information to determine if a match
+    will be possible.
+
+    For example, in the regex /foo(bar\s*){4,8}baz/ with the
+    regex pos at the \s*, the prospects for a match depend not
+    only on the input position but also on how many (bar\s*)
+    repeats into the {4,8} we are. */
+   if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
+     f &= ~SCF_WHILEM_VISITED_POS;
+
+    /* This will finish on WHILEM, setting scan, or on NULL: */
+    minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
+        last, data, stopparen, recursed_depth, NULL,
+        (mincount == 0
+        ? (f & ~SCF_DO_SUBSTR)
+        : f)
+        ,depth+1);
+
+    if (flags & SCF_DO_STCLASS)
+     data->start_class = oclass;
+    if (mincount == 0 || minnext == 0) {
+     if (flags & SCF_DO_STCLASS_OR) {
+      ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
+     }
+     else if (flags & SCF_DO_STCLASS_AND) {
+      /* Switch to OR mode: cache the old value of
+      * data->start_class */
+      INIT_AND_WITHP;
+      StructCopy(data->start_class, and_withp, regnode_ssc);
+      flags &= ~SCF_DO_STCLASS_AND;
+      StructCopy(&this_class, data->start_class, regnode_ssc);
+      flags |= SCF_DO_STCLASS_OR;
+      ANYOF_FLAGS(data->start_class)
+            |= SSC_MATCHES_EMPTY_STRING;
+     }
+    } else {  /* Non-zero len */
+     if (flags & SCF_DO_STCLASS_OR) {
+      ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
+      ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+     }
+     else if (flags & SCF_DO_STCLASS_AND)
+      ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
+     flags &= ~SCF_DO_STCLASS;
+    }
+    if (!scan)   /* It was not CURLYX, but CURLY. */
+     scan = next;
+    if (!(flags & SCF_TRIE_DOING_RESTUDY)
+     /* ? quantifier ok, except for (?{ ... }) */
+     && (next_is_eval || !(mincount == 0 && maxcount == 1))
+     && (minnext == 0) && (deltanext == 0)
+     && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
+     && maxcount <= REG_INFTY/3) /* Complement check for big
+            count */
+    {
+     /* Fatal warnings may leak the regexp without this: */
+     SAVEFREESV(RExC_rx_sv);
+     Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP),
+      "Quantifier unexpected on zero-length expression "
+      "in regex m/%"UTF8f"/",
+      UTF8fARG(UTF, RExC_end - RExC_precomp,
+        RExC_precomp));
+     (void)ReREFCNT_inc(RExC_rx_sv);
+    }
+
+    min += minnext * mincount;
+    is_inf_internal |= deltanext == SSize_t_MAX
+      || (maxcount == REG_INFTY && minnext + deltanext > 0);
+    is_inf |= is_inf_internal;
+    if (is_inf) {
+     delta = SSize_t_MAX;
+    } else {
+     delta += (minnext + deltanext) * maxcount
+       - minnext * mincount;
+    }
+    /* Try powerful optimization CURLYX => CURLYN. */
+    if (  OP(oscan) == CURLYX && data
+     && data->flags & SF_IN_PAR
+     && !(data->flags & SF_HAS_EVAL)
+     && !deltanext && minnext == 1 ) {
+     /* Try to optimize to CURLYN.  */
+     regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
+     regnode * const nxt1 = nxt;
+#ifdef DEBUGGING
+     regnode *nxt2;
+#endif
+
+     /* Skip open. */
+     nxt = regnext(nxt);
+     if (!REGNODE_SIMPLE(OP(nxt))
+      && !(PL_regkind[OP(nxt)] == EXACT
+       && STR_LEN(nxt) == 1))
+      goto nogo;
+#ifdef DEBUGGING
+     nxt2 = nxt;
+#endif
+     nxt = regnext(nxt);
+     if (OP(nxt) != CLOSE)
+      goto nogo;
+     if (RExC_open_parens) {
+      RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
+      RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
+     }
+     /* Now we know that nxt2 is the only contents: */
+     oscan->flags = (U8)ARG(nxt);
+     OP(oscan) = CURLYN;
+     OP(nxt1) = NOTHING; /* was OPEN. */
+
+#ifdef DEBUGGING
+     OP(nxt1 + 1) = OPTIMIZED; /* was count. */
+     NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
+     NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
+     OP(nxt) = OPTIMIZED; /* was CLOSE. */
+     OP(nxt + 1) = OPTIMIZED; /* was count. */
+     NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
+#endif
+    }
+   nogo:
+
+    /* Try optimization CURLYX => CURLYM. */
+    if (  OP(oscan) == CURLYX && data
+     && !(data->flags & SF_HAS_PAR)
+     && !(data->flags & SF_HAS_EVAL)
+     && !deltanext /* atom is fixed width */
+     && minnext != 0 /* CURLYM can't handle zero width */
+
+      /* Nor characters whose fold at run-time may be
+      * multi-character */
+     && ! (RExC_seen & REG_UNFOLDED_MULTI_SEEN)
+    ) {
+     /* XXXX How to optimize if data == 0? */
+     /* Optimize to a simpler form.  */
+     regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
+     regnode *nxt2;
+
+     OP(oscan) = CURLYM;
+     while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
+       && (OP(nxt2) != WHILEM))
+      nxt = nxt2;
+     OP(nxt2)  = SUCCEED; /* Whas WHILEM */
+     /* Need to optimize away parenths. */
+     if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
+      /* Set the parenth number.  */
+      regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
+
+      oscan->flags = (U8)ARG(nxt);
+      if (RExC_open_parens) {
+       RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
+       RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
+      }
+      OP(nxt1) = OPTIMIZED; /* was OPEN. */
+      OP(nxt) = OPTIMIZED; /* was CLOSE. */
+
+#ifdef DEBUGGING
+      OP(nxt1 + 1) = OPTIMIZED; /* was count. */
+      OP(nxt + 1) = OPTIMIZED; /* was count. */
+      NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
+      NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
+#endif
+#if 0
+      while ( nxt1 && (OP(nxt1) != WHILEM)) {
+       regnode *nnxt = regnext(nxt1);
+       if (nnxt == nxt) {
+        if (reg_off_by_arg[OP(nxt1)])
+         ARG_SET(nxt1, nxt2 - nxt1);
+        else if (nxt2 - nxt1 < U16_MAX)
+         NEXT_OFF(nxt1) = nxt2 - nxt1;
+        else
+         OP(nxt) = NOTHING; /* Cannot beautify */
+       }
+       nxt1 = nnxt;
+      }
+#endif
+      /* Optimize again: */
+      study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
+         NULL, stopparen, recursed_depth, NULL, 0,depth+1);
+     }
+     else
+      oscan->flags = 0;
+    }
+    else if ((OP(oscan) == CURLYX)
+      && (flags & SCF_WHILEM_VISITED_POS)
+      /* See the comment on a similar expression above.
+       However, this time it's not a subexpression
+       we care about, but the expression itself. */
+      && (maxcount == REG_INFTY)
+      && data && ++data->whilem_c < 16) {
+     /* This stays as CURLYX, we can put the count/of pair. */
+     /* Find WHILEM (as in regexec.c) */
+     regnode *nxt = oscan + NEXT_OFF(oscan);
+
+     if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
+      nxt += ARG(nxt);
+     PREVOPER(nxt)->flags = (U8)(data->whilem_c
+      | (RExC_whilem_seen << 4)); /* On WHILEM */
+    }
+    if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
+     pars++;
+    if (flags & SCF_DO_SUBSTR) {
+     SV *last_str = NULL;
+     STRLEN last_chrs = 0;
+     int counted = mincount != 0;
+
+     if (data->last_end > 0 && mincount != 0) { /* Ends with a
+                string. */
+      SSize_t b = pos_before >= data->last_start_min
+       ? pos_before : data->last_start_min;
+      STRLEN l;
+      const char * const s = SvPV_const(data->last_found, l);
+      SSize_t old = b - data->last_start_min;
+
+      if (UTF)
+       old = utf8_hop((U8*)s, old) - (U8*)s;
+      l -= old;
+      /* Get the added string: */
+      last_str = newSVpvn_utf8(s  + old, l, UTF);
+      last_chrs = UTF ? utf8_length((U8*)(s + old),
+           (U8*)(s + old + l)) : l;
+      if (deltanext == 0 && pos_before == b) {
+       /* What was added is a constant string */
+       if (mincount > 1) {
+
+        SvGROW(last_str, (mincount * l) + 1);
+        repeatcpy(SvPVX(last_str) + l,
+          SvPVX_const(last_str), l,
+          mincount - 1);
+        SvCUR_set(last_str, SvCUR(last_str) * mincount);
+        /* Add additional parts. */
+        SvCUR_set(data->last_found,
+          SvCUR(data->last_found) - l);
+        sv_catsv(data->last_found, last_str);
+        {
+         SV * sv = data->last_found;
+         MAGIC *mg =
+          SvUTF8(sv) && SvMAGICAL(sv) ?
+          mg_find(sv, PERL_MAGIC_utf8) : NULL;
+         if (mg && mg->mg_len >= 0)
+          mg->mg_len += last_chrs * (mincount-1);
+        }
+        last_chrs *= mincount;
+        data->last_end += l * (mincount - 1);
+       }
+      } else {
+       /* start offset must point into the last copy */
+       data->last_start_min += minnext * (mincount - 1);
+       data->last_start_max =
+       is_inf
+       ? SSize_t_MAX
+       : data->last_start_max +
+        (maxcount - 1) * (minnext + data->pos_delta);
+      }
+     }
+     /* It is counted once already... */
+     data->pos_min += minnext * (mincount - counted);
+#if 0
+PerlIO_printf(Perl_debug_log, "counted=%"UVuf" deltanext=%"UVuf
+       " SSize_t_MAX=%"UVuf" minnext=%"UVuf
+       " maxcount=%"UVuf" mincount=%"UVuf"\n",
+ (UV)counted, (UV)deltanext, (UV)SSize_t_MAX, (UV)minnext, (UV)maxcount,
+ (UV)mincount);
+if (deltanext != SSize_t_MAX)
+PerlIO_printf(Perl_debug_log, "LHS=%"UVuf" RHS=%"UVuf"\n",
+ (UV)(-counted * deltanext + (minnext + deltanext) * maxcount
+  - minnext * mincount), (UV)(SSize_t_MAX - data->pos_delta));
+#endif
+     if (deltanext == SSize_t_MAX
+      || -counted * deltanext + (minnext + deltanext) * maxcount - minnext * mincount >= SSize_t_MAX - data->pos_delta)
+      data->pos_delta = SSize_t_MAX;
+     else
+      data->pos_delta += - counted * deltanext +
+      (minnext + deltanext) * maxcount - minnext * mincount;
+     if (mincount != maxcount) {
+      /* Cannot extend fixed substrings found inside
+       the group.  */
+      scan_commit(pRExC_state, data, minlenp, is_inf);
+      if (mincount && last_str) {
+       SV * const sv = data->last_found;
+       MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
+        mg_find(sv, PERL_MAGIC_utf8) : NULL;
+
+       if (mg)
+        mg->mg_len = -1;
+       sv_setsv(sv, last_str);
+       data->last_end = data->pos_min;
+       data->last_start_min = data->pos_min - last_chrs;
+       data->last_start_max = is_inf
+        ? SSize_t_MAX
+        : data->pos_min + data->pos_delta - last_chrs;
+      }
+      data->longest = &(data->longest_float);
+     }
+     SvREFCNT_dec(last_str);
+    }
+    if (data && (fl & SF_HAS_EVAL))
+     data->flags |= SF_HAS_EVAL;
+   optimize_curly_tail:
+    if (OP(oscan) != CURLYX) {
+     while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
+      && NEXT_OFF(next))
+      NEXT_OFF(oscan) += NEXT_OFF(next);
+    }
+    continue;
+
+   default:
+#ifdef DEBUGGING
+    Perl_croak(aTHX_ "panic: unexpected varying REx opcode %d",
+                 OP(scan));
+#endif
+   case REF:
+   case CLUMP:
+    if (flags & SCF_DO_SUBSTR) {
+     /* Cannot expect anything... */
+     scan_commit(pRExC_state, data, minlenp, is_inf);
+     data->longest = &(data->longest_float);
+    }
+    is_inf = is_inf_internal = 1;
+    if (flags & SCF_DO_STCLASS_OR) {
+     if (OP(scan) == CLUMP) {
+      /* Actually is any start char, but very few code points
+      * aren't start characters */
+      ssc_match_all_cp(data->start_class);
+     }
+     else {
+      ssc_anything(data->start_class);
+     }
+    }
+    flags &= ~SCF_DO_STCLASS;
+    break;
+   }
+  }
+  else if (OP(scan) == LNBREAK) {
+   if (flags & SCF_DO_STCLASS) {
+     if (flags & SCF_DO_STCLASS_AND) {
+     ssc_intersection(data->start_class,
+         PL_XPosix_ptrs[_CC_VERTSPACE], FALSE);
+     ssc_clear_locale(data->start_class);
+     ANYOF_FLAGS(data->start_class)
+            &= ~SSC_MATCHES_EMPTY_STRING;
+    }
+    else if (flags & SCF_DO_STCLASS_OR) {
+     ssc_union(data->start_class,
+       PL_XPosix_ptrs[_CC_VERTSPACE],
+       FALSE);
+     ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+
+     /* See commit msg for
+     * 749e076fceedeb708a624933726e7989f2302f6a */
+     ANYOF_FLAGS(data->start_class)
+            &= ~SSC_MATCHES_EMPTY_STRING;
+    }
+    flags &= ~SCF_DO_STCLASS;
+   }
+   min++;
+   if (delta != SSize_t_MAX)
+    delta++;    /* Because of the 2 char string cr-lf */
+   if (flags & SCF_DO_SUBSTR) {
+    /* Cannot expect anything... */
+    scan_commit(pRExC_state, data, minlenp, is_inf);
+     data->pos_min += 1;
+    data->pos_delta += 1;
+    data->longest = &(data->longest_float);
+    }
+  }
+  else if (REGNODE_SIMPLE(OP(scan))) {
+
+   if (flags & SCF_DO_SUBSTR) {
+    scan_commit(pRExC_state, data, minlenp, is_inf);
+    data->pos_min++;
+   }
+   min++;
+   if (flags & SCF_DO_STCLASS) {
+    bool invert = 0;
+    SV* my_invlist = NULL;
+    U8 namedclass;
+
+    /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
+    ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+
+    /* Some of the logic below assumes that switching
+    locale on will only add false positives. */
+    switch (OP(scan)) {
+
+    default:
+#ifdef DEBUGGING
+    Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d",
+                 OP(scan));
+#endif
+    case SANY:
+     if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+      ssc_match_all_cp(data->start_class);
+     break;
+
+    case REG_ANY:
+     {
+      SV* REG_ANY_invlist = _new_invlist(2);
+      REG_ANY_invlist = add_cp_to_invlist(REG_ANY_invlist,
+               '\n');
+      if (flags & SCF_DO_STCLASS_OR) {
+       ssc_union(data->start_class,
+         REG_ANY_invlist,
+         TRUE /* TRUE => invert, hence all but \n
+           */
+         );
+      }
+      else if (flags & SCF_DO_STCLASS_AND) {
+       ssc_intersection(data->start_class,
+           REG_ANY_invlist,
+           TRUE  /* TRUE => invert */
+           );
+       ssc_clear_locale(data->start_class);
+      }
+      SvREFCNT_dec_NN(REG_ANY_invlist);
+     }
+     break;
+
+    case ANYOFL:
+    case ANYOF:
+     if (flags & SCF_DO_STCLASS_AND)
+      ssc_and(pRExC_state, data->start_class,
+        (regnode_charclass *) scan);
+     else
+      ssc_or(pRExC_state, data->start_class,
+              (regnode_charclass *) scan);
+     break;
+
+    case NPOSIXL:
+     invert = 1;
+     /* FALLTHROUGH */
+
+    case POSIXL:
+     namedclass = classnum_to_namedclass(FLAGS(scan)) + invert;
+     if (flags & SCF_DO_STCLASS_AND) {
+      bool was_there = cBOOL(
+          ANYOF_POSIXL_TEST(data->start_class,
+                namedclass));
+      ANYOF_POSIXL_ZERO(data->start_class);
+      if (was_there) {    /* Do an AND */
+       ANYOF_POSIXL_SET(data->start_class, namedclass);
+      }
+      /* No individual code points can now match */
+      data->start_class->invlist
+            = sv_2mortal(_new_invlist(0));
+     }
+     else {
+      int complement = namedclass + ((invert) ? -1 : 1);
+
+      assert(flags & SCF_DO_STCLASS_OR);
+
+      /* If the complement of this class was already there,
+      * the result is that they match all code points,
+      * (\d + \D == everything).  Remove the classes from
+      * future consideration.  Locale is not relevant in
+      * this case */
+      if (ANYOF_POSIXL_TEST(data->start_class, complement)) {
+       ssc_match_all_cp(data->start_class);
+       ANYOF_POSIXL_CLEAR(data->start_class, namedclass);
+       ANYOF_POSIXL_CLEAR(data->start_class, complement);
+      }
+      else {  /* The usual case; just add this class to the
+        existing set */
+       ANYOF_POSIXL_SET(data->start_class, namedclass);
+      }
+     }
+     break;
+
+    case NPOSIXA:   /* For these, we always know the exact set of
+        what's matched */
+     invert = 1;
+     /* FALLTHROUGH */
+    case POSIXA:
+     if (FLAGS(scan) == _CC_ASCII) {
+      my_invlist = invlist_clone(PL_XPosix_ptrs[_CC_ASCII]);
+     }
+     else {
+      _invlist_intersection(PL_XPosix_ptrs[FLAGS(scan)],
+           PL_XPosix_ptrs[_CC_ASCII],
+           &my_invlist);
+     }
+     goto join_posix;
+
+    case NPOSIXD:
+    case NPOSIXU:
+     invert = 1;
+     /* FALLTHROUGH */
+    case POSIXD:
+    case POSIXU:
+     my_invlist = invlist_clone(PL_XPosix_ptrs[FLAGS(scan)]);
+
+     /* NPOSIXD matches all upper Latin1 code points unless the
+     * target string being matched is UTF-8, which is
+     * unknowable until match time.  Since we are going to
+     * invert, we want to get rid of all of them so that the
+     * inversion will match all */
+     if (OP(scan) == NPOSIXD) {
+      _invlist_subtract(my_invlist, PL_UpperLatin1,
+          &my_invlist);
+     }
+
+    join_posix:
+
+     if (flags & SCF_DO_STCLASS_AND) {
+      ssc_intersection(data->start_class, my_invlist, invert);
+      ssc_clear_locale(data->start_class);
+     }
+     else {
+      assert(flags & SCF_DO_STCLASS_OR);
+      ssc_union(data->start_class, my_invlist, invert);
+     }
+     SvREFCNT_dec(my_invlist);
+    }
+    if (flags & SCF_DO_STCLASS_OR)
+     ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+    flags &= ~SCF_DO_STCLASS;
+   }
+  }
+  else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
+   data->flags |= (OP(scan) == MEOL
+       ? SF_BEFORE_MEOL
+       : SF_BEFORE_SEOL);
+   scan_commit(pRExC_state, data, minlenp, is_inf);
+
+  }
+  else if (  PL_regkind[OP(scan)] == BRANCHJ
+    /* Lookbehind, or need to calculate parens/evals/stclass: */
+    && (scan->flags || data || (flags & SCF_DO_STCLASS))
+    && (OP(scan) == IFMATCH || OP(scan) == UNLESSM))
+  {
+   if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
+    || OP(scan) == UNLESSM )
+   {
+    /* Negative Lookahead/lookbehind
+    In this case we can't do fixed string optimisation.
+    */
+
+    SSize_t deltanext, minnext, fake = 0;
+    regnode *nscan;
+    regnode_ssc intrnl;
+    int f = 0;
+
+    StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+    if (data) {
+     data_fake.whilem_c = data->whilem_c;
+     data_fake.last_closep = data->last_closep;
+    }
+    else
+     data_fake.last_closep = &fake;
+    data_fake.pos_delta = delta;
+    if ( flags & SCF_DO_STCLASS && !scan->flags
+     && OP(scan) == IFMATCH ) { /* Lookahead */
+     ssc_init(pRExC_state, &intrnl);
+     data_fake.start_class = &intrnl;
+     f |= SCF_DO_STCLASS_AND;
+    }
+    if (flags & SCF_WHILEM_VISITED_POS)
+     f |= SCF_WHILEM_VISITED_POS;
+    next = regnext(scan);
+    nscan = NEXTOPER(NEXTOPER(scan));
+    minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
+         last, &data_fake, stopparen,
+         recursed_depth, NULL, f, depth+1);
+    if (scan->flags) {
+     if (deltanext) {
+      FAIL("Variable length lookbehind not implemented");
+     }
+     else if (minnext > (I32)U8_MAX) {
+      FAIL2("Lookbehind longer than %"UVuf" not implemented",
+       (UV)U8_MAX);
+     }
+     scan->flags = (U8)minnext;
+    }
+    if (data) {
+     if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+      pars++;
+     if (data_fake.flags & SF_HAS_EVAL)
+      data->flags |= SF_HAS_EVAL;
+     data->whilem_c = data_fake.whilem_c;
+    }
+    if (f & SCF_DO_STCLASS_AND) {
+     if (flags & SCF_DO_STCLASS_OR) {
+      /* OR before, AND after: ideally we would recurse with
+      * data_fake to get the AND applied by study of the
+      * remainder of the pattern, and then derecurse;
+      * *** HACK *** for now just treat as "no information".
+      * See [perl #56690].
+      */
+      ssc_init(pRExC_state, data->start_class);
+     }  else {
+      /* AND before and after: combine and continue.  These
+      * assertions are zero-length, so can match an EMPTY
+      * string */
+      ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &intrnl);
+      ANYOF_FLAGS(data->start_class)
+            |= SSC_MATCHES_EMPTY_STRING;
+     }
+    }
+   }
+#if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
+   else {
+    /* Positive Lookahead/lookbehind
+    In this case we can do fixed string optimisation,
+    but we must be careful about it. Note in the case of
+    lookbehind the positions will be offset by the minimum
+    length of the pattern, something we won't know about
+    until after the recurse.
+    */
+    SSize_t deltanext, fake = 0;
+    regnode *nscan;
+    regnode_ssc intrnl;
+    int f = 0;
+    /* We use SAVEFREEPV so that when the full compile
+     is finished perl will clean up the allocated
+     minlens when it's all done. This way we don't
+     have to worry about freeing them when we know
+     they wont be used, which would be a pain.
+    */
+    SSize_t *minnextp;
+    Newx( minnextp, 1, SSize_t );
+    SAVEFREEPV(minnextp);
+
+    if (data) {
+     StructCopy(data, &data_fake, scan_data_t);
+     if ((flags & SCF_DO_SUBSTR) && data->last_found) {
+      f |= SCF_DO_SUBSTR;
+      if (scan->flags)
+       scan_commit(pRExC_state, &data_fake, minlenp, is_inf);
+      data_fake.last_found=newSVsv(data->last_found);
+     }
+    }
+    else
+     data_fake.last_closep = &fake;
+    data_fake.flags = 0;
+    data_fake.pos_delta = delta;
+    if (is_inf)
+     data_fake.flags |= SF_IS_INF;
+    if ( flags & SCF_DO_STCLASS && !scan->flags
+     && OP(scan) == IFMATCH ) { /* Lookahead */
+     ssc_init(pRExC_state, &intrnl);
+     data_fake.start_class = &intrnl;
+     f |= SCF_DO_STCLASS_AND;
+    }
+    if (flags & SCF_WHILEM_VISITED_POS)
+     f |= SCF_WHILEM_VISITED_POS;
+    next = regnext(scan);
+    nscan = NEXTOPER(NEXTOPER(scan));
+
+    *minnextp = study_chunk(pRExC_state, &nscan, minnextp,
+          &deltanext, last, &data_fake,
+          stopparen, recursed_depth, NULL,
+          f,depth+1);
+    if (scan->flags) {
+     if (deltanext) {
+      FAIL("Variable length lookbehind not implemented");
+     }
+     else if (*minnextp > (I32)U8_MAX) {
+      FAIL2("Lookbehind longer than %"UVuf" not implemented",
+       (UV)U8_MAX);
+     }
+     scan->flags = (U8)*minnextp;
+    }
+
+    *minnextp += min;
+
+    if (f & SCF_DO_STCLASS_AND) {
+     ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &intrnl);
+     ANYOF_FLAGS(data->start_class) |= SSC_MATCHES_EMPTY_STRING;
+    }
+    if (data) {
+     if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+      pars++;
+     if (data_fake.flags & SF_HAS_EVAL)
+      data->flags |= SF_HAS_EVAL;
+     data->whilem_c = data_fake.whilem_c;
+     if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
+      if (RExC_rx->minlen<*minnextp)
+       RExC_rx->minlen=*minnextp;
+      scan_commit(pRExC_state, &data_fake, minnextp, is_inf);
+      SvREFCNT_dec_NN(data_fake.last_found);
+
+      if ( data_fake.minlen_fixed != minlenp )
+      {
+       data->offset_fixed= data_fake.offset_fixed;
+       data->minlen_fixed= data_fake.minlen_fixed;
+       data->lookbehind_fixed+= scan->flags;
+      }
+      if ( data_fake.minlen_float != minlenp )
+      {
+       data->minlen_float= data_fake.minlen_float;
+       data->offset_float_min=data_fake.offset_float_min;
+       data->offset_float_max=data_fake.offset_float_max;
+       data->lookbehind_float+= scan->flags;
+      }
+     }
+    }
+   }
+#endif
+  }
+  else if (OP(scan) == OPEN) {
+   if (stopparen != (I32)ARG(scan))
+    pars++;
+  }
+  else if (OP(scan) == CLOSE) {
+   if (stopparen == (I32)ARG(scan)) {
+    break;
+   }
+   if ((I32)ARG(scan) == is_par) {
+    next = regnext(scan);
+
+    if ( next && (OP(next) != WHILEM) && next < last)
+     is_par = 0;  /* Disable optimization */
+   }
+   if (data)
+    *(data->last_closep) = ARG(scan);
+  }
+  else if (OP(scan) == EVAL) {
+    if (data)
+     data->flags |= SF_HAS_EVAL;
+  }
+  else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
+   if (flags & SCF_DO_SUBSTR) {
+    scan_commit(pRExC_state, data, minlenp, is_inf);
+    flags &= ~SCF_DO_SUBSTR;
+   }
+   if (data && OP(scan)==ACCEPT) {
+    data->flags |= SCF_SEEN_ACCEPT;
+    if (stopmin > min)
+     stopmin = min;
+   }
+  }
+  else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
+  {
+    if (flags & SCF_DO_SUBSTR) {
+     scan_commit(pRExC_state, data, minlenp, is_inf);
+     data->longest = &(data->longest_float);
+    }
+    is_inf = is_inf_internal = 1;
+    if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+     ssc_anything(data->start_class);
+    flags &= ~SCF_DO_STCLASS;
+  }
+  else if (OP(scan) == GPOS) {
+   if (!(RExC_rx->intflags & PREGf_GPOS_FLOAT) &&
+    !(delta || is_inf || (data && data->pos_delta)))
+   {
+    if (!(RExC_rx->intflags & PREGf_ANCH) && (flags & SCF_DO_SUBSTR))
+     RExC_rx->intflags |= PREGf_ANCH_GPOS;
+    if (RExC_rx->gofs < (STRLEN)min)
+     RExC_rx->gofs = min;
+   } else {
+    RExC_rx->intflags |= PREGf_GPOS_FLOAT;
+    RExC_rx->gofs = 0;
+   }
+  }
+#ifdef TRIE_STUDY_OPT
+#ifdef FULL_TRIE_STUDY
+  else if (PL_regkind[OP(scan)] == TRIE) {
+   /* NOTE - There is similar code to this block above for handling
+   BRANCH nodes on the initial study.  If you change stuff here
+   check there too. */
+   regnode *trie_node= scan;
+   regnode *tail= regnext(scan);
+   reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
+   SSize_t max1 = 0, min1 = SSize_t_MAX;
+   regnode_ssc accum;
+
+   if (flags & SCF_DO_SUBSTR) { /* XXXX Add !SUSPEND? */
+    /* Cannot merge strings after this. */
+    scan_commit(pRExC_state, data, minlenp, is_inf);
+   }
+   if (flags & SCF_DO_STCLASS)
+    ssc_init_zero(pRExC_state, &accum);
+
+   if (!trie->jump) {
+    min1= trie->minlen;
+    max1= trie->maxlen;
+   } else {
+    const regnode *nextbranch= NULL;
+    U32 word;
+
+    for ( word=1 ; word <= trie->wordcount ; word++)
+    {
+     SSize_t deltanext=0, minnext=0, f = 0, fake;
+     regnode_ssc this_class;
+
+     StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+     if (data) {
+      data_fake.whilem_c = data->whilem_c;
+      data_fake.last_closep = data->last_closep;
+     }
+     else
+      data_fake.last_closep = &fake;
+     data_fake.pos_delta = delta;
+     if (flags & SCF_DO_STCLASS) {
+      ssc_init(pRExC_state, &this_class);
+      data_fake.start_class = &this_class;
+      f = SCF_DO_STCLASS_AND;
+     }
+     if (flags & SCF_WHILEM_VISITED_POS)
+      f |= SCF_WHILEM_VISITED_POS;
+
+     if (trie->jump[word]) {
+      if (!nextbranch)
+       nextbranch = trie_node + trie->jump[0];
+      scan= trie_node + trie->jump[word];
+      /* We go from the jump point to the branch that follows
+      it. Note this means we need the vestigal unused
+      branches even though they arent otherwise used. */
+      minnext = study_chunk(pRExC_state, &scan, minlenp,
+       &deltanext, (regnode *)nextbranch, &data_fake,
+       stopparen, recursed_depth, NULL, f,depth+1);
+     }
+     if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
+      nextbranch= regnext((regnode*)nextbranch);
+
+     if (min1 > (SSize_t)(minnext + trie->minlen))
+      min1 = minnext + trie->minlen;
+     if (deltanext == SSize_t_MAX) {
+      is_inf = is_inf_internal = 1;
+      max1 = SSize_t_MAX;
+     } else if (max1 < (SSize_t)(minnext + deltanext + trie->maxlen))
+      max1 = minnext + deltanext + trie->maxlen;
+
+     if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+      pars++;
+     if (data_fake.flags & SCF_SEEN_ACCEPT) {
+      if ( stopmin > min + min1)
+       stopmin = min + min1;
+      flags &= ~SCF_DO_SUBSTR;
+      if (data)
+       data->flags |= SCF_SEEN_ACCEPT;
+     }
+     if (data) {
+      if (data_fake.flags & SF_HAS_EVAL)
+       data->flags |= SF_HAS_EVAL;
+      data->whilem_c = data_fake.whilem_c;
+     }
+     if (flags & SCF_DO_STCLASS)
+      ssc_or(pRExC_state, &accum, (regnode_charclass *) &this_class);
+    }
+   }
+   if (flags & SCF_DO_SUBSTR) {
+    data->pos_min += min1;
+    data->pos_delta += max1 - min1;
+    if (max1 != min1 || is_inf)
+     data->longest = &(data->longest_float);
+   }
+   min += min1;
+   if (delta != SSize_t_MAX)
+    delta += max1 - min1;
+   if (flags & SCF_DO_STCLASS_OR) {
+    ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &accum);
+    if (min1) {
+     ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+     flags &= ~SCF_DO_STCLASS;
+    }
+   }
+   else if (flags & SCF_DO_STCLASS_AND) {
+    if (min1) {
+     ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
+     flags &= ~SCF_DO_STCLASS;
+    }
+    else {
+     /* Switch to OR mode: cache the old value of
+     * data->start_class */
+     INIT_AND_WITHP;
+     StructCopy(data->start_class, and_withp, regnode_ssc);
+     flags &= ~SCF_DO_STCLASS_AND;
+     StructCopy(&accum, data->start_class, regnode_ssc);
+     flags |= SCF_DO_STCLASS_OR;
+    }
+   }
+   scan= tail;
+   continue;
+  }
+#else
+  else if (PL_regkind[OP(scan)] == TRIE) {
+   reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
+   U8*bang=NULL;
+
+   min += trie->minlen;
+   delta += (trie->maxlen - trie->minlen);
+   flags &= ~SCF_DO_STCLASS; /* xxx */
+   if (flags & SCF_DO_SUBSTR) {
+    /* Cannot expect anything... */
+    scan_commit(pRExC_state, data, minlenp, is_inf);
+     data->pos_min += trie->minlen;
+     data->pos_delta += (trie->maxlen - trie->minlen);
+    if (trie->maxlen != trie->minlen)
+     data->longest = &(data->longest_float);
+    }
+    if (trie->jump) /* no more substrings -- for now /grr*/
+   flags &= ~SCF_DO_SUBSTR;
+  }
+#endif /* old or new */
+#endif /* TRIE_STUDY_OPT */
+
+  /* Else: zero-length, ignore. */
+  scan = regnext(scan);
+ }
+ /* If we are exiting a recursion we can unset its recursed bit
+ * and allow ourselves to enter it again - no danger of an
+ * infinite loop there.
+ if (stopparen > -1 && recursed) {
+  DEBUG_STUDYDATA("unset:", data,depth);
+  PAREN_UNSET( recursed, stopparen);
+ }
+ */
+ if (frame) {
+  depth = depth - 1;
+
+  DEBUG_STUDYDATA("frame-end:",data,depth);
+  DEBUG_PEEP("fend", scan, depth);
+
+  /* restore previous context */
+  last = frame->last_regnode;
+  scan = frame->next_regnode;
+  stopparen = frame->stopparen;
+  recursed_depth = frame->prev_recursed_depth;
+
+  RExC_frame_last = frame->prev_frame;
+  frame = frame->this_prev_frame;
+  goto fake_study_recurse;
+ }
+
+  finish:
+ assert(!frame);
+ DEBUG_STUDYDATA("pre-fin:",data,depth);
+
+ *scanp = scan;
+ *deltap = is_inf_internal ? SSize_t_MAX : delta;
+
+ if (flags & SCF_DO_SUBSTR && is_inf)
+  data->pos_delta = SSize_t_MAX - data->pos_min;
+ if (is_par > (I32)U8_MAX)
+  is_par = 0;
+ if (is_par && pars==1 && data) {
+  data->flags |= SF_IN_PAR;
+  data->flags &= ~SF_HAS_PAR;
+ }
+ else if (pars && data) {
+  data->flags |= SF_HAS_PAR;
+  data->flags &= ~SF_IN_PAR;
+ }
+ if (flags & SCF_DO_STCLASS_OR)
+  ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+ if (flags & SCF_TRIE_RESTUDY)
+  data->flags |=  SCF_TRIE_RESTUDY;
+
+ DEBUG_STUDYDATA("post-fin:",data,depth);
+
+ {
+  SSize_t final_minlen= min < stopmin ? min : stopmin;
+
+  if (!(RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN)) {
+   if (final_minlen > SSize_t_MAX - delta)
+    RExC_maxlen = SSize_t_MAX;
+   else if (RExC_maxlen < final_minlen + delta)
+    RExC_maxlen = final_minlen + delta;
+  }
+  return final_minlen;
+ }
+ NOT_REACHED; /* NOTREACHED */
+}
+
+STATIC U32
+S_add_data(RExC_state_t* const pRExC_state, const char* const s, const U32 n)
+{
+ U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
+
+ PERL_ARGS_ASSERT_ADD_DATA;
+
+ Renewc(RExC_rxi->data,
+  sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
+  char, struct reg_data);
+ if(count)
+  Renew(RExC_rxi->data->what, count + n, U8);
+ else
+  Newx(RExC_rxi->data->what, n, U8);
+ RExC_rxi->data->count = count + n;
+ Copy(s, RExC_rxi->data->what + count, n, U8);
+ return count;
+}
+
+/*XXX: todo make this not included in a non debugging perl, but appears to be
+ * used anyway there, in 'use re' */
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_reginitcolors(pTHX)
+{
+ const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
+ if (s) {
+  char *t = savepv(s);
+  int i = 0;
+  PL_colors[0] = t;
+  while (++i < 6) {
+   t = strchr(t, '\t');
+   if (t) {
+    *t = '\0';
+    PL_colors[i] = ++t;
+   }
+   else
+    PL_colors[i] = t = (char *)"";
+  }
+ } else {
+  int i = 0;
+  while (i < 6)
+   PL_colors[i++] = (char *)"";
+ }
+ PL_colorset = 1;
+}
+#endif
+
+
+#ifdef TRIE_STUDY_OPT
+#define CHECK_RESTUDY_GOTO_butfirst(dOsomething)            \
+ STMT_START {                                            \
+  if (                                                \
+   (data.flags & SCF_TRIE_RESTUDY)               \
+   && ! restudied++                              \
+  ) {                                                 \
+   dOsomething;                                    \
+   goto reStudy;                                   \
+  }                                                   \
+ } STMT_END
+#else
+#define CHECK_RESTUDY_GOTO_butfirst
+#endif
+
+/*
+ * pregcomp - compile a regular expression into internal code
+ *
+ * Decides which engine's compiler to call based on the hint currently in
+ * scope
+ */
+
+#ifndef PERL_IN_XSUB_RE
+
+/* return the currently in-scope regex engine (or the default if none)  */
+
+regexp_engine const *
+Perl_current_re_engine(pTHX)
+{
+ if (IN_PERL_COMPILETIME) {
+  HV * const table = GvHV(PL_hintgv);
+  SV **ptr;
+
+  if (!table || !(PL_hints & HINT_LOCALIZE_HH))
+   return &reh_regexp_engine;
+  ptr = hv_fetchs(table, "regcomp", FALSE);
+  if ( !(ptr && SvIOK(*ptr) && SvIV(*ptr)))
+   return &reh_regexp_engine;
+  return INT2PTR(regexp_engine*,SvIV(*ptr));
+ }
+ else {
+  SV *ptr;
+  if (!PL_curcop->cop_hints_hash)
+   return &reh_regexp_engine;
+  ptr = cop_hints_fetch_pvs(PL_curcop, "regcomp", 0);
+  if ( !(ptr && SvIOK(ptr) && SvIV(ptr)))
+   return &reh_regexp_engine;
+  return INT2PTR(regexp_engine*,SvIV(ptr));
+ }
+}
+
+
+REGEXP *
+Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
+{
+ regexp_engine const *eng = current_re_engine();
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_PREGCOMP;
+
+ /* Dispatch a request to compile a regexp to correct regexp engine. */
+ DEBUG_COMPILE_r({
+  PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
+      PTR2UV(eng));
+ });
+ return CALLREGCOMP_ENG(eng, pattern, flags);
+}
+#endif
+
+/* public(ish) entry point for the perl core's own regex compiling code.
+ * It's actually a wrapper for Perl_re_op_compile that only takes an SV
+ * pattern rather than a list of OPs, and uses the internal engine rather
+ * than the current one */
+
+REGEXP *
+Perl_re_compile(pTHX_ SV * const pattern, U32 rx_flags)
+{
+ SV *pat = pattern; /* defeat constness! */
+ PERL_ARGS_ASSERT_RE_COMPILE;
+ return Perl_re_op_compile(aTHX_ &pat, 1, NULL,
+#ifdef PERL_IN_XSUB_RE
+        &my_reg_engine,
+#else
+        &reh_regexp_engine,
+#endif
+        NULL, NULL, rx_flags, 0);
+}
+
+
+/* upgrade pattern pat_p of length plen_p to UTF8, and if there are code
+ * blocks, recalculate the indices. Update pat_p and plen_p in-place to
+ * point to the realloced string and length.
+ *
+ * This is essentially a copy of Perl_bytes_to_utf8() with the code index
+ * stuff added */
+
+static void
+S_pat_upgrade_to_utf8(pTHX_ RExC_state_t * const pRExC_state,
+     char **pat_p, STRLEN *plen_p, int num_code_blocks)
+{
+ U8 *const src = (U8*)*pat_p;
+ U8 *dst, *d;
+ int n=0;
+ STRLEN s = 0;
+ bool do_end = 0;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+  "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
+
+ Newx(dst, *plen_p * 2 + 1, U8);
+ d = dst;
+
+ while (s < *plen_p) {
+  append_utf8_from_native_byte(src[s], &d);
+  if (n < num_code_blocks) {
+   if (!do_end && pRExC_state->code_blocks[n].start == s) {
+    pRExC_state->code_blocks[n].start = d - dst - 1;
+    assert(*(d - 1) == '(');
+    do_end = 1;
+   }
+   else if (do_end && pRExC_state->code_blocks[n].end == s) {
+    pRExC_state->code_blocks[n].end = d - dst - 1;
+    assert(*(d - 1) == ')');
+    do_end = 0;
+    n++;
+   }
+  }
+  s++;
+ }
+ *d = '\0';
+ *plen_p = d - dst;
+ *pat_p = (char*) dst;
+ SAVEFREEPV(*pat_p);
+ RExC_orig_utf8 = RExC_utf8 = 1;
+}
+
+
+
+/* S_concat_pat(): concatenate a list of args to the pattern string pat,
+ * while recording any code block indices, and handling overloading,
+ * nested qr// objects etc.  If pat is null, it will allocate a new
+ * string, or just return the first arg, if there's only one.
+ *
+ * Returns the malloced/updated pat.
+ * patternp and pat_count is the array of SVs to be concatted;
+ * oplist is the optional list of ops that generated the SVs;
+ * recompile_p is a pointer to a boolean that will be set if
+ *   the regex will need to be recompiled.
+ * delim, if non-null is an SV that will be inserted between each element
+ */
+
+static SV*
+S_concat_pat(pTHX_ RExC_state_t * const pRExC_state,
+    SV *pat, SV ** const patternp, int pat_count,
+    OP *oplist, bool *recompile_p, SV *delim)
+{
+ SV **svp;
+ int n = 0;
+ bool use_delim = FALSE;
+ bool alloced = FALSE;
+
+ /* if we know we have at least two args, create an empty string,
+ * then concatenate args to that. For no args, return an empty string */
+ if (!pat && pat_count != 1) {
+  pat = newSVpvs("");
+  SAVEFREESV(pat);
+  alloced = TRUE;
+ }
+
+ for (svp = patternp; svp < patternp + pat_count; svp++) {
+  SV *sv;
+  SV *rx  = NULL;
+  STRLEN orig_patlen = 0;
+  bool code = 0;
+  SV *msv = use_delim ? delim : *svp;
+  if (!msv) msv = &PL_sv_undef;
+
+  /* if we've got a delimiter, we go round the loop twice for each
+  * svp slot (except the last), using the delimiter the second
+  * time round */
+  if (use_delim) {
+   svp--;
+   use_delim = FALSE;
+  }
+  else if (delim)
+   use_delim = TRUE;
+
+  if (SvTYPE(msv) == SVt_PVAV) {
+   /* we've encountered an interpolated array within
+   * the pattern, e.g. /...@a..../. Expand the list of elements,
+   * then recursively append elements.
+   * The code in this block is based on S_pushav() */
+
+   AV *const av = (AV*)msv;
+   const SSize_t maxarg = AvFILL(av) + 1;
+   SV **array;
+
+   if (oplist) {
+    assert(oplist->op_type == OP_PADAV
+     || oplist->op_type == OP_RV2AV);
+    oplist = OpSIBLING(oplist);
+   }
+
+   if (SvRMAGICAL(av)) {
+    SSize_t i;
+
+    Newx(array, maxarg, SV*);
+    SAVEFREEPV(array);
+    for (i=0; i < maxarg; i++) {
+     SV ** const svp = av_fetch(av, i, FALSE);
+     array[i] = svp ? *svp : &PL_sv_undef;
+    }
+   }
+   else
+    array = AvARRAY(av);
+
+   pat = S_concat_pat(aTHX_ pRExC_state, pat,
+        array, maxarg, NULL, recompile_p,
+        /* $" */
+        GvSV((gv_fetchpvs("\"", GV_ADDMULTI, SVt_PV))));
+
+   continue;
+  }
+
+
+  /* we make the assumption here that each op in the list of
+  * op_siblings maps to one SV pushed onto the stack,
+  * except for code blocks, with have both an OP_NULL and
+  * and OP_CONST.
+  * This allows us to match up the list of SVs against the
+  * list of OPs to find the next code block.
+  *
+  * Note that       PUSHMARK PADSV PADSV ..
+  * is optimised to
+  *                 PADRANGE PADSV  PADSV  ..
+  * so the alignment still works. */
+
+  if (oplist) {
+   if (oplist->op_type == OP_NULL
+    && (oplist->op_flags & OPf_SPECIAL))
+   {
+    assert(n < pRExC_state->num_code_blocks);
+    pRExC_state->code_blocks[n].start = pat ? SvCUR(pat) : 0;
+    pRExC_state->code_blocks[n].block = oplist;
+    pRExC_state->code_blocks[n].src_regex = NULL;
+    n++;
+    code = 1;
+    oplist = OpSIBLING(oplist); /* skip CONST */
+    assert(oplist);
+   }
+   oplist = OpSIBLING(oplist);;
+  }
+
+  /* apply magic and QR overloading to arg */
+
+  SvGETMAGIC(msv);
+  if (SvROK(msv) && SvAMAGIC(msv)) {
+   SV *sv = AMG_CALLunary(msv, regexp_amg);
+   if (sv) {
+    if (SvROK(sv))
+     sv = SvRV(sv);
+    if (SvTYPE(sv) != SVt_REGEXP)
+     Perl_croak(aTHX_ "Overloaded qr did not return a REGEXP");
+    msv = sv;
+   }
+  }
+
+  /* try concatenation overload ... */
+  if (pat && (SvAMAGIC(pat) || SvAMAGIC(msv)) &&
+    (sv = amagic_call(pat, msv, concat_amg, AMGf_assign)))
+  {
+   sv_setsv(pat, sv);
+   /* overloading involved: all bets are off over literal
+   * code. Pretend we haven't seen it */
+   pRExC_state->num_code_blocks -= n;
+   n = 0;
+  }
+  else  {
+   /* ... or failing that, try "" overload */
+   while (SvAMAGIC(msv)
+     && (sv = AMG_CALLunary(msv, string_amg))
+     && sv != msv
+     &&  !(   SvROK(msv)
+      && SvROK(sv)
+      && SvRV(msv) == SvRV(sv))
+   ) {
+    msv = sv;
+    SvGETMAGIC(msv);
+   }
+   if (SvROK(msv) && SvTYPE(SvRV(msv)) == SVt_REGEXP)
+    msv = SvRV(msv);
+
+   if (pat) {
+    /* this is a partially unrolled
+    *     sv_catsv_nomg(pat, msv);
+    * that allows us to adjust code block indices if
+    * needed */
+    STRLEN dlen;
+    char *dst = SvPV_force_nomg(pat, dlen);
+    orig_patlen = dlen;
+    if (SvUTF8(msv) && !SvUTF8(pat)) {
+     S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &dst, &dlen, n);
+     sv_setpvn(pat, dst, dlen);
+     SvUTF8_on(pat);
+    }
+    sv_catsv_nomg(pat, msv);
+    rx = msv;
+   }
+   else
+    pat = msv;
+
+   if (code)
+    pRExC_state->code_blocks[n-1].end = SvCUR(pat)-1;
+  }
+
+  /* extract any code blocks within any embedded qr//'s */
+  if (rx && SvTYPE(rx) == SVt_REGEXP
+   && RX_ENGINE((REGEXP*)rx)->op_comp)
+  {
+
+   RXi_GET_DECL(ReANY((REGEXP *)rx), ri);
+   if (ri->num_code_blocks) {
+    int i;
+    /* the presence of an embedded qr// with code means
+    * we should always recompile: the text of the
+    * qr// may not have changed, but it may be a
+    * different closure than last time */
+    *recompile_p = 1;
+    Renew(pRExC_state->code_blocks,
+     pRExC_state->num_code_blocks + ri->num_code_blocks,
+     struct reg_code_block);
+    pRExC_state->num_code_blocks += ri->num_code_blocks;
+
+    for (i=0; i < ri->num_code_blocks; i++) {
+     struct reg_code_block *src, *dst;
+     STRLEN offset =  orig_patlen
+      + ReANY((REGEXP *)rx)->pre_prefix;
+     assert(n < pRExC_state->num_code_blocks);
+     src = &ri->code_blocks[i];
+     dst = &pRExC_state->code_blocks[n];
+     dst->start     = src->start + offset;
+     dst->end     = src->end   + offset;
+     dst->block     = src->block;
+     dst->src_regex  = (REGEXP*) SvREFCNT_inc( (SV*)
+           src->src_regex
+            ? src->src_regex
+            : (REGEXP*)rx);
+     n++;
+    }
+   }
+  }
+ }
+ /* avoid calling magic multiple times on a single element e.g. =~ $qr */
+ if (alloced)
+  SvSETMAGIC(pat);
+
+ return pat;
+}
+
+
+
+/* see if there are any run-time code blocks in the pattern.
+ * False positives are allowed */
+
+static bool
+S_has_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
+     char *pat, STRLEN plen)
+{
+ int n = 0;
+ STRLEN s;
+
+ PERL_UNUSED_CONTEXT;
+
+ for (s = 0; s < plen; s++) {
+  if (n < pRExC_state->num_code_blocks
+   && s == pRExC_state->code_blocks[n].start)
+  {
+   s = pRExC_state->code_blocks[n].end;
+   n++;
+   continue;
+  }
+  /* TODO ideally should handle [..], (#..), /#.../x to reduce false
+  * positives here */
+  if (pat[s] == '(' && s+2 <= plen && pat[s+1] == '?' &&
+   (pat[s+2] == '{'
+    || (s + 2 <= plen && pat[s+2] == '?' && pat[s+3] == '{'))
+  )
+   return 1;
+ }
+ return 0;
+}
+
+/* Handle run-time code blocks. We will already have compiled any direct
+ * or indirect literal code blocks. Now, take the pattern 'pat' and make a
+ * copy of it, but with any literal code blocks blanked out and
+ * appropriate chars escaped; then feed it into
+ *
+ *    eval "qr'modified_pattern'"
+ *
+ * For example,
+ *
+ *       a\bc(?{"this was literal"})def'ghi\\jkl(?{"this is runtime"})mno
+ *
+ * becomes
+ *
+ *    qr'a\\bc_______________________def\'ghi\\\\jkl(?{"this is runtime"})mno'
+ *
+ * After eval_sv()-ing that, grab any new code blocks from the returned qr
+ * and merge them with any code blocks of the original regexp.
+ *
+ * If the pat is non-UTF8, while the evalled qr is UTF8, don't merge;
+ * instead, just save the qr and return FALSE; this tells our caller that
+ * the original pattern needs upgrading to utf8.
+ */
+
+static bool
+S_compile_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
+ char *pat, STRLEN plen)
+{
+ SV *qr;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ if (pRExC_state->runtime_code_qr) {
+  /* this is the second time we've been called; this should
+  * only happen if the main pattern got upgraded to utf8
+  * during compilation; re-use the qr we compiled first time
+  * round (which should be utf8 too)
+  */
+  qr = pRExC_state->runtime_code_qr;
+  pRExC_state->runtime_code_qr = NULL;
+  assert(RExC_utf8 && SvUTF8(qr));
+ }
+ else {
+  int n = 0;
+  STRLEN s;
+  char *p, *newpat;
+  int newlen = plen + 6; /* allow for "qr''x\0" extra chars */
+  SV *sv, *qr_ref;
+  dSP;
+
+  /* determine how many extra chars we need for ' and \ escaping */
+  for (s = 0; s < plen; s++) {
+   if (pat[s] == '\'' || pat[s] == '\\')
+    newlen++;
+  }
+
+  Newx(newpat, newlen, char);
+  p = newpat;
+  *p++ = 'q'; *p++ = 'r'; *p++ = '\'';
+
+  for (s = 0; s < plen; s++) {
+   if (n < pRExC_state->num_code_blocks
+    && s == pRExC_state->code_blocks[n].start)
+   {
+    /* blank out literal code block */
+    assert(pat[s] == '(');
+    while (s <= pRExC_state->code_blocks[n].end) {
+     *p++ = '_';
+     s++;
+    }
+    s--;
+    n++;
+    continue;
+   }
+   if (pat[s] == '\'' || pat[s] == '\\')
+    *p++ = '\\';
+   *p++ = pat[s];
+  }
+  *p++ = '\'';
+  if (pRExC_state->pm_flags & RXf_PMf_EXTENDED)
+   *p++ = 'x';
+  *p++ = '\0';
+  DEBUG_COMPILE_r({
+   PerlIO_printf(Perl_debug_log,
+    "%sre-parsing pattern for runtime code:%s %s\n",
+    PL_colors[4],PL_colors[5],newpat);
+  });
+
+  sv = newSVpvn_flags(newpat, p-newpat-1, RExC_utf8 ? SVf_UTF8 : 0);
+  Safefree(newpat);
+
+  ENTER;
+  SAVETMPS;
+  save_re_context();
+  PUSHSTACKi(PERLSI_REQUIRE);
+  /* G_RE_REPARSING causes the toker to collapse \\ into \ when
+  * parsing qr''; normally only q'' does this. It also alters
+  * hints handling */
+  eval_sv(sv, G_SCALAR|G_RE_REPARSING);
+  SvREFCNT_dec_NN(sv);
+  SPAGAIN;
+  qr_ref = POPs;
+  PUTBACK;
+  {
+   SV * const errsv = ERRSV;
+   if (SvTRUE_NN(errsv))
+   {
+    Safefree(pRExC_state->code_blocks);
+    /* use croak_sv ? */
+    Perl_croak_nocontext("%"SVf, SVfARG(errsv));
+   }
+  }
+  assert(SvROK(qr_ref));
+  qr = SvRV(qr_ref);
+  assert(SvTYPE(qr) == SVt_REGEXP && RX_ENGINE((REGEXP*)qr)->op_comp);
+  /* the leaving below frees the tmp qr_ref.
+  * Give qr a life of its own */
+  SvREFCNT_inc(qr);
+  POPSTACK;
+  FREETMPS;
+  LEAVE;
+
+ }
+
+ if (!RExC_utf8 && SvUTF8(qr)) {
+  /* first time through; the pattern got upgraded; save the
+  * qr for the next time through */
+  assert(!pRExC_state->runtime_code_qr);
+  pRExC_state->runtime_code_qr = qr;
+  return 0;
+ }
+
+
+ /* extract any code blocks within the returned qr//  */
+
+
+ /* merge the main (r1) and run-time (r2) code blocks into one */
+ {
+  RXi_GET_DECL(ReANY((REGEXP *)qr), r2);
+  struct reg_code_block *new_block, *dst;
+  RExC_state_t * const r1 = pRExC_state; /* convenient alias */
+  int i1 = 0, i2 = 0;
+
+  if (!r2->num_code_blocks) /* we guessed wrong */
+  {
+   SvREFCNT_dec_NN(qr);
+   return 1;
+  }
+
+  Newx(new_block,
+   r1->num_code_blocks + r2->num_code_blocks,
+   struct reg_code_block);
+  dst = new_block;
+
+  while (    i1 < r1->num_code_blocks
+    || i2 < r2->num_code_blocks)
+  {
+   struct reg_code_block *src;
+   bool is_qr = 0;
+
+   if (i1 == r1->num_code_blocks) {
+    src = &r2->code_blocks[i2++];
+    is_qr = 1;
+   }
+   else if (i2 == r2->num_code_blocks)
+    src = &r1->code_blocks[i1++];
+   else if (  r1->code_blocks[i1].start
+     < r2->code_blocks[i2].start)
+   {
+    src = &r1->code_blocks[i1++];
+    assert(src->end < r2->code_blocks[i2].start);
+   }
+   else {
+    assert(  r1->code_blocks[i1].start
+     > r2->code_blocks[i2].start);
+    src = &r2->code_blocks[i2++];
+    is_qr = 1;
+    assert(src->end < r1->code_blocks[i1].start);
+   }
+
+   assert(pat[src->start] == '(');
+   assert(pat[src->end]   == ')');
+   dst->start     = src->start;
+   dst->end     = src->end;
+   dst->block     = src->block;
+   dst->src_regex  = is_qr ? (REGEXP*) SvREFCNT_inc( (SV*) qr)
+         : src->src_regex;
+   dst++;
+  }
+  r1->num_code_blocks += r2->num_code_blocks;
+  Safefree(r1->code_blocks);
+  r1->code_blocks = new_block;
+ }
+
+ SvREFCNT_dec_NN(qr);
+ return 1;
+}
+
+
+STATIC bool
+S_setup_longest(pTHX_ RExC_state_t *pRExC_state, SV* sv_longest,
+     SV** rx_utf8, SV** rx_substr, SSize_t* rx_end_shift,
+     SSize_t lookbehind, SSize_t offset, SSize_t *minlen,
+     STRLEN longest_length, bool eol, bool meol)
+{
+ /* This is the common code for setting up the floating and fixed length
+ * string data extracted from Perl_re_op_compile() below.  Returns a boolean
+ * as to whether succeeded or not */
+
+ I32 t;
+ SSize_t ml;
+
+ if (! (longest_length
+  || (eol /* Can't have SEOL and MULTI */
+   && (! meol || (RExC_flags & RXf_PMf_MULTILINE)))
+  )
+   /* See comments for join_exact for why REG_UNFOLDED_MULTI_SEEN */
+  || (RExC_seen & REG_UNFOLDED_MULTI_SEEN))
+ {
+  return FALSE;
+ }
+
+ /* copy the information about the longest from the reg_scan_data
+  over to the program. */
+ if (SvUTF8(sv_longest)) {
+  *rx_utf8 = sv_longest;
+  *rx_substr = NULL;
+ } else {
+  *rx_substr = sv_longest;
+  *rx_utf8 = NULL;
+ }
+ /* end_shift is how many chars that must be matched that
+  follow this item. We calculate it ahead of time as once the
+  lookbehind offset is added in we lose the ability to correctly
+  calculate it.*/
+ ml = minlen ? *(minlen) : (SSize_t)longest_length;
+ *rx_end_shift = ml - offset
+  - longest_length + (SvTAIL(sv_longest) != 0)
+  + lookbehind;
+
+ t = (eol/* Can't have SEOL and MULTI */
+  && (! meol || (RExC_flags & RXf_PMf_MULTILINE)));
+ fbm_compile(sv_longest, t ? FBMcf_TAIL : 0);
+
+ return TRUE;
+}
+
+/*
+ * Perl_re_op_compile - the perl internal RE engine's function to compile a
+ * regular expression into internal code.
+ * The pattern may be passed either as:
+ *    a list of SVs (patternp plus pat_count)
+ *    a list of OPs (expr)
+ * If both are passed, the SV list is used, but the OP list indicates
+ * which SVs are actually pre-compiled code blocks
+ *
+ * The SVs in the list have magic and qr overloading applied to them (and
+ * the list may be modified in-place with replacement SVs in the latter
+ * case).
+ *
+ * If the pattern hasn't changed from old_re, then old_re will be
+ * returned.
+ *
+ * eng is the current engine. If that engine has an op_comp method, then
+ * handle directly (i.e. we assume that op_comp was us); otherwise, just
+ * do the initial concatenation of arguments and pass on to the external
+ * engine.
+ *
+ * If is_bare_re is not null, set it to a boolean indicating whether the
+ * arg list reduced (after overloading) to a single bare regex which has
+ * been returned (i.e. /$qr/).
+ *
+ * orig_rx_flags contains RXf_* flags. See perlreapi.pod for more details.
+ *
+ * pm_flags contains the PMf_* flags, typically based on those from the
+ * pm_flags field of the related PMOP. Currently we're only interested in
+ * PMf_HAS_CV, PMf_IS_QR, PMf_USE_RE_EVAL.
+ *
+ * We can't allocate space until we know how big the compiled form will be,
+ * but we can't compile it (and thus know how big it is) until we've got a
+ * place to put the code.  So we cheat:  we compile it twice, once with code
+ * generation turned off and size counting turned on, and once "for real".
+ * This also means that we don't allocate space until we are sure that the
+ * thing really will compile successfully, and we never have to move the
+ * code and thus invalidate pointers into it.  (Note that it has to be in
+ * one piece because free() must be able to free it all.) [NB: not true in perl]
+ *
+ * Beware that the optimization-preparation code in here knows about some
+ * of the structure of the compiled regexp.  [I'll say.]
+ */
+
+REGEXP *
+Perl_re_op_compile(pTHX_ SV ** const patternp, int pat_count,
+     OP *expr, const regexp_engine* eng, REGEXP *old_re,
+     bool *is_bare_re, U32 orig_rx_flags, U32 pm_flags)
+{
+ REGEXP *rx;
+ struct regexp *r;
+ regexp_internal *ri;
+ STRLEN plen;
+ char *exp;
+ regnode *scan;
+ I32 flags;
+ SSize_t minlen = 0;
+ U32 rx_flags;
+ SV *pat;
+ SV *code_blocksv = NULL;
+ SV** new_patternp = patternp;
+
+ /* these are all flags - maybe they should be turned
+ * into a single int with different bit masks */
+ I32 sawlookahead = 0;
+ I32 sawplus = 0;
+ I32 sawopen = 0;
+ I32 sawminmod = 0;
+
+ regex_charset initial_charset = get_regex_charset(orig_rx_flags);
+ bool recompile = 0;
+ bool runtime_code = 0;
+ scan_data_t data;
+ RExC_state_t RExC_state;
+ RExC_state_t * const pRExC_state = &RExC_state;
+#ifdef TRIE_STUDY_OPT
+ int restudied = 0;
+ RExC_state_t copyRExC_state;
+#endif
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_OP_COMPILE;
+
+ DEBUG_r(if (!PL_colorset) reginitcolors());
+
+ /* Initialize these here instead of as-needed, as is quick and avoids
+ * having to test them each time otherwise */
+ if (! PL_AboveLatin1) {
+  PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist);
+  PL_Latin1 = _new_invlist_C_array(Latin1_invlist);
+  PL_UpperLatin1 = _new_invlist_C_array(UpperLatin1_invlist);
+  PL_utf8_foldable = _new_invlist_C_array(_Perl_Any_Folds_invlist);
+  PL_HasMultiCharFold =
+     _new_invlist_C_array(_Perl_Folds_To_Multi_Char_invlist);
+
+  /* This is calculated here, because the Perl program that generates the
+  * static global ones doesn't currently have access to
+  * NUM_ANYOF_CODE_POINTS */
+  PL_InBitmap = _new_invlist(2);
+  PL_InBitmap = _add_range_to_invlist(PL_InBitmap, 0,
+             NUM_ANYOF_CODE_POINTS - 1);
+ }
+
+ pRExC_state->code_blocks = NULL;
+ pRExC_state->num_code_blocks = 0;
+
+ if (is_bare_re)
+  *is_bare_re = FALSE;
+
+ if (expr && (expr->op_type == OP_LIST ||
+    (expr->op_type == OP_NULL && expr->op_targ == OP_LIST))) {
+  /* allocate code_blocks if needed */
+  OP *o;
+  int ncode = 0;
+
+  for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o))
+   if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL))
+    ncode++; /* count of DO blocks */
+  if (ncode) {
+   pRExC_state->num_code_blocks = ncode;
+   Newx(pRExC_state->code_blocks, ncode, struct reg_code_block);
+  }
+ }
+
+ if (!pat_count) {
+  /* compile-time pattern with just OP_CONSTs and DO blocks */
+
+  int n;
+  OP *o;
+
+  /* find how many CONSTs there are */
+  assert(expr);
+  n = 0;
+  if (expr->op_type == OP_CONST)
+   n = 1;
+  else
+   for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o)) {
+    if (o->op_type == OP_CONST)
+     n++;
+   }
+
+  /* fake up an SV array */
+
+  assert(!new_patternp);
+  Newx(new_patternp, n, SV*);
+  SAVEFREEPV(new_patternp);
+  pat_count = n;
+
+  n = 0;
+  if (expr->op_type == OP_CONST)
+   new_patternp[n] = cSVOPx_sv(expr);
+  else
+   for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o)) {
+    if (o->op_type == OP_CONST)
+     new_patternp[n++] = cSVOPo_sv;
+   }
+
+ }
+
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+  "Assembling pattern from %d elements%s\n", pat_count,
+   orig_rx_flags & RXf_SPLIT ? " for split" : ""));
+
+ /* set expr to the first arg op */
+
+ if (pRExC_state->num_code_blocks
+  && expr->op_type != OP_CONST)
+ {
+   expr = cLISTOPx(expr)->op_first;
+   assert(   expr->op_type == OP_PUSHMARK
+    || (expr->op_type == OP_NULL && expr->op_targ == OP_PUSHMARK)
+    || expr->op_type == OP_PADRANGE);
+   expr = OpSIBLING(expr);
+ }
+
+ pat = S_concat_pat(aTHX_ pRExC_state, NULL, new_patternp, pat_count,
+      expr, &recompile, NULL);
+
+ /* handle bare (possibly after overloading) regex: foo =~ $re */
+ {
+  SV *re = pat;
+  if (SvROK(re))
+   re = SvRV(re);
+  if (SvTYPE(re) == SVt_REGEXP) {
+   if (is_bare_re)
+    *is_bare_re = TRUE;
+   SvREFCNT_inc(re);
+   Safefree(pRExC_state->code_blocks);
+   DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+    "Precompiled pattern%s\n",
+     orig_rx_flags & RXf_SPLIT ? " for split" : ""));
+
+   return (REGEXP*)re;
+  }
+ }
+
+ exp = SvPV_nomg(pat, plen);
+
+ if (!eng->op_comp) {
+  if ((SvUTF8(pat) && IN_BYTES)
+    || SvGMAGICAL(pat) || SvAMAGIC(pat))
+  {
+   /* make a temporary copy; either to convert to bytes,
+   * or to avoid repeating get-magic / overloaded stringify */
+   pat = newSVpvn_flags(exp, plen, SVs_TEMP |
+          (IN_BYTES ? 0 : SvUTF8(pat)));
+  }
+  Safefree(pRExC_state->code_blocks);
+  return CALLREGCOMP_ENG(eng, pat, orig_rx_flags);
+ }
+
+ /* ignore the utf8ness if the pattern is 0 length */
+ RExC_utf8 = RExC_orig_utf8 = (plen == 0 || IN_BYTES) ? 0 : SvUTF8(pat);
+ RExC_uni_semantics = 0;
+ RExC_contains_locale = 0;
+ RExC_contains_i = 0;
+ RExC_strict = cBOOL(pm_flags & RXf_PMf_STRICT);
+ pRExC_state->runtime_code_qr = NULL;
+ RExC_frame_head= NULL;
+ RExC_frame_last= NULL;
+ RExC_frame_count= 0;
+
+ DEBUG_r({
+  RExC_mysv1= sv_newmortal();
+  RExC_mysv2= sv_newmortal();
+ });
+ DEBUG_COMPILE_r({
+   SV *dsv= sv_newmortal();
+   RE_PV_QUOTED_DECL(s, RExC_utf8, dsv, exp, plen, 60);
+   PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
+      PL_colors[4],PL_colors[5],s);
+  });
+
+  redo_first_pass:
+ /* we jump here if we upgrade the pattern to utf8 and have to
+ * recompile */
+
+ if ((pm_flags & PMf_USE_RE_EVAL)
+    /* this second condition covers the non-regex literal case,
+    * i.e.  $foo =~ '(?{})'. */
+    || (IN_PERL_COMPILETIME && (PL_hints & HINT_RE_EVAL))
+ )
+  runtime_code = S_has_runtime_code(aTHX_ pRExC_state, exp, plen);
+
+ /* return old regex if pattern hasn't changed */
+ /* XXX: note in the below we have to check the flags as well as the
+ * pattern.
+ *
+ * Things get a touch tricky as we have to compare the utf8 flag
+ * independently from the compile flags.  */
+
+ if (   old_re
+  && !recompile
+  && !!RX_UTF8(old_re) == !!RExC_utf8
+  && ( RX_COMPFLAGS(old_re) == ( orig_rx_flags & RXf_PMf_FLAGCOPYMASK ) )
+  && RX_PRECOMP(old_re)
+  && RX_PRELEN(old_re) == plen
+  && memEQ(RX_PRECOMP(old_re), exp, plen)
+  && !runtime_code /* with runtime code, always recompile */ )
+ {
+  Safefree(pRExC_state->code_blocks);
+  return old_re;
+ }
+
+ rx_flags = orig_rx_flags;
+
+ if (rx_flags & PMf_FOLD) {
+  RExC_contains_i = 1;
+ }
+ if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
+
+  /* Set to use unicode semantics if the pattern is in utf8 and has the
+  * 'depends' charset specified, as it means unicode when utf8  */
+  set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
+ }
+
+ RExC_precomp = exp;
+ RExC_flags = rx_flags;
+ RExC_pm_flags = pm_flags;
+
+ if (runtime_code) {
+  if (TAINTING_get && TAINT_get)
+   Perl_croak(aTHX_ "Eval-group in insecure regular expression");
+
+  if (!S_compile_runtime_code(aTHX_ pRExC_state, exp, plen)) {
+   /* whoops, we have a non-utf8 pattern, whilst run-time code
+   * got compiled as utf8. Try again with a utf8 pattern */
+   S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
+         pRExC_state->num_code_blocks);
+   goto redo_first_pass;
+  }
+ }
+ assert(!pRExC_state->runtime_code_qr);
+
+ RExC_sawback = 0;
+
+ RExC_seen = 0;
+ RExC_maxlen = 0;
+ RExC_in_lookbehind = 0;
+ RExC_seen_zerolen = *exp == '^' ? -1 : 0;
+ RExC_extralen = 0;
+ RExC_override_recoding = 0;
+#ifdef EBCDIC
+ RExC_recode_x_to_native = 0;
+#endif
+ RExC_in_multi_char_class = 0;
+
+ /* First pass: determine size, legality. */
+ RExC_parse = exp;
+ RExC_start = exp;
+ RExC_end = exp + plen;
+ RExC_naughty = 0;
+ RExC_npar = 1;
+ RExC_nestroot = 0;
+ RExC_size = 0L;
+ RExC_emit = (regnode *) &RExC_emit_dummy;
+ RExC_whilem_seen = 0;
+ RExC_open_parens = NULL;
+ RExC_close_parens = NULL;
+ RExC_opend = NULL;
+ RExC_paren_names = NULL;
+#ifdef DEBUGGING
+ RExC_paren_name_list = NULL;
+#endif
+ RExC_recurse = NULL;
+ RExC_study_chunk_recursed = NULL;
+ RExC_study_chunk_recursed_bytes= 0;
+ RExC_recurse_count = 0;
+ pRExC_state->code_index = 0;
+
+ DEBUG_PARSE_r(
+  PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n");
+  RExC_lastnum=0;
+  RExC_lastparse=NULL;
+ );
+ /* reg may croak on us, not giving us a chance to free
+ pRExC_state->code_blocks.  We cannot SAVEFREEPV it now, as we may
+ need it to survive as long as the regexp (qr/(?{})/).
+ We must check that code_blocksv is not already set, because we may
+ have jumped back to restart the sizing pass. */
+ if (pRExC_state->code_blocks && !code_blocksv) {
+  code_blocksv = newSV_type(SVt_PV);
+  SAVEFREESV(code_blocksv);
+  SvPV_set(code_blocksv, (char *)pRExC_state->code_blocks);
+  SvLEN_set(code_blocksv, 1); /*sufficient to make sv_clear free it*/
+ }
+ if (reg(pRExC_state, 0, &flags,1) == NULL) {
+  /* It's possible to write a regexp in ascii that represents Unicode
+  codepoints outside of the byte range, such as via \x{100}. If we
+  detect such a sequence we have to convert the entire pattern to utf8
+  and then recompile, as our sizing calculation will have been based
+  on 1 byte == 1 character, but we will need to use utf8 to encode
+  at least some part of the pattern, and therefore must convert the whole
+  thing.
+  -- dmq */
+  if (flags & RESTART_UTF8) {
+   S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
+         pRExC_state->num_code_blocks);
+   goto redo_first_pass;
+  }
+  Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for sizing pass, flags=%#"UVxf"", (UV) flags);
+ }
+ if (code_blocksv)
+  SvLEN_set(code_blocksv,0); /* no you can't have it, sv_clear */
+
+ DEBUG_PARSE_r({
+  PerlIO_printf(Perl_debug_log,
+   "Required size %"IVdf" nodes\n"
+   "Starting second pass (creation)\n",
+   (IV)RExC_size);
+  RExC_lastnum=0;
+  RExC_lastparse=NULL;
+ });
+
+ /* The first pass could have found things that force Unicode semantics */
+ if ((RExC_utf8 || RExC_uni_semantics)
+  && get_regex_charset(rx_flags) == REGEX_DEPENDS_CHARSET)
+ {
+  set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
+ }
+
+ /* Small enough for pointer-storage convention?
+ If extralen==0, this means that we will not need long jumps. */
+ if (RExC_size >= 0x10000L && RExC_extralen)
+  RExC_size += RExC_extralen;
+ else
+  RExC_extralen = 0;
+ if (RExC_whilem_seen > 15)
+  RExC_whilem_seen = 15;
+
+ /* Allocate space and zero-initialize. Note, the two step process
+ of zeroing when in debug mode, thus anything assigned has to
+ happen after that */
+ rx = (REGEXP*) newSV_type(SVt_REGEXP);
+ r = ReANY(rx);
+ Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
+  char, regexp_internal);
+ if ( r == NULL || ri == NULL )
+  FAIL("Regexp out of space");
+#ifdef DEBUGGING
+ /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
+ Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
+  char);
+#else
+ /* bulk initialize base fields with 0. */
+ Zero(ri, sizeof(regexp_internal), char);
+#endif
+
+ /* non-zero initialization begins here */
+ RXi_SET( r, ri );
+ r->engine= eng;
+ r->extflags = rx_flags;
+ RXp_COMPFLAGS(r) = orig_rx_flags & RXf_PMf_FLAGCOPYMASK;
+
+ if (pm_flags & PMf_IS_QR) {
+  ri->code_blocks = pRExC_state->code_blocks;
+  ri->num_code_blocks = pRExC_state->num_code_blocks;
+ }
+ else
+ {
+  int n;
+  for (n = 0; n < pRExC_state->num_code_blocks; n++)
+   if (pRExC_state->code_blocks[n].src_regex)
+    SAVEFREESV(pRExC_state->code_blocks[n].src_regex);
+  SAVEFREEPV(pRExC_state->code_blocks);
+ }
+
+ {
+  bool has_p     = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
+  bool has_charset = (get_regex_charset(r->extflags)
+             != REGEX_DEPENDS_CHARSET);
+
+  /* The caret is output if there are any defaults: if not all the STD
+  * flags are set, or if no character set specifier is needed */
+  bool has_default =
+     (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
+     || ! has_charset);
+  bool has_runon = ((RExC_seen & REG_RUN_ON_COMMENT_SEEN)
+            == REG_RUN_ON_COMMENT_SEEN);
+  U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
+       >> RXf_PMf_STD_PMMOD_SHIFT);
+  const char *fptr = STD_PAT_MODS;        /*"msixn"*/
+  char *p;
+  /* Allocate for the worst case, which is all the std flags are turned
+  * on.  If more precision is desired, we could do a population count of
+  * the flags set.  This could be done with a small lookup table, or by
+  * shifting, masking and adding, or even, when available, assembly
+  * language for a machine-language population count.
+  * We never output a minus, as all those are defaults, so are
+  * covered by the caret */
+  const STRLEN wraplen = plen + has_p + has_runon
+   + has_default       /* If needs a caret */
+
+    /* If needs a character set specifier */
+   + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
+   + (sizeof(STD_PAT_MODS) - 1)
+   + (sizeof("(?:)") - 1);
+
+  Newx(p, wraplen + 1, char); /* +1 for the ending NUL */
+  r->xpv_len_u.xpvlenu_pv = p;
+  if (RExC_utf8)
+   SvFLAGS(rx) |= SVf_UTF8;
+  *p++='('; *p++='?';
+
+  /* If a default, cover it using the caret */
+  if (has_default) {
+   *p++= DEFAULT_PAT_MOD;
+  }
+  if (has_charset) {
+   STRLEN len;
+   const char* const name = get_regex_charset_name(r->extflags, &len);
+   Copy(name, p, len, char);
+   p += len;
+  }
+  if (has_p)
+   *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
+  {
+   char ch;
+   while((ch = *fptr++)) {
+    if(reganch & 1)
+     *p++ = ch;
+    reganch >>= 1;
+   }
+  }
+
+  *p++ = ':';
+  Copy(RExC_precomp, p, plen, char);
+  assert ((RX_WRAPPED(rx) - p) < 16);
+  r->pre_prefix = p - RX_WRAPPED(rx);
+  p += plen;
+  if (has_runon)
+   *p++ = '\n';
+  *p++ = ')';
+  *p = 0;
+  SvCUR_set(rx, p - RX_WRAPPED(rx));
+ }
+
+ r->intflags = 0;
+ r->nparens = RExC_npar - 1; /* set early to validate backrefs */
+
+ /* setup various meta data about recursion, this all requires
+ * RExC_npar to be correctly set, and a bit later on we clear it */
+ if (RExC_seen & REG_RECURSE_SEEN) {
+  Newxz(RExC_open_parens, RExC_npar,regnode *);
+  SAVEFREEPV(RExC_open_parens);
+  Newxz(RExC_close_parens,RExC_npar,regnode *);
+  SAVEFREEPV(RExC_close_parens);
+ }
+ if (RExC_seen & (REG_RECURSE_SEEN | REG_GOSTART_SEEN)) {
+  /* Note, RExC_npar is 1 + the number of parens in a pattern.
+  * So its 1 if there are no parens. */
+  RExC_study_chunk_recursed_bytes= (RExC_npar >> 3) +
+          ((RExC_npar & 0x07) != 0);
+  Newx(RExC_study_chunk_recursed,
+   RExC_study_chunk_recursed_bytes * RExC_npar, U8);
+  SAVEFREEPV(RExC_study_chunk_recursed);
+ }
+
+ /* Useful during FAIL. */
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
+ DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
+      "%s %"UVuf" bytes for offset annotations.\n",
+      ri->u.offsets ? "Got" : "Couldn't get",
+      (UV)((2*RExC_size+1) * sizeof(U32))));
+#endif
+ SetProgLen(ri,RExC_size);
+ RExC_rx_sv = rx;
+ RExC_rx = r;
+ RExC_rxi = ri;
+ REH_CALL_COMP_BEGIN_HOOK(pRExC_state->rx);
+
+ /* Second pass: emit code. */
+ RExC_flags = rx_flags; /* don't let top level (?i) bleed */
+ RExC_pm_flags = pm_flags;
+ RExC_parse = exp;
+ RExC_end = exp + plen;
+ RExC_naughty = 0;
+ RExC_npar = 1;
+ RExC_emit_start = ri->program;
+ RExC_emit = ri->program;
+ RExC_emit_bound = ri->program + RExC_size + 1;
+ pRExC_state->code_index = 0;
+
+ *((char*) RExC_emit++) = (char) REG_MAGIC;
+ if (reg(pRExC_state, 0, &flags,1) == NULL) {
+  ReREFCNT_dec(rx);
+  Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for generation pass, flags=%#"UVxf"", (UV) flags);
+ }
+ /* XXXX To minimize changes to RE engine we always allocate
+ 3-units-long substrs field. */
+ Newx(r->substrs, 1, struct reg_substr_data);
+ if (RExC_recurse_count) {
+  Newxz(RExC_recurse,RExC_recurse_count,regnode *);
+  SAVEFREEPV(RExC_recurse);
+ }
+
+  reStudy:
+ r->minlen = minlen = sawlookahead = sawplus = sawopen = sawminmod = 0;
+ DEBUG_r(
+  RExC_study_chunk_recursed_count= 0;
+ );
+ Zero(r->substrs, 1, struct reg_substr_data);
+ if (RExC_study_chunk_recursed) {
+  Zero(RExC_study_chunk_recursed,
+   RExC_study_chunk_recursed_bytes * RExC_npar, U8);
+ }
+
+
+#ifdef TRIE_STUDY_OPT
+ if (!restudied) {
+  StructCopy(&zero_scan_data, &data, scan_data_t);
+  copyRExC_state = RExC_state;
+ } else {
+  U32 seen=RExC_seen;
+  DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
+
+  RExC_state = copyRExC_state;
+  if (seen & REG_TOP_LEVEL_BRANCHES_SEEN)
+   RExC_seen |= REG_TOP_LEVEL_BRANCHES_SEEN;
+  else
+   RExC_seen &= ~REG_TOP_LEVEL_BRANCHES_SEEN;
+  StructCopy(&zero_scan_data, &data, scan_data_t);
+ }
+#else
+ StructCopy(&zero_scan_data, &data, scan_data_t);
+#endif
+
+ /* Dig out information for optimizations. */
+ r->extflags = RExC_flags; /* was pm_op */
+ /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
+
+ if (UTF)
+  SvUTF8_on(rx); /* Unicode in it? */
+ ri->regstclass = NULL;
+ if (RExC_naughty >= TOO_NAUGHTY) /* Probably an expensive pattern. */
+  r->intflags |= PREGf_NAUGHTY;
+ scan = ri->program + 1;  /* First BRANCH. */
+
+ /* testing for BRANCH here tells us whether there is "must appear"
+ data in the pattern. If there is then we can use it for optimisations */
+ if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN)) { /*  Only one top-level choice.
+            */
+  SSize_t fake;
+  STRLEN longest_float_length, longest_fixed_length;
+  regnode_ssc ch_class; /* pointed to by data */
+  int stclass_flag;
+  SSize_t last_close = 0; /* pointed to by data */
+  regnode *first= scan;
+  regnode *first_next= regnext(first);
+  /*
+  * Skip introductions and multiplicators >= 1
+  * so that we can extract the 'meat' of the pattern that must
+  * match in the large if() sequence following.
+  * NOTE that EXACT is NOT covered here, as it is normally
+  * picked up by the optimiser separately.
+  *
+  * This is unfortunate as the optimiser isnt handling lookahead
+  * properly currently.
+  *
+  */
+  while ((OP(first) == OPEN && (sawopen = 1)) ||
+   /* An OR of *one* alternative - should not happen now. */
+   (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
+   /* for now we can't handle lookbehind IFMATCH*/
+   (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
+   (OP(first) == PLUS) ||
+   (OP(first) == MINMOD) ||
+   /* An {n,m} with n>0 */
+   (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
+   (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
+  {
+    /*
+    * the only op that could be a regnode is PLUS, all the rest
+    * will be regnode_1 or regnode_2.
+    *
+    * (yves doesn't think this is true)
+    */
+    if (OP(first) == PLUS)
+     sawplus = 1;
+    else {
+     if (OP(first) == MINMOD)
+      sawminmod = 1;
+     first += regarglen[OP(first)];
+    }
+    first = NEXTOPER(first);
+    first_next= regnext(first);
+  }
+
+  /* Starting-point info. */
+ again:
+  DEBUG_PEEP("first:",first,0);
+  /* Ignore EXACT as we deal with it later. */
+  if (PL_regkind[OP(first)] == EXACT) {
+   if (OP(first) == EXACT || OP(first) == EXACTL)
+    NOOP; /* Empty, get anchored substr later. */
+   else
+    ri->regstclass = first;
+  }
+#ifdef TRIE_STCLASS
+  else if (PL_regkind[OP(first)] == TRIE &&
+    ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
+  {
+   /* this can happen only on restudy */
+   ri->regstclass = construct_ahocorasick_from_trie(pRExC_state, (regnode *)first, 0);
+  }
+#endif
+  else if (REGNODE_SIMPLE(OP(first)))
+   ri->regstclass = first;
+  else if (PL_regkind[OP(first)] == BOUND ||
+    PL_regkind[OP(first)] == NBOUND)
+   ri->regstclass = first;
+  else if (PL_regkind[OP(first)] == BOL) {
+   r->intflags |= (OP(first) == MBOL
+      ? PREGf_ANCH_MBOL
+      : PREGf_ANCH_SBOL);
+   first = NEXTOPER(first);
+   goto again;
+  }
+  else if (OP(first) == GPOS) {
+   r->intflags |= PREGf_ANCH_GPOS;
+   first = NEXTOPER(first);
+   goto again;
+  }
+  else if ((!sawopen || !RExC_sawback) &&
+   !sawlookahead &&
+   (OP(first) == STAR &&
+   PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
+   !(r->intflags & PREGf_ANCH) && !pRExC_state->num_code_blocks)
+  {
+   /* turn .* into ^.* with an implied $*=1 */
+   const int type =
+    (OP(NEXTOPER(first)) == REG_ANY)
+     ? PREGf_ANCH_MBOL
+     : PREGf_ANCH_SBOL;
+   r->intflags |= (type | PREGf_IMPLICIT);
+   first = NEXTOPER(first);
+   goto again;
+  }
+  if (sawplus && !sawminmod && !sawlookahead
+   && (!sawopen || !RExC_sawback)
+   && !pRExC_state->num_code_blocks) /* May examine pos and $& */
+   /* x+ must match at the 1st pos of run of x's */
+   r->intflags |= PREGf_SKIP;
+
+  /* Scan is after the zeroth branch, first is atomic matcher. */
+#ifdef TRIE_STUDY_OPT
+  DEBUG_PARSE_r(
+   if (!restudied)
+    PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
+       (IV)(first - scan + 1))
+  );
+#else
+  DEBUG_PARSE_r(
+   PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
+    (IV)(first - scan + 1))
+  );
+#endif
+
+
+  /*
+  * If there's something expensive in the r.e., find the
+  * longest literal string that must appear and make it the
+  * regmust.  Resolve ties in favor of later strings, since
+  * the regstart check works with the beginning of the r.e.
+  * and avoiding duplication strengthens checking.  Not a
+  * strong reason, but sufficient in the absence of others.
+  * [Now we resolve ties in favor of the earlier string if
+  * it happens that c_offset_min has been invalidated, since the
+  * earlier string may buy us something the later one won't.]
+  */
+
+  data.longest_fixed = newSVpvs("");
+  data.longest_float = newSVpvs("");
+  data.last_found = newSVpvs("");
+  data.longest = &(data.longest_fixed);
+  ENTER_with_name("study_chunk");
+  SAVEFREESV(data.longest_fixed);
+  SAVEFREESV(data.longest_float);
+  SAVEFREESV(data.last_found);
+  first = scan;
+  if (!ri->regstclass) {
+   ssc_init(pRExC_state, &ch_class);
+   data.start_class = &ch_class;
+   stclass_flag = SCF_DO_STCLASS_AND;
+  } else    /* XXXX Check for BOUND? */
+   stclass_flag = 0;
+  data.last_closep = &last_close;
+
+  DEBUG_RExC_seen();
+  minlen = study_chunk(pRExC_state, &first, &minlen, &fake,
+       scan + RExC_size, /* Up to end */
+   &data, -1, 0, NULL,
+   SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag
+      | (restudied ? SCF_TRIE_DOING_RESTUDY : 0),
+   0);
+
+
+  CHECK_RESTUDY_GOTO_butfirst(LEAVE_with_name("study_chunk"));
+
+
+  if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
+   && data.last_start_min == 0 && data.last_end > 0
+   && !RExC_seen_zerolen
+   && !(RExC_seen & REG_VERBARG_SEEN)
+   && !(RExC_seen & REG_GPOS_SEEN)
+  ){
+   r->extflags |= RXf_CHECK_ALL;
+  }
+  scan_commit(pRExC_state, &data,&minlen,0);
+
+  longest_float_length = CHR_SVLEN(data.longest_float);
+
+  if (! ((SvCUR(data.longest_fixed)  /* ok to leave SvCUR */
+    && data.offset_fixed == data.offset_float_min
+    && SvCUR(data.longest_fixed) == SvCUR(data.longest_float)))
+   && S_setup_longest (aTHX_ pRExC_state,
+         data.longest_float,
+         &(r->float_utf8),
+         &(r->float_substr),
+         &(r->float_end_shift),
+         data.lookbehind_float,
+         data.offset_float_min,
+         data.minlen_float,
+         longest_float_length,
+         cBOOL(data.flags & SF_FL_BEFORE_EOL),
+         cBOOL(data.flags & SF_FL_BEFORE_MEOL)))
+  {
+   r->float_min_offset = data.offset_float_min - data.lookbehind_float;
+   r->float_max_offset = data.offset_float_max;
+   if (data.offset_float_max < SSize_t_MAX) /* Don't offset infinity */
+    r->float_max_offset -= data.lookbehind_float;
+   SvREFCNT_inc_simple_void_NN(data.longest_float);
+  }
+  else {
+   r->float_substr = r->float_utf8 = NULL;
+   longest_float_length = 0;
+  }
+
+  longest_fixed_length = CHR_SVLEN(data.longest_fixed);
+
+  if (S_setup_longest (aTHX_ pRExC_state,
+        data.longest_fixed,
+        &(r->anchored_utf8),
+        &(r->anchored_substr),
+        &(r->anchored_end_shift),
+        data.lookbehind_fixed,
+        data.offset_fixed,
+        data.minlen_fixed,
+        longest_fixed_length,
+        cBOOL(data.flags & SF_FIX_BEFORE_EOL),
+        cBOOL(data.flags & SF_FIX_BEFORE_MEOL)))
+  {
+   r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
+   SvREFCNT_inc_simple_void_NN(data.longest_fixed);
+  }
+  else {
+   r->anchored_substr = r->anchored_utf8 = NULL;
+   longest_fixed_length = 0;
+  }
+  LEAVE_with_name("study_chunk");
+
+  if (ri->regstclass
+   && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
+   ri->regstclass = NULL;
+
+  if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
+   && stclass_flag
+   && ! (ANYOF_FLAGS(data.start_class) & SSC_MATCHES_EMPTY_STRING)
+   && is_ssc_worth_it(pRExC_state, data.start_class))
+  {
+   const U32 n = add_data(pRExC_state, STR_WITH_LEN("f"));
+
+   ssc_finalize(pRExC_state, data.start_class);
+
+   Newx(RExC_rxi->data->data[n], 1, regnode_ssc);
+   StructCopy(data.start_class,
+     (regnode_ssc*)RExC_rxi->data->data[n],
+     regnode_ssc);
+   ri->regstclass = (regnode*)RExC_rxi->data->data[n];
+   r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
+   DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
+     regprop(r, sv, (regnode*)data.start_class, NULL, pRExC_state);
+     PerlIO_printf(Perl_debug_log,
+         "synthetic stclass \"%s\".\n",
+         SvPVX_const(sv));});
+   data.start_class = NULL;
+  }
+
+  /* A temporary algorithm prefers floated substr to fixed one to dig
+  * more info. */
+  if (longest_fixed_length > longest_float_length) {
+   r->substrs->check_ix = 0;
+   r->check_end_shift = r->anchored_end_shift;
+   r->check_substr = r->anchored_substr;
+   r->check_utf8 = r->anchored_utf8;
+   r->check_offset_min = r->check_offset_max = r->anchored_offset;
+   if (r->intflags & (PREGf_ANCH_SBOL|PREGf_ANCH_GPOS))
+    r->intflags |= PREGf_NOSCAN;
+  }
+  else {
+   r->substrs->check_ix = 1;
+   r->check_end_shift = r->float_end_shift;
+   r->check_substr = r->float_substr;
+   r->check_utf8 = r->float_utf8;
+   r->check_offset_min = r->float_min_offset;
+   r->check_offset_max = r->float_max_offset;
+  }
+  if ((r->check_substr || r->check_utf8) ) {
+   r->extflags |= RXf_USE_INTUIT;
+   if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
+    r->extflags |= RXf_INTUIT_TAIL;
+  }
+  r->substrs->data[0].max_offset = r->substrs->data[0].min_offset;
+
+  /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
+  if ( (STRLEN)minlen < longest_float_length )
+   minlen= longest_float_length;
+  if ( (STRLEN)minlen < longest_fixed_length )
+   minlen= longest_fixed_length;
+  */
+ }
+ else {
+  /* Several toplevels. Best we can is to set minlen. */
+  SSize_t fake;
+  regnode_ssc ch_class;
+  SSize_t last_close = 0;
+
+  DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
+
+  scan = ri->program + 1;
+  ssc_init(pRExC_state, &ch_class);
+  data.start_class = &ch_class;
+  data.last_closep = &last_close;
+
+  DEBUG_RExC_seen();
+  minlen = study_chunk(pRExC_state,
+   &scan, &minlen, &fake, scan + RExC_size, &data, -1, 0, NULL,
+   SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS|(restudied
+             ? SCF_TRIE_DOING_RESTUDY
+             : 0),
+   0);
+
+  CHECK_RESTUDY_GOTO_butfirst(NOOP);
+
+  r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
+    = r->float_substr = r->float_utf8 = NULL;
+
+  if (! (ANYOF_FLAGS(data.start_class) & SSC_MATCHES_EMPTY_STRING)
+   && is_ssc_worth_it(pRExC_state, data.start_class))
+  {
+   const U32 n = add_data(pRExC_state, STR_WITH_LEN("f"));
+
+   ssc_finalize(pRExC_state, data.start_class);
+
+   Newx(RExC_rxi->data->data[n], 1, regnode_ssc);
+   StructCopy(data.start_class,
+     (regnode_ssc*)RExC_rxi->data->data[n],
+     regnode_ssc);
+   ri->regstclass = (regnode*)RExC_rxi->data->data[n];
+   r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
+   DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
+     regprop(r, sv, (regnode*)data.start_class, NULL, pRExC_state);
+     PerlIO_printf(Perl_debug_log,
+         "synthetic stclass \"%s\".\n",
+         SvPVX_const(sv));});
+   data.start_class = NULL;
+  }
+ }
+
+ if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) {
+  r->extflags |= RXf_UNBOUNDED_QUANTIFIER_SEEN;
+  r->maxlen = REG_INFTY;
+ }
+ else {
+  r->maxlen = RExC_maxlen;
+ }
+
+ /* Guard against an embedded (?=) or (?<=) with a longer minlen than
+ the "real" pattern. */
+ DEBUG_OPTIMISE_r({
+  PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf" maxlen:%"IVdf"\n",
+     (IV)minlen, (IV)r->minlen, (IV)RExC_maxlen);
+ });
+ r->minlenret = minlen;
+ if (r->minlen < minlen)
+  r->minlen = minlen;
+
+ if (RExC_seen & REG_GPOS_SEEN)
+  r->intflags |= PREGf_GPOS_SEEN;
+ if (RExC_seen & REG_LOOKBEHIND_SEEN)
+  r->extflags |= RXf_NO_INPLACE_SUBST; /* inplace might break the
+            lookbehind */
+ if (pRExC_state->num_code_blocks)
+  r->extflags |= RXf_EVAL_SEEN;
+ if (RExC_seen & REG_VERBARG_SEEN)
+ {
+  r->intflags |= PREGf_VERBARG_SEEN;
+  r->extflags |= RXf_NO_INPLACE_SUBST; /* don't understand this! Yves */
+ }
+ if (RExC_seen & REG_CUTGROUP_SEEN)
+  r->intflags |= PREGf_CUTGROUP_SEEN;
+ if (pm_flags & PMf_USE_RE_EVAL)
+  r->intflags |= PREGf_USE_RE_EVAL;
+ if (RExC_paren_names)
+  RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
+ else
+  RXp_PAREN_NAMES(r) = NULL;
+
+ /* If we have seen an anchor in our pattern then we set the extflag RXf_IS_ANCHORED
+ * so it can be used in pp.c */
+ if (r->intflags & PREGf_ANCH)
+  r->extflags |= RXf_IS_ANCHORED;
+
+
+ {
+  /* this is used to identify "special" patterns that might result
+  * in Perl NOT calling the regex engine and instead doing the match "itself",
+  * particularly special cases in split//. By having the regex compiler
+  * do this pattern matching at a regop level (instead of by inspecting the pattern)
+  * we avoid weird issues with equivalent patterns resulting in different behavior,
+  * AND we allow non Perl engines to get the same optimizations by the setting the
+  * flags appropriately - Yves */
+  regnode *first = ri->program + 1;
+  U8 fop = OP(first);
+  regnode *next = regnext(first);
+  U8 nop = OP(next);
+
+  if (PL_regkind[fop] == NOTHING && nop == END)
+   r->extflags |= RXf_NULL;
+  else if ((fop == MBOL || (fop == SBOL && !first->flags)) && nop == END)
+   /* when fop is SBOL first->flags will be true only when it was
+   * produced by parsing /\A/, and not when parsing /^/. This is
+   * very important for the split code as there we want to
+   * treat /^/ as /^/m, but we do not want to treat /\A/ as /^/m.
+   * See rt #122761 for more details. -- Yves */
+   r->extflags |= RXf_START_ONLY;
+  else if (fop == PLUS
+    && PL_regkind[nop] == POSIXD && FLAGS(next) == _CC_SPACE
+    && nop == END)
+   r->extflags |= RXf_WHITE;
+  else if ( r->extflags & RXf_SPLIT
+    && (fop == EXACT || fop == EXACTL)
+    && STR_LEN(first) == 1
+    && *(STRING(first)) == ' '
+    && nop == END )
+   r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
+
+ }
+
+ if (RExC_contains_locale) {
+  RXp_EXTFLAGS(r) |= RXf_TAINTED;
+ }
+
+#ifdef DEBUGGING
+ if (RExC_paren_names) {
+  ri->name_list_idx = add_data( pRExC_state, STR_WITH_LEN("a"));
+  ri->data->data[ri->name_list_idx]
+        = (void*)SvREFCNT_inc(RExC_paren_name_list);
+ } else
+#endif
+  ri->name_list_idx = 0;
+
+ if (RExC_recurse_count) {
+  for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
+   const regnode *scan = RExC_recurse[RExC_recurse_count-1];
+   ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
+  }
+ }
+ Newxz(r->offs, RExC_npar, regexp_paren_pair);
+ /* assume we don't need to swap parens around before we match */
+ DEBUG_TEST_r({
+  PerlIO_printf(Perl_debug_log,"study_chunk_recursed_count: %lu\n",
+   (unsigned long)RExC_study_chunk_recursed_count);
+ });
+ DEBUG_DUMP_r({
+  DEBUG_RExC_seen();
+  PerlIO_printf(Perl_debug_log,"Final program:\n");
+  regdump(r);
+ });
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ DEBUG_OFFSETS_r(if (ri->u.offsets) {
+  const STRLEN len = ri->u.offsets[0];
+  STRLEN i;
+  GET_RE_DEBUG_FLAGS_DECL;
+  PerlIO_printf(Perl_debug_log,
+     "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
+  for (i = 1; i <= len; i++) {
+   if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
+    PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
+    (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
+   }
+  PerlIO_printf(Perl_debug_log, "\n");
+ });
+#endif
+
+#ifdef USE_ITHREADS
+ /* under ithreads the ?pat? PMf_USED flag on the pmop is simulated
+ * by setting the regexp SV to readonly-only instead. If the
+ * pattern's been recompiled, the USEDness should remain. */
+ if (old_re && SvREADONLY(old_re))
+  SvREADONLY_on(rx);
+#endif
+ return rx;
+}
+
+
+SV*
+Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
+     const U32 flags)
+{
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF;
+
+ PERL_UNUSED_ARG(value);
+
+ if (flags & RXapif_FETCH) {
+  return reg_named_buff_fetch(rx, key, flags);
+ } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
+  Perl_croak_no_modify();
+  return NULL;
+ } else if (flags & RXapif_EXISTS) {
+  return reg_named_buff_exists(rx, key, flags)
+   ? &PL_sv_yes
+   : &PL_sv_no;
+ } else if (flags & RXapif_REGNAMES) {
+  return reg_named_buff_all(rx, flags);
+ } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
+  return reg_named_buff_scalar(rx, flags);
+ } else {
+  Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
+  return NULL;
+ }
+}
+
+SV*
+Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
+      const U32 flags)
+{
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
+ PERL_UNUSED_ARG(lastkey);
+
+ if (flags & RXapif_FIRSTKEY)
+  return reg_named_buff_firstkey(rx, flags);
+ else if (flags & RXapif_NEXTKEY)
+  return reg_named_buff_nextkey(rx, flags);
+ else {
+  Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter",
+           (int)flags);
+  return NULL;
+ }
+}
+
+SV*
+Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
+      const U32 flags)
+{
+ AV *retarray = NULL;
+ SV *ret;
+ struct regexp *const rx = ReANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
+
+ if (flags & RXapif_ALL)
+  retarray=newAV();
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+  HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
+  if (he_str) {
+   IV i;
+   SV* sv_dat=HeVAL(he_str);
+   I32 *nums=(I32*)SvPVX(sv_dat);
+   for ( i=0; i<SvIVX(sv_dat); i++ ) {
+    if ((I32)(rx->nparens) >= nums[i]
+     && rx->offs[nums[i]].start != -1
+     && rx->offs[nums[i]].end != -1)
+    {
+     ret = newSVpvs("");
+     CALLREG_NUMBUF_FETCH(r,nums[i],ret);
+     if (!retarray)
+      return ret;
+    } else {
+     if (retarray)
+      ret = newSVsv(&PL_sv_undef);
+    }
+    if (retarray)
+     av_push(retarray, ret);
+   }
+   if (retarray)
+    return newRV_noinc(MUTABLE_SV(retarray));
+  }
+ }
+ return NULL;
+}
+
+bool
+Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
+      const U32 flags)
+{
+ struct regexp *const rx = ReANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+  if (flags & RXapif_ALL) {
+   return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
+  } else {
+   SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
+   if (sv) {
+    SvREFCNT_dec_NN(sv);
+    return TRUE;
+   } else {
+    return FALSE;
+   }
+  }
+ } else {
+  return FALSE;
+ }
+}
+
+SV*
+Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = ReANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
+
+ if ( rx && RXp_PAREN_NAMES(rx) ) {
+  (void)hv_iterinit(RXp_PAREN_NAMES(rx));
+
+  return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
+ } else {
+  return FALSE;
+ }
+}
+
+SV*
+Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = ReANY(r);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+  HV *hv = RXp_PAREN_NAMES(rx);
+  HE *temphe;
+  while ( (temphe = hv_iternext_flags(hv,0)) ) {
+   IV i;
+   IV parno = 0;
+   SV* sv_dat = HeVAL(temphe);
+   I32 *nums = (I32*)SvPVX(sv_dat);
+   for ( i = 0; i < SvIVX(sv_dat); i++ ) {
+    if ((I32)(rx->lastparen) >= nums[i] &&
+     rx->offs[nums[i]].start != -1 &&
+     rx->offs[nums[i]].end != -1)
+    {
+     parno = nums[i];
+     break;
+    }
+   }
+   if (parno || flags & RXapif_ALL) {
+    return newSVhek(HeKEY_hek(temphe));
+   }
+  }
+ }
+ return NULL;
+}
+
+SV*
+Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
+{
+ SV *ret;
+ AV *av;
+ SSize_t length;
+ struct regexp *const rx = ReANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+  if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
+   return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
+  } else if (flags & RXapif_ONE) {
+   ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
+   av = MUTABLE_AV(SvRV(ret));
+   length = av_tindex(av);
+   SvREFCNT_dec_NN(ret);
+   return newSViv(length + 1);
+  } else {
+   Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar",
+            (int)flags);
+   return NULL;
+  }
+ }
+ return &PL_sv_undef;
+}
+
+SV*
+Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = ReANY(r);
+ AV *av = newAV();
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+  HV *hv= RXp_PAREN_NAMES(rx);
+  HE *temphe;
+  (void)hv_iterinit(hv);
+  while ( (temphe = hv_iternext_flags(hv,0)) ) {
+   IV i;
+   IV parno = 0;
+   SV* sv_dat = HeVAL(temphe);
+   I32 *nums = (I32*)SvPVX(sv_dat);
+   for ( i = 0; i < SvIVX(sv_dat); i++ ) {
+    if ((I32)(rx->lastparen) >= nums[i] &&
+     rx->offs[nums[i]].start != -1 &&
+     rx->offs[nums[i]].end != -1)
+    {
+     parno = nums[i];
+     break;
+    }
+   }
+   if (parno || flags & RXapif_ALL) {
+    av_push(av, newSVhek(HeKEY_hek(temphe)));
+   }
+  }
+ }
+
+ return newRV_noinc(MUTABLE_SV(av));
+}
+
+void
+Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
+       SV * const sv)
+{
+ struct regexp *const rx = ReANY(r);
+ char *s = NULL;
+ SSize_t i = 0;
+ SSize_t s1, t1;
+ I32 n = paren;
+
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
+
+ if (      n == RX_BUFF_IDX_CARET_PREMATCH
+  || n == RX_BUFF_IDX_CARET_FULLMATCH
+  || n == RX_BUFF_IDX_CARET_POSTMATCH
+ )
+ {
+  bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
+  if (!keepcopy) {
+   /* on something like
+   *    $r = qr/.../;
+   *    /$qr/p;
+   * the KEEPCOPY is set on the PMOP rather than the regex */
+   if (PL_curpm && r == PM_GETRE(PL_curpm))
+    keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
+  }
+  if (!keepcopy)
+   goto ret_undef;
+ }
+
+ if (!rx->subbeg)
+  goto ret_undef;
+
+ if (n == RX_BUFF_IDX_CARET_FULLMATCH)
+  /* no need to distinguish between them any more */
+  n = RX_BUFF_IDX_FULLMATCH;
+
+ if ((n == RX_BUFF_IDX_PREMATCH || n == RX_BUFF_IDX_CARET_PREMATCH)
+  && rx->offs[0].start != -1)
+ {
+  /* $`, ${^PREMATCH} */
+  i = rx->offs[0].start;
+  s = rx->subbeg;
+ }
+ else
+ if ((n == RX_BUFF_IDX_POSTMATCH || n == RX_BUFF_IDX_CARET_POSTMATCH)
+  && rx->offs[0].end != -1)
+ {
+  /* $', ${^POSTMATCH} */
+  s = rx->subbeg - rx->suboffset + rx->offs[0].end;
+  i = rx->sublen + rx->suboffset - rx->offs[0].end;
+ }
+ else
+ if ( 0 <= n && n <= (I32)rx->nparens &&
+  (s1 = rx->offs[n].start) != -1 &&
+  (t1 = rx->offs[n].end) != -1)
+ {
+  /* $&, ${^MATCH},  $1 ... */
+  i = t1 - s1;
+  s = rx->subbeg + s1 - rx->suboffset;
+ } else {
+  goto ret_undef;
+ }
+
+ assert(s >= rx->subbeg);
+ assert((STRLEN)rx->sublen >= (STRLEN)((s - rx->subbeg) + i) );
+ if (i >= 0) {
+#ifdef NO_TAINT_SUPPORT
+  sv_setpvn(sv, s, i);
+#else
+  const int oldtainted = TAINT_get;
+  TAINT_NOT;
+  sv_setpvn(sv, s, i);
+  TAINT_set(oldtainted);
+#endif
+  if (RXp_MATCH_UTF8(rx))
+   SvUTF8_on(sv);
+  else
+   SvUTF8_off(sv);
+  if (TAINTING_get) {
+   if (RXp_MATCH_TAINTED(rx)) {
+    if (SvTYPE(sv) >= SVt_PVMG) {
+     MAGIC* const mg = SvMAGIC(sv);
+     MAGIC* mgt;
+     TAINT;
+     SvMAGIC_set(sv, mg->mg_moremagic);
+     SvTAINT(sv);
+     if ((mgt = SvMAGIC(sv))) {
+      mg->mg_moremagic = mgt;
+      SvMAGIC_set(sv, mg);
+     }
+    } else {
+     TAINT;
+     SvTAINT(sv);
+    }
+   } else
+    SvTAINTED_off(sv);
+  }
+ } else {
+ ret_undef:
+  sv_setsv(sv,&PL_sv_undef);
+  return;
+ }
+}
+
+void
+Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
+              SV const * const value)
+{
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
+
+ PERL_UNUSED_ARG(rx);
+ PERL_UNUSED_ARG(paren);
+ PERL_UNUSED_ARG(value);
+
+ if (!PL_localizing)
+  Perl_croak_no_modify();
+}
+
+I32
+Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
+       const I32 paren)
+{
+ struct regexp *const rx = ReANY(r);
+ I32 i;
+ I32 s1, t1;
+
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
+
+ if (   paren == RX_BUFF_IDX_CARET_PREMATCH
+  || paren == RX_BUFF_IDX_CARET_FULLMATCH
+  || paren == RX_BUFF_IDX_CARET_POSTMATCH
+ )
+ {
+  bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
+  if (!keepcopy) {
+   /* on something like
+   *    $r = qr/.../;
+   *    /$qr/p;
+   * the KEEPCOPY is set on the PMOP rather than the regex */
+   if (PL_curpm && r == PM_GETRE(PL_curpm))
+    keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
+  }
+  if (!keepcopy)
+   goto warn_undef;
+ }
+
+ /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
+ switch (paren) {
+ case RX_BUFF_IDX_CARET_PREMATCH: /* ${^PREMATCH} */
+ case RX_BUFF_IDX_PREMATCH:       /* $` */
+  if (rx->offs[0].start != -1) {
+      i = rx->offs[0].start;
+      if (i > 0) {
+        s1 = 0;
+        t1 = i;
+        goto getlen;
+      }
+   }
+  return 0;
+
+ case RX_BUFF_IDX_CARET_POSTMATCH: /* ${^POSTMATCH} */
+ case RX_BUFF_IDX_POSTMATCH:       /* $' */
+   if (rx->offs[0].end != -1) {
+      i = rx->sublen - rx->offs[0].end;
+      if (i > 0) {
+        s1 = rx->offs[0].end;
+        t1 = rx->sublen;
+        goto getlen;
+      }
+   }
+  return 0;
+
+ default: /* $& / ${^MATCH}, $1, $2, ... */
+   if (paren <= (I32)rx->nparens &&
+   (s1 = rx->offs[paren].start) != -1 &&
+   (t1 = rx->offs[paren].end) != -1)
+   {
+   i = t1 - s1;
+   goto getlen;
+  } else {
+  warn_undef:
+   if (ckWARN(WARN_UNINITIALIZED))
+    report_uninit((const SV *)sv);
+   return 0;
+  }
+ }
+  getlen:
+ if (i > 0 && RXp_MATCH_UTF8(rx)) {
+  const char * const s = rx->subbeg - rx->suboffset + s1;
+  const U8 *ep;
+  STRLEN el;
+
+  i = t1 - s1;
+  if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
+      i = el;
+ }
+ return i;
+}
+
+SV*
+Perl_reg_qr_package(pTHX_ REGEXP * const rx)
+{
+ PERL_ARGS_ASSERT_REG_QR_PACKAGE;
+  PERL_UNUSED_ARG(rx);
+  if (0)
+   return NULL;
+  else
+   return newSVpvs("Regexp");
+}
+
+/* Scans the name of a named buffer from the pattern.
+ * If flags is REG_RSN_RETURN_NULL returns null.
+ * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
+ * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
+ * to the parsed name as looked up in the RExC_paren_names hash.
+ * If there is an error throws a vFAIL().. type exception.
+ */
+
+#define REG_RSN_RETURN_NULL    0
+#define REG_RSN_RETURN_NAME    1
+#define REG_RSN_RETURN_DATA    2
+
+STATIC SV*
+S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
+{
+ char *name_start = RExC_parse;
+
+ PERL_ARGS_ASSERT_REG_SCAN_NAME;
+
+ assert (RExC_parse <= RExC_end);
+ if (RExC_parse == RExC_end) NOOP;
+ else if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
+  /* skip IDFIRST by using do...while */
+  if (UTF)
+   do {
+    RExC_parse += UTF8SKIP(RExC_parse);
+   } while (isWORDCHAR_utf8((U8*)RExC_parse));
+  else
+   do {
+    RExC_parse++;
+   } while (isWORDCHAR(*RExC_parse));
+ } else {
+  RExC_parse++; /* so the <- from the vFAIL is after the offending
+      character */
+  vFAIL("Group name must start with a non-digit word character");
+ }
+ if ( flags ) {
+  SV* sv_name
+   = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
+       SVs_TEMP | (UTF ? SVf_UTF8 : 0));
+  if ( flags == REG_RSN_RETURN_NAME)
+   return sv_name;
+  else if (flags==REG_RSN_RETURN_DATA) {
+   HE *he_str = NULL;
+   SV *sv_dat = NULL;
+   if ( ! sv_name )      /* should not happen*/
+    Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
+   if (RExC_paren_names)
+    he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
+   if ( he_str )
+    sv_dat = HeVAL(he_str);
+   if ( ! sv_dat )
+    vFAIL("Reference to nonexistent named group");
+   return sv_dat;
+  }
+  else {
+   Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name",
+     (unsigned long) flags);
+  }
+  NOT_REACHED; /* NOTREACHED */
+ }
+ return NULL;
+}
+
+#define DEBUG_PARSE_MSG(funcname)     DEBUG_PARSE_r({           \
+ int num;                                                    \
+ if (RExC_lastparse!=RExC_parse) {                           \
+  PerlIO_printf(Perl_debug_log, "%s",                     \
+   Perl_pv_pretty(aTHX_ RExC_mysv1, RExC_parse,        \
+    RExC_end - RExC_parse, 16,                      \
+    "", "",                                         \
+    PERL_PV_ESCAPE_UNI_DETECT |                     \
+    PERL_PV_PRETTY_ELLIPSES   |                     \
+    PERL_PV_PRETTY_LTGT       |                     \
+    PERL_PV_ESCAPE_RE         |                     \
+    PERL_PV_PRETTY_EXACTSIZE                        \
+   )                                                   \
+  );                                                      \
+ } else                                                      \
+  PerlIO_printf(Perl_debug_log,"%16s","");                \
+                \
+ if (SIZE_ONLY)                                              \
+ num = RExC_size + 1;                                     \
+ else                                                        \
+ num=REG_NODE_NUM(RExC_emit);                             \
+ if (RExC_lastnum!=num)                                      \
+ PerlIO_printf(Perl_debug_log,"|%4d",num);                \
+ else                                                        \
+ PerlIO_printf(Perl_debug_log,"|%4s","");                 \
+ PerlIO_printf(Perl_debug_log,"|%*s%-4s",                    \
+  (int)((depth*2)), "",                                   \
+  (funcname)                                              \
+ );                                                          \
+ RExC_lastnum=num;                                           \
+ RExC_lastparse=RExC_parse;                                  \
+})
+
+
+
+#define DEBUG_PARSE(funcname)     DEBUG_PARSE_r({           \
+ DEBUG_PARSE_MSG((funcname));                            \
+ PerlIO_printf(Perl_debug_log,"%4s","\n");               \
+})
+#define DEBUG_PARSE_FMT(funcname,fmt,args)     DEBUG_PARSE_r({           \
+ DEBUG_PARSE_MSG((funcname));                            \
+ PerlIO_printf(Perl_debug_log,fmt "\n",args);               \
+})
+
+/* This section of code defines the inversion list object and its methods.  The
+ * interfaces are highly subject to change, so as much as possible is static to
+ * this file.  An inversion list is here implemented as a malloc'd C UV array
+ * as an SVt_INVLIST scalar.
+ *
+ * An inversion list for Unicode is an array of code points, sorted by ordinal
+ * number.  The zeroth element is the first code point in the list.  The 1th
+ * element is the first element beyond that not in the list.  In other words,
+ * the first range is
+ *  invlist[0]..(invlist[1]-1)
+ * The other ranges follow.  Thus every element whose index is divisible by two
+ * marks the beginning of a range that is in the list, and every element not
+ * divisible by two marks the beginning of a range not in the list.  A single
+ * element inversion list that contains the single code point N generally
+ * consists of two elements
+ *  invlist[0] == N
+ *  invlist[1] == N+1
+ * (The exception is when N is the highest representable value on the
+ * machine, in which case the list containing just it would be a single
+ * element, itself.  By extension, if the last range in the list extends to
+ * infinity, then the first element of that range will be in the inversion list
+ * at a position that is divisible by two, and is the final element in the
+ * list.)
+ * Taking the complement (inverting) an inversion list is quite simple, if the
+ * first element is 0, remove it; otherwise add a 0 element at the beginning.
+ * This implementation reserves an element at the beginning of each inversion
+ * list to always contain 0; there is an additional flag in the header which
+ * indicates if the list begins at the 0, or is offset to begin at the next
+ * element.
+ *
+ * More about inversion lists can be found in "Unicode Demystified"
+ * Chapter 13 by Richard Gillam, published by Addison-Wesley.
+ * More will be coming when functionality is added later.
+ *
+ * The inversion list data structure is currently implemented as an SV pointing
+ * to an array of UVs that the SV thinks are bytes.  This allows us to have an
+ * array of UV whose memory management is automatically handled by the existing
+ * facilities for SV's.
+ *
+ * Some of the methods should always be private to the implementation, and some
+ * should eventually be made public */
+
+/* The header definitions are in F<inline_invlist.c> */
+
+PERL_STATIC_INLINE UV*
+S__invlist_array_init(SV* const invlist, const bool will_have_0)
+{
+ /* Returns a pointer to the first element in the inversion list's array.
+ * This is called upon initialization of an inversion list.  Where the
+ * array begins depends on whether the list has the code point U+0000 in it
+ * or not.  The other parameter tells it whether the code that follows this
+ * call is about to put a 0 in the inversion list or not.  The first
+ * element is either the element reserved for 0, if TRUE, or the element
+ * after it, if FALSE */
+
+ bool* offset = get_invlist_offset_addr(invlist);
+ UV* zero_addr = (UV *) SvPVX(invlist);
+
+ PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
+
+ /* Must be empty */
+ assert(! _invlist_len(invlist));
+
+ *zero_addr = 0;
+
+ /* 1^1 = 0; 1^0 = 1 */
+ *offset = 1 ^ will_have_0;
+ return zero_addr + *offset;
+}
+
+PERL_STATIC_INLINE void
+S_invlist_set_len(pTHX_ SV* const invlist, const UV len, const bool offset)
+{
+ /* Sets the current number of elements stored in the inversion list.
+ * Updates SvCUR correspondingly */
+ PERL_UNUSED_CONTEXT;
+ PERL_ARGS_ASSERT_INVLIST_SET_LEN;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ SvCUR_set(invlist,
+   (len == 0)
+   ? 0
+   : TO_INTERNAL_SIZE(len + offset));
+ assert(SvLEN(invlist) == 0 || SvCUR(invlist) <= SvLEN(invlist));
+}
+
+#ifndef PERL_IN_XSUB_RE
+
+PERL_STATIC_INLINE IV*
+S_get_invlist_previous_index_addr(SV* invlist)
+{
+ /* Return the address of the IV that is reserved to hold the cached index
+ * */
+ PERL_ARGS_ASSERT_GET_INVLIST_PREVIOUS_INDEX_ADDR;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ return &(((XINVLIST*) SvANY(invlist))->prev_index);
+}
+
+PERL_STATIC_INLINE IV
+S_invlist_previous_index(SV* const invlist)
+{
+ /* Returns cached index of previous search */
+
+ PERL_ARGS_ASSERT_INVLIST_PREVIOUS_INDEX;
+
+ return *get_invlist_previous_index_addr(invlist);
+}
+
+PERL_STATIC_INLINE void
+S_invlist_set_previous_index(SV* const invlist, const IV index)
+{
+ /* Caches <index> for later retrieval */
+
+ PERL_ARGS_ASSERT_INVLIST_SET_PREVIOUS_INDEX;
+
+ assert(index == 0 || index < (int) _invlist_len(invlist));
+
+ *get_invlist_previous_index_addr(invlist) = index;
+}
+
+PERL_STATIC_INLINE void
+S_invlist_trim(SV* const invlist)
+{
+ PERL_ARGS_ASSERT_INVLIST_TRIM;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ /* Change the length of the inversion list to how many entries it currently
+ * has */
+ SvPV_shrink_to_cur((SV *) invlist);
+}
+
+PERL_STATIC_INLINE bool
+S_invlist_is_iterating(SV* const invlist)
+{
+ PERL_ARGS_ASSERT_INVLIST_IS_ITERATING;
+
+ return *(get_invlist_iter_addr(invlist)) < (STRLEN) UV_MAX;
+}
+
+#endif /* ifndef PERL_IN_XSUB_RE */
+
+PERL_STATIC_INLINE UV
+S_invlist_max(SV* const invlist)
+{
+ /* Returns the maximum number of elements storable in the inversion list's
+ * array, without having to realloc() */
+
+ PERL_ARGS_ASSERT_INVLIST_MAX;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ /* Assumes worst case, in which the 0 element is not counted in the
+ * inversion list, so subtracts 1 for that */
+ return SvLEN(invlist) == 0  /* This happens under _new_invlist_C_array */
+  ? FROM_INTERNAL_SIZE(SvCUR(invlist)) - 1
+  : FROM_INTERNAL_SIZE(SvLEN(invlist)) - 1;
+}
+
+#ifndef PERL_IN_XSUB_RE
+SV*
+Perl__new_invlist(pTHX_ IV initial_size)
+{
+
+ /* Return a pointer to a newly constructed inversion list, with enough
+ * space to store 'initial_size' elements.  If that number is negative, a
+ * system default is used instead */
+
+ SV* new_list;
+
+ if (initial_size < 0) {
+  initial_size = 10;
+ }
+
+ /* Allocate the initial space */
+ new_list = newSV_type(SVt_INVLIST);
+
+ /* First 1 is in case the zero element isn't in the list; second 1 is for
+ * trailing NUL */
+ SvGROW(new_list, TO_INTERNAL_SIZE(initial_size + 1) + 1);
+ invlist_set_len(new_list, 0, 0);
+
+ /* Force iterinit() to be used to get iteration to work */
+ *get_invlist_iter_addr(new_list) = (STRLEN) UV_MAX;
+
+ *get_invlist_previous_index_addr(new_list) = 0;
+
+ return new_list;
+}
+
+SV*
+Perl__new_invlist_C_array(pTHX_ const UV* const list)
+{
+ /* Return a pointer to a newly constructed inversion list, initialized to
+ * point to <list>, which has to be in the exact correct inversion list
+ * form, including internal fields.  Thus this is a dangerous routine that
+ * should not be used in the wrong hands.  The passed in 'list' contains
+ * several header fields at the beginning that are not part of the
+ * inversion list body proper */
+
+ const STRLEN length = (STRLEN) list[0];
+ const UV version_id =          list[1];
+ const bool offset   =    cBOOL(list[2]);
+#define HEADER_LENGTH 3
+ /* If any of the above changes in any way, you must change HEADER_LENGTH
+ * (if appropriate) and regenerate INVLIST_VERSION_ID by running
+ *      perl -E 'say int(rand 2**31-1)'
+ */
+#define INVLIST_VERSION_ID 148565664 /* This is a combination of a version and
+          data structure type, so that one being
+          passed in can be validated to be an
+          inversion list of the correct vintage.
+         */
+
+ SV* invlist = newSV_type(SVt_INVLIST);
+
+ PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY;
+
+ if (version_id != INVLIST_VERSION_ID) {
+  Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list");
+ }
+
+ /* The generated array passed in includes header elements that aren't part
+ * of the list proper, so start it just after them */
+ SvPV_set(invlist, (char *) (list + HEADER_LENGTH));
+
+ SvLEN_set(invlist, 0);  /* Means we own the contents, and the system
+       shouldn't touch it */
+
+ *(get_invlist_offset_addr(invlist)) = offset;
+
+ /* The 'length' passed to us is the physical number of elements in the
+ * inversion list.  But if there is an offset the logical number is one
+ * less than that */
+ invlist_set_len(invlist, length  - offset, offset);
+
+ invlist_set_previous_index(invlist, 0);
+
+ /* Initialize the iteration pointer. */
+ invlist_iterfinish(invlist);
+
+ SvREADONLY_on(invlist);
+
+ return invlist;
+}
+#endif /* ifndef PERL_IN_XSUB_RE */
+
+STATIC void
+S_invlist_extend(pTHX_ SV* const invlist, const UV new_max)
+{
+ /* Grow the maximum size of an inversion list */
+
+ PERL_ARGS_ASSERT_INVLIST_EXTEND;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ /* Add one to account for the zero element at the beginning which may not
+ * be counted by the calling parameters */
+ SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max + 1));
+}
+
+STATIC void
+S__append_range_to_invlist(pTHX_ SV* const invlist,
+        const UV start, const UV end)
+{
+   /* Subject to change or removal.  Append the range from 'start' to 'end' at
+ * the end of the inversion list.  The range must be above any existing
+ * ones. */
+
+ UV* array;
+ UV max = invlist_max(invlist);
+ UV len = _invlist_len(invlist);
+ bool offset;
+
+ PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
+
+ if (len == 0) { /* Empty lists must be initialized */
+  offset = start != 0;
+  array = _invlist_array_init(invlist, ! offset);
+ }
+ else {
+  /* Here, the existing list is non-empty. The current max entry in the
+  * list is generally the first value not in the set, except when the
+  * set extends to the end of permissible values, in which case it is
+  * the first entry in that final set, and so this call is an attempt to
+  * append out-of-order */
+
+  UV final_element = len - 1;
+  array = invlist_array(invlist);
+  if (array[final_element] > start
+   || ELEMENT_RANGE_MATCHES_INVLIST(final_element))
+  {
+   Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%"UVuf", start=%"UVuf", match=%c",
+     array[final_element], start,
+     ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f');
+  }
+
+  /* Here, it is a legal append.  If the new range begins with the first
+  * value not in the set, it is extending the set, so the new first
+  * value not in the set is one greater than the newly extended range.
+  * */
+  offset = *get_invlist_offset_addr(invlist);
+  if (array[final_element] == start) {
+   if (end != UV_MAX) {
+    array[final_element] = end + 1;
+   }
+   else {
+    /* But if the end is the maximum representable on the machine,
+    * just let the range that this would extend to have no end */
+    invlist_set_len(invlist, len - 1, offset);
+   }
+   return;
+  }
+ }
+
+ /* Here the new range doesn't extend any existing set.  Add it */
+
+ len += 2; /* Includes an element each for the start and end of range */
+
+ /* If wll overflow the existing space, extend, which may cause the array to
+ * be moved */
+ if (max < len) {
+  invlist_extend(invlist, len);
+
+  /* Have to set len here to avoid assert failure in invlist_array() */
+  invlist_set_len(invlist, len, offset);
+
+  array = invlist_array(invlist);
+ }
+ else {
+  invlist_set_len(invlist, len, offset);
+ }
+
+ /* The next item on the list starts the range, the one after that is
+ * one past the new range.  */
+ array[len - 2] = start;
+ if (end != UV_MAX) {
+  array[len - 1] = end + 1;
+ }
+ else {
+  /* But if the end is the maximum representable on the machine, just let
+  * the range have no end */
+  invlist_set_len(invlist, len - 1, offset);
+ }
+}
+
+#ifndef PERL_IN_XSUB_RE
+
+IV
+Perl__invlist_search(SV* const invlist, const UV cp)
+{
+ /* Searches the inversion list for the entry that contains the input code
+ * point <cp>.  If <cp> is not in the list, -1 is returned.  Otherwise, the
+ * return value is the index into the list's array of the range that
+ * contains <cp> */
+
+ IV low = 0;
+ IV mid;
+ IV high = _invlist_len(invlist);
+ const IV highest_element = high - 1;
+ const UV* array;
+
+ PERL_ARGS_ASSERT__INVLIST_SEARCH;
+
+ /* If list is empty, return failure. */
+ if (high == 0) {
+  return -1;
+ }
+
+ /* (We can't get the array unless we know the list is non-empty) */
+ array = invlist_array(invlist);
+
+ mid = invlist_previous_index(invlist);
+ assert(mid >=0 && mid <= highest_element);
+
+ /* <mid> contains the cache of the result of the previous call to this
+ * function (0 the first time).  See if this call is for the same result,
+ * or if it is for mid-1.  This is under the theory that calls to this
+ * function will often be for related code points that are near each other.
+ * And benchmarks show that caching gives better results.  We also test
+ * here if the code point is within the bounds of the list.  These tests
+ * replace others that would have had to be made anyway to make sure that
+ * the array bounds were not exceeded, and these give us extra information
+ * at the same time */
+ if (cp >= array[mid]) {
+  if (cp >= array[highest_element]) {
+   return highest_element;
+  }
+
+  /* Here, array[mid] <= cp < array[highest_element].  This means that
+  * the final element is not the answer, so can exclude it; it also
+  * means that <mid> is not the final element, so can refer to 'mid + 1'
+  * safely */
+  if (cp < array[mid + 1]) {
+   return mid;
+  }
+  high--;
+  low = mid + 1;
+ }
+ else { /* cp < aray[mid] */
+  if (cp < array[0]) { /* Fail if outside the array */
+   return -1;
+  }
+  high = mid;
+  if (cp >= array[mid - 1]) {
+   goto found_entry;
+  }
+ }
+
+ /* Binary search.  What we are looking for is <i> such that
+ * array[i] <= cp < array[i+1]
+ * The loop below converges on the i+1.  Note that there may not be an
+ * (i+1)th element in the array, and things work nonetheless */
+ while (low < high) {
+  mid = (low + high) / 2;
+  assert(mid <= highest_element);
+  if (array[mid] <= cp) { /* cp >= array[mid] */
+   low = mid + 1;
+
+   /* We could do this extra test to exit the loop early.
+   if (cp < array[low]) {
+    return mid;
+   }
+   */
+  }
+  else { /* cp < array[mid] */
+   high = mid;
+  }
+ }
+
+  found_entry:
+ high--;
+ invlist_set_previous_index(invlist, high);
+ return high;
+}
+
+void
+Perl__invlist_populate_swatch(SV* const invlist,
+       const UV start, const UV end, U8* swatch)
+{
+ /* populates a swatch of a swash the same way swatch_get() does in utf8.c,
+ * but is used when the swash has an inversion list.  This makes this much
+ * faster, as it uses a binary search instead of a linear one.  This is
+ * intimately tied to that function, and perhaps should be in utf8.c,
+ * except it is intimately tied to inversion lists as well.  It assumes
+ * that <swatch> is all 0's on input */
+
+ UV current = start;
+ const IV len = _invlist_len(invlist);
+ IV i;
+ const UV * array;
+
+ PERL_ARGS_ASSERT__INVLIST_POPULATE_SWATCH;
+
+ if (len == 0) { /* Empty inversion list */
+  return;
+ }
+
+ array = invlist_array(invlist);
+
+ /* Find which element it is */
+ i = _invlist_search(invlist, start);
+
+ /* We populate from <start> to <end> */
+ while (current < end) {
+  UV upper;
+
+  /* The inversion list gives the results for every possible code point
+  * after the first one in the list.  Only those ranges whose index is
+  * even are ones that the inversion list matches.  For the odd ones,
+  * and if the initial code point is not in the list, we have to skip
+  * forward to the next element */
+  if (i == -1 || ! ELEMENT_RANGE_MATCHES_INVLIST(i)) {
+   i++;
+   if (i >= len) { /* Finished if beyond the end of the array */
+    return;
+   }
+   current = array[i];
+   if (current >= end) {   /* Finished if beyond the end of what we
+         are populating */
+    if (LIKELY(end < UV_MAX)) {
+     return;
+    }
+
+    /* We get here when the upper bound is the maximum
+    * representable on the machine, and we are looking for just
+    * that code point.  Have to special case it */
+    i = len;
+    goto join_end_of_list;
+   }
+  }
+  assert(current >= start);
+
+  /* The current range ends one below the next one, except don't go past
+  * <end> */
+  i++;
+  upper = (i < len && array[i] < end) ? array[i] : end;
+
+  /* Here we are in a range that matches.  Populate a bit in the 3-bit U8
+  * for each code point in it */
+  for (; current < upper; current++) {
+   const STRLEN offset = (STRLEN)(current - start);
+   swatch[offset >> 3] |= 1 << (offset & 7);
+  }
+
+ join_end_of_list:
+
+  /* Quit if at the end of the list */
+  if (i >= len) {
+
+   /* But first, have to deal with the highest possible code point on
+   * the platform.  The previous code assumes that <end> is one
+   * beyond where we want to populate, but that is impossible at the
+   * platform's infinity, so have to handle it specially */
+   if (UNLIKELY(end == UV_MAX && ELEMENT_RANGE_MATCHES_INVLIST(len-1)))
+   {
+    const STRLEN offset = (STRLEN)(end - start);
+    swatch[offset >> 3] |= 1 << (offset & 7);
+   }
+   return;
+  }
+
+  /* Advance to the next range, which will be for code points not in the
+  * inversion list */
+  current = array[i];
+ }
+
+ return;
+}
+
+void
+Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b,
+          const bool complement_b, SV** output)
+{
+ /* Take the union of two inversion lists and point <output> to it.  *output
+ * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
+ * the reference count to that list will be decremented if not already a
+ * temporary (mortal); otherwise *output will be made correspondingly
+ * mortal.  The first list, <a>, may be NULL, in which case a copy of the
+ * second list is returned.  If <complement_b> is TRUE, the union is taken
+ * of the complement (inversion) of <b> instead of b itself.
+ *
+ * The basis for this comes from "Unicode Demystified" Chapter 13 by
+ * Richard Gillam, published by Addison-Wesley, and explained at some
+ * length there.  The preface says to incorporate its examples into your
+ * code at your own risk.
+ *
+ * The algorithm is like a merge sort.
+ *
+ * XXX A potential performance improvement is to keep track as we go along
+ * if only one of the inputs contributes to the result, meaning the other
+ * is a subset of that one.  In that case, we can skip the final copy and
+ * return the larger of the input lists, but then outside code might need
+ * to keep track of whether to free the input list or not */
+
+ const UV* array_a;    /* a's array */
+ const UV* array_b;
+ UV len_a;     /* length of a's array */
+ UV len_b;
+
+ SV* u;   /* the resulting union */
+ UV* array_u;
+ UV len_u;
+
+ UV i_a = 0;      /* current index into a's array */
+ UV i_b = 0;
+ UV i_u = 0;
+
+ /* running count, as explained in the algorithm source book; items are
+ * stopped accumulating and are output when the count changes to/from 0.
+ * The count is incremented when we start a range that's in the set, and
+ * decremented when we start a range that's not in the set.  So its range
+ * is 0 to 2.  Only when the count is zero is something not in the set.
+ */
+ UV count = 0;
+
+ PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND;
+ assert(a != b);
+
+ /* If either one is empty, the union is the other one */
+ if (a == NULL || ((len_a = _invlist_len(a)) == 0)) {
+  bool make_temp = FALSE; /* Should we mortalize the result? */
+
+  if (*output == a) {
+   if (a != NULL) {
+    if (! (make_temp = cBOOL(SvTEMP(a)))) {
+     SvREFCNT_dec_NN(a);
+    }
+   }
+  }
+  if (*output != b) {
+   *output = invlist_clone(b);
+   if (complement_b) {
+    _invlist_invert(*output);
+   }
+  } /* else *output already = b; */
+
+  if (make_temp) {
+   sv_2mortal(*output);
+  }
+  return;
+ }
+ else if ((len_b = _invlist_len(b)) == 0) {
+  bool make_temp = FALSE;
+  if (*output == b) {
+   if (! (make_temp = cBOOL(SvTEMP(b)))) {
+    SvREFCNT_dec_NN(b);
+   }
+  }
+
+  /* The complement of an empty list is a list that has everything in it,
+  * so the union with <a> includes everything too */
+  if (complement_b) {
+   if (a == *output) {
+    if (! (make_temp = cBOOL(SvTEMP(a)))) {
+     SvREFCNT_dec_NN(a);
+    }
+   }
+   *output = _new_invlist(1);
+   _append_range_to_invlist(*output, 0, UV_MAX);
+  }
+  else if (*output != a) {
+   *output = invlist_clone(a);
+  }
+  /* else *output already = a; */
+
+  if (make_temp) {
+   sv_2mortal(*output);
+  }
+  return;
+ }
+
+ /* Here both lists exist and are non-empty */
+ array_a = invlist_array(a);
+ array_b = invlist_array(b);
+
+ /* If are to take the union of 'a' with the complement of b, set it
+ * up so are looking at b's complement. */
+ if (complement_b) {
+
+  /* To complement, we invert: if the first element is 0, remove it.  To
+  * do this, we just pretend the array starts one later */
+  if (array_b[0] == 0) {
+   array_b++;
+   len_b--;
+  }
+  else {
+
+   /* But if the first element is not zero, we pretend the list starts
+   * at the 0 that is always stored immediately before the array. */
+   array_b--;
+   len_b++;
+  }
+ }
+
+ /* Size the union for the worst case: that the sets are completely
+ * disjoint */
+ u = _new_invlist(len_a + len_b);
+
+ /* Will contain U+0000 if either component does */
+ array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0)
+         || (len_b > 0 && array_b[0] == 0));
+
+ /* Go through each list item by item, stopping when exhausted one of
+ * them */
+ while (i_a < len_a && i_b < len_b) {
+  UV cp;     /* The element to potentially add to the union's array */
+  bool cp_in_set;   /* is it in the the input list's set or not */
+
+  /* We need to take one or the other of the two inputs for the union.
+  * Since we are merging two sorted lists, we take the smaller of the
+  * next items.  In case of a tie, we take the one that is in its set
+  * first.  If we took one not in the set first, it would decrement the
+  * count, possibly to 0 which would cause it to be output as ending the
+  * range, and the next time through we would take the same number, and
+  * output it again as beginning the next range.  By doing it the
+  * opposite way, there is no possibility that the count will be
+  * momentarily decremented to 0, and thus the two adjoining ranges will
+  * be seamlessly merged.  (In a tie and both are in the set or both not
+  * in the set, it doesn't matter which we take first.) */
+  if (array_a[i_a] < array_b[i_b]
+   || (array_a[i_a] == array_b[i_b]
+    && ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
+  {
+   cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
+   cp= array_a[i_a++];
+  }
+  else {
+   cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
+   cp = array_b[i_b++];
+  }
+
+  /* Here, have chosen which of the two inputs to look at.  Only output
+  * if the running count changes to/from 0, which marks the
+  * beginning/end of a range in that's in the set */
+  if (cp_in_set) {
+   if (count == 0) {
+    array_u[i_u++] = cp;
+   }
+   count++;
+  }
+  else {
+   count--;
+   if (count == 0) {
+    array_u[i_u++] = cp;
+   }
+  }
+ }
+
+ /* Here, we are finished going through at least one of the lists, which
+ * means there is something remaining in at most one.  We check if the list
+ * that hasn't been exhausted is positioned such that we are in the middle
+ * of a range in its set or not.  (i_a and i_b point to the element beyond
+ * the one we care about.) If in the set, we decrement 'count'; if 0, there
+ * is potentially more to output.
+ * There are four cases:
+ * 1) Both weren't in their sets, count is 0, and remains 0.  What's left
+ *    in the union is entirely from the non-exhausted set.
+ * 2) Both were in their sets, count is 2.  Nothing further should
+ *    be output, as everything that remains will be in the exhausted
+ *    list's set, hence in the union; decrementing to 1 but not 0 insures
+ *    that
+ * 3) the exhausted was in its set, non-exhausted isn't, count is 1.
+ *    Nothing further should be output because the union includes
+ *    everything from the exhausted set.  Not decrementing ensures that.
+ * 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
+ *    decrementing to 0 insures that we look at the remainder of the
+ *    non-exhausted set */
+ if ((i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
+  || (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
+ {
+  count--;
+ }
+
+ /* The final length is what we've output so far, plus what else is about to
+ * be output.  (If 'count' is non-zero, then the input list we exhausted
+ * has everything remaining up to the machine's limit in its set, and hence
+ * in the union, so there will be no further output. */
+ len_u = i_u;
+ if (count == 0) {
+  /* At most one of the subexpressions will be non-zero */
+  len_u += (len_a - i_a) + (len_b - i_b);
+ }
+
+ /* Set result to final length, which can change the pointer to array_u, so
+ * re-find it */
+ if (len_u != _invlist_len(u)) {
+  invlist_set_len(u, len_u, *get_invlist_offset_addr(u));
+  invlist_trim(u);
+  array_u = invlist_array(u);
+ }
+
+ /* When 'count' is 0, the list that was exhausted (if one was shorter than
+ * the other) ended with everything above it not in its set.  That means
+ * that the remaining part of the union is precisely the same as the
+ * non-exhausted list, so can just copy it unchanged.  (If both list were
+ * exhausted at the same time, then the operations below will be both 0.)
+ */
+ if (count == 0) {
+  IV copy_count; /* At most one will have a non-zero copy count */
+  if ((copy_count = len_a - i_a) > 0) {
+   Copy(array_a + i_a, array_u + i_u, copy_count, UV);
+  }
+  else if ((copy_count = len_b - i_b) > 0) {
+   Copy(array_b + i_b, array_u + i_u, copy_count, UV);
+  }
+ }
+
+ /*  We may be removing a reference to one of the inputs.  If so, the output
+ *  is made mortal if the input was.  (Mortal SVs shouldn't have their ref
+ *  count decremented) */
+ if (a == *output || b == *output) {
+  assert(! invlist_is_iterating(*output));
+  if ((SvTEMP(*output))) {
+   sv_2mortal(u);
+  }
+  else {
+   SvREFCNT_dec_NN(*output);
+  }
+ }
+
+ *output = u;
+
+ return;
+}
+
+void
+Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b,
+           const bool complement_b, SV** i)
+{
+ /* Take the intersection of two inversion lists and point <i> to it.  *i
+ * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
+ * the reference count to that list will be decremented if not already a
+ * temporary (mortal); otherwise *i will be made correspondingly mortal.
+ * The first list, <a>, may be NULL, in which case an empty list is
+ * returned.  If <complement_b> is TRUE, the result will be the
+ * intersection of <a> and the complement (or inversion) of <b> instead of
+ * <b> directly.
+ *
+ * The basis for this comes from "Unicode Demystified" Chapter 13 by
+ * Richard Gillam, published by Addison-Wesley, and explained at some
+ * length there.  The preface says to incorporate its examples into your
+ * code at your own risk.  In fact, it had bugs
+ *
+ * The algorithm is like a merge sort, and is essentially the same as the
+ * union above
+ */
+
+ const UV* array_a;  /* a's array */
+ const UV* array_b;
+ UV len_a; /* length of a's array */
+ UV len_b;
+
+ SV* r;       /* the resulting intersection */
+ UV* array_r;
+ UV len_r;
+
+ UV i_a = 0;      /* current index into a's array */
+ UV i_b = 0;
+ UV i_r = 0;
+
+ /* running count, as explained in the algorithm source book; items are
+ * stopped accumulating and are output when the count changes to/from 2.
+ * The count is incremented when we start a range that's in the set, and
+ * decremented when we start a range that's not in the set.  So its range
+ * is 0 to 2.  Only when the count is 2 is something in the intersection.
+ */
+ UV count = 0;
+
+ PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND;
+ assert(a != b);
+
+ /* Special case if either one is empty */
+ len_a = (a == NULL) ? 0 : _invlist_len(a);
+ if ((len_a == 0) || ((len_b = _invlist_len(b)) == 0)) {
+  bool make_temp = FALSE;
+
+  if (len_a != 0 && complement_b) {
+
+   /* Here, 'a' is not empty, therefore from the above 'if', 'b' must
+   * be empty.  Here, also we are using 'b's complement, which hence
+   * must be every possible code point.  Thus the intersection is
+   * simply 'a'. */
+   if (*i != a) {
+    if (*i == b) {
+     if (! (make_temp = cBOOL(SvTEMP(b)))) {
+      SvREFCNT_dec_NN(b);
+     }
+    }
+
+    *i = invlist_clone(a);
+   }
+   /* else *i is already 'a' */
+
+   if (make_temp) {
+    sv_2mortal(*i);
+   }
+   return;
+  }
+
+  /* Here, 'a' or 'b' is empty and not using the complement of 'b'.  The
+  * intersection must be empty */
+  if (*i == a) {
+   if (! (make_temp = cBOOL(SvTEMP(a)))) {
+    SvREFCNT_dec_NN(a);
+   }
+  }
+  else if (*i == b) {
+   if (! (make_temp = cBOOL(SvTEMP(b)))) {
+    SvREFCNT_dec_NN(b);
+   }
+  }
+  *i = _new_invlist(0);
+  if (make_temp) {
+   sv_2mortal(*i);
+  }
+
+  return;
+ }
+
+ /* Here both lists exist and are non-empty */
+ array_a = invlist_array(a);
+ array_b = invlist_array(b);
+
+ /* If are to take the intersection of 'a' with the complement of b, set it
+ * up so are looking at b's complement. */
+ if (complement_b) {
+
+  /* To complement, we invert: if the first element is 0, remove it.  To
+  * do this, we just pretend the array starts one later */
+  if (array_b[0] == 0) {
+   array_b++;
+   len_b--;
+  }
+  else {
+
+   /* But if the first element is not zero, we pretend the list starts
+   * at the 0 that is always stored immediately before the array. */
+   array_b--;
+   len_b++;
+  }
+ }
+
+ /* Size the intersection for the worst case: that the intersection ends up
+ * fragmenting everything to be completely disjoint */
+ r= _new_invlist(len_a + len_b);
+
+ /* Will contain U+0000 iff both components do */
+ array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0
+         && len_b > 0 && array_b[0] == 0);
+
+ /* Go through each list item by item, stopping when exhausted one of
+ * them */
+ while (i_a < len_a && i_b < len_b) {
+  UV cp;     /* The element to potentially add to the intersection's
+     array */
+  bool cp_in_set; /* Is it in the input list's set or not */
+
+  /* We need to take one or the other of the two inputs for the
+  * intersection.  Since we are merging two sorted lists, we take the
+  * smaller of the next items.  In case of a tie, we take the one that
+  * is not in its set first (a difference from the union algorithm).  If
+  * we took one in the set first, it would increment the count, possibly
+  * to 2 which would cause it to be output as starting a range in the
+  * intersection, and the next time through we would take that same
+  * number, and output it again as ending the set.  By doing it the
+  * opposite of this, there is no possibility that the count will be
+  * momentarily incremented to 2.  (In a tie and both are in the set or
+  * both not in the set, it doesn't matter which we take first.) */
+  if (array_a[i_a] < array_b[i_b]
+   || (array_a[i_a] == array_b[i_b]
+    && ! ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
+  {
+   cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
+   cp= array_a[i_a++];
+  }
+  else {
+   cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
+   cp= array_b[i_b++];
+  }
+
+  /* Here, have chosen which of the two inputs to look at.  Only output
+  * if the running count changes to/from 2, which marks the
+  * beginning/end of a range that's in the intersection */
+  if (cp_in_set) {
+   count++;
+   if (count == 2) {
+    array_r[i_r++] = cp;
+   }
+  }
+  else {
+   if (count == 2) {
+    array_r[i_r++] = cp;
+   }
+   count--;
+  }
+ }
+
+ /* Here, we are finished going through at least one of the lists, which
+ * means there is something remaining in at most one.  We check if the list
+ * that has been exhausted is positioned such that we are in the middle
+ * of a range in its set or not.  (i_a and i_b point to elements 1 beyond
+ * the ones we care about.)  There are four cases:
+ * 1) Both weren't in their sets, count is 0, and remains 0.  There's
+ *    nothing left in the intersection.
+ * 2) Both were in their sets, count is 2 and perhaps is incremented to
+ *    above 2.  What should be output is exactly that which is in the
+ *    non-exhausted set, as everything it has is also in the intersection
+ *    set, and everything it doesn't have can't be in the intersection
+ * 3) The exhausted was in its set, non-exhausted isn't, count is 1, and
+ *    gets incremented to 2.  Like the previous case, the intersection is
+ *    everything that remains in the non-exhausted set.
+ * 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
+ *    remains 1.  And the intersection has nothing more. */
+ if ((i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
+  || (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
+ {
+  count++;
+ }
+
+ /* The final length is what we've output so far plus what else is in the
+ * intersection.  At most one of the subexpressions below will be non-zero
+ * */
+ len_r = i_r;
+ if (count >= 2) {
+  len_r += (len_a - i_a) + (len_b - i_b);
+ }
+
+ /* Set result to final length, which can change the pointer to array_r, so
+ * re-find it */
+ if (len_r != _invlist_len(r)) {
+  invlist_set_len(r, len_r, *get_invlist_offset_addr(r));
+  invlist_trim(r);
+  array_r = invlist_array(r);
+ }
+
+ /* Finish outputting any remaining */
+ if (count >= 2) { /* At most one will have a non-zero copy count */
+  IV copy_count;
+  if ((copy_count = len_a - i_a) > 0) {
+   Copy(array_a + i_a, array_r + i_r, copy_count, UV);
+  }
+  else if ((copy_count = len_b - i_b) > 0) {
+   Copy(array_b + i_b, array_r + i_r, copy_count, UV);
+  }
+ }
+
+ /*  We may be removing a reference to one of the inputs.  If so, the output
+ *  is made mortal if the input was.  (Mortal SVs shouldn't have their ref
+ *  count decremented) */
+ if (a == *i || b == *i) {
+  assert(! invlist_is_iterating(*i));
+  if (SvTEMP(*i)) {
+   sv_2mortal(r);
+  }
+  else {
+   SvREFCNT_dec_NN(*i);
+  }
+ }
+
+ *i = r;
+
+ return;
+}
+
+SV*
+Perl__add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end)
+{
+ /* Add the range from 'start' to 'end' inclusive to the inversion list's
+ * set.  A pointer to the inversion list is returned.  This may actually be
+ * a new list, in which case the passed in one has been destroyed.  The
+ * passed-in inversion list can be NULL, in which case a new one is created
+ * with just the one range in it */
+
+ SV* range_invlist;
+ UV len;
+
+ if (invlist == NULL) {
+  invlist = _new_invlist(2);
+  len = 0;
+ }
+ else {
+  len = _invlist_len(invlist);
+ }
+
+ /* If comes after the final entry actually in the list, can just append it
+ * to the end, */
+ if (len == 0
+  || (! ELEMENT_RANGE_MATCHES_INVLIST(len - 1)
+   && start >= invlist_array(invlist)[len - 1]))
+ {
+  _append_range_to_invlist(invlist, start, end);
+  return invlist;
+ }
+
+ /* Here, can't just append things, create and return a new inversion list
+ * which is the union of this range and the existing inversion list */
+ range_invlist = _new_invlist(2);
+ _append_range_to_invlist(range_invlist, start, end);
+
+ _invlist_union(invlist, range_invlist, &invlist);
+
+ /* The temporary can be freed */
+ SvREFCNT_dec_NN(range_invlist);
+
+ return invlist;
+}
+
+SV*
+Perl__setup_canned_invlist(pTHX_ const STRLEN size, const UV element0,
+        UV** other_elements_ptr)
+{
+ /* Create and return an inversion list whose contents are to be populated
+ * by the caller.  The caller gives the number of elements (in 'size') and
+ * the very first element ('element0').  This function will set
+ * '*other_elements_ptr' to an array of UVs, where the remaining elements
+ * are to be placed.
+ *
+ * Obviously there is some trust involved that the caller will properly
+ * fill in the other elements of the array.
+ *
+ * (The first element needs to be passed in, as the underlying code does
+ * things differently depending on whether it is zero or non-zero) */
+
+ SV* invlist = _new_invlist(size);
+ bool offset;
+
+ PERL_ARGS_ASSERT__SETUP_CANNED_INVLIST;
+
+ _append_range_to_invlist(invlist, element0, element0);
+ offset = *get_invlist_offset_addr(invlist);
+
+ invlist_set_len(invlist, size, offset);
+ *other_elements_ptr = invlist_array(invlist) + 1;
+ return invlist;
+}
+
+#endif
+
+PERL_STATIC_INLINE SV*
+S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) {
+ return _add_range_to_invlist(invlist, cp, cp);
+}
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl__invlist_invert(pTHX_ SV* const invlist)
+{
+ /* Complement the input inversion list.  This adds a 0 if the list didn't
+ * have a zero; removes it otherwise.  As described above, the data
+ * structure is set up so that this is very efficient */
+
+ PERL_ARGS_ASSERT__INVLIST_INVERT;
+
+ assert(! invlist_is_iterating(invlist));
+
+ /* The inverse of matching nothing is matching everything */
+ if (_invlist_len(invlist) == 0) {
+  _append_range_to_invlist(invlist, 0, UV_MAX);
+  return;
+ }
+
+ *get_invlist_offset_addr(invlist) = ! *get_invlist_offset_addr(invlist);
+}
+
+#endif
+
+PERL_STATIC_INLINE SV*
+S_invlist_clone(pTHX_ SV* const invlist)
+{
+
+ /* Return a new inversion list that is a copy of the input one, which is
+ * unchanged.  The new list will not be mortal even if the old one was. */
+
+ /* Need to allocate extra space to accommodate Perl's addition of a
+ * trailing NUL to SvPV's, since it thinks they are always strings */
+ SV* new_invlist = _new_invlist(_invlist_len(invlist) + 1);
+ STRLEN physical_length = SvCUR(invlist);
+ bool offset = *(get_invlist_offset_addr(invlist));
+
+ PERL_ARGS_ASSERT_INVLIST_CLONE;
+
+ *(get_invlist_offset_addr(new_invlist)) = offset;
+ invlist_set_len(new_invlist, _invlist_len(invlist), offset);
+ Copy(SvPVX(invlist), SvPVX(new_invlist), physical_length, char);
+
+ return new_invlist;
+}
+
+PERL_STATIC_INLINE STRLEN*
+S_get_invlist_iter_addr(SV* invlist)
+{
+ /* Return the address of the UV that contains the current iteration
+ * position */
+
+ PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ return &(((XINVLIST*) SvANY(invlist))->iterator);
+}
+
+PERL_STATIC_INLINE void
+S_invlist_iterinit(SV* invlist) /* Initialize iterator for invlist */
+{
+ PERL_ARGS_ASSERT_INVLIST_ITERINIT;
+
+ *get_invlist_iter_addr(invlist) = 0;
+}
+
+PERL_STATIC_INLINE void
+S_invlist_iterfinish(SV* invlist)
+{
+ /* Terminate iterator for invlist.  This is to catch development errors.
+ * Any iteration that is interrupted before completed should call this
+ * function.  Functions that add code points anywhere else but to the end
+ * of an inversion list assert that they are not in the middle of an
+ * iteration.  If they were, the addition would make the iteration
+ * problematical: if the iteration hadn't reached the place where things
+ * were being added, it would be ok */
+
+ PERL_ARGS_ASSERT_INVLIST_ITERFINISH;
+
+ *get_invlist_iter_addr(invlist) = (STRLEN) UV_MAX;
+}
+
+STATIC bool
+S_invlist_iternext(SV* invlist, UV* start, UV* end)
+{
+ /* An C<invlist_iterinit> call on <invlist> must be used to set this up.
+ * This call sets in <*start> and <*end>, the next range in <invlist>.
+ * Returns <TRUE> if successful and the next call will return the next
+ * range; <FALSE> if was already at the end of the list.  If the latter,
+ * <*start> and <*end> are unchanged, and the next call to this function
+ * will start over at the beginning of the list */
+
+ STRLEN* pos = get_invlist_iter_addr(invlist);
+ UV len = _invlist_len(invlist);
+ UV *array;
+
+ PERL_ARGS_ASSERT_INVLIST_ITERNEXT;
+
+ if (*pos >= len) {
+  *pos = (STRLEN) UV_MAX; /* Force iterinit() to be required next time */
+  return FALSE;
+ }
+
+ array = invlist_array(invlist);
+
+ *start = array[(*pos)++];
+
+ if (*pos >= len) {
+  *end = UV_MAX;
+ }
+ else {
+  *end = array[(*pos)++] - 1;
+ }
+
+ return TRUE;
+}
+
+PERL_STATIC_INLINE UV
+S_invlist_highest(SV* const invlist)
+{
+ /* Returns the highest code point that matches an inversion list.  This API
+ * has an ambiguity, as it returns 0 under either the highest is actually
+ * 0, or if the list is empty.  If this distinction matters to you, check
+ * for emptiness before calling this function */
+
+ UV len = _invlist_len(invlist);
+ UV *array;
+
+ PERL_ARGS_ASSERT_INVLIST_HIGHEST;
+
+ if (len == 0) {
+  return 0;
+ }
+
+ array = invlist_array(invlist);
+
+ /* The last element in the array in the inversion list always starts a
+ * range that goes to infinity.  That range may be for code points that are
+ * matched in the inversion list, or it may be for ones that aren't
+ * matched.  In the latter case, the highest code point in the set is one
+ * less than the beginning of this range; otherwise it is the final element
+ * of this range: infinity */
+ return (ELEMENT_RANGE_MATCHES_INVLIST(len - 1))
+  ? UV_MAX
+  : array[len - 1] - 1;
+}
+
+#ifndef PERL_IN_XSUB_RE
+SV *
+Perl__invlist_contents(pTHX_ SV* const invlist)
+{
+ /* Get the contents of an inversion list into a string SV so that they can
+ * be printed out.  It uses the format traditionally done for debug tracing
+ */
+
+ UV start, end;
+ SV* output = newSVpvs("\n");
+
+ PERL_ARGS_ASSERT__INVLIST_CONTENTS;
+
+ assert(! invlist_is_iterating(invlist));
+
+ invlist_iterinit(invlist);
+ while (invlist_iternext(invlist, &start, &end)) {
+  if (end == UV_MAX) {
+   Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\tINFINITY\n", start);
+  }
+  else if (end != start) {
+   Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\t%04"UVXf"\n",
+     start,       end);
+  }
+  else {
+   Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\n", start);
+  }
+ }
+
+ return output;
+}
+#endif
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl__invlist_dump(pTHX_ PerlIO *file, I32 level,
+      const char * const indent, SV* const invlist)
+{
+ /* Designed to be called only by do_sv_dump().  Dumps out the ranges of the
+ * inversion list 'invlist' to 'file' at 'level'  Each line is prefixed by
+ * the string 'indent'.  The output looks like this:
+  [0] 0x000A .. 0x000D
+  [2] 0x0085
+  [4] 0x2028 .. 0x2029
+  [6] 0x3104 .. INFINITY
+ * This means that the first range of code points matched by the list are
+ * 0xA through 0xD; the second range contains only the single code point
+ * 0x85, etc.  An inversion list is an array of UVs.  Two array elements
+ * are used to define each range (except if the final range extends to
+ * infinity, only a single element is needed).  The array index of the
+ * first element for the corresponding range is given in brackets. */
+
+ UV start, end;
+ STRLEN count = 0;
+
+ PERL_ARGS_ASSERT__INVLIST_DUMP;
+
+ if (invlist_is_iterating(invlist)) {
+  Perl_dump_indent(aTHX_ level, file,
+   "%sCan't dump inversion list because is in middle of iterating\n",
+   indent);
+  return;
+ }
+
+ invlist_iterinit(invlist);
+ while (invlist_iternext(invlist, &start, &end)) {
+  if (end == UV_MAX) {
+   Perl_dump_indent(aTHX_ level, file,
+         "%s[%"UVuf"] 0x%04"UVXf" .. INFINITY\n",
+        indent, (UV)count, start);
+  }
+  else if (end != start) {
+   Perl_dump_indent(aTHX_ level, file,
+         "%s[%"UVuf"] 0x%04"UVXf" .. 0x%04"UVXf"\n",
+        indent, (UV)count, start,         end);
+  }
+  else {
+   Perl_dump_indent(aTHX_ level, file, "%s[%"UVuf"] 0x%04"UVXf"\n",
+           indent, (UV)count, start);
+  }
+  count += 2;
+ }
+}
+
+void
+Perl__load_PL_utf8_foldclosures (pTHX)
+{
+ assert(! PL_utf8_foldclosures);
+
+ /* If the folds haven't been read in, call a fold function
+ * to force that */
+ if (! PL_utf8_tofold) {
+  U8 dummy[UTF8_MAXBYTES_CASE+1];
+
+  /* This string is just a short named one above \xff */
+  to_utf8_fold((U8*) HYPHEN_UTF8, dummy, NULL);
+  assert(PL_utf8_tofold); /* Verify that worked */
+ }
+ PL_utf8_foldclosures = _swash_inversion_hash(PL_utf8_tofold);
+}
+#endif
+
+#ifdef PERL_ARGS_ASSERT__INVLISTEQ
+bool
+S__invlistEQ(pTHX_ SV* const a, SV* const b, const bool complement_b)
+{
+ /* Return a boolean as to if the two passed in inversion lists are
+ * identical.  The final argument, if TRUE, says to take the complement of
+ * the second inversion list before doing the comparison */
+
+ const UV* array_a = invlist_array(a);
+ const UV* array_b = invlist_array(b);
+ UV len_a = _invlist_len(a);
+ UV len_b = _invlist_len(b);
+
+ UV i = 0;      /* current index into the arrays */
+ bool retval = TRUE;     /* Assume are identical until proven otherwise */
+
+ PERL_ARGS_ASSERT__INVLISTEQ;
+
+ /* If are to compare 'a' with the complement of b, set it
+ * up so are looking at b's complement. */
+ if (complement_b) {
+
+  /* The complement of nothing is everything, so <a> would have to have
+  * just one element, starting at zero (ending at infinity) */
+  if (len_b == 0) {
+   return (len_a == 1 && array_a[0] == 0);
+  }
+  else if (array_b[0] == 0) {
+
+   /* Otherwise, to complement, we invert.  Here, the first element is
+   * 0, just remove it.  To do this, we just pretend the array starts
+   * one later */
+
+   array_b++;
+   len_b--;
+  }
+  else {
+
+   /* But if the first element is not zero, we pretend the list starts
+   * at the 0 that is always stored immediately before the array. */
+   array_b--;
+   len_b++;
+  }
+ }
+
+ /* Make sure that the lengths are the same, as well as the final element
+ * before looping through the remainder.  (Thus we test the length, final,
+ * and first elements right off the bat) */
+ if (len_a != len_b || array_a[len_a-1] != array_b[len_a-1]) {
+  retval = FALSE;
+ }
+ else for (i = 0; i < len_a - 1; i++) {
+  if (array_a[i] != array_b[i]) {
+   retval = FALSE;
+   break;
+  }
+ }
+
+ return retval;
+}
+#endif
+
+/*
+ * As best we can, determine the characters that can match the start of
+ * the given EXACTF-ish node.
+ *
+ * Returns the invlist as a new SV*; it is the caller's responsibility to
+ * call SvREFCNT_dec() when done with it.
+ */
+STATIC SV*
+S__make_exactf_invlist(pTHX_ RExC_state_t *pRExC_state, regnode *node)
+{
+ const U8 * s = (U8*)STRING(node);
+ SSize_t bytelen = STR_LEN(node);
+ UV uc;
+ /* Start out big enough for 2 separate code points */
+ SV* invlist = _new_invlist(4);
+
+ PERL_ARGS_ASSERT__MAKE_EXACTF_INVLIST;
+
+ if (! UTF) {
+  uc = *s;
+
+  /* We punt and assume can match anything if the node begins
+  * with a multi-character fold.  Things are complicated.  For
+  * example, /ffi/i could match any of:
+  *  "\N{LATIN SMALL LIGATURE FFI}"
+  *  "\N{LATIN SMALL LIGATURE FF}I"
+  *  "F\N{LATIN SMALL LIGATURE FI}"
+  *  plus several other things; and making sure we have all the
+  *  possibilities is hard. */
+  if (is_MULTI_CHAR_FOLD_latin1_safe(s, s + bytelen)) {
+   invlist = _add_range_to_invlist(invlist, 0, UV_MAX);
+  }
+  else {
+   /* Any Latin1 range character can potentially match any
+   * other depending on the locale */
+   if (OP(node) == EXACTFL) {
+    _invlist_union(invlist, PL_Latin1, &invlist);
+   }
+   else {
+    /* But otherwise, it matches at least itself.  We can
+    * quickly tell if it has a distinct fold, and if so,
+    * it matches that as well */
+    invlist = add_cp_to_invlist(invlist, uc);
+    if (IS_IN_SOME_FOLD_L1(uc))
+     invlist = add_cp_to_invlist(invlist, PL_fold_latin1[uc]);
+   }
+
+   /* Some characters match above-Latin1 ones under /i.  This
+   * is true of EXACTFL ones when the locale is UTF-8 */
+   if (HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(uc)
+    && (! isASCII(uc) || (OP(node) != EXACTFA
+         && OP(node) != EXACTFA_NO_TRIE)))
+   {
+    add_above_Latin1_folds(pRExC_state, (U8) uc, &invlist);
+   }
+  }
+ }
+ else {  /* Pattern is UTF-8 */
+  U8 folded[UTF8_MAX_FOLD_CHAR_EXPAND * UTF8_MAXBYTES_CASE + 1] = { '\0' };
+  STRLEN foldlen = UTF8SKIP(s);
+  const U8* e = s + bytelen;
+  SV** listp;
+
+  uc = utf8_to_uvchr_buf(s, s + bytelen, NULL);
+
+  /* The only code points that aren't folded in a UTF EXACTFish
+  * node are are the problematic ones in EXACTFL nodes */
+  if (OP(node) == EXACTFL && is_PROBLEMATIC_LOCALE_FOLDEDS_START_cp(uc)) {
+   /* We need to check for the possibility that this EXACTFL
+   * node begins with a multi-char fold.  Therefore we fold
+   * the first few characters of it so that we can make that
+   * check */
+   U8 *d = folded;
+   int i;
+
+   for (i = 0; i < UTF8_MAX_FOLD_CHAR_EXPAND && s < e; i++) {
+    if (isASCII(*s)) {
+     *(d++) = (U8) toFOLD(*s);
+     s++;
+    }
+    else {
+     STRLEN len;
+     to_utf8_fold(s, d, &len);
+     d += len;
+     s += UTF8SKIP(s);
+    }
+   }
+
+   /* And set up so the code below that looks in this folded
+   * buffer instead of the node's string */
+   e = d;
+   foldlen = UTF8SKIP(folded);
+   s = folded;
+  }
+
+  /* When we reach here 's' points to the fold of the first
+  * character(s) of the node; and 'e' points to far enough along
+  * the folded string to be just past any possible multi-char
+  * fold. 'foldlen' is the length in bytes of the first
+  * character in 's'
+  *
+  * Unlike the non-UTF-8 case, the macro for determining if a
+  * string is a multi-char fold requires all the characters to
+  * already be folded.  This is because of all the complications
+  * if not.  Note that they are folded anyway, except in EXACTFL
+  * nodes.  Like the non-UTF case above, we punt if the node
+  * begins with a multi-char fold  */
+
+  if (is_MULTI_CHAR_FOLD_utf8_safe(s, e)) {
+   invlist = _add_range_to_invlist(invlist, 0, UV_MAX);
+  }
+  else {  /* Single char fold */
+
+   /* It matches all the things that fold to it, which are
+   * found in PL_utf8_foldclosures (including itself) */
+   invlist = add_cp_to_invlist(invlist, uc);
+   if (! PL_utf8_foldclosures)
+    _load_PL_utf8_foldclosures();
+   if ((listp = hv_fetch(PL_utf8_foldclosures,
+        (char *) s, foldlen, FALSE)))
+   {
+    AV* list = (AV*) *listp;
+    IV k;
+    for (k = 0; k <= av_tindex(list); k++) {
+     SV** c_p = av_fetch(list, k, FALSE);
+     UV c;
+     assert(c_p);
+
+     c = SvUV(*c_p);
+
+     /* /aa doesn't allow folds between ASCII and non- */
+     if ((OP(node) == EXACTFA || OP(node) == EXACTFA_NO_TRIE)
+      && isASCII(c) != isASCII(uc))
+     {
+      continue;
+     }
+
+     invlist = add_cp_to_invlist(invlist, c);
+    }
+   }
+  }
+ }
+
+ return invlist;
+}
+
+#undef HEADER_LENGTH
+#undef TO_INTERNAL_SIZE
+#undef FROM_INTERNAL_SIZE
+#undef INVLIST_VERSION_ID
+
+/* End of inversion list object */
+
+STATIC void
+S_parse_lparen_question_flags(pTHX_ RExC_state_t *pRExC_state)
+{
+ /* This parses the flags that are in either the '(?foo)' or '(?foo:bar)'
+ * constructs, and updates RExC_flags with them.  On input, RExC_parse
+ * should point to the first flag; it is updated on output to point to the
+ * final ')' or ':'.  There needs to be at least one flag, or this will
+ * abort */
+
+ /* for (?g), (?gc), and (?o) warnings; warning
+ about (?c) will warn about (?g) -- japhy    */
+
+#define WASTED_O  0x01
+#define WASTED_G  0x02
+#define WASTED_C  0x04
+#define WASTED_GC (WASTED_G|WASTED_C)
+ I32 wastedflags = 0x00;
+ U32 posflags = 0, negflags = 0;
+ U32 *flagsp = &posflags;
+ char has_charset_modifier = '\0';
+ regex_charset cs;
+ bool has_use_defaults = FALSE;
+ const char* const seqstart = RExC_parse - 1; /* Point to the '?' */
+ int x_mod_count = 0;
+
+ PERL_ARGS_ASSERT_PARSE_LPAREN_QUESTION_FLAGS;
+
+ /* '^' as an initial flag sets certain defaults */
+ if (UCHARAT(RExC_parse) == '^') {
+  RExC_parse++;
+  has_use_defaults = TRUE;
+  STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
+  set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
+          ? REGEX_UNICODE_CHARSET
+          : REGEX_DEPENDS_CHARSET);
+ }
+
+ cs = get_regex_charset(RExC_flags);
+ if (cs == REGEX_DEPENDS_CHARSET
+  && (RExC_utf8 || RExC_uni_semantics))
+ {
+  cs = REGEX_UNICODE_CHARSET;
+ }
+
+ while (*RExC_parse) {
+  /* && strchr("iogcmsx", *RExC_parse) */
+  /* (?g), (?gc) and (?o) are useless here
+  and must be globally applied -- japhy */
+  switch (*RExC_parse) {
+
+   /* Code for the imsxn flags */
+   CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp, x_mod_count);
+
+   case LOCALE_PAT_MOD:
+    if (has_charset_modifier) {
+     goto excess_modifier;
+    }
+    else if (flagsp == &negflags) {
+     goto neg_modifier;
+    }
+    cs = REGEX_LOCALE_CHARSET;
+    has_charset_modifier = LOCALE_PAT_MOD;
+    break;
+   case UNICODE_PAT_MOD:
+    if (has_charset_modifier) {
+     goto excess_modifier;
+    }
+    else if (flagsp == &negflags) {
+     goto neg_modifier;
+    }
+    cs = REGEX_UNICODE_CHARSET;
+    has_charset_modifier = UNICODE_PAT_MOD;
+    break;
+   case ASCII_RESTRICT_PAT_MOD:
+    if (flagsp == &negflags) {
+     goto neg_modifier;
+    }
+    if (has_charset_modifier) {
+     if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
+      goto excess_modifier;
+     }
+     /* Doubled modifier implies more restricted */
+     cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
+    }
+    else {
+     cs = REGEX_ASCII_RESTRICTED_CHARSET;
+    }
+    has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
+    break;
+   case DEPENDS_PAT_MOD:
+    if (has_use_defaults) {
+     goto fail_modifiers;
+    }
+    else if (flagsp == &negflags) {
+     goto neg_modifier;
+    }
+    else if (has_charset_modifier) {
+     goto excess_modifier;
+    }
+
+    /* The dual charset means unicode semantics if the
+    * pattern (or target, not known until runtime) are
+    * utf8, or something in the pattern indicates unicode
+    * semantics */
+    cs = (RExC_utf8 || RExC_uni_semantics)
+     ? REGEX_UNICODE_CHARSET
+     : REGEX_DEPENDS_CHARSET;
+    has_charset_modifier = DEPENDS_PAT_MOD;
+    break;
+   excess_modifier:
+    RExC_parse++;
+    if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
+     vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
+    }
+    else if (has_charset_modifier == *(RExC_parse - 1)) {
+     vFAIL2("Regexp modifier \"%c\" may not appear twice",
+          *(RExC_parse - 1));
+    }
+    else {
+     vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
+    }
+    NOT_REACHED; /*NOTREACHED*/
+   neg_modifier:
+    RExC_parse++;
+    vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"",
+         *(RExC_parse - 1));
+    NOT_REACHED; /*NOTREACHED*/
+   case ONCE_PAT_MOD: /* 'o' */
+   case GLOBAL_PAT_MOD: /* 'g' */
+    if (PASS2 && ckWARN(WARN_REGEXP)) {
+     const I32 wflagbit = *RExC_parse == 'o'
+          ? WASTED_O
+          : WASTED_G;
+     if (! (wastedflags & wflagbit) ) {
+      wastedflags |= wflagbit;
+      /* diag_listed_as: Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/ */
+      vWARN5(
+       RExC_parse + 1,
+       "Useless (%s%c) - %suse /%c modifier",
+       flagsp == &negflags ? "?-" : "?",
+       *RExC_parse,
+       flagsp == &negflags ? "don't " : "",
+       *RExC_parse
+      );
+     }
+    }
+    break;
+
+   case CONTINUE_PAT_MOD: /* 'c' */
+    if (PASS2 && ckWARN(WARN_REGEXP)) {
+     if (! (wastedflags & WASTED_C) ) {
+      wastedflags |= WASTED_GC;
+      /* diag_listed_as: Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/ */
+      vWARN3(
+       RExC_parse + 1,
+       "Useless (%sc) - %suse /gc modifier",
+       flagsp == &negflags ? "?-" : "?",
+       flagsp == &negflags ? "don't " : ""
+      );
+     }
+    }
+    break;
+   case KEEPCOPY_PAT_MOD: /* 'p' */
+    if (flagsp == &negflags) {
+     if (PASS2)
+      ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
+    } else {
+     *flagsp |= RXf_PMf_KEEPCOPY;
+    }
+    break;
+   case '-':
+    /* A flag is a default iff it is following a minus, so
+    * if there is a minus, it means will be trying to
+    * re-specify a default which is an error */
+    if (has_use_defaults || flagsp == &negflags) {
+     goto fail_modifiers;
+    }
+    flagsp = &negflags;
+    wastedflags = 0;  /* reset so (?g-c) warns twice */
+    break;
+   case ':':
+   case ')':
+    RExC_flags |= posflags;
+    RExC_flags &= ~negflags;
+    set_regex_charset(&RExC_flags, cs);
+    if (RExC_flags & RXf_PMf_FOLD) {
+     RExC_contains_i = 1;
+    }
+    if (PASS2) {
+     STD_PMMOD_FLAGS_PARSE_X_WARN(x_mod_count);
+    }
+    return;
+    /*NOTREACHED*/
+   default:
+   fail_modifiers:
+    RExC_parse += SKIP_IF_CHAR(RExC_parse);
+    /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
+    vFAIL2utf8f("Sequence (%"UTF8f"...) not recognized",
+     UTF8fARG(UTF, RExC_parse-seqstart, seqstart));
+    NOT_REACHED; /*NOTREACHED*/
+  }
+
+  ++RExC_parse;
+ }
+
+ if (PASS2) {
+  STD_PMMOD_FLAGS_PARSE_X_WARN(x_mod_count);
+ }
+}
+
+/*
+ - reg - regular expression, i.e. main body or parenthesized thing
+ *
+ * Caller must absorb opening parenthesis.
+ *
+ * Combining parenthesis handling with the base level of regular expression
+ * is a trifle forced, but the need to tie the tails of the branches to what
+ * follows makes it hard to avoid.
+ */
+#define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
+#ifdef DEBUGGING
+#define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
+#else
+#define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
+#endif
+
+/* Returns NULL, setting *flagp to TRYAGAIN at the end of (?) that only sets
+   flags. Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan
+   needs to be restarted.
+   Otherwise would only return NULL if regbranch() returns NULL, which
+   cannot happen.  */
+STATIC regnode *
+S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
+ /* paren: Parenthesized? 0=top; 1,2=inside '(': changed to letter.
+ * 2 is like 1, but indicates that nextchar() has been called to advance
+ * RExC_parse beyond the '('.  Things like '(?' are indivisible tokens, and
+ * this flag alerts us to the need to check for that */
+{
+ regnode *ret;  /* Will be the head of the group. */
+ regnode *br;
+ regnode *lastbr;
+ regnode *ender = NULL;
+ I32 parno = 0;
+ I32 flags;
+ U32 oregflags = RExC_flags;
+ bool have_branch = 0;
+ bool is_open = 0;
+ I32 freeze_paren = 0;
+ I32 after_freeze = 0;
+ I32 num; /* numeric backreferences */
+
+ char * parse_start = RExC_parse; /* MJD */
+ char * const oregcomp_parse = RExC_parse;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG;
+ DEBUG_PARSE("reg ");
+
+ *flagp = 0;    /* Tentatively. */
+
+
+ /* Make an OPEN node, if parenthesized. */
+ if (paren) {
+
+  /* Under /x, space and comments can be gobbled up between the '(' and
+  * here (if paren ==2).  The forms '(*VERB' and '(?...' disallow such
+  * intervening space, as the sequence is a token, and a token should be
+  * indivisible */
+  bool has_intervening_patws = paren == 2 && *(RExC_parse - 1) != '(';
+
+  if ( *RExC_parse == '*') { /* (*VERB:ARG) */
+   char *start_verb = RExC_parse;
+   STRLEN verb_len = 0;
+   char *start_arg = NULL;
+   unsigned char op = 0;
+   int argok = 1;
+   int internal_argval = 0; /* internal_argval is only useful if
+          !argok */
+
+   if (has_intervening_patws) {
+    RExC_parse++;
+    vFAIL("In '(*VERB...)', the '(' and '*' must be adjacent");
+   }
+   while ( *RExC_parse && *RExC_parse != ')' ) {
+    if ( *RExC_parse == ':' ) {
+     start_arg = RExC_parse + 1;
+     break;
+    }
+    RExC_parse++;
+   }
+   ++start_verb;
+   verb_len = RExC_parse - start_verb;
+   if ( start_arg ) {
+    RExC_parse++;
+    while ( *RExC_parse && *RExC_parse != ')' )
+     RExC_parse++;
+    if ( *RExC_parse != ')' )
+     vFAIL("Unterminated verb pattern argument");
+    if ( RExC_parse == start_arg )
+     start_arg = NULL;
+   } else {
+    if ( *RExC_parse != ')' )
+     vFAIL("Unterminated verb pattern");
+   }
+
+   switch ( *start_verb ) {
+   case 'A':  /* (*ACCEPT) */
+    if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
+     op = ACCEPT;
+     internal_argval = RExC_nestroot;
+    }
+    break;
+   case 'C':  /* (*COMMIT) */
+    if ( memEQs(start_verb,verb_len,"COMMIT") )
+     op = COMMIT;
+    break;
+   case 'F':  /* (*FAIL) */
+    if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
+     op = OPFAIL;
+     argok = 0;
+    }
+    break;
+   case ':':  /* (*:NAME) */
+   case 'M':  /* (*MARK:NAME) */
+    if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
+     op = MARKPOINT;
+     argok = -1;
+    }
+    break;
+   case 'P':  /* (*PRUNE) */
+    if ( memEQs(start_verb,verb_len,"PRUNE") )
+     op = PRUNE;
+    break;
+   case 'S':   /* (*SKIP) */
+    if ( memEQs(start_verb,verb_len,"SKIP") )
+     op = SKIP;
+    break;
+   case 'T':  /* (*THEN) */
+    /* [19:06] <TimToady> :: is then */
+    if ( memEQs(start_verb,verb_len,"THEN") ) {
+     op = CUTGROUP;
+     RExC_seen |= REG_CUTGROUP_SEEN;
+    }
+    break;
+   }
+   if ( ! op ) {
+    RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
+    vFAIL2utf8f(
+     "Unknown verb pattern '%"UTF8f"'",
+     UTF8fARG(UTF, verb_len, start_verb));
+   }
+   if ( argok ) {
+    if ( start_arg && internal_argval ) {
+     vFAIL3("Verb pattern '%.*s' may not have an argument",
+      verb_len, start_verb);
+    } else if ( argok < 0 && !start_arg ) {
+     vFAIL3("Verb pattern '%.*s' has a mandatory argument",
+      verb_len, start_verb);
+    } else {
+     ret = reganode(pRExC_state, op, internal_argval);
+     if ( ! internal_argval && ! SIZE_ONLY ) {
+      if (start_arg) {
+       SV *sv = newSVpvn( start_arg,
+           RExC_parse - start_arg);
+       ARG(ret) = add_data( pRExC_state,
+            STR_WITH_LEN("S"));
+       RExC_rxi->data->data[ARG(ret)]=(void*)sv;
+       ret->flags = 0;
+      } else {
+       ret->flags = 1;
+      }
+     }
+    }
+    if (!internal_argval)
+     RExC_seen |= REG_VERBARG_SEEN;
+   } else if ( start_arg ) {
+    vFAIL3("Verb pattern '%.*s' may not have an argument",
+      verb_len, start_verb);
+   } else {
+    ret = reg_node(pRExC_state, op);
+   }
+   nextchar(pRExC_state);
+   return ret;
+  }
+  else if (*RExC_parse == '?') { /* (?...) */
+   bool is_logical = 0;
+   const char * const seqstart = RExC_parse;
+   const char * endptr;
+   if (has_intervening_patws) {
+    RExC_parse++;
+    vFAIL("In '(?...)', the '(' and '?' must be adjacent");
+   }
+
+   RExC_parse++;
+   paren = *RExC_parse++;
+   ret = NULL;   /* For look-ahead/behind. */
+   switch (paren) {
+
+   case 'P': /* (?P...) variants for those used to PCRE/Python */
+    paren = *RExC_parse++;
+    if ( paren == '<')         /* (?P<...>) named capture */
+     goto named_capture;
+    else if (paren == '>') {   /* (?P>name) named recursion */
+     goto named_recursion;
+    }
+    else if (paren == '=') {   /* (?P=...)  named backref */
+     /* this pretty much dupes the code for \k<NAME> in
+     * regatom(), if you change this make sure you change that
+     * */
+     char* name_start = RExC_parse;
+     U32 num = 0;
+     SV *sv_dat = reg_scan_name(pRExC_state,
+      SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+     if (RExC_parse == name_start || *RExC_parse != ')')
+      /* diag_listed_as: Sequence ?P=... not terminated in regex; marked by <-- HERE in m/%s/ */
+      vFAIL2("Sequence %.3s... not terminated",parse_start);
+
+     if (!SIZE_ONLY) {
+      num = add_data( pRExC_state, STR_WITH_LEN("S"));
+      RExC_rxi->data->data[num]=(void*)sv_dat;
+      SvREFCNT_inc_simple_void(sv_dat);
+     }
+     RExC_sawback = 1;
+     ret = reganode(pRExC_state,
+        ((! FOLD)
+         ? NREF
+         : (ASCII_FOLD_RESTRICTED)
+         ? NREFFA
+         : (AT_LEAST_UNI_SEMANTICS)
+          ? NREFFU
+          : (LOC)
+          ? NREFFL
+          : NREFF),
+         num);
+     *flagp |= HASWIDTH;
+
+     Set_Node_Offset(ret, parse_start+1);
+     Set_Node_Cur_Length(ret, parse_start);
+
+     nextchar(pRExC_state);
+     return ret;
+    }
+    --RExC_parse;
+    RExC_parse += SKIP_IF_CHAR(RExC_parse);
+    /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
+    vFAIL3("Sequence (%.*s...) not recognized",
+        RExC_parse-seqstart, seqstart);
+    NOT_REACHED; /*NOTREACHED*/
+   case '<':           /* (?<...) */
+    if (*RExC_parse == '!')
+     paren = ',';
+    else if (*RExC_parse != '=')
+   named_capture:
+    {               /* (?<...>) */
+     char *name_start;
+     SV *svname;
+     paren= '>';
+   case '\'':          /* (?'...') */
+      name_start= RExC_parse;
+      svname = reg_scan_name(pRExC_state,
+      SIZE_ONLY    /* reverse test from the others */
+      ? REG_RSN_RETURN_NAME
+      : REG_RSN_RETURN_NULL);
+     if (RExC_parse == name_start || *RExC_parse != paren)
+      vFAIL2("Sequence (?%c... not terminated",
+       paren=='>' ? '<' : paren);
+     if (SIZE_ONLY) {
+      HE *he_str;
+      SV *sv_dat = NULL;
+      if (!svname) /* shouldn't happen */
+       Perl_croak(aTHX_
+        "panic: reg_scan_name returned NULL");
+      if (!RExC_paren_names) {
+       RExC_paren_names= newHV();
+       sv_2mortal(MUTABLE_SV(RExC_paren_names));
+#ifdef DEBUGGING
+       RExC_paren_name_list= newAV();
+       sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
+#endif
+      }
+      he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
+      if ( he_str )
+       sv_dat = HeVAL(he_str);
+      if ( ! sv_dat ) {
+       /* croak baby croak */
+       Perl_croak(aTHX_
+        "panic: paren_name hash element allocation failed");
+      } else if ( SvPOK(sv_dat) ) {
+       /* (?|...) can mean we have dupes so scan to check
+       its already been stored. Maybe a flag indicating
+       we are inside such a construct would be useful,
+       but the arrays are likely to be quite small, so
+       for now we punt -- dmq */
+       IV count = SvIV(sv_dat);
+       I32 *pv = (I32*)SvPVX(sv_dat);
+       IV i;
+       for ( i = 0 ; i < count ; i++ ) {
+        if ( pv[i] == RExC_npar ) {
+         count = 0;
+         break;
+        }
+       }
+       if ( count ) {
+        pv = (I32*)SvGROW(sv_dat,
+            SvCUR(sv_dat) + sizeof(I32)+1);
+        SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
+        pv[count] = RExC_npar;
+        SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
+       }
+      } else {
+       (void)SvUPGRADE(sv_dat,SVt_PVNV);
+       sv_setpvn(sv_dat, (char *)&(RExC_npar),
+                sizeof(I32));
+       SvIOK_on(sv_dat);
+       SvIV_set(sv_dat, 1);
+      }
+#ifdef DEBUGGING
+      /* Yes this does cause a memory leak in debugging Perls
+      * */
+      if (!av_store(RExC_paren_name_list,
+         RExC_npar, SvREFCNT_inc(svname)))
+       SvREFCNT_dec_NN(svname);
+#endif
+
+      /*sv_dump(sv_dat);*/
+     }
+     nextchar(pRExC_state);
+     paren = 1;
+     goto capturing_parens;
+    }
+    RExC_seen |= REG_LOOKBEHIND_SEEN;
+    RExC_in_lookbehind++;
+    RExC_parse++;
+    /* FALLTHROUGH */
+   case '=':           /* (?=...) */
+    RExC_seen_zerolen++;
+    break;
+   case '!':           /* (?!...) */
+    RExC_seen_zerolen++;
+    /* check if we're really just a "FAIL" assertion */
+    --RExC_parse;
+    nextchar(pRExC_state);
+    if (*RExC_parse == ')') {
+     ret=reg_node(pRExC_state, OPFAIL);
+     nextchar(pRExC_state);
+     return ret;
+    }
+    break;
+   case '|':           /* (?|...) */
+    /* branch reset, behave like a (?:...) except that
+    buffers in alternations share the same numbers */
+    paren = ':';
+    after_freeze = freeze_paren = RExC_npar;
+    break;
+   case ':':           /* (?:...) */
+   case '>':           /* (?>...) */
+    break;
+   case '$':           /* (?$...) */
+   case '@':           /* (?@...) */
+    vFAIL2("Sequence (?%c...) not implemented", (int)paren);
+    break;
+   case '0' :           /* (?0) */
+   case 'R' :           /* (?R) */
+    if (*RExC_parse != ')')
+     FAIL("Sequence (?R) not terminated");
+    ret = reg_node(pRExC_state, GOSTART);
+     RExC_seen |= REG_GOSTART_SEEN;
+    *flagp |= POSTPONED;
+    nextchar(pRExC_state);
+    return ret;
+    /*notreached*/
+   /* named and numeric backreferences */
+   case '&':            /* (?&NAME) */
+    parse_start = RExC_parse - 1;
+   named_recursion:
+    {
+      SV *sv_dat = reg_scan_name(pRExC_state,
+       SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+      num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
+    }
+    if (RExC_parse == RExC_end || *RExC_parse != ')')
+     vFAIL("Sequence (?&... not terminated");
+    goto gen_recurse_regop;
+    /* NOTREACHED */
+   case '+':
+    if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
+     RExC_parse++;
+     vFAIL("Illegal pattern");
+    }
+    goto parse_recursion;
+    /* NOTREACHED*/
+   case '-': /* (?-1) */
+    if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
+     RExC_parse--; /* rewind to let it be handled later */
+     goto parse_flags;
+    }
+    /* FALLTHROUGH */
+   case '1': case '2': case '3': case '4': /* (?1) */
+   case '5': case '6': case '7': case '8': case '9':
+    RExC_parse--;
+   parse_recursion:
+    {
+     bool is_neg = FALSE;
+     UV unum;
+     parse_start = RExC_parse - 1; /* MJD */
+     if (*RExC_parse == '-') {
+      RExC_parse++;
+      is_neg = TRUE;
+     }
+     if (grok_atoUV(RExC_parse, &unum, &endptr)
+      && unum <= I32_MAX
+     ) {
+      num = (I32)unum;
+      RExC_parse = (char*)endptr;
+     } else
+      num = I32_MAX;
+     if (is_neg) {
+      /* Some limit for num? */
+      num = -num;
+     }
+    }
+    if (*RExC_parse!=')')
+     vFAIL("Expecting close bracket");
+
+   gen_recurse_regop:
+    if ( paren == '-' ) {
+     /*
+     Diagram of capture buffer numbering.
+     Top line is the normal capture buffer numbers
+     Bottom line is the negative indexing as from
+     the X (the (?-2))
+
+     +   1 2    3 4 5 X          6 7
+     /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
+     -   5 4    3 2 1 X          x x
+
+     */
+     num = RExC_npar + num;
+     if (num < 1)  {
+      RExC_parse++;
+      vFAIL("Reference to nonexistent group");
+     }
+    } else if ( paren == '+' ) {
+     num = RExC_npar + num - 1;
+    }
+
+    ret = reg2Lanode(pRExC_state, GOSUB, num, RExC_recurse_count);
+    if (!SIZE_ONLY) {
+     if (num > (I32)RExC_rx->nparens) {
+      RExC_parse++;
+      vFAIL("Reference to nonexistent group");
+     }
+     RExC_recurse_count++;
+     DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+      "%*s%*s Recurse #%"UVuf" to %"IVdf"\n",
+       22, "|    |", (int)(depth * 2 + 1), "",
+       (UV)ARG(ret), (IV)ARG2L(ret)));
+    }
+    RExC_seen |= REG_RECURSE_SEEN;
+    Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
+    Set_Node_Offset(ret, parse_start); /* MJD */
+
+    *flagp |= POSTPONED;
+    nextchar(pRExC_state);
+    return ret;
+
+   /* NOTREACHED */
+
+   case '?':           /* (??...) */
+    is_logical = 1;
+    if (*RExC_parse != '{') {
+     RExC_parse += SKIP_IF_CHAR(RExC_parse);
+     /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
+     vFAIL2utf8f(
+      "Sequence (%"UTF8f"...) not recognized",
+      UTF8fARG(UTF, RExC_parse-seqstart, seqstart));
+     NOT_REACHED; /*NOTREACHED*/
+    }
+    *flagp |= POSTPONED;
+    paren = *RExC_parse++;
+    /* FALLTHROUGH */
+   case '{':           /* (?{...}) */
+   {
+    U32 n = 0;
+    struct reg_code_block *cb;
+
+    RExC_seen_zerolen++;
+
+    if (   !pRExC_state->num_code_blocks
+     || pRExC_state->code_index >= pRExC_state->num_code_blocks
+     || pRExC_state->code_blocks[pRExC_state->code_index].start
+      != (STRLEN)((RExC_parse -3 - (is_logical ? 1 : 0))
+       - RExC_start)
+    ) {
+     if (RExC_pm_flags & PMf_USE_RE_EVAL)
+      FAIL("panic: Sequence (?{...}): no code block found\n");
+     FAIL("Eval-group not allowed at runtime, use re 'eval'");
+    }
+    /* this is a pre-compiled code block (?{...}) */
+    cb = &pRExC_state->code_blocks[pRExC_state->code_index];
+    RExC_parse = RExC_start + cb->end;
+    if (!SIZE_ONLY) {
+     OP *o = cb->block;
+     if (cb->src_regex) {
+      n = add_data(pRExC_state, STR_WITH_LEN("rl"));
+      RExC_rxi->data->data[n] =
+       (void*)SvREFCNT_inc((SV*)cb->src_regex);
+      RExC_rxi->data->data[n+1] = (void*)o;
+     }
+     else {
+      n = add_data(pRExC_state,
+       (RExC_pm_flags & PMf_HAS_CV) ? "L" : "l", 1);
+      RExC_rxi->data->data[n] = (void*)o;
+     }
+    }
+    pRExC_state->code_index++;
+    nextchar(pRExC_state);
+
+    if (is_logical) {
+     regnode *eval;
+     ret = reg_node(pRExC_state, LOGICAL);
+
+     eval = reg2Lanode(pRExC_state, EVAL,
+         n,
+
+         /* for later propagation into (??{})
+          * return value */
+         RExC_flags & RXf_PMf_COMPILETIME
+         );
+     if (!SIZE_ONLY) {
+      ret->flags = 2;
+     }
+     REGTAIL(pRExC_state, ret, eval);
+     /* deal with the length of this later - MJD */
+     return ret;
+    }
+    ret = reg2Lanode(pRExC_state, EVAL, n, 0);
+    Set_Node_Length(ret, RExC_parse - parse_start + 1);
+    Set_Node_Offset(ret, parse_start);
+    return ret;
+   }
+   case '(':           /* (?(?{...})...) and (?(?=...)...) */
+   {
+    int is_define= 0;
+    const int DEFINE_len = sizeof("DEFINE") - 1;
+    if (RExC_parse[0] == '?') {        /* (?(?...)) */
+     if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
+      || RExC_parse[1] == '<'
+      || RExC_parse[1] == '{') { /* Lookahead or eval. */
+      I32 flag;
+      regnode *tail;
+
+      ret = reg_node(pRExC_state, LOGICAL);
+      if (!SIZE_ONLY)
+       ret->flags = 1;
+
+      tail = reg(pRExC_state, 1, &flag, depth+1);
+      if (flag & RESTART_UTF8) {
+       *flagp = RESTART_UTF8;
+       return NULL;
+      }
+      REGTAIL(pRExC_state, ret, tail);
+      goto insert_if;
+     }
+     /* Fall through to ‘Unknown switch condition’ at the
+     end of the if/else chain. */
+    }
+    else if ( RExC_parse[0] == '<'     /* (?(<NAME>)...) */
+      || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
+    {
+     char ch = RExC_parse[0] == '<' ? '>' : '\'';
+     char *name_start= RExC_parse++;
+     U32 num = 0;
+     SV *sv_dat=reg_scan_name(pRExC_state,
+      SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+     if (RExC_parse == name_start || *RExC_parse != ch)
+      vFAIL2("Sequence (?(%c... not terminated",
+       (ch == '>' ? '<' : ch));
+     RExC_parse++;
+     if (!SIZE_ONLY) {
+      num = add_data( pRExC_state, STR_WITH_LEN("S"));
+      RExC_rxi->data->data[num]=(void*)sv_dat;
+      SvREFCNT_inc_simple_void(sv_dat);
+     }
+     ret = reganode(pRExC_state,NGROUPP,num);
+     goto insert_if_check_paren;
+    }
+    else if (RExC_end - RExC_parse >= DEFINE_len
+      && strnEQ(RExC_parse, "DEFINE", DEFINE_len))
+    {
+     ret = reganode(pRExC_state,DEFINEP,0);
+     RExC_parse += DEFINE_len;
+     is_define = 1;
+     goto insert_if_check_paren;
+    }
+    else if (RExC_parse[0] == 'R') {
+     RExC_parse++;
+     parno = 0;
+     if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
+      UV uv;
+      if (grok_atoUV(RExC_parse, &uv, &endptr)
+       && uv <= I32_MAX
+      ) {
+       parno = (I32)uv;
+       RExC_parse = (char*)endptr;
+      }
+      /* else "Switch condition not recognized" below */
+     } else if (RExC_parse[0] == '&') {
+      SV *sv_dat;
+      RExC_parse++;
+      sv_dat = reg_scan_name(pRExC_state,
+       SIZE_ONLY
+       ? REG_RSN_RETURN_NULL
+       : REG_RSN_RETURN_DATA);
+       parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
+     }
+     ret = reganode(pRExC_state,INSUBP,parno);
+     goto insert_if_check_paren;
+    }
+    else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
+     /* (?(1)...) */
+     char c;
+     char *tmp;
+     UV uv;
+     if (grok_atoUV(RExC_parse, &uv, &endptr)
+      && uv <= I32_MAX
+     ) {
+      parno = (I32)uv;
+      RExC_parse = (char*)endptr;
+     }
+     /* XXX else what? */
+     ret = reganode(pRExC_state, GROUPP, parno);
+
+    insert_if_check_paren:
+     if (*(tmp = nextchar(pRExC_state)) != ')') {
+      /* nextchar also skips comments, so undo its work
+      * and skip over the the next character.
+      */
+      RExC_parse = tmp;
+      RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
+      vFAIL("Switch condition not recognized");
+     }
+    insert_if:
+     REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
+     br = regbranch(pRExC_state, &flags, 1,depth+1);
+     if (br == NULL) {
+      if (flags & RESTART_UTF8) {
+       *flagp = RESTART_UTF8;
+       return NULL;
+      }
+      FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"",
+       (UV) flags);
+     } else
+      REGTAIL(pRExC_state, br, reganode(pRExC_state,
+              LONGJMP, 0));
+     c = *nextchar(pRExC_state);
+     if (flags&HASWIDTH)
+      *flagp |= HASWIDTH;
+     if (c == '|') {
+      if (is_define)
+       vFAIL("(?(DEFINE)....) does not allow branches");
+
+      /* Fake one for optimizer.  */
+      lastbr = reganode(pRExC_state, IFTHEN, 0);
+
+      if (!regbranch(pRExC_state, &flags, 1,depth+1)) {
+       if (flags & RESTART_UTF8) {
+        *flagp = RESTART_UTF8;
+        return NULL;
+       }
+       FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"",
+        (UV) flags);
+      }
+      REGTAIL(pRExC_state, ret, lastbr);
+      if (flags&HASWIDTH)
+       *flagp |= HASWIDTH;
+      c = *nextchar(pRExC_state);
+     }
+     else
+      lastbr = NULL;
+     if (c != ')') {
+      if (RExC_parse>RExC_end)
+       vFAIL("Switch (?(condition)... not terminated");
+      else
+       vFAIL("Switch (?(condition)... contains too many branches");
+     }
+     ender = reg_node(pRExC_state, TAIL);
+     REGTAIL(pRExC_state, br, ender);
+     if (lastbr) {
+      REGTAIL(pRExC_state, lastbr, ender);
+      REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
+     }
+     else
+      REGTAIL(pRExC_state, ret, ender);
+     RExC_size++; /* XXX WHY do we need this?!!
+         For large programs it seems to be required
+         but I can't figure out why. -- dmq*/
+     return ret;
+    }
+    RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
+    vFAIL("Unknown switch condition (?(...))");
+   }
+   case '[':           /* (?[ ... ]) */
+    return handle_regex_sets(pRExC_state, NULL, flagp, depth,
+          oregcomp_parse);
+   case 0:
+    RExC_parse--; /* for vFAIL to print correctly */
+    vFAIL("Sequence (? incomplete");
+    break;
+   default: /* e.g., (?i) */
+    --RExC_parse;
+   parse_flags:
+    parse_lparen_question_flags(pRExC_state);
+    if (UCHARAT(RExC_parse) != ':') {
+     if (*RExC_parse)
+      nextchar(pRExC_state);
+     *flagp = TRYAGAIN;
+     return NULL;
+    }
+    paren = ':';
+    nextchar(pRExC_state);
+    ret = NULL;
+    goto parse_rest;
+   } /* end switch */
+  }
+  else if (!(RExC_flags & RXf_PMf_NOCAPTURE)) {   /* (...) */
+  capturing_parens:
+   parno = RExC_npar;
+   RExC_npar++;
+
+   ret = reganode(pRExC_state, OPEN, parno);
+   if (!SIZE_ONLY ){
+    if (!RExC_nestroot)
+     RExC_nestroot = parno;
+    if (RExC_seen & REG_RECURSE_SEEN
+     && !RExC_open_parens[parno-1])
+    {
+     DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+      "%*s%*s Setting open paren #%"IVdf" to %d\n",
+      22, "|    |", (int)(depth * 2 + 1), "",
+      (IV)parno, REG_NODE_NUM(ret)));
+     RExC_open_parens[parno-1]= ret;
+    }
+   }
+   Set_Node_Length(ret, 1); /* MJD */
+   Set_Node_Offset(ret, RExC_parse); /* MJD */
+   is_open = 1;
+  } else {
+   /* with RXf_PMf_NOCAPTURE treat (...) as (?:...) */
+   paren = ':';
+   ret = NULL;
+  }
+ }
+ else                        /* ! paren */
+  ret = NULL;
+
+   parse_rest:
+ /* Pick up the branches, linking them together. */
+ parse_start = RExC_parse;   /* MJD */
+ br = regbranch(pRExC_state, &flags, 1,depth+1);
+
+ /*     branch_len = (paren != 0); */
+
+ if (br == NULL) {
+  if (flags & RESTART_UTF8) {
+   *flagp = RESTART_UTF8;
+   return NULL;
+  }
+  FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"", (UV) flags);
+ }
+ if (*RExC_parse == '|') {
+  if (!SIZE_ONLY && RExC_extralen) {
+   reginsert(pRExC_state, BRANCHJ, br, depth+1);
+  }
+  else {                  /* MJD */
+   reginsert(pRExC_state, BRANCH, br, depth+1);
+   Set_Node_Length(br, paren != 0);
+   Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
+  }
+  have_branch = 1;
+  if (SIZE_ONLY)
+   RExC_extralen += 1;  /* For BRANCHJ-BRANCH. */
+ }
+ else if (paren == ':') {
+  *flagp |= flags&SIMPLE;
+ }
+ if (is_open) {    /* Starts with OPEN. */
+  REGTAIL(pRExC_state, ret, br);          /* OPEN -> first. */
+ }
+ else if (paren != '?')  /* Not Conditional */
+  ret = br;
+ *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
+ lastbr = br;
+ while (*RExC_parse == '|') {
+  if (!SIZE_ONLY && RExC_extralen) {
+   ender = reganode(pRExC_state, LONGJMP,0);
+
+   /* Append to the previous. */
+   REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
+  }
+  if (SIZE_ONLY)
+   RExC_extralen += 2;  /* Account for LONGJMP. */
+  nextchar(pRExC_state);
+  if (freeze_paren) {
+   if (RExC_npar > after_freeze)
+    after_freeze = RExC_npar;
+   RExC_npar = freeze_paren;
+  }
+  br = regbranch(pRExC_state, &flags, 0, depth+1);
+
+  if (br == NULL) {
+   if (flags & RESTART_UTF8) {
+    *flagp = RESTART_UTF8;
+    return NULL;
+   }
+   FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"", (UV) flags);
+  }
+  REGTAIL(pRExC_state, lastbr, br);               /* BRANCH -> BRANCH. */
+  lastbr = br;
+  *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
+ }
+
+ if (have_branch || paren != ':') {
+  /* Make a closing node, and hook it on the end. */
+  switch (paren) {
+  case ':':
+   ender = reg_node(pRExC_state, TAIL);
+   break;
+  case 1: case 2:
+   ender = reganode(pRExC_state, CLOSE, parno);
+   if (!SIZE_ONLY && RExC_seen & REG_RECURSE_SEEN) {
+    DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+      "%*s%*s Setting close paren #%"IVdf" to %d\n",
+      22, "|    |", (int)(depth * 2 + 1), "", (IV)parno, REG_NODE_NUM(ender)));
+    RExC_close_parens[parno-1]= ender;
+    if (RExC_nestroot == parno)
+     RExC_nestroot = 0;
+   }
+   Set_Node_Offset(ender,RExC_parse+1); /* MJD */
+   Set_Node_Length(ender,1); /* MJD */
+   break;
+  case '<':
+  case ',':
+  case '=':
+  case '!':
+   *flagp &= ~HASWIDTH;
+   /* FALLTHROUGH */
+  case '>':
+   ender = reg_node(pRExC_state, SUCCEED);
+   break;
+  case 0:
+   ender = reg_node(pRExC_state, END);
+   if (!SIZE_ONLY) {
+    assert(!RExC_opend); /* there can only be one! */
+    RExC_opend = ender;
+   }
+   break;
+  }
+  DEBUG_PARSE_r(if (!SIZE_ONLY) {
+   DEBUG_PARSE_MSG("lsbr");
+   regprop(RExC_rx, RExC_mysv1, lastbr, NULL, pRExC_state);
+   regprop(RExC_rx, RExC_mysv2, ender, NULL, pRExC_state);
+   PerlIO_printf(Perl_debug_log, "~ tying lastbr %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
+      SvPV_nolen_const(RExC_mysv1),
+      (IV)REG_NODE_NUM(lastbr),
+      SvPV_nolen_const(RExC_mysv2),
+      (IV)REG_NODE_NUM(ender),
+      (IV)(ender - lastbr)
+   );
+  });
+  REGTAIL(pRExC_state, lastbr, ender);
+
+  if (have_branch && !SIZE_ONLY) {
+   char is_nothing= 1;
+   if (depth==1)
+    RExC_seen |= REG_TOP_LEVEL_BRANCHES_SEEN;
+
+   /* Hook the tails of the branches to the closing node. */
+   for (br = ret; br; br = regnext(br)) {
+    const U8 op = PL_regkind[OP(br)];
+    if (op == BRANCH) {
+     REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
+     if ( OP(NEXTOPER(br)) != NOTHING
+      || regnext(NEXTOPER(br)) != ender)
+      is_nothing= 0;
+    }
+    else if (op == BRANCHJ) {
+     REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
+     /* for now we always disable this optimisation * /
+     if ( OP(NEXTOPER(NEXTOPER(br))) != NOTHING
+      || regnext(NEXTOPER(NEXTOPER(br))) != ender)
+     */
+      is_nothing= 0;
+    }
+   }
+   if (is_nothing) {
+    br= PL_regkind[OP(ret)] != BRANCH ? regnext(ret) : ret;
+    DEBUG_PARSE_r(if (!SIZE_ONLY) {
+     DEBUG_PARSE_MSG("NADA");
+     regprop(RExC_rx, RExC_mysv1, ret, NULL, pRExC_state);
+     regprop(RExC_rx, RExC_mysv2, ender, NULL, pRExC_state);
+     PerlIO_printf(Perl_debug_log, "~ converting ret %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
+        SvPV_nolen_const(RExC_mysv1),
+        (IV)REG_NODE_NUM(ret),
+        SvPV_nolen_const(RExC_mysv2),
+        (IV)REG_NODE_NUM(ender),
+        (IV)(ender - ret)
+     );
+    });
+    OP(br)= NOTHING;
+    if (OP(ender) == TAIL) {
+     NEXT_OFF(br)= 0;
+     RExC_emit= br + 1;
+    } else {
+     regnode *opt;
+     for ( opt= br + 1; opt < ender ; opt++ )
+      OP(opt)= OPTIMIZED;
+     NEXT_OFF(br)= ender - br;
+    }
+   }
+  }
+ }
+
+ {
+  const char *p;
+  static const char parens[] = "=!<,>";
+
+  if (paren && (p = strchr(parens, paren))) {
+   U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
+   int flag = (p - parens) > 1;
+
+   if (paren == '>')
+    node = SUSPEND, flag = 0;
+   reginsert(pRExC_state, node,ret, depth+1);
+   Set_Node_Cur_Length(ret, parse_start);
+   Set_Node_Offset(ret, parse_start + 1);
+   ret->flags = flag;
+   REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
+  }
+ }
+
+ /* Check for proper termination. */
+ if (paren) {
+  /* restore original flags, but keep (?p) */
+  RExC_flags = oregflags | (RExC_flags & RXf_PMf_KEEPCOPY);
+  if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
+   RExC_parse = oregcomp_parse;
+   vFAIL("Unmatched (");
+  }
+ }
+ else if (!paren && RExC_parse < RExC_end) {
+  if (*RExC_parse == ')') {
+   RExC_parse++;
+   vFAIL("Unmatched )");
+  }
+  else
+   FAIL("Junk on end of regexp"); /* "Can't happen". */
+  NOT_REACHED; /* NOTREACHED */
+ }
+
+ if (RExC_in_lookbehind) {
+  RExC_in_lookbehind--;
+ }
+ if (after_freeze > RExC_npar)
+  RExC_npar = after_freeze;
+ return(ret);
+}
+
+/*
+ - regbranch - one alternative of an | operator
+ *
+ * Implements the concatenation operator.
+ *
+ * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
+ * restarted.
+ */
+STATIC regnode *
+S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
+{
+ regnode *ret;
+ regnode *chain = NULL;
+ regnode *latest;
+ I32 flags = 0, c = 0;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGBRANCH;
+
+ DEBUG_PARSE("brnc");
+
+ if (first)
+  ret = NULL;
+ else {
+  if (!SIZE_ONLY && RExC_extralen)
+   ret = reganode(pRExC_state, BRANCHJ,0);
+  else {
+   ret = reg_node(pRExC_state, BRANCH);
+   Set_Node_Length(ret, 1);
+  }
+ }
+
+ if (!first && SIZE_ONLY)
+  RExC_extralen += 1;   /* BRANCHJ */
+
+ *flagp = WORST;   /* Tentatively. */
+
+ RExC_parse--;
+ nextchar(pRExC_state);
+ while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
+  flags &= ~TRYAGAIN;
+  latest = regpiece(pRExC_state, &flags,depth+1);
+  if (latest == NULL) {
+   if (flags & TRYAGAIN)
+    continue;
+   if (flags & RESTART_UTF8) {
+    *flagp = RESTART_UTF8;
+    return NULL;
+   }
+   FAIL2("panic: regpiece returned NULL, flags=%#"UVxf"", (UV) flags);
+  }
+  else if (ret == NULL)
+   ret = latest;
+  *flagp |= flags&(HASWIDTH|POSTPONED);
+  if (chain == NULL)  /* First piece. */
+   *flagp |= flags&SPSTART;
+  else {
+   /* FIXME adding one for every branch after the first is probably
+   * excessive now we have TRIE support. (hv) */
+   MARK_NAUGHTY(1);
+   REGTAIL(pRExC_state, chain, latest);
+  }
+  chain = latest;
+  c++;
+ }
+ if (chain == NULL) { /* Loop ran zero times. */
+  chain = reg_node(pRExC_state, NOTHING);
+  if (ret == NULL)
+   ret = chain;
+ }
+ if (c == 1) {
+  *flagp |= flags&SIMPLE;
+ }
+
+ return ret;
+}
+
+/*
+ - regpiece - something followed by possible [*+?]
+ *
+ * Note that the branching code sequences used for ? and the general cases
+ * of * and + are somewhat optimized:  they use the same NOTHING node as
+ * both the endmarker for their branch list and the body of the last branch.
+ * It might seem that this node could be dispensed with entirely, but the
+ * endmarker role is not redundant.
+ *
+ * Returns NULL, setting *flagp to TRYAGAIN if regatom() returns NULL with
+ * TRYAGAIN.
+ * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
+ * restarted.
+ */
+STATIC regnode *
+S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
+{
+ regnode *ret;
+ char op;
+ char *next;
+ I32 flags;
+ const char * const origparse = RExC_parse;
+ I32 min;
+ I32 max = REG_INFTY;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ char *parse_start;
+#endif
+ const char *maxpos = NULL;
+ UV uv;
+
+ /* Save the original in case we change the emitted regop to a FAIL. */
+ regnode * const orig_emit = RExC_emit;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGPIECE;
+
+ DEBUG_PARSE("piec");
+
+ ret = regatom(pRExC_state, &flags,depth+1);
+ if (ret == NULL) {
+  if (flags & (TRYAGAIN|RESTART_UTF8))
+   *flagp |= flags & (TRYAGAIN|RESTART_UTF8);
+  else
+   FAIL2("panic: regatom returned NULL, flags=%#"UVxf"", (UV) flags);
+  return(NULL);
+ }
+
+ op = *RExC_parse;
+
+ if (op == '{' && regcurly(RExC_parse)) {
+  maxpos = NULL;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+  parse_start = RExC_parse; /* MJD */
+#endif
+  next = RExC_parse + 1;
+  while (isDIGIT(*next) || *next == ',') {
+   if (*next == ',') {
+    if (maxpos)
+     break;
+    else
+     maxpos = next;
+   }
+   next++;
+  }
+  if (*next == '}') {  /* got one */
+   const char* endptr;
+   if (!maxpos)
+    maxpos = next;
+   RExC_parse++;
+   if (isDIGIT(*RExC_parse)) {
+    if (!grok_atoUV(RExC_parse, &uv, &endptr))
+     vFAIL("Invalid quantifier in {,}");
+    if (uv >= REG_INFTY)
+     vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
+    min = (I32)uv;
+   } else {
+    min = 0;
+   }
+   if (*maxpos == ',')
+    maxpos++;
+   else
+    maxpos = RExC_parse;
+   if (isDIGIT(*maxpos)) {
+    if (!grok_atoUV(maxpos, &uv, &endptr))
+     vFAIL("Invalid quantifier in {,}");
+    if (uv >= REG_INFTY)
+     vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
+    max = (I32)uv;
+   } else {
+    max = REG_INFTY;  /* meaning "infinity" */
+   }
+   RExC_parse = next;
+   nextchar(pRExC_state);
+   if (max < min) {    /* If can't match, warn and optimize to fail
+        unconditionally */
+    if (SIZE_ONLY) {
+
+     /* We can't back off the size because we have to reserve
+     * enough space for all the things we are about to throw
+     * away, but we can shrink it by the ammount we are about
+     * to re-use here */
+     RExC_size = PREVOPER(RExC_size) - regarglen[(U8)OPFAIL];
+    }
+    else {
+     ckWARNreg(RExC_parse, "Quantifier {n,m} with n > m can't match");
+     RExC_emit = orig_emit;
+    }
+    ret = reg_node(pRExC_state, OPFAIL);
+    return ret;
+   }
+   else if (min == max
+     && RExC_parse < RExC_end
+     && (*RExC_parse == '?' || *RExC_parse == '+'))
+   {
+    if (PASS2) {
+     ckWARN2reg(RExC_parse + 1,
+       "Useless use of greediness modifier '%c'",
+       *RExC_parse);
+    }
+    /* Absorb the modifier, so later code doesn't see nor use
+     * it */
+    nextchar(pRExC_state);
+   }
+
+  do_curly:
+   if ((flags&SIMPLE)) {
+    MARK_NAUGHTY_EXP(2, 2);
+    reginsert(pRExC_state, CURLY, ret, depth+1);
+    Set_Node_Offset(ret, parse_start+1); /* MJD */
+    Set_Node_Cur_Length(ret, parse_start);
+   }
+   else {
+    regnode * const w = reg_node(pRExC_state, WHILEM);
+
+    w->flags = 0;
+    REGTAIL(pRExC_state, ret, w);
+    if (!SIZE_ONLY && RExC_extralen) {
+     reginsert(pRExC_state, LONGJMP,ret, depth+1);
+     reginsert(pRExC_state, NOTHING,ret, depth+1);
+     NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
+    }
+    reginsert(pRExC_state, CURLYX,ret, depth+1);
+        /* MJD hk */
+    Set_Node_Offset(ret, parse_start+1);
+    Set_Node_Length(ret,
+        op == '{' ? (RExC_parse - parse_start) : 1);
+
+    if (!SIZE_ONLY && RExC_extralen)
+     NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
+    REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
+    if (SIZE_ONLY)
+     RExC_whilem_seen++, RExC_extralen += 3;
+    MARK_NAUGHTY_EXP(1, 4);     /* compound interest */
+   }
+   ret->flags = 0;
+
+   if (min > 0)
+    *flagp = WORST;
+   if (max > 0)
+    *flagp |= HASWIDTH;
+   if (!SIZE_ONLY) {
+    ARG1_SET(ret, (U16)min);
+    ARG2_SET(ret, (U16)max);
+   }
+   if (max == REG_INFTY)
+    RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
+
+   goto nest_check;
+  }
+ }
+
+ if (!ISMULT1(op)) {
+  *flagp = flags;
+  return(ret);
+ }
+
+#if 0    /* Now runtime fix should be reliable. */
+
+ /* if this is reinstated, don't forget to put this back into perldiag:
+
+   =item Regexp *+ operand could be empty at {#} in regex m/%s/
+
+  (F) The part of the regexp subject to either the * or + quantifier
+  could match an empty string. The {#} shows in the regular
+  expression about where the problem was discovered.
+
+ */
+
+ if (!(flags&HASWIDTH) && op != '?')
+ vFAIL("Regexp *+ operand could be empty");
+#endif
+
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ parse_start = RExC_parse;
+#endif
+ nextchar(pRExC_state);
+
+ *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
+
+ if (op == '*' && (flags&SIMPLE)) {
+  reginsert(pRExC_state, STAR, ret, depth+1);
+  ret->flags = 0;
+  MARK_NAUGHTY(4);
+  RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
+ }
+ else if (op == '*') {
+  min = 0;
+  goto do_curly;
+ }
+ else if (op == '+' && (flags&SIMPLE)) {
+  reginsert(pRExC_state, PLUS, ret, depth+1);
+  ret->flags = 0;
+  MARK_NAUGHTY(3);
+  RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
+ }
+ else if (op == '+') {
+  min = 1;
+  goto do_curly;
+ }
+ else if (op == '?') {
+  min = 0; max = 1;
+  goto do_curly;
+ }
+  nest_check:
+ if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
+  SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
+  ckWARN2reg(RExC_parse,
+    "%"UTF8f" matches null string many times",
+    UTF8fARG(UTF, (RExC_parse >= origparse
+        ? RExC_parse - origparse
+        : 0),
+    origparse));
+  (void)ReREFCNT_inc(RExC_rx_sv);
+ }
+
+ if (RExC_parse < RExC_end && *RExC_parse == '?') {
+  nextchar(pRExC_state);
+  reginsert(pRExC_state, MINMOD, ret, depth+1);
+  REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
+ }
+ else
+ if (RExC_parse < RExC_end && *RExC_parse == '+') {
+  regnode *ender;
+  nextchar(pRExC_state);
+  ender = reg_node(pRExC_state, SUCCEED);
+  REGTAIL(pRExC_state, ret, ender);
+  reginsert(pRExC_state, SUSPEND, ret, depth+1);
+  ret->flags = 0;
+  ender = reg_node(pRExC_state, TAIL);
+  REGTAIL(pRExC_state, ret, ender);
+ }
+
+ if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
+  RExC_parse++;
+  vFAIL("Nested quantifiers");
+ }
+
+ return(ret);
+}
+
+STATIC bool
+S_grok_bslash_N(pTHX_ RExC_state_t *pRExC_state,
+    regnode ** node_p,
+    UV * code_point_p,
+    int * cp_count,
+    I32 * flagp,
+    const U32 depth
+ )
+{
+ /* This routine teases apart the various meanings of \N and returns
+  * accordingly.  The input parameters constrain which meaning(s) is/are valid
+  * in the current context.
+  *
+  * Exactly one of <node_p> and <code_point_p> must be non-NULL.
+  *
+  * If <code_point_p> is not NULL, the context is expecting the result to be a
+  * single code point.  If this \N instance turns out to a single code point,
+  * the function returns TRUE and sets *code_point_p to that code point.
+  *
+  * If <node_p> is not NULL, the context is expecting the result to be one of
+  * the things representable by a regnode.  If this \N instance turns out to be
+  * one such, the function generates the regnode, returns TRUE and sets *node_p
+  * to point to that regnode.
+  *
+  * If this instance of \N isn't legal in any context, this function will
+  * generate a fatal error and not return.
+  *
+  * On input, RExC_parse should point to the first char following the \N at the
+  * time of the call.  On successful return, RExC_parse will have been updated
+  * to point to just after the sequence identified by this routine.  Also
+  * *flagp has been updated as needed.
+  *
+  * When there is some problem with the current context and this \N instance,
+  * the function returns FALSE, without advancing RExC_parse, nor setting
+  * *node_p, nor *code_point_p, nor *flagp.
+  *
+  * If <cp_count> is not NULL, the caller wants to know the length (in code
+  * points) that this \N sequence matches.  This is set even if the function
+  * returns FALSE, as detailed below.
+  *
+  * There are 5 possibilities here, as detailed in the next 5 paragraphs.
+  *
+  * Probably the most common case is for the \N to specify a single code point.
+  * *cp_count will be set to 1, and *code_point_p will be set to that code
+  * point.
+  *
+  * Another possibility is for the input to be an empty \N{}, which for
+  * backwards compatibility we accept.  *cp_count will be set to 0. *node_p
+  * will be set to a generated NOTHING node.
+  *
+  * Still another possibility is for the \N to mean [^\n]. *cp_count will be
+  * set to 0. *node_p will be set to a generated REG_ANY node.
+  *
+  * The fourth possibility is that \N resolves to a sequence of more than one
+  * code points.  *cp_count will be set to the number of code points in the
+  * sequence. *node_p * will be set to a generated node returned by this
+  * function calling S_reg().
+  *
+  * The final possibility, which happens only when the fourth one would
+  * otherwise be in effect, is that one of those code points requires the
+  * pattern to be recompiled as UTF-8.  The function returns FALSE, and sets
+  * the RESTART_UTF8 flag in *flagp.  When this happens, the caller needs to
+  * desist from continuing parsing, and return this information to its caller.
+  * This is not set for when there is only one code point, as this can be
+  * called as part of an ANYOF node, and they can store above-Latin1 code
+  * points without the pattern having to be in UTF-8.
+  *
+  * For non-single-quoted regexes, the tokenizer has resolved character and
+  * sequence names inside \N{...} into their Unicode values, normalizing the
+  * result into what we should see here: '\N{U+c1.c2...}', where c1... are the
+  * hex-represented code points in the sequence.  This is done there because
+  * the names can vary based on what charnames pragma is in scope at the time,
+  * so we need a way to take a snapshot of what they resolve to at the time of
+  * the original parse. [perl #56444].
+  *
+  * That parsing is skipped for single-quoted regexes, so we may here get
+  * '\N{NAME}'.  This is a fatal error.  These names have to be resolved by the
+  * parser.  But if the single-quoted regex is something like '\N{U+41}', that
+  * is legal and handled here.  The code point is Unicode, and has to be
+  * translated into the native character set for non-ASCII platforms.
+  * the tokenizer passes the \N sequence through unchanged; this code will not
+  * attempt to determine this nor expand those, instead raising a syntax error.
+  */
+
+ char * endbrace;    /* points to '}' following the name */
+ char *endchar; /* Points to '.' or '}' ending cur char in the input
+      stream */
+ char* p;            /* Temporary */
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_GROK_BSLASH_N;
+
+ GET_RE_DEBUG_FLAGS;
+
+ assert(cBOOL(node_p) ^ cBOOL(code_point_p));  /* Exactly one should be set */
+ assert(! (node_p && cp_count));               /* At most 1 should be set */
+
+ if (cp_count) {     /* Initialize return for the most common case */
+  *cp_count = 1;
+ }
+
+ /* The [^\n] meaning of \N ignores spaces and comments under the /x
+ * modifier.  The other meanings do not, so use a temporary until we find
+ * out which we are being called with */
+ p = (RExC_flags & RXf_PMf_EXTENDED)
+  ? regpatws(pRExC_state, RExC_parse,
+        TRUE) /* means recognize comments */
+  : RExC_parse;
+
+ /* Disambiguate between \N meaning a named character versus \N meaning
+ * [^\n].  The latter is assumed when the {...} following the \N is a legal
+ * quantifier, or there is no a '{' at all */
+ if (*p != '{' || regcurly(p)) {
+  RExC_parse = p;
+  if (cp_count) {
+   *cp_count = -1;
+  }
+
+  if (! node_p) {
+   return FALSE;
+  }
+  RExC_parse--;   /* Need to back off so nextchar() doesn't skip the
+      current char */
+  nextchar(pRExC_state);
+  *node_p = reg_node(pRExC_state, REG_ANY);
+  *flagp |= HASWIDTH|SIMPLE;
+  MARK_NAUGHTY(1);
+  Set_Node_Length(*node_p, 1); /* MJD */
+  return TRUE;
+ }
+
+ /* Here, we have decided it should be a named character or sequence */
+
+ /* The test above made sure that the next real character is a '{', but
+ * under the /x modifier, it could be separated by space (or a comment and
+ * \n) and this is not allowed (for consistency with \x{...} and the
+ * tokenizer handling of \N{NAME}). */
+ if (*RExC_parse != '{') {
+  vFAIL("Missing braces on \\N{}");
+ }
+
+ RExC_parse++; /* Skip past the '{' */
+
+ if (! (endbrace = strchr(RExC_parse, '}'))  /* no trailing brace */
+  || ! (endbrace == RExC_parse  /* nothing between the {} */
+   || (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked... */
+    && strnEQ(RExC_parse, "U+", 2)))) /* ... below for a better
+             error msg) */
+ {
+  if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
+  vFAIL("\\N{NAME} must be resolved by the lexer");
+ }
+
+ RExC_uni_semantics = 1; /* Unicode named chars imply Unicode semantics */
+
+ if (endbrace == RExC_parse) {   /* empty: \N{} */
+  if (cp_count) {
+   *cp_count = 0;
+  }
+  nextchar(pRExC_state);
+  if (! node_p) {
+   return FALSE;
+  }
+
+  *node_p = reg_node(pRExC_state,NOTHING);
+  return TRUE;
+ }
+
+ RExC_parse += 2; /* Skip past the 'U+' */
+
+ endchar = RExC_parse + strcspn(RExC_parse, ".}");
+
+ /* Code points are separated by dots.  If none, there is only one code
+ * point, and is terminated by the brace */
+
+ if (endchar >= endbrace) {
+  STRLEN length_of_hex;
+  I32 grok_hex_flags;
+
+  /* Here, exactly one code point.  If that isn't what is wanted, fail */
+  if (! code_point_p) {
+   RExC_parse = p;
+   return FALSE;
+  }
+
+  /* Convert code point from hex */
+  length_of_hex = (STRLEN)(endchar - RExC_parse);
+  grok_hex_flags = PERL_SCAN_ALLOW_UNDERSCORES
+      | PERL_SCAN_DISALLOW_PREFIX
+
+       /* No errors in the first pass (See [perl
+       * #122671].)  We let the code below find the
+       * errors when there are multiple chars. */
+      | ((SIZE_ONLY)
+       ? PERL_SCAN_SILENT_ILLDIGIT
+       : 0);
+
+  /* This routine is the one place where both single- and double-quotish
+  * \N{U+xxxx} are evaluated.  The value is a Unicode code point which
+  * must be converted to native. */
+  *code_point_p = UNI_TO_NATIVE(grok_hex(RExC_parse,
+          &length_of_hex,
+          &grok_hex_flags,
+          NULL));
+
+  /* The tokenizer should have guaranteed validity, but it's possible to
+  * bypass it by using single quoting, so check.  Don't do the check
+  * here when there are multiple chars; we do it below anyway. */
+  if (length_of_hex == 0
+   || length_of_hex != (STRLEN)(endchar - RExC_parse) )
+  {
+   RExC_parse += length_of_hex; /* Includes all the valid */
+   RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
+       ? UTF8SKIP(RExC_parse)
+       : 1;
+   /* Guard against malformed utf8 */
+   if (RExC_parse >= endchar) {
+    RExC_parse = endchar;
+   }
+   vFAIL("Invalid hexadecimal number in \\N{U+...}");
+  }
+
+  RExC_parse = endbrace + 1;
+  return TRUE;
+ }
+ else {  /* Is a multiple character sequence */
+  SV * substitute_parse;
+  STRLEN len;
+  char *orig_end = RExC_end;
+  I32 flags;
+
+  /* Count the code points, if desired, in the sequence */
+  if (cp_count) {
+   *cp_count = 0;
+   while (RExC_parse < endbrace) {
+    /* Point to the beginning of the next character in the sequence. */
+    RExC_parse = endchar + 1;
+    endchar = RExC_parse + strcspn(RExC_parse, ".}");
+    (*cp_count)++;
+   }
+  }
+
+  /* Fail if caller doesn't want to handle a multi-code-point sequence.
+  * But don't backup up the pointer if the caller want to know how many
+  * code points there are (they can then handle things) */
+  if (! node_p) {
+   if (! cp_count) {
+    RExC_parse = p;
+   }
+   return FALSE;
+  }
+
+  /* What is done here is to convert this to a sub-pattern of the form
+  * \x{char1}\x{char2}...  and then call reg recursively to parse it
+  * (enclosing in "(?: ... )" ).  That way, it retains its atomicness,
+  * while not having to worry about special handling that some code
+  * points may have. */
+
+  substitute_parse = newSVpvs("?:");
+
+  while (RExC_parse < endbrace) {
+
+   /* Convert to notation the rest of the code understands */
+   sv_catpv(substitute_parse, "\\x{");
+   sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
+   sv_catpv(substitute_parse, "}");
+
+   /* Point to the beginning of the next character in the sequence. */
+   RExC_parse = endchar + 1;
+   endchar = RExC_parse + strcspn(RExC_parse, ".}");
+
+  }
+  sv_catpv(substitute_parse, ")");
+
+  RExC_parse = SvPV(substitute_parse, len);
+
+  /* Don't allow empty number */
+  if (len < (STRLEN) 8) {
+   RExC_parse = endbrace;
+   vFAIL("Invalid hexadecimal number in \\N{U+...}");
+  }
+  RExC_end = RExC_parse + len;
+
+  /* The values are Unicode, and therefore not subject to recoding, but
+  * have to be converted to native on a non-Unicode (meaning non-ASCII)
+  * platform. */
+  RExC_override_recoding = 1;
+#ifdef EBCDIC
+  RExC_recode_x_to_native = 1;
+#endif
+
+  if (node_p) {
+   if (!(*node_p = reg(pRExC_state, 1, &flags, depth+1))) {
+    if (flags & RESTART_UTF8) {
+     *flagp = RESTART_UTF8;
+     return FALSE;
+    }
+    FAIL2("panic: reg returned NULL to grok_bslash_N, flags=%#"UVxf"",
+     (UV) flags);
+   }
+   *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
+  }
+
+  /* Restore the saved values */
+  RExC_parse = endbrace;
+  RExC_end = orig_end;
+  RExC_override_recoding = 0;
+#ifdef EBCDIC
+  RExC_recode_x_to_native = 0;
+#endif
+
+  SvREFCNT_dec_NN(substitute_parse);
+  nextchar(pRExC_state);
+
+  return TRUE;
+ }
+}
+
+
+/*
+ * reg_recode
+ *
+ * It returns the code point in utf8 for the value in *encp.
+ *    value: a code value in the source encoding
+ *    encp:  a pointer to an Encode object
+ *
+ * If the result from Encode is not a single character,
+ * it returns U+FFFD (Replacement character) and sets *encp to NULL.
+ */
+STATIC UV
+S_reg_recode(pTHX_ const char value, SV **encp)
+{
+ STRLEN numlen = 1;
+ SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
+ const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
+ const STRLEN newlen = SvCUR(sv);
+ UV uv = UNICODE_REPLACEMENT;
+
+ PERL_ARGS_ASSERT_REG_RECODE;
+
+ if (newlen)
+  uv = SvUTF8(sv)
+   ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
+   : *(U8*)s;
+
+ if (!newlen || numlen != newlen) {
+  uv = UNICODE_REPLACEMENT;
+  *encp = NULL;
+ }
+ return uv;
+}
+
+PERL_STATIC_INLINE U8
+S_compute_EXACTish(RExC_state_t *pRExC_state)
+{
+ U8 op;
+
+ PERL_ARGS_ASSERT_COMPUTE_EXACTISH;
+
+ if (! FOLD) {
+  return (LOC)
+    ? EXACTL
+    : EXACT;
+ }
+
+ op = get_regex_charset(RExC_flags);
+ if (op >= REGEX_ASCII_RESTRICTED_CHARSET) {
+  op--; /* /a is same as /u, and map /aa's offset to what /a's would have
+    been, so there is no hole */
+ }
+
+ return op + EXACTF;
+}
+
+PERL_STATIC_INLINE void
+S_alloc_maybe_populate_EXACT(pTHX_ RExC_state_t *pRExC_state,
+      regnode *node, I32* flagp, STRLEN len, UV code_point,
+      bool downgradable)
+{
+ /* This knows the details about sizing an EXACTish node, setting flags for
+ * it (by setting <*flagp>, and potentially populating it with a single
+ * character.
+ *
+ * If <len> (the length in bytes) is non-zero, this function assumes that
+ * the node has already been populated, and just does the sizing.  In this
+ * case <code_point> should be the final code point that has already been
+ * placed into the node.  This value will be ignored except that under some
+ * circumstances <*flagp> is set based on it.
+ *
+ * If <len> is zero, the function assumes that the node is to contain only
+ * the single character given by <code_point> and calculates what <len>
+ * should be.  In pass 1, it sizes the node appropriately.  In pass 2, it
+ * additionally will populate the node's STRING with <code_point> or its
+ * fold if folding.
+ *
+ * In both cases <*flagp> is appropriately set
+ *
+ * It knows that under FOLD, the Latin Sharp S and UTF characters above
+ * 255, must be folded (the former only when the rules indicate it can
+ * match 'ss')
+ *
+ * When it does the populating, it looks at the flag 'downgradable'.  If
+ * true with a node that folds, it checks if the single code point
+ * participates in a fold, and if not downgrades the node to an EXACT.
+ * This helps the optimizer */
+
+ bool len_passed_in = cBOOL(len != 0);
+ U8 character[UTF8_MAXBYTES_CASE+1];
+
+ PERL_ARGS_ASSERT_ALLOC_MAYBE_POPULATE_EXACT;
+
+ /* Don't bother to check for downgrading in PASS1, as it doesn't make any
+ * sizing difference, and is extra work that is thrown away */
+ if (downgradable && ! PASS2) {
+  downgradable = FALSE;
+ }
+
+ if (! len_passed_in) {
+  if (UTF) {
+   if (UVCHR_IS_INVARIANT(code_point)) {
+    if (LOC || ! FOLD) {    /* /l defers folding until runtime */
+     *character = (U8) code_point;
+    }
+    else { /* Here is /i and not /l. (toFOLD() is defined on just
+      ASCII, which isn't the same thing as INVARIANT on
+      EBCDIC, but it works there, as the extra invariants
+      fold to themselves) */
+     *character = toFOLD((U8) code_point);
+
+     /* We can downgrade to an EXACT node if this character
+     * isn't a folding one.  Note that this assumes that
+     * nothing above Latin1 folds to some other invariant than
+     * one of these alphabetics; otherwise we would also have
+     * to check:
+     *  && (! HAS_NONLATIN1_FOLD_CLOSURE(code_point)
+     *      || ASCII_FOLD_RESTRICTED))
+     */
+     if (downgradable && PL_fold[code_point] == code_point) {
+      OP(node) = EXACT;
+     }
+    }
+    len = 1;
+   }
+   else if (FOLD && (! LOC
+       || ! is_PROBLEMATIC_LOCALE_FOLD_cp(code_point)))
+   {   /* Folding, and ok to do so now */
+    UV folded = _to_uni_fold_flags(
+        code_point,
+        character,
+        &len,
+        FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
+             ? FOLD_FLAGS_NOMIX_ASCII
+             : 0));
+    if (downgradable
+     && folded == code_point /* This quickly rules out many
+           cases, avoiding the
+           _invlist_contains_cp() overhead
+           for those.  */
+     && ! _invlist_contains_cp(PL_utf8_foldable, code_point))
+    {
+     OP(node) = (LOC)
+       ? EXACTL
+       : EXACT;
+    }
+   }
+   else if (code_point <= MAX_UTF8_TWO_BYTE) {
+
+    /* Not folding this cp, and can output it directly */
+    *character = UTF8_TWO_BYTE_HI(code_point);
+    *(character + 1) = UTF8_TWO_BYTE_LO(code_point);
+    len = 2;
+   }
+   else {
+    uvchr_to_utf8( character, code_point);
+    len = UTF8SKIP(character);
+   }
+  } /* Else pattern isn't UTF8.  */
+  else if (! FOLD) {
+   *character = (U8) code_point;
+   len = 1;
+  } /* Else is folded non-UTF8 */
+  else if (LIKELY(code_point != LATIN_SMALL_LETTER_SHARP_S)) {
+
+   /* We don't fold any non-UTF8 except possibly the Sharp s  (see
+   * comments at join_exact()); */
+   *character = (U8) code_point;
+   len = 1;
+
+   /* Can turn into an EXACT node if we know the fold at compile time,
+   * and it folds to itself and doesn't particpate in other folds */
+   if (downgradable
+    && ! LOC
+    && PL_fold_latin1[code_point] == code_point
+    && (! HAS_NONLATIN1_FOLD_CLOSURE(code_point)
+     || (isASCII(code_point) && ASCII_FOLD_RESTRICTED)))
+   {
+    OP(node) = EXACT;
+   }
+  } /* else is Sharp s.  May need to fold it */
+  else if (AT_LEAST_UNI_SEMANTICS && ! ASCII_FOLD_RESTRICTED) {
+   *character = 's';
+   *(character + 1) = 's';
+   len = 2;
+  }
+  else {
+   *character = LATIN_SMALL_LETTER_SHARP_S;
+   len = 1;
+  }
+ }
+
+ if (SIZE_ONLY) {
+  RExC_size += STR_SZ(len);
+ }
+ else {
+  RExC_emit += STR_SZ(len);
+  STR_LEN(node) = len;
+  if (! len_passed_in) {
+   Copy((char *) character, STRING(node), len, char);
+  }
+ }
+
+ *flagp |= HASWIDTH;
+
+ /* A single character node is SIMPLE, except for the special-cased SHARP S
+ * under /di. */
+ if ((len == 1 || (UTF && len == UNISKIP(code_point)))
+  && (code_point != LATIN_SMALL_LETTER_SHARP_S
+   || ! FOLD || ! DEPENDS_SEMANTICS))
+ {
+  *flagp |= SIMPLE;
+ }
+
+ /* The OP may not be well defined in PASS1 */
+ if (PASS2 && OP(node) == EXACTFL) {
+  RExC_contains_locale = 1;
+ }
+}
+
+
+/* Parse backref decimal value, unless it's too big to sensibly be a backref,
+ * in which case return I32_MAX (rather than possibly 32-bit wrapping) */
+
+static I32
+S_backref_value(char *p)
+{
+ const char* endptr;
+ UV val;
+ if (grok_atoUV(p, &val, &endptr) && val <= I32_MAX)
+  return (I32)val;
+ return I32_MAX;
+}
+
+
+/*
+ - regatom - the lowest level
+
+   Try to identify anything special at the start of the pattern. If there
+   is, then handle it as required. This may involve generating a single regop,
+   such as for an assertion; or it may involve recursing, such as to
+   handle a () structure.
+
+   If the string doesn't start with something special then we gobble up
+   as much literal text as we can.
+
+   Once we have been able to handle whatever type of thing started the
+   sequence, we return.
+
+   Note: we have to be careful with escapes, as they can be both literal
+   and special, and in the case of \10 and friends, context determines which.
+
+   A summary of the code structure is:
+
+   switch (first_byte) {
+  cases for each special:
+   handle this special;
+   break;
+  case '\\':
+   switch (2nd byte) {
+    cases for each unambiguous special:
+     handle this special;
+     break;
+    cases for each ambigous special/literal:
+     disambiguate;
+     if (special)  handle here
+     else goto defchar;
+    default: // unambiguously literal:
+     goto defchar;
+   }
+  default:  // is a literal char
+   // FALL THROUGH
+  defchar:
+   create EXACTish node for literal;
+   while (more input and node isn't full) {
+    switch (input_byte) {
+    cases for each special;
+     make sure parse pointer is set so that the next call to
+      regatom will see this special first
+     goto loopdone; // EXACTish node terminated by prev. char
+    default:
+     append char to EXACTISH node;
+    }
+    get next input byte;
+   }
+  loopdone:
+   }
+   return the generated node;
+
+   Specifically there are two separate switches for handling
+   escape sequences, with the one for handling literal escapes requiring
+   a dummy entry for all of the special escapes that are actually handled
+   by the other.
+
+   Returns NULL, setting *flagp to TRYAGAIN if reg() returns NULL with
+   TRYAGAIN.
+   Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
+   restarted.
+   Otherwise does not return NULL.
+*/
+
+STATIC regnode *
+S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
+{
+ regnode *ret = NULL;
+ I32 flags = 0;
+ char *parse_start = RExC_parse;
+ U8 op;
+ int invert = 0;
+ U8 arg;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ *flagp = WORST;  /* Tentatively. */
+
+ DEBUG_PARSE("atom");
+
+ PERL_ARGS_ASSERT_REGATOM;
+
+  tryagain:
+ switch ((U8)*RExC_parse) {
+ case '^':
+  RExC_seen_zerolen++;
+  nextchar(pRExC_state);
+  if (RExC_flags & RXf_PMf_MULTILINE)
+   ret = reg_node(pRExC_state, MBOL);
+  else
+   ret = reg_node(pRExC_state, SBOL);
+  Set_Node_Length(ret, 1); /* MJD */
+  break;
+ case '$':
+  nextchar(pRExC_state);
+  if (*RExC_parse)
+   RExC_seen_zerolen++;
+  if (RExC_flags & RXf_PMf_MULTILINE)
+   ret = reg_node(pRExC_state, MEOL);
+  else
+   ret = reg_node(pRExC_state, SEOL);
+  Set_Node_Length(ret, 1); /* MJD */
+  break;
+ case '.':
+  nextchar(pRExC_state);
+  if (RExC_flags & RXf_PMf_SINGLELINE)
+   ret = reg_node(pRExC_state, SANY);
+  else
+   ret = reg_node(pRExC_state, REG_ANY);
+  *flagp |= HASWIDTH|SIMPLE;
+  MARK_NAUGHTY(1);
+  Set_Node_Length(ret, 1); /* MJD */
+  break;
+ case '[':
+ {
+  char * const oregcomp_parse = ++RExC_parse;
+  ret = regclass(pRExC_state, flagp,depth+1,
+     FALSE, /* means parse the whole char class */
+     TRUE, /* allow multi-char folds */
+     FALSE, /* don't silence non-portable warnings. */
+     (bool) RExC_strict,
+     NULL);
+  if (*RExC_parse != ']') {
+   RExC_parse = oregcomp_parse;
+   vFAIL("Unmatched [");
+  }
+  if (ret == NULL) {
+   if (*flagp & RESTART_UTF8)
+    return NULL;
+   FAIL2("panic: regclass returned NULL to regatom, flags=%#"UVxf"",
+    (UV) *flagp);
+  }
+  nextchar(pRExC_state);
+  Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
+  break;
+ }
+ case '(':
+  nextchar(pRExC_state);
+  ret = reg(pRExC_state, 2, &flags,depth+1);
+  if (ret == NULL) {
+    if (flags & TRYAGAIN) {
+     if (RExC_parse == RExC_end) {
+      /* Make parent create an empty node if needed. */
+      *flagp |= TRYAGAIN;
+      return(NULL);
+     }
+     goto tryagain;
+    }
+    if (flags & RESTART_UTF8) {
+     *flagp = RESTART_UTF8;
+     return NULL;
+    }
+    FAIL2("panic: reg returned NULL to regatom, flags=%#"UVxf"",
+                (UV) flags);
+  }
+  *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
+  break;
+ case '|':
+ case ')':
+  if (flags & TRYAGAIN) {
+   *flagp |= TRYAGAIN;
+   return NULL;
+  }
+  vFAIL("Internal urp");
+        /* Supposed to be caught earlier. */
+  break;
+ case '?':
+ case '+':
+ case '*':
+  RExC_parse++;
+  vFAIL("Quantifier follows nothing");
+  break;
+ case '\\':
+  /* Special Escapes
+
+  This switch handles escape sequences that resolve to some kind
+  of special regop and not to literal text. Escape sequnces that
+  resolve to literal text are handled below in the switch marked
+  "Literal Escapes".
+
+  Every entry in this switch *must* have a corresponding entry
+  in the literal escape switch. However, the opposite is not
+  required, as the default for this switch is to jump to the
+  literal text handling code.
+  */
+  switch ((U8)*++RExC_parse) {
+  /* Special Escapes */
+  case 'A':
+   RExC_seen_zerolen++;
+   ret = reg_node(pRExC_state, SBOL);
+   /* SBOL is shared with /^/ so we set the flags so we can tell
+   * /\A/ from /^/ in split. We check ret because first pass we
+   * have no regop struct to set the flags on. */
+   if (PASS2)
+    ret->flags = 1;
+   *flagp |= SIMPLE;
+   goto finish_meta_pat;
+  case 'G':
+   ret = reg_node(pRExC_state, GPOS);
+   RExC_seen |= REG_GPOS_SEEN;
+   *flagp |= SIMPLE;
+   goto finish_meta_pat;
+  case 'K':
+   RExC_seen_zerolen++;
+   ret = reg_node(pRExC_state, KEEPS);
+   *flagp |= SIMPLE;
+   /* XXX:dmq : disabling in-place substitution seems to
+   * be necessary here to avoid cases of memory corruption, as
+   * with: C<$_="x" x 80; s/x\K/y/> -- rgs
+   */
+   RExC_seen |= REG_LOOKBEHIND_SEEN;
+   goto finish_meta_pat;
+  case 'Z':
+   ret = reg_node(pRExC_state, SEOL);
+   *flagp |= SIMPLE;
+   RExC_seen_zerolen++;  /* Do not optimize RE away */
+   goto finish_meta_pat;
+  case 'z':
+   ret = reg_node(pRExC_state, EOS);
+   *flagp |= SIMPLE;
+   RExC_seen_zerolen++;  /* Do not optimize RE away */
+   goto finish_meta_pat;
+  case 'C':
+   vFAIL("\\C no longer supported");
+  case 'X':
+   ret = reg_node(pRExC_state, CLUMP);
+   *flagp |= HASWIDTH;
+   goto finish_meta_pat;
+
+  case 'W':
+   invert = 1;
+   /* FALLTHROUGH */
+  case 'w':
+   arg = ANYOF_WORDCHAR;
+   goto join_posix;
+
+  case 'B':
+   invert = 1;
+   /* FALLTHROUGH */
+  case 'b':
+  {
+   regex_charset charset = get_regex_charset(RExC_flags);
+
+   RExC_seen_zerolen++;
+   RExC_seen |= REG_LOOKBEHIND_SEEN;
+   op = BOUND + charset;
+
+   if (op == BOUNDL) {
+    RExC_contains_locale = 1;
+   }
+
+   ret = reg_node(pRExC_state, op);
+   *flagp |= SIMPLE;
+   if (*(RExC_parse + 1) != '{') {
+    FLAGS(ret) = TRADITIONAL_BOUND;
+    if (PASS2 && op > BOUNDA) {  /* /aa is same as /a */
+     OP(ret) = BOUNDA;
+    }
+   }
+   else {
+    STRLEN length;
+    char name = *RExC_parse;
+    char * endbrace;
+    RExC_parse += 2;
+    endbrace = strchr(RExC_parse, '}');
+
+    if (! endbrace) {
+     vFAIL2("Missing right brace on \\%c{}", name);
+    }
+    /* XXX Need to decide whether to take spaces or not.  Should be
+    * consistent with \p{}, but that currently is SPACE, which
+    * means vertical too, which seems wrong
+    * while (isBLANK(*RExC_parse)) {
+     RExC_parse++;
+    }*/
+    if (endbrace == RExC_parse) {
+     RExC_parse++;  /* After the '}' */
+     vFAIL2("Empty \\%c{}", name);
+    }
+    length = endbrace - RExC_parse;
+    /*while (isBLANK(*(RExC_parse + length - 1))) {
+     length--;
+    }*/
+    switch (*RExC_parse) {
+     case 'g':
+      if (length != 1
+       && (length != 3 || strnNE(RExC_parse + 1, "cb", 2)))
+      {
+       goto bad_bound_type;
+      }
+      FLAGS(ret) = GCB_BOUND;
+      break;
+     case 's':
+      if (length != 2 || *(RExC_parse + 1) != 'b') {
+       goto bad_bound_type;
+      }
+      FLAGS(ret) = SB_BOUND;
+      break;
+     case 'w':
+      if (length != 2 || *(RExC_parse + 1) != 'b') {
+       goto bad_bound_type;
+      }
+      FLAGS(ret) = WB_BOUND;
+      break;
+     default:
+     bad_bound_type:
+      RExC_parse = endbrace;
+      vFAIL2utf8f(
+       "'%"UTF8f"' is an unknown bound type",
+       UTF8fARG(UTF, length, endbrace - length));
+      NOT_REACHED; /*NOTREACHED*/
+    }
+    RExC_parse = endbrace;
+    RExC_uni_semantics = 1;
+
+    if (PASS2 && op >= BOUNDA) {  /* /aa is same as /a */
+     OP(ret) = BOUNDU;
+     length += 4;
+
+     /* Don't have to worry about UTF-8, in this message because
+     * to get here the contents of the \b must be ASCII */
+     ckWARN4reg(RExC_parse + 1,  /* Include the '}' in msg */
+       "Using /u for '%.*s' instead of /%s",
+       (unsigned) length,
+       endbrace - length + 1,
+       (charset == REGEX_ASCII_RESTRICTED_CHARSET)
+       ? ASCII_RESTRICT_PAT_MODS
+       : ASCII_MORE_RESTRICT_PAT_MODS);
+    }
+   }
+
+   if (PASS2 && invert) {
+    OP(ret) += NBOUND - BOUND;
+   }
+   goto finish_meta_pat;
+  }
+
+  case 'D':
+   invert = 1;
+   /* FALLTHROUGH */
+  case 'd':
+   arg = ANYOF_DIGIT;
+   if (! DEPENDS_SEMANTICS) {
+    goto join_posix;
+   }
+
+   /* \d doesn't have any matches in the upper Latin1 range, hence /d
+   * is equivalent to /u.  Changing to /u saves some branches at
+   * runtime */
+   op = POSIXU;
+   goto join_posix_op_known;
+
+  case 'R':
+   ret = reg_node(pRExC_state, LNBREAK);
+   *flagp |= HASWIDTH|SIMPLE;
+   goto finish_meta_pat;
+
+  case 'H':
+   invert = 1;
+   /* FALLTHROUGH */
+  case 'h':
+   arg = ANYOF_BLANK;
+   op = POSIXU;
+   goto join_posix_op_known;
+
+  case 'V':
+   invert = 1;
+   /* FALLTHROUGH */
+  case 'v':
+   arg = ANYOF_VERTWS;
+   op = POSIXU;
+   goto join_posix_op_known;
+
+  case 'S':
+   invert = 1;
+   /* FALLTHROUGH */
+  case 's':
+   arg = ANYOF_SPACE;
+
+  join_posix:
+
+   op = POSIXD + get_regex_charset(RExC_flags);
+   if (op > POSIXA) {  /* /aa is same as /a */
+    op = POSIXA;
+   }
+   else if (op == POSIXL) {
+    RExC_contains_locale = 1;
+   }
+
+  join_posix_op_known:
+
+   if (invert) {
+    op += NPOSIXD - POSIXD;
+   }
+
+   ret = reg_node(pRExC_state, op);
+   if (! SIZE_ONLY) {
+    FLAGS(ret) = namedclass_to_classnum(arg);
+   }
+
+   *flagp |= HASWIDTH|SIMPLE;
+   /* FALLTHROUGH */
+
+  finish_meta_pat:
+   nextchar(pRExC_state);
+   Set_Node_Length(ret, 2); /* MJD */
+   break;
+  case 'p':
+  case 'P':
+   {
+#ifdef DEBUGGING
+    char* parse_start = RExC_parse - 2;
+#endif
+
+    RExC_parse--;
+
+    ret = regclass(pRExC_state, flagp,depth+1,
+       TRUE, /* means just parse this element */
+       FALSE, /* don't allow multi-char folds */
+       FALSE, /* don't silence non-portable warnings.
+          It would be a bug if these returned
+          non-portables */
+       (bool) RExC_strict,
+       NULL);
+    /* regclass() can only return RESTART_UTF8 if multi-char folds
+    are allowed.  */
+    if (!ret)
+     FAIL2("panic: regclass returned NULL to regatom, flags=%#"UVxf"",
+      (UV) *flagp);
+
+    RExC_parse--;
+
+    Set_Node_Offset(ret, parse_start + 2);
+    Set_Node_Cur_Length(ret, parse_start);
+    nextchar(pRExC_state);
+   }
+   break;
+  case 'N':
+   /* Handle \N, \N{} and \N{NAMED SEQUENCE} (the latter meaning the
+   * \N{...} evaluates to a sequence of more than one code points).
+   * The function call below returns a regnode, which is our result.
+   * The parameters cause it to fail if the \N{} evaluates to a
+   * single code point; we handle those like any other literal.  The
+   * reason that the multicharacter case is handled here and not as
+   * part of the EXACtish code is because of quantifiers.  In
+   * /\N{BLAH}+/, the '+' applies to the whole thing, and doing it
+   * this way makes that Just Happen. dmq.
+   * join_exact() will join this up with adjacent EXACTish nodes
+   * later on, if appropriate. */
+   ++RExC_parse;
+   if (grok_bslash_N(pRExC_state,
+       &ret,     /* Want a regnode returned */
+       NULL,     /* Fail if evaluates to a single code
+          point */
+       NULL,     /* Don't need a count of how many code
+          points */
+       flagp,
+       depth)
+   ) {
+    break;
+   }
+
+   if (*flagp & RESTART_UTF8)
+    return NULL;
+   RExC_parse--;
+   goto defchar;
+
+  case 'k':    /* Handle \k<NAME> and \k'NAME' */
+ parse_named_seq:
+  {
+   char ch= RExC_parse[1];
+   if (ch != '<' && ch != '\'' && ch != '{') {
+    RExC_parse++;
+    /* diag_listed_as: Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/ */
+    vFAIL2("Sequence %.2s... not terminated",parse_start);
+   } else {
+    /* this pretty much dupes the code for (?P=...) in reg(), if
+    you change this make sure you change that */
+    char* name_start = (RExC_parse += 2);
+    U32 num = 0;
+    SV *sv_dat = reg_scan_name(pRExC_state,
+     SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+    ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
+    if (RExC_parse == name_start || *RExC_parse != ch)
+     /* diag_listed_as: Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/ */
+     vFAIL2("Sequence %.3s... not terminated",parse_start);
+
+    if (!SIZE_ONLY) {
+     num = add_data( pRExC_state, STR_WITH_LEN("S"));
+     RExC_rxi->data->data[num]=(void*)sv_dat;
+     SvREFCNT_inc_simple_void(sv_dat);
+    }
+
+    RExC_sawback = 1;
+    ret = reganode(pRExC_state,
+       ((! FOLD)
+        ? NREF
+        : (ASCII_FOLD_RESTRICTED)
+        ? NREFFA
+        : (AT_LEAST_UNI_SEMANTICS)
+         ? NREFFU
+         : (LOC)
+         ? NREFFL
+         : NREFF),
+        num);
+    *flagp |= HASWIDTH;
+
+    /* override incorrect value set in reganode MJD */
+    Set_Node_Offset(ret, parse_start+1);
+    Set_Node_Cur_Length(ret, parse_start);
+    nextchar(pRExC_state);
+
+   }
+   break;
+  }
+  case 'g':
+  case '1': case '2': case '3': case '4':
+  case '5': case '6': case '7': case '8': case '9':
+   {
+    I32 num;
+    bool hasbrace = 0;
+
+    if (*RExC_parse == 'g') {
+     bool isrel = 0;
+
+     RExC_parse++;
+     if (*RExC_parse == '{') {
+      RExC_parse++;
+      hasbrace = 1;
+     }
+     if (*RExC_parse == '-') {
+      RExC_parse++;
+      isrel = 1;
+     }
+     if (hasbrace && !isDIGIT(*RExC_parse)) {
+      if (isrel) RExC_parse--;
+      RExC_parse -= 2;
+      goto parse_named_seq;
+     }
+
+     num = S_backref_value(RExC_parse);
+     if (num == 0)
+      vFAIL("Reference to invalid group 0");
+     else if (num == I32_MAX) {
+      if (isDIGIT(*RExC_parse))
+       vFAIL("Reference to nonexistent group");
+      else
+       vFAIL("Unterminated \\g... pattern");
+     }
+
+     if (isrel) {
+      num = RExC_npar - num;
+      if (num < 1)
+       vFAIL("Reference to nonexistent or unclosed group");
+     }
+    }
+    else {
+     num = S_backref_value(RExC_parse);
+     /* bare \NNN might be backref or octal - if it is larger
+     * than or equal RExC_npar then it is assumed to be an
+     * octal escape. Note RExC_npar is +1 from the actual
+     * number of parens. */
+     /* Note we do NOT check if num == I32_MAX here, as that is
+     * handled by the RExC_npar check */
+
+     if (
+      /* any numeric escape < 10 is always a backref */
+      num > 9
+      /* any numeric escape < RExC_npar is a backref */
+      && num >= RExC_npar
+      /* cannot be an octal escape if it starts with 8 */
+      && *RExC_parse != '8'
+      /* cannot be an octal escape it it starts with 9 */
+      && *RExC_parse != '9'
+     )
+     {
+      /* Probably not a backref, instead likely to be an
+      * octal character escape, e.g. \35 or \777.
+      * The above logic should make it obvious why using
+      * octal escapes in patterns is problematic. - Yves */
+      goto defchar;
+     }
+    }
+
+    /* At this point RExC_parse points at a numeric escape like
+    * \12 or \88 or something similar, which we should NOT treat
+    * as an octal escape. It may or may not be a valid backref
+    * escape. For instance \88888888 is unlikely to be a valid
+    * backref. */
+    {
+#ifdef RE_TRACK_PATTERN_OFFSETS
+     char * const parse_start = RExC_parse - 1; /* MJD */
+#endif
+     while (isDIGIT(*RExC_parse))
+      RExC_parse++;
+     if (hasbrace) {
+      if (*RExC_parse != '}')
+       vFAIL("Unterminated \\g{...} pattern");
+      RExC_parse++;
+     }
+     if (!SIZE_ONLY) {
+      if (num > (I32)RExC_rx->nparens)
+       vFAIL("Reference to nonexistent group");
+     }
+     RExC_sawback = 1;
+     ret = reganode(pRExC_state,
+        ((! FOLD)
+         ? REF
+         : (ASCII_FOLD_RESTRICTED)
+         ? REFFA
+         : (AT_LEAST_UNI_SEMANTICS)
+          ? REFFU
+          : (LOC)
+          ? REFFL
+          : REFF),
+         num);
+     *flagp |= HASWIDTH;
+
+     /* override incorrect value set in reganode MJD */
+     Set_Node_Offset(ret, parse_start+1);
+     Set_Node_Cur_Length(ret, parse_start);
+     RExC_parse--;
+     nextchar(pRExC_state);
+    }
+   }
+   break;
+  case '\0':
+   if (RExC_parse >= RExC_end)
+    FAIL("Trailing \\");
+   /* FALLTHROUGH */
+  default:
+   /* Do not generate "unrecognized" warnings here, we fall
+   back into the quick-grab loop below */
+   parse_start--;
+   goto defchar;
+  }
+  break;
+
+ case '#':
+  if (RExC_flags & RXf_PMf_EXTENDED) {
+   RExC_parse = reg_skipcomment( pRExC_state, RExC_parse );
+   if (RExC_parse < RExC_end)
+    goto tryagain;
+  }
+  /* FALLTHROUGH */
+
+ default:
+
+   parse_start = RExC_parse - 1;
+
+   RExC_parse++;
+
+  defchar: {
+   STRLEN len = 0;
+   UV ender = 0;
+   char *p;
+   char *s;
+#define MAX_NODE_STRING_SIZE 127
+   char foldbuf[MAX_NODE_STRING_SIZE+UTF8_MAXBYTES_CASE];
+   char *s0;
+   U8 upper_parse = MAX_NODE_STRING_SIZE;
+   U8 node_type = compute_EXACTish(pRExC_state);
+   bool next_is_quantifier;
+   char * oldp = NULL;
+
+   /* We can convert EXACTF nodes to EXACTFU if they contain only
+   * characters that match identically regardless of the target
+   * string's UTF8ness.  The reason to do this is that EXACTF is not
+   * trie-able, EXACTFU is.
+   *
+   * Similarly, we can convert EXACTFL nodes to EXACTFU if they
+   * contain only above-Latin1 characters (hence must be in UTF8),
+   * which don't participate in folds with Latin1-range characters,
+   * as the latter's folds aren't known until runtime.  (We don't
+   * need to figure this out until pass 2) */
+   bool maybe_exactfu = PASS2
+       && (node_type == EXACTF || node_type == EXACTFL);
+
+   /* If a folding node contains only code points that don't
+   * participate in folds, it can be changed into an EXACT node,
+   * which allows the optimizer more things to look for */
+   bool maybe_exact;
+
+   ret = reg_node(pRExC_state, node_type);
+
+   /* In pass1, folded, we use a temporary buffer instead of the
+   * actual node, as the node doesn't exist yet */
+   s = (SIZE_ONLY && FOLD) ? foldbuf : STRING(ret);
+
+   s0 = s;
+
+  reparse:
+
+   /* We do the EXACTFish to EXACT node only if folding.  (And we
+   * don't need to figure this out until pass 2) */
+   maybe_exact = FOLD && PASS2;
+
+   /* XXX The node can hold up to 255 bytes, yet this only goes to
+   * 127.  I (khw) do not know why.  Keeping it somewhat less than
+   * 255 allows us to not have to worry about overflow due to
+   * converting to utf8 and fold expansion, but that value is
+   * 255-UTF8_MAXBYTES_CASE.  join_exact() may join adjacent nodes
+   * split up by this limit into a single one using the real max of
+   * 255.  Even at 127, this breaks under rare circumstances.  If
+   * folding, we do not want to split a node at a character that is a
+   * non-final in a multi-char fold, as an input string could just
+   * happen to want to match across the node boundary.  The join
+   * would solve that problem if the join actually happens.  But a
+   * series of more than two nodes in a row each of 127 would cause
+   * the first join to succeed to get to 254, but then there wouldn't
+   * be room for the next one, which could at be one of those split
+   * multi-char folds.  I don't know of any fool-proof solution.  One
+   * could back off to end with only a code point that isn't such a
+   * non-final, but it is possible for there not to be any in the
+   * entire node. */
+   for (p = RExC_parse - 1;
+    len < upper_parse && p < RExC_end;
+    len++)
+   {
+    oldp = p;
+
+    if (RExC_flags & RXf_PMf_EXTENDED)
+     p = regpatws(pRExC_state, p,
+          TRUE); /* means recognize comments */
+    switch ((U8)*p) {
+    case '^':
+    case '$':
+    case '.':
+    case '[':
+    case '(':
+    case ')':
+    case '|':
+     goto loopdone;
+    case '\\':
+     /* Literal Escapes Switch
+
+     This switch is meant to handle escape sequences that
+     resolve to a literal character.
+
+     Every escape sequence that represents something
+     else, like an assertion or a char class, is handled
+     in the switch marked 'Special Escapes' above in this
+     routine, but also has an entry here as anything that
+     isn't explicitly mentioned here will be treated as
+     an unescaped equivalent literal.
+     */
+
+     switch ((U8)*++p) {
+     /* These are all the special escapes. */
+     case 'A':             /* Start assertion */
+     case 'b': case 'B':   /* Word-boundary assertion*/
+     case 'C':             /* Single char !DANGEROUS! */
+     case 'd': case 'D':   /* digit class */
+     case 'g': case 'G':   /* generic-backref, pos assertion */
+     case 'h': case 'H':   /* HORIZWS */
+     case 'k': case 'K':   /* named backref, keep marker */
+     case 'p': case 'P':   /* Unicode property */
+       case 'R':   /* LNBREAK */
+     case 's': case 'S':   /* space class */
+     case 'v': case 'V':   /* VERTWS */
+     case 'w': case 'W':   /* word class */
+     case 'X':             /* eXtended Unicode "combining
+           character sequence" */
+     case 'z': case 'Z':   /* End of line/string assertion */
+      --p;
+      goto loopdone;
+
+     /* Anything after here is an escape that resolves to a
+     literal. (Except digits, which may or may not)
+     */
+     case 'n':
+      ender = '\n';
+      p++;
+      break;
+     case 'N': /* Handle a single-code point named character. */
+      RExC_parse = p + 1;
+      if (! grok_bslash_N(pRExC_state,
+           NULL,   /* Fail if evaluates to
+             anything other than a
+             single code point */
+           &ender, /* The returned single code
+             point */
+           NULL,   /* Don't need a count of
+             how many code points */
+           flagp,
+           depth)
+      ) {
+       if (*flagp & RESTART_UTF8)
+        FAIL("panic: grok_bslash_N set RESTART_UTF8");
+
+       /* Here, it wasn't a single code point.  Go close
+       * up this EXACTish node.  The switch() prior to
+       * this switch handles the other cases */
+       RExC_parse = p = oldp;
+       goto loopdone;
+      }
+      p = RExC_parse;
+      if (ender > 0xff) {
+       REQUIRE_UTF8;
+      }
+      break;
+     case 'r':
+      ender = '\r';
+      p++;
+      break;
+     case 't':
+      ender = '\t';
+      p++;
+      break;
+     case 'f':
+      ender = '\f';
+      p++;
+      break;
+     case 'e':
+      ender = ESC_NATIVE;
+      p++;
+      break;
+     case 'a':
+      ender = '\a';
+      p++;
+      break;
+     case 'o':
+      {
+       UV result;
+       const char* error_msg;
+
+       bool valid = grok_bslash_o(&p,
+             &result,
+             &error_msg,
+             PASS2, /* out warnings */
+             (bool) RExC_strict,
+             TRUE, /* Output warnings
+                for non-
+                portables */
+             UTF);
+       if (! valid) {
+        RExC_parse = p; /* going to die anyway; point
+            to exact spot of failure */
+        vFAIL(error_msg);
+       }
+       ender = result;
+       if (IN_ENCODING && ender < 0x100) {
+        goto recode_encoding;
+       }
+       if (ender > 0xff) {
+        REQUIRE_UTF8;
+       }
+       break;
+      }
+     case 'x':
+      {
+       UV result = UV_MAX; /* initialize to erroneous
+            value */
+       const char* error_msg;
+
+       bool valid = grok_bslash_x(&p,
+             &result,
+             &error_msg,
+             PASS2, /* out warnings */
+             (bool) RExC_strict,
+             TRUE, /* Silence warnings
+                for non-
+                portables */
+             UTF);
+       if (! valid) {
+        RExC_parse = p; /* going to die anyway; point
+            to exact spot of failure */
+        vFAIL(error_msg);
+       }
+       ender = result;
+
+       if (ender < 0x100) {
+#ifdef EBCDIC
+        if (RExC_recode_x_to_native) {
+         ender = LATIN1_TO_NATIVE(ender);
+        }
+        else
+#endif
+        if (IN_ENCODING) {
+         goto recode_encoding;
+        }
+       }
+       else {
+        REQUIRE_UTF8;
+       }
+       break;
+      }
+     case 'c':
+      p++;
+      ender = grok_bslash_c(*p++, PASS2);
+      break;
+     case '8': case '9': /* must be a backreference */
+      --p;
+      /* we have an escape like \8 which cannot be an octal escape
+      * so we exit the loop, and let the outer loop handle this
+      * escape which may or may not be a legitimate backref. */
+      goto loopdone;
+     case '1': case '2': case '3':case '4':
+     case '5': case '6': case '7':
+      /* When we parse backslash escapes there is ambiguity
+      * between backreferences and octal escapes. Any escape
+      * from \1 - \9 is a backreference, any multi-digit
+      * escape which does not start with 0 and which when
+      * evaluated as decimal could refer to an already
+      * parsed capture buffer is a back reference. Anything
+      * else is octal.
+      *
+      * Note this implies that \118 could be interpreted as
+      * 118 OR as "\11" . "8" depending on whether there
+      * were 118 capture buffers defined already in the
+      * pattern.  */
+
+      /* NOTE, RExC_npar is 1 more than the actual number of
+      * parens we have seen so far, hence the < RExC_npar below. */
+
+      if ( !isDIGIT(p[1]) || S_backref_value(p) < RExC_npar)
+      {  /* Not to be treated as an octal constant, go
+        find backref */
+       --p;
+       goto loopdone;
+      }
+      /* FALLTHROUGH */
+     case '0':
+      {
+       I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
+       STRLEN numlen = 3;
+       ender = grok_oct(p, &numlen, &flags, NULL);
+       if (ender > 0xff) {
+        REQUIRE_UTF8;
+       }
+       p += numlen;
+       if (PASS2   /* like \08, \178 */
+        && numlen < 3
+        && p < RExC_end
+        && isDIGIT(*p) && ckWARN(WARN_REGEXP))
+       {
+        reg_warn_non_literal_string(
+          p + 1,
+          form_short_octal_warning(p, numlen));
+       }
+      }
+      if (IN_ENCODING && ender < 0x100)
+       goto recode_encoding;
+      break;
+     recode_encoding:
+      if (! RExC_override_recoding) {
+       SV* enc = _get_encoding();
+       ender = reg_recode((const char)(U8)ender, &enc);
+       if (!enc && PASS2)
+        ckWARNreg(p, "Invalid escape in the specified encoding");
+       REQUIRE_UTF8;
+      }
+      break;
+     case '\0':
+      if (p >= RExC_end)
+       FAIL("Trailing \\");
+      /* FALLTHROUGH */
+     default:
+      if (!SIZE_ONLY&& isALPHANUMERIC(*p)) {
+       /* Include any { following the alpha to emphasize
+       * that it could be part of an escape at some point
+       * in the future */
+       int len = (isALPHA(*p) && *(p + 1) == '{') ? 2 : 1;
+       ckWARN3reg(p + len, "Unrecognized escape \\%.*s passed through", len, p);
+      }
+      goto normal_default;
+     } /* End of switch on '\' */
+     break;
+    case '{':
+     /* Currently we don't warn when the lbrace is at the start
+     * of a construct.  This catches it in the middle of a
+     * literal string, or when its the first thing after
+     * something like "\b" */
+     if (! SIZE_ONLY
+      && (len || (p > RExC_start && isALPHA_A(*(p -1)))))
+     {
+      ckWARNregdep(p + 1, "Unescaped left brace in regex is deprecated, passed through");
+     }
+     /*FALLTHROUGH*/
+    default:    /* A literal character */
+    normal_default:
+     if (UTF8_IS_START(*p) && UTF) {
+      STRLEN numlen;
+      ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
+           &numlen, UTF8_ALLOW_DEFAULT);
+      p += numlen;
+     }
+     else
+      ender = (U8) *p++;
+     break;
+    } /* End of switch on the literal */
+
+    /* Here, have looked at the literal character and <ender>
+    * contains its ordinal, <p> points to the character after it
+    */
+
+    if ( RExC_flags & RXf_PMf_EXTENDED)
+     p = regpatws(pRExC_state, p,
+          TRUE); /* means recognize comments */
+
+    /* If the next thing is a quantifier, it applies to this
+    * character only, which means that this character has to be in
+    * its own node and can't just be appended to the string in an
+    * existing node, so if there are already other characters in
+    * the node, close the node with just them, and set up to do
+    * this character again next time through, when it will be the
+    * only thing in its new node */
+    if ((next_is_quantifier = (p < RExC_end && ISMULT2(p))) && len)
+    {
+     p = oldp;
+     goto loopdone;
+    }
+
+    if (! FOLD) {  /* The simple case, just append the literal */
+
+     /* In the sizing pass, we need only the size of the
+     * character we are appending, hence we can delay getting
+     * its representation until PASS2. */
+     if (SIZE_ONLY) {
+      if (UTF) {
+       const STRLEN unilen = UNISKIP(ender);
+       s += unilen;
+
+       /* We have to subtract 1 just below (and again in
+       * the corresponding PASS2 code) because the loop
+       * increments <len> each time, as all but this path
+       * (and one other) through it add a single byte to
+       * the EXACTish node.  But these paths would change
+       * len to be the correct final value, so cancel out
+       * the increment that follows */
+       len += unilen - 1;
+      }
+      else {
+       s++;
+      }
+     } else { /* PASS2 */
+     not_fold_common:
+      if (UTF) {
+       U8 * new_s = uvchr_to_utf8((U8*)s, ender);
+       len += (char *) new_s - s - 1;
+       s = (char *) new_s;
+      }
+      else {
+       *(s++) = (char) ender;
+      }
+     }
+    }
+    else if (LOC && is_PROBLEMATIC_LOCALE_FOLD_cp(ender)) {
+
+     /* Here are folding under /l, and the code point is
+     * problematic.  First, we know we can't simplify things */
+     maybe_exact = FALSE;
+     maybe_exactfu = FALSE;
+
+     /* A problematic code point in this context means that its
+     * fold isn't known until runtime, so we can't fold it now.
+     * (The non-problematic code points are the above-Latin1
+     * ones that fold to also all above-Latin1.  Their folds
+     * don't vary no matter what the locale is.) But here we
+     * have characters whose fold depends on the locale.
+     * Unlike the non-folding case above, we have to keep track
+     * of these in the sizing pass, so that we can make sure we
+     * don't split too-long nodes in the middle of a potential
+     * multi-char fold.  And unlike the regular fold case
+     * handled in the else clauses below, we don't actually
+     * fold and don't have special cases to consider.  What we
+     * do for both passes is the PASS2 code for non-folding */
+     goto not_fold_common;
+    }
+    else /* A regular FOLD code point */
+     if (! ( UTF
+      /* See comments for join_exact() as to why we fold this
+      * non-UTF at compile time */
+      || (node_type == EXACTFU
+       && ender == LATIN_SMALL_LETTER_SHARP_S)))
+    {
+     /* Here, are folding and are not UTF-8 encoded; therefore
+     * the character must be in the range 0-255, and is not /l
+     * (Not /l because we already handled these under /l in
+     * is_PROBLEMATIC_LOCALE_FOLD_cp) */
+     if (IS_IN_SOME_FOLD_L1(ender)) {
+      maybe_exact = FALSE;
+
+      /* See if the character's fold differs between /d and
+      * /u.  This includes the multi-char fold SHARP S to
+      * 'ss' */
+      if (maybe_exactfu
+       && (PL_fold[ender] != PL_fold_latin1[ender]
+        || ender == LATIN_SMALL_LETTER_SHARP_S
+        || (len > 0
+        && isALPHA_FOLD_EQ(ender, 's')
+        && isALPHA_FOLD_EQ(*(s-1), 's'))))
+      {
+       maybe_exactfu = FALSE;
+      }
+     }
+
+     /* Even when folding, we store just the input character, as
+     * we have an array that finds its fold quickly */
+     *(s++) = (char) ender;
+    }
+    else {  /* FOLD and UTF */
+     /* Unlike the non-fold case, we do actually have to
+     * calculate the results here in pass 1.  This is for two
+     * reasons, the folded length may be longer than the
+     * unfolded, and we have to calculate how many EXACTish
+     * nodes it will take; and we may run out of room in a node
+     * in the middle of a potential multi-char fold, and have
+     * to back off accordingly.  */
+
+     UV folded;
+     if (isASCII_uni(ender)) {
+      folded = toFOLD(ender);
+      *(s)++ = (U8) folded;
+     }
+     else {
+      STRLEN foldlen;
+
+      folded = _to_uni_fold_flags(
+         ender,
+         (U8 *) s,
+         &foldlen,
+         FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
+              ? FOLD_FLAGS_NOMIX_ASCII
+              : 0));
+      s += foldlen;
+
+      /* The loop increments <len> each time, as all but this
+      * path (and one other) through it add a single byte to
+      * the EXACTish node.  But this one has changed len to
+      * be the correct final value, so subtract one to
+      * cancel out the increment that follows */
+      len += foldlen - 1;
+     }
+     /* If this node only contains non-folding code points so
+     * far, see if this new one is also non-folding */
+     if (maybe_exact) {
+      if (folded != ender) {
+       maybe_exact = FALSE;
+      }
+      else {
+       /* Here the fold is the original; we have to check
+       * further to see if anything folds to it */
+       if (_invlist_contains_cp(PL_utf8_foldable,
+              ender))
+       {
+        maybe_exact = FALSE;
+       }
+      }
+     }
+     ender = folded;
+    }
+
+    if (next_is_quantifier) {
+
+     /* Here, the next input is a quantifier, and to get here,
+     * the current character is the only one in the node.
+     * Also, here <len> doesn't include the final byte for this
+     * character */
+     len++;
+     goto loopdone;
+    }
+
+   } /* End of loop through literal characters */
+
+   /* Here we have either exhausted the input or ran out of room in
+   * the node.  (If we encountered a character that can't be in the
+   * node, transfer is made directly to <loopdone>, and so we
+   * wouldn't have fallen off the end of the loop.)  In the latter
+   * case, we artificially have to split the node into two, because
+   * we just don't have enough space to hold everything.  This
+   * creates a problem if the final character participates in a
+   * multi-character fold in the non-final position, as a match that
+   * should have occurred won't, due to the way nodes are matched,
+   * and our artificial boundary.  So back off until we find a non-
+   * problematic character -- one that isn't at the beginning or
+   * middle of such a fold.  (Either it doesn't participate in any
+   * folds, or appears only in the final position of all the folds it
+   * does participate in.)  A better solution with far fewer false
+   * positives, and that would fill the nodes more completely, would
+   * be to actually have available all the multi-character folds to
+   * test against, and to back-off only far enough to be sure that
+   * this node isn't ending with a partial one.  <upper_parse> is set
+   * further below (if we need to reparse the node) to include just
+   * up through that final non-problematic character that this code
+   * identifies, so when it is set to less than the full node, we can
+   * skip the rest of this */
+   if (FOLD && p < RExC_end && upper_parse == MAX_NODE_STRING_SIZE) {
+
+    const STRLEN full_len = len;
+
+    assert(len >= MAX_NODE_STRING_SIZE);
+
+    /* Here, <s> points to the final byte of the final character.
+    * Look backwards through the string until find a non-
+    * problematic character */
+
+    if (! UTF) {
+
+     /* This has no multi-char folds to non-UTF characters */
+     if (ASCII_FOLD_RESTRICTED) {
+      goto loopdone;
+     }
+
+     while (--s >= s0 && IS_NON_FINAL_FOLD(*s)) { }
+     len = s - s0 + 1;
+    }
+    else {
+     if (!  PL_NonL1NonFinalFold) {
+      PL_NonL1NonFinalFold = _new_invlist_C_array(
+          NonL1_Perl_Non_Final_Folds_invlist);
+     }
+
+     /* Point to the first byte of the final character */
+     s = (char *) utf8_hop((U8 *) s, -1);
+
+     while (s >= s0) {   /* Search backwards until find
+          non-problematic char */
+      if (UTF8_IS_INVARIANT(*s)) {
+
+       /* There are no ascii characters that participate
+       * in multi-char folds under /aa.  In EBCDIC, the
+       * non-ascii invariants are all control characters,
+       * so don't ever participate in any folds. */
+       if (ASCII_FOLD_RESTRICTED
+        || ! IS_NON_FINAL_FOLD(*s))
+       {
+        break;
+       }
+      }
+      else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
+       if (! IS_NON_FINAL_FOLD(TWO_BYTE_UTF8_TO_NATIVE(
+                *s, *(s+1))))
+       {
+        break;
+       }
+      }
+      else if (! _invlist_contains_cp(
+          PL_NonL1NonFinalFold,
+          valid_utf8_to_uvchr((U8 *) s, NULL)))
+      {
+       break;
+      }
+
+      /* Here, the current character is problematic in that
+      * it does occur in the non-final position of some
+      * fold, so try the character before it, but have to
+      * special case the very first byte in the string, so
+      * we don't read outside the string */
+      s = (s == s0) ? s -1 : (char *) utf8_hop((U8 *) s, -1);
+     } /* End of loop backwards through the string */
+
+     /* If there were only problematic characters in the string,
+     * <s> will point to before s0, in which case the length
+     * should be 0, otherwise include the length of the
+     * non-problematic character just found */
+     len = (s < s0) ? 0 : s - s0 + UTF8SKIP(s);
+    }
+
+    /* Here, have found the final character, if any, that is
+    * non-problematic as far as ending the node without splitting
+    * it across a potential multi-char fold.  <len> contains the
+    * number of bytes in the node up-to and including that
+    * character, or is 0 if there is no such character, meaning
+    * the whole node contains only problematic characters.  In
+    * this case, give up and just take the node as-is.  We can't
+    * do any better */
+    if (len == 0) {
+     len = full_len;
+
+     /* If the node ends in an 's' we make sure it stays EXACTF,
+     * as if it turns into an EXACTFU, it could later get
+     * joined with another 's' that would then wrongly match
+     * the sharp s */
+     if (maybe_exactfu && isALPHA_FOLD_EQ(ender, 's'))
+     {
+      maybe_exactfu = FALSE;
+     }
+    } else {
+
+     /* Here, the node does contain some characters that aren't
+     * problematic.  If one such is the final character in the
+     * node, we are done */
+     if (len == full_len) {
+      goto loopdone;
+     }
+     else if (len + ((UTF) ? UTF8SKIP(s) : 1) == full_len) {
+
+      /* If the final character is problematic, but the
+      * penultimate is not, back-off that last character to
+      * later start a new node with it */
+      p = oldp;
+      goto loopdone;
+     }
+
+     /* Here, the final non-problematic character is earlier
+     * in the input than the penultimate character.  What we do
+     * is reparse from the beginning, going up only as far as
+     * this final ok one, thus guaranteeing that the node ends
+     * in an acceptable character.  The reason we reparse is
+     * that we know how far in the character is, but we don't
+     * know how to correlate its position with the input parse.
+     * An alternate implementation would be to build that
+     * correlation as we go along during the original parse,
+     * but that would entail extra work for every node, whereas
+     * this code gets executed only when the string is too
+     * large for the node, and the final two characters are
+     * problematic, an infrequent occurrence.  Yet another
+     * possible strategy would be to save the tail of the
+     * string, and the next time regatom is called, initialize
+     * with that.  The problem with this is that unless you
+     * back off one more character, you won't be guaranteed
+     * regatom will get called again, unless regbranch,
+     * regpiece ... are also changed.  If you do back off that
+     * extra character, so that there is input guaranteed to
+     * force calling regatom, you can't handle the case where
+     * just the first character in the node is acceptable.  I
+     * (khw) decided to try this method which doesn't have that
+     * pitfall; if performance issues are found, we can do a
+     * combination of the current approach plus that one */
+     upper_parse = len;
+     len = 0;
+     s = s0;
+     goto reparse;
+    }
+   }   /* End of verifying node ends with an appropriate char */
+
+  loopdone:   /* Jumped to when encounters something that shouldn't be
+      in the node */
+
+   /* I (khw) don't know if you can get here with zero length, but the
+   * old code handled this situation by creating a zero-length EXACT
+   * node.  Might as well be NOTHING instead */
+   if (len == 0) {
+    OP(ret) = NOTHING;
+   }
+   else {
+    if (FOLD) {
+     /* If 'maybe_exact' is still set here, means there are no
+     * code points in the node that participate in folds;
+     * similarly for 'maybe_exactfu' and code points that match
+     * differently depending on UTF8ness of the target string
+     * (for /u), or depending on locale for /l */
+     if (maybe_exact) {
+      OP(ret) = (LOC)
+        ? EXACTL
+        : EXACT;
+     }
+     else if (maybe_exactfu) {
+      OP(ret) = (LOC)
+        ? EXACTFLU8
+        : EXACTFU;
+     }
+    }
+    alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, len, ender,
+          FALSE /* Don't look to see if could
+             be turned into an EXACT
+             node, as we have already
+             computed that */
+          );
+   }
+
+   RExC_parse = p - 1;
+   Set_Node_Cur_Length(ret, parse_start);
+   nextchar(pRExC_state);
+   {
+    /* len is STRLEN which is unsigned, need to copy to signed */
+    IV iv = len;
+    if (iv < 0)
+     vFAIL("Internal disaster");
+   }
+
+  } /* End of label 'defchar:' */
+  break;
+ } /* End of giant switch on input character */
+
+ return(ret);
+}
+
+STATIC char *
+S_regpatws(RExC_state_t *pRExC_state, char *p , const bool recognize_comment )
+{
+ /* Returns the next non-pattern-white space, non-comment character (the
+ * latter only if 'recognize_comment is true) in the string p, which is
+ * ended by RExC_end.  See also reg_skipcomment */
+ const char *e = RExC_end;
+
+ PERL_ARGS_ASSERT_REGPATWS;
+
+ while (p < e) {
+  STRLEN len;
+  if ((len = is_PATWS_safe(p, e, UTF))) {
+   p += len;
+  }
+  else if (recognize_comment && *p == '#') {
+   p = reg_skipcomment(pRExC_state, p);
+  }
+  else
+   break;
+ }
+ return p;
+}
+
+STATIC void
+S_populate_ANYOF_from_invlist(pTHX_ regnode *node, SV** invlist_ptr)
+{
+ /* Uses the inversion list '*invlist_ptr' to populate the ANYOF 'node'.  It
+ * sets up the bitmap and any flags, removing those code points from the
+ * inversion list, setting it to NULL should it become completely empty */
+
+ PERL_ARGS_ASSERT_POPULATE_ANYOF_FROM_INVLIST;
+ assert(PL_regkind[OP(node)] == ANYOF);
+
+ ANYOF_BITMAP_ZERO(node);
+ if (*invlist_ptr) {
+
+  /* This gets set if we actually need to modify things */
+  bool change_invlist = FALSE;
+
+  UV start, end;
+
+  /* Start looking through *invlist_ptr */
+  invlist_iterinit(*invlist_ptr);
+  while (invlist_iternext(*invlist_ptr, &start, &end)) {
+   UV high;
+   int i;
+
+   if (end == UV_MAX && start <= NUM_ANYOF_CODE_POINTS) {
+    ANYOF_FLAGS(node) |= ANYOF_MATCHES_ALL_ABOVE_BITMAP;
+   }
+   else if (end >= NUM_ANYOF_CODE_POINTS) {
+    ANYOF_FLAGS(node) |= ANYOF_HAS_UTF8_NONBITMAP_MATCHES;
+   }
+
+   /* Quit if are above what we should change */
+   if (start >= NUM_ANYOF_CODE_POINTS) {
+    break;
+   }
+
+   change_invlist = TRUE;
+
+   /* Set all the bits in the range, up to the max that we are doing */
+   high = (end < NUM_ANYOF_CODE_POINTS - 1)
+    ? end
+    : NUM_ANYOF_CODE_POINTS - 1;
+   for (i = start; i <= (int) high; i++) {
+    if (! ANYOF_BITMAP_TEST(node, i)) {
+     ANYOF_BITMAP_SET(node, i);
+    }
+   }
+  }
+  invlist_iterfinish(*invlist_ptr);
+
+  /* Done with loop; remove any code points that are in the bitmap from
+  * *invlist_ptr; similarly for code points above the bitmap if we have
+  * a flag to match all of them anyways */
+  if (change_invlist) {
+   _invlist_subtract(*invlist_ptr, PL_InBitmap, invlist_ptr);
+  }
+  if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
+   _invlist_intersection(*invlist_ptr, PL_InBitmap, invlist_ptr);
+  }
+
+  /* If have completely emptied it, remove it completely */
+  if (_invlist_len(*invlist_ptr) == 0) {
+   SvREFCNT_dec_NN(*invlist_ptr);
+   *invlist_ptr = NULL;
+  }
+ }
+}
+
+/* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
+   Character classes ([:foo:]) can also be negated ([:^foo:]).
+   Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
+   Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
+   but trigger failures because they are currently unimplemented. */
+
+#define POSIXCC_DONE(c)   ((c) == ':')
+#define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
+#define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
+
+PERL_STATIC_INLINE I32
+S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value, const bool strict)
+{
+ I32 namedclass = OOB_NAMEDCLASS;
+
+ PERL_ARGS_ASSERT_REGPPOSIXCC;
+
+ if (value == '[' && RExC_parse + 1 < RExC_end &&
+  /* I smell either [: or [= or [. -- POSIX has been here, right? */
+  POSIXCC(UCHARAT(RExC_parse)))
+ {
+  const char c = UCHARAT(RExC_parse);
+  char* const s = RExC_parse++;
+
+  while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
+   RExC_parse++;
+  if (RExC_parse == RExC_end) {
+   if (strict) {
+
+    /* Try to give a better location for the error (than the end of
+    * the string) by looking for the matching ']' */
+    RExC_parse = s;
+    while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
+     RExC_parse++;
+    }
+    vFAIL2("Unmatched '%c' in POSIX class", c);
+   }
+   /* Grandfather lone [:, [=, [. */
+   RExC_parse = s;
+  }
+  else {
+   const char* const t = RExC_parse++; /* skip over the c */
+   assert(*t == c);
+
+   if (UCHARAT(RExC_parse) == ']') {
+    const char *posixcc = s + 1;
+    RExC_parse++; /* skip over the ending ] */
+
+    if (*s == ':') {
+     const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
+     const I32 skip = t - posixcc;
+
+     /* Initially switch on the length of the name.  */
+     switch (skip) {
+     case 4:
+      if (memEQ(posixcc, "word", 4)) /* this is not POSIX,
+              this is the Perl \w
+              */
+       namedclass = ANYOF_WORDCHAR;
+      break;
+     case 5:
+      /* Names all of length 5.  */
+      /* alnum alpha ascii blank cntrl digit graph lower
+      print punct space upper  */
+      /* Offset 4 gives the best switch position.  */
+      switch (posixcc[4]) {
+      case 'a':
+       if (memEQ(posixcc, "alph", 4)) /* alpha */
+        namedclass = ANYOF_ALPHA;
+       break;
+      case 'e':
+       if (memEQ(posixcc, "spac", 4)) /* space */
+        namedclass = ANYOF_SPACE;
+       break;
+      case 'h':
+       if (memEQ(posixcc, "grap", 4)) /* graph */
+        namedclass = ANYOF_GRAPH;
+       break;
+      case 'i':
+       if (memEQ(posixcc, "asci", 4)) /* ascii */
+        namedclass = ANYOF_ASCII;
+       break;
+      case 'k':
+       if (memEQ(posixcc, "blan", 4)) /* blank */
+        namedclass = ANYOF_BLANK;
+       break;
+      case 'l':
+       if (memEQ(posixcc, "cntr", 4)) /* cntrl */
+        namedclass = ANYOF_CNTRL;
+       break;
+      case 'm':
+       if (memEQ(posixcc, "alnu", 4)) /* alnum */
+        namedclass = ANYOF_ALPHANUMERIC;
+       break;
+      case 'r':
+       if (memEQ(posixcc, "lowe", 4)) /* lower */
+        namedclass = (FOLD) ? ANYOF_CASED : ANYOF_LOWER;
+       else if (memEQ(posixcc, "uppe", 4)) /* upper */
+        namedclass = (FOLD) ? ANYOF_CASED : ANYOF_UPPER;
+       break;
+      case 't':
+       if (memEQ(posixcc, "digi", 4)) /* digit */
+        namedclass = ANYOF_DIGIT;
+       else if (memEQ(posixcc, "prin", 4)) /* print */
+        namedclass = ANYOF_PRINT;
+       else if (memEQ(posixcc, "punc", 4)) /* punct */
+        namedclass = ANYOF_PUNCT;
+       break;
+      }
+      break;
+     case 6:
+      if (memEQ(posixcc, "xdigit", 6))
+       namedclass = ANYOF_XDIGIT;
+      break;
+     }
+
+     if (namedclass == OOB_NAMEDCLASS)
+      vFAIL2utf8f(
+       "POSIX class [:%"UTF8f":] unknown",
+       UTF8fARG(UTF, t - s - 1, s + 1));
+
+     /* The #defines are structured so each complement is +1 to
+     * the normal one */
+     if (complement) {
+      namedclass++;
+     }
+     assert (posixcc[skip] == ':');
+     assert (posixcc[skip+1] == ']');
+    } else if (!SIZE_ONLY) {
+     /* [[=foo=]] and [[.foo.]] are still future. */
+
+     /* adjust RExC_parse so the warning shows after
+     the class closes */
+     while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
+      RExC_parse++;
+     vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
+    }
+   } else {
+    /* Maternal grandfather:
+    * "[:" ending in ":" but not in ":]" */
+    if (strict) {
+     vFAIL("Unmatched '[' in POSIX class");
+    }
+
+    /* Grandfather lone [:, [=, [. */
+    RExC_parse = s;
+   }
+  }
+ }
+
+ return namedclass;
+}
+
+STATIC bool
+S_could_it_be_a_POSIX_class(RExC_state_t *pRExC_state)
+{
+ /* This applies some heuristics at the current parse position (which should
+ * be at a '[') to see if what follows might be intended to be a [:posix:]
+ * class.  It returns true if it really is a posix class, of course, but it
+ * also can return true if it thinks that what was intended was a posix
+ * class that didn't quite make it.
+ *
+ * It will return true for
+ *      [:alphanumerics:
+ *      [:alphanumerics]  (as long as the ] isn't followed immediately by a
+ *                         ')' indicating the end of the (?[
+ *      [:any garbage including %^&$ punctuation:]
+ *
+ * This is designed to be called only from S_handle_regex_sets; it could be
+ * easily adapted to be called from the spot at the beginning of regclass()
+ * that checks to see in a normal bracketed class if the surrounding []
+ * have been omitted ([:word:] instead of [[:word:]]).  But doing so would
+ * change long-standing behavior, so I (khw) didn't do that */
+ char* p = RExC_parse + 1;
+ char first_char = *p;
+
+ PERL_ARGS_ASSERT_COULD_IT_BE_A_POSIX_CLASS;
+
+ assert(*(p - 1) == '[');
+
+ if (! POSIXCC(first_char)) {
+  return FALSE;
+ }
+
+ p++;
+ while (p < RExC_end && isWORDCHAR(*p)) p++;
+
+ if (p >= RExC_end) {
+  return FALSE;
+ }
+
+ if (p - RExC_parse > 2    /* Got at least 1 word character */
+  && (*p == first_char
+   || (*p == ']' && p + 1 < RExC_end && *(p + 1) != ')')))
+ {
+  return TRUE;
+ }
+
+ p = (char *) memchr(RExC_parse, ']', RExC_end - RExC_parse);
+
+ return (p
+   && p - RExC_parse > 2 /* [:] evaluates to colon;
+         [::] is a bad posix class. */
+   && first_char == *(p - 1));
+}
+
+STATIC unsigned  int
+S_regex_set_precedence(const U8 my_operator) {
+
+ /* Returns the precedence in the (?[...]) construct of the input operator,
+ * specified by its character representation.  The precedence follows
+ * general Perl rules, but it extends this so that ')' and ']' have (low)
+ * precedence even though they aren't really operators */
+
+ switch (my_operator) {
+  case '!':
+   return 5;
+  case '&':
+   return 4;
+  case '^':
+  case '|':
+  case '+':
+  case '-':
+   return 3;
+  case ')':
+   return 2;
+  case ']':
+   return 1;
+ }
+
+ NOT_REACHED; /* NOTREACHED */
+ return 0;   /* Silence compiler warning */
+}
+
+STATIC regnode *
+S_handle_regex_sets(pTHX_ RExC_state_t *pRExC_state, SV** return_invlist,
+     I32 *flagp, U32 depth,
+     char * const oregcomp_parse)
+{
+ /* Handle the (?[...]) construct to do set operations */
+
+ U8 curchar;                     /* Current character being parsed */
+ UV start, end;             /* End points of code point ranges */
+ SV* final = NULL;               /* The end result inversion list */
+ SV* result_string;              /* 'final' stringified */
+ AV* stack;                      /* stack of operators and operands not yet
+         resolved */
+ AV* fence_stack = NULL;         /* A stack containing the positions in
+         'stack' of where the undealt-with left
+         parens would be if they were actually
+         put there */
+ IV fence = 0;                   /* Position of where most recent undealt-
+         with left paren in stack is; -1 if none.
+         */
+ STRLEN len;                     /* Temporary */
+ regnode* node;                  /* Temporary, and final regnode returned by
+         this function */
+ const bool save_fold = FOLD;    /* Temporary */
+ char *save_end, *save_parse;    /* Temporaries */
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_HANDLE_REGEX_SETS;
+
+ if (LOC) {  /* XXX could make valid in UTF-8 locales */
+  vFAIL("(?[...]) not valid in locale");
+ }
+ RExC_uni_semantics = 1;     /* The use of this operator implies /u.  This
+        is required so that the compile time values
+        are valid in all runtime cases */
+
+ /* This will return only an ANYOF regnode, or (unlikely) something smaller
+ * (such as EXACT).  Thus we can skip most everything if just sizing.  We
+ * call regclass to handle '[]' so as to not have to reinvent its parsing
+ * rules here (throwing away the size it computes each time).  And, we exit
+ * upon an unescaped ']' that isn't one ending a regclass.  To do both
+ * these things, we need to realize that something preceded by a backslash
+ * is escaped, so we have to keep track of backslashes */
+ if (SIZE_ONLY) {
+  UV depth = 0; /* how many nested (?[...]) constructs */
+
+  while (RExC_parse < RExC_end) {
+   SV* current = NULL;
+   RExC_parse = regpatws(pRExC_state, RExC_parse,
+          TRUE); /* means recognize comments */
+   switch (*RExC_parse) {
+    case '?':
+     if (RExC_parse[1] == '[') depth++, RExC_parse++;
+     /* FALLTHROUGH */
+    default:
+     break;
+    case '\\':
+     /* Skip the next byte (which could cause us to end up in
+     * the middle of a UTF-8 character, but since none of those
+     * are confusable with anything we currently handle in this
+     * switch (invariants all), it's safe.  We'll just hit the
+     * default: case next time and keep on incrementing until
+     * we find one of the invariants we do handle. */
+     RExC_parse++;
+     break;
+    case '[':
+    {
+     /* If this looks like it is a [:posix:] class, leave the
+     * parse pointer at the '[' to fool regclass() into
+     * thinking it is part of a '[[:posix:]]'.  That function
+     * will use strict checking to force a syntax error if it
+     * doesn't work out to a legitimate class */
+     bool is_posix_class
+         = could_it_be_a_POSIX_class(pRExC_state);
+     if (! is_posix_class) {
+      RExC_parse++;
+     }
+
+     /* regclass() can only return RESTART_UTF8 if multi-char
+     folds are allowed.  */
+     if (!regclass(pRExC_state, flagp,depth+1,
+        is_posix_class, /* parse the whole char
+             class only if not a
+             posix class */
+        FALSE, /* don't allow multi-char folds */
+        TRUE, /* silence non-portable warnings. */
+        TRUE, /* strict */
+        &current
+        ))
+      FAIL2("panic: regclass returned NULL to handle_sets, "
+       "flags=%#"UVxf"", (UV) *flagp);
+
+     /* function call leaves parse pointing to the ']', except
+     * if we faked it */
+     if (is_posix_class) {
+      RExC_parse--;
+     }
+
+     SvREFCNT_dec(current);   /* In case it returned something */
+     break;
+    }
+
+    case ']':
+     if (depth--) break;
+     RExC_parse++;
+     if (RExC_parse < RExC_end
+      && *RExC_parse == ')')
+     {
+      node = reganode(pRExC_state, ANYOF, 0);
+      RExC_size += ANYOF_SKIP;
+      nextchar(pRExC_state);
+      Set_Node_Length(node,
+        RExC_parse - oregcomp_parse + 1); /* MJD */
+      return node;
+     }
+     goto no_close;
+   }
+   RExC_parse++;
+  }
+
+ no_close:
+  FAIL("Syntax error in (?[...])");
+ }
+
+ /* Pass 2 only after this. */
+ Perl_ck_warner_d(aTHX_
+  packWARN(WARN_EXPERIMENTAL__REGEX_SETS),
+  "The regex_sets feature is experimental" REPORT_LOCATION,
+   UTF8fARG(UTF, (RExC_parse - RExC_precomp), RExC_precomp),
+   UTF8fARG(UTF,
+     RExC_end - RExC_start - (RExC_parse - RExC_precomp),
+     RExC_precomp + (RExC_parse - RExC_precomp)));
+
+ /* Everything in this construct is a metacharacter.  Operands begin with
+ * either a '\' (for an escape sequence), or a '[' for a bracketed
+ * character class.  Any other character should be an operator, or
+ * parenthesis for grouping.  Both types of operands are handled by calling
+ * regclass() to parse them.  It is called with a parameter to indicate to
+ * return the computed inversion list.  The parsing here is implemented via
+ * a stack.  Each entry on the stack is a single character representing one
+ * of the operators; or else a pointer to an operand inversion list. */
+
+#define IS_OPERAND(a)  (! SvIOK(a))
+
+ /* The stack is kept in Łukasiewicz order.  (That's pronounced similar
+ * to luke-a-shave-itch (or -itz), but people who didn't want to bother
+ * with prounouncing it called it Reverse Polish instead, but now that YOU
+ * know how to prounounce it you can use the correct term, thus giving due
+ * credit to the person who invented it, and impressing your geek friends.
+ * Wikipedia says that the pronounciation of "Ł" has been changing so that
+ * it is now more like an English initial W (as in wonk) than an L.)
+ *
+ * This means that, for example, 'a | b & c' is stored on the stack as
+ *
+ * c  [4]
+ * b  [3]
+ * &  [2]
+ * a  [1]
+ * |  [0]
+ *
+ * where the numbers in brackets give the stack [array] element number.
+ * In this implementation, parentheses are not stored on the stack.
+ * Instead a '(' creates a "fence" so that the part of the stack below the
+ * fence is invisible except to the corresponding ')' (this allows us to
+ * replace testing for parens, by using instead subtraction of the fence
+ * position).  As new operands are processed they are pushed onto the stack
+ * (except as noted in the next paragraph).  New operators of higher
+ * precedence than the current final one are inserted on the stack before
+ * the lhs operand (so that when the rhs is pushed next, everything will be
+ * in the correct positions shown above.  When an operator of equal or
+ * lower precedence is encountered in parsing, all the stacked operations
+ * of equal or higher precedence are evaluated, leaving the result as the
+ * top entry on the stack.  This makes higher precedence operations
+ * evaluate before lower precedence ones, and causes operations of equal
+ * precedence to left associate.
+ *
+ * The only unary operator '!' is immediately pushed onto the stack when
+ * encountered.  When an operand is encountered, if the top of the stack is
+ * a '!", the complement is immediately performed, and the '!' popped.  The
+ * resulting value is treated as a new operand, and the logic in the
+ * previous paragraph is executed.  Thus in the expression
+ *      [a] + ! [b]
+ * the stack looks like
+ *
+ * !
+ * a
+ * +
+ *
+ * as 'b' gets parsed, the latter gets evaluated to '!b', and the stack
+ * becomes
+ *
+ * !b
+ * a
+ * +
+ *
+ * A ')' is treated as an operator with lower precedence than all the
+ * aforementioned ones, which causes all operations on the stack above the
+ * corresponding '(' to be evaluated down to a single resultant operand.
+ * Then the fence for the '(' is removed, and the operand goes through the
+ * algorithm above, without the fence.
+ *
+ * A separate stack is kept of the fence positions, so that the position of
+ * the latest so-far unbalanced '(' is at the top of it.
+ *
+ * The ']' ending the construct is treated as the lowest operator of all,
+ * so that everything gets evaluated down to a single operand, which is the
+ * result */
+
+ sv_2mortal((SV *)(stack = newAV()));
+ sv_2mortal((SV *)(fence_stack = newAV()));
+
+ while (RExC_parse < RExC_end) {
+  I32 top_index;              /* Index of top-most element in 'stack' */
+  SV** top_ptr;               /* Pointer to top 'stack' element */
+  SV* current = NULL;         /* To contain the current inversion list
+         operand */
+  SV* only_to_avoid_leaks;
+
+  /* Skip white space */
+  RExC_parse = regpatws(pRExC_state, RExC_parse,
+    TRUE /* means recognize comments */ );
+  if (RExC_parse >= RExC_end) {
+   Perl_croak(aTHX_ "panic: Read past end of '(?[ ])'");
+  }
+
+  curchar = UCHARAT(RExC_parse);
+
+redo_curchar:
+
+  top_index = av_tindex(stack);
+
+  switch (curchar) {
+   SV** stacked_ptr;       /* Ptr to something already on 'stack' */
+   char stacked_operator;  /* The topmost operator on the 'stack'. */
+   SV* lhs;                /* Operand to the left of the operator */
+   SV* rhs;                /* Operand to the right of the operator */
+   SV* fence_ptr;          /* Pointer to top element of the fence
+         stack */
+
+   case '(':
+
+    if (RExC_parse < RExC_end && (UCHARAT(RExC_parse + 1) == '?'))
+    {
+     /* If is a '(?', could be an embedded '(?flags:(?[...])'.
+     * This happens when we have some thing like
+     *
+     *   my $thai_or_lao = qr/(?[ \p{Thai} + \p{Lao} ])/;
+     *   ...
+     *   qr/(?[ \p{Digit} & $thai_or_lao ])/;
+     *
+     * Here we would be handling the interpolated
+     * '$thai_or_lao'.  We handle this by a recursive call to
+     * ourselves which returns the inversion list the
+     * interpolated expression evaluates to.  We use the flags
+     * from the interpolated pattern. */
+     U32 save_flags = RExC_flags;
+     const char * save_parse;
+
+     RExC_parse += 2;        /* Skip past the '(?' */
+     save_parse = RExC_parse;
+
+     /* Parse any flags for the '(?' */
+     parse_lparen_question_flags(pRExC_state);
+
+     if (RExC_parse == save_parse  /* Makes sure there was at
+             least one flag (or else
+             this embedding wasn't
+             compiled) */
+      || RExC_parse >= RExC_end - 4
+      || UCHARAT(RExC_parse) != ':'
+      || UCHARAT(++RExC_parse) != '('
+      || UCHARAT(++RExC_parse) != '?'
+      || UCHARAT(++RExC_parse) != '[')
+     {
+
+      /* In combination with the above, this moves the
+      * pointer to the point just after the first erroneous
+      * character (or if there are no flags, to where they
+      * should have been) */
+      if (RExC_parse >= RExC_end - 4) {
+       RExC_parse = RExC_end;
+      }
+      else if (RExC_parse != save_parse) {
+       RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+      }
+      vFAIL("Expecting '(?flags:(?[...'");
+     }
+
+     /* Recurse, with the meat of the embedded expression */
+     RExC_parse++;
+     (void) handle_regex_sets(pRExC_state, &current, flagp,
+             depth+1, oregcomp_parse);
+
+     /* Here, 'current' contains the embedded expression's
+     * inversion list, and RExC_parse points to the trailing
+     * ']'; the next character should be the ')' */
+     RExC_parse++;
+     assert(RExC_parse < RExC_end && UCHARAT(RExC_parse) == ')');
+
+     /* Then the ')' matching the original '(' handled by this
+     * case: statement */
+     RExC_parse++;
+     assert(RExC_parse < RExC_end && UCHARAT(RExC_parse) == ')');
+
+     RExC_parse++;
+     RExC_flags = save_flags;
+     goto handle_operand;
+    }
+
+    /* A regular '('.  Look behind for illegal syntax */
+    if (top_index - fence >= 0) {
+     /* If the top entry on the stack is an operator, it had
+     * better be a '!', otherwise the entry below the top
+     * operand should be an operator */
+     if ( ! (top_ptr = av_fetch(stack, top_index, FALSE))
+      || (! IS_OPERAND(*top_ptr) && SvUV(*top_ptr) != '!')
+      || top_index - fence < 1
+      || ! (stacked_ptr = av_fetch(stack,
+             top_index - 1,
+             FALSE))
+      || IS_OPERAND(*stacked_ptr))
+     {
+      RExC_parse++;
+      vFAIL("Unexpected '(' with no preceding operator");
+     }
+    }
+
+    /* Stack the position of this undealt-with left paren */
+    fence = top_index + 1;
+    av_push(fence_stack, newSViv(fence));
+    break;
+
+   case '\\':
+    /* regclass() can only return RESTART_UTF8 if multi-char
+    folds are allowed.  */
+    if (!regclass(pRExC_state, flagp,depth+1,
+       TRUE, /* means parse just the next thing */
+       FALSE, /* don't allow multi-char folds */
+       FALSE, /* don't silence non-portable warnings.  */
+       TRUE,  /* strict */
+       &current))
+    {
+     FAIL2("panic: regclass returned NULL to handle_sets, "
+      "flags=%#"UVxf"", (UV) *flagp);
+    }
+
+    /* regclass() will return with parsing just the \ sequence,
+    * leaving the parse pointer at the next thing to parse */
+    RExC_parse--;
+    goto handle_operand;
+
+   case '[':   /* Is a bracketed character class */
+   {
+    bool is_posix_class = could_it_be_a_POSIX_class(pRExC_state);
+
+    if (! is_posix_class) {
+     RExC_parse++;
+    }
+
+    /* regclass() can only return RESTART_UTF8 if multi-char
+    folds are allowed.  */
+    if(!regclass(pRExC_state, flagp,depth+1,
+       is_posix_class, /* parse the whole char class
+            only if not a posix class */
+       FALSE, /* don't allow multi-char folds */
+       FALSE, /* don't silence non-portable warnings.  */
+       TRUE,   /* strict */
+       &current
+       ))
+    {
+     FAIL2("panic: regclass returned NULL to handle_sets, "
+      "flags=%#"UVxf"", (UV) *flagp);
+    }
+
+    /* function call leaves parse pointing to the ']', except if we
+    * faked it */
+    if (is_posix_class) {
+     RExC_parse--;
+    }
+
+    goto handle_operand;
+   }
+
+   case ']':
+    if (top_index >= 1) {
+     goto join_operators;
+    }
+
+    /* Only a single operand on the stack: are done */
+    goto done;
+
+   case ')':
+    if (av_tindex(fence_stack) < 0) {
+     RExC_parse++;
+     vFAIL("Unexpected ')'");
+    }
+
+    /* If at least two thing on the stack, treat this as an
+    * operator */
+    if (top_index - fence >= 1) {
+     goto join_operators;
+    }
+
+    /* Here only a single thing on the fenced stack, and there is a
+    * fence.  Get rid of it */
+    fence_ptr = av_pop(fence_stack);
+    assert(fence_ptr);
+    fence = SvIV(fence_ptr) - 1;
+    SvREFCNT_dec_NN(fence_ptr);
+    fence_ptr = NULL;
+
+    if (fence < 0) {
+     fence = 0;
+    }
+
+    /* Having gotten rid of the fence, we pop the operand at the
+    * stack top and process it as a newly encountered operand */
+    current = av_pop(stack);
+    assert(IS_OPERAND(current));
+    goto handle_operand;
+
+   case '&':
+   case '|':
+   case '+':
+   case '-':
+   case '^':
+
+    /* These binary operators should have a left operand already
+    * parsed */
+    if (   top_index - fence < 0
+     || top_index - fence == 1
+     || ( ! (top_ptr = av_fetch(stack, top_index, FALSE)))
+     || ! IS_OPERAND(*top_ptr))
+    {
+     goto unexpected_binary;
+    }
+
+    /* If only the one operand is on the part of the stack visible
+    * to us, we just place this operator in the proper position */
+    if (top_index - fence < 2) {
+
+     /* Place the operator before the operand */
+
+     SV* lhs = av_pop(stack);
+     av_push(stack, newSVuv(curchar));
+     av_push(stack, lhs);
+     break;
+    }
+
+    /* But if there is something else on the stack, we need to
+    * process it before this new operator if and only if the
+    * stacked operation has equal or higher precedence than the
+    * new one */
+
+   join_operators:
+
+    /* The operator on the stack is supposed to be below both its
+    * operands */
+    if (   ! (stacked_ptr = av_fetch(stack, top_index - 2, FALSE))
+     || IS_OPERAND(*stacked_ptr))
+    {
+     /* But if not, it's legal and indicates we are completely
+     * done if and only if we're currently processing a ']',
+     * which should be the final thing in the expression */
+     if (curchar == ']') {
+      goto done;
+     }
+
+    unexpected_binary:
+     RExC_parse++;
+     vFAIL2("Unexpected binary operator '%c' with no "
+      "preceding operand", curchar);
+    }
+    stacked_operator = (char) SvUV(*stacked_ptr);
+
+    if (regex_set_precedence(curchar)
+     > regex_set_precedence(stacked_operator))
+    {
+     /* Here, the new operator has higher precedence than the
+     * stacked one.  This means we need to add the new one to
+     * the stack to await its rhs operand (and maybe more
+     * stuff).  We put it before the lhs operand, leaving
+     * untouched the stacked operator and everything below it
+     * */
+     lhs = av_pop(stack);
+     assert(IS_OPERAND(lhs));
+
+     av_push(stack, newSVuv(curchar));
+     av_push(stack, lhs);
+     break;
+    }
+
+    /* Here, the new operator has equal or lower precedence than
+    * what's already there.  This means the operation already
+    * there should be performed now, before the new one. */
+    rhs = av_pop(stack);
+    lhs = av_pop(stack);
+
+    assert(IS_OPERAND(rhs));
+    assert(IS_OPERAND(lhs));
+
+    switch (stacked_operator) {
+     case '&':
+      _invlist_intersection(lhs, rhs, &rhs);
+      break;
+
+     case '|':
+     case '+':
+      _invlist_union(lhs, rhs, &rhs);
+      break;
+
+     case '-':
+      _invlist_subtract(lhs, rhs, &rhs);
+      break;
+
+     case '^':   /* The union minus the intersection */
+     {
+      SV* i = NULL;
+      SV* u = NULL;
+      SV* element;
+
+      _invlist_union(lhs, rhs, &u);
+      _invlist_intersection(lhs, rhs, &i);
+      /* _invlist_subtract will overwrite rhs
+       without freeing what it already contains */
+      element = rhs;
+      _invlist_subtract(u, i, &rhs);
+      SvREFCNT_dec_NN(i);
+      SvREFCNT_dec_NN(u);
+      SvREFCNT_dec_NN(element);
+      break;
+     }
+    }
+    SvREFCNT_dec(lhs);
+
+    /* Here, the higher precedence operation has been done, and the
+    * result is in 'rhs'.  We overwrite the stacked operator with
+    * the result.  Then we redo this code to either push the new
+    * operator onto the stack or perform any higher precedence
+    * stacked operation */
+    only_to_avoid_leaks = av_pop(stack);
+    SvREFCNT_dec(only_to_avoid_leaks);
+    av_push(stack, rhs);
+    goto redo_curchar;
+
+   case '!':   /* Highest priority, right associative, so just push
+      onto stack */
+    av_push(stack, newSVuv(curchar));
+    break;
+
+   default:
+    RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+    vFAIL("Unexpected character");
+
+  handle_operand:
+
+   /* Here 'current' is the operand.  If something is already on the
+   * stack, we have to check if it is a !. */
+   top_index = av_tindex(stack);   /* Code above may have altered the
+           * stack in the time since we
+           * earlier set 'top_index'. */
+   if (top_index - fence >= 0) {
+    /* If the top entry on the stack is an operator, it had better
+    * be a '!', otherwise the entry below the top operand should
+    * be an operator */
+    top_ptr = av_fetch(stack, top_index, FALSE);
+    assert(top_ptr);
+    if (! IS_OPERAND(*top_ptr)) {
+
+     /* The only permissible operator at the top of the stack is
+     * '!', which is applied immediately to this operand. */
+     curchar = (char) SvUV(*top_ptr);
+     if (curchar != '!') {
+      SvREFCNT_dec(current);
+      vFAIL2("Unexpected binary operator '%c' with no "
+        "preceding operand", curchar);
+     }
+
+     _invlist_invert(current);
+
+     only_to_avoid_leaks = av_pop(stack);
+     SvREFCNT_dec(only_to_avoid_leaks);
+     top_index = av_tindex(stack);
+
+     /* And we redo with the inverted operand.  This allows
+     * handling multiple ! in a row */
+     goto handle_operand;
+    }
+      /* Single operand is ok only for the non-binary ')'
+      * operator */
+    else if ((top_index - fence == 0 && curchar != ')')
+      || (top_index - fence > 0
+       && (! (stacked_ptr = av_fetch(stack,
+              top_index - 1,
+              FALSE))
+        || IS_OPERAND(*stacked_ptr))))
+    {
+     SvREFCNT_dec(current);
+     vFAIL("Operand with no preceding operator");
+    }
+   }
+
+   /* Here there was nothing on the stack or the top element was
+   * another operand.  Just add this new one */
+   av_push(stack, current);
+
+  } /* End of switch on next parse token */
+
+  RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+ } /* End of loop parsing through the construct */
+
+  done:
+ if (av_tindex(fence_stack) >= 0) {
+  vFAIL("Unmatched (");
+ }
+
+ if (av_tindex(stack) < 0   /* Was empty */
+  || ((final = av_pop(stack)) == NULL)
+  || ! IS_OPERAND(final)
+  || av_tindex(stack) >= 0)  /* More left on stack */
+ {
+  SvREFCNT_dec(final);
+  vFAIL("Incomplete expression within '(?[ ])'");
+ }
+
+ /* Here, 'final' is the resultant inversion list from evaluating the
+ * expression.  Return it if so requested */
+ if (return_invlist) {
+  *return_invlist = final;
+  return END;
+ }
+
+ /* Otherwise generate a resultant node, based on 'final'.  regclass() is
+ * expecting a string of ranges and individual code points */
+ invlist_iterinit(final);
+ result_string = newSVpvs("");
+ while (invlist_iternext(final, &start, &end)) {
+  if (start == end) {
+   Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}", start);
+  }
+  else {
+   Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}-\\x{%"UVXf"}",
+             start,          end);
+  }
+ }
+
+ /* About to generate an ANYOF (or similar) node from the inversion list we
+ * have calculated */
+ save_parse = RExC_parse;
+ RExC_parse = SvPV(result_string, len);
+ save_end = RExC_end;
+ RExC_end = RExC_parse + len;
+
+ /* We turn off folding around the call, as the class we have constructed
+ * already has all folding taken into consideration, and we don't want
+ * regclass() to add to that */
+ RExC_flags &= ~RXf_PMf_FOLD;
+ /* regclass() can only return RESTART_UTF8 if multi-char folds are allowed.
+ */
+ node = regclass(pRExC_state, flagp,depth+1,
+     FALSE, /* means parse the whole char class */
+     FALSE, /* don't allow multi-char folds */
+     TRUE, /* silence non-portable warnings.  The above may very
+       well have generated non-portable code points, but
+       they're valid on this machine */
+     FALSE, /* similarly, no need for strict */
+     NULL
+    );
+ if (!node)
+  FAIL2("panic: regclass returned NULL to handle_sets, flags=%#"UVxf,
+     PTR2UV(flagp));
+ if (save_fold) {
+  RExC_flags |= RXf_PMf_FOLD;
+ }
+ RExC_parse = save_parse + 1;
+ RExC_end = save_end;
+ SvREFCNT_dec_NN(final);
+ SvREFCNT_dec_NN(result_string);
+
+ nextchar(pRExC_state);
+ Set_Node_Length(node, RExC_parse - oregcomp_parse + 1); /* MJD */
+ return node;
+}
+#undef IS_OPERAND
+
+STATIC void
+S_add_above_Latin1_folds(pTHX_ RExC_state_t *pRExC_state, const U8 cp, SV** invlist)
+{
+ /* This hard-codes the Latin1/above-Latin1 folding rules, so that an
+ * innocent-looking character class, like /[ks]/i won't have to go out to
+ * disk to find the possible matches.
+ *
+ * This should be called only for a Latin1-range code points, cp, which is
+ * known to be involved in a simple fold with other code points above
+ * Latin1.  It would give false results if /aa has been specified.
+ * Multi-char folds are outside the scope of this, and must be handled
+ * specially.
+ *
+ * XXX It would be better to generate these via regen, in case a new
+ * version of the Unicode standard adds new mappings, though that is not
+ * really likely, and may be caught by the default: case of the switch
+ * below. */
+
+ PERL_ARGS_ASSERT_ADD_ABOVE_LATIN1_FOLDS;
+
+ assert(HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(cp));
+
+ switch (cp) {
+  case 'k':
+  case 'K':
+  *invlist =
+   add_cp_to_invlist(*invlist, KELVIN_SIGN);
+   break;
+  case 's':
+  case 'S':
+  *invlist = add_cp_to_invlist(*invlist, LATIN_SMALL_LETTER_LONG_S);
+   break;
+  case MICRO_SIGN:
+  *invlist = add_cp_to_invlist(*invlist, GREEK_CAPITAL_LETTER_MU);
+  *invlist = add_cp_to_invlist(*invlist, GREEK_SMALL_LETTER_MU);
+   break;
+  case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
+  case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
+  *invlist = add_cp_to_invlist(*invlist, ANGSTROM_SIGN);
+   break;
+  case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
+  *invlist = add_cp_to_invlist(*invlist,
+          LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
+   break;
+  case LATIN_SMALL_LETTER_SHARP_S:
+  *invlist = add_cp_to_invlist(*invlist, LATIN_CAPITAL_LETTER_SHARP_S);
+   break;
+  default:
+   /* Use deprecated warning to increase the chances of this being
+   * output */
+   if (PASS2) {
+    ckWARN2reg_d(RExC_parse, "Perl folding rules are not up-to-date for 0x%02X; please use the perlbug utility to report;", cp);
+   }
+   break;
+ }
+}
+
+STATIC AV *
+S_add_multi_match(pTHX_ AV* multi_char_matches, SV* multi_string, const STRLEN cp_count)
+{
+ /* This adds the string scalar <multi_string> to the array
+ * <multi_char_matches>.  <multi_string> is known to have exactly
+ * <cp_count> code points in it.  This is used when constructing a
+ * bracketed character class and we find something that needs to match more
+ * than a single character.
+ *
+ * <multi_char_matches> is actually an array of arrays.  Each top-level
+ * element is an array that contains all the strings known so far that are
+ * the same length.  And that length (in number of code points) is the same
+ * as the index of the top-level array.  Hence, the [2] element is an
+ * array, each element thereof is a string containing TWO code points;
+ * while element [3] is for strings of THREE characters, and so on.  Since
+ * this is for multi-char strings there can never be a [0] nor [1] element.
+ *
+ * When we rewrite the character class below, we will do so such that the
+ * longest strings are written first, so that it prefers the longest
+ * matching strings first.  This is done even if it turns out that any
+ * quantifier is non-greedy, out of this programmer's (khw) laziness.  Tom
+ * Christiansen has agreed that this is ok.  This makes the test for the
+ * ligature 'ffi' come before the test for 'ff', for example */
+
+ AV* this_array;
+ AV** this_array_ptr;
+
+ PERL_ARGS_ASSERT_ADD_MULTI_MATCH;
+
+ if (! multi_char_matches) {
+  multi_char_matches = newAV();
+ }
+
+ if (av_exists(multi_char_matches, cp_count)) {
+  this_array_ptr = (AV**) av_fetch(multi_char_matches, cp_count, FALSE);
+  this_array = *this_array_ptr;
+ }
+ else {
+  this_array = newAV();
+  av_store(multi_char_matches, cp_count,
+    (SV*) this_array);
+ }
+ av_push(this_array, multi_string);
+
+ return multi_char_matches;
+}
+
+/* The names of properties whose definitions are not known at compile time are
+ * stored in this SV, after a constant heading.  So if the length has been
+ * changed since initialization, then there is a run-time definition. */
+#define HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION                            \
+          (SvCUR(listsv) != initial_listsv_len)
+
+STATIC regnode *
+S_regclass(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth,
+    const bool stop_at_1,  /* Just parse the next thing, don't
+          look for a full character class */
+    bool allow_multi_folds,
+    const bool silence_non_portable,   /* Don't output warnings
+             about too large
+             characters */
+    const bool strict,
+    SV** ret_invlist  /* Return an inversion list, not a node */
+  )
+{
+ /* parse a bracketed class specification.  Most of these will produce an
+ * ANYOF node; but something like [a] will produce an EXACT node; [aA], an
+ * EXACTFish node; [[:ascii:]], a POSIXA node; etc.  It is more complex
+ * under /i with multi-character folds: it will be rewritten following the
+ * paradigm of this example, where the <multi-fold>s are characters which
+ * fold to multiple character sequences:
+ *      /[abc\x{multi-fold1}def\x{multi-fold2}ghi]/i
+ * gets effectively rewritten as:
+ *      /(?:\x{multi-fold1}|\x{multi-fold2}|[abcdefghi]/i
+ * reg() gets called (recursively) on the rewritten version, and this
+ * function will return what it constructs.  (Actually the <multi-fold>s
+ * aren't physically removed from the [abcdefghi], it's just that they are
+ * ignored in the recursion by means of a flag:
+ * <RExC_in_multi_char_class>.)
+ *
+ * ANYOF nodes contain a bit map for the first NUM_ANYOF_CODE_POINTS
+ * characters, with the corresponding bit set if that character is in the
+ * list.  For characters above this, a range list or swash is used.  There
+ * are extra bits for \w, etc. in locale ANYOFs, as what these match is not
+ * determinable at compile time
+ *
+ * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs
+ * to be restarted.  This can only happen if ret_invlist is non-NULL.
+ */
+
+ UV prevvalue = OOB_UNICODE, save_prevvalue = OOB_UNICODE;
+ IV range = 0;
+ UV value = OOB_UNICODE, save_value = OOB_UNICODE;
+ regnode *ret;
+ STRLEN numlen;
+ IV namedclass = OOB_NAMEDCLASS;
+ char *rangebegin = NULL;
+ bool need_class = 0;
+ SV *listsv = NULL;
+ STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
+         than just initialized.  */
+ SV* properties = NULL;    /* Code points that match \p{} \P{} */
+ SV* posixes = NULL;     /* Code points that match classes like [:word:],
+       extended beyond the Latin1 range.  These have to
+       be kept separate from other code points for much
+       of this function because their handling  is
+       different under /i, and for most classes under
+       /d as well */
+ SV* nposixes = NULL;    /* Similarly for [:^word:].  These are kept
+       separate for a while from the non-complemented
+       versions because of complications with /d
+       matching */
+ SV* simple_posixes = NULL; /* But under some conditions, the classes can be
+        treated more simply than the general case,
+        leading to less compilation and execution
+        work */
+ UV element_count = 0;   /* Number of distinct elements in the class.
+       Optimizations may be possible if this is tiny */
+ AV * multi_char_matches = NULL; /* Code points that fold to more than one
+         character; used under /i */
+ UV n;
+ char * stop_ptr = RExC_end;    /* where to stop parsing */
+ const bool skip_white = cBOOL(ret_invlist); /* ignore unescaped white
+            space? */
+
+ /* Unicode properties are stored in a swash; this holds the current one
+ * being parsed.  If this swash is the only above-latin1 component of the
+ * character class, an optimization is to pass it directly on to the
+ * execution engine.  Otherwise, it is set to NULL to indicate that there
+ * are other things in the class that have to be dealt with at execution
+ * time */
+ SV* swash = NULL;  /* Code points that match \p{} \P{} */
+
+ /* Set if a component of this character class is user-defined; just passed
+ * on to the engine */
+ bool has_user_defined_property = FALSE;
+
+ /* inversion list of code points this node matches only when the target
+ * string is in UTF-8.  (Because is under /d) */
+ SV* depends_list = NULL;
+
+ /* Inversion list of code points this node matches regardless of things
+ * like locale, folding, utf8ness of the target string */
+ SV* cp_list = NULL;
+
+ /* Like cp_list, but code points on this list need to be checked for things
+ * that fold to/from them under /i */
+ SV* cp_foldable_list = NULL;
+
+ /* Like cp_list, but code points on this list are valid only when the
+ * runtime locale is UTF-8 */
+ SV* only_utf8_locale_list = NULL;
+
+ /* In a range, if one of the endpoints is non-character-set portable,
+ * meaning that it hard-codes a code point that may mean a different
+ * charactger in ASCII vs. EBCDIC, as opposed to, say, a literal 'A' or a
+ * mnemonic '\t' which each mean the same character no matter which
+ * character set the platform is on. */
+ unsigned int non_portable_endpoint = 0;
+
+ /* Is the range unicode? which means on a platform that isn't 1-1 native
+ * to Unicode (i.e. non-ASCII), each code point in it should be considered
+ * to be a Unicode value.  */
+ bool unicode_range = FALSE;
+ bool invert = FALSE;    /* Is this class to be complemented */
+
+ bool warn_super = ALWAYS_WARN_SUPER;
+
+ regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
+  case we need to change the emitted regop to an EXACT. */
+ const char * orig_parse = RExC_parse;
+ const SSize_t orig_size = RExC_size;
+ bool posixl_matches_all = FALSE; /* Does /l class have both e.g. \W,\w ? */
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGCLASS;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ DEBUG_PARSE("clas");
+
+ /* Assume we are going to generate an ANYOF node. */
+ ret = reganode(pRExC_state,
+    (LOC)
+     ? ANYOFL
+     : ANYOF,
+    0);
+
+ if (SIZE_ONLY) {
+  RExC_size += ANYOF_SKIP;
+  listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
+ }
+ else {
+  ANYOF_FLAGS(ret) = 0;
+
+  RExC_emit += ANYOF_SKIP;
+  listsv = newSVpvs_flags("# comment\n", SVs_TEMP);
+  initial_listsv_len = SvCUR(listsv);
+  SvTEMP_off(listsv); /* Grr, TEMPs and mortals are conflated.  */
+ }
+
+ if (skip_white) {
+  RExC_parse = regpatws(pRExC_state, RExC_parse,
+       FALSE /* means don't recognize comments */ );
+ }
+
+ if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
+  RExC_parse++;
+  invert = TRUE;
+  allow_multi_folds = FALSE;
+  MARK_NAUGHTY(1);
+  if (skip_white) {
+   RExC_parse = regpatws(pRExC_state, RExC_parse,
+        FALSE /* means don't recognize comments */ );
+  }
+ }
+
+ /* Check that they didn't say [:posix:] instead of [[:posix:]] */
+ if (!SIZE_ONLY && RExC_parse < RExC_end && POSIXCC(UCHARAT(RExC_parse))) {
+  const char *s = RExC_parse;
+  const char  c = *s++;
+
+  if (*s == '^') {
+   s++;
+  }
+  while (isWORDCHAR(*s))
+   s++;
+  if (*s && c == *s && s[1] == ']') {
+   SAVEFREESV(RExC_rx_sv);
+   ckWARN3reg(s+2,
+     "POSIX syntax [%c %c] belongs inside character classes",
+     c, c);
+   (void)ReREFCNT_inc(RExC_rx_sv);
+  }
+ }
+
+ /* If the caller wants us to just parse a single element, accomplish this
+ * by faking the loop ending condition */
+ if (stop_at_1 && RExC_end > RExC_parse) {
+  stop_ptr = RExC_parse + 1;
+ }
+
+ /* allow 1st char to be ']' (allowing it to be '-' is dealt with later) */
+ if (UCHARAT(RExC_parse) == ']')
+  goto charclassloop;
+
+ while (1) {
+  if  (RExC_parse >= stop_ptr) {
+   break;
+  }
+
+  if (skip_white) {
+   RExC_parse = regpatws(pRExC_state, RExC_parse,
+        FALSE /* means don't recognize comments */ );
+  }
+
+  if  (UCHARAT(RExC_parse) == ']') {
+   break;
+  }
+
+ charclassloop:
+
+  namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
+  save_value = value;
+  save_prevvalue = prevvalue;
+
+  if (!range) {
+   rangebegin = RExC_parse;
+   element_count++;
+   non_portable_endpoint = 0;
+  }
+  if (UTF) {
+   value = utf8n_to_uvchr((U8*)RExC_parse,
+        RExC_end - RExC_parse,
+        &numlen, UTF8_ALLOW_DEFAULT);
+   RExC_parse += numlen;
+  }
+  else
+   value = UCHARAT(RExC_parse++);
+
+  if (value == '['
+   && RExC_parse < RExC_end
+   && POSIXCC(UCHARAT(RExC_parse)))
+  {
+   namedclass = regpposixcc(pRExC_state, value, strict);
+  }
+  else if (value == '\\') {
+   /* Is a backslash; get the code point of the char after it */
+   if (UTF && ! UTF8_IS_INVARIANT(UCHARAT(RExC_parse))) {
+    value = utf8n_to_uvchr((U8*)RExC_parse,
+        RExC_end - RExC_parse,
+        &numlen, UTF8_ALLOW_DEFAULT);
+    RExC_parse += numlen;
+   }
+   else
+    value = UCHARAT(RExC_parse++);
+
+   /* Some compilers cannot handle switching on 64-bit integer
+   * values, therefore value cannot be an UV.  Yes, this will
+   * be a problem later if we want switch on Unicode.
+   * A similar issue a little bit later when switching on
+   * namedclass. --jhi */
+
+   /* If the \ is escaping white space when white space is being
+   * skipped, it means that that white space is wanted literally, and
+   * is already in 'value'.  Otherwise, need to translate the escape
+   * into what it signifies. */
+   if (! skip_white || ! is_PATWS_cp(value)) switch ((I32)value) {
+
+   case 'w': namedclass = ANYOF_WORDCHAR; break;
+   case 'W': namedclass = ANYOF_NWORDCHAR; break;
+   case 's': namedclass = ANYOF_SPACE; break;
+   case 'S': namedclass = ANYOF_NSPACE; break;
+   case 'd': namedclass = ANYOF_DIGIT; break;
+   case 'D': namedclass = ANYOF_NDIGIT; break;
+   case 'v': namedclass = ANYOF_VERTWS; break;
+   case 'V': namedclass = ANYOF_NVERTWS; break;
+   case 'h': namedclass = ANYOF_HORIZWS; break;
+   case 'H': namedclass = ANYOF_NHORIZWS; break;
+   case 'N':  /* Handle \N{NAME} in class */
+    {
+     const char * const backslash_N_beg = RExC_parse - 2;
+     int cp_count;
+
+     if (! grok_bslash_N(pRExC_state,
+          NULL,      /* No regnode */
+          &value,    /* Yes single value */
+          &cp_count, /* Multiple code pt count */
+          flagp,
+          depth)
+     ) {
+
+      if (*flagp & RESTART_UTF8)
+       FAIL("panic: grok_bslash_N set RESTART_UTF8");
+
+      if (cp_count < 0) {
+       vFAIL("\\N in a character class must be a named character: \\N{...}");
+      }
+      else if (cp_count == 0) {
+       if (strict) {
+        RExC_parse++;   /* Position after the "}" */
+        vFAIL("Zero length \\N{}");
+       }
+       else if (PASS2) {
+        ckWARNreg(RExC_parse,
+          "Ignoring zero length \\N{} in character class");
+       }
+      }
+      else { /* cp_count > 1 */
+       if (! RExC_in_multi_char_class) {
+        if (invert || range || *RExC_parse == '-') {
+         if (strict) {
+          RExC_parse--;
+          vFAIL("\\N{} in inverted character class or as a range end-point is restricted to one character");
+         }
+         else if (PASS2) {
+          ckWARNreg(RExC_parse, "Using just the first character returned by \\N{} in character class");
+         }
+         break; /* <value> contains the first code
+           point. Drop out of the switch to
+           process it */
+        }
+        else {
+         SV * multi_char_N = newSVpvn(backslash_N_beg,
+            RExC_parse - backslash_N_beg);
+         multi_char_matches
+          = add_multi_match(multi_char_matches,
+              multi_char_N,
+              cp_count);
+        }
+       }
+      } /* End of cp_count != 1 */
+
+      /* This element should not be processed further in this
+      * class */
+      element_count--;
+      value = save_value;
+      prevvalue = save_prevvalue;
+      continue;   /* Back to top of loop to get next char */
+     }
+
+     /* Here, is a single code point, and <value> contains it */
+     unicode_range = TRUE;   /* \N{} are Unicode */
+    }
+    break;
+   case 'p':
+   case 'P':
+    {
+    char *e;
+
+    /* We will handle any undefined properties ourselves */
+    U8 swash_init_flags = _CORE_SWASH_INIT_RETURN_IF_UNDEF
+         /* And we actually would prefer to get
+          * the straight inversion list of the
+          * swash, since we will be accessing it
+          * anyway, to save a little time */
+         |_CORE_SWASH_INIT_ACCEPT_INVLIST;
+
+    if (RExC_parse >= RExC_end)
+     vFAIL2("Empty \\%c{}", (U8)value);
+    if (*RExC_parse == '{') {
+     const U8 c = (U8)value;
+     e = strchr(RExC_parse++, '}');
+     if (!e)
+      vFAIL2("Missing right brace on \\%c{}", c);
+     while (isSPACE(*RExC_parse))
+      RExC_parse++;
+     if (e == RExC_parse)
+      vFAIL2("Empty \\%c{}", c);
+     n = e - RExC_parse;
+     while (isSPACE(*(RExC_parse + n - 1)))
+      n--;
+    }
+    else {
+     e = RExC_parse;
+     n = 1;
+    }
+    if (!SIZE_ONLY) {
+     SV* invlist;
+     char* name;
+
+     if (UCHARAT(RExC_parse) == '^') {
+      RExC_parse++;
+      n--;
+      /* toggle.  (The rhs xor gets the single bit that
+      * differs between P and p; the other xor inverts just
+      * that bit) */
+      value ^= 'P' ^ 'p';
+
+      while (isSPACE(*RExC_parse)) {
+       RExC_parse++;
+       n--;
+      }
+     }
+     /* Try to get the definition of the property into
+     * <invlist>.  If /i is in effect, the effective property
+     * will have its name be <__NAME_i>.  The design is
+     * discussed in commit
+     * 2f833f5208e26b208886e51e09e2c072b5eabb46 */
+     name = savepv(Perl_form(aTHX_
+          "%s%.*s%s\n",
+          (FOLD) ? "__" : "",
+          (int)n,
+          RExC_parse,
+          (FOLD) ? "_i" : ""
+        ));
+
+     /* Look up the property name, and get its swash and
+     * inversion list, if the property is found  */
+     if (swash) {
+      SvREFCNT_dec_NN(swash);
+     }
+     swash = _core_swash_init("utf8", name, &PL_sv_undef,
+           1, /* binary */
+           0, /* not tr/// */
+           NULL, /* No inversion list */
+           &swash_init_flags
+           );
+     if (! swash || ! (invlist = _get_swash_invlist(swash))) {
+      HV* curpkg = (IN_PERL_COMPILETIME)
+         ? PL_curstash
+         : CopSTASH(PL_curcop);
+      if (swash) {
+       SvREFCNT_dec_NN(swash);
+       swash = NULL;
+      }
+
+      /* Here didn't find it.  It could be a user-defined
+      * property that will be available at run-time.  If we
+      * accept only compile-time properties, is an error;
+      * otherwise add it to the list for run-time look up */
+      if (ret_invlist) {
+       RExC_parse = e + 1;
+       vFAIL2utf8f(
+        "Property '%"UTF8f"' is unknown",
+        UTF8fARG(UTF, n, name));
+      }
+
+      /* If the property name doesn't already have a package
+      * name, add the current one to it so that it can be
+      * referred to outside it. [perl #121777] */
+      if (curpkg && ! instr(name, "::")) {
+       char* pkgname = HvNAME(curpkg);
+       if (strNE(pkgname, "main")) {
+        char* full_name = Perl_form(aTHX_
+               "%s::%s",
+               pkgname,
+               name);
+        n = strlen(full_name);
+        Safefree(name);
+        name = savepvn(full_name, n);
+       }
+      }
+      Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%"UTF8f"\n",
+          (value == 'p' ? '+' : '!'),
+          UTF8fARG(UTF, n, name));
+      has_user_defined_property = TRUE;
+
+      /* We don't know yet, so have to assume that the
+      * property could match something in the Latin1 range,
+      * hence something that isn't utf8.  Note that this
+      * would cause things in <depends_list> to match
+      * inappropriately, except that any \p{}, including
+      * this one forces Unicode semantics, which means there
+      * is no <depends_list> */
+      ANYOF_FLAGS(ret)
+         |= ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES;
+     }
+     else {
+
+      /* Here, did get the swash and its inversion list.  If
+      * the swash is from a user-defined property, then this
+      * whole character class should be regarded as such */
+      if (swash_init_flags
+       & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY)
+      {
+       has_user_defined_property = TRUE;
+      }
+      else if
+       /* We warn on matching an above-Unicode code point
+       * if the match would return true, except don't
+       * warn for \p{All}, which has exactly one element
+       * = 0 */
+       (_invlist_contains_cp(invlist, 0x110000)
+        && (! (_invlist_len(invlist) == 1
+         && *invlist_array(invlist) == 0)))
+      {
+       warn_super = TRUE;
+      }
+
+
+      /* Invert if asking for the complement */
+      if (value == 'P') {
+       _invlist_union_complement_2nd(properties,
+              invlist,
+              &properties);
+
+       /* The swash can't be used as-is, because we've
+       * inverted things; delay removing it to here after
+       * have copied its invlist above */
+       SvREFCNT_dec_NN(swash);
+       swash = NULL;
+      }
+      else {
+       _invlist_union(properties, invlist, &properties);
+      }
+     }
+     Safefree(name);
+    }
+    RExC_parse = e + 1;
+    namedclass = ANYOF_UNIPROP;  /* no official name, but it's
+            named */
+
+    /* \p means they want Unicode semantics */
+    RExC_uni_semantics = 1;
+    }
+    break;
+   case 'n': value = '\n';   break;
+   case 'r': value = '\r';   break;
+   case 't': value = '\t';   break;
+   case 'f': value = '\f';   break;
+   case 'b': value = '\b';   break;
+   case 'e': value = ESC_NATIVE;             break;
+   case 'a': value = '\a';                   break;
+   case 'o':
+    RExC_parse--; /* function expects to be pointed at the 'o' */
+    {
+     const char* error_msg;
+     bool valid = grok_bslash_o(&RExC_parse,
+           &value,
+           &error_msg,
+           PASS2,   /* warnings only in
+              pass 2 */
+           strict,
+           silence_non_portable,
+           UTF);
+     if (! valid) {
+      vFAIL(error_msg);
+     }
+    }
+    non_portable_endpoint++;
+    if (IN_ENCODING && value < 0x100) {
+     goto recode_encoding;
+    }
+    break;
+   case 'x':
+    RExC_parse--; /* function expects to be pointed at the 'x' */
+    {
+     const char* error_msg;
+     bool valid = grok_bslash_x(&RExC_parse,
+           &value,
+           &error_msg,
+           PASS2, /* Output warnings */
+           strict,
+           silence_non_portable,
+           UTF);
+     if (! valid) {
+      vFAIL(error_msg);
+     }
+    }
+    non_portable_endpoint++;
+    if (IN_ENCODING && value < 0x100)
+     goto recode_encoding;
+    break;
+   case 'c':
+    value = grok_bslash_c(*RExC_parse++, PASS2);
+    non_portable_endpoint++;
+    break;
+   case '0': case '1': case '2': case '3': case '4':
+   case '5': case '6': case '7':
+    {
+     /* Take 1-3 octal digits */
+     I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
+     numlen = (strict) ? 4 : 3;
+     value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
+     RExC_parse += numlen;
+     if (numlen != 3) {
+      if (strict) {
+       RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+       vFAIL("Need exactly 3 octal digits");
+      }
+      else if (! SIZE_ONLY /* like \08, \178 */
+        && numlen < 3
+        && RExC_parse < RExC_end
+        && isDIGIT(*RExC_parse)
+        && ckWARN(WARN_REGEXP))
+      {
+       SAVEFREESV(RExC_rx_sv);
+       reg_warn_non_literal_string(
+        RExC_parse + 1,
+        form_short_octal_warning(RExC_parse, numlen));
+       (void)ReREFCNT_inc(RExC_rx_sv);
+      }
+     }
+     non_portable_endpoint++;
+     if (IN_ENCODING && value < 0x100)
+      goto recode_encoding;
+     break;
+    }
+   recode_encoding:
+    if (! RExC_override_recoding) {
+     SV* enc = _get_encoding();
+     value = reg_recode((const char)(U8)value, &enc);
+     if (!enc) {
+      if (strict) {
+       vFAIL("Invalid escape in the specified encoding");
+      }
+      else if (PASS2) {
+       ckWARNreg(RExC_parse,
+        "Invalid escape in the specified encoding");
+      }
+     }
+     break;
+    }
+   default:
+    /* Allow \_ to not give an error */
+    if (!SIZE_ONLY && isWORDCHAR(value) && value != '_') {
+     if (strict) {
+      vFAIL2("Unrecognized escape \\%c in character class",
+       (int)value);
+     }
+     else {
+      SAVEFREESV(RExC_rx_sv);
+      ckWARN2reg(RExC_parse,
+       "Unrecognized escape \\%c in character class passed through",
+       (int)value);
+      (void)ReREFCNT_inc(RExC_rx_sv);
+     }
+    }
+    break;
+   }   /* End of switch on char following backslash */
+  } /* end of handling backslash escape sequences */
+
+  /* Here, we have the current token in 'value' */
+
+  if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
+   U8 classnum;
+
+   /* a bad range like a-\d, a-[:digit:].  The '-' is taken as a
+   * literal, as is the character that began the false range, i.e.
+   * the 'a' in the examples */
+   if (range) {
+    if (!SIZE_ONLY) {
+     const int w = (RExC_parse >= rangebegin)
+        ? RExC_parse - rangebegin
+        : 0;
+     if (strict) {
+      vFAIL2utf8f(
+       "False [] range \"%"UTF8f"\"",
+       UTF8fARG(UTF, w, rangebegin));
+     }
+     else {
+      SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
+      ckWARN2reg(RExC_parse,
+       "False [] range \"%"UTF8f"\"",
+       UTF8fARG(UTF, w, rangebegin));
+      (void)ReREFCNT_inc(RExC_rx_sv);
+      cp_list = add_cp_to_invlist(cp_list, '-');
+      cp_foldable_list = add_cp_to_invlist(cp_foldable_list,
+               prevvalue);
+     }
+    }
+
+    range = 0; /* this was not a true range */
+    element_count += 2; /* So counts for three values */
+   }
+
+   classnum = namedclass_to_classnum(namedclass);
+
+   if (LOC && namedclass < ANYOF_POSIXL_MAX
+#ifndef HAS_ISASCII
+    && classnum != _CC_ASCII
+#endif
+   ) {
+    /* What the Posix classes (like \w, [:space:]) match in locale
+    * isn't knowable under locale until actual match time.  Room
+    * must be reserved (one time per outer bracketed class) to
+    * store such classes.  The space will contain a bit for each
+    * named class that is to be matched against.  This isn't
+    * needed for \p{} and pseudo-classes, as they are not affected
+    * by locale, and hence are dealt with separately */
+    if (! need_class) {
+     need_class = 1;
+     if (SIZE_ONLY) {
+      RExC_size += ANYOF_POSIXL_SKIP - ANYOF_SKIP;
+     }
+     else {
+      RExC_emit += ANYOF_POSIXL_SKIP - ANYOF_SKIP;
+     }
+     ANYOF_FLAGS(ret) |= ANYOF_MATCHES_POSIXL;
+     ANYOF_POSIXL_ZERO(ret);
+    }
+
+    /* Coverity thinks it is possible for this to be negative; both
+    * jhi and khw think it's not, but be safer */
+    assert(! (ANYOF_FLAGS(ret) & ANYOF_MATCHES_POSIXL)
+     || (namedclass + ((namedclass % 2) ? -1 : 1)) >= 0);
+
+    /* See if it already matches the complement of this POSIX
+    * class */
+    if ((ANYOF_FLAGS(ret) & ANYOF_MATCHES_POSIXL)
+     && ANYOF_POSIXL_TEST(ret, namedclass + ((namedclass % 2)
+               ? -1
+               : 1)))
+    {
+     posixl_matches_all = TRUE;
+     break;  /* No need to continue.  Since it matches both
+       e.g., \w and \W, it matches everything, and the
+       bracketed class can be optimized into qr/./s */
+    }
+
+    /* Add this class to those that should be checked at runtime */
+    ANYOF_POSIXL_SET(ret, namedclass);
+
+    /* The above-Latin1 characters are not subject to locale rules.
+    * Just add them, in the second pass, to the
+    * unconditionally-matched list */
+    if (! SIZE_ONLY) {
+     SV* scratch_list = NULL;
+
+     /* Get the list of the above-Latin1 code points this
+     * matches */
+     _invlist_intersection_maybe_complement_2nd(PL_AboveLatin1,
+          PL_XPosix_ptrs[classnum],
+
+          /* Odd numbers are complements, like
+          * NDIGIT, NASCII, ... */
+          namedclass % 2 != 0,
+          &scratch_list);
+     /* Checking if 'cp_list' is NULL first saves an extra
+     * clone.  Its reference count will be decremented at the
+     * next union, etc, or if this is the only instance, at the
+     * end of the routine */
+     if (! cp_list) {
+      cp_list = scratch_list;
+     }
+     else {
+      _invlist_union(cp_list, scratch_list, &cp_list);
+      SvREFCNT_dec_NN(scratch_list);
+     }
+     continue;   /* Go get next character */
+    }
+   }
+   else if (! SIZE_ONLY) {
+
+    /* Here, not in pass1 (in that pass we skip calculating the
+    * contents of this class), and is /l, or is a POSIX class for
+    * which /l doesn't matter (or is a Unicode property, which is
+    * skipped here). */
+    if (namedclass >= ANYOF_POSIXL_MAX) {  /* If a special class */
+     if (namedclass != ANYOF_UNIPROP) { /* UNIPROP = \p and \P */
+
+      /* Here, should be \h, \H, \v, or \V.  None of /d, /i
+      * nor /l make a difference in what these match,
+      * therefore we just add what they match to cp_list. */
+      if (classnum != _CC_VERTSPACE) {
+       assert(   namedclass == ANYOF_HORIZWS
+        || namedclass == ANYOF_NHORIZWS);
+
+       /* It turns out that \h is just a synonym for
+       * XPosixBlank */
+       classnum = _CC_BLANK;
+      }
+
+      _invlist_union_maybe_complement_2nd(
+        cp_list,
+        PL_XPosix_ptrs[classnum],
+        namedclass % 2 != 0,    /* Complement if odd
+              (NHORIZWS, NVERTWS)
+              */
+        &cp_list);
+     }
+    }
+    else if (UNI_SEMANTICS
+      || classnum == _CC_ASCII
+      || (DEPENDS_SEMANTICS && (classnum == _CC_DIGIT
+            || classnum == _CC_XDIGIT)))
+    {
+     /* We usually have to worry about /d and /a affecting what
+     * POSIX classes match, with special code needed for /d
+     * because we won't know until runtime what all matches.
+     * But there is no extra work needed under /u, and
+     * [:ascii:] is unaffected by /a and /d; and :digit: and
+     * :xdigit: don't have runtime differences under /d.  So we
+     * can special case these, and avoid some extra work below,
+     * and at runtime. */
+     _invlist_union_maybe_complement_2nd(
+             simple_posixes,
+             PL_XPosix_ptrs[classnum],
+             namedclass % 2 != 0,
+             &simple_posixes);
+    }
+    else {  /* Garden variety class.  If is NUPPER, NALPHA, ...
+      complement and use nposixes */
+     SV** posixes_ptr = namedclass % 2 == 0
+         ? &posixes
+         : &nposixes;
+     _invlist_union_maybe_complement_2nd(
+             *posixes_ptr,
+             PL_XPosix_ptrs[classnum],
+             namedclass % 2 != 0,
+             posixes_ptr);
+    }
+   }
+  } /* end of namedclass \blah */
+
+  if (skip_white) {
+   RExC_parse = regpatws(pRExC_state, RExC_parse,
+        FALSE /* means don't recognize comments */ );
+  }
+
+  /* If 'range' is set, 'value' is the ending of a range--check its
+  * validity.  (If value isn't a single code point in the case of a
+  * range, we should have figured that out above in the code that
+  * catches false ranges).  Later, we will handle each individual code
+  * point in the range.  If 'range' isn't set, this could be the
+  * beginning of a range, so check for that by looking ahead to see if
+  * the next real character to be processed is the range indicator--the
+  * minus sign */
+
+  if (range) {
+#ifdef EBCDIC
+   /* For unicode ranges, we have to test that the Unicode as opposed
+   * to the native values are not decreasing.  (Above 255, there is
+   * no difference between native and Unicode) */
+   if (unicode_range && prevvalue < 255 && value < 255) {
+    if (NATIVE_TO_LATIN1(prevvalue) > NATIVE_TO_LATIN1(value)) {
+     goto backwards_range;
+    }
+   }
+   else
+#endif
+   if (prevvalue > value) /* b-a */ {
+    int w;
+#ifdef EBCDIC
+   backwards_range:
+#endif
+    w = RExC_parse - rangebegin;
+    vFAIL2utf8f(
+     "Invalid [] range \"%"UTF8f"\"",
+     UTF8fARG(UTF, w, rangebegin));
+    NOT_REACHED; /* NOTREACHED */
+   }
+  }
+  else {
+   prevvalue = value; /* save the beginning of the potential range */
+   if (! stop_at_1     /* Can't be a range if parsing just one thing */
+    && *RExC_parse == '-')
+   {
+    char* next_char_ptr = RExC_parse + 1;
+    if (skip_white) {   /* Get the next real char after the '-' */
+     next_char_ptr = regpatws(pRExC_state,
+           RExC_parse + 1,
+           FALSE); /* means don't recognize
+              comments */
+    }
+
+    /* If the '-' is at the end of the class (just before the ']',
+    * it is a literal minus; otherwise it is a range */
+    if (next_char_ptr < RExC_end && *next_char_ptr != ']') {
+     RExC_parse = next_char_ptr;
+
+     /* a bad range like \w-, [:word:]- ? */
+     if (namedclass > OOB_NAMEDCLASS) {
+      if (strict || (PASS2 && ckWARN(WARN_REGEXP))) {
+       const int w = RExC_parse >= rangebegin
+          ?  RExC_parse - rangebegin
+          : 0;
+       if (strict) {
+        vFAIL4("False [] range \"%*.*s\"",
+         w, w, rangebegin);
+       }
+       else if (PASS2) {
+        vWARN4(RExC_parse,
+         "False [] range \"%*.*s\"",
+         w, w, rangebegin);
+       }
+      }
+      if (!SIZE_ONLY) {
+       cp_list = add_cp_to_invlist(cp_list, '-');
+      }
+      element_count++;
+     } else
+      range = 1; /* yeah, it's a range! */
+     continue; /* but do it the next time */
+    }
+   }
+  }
+
+  if (namedclass > OOB_NAMEDCLASS) {
+   continue;
+  }
+
+  /* Here, we have a single value this time through the loop, and
+  * <prevvalue> is the beginning of the range, if any; or <value> if
+  * not. */
+
+  /* non-Latin1 code point implies unicode semantics.  Must be set in
+  * pass1 so is there for the whole of pass 2 */
+  if (value > 255) {
+   RExC_uni_semantics = 1;
+  }
+
+  /* Ready to process either the single value, or the completed range.
+  * For single-valued non-inverted ranges, we consider the possibility
+  * of multi-char folds.  (We made a conscious decision to not do this
+  * for the other cases because it can often lead to non-intuitive
+  * results.  For example, you have the peculiar case that:
+  *  "s s" =~ /^[^\xDF]+$/i => Y
+  *  "ss"  =~ /^[^\xDF]+$/i => N
+  *
+  * See [perl #89750] */
+  if (FOLD && allow_multi_folds && value == prevvalue) {
+   if (value == LATIN_SMALL_LETTER_SHARP_S
+    || (value > 255 && _invlist_contains_cp(PL_HasMultiCharFold,
+              value)))
+   {
+    /* Here <value> is indeed a multi-char fold.  Get what it is */
+
+    U8 foldbuf[UTF8_MAXBYTES_CASE];
+    STRLEN foldlen;
+
+    UV folded = _to_uni_fold_flags(
+        value,
+        foldbuf,
+        &foldlen,
+        FOLD_FLAGS_FULL | (ASCII_FOLD_RESTRICTED
+            ? FOLD_FLAGS_NOMIX_ASCII
+            : 0)
+        );
+
+    /* Here, <folded> should be the first character of the
+    * multi-char fold of <value>, with <foldbuf> containing the
+    * whole thing.  But, if this fold is not allowed (because of
+    * the flags), <fold> will be the same as <value>, and should
+    * be processed like any other character, so skip the special
+    * handling */
+    if (folded != value) {
+
+     /* Skip if we are recursed, currently parsing the class
+     * again.  Otherwise add this character to the list of
+     * multi-char folds. */
+     if (! RExC_in_multi_char_class) {
+      STRLEN cp_count = utf8_length(foldbuf,
+             foldbuf + foldlen);
+      SV* multi_fold = sv_2mortal(newSVpvs(""));
+
+      Perl_sv_catpvf(aTHX_ multi_fold, "\\x{%"UVXf"}", value);
+
+      multi_char_matches
+          = add_multi_match(multi_char_matches,
+              multi_fold,
+              cp_count);
+
+     }
+
+     /* This element should not be processed further in this
+     * class */
+     element_count--;
+     value = save_value;
+     prevvalue = save_prevvalue;
+     continue;
+    }
+   }
+  }
+
+  if (strict && PASS2 && ckWARN(WARN_REGEXP)) {
+   if (range) {
+
+    /* If the range starts above 255, everything is portable and
+    * likely to be so for any forseeable character set, so don't
+    * warn. */
+    if (unicode_range && non_portable_endpoint && prevvalue < 256) {
+     vWARN(RExC_parse, "Both or neither range ends should be Unicode");
+    }
+    else if (prevvalue != value) {
+
+     /* Under strict, ranges that stop and/or end in an ASCII
+     * printable should have each end point be a portable value
+     * for it (preferably like 'A', but we don't warn if it is
+     * a (portable) Unicode name or code point), and the range
+     * must be be all digits or all letters of the same case.
+     * Otherwise, the range is non-portable and unclear as to
+     * what it contains */
+     if ((isPRINT_A(prevvalue) || isPRINT_A(value))
+      && (non_portable_endpoint
+       || ! ((isDIGIT_A(prevvalue) && isDIGIT_A(value))
+        || (isLOWER_A(prevvalue) && isLOWER_A(value))
+        || (isUPPER_A(prevvalue) && isUPPER_A(value)))))
+     {
+      vWARN(RExC_parse, "Ranges of ASCII printables should be some subset of \"0-9\", \"A-Z\", or \"a-z\"");
+     }
+     else if (prevvalue >= 0x660) { /* ARABIC_INDIC_DIGIT_ZERO */
+
+      /* But the nature of Unicode and languages mean we
+      * can't do the same checks for above-ASCII ranges,
+      * except in the case of digit ones.  These should
+      * contain only digits from the same group of 10.  The
+      * ASCII case is handled just above.  0x660 is the
+      * first digit character beyond ASCII.  Hence here, the
+      * range could be a range of digits.  Find out.  */
+      IV index_start = _invlist_search(PL_XPosix_ptrs[_CC_DIGIT],
+              prevvalue);
+      IV index_final = _invlist_search(PL_XPosix_ptrs[_CC_DIGIT],
+              value);
+
+      /* If the range start and final points are in the same
+      * inversion list element, it means that either both
+      * are not digits, or both are digits in a consecutive
+      * sequence of digits.  (So far, Unicode has kept all
+      * such sequences as distinct groups of 10, but assert
+      * to make sure).  If the end points are not in the
+      * same element, neither should be a digit. */
+      if (index_start == index_final) {
+       assert(! ELEMENT_RANGE_MATCHES_INVLIST(index_start)
+       || (invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start+1]
+       - invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
+       == 10)
+       /* But actually Unicode did have one group of 11
+        * 'digits' in 5.2, so in case we are operating
+        * on that version, let that pass */
+       || (invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start+1]
+       - invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
+        == 11
+       && invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
+        == 0x19D0)
+       );
+      }
+      else if ((index_start >= 0
+        && ELEMENT_RANGE_MATCHES_INVLIST(index_start))
+        || (index_final >= 0
+         && ELEMENT_RANGE_MATCHES_INVLIST(index_final)))
+      {
+       vWARN(RExC_parse, "Ranges of digits should be from the same group of 10");
+      }
+     }
+    }
+   }
+   if ((! range || prevvalue == value) && non_portable_endpoint) {
+    if (isPRINT_A(value)) {
+     char literal[3];
+     unsigned d = 0;
+     if (isBACKSLASHED_PUNCT(value)) {
+      literal[d++] = '\\';
+     }
+     literal[d++] = (char) value;
+     literal[d++] = '\0';
+
+     vWARN4(RExC_parse,
+      "\"%.*s\" is more clearly written simply as \"%s\"",
+      (int) (RExC_parse - rangebegin),
+      rangebegin,
+      literal
+      );
+    }
+    else if isMNEMONIC_CNTRL(value) {
+     vWARN4(RExC_parse,
+      "\"%.*s\" is more clearly written simply as \"%s\"",
+      (int) (RExC_parse - rangebegin),
+      rangebegin,
+      cntrl_to_mnemonic((char) value)
+      );
+    }
+   }
+  }
+
+  /* Deal with this element of the class */
+  if (! SIZE_ONLY) {
+
+#ifndef EBCDIC
+   cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
+             prevvalue, value);
+#else
+   /* On non-ASCII platforms, for ranges that span all of 0..255, and
+   * ones that don't require special handling, we can just add the
+   * range like we do for ASCII platforms */
+   if ((UNLIKELY(prevvalue == 0) && value >= 255)
+    || ! (prevvalue < 256
+     && (unicode_range
+      || (! non_portable_endpoint
+       && ((isLOWER_A(prevvalue) && isLOWER_A(value))
+        || (isUPPER_A(prevvalue)
+         && isUPPER_A(value)))))))
+   {
+    cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
+              prevvalue, value);
+   }
+   else {
+    /* Here, requires special handling.  This can be because it is
+    * a range whose code points are considered to be Unicode, and
+    * so must be individually translated into native, or because
+    * its a subrange of 'A-Z' or 'a-z' which each aren't
+    * contiguous in EBCDIC, but we have defined them to include
+    * only the "expected" upper or lower case ASCII alphabetics.
+    * Subranges above 255 are the same in native and Unicode, so
+    * can be added as a range */
+    U8 start = NATIVE_TO_LATIN1(prevvalue);
+    unsigned j;
+    U8 end = (value < 256) ? NATIVE_TO_LATIN1(value) : 255;
+    for (j = start; j <= end; j++) {
+     cp_foldable_list = add_cp_to_invlist(cp_foldable_list, LATIN1_TO_NATIVE(j));
+    }
+    if (value > 255) {
+     cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
+               256, value);
+    }
+   }
+#endif
+  }
+
+  range = 0; /* this range (if it was one) is done now */
+ } /* End of loop through all the text within the brackets */
+
+ /* If anything in the class expands to more than one character, we have to
+ * deal with them by building up a substitute parse string, and recursively
+ * calling reg() on it, instead of proceeding */
+ if (multi_char_matches) {
+  SV * substitute_parse = newSVpvn_flags("?:", 2, SVs_TEMP);
+  I32 cp_count;
+  STRLEN len;
+  char *save_end = RExC_end;
+  char *save_parse = RExC_parse;
+  bool first_time = TRUE;     /* First multi-char occurrence doesn't get
+         a "|" */
+  I32 reg_flags;
+
+  assert(! invert);
+#if 0   /* Have decided not to deal with multi-char folds in inverted classes,
+  because too confusing */
+  if (invert) {
+   sv_catpv(substitute_parse, "(?:");
+  }
+#endif
+
+  /* Look at the longest folds first */
+  for (cp_count = av_tindex(multi_char_matches); cp_count > 0; cp_count--) {
+
+   if (av_exists(multi_char_matches, cp_count)) {
+    AV** this_array_ptr;
+    SV* this_sequence;
+
+    this_array_ptr = (AV**) av_fetch(multi_char_matches,
+            cp_count, FALSE);
+    while ((this_sequence = av_pop(*this_array_ptr)) !=
+                &PL_sv_undef)
+    {
+     if (! first_time) {
+      sv_catpv(substitute_parse, "|");
+     }
+     first_time = FALSE;
+
+     sv_catpv(substitute_parse, SvPVX(this_sequence));
+    }
+   }
+  }
+
+  /* If the character class contains anything else besides these
+  * multi-character folds, have to include it in recursive parsing */
+  if (element_count) {
+   sv_catpv(substitute_parse, "|[");
+   sv_catpvn(substitute_parse, orig_parse, RExC_parse - orig_parse);
+   sv_catpv(substitute_parse, "]");
+  }
+
+  sv_catpv(substitute_parse, ")");
+#if 0
+  if (invert) {
+   /* This is a way to get the parse to skip forward a whole named
+   * sequence instead of matching the 2nd character when it fails the
+   * first */
+   sv_catpv(substitute_parse, "(*THEN)(*SKIP)(*FAIL)|.)");
+  }
+#endif
+
+  RExC_parse = SvPV(substitute_parse, len);
+  RExC_end = RExC_parse + len;
+  RExC_in_multi_char_class = 1;
+  RExC_override_recoding = 1;
+  RExC_emit = (regnode *)orig_emit;
+
+  ret = reg(pRExC_state, 1, &reg_flags, depth+1);
+
+  *flagp |= reg_flags&(HASWIDTH|SIMPLE|SPSTART|POSTPONED|RESTART_UTF8);
+
+  RExC_parse = save_parse;
+  RExC_end = save_end;
+  RExC_in_multi_char_class = 0;
+  RExC_override_recoding = 0;
+  SvREFCNT_dec_NN(multi_char_matches);
+  return ret;
+ }
+
+ /* Here, we've gone through the entire class and dealt with multi-char
+ * folds.  We are now in a position that we can do some checks to see if we
+ * can optimize this ANYOF node into a simpler one, even in Pass 1.
+ * Currently we only do two checks:
+ * 1) is in the unlikely event that the user has specified both, eg. \w and
+ *    \W under /l, then the class matches everything.  (This optimization
+ *    is done only to make the optimizer code run later work.)
+ * 2) if the character class contains only a single element (including a
+ *    single range), we see if there is an equivalent node for it.
+ * Other checks are possible */
+ if (! ret_invlist   /* Can't optimize if returning the constructed
+      inversion list */
+  && (UNLIKELY(posixl_matches_all) || element_count == 1))
+ {
+  U8 op = END;
+  U8 arg = 0;
+
+  if (UNLIKELY(posixl_matches_all)) {
+   op = SANY;
+  }
+  else if (namedclass > OOB_NAMEDCLASS) { /* this is a named class, like
+            \w or [:digit:] or \p{foo}
+            */
+
+   /* All named classes are mapped into POSIXish nodes, with its FLAG
+   * argument giving which class it is */
+   switch ((I32)namedclass) {
+    case ANYOF_UNIPROP:
+     break;
+
+    /* These don't depend on the charset modifiers.  They always
+    * match under /u rules */
+    case ANYOF_NHORIZWS:
+    case ANYOF_HORIZWS:
+     namedclass = ANYOF_BLANK + namedclass - ANYOF_HORIZWS;
+     /* FALLTHROUGH */
+
+    case ANYOF_NVERTWS:
+    case ANYOF_VERTWS:
+     op = POSIXU;
+     goto join_posix;
+
+    /* The actual POSIXish node for all the rest depends on the
+    * charset modifier.  The ones in the first set depend only on
+    * ASCII or, if available on this platform, also locale */
+    case ANYOF_ASCII:
+    case ANYOF_NASCII:
+#ifdef HAS_ISASCII
+     op = (LOC) ? POSIXL : POSIXA;
+#else
+     op = POSIXA;
+#endif
+     goto join_posix;
+
+    /* The following don't have any matches in the upper Latin1
+    * range, hence /d is equivalent to /u for them.  Making it /u
+    * saves some branches at runtime */
+    case ANYOF_DIGIT:
+    case ANYOF_NDIGIT:
+    case ANYOF_XDIGIT:
+    case ANYOF_NXDIGIT:
+     if (! DEPENDS_SEMANTICS) {
+      goto treat_as_default;
+     }
+
+     op = POSIXU;
+     goto join_posix;
+
+    /* The following change to CASED under /i */
+    case ANYOF_LOWER:
+    case ANYOF_NLOWER:
+    case ANYOF_UPPER:
+    case ANYOF_NUPPER:
+     if (FOLD) {
+      namedclass = ANYOF_CASED + (namedclass % 2);
+     }
+     /* FALLTHROUGH */
+
+    /* The rest have more possibilities depending on the charset.
+    * We take advantage of the enum ordering of the charset
+    * modifiers to get the exact node type, */
+    default:
+    treat_as_default:
+     op = POSIXD + get_regex_charset(RExC_flags);
+     if (op > POSIXA) { /* /aa is same as /a */
+      op = POSIXA;
+     }
+
+    join_posix:
+     /* The odd numbered ones are the complements of the
+     * next-lower even number one */
+     if (namedclass % 2 == 1) {
+      invert = ! invert;
+      namedclass--;
+     }
+     arg = namedclass_to_classnum(namedclass);
+     break;
+   }
+  }
+  else if (value == prevvalue) {
+
+   /* Here, the class consists of just a single code point */
+
+   if (invert) {
+    if (! LOC && value == '\n') {
+     op = REG_ANY; /* Optimize [^\n] */
+     *flagp |= HASWIDTH|SIMPLE;
+     MARK_NAUGHTY(1);
+    }
+   }
+   else if (value < 256 || UTF) {
+
+    /* Optimize a single value into an EXACTish node, but not if it
+    * would require converting the pattern to UTF-8. */
+    op = compute_EXACTish(pRExC_state);
+   }
+  } /* Otherwise is a range */
+  else if (! LOC) {   /* locale could vary these */
+   if (prevvalue == '0') {
+    if (value == '9') {
+     arg = _CC_DIGIT;
+     op = POSIXA;
+    }
+   }
+   else if (! FOLD || ASCII_FOLD_RESTRICTED) {
+    /* We can optimize A-Z or a-z, but not if they could match
+    * something like the KELVIN SIGN under /i. */
+    if (prevvalue == 'A') {
+     if (value == 'Z'
+#ifdef EBCDIC
+      && ! non_portable_endpoint
+#endif
+     ) {
+      arg = (FOLD) ? _CC_ALPHA : _CC_UPPER;
+      op = POSIXA;
+     }
+    }
+    else if (prevvalue == 'a') {
+     if (value == 'z'
+#ifdef EBCDIC
+      && ! non_portable_endpoint
+#endif
+     ) {
+      arg = (FOLD) ? _CC_ALPHA : _CC_LOWER;
+      op = POSIXA;
+     }
+    }
+   }
+  }
+
+  /* Here, we have changed <op> away from its initial value iff we found
+  * an optimization */
+  if (op != END) {
+
+   /* Throw away this ANYOF regnode, and emit the calculated one,
+   * which should correspond to the beginning, not current, state of
+   * the parse */
+   const char * cur_parse = RExC_parse;
+   RExC_parse = (char *)orig_parse;
+   if ( SIZE_ONLY) {
+    if (! LOC) {
+
+     /* To get locale nodes to not use the full ANYOF size would
+     * require moving the code above that writes the portions
+     * of it that aren't in other nodes to after this point.
+     * e.g.  ANYOF_POSIXL_SET */
+     RExC_size = orig_size;
+    }
+   }
+   else {
+    RExC_emit = (regnode *)orig_emit;
+    if (PL_regkind[op] == POSIXD) {
+     if (op == POSIXL) {
+      RExC_contains_locale = 1;
+     }
+     if (invert) {
+      op += NPOSIXD - POSIXD;
+     }
+    }
+   }
+
+   ret = reg_node(pRExC_state, op);
+
+   if (PL_regkind[op] == POSIXD || PL_regkind[op] == NPOSIXD) {
+    if (! SIZE_ONLY) {
+     FLAGS(ret) = arg;
+    }
+    *flagp |= HASWIDTH|SIMPLE;
+   }
+   else if (PL_regkind[op] == EXACT) {
+    alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value,
+          TRUE /* downgradable to EXACT */
+          );
+   }
+
+   RExC_parse = (char *) cur_parse;
+
+   SvREFCNT_dec(posixes);
+   SvREFCNT_dec(nposixes);
+   SvREFCNT_dec(simple_posixes);
+   SvREFCNT_dec(cp_list);
+   SvREFCNT_dec(cp_foldable_list);
+   return ret;
+  }
+ }
+
+ if (SIZE_ONLY)
+  return ret;
+ /****** !SIZE_ONLY (Pass 2) AFTER HERE *********/
+
+ /* If folding, we calculate all characters that could fold to or from the
+ * ones already on the list */
+ if (cp_foldable_list) {
+  if (FOLD) {
+   UV start, end; /* End points of code point ranges */
+
+   SV* fold_intersection = NULL;
+   SV** use_list;
+
+   /* Our calculated list will be for Unicode rules.  For locale
+   * matching, we have to keep a separate list that is consulted at
+   * runtime only when the locale indicates Unicode rules.  For
+   * non-locale, we just use to the general list */
+   if (LOC) {
+    use_list = &only_utf8_locale_list;
+   }
+   else {
+    use_list = &cp_list;
+   }
+
+   /* Only the characters in this class that participate in folds need
+   * be checked.  Get the intersection of this class and all the
+   * possible characters that are foldable.  This can quickly narrow
+   * down a large class */
+   _invlist_intersection(PL_utf8_foldable, cp_foldable_list,
+        &fold_intersection);
+
+   /* The folds for all the Latin1 characters are hard-coded into this
+   * program, but we have to go out to disk to get the others. */
+   if (invlist_highest(cp_foldable_list) >= 256) {
+
+    /* This is a hash that for a particular fold gives all
+    * characters that are involved in it */
+    if (! PL_utf8_foldclosures) {
+     _load_PL_utf8_foldclosures();
+    }
+   }
+
+   /* Now look at the foldable characters in this class individually */
+   invlist_iterinit(fold_intersection);
+   while (invlist_iternext(fold_intersection, &start, &end)) {
+    UV j;
+
+    /* Look at every character in the range */
+    for (j = start; j <= end; j++) {
+     U8 foldbuf[UTF8_MAXBYTES_CASE+1];
+     STRLEN foldlen;
+     SV** listp;
+
+     if (j < 256) {
+
+      if (IS_IN_SOME_FOLD_L1(j)) {
+
+       /* ASCII is always matched; non-ASCII is matched
+       * only under Unicode rules (which could happen
+       * under /l if the locale is a UTF-8 one */
+       if (isASCII(j) || ! DEPENDS_SEMANTICS) {
+        *use_list = add_cp_to_invlist(*use_list,
+               PL_fold_latin1[j]);
+       }
+       else {
+        depends_list =
+        add_cp_to_invlist(depends_list,
+            PL_fold_latin1[j]);
+       }
+      }
+
+      if (HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(j)
+       && (! isASCII(j) || ! ASCII_FOLD_RESTRICTED))
+      {
+       add_above_Latin1_folds(pRExC_state,
+            (U8) j,
+            use_list);
+      }
+      continue;
+     }
+
+     /* Here is an above Latin1 character.  We don't have the
+     * rules hard-coded for it.  First, get its fold.  This is
+     * the simple fold, as the multi-character folds have been
+     * handled earlier and separated out */
+     _to_uni_fold_flags(j, foldbuf, &foldlen,
+              (ASCII_FOLD_RESTRICTED)
+              ? FOLD_FLAGS_NOMIX_ASCII
+              : 0);
+
+     /* Single character fold of above Latin1.  Add everything in
+     * its fold closure to the list that this node should match.
+     * The fold closures data structure is a hash with the keys
+     * being the UTF-8 of every character that is folded to, like
+     * 'k', and the values each an array of all code points that
+     * fold to its key.  e.g. [ 'k', 'K', KELVIN_SIGN ].
+     * Multi-character folds are not included */
+     if ((listp = hv_fetch(PL_utf8_foldclosures,
+          (char *) foldbuf, foldlen, FALSE)))
+     {
+      AV* list = (AV*) *listp;
+      IV k;
+      for (k = 0; k <= av_tindex(list); k++) {
+       SV** c_p = av_fetch(list, k, FALSE);
+       UV c;
+       assert(c_p);
+
+       c = SvUV(*c_p);
+
+       /* /aa doesn't allow folds between ASCII and non- */
+       if ((ASCII_FOLD_RESTRICTED
+        && (isASCII(c) != isASCII(j))))
+       {
+        continue;
+       }
+
+       /* Folds under /l which cross the 255/256 boundary
+       * are added to a separate list.  (These are valid
+       * only when the locale is UTF-8.) */
+       if (c < 256 && LOC) {
+        *use_list = add_cp_to_invlist(*use_list, c);
+        continue;
+       }
+
+       if (isASCII(c) || c > 255 || AT_LEAST_UNI_SEMANTICS)
+       {
+        cp_list = add_cp_to_invlist(cp_list, c);
+       }
+       else {
+        /* Similarly folds involving non-ascii Latin1
+        * characters under /d are added to their list */
+        depends_list = add_cp_to_invlist(depends_list,
+                c);
+       }
+      }
+     }
+    }
+   }
+   SvREFCNT_dec_NN(fold_intersection);
+  }
+
+  /* Now that we have finished adding all the folds, there is no reason
+  * to keep the foldable list separate */
+  _invlist_union(cp_list, cp_foldable_list, &cp_list);
+  SvREFCNT_dec_NN(cp_foldable_list);
+ }
+
+ /* And combine the result (if any) with any inversion list from posix
+ * classes.  The lists are kept separate up to now because we don't want to
+ * fold the classes (folding of those is automatically handled by the swash
+ * fetching code) */
+ if (simple_posixes) {
+  _invlist_union(cp_list, simple_posixes, &cp_list);
+  SvREFCNT_dec_NN(simple_posixes);
+ }
+ if (posixes || nposixes) {
+  if (posixes && AT_LEAST_ASCII_RESTRICTED) {
+   /* Under /a and /aa, nothing above ASCII matches these */
+   _invlist_intersection(posixes,
+        PL_XPosix_ptrs[_CC_ASCII],
+        &posixes);
+  }
+  if (nposixes) {
+   if (DEPENDS_SEMANTICS) {
+    /* Under /d, everything in the upper half of the Latin1 range
+    * matches these complements */
+    ANYOF_FLAGS(ret) |= ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII;
+   }
+   else if (AT_LEAST_ASCII_RESTRICTED) {
+    /* Under /a and /aa, everything above ASCII matches these
+    * complements */
+    _invlist_union_complement_2nd(nposixes,
+           PL_XPosix_ptrs[_CC_ASCII],
+           &nposixes);
+   }
+   if (posixes) {
+    _invlist_union(posixes, nposixes, &posixes);
+    SvREFCNT_dec_NN(nposixes);
+   }
+   else {
+    posixes = nposixes;
+   }
+  }
+  if (! DEPENDS_SEMANTICS) {
+   if (cp_list) {
+    _invlist_union(cp_list, posixes, &cp_list);
+    SvREFCNT_dec_NN(posixes);
+   }
+   else {
+    cp_list = posixes;
+   }
+  }
+  else {
+   /* Under /d, we put into a separate list the Latin1 things that
+   * match only when the target string is utf8 */
+   SV* nonascii_but_latin1_properties = NULL;
+   _invlist_intersection(posixes, PL_UpperLatin1,
+        &nonascii_but_latin1_properties);
+   _invlist_subtract(posixes, nonascii_but_latin1_properties,
+       &posixes);
+   if (cp_list) {
+    _invlist_union(cp_list, posixes, &cp_list);
+    SvREFCNT_dec_NN(posixes);
+   }
+   else {
+    cp_list = posixes;
+   }
+
+   if (depends_list) {
+    _invlist_union(depends_list, nonascii_but_latin1_properties,
+       &depends_list);
+    SvREFCNT_dec_NN(nonascii_but_latin1_properties);
+   }
+   else {
+    depends_list = nonascii_but_latin1_properties;
+   }
+  }
+ }
+
+ /* And combine the result (if any) with any inversion list from properties.
+ * The lists are kept separate up to now so that we can distinguish the two
+ * in regards to matching above-Unicode.  A run-time warning is generated
+ * if a Unicode property is matched against a non-Unicode code point. But,
+ * we allow user-defined properties to match anything, without any warning,
+ * and we also suppress the warning if there is a portion of the character
+ * class that isn't a Unicode property, and which matches above Unicode, \W
+ * or [\x{110000}] for example.
+ * (Note that in this case, unlike the Posix one above, there is no
+ * <depends_list>, because having a Unicode property forces Unicode
+ * semantics */
+ if (properties) {
+  if (cp_list) {
+
+   /* If it matters to the final outcome, see if a non-property
+   * component of the class matches above Unicode.  If so, the
+   * warning gets suppressed.  This is true even if just a single
+   * such code point is specified, as though not strictly correct if
+   * another such code point is matched against, the fact that they
+   * are using above-Unicode code points indicates they should know
+   * the issues involved */
+   if (warn_super) {
+    warn_super = ! (invert
+       ^ (invlist_highest(cp_list) > PERL_UNICODE_MAX));
+   }
+
+   _invlist_union(properties, cp_list, &cp_list);
+   SvREFCNT_dec_NN(properties);
+  }
+  else {
+   cp_list = properties;
+  }
+
+  if (warn_super) {
+   ANYOF_FLAGS(ret) |= ANYOF_WARN_SUPER;
+  }
+ }
+
+ /* Here, we have calculated what code points should be in the character
+ * class.
+ *
+ * Now we can see about various optimizations.  Fold calculation (which we
+ * did above) needs to take place before inversion.  Otherwise /[^k]/i
+ * would invert to include K, which under /i would match k, which it
+ * shouldn't.  Therefore we can't invert folded locale now, as it won't be
+ * folded until runtime */
+
+ /* If we didn't do folding, it's because some information isn't available
+ * until runtime; set the run-time fold flag for these.  (We don't have to
+ * worry about properties folding, as that is taken care of by the swash
+ * fetching).  We know to set the flag if we have a non-NULL list for UTF-8
+ * locales, or the class matches at least one 0-255 range code point */
+ if (LOC && FOLD) {
+  if (only_utf8_locale_list) {
+   ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD;
+  }
+  else if (cp_list) { /* Look to see if there a 0-255 code point is in
+       the list */
+   UV start, end;
+   invlist_iterinit(cp_list);
+   if (invlist_iternext(cp_list, &start, &end) && start < 256) {
+    ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD;
+   }
+   invlist_iterfinish(cp_list);
+  }
+ }
+
+ /* Optimize inverted simple patterns (e.g. [^a-z]) when everything is known
+ * at compile time.  Besides not inverting folded locale now, we can't
+ * invert if there are things such as \w, which aren't known until runtime
+ * */
+ if (cp_list
+  && invert
+  && ! (ANYOF_FLAGS(ret) & (ANYOF_LOCALE_FLAGS))
+  && ! depends_list
+  && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
+ {
+  _invlist_invert(cp_list);
+
+  /* Any swash can't be used as-is, because we've inverted things */
+  if (swash) {
+   SvREFCNT_dec_NN(swash);
+   swash = NULL;
+  }
+
+  /* Clear the invert flag since have just done it here */
+  invert = FALSE;
+ }
+
+ if (ret_invlist) {
+  assert(cp_list);
+
+  *ret_invlist = cp_list;
+  SvREFCNT_dec(swash);
+
+  /* Discard the generated node */
+  if (SIZE_ONLY) {
+   RExC_size = orig_size;
+  }
+  else {
+   RExC_emit = orig_emit;
+  }
+  return orig_emit;
+ }
+
+ /* Some character classes are equivalent to other nodes.  Such nodes take
+ * up less room and generally fewer operations to execute than ANYOF nodes.
+ * Above, we checked for and optimized into some such equivalents for
+ * certain common classes that are easy to test.  Getting to this point in
+ * the code means that the class didn't get optimized there.  Since this
+ * code is only executed in Pass 2, it is too late to save space--it has
+ * been allocated in Pass 1, and currently isn't given back.  But turning
+ * things into an EXACTish node can allow the optimizer to join it to any
+ * adjacent such nodes.  And if the class is equivalent to things like /./,
+ * expensive run-time swashes can be avoided.  Now that we have more
+ * complete information, we can find things necessarily missed by the
+ * earlier code.  I (khw) am not sure how much to look for here.  It would
+ * be easy, but perhaps too slow, to check any candidates against all the
+ * node types they could possibly match using _invlistEQ(). */
+
+ if (cp_list
+  && ! invert
+  && ! depends_list
+  && ! (ANYOF_FLAGS(ret) & (ANYOF_LOCALE_FLAGS))
+  && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
+
+  /* We don't optimize if we are supposed to make sure all non-Unicode
+   * code points raise a warning, as only ANYOF nodes have this check.
+   * */
+  && ! ((ANYOF_FLAGS(ret) & ANYOF_WARN_SUPER) && ALWAYS_WARN_SUPER))
+ {
+  UV start, end;
+  U8 op = END;  /* The optimzation node-type */
+  const char * cur_parse= RExC_parse;
+
+  invlist_iterinit(cp_list);
+  if (! invlist_iternext(cp_list, &start, &end)) {
+
+   /* Here, the list is empty.  This happens, for example, when a
+   * Unicode property is the only thing in the character class, and
+   * it doesn't match anything.  (perluniprops.pod notes such
+   * properties) */
+   op = OPFAIL;
+   *flagp |= HASWIDTH|SIMPLE;
+  }
+  else if (start == end) {    /* The range is a single code point */
+   if (! invlist_iternext(cp_list, &start, &end)
+
+     /* Don't do this optimization if it would require changing
+     * the pattern to UTF-8 */
+    && (start < 256 || UTF))
+   {
+    /* Here, the list contains a single code point.  Can optimize
+    * into an EXACTish node */
+
+    value = start;
+
+    if (! FOLD) {
+     op = (LOC)
+      ? EXACTL
+      : EXACT;
+    }
+    else if (LOC) {
+
+     /* A locale node under folding with one code point can be
+     * an EXACTFL, as its fold won't be calculated until
+     * runtime */
+     op = EXACTFL;
+    }
+    else {
+
+     /* Here, we are generally folding, but there is only one
+     * code point to match.  If we have to, we use an EXACT
+     * node, but it would be better for joining with adjacent
+     * nodes in the optimization pass if we used the same
+     * EXACTFish node that any such are likely to be.  We can
+     * do this iff the code point doesn't participate in any
+     * folds.  For example, an EXACTF of a colon is the same as
+     * an EXACT one, since nothing folds to or from a colon. */
+     if (value < 256) {
+      if (IS_IN_SOME_FOLD_L1(value)) {
+       op = EXACT;
+      }
+     }
+     else {
+      if (_invlist_contains_cp(PL_utf8_foldable, value)) {
+       op = EXACT;
+      }
+     }
+
+     /* If we haven't found the node type, above, it means we
+     * can use the prevailing one */
+     if (op == END) {
+      op = compute_EXACTish(pRExC_state);
+     }
+    }
+   }
+  }
+  else if (start == 0) {
+   if (end == UV_MAX) {
+    op = SANY;
+    *flagp |= HASWIDTH|SIMPLE;
+    MARK_NAUGHTY(1);
+   }
+   else if (end == '\n' - 1
+     && invlist_iternext(cp_list, &start, &end)
+     && start == '\n' + 1 && end == UV_MAX)
+   {
+    op = REG_ANY;
+    *flagp |= HASWIDTH|SIMPLE;
+    MARK_NAUGHTY(1);
+   }
+  }
+  invlist_iterfinish(cp_list);
+
+  if (op != END) {
+   RExC_parse = (char *)orig_parse;
+   RExC_emit = (regnode *)orig_emit;
+
+   ret = reg_node(pRExC_state, op);
+
+   RExC_parse = (char *)cur_parse;
+
+   if (PL_regkind[op] == EXACT) {
+    alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value,
+          TRUE /* downgradable to EXACT */
+          );
+   }
+
+   SvREFCNT_dec_NN(cp_list);
+   return ret;
+  }
+ }
+
+ /* Here, <cp_list> contains all the code points we can determine at
+ * compile time that match under all conditions.  Go through it, and
+ * for things that belong in the bitmap, put them there, and delete from
+ * <cp_list>.  While we are at it, see if everything above 255 is in the
+ * list, and if so, set a flag to speed up execution */
+
+ populate_ANYOF_from_invlist(ret, &cp_list);
+
+ if (invert) {
+  ANYOF_FLAGS(ret) |= ANYOF_INVERT;
+ }
+
+ /* Here, the bitmap has been populated with all the Latin1 code points that
+ * always match.  Can now add to the overall list those that match only
+ * when the target string is UTF-8 (<depends_list>). */
+ if (depends_list) {
+  if (cp_list) {
+   _invlist_union(cp_list, depends_list, &cp_list);
+   SvREFCNT_dec_NN(depends_list);
+  }
+  else {
+   cp_list = depends_list;
+  }
+  ANYOF_FLAGS(ret) |= ANYOF_HAS_UTF8_NONBITMAP_MATCHES;
+ }
+
+ /* If there is a swash and more than one element, we can't use the swash in
+ * the optimization below. */
+ if (swash && element_count > 1) {
+  SvREFCNT_dec_NN(swash);
+  swash = NULL;
+ }
+
+ /* Note that the optimization of using 'swash' if it is the only thing in
+ * the class doesn't have us change swash at all, so it can include things
+ * that are also in the bitmap; otherwise we have purposely deleted that
+ * duplicate information */
+ set_ANYOF_arg(pRExC_state, ret, cp_list,
+    (HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
+    ? listsv : NULL,
+    only_utf8_locale_list,
+    swash, has_user_defined_property);
+
+ *flagp |= HASWIDTH|SIMPLE;
+
+ if (ANYOF_FLAGS(ret) & ANYOF_LOCALE_FLAGS) {
+  RExC_contains_locale = 1;
+ }
+
+ return ret;
+}
+
+#undef HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
+
+STATIC void
+S_set_ANYOF_arg(pTHX_ RExC_state_t* const pRExC_state,
+    regnode* const node,
+    SV* const cp_list,
+    SV* const runtime_defns,
+    SV* const only_utf8_locale_list,
+    SV* const swash,
+    const bool has_user_defined_property)
+{
+ /* Sets the arg field of an ANYOF-type node 'node', using information about
+ * the node passed-in.  If there is nothing outside the node's bitmap, the
+ * arg is set to ANYOF_ONLY_HAS_BITMAP.  Otherwise, it sets the argument to
+ * the count returned by add_data(), having allocated and stored an array,
+ * av, that that count references, as follows:
+ *  av[0] stores the character class description in its textual form.
+ *        This is used later (regexec.c:Perl_regclass_swash()) to
+ *        initialize the appropriate swash, and is also useful for dumping
+ *        the regnode.  This is set to &PL_sv_undef if the textual
+ *        description is not needed at run-time (as happens if the other
+ *        elements completely define the class)
+ *  av[1] if &PL_sv_undef, is a placeholder to later contain the swash
+ *        computed from av[0].  But if no further computation need be done,
+ *        the swash is stored here now (and av[0] is &PL_sv_undef).
+ *  av[2] stores the inversion list of code points that match only if the
+ *        current locale is UTF-8
+ *  av[3] stores the cp_list inversion list for use in addition or instead
+ *        of av[0]; used only if cp_list exists and av[1] is &PL_sv_undef.
+ *        (Otherwise everything needed is already in av[0] and av[1])
+ *  av[4] is set if any component of the class is from a user-defined
+ *        property; used only if av[3] exists */
+
+ UV n;
+
+ PERL_ARGS_ASSERT_SET_ANYOF_ARG;
+
+ if (! cp_list && ! runtime_defns && ! only_utf8_locale_list) {
+  assert(! (ANYOF_FLAGS(node)
+    & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+     |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES)));
+  ARG_SET(node, ANYOF_ONLY_HAS_BITMAP);
+ }
+ else {
+  AV * const av = newAV();
+  SV *rv;
+
+  assert(ANYOF_FLAGS(node)
+   & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+    |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES|ANYOF_LOC_FOLD));
+
+  av_store(av, 0, (runtime_defns)
+      ? SvREFCNT_inc(runtime_defns) : &PL_sv_undef);
+  if (swash) {
+   assert(cp_list);
+   av_store(av, 1, swash);
+   SvREFCNT_dec_NN(cp_list);
+  }
+  else {
+   av_store(av, 1, &PL_sv_undef);
+   if (cp_list) {
+    av_store(av, 3, cp_list);
+    av_store(av, 4, newSVuv(has_user_defined_property));
+   }
+  }
+
+  if (only_utf8_locale_list) {
+   av_store(av, 2, only_utf8_locale_list);
+  }
+  else {
+   av_store(av, 2, &PL_sv_undef);
+  }
+
+  rv = newRV_noinc(MUTABLE_SV(av));
+  n = add_data(pRExC_state, STR_WITH_LEN("s"));
+  RExC_rxi->data->data[n] = (void*)rv;
+  ARG_SET(node, n);
+ }
+}
+
+#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
+SV *
+Perl__get_regclass_nonbitmap_data(pTHX_ const regexp *prog,
+          const regnode* node,
+          bool doinit,
+          SV** listsvp,
+          SV** only_utf8_locale_ptr,
+          SV*  exclude_list)
+
+{
+ /* For internal core use only.
+ * Returns the swash for the input 'node' in the regex 'prog'.
+ * If <doinit> is 'true', will attempt to create the swash if not already
+ *   done.
+ * If <listsvp> is non-null, will return the printable contents of the
+ *    swash.  This can be used to get debugging information even before the
+ *    swash exists, by calling this function with 'doinit' set to false, in
+ *    which case the components that will be used to eventually create the
+ *    swash are returned  (in a printable form).
+ * If <exclude_list> is not NULL, it is an inversion list of things to
+ *    exclude from what's returned in <listsvp>.
+ * Tied intimately to how S_set_ANYOF_arg sets up the data structure.  Note
+ * that, in spite of this function's name, the swash it returns may include
+ * the bitmap data as well */
+
+ SV *sw  = NULL;
+ SV *si  = NULL;         /* Input swash initialization string */
+ SV*  invlist = NULL;
+
+ RXi_GET_DECL(prog,progi);
+ const struct reg_data * const data = prog ? progi->data : NULL;
+
+ PERL_ARGS_ASSERT__GET_REGCLASS_NONBITMAP_DATA;
+
+ assert(ANYOF_FLAGS(node)
+  & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+  |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES|ANYOF_LOC_FOLD));
+
+ if (data && data->count) {
+  const U32 n = ARG(node);
+
+  if (data->what[n] == 's') {
+   SV * const rv = MUTABLE_SV(data->data[n]);
+   AV * const av = MUTABLE_AV(SvRV(rv));
+   SV **const ary = AvARRAY(av);
+   U8 swash_init_flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+
+   si = *ary; /* ary[0] = the string to initialize the swash with */
+
+   /* Elements 3 and 4 are either both present or both absent. [3] is
+   * any inversion list generated at compile time; [4] indicates if
+   * that inversion list has any user-defined properties in it. */
+   if (av_tindex(av) >= 2) {
+    if (only_utf8_locale_ptr
+     && ary[2]
+     && ary[2] != &PL_sv_undef)
+    {
+     *only_utf8_locale_ptr = ary[2];
+    }
+    else {
+     assert(only_utf8_locale_ptr);
+     *only_utf8_locale_ptr = NULL;
+    }
+
+    if (av_tindex(av) >= 3) {
+     invlist = ary[3];
+     if (SvUV(ary[4])) {
+      swash_init_flags |= _CORE_SWASH_INIT_USER_DEFINED_PROPERTY;
+     }
+    }
+    else {
+     invlist = NULL;
+    }
+   }
+
+   /* Element [1] is reserved for the set-up swash.  If already there,
+   * return it; if not, create it and store it there */
+   if (ary[1] && SvROK(ary[1])) {
+    sw = ary[1];
+   }
+   else if (doinit && ((si && si != &PL_sv_undef)
+        || (invlist && invlist != &PL_sv_undef))) {
+    assert(si);
+    sw = _core_swash_init("utf8", /* the utf8 package */
+         "", /* nameless */
+         si,
+         1, /* binary */
+         0, /* not from tr/// */
+         invlist,
+         &swash_init_flags);
+    (void)av_store(av, 1, sw);
+   }
+  }
+ }
+
+ /* If requested, return a printable version of what this swash matches */
+ if (listsvp) {
+  SV* matches_string = newSVpvs("");
+
+  /* The swash should be used, if possible, to get the data, as it
+  * contains the resolved data.  But this function can be called at
+  * compile-time, before everything gets resolved, in which case we
+  * return the currently best available information, which is the string
+  * that will eventually be used to do that resolving, 'si' */
+  if ((! sw || (invlist = _get_swash_invlist(sw)) == NULL)
+   && (si && si != &PL_sv_undef))
+  {
+   sv_catsv(matches_string, si);
+  }
+
+  /* Add the inversion list to whatever we have.  This may have come from
+  * the swash, or from an input parameter */
+  if (invlist) {
+   if (exclude_list) {
+    SV* clone = invlist_clone(invlist);
+    _invlist_subtract(clone, exclude_list, &clone);
+    sv_catsv(matches_string, _invlist_contents(clone));
+    SvREFCNT_dec_NN(clone);
+   }
+   else {
+    sv_catsv(matches_string, _invlist_contents(invlist));
+   }
+  }
+  *listsvp = matches_string;
+ }
+
+ return sw;
+}
+#endif /* !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION) */
+
+/* reg_skipcomment()
+
+   Absorbs an /x style # comment from the input stream,
+   returning a pointer to the first character beyond the comment, or if the
+   comment terminates the pattern without anything following it, this returns
+   one past the final character of the pattern (in other words, RExC_end) and
+   sets the REG_RUN_ON_COMMENT_SEEN flag.
+
+   Note it's the callers responsibility to ensure that we are
+   actually in /x mode
+
+*/
+
+PERL_STATIC_INLINE char*
+S_reg_skipcomment(RExC_state_t *pRExC_state, char* p)
+{
+ PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
+
+ assert(*p == '#');
+
+ while (p < RExC_end) {
+  if (*(++p) == '\n') {
+   return p+1;
+  }
+ }
+
+ /* we ran off the end of the pattern without ending the comment, so we have
+ * to add an \n when wrapping */
+ RExC_seen |= REG_RUN_ON_COMMENT_SEEN;
+ return p;
+}
+
+/* nextchar()
+
+   Advances the parse position, and optionally absorbs
+   "whitespace" from the inputstream.
+
+   Without /x "whitespace" means (?#...) style comments only,
+   with /x this means (?#...) and # comments and whitespace proper.
+
+   Returns the RExC_parse point from BEFORE the scan occurs.
+
+   This is the /x friendly way of saying RExC_parse++.
+*/
+
+STATIC char*
+S_nextchar(pTHX_ RExC_state_t *pRExC_state)
+{
+ char* const retval = RExC_parse++;
+
+ PERL_ARGS_ASSERT_NEXTCHAR;
+
+ for (;;) {
+  if (RExC_end - RExC_parse >= 3
+   && *RExC_parse == '('
+   && RExC_parse[1] == '?'
+   && RExC_parse[2] == '#')
+  {
+   while (*RExC_parse != ')') {
+    if (RExC_parse == RExC_end)
+     FAIL("Sequence (?#... not terminated");
+    RExC_parse++;
+   }
+   RExC_parse++;
+   continue;
+  }
+  if (RExC_flags & RXf_PMf_EXTENDED) {
+   char * p = regpatws(pRExC_state, RExC_parse,
+          TRUE); /* means recognize comments */
+   if (p != RExC_parse) {
+    RExC_parse = p;
+    continue;
+   }
+  }
+  return retval;
+ }
+}
+
+STATIC regnode *
+S_regnode_guts(pTHX_ RExC_state_t *pRExC_state, const U8 op, const STRLEN extra_size, const char* const name)
+{
+ /* Allocate a regnode for 'op' and returns it, with 'extra_size' extra
+ * space.  In pass1, it aligns and increments RExC_size; in pass2,
+ * RExC_emit */
+
+ regnode * const ret = RExC_emit;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGNODE_GUTS;
+
+ assert(extra_size >= regarglen[op]);
+
+ if (SIZE_ONLY) {
+  SIZE_ALIGN(RExC_size);
+  RExC_size += 1 + extra_size;
+  return(ret);
+ }
+ if (RExC_emit >= RExC_emit_bound)
+  Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
+    op, (void*)RExC_emit, (void*)RExC_emit_bound);
+
+ NODE_ALIGN_FILL(ret);
+#ifndef RE_TRACK_PATTERN_OFFSETS
+ PERL_UNUSED_ARG(name);
+#else
+ if (RExC_offsets) {         /* MJD */
+  MJD_OFFSET_DEBUG(
+   ("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
+   name, __LINE__,
+   PL_reg_name[op],
+   (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
+    ? "Overwriting end of array!\n" : "OK",
+   (UV)(RExC_emit - RExC_emit_start),
+   (UV)(RExC_parse - RExC_start),
+   (UV)RExC_offsets[0]));
+  Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
+ }
+#endif
+ return(ret);
+}
+
+/*
+- reg_node - emit a node
+*/
+STATIC regnode *   /* Location. */
+S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
+{
+ regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reg_node");
+
+ PERL_ARGS_ASSERT_REG_NODE;
+
+ assert(regarglen[op] == 0);
+
+ if (PASS2) {
+  regnode *ptr = ret;
+  FILL_ADVANCE_NODE(ptr, op);
+ REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 1);
+  RExC_emit = ptr;
+ }
+ return(ret);
+}
+
+/*
+- reganode - emit a node with an argument
+*/
+STATIC regnode *   /* Location. */
+S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
+{
+ regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reganode");
+
+ PERL_ARGS_ASSERT_REGANODE;
+
+ assert(regarglen[op] == 1);
+
+ if (PASS2) {
+  regnode *ptr = ret;
+  FILL_ADVANCE_NODE_ARG(ptr, op, arg);
+ REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 2);
+  RExC_emit = ptr;
+ }
+ return(ret);
+}
+
+STATIC regnode *
+S_reg2Lanode(pTHX_ RExC_state_t *pRExC_state, const U8 op, const U32 arg1, const I32 arg2)
+{
+ /* emit a node with U32 and I32 arguments */
+
+ regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reg2Lanode");
+
+ PERL_ARGS_ASSERT_REG2LANODE;
+
+ assert(regarglen[op] == 2);
+
+ if (PASS2) {
+  regnode *ptr = ret;
+  FILL_ADVANCE_NODE_2L_ARG(ptr, op, arg1, arg2);
+  RExC_emit = ptr;
+ }
+ return(ret);
+}
+
+/*
+- reginsert - insert an operator in front of already-emitted operand
+*
+* Means relocating the operand.
+*/
+STATIC void
+S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
+{
+ regnode *src;
+ regnode *dst;
+ regnode *place;
+ const int offset = regarglen[(U8)op];
+ const int size = NODE_STEP_REGNODE + offset;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGINSERT;
+ PERL_UNUSED_CONTEXT;
+ PERL_UNUSED_ARG(depth);
+/* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
+ DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
+ if (SIZE_ONLY) {
+  RExC_size += size;
+  return;
+ }
+
+ src = RExC_emit;
+ RExC_emit += size;
+ dst = RExC_emit;
+ if (RExC_open_parens) {
+  int paren;
+  /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
+  for ( paren=0 ; paren < RExC_npar ; paren++ ) {
+   if ( RExC_open_parens[paren] >= opnd ) {
+    /*DEBUG_PARSE_FMT("open"," - %d",size);*/
+    RExC_open_parens[paren] += size;
+   } else {
+    /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
+   }
+   if ( RExC_close_parens[paren] >= opnd ) {
+    /*DEBUG_PARSE_FMT("close"," - %d",size);*/
+    RExC_close_parens[paren] += size;
+   } else {
+    /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
+   }
+  }
+ }
+
+ while (src > opnd) {
+  StructCopy(--src, --dst, regnode);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+  if (RExC_offsets) {     /* MJD 20010112 */
+   MJD_OFFSET_DEBUG(
+    ("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
+    "reg_insert",
+    __LINE__,
+    PL_reg_name[op],
+    (UV)(dst - RExC_emit_start) > RExC_offsets[0]
+     ? "Overwriting end of array!\n" : "OK",
+    (UV)(src - RExC_emit_start),
+    (UV)(dst - RExC_emit_start),
+    (UV)RExC_offsets[0]));
+   Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
+   Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
+  }
+#endif
+ }
+
+
+ place = opnd;  /* Op node, where operand used to be. */
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (RExC_offsets) {         /* MJD */
+  MJD_OFFSET_DEBUG(
+   ("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
+   "reginsert",
+   __LINE__,
+   PL_reg_name[op],
+   (UV)(place - RExC_emit_start) > RExC_offsets[0]
+   ? "Overwriting end of array!\n" : "OK",
+   (UV)(place - RExC_emit_start),
+   (UV)(RExC_parse - RExC_start),
+   (UV)RExC_offsets[0]));
+  Set_Node_Offset(place, RExC_parse);
+  Set_Node_Length(place, 1);
+ }
+#endif
+ src = NEXTOPER(place);
+ FILL_ADVANCE_NODE(place, op);
+ REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (place) - 1);
+ Zero(src, offset, regnode);
+}
+
+/*
+- regtail - set the next-pointer at the end of a node chain of p to val.
+- SEE ALSO: regtail_study
+*/
+/* TODO: All three parms should be const */
+STATIC void
+S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p,
+    const regnode *val,U32 depth)
+{
+ regnode *scan;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTAIL;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ if (SIZE_ONLY)
+  return;
+
+ /* Find last node. */
+ scan = p;
+ for (;;) {
+  regnode * const temp = regnext(scan);
+  DEBUG_PARSE_r({
+   DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
+   regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
+   PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
+    SvPV_nolen_const(RExC_mysv), REG_NODE_NUM(scan),
+     (temp == NULL ? "->" : ""),
+     (temp == NULL ? PL_reg_name[OP(val)] : "")
+   );
+  });
+  if (temp == NULL)
+   break;
+  scan = temp;
+ }
+
+ if (reg_off_by_arg[OP(scan)]) {
+  ARG_SET(scan, val - scan);
+ }
+ else {
+  NEXT_OFF(scan) = val - scan;
+ }
+}
+
+#ifdef DEBUGGING
+/*
+- regtail_study - set the next-pointer at the end of a node chain of p to val.
+- Look for optimizable sequences at the same time.
+- currently only looks for EXACT chains.
+
+This is experimental code. The idea is to use this routine to perform
+in place optimizations on branches and groups as they are constructed,
+with the long term intention of removing optimization from study_chunk so
+that it is purely analytical.
+
+Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
+to control which is which.
+
+*/
+/* TODO: All four parms should be const */
+
+STATIC U8
+S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p,
+     const regnode *val,U32 depth)
+{
+ regnode *scan;
+ U8 exact = PSEUDO;
+#ifdef EXPERIMENTAL_INPLACESCAN
+ I32 min = 0;
+#endif
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTAIL_STUDY;
+
+
+ if (SIZE_ONLY)
+  return exact;
+
+ /* Find last node. */
+
+ scan = p;
+ for (;;) {
+  regnode * const temp = regnext(scan);
+#ifdef EXPERIMENTAL_INPLACESCAN
+  if (PL_regkind[OP(scan)] == EXACT) {
+   bool unfolded_multi_char; /* Unexamined in this routine */
+   if (join_exact(pRExC_state, scan, &min,
+      &unfolded_multi_char, 1, val, depth+1))
+    return EXACT;
+  }
+#endif
+  if ( exact ) {
+   switch (OP(scan)) {
+    case EXACT:
+    case EXACTL:
+    case EXACTF:
+    case EXACTFA_NO_TRIE:
+    case EXACTFA:
+    case EXACTFU:
+    case EXACTFLU8:
+    case EXACTFU_SS:
+    case EXACTFL:
+      if( exact == PSEUDO )
+       exact= OP(scan);
+      else if ( exact != OP(scan) )
+       exact= 0;
+    case NOTHING:
+     break;
+    default:
+     exact= 0;
+   }
+  }
+  DEBUG_PARSE_r({
+   DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
+   regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
+   PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
+    SvPV_nolen_const(RExC_mysv),
+    REG_NODE_NUM(scan),
+    PL_reg_name[exact]);
+  });
+  if (temp == NULL)
+   break;
+  scan = temp;
+ }
+ DEBUG_PARSE_r({
+  DEBUG_PARSE_MSG("");
+  regprop(RExC_rx, RExC_mysv, val, NULL, pRExC_state);
+  PerlIO_printf(Perl_debug_log,
+     "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
+     SvPV_nolen_const(RExC_mysv),
+     (IV)REG_NODE_NUM(val),
+     (IV)(val - scan)
+  );
+ });
+ if (reg_off_by_arg[OP(scan)]) {
+  ARG_SET(scan, val - scan);
+ }
+ else {
+  NEXT_OFF(scan) = val - scan;
+ }
+
+ return exact;
+}
+#endif
+
+/*
+ - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
+ */
+#ifdef DEBUGGING
+
+static void
+S_regdump_intflags(pTHX_ const char *lead, const U32 flags)
+{
+ int bit;
+ int set=0;
+
+ ASSUME(REG_INTFLAGS_NAME_SIZE <= sizeof(flags)*8);
+
+ for (bit=0; bit<REG_INTFLAGS_NAME_SIZE; bit++) {
+  if (flags & (1<<bit)) {
+   if (!set++ && lead)
+    PerlIO_printf(Perl_debug_log, "%s",lead);
+   PerlIO_printf(Perl_debug_log, "%s ",PL_reg_intflags_name[bit]);
+  }
+ }
+ if (lead)  {
+  if (set)
+   PerlIO_printf(Perl_debug_log, "\n");
+  else
+   PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
+ }
+}
+
+static void
+S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
+{
+ int bit;
+ int set=0;
+ regex_charset cs;
+
+ ASSUME(REG_EXTFLAGS_NAME_SIZE <= sizeof(flags)*8);
+
+ for (bit=0; bit<REG_EXTFLAGS_NAME_SIZE; bit++) {
+  if (flags & (1<<bit)) {
+   if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
+    continue;
+   }
+   if (!set++ && lead)
+    PerlIO_printf(Perl_debug_log, "%s",lead);
+   PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
+  }
+ }
+ if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
+   if (!set++ && lead) {
+    PerlIO_printf(Perl_debug_log, "%s",lead);
+   }
+   switch (cs) {
+    case REGEX_UNICODE_CHARSET:
+     PerlIO_printf(Perl_debug_log, "UNICODE");
+     break;
+    case REGEX_LOCALE_CHARSET:
+     PerlIO_printf(Perl_debug_log, "LOCALE");
+     break;
+    case REGEX_ASCII_RESTRICTED_CHARSET:
+     PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
+     break;
+    case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+     PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
+     break;
+    default:
+     PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
+     break;
+   }
+ }
+ if (lead)  {
+  if (set)
+   PerlIO_printf(Perl_debug_log, "\n");
+  else
+   PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
+ }
+}
+#endif
+
+void
+Perl_regdump(pTHX_ const regexp *r)
+{
+#ifdef DEBUGGING
+ SV * const sv = sv_newmortal();
+ SV *dsv= sv_newmortal();
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGDUMP;
+
+ (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
+
+ /* Header fields of interest. */
+ if (r->anchored_substr) {
+  RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
+   RE_SV_DUMPLEN(r->anchored_substr), 30);
+  PerlIO_printf(Perl_debug_log,
+     "anchored %s%s at %"IVdf" ",
+     s, RE_SV_TAIL(r->anchored_substr),
+     (IV)r->anchored_offset);
+ } else if (r->anchored_utf8) {
+  RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
+   RE_SV_DUMPLEN(r->anchored_utf8), 30);
+  PerlIO_printf(Perl_debug_log,
+     "anchored utf8 %s%s at %"IVdf" ",
+     s, RE_SV_TAIL(r->anchored_utf8),
+     (IV)r->anchored_offset);
+ }
+ if (r->float_substr) {
+  RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
+   RE_SV_DUMPLEN(r->float_substr), 30);
+  PerlIO_printf(Perl_debug_log,
+     "floating %s%s at %"IVdf"..%"UVuf" ",
+     s, RE_SV_TAIL(r->float_substr),
+     (IV)r->float_min_offset, (UV)r->float_max_offset);
+ } else if (r->float_utf8) {
+  RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
+   RE_SV_DUMPLEN(r->float_utf8), 30);
+  PerlIO_printf(Perl_debug_log,
+     "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
+     s, RE_SV_TAIL(r->float_utf8),
+     (IV)r->float_min_offset, (UV)r->float_max_offset);
+ }
+ if (r->check_substr || r->check_utf8)
+  PerlIO_printf(Perl_debug_log,
+     (const char *)
+     (r->check_substr == r->float_substr
+     && r->check_utf8 == r->float_utf8
+     ? "(checking floating" : "(checking anchored"));
+ if (r->intflags & PREGf_NOSCAN)
+  PerlIO_printf(Perl_debug_log, " noscan");
+ if (r->extflags & RXf_CHECK_ALL)
+  PerlIO_printf(Perl_debug_log, " isall");
+ if (r->check_substr || r->check_utf8)
+  PerlIO_printf(Perl_debug_log, ") ");
+
+ if (ri->regstclass) {
+  regprop(r, sv, ri->regstclass, NULL, NULL);
+  PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
+ }
+ if (r->intflags & PREGf_ANCH) {
+  PerlIO_printf(Perl_debug_log, "anchored");
+  if (r->intflags & PREGf_ANCH_MBOL)
+   PerlIO_printf(Perl_debug_log, "(MBOL)");
+  if (r->intflags & PREGf_ANCH_SBOL)
+   PerlIO_printf(Perl_debug_log, "(SBOL)");
+  if (r->intflags & PREGf_ANCH_GPOS)
+   PerlIO_printf(Perl_debug_log, "(GPOS)");
+  (void)PerlIO_putc(Perl_debug_log, ' ');
+ }
+ if (r->intflags & PREGf_GPOS_SEEN)
+  PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
+ if (r->intflags & PREGf_SKIP)
+  PerlIO_printf(Perl_debug_log, "plus ");
+ if (r->intflags & PREGf_IMPLICIT)
+  PerlIO_printf(Perl_debug_log, "implicit ");
+ PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
+ if (r->extflags & RXf_EVAL_SEEN)
+  PerlIO_printf(Perl_debug_log, "with eval ");
+ PerlIO_printf(Perl_debug_log, "\n");
+ DEBUG_FLAGS_r({
+  regdump_extflags("r->extflags: ",r->extflags);
+  regdump_intflags("r->intflags: ",r->intflags);
+ });
+#else
+ PERL_ARGS_ASSERT_REGDUMP;
+ PERL_UNUSED_CONTEXT;
+ PERL_UNUSED_ARG(r);
+#endif /* DEBUGGING */
+}
+
+/*
+- regprop - printable representation of opcode, with run time support
+*/
+
+void
+Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o, const regmatch_info *reginfo, const RExC_state_t *pRExC_state)
+{
+#ifdef DEBUGGING
+ int k;
+
+ /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
+ static const char * const anyofs[] = {
+#if _CC_WORDCHAR != 0 || _CC_DIGIT != 1 || _CC_ALPHA != 2 || _CC_LOWER != 3 \
+ || _CC_UPPER != 4 || _CC_PUNCT != 5 || _CC_PRINT != 6                   \
+ || _CC_ALPHANUMERIC != 7 || _CC_GRAPH != 8 || _CC_CASED != 9            \
+ || _CC_SPACE != 10 || _CC_BLANK != 11 || _CC_XDIGIT != 12               \
+ || _CC_CNTRL != 13 || _CC_ASCII != 14 || _CC_VERTSPACE != 15
+  #error Need to adjust order of anyofs[]
+#endif
+  "\\w",
+  "\\W",
+  "\\d",
+  "\\D",
+  "[:alpha:]",
+  "[:^alpha:]",
+  "[:lower:]",
+  "[:^lower:]",
+  "[:upper:]",
+  "[:^upper:]",
+  "[:punct:]",
+  "[:^punct:]",
+  "[:print:]",
+  "[:^print:]",
+  "[:alnum:]",
+  "[:^alnum:]",
+  "[:graph:]",
+  "[:^graph:]",
+  "[:cased:]",
+  "[:^cased:]",
+  "\\s",
+  "\\S",
+  "[:blank:]",
+  "[:^blank:]",
+  "[:xdigit:]",
+  "[:^xdigit:]",
+  "[:cntrl:]",
+  "[:^cntrl:]",
+  "[:ascii:]",
+  "[:^ascii:]",
+  "\\v",
+  "\\V"
+ };
+ RXi_GET_DECL(prog,progi);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGPROP;
+
+ sv_setpvn(sv, "", 0);
+
+ if (OP(o) > REGNODE_MAX)  /* regnode.type is unsigned */
+  /* It would be nice to FAIL() here, but this may be called from
+  regexec.c, and it would be hard to supply pRExC_state. */
+  Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d",
+           (int)OP(o), (int)REGNODE_MAX);
+ sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
+
+ k = PL_regkind[OP(o)];
+
+ if (k == EXACT) {
+  sv_catpvs(sv, " ");
+  /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
+  * is a crude hack but it may be the best for now since
+  * we have no flag "this EXACTish node was UTF-8"
+  * --jhi */
+  pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
+    PERL_PV_ESCAPE_UNI_DETECT |
+    PERL_PV_ESCAPE_NONASCII   |
+    PERL_PV_PRETTY_ELLIPSES   |
+    PERL_PV_PRETTY_LTGT       |
+    PERL_PV_PRETTY_NOCLEAR
+    );
+ } else if (k == TRIE) {
+  /* print the details of the trie in dumpuntil instead, as
+  * progi->data isn't available here */
+  const char op = OP(o);
+  const U32 n = ARG(o);
+  const reg_ac_data * const ac = IS_TRIE_AC(op) ?
+   (reg_ac_data *)progi->data->data[n] :
+   NULL;
+  const reg_trie_data * const trie
+   = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
+
+  Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
+  DEBUG_TRIE_COMPILE_r(
+  Perl_sv_catpvf(aTHX_ sv,
+   "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
+   (UV)trie->startstate,
+   (IV)trie->statecount-1, /* -1 because of the unused 0 element */
+   (UV)trie->wordcount,
+   (UV)trie->minlen,
+   (UV)trie->maxlen,
+   (UV)TRIE_CHARCOUNT(trie),
+   (UV)trie->uniquecharcount
+  );
+  );
+  if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
+   sv_catpvs(sv, "[");
+   (void) put_charclass_bitmap_innards(sv,
+            (IS_ANYOF_TRIE(op))
+            ? ANYOF_BITMAP(o)
+            : TRIE_BITMAP(trie),
+            NULL);
+   sv_catpvs(sv, "]");
+  }
+
+ } else if (k == CURLY) {
+  if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
+   Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
+  Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
+ }
+ else if (k == WHILEM && o->flags)   /* Ordinal/of */
+  Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
+ else if (k == REF || k == OPEN || k == CLOSE
+   || k == GROUPP || OP(o)==ACCEPT)
+ {
+  AV *name_list= NULL;
+  Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
+  if ( RXp_PAREN_NAMES(prog) ) {
+   name_list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
+  } else if ( pRExC_state ) {
+   name_list= RExC_paren_name_list;
+  }
+  if (name_list) {
+   if ( k != REF || (OP(o) < NREF)) {
+    SV **name= av_fetch(name_list, ARG(o), 0 );
+    if (name)
+     Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+   }
+   else {
+    SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
+    I32 *nums=(I32*)SvPVX(sv_dat);
+    SV **name= av_fetch(name_list, nums[0], 0 );
+    I32 n;
+    if (name) {
+     for ( n=0; n<SvIVX(sv_dat); n++ ) {
+      Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
+         (n ? "," : ""), (IV)nums[n]);
+     }
+     Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+    }
+   }
+  }
+  if ( k == REF && reginfo) {
+   U32 n = ARG(o);  /* which paren pair */
+   I32 ln = prog->offs[n].start;
+   if (prog->lastparen < n || ln == -1)
+    Perl_sv_catpvf(aTHX_ sv, ": FAIL");
+   else if (ln == prog->offs[n].end)
+    Perl_sv_catpvf(aTHX_ sv, ": ACCEPT - EMPTY STRING");
+   else {
+    const char *s = reginfo->strbeg + ln;
+    Perl_sv_catpvf(aTHX_ sv, ": ");
+    Perl_pv_pretty( aTHX_ sv, s, prog->offs[n].end - prog->offs[n].start, 32, 0, 0,
+     PERL_PV_ESCAPE_UNI_DETECT|PERL_PV_PRETTY_NOCLEAR|PERL_PV_PRETTY_ELLIPSES|PERL_PV_PRETTY_QUOTE );
+   }
+  }
+ } else if (k == GOSUB) {
+  AV *name_list= NULL;
+  if ( RXp_PAREN_NAMES(prog) ) {
+   name_list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
+  } else if ( pRExC_state ) {
+   name_list= RExC_paren_name_list;
+  }
+
+  /* Paren and offset */
+  Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o));
+  if (name_list) {
+   SV **name= av_fetch(name_list, ARG(o), 0 );
+   if (name)
+    Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+  }
+ }
+ else if (k == VERB) {
+  if (!o->flags)
+   Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
+      SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
+ } else if (k == LOGICAL)
+  /* 2: embedded, otherwise 1 */
+  Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags);
+ else if (k == ANYOF) {
+  const U8 flags = ANYOF_FLAGS(o);
+  int do_sep = 0;
+  SV* bitmap_invlist;  /* Will hold what the bit map contains */
+
+
+  if (OP(o) == ANYOFL)
+   sv_catpvs(sv, "{loc}");
+  if (flags & ANYOF_LOC_FOLD)
+   sv_catpvs(sv, "{i}");
+  Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
+  if (flags & ANYOF_INVERT)
+   sv_catpvs(sv, "^");
+
+  /* output what the standard cp 0-NUM_ANYOF_CODE_POINTS-1 bitmap matches
+  * */
+  do_sep = put_charclass_bitmap_innards(sv, ANYOF_BITMAP(o),
+               &bitmap_invlist);
+
+  /* output any special charclass tests (used entirely under use
+  * locale) * */
+  if (ANYOF_POSIXL_TEST_ANY_SET(o)) {
+   int i;
+   for (i = 0; i < ANYOF_POSIXL_MAX; i++) {
+    if (ANYOF_POSIXL_TEST(o,i)) {
+     sv_catpv(sv, anyofs[i]);
+     do_sep = 1;
+    }
+   }
+  }
+
+  if ((flags & (ANYOF_MATCHES_ALL_ABOVE_BITMAP
+     |ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+     |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES
+     |ANYOF_LOC_FOLD)))
+  {
+   if (do_sep) {
+    Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]);
+    if (flags & ANYOF_INVERT)
+     /*make sure the invert info is in each */
+     sv_catpvs(sv, "^");
+   }
+
+   if (flags & ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII) {
+    sv_catpvs(sv, "{non-utf8-latin1-all}");
+   }
+
+   if (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP)
+    sv_catpvs(sv, "{above_bitmap_all}");
+
+   if (ARG(o) != ANYOF_ONLY_HAS_BITMAP) {
+    SV *lv; /* Set if there is something outside the bit map. */
+    bool byte_output = FALSE;   /* If something has been output */
+    SV *only_utf8_locale;
+
+    /* Get the stuff that wasn't in the bitmap.  'bitmap_invlist'
+    * is used to guarantee that nothing in the bitmap gets
+    * returned */
+    (void) _get_regclass_nonbitmap_data(prog, o, FALSE,
+             &lv, &only_utf8_locale,
+             bitmap_invlist);
+    if (lv && lv != &PL_sv_undef) {
+     char *s = savesvpv(lv);
+     char * const origs = s;
+
+     while (*s && *s != '\n')
+      s++;
+
+     if (*s == '\n') {
+      const char * const t = ++s;
+
+      if (flags & ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES) {
+       sv_catpvs(sv, "{outside bitmap}");
+      }
+      else {
+       sv_catpvs(sv, "{utf8}");
+      }
+
+      if (byte_output) {
+       sv_catpvs(sv, " ");
+      }
+
+      while (*s) {
+       if (*s == '\n') {
+
+        /* Truncate very long output */
+        if (s - origs > 256) {
+         Perl_sv_catpvf(aTHX_ sv,
+            "%.*s...",
+            (int) (s - origs - 1),
+            t);
+         goto out_dump;
+        }
+        *s = ' ';
+       }
+       else if (*s == '\t') {
+        *s = '-';
+       }
+       s++;
+      }
+      if (s[-1] == ' ')
+       s[-1] = 0;
+
+      sv_catpv(sv, t);
+     }
+
+    out_dump:
+
+     Safefree(origs);
+     SvREFCNT_dec_NN(lv);
+    }
+
+    if ((flags & ANYOF_LOC_FOLD)
+     && only_utf8_locale
+     && only_utf8_locale != &PL_sv_undef)
+    {
+     UV start, end;
+     int max_entries = 256;
+
+     sv_catpvs(sv, "{utf8 locale}");
+     invlist_iterinit(only_utf8_locale);
+     while (invlist_iternext(only_utf8_locale,
+           &start, &end)) {
+      put_range(sv, start, end, FALSE);
+      max_entries --;
+      if (max_entries < 0) {
+       sv_catpvs(sv, "...");
+       break;
+      }
+     }
+     invlist_iterfinish(only_utf8_locale);
+    }
+   }
+  }
+  SvREFCNT_dec(bitmap_invlist);
+
+
+  Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
+ }
+ else if (k == POSIXD || k == NPOSIXD) {
+  U8 index = FLAGS(o) * 2;
+  if (index < C_ARRAY_LENGTH(anyofs)) {
+   if (*anyofs[index] != '[')  {
+    sv_catpv(sv, "[");
+   }
+   sv_catpv(sv, anyofs[index]);
+   if (*anyofs[index] != '[')  {
+    sv_catpv(sv, "]");
+   }
+  }
+  else {
+   Perl_sv_catpvf(aTHX_ sv, "[illegal type=%d])", index);
+  }
+ }
+ else if (k == BOUND || k == NBOUND) {
+  /* Must be synced with order of 'bound_type' in regcomp.h */
+  const char * const bounds[] = {
+   "",      /* Traditional */
+   "{gcb}",
+   "{sb}",
+   "{wb}"
+  };
+  sv_catpv(sv, bounds[FLAGS(o)]);
+ }
+ else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
+  Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
+ else if (OP(o) == SBOL)
+  Perl_sv_catpvf(aTHX_ sv, " /%s/", o->flags ? "\\A" : "^");
+#else
+ PERL_UNUSED_CONTEXT;
+ PERL_UNUSED_ARG(sv);
+ PERL_UNUSED_ARG(o);
+ PERL_UNUSED_ARG(prog);
+ PERL_UNUSED_ARG(reginfo);
+ PERL_UNUSED_ARG(pRExC_state);
+#endif /* DEBUGGING */
+}
+
+
+
+SV *
+Perl_re_intuit_string(pTHX_ REGEXP * const r)
+{    /* Assume that RE_INTUIT is set */
+ struct regexp *const prog = ReANY(r);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_INTUIT_STRING;
+ PERL_UNUSED_CONTEXT;
+
+ DEBUG_COMPILE_r(
+  {
+   const char * const s = SvPV_nolen_const(RX_UTF8(r)
+     ? prog->check_utf8 : prog->check_substr);
+
+   if (!PL_colorset) reginitcolors();
+   PerlIO_printf(Perl_debug_log,
+     "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
+     PL_colors[4],
+     RX_UTF8(r) ? "utf8 " : "",
+     PL_colors[5],PL_colors[0],
+     s,
+     PL_colors[1],
+     (strlen(s) > 60 ? "..." : ""));
+  } );
+
+ /* use UTF8 check substring if regexp pattern itself is in UTF8 */
+ return RX_UTF8(r) ? prog->check_utf8 : prog->check_substr;
+}
+
+/*
+   pregfree()
+
+   handles refcounting and freeing the perl core regexp structure. When
+   it is necessary to actually free the structure the first thing it
+   does is call the 'free' method of the regexp_engine associated to
+   the regexp, allowing the handling of the void *pprivate; member
+   first. (This routine is not overridable by extensions, which is why
+   the extensions free is called first.)
+
+   See regdupe and regdupe_internal if you change anything here.
+*/
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_pregfree(pTHX_ REGEXP *r)
+{
+ SvREFCNT_dec(r);
+}
+
+void
+Perl_pregfree2(pTHX_ REGEXP *rx)
+{
+ struct regexp *const r = ReANY(rx);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_PREGFREE2;
+
+ if (r->mother_re) {
+  ReREFCNT_dec(r->mother_re);
+ } else {
+  CALLREGFREE_PVT(rx); /* free the private data */
+  SvREFCNT_dec(RXp_PAREN_NAMES(r));
+  Safefree(r->xpv_len_u.xpvlenu_pv);
+ }
+ if (r->substrs) {
+  SvREFCNT_dec(r->anchored_substr);
+  SvREFCNT_dec(r->anchored_utf8);
+  SvREFCNT_dec(r->float_substr);
+  SvREFCNT_dec(r->float_utf8);
+  Safefree(r->substrs);
+ }
+ RX_MATCH_COPY_FREE(rx);
+#ifdef PERL_ANY_COW
+ SvREFCNT_dec(r->saved_copy);
+#endif
+ Safefree(r->offs);
+ SvREFCNT_dec(r->qr_anoncv);
+ rx->sv_u.svu_rx = 0;
+}
+
+/*  reg_temp_copy()
+
+ This is a hacky workaround to the structural issue of match results
+ being stored in the regexp structure which is in turn stored in
+ PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
+ could be PL_curpm in multiple contexts, and could require multiple
+ result sets being associated with the pattern simultaneously, such
+ as when doing a recursive match with (??{$qr})
+
+ The solution is to make a lightweight copy of the regexp structure
+ when a qr// is returned from the code executed by (??{$qr}) this
+ lightweight copy doesn't actually own any of its data except for
+ the starp/end and the actual regexp structure itself.
+
+*/
+
+
+REGEXP *
+Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
+{
+ struct regexp *ret;
+ struct regexp *const r = ReANY(rx);
+ const bool islv = ret_x && SvTYPE(ret_x) == SVt_PVLV;
+
+ PERL_ARGS_ASSERT_REG_TEMP_COPY;
+
+ if (!ret_x)
+  ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
+ else {
+  SvOK_off((SV *)ret_x);
+  if (islv) {
+   /* For PVLVs, SvANY points to the xpvlv body while sv_u points
+   to the regexp.  (For SVt_REGEXPs, sv_upgrade has already
+   made both spots point to the same regexp body.) */
+   REGEXP *temp = (REGEXP *)newSV_type(SVt_REGEXP);
+   assert(!SvPVX(ret_x));
+   ret_x->sv_u.svu_rx = temp->sv_any;
+   temp->sv_any = NULL;
+   SvFLAGS(temp) = (SvFLAGS(temp) & ~SVTYPEMASK) | SVt_NULL;
+   SvREFCNT_dec_NN(temp);
+   /* SvCUR still resides in the xpvlv struct, so the regexp copy-
+   ing below will not set it. */
+   SvCUR_set(ret_x, SvCUR(rx));
+  }
+ }
+ /* This ensures that SvTHINKFIRST(sv) is true, and hence that
+ sv_force_normal(sv) is called.  */
+ SvFAKE_on(ret_x);
+ ret = ReANY(ret_x);
+
+ SvFLAGS(ret_x) |= SvUTF8(rx);
+ /* We share the same string buffer as the original regexp, on which we
+ hold a reference count, incremented when mother_re is set below.
+ The string pointer is copied here, being part of the regexp struct.
+ */
+ memcpy(&(ret->xpv_cur), &(r->xpv_cur),
+  sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
+ if (r->offs) {
+  const I32 npar = r->nparens+1;
+  Newx(ret->offs, npar, regexp_paren_pair);
+  Copy(r->offs, ret->offs, npar, regexp_paren_pair);
+ }
+ if (r->substrs) {
+  Newx(ret->substrs, 1, struct reg_substr_data);
+  StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
+
+  SvREFCNT_inc_void(ret->anchored_substr);
+  SvREFCNT_inc_void(ret->anchored_utf8);
+  SvREFCNT_inc_void(ret->float_substr);
+  SvREFCNT_inc_void(ret->float_utf8);
+
+  /* check_substr and check_utf8, if non-NULL, point to either their
+  anchored or float namesakes, and don't hold a second reference.  */
+ }
+ RX_MATCH_COPIED_off(ret_x);
+#ifdef PERL_ANY_COW
+ ret->saved_copy = NULL;
+#endif
+ ret->mother_re = ReREFCNT_inc(r->mother_re ? r->mother_re : rx);
+ SvREFCNT_inc_void(ret->qr_anoncv);
+
+ return ret_x;
+}
+#endif
+
+/* regfree_internal()
+
+   Free the private data in a regexp. This is overloadable by
+   extensions. Perl takes care of the regexp structure in pregfree(),
+   this covers the *pprivate pointer which technically perl doesn't
+   know about, however of course we have to handle the
+   regexp_internal structure when no extension is in use.
+
+   Note this is called before freeing anything in the regexp
+   structure.
+ */
+
+void
+Perl_regfree_internal(pTHX_ REGEXP * const rx)
+{
+ struct regexp *const r = ReANY(rx);
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGFREE_INTERNAL;
+
+ DEBUG_COMPILE_r({
+  if (!PL_colorset)
+   reginitcolors();
+  {
+   SV *dsv= sv_newmortal();
+   RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
+    dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
+   PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
+    PL_colors[4],PL_colors[5],s);
+  }
+ });
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (ri->u.offsets)
+  Safefree(ri->u.offsets);             /* 20010421 MJD */
+#endif
+ if (ri->code_blocks) {
+  int n;
+  for (n = 0; n < ri->num_code_blocks; n++)
+   SvREFCNT_dec(ri->code_blocks[n].src_regex);
+  Safefree(ri->code_blocks);
+ }
+
+ if (ri->data) {
+  int n = ri->data->count;
+
+  while (--n >= 0) {
+  /* If you add a ->what type here, update the comment in regcomp.h */
+   switch (ri->data->what[n]) {
+   case 'a':
+   case 'r':
+   case 's':
+   case 'S':
+   case 'u':
+    SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
+    break;
+   case 'f':
+    Safefree(ri->data->data[n]);
+    break;
+   case 'l':
+   case 'L':
+    break;
+   case 'T':
+    { /* Aho Corasick add-on structure for a trie node.
+     Used in stclass optimization only */
+     U32 refcount;
+     reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
+#ifdef USE_ITHREADS
+     dVAR;
+#endif
+     OP_REFCNT_LOCK;
+     refcount = --aho->refcount;
+     OP_REFCNT_UNLOCK;
+     if ( !refcount ) {
+      PerlMemShared_free(aho->states);
+      PerlMemShared_free(aho->fail);
+      /* do this last!!!! */
+      PerlMemShared_free(ri->data->data[n]);
+      /* we should only ever get called once, so
+      * assert as much, and also guard the free
+      * which /might/ happen twice. At the least
+      * it will make code anlyzers happy and it
+      * doesn't cost much. - Yves */
+      assert(ri->regstclass);
+      if (ri->regstclass) {
+       PerlMemShared_free(ri->regstclass);
+       ri->regstclass = 0;
+      }
+     }
+    }
+    break;
+   case 't':
+    {
+     /* trie structure. */
+     U32 refcount;
+     reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
+#ifdef USE_ITHREADS
+     dVAR;
+#endif
+     OP_REFCNT_LOCK;
+     refcount = --trie->refcount;
+     OP_REFCNT_UNLOCK;
+     if ( !refcount ) {
+      PerlMemShared_free(trie->charmap);
+      PerlMemShared_free(trie->states);
+      PerlMemShared_free(trie->trans);
+      if (trie->bitmap)
+       PerlMemShared_free(trie->bitmap);
+      if (trie->jump)
+       PerlMemShared_free(trie->jump);
+      PerlMemShared_free(trie->wordinfo);
+      /* do this last!!!! */
+      PerlMemShared_free(ri->data->data[n]);
+     }
+    }
+    break;
+   default:
+    Perl_croak(aTHX_ "panic: regfree data code '%c'",
+             ri->data->what[n]);
+   }
+  }
+  Safefree(ri->data->what);
+  Safefree(ri->data);
+ }
+
+ Safefree(ri);
+}
+
+#define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
+#define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
+#define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
+
+/*
+   re_dup - duplicate a regexp.
+
+   This routine is expected to clone a given regexp structure. It is only
+   compiled under USE_ITHREADS.
+
+   After all of the core data stored in struct regexp is duplicated
+   the regexp_engine.dupe method is used to copy any private data
+   stored in the *pprivate pointer. This allows extensions to handle
+   any duplication it needs to do.
+
+   See pregfree() and regfree_internal() if you change anything here.
+*/
+#if defined(USE_ITHREADS)
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
+{
+ dVAR;
+ I32 npar;
+ const struct regexp *r = ReANY(sstr);
+ struct regexp *ret = ReANY(dstr);
+
+ PERL_ARGS_ASSERT_RE_DUP_GUTS;
+
+ npar = r->nparens+1;
+ Newx(ret->offs, npar, regexp_paren_pair);
+ Copy(r->offs, ret->offs, npar, regexp_paren_pair);
+
+ if (ret->substrs) {
+  /* Do it this way to avoid reading from *r after the StructCopy().
+  That way, if any of the sv_dup_inc()s dislodge *r from the L1
+  cache, it doesn't matter.  */
+  const bool anchored = r->check_substr
+   ? r->check_substr == r->anchored_substr
+   : r->check_utf8 == r->anchored_utf8;
+  Newx(ret->substrs, 1, struct reg_substr_data);
+  StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
+
+  ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
+  ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
+  ret->float_substr = sv_dup_inc(ret->float_substr, param);
+  ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
+
+  /* check_substr and check_utf8, if non-NULL, point to either their
+  anchored or float namesakes, and don't hold a second reference.  */
+
+  if (ret->check_substr) {
+   if (anchored) {
+    assert(r->check_utf8 == r->anchored_utf8);
+    ret->check_substr = ret->anchored_substr;
+    ret->check_utf8 = ret->anchored_utf8;
+   } else {
+    assert(r->check_substr == r->float_substr);
+    assert(r->check_utf8 == r->float_utf8);
+    ret->check_substr = ret->float_substr;
+    ret->check_utf8 = ret->float_utf8;
+   }
+  } else if (ret->check_utf8) {
+   if (anchored) {
+    ret->check_utf8 = ret->anchored_utf8;
+   } else {
+    ret->check_utf8 = ret->float_utf8;
+   }
+  }
+ }
+
+ RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
+ ret->qr_anoncv = MUTABLE_CV(sv_dup_inc((const SV *)ret->qr_anoncv, param));
+
+ if (ret->pprivate)
+  RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
+
+ if (RX_MATCH_COPIED(dstr))
+  ret->subbeg  = SAVEPVN(ret->subbeg, ret->sublen);
+ else
+  ret->subbeg = NULL;
+#ifdef PERL_ANY_COW
+ ret->saved_copy = NULL;
+#endif
+
+ /* Whether mother_re be set or no, we need to copy the string.  We
+ cannot refrain from copying it when the storage points directly to
+ our mother regexp, because that's
+   1: a buffer in a different thread
+   2: something we no longer hold a reference on
+   so we need to copy it locally.  */
+ RX_WRAPPED(dstr) = SAVEPVN(RX_WRAPPED(sstr), SvCUR(sstr)+1);
+ ret->mother_re   = NULL;
+}
+#endif /* PERL_IN_XSUB_RE */
+
+/*
+   regdupe_internal()
+
+   This is the internal complement to regdupe() which is used to copy
+   the structure pointed to by the *pprivate pointer in the regexp.
+   This is the core version of the extension overridable cloning hook.
+   The regexp structure being duplicated will be copied by perl prior
+   to this and will be provided as the regexp *r argument, however
+   with the /old/ structures pprivate pointer value. Thus this routine
+   may override any copying normally done by perl.
+
+   It returns a pointer to the new regexp_internal structure.
+*/
+
+void *
+Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
+{
+ dVAR;
+ struct regexp *const r = ReANY(rx);
+ regexp_internal *reti;
+ int len;
+ RXi_GET_DECL(r,ri);
+
+ PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
+
+ len = ProgLen(ri);
+
+ Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode),
+  char, regexp_internal);
+ Copy(ri->program, reti->program, len+1, regnode);
+
+ reti->num_code_blocks = ri->num_code_blocks;
+ if (ri->code_blocks) {
+  int n;
+  Newxc(reti->code_blocks, ri->num_code_blocks, struct reg_code_block,
+    struct reg_code_block);
+  Copy(ri->code_blocks, reti->code_blocks, ri->num_code_blocks,
+    struct reg_code_block);
+  for (n = 0; n < ri->num_code_blocks; n++)
+   reti->code_blocks[n].src_regex = (REGEXP*)
+     sv_dup_inc((SV*)(ri->code_blocks[n].src_regex), param);
+ }
+ else
+  reti->code_blocks = NULL;
+
+ reti->regstclass = NULL;
+
+ if (ri->data) {
+  struct reg_data *d;
+  const int count = ri->data->count;
+  int i;
+
+  Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
+    char, struct reg_data);
+  Newx(d->what, count, U8);
+
+  d->count = count;
+  for (i = 0; i < count; i++) {
+   d->what[i] = ri->data->what[i];
+   switch (d->what[i]) {
+    /* see also regcomp.h and regfree_internal() */
+   case 'a': /* actually an AV, but the dup function is identical.  */
+   case 'r':
+   case 's':
+   case 'S':
+   case 'u': /* actually an HV, but the dup function is identical.  */
+    d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
+    break;
+   case 'f':
+    /* This is cheating. */
+    Newx(d->data[i], 1, regnode_ssc);
+    StructCopy(ri->data->data[i], d->data[i], regnode_ssc);
+    reti->regstclass = (regnode*)d->data[i];
+    break;
+   case 'T':
+    /* Trie stclasses are readonly and can thus be shared
+    * without duplication. We free the stclass in pregfree
+    * when the corresponding reg_ac_data struct is freed.
+    */
+    reti->regstclass= ri->regstclass;
+    /* FALLTHROUGH */
+   case 't':
+    OP_REFCNT_LOCK;
+    ((reg_trie_data*)ri->data->data[i])->refcount++;
+    OP_REFCNT_UNLOCK;
+    /* FALLTHROUGH */
+   case 'l':
+   case 'L':
+    d->data[i] = ri->data->data[i];
+    break;
+   default:
+    Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'",
+              ri->data->what[i]);
+   }
+  }
+
+  reti->data = d;
+ }
+ else
+  reti->data = NULL;
+
+ reti->name_list_idx = ri->name_list_idx;
+
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (ri->u.offsets) {
+  Newx(reti->u.offsets, 2*len+1, U32);
+  Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
+ }
+#else
+ SetProgLen(reti,len);
+#endif
+
+ return (void*)reti;
+}
+
+#endif    /* USE_ITHREADS */
+
+#ifndef PERL_IN_XSUB_RE
+
+/*
+ - regnext - dig the "next" pointer out of a node
+ */
+regnode *
+Perl_regnext(pTHX_ regnode *p)
+{
+ I32 offset;
+
+ if (!p)
+  return(NULL);
+
+ if (OP(p) > REGNODE_MAX) {  /* regnode.type is unsigned */
+  Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d",
+            (int)OP(p), (int)REGNODE_MAX);
+ }
+
+ offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
+ if (offset == 0)
+  return(NULL);
+
+ return(p+offset);
+}
+#endif
+
+STATIC void
+S_re_croak2(pTHX_ bool utf8, const char* pat1,const char* pat2,...)
+{
+ va_list args;
+ STRLEN l1 = strlen(pat1);
+ STRLEN l2 = strlen(pat2);
+ char buf[512];
+ SV *msv;
+ const char *message;
+
+ PERL_ARGS_ASSERT_RE_CROAK2;
+
+ if (l1 > 510)
+  l1 = 510;
+ if (l1 + l2 > 510)
+  l2 = 510 - l1;
+ Copy(pat1, buf, l1 , char);
+ Copy(pat2, buf + l1, l2 , char);
+ buf[l1 + l2] = '\n';
+ buf[l1 + l2 + 1] = '\0';
+ va_start(args, pat2);
+ msv = vmess(buf, &args);
+ va_end(args);
+ message = SvPV_const(msv,l1);
+ if (l1 > 512)
+  l1 = 512;
+ Copy(message, buf, l1 , char);
+ /* l1-1 to avoid \n */
+ Perl_croak(aTHX_ "%"UTF8f, UTF8fARG(utf8, l1-1, buf));
+}
+
+/* XXX Here's a total kludge.  But we need to re-enter for swash routines. */
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_save_re_context(pTHX)
+{
+ I32 nparens = -1;
+ I32 i;
+
+ /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
+
+ if (PL_curpm) {
+  const REGEXP * const rx = PM_GETRE(PL_curpm);
+  if (rx)
+   nparens = RX_NPARENS(rx);
+ }
+
+ /* RT #124109. This is a complete hack; in the SWASHNEW case we know
+ * that PL_curpm will be null, but that utf8.pm and the modules it
+ * loads will only use $1..$3.
+ * The t/porting/re_context.t test file checks this assumption.
+ */
+ if (nparens == -1)
+  nparens = 3;
+
+ for (i = 1; i <= nparens; i++) {
+  char digits[TYPE_CHARS(long)];
+  const STRLEN len = my_snprintf(digits, sizeof(digits),
+         "%lu", (long)i);
+  GV *const *const gvp
+   = (GV**)hv_fetch(PL_defstash, digits, len, 0);
+
+  if (gvp) {
+   GV * const gv = *gvp;
+   if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
+    save_scalar(gv);
+  }
+ }
+}
+#endif
+
+#ifdef DEBUGGING
+
+STATIC void
+S_put_code_point(pTHX_ SV *sv, UV c)
+{
+ PERL_ARGS_ASSERT_PUT_CODE_POINT;
+
+ if (c > 255) {
+  Perl_sv_catpvf(aTHX_ sv, "\\x{%04"UVXf"}", c);
+ }
+ else if (isPRINT(c)) {
+  const char string = (char) c;
+  if (isBACKSLASHED_PUNCT(c))
+   sv_catpvs(sv, "\\");
+  sv_catpvn(sv, &string, 1);
+ }
+ else {
+  const char * const mnemonic = cntrl_to_mnemonic((char) c);
+  if (mnemonic) {
+   Perl_sv_catpvf(aTHX_ sv, "%s", mnemonic);
+  }
+  else {
+   Perl_sv_catpvf(aTHX_ sv, "\\x{%02X}", (U8) c);
+  }
+ }
+}
+
+#define MAX_PRINT_A MAX_PRINT_A_FOR_USE_ONLY_BY_REGCOMP_DOT_C
+
+STATIC void
+S_put_range(pTHX_ SV *sv, UV start, const UV end, const bool allow_literals)
+{
+ /* Appends to 'sv' a displayable version of the range of code points from
+ * 'start' to 'end'.  It assumes that only ASCII printables are displayable
+ * as-is (though some of these will be escaped by put_code_point()). */
+
+ const unsigned int min_range_count = 3;
+
+ assert(start <= end);
+
+ PERL_ARGS_ASSERT_PUT_RANGE;
+
+ while (start <= end) {
+  UV this_end;
+  const char * format;
+
+  if (end - start < min_range_count) {
+
+   /* Individual chars in short ranges */
+   for (; start <= end; start++) {
+    put_code_point(sv, start);
+   }
+   break;
+  }
+
+  /* If permitted by the input options, and there is a possibility that
+  * this range contains a printable literal, look to see if there is
+  * one.  */
+  if (allow_literals && start <= MAX_PRINT_A) {
+
+   /* If the range begin isn't an ASCII printable, effectively split
+   * the range into two parts:
+   *  1) the portion before the first such printable,
+   *  2) the rest
+   * and output them separately. */
+   if (! isPRINT_A(start)) {
+    UV temp_end = start + 1;
+
+    /* There is no point looking beyond the final possible
+    * printable, in MAX_PRINT_A */
+    UV max = MIN(end, MAX_PRINT_A);
+
+    while (temp_end <= max && ! isPRINT_A(temp_end)) {
+     temp_end++;
+    }
+
+    /* Here, temp_end points to one beyond the first printable if
+    * found, or to one beyond 'max' if not.  If none found, make
+    * sure that we use the entire range */
+    if (temp_end > MAX_PRINT_A) {
+     temp_end = end + 1;
+    }
+
+    /* Output the first part of the split range, the part that
+    * doesn't have printables, with no looking for literals
+    * (otherwise we would infinitely recurse) */
+    put_range(sv, start, temp_end - 1, FALSE);
+
+    /* The 2nd part of the range (if any) starts here. */
+    start = temp_end;
+
+    /* We continue instead of dropping down because even if the 2nd
+    * part is non-empty, it could be so short that we want to
+    * output it specially, as tested for at the top of this loop.
+    * */
+    continue;
+   }
+
+   /* Here, 'start' is a printable ASCII.  If it is an alphanumeric,
+   * output a sub-range of just the digits or letters, then process
+   * the remaining portion as usual. */
+   if (isALPHANUMERIC_A(start)) {
+    UV mask = (isDIGIT_A(start))
+      ? _CC_DIGIT
+       : isUPPER_A(start)
+       ? _CC_UPPER
+       : _CC_LOWER;
+    UV temp_end = start + 1;
+
+    /* Find the end of the sub-range that includes just the
+    * characters in the same class as the first character in it */
+    while (temp_end <= end && _generic_isCC_A(temp_end, mask)) {
+     temp_end++;
+    }
+    temp_end--;
+
+    /* For short ranges, don't duplicate the code above to output
+    * them; just call recursively */
+    if (temp_end - start < min_range_count) {
+     put_range(sv, start, temp_end, FALSE);
+    }
+    else {  /* Output as a range */
+     put_code_point(sv, start);
+     sv_catpvs(sv, "-");
+     put_code_point(sv, temp_end);
+    }
+    start = temp_end + 1;
+    continue;
+   }
+
+   /* We output any other printables as individual characters */
+   if (isPUNCT_A(start) || isSPACE_A(start)) {
+    while (start <= end && (isPUNCT_A(start)
+          || isSPACE_A(start)))
+    {
+     put_code_point(sv, start);
+     start++;
+    }
+    continue;
+   }
+  } /* End of looking for literals */
+
+  /* Here is not to output as a literal.  Some control characters have
+  * mnemonic names.  Split off any of those at the beginning and end of
+  * the range to print mnemonically.  It isn't possible for many of
+  * these to be in a row, so this won't overwhelm with output */
+  while (isMNEMONIC_CNTRL(start) && start <= end) {
+   put_code_point(sv, start);
+   start++;
+  }
+  if (start < end && isMNEMONIC_CNTRL(end)) {
+
+   /* Here, the final character in the range has a mnemonic name.
+   * Work backwards from the end to find the final non-mnemonic */
+   UV temp_end = end - 1;
+   while (isMNEMONIC_CNTRL(temp_end)) {
+    temp_end--;
+   }
+
+   /* And separately output the range that doesn't have mnemonics */
+   put_range(sv, start, temp_end, FALSE);
+
+   /* Then output the mnemonic trailing controls */
+   start = temp_end + 1;
+   while (start <= end) {
+    put_code_point(sv, start);
+    start++;
+   }
+   break;
+  }
+
+  /* As a final resort, output the range or subrange as hex. */
+
+  this_end = (end < NUM_ANYOF_CODE_POINTS)
+     ? end
+     : NUM_ANYOF_CODE_POINTS - 1;
+  format = (this_end < 256)
+    ? "\\x{%02"UVXf"}-\\x{%02"UVXf"}"
+    : "\\x{%04"UVXf"}-\\x{%04"UVXf"}";
+  GCC_DIAG_IGNORE(-Wformat-nonliteral);
+  Perl_sv_catpvf(aTHX_ sv, format, start, this_end);
+  GCC_DIAG_RESTORE;
+  break;
+ }
+}
+
+STATIC bool
+S_put_charclass_bitmap_innards(pTHX_ SV *sv, char *bitmap, SV** bitmap_invlist)
+{
+ /* Appends to 'sv' a displayable version of the innards of the bracketed
+ * character class whose bitmap is 'bitmap';  Returns 'TRUE' if it actually
+ * output anything, and bitmap_invlist, if not NULL, will point to an
+ * inversion list of what is in the bit map */
+
+ int i;
+ UV start, end;
+ unsigned int punct_count = 0;
+ SV* invlist = NULL;
+ SV** invlist_ptr;   /* Temporary, in case bitmap_invlist is NULL */
+ bool allow_literals = TRUE;
+
+ PERL_ARGS_ASSERT_PUT_CHARCLASS_BITMAP_INNARDS;
+
+ invlist_ptr = (bitmap_invlist) ? bitmap_invlist : &invlist;
+
+ /* Worst case is exactly every-other code point is in the list */
+ *invlist_ptr = _new_invlist(NUM_ANYOF_CODE_POINTS / 2);
+
+ /* Convert the bit map to an inversion list, keeping track of how many
+ * ASCII puncts are set, including an extra amount for the backslashed
+ * ones.  */
+ for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
+  if (BITMAP_TEST(bitmap, i)) {
+   *invlist_ptr = add_cp_to_invlist(*invlist_ptr, i);
+   if (isPUNCT_A(i)) {
+    punct_count++;
+    if isBACKSLASHED_PUNCT(i) {
+     punct_count++;
+    }
+   }
+  }
+ }
+
+ /* Nothing to output */
+ if (_invlist_len(*invlist_ptr) == 0) {
+  SvREFCNT_dec(invlist);
+  return FALSE;
+ }
+
+ /* Generally, it is more readable if printable characters are output as
+ * literals, but if a range (nearly) spans all of them, it's best to output
+ * it as a single range.  This code will use a single range if all but 2
+ * printables are in it */
+ invlist_iterinit(*invlist_ptr);
+ while (invlist_iternext(*invlist_ptr, &start, &end)) {
+
+  /* If range starts beyond final printable, it doesn't have any in it */
+  if (start > MAX_PRINT_A) {
+   break;
+  }
+
+  /* In both ASCII and EBCDIC, a SPACE is the lowest printable.  To span
+  * all but two, the range must start and end no later than 2 from
+  * either end */
+  if (start < ' ' + 2 && end > MAX_PRINT_A - 2) {
+   if (end > MAX_PRINT_A) {
+    end = MAX_PRINT_A;
+   }
+   if (start < ' ') {
+    start = ' ';
+   }
+   if (end - start >= MAX_PRINT_A - ' ' - 2) {
+    allow_literals = FALSE;
+   }
+   break;
+  }
+ }
+ invlist_iterfinish(*invlist_ptr);
+
+ /* The legibility of the output depends mostly on how many punctuation
+ * characters are output.  There are 32 possible ASCII ones, and some have
+ * an additional backslash, bringing it to currently 36, so if any more
+ * than 18 are to be output, we can instead output it as its complement,
+ * yielding fewer puncts, and making it more legible.  But give some weight
+ * to the fact that outputting it as a complement is less legible than a
+ * straight output, so don't complement unless we are somewhat over the 18
+ * mark */
+ if (allow_literals && punct_count > 22) {
+  sv_catpvs(sv, "^");
+
+  /* Add everything remaining to the list, so when we invert it just
+  * below, it will be excluded */
+  _invlist_union_complement_2nd(*invlist_ptr, PL_InBitmap, invlist_ptr);
+  _invlist_invert(*invlist_ptr);
+ }
+
+ /* Here we have figured things out.  Output each range */
+ invlist_iterinit(*invlist_ptr);
+ while (invlist_iternext(*invlist_ptr, &start, &end)) {
+  if (start >= NUM_ANYOF_CODE_POINTS) {
+   break;
+  }
+  put_range(sv, start, end, allow_literals);
+ }
+ invlist_iterfinish(*invlist_ptr);
+
+ return TRUE;
+}
+
+#define CLEAR_OPTSTART \
+ if (optstart) STMT_START {                                               \
+  DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,                       \
+       " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
+  optstart=NULL;                                                       \
+ } STMT_END
+
+#define DUMPUNTIL(b,e)                                                       \
+     CLEAR_OPTSTART;                                          \
+     node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
+
+STATIC const regnode *
+S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
+   const regnode *last, const regnode *plast,
+   SV* sv, I32 indent, U32 depth)
+{
+ U8 op = PSEUDO; /* Arbitrary non-END op. */
+ const regnode *next;
+ const regnode *optstart= NULL;
+
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMPUNTIL;
+
+#ifdef DEBUG_DUMPUNTIL
+ PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
+  last ? last-start : 0,plast ? plast-start : 0);
+#endif
+
+ if (plast && plast < last)
+  last= plast;
+
+ while (PL_regkind[op] != END && (!last || node < last)) {
+  assert(node);
+  /* While that wasn't END last time... */
+  NODE_ALIGN(node);
+  op = OP(node);
+  if (op == CLOSE || op == WHILEM)
+   indent--;
+  next = regnext((regnode *)node);
+
+  /* Where, what. */
+  if (OP(node) == OPTIMIZED) {
+   if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
+    optstart = node;
+   else
+    goto after_print;
+  } else
+   CLEAR_OPTSTART;
+
+  regprop(r, sv, node, NULL, NULL);
+  PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
+     (int)(2*indent + 1), "", SvPVX_const(sv));
+
+  if (OP(node) != OPTIMIZED) {
+   if (next == NULL)  /* Next ptr. */
+    PerlIO_printf(Perl_debug_log, " (0)");
+   else if (PL_regkind[(U8)op] == BRANCH
+     && PL_regkind[OP(next)] != BRANCH )
+    PerlIO_printf(Perl_debug_log, " (FAIL)");
+   else
+    PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
+   (void)PerlIO_putc(Perl_debug_log, '\n');
+  }
+
+ after_print:
+  if (PL_regkind[(U8)op] == BRANCHJ) {
+   assert(next);
+   {
+    const regnode *nnode = (OP(next) == LONGJMP
+         ? regnext((regnode *)next)
+         : next);
+    if (last && nnode > last)
+     nnode = last;
+    DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
+   }
+  }
+  else if (PL_regkind[(U8)op] == BRANCH) {
+   assert(next);
+   DUMPUNTIL(NEXTOPER(node), next);
+  }
+  else if ( PL_regkind[(U8)op]  == TRIE ) {
+   const regnode *this_trie = node;
+   const char op = OP(node);
+   const U32 n = ARG(node);
+   const reg_ac_data * const ac = op>=AHOCORASICK ?
+   (reg_ac_data *)ri->data->data[n] :
+   NULL;
+   const reg_trie_data * const trie =
+    (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
+#ifdef DEBUGGING
+   AV *const trie_words
+      = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
+#endif
+   const regnode *nextbranch= NULL;
+   I32 word_idx;
+   sv_setpvs(sv, "");
+   for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
+    SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
+
+    PerlIO_printf(Perl_debug_log, "%*s%s ",
+    (int)(2*(indent+3)), "",
+     elem_ptr
+     ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr),
+        SvCUR(*elem_ptr), 60,
+        PL_colors[0], PL_colors[1],
+        (SvUTF8(*elem_ptr)
+        ? PERL_PV_ESCAPE_UNI
+        : 0)
+        | PERL_PV_PRETTY_ELLIPSES
+        | PERL_PV_PRETTY_LTGT
+       )
+     : "???"
+    );
+    if (trie->jump) {
+     U16 dist= trie->jump[word_idx+1];
+     PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
+       (UV)((dist ? this_trie + dist : next) - start));
+     if (dist) {
+      if (!nextbranch)
+       nextbranch= this_trie + trie->jump[0];
+      DUMPUNTIL(this_trie + dist, nextbranch);
+     }
+     if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
+      nextbranch= regnext((regnode *)nextbranch);
+    } else {
+     PerlIO_printf(Perl_debug_log, "\n");
+    }
+   }
+   if (last && next > last)
+    node= last;
+   else
+    node= next;
+  }
+  else if ( op == CURLY ) {   /* "next" might be very big: optimizer */
+   DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
+     NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
+  }
+  else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
+   assert(next);
+   DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
+  }
+  else if ( op == PLUS || op == STAR) {
+   DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
+  }
+  else if (PL_regkind[(U8)op] == ANYOF) {
+   /* arglen 1 + class block */
+   node += 1 + ((ANYOF_FLAGS(node) & ANYOF_MATCHES_POSIXL)
+      ? ANYOF_POSIXL_SKIP
+      : ANYOF_SKIP);
+   node = NEXTOPER(node);
+  }
+  else if (PL_regkind[(U8)op] == EXACT) {
+   /* Literal string, where present. */
+   node += NODE_SZ_STR(node) - 1;
+   node = NEXTOPER(node);
+  }
+  else {
+   node = NEXTOPER(node);
+   node += regarglen[(U8)op];
+  }
+  if (op == CURLYX || op == OPEN)
+   indent++;
+ }
+ CLEAR_OPTSTART;
+#ifdef DEBUG_DUMPUNTIL
+ PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
+#endif
+ return node;
+}
+
+#endif /* DEBUGGING */
+
+/*
+ * ex: set ts=8 sts=4 sw=4 et:
+ */
diff --git a/src/5023001/regexec.c b/src/5023001/regexec.c
new file mode 100644 (file)
index 0000000..f60edef
--- /dev/null
@@ -0,0 +1,9020 @@
+/*    regexec.c
+ */
+
+/*
+ * One Ring to rule them all, One Ring to find them
+ *
+ *     [p.v of _The Lord of the Rings_, opening poem]
+ *     [p.50 of _The Lord of the Rings_, I/iii: "The Shadow of the Past"]
+ *     [p.254 of _The Lord of the Rings_, II/ii: "The Council of Elrond"]
+ */
+
+/* This file contains functions for executing a regular expression.  See
+ * also regcomp.c which funnily enough, contains functions for compiling
+ * a regular expression.
+ *
+ * This file is also copied at build time to ext/re/re_exec.c, where
+ * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
+ * This causes the main functions to be compiled under new names and with
+ * debugging support added, which makes "use re 'debug'" work.
+ */
+
+/* NOTE: this is derived from Henry Spencer's regexp code, and should not
+ * confused with the original package (see point 3 below).  Thanks, Henry!
+ */
+
+/* Additional note: this code is very heavily munged from Henry's version
+ * in places.  In some spots I've traded clarity for efficiency, so don't
+ * blame Henry for some of the lack of readability.
+ */
+
+/* The names of the functions have been changed from regcomp and
+ * regexec to  pregcomp and pregexec in order to avoid conflicts
+ * with the POSIX routines of the same names.
+*/
+
+#ifdef PERL_EXT_RE_BUILD
+#include "re_top.h"
+#endif
+
+#define B_ON_NON_UTF8_LOCALE_IS_WRONG            \
+ "Use of \\b{} or \\B{} for non-UTF-8 locale is wrong.  Assuming a UTF-8 locale"
+
+/*
+ * pregcomp and pregexec -- regsub and regerror are not used in perl
+ *
+ * Copyright (c) 1986 by University of Toronto.
+ * Written by Henry Spencer.  Not derived from licensed software.
+ *
+ * Permission is granted to anyone to use this software for any
+ * purpose on any computer system, and to redistribute it freely,
+ * subject to the following restrictions:
+ *
+ * 1. The author is not responsible for the consequences of use of
+ *  this software, no matter how awful, even if they arise
+ *  from defects in it.
+ *
+ * 2. The origin of this software must not be misrepresented, either
+ *  by explicit claim or by omission.
+ *
+ * 3. Altered versions must be plainly marked as such, and must not
+ *  be misrepresented as being the original software.
+ *
+ ****    Alterations to Henry's code are...
+ ****
+ ****    Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ ****    2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ ****    by Larry Wall and others
+ ****
+ ****    You may distribute under the terms of either the GNU General Public
+ ****    License or the Artistic License, as specified in the README file.
+ *
+ * Beware that some of this code is subtly aware of the way operator
+ * precedence is structured in regular expressions.  Serious changes in
+ * regular-expression syntax might require a total rethink.
+ */
+#include "EXTERN.h"
+#define PERL_IN_REGEXEC_C
+#undef PERL_IN_XSUB_RE
+#define PERL_IN_XSUB_RE 1
+#include "perl.h"
+#include "re_defs.h"
+#undef PERL_IN_XSUB_RE
+
+#ifdef PERL_IN_XSUB_RE
+#  include "re_comp.h"
+#else
+#  include "regcomp.h"
+#endif
+
+#include "inline_invlist.c"
+#include "unicode_constants.h"
+
+#ifdef DEBUGGING
+/* At least one required character in the target string is expressible only in
+ * UTF-8. */
+static const char* const non_utf8_target_but_utf8_required
+    = "Can't match, because target string needs to be in UTF-8\n";
+#endif
+
+#define NON_UTF8_TARGET_BUT_UTF8_REQUIRED(target) STMT_START { \
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%s", non_utf8_target_but_utf8_required));\
+ goto target; \
+} STMT_END
+
+#define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
+
+#ifndef STATIC
+#define STATIC static
+#endif
+
+/* Valid only for non-utf8 strings: avoids the reginclass
+ * call if there are no complications: i.e., if everything matchable is
+ * straight forward in the bitmap */
+#define REGINCLASS(prog,p,c)  (ANYOF_FLAGS(p) ? reginclass(prog,p,c,c+1,0)   \
+           : ANYOF_BITMAP_TEST(p,*(c)))
+
+/*
+ * Forwards.
+ */
+
+#define CHR_SVLEN(sv) (utf8_target ? sv_len_utf8(sv) : SvCUR(sv))
+#define CHR_DIST(a,b) (reginfo->is_utf8_target ? utf8_distance(a,b) : a - b)
+
+#define HOPc(pos,off) \
+  (char *)(reginfo->is_utf8_target \
+   ? reghop3((U8*)pos, off, \
+     (U8*)(off >= 0 ? reginfo->strend : reginfo->strbeg)) \
+   : (U8*)(pos + off))
+
+#define HOPBACKc(pos, off) \
+  (char*)(reginfo->is_utf8_target \
+   ? reghopmaybe3((U8*)pos, -off, (U8*)(reginfo->strbeg)) \
+   : (pos - off >= reginfo->strbeg) \
+    ? (U8*)pos - off  \
+    : NULL)
+
+#define HOP3(pos,off,lim) (reginfo->is_utf8_target  ? reghop3((U8*)(pos), off, (U8*)(lim)) : (U8*)(pos + off))
+#define HOP3c(pos,off,lim) ((char*)HOP3(pos,off,lim))
+
+/* lim must be +ve. Returns NULL on overshoot */
+#define HOPMAYBE3(pos,off,lim) \
+  (reginfo->is_utf8_target                        \
+   ? reghopmaybe3((U8*)pos, off, (U8*)(lim))   \
+   : ((U8*)pos + off <= lim)                   \
+    ? (U8*)pos + off                        \
+    : NULL)
+
+/* like HOP3, but limits the result to <= lim even for the non-utf8 case.
+ * off must be >=0; args should be vars rather than expressions */
+#define HOP3lim(pos,off,lim) (reginfo->is_utf8_target \
+ ? reghop3((U8*)(pos), off, (U8*)(lim)) \
+ : (U8*)((pos + off) > lim ? lim : (pos + off)))
+
+#define HOP4(pos,off,llim, rlim) (reginfo->is_utf8_target \
+ ? reghop4((U8*)(pos), off, (U8*)(llim), (U8*)(rlim)) \
+ : (U8*)(pos + off))
+#define HOP4c(pos,off,llim, rlim) ((char*)HOP4(pos,off,llim, rlim))
+
+#define NEXTCHR_EOS -10 /* nextchr has fallen off the end */
+#define NEXTCHR_IS_EOS (nextchr < 0)
+
+#define SET_nextchr \
+ nextchr = ((locinput < reginfo->strend) ? UCHARAT(locinput) : NEXTCHR_EOS)
+
+#define SET_locinput(p) \
+ locinput = (p);  \
+ SET_nextchr
+
+
+#define LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist) STMT_START {   \
+  if (!swash_ptr) {                                                     \
+   U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;                       \
+   swash_ptr = _core_swash_init("utf8", property_name, &PL_sv_undef, \
+          1, 0, invlist, &flags);              \
+   assert(swash_ptr);                                                \
+  }                                                                     \
+ } STMT_END
+
+/* If in debug mode, we test that a known character properly matches */
+#ifdef DEBUGGING
+#   define LOAD_UTF8_CHARCLASS_DEBUG_TEST(swash_ptr,                          \
+          property_name,                      \
+          invlist,                            \
+          utf8_char_in_property)              \
+  LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist);               \
+  assert(swash_fetch(swash_ptr, (U8 *) utf8_char_in_property, TRUE));
+#else
+#   define LOAD_UTF8_CHARCLASS_DEBUG_TEST(swash_ptr,                          \
+          property_name,                      \
+          invlist,                            \
+          utf8_char_in_property)              \
+  LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist)
+#endif
+
+#define LOAD_UTF8_CHARCLASS_ALNUM() LOAD_UTF8_CHARCLASS_DEBUG_TEST(           \
+          PL_utf8_swash_ptrs[_CC_WORDCHAR],     \
+          "",                                   \
+          PL_XPosix_ptrs[_CC_WORDCHAR],         \
+          LATIN_CAPITAL_LETTER_SHARP_S_UTF8);
+
+#define PLACEHOLDER /* Something for the preprocessor to grab onto */
+/* TODO: Combine JUMPABLE and HAS_TEXT to cache OP(rn) */
+
+/* for use after a quantifier and before an EXACT-like node -- japhy */
+/* it would be nice to rework regcomp.sym to generate this stuff. sigh
+ *
+ * NOTE that *nothing* that affects backtracking should be in here, specifically
+ * VERBS must NOT be included. JUMPABLE is used to determine  if we can ignore a
+ * node that is in between two EXACT like nodes when ascertaining what the required
+ * "follow" character is. This should probably be moved to regex compile time
+ * although it may be done at run time beause of the REF possibility - more
+ * investigation required. -- demerphq
+*/
+#define JUMPABLE(rn) (                                                             \
+ OP(rn) == OPEN ||                                                              \
+ (OP(rn) == CLOSE && (!cur_eval || cur_eval->u.eval.close_paren != ARG(rn))) || \
+ OP(rn) == EVAL ||                                                              \
+ OP(rn) == SUSPEND || OP(rn) == IFMATCH ||                                      \
+ OP(rn) == PLUS || OP(rn) == MINMOD ||                                          \
+ OP(rn) == KEEPS ||                                                             \
+ (PL_regkind[OP(rn)] == CURLY && ARG1(rn) > 0)                                  \
+)
+#define IS_EXACT(rn) (PL_regkind[OP(rn)] == EXACT)
+
+#define HAS_TEXT(rn) ( IS_EXACT(rn) || PL_regkind[OP(rn)] == REF )
+
+#if 0
+/* Currently these are only used when PL_regkind[OP(rn)] == EXACT so
+   we don't need this definition.  XXX These are now out-of-sync*/
+#define IS_TEXT(rn)   ( OP(rn)==EXACT   || OP(rn)==REF   || OP(rn)==NREF   )
+#define IS_TEXTF(rn)  ( OP(rn)==EXACTFU || OP(rn)==EXACTFU_SS || OP(rn)==EXACTFA || OP(rn)==EXACTFA_NO_TRIE || OP(rn)==EXACTF || OP(rn)==REFF  || OP(rn)==NREFF )
+#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL || OP(rn)==REFFL || OP(rn)==NREFFL )
+
+#else
+/* ... so we use this as its faster. */
+#define IS_TEXT(rn)   ( OP(rn)==EXACT || OP(rn)==EXACTL )
+#define IS_TEXTFU(rn)  ( OP(rn)==EXACTFU || OP(rn)==EXACTFLU8 || OP(rn)==EXACTFU_SS || OP(rn) == EXACTFA || OP(rn) == EXACTFA_NO_TRIE)
+#define IS_TEXTF(rn)  ( OP(rn)==EXACTF  )
+#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL )
+
+#endif
+
+/*
+  Search for mandatory following text node; for lookahead, the text must
+  follow but for lookbehind (rn->flags != 0) we skip to the next step.
+*/
+#define FIND_NEXT_IMPT(rn) STMT_START {                                   \
+ while (JUMPABLE(rn)) { \
+  const OPCODE type = OP(rn); \
+  if (type == SUSPEND || PL_regkind[type] == CURLY) \
+   rn = NEXTOPER(NEXTOPER(rn)); \
+  else if (type == PLUS) \
+   rn = NEXTOPER(rn); \
+  else if (type == IFMATCH) \
+   rn = (rn->flags == 0) ? NEXTOPER(NEXTOPER(rn)) : rn + ARG(rn); \
+  else rn += NEXT_OFF(rn); \
+ } \
+} STMT_END
+
+#define SLAB_FIRST(s) (&(s)->states[0])
+#define SLAB_LAST(s)  (&(s)->states[PERL_REGMATCH_SLAB_SLOTS-1])
+
+static void S_setup_eval_state(pTHX_ regmatch_info *const reginfo);
+static void S_cleanup_regmatch_info_aux(pTHX_ void *arg);
+static regmatch_state * S_push_slab(pTHX);
+
+#define REGCP_PAREN_ELEMS 3
+#define REGCP_OTHER_ELEMS 3
+#define REGCP_FRAME_ELEMS 1
+/* REGCP_FRAME_ELEMS are not part of the REGCP_OTHER_ELEMS and
+ * are needed for the regexp context stack bookkeeping. */
+
+STATIC CHECKPOINT
+S_regcppush(pTHX_ const regexp *rex, I32 parenfloor, U32 maxopenparen)
+{
+ const int retval = PL_savestack_ix;
+ const int paren_elems_to_push =
+    (maxopenparen - parenfloor) * REGCP_PAREN_ELEMS;
+ const UV total_elems = paren_elems_to_push + REGCP_OTHER_ELEMS;
+ const UV elems_shifted = total_elems << SAVE_TIGHT_SHIFT;
+ I32 p;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGCPPUSH;
+
+ if (paren_elems_to_push < 0)
+  Perl_croak(aTHX_ "panic: paren_elems_to_push, %i < 0, maxopenparen: %i parenfloor: %i REGCP_PAREN_ELEMS: %u",
+    (int)paren_elems_to_push, (int)maxopenparen,
+    (int)parenfloor, (unsigned)REGCP_PAREN_ELEMS);
+
+ if ((elems_shifted >> SAVE_TIGHT_SHIFT) != total_elems)
+  Perl_croak(aTHX_ "panic: paren_elems_to_push offset %"UVuf
+    " out of range (%lu-%ld)",
+    total_elems,
+    (unsigned long)maxopenparen,
+    (long)parenfloor);
+
+ SSGROW(total_elems + REGCP_FRAME_ELEMS);
+
+ DEBUG_BUFFERS_r(
+  if ((int)maxopenparen > (int)parenfloor)
+   PerlIO_printf(Perl_debug_log,
+    "rex=0x%"UVxf" offs=0x%"UVxf": saving capture indices:\n",
+    PTR2UV(rex),
+    PTR2UV(rex->offs)
+   );
+ );
+ for (p = parenfloor+1; p <= (I32)maxopenparen;  p++) {
+/* REGCP_PARENS_ELEMS are pushed per pairs of parentheses. */
+  SSPUSHIV(rex->offs[p].end);
+  SSPUSHIV(rex->offs[p].start);
+  SSPUSHINT(rex->offs[p].start_tmp);
+  DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+   "    \\%"UVuf": %"IVdf"(%"IVdf")..%"IVdf"\n",
+   (UV)p,
+   (IV)rex->offs[p].start,
+   (IV)rex->offs[p].start_tmp,
+   (IV)rex->offs[p].end
+  ));
+ }
+/* REGCP_OTHER_ELEMS are pushed in any case, parentheses or no. */
+ SSPUSHINT(maxopenparen);
+ SSPUSHINT(rex->lastparen);
+ SSPUSHINT(rex->lastcloseparen);
+ SSPUSHUV(SAVEt_REGCONTEXT | elems_shifted); /* Magic cookie. */
+
+ return retval;
+}
+
+/* These are needed since we do not localize EVAL nodes: */
+#define REGCP_SET(cp)                                           \
+ DEBUG_STATE_r(                                              \
+   PerlIO_printf(Perl_debug_log,          \
+    "  Setting an EVAL scope, savestack=%"IVdf"\n", \
+    (IV)PL_savestack_ix));                          \
+ cp = PL_savestack_ix
+
+#define REGCP_UNWIND(cp)                                        \
+ DEBUG_STATE_r(                                              \
+  if (cp != PL_savestack_ix)                   \
+    PerlIO_printf(Perl_debug_log,          \
+    "  Clearing an EVAL scope, savestack=%"IVdf"..%"IVdf"\n", \
+    (IV)(cp), (IV)PL_savestack_ix));                \
+ regcpblow(cp)
+
+#define UNWIND_PAREN(lp, lcp)               \
+ for (n = rex->lastparen; n > lp; n--)   \
+  rex->offs[n].end = -1;              \
+ rex->lastparen = n;                     \
+ rex->lastcloseparen = lcp;
+
+
+STATIC void
+S_regcppop(pTHX_ regexp *rex, U32 *maxopenparen_p)
+{
+ UV i;
+ U32 paren;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGCPPOP;
+
+ /* Pop REGCP_OTHER_ELEMS before the parentheses loop starts. */
+ i = SSPOPUV;
+ assert((i & SAVE_MASK) == SAVEt_REGCONTEXT); /* Check that the magic cookie is there. */
+ i >>= SAVE_TIGHT_SHIFT; /* Parentheses elements to pop. */
+ rex->lastcloseparen = SSPOPINT;
+ rex->lastparen = SSPOPINT;
+ *maxopenparen_p = SSPOPINT;
+
+ i -= REGCP_OTHER_ELEMS;
+ /* Now restore the parentheses context. */
+ DEBUG_BUFFERS_r(
+  if (i || rex->lastparen + 1 <= rex->nparens)
+   PerlIO_printf(Perl_debug_log,
+    "rex=0x%"UVxf" offs=0x%"UVxf": restoring capture indices to:\n",
+    PTR2UV(rex),
+    PTR2UV(rex->offs)
+   );
+ );
+ paren = *maxopenparen_p;
+ for ( ; i > 0; i -= REGCP_PAREN_ELEMS) {
+  SSize_t tmps;
+  rex->offs[paren].start_tmp = SSPOPINT;
+  rex->offs[paren].start = SSPOPIV;
+  tmps = SSPOPIV;
+  if (paren <= rex->lastparen)
+   rex->offs[paren].end = tmps;
+  DEBUG_BUFFERS_r( PerlIO_printf(Perl_debug_log,
+   "    \\%"UVuf": %"IVdf"(%"IVdf")..%"IVdf"%s\n",
+   (UV)paren,
+   (IV)rex->offs[paren].start,
+   (IV)rex->offs[paren].start_tmp,
+   (IV)rex->offs[paren].end,
+   (paren > rex->lastparen ? "(skipped)" : ""));
+  );
+  paren--;
+ }
+#if 1
+ /* It would seem that the similar code in regtry()
+ * already takes care of this, and in fact it is in
+ * a better location to since this code can #if 0-ed out
+ * but the code in regtry() is needed or otherwise tests
+ * requiring null fields (pat.t#187 and split.t#{13,14}
+ * (as of patchlevel 7877)  will fail.  Then again,
+ * this code seems to be necessary or otherwise
+ * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
+ * --jhi updated by dapm */
+ for (i = rex->lastparen + 1; i <= rex->nparens; i++) {
+  if (i > *maxopenparen_p)
+   rex->offs[i].start = -1;
+  rex->offs[i].end = -1;
+  DEBUG_BUFFERS_r( PerlIO_printf(Perl_debug_log,
+   "    \\%"UVuf": %s   ..-1 undeffing\n",
+   (UV)i,
+   (i > *maxopenparen_p) ? "-1" : "  "
+  ));
+ }
+#endif
+}
+
+/* restore the parens and associated vars at savestack position ix,
+ * but without popping the stack */
+
+STATIC void
+S_regcp_restore(pTHX_ regexp *rex, I32 ix, U32 *maxopenparen_p)
+{
+ I32 tmpix = PL_savestack_ix;
+ PL_savestack_ix = ix;
+ regcppop(rex, maxopenparen_p);
+ PL_savestack_ix = tmpix;
+}
+
+#define regcpblow(cp) LEAVE_SCOPE(cp) /* Ignores regcppush()ed data. */
+
+STATIC bool
+S_isFOO_lc(pTHX_ const U8 classnum, const U8 character)
+{
+ /* Returns a boolean as to whether or not 'character' is a member of the
+ * Posix character class given by 'classnum' that should be equivalent to a
+ * value in the typedef '_char_class_number'.
+ *
+ * Ideally this could be replaced by a just an array of function pointers
+ * to the C library functions that implement the macros this calls.
+ * However, to compile, the precise function signatures are required, and
+ * these may vary from platform to to platform.  To avoid having to figure
+ * out what those all are on each platform, I (khw) am using this method,
+ * which adds an extra layer of function call overhead (unless the C
+ * optimizer strips it away).  But we don't particularly care about
+ * performance with locales anyway. */
+
+ switch ((_char_class_number) classnum) {
+  case _CC_ENUM_ALPHANUMERIC: return isALPHANUMERIC_LC(character);
+  case _CC_ENUM_ALPHA:     return isALPHA_LC(character);
+  case _CC_ENUM_ASCII:     return isASCII_LC(character);
+  case _CC_ENUM_BLANK:     return isBLANK_LC(character);
+  case _CC_ENUM_CASED:     return isLOWER_LC(character)
+          || isUPPER_LC(character);
+  case _CC_ENUM_CNTRL:     return isCNTRL_LC(character);
+  case _CC_ENUM_DIGIT:     return isDIGIT_LC(character);
+  case _CC_ENUM_GRAPH:     return isGRAPH_LC(character);
+  case _CC_ENUM_LOWER:     return isLOWER_LC(character);
+  case _CC_ENUM_PRINT:     return isPRINT_LC(character);
+  case _CC_ENUM_PUNCT:     return isPUNCT_LC(character);
+  case _CC_ENUM_SPACE:     return isSPACE_LC(character);
+  case _CC_ENUM_UPPER:     return isUPPER_LC(character);
+  case _CC_ENUM_WORDCHAR:  return isWORDCHAR_LC(character);
+  case _CC_ENUM_XDIGIT:    return isXDIGIT_LC(character);
+  default:    /* VERTSPACE should never occur in locales */
+   Perl_croak(aTHX_ "panic: isFOO_lc() has an unexpected character class '%d'", classnum);
+ }
+
+ NOT_REACHED; /* NOTREACHED */
+ return FALSE;
+}
+
+STATIC bool
+S_isFOO_utf8_lc(pTHX_ const U8 classnum, const U8* character)
+{
+ /* Returns a boolean as to whether or not the (well-formed) UTF-8-encoded
+ * 'character' is a member of the Posix character class given by 'classnum'
+ * that should be equivalent to a value in the typedef
+ * '_char_class_number'.
+ *
+ * This just calls isFOO_lc on the code point for the character if it is in
+ * the range 0-255.  Outside that range, all characters use Unicode
+ * rules, ignoring any locale.  So use the Unicode function if this class
+ * requires a swash, and use the Unicode macro otherwise. */
+
+ PERL_ARGS_ASSERT_ISFOO_UTF8_LC;
+
+ if (UTF8_IS_INVARIANT(*character)) {
+  return isFOO_lc(classnum, *character);
+ }
+ else if (UTF8_IS_DOWNGRADEABLE_START(*character)) {
+  return isFOO_lc(classnum,
+      TWO_BYTE_UTF8_TO_NATIVE(*character, *(character + 1)));
+ }
+
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(character, character + UTF8SKIP(character));
+
+ if (classnum < _FIRST_NON_SWASH_CC) {
+
+  /* Initialize the swash unless done already */
+  if (! PL_utf8_swash_ptrs[classnum]) {
+   U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+   PL_utf8_swash_ptrs[classnum] =
+     _core_swash_init("utf8",
+         "",
+         &PL_sv_undef, 1, 0,
+         PL_XPosix_ptrs[classnum], &flags);
+  }
+
+  return cBOOL(swash_fetch(PL_utf8_swash_ptrs[classnum], (U8 *)
+        character,
+        TRUE /* is UTF */ ));
+ }
+
+ switch ((_char_class_number) classnum) {
+  case _CC_ENUM_SPACE:     return is_XPERLSPACE_high(character);
+  case _CC_ENUM_BLANK:     return is_HORIZWS_high(character);
+  case _CC_ENUM_XDIGIT:    return is_XDIGIT_high(character);
+  case _CC_ENUM_VERTSPACE: return is_VERTWS_high(character);
+  default:                 break;
+ }
+
+ return FALSE; /* Things like CNTRL are always below 256 */
+}
+
+/*
+ * pregexec and friends
+ */
+
+#ifndef PERL_IN_XSUB_RE
+/*
+ - pregexec - match a regexp against a string
+ */
+I32
+Perl_pregexec(pTHX_ REGEXP * const prog, char* stringarg, char *strend,
+  char *strbeg, SSize_t minend, SV *screamer, U32 nosave)
+/* stringarg: the point in the string at which to begin matching */
+/* strend:    pointer to null at end of string */
+/* strbeg:    real beginning of string */
+/* minend:    end of match must be >= minend bytes after stringarg. */
+/* screamer:  SV being matched: only used for utf8 flag, pos() etc; string
+ *            itself is accessed via the pointers above */
+/* nosave:    For optimizations. */
+{
+ PERL_ARGS_ASSERT_PREGEXEC;
+
+ return
+  regexec_flags(prog, stringarg, strend, strbeg, minend, screamer, NULL,
+     nosave ? 0 : REXEC_COPY_STR);
+}
+#endif
+
+
+
+/* re_intuit_start():
+ *
+ * Based on some optimiser hints, try to find the earliest position in the
+ * string where the regex could match.
+ *
+ *   rx:     the regex to match against
+ *   sv:     the SV being matched: only used for utf8 flag; the string
+ *           itself is accessed via the pointers below. Note that on
+ *           something like an overloaded SV, SvPOK(sv) may be false
+ *           and the string pointers may point to something unrelated to
+ *           the SV itself.
+ *   strbeg: real beginning of string
+ *   strpos: the point in the string at which to begin matching
+ *   strend: pointer to the byte following the last char of the string
+ *   flags   currently unused; set to 0
+ *   data:   currently unused; set to NULL
+ *
+ * The basic idea of re_intuit_start() is to use some known information
+ * about the pattern, namely:
+ *
+ *   a) the longest known anchored substring (i.e. one that's at a
+ *      constant offset from the beginning of the pattern; but not
+ *      necessarily at a fixed offset from the beginning of the
+ *      string);
+ *   b) the longest floating substring (i.e. one that's not at a constant
+ *      offset from the beginning of the pattern);
+ *   c) Whether the pattern is anchored to the string; either
+ *      an absolute anchor: /^../, or anchored to \n: /^.../m,
+ *      or anchored to pos(): /\G/;
+ *   d) A start class: a real or synthetic character class which
+ *      represents which characters are legal at the start of the pattern;
+ *
+ * to either quickly reject the match, or to find the earliest position
+ * within the string at which the pattern might match, thus avoiding
+ * running the full NFA engine at those earlier locations, only to
+ * eventually fail and retry further along.
+ *
+ * Returns NULL if the pattern can't match, or returns the address within
+ * the string which is the earliest place the match could occur.
+ *
+ * The longest of the anchored and floating substrings is called 'check'
+ * and is checked first. The other is called 'other' and is checked
+ * second. The 'other' substring may not be present.  For example,
+ *
+ *    /(abc|xyz)ABC\d{0,3}DEFG/
+ *
+ * will have
+ *
+ *   check substr (float)    = "DEFG", offset 6..9 chars
+ *   other substr (anchored) = "ABC",  offset 3..3 chars
+ *   stclass = [ax]
+ *
+ * Be aware that during the course of this function, sometimes 'anchored'
+ * refers to a substring being anchored relative to the start of the
+ * pattern, and sometimes to the pattern itself being anchored relative to
+ * the string. For example:
+ *
+ *   /\dabc/:   "abc" is anchored to the pattern;
+ *   /^\dabc/:  "abc" is anchored to the pattern and the string;
+ *   /\d+abc/:  "abc" is anchored to neither the pattern nor the string;
+ *   /^\d+abc/: "abc" is anchored to neither the pattern nor the string,
+ *                    but the pattern is anchored to the string.
+ */
+
+char *
+Perl_re_intuit_start(pTHX_
+     REGEXP * const rx,
+     SV *sv,
+     const char * const strbeg,
+     char *strpos,
+     char *strend,
+     const U32 flags,
+     re_scream_pos_data *data)
+{
+ struct regexp *const prog = ReANY(rx);
+ SSize_t start_shift = prog->check_offset_min;
+ /* Should be nonnegative! */
+ SSize_t end_shift   = 0;
+ /* current lowest pos in string where the regex can start matching */
+ char *rx_origin = strpos;
+ SV *check;
+ const bool utf8_target = (sv && SvUTF8(sv)) ? 1 : 0; /* if no sv we have to assume bytes */
+ U8   other_ix = 1 - prog->substrs->check_ix;
+ bool ml_anch = 0;
+ char *other_last = strpos;/* latest pos 'other' substr already checked to */
+ char *check_at = NULL;  /* check substr found at this pos */
+ const I32 multiline = prog->extflags & RXf_PMf_MULTILINE;
+ RXi_GET_DECL(prog,progi);
+ regmatch_info reginfo_buf;  /* create some info to pass to find_byclass */
+ regmatch_info *const reginfo = &reginfo_buf;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_INTUIT_START;
+ PERL_UNUSED_ARG(flags);
+ PERL_UNUSED_ARG(data);
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+    "Intuit: trying to determine minimum start position...\n"));
+
+ /* for now, assume that all substr offsets are positive. If at some point
+ * in the future someone wants to do clever things with look-behind and
+ * -ve offsets, they'll need to fix up any code in this function
+ * which uses these offsets. See the thread beginning
+ * <20140113145929.GF27210@iabyn.com>
+ */
+ assert(prog->substrs->data[0].min_offset >= 0);
+ assert(prog->substrs->data[0].max_offset >= 0);
+ assert(prog->substrs->data[1].min_offset >= 0);
+ assert(prog->substrs->data[1].max_offset >= 0);
+ assert(prog->substrs->data[2].min_offset >= 0);
+ assert(prog->substrs->data[2].max_offset >= 0);
+
+ /* for now, assume that if both present, that the floating substring
+ * doesn't start before the anchored substring.
+ * If you break this assumption (e.g. doing better optimisations
+ * with lookahead/behind), then you'll need to audit the code in this
+ * function carefully first
+ */
+ assert(
+   ! (  (prog->anchored_utf8 || prog->anchored_substr)
+   && (prog->float_utf8    || prog->float_substr))
+  || (prog->float_min_offset >= prog->anchored_offset));
+
+ /* byte rather than char calculation for efficiency. It fails
+ * to quickly reject some cases that can't match, but will reject
+ * them later after doing full char arithmetic */
+ if (prog->minlen > strend - strpos) {
+  DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+       "  String too short...\n"));
+  goto fail;
+ }
+
+ RX_MATCH_UTF8_set(rx,utf8_target);
+ reginfo->is_utf8_target = cBOOL(utf8_target);
+ reginfo->info_aux = NULL;
+ reginfo->strbeg = strbeg;
+ reginfo->strend = strend;
+ reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx));
+ reginfo->intuit = 1;
+ /* not actually used within intuit, but zero for safety anyway */
+ reginfo->poscache_maxiter = 0;
+
+ if (utf8_target) {
+  if (!prog->check_utf8 && prog->check_substr)
+   to_utf8_substr(prog);
+  check = prog->check_utf8;
+ } else {
+  if (!prog->check_substr && prog->check_utf8) {
+   if (! to_byte_substr(prog)) {
+    NON_UTF8_TARGET_BUT_UTF8_REQUIRED(fail);
+   }
+  }
+  check = prog->check_substr;
+ }
+
+ /* dump the various substring data */
+ DEBUG_OPTIMISE_MORE_r({
+  int i;
+  for (i=0; i<=2; i++) {
+   SV *sv = (utf8_target ? prog->substrs->data[i].utf8_substr
+        : prog->substrs->data[i].substr);
+   if (!sv)
+    continue;
+
+   PerlIO_printf(Perl_debug_log,
+    "  substrs[%d]: min=%"IVdf" max=%"IVdf" end shift=%"IVdf
+    " useful=%"IVdf" utf8=%d [%s]\n",
+    i,
+    (IV)prog->substrs->data[i].min_offset,
+    (IV)prog->substrs->data[i].max_offset,
+    (IV)prog->substrs->data[i].end_shift,
+    BmUSEFUL(sv),
+    utf8_target ? 1 : 0,
+    SvPEEK(sv));
+  }
+ });
+
+ if (prog->intflags & PREGf_ANCH) { /* Match at \G, beg-of-str or after \n */
+
+  /* ml_anch: check after \n?
+  *
+  * A note about PREGf_IMPLICIT: on an un-anchored pattern beginning
+  * with /.*.../, these flags will have been added by the
+  * compiler:
+  *   /.*abc/, /.*abc/m:  PREGf_IMPLICIT | PREGf_ANCH_MBOL
+  *   /.*abc/s:           PREGf_IMPLICIT | PREGf_ANCH_SBOL
+  */
+  ml_anch =      (prog->intflags & PREGf_ANCH_MBOL)
+    && !(prog->intflags & PREGf_IMPLICIT);
+
+  if (!ml_anch && !(prog->intflags & PREGf_IMPLICIT)) {
+   /* we are only allowed to match at BOS or \G */
+
+   /* trivially reject if there's a BOS anchor and we're not at BOS.
+   *
+   * Note that we don't try to do a similar quick reject for
+   * \G, since generally the caller will have calculated strpos
+   * based on pos() and gofs, so the string is already correctly
+   * anchored by definition; and handling the exceptions would
+   * be too fiddly (e.g. REXEC_IGNOREPOS).
+   */
+   if (   strpos != strbeg
+    && (prog->intflags & PREGf_ANCH_SBOL))
+   {
+    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+        "  Not at start...\n"));
+    goto fail;
+   }
+
+   /* in the presence of an anchor, the anchored (relative to the
+   * start of the regex) substr must also be anchored relative
+   * to strpos. So quickly reject if substr isn't found there.
+   * This works for \G too, because the caller will already have
+   * subtracted gofs from pos, and gofs is the offset from the
+   * \G to the start of the regex. For example, in /.abc\Gdef/,
+   * where substr="abcdef", pos()=3, gofs=4, offset_min=1:
+   * caller will have set strpos=pos()-4; we look for the substr
+   * at position pos()-4+1, which lines up with the "a" */
+
+   if (prog->check_offset_min == prog->check_offset_max) {
+    /* Substring at constant offset from beg-of-str... */
+    SSize_t slen = SvCUR(check);
+    char *s = HOP3c(strpos, prog->check_offset_min, strend);
+
+    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+     "  Looking for check substr at fixed offset %"IVdf"...\n",
+     (IV)prog->check_offset_min));
+
+    if (SvTAIL(check)) {
+     /* In this case, the regex is anchored at the end too.
+     * Unless it's a multiline match, the lengths must match
+     * exactly, give or take a \n.  NB: slen >= 1 since
+     * the last char of check is \n */
+     if (!multiline
+      && (   strend - s > slen
+       || strend - s < slen - 1
+       || (strend - s == slen && strend[-1] != '\n')))
+     {
+      DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+           "  String too long...\n"));
+      goto fail_finish;
+     }
+     /* Now should match s[0..slen-2] */
+     slen--;
+    }
+    if (slen && (*SvPVX_const(check) != *s
+     || (slen > 1 && memNE(SvPVX_const(check), s, slen))))
+    {
+     DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+         "  String not equal...\n"));
+     goto fail_finish;
+    }
+
+    check_at = s;
+    goto success_at_start;
+   }
+  }
+ }
+
+ end_shift = prog->check_end_shift;
+
+#ifdef DEBUGGING /* 7/99: reports of failure (with the older version) */
+ if (end_shift < 0)
+  Perl_croak(aTHX_ "panic: end_shift: %"IVdf" pattern:\n%s\n ",
+    (IV)end_shift, RX_PRECOMP(prog));
+#endif
+
+  restart:
+
+ /* This is the (re)entry point of the main loop in this function.
+ * The goal of this loop is to:
+ * 1) find the "check" substring in the region rx_origin..strend
+ *    (adjusted by start_shift / end_shift). If not found, reject
+ *    immediately.
+ * 2) If it exists, look for the "other" substr too if defined; for
+ *    example, if the check substr maps to the anchored substr, then
+ *    check the floating substr, and vice-versa. If not found, go
+ *    back to (1) with rx_origin suitably incremented.
+ * 3) If we find an rx_origin position that doesn't contradict
+ *    either of the substrings, then check the possible additional
+ *    constraints on rx_origin of /^.../m or a known start class.
+ *    If these fail, then depending on which constraints fail, jump
+ *    back to here, or to various other re-entry points further along
+ *    that skip some of the first steps.
+ * 4) If we pass all those tests, update the BmUSEFUL() count on the
+ *    substring. If the start position was determined to be at the
+ *    beginning of the string  - so, not rejected, but not optimised,
+ *    since we have to run regmatch from position 0 - decrement the
+ *    BmUSEFUL() count. Otherwise increment it.
+ */
+
+
+ /* first, look for the 'check' substring */
+
+ {
+  U8* start_point;
+  U8* end_point;
+
+  DEBUG_OPTIMISE_MORE_r({
+   PerlIO_printf(Perl_debug_log,
+    "  At restart: rx_origin=%"IVdf" Check offset min: %"IVdf
+    " Start shift: %"IVdf" End shift %"IVdf
+    " Real end Shift: %"IVdf"\n",
+    (IV)(rx_origin - strbeg),
+    (IV)prog->check_offset_min,
+    (IV)start_shift,
+    (IV)end_shift,
+    (IV)prog->check_end_shift);
+  });
+
+  end_point = HOP3(strend, -end_shift, strbeg);
+  start_point = HOPMAYBE3(rx_origin, start_shift, end_point);
+  if (!start_point)
+   goto fail_finish;
+
+
+  /* If the regex is absolutely anchored to either the start of the
+  * string (SBOL) or to pos() (ANCH_GPOS), then
+  * check_offset_max represents an upper bound on the string where
+  * the substr could start. For the ANCH_GPOS case, we assume that
+  * the caller of intuit will have already set strpos to
+  * pos()-gofs, so in this case strpos + offset_max will still be
+  * an upper bound on the substr.
+  */
+  if (!ml_anch
+   && prog->intflags & PREGf_ANCH
+   && prog->check_offset_max != SSize_t_MAX)
+  {
+   SSize_t len = SvCUR(check) - !!SvTAIL(check);
+   const char * const anchor =
+      (prog->intflags & PREGf_ANCH_GPOS ? strpos : strbeg);
+
+   /* do a bytes rather than chars comparison. It's conservative;
+   * so it skips doing the HOP if the result can't possibly end
+   * up earlier than the old value of end_point.
+   */
+   if ((char*)end_point - anchor > prog->check_offset_max) {
+    end_point = HOP3lim((U8*)anchor,
+        prog->check_offset_max,
+        end_point -len)
+       + len;
+   }
+  }
+
+  check_at = fbm_instr( start_point, end_point,
+     check, multiline ? FBMrf_MULTILINE : 0);
+
+  DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+   "  doing 'check' fbm scan, [%"IVdf"..%"IVdf"] gave %"IVdf"\n",
+   (IV)((char*)start_point - strbeg),
+   (IV)((char*)end_point   - strbeg),
+   (IV)(check_at ? check_at - strbeg : -1)
+  ));
+
+  /* Update the count-of-usability, remove useless subpatterns,
+   unshift s.  */
+
+  DEBUG_EXECUTE_r({
+   RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+    SvPVX_const(check), RE_SV_DUMPLEN(check), 30);
+   PerlIO_printf(Perl_debug_log, "  %s %s substr %s%s%s",
+       (check_at ? "Found" : "Did not find"),
+    (check == (utf8_target ? prog->anchored_utf8 : prog->anchored_substr)
+     ? "anchored" : "floating"),
+    quoted,
+    RE_SV_TAIL(check),
+    (check_at ? " at offset " : "...\n") );
+  });
+
+  if (!check_at)
+   goto fail_finish;
+  /* set rx_origin to the minimum position where the regex could start
+  * matching, given the constraint of the just-matched check substring.
+  * But don't set it lower than previously.
+  */
+
+  if (check_at - rx_origin > prog->check_offset_max)
+   rx_origin = HOP3c(check_at, -prog->check_offset_max, rx_origin);
+  /* Finish the diagnostic message */
+  DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+   "%ld (rx_origin now %"IVdf")...\n",
+   (long)(check_at - strbeg),
+   (IV)(rx_origin - strbeg)
+  ));
+ }
+
+
+ /* now look for the 'other' substring if defined */
+
+ if (utf8_target ? prog->substrs->data[other_ix].utf8_substr
+     : prog->substrs->data[other_ix].substr)
+ {
+  /* Take into account the "other" substring. */
+  char *last, *last1;
+  char *s;
+  SV* must;
+  struct reg_substr_datum *other;
+
+ do_other_substr:
+  other = &prog->substrs->data[other_ix];
+
+  /* if "other" is anchored:
+  * we've previously found a floating substr starting at check_at.
+  * This means that the regex origin must lie somewhere
+  * between min (rx_origin): HOP3(check_at, -check_offset_max)
+  * and max:                 HOP3(check_at, -check_offset_min)
+  * (except that min will be >= strpos)
+  * So the fixed  substr must lie somewhere between
+  *  HOP3(min, anchored_offset)
+  *  HOP3(max, anchored_offset) + SvCUR(substr)
+  */
+
+  /* if "other" is floating
+  * Calculate last1, the absolute latest point where the
+  * floating substr could start in the string, ignoring any
+  * constraints from the earlier fixed match. It is calculated
+  * as follows:
+  *
+  * strend - prog->minlen (in chars) is the absolute latest
+  * position within the string where the origin of the regex
+  * could appear. The latest start point for the floating
+  * substr is float_min_offset(*) on from the start of the
+  * regex.  last1 simply combines thee two offsets.
+  *
+  * (*) You might think the latest start point should be
+  * float_max_offset from the regex origin, and technically
+  * you'd be correct. However, consider
+  *    /a\d{2,4}bcd\w/
+  * Here, float min, max are 3,5 and minlen is 7.
+  * This can match either
+  *    /a\d\dbcd\w/
+  *    /a\d\d\dbcd\w/
+  *    /a\d\d\d\dbcd\w/
+  * In the first case, the regex matches minlen chars; in the
+  * second, minlen+1, in the third, minlen+2.
+  * In the first case, the floating offset is 3 (which equals
+  * float_min), in the second, 4, and in the third, 5 (which
+  * equals float_max). In all cases, the floating string bcd
+  * can never start more than 4 chars from the end of the
+  * string, which equals minlen - float_min. As the substring
+  * starts to match more than float_min from the start of the
+  * regex, it makes the regex match more than minlen chars,
+  * and the two cancel each other out. So we can always use
+  * float_min - minlen, rather than float_max - minlen for the
+  * latest position in the string.
+  *
+  * Note that -minlen + float_min_offset is equivalent (AFAIKT)
+  * to CHR_SVLEN(must) - !!SvTAIL(must) + prog->float_end_shift
+  */
+
+  assert(prog->minlen >= other->min_offset);
+  last1 = HOP3c(strend,
+      other->min_offset - prog->minlen, strbeg);
+
+  if (other_ix) {/* i.e. if (other-is-float) */
+   /* last is the latest point where the floating substr could
+   * start, *given* any constraints from the earlier fixed
+   * match. This constraint is that the floating string starts
+   * <= float_max_offset chars from the regex origin (rx_origin).
+   * If this value is less than last1, use it instead.
+   */
+   assert(rx_origin <= last1);
+   last =
+    /* this condition handles the offset==infinity case, and
+    * is a short-cut otherwise. Although it's comparing a
+    * byte offset to a char length, it does so in a safe way,
+    * since 1 char always occupies 1 or more bytes,
+    * so if a string range is  (last1 - rx_origin) bytes,
+    * it will be less than or equal to  (last1 - rx_origin)
+    * chars; meaning it errs towards doing the accurate HOP3
+    * rather than just using last1 as a short-cut */
+    (last1 - rx_origin) < other->max_offset
+     ? last1
+     : (char*)HOP3lim(rx_origin, other->max_offset, last1);
+  }
+  else {
+   assert(strpos + start_shift <= check_at);
+   last = HOP4c(check_at, other->min_offset - start_shift,
+      strbeg, strend);
+  }
+
+  s = HOP3c(rx_origin, other->min_offset, strend);
+  if (s < other_last) /* These positions already checked */
+   s = other_last;
+
+  must = utf8_target ? other->utf8_substr : other->substr;
+  assert(SvPOK(must));
+  {
+   char *from = s;
+   char *to   = last + SvCUR(must) - (SvTAIL(must)!=0);
+
+   if (from > to) {
+    s = NULL;
+    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+     "  skipping 'other' fbm scan: %"IVdf" > %"IVdf"\n",
+     (IV)(from - strbeg),
+     (IV)(to   - strbeg)
+    ));
+   }
+   else {
+    s = fbm_instr(
+     (unsigned char*)from,
+     (unsigned char*)to,
+     must,
+     multiline ? FBMrf_MULTILINE : 0
+    );
+    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+     "  doing 'other' fbm scan, [%"IVdf"..%"IVdf"] gave %"IVdf"\n",
+     (IV)(from - strbeg),
+     (IV)(to   - strbeg),
+     (IV)(s ? s - strbeg : -1)
+    ));
+   }
+  }
+
+  DEBUG_EXECUTE_r({
+   RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+    SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+   PerlIO_printf(Perl_debug_log, "  %s %s substr %s%s",
+    s ? "Found" : "Contradicts",
+    other_ix ? "floating" : "anchored",
+    quoted, RE_SV_TAIL(must));
+  });
+
+
+  if (!s) {
+   /* last1 is latest possible substr location. If we didn't
+   * find it before there, we never will */
+   if (last >= last1) {
+    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+          "; giving up...\n"));
+    goto fail_finish;
+   }
+
+   /* try to find the check substr again at a later
+   * position. Maybe next time we'll find the "other" substr
+   * in range too */
+   other_last = HOP3c(last, 1, strend) /* highest failure */;
+   rx_origin =
+    other_ix /* i.e. if other-is-float */
+     ? HOP3c(rx_origin, 1, strend)
+     : HOP4c(last, 1 - other->min_offset, strbeg, strend);
+   DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+    "; about to retry %s at offset %ld (rx_origin now %"IVdf")...\n",
+    (other_ix ? "floating" : "anchored"),
+    (long)(HOP3c(check_at, 1, strend) - strbeg),
+    (IV)(rx_origin - strbeg)
+   ));
+   goto restart;
+  }
+  else {
+   if (other_ix) { /* if (other-is-float) */
+    /* other_last is set to s, not s+1, since its possible for
+    * a floating substr to fail first time, then succeed
+    * second time at the same floating position; e.g.:
+    *     "-AB--AABZ" =~ /\wAB\d*Z/
+    * The first time round, anchored and float match at
+    * "-(AB)--AAB(Z)" then fail on the initial \w character
+    * class. Second time round, they match at "-AB--A(AB)(Z)".
+    */
+    other_last = s;
+   }
+   else {
+    rx_origin = HOP3c(s, -other->min_offset, strbeg);
+    other_last = HOP3c(s, 1, strend);
+   }
+   DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+    " at offset %ld (rx_origin now %"IVdf")...\n",
+    (long)(s - strbeg),
+    (IV)(rx_origin - strbeg)
+   ));
+
+  }
+ }
+ else {
+  DEBUG_OPTIMISE_MORE_r(
+   PerlIO_printf(Perl_debug_log,
+    "  Check-only match: offset min:%"IVdf" max:%"IVdf
+    " check_at:%"IVdf" rx_origin:%"IVdf" rx_origin-check_at:%"IVdf
+    " strend:%"IVdf"\n",
+    (IV)prog->check_offset_min,
+    (IV)prog->check_offset_max,
+    (IV)(check_at-strbeg),
+    (IV)(rx_origin-strbeg),
+    (IV)(rx_origin-check_at),
+    (IV)(strend-strbeg)
+   )
+  );
+ }
+
+  postprocess_substr_matches:
+
+ /* handle the extra constraint of /^.../m if present */
+
+ if (ml_anch && rx_origin != strbeg && rx_origin[-1] != '\n') {
+  char *s;
+
+  DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+      "  looking for /^/m anchor"));
+
+  /* we have failed the constraint of a \n before rx_origin.
+  * Find the next \n, if any, even if it's beyond the current
+  * anchored and/or floating substrings. Whether we should be
+  * scanning ahead for the next \n or the next substr is debatable.
+  * On the one hand you'd expect rare substrings to appear less
+  * often than \n's. On the other hand, searching for \n means
+  * we're effectively flipping between check_substr and "\n" on each
+  * iteration as the current "rarest" string candidate, which
+  * means for example that we'll quickly reject the whole string if
+  * hasn't got a \n, rather than trying every substr position
+  * first
+  */
+
+  s = HOP3c(strend, - prog->minlen, strpos);
+  if (s <= rx_origin ||
+   ! ( rx_origin = (char *)memchr(rx_origin, '\n', s - rx_origin)))
+  {
+   DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+       "  Did not find /%s^%s/m...\n",
+       PL_colors[0], PL_colors[1]));
+   goto fail_finish;
+  }
+
+  /* earliest possible origin is 1 char after the \n.
+  * (since *rx_origin == '\n', it's safe to ++ here rather than
+  * HOP(rx_origin, 1)) */
+  rx_origin++;
+
+  if (prog->substrs->check_ix == 0  /* check is anchored */
+   || rx_origin >= HOP3c(check_at,  - prog->check_offset_min, strpos))
+  {
+   /* Position contradicts check-string; either because
+   * check was anchored (and thus has no wiggle room),
+   * or check was float and rx_origin is above the float range */
+   DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+    "  Found /%s^%s/m, about to restart lookup for check-string with rx_origin %ld...\n",
+    PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg)));
+   goto restart;
+  }
+
+  /* if we get here, the check substr must have been float,
+  * is in range, and we may or may not have had an anchored
+  * "other" substr which still contradicts */
+  assert(prog->substrs->check_ix); /* check is float */
+
+  if (utf8_target ? prog->anchored_utf8 : prog->anchored_substr) {
+   /* whoops, the anchored "other" substr exists, so we still
+   * contradict. On the other hand, the float "check" substr
+   * didn't contradict, so just retry the anchored "other"
+   * substr */
+   DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+    "  Found /%s^%s/m, rescanning for anchored from offset %ld (rx_origin now %"IVdf")...\n",
+    PL_colors[0], PL_colors[1],
+    (long)(rx_origin - strbeg + prog->anchored_offset),
+    (long)(rx_origin - strbeg)
+   ));
+   goto do_other_substr;
+  }
+
+  /* success: we don't contradict the found floating substring
+  * (and there's no anchored substr). */
+  DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+   "  Found /%s^%s/m with rx_origin %ld...\n",
+   PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg)));
+ }
+ else {
+  DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+   "  (multiline anchor test skipped)\n"));
+ }
+
+  success_at_start:
+
+
+ /* if we have a starting character class, then test that extra constraint.
+ * (trie stclasses are too expensive to use here, we are better off to
+ * leave it to regmatch itself) */
+
+ if (progi->regstclass && PL_regkind[OP(progi->regstclass)]!=TRIE) {
+  const U8* const str = (U8*)STRING(progi->regstclass);
+
+  /* XXX this value could be pre-computed */
+  const int cl_l = (PL_regkind[OP(progi->regstclass)] == EXACT
+     ?  (reginfo->is_utf8_pat
+      ? utf8_distance(str + STR_LEN(progi->regstclass), str)
+      : STR_LEN(progi->regstclass))
+     : 1);
+  char * endpos;
+  char *s;
+  /* latest pos that a matching float substr constrains rx start to */
+  char *rx_max_float = NULL;
+
+  /* if the current rx_origin is anchored, either by satisfying an
+  * anchored substring constraint, or a /^.../m constraint, then we
+  * can reject the current origin if the start class isn't found
+  * at the current position. If we have a float-only match, then
+  * rx_origin is constrained to a range; so look for the start class
+  * in that range. if neither, then look for the start class in the
+  * whole rest of the string */
+
+  /* XXX DAPM it's not clear what the minlen test is for, and why
+  * it's not used in the floating case. Nothing in the test suite
+  * causes minlen == 0 here. See <20140313134639.GS12844@iabyn.com>.
+  * Here are some old comments, which may or may not be correct:
+  *
+  *   minlen == 0 is possible if regstclass is \b or \B,
+  *   and the fixed substr is ''$.
+  *   Since minlen is already taken into account, rx_origin+1 is
+  *   before strend; accidentally, minlen >= 1 guaranties no false
+  *   positives at rx_origin + 1 even for \b or \B.  But (minlen? 1 :
+  *   0) below assumes that regstclass does not come from lookahead...
+  *   If regstclass takes bytelength more than 1: If charlength==1, OK.
+  *   This leaves EXACTF-ish only, which are dealt with in
+  *   find_byclass().
+  */
+
+  if (prog->anchored_substr || prog->anchored_utf8 || ml_anch)
+   endpos= HOP3c(rx_origin, (prog->minlen ? cl_l : 0), strend);
+  else if (prog->float_substr || prog->float_utf8) {
+   rx_max_float = HOP3c(check_at, -start_shift, strbeg);
+   endpos= HOP3c(rx_max_float, cl_l, strend);
+  }
+  else
+   endpos= strend;
+
+  DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+   "  looking for class: start_shift: %"IVdf" check_at: %"IVdf
+   " rx_origin: %"IVdf" endpos: %"IVdf"\n",
+   (IV)start_shift, (IV)(check_at - strbeg),
+   (IV)(rx_origin - strbeg), (IV)(endpos - strbeg)));
+
+  s = find_byclass(prog, progi->regstclass, rx_origin, endpos,
+       reginfo);
+  if (!s) {
+   if (endpos == strend) {
+    DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+        "  Could not match STCLASS...\n") );
+    goto fail;
+   }
+   DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+       "  This position contradicts STCLASS...\n") );
+   if ((prog->intflags & PREGf_ANCH) && !ml_anch
+      && !(prog->intflags & PREGf_IMPLICIT))
+    goto fail;
+
+   /* Contradict one of substrings */
+   if (prog->anchored_substr || prog->anchored_utf8) {
+    if (prog->substrs->check_ix == 1) { /* check is float */
+     /* Have both, check_string is floating */
+     assert(rx_origin + start_shift <= check_at);
+     if (rx_origin + start_shift != check_at) {
+      /* not at latest position float substr could match:
+      * Recheck anchored substring, but not floating.
+      * The condition above is in bytes rather than
+      * chars for efficiency. It's conservative, in
+      * that it errs on the side of doing 'goto
+      * do_other_substr'. In this case, at worst,
+      * an extra anchored search may get done, but in
+      * practice the extra fbm_instr() is likely to
+      * get skipped anyway. */
+      DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+       "  about to retry anchored at offset %ld (rx_origin now %"IVdf")...\n",
+       (long)(other_last - strbeg),
+       (IV)(rx_origin - strbeg)
+      ));
+      goto do_other_substr;
+     }
+    }
+   }
+   else {
+    /* float-only */
+
+    if (ml_anch) {
+     /* In the presence of ml_anch, we might be able to
+     * find another \n without breaking the current float
+     * constraint. */
+
+     /* strictly speaking this should be HOP3c(..., 1, ...),
+     * but since we goto a block of code that's going to
+     * search for the next \n if any, its safe here */
+     rx_origin++;
+     DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+       "  about to look for /%s^%s/m starting at rx_origin %ld...\n",
+       PL_colors[0], PL_colors[1],
+       (long)(rx_origin - strbeg)) );
+     goto postprocess_substr_matches;
+    }
+
+    /* strictly speaking this can never be true; but might
+    * be if we ever allow intuit without substrings */
+    if (!(utf8_target ? prog->float_utf8 : prog->float_substr))
+     goto fail;
+
+    rx_origin = rx_max_float;
+   }
+
+   /* at this point, any matching substrings have been
+   * contradicted. Start again... */
+
+   rx_origin = HOP3c(rx_origin, 1, strend);
+
+   /* uses bytes rather than char calculations for efficiency.
+   * It's conservative: it errs on the side of doing 'goto restart',
+   * where there is code that does a proper char-based test */
+   if (rx_origin + start_shift + end_shift > strend) {
+    DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+         "  Could not match STCLASS...\n") );
+    goto fail;
+   }
+   DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+    "  about to look for %s substr starting at offset %ld (rx_origin now %"IVdf")...\n",
+    (prog->substrs->check_ix ? "floating" : "anchored"),
+    (long)(rx_origin + start_shift - strbeg),
+    (IV)(rx_origin - strbeg)
+   ));
+   goto restart;
+  }
+
+  /* Success !!! */
+
+  if (rx_origin != s) {
+   DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+      "  By STCLASS: moving %ld --> %ld\n",
+        (long)(rx_origin - strbeg), (long)(s - strbeg))
+    );
+  }
+  else {
+   DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+        "  Does not contradict STCLASS...\n");
+    );
+  }
+ }
+
+ /* Decide whether using the substrings helped */
+
+ if (rx_origin != strpos) {
+  /* Fixed substring is found far enough so that the match
+  cannot start at strpos. */
+
+  DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "  try at offset...\n"));
+  ++BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr); /* hooray/5 */
+ }
+ else {
+  /* The found rx_origin position does not prohibit matching at
+  * strpos, so calling intuit didn't gain us anything. Decrement
+  * the BmUSEFUL() count on the check substring, and if we reach
+  * zero, free it.  */
+  if (!(prog->intflags & PREGf_NAUGHTY)
+   && (utf8_target ? (
+    prog->check_utf8  /* Could be deleted already */
+    && --BmUSEFUL(prog->check_utf8) < 0
+    && (prog->check_utf8 == prog->float_utf8)
+   ) : (
+    prog->check_substr  /* Could be deleted already */
+    && --BmUSEFUL(prog->check_substr) < 0
+    && (prog->check_substr == prog->float_substr)
+   )))
+  {
+   /* If flags & SOMETHING - do not do it many times on the same match */
+   DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "  ... Disabling check substring...\n"));
+   /* XXX Does the destruction order has to change with utf8_target? */
+   SvREFCNT_dec(utf8_target ? prog->check_utf8 : prog->check_substr);
+   SvREFCNT_dec(utf8_target ? prog->check_substr : prog->check_utf8);
+   prog->check_substr = prog->check_utf8 = NULL; /* disable */
+   prog->float_substr = prog->float_utf8 = NULL; /* clear */
+   check = NULL;   /* abort */
+   /* XXXX This is a remnant of the old implementation.  It
+     looks wasteful, since now INTUIT can use many
+     other heuristics. */
+   prog->extflags &= ~RXf_USE_INTUIT;
+  }
+ }
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+   "Intuit: %sSuccessfully guessed:%s match at offset %ld\n",
+   PL_colors[4], PL_colors[5], (long)(rx_origin - strbeg)) );
+
+ return rx_origin;
+
+  fail_finish:    /* Substring not found */
+ if (prog->check_substr || prog->check_utf8)  /* could be removed already */
+  BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr) += 5; /* hooray */
+  fail:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch rejected by optimizer%s\n",
+      PL_colors[4], PL_colors[5]));
+ return NULL;
+}
+
+
+#define DECL_TRIE_TYPE(scan) \
+ const enum { trie_plain, trie_utf8, trie_utf8_fold, trie_latin_utf8_fold,       \
+    trie_utf8_exactfa_fold, trie_latin_utf8_exactfa_fold,              \
+    trie_utf8l, trie_flu8 }                                            \
+     trie_type = ((scan->flags == EXACT)                             \
+        ? (utf8_target ? trie_utf8 : trie_plain)           \
+        : (scan->flags == EXACTL)                          \
+         ? (utf8_target ? trie_utf8l : trie_plain)       \
+         : (scan->flags == EXACTFA)                      \
+         ? (utf8_target                                \
+          ? trie_utf8_exactfa_fold                   \
+          : trie_latin_utf8_exactfa_fold)            \
+         : (scan->flags == EXACTFLU8                   \
+          ? trie_flu8                                \
+          : (utf8_target                             \
+          ? trie_utf8_fold                         \
+          :   trie_latin_utf8_fold)))
+
+#define REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc, uscan, len, uvc, charid, foldlen, foldbuf, uniflags) \
+STMT_START {                                                                        \
+ STRLEN skiplen;                                                                 \
+ U8 flags = FOLD_FLAGS_FULL;                                                     \
+ switch (trie_type) {                                                            \
+ case trie_flu8:                                                                 \
+  _CHECK_AND_WARN_PROBLEMATIC_LOCALE;                                         \
+  if (utf8_target && UTF8_IS_ABOVE_LATIN1(*uc)) {                             \
+   _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(uc, uc + UTF8SKIP(uc));          \
+  }                                                                           \
+  goto do_trie_utf8_fold;                                                     \
+ case trie_utf8_exactfa_fold:                                                    \
+  flags |= FOLD_FLAGS_NOMIX_ASCII;                                            \
+  /* FALLTHROUGH */                                                           \
+ case trie_utf8_fold:                                                            \
+ do_trie_utf8_fold:                                                            \
+  if ( foldlen>0 ) {                                                          \
+   uvc = utf8n_to_uvchr( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
+   foldlen -= len;                                                         \
+   uscan += len;                                                           \
+   len=0;                                                                  \
+  } else {                                                                    \
+   uvc = _to_utf8_fold_flags( (const U8*) uc, foldbuf, &foldlen, flags);   \
+   len = UTF8SKIP(uc);                                                     \
+   skiplen = UNISKIP( uvc );                                               \
+   foldlen -= skiplen;                                                     \
+   uscan = foldbuf + skiplen;                                              \
+  }                                                                           \
+  break;                                                                      \
+ case trie_latin_utf8_exactfa_fold:                                              \
+  flags |= FOLD_FLAGS_NOMIX_ASCII;                                            \
+  /* FALLTHROUGH */                                                           \
+ case trie_latin_utf8_fold:                                                      \
+  if ( foldlen>0 ) {                                                          \
+   uvc = utf8n_to_uvchr( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
+   foldlen -= len;                                                         \
+   uscan += len;                                                           \
+   len=0;                                                                  \
+  } else {                                                                    \
+   len = 1;                                                                \
+   uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, flags);             \
+   skiplen = UNISKIP( uvc );                                               \
+   foldlen -= skiplen;                                                     \
+   uscan = foldbuf + skiplen;                                              \
+  }                                                                           \
+  break;                                                                      \
+ case trie_utf8l:                                                                \
+  _CHECK_AND_WARN_PROBLEMATIC_LOCALE;                                         \
+  if (utf8_target && UTF8_IS_ABOVE_LATIN1(*uc)) {                             \
+   _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(uc, uc + UTF8SKIP(uc));          \
+  }                                                                           \
+  /* FALLTHROUGH */                                                           \
+ case trie_utf8:                                                                 \
+  uvc = utf8n_to_uvchr( (const U8*) uc, UTF8_MAXLEN, &len, uniflags );        \
+  break;                                                                      \
+ case trie_plain:                                                                \
+  uvc = (UV)*uc;                                                              \
+  len = 1;                                                                    \
+ }                                                                               \
+ if (uvc < 256) {                                                                \
+  charid = trie->charmap[ uvc ];                                              \
+ }                                                                               \
+ else {                                                                          \
+  charid = 0;                                                                 \
+  if (widecharmap) {                                                          \
+   SV** const svpp = hv_fetch(widecharmap,                                 \
+      (char*)&uvc, sizeof(UV), 0);                                \
+   if (svpp)                                                               \
+    charid = (U16)SvIV(*svpp);                                          \
+  }                                                                           \
+ }                                                                               \
+} STMT_END
+
+#define DUMP_EXEC_POS(li,s,doutf8)                          \
+ dump_exec_pos(li,s,(reginfo->strend),(reginfo->strbeg), \
+    startpos, doutf8)
+
+#define REXEC_FBC_EXACTISH_SCAN(COND)                     \
+STMT_START {                                              \
+ while (s <= e) {                                      \
+  if ( (COND)                                       \
+   && (ln == 1 || folder(s, pat_string, ln))    \
+   && (reginfo->intuit || regtry(reginfo, &s)) )\
+   goto got_it;                                  \
+  s++;                                              \
+ }                                                     \
+} STMT_END
+
+#define REXEC_FBC_UTF8_SCAN(CODE)                     \
+STMT_START {                                          \
+ while (s < strend) {                              \
+  CODE                                          \
+  s += UTF8SKIP(s);                             \
+ }                                                 \
+} STMT_END
+
+#define REXEC_FBC_SCAN(CODE)                          \
+STMT_START {                                          \
+ while (s < strend) {                              \
+  CODE                                          \
+  s++;                                          \
+ }                                                 \
+} STMT_END
+
+#define REXEC_FBC_UTF8_CLASS_SCAN(COND)                        \
+REXEC_FBC_UTF8_SCAN( /* Loops while (s < strend) */            \
+ if (COND) {                                                \
+  if (tmp && (reginfo->intuit || regtry(reginfo, &s)))   \
+   goto got_it;                                       \
+  else                                                   \
+   tmp = doevery;                                     \
+ }                                                          \
+ else                                                       \
+  tmp = 1;                                               \
+)
+
+#define REXEC_FBC_CLASS_SCAN(COND)                             \
+REXEC_FBC_SCAN( /* Loops while (s < strend) */                 \
+ if (COND) {                                                \
+  if (tmp && (reginfo->intuit || regtry(reginfo, &s)))   \
+   goto got_it;                                       \
+  else                                                   \
+   tmp = doevery;                                     \
+ }                                                          \
+ else                                                       \
+  tmp = 1;                                               \
+)
+
+#define REXEC_FBC_CSCAN(CONDUTF8,COND)                         \
+ if (utf8_target) {                                         \
+  REXEC_FBC_UTF8_CLASS_SCAN(CONDUTF8);                   \
+ }                                                          \
+ else {                                                     \
+  REXEC_FBC_CLASS_SCAN(COND);                            \
+ }
+
+/* The three macros below are slightly different versions of the same logic.
+ *
+ * The first is for /a and /aa when the target string is UTF-8.  This can only
+ * match ascii, but it must advance based on UTF-8.   The other two handle the
+ * non-UTF-8 and the more generic UTF-8 cases.   In all three, we are looking
+ * for the boundary (or non-boundary) between a word and non-word character.
+ * The utf8 and non-utf8 cases have the same logic, but the details must be
+ * different.  Find the "wordness" of the character just prior to this one, and
+ * compare it with the wordness of this one.  If they differ, we have a
+ * boundary.  At the beginning of the string, pretend that the previous
+ * character was a new-line.
+ *
+ * All these macros uncleanly have side-effects with each other and outside
+ * variables.  So far it's been too much trouble to clean-up
+ *
+ * TEST_NON_UTF8 is the macro or function to call to test if its byte input is
+ *               a word character or not.
+ * IF_SUCCESS    is code to do if it finds that we are at a boundary between
+ *               word/non-word
+ * IF_FAIL       is code to do if we aren't at a boundary between word/non-word
+ *
+ * Exactly one of the two IF_FOO parameters is a no-op, depending on whether we
+ * are looking for a boundary or for a non-boundary.  If we are looking for a
+ * boundary, we want IF_FAIL to be the no-op, and for IF_SUCCESS to go out and
+ * see if this tentative match actually works, and if so, to quit the loop
+ * here.  And vice-versa if we are looking for a non-boundary.
+ *
+ * 'tmp' below in the next three macros in the REXEC_FBC_SCAN and
+ * REXEC_FBC_UTF8_SCAN loops is a loop invariant, a bool giving the return of
+ * TEST_NON_UTF8(s-1).  To see this, note that that's what it is defined to be
+ * at entry to the loop, and to get to the IF_FAIL branch, tmp must equal
+ * TEST_NON_UTF8(s), and in the opposite branch, IF_SUCCESS, tmp is that
+ * complement.  But in that branch we complement tmp, meaning that at the
+ * bottom of the loop tmp is always going to be equal to TEST_NON_UTF8(s),
+ * which means at the top of the loop in the next iteration, it is
+ * TEST_NON_UTF8(s-1) */
+#define FBC_UTF8_A(TEST_NON_UTF8, IF_SUCCESS, IF_FAIL)                         \
+ tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n';                      \
+ tmp = TEST_NON_UTF8(tmp);                                                  \
+ REXEC_FBC_UTF8_SCAN( /* advances s while s < strend */                     \
+  if (tmp == ! TEST_NON_UTF8((U8) *s)) {                                 \
+   tmp = !tmp;                                                        \
+   IF_SUCCESS; /* Is a boundary if values for s-1 and s differ */     \
+  }                                                                      \
+  else {                                                                 \
+   IF_FAIL;                                                           \
+  }                                                                      \
+ );                                                                         \
+
+/* Like FBC_UTF8_A, but TEST_UV is a macro which takes a UV as its input, and
+ * TEST_UTF8 is a macro that for the same input code points returns identically
+ * to TEST_UV, but takes a pointer to a UTF-8 encoded string instead */
+#define FBC_UTF8(TEST_UV, TEST_UTF8, IF_SUCCESS, IF_FAIL)                      \
+ if (s == reginfo->strbeg) {                                                \
+  tmp = '\n';                                                            \
+ }                                                                          \
+ else { /* Back-up to the start of the previous character */                \
+  U8 * const r = reghop3((U8*)s, -1, (U8*)reginfo->strbeg);              \
+  tmp = utf8n_to_uvchr(r, (U8*) reginfo->strend - r,                     \
+             0, UTF8_ALLOW_DEFAULT); \
+ }                                                                          \
+ tmp = TEST_UV(tmp);                                                        \
+ LOAD_UTF8_CHARCLASS_ALNUM();                                               \
+ REXEC_FBC_UTF8_SCAN( /* advances s while s < strend */                     \
+  if (tmp == ! (TEST_UTF8((U8 *) s))) {                                  \
+   tmp = !tmp;                                                        \
+   IF_SUCCESS;                                                        \
+  }                                                                      \
+  else {                                                                 \
+   IF_FAIL;                                                           \
+  }                                                                      \
+ );
+
+/* Like the above two macros.  UTF8_CODE is the complete code for handling
+ * UTF-8.  Common to the BOUND and NBOUND cases, set-up by the FBC_BOUND, etc
+ * macros below */
+#define FBC_BOUND_COMMON(UTF8_CODE, TEST_NON_UTF8, IF_SUCCESS, IF_FAIL)        \
+ if (utf8_target) {                                                         \
+  UTF8_CODE                                                              \
+ }                                                                          \
+ else {  /* Not utf8 */                                                     \
+  tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n';                  \
+  tmp = TEST_NON_UTF8(tmp);                                              \
+  REXEC_FBC_SCAN( /* advances s while s < strend */                      \
+   if (tmp == ! TEST_NON_UTF8((U8) *s)) {                             \
+    IF_SUCCESS;                                                    \
+    tmp = !tmp;                                                    \
+   }                                                                  \
+   else {                                                             \
+    IF_FAIL;                                                       \
+   }                                                                  \
+  );                                                                     \
+ }                                                                          \
+ /* Here, things have been set up by the previous code so that tmp is the   \
+ * return of TEST_NON_UTF(s-1) or TEST_UTF8(s-1) (depending on the         \
+ * utf8ness of the target).  We also have to check if this matches against \
+ * the EOS, which we treat as a \n (which is the same value in both UTF-8  \
+ * or non-UTF8, so can use the non-utf8 test condition even for a UTF-8    \
+ * string */                                                               \
+ if (tmp == ! TEST_NON_UTF8('\n')) {                                        \
+  IF_SUCCESS;                                                            \
+ }                                                                          \
+ else {                                                                     \
+  IF_FAIL;                                                               \
+ }
+
+/* This is the macro to use when we want to see if something that looks like it
+ * could match, actually does, and if so exits the loop */
+#define REXEC_FBC_TRYIT                            \
+ if ((reginfo->intuit || regtry(reginfo, &s)))  \
+  goto got_it
+
+/* The only difference between the BOUND and NBOUND cases is that
+ * REXEC_FBC_TRYIT is called when matched in BOUND, and when non-matched in
+ * NBOUND.  This is accomplished by passing it as either the if or else clause,
+ * with the other one being empty (PLACEHOLDER is defined as empty).
+ *
+ * The TEST_FOO parameters are for operating on different forms of input, but
+ * all should be ones that return identically for the same underlying code
+ * points */
+#define FBC_BOUND(TEST_NON_UTF8, TEST_UV, TEST_UTF8)                           \
+ FBC_BOUND_COMMON(                                                          \
+  FBC_UTF8(TEST_UV, TEST_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER),          \
+  TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
+
+#define FBC_BOUND_A(TEST_NON_UTF8)                                             \
+ FBC_BOUND_COMMON(                                                          \
+   FBC_UTF8_A(TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER),           \
+   TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
+
+#define FBC_NBOUND(TEST_NON_UTF8, TEST_UV, TEST_UTF8)                          \
+ FBC_BOUND_COMMON(                                                          \
+  FBC_UTF8(TEST_UV, TEST_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT),          \
+  TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
+
+#define FBC_NBOUND_A(TEST_NON_UTF8)                                            \
+ FBC_BOUND_COMMON(                                                          \
+   FBC_UTF8_A(TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT),           \
+   TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
+
+/* Takes a pointer to an inversion list, a pointer to its corresponding
+ * inversion map, and a code point, and returns the code point's value
+ * according to the two arrays.  It assumes that all code points have a value.
+ * This is used as the base macro for macros for particular properties */
+#define _generic_GET_BREAK_VAL_CP(invlist, invmap, cp)              \
+       invmap[_invlist_search(invlist, cp)]
+
+/* Same as above, but takes begin, end ptrs to a UTF-8 encoded string instead
+ * of a code point, returning the value for the first code point in the string.
+ * And it takes the particular macro name that finds the desired value given a
+ * code point.  Merely convert the UTF-8 to code point and call the cp macro */
+#define _generic_GET_BREAK_VAL_UTF8(cp_macro, pos, strend)                     \
+   (__ASSERT_(pos < strend)                                          \
+    /* Note assumes is valid UTF-8 */                             \
+   (cp_macro(utf8_to_uvchr_buf((pos), (strend), NULL))))
+
+/* Returns the GCB value for the input code point */
+#define getGCB_VAL_CP(cp)                                                      \
+  _generic_GET_BREAK_VAL_CP(                                           \
+         PL_GCB_invlist,                            \
+         Grapheme_Cluster_Break_invmap,             \
+         (cp))
+
+/* Returns the GCB value for the first code point in the UTF-8 encoded string
+ * bounded by pos and strend */
+#define getGCB_VAL_UTF8(pos, strend)                                           \
+ _generic_GET_BREAK_VAL_UTF8(getGCB_VAL_CP, pos, strend)
+
+
+/* Returns the SB value for the input code point */
+#define getSB_VAL_CP(cp)                                                       \
+  _generic_GET_BREAK_VAL_CP(                                           \
+         PL_SB_invlist,                             \
+         Sentence_Break_invmap,                     \
+         (cp))
+
+/* Returns the SB value for the first code point in the UTF-8 encoded string
+ * bounded by pos and strend */
+#define getSB_VAL_UTF8(pos, strend)                                            \
+ _generic_GET_BREAK_VAL_UTF8(getSB_VAL_CP, pos, strend)
+
+/* Returns the WB value for the input code point */
+#define getWB_VAL_CP(cp)                                                       \
+  _generic_GET_BREAK_VAL_CP(                                           \
+         PL_WB_invlist,                             \
+         Word_Break_invmap,                         \
+         (cp))
+
+/* Returns the WB value for the first code point in the UTF-8 encoded string
+ * bounded by pos and strend */
+#define getWB_VAL_UTF8(pos, strend)                                            \
+ _generic_GET_BREAK_VAL_UTF8(getWB_VAL_CP, pos, strend)
+
+/* We know what class REx starts with.  Try to find this position... */
+/* if reginfo->intuit, its a dryrun */
+/* annoyingly all the vars in this routine have different names from their counterparts
+   in regmatch. /grrr */
+STATIC char *
+S_find_byclass(pTHX_ regexp * prog, const regnode *c, char *s,
+ const char *strend, regmatch_info *reginfo)
+{
+ dVAR;
+ const I32 doevery = (prog->intflags & PREGf_SKIP) == 0;
+ char *pat_string;   /* The pattern's exactish string */
+ char *pat_end;     /* ptr to end char of pat_string */
+ re_fold_t folder; /* Function for computing non-utf8 folds */
+ const U8 *fold_array;   /* array for folding ords < 256 */
+ STRLEN ln;
+ STRLEN lnc;
+ U8 c1;
+ U8 c2;
+ char *e;
+ I32 tmp = 1; /* Scratch variable? */
+ const bool utf8_target = reginfo->is_utf8_target;
+ UV utf8_fold_flags = 0;
+ const bool is_utf8_pat = reginfo->is_utf8_pat;
+ bool to_complement = FALSE; /* Invert the result?  Taking the xor of this
+        with a result inverts that result, as 0^1 =
+        1 and 1^1 = 0 */
+ _char_class_number classnum;
+
+ RXi_GET_DECL(prog,progi);
+
+ PERL_ARGS_ASSERT_FIND_BYCLASS;
+
+ /* We know what class it must start with. */
+ switch (OP(c)) {
+ case ANYOFL:
+  _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+  /* FALLTHROUGH */
+ case ANYOF:
+  if (utf8_target) {
+   REXEC_FBC_UTF8_CLASS_SCAN(
+     reginclass(prog, c, (U8*)s, (U8*) strend, utf8_target));
+  }
+  else {
+   REXEC_FBC_CLASS_SCAN(REGINCLASS(prog, c, (U8*)s));
+  }
+  break;
+
+ case EXACTFA_NO_TRIE:   /* This node only generated for non-utf8 patterns */
+  assert(! is_utf8_pat);
+  /* FALLTHROUGH */
+ case EXACTFA:
+  if (is_utf8_pat || utf8_target) {
+   utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+   goto do_exactf_utf8;
+  }
+  fold_array = PL_fold_latin1;    /* Latin1 folds are not affected by */
+  folder = foldEQ_latin1;         /* /a, except the sharp s one which */
+  goto do_exactf_non_utf8; /* isn't dealt with by these */
+
+ case EXACTF:   /* This node only generated for non-utf8 patterns */
+  assert(! is_utf8_pat);
+  if (utf8_target) {
+   utf8_fold_flags = 0;
+   goto do_exactf_utf8;
+  }
+  fold_array = PL_fold;
+  folder = foldEQ;
+  goto do_exactf_non_utf8;
+
+ case EXACTFL:
+  _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+  if (is_utf8_pat || utf8_target || IN_UTF8_CTYPE_LOCALE) {
+   utf8_fold_flags = FOLDEQ_LOCALE;
+   goto do_exactf_utf8;
+  }
+  fold_array = PL_fold_locale;
+  folder = foldEQ_locale;
+  goto do_exactf_non_utf8;
+
+ case EXACTFU_SS:
+  if (is_utf8_pat) {
+   utf8_fold_flags = FOLDEQ_S2_ALREADY_FOLDED;
+  }
+  goto do_exactf_utf8;
+
+ case EXACTFLU8:
+   if (! utf8_target) {    /* All code points in this node require
+         UTF-8 to express.  */
+    break;
+   }
+   utf8_fold_flags =  FOLDEQ_LOCALE | FOLDEQ_S2_ALREADY_FOLDED
+           | FOLDEQ_S2_FOLDS_SANE;
+   goto do_exactf_utf8;
+
+ case EXACTFU:
+  if (is_utf8_pat || utf8_target) {
+   utf8_fold_flags = is_utf8_pat ? FOLDEQ_S2_ALREADY_FOLDED : 0;
+   goto do_exactf_utf8;
+  }
+
+  /* Any 'ss' in the pattern should have been replaced by regcomp,
+  * so we don't have to worry here about this single special case
+  * in the Latin1 range */
+  fold_array = PL_fold_latin1;
+  folder = foldEQ_latin1;
+
+  /* FALLTHROUGH */
+
+ do_exactf_non_utf8: /* Neither pattern nor string are UTF8, and there
+      are no glitches with fold-length differences
+      between the target string and pattern */
+
+  /* The idea in the non-utf8 EXACTF* cases is to first find the
+  * first character of the EXACTF* node and then, if necessary,
+  * case-insensitively compare the full text of the node.  c1 is the
+  * first character.  c2 is its fold.  This logic will not work for
+  * Unicode semantics and the german sharp ss, which hence should
+  * not be compiled into a node that gets here. */
+  pat_string = STRING(c);
+  ln  = STR_LEN(c); /* length to match in octets/bytes */
+
+  /* We know that we have to match at least 'ln' bytes (which is the
+  * same as characters, since not utf8).  If we have to match 3
+  * characters, and there are only 2 availabe, we know without
+  * trying that it will fail; so don't start a match past the
+  * required minimum number from the far end */
+  e = HOP3c(strend, -((SSize_t)ln), s);
+
+  if (reginfo->intuit && e < s) {
+   e = s;   /* Due to minlen logic of intuit() */
+  }
+
+  c1 = *pat_string;
+  c2 = fold_array[c1];
+  if (c1 == c2) { /* If char and fold are the same */
+   REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1);
+  }
+  else {
+   REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1 || *(U8*)s == c2);
+  }
+  break;
+
+ do_exactf_utf8:
+ {
+  unsigned expansion;
+
+  /* If one of the operands is in utf8, we can't use the simpler folding
+  * above, due to the fact that many different characters can have the
+  * same fold, or portion of a fold, or different- length fold */
+  pat_string = STRING(c);
+  ln  = STR_LEN(c); /* length to match in octets/bytes */
+  pat_end = pat_string + ln;
+  lnc = is_utf8_pat       /* length to match in characters */
+    ? utf8_length((U8 *) pat_string, (U8 *) pat_end)
+    : ln;
+
+  /* We have 'lnc' characters to match in the pattern, but because of
+  * multi-character folding, each character in the target can match
+  * up to 3 characters (Unicode guarantees it will never exceed
+  * this) if it is utf8-encoded; and up to 2 if not (based on the
+  * fact that the Latin 1 folds are already determined, and the
+  * only multi-char fold in that range is the sharp-s folding to
+  * 'ss'.  Thus, a pattern character can match as little as 1/3 of a
+  * string character.  Adjust lnc accordingly, rounding up, so that
+  * if we need to match at least 4+1/3 chars, that really is 5. */
+  expansion = (utf8_target) ? UTF8_MAX_FOLD_CHAR_EXPAND : 2;
+  lnc = (lnc + expansion - 1) / expansion;
+
+  /* As in the non-UTF8 case, if we have to match 3 characters, and
+  * only 2 are left, it's guaranteed to fail, so don't start a
+  * match that would require us to go beyond the end of the string
+  */
+  e = HOP3c(strend, -((SSize_t)lnc), s);
+
+  if (reginfo->intuit && e < s) {
+   e = s;   /* Due to minlen logic of intuit() */
+  }
+
+  /* XXX Note that we could recalculate e to stop the loop earlier,
+  * as the worst case expansion above will rarely be met, and as we
+  * go along we would usually find that e moves further to the left.
+  * This would happen only after we reached the point in the loop
+  * where if there were no expansion we should fail.  Unclear if
+  * worth the expense */
+
+  while (s <= e) {
+   char *my_strend= (char *)strend;
+   if (foldEQ_utf8_flags(s, &my_strend, 0,  utf8_target,
+    pat_string, NULL, ln, is_utf8_pat, utf8_fold_flags)
+    && (reginfo->intuit || regtry(reginfo, &s)) )
+   {
+    goto got_it;
+   }
+   s += (utf8_target) ? UTF8SKIP(s) : 1;
+  }
+  break;
+ }
+
+ case BOUNDL:
+  _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+  if (FLAGS(c) != TRADITIONAL_BOUND) {
+   if (! IN_UTF8_CTYPE_LOCALE) {
+    Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
+            B_ON_NON_UTF8_LOCALE_IS_WRONG);
+   }
+   goto do_boundu;
+  }
+
+  FBC_BOUND(isWORDCHAR_LC, isWORDCHAR_LC_uvchr, isWORDCHAR_LC_utf8);
+  break;
+
+ case NBOUNDL:
+  _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+  if (FLAGS(c) != TRADITIONAL_BOUND) {
+   if (! IN_UTF8_CTYPE_LOCALE) {
+    Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
+            B_ON_NON_UTF8_LOCALE_IS_WRONG);
+   }
+   goto do_nboundu;
+  }
+
+  FBC_NBOUND(isWORDCHAR_LC, isWORDCHAR_LC_uvchr, isWORDCHAR_LC_utf8);
+  break;
+
+ case BOUND: /* regcomp.c makes sure that this only has the traditional \b
+    meaning */
+  assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+  FBC_BOUND(isWORDCHAR, isWORDCHAR_uni, isWORDCHAR_utf8);
+  break;
+
+ case BOUNDA: /* regcomp.c makes sure that this only has the traditional \b
+    meaning */
+  assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+  FBC_BOUND_A(isWORDCHAR_A);
+  break;
+
+ case NBOUND: /* regcomp.c makes sure that this only has the traditional \b
+    meaning */
+  assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+  FBC_NBOUND(isWORDCHAR, isWORDCHAR_uni, isWORDCHAR_utf8);
+  break;
+
+ case NBOUNDA: /* regcomp.c makes sure that this only has the traditional \b
+    meaning */
+  assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+  FBC_NBOUND_A(isWORDCHAR_A);
+  break;
+
+ case NBOUNDU:
+  if ((bound_type) FLAGS(c) == TRADITIONAL_BOUND) {
+   FBC_NBOUND(isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8);
+   break;
+  }
+
+ do_nboundu:
+
+  to_complement = 1;
+  /* FALLTHROUGH */
+
+ case BOUNDU:
+ do_boundu:
+  switch((bound_type) FLAGS(c)) {
+   case TRADITIONAL_BOUND:
+    FBC_BOUND(isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8);
+    break;
+   case GCB_BOUND:
+    if (s == reginfo->strbeg) { /* GCB always matches at begin and
+           end */
+     if (to_complement ^ cBOOL(reginfo->intuit
+             || regtry(reginfo, &s)))
+     {
+      goto got_it;
+     }
+     s += (utf8_target) ? UTF8SKIP(s) : 1;
+    }
+
+    if (utf8_target) {
+     GCB_enum before = getGCB_VAL_UTF8(
+           reghop3((U8*)s, -1,
+             (U8*)(reginfo->strbeg)),
+           (U8*) reginfo->strend);
+     while (s < strend) {
+      GCB_enum after = getGCB_VAL_UTF8((U8*) s,
+              (U8*) reginfo->strend);
+      if (to_complement ^ isGCB(before, after)) {
+       if (reginfo->intuit || regtry(reginfo, &s)) {
+        goto got_it;
+       }
+       before = after;
+      }
+      s += UTF8SKIP(s);
+     }
+    }
+    else {  /* Not utf8.  Everything is a GCB except between CR and
+      LF */
+     while (s < strend) {
+      if (to_complement ^ (UCHARAT(s - 1) != '\r'
+           || UCHARAT(s) != '\n'))
+      {
+       if (reginfo->intuit || regtry(reginfo, &s)) {
+        goto got_it;
+       }
+       s++;
+      }
+     }
+    }
+
+    if (to_complement ^ cBOOL(reginfo->intuit || regtry(reginfo, &s))) {
+     goto got_it;
+    }
+    break;
+
+   case SB_BOUND:
+    if (s == reginfo->strbeg) { /* SB always matches at beginning */
+     if (to_complement
+        ^ cBOOL(reginfo->intuit || regtry(reginfo, &s)))
+     {
+      goto got_it;
+     }
+
+     /* Didn't match.  Go try at the next position */
+     s += (utf8_target) ? UTF8SKIP(s) : 1;
+    }
+
+    if (utf8_target) {
+     SB_enum before = getSB_VAL_UTF8(reghop3((U8*)s,
+              -1,
+              (U8*)(reginfo->strbeg)),
+             (U8*) reginfo->strend);
+     while (s < strend) {
+      SB_enum after = getSB_VAL_UTF8((U8*) s,
+              (U8*) reginfo->strend);
+      if (to_complement ^ isSB(before,
+            after,
+            (U8*) reginfo->strbeg,
+            (U8*) s,
+            (U8*) reginfo->strend,
+            utf8_target))
+      {
+       if (reginfo->intuit || regtry(reginfo, &s)) {
+        goto got_it;
+       }
+       before = after;
+      }
+      s += UTF8SKIP(s);
+     }
+    }
+    else {  /* Not utf8. */
+     SB_enum before = getSB_VAL_CP((U8) *(s -1));
+     while (s < strend) {
+      SB_enum after = getSB_VAL_CP((U8) *s);
+      if (to_complement ^ isSB(before,
+            after,
+            (U8*) reginfo->strbeg,
+            (U8*) s,
+            (U8*) reginfo->strend,
+            utf8_target))
+      {
+       if (reginfo->intuit || regtry(reginfo, &s)) {
+        goto got_it;
+       }
+       before = after;
+      }
+      s++;
+     }
+    }
+
+    /* Here are at the final position in the target string.  The SB
+    * value is always true here, so matches, depending on other
+    * constraints */
+    if (to_complement ^ cBOOL(reginfo->intuit
+             || regtry(reginfo, &s)))
+    {
+     goto got_it;
+    }
+
+    break;
+
+   case WB_BOUND:
+    if (s == reginfo->strbeg) {
+     if (to_complement ^ cBOOL(reginfo->intuit
+           || regtry(reginfo, &s)))
+     {
+      goto got_it;
+     }
+     s += (utf8_target) ? UTF8SKIP(s) : 1;
+    }
+
+    if (utf8_target) {
+     /* We are at a boundary between char_sub_0 and char_sub_1.
+     * We also keep track of the value for char_sub_-1 as we
+     * loop through the line.   Context may be needed to make a
+     * determination, and if so, this can save having to
+     * recalculate it */
+     WB_enum previous = WB_UNKNOWN;
+     WB_enum before = getWB_VAL_UTF8(
+           reghop3((U8*)s,
+             -1,
+             (U8*)(reginfo->strbeg)),
+           (U8*) reginfo->strend);
+     while (s < strend) {
+      WB_enum after = getWB_VAL_UTF8((U8*) s,
+              (U8*) reginfo->strend);
+      if (to_complement ^ isWB(previous,
+            before,
+            after,
+            (U8*) reginfo->strbeg,
+            (U8*) s,
+            (U8*) reginfo->strend,
+            utf8_target))
+      {
+       if (reginfo->intuit || regtry(reginfo, &s)) {
+        goto got_it;
+       }
+       previous = before;
+       before = after;
+      }
+      s += UTF8SKIP(s);
+     }
+    }
+    else {  /* Not utf8. */
+     WB_enum previous = WB_UNKNOWN;
+     WB_enum before = getWB_VAL_CP((U8) *(s -1));
+     while (s < strend) {
+      WB_enum after = getWB_VAL_CP((U8) *s);
+      if (to_complement ^ isWB(previous,
+            before,
+            after,
+            (U8*) reginfo->strbeg,
+            (U8*) s,
+            (U8*) reginfo->strend,
+            utf8_target))
+      {
+       if (reginfo->intuit || regtry(reginfo, &s)) {
+        goto got_it;
+       }
+       previous = before;
+       before = after;
+      }
+      s++;
+     }
+    }
+
+    if (to_complement ^ cBOOL(reginfo->intuit
+          || regtry(reginfo, &s)))
+    {
+     goto got_it;
+    }
+
+    break;
+  }
+  break;
+
+ case LNBREAK:
+  REXEC_FBC_CSCAN(is_LNBREAK_utf8_safe(s, strend),
+      is_LNBREAK_latin1_safe(s, strend)
+  );
+  break;
+
+ /* The argument to all the POSIX node types is the class number to pass to
+ * _generic_isCC() to build a mask for searching in PL_charclass[] */
+
+ case NPOSIXL:
+  to_complement = 1;
+  /* FALLTHROUGH */
+
+ case POSIXL:
+  _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+  REXEC_FBC_CSCAN(to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(c), (U8 *) s)),
+      to_complement ^ cBOOL(isFOO_lc(FLAGS(c), *s)));
+  break;
+
+ case NPOSIXD:
+  to_complement = 1;
+  /* FALLTHROUGH */
+
+ case POSIXD:
+  if (utf8_target) {
+   goto posix_utf8;
+  }
+  goto posixa;
+
+ case NPOSIXA:
+  if (utf8_target) {
+   /* The complement of something that matches only ASCII matches all
+   * non-ASCII, plus everything in ASCII that isn't in the class. */
+   REXEC_FBC_UTF8_CLASS_SCAN(! isASCII_utf8(s)
+         || ! _generic_isCC_A(*s, FLAGS(c)));
+   break;
+  }
+
+  to_complement = 1;
+  /* FALLTHROUGH */
+
+ case POSIXA:
+ posixa:
+  /* Don't need to worry about utf8, as it can match only a single
+  * byte invariant character. */
+  REXEC_FBC_CLASS_SCAN(
+      to_complement ^ cBOOL(_generic_isCC_A(*s, FLAGS(c))));
+  break;
+
+ case NPOSIXU:
+  to_complement = 1;
+  /* FALLTHROUGH */
+
+ case POSIXU:
+  if (! utf8_target) {
+   REXEC_FBC_CLASS_SCAN(to_complement ^ cBOOL(_generic_isCC(*s,
+                 FLAGS(c))));
+  }
+  else {
+
+  posix_utf8:
+   classnum = (_char_class_number) FLAGS(c);
+   if (classnum < _FIRST_NON_SWASH_CC) {
+    while (s < strend) {
+
+     /* We avoid loading in the swash as long as possible, but
+     * should we have to, we jump to a separate loop.  This
+     * extra 'if' statement is what keeps this code from being
+     * just a call to REXEC_FBC_UTF8_CLASS_SCAN() */
+     if (UTF8_IS_ABOVE_LATIN1(*s)) {
+      goto found_above_latin1;
+     }
+     if ((UTF8_IS_INVARIANT(*s)
+      && to_complement ^ cBOOL(_generic_isCC((U8) *s,
+                classnum)))
+      || (UTF8_IS_DOWNGRADEABLE_START(*s)
+       && to_complement ^ cBOOL(
+        _generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(*s,
+                 *(s + 1)),
+           classnum))))
+     {
+      if (tmp && (reginfo->intuit || regtry(reginfo, &s)))
+       goto got_it;
+      else {
+       tmp = doevery;
+      }
+     }
+     else {
+      tmp = 1;
+     }
+     s += UTF8SKIP(s);
+    }
+   }
+   else switch (classnum) {    /* These classes are implemented as
+          macros */
+    case _CC_ENUM_SPACE:
+     REXEC_FBC_UTF8_CLASS_SCAN(
+          to_complement ^ cBOOL(isSPACE_utf8(s)));
+     break;
+
+    case _CC_ENUM_BLANK:
+     REXEC_FBC_UTF8_CLASS_SCAN(
+          to_complement ^ cBOOL(isBLANK_utf8(s)));
+     break;
+
+    case _CC_ENUM_XDIGIT:
+     REXEC_FBC_UTF8_CLASS_SCAN(
+         to_complement ^ cBOOL(isXDIGIT_utf8(s)));
+     break;
+
+    case _CC_ENUM_VERTSPACE:
+     REXEC_FBC_UTF8_CLASS_SCAN(
+         to_complement ^ cBOOL(isVERTWS_utf8(s)));
+     break;
+
+    case _CC_ENUM_CNTRL:
+     REXEC_FBC_UTF8_CLASS_SCAN(
+          to_complement ^ cBOOL(isCNTRL_utf8(s)));
+     break;
+
+    default:
+     Perl_croak(aTHX_ "panic: find_byclass() node %d='%s' has an unexpected character class '%d'", OP(c), PL_reg_name[OP(c)], classnum);
+     NOT_REACHED; /* NOTREACHED */
+   }
+  }
+  break;
+
+ found_above_latin1:   /* Here we have to load a swash to get the result
+       for the current code point */
+  if (! PL_utf8_swash_ptrs[classnum]) {
+   U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+   PL_utf8_swash_ptrs[classnum] =
+     _core_swash_init("utf8",
+         "",
+         &PL_sv_undef, 1, 0,
+         PL_XPosix_ptrs[classnum], &flags);
+  }
+
+  /* This is a copy of the loop above for swash classes, though using the
+  * FBC macro instead of being expanded out.  Since we've loaded the
+  * swash, we don't have to check for that each time through the loop */
+  REXEC_FBC_UTF8_CLASS_SCAN(
+    to_complement ^ cBOOL(_generic_utf8(
+         classnum,
+         s,
+         swash_fetch(PL_utf8_swash_ptrs[classnum],
+            (U8 *) s, TRUE))));
+  break;
+
+ case AHOCORASICKC:
+ case AHOCORASICK:
+  {
+   DECL_TRIE_TYPE(c);
+   /* what trie are we using right now */
+   reg_ac_data *aho = (reg_ac_data*)progi->data->data[ ARG( c ) ];
+   reg_trie_data *trie = (reg_trie_data*)progi->data->data[ aho->trie ];
+   HV *widecharmap = MUTABLE_HV(progi->data->data[ aho->trie + 1 ]);
+
+   const char *last_start = strend - trie->minlen;
+#ifdef DEBUGGING
+   const char *real_start = s;
+#endif
+   STRLEN maxlen = trie->maxlen;
+   SV *sv_points;
+   U8 **points; /* map of where we were in the input string
+       when reading a given char. For ASCII this
+       is unnecessary overhead as the relationship
+       is always 1:1, but for Unicode, especially
+       case folded Unicode this is not true. */
+   U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+   U8 *bitmap=NULL;
+
+
+   GET_RE_DEBUG_FLAGS_DECL;
+
+   /* We can't just allocate points here. We need to wrap it in
+   * an SV so it gets freed properly if there is a croak while
+   * running the match */
+   ENTER;
+   SAVETMPS;
+   sv_points=newSV(maxlen * sizeof(U8 *));
+   SvCUR_set(sv_points,
+    maxlen * sizeof(U8 *));
+   SvPOK_on(sv_points);
+   sv_2mortal(sv_points);
+   points=(U8**)SvPV_nolen(sv_points );
+   if ( trie_type != trie_utf8_fold
+    && (trie->bitmap || OP(c)==AHOCORASICKC) )
+   {
+    if (trie->bitmap)
+     bitmap=(U8*)trie->bitmap;
+    else
+     bitmap=(U8*)ANYOF_BITMAP(c);
+   }
+   /* this is the Aho-Corasick algorithm modified a touch
+   to include special handling for long "unknown char" sequences.
+   The basic idea being that we use AC as long as we are dealing
+   with a possible matching char, when we encounter an unknown char
+   (and we have not encountered an accepting state) we scan forward
+   until we find a legal starting char.
+   AC matching is basically that of trie matching, except that when
+   we encounter a failing transition, we fall back to the current
+   states "fail state", and try the current char again, a process
+   we repeat until we reach the root state, state 1, or a legal
+   transition. If we fail on the root state then we can either
+   terminate if we have reached an accepting state previously, or
+   restart the entire process from the beginning if we have not.
+
+   */
+   while (s <= last_start) {
+    const U32 uniflags = UTF8_ALLOW_DEFAULT;
+    U8 *uc = (U8*)s;
+    U16 charid = 0;
+    U32 base = 1;
+    U32 state = 1;
+    UV uvc = 0;
+    STRLEN len = 0;
+    STRLEN foldlen = 0;
+    U8 *uscan = (U8*)NULL;
+    U8 *leftmost = NULL;
+#ifdef DEBUGGING
+    U32 accepted_word= 0;
+#endif
+    U32 pointpos = 0;
+
+    while ( state && uc <= (U8*)strend ) {
+     int failed=0;
+     U32 word = aho->states[ state ].wordnum;
+
+     if( state==1 ) {
+      if ( bitmap ) {
+       DEBUG_TRIE_EXECUTE_r(
+        if ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+         dump_exec_pos( (char *)uc, c, strend, real_start,
+          (char *)uc, utf8_target );
+         PerlIO_printf( Perl_debug_log,
+          " Scanning for legal start char...\n");
+        }
+       );
+       if (utf8_target) {
+        while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+         uc += UTF8SKIP(uc);
+        }
+       } else {
+        while ( uc <= (U8*)last_start  && !BITMAP_TEST(bitmap,*uc) ) {
+         uc++;
+        }
+       }
+       s= (char *)uc;
+      }
+      if (uc >(U8*)last_start) break;
+     }
+
+     if ( word ) {
+      U8 *lpos= points[ (pointpos - trie->wordinfo[word].len) % maxlen ];
+      if (!leftmost || lpos < leftmost) {
+       DEBUG_r(accepted_word=word);
+       leftmost= lpos;
+      }
+      if (base==0) break;
+
+     }
+     points[pointpos++ % maxlen]= uc;
+     if (foldlen || uc < (U8*)strend) {
+      REXEC_TRIE_READ_CHAR(trie_type, trie,
+          widecharmap, uc,
+          uscan, len, uvc, charid, foldlen,
+          foldbuf, uniflags);
+      DEBUG_TRIE_EXECUTE_r({
+       dump_exec_pos( (char *)uc, c, strend,
+          real_start, s, utf8_target);
+       PerlIO_printf(Perl_debug_log,
+        " Charid:%3u CP:%4"UVxf" ",
+        charid, uvc);
+      });
+     }
+     else {
+      len = 0;
+      charid = 0;
+     }
+
+
+     do {
+#ifdef DEBUGGING
+      word = aho->states[ state ].wordnum;
+#endif
+      base = aho->states[ state ].trans.base;
+
+      DEBUG_TRIE_EXECUTE_r({
+       if (failed)
+        dump_exec_pos( (char *)uc, c, strend, real_start,
+         s,   utf8_target );
+       PerlIO_printf( Perl_debug_log,
+        "%sState: %4"UVxf", word=%"UVxf,
+        failed ? " Fail transition to " : "",
+        (UV)state, (UV)word);
+      });
+      if ( base ) {
+       U32 tmp;
+       I32 offset;
+       if (charid &&
+        ( ((offset = base + charid
+         - 1 - trie->uniquecharcount)) >= 0)
+        && ((U32)offset < trie->lasttrans)
+        && trie->trans[offset].check == state
+        && (tmp=trie->trans[offset].next))
+       {
+        DEBUG_TRIE_EXECUTE_r(
+         PerlIO_printf( Perl_debug_log," - legal\n"));
+        state = tmp;
+        break;
+       }
+       else {
+        DEBUG_TRIE_EXECUTE_r(
+         PerlIO_printf( Perl_debug_log," - fail\n"));
+        failed = 1;
+        state = aho->fail[state];
+       }
+      }
+      else {
+       /* we must be accepting here */
+       DEBUG_TRIE_EXECUTE_r(
+         PerlIO_printf( Perl_debug_log," - accepting\n"));
+       failed = 1;
+       break;
+      }
+     } while(state);
+     uc += len;
+     if (failed) {
+      if (leftmost)
+       break;
+      if (!state) state = 1;
+     }
+    }
+    if ( aho->states[ state ].wordnum ) {
+     U8 *lpos = points[ (pointpos - trie->wordinfo[aho->states[ state ].wordnum].len) % maxlen ];
+     if (!leftmost || lpos < leftmost) {
+      DEBUG_r(accepted_word=aho->states[ state ].wordnum);
+      leftmost = lpos;
+     }
+    }
+    if (leftmost) {
+     s = (char*)leftmost;
+     DEBUG_TRIE_EXECUTE_r({
+      PerlIO_printf(
+       Perl_debug_log,"Matches word #%"UVxf" at position %"IVdf". Trying full pattern...\n",
+       (UV)accepted_word, (IV)(s - real_start)
+      );
+     });
+     if (reginfo->intuit || regtry(reginfo, &s)) {
+      FREETMPS;
+      LEAVE;
+      goto got_it;
+     }
+     s = HOPc(s,1);
+     DEBUG_TRIE_EXECUTE_r({
+      PerlIO_printf( Perl_debug_log,"Pattern failed. Looking for new start point...\n");
+     });
+    } else {
+     DEBUG_TRIE_EXECUTE_r(
+      PerlIO_printf( Perl_debug_log,"No match.\n"));
+     break;
+    }
+   }
+   FREETMPS;
+   LEAVE;
+  }
+  break;
+ default:
+  Perl_croak(aTHX_ "panic: unknown regstclass %d", (int)OP(c));
+ }
+ return 0;
+  got_it:
+ return s;
+}
+
+/* set RX_SAVED_COPY, RX_SUBBEG etc.
+ * flags have same meanings as with regexec_flags() */
+
+static void
+S_reg_set_capture_string(pTHX_ REGEXP * const rx,
+       char *strbeg,
+       char *strend,
+       SV *sv,
+       U32 flags,
+       bool utf8_target)
+{
+ struct regexp *const prog = ReANY(rx);
+
+ if (flags & REXEC_COPY_STR) {
+#ifdef PERL_ANY_COW
+  if (SvCANCOW(sv)) {
+   if (DEBUG_C_TEST) {
+    PerlIO_printf(Perl_debug_log,
+       "Copy on write: regexp capture, type %d\n",
+       (int) SvTYPE(sv));
+   }
+   /* Create a new COW SV to share the match string and store
+   * in saved_copy, unless the current COW SV in saved_copy
+   * is valid and suitable for our purpose */
+   if ((   prog->saved_copy
+    && SvIsCOW(prog->saved_copy)
+    && SvPOKp(prog->saved_copy)
+    && SvIsCOW(sv)
+    && SvPOKp(sv)
+    && SvPVX(sv) == SvPVX(prog->saved_copy)))
+   {
+    /* just reuse saved_copy SV */
+    if (RXp_MATCH_COPIED(prog)) {
+     Safefree(prog->subbeg);
+     RXp_MATCH_COPIED_off(prog);
+    }
+   }
+   else {
+    /* create new COW SV to share string */
+    RX_MATCH_COPY_FREE(rx);
+    prog->saved_copy = sv_setsv_cow(prog->saved_copy, sv);
+   }
+   prog->subbeg = (char *)SvPVX_const(prog->saved_copy);
+   assert (SvPOKp(prog->saved_copy));
+   prog->sublen  = strend - strbeg;
+   prog->suboffset = 0;
+   prog->subcoffset = 0;
+  } else
+#endif
+  {
+   SSize_t min = 0;
+   SSize_t max = strend - strbeg;
+   SSize_t sublen;
+
+   if (    (flags & REXEC_COPY_SKIP_POST)
+    && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */
+    && !(PL_sawampersand & SAWAMPERSAND_RIGHT)
+   ) { /* don't copy $' part of string */
+    U32 n = 0;
+    max = -1;
+    /* calculate the right-most part of the string covered
+    * by a capture. Due to look-ahead, this may be to
+    * the right of $&, so we have to scan all captures */
+    while (n <= prog->lastparen) {
+     if (prog->offs[n].end > max)
+      max = prog->offs[n].end;
+     n++;
+    }
+    if (max == -1)
+     max = (PL_sawampersand & SAWAMPERSAND_LEFT)
+       ? prog->offs[0].start
+       : 0;
+    assert(max >= 0 && max <= strend - strbeg);
+   }
+
+   if (    (flags & REXEC_COPY_SKIP_PRE)
+    && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */
+    && !(PL_sawampersand & SAWAMPERSAND_LEFT)
+   ) { /* don't copy $` part of string */
+    U32 n = 0;
+    min = max;
+    /* calculate the left-most part of the string covered
+    * by a capture. Due to look-behind, this may be to
+    * the left of $&, so we have to scan all captures */
+    while (min && n <= prog->lastparen) {
+     if (   prog->offs[n].start != -1
+      && prog->offs[n].start < min)
+     {
+      min = prog->offs[n].start;
+     }
+     n++;
+    }
+    if ((PL_sawampersand & SAWAMPERSAND_RIGHT)
+     && min >  prog->offs[0].end
+    )
+     min = prog->offs[0].end;
+
+   }
+
+   assert(min >= 0 && min <= max && min <= strend - strbeg);
+   sublen = max - min;
+
+   if (RX_MATCH_COPIED(rx)) {
+    if (sublen > prog->sublen)
+     prog->subbeg =
+       (char*)saferealloc(prog->subbeg, sublen+1);
+   }
+   else
+    prog->subbeg = (char*)safemalloc(sublen+1);
+   Copy(strbeg + min, prog->subbeg, sublen, char);
+   prog->subbeg[sublen] = '\0';
+   prog->suboffset = min;
+   prog->sublen = sublen;
+   RX_MATCH_COPIED_on(rx);
+  }
+  prog->subcoffset = prog->suboffset;
+  if (prog->suboffset && utf8_target) {
+   /* Convert byte offset to chars.
+   * XXX ideally should only compute this if @-/@+
+   * has been seen, a la PL_sawampersand ??? */
+
+   /* If there's a direct correspondence between the
+   * string which we're matching and the original SV,
+   * then we can use the utf8 len cache associated with
+   * the SV. In particular, it means that under //g,
+   * sv_pos_b2u() will use the previously cached
+   * position to speed up working out the new length of
+   * subcoffset, rather than counting from the start of
+   * the string each time. This stops
+   *   $x = "\x{100}" x 1E6; 1 while $x =~ /(.)/g;
+   * from going quadratic */
+   if (SvPOKp(sv) && SvPVX(sv) == strbeg)
+    prog->subcoffset = sv_pos_b2u_flags(sv, prog->subcoffset,
+            SV_GMAGIC|SV_CONST_RETURN);
+   else
+    prog->subcoffset = utf8_length((U8*)strbeg,
+         (U8*)(strbeg+prog->suboffset));
+  }
+ }
+ else {
+  RX_MATCH_COPY_FREE(rx);
+  prog->subbeg = strbeg;
+  prog->suboffset = 0;
+  prog->subcoffset = 0;
+  prog->sublen = strend - strbeg;
+ }
+}
+
+
+
+
+/*
+ - regexec_flags - match a regexp against a string
+ */
+I32
+Perl_regexec_flags(pTHX_ REGEXP * const rx, char *stringarg, char *strend,
+   char *strbeg, SSize_t minend, SV *sv, void *data, U32 flags)
+/* stringarg: the point in the string at which to begin matching */
+/* strend:    pointer to null at end of string */
+/* strbeg:    real beginning of string */
+/* minend:    end of match must be >= minend bytes after stringarg. */
+/* sv:        SV being matched: only used for utf8 flag, pos() etc; string
+ *            itself is accessed via the pointers above */
+/* data:      May be used for some additional optimizations.
+   Currently unused. */
+/* flags:     For optimizations. See REXEC_* in regexp.h */
+
+{
+ struct regexp *const prog = ReANY(rx);
+ char *s;
+ regnode *c;
+ char *startpos;
+ SSize_t minlen;  /* must match at least this many chars */
+ SSize_t dontbother = 0; /* how many characters not to try at end */
+ const bool utf8_target = cBOOL(DO_UTF8(sv));
+ I32 multiline;
+ RXi_GET_DECL(prog,progi);
+ regmatch_info reginfo_buf;  /* create some info to pass to regtry etc */
+ regmatch_info *const reginfo = &reginfo_buf;
+ regexp_paren_pair *swap = NULL;
+ I32 oldsave;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGEXEC_FLAGS;
+ PERL_UNUSED_ARG(data);
+
+ /* Be paranoid... */
+ if (prog == NULL) {
+  Perl_croak(aTHX_ "NULL regexp parameter");
+ }
+
+ DEBUG_EXECUTE_r(
+  debug_start_match(rx, utf8_target, stringarg, strend,
+  "Matching");
+ );
+
+ startpos = stringarg;
+
+ if (prog->intflags & PREGf_GPOS_SEEN) {
+  MAGIC *mg;
+
+  /* set reginfo->ganch, the position where \G can match */
+
+  reginfo->ganch =
+   (flags & REXEC_IGNOREPOS)
+   ? stringarg /* use start pos rather than pos() */
+   : ((mg = mg_find_mglob(sv)) && mg->mg_len >= 0)
+   /* Defined pos(): */
+   ? strbeg + MgBYTEPOS(mg, sv, strbeg, strend-strbeg)
+   : strbeg; /* pos() not defined; use start of string */
+
+  DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+   "GPOS ganch set to strbeg[%"IVdf"]\n", (IV)(reginfo->ganch - strbeg)));
+
+  /* in the presence of \G, we may need to start looking earlier in
+  * the string than the suggested start point of stringarg:
+  * if prog->gofs is set, then that's a known, fixed minimum
+  * offset, such as
+  * /..\G/:   gofs = 2
+  * /ab|c\G/: gofs = 1
+  * or if the minimum offset isn't known, then we have to go back
+  * to the start of the string, e.g. /w+\G/
+  */
+
+  if (prog->intflags & PREGf_ANCH_GPOS) {
+   startpos  = reginfo->ganch - prog->gofs;
+   if (startpos <
+    ((flags & REXEC_FAIL_ON_UNDERFLOW) ? stringarg : strbeg))
+   {
+    DEBUG_r(PerlIO_printf(Perl_debug_log,
+      "fail: ganch-gofs before earliest possible start\n"));
+    return 0;
+   }
+  }
+  else if (prog->gofs) {
+   if (startpos - prog->gofs < strbeg)
+    startpos = strbeg;
+   else
+    startpos -= prog->gofs;
+  }
+  else if (prog->intflags & PREGf_GPOS_FLOAT)
+   startpos = strbeg;
+ }
+
+ minlen = prog->minlen;
+ if ((startpos + minlen) > strend || startpos < strbeg) {
+  DEBUG_r(PerlIO_printf(Perl_debug_log,
+     "Regex match can't succeed, so not even tried\n"));
+  return 0;
+ }
+
+ /* at the end of this function, we'll do a LEAVE_SCOPE(oldsave),
+ * which will call destuctors to reset PL_regmatch_state, free higher
+ * PL_regmatch_slabs, and clean up regmatch_info_aux and
+ * regmatch_info_aux_eval */
+
+ oldsave = PL_savestack_ix;
+
+ s = startpos;
+
+ if ((prog->extflags & RXf_USE_INTUIT)
+  && !(flags & REXEC_CHECKED))
+ {
+  s = re_intuit_start(rx, sv, strbeg, startpos, strend,
+         flags, NULL);
+  if (!s)
+   return 0;
+
+  if (prog->extflags & RXf_CHECK_ALL) {
+   /* we can match based purely on the result of INTUIT.
+   * Set up captures etc just for $& and $-[0]
+   * (an intuit-only match wont have $1,$2,..) */
+   assert(!prog->nparens);
+
+   /* s/// doesn't like it if $& is earlier than where we asked it to
+   * start searching (which can happen on something like /.\G/) */
+   if (       (flags & REXEC_FAIL_ON_UNDERFLOW)
+     && (s < stringarg))
+   {
+    /* this should only be possible under \G */
+    assert(prog->intflags & PREGf_GPOS_SEEN);
+    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+     "matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n"));
+    goto phooey;
+   }
+
+   /* match via INTUIT shouldn't have any captures.
+   * Let @-, @+, $^N know */
+   prog->lastparen = prog->lastcloseparen = 0;
+   RX_MATCH_UTF8_set(rx, utf8_target);
+   prog->offs[0].start = s - strbeg;
+   prog->offs[0].end = utf8_target
+    ? (char*)utf8_hop((U8*)s, prog->minlenret) - strbeg
+    : s - strbeg + prog->minlenret;
+   if ( !(flags & REXEC_NOT_FIRST) )
+    S_reg_set_capture_string(aTHX_ rx,
+          strbeg, strend,
+          sv, flags, utf8_target);
+
+   return 1;
+  }
+ }
+
+ multiline = prog->extflags & RXf_PMf_MULTILINE;
+
+ if (strend - s < (minlen+(prog->check_offset_min<0?prog->check_offset_min:0))) {
+  DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+       "String too short [regexec_flags]...\n"));
+  goto phooey;
+ }
+
+ /* Check validity of program. */
+ if (UCHARAT(progi->program) != REG_MAGIC) {
+  Perl_croak(aTHX_ "corrupted regexp program");
+ }
+
+ RX_MATCH_TAINTED_off(rx);
+ RX_MATCH_UTF8_set(rx, utf8_target);
+
+ reginfo->prog = rx;  /* Yes, sorry that this is confusing.  */
+ reginfo->intuit = 0;
+ reginfo->is_utf8_target = cBOOL(utf8_target);
+ reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx));
+ reginfo->warned = FALSE;
+ reginfo->strbeg  = strbeg;
+ reginfo->sv = sv;
+ reginfo->poscache_maxiter = 0; /* not yet started a countdown */
+ reginfo->strend = strend;
+ /* see how far we have to get to not match where we matched before */
+ reginfo->till = stringarg + minend;
+
+ if (prog->extflags & RXf_EVAL_SEEN && SvPADTMP(sv)) {
+  /* SAVEFREESV, not sv_mortalcopy, as this SV must last until after
+  S_cleanup_regmatch_info_aux has executed (registered by
+  SAVEDESTRUCTOR_X below).  S_cleanup_regmatch_info_aux modifies
+  magic belonging to this SV.
+  Not newSVsv, either, as it does not COW.
+  */
+  reginfo->sv = newSV(0);
+  SvSetSV_nosteal(reginfo->sv, sv);
+  SAVEFREESV(reginfo->sv);
+ }
+
+ /* reserve next 2 or 3 slots in PL_regmatch_state:
+ * slot N+0: may currently be in use: skip it
+ * slot N+1: use for regmatch_info_aux struct
+ * slot N+2: use for regmatch_info_aux_eval struct if we have (?{})'s
+ * slot N+3: ready for use by regmatch()
+ */
+
+ {
+  regmatch_state *old_regmatch_state;
+  regmatch_slab  *old_regmatch_slab;
+  int i, max = (prog->extflags & RXf_EVAL_SEEN) ? 2 : 1;
+
+  /* on first ever match, allocate first slab */
+  if (!PL_regmatch_slab) {
+   Newx(PL_regmatch_slab, 1, regmatch_slab);
+   PL_regmatch_slab->prev = NULL;
+   PL_regmatch_slab->next = NULL;
+   PL_regmatch_state = SLAB_FIRST(PL_regmatch_slab);
+  }
+
+  old_regmatch_state = PL_regmatch_state;
+  old_regmatch_slab  = PL_regmatch_slab;
+
+  for (i=0; i <= max; i++) {
+   if (i == 1)
+    reginfo->info_aux = &(PL_regmatch_state->u.info_aux);
+   else if (i ==2)
+    reginfo->info_aux_eval =
+    reginfo->info_aux->info_aux_eval =
+       &(PL_regmatch_state->u.info_aux_eval);
+
+   if (++PL_regmatch_state >  SLAB_LAST(PL_regmatch_slab))
+    PL_regmatch_state = S_push_slab(aTHX);
+  }
+
+  /* note initial PL_regmatch_state position; at end of match we'll
+  * pop back to there and free any higher slabs */
+
+  reginfo->info_aux->old_regmatch_state = old_regmatch_state;
+  reginfo->info_aux->old_regmatch_slab  = old_regmatch_slab;
+  reginfo->info_aux->poscache = NULL;
+
+  SAVEDESTRUCTOR_X(S_cleanup_regmatch_info_aux, reginfo->info_aux);
+
+  if ((prog->extflags & RXf_EVAL_SEEN))
+   S_setup_eval_state(aTHX_ reginfo);
+  else
+   reginfo->info_aux_eval = reginfo->info_aux->info_aux_eval = NULL;
+ }
+
+ /* If there is a "must appear" string, look for it. */
+
+ if (PL_curpm && (PM_GETRE(PL_curpm) == rx)) {
+  /* We have to be careful. If the previous successful match
+  was from this regex we don't want a subsequent partially
+  successful match to clobber the old results.
+  So when we detect this possibility we add a swap buffer
+  to the re, and switch the buffer each match. If we fail,
+  we switch it back; otherwise we leave it swapped.
+  */
+  swap = prog->offs;
+  /* do we need a save destructor here for eval dies? */
+  Newxz(prog->offs, (prog->nparens + 1), regexp_paren_pair);
+  DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+   "rex=0x%"UVxf" saving  offs: orig=0x%"UVxf" new=0x%"UVxf"\n",
+   PTR2UV(prog),
+   PTR2UV(swap),
+   PTR2UV(prog->offs)
+  ));
+ }
+
+ /* Simplest case: anchored match need be tried only once, or with
+ * MBOL, only at the beginning of each line.
+ *
+ * Note that /.*.../ sets PREGf_IMPLICIT|MBOL, while /.*.../s sets
+ * PREGf_IMPLICIT|SBOL. The idea is that with /.*.../s, if it doesn't
+ * match at the start of the string then it won't match anywhere else
+ * either; while with /.*.../, if it doesn't match at the beginning,
+ * the earliest it could match is at the start of the next line */
+
+ if (prog->intflags & (PREGf_ANCH & ~PREGf_ANCH_GPOS)) {
+  char *end;
+
+  if (regtry(reginfo, &s))
+   goto got_it;
+
+  if (!(prog->intflags & PREGf_ANCH_MBOL))
+   goto phooey;
+
+  /* didn't match at start, try at other newline positions */
+
+  if (minlen)
+   dontbother = minlen - 1;
+  end = HOP3c(strend, -dontbother, strbeg) - 1;
+
+  /* skip to next newline */
+
+  while (s <= end) { /* note it could be possible to match at the end of the string */
+   /* NB: newlines are the same in unicode as they are in latin */
+   if (*s++ != '\n')
+    continue;
+   if (prog->check_substr || prog->check_utf8) {
+   /* note that with PREGf_IMPLICIT, intuit can only fail
+   * or return the start position, so it's of limited utility.
+   * Nevertheless, I made the decision that the potential for
+   * quick fail was still worth it - DAPM */
+    s = re_intuit_start(rx, sv, strbeg, s, strend, flags, NULL);
+    if (!s)
+     goto phooey;
+   }
+   if (regtry(reginfo, &s))
+    goto got_it;
+  }
+  goto phooey;
+ } /* end anchored search */
+
+ if (prog->intflags & PREGf_ANCH_GPOS)
+ {
+  /* PREGf_ANCH_GPOS should never be true if PREGf_GPOS_SEEN is not true */
+  assert(prog->intflags & PREGf_GPOS_SEEN);
+  /* For anchored \G, the only position it can match from is
+  * (ganch-gofs); we already set startpos to this above; if intuit
+  * moved us on from there, we can't possibly succeed */
+  assert(startpos == reginfo->ganch - prog->gofs);
+  if (s == startpos && regtry(reginfo, &s))
+   goto got_it;
+  goto phooey;
+ }
+
+ /* Messy cases:  unanchored match. */
+ if ((prog->anchored_substr || prog->anchored_utf8) && prog->intflags & PREGf_SKIP) {
+  /* we have /x+whatever/ */
+  /* it must be a one character string (XXXX Except is_utf8_pat?) */
+  char ch;
+#ifdef DEBUGGING
+  int did_match = 0;
+#endif
+  if (utf8_target) {
+   if (! prog->anchored_utf8) {
+    to_utf8_substr(prog);
+   }
+   ch = SvPVX_const(prog->anchored_utf8)[0];
+   REXEC_FBC_SCAN(
+    if (*s == ch) {
+     DEBUG_EXECUTE_r( did_match = 1 );
+     if (regtry(reginfo, &s)) goto got_it;
+     s += UTF8SKIP(s);
+     while (s < strend && *s == ch)
+      s += UTF8SKIP(s);
+    }
+   );
+
+  }
+  else {
+   if (! prog->anchored_substr) {
+    if (! to_byte_substr(prog)) {
+     NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+    }
+   }
+   ch = SvPVX_const(prog->anchored_substr)[0];
+   REXEC_FBC_SCAN(
+    if (*s == ch) {
+     DEBUG_EXECUTE_r( did_match = 1 );
+     if (regtry(reginfo, &s)) goto got_it;
+     s++;
+     while (s < strend && *s == ch)
+      s++;
+    }
+   );
+  }
+  DEBUG_EXECUTE_r(if (!did_match)
+    PerlIO_printf(Perl_debug_log,
+        "Did not find anchored character...\n")
+   );
+ }
+ else if (prog->anchored_substr != NULL
+   || prog->anchored_utf8 != NULL
+   || ((prog->float_substr != NULL || prog->float_utf8 != NULL)
+    && prog->float_max_offset < strend - s)) {
+  SV *must;
+  SSize_t back_max;
+  SSize_t back_min;
+  char *last;
+  char *last1;  /* Last position checked before */
+#ifdef DEBUGGING
+  int did_match = 0;
+#endif
+  if (prog->anchored_substr || prog->anchored_utf8) {
+   if (utf8_target) {
+    if (! prog->anchored_utf8) {
+     to_utf8_substr(prog);
+    }
+    must = prog->anchored_utf8;
+   }
+   else {
+    if (! prog->anchored_substr) {
+     if (! to_byte_substr(prog)) {
+      NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+     }
+    }
+    must = prog->anchored_substr;
+   }
+   back_max = back_min = prog->anchored_offset;
+  } else {
+   if (utf8_target) {
+    if (! prog->float_utf8) {
+     to_utf8_substr(prog);
+    }
+    must = prog->float_utf8;
+   }
+   else {
+    if (! prog->float_substr) {
+     if (! to_byte_substr(prog)) {
+      NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+     }
+    }
+    must = prog->float_substr;
+   }
+   back_max = prog->float_max_offset;
+   back_min = prog->float_min_offset;
+  }
+
+  if (back_min<0) {
+   last = strend;
+  } else {
+   last = HOP3c(strend, /* Cannot start after this */
+    -(SSize_t)(CHR_SVLEN(must)
+      - (SvTAIL(must) != 0) + back_min), strbeg);
+  }
+  if (s > reginfo->strbeg)
+   last1 = HOPc(s, -1);
+  else
+   last1 = s - 1; /* bogus */
+
+  /* XXXX check_substr already used to find "s", can optimize if
+  check_substr==must. */
+  dontbother = 0;
+  strend = HOPc(strend, -dontbother);
+  while ( (s <= last) &&
+    (s = fbm_instr((unsigned char*)HOP4c(s, back_min, strbeg,  strend),
+        (unsigned char*)strend, must,
+        multiline ? FBMrf_MULTILINE : 0)) ) {
+   DEBUG_EXECUTE_r( did_match = 1 );
+   if (HOPc(s, -back_max) > last1) {
+    last1 = HOPc(s, -back_min);
+    s = HOPc(s, -back_max);
+   }
+   else {
+    char * const t = (last1 >= reginfo->strbeg)
+         ? HOPc(last1, 1) : last1 + 1;
+
+    last1 = HOPc(s, -back_min);
+    s = t;
+   }
+   if (utf8_target) {
+    while (s <= last1) {
+     if (regtry(reginfo, &s))
+      goto got_it;
+     if (s >= last1) {
+      s++; /* to break out of outer loop */
+      break;
+     }
+     s += UTF8SKIP(s);
+    }
+   }
+   else {
+    while (s <= last1) {
+     if (regtry(reginfo, &s))
+      goto got_it;
+     s++;
+    }
+   }
+  }
+  DEBUG_EXECUTE_r(if (!did_match) {
+   RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+    SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+   PerlIO_printf(Perl_debug_log, "Did not find %s substr %s%s...\n",
+       ((must == prog->anchored_substr || must == prog->anchored_utf8)
+       ? "anchored" : "floating"),
+    quoted, RE_SV_TAIL(must));
+  });
+  goto phooey;
+ }
+ else if ( (c = progi->regstclass) ) {
+  if (minlen) {
+   const OPCODE op = OP(progi->regstclass);
+   /* don't bother with what can't match */
+   if (PL_regkind[op] != EXACT && PL_regkind[op] != TRIE)
+    strend = HOPc(strend, -(minlen - 1));
+  }
+  DEBUG_EXECUTE_r({
+   SV * const prop = sv_newmortal();
+   regprop(prog, prop, c, reginfo, NULL);
+   {
+    RE_PV_QUOTED_DECL(quoted,utf8_target,PERL_DEBUG_PAD_ZERO(1),
+     s,strend-s,60);
+    PerlIO_printf(Perl_debug_log,
+     "Matching stclass %.*s against %s (%d bytes)\n",
+     (int)SvCUR(prop), SvPVX_const(prop),
+     quoted, (int)(strend - s));
+   }
+  });
+  if (find_byclass(prog, c, s, strend, reginfo))
+   goto got_it;
+  DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Contradicts stclass... [regexec_flags]\n"));
+ }
+ else {
+  dontbother = 0;
+  if (prog->float_substr != NULL || prog->float_utf8 != NULL) {
+   /* Trim the end. */
+   char *last= NULL;
+   SV* float_real;
+   STRLEN len;
+   const char *little;
+
+   if (utf8_target) {
+    if (! prog->float_utf8) {
+     to_utf8_substr(prog);
+    }
+    float_real = prog->float_utf8;
+   }
+   else {
+    if (! prog->float_substr) {
+     if (! to_byte_substr(prog)) {
+      NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+     }
+    }
+    float_real = prog->float_substr;
+   }
+
+   little = SvPV_const(float_real, len);
+   if (SvTAIL(float_real)) {
+     /* This means that float_real contains an artificial \n on
+     * the end due to the presence of something like this:
+     * /foo$/ where we can match both "foo" and "foo\n" at the
+     * end of the string.  So we have to compare the end of the
+     * string first against the float_real without the \n and
+     * then against the full float_real with the string.  We
+     * have to watch out for cases where the string might be
+     * smaller than the float_real or the float_real without
+     * the \n. */
+     char *checkpos= strend - len;
+     DEBUG_OPTIMISE_r(
+      PerlIO_printf(Perl_debug_log,
+       "%sChecking for float_real.%s\n",
+       PL_colors[4], PL_colors[5]));
+     if (checkpos + 1 < strbeg) {
+      /* can't match, even if we remove the trailing \n
+      * string is too short to match */
+      DEBUG_EXECUTE_r(
+       PerlIO_printf(Perl_debug_log,
+        "%sString shorter than required trailing substring, cannot match.%s\n",
+        PL_colors[4], PL_colors[5]));
+      goto phooey;
+     } else if (memEQ(checkpos + 1, little, len - 1)) {
+      /* can match, the end of the string matches without the
+      * "\n" */
+      last = checkpos + 1;
+     } else if (checkpos < strbeg) {
+      /* cant match, string is too short when the "\n" is
+      * included */
+      DEBUG_EXECUTE_r(
+       PerlIO_printf(Perl_debug_log,
+        "%sString does not contain required trailing substring, cannot match.%s\n",
+        PL_colors[4], PL_colors[5]));
+      goto phooey;
+     } else if (!multiline) {
+      /* non multiline match, so compare with the "\n" at the
+      * end of the string */
+      if (memEQ(checkpos, little, len)) {
+       last= checkpos;
+      } else {
+       DEBUG_EXECUTE_r(
+        PerlIO_printf(Perl_debug_log,
+         "%sString does not contain required trailing substring, cannot match.%s\n",
+         PL_colors[4], PL_colors[5]));
+       goto phooey;
+      }
+     } else {
+      /* multiline match, so we have to search for a place
+      * where the full string is located */
+      goto find_last;
+     }
+   } else {
+    find_last:
+     if (len)
+      last = rninstr(s, strend, little, little + len);
+     else
+      last = strend; /* matching "$" */
+   }
+   if (!last) {
+    /* at one point this block contained a comment which was
+    * probably incorrect, which said that this was a "should not
+    * happen" case.  Even if it was true when it was written I am
+    * pretty sure it is not anymore, so I have removed the comment
+    * and replaced it with this one. Yves */
+    DEBUG_EXECUTE_r(
+     PerlIO_printf(Perl_debug_log,
+      "%sString does not contain required substring, cannot match.%s\n",
+      PL_colors[4], PL_colors[5]
+     ));
+    goto phooey;
+   }
+   dontbother = strend - last + prog->float_min_offset;
+  }
+  if (minlen && (dontbother < minlen))
+   dontbother = minlen - 1;
+  strend -= dontbother;      /* this one's always in bytes! */
+  /* We don't know much -- general case. */
+  if (utf8_target) {
+   for (;;) {
+    if (regtry(reginfo, &s))
+     goto got_it;
+    if (s >= strend)
+     break;
+    s += UTF8SKIP(s);
+   };
+  }
+  else {
+   do {
+    if (regtry(reginfo, &s))
+     goto got_it;
+   } while (s++ < strend);
+  }
+ }
+
+ /* Failure. */
+ goto phooey;
+
+  got_it:
+ /* s/// doesn't like it if $& is earlier than where we asked it to
+ * start searching (which can happen on something like /.\G/) */
+ if (       (flags & REXEC_FAIL_ON_UNDERFLOW)
+   && (prog->offs[0].start < stringarg - strbeg))
+ {
+  /* this should only be possible under \G */
+  assert(prog->intflags & PREGf_GPOS_SEEN);
+  DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+   "matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n"));
+  goto phooey;
+ }
+
+ DEBUG_BUFFERS_r(
+  if (swap)
+   PerlIO_printf(Perl_debug_log,
+    "rex=0x%"UVxf" freeing offs: 0x%"UVxf"\n",
+    PTR2UV(prog),
+    PTR2UV(swap)
+   );
+ );
+ Safefree(swap);
+
+ /* clean up; this will trigger destructors that will free all slabs
+ * above the current one, and cleanup the regmatch_info_aux
+ * and regmatch_info_aux_eval sructs */
+
+ LEAVE_SCOPE(oldsave);
+
+ if (RXp_PAREN_NAMES(prog))
+  (void)hv_iterinit(RXp_PAREN_NAMES(prog));
+
+ /* make sure $`, $&, $', and $digit will work later */
+ if ( !(flags & REXEC_NOT_FIRST) )
+  S_reg_set_capture_string(aTHX_ rx,
+         strbeg, reginfo->strend,
+         sv, flags, utf8_target);
+
+ return 1;
+
+  phooey:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch failed%s\n",
+      PL_colors[4], PL_colors[5]));
+
+ /* clean up; this will trigger destructors that will free all slabs
+ * above the current one, and cleanup the regmatch_info_aux
+ * and regmatch_info_aux_eval sructs */
+
+ LEAVE_SCOPE(oldsave);
+
+ if (swap) {
+  /* we failed :-( roll it back */
+  DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+   "rex=0x%"UVxf" rolling back offs: freeing=0x%"UVxf" restoring=0x%"UVxf"\n",
+   PTR2UV(prog),
+   PTR2UV(prog->offs),
+   PTR2UV(swap)
+  ));
+  Safefree(prog->offs);
+  prog->offs = swap;
+ }
+ return 0;
+}
+
+
+/* Set which rex is pointed to by PL_reg_curpm, handling ref counting.
+ * Do inc before dec, in case old and new rex are the same */
+#define SET_reg_curpm(Re2)                          \
+ if (reginfo->info_aux_eval) {                   \
+  (void)ReREFCNT_inc(Re2);      \
+  ReREFCNT_dec(PM_GETRE(PL_reg_curpm));     \
+  PM_SETRE((PL_reg_curpm), (Re2));     \
+ }
+
+
+/*
+ - regtry - try match at specific point
+ */
+STATIC I32   /* 0 failure, 1 success */
+S_regtry(pTHX_ regmatch_info *reginfo, char **startposp)
+{
+ CHECKPOINT lastcp;
+ REGEXP *const rx = reginfo->prog;
+ regexp *const prog = ReANY(rx);
+ SSize_t result;
+ RXi_GET_DECL(prog,progi);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTRY;
+
+ reginfo->cutpoint=NULL;
+
+ prog->offs[0].start = *startposp - reginfo->strbeg;
+ prog->lastparen = 0;
+ prog->lastcloseparen = 0;
+
+ /* XXXX What this code is doing here?!!!  There should be no need
+ to do this again and again, prog->lastparen should take care of
+ this!  --ilya*/
+
+ /* Tests pat.t#187 and split.t#{13,14} seem to depend on this code.
+ * Actually, the code in regcppop() (which Ilya may be meaning by
+ * prog->lastparen), is not needed at all by the test suite
+ * (op/regexp, op/pat, op/split), but that code is needed otherwise
+ * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
+ * Meanwhile, this code *is* needed for the
+ * above-mentioned test suite tests to succeed.  The common theme
+ * on those tests seems to be returning null fields from matches.
+ * --jhi updated by dapm */
+#if 1
+ if (prog->nparens) {
+  regexp_paren_pair *pp = prog->offs;
+  I32 i;
+  for (i = prog->nparens; i > (I32)prog->lastparen; i--) {
+   ++pp;
+   pp->start = -1;
+   pp->end = -1;
+  }
+ }
+#endif
+ REGCP_SET(lastcp);
+ result = regmatch(reginfo, *startposp, progi->program + 1);
+ if (result != -1) {
+  prog->offs[0].end = result;
+  return 1;
+ }
+ if (reginfo->cutpoint)
+  *startposp= reginfo->cutpoint;
+ REGCP_UNWIND(lastcp);
+ return 0;
+}
+
+
+#define sayYES goto yes
+#define sayNO goto no
+#define sayNO_SILENT goto no_silent
+
+/* we dont use STMT_START/END here because it leads to
+   "unreachable code" warnings, which are bogus, but distracting. */
+#define CACHEsayNO \
+ if (ST.cache_mask) \
+ reginfo->info_aux->poscache[ST.cache_offset] |= ST.cache_mask; \
+ sayNO
+
+/* this is used to determine how far from the left messages like
+   'failed...' are printed. It should be set such that messages
+   are inline with the regop output that created them.
+*/
+#define REPORT_CODE_OFF 32
+
+
+#define CHRTEST_UNINIT -1001 /* c1/c2 haven't been calculated yet */
+#define CHRTEST_VOID   -1000 /* the c1/c2 "next char" test should be skipped */
+#define CHRTEST_NOT_A_CP_1 -999
+#define CHRTEST_NOT_A_CP_2 -998
+
+/* grab a new slab and return the first slot in it */
+
+STATIC regmatch_state *
+S_push_slab(pTHX)
+{
+#if PERL_VERSION < 9 && !defined(PERL_CORE)
+ dMY_CXT;
+#endif
+ regmatch_slab *s = PL_regmatch_slab->next;
+ if (!s) {
+  Newx(s, 1, regmatch_slab);
+  s->prev = PL_regmatch_slab;
+  s->next = NULL;
+  PL_regmatch_slab->next = s;
+ }
+ PL_regmatch_slab = s;
+ return SLAB_FIRST(s);
+}
+
+
+/* push a new state then goto it */
+
+#define PUSH_STATE_GOTO(state, node, input) \
+ pushinput = input; \
+ scan = node; \
+ st->resume_state = state; \
+ goto push_state;
+
+/* push a new state with success backtracking, then goto it */
+
+#define PUSH_YES_STATE_GOTO(state, node, input) \
+ pushinput = input; \
+ scan = node; \
+ st->resume_state = state; \
+ goto push_yes_state;
+
+
+
+
+/*
+
+regmatch() - main matching routine
+
+This is basically one big switch statement in a loop. We execute an op,
+set 'next' to point the next op, and continue. If we come to a point which
+we may need to backtrack to on failure such as (A|B|C), we push a
+backtrack state onto the backtrack stack. On failure, we pop the top
+state, and re-enter the loop at the state indicated. If there are no more
+states to pop, we return failure.
+
+Sometimes we also need to backtrack on success; for example /A+/, where
+after successfully matching one A, we need to go back and try to
+match another one; similarly for lookahead assertions: if the assertion
+completes successfully, we backtrack to the state just before the assertion
+and then carry on.  In these cases, the pushed state is marked as
+'backtrack on success too'. This marking is in fact done by a chain of
+pointers, each pointing to the previous 'yes' state. On success, we pop to
+the nearest yes state, discarding any intermediate failure-only states.
+Sometimes a yes state is pushed just to force some cleanup code to be
+called at the end of a successful match or submatch; e.g. (??{$re}) uses
+it to free the inner regex.
+
+Note that failure backtracking rewinds the cursor position, while
+success backtracking leaves it alone.
+
+A pattern is complete when the END op is executed, while a subpattern
+such as (?=foo) is complete when the SUCCESS op is executed. Both of these
+ops trigger the "pop to last yes state if any, otherwise return true"
+behaviour.
+
+A common convention in this function is to use A and B to refer to the two
+subpatterns (or to the first nodes thereof) in patterns like /A*B/: so A is
+the subpattern to be matched possibly multiple times, while B is the entire
+rest of the pattern. Variable and state names reflect this convention.
+
+The states in the main switch are the union of ops and failure/success of
+substates associated with with that op.  For example, IFMATCH is the op
+that does lookahead assertions /(?=A)B/ and so the IFMATCH state means
+'execute IFMATCH'; while IFMATCH_A is a state saying that we have just
+successfully matched A and IFMATCH_A_fail is a state saying that we have
+just failed to match A. Resume states always come in pairs. The backtrack
+state we push is marked as 'IFMATCH_A', but when that is popped, we resume
+at IFMATCH_A or IFMATCH_A_fail, depending on whether we are backtracking
+on success or failure.
+
+The struct that holds a backtracking state is actually a big union, with
+one variant for each major type of op. The variable st points to the
+top-most backtrack struct. To make the code clearer, within each
+block of code we #define ST to alias the relevant union.
+
+Here's a concrete example of a (vastly oversimplified) IFMATCH
+implementation:
+
+ switch (state) {
+ ....
+
+#define ST st->u.ifmatch
+
+ case IFMATCH: // we are executing the IFMATCH op, (?=A)B
+  ST.foo = ...; // some state we wish to save
+  ...
+  // push a yes backtrack state with a resume value of
+  // IFMATCH_A/IFMATCH_A_fail, then continue execution at the
+  // first node of A:
+  PUSH_YES_STATE_GOTO(IFMATCH_A, A, newinput);
+  // NOTREACHED
+
+ case IFMATCH_A: // we have successfully executed A; now continue with B
+  next = B;
+  bar = ST.foo; // do something with the preserved value
+  break;
+
+ case IFMATCH_A_fail: // A failed, so the assertion failed
+  ...;   // do some housekeeping, then ...
+  sayNO; // propagate the failure
+
+#undef ST
+
+ ...
+ }
+
+For any old-timers reading this who are familiar with the old recursive
+approach, the code above is equivalent to:
+
+ case IFMATCH: // we are executing the IFMATCH op, (?=A)B
+ {
+  int foo = ...
+  ...
+  if (regmatch(A)) {
+   next = B;
+   bar = foo;
+   break;
+  }
+  ...;   // do some housekeeping, then ...
+  sayNO; // propagate the failure
+ }
+
+The topmost backtrack state, pointed to by st, is usually free. If you
+want to claim it, populate any ST.foo fields in it with values you wish to
+save, then do one of
+
+  PUSH_STATE_GOTO(resume_state, node, newinput);
+  PUSH_YES_STATE_GOTO(resume_state, node, newinput);
+
+which sets that backtrack state's resume value to 'resume_state', pushes a
+new free entry to the top of the backtrack stack, then goes to 'node'.
+On backtracking, the free slot is popped, and the saved state becomes the
+new free state. An ST.foo field in this new top state can be temporarily
+accessed to retrieve values, but once the main loop is re-entered, it
+becomes available for reuse.
+
+Note that the depth of the backtrack stack constantly increases during the
+left-to-right execution of the pattern, rather than going up and down with
+the pattern nesting. For example the stack is at its maximum at Z at the
+end of the pattern, rather than at X in the following:
+
+ /(((X)+)+)+....(Y)+....Z/
+
+The only exceptions to this are lookahead/behind assertions and the cut,
+(?>A), which pop all the backtrack states associated with A before
+continuing.
+
+Backtrack state structs are allocated in slabs of about 4K in size.
+PL_regmatch_state and st always point to the currently active state,
+and PL_regmatch_slab points to the slab currently containing
+PL_regmatch_state.  The first time regmatch() is called, the first slab is
+allocated, and is never freed until interpreter destruction. When the slab
+is full, a new one is allocated and chained to the end. At exit from
+regmatch(), slabs allocated since entry are freed.
+
+*/
+
+
+#define DEBUG_STATE_pp(pp)        \
+ DEBUG_STATE_r({         \
+  DUMP_EXEC_POS(locinput, scan, utf8_target);         \
+  PerlIO_printf(Perl_debug_log,       \
+   "    %*s"pp" %s%s%s%s%s\n",       \
+   depth*2, "",        \
+   PL_reg_name[st->resume_state],                  \
+   ((st==yes_state||st==mark_state) ? "[" : ""),   \
+   ((st==yes_state) ? "Y" : ""),                   \
+   ((st==mark_state) ? "M" : ""),                  \
+   ((st==yes_state||st==mark_state) ? "]" : "")    \
+  );                                                  \
+ });
+
+
+#define REG_NODE_NUM(x) ((x) ? (int)((x)-prog) : -1)
+
+#ifdef DEBUGGING
+
+STATIC void
+S_debug_start_match(pTHX_ const REGEXP *prog, const bool utf8_target,
+ const char *start, const char *end, const char *blurb)
+{
+ const bool utf8_pat = RX_UTF8(prog) ? 1 : 0;
+
+ PERL_ARGS_ASSERT_DEBUG_START_MATCH;
+
+ if (!PL_colorset)
+   reginitcolors();
+ {
+  RE_PV_QUOTED_DECL(s0, utf8_pat, PERL_DEBUG_PAD_ZERO(0),
+   RX_PRECOMP_const(prog), RX_PRELEN(prog), 60);
+
+  RE_PV_QUOTED_DECL(s1, utf8_target, PERL_DEBUG_PAD_ZERO(1),
+   start, end - start, 60);
+
+  PerlIO_printf(Perl_debug_log,
+   "%s%s REx%s %s against %s\n",
+     PL_colors[4], blurb, PL_colors[5], s0, s1);
+
+  if (utf8_target||utf8_pat)
+   PerlIO_printf(Perl_debug_log, "UTF-8 %s%s%s...\n",
+    utf8_pat ? "pattern" : "",
+    utf8_pat && utf8_target ? " and " : "",
+    utf8_target ? "string" : ""
+   );
+ }
+}
+
+STATIC void
+S_dump_exec_pos(pTHX_ const char *locinput,
+     const regnode *scan,
+     const char *loc_regeol,
+     const char *loc_bostr,
+     const char *loc_reg_starttry,
+     const bool utf8_target)
+{
+ const int docolor = *PL_colors[0] || *PL_colors[2] || *PL_colors[4];
+ const int taill = (docolor ? 10 : 7); /* 3 chars for "> <" */
+ int l = (loc_regeol - locinput) > taill ? taill : (loc_regeol - locinput);
+ /* The part of the string before starttry has one color
+ (pref0_len chars), between starttry and current
+ position another one (pref_len - pref0_len chars),
+ after the current position the third one.
+ We assume that pref0_len <= pref_len, otherwise we
+ decrease pref0_len.  */
+ int pref_len = (locinput - loc_bostr) > (5 + taill) - l
+  ? (5 + taill) - l : locinput - loc_bostr;
+ int pref0_len;
+
+ PERL_ARGS_ASSERT_DUMP_EXEC_POS;
+
+ while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput - pref_len)))
+  pref_len++;
+ pref0_len = pref_len  - (locinput - loc_reg_starttry);
+ if (l + pref_len < (5 + taill) && l < loc_regeol - locinput)
+  l = ( loc_regeol - locinput > (5 + taill) - pref_len
+   ? (5 + taill) - pref_len : loc_regeol - locinput);
+ while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput + l)))
+  l--;
+ if (pref0_len < 0)
+  pref0_len = 0;
+ if (pref0_len > pref_len)
+  pref0_len = pref_len;
+ {
+  const int is_uni = utf8_target ? 1 : 0;
+
+  RE_PV_COLOR_DECL(s0,len0,is_uni,PERL_DEBUG_PAD(0),
+   (locinput - pref_len),pref0_len, 60, 4, 5);
+
+  RE_PV_COLOR_DECL(s1,len1,is_uni,PERL_DEBUG_PAD(1),
+     (locinput - pref_len + pref0_len),
+     pref_len - pref0_len, 60, 2, 3);
+
+  RE_PV_COLOR_DECL(s2,len2,is_uni,PERL_DEBUG_PAD(2),
+     locinput, loc_regeol - locinput, 10, 0, 1);
+
+  const STRLEN tlen=len0+len1+len2;
+  PerlIO_printf(Perl_debug_log,
+     "%4"IVdf" <%.*s%.*s%s%.*s>%*s|",
+     (IV)(locinput - loc_bostr),
+     len0, s0,
+     len1, s1,
+     (docolor ? "" : "> <"),
+     len2, s2,
+     (int)(tlen > 19 ? 0 :  19 - tlen),
+     "");
+ }
+}
+
+#endif
+
+/* reg_check_named_buff_matched()
+ * Checks to see if a named buffer has matched. The data array of
+ * buffer numbers corresponding to the buffer is expected to reside
+ * in the regexp->data->data array in the slot stored in the ARG() of
+ * node involved. Note that this routine doesn't actually care about the
+ * name, that information is not preserved from compilation to execution.
+ * Returns the index of the leftmost defined buffer with the given name
+ * or 0 if non of the buffers matched.
+ */
+STATIC I32
+S_reg_check_named_buff_matched(const regexp *rex, const regnode *scan)
+{
+ I32 n;
+ RXi_GET_DECL(rex,rexi);
+ SV *sv_dat= MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ I32 *nums=(I32*)SvPVX(sv_dat);
+
+ PERL_ARGS_ASSERT_REG_CHECK_NAMED_BUFF_MATCHED;
+
+ for ( n=0; n<SvIVX(sv_dat); n++ ) {
+  if ((I32)rex->lastparen >= nums[n] &&
+   rex->offs[nums[n]].end != -1)
+  {
+   return nums[n];
+  }
+ }
+ return 0;
+}
+
+
+static bool
+S_setup_EXACTISH_ST_c1_c2(pTHX_ const regnode * const text_node, int *c1p,
+  U8* c1_utf8, int *c2p, U8* c2_utf8, regmatch_info *reginfo)
+{
+ /* This function determines if there are one or two characters that match
+ * the first character of the passed-in EXACTish node <text_node>, and if
+ * so, returns them in the passed-in pointers.
+ *
+ * If it determines that no possible character in the target string can
+ * match, it returns FALSE; otherwise TRUE.  (The FALSE situation occurs if
+ * the first character in <text_node> requires UTF-8 to represent, and the
+ * target string isn't in UTF-8.)
+ *
+ * If there are more than two characters that could match the beginning of
+ * <text_node>, or if more context is required to determine a match or not,
+ * it sets both *<c1p> and *<c2p> to CHRTEST_VOID.
+ *
+ * The motiviation behind this function is to allow the caller to set up
+ * tight loops for matching.  If <text_node> is of type EXACT, there is
+ * only one possible character that can match its first character, and so
+ * the situation is quite simple.  But things get much more complicated if
+ * folding is involved.  It may be that the first character of an EXACTFish
+ * node doesn't participate in any possible fold, e.g., punctuation, so it
+ * can be matched only by itself.  The vast majority of characters that are
+ * in folds match just two things, their lower and upper-case equivalents.
+ * But not all are like that; some have multiple possible matches, or match
+ * sequences of more than one character.  This function sorts all that out.
+ *
+ * Consider the patterns A*B or A*?B where A and B are arbitrary.  In a
+ * loop of trying to match A*, we know we can't exit where the thing
+ * following it isn't a B.  And something can't be a B unless it is the
+ * beginning of B.  By putting a quick test for that beginning in a tight
+ * loop, we can rule out things that can't possibly be B without having to
+ * break out of the loop, thus avoiding work.  Similarly, if A is a single
+ * character, we can make a tight loop matching A*, using the outputs of
+ * this function.
+ *
+ * If the target string to match isn't in UTF-8, and there aren't
+ * complications which require CHRTEST_VOID, *<c1p> and *<c2p> are set to
+ * the one or two possible octets (which are characters in this situation)
+ * that can match.  In all cases, if there is only one character that can
+ * match, *<c1p> and *<c2p> will be identical.
+ *
+ * If the target string is in UTF-8, the buffers pointed to by <c1_utf8>
+ * and <c2_utf8> will contain the one or two UTF-8 sequences of bytes that
+ * can match the beginning of <text_node>.  They should be declared with at
+ * least length UTF8_MAXBYTES+1.  (If the target string isn't in UTF-8, it is
+ * undefined what these contain.)  If one or both of the buffers are
+ * invariant under UTF-8, *<c1p>, and *<c2p> will also be set to the
+ * corresponding invariant.  If variant, the corresponding *<c1p> and/or
+ * *<c2p> will be set to a negative number(s) that shouldn't match any code
+ * point (unless inappropriately coerced to unsigned).   *<c1p> will equal
+ * *<c2p> if and only if <c1_utf8> and <c2_utf8> are the same. */
+
+ const bool utf8_target = reginfo->is_utf8_target;
+
+ UV c1 = (UV)CHRTEST_NOT_A_CP_1;
+ UV c2 = (UV)CHRTEST_NOT_A_CP_2;
+ bool use_chrtest_void = FALSE;
+ const bool is_utf8_pat = reginfo->is_utf8_pat;
+
+ /* Used when we have both utf8 input and utf8 output, to avoid converting
+ * to/from code points */
+ bool utf8_has_been_setup = FALSE;
+
+ dVAR;
+
+ U8 *pat = (U8*)STRING(text_node);
+ U8 folded[UTF8_MAX_FOLD_CHAR_EXPAND * UTF8_MAXBYTES_CASE + 1] = { '\0' };
+
+ if (OP(text_node) == EXACT || OP(text_node) == EXACTL) {
+
+  /* In an exact node, only one thing can be matched, that first
+  * character.  If both the pat and the target are UTF-8, we can just
+  * copy the input to the output, avoiding finding the code point of
+  * that character */
+  if (!is_utf8_pat) {
+   c2 = c1 = *pat;
+  }
+  else if (utf8_target) {
+   Copy(pat, c1_utf8, UTF8SKIP(pat), U8);
+   Copy(pat, c2_utf8, UTF8SKIP(pat), U8);
+   utf8_has_been_setup = TRUE;
+  }
+  else {
+   c2 = c1 = valid_utf8_to_uvchr(pat, NULL);
+  }
+ }
+ else { /* an EXACTFish node */
+  U8 *pat_end = pat + STR_LEN(text_node);
+
+  /* An EXACTFL node has at least some characters unfolded, because what
+  * they match is not known until now.  So, now is the time to fold
+  * the first few of them, as many as are needed to determine 'c1' and
+  * 'c2' later in the routine.  If the pattern isn't UTF-8, we only need
+  * to fold if in a UTF-8 locale, and then only the Sharp S; everything
+  * else is 1-1 and isn't assumed to be folded.  In a UTF-8 pattern, we
+  * need to fold as many characters as a single character can fold to,
+  * so that later we can check if the first ones are such a multi-char
+  * fold.  But, in such a pattern only locale-problematic characters
+  * aren't folded, so we can skip this completely if the first character
+  * in the node isn't one of the tricky ones */
+  if (OP(text_node) == EXACTFL) {
+
+   if (! is_utf8_pat) {
+    if (IN_UTF8_CTYPE_LOCALE && *pat == LATIN_SMALL_LETTER_SHARP_S)
+    {
+     folded[0] = folded[1] = 's';
+     pat = folded;
+     pat_end = folded + 2;
+    }
+   }
+   else if (is_PROBLEMATIC_LOCALE_FOLDEDS_START_utf8(pat)) {
+    U8 *s = pat;
+    U8 *d = folded;
+    int i;
+
+    for (i = 0; i < UTF8_MAX_FOLD_CHAR_EXPAND && s < pat_end; i++) {
+     if (isASCII(*s)) {
+      *(d++) = (U8) toFOLD_LC(*s);
+      s++;
+     }
+     else {
+      STRLEN len;
+      _to_utf8_fold_flags(s,
+           d,
+           &len,
+           FOLD_FLAGS_FULL | FOLD_FLAGS_LOCALE);
+      d += len;
+      s += UTF8SKIP(s);
+     }
+    }
+
+    pat = folded;
+    pat_end = d;
+   }
+  }
+
+  if ((is_utf8_pat && is_MULTI_CHAR_FOLD_utf8_safe(pat, pat_end))
+   || (!is_utf8_pat && is_MULTI_CHAR_FOLD_latin1_safe(pat, pat_end)))
+  {
+   /* Multi-character folds require more context to sort out.  Also
+   * PL_utf8_foldclosures used below doesn't handle them, so have to
+   * be handled outside this routine */
+   use_chrtest_void = TRUE;
+  }
+  else { /* an EXACTFish node which doesn't begin with a multi-char fold */
+   c1 = is_utf8_pat ? valid_utf8_to_uvchr(pat, NULL) : *pat;
+   if (c1 > 255) {
+    /* Load the folds hash, if not already done */
+    SV** listp;
+    if (! PL_utf8_foldclosures) {
+     _load_PL_utf8_foldclosures();
+    }
+
+    /* The fold closures data structure is a hash with the keys
+    * being the UTF-8 of every character that is folded to, like
+    * 'k', and the values each an array of all code points that
+    * fold to its key.  e.g. [ 'k', 'K', KELVIN_SIGN ].
+    * Multi-character folds are not included */
+    if ((! (listp = hv_fetch(PL_utf8_foldclosures,
+          (char *) pat,
+          UTF8SKIP(pat),
+          FALSE))))
+    {
+     /* Not found in the hash, therefore there are no folds
+     * containing it, so there is only a single character that
+     * could match */
+     c2 = c1;
+    }
+    else {  /* Does participate in folds */
+     AV* list = (AV*) *listp;
+     if (av_tindex(list) != 1) {
+
+      /* If there aren't exactly two folds to this, it is
+      * outside the scope of this function */
+      use_chrtest_void = TRUE;
+     }
+     else {  /* There are two.  Get them */
+      SV** c_p = av_fetch(list, 0, FALSE);
+      if (c_p == NULL) {
+       Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
+      }
+      c1 = SvUV(*c_p);
+
+      c_p = av_fetch(list, 1, FALSE);
+      if (c_p == NULL) {
+       Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
+      }
+      c2 = SvUV(*c_p);
+
+      /* Folds that cross the 255/256 boundary are forbidden
+      * if EXACTFL (and isnt a UTF8 locale), or EXACTFA and
+      * one is ASCIII.  Since the pattern character is above
+      * 255, and its only other match is below 256, the only
+      * legal match will be to itself.  We have thrown away
+      * the original, so have to compute which is the one
+      * above 255. */
+      if ((c1 < 256) != (c2 < 256)) {
+       if ((OP(text_node) == EXACTFL
+        && ! IN_UTF8_CTYPE_LOCALE)
+        || ((OP(text_node) == EXACTFA
+         || OP(text_node) == EXACTFA_NO_TRIE)
+         && (isASCII(c1) || isASCII(c2))))
+       {
+        if (c1 < 256) {
+         c1 = c2;
+        }
+        else {
+         c2 = c1;
+        }
+       }
+      }
+     }
+    }
+   }
+   else /* Here, c1 is <= 255 */
+    if (utf8_target
+     && HAS_NONLATIN1_FOLD_CLOSURE(c1)
+     && ( ! (OP(text_node) == EXACTFL && ! IN_UTF8_CTYPE_LOCALE))
+     && ((OP(text_node) != EXACTFA
+      && OP(text_node) != EXACTFA_NO_TRIE)
+      || ! isASCII(c1)))
+   {
+    /* Here, there could be something above Latin1 in the target
+    * which folds to this character in the pattern.  All such
+    * cases except LATIN SMALL LETTER Y WITH DIAERESIS have more
+    * than two characters involved in their folds, so are outside
+    * the scope of this function */
+    if (UNLIKELY(c1 == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) {
+     c2 = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS;
+    }
+    else {
+     use_chrtest_void = TRUE;
+    }
+   }
+   else { /* Here nothing above Latin1 can fold to the pattern
+     character */
+    switch (OP(text_node)) {
+
+     case EXACTFL:   /* /l rules */
+      c2 = PL_fold_locale[c1];
+      break;
+
+     case EXACTF:   /* This node only generated for non-utf8
+         patterns */
+      assert(! is_utf8_pat);
+      if (! utf8_target) {    /* /d rules */
+       c2 = PL_fold[c1];
+       break;
+      }
+      /* FALLTHROUGH */
+      /* /u rules for all these.  This happens to work for
+      * EXACTFA as nothing in Latin1 folds to ASCII */
+     case EXACTFA_NO_TRIE:   /* This node only generated for
+           non-utf8 patterns */
+      assert(! is_utf8_pat);
+      /* FALLTHROUGH */
+     case EXACTFA:
+     case EXACTFU_SS:
+     case EXACTFU:
+      c2 = PL_fold_latin1[c1];
+      break;
+
+     default:
+      Perl_croak(aTHX_ "panic: Unexpected op %u", OP(text_node));
+      NOT_REACHED; /* NOTREACHED */
+    }
+   }
+  }
+ }
+
+ /* Here have figured things out.  Set up the returns */
+ if (use_chrtest_void) {
+  *c2p = *c1p = CHRTEST_VOID;
+ }
+ else if (utf8_target) {
+  if (! utf8_has_been_setup) {    /* Don't have the utf8; must get it */
+   uvchr_to_utf8(c1_utf8, c1);
+   uvchr_to_utf8(c2_utf8, c2);
+  }
+
+  /* Invariants are stored in both the utf8 and byte outputs; Use
+  * negative numbers otherwise for the byte ones.  Make sure that the
+  * byte ones are the same iff the utf8 ones are the same */
+  *c1p = (UTF8_IS_INVARIANT(*c1_utf8)) ? *c1_utf8 : CHRTEST_NOT_A_CP_1;
+  *c2p = (UTF8_IS_INVARIANT(*c2_utf8))
+    ? *c2_utf8
+    : (c1 == c2)
+    ? CHRTEST_NOT_A_CP_1
+    : CHRTEST_NOT_A_CP_2;
+ }
+ else if (c1 > 255) {
+ if (c2 > 255) {  /* both possibilities are above what a non-utf8 string
+      can represent */
+  return FALSE;
+ }
+
+ *c1p = *c2p = c2;    /* c2 is the only representable value */
+ }
+ else {  /* c1 is representable; see about c2 */
+ *c1p = c1;
+ *c2p = (c2 < 256) ? c2 : c1;
+ }
+
+ return TRUE;
+}
+
+/* This creates a single number by combining two, with 'before' being like the
+ * 10's digit, but this isn't necessarily base 10; it is base however many
+ * elements of the enum there are */
+#define GCBcase(before, after) ((GCB_ENUM_COUNT * before) + after)
+
+STATIC bool
+S_isGCB(const GCB_enum before, const GCB_enum after)
+{
+ /* returns a boolean indicating if there is a Grapheme Cluster Boundary
+ * between the inputs.  See http://www.unicode.org/reports/tr29/ */
+
+ switch (GCBcase(before, after)) {
+
+  /*  Break at the start and end of text.
+   GB1.   sot ÷
+   GB2.   ÷ eot
+
+   Break before and after controls except between CR and LF
+   GB4.  ( Control | CR | LF )  ÷
+   GB5.   ÷  ( Control | CR | LF )
+
+   Otherwise, break everywhere.
+   GB10.  Any  ÷  Any */
+  default:
+   return TRUE;
+
+  /* Do not break between a CR and LF.
+   GB3.  CR  ×  LF */
+  case GCBcase(GCB_CR, GCB_LF):
+   return FALSE;
+
+  /* Do not break Hangul syllable sequences.
+   GB6.  L  ×  ( L | V | LV | LVT ) */
+  case GCBcase(GCB_L, GCB_L):
+  case GCBcase(GCB_L, GCB_V):
+  case GCBcase(GCB_L, GCB_LV):
+  case GCBcase(GCB_L, GCB_LVT):
+   return FALSE;
+
+  /*  GB7.  ( LV | V )  ×  ( V | T ) */
+  case GCBcase(GCB_LV, GCB_V):
+  case GCBcase(GCB_LV, GCB_T):
+  case GCBcase(GCB_V, GCB_V):
+  case GCBcase(GCB_V, GCB_T):
+   return FALSE;
+
+  /*  GB8.  ( LVT | T)  ×  T */
+  case GCBcase(GCB_LVT, GCB_T):
+  case GCBcase(GCB_T, GCB_T):
+   return FALSE;
+
+  /* Do not break between regional indicator symbols.
+   GB8a.  Regional_Indicator  ×  Regional_Indicator */
+  case GCBcase(GCB_Regional_Indicator, GCB_Regional_Indicator):
+   return FALSE;
+
+  /* Do not break before extending characters.
+   GB9.     ×  Extend */
+  case GCBcase(GCB_Other, GCB_Extend):
+  case GCBcase(GCB_Extend, GCB_Extend):
+  case GCBcase(GCB_L, GCB_Extend):
+  case GCBcase(GCB_LV, GCB_Extend):
+  case GCBcase(GCB_LVT, GCB_Extend):
+  case GCBcase(GCB_Prepend, GCB_Extend):
+  case GCBcase(GCB_Regional_Indicator, GCB_Extend):
+  case GCBcase(GCB_SpacingMark, GCB_Extend):
+  case GCBcase(GCB_T, GCB_Extend):
+  case GCBcase(GCB_V, GCB_Extend):
+   return FALSE;
+
+  /* Do not break before SpacingMarks, or after Prepend characters.
+   GB9a.     ×  SpacingMark */
+  case GCBcase(GCB_Other, GCB_SpacingMark):
+  case GCBcase(GCB_Extend, GCB_SpacingMark):
+  case GCBcase(GCB_L, GCB_SpacingMark):
+  case GCBcase(GCB_LV, GCB_SpacingMark):
+  case GCBcase(GCB_LVT, GCB_SpacingMark):
+  case GCBcase(GCB_Prepend, GCB_SpacingMark):
+  case GCBcase(GCB_Regional_Indicator, GCB_SpacingMark):
+  case GCBcase(GCB_SpacingMark, GCB_SpacingMark):
+  case GCBcase(GCB_T, GCB_SpacingMark):
+  case GCBcase(GCB_V, GCB_SpacingMark):
+   return FALSE;
+
+  /* GB9b.  Prepend  ×   */
+  case GCBcase(GCB_Prepend, GCB_Other):
+  case GCBcase(GCB_Prepend, GCB_L):
+  case GCBcase(GCB_Prepend, GCB_LV):
+  case GCBcase(GCB_Prepend, GCB_LVT):
+  case GCBcase(GCB_Prepend, GCB_Prepend):
+  case GCBcase(GCB_Prepend, GCB_Regional_Indicator):
+  case GCBcase(GCB_Prepend, GCB_T):
+  case GCBcase(GCB_Prepend, GCB_V):
+   return FALSE;
+ }
+
+ NOT_REACHED; /* NOTREACHED */
+}
+
+#define SBcase(before, after) ((SB_ENUM_COUNT * before) + after)
+
+STATIC bool
+S_isSB(pTHX_ SB_enum before,
+   SB_enum after,
+   const U8 * const strbeg,
+   const U8 * const curpos,
+   const U8 * const strend,
+   const bool utf8_target)
+{
+ /* returns a boolean indicating if there is a Sentence Boundary Break
+ * between the inputs.  See http://www.unicode.org/reports/tr29/ */
+
+ U8 * lpos = (U8 *) curpos;
+ U8 * temp_pos;
+ SB_enum backup;
+
+ PERL_ARGS_ASSERT_ISSB;
+
+ /* Break at the start and end of text.
+  SB1.  sot  ÷
+  SB2.  ÷  eot */
+ if (before == SB_EDGE || after == SB_EDGE) {
+  return TRUE;
+ }
+
+ /* SB 3: Do not break within CRLF. */
+ if (before == SB_CR && after == SB_LF) {
+  return FALSE;
+ }
+
+ /* Break after paragraph separators.  (though why CR and LF are considered
+ * so is beyond me (khw)
+ SB4.  Sep | CR | LF  ÷ */
+ if (before == SB_Sep || before == SB_CR || before == SB_LF) {
+  return TRUE;
+ }
+
+ /* Ignore Format and Extend characters, except after sot, Sep, CR, or LF.
+ * (See Section 6.2, Replacing Ignore Rules.)
+  SB5.  X (Extend | Format)*  →  X */
+ if (after == SB_Extend || after == SB_Format) {
+  return FALSE;
+ }
+
+ if (before == SB_Extend || before == SB_Format) {
+  before = backup_one_SB(strbeg, &lpos, utf8_target);
+ }
+
+ /* Do not break after ambiguous terminators like period, if they are
+ * immediately followed by a number or lowercase letter, if they are
+ * between uppercase letters, if the first following letter (optionally
+ * after certain punctuation) is lowercase, or if they are followed by
+ * "continuation" punctuation such as comma, colon, or semicolon. For
+ * example, a period may be an abbreviation or numeric period, and thus may
+ * not mark the end of a sentence.
+
+ * SB6. ATerm  ×  Numeric */
+ if (before == SB_ATerm && after == SB_Numeric) {
+  return FALSE;
+ }
+
+ /* SB7.  (Upper | Lower) ATerm  ×  Upper */
+ if (before == SB_ATerm && after == SB_Upper) {
+  temp_pos = lpos;
+  backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+  if (backup == SB_Upper || backup == SB_Lower) {
+   return FALSE;
+  }
+ }
+
+ /* SB8a.  (STerm | ATerm) Close* Sp*  ×  (SContinue | STerm | ATerm)
+ * SB10.  (STerm | ATerm) Close* Sp*  ×  ( Sp | Sep | CR | LF )      */
+ backup = before;
+ temp_pos = lpos;
+ while (backup == SB_Sp) {
+  backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ }
+ while (backup == SB_Close) {
+  backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ }
+ if ((backup == SB_STerm || backup == SB_ATerm)
+  && (   after == SB_SContinue
+   || after == SB_STerm
+   || after == SB_ATerm
+   || after == SB_Sp
+   || after == SB_Sep
+   || after == SB_CR
+   || after == SB_LF))
+ {
+  return FALSE;
+ }
+
+ /* SB8.  ATerm Close* Sp*  ×  ( ¬(OLetter | Upper | Lower | Sep | CR | LF |
+ *                                              STerm | ATerm) )* Lower */
+ if (backup == SB_ATerm) {
+  U8 * rpos = (U8 *) curpos;
+  SB_enum later = after;
+
+  while (    later != SB_OLetter
+    && later != SB_Upper
+    && later != SB_Lower
+    && later != SB_Sep
+    && later != SB_CR
+    && later != SB_LF
+    && later != SB_STerm
+    && later != SB_ATerm
+    && later != SB_EDGE)
+  {
+   later = advance_one_SB(&rpos, strend, utf8_target);
+  }
+  if (later == SB_Lower) {
+   return FALSE;
+  }
+ }
+
+ /* Break after sentence terminators, but include closing punctuation,
+ * trailing spaces, and a paragraph separator (if present). [See note
+ * below.]
+ * SB9.  ( STerm | ATerm ) Close*  ×  ( Close | Sp | Sep | CR | LF ) */
+ backup = before;
+ temp_pos = lpos;
+ while (backup == SB_Close) {
+  backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ }
+ if ((backup == SB_STerm || backup == SB_ATerm)
+  && (   after == SB_Close
+   || after == SB_Sp
+   || after == SB_Sep
+   || after == SB_CR
+   || after == SB_LF))
+ {
+  return FALSE;
+ }
+
+
+ /* SB11.  ( STerm | ATerm ) Close* Sp* ( Sep | CR | LF )?  ÷ */
+ temp_pos = lpos;
+ backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ if (   backup == SB_Sep
+  || backup == SB_CR
+  || backup == SB_LF)
+ {
+  lpos = temp_pos;
+ }
+ else {
+  backup = before;
+ }
+ while (backup == SB_Sp) {
+  backup = backup_one_SB(strbeg, &lpos, utf8_target);
+ }
+ while (backup == SB_Close) {
+  backup = backup_one_SB(strbeg, &lpos, utf8_target);
+ }
+ if (backup == SB_STerm || backup == SB_ATerm) {
+  return TRUE;
+ }
+
+ /* Otherwise, do not break.
+ SB12.  Any  ×  Any */
+
+ return FALSE;
+}
+
+STATIC SB_enum
+S_advance_one_SB(pTHX_ U8 ** curpos, const U8 * const strend, const bool utf8_target)
+{
+ SB_enum sb;
+
+ PERL_ARGS_ASSERT_ADVANCE_ONE_SB;
+
+ if (*curpos >= strend) {
+  return SB_EDGE;
+ }
+
+ if (utf8_target) {
+  do {
+   *curpos += UTF8SKIP(*curpos);
+   if (*curpos >= strend) {
+    return SB_EDGE;
+   }
+   sb = getSB_VAL_UTF8(*curpos, strend);
+  } while (sb == SB_Extend || sb == SB_Format);
+ }
+ else {
+  do {
+   (*curpos)++;
+   if (*curpos >= strend) {
+    return SB_EDGE;
+   }
+   sb = getSB_VAL_CP(**curpos);
+  } while (sb == SB_Extend || sb == SB_Format);
+ }
+
+ return sb;
+}
+
+STATIC SB_enum
+S_backup_one_SB(pTHX_ const U8 * const strbeg, U8 ** curpos, const bool utf8_target)
+{
+ SB_enum sb;
+
+ PERL_ARGS_ASSERT_BACKUP_ONE_SB;
+
+ if (*curpos < strbeg) {
+  return SB_EDGE;
+ }
+
+ if (utf8_target) {
+  U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg);
+  if (! prev_char_pos) {
+   return SB_EDGE;
+  }
+
+  /* Back up over Extend and Format.  curpos is always just to the right
+  * of the characater whose value we are getting */
+  do {
+   U8 * prev_prev_char_pos;
+   if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos, -1,
+                 strbeg)))
+   {
+    sb = getSB_VAL_UTF8(prev_prev_char_pos, prev_char_pos);
+    *curpos = prev_char_pos;
+    prev_char_pos = prev_prev_char_pos;
+   }
+   else {
+    *curpos = (U8 *) strbeg;
+    return SB_EDGE;
+   }
+  } while (sb == SB_Extend || sb == SB_Format);
+ }
+ else {
+  do {
+   if (*curpos - 2 < strbeg) {
+    *curpos = (U8 *) strbeg;
+    return SB_EDGE;
+   }
+   (*curpos)--;
+   sb = getSB_VAL_CP(*(*curpos - 1));
+  } while (sb == SB_Extend || sb == SB_Format);
+ }
+
+ return sb;
+}
+
+#define WBcase(before, after) ((WB_ENUM_COUNT * before) + after)
+
+STATIC bool
+S_isWB(pTHX_ WB_enum previous,
+   WB_enum before,
+   WB_enum after,
+   const U8 * const strbeg,
+   const U8 * const curpos,
+   const U8 * const strend,
+   const bool utf8_target)
+{
+ /*  Return a boolean as to if the boundary between 'before' and 'after' is
+ *  a Unicode word break, using their published algorithm.  Context may be
+ *  needed to make this determination.  If the value for the character
+ *  before 'before' is known, it is passed as 'previous'; otherwise that
+ *  should be set to WB_UNKNOWN.  The other input parameters give the
+ *  boundaries and current position in the matching of the string.  That
+ *  is, 'curpos' marks the position where the character whose wb value is
+ *  'after' begins.  See http://www.unicode.org/reports/tr29/ */
+
+ U8 * before_pos = (U8 *) curpos;
+ U8 * after_pos = (U8 *) curpos;
+
+ PERL_ARGS_ASSERT_ISWB;
+
+ /* WB1 and WB2: Break at the start and end of text. */
+ if (before == WB_EDGE || after == WB_EDGE) {
+  return TRUE;
+ }
+
+ /* WB 3: Do not break within CRLF. */
+ if (before == WB_CR && after == WB_LF) {
+  return FALSE;
+ }
+
+ /* WB 3a and WB 3b: Otherwise break before and after Newlines (including CR
+ * and LF) */
+ if (   before == WB_CR || before == WB_LF || before == WB_Newline
+  || after ==  WB_CR || after ==  WB_LF || after ==  WB_Newline)
+ {
+  return TRUE;
+ }
+
+ /* Ignore Format and Extend characters, except when they appear at the
+ * beginning of a region of text.
+ * WB4.  X (Extend | Format)*  →  X. */
+
+ if (after == WB_Extend || after == WB_Format) {
+  return FALSE;
+ }
+
+ if (before == WB_Extend || before == WB_Format) {
+  before = backup_one_WB(&previous, strbeg, &before_pos, utf8_target);
+ }
+
+ switch (WBcase(before, after)) {
+   /* Otherwise, break everywhere (including around ideographs).
+    WB14.  Any  ÷  Any */
+   default:
+    return TRUE;
+
+   /* Do not break between most letters.
+    WB5.  (ALetter | Hebrew_Letter) × (ALetter | Hebrew_Letter) */
+   case WBcase(WB_ALetter, WB_ALetter):
+   case WBcase(WB_ALetter, WB_Hebrew_Letter):
+   case WBcase(WB_Hebrew_Letter, WB_ALetter):
+   case WBcase(WB_Hebrew_Letter, WB_Hebrew_Letter):
+    return FALSE;
+
+   /* Do not break letters across certain punctuation.
+    WB6.  (ALetter | Hebrew_Letter)
+      × (MidLetter | MidNumLet | Single_Quote) (ALetter
+               | Hebrew_Letter) */
+   case WBcase(WB_ALetter, WB_MidLetter):
+   case WBcase(WB_ALetter, WB_MidNumLet):
+   case WBcase(WB_ALetter, WB_Single_Quote):
+   case WBcase(WB_Hebrew_Letter, WB_MidLetter):
+   case WBcase(WB_Hebrew_Letter, WB_MidNumLet):
+   /*case WBcase(WB_Hebrew_Letter, WB_Single_Quote):*/
+    after = advance_one_WB(&after_pos, strend, utf8_target);
+    return after != WB_ALetter && after != WB_Hebrew_Letter;
+
+   /* WB7.  (ALetter | Hebrew_Letter) (MidLetter | MidNumLet |
+   *                    Single_Quote) ×  (ALetter | Hebrew_Letter) */
+   case WBcase(WB_MidLetter, WB_ALetter):
+   case WBcase(WB_MidLetter, WB_Hebrew_Letter):
+   case WBcase(WB_MidNumLet, WB_ALetter):
+   case WBcase(WB_MidNumLet, WB_Hebrew_Letter):
+   case WBcase(WB_Single_Quote, WB_ALetter):
+   case WBcase(WB_Single_Quote, WB_Hebrew_Letter):
+    before
+    = backup_one_WB(&previous, strbeg, &before_pos, utf8_target);
+    return before != WB_ALetter && before != WB_Hebrew_Letter;
+
+   /* WB7a.  Hebrew_Letter  ×  Single_Quote */
+   case WBcase(WB_Hebrew_Letter, WB_Single_Quote):
+    return FALSE;
+
+   /* WB7b.  Hebrew_Letter  ×  Double_Quote Hebrew_Letter */
+   case WBcase(WB_Hebrew_Letter, WB_Double_Quote):
+    return advance_one_WB(&after_pos, strend, utf8_target)
+              != WB_Hebrew_Letter;
+
+   /* WB7c.  Hebrew_Letter Double_Quote  ×  Hebrew_Letter */
+   case WBcase(WB_Double_Quote, WB_Hebrew_Letter):
+    return backup_one_WB(&previous, strbeg, &before_pos, utf8_target)
+              != WB_Hebrew_Letter;
+
+   /* Do not break within sequences of digits, or digits adjacent to
+   * letters (“3a”, or “A3”).
+    WB8.  Numeric  ×  Numeric */
+   case WBcase(WB_Numeric, WB_Numeric):
+    return FALSE;
+
+   /* WB9.  (ALetter | Hebrew_Letter)  ×  Numeric */
+   case WBcase(WB_ALetter, WB_Numeric):
+   case WBcase(WB_Hebrew_Letter, WB_Numeric):
+    return FALSE;
+
+   /* WB10.  Numeric  ×  (ALetter | Hebrew_Letter) */
+   case WBcase(WB_Numeric, WB_ALetter):
+   case WBcase(WB_Numeric, WB_Hebrew_Letter):
+    return FALSE;
+
+   /* Do not break within sequences, such as “3.2” or “3,456.789”.
+    WB11.   Numeric (MidNum | MidNumLet | Single_Quote)  ×  Numeric
+   */
+   case WBcase(WB_MidNum, WB_Numeric):
+   case WBcase(WB_MidNumLet, WB_Numeric):
+   case WBcase(WB_Single_Quote, WB_Numeric):
+    return backup_one_WB(&previous, strbeg, &before_pos, utf8_target)
+               != WB_Numeric;
+
+   /*  WB12.   Numeric  ×  (MidNum | MidNumLet | Single_Quote) Numeric
+   *  */
+   case WBcase(WB_Numeric, WB_MidNum):
+   case WBcase(WB_Numeric, WB_MidNumLet):
+   case WBcase(WB_Numeric, WB_Single_Quote):
+    return advance_one_WB(&after_pos, strend, utf8_target)
+               != WB_Numeric;
+
+   /* Do not break between Katakana.
+   WB13.  Katakana  ×  Katakana */
+   case WBcase(WB_Katakana, WB_Katakana):
+    return FALSE;
+
+   /* Do not break from extenders.
+   WB13a.  (ALetter | Hebrew_Letter | Numeric | Katakana |
+           ExtendNumLet)  ×  ExtendNumLet */
+   case WBcase(WB_ALetter, WB_ExtendNumLet):
+   case WBcase(WB_Hebrew_Letter, WB_ExtendNumLet):
+   case WBcase(WB_Numeric, WB_ExtendNumLet):
+   case WBcase(WB_Katakana, WB_ExtendNumLet):
+   case WBcase(WB_ExtendNumLet, WB_ExtendNumLet):
+    return FALSE;
+
+   /* WB13b.  ExtendNumLet  ×  (ALetter | Hebrew_Letter | Numeric
+   *                                                 | Katakana) */
+   case WBcase(WB_ExtendNumLet, WB_ALetter):
+   case WBcase(WB_ExtendNumLet, WB_Hebrew_Letter):
+   case WBcase(WB_ExtendNumLet, WB_Numeric):
+   case WBcase(WB_ExtendNumLet, WB_Katakana):
+    return FALSE;
+
+   /* Do not break between regional indicator symbols.
+   WB13c.  Regional_Indicator  ×  Regional_Indicator */
+   case WBcase(WB_Regional_Indicator, WB_Regional_Indicator):
+    return FALSE;
+
+ }
+
+ NOT_REACHED; /* NOTREACHED */
+}
+
+STATIC WB_enum
+S_advance_one_WB(pTHX_ U8 ** curpos, const U8 * const strend, const bool utf8_target)
+{
+ WB_enum wb;
+
+ PERL_ARGS_ASSERT_ADVANCE_ONE_WB;
+
+ if (*curpos >= strend) {
+  return WB_EDGE;
+ }
+
+ if (utf8_target) {
+
+  /* Advance over Extend and Format */
+  do {
+   *curpos += UTF8SKIP(*curpos);
+   if (*curpos >= strend) {
+    return WB_EDGE;
+   }
+   wb = getWB_VAL_UTF8(*curpos, strend);
+  } while (wb == WB_Extend || wb == WB_Format);
+ }
+ else {
+  do {
+   (*curpos)++;
+   if (*curpos >= strend) {
+    return WB_EDGE;
+   }
+   wb = getWB_VAL_CP(**curpos);
+  } while (wb == WB_Extend || wb == WB_Format);
+ }
+
+ return wb;
+}
+
+STATIC WB_enum
+S_backup_one_WB(pTHX_ WB_enum * previous, const U8 * const strbeg, U8 ** curpos, const bool utf8_target)
+{
+ WB_enum wb;
+
+ PERL_ARGS_ASSERT_BACKUP_ONE_WB;
+
+ /* If we know what the previous character's break value is, don't have
+  * to look it up */
+ if (*previous != WB_UNKNOWN) {
+  wb = *previous;
+  *previous = WB_UNKNOWN;
+  /* XXX Note that doesn't change curpos, and maybe should */
+
+  /* But we always back up over these two types */
+  if (wb != WB_Extend && wb != WB_Format) {
+   return wb;
+  }
+ }
+
+ if (*curpos < strbeg) {
+  return WB_EDGE;
+ }
+
+ if (utf8_target) {
+  U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg);
+  if (! prev_char_pos) {
+   return WB_EDGE;
+  }
+
+  /* Back up over Extend and Format.  curpos is always just to the right
+  * of the characater whose value we are getting */
+  do {
+   U8 * prev_prev_char_pos;
+   if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos,
+            -1,
+            strbeg)))
+   {
+    wb = getWB_VAL_UTF8(prev_prev_char_pos, prev_char_pos);
+    *curpos = prev_char_pos;
+    prev_char_pos = prev_prev_char_pos;
+   }
+   else {
+    *curpos = (U8 *) strbeg;
+    return WB_EDGE;
+   }
+  } while (wb == WB_Extend || wb == WB_Format);
+ }
+ else {
+  do {
+   if (*curpos - 2 < strbeg) {
+    *curpos = (U8 *) strbeg;
+    return WB_EDGE;
+   }
+   (*curpos)--;
+   wb = getWB_VAL_CP(*(*curpos - 1));
+  } while (wb == WB_Extend || wb == WB_Format);
+ }
+
+ return wb;
+}
+
+/* returns -1 on failure, $+[0] on success */
+STATIC SSize_t
+S_regmatch(pTHX_ regmatch_info *reginfo, char *startpos, regnode *prog)
+{
+#if PERL_VERSION < 9 && !defined(PERL_CORE)
+ dMY_CXT;
+#endif
+ dVAR;
+ const bool utf8_target = reginfo->is_utf8_target;
+ const U32 uniflags = UTF8_ALLOW_DEFAULT;
+ REGEXP *rex_sv = reginfo->prog;
+ regexp *rex = ReANY(rex_sv);
+ RXi_GET_DECL(rex,rexi);
+ /* the current state. This is a cached copy of PL_regmatch_state */
+ regmatch_state *st;
+ /* cache heavy used fields of st in registers */
+ regnode *scan;
+ regnode *next;
+ U32 n = 0; /* general value; init to avoid compiler warning */
+ SSize_t ln = 0; /* len or last;  init to avoid compiler warning */
+ char *locinput = startpos;
+ char *pushinput; /* where to continue after a PUSH */
+ I32 nextchr;   /* is always set to UCHARAT(locinput) */
+
+ bool result = 0;     /* return value of S_regmatch */
+ int depth = 0;     /* depth of backtrack stack */
+ U32 nochange_depth = 0; /* depth of GOSUB recursion with nochange */
+ const U32 max_nochange_depth =
+  (3 * rex->nparens > MAX_RECURSE_EVAL_NOCHANGE_DEPTH) ?
+  3 * rex->nparens : MAX_RECURSE_EVAL_NOCHANGE_DEPTH;
+ regmatch_state *yes_state = NULL; /* state to pop to on success of
+               subpattern */
+ /* mark_state piggy backs on the yes_state logic so that when we unwind
+ the stack on success we can update the mark_state as we go */
+ regmatch_state *mark_state = NULL; /* last mark state we have seen */
+ regmatch_state *cur_eval = NULL; /* most recent EVAL_AB state */
+ struct regmatch_state  *cur_curlyx = NULL; /* most recent curlyx */
+ U32 state_num;
+ bool no_final = 0;      /* prevent failure from backtracking? */
+ bool do_cutgroup = 0;   /* no_final only until next branch/trie entry */
+ char *startpoint = locinput;
+ SV *popmark = NULL;     /* are we looking for a mark? */
+ SV *sv_commit = NULL;   /* last mark name seen in failure */
+ SV *sv_yes_mark = NULL; /* last mark name we have seen
+       during a successful match */
+ U32 lastopen = 0;       /* last open we saw */
+ bool has_cutgroup = RX_HAS_CUTGROUP(rex) ? 1 : 0;
+ SV* const oreplsv = GvSVn(PL_replgv);
+ /* these three flags are set by various ops to signal information to
+ * the very next op. They have a useful lifetime of exactly one loop
+ * iteration, and are not preserved or restored by state pushes/pops
+ */
+ bool sw = 0;     /* the condition value in (?(cond)a|b) */
+ bool minmod = 0;     /* the next "{n,m}" is a "{n,m}?" */
+ int logical = 0;     /* the following EVAL is:
+        0: (?{...})
+        1: (?(?{...})X|Y)
+        2: (??{...})
+       or the following IFMATCH/UNLESSM is:
+        false: plain (?=foo)
+        true:  used as a condition: (?(?=foo))
+       */
+ PAD* last_pad = NULL;
+ dMULTICALL;
+ I32 gimme = G_SCALAR;
+ CV *caller_cv = NULL; /* who called us */
+ CV *last_pushed_cv = NULL; /* most recently called (?{}) CV */
+ CHECKPOINT runops_cp; /* savestack position before executing EVAL */
+ U32 maxopenparen = 0;       /* max '(' index seen so far */
+ int to_complement;  /* Invert the result? */
+ _char_class_number classnum;
+ bool is_utf8_pat = reginfo->is_utf8_pat;
+ bool match = FALSE;
+
+
+#ifdef DEBUGGING
+ GET_RE_DEBUG_FLAGS_DECL;
+#endif
+
+ /* protect against undef(*^R) */
+ SAVEFREESV(SvREFCNT_inc_simple_NN(oreplsv));
+
+ /* shut up 'may be used uninitialized' compiler warnings for dMULTICALL */
+ multicall_oldcatch = 0;
+ multicall_cv = NULL;
+ cx = NULL;
+ PERL_UNUSED_VAR(multicall_cop);
+ PERL_UNUSED_VAR(newsp);
+
+
+ PERL_ARGS_ASSERT_REGMATCH;
+
+ DEBUG_OPTIMISE_r( DEBUG_EXECUTE_r({
+   PerlIO_printf(Perl_debug_log,"regmatch start\n");
+ }));
+
+ st = PL_regmatch_state;
+
+ /* Note that nextchr is a byte even in UTF */
+ SET_nextchr;
+ scan = prog;
+ while (scan != NULL) {
+
+  DEBUG_EXECUTE_r( {
+   SV * const prop = sv_newmortal();
+   regnode *rnext=regnext(scan);
+   DUMP_EXEC_POS( locinput, scan, utf8_target );
+   regprop(rex, prop, scan, reginfo, NULL);
+
+   PerlIO_printf(Perl_debug_log,
+     "%3"IVdf":%*s%s(%"IVdf")\n",
+     (IV)(scan - rexi->program), depth*2, "",
+     SvPVX_const(prop),
+     (PL_regkind[OP(scan)] == END || !rnext) ?
+      0 : (IV)(rnext - rexi->program));
+  });
+
+  next = scan + NEXT_OFF(scan);
+  if (next == scan)
+   next = NULL;
+  state_num = OP(scan);
+
+  REH_CALL_EXEC_NODE_HOOK(rex, scan, reginfo, st);
+ reenter_switch:
+  to_complement = 0;
+
+  SET_nextchr;
+  assert(nextchr < 256 && (nextchr >= 0 || nextchr == NEXTCHR_EOS));
+
+  switch (state_num) {
+  case SBOL: /*  /^../ and /\A../  */
+   if (locinput == reginfo->strbeg)
+    break;
+   sayNO;
+
+  case MBOL: /*  /^../m  */
+   if (locinput == reginfo->strbeg ||
+    (!NEXTCHR_IS_EOS && locinput[-1] == '\n'))
+   {
+    break;
+   }
+   sayNO;
+
+  case GPOS: /*  \G  */
+   if (locinput == reginfo->ganch)
+    break;
+   sayNO;
+
+  case KEEPS: /*   \K  */
+   /* update the startpoint */
+   st->u.keeper.val = rex->offs[0].start;
+   rex->offs[0].start = locinput - reginfo->strbeg;
+   PUSH_STATE_GOTO(KEEPS_next, next, locinput);
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case KEEPS_next_fail:
+   /* rollback the start point change */
+   rex->offs[0].start = st->u.keeper.val;
+   sayNO_SILENT;
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case MEOL: /* /..$/m  */
+   if (!NEXTCHR_IS_EOS && nextchr != '\n')
+    sayNO;
+   break;
+
+  case SEOL: /* /..$/  */
+   if (!NEXTCHR_IS_EOS && nextchr != '\n')
+    sayNO;
+   if (reginfo->strend - locinput > 1)
+    sayNO;
+   break;
+
+  case EOS: /*  \z  */
+   if (!NEXTCHR_IS_EOS)
+    sayNO;
+   break;
+
+  case SANY: /*  /./s  */
+   if (NEXTCHR_IS_EOS)
+    sayNO;
+   goto increment_locinput;
+
+  case REG_ANY: /*  /./  */
+   if ((NEXTCHR_IS_EOS) || nextchr == '\n')
+    sayNO;
+   goto increment_locinput;
+
+
+#undef  ST
+#define ST st->u.trie
+  case TRIEC: /* (ab|cd) with known charclass */
+   /* In this case the charclass data is available inline so
+   we can fail fast without a lot of extra overhead.
+   */
+   if(!NEXTCHR_IS_EOS && !ANYOF_BITMAP_TEST(scan, nextchr)) {
+    DEBUG_EXECUTE_r(
+     PerlIO_printf(Perl_debug_log,
+       "%*s  %sfailed to match trie start class...%s\n",
+       REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+    );
+    sayNO_SILENT;
+    /* NOTREACHED */
+    NOT_REACHED; /* NOTREACHED */
+   }
+   /* FALLTHROUGH */
+  case TRIE:  /* (ab|cd)  */
+   /* the basic plan of execution of the trie is:
+   * At the beginning, run though all the states, and
+   * find the longest-matching word. Also remember the position
+   * of the shortest matching word. For example, this pattern:
+   *    1  2 3 4    5
+   *    ab|a|x|abcd|abc
+   * when matched against the string "abcde", will generate
+   * accept states for all words except 3, with the longest
+   * matching word being 4, and the shortest being 2 (with
+   * the position being after char 1 of the string).
+   *
+   * Then for each matching word, in word order (i.e. 1,2,4,5),
+   * we run the remainder of the pattern; on each try setting
+   * the current position to the character following the word,
+   * returning to try the next word on failure.
+   *
+   * We avoid having to build a list of words at runtime by
+   * using a compile-time structure, wordinfo[].prev, which
+   * gives, for each word, the previous accepting word (if any).
+   * In the case above it would contain the mappings 1->2, 2->0,
+   * 3->0, 4->5, 5->1.  We can use this table to generate, from
+   * the longest word (4 above), a list of all words, by
+   * following the list of prev pointers; this gives us the
+   * unordered list 4,5,1,2. Then given the current word we have
+   * just tried, we can go through the list and find the
+   * next-biggest word to try (so if we just failed on word 2,
+   * the next in the list is 4).
+   *
+   * Since at runtime we don't record the matching position in
+   * the string for each word, we have to work that out for
+   * each word we're about to process. The wordinfo table holds
+   * the character length of each word; given that we recorded
+   * at the start: the position of the shortest word and its
+   * length in chars, we just need to move the pointer the
+   * difference between the two char lengths. Depending on
+   * Unicode status and folding, that's cheap or expensive.
+   *
+   * This algorithm is optimised for the case where are only a
+   * small number of accept states, i.e. 0,1, or maybe 2.
+   * With lots of accepts states, and having to try all of them,
+   * it becomes quadratic on number of accept states to find all
+   * the next words.
+   */
+
+   {
+    /* what type of TRIE am I? (utf8 makes this contextual) */
+    DECL_TRIE_TYPE(scan);
+
+    /* what trie are we using right now */
+    reg_trie_data * const trie
+     = (reg_trie_data*)rexi->data->data[ ARG( scan ) ];
+    HV * widecharmap = MUTABLE_HV(rexi->data->data[ ARG( scan ) + 1 ]);
+    U32 state = trie->startstate;
+
+    if (scan->flags == EXACTL || scan->flags == EXACTFLU8) {
+     _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+     if (utf8_target
+      && UTF8_IS_ABOVE_LATIN1(nextchr)
+      && scan->flags == EXACTL)
+     {
+      /* We only output for EXACTL, as we let the folder
+      * output this message for EXACTFLU8 to avoid
+      * duplication */
+      _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput,
+               reginfo->strend);
+     }
+    }
+    if (   trie->bitmap
+     && (NEXTCHR_IS_EOS || !TRIE_BITMAP_TEST(trie, nextchr)))
+    {
+     if (trie->states[ state ].wordnum) {
+      DEBUG_EXECUTE_r(
+       PerlIO_printf(Perl_debug_log,
+          "%*s  %smatched empty string...%s\n",
+          REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+      );
+      if (!trie->jump)
+       break;
+     } else {
+      DEBUG_EXECUTE_r(
+       PerlIO_printf(Perl_debug_log,
+          "%*s  %sfailed to match trie start class...%s\n",
+          REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+      );
+      sayNO_SILENT;
+    }
+    }
+
+   {
+    U8 *uc = ( U8* )locinput;
+
+    STRLEN len = 0;
+    STRLEN foldlen = 0;
+    U8 *uscan = (U8*)NULL;
+    U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+    U32 charcount = 0; /* how many input chars we have matched */
+    U32 accepted = 0; /* have we seen any accepting states? */
+
+    ST.jump = trie->jump;
+    ST.me = scan;
+    ST.firstpos = NULL;
+    ST.longfold = FALSE; /* char longer if folded => it's harder */
+    ST.nextword = 0;
+
+    /* fully traverse the TRIE; note the position of the
+    shortest accept state and the wordnum of the longest
+    accept state */
+
+    while ( state && uc <= (U8*)(reginfo->strend) ) {
+     U32 base = trie->states[ state ].trans.base;
+     UV uvc = 0;
+     U16 charid = 0;
+     U16 wordnum;
+     wordnum = trie->states[ state ].wordnum;
+
+     if (wordnum) { /* it's an accept state */
+      if (!accepted) {
+       accepted = 1;
+       /* record first match position */
+       if (ST.longfold) {
+        ST.firstpos = (U8*)locinput;
+        ST.firstchars = 0;
+       }
+       else {
+        ST.firstpos = uc;
+        ST.firstchars = charcount;
+       }
+      }
+      if (!ST.nextword || wordnum < ST.nextword)
+       ST.nextword = wordnum;
+      ST.topword = wordnum;
+     }
+
+     DEBUG_TRIE_EXECUTE_r({
+        DUMP_EXEC_POS( (char *)uc, scan, utf8_target );
+        PerlIO_printf( Perl_debug_log,
+         "%*s  %sState: %4"UVxf" Accepted: %c ",
+         2+depth * 2, "", PL_colors[4],
+         (UV)state, (accepted ? 'Y' : 'N'));
+     });
+
+     /* read a char and goto next state */
+     if ( base && (foldlen || uc < (U8*)(reginfo->strend))) {
+      I32 offset;
+      REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc,
+           uscan, len, uvc, charid, foldlen,
+           foldbuf, uniflags);
+      charcount++;
+      if (foldlen>0)
+       ST.longfold = TRUE;
+      if (charid &&
+       ( ((offset =
+       base + charid - 1 - trie->uniquecharcount)) >= 0)
+
+       && ((U32)offset < trie->lasttrans)
+       && trie->trans[offset].check == state)
+      {
+       state = trie->trans[offset].next;
+      }
+      else {
+       state = 0;
+      }
+      uc += len;
+
+     }
+     else {
+      state = 0;
+     }
+     DEBUG_TRIE_EXECUTE_r(
+      PerlIO_printf( Perl_debug_log,
+       "Charid:%3x CP:%4"UVxf" After State: %4"UVxf"%s\n",
+       charid, uvc, (UV)state, PL_colors[5] );
+     );
+    }
+    if (!accepted)
+    sayNO;
+
+    /* calculate total number of accept states */
+    {
+     U16 w = ST.topword;
+     accepted = 0;
+     while (w) {
+      w = trie->wordinfo[w].prev;
+      accepted++;
+     }
+     ST.accepted = accepted;
+    }
+
+    DEBUG_EXECUTE_r(
+     PerlIO_printf( Perl_debug_log,
+      "%*s  %sgot %"IVdf" possible matches%s\n",
+      REPORT_CODE_OFF + depth * 2, "",
+      PL_colors[4], (IV)ST.accepted, PL_colors[5] );
+    );
+    goto trie_first_try; /* jump into the fail handler */
+   }}
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case TRIE_next_fail: /* we failed - try next alternative */
+  {
+   U8 *uc;
+   if ( ST.jump) {
+    REGCP_UNWIND(ST.cp);
+    UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+   }
+   if (!--ST.accepted) {
+    DEBUG_EXECUTE_r({
+     PerlIO_printf( Perl_debug_log,
+      "%*s  %sTRIE failed...%s\n",
+      REPORT_CODE_OFF+depth*2, "",
+      PL_colors[4],
+      PL_colors[5] );
+    });
+    sayNO_SILENT;
+   }
+   {
+    /* Find next-highest word to process.  Note that this code
+    * is O(N^2) per trie run (O(N) per branch), so keep tight */
+    U16 min = 0;
+    U16 word;
+    U16 const nextword = ST.nextword;
+    reg_trie_wordinfo * const wordinfo
+     = ((reg_trie_data*)rexi->data->data[ARG(ST.me)])->wordinfo;
+    for (word=ST.topword; word; word=wordinfo[word].prev) {
+     if (word > nextword && (!min || word < min))
+      min = word;
+    }
+    ST.nextword = min;
+   }
+
+  trie_first_try:
+   if (do_cutgroup) {
+    do_cutgroup = 0;
+    no_final = 0;
+   }
+
+   if ( ST.jump) {
+    ST.lastparen = rex->lastparen;
+    ST.lastcloseparen = rex->lastcloseparen;
+    REGCP_SET(ST.cp);
+   }
+
+   /* find start char of end of current word */
+   {
+    U32 chars; /* how many chars to skip */
+    reg_trie_data * const trie
+     = (reg_trie_data*)rexi->data->data[ARG(ST.me)];
+
+    assert((trie->wordinfo[ST.nextword].len - trie->prefixlen)
+       >=  ST.firstchars);
+    chars = (trie->wordinfo[ST.nextword].len - trie->prefixlen)
+       - ST.firstchars;
+    uc = ST.firstpos;
+
+    if (ST.longfold) {
+     /* the hard option - fold each char in turn and find
+     * its folded length (which may be different */
+     U8 foldbuf[UTF8_MAXBYTES_CASE + 1];
+     STRLEN foldlen;
+     STRLEN len;
+     UV uvc;
+     U8 *uscan;
+
+     while (chars) {
+      if (utf8_target) {
+       uvc = utf8n_to_uvchr((U8*)uc, UTF8_MAXLEN, &len,
+             uniflags);
+       uc += len;
+      }
+      else {
+       uvc = *uc;
+       uc++;
+      }
+      uvc = to_uni_fold(uvc, foldbuf, &foldlen);
+      uscan = foldbuf;
+      while (foldlen) {
+       if (!--chars)
+        break;
+       uvc = utf8n_to_uvchr(uscan, UTF8_MAXLEN, &len,
+           uniflags);
+       uscan += len;
+       foldlen -= len;
+      }
+     }
+    }
+    else {
+     if (utf8_target)
+      while (chars--)
+       uc += UTF8SKIP(uc);
+     else
+      uc += chars;
+    }
+   }
+
+   scan = ST.me + ((ST.jump && ST.jump[ST.nextword])
+       ? ST.jump[ST.nextword]
+       : NEXT_OFF(ST.me));
+
+   DEBUG_EXECUTE_r({
+    PerlIO_printf( Perl_debug_log,
+     "%*s  %sTRIE matched word #%d, continuing%s\n",
+     REPORT_CODE_OFF+depth*2, "",
+     PL_colors[4],
+     ST.nextword,
+     PL_colors[5]
+     );
+   });
+
+   if (ST.accepted > 1 || has_cutgroup) {
+    PUSH_STATE_GOTO(TRIE_next, scan, (char*)uc);
+    /* NOTREACHED */
+    NOT_REACHED; /* NOTREACHED */
+   }
+   /* only one choice left - just continue */
+   DEBUG_EXECUTE_r({
+    AV *const trie_words
+     = MUTABLE_AV(rexi->data->data[ARG(ST.me)+TRIE_WORDS_OFFSET]);
+    SV ** const tmp = trie_words
+      ? av_fetch(trie_words, ST.nextword - 1, 0) : NULL;
+    SV *sv= tmp ? sv_newmortal() : NULL;
+
+    PerlIO_printf( Perl_debug_log,
+     "%*s  %sonly one match left, short-circuiting: #%d <%s>%s\n",
+     REPORT_CODE_OFF+depth*2, "", PL_colors[4],
+     ST.nextword,
+     tmp ? pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 0,
+       PL_colors[0], PL_colors[1],
+       (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)|PERL_PV_ESCAPE_NONASCII
+      )
+     : "not compiled under -Dr",
+     PL_colors[5] );
+   });
+
+   locinput = (char*)uc;
+   continue; /* execute rest of RE */
+   /* NOTREACHED */
+  }
+#undef  ST
+
+  case EXACTL:             /*  /abc/l       */
+   _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+
+   /* Complete checking would involve going through every character
+   * matched by the string to see if any is above latin1.  But the
+   * comparision otherwise might very well be a fast assembly
+   * language routine, and I (khw) don't think slowing things down
+   * just to check for this warning is worth it.  So this just checks
+   * the first character */
+   if (utf8_target && UTF8_IS_ABOVE_LATIN1(*locinput)) {
+    _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput, reginfo->strend);
+   }
+   /* FALLTHROUGH */
+  case EXACT: {            /*  /abc/        */
+   char *s = STRING(scan);
+   ln = STR_LEN(scan);
+   if (utf8_target != is_utf8_pat) {
+    /* The target and the pattern have differing utf8ness. */
+    char *l = locinput;
+    const char * const e = s + ln;
+
+    if (utf8_target) {
+     /* The target is utf8, the pattern is not utf8.
+     * Above-Latin1 code points can't match the pattern;
+     * invariants match exactly, and the other Latin1 ones need
+     * to be downgraded to a single byte in order to do the
+     * comparison.  (If we could be confident that the target
+     * is not malformed, this could be refactored to have fewer
+     * tests by just assuming that if the first bytes match, it
+     * is an invariant, but there are tests in the test suite
+     * dealing with (??{...}) which violate this) */
+     while (s < e) {
+      if (l >= reginfo->strend
+       || UTF8_IS_ABOVE_LATIN1(* (U8*) l))
+      {
+       sayNO;
+      }
+      if (UTF8_IS_INVARIANT(*(U8*)l)) {
+       if (*l != *s) {
+        sayNO;
+       }
+       l++;
+      }
+      else {
+       if (TWO_BYTE_UTF8_TO_NATIVE(*l, *(l+1)) != * (U8*) s)
+       {
+        sayNO;
+       }
+       l += 2;
+      }
+      s++;
+     }
+    }
+    else {
+     /* The target is not utf8, the pattern is utf8. */
+     while (s < e) {
+      if (l >= reginfo->strend
+       || UTF8_IS_ABOVE_LATIN1(* (U8*) s))
+      {
+       sayNO;
+      }
+      if (UTF8_IS_INVARIANT(*(U8*)s)) {
+       if (*s != *l) {
+        sayNO;
+       }
+       s++;
+      }
+      else {
+       if (TWO_BYTE_UTF8_TO_NATIVE(*s, *(s+1)) != * (U8*) l)
+       {
+        sayNO;
+       }
+       s += 2;
+      }
+      l++;
+     }
+    }
+    locinput = l;
+   }
+   else {
+    /* The target and the pattern have the same utf8ness. */
+    /* Inline the first character, for speed. */
+    if (reginfo->strend - locinput < ln
+     || UCHARAT(s) != nextchr
+     || (ln > 1 && memNE(s, locinput, ln)))
+    {
+     sayNO;
+    }
+    locinput += ln;
+   }
+   break;
+   }
+
+  case EXACTFL: {          /*  /abc/il      */
+   re_fold_t folder;
+   const U8 * fold_array;
+   const char * s;
+   U32 fold_utf8_flags;
+
+   _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+   folder = foldEQ_locale;
+   fold_array = PL_fold_locale;
+   fold_utf8_flags = FOLDEQ_LOCALE;
+   goto do_exactf;
+
+  case EXACTFLU8:           /*  /abc/il; but all 'abc' are above 255, so
+         is effectively /u; hence to match, target
+         must be UTF-8. */
+   if (! utf8_target) {
+    sayNO;
+   }
+   fold_utf8_flags =  FOLDEQ_LOCALE | FOLDEQ_S1_ALREADY_FOLDED
+           | FOLDEQ_S1_FOLDS_SANE;
+   folder = foldEQ_latin1;
+   fold_array = PL_fold_latin1;
+   goto do_exactf;
+
+  case EXACTFU_SS:         /*  /\x{df}/iu   */
+  case EXACTFU:            /*  /abc/iu      */
+   folder = foldEQ_latin1;
+   fold_array = PL_fold_latin1;
+   fold_utf8_flags = is_utf8_pat ? FOLDEQ_S1_ALREADY_FOLDED : 0;
+   goto do_exactf;
+
+  case EXACTFA_NO_TRIE:   /* This node only generated for non-utf8
+        patterns */
+   assert(! is_utf8_pat);
+   /* FALLTHROUGH */
+  case EXACTFA:            /*  /abc/iaa     */
+   folder = foldEQ_latin1;
+   fold_array = PL_fold_latin1;
+   fold_utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+   goto do_exactf;
+
+  case EXACTF:             /*  /abc/i    This node only generated for
+           non-utf8 patterns */
+   assert(! is_utf8_pat);
+   folder = foldEQ;
+   fold_array = PL_fold;
+   fold_utf8_flags = 0;
+
+  do_exactf:
+   s = STRING(scan);
+   ln = STR_LEN(scan);
+
+   if (utf8_target
+    || is_utf8_pat
+    || state_num == EXACTFU_SS
+    || (state_num == EXACTFL && IN_UTF8_CTYPE_LOCALE))
+   {
+   /* Either target or the pattern are utf8, or has the issue where
+   * the fold lengths may differ. */
+    const char * const l = locinput;
+    char *e = reginfo->strend;
+
+    if (! foldEQ_utf8_flags(s, 0,  ln, is_utf8_pat,
+          l, &e, 0,  utf8_target, fold_utf8_flags))
+    {
+     sayNO;
+    }
+    locinput = e;
+    break;
+   }
+
+   /* Neither the target nor the pattern are utf8 */
+   if (UCHARAT(s) != nextchr
+    && !NEXTCHR_IS_EOS
+    && UCHARAT(s) != fold_array[nextchr])
+   {
+    sayNO;
+   }
+   if (reginfo->strend - locinput < ln)
+    sayNO;
+   if (ln > 1 && ! folder(s, locinput, ln))
+    sayNO;
+   locinput += ln;
+   break;
+  }
+
+  case NBOUNDL: /*  /\B/l  */
+   to_complement = 1;
+   /* FALLTHROUGH */
+
+  case BOUNDL:  /*  /\b/l  */
+   _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+
+   if (FLAGS(scan) != TRADITIONAL_BOUND) {
+    if (! IN_UTF8_CTYPE_LOCALE) {
+     Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
+            B_ON_NON_UTF8_LOCALE_IS_WRONG);
+    }
+    goto boundu;
+   }
+
+   if (utf8_target) {
+    if (locinput == reginfo->strbeg)
+     ln = isWORDCHAR_LC('\n');
+    else {
+     ln = isWORDCHAR_LC_utf8(reghop3((U8*)locinput, -1,
+              (U8*)(reginfo->strbeg)));
+    }
+    n = (NEXTCHR_IS_EOS)
+     ? isWORDCHAR_LC('\n')
+     : isWORDCHAR_LC_utf8((U8*)locinput);
+   }
+   else { /* Here the string isn't utf8 */
+    ln = (locinput == reginfo->strbeg)
+     ? isWORDCHAR_LC('\n')
+     : isWORDCHAR_LC(UCHARAT(locinput - 1));
+    n = (NEXTCHR_IS_EOS)
+     ? isWORDCHAR_LC('\n')
+     : isWORDCHAR_LC(nextchr);
+   }
+   if (to_complement ^ (ln == n)) {
+    sayNO;
+   }
+   break;
+
+  case NBOUND:  /*  /\B/   */
+   to_complement = 1;
+   /* FALLTHROUGH */
+
+  case BOUND:   /*  /\b/   */
+   if (utf8_target) {
+    goto bound_utf8;
+   }
+   goto bound_ascii_match_only;
+
+  case NBOUNDA: /*  /\B/a  */
+   to_complement = 1;
+   /* FALLTHROUGH */
+
+  case BOUNDA:  /*  /\b/a  */
+
+  bound_ascii_match_only:
+   /* Here the string isn't utf8, or is utf8 and only ascii characters
+   * are to match \w.  In the latter case looking at the byte just
+   * prior to the current one may be just the final byte of a
+   * multi-byte character.  This is ok.  There are two cases:
+   * 1) it is a single byte character, and then the test is doing
+   *    just what it's supposed to.
+   * 2) it is a multi-byte character, in which case the final byte is
+   *    never mistakable for ASCII, and so the test will say it is
+   *    not a word character, which is the correct answer. */
+   ln = (locinput == reginfo->strbeg)
+    ? isWORDCHAR_A('\n')
+    : isWORDCHAR_A(UCHARAT(locinput - 1));
+   n = (NEXTCHR_IS_EOS)
+    ? isWORDCHAR_A('\n')
+    : isWORDCHAR_A(nextchr);
+   if (to_complement ^ (ln == n)) {
+    sayNO;
+   }
+   break;
+
+  case NBOUNDU: /*  /\B/u  */
+   to_complement = 1;
+   /* FALLTHROUGH */
+
+  case BOUNDU:  /*  /\b/u  */
+
+  boundu:
+   if (utf8_target) {
+
+   bound_utf8:
+    switch((bound_type) FLAGS(scan)) {
+     case TRADITIONAL_BOUND:
+      ln = (locinput == reginfo->strbeg)
+       ? 0 /* isWORDCHAR_L1('\n') */
+       : isWORDCHAR_utf8(reghop3((U8*)locinput, -1,
+                (U8*)(reginfo->strbeg)));
+      n = (NEXTCHR_IS_EOS)
+       ? 0 /* isWORDCHAR_L1('\n') */
+       : isWORDCHAR_utf8((U8*)locinput);
+      match = cBOOL(ln != n);
+      break;
+     case GCB_BOUND:
+      if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+       match = TRUE; /* GCB always matches at begin and
+           end */
+      }
+      else {
+       /* Find the gcb values of previous and current
+       * chars, then see if is a break point */
+       match = isGCB(getGCB_VAL_UTF8(
+            reghop3((U8*)locinput,
+              -1,
+              (U8*)(reginfo->strbeg)),
+            (U8*) reginfo->strend),
+          getGCB_VAL_UTF8((U8*) locinput,
+              (U8*) reginfo->strend));
+      }
+      break;
+
+     case SB_BOUND: /* Always matches at begin and end */
+      if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+       match = TRUE;
+      }
+      else {
+       match = isSB(getSB_VAL_UTF8(
+            reghop3((U8*)locinput,
+              -1,
+              (U8*)(reginfo->strbeg)),
+            (U8*) reginfo->strend),
+          getSB_VAL_UTF8((U8*) locinput,
+              (U8*) reginfo->strend),
+          (U8*) reginfo->strbeg,
+          (U8*) locinput,
+          (U8*) reginfo->strend,
+          utf8_target);
+      }
+      break;
+
+     case WB_BOUND:
+      if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+       match = TRUE;
+      }
+      else {
+       match = isWB(WB_UNKNOWN,
+          getWB_VAL_UTF8(
+            reghop3((U8*)locinput,
+              -1,
+              (U8*)(reginfo->strbeg)),
+            (U8*) reginfo->strend),
+          getWB_VAL_UTF8((U8*) locinput,
+              (U8*) reginfo->strend),
+          (U8*) reginfo->strbeg,
+          (U8*) locinput,
+          (U8*) reginfo->strend,
+          utf8_target);
+      }
+      break;
+    }
+   }
+   else {  /* Not utf8 target */
+    switch((bound_type) FLAGS(scan)) {
+     case TRADITIONAL_BOUND:
+      ln = (locinput == reginfo->strbeg)
+       ? 0 /* isWORDCHAR_L1('\n') */
+       : isWORDCHAR_L1(UCHARAT(locinput - 1));
+      n = (NEXTCHR_IS_EOS)
+       ? 0 /* isWORDCHAR_L1('\n') */
+       : isWORDCHAR_L1(nextchr);
+      match = cBOOL(ln != n);
+      break;
+
+     case GCB_BOUND:
+      if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+       match = TRUE; /* GCB always matches at begin and
+           end */
+      }
+      else {  /* Only CR-LF combo isn't a GCB in 0-255
+        range */
+       match =    UCHARAT(locinput - 1) != '\r'
+         || UCHARAT(locinput) != '\n';
+      }
+      break;
+
+     case SB_BOUND: /* Always matches at begin and end */
+      if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+       match = TRUE;
+      }
+      else {
+       match = isSB(getSB_VAL_CP(UCHARAT(locinput -1)),
+          getSB_VAL_CP(UCHARAT(locinput)),
+          (U8*) reginfo->strbeg,
+          (U8*) locinput,
+          (U8*) reginfo->strend,
+          utf8_target);
+      }
+      break;
+
+     case WB_BOUND:
+      if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+       match = TRUE;
+      }
+      else {
+       match = isWB(WB_UNKNOWN,
+          getWB_VAL_CP(UCHARAT(locinput -1)),
+          getWB_VAL_CP(UCHARAT(locinput)),
+          (U8*) reginfo->strbeg,
+          (U8*) locinput,
+          (U8*) reginfo->strend,
+          utf8_target);
+      }
+      break;
+    }
+   }
+
+   if (to_complement ^ ! match) {
+    sayNO;
+   }
+   break;
+
+  case ANYOFL:  /*  /[abc]/l      */
+   _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+   /* FALLTHROUGH */
+  case ANYOF:  /*   /[abc]/       */
+   if (NEXTCHR_IS_EOS)
+    sayNO;
+   if (utf8_target) {
+    if (!reginclass(rex, scan, (U8*)locinput, (U8*)reginfo->strend,
+                utf8_target))
+     sayNO;
+    locinput += UTF8SKIP(locinput);
+   }
+   else {
+    if (!REGINCLASS(rex, scan, (U8*)locinput))
+     sayNO;
+    locinput++;
+   }
+   break;
+
+  /* The argument (FLAGS) to all the POSIX node types is the class number
+  * */
+
+  case NPOSIXL:   /* \W or [:^punct:] etc. under /l */
+   to_complement = 1;
+   /* FALLTHROUGH */
+
+  case POSIXL:    /* \w or [:punct:] etc. under /l */
+   _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+   if (NEXTCHR_IS_EOS)
+    sayNO;
+
+   /* Use isFOO_lc() for characters within Latin1.  (Note that
+   * UTF8_IS_INVARIANT works even on non-UTF-8 strings, or else
+   * wouldn't be invariant) */
+   if (UTF8_IS_INVARIANT(nextchr) || ! utf8_target) {
+    if (! (to_complement ^ cBOOL(isFOO_lc(FLAGS(scan), (U8) nextchr)))) {
+     sayNO;
+    }
+   }
+   else if (UTF8_IS_DOWNGRADEABLE_START(nextchr)) {
+    if (! (to_complement ^ cBOOL(isFOO_lc(FLAGS(scan),
+          (U8) TWO_BYTE_UTF8_TO_NATIVE(nextchr,
+               *(locinput + 1))))))
+    {
+     sayNO;
+    }
+   }
+   else { /* Here, must be an above Latin-1 code point */
+    _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput, reginfo->strend);
+    goto utf8_posix_above_latin1;
+   }
+
+   /* Here, must be utf8 */
+   locinput += UTF8SKIP(locinput);
+   break;
+
+  case NPOSIXD:   /* \W or [:^punct:] etc. under /d */
+   to_complement = 1;
+   /* FALLTHROUGH */
+
+  case POSIXD:    /* \w or [:punct:] etc. under /d */
+   if (utf8_target) {
+    goto utf8_posix;
+   }
+   goto posixa;
+
+  case NPOSIXA:   /* \W or [:^punct:] etc. under /a */
+
+   if (NEXTCHR_IS_EOS) {
+    sayNO;
+   }
+
+   /* All UTF-8 variants match */
+   if (! UTF8_IS_INVARIANT(nextchr)) {
+    goto increment_locinput;
+   }
+
+   to_complement = 1;
+   /* FALLTHROUGH */
+
+  case POSIXA:    /* \w or [:punct:] etc. under /a */
+
+  posixa:
+   /* We get here through POSIXD, NPOSIXD, and NPOSIXA when not in
+   * UTF-8, and also from NPOSIXA even in UTF-8 when the current
+   * character is a single byte */
+
+   if (NEXTCHR_IS_EOS
+    || ! (to_complement ^ cBOOL(_generic_isCC_A(nextchr,
+               FLAGS(scan)))))
+   {
+    sayNO;
+   }
+
+   /* Here we are either not in utf8, or we matched a utf8-invariant,
+   * so the next char is the next byte */
+   locinput++;
+   break;
+
+  case NPOSIXU:   /* \W or [:^punct:] etc. under /u */
+   to_complement = 1;
+   /* FALLTHROUGH */
+
+  case POSIXU:    /* \w or [:punct:] etc. under /u */
+  utf8_posix:
+   if (NEXTCHR_IS_EOS) {
+    sayNO;
+   }
+
+   /* Use _generic_isCC() for characters within Latin1.  (Note that
+   * UTF8_IS_INVARIANT works even on non-UTF-8 strings, or else
+   * wouldn't be invariant) */
+   if (UTF8_IS_INVARIANT(nextchr) || ! utf8_target) {
+    if (! (to_complement ^ cBOOL(_generic_isCC(nextchr,
+              FLAGS(scan)))))
+    {
+     sayNO;
+    }
+    locinput++;
+   }
+   else if (UTF8_IS_DOWNGRADEABLE_START(nextchr)) {
+    if (! (to_complement
+     ^ cBOOL(_generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(nextchr,
+               *(locinput + 1)),
+           FLAGS(scan)))))
+    {
+     sayNO;
+    }
+    locinput += 2;
+   }
+   else {  /* Handle above Latin-1 code points */
+   utf8_posix_above_latin1:
+    classnum = (_char_class_number) FLAGS(scan);
+    if (classnum < _FIRST_NON_SWASH_CC) {
+
+     /* Here, uses a swash to find such code points.  Load if if
+     * not done already */
+     if (! PL_utf8_swash_ptrs[classnum]) {
+      U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+      PL_utf8_swash_ptrs[classnum]
+        = _core_swash_init("utf8",
+          "",
+          &PL_sv_undef, 1, 0,
+          PL_XPosix_ptrs[classnum], &flags);
+     }
+     if (! (to_complement
+      ^ cBOOL(swash_fetch(PL_utf8_swash_ptrs[classnum],
+           (U8 *) locinput, TRUE))))
+     {
+      sayNO;
+     }
+    }
+    else {  /* Here, uses macros to find above Latin-1 code points */
+     switch (classnum) {
+      case _CC_ENUM_SPACE:
+       if (! (to_complement
+          ^ cBOOL(is_XPERLSPACE_high(locinput))))
+       {
+        sayNO;
+       }
+       break;
+      case _CC_ENUM_BLANK:
+       if (! (to_complement
+           ^ cBOOL(is_HORIZWS_high(locinput))))
+       {
+        sayNO;
+       }
+       break;
+      case _CC_ENUM_XDIGIT:
+       if (! (to_complement
+           ^ cBOOL(is_XDIGIT_high(locinput))))
+       {
+        sayNO;
+       }
+       break;
+      case _CC_ENUM_VERTSPACE:
+       if (! (to_complement
+           ^ cBOOL(is_VERTWS_high(locinput))))
+       {
+        sayNO;
+       }
+       break;
+      default:    /* The rest, e.g. [:cntrl:], can't match
+         above Latin1 */
+       if (! to_complement) {
+        sayNO;
+       }
+       break;
+     }
+    }
+    locinput += UTF8SKIP(locinput);
+   }
+   break;
+
+  case CLUMP: /* Match \X: logical Unicode character.  This is defined as
+     a Unicode extended Grapheme Cluster */
+   if (NEXTCHR_IS_EOS)
+    sayNO;
+   if  (! utf8_target) {
+
+    /* Match either CR LF  or '.', as all the other possibilities
+    * require utf8 */
+    locinput++;     /* Match the . or CR */
+    if (nextchr == '\r' /* And if it was CR, and the next is LF,
+         match the LF */
+     && locinput < reginfo->strend
+     && UCHARAT(locinput) == '\n')
+    {
+     locinput++;
+    }
+   }
+   else {
+
+    /* Get the gcb type for the current character */
+    GCB_enum prev_gcb = getGCB_VAL_UTF8((U8*) locinput,
+             (U8*) reginfo->strend);
+
+    /* Then scan through the input until we get to the first
+    * character whose type is supposed to be a gcb with the
+    * current character.  (There is always a break at the
+    * end-of-input) */
+    locinput += UTF8SKIP(locinput);
+    while (locinput < reginfo->strend) {
+     GCB_enum cur_gcb = getGCB_VAL_UTF8((U8*) locinput,
+              (U8*) reginfo->strend);
+     if (isGCB(prev_gcb, cur_gcb)) {
+      break;
+     }
+
+     prev_gcb = cur_gcb;
+     locinput += UTF8SKIP(locinput);
+    }
+
+
+   }
+   break;
+
+  case NREFFL:  /*  /\g{name}/il  */
+  {   /* The capture buffer cases.  The ones beginning with N for the
+   named buffers just convert to the equivalent numbered and
+   pretend they were called as the corresponding numbered buffer
+   op.  */
+   /* don't initialize these in the declaration, it makes C++
+   unhappy */
+   const char *s;
+   char type;
+   re_fold_t folder;
+   const U8 *fold_array;
+   UV utf8_fold_flags;
+
+   _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+   folder = foldEQ_locale;
+   fold_array = PL_fold_locale;
+   type = REFFL;
+   utf8_fold_flags = FOLDEQ_LOCALE;
+   goto do_nref;
+
+  case NREFFA:  /*  /\g{name}/iaa  */
+   folder = foldEQ_latin1;
+   fold_array = PL_fold_latin1;
+   type = REFFA;
+   utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+   goto do_nref;
+
+  case NREFFU:  /*  /\g{name}/iu  */
+   folder = foldEQ_latin1;
+   fold_array = PL_fold_latin1;
+   type = REFFU;
+   utf8_fold_flags = 0;
+   goto do_nref;
+
+  case NREFF:  /*  /\g{name}/i  */
+   folder = foldEQ;
+   fold_array = PL_fold;
+   type = REFF;
+   utf8_fold_flags = 0;
+   goto do_nref;
+
+  case NREF:  /*  /\g{name}/   */
+   type = REF;
+   folder = NULL;
+   fold_array = NULL;
+   utf8_fold_flags = 0;
+  do_nref:
+
+   /* For the named back references, find the corresponding buffer
+   * number */
+   n = reg_check_named_buff_matched(rex,scan);
+
+   if ( ! n ) {
+    sayNO;
+   }
+   goto do_nref_ref_common;
+
+  case REFFL:  /*  /\1/il  */
+   _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+   folder = foldEQ_locale;
+   fold_array = PL_fold_locale;
+   utf8_fold_flags = FOLDEQ_LOCALE;
+   goto do_ref;
+
+  case REFFA:  /*  /\1/iaa  */
+   folder = foldEQ_latin1;
+   fold_array = PL_fold_latin1;
+   utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+   goto do_ref;
+
+  case REFFU:  /*  /\1/iu  */
+   folder = foldEQ_latin1;
+   fold_array = PL_fold_latin1;
+   utf8_fold_flags = 0;
+   goto do_ref;
+
+  case REFF:  /*  /\1/i  */
+   folder = foldEQ;
+   fold_array = PL_fold;
+   utf8_fold_flags = 0;
+   goto do_ref;
+
+  case REF:  /*  /\1/    */
+   folder = NULL;
+   fold_array = NULL;
+   utf8_fold_flags = 0;
+
+  do_ref:
+   type = OP(scan);
+   n = ARG(scan);  /* which paren pair */
+
+  do_nref_ref_common:
+   ln = rex->offs[n].start;
+   reginfo->poscache_iter = reginfo->poscache_maxiter; /* Void cache */
+   if (rex->lastparen < n || ln == -1)
+    sayNO;   /* Do not match unless seen CLOSEn. */
+   if (ln == rex->offs[n].end)
+    break;
+
+   s = reginfo->strbeg + ln;
+   if (type != REF /* REF can do byte comparison */
+    && (utf8_target || type == REFFU || type == REFFL))
+   {
+    char * limit = reginfo->strend;
+
+    /* This call case insensitively compares the entire buffer
+     * at s, with the current input starting at locinput, but
+     * not going off the end given by reginfo->strend, and
+     * returns in <limit> upon success, how much of the
+     * current input was matched */
+    if (! foldEQ_utf8_flags(s, NULL, rex->offs[n].end - ln, utf8_target,
+         locinput, &limit, 0, utf8_target, utf8_fold_flags))
+    {
+     sayNO;
+    }
+    locinput = limit;
+    break;
+   }
+
+   /* Not utf8:  Inline the first character, for speed. */
+   if (!NEXTCHR_IS_EOS &&
+    UCHARAT(s) != nextchr &&
+    (type == REF ||
+    UCHARAT(s) != fold_array[nextchr]))
+    sayNO;
+   ln = rex->offs[n].end - ln;
+   if (locinput + ln > reginfo->strend)
+    sayNO;
+   if (ln > 1 && (type == REF
+      ? memNE(s, locinput, ln)
+      : ! folder(s, locinput, ln)))
+    sayNO;
+   locinput += ln;
+   break;
+  }
+
+  case NOTHING: /* null op; e.g. the 'nothing' following
+     * the '*' in m{(a+|b)*}' */
+   break;
+  case TAIL: /* placeholder while compiling (A|B|C) */
+   break;
+
+#undef  ST
+#define ST st->u.eval
+  {
+   SV *ret;
+   REGEXP *re_sv;
+   regexp *re;
+   regexp_internal *rei;
+   regnode *startpoint;
+
+  case GOSTART: /*  (?R)  */
+  case GOSUB: /*    /(...(?1))/   /(...(?&foo))/   */
+   if (cur_eval && cur_eval->locinput==locinput) {
+    if (cur_eval->u.eval.close_paren == (U32)ARG(scan))
+     Perl_croak(aTHX_ "Infinite recursion in regex");
+    if ( ++nochange_depth > max_nochange_depth )
+     Perl_croak(aTHX_
+      "Pattern subroutine nesting without pos change"
+      " exceeded limit in regex");
+   } else {
+    nochange_depth = 0;
+   }
+   re_sv = rex_sv;
+   re = rex;
+   rei = rexi;
+   if (OP(scan)==GOSUB) {
+    startpoint = scan + ARG2L(scan);
+    ST.close_paren = ARG(scan);
+   } else {
+    startpoint = rei->program+1;
+    ST.close_paren = 0;
+   }
+
+   /* Save all the positions seen so far. */
+   ST.cp = regcppush(rex, 0, maxopenparen);
+   REGCP_SET(ST.lastcp);
+
+   /* and then jump to the code we share with EVAL */
+   goto eval_recurse_doit;
+   /* NOTREACHED */
+
+  case EVAL:  /*   /(?{A})B/   /(??{A})B/  and /(?(?{A})X|Y)B/   */
+   if (cur_eval && cur_eval->locinput==locinput) {
+    if ( ++nochange_depth > max_nochange_depth )
+     Perl_croak(aTHX_ "EVAL without pos change exceeded limit in regex");
+   } else {
+    nochange_depth = 0;
+   }
+   {
+    /* execute the code in the {...} */
+
+    dSP;
+    IV before;
+    OP * const oop = PL_op;
+    COP * const ocurcop = PL_curcop;
+    OP *nop;
+    CV *newcv;
+
+    /* save *all* paren positions */
+    regcppush(rex, 0, maxopenparen);
+    REGCP_SET(runops_cp);
+
+    if (!caller_cv)
+     caller_cv = find_runcv(NULL);
+
+    n = ARG(scan);
+
+    if (rexi->data->what[n] == 'r') { /* code from an external qr */
+     newcv = (ReANY(
+            (REGEXP*)(rexi->data->data[n])
+           ))->qr_anoncv
+          ;
+     nop = (OP*)rexi->data->data[n+1];
+    }
+    else if (rexi->data->what[n] == 'l') { /* literal code */
+     newcv = caller_cv;
+     nop = (OP*)rexi->data->data[n];
+     assert(CvDEPTH(newcv));
+    }
+    else {
+     /* literal with own CV */
+     assert(rexi->data->what[n] == 'L');
+     newcv = rex->qr_anoncv;
+     nop = (OP*)rexi->data->data[n];
+    }
+
+    /* normally if we're about to execute code from the same
+    * CV that we used previously, we just use the existing
+    * CX stack entry. However, its possible that in the
+    * meantime we may have backtracked, popped from the save
+    * stack, and undone the SAVECOMPPAD(s) associated with
+    * PUSH_MULTICALL; in which case PL_comppad no longer
+    * points to newcv's pad. */
+    if (newcv != last_pushed_cv || PL_comppad != last_pad)
+    {
+     U8 flags = (CXp_SUB_RE |
+        ((newcv == caller_cv) ? CXp_SUB_RE_FAKE : 0));
+     if (last_pushed_cv) {
+      CHANGE_MULTICALL_FLAGS(newcv, flags);
+     }
+     else {
+      PUSH_MULTICALL_FLAGS(newcv, flags);
+     }
+     last_pushed_cv = newcv;
+    }
+    else {
+     /* these assignments are just to silence compiler
+     * warnings */
+     multicall_cop = NULL;
+     newsp = NULL;
+    }
+    last_pad = PL_comppad;
+
+    /* the initial nextstate you would normally execute
+    * at the start of an eval (which would cause error
+    * messages to come from the eval), may be optimised
+    * away from the execution path in the regex code blocks;
+    * so manually set PL_curcop to it initially */
+    {
+     OP *o = cUNOPx(nop)->op_first;
+     assert(o->op_type == OP_NULL);
+     if (o->op_targ == OP_SCOPE) {
+      o = cUNOPo->op_first;
+     }
+     else {
+      assert(o->op_targ == OP_LEAVE);
+      o = cUNOPo->op_first;
+      assert(o->op_type == OP_ENTER);
+      o = OpSIBLING(o);
+     }
+
+     if (o->op_type != OP_STUB) {
+      assert(    o->op_type == OP_NEXTSTATE
+        || o->op_type == OP_DBSTATE
+        || (o->op_type == OP_NULL
+         &&  (  o->op_targ == OP_NEXTSTATE
+          || o->op_targ == OP_DBSTATE
+          )
+         )
+      );
+      PL_curcop = (COP*)o;
+     }
+    }
+    nop = nop->op_next;
+
+    DEBUG_STATE_r( PerlIO_printf(Perl_debug_log,
+     "  re EVAL PL_op=0x%"UVxf"\n", PTR2UV(nop)) );
+
+    rex->offs[0].end = locinput - reginfo->strbeg;
+    if (reginfo->info_aux_eval->pos_magic)
+     MgBYTEPOS_set(reginfo->info_aux_eval->pos_magic,
+        reginfo->sv, reginfo->strbeg,
+        locinput - reginfo->strbeg);
+
+    if (sv_yes_mark) {
+     SV *sv_mrk = get_sv("REGMARK", 1);
+     sv_setsv(sv_mrk, sv_yes_mark);
+    }
+
+    /* we don't use MULTICALL here as we want to call the
+    * first op of the block of interest, rather than the
+    * first op of the sub */
+    before = (IV)(SP-PL_stack_base);
+    PL_op = nop;
+    CALLRUNOPS(aTHX);   /* Scalar context. */
+    SPAGAIN;
+    if ((IV)(SP-PL_stack_base) == before)
+     ret = &PL_sv_undef;   /* protect against empty (?{}) blocks. */
+    else {
+     ret = POPs;
+     PUTBACK;
+    }
+
+    /* before restoring everything, evaluate the returned
+    * value, so that 'uninit' warnings don't use the wrong
+    * PL_op or pad. Also need to process any magic vars
+    * (e.g. $1) *before* parentheses are restored */
+
+    PL_op = NULL;
+
+    re_sv = NULL;
+    if (logical == 0)        /*   (?{})/   */
+     sv_setsv(save_scalar(PL_replgv), ret); /* $^R */
+    else if (logical == 1) { /*   /(?(?{...})X|Y)/    */
+     sw = cBOOL(SvTRUE(ret));
+     logical = 0;
+    }
+    else {                   /*  /(??{})  */
+     /*  if its overloaded, let the regex compiler handle
+     *  it; otherwise extract regex, or stringify  */
+     if (SvGMAGICAL(ret))
+      ret = sv_mortalcopy(ret);
+     if (!SvAMAGIC(ret)) {
+      SV *sv = ret;
+      if (SvROK(sv))
+       sv = SvRV(sv);
+      if (SvTYPE(sv) == SVt_REGEXP)
+       re_sv = (REGEXP*) sv;
+      else if (SvSMAGICAL(ret)) {
+       MAGIC *mg = mg_find(ret, PERL_MAGIC_qr);
+       if (mg)
+        re_sv = (REGEXP *) mg->mg_obj;
+      }
+
+      /* force any undef warnings here */
+      if (!re_sv && !SvPOK(ret) && !SvNIOK(ret)) {
+       ret = sv_mortalcopy(ret);
+       (void) SvPV_force_nolen(ret);
+      }
+     }
+
+    }
+
+    /* *** Note that at this point we don't restore
+    * PL_comppad, (or pop the CxSUB) on the assumption it may
+    * be used again soon. This is safe as long as nothing
+    * in the regexp code uses the pad ! */
+    PL_op = oop;
+    PL_curcop = ocurcop;
+    S_regcp_restore(aTHX_ rex, runops_cp, &maxopenparen);
+    PL_curpm = PL_reg_curpm;
+
+    if (logical != 2)
+     break;
+   }
+
+    /* only /(??{})/  from now on */
+    logical = 0;
+    {
+     /* extract RE object from returned value; compiling if
+     * necessary */
+
+     if (re_sv) {
+      re_sv = reg_temp_copy(NULL, re_sv);
+     }
+     else {
+      U32 pm_flags = 0;
+
+      if (SvUTF8(ret) && IN_BYTES) {
+       /* In use 'bytes': make a copy of the octet
+       * sequence, but without the flag on */
+       STRLEN len;
+       const char *const p = SvPV(ret, len);
+       ret = newSVpvn_flags(p, len, SVs_TEMP);
+      }
+      if (rex->intflags & PREGf_USE_RE_EVAL)
+       pm_flags |= PMf_USE_RE_EVAL;
+
+      /* if we got here, it should be an engine which
+      * supports compiling code blocks and stuff */
+      assert(rex->engine && rex->engine->op_comp);
+      assert(!(scan->flags & ~RXf_PMf_COMPILETIME));
+      re_sv = rex->engine->op_comp(aTHX_ &ret, 1, NULL,
+         rex->engine, NULL, NULL,
+         /* copy /msixn etc to inner pattern */
+         ARG2L(scan),
+         pm_flags);
+
+      if (!(SvFLAGS(ret)
+       & (SVs_TEMP | SVs_GMG | SVf_ROK))
+      && (!SvPADTMP(ret) || SvREADONLY(ret))) {
+       /* This isn't a first class regexp. Instead, it's
+       caching a regexp onto an existing, Perl visible
+       scalar.  */
+       sv_magic(ret, MUTABLE_SV(re_sv), PERL_MAGIC_qr, 0, 0);
+      }
+     }
+     SAVEFREESV(re_sv);
+     re = ReANY(re_sv);
+    }
+    RXp_MATCH_COPIED_off(re);
+    re->subbeg = rex->subbeg;
+    re->sublen = rex->sublen;
+    re->suboffset = rex->suboffset;
+    re->subcoffset = rex->subcoffset;
+    re->lastparen = 0;
+    re->lastcloseparen = 0;
+    rei = RXi_GET(re);
+    DEBUG_EXECUTE_r(
+     debug_start_match(re_sv, utf8_target, locinput,
+         reginfo->strend, "Matching embedded");
+    );
+    startpoint = rei->program + 1;
+     ST.close_paren = 0; /* only used for GOSUB */
+    /* Save all the seen positions so far. */
+    ST.cp = regcppush(rex, 0, maxopenparen);
+    REGCP_SET(ST.lastcp);
+    /* and set maxopenparen to 0, since we are starting a "fresh" match */
+    maxopenparen = 0;
+    /* run the pattern returned from (??{...}) */
+
+   eval_recurse_doit: /* Share code with GOSUB below this line
+       * At this point we expect the stack context to be
+       * set up correctly */
+
+    /* invalidate the S-L poscache. We're now executing a
+    * different set of WHILEM ops (and their associated
+    * indexes) against the same string, so the bits in the
+    * cache are meaningless. Setting maxiter to zero forces
+    * the cache to be invalidated and zeroed before reuse.
+    * XXX This is too dramatic a measure. Ideally we should
+    * save the old cache and restore when running the outer
+    * pattern again */
+    reginfo->poscache_maxiter = 0;
+
+    /* the new regexp might have a different is_utf8_pat than we do */
+    is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(re_sv));
+
+    ST.prev_rex = rex_sv;
+    ST.prev_curlyx = cur_curlyx;
+    rex_sv = re_sv;
+    SET_reg_curpm(rex_sv);
+    rex = re;
+    rexi = rei;
+    cur_curlyx = NULL;
+    ST.B = next;
+    ST.prev_eval = cur_eval;
+    cur_eval = st;
+    /* now continue from first node in postoned RE */
+    PUSH_YES_STATE_GOTO(EVAL_AB, startpoint, locinput);
+    /* NOTREACHED */
+    NOT_REACHED; /* NOTREACHED */
+  }
+
+  case EVAL_AB: /* cleanup after a successful (??{A})B */
+   /* note: this is called twice; first after popping B, then A */
+   rex_sv = ST.prev_rex;
+   is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
+   SET_reg_curpm(rex_sv);
+   rex = ReANY(rex_sv);
+   rexi = RXi_GET(rex);
+   {
+    /* preserve $^R across LEAVE's. See Bug 121070. */
+    SV *save_sv= GvSV(PL_replgv);
+    SvREFCNT_inc(save_sv);
+    regcpblow(ST.cp); /* LEAVE in disguise */
+    sv_setsv(GvSV(PL_replgv), save_sv);
+    SvREFCNT_dec(save_sv);
+   }
+   cur_eval = ST.prev_eval;
+   cur_curlyx = ST.prev_curlyx;
+
+   /* Invalidate cache. See "invalidate" comment above. */
+   reginfo->poscache_maxiter = 0;
+   if ( nochange_depth )
+    nochange_depth--;
+   sayYES;
+
+
+  case EVAL_AB_fail: /* unsuccessfully ran A or B in (??{A})B */
+   /* note: this is called twice; first after popping B, then A */
+   rex_sv = ST.prev_rex;
+   is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
+   SET_reg_curpm(rex_sv);
+   rex = ReANY(rex_sv);
+   rexi = RXi_GET(rex);
+
+   REGCP_UNWIND(ST.lastcp);
+   regcppop(rex, &maxopenparen);
+   cur_eval = ST.prev_eval;
+   cur_curlyx = ST.prev_curlyx;
+   /* Invalidate cache. See "invalidate" comment above. */
+   reginfo->poscache_maxiter = 0;
+   if ( nochange_depth )
+    nochange_depth--;
+   sayNO_SILENT;
+#undef ST
+
+  case OPEN: /*  (  */
+   n = ARG(scan);  /* which paren pair */
+   rex->offs[n].start_tmp = locinput - reginfo->strbeg;
+   if (n > maxopenparen)
+    maxopenparen = n;
+   DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+    "rex=0x%"UVxf" offs=0x%"UVxf": \\%"UVuf": set %"IVdf" tmp; maxopenparen=%"UVuf"\n",
+    PTR2UV(rex),
+    PTR2UV(rex->offs),
+    (UV)n,
+    (IV)rex->offs[n].start_tmp,
+    (UV)maxopenparen
+   ));
+   lastopen = n;
+   break;
+
+/* XXX really need to log other places start/end are set too */
+#define CLOSE_CAPTURE \
+ rex->offs[n].start = rex->offs[n].start_tmp; \
+ rex->offs[n].end = locinput - reginfo->strbeg; \
+ DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log, \
+  "rex=0x%"UVxf" offs=0x%"UVxf": \\%"UVuf": set %"IVdf"..%"IVdf"\n", \
+  PTR2UV(rex), \
+  PTR2UV(rex->offs), \
+  (UV)n, \
+  (IV)rex->offs[n].start, \
+  (IV)rex->offs[n].end \
+ ))
+
+  case CLOSE:  /*  )  */
+   n = ARG(scan);  /* which paren pair */
+   CLOSE_CAPTURE;
+   if (n > rex->lastparen)
+    rex->lastparen = n;
+   rex->lastcloseparen = n;
+   if (cur_eval && cur_eval->u.eval.close_paren == n) {
+    goto fake_end;
+   }
+   break;
+
+  case ACCEPT:  /*  (*ACCEPT)  */
+   if (ARG(scan)){
+    regnode *cursor;
+    for (cursor=scan;
+     cursor && OP(cursor)!=END;
+     cursor=regnext(cursor))
+    {
+     if ( OP(cursor)==CLOSE ){
+      n = ARG(cursor);
+      if ( n <= lastopen ) {
+       CLOSE_CAPTURE;
+       if (n > rex->lastparen)
+        rex->lastparen = n;
+       rex->lastcloseparen = n;
+       if ( n == ARG(scan) || (cur_eval &&
+        cur_eval->u.eval.close_paren == n))
+        break;
+      }
+     }
+    }
+   }
+   goto fake_end;
+   /* NOTREACHED */
+
+  case GROUPP:  /*  (?(1))  */
+   n = ARG(scan);  /* which paren pair */
+   sw = cBOOL(rex->lastparen >= n && rex->offs[n].end != -1);
+   break;
+
+  case NGROUPP:  /*  (?(<name>))  */
+   /* reg_check_named_buff_matched returns 0 for no match */
+   sw = cBOOL(0 < reg_check_named_buff_matched(rex,scan));
+   break;
+
+  case INSUBP:   /*  (?(R))  */
+   n = ARG(scan);
+   sw = (cur_eval && (!n || cur_eval->u.eval.close_paren == n));
+   break;
+
+  case DEFINEP:  /*  (?(DEFINE))  */
+   sw = 0;
+   break;
+
+  case IFTHEN:   /*  (?(cond)A|B)  */
+   reginfo->poscache_iter = reginfo->poscache_maxiter; /* Void cache */
+   if (sw)
+    next = NEXTOPER(NEXTOPER(scan));
+   else {
+    next = scan + ARG(scan);
+    if (OP(next) == IFTHEN) /* Fake one. */
+     next = NEXTOPER(NEXTOPER(next));
+   }
+   break;
+
+  case LOGICAL:  /* modifier for EVAL and IFMATCH */
+   logical = scan->flags;
+   break;
+
+/*******************************************************************
+
+The CURLYX/WHILEM pair of ops handle the most generic case of the /A*B/
+pattern, where A and B are subpatterns. (For simple A, CURLYM or
+STAR/PLUS/CURLY/CURLYN are used instead.)
+
+A*B is compiled as <CURLYX><A><WHILEM><B>
+
+On entry to the subpattern, CURLYX is called. This pushes a CURLYX
+state, which contains the current count, initialised to -1. It also sets
+cur_curlyx to point to this state, with any previous value saved in the
+state block.
+
+CURLYX then jumps straight to the WHILEM op, rather than executing A,
+since the pattern may possibly match zero times (i.e. it's a while {} loop
+rather than a do {} while loop).
+
+Each entry to WHILEM represents a successful match of A. The count in the
+CURLYX block is incremented, another WHILEM state is pushed, and execution
+passes to A or B depending on greediness and the current count.
+
+For example, if matching against the string a1a2a3b (where the aN are
+substrings that match /A/), then the match progresses as follows: (the
+pushed states are interspersed with the bits of strings matched so far):
+
+ <CURLYX cnt=-1>
+ <CURLYX cnt=0><WHILEM>
+ <CURLYX cnt=1><WHILEM> a1 <WHILEM>
+ <CURLYX cnt=2><WHILEM> a1 <WHILEM> a2 <WHILEM>
+ <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM>
+ <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM> b
+
+(Contrast this with something like CURLYM, which maintains only a single
+backtrack state:
+
+ <CURLYM cnt=0> a1
+ a1 <CURLYM cnt=1> a2
+ a1 a2 <CURLYM cnt=2> a3
+ a1 a2 a3 <CURLYM cnt=3> b
+)
+
+Each WHILEM state block marks a point to backtrack to upon partial failure
+of A or B, and also contains some minor state data related to that
+iteration.  The CURLYX block, pointed to by cur_curlyx, contains the
+overall state, such as the count, and pointers to the A and B ops.
+
+This is complicated slightly by nested CURLYX/WHILEM's. Since cur_curlyx
+must always point to the *current* CURLYX block, the rules are:
+
+When executing CURLYX, save the old cur_curlyx in the CURLYX state block,
+and set cur_curlyx to point the new block.
+
+When popping the CURLYX block after a successful or unsuccessful match,
+restore the previous cur_curlyx.
+
+When WHILEM is about to execute B, save the current cur_curlyx, and set it
+to the outer one saved in the CURLYX block.
+
+When popping the WHILEM block after a successful or unsuccessful B match,
+restore the previous cur_curlyx.
+
+Here's an example for the pattern (AI* BI)*BO
+I and O refer to inner and outer, C and W refer to CURLYX and WHILEM:
+
+cur_
+curlyx backtrack stack
+------ ---------------
+NULL
+CO     <CO prev=NULL> <WO>
+CI     <CO prev=NULL> <WO> <CI prev=CO> <WI> ai
+CO     <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi
+NULL   <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi <WO prev=CO> bo
+
+At this point the pattern succeeds, and we work back down the stack to
+clean up, restoring as we go:
+
+CO     <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi
+CI     <CO prev=NULL> <WO> <CI prev=CO> <WI> ai
+CO     <CO prev=NULL> <WO>
+NULL
+
+*******************************************************************/
+
+#define ST st->u.curlyx
+
+  case CURLYX:    /* start of /A*B/  (for complex A) */
+  {
+   /* No need to save/restore up to this paren */
+   I32 parenfloor = scan->flags;
+
+   assert(next); /* keep Coverity happy */
+   if (OP(PREVOPER(next)) == NOTHING) /* LONGJMP */
+    next += ARG(next);
+
+   /* XXXX Probably it is better to teach regpush to support
+   parenfloor > maxopenparen ... */
+   if (parenfloor > (I32)rex->lastparen)
+    parenfloor = rex->lastparen; /* Pessimization... */
+
+   ST.prev_curlyx= cur_curlyx;
+   cur_curlyx = st;
+   ST.cp = PL_savestack_ix;
+
+   /* these fields contain the state of the current curly.
+   * they are accessed by subsequent WHILEMs */
+   ST.parenfloor = parenfloor;
+   ST.me = scan;
+   ST.B = next;
+   ST.minmod = minmod;
+   minmod = 0;
+   ST.count = -1; /* this will be updated by WHILEM */
+   ST.lastloc = NULL;  /* this will be updated by WHILEM */
+
+   PUSH_YES_STATE_GOTO(CURLYX_end, PREVOPER(next), locinput);
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+  }
+
+  case CURLYX_end: /* just finished matching all of A*B */
+   cur_curlyx = ST.prev_curlyx;
+   sayYES;
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case CURLYX_end_fail: /* just failed to match all of A*B */
+   regcpblow(ST.cp);
+   cur_curlyx = ST.prev_curlyx;
+   sayNO;
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+
+#undef ST
+#define ST st->u.whilem
+
+  case WHILEM:     /* just matched an A in /A*B/  (for complex A) */
+  {
+   /* see the discussion above about CURLYX/WHILEM */
+   I32 n;
+   int min, max;
+   regnode *A;
+
+   assert(cur_curlyx); /* keep Coverity happy */
+
+   min = ARG1(cur_curlyx->u.curlyx.me);
+   max = ARG2(cur_curlyx->u.curlyx.me);
+   A = NEXTOPER(cur_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS;
+   n = ++cur_curlyx->u.curlyx.count; /* how many A's matched */
+   ST.save_lastloc = cur_curlyx->u.curlyx.lastloc;
+   ST.cache_offset = 0;
+   ST.cache_mask = 0;
+
+
+   DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+    "%*s  whilem: matched %ld out of %d..%d\n",
+    REPORT_CODE_OFF+depth*2, "", (long)n, min, max)
+   );
+
+   /* First just match a string of min A's. */
+
+   if (n < min) {
+    ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
+         maxopenparen);
+    cur_curlyx->u.curlyx.lastloc = locinput;
+    REGCP_SET(ST.lastcp);
+
+    PUSH_STATE_GOTO(WHILEM_A_pre, A, locinput);
+    /* NOTREACHED */
+    NOT_REACHED; /* NOTREACHED */
+   }
+
+   /* If degenerate A matches "", assume A done. */
+
+   if (locinput == cur_curlyx->u.curlyx.lastloc) {
+    DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+    "%*s  whilem: empty match detected, trying continuation...\n",
+    REPORT_CODE_OFF+depth*2, "")
+    );
+    goto do_whilem_B_max;
+   }
+
+   /* super-linear cache processing.
+   *
+   * The idea here is that for certain types of CURLYX/WHILEM -
+   * principally those whose upper bound is infinity (and
+   * excluding regexes that have things like \1 and other very
+   * non-regular expresssiony things), then if a pattern like
+   * /....A*.../ fails and we backtrack to the WHILEM, then we
+   * make a note that this particular WHILEM op was at string
+   * position 47 (say) when the rest of pattern failed. Then, if
+   * we ever find ourselves back at that WHILEM, and at string
+   * position 47 again, we can just fail immediately rather than
+   * running the rest of the pattern again.
+   *
+   * This is very handy when patterns start to go
+   * 'super-linear', like in (a+)*(a+)*(a+)*, where you end up
+   * with a combinatorial explosion of backtracking.
+   *
+   * The cache is implemented as a bit array, with one bit per
+   * string byte position per WHILEM op (up to 16) - so its
+   * between 0.25 and 2x the string size.
+   *
+   * To avoid allocating a poscache buffer every time, we do an
+   * initially countdown; only after we have  executed a WHILEM
+   * op (string-length x #WHILEMs) times do we allocate the
+   * cache.
+   *
+   * The top 4 bits of scan->flags byte say how many different
+   * relevant CURLLYX/WHILEM op pairs there are, while the
+   * bottom 4-bits is the identifying index number of this
+   * WHILEM.
+   */
+
+   if (scan->flags) {
+
+    if (!reginfo->poscache_maxiter) {
+     /* start the countdown: Postpone detection until we
+     * know the match is not *that* much linear. */
+     reginfo->poscache_maxiter
+      =    (reginfo->strend - reginfo->strbeg + 1)
+      * (scan->flags>>4);
+     /* possible overflow for long strings and many CURLYX's */
+     if (reginfo->poscache_maxiter < 0)
+      reginfo->poscache_maxiter = I32_MAX;
+     reginfo->poscache_iter = reginfo->poscache_maxiter;
+    }
+
+    if (reginfo->poscache_iter-- == 0) {
+     /* initialise cache */
+     const SSize_t size = (reginfo->poscache_maxiter + 7)/8;
+     regmatch_info_aux *const aux = reginfo->info_aux;
+     if (aux->poscache) {
+      if ((SSize_t)reginfo->poscache_size < size) {
+       Renew(aux->poscache, size, char);
+       reginfo->poscache_size = size;
+      }
+      Zero(aux->poscache, size, char);
+     }
+     else {
+      reginfo->poscache_size = size;
+      Newxz(aux->poscache, size, char);
+     }
+     DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%swhilem: Detected a super-linear match, switching on caching%s...\n",
+       PL_colors[4], PL_colors[5])
+     );
+    }
+
+    if (reginfo->poscache_iter < 0) {
+     /* have we already failed at this position? */
+     SSize_t offset, mask;
+
+     reginfo->poscache_iter = -1; /* stop eventual underflow */
+     offset  = (scan->flags & 0xf) - 1
+        +   (locinput - reginfo->strbeg)
+        * (scan->flags>>4);
+     mask    = 1 << (offset % 8);
+     offset /= 8;
+     if (reginfo->info_aux->poscache[offset] & mask) {
+      DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+       "%*s  whilem: (cache) already tried at this position...\n",
+       REPORT_CODE_OFF+depth*2, "")
+      );
+      sayNO; /* cache records failure */
+     }
+     ST.cache_offset = offset;
+     ST.cache_mask   = mask;
+    }
+   }
+
+   /* Prefer B over A for minimal matching. */
+
+   if (cur_curlyx->u.curlyx.minmod) {
+    ST.save_curlyx = cur_curlyx;
+    cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
+    ST.cp = regcppush(rex, ST.save_curlyx->u.curlyx.parenfloor,
+       maxopenparen);
+    REGCP_SET(ST.lastcp);
+    PUSH_YES_STATE_GOTO(WHILEM_B_min, ST.save_curlyx->u.curlyx.B,
+         locinput);
+    /* NOTREACHED */
+    NOT_REACHED; /* NOTREACHED */
+   }
+
+   /* Prefer A over B for maximal matching. */
+
+   if (n < max) { /* More greed allowed? */
+    ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
+       maxopenparen);
+    cur_curlyx->u.curlyx.lastloc = locinput;
+    REGCP_SET(ST.lastcp);
+    PUSH_STATE_GOTO(WHILEM_A_max, A, locinput);
+    /* NOTREACHED */
+    NOT_REACHED; /* NOTREACHED */
+   }
+   goto do_whilem_B_max;
+  }
+  /* NOTREACHED */
+  NOT_REACHED; /* NOTREACHED */
+
+  case WHILEM_B_min: /* just matched B in a minimal match */
+  case WHILEM_B_max: /* just matched B in a maximal match */
+   cur_curlyx = ST.save_curlyx;
+   sayYES;
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case WHILEM_B_max_fail: /* just failed to match B in a maximal match */
+   cur_curlyx = ST.save_curlyx;
+   cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
+   cur_curlyx->u.curlyx.count--;
+   CACHEsayNO;
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case WHILEM_A_min_fail: /* just failed to match A in a minimal match */
+   /* FALLTHROUGH */
+  case WHILEM_A_pre_fail: /* just failed to match even minimal A */
+   REGCP_UNWIND(ST.lastcp);
+   regcppop(rex, &maxopenparen);
+   cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
+   cur_curlyx->u.curlyx.count--;
+   CACHEsayNO;
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case WHILEM_A_max_fail: /* just failed to match A in a maximal match */
+   REGCP_UNWIND(ST.lastcp);
+   regcppop(rex, &maxopenparen); /* Restore some previous $<digit>s? */
+   DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+    "%*s  whilem: failed, trying continuation...\n",
+    REPORT_CODE_OFF+depth*2, "")
+   );
+  do_whilem_B_max:
+   if (cur_curlyx->u.curlyx.count >= REG_INFTY
+    && ckWARN(WARN_REGEXP)
+    && !reginfo->warned)
+   {
+    reginfo->warned = TRUE;
+    Perl_warner(aTHX_ packWARN(WARN_REGEXP),
+     "Complex regular subexpression recursion limit (%d) "
+     "exceeded",
+     REG_INFTY - 1);
+   }
+
+   /* now try B */
+   ST.save_curlyx = cur_curlyx;
+   cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
+   PUSH_YES_STATE_GOTO(WHILEM_B_max, ST.save_curlyx->u.curlyx.B,
+        locinput);
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case WHILEM_B_min_fail: /* just failed to match B in a minimal match */
+   cur_curlyx = ST.save_curlyx;
+   REGCP_UNWIND(ST.lastcp);
+   regcppop(rex, &maxopenparen);
+
+   if (cur_curlyx->u.curlyx.count >= /*max*/ARG2(cur_curlyx->u.curlyx.me)) {
+    /* Maximum greed exceeded */
+    if (cur_curlyx->u.curlyx.count >= REG_INFTY
+     && ckWARN(WARN_REGEXP)
+     && !reginfo->warned)
+    {
+     reginfo->warned = TRUE;
+     Perl_warner(aTHX_ packWARN(WARN_REGEXP),
+      "Complex regular subexpression recursion "
+      "limit (%d) exceeded",
+      REG_INFTY - 1);
+    }
+    cur_curlyx->u.curlyx.count--;
+    CACHEsayNO;
+   }
+
+   DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+    "%*s  trying longer...\n", REPORT_CODE_OFF+depth*2, "")
+   );
+   /* Try grabbing another A and see if it helps. */
+   cur_curlyx->u.curlyx.lastloc = locinput;
+   ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
+       maxopenparen);
+   REGCP_SET(ST.lastcp);
+   PUSH_STATE_GOTO(WHILEM_A_min,
+    /*A*/ NEXTOPER(ST.save_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS,
+    locinput);
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+#undef  ST
+#define ST st->u.branch
+
+  case BRANCHJ:     /*  /(...|A|...)/ with long next pointer */
+   next = scan + ARG(scan);
+   if (next == scan)
+    next = NULL;
+   scan = NEXTOPER(scan);
+   /* FALLTHROUGH */
+
+  case BRANCH:     /*  /(...|A|...)/ */
+   scan = NEXTOPER(scan); /* scan now points to inner node */
+   ST.lastparen = rex->lastparen;
+   ST.lastcloseparen = rex->lastcloseparen;
+   ST.next_branch = next;
+   REGCP_SET(ST.cp);
+
+   /* Now go into the branch */
+   if (has_cutgroup) {
+    PUSH_YES_STATE_GOTO(BRANCH_next, scan, locinput);
+   } else {
+    PUSH_STATE_GOTO(BRANCH_next, scan, locinput);
+   }
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case CUTGROUP:  /*  /(*THEN)/  */
+   sv_yes_mark = st->u.mark.mark_name = scan->flags ? NULL :
+    MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+   PUSH_STATE_GOTO(CUTGROUP_next, next, locinput);
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case CUTGROUP_next_fail:
+   do_cutgroup = 1;
+   no_final = 1;
+   if (st->u.mark.mark_name)
+    sv_commit = st->u.mark.mark_name;
+   sayNO;
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case BRANCH_next:
+   sayYES;
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case BRANCH_next_fail: /* that branch failed; try the next, if any */
+   if (do_cutgroup) {
+    do_cutgroup = 0;
+    no_final = 0;
+   }
+   REGCP_UNWIND(ST.cp);
+   UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+   scan = ST.next_branch;
+   /* no more branches? */
+   if (!scan || (OP(scan) != BRANCH && OP(scan) != BRANCHJ)) {
+    DEBUG_EXECUTE_r({
+     PerlIO_printf( Perl_debug_log,
+      "%*s  %sBRANCH failed...%s\n",
+      REPORT_CODE_OFF+depth*2, "",
+      PL_colors[4],
+      PL_colors[5] );
+    });
+    sayNO_SILENT;
+   }
+   continue; /* execute next BRANCH[J] op */
+   /* NOTREACHED */
+
+  case MINMOD: /* next op will be non-greedy, e.g. A*?  */
+   minmod = 1;
+   break;
+
+#undef  ST
+#define ST st->u.curlym
+
+  case CURLYM: /* /A{m,n}B/ where A is fixed-length */
+
+   /* This is an optimisation of CURLYX that enables us to push
+   * only a single backtracking state, no matter how many matches
+   * there are in {m,n}. It relies on the pattern being constant
+   * length, with no parens to influence future backrefs
+   */
+
+   ST.me = scan;
+   scan = NEXTOPER(scan) + NODE_STEP_REGNODE;
+
+   ST.lastparen      = rex->lastparen;
+   ST.lastcloseparen = rex->lastcloseparen;
+
+   /* if paren positive, emulate an OPEN/CLOSE around A */
+   if (ST.me->flags) {
+    U32 paren = ST.me->flags;
+    if (paren > maxopenparen)
+     maxopenparen = paren;
+    scan += NEXT_OFF(scan); /* Skip former OPEN. */
+   }
+   ST.A = scan;
+   ST.B = next;
+   ST.alen = 0;
+   ST.count = 0;
+   ST.minmod = minmod;
+   minmod = 0;
+   ST.c1 = CHRTEST_UNINIT;
+   REGCP_SET(ST.cp);
+
+   if (!(ST.minmod ? ARG1(ST.me) : ARG2(ST.me))) /* min/max */
+    goto curlym_do_B;
+
+  curlym_do_A: /* execute the A in /A{m,n}B/  */
+   PUSH_YES_STATE_GOTO(CURLYM_A, ST.A, locinput); /* match A */
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case CURLYM_A: /* we've just matched an A */
+   ST.count++;
+   /* after first match, determine A's length: u.curlym.alen */
+   if (ST.count == 1) {
+    if (reginfo->is_utf8_target) {
+     char *s = st->locinput;
+     while (s < locinput) {
+      ST.alen++;
+      s += UTF8SKIP(s);
+     }
+    }
+    else {
+     ST.alen = locinput - st->locinput;
+    }
+    if (ST.alen == 0)
+     ST.count = ST.minmod ? ARG1(ST.me) : ARG2(ST.me);
+   }
+   DEBUG_EXECUTE_r(
+    PerlIO_printf(Perl_debug_log,
+      "%*s  CURLYM now matched %"IVdf" times, len=%"IVdf"...\n",
+      (int)(REPORT_CODE_OFF+(depth*2)), "",
+      (IV) ST.count, (IV)ST.alen)
+   );
+
+   if (cur_eval && cur_eval->u.eval.close_paren &&
+    cur_eval->u.eval.close_paren == (U32)ST.me->flags)
+    goto fake_end;
+
+   {
+    I32 max = (ST.minmod ? ARG1(ST.me) : ARG2(ST.me));
+    if ( max == REG_INFTY || ST.count < max )
+     goto curlym_do_A; /* try to match another A */
+   }
+   goto curlym_do_B; /* try to match B */
+
+  case CURLYM_A_fail: /* just failed to match an A */
+   REGCP_UNWIND(ST.cp);
+
+   if (ST.minmod || ST.count < ARG1(ST.me) /* min*/
+    || (cur_eval && cur_eval->u.eval.close_paren &&
+     cur_eval->u.eval.close_paren == (U32)ST.me->flags))
+    sayNO;
+
+  curlym_do_B: /* execute the B in /A{m,n}B/  */
+   if (ST.c1 == CHRTEST_UNINIT) {
+    /* calculate c1 and c2 for possible match of 1st char
+    * following curly */
+    ST.c1 = ST.c2 = CHRTEST_VOID;
+    assert(ST.B);
+    if (HAS_TEXT(ST.B) || JUMPABLE(ST.B)) {
+     regnode *text_node = ST.B;
+     if (! HAS_TEXT(text_node))
+      FIND_NEXT_IMPT(text_node);
+     /* this used to be
+
+      (HAS_TEXT(text_node) && PL_regkind[OP(text_node)] == EXACT)
+
+       But the former is redundant in light of the latter.
+
+       if this changes back then the macro for
+       IS_TEXT and friends need to change.
+     */
+     if (PL_regkind[OP(text_node)] == EXACT) {
+      if (! S_setup_EXACTISH_ST_c1_c2(aTHX_
+      text_node, &ST.c1, ST.c1_utf8, &ST.c2, ST.c2_utf8,
+      reginfo))
+      {
+       sayNO;
+      }
+     }
+    }
+   }
+
+   DEBUG_EXECUTE_r(
+    PerlIO_printf(Perl_debug_log,
+     "%*s  CURLYM trying tail with matches=%"IVdf"...\n",
+     (int)(REPORT_CODE_OFF+(depth*2)),
+     "", (IV)ST.count)
+    );
+   if (! NEXTCHR_IS_EOS && ST.c1 != CHRTEST_VOID) {
+    if (! UTF8_IS_INVARIANT(nextchr) && utf8_target) {
+     if (memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput))
+      && memNE(locinput, ST.c2_utf8, UTF8SKIP(locinput)))
+     {
+      /* simulate B failing */
+      DEBUG_OPTIMISE_r(
+       PerlIO_printf(Perl_debug_log,
+        "%*s  CURLYM Fast bail next target=0x%"UVXf" c1=0x%"UVXf" c2=0x%"UVXf"\n",
+        (int)(REPORT_CODE_OFF+(depth*2)),"",
+        valid_utf8_to_uvchr((U8 *) locinput, NULL),
+        valid_utf8_to_uvchr(ST.c1_utf8, NULL),
+        valid_utf8_to_uvchr(ST.c2_utf8, NULL))
+      );
+      state_num = CURLYM_B_fail;
+      goto reenter_switch;
+     }
+    }
+    else if (nextchr != ST.c1 && nextchr != ST.c2) {
+     /* simulate B failing */
+     DEBUG_OPTIMISE_r(
+      PerlIO_printf(Perl_debug_log,
+       "%*s  CURLYM Fast bail next target=0x%X c1=0x%X c2=0x%X\n",
+       (int)(REPORT_CODE_OFF+(depth*2)),"",
+       (int) nextchr, ST.c1, ST.c2)
+     );
+     state_num = CURLYM_B_fail;
+     goto reenter_switch;
+    }
+   }
+
+   if (ST.me->flags) {
+    /* emulate CLOSE: mark current A as captured */
+    I32 paren = ST.me->flags;
+    if (ST.count) {
+     rex->offs[paren].start
+      = HOPc(locinput, -ST.alen) - reginfo->strbeg;
+     rex->offs[paren].end = locinput - reginfo->strbeg;
+     if ((U32)paren > rex->lastparen)
+      rex->lastparen = paren;
+     rex->lastcloseparen = paren;
+    }
+    else
+     rex->offs[paren].end = -1;
+    if (cur_eval && cur_eval->u.eval.close_paren &&
+     cur_eval->u.eval.close_paren == (U32)ST.me->flags)
+    {
+     if (ST.count)
+      goto fake_end;
+     else
+      sayNO;
+    }
+   }
+
+   PUSH_STATE_GOTO(CURLYM_B, ST.B, locinput); /* match B */
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case CURLYM_B_fail: /* just failed to match a B */
+   REGCP_UNWIND(ST.cp);
+   UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+   if (ST.minmod) {
+    I32 max = ARG2(ST.me);
+    if (max != REG_INFTY && ST.count == max)
+     sayNO;
+    goto curlym_do_A; /* try to match a further A */
+   }
+   /* backtrack one A */
+   if (ST.count == ARG1(ST.me) /* min */)
+    sayNO;
+   ST.count--;
+   SET_locinput(HOPc(locinput, -ST.alen));
+   goto curlym_do_B; /* try to match B */
+
+#undef ST
+#define ST st->u.curly
+
+#define CURLY_SETPAREN(paren, success) \
+ if (paren) { \
+  if (success) { \
+   rex->offs[paren].start = HOPc(locinput, -1) - reginfo->strbeg; \
+   rex->offs[paren].end = locinput - reginfo->strbeg; \
+   if (paren > rex->lastparen) \
+    rex->lastparen = paren; \
+   rex->lastcloseparen = paren; \
+  } \
+  else { \
+   rex->offs[paren].end = -1; \
+   rex->lastparen      = ST.lastparen; \
+   rex->lastcloseparen = ST.lastcloseparen; \
+  } \
+ }
+
+  case STAR:  /*  /A*B/ where A is width 1 char */
+   ST.paren = 0;
+   ST.min = 0;
+   ST.max = REG_INFTY;
+   scan = NEXTOPER(scan);
+   goto repeat;
+
+  case PLUS:  /*  /A+B/ where A is width 1 char */
+   ST.paren = 0;
+   ST.min = 1;
+   ST.max = REG_INFTY;
+   scan = NEXTOPER(scan);
+   goto repeat;
+
+  case CURLYN:  /*  /(A){m,n}B/ where A is width 1 char */
+   ST.paren = scan->flags; /* Which paren to set */
+   ST.lastparen      = rex->lastparen;
+   ST.lastcloseparen = rex->lastcloseparen;
+   if (ST.paren > maxopenparen)
+    maxopenparen = ST.paren;
+   ST.min = ARG1(scan);  /* min to match */
+   ST.max = ARG2(scan);  /* max to match */
+   if (cur_eval && cur_eval->u.eval.close_paren &&
+    cur_eval->u.eval.close_paren == (U32)ST.paren) {
+    ST.min=1;
+    ST.max=1;
+   }
+   scan = regnext(NEXTOPER(scan) + NODE_STEP_REGNODE);
+   goto repeat;
+
+  case CURLY:  /*  /A{m,n}B/ where A is width 1 char */
+   ST.paren = 0;
+   ST.min = ARG1(scan);  /* min to match */
+   ST.max = ARG2(scan);  /* max to match */
+   scan = NEXTOPER(scan) + NODE_STEP_REGNODE;
+  repeat:
+   /*
+   * Lookahead to avoid useless match attempts
+   * when we know what character comes next.
+   *
+   * Used to only do .*x and .*?x, but now it allows
+   * for )'s, ('s and (?{ ... })'s to be in the way
+   * of the quantifier and the EXACT-like node.  -- japhy
+   */
+
+   assert(ST.min <= ST.max);
+   if (! HAS_TEXT(next) && ! JUMPABLE(next)) {
+    ST.c1 = ST.c2 = CHRTEST_VOID;
+   }
+   else {
+    regnode *text_node = next;
+
+    if (! HAS_TEXT(text_node))
+     FIND_NEXT_IMPT(text_node);
+
+    if (! HAS_TEXT(text_node))
+     ST.c1 = ST.c2 = CHRTEST_VOID;
+    else {
+     if ( PL_regkind[OP(text_node)] != EXACT ) {
+      ST.c1 = ST.c2 = CHRTEST_VOID;
+     }
+     else {
+
+     /*  Currently we only get here when
+
+      PL_rekind[OP(text_node)] == EXACT
+
+      if this changes back then the macro for IS_TEXT and
+      friends need to change. */
+      if (! S_setup_EXACTISH_ST_c1_c2(aTHX_
+      text_node, &ST.c1, ST.c1_utf8, &ST.c2, ST.c2_utf8,
+      reginfo))
+      {
+       sayNO;
+      }
+     }
+    }
+   }
+
+   ST.A = scan;
+   ST.B = next;
+   if (minmod) {
+    char *li = locinput;
+    minmod = 0;
+    if (ST.min &&
+      regrepeat(rex, &li, ST.A, reginfo, ST.min, depth)
+       < ST.min)
+     sayNO;
+    SET_locinput(li);
+    ST.count = ST.min;
+    REGCP_SET(ST.cp);
+    if (ST.c1 == CHRTEST_VOID)
+     goto curly_try_B_min;
+
+    ST.oldloc = locinput;
+
+    /* set ST.maxpos to the furthest point along the
+    * string that could possibly match */
+    if  (ST.max == REG_INFTY) {
+     ST.maxpos = reginfo->strend - 1;
+     if (utf8_target)
+      while (UTF8_IS_CONTINUATION(*(U8*)ST.maxpos))
+       ST.maxpos--;
+    }
+    else if (utf8_target) {
+     int m = ST.max - ST.min;
+     for (ST.maxpos = locinput;
+      m >0 && ST.maxpos < reginfo->strend; m--)
+      ST.maxpos += UTF8SKIP(ST.maxpos);
+    }
+    else {
+     ST.maxpos = locinput + ST.max - ST.min;
+     if (ST.maxpos >= reginfo->strend)
+      ST.maxpos = reginfo->strend - 1;
+    }
+    goto curly_try_B_min_known;
+
+   }
+   else {
+    /* avoid taking address of locinput, so it can remain
+    * a register var */
+    char *li = locinput;
+    ST.count = regrepeat(rex, &li, ST.A, reginfo, ST.max, depth);
+    if (ST.count < ST.min)
+     sayNO;
+    SET_locinput(li);
+    if ((ST.count > ST.min)
+     && (PL_regkind[OP(ST.B)] == EOL) && (OP(ST.B) != MEOL))
+    {
+     /* A{m,n} must come at the end of the string, there's
+     * no point in backing off ... */
+     ST.min = ST.count;
+     /* ...except that $ and \Z can match before *and* after
+     newline at the end.  Consider "\n\n" =~ /\n+\Z\n/.
+     We may back off by one in this case. */
+     if (UCHARAT(locinput - 1) == '\n' && OP(ST.B) != EOS)
+      ST.min--;
+    }
+    REGCP_SET(ST.cp);
+    goto curly_try_B_max;
+   }
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case CURLY_B_min_known_fail:
+   /* failed to find B in a non-greedy match where c1,c2 valid */
+
+   REGCP_UNWIND(ST.cp);
+   if (ST.paren) {
+    UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+   }
+   /* Couldn't or didn't -- move forward. */
+   ST.oldloc = locinput;
+   if (utf8_target)
+    locinput += UTF8SKIP(locinput);
+   else
+    locinput++;
+   ST.count++;
+  curly_try_B_min_known:
+   /* find the next place where 'B' could work, then call B */
+   {
+    int n;
+    if (utf8_target) {
+     n = (ST.oldloc == locinput) ? 0 : 1;
+     if (ST.c1 == ST.c2) {
+      /* set n to utf8_distance(oldloc, locinput) */
+      while (locinput <= ST.maxpos
+       && memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput)))
+      {
+       locinput += UTF8SKIP(locinput);
+       n++;
+      }
+     }
+     else {
+      /* set n to utf8_distance(oldloc, locinput) */
+      while (locinput <= ST.maxpos
+       && memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput))
+       && memNE(locinput, ST.c2_utf8, UTF8SKIP(locinput)))
+      {
+       locinput += UTF8SKIP(locinput);
+       n++;
+      }
+     }
+    }
+    else {  /* Not utf8_target */
+     if (ST.c1 == ST.c2) {
+      while (locinput <= ST.maxpos &&
+       UCHARAT(locinput) != ST.c1)
+       locinput++;
+     }
+     else {
+      while (locinput <= ST.maxpos
+       && UCHARAT(locinput) != ST.c1
+       && UCHARAT(locinput) != ST.c2)
+       locinput++;
+     }
+     n = locinput - ST.oldloc;
+    }
+    if (locinput > ST.maxpos)
+     sayNO;
+    if (n) {
+     /* In /a{m,n}b/, ST.oldloc is at "a" x m, locinput is
+     * at b; check that everything between oldloc and
+     * locinput matches */
+     char *li = ST.oldloc;
+     ST.count += n;
+     if (regrepeat(rex, &li, ST.A, reginfo, n, depth) < n)
+      sayNO;
+     assert(n == REG_INFTY || locinput == li);
+    }
+    CURLY_SETPAREN(ST.paren, ST.count);
+    if (cur_eval && cur_eval->u.eval.close_paren &&
+     cur_eval->u.eval.close_paren == (U32)ST.paren) {
+     goto fake_end;
+    }
+    PUSH_STATE_GOTO(CURLY_B_min_known, ST.B, locinput);
+   }
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case CURLY_B_min_fail:
+   /* failed to find B in a non-greedy match where c1,c2 invalid */
+
+   REGCP_UNWIND(ST.cp);
+   if (ST.paren) {
+    UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+   }
+   /* failed -- move forward one */
+   {
+    char *li = locinput;
+    if (!regrepeat(rex, &li, ST.A, reginfo, 1, depth)) {
+     sayNO;
+    }
+    locinput = li;
+   }
+   {
+    ST.count++;
+    if (ST.count <= ST.max || (ST.max == REG_INFTY &&
+      ST.count > 0)) /* count overflow ? */
+    {
+    curly_try_B_min:
+     CURLY_SETPAREN(ST.paren, ST.count);
+     if (cur_eval && cur_eval->u.eval.close_paren &&
+      cur_eval->u.eval.close_paren == (U32)ST.paren) {
+      goto fake_end;
+     }
+     PUSH_STATE_GOTO(CURLY_B_min, ST.B, locinput);
+    }
+   }
+   sayNO;
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  curly_try_B_max:
+   /* a successful greedy match: now try to match B */
+   if (cur_eval && cur_eval->u.eval.close_paren &&
+    cur_eval->u.eval.close_paren == (U32)ST.paren) {
+    goto fake_end;
+   }
+   {
+    bool could_match = locinput < reginfo->strend;
+
+    /* If it could work, try it. */
+    if (ST.c1 != CHRTEST_VOID && could_match) {
+     if (! UTF8_IS_INVARIANT(UCHARAT(locinput)) && utf8_target)
+     {
+      could_match = memEQ(locinput,
+           ST.c1_utf8,
+           UTF8SKIP(locinput))
+         || memEQ(locinput,
+           ST.c2_utf8,
+           UTF8SKIP(locinput));
+     }
+     else {
+      could_match = UCHARAT(locinput) == ST.c1
+         || UCHARAT(locinput) == ST.c2;
+     }
+    }
+    if (ST.c1 == CHRTEST_VOID || could_match) {
+     CURLY_SETPAREN(ST.paren, ST.count);
+     PUSH_STATE_GOTO(CURLY_B_max, ST.B, locinput);
+     /* NOTREACHED */
+     NOT_REACHED; /* NOTREACHED */
+    }
+   }
+   /* FALLTHROUGH */
+
+  case CURLY_B_max_fail:
+   /* failed to find B in a greedy match */
+
+   REGCP_UNWIND(ST.cp);
+   if (ST.paren) {
+    UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+   }
+   /*  back up. */
+   if (--ST.count < ST.min)
+    sayNO;
+   locinput = HOPc(locinput, -1);
+   goto curly_try_B_max;
+
+#undef ST
+
+  case END: /*  last op of main pattern  */
+  fake_end:
+   if (cur_eval) {
+    /* we've just finished A in /(??{A})B/; now continue with B */
+
+    st->u.eval.prev_rex = rex_sv;  /* inner */
+
+    /* Save *all* the positions. */
+    st->u.eval.cp = regcppush(rex, 0, maxopenparen);
+    rex_sv = cur_eval->u.eval.prev_rex;
+    is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
+    SET_reg_curpm(rex_sv);
+    rex = ReANY(rex_sv);
+    rexi = RXi_GET(rex);
+    cur_curlyx = cur_eval->u.eval.prev_curlyx;
+
+    REGCP_SET(st->u.eval.lastcp);
+
+    /* Restore parens of the outer rex without popping the
+    * savestack */
+    S_regcp_restore(aTHX_ rex, cur_eval->u.eval.lastcp,
+          &maxopenparen);
+
+    st->u.eval.prev_eval = cur_eval;
+    cur_eval = cur_eval->u.eval.prev_eval;
+    DEBUG_EXECUTE_r(
+     PerlIO_printf(Perl_debug_log, "%*s  EVAL trying tail ... %"UVxf"\n",
+         REPORT_CODE_OFF+depth*2, "",PTR2UV(cur_eval)););
+    if ( nochange_depth )
+     nochange_depth--;
+
+    PUSH_YES_STATE_GOTO(EVAL_AB, st->u.eval.prev_eval->u.eval.B,
+         locinput); /* match B */
+   }
+
+   if (locinput < reginfo->till) {
+    DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+         "%sMatch possible, but length=%ld is smaller than requested=%ld, failing!%s\n",
+         PL_colors[4],
+         (long)(locinput - startpos),
+         (long)(reginfo->till - startpos),
+         PL_colors[5]));
+
+    sayNO_SILENT;  /* Cannot match: too short. */
+   }
+   sayYES;   /* Success! */
+
+  case SUCCEED: /* successful SUSPEND/UNLESSM/IFMATCH/CURLYM */
+   DEBUG_EXECUTE_r(
+   PerlIO_printf(Perl_debug_log,
+    "%*s  %ssubpattern success...%s\n",
+    REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5]));
+   sayYES;   /* Success! */
+
+#undef  ST
+#define ST st->u.ifmatch
+
+  {
+   char *newstart;
+
+  case SUSPEND: /* (?>A) */
+   ST.wanted = 1;
+   newstart = locinput;
+   goto do_ifmatch;
+
+  case UNLESSM: /* -ve lookaround: (?!A), or with flags, (?<!A) */
+   ST.wanted = 0;
+   goto ifmatch_trivial_fail_test;
+
+  case IFMATCH: /* +ve lookaround: (?=A), or with flags, (?<=A) */
+   ST.wanted = 1;
+  ifmatch_trivial_fail_test:
+   if (scan->flags) {
+    char * const s = HOPBACKc(locinput, scan->flags);
+    if (!s) {
+     /* trivial fail */
+     if (logical) {
+      logical = 0;
+      sw = 1 - cBOOL(ST.wanted);
+     }
+     else if (ST.wanted)
+      sayNO;
+     next = scan + ARG(scan);
+     if (next == scan)
+      next = NULL;
+     break;
+    }
+    newstart = s;
+   }
+   else
+    newstart = locinput;
+
+  do_ifmatch:
+   ST.me = scan;
+   ST.logical = logical;
+   logical = 0; /* XXX: reset state of logical once it has been saved into ST */
+
+   /* execute body of (?...A) */
+   PUSH_YES_STATE_GOTO(IFMATCH_A, NEXTOPER(NEXTOPER(scan)), newstart);
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+  }
+
+  case IFMATCH_A_fail: /* body of (?...A) failed */
+   ST.wanted = !ST.wanted;
+   /* FALLTHROUGH */
+
+  case IFMATCH_A: /* body of (?...A) succeeded */
+   if (ST.logical) {
+    sw = cBOOL(ST.wanted);
+   }
+   else if (!ST.wanted)
+    sayNO;
+
+   if (OP(ST.me) != SUSPEND) {
+    /* restore old position except for (?>...) */
+    locinput = st->locinput;
+   }
+   scan = ST.me + ARG(ST.me);
+   if (scan == ST.me)
+    scan = NULL;
+   continue; /* execute B */
+
+#undef ST
+
+  case LONGJMP: /*  alternative with many branches compiles to
+     * (BRANCHJ; EXACT ...; LONGJMP ) x N */
+   next = scan + ARG(scan);
+   if (next == scan)
+    next = NULL;
+   break;
+
+  case COMMIT:  /*  (*COMMIT)  */
+   reginfo->cutpoint = reginfo->strend;
+   /* FALLTHROUGH */
+
+  case PRUNE:   /*  (*PRUNE)   */
+   if (!scan->flags)
+    sv_yes_mark = sv_commit = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+   PUSH_STATE_GOTO(COMMIT_next, next, locinput);
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case COMMIT_next_fail:
+   no_final = 1;
+   /* FALLTHROUGH */
+
+  case OPFAIL:   /* (*FAIL)  */
+   sayNO;
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+#define ST st->u.mark
+  case MARKPOINT: /*  (*MARK:foo)  */
+   ST.prev_mark = mark_state;
+   ST.mark_name = sv_commit = sv_yes_mark
+    = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+   mark_state = st;
+   ST.mark_loc = locinput;
+   PUSH_YES_STATE_GOTO(MARKPOINT_next, next, locinput);
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case MARKPOINT_next:
+   mark_state = ST.prev_mark;
+   sayYES;
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case MARKPOINT_next_fail:
+   if (popmark && sv_eq(ST.mark_name,popmark))
+   {
+    if (ST.mark_loc > startpoint)
+     reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
+    popmark = NULL; /* we found our mark */
+    sv_commit = ST.mark_name;
+
+    DEBUG_EXECUTE_r({
+      PerlIO_printf(Perl_debug_log,
+       "%*s  %ssetting cutpoint to mark:%"SVf"...%s\n",
+       REPORT_CODE_OFF+depth*2, "",
+       PL_colors[4], SVfARG(sv_commit), PL_colors[5]);
+    });
+   }
+   mark_state = ST.prev_mark;
+   sv_yes_mark = mark_state ?
+    mark_state->u.mark.mark_name : NULL;
+   sayNO;
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+
+  case SKIP:  /*  (*SKIP)  */
+   if (scan->flags) {
+    /* (*SKIP) : if we fail we cut here*/
+    ST.mark_name = NULL;
+    ST.mark_loc = locinput;
+    PUSH_STATE_GOTO(SKIP_next,next, locinput);
+   } else {
+    /* (*SKIP:NAME) : if there is a (*MARK:NAME) fail where it was,
+    otherwise do nothing.  Meaning we need to scan
+    */
+    regmatch_state *cur = mark_state;
+    SV *find = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+
+    while (cur) {
+     if ( sv_eq( cur->u.mark.mark_name,
+        find ) )
+     {
+      ST.mark_name = find;
+      PUSH_STATE_GOTO( SKIP_next, next, locinput);
+     }
+     cur = cur->u.mark.prev_mark;
+    }
+   }
+   /* Didn't find our (*MARK:NAME) so ignore this (*SKIP:NAME) */
+   break;
+
+  case SKIP_next_fail:
+   if (ST.mark_name) {
+    /* (*CUT:NAME) - Set up to search for the name as we
+    collapse the stack*/
+    popmark = ST.mark_name;
+   } else {
+    /* (*CUT) - No name, we cut here.*/
+    if (ST.mark_loc > startpoint)
+     reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
+    /* but we set sv_commit to latest mark_name if there
+    is one so they can test to see how things lead to this
+    cut */
+    if (mark_state)
+     sv_commit=mark_state->u.mark.mark_name;
+   }
+   no_final = 1;
+   sayNO;
+   /* NOTREACHED */
+   NOT_REACHED; /* NOTREACHED */
+#undef ST
+
+  case LNBREAK: /* \R */
+   if ((n=is_LNBREAK_safe(locinput, reginfo->strend, utf8_target))) {
+    locinput += n;
+   } else
+    sayNO;
+   break;
+
+  default:
+   PerlIO_printf(Perl_error_log, "%"UVxf" %d\n",
+      PTR2UV(scan), OP(scan));
+   Perl_croak(aTHX_ "regexp memory corruption");
+
+  /* this is a point to jump to in order to increment
+  * locinput by one character */
+  increment_locinput:
+   assert(!NEXTCHR_IS_EOS);
+   if (utf8_target) {
+    locinput += PL_utf8skip[nextchr];
+    /* locinput is allowed to go 1 char off the end, but not 2+ */
+    if (locinput > reginfo->strend)
+     sayNO;
+   }
+   else
+    locinput++;
+   break;
+
+  } /* end switch */
+
+  /* switch break jumps here */
+  scan = next; /* prepare to execute the next op and ... */
+  continue;    /* ... jump back to the top, reusing st */
+  /* NOTREACHED */
+
+ push_yes_state:
+  /* push a state that backtracks on success */
+  st->u.yes.prev_yes_state = yes_state;
+  yes_state = st;
+  /* FALLTHROUGH */
+ push_state:
+  /* push a new regex state, then continue at scan  */
+  {
+   regmatch_state *newst;
+
+   DEBUG_STACK_r({
+    regmatch_state *cur = st;
+    regmatch_state *curyes = yes_state;
+    int curd = depth;
+    regmatch_slab *slab = PL_regmatch_slab;
+    for (;curd > -1;cur--,curd--) {
+     if (cur < SLAB_FIRST(slab)) {
+      slab = slab->prev;
+      cur = SLAB_LAST(slab);
+     }
+     PerlIO_printf(Perl_error_log, "%*s#%-3d %-10s %s\n",
+      REPORT_CODE_OFF + 2 + depth * 2,"",
+      curd, PL_reg_name[cur->resume_state],
+      (curyes == cur) ? "yes" : ""
+     );
+     if (curyes == cur)
+      curyes = cur->u.yes.prev_yes_state;
+    }
+   } else
+    DEBUG_STATE_pp("push")
+   );
+   depth++;
+   st->locinput = locinput;
+   newst = st+1;
+   if (newst >  SLAB_LAST(PL_regmatch_slab))
+    newst = S_push_slab(aTHX);
+   PL_regmatch_state = newst;
+
+   locinput = pushinput;
+   st = newst;
+   continue;
+   /* NOTREACHED */
+  }
+ }
+
+ /*
+ * We get here only if there's trouble -- normally "case END" is
+ * the terminating point.
+ */
+ Perl_croak(aTHX_ "corrupted regexp pointers");
+ /* NOTREACHED */
+ sayNO;
+ NOT_REACHED; /* NOTREACHED */
+
+  yes:
+ if (yes_state) {
+  /* we have successfully completed a subexpression, but we must now
+  * pop to the state marked by yes_state and continue from there */
+  assert(st != yes_state);
+#ifdef DEBUGGING
+  while (st != yes_state) {
+   st--;
+   if (st < SLAB_FIRST(PL_regmatch_slab)) {
+    PL_regmatch_slab = PL_regmatch_slab->prev;
+    st = SLAB_LAST(PL_regmatch_slab);
+   }
+   DEBUG_STATE_r({
+    if (no_final) {
+     DEBUG_STATE_pp("pop (no final)");
+    } else {
+     DEBUG_STATE_pp("pop (yes)");
+    }
+   });
+   depth--;
+  }
+#else
+  while (yes_state < SLAB_FIRST(PL_regmatch_slab)
+   || yes_state > SLAB_LAST(PL_regmatch_slab))
+  {
+   /* not in this slab, pop slab */
+   depth -= (st - SLAB_FIRST(PL_regmatch_slab) + 1);
+   PL_regmatch_slab = PL_regmatch_slab->prev;
+   st = SLAB_LAST(PL_regmatch_slab);
+  }
+  depth -= (st - yes_state);
+#endif
+  st = yes_state;
+  yes_state = st->u.yes.prev_yes_state;
+  PL_regmatch_state = st;
+
+  if (no_final)
+   locinput= st->locinput;
+  state_num = st->resume_state + no_final;
+  goto reenter_switch;
+ }
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch successful!%s\n",
+      PL_colors[4], PL_colors[5]));
+
+ if (reginfo->info_aux_eval) {
+  /* each successfully executed (?{...}) block does the equivalent of
+  *   local $^R = do {...}
+  * When popping the save stack, all these locals would be undone;
+  * bypass this by setting the outermost saved $^R to the latest
+  * value */
+  /* I dont know if this is needed or works properly now.
+  * see code related to PL_replgv elsewhere in this file.
+  * Yves
+  */
+  if (oreplsv != GvSV(PL_replgv))
+   sv_setsv(oreplsv, GvSV(PL_replgv));
+ }
+ result = 1;
+ goto final_exit;
+
+  no:
+ DEBUG_EXECUTE_r(
+  PerlIO_printf(Perl_debug_log,
+   "%*s  %sfailed...%s\n",
+   REPORT_CODE_OFF+depth*2, "",
+   PL_colors[4], PL_colors[5])
+  );
+
+  no_silent:
+ if (no_final) {
+  if (yes_state) {
+   goto yes;
+  } else {
+   goto final_exit;
+  }
+ }
+ if (depth) {
+  /* there's a previous state to backtrack to */
+  st--;
+  if (st < SLAB_FIRST(PL_regmatch_slab)) {
+   PL_regmatch_slab = PL_regmatch_slab->prev;
+   st = SLAB_LAST(PL_regmatch_slab);
+  }
+  PL_regmatch_state = st;
+  locinput= st->locinput;
+
+  DEBUG_STATE_pp("pop");
+  depth--;
+  if (yes_state == st)
+   yes_state = st->u.yes.prev_yes_state;
+
+  state_num = st->resume_state + 1; /* failure = success + 1 */
+  goto reenter_switch;
+ }
+ result = 0;
+
+  final_exit:
+ if (rex->intflags & PREGf_VERBARG_SEEN) {
+  SV *sv_err = get_sv("REGERROR", 1);
+  SV *sv_mrk = get_sv("REGMARK", 1);
+  if (result) {
+   sv_commit = &PL_sv_no;
+   if (!sv_yes_mark)
+    sv_yes_mark = &PL_sv_yes;
+  } else {
+   if (!sv_commit)
+    sv_commit = &PL_sv_yes;
+   sv_yes_mark = &PL_sv_no;
+  }
+  assert(sv_err);
+  assert(sv_mrk);
+  sv_setsv(sv_err, sv_commit);
+  sv_setsv(sv_mrk, sv_yes_mark);
+ }
+
+
+ if (last_pushed_cv) {
+  dSP;
+  POP_MULTICALL;
+  PERL_UNUSED_VAR(SP);
+ }
+
+ assert(!result ||  locinput - reginfo->strbeg >= 0);
+ return result ?  locinput - reginfo->strbeg : -1;
+}
+
+/*
+ - regrepeat - repeatedly match something simple, report how many
+ *
+ * What 'simple' means is a node which can be the operand of a quantifier like
+ * '+', or {1,3}
+ *
+ * startposp - pointer a pointer to the start position.  This is updated
+ *             to point to the byte following the highest successful
+ *             match.
+ * p         - the regnode to be repeatedly matched against.
+ * reginfo   - struct holding match state, such as strend
+ * max       - maximum number of things to match.
+ * depth     - (for debugging) backtracking depth.
+ */
+STATIC I32
+S_regrepeat(pTHX_ regexp *prog, char **startposp, const regnode *p,
+   regmatch_info *const reginfo, I32 max, int depth)
+{
+ char *scan;     /* Pointer to current position in target string */
+ I32 c;
+ char *loceol = reginfo->strend;   /* local version */
+ I32 hardcount = 0;  /* How many matches so far */
+ bool utf8_target = reginfo->is_utf8_target;
+ unsigned int to_complement = 0;  /* Invert the result? */
+ UV utf8_flags;
+ _char_class_number classnum;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ PERL_ARGS_ASSERT_REGREPEAT;
+
+ scan = *startposp;
+ if (max == REG_INFTY)
+  max = I32_MAX;
+ else if (! utf8_target && loceol - scan > max)
+  loceol = scan + max;
+
+ /* Here, for the case of a non-UTF-8 target we have adjusted <loceol> down
+ * to the maximum of how far we should go in it (leaving it set to the real
+ * end, if the maximum permissible would take us beyond that).  This allows
+ * us to make the loop exit condition that we haven't gone past <loceol> to
+ * also mean that we haven't exceeded the max permissible count, saving a
+ * test each time through the loop.  But it assumes that the OP matches a
+ * single byte, which is true for most of the OPs below when applied to a
+ * non-UTF-8 target.  Those relatively few OPs that don't have this
+ * characteristic will have to compensate.
+ *
+ * There is no adjustment for UTF-8 targets, as the number of bytes per
+ * character varies.  OPs will have to test both that the count is less
+ * than the max permissible (using <hardcount> to keep track), and that we
+ * are still within the bounds of the string (using <loceol>.  A few OPs
+ * match a single byte no matter what the encoding.  They can omit the max
+ * test if, for the UTF-8 case, they do the adjustment that was skipped
+ * above.
+ *
+ * Thus, the code above sets things up for the common case; and exceptional
+ * cases need extra work; the common case is to make sure <scan> doesn't
+ * go past <loceol>, and for UTF-8 to also use <hardcount> to make sure the
+ * count doesn't exceed the maximum permissible */
+
+ switch (OP(p)) {
+ case REG_ANY:
+  if (utf8_target) {
+   while (scan < loceol && hardcount < max && *scan != '\n') {
+    scan += UTF8SKIP(scan);
+    hardcount++;
+   }
+  } else {
+   while (scan < loceol && *scan != '\n')
+    scan++;
+  }
+  break;
+ case SANY:
+  if (utf8_target) {
+   while (scan < loceol && hardcount < max) {
+    scan += UTF8SKIP(scan);
+    hardcount++;
+   }
+  }
+  else
+   scan = loceol;
+  break;
+ case EXACTL:
+  _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+  if (utf8_target && UTF8_IS_ABOVE_LATIN1(*scan)) {
+   _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(scan, loceol);
+  }
+  /* FALLTHROUGH */
+ case EXACT:
+  assert(STR_LEN(p) == reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1);
+
+  c = (U8)*STRING(p);
+
+  /* Can use a simple loop if the pattern char to match on is invariant
+  * under UTF-8, or both target and pattern aren't UTF-8.  Note that we
+  * can use UTF8_IS_INVARIANT() even if the pattern isn't UTF-8, as it's
+  * true iff it doesn't matter if the argument is in UTF-8 or not */
+  if (UTF8_IS_INVARIANT(c) || (! utf8_target && ! reginfo->is_utf8_pat)) {
+   if (utf8_target && loceol - scan > max) {
+    /* We didn't adjust <loceol> because is UTF-8, but ok to do so,
+    * since here, to match at all, 1 char == 1 byte */
+    loceol = scan + max;
+   }
+   while (scan < loceol && UCHARAT(scan) == c) {
+    scan++;
+   }
+  }
+  else if (reginfo->is_utf8_pat) {
+   if (utf8_target) {
+    STRLEN scan_char_len;
+
+    /* When both target and pattern are UTF-8, we have to do
+    * string EQ */
+    while (hardcount < max
+     && scan < loceol
+     && (scan_char_len = UTF8SKIP(scan)) <= STR_LEN(p)
+     && memEQ(scan, STRING(p), scan_char_len))
+    {
+     scan += scan_char_len;
+     hardcount++;
+    }
+   }
+   else if (! UTF8_IS_ABOVE_LATIN1(c)) {
+
+    /* Target isn't utf8; convert the character in the UTF-8
+    * pattern to non-UTF8, and do a simple loop */
+    c = TWO_BYTE_UTF8_TO_NATIVE(c, *(STRING(p) + 1));
+    while (scan < loceol && UCHARAT(scan) == c) {
+     scan++;
+    }
+   } /* else pattern char is above Latin1, can't possibly match the
+    non-UTF-8 target */
+  }
+  else {
+
+   /* Here, the string must be utf8; pattern isn't, and <c> is
+   * different in utf8 than not, so can't compare them directly.
+   * Outside the loop, find the two utf8 bytes that represent c, and
+   * then look for those in sequence in the utf8 string */
+   U8 high = UTF8_TWO_BYTE_HI(c);
+   U8 low = UTF8_TWO_BYTE_LO(c);
+
+   while (hardcount < max
+     && scan + 1 < loceol
+     && UCHARAT(scan) == high
+     && UCHARAT(scan + 1) == low)
+   {
+    scan += 2;
+    hardcount++;
+   }
+  }
+  break;
+
+ case EXACTFA_NO_TRIE:   /* This node only generated for non-utf8 patterns */
+  assert(! reginfo->is_utf8_pat);
+  /* FALLTHROUGH */
+ case EXACTFA:
+  utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+  goto do_exactf;
+
+ case EXACTFL:
+  _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+  utf8_flags = FOLDEQ_LOCALE;
+  goto do_exactf;
+
+ case EXACTF:   /* This node only generated for non-utf8 patterns */
+  assert(! reginfo->is_utf8_pat);
+  utf8_flags = 0;
+  goto do_exactf;
+
+ case EXACTFLU8:
+  if (! utf8_target) {
+   break;
+  }
+  utf8_flags =  FOLDEQ_LOCALE | FOLDEQ_S2_ALREADY_FOLDED
+         | FOLDEQ_S2_FOLDS_SANE;
+  goto do_exactf;
+
+ case EXACTFU_SS:
+ case EXACTFU:
+  utf8_flags = reginfo->is_utf8_pat ? FOLDEQ_S2_ALREADY_FOLDED : 0;
+
+ do_exactf: {
+  int c1, c2;
+  U8 c1_utf8[UTF8_MAXBYTES+1], c2_utf8[UTF8_MAXBYTES+1];
+
+  assert(STR_LEN(p) == reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1);
+
+  if (S_setup_EXACTISH_ST_c1_c2(aTHX_ p, &c1, c1_utf8, &c2, c2_utf8,
+          reginfo))
+  {
+   if (c1 == CHRTEST_VOID) {
+    /* Use full Unicode fold matching */
+    char *tmpeol = reginfo->strend;
+    STRLEN pat_len = reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1;
+    while (hardcount < max
+      && foldEQ_utf8_flags(scan, &tmpeol, 0, utf8_target,
+           STRING(p), NULL, pat_len,
+           reginfo->is_utf8_pat, utf8_flags))
+    {
+     scan = tmpeol;
+     tmpeol = reginfo->strend;
+     hardcount++;
+    }
+   }
+   else if (utf8_target) {
+    if (c1 == c2) {
+     while (scan < loceol
+      && hardcount < max
+      && memEQ(scan, c1_utf8, UTF8SKIP(scan)))
+     {
+      scan += UTF8SKIP(scan);
+      hardcount++;
+     }
+    }
+    else {
+     while (scan < loceol
+      && hardcount < max
+      && (memEQ(scan, c1_utf8, UTF8SKIP(scan))
+       || memEQ(scan, c2_utf8, UTF8SKIP(scan))))
+     {
+      scan += UTF8SKIP(scan);
+      hardcount++;
+     }
+    }
+   }
+   else if (c1 == c2) {
+    while (scan < loceol && UCHARAT(scan) == c1) {
+     scan++;
+    }
+   }
+   else {
+    while (scan < loceol &&
+     (UCHARAT(scan) == c1 || UCHARAT(scan) == c2))
+    {
+     scan++;
+    }
+   }
+  }
+  break;
+ }
+ case ANYOFL:
+  _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+  /* FALLTHROUGH */
+ case ANYOF:
+  if (utf8_target) {
+   while (hardcount < max
+    && scan < loceol
+    && reginclass(prog, p, (U8*)scan, (U8*) loceol, utf8_target))
+   {
+    scan += UTF8SKIP(scan);
+    hardcount++;
+   }
+  } else {
+   while (scan < loceol && REGINCLASS(prog, p, (U8*)scan))
+    scan++;
+  }
+  break;
+
+ /* The argument (FLAGS) to all the POSIX node types is the class number */
+
+ case NPOSIXL:
+  to_complement = 1;
+  /* FALLTHROUGH */
+
+ case POSIXL:
+  _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+  if (! utf8_target) {
+   while (scan < loceol && to_complement ^ cBOOL(isFOO_lc(FLAGS(p),
+                *scan)))
+   {
+    scan++;
+   }
+  } else {
+   while (hardcount < max && scan < loceol
+    && to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(p),
+                (U8 *) scan)))
+   {
+    scan += UTF8SKIP(scan);
+    hardcount++;
+   }
+  }
+  break;
+
+ case POSIXD:
+  if (utf8_target) {
+   goto utf8_posix;
+  }
+  /* FALLTHROUGH */
+
+ case POSIXA:
+  if (utf8_target && loceol - scan > max) {
+
+   /* We didn't adjust <loceol> at the beginning of this routine
+   * because is UTF-8, but it is actually ok to do so, since here, to
+   * match, 1 char == 1 byte. */
+   loceol = scan + max;
+  }
+  while (scan < loceol && _generic_isCC_A((U8) *scan, FLAGS(p))) {
+   scan++;
+  }
+  break;
+
+ case NPOSIXD:
+  if (utf8_target) {
+   to_complement = 1;
+   goto utf8_posix;
+  }
+  /* FALLTHROUGH */
+
+ case NPOSIXA:
+  if (! utf8_target) {
+   while (scan < loceol && ! _generic_isCC_A((U8) *scan, FLAGS(p))) {
+    scan++;
+   }
+  }
+  else {
+
+   /* The complement of something that matches only ASCII matches all
+   * non-ASCII, plus everything in ASCII that isn't in the class. */
+   while (hardcount < max && scan < loceol
+    && (! isASCII_utf8(scan)
+     || ! _generic_isCC_A((U8) *scan, FLAGS(p))))
+   {
+    scan += UTF8SKIP(scan);
+    hardcount++;
+   }
+  }
+  break;
+
+ case NPOSIXU:
+  to_complement = 1;
+  /* FALLTHROUGH */
+
+ case POSIXU:
+  if (! utf8_target) {
+   while (scan < loceol && to_complement
+        ^ cBOOL(_generic_isCC((U8) *scan, FLAGS(p))))
+   {
+    scan++;
+   }
+  }
+  else {
+  utf8_posix:
+   classnum = (_char_class_number) FLAGS(p);
+   if (classnum < _FIRST_NON_SWASH_CC) {
+
+    /* Here, a swash is needed for above-Latin1 code points.
+    * Process as many Latin1 code points using the built-in rules.
+    * Go to another loop to finish processing upon encountering
+    * the first Latin1 code point.  We could do that in this loop
+    * as well, but the other way saves having to test if the swash
+    * has been loaded every time through the loop: extra space to
+    * save a test. */
+    while (hardcount < max && scan < loceol) {
+     if (UTF8_IS_INVARIANT(*scan)) {
+      if (! (to_complement ^ cBOOL(_generic_isCC((U8) *scan,
+                classnum))))
+      {
+       break;
+      }
+      scan++;
+     }
+     else if (UTF8_IS_DOWNGRADEABLE_START(*scan)) {
+      if (! (to_complement
+       ^ cBOOL(_generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(*scan,
+                 *(scan + 1)),
+             classnum))))
+      {
+       break;
+      }
+      scan += 2;
+     }
+     else {
+      goto found_above_latin1;
+     }
+
+     hardcount++;
+    }
+   }
+   else {
+    /* For these character classes, the knowledge of how to handle
+    * every code point is compiled in to Perl via a macro.  This
+    * code is written for making the loops as tight as possible.
+    * It could be refactored to save space instead */
+    switch (classnum) {
+     case _CC_ENUM_SPACE:
+      while (hardcount < max
+       && scan < loceol
+       && (to_complement ^ cBOOL(isSPACE_utf8(scan))))
+      {
+       scan += UTF8SKIP(scan);
+       hardcount++;
+      }
+      break;
+     case _CC_ENUM_BLANK:
+      while (hardcount < max
+       && scan < loceol
+       && (to_complement ^ cBOOL(isBLANK_utf8(scan))))
+      {
+       scan += UTF8SKIP(scan);
+       hardcount++;
+      }
+      break;
+     case _CC_ENUM_XDIGIT:
+      while (hardcount < max
+       && scan < loceol
+       && (to_complement ^ cBOOL(isXDIGIT_utf8(scan))))
+      {
+       scan += UTF8SKIP(scan);
+       hardcount++;
+      }
+      break;
+     case _CC_ENUM_VERTSPACE:
+      while (hardcount < max
+       && scan < loceol
+       && (to_complement ^ cBOOL(isVERTWS_utf8(scan))))
+      {
+       scan += UTF8SKIP(scan);
+       hardcount++;
+      }
+      break;
+     case _CC_ENUM_CNTRL:
+      while (hardcount < max
+       && scan < loceol
+       && (to_complement ^ cBOOL(isCNTRL_utf8(scan))))
+      {
+       scan += UTF8SKIP(scan);
+       hardcount++;
+      }
+      break;
+     default:
+      Perl_croak(aTHX_ "panic: regrepeat() node %d='%s' has an unexpected character class '%d'", OP(p), PL_reg_name[OP(p)], classnum);
+    }
+   }
+  }
+  break;
+
+ found_above_latin1:   /* Continuation of POSIXU and NPOSIXU */
+
+  /* Load the swash if not already present */
+  if (! PL_utf8_swash_ptrs[classnum]) {
+   U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+   PL_utf8_swash_ptrs[classnum] = _core_swash_init(
+          "utf8",
+          "",
+          &PL_sv_undef, 1, 0,
+          PL_XPosix_ptrs[classnum], &flags);
+  }
+
+  while (hardcount < max && scan < loceol
+   && to_complement ^ cBOOL(_generic_utf8(
+         classnum,
+         scan,
+         swash_fetch(PL_utf8_swash_ptrs[classnum],
+            (U8 *) scan,
+            TRUE))))
+  {
+   scan += UTF8SKIP(scan);
+   hardcount++;
+  }
+  break;
+
+ case LNBREAK:
+  if (utf8_target) {
+   while (hardcount < max && scan < loceol &&
+     (c=is_LNBREAK_utf8_safe(scan, loceol))) {
+    scan += c;
+    hardcount++;
+   }
+  } else {
+   /* LNBREAK can match one or two latin chars, which is ok, but we
+   * have to use hardcount in this situation, and throw away the
+   * adjustment to <loceol> done before the switch statement */
+   loceol = reginfo->strend;
+   while (scan < loceol && (c=is_LNBREAK_latin1_safe(scan, loceol))) {
+    scan+=c;
+    hardcount++;
+   }
+  }
+  break;
+
+ case BOUNDL:
+ case NBOUNDL:
+  _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+  /* FALLTHROUGH */
+ case BOUND:
+ case BOUNDA:
+ case BOUNDU:
+ case EOS:
+ case GPOS:
+ case KEEPS:
+ case NBOUND:
+ case NBOUNDA:
+ case NBOUNDU:
+ case OPFAIL:
+ case SBOL:
+ case SEOL:
+  /* These are all 0 width, so match right here or not at all. */
+  break;
+
+ default:
+  Perl_croak(aTHX_ "panic: regrepeat() called with unrecognized node type %d='%s'", OP(p), PL_reg_name[OP(p)]);
+  /* NOTREACHED */
+  NOT_REACHED; /* NOTREACHED */
+
+ }
+
+ if (hardcount)
+  c = hardcount;
+ else
+  c = scan - *startposp;
+ *startposp = scan;
+
+ DEBUG_r({
+  GET_RE_DEBUG_FLAGS_DECL;
+  DEBUG_EXECUTE_r({
+   SV * const prop = sv_newmortal();
+   regprop(prog, prop, p, reginfo, NULL);
+   PerlIO_printf(Perl_debug_log,
+      "%*s  %s can match %"IVdf" times out of %"IVdf"...\n",
+      REPORT_CODE_OFF + depth*2, "", SvPVX_const(prop),(IV)c,(IV)max);
+  });
+ });
+
+ return(c);
+}
+
+
+#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
+/*
+- regclass_swash - prepare the utf8 swash.  Wraps the shared core version to
+create a copy so that changes the caller makes won't change the shared one.
+If <altsvp> is non-null, will return NULL in it, for back-compat.
+ */
+SV *
+Perl_regclass_swash(pTHX_ const regexp *prog, const regnode* node, bool doinit, SV** listsvp, SV **altsvp)
+{
+ PERL_ARGS_ASSERT_REGCLASS_SWASH;
+
+ if (altsvp) {
+  *altsvp = NULL;
+ }
+
+ return newSVsv(_get_regclass_nonbitmap_data(prog, node, doinit, listsvp, NULL, NULL));
+}
+
+#endif /* !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION) */
+
+/*
+ - reginclass - determine if a character falls into a character class
+
+  n is the ANYOF-type regnode
+  p is the target string
+  p_end points to one byte beyond the end of the target string
+  utf8_target tells whether p is in UTF-8.
+
+  Returns true if matched; false otherwise.
+
+  Note that this can be a synthetic start class, a combination of various
+  nodes, so things you think might be mutually exclusive, such as locale,
+  aren't.  It can match both locale and non-locale
+
+ */
+
+STATIC bool
+S_reginclass(pTHX_ regexp * const prog, const regnode * const n, const U8* const p, const U8* const p_end, const bool utf8_target)
+{
+ dVAR;
+ const char flags = ANYOF_FLAGS(n);
+ bool match = FALSE;
+ UV c = *p;
+
+ PERL_ARGS_ASSERT_REGINCLASS;
+
+ /* If c is not already the code point, get it.  Note that
+ * UTF8_IS_INVARIANT() works even if not in UTF-8 */
+ if (! UTF8_IS_INVARIANT(c) && utf8_target) {
+  STRLEN c_len = 0;
+  c = utf8n_to_uvchr(p, p_end - p, &c_len,
+    (UTF8_ALLOW_DEFAULT & UTF8_ALLOW_ANYUV)
+    | UTF8_ALLOW_FFFF | UTF8_CHECK_ONLY);
+    /* see [perl #37836] for UTF8_ALLOW_ANYUV; [perl #38293] for
+    * UTF8_ALLOW_FFFF */
+  if (c_len == (STRLEN)-1)
+   Perl_croak(aTHX_ "Malformed UTF-8 character (fatal)");
+  if (c > 255 && OP(n) == ANYOFL && ! is_ANYOF_SYNTHETIC(n)) {
+   _CHECK_AND_OUTPUT_WIDE_LOCALE_CP_MSG(c);
+  }
+ }
+
+ /* If this character is potentially in the bitmap, check it */
+ if (c < NUM_ANYOF_CODE_POINTS) {
+  if (ANYOF_BITMAP_TEST(n, c))
+   match = TRUE;
+  else if ((flags & ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII)
+    && ! utf8_target
+    && ! isASCII(c))
+  {
+   match = TRUE;
+  }
+  else if (flags & ANYOF_LOCALE_FLAGS) {
+   if ((flags & ANYOF_LOC_FOLD)
+    && c < 256
+    && ANYOF_BITMAP_TEST(n, PL_fold_locale[c]))
+   {
+    match = TRUE;
+   }
+   else if (ANYOF_POSIXL_TEST_ANY_SET(n)
+     && c < 256
+   ) {
+
+    /* The data structure is arranged so bits 0, 2, 4, ... are set
+    * if the class includes the Posix character class given by
+    * bit/2; and 1, 3, 5, ... are set if the class includes the
+    * complemented Posix class given by int(bit/2).  So we loop
+    * through the bits, each time changing whether we complement
+    * the result or not.  Suppose for the sake of illustration
+    * that bits 0-3 mean respectively, \w, \W, \s, \S.  If bit 0
+    * is set, it means there is a match for this ANYOF node if the
+    * character is in the class given by the expression (0 / 2 = 0
+    * = \w).  If it is in that class, isFOO_lc() will return 1,
+    * and since 'to_complement' is 0, the result will stay TRUE,
+    * and we exit the loop.  Suppose instead that bit 0 is 0, but
+    * bit 1 is 1.  That means there is a match if the character
+    * matches \W.  We won't bother to call isFOO_lc() on bit 0,
+    * but will on bit 1.  On the second iteration 'to_complement'
+    * will be 1, so the exclusive or will reverse things, so we
+    * are testing for \W.  On the third iteration, 'to_complement'
+    * will be 0, and we would be testing for \s; the fourth
+    * iteration would test for \S, etc.
+    *
+    * Note that this code assumes that all the classes are closed
+    * under folding.  For example, if a character matches \w, then
+    * its fold does too; and vice versa.  This should be true for
+    * any well-behaved locale for all the currently defined Posix
+    * classes, except for :lower: and :upper:, which are handled
+    * by the pseudo-class :cased: which matches if either of the
+    * other two does.  To get rid of this assumption, an outer
+    * loop could be used below to iterate over both the source
+    * character, and its fold (if different) */
+
+    int count = 0;
+    int to_complement = 0;
+
+    while (count < ANYOF_MAX) {
+     if (ANYOF_POSIXL_TEST(n, count)
+      && to_complement ^ cBOOL(isFOO_lc(count/2, (U8) c)))
+     {
+      match = TRUE;
+      break;
+     }
+     count++;
+     to_complement ^= 1;
+    }
+   }
+  }
+ }
+
+
+ /* If the bitmap didn't (or couldn't) match, and something outside the
+ * bitmap could match, try that. */
+ if (!match) {
+  if (c >= NUM_ANYOF_CODE_POINTS
+   && (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP))
+  {
+   match = TRUE; /* Everything above the bitmap matches */
+  }
+  else if ((flags & ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES)
+    || (utf8_target && (flags & ANYOF_HAS_UTF8_NONBITMAP_MATCHES))
+    || ((flags & ANYOF_LOC_FOLD)
+     && IN_UTF8_CTYPE_LOCALE
+     && ARG(n) != ANYOF_ONLY_HAS_BITMAP))
+  {
+   SV* only_utf8_locale = NULL;
+   SV * const sw = _get_regclass_nonbitmap_data(prog, n, TRUE, 0,
+             &only_utf8_locale, NULL);
+   if (sw) {
+    U8 utf8_buffer[2];
+    U8 * utf8_p;
+    if (utf8_target) {
+     utf8_p = (U8 *) p;
+    } else { /* Convert to utf8 */
+     utf8_p = utf8_buffer;
+     append_utf8_from_native_byte(*p, &utf8_p);
+     utf8_p = utf8_buffer;
+    }
+
+    if (swash_fetch(sw, utf8_p, TRUE)) {
+     match = TRUE;
+    }
+   }
+   if (! match && only_utf8_locale && IN_UTF8_CTYPE_LOCALE) {
+    match = _invlist_contains_cp(only_utf8_locale, c);
+   }
+  }
+
+  if (UNICODE_IS_SUPER(c)
+   && (flags & ANYOF_WARN_SUPER)
+   && ckWARN_d(WARN_NON_UNICODE))
+  {
+   Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
+    "Matched non-Unicode code point 0x%04"UVXf" against Unicode property; may not be portable", c);
+  }
+ }
+
+#if ANYOF_INVERT != 1
+ /* Depending on compiler optimization cBOOL takes time, so if don't have to
+ * use it, don't */
+#   error ANYOF_INVERT needs to be set to 1, or guarded with cBOOL below,
+#endif
+
+ /* The xor complements the return if to invert: 1^1 = 0, 1^0 = 1 */
+ return (flags & ANYOF_INVERT) ^ match;
+}
+
+STATIC U8 *
+S_reghop3(U8 *s, SSize_t off, const U8* lim)
+{
+ /* return the position 'off' UTF-8 characters away from 's', forward if
+ * 'off' >= 0, backwards if negative.  But don't go outside of position
+ * 'lim', which better be < s  if off < 0 */
+
+ PERL_ARGS_ASSERT_REGHOP3;
+
+ if (off >= 0) {
+  while (off-- && s < lim) {
+   /* XXX could check well-formedness here */
+   s += UTF8SKIP(s);
+  }
+ }
+ else {
+  while (off++ && s > lim) {
+   s--;
+   if (UTF8_IS_CONTINUED(*s)) {
+    while (s > lim && UTF8_IS_CONTINUATION(*s))
+     s--;
+   }
+   /* XXX could check well-formedness here */
+  }
+ }
+ return s;
+}
+
+STATIC U8 *
+S_reghop4(U8 *s, SSize_t off, const U8* llim, const U8* rlim)
+{
+ PERL_ARGS_ASSERT_REGHOP4;
+
+ if (off >= 0) {
+  while (off-- && s < rlim) {
+   /* XXX could check well-formedness here */
+   s += UTF8SKIP(s);
+  }
+ }
+ else {
+  while (off++ && s > llim) {
+   s--;
+   if (UTF8_IS_CONTINUED(*s)) {
+    while (s > llim && UTF8_IS_CONTINUATION(*s))
+     s--;
+   }
+   /* XXX could check well-formedness here */
+  }
+ }
+ return s;
+}
+
+/* like reghop3, but returns NULL on overrun, rather than returning last
+ * char pos */
+
+STATIC U8 *
+S_reghopmaybe3(U8* s, SSize_t off, const U8* lim)
+{
+ PERL_ARGS_ASSERT_REGHOPMAYBE3;
+
+ if (off >= 0) {
+  while (off-- && s < lim) {
+   /* XXX could check well-formedness here */
+   s += UTF8SKIP(s);
+  }
+  if (off >= 0)
+   return NULL;
+ }
+ else {
+  while (off++ && s > lim) {
+   s--;
+   if (UTF8_IS_CONTINUED(*s)) {
+    while (s > lim && UTF8_IS_CONTINUATION(*s))
+     s--;
+   }
+   /* XXX could check well-formedness here */
+  }
+  if (off <= 0)
+   return NULL;
+ }
+ return s;
+}
+
+
+/* when executing a regex that may have (?{}), extra stuff needs setting
+   up that will be visible to the called code, even before the current
+   match has finished. In particular:
+
+   * $_ is localised to the SV currently being matched;
+   * pos($_) is created if necessary, ready to be updated on each call-out
+ to code;
+   * a fake PMOP is created that can be set to PL_curpm (normally PL_curpm
+ isn't set until the current pattern is successfully finished), so that
+ $1 etc of the match-so-far can be seen;
+   * save the old values of subbeg etc of the current regex, and  set then
+ to the current string (again, this is normally only done at the end
+ of execution)
+*/
+
+static void
+S_setup_eval_state(pTHX_ regmatch_info *const reginfo)
+{
+ MAGIC *mg;
+ regexp *const rex = ReANY(reginfo->prog);
+ regmatch_info_aux_eval *eval_state = reginfo->info_aux_eval;
+
+ eval_state->rex = rex;
+
+ if (reginfo->sv) {
+  /* Make $_ available to executed code. */
+  if (reginfo->sv != DEFSV) {
+   SAVE_DEFSV;
+   DEFSV_set(reginfo->sv);
+  }
+
+  if (!(mg = mg_find_mglob(reginfo->sv))) {
+   /* prepare for quick setting of pos */
+   mg = sv_magicext_mglob(reginfo->sv);
+   mg->mg_len = -1;
+  }
+  eval_state->pos_magic = mg;
+  eval_state->pos       = mg->mg_len;
+  eval_state->pos_flags = mg->mg_flags;
+ }
+ else
+  eval_state->pos_magic = NULL;
+
+ if (!PL_reg_curpm) {
+  /* PL_reg_curpm is a fake PMOP that we can attach the current
+  * regex to and point PL_curpm at, so that $1 et al are visible
+  * within a /(?{})/. It's just allocated once per interpreter the
+  * first time its needed */
+  Newxz(PL_reg_curpm, 1, PMOP);
+#ifdef USE_ITHREADS
+  {
+   SV* const repointer = &PL_sv_undef;
+   /* this regexp is also owned by the new PL_reg_curpm, which
+   will try to free it.  */
+   av_push(PL_regex_padav, repointer);
+   PL_reg_curpm->op_pmoffset = av_tindex(PL_regex_padav);
+   PL_regex_pad = AvARRAY(PL_regex_padav);
+  }
+#endif
+ }
+ SET_reg_curpm(reginfo->prog);
+ eval_state->curpm = PL_curpm;
+ PL_curpm = PL_reg_curpm;
+ if (RXp_MATCH_COPIED(rex)) {
+  /*  Here is a serious problem: we cannot rewrite subbeg,
+   since it may be needed if this match fails.  Thus
+   $` inside (?{}) could fail... */
+  eval_state->subbeg     = rex->subbeg;
+  eval_state->sublen     = rex->sublen;
+  eval_state->suboffset  = rex->suboffset;
+  eval_state->subcoffset = rex->subcoffset;
+#ifdef PERL_ANY_COW
+  eval_state->saved_copy = rex->saved_copy;
+#endif
+  RXp_MATCH_COPIED_off(rex);
+ }
+ else
+  eval_state->subbeg = NULL;
+ rex->subbeg = (char *)reginfo->strbeg;
+ rex->suboffset = 0;
+ rex->subcoffset = 0;
+ rex->sublen = reginfo->strend - reginfo->strbeg;
+}
+
+
+/* destructor to clear up regmatch_info_aux and regmatch_info_aux_eval */
+
+static void
+S_cleanup_regmatch_info_aux(pTHX_ void *arg)
+{
+ regmatch_info_aux *aux = (regmatch_info_aux *) arg;
+ regmatch_info_aux_eval *eval_state =  aux->info_aux_eval;
+ regmatch_slab *s;
+
+ Safefree(aux->poscache);
+
+ if (eval_state) {
+
+  /* undo the effects of S_setup_eval_state() */
+
+  if (eval_state->subbeg) {
+   regexp * const rex = eval_state->rex;
+   rex->subbeg     = eval_state->subbeg;
+   rex->sublen     = eval_state->sublen;
+   rex->suboffset  = eval_state->suboffset;
+   rex->subcoffset = eval_state->subcoffset;
+#ifdef PERL_ANY_COW
+   rex->saved_copy = eval_state->saved_copy;
+#endif
+   RXp_MATCH_COPIED_on(rex);
+  }
+  if (eval_state->pos_magic)
+  {
+   eval_state->pos_magic->mg_len = eval_state->pos;
+   eval_state->pos_magic->mg_flags =
+    (eval_state->pos_magic->mg_flags & ~MGf_BYTES)
+   | (eval_state->pos_flags & MGf_BYTES);
+  }
+
+  PL_curpm = eval_state->curpm;
+ }
+
+ PL_regmatch_state = aux->old_regmatch_state;
+ PL_regmatch_slab  = aux->old_regmatch_slab;
+
+ /* free all slabs above current one - this must be the last action
+ * of this function, as aux and eval_state are allocated within
+ * slabs and may be freed here */
+
+ s = PL_regmatch_slab->next;
+ if (s) {
+  PL_regmatch_slab->next = NULL;
+  while (s) {
+   regmatch_slab * const osl = s;
+   s = s->next;
+   Safefree(osl);
+  }
+ }
+}
+
+
+STATIC void
+S_to_utf8_substr(pTHX_ regexp *prog)
+{
+ /* Converts substr fields in prog from bytes to UTF-8, calling fbm_compile
+ * on the converted value */
+
+ int i = 1;
+
+ PERL_ARGS_ASSERT_TO_UTF8_SUBSTR;
+
+ do {
+  if (prog->substrs->data[i].substr
+   && !prog->substrs->data[i].utf8_substr) {
+   SV* const sv = newSVsv(prog->substrs->data[i].substr);
+   prog->substrs->data[i].utf8_substr = sv;
+   sv_utf8_upgrade(sv);
+   if (SvVALID(prog->substrs->data[i].substr)) {
+    if (SvTAIL(prog->substrs->data[i].substr)) {
+     /* Trim the trailing \n that fbm_compile added last
+     time.  */
+     SvCUR_set(sv, SvCUR(sv) - 1);
+     /* Whilst this makes the SV technically "invalid" (as its
+     buffer is no longer followed by "\0") when fbm_compile()
+     adds the "\n" back, a "\0" is restored.  */
+     fbm_compile(sv, FBMcf_TAIL);
+    } else
+     fbm_compile(sv, 0);
+   }
+   if (prog->substrs->data[i].substr == prog->check_substr)
+    prog->check_utf8 = sv;
+  }
+ } while (i--);
+}
+
+STATIC bool
+S_to_byte_substr(pTHX_ regexp *prog)
+{
+ /* Converts substr fields in prog from UTF-8 to bytes, calling fbm_compile
+ * on the converted value; returns FALSE if can't be converted. */
+
+ int i = 1;
+
+ PERL_ARGS_ASSERT_TO_BYTE_SUBSTR;
+
+ do {
+  if (prog->substrs->data[i].utf8_substr
+   && !prog->substrs->data[i].substr) {
+   SV* sv = newSVsv(prog->substrs->data[i].utf8_substr);
+   if (! sv_utf8_downgrade(sv, TRUE)) {
+    return FALSE;
+   }
+   if (SvVALID(prog->substrs->data[i].utf8_substr)) {
+    if (SvTAIL(prog->substrs->data[i].utf8_substr)) {
+     /* Trim the trailing \n that fbm_compile added last
+      time.  */
+     SvCUR_set(sv, SvCUR(sv) - 1);
+     fbm_compile(sv, FBMcf_TAIL);
+    } else
+     fbm_compile(sv, 0);
+   }
+   prog->substrs->data[i].substr = sv;
+   if (prog->substrs->data[i].utf8_substr == prog->check_utf8)
+    prog->check_substr = sv;
+  }
+ } while (i--);
+
+ return TRUE;
+}
+
+/*
+ * ex: set ts=8 sts=4 sw=4 et:
+ */