5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
84 extern const struct regexp_engine my_reg_engine;
89 #include "dquote_static.c"
90 #include "charclass_invlists.h"
91 #include "inline_invlist.c"
92 #include "unicode_constants.h"
94 #define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
95 #define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
96 #define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
103 # if defined(BUGGY_MSC6)
104 /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
105 # pragma optimize("a",off)
106 /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
107 # pragma optimize("w",on )
108 # endif /* BUGGY_MSC6 */
112 #define STATIC static
116 typedef struct RExC_state_t {
117 U32 flags; /* RXf_* are we folding, multilining? */
118 U32 pm_flags; /* PMf_* stuff from the calling PMOP */
119 char *precomp; /* uncompiled string. */
120 REGEXP *rx_sv; /* The SV that is the regexp. */
121 regexp *rx; /* perl core regexp structure */
122 regexp_internal *rxi; /* internal data for regexp object pprivate field */
123 char *start; /* Start of input for compile */
124 char *end; /* End of input for compile */
125 char *parse; /* Input-scan pointer. */
126 I32 whilem_seen; /* number of WHILEM in this expr */
127 regnode *emit_start; /* Start of emitted-code area */
128 regnode *emit_bound; /* First regnode outside of the allocated space */
129 regnode *emit; /* Code-emit pointer; ®dummy = don't = compiling */
130 I32 naughty; /* How bad is this pattern? */
131 I32 sawback; /* Did we see \1, ...? */
133 I32 size; /* Code size. */
134 I32 npar; /* Capture buffer count, (OPEN). */
135 I32 cpar; /* Capture buffer count, (CLOSE). */
136 I32 nestroot; /* root parens we are in - used by accept */
139 regnode **open_parens; /* pointers to open parens */
140 regnode **close_parens; /* pointers to close parens */
141 regnode *opend; /* END node in program */
142 I32 utf8; /* whether the pattern is utf8 or not */
143 I32 orig_utf8; /* whether the pattern was originally in utf8 */
144 /* XXX use this for future optimisation of case
145 * where pattern must be upgraded to utf8. */
146 I32 uni_semantics; /* If a d charset modifier should use unicode
147 rules, even if the pattern is not in
149 HV *paren_names; /* Paren names */
151 regnode **recurse; /* Recurse regops */
152 I32 recurse_count; /* Number of recurse regops */
155 I32 override_recoding;
156 I32 in_multi_char_class;
157 struct reg_code_block *code_blocks; /* positions of literal (?{})
159 int num_code_blocks; /* size of code_blocks[] */
160 int code_index; /* next code_blocks[] slot */
162 char *starttry; /* -Dr: where regtry was called. */
163 #define RExC_starttry (pRExC_state->starttry)
165 SV *runtime_code_qr; /* qr with the runtime code blocks */
167 const char *lastparse;
169 AV *paren_name_list; /* idx -> name */
170 #define RExC_lastparse (pRExC_state->lastparse)
171 #define RExC_lastnum (pRExC_state->lastnum)
172 #define RExC_paren_name_list (pRExC_state->paren_name_list)
176 #define RExC_flags (pRExC_state->flags)
177 #define RExC_pm_flags (pRExC_state->pm_flags)
178 #define RExC_precomp (pRExC_state->precomp)
179 #define RExC_rx_sv (pRExC_state->rx_sv)
180 #define RExC_rx (pRExC_state->rx)
181 #define RExC_rxi (pRExC_state->rxi)
182 #define RExC_start (pRExC_state->start)
183 #define RExC_end (pRExC_state->end)
184 #define RExC_parse (pRExC_state->parse)
185 #define RExC_whilem_seen (pRExC_state->whilem_seen)
186 #ifdef RE_TRACK_PATTERN_OFFSETS
187 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */
189 #define RExC_emit (pRExC_state->emit)
190 #define RExC_emit_start (pRExC_state->emit_start)
191 #define RExC_emit_bound (pRExC_state->emit_bound)
192 #define RExC_naughty (pRExC_state->naughty)
193 #define RExC_sawback (pRExC_state->sawback)
194 #define RExC_seen (pRExC_state->seen)
195 #define RExC_size (pRExC_state->size)
196 #define RExC_npar (pRExC_state->npar)
197 #define RExC_nestroot (pRExC_state->nestroot)
198 #define RExC_extralen (pRExC_state->extralen)
199 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
200 #define RExC_utf8 (pRExC_state->utf8)
201 #define RExC_uni_semantics (pRExC_state->uni_semantics)
202 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
203 #define RExC_open_parens (pRExC_state->open_parens)
204 #define RExC_close_parens (pRExC_state->close_parens)
205 #define RExC_opend (pRExC_state->opend)
206 #define RExC_paren_names (pRExC_state->paren_names)
207 #define RExC_recurse (pRExC_state->recurse)
208 #define RExC_recurse_count (pRExC_state->recurse_count)
209 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
210 #define RExC_contains_locale (pRExC_state->contains_locale)
211 #define RExC_override_recoding (pRExC_state->override_recoding)
212 #define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
215 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
216 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
217 ((*s) == '{' && regcurly(s, FALSE)))
220 #undef SPSTART /* dratted cpp namespace... */
223 * Flags to be passed up and down.
225 #define WORST 0 /* Worst case. */
226 #define HASWIDTH 0x01 /* Known to match non-null strings. */
228 /* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
229 * character. (There needs to be a case: in the switch statement in regexec.c
230 * for any node marked SIMPLE.) Note that this is not the same thing as
233 #define SPSTART 0x04 /* Starts with * or + */
234 #define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
235 #define TRYAGAIN 0x10 /* Weeded out a declaration. */
236 #define RESTART_UTF8 0x20 /* Restart, need to calcuate sizes as UTF-8 */
238 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
240 /* whether trie related optimizations are enabled */
241 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
242 #define TRIE_STUDY_OPT
243 #define FULL_TRIE_STUDY
249 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
250 #define PBITVAL(paren) (1 << ((paren) & 7))
251 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
252 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
253 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
255 #define REQUIRE_UTF8 STMT_START { \
257 *flagp = RESTART_UTF8; \
262 /* This converts the named class defined in regcomp.h to its equivalent class
263 * number defined in handy.h. */
264 #define namedclass_to_classnum(class) ((int) ((class) / 2))
265 #define classnum_to_namedclass(classnum) ((classnum) * 2)
267 /* About scan_data_t.
269 During optimisation we recurse through the regexp program performing
270 various inplace (keyhole style) optimisations. In addition study_chunk
271 and scan_commit populate this data structure with information about
272 what strings MUST appear in the pattern. We look for the longest
273 string that must appear at a fixed location, and we look for the
274 longest string that may appear at a floating location. So for instance
279 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
280 strings (because they follow a .* construct). study_chunk will identify
281 both FOO and BAR as being the longest fixed and floating strings respectively.
283 The strings can be composites, for instance
287 will result in a composite fixed substring 'foo'.
289 For each string some basic information is maintained:
291 - offset or min_offset
292 This is the position the string must appear at, or not before.
293 It also implicitly (when combined with minlenp) tells us how many
294 characters must match before the string we are searching for.
295 Likewise when combined with minlenp and the length of the string it
296 tells us how many characters must appear after the string we have
300 Only used for floating strings. This is the rightmost point that
301 the string can appear at. If set to I32 max it indicates that the
302 string can occur infinitely far to the right.
305 A pointer to the minimum number of characters of the pattern that the
306 string was found inside. This is important as in the case of positive
307 lookahead or positive lookbehind we can have multiple patterns
312 The minimum length of the pattern overall is 3, the minimum length
313 of the lookahead part is 3, but the minimum length of the part that
314 will actually match is 1. So 'FOO's minimum length is 3, but the
315 minimum length for the F is 1. This is important as the minimum length
316 is used to determine offsets in front of and behind the string being
317 looked for. Since strings can be composites this is the length of the
318 pattern at the time it was committed with a scan_commit. Note that
319 the length is calculated by study_chunk, so that the minimum lengths
320 are not known until the full pattern has been compiled, thus the
321 pointer to the value.
325 In the case of lookbehind the string being searched for can be
326 offset past the start point of the final matching string.
327 If this value was just blithely removed from the min_offset it would
328 invalidate some of the calculations for how many chars must match
329 before or after (as they are derived from min_offset and minlen and
330 the length of the string being searched for).
331 When the final pattern is compiled and the data is moved from the
332 scan_data_t structure into the regexp structure the information
333 about lookbehind is factored in, with the information that would
334 have been lost precalculated in the end_shift field for the
337 The fields pos_min and pos_delta are used to store the minimum offset
338 and the delta to the maximum offset at the current point in the pattern.
342 typedef struct scan_data_t {
343 /*I32 len_min; unused */
344 /*I32 len_delta; unused */
348 I32 last_end; /* min value, <0 unless valid. */
351 SV **longest; /* Either &l_fixed, or &l_float. */
352 SV *longest_fixed; /* longest fixed string found in pattern */
353 I32 offset_fixed; /* offset where it starts */
354 I32 *minlen_fixed; /* pointer to the minlen relevant to the string */
355 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
356 SV *longest_float; /* longest floating string found in pattern */
357 I32 offset_float_min; /* earliest point in string it can appear */
358 I32 offset_float_max; /* latest point in string it can appear */
359 I32 *minlen_float; /* pointer to the minlen relevant to the string */
360 I32 lookbehind_float; /* is the position of the string modified by LB */
364 struct regnode_charclass_class *start_class;
368 * Forward declarations for pregcomp()'s friends.
371 static const scan_data_t zero_scan_data =
372 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
374 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
375 #define SF_BEFORE_SEOL 0x0001
376 #define SF_BEFORE_MEOL 0x0002
377 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
378 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
381 # define SF_FIX_SHIFT_EOL (0+2)
382 # define SF_FL_SHIFT_EOL (0+4)
384 # define SF_FIX_SHIFT_EOL (+2)
385 # define SF_FL_SHIFT_EOL (+4)
388 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
389 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
391 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
392 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
393 #define SF_IS_INF 0x0040
394 #define SF_HAS_PAR 0x0080
395 #define SF_IN_PAR 0x0100
396 #define SF_HAS_EVAL 0x0200
397 #define SCF_DO_SUBSTR 0x0400
398 #define SCF_DO_STCLASS_AND 0x0800
399 #define SCF_DO_STCLASS_OR 0x1000
400 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
401 #define SCF_WHILEM_VISITED_POS 0x2000
403 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
404 #define SCF_SEEN_ACCEPT 0x8000
406 #define UTF cBOOL(RExC_utf8)
408 /* The enums for all these are ordered so things work out correctly */
409 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
410 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_DEPENDS_CHARSET)
411 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
412 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) >= REGEX_UNICODE_CHARSET)
413 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_RESTRICTED_CHARSET)
414 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) >= REGEX_ASCII_RESTRICTED_CHARSET)
415 #define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
417 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
419 #define OOB_NAMEDCLASS -1
421 /* There is no code point that is out-of-bounds, so this is problematic. But
422 * its only current use is to initialize a variable that is always set before
424 #define OOB_UNICODE 0xDEADBEEF
426 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
427 #define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
430 /* length of regex to show in messages that don't mark a position within */
431 #define RegexLengthToShowInErrorMessages 127
434 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
435 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
436 * op/pragma/warn/regcomp.
438 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
439 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
441 #define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
444 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
445 * arg. Show regex, up to a maximum length. If it's too long, chop and add
448 #define _FAIL(code) STMT_START { \
449 const char *ellipses = ""; \
450 IV len = RExC_end - RExC_precomp; \
453 SAVEFREESV(RExC_rx_sv); \
454 if (len > RegexLengthToShowInErrorMessages) { \
455 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
456 len = RegexLengthToShowInErrorMessages - 10; \
462 #define FAIL(msg) _FAIL( \
463 Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \
464 msg, (int)len, RExC_precomp, ellipses))
466 #define FAIL2(msg,arg) _FAIL( \
467 Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \
468 arg, (int)len, RExC_precomp, ellipses))
471 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
473 #define Simple_vFAIL(m) STMT_START { \
474 const IV offset = RExC_parse - RExC_precomp; \
475 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
476 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
480 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
482 #define vFAIL(m) STMT_START { \
484 SAVEFREESV(RExC_rx_sv); \
489 * Like Simple_vFAIL(), but accepts two arguments.
491 #define Simple_vFAIL2(m,a1) STMT_START { \
492 const IV offset = RExC_parse - RExC_precomp; \
493 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \
494 (int)offset, RExC_precomp, RExC_precomp + offset); \
498 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
500 #define vFAIL2(m,a1) STMT_START { \
502 SAVEFREESV(RExC_rx_sv); \
503 Simple_vFAIL2(m, a1); \
508 * Like Simple_vFAIL(), but accepts three arguments.
510 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
511 const IV offset = RExC_parse - RExC_precomp; \
512 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \
513 (int)offset, RExC_precomp, RExC_precomp + offset); \
517 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
519 #define vFAIL3(m,a1,a2) STMT_START { \
521 SAVEFREESV(RExC_rx_sv); \
522 Simple_vFAIL3(m, a1, a2); \
526 * Like Simple_vFAIL(), but accepts four arguments.
528 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
529 const IV offset = RExC_parse - RExC_precomp; \
530 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \
531 (int)offset, RExC_precomp, RExC_precomp + offset); \
534 #define vFAIL4(m,a1,a2,a3) STMT_START { \
536 SAVEFREESV(RExC_rx_sv); \
537 Simple_vFAIL4(m, a1, a2, a3); \
540 /* m is not necessarily a "literal string", in this macro */
541 #define reg_warn_non_literal_string(loc, m) STMT_START { \
542 const IV offset = loc - RExC_precomp; \
543 Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s" REPORT_LOCATION, \
544 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
547 #define ckWARNreg(loc,m) STMT_START { \
548 const IV offset = loc - RExC_precomp; \
549 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
550 (int)offset, RExC_precomp, RExC_precomp + offset); \
553 #define vWARN_dep(loc, m) STMT_START { \
554 const IV offset = loc - RExC_precomp; \
555 Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), m REPORT_LOCATION, \
556 (int)offset, RExC_precomp, RExC_precomp + offset); \
559 #define ckWARNdep(loc,m) STMT_START { \
560 const IV offset = loc - RExC_precomp; \
561 Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
563 (int)offset, RExC_precomp, RExC_precomp + offset); \
566 #define ckWARNregdep(loc,m) STMT_START { \
567 const IV offset = loc - RExC_precomp; \
568 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
570 (int)offset, RExC_precomp, RExC_precomp + offset); \
573 #define ckWARN2regdep(loc,m, a1) STMT_START { \
574 const IV offset = loc - RExC_precomp; \
575 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
577 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
580 #define ckWARN2reg(loc, m, a1) STMT_START { \
581 const IV offset = loc - RExC_precomp; \
582 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
583 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
586 #define vWARN3(loc, m, a1, a2) STMT_START { \
587 const IV offset = loc - RExC_precomp; \
588 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
589 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
592 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
593 const IV offset = loc - RExC_precomp; \
594 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
595 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
598 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
599 const IV offset = loc - RExC_precomp; \
600 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
601 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
604 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
605 const IV offset = loc - RExC_precomp; \
606 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
607 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
610 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
611 const IV offset = loc - RExC_precomp; \
612 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
613 a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
617 /* Allow for side effects in s */
618 #define REGC(c,s) STMT_START { \
619 if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
622 /* Macros for recording node offsets. 20001227 mjd@plover.com
623 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
624 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
625 * Element 0 holds the number n.
626 * Position is 1 indexed.
628 #ifndef RE_TRACK_PATTERN_OFFSETS
629 #define Set_Node_Offset_To_R(node,byte)
630 #define Set_Node_Offset(node,byte)
631 #define Set_Cur_Node_Offset
632 #define Set_Node_Length_To_R(node,len)
633 #define Set_Node_Length(node,len)
634 #define Set_Node_Cur_Length(node)
635 #define Node_Offset(n)
636 #define Node_Length(n)
637 #define Set_Node_Offset_Length(node,offset,len)
638 #define ProgLen(ri) ri->u.proglen
639 #define SetProgLen(ri,x) ri->u.proglen = x
641 #define ProgLen(ri) ri->u.offsets[0]
642 #define SetProgLen(ri,x) ri->u.offsets[0] = x
643 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
645 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
646 __LINE__, (int)(node), (int)(byte))); \
648 Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
650 RExC_offsets[2*(node)-1] = (byte); \
655 #define Set_Node_Offset(node,byte) \
656 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
657 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
659 #define Set_Node_Length_To_R(node,len) STMT_START { \
661 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
662 __LINE__, (int)(node), (int)(len))); \
664 Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
666 RExC_offsets[2*(node)] = (len); \
671 #define Set_Node_Length(node,len) \
672 Set_Node_Length_To_R((node)-RExC_emit_start, len)
673 #define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len)
674 #define Set_Node_Cur_Length(node) \
675 Set_Node_Length(node, RExC_parse - parse_start)
677 /* Get offsets and lengths */
678 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
679 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
681 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
682 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
683 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
687 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
688 #define EXPERIMENTAL_INPLACESCAN
689 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
691 #define DEBUG_STUDYDATA(str,data,depth) \
692 DEBUG_OPTIMISE_MORE_r(if(data){ \
693 PerlIO_printf(Perl_debug_log, \
694 "%*s" str "Pos:%"IVdf"/%"IVdf \
695 " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
696 (int)(depth)*2, "", \
697 (IV)((data)->pos_min), \
698 (IV)((data)->pos_delta), \
699 (UV)((data)->flags), \
700 (IV)((data)->whilem_c), \
701 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
702 is_inf ? "INF " : "" \
704 if ((data)->last_found) \
705 PerlIO_printf(Perl_debug_log, \
706 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
707 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
708 SvPVX_const((data)->last_found), \
709 (IV)((data)->last_end), \
710 (IV)((data)->last_start_min), \
711 (IV)((data)->last_start_max), \
712 ((data)->longest && \
713 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
714 SvPVX_const((data)->longest_fixed), \
715 (IV)((data)->offset_fixed), \
716 ((data)->longest && \
717 (data)->longest==&((data)->longest_float)) ? "*" : "", \
718 SvPVX_const((data)->longest_float), \
719 (IV)((data)->offset_float_min), \
720 (IV)((data)->offset_float_max) \
722 PerlIO_printf(Perl_debug_log,"\n"); \
725 /* Mark that we cannot extend a found fixed substring at this point.
726 Update the longest found anchored substring and the longest found
727 floating substrings if needed. */
730 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf)
732 const STRLEN l = CHR_SVLEN(data->last_found);
733 const STRLEN old_l = CHR_SVLEN(*data->longest);
734 GET_RE_DEBUG_FLAGS_DECL;
736 PERL_ARGS_ASSERT_SCAN_COMMIT;
738 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
739 SvSetMagicSV(*data->longest, data->last_found);
740 if (*data->longest == data->longest_fixed) {
741 data->offset_fixed = l ? data->last_start_min : data->pos_min;
742 if (data->flags & SF_BEFORE_EOL)
744 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
746 data->flags &= ~SF_FIX_BEFORE_EOL;
747 data->minlen_fixed=minlenp;
748 data->lookbehind_fixed=0;
750 else { /* *data->longest == data->longest_float */
751 data->offset_float_min = l ? data->last_start_min : data->pos_min;
752 data->offset_float_max = (l
753 ? data->last_start_max
754 : (data->pos_delta == I32_MAX ? I32_MAX : data->pos_min + data->pos_delta));
755 if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX)
756 data->offset_float_max = I32_MAX;
757 if (data->flags & SF_BEFORE_EOL)
759 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
761 data->flags &= ~SF_FL_BEFORE_EOL;
762 data->minlen_float=minlenp;
763 data->lookbehind_float=0;
766 SvCUR_set(data->last_found, 0);
768 SV * const sv = data->last_found;
769 if (SvUTF8(sv) && SvMAGICAL(sv)) {
770 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
776 data->flags &= ~SF_BEFORE_EOL;
777 DEBUG_STUDYDATA("commit: ",data,0);
780 /* These macros set, clear and test whether the synthetic start class ('ssc',
781 * given by the parameter) matches an empty string (EOS). This uses the
782 * 'next_off' field in the node, to save a bit in the flags field. The ssc
783 * stands alone, so there is never a next_off, so this field is otherwise
784 * unused. The EOS information is used only for compilation, but theoretically
785 * it could be passed on to the execution code. This could be used to store
786 * more than one bit of information, but only this one is currently used. */
787 #define SET_SSC_EOS(node) STMT_START { (node)->next_off = TRUE; } STMT_END
788 #define CLEAR_SSC_EOS(node) STMT_START { (node)->next_off = FALSE; } STMT_END
789 #define TEST_SSC_EOS(node) cBOOL((node)->next_off)
791 /* Can match anything (initialization) */
793 S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
795 PERL_ARGS_ASSERT_CL_ANYTHING;
797 ANYOF_BITMAP_SETALL(cl);
798 cl->flags = ANYOF_UNICODE_ALL;
801 /* If any portion of the regex is to operate under locale rules,
802 * initialization includes it. The reason this isn't done for all regexes
803 * is that the optimizer was written under the assumption that locale was
804 * all-or-nothing. Given the complexity and lack of documentation in the
805 * optimizer, and that there are inadequate test cases for locale, so many
806 * parts of it may not work properly, it is safest to avoid locale unless
808 if (RExC_contains_locale) {
809 ANYOF_CLASS_SETALL(cl); /* /l uses class */
810 cl->flags |= ANYOF_LOCALE|ANYOF_CLASS|ANYOF_LOC_FOLD;
813 ANYOF_CLASS_ZERO(cl); /* Only /l uses class now */
817 /* Can match anything (initialization) */
819 S_cl_is_anything(const struct regnode_charclass_class *cl)
823 PERL_ARGS_ASSERT_CL_IS_ANYTHING;
825 for (value = 0; value < ANYOF_MAX; value += 2)
826 if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
828 if (!(cl->flags & ANYOF_UNICODE_ALL))
830 if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
835 /* Can match anything (initialization) */
837 S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
839 PERL_ARGS_ASSERT_CL_INIT;
841 Zero(cl, 1, struct regnode_charclass_class);
843 cl_anything(pRExC_state, cl);
844 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
847 /* These two functions currently do the exact same thing */
848 #define cl_init_zero S_cl_init
850 /* 'AND' a given class with another one. Can create false positives. 'cl'
851 * should not be inverted. 'and_with->flags & ANYOF_CLASS' should be 0 if
852 * 'and_with' is a regnode_charclass instead of a regnode_charclass_class. */
854 S_cl_and(struct regnode_charclass_class *cl,
855 const struct regnode_charclass_class *and_with)
857 PERL_ARGS_ASSERT_CL_AND;
859 assert(PL_regkind[and_with->type] == ANYOF);
861 /* I (khw) am not sure all these restrictions are necessary XXX */
862 if (!(ANYOF_CLASS_TEST_ANY_SET(and_with))
863 && !(ANYOF_CLASS_TEST_ANY_SET(cl))
864 && (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
865 && !(and_with->flags & ANYOF_LOC_FOLD)
866 && !(cl->flags & ANYOF_LOC_FOLD)) {
869 if (and_with->flags & ANYOF_INVERT)
870 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
871 cl->bitmap[i] &= ~and_with->bitmap[i];
873 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
874 cl->bitmap[i] &= and_with->bitmap[i];
875 } /* XXXX: logic is complicated otherwise, leave it along for a moment. */
877 if (and_with->flags & ANYOF_INVERT) {
879 /* Here, the and'ed node is inverted. Get the AND of the flags that
880 * aren't affected by the inversion. Those that are affected are
881 * handled individually below */
882 U8 affected_flags = cl->flags & ~INVERSION_UNAFFECTED_FLAGS;
883 cl->flags &= (and_with->flags & INVERSION_UNAFFECTED_FLAGS);
884 cl->flags |= affected_flags;
886 /* We currently don't know how to deal with things that aren't in the
887 * bitmap, but we know that the intersection is no greater than what
888 * is already in cl, so let there be false positives that get sorted
889 * out after the synthetic start class succeeds, and the node is
890 * matched for real. */
892 /* The inversion of these two flags indicate that the resulting
893 * intersection doesn't have them */
894 if (and_with->flags & ANYOF_UNICODE_ALL) {
895 cl->flags &= ~ANYOF_UNICODE_ALL;
897 if (and_with->flags & ANYOF_NON_UTF8_LATIN1_ALL) {
898 cl->flags &= ~ANYOF_NON_UTF8_LATIN1_ALL;
901 else { /* and'd node is not inverted */
902 U8 outside_bitmap_but_not_utf8; /* Temp variable */
904 if (! ANYOF_NONBITMAP(and_with)) {
906 /* Here 'and_with' doesn't match anything outside the bitmap
907 * (except possibly ANYOF_UNICODE_ALL), which means the
908 * intersection can't either, except for ANYOF_UNICODE_ALL, in
909 * which case we don't know what the intersection is, but it's no
910 * greater than what cl already has, so can just leave it alone,
911 * with possible false positives */
912 if (! (and_with->flags & ANYOF_UNICODE_ALL)) {
913 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
914 cl->flags &= ~ANYOF_NONBITMAP_NON_UTF8;
917 else if (! ANYOF_NONBITMAP(cl)) {
919 /* Here, 'and_with' does match something outside the bitmap, and cl
920 * doesn't have a list of things to match outside the bitmap. If
921 * cl can match all code points above 255, the intersection will
922 * be those above-255 code points that 'and_with' matches. If cl
923 * can't match all Unicode code points, it means that it can't
924 * match anything outside the bitmap (since the 'if' that got us
925 * into this block tested for that), so we leave the bitmap empty.
927 if (cl->flags & ANYOF_UNICODE_ALL) {
928 ARG_SET(cl, ARG(and_with));
930 /* and_with's ARG may match things that don't require UTF8.
931 * And now cl's will too, in spite of this being an 'and'. See
932 * the comments below about the kludge */
933 cl->flags |= and_with->flags & ANYOF_NONBITMAP_NON_UTF8;
937 /* Here, both 'and_with' and cl match something outside the
938 * bitmap. Currently we do not do the intersection, so just match
939 * whatever cl had at the beginning. */
943 /* Take the intersection of the two sets of flags. However, the
944 * ANYOF_NONBITMAP_NON_UTF8 flag is treated as an 'or'. This is a
945 * kludge around the fact that this flag is not treated like the others
946 * which are initialized in cl_anything(). The way the optimizer works
947 * is that the synthetic start class (SSC) is initialized to match
948 * anything, and then the first time a real node is encountered, its
949 * values are AND'd with the SSC's with the result being the values of
950 * the real node. However, there are paths through the optimizer where
951 * the AND never gets called, so those initialized bits are set
952 * inappropriately, which is not usually a big deal, as they just cause
953 * false positives in the SSC, which will just mean a probably
954 * imperceptible slow down in execution. However this bit has a
955 * higher false positive consequence in that it can cause utf8.pm,
956 * utf8_heavy.pl ... to be loaded when not necessary, which is a much
957 * bigger slowdown and also causes significant extra memory to be used.
958 * In order to prevent this, the code now takes a different tack. The
959 * bit isn't set unless some part of the regular expression needs it,
960 * but once set it won't get cleared. This means that these extra
961 * modules won't get loaded unless there was some path through the
962 * pattern that would have required them anyway, and so any false
963 * positives that occur by not ANDing them out when they could be
964 * aren't as severe as they would be if we treated this bit like all
966 outside_bitmap_but_not_utf8 = (cl->flags | and_with->flags)
967 & ANYOF_NONBITMAP_NON_UTF8;
968 cl->flags &= and_with->flags;
969 cl->flags |= outside_bitmap_but_not_utf8;
973 /* 'OR' a given class with another one. Can create false positives. 'cl'
974 * should not be inverted. 'or_with->flags & ANYOF_CLASS' should be 0 if
975 * 'or_with' is a regnode_charclass instead of a regnode_charclass_class. */
977 S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
979 PERL_ARGS_ASSERT_CL_OR;
981 if (or_with->flags & ANYOF_INVERT) {
983 /* Here, the or'd node is to be inverted. This means we take the
984 * complement of everything not in the bitmap, but currently we don't
985 * know what that is, so give up and match anything */
986 if (ANYOF_NONBITMAP(or_with)) {
987 cl_anything(pRExC_state, cl);
990 * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
991 * <= (B1 | !B2) | (CL1 | !CL2)
992 * which is wasteful if CL2 is small, but we ignore CL2:
993 * (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
994 * XXXX Can we handle case-fold? Unclear:
995 * (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
996 * (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
998 else if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
999 && !(or_with->flags & ANYOF_LOC_FOLD)
1000 && !(cl->flags & ANYOF_LOC_FOLD) ) {
1003 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
1004 cl->bitmap[i] |= ~or_with->bitmap[i];
1005 } /* XXXX: logic is complicated otherwise */
1007 cl_anything(pRExC_state, cl);
1010 /* And, we can just take the union of the flags that aren't affected
1011 * by the inversion */
1012 cl->flags |= or_with->flags & INVERSION_UNAFFECTED_FLAGS;
1014 /* For the remaining flags:
1015 ANYOF_UNICODE_ALL and inverted means to not match anything above
1016 255, which means that the union with cl should just be
1017 what cl has in it, so can ignore this flag
1018 ANYOF_NON_UTF8_LATIN1_ALL and inverted means if not utf8 and ord
1019 is 127-255 to match them, but then invert that, so the
1020 union with cl should just be what cl has in it, so can
1023 } else { /* 'or_with' is not inverted */
1024 /* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
1025 if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
1026 && (!(or_with->flags & ANYOF_LOC_FOLD)
1027 || (cl->flags & ANYOF_LOC_FOLD)) ) {
1030 /* OR char bitmap and class bitmap separately */
1031 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
1032 cl->bitmap[i] |= or_with->bitmap[i];
1033 if (or_with->flags & ANYOF_CLASS) {
1034 ANYOF_CLASS_OR(or_with, cl);
1037 else { /* XXXX: logic is complicated, leave it along for a moment. */
1038 cl_anything(pRExC_state, cl);
1041 if (ANYOF_NONBITMAP(or_with)) {
1043 /* Use the added node's outside-the-bit-map match if there isn't a
1044 * conflict. If there is a conflict (both nodes match something
1045 * outside the bitmap, but what they match outside is not the same
1046 * pointer, and hence not easily compared until XXX we extend
1047 * inversion lists this far), give up and allow the start class to
1048 * match everything outside the bitmap. If that stuff is all above
1049 * 255, can just set UNICODE_ALL, otherwise caould be anything. */
1050 if (! ANYOF_NONBITMAP(cl)) {
1051 ARG_SET(cl, ARG(or_with));
1053 else if (ARG(cl) != ARG(or_with)) {
1055 if ((or_with->flags & ANYOF_NONBITMAP_NON_UTF8)) {
1056 cl_anything(pRExC_state, cl);
1059 cl->flags |= ANYOF_UNICODE_ALL;
1064 /* Take the union */
1065 cl->flags |= or_with->flags;
1069 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1070 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1071 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1072 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
1077 dump_trie(trie,widecharmap,revcharmap)
1078 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1079 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1081 These routines dump out a trie in a somewhat readable format.
1082 The _interim_ variants are used for debugging the interim
1083 tables that are used to generate the final compressed
1084 representation which is what dump_trie expects.
1086 Part of the reason for their existence is to provide a form
1087 of documentation as to how the different representations function.
1092 Dumps the final compressed table form of the trie to Perl_debug_log.
1093 Used for debugging make_trie().
1097 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1098 AV *revcharmap, U32 depth)
1101 SV *sv=sv_newmortal();
1102 int colwidth= widecharmap ? 6 : 4;
1104 GET_RE_DEBUG_FLAGS_DECL;
1106 PERL_ARGS_ASSERT_DUMP_TRIE;
1108 PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
1109 (int)depth * 2 + 2,"",
1110 "Match","Base","Ofs" );
1112 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1113 SV ** const tmp = av_fetch( revcharmap, state, 0);
1115 PerlIO_printf( Perl_debug_log, "%*s",
1117 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1118 PL_colors[0], PL_colors[1],
1119 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1120 PERL_PV_ESCAPE_FIRSTCHAR
1125 PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
1126 (int)depth * 2 + 2,"");
1128 for( state = 0 ; state < trie->uniquecharcount ; state++ )
1129 PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
1130 PerlIO_printf( Perl_debug_log, "\n");
1132 for( state = 1 ; state < trie->statecount ; state++ ) {
1133 const U32 base = trie->states[ state ].trans.base;
1135 PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
1137 if ( trie->states[ state ].wordnum ) {
1138 PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
1140 PerlIO_printf( Perl_debug_log, "%6s", "" );
1143 PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
1148 while( ( base + ofs < trie->uniquecharcount ) ||
1149 ( base + ofs - trie->uniquecharcount < trie->lasttrans
1150 && trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
1153 PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
1155 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
1156 if ( ( base + ofs >= trie->uniquecharcount ) &&
1157 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
1158 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
1160 PerlIO_printf( Perl_debug_log, "%*"UVXf,
1162 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
1164 PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
1168 PerlIO_printf( Perl_debug_log, "]");
1171 PerlIO_printf( Perl_debug_log, "\n" );
1173 PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=", (int)depth*2, "");
1174 for (word=1; word <= trie->wordcount; word++) {
1175 PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
1176 (int)word, (int)(trie->wordinfo[word].prev),
1177 (int)(trie->wordinfo[word].len));
1179 PerlIO_printf(Perl_debug_log, "\n" );
1182 Dumps a fully constructed but uncompressed trie in list form.
1183 List tries normally only are used for construction when the number of
1184 possible chars (trie->uniquecharcount) is very high.
1185 Used for debugging make_trie().
1188 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
1189 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1193 SV *sv=sv_newmortal();
1194 int colwidth= widecharmap ? 6 : 4;
1195 GET_RE_DEBUG_FLAGS_DECL;
1197 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
1199 /* print out the table precompression. */
1200 PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
1201 (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
1202 "------:-----+-----------------\n" );
1204 for( state=1 ; state < next_alloc ; state ++ ) {
1207 PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
1208 (int)depth * 2 + 2,"", (UV)state );
1209 if ( ! trie->states[ state ].wordnum ) {
1210 PerlIO_printf( Perl_debug_log, "%5s| ","");
1212 PerlIO_printf( Perl_debug_log, "W%4x| ",
1213 trie->states[ state ].wordnum
1216 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
1217 SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
1219 PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
1221 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1222 PL_colors[0], PL_colors[1],
1223 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1224 PERL_PV_ESCAPE_FIRSTCHAR
1226 TRIE_LIST_ITEM(state,charid).forid,
1227 (UV)TRIE_LIST_ITEM(state,charid).newstate
1230 PerlIO_printf(Perl_debug_log, "\n%*s| ",
1231 (int)((depth * 2) + 14), "");
1234 PerlIO_printf( Perl_debug_log, "\n");
1239 Dumps a fully constructed but uncompressed trie in table form.
1240 This is the normal DFA style state transition table, with a few
1241 twists to facilitate compression later.
1242 Used for debugging make_trie().
1245 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
1246 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1251 SV *sv=sv_newmortal();
1252 int colwidth= widecharmap ? 6 : 4;
1253 GET_RE_DEBUG_FLAGS_DECL;
1255 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
1258 print out the table precompression so that we can do a visual check
1259 that they are identical.
1262 PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
1264 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1265 SV ** const tmp = av_fetch( revcharmap, charid, 0);
1267 PerlIO_printf( Perl_debug_log, "%*s",
1269 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1270 PL_colors[0], PL_colors[1],
1271 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1272 PERL_PV_ESCAPE_FIRSTCHAR
1278 PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
1280 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
1281 PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
1284 PerlIO_printf( Perl_debug_log, "\n" );
1286 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
1288 PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
1289 (int)depth * 2 + 2,"",
1290 (UV)TRIE_NODENUM( state ) );
1292 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1293 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
1295 PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
1297 PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
1299 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
1300 PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
1302 PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
1303 trie->states[ TRIE_NODENUM( state ) ].wordnum );
1311 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
1312 startbranch: the first branch in the whole branch sequence
1313 first : start branch of sequence of branch-exact nodes.
1314 May be the same as startbranch
1315 last : Thing following the last branch.
1316 May be the same as tail.
1317 tail : item following the branch sequence
1318 count : words in the sequence
1319 flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
1320 depth : indent depth
1322 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
1324 A trie is an N'ary tree where the branches are determined by digital
1325 decomposition of the key. IE, at the root node you look up the 1st character and
1326 follow that branch repeat until you find the end of the branches. Nodes can be
1327 marked as "accepting" meaning they represent a complete word. Eg:
1331 would convert into the following structure. Numbers represent states, letters
1332 following numbers represent valid transitions on the letter from that state, if
1333 the number is in square brackets it represents an accepting state, otherwise it
1334 will be in parenthesis.
1336 +-h->+-e->[3]-+-r->(8)-+-s->[9]
1340 (1) +-i->(6)-+-s->[7]
1342 +-s->(3)-+-h->(4)-+-e->[5]
1344 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
1346 This shows that when matching against the string 'hers' we will begin at state 1
1347 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
1348 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
1349 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
1350 single traverse. We store a mapping from accepting to state to which word was
1351 matched, and then when we have multiple possibilities we try to complete the
1352 rest of the regex in the order in which they occured in the alternation.
1354 The only prior NFA like behaviour that would be changed by the TRIE support is
1355 the silent ignoring of duplicate alternations which are of the form:
1357 / (DUPE|DUPE) X? (?{ ... }) Y /x
1359 Thus EVAL blocks following a trie may be called a different number of times with
1360 and without the optimisation. With the optimisations dupes will be silently
1361 ignored. This inconsistent behaviour of EVAL type nodes is well established as
1362 the following demonstrates:
1364 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
1366 which prints out 'word' three times, but
1368 'words'=~/(word|word|word)(?{ print $1 })S/
1370 which doesnt print it out at all. This is due to other optimisations kicking in.
1372 Example of what happens on a structural level:
1374 The regexp /(ac|ad|ab)+/ will produce the following debug output:
1376 1: CURLYM[1] {1,32767}(18)
1387 This would be optimizable with startbranch=5, first=5, last=16, tail=16
1388 and should turn into:
1390 1: CURLYM[1] {1,32767}(18)
1392 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
1400 Cases where tail != last would be like /(?foo|bar)baz/:
1410 which would be optimizable with startbranch=1, first=1, last=7, tail=8
1411 and would end up looking like:
1414 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
1421 d = uvuni_to_utf8_flags(d, uv, 0);
1423 is the recommended Unicode-aware way of saying
1428 #define TRIE_STORE_REVCHAR(val) \
1431 SV *zlopp = newSV(7); /* XXX: optimize me */ \
1432 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
1433 unsigned const char *const kapow = uvuni_to_utf8(flrbbbbb, val); \
1434 SvCUR_set(zlopp, kapow - flrbbbbb); \
1437 av_push(revcharmap, zlopp); \
1439 char ooooff = (char)val; \
1440 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
1444 #define TRIE_READ_CHAR STMT_START { \
1447 /* if it is UTF then it is either already folded, or does not need folding */ \
1448 uvc = utf8n_to_uvuni( (const U8*) uc, UTF8_MAXLEN, &len, uniflags); \
1450 else if (folder == PL_fold_latin1) { \
1451 /* if we use this folder we have to obey unicode rules on latin-1 data */ \
1452 if ( foldlen > 0 ) { \
1453 uvc = utf8n_to_uvuni( (const U8*) scan, UTF8_MAXLEN, &len, uniflags ); \
1459 uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, 1); \
1460 skiplen = UNISKIP(uvc); \
1461 foldlen -= skiplen; \
1462 scan = foldbuf + skiplen; \
1465 /* raw data, will be folded later if needed */ \
1473 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
1474 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
1475 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
1476 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
1478 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
1479 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
1480 TRIE_LIST_CUR( state )++; \
1483 #define TRIE_LIST_NEW(state) STMT_START { \
1484 Newxz( trie->states[ state ].trans.list, \
1485 4, reg_trie_trans_le ); \
1486 TRIE_LIST_CUR( state ) = 1; \
1487 TRIE_LIST_LEN( state ) = 4; \
1490 #define TRIE_HANDLE_WORD(state) STMT_START { \
1491 U16 dupe= trie->states[ state ].wordnum; \
1492 regnode * const noper_next = regnext( noper ); \
1495 /* store the word for dumping */ \
1497 if (OP(noper) != NOTHING) \
1498 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
1500 tmp = newSVpvn_utf8( "", 0, UTF ); \
1501 av_push( trie_words, tmp ); \
1505 trie->wordinfo[curword].prev = 0; \
1506 trie->wordinfo[curword].len = wordlen; \
1507 trie->wordinfo[curword].accept = state; \
1509 if ( noper_next < tail ) { \
1511 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \
1512 trie->jump[curword] = (U16)(noper_next - convert); \
1514 jumper = noper_next; \
1516 nextbranch= regnext(cur); \
1520 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
1521 /* chain, so that when the bits of chain are later */\
1522 /* linked together, the dups appear in the chain */\
1523 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
1524 trie->wordinfo[dupe].prev = curword; \
1526 /* we haven't inserted this word yet. */ \
1527 trie->states[ state ].wordnum = curword; \
1532 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
1533 ( ( base + charid >= ucharcount \
1534 && base + charid < ubound \
1535 && state == trie->trans[ base - ucharcount + charid ].check \
1536 && trie->trans[ base - ucharcount + charid ].next ) \
1537 ? trie->trans[ base - ucharcount + charid ].next \
1538 : ( state==1 ? special : 0 ) \
1542 #define MADE_JUMP_TRIE 2
1543 #define MADE_EXACT_TRIE 4
1546 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
1549 /* first pass, loop through and scan words */
1550 reg_trie_data *trie;
1551 HV *widecharmap = NULL;
1552 AV *revcharmap = newAV();
1554 const U32 uniflags = UTF8_ALLOW_DEFAULT;
1559 regnode *jumper = NULL;
1560 regnode *nextbranch = NULL;
1561 regnode *convert = NULL;
1562 U32 *prev_states; /* temp array mapping each state to previous one */
1563 /* we just use folder as a flag in utf8 */
1564 const U8 * folder = NULL;
1567 const U32 data_slot = add_data( pRExC_state, 4, "tuuu" );
1568 AV *trie_words = NULL;
1569 /* along with revcharmap, this only used during construction but both are
1570 * useful during debugging so we store them in the struct when debugging.
1573 const U32 data_slot = add_data( pRExC_state, 2, "tu" );
1574 STRLEN trie_charcount=0;
1576 SV *re_trie_maxbuff;
1577 GET_RE_DEBUG_FLAGS_DECL;
1579 PERL_ARGS_ASSERT_MAKE_TRIE;
1581 PERL_UNUSED_ARG(depth);
1588 case EXACTFU_TRICKYFOLD:
1589 case EXACTFU: folder = PL_fold_latin1; break;
1590 case EXACTF: folder = PL_fold; break;
1591 case EXACTFL: folder = PL_fold_locale; break;
1592 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
1595 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
1597 trie->startstate = 1;
1598 trie->wordcount = word_count;
1599 RExC_rxi->data->data[ data_slot ] = (void*)trie;
1600 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
1602 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
1603 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
1604 trie->wordcount+1, sizeof(reg_trie_wordinfo));
1607 trie_words = newAV();
1610 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
1611 if (!SvIOK(re_trie_maxbuff)) {
1612 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
1614 DEBUG_TRIE_COMPILE_r({
1615 PerlIO_printf( Perl_debug_log,
1616 "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
1617 (int)depth * 2 + 2, "",
1618 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
1619 REG_NODE_NUM(last), REG_NODE_NUM(tail),
1623 /* Find the node we are going to overwrite */
1624 if ( first == startbranch && OP( last ) != BRANCH ) {
1625 /* whole branch chain */
1628 /* branch sub-chain */
1629 convert = NEXTOPER( first );
1632 /* -- First loop and Setup --
1634 We first traverse the branches and scan each word to determine if it
1635 contains widechars, and how many unique chars there are, this is
1636 important as we have to build a table with at least as many columns as we
1639 We use an array of integers to represent the character codes 0..255
1640 (trie->charmap) and we use a an HV* to store Unicode characters. We use the
1641 native representation of the character value as the key and IV's for the
1644 *TODO* If we keep track of how many times each character is used we can
1645 remap the columns so that the table compression later on is more
1646 efficient in terms of memory by ensuring the most common value is in the
1647 middle and the least common are on the outside. IMO this would be better
1648 than a most to least common mapping as theres a decent chance the most
1649 common letter will share a node with the least common, meaning the node
1650 will not be compressible. With a middle is most common approach the worst
1651 case is when we have the least common nodes twice.
1655 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1656 regnode *noper = NEXTOPER( cur );
1657 const U8 *uc = (U8*)STRING( noper );
1658 const U8 *e = uc + STR_LEN( noper );
1660 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1662 const U8 *scan = (U8*)NULL;
1663 U32 wordlen = 0; /* required init */
1665 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/
1667 if (OP(noper) == NOTHING) {
1668 regnode *noper_next= regnext(noper);
1669 if (noper_next != tail && OP(noper_next) == flags) {
1671 uc= (U8*)STRING(noper);
1672 e= uc + STR_LEN(noper);
1673 trie->minlen= STR_LEN(noper);
1680 if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
1681 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
1682 regardless of encoding */
1683 if (OP( noper ) == EXACTFU_SS) {
1684 /* false positives are ok, so just set this */
1685 TRIE_BITMAP_SET(trie,0xDF);
1688 for ( ; uc < e ; uc += len ) {
1689 TRIE_CHARCOUNT(trie)++;
1694 U8 folded= folder[ (U8) uvc ];
1695 if ( !trie->charmap[ folded ] ) {
1696 trie->charmap[ folded ]=( ++trie->uniquecharcount );
1697 TRIE_STORE_REVCHAR( folded );
1700 if ( !trie->charmap[ uvc ] ) {
1701 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
1702 TRIE_STORE_REVCHAR( uvc );
1705 /* store the codepoint in the bitmap, and its folded
1707 TRIE_BITMAP_SET(trie, uvc);
1709 /* store the folded codepoint */
1710 if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
1713 /* store first byte of utf8 representation of
1714 variant codepoints */
1715 if (! UNI_IS_INVARIANT(uvc)) {
1716 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
1719 set_bit = 0; /* We've done our bit :-) */
1724 widecharmap = newHV();
1726 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
1729 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
1731 if ( !SvTRUE( *svpp ) ) {
1732 sv_setiv( *svpp, ++trie->uniquecharcount );
1733 TRIE_STORE_REVCHAR(uvc);
1737 if( cur == first ) {
1738 trie->minlen = chars;
1739 trie->maxlen = chars;
1740 } else if (chars < trie->minlen) {
1741 trie->minlen = chars;
1742 } else if (chars > trie->maxlen) {
1743 trie->maxlen = chars;
1745 if (OP( noper ) == EXACTFU_SS) {
1746 /* XXX: workaround - 'ss' could match "\x{DF}" so minlen could be 1 and not 2*/
1747 if (trie->minlen > 1)
1750 if (OP( noper ) == EXACTFU_TRICKYFOLD) {
1751 /* XXX: workround - things like "\x{1FBE}\x{0308}\x{0301}" can match "\x{0390}"
1752 * - We assume that any such sequence might match a 2 byte string */
1753 if (trie->minlen > 2 )
1757 } /* end first pass */
1758 DEBUG_TRIE_COMPILE_r(
1759 PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
1760 (int)depth * 2 + 2,"",
1761 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
1762 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
1763 (int)trie->minlen, (int)trie->maxlen )
1767 We now know what we are dealing with in terms of unique chars and
1768 string sizes so we can calculate how much memory a naive
1769 representation using a flat table will take. If it's over a reasonable
1770 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
1771 conservative but potentially much slower representation using an array
1774 At the end we convert both representations into the same compressed
1775 form that will be used in regexec.c for matching with. The latter
1776 is a form that cannot be used to construct with but has memory
1777 properties similar to the list form and access properties similar
1778 to the table form making it both suitable for fast searches and
1779 small enough that its feasable to store for the duration of a program.
1781 See the comment in the code where the compressed table is produced
1782 inplace from the flat tabe representation for an explanation of how
1783 the compression works.
1788 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
1791 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
1793 Second Pass -- Array Of Lists Representation
1795 Each state will be represented by a list of charid:state records
1796 (reg_trie_trans_le) the first such element holds the CUR and LEN
1797 points of the allocated array. (See defines above).
1799 We build the initial structure using the lists, and then convert
1800 it into the compressed table form which allows faster lookups
1801 (but cant be modified once converted).
1804 STRLEN transcount = 1;
1806 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1807 "%*sCompiling trie using list compiler\n",
1808 (int)depth * 2 + 2, ""));
1810 trie->states = (reg_trie_state *)
1811 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1812 sizeof(reg_trie_state) );
1816 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1818 regnode *noper = NEXTOPER( cur );
1819 U8 *uc = (U8*)STRING( noper );
1820 const U8 *e = uc + STR_LEN( noper );
1821 U32 state = 1; /* required init */
1822 U16 charid = 0; /* sanity init */
1823 U8 *scan = (U8*)NULL; /* sanity init */
1824 STRLEN foldlen = 0; /* required init */
1825 U32 wordlen = 0; /* required init */
1826 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1829 if (OP(noper) == NOTHING) {
1830 regnode *noper_next= regnext(noper);
1831 if (noper_next != tail && OP(noper_next) == flags) {
1833 uc= (U8*)STRING(noper);
1834 e= uc + STR_LEN(noper);
1838 if (OP(noper) != NOTHING) {
1839 for ( ; uc < e ; uc += len ) {
1844 charid = trie->charmap[ uvc ];
1846 SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1850 charid=(U16)SvIV( *svpp );
1853 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1860 if ( !trie->states[ state ].trans.list ) {
1861 TRIE_LIST_NEW( state );
1863 for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
1864 if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
1865 newstate = TRIE_LIST_ITEM( state, check ).newstate;
1870 newstate = next_alloc++;
1871 prev_states[newstate] = state;
1872 TRIE_LIST_PUSH( state, charid, newstate );
1877 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1881 TRIE_HANDLE_WORD(state);
1883 } /* end second pass */
1885 /* next alloc is the NEXT state to be allocated */
1886 trie->statecount = next_alloc;
1887 trie->states = (reg_trie_state *)
1888 PerlMemShared_realloc( trie->states,
1890 * sizeof(reg_trie_state) );
1892 /* and now dump it out before we compress it */
1893 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
1894 revcharmap, next_alloc,
1898 trie->trans = (reg_trie_trans *)
1899 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
1906 for( state=1 ; state < next_alloc ; state ++ ) {
1910 DEBUG_TRIE_COMPILE_MORE_r(
1911 PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
1915 if (trie->states[state].trans.list) {
1916 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
1920 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1921 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
1922 if ( forid < minid ) {
1924 } else if ( forid > maxid ) {
1928 if ( transcount < tp + maxid - minid + 1) {
1930 trie->trans = (reg_trie_trans *)
1931 PerlMemShared_realloc( trie->trans,
1933 * sizeof(reg_trie_trans) );
1934 Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
1936 base = trie->uniquecharcount + tp - minid;
1937 if ( maxid == minid ) {
1939 for ( ; zp < tp ; zp++ ) {
1940 if ( ! trie->trans[ zp ].next ) {
1941 base = trie->uniquecharcount + zp - minid;
1942 trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1943 trie->trans[ zp ].check = state;
1949 trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1950 trie->trans[ tp ].check = state;
1955 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1956 const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
1957 trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
1958 trie->trans[ tid ].check = state;
1960 tp += ( maxid - minid + 1 );
1962 Safefree(trie->states[ state ].trans.list);
1965 DEBUG_TRIE_COMPILE_MORE_r(
1966 PerlIO_printf( Perl_debug_log, " base: %d\n",base);
1969 trie->states[ state ].trans.base=base;
1971 trie->lasttrans = tp + 1;
1975 Second Pass -- Flat Table Representation.
1977 we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
1978 We know that we will need Charcount+1 trans at most to store the data
1979 (one row per char at worst case) So we preallocate both structures
1980 assuming worst case.
1982 We then construct the trie using only the .next slots of the entry
1985 We use the .check field of the first entry of the node temporarily to
1986 make compression both faster and easier by keeping track of how many non
1987 zero fields are in the node.
1989 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
1992 There are two terms at use here: state as a TRIE_NODEIDX() which is a
1993 number representing the first entry of the node, and state as a
1994 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
1995 TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
1996 are 2 entrys per node. eg:
2004 The table is internally in the right hand, idx form. However as we also
2005 have to deal with the states array which is indexed by nodenum we have to
2006 use TRIE_NODENUM() to convert.
2009 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
2010 "%*sCompiling trie using table compiler\n",
2011 (int)depth * 2 + 2, ""));
2013 trie->trans = (reg_trie_trans *)
2014 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
2015 * trie->uniquecharcount + 1,
2016 sizeof(reg_trie_trans) );
2017 trie->states = (reg_trie_state *)
2018 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2019 sizeof(reg_trie_state) );
2020 next_alloc = trie->uniquecharcount + 1;
2023 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2025 regnode *noper = NEXTOPER( cur );
2026 const U8 *uc = (U8*)STRING( noper );
2027 const U8 *e = uc + STR_LEN( noper );
2029 U32 state = 1; /* required init */
2031 U16 charid = 0; /* sanity init */
2032 U32 accept_state = 0; /* sanity init */
2033 U8 *scan = (U8*)NULL; /* sanity init */
2035 STRLEN foldlen = 0; /* required init */
2036 U32 wordlen = 0; /* required init */
2038 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
2040 if (OP(noper) == NOTHING) {
2041 regnode *noper_next= regnext(noper);
2042 if (noper_next != tail && OP(noper_next) == flags) {
2044 uc= (U8*)STRING(noper);
2045 e= uc + STR_LEN(noper);
2049 if ( OP(noper) != NOTHING ) {
2050 for ( ; uc < e ; uc += len ) {
2055 charid = trie->charmap[ uvc ];
2057 SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
2058 charid = svpp ? (U16)SvIV(*svpp) : 0;
2062 if ( !trie->trans[ state + charid ].next ) {
2063 trie->trans[ state + charid ].next = next_alloc;
2064 trie->trans[ state ].check++;
2065 prev_states[TRIE_NODENUM(next_alloc)]
2066 = TRIE_NODENUM(state);
2067 next_alloc += trie->uniquecharcount;
2069 state = trie->trans[ state + charid ].next;
2071 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
2073 /* charid is now 0 if we dont know the char read, or nonzero if we do */
2076 accept_state = TRIE_NODENUM( state );
2077 TRIE_HANDLE_WORD(accept_state);
2079 } /* end second pass */
2081 /* and now dump it out before we compress it */
2082 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
2084 next_alloc, depth+1));
2088 * Inplace compress the table.*
2090 For sparse data sets the table constructed by the trie algorithm will
2091 be mostly 0/FAIL transitions or to put it another way mostly empty.
2092 (Note that leaf nodes will not contain any transitions.)
2094 This algorithm compresses the tables by eliminating most such
2095 transitions, at the cost of a modest bit of extra work during lookup:
2097 - Each states[] entry contains a .base field which indicates the
2098 index in the state[] array wheres its transition data is stored.
2100 - If .base is 0 there are no valid transitions from that node.
2102 - If .base is nonzero then charid is added to it to find an entry in
2105 -If trans[states[state].base+charid].check!=state then the
2106 transition is taken to be a 0/Fail transition. Thus if there are fail
2107 transitions at the front of the node then the .base offset will point
2108 somewhere inside the previous nodes data (or maybe even into a node
2109 even earlier), but the .check field determines if the transition is
2113 The following process inplace converts the table to the compressed
2114 table: We first do not compress the root node 1,and mark all its
2115 .check pointers as 1 and set its .base pointer as 1 as well. This
2116 allows us to do a DFA construction from the compressed table later,
2117 and ensures that any .base pointers we calculate later are greater
2120 - We set 'pos' to indicate the first entry of the second node.
2122 - We then iterate over the columns of the node, finding the first and
2123 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
2124 and set the .check pointers accordingly, and advance pos
2125 appropriately and repreat for the next node. Note that when we copy
2126 the next pointers we have to convert them from the original
2127 NODEIDX form to NODENUM form as the former is not valid post
2130 - If a node has no transitions used we mark its base as 0 and do not
2131 advance the pos pointer.
2133 - If a node only has one transition we use a second pointer into the
2134 structure to fill in allocated fail transitions from other states.
2135 This pointer is independent of the main pointer and scans forward
2136 looking for null transitions that are allocated to a state. When it
2137 finds one it writes the single transition into the "hole". If the
2138 pointer doesnt find one the single transition is appended as normal.
2140 - Once compressed we can Renew/realloc the structures to release the
2143 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
2144 specifically Fig 3.47 and the associated pseudocode.
2148 const U32 laststate = TRIE_NODENUM( next_alloc );
2151 trie->statecount = laststate;
2153 for ( state = 1 ; state < laststate ; state++ ) {
2155 const U32 stateidx = TRIE_NODEIDX( state );
2156 const U32 o_used = trie->trans[ stateidx ].check;
2157 U32 used = trie->trans[ stateidx ].check;
2158 trie->trans[ stateidx ].check = 0;
2160 for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
2161 if ( flag || trie->trans[ stateidx + charid ].next ) {
2162 if ( trie->trans[ stateidx + charid ].next ) {
2164 for ( ; zp < pos ; zp++ ) {
2165 if ( ! trie->trans[ zp ].next ) {
2169 trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
2170 trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2171 trie->trans[ zp ].check = state;
2172 if ( ++zp > pos ) pos = zp;
2179 trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
2181 trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2182 trie->trans[ pos ].check = state;
2187 trie->lasttrans = pos + 1;
2188 trie->states = (reg_trie_state *)
2189 PerlMemShared_realloc( trie->states, laststate
2190 * sizeof(reg_trie_state) );
2191 DEBUG_TRIE_COMPILE_MORE_r(
2192 PerlIO_printf( Perl_debug_log,
2193 "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
2194 (int)depth * 2 + 2,"",
2195 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
2198 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
2201 } /* end table compress */
2203 DEBUG_TRIE_COMPILE_MORE_r(
2204 PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
2205 (int)depth * 2 + 2, "",
2206 (UV)trie->statecount,
2207 (UV)trie->lasttrans)
2209 /* resize the trans array to remove unused space */
2210 trie->trans = (reg_trie_trans *)
2211 PerlMemShared_realloc( trie->trans, trie->lasttrans
2212 * sizeof(reg_trie_trans) );
2214 { /* Modify the program and insert the new TRIE node */
2215 U8 nodetype =(U8)(flags & 0xFF);
2219 regnode *optimize = NULL;
2220 #ifdef RE_TRACK_PATTERN_OFFSETS
2223 U32 mjd_nodelen = 0;
2224 #endif /* RE_TRACK_PATTERN_OFFSETS */
2225 #endif /* DEBUGGING */
2227 This means we convert either the first branch or the first Exact,
2228 depending on whether the thing following (in 'last') is a branch
2229 or not and whther first is the startbranch (ie is it a sub part of
2230 the alternation or is it the whole thing.)
2231 Assuming its a sub part we convert the EXACT otherwise we convert
2232 the whole branch sequence, including the first.
2234 /* Find the node we are going to overwrite */
2235 if ( first != startbranch || OP( last ) == BRANCH ) {
2236 /* branch sub-chain */
2237 NEXT_OFF( first ) = (U16)(last - first);
2238 #ifdef RE_TRACK_PATTERN_OFFSETS
2240 mjd_offset= Node_Offset((convert));
2241 mjd_nodelen= Node_Length((convert));
2244 /* whole branch chain */
2246 #ifdef RE_TRACK_PATTERN_OFFSETS
2249 const regnode *nop = NEXTOPER( convert );
2250 mjd_offset= Node_Offset((nop));
2251 mjd_nodelen= Node_Length((nop));
2255 PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
2256 (int)depth * 2 + 2, "",
2257 (UV)mjd_offset, (UV)mjd_nodelen)
2260 /* But first we check to see if there is a common prefix we can
2261 split out as an EXACT and put in front of the TRIE node. */
2262 trie->startstate= 1;
2263 if ( trie->bitmap && !widecharmap && !trie->jump ) {
2265 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
2269 const U32 base = trie->states[ state ].trans.base;
2271 if ( trie->states[state].wordnum )
2274 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2275 if ( ( base + ofs >= trie->uniquecharcount ) &&
2276 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
2277 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
2279 if ( ++count > 1 ) {
2280 SV **tmp = av_fetch( revcharmap, ofs, 0);
2281 const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
2282 if ( state == 1 ) break;
2284 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
2286 PerlIO_printf(Perl_debug_log,
2287 "%*sNew Start State=%"UVuf" Class: [",
2288 (int)depth * 2 + 2, "",
2291 SV ** const tmp = av_fetch( revcharmap, idx, 0);
2292 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
2294 TRIE_BITMAP_SET(trie,*ch);
2296 TRIE_BITMAP_SET(trie, folder[ *ch ]);
2298 PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
2302 TRIE_BITMAP_SET(trie,*ch);
2304 TRIE_BITMAP_SET(trie,folder[ *ch ]);
2305 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
2311 SV **tmp = av_fetch( revcharmap, idx, 0);
2313 char *ch = SvPV( *tmp, len );
2315 SV *sv=sv_newmortal();
2316 PerlIO_printf( Perl_debug_log,
2317 "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
2318 (int)depth * 2 + 2, "",
2320 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
2321 PL_colors[0], PL_colors[1],
2322 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2323 PERL_PV_ESCAPE_FIRSTCHAR
2328 OP( convert ) = nodetype;
2329 str=STRING(convert);
2332 STR_LEN(convert) += len;
2338 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
2343 trie->prefixlen = (state-1);
2345 regnode *n = convert+NODE_SZ_STR(convert);
2346 NEXT_OFF(convert) = NODE_SZ_STR(convert);
2347 trie->startstate = state;
2348 trie->minlen -= (state - 1);
2349 trie->maxlen -= (state - 1);
2351 /* At least the UNICOS C compiler choked on this
2352 * being argument to DEBUG_r(), so let's just have
2355 #ifdef PERL_EXT_RE_BUILD
2361 regnode *fix = convert;
2362 U32 word = trie->wordcount;
2364 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
2365 while( ++fix < n ) {
2366 Set_Node_Offset_Length(fix, 0, 0);
2369 SV ** const tmp = av_fetch( trie_words, word, 0 );
2371 if ( STR_LEN(convert) <= SvCUR(*tmp) )
2372 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
2374 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
2382 NEXT_OFF(convert) = (U16)(tail - convert);
2383 DEBUG_r(optimize= n);
2389 if ( trie->maxlen ) {
2390 NEXT_OFF( convert ) = (U16)(tail - convert);
2391 ARG_SET( convert, data_slot );
2392 /* Store the offset to the first unabsorbed branch in
2393 jump[0], which is otherwise unused by the jump logic.
2394 We use this when dumping a trie and during optimisation. */
2396 trie->jump[0] = (U16)(nextbranch - convert);
2398 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
2399 * and there is a bitmap
2400 * and the first "jump target" node we found leaves enough room
2401 * then convert the TRIE node into a TRIEC node, with the bitmap
2402 * embedded inline in the opcode - this is hypothetically faster.
2404 if ( !trie->states[trie->startstate].wordnum
2406 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
2408 OP( convert ) = TRIEC;
2409 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
2410 PerlMemShared_free(trie->bitmap);
2413 OP( convert ) = TRIE;
2415 /* store the type in the flags */
2416 convert->flags = nodetype;
2420 + regarglen[ OP( convert ) ];
2422 /* XXX We really should free up the resource in trie now,
2423 as we won't use them - (which resources?) dmq */
2425 /* needed for dumping*/
2426 DEBUG_r(if (optimize) {
2427 regnode *opt = convert;
2429 while ( ++opt < optimize) {
2430 Set_Node_Offset_Length(opt,0,0);
2433 Try to clean up some of the debris left after the
2436 while( optimize < jumper ) {
2437 mjd_nodelen += Node_Length((optimize));
2438 OP( optimize ) = OPTIMIZED;
2439 Set_Node_Offset_Length(optimize,0,0);
2442 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
2444 } /* end node insert */
2446 /* Finish populating the prev field of the wordinfo array. Walk back
2447 * from each accept state until we find another accept state, and if
2448 * so, point the first word's .prev field at the second word. If the
2449 * second already has a .prev field set, stop now. This will be the
2450 * case either if we've already processed that word's accept state,
2451 * or that state had multiple words, and the overspill words were
2452 * already linked up earlier.
2459 for (word=1; word <= trie->wordcount; word++) {
2461 if (trie->wordinfo[word].prev)
2463 state = trie->wordinfo[word].accept;
2465 state = prev_states[state];
2468 prev = trie->states[state].wordnum;
2472 trie->wordinfo[word].prev = prev;
2474 Safefree(prev_states);
2478 /* and now dump out the compressed format */
2479 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
2481 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
2483 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
2484 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
2486 SvREFCNT_dec_NN(revcharmap);
2490 : trie->startstate>1
2496 S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
2498 /* The Trie is constructed and compressed now so we can build a fail array if it's needed
2500 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
2501 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
2504 We find the fail state for each state in the trie, this state is the longest proper
2505 suffix of the current state's 'word' that is also a proper prefix of another word in our
2506 trie. State 1 represents the word '' and is thus the default fail state. This allows
2507 the DFA not to have to restart after its tried and failed a word at a given point, it
2508 simply continues as though it had been matching the other word in the first place.
2510 'abcdgu'=~/abcdefg|cdgu/
2511 When we get to 'd' we are still matching the first word, we would encounter 'g' which would
2512 fail, which would bring us to the state representing 'd' in the second word where we would
2513 try 'g' and succeed, proceeding to match 'cdgu'.
2515 /* add a fail transition */
2516 const U32 trie_offset = ARG(source);
2517 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
2519 const U32 ucharcount = trie->uniquecharcount;
2520 const U32 numstates = trie->statecount;
2521 const U32 ubound = trie->lasttrans + ucharcount;
2525 U32 base = trie->states[ 1 ].trans.base;
2528 const U32 data_slot = add_data( pRExC_state, 1, "T" );
2529 GET_RE_DEBUG_FLAGS_DECL;
2531 PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE;
2533 PERL_UNUSED_ARG(depth);
2537 ARG_SET( stclass, data_slot );
2538 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
2539 RExC_rxi->data->data[ data_slot ] = (void*)aho;
2540 aho->trie=trie_offset;
2541 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
2542 Copy( trie->states, aho->states, numstates, reg_trie_state );
2543 Newxz( q, numstates, U32);
2544 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
2547 /* initialize fail[0..1] to be 1 so that we always have
2548 a valid final fail state */
2549 fail[ 0 ] = fail[ 1 ] = 1;
2551 for ( charid = 0; charid < ucharcount ; charid++ ) {
2552 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
2554 q[ q_write ] = newstate;
2555 /* set to point at the root */
2556 fail[ q[ q_write++ ] ]=1;
2559 while ( q_read < q_write) {
2560 const U32 cur = q[ q_read++ % numstates ];
2561 base = trie->states[ cur ].trans.base;
2563 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
2564 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
2566 U32 fail_state = cur;
2569 fail_state = fail[ fail_state ];
2570 fail_base = aho->states[ fail_state ].trans.base;
2571 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
2573 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
2574 fail[ ch_state ] = fail_state;
2575 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
2577 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
2579 q[ q_write++ % numstates] = ch_state;
2583 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
2584 when we fail in state 1, this allows us to use the
2585 charclass scan to find a valid start char. This is based on the principle
2586 that theres a good chance the string being searched contains lots of stuff
2587 that cant be a start char.
2589 fail[ 0 ] = fail[ 1 ] = 0;
2590 DEBUG_TRIE_COMPILE_r({
2591 PerlIO_printf(Perl_debug_log,
2592 "%*sStclass Failtable (%"UVuf" states): 0",
2593 (int)(depth * 2), "", (UV)numstates
2595 for( q_read=1; q_read<numstates; q_read++ ) {
2596 PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
2598 PerlIO_printf(Perl_debug_log, "\n");
2601 /*RExC_seen |= REG_SEEN_TRIEDFA;*/
2606 * There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
2607 * These need to be revisited when a newer toolchain becomes available.
2609 #if defined(__sparc64__) && defined(__GNUC__)
2610 # if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
2611 # undef SPARC64_GCC_WORKAROUND
2612 # define SPARC64_GCC_WORKAROUND 1
2616 #define DEBUG_PEEP(str,scan,depth) \
2617 DEBUG_OPTIMISE_r({if (scan){ \
2618 SV * const mysv=sv_newmortal(); \
2619 regnode *Next = regnext(scan); \
2620 regprop(RExC_rx, mysv, scan); \
2621 PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
2622 (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
2623 Next ? (REG_NODE_NUM(Next)) : 0 ); \
2627 /* The below joins as many adjacent EXACTish nodes as possible into a single
2628 * one. The regop may be changed if the node(s) contain certain sequences that
2629 * require special handling. The joining is only done if:
2630 * 1) there is room in the current conglomerated node to entirely contain the
2632 * 2) they are the exact same node type
2634 * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
2635 * these get optimized out
2637 * If a node is to match under /i (folded), the number of characters it matches
2638 * can be different than its character length if it contains a multi-character
2639 * fold. *min_subtract is set to the total delta of the input nodes.
2641 * And *has_exactf_sharp_s is set to indicate whether or not the node is EXACTF
2642 * and contains LATIN SMALL LETTER SHARP S
2644 * This is as good a place as any to discuss the design of handling these
2645 * multi-character fold sequences. It's been wrong in Perl for a very long
2646 * time. There are three code points in Unicode whose multi-character folds
2647 * were long ago discovered to mess things up. The previous designs for
2648 * dealing with these involved assigning a special node for them. This
2649 * approach doesn't work, as evidenced by this example:
2650 * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
2651 * Both these fold to "sss", but if the pattern is parsed to create a node that
2652 * would match just the \xDF, it won't be able to handle the case where a
2653 * successful match would have to cross the node's boundary. The new approach
2654 * that hopefully generally solves the problem generates an EXACTFU_SS node
2657 * It turns out that there are problems with all multi-character folds, and not
2658 * just these three. Now the code is general, for all such cases, but the
2659 * three still have some special handling. The approach taken is:
2660 * 1) This routine examines each EXACTFish node that could contain multi-
2661 * character fold sequences. It returns in *min_subtract how much to
2662 * subtract from the the actual length of the string to get a real minimum
2663 * match length; it is 0 if there are no multi-char folds. This delta is
2664 * used by the caller to adjust the min length of the match, and the delta
2665 * between min and max, so that the optimizer doesn't reject these
2666 * possibilities based on size constraints.
2667 * 2) Certain of these sequences require special handling by the trie code,
2668 * so, if found, this code changes the joined node type to special ops:
2669 * EXACTFU_TRICKYFOLD and EXACTFU_SS.
2670 * 3) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
2671 * is used for an EXACTFU node that contains at least one "ss" sequence in
2672 * it. For non-UTF-8 patterns and strings, this is the only case where
2673 * there is a possible fold length change. That means that a regular
2674 * EXACTFU node without UTF-8 involvement doesn't have to concern itself
2675 * with length changes, and so can be processed faster. regexec.c takes
2676 * advantage of this. Generally, an EXACTFish node that is in UTF-8 is
2677 * pre-folded by regcomp.c. This saves effort in regex matching.
2678 * However, the pre-folding isn't done for non-UTF8 patterns because the
2679 * fold of the MICRO SIGN requires UTF-8, and we don't want to slow things
2680 * down by forcing the pattern into UTF8 unless necessary. Also what
2681 * EXACTF and EXACTFL nodes fold to isn't known until runtime. The fold
2682 * possibilities for the non-UTF8 patterns are quite simple, except for
2683 * the sharp s. All the ones that don't involve a UTF-8 target string are
2684 * members of a fold-pair, and arrays are set up for all of them so that
2685 * the other member of the pair can be found quickly. Code elsewhere in
2686 * this file makes sure that in EXACTFU nodes, the sharp s gets folded to
2687 * 'ss', even if the pattern isn't UTF-8. This avoids the issues
2688 * described in the next item.
2689 * 4) A problem remains for the sharp s in EXACTF nodes. Whether it matches
2690 * 'ss' or not is not knowable at compile time. It will match iff the
2691 * target string is in UTF-8, unlike the EXACTFU nodes, where it always
2692 * matches; and the EXACTFL and EXACTFA nodes where it never does. Thus
2693 * it can't be folded to "ss" at compile time, unlike EXACTFU does (as
2694 * described in item 3). An assumption that the optimizer part of
2695 * regexec.c (probably unwittingly) makes is that a character in the
2696 * pattern corresponds to at most a single character in the target string.
2697 * (And I do mean character, and not byte here, unlike other parts of the
2698 * documentation that have never been updated to account for multibyte
2699 * Unicode.) This assumption is wrong only in this case, as all other
2700 * cases are either 1-1 folds when no UTF-8 is involved; or is true by
2701 * virtue of having this file pre-fold UTF-8 patterns. I'm
2702 * reluctant to try to change this assumption, so instead the code punts.
2703 * This routine examines EXACTF nodes for the sharp s, and returns a
2704 * boolean indicating whether or not the node is an EXACTF node that
2705 * contains a sharp s. When it is true, the caller sets a flag that later
2706 * causes the optimizer in this file to not set values for the floating
2707 * and fixed string lengths, and thus avoids the optimizer code in
2708 * regexec.c that makes the invalid assumption. Thus, there is no
2709 * optimization based on string lengths for EXACTF nodes that contain the
2710 * sharp s. This only happens for /id rules (which means the pattern
2714 #define JOIN_EXACT(scan,min_subtract,has_exactf_sharp_s, flags) \
2715 if (PL_regkind[OP(scan)] == EXACT) \
2716 join_exact(pRExC_state,(scan),(min_subtract),has_exactf_sharp_s, (flags),NULL,depth+1)
2719 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, UV *min_subtract, bool *has_exactf_sharp_s, U32 flags,regnode *val, U32 depth) {
2720 /* Merge several consecutive EXACTish nodes into one. */
2721 regnode *n = regnext(scan);
2723 regnode *next = scan + NODE_SZ_STR(scan);
2727 regnode *stop = scan;
2728 GET_RE_DEBUG_FLAGS_DECL;
2730 PERL_UNUSED_ARG(depth);
2733 PERL_ARGS_ASSERT_JOIN_EXACT;
2734 #ifndef EXPERIMENTAL_INPLACESCAN
2735 PERL_UNUSED_ARG(flags);
2736 PERL_UNUSED_ARG(val);
2738 DEBUG_PEEP("join",scan,depth);
2740 /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
2741 * EXACT ones that are mergeable to the current one. */
2743 && (PL_regkind[OP(n)] == NOTHING
2744 || (stringok && OP(n) == OP(scan)))
2746 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
2749 if (OP(n) == TAIL || n > next)
2751 if (PL_regkind[OP(n)] == NOTHING) {
2752 DEBUG_PEEP("skip:",n,depth);
2753 NEXT_OFF(scan) += NEXT_OFF(n);
2754 next = n + NODE_STEP_REGNODE;
2761 else if (stringok) {
2762 const unsigned int oldl = STR_LEN(scan);
2763 regnode * const nnext = regnext(n);
2765 /* XXX I (khw) kind of doubt that this works on platforms where
2766 * U8_MAX is above 255 because of lots of other assumptions */
2767 /* Don't join if the sum can't fit into a single node */
2768 if (oldl + STR_LEN(n) > U8_MAX)
2771 DEBUG_PEEP("merg",n,depth);
2774 NEXT_OFF(scan) += NEXT_OFF(n);
2775 STR_LEN(scan) += STR_LEN(n);
2776 next = n + NODE_SZ_STR(n);
2777 /* Now we can overwrite *n : */
2778 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
2786 #ifdef EXPERIMENTAL_INPLACESCAN
2787 if (flags && !NEXT_OFF(n)) {
2788 DEBUG_PEEP("atch", val, depth);
2789 if (reg_off_by_arg[OP(n)]) {
2790 ARG_SET(n, val - n);
2793 NEXT_OFF(n) = val - n;
2801 *has_exactf_sharp_s = FALSE;
2803 /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
2804 * can now analyze for sequences of problematic code points. (Prior to
2805 * this final joining, sequences could have been split over boundaries, and
2806 * hence missed). The sequences only happen in folding, hence for any
2807 * non-EXACT EXACTish node */
2808 if (OP(scan) != EXACT) {
2809 const U8 * const s0 = (U8*) STRING(scan);
2811 const U8 * const s_end = s0 + STR_LEN(scan);
2813 /* One pass is made over the node's string looking for all the
2814 * possibilities. to avoid some tests in the loop, there are two main
2815 * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
2819 /* Examine the string for a multi-character fold sequence. UTF-8
2820 * patterns have all characters pre-folded by the time this code is
2822 while (s < s_end - 1) /* Can stop 1 before the end, as minimum
2823 length sequence we are looking for is 2 */
2826 int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
2827 if (! len) { /* Not a multi-char fold: get next char */
2832 /* Nodes with 'ss' require special handling, except for EXACTFL
2833 * and EXACTFA for which there is no multi-char fold to this */
2834 if (len == 2 && *s == 's' && *(s+1) == 's'
2835 && OP(scan) != EXACTFL && OP(scan) != EXACTFA)
2838 OP(scan) = EXACTFU_SS;
2841 else if (len == 6 /* len is the same in both ASCII and EBCDIC for these */
2842 && (memEQ(s, GREEK_SMALL_LETTER_IOTA_UTF8
2843 COMBINING_DIAERESIS_UTF8
2844 COMBINING_ACUTE_ACCENT_UTF8,
2846 || memEQ(s, GREEK_SMALL_LETTER_UPSILON_UTF8
2847 COMBINING_DIAERESIS_UTF8
2848 COMBINING_ACUTE_ACCENT_UTF8,
2853 /* These two folds require special handling by trie's, so
2854 * change the node type to indicate this. If EXACTFA and
2855 * EXACTFL were ever to be handled by trie's, this would
2856 * have to be changed. If this node has already been
2857 * changed to EXACTFU_SS in this loop, leave it as is. (I
2858 * (khw) think it doesn't matter in regexec.c for UTF
2859 * patterns, but no need to change it */
2860 if (OP(scan) == EXACTFU) {
2861 OP(scan) = EXACTFU_TRICKYFOLD;
2865 else { /* Here is a generic multi-char fold. */
2866 const U8* multi_end = s + len;
2868 /* Count how many characters in it. In the case of /l and
2869 * /aa, no folds which contain ASCII code points are
2870 * allowed, so check for those, and skip if found. (In
2871 * EXACTFL, no folds are allowed to any Latin1 code point,
2872 * not just ASCII. But there aren't any of these
2873 * currently, nor ever likely, so don't take the time to
2874 * test for them. The code that generates the
2875 * is_MULTI_foo() macros croaks should one actually get put
2876 * into Unicode .) */
2877 if (OP(scan) != EXACTFL && OP(scan) != EXACTFA) {
2878 count = utf8_length(s, multi_end);
2882 while (s < multi_end) {
2885 goto next_iteration;
2895 /* The delta is how long the sequence is minus 1 (1 is how long
2896 * the character that folds to the sequence is) */
2897 *min_subtract += count - 1;
2901 else if (OP(scan) != EXACTFL && OP(scan) != EXACTFA) {
2903 /* Here, the pattern is not UTF-8. Look for the multi-char folds
2904 * that are all ASCII. As in the above case, EXACTFL and EXACTFA
2905 * nodes can't have multi-char folds to this range (and there are
2906 * no existing ones in the upper latin1 range). In the EXACTF
2907 * case we look also for the sharp s, which can be in the final
2908 * position. Otherwise we can stop looking 1 byte earlier because
2909 * have to find at least two characters for a multi-fold */
2910 const U8* upper = (OP(scan) == EXACTF) ? s_end : s_end -1;
2912 /* The below is perhaps overboard, but this allows us to save a
2913 * test each time through the loop at the expense of a mask. This
2914 * is because on both EBCDIC and ASCII machines, 'S' and 's' differ
2915 * by a single bit. On ASCII they are 32 apart; on EBCDIC, they
2916 * are 64. This uses an exclusive 'or' to find that bit and then
2917 * inverts it to form a mask, with just a single 0, in the bit
2918 * position where 'S' and 's' differ. */
2919 const U8 S_or_s_mask = (U8) ~ ('S' ^ 's');
2920 const U8 s_masked = 's' & S_or_s_mask;
2923 int len = is_MULTI_CHAR_FOLD_latin1_safe(s, s_end);
2924 if (! len) { /* Not a multi-char fold. */
2925 if (*s == LATIN_SMALL_LETTER_SHARP_S && OP(scan) == EXACTF)
2927 *has_exactf_sharp_s = TRUE;
2934 && ((*s & S_or_s_mask) == s_masked)
2935 && ((*(s+1) & S_or_s_mask) == s_masked))
2938 /* EXACTF nodes need to know that the minimum length
2939 * changed so that a sharp s in the string can match this
2940 * ss in the pattern, but they remain EXACTF nodes, as they
2941 * won't match this unless the target string is is UTF-8,
2942 * which we don't know until runtime */
2943 if (OP(scan) != EXACTF) {
2944 OP(scan) = EXACTFU_SS;
2948 *min_subtract += len - 1;
2955 /* Allow dumping but overwriting the collection of skipped
2956 * ops and/or strings with fake optimized ops */
2957 n = scan + NODE_SZ_STR(scan);
2965 DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
2969 /* REx optimizer. Converts nodes into quicker variants "in place".
2970 Finds fixed substrings. */
2972 /* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
2973 to the position after last scanned or to NULL. */
2975 #define INIT_AND_WITHP \
2976 assert(!and_withp); \
2977 Newx(and_withp,1,struct regnode_charclass_class); \
2978 SAVEFREEPV(and_withp)
2980 /* this is a chain of data about sub patterns we are processing that
2981 need to be handled separately/specially in study_chunk. Its so
2982 we can simulate recursion without losing state. */
2984 typedef struct scan_frame {
2985 regnode *last; /* last node to process in this frame */
2986 regnode *next; /* next node to process when last is reached */
2987 struct scan_frame *prev; /*previous frame*/
2988 I32 stop; /* what stopparen do we use */
2992 #define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf)
2995 S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
2996 I32 *minlenp, I32 *deltap,
3001 struct regnode_charclass_class *and_withp,
3002 U32 flags, U32 depth)
3003 /* scanp: Start here (read-write). */
3004 /* deltap: Write maxlen-minlen here. */
3005 /* last: Stop before this one. */
3006 /* data: string data about the pattern */
3007 /* stopparen: treat close N as END */
3008 /* recursed: which subroutines have we recursed into */
3009 /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
3012 I32 min = 0; /* There must be at least this number of characters to match */
3014 regnode *scan = *scanp, *next;
3016 int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
3017 int is_inf_internal = 0; /* The studied chunk is infinite */
3018 I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
3019 scan_data_t data_fake;
3020 SV *re_trie_maxbuff = NULL;
3021 regnode *first_non_open = scan;
3022 I32 stopmin = I32_MAX;
3023 scan_frame *frame = NULL;
3024 GET_RE_DEBUG_FLAGS_DECL;
3026 PERL_ARGS_ASSERT_STUDY_CHUNK;
3029 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
3033 while (first_non_open && OP(first_non_open) == OPEN)
3034 first_non_open=regnext(first_non_open);
3039 while ( scan && OP(scan) != END && scan < last ){
3040 UV min_subtract = 0; /* How mmany chars to subtract from the minimum
3041 node length to get a real minimum (because
3042 the folded version may be shorter) */
3043 bool has_exactf_sharp_s = FALSE;
3044 /* Peephole optimizer: */
3045 DEBUG_STUDYDATA("Peep:", data,depth);
3046 DEBUG_PEEP("Peep",scan,depth);
3048 /* Its not clear to khw or hv why this is done here, and not in the
3049 * clauses that deal with EXACT nodes. khw's guess is that it's
3050 * because of a previous design */
3051 JOIN_EXACT(scan,&min_subtract, &has_exactf_sharp_s, 0);
3053 /* Follow the next-chain of the current node and optimize
3054 away all the NOTHINGs from it. */
3055 if (OP(scan) != CURLYX) {
3056 const int max = (reg_off_by_arg[OP(scan)]
3058 /* I32 may be smaller than U16 on CRAYs! */
3059 : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
3060 int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
3064 /* Skip NOTHING and LONGJMP. */
3065 while ((n = regnext(n))
3066 && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
3067 || ((OP(n) == LONGJMP) && (noff = ARG(n))))
3068 && off + noff < max)
3070 if (reg_off_by_arg[OP(scan)])
3073 NEXT_OFF(scan) = off;
3078 /* The principal pseudo-switch. Cannot be a switch, since we
3079 look into several different things. */
3080 if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
3081 || OP(scan) == IFTHEN) {
3082 next = regnext(scan);
3084 /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
3086 if (OP(next) == code || code == IFTHEN) {
3087 /* NOTE - There is similar code to this block below for handling
3088 TRIE nodes on a re-study. If you change stuff here check there
3090 I32 max1 = 0, min1 = I32_MAX, num = 0;
3091 struct regnode_charclass_class accum;
3092 regnode * const startbranch=scan;
3094 if (flags & SCF_DO_SUBSTR)
3095 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
3096 if (flags & SCF_DO_STCLASS)
3097 cl_init_zero(pRExC_state, &accum);
3099 while (OP(scan) == code) {
3100 I32 deltanext, minnext, f = 0, fake;
3101 struct regnode_charclass_class this_class;
3104 data_fake.flags = 0;
3106 data_fake.whilem_c = data->whilem_c;
3107 data_fake.last_closep = data->last_closep;
3110 data_fake.last_closep = &fake;
3112 data_fake.pos_delta = delta;
3113 next = regnext(scan);
3114 scan = NEXTOPER(scan);
3116 scan = NEXTOPER(scan);
3117 if (flags & SCF_DO_STCLASS) {
3118 cl_init(pRExC_state, &this_class);
3119 data_fake.start_class = &this_class;
3120 f = SCF_DO_STCLASS_AND;
3122 if (flags & SCF_WHILEM_VISITED_POS)
3123 f |= SCF_WHILEM_VISITED_POS;
3125 /* we suppose the run is continuous, last=next...*/
3126 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3128 stopparen, recursed, NULL, f,depth+1);
3131 if (deltanext == I32_MAX) {
3132 is_inf = is_inf_internal = 1;
3134 } else if (max1 < minnext + deltanext)
3135 max1 = minnext + deltanext;
3137 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
3139 if (data_fake.flags & SCF_SEEN_ACCEPT) {
3140 if ( stopmin > minnext)
3141 stopmin = min + min1;
3142 flags &= ~SCF_DO_SUBSTR;
3144 data->flags |= SCF_SEEN_ACCEPT;
3147 if (data_fake.flags & SF_HAS_EVAL)
3148 data->flags |= SF_HAS_EVAL;
3149 data->whilem_c = data_fake.whilem_c;
3151 if (flags & SCF_DO_STCLASS)
3152 cl_or(pRExC_state, &accum, &this_class);
3154 if (code == IFTHEN && num < 2) /* Empty ELSE branch */
3156 if (flags & SCF_DO_SUBSTR) {
3157 data->pos_min += min1;
3158 if (data->pos_delta >= I32_MAX - (max1 - min1))
3159 data->pos_delta = I32_MAX;
3161 data->pos_delta += max1 - min1;
3162 if (max1 != min1 || is_inf)
3163 data->longest = &(data->longest_float);
3166 if (delta == I32_MAX || I32_MAX - delta - (max1 - min1) < 0)
3169 delta += max1 - min1;
3170 if (flags & SCF_DO_STCLASS_OR) {
3171 cl_or(pRExC_state, data->start_class, &accum);
3173 cl_and(data->start_class, and_withp);
3174 flags &= ~SCF_DO_STCLASS;
3177 else if (flags & SCF_DO_STCLASS_AND) {
3179 cl_and(data->start_class, &accum);
3180 flags &= ~SCF_DO_STCLASS;
3183 /* Switch to OR mode: cache the old value of
3184 * data->start_class */
3186 StructCopy(data->start_class, and_withp,
3187 struct regnode_charclass_class);
3188 flags &= ~SCF_DO_STCLASS_AND;
3189 StructCopy(&accum, data->start_class,
3190 struct regnode_charclass_class);
3191 flags |= SCF_DO_STCLASS_OR;
3192 SET_SSC_EOS(data->start_class);
3196 if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
3199 Assuming this was/is a branch we are dealing with: 'scan' now
3200 points at the item that follows the branch sequence, whatever
3201 it is. We now start at the beginning of the sequence and look
3208 which would be constructed from a pattern like /A|LIST|OF|WORDS/
3210 If we can find such a subsequence we need to turn the first
3211 element into a trie and then add the subsequent branch exact
3212 strings to the trie.
3216 1. patterns where the whole set of branches can be converted.
3218 2. patterns where only a subset can be converted.
3220 In case 1 we can replace the whole set with a single regop
3221 for the trie. In case 2 we need to keep the start and end
3224 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
3225 becomes BRANCH TRIE; BRANCH X;
3227 There is an additional case, that being where there is a
3228 common prefix, which gets split out into an EXACT like node
3229 preceding the TRIE node.
3231 If x(1..n)==tail then we can do a simple trie, if not we make
3232 a "jump" trie, such that when we match the appropriate word
3233 we "jump" to the appropriate tail node. Essentially we turn
3234 a nested if into a case structure of sorts.
3239 if (!re_trie_maxbuff) {
3240 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
3241 if (!SvIOK(re_trie_maxbuff))
3242 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
3244 if ( SvIV(re_trie_maxbuff)>=0 ) {
3246 regnode *first = (regnode *)NULL;
3247 regnode *last = (regnode *)NULL;
3248 regnode *tail = scan;
3253 SV * const mysv = sv_newmortal(); /* for dumping */
3255 /* var tail is used because there may be a TAIL
3256 regop in the way. Ie, the exacts will point to the
3257 thing following the TAIL, but the last branch will
3258 point at the TAIL. So we advance tail. If we
3259 have nested (?:) we may have to move through several
3263 while ( OP( tail ) == TAIL ) {
3264 /* this is the TAIL generated by (?:) */
3265 tail = regnext( tail );
3269 DEBUG_TRIE_COMPILE_r({
3270 regprop(RExC_rx, mysv, tail );
3271 PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
3272 (int)depth * 2 + 2, "",
3273 "Looking for TRIE'able sequences. Tail node is: ",
3274 SvPV_nolen_const( mysv )
3280 Step through the branches
3281 cur represents each branch,
3282 noper is the first thing to be matched as part of that branch
3283 noper_next is the regnext() of that node.
3285 We normally handle a case like this /FOO[xyz]|BAR[pqr]/
3286 via a "jump trie" but we also support building with NOJUMPTRIE,
3287 which restricts the trie logic to structures like /FOO|BAR/.
3289 If noper is a trieable nodetype then the branch is a possible optimization
3290 target. If we are building under NOJUMPTRIE then we require that noper_next
3291 is the same as scan (our current position in the regex program).
3293 Once we have two or more consecutive such branches we can create a
3294 trie of the EXACT's contents and stitch it in place into the program.
3296 If the sequence represents all of the branches in the alternation we
3297 replace the entire thing with a single TRIE node.
3299 Otherwise when it is a subsequence we need to stitch it in place and
3300 replace only the relevant branches. This means the first branch has
3301 to remain as it is used by the alternation logic, and its next pointer,
3302 and needs to be repointed at the item on the branch chain following
3303 the last branch we have optimized away.
3305 This could be either a BRANCH, in which case the subsequence is internal,
3306 or it could be the item following the branch sequence in which case the
3307 subsequence is at the end (which does not necessarily mean the first node
3308 is the start of the alternation).
3310 TRIE_TYPE(X) is a define which maps the optype to a trietype.
3313 ----------------+-----------
3317 EXACTFU_SS | EXACTFU
3318 EXACTFU_TRICKYFOLD | EXACTFU
3323 #define TRIE_TYPE(X) ( ( NOTHING == (X) ) ? NOTHING : \
3324 ( EXACT == (X) ) ? EXACT : \
3325 ( EXACTFU == (X) || EXACTFU_SS == (X) || EXACTFU_TRICKYFOLD == (X) ) ? EXACTFU : \
3328 /* dont use tail as the end marker for this traverse */
3329 for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
3330 regnode * const noper = NEXTOPER( cur );
3331 U8 noper_type = OP( noper );
3332 U8 noper_trietype = TRIE_TYPE( noper_type );
3333 #if defined(DEBUGGING) || defined(NOJUMPTRIE)
3334 regnode * const noper_next = regnext( noper );
3335 U8 noper_next_type = (noper_next && noper_next != tail) ? OP(noper_next) : 0;
3336 U8 noper_next_trietype = (noper_next && noper_next != tail) ? TRIE_TYPE( noper_next_type ) :0;
3339 DEBUG_TRIE_COMPILE_r({
3340 regprop(RExC_rx, mysv, cur);
3341 PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
3342 (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
3344 regprop(RExC_rx, mysv, noper);
3345 PerlIO_printf( Perl_debug_log, " -> %s",
3346 SvPV_nolen_const(mysv));
3349 regprop(RExC_rx, mysv, noper_next );
3350 PerlIO_printf( Perl_debug_log,"\t=> %s\t",
3351 SvPV_nolen_const(mysv));
3353 PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d,tt==%s,nt==%s,nnt==%s)\n",
3354 REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur),
3355 PL_reg_name[trietype], PL_reg_name[noper_trietype], PL_reg_name[noper_next_trietype]
3359 /* Is noper a trieable nodetype that can be merged with the
3360 * current trie (if there is one)? */
3364 ( noper_trietype == NOTHING)
3365 || ( trietype == NOTHING )
3366 || ( trietype == noper_trietype )
3369 && noper_next == tail
3373 /* Handle mergable triable node
3374 * Either we are the first node in a new trieable sequence,
3375 * in which case we do some bookkeeping, otherwise we update
3376 * the end pointer. */
3379 if ( noper_trietype == NOTHING ) {
3380 #if !defined(DEBUGGING) && !defined(NOJUMPTRIE)
3381 regnode * const noper_next = regnext( noper );
3382 U8 noper_next_type = (noper_next && noper_next!=tail) ? OP(noper_next) : 0;
3383 U8 noper_next_trietype = noper_next_type ? TRIE_TYPE( noper_next_type ) :0;
3386 if ( noper_next_trietype ) {
3387 trietype = noper_next_trietype;
3388 } else if (noper_next_type) {
3389 /* a NOTHING regop is 1 regop wide. We need at least two
3390 * for a trie so we can't merge this in */
3394 trietype = noper_trietype;
3397 if ( trietype == NOTHING )
3398 trietype = noper_trietype;
3403 } /* end handle mergable triable node */
3405 /* handle unmergable node -
3406 * noper may either be a triable node which can not be tried
3407 * together with the current trie, or a non triable node */
3409 /* If last is set and trietype is not NOTHING then we have found
3410 * at least two triable branch sequences in a row of a similar
3411 * trietype so we can turn them into a trie. If/when we
3412 * allow NOTHING to start a trie sequence this condition will be
3413 * required, and it isn't expensive so we leave it in for now. */
3414 if ( trietype && trietype != NOTHING )
3415 make_trie( pRExC_state,
3416 startbranch, first, cur, tail, count,
3417 trietype, depth+1 );
3418 last = NULL; /* note: we clear/update first, trietype etc below, so we dont do it here */
3422 && noper_next == tail
3425 /* noper is triable, so we can start a new trie sequence */
3428 trietype = noper_trietype;
3430 /* if we already saw a first but the current node is not triable then we have
3431 * to reset the first information. */
3436 } /* end handle unmergable node */
3437 } /* loop over branches */
3438 DEBUG_TRIE_COMPILE_r({
3439 regprop(RExC_rx, mysv, cur);
3440 PerlIO_printf( Perl_debug_log,
3441 "%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
3442 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3445 if ( last && trietype ) {
3446 if ( trietype != NOTHING ) {
3447 /* the last branch of the sequence was part of a trie,
3448 * so we have to construct it here outside of the loop
3450 made= make_trie( pRExC_state, startbranch, first, scan, tail, count, trietype, depth+1 );
3451 #ifdef TRIE_STUDY_OPT
3452 if ( ((made == MADE_EXACT_TRIE &&
3453 startbranch == first)
3454 || ( first_non_open == first )) &&
3456 flags |= SCF_TRIE_RESTUDY;
3457 if ( startbranch == first
3460 RExC_seen &=~REG_TOP_LEVEL_BRANCHES;
3465 /* at this point we know whatever we have is a NOTHING sequence/branch
3466 * AND if 'startbranch' is 'first' then we can turn the whole thing into a NOTHING
3468 if ( startbranch == first ) {
3470 /* the entire thing is a NOTHING sequence, something like this:
3471 * (?:|) So we can turn it into a plain NOTHING op. */
3472 DEBUG_TRIE_COMPILE_r({
3473 regprop(RExC_rx, mysv, cur);
3474 PerlIO_printf( Perl_debug_log,
3475 "%*s- %s (%d) <NOTHING BRANCH SEQUENCE>\n", (int)depth * 2 + 2,
3476 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3479 OP(startbranch)= NOTHING;
3480 NEXT_OFF(startbranch)= tail - startbranch;
3481 for ( opt= startbranch + 1; opt < tail ; opt++ )
3485 } /* end if ( last) */
3486 } /* TRIE_MAXBUF is non zero */
3491 else if ( code == BRANCHJ ) { /* single branch is optimized. */
3492 scan = NEXTOPER(NEXTOPER(scan));
3493 } else /* single branch is optimized. */
3494 scan = NEXTOPER(scan);
3496 } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
3497 scan_frame *newframe = NULL;
3502 if (OP(scan) != SUSPEND) {
3503 /* set the pointer */
3504 if (OP(scan) == GOSUB) {
3506 RExC_recurse[ARG2L(scan)] = scan;
3507 start = RExC_open_parens[paren-1];
3508 end = RExC_close_parens[paren-1];
3511 start = RExC_rxi->program + 1;
3515 Newxz(recursed, (((RExC_npar)>>3) +1), U8);
3516 SAVEFREEPV(recursed);
3518 if (!PAREN_TEST(recursed,paren+1)) {
3519 PAREN_SET(recursed,paren+1);
3520 Newx(newframe,1,scan_frame);
3522 if (flags & SCF_DO_SUBSTR) {
3523 SCAN_COMMIT(pRExC_state,data,minlenp);
3524 data->longest = &(data->longest_float);
3526 is_inf = is_inf_internal = 1;
3527 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3528 cl_anything(pRExC_state, data->start_class);
3529 flags &= ~SCF_DO_STCLASS;
3532 Newx(newframe,1,scan_frame);
3535 end = regnext(scan);
3540 SAVEFREEPV(newframe);
3541 newframe->next = regnext(scan);
3542 newframe->last = last;
3543 newframe->stop = stopparen;
3544 newframe->prev = frame;
3554 else if (OP(scan) == EXACT) {
3555 I32 l = STR_LEN(scan);
3558 const U8 * const s = (U8*)STRING(scan);
3559 uc = utf8_to_uvchr_buf(s, s + l, NULL);
3560 l = utf8_length(s, s + l);
3562 uc = *((U8*)STRING(scan));
3565 if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
3566 /* The code below prefers earlier match for fixed
3567 offset, later match for variable offset. */
3568 if (data->last_end == -1) { /* Update the start info. */
3569 data->last_start_min = data->pos_min;
3570 data->last_start_max = is_inf
3571 ? I32_MAX : data->pos_min + data->pos_delta;
3573 sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
3575 SvUTF8_on(data->last_found);
3577 SV * const sv = data->last_found;
3578 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3579 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3580 if (mg && mg->mg_len >= 0)
3581 mg->mg_len += utf8_length((U8*)STRING(scan),
3582 (U8*)STRING(scan)+STR_LEN(scan));
3584 data->last_end = data->pos_min + l;
3585 data->pos_min += l; /* As in the first entry. */
3586 data->flags &= ~SF_BEFORE_EOL;
3588 if (flags & SCF_DO_STCLASS_AND) {
3589 /* Check whether it is compatible with what we know already! */
3593 /* If compatible, we or it in below. It is compatible if is
3594 * in the bitmp and either 1) its bit or its fold is set, or 2)
3595 * it's for a locale. Even if there isn't unicode semantics
3596 * here, at runtime there may be because of matching against a
3597 * utf8 string, so accept a possible false positive for
3598 * latin1-range folds */
3600 (!(data->start_class->flags & ANYOF_LOCALE)
3601 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3602 && (!(data->start_class->flags & ANYOF_LOC_FOLD)
3603 || !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3608 ANYOF_CLASS_ZERO(data->start_class);
3609 ANYOF_BITMAP_ZERO(data->start_class);
3611 ANYOF_BITMAP_SET(data->start_class, uc);
3612 else if (uc >= 0x100) {
3615 /* Some Unicode code points fold to the Latin1 range; as
3616 * XXX temporary code, instead of figuring out if this is
3617 * one, just assume it is and set all the start class bits
3618 * that could be some such above 255 code point's fold
3619 * which will generate fals positives. As the code
3620 * elsewhere that does compute the fold settles down, it
3621 * can be extracted out and re-used here */
3622 for (i = 0; i < 256; i++){
3623 if (HAS_NONLATIN1_FOLD_CLOSURE(i)) {
3624 ANYOF_BITMAP_SET(data->start_class, i);
3628 CLEAR_SSC_EOS(data->start_class);
3630 data->start_class->flags &= ~ANYOF_UNICODE_ALL;
3632 else if (flags & SCF_DO_STCLASS_OR) {
3633 /* false positive possible if the class is case-folded */
3635 ANYOF_BITMAP_SET(data->start_class, uc);
3637 data->start_class->flags |= ANYOF_UNICODE_ALL;
3638 CLEAR_SSC_EOS(data->start_class);
3639 cl_and(data->start_class, and_withp);
3641 flags &= ~SCF_DO_STCLASS;
3643 else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
3644 I32 l = STR_LEN(scan);
3645 UV uc = *((U8*)STRING(scan));
3647 /* Search for fixed substrings supports EXACT only. */
3648 if (flags & SCF_DO_SUBSTR) {
3650 SCAN_COMMIT(pRExC_state, data, minlenp);
3653 const U8 * const s = (U8 *)STRING(scan);
3654 uc = utf8_to_uvchr_buf(s, s + l, NULL);
3655 l = utf8_length(s, s + l);
3657 if (has_exactf_sharp_s) {
3658 RExC_seen |= REG_SEEN_EXACTF_SHARP_S;
3660 min += l - min_subtract;
3662 delta += min_subtract;
3663 if (flags & SCF_DO_SUBSTR) {
3664 data->pos_min += l - min_subtract;
3665 if (data->pos_min < 0) {
3668 data->pos_delta += min_subtract;
3670 data->longest = &(data->longest_float);
3673 if (flags & SCF_DO_STCLASS_AND) {
3674 /* Check whether it is compatible with what we know already! */
3677 (!(data->start_class->flags & ANYOF_LOCALE)
3678 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3679 && !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3683 ANYOF_CLASS_ZERO(data->start_class);
3684 ANYOF_BITMAP_ZERO(data->start_class);
3686 ANYOF_BITMAP_SET(data->start_class, uc);
3687 CLEAR_SSC_EOS(data->start_class);
3688 if (OP(scan) == EXACTFL) {
3689 /* XXX This set is probably no longer necessary, and
3690 * probably wrong as LOCALE now is on in the initial
3692 data->start_class->flags |= ANYOF_LOCALE|ANYOF_LOC_FOLD;
3696 /* Also set the other member of the fold pair. In case
3697 * that unicode semantics is called for at runtime, use
3698 * the full latin1 fold. (Can't do this for locale,
3699 * because not known until runtime) */
3700 ANYOF_BITMAP_SET(data->start_class, PL_fold_latin1[uc]);
3702 /* All other (EXACTFL handled above) folds except under
3703 * /iaa that include s, S, and sharp_s also may include
3705 if (OP(scan) != EXACTFA) {
3706 if (uc == 's' || uc == 'S') {
3707 ANYOF_BITMAP_SET(data->start_class,
3708 LATIN_SMALL_LETTER_SHARP_S);
3710 else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
3711 ANYOF_BITMAP_SET(data->start_class, 's');
3712 ANYOF_BITMAP_SET(data->start_class, 'S');
3717 else if (uc >= 0x100) {
3719 for (i = 0; i < 256; i++){
3720 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3721 ANYOF_BITMAP_SET(data->start_class, i);
3726 else if (flags & SCF_DO_STCLASS_OR) {
3727 if (data->start_class->flags & ANYOF_LOC_FOLD) {
3728 /* false positive possible if the class is case-folded.
3729 Assume that the locale settings are the same... */
3731 ANYOF_BITMAP_SET(data->start_class, uc);
3732 if (OP(scan) != EXACTFL) {
3734 /* And set the other member of the fold pair, but
3735 * can't do that in locale because not known until
3737 ANYOF_BITMAP_SET(data->start_class,
3738 PL_fold_latin1[uc]);
3740 /* All folds except under /iaa that include s, S,
3741 * and sharp_s also may include the others */
3742 if (OP(scan) != EXACTFA) {
3743 if (uc == 's' || uc == 'S') {
3744 ANYOF_BITMAP_SET(data->start_class,
3745 LATIN_SMALL_LETTER_SHARP_S);
3747 else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
3748 ANYOF_BITMAP_SET(data->start_class, 's');
3749 ANYOF_BITMAP_SET(data->start_class, 'S');
3754 CLEAR_SSC_EOS(data->start_class);
3756 cl_and(data->start_class, and_withp);
3758 flags &= ~SCF_DO_STCLASS;
3760 else if (REGNODE_VARIES(OP(scan))) {
3761 I32 mincount, maxcount, minnext, deltanext, fl = 0;
3762 I32 f = flags, pos_before = 0;
3763 regnode * const oscan = scan;
3764 struct regnode_charclass_class this_class;
3765 struct regnode_charclass_class *oclass = NULL;
3766 I32 next_is_eval = 0;
3768 switch (PL_regkind[OP(scan)]) {
3769 case WHILEM: /* End of (?:...)* . */
3770 scan = NEXTOPER(scan);
3773 if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
3774 next = NEXTOPER(scan);
3775 if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
3777 maxcount = REG_INFTY;
3778 next = regnext(scan);
3779 scan = NEXTOPER(scan);
3783 if (flags & SCF_DO_SUBSTR)
3788 if (flags & SCF_DO_STCLASS) {
3790 maxcount = REG_INFTY;
3791 next = regnext(scan);
3792 scan = NEXTOPER(scan);
3795 is_inf = is_inf_internal = 1;
3796 scan = regnext(scan);
3797 if (flags & SCF_DO_SUBSTR) {
3798 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */
3799 data->longest = &(data->longest_float);
3801 goto optimize_curly_tail;
3803 if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
3804 && (scan->flags == stopparen))
3809 mincount = ARG1(scan);
3810 maxcount = ARG2(scan);
3812 next = regnext(scan);
3813 if (OP(scan) == CURLYX) {
3814 I32 lp = (data ? *(data->last_closep) : 0);
3815 scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
3817 scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
3818 next_is_eval = (OP(scan) == EVAL);
3820 if (flags & SCF_DO_SUBSTR) {
3821 if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */
3822 pos_before = data->pos_min;
3826 data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
3828 data->flags |= SF_IS_INF;
3830 if (flags & SCF_DO_STCLASS) {
3831 cl_init(pRExC_state, &this_class);
3832 oclass = data->start_class;
3833 data->start_class = &this_class;
3834 f |= SCF_DO_STCLASS_AND;
3835 f &= ~SCF_DO_STCLASS_OR;
3837 /* Exclude from super-linear cache processing any {n,m}
3838 regops for which the combination of input pos and regex
3839 pos is not enough information to determine if a match
3842 For example, in the regex /foo(bar\s*){4,8}baz/ with the
3843 regex pos at the \s*, the prospects for a match depend not
3844 only on the input position but also on how many (bar\s*)
3845 repeats into the {4,8} we are. */
3846 if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
3847 f &= ~SCF_WHILEM_VISITED_POS;
3849 /* This will finish on WHILEM, setting scan, or on NULL: */
3850 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3851 last, data, stopparen, recursed, NULL,
3853 ? (f & ~SCF_DO_SUBSTR) : f),depth+1);
3855 if (flags & SCF_DO_STCLASS)
3856 data->start_class = oclass;
3857 if (mincount == 0 || minnext == 0) {
3858 if (flags & SCF_DO_STCLASS_OR) {
3859 cl_or(pRExC_state, data->start_class, &this_class);
3861 else if (flags & SCF_DO_STCLASS_AND) {
3862 /* Switch to OR mode: cache the old value of
3863 * data->start_class */
3865 StructCopy(data->start_class, and_withp,
3866 struct regnode_charclass_class);
3867 flags &= ~SCF_DO_STCLASS_AND;
3868 StructCopy(&this_class, data->start_class,
3869 struct regnode_charclass_class);
3870 flags |= SCF_DO_STCLASS_OR;
3871 SET_SSC_EOS(data->start_class);
3873 } else { /* Non-zero len */
3874 if (flags & SCF_DO_STCLASS_OR) {
3875 cl_or(pRExC_state, data->start_class, &this_class);
3876 cl_and(data->start_class, and_withp);
3878 else if (flags & SCF_DO_STCLASS_AND)
3879 cl_and(data->start_class, &this_class);
3880 flags &= ~SCF_DO_STCLASS;
3882 if (!scan) /* It was not CURLYX, but CURLY. */
3884 if ( /* ? quantifier ok, except for (?{ ... }) */
3885 (next_is_eval || !(mincount == 0 && maxcount == 1))
3886 && (minnext == 0) && (deltanext == 0)
3887 && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
3888 && maxcount <= REG_INFTY/3) /* Complement check for big count */
3890 /* Fatal warnings may leak the regexp without this: */
3891 SAVEFREESV(RExC_rx_sv);
3892 ckWARNreg(RExC_parse,
3893 "Quantifier unexpected on zero-length expression");
3894 (void)ReREFCNT_inc(RExC_rx_sv);
3897 min += minnext * mincount;
3898 is_inf_internal |= deltanext == I32_MAX
3899 || (maxcount == REG_INFTY && minnext + deltanext > 0);
3900 is_inf |= is_inf_internal;
3904 delta += (minnext + deltanext) * maxcount - minnext * mincount;
3906 /* Try powerful optimization CURLYX => CURLYN. */
3907 if ( OP(oscan) == CURLYX && data
3908 && data->flags & SF_IN_PAR
3909 && !(data->flags & SF_HAS_EVAL)
3910 && !deltanext && minnext == 1 ) {
3911 /* Try to optimize to CURLYN. */
3912 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
3913 regnode * const nxt1 = nxt;
3920 if (!REGNODE_SIMPLE(OP(nxt))
3921 && !(PL_regkind[OP(nxt)] == EXACT
3922 && STR_LEN(nxt) == 1))
3928 if (OP(nxt) != CLOSE)
3930 if (RExC_open_parens) {
3931 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3932 RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
3934 /* Now we know that nxt2 is the only contents: */
3935 oscan->flags = (U8)ARG(nxt);
3937 OP(nxt1) = NOTHING; /* was OPEN. */
3940 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3941 NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
3942 NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
3943 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3944 OP(nxt + 1) = OPTIMIZED; /* was count. */
3945 NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
3950 /* Try optimization CURLYX => CURLYM. */
3951 if ( OP(oscan) == CURLYX && data
3952 && !(data->flags & SF_HAS_PAR)
3953 && !(data->flags & SF_HAS_EVAL)
3954 && !deltanext /* atom is fixed width */
3955 && minnext != 0 /* CURLYM can't handle zero width */
3956 && ! (RExC_seen & REG_SEEN_EXACTF_SHARP_S) /* Nor \xDF */
3958 /* XXXX How to optimize if data == 0? */
3959 /* Optimize to a simpler form. */
3960 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
3964 while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
3965 && (OP(nxt2) != WHILEM))
3967 OP(nxt2) = SUCCEED; /* Whas WHILEM */
3968 /* Need to optimize away parenths. */
3969 if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
3970 /* Set the parenth number. */
3971 regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
3973 oscan->flags = (U8)ARG(nxt);
3974 if (RExC_open_parens) {
3975 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3976 RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
3978 OP(nxt1) = OPTIMIZED; /* was OPEN. */
3979 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3982 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3983 OP(nxt + 1) = OPTIMIZED; /* was count. */
3984 NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
3985 NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
3988 while ( nxt1 && (OP(nxt1) != WHILEM)) {
3989 regnode *nnxt = regnext(nxt1);
3991 if (reg_off_by_arg[OP(nxt1)])
3992 ARG_SET(nxt1, nxt2 - nxt1);
3993 else if (nxt2 - nxt1 < U16_MAX)
3994 NEXT_OFF(nxt1) = nxt2 - nxt1;
3996 OP(nxt) = NOTHING; /* Cannot beautify */
4001 /* Optimize again: */
4002 study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
4003 NULL, stopparen, recursed, NULL, 0,depth+1);
4008 else if ((OP(oscan) == CURLYX)
4009 && (flags & SCF_WHILEM_VISITED_POS)
4010 /* See the comment on a similar expression above.
4011 However, this time it's not a subexpression
4012 we care about, but the expression itself. */
4013 && (maxcount == REG_INFTY)
4014 && data && ++data->whilem_c < 16) {
4015 /* This stays as CURLYX, we can put the count/of pair. */
4016 /* Find WHILEM (as in regexec.c) */
4017 regnode *nxt = oscan + NEXT_OFF(oscan);
4019 if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
4021 PREVOPER(nxt)->flags = (U8)(data->whilem_c
4022 | (RExC_whilem_seen << 4)); /* On WHILEM */
4024 if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
4026 if (flags & SCF_DO_SUBSTR) {
4027 SV *last_str = NULL;
4028 int counted = mincount != 0;
4030 if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */
4031 #if defined(SPARC64_GCC_WORKAROUND)
4034 const char *s = NULL;
4037 if (pos_before >= data->last_start_min)
4040 b = data->last_start_min;
4043 s = SvPV_const(data->last_found, l);
4044 old = b - data->last_start_min;
4047 I32 b = pos_before >= data->last_start_min
4048 ? pos_before : data->last_start_min;
4050 const char * const s = SvPV_const(data->last_found, l);
4051 I32 old = b - data->last_start_min;
4055 old = utf8_hop((U8*)s, old) - (U8*)s;
4057 /* Get the added string: */
4058 last_str = newSVpvn_utf8(s + old, l, UTF);
4059 if (deltanext == 0 && pos_before == b) {
4060 /* What was added is a constant string */
4062 SvGROW(last_str, (mincount * l) + 1);
4063 repeatcpy(SvPVX(last_str) + l,
4064 SvPVX_const(last_str), l, mincount - 1);
4065 SvCUR_set(last_str, SvCUR(last_str) * mincount);
4066 /* Add additional parts. */
4067 SvCUR_set(data->last_found,
4068 SvCUR(data->last_found) - l);
4069 sv_catsv(data->last_found, last_str);
4071 SV * sv = data->last_found;
4073 SvUTF8(sv) && SvMAGICAL(sv) ?
4074 mg_find(sv, PERL_MAGIC_utf8) : NULL;
4075 if (mg && mg->mg_len >= 0)
4076 mg->mg_len += CHR_SVLEN(last_str) - l;
4078 data->last_end += l * (mincount - 1);
4081 /* start offset must point into the last copy */
4082 data->last_start_min += minnext * (mincount - 1);
4083 data->last_start_max += is_inf ? I32_MAX
4084 : (maxcount - 1) * (minnext + data->pos_delta);
4087 /* It is counted once already... */
4088 data->pos_min += minnext * (mincount - counted);
4090 PerlIO_printf(Perl_debug_log, "counted=%d deltanext=%d I32_MAX=%d minnext=%d maxcount=%d mincount=%d\n",
4091 counted, deltanext, I32_MAX, minnext, maxcount, mincount);
4092 if (deltanext != I32_MAX)
4093 PerlIO_printf(Perl_debug_log, "LHS=%d RHS=%d\n", -counted * deltanext + (minnext + deltanext) * maxcount - minnext * mincount, I32_MAX - data->pos_delta);
4095 if (deltanext == I32_MAX || -counted * deltanext + (minnext + deltanext) * maxcount - minnext * mincount >= I32_MAX - data->pos_delta)
4096 data->pos_delta = I32_MAX;
4098 data->pos_delta += - counted * deltanext +
4099 (minnext + deltanext) * maxcount - minnext * mincount;
4100 if (mincount != maxcount) {
4101 /* Cannot extend fixed substrings found inside
4103 SCAN_COMMIT(pRExC_state,data,minlenp);
4104 if (mincount && last_str) {
4105 SV * const sv = data->last_found;
4106 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
4107 mg_find(sv, PERL_MAGIC_utf8) : NULL;
4111 sv_setsv(sv, last_str);
4112 data->last_end = data->pos_min;
4113 data->last_start_min =
4114 data->pos_min - CHR_SVLEN(last_str);
4115 data->last_start_max = is_inf
4117 : data->pos_min + data->pos_delta
4118 - CHR_SVLEN(last_str);
4120 data->longest = &(data->longest_float);
4122 SvREFCNT_dec(last_str);
4124 if (data && (fl & SF_HAS_EVAL))
4125 data->flags |= SF_HAS_EVAL;
4126 optimize_curly_tail:
4127 if (OP(oscan) != CURLYX) {
4128 while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
4130 NEXT_OFF(oscan) += NEXT_OFF(next);
4133 default: /* REF, and CLUMP only? */
4134 if (flags & SCF_DO_SUBSTR) {
4135 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
4136 data->longest = &(data->longest_float);
4138 is_inf = is_inf_internal = 1;
4139 if (flags & SCF_DO_STCLASS_OR)
4140 cl_anything(pRExC_state, data->start_class);
4141 flags &= ~SCF_DO_STCLASS;
4145 else if (OP(scan) == LNBREAK) {
4146 if (flags & SCF_DO_STCLASS) {
4148 CLEAR_SSC_EOS(data->start_class); /* No match on empty */
4149 if (flags & SCF_DO_STCLASS_AND) {
4150 for (value = 0; value < 256; value++)
4151 if (!is_VERTWS_cp(value))
4152 ANYOF_BITMAP_CLEAR(data->start_class, value);
4155 for (value = 0; value < 256; value++)
4156 if (is_VERTWS_cp(value))
4157 ANYOF_BITMAP_SET(data->start_class, value);
4159 if (flags & SCF_DO_STCLASS_OR)
4160 cl_and(data->start_class, and_withp);
4161 flags &= ~SCF_DO_STCLASS;
4164 delta++; /* Because of the 2 char string cr-lf */
4165 if (flags & SCF_DO_SUBSTR) {
4166 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
4168 data->pos_delta += 1;
4169 data->longest = &(data->longest_float);
4172 else if (REGNODE_SIMPLE(OP(scan))) {
4175 if (flags & SCF_DO_SUBSTR) {
4176 SCAN_COMMIT(pRExC_state,data,minlenp);
4180 if (flags & SCF_DO_STCLASS) {
4182 CLEAR_SSC_EOS(data->start_class); /* No match on empty */
4184 /* Some of the logic below assumes that switching
4185 locale on will only add false positives. */
4186 switch (PL_regkind[OP(scan)]) {
4192 Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan));
4195 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
4196 cl_anything(pRExC_state, data->start_class);
4199 if (OP(scan) == SANY)
4201 if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */
4202 value = (ANYOF_BITMAP_TEST(data->start_class,'\n')
4203 || ANYOF_CLASS_TEST_ANY_SET(data->start_class));
4204 cl_anything(pRExC_state, data->start_class);
4206 if (flags & SCF_DO_STCLASS_AND || !value)
4207 ANYOF_BITMAP_CLEAR(data->start_class,'\n');
4210 if (flags & SCF_DO_STCLASS_AND)
4211 cl_and(data->start_class,
4212 (struct regnode_charclass_class*)scan);
4214 cl_or(pRExC_state, data->start_class,
4215 (struct regnode_charclass_class*)scan);
4223 classnum = FLAGS(scan);
4224 if (flags & SCF_DO_STCLASS_AND) {
4225 if (!(data->start_class->flags & ANYOF_LOCALE)) {
4226 ANYOF_CLASS_CLEAR(data->start_class, classnum_to_namedclass(classnum) + 1);
4227 for (value = 0; value < loop_max; value++) {
4228 if (! _generic_isCC(UNI_TO_NATIVE(value), classnum)) {
4229 ANYOF_BITMAP_CLEAR(data->start_class, UNI_TO_NATIVE(value));
4235 if (data->start_class->flags & ANYOF_LOCALE) {
4236 ANYOF_CLASS_SET(data->start_class, classnum_to_namedclass(classnum));
4240 /* Even if under locale, set the bits for non-locale
4241 * in case it isn't a true locale-node. This will
4242 * create false positives if it truly is locale */
4243 for (value = 0; value < loop_max; value++) {
4244 if (_generic_isCC(UNI_TO_NATIVE(value), classnum)) {
4245 ANYOF_BITMAP_SET(data->start_class, UNI_TO_NATIVE(value));
4257 classnum = FLAGS(scan);
4258 if (flags & SCF_DO_STCLASS_AND) {
4259 if (!(data->start_class->flags & ANYOF_LOCALE)) {
4260 ANYOF_CLASS_CLEAR(data->start_class, classnum_to_namedclass(classnum));
4261 for (value = 0; value < loop_max; value++) {
4262 if (_generic_isCC(UNI_TO_NATIVE(value), classnum)) {
4263 ANYOF_BITMAP_CLEAR(data->start_class, UNI_TO_NATIVE(value));
4269 if (data->start_class->flags & ANYOF_LOCALE) {
4270 ANYOF_CLASS_SET(data->start_class, classnum_to_namedclass(classnum) + 1);
4274 /* Even if under locale, set the bits for non-locale in
4275 * case it isn't a true locale-node. This will create
4276 * false positives if it truly is locale */
4277 for (value = 0; value < loop_max; value++) {
4278 if (! _generic_isCC(UNI_TO_NATIVE(value), classnum)) {
4279 ANYOF_BITMAP_SET(data->start_class, UNI_TO_NATIVE(value));
4282 if (PL_regkind[OP(scan)] == NPOSIXD) {
4283 data->start_class->flags |= ANYOF_NON_UTF8_LATIN1_ALL;
4289 if (flags & SCF_DO_STCLASS_OR)
4290 cl_and(data->start_class, and_withp);
4291 flags &= ~SCF_DO_STCLASS;
4294 else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
4295 data->flags |= (OP(scan) == MEOL
4298 SCAN_COMMIT(pRExC_state, data, minlenp);
4301 else if ( PL_regkind[OP(scan)] == BRANCHJ
4302 /* Lookbehind, or need to calculate parens/evals/stclass: */
4303 && (scan->flags || data || (flags & SCF_DO_STCLASS))
4304 && (OP(scan) == IFMATCH || OP(scan) == UNLESSM)) {
4305 if ( OP(scan) == UNLESSM &&
4307 OP(NEXTOPER(NEXTOPER(scan))) == NOTHING &&
4308 OP(regnext(NEXTOPER(NEXTOPER(scan)))) == SUCCEED
4311 regnode *upto= regnext(scan);
4313 SV * const mysv_val=sv_newmortal();
4314 DEBUG_STUDYDATA("OPFAIL",data,depth);
4316 /*DEBUG_PARSE_MSG("opfail");*/
4317 regprop(RExC_rx, mysv_val, upto);
4318 PerlIO_printf(Perl_debug_log, "~ replace with OPFAIL pointed at %s (%"IVdf") offset %"IVdf"\n",
4319 SvPV_nolen_const(mysv_val),
4320 (IV)REG_NODE_NUM(upto),
4325 NEXT_OFF(scan) = upto - scan;
4326 for (opt= scan + 1; opt < upto ; opt++)
4327 OP(opt) = OPTIMIZED;
4331 if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4332 || OP(scan) == UNLESSM )
4334 /* Negative Lookahead/lookbehind
4335 In this case we can't do fixed string optimisation.
4338 I32 deltanext, minnext, fake = 0;
4340 struct regnode_charclass_class intrnl;
4343 data_fake.flags = 0;
4345 data_fake.whilem_c = data->whilem_c;
4346 data_fake.last_closep = data->last_closep;
4349 data_fake.last_closep = &fake;
4350 data_fake.pos_delta = delta;
4351 if ( flags & SCF_DO_STCLASS && !scan->flags
4352 && OP(scan) == IFMATCH ) { /* Lookahead */
4353 cl_init(pRExC_state, &intrnl);
4354 data_fake.start_class = &intrnl;
4355 f |= SCF_DO_STCLASS_AND;
4357 if (flags & SCF_WHILEM_VISITED_POS)
4358 f |= SCF_WHILEM_VISITED_POS;
4359 next = regnext(scan);
4360 nscan = NEXTOPER(NEXTOPER(scan));
4361 minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
4362 last, &data_fake, stopparen, recursed, NULL, f, depth+1);
4365 FAIL("Variable length lookbehind not implemented");
4367 else if (minnext > (I32)U8_MAX) {
4368 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4370 scan->flags = (U8)minnext;
4373 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4375 if (data_fake.flags & SF_HAS_EVAL)
4376 data->flags |= SF_HAS_EVAL;
4377 data->whilem_c = data_fake.whilem_c;
4379 if (f & SCF_DO_STCLASS_AND) {
4380 if (flags & SCF_DO_STCLASS_OR) {
4381 /* OR before, AND after: ideally we would recurse with
4382 * data_fake to get the AND applied by study of the
4383 * remainder of the pattern, and then derecurse;
4384 * *** HACK *** for now just treat as "no information".
4385 * See [perl #56690].
4387 cl_init(pRExC_state, data->start_class);
4389 /* AND before and after: combine and continue */
4390 const int was = TEST_SSC_EOS(data->start_class);
4392 cl_and(data->start_class, &intrnl);
4394 SET_SSC_EOS(data->start_class);
4398 #if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4400 /* Positive Lookahead/lookbehind
4401 In this case we can do fixed string optimisation,
4402 but we must be careful about it. Note in the case of
4403 lookbehind the positions will be offset by the minimum
4404 length of the pattern, something we won't know about
4405 until after the recurse.
4407 I32 deltanext, fake = 0;
4409 struct regnode_charclass_class intrnl;
4411 /* We use SAVEFREEPV so that when the full compile
4412 is finished perl will clean up the allocated
4413 minlens when it's all done. This way we don't
4414 have to worry about freeing them when we know
4415 they wont be used, which would be a pain.
4418 Newx( minnextp, 1, I32 );
4419 SAVEFREEPV(minnextp);
4422 StructCopy(data, &data_fake, scan_data_t);
4423 if ((flags & SCF_DO_SUBSTR) && data->last_found) {
4426 SCAN_COMMIT(pRExC_state, &data_fake,minlenp);
4427 data_fake.last_found=newSVsv(data->last_found);
4431 data_fake.last_closep = &fake;
4432 data_fake.flags = 0;
4433 data_fake.pos_delta = delta;
4435 data_fake.flags |= SF_IS_INF;
4436 if ( flags & SCF_DO_STCLASS && !scan->flags
4437 && OP(scan) == IFMATCH ) { /* Lookahead */
4438 cl_init(pRExC_state, &intrnl);
4439 data_fake.start_class = &intrnl;
4440 f |= SCF_DO_STCLASS_AND;
4442 if (flags & SCF_WHILEM_VISITED_POS)
4443 f |= SCF_WHILEM_VISITED_POS;
4444 next = regnext(scan);
4445 nscan = NEXTOPER(NEXTOPER(scan));
4447 *minnextp = study_chunk(pRExC_state, &nscan, minnextp, &deltanext,
4448 last, &data_fake, stopparen, recursed, NULL, f,depth+1);
4451 FAIL("Variable length lookbehind not implemented");
4453 else if (*minnextp > (I32)U8_MAX) {
4454 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4456 scan->flags = (U8)*minnextp;
4461 if (f & SCF_DO_STCLASS_AND) {
4462 const int was = TEST_SSC_EOS(data.start_class);
4464 cl_and(data->start_class, &intrnl);
4466 SET_SSC_EOS(data->start_class);
4469 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4471 if (data_fake.flags & SF_HAS_EVAL)
4472 data->flags |= SF_HAS_EVAL;
4473 data->whilem_c = data_fake.whilem_c;
4474 if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
4475 if (RExC_rx->minlen<*minnextp)
4476 RExC_rx->minlen=*minnextp;
4477 SCAN_COMMIT(pRExC_state, &data_fake, minnextp);
4478 SvREFCNT_dec_NN(data_fake.last_found);
4480 if ( data_fake.minlen_fixed != minlenp )
4482 data->offset_fixed= data_fake.offset_fixed;
4483 data->minlen_fixed= data_fake.minlen_fixed;
4484 data->lookbehind_fixed+= scan->flags;
4486 if ( data_fake.minlen_float != minlenp )
4488 data->minlen_float= data_fake.minlen_float;
4489 data->offset_float_min=data_fake.offset_float_min;
4490 data->offset_float_max=data_fake.offset_float_max;
4491 data->lookbehind_float+= scan->flags;
4498 else if (OP(scan) == OPEN) {
4499 if (stopparen != (I32)ARG(scan))
4502 else if (OP(scan) == CLOSE) {
4503 if (stopparen == (I32)ARG(scan)) {
4506 if ((I32)ARG(scan) == is_par) {
4507 next = regnext(scan);
4509 if ( next && (OP(next) != WHILEM) && next < last)
4510 is_par = 0; /* Disable optimization */
4513 *(data->last_closep) = ARG(scan);
4515 else if (OP(scan) == EVAL) {
4517 data->flags |= SF_HAS_EVAL;
4519 else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
4520 if (flags & SCF_DO_SUBSTR) {
4521 SCAN_COMMIT(pRExC_state,data,minlenp);
4522 flags &= ~SCF_DO_SUBSTR;
4524 if (data && OP(scan)==ACCEPT) {
4525 data->flags |= SCF_SEEN_ACCEPT;
4530 else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
4532 if (flags & SCF_DO_SUBSTR) {
4533 SCAN_COMMIT(pRExC_state,data,minlenp);
4534 data->longest = &(data->longest_float);
4536 is_inf = is_inf_internal = 1;
4537 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
4538 cl_anything(pRExC_state, data->start_class);
4539 flags &= ~SCF_DO_STCLASS;
4541 else if (OP(scan) == GPOS) {
4542 if (!(RExC_rx->extflags & RXf_GPOS_FLOAT) &&
4543 !(delta || is_inf || (data && data->pos_delta)))
4545 if (!(RExC_rx->extflags & RXf_ANCH) && (flags & SCF_DO_SUBSTR))
4546 RExC_rx->extflags |= RXf_ANCH_GPOS;
4547 if (RExC_rx->gofs < (U32)min)
4548 RExC_rx->gofs = min;
4550 RExC_rx->extflags |= RXf_GPOS_FLOAT;
4554 #ifdef TRIE_STUDY_OPT
4555 #ifdef FULL_TRIE_STUDY
4556 else if (PL_regkind[OP(scan)] == TRIE) {
4557 /* NOTE - There is similar code to this block above for handling
4558 BRANCH nodes on the initial study. If you change stuff here
4560 regnode *trie_node= scan;
4561 regnode *tail= regnext(scan);
4562 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4563 I32 max1 = 0, min1 = I32_MAX;
4564 struct regnode_charclass_class accum;
4566 if (flags & SCF_DO_SUBSTR) /* XXXX Add !SUSPEND? */
4567 SCAN_COMMIT(pRExC_state, data,minlenp); /* Cannot merge strings after this. */
4568 if (flags & SCF_DO_STCLASS)
4569 cl_init_zero(pRExC_state, &accum);
4575 const regnode *nextbranch= NULL;
4578 for ( word=1 ; word <= trie->wordcount ; word++)
4580 I32 deltanext=0, minnext=0, f = 0, fake;
4581 struct regnode_charclass_class this_class;
4583 data_fake.flags = 0;
4585 data_fake.whilem_c = data->whilem_c;
4586 data_fake.last_closep = data->last_closep;
4589 data_fake.last_closep = &fake;
4590 data_fake.pos_delta = delta;
4591 if (flags & SCF_DO_STCLASS) {
4592 cl_init(pRExC_state, &this_class);
4593 data_fake.start_class = &this_class;
4594 f = SCF_DO_STCLASS_AND;
4596 if (flags & SCF_WHILEM_VISITED_POS)
4597 f |= SCF_WHILEM_VISITED_POS;
4599 if (trie->jump[word]) {
4601 nextbranch = trie_node + trie->jump[0];
4602 scan= trie_node + trie->jump[word];
4603 /* We go from the jump point to the branch that follows
4604 it. Note this means we need the vestigal unused branches
4605 even though they arent otherwise used.
4607 minnext = study_chunk(pRExC_state, &scan, minlenp,
4608 &deltanext, (regnode *)nextbranch, &data_fake,
4609 stopparen, recursed, NULL, f,depth+1);
4611 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
4612 nextbranch= regnext((regnode*)nextbranch);
4614 if (min1 > (I32)(minnext + trie->minlen))
4615 min1 = minnext + trie->minlen;
4616 if (deltanext == I32_MAX) {
4617 is_inf = is_inf_internal = 1;
4619 } else if (max1 < (I32)(minnext + deltanext + trie->maxlen))
4620 max1 = minnext + deltanext + trie->maxlen;
4622 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4624 if (data_fake.flags & SCF_SEEN_ACCEPT) {
4625 if ( stopmin > min + min1)
4626 stopmin = min + min1;
4627 flags &= ~SCF_DO_SUBSTR;
4629 data->flags |= SCF_SEEN_ACCEPT;
4632 if (data_fake.flags & SF_HAS_EVAL)
4633 data->flags |= SF_HAS_EVAL;
4634 data->whilem_c = data_fake.whilem_c;
4636 if (flags & SCF_DO_STCLASS)
4637 cl_or(pRExC_state, &accum, &this_class);
4640 if (flags & SCF_DO_SUBSTR) {
4641 data->pos_min += min1;
4642 data->pos_delta += max1 - min1;
4643 if (max1 != min1 || is_inf)
4644 data->longest = &(data->longest_float);
4647 delta += max1 - min1;
4648 if (flags & SCF_DO_STCLASS_OR) {
4649 cl_or(pRExC_state, data->start_class, &accum);
4651 cl_and(data->start_class, and_withp);
4652 flags &= ~SCF_DO_STCLASS;
4655 else if (flags & SCF_DO_STCLASS_AND) {
4657 cl_and(data->start_class, &accum);
4658 flags &= ~SCF_DO_STCLASS;
4661 /* Switch to OR mode: cache the old value of
4662 * data->start_class */
4664 StructCopy(data->start_class, and_withp,
4665 struct regnode_charclass_class);
4666 flags &= ~SCF_DO_STCLASS_AND;
4667 StructCopy(&accum, data->start_class,
4668 struct regnode_charclass_class);
4669 flags |= SCF_DO_STCLASS_OR;
4670 SET_SSC_EOS(data->start_class);
4677 else if (PL_regkind[OP(scan)] == TRIE) {
4678 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4681 min += trie->minlen;
4682 delta += (trie->maxlen - trie->minlen);
4683 flags &= ~SCF_DO_STCLASS; /* xxx */
4684 if (flags & SCF_DO_SUBSTR) {
4685 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
4686 data->pos_min += trie->minlen;
4687 data->pos_delta += (trie->maxlen - trie->minlen);
4688 if (trie->maxlen != trie->minlen)
4689 data->longest = &(data->longest_float);
4691 if (trie->jump) /* no more substrings -- for now /grr*/
4692 flags &= ~SCF_DO_SUBSTR;
4694 #endif /* old or new */
4695 #endif /* TRIE_STUDY_OPT */
4697 /* Else: zero-length, ignore. */
4698 scan = regnext(scan);
4703 stopparen = frame->stop;
4704 frame = frame->prev;
4705 goto fake_study_recurse;
4710 DEBUG_STUDYDATA("pre-fin:",data,depth);
4713 *deltap = is_inf_internal ? I32_MAX : delta;
4714 if (flags & SCF_DO_SUBSTR && is_inf)
4715 data->pos_delta = I32_MAX - data->pos_min;
4716 if (is_par > (I32)U8_MAX)
4718 if (is_par && pars==1 && data) {
4719 data->flags |= SF_IN_PAR;
4720 data->flags &= ~SF_HAS_PAR;
4722 else if (pars && data) {
4723 data->flags |= SF_HAS_PAR;
4724 data->flags &= ~SF_IN_PAR;
4726 if (flags & SCF_DO_STCLASS_OR)
4727 cl_and(data->start_class, and_withp);
4728 if (flags & SCF_TRIE_RESTUDY)
4729 data->flags |= SCF_TRIE_RESTUDY;
4731 DEBUG_STUDYDATA("post-fin:",data,depth);
4733 return min < stopmin ? min : stopmin;
4737 S_add_data(RExC_state_t *pRExC_state, U32 n, const char *s)
4739 U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
4741 PERL_ARGS_ASSERT_ADD_DATA;
4743 Renewc(RExC_rxi->data,
4744 sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
4745 char, struct reg_data);
4747 Renew(RExC_rxi->data->what, count + n, U8);
4749 Newx(RExC_rxi->data->what, n, U8);
4750 RExC_rxi->data->count = count + n;
4751 Copy(s, RExC_rxi->data->what + count, n, U8);
4755 /*XXX: todo make this not included in a non debugging perl */
4756 #ifndef PERL_IN_XSUB_RE
4758 Perl_reginitcolors(pTHX)
4761 const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
4763 char *t = savepv(s);
4767 t = strchr(t, '\t');
4773 PL_colors[i] = t = (char *)"";
4778 PL_colors[i++] = (char *)"";
4785 #ifdef TRIE_STUDY_OPT
4786 #define CHECK_RESTUDY_GOTO_butfirst(dOsomething) \
4789 (data.flags & SCF_TRIE_RESTUDY) \
4797 #define CHECK_RESTUDY_GOTO_butfirst
4801 * pregcomp - compile a regular expression into internal code
4803 * Decides which engine's compiler to call based on the hint currently in
4807 #ifndef PERL_IN_XSUB_RE
4809 /* return the currently in-scope regex engine (or the default if none) */
4811 regexp_engine const *
4812 Perl_current_re_engine(pTHX)
4816 if (IN_PERL_COMPILETIME) {
4817 HV * const table = GvHV(PL_hintgv);
4821 return &PL_core_reg_engine;
4822 ptr = hv_fetchs(table, "regcomp", FALSE);
4823 if ( !(ptr && SvIOK(*ptr) && SvIV(*ptr)))
4824 return &PL_core_reg_engine;
4825 return INT2PTR(regexp_engine*,SvIV(*ptr));
4829 if (!PL_curcop->cop_hints_hash)
4830 return &PL_core_reg_engine;
4831 ptr = cop_hints_fetch_pvs(PL_curcop, "regcomp", 0);
4832 if ( !(ptr && SvIOK(ptr) && SvIV(ptr)))
4833 return &PL_core_reg_engine;
4834 return INT2PTR(regexp_engine*,SvIV(ptr));
4840 Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
4843 regexp_engine const *eng = current_re_engine();
4844 GET_RE_DEBUG_FLAGS_DECL;
4846 PERL_ARGS_ASSERT_PREGCOMP;
4848 /* Dispatch a request to compile a regexp to correct regexp engine. */
4850 PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
4853 return CALLREGCOMP_ENG(eng, pattern, flags);
4857 /* public(ish) entry point for the perl core's own regex compiling code.
4858 * It's actually a wrapper for Perl_re_op_compile that only takes an SV
4859 * pattern rather than a list of OPs, and uses the internal engine rather
4860 * than the current one */
4863 Perl_re_compile(pTHX_ SV * const pattern, U32 rx_flags)
4865 SV *pat = pattern; /* defeat constness! */
4866 PERL_ARGS_ASSERT_RE_COMPILE;
4867 return Perl_re_op_compile(aTHX_ &pat, 1, NULL,
4868 #ifdef PERL_IN_XSUB_RE
4871 &PL_core_reg_engine,
4873 NULL, NULL, rx_flags, 0);
4877 /* upgrade pattern pat_p of length plen_p to UTF8, and if there are code
4878 * blocks, recalculate the indices. Update pat_p and plen_p in-place to
4879 * point to the realloced string and length.
4881 * This is essentially a copy of Perl_bytes_to_utf8() with the code index
4885 S_pat_upgrade_to_utf8(pTHX_ RExC_state_t * const pRExC_state,
4886 char **pat_p, STRLEN *plen_p, int num_code_blocks)
4888 U8 *const src = (U8*)*pat_p;
4891 STRLEN s = 0, d = 0;
4893 GET_RE_DEBUG_FLAGS_DECL;
4895 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
4896 "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
4898 Newx(dst, *plen_p * 2 + 1, U8);
4900 while (s < *plen_p) {
4901 const UV uv = NATIVE_TO_ASCII(src[s]);
4902 if (UNI_IS_INVARIANT(uv))
4903 dst[d] = (U8)UTF_TO_NATIVE(uv);
4905 dst[d++] = (U8)UTF8_EIGHT_BIT_HI(uv);
4906 dst[d] = (U8)UTF8_EIGHT_BIT_LO(uv);
4908 if (n < num_code_blocks) {
4909 if (!do_end && pRExC_state->code_blocks[n].start == s) {
4910 pRExC_state->code_blocks[n].start = d;
4911 assert(dst[d] == '(');
4914 else if (do_end && pRExC_state->code_blocks[n].end == s) {
4915 pRExC_state->code_blocks[n].end = d;
4916 assert(dst[d] == ')');
4926 *pat_p = (char*) dst;
4928 RExC_orig_utf8 = RExC_utf8 = 1;
4933 /* S_concat_pat(): concatenate a list of args to the pattern string pat,
4934 * while recording any code block indices, and handling overloading,
4935 * nested qr// objects etc. If pat is null, it will allocate a new
4936 * string, or just return the first arg, if there's only one.
4938 * Returns the malloced/updated pat.
4939 * patternp and pat_count is the array of SVs to be concatted;
4940 * oplist is the optional list of ops that generated the SVs;
4941 * recompile_p is a pointer to a boolean that will be set if
4942 * the regex will need to be recompiled.
4943 * delim, if non-null is an SV that will be inserted between each element
4947 S_concat_pat(pTHX_ RExC_state_t * const pRExC_state,
4948 SV *pat, SV ** const patternp, int pat_count,
4949 OP *oplist, bool *recompile_p, SV *delim)
4953 bool use_delim = FALSE;
4954 bool alloced = FALSE;
4956 /* if we know we have at least two args, create an empty string,
4957 * then concatenate args to that. For no args, return an empty string */
4958 if (!pat && pat_count != 1) {
4959 pat = newSVpvn("", 0);
4964 for (svp = patternp; svp < patternp + pat_count; svp++) {
4967 STRLEN orig_patlen = 0;
4969 SV *msv = use_delim ? delim : *svp;
4971 /* if we've got a delimiter, we go round the loop twice for each
4972 * svp slot (except the last), using the delimiter the second
4981 if (SvTYPE(msv) == SVt_PVAV) {
4982 /* we've encountered an interpolated array within
4983 * the pattern, e.g. /...@a..../. Expand the list of elements,
4984 * then recursively append elements.
4985 * The code in this block is based on S_pushav() */
4987 AV *const av = (AV*)msv;
4988 const I32 maxarg = AvFILL(av) + 1;
4992 assert(oplist->op_type == OP_PADAV
4993 || oplist->op_type == OP_RV2AV);
4994 oplist = oplist->op_sibling;;
4997 if (SvRMAGICAL(av)) {
5000 Newx(array, maxarg, SV*);
5002 for (i=0; i < (U32)maxarg; i++) {
5003 SV ** const svp = av_fetch(av, i, FALSE);
5004 array[i] = svp ? *svp : &PL_sv_undef;
5008 array = AvARRAY(av);
5010 pat = S_concat_pat(aTHX_ pRExC_state, pat,
5011 array, maxarg, NULL, recompile_p,
5013 GvSV((gv_fetchpvs("\"", GV_ADDMULTI, SVt_PV))));
5019 /* we make the assumption here that each op in the list of
5020 * op_siblings maps to one SV pushed onto the stack,
5021 * except for code blocks, with have both an OP_NULL and
5023 * This allows us to match up the list of SVs against the
5024 * list of OPs to find the next code block.
5026 * Note that PUSHMARK PADSV PADSV ..
5028 * PADRANGE PADSV PADSV ..
5029 * so the alignment still works. */
5032 if (oplist->op_type == OP_NULL
5033 && (oplist->op_flags & OPf_SPECIAL))
5035 assert(n < pRExC_state->num_code_blocks);
5036 pRExC_state->code_blocks[n].start = pat ? SvCUR(pat) : 0;
5037 pRExC_state->code_blocks[n].block = oplist;
5038 pRExC_state->code_blocks[n].src_regex = NULL;
5041 oplist = oplist->op_sibling; /* skip CONST */
5044 oplist = oplist->op_sibling;;
5047 /* apply magic and QR overloading to arg */
5050 if (SvROK(msv) && SvAMAGIC(msv)) {
5051 SV *sv = AMG_CALLunary(msv, regexp_amg);
5055 if (SvTYPE(sv) != SVt_REGEXP)
5056 Perl_croak(aTHX_ "Overloaded qr did not return a REGEXP");
5061 /* try concatenation overload ... */
5062 if (pat && (SvAMAGIC(pat) || SvAMAGIC(msv)) &&
5063 (sv = amagic_call(pat, msv, concat_amg, AMGf_assign)))
5066 /* overloading involved: all bets are off over literal
5067 * code. Pretend we haven't seen it */
5068 pRExC_state->num_code_blocks -= n;
5072 /* ... or failing that, try "" overload */
5073 while (SvAMAGIC(msv)
5074 && (sv = AMG_CALLunary(msv, string_amg))
5078 && SvRV(msv) == SvRV(sv))
5083 if (SvROK(msv) && SvTYPE(SvRV(msv)) == SVt_REGEXP)
5087 /* this is a partially unrolled
5088 * sv_catsv_nomg(pat, msv);
5089 * that allows us to adjust code block indices if
5092 char *dst = SvPV_force_nomg(pat, dlen);
5093 const char *src = SvPV_flags_const(msv, slen, 0);
5095 if (SvUTF8(msv) && !SvUTF8(pat)) {
5096 S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &dst, &dlen, n);
5097 sv_setpvn(pat, dst, dlen);
5100 sv_catpvn_nomg(pat, src, slen);
5107 pRExC_state->code_blocks[n-1].end = SvCUR(pat)-1;
5110 /* extract any code blocks within any embedded qr//'s */
5111 if (rx && SvTYPE(rx) == SVt_REGEXP
5112 && RX_ENGINE((REGEXP*)rx)->op_comp)
5115 RXi_GET_DECL(ReANY((REGEXP *)rx), ri);
5116 if (ri->num_code_blocks) {
5118 /* the presence of an embedded qr// with code means
5119 * we should always recompile: the text of the
5120 * qr// may not have changed, but it may be a
5121 * different closure than last time */
5123 Renew(pRExC_state->code_blocks,
5124 pRExC_state->num_code_blocks + ri->num_code_blocks,
5125 struct reg_code_block);
5126 pRExC_state->num_code_blocks += ri->num_code_blocks;
5128 for (i=0; i < ri->num_code_blocks; i++) {
5129 struct reg_code_block *src, *dst;
5130 STRLEN offset = orig_patlen
5131 + ReANY((REGEXP *)rx)->pre_prefix;
5132 assert(n < pRExC_state->num_code_blocks);
5133 src = &ri->code_blocks[i];
5134 dst = &pRExC_state->code_blocks[n];
5135 dst->start = src->start + offset;
5136 dst->end = src->end + offset;
5137 dst->block = src->block;
5138 dst->src_regex = (REGEXP*) SvREFCNT_inc( (SV*)
5147 /* avoid calling magic multiple times on a single element e.g. =~ $qr */
5156 /* see if there are any run-time code blocks in the pattern.
5157 * False positives are allowed */
5160 S_has_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
5161 char *pat, STRLEN plen)
5166 for (s = 0; s < plen; s++) {
5167 if (n < pRExC_state->num_code_blocks
5168 && s == pRExC_state->code_blocks[n].start)
5170 s = pRExC_state->code_blocks[n].end;
5174 /* TODO ideally should handle [..], (#..), /#.../x to reduce false
5176 if (pat[s] == '(' && s+2 <= plen && pat[s+1] == '?' &&
5178 || (s + 2 <= plen && pat[s+2] == '?' && pat[s+3] == '{'))
5185 /* Handle run-time code blocks. We will already have compiled any direct
5186 * or indirect literal code blocks. Now, take the pattern 'pat' and make a
5187 * copy of it, but with any literal code blocks blanked out and
5188 * appropriate chars escaped; then feed it into
5190 * eval "qr'modified_pattern'"
5194 * a\bc(?{"this was literal"})def'ghi\\jkl(?{"this is runtime"})mno
5198 * qr'a\\bc_______________________def\'ghi\\\\jkl(?{"this is runtime"})mno'
5200 * After eval_sv()-ing that, grab any new code blocks from the returned qr
5201 * and merge them with any code blocks of the original regexp.
5203 * If the pat is non-UTF8, while the evalled qr is UTF8, don't merge;
5204 * instead, just save the qr and return FALSE; this tells our caller that
5205 * the original pattern needs upgrading to utf8.
5209 S_compile_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
5210 char *pat, STRLEN plen)
5214 GET_RE_DEBUG_FLAGS_DECL;
5216 if (pRExC_state->runtime_code_qr) {
5217 /* this is the second time we've been called; this should
5218 * only happen if the main pattern got upgraded to utf8
5219 * during compilation; re-use the qr we compiled first time
5220 * round (which should be utf8 too)
5222 qr = pRExC_state->runtime_code_qr;
5223 pRExC_state->runtime_code_qr = NULL;
5224 assert(RExC_utf8 && SvUTF8(qr));
5230 int newlen = plen + 6; /* allow for "qr''x\0" extra chars */
5234 /* determine how many extra chars we need for ' and \ escaping */
5235 for (s = 0; s < plen; s++) {
5236 if (pat[s] == '\'' || pat[s] == '\\')
5240 Newx(newpat, newlen, char);
5242 *p++ = 'q'; *p++ = 'r'; *p++ = '\'';
5244 for (s = 0; s < plen; s++) {
5245 if (n < pRExC_state->num_code_blocks
5246 && s == pRExC_state->code_blocks[n].start)
5248 /* blank out literal code block */
5249 assert(pat[s] == '(');
5250 while (s <= pRExC_state->code_blocks[n].end) {
5258 if (pat[s] == '\'' || pat[s] == '\\')
5263 if (pRExC_state->pm_flags & RXf_PMf_EXTENDED)
5267 PerlIO_printf(Perl_debug_log,
5268 "%sre-parsing pattern for runtime code:%s %s\n",
5269 PL_colors[4],PL_colors[5],newpat);
5272 sv = newSVpvn_flags(newpat, p-newpat-1, RExC_utf8 ? SVf_UTF8 : 0);
5278 PUSHSTACKi(PERLSI_REQUIRE);
5279 /* G_RE_REPARSING causes the toker to collapse \\ into \ when
5280 * parsing qr''; normally only q'' does this. It also alters
5282 eval_sv(sv, G_SCALAR|G_RE_REPARSING);
5283 SvREFCNT_dec_NN(sv);
5288 SV * const errsv = ERRSV;
5289 if (SvTRUE_NN(errsv))
5291 Safefree(pRExC_state->code_blocks);
5292 /* use croak_sv ? */
5293 Perl_croak_nocontext("%s", SvPV_nolen_const(errsv));
5296 assert(SvROK(qr_ref));
5298 assert(SvTYPE(qr) == SVt_REGEXP && RX_ENGINE((REGEXP*)qr)->op_comp);
5299 /* the leaving below frees the tmp qr_ref.
5300 * Give qr a life of its own */
5308 if (!RExC_utf8 && SvUTF8(qr)) {
5309 /* first time through; the pattern got upgraded; save the
5310 * qr for the next time through */
5311 assert(!pRExC_state->runtime_code_qr);
5312 pRExC_state->runtime_code_qr = qr;
5317 /* extract any code blocks within the returned qr// */
5320 /* merge the main (r1) and run-time (r2) code blocks into one */
5322 RXi_GET_DECL(ReANY((REGEXP *)qr), r2);
5323 struct reg_code_block *new_block, *dst;
5324 RExC_state_t * const r1 = pRExC_state; /* convenient alias */
5327 if (!r2->num_code_blocks) /* we guessed wrong */
5329 SvREFCNT_dec_NN(qr);
5334 r1->num_code_blocks + r2->num_code_blocks,
5335 struct reg_code_block);
5338 while ( i1 < r1->num_code_blocks
5339 || i2 < r2->num_code_blocks)
5341 struct reg_code_block *src;
5344 if (i1 == r1->num_code_blocks) {
5345 src = &r2->code_blocks[i2++];
5348 else if (i2 == r2->num_code_blocks)
5349 src = &r1->code_blocks[i1++];
5350 else if ( r1->code_blocks[i1].start
5351 < r2->code_blocks[i2].start)
5353 src = &r1->code_blocks[i1++];
5354 assert(src->end < r2->code_blocks[i2].start);
5357 assert( r1->code_blocks[i1].start
5358 > r2->code_blocks[i2].start);
5359 src = &r2->code_blocks[i2++];
5361 assert(src->end < r1->code_blocks[i1].start);
5364 assert(pat[src->start] == '(');
5365 assert(pat[src->end] == ')');
5366 dst->start = src->start;
5367 dst->end = src->end;
5368 dst->block = src->block;
5369 dst->src_regex = is_qr ? (REGEXP*) SvREFCNT_inc( (SV*) qr)
5373 r1->num_code_blocks += r2->num_code_blocks;
5374 Safefree(r1->code_blocks);
5375 r1->code_blocks = new_block;
5378 SvREFCNT_dec_NN(qr);
5384 S_setup_longest(pTHX_ RExC_state_t *pRExC_state, SV* sv_longest, SV** rx_utf8, SV** rx_substr, I32* rx_end_shift, I32 lookbehind, I32 offset, I32 *minlen, STRLEN longest_length, bool eol, bool meol)
5386 /* This is the common code for setting up the floating and fixed length
5387 * string data extracted from Perl_re_op_compile() below. Returns a boolean
5388 * as to whether succeeded or not */
5392 if (! (longest_length
5393 || (eol /* Can't have SEOL and MULTI */
5394 && (! meol || (RExC_flags & RXf_PMf_MULTILINE)))
5396 /* See comments for join_exact for why REG_SEEN_EXACTF_SHARP_S */
5397 || (RExC_seen & REG_SEEN_EXACTF_SHARP_S))
5402 /* copy the information about the longest from the reg_scan_data
5403 over to the program. */
5404 if (SvUTF8(sv_longest)) {
5405 *rx_utf8 = sv_longest;
5408 *rx_substr = sv_longest;
5411 /* end_shift is how many chars that must be matched that
5412 follow this item. We calculate it ahead of time as once the
5413 lookbehind offset is added in we lose the ability to correctly
5415 ml = minlen ? *(minlen) : (I32)longest_length;
5416 *rx_end_shift = ml - offset
5417 - longest_length + (SvTAIL(sv_longest) != 0)
5420 t = (eol/* Can't have SEOL and MULTI */
5421 && (! meol || (RExC_flags & RXf_PMf_MULTILINE)));
5422 fbm_compile(sv_longest, t ? FBMcf_TAIL : 0);
5428 * Perl_re_op_compile - the perl internal RE engine's function to compile a
5429 * regular expression into internal code.
5430 * The pattern may be passed either as:
5431 * a list of SVs (patternp plus pat_count)
5432 * a list of OPs (expr)
5433 * If both are passed, the SV list is used, but the OP list indicates
5434 * which SVs are actually pre-compiled code blocks
5436 * The SVs in the list have magic and qr overloading applied to them (and
5437 * the list may be modified in-place with replacement SVs in the latter
5440 * If the pattern hasn't changed from old_re, then old_re will be
5443 * eng is the current engine. If that engine has an op_comp method, then
5444 * handle directly (i.e. we assume that op_comp was us); otherwise, just
5445 * do the initial concatenation of arguments and pass on to the external
5448 * If is_bare_re is not null, set it to a boolean indicating whether the
5449 * arg list reduced (after overloading) to a single bare regex which has
5450 * been returned (i.e. /$qr/).
5452 * orig_rx_flags contains RXf_* flags. See perlreapi.pod for more details.
5454 * pm_flags contains the PMf_* flags, typically based on those from the
5455 * pm_flags field of the related PMOP. Currently we're only interested in
5456 * PMf_HAS_CV, PMf_IS_QR, PMf_USE_RE_EVAL.
5458 * We can't allocate space until we know how big the compiled form will be,
5459 * but we can't compile it (and thus know how big it is) until we've got a
5460 * place to put the code. So we cheat: we compile it twice, once with code
5461 * generation turned off and size counting turned on, and once "for real".
5462 * This also means that we don't allocate space until we are sure that the
5463 * thing really will compile successfully, and we never have to move the
5464 * code and thus invalidate pointers into it. (Note that it has to be in
5465 * one piece because free() must be able to free it all.) [NB: not true in perl]
5467 * Beware that the optimization-preparation code in here knows about some
5468 * of the structure of the compiled regexp. [I'll say.]
5472 Perl_re_op_compile(pTHX_ SV ** const patternp, int pat_count,
5473 OP *expr, const regexp_engine* eng, REGEXP *old_re,
5474 bool *is_bare_re, U32 orig_rx_flags, U32 pm_flags)
5479 regexp_internal *ri;
5487 SV *code_blocksv = NULL;
5488 SV** new_patternp = patternp;
5490 /* these are all flags - maybe they should be turned
5491 * into a single int with different bit masks */
5492 I32 sawlookahead = 0;
5495 regex_charset initial_charset = get_regex_charset(orig_rx_flags);
5497 bool runtime_code = 0;
5499 RExC_state_t RExC_state;
5500 RExC_state_t * const pRExC_state = &RExC_state;
5501 #ifdef TRIE_STUDY_OPT
5503 RExC_state_t copyRExC_state;
5505 GET_RE_DEBUG_FLAGS_DECL;
5507 PERL_ARGS_ASSERT_RE_OP_COMPILE;
5509 DEBUG_r(if (!PL_colorset) reginitcolors());
5511 #ifndef PERL_IN_XSUB_RE
5512 /* Initialize these here instead of as-needed, as is quick and avoids
5513 * having to test them each time otherwise */
5514 if (! PL_AboveLatin1) {
5515 PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist);
5516 PL_ASCII = _new_invlist_C_array(ASCII_invlist);
5517 PL_Latin1 = _new_invlist_C_array(Latin1_invlist);
5519 PL_L1Posix_ptrs[_CC_ALPHANUMERIC]
5520 = _new_invlist_C_array(L1PosixAlnum_invlist);
5521 PL_Posix_ptrs[_CC_ALPHANUMERIC]
5522 = _new_invlist_C_array(PosixAlnum_invlist);
5524 PL_L1Posix_ptrs[_CC_ALPHA]
5525 = _new_invlist_C_array(L1PosixAlpha_invlist);
5526 PL_Posix_ptrs[_CC_ALPHA] = _new_invlist_C_array(PosixAlpha_invlist);
5528 PL_Posix_ptrs[_CC_BLANK] = _new_invlist_C_array(PosixBlank_invlist);
5529 PL_XPosix_ptrs[_CC_BLANK] = _new_invlist_C_array(XPosixBlank_invlist);
5531 /* Cased is the same as Alpha in the ASCII range */
5532 PL_L1Posix_ptrs[_CC_CASED] = _new_invlist_C_array(L1Cased_invlist);
5533 PL_Posix_ptrs[_CC_CASED] = _new_invlist_C_array(PosixAlpha_invlist);
5535 PL_Posix_ptrs[_CC_CNTRL] = _new_invlist_C_array(PosixCntrl_invlist);
5536 PL_XPosix_ptrs[_CC_CNTRL] = _new_invlist_C_array(XPosixCntrl_invlist);
5538 PL_Posix_ptrs[_CC_DIGIT] = _new_invlist_C_array(PosixDigit_invlist);
5539 PL_L1Posix_ptrs[_CC_DIGIT] = _new_invlist_C_array(PosixDigit_invlist);
5541 PL_L1Posix_ptrs[_CC_GRAPH] = _new_invlist_C_array(L1PosixGraph_invlist);
5542 PL_Posix_ptrs[_CC_GRAPH] = _new_invlist_C_array(PosixGraph_invlist);
5544 PL_L1Posix_ptrs[_CC_LOWER] = _new_invlist_C_array(L1PosixLower_invlist);
5545 PL_Posix_ptrs[_CC_LOWER] = _new_invlist_C_array(PosixLower_invlist);
5547 PL_L1Posix_ptrs[_CC_PRINT] = _new_invlist_C_array(L1PosixPrint_invlist);
5548 PL_Posix_ptrs[_CC_PRINT] = _new_invlist_C_array(PosixPrint_invlist);
5550 PL_L1Posix_ptrs[_CC_PUNCT] = _new_invlist_C_array(L1PosixPunct_invlist);
5551 PL_Posix_ptrs[_CC_PUNCT] = _new_invlist_C_array(PosixPunct_invlist);
5553 PL_Posix_ptrs[_CC_SPACE] = _new_invlist_C_array(PerlSpace_invlist);
5554 PL_XPosix_ptrs[_CC_SPACE] = _new_invlist_C_array(XPerlSpace_invlist);
5555 PL_Posix_ptrs[_CC_PSXSPC] = _new_invlist_C_array(PosixSpace_invlist);
5556 PL_XPosix_ptrs[_CC_PSXSPC] = _new_invlist_C_array(XPosixSpace_invlist);
5558 PL_L1Posix_ptrs[_CC_UPPER] = _new_invlist_C_array(L1PosixUpper_invlist);
5559 PL_Posix_ptrs[_CC_UPPER] = _new_invlist_C_array(PosixUpper_invlist);
5561 PL_XPosix_ptrs[_CC_VERTSPACE] = _new_invlist_C_array(VertSpace_invlist);
5563 PL_Posix_ptrs[_CC_WORDCHAR] = _new_invlist_C_array(PosixWord_invlist);
5564 PL_L1Posix_ptrs[_CC_WORDCHAR]
5565 = _new_invlist_C_array(L1PosixWord_invlist);
5567 PL_Posix_ptrs[_CC_XDIGIT] = _new_invlist_C_array(PosixXDigit_invlist);
5568 PL_XPosix_ptrs[_CC_XDIGIT] = _new_invlist_C_array(XPosixXDigit_invlist);
5570 PL_HasMultiCharFold = _new_invlist_C_array(_Perl_Multi_Char_Folds_invlist);
5574 pRExC_state->code_blocks = NULL;
5575 pRExC_state->num_code_blocks = 0;
5578 *is_bare_re = FALSE;
5580 if (expr && (expr->op_type == OP_LIST ||
5581 (expr->op_type == OP_NULL && expr->op_targ == OP_LIST))) {
5582 /* allocate code_blocks if needed */
5586 for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling)
5587 if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL))
5588 ncode++; /* count of DO blocks */
5590 pRExC_state->num_code_blocks = ncode;
5591 Newx(pRExC_state->code_blocks, ncode, struct reg_code_block);
5596 /* compile-time pattern with just OP_CONSTs and DO blocks */
5601 /* find how many CONSTs there are */
5604 if (expr->op_type == OP_CONST)
5607 for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling) {
5608 if (o->op_type == OP_CONST)
5612 /* fake up an SV array */
5614 assert(!new_patternp);
5615 Newx(new_patternp, n, SV*);
5616 SAVEFREEPV(new_patternp);
5620 if (expr->op_type == OP_CONST)
5621 new_patternp[n] = cSVOPx_sv(expr);
5623 for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling) {
5624 if (o->op_type == OP_CONST)
5625 new_patternp[n++] = cSVOPo_sv;
5630 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
5631 "Assembling pattern from %d elements%s\n", pat_count,
5632 orig_rx_flags & RXf_SPLIT ? " for split" : ""));
5634 /* set expr to the first arg op */
5636 if (pRExC_state->num_code_blocks
5637 && expr->op_type != OP_CONST)
5639 expr = cLISTOPx(expr)->op_first;
5640 assert( expr->op_type == OP_PUSHMARK
5641 || (expr->op_type == OP_NULL && expr->op_targ == OP_PUSHMARK)
5642 || expr->op_type == OP_PADRANGE);
5643 expr = expr->op_sibling;
5646 pat = S_concat_pat(aTHX_ pRExC_state, NULL, new_patternp, pat_count,
5647 expr, &recompile, NULL);
5649 /* handle bare (possibly after overloading) regex: foo =~ $re */
5654 if (SvTYPE(re) == SVt_REGEXP) {
5658 Safefree(pRExC_state->code_blocks);
5659 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
5660 "Precompiled pattern%s\n",
5661 orig_rx_flags & RXf_SPLIT ? " for split" : ""));
5667 exp = SvPV_nomg(pat, plen);
5669 if (!eng->op_comp) {
5670 if ((SvUTF8(pat) && IN_BYTES)
5671 || SvGMAGICAL(pat) || SvAMAGIC(pat))
5673 /* make a temporary copy; either to convert to bytes,
5674 * or to avoid repeating get-magic / overloaded stringify */
5675 pat = newSVpvn_flags(exp, plen, SVs_TEMP |
5676 (IN_BYTES ? 0 : SvUTF8(pat)));
5678 Safefree(pRExC_state->code_blocks);
5679 return CALLREGCOMP_ENG(eng, pat, orig_rx_flags);
5682 /* ignore the utf8ness if the pattern is 0 length */
5683 RExC_utf8 = RExC_orig_utf8 = (plen == 0 || IN_BYTES) ? 0 : SvUTF8(pat);
5684 RExC_uni_semantics = 0;
5685 RExC_contains_locale = 0;
5686 pRExC_state->runtime_code_qr = NULL;
5689 SV *dsv= sv_newmortal();
5690 RE_PV_QUOTED_DECL(s, RExC_utf8, dsv, exp, plen, 60);
5691 PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
5692 PL_colors[4],PL_colors[5],s);
5696 /* we jump here if we upgrade the pattern to utf8 and have to
5699 if ((pm_flags & PMf_USE_RE_EVAL)
5700 /* this second condition covers the non-regex literal case,
5701 * i.e. $foo =~ '(?{})'. */
5702 || (IN_PERL_COMPILETIME && (PL_hints & HINT_RE_EVAL))
5704 runtime_code = S_has_runtime_code(aTHX_ pRExC_state, exp, plen);
5706 /* return old regex if pattern hasn't changed */
5707 /* XXX: note in the below we have to check the flags as well as the pattern.
5709 * Things get a touch tricky as we have to compare the utf8 flag independently
5710 * from the compile flags.
5715 && !!RX_UTF8(old_re) == !!RExC_utf8
5716 && ( RX_COMPFLAGS(old_re) == ( orig_rx_flags & RXf_PMf_FLAGCOPYMASK ) )
5717 && RX_PRECOMP(old_re)
5718 && RX_PRELEN(old_re) == plen
5719 && memEQ(RX_PRECOMP(old_re), exp, plen)
5720 && !runtime_code /* with runtime code, always recompile */ )
5722 Safefree(pRExC_state->code_blocks);
5726 rx_flags = orig_rx_flags;
5728 if (initial_charset == REGEX_LOCALE_CHARSET) {
5729 RExC_contains_locale = 1;
5731 else if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
5733 /* Set to use unicode semantics if the pattern is in utf8 and has the
5734 * 'depends' charset specified, as it means unicode when utf8 */
5735 set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
5739 RExC_flags = rx_flags;
5740 RExC_pm_flags = pm_flags;
5743 if (TAINTING_get && TAINT_get)
5744 Perl_croak(aTHX_ "Eval-group in insecure regular expression");
5746 if (!S_compile_runtime_code(aTHX_ pRExC_state, exp, plen)) {
5747 /* whoops, we have a non-utf8 pattern, whilst run-time code
5748 * got compiled as utf8. Try again with a utf8 pattern */
5749 S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
5750 pRExC_state->num_code_blocks);
5751 goto redo_first_pass;
5754 assert(!pRExC_state->runtime_code_qr);
5759 RExC_in_lookbehind = 0;
5760 RExC_seen_zerolen = *exp == '^' ? -1 : 0;
5762 RExC_override_recoding = 0;
5763 RExC_in_multi_char_class = 0;
5765 /* First pass: determine size, legality. */
5768 RExC_end = exp + plen;
5773 RExC_emit = &PL_regdummy;
5774 RExC_whilem_seen = 0;
5775 RExC_open_parens = NULL;
5776 RExC_close_parens = NULL;
5778 RExC_paren_names = NULL;
5780 RExC_paren_name_list = NULL;
5782 RExC_recurse = NULL;
5783 RExC_recurse_count = 0;
5784 pRExC_state->code_index = 0;
5786 #if 0 /* REGC() is (currently) a NOP at the first pass.
5787 * Clever compilers notice this and complain. --jhi */
5788 REGC((U8)REG_MAGIC, (char*)RExC_emit);
5791 PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n");
5793 RExC_lastparse=NULL;
5795 /* reg may croak on us, not giving us a chance to free
5796 pRExC_state->code_blocks. We cannot SAVEFREEPV it now, as we may
5797 need it to survive as long as the regexp (qr/(?{})/).
5798 We must check that code_blocksv is not already set, because we may
5799 have jumped back to restart the sizing pass. */
5800 if (pRExC_state->code_blocks && !code_blocksv) {
5801 code_blocksv = newSV_type(SVt_PV);
5802 SAVEFREESV(code_blocksv);
5803 SvPV_set(code_blocksv, (char *)pRExC_state->code_blocks);
5804 SvLEN_set(code_blocksv, 1); /*sufficient to make sv_clear free it*/
5806 if (reg(pRExC_state, 0, &flags,1) == NULL) {
5807 /* It's possible to write a regexp in ascii that represents Unicode
5808 codepoints outside of the byte range, such as via \x{100}. If we
5809 detect such a sequence we have to convert the entire pattern to utf8
5810 and then recompile, as our sizing calculation will have been based
5811 on 1 byte == 1 character, but we will need to use utf8 to encode
5812 at least some part of the pattern, and therefore must convert the whole
5815 if (flags & RESTART_UTF8) {
5816 S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
5817 pRExC_state->num_code_blocks);
5818 goto redo_first_pass;
5820 Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for sizing pass, flags=%#X", flags);
5823 SvLEN_set(code_blocksv,0); /* no you can't have it, sv_clear */
5826 PerlIO_printf(Perl_debug_log,
5827 "Required size %"IVdf" nodes\n"
5828 "Starting second pass (creation)\n",
5831 RExC_lastparse=NULL;
5834 /* The first pass could have found things that force Unicode semantics */
5835 if ((RExC_utf8 || RExC_uni_semantics)
5836 && get_regex_charset(rx_flags) == REGEX_DEPENDS_CHARSET)
5838 set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
5841 /* Small enough for pointer-storage convention?
5842 If extralen==0, this means that we will not need long jumps. */
5843 if (RExC_size >= 0x10000L && RExC_extralen)
5844 RExC_size += RExC_extralen;
5847 if (RExC_whilem_seen > 15)
5848 RExC_whilem_seen = 15;
5850 /* Allocate space and zero-initialize. Note, the two step process
5851 of zeroing when in debug mode, thus anything assigned has to
5852 happen after that */
5853 rx = (REGEXP*) newSV_type(SVt_REGEXP);
5855 Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
5856 char, regexp_internal);
5857 if ( r == NULL || ri == NULL )
5858 FAIL("Regexp out of space");
5860 /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
5861 Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode), char);
5863 /* bulk initialize base fields with 0. */
5864 Zero(ri, sizeof(regexp_internal), char);
5867 /* non-zero initialization begins here */
5870 r->extflags = rx_flags;
5871 RXp_COMPFLAGS(r) = orig_rx_flags & RXf_PMf_FLAGCOPYMASK;
5873 if (pm_flags & PMf_IS_QR) {
5874 ri->code_blocks = pRExC_state->code_blocks;
5875 ri->num_code_blocks = pRExC_state->num_code_blocks;
5880 for (n = 0; n < pRExC_state->num_code_blocks; n++)
5881 if (pRExC_state->code_blocks[n].src_regex)
5882 SAVEFREESV(pRExC_state->code_blocks[n].src_regex);
5883 SAVEFREEPV(pRExC_state->code_blocks);
5887 bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
5888 bool has_charset = (get_regex_charset(r->extflags) != REGEX_DEPENDS_CHARSET);
5890 /* The caret is output if there are any defaults: if not all the STD
5891 * flags are set, or if no character set specifier is needed */
5893 (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
5895 bool has_runon = ((RExC_seen & REG_SEEN_RUN_ON_COMMENT)==REG_SEEN_RUN_ON_COMMENT);
5896 U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
5897 >> RXf_PMf_STD_PMMOD_SHIFT);
5898 const char *fptr = STD_PAT_MODS; /*"msix"*/
5900 /* Allocate for the worst case, which is all the std flags are turned
5901 * on. If more precision is desired, we could do a population count of
5902 * the flags set. This could be done with a small lookup table, or by
5903 * shifting, masking and adding, or even, when available, assembly
5904 * language for a machine-language population count.
5905 * We never output a minus, as all those are defaults, so are
5906 * covered by the caret */
5907 const STRLEN wraplen = plen + has_p + has_runon
5908 + has_default /* If needs a caret */
5910 /* If needs a character set specifier */
5911 + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
5912 + (sizeof(STD_PAT_MODS) - 1)
5913 + (sizeof("(?:)") - 1);
5915 Newx(p, wraplen + 1, char); /* +1 for the ending NUL */
5916 r->xpv_len_u.xpvlenu_pv = p;
5918 SvFLAGS(rx) |= SVf_UTF8;
5921 /* If a default, cover it using the caret */
5923 *p++= DEFAULT_PAT_MOD;
5927 const char* const name = get_regex_charset_name(r->extflags, &len);
5928 Copy(name, p, len, char);
5932 *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
5935 while((ch = *fptr++)) {
5943 Copy(RExC_precomp, p, plen, char);
5944 assert ((RX_WRAPPED(rx) - p) < 16);
5945 r->pre_prefix = p - RX_WRAPPED(rx);
5951 SvCUR_set(rx, p - RX_WRAPPED(rx));
5955 r->nparens = RExC_npar - 1; /* set early to validate backrefs */
5957 if (RExC_seen & REG_SEEN_RECURSE) {
5958 Newxz(RExC_open_parens, RExC_npar,regnode *);
5959 SAVEFREEPV(RExC_open_parens);
5960 Newxz(RExC_close_parens,RExC_npar,regnode *);
5961 SAVEFREEPV(RExC_close_parens);
5964 /* Useful during FAIL. */
5965 #ifdef RE_TRACK_PATTERN_OFFSETS
5966 Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
5967 DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
5968 "%s %"UVuf" bytes for offset annotations.\n",
5969 ri->u.offsets ? "Got" : "Couldn't get",
5970 (UV)((2*RExC_size+1) * sizeof(U32))));
5972 SetProgLen(ri,RExC_size);
5977 /* Second pass: emit code. */
5978 RExC_flags = rx_flags; /* don't let top level (?i) bleed */
5979 RExC_pm_flags = pm_flags;
5981 RExC_end = exp + plen;
5984 RExC_emit_start = ri->program;
5985 RExC_emit = ri->program;
5986 RExC_emit_bound = ri->program + RExC_size + 1;
5987 pRExC_state->code_index = 0;
5989 REGC((U8)REG_MAGIC, (char*) RExC_emit++);
5990 if (reg(pRExC_state, 0, &flags,1) == NULL) {
5992 Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for generation pass, flags=%#X", flags);
5994 /* XXXX To minimize changes to RE engine we always allocate
5995 3-units-long substrs field. */
5996 Newx(r->substrs, 1, struct reg_substr_data);
5997 if (RExC_recurse_count) {
5998 Newxz(RExC_recurse,RExC_recurse_count,regnode *);
5999 SAVEFREEPV(RExC_recurse);
6003 r->minlen = minlen = sawlookahead = sawplus = sawopen = 0;
6004 Zero(r->substrs, 1, struct reg_substr_data);
6006 #ifdef TRIE_STUDY_OPT
6008 StructCopy(&zero_scan_data, &data, scan_data_t);
6009 copyRExC_state = RExC_state;
6012 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
6014 RExC_state = copyRExC_state;
6015 if (seen & REG_TOP_LEVEL_BRANCHES)
6016 RExC_seen |= REG_TOP_LEVEL_BRANCHES;
6018 RExC_seen &= ~REG_TOP_LEVEL_BRANCHES;
6019 StructCopy(&zero_scan_data, &data, scan_data_t);
6022 StructCopy(&zero_scan_data, &data, scan_data_t);
6025 /* Dig out information for optimizations. */
6026 r->extflags = RExC_flags; /* was pm_op */
6027 /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
6030 SvUTF8_on(rx); /* Unicode in it? */
6031 ri->regstclass = NULL;
6032 if (RExC_naughty >= 10) /* Probably an expensive pattern. */
6033 r->intflags |= PREGf_NAUGHTY;
6034 scan = ri->program + 1; /* First BRANCH. */
6036 /* testing for BRANCH here tells us whether there is "must appear"
6037 data in the pattern. If there is then we can use it for optimisations */
6038 if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES)) { /* Only one top-level choice. */
6040 STRLEN longest_float_length, longest_fixed_length;
6041 struct regnode_charclass_class ch_class; /* pointed to by data */
6043 I32 last_close = 0; /* pointed to by data */
6044 regnode *first= scan;
6045 regnode *first_next= regnext(first);
6047 * Skip introductions and multiplicators >= 1
6048 * so that we can extract the 'meat' of the pattern that must
6049 * match in the large if() sequence following.
6050 * NOTE that EXACT is NOT covered here, as it is normally
6051 * picked up by the optimiser separately.
6053 * This is unfortunate as the optimiser isnt handling lookahead
6054 * properly currently.
6057 while ((OP(first) == OPEN && (sawopen = 1)) ||
6058 /* An OR of *one* alternative - should not happen now. */
6059 (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
6060 /* for now we can't handle lookbehind IFMATCH*/
6061 (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
6062 (OP(first) == PLUS) ||
6063 (OP(first) == MINMOD) ||
6064 /* An {n,m} with n>0 */
6065 (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
6066 (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
6069 * the only op that could be a regnode is PLUS, all the rest
6070 * will be regnode_1 or regnode_2.
6073 if (OP(first) == PLUS)
6076 first += regarglen[OP(first)];
6078 first = NEXTOPER(first);
6079 first_next= regnext(first);
6082 /* Starting-point info. */
6084 DEBUG_PEEP("first:",first,0);
6085 /* Ignore EXACT as we deal with it later. */
6086 if (PL_regkind[OP(first)] == EXACT) {
6087 if (OP(first) == EXACT)
6088 NOOP; /* Empty, get anchored substr later. */
6090 ri->regstclass = first;
6093 else if (PL_regkind[OP(first)] == TRIE &&
6094 ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
6097 /* this can happen only on restudy */
6098 if ( OP(first) == TRIE ) {
6099 struct regnode_1 *trieop = (struct regnode_1 *)
6100 PerlMemShared_calloc(1, sizeof(struct regnode_1));
6101 StructCopy(first,trieop,struct regnode_1);
6102 trie_op=(regnode *)trieop;
6104 struct regnode_charclass *trieop = (struct regnode_charclass *)
6105 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
6106 StructCopy(first,trieop,struct regnode_charclass);
6107 trie_op=(regnode *)trieop;
6110 make_trie_failtable(pRExC_state, (regnode *)first, trie_op, 0);
6111 ri->regstclass = trie_op;
6114 else if (REGNODE_SIMPLE(OP(first)))
6115 ri->regstclass = first;
6116 else if (PL_regkind[OP(first)] == BOUND ||
6117 PL_regkind[OP(first)] == NBOUND)
6118 ri->regstclass = first;
6119 else if (PL_regkind[OP(first)] == BOL) {
6120 r->extflags |= (OP(first) == MBOL
6122 : (OP(first) == SBOL
6125 first = NEXTOPER(first);
6128 else if (OP(first) == GPOS) {
6129 r->extflags |= RXf_ANCH_GPOS;
6130 first = NEXTOPER(first);
6133 else if ((!sawopen || !RExC_sawback) &&
6134 (OP(first) == STAR &&
6135 PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
6136 !(r->extflags & RXf_ANCH) && !pRExC_state->num_code_blocks)
6138 /* turn .* into ^.* with an implied $*=1 */
6140 (OP(NEXTOPER(first)) == REG_ANY)
6143 r->extflags |= type;
6144 r->intflags |= PREGf_IMPLICIT;
6145 first = NEXTOPER(first);
6148 if (sawplus && !sawlookahead && (!sawopen || !RExC_sawback)
6149 && !pRExC_state->num_code_blocks) /* May examine pos and $& */
6150 /* x+ must match at the 1st pos of run of x's */
6151 r->intflags |= PREGf_SKIP;
6153 /* Scan is after the zeroth branch, first is atomic matcher. */
6154 #ifdef TRIE_STUDY_OPT
6157 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
6158 (IV)(first - scan + 1))
6162 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
6163 (IV)(first - scan + 1))
6169 * If there's something expensive in the r.e., find the
6170 * longest literal string that must appear and make it the
6171 * regmust. Resolve ties in favor of later strings, since
6172 * the regstart check works with the beginning of the r.e.
6173 * and avoiding duplication strengthens checking. Not a
6174 * strong reason, but sufficient in the absence of others.
6175 * [Now we resolve ties in favor of the earlier string if
6176 * it happens that c_offset_min has been invalidated, since the
6177 * earlier string may buy us something the later one won't.]
6180 data.longest_fixed = newSVpvs("");
6181 data.longest_float = newSVpvs("");
6182 data.last_found = newSVpvs("");
6183 data.longest = &(data.longest_fixed);
6184 ENTER_with_name("study_chunk");
6185 SAVEFREESV(data.longest_fixed);
6186 SAVEFREESV(data.longest_float);
6187 SAVEFREESV(data.last_found);
6189 if (!ri->regstclass) {
6190 cl_init(pRExC_state, &ch_class);
6191 data.start_class = &ch_class;
6192 stclass_flag = SCF_DO_STCLASS_AND;
6193 } else /* XXXX Check for BOUND? */
6195 data.last_closep = &last_close;
6197 minlen = study_chunk(pRExC_state, &first, &minlen, &fake, scan + RExC_size, /* Up to end */
6198 &data, -1, NULL, NULL,
6199 SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag,0);
6202 CHECK_RESTUDY_GOTO_butfirst(LEAVE_with_name("study_chunk"));
6205 if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
6206 && data.last_start_min == 0 && data.last_end > 0
6207 && !RExC_seen_zerolen
6208 && !(RExC_seen & REG_SEEN_VERBARG)
6209 && (!(RExC_seen & REG_SEEN_GPOS) || (r->extflags & RXf_ANCH_GPOS)))
6210 r->extflags |= RXf_CHECK_ALL;
6211 scan_commit(pRExC_state, &data,&minlen,0);
6213 longest_float_length = CHR_SVLEN(data.longest_float);
6215 if (! ((SvCUR(data.longest_fixed) /* ok to leave SvCUR */
6216 && data.offset_fixed == data.offset_float_min
6217 && SvCUR(data.longest_fixed) == SvCUR(data.longest_float)))
6218 && S_setup_longest (aTHX_ pRExC_state,
6222 &(r->float_end_shift),
6223 data.lookbehind_float,
6224 data.offset_float_min,
6226 longest_float_length,
6227 cBOOL(data.flags & SF_FL_BEFORE_EOL),
6228 cBOOL(data.flags & SF_FL_BEFORE_MEOL)))
6230 r->float_min_offset = data.offset_float_min - data.lookbehind_float;
6231 r->float_max_offset = data.offset_float_max;
6232 if (data.offset_float_max < I32_MAX) /* Don't offset infinity */
6233 r->float_max_offset -= data.lookbehind_float;
6234 SvREFCNT_inc_simple_void_NN(data.longest_float);
6237 r->float_substr = r->float_utf8 = NULL;
6238 longest_float_length = 0;
6241 longest_fixed_length = CHR_SVLEN(data.longest_fixed);
6243 if (S_setup_longest (aTHX_ pRExC_state,
6245 &(r->anchored_utf8),
6246 &(r->anchored_substr),
6247 &(r->anchored_end_shift),
6248 data.lookbehind_fixed,
6251 longest_fixed_length,
6252 cBOOL(data.flags & SF_FIX_BEFORE_EOL),
6253 cBOOL(data.flags & SF_FIX_BEFORE_MEOL)))
6255 r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
6256 SvREFCNT_inc_simple_void_NN(data.longest_fixed);
6259 r->anchored_substr = r->anchored_utf8 = NULL;
6260 longest_fixed_length = 0;
6262 LEAVE_with_name("study_chunk");
6265 && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
6266 ri->regstclass = NULL;
6268 if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
6270 && ! TEST_SSC_EOS(data.start_class)
6271 && !cl_is_anything(data.start_class))
6273 const U32 n = add_data(pRExC_state, 1, "f");
6274 OP(data.start_class) = ANYOF_SYNTHETIC;
6276 Newx(RExC_rxi->data->data[n], 1,
6277 struct regnode_charclass_class);
6278 StructCopy(data.start_class,
6279 (struct regnode_charclass_class*)RExC_rxi->data->data[n],
6280 struct regnode_charclass_class);
6281 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
6282 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
6283 DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
6284 regprop(r, sv, (regnode*)data.start_class);
6285 PerlIO_printf(Perl_debug_log,
6286 "synthetic stclass \"%s\".\n",
6287 SvPVX_const(sv));});
6290 /* A temporary algorithm prefers floated substr to fixed one to dig more info. */
6291 if (longest_fixed_length > longest_float_length) {
6292 r->check_end_shift = r->anchored_end_shift;
6293 r->check_substr = r->anchored_substr;
6294 r->check_utf8 = r->anchored_utf8;
6295 r->check_offset_min = r->check_offset_max = r->anchored_offset;
6296 if (r->extflags & RXf_ANCH_SINGLE)
6297 r->extflags |= RXf_NOSCAN;
6300 r->check_end_shift = r->float_end_shift;
6301 r->check_substr = r->float_substr;
6302 r->check_utf8 = r->float_utf8;
6303 r->check_offset_min = r->float_min_offset;
6304 r->check_offset_max = r->float_max_offset;
6306 /* XXXX Currently intuiting is not compatible with ANCH_GPOS.
6307 This should be changed ASAP! */
6308 if ((r->check_substr || r->check_utf8) && !(r->extflags & RXf_ANCH_GPOS)) {
6309 r->extflags |= RXf_USE_INTUIT;
6310 if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
6311 r->extflags |= RXf_INTUIT_TAIL;
6313 /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
6314 if ( (STRLEN)minlen < longest_float_length )
6315 minlen= longest_float_length;
6316 if ( (STRLEN)minlen < longest_fixed_length )
6317 minlen= longest_fixed_length;
6321 /* Several toplevels. Best we can is to set minlen. */
6323 struct regnode_charclass_class ch_class;
6326 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
6328 scan = ri->program + 1;
6329 cl_init(pRExC_state, &ch_class);
6330 data.start_class = &ch_class;
6331 data.last_closep = &last_close;
6334 minlen = study_chunk(pRExC_state, &scan, &minlen, &fake, scan + RExC_size,
6335 &data, -1, NULL, NULL, SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS,0);
6337 CHECK_RESTUDY_GOTO_butfirst(NOOP);
6339 r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
6340 = r->float_substr = r->float_utf8 = NULL;
6342 if (! TEST_SSC_EOS(data.start_class)
6343 && !cl_is_anything(data.start_class))
6345 const U32 n = add_data(pRExC_state, 1, "f");
6346 OP(data.start_class) = ANYOF_SYNTHETIC;
6348 Newx(RExC_rxi->data->data[n], 1,
6349 struct regnode_charclass_class);
6350 StructCopy(data.start_class,
6351 (struct regnode_charclass_class*)RExC_rxi->data->data[n],
6352 struct regnode_charclass_class);
6353 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
6354 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
6355 DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
6356 regprop(r, sv, (regnode*)data.start_class);
6357 PerlIO_printf(Perl_debug_log,
6358 "synthetic stclass \"%s\".\n",
6359 SvPVX_const(sv));});
6363 /* Guard against an embedded (?=) or (?<=) with a longer minlen than
6364 the "real" pattern. */
6366 PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf"\n",
6367 (IV)minlen, (IV)r->minlen);
6369 r->minlenret = minlen;
6370 if (r->minlen < minlen)
6373 if (RExC_seen & REG_SEEN_GPOS)
6374 r->extflags |= RXf_GPOS_SEEN;
6375 if (RExC_seen & REG_SEEN_LOOKBEHIND)
6376 r->extflags |= RXf_NO_INPLACE_SUBST; /* inplace might break the lookbehind */
6377 if (pRExC_state->num_code_blocks)
6378 r->extflags |= RXf_EVAL_SEEN;
6379 if (RExC_seen & REG_SEEN_CANY)
6380 r->extflags |= RXf_CANY_SEEN;
6381 if (RExC_seen & REG_SEEN_VERBARG)
6383 r->intflags |= PREGf_VERBARG_SEEN;
6384 r->extflags |= RXf_NO_INPLACE_SUBST; /* don't understand this! Yves */
6386 if (RExC_seen & REG_SEEN_CUTGROUP)
6387 r->intflags |= PREGf_CUTGROUP_SEEN;
6388 if (pm_flags & PMf_USE_RE_EVAL)
6389 r->intflags |= PREGf_USE_RE_EVAL;
6390 if (RExC_paren_names)
6391 RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
6393 RXp_PAREN_NAMES(r) = NULL;
6396 regnode *first = ri->program + 1;
6398 regnode *next = NEXTOPER(first);
6401 if (PL_regkind[fop] == NOTHING && nop == END)
6402 r->extflags |= RXf_NULL;
6403 else if (PL_regkind[fop] == BOL && nop == END)
6404 r->extflags |= RXf_START_ONLY;
6405 else if (fop == PLUS && PL_regkind[nop] == POSIXD && FLAGS(next) == _CC_SPACE && OP(regnext(first)) == END)
6406 r->extflags |= RXf_WHITE;
6407 else if ( r->extflags & RXf_SPLIT && fop == EXACT && STR_LEN(first) == 1 && *(STRING(first)) == ' ' && OP(regnext(first)) == END )
6408 r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
6412 if (RExC_paren_names) {
6413 ri->name_list_idx = add_data( pRExC_state, 1, "a" );
6414 ri->data->data[ri->name_list_idx] = (void*)SvREFCNT_inc(RExC_paren_name_list);
6417 ri->name_list_idx = 0;
6419 if (RExC_recurse_count) {
6420 for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
6421 const regnode *scan = RExC_recurse[RExC_recurse_count-1];
6422 ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
6425 Newxz(r->offs, RExC_npar, regexp_paren_pair);
6426 /* assume we don't need to swap parens around before we match */
6429 PerlIO_printf(Perl_debug_log,"Final program:\n");
6432 #ifdef RE_TRACK_PATTERN_OFFSETS
6433 DEBUG_OFFSETS_r(if (ri->u.offsets) {
6434 const U32 len = ri->u.offsets[0];
6436 GET_RE_DEBUG_FLAGS_DECL;
6437 PerlIO_printf(Perl_debug_log, "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
6438 for (i = 1; i <= len; i++) {
6439 if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
6440 PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
6441 (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
6443 PerlIO_printf(Perl_debug_log, "\n");
6448 /* under ithreads the ?pat? PMf_USED flag on the pmop is simulated
6449 * by setting the regexp SV to readonly-only instead. If the
6450 * pattern's been recompiled, the USEDness should remain. */
6451 if (old_re && SvREADONLY(old_re))
6459 Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
6462 PERL_ARGS_ASSERT_REG_NAMED_BUFF;
6464 PERL_UNUSED_ARG(value);
6466 if (flags & RXapif_FETCH) {
6467 return reg_named_buff_fetch(rx, key, flags);
6468 } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
6469 Perl_croak_no_modify();
6471 } else if (flags & RXapif_EXISTS) {
6472 return reg_named_buff_exists(rx, key, flags)
6475 } else if (flags & RXapif_REGNAMES) {
6476 return reg_named_buff_all(rx, flags);
6477 } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
6478 return reg_named_buff_scalar(rx, flags);
6480 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
6486 Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
6489 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
6490 PERL_UNUSED_ARG(lastkey);
6492 if (flags & RXapif_FIRSTKEY)
6493 return reg_named_buff_firstkey(rx, flags);
6494 else if (flags & RXapif_NEXTKEY)
6495 return reg_named_buff_nextkey(rx, flags);
6497 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter", (int)flags);
6503 Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
6506 AV *retarray = NULL;
6508 struct regexp *const rx = ReANY(r);
6510 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
6512 if (flags & RXapif_ALL)
6515 if (rx && RXp_PAREN_NAMES(rx)) {
6516 HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
6519 SV* sv_dat=HeVAL(he_str);
6520 I32 *nums=(I32*)SvPVX(sv_dat);
6521 for ( i=0; i<SvIVX(sv_dat); i++ ) {
6522 if ((I32)(rx->nparens) >= nums[i]
6523 && rx->offs[nums[i]].start != -1
6524 && rx->offs[nums[i]].end != -1)
6527 CALLREG_NUMBUF_FETCH(r,nums[i],ret);
6532 ret = newSVsv(&PL_sv_undef);
6535 av_push(retarray, ret);
6538 return newRV_noinc(MUTABLE_SV(retarray));
6545 Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
6548 struct regexp *const rx = ReANY(r);
6550 PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
6552 if (rx && RXp_PAREN_NAMES(rx)) {
6553 if (flags & RXapif_ALL) {
6554 return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
6556 SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
6558 SvREFCNT_dec_NN(sv);
6570 Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
6572 struct regexp *const rx = ReANY(r);
6574 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
6576 if ( rx && RXp_PAREN_NAMES(rx) ) {
6577 (void)hv_iterinit(RXp_PAREN_NAMES(rx));
6579 return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
6586 Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
6588 struct regexp *const rx = ReANY(r);
6589 GET_RE_DEBUG_FLAGS_DECL;
6591 PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
6593 if (rx && RXp_PAREN_NAMES(rx)) {
6594 HV *hv = RXp_PAREN_NAMES(rx);
6596 while ( (temphe = hv_iternext_flags(hv,0)) ) {
6599 SV* sv_dat = HeVAL(temphe);
6600 I32 *nums = (I32*)SvPVX(sv_dat);
6601 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
6602 if ((I32)(rx->lastparen) >= nums[i] &&
6603 rx->offs[nums[i]].start != -1 &&
6604 rx->offs[nums[i]].end != -1)
6610 if (parno || flags & RXapif_ALL) {
6611 return newSVhek(HeKEY_hek(temphe));
6619 Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
6624 struct regexp *const rx = ReANY(r);
6626 PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
6628 if (rx && RXp_PAREN_NAMES(rx)) {
6629 if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
6630 return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
6631 } else if (flags & RXapif_ONE) {
6632 ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
6633 av = MUTABLE_AV(SvRV(ret));
6634 length = av_len(av);
6635 SvREFCNT_dec_NN(ret);
6636 return newSViv(length + 1);
6638 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar", (int)flags);
6642 return &PL_sv_undef;
6646 Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
6648 struct regexp *const rx = ReANY(r);
6651 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
6653 if (rx && RXp_PAREN_NAMES(rx)) {
6654 HV *hv= RXp_PAREN_NAMES(rx);
6656 (void)hv_iterinit(hv);
6657 while ( (temphe = hv_iternext_flags(hv,0)) ) {
6660 SV* sv_dat = HeVAL(temphe);
6661 I32 *nums = (I32*)SvPVX(sv_dat);
6662 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
6663 if ((I32)(rx->lastparen) >= nums[i] &&
6664 rx->offs[nums[i]].start != -1 &&
6665 rx->offs[nums[i]].end != -1)
6671 if (parno || flags & RXapif_ALL) {
6672 av_push(av, newSVhek(HeKEY_hek(temphe)));
6677 return newRV_noinc(MUTABLE_SV(av));
6681 Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
6684 struct regexp *const rx = ReANY(r);
6690 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
6692 if ( ( n == RX_BUFF_IDX_CARET_PREMATCH
6693 || n == RX_BUFF_IDX_CARET_FULLMATCH
6694 || n == RX_BUFF_IDX_CARET_POSTMATCH
6696 && !(rx->extflags & RXf_PMf_KEEPCOPY)
6703 if (n == RX_BUFF_IDX_CARET_FULLMATCH)
6704 /* no need to distinguish between them any more */
6705 n = RX_BUFF_IDX_FULLMATCH;
6707 if ((n == RX_BUFF_IDX_PREMATCH || n == RX_BUFF_IDX_CARET_PREMATCH)
6708 && rx->offs[0].start != -1)
6710 /* $`, ${^PREMATCH} */
6711 i = rx->offs[0].start;
6715 if ((n == RX_BUFF_IDX_POSTMATCH || n == RX_BUFF_IDX_CARET_POSTMATCH)
6716 && rx->offs[0].end != -1)
6718 /* $', ${^POSTMATCH} */
6719 s = rx->subbeg - rx->suboffset + rx->offs[0].end;
6720 i = rx->sublen + rx->suboffset - rx->offs[0].end;
6723 if ( 0 <= n && n <= (I32)rx->nparens &&
6724 (s1 = rx->offs[n].start) != -1 &&
6725 (t1 = rx->offs[n].end) != -1)
6727 /* $&, ${^MATCH}, $1 ... */
6729 s = rx->subbeg + s1 - rx->suboffset;
6734 assert(s >= rx->subbeg);
6735 assert(rx->sublen >= (s - rx->subbeg) + i );
6737 #if NO_TAINT_SUPPORT
6738 sv_setpvn(sv, s, i);
6740 const int oldtainted = TAINT_get;
6742 sv_setpvn(sv, s, i);
6743 TAINT_set(oldtainted);
6745 if ( (rx->extflags & RXf_CANY_SEEN)
6746 ? (RXp_MATCH_UTF8(rx)
6747 && (!i || is_utf8_string((U8*)s, i)))
6748 : (RXp_MATCH_UTF8(rx)) )
6755 if (RXp_MATCH_TAINTED(rx)) {
6756 if (SvTYPE(sv) >= SVt_PVMG) {
6757 MAGIC* const mg = SvMAGIC(sv);
6760 SvMAGIC_set(sv, mg->mg_moremagic);
6762 if ((mgt = SvMAGIC(sv))) {
6763 mg->mg_moremagic = mgt;
6764 SvMAGIC_set(sv, mg);
6775 sv_setsv(sv,&PL_sv_undef);
6781 Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
6782 SV const * const value)
6784 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
6786 PERL_UNUSED_ARG(rx);
6787 PERL_UNUSED_ARG(paren);
6788 PERL_UNUSED_ARG(value);
6791 Perl_croak_no_modify();
6795 Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
6798 struct regexp *const rx = ReANY(r);
6802 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
6804 /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
6806 case RX_BUFF_IDX_CARET_PREMATCH: /* ${^PREMATCH} */
6807 if (!(rx->extflags & RXf_PMf_KEEPCOPY))
6811 case RX_BUFF_IDX_PREMATCH: /* $` */
6812 if (rx->offs[0].start != -1) {
6813 i = rx->offs[0].start;
6822 case RX_BUFF_IDX_CARET_POSTMATCH: /* ${^POSTMATCH} */
6823 if (!(rx->extflags & RXf_PMf_KEEPCOPY))
6825 case RX_BUFF_IDX_POSTMATCH: /* $' */
6826 if (rx->offs[0].end != -1) {
6827 i = rx->sublen - rx->offs[0].end;
6829 s1 = rx->offs[0].end;
6836 case RX_BUFF_IDX_CARET_FULLMATCH: /* ${^MATCH} */
6837 if (!(rx->extflags & RXf_PMf_KEEPCOPY))
6841 /* $& / ${^MATCH}, $1, $2, ... */
6843 if (paren <= (I32)rx->nparens &&
6844 (s1 = rx->offs[paren].start) != -1 &&
6845 (t1 = rx->offs[paren].end) != -1)
6851 if (ckWARN(WARN_UNINITIALIZED))
6852 report_uninit((const SV *)sv);
6857 if (i > 0 && RXp_MATCH_UTF8(rx)) {
6858 const char * const s = rx->subbeg - rx->suboffset + s1;
6863 if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
6870 Perl_reg_qr_package(pTHX_ REGEXP * const rx)
6872 PERL_ARGS_ASSERT_REG_QR_PACKAGE;
6873 PERL_UNUSED_ARG(rx);
6877 return newSVpvs("Regexp");
6880 /* Scans the name of a named buffer from the pattern.
6881 * If flags is REG_RSN_RETURN_NULL returns null.
6882 * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
6883 * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
6884 * to the parsed name as looked up in the RExC_paren_names hash.
6885 * If there is an error throws a vFAIL().. type exception.
6888 #define REG_RSN_RETURN_NULL 0
6889 #define REG_RSN_RETURN_NAME 1
6890 #define REG_RSN_RETURN_DATA 2
6893 S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
6895 char *name_start = RExC_parse;
6897 PERL_ARGS_ASSERT_REG_SCAN_NAME;
6899 if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
6900 /* skip IDFIRST by using do...while */
6903 RExC_parse += UTF8SKIP(RExC_parse);
6904 } while (isWORDCHAR_utf8((U8*)RExC_parse));
6908 } while (isWORDCHAR(*RExC_parse));
6910 RExC_parse++; /* so the <- from the vFAIL is after the offending character */
6911 vFAIL("Group name must start with a non-digit word character");
6915 = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
6916 SVs_TEMP | (UTF ? SVf_UTF8 : 0));
6917 if ( flags == REG_RSN_RETURN_NAME)
6919 else if (flags==REG_RSN_RETURN_DATA) {
6922 if ( ! sv_name ) /* should not happen*/
6923 Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
6924 if (RExC_paren_names)
6925 he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
6927 sv_dat = HeVAL(he_str);
6929 vFAIL("Reference to nonexistent named group");
6933 Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name",
6934 (unsigned long) flags);
6936 assert(0); /* NOT REACHED */
6941 #define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \
6942 int rem=(int)(RExC_end - RExC_parse); \
6951 if (RExC_lastparse!=RExC_parse) \
6952 PerlIO_printf(Perl_debug_log," >%.*s%-*s", \
6955 iscut ? "..." : "<" \
6958 PerlIO_printf(Perl_debug_log,"%16s",""); \
6961 num = RExC_size + 1; \
6963 num=REG_NODE_NUM(RExC_emit); \
6964 if (RExC_lastnum!=num) \
6965 PerlIO_printf(Perl_debug_log,"|%4d",num); \
6967 PerlIO_printf(Perl_debug_log,"|%4s",""); \
6968 PerlIO_printf(Perl_debug_log,"|%*s%-4s", \
6969 (int)((depth*2)), "", \
6973 RExC_lastparse=RExC_parse; \
6978 #define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \
6979 DEBUG_PARSE_MSG((funcname)); \
6980 PerlIO_printf(Perl_debug_log,"%4s","\n"); \
6982 #define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \
6983 DEBUG_PARSE_MSG((funcname)); \
6984 PerlIO_printf(Perl_debug_log,fmt "\n",args); \
6987 /* This section of code defines the inversion list object and its methods. The
6988 * interfaces are highly subject to change, so as much as possible is static to
6989 * this file. An inversion list is here implemented as a malloc'd C UV array
6990 * with some added info that is placed as UVs at the beginning in a header
6991 * portion. An inversion list for Unicode is an array of code points, sorted
6992 * by ordinal number. The zeroth element is the first code point in the list.
6993 * The 1th element is the first element beyond that not in the list. In other
6994 * words, the first range is
6995 * invlist[0]..(invlist[1]-1)
6996 * The other ranges follow. Thus every element whose index is divisible by two
6997 * marks the beginning of a range that is in the list, and every element not
6998 * divisible by two marks the beginning of a range not in the list. A single
6999 * element inversion list that contains the single code point N generally
7000 * consists of two elements
7003 * (The exception is when N is the highest representable value on the
7004 * machine, in which case the list containing just it would be a single
7005 * element, itself. By extension, if the last range in the list extends to
7006 * infinity, then the first element of that range will be in the inversion list
7007 * at a position that is divisible by two, and is the final element in the
7009 * Taking the complement (inverting) an inversion list is quite simple, if the
7010 * first element is 0, remove it; otherwise add a 0 element at the beginning.
7011 * This implementation reserves an element at the beginning of each inversion
7012 * list to contain 0 when the list contains 0, and contains 1 otherwise. The
7013 * actual beginning of the list is either that element if 0, or the next one if
7016 * More about inversion lists can be found in "Unicode Demystified"
7017 * Chapter 13 by Richard Gillam, published by Addison-Wesley.
7018 * More will be coming when functionality is added later.
7020 * The inversion list data structure is currently implemented as an SV pointing
7021 * to an array of UVs that the SV thinks are bytes. This allows us to have an
7022 * array of UV whose memory management is automatically handled by the existing
7023 * facilities for SV's.
7025 * Some of the methods should always be private to the implementation, and some
7026 * should eventually be made public */
7028 /* The header definitions are in F<inline_invlist.c> */
7029 #define TO_INTERNAL_SIZE(x) (((x) + HEADER_LENGTH) * sizeof(UV))
7030 #define FROM_INTERNAL_SIZE(x) (((x)/ sizeof(UV)) - HEADER_LENGTH)
7032 #define INVLIST_INITIAL_LEN 10
7034 PERL_STATIC_INLINE UV*
7035 S__invlist_array_init(pTHX_ SV* const invlist, const bool will_have_0)
7037 /* Returns a pointer to the first element in the inversion list's array.
7038 * This is called upon initialization of an inversion list. Where the
7039 * array begins depends on whether the list has the code point U+0000
7040 * in it or not. The other parameter tells it whether the code that
7041 * follows this call is about to put a 0 in the inversion list or not.
7042 * The first element is either the element with 0, if 0, or the next one,
7045 UV* zero = get_invlist_zero_addr(invlist);
7047 PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
7050 assert(! *_get_invlist_len_addr(invlist));
7052 /* 1^1 = 0; 1^0 = 1 */
7053 *zero = 1 ^ will_have_0;
7054 return zero + *zero;
7057 PERL_STATIC_INLINE UV*
7058 S_invlist_array(pTHX_ SV* const invlist)
7060 /* Returns the pointer to the inversion list's array. Every time the
7061 * length changes, this needs to be called in case malloc or realloc moved
7064 PERL_ARGS_ASSERT_INVLIST_ARRAY;
7066 /* Must not be empty. If these fail, you probably didn't check for <len>
7067 * being non-zero before trying to get the array */
7068 assert(*_get_invlist_len_addr(invlist));
7069 assert(*get_invlist_zero_addr(invlist) == 0
7070 || *get_invlist_zero_addr(invlist) == 1);
7072 /* The array begins either at the element reserved for zero if the
7073 * list contains 0 (that element will be set to 0), or otherwise the next
7074 * element (in which case the reserved element will be set to 1). */
7075 return (UV *) (get_invlist_zero_addr(invlist)
7076 + *get_invlist_zero_addr(invlist));
7079 PERL_STATIC_INLINE void
7080 S_invlist_set_len(pTHX_ SV* const invlist, const UV len)
7082 /* Sets the current number of elements stored in the inversion list */
7084 PERL_ARGS_ASSERT_INVLIST_SET_LEN;
7086 *_get_invlist_len_addr(invlist) = len;
7088 assert(len <= SvLEN(invlist));
7090 SvCUR_set(invlist, TO_INTERNAL_SIZE(len));
7091 /* If the list contains U+0000, that element is part of the header,
7092 * and should not be counted as part of the array. It will contain
7093 * 0 in that case, and 1 otherwise. So we could flop 0=>1, 1=>0 and
7095 * SvCUR_set(invlist,
7096 * TO_INTERNAL_SIZE(len
7097 * - (*get_invlist_zero_addr(inv_list) ^ 1)));
7098 * But, this is only valid if len is not 0. The consequences of not doing
7099 * this is that the memory allocation code may think that 1 more UV is
7100 * being used than actually is, and so might do an unnecessary grow. That
7101 * seems worth not bothering to make this the precise amount.
7103 * Note that when inverting, SvCUR shouldn't change */
7106 PERL_STATIC_INLINE IV*
7107 S_get_invlist_previous_index_addr(pTHX_ SV* invlist)
7109 /* Return the address of the UV that is reserved to hold the cached index
7112 PERL_ARGS_ASSERT_GET_INVLIST_PREVIOUS_INDEX_ADDR;
7114 return (IV *) (SvPVX(invlist) + (INVLIST_PREVIOUS_INDEX_OFFSET * sizeof (UV)));
7117 PERL_STATIC_INLINE IV
7118 S_invlist_previous_index(pTHX_ SV* const invlist)
7120 /* Returns cached index of previous search */
7122 PERL_ARGS_ASSERT_INVLIST_PREVIOUS_INDEX;
7124 return *get_invlist_previous_index_addr(invlist);
7127 PERL_STATIC_INLINE void
7128 S_invlist_set_previous_index(pTHX_ SV* const invlist, const IV index)
7130 /* Caches <index> for later retrieval */
7132 PERL_ARGS_ASSERT_INVLIST_SET_PREVIOUS_INDEX;
7134 assert(index == 0 || index < (int) _invlist_len(invlist));
7136 *get_invlist_previous_index_addr(invlist) = index;
7139 PERL_STATIC_INLINE UV
7140 S_invlist_max(pTHX_ SV* const invlist)
7142 /* Returns the maximum number of elements storable in the inversion list's
7143 * array, without having to realloc() */
7145 PERL_ARGS_ASSERT_INVLIST_MAX;
7147 return SvLEN(invlist) == 0 /* This happens under _new_invlist_C_array */
7148 ? _invlist_len(invlist)
7149 : FROM_INTERNAL_SIZE(SvLEN(invlist));
7152 PERL_STATIC_INLINE UV*
7153 S_get_invlist_zero_addr(pTHX_ SV* invlist)
7155 /* Return the address of the UV that is reserved to hold 0 if the inversion
7156 * list contains 0. This has to be the last element of the heading, as the
7157 * list proper starts with either it if 0, or the next element if not.
7158 * (But we force it to contain either 0 or 1) */
7160 PERL_ARGS_ASSERT_GET_INVLIST_ZERO_ADDR;
7162 return (UV *) (SvPVX(invlist) + (INVLIST_ZERO_OFFSET * sizeof (UV)));
7165 #ifndef PERL_IN_XSUB_RE
7167 Perl__new_invlist(pTHX_ IV initial_size)
7170 /* Return a pointer to a newly constructed inversion list, with enough
7171 * space to store 'initial_size' elements. If that number is negative, a
7172 * system default is used instead */
7176 if (initial_size < 0) {
7177 initial_size = INVLIST_INITIAL_LEN;
7180 /* Allocate the initial space */
7181 new_list = newSV(TO_INTERNAL_SIZE(initial_size));
7182 invlist_set_len(new_list, 0);
7184 /* Force iterinit() to be used to get iteration to work */
7185 *get_invlist_iter_addr(new_list) = UV_MAX;
7187 /* This should force a segfault if a method doesn't initialize this
7189 *get_invlist_zero_addr(new_list) = UV_MAX;
7191 *get_invlist_previous_index_addr(new_list) = 0;
7192 *get_invlist_version_id_addr(new_list) = INVLIST_VERSION_ID;
7193 #if HEADER_LENGTH != 5
7194 # error Need to regenerate INVLIST_VERSION_ID by running perl -E 'say int(rand 2**31-1)', and then changing the #if to the new length
7202 S__new_invlist_C_array(pTHX_ UV* list)
7204 /* Return a pointer to a newly constructed inversion list, initialized to
7205 * point to <list>, which has to be in the exact correct inversion list
7206 * form, including internal fields. Thus this is a dangerous routine that
7207 * should not be used in the wrong hands */
7209 SV* invlist = newSV_type(SVt_PV);
7211 PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY;
7213 SvPV_set(invlist, (char *) list);
7214 SvLEN_set(invlist, 0); /* Means we own the contents, and the system
7215 shouldn't touch it */
7216 SvCUR_set(invlist, TO_INTERNAL_SIZE(_invlist_len(invlist)));
7218 if (*get_invlist_version_id_addr(invlist) != INVLIST_VERSION_ID) {
7219 Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list");
7222 /* Initialize the iteration pointer.
7223 * XXX This could be done at compile time in charclass_invlists.h, but I
7224 * (khw) am not confident that the suffixes for specifying the C constant
7225 * UV_MAX are portable, e.g. 'ull' on a 32 bit machine that is configured
7226 * to use 64 bits; might need a Configure probe */
7227 invlist_iterfinish(invlist);
7233 S_invlist_extend(pTHX_ SV* const invlist, const UV new_max)
7235 /* Grow the maximum size of an inversion list */
7237 PERL_ARGS_ASSERT_INVLIST_EXTEND;
7239 SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max));
7242 PERL_STATIC_INLINE void
7243 S_invlist_trim(pTHX_ SV* const invlist)
7245 PERL_ARGS_ASSERT_INVLIST_TRIM;
7247 /* Change the length of the inversion list to how many entries it currently
7250 SvPV_shrink_to_cur((SV *) invlist);
7253 #define _invlist_union_complement_2nd(a, b, output) _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
7256 S__append_range_to_invlist(pTHX_ SV* const invlist, const UV start, const UV end)
7258 /* Subject to change or removal. Append the range from 'start' to 'end' at
7259 * the end of the inversion list. The range must be above any existing
7263 UV max = invlist_max(invlist);
7264 UV len = _invlist_len(invlist);
7266 PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
7268 if (len == 0) { /* Empty lists must be initialized */
7269 array = _invlist_array_init(invlist, start == 0);
7272 /* Here, the existing list is non-empty. The current max entry in the
7273 * list is generally the first value not in the set, except when the
7274 * set extends to the end of permissible values, in which case it is
7275 * the first entry in that final set, and so this call is an attempt to
7276 * append out-of-order */
7278 UV final_element = len - 1;
7279 array = invlist_array(invlist);
7280 if (array[final_element] > start
7281 || ELEMENT_RANGE_MATCHES_INVLIST(final_element))
7283 Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%"UVuf", start=%"UVuf", match=%c",
7284 array[final_element], start,
7285 ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f');
7288 /* Here, it is a legal append. If the new range begins with the first
7289 * value not in the set, it is extending the set, so the new first
7290 * value not in the set is one greater than the newly extended range.
7292 if (array[final_element] == start) {
7293 if (end != UV_MAX) {
7294 array[final_element] = end + 1;
7297 /* But if the end is the maximum representable on the machine,
7298 * just let the range that this would extend to have no end */
7299 invlist_set_len(invlist, len - 1);
7305 /* Here the new range doesn't extend any existing set. Add it */
7307 len += 2; /* Includes an element each for the start and end of range */
7309 /* If overflows the existing space, extend, which may cause the array to be
7312 invlist_extend(invlist, len);
7313 invlist_set_len(invlist, len); /* Have to set len here to avoid assert
7314 failure in invlist_array() */
7315 array = invlist_array(invlist);
7318 invlist_set_len(invlist, len);
7321 /* The next item on the list starts the range, the one after that is
7322 * one past the new range. */
7323 array[len - 2] = start;
7324 if (end != UV_MAX) {
7325 array[len - 1] = end + 1;
7328 /* But if the end is the maximum representable on the machine, just let
7329 * the range have no end */
7330 invlist_set_len(invlist, len - 1);
7334 #ifndef PERL_IN_XSUB_RE
7337 Perl__invlist_search(pTHX_ SV* const invlist, const UV cp)
7339 /* Searches the inversion list for the entry that contains the input code
7340 * point <cp>. If <cp> is not in the list, -1 is returned. Otherwise, the
7341 * return value is the index into the list's array of the range that
7346 IV high = _invlist_len(invlist);
7347 const IV highest_element = high - 1;
7350 PERL_ARGS_ASSERT__INVLIST_SEARCH;
7352 /* If list is empty, return failure. */
7357 /* (We can't get the array unless we know the list is non-empty) */
7358 array = invlist_array(invlist);
7360 mid = invlist_previous_index(invlist);
7361 assert(mid >=0 && mid <= highest_element);
7363 /* <mid> contains the cache of the result of the previous call to this
7364 * function (0 the first time). See if this call is for the same result,
7365 * or if it is for mid-1. This is under the theory that calls to this
7366 * function will often be for related code points that are near each other.
7367 * And benchmarks show that caching gives better results. We also test
7368 * here if the code point is within the bounds of the list. These tests
7369 * replace others that would have had to be made anyway to make sure that
7370 * the array bounds were not exceeded, and these give us extra information
7371 * at the same time */
7372 if (cp >= array[mid]) {
7373 if (cp >= array[highest_element]) {
7374 return highest_element;
7377 /* Here, array[mid] <= cp < array[highest_element]. This means that
7378 * the final element is not the answer, so can exclude it; it also
7379 * means that <mid> is not the final element, so can refer to 'mid + 1'
7381 if (cp < array[mid + 1]) {
7387 else { /* cp < aray[mid] */
7388 if (cp < array[0]) { /* Fail if outside the array */
7392 if (cp >= array[mid - 1]) {
7397 /* Binary search. What we are looking for is <i> such that
7398 * array[i] <= cp < array[i+1]
7399 * The loop below converges on the i+1. Note that there may not be an
7400 * (i+1)th element in the array, and things work nonetheless */
7401 while (low < high) {
7402 mid = (low + high) / 2;
7403 assert(mid <= highest_element);
7404 if (array[mid] <= cp) { /* cp >= array[mid] */
7407 /* We could do this extra test to exit the loop early.
7408 if (cp < array[low]) {
7413 else { /* cp < array[mid] */
7420 invlist_set_previous_index(invlist, high);
7425 Perl__invlist_populate_swatch(pTHX_ SV* const invlist, const UV start, const UV end, U8* swatch)
7427 /* populates a swatch of a swash the same way swatch_get() does in utf8.c,
7428 * but is used when the swash has an inversion list. This makes this much
7429 * faster, as it uses a binary search instead of a linear one. This is
7430 * intimately tied to that function, and perhaps should be in utf8.c,
7431 * except it is intimately tied to inversion lists as well. It assumes
7432 * that <swatch> is all 0's on input */
7435 const IV len = _invlist_len(invlist);
7439 PERL_ARGS_ASSERT__INVLIST_POPULATE_SWATCH;
7441 if (len == 0) { /* Empty inversion list */
7445 array = invlist_array(invlist);
7447 /* Find which element it is */
7448 i = _invlist_search(invlist, start);
7450 /* We populate from <start> to <end> */
7451 while (current < end) {
7454 /* The inversion list gives the results for every possible code point
7455 * after the first one in the list. Only those ranges whose index is
7456 * even are ones that the inversion list matches. For the odd ones,
7457 * and if the initial code point is not in the list, we have to skip
7458 * forward to the next element */
7459 if (i == -1 || ! ELEMENT_RANGE_MATCHES_INVLIST(i)) {
7461 if (i >= len) { /* Finished if beyond the end of the array */
7465 if (current >= end) { /* Finished if beyond the end of what we
7467 if (LIKELY(end < UV_MAX)) {
7471 /* We get here when the upper bound is the maximum
7472 * representable on the machine, and we are looking for just
7473 * that code point. Have to special case it */
7475 goto join_end_of_list;
7478 assert(current >= start);
7480 /* The current range ends one below the next one, except don't go past
7483 upper = (i < len && array[i] < end) ? array[i] : end;
7485 /* Here we are in a range that matches. Populate a bit in the 3-bit U8
7486 * for each code point in it */
7487 for (; current < upper; current++) {
7488 const STRLEN offset = (STRLEN)(current - start);
7489 swatch[offset >> 3] |= 1 << (offset & 7);
7494 /* Quit if at the end of the list */
7497 /* But first, have to deal with the highest possible code point on
7498 * the platform. The previous code assumes that <end> is one
7499 * beyond where we want to populate, but that is impossible at the
7500 * platform's infinity, so have to handle it specially */
7501 if (UNLIKELY(end == UV_MAX && ELEMENT_RANGE_MATCHES_INVLIST(len-1)))
7503 const STRLEN offset = (STRLEN)(end - start);
7504 swatch[offset >> 3] |= 1 << (offset & 7);
7509 /* Advance to the next range, which will be for code points not in the
7518 Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** output)
7520 /* Take the union of two inversion lists and point <output> to it. *output
7521 * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
7522 * the reference count to that list will be decremented. The first list,
7523 * <a>, may be NULL, in which case a copy of the second list is returned.
7524 * If <complement_b> is TRUE, the union is taken of the complement
7525 * (inversion) of <b> instead of b itself.
7527 * The basis for this comes from "Unicode Demystified" Chapter 13 by
7528 * Richard Gillam, published by Addison-Wesley, and explained at some
7529 * length there. The preface says to incorporate its examples into your
7530 * code at your own risk.
7532 * The algorithm is like a merge sort.
7534 * XXX A potential performance improvement is to keep track as we go along
7535 * if only one of the inputs contributes to the result, meaning the other
7536 * is a subset of that one. In that case, we can skip the final copy and
7537 * return the larger of the input lists, but then outside code might need
7538 * to keep track of whether to free the input list or not */
7540 UV* array_a; /* a's array */
7542 UV len_a; /* length of a's array */
7545 SV* u; /* the resulting union */
7549 UV i_a = 0; /* current index into a's array */
7553 /* running count, as explained in the algorithm source book; items are
7554 * stopped accumulating and are output when the count changes to/from 0.
7555 * The count is incremented when we start a range that's in the set, and
7556 * decremented when we start a range that's not in the set. So its range
7557 * is 0 to 2. Only when the count is zero is something not in the set.
7561 PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND;
7564 /* If either one is empty, the union is the other one */
7565 if (a == NULL || ((len_a = _invlist_len(a)) == 0)) {
7572 *output = invlist_clone(b);
7574 _invlist_invert(*output);
7576 } /* else *output already = b; */
7579 else if ((len_b = _invlist_len(b)) == 0) {
7584 /* The complement of an empty list is a list that has everything in it,
7585 * so the union with <a> includes everything too */
7590 *output = _new_invlist(1);
7591 _append_range_to_invlist(*output, 0, UV_MAX);
7593 else if (*output != a) {
7594 *output = invlist_clone(a);
7596 /* else *output already = a; */
7600 /* Here both lists exist and are non-empty */
7601 array_a = invlist_array(a);
7602 array_b = invlist_array(b);
7604 /* If are to take the union of 'a' with the complement of b, set it
7605 * up so are looking at b's complement. */
7608 /* To complement, we invert: if the first element is 0, remove it. To
7609 * do this, we just pretend the array starts one later, and clear the
7610 * flag as we don't have to do anything else later */
7611 if (array_b[0] == 0) {
7614 complement_b = FALSE;
7618 /* But if the first element is not zero, we unshift a 0 before the
7619 * array. The data structure reserves a space for that 0 (which
7620 * should be a '1' right now), so physical shifting is unneeded,
7621 * but temporarily change that element to 0. Before exiting the
7622 * routine, we must restore the element to '1' */
7629 /* Size the union for the worst case: that the sets are completely
7631 u = _new_invlist(len_a + len_b);
7633 /* Will contain U+0000 if either component does */
7634 array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0)
7635 || (len_b > 0 && array_b[0] == 0));
7637 /* Go through each list item by item, stopping when exhausted one of
7639 while (i_a < len_a && i_b < len_b) {
7640 UV cp; /* The element to potentially add to the union's array */
7641 bool cp_in_set; /* is it in the the input list's set or not */
7643 /* We need to take one or the other of the two inputs for the union.
7644 * Since we are merging two sorted lists, we take the smaller of the
7645 * next items. In case of a tie, we take the one that is in its set
7646 * first. If we took one not in the set first, it would decrement the
7647 * count, possibly to 0 which would cause it to be output as ending the
7648 * range, and the next time through we would take the same number, and
7649 * output it again as beginning the next range. By doing it the
7650 * opposite way, there is no possibility that the count will be
7651 * momentarily decremented to 0, and thus the two adjoining ranges will
7652 * be seamlessly merged. (In a tie and both are in the set or both not
7653 * in the set, it doesn't matter which we take first.) */
7654 if (array_a[i_a] < array_b[i_b]
7655 || (array_a[i_a] == array_b[i_b]
7656 && ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
7658 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
7662 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
7663 cp = array_b[i_b++];
7666 /* Here, have chosen which of the two inputs to look at. Only output
7667 * if the running count changes to/from 0, which marks the
7668 * beginning/end of a range in that's in the set */
7671 array_u[i_u++] = cp;
7678 array_u[i_u++] = cp;
7683 /* Here, we are finished going through at least one of the lists, which
7684 * means there is something remaining in at most one. We check if the list
7685 * that hasn't been exhausted is positioned such that we are in the middle
7686 * of a range in its set or not. (i_a and i_b point to the element beyond
7687 * the one we care about.) If in the set, we decrement 'count'; if 0, there
7688 * is potentially more to output.
7689 * There are four cases:
7690 * 1) Both weren't in their sets, count is 0, and remains 0. What's left
7691 * in the union is entirely from the non-exhausted set.
7692 * 2) Both were in their sets, count is 2. Nothing further should
7693 * be output, as everything that remains will be in the exhausted
7694 * list's set, hence in the union; decrementing to 1 but not 0 insures
7696 * 3) the exhausted was in its set, non-exhausted isn't, count is 1.
7697 * Nothing further should be output because the union includes
7698 * everything from the exhausted set. Not decrementing ensures that.
7699 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
7700 * decrementing to 0 insures that we look at the remainder of the
7701 * non-exhausted set */
7702 if ((i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
7703 || (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
7708 /* The final length is what we've output so far, plus what else is about to
7709 * be output. (If 'count' is non-zero, then the input list we exhausted
7710 * has everything remaining up to the machine's limit in its set, and hence
7711 * in the union, so there will be no further output. */
7714 /* At most one of the subexpressions will be non-zero */
7715 len_u += (len_a - i_a) + (len_b - i_b);
7718 /* Set result to final length, which can change the pointer to array_u, so
7720 if (len_u != _invlist_len(u)) {
7721 invlist_set_len(u, len_u);
7723 array_u = invlist_array(u);
7726 /* When 'count' is 0, the list that was exhausted (if one was shorter than
7727 * the other) ended with everything above it not in its set. That means
7728 * that the remaining part of the union is precisely the same as the
7729 * non-exhausted list, so can just copy it unchanged. (If both list were
7730 * exhausted at the same time, then the operations below will be both 0.)
7733 IV copy_count; /* At most one will have a non-zero copy count */
7734 if ((copy_count = len_a - i_a) > 0) {
7735 Copy(array_a + i_a, array_u + i_u, copy_count, UV);
7737 else if ((copy_count = len_b - i_b) > 0) {
7738 Copy(array_b + i_b, array_u + i_u, copy_count, UV);
7742 /* If we've changed b, restore it */
7747 /* We may be removing a reference to one of the inputs */
7748 if (a == *output || b == *output) {
7749 assert(! invlist_is_iterating(*output));
7750 SvREFCNT_dec_NN(*output);
7758 Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** i)
7760 /* Take the intersection of two inversion lists and point <i> to it. *i
7761 * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
7762 * the reference count to that list will be decremented.
7763 * If <complement_b> is TRUE, the result will be the intersection of <a>
7764 * and the complement (or inversion) of <b> instead of <b> directly.
7766 * The basis for this comes from "Unicode Demystified" Chapter 13 by
7767 * Richard Gillam, published by Addison-Wesley, and explained at some
7768 * length there. The preface says to incorporate its examples into your
7769 * code at your own risk. In fact, it had bugs
7771 * The algorithm is like a merge sort, and is essentially the same as the
7775 UV* array_a; /* a's array */
7777 UV len_a; /* length of a's array */
7780 SV* r; /* the resulting intersection */
7784 UV i_a = 0; /* current index into a's array */
7788 /* running count, as explained in the algorithm source book; items are
7789 * stopped accumulating and are output when the count changes to/from 2.
7790 * The count is incremented when we start a range that's in the set, and
7791 * decremented when we start a range that's not in the set. So its range
7792 * is 0 to 2. Only when the count is 2 is something in the intersection.
7796 PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND;
7799 /* Special case if either one is empty */
7800 len_a = _invlist_len(a);
7801 if ((len_a == 0) || ((len_b = _invlist_len(b)) == 0)) {
7803 if (len_a != 0 && complement_b) {
7805 /* Here, 'a' is not empty, therefore from the above 'if', 'b' must
7806 * be empty. Here, also we are using 'b's complement, which hence
7807 * must be every possible code point. Thus the intersection is
7810 *i = invlist_clone(a);
7816 /* else *i is already 'a' */
7820 /* Here, 'a' or 'b' is empty and not using the complement of 'b'. The
7821 * intersection must be empty */
7828 *i = _new_invlist(0);
7832 /* Here both lists exist and are non-empty */
7833 array_a = invlist_array(a);
7834 array_b = invlist_array(b);
7836 /* If are to take the intersection of 'a' with the complement of b, set it
7837 * up so are looking at b's complement. */
7840 /* To complement, we invert: if the first element is 0, remove it. To
7841 * do this, we just pretend the array starts one later, and clear the
7842 * flag as we don't have to do anything else later */
7843 if (array_b[0] == 0) {
7846 complement_b = FALSE;
7850 /* But if the first element is not zero, we unshift a 0 before the
7851 * array. The data structure reserves a space for that 0 (which
7852 * should be a '1' right now), so physical shifting is unneeded,
7853 * but temporarily change that element to 0. Before exiting the
7854 * routine, we must restore the element to '1' */
7861 /* Size the intersection for the worst case: that the intersection ends up
7862 * fragmenting everything to be completely disjoint */
7863 r= _new_invlist(len_a + len_b);
7865 /* Will contain U+0000 iff both components do */
7866 array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0
7867 && len_b > 0 && array_b[0] == 0);
7869 /* Go through each list item by item, stopping when exhausted one of
7871 while (i_a < len_a && i_b < len_b) {
7872 UV cp; /* The element to potentially add to the intersection's
7874 bool cp_in_set; /* Is it in the input list's set or not */
7876 /* We need to take one or the other of the two inputs for the
7877 * intersection. Since we are merging two sorted lists, we take the
7878 * smaller of the next items. In case of a tie, we take the one that
7879 * is not in its set first (a difference from the union algorithm). If
7880 * we took one in the set first, it would increment the count, possibly
7881 * to 2 which would cause it to be output as starting a range in the
7882 * intersection, and the next time through we would take that same
7883 * number, and output it again as ending the set. By doing it the
7884 * opposite of this, there is no possibility that the count will be
7885 * momentarily incremented to 2. (In a tie and both are in the set or
7886 * both not in the set, it doesn't matter which we take first.) */
7887 if (array_a[i_a] < array_b[i_b]
7888 || (array_a[i_a] == array_b[i_b]
7889 && ! ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
7891 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
7895 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
7899 /* Here, have chosen which of the two inputs to look at. Only output
7900 * if the running count changes to/from 2, which marks the
7901 * beginning/end of a range that's in the intersection */
7905 array_r[i_r++] = cp;
7910 array_r[i_r++] = cp;
7916 /* Here, we are finished going through at least one of the lists, which
7917 * means there is something remaining in at most one. We check if the list
7918 * that has been exhausted is positioned such that we are in the middle
7919 * of a range in its set or not. (i_a and i_b point to elements 1 beyond
7920 * the ones we care about.) There are four cases:
7921 * 1) Both weren't in their sets, count is 0, and remains 0. There's
7922 * nothing left in the intersection.
7923 * 2) Both were in their sets, count is 2 and perhaps is incremented to
7924 * above 2. What should be output is exactly that which is in the
7925 * non-exhausted set, as everything it has is also in the intersection
7926 * set, and everything it doesn't have can't be in the intersection
7927 * 3) The exhausted was in its set, non-exhausted isn't, count is 1, and
7928 * gets incremented to 2. Like the previous case, the intersection is
7929 * everything that remains in the non-exhausted set.
7930 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
7931 * remains 1. And the intersection has nothing more. */
7932 if ((i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
7933 || (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
7938 /* The final length is what we've output so far plus what else is in the
7939 * intersection. At most one of the subexpressions below will be non-zero */
7942 len_r += (len_a - i_a) + (len_b - i_b);
7945 /* Set result to final length, which can change the pointer to array_r, so
7947 if (len_r != _invlist_len(r)) {
7948 invlist_set_len(r, len_r);
7950 array_r = invlist_array(r);
7953 /* Finish outputting any remaining */
7954 if (count >= 2) { /* At most one will have a non-zero copy count */
7956 if ((copy_count = len_a - i_a) > 0) {
7957 Copy(array_a + i_a, array_r + i_r, copy_count, UV);
7959 else if ((copy_count = len_b - i_b) > 0) {
7960 Copy(array_b + i_b, array_r + i_r, copy_count, UV);
7964 /* If we've changed b, restore it */
7969 /* We may be removing a reference to one of the inputs */
7970 if (a == *i || b == *i) {
7971 assert(! invlist_is_iterating(*i));
7972 SvREFCNT_dec_NN(*i);
7980 Perl__add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end)
7982 /* Add the range from 'start' to 'end' inclusive to the inversion list's
7983 * set. A pointer to the inversion list is returned. This may actually be
7984 * a new list, in which case the passed in one has been destroyed. The
7985 * passed in inversion list can be NULL, in which case a new one is created
7986 * with just the one range in it */
7991 if (invlist == NULL) {
7992 invlist = _new_invlist(2);
7996 len = _invlist_len(invlist);
7999 /* If comes after the final entry actually in the list, can just append it
8002 || (! ELEMENT_RANGE_MATCHES_INVLIST(len - 1)
8003 && start >= invlist_array(invlist)[len - 1]))
8005 _append_range_to_invlist(invlist, start, end);
8009 /* Here, can't just append things, create and return a new inversion list
8010 * which is the union of this range and the existing inversion list */
8011 range_invlist = _new_invlist(2);
8012 _append_range_to_invlist(range_invlist, start, end);
8014 _invlist_union(invlist, range_invlist, &invlist);
8016 /* The temporary can be freed */
8017 SvREFCNT_dec_NN(range_invlist);
8024 PERL_STATIC_INLINE SV*
8025 S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) {
8026 return _add_range_to_invlist(invlist, cp, cp);
8029 #ifndef PERL_IN_XSUB_RE
8031 Perl__invlist_invert(pTHX_ SV* const invlist)
8033 /* Complement the input inversion list. This adds a 0 if the list didn't
8034 * have a zero; removes it otherwise. As described above, the data
8035 * structure is set up so that this is very efficient */
8037 UV* len_pos = _get_invlist_len_addr(invlist);
8039 PERL_ARGS_ASSERT__INVLIST_INVERT;
8041 assert(! invlist_is_iterating(invlist));
8043 /* The inverse of matching nothing is matching everything */
8044 if (*len_pos == 0) {
8045 _append_range_to_invlist(invlist, 0, UV_MAX);
8049 /* The exclusive or complents 0 to 1; and 1 to 0. If the result is 1, the
8050 * zero element was a 0, so it is being removed, so the length decrements
8051 * by 1; and vice-versa. SvCUR is unaffected */
8052 if (*get_invlist_zero_addr(invlist) ^= 1) {
8061 Perl__invlist_invert_prop(pTHX_ SV* const invlist)
8063 /* Complement the input inversion list (which must be a Unicode property,
8064 * all of which don't match above the Unicode maximum code point.) And
8065 * Perl has chosen to not have the inversion match above that either. This
8066 * adds a 0x110000 if the list didn't end with it, and removes it if it did
8072 PERL_ARGS_ASSERT__INVLIST_INVERT_PROP;
8074 _invlist_invert(invlist);
8076 len = _invlist_len(invlist);
8078 if (len != 0) { /* If empty do nothing */
8079 array = invlist_array(invlist);
8080 if (array[len - 1] != PERL_UNICODE_MAX + 1) {
8081 /* Add 0x110000. First, grow if necessary */
8083 if (invlist_max(invlist) < len) {
8084 invlist_extend(invlist, len);
8085 array = invlist_array(invlist);
8087 invlist_set_len(invlist, len);
8088 array[len - 1] = PERL_UNICODE_MAX + 1;
8090 else { /* Remove the 0x110000 */
8091 invlist_set_len(invlist, len - 1);
8099 PERL_STATIC_INLINE SV*
8100 S_invlist_clone(pTHX_ SV* const invlist)
8103 /* Return a new inversion list that is a copy of the input one, which is
8106 /* Need to allocate extra space to accommodate Perl's addition of a
8107 * trailing NUL to SvPV's, since it thinks they are always strings */
8108 SV* new_invlist = _new_invlist(_invlist_len(invlist) + 1);
8109 STRLEN length = SvCUR(invlist);
8111 PERL_ARGS_ASSERT_INVLIST_CLONE;
8113 SvCUR_set(new_invlist, length); /* This isn't done automatically */
8114 Copy(SvPVX(invlist), SvPVX(new_invlist), length, char);
8119 PERL_STATIC_INLINE UV*
8120 S_get_invlist_iter_addr(pTHX_ SV* invlist)
8122 /* Return the address of the UV that contains the current iteration
8125 PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR;
8127 return (UV *) (SvPVX(invlist) + (INVLIST_ITER_OFFSET * sizeof (UV)));
8130 PERL_STATIC_INLINE UV*
8131 S_get_invlist_version_id_addr(pTHX_ SV* invlist)
8133 /* Return the address of the UV that contains the version id. */
8135 PERL_ARGS_ASSERT_GET_INVLIST_VERSION_ID_ADDR;
8137 return (UV *) (SvPVX(invlist) + (INVLIST_VERSION_ID_OFFSET * sizeof (UV)));
8140 PERL_STATIC_INLINE void
8141 S_invlist_iterinit(pTHX_ SV* invlist) /* Initialize iterator for invlist */
8143 PERL_ARGS_ASSERT_INVLIST_ITERINIT;
8145 *get_invlist_iter_addr(invlist) = 0;
8148 PERL_STATIC_INLINE void
8149 S_invlist_iterfinish(pTHX_ SV* invlist)
8151 /* Terminate iterator for invlist. This is to catch development errors.
8152 * Any iteration that is interrupted before completed should call this
8153 * function. Functions that add code points anywhere else but to the end
8154 * of an inversion list assert that they are not in the middle of an
8155 * iteration. If they were, the addition would make the iteration
8156 * problematical: if the iteration hadn't reached the place where things
8157 * were being added, it would be ok */
8159 PERL_ARGS_ASSERT_INVLIST_ITERFINISH;
8161 *get_invlist_iter_addr(invlist) = UV_MAX;
8165 S_invlist_iternext(pTHX_ SV* invlist, UV* start, UV* end)
8167 /* An C<invlist_iterinit> call on <invlist> must be used to set this up.
8168 * This call sets in <*start> and <*end>, the next range in <invlist>.
8169 * Returns <TRUE> if successful and the next call will return the next
8170 * range; <FALSE> if was already at the end of the list. If the latter,
8171 * <*start> and <*end> are unchanged, and the next call to this function
8172 * will start over at the beginning of the list */
8174 UV* pos = get_invlist_iter_addr(invlist);
8175 UV len = _invlist_len(invlist);
8178 PERL_ARGS_ASSERT_INVLIST_ITERNEXT;
8181 *pos = UV_MAX; /* Force iterinit() to be required next time */
8185 array = invlist_array(invlist);
8187 *start = array[(*pos)++];
8193 *end = array[(*pos)++] - 1;
8199 PERL_STATIC_INLINE bool
8200 S_invlist_is_iterating(pTHX_ SV* const invlist)
8202 PERL_ARGS_ASSERT_INVLIST_IS_ITERATING;
8204 return *(get_invlist_iter_addr(invlist)) < UV_MAX;
8207 PERL_STATIC_INLINE UV
8208 S_invlist_highest(pTHX_ SV* const invlist)
8210 /* Returns the highest code point that matches an inversion list. This API
8211 * has an ambiguity, as it returns 0 under either the highest is actually
8212 * 0, or if the list is empty. If this distinction matters to you, check
8213 * for emptiness before calling this function */
8215 UV len = _invlist_len(invlist);
8218 PERL_ARGS_ASSERT_INVLIST_HIGHEST;
8224 array = invlist_array(invlist);
8226 /* The last element in the array in the inversion list always starts a
8227 * range that goes to infinity. That range may be for code points that are
8228 * matched in the inversion list, or it may be for ones that aren't
8229 * matched. In the latter case, the highest code point in the set is one
8230 * less than the beginning of this range; otherwise it is the final element
8231 * of this range: infinity */
8232 return (ELEMENT_RANGE_MATCHES_INVLIST(len - 1))
8234 : array[len - 1] - 1;
8237 #ifndef PERL_IN_XSUB_RE
8239 Perl__invlist_contents(pTHX_ SV* const invlist)
8241 /* Get the contents of an inversion list into a string SV so that they can
8242 * be printed out. It uses the format traditionally done for debug tracing
8246 SV* output = newSVpvs("\n");
8248 PERL_ARGS_ASSERT__INVLIST_CONTENTS;
8250 assert(! invlist_is_iterating(invlist));
8252 invlist_iterinit(invlist);
8253 while (invlist_iternext(invlist, &start, &end)) {
8254 if (end == UV_MAX) {
8255 Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\tINFINITY\n", start);
8257 else if (end != start) {
8258 Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\t%04"UVXf"\n",
8262 Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\n", start);
8270 #ifdef PERL_ARGS_ASSERT__INVLIST_DUMP
8272 Perl__invlist_dump(pTHX_ SV* const invlist, const char * const header)
8274 /* Dumps out the ranges in an inversion list. The string 'header'
8275 * if present is output on a line before the first range */
8279 PERL_ARGS_ASSERT__INVLIST_DUMP;
8281 if (header && strlen(header)) {
8282 PerlIO_printf(Perl_debug_log, "%s\n", header);
8284 if (invlist_is_iterating(invlist)) {
8285 PerlIO_printf(Perl_debug_log, "Can't dump because is in middle of iterating\n");
8289 invlist_iterinit(invlist);
8290 while (invlist_iternext(invlist, &start, &end)) {
8291 if (end == UV_MAX) {
8292 PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. INFINITY\n", start);
8294 else if (end != start) {
8295 PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. 0x%04"UVXf"\n",
8299 PerlIO_printf(Perl_debug_log, "0x%04"UVXf"\n", start);
8307 S__invlistEQ(pTHX_ SV* const a, SV* const b, bool complement_b)
8309 /* Return a boolean as to if the two passed in inversion lists are
8310 * identical. The final argument, if TRUE, says to take the complement of
8311 * the second inversion list before doing the comparison */
8313 UV* array_a = invlist_array(a);
8314 UV* array_b = invlist_array(b);
8315 UV len_a = _invlist_len(a);
8316 UV len_b = _invlist_len(b);
8318 UV i = 0; /* current index into the arrays */
8319 bool retval = TRUE; /* Assume are identical until proven otherwise */
8321 PERL_ARGS_ASSERT__INVLISTEQ;
8323 /* If are to compare 'a' with the complement of b, set it
8324 * up so are looking at b's complement. */
8327 /* The complement of nothing is everything, so <a> would have to have
8328 * just one element, starting at zero (ending at infinity) */
8330 return (len_a == 1 && array_a[0] == 0);
8332 else if (array_b[0] == 0) {
8334 /* Otherwise, to complement, we invert. Here, the first element is
8335 * 0, just remove it. To do this, we just pretend the array starts
8336 * one later, and clear the flag as we don't have to do anything
8341 complement_b = FALSE;
8345 /* But if the first element is not zero, we unshift a 0 before the
8346 * array. The data structure reserves a space for that 0 (which
8347 * should be a '1' right now), so physical shifting is unneeded,
8348 * but temporarily change that element to 0. Before exiting the
8349 * routine, we must restore the element to '1' */
8356 /* Make sure that the lengths are the same, as well as the final element
8357 * before looping through the remainder. (Thus we test the length, final,
8358 * and first elements right off the bat) */
8359 if (len_a != len_b || array_a[len_a-1] != array_b[len_a-1]) {
8362 else for (i = 0; i < len_a - 1; i++) {
8363 if (array_a[i] != array_b[i]) {
8376 #undef HEADER_LENGTH
8377 #undef INVLIST_INITIAL_LENGTH
8378 #undef TO_INTERNAL_SIZE
8379 #undef FROM_INTERNAL_SIZE
8380 #undef INVLIST_LEN_OFFSET
8381 #undef INVLIST_ZERO_OFFSET
8382 #undef INVLIST_ITER_OFFSET
8383 #undef INVLIST_VERSION_ID
8384 #undef INVLIST_PREVIOUS_INDEX_OFFSET
8386 /* End of inversion list object */
8389 S_parse_lparen_question_flags(pTHX_ struct RExC_state_t *pRExC_state)
8391 /* This parses the flags that are in either the '(?foo)' or '(?foo:bar)'
8392 * constructs, and updates RExC_flags with them. On input, RExC_parse
8393 * should point to the first flag; it is updated on output to point to the
8394 * final ')' or ':'. There needs to be at least one flag, or this will
8397 /* for (?g), (?gc), and (?o) warnings; warning
8398 about (?c) will warn about (?g) -- japhy */
8400 #define WASTED_O 0x01
8401 #define WASTED_G 0x02
8402 #define WASTED_C 0x04
8403 #define WASTED_GC (0x02|0x04)
8404 I32 wastedflags = 0x00;
8405 U32 posflags = 0, negflags = 0;
8406 U32 *flagsp = &posflags;
8407 char has_charset_modifier = '\0';
8409 bool has_use_defaults = FALSE;
8410 const char* const seqstart = RExC_parse - 1; /* Point to the '?' */
8412 PERL_ARGS_ASSERT_PARSE_LPAREN_QUESTION_FLAGS;
8414 /* '^' as an initial flag sets certain defaults */
8415 if (UCHARAT(RExC_parse) == '^') {
8417 has_use_defaults = TRUE;
8418 STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
8419 set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
8420 ? REGEX_UNICODE_CHARSET
8421 : REGEX_DEPENDS_CHARSET);
8424 cs = get_regex_charset(RExC_flags);
8425 if (cs == REGEX_DEPENDS_CHARSET
8426 && (RExC_utf8 || RExC_uni_semantics))
8428 cs = REGEX_UNICODE_CHARSET;
8431 while (*RExC_parse) {
8432 /* && strchr("iogcmsx", *RExC_parse) */
8433 /* (?g), (?gc) and (?o) are useless here
8434 and must be globally applied -- japhy */
8435 switch (*RExC_parse) {
8437 /* Code for the imsx flags */
8438 CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp);
8440 case LOCALE_PAT_MOD:
8441 if (has_charset_modifier) {
8442 goto excess_modifier;
8444 else if (flagsp == &negflags) {
8447 cs = REGEX_LOCALE_CHARSET;
8448 has_charset_modifier = LOCALE_PAT_MOD;
8449 RExC_contains_locale = 1;
8451 case UNICODE_PAT_MOD:
8452 if (has_charset_modifier) {
8453 goto excess_modifier;
8455 else if (flagsp == &negflags) {
8458 cs = REGEX_UNICODE_CHARSET;
8459 has_charset_modifier = UNICODE_PAT_MOD;
8461 case ASCII_RESTRICT_PAT_MOD:
8462 if (flagsp == &negflags) {
8465 if (has_charset_modifier) {
8466 if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
8467 goto excess_modifier;
8469 /* Doubled modifier implies more restricted */
8470 cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
8473 cs = REGEX_ASCII_RESTRICTED_CHARSET;
8475 has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
8477 case DEPENDS_PAT_MOD:
8478 if (has_use_defaults) {
8479 goto fail_modifiers;
8481 else if (flagsp == &negflags) {
8484 else if (has_charset_modifier) {
8485 goto excess_modifier;
8488 /* The dual charset means unicode semantics if the
8489 * pattern (or target, not known until runtime) are
8490 * utf8, or something in the pattern indicates unicode
8492 cs = (RExC_utf8 || RExC_uni_semantics)
8493 ? REGEX_UNICODE_CHARSET
8494 : REGEX_DEPENDS_CHARSET;
8495 has_charset_modifier = DEPENDS_PAT_MOD;
8499 if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
8500 vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
8502 else if (has_charset_modifier == *(RExC_parse - 1)) {
8503 vFAIL2("Regexp modifier \"%c\" may not appear twice", *(RExC_parse - 1));
8506 vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
8511 vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"", *(RExC_parse - 1));
8513 case ONCE_PAT_MOD: /* 'o' */
8514 case GLOBAL_PAT_MOD: /* 'g' */
8515 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
8516 const I32 wflagbit = *RExC_parse == 'o' ? WASTED_O : WASTED_G;
8517 if (! (wastedflags & wflagbit) ) {
8518 wastedflags |= wflagbit;
8521 "Useless (%s%c) - %suse /%c modifier",
8522 flagsp == &negflags ? "?-" : "?",
8524 flagsp == &negflags ? "don't " : "",
8531 case CONTINUE_PAT_MOD: /* 'c' */
8532 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
8533 if (! (wastedflags & WASTED_C) ) {
8534 wastedflags |= WASTED_GC;
8537 "Useless (%sc) - %suse /gc modifier",
8538 flagsp == &negflags ? "?-" : "?",
8539 flagsp == &negflags ? "don't " : ""
8544 case KEEPCOPY_PAT_MOD: /* 'p' */
8545 if (flagsp == &negflags) {
8547 ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
8549 *flagsp |= RXf_PMf_KEEPCOPY;
8553 /* A flag is a default iff it is following a minus, so
8554 * if there is a minus, it means will be trying to
8555 * re-specify a default which is an error */
8556 if (has_use_defaults || flagsp == &negflags) {
8557 goto fail_modifiers;
8560 wastedflags = 0; /* reset so (?g-c) warns twice */
8564 RExC_flags |= posflags;
8565 RExC_flags &= ~negflags;
8566 set_regex_charset(&RExC_flags, cs);
8572 vFAIL3("Sequence (%.*s...) not recognized",
8573 RExC_parse-seqstart, seqstart);
8582 - reg - regular expression, i.e. main body or parenthesized thing
8584 * Caller must absorb opening parenthesis.
8586 * Combining parenthesis handling with the base level of regular expression
8587 * is a trifle forced, but the need to tie the tails of the branches to what
8588 * follows makes it hard to avoid.
8590 #define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
8592 #define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
8594 #define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
8597 /* Returns NULL, setting *flagp to TRYAGAIN at the end of (?) that only sets
8598 flags. Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan
8599 needs to be restarted.
8600 Otherwise would only return NULL if regbranch() returns NULL, which
8603 S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
8604 /* paren: Parenthesized? 0=top; 1,2=inside '(': changed to letter.
8605 * 2 is like 1, but indicates that nextchar() has been called to advance
8606 * RExC_parse beyond the '('. Things like '(?' are indivisible tokens, and
8607 * this flag alerts us to the need to check for that */
8610 regnode *ret; /* Will be the head of the group. */
8613 regnode *ender = NULL;
8616 U32 oregflags = RExC_flags;
8617 bool have_branch = 0;
8619 I32 freeze_paren = 0;
8620 I32 after_freeze = 0;
8622 char * parse_start = RExC_parse; /* MJD */
8623 char * const oregcomp_parse = RExC_parse;
8625 GET_RE_DEBUG_FLAGS_DECL;
8627 PERL_ARGS_ASSERT_REG;
8628 DEBUG_PARSE("reg ");
8630 *flagp = 0; /* Tentatively. */
8633 /* Make an OPEN node, if parenthesized. */
8636 /* Under /x, space and comments can be gobbled up between the '(' and
8637 * here (if paren ==2). The forms '(*VERB' and '(?...' disallow such
8638 * intervening space, as the sequence is a token, and a token should be
8640 bool has_intervening_patws = paren == 2 && *(RExC_parse - 1) != '(';
8642 if ( *RExC_parse == '*') { /* (*VERB:ARG) */
8643 char *start_verb = RExC_parse;
8644 STRLEN verb_len = 0;
8645 char *start_arg = NULL;
8646 unsigned char op = 0;
8648 int internal_argval = 0; /* internal_argval is only useful if !argok */
8650 if (has_intervening_patws && SIZE_ONLY) {
8651 ckWARNregdep(RExC_parse + 1, "In '(*VERB...)', splitting the initial '(*' is deprecated");
8653 while ( *RExC_parse && *RExC_parse != ')' ) {
8654 if ( *RExC_parse == ':' ) {
8655 start_arg = RExC_parse + 1;
8661 verb_len = RExC_parse - start_verb;
8664 while ( *RExC_parse && *RExC_parse != ')' )
8666 if ( *RExC_parse != ')' )
8667 vFAIL("Unterminated verb pattern argument");
8668 if ( RExC_parse == start_arg )
8671 if ( *RExC_parse != ')' )
8672 vFAIL("Unterminated verb pattern");
8675 switch ( *start_verb ) {
8676 case 'A': /* (*ACCEPT) */
8677 if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
8679 internal_argval = RExC_nestroot;
8682 case 'C': /* (*COMMIT) */
8683 if ( memEQs(start_verb,verb_len,"COMMIT") )
8686 case 'F': /* (*FAIL) */
8687 if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
8692 case ':': /* (*:NAME) */
8693 case 'M': /* (*MARK:NAME) */
8694 if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
8699 case 'P': /* (*PRUNE) */
8700 if ( memEQs(start_verb,verb_len,"PRUNE") )
8703 case 'S': /* (*SKIP) */
8704 if ( memEQs(start_verb,verb_len,"SKIP") )
8707 case 'T': /* (*THEN) */
8708 /* [19:06] <TimToady> :: is then */
8709 if ( memEQs(start_verb,verb_len,"THEN") ) {
8711 RExC_seen |= REG_SEEN_CUTGROUP;
8717 vFAIL3("Unknown verb pattern '%.*s'",
8718 verb_len, start_verb);
8721 if ( start_arg && internal_argval ) {
8722 vFAIL3("Verb pattern '%.*s' may not have an argument",
8723 verb_len, start_verb);
8724 } else if ( argok < 0 && !start_arg ) {
8725 vFAIL3("Verb pattern '%.*s' has a mandatory argument",
8726 verb_len, start_verb);
8728 ret = reganode(pRExC_state, op, internal_argval);
8729 if ( ! internal_argval && ! SIZE_ONLY ) {
8731 SV *sv = newSVpvn( start_arg, RExC_parse - start_arg);
8732 ARG(ret) = add_data( pRExC_state, 1, "S" );
8733 RExC_rxi->data->data[ARG(ret)]=(void*)sv;
8740 if (!internal_argval)
8741 RExC_seen |= REG_SEEN_VERBARG;
8742 } else if ( start_arg ) {
8743 vFAIL3("Verb pattern '%.*s' may not have an argument",
8744 verb_len, start_verb);
8746 ret = reg_node(pRExC_state, op);
8748 nextchar(pRExC_state);
8751 if (*RExC_parse == '?') { /* (?...) */
8752 bool is_logical = 0;
8753 const char * const seqstart = RExC_parse;
8754 if (has_intervening_patws && SIZE_ONLY) {
8755 ckWARNregdep(RExC_parse + 1, "In '(?...)', splitting the initial '(?' is deprecated");
8759 paren = *RExC_parse++;
8760 ret = NULL; /* For look-ahead/behind. */
8763 case 'P': /* (?P...) variants for those used to PCRE/Python */
8764 paren = *RExC_parse++;
8765 if ( paren == '<') /* (?P<...>) named capture */
8767 else if (paren == '>') { /* (?P>name) named recursion */
8768 goto named_recursion;
8770 else if (paren == '=') { /* (?P=...) named backref */
8771 /* this pretty much dupes the code for \k<NAME> in regatom(), if
8772 you change this make sure you change that */
8773 char* name_start = RExC_parse;
8775 SV *sv_dat = reg_scan_name(pRExC_state,
8776 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
8777 if (RExC_parse == name_start || *RExC_parse != ')')
8778 vFAIL2("Sequence %.3s... not terminated",parse_start);
8781 num = add_data( pRExC_state, 1, "S" );
8782 RExC_rxi->data->data[num]=(void*)sv_dat;
8783 SvREFCNT_inc_simple_void(sv_dat);
8786 ret = reganode(pRExC_state,
8789 : (ASCII_FOLD_RESTRICTED)
8791 : (AT_LEAST_UNI_SEMANTICS)
8799 Set_Node_Offset(ret, parse_start+1);
8800 Set_Node_Cur_Length(ret); /* MJD */
8802 nextchar(pRExC_state);
8806 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
8808 case '<': /* (?<...) */
8809 if (*RExC_parse == '!')
8811 else if (*RExC_parse != '=')
8817 case '\'': /* (?'...') */
8818 name_start= RExC_parse;
8819 svname = reg_scan_name(pRExC_state,
8820 SIZE_ONLY ? /* reverse test from the others */
8821 REG_RSN_RETURN_NAME :
8822 REG_RSN_RETURN_NULL);
8823 if (RExC_parse == name_start) {
8825 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
8828 if (*RExC_parse != paren)
8829 vFAIL2("Sequence (?%c... not terminated",
8830 paren=='>' ? '<' : paren);
8834 if (!svname) /* shouldn't happen */
8836 "panic: reg_scan_name returned NULL");
8837 if (!RExC_paren_names) {
8838 RExC_paren_names= newHV();
8839 sv_2mortal(MUTABLE_SV(RExC_paren_names));
8841 RExC_paren_name_list= newAV();
8842 sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
8845 he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
8847 sv_dat = HeVAL(he_str);
8849 /* croak baby croak */
8851 "panic: paren_name hash element allocation failed");
8852 } else if ( SvPOK(sv_dat) ) {
8853 /* (?|...) can mean we have dupes so scan to check
8854 its already been stored. Maybe a flag indicating
8855 we are inside such a construct would be useful,
8856 but the arrays are likely to be quite small, so
8857 for now we punt -- dmq */
8858 IV count = SvIV(sv_dat);
8859 I32 *pv = (I32*)SvPVX(sv_dat);
8861 for ( i = 0 ; i < count ; i++ ) {
8862 if ( pv[i] == RExC_npar ) {
8868 pv = (I32*)SvGROW(sv_dat, SvCUR(sv_dat) + sizeof(I32)+1);
8869 SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
8870 pv[count] = RExC_npar;
8871 SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
8874 (void)SvUPGRADE(sv_dat,SVt_PVNV);
8875 sv_setpvn(sv_dat, (char *)&(RExC_npar), sizeof(I32));
8877 SvIV_set(sv_dat, 1);
8880 /* Yes this does cause a memory leak in debugging Perls */
8881 if (!av_store(RExC_paren_name_list, RExC_npar, SvREFCNT_inc(svname)))
8882 SvREFCNT_dec_NN(svname);
8885 /*sv_dump(sv_dat);*/
8887 nextchar(pRExC_state);
8889 goto capturing_parens;
8891 RExC_seen |= REG_SEEN_LOOKBEHIND;
8892 RExC_in_lookbehind++;
8894 case '=': /* (?=...) */
8895 RExC_seen_zerolen++;
8897 case '!': /* (?!...) */
8898 RExC_seen_zerolen++;
8899 if (*RExC_parse == ')') {
8900 ret=reg_node(pRExC_state, OPFAIL);
8901 nextchar(pRExC_state);
8905 case '|': /* (?|...) */
8906 /* branch reset, behave like a (?:...) except that
8907 buffers in alternations share the same numbers */
8909 after_freeze = freeze_paren = RExC_npar;
8911 case ':': /* (?:...) */
8912 case '>': /* (?>...) */
8914 case '$': /* (?$...) */
8915 case '@': /* (?@...) */
8916 vFAIL2("Sequence (?%c...) not implemented", (int)paren);
8918 case '#': /* (?#...) */
8919 /* XXX As soon as we disallow separating the '?' and '*' (by
8920 * spaces or (?#...) comment), it is believed that this case
8921 * will be unreachable and can be removed. See
8923 while (*RExC_parse && *RExC_parse != ')')
8925 if (*RExC_parse != ')')
8926 FAIL("Sequence (?#... not terminated");
8927 nextchar(pRExC_state);
8930 case '0' : /* (?0) */
8931 case 'R' : /* (?R) */
8932 if (*RExC_parse != ')')
8933 FAIL("Sequence (?R) not terminated");
8934 ret = reg_node(pRExC_state, GOSTART);
8935 *flagp |= POSTPONED;
8936 nextchar(pRExC_state);
8939 { /* named and numeric backreferences */
8941 case '&': /* (?&NAME) */
8942 parse_start = RExC_parse - 1;
8945 SV *sv_dat = reg_scan_name(pRExC_state,
8946 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
8947 num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
8949 goto gen_recurse_regop;
8950 assert(0); /* NOT REACHED */
8952 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
8954 vFAIL("Illegal pattern");
8956 goto parse_recursion;
8958 case '-': /* (?-1) */
8959 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
8960 RExC_parse--; /* rewind to let it be handled later */
8964 case '1': case '2': case '3': case '4': /* (?1) */
8965 case '5': case '6': case '7': case '8': case '9':
8968 num = atoi(RExC_parse);
8969 parse_start = RExC_parse - 1; /* MJD */
8970 if (*RExC_parse == '-')
8972 while (isDIGIT(*RExC_parse))
8974 if (*RExC_parse!=')')
8975 vFAIL("Expecting close bracket");
8978 if ( paren == '-' ) {
8980 Diagram of capture buffer numbering.
8981 Top line is the normal capture buffer numbers
8982 Bottom line is the negative indexing as from
8986 /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
8990 num = RExC_npar + num;
8993 vFAIL("Reference to nonexistent group");
8995 } else if ( paren == '+' ) {
8996 num = RExC_npar + num - 1;
8999 ret = reganode(pRExC_state, GOSUB, num);
9001 if (num > (I32)RExC_rx->nparens) {
9003 vFAIL("Reference to nonexistent group");
9005 ARG2L_SET( ret, RExC_recurse_count++);
9007 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
9008 "Recurse #%"UVuf" to %"IVdf"\n", (UV)ARG(ret), (IV)ARG2L(ret)));
9012 RExC_seen |= REG_SEEN_RECURSE;
9013 Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
9014 Set_Node_Offset(ret, parse_start); /* MJD */
9016 *flagp |= POSTPONED;
9017 nextchar(pRExC_state);
9019 } /* named and numeric backreferences */
9020 assert(0); /* NOT REACHED */
9022 case '?': /* (??...) */
9024 if (*RExC_parse != '{') {
9026 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
9029 *flagp |= POSTPONED;
9030 paren = *RExC_parse++;
9032 case '{': /* (?{...}) */
9035 struct reg_code_block *cb;
9037 RExC_seen_zerolen++;
9039 if ( !pRExC_state->num_code_blocks
9040 || pRExC_state->code_index >= pRExC_state->num_code_blocks
9041 || pRExC_state->code_blocks[pRExC_state->code_index].start
9042 != (STRLEN)((RExC_parse -3 - (is_logical ? 1 : 0))
9045 if (RExC_pm_flags & PMf_USE_RE_EVAL)
9046 FAIL("panic: Sequence (?{...}): no code block found\n");
9047 FAIL("Eval-group not allowed at runtime, use re 'eval'");
9049 /* this is a pre-compiled code block (?{...}) */
9050 cb = &pRExC_state->code_blocks[pRExC_state->code_index];
9051 RExC_parse = RExC_start + cb->end;
9054 if (cb->src_regex) {
9055 n = add_data(pRExC_state, 2, "rl");
9056 RExC_rxi->data->data[n] =
9057 (void*)SvREFCNT_inc((SV*)cb->src_regex);
9058 RExC_rxi->data->data[n+1] = (void*)o;
9061 n = add_data(pRExC_state, 1,
9062 (RExC_pm_flags & PMf_HAS_CV) ? "L" : "l");
9063 RExC_rxi->data->data[n] = (void*)o;
9066 pRExC_state->code_index++;
9067 nextchar(pRExC_state);
9071 ret = reg_node(pRExC_state, LOGICAL);
9072 eval = reganode(pRExC_state, EVAL, n);
9075 /* for later propagation into (??{}) return value */
9076 eval->flags = (U8) (RExC_flags & RXf_PMf_COMPILETIME);
9078 REGTAIL(pRExC_state, ret, eval);
9079 /* deal with the length of this later - MJD */
9082 ret = reganode(pRExC_state, EVAL, n);
9083 Set_Node_Length(ret, RExC_parse - parse_start + 1);
9084 Set_Node_Offset(ret, parse_start);
9087 case '(': /* (?(?{...})...) and (?(?=...)...) */
9090 if (RExC_parse[0] == '?') { /* (?(?...)) */
9091 if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
9092 || RExC_parse[1] == '<'
9093 || RExC_parse[1] == '{') { /* Lookahead or eval. */
9097 ret = reg_node(pRExC_state, LOGICAL);
9101 tail = reg(pRExC_state, 1, &flag, depth+1);
9102 if (flag & RESTART_UTF8) {
9103 *flagp = RESTART_UTF8;
9106 REGTAIL(pRExC_state, ret, tail);
9110 else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */
9111 || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
9113 char ch = RExC_parse[0] == '<' ? '>' : '\'';
9114 char *name_start= RExC_parse++;
9116 SV *sv_dat=reg_scan_name(pRExC_state,
9117 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
9118 if (RExC_parse == name_start || *RExC_parse != ch)
9119 vFAIL2("Sequence (?(%c... not terminated",
9120 (ch == '>' ? '<' : ch));
9123 num = add_data( pRExC_state, 1, "S" );
9124 RExC_rxi->data->data[num]=(void*)sv_dat;
9125 SvREFCNT_inc_simple_void(sv_dat);
9127 ret = reganode(pRExC_state,NGROUPP,num);
9128 goto insert_if_check_paren;
9130 else if (RExC_parse[0] == 'D' &&
9131 RExC_parse[1] == 'E' &&
9132 RExC_parse[2] == 'F' &&
9133 RExC_parse[3] == 'I' &&
9134 RExC_parse[4] == 'N' &&
9135 RExC_parse[5] == 'E')
9137 ret = reganode(pRExC_state,DEFINEP,0);
9140 goto insert_if_check_paren;
9142 else if (RExC_parse[0] == 'R') {
9145 if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
9146 parno = atoi(RExC_parse++);
9147 while (isDIGIT(*RExC_parse))
9149 } else if (RExC_parse[0] == '&') {
9152 sv_dat = reg_scan_name(pRExC_state,
9153 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
9154 parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
9156 ret = reganode(pRExC_state,INSUBP,parno);
9157 goto insert_if_check_paren;
9159 else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
9162 parno = atoi(RExC_parse++);
9164 while (isDIGIT(*RExC_parse))
9166 ret = reganode(pRExC_state, GROUPP, parno);
9168 insert_if_check_paren:
9169 if ((c = *nextchar(pRExC_state)) != ')')
9170 vFAIL("Switch condition not recognized");
9172 REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
9173 br = regbranch(pRExC_state, &flags, 1,depth+1);
9175 if (flags & RESTART_UTF8) {
9176 *flagp = RESTART_UTF8;
9179 FAIL2("panic: regbranch returned NULL, flags=%#X",
9182 REGTAIL(pRExC_state, br, reganode(pRExC_state, LONGJMP, 0));
9183 c = *nextchar(pRExC_state);
9188 vFAIL("(?(DEFINE)....) does not allow branches");
9189 lastbr = reganode(pRExC_state, IFTHEN, 0); /* Fake one for optimizer. */
9190 if (!regbranch(pRExC_state, &flags, 1,depth+1)) {
9191 if (flags & RESTART_UTF8) {
9192 *flagp = RESTART_UTF8;
9195 FAIL2("panic: regbranch returned NULL, flags=%#X",
9198 REGTAIL(pRExC_state, ret, lastbr);
9201 c = *nextchar(pRExC_state);
9206 vFAIL("Switch (?(condition)... contains too many branches");
9207 ender = reg_node(pRExC_state, TAIL);
9208 REGTAIL(pRExC_state, br, ender);
9210 REGTAIL(pRExC_state, lastbr, ender);
9211 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
9214 REGTAIL(pRExC_state, ret, ender);
9215 RExC_size++; /* XXX WHY do we need this?!!
9216 For large programs it seems to be required
9217 but I can't figure out why. -- dmq*/
9221 vFAIL2("Unknown switch condition (?(%.2s", RExC_parse);
9224 case '[': /* (?[ ... ]) */
9225 return handle_regex_sets(pRExC_state, NULL, flagp, depth,
9228 RExC_parse--; /* for vFAIL to print correctly */
9229 vFAIL("Sequence (? incomplete");
9231 default: /* e.g., (?i) */
9234 parse_lparen_question_flags(pRExC_state);
9235 if (UCHARAT(RExC_parse) != ':') {
9236 nextchar(pRExC_state);
9241 nextchar(pRExC_state);
9251 ret = reganode(pRExC_state, OPEN, parno);
9254 RExC_nestroot = parno;
9255 if (RExC_seen & REG_SEEN_RECURSE
9256 && !RExC_open_parens[parno-1])
9258 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
9259 "Setting open paren #%"IVdf" to %d\n",
9260 (IV)parno, REG_NODE_NUM(ret)));
9261 RExC_open_parens[parno-1]= ret;
9264 Set_Node_Length(ret, 1); /* MJD */
9265 Set_Node_Offset(ret, RExC_parse); /* MJD */
9273 /* Pick up the branches, linking them together. */
9274 parse_start = RExC_parse; /* MJD */
9275 br = regbranch(pRExC_state, &flags, 1,depth+1);
9277 /* branch_len = (paren != 0); */
9280 if (flags & RESTART_UTF8) {
9281 *flagp = RESTART_UTF8;
9284 FAIL2("panic: regbranch returned NULL, flags=%#X", flags);
9286 if (*RExC_parse == '|') {
9287 if (!SIZE_ONLY && RExC_extralen) {
9288 reginsert(pRExC_state, BRANCHJ, br, depth+1);
9291 reginsert(pRExC_state, BRANCH, br, depth+1);
9292 Set_Node_Length(br, paren != 0);
9293 Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
9297 RExC_extralen += 1; /* For BRANCHJ-BRANCH. */
9299 else if (paren == ':') {
9300 *flagp |= flags&SIMPLE;
9302 if (is_open) { /* Starts with OPEN. */
9303 REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */
9305 else if (paren != '?') /* Not Conditional */
9307 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
9309 while (*RExC_parse == '|') {
9310 if (!SIZE_ONLY && RExC_extralen) {
9311 ender = reganode(pRExC_state, LONGJMP,0);
9312 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender); /* Append to the previous. */
9315 RExC_extralen += 2; /* Account for LONGJMP. */
9316 nextchar(pRExC_state);
9318 if (RExC_npar > after_freeze)
9319 after_freeze = RExC_npar;
9320 RExC_npar = freeze_paren;
9322 br = regbranch(pRExC_state, &flags, 0, depth+1);
9325 if (flags & RESTART_UTF8) {
9326 *flagp = RESTART_UTF8;
9329 FAIL2("panic: regbranch returned NULL, flags=%#X", flags);
9331 REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */
9333 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
9336 if (have_branch || paren != ':') {
9337 /* Make a closing node, and hook it on the end. */
9340 ender = reg_node(pRExC_state, TAIL);
9343 ender = reganode(pRExC_state, CLOSE, parno);
9344 if (!SIZE_ONLY && RExC_seen & REG_SEEN_RECURSE) {
9345 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
9346 "Setting close paren #%"IVdf" to %d\n",
9347 (IV)parno, REG_NODE_NUM(ender)));
9348 RExC_close_parens[parno-1]= ender;
9349 if (RExC_nestroot == parno)
9352 Set_Node_Offset(ender,RExC_parse+1); /* MJD */
9353 Set_Node_Length(ender,1); /* MJD */
9359 *flagp &= ~HASWIDTH;
9362 ender = reg_node(pRExC_state, SUCCEED);
9365 ender = reg_node(pRExC_state, END);
9367 assert(!RExC_opend); /* there can only be one! */
9372 DEBUG_PARSE_r(if (!SIZE_ONLY) {
9373 SV * const mysv_val1=sv_newmortal();
9374 SV * const mysv_val2=sv_newmortal();
9375 DEBUG_PARSE_MSG("lsbr");
9376 regprop(RExC_rx, mysv_val1, lastbr);
9377 regprop(RExC_rx, mysv_val2, ender);
9378 PerlIO_printf(Perl_debug_log, "~ tying lastbr %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
9379 SvPV_nolen_const(mysv_val1),
9380 (IV)REG_NODE_NUM(lastbr),
9381 SvPV_nolen_const(mysv_val2),
9382 (IV)REG_NODE_NUM(ender),
9383 (IV)(ender - lastbr)
9386 REGTAIL(pRExC_state, lastbr, ender);
9388 if (have_branch && !SIZE_ONLY) {
9391 RExC_seen |= REG_TOP_LEVEL_BRANCHES;
9393 /* Hook the tails of the branches to the closing node. */
9394 for (br = ret; br; br = regnext(br)) {
9395 const U8 op = PL_regkind[OP(br)];
9397 REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
9398 if (OP(NEXTOPER(br)) != NOTHING || regnext(NEXTOPER(br)) != ender)
9401 else if (op == BRANCHJ) {
9402 REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
9403 /* for now we always disable this optimisation * /
9404 if (OP(NEXTOPER(NEXTOPER(br))) != NOTHING || regnext(NEXTOPER(NEXTOPER(br))) != ender)
9410 br= PL_regkind[OP(ret)] != BRANCH ? regnext(ret) : ret;
9411 DEBUG_PARSE_r(if (!SIZE_ONLY) {
9412 SV * const mysv_val1=sv_newmortal();
9413 SV * const mysv_val2=sv_newmortal();
9414 DEBUG_PARSE_MSG("NADA");
9415 regprop(RExC_rx, mysv_val1, ret);
9416 regprop(RExC_rx, mysv_val2, ender);
9417 PerlIO_printf(Perl_debug_log, "~ converting ret %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
9418 SvPV_nolen_const(mysv_val1),
9419 (IV)REG_NODE_NUM(ret),
9420 SvPV_nolen_const(mysv_val2),
9421 (IV)REG_NODE_NUM(ender),
9426 if (OP(ender) == TAIL) {
9431 for ( opt= br + 1; opt < ender ; opt++ )
9433 NEXT_OFF(br)= ender - br;
9441 static const char parens[] = "=!<,>";
9443 if (paren && (p = strchr(parens, paren))) {
9444 U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
9445 int flag = (p - parens) > 1;
9448 node = SUSPEND, flag = 0;
9449 reginsert(pRExC_state, node,ret, depth+1);
9450 Set_Node_Cur_Length(ret);
9451 Set_Node_Offset(ret, parse_start + 1);
9453 REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
9457 /* Check for proper termination. */
9459 /* restore original flags, but keep (?p) */
9460 RExC_flags = oregflags | (RExC_flags & RXf_PMf_KEEPCOPY);
9461 if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
9462 RExC_parse = oregcomp_parse;
9463 vFAIL("Unmatched (");
9466 else if (!paren && RExC_parse < RExC_end) {
9467 if (*RExC_parse == ')') {
9469 vFAIL("Unmatched )");
9472 FAIL("Junk on end of regexp"); /* "Can't happen". */
9473 assert(0); /* NOTREACHED */
9476 if (RExC_in_lookbehind) {
9477 RExC_in_lookbehind--;
9479 if (after_freeze > RExC_npar)
9480 RExC_npar = after_freeze;
9485 - regbranch - one alternative of an | operator
9487 * Implements the concatenation operator.
9489 * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
9493 S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
9497 regnode *chain = NULL;
9499 I32 flags = 0, c = 0;
9500 GET_RE_DEBUG_FLAGS_DECL;
9502 PERL_ARGS_ASSERT_REGBRANCH;
9504 DEBUG_PARSE("brnc");
9509 if (!SIZE_ONLY && RExC_extralen)
9510 ret = reganode(pRExC_state, BRANCHJ,0);
9512 ret = reg_node(pRExC_state, BRANCH);
9513 Set_Node_Length(ret, 1);
9517 if (!first && SIZE_ONLY)
9518 RExC_extralen += 1; /* BRANCHJ */
9520 *flagp = WORST; /* Tentatively. */
9523 nextchar(pRExC_state);
9524 while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
9526 latest = regpiece(pRExC_state, &flags,depth+1);
9527 if (latest == NULL) {
9528 if (flags & TRYAGAIN)
9530 if (flags & RESTART_UTF8) {
9531 *flagp = RESTART_UTF8;
9534 FAIL2("panic: regpiece returned NULL, flags=%#X", flags);
9536 else if (ret == NULL)
9538 *flagp |= flags&(HASWIDTH|POSTPONED);
9539 if (chain == NULL) /* First piece. */
9540 *flagp |= flags&SPSTART;
9543 REGTAIL(pRExC_state, chain, latest);
9548 if (chain == NULL) { /* Loop ran zero times. */
9549 chain = reg_node(pRExC_state, NOTHING);
9554 *flagp |= flags&SIMPLE;
9561 - regpiece - something followed by possible [*+?]
9563 * Note that the branching code sequences used for ? and the general cases
9564 * of * and + are somewhat optimized: they use the same NOTHING node as
9565 * both the endmarker for their branch list and the body of the last branch.
9566 * It might seem that this node could be dispensed with entirely, but the
9567 * endmarker role is not redundant.
9569 * Returns NULL, setting *flagp to TRYAGAIN if regatom() returns NULL with
9571 * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
9575 S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
9582 const char * const origparse = RExC_parse;
9584 I32 max = REG_INFTY;
9585 #ifdef RE_TRACK_PATTERN_OFFSETS
9588 const char *maxpos = NULL;
9590 /* Save the original in case we change the emitted regop to a FAIL. */
9591 regnode * const orig_emit = RExC_emit;
9593 GET_RE_DEBUG_FLAGS_DECL;
9595 PERL_ARGS_ASSERT_REGPIECE;
9597 DEBUG_PARSE("piec");
9599 ret = regatom(pRExC_state, &flags,depth+1);
9601 if (flags & (TRYAGAIN|RESTART_UTF8))
9602 *flagp |= flags & (TRYAGAIN|RESTART_UTF8);
9604 FAIL2("panic: regatom returned NULL, flags=%#X", flags);
9610 if (op == '{' && regcurly(RExC_parse, FALSE)) {
9612 #ifdef RE_TRACK_PATTERN_OFFSETS
9613 parse_start = RExC_parse; /* MJD */
9615 next = RExC_parse + 1;
9616 while (isDIGIT(*next) || *next == ',') {
9625 if (*next == '}') { /* got one */
9629 min = atoi(RExC_parse);
9633 maxpos = RExC_parse;
9635 if (!max && *maxpos != '0')
9636 max = REG_INFTY; /* meaning "infinity" */
9637 else if (max >= REG_INFTY)
9638 vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
9640 nextchar(pRExC_state);
9641 if (max < min) { /* If can't match, warn and optimize to fail
9644 ckWARNreg(RExC_parse, "Quantifier {n,m} with n > m can't match");
9646 /* We can't back off the size because we have to reserve
9647 * enough space for all the things we are about to throw
9648 * away, but we can shrink it by the ammount we are about
9650 RExC_size = PREVOPER(RExC_size) - regarglen[(U8)OPFAIL];
9653 RExC_emit = orig_emit;
9655 ret = reg_node(pRExC_state, OPFAIL);
9658 else if (max == 0) { /* replace {0} with a nothing node */
9660 RExC_size = PREVOPER(RExC_size) - regarglen[(U8)NOTHING];
9663 RExC_emit = orig_emit;
9665 ret = reg_node(pRExC_state, NOTHING);
9670 if ((flags&SIMPLE)) {
9671 RExC_naughty += 2 + RExC_naughty / 2;
9672 reginsert(pRExC_state, CURLY, ret, depth+1);
9673 Set_Node_Offset(ret, parse_start+1); /* MJD */
9674 Set_Node_Cur_Length(ret);
9677 regnode * const w = reg_node(pRExC_state, WHILEM);
9680 REGTAIL(pRExC_state, ret, w);
9681 if (!SIZE_ONLY && RExC_extralen) {
9682 reginsert(pRExC_state, LONGJMP,ret, depth+1);
9683 reginsert(pRExC_state, NOTHING,ret, depth+1);
9684 NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
9686 reginsert(pRExC_state, CURLYX,ret, depth+1);
9688 Set_Node_Offset(ret, parse_start+1);
9689 Set_Node_Length(ret,
9690 op == '{' ? (RExC_parse - parse_start) : 1);
9692 if (!SIZE_ONLY && RExC_extralen)
9693 NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
9694 REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
9696 RExC_whilem_seen++, RExC_extralen += 3;
9697 RExC_naughty += 4 + RExC_naughty; /* compound interest */
9706 ARG1_SET(ret, (U16)min);
9707 ARG2_SET(ret, (U16)max);
9719 #if 0 /* Now runtime fix should be reliable. */
9721 /* if this is reinstated, don't forget to put this back into perldiag:
9723 =item Regexp *+ operand could be empty at {#} in regex m/%s/
9725 (F) The part of the regexp subject to either the * or + quantifier
9726 could match an empty string. The {#} shows in the regular
9727 expression about where the problem was discovered.
9731 if (!(flags&HASWIDTH) && op != '?')
9732 vFAIL("Regexp *+ operand could be empty");
9735 #ifdef RE_TRACK_PATTERN_OFFSETS
9736 parse_start = RExC_parse;
9738 nextchar(pRExC_state);
9740 *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
9742 if (op == '*' && (flags&SIMPLE)) {
9743 reginsert(pRExC_state, STAR, ret, depth+1);
9747 else if (op == '*') {
9751 else if (op == '+' && (flags&SIMPLE)) {
9752 reginsert(pRExC_state, PLUS, ret, depth+1);
9756 else if (op == '+') {
9760 else if (op == '?') {
9765 if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
9766 SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
9767 ckWARN3reg(RExC_parse,
9768 "%.*s matches null string many times",
9769 (int)(RExC_parse >= origparse ? RExC_parse - origparse : 0),
9771 (void)ReREFCNT_inc(RExC_rx_sv);
9774 if (RExC_parse < RExC_end && *RExC_parse == '?') {
9775 nextchar(pRExC_state);
9776 reginsert(pRExC_state, MINMOD, ret, depth+1);
9777 REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
9779 #ifndef REG_ALLOW_MINMOD_SUSPEND
9782 if (RExC_parse < RExC_end && *RExC_parse == '+') {
9784 nextchar(pRExC_state);
9785 ender = reg_node(pRExC_state, SUCCEED);
9786 REGTAIL(pRExC_state, ret, ender);
9787 reginsert(pRExC_state, SUSPEND, ret, depth+1);
9789 ender = reg_node(pRExC_state, TAIL);
9790 REGTAIL(pRExC_state, ret, ender);
9794 if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
9796 vFAIL("Nested quantifiers");
9803 S_grok_bslash_N(pTHX_ RExC_state_t *pRExC_state, regnode** node_p, UV *valuep, I32 *flagp, U32 depth, bool in_char_class,
9804 const bool strict /* Apply stricter parsing rules? */
9808 /* This is expected to be called by a parser routine that has recognized '\N'
9809 and needs to handle the rest. RExC_parse is expected to point at the first
9810 char following the N at the time of the call. On successful return,
9811 RExC_parse has been updated to point to just after the sequence identified
9812 by this routine, and <*flagp> has been updated.
9814 The \N may be inside (indicated by the boolean <in_char_class>) or outside a
9817 \N may begin either a named sequence, or if outside a character class, mean
9818 to match a non-newline. For non single-quoted regexes, the tokenizer has
9819 attempted to decide which, and in the case of a named sequence, converted it
9820 into one of the forms: \N{} (if the sequence is null), or \N{U+c1.c2...},
9821 where c1... are the characters in the sequence. For single-quoted regexes,
9822 the tokenizer passes the \N sequence through unchanged; this code will not
9823 attempt to determine this nor expand those, instead raising a syntax error.
9824 The net effect is that if the beginning of the passed-in pattern isn't '{U+'
9825 or there is no '}', it signals that this \N occurrence means to match a
9828 Only the \N{U+...} form should occur in a character class, for the same
9829 reason that '.' inside a character class means to just match a period: it
9830 just doesn't make sense.
9832 The function raises an error (via vFAIL), and doesn't return for various
9833 syntax errors. Otherwise it returns TRUE and sets <node_p> or <valuep> on
9834 success; it returns FALSE otherwise. Returns FALSE, setting *flagp to
9835 RESTART_UTF8 if the sizing scan needs to be restarted. Such a restart is
9836 only possible if node_p is non-NULL.
9839 If <valuep> is non-null, it means the caller can accept an input sequence
9840 consisting of a just a single code point; <*valuep> is set to that value
9841 if the input is such.
9843 If <node_p> is non-null it signifies that the caller can accept any other
9844 legal sequence (i.e., one that isn't just a single code point). <*node_p>
9846 1) \N means not-a-NL: points to a newly created REG_ANY node;
9847 2) \N{}: points to a new NOTHING node;
9848 3) otherwise: points to a new EXACT node containing the resolved
9850 Note that FALSE is returned for single code point sequences if <valuep> is
9854 char * endbrace; /* '}' following the name */
9856 char *endchar; /* Points to '.' or '}' ending cur char in the input
9858 bool has_multiple_chars; /* true if the input stream contains a sequence of
9859 more than one character */
9861 GET_RE_DEBUG_FLAGS_DECL;
9863 PERL_ARGS_ASSERT_GROK_BSLASH_N;
9867 assert(cBOOL(node_p) ^ cBOOL(valuep)); /* Exactly one should be set */
9869 /* The [^\n] meaning of \N ignores spaces and comments under the /x
9870 * modifier. The other meaning does not */
9871 p = (RExC_flags & RXf_PMf_EXTENDED)
9872 ? regwhite( pRExC_state, RExC_parse )
9875 /* Disambiguate between \N meaning a named character versus \N meaning
9876 * [^\n]. The former is assumed when it can't be the latter. */
9877 if (*p != '{' || regcurly(p, FALSE)) {
9880 /* no bare \N in a charclass */
9881 if (in_char_class) {
9882 vFAIL("\\N in a character class must be a named character: \\N{...}");
9886 nextchar(pRExC_state);
9887 *node_p = reg_node(pRExC_state, REG_ANY);
9888 *flagp |= HASWIDTH|SIMPLE;
9891 Set_Node_Length(*node_p, 1); /* MJD */
9895 /* Here, we have decided it should be a named character or sequence */
9897 /* The test above made sure that the next real character is a '{', but
9898 * under the /x modifier, it could be separated by space (or a comment and
9899 * \n) and this is not allowed (for consistency with \x{...} and the
9900 * tokenizer handling of \N{NAME}). */
9901 if (*RExC_parse != '{') {
9902 vFAIL("Missing braces on \\N{}");
9905 RExC_parse++; /* Skip past the '{' */
9907 if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */
9908 || ! (endbrace == RExC_parse /* nothing between the {} */
9909 || (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked below */
9910 && strnEQ(RExC_parse, "U+", 2)))) /* for a better error msg) */
9912 if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
9913 vFAIL("\\N{NAME} must be resolved by the lexer");
9916 if (endbrace == RExC_parse) { /* empty: \N{} */
9919 *node_p = reg_node(pRExC_state,NOTHING);
9921 else if (in_char_class) {
9922 if (SIZE_ONLY && in_char_class) {
9924 RExC_parse++; /* Position after the "}" */
9925 vFAIL("Zero length \\N{}");
9928 ckWARNreg(RExC_parse,
9929 "Ignoring zero length \\N{} in character class");
9937 nextchar(pRExC_state);
9941 RExC_uni_semantics = 1; /* Unicode named chars imply Unicode semantics */
9942 RExC_parse += 2; /* Skip past the 'U+' */
9944 endchar = RExC_parse + strcspn(RExC_parse, ".}");
9946 /* Code points are separated by dots. If none, there is only one code
9947 * point, and is terminated by the brace */
9948 has_multiple_chars = (endchar < endbrace);
9950 if (valuep && (! has_multiple_chars || in_char_class)) {
9951 /* We only pay attention to the first char of
9952 multichar strings being returned in char classes. I kinda wonder
9953 if this makes sense as it does change the behaviour
9954 from earlier versions, OTOH that behaviour was broken
9955 as well. XXX Solution is to recharacterize as
9956 [rest-of-class]|multi1|multi2... */
9958 STRLEN length_of_hex = (STRLEN)(endchar - RExC_parse);
9959 I32 grok_hex_flags = PERL_SCAN_ALLOW_UNDERSCORES
9960 | PERL_SCAN_DISALLOW_PREFIX
9961 | (SIZE_ONLY ? PERL_SCAN_SILENT_ILLDIGIT : 0);
9963 *valuep = grok_hex(RExC_parse, &length_of_hex, &grok_hex_flags, NULL);
9965 /* The tokenizer should have guaranteed validity, but it's possible to
9966 * bypass it by using single quoting, so check */
9967 if (length_of_hex == 0
9968 || length_of_hex != (STRLEN)(endchar - RExC_parse) )
9970 RExC_parse += length_of_hex; /* Includes all the valid */
9971 RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
9972 ? UTF8SKIP(RExC_parse)
9974 /* Guard against malformed utf8 */
9975 if (RExC_parse >= endchar) {
9976 RExC_parse = endchar;
9978 vFAIL("Invalid hexadecimal number in \\N{U+...}");
9981 if (in_char_class && has_multiple_chars) {
9983 RExC_parse = endbrace;
9984 vFAIL("\\N{} in character class restricted to one character");
9987 ckWARNreg(endchar, "Using just the first character returned by \\N{} in character class");
9991 RExC_parse = endbrace + 1;
9993 else if (! node_p || ! has_multiple_chars) {
9995 /* Here, the input is legal, but not according to the caller's
9996 * options. We fail without advancing the parse, so that the
9997 * caller can try again */
10003 /* What is done here is to convert this to a sub-pattern of the form
10004 * (?:\x{char1}\x{char2}...)
10005 * and then call reg recursively. That way, it retains its atomicness,
10006 * while not having to worry about special handling that some code
10007 * points may have. toke.c has converted the original Unicode values
10008 * to native, so that we can just pass on the hex values unchanged. We
10009 * do have to set a flag to keep recoding from happening in the
10012 SV * substitute_parse = newSVpvn_flags("?:", 2, SVf_UTF8|SVs_TEMP);
10014 char *orig_end = RExC_end;
10017 while (RExC_parse < endbrace) {
10019 /* Convert to notation the rest of the code understands */
10020 sv_catpv(substitute_parse, "\\x{");
10021 sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
10022 sv_catpv(substitute_parse, "}");
10024 /* Point to the beginning of the next character in the sequence. */
10025 RExC_parse = endchar + 1;
10026 endchar = RExC_parse + strcspn(RExC_parse, ".}");
10028 sv_catpv(substitute_parse, ")");
10030 RExC_parse = SvPV(substitute_parse, len);
10032 /* Don't allow empty number */
10034 vFAIL("Invalid hexadecimal number in \\N{U+...}");
10036 RExC_end = RExC_parse + len;
10038 /* The values are Unicode, and therefore not subject to recoding */
10039 RExC_override_recoding = 1;
10041 if (!(*node_p = reg(pRExC_state, 1, &flags, depth+1))) {
10042 if (flags & RESTART_UTF8) {
10043 *flagp = RESTART_UTF8;
10046 FAIL2("panic: reg returned NULL to grok_bslash_N, flags=%#X",
10049 *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
10051 RExC_parse = endbrace;
10052 RExC_end = orig_end;
10053 RExC_override_recoding = 0;
10055 nextchar(pRExC_state);
10065 * It returns the code point in utf8 for the value in *encp.
10066 * value: a code value in the source encoding
10067 * encp: a pointer to an Encode object
10069 * If the result from Encode is not a single character,
10070 * it returns U+FFFD (Replacement character) and sets *encp to NULL.
10073 S_reg_recode(pTHX_ const char value, SV **encp)
10076 SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
10077 const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
10078 const STRLEN newlen = SvCUR(sv);
10079 UV uv = UNICODE_REPLACEMENT;
10081 PERL_ARGS_ASSERT_REG_RECODE;
10085 ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
10088 if (!newlen || numlen != newlen) {
10089 uv = UNICODE_REPLACEMENT;
10095 PERL_STATIC_INLINE U8
10096 S_compute_EXACTish(pTHX_ RExC_state_t *pRExC_state)
10100 PERL_ARGS_ASSERT_COMPUTE_EXACTISH;
10106 op = get_regex_charset(RExC_flags);
10107 if (op >= REGEX_ASCII_RESTRICTED_CHARSET) {
10108 op--; /* /a is same as /u, and map /aa's offset to what /a's would have
10109 been, so there is no hole */
10112 return op + EXACTF;
10115 PERL_STATIC_INLINE void
10116 S_alloc_maybe_populate_EXACT(pTHX_ RExC_state_t *pRExC_state, regnode *node, I32* flagp, STRLEN len, UV code_point)
10118 /* This knows the details about sizing an EXACTish node, setting flags for
10119 * it (by setting <*flagp>, and potentially populating it with a single
10122 * If <len> (the length in bytes) is non-zero, this function assumes that
10123 * the node has already been populated, and just does the sizing. In this
10124 * case <code_point> should be the final code point that has already been
10125 * placed into the node. This value will be ignored except that under some
10126 * circumstances <*flagp> is set based on it.
10128 * If <len> is zero, the function assumes that the node is to contain only
10129 * the single character given by <code_point> and calculates what <len>
10130 * should be. In pass 1, it sizes the node appropriately. In pass 2, it
10131 * additionally will populate the node's STRING with <code_point>, if <len>
10132 * is 0. In both cases <*flagp> is appropriately set
10134 * It knows that under FOLD, the Latin Sharp S and UTF characters above
10135 * 255, must be folded (the former only when the rules indicate it can
10138 bool len_passed_in = cBOOL(len != 0);
10139 U8 character[UTF8_MAXBYTES_CASE+1];
10141 PERL_ARGS_ASSERT_ALLOC_MAYBE_POPULATE_EXACT;
10143 if (! len_passed_in) {
10145 if (FOLD && (! LOC || code_point > 255)) {
10146 _to_uni_fold_flags(NATIVE_TO_UNI(code_point),
10149 FOLD_FLAGS_FULL | ((LOC)
10150 ? FOLD_FLAGS_LOCALE
10151 : (ASCII_FOLD_RESTRICTED)
10152 ? FOLD_FLAGS_NOMIX_ASCII
10156 uvchr_to_utf8( character, code_point);
10157 len = UTF8SKIP(character);
10161 || code_point != LATIN_SMALL_LETTER_SHARP_S
10162 || ASCII_FOLD_RESTRICTED
10163 || ! AT_LEAST_UNI_SEMANTICS)
10165 *character = (U8) code_point;
10170 *(character + 1) = 's';
10176 RExC_size += STR_SZ(len);
10179 RExC_emit += STR_SZ(len);
10180 STR_LEN(node) = len;
10181 if (! len_passed_in) {
10182 Copy((char *) character, STRING(node), len, char);
10186 *flagp |= HASWIDTH;
10188 /* A single character node is SIMPLE, except for the special-cased SHARP S
10190 if ((len == 1 || (UTF && len == UNISKIP(code_point)))
10191 && (code_point != LATIN_SMALL_LETTER_SHARP_S
10192 || ! FOLD || ! DEPENDS_SEMANTICS))
10199 - regatom - the lowest level
10201 Try to identify anything special at the start of the pattern. If there
10202 is, then handle it as required. This may involve generating a single regop,
10203 such as for an assertion; or it may involve recursing, such as to
10204 handle a () structure.
10206 If the string doesn't start with something special then we gobble up
10207 as much literal text as we can.
10209 Once we have been able to handle whatever type of thing started the
10210 sequence, we return.
10212 Note: we have to be careful with escapes, as they can be both literal
10213 and special, and in the case of \10 and friends, context determines which.
10215 A summary of the code structure is:
10217 switch (first_byte) {
10218 cases for each special:
10219 handle this special;
10222 switch (2nd byte) {
10223 cases for each unambiguous special:
10224 handle this special;
10226 cases for each ambigous special/literal:
10228 if (special) handle here
10230 default: // unambiguously literal:
10233 default: // is a literal char
10236 create EXACTish node for literal;
10237 while (more input and node isn't full) {
10238 switch (input_byte) {
10239 cases for each special;
10240 make sure parse pointer is set so that the next call to
10241 regatom will see this special first
10242 goto loopdone; // EXACTish node terminated by prev. char
10244 append char to EXACTISH node;
10246 get next input byte;
10250 return the generated node;
10252 Specifically there are two separate switches for handling
10253 escape sequences, with the one for handling literal escapes requiring
10254 a dummy entry for all of the special escapes that are actually handled
10257 Returns NULL, setting *flagp to TRYAGAIN if reg() returns NULL with
10259 Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
10261 Otherwise does not return NULL.
10265 S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
10268 regnode *ret = NULL;
10270 char *parse_start = RExC_parse;
10274 GET_RE_DEBUG_FLAGS_DECL;
10276 *flagp = WORST; /* Tentatively. */
10278 DEBUG_PARSE("atom");
10280 PERL_ARGS_ASSERT_REGATOM;
10283 switch ((U8)*RExC_parse) {
10285 RExC_seen_zerolen++;
10286 nextchar(pRExC_state);
10287 if (RExC_flags & RXf_PMf_MULTILINE)
10288 ret = reg_node(pRExC_state, MBOL);
10289 else if (RExC_flags & RXf_PMf_SINGLELINE)
10290 ret = reg_node(pRExC_state, SBOL);
10292 ret = reg_node(pRExC_state, BOL);
10293 Set_Node_Length(ret, 1); /* MJD */
10296 nextchar(pRExC_state);
10298 RExC_seen_zerolen++;
10299 if (RExC_flags & RXf_PMf_MULTILINE)
10300 ret = reg_node(pRExC_state, MEOL);
10301 else if (RExC_flags & RXf_PMf_SINGLELINE)
10302 ret = reg_node(pRExC_state, SEOL);
10304 ret = reg_node(pRExC_state, EOL);
10305 Set_Node_Length(ret, 1); /* MJD */
10308 nextchar(pRExC_state);
10309 if (RExC_flags & RXf_PMf_SINGLELINE)
10310 ret = reg_node(pRExC_state, SANY);
10312 ret = reg_node(pRExC_state, REG_ANY);
10313 *flagp |= HASWIDTH|SIMPLE;
10315 Set_Node_Length(ret, 1); /* MJD */
10319 char * const oregcomp_parse = ++RExC_parse;
10320 ret = regclass(pRExC_state, flagp,depth+1,
10321 FALSE, /* means parse the whole char class */
10322 TRUE, /* allow multi-char folds */
10323 FALSE, /* don't silence non-portable warnings. */
10325 if (*RExC_parse != ']') {
10326 RExC_parse = oregcomp_parse;
10327 vFAIL("Unmatched [");
10330 if (*flagp & RESTART_UTF8)
10332 FAIL2("panic: regclass returned NULL to regatom, flags=%#X",
10335 nextchar(pRExC_state);
10336 Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
10340 nextchar(pRExC_state);
10341 ret = reg(pRExC_state, 2, &flags,depth+1);
10343 if (flags & TRYAGAIN) {
10344 if (RExC_parse == RExC_end) {
10345 /* Make parent create an empty node if needed. */
10346 *flagp |= TRYAGAIN;
10351 if (flags & RESTART_UTF8) {
10352 *flagp = RESTART_UTF8;
10355 FAIL2("panic: reg returned NULL to regatom, flags=%#X", flags);
10357 *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
10361 if (flags & TRYAGAIN) {
10362 *flagp |= TRYAGAIN;
10365 vFAIL("Internal urp");
10366 /* Supposed to be caught earlier. */
10369 if (!regcurly(RExC_parse, FALSE)) {
10378 vFAIL("Quantifier follows nothing");
10383 This switch handles escape sequences that resolve to some kind
10384 of special regop and not to literal text. Escape sequnces that
10385 resolve to literal text are handled below in the switch marked
10388 Every entry in this switch *must* have a corresponding entry
10389 in the literal escape switch. However, the opposite is not
10390 required, as the default for this switch is to jump to the
10391 literal text handling code.
10393 switch ((U8)*++RExC_parse) {
10395 /* Special Escapes */
10397 RExC_seen_zerolen++;
10398 ret = reg_node(pRExC_state, SBOL);
10400 goto finish_meta_pat;
10402 ret = reg_node(pRExC_state, GPOS);
10403 RExC_seen |= REG_SEEN_GPOS;
10405 goto finish_meta_pat;
10407 RExC_seen_zerolen++;
10408 ret = reg_node(pRExC_state, KEEPS);
10410 /* XXX:dmq : disabling in-place substitution seems to
10411 * be necessary here to avoid cases of memory corruption, as
10412 * with: C<$_="x" x 80; s/x\K/y/> -- rgs
10414 RExC_seen |= REG_SEEN_LOOKBEHIND;
10415 goto finish_meta_pat;
10417 ret = reg_node(pRExC_state, SEOL);
10419 RExC_seen_zerolen++; /* Do not optimize RE away */
10420 goto finish_meta_pat;
10422 ret = reg_node(pRExC_state, EOS);
10424 RExC_seen_zerolen++; /* Do not optimize RE away */
10425 goto finish_meta_pat;
10427 ret = reg_node(pRExC_state, CANY);
10428 RExC_seen |= REG_SEEN_CANY;
10429 *flagp |= HASWIDTH|SIMPLE;
10430 goto finish_meta_pat;
10432 ret = reg_node(pRExC_state, CLUMP);
10433 *flagp |= HASWIDTH;
10434 goto finish_meta_pat;
10440 arg = ANYOF_WORDCHAR;
10444 RExC_seen_zerolen++;
10445 RExC_seen |= REG_SEEN_LOOKBEHIND;
10446 op = BOUND + get_regex_charset(RExC_flags);
10447 if (op > BOUNDA) { /* /aa is same as /a */
10450 ret = reg_node(pRExC_state, op);
10451 FLAGS(ret) = get_regex_charset(RExC_flags);
10453 if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
10454 ckWARNdep(RExC_parse, "\"\\b{\" is deprecated; use \"\\b\\{\" or \"\\b[{]\" instead");
10456 goto finish_meta_pat;
10458 RExC_seen_zerolen++;
10459 RExC_seen |= REG_SEEN_LOOKBEHIND;
10460 op = NBOUND + get_regex_charset(RExC_flags);
10461 if (op > NBOUNDA) { /* /aa is same as /a */
10464 ret = reg_node(pRExC_state, op);
10465 FLAGS(ret) = get_regex_charset(RExC_flags);
10467 if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
10468 ckWARNdep(RExC_parse, "\"\\B{\" is deprecated; use \"\\B\\{\" or \"\\B[{]\" instead");
10470 goto finish_meta_pat;
10480 ret = reg_node(pRExC_state, LNBREAK);
10481 *flagp |= HASWIDTH|SIMPLE;
10482 goto finish_meta_pat;
10490 goto join_posix_op_known;
10496 arg = ANYOF_VERTWS;
10498 goto join_posix_op_known;
10508 op = POSIXD + get_regex_charset(RExC_flags);
10509 if (op > POSIXA) { /* /aa is same as /a */
10513 join_posix_op_known:
10516 op += NPOSIXD - POSIXD;
10519 ret = reg_node(pRExC_state, op);
10521 FLAGS(ret) = namedclass_to_classnum(arg);
10524 *flagp |= HASWIDTH|SIMPLE;
10528 nextchar(pRExC_state);
10529 Set_Node_Length(ret, 2); /* MJD */
10535 char* parse_start = RExC_parse - 2;
10540 ret = regclass(pRExC_state, flagp,depth+1,
10541 TRUE, /* means just parse this element */
10542 FALSE, /* don't allow multi-char folds */
10543 FALSE, /* don't silence non-portable warnings.
10544 It would be a bug if these returned
10547 /* regclass() can only return RESTART_UTF8 if multi-char folds
10550 FAIL2("panic: regclass returned NULL to regatom, flags=%#X",
10555 Set_Node_Offset(ret, parse_start + 2);
10556 Set_Node_Cur_Length(ret);
10557 nextchar(pRExC_state);
10561 /* Handle \N and \N{NAME} with multiple code points here and not
10562 * below because it can be multicharacter. join_exact() will join
10563 * them up later on. Also this makes sure that things like
10564 * /\N{BLAH}+/ and \N{BLAH} being multi char Just Happen. dmq.
10565 * The options to the grok function call causes it to fail if the
10566 * sequence is just a single code point. We then go treat it as
10567 * just another character in the current EXACT node, and hence it
10568 * gets uniform treatment with all the other characters. The
10569 * special treatment for quantifiers is not needed for such single
10570 * character sequences */
10572 if (! grok_bslash_N(pRExC_state, &ret, NULL, flagp, depth, FALSE,
10573 FALSE /* not strict */ )) {
10574 if (*flagp & RESTART_UTF8)
10580 case 'k': /* Handle \k<NAME> and \k'NAME' */
10583 char ch= RExC_parse[1];
10584 if (ch != '<' && ch != '\'' && ch != '{') {
10586 vFAIL2("Sequence %.2s... not terminated",parse_start);
10588 /* this pretty much dupes the code for (?P=...) in reg(), if
10589 you change this make sure you change that */
10590 char* name_start = (RExC_parse += 2);
10592 SV *sv_dat = reg_scan_name(pRExC_state,
10593 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
10594 ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
10595 if (RExC_parse == name_start || *RExC_parse != ch)
10596 vFAIL2("Sequence %.3s... not terminated",parse_start);
10599 num = add_data( pRExC_state, 1, "S" );
10600 RExC_rxi->data->data[num]=(void*)sv_dat;
10601 SvREFCNT_inc_simple_void(sv_dat);
10605 ret = reganode(pRExC_state,
10608 : (ASCII_FOLD_RESTRICTED)
10610 : (AT_LEAST_UNI_SEMANTICS)
10616 *flagp |= HASWIDTH;
10618 /* override incorrect value set in reganode MJD */
10619 Set_Node_Offset(ret, parse_start+1);
10620 Set_Node_Cur_Length(ret); /* MJD */
10621 nextchar(pRExC_state);
10627 case '1': case '2': case '3': case '4':
10628 case '5': case '6': case '7': case '8': case '9':
10631 bool isg = *RExC_parse == 'g';
10636 if (*RExC_parse == '{') {
10640 if (*RExC_parse == '-') {
10644 if (hasbrace && !isDIGIT(*RExC_parse)) {
10645 if (isrel) RExC_parse--;
10647 goto parse_named_seq;
10649 num = atoi(RExC_parse);
10650 if (isg && num == 0)
10651 vFAIL("Reference to invalid group 0");
10653 num = RExC_npar - num;
10655 vFAIL("Reference to nonexistent or unclosed group");
10657 if (!isg && num > 9 && num >= RExC_npar)
10658 /* Probably a character specified in octal, e.g. \35 */
10661 char * const parse_start = RExC_parse - 1; /* MJD */
10662 while (isDIGIT(*RExC_parse))
10664 if (parse_start == RExC_parse - 1)
10665 vFAIL("Unterminated \\g... pattern");
10667 if (*RExC_parse != '}')
10668 vFAIL("Unterminated \\g{...} pattern");
10672 if (num > (I32)RExC_rx->nparens)
10673 vFAIL("Reference to nonexistent group");
10676 ret = reganode(pRExC_state,
10679 : (ASCII_FOLD_RESTRICTED)
10681 : (AT_LEAST_UNI_SEMANTICS)
10687 *flagp |= HASWIDTH;
10689 /* override incorrect value set in reganode MJD */
10690 Set_Node_Offset(ret, parse_start+1);
10691 Set_Node_Cur_Length(ret); /* MJD */
10693 nextchar(pRExC_state);
10698 if (RExC_parse >= RExC_end)
10699 FAIL("Trailing \\");
10702 /* Do not generate "unrecognized" warnings here, we fall
10703 back into the quick-grab loop below */
10710 if (RExC_flags & RXf_PMf_EXTENDED) {
10711 if ( reg_skipcomment( pRExC_state ) )
10718 parse_start = RExC_parse - 1;
10727 #define MAX_NODE_STRING_SIZE 127
10728 char foldbuf[MAX_NODE_STRING_SIZE+UTF8_MAXBYTES_CASE];
10730 U8 upper_parse = MAX_NODE_STRING_SIZE;
10733 bool next_is_quantifier;
10734 char * oldp = NULL;
10736 /* If a folding node contains only code points that don't
10737 * participate in folds, it can be changed into an EXACT node,
10738 * which allows the optimizer more things to look for */
10742 node_type = compute_EXACTish(pRExC_state);
10743 ret = reg_node(pRExC_state, node_type);
10745 /* In pass1, folded, we use a temporary buffer instead of the
10746 * actual node, as the node doesn't exist yet */
10747 s = (SIZE_ONLY && FOLD) ? foldbuf : STRING(ret);
10753 /* We do the EXACTFish to EXACT node only if folding, and not if in
10754 * locale, as whether a character folds or not isn't known until
10756 maybe_exact = FOLD && ! LOC;
10758 /* XXX The node can hold up to 255 bytes, yet this only goes to
10759 * 127. I (khw) do not know why. Keeping it somewhat less than
10760 * 255 allows us to not have to worry about overflow due to
10761 * converting to utf8 and fold expansion, but that value is
10762 * 255-UTF8_MAXBYTES_CASE. join_exact() may join adjacent nodes
10763 * split up by this limit into a single one using the real max of
10764 * 255. Even at 127, this breaks under rare circumstances. If
10765 * folding, we do not want to split a node at a character that is a
10766 * non-final in a multi-char fold, as an input string could just
10767 * happen to want to match across the node boundary. The join
10768 * would solve that problem if the join actually happens. But a
10769 * series of more than two nodes in a row each of 127 would cause
10770 * the first join to succeed to get to 254, but then there wouldn't
10771 * be room for the next one, which could at be one of those split
10772 * multi-char folds. I don't know of any fool-proof solution. One
10773 * could back off to end with only a code point that isn't such a
10774 * non-final, but it is possible for there not to be any in the
10776 for (p = RExC_parse - 1;
10777 len < upper_parse && p < RExC_end;
10782 if (RExC_flags & RXf_PMf_EXTENDED)
10783 p = regwhite( pRExC_state, p );
10794 /* Literal Escapes Switch
10796 This switch is meant to handle escape sequences that
10797 resolve to a literal character.
10799 Every escape sequence that represents something
10800 else, like an assertion or a char class, is handled
10801 in the switch marked 'Special Escapes' above in this
10802 routine, but also has an entry here as anything that
10803 isn't explicitly mentioned here will be treated as
10804 an unescaped equivalent literal.
10807 switch ((U8)*++p) {
10808 /* These are all the special escapes. */
10809 case 'A': /* Start assertion */
10810 case 'b': case 'B': /* Word-boundary assertion*/
10811 case 'C': /* Single char !DANGEROUS! */
10812 case 'd': case 'D': /* digit class */
10813 case 'g': case 'G': /* generic-backref, pos assertion */
10814 case 'h': case 'H': /* HORIZWS */
10815 case 'k': case 'K': /* named backref, keep marker */
10816 case 'p': case 'P': /* Unicode property */
10817 case 'R': /* LNBREAK */
10818 case 's': case 'S': /* space class */
10819 case 'v': case 'V': /* VERTWS */
10820 case 'w': case 'W': /* word class */
10821 case 'X': /* eXtended Unicode "combining character sequence" */
10822 case 'z': case 'Z': /* End of line/string assertion */
10826 /* Anything after here is an escape that resolves to a
10827 literal. (Except digits, which may or may not)
10833 case 'N': /* Handle a single-code point named character. */
10834 /* The options cause it to fail if a multiple code
10835 * point sequence. Handle those in the switch() above
10837 RExC_parse = p + 1;
10838 if (! grok_bslash_N(pRExC_state, NULL, &ender,
10839 flagp, depth, FALSE,
10840 FALSE /* not strict */ ))
10842 if (*flagp & RESTART_UTF8)
10843 FAIL("panic: grok_bslash_N set RESTART_UTF8");
10844 RExC_parse = p = oldp;
10848 if (ender > 0xff) {
10865 ender = ASCII_TO_NATIVE('\033');
10869 ender = ASCII_TO_NATIVE('\007');
10875 const char* error_msg;
10877 bool valid = grok_bslash_o(&p,
10880 TRUE, /* out warnings */
10881 FALSE, /* not strict */
10882 TRUE, /* Output warnings
10887 RExC_parse = p; /* going to die anyway; point
10888 to exact spot of failure */
10892 if (PL_encoding && ender < 0x100) {
10893 goto recode_encoding;
10895 if (ender > 0xff) {
10902 UV result = UV_MAX; /* initialize to erroneous
10904 const char* error_msg;
10906 bool valid = grok_bslash_x(&p,
10909 TRUE, /* out warnings */
10910 FALSE, /* not strict */
10911 TRUE, /* Output warnings
10916 RExC_parse = p; /* going to die anyway; point
10917 to exact spot of failure */
10922 if (PL_encoding && ender < 0x100) {
10923 goto recode_encoding;
10925 if (ender > 0xff) {
10932 ender = grok_bslash_c(*p++, UTF, SIZE_ONLY);
10934 case '0': case '1': case '2': case '3':case '4':
10935 case '5': case '6': case '7':
10937 (isDIGIT(p[1]) && atoi(p) >= RExC_npar))
10939 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
10941 ender = grok_oct(p, &numlen, &flags, NULL);
10942 if (ender > 0xff) {
10946 if (SIZE_ONLY /* like \08, \178 */
10949 && isDIGIT(*p) && ckWARN(WARN_REGEXP))
10951 reg_warn_non_literal_string(
10953 form_short_octal_warning(p, numlen));
10956 else { /* Not to be treated as an octal constant, go
10961 if (PL_encoding && ender < 0x100)
10962 goto recode_encoding;
10965 if (! RExC_override_recoding) {
10966 SV* enc = PL_encoding;
10967 ender = reg_recode((const char)(U8)ender, &enc);
10968 if (!enc && SIZE_ONLY)
10969 ckWARNreg(p, "Invalid escape in the specified encoding");
10975 FAIL("Trailing \\");
10978 if (!SIZE_ONLY&& isALPHANUMERIC(*p)) {
10979 /* Include any { following the alpha to emphasize
10980 * that it could be part of an escape at some point
10982 int len = (isALPHA(*p) && *(p + 1) == '{') ? 2 : 1;
10983 ckWARN3reg(p + len, "Unrecognized escape \\%.*s passed through", len, p);
10985 goto normal_default;
10986 } /* End of switch on '\' */
10988 default: /* A literal character */
10991 && RExC_flags & RXf_PMf_EXTENDED
10992 && ckWARN(WARN_DEPRECATED)
10993 && is_PATWS_non_low(p, UTF))
10995 vWARN_dep(p + ((UTF) ? UTF8SKIP(p) : 1),
10996 "Escape literal pattern white space under /x");
11000 if (UTF8_IS_START(*p) && UTF) {
11002 ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
11003 &numlen, UTF8_ALLOW_DEFAULT);
11009 } /* End of switch on the literal */
11011 /* Here, have looked at the literal character and <ender>
11012 * contains its ordinal, <p> points to the character after it
11015 if ( RExC_flags & RXf_PMf_EXTENDED)
11016 p = regwhite( pRExC_state, p );
11018 /* If the next thing is a quantifier, it applies to this
11019 * character only, which means that this character has to be in
11020 * its own node and can't just be appended to the string in an
11021 * existing node, so if there are already other characters in
11022 * the node, close the node with just them, and set up to do
11023 * this character again next time through, when it will be the
11024 * only thing in its new node */
11025 if ((next_is_quantifier = (p < RExC_end && ISMULT2(p))) && len)
11033 /* See comments for join_exact() as to why we fold
11034 * this non-UTF at compile time */
11035 || (node_type == EXACTFU
11036 && ender == LATIN_SMALL_LETTER_SHARP_S))
11040 /* Prime the casefolded buffer. Locale rules, which
11041 * apply only to code points < 256, aren't known until
11042 * execution, so for them, just output the original
11043 * character using utf8. If we start to fold non-UTF
11044 * patterns, be sure to update join_exact() */
11045 if (LOC && ender < 256) {
11046 if (UNI_IS_INVARIANT(ender)) {
11050 *s = UTF8_TWO_BYTE_HI(ender);
11051 *(s + 1) = UTF8_TWO_BYTE_LO(ender);
11056 UV folded = _to_uni_fold_flags(
11061 | ((LOC) ? FOLD_FLAGS_LOCALE
11062 : (ASCII_FOLD_RESTRICTED)
11063 ? FOLD_FLAGS_NOMIX_ASCII
11067 /* If this node only contains non-folding code
11068 * points so far, see if this new one is also
11071 if (folded != ender) {
11072 maybe_exact = FALSE;
11075 /* Here the fold is the original; we have
11076 * to check further to see if anything
11078 if (! PL_utf8_foldable) {
11079 SV* swash = swash_init("utf8",
11081 &PL_sv_undef, 1, 0);
11083 _get_swash_invlist(swash);
11084 SvREFCNT_dec_NN(swash);
11086 if (_invlist_contains_cp(PL_utf8_foldable,
11089 maybe_exact = FALSE;
11097 /* The loop increments <len> each time, as all but this
11098 * path (and the one just below for UTF) through it add
11099 * a single byte to the EXACTish node. But this one
11100 * has changed len to be the correct final value, so
11101 * subtract one to cancel out the increment that
11103 len += foldlen - 1;
11106 *(s++) = (char) ender;
11107 maybe_exact &= ! IS_IN_SOME_FOLD_L1(ender);
11111 const STRLEN unilen = reguni(pRExC_state, ender, s);
11117 /* See comment just above for - 1 */
11121 REGC((char)ender, s++);
11124 if (next_is_quantifier) {
11126 /* Here, the next input is a quantifier, and to get here,
11127 * the current character is the only one in the node.
11128 * Also, here <len> doesn't include the final byte for this
11134 } /* End of loop through literal characters */
11136 /* Here we have either exhausted the input or ran out of room in
11137 * the node. (If we encountered a character that can't be in the
11138 * node, transfer is made directly to <loopdone>, and so we
11139 * wouldn't have fallen off the end of the loop.) In the latter
11140 * case, we artificially have to split the node into two, because
11141 * we just don't have enough space to hold everything. This
11142 * creates a problem if the final character participates in a
11143 * multi-character fold in the non-final position, as a match that
11144 * should have occurred won't, due to the way nodes are matched,
11145 * and our artificial boundary. So back off until we find a non-
11146 * problematic character -- one that isn't at the beginning or
11147 * middle of such a fold. (Either it doesn't participate in any
11148 * folds, or appears only in the final position of all the folds it
11149 * does participate in.) A better solution with far fewer false
11150 * positives, and that would fill the nodes more completely, would
11151 * be to actually have available all the multi-character folds to
11152 * test against, and to back-off only far enough to be sure that
11153 * this node isn't ending with a partial one. <upper_parse> is set
11154 * further below (if we need to reparse the node) to include just
11155 * up through that final non-problematic character that this code
11156 * identifies, so when it is set to less than the full node, we can
11157 * skip the rest of this */
11158 if (FOLD && p < RExC_end && upper_parse == MAX_NODE_STRING_SIZE) {
11160 const STRLEN full_len = len;
11162 assert(len >= MAX_NODE_STRING_SIZE);
11164 /* Here, <s> points to the final byte of the final character.
11165 * Look backwards through the string until find a non-
11166 * problematic character */
11170 /* These two have no multi-char folds to non-UTF characters
11172 if (ASCII_FOLD_RESTRICTED || LOC) {
11176 while (--s >= s0 && IS_NON_FINAL_FOLD(*s)) { }
11180 if (! PL_NonL1NonFinalFold) {
11181 PL_NonL1NonFinalFold = _new_invlist_C_array(
11182 NonL1_Perl_Non_Final_Folds_invlist);
11185 /* Point to the first byte of the final character */
11186 s = (char *) utf8_hop((U8 *) s, -1);
11188 while (s >= s0) { /* Search backwards until find
11189 non-problematic char */
11190 if (UTF8_IS_INVARIANT(*s)) {
11192 /* There are no ascii characters that participate
11193 * in multi-char folds under /aa. In EBCDIC, the
11194 * non-ascii invariants are all control characters,
11195 * so don't ever participate in any folds. */
11196 if (ASCII_FOLD_RESTRICTED
11197 || ! IS_NON_FINAL_FOLD(*s))
11202 else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
11204 /* No Latin1 characters participate in multi-char
11205 * folds under /l */
11207 || ! IS_NON_FINAL_FOLD(TWO_BYTE_UTF8_TO_UNI(
11213 else if (! _invlist_contains_cp(
11214 PL_NonL1NonFinalFold,
11215 valid_utf8_to_uvchr((U8 *) s, NULL)))
11220 /* Here, the current character is problematic in that
11221 * it does occur in the non-final position of some
11222 * fold, so try the character before it, but have to
11223 * special case the very first byte in the string, so
11224 * we don't read outside the string */
11225 s = (s == s0) ? s -1 : (char *) utf8_hop((U8 *) s, -1);
11226 } /* End of loop backwards through the string */
11228 /* If there were only problematic characters in the string,
11229 * <s> will point to before s0, in which case the length
11230 * should be 0, otherwise include the length of the
11231 * non-problematic character just found */
11232 len = (s < s0) ? 0 : s - s0 + UTF8SKIP(s);
11235 /* Here, have found the final character, if any, that is
11236 * non-problematic as far as ending the node without splitting
11237 * it across a potential multi-char fold. <len> contains the
11238 * number of bytes in the node up-to and including that
11239 * character, or is 0 if there is no such character, meaning
11240 * the whole node contains only problematic characters. In
11241 * this case, give up and just take the node as-is. We can't
11247 /* Here, the node does contain some characters that aren't
11248 * problematic. If one such is the final character in the
11249 * node, we are done */
11250 if (len == full_len) {
11253 else if (len + ((UTF) ? UTF8SKIP(s) : 1) == full_len) {
11255 /* If the final character is problematic, but the
11256 * penultimate is not, back-off that last character to
11257 * later start a new node with it */
11262 /* Here, the final non-problematic character is earlier
11263 * in the input than the penultimate character. What we do
11264 * is reparse from the beginning, going up only as far as
11265 * this final ok one, thus guaranteeing that the node ends
11266 * in an acceptable character. The reason we reparse is
11267 * that we know how far in the character is, but we don't
11268 * know how to correlate its position with the input parse.
11269 * An alternate implementation would be to build that
11270 * correlation as we go along during the original parse,
11271 * but that would entail extra work for every node, whereas
11272 * this code gets executed only when the string is too
11273 * large for the node, and the final two characters are
11274 * problematic, an infrequent occurrence. Yet another
11275 * possible strategy would be to save the tail of the
11276 * string, and the next time regatom is called, initialize
11277 * with that. The problem with this is that unless you
11278 * back off one more character, you won't be guaranteed
11279 * regatom will get called again, unless regbranch,
11280 * regpiece ... are also changed. If you do back off that
11281 * extra character, so that there is input guaranteed to
11282 * force calling regatom, you can't handle the case where
11283 * just the first character in the node is acceptable. I
11284 * (khw) decided to try this method which doesn't have that
11285 * pitfall; if performance issues are found, we can do a
11286 * combination of the current approach plus that one */
11292 } /* End of verifying node ends with an appropriate char */
11294 loopdone: /* Jumped to when encounters something that shouldn't be in
11297 /* If 'maybe_exact' is still set here, means there are no
11298 * code points in the node that participate in folds */
11299 if (FOLD && maybe_exact) {
11303 /* I (khw) don't know if you can get here with zero length, but the
11304 * old code handled this situation by creating a zero-length EXACT
11305 * node. Might as well be NOTHING instead */
11310 alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, len, ender);
11313 RExC_parse = p - 1;
11314 Set_Node_Cur_Length(ret); /* MJD */
11315 nextchar(pRExC_state);
11317 /* len is STRLEN which is unsigned, need to copy to signed */
11320 vFAIL("Internal disaster");
11323 } /* End of label 'defchar:' */
11325 } /* End of giant switch on input character */
11331 S_regwhite( RExC_state_t *pRExC_state, char *p )
11333 const char *e = RExC_end;
11335 PERL_ARGS_ASSERT_REGWHITE;
11340 else if (*p == '#') {
11343 if (*p++ == '\n') {
11349 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
11358 S_regpatws( RExC_state_t *pRExC_state, char *p , const bool recognize_comment )
11360 /* Returns the next non-pattern-white space, non-comment character (the
11361 * latter only if 'recognize_comment is true) in the string p, which is
11362 * ended by RExC_end. If there is no line break ending a comment,
11363 * RExC_seen has added the REG_SEEN_RUN_ON_COMMENT flag; */
11364 const char *e = RExC_end;
11366 PERL_ARGS_ASSERT_REGPATWS;
11370 if ((len = is_PATWS_safe(p, e, UTF))) {
11373 else if (recognize_comment && *p == '#') {
11377 if (is_LNBREAK_safe(p, e, UTF)) {
11383 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
11391 /* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
11392 Character classes ([:foo:]) can also be negated ([:^foo:]).
11393 Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
11394 Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
11395 but trigger failures because they are currently unimplemented. */
11397 #define POSIXCC_DONE(c) ((c) == ':')
11398 #define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
11399 #define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
11401 PERL_STATIC_INLINE I32
11402 S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value, const bool strict)
11405 I32 namedclass = OOB_NAMEDCLASS;
11407 PERL_ARGS_ASSERT_REGPPOSIXCC;
11409 if (value == '[' && RExC_parse + 1 < RExC_end &&
11410 /* I smell either [: or [= or [. -- POSIX has been here, right? */
11411 POSIXCC(UCHARAT(RExC_parse)))
11413 const char c = UCHARAT(RExC_parse);
11414 char* const s = RExC_parse++;
11416 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
11418 if (RExC_parse == RExC_end) {
11421 /* Try to give a better location for the error (than the end of
11422 * the string) by looking for the matching ']' */
11424 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
11427 vFAIL2("Unmatched '%c' in POSIX class", c);
11429 /* Grandfather lone [:, [=, [. */
11433 const char* const t = RExC_parse++; /* skip over the c */
11436 if (UCHARAT(RExC_parse) == ']') {
11437 const char *posixcc = s + 1;
11438 RExC_parse++; /* skip over the ending ] */
11441 const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
11442 const I32 skip = t - posixcc;
11444 /* Initially switch on the length of the name. */
11447 if (memEQ(posixcc, "word", 4)) /* this is not POSIX,
11448 this is the Perl \w
11450 namedclass = ANYOF_WORDCHAR;
11453 /* Names all of length 5. */
11454 /* alnum alpha ascii blank cntrl digit graph lower
11455 print punct space upper */
11456 /* Offset 4 gives the best switch position. */
11457 switch (posixcc[4]) {
11459 if (memEQ(posixcc, "alph", 4)) /* alpha */
11460 namedclass = ANYOF_ALPHA;
11463 if (memEQ(posixcc, "spac", 4)) /* space */
11464 namedclass = ANYOF_PSXSPC;
11467 if (memEQ(posixcc, "grap", 4)) /* graph */
11468 namedclass = ANYOF_GRAPH;
11471 if (memEQ(posixcc, "asci", 4)) /* ascii */
11472 namedclass = ANYOF_ASCII;
11475 if (memEQ(posixcc, "blan", 4)) /* blank */
11476 namedclass = ANYOF_BLANK;
11479 if (memEQ(posixcc, "cntr", 4)) /* cntrl */
11480 namedclass = ANYOF_CNTRL;
11483 if (memEQ(posixcc, "alnu", 4)) /* alnum */
11484 namedclass = ANYOF_ALPHANUMERIC;
11487 if (memEQ(posixcc, "lowe", 4)) /* lower */
11488 namedclass = (FOLD) ? ANYOF_CASED : ANYOF_LOWER;
11489 else if (memEQ(posixcc, "uppe", 4)) /* upper */
11490 namedclass = (FOLD) ? ANYOF_CASED : ANYOF_UPPER;
11493 if (memEQ(posixcc, "digi", 4)) /* digit */
11494 namedclass = ANYOF_DIGIT;
11495 else if (memEQ(posixcc, "prin", 4)) /* print */
11496 namedclass = ANYOF_PRINT;
11497 else if (memEQ(posixcc, "punc", 4)) /* punct */
11498 namedclass = ANYOF_PUNCT;
11503 if (memEQ(posixcc, "xdigit", 6))
11504 namedclass = ANYOF_XDIGIT;
11508 if (namedclass == OOB_NAMEDCLASS)
11509 Simple_vFAIL3("POSIX class [:%.*s:] unknown",
11512 /* The #defines are structured so each complement is +1 to
11513 * the normal one */
11517 assert (posixcc[skip] == ':');
11518 assert (posixcc[skip+1] == ']');
11519 } else if (!SIZE_ONLY) {
11520 /* [[=foo=]] and [[.foo.]] are still future. */
11522 /* adjust RExC_parse so the warning shows after
11523 the class closes */
11524 while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
11526 vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
11529 /* Maternal grandfather:
11530 * "[:" ending in ":" but not in ":]" */
11532 vFAIL("Unmatched '[' in POSIX class");
11535 /* Grandfather lone [:, [=, [. */
11545 S_could_it_be_a_POSIX_class(pTHX_ RExC_state_t *pRExC_state)
11547 /* This applies some heuristics at the current parse position (which should
11548 * be at a '[') to see if what follows might be intended to be a [:posix:]
11549 * class. It returns true if it really is a posix class, of course, but it
11550 * also can return true if it thinks that what was intended was a posix
11551 * class that didn't quite make it.
11553 * It will return true for
11555 * [:alphanumerics] (as long as the ] isn't followed immediately by a
11556 * ')' indicating the end of the (?[
11557 * [:any garbage including %^&$ punctuation:]
11559 * This is designed to be called only from S_handle_regex_sets; it could be
11560 * easily adapted to be called from the spot at the beginning of regclass()
11561 * that checks to see in a normal bracketed class if the surrounding []
11562 * have been omitted ([:word:] instead of [[:word:]]). But doing so would
11563 * change long-standing behavior, so I (khw) didn't do that */
11564 char* p = RExC_parse + 1;
11565 char first_char = *p;
11567 PERL_ARGS_ASSERT_COULD_IT_BE_A_POSIX_CLASS;
11569 assert(*(p - 1) == '[');
11571 if (! POSIXCC(first_char)) {
11576 while (p < RExC_end && isWORDCHAR(*p)) p++;
11578 if (p >= RExC_end) {
11582 if (p - RExC_parse > 2 /* Got at least 1 word character */
11583 && (*p == first_char
11584 || (*p == ']' && p + 1 < RExC_end && *(p + 1) != ')')))
11589 p = (char *) memchr(RExC_parse, ']', RExC_end - RExC_parse);
11592 && p - RExC_parse > 2 /* [:] evaluates to colon;
11593 [::] is a bad posix class. */
11594 && first_char == *(p - 1));
11598 S_handle_regex_sets(pTHX_ RExC_state_t *pRExC_state, SV** return_invlist, I32 *flagp, U32 depth,
11599 char * const oregcomp_parse)
11601 /* Handle the (?[...]) construct to do set operations */
11604 UV start, end; /* End points of code point ranges */
11606 char *save_end, *save_parse;
11611 const bool save_fold = FOLD;
11613 GET_RE_DEBUG_FLAGS_DECL;
11615 PERL_ARGS_ASSERT_HANDLE_REGEX_SETS;
11618 vFAIL("(?[...]) not valid in locale");
11620 RExC_uni_semantics = 1;
11622 /* This will return only an ANYOF regnode, or (unlikely) something smaller
11623 * (such as EXACT). Thus we can skip most everything if just sizing. We
11624 * call regclass to handle '[]' so as to not have to reinvent its parsing
11625 * rules here (throwing away the size it computes each time). And, we exit
11626 * upon an unescaped ']' that isn't one ending a regclass. To do both
11627 * these things, we need to realize that something preceded by a backslash
11628 * is escaped, so we have to keep track of backslashes */
11631 Perl_ck_warner_d(aTHX_
11632 packWARN(WARN_EXPERIMENTAL__REGEX_SETS),
11633 "The regex_sets feature is experimental" REPORT_LOCATION,
11634 (int) (RExC_parse - RExC_precomp) , RExC_precomp, RExC_parse);
11636 while (RExC_parse < RExC_end) {
11637 SV* current = NULL;
11638 RExC_parse = regpatws(pRExC_state, RExC_parse,
11639 TRUE); /* means recognize comments */
11640 switch (*RExC_parse) {
11644 /* Skip the next byte (which could cause us to end up in
11645 * the middle of a UTF-8 character, but since none of those
11646 * are confusable with anything we currently handle in this
11647 * switch (invariants all), it's safe. We'll just hit the
11648 * default: case next time and keep on incrementing until
11649 * we find one of the invariants we do handle. */
11654 /* If this looks like it is a [:posix:] class, leave the
11655 * parse pointer at the '[' to fool regclass() into
11656 * thinking it is part of a '[[:posix:]]'. That function
11657 * will use strict checking to force a syntax error if it
11658 * doesn't work out to a legitimate class */
11659 bool is_posix_class
11660 = could_it_be_a_POSIX_class(pRExC_state);
11661 if (! is_posix_class) {
11665 /* regclass() can only return RESTART_UTF8 if multi-char
11666 folds are allowed. */
11667 if (!regclass(pRExC_state, flagp,depth+1,
11668 is_posix_class, /* parse the whole char
11669 class only if not a
11671 FALSE, /* don't allow multi-char folds */
11672 TRUE, /* silence non-portable warnings. */
11674 FAIL2("panic: regclass returned NULL to handle_sets, flags=%#X",
11677 /* function call leaves parse pointing to the ']', except
11678 * if we faked it */
11679 if (is_posix_class) {
11683 SvREFCNT_dec(current); /* In case it returned something */
11689 if (RExC_parse < RExC_end
11690 && *RExC_parse == ')')
11692 node = reganode(pRExC_state, ANYOF, 0);
11693 RExC_size += ANYOF_SKIP;
11694 nextchar(pRExC_state);
11695 Set_Node_Length(node,
11696 RExC_parse - oregcomp_parse + 1); /* MJD */
11705 FAIL("Syntax error in (?[...])");
11708 /* Pass 2 only after this. Everything in this construct is a
11709 * metacharacter. Operands begin with either a '\' (for an escape
11710 * sequence), or a '[' for a bracketed character class. Any other
11711 * character should be an operator, or parenthesis for grouping. Both
11712 * types of operands are handled by calling regclass() to parse them. It
11713 * is called with a parameter to indicate to return the computed inversion
11714 * list. The parsing here is implemented via a stack. Each entry on the
11715 * stack is a single character representing one of the operators, or the
11716 * '('; or else a pointer to an operand inversion list. */
11718 #define IS_OPERAND(a) (! SvIOK(a))
11720 /* The stack starts empty. It is a syntax error if the first thing parsed
11721 * is a binary operator; everything else is pushed on the stack. When an
11722 * operand is parsed, the top of the stack is examined. If it is a binary
11723 * operator, the item before it should be an operand, and both are replaced
11724 * by the result of doing that operation on the new operand and the one on
11725 * the stack. Thus a sequence of binary operands is reduced to a single
11726 * one before the next one is parsed.
11728 * A unary operator may immediately follow a binary in the input, for
11731 * When an operand is parsed and the top of the stack is a unary operator,
11732 * the operation is performed, and then the stack is rechecked to see if
11733 * this new operand is part of a binary operation; if so, it is handled as
11736 * A '(' is simply pushed on the stack; it is valid only if the stack is
11737 * empty, or the top element of the stack is an operator or another '('
11738 * (for which the parenthesized expression will become an operand). By the
11739 * time the corresponding ')' is parsed everything in between should have
11740 * been parsed and evaluated to a single operand (or else is a syntax
11741 * error), and is handled as a regular operand */
11745 while (RExC_parse < RExC_end) {
11746 I32 top_index = av_tindex(stack);
11748 SV* current = NULL;
11750 /* Skip white space */
11751 RExC_parse = regpatws(pRExC_state, RExC_parse,
11752 TRUE); /* means recognize comments */
11753 if (RExC_parse >= RExC_end) {
11754 Perl_croak(aTHX_ "panic: Read past end of '(?[ ])'");
11756 if ((curchar = UCHARAT(RExC_parse)) == ']') {
11763 if (av_tindex(stack) >= 0 /* This makes sure that we can
11764 safely subtract 1 from
11765 RExC_parse in the next clause.
11766 If we have something on the
11767 stack, we have parsed something
11769 && UCHARAT(RExC_parse - 1) == '('
11770 && RExC_parse < RExC_end)
11772 /* If is a '(?', could be an embedded '(?flags:(?[...])'.
11773 * This happens when we have some thing like
11775 * my $thai_or_lao = qr/(?[ \p{Thai} + \p{Lao} ])/;
11777 * qr/(?[ \p{Digit} & $thai_or_lao ])/;
11779 * Here we would be handling the interpolated
11780 * '$thai_or_lao'. We handle this by a recursive call to
11781 * ourselves which returns the inversion list the
11782 * interpolated expression evaluates to. We use the flags
11783 * from the interpolated pattern. */
11784 U32 save_flags = RExC_flags;
11785 const char * const save_parse = ++RExC_parse;
11787 parse_lparen_question_flags(pRExC_state);
11789 if (RExC_parse == save_parse /* Makes sure there was at
11790 least one flag (or this
11791 embedding wasn't compiled)
11793 || RExC_parse >= RExC_end - 4
11794 || UCHARAT(RExC_parse) != ':'
11795 || UCHARAT(++RExC_parse) != '('
11796 || UCHARAT(++RExC_parse) != '?'
11797 || UCHARAT(++RExC_parse) != '[')
11800 /* In combination with the above, this moves the
11801 * pointer to the point just after the first erroneous
11802 * character (or if there are no flags, to where they
11803 * should have been) */
11804 if (RExC_parse >= RExC_end - 4) {
11805 RExC_parse = RExC_end;
11807 else if (RExC_parse != save_parse) {
11808 RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
11810 vFAIL("Expecting '(?flags:(?[...'");
11813 (void) handle_regex_sets(pRExC_state, ¤t, flagp,
11814 depth+1, oregcomp_parse);
11816 /* Here, 'current' contains the embedded expression's
11817 * inversion list, and RExC_parse points to the trailing
11818 * ']'; the next character should be the ')' which will be
11819 * paired with the '(' that has been put on the stack, so
11820 * the whole embedded expression reduces to '(operand)' */
11823 RExC_flags = save_flags;
11824 goto handle_operand;
11829 RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
11830 vFAIL("Unexpected character");
11833 /* regclass() can only return RESTART_UTF8 if multi-char
11834 folds are allowed. */
11835 if (!regclass(pRExC_state, flagp,depth+1,
11836 TRUE, /* means parse just the next thing */
11837 FALSE, /* don't allow multi-char folds */
11838 FALSE, /* don't silence non-portable warnings. */
11840 FAIL2("panic: regclass returned NULL to handle_sets, flags=%#X",
11842 /* regclass() will return with parsing just the \ sequence,
11843 * leaving the parse pointer at the next thing to parse */
11845 goto handle_operand;
11847 case '[': /* Is a bracketed character class */
11849 bool is_posix_class = could_it_be_a_POSIX_class(pRExC_state);
11851 if (! is_posix_class) {
11855 /* regclass() can only return RESTART_UTF8 if multi-char
11856 folds are allowed. */
11857 if(!regclass(pRExC_state, flagp,depth+1,
11858 is_posix_class, /* parse the whole char class
11859 only if not a posix class */
11860 FALSE, /* don't allow multi-char folds */
11861 FALSE, /* don't silence non-portable warnings. */
11863 FAIL2("panic: regclass returned NULL to handle_sets, flags=%#X",
11865 /* function call leaves parse pointing to the ']', except if we
11867 if (is_posix_class) {
11871 goto handle_operand;
11880 || ( ! (top_ptr = av_fetch(stack, top_index, FALSE)))
11881 || ! IS_OPERAND(*top_ptr))
11884 vFAIL2("Unexpected binary operator '%c' with no preceding operand", curchar);
11886 av_push(stack, newSVuv(curchar));
11890 av_push(stack, newSVuv(curchar));
11894 if (top_index >= 0) {
11895 top_ptr = av_fetch(stack, top_index, FALSE);
11897 if (IS_OPERAND(*top_ptr)) {
11899 vFAIL("Unexpected '(' with no preceding operator");
11902 av_push(stack, newSVuv(curchar));
11909 || ! (current = av_pop(stack))
11910 || ! IS_OPERAND(current)
11911 || ! (lparen = av_pop(stack))
11912 || IS_OPERAND(lparen)
11913 || SvUV(lparen) != '(')
11916 vFAIL("Unexpected ')'");
11919 SvREFCNT_dec_NN(lparen);
11926 /* Here, we have an operand to process, in 'current' */
11928 if (top_index < 0) { /* Just push if stack is empty */
11929 av_push(stack, current);
11932 SV* top = av_pop(stack);
11933 char current_operator;
11935 if (IS_OPERAND(top)) {
11936 vFAIL("Operand with no preceding operator");
11938 current_operator = (char) SvUV(top);
11939 switch (current_operator) {
11940 case '(': /* Push the '(' back on followed by the new
11942 av_push(stack, top);
11943 av_push(stack, current);
11944 SvREFCNT_inc(top); /* Counters the '_dec' done
11945 just after the 'break', so
11946 it doesn't get wrongly freed
11951 _invlist_invert(current);
11953 /* Unlike binary operators, the top of the stack,
11954 * now that this unary one has been popped off, may
11955 * legally be an operator, and we now have operand
11958 SvREFCNT_dec_NN(top);
11959 goto handle_operand;
11962 _invlist_intersection(av_pop(stack),
11965 av_push(stack, current);
11970 _invlist_union(av_pop(stack), current, ¤t);
11971 av_push(stack, current);
11975 _invlist_subtract(av_pop(stack), current, ¤t);
11976 av_push(stack, current);
11979 case '^': /* The union minus the intersection */
11985 element = av_pop(stack);
11986 _invlist_union(element, current, &u);
11987 _invlist_intersection(element, current, &i);
11988 _invlist_subtract(u, i, ¤t);
11989 av_push(stack, current);
11990 SvREFCNT_dec_NN(i);
11991 SvREFCNT_dec_NN(u);
11992 SvREFCNT_dec_NN(element);
11997 Perl_croak(aTHX_ "panic: Unexpected item on '(?[ ])' stack");
11999 SvREFCNT_dec_NN(top);
12003 RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
12006 if (av_tindex(stack) < 0 /* Was empty */
12007 || ((final = av_pop(stack)) == NULL)
12008 || ! IS_OPERAND(final)
12009 || av_tindex(stack) >= 0) /* More left on stack */
12011 vFAIL("Incomplete expression within '(?[ ])'");
12014 /* Here, 'final' is the resultant inversion list from evaluating the
12015 * expression. Return it if so requested */
12016 if (return_invlist) {
12017 *return_invlist = final;
12021 /* Otherwise generate a resultant node, based on 'final'. regclass() is
12022 * expecting a string of ranges and individual code points */
12023 invlist_iterinit(final);
12024 result_string = newSVpvs("");
12025 while (invlist_iternext(final, &start, &end)) {
12026 if (start == end) {
12027 Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}", start);
12030 Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}-\\x{%"UVXf"}",
12035 save_parse = RExC_parse;
12036 RExC_parse = SvPV(result_string, len);
12037 save_end = RExC_end;
12038 RExC_end = RExC_parse + len;
12040 /* We turn off folding around the call, as the class we have constructed
12041 * already has all folding taken into consideration, and we don't want
12042 * regclass() to add to that */
12043 RExC_flags &= ~RXf_PMf_FOLD;
12044 /* regclass() can only return RESTART_UTF8 if multi-char folds are allowed.
12046 node = regclass(pRExC_state, flagp,depth+1,
12047 FALSE, /* means parse the whole char class */
12048 FALSE, /* don't allow multi-char folds */
12049 TRUE, /* silence non-portable warnings. The above may very
12050 well have generated non-portable code points, but
12051 they're valid on this machine */
12054 FAIL2("panic: regclass returned NULL to handle_sets, flags=%#"UVxf,
12057 RExC_flags |= RXf_PMf_FOLD;
12059 RExC_parse = save_parse + 1;
12060 RExC_end = save_end;
12061 SvREFCNT_dec_NN(final);
12062 SvREFCNT_dec_NN(result_string);
12063 SvREFCNT_dec_NN(stack);
12065 nextchar(pRExC_state);
12066 Set_Node_Length(node, RExC_parse - oregcomp_parse + 1); /* MJD */
12071 /* The names of properties whose definitions are not known at compile time are
12072 * stored in this SV, after a constant heading. So if the length has been
12073 * changed since initialization, then there is a run-time definition. */
12074 #define HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION (SvCUR(listsv) != initial_listsv_len)
12077 S_regclass(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth,
12078 const bool stop_at_1, /* Just parse the next thing, don't
12079 look for a full character class */
12080 bool allow_multi_folds,
12081 const bool silence_non_portable, /* Don't output warnings
12084 SV** ret_invlist) /* Return an inversion list, not a node */
12086 /* parse a bracketed class specification. Most of these will produce an
12087 * ANYOF node; but something like [a] will produce an EXACT node; [aA], an
12088 * EXACTFish node; [[:ascii:]], a POSIXA node; etc. It is more complex
12089 * under /i with multi-character folds: it will be rewritten following the
12090 * paradigm of this example, where the <multi-fold>s are characters which
12091 * fold to multiple character sequences:
12092 * /[abc\x{multi-fold1}def\x{multi-fold2}ghi]/i
12093 * gets effectively rewritten as:
12094 * /(?:\x{multi-fold1}|\x{multi-fold2}|[abcdefghi]/i
12095 * reg() gets called (recursively) on the rewritten version, and this
12096 * function will return what it constructs. (Actually the <multi-fold>s
12097 * aren't physically removed from the [abcdefghi], it's just that they are
12098 * ignored in the recursion by means of a flag:
12099 * <RExC_in_multi_char_class>.)
12101 * ANYOF nodes contain a bit map for the first 256 characters, with the
12102 * corresponding bit set if that character is in the list. For characters
12103 * above 255, a range list or swash is used. There are extra bits for \w,
12104 * etc. in locale ANYOFs, as what these match is not determinable at
12107 * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs
12108 * to be restarted. This can only happen if ret_invlist is non-NULL.
12112 UV prevvalue = OOB_UNICODE, save_prevvalue = OOB_UNICODE;
12114 UV value = OOB_UNICODE, save_value = OOB_UNICODE;
12117 IV namedclass = OOB_NAMEDCLASS;
12118 char *rangebegin = NULL;
12119 bool need_class = 0;
12121 STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
12122 than just initialized. */
12123 SV* properties = NULL; /* Code points that match \p{} \P{} */
12124 SV* posixes = NULL; /* Code points that match classes like, [:word:],
12125 extended beyond the Latin1 range */
12126 UV element_count = 0; /* Number of distinct elements in the class.
12127 Optimizations may be possible if this is tiny */
12128 AV * multi_char_matches = NULL; /* Code points that fold to more than one
12129 character; used under /i */
12131 char * stop_ptr = RExC_end; /* where to stop parsing */
12132 const bool skip_white = cBOOL(ret_invlist); /* ignore unescaped white
12134 const bool strict = cBOOL(ret_invlist); /* Apply strict parsing rules? */
12136 /* Unicode properties are stored in a swash; this holds the current one
12137 * being parsed. If this swash is the only above-latin1 component of the
12138 * character class, an optimization is to pass it directly on to the
12139 * execution engine. Otherwise, it is set to NULL to indicate that there
12140 * are other things in the class that have to be dealt with at execution
12142 SV* swash = NULL; /* Code points that match \p{} \P{} */
12144 /* Set if a component of this character class is user-defined; just passed
12145 * on to the engine */
12146 bool has_user_defined_property = FALSE;
12148 /* inversion list of code points this node matches only when the target
12149 * string is in UTF-8. (Because is under /d) */
12150 SV* depends_list = NULL;
12152 /* inversion list of code points this node matches. For much of the
12153 * function, it includes only those that match regardless of the utf8ness
12154 * of the target string */
12155 SV* cp_list = NULL;
12158 /* In a range, counts how many 0-2 of the ends of it came from literals,
12159 * not escapes. Thus we can tell if 'A' was input vs \x{C1} */
12160 UV literal_endpoint = 0;
12162 bool invert = FALSE; /* Is this class to be complemented */
12164 /* Is there any thing like \W or [:^digit:] that matches above the legal
12165 * Unicode range? */
12166 bool runtime_posix_matches_above_Unicode = FALSE;
12168 regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
12169 case we need to change the emitted regop to an EXACT. */
12170 const char * orig_parse = RExC_parse;
12171 const I32 orig_size = RExC_size;
12172 GET_RE_DEBUG_FLAGS_DECL;
12174 PERL_ARGS_ASSERT_REGCLASS;
12176 PERL_UNUSED_ARG(depth);
12179 DEBUG_PARSE("clas");
12181 /* Assume we are going to generate an ANYOF node. */
12182 ret = reganode(pRExC_state, ANYOF, 0);
12185 RExC_size += ANYOF_SKIP;
12186 listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
12189 ANYOF_FLAGS(ret) = 0;
12191 RExC_emit += ANYOF_SKIP;
12193 ANYOF_FLAGS(ret) |= ANYOF_LOCALE;
12195 listsv = newSVpvs_flags("# comment\n", SVs_TEMP);
12196 initial_listsv_len = SvCUR(listsv);
12197 SvTEMP_off(listsv); /* Grr, TEMPs and mortals are conflated. */
12201 RExC_parse = regpatws(pRExC_state, RExC_parse,
12202 FALSE /* means don't recognize comments */);
12205 if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
12208 allow_multi_folds = FALSE;
12211 RExC_parse = regpatws(pRExC_state, RExC_parse,
12212 FALSE /* means don't recognize comments */);
12216 /* Check that they didn't say [:posix:] instead of [[:posix:]] */
12217 if (!SIZE_ONLY && RExC_parse < RExC_end && POSIXCC(UCHARAT(RExC_parse))) {
12218 const char *s = RExC_parse;
12219 const char c = *s++;
12221 while (isWORDCHAR(*s))
12223 if (*s && c == *s && s[1] == ']') {
12224 SAVEFREESV(RExC_rx_sv);
12226 "POSIX syntax [%c %c] belongs inside character classes",
12228 (void)ReREFCNT_inc(RExC_rx_sv);
12232 /* If the caller wants us to just parse a single element, accomplish this
12233 * by faking the loop ending condition */
12234 if (stop_at_1 && RExC_end > RExC_parse) {
12235 stop_ptr = RExC_parse + 1;
12238 /* allow 1st char to be ']' (allowing it to be '-' is dealt with later) */
12239 if (UCHARAT(RExC_parse) == ']')
12240 goto charclassloop;
12244 if (RExC_parse >= stop_ptr) {
12249 RExC_parse = regpatws(pRExC_state, RExC_parse,
12250 FALSE /* means don't recognize comments */);
12253 if (UCHARAT(RExC_parse) == ']') {
12259 namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
12260 save_value = value;
12261 save_prevvalue = prevvalue;
12264 rangebegin = RExC_parse;
12268 value = utf8n_to_uvchr((U8*)RExC_parse,
12269 RExC_end - RExC_parse,
12270 &numlen, UTF8_ALLOW_DEFAULT);
12271 RExC_parse += numlen;
12274 value = UCHARAT(RExC_parse++);
12277 && RExC_parse < RExC_end
12278 && POSIXCC(UCHARAT(RExC_parse)))
12280 namedclass = regpposixcc(pRExC_state, value, strict);
12282 else if (value == '\\') {
12284 value = utf8n_to_uvchr((U8*)RExC_parse,
12285 RExC_end - RExC_parse,
12286 &numlen, UTF8_ALLOW_DEFAULT);
12287 RExC_parse += numlen;
12290 value = UCHARAT(RExC_parse++);
12292 /* Some compilers cannot handle switching on 64-bit integer
12293 * values, therefore value cannot be an UV. Yes, this will
12294 * be a problem later if we want switch on Unicode.
12295 * A similar issue a little bit later when switching on
12296 * namedclass. --jhi */
12298 /* If the \ is escaping white space when white space is being
12299 * skipped, it means that that white space is wanted literally, and
12300 * is already in 'value'. Otherwise, need to translate the escape
12301 * into what it signifies. */
12302 if (! skip_white || ! is_PATWS_cp(value)) switch ((I32)value) {
12304 case 'w': namedclass = ANYOF_WORDCHAR; break;
12305 case 'W': namedclass = ANYOF_NWORDCHAR; break;
12306 case 's': namedclass = ANYOF_SPACE; break;
12307 case 'S': namedclass = ANYOF_NSPACE; break;
12308 case 'd': namedclass = ANYOF_DIGIT; break;
12309 case 'D': namedclass = ANYOF_NDIGIT; break;
12310 case 'v': namedclass = ANYOF_VERTWS; break;
12311 case 'V': namedclass = ANYOF_NVERTWS; break;
12312 case 'h': namedclass = ANYOF_HORIZWS; break;
12313 case 'H': namedclass = ANYOF_NHORIZWS; break;
12314 case 'N': /* Handle \N{NAME} in class */
12316 /* We only pay attention to the first char of
12317 multichar strings being returned. I kinda wonder
12318 if this makes sense as it does change the behaviour
12319 from earlier versions, OTOH that behaviour was broken
12321 if (! grok_bslash_N(pRExC_state, NULL, &value, flagp, depth,
12322 TRUE, /* => charclass */
12325 if (*flagp & RESTART_UTF8)
12326 FAIL("panic: grok_bslash_N set RESTART_UTF8");
12336 /* We will handle any undefined properties ourselves */
12337 U8 swash_init_flags = _CORE_SWASH_INIT_RETURN_IF_UNDEF;
12339 if (RExC_parse >= RExC_end)
12340 vFAIL2("Empty \\%c{}", (U8)value);
12341 if (*RExC_parse == '{') {
12342 const U8 c = (U8)value;
12343 e = strchr(RExC_parse++, '}');
12345 vFAIL2("Missing right brace on \\%c{}", c);
12346 while (isSPACE(UCHARAT(RExC_parse)))
12348 if (e == RExC_parse)
12349 vFAIL2("Empty \\%c{}", c);
12350 n = e - RExC_parse;
12351 while (isSPACE(UCHARAT(RExC_parse + n - 1)))
12362 if (UCHARAT(RExC_parse) == '^') {
12365 /* toggle. (The rhs xor gets the single bit that
12366 * differs between P and p; the other xor inverts just
12368 value ^= 'P' ^ 'p';
12370 while (isSPACE(UCHARAT(RExC_parse))) {
12375 /* Try to get the definition of the property into
12376 * <invlist>. If /i is in effect, the effective property
12377 * will have its name be <__NAME_i>. The design is
12378 * discussed in commit
12379 * 2f833f5208e26b208886e51e09e2c072b5eabb46 */
12380 Newx(name, n + sizeof("_i__\n"), char);
12382 sprintf(name, "%s%.*s%s\n",
12383 (FOLD) ? "__" : "",
12389 /* Look up the property name, and get its swash and
12390 * inversion list, if the property is found */
12392 SvREFCNT_dec_NN(swash);
12394 swash = _core_swash_init("utf8", name, &PL_sv_undef,
12397 NULL, /* No inversion list */
12400 if (! swash || ! (invlist = _get_swash_invlist(swash))) {
12402 SvREFCNT_dec_NN(swash);
12406 /* Here didn't find it. It could be a user-defined
12407 * property that will be available at run-time. If we
12408 * accept only compile-time properties, is an error;
12409 * otherwise add it to the list for run-time look up */
12411 RExC_parse = e + 1;
12412 vFAIL3("Property '%.*s' is unknown", (int) n, name);
12414 Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%s\n",
12415 (value == 'p' ? '+' : '!'),
12417 has_user_defined_property = TRUE;
12419 /* We don't know yet, so have to assume that the
12420 * property could match something in the Latin1 range,
12421 * hence something that isn't utf8. Note that this
12422 * would cause things in <depends_list> to match
12423 * inappropriately, except that any \p{}, including
12424 * this one forces Unicode semantics, which means there
12425 * is <no depends_list> */
12426 ANYOF_FLAGS(ret) |= ANYOF_NONBITMAP_NON_UTF8;
12430 /* Here, did get the swash and its inversion list. If
12431 * the swash is from a user-defined property, then this
12432 * whole character class should be regarded as such */
12433 has_user_defined_property =
12435 & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY);
12437 /* Invert if asking for the complement */
12438 if (value == 'P') {
12439 _invlist_union_complement_2nd(properties,
12443 /* The swash can't be used as-is, because we've
12444 * inverted things; delay removing it to here after
12445 * have copied its invlist above */
12446 SvREFCNT_dec_NN(swash);
12450 _invlist_union(properties, invlist, &properties);
12455 RExC_parse = e + 1;
12456 namedclass = ANYOF_UNIPROP; /* no official name, but it's
12459 /* \p means they want Unicode semantics */
12460 RExC_uni_semantics = 1;
12463 case 'n': value = '\n'; break;
12464 case 'r': value = '\r'; break;
12465 case 't': value = '\t'; break;
12466 case 'f': value = '\f'; break;
12467 case 'b': value = '\b'; break;
12468 case 'e': value = ASCII_TO_NATIVE('\033');break;
12469 case 'a': value = ASCII_TO_NATIVE('\007');break;
12471 RExC_parse--; /* function expects to be pointed at the 'o' */
12473 const char* error_msg;
12474 bool valid = grok_bslash_o(&RExC_parse,
12477 SIZE_ONLY, /* warnings in pass
12480 silence_non_portable,
12486 if (PL_encoding && value < 0x100) {
12487 goto recode_encoding;
12491 RExC_parse--; /* function expects to be pointed at the 'x' */
12493 const char* error_msg;
12494 bool valid = grok_bslash_x(&RExC_parse,
12497 TRUE, /* Output warnings */
12499 silence_non_portable,
12505 if (PL_encoding && value < 0x100)
12506 goto recode_encoding;
12509 value = grok_bslash_c(*RExC_parse++, UTF, SIZE_ONLY);
12511 case '0': case '1': case '2': case '3': case '4':
12512 case '5': case '6': case '7':
12514 /* Take 1-3 octal digits */
12515 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
12516 numlen = (strict) ? 4 : 3;
12517 value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
12518 RExC_parse += numlen;
12521 RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
12522 vFAIL("Need exactly 3 octal digits");
12524 else if (! SIZE_ONLY /* like \08, \178 */
12526 && RExC_parse < RExC_end
12527 && isDIGIT(*RExC_parse)
12528 && ckWARN(WARN_REGEXP))
12530 SAVEFREESV(RExC_rx_sv);
12531 reg_warn_non_literal_string(
12533 form_short_octal_warning(RExC_parse, numlen));
12534 (void)ReREFCNT_inc(RExC_rx_sv);
12537 if (PL_encoding && value < 0x100)
12538 goto recode_encoding;
12542 if (! RExC_override_recoding) {
12543 SV* enc = PL_encoding;
12544 value = reg_recode((const char)(U8)value, &enc);
12547 vFAIL("Invalid escape in the specified encoding");
12549 else if (SIZE_ONLY) {
12550 ckWARNreg(RExC_parse,
12551 "Invalid escape in the specified encoding");
12557 /* Allow \_ to not give an error */
12558 if (!SIZE_ONLY && isWORDCHAR(value) && value != '_') {
12560 vFAIL2("Unrecognized escape \\%c in character class",
12564 SAVEFREESV(RExC_rx_sv);
12565 ckWARN2reg(RExC_parse,
12566 "Unrecognized escape \\%c in character class passed through",
12568 (void)ReREFCNT_inc(RExC_rx_sv);
12572 } /* End of switch on char following backslash */
12573 } /* end of handling backslash escape sequences */
12576 literal_endpoint++;
12579 /* Here, we have the current token in 'value' */
12581 /* What matches in a locale is not known until runtime. This includes
12582 * what the Posix classes (like \w, [:space:]) match. Room must be
12583 * reserved (one time per class) to store such classes, either if Perl
12584 * is compiled so that locale nodes always should have this space, or
12585 * if there is such class info to be stored. The space will contain a
12586 * bit for each named class that is to be matched against. This isn't
12587 * needed for \p{} and pseudo-classes, as they are not affected by
12588 * locale, and hence are dealt with separately */
12591 && (ANYOF_LOCALE == ANYOF_CLASS
12592 || (namedclass > OOB_NAMEDCLASS && namedclass < ANYOF_MAX)))
12596 RExC_size += ANYOF_CLASS_SKIP - ANYOF_SKIP;
12599 RExC_emit += ANYOF_CLASS_SKIP - ANYOF_SKIP;
12600 ANYOF_CLASS_ZERO(ret);
12602 ANYOF_FLAGS(ret) |= ANYOF_CLASS;
12605 if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
12607 /* a bad range like a-\d, a-[:digit:]. The '-' is taken as a
12608 * literal, as is the character that began the false range, i.e.
12609 * the 'a' in the examples */
12612 const int w = (RExC_parse >= rangebegin)
12613 ? RExC_parse - rangebegin
12616 vFAIL4("False [] range \"%*.*s\"", w, w, rangebegin);
12619 SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
12620 ckWARN4reg(RExC_parse,
12621 "False [] range \"%*.*s\"",
12623 (void)ReREFCNT_inc(RExC_rx_sv);
12624 cp_list = add_cp_to_invlist(cp_list, '-');
12625 cp_list = add_cp_to_invlist(cp_list, prevvalue);
12629 range = 0; /* this was not a true range */
12630 element_count += 2; /* So counts for three values */
12634 U8 classnum = namedclass_to_classnum(namedclass);
12635 if (namedclass >= ANYOF_MAX) { /* If a special class */
12636 if (namedclass != ANYOF_UNIPROP) { /* UNIPROP = \p and \P */
12638 /* Here, should be \h, \H, \v, or \V. Neither /d nor
12639 * /l make a difference in what these match. There
12640 * would be problems if these characters had folds
12641 * other than themselves, as cp_list is subject to
12643 if (classnum != _CC_VERTSPACE) {
12644 assert( namedclass == ANYOF_HORIZWS
12645 || namedclass == ANYOF_NHORIZWS);
12647 /* It turns out that \h is just a synonym for
12649 classnum = _CC_BLANK;
12652 _invlist_union_maybe_complement_2nd(
12654 PL_XPosix_ptrs[classnum],
12655 cBOOL(namedclass % 2), /* Complement if odd
12656 (NHORIZWS, NVERTWS)
12661 else if (classnum == _CC_ASCII) {
12664 ANYOF_CLASS_SET(ret, namedclass);
12667 #endif /* Not isascii(); just use the hard-coded definition for it */
12668 _invlist_union_maybe_complement_2nd(
12671 cBOOL(namedclass % 2), /* Complement if odd
12675 else { /* Garden variety class */
12677 /* The ascii range inversion list */
12678 SV* ascii_source = PL_Posix_ptrs[classnum];
12680 /* The full Latin1 range inversion list */
12681 SV* l1_source = PL_L1Posix_ptrs[classnum];
12683 /* This code is structured into two major clauses. The
12684 * first is for classes whose complete definitions may not
12685 * already be known. It not, the Latin1 definition
12686 * (guaranteed to already known) is used plus code is
12687 * generated to load the rest at run-time (only if needed).
12688 * If the complete definition is known, it drops down to
12689 * the second clause, where the complete definition is
12692 if (classnum < _FIRST_NON_SWASH_CC) {
12694 /* Here, the class has a swash, which may or not
12695 * already be loaded */
12697 /* The name of the property to use to match the full
12698 * eXtended Unicode range swash for this character
12700 const char *Xname = swash_property_names[classnum];
12702 /* If returning the inversion list, we can't defer
12703 * getting this until runtime */
12704 if (ret_invlist && ! PL_utf8_swash_ptrs[classnum]) {
12705 PL_utf8_swash_ptrs[classnum] =
12706 _core_swash_init("utf8", Xname, &PL_sv_undef,
12709 NULL, /* No inversion list */
12710 NULL /* No flags */
12712 assert(PL_utf8_swash_ptrs[classnum]);
12714 if ( ! PL_utf8_swash_ptrs[classnum]) {
12715 if (namedclass % 2 == 0) { /* A non-complemented
12717 /* If not /a matching, there are code points we
12718 * don't know at compile time. Arrange for the
12719 * unknown matches to be loaded at run-time, if
12721 if (! AT_LEAST_ASCII_RESTRICTED) {
12722 Perl_sv_catpvf(aTHX_ listsv, "+utf8::%s\n",
12725 if (LOC) { /* Under locale, set run-time
12727 ANYOF_CLASS_SET(ret, namedclass);
12730 /* Add the current class's code points to
12731 * the running total */
12732 _invlist_union(posixes,
12733 (AT_LEAST_ASCII_RESTRICTED)
12739 else { /* A complemented class */
12740 if (AT_LEAST_ASCII_RESTRICTED) {
12741 /* Under /a should match everything above
12742 * ASCII, plus the complement of the set's
12744 _invlist_union_complement_2nd(posixes,
12749 /* Arrange for the unknown matches to be
12750 * loaded at run-time, if needed */
12751 Perl_sv_catpvf(aTHX_ listsv, "!utf8::%s\n",
12753 runtime_posix_matches_above_Unicode = TRUE;
12755 ANYOF_CLASS_SET(ret, namedclass);
12759 /* We want to match everything in
12760 * Latin1, except those things that
12761 * l1_source matches */
12762 SV* scratch_list = NULL;
12763 _invlist_subtract(PL_Latin1, l1_source,
12766 /* Add the list from this class to the
12769 posixes = scratch_list;
12772 _invlist_union(posixes,
12775 SvREFCNT_dec_NN(scratch_list);
12777 if (DEPENDS_SEMANTICS) {
12779 |= ANYOF_NON_UTF8_LATIN1_ALL;
12784 goto namedclass_done;
12787 /* Here, there is a swash loaded for the class. If no
12788 * inversion list for it yet, get it */
12789 if (! PL_XPosix_ptrs[classnum]) {
12790 PL_XPosix_ptrs[classnum]
12791 = _swash_to_invlist(PL_utf8_swash_ptrs[classnum]);
12795 /* Here there is an inversion list already loaded for the
12798 if (namedclass % 2 == 0) { /* A non-complemented class,
12799 like ANYOF_PUNCT */
12801 /* For non-locale, just add it to any existing list
12803 _invlist_union(posixes,
12804 (AT_LEAST_ASCII_RESTRICTED)
12806 : PL_XPosix_ptrs[classnum],
12809 else { /* Locale */
12810 SV* scratch_list = NULL;
12812 /* For above Latin1 code points, we use the full
12814 _invlist_intersection(PL_AboveLatin1,
12815 PL_XPosix_ptrs[classnum],
12817 /* And set the output to it, adding instead if
12818 * there already is an output. Checking if
12819 * 'posixes' is NULL first saves an extra clone.
12820 * Its reference count will be decremented at the
12821 * next union, etc, or if this is the only
12822 * instance, at the end of the routine */
12824 posixes = scratch_list;
12827 _invlist_union(posixes, scratch_list, &posixes);
12828 SvREFCNT_dec_NN(scratch_list);
12831 #ifndef HAS_ISBLANK
12832 if (namedclass != ANYOF_BLANK) {
12834 /* Set this class in the node for runtime
12836 ANYOF_CLASS_SET(ret, namedclass);
12837 #ifndef HAS_ISBLANK
12840 /* No isblank(), use the hard-coded ASCII-range
12841 * blanks, adding them to the running total. */
12843 _invlist_union(posixes, ascii_source, &posixes);
12848 else { /* A complemented class, like ANYOF_NPUNCT */
12850 _invlist_union_complement_2nd(
12852 (AT_LEAST_ASCII_RESTRICTED)
12854 : PL_XPosix_ptrs[classnum],
12856 /* Under /d, everything in the upper half of the
12857 * Latin1 range matches this complement */
12858 if (DEPENDS_SEMANTICS) {
12859 ANYOF_FLAGS(ret) |= ANYOF_NON_UTF8_LATIN1_ALL;
12862 else { /* Locale */
12863 SV* scratch_list = NULL;
12864 _invlist_subtract(PL_AboveLatin1,
12865 PL_XPosix_ptrs[classnum],
12868 posixes = scratch_list;
12871 _invlist_union(posixes, scratch_list, &posixes);
12872 SvREFCNT_dec_NN(scratch_list);
12874 #ifndef HAS_ISBLANK
12875 if (namedclass != ANYOF_NBLANK) {
12877 ANYOF_CLASS_SET(ret, namedclass);
12878 #ifndef HAS_ISBLANK
12881 /* Get the list of all code points in Latin1
12882 * that are not ASCII blanks, and add them to
12883 * the running total */
12884 _invlist_subtract(PL_Latin1, ascii_source,
12886 _invlist_union(posixes, scratch_list, &posixes);
12887 SvREFCNT_dec_NN(scratch_list);
12894 continue; /* Go get next character */
12896 } /* end of namedclass \blah */
12898 /* Here, we have a single value. If 'range' is set, it is the ending
12899 * of a range--check its validity. Later, we will handle each
12900 * individual code point in the range. If 'range' isn't set, this
12901 * could be the beginning of a range, so check for that by looking
12902 * ahead to see if the next real character to be processed is the range
12903 * indicator--the minus sign */
12906 RExC_parse = regpatws(pRExC_state, RExC_parse,
12907 FALSE /* means don't recognize comments */);
12911 if (prevvalue > value) /* b-a */ {
12912 const int w = RExC_parse - rangebegin;
12913 Simple_vFAIL4("Invalid [] range \"%*.*s\"", w, w, rangebegin);
12914 range = 0; /* not a valid range */
12918 prevvalue = value; /* save the beginning of the potential range */
12919 if (! stop_at_1 /* Can't be a range if parsing just one thing */
12920 && *RExC_parse == '-')
12922 char* next_char_ptr = RExC_parse + 1;
12923 if (skip_white) { /* Get the next real char after the '-' */
12924 next_char_ptr = regpatws(pRExC_state,
12926 FALSE); /* means don't recognize
12930 /* If the '-' is at the end of the class (just before the ']',
12931 * it is a literal minus; otherwise it is a range */
12932 if (next_char_ptr < RExC_end && *next_char_ptr != ']') {
12933 RExC_parse = next_char_ptr;
12935 /* a bad range like \w-, [:word:]- ? */
12936 if (namedclass > OOB_NAMEDCLASS) {
12937 if (strict || ckWARN(WARN_REGEXP)) {
12939 RExC_parse >= rangebegin ?
12940 RExC_parse - rangebegin : 0;
12942 vFAIL4("False [] range \"%*.*s\"",
12947 "False [] range \"%*.*s\"",
12952 cp_list = add_cp_to_invlist(cp_list, '-');
12956 range = 1; /* yeah, it's a range! */
12957 continue; /* but do it the next time */
12962 /* Here, <prevvalue> is the beginning of the range, if any; or <value>
12965 /* non-Latin1 code point implies unicode semantics. Must be set in
12966 * pass1 so is there for the whole of pass 2 */
12968 RExC_uni_semantics = 1;
12971 /* Ready to process either the single value, or the completed range.
12972 * For single-valued non-inverted ranges, we consider the possibility
12973 * of multi-char folds. (We made a conscious decision to not do this
12974 * for the other cases because it can often lead to non-intuitive
12975 * results. For example, you have the peculiar case that:
12976 * "s s" =~ /^[^\xDF]+$/i => Y
12977 * "ss" =~ /^[^\xDF]+$/i => N
12979 * See [perl #89750] */
12980 if (FOLD && allow_multi_folds && value == prevvalue) {
12981 if (value == LATIN_SMALL_LETTER_SHARP_S
12982 || (value > 255 && _invlist_contains_cp(PL_HasMultiCharFold,
12985 /* Here <value> is indeed a multi-char fold. Get what it is */
12987 U8 foldbuf[UTF8_MAXBYTES_CASE];
12990 UV folded = _to_uni_fold_flags(
12995 | ((LOC) ? FOLD_FLAGS_LOCALE
12996 : (ASCII_FOLD_RESTRICTED)
12997 ? FOLD_FLAGS_NOMIX_ASCII
13001 /* Here, <folded> should be the first character of the
13002 * multi-char fold of <value>, with <foldbuf> containing the
13003 * whole thing. But, if this fold is not allowed (because of
13004 * the flags), <fold> will be the same as <value>, and should
13005 * be processed like any other character, so skip the special
13007 if (folded != value) {
13009 /* Skip if we are recursed, currently parsing the class
13010 * again. Otherwise add this character to the list of
13011 * multi-char folds. */
13012 if (! RExC_in_multi_char_class) {
13013 AV** this_array_ptr;
13015 STRLEN cp_count = utf8_length(foldbuf,
13016 foldbuf + foldlen);
13017 SV* multi_fold = sv_2mortal(newSVpvn("", 0));
13019 Perl_sv_catpvf(aTHX_ multi_fold, "\\x{%"UVXf"}", value);
13022 if (! multi_char_matches) {
13023 multi_char_matches = newAV();
13026 /* <multi_char_matches> is actually an array of arrays.
13027 * There will be one or two top-level elements: [2],
13028 * and/or [3]. The [2] element is an array, each
13029 * element thereof is a character which folds to two
13030 * characters; likewise for [3]. (Unicode guarantees a
13031 * maximum of 3 characters in any fold.) When we
13032 * rewrite the character class below, we will do so
13033 * such that the longest folds are written first, so
13034 * that it prefers the longest matching strings first.
13035 * This is done even if it turns out that any
13036 * quantifier is non-greedy, out of programmer
13037 * laziness. Tom Christiansen has agreed that this is
13038 * ok. This makes the test for the ligature 'ffi' come
13039 * before the test for 'ff' */
13040 if (av_exists(multi_char_matches, cp_count)) {
13041 this_array_ptr = (AV**) av_fetch(multi_char_matches,
13043 this_array = *this_array_ptr;
13046 this_array = newAV();
13047 av_store(multi_char_matches, cp_count,
13050 av_push(this_array, multi_fold);
13053 /* This element should not be processed further in this
13056 value = save_value;
13057 prevvalue = save_prevvalue;
13063 /* Deal with this element of the class */
13066 cp_list = _add_range_to_invlist(cp_list, prevvalue, value);
13068 SV* this_range = _new_invlist(1);
13069 _append_range_to_invlist(this_range, prevvalue, value);
13071 /* In EBCDIC, the ranges 'A-Z' and 'a-z' are each not contiguous.
13072 * If this range was specified using something like 'i-j', we want
13073 * to include only the 'i' and the 'j', and not anything in
13074 * between, so exclude non-ASCII, non-alphabetics from it.
13075 * However, if the range was specified with something like
13076 * [\x89-\x91] or [\x89-j], all code points within it should be
13077 * included. literal_endpoint==2 means both ends of the range used
13078 * a literal character, not \x{foo} */
13079 if (literal_endpoint == 2
13080 && (prevvalue >= 'a' && value <= 'z')
13081 || (prevvalue >= 'A' && value <= 'Z'))
13083 _invlist_intersection(this_range, PL_Posix_ptrs[_CC_ALPHA],
13086 _invlist_union(cp_list, this_range, &cp_list);
13087 literal_endpoint = 0;
13091 range = 0; /* this range (if it was one) is done now */
13092 } /* End of loop through all the text within the brackets */
13094 /* If anything in the class expands to more than one character, we have to
13095 * deal with them by building up a substitute parse string, and recursively
13096 * calling reg() on it, instead of proceeding */
13097 if (multi_char_matches) {
13098 SV * substitute_parse = newSVpvn_flags("?:", 2, SVs_TEMP);
13101 char *save_end = RExC_end;
13102 char *save_parse = RExC_parse;
13103 bool first_time = TRUE; /* First multi-char occurrence doesn't get
13108 #if 0 /* Have decided not to deal with multi-char folds in inverted classes,
13109 because too confusing */
13111 sv_catpv(substitute_parse, "(?:");
13115 /* Look at the longest folds first */
13116 for (cp_count = av_len(multi_char_matches); cp_count > 0; cp_count--) {
13118 if (av_exists(multi_char_matches, cp_count)) {
13119 AV** this_array_ptr;
13122 this_array_ptr = (AV**) av_fetch(multi_char_matches,
13124 while ((this_sequence = av_pop(*this_array_ptr)) !=
13127 if (! first_time) {
13128 sv_catpv(substitute_parse, "|");
13130 first_time = FALSE;
13132 sv_catpv(substitute_parse, SvPVX(this_sequence));
13137 /* If the character class contains anything else besides these
13138 * multi-character folds, have to include it in recursive parsing */
13139 if (element_count) {
13140 sv_catpv(substitute_parse, "|[");
13141 sv_catpvn(substitute_parse, orig_parse, RExC_parse - orig_parse);
13142 sv_catpv(substitute_parse, "]");
13145 sv_catpv(substitute_parse, ")");
13148 /* This is a way to get the parse to skip forward a whole named
13149 * sequence instead of matching the 2nd character when it fails the
13151 sv_catpv(substitute_parse, "(*THEN)(*SKIP)(*FAIL)|.)");
13155 RExC_parse = SvPV(substitute_parse, len);
13156 RExC_end = RExC_parse + len;
13157 RExC_in_multi_char_class = 1;
13158 RExC_emit = (regnode *)orig_emit;
13160 ret = reg(pRExC_state, 1, ®_flags, depth+1);
13162 *flagp |= reg_flags&(HASWIDTH|SIMPLE|SPSTART|POSTPONED|RESTART_UTF8);
13164 RExC_parse = save_parse;
13165 RExC_end = save_end;
13166 RExC_in_multi_char_class = 0;
13167 SvREFCNT_dec_NN(multi_char_matches);
13171 /* If the character class contains only a single element, it may be
13172 * optimizable into another node type which is smaller and runs faster.
13173 * Check if this is the case for this class */
13174 if (element_count == 1 && ! ret_invlist) {
13178 if (namedclass > OOB_NAMEDCLASS) { /* this is a named class, like \w or
13179 [:digit:] or \p{foo} */
13181 /* All named classes are mapped into POSIXish nodes, with its FLAG
13182 * argument giving which class it is */
13183 switch ((I32)namedclass) {
13184 case ANYOF_UNIPROP:
13187 /* These don't depend on the charset modifiers. They always
13188 * match under /u rules */
13189 case ANYOF_NHORIZWS:
13190 case ANYOF_HORIZWS:
13191 namedclass = ANYOF_BLANK + namedclass - ANYOF_HORIZWS;
13194 case ANYOF_NVERTWS:
13199 /* The actual POSIXish node for all the rest depends on the
13200 * charset modifier. The ones in the first set depend only on
13201 * ASCII or, if available on this platform, locale */
13205 op = (LOC) ? POSIXL : POSIXA;
13216 /* under /a could be alpha */
13218 if (ASCII_RESTRICTED) {
13219 namedclass = ANYOF_ALPHA + (namedclass % 2);
13227 /* The rest have more possibilities depending on the charset.
13228 * We take advantage of the enum ordering of the charset
13229 * modifiers to get the exact node type, */
13231 op = POSIXD + get_regex_charset(RExC_flags);
13232 if (op > POSIXA) { /* /aa is same as /a */
13235 #ifndef HAS_ISBLANK
13237 && (namedclass == ANYOF_BLANK
13238 || namedclass == ANYOF_NBLANK))
13245 /* The odd numbered ones are the complements of the
13246 * next-lower even number one */
13247 if (namedclass % 2 == 1) {
13251 arg = namedclass_to_classnum(namedclass);
13255 else if (value == prevvalue) {
13257 /* Here, the class consists of just a single code point */
13260 if (! LOC && value == '\n') {
13261 op = REG_ANY; /* Optimize [^\n] */
13262 *flagp |= HASWIDTH|SIMPLE;
13266 else if (value < 256 || UTF) {
13268 /* Optimize a single value into an EXACTish node, but not if it
13269 * would require converting the pattern to UTF-8. */
13270 op = compute_EXACTish(pRExC_state);
13272 } /* Otherwise is a range */
13273 else if (! LOC) { /* locale could vary these */
13274 if (prevvalue == '0') {
13275 if (value == '9') {
13282 /* Here, we have changed <op> away from its initial value iff we found
13283 * an optimization */
13286 /* Throw away this ANYOF regnode, and emit the calculated one,
13287 * which should correspond to the beginning, not current, state of
13289 const char * cur_parse = RExC_parse;
13290 RExC_parse = (char *)orig_parse;
13294 /* To get locale nodes to not use the full ANYOF size would
13295 * require moving the code above that writes the portions
13296 * of it that aren't in other nodes to after this point.
13297 * e.g. ANYOF_CLASS_SET */
13298 RExC_size = orig_size;
13302 RExC_emit = (regnode *)orig_emit;
13303 if (PL_regkind[op] == POSIXD) {
13305 op += NPOSIXD - POSIXD;
13310 ret = reg_node(pRExC_state, op);
13312 if (PL_regkind[op] == POSIXD || PL_regkind[op] == NPOSIXD) {
13316 *flagp |= HASWIDTH|SIMPLE;
13318 else if (PL_regkind[op] == EXACT) {
13319 alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value);
13322 RExC_parse = (char *) cur_parse;
13324 SvREFCNT_dec(posixes);
13325 SvREFCNT_dec(cp_list);
13332 /****** !SIZE_ONLY (Pass 2) AFTER HERE *********/
13334 /* If folding, we calculate all characters that could fold to or from the
13335 * ones already on the list */
13336 if (FOLD && cp_list) {
13337 UV start, end; /* End points of code point ranges */
13339 SV* fold_intersection = NULL;
13341 /* If the highest code point is within Latin1, we can use the
13342 * compiled-in Alphas list, and not have to go out to disk. This
13343 * yields two false positives, the masculine and feminine ordinal
13344 * indicators, which are weeded out below using the
13345 * IS_IN_SOME_FOLD_L1() macro */
13346 if (invlist_highest(cp_list) < 256) {
13347 _invlist_intersection(PL_L1Posix_ptrs[_CC_ALPHA], cp_list,
13348 &fold_intersection);
13352 /* Here, there are non-Latin1 code points, so we will have to go
13353 * fetch the list of all the characters that participate in folds
13355 if (! PL_utf8_foldable) {
13356 SV* swash = swash_init("utf8", "_Perl_Any_Folds",
13357 &PL_sv_undef, 1, 0);
13358 PL_utf8_foldable = _get_swash_invlist(swash);
13359 SvREFCNT_dec_NN(swash);
13362 /* This is a hash that for a particular fold gives all characters
13363 * that are involved in it */
13364 if (! PL_utf8_foldclosures) {
13366 /* If we were unable to find any folds, then we likely won't be
13367 * able to find the closures. So just create an empty list.
13368 * Folding will effectively be restricted to the non-Unicode
13369 * rules hard-coded into Perl. (This case happens legitimately
13370 * during compilation of Perl itself before the Unicode tables
13371 * are generated) */
13372 if (_invlist_len(PL_utf8_foldable) == 0) {
13373 PL_utf8_foldclosures = newHV();
13376 /* If the folds haven't been read in, call a fold function
13378 if (! PL_utf8_tofold) {
13379 U8 dummy[UTF8_MAXBYTES+1];
13381 /* This string is just a short named one above \xff */
13382 to_utf8_fold((U8*) HYPHEN_UTF8, dummy, NULL);
13383 assert(PL_utf8_tofold); /* Verify that worked */
13385 PL_utf8_foldclosures =
13386 _swash_inversion_hash(PL_utf8_tofold);
13390 /* Only the characters in this class that participate in folds need
13391 * be checked. Get the intersection of this class and all the
13392 * possible characters that are foldable. This can quickly narrow
13393 * down a large class */
13394 _invlist_intersection(PL_utf8_foldable, cp_list,
13395 &fold_intersection);
13398 /* Now look at the foldable characters in this class individually */
13399 invlist_iterinit(fold_intersection);
13400 while (invlist_iternext(fold_intersection, &start, &end)) {
13403 /* Locale folding for Latin1 characters is deferred until runtime */
13404 if (LOC && start < 256) {
13408 /* Look at every character in the range */
13409 for (j = start; j <= end; j++) {
13411 U8 foldbuf[UTF8_MAXBYTES_CASE+1];
13417 /* We have the latin1 folding rules hard-coded here so that
13418 * an innocent-looking character class, like /[ks]/i won't
13419 * have to go out to disk to find the possible matches.
13420 * XXX It would be better to generate these via regen, in
13421 * case a new version of the Unicode standard adds new
13422 * mappings, though that is not really likely, and may be
13423 * caught by the default: case of the switch below. */
13425 if (IS_IN_SOME_FOLD_L1(j)) {
13427 /* ASCII is always matched; non-ASCII is matched only
13428 * under Unicode rules */
13429 if (isASCII(j) || AT_LEAST_UNI_SEMANTICS) {
13431 add_cp_to_invlist(cp_list, PL_fold_latin1[j]);
13435 add_cp_to_invlist(depends_list, PL_fold_latin1[j]);
13439 if (HAS_NONLATIN1_FOLD_CLOSURE(j)
13440 && (! isASCII(j) || ! ASCII_FOLD_RESTRICTED))
13442 /* Certain Latin1 characters have matches outside
13443 * Latin1. To get here, <j> is one of those
13444 * characters. None of these matches is valid for
13445 * ASCII characters under /aa, which is why the 'if'
13446 * just above excludes those. These matches only
13447 * happen when the target string is utf8. The code
13448 * below adds the single fold closures for <j> to the
13449 * inversion list. */
13454 add_cp_to_invlist(cp_list, KELVIN_SIGN);
13458 cp_list = add_cp_to_invlist(cp_list,
13459 LATIN_SMALL_LETTER_LONG_S);
13462 cp_list = add_cp_to_invlist(cp_list,
13463 GREEK_CAPITAL_LETTER_MU);
13464 cp_list = add_cp_to_invlist(cp_list,
13465 GREEK_SMALL_LETTER_MU);
13467 case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
13468 case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
13470 add_cp_to_invlist(cp_list, ANGSTROM_SIGN);
13472 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
13473 cp_list = add_cp_to_invlist(cp_list,
13474 LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
13476 case LATIN_SMALL_LETTER_SHARP_S:
13477 cp_list = add_cp_to_invlist(cp_list,
13478 LATIN_CAPITAL_LETTER_SHARP_S);
13480 case 'F': case 'f':
13481 case 'I': case 'i':
13482 case 'L': case 'l':
13483 case 'T': case 't':
13484 case 'A': case 'a':
13485 case 'H': case 'h':
13486 case 'J': case 'j':
13487 case 'N': case 'n':
13488 case 'W': case 'w':
13489 case 'Y': case 'y':
13490 /* These all are targets of multi-character
13491 * folds from code points that require UTF8 to
13492 * express, so they can't match unless the
13493 * target string is in UTF-8, so no action here
13494 * is necessary, as regexec.c properly handles
13495 * the general case for UTF-8 matching and
13496 * multi-char folds */
13499 /* Use deprecated warning to increase the
13500 * chances of this being output */
13501 ckWARN2regdep(RExC_parse, "Perl folding rules are not up-to-date for 0x%"UVXf"; please use the perlbug utility to report;", j);
13508 /* Here is an above Latin1 character. We don't have the rules
13509 * hard-coded for it. First, get its fold. This is the simple
13510 * fold, as the multi-character folds have been handled earlier
13511 * and separated out */
13512 _to_uni_fold_flags(j, foldbuf, &foldlen,
13514 ? FOLD_FLAGS_LOCALE
13515 : (ASCII_FOLD_RESTRICTED)
13516 ? FOLD_FLAGS_NOMIX_ASCII
13519 /* Single character fold of above Latin1. Add everything in
13520 * its fold closure to the list that this node should match.
13521 * The fold closures data structure is a hash with the keys
13522 * being the UTF-8 of every character that is folded to, like
13523 * 'k', and the values each an array of all code points that
13524 * fold to its key. e.g. [ 'k', 'K', KELVIN_SIGN ].
13525 * Multi-character folds are not included */
13526 if ((listp = hv_fetch(PL_utf8_foldclosures,
13527 (char *) foldbuf, foldlen, FALSE)))
13529 AV* list = (AV*) *listp;
13531 for (k = 0; k <= av_len(list); k++) {
13532 SV** c_p = av_fetch(list, k, FALSE);
13535 Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
13539 /* /aa doesn't allow folds between ASCII and non-; /l
13540 * doesn't allow them between above and below 256 */
13541 if ((ASCII_FOLD_RESTRICTED
13542 && (isASCII(c) != isASCII(j)))
13543 || (LOC && ((c < 256) != (j < 256))))
13548 /* Folds involving non-ascii Latin1 characters
13549 * under /d are added to a separate list */
13550 if (isASCII(c) || c > 255 || AT_LEAST_UNI_SEMANTICS)
13552 cp_list = add_cp_to_invlist(cp_list, c);
13555 depends_list = add_cp_to_invlist(depends_list, c);
13561 SvREFCNT_dec_NN(fold_intersection);
13564 /* And combine the result (if any) with any inversion list from posix
13565 * classes. The lists are kept separate up to now because we don't want to
13566 * fold the classes (folding of those is automatically handled by the swash
13567 * fetching code) */
13569 if (! DEPENDS_SEMANTICS) {
13571 _invlist_union(cp_list, posixes, &cp_list);
13572 SvREFCNT_dec_NN(posixes);
13579 /* Under /d, we put into a separate list the Latin1 things that
13580 * match only when the target string is utf8 */
13581 SV* nonascii_but_latin1_properties = NULL;
13582 _invlist_intersection(posixes, PL_Latin1,
13583 &nonascii_but_latin1_properties);
13584 _invlist_subtract(nonascii_but_latin1_properties, PL_ASCII,
13585 &nonascii_but_latin1_properties);
13586 _invlist_subtract(posixes, nonascii_but_latin1_properties,
13589 _invlist_union(cp_list, posixes, &cp_list);
13590 SvREFCNT_dec_NN(posixes);
13596 if (depends_list) {
13597 _invlist_union(depends_list, nonascii_but_latin1_properties,
13599 SvREFCNT_dec_NN(nonascii_but_latin1_properties);
13602 depends_list = nonascii_but_latin1_properties;
13607 /* And combine the result (if any) with any inversion list from properties.
13608 * The lists are kept separate up to now so that we can distinguish the two
13609 * in regards to matching above-Unicode. A run-time warning is generated
13610 * if a Unicode property is matched against a non-Unicode code point. But,
13611 * we allow user-defined properties to match anything, without any warning,
13612 * and we also suppress the warning if there is a portion of the character
13613 * class that isn't a Unicode property, and which matches above Unicode, \W
13614 * or [\x{110000}] for example.
13615 * (Note that in this case, unlike the Posix one above, there is no
13616 * <depends_list>, because having a Unicode property forces Unicode
13619 bool warn_super = ! has_user_defined_property;
13622 /* If it matters to the final outcome, see if a non-property
13623 * component of the class matches above Unicode. If so, the
13624 * warning gets suppressed. This is true even if just a single
13625 * such code point is specified, as though not strictly correct if
13626 * another such code point is matched against, the fact that they
13627 * are using above-Unicode code points indicates they should know
13628 * the issues involved */
13630 bool non_prop_matches_above_Unicode =
13631 runtime_posix_matches_above_Unicode
13632 | (invlist_highest(cp_list) > PERL_UNICODE_MAX);
13634 non_prop_matches_above_Unicode =
13635 ! non_prop_matches_above_Unicode;
13637 warn_super = ! non_prop_matches_above_Unicode;
13640 _invlist_union(properties, cp_list, &cp_list);
13641 SvREFCNT_dec_NN(properties);
13644 cp_list = properties;
13648 OP(ret) = ANYOF_WARN_SUPER;
13652 /* Here, we have calculated what code points should be in the character
13655 * Now we can see about various optimizations. Fold calculation (which we
13656 * did above) needs to take place before inversion. Otherwise /[^k]/i
13657 * would invert to include K, which under /i would match k, which it
13658 * shouldn't. Therefore we can't invert folded locale now, as it won't be
13659 * folded until runtime */
13661 /* Optimize inverted simple patterns (e.g. [^a-z]) when everything is known
13662 * at compile time. Besides not inverting folded locale now, we can't
13663 * invert if there are things such as \w, which aren't known until runtime
13666 && ! (LOC && (FOLD || (ANYOF_FLAGS(ret) & ANYOF_CLASS)))
13668 && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
13670 _invlist_invert(cp_list);
13672 /* Any swash can't be used as-is, because we've inverted things */
13674 SvREFCNT_dec_NN(swash);
13678 /* Clear the invert flag since have just done it here */
13683 *ret_invlist = cp_list;
13685 /* Discard the generated node */
13687 RExC_size = orig_size;
13690 RExC_emit = orig_emit;
13695 /* If we didn't do folding, it's because some information isn't available
13696 * until runtime; set the run-time fold flag for these. (We don't have to
13697 * worry about properties folding, as that is taken care of by the swash
13701 ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD;
13704 /* Some character classes are equivalent to other nodes. Such nodes take
13705 * up less room and generally fewer operations to execute than ANYOF nodes.
13706 * Above, we checked for and optimized into some such equivalents for
13707 * certain common classes that are easy to test. Getting to this point in
13708 * the code means that the class didn't get optimized there. Since this
13709 * code is only executed in Pass 2, it is too late to save space--it has
13710 * been allocated in Pass 1, and currently isn't given back. But turning
13711 * things into an EXACTish node can allow the optimizer to join it to any
13712 * adjacent such nodes. And if the class is equivalent to things like /./,
13713 * expensive run-time swashes can be avoided. Now that we have more
13714 * complete information, we can find things necessarily missed by the
13715 * earlier code. I (khw) am not sure how much to look for here. It would
13716 * be easy, but perhaps too slow, to check any candidates against all the
13717 * node types they could possibly match using _invlistEQ(). */
13722 && ! (ANYOF_FLAGS(ret) & ANYOF_CLASS)
13723 && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
13726 U8 op = END; /* The optimzation node-type */
13727 const char * cur_parse= RExC_parse;
13729 invlist_iterinit(cp_list);
13730 if (! invlist_iternext(cp_list, &start, &end)) {
13732 /* Here, the list is empty. This happens, for example, when a
13733 * Unicode property is the only thing in the character class, and
13734 * it doesn't match anything. (perluniprops.pod notes such
13737 *flagp |= HASWIDTH|SIMPLE;
13739 else if (start == end) { /* The range is a single code point */
13740 if (! invlist_iternext(cp_list, &start, &end)
13742 /* Don't do this optimization if it would require changing
13743 * the pattern to UTF-8 */
13744 && (start < 256 || UTF))
13746 /* Here, the list contains a single code point. Can optimize
13747 * into an EXACT node */
13756 /* A locale node under folding with one code point can be
13757 * an EXACTFL, as its fold won't be calculated until
13763 /* Here, we are generally folding, but there is only one
13764 * code point to match. If we have to, we use an EXACT
13765 * node, but it would be better for joining with adjacent
13766 * nodes in the optimization pass if we used the same
13767 * EXACTFish node that any such are likely to be. We can
13768 * do this iff the code point doesn't participate in any
13769 * folds. For example, an EXACTF of a colon is the same as
13770 * an EXACT one, since nothing folds to or from a colon. */
13772 if (IS_IN_SOME_FOLD_L1(value)) {
13777 if (! PL_utf8_foldable) {
13778 SV* swash = swash_init("utf8", "_Perl_Any_Folds",
13779 &PL_sv_undef, 1, 0);
13780 PL_utf8_foldable = _get_swash_invlist(swash);
13781 SvREFCNT_dec_NN(swash);
13783 if (_invlist_contains_cp(PL_utf8_foldable, value)) {
13788 /* If we haven't found the node type, above, it means we
13789 * can use the prevailing one */
13791 op = compute_EXACTish(pRExC_state);
13796 else if (start == 0) {
13797 if (end == UV_MAX) {
13799 *flagp |= HASWIDTH|SIMPLE;
13802 else if (end == '\n' - 1
13803 && invlist_iternext(cp_list, &start, &end)
13804 && start == '\n' + 1 && end == UV_MAX)
13807 *flagp |= HASWIDTH|SIMPLE;
13811 invlist_iterfinish(cp_list);
13814 RExC_parse = (char *)orig_parse;
13815 RExC_emit = (regnode *)orig_emit;
13817 ret = reg_node(pRExC_state, op);
13819 RExC_parse = (char *)cur_parse;
13821 if (PL_regkind[op] == EXACT) {
13822 alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value);
13825 SvREFCNT_dec_NN(cp_list);
13830 /* Here, <cp_list> contains all the code points we can determine at
13831 * compile time that match under all conditions. Go through it, and
13832 * for things that belong in the bitmap, put them there, and delete from
13833 * <cp_list>. While we are at it, see if everything above 255 is in the
13834 * list, and if so, set a flag to speed up execution */
13835 ANYOF_BITMAP_ZERO(ret);
13838 /* This gets set if we actually need to modify things */
13839 bool change_invlist = FALSE;
13843 /* Start looking through <cp_list> */
13844 invlist_iterinit(cp_list);
13845 while (invlist_iternext(cp_list, &start, &end)) {
13849 if (end == UV_MAX && start <= 256) {
13850 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
13853 /* Quit if are above what we should change */
13858 change_invlist = TRUE;
13860 /* Set all the bits in the range, up to the max that we are doing */
13861 high = (end < 255) ? end : 255;
13862 for (i = start; i <= (int) high; i++) {
13863 if (! ANYOF_BITMAP_TEST(ret, i)) {
13864 ANYOF_BITMAP_SET(ret, i);
13870 invlist_iterfinish(cp_list);
13872 /* Done with loop; remove any code points that are in the bitmap from
13874 if (change_invlist) {
13875 _invlist_subtract(cp_list, PL_Latin1, &cp_list);
13878 /* If have completely emptied it, remove it completely */
13879 if (_invlist_len(cp_list) == 0) {
13880 SvREFCNT_dec_NN(cp_list);
13886 ANYOF_FLAGS(ret) |= ANYOF_INVERT;
13889 /* Here, the bitmap has been populated with all the Latin1 code points that
13890 * always match. Can now add to the overall list those that match only
13891 * when the target string is UTF-8 (<depends_list>). */
13892 if (depends_list) {
13894 _invlist_union(cp_list, depends_list, &cp_list);
13895 SvREFCNT_dec_NN(depends_list);
13898 cp_list = depends_list;
13902 /* If there is a swash and more than one element, we can't use the swash in
13903 * the optimization below. */
13904 if (swash && element_count > 1) {
13905 SvREFCNT_dec_NN(swash);
13910 && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
13912 ARG_SET(ret, ANYOF_NONBITMAP_EMPTY);
13915 /* av[0] stores the character class description in its textual form:
13916 * used later (regexec.c:Perl_regclass_swash()) to initialize the
13917 * appropriate swash, and is also useful for dumping the regnode.
13918 * av[1] if NULL, is a placeholder to later contain the swash computed
13919 * from av[0]. But if no further computation need be done, the
13920 * swash is stored there now.
13921 * av[2] stores the cp_list inversion list for use in addition or
13922 * instead of av[0]; used only if av[1] is NULL
13923 * av[3] is set if any component of the class is from a user-defined
13924 * property; used only if av[1] is NULL */
13925 AV * const av = newAV();
13928 av_store(av, 0, (HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
13929 ? SvREFCNT_inc(listsv) : &PL_sv_undef);
13931 av_store(av, 1, swash);
13932 SvREFCNT_dec_NN(cp_list);
13935 av_store(av, 1, NULL);
13937 av_store(av, 2, cp_list);
13938 av_store(av, 3, newSVuv(has_user_defined_property));
13942 rv = newRV_noinc(MUTABLE_SV(av));
13943 n = add_data(pRExC_state, 1, "s");
13944 RExC_rxi->data->data[n] = (void*)rv;
13948 *flagp |= HASWIDTH|SIMPLE;
13951 #undef HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
13954 /* reg_skipcomment()
13956 Absorbs an /x style # comments from the input stream.
13957 Returns true if there is more text remaining in the stream.
13958 Will set the REG_SEEN_RUN_ON_COMMENT flag if the comment
13959 terminates the pattern without including a newline.
13961 Note its the callers responsibility to ensure that we are
13962 actually in /x mode
13967 S_reg_skipcomment(pTHX_ RExC_state_t *pRExC_state)
13971 PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
13973 while (RExC_parse < RExC_end)
13974 if (*RExC_parse++ == '\n') {
13979 /* we ran off the end of the pattern without ending
13980 the comment, so we have to add an \n when wrapping */
13981 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
13989 Advances the parse position, and optionally absorbs
13990 "whitespace" from the inputstream.
13992 Without /x "whitespace" means (?#...) style comments only,
13993 with /x this means (?#...) and # comments and whitespace proper.
13995 Returns the RExC_parse point from BEFORE the scan occurs.
13997 This is the /x friendly way of saying RExC_parse++.
14001 S_nextchar(pTHX_ RExC_state_t *pRExC_state)
14003 char* const retval = RExC_parse++;
14005 PERL_ARGS_ASSERT_NEXTCHAR;
14008 if (RExC_end - RExC_parse >= 3
14009 && *RExC_parse == '('
14010 && RExC_parse[1] == '?'
14011 && RExC_parse[2] == '#')
14013 while (*RExC_parse != ')') {
14014 if (RExC_parse == RExC_end)
14015 FAIL("Sequence (?#... not terminated");
14021 if (RExC_flags & RXf_PMf_EXTENDED) {
14022 if (isSPACE(*RExC_parse)) {
14026 else if (*RExC_parse == '#') {
14027 if ( reg_skipcomment( pRExC_state ) )
14036 - reg_node - emit a node
14038 STATIC regnode * /* Location. */
14039 S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
14043 regnode * const ret = RExC_emit;
14044 GET_RE_DEBUG_FLAGS_DECL;
14046 PERL_ARGS_ASSERT_REG_NODE;
14049 SIZE_ALIGN(RExC_size);
14053 if (RExC_emit >= RExC_emit_bound)
14054 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
14055 op, RExC_emit, RExC_emit_bound);
14057 NODE_ALIGN_FILL(ret);
14059 FILL_ADVANCE_NODE(ptr, op);
14060 #ifdef RE_TRACK_PATTERN_OFFSETS
14061 if (RExC_offsets) { /* MJD */
14062 MJD_OFFSET_DEBUG(("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
14063 "reg_node", __LINE__,
14065 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
14066 ? "Overwriting end of array!\n" : "OK",
14067 (UV)(RExC_emit - RExC_emit_start),
14068 (UV)(RExC_parse - RExC_start),
14069 (UV)RExC_offsets[0]));
14070 Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
14078 - reganode - emit a node with an argument
14080 STATIC regnode * /* Location. */
14081 S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
14085 regnode * const ret = RExC_emit;
14086 GET_RE_DEBUG_FLAGS_DECL;
14088 PERL_ARGS_ASSERT_REGANODE;
14091 SIZE_ALIGN(RExC_size);
14096 assert(2==regarglen[op]+1);
14098 Anything larger than this has to allocate the extra amount.
14099 If we changed this to be:
14101 RExC_size += (1 + regarglen[op]);
14103 then it wouldn't matter. Its not clear what side effect
14104 might come from that so its not done so far.
14109 if (RExC_emit >= RExC_emit_bound)
14110 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
14111 op, RExC_emit, RExC_emit_bound);
14113 NODE_ALIGN_FILL(ret);
14115 FILL_ADVANCE_NODE_ARG(ptr, op, arg);
14116 #ifdef RE_TRACK_PATTERN_OFFSETS
14117 if (RExC_offsets) { /* MJD */
14118 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
14122 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0] ?
14123 "Overwriting end of array!\n" : "OK",
14124 (UV)(RExC_emit - RExC_emit_start),
14125 (UV)(RExC_parse - RExC_start),
14126 (UV)RExC_offsets[0]));
14127 Set_Cur_Node_Offset;
14135 - reguni - emit (if appropriate) a Unicode character
14138 S_reguni(pTHX_ const RExC_state_t *pRExC_state, UV uv, char* s)
14142 PERL_ARGS_ASSERT_REGUNI;
14144 return SIZE_ONLY ? UNISKIP(uv) : (uvchr_to_utf8((U8*)s, uv) - (U8*)s);
14148 - reginsert - insert an operator in front of already-emitted operand
14150 * Means relocating the operand.
14153 S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
14159 const int offset = regarglen[(U8)op];
14160 const int size = NODE_STEP_REGNODE + offset;
14161 GET_RE_DEBUG_FLAGS_DECL;
14163 PERL_ARGS_ASSERT_REGINSERT;
14164 PERL_UNUSED_ARG(depth);
14165 /* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
14166 DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
14175 if (RExC_open_parens) {
14177 /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
14178 for ( paren=0 ; paren < RExC_npar ; paren++ ) {
14179 if ( RExC_open_parens[paren] >= opnd ) {
14180 /*DEBUG_PARSE_FMT("open"," - %d",size);*/
14181 RExC_open_parens[paren] += size;
14183 /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
14185 if ( RExC_close_parens[paren] >= opnd ) {
14186 /*DEBUG_PARSE_FMT("close"," - %d",size);*/
14187 RExC_close_parens[paren] += size;
14189 /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
14194 while (src > opnd) {
14195 StructCopy(--src, --dst, regnode);
14196 #ifdef RE_TRACK_PATTERN_OFFSETS
14197 if (RExC_offsets) { /* MJD 20010112 */
14198 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
14202 (UV)(dst - RExC_emit_start) > RExC_offsets[0]
14203 ? "Overwriting end of array!\n" : "OK",
14204 (UV)(src - RExC_emit_start),
14205 (UV)(dst - RExC_emit_start),
14206 (UV)RExC_offsets[0]));
14207 Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
14208 Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
14214 place = opnd; /* Op node, where operand used to be. */
14215 #ifdef RE_TRACK_PATTERN_OFFSETS
14216 if (RExC_offsets) { /* MJD */
14217 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
14221 (UV)(place - RExC_emit_start) > RExC_offsets[0]
14222 ? "Overwriting end of array!\n" : "OK",
14223 (UV)(place - RExC_emit_start),
14224 (UV)(RExC_parse - RExC_start),
14225 (UV)RExC_offsets[0]));
14226 Set_Node_Offset(place, RExC_parse);
14227 Set_Node_Length(place, 1);
14230 src = NEXTOPER(place);
14231 FILL_ADVANCE_NODE(place, op);
14232 Zero(src, offset, regnode);
14236 - regtail - set the next-pointer at the end of a node chain of p to val.
14237 - SEE ALSO: regtail_study
14239 /* TODO: All three parms should be const */
14241 S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
14245 GET_RE_DEBUG_FLAGS_DECL;
14247 PERL_ARGS_ASSERT_REGTAIL;
14249 PERL_UNUSED_ARG(depth);
14255 /* Find last node. */
14258 regnode * const temp = regnext(scan);
14260 SV * const mysv=sv_newmortal();
14261 DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
14262 regprop(RExC_rx, mysv, scan);
14263 PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
14264 SvPV_nolen_const(mysv), REG_NODE_NUM(scan),
14265 (temp == NULL ? "->" : ""),
14266 (temp == NULL ? PL_reg_name[OP(val)] : "")
14274 if (reg_off_by_arg[OP(scan)]) {
14275 ARG_SET(scan, val - scan);
14278 NEXT_OFF(scan) = val - scan;
14284 - regtail_study - set the next-pointer at the end of a node chain of p to val.
14285 - Look for optimizable sequences at the same time.
14286 - currently only looks for EXACT chains.
14288 This is experimental code. The idea is to use this routine to perform
14289 in place optimizations on branches and groups as they are constructed,
14290 with the long term intention of removing optimization from study_chunk so
14291 that it is purely analytical.
14293 Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
14294 to control which is which.
14297 /* TODO: All four parms should be const */
14300 S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
14305 #ifdef EXPERIMENTAL_INPLACESCAN
14308 GET_RE_DEBUG_FLAGS_DECL;
14310 PERL_ARGS_ASSERT_REGTAIL_STUDY;
14316 /* Find last node. */
14320 regnode * const temp = regnext(scan);
14321 #ifdef EXPERIMENTAL_INPLACESCAN
14322 if (PL_regkind[OP(scan)] == EXACT) {
14323 bool has_exactf_sharp_s; /* Unexamined in this routine */
14324 if (join_exact(pRExC_state,scan,&min, &has_exactf_sharp_s, 1,val,depth+1))
14329 switch (OP(scan)) {
14335 case EXACTFU_TRICKYFOLD:
14337 if( exact == PSEUDO )
14339 else if ( exact != OP(scan) )
14348 SV * const mysv=sv_newmortal();
14349 DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
14350 regprop(RExC_rx, mysv, scan);
14351 PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
14352 SvPV_nolen_const(mysv),
14353 REG_NODE_NUM(scan),
14354 PL_reg_name[exact]);
14361 SV * const mysv_val=sv_newmortal();
14362 DEBUG_PARSE_MSG("");
14363 regprop(RExC_rx, mysv_val, val);
14364 PerlIO_printf(Perl_debug_log, "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
14365 SvPV_nolen_const(mysv_val),
14366 (IV)REG_NODE_NUM(val),
14370 if (reg_off_by_arg[OP(scan)]) {
14371 ARG_SET(scan, val - scan);
14374 NEXT_OFF(scan) = val - scan;
14382 - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
14386 S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
14392 for (bit=0; bit<32; bit++) {
14393 if (flags & (1<<bit)) {
14394 if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
14397 if (!set++ && lead)
14398 PerlIO_printf(Perl_debug_log, "%s",lead);
14399 PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
14402 if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
14403 if (!set++ && lead) {
14404 PerlIO_printf(Perl_debug_log, "%s",lead);
14407 case REGEX_UNICODE_CHARSET:
14408 PerlIO_printf(Perl_debug_log, "UNICODE");
14410 case REGEX_LOCALE_CHARSET:
14411 PerlIO_printf(Perl_debug_log, "LOCALE");
14413 case REGEX_ASCII_RESTRICTED_CHARSET:
14414 PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
14416 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
14417 PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
14420 PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
14426 PerlIO_printf(Perl_debug_log, "\n");
14428 PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
14434 Perl_regdump(pTHX_ const regexp *r)
14438 SV * const sv = sv_newmortal();
14439 SV *dsv= sv_newmortal();
14440 RXi_GET_DECL(r,ri);
14441 GET_RE_DEBUG_FLAGS_DECL;
14443 PERL_ARGS_ASSERT_REGDUMP;
14445 (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
14447 /* Header fields of interest. */
14448 if (r->anchored_substr) {
14449 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
14450 RE_SV_DUMPLEN(r->anchored_substr), 30);
14451 PerlIO_printf(Perl_debug_log,
14452 "anchored %s%s at %"IVdf" ",
14453 s, RE_SV_TAIL(r->anchored_substr),
14454 (IV)r->anchored_offset);
14455 } else if (r->anchored_utf8) {
14456 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
14457 RE_SV_DUMPLEN(r->anchored_utf8), 30);
14458 PerlIO_printf(Perl_debug_log,
14459 "anchored utf8 %s%s at %"IVdf" ",
14460 s, RE_SV_TAIL(r->anchored_utf8),
14461 (IV)r->anchored_offset);
14463 if (r->float_substr) {
14464 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
14465 RE_SV_DUMPLEN(r->float_substr), 30);
14466 PerlIO_printf(Perl_debug_log,
14467 "floating %s%s at %"IVdf"..%"UVuf" ",
14468 s, RE_SV_TAIL(r->float_substr),
14469 (IV)r->float_min_offset, (UV)r->float_max_offset);
14470 } else if (r->float_utf8) {
14471 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
14472 RE_SV_DUMPLEN(r->float_utf8), 30);
14473 PerlIO_printf(Perl_debug_log,
14474 "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
14475 s, RE_SV_TAIL(r->float_utf8),
14476 (IV)r->float_min_offset, (UV)r->float_max_offset);
14478 if (r->check_substr || r->check_utf8)
14479 PerlIO_printf(Perl_debug_log,
14481 (r->check_substr == r->float_substr
14482 && r->check_utf8 == r->float_utf8
14483 ? "(checking floating" : "(checking anchored"));
14484 if (r->extflags & RXf_NOSCAN)
14485 PerlIO_printf(Perl_debug_log, " noscan");
14486 if (r->extflags & RXf_CHECK_ALL)
14487 PerlIO_printf(Perl_debug_log, " isall");
14488 if (r->check_substr || r->check_utf8)
14489 PerlIO_printf(Perl_debug_log, ") ");
14491 if (ri->regstclass) {
14492 regprop(r, sv, ri->regstclass);
14493 PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
14495 if (r->extflags & RXf_ANCH) {
14496 PerlIO_printf(Perl_debug_log, "anchored");
14497 if (r->extflags & RXf_ANCH_BOL)
14498 PerlIO_printf(Perl_debug_log, "(BOL)");
14499 if (r->extflags & RXf_ANCH_MBOL)
14500 PerlIO_printf(Perl_debug_log, "(MBOL)");
14501 if (r->extflags & RXf_ANCH_SBOL)
14502 PerlIO_printf(Perl_debug_log, "(SBOL)");
14503 if (r->extflags & RXf_ANCH_GPOS)
14504 PerlIO_printf(Perl_debug_log, "(GPOS)");
14505 PerlIO_putc(Perl_debug_log, ' ');
14507 if (r->extflags & RXf_GPOS_SEEN)
14508 PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
14509 if (r->intflags & PREGf_SKIP)
14510 PerlIO_printf(Perl_debug_log, "plus ");
14511 if (r->intflags & PREGf_IMPLICIT)
14512 PerlIO_printf(Perl_debug_log, "implicit ");
14513 PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
14514 if (r->extflags & RXf_EVAL_SEEN)
14515 PerlIO_printf(Perl_debug_log, "with eval ");
14516 PerlIO_printf(Perl_debug_log, "\n");
14517 DEBUG_FLAGS_r(regdump_extflags("r->extflags: ",r->extflags));
14519 PERL_ARGS_ASSERT_REGDUMP;
14520 PERL_UNUSED_CONTEXT;
14521 PERL_UNUSED_ARG(r);
14522 #endif /* DEBUGGING */
14526 - regprop - printable representation of opcode
14528 #define EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags) \
14531 Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]); \
14532 if (flags & ANYOF_INVERT) \
14533 /*make sure the invert info is in each */ \
14534 sv_catpvs(sv, "^"); \
14540 Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o)
14546 /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
14547 static const char * const anyofs[] = {
14548 #if _CC_WORDCHAR != 0 || _CC_DIGIT != 1 || _CC_ALPHA != 2 || _CC_LOWER != 3 \
14549 || _CC_UPPER != 4 || _CC_PUNCT != 5 || _CC_PRINT != 6 \
14550 || _CC_ALPHANUMERIC != 7 || _CC_GRAPH != 8 || _CC_CASED != 9 \
14551 || _CC_SPACE != 10 || _CC_BLANK != 11 || _CC_XDIGIT != 12 \
14552 || _CC_PSXSPC != 13 || _CC_CNTRL != 14 || _CC_ASCII != 15 \
14553 || _CC_VERTSPACE != 16
14554 #error Need to adjust order of anyofs[]
14591 RXi_GET_DECL(prog,progi);
14592 GET_RE_DEBUG_FLAGS_DECL;
14594 PERL_ARGS_ASSERT_REGPROP;
14598 if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */
14599 /* It would be nice to FAIL() here, but this may be called from
14600 regexec.c, and it would be hard to supply pRExC_state. */
14601 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(o), (int)REGNODE_MAX);
14602 sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
14604 k = PL_regkind[OP(o)];
14607 sv_catpvs(sv, " ");
14608 /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
14609 * is a crude hack but it may be the best for now since
14610 * we have no flag "this EXACTish node was UTF-8"
14612 pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
14613 PERL_PV_ESCAPE_UNI_DETECT |
14614 PERL_PV_ESCAPE_NONASCII |
14615 PERL_PV_PRETTY_ELLIPSES |
14616 PERL_PV_PRETTY_LTGT |
14617 PERL_PV_PRETTY_NOCLEAR
14619 } else if (k == TRIE) {
14620 /* print the details of the trie in dumpuntil instead, as
14621 * progi->data isn't available here */
14622 const char op = OP(o);
14623 const U32 n = ARG(o);
14624 const reg_ac_data * const ac = IS_TRIE_AC(op) ?
14625 (reg_ac_data *)progi->data->data[n] :
14627 const reg_trie_data * const trie
14628 = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
14630 Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
14631 DEBUG_TRIE_COMPILE_r(
14632 Perl_sv_catpvf(aTHX_ sv,
14633 "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
14634 (UV)trie->startstate,
14635 (IV)trie->statecount-1, /* -1 because of the unused 0 element */
14636 (UV)trie->wordcount,
14639 (UV)TRIE_CHARCOUNT(trie),
14640 (UV)trie->uniquecharcount
14643 if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
14645 int rangestart = -1;
14646 U8* bitmap = IS_ANYOF_TRIE(op) ? (U8*)ANYOF_BITMAP(o) : (U8*)TRIE_BITMAP(trie);
14647 sv_catpvs(sv, "[");
14648 for (i = 0; i <= 256; i++) {
14649 if (i < 256 && BITMAP_TEST(bitmap,i)) {
14650 if (rangestart == -1)
14652 } else if (rangestart != -1) {
14653 if (i <= rangestart + 3)
14654 for (; rangestart < i; rangestart++)
14655 put_byte(sv, rangestart);
14657 put_byte(sv, rangestart);
14658 sv_catpvs(sv, "-");
14659 put_byte(sv, i - 1);
14664 sv_catpvs(sv, "]");
14667 } else if (k == CURLY) {
14668 if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
14669 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
14670 Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
14672 else if (k == WHILEM && o->flags) /* Ordinal/of */
14673 Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
14674 else if (k == REF || k == OPEN || k == CLOSE || k == GROUPP || OP(o)==ACCEPT) {
14675 Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
14676 if ( RXp_PAREN_NAMES(prog) ) {
14677 if ( k != REF || (OP(o) < NREF)) {
14678 AV *list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
14679 SV **name= av_fetch(list, ARG(o), 0 );
14681 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
14684 AV *list= MUTABLE_AV(progi->data->data[ progi->name_list_idx ]);
14685 SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
14686 I32 *nums=(I32*)SvPVX(sv_dat);
14687 SV **name= av_fetch(list, nums[0], 0 );
14690 for ( n=0; n<SvIVX(sv_dat); n++ ) {
14691 Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
14692 (n ? "," : ""), (IV)nums[n]);
14694 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
14698 } else if (k == GOSUB)
14699 Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o)); /* Paren and offset */
14700 else if (k == VERB) {
14702 Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
14703 SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
14704 } else if (k == LOGICAL)
14705 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* 2: embedded, otherwise 1 */
14706 else if (k == ANYOF) {
14707 int i, rangestart = -1;
14708 const U8 flags = ANYOF_FLAGS(o);
14712 if (flags & ANYOF_LOCALE)
14713 sv_catpvs(sv, "{loc}");
14714 if (flags & ANYOF_LOC_FOLD)
14715 sv_catpvs(sv, "{i}");
14716 Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
14717 if (flags & ANYOF_INVERT)
14718 sv_catpvs(sv, "^");
14720 /* output what the standard cp 0-255 bitmap matches */
14721 for (i = 0; i <= 256; i++) {
14722 if (i < 256 && ANYOF_BITMAP_TEST(o,i)) {
14723 if (rangestart == -1)
14725 } else if (rangestart != -1) {
14726 if (i <= rangestart + 3)
14727 for (; rangestart < i; rangestart++)
14728 put_byte(sv, rangestart);
14730 put_byte(sv, rangestart);
14731 sv_catpvs(sv, "-");
14732 put_byte(sv, i - 1);
14739 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
14740 /* output any special charclass tests (used entirely under use locale) */
14741 if (ANYOF_CLASS_TEST_ANY_SET(o))
14742 for (i = 0; i < (int)(sizeof(anyofs)/sizeof(char*)); i++)
14743 if (ANYOF_CLASS_TEST(o,i)) {
14744 sv_catpv(sv, anyofs[i]);
14748 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
14750 if (flags & ANYOF_NON_UTF8_LATIN1_ALL) {
14751 sv_catpvs(sv, "{non-utf8-latin1-all}");
14754 /* output information about the unicode matching */
14755 if (flags & ANYOF_UNICODE_ALL)
14756 sv_catpvs(sv, "{unicode_all}");
14757 else if (ANYOF_NONBITMAP(o))
14758 sv_catpvs(sv, "{unicode}");
14759 if (flags & ANYOF_NONBITMAP_NON_UTF8)
14760 sv_catpvs(sv, "{outside bitmap}");
14762 if (ANYOF_NONBITMAP(o)) {
14763 SV *lv; /* Set if there is something outside the bit map */
14764 SV * const sw = regclass_swash(prog, o, FALSE, &lv, NULL);
14765 bool byte_output = FALSE; /* If something in the bitmap has been
14768 if (lv && lv != &PL_sv_undef) {
14770 U8 s[UTF8_MAXBYTES_CASE+1];
14772 for (i = 0; i <= 256; i++) { /* Look at chars in bitmap */
14773 uvchr_to_utf8(s, i);
14776 && ! ANYOF_BITMAP_TEST(o, i) /* Don't duplicate
14780 && swash_fetch(sw, s, TRUE))
14782 if (rangestart == -1)
14784 } else if (rangestart != -1) {
14785 byte_output = TRUE;
14786 if (i <= rangestart + 3)
14787 for (; rangestart < i; rangestart++) {
14788 put_byte(sv, rangestart);
14791 put_byte(sv, rangestart);
14792 sv_catpvs(sv, "-");
14801 char *s = savesvpv(lv);
14802 char * const origs = s;
14804 while (*s && *s != '\n')
14808 const char * const t = ++s;
14811 sv_catpvs(sv, " ");
14817 /* Truncate very long output */
14818 if (s - origs > 256) {
14819 Perl_sv_catpvf(aTHX_ sv,
14821 (int) (s - origs - 1),
14827 else if (*s == '\t') {
14842 SvREFCNT_dec_NN(lv);
14846 Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
14848 else if (k == POSIXD || k == NPOSIXD) {
14849 U8 index = FLAGS(o) * 2;
14850 if (index > (sizeof(anyofs) / sizeof(anyofs[0]))) {
14851 Perl_sv_catpvf(aTHX_ sv, "[illegal type=%d])", index);
14854 sv_catpv(sv, anyofs[index]);
14857 else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
14858 Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
14860 PERL_UNUSED_CONTEXT;
14861 PERL_UNUSED_ARG(sv);
14862 PERL_UNUSED_ARG(o);
14863 PERL_UNUSED_ARG(prog);
14864 #endif /* DEBUGGING */
14868 Perl_re_intuit_string(pTHX_ REGEXP * const r)
14869 { /* Assume that RE_INTUIT is set */
14871 struct regexp *const prog = ReANY(r);
14872 GET_RE_DEBUG_FLAGS_DECL;
14874 PERL_ARGS_ASSERT_RE_INTUIT_STRING;
14875 PERL_UNUSED_CONTEXT;
14879 const char * const s = SvPV_nolen_const(prog->check_substr
14880 ? prog->check_substr : prog->check_utf8);
14882 if (!PL_colorset) reginitcolors();
14883 PerlIO_printf(Perl_debug_log,
14884 "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
14886 prog->check_substr ? "" : "utf8 ",
14887 PL_colors[5],PL_colors[0],
14890 (strlen(s) > 60 ? "..." : ""));
14893 return prog->check_substr ? prog->check_substr : prog->check_utf8;
14899 handles refcounting and freeing the perl core regexp structure. When
14900 it is necessary to actually free the structure the first thing it
14901 does is call the 'free' method of the regexp_engine associated to
14902 the regexp, allowing the handling of the void *pprivate; member
14903 first. (This routine is not overridable by extensions, which is why
14904 the extensions free is called first.)
14906 See regdupe and regdupe_internal if you change anything here.
14908 #ifndef PERL_IN_XSUB_RE
14910 Perl_pregfree(pTHX_ REGEXP *r)
14916 Perl_pregfree2(pTHX_ REGEXP *rx)
14919 struct regexp *const r = ReANY(rx);
14920 GET_RE_DEBUG_FLAGS_DECL;
14922 PERL_ARGS_ASSERT_PREGFREE2;
14924 if (r->mother_re) {
14925 ReREFCNT_dec(r->mother_re);
14927 CALLREGFREE_PVT(rx); /* free the private data */
14928 SvREFCNT_dec(RXp_PAREN_NAMES(r));
14929 Safefree(r->xpv_len_u.xpvlenu_pv);
14932 SvREFCNT_dec(r->anchored_substr);
14933 SvREFCNT_dec(r->anchored_utf8);
14934 SvREFCNT_dec(r->float_substr);
14935 SvREFCNT_dec(r->float_utf8);
14936 Safefree(r->substrs);
14938 RX_MATCH_COPY_FREE(rx);
14939 #ifdef PERL_ANY_COW
14940 SvREFCNT_dec(r->saved_copy);
14943 SvREFCNT_dec(r->qr_anoncv);
14944 rx->sv_u.svu_rx = 0;
14949 This is a hacky workaround to the structural issue of match results
14950 being stored in the regexp structure which is in turn stored in
14951 PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
14952 could be PL_curpm in multiple contexts, and could require multiple
14953 result sets being associated with the pattern simultaneously, such
14954 as when doing a recursive match with (??{$qr})
14956 The solution is to make a lightweight copy of the regexp structure
14957 when a qr// is returned from the code executed by (??{$qr}) this
14958 lightweight copy doesn't actually own any of its data except for
14959 the starp/end and the actual regexp structure itself.
14965 Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
14967 struct regexp *ret;
14968 struct regexp *const r = ReANY(rx);
14969 const bool islv = ret_x && SvTYPE(ret_x) == SVt_PVLV;
14971 PERL_ARGS_ASSERT_REG_TEMP_COPY;
14974 ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
14976 SvOK_off((SV *)ret_x);
14978 /* For PVLVs, SvANY points to the xpvlv body while sv_u points
14979 to the regexp. (For SVt_REGEXPs, sv_upgrade has already
14980 made both spots point to the same regexp body.) */
14981 REGEXP *temp = (REGEXP *)newSV_type(SVt_REGEXP);
14982 assert(!SvPVX(ret_x));
14983 ret_x->sv_u.svu_rx = temp->sv_any;
14984 temp->sv_any = NULL;
14985 SvFLAGS(temp) = (SvFLAGS(temp) & ~SVTYPEMASK) | SVt_NULL;
14986 SvREFCNT_dec_NN(temp);
14987 /* SvCUR still resides in the xpvlv struct, so the regexp copy-
14988 ing below will not set it. */
14989 SvCUR_set(ret_x, SvCUR(rx));
14992 /* This ensures that SvTHINKFIRST(sv) is true, and hence that
14993 sv_force_normal(sv) is called. */
14995 ret = ReANY(ret_x);
14997 SvFLAGS(ret_x) |= SvUTF8(rx);
14998 /* We share the same string buffer as the original regexp, on which we
14999 hold a reference count, incremented when mother_re is set below.
15000 The string pointer is copied here, being part of the regexp struct.
15002 memcpy(&(ret->xpv_cur), &(r->xpv_cur),
15003 sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
15005 const I32 npar = r->nparens+1;
15006 Newx(ret->offs, npar, regexp_paren_pair);
15007 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
15010 Newx(ret->substrs, 1, struct reg_substr_data);
15011 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
15013 SvREFCNT_inc_void(ret->anchored_substr);
15014 SvREFCNT_inc_void(ret->anchored_utf8);
15015 SvREFCNT_inc_void(ret->float_substr);
15016 SvREFCNT_inc_void(ret->float_utf8);
15018 /* check_substr and check_utf8, if non-NULL, point to either their
15019 anchored or float namesakes, and don't hold a second reference. */
15021 RX_MATCH_COPIED_off(ret_x);
15022 #ifdef PERL_ANY_COW
15023 ret->saved_copy = NULL;
15025 ret->mother_re = ReREFCNT_inc(r->mother_re ? r->mother_re : rx);
15026 SvREFCNT_inc_void(ret->qr_anoncv);
15032 /* regfree_internal()
15034 Free the private data in a regexp. This is overloadable by
15035 extensions. Perl takes care of the regexp structure in pregfree(),
15036 this covers the *pprivate pointer which technically perl doesn't
15037 know about, however of course we have to handle the
15038 regexp_internal structure when no extension is in use.
15040 Note this is called before freeing anything in the regexp
15045 Perl_regfree_internal(pTHX_ REGEXP * const rx)
15048 struct regexp *const r = ReANY(rx);
15049 RXi_GET_DECL(r,ri);
15050 GET_RE_DEBUG_FLAGS_DECL;
15052 PERL_ARGS_ASSERT_REGFREE_INTERNAL;
15058 SV *dsv= sv_newmortal();
15059 RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
15060 dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
15061 PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
15062 PL_colors[4],PL_colors[5],s);
15065 #ifdef RE_TRACK_PATTERN_OFFSETS
15067 Safefree(ri->u.offsets); /* 20010421 MJD */
15069 if (ri->code_blocks) {
15071 for (n = 0; n < ri->num_code_blocks; n++)
15072 SvREFCNT_dec(ri->code_blocks[n].src_regex);
15073 Safefree(ri->code_blocks);
15077 int n = ri->data->count;
15080 /* If you add a ->what type here, update the comment in regcomp.h */
15081 switch (ri->data->what[n]) {
15087 SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
15090 Safefree(ri->data->data[n]);
15096 { /* Aho Corasick add-on structure for a trie node.
15097 Used in stclass optimization only */
15099 reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
15101 refcount = --aho->refcount;
15104 PerlMemShared_free(aho->states);
15105 PerlMemShared_free(aho->fail);
15106 /* do this last!!!! */
15107 PerlMemShared_free(ri->data->data[n]);
15108 PerlMemShared_free(ri->regstclass);
15114 /* trie structure. */
15116 reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
15118 refcount = --trie->refcount;
15121 PerlMemShared_free(trie->charmap);
15122 PerlMemShared_free(trie->states);
15123 PerlMemShared_free(trie->trans);
15125 PerlMemShared_free(trie->bitmap);
15127 PerlMemShared_free(trie->jump);
15128 PerlMemShared_free(trie->wordinfo);
15129 /* do this last!!!! */
15130 PerlMemShared_free(ri->data->data[n]);
15135 Perl_croak(aTHX_ "panic: regfree data code '%c'", ri->data->what[n]);
15138 Safefree(ri->data->what);
15139 Safefree(ri->data);
15145 #define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
15146 #define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
15147 #define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
15150 re_dup - duplicate a regexp.
15152 This routine is expected to clone a given regexp structure. It is only
15153 compiled under USE_ITHREADS.
15155 After all of the core data stored in struct regexp is duplicated
15156 the regexp_engine.dupe method is used to copy any private data
15157 stored in the *pprivate pointer. This allows extensions to handle
15158 any duplication it needs to do.
15160 See pregfree() and regfree_internal() if you change anything here.
15162 #if defined(USE_ITHREADS)
15163 #ifndef PERL_IN_XSUB_RE
15165 Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
15169 const struct regexp *r = ReANY(sstr);
15170 struct regexp *ret = ReANY(dstr);
15172 PERL_ARGS_ASSERT_RE_DUP_GUTS;
15174 npar = r->nparens+1;
15175 Newx(ret->offs, npar, regexp_paren_pair);
15176 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
15178 if (ret->substrs) {
15179 /* Do it this way to avoid reading from *r after the StructCopy().
15180 That way, if any of the sv_dup_inc()s dislodge *r from the L1
15181 cache, it doesn't matter. */
15182 const bool anchored = r->check_substr
15183 ? r->check_substr == r->anchored_substr
15184 : r->check_utf8 == r->anchored_utf8;
15185 Newx(ret->substrs, 1, struct reg_substr_data);
15186 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
15188 ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
15189 ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
15190 ret->float_substr = sv_dup_inc(ret->float_substr, param);
15191 ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
15193 /* check_substr and check_utf8, if non-NULL, point to either their
15194 anchored or float namesakes, and don't hold a second reference. */
15196 if (ret->check_substr) {
15198 assert(r->check_utf8 == r->anchored_utf8);
15199 ret->check_substr = ret->anchored_substr;
15200 ret->check_utf8 = ret->anchored_utf8;
15202 assert(r->check_substr == r->float_substr);
15203 assert(r->check_utf8 == r->float_utf8);
15204 ret->check_substr = ret->float_substr;
15205 ret->check_utf8 = ret->float_utf8;
15207 } else if (ret->check_utf8) {
15209 ret->check_utf8 = ret->anchored_utf8;
15211 ret->check_utf8 = ret->float_utf8;
15216 RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
15217 ret->qr_anoncv = MUTABLE_CV(sv_dup_inc((const SV *)ret->qr_anoncv, param));
15220 RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
15222 if (RX_MATCH_COPIED(dstr))
15223 ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen);
15225 ret->subbeg = NULL;
15226 #ifdef PERL_ANY_COW
15227 ret->saved_copy = NULL;
15230 /* Whether mother_re be set or no, we need to copy the string. We
15231 cannot refrain from copying it when the storage points directly to
15232 our mother regexp, because that's
15233 1: a buffer in a different thread
15234 2: something we no longer hold a reference on
15235 so we need to copy it locally. */
15236 RX_WRAPPED(dstr) = SAVEPVN(RX_WRAPPED(sstr), SvCUR(sstr)+1);
15237 ret->mother_re = NULL;
15240 #endif /* PERL_IN_XSUB_RE */
15245 This is the internal complement to regdupe() which is used to copy
15246 the structure pointed to by the *pprivate pointer in the regexp.
15247 This is the core version of the extension overridable cloning hook.
15248 The regexp structure being duplicated will be copied by perl prior
15249 to this and will be provided as the regexp *r argument, however
15250 with the /old/ structures pprivate pointer value. Thus this routine
15251 may override any copying normally done by perl.
15253 It returns a pointer to the new regexp_internal structure.
15257 Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
15260 struct regexp *const r = ReANY(rx);
15261 regexp_internal *reti;
15263 RXi_GET_DECL(r,ri);
15265 PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
15269 Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode), char, regexp_internal);
15270 Copy(ri->program, reti->program, len+1, regnode);
15272 reti->num_code_blocks = ri->num_code_blocks;
15273 if (ri->code_blocks) {
15275 Newxc(reti->code_blocks, ri->num_code_blocks, struct reg_code_block,
15276 struct reg_code_block);
15277 Copy(ri->code_blocks, reti->code_blocks, ri->num_code_blocks,
15278 struct reg_code_block);
15279 for (n = 0; n < ri->num_code_blocks; n++)
15280 reti->code_blocks[n].src_regex = (REGEXP*)
15281 sv_dup_inc((SV*)(ri->code_blocks[n].src_regex), param);
15284 reti->code_blocks = NULL;
15286 reti->regstclass = NULL;
15289 struct reg_data *d;
15290 const int count = ri->data->count;
15293 Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
15294 char, struct reg_data);
15295 Newx(d->what, count, U8);
15298 for (i = 0; i < count; i++) {
15299 d->what[i] = ri->data->what[i];
15300 switch (d->what[i]) {
15301 /* see also regcomp.h and regfree_internal() */
15302 case 'a': /* actually an AV, but the dup function is identical. */
15306 case 'u': /* actually an HV, but the dup function is identical. */
15307 d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
15310 /* This is cheating. */
15311 Newx(d->data[i], 1, struct regnode_charclass_class);
15312 StructCopy(ri->data->data[i], d->data[i],
15313 struct regnode_charclass_class);
15314 reti->regstclass = (regnode*)d->data[i];
15317 /* Trie stclasses are readonly and can thus be shared
15318 * without duplication. We free the stclass in pregfree
15319 * when the corresponding reg_ac_data struct is freed.
15321 reti->regstclass= ri->regstclass;
15325 ((reg_trie_data*)ri->data->data[i])->refcount++;
15330 d->data[i] = ri->data->data[i];
15333 Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'", ri->data->what[i]);
15342 reti->name_list_idx = ri->name_list_idx;
15344 #ifdef RE_TRACK_PATTERN_OFFSETS
15345 if (ri->u.offsets) {
15346 Newx(reti->u.offsets, 2*len+1, U32);
15347 Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
15350 SetProgLen(reti,len);
15353 return (void*)reti;
15356 #endif /* USE_ITHREADS */
15358 #ifndef PERL_IN_XSUB_RE
15361 - regnext - dig the "next" pointer out of a node
15364 Perl_regnext(pTHX_ regnode *p)
15372 if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */
15373 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(p), (int)REGNODE_MAX);
15376 offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
15385 S_re_croak2(pTHX_ const char* pat1,const char* pat2,...)
15388 STRLEN l1 = strlen(pat1);
15389 STRLEN l2 = strlen(pat2);
15392 const char *message;
15394 PERL_ARGS_ASSERT_RE_CROAK2;
15400 Copy(pat1, buf, l1 , char);
15401 Copy(pat2, buf + l1, l2 , char);
15402 buf[l1 + l2] = '\n';
15403 buf[l1 + l2 + 1] = '\0';
15405 /* ANSI variant takes additional second argument */
15406 va_start(args, pat2);
15410 msv = vmess(buf, &args);
15412 message = SvPV_const(msv,l1);
15415 Copy(message, buf, l1 , char);
15416 buf[l1-1] = '\0'; /* Overwrite \n */
15417 Perl_croak(aTHX_ "%s", buf);
15420 /* XXX Here's a total kludge. But we need to re-enter for swash routines. */
15422 #ifndef PERL_IN_XSUB_RE
15424 Perl_save_re_context(pTHX)
15428 struct re_save_state *state;
15430 SAVEVPTR(PL_curcop);
15431 SSGROW(SAVESTACK_ALLOC_FOR_RE_SAVE_STATE + 1);
15433 state = (struct re_save_state *)(PL_savestack + PL_savestack_ix);
15434 PL_savestack_ix += SAVESTACK_ALLOC_FOR_RE_SAVE_STATE;
15435 SSPUSHUV(SAVEt_RE_STATE);
15437 Copy(&PL_reg_state, state, 1, struct re_save_state);
15439 PL_reg_oldsaved = NULL;
15440 PL_reg_oldsavedlen = 0;
15441 PL_reg_oldsavedoffset = 0;
15442 PL_reg_oldsavedcoffset = 0;
15443 PL_reg_maxiter = 0;
15444 PL_reg_leftiter = 0;
15445 PL_reg_poscache = NULL;
15446 PL_reg_poscache_size = 0;
15447 #ifdef PERL_ANY_COW
15451 /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
15453 const REGEXP * const rx = PM_GETRE(PL_curpm);
15456 for (i = 1; i <= RX_NPARENS(rx); i++) {
15457 char digits[TYPE_CHARS(long)];
15458 const STRLEN len = my_snprintf(digits, sizeof(digits), "%lu", (long)i);
15459 GV *const *const gvp
15460 = (GV**)hv_fetch(PL_defstash, digits, len, 0);
15463 GV * const gv = *gvp;
15464 if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
15476 S_put_byte(pTHX_ SV *sv, int c)
15478 PERL_ARGS_ASSERT_PUT_BYTE;
15480 /* Our definition of isPRINT() ignores locales, so only bytes that are
15481 not part of UTF-8 are considered printable. I assume that the same
15482 holds for UTF-EBCDIC.
15483 Also, code point 255 is not printable in either (it's E0 in EBCDIC,
15484 which Wikipedia says:
15486 EO, or Eight Ones, is an 8-bit EBCDIC character code represented as all
15487 ones (binary 1111 1111, hexadecimal FF). It is similar, but not
15488 identical, to the ASCII delete (DEL) or rubout control character. ...
15489 it is typically mapped to hexadecimal code 9F, in order to provide a
15490 unique character mapping in both directions)
15492 So the old condition can be simplified to !isPRINT(c) */
15495 Perl_sv_catpvf(aTHX_ sv, "\\x%02x", c);
15498 Perl_sv_catpvf(aTHX_ sv, "\\x{%x}", c);
15502 const char string = c;
15503 if (c == '-' || c == ']' || c == '\\' || c == '^')
15504 sv_catpvs(sv, "\\");
15505 sv_catpvn(sv, &string, 1);
15510 #define CLEAR_OPTSTART \
15511 if (optstart) STMT_START { \
15512 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
15516 #define DUMPUNTIL(b,e) CLEAR_OPTSTART; node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
15518 STATIC const regnode *
15519 S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
15520 const regnode *last, const regnode *plast,
15521 SV* sv, I32 indent, U32 depth)
15524 U8 op = PSEUDO; /* Arbitrary non-END op. */
15525 const regnode *next;
15526 const regnode *optstart= NULL;
15528 RXi_GET_DECL(r,ri);
15529 GET_RE_DEBUG_FLAGS_DECL;
15531 PERL_ARGS_ASSERT_DUMPUNTIL;
15533 #ifdef DEBUG_DUMPUNTIL
15534 PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
15535 last ? last-start : 0,plast ? plast-start : 0);
15538 if (plast && plast < last)
15541 while (PL_regkind[op] != END && (!last || node < last)) {
15542 /* While that wasn't END last time... */
15545 if (op == CLOSE || op == WHILEM)
15547 next = regnext((regnode *)node);
15550 if (OP(node) == OPTIMIZED) {
15551 if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
15558 regprop(r, sv, node);
15559 PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
15560 (int)(2*indent + 1), "", SvPVX_const(sv));
15562 if (OP(node) != OPTIMIZED) {
15563 if (next == NULL) /* Next ptr. */
15564 PerlIO_printf(Perl_debug_log, " (0)");
15565 else if (PL_regkind[(U8)op] == BRANCH && PL_regkind[OP(next)] != BRANCH )
15566 PerlIO_printf(Perl_debug_log, " (FAIL)");
15568 PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
15569 (void)PerlIO_putc(Perl_debug_log, '\n');
15573 if (PL_regkind[(U8)op] == BRANCHJ) {
15576 const regnode *nnode = (OP(next) == LONGJMP
15577 ? regnext((regnode *)next)
15579 if (last && nnode > last)
15581 DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
15584 else if (PL_regkind[(U8)op] == BRANCH) {
15586 DUMPUNTIL(NEXTOPER(node), next);
15588 else if ( PL_regkind[(U8)op] == TRIE ) {
15589 const regnode *this_trie = node;
15590 const char op = OP(node);
15591 const U32 n = ARG(node);
15592 const reg_ac_data * const ac = op>=AHOCORASICK ?
15593 (reg_ac_data *)ri->data->data[n] :
15595 const reg_trie_data * const trie =
15596 (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
15598 AV *const trie_words = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
15600 const regnode *nextbranch= NULL;
15603 for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
15604 SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
15606 PerlIO_printf(Perl_debug_log, "%*s%s ",
15607 (int)(2*(indent+3)), "",
15608 elem_ptr ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr), SvCUR(*elem_ptr), 60,
15609 PL_colors[0], PL_colors[1],
15610 (SvUTF8(*elem_ptr) ? PERL_PV_ESCAPE_UNI : 0) |
15611 PERL_PV_PRETTY_ELLIPSES |
15612 PERL_PV_PRETTY_LTGT
15617 U16 dist= trie->jump[word_idx+1];
15618 PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
15619 (UV)((dist ? this_trie + dist : next) - start));
15622 nextbranch= this_trie + trie->jump[0];
15623 DUMPUNTIL(this_trie + dist, nextbranch);
15625 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
15626 nextbranch= regnext((regnode *)nextbranch);
15628 PerlIO_printf(Perl_debug_log, "\n");
15631 if (last && next > last)
15636 else if ( op == CURLY ) { /* "next" might be very big: optimizer */
15637 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
15638 NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
15640 else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
15642 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
15644 else if ( op == PLUS || op == STAR) {
15645 DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
15647 else if (PL_regkind[(U8)op] == ANYOF) {
15648 /* arglen 1 + class block */
15649 node += 1 + ((ANYOF_FLAGS(node) & ANYOF_CLASS)
15650 ? ANYOF_CLASS_SKIP : ANYOF_SKIP);
15651 node = NEXTOPER(node);
15653 else if (PL_regkind[(U8)op] == EXACT) {
15654 /* Literal string, where present. */
15655 node += NODE_SZ_STR(node) - 1;
15656 node = NEXTOPER(node);
15659 node = NEXTOPER(node);
15660 node += regarglen[(U8)op];
15662 if (op == CURLYX || op == OPEN)
15666 #ifdef DEBUG_DUMPUNTIL
15667 PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
15672 #endif /* DEBUGGING */
15676 * c-indentation-style: bsd
15677 * c-basic-offset: 4
15678 * indent-tabs-mode: nil
15681 * ex: set ts=8 sts=4 sw=4 et: