src/5022000/inline_invlist.c
src/5022000/regcomp.c
src/5022000/regexec.c
+src/5023000/dquote_static.c
+src/5023000/inline_invlist.c
+src/5023000/regcomp.c
+src/5023000/regexec.c
+src/5023001/dquote_static.c
+src/5023001/inline_invlist.c
+src/5023001/regcomp.c
+src/5023001/regexec.c
src/update.pl
t/00-load.t
t/05-keys.t
--- /dev/null
+/* dquote_static.c
+ *
+ * This file contains static functions that are related to
+ * parsing double-quotish expressions, but are used in more than
+ * one file.
+ *
+ * It is currently #included by regcomp.c and toke.c.
+*/
+
+#define PERL_IN_DQUOTE_STATIC_C
+#include "embed.h"
+
+/*
+ - regcurly - a little FSA that accepts {\d+,?\d*}
+ Pulled from regcomp.c.
+ */
+PERL_STATIC_INLINE I32
+S_regcurly(const char *s)
+{
+ PERL_ARGS_ASSERT_REGCURLY;
+
+ if (*s++ != '{')
+ return FALSE;
+ if (!isDIGIT(*s))
+ return FALSE;
+ while (isDIGIT(*s))
+ s++;
+ if (*s == ',') {
+ s++;
+ while (isDIGIT(*s))
+ s++;
+ }
+
+ return *s == '}';
+}
+
+/* XXX Add documentation after final interface and behavior is decided */
+/* May want to show context for error, so would pass Perl_bslash_c(pTHX_ const char* current, const char* start, const bool output_warning)
+ U8 source = *current;
+*/
+
+STATIC char
+S_grok_bslash_c(pTHX_ const char source, const bool output_warning)
+{
+
+ U8 result;
+
+ if (! isPRINT_A(source)) {
+ Perl_croak(aTHX_ "%s",
+ "Character following \"\\c\" must be printable ASCII");
+ }
+ else if (source == '{') {
+ const char control = toCTRL('{');
+ if (isPRINT_A(control)) {
+ /* diag_listed_as: Use "%s" instead of "%s" */
+ Perl_croak(aTHX_ "Use \"%c\" instead of \"\\c{\"", control);
+ }
+ else {
+ Perl_croak(aTHX_ "Sequence \"\\c{\" invalid");
+ }
+ }
+
+ result = toCTRL(source);
+ if (output_warning && isPRINT_A(result)) {
+ U8 clearer[3];
+ U8 i = 0;
+ if (! isWORDCHAR(result)) {
+ clearer[i++] = '\\';
+ }
+ clearer[i++] = result;
+ clearer[i++] = '\0';
+
+ Perl_ck_warner(aTHX_ packWARN(WARN_SYNTAX),
+ "\"\\c%c\" is more clearly written simply as \"%s\"",
+ source,
+ clearer);
+ }
+
+ return result;
+}
+
+STATIC bool
+S_grok_bslash_o(pTHX_ char **s, UV *uv, const char** error_msg,
+ const bool output_warning, const bool strict,
+ const bool silence_non_portable,
+ const bool UTF)
+{
+
+/* Documentation to be supplied when interface nailed down finally
+ * This returns FALSE if there is an error which the caller need not recover
+ * from; otherwise TRUE. In either case the caller should look at *len [???].
+ * It guarantees that the returned codepoint, *uv, when expressed as
+ * utf8 bytes, would fit within the skipped "\o{...}" bytes.
+ * On input:
+ * s is the address of a pointer to a NULL terminated string that begins
+ * with 'o', and the previous character was a backslash. At exit, *s
+ * will be advanced to the byte just after those absorbed by this
+ * function. Hence the caller can continue parsing from there. In
+ * the case of an error, this routine has generally positioned *s to
+ * point just to the right of the first bad spot, so that a message
+ * that has a "<--" to mark the spot will be correctly positioned.
+ * uv points to a UV that will hold the output value, valid only if the
+ * return from the function is TRUE
+ * error_msg is a pointer that will be set to an internal buffer giving an
+ * error message upon failure (the return is FALSE). Untouched if
+ * function succeeds
+ * output_warning says whether to output any warning messages, or suppress
+ * them
+ * strict is true if this should fail instead of warn if there are
+ * non-octal digits within the braces
+ * silence_non_portable is true if to suppress warnings about the code
+ * point returned being too large to fit on all platforms.
+ * UTF is true iff the string *s is encoded in UTF-8.
+ */
+ char* e;
+ STRLEN numbers_len;
+ I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
+ | PERL_SCAN_DISALLOW_PREFIX
+ /* XXX Until the message is improved in grok_oct, handle errors
+ * ourselves */
+ | PERL_SCAN_SILENT_ILLDIGIT;
+
+#ifdef DEBUGGING
+ char *start = *s - 1;
+ assert(*start == '\\');
+#endif
+
+ PERL_ARGS_ASSERT_GROK_BSLASH_O;
+
+
+ assert(**s == 'o');
+ (*s)++;
+
+ if (**s != '{') {
+ *error_msg = "Missing braces on \\o{}";
+ return FALSE;
+ }
+
+ e = strchr(*s, '}');
+ if (!e) {
+ (*s)++; /* Move past the '{' */
+ while (isOCTAL(**s)) { /* Position beyond the legal digits */
+ (*s)++;
+ }
+ *error_msg = "Missing right brace on \\o{";
+ return FALSE;
+ }
+
+ (*s)++; /* Point to expected first digit (could be first byte of utf8
+ sequence if not a digit) */
+ numbers_len = e - *s;
+ if (numbers_len == 0) {
+ (*s)++; /* Move past the } */
+ *error_msg = "Number with no digits";
+ return FALSE;
+ }
+
+ if (silence_non_portable) {
+ flags |= PERL_SCAN_SILENT_NON_PORTABLE;
+ }
+
+ *uv = grok_oct(*s, &numbers_len, &flags, NULL);
+ /* Note that if has non-octal, will ignore everything starting with that up
+ * to the '}' */
+
+ if (numbers_len != (STRLEN) (e - *s)) {
+ if (strict) {
+ *s += numbers_len;
+ *s += (UTF) ? UTF8SKIP(*s) : (STRLEN) 1;
+ *error_msg = "Non-octal character";
+ return FALSE;
+ }
+ else if (output_warning) {
+ Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
+ /* diag_listed_as: Non-octal character '%c'. Resolved as "%s" */
+ "Non-octal character '%c'. Resolved as \"\\o{%.*s}\"",
+ *(*s + numbers_len),
+ (int) numbers_len,
+ *s);
+ }
+ }
+
+ /* Return past the '}' */
+ *s = e + 1;
+
+ /* guarantee replacing "\o{...}" with utf8 bytes fits within
+ * existing space */
+ assert(OFFUNISKIP(*uv) < *s - start);
+
+ return TRUE;
+}
+
+PERL_STATIC_INLINE bool
+S_grok_bslash_x(pTHX_ char **s, UV *uv, const char** error_msg,
+ const bool output_warning, const bool strict,
+ const bool silence_non_portable,
+ const bool UTF)
+{
+
+/* Documentation to be supplied when interface nailed down finally
+ * This returns FALSE if there is an error which the caller need not recover
+ * from; otherwise TRUE.
+ * It guarantees that the returned codepoint, *uv, when expressed as
+ * utf8 bytes, would fit within the skipped "\x{...}" bytes.
+ *
+ * On input:
+ * s is the address of a pointer to a NULL terminated string that begins
+ * with 'x', and the previous character was a backslash. At exit, *s
+ * will be advanced to the byte just after those absorbed by this
+ * function. Hence the caller can continue parsing from there. In
+ * the case of an error, this routine has generally positioned *s to
+ * point just to the right of the first bad spot, so that a message
+ * that has a "<--" to mark the spot will be correctly positioned.
+ * uv points to a UV that will hold the output value, valid only if the
+ * return from the function is TRUE
+ * error_msg is a pointer that will be set to an internal buffer giving an
+ * error message upon failure (the return is FALSE). Untouched if
+ * function succeeds
+ * output_warning says whether to output any warning messages, or suppress
+ * them
+ * strict is true if anything out of the ordinary should cause this to
+ * fail instead of warn or be silent. For example, it requires
+ * exactly 2 digits following the \x (when there are no braces).
+ * 3 digits could be a mistake, so is forbidden in this mode.
+ * silence_non_portable is true if to suppress warnings about the code
+ * point returned being too large to fit on all platforms.
+ * UTF is true iff the string *s is encoded in UTF-8.
+ */
+ char* e;
+ STRLEN numbers_len;
+ I32 flags = PERL_SCAN_DISALLOW_PREFIX;
+#ifdef DEBUGGING
+ char *start = *s - 1;
+ assert(*start == '\\');
+#endif
+
+ PERL_ARGS_ASSERT_GROK_BSLASH_X;
+
+ assert(**s == 'x');
+ (*s)++;
+
+ if (strict || ! output_warning) {
+ flags |= PERL_SCAN_SILENT_ILLDIGIT;
+ }
+
+ if (**s != '{') {
+ STRLEN len = (strict) ? 3 : 2;
+
+ *uv = grok_hex(*s, &len, &flags, NULL);
+ *s += len;
+ if (strict && len != 2) {
+ if (len < 2) {
+ *s += (UTF) ? UTF8SKIP(*s) : 1;
+ *error_msg = "Non-hex character";
+ }
+ else {
+ *error_msg = "Use \\x{...} for more than two hex characters";
+ }
+ return FALSE;
+ }
+ goto ok;
+ }
+
+ e = strchr(*s, '}');
+ if (!e) {
+ (*s)++; /* Move past the '{' */
+ while (isXDIGIT(**s)) { /* Position beyond the legal digits */
+ (*s)++;
+ }
+ /* XXX The corresponding message above for \o is just '\\o{'; other
+ * messages for other constructs include the '}', so are inconsistent.
+ */
+ *error_msg = "Missing right brace on \\x{}";
+ return FALSE;
+ }
+
+ (*s)++; /* Point to expected first digit (could be first byte of utf8
+ sequence if not a digit) */
+ numbers_len = e - *s;
+ if (numbers_len == 0) {
+ if (strict) {
+ (*s)++; /* Move past the } */
+ *error_msg = "Number with no digits";
+ return FALSE;
+ }
+ *s = e + 1;
+ *uv = 0;
+ goto ok;
+ }
+
+ flags |= PERL_SCAN_ALLOW_UNDERSCORES;
+ if (silence_non_portable) {
+ flags |= PERL_SCAN_SILENT_NON_PORTABLE;
+ }
+
+ *uv = grok_hex(*s, &numbers_len, &flags, NULL);
+ /* Note that if has non-hex, will ignore everything starting with that up
+ * to the '}' */
+
+ if (strict && numbers_len != (STRLEN) (e - *s)) {
+ *s += numbers_len;
+ *s += (UTF) ? UTF8SKIP(*s) : 1;
+ *error_msg = "Non-hex character";
+ return FALSE;
+ }
+
+ /* Return past the '}' */
+ *s = e + 1;
+
+ ok:
+ /* guarantee replacing "\x{...}" with utf8 bytes fits within
+ * existing space */
+ assert(OFFUNISKIP(*uv) < *s - start);
+ return TRUE;
+}
+
+STATIC char*
+S_form_short_octal_warning(pTHX_
+ const char * const s, /* Points to first non-octal */
+ const STRLEN len /* Length of octals string, so
+ (s-len) points to first
+ octal */
+) {
+ /* Return a character string consisting of a warning message for when a
+ * string constant in octal is weird, like "\078". */
+
+ const char * sans_leading_zeros = s - len;
+
+ PERL_ARGS_ASSERT_FORM_SHORT_OCTAL_WARNING;
+
+ assert(*s == '8' || *s == '9');
+
+ /* Remove the leading zeros, retaining one zero so won't be zero length */
+ while (*sans_leading_zeros == '0') sans_leading_zeros++;
+ if (sans_leading_zeros == s) {
+ sans_leading_zeros--;
+ }
+
+ return Perl_form(aTHX_
+ "'%.*s' resolved to '\\o{%.*s}%c'",
+ (int) (len + 2), s - len - 1,
+ (int) (s - sans_leading_zeros), sans_leading_zeros,
+ *s);
+}
+
+/*
+ * ex: set ts=8 sts=4 sw=4 et:
+ */
--- /dev/null
+/* inline_invlist.c
+ *
+ * Copyright (C) 2012 by Larry Wall and others
+ *
+ * You may distribute under the terms of either the GNU General Public
+ * License or the Artistic License, as specified in the README file.
+ */
+
+#if defined(PERL_IN_UTF8_C) || defined(PERL_IN_REGCOMP_C) || defined(PERL_IN_REGEXEC_C)
+
+/* An element is in an inversion list iff its index is even numbered: 0, 2, 4,
+ * etc */
+#define ELEMENT_RANGE_MATCHES_INVLIST(i) (! ((i) & 1))
+#define PREV_RANGE_MATCHES_INVLIST(i) (! ELEMENT_RANGE_MATCHES_INVLIST(i))
+
+/* This converts to/from our UVs to what the SV code is expecting: bytes. */
+#define TO_INTERNAL_SIZE(x) ((x) * sizeof(UV))
+#define FROM_INTERNAL_SIZE(x) ((x)/ sizeof(UV))
+
+PERL_STATIC_INLINE bool*
+S_get_invlist_offset_addr(SV* invlist)
+{
+ /* Return the address of the field that says whether the inversion list is
+ * offset (it contains 1) or not (contains 0) */
+ PERL_ARGS_ASSERT_GET_INVLIST_OFFSET_ADDR;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ return &(((XINVLIST*) SvANY(invlist))->is_offset);
+}
+
+PERL_STATIC_INLINE UV
+S__invlist_len(SV* const invlist)
+{
+ /* Returns the current number of elements stored in the inversion list's
+ * array */
+
+ PERL_ARGS_ASSERT__INVLIST_LEN;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ return (SvCUR(invlist) == 0)
+ ? 0
+ : FROM_INTERNAL_SIZE(SvCUR(invlist)) - *get_invlist_offset_addr(invlist);
+}
+
+PERL_STATIC_INLINE bool
+S__invlist_contains_cp(SV* const invlist, const UV cp)
+{
+ /* Does <invlist> contain code point <cp> as part of the set? */
+
+ IV index = _invlist_search(invlist, cp);
+
+ PERL_ARGS_ASSERT__INVLIST_CONTAINS_CP;
+
+ return index >= 0 && ELEMENT_RANGE_MATCHES_INVLIST(index);
+}
+
+PERL_STATIC_INLINE UV*
+S_invlist_array(SV* const invlist)
+{
+ /* Returns the pointer to the inversion list's array. Every time the
+ * length changes, this needs to be called in case malloc or realloc moved
+ * it */
+
+ PERL_ARGS_ASSERT_INVLIST_ARRAY;
+
+ /* Must not be empty. If these fail, you probably didn't check for <len>
+ * being non-zero before trying to get the array */
+ assert(_invlist_len(invlist));
+
+ /* The very first element always contains zero, The array begins either
+ * there, or if the inversion list is offset, at the element after it.
+ * The offset header field determines which; it contains 0 or 1 to indicate
+ * how much additionally to add */
+ assert(0 == *(SvPVX(invlist)));
+ return ((UV *) SvPVX(invlist) + *get_invlist_offset_addr(invlist));
+}
+
+# if defined(PERL_IN_UTF8_C) || defined(PERL_IN_REGEXEC_C)
+
+/* These symbols are only needed later in regcomp.c */
+# undef TO_INTERNAL_SIZE
+# undef FROM_INTERNAL_SIZE
+# endif
+
+#endif
--- /dev/null
+/* dquote_static.c
+ *
+ * This file contains static functions that are related to
+ * parsing double-quotish expressions, but are used in more than
+ * one file.
+ *
+ * It is currently #included by regcomp.c and toke.c.
+*/
+
+#define PERL_IN_DQUOTE_STATIC_C
+#include "embed.h"
+
+/*
+ - regcurly - a little FSA that accepts {\d+,?\d*}
+ Pulled from regcomp.c.
+ */
+PERL_STATIC_INLINE I32
+S_regcurly(const char *s)
+{
+ PERL_ARGS_ASSERT_REGCURLY;
+
+ if (*s++ != '{')
+ return FALSE;
+ if (!isDIGIT(*s))
+ return FALSE;
+ while (isDIGIT(*s))
+ s++;
+ if (*s == ',') {
+ s++;
+ while (isDIGIT(*s))
+ s++;
+ }
+
+ return *s == '}';
+}
+
+/* XXX Add documentation after final interface and behavior is decided */
+/* May want to show context for error, so would pass Perl_bslash_c(pTHX_ const char* current, const char* start, const bool output_warning)
+ U8 source = *current;
+*/
+
+STATIC char
+S_grok_bslash_c(pTHX_ const char source, const bool output_warning)
+{
+
+ U8 result;
+
+ if (! isPRINT_A(source)) {
+ Perl_croak(aTHX_ "%s",
+ "Character following \"\\c\" must be printable ASCII");
+ }
+ else if (source == '{') {
+ const char control = toCTRL('{');
+ if (isPRINT_A(control)) {
+ /* diag_listed_as: Use "%s" instead of "%s" */
+ Perl_croak(aTHX_ "Use \"%c\" instead of \"\\c{\"", control);
+ }
+ else {
+ Perl_croak(aTHX_ "Sequence \"\\c{\" invalid");
+ }
+ }
+
+ result = toCTRL(source);
+ if (output_warning && isPRINT_A(result)) {
+ U8 clearer[3];
+ U8 i = 0;
+ if (! isWORDCHAR(result)) {
+ clearer[i++] = '\\';
+ }
+ clearer[i++] = result;
+ clearer[i++] = '\0';
+
+ Perl_ck_warner(aTHX_ packWARN(WARN_SYNTAX),
+ "\"\\c%c\" is more clearly written simply as \"%s\"",
+ source,
+ clearer);
+ }
+
+ return result;
+}
+
+STATIC bool
+S_grok_bslash_o(pTHX_ char **s, UV *uv, const char** error_msg,
+ const bool output_warning, const bool strict,
+ const bool silence_non_portable,
+ const bool UTF)
+{
+
+/* Documentation to be supplied when interface nailed down finally
+ * This returns FALSE if there is an error which the caller need not recover
+ * from; otherwise TRUE. In either case the caller should look at *len [???].
+ * It guarantees that the returned codepoint, *uv, when expressed as
+ * utf8 bytes, would fit within the skipped "\o{...}" bytes.
+ * On input:
+ * s is the address of a pointer to a NULL terminated string that begins
+ * with 'o', and the previous character was a backslash. At exit, *s
+ * will be advanced to the byte just after those absorbed by this
+ * function. Hence the caller can continue parsing from there. In
+ * the case of an error, this routine has generally positioned *s to
+ * point just to the right of the first bad spot, so that a message
+ * that has a "<--" to mark the spot will be correctly positioned.
+ * uv points to a UV that will hold the output value, valid only if the
+ * return from the function is TRUE
+ * error_msg is a pointer that will be set to an internal buffer giving an
+ * error message upon failure (the return is FALSE). Untouched if
+ * function succeeds
+ * output_warning says whether to output any warning messages, or suppress
+ * them
+ * strict is true if this should fail instead of warn if there are
+ * non-octal digits within the braces
+ * silence_non_portable is true if to suppress warnings about the code
+ * point returned being too large to fit on all platforms.
+ * UTF is true iff the string *s is encoded in UTF-8.
+ */
+ char* e;
+ STRLEN numbers_len;
+ I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
+ | PERL_SCAN_DISALLOW_PREFIX
+ /* XXX Until the message is improved in grok_oct, handle errors
+ * ourselves */
+ | PERL_SCAN_SILENT_ILLDIGIT;
+
+#ifdef DEBUGGING
+ char *start = *s - 1;
+ assert(*start == '\\');
+#endif
+
+ PERL_ARGS_ASSERT_GROK_BSLASH_O;
+
+
+ assert(**s == 'o');
+ (*s)++;
+
+ if (**s != '{') {
+ *error_msg = "Missing braces on \\o{}";
+ return FALSE;
+ }
+
+ e = strchr(*s, '}');
+ if (!e) {
+ (*s)++; /* Move past the '{' */
+ while (isOCTAL(**s)) { /* Position beyond the legal digits */
+ (*s)++;
+ }
+ *error_msg = "Missing right brace on \\o{";
+ return FALSE;
+ }
+
+ (*s)++; /* Point to expected first digit (could be first byte of utf8
+ sequence if not a digit) */
+ numbers_len = e - *s;
+ if (numbers_len == 0) {
+ (*s)++; /* Move past the } */
+ *error_msg = "Number with no digits";
+ return FALSE;
+ }
+
+ if (silence_non_portable) {
+ flags |= PERL_SCAN_SILENT_NON_PORTABLE;
+ }
+
+ *uv = grok_oct(*s, &numbers_len, &flags, NULL);
+ /* Note that if has non-octal, will ignore everything starting with that up
+ * to the '}' */
+
+ if (numbers_len != (STRLEN) (e - *s)) {
+ if (strict) {
+ *s += numbers_len;
+ *s += (UTF) ? UTF8SKIP(*s) : (STRLEN) 1;
+ *error_msg = "Non-octal character";
+ return FALSE;
+ }
+ else if (output_warning) {
+ Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
+ /* diag_listed_as: Non-octal character '%c'. Resolved as "%s" */
+ "Non-octal character '%c'. Resolved as \"\\o{%.*s}\"",
+ *(*s + numbers_len),
+ (int) numbers_len,
+ *s);
+ }
+ }
+
+ /* Return past the '}' */
+ *s = e + 1;
+
+ /* guarantee replacing "\o{...}" with utf8 bytes fits within
+ * existing space */
+ assert(OFFUNISKIP(*uv) < *s - start);
+
+ return TRUE;
+}
+
+PERL_STATIC_INLINE bool
+S_grok_bslash_x(pTHX_ char **s, UV *uv, const char** error_msg,
+ const bool output_warning, const bool strict,
+ const bool silence_non_portable,
+ const bool UTF)
+{
+
+/* Documentation to be supplied when interface nailed down finally
+ * This returns FALSE if there is an error which the caller need not recover
+ * from; otherwise TRUE.
+ * It guarantees that the returned codepoint, *uv, when expressed as
+ * utf8 bytes, would fit within the skipped "\x{...}" bytes.
+ *
+ * On input:
+ * s is the address of a pointer to a NULL terminated string that begins
+ * with 'x', and the previous character was a backslash. At exit, *s
+ * will be advanced to the byte just after those absorbed by this
+ * function. Hence the caller can continue parsing from there. In
+ * the case of an error, this routine has generally positioned *s to
+ * point just to the right of the first bad spot, so that a message
+ * that has a "<--" to mark the spot will be correctly positioned.
+ * uv points to a UV that will hold the output value, valid only if the
+ * return from the function is TRUE
+ * error_msg is a pointer that will be set to an internal buffer giving an
+ * error message upon failure (the return is FALSE). Untouched if
+ * function succeeds
+ * output_warning says whether to output any warning messages, or suppress
+ * them
+ * strict is true if anything out of the ordinary should cause this to
+ * fail instead of warn or be silent. For example, it requires
+ * exactly 2 digits following the \x (when there are no braces).
+ * 3 digits could be a mistake, so is forbidden in this mode.
+ * silence_non_portable is true if to suppress warnings about the code
+ * point returned being too large to fit on all platforms.
+ * UTF is true iff the string *s is encoded in UTF-8.
+ */
+ char* e;
+ STRLEN numbers_len;
+ I32 flags = PERL_SCAN_DISALLOW_PREFIX;
+#ifdef DEBUGGING
+ char *start = *s - 1;
+ assert(*start == '\\');
+#endif
+
+ PERL_ARGS_ASSERT_GROK_BSLASH_X;
+
+ assert(**s == 'x');
+ (*s)++;
+
+ if (strict || ! output_warning) {
+ flags |= PERL_SCAN_SILENT_ILLDIGIT;
+ }
+
+ if (**s != '{') {
+ STRLEN len = (strict) ? 3 : 2;
+
+ *uv = grok_hex(*s, &len, &flags, NULL);
+ *s += len;
+ if (strict && len != 2) {
+ if (len < 2) {
+ *s += (UTF) ? UTF8SKIP(*s) : 1;
+ *error_msg = "Non-hex character";
+ }
+ else {
+ *error_msg = "Use \\x{...} for more than two hex characters";
+ }
+ return FALSE;
+ }
+ goto ok;
+ }
+
+ e = strchr(*s, '}');
+ if (!e) {
+ (*s)++; /* Move past the '{' */
+ while (isXDIGIT(**s)) { /* Position beyond the legal digits */
+ (*s)++;
+ }
+ /* XXX The corresponding message above for \o is just '\\o{'; other
+ * messages for other constructs include the '}', so are inconsistent.
+ */
+ *error_msg = "Missing right brace on \\x{}";
+ return FALSE;
+ }
+
+ (*s)++; /* Point to expected first digit (could be first byte of utf8
+ sequence if not a digit) */
+ numbers_len = e - *s;
+ if (numbers_len == 0) {
+ if (strict) {
+ (*s)++; /* Move past the } */
+ *error_msg = "Number with no digits";
+ return FALSE;
+ }
+ *s = e + 1;
+ *uv = 0;
+ goto ok;
+ }
+
+ flags |= PERL_SCAN_ALLOW_UNDERSCORES;
+ if (silence_non_portable) {
+ flags |= PERL_SCAN_SILENT_NON_PORTABLE;
+ }
+
+ *uv = grok_hex(*s, &numbers_len, &flags, NULL);
+ /* Note that if has non-hex, will ignore everything starting with that up
+ * to the '}' */
+
+ if (strict && numbers_len != (STRLEN) (e - *s)) {
+ *s += numbers_len;
+ *s += (UTF) ? UTF8SKIP(*s) : 1;
+ *error_msg = "Non-hex character";
+ return FALSE;
+ }
+
+ /* Return past the '}' */
+ *s = e + 1;
+
+ ok:
+ /* guarantee replacing "\x{...}" with utf8 bytes fits within
+ * existing space */
+ assert(OFFUNISKIP(*uv) < *s - start);
+ return TRUE;
+}
+
+STATIC char*
+S_form_short_octal_warning(pTHX_
+ const char * const s, /* Points to first non-octal */
+ const STRLEN len /* Length of octals string, so
+ (s-len) points to first
+ octal */
+) {
+ /* Return a character string consisting of a warning message for when a
+ * string constant in octal is weird, like "\078". */
+
+ const char * sans_leading_zeros = s - len;
+
+ PERL_ARGS_ASSERT_FORM_SHORT_OCTAL_WARNING;
+
+ assert(*s == '8' || *s == '9');
+
+ /* Remove the leading zeros, retaining one zero so won't be zero length */
+ while (*sans_leading_zeros == '0') sans_leading_zeros++;
+ if (sans_leading_zeros == s) {
+ sans_leading_zeros--;
+ }
+
+ return Perl_form(aTHX_
+ "'%.*s' resolved to '\\o{%.*s}%c'",
+ (int) (len + 2), s - len - 1,
+ (int) (s - sans_leading_zeros), sans_leading_zeros,
+ *s);
+}
+
+/*
+ * ex: set ts=8 sts=4 sw=4 et:
+ */
--- /dev/null
+/* inline_invlist.c
+ *
+ * Copyright (C) 2012 by Larry Wall and others
+ *
+ * You may distribute under the terms of either the GNU General Public
+ * License or the Artistic License, as specified in the README file.
+ */
+
+#if defined(PERL_IN_UTF8_C) || defined(PERL_IN_REGCOMP_C) || defined(PERL_IN_REGEXEC_C)
+
+/* An element is in an inversion list iff its index is even numbered: 0, 2, 4,
+ * etc */
+#define ELEMENT_RANGE_MATCHES_INVLIST(i) (! ((i) & 1))
+#define PREV_RANGE_MATCHES_INVLIST(i) (! ELEMENT_RANGE_MATCHES_INVLIST(i))
+
+/* This converts to/from our UVs to what the SV code is expecting: bytes. */
+#define TO_INTERNAL_SIZE(x) ((x) * sizeof(UV))
+#define FROM_INTERNAL_SIZE(x) ((x)/ sizeof(UV))
+
+PERL_STATIC_INLINE bool*
+S_get_invlist_offset_addr(SV* invlist)
+{
+ /* Return the address of the field that says whether the inversion list is
+ * offset (it contains 1) or not (contains 0) */
+ PERL_ARGS_ASSERT_GET_INVLIST_OFFSET_ADDR;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ return &(((XINVLIST*) SvANY(invlist))->is_offset);
+}
+
+PERL_STATIC_INLINE UV
+S__invlist_len(SV* const invlist)
+{
+ /* Returns the current number of elements stored in the inversion list's
+ * array */
+
+ PERL_ARGS_ASSERT__INVLIST_LEN;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ return (SvCUR(invlist) == 0)
+ ? 0
+ : FROM_INTERNAL_SIZE(SvCUR(invlist)) - *get_invlist_offset_addr(invlist);
+}
+
+PERL_STATIC_INLINE bool
+S__invlist_contains_cp(SV* const invlist, const UV cp)
+{
+ /* Does <invlist> contain code point <cp> as part of the set? */
+
+ IV index = _invlist_search(invlist, cp);
+
+ PERL_ARGS_ASSERT__INVLIST_CONTAINS_CP;
+
+ return index >= 0 && ELEMENT_RANGE_MATCHES_INVLIST(index);
+}
+
+PERL_STATIC_INLINE UV*
+S_invlist_array(SV* const invlist)
+{
+ /* Returns the pointer to the inversion list's array. Every time the
+ * length changes, this needs to be called in case malloc or realloc moved
+ * it */
+
+ PERL_ARGS_ASSERT_INVLIST_ARRAY;
+
+ /* Must not be empty. If these fail, you probably didn't check for <len>
+ * being non-zero before trying to get the array */
+ assert(_invlist_len(invlist));
+
+ /* The very first element always contains zero, The array begins either
+ * there, or if the inversion list is offset, at the element after it.
+ * The offset header field determines which; it contains 0 or 1 to indicate
+ * how much additionally to add */
+ assert(0 == *(SvPVX(invlist)));
+ return ((UV *) SvPVX(invlist) + *get_invlist_offset_addr(invlist));
+}
+
+# if defined(PERL_IN_UTF8_C) || defined(PERL_IN_REGEXEC_C)
+
+/* These symbols are only needed later in regcomp.c */
+# undef TO_INTERNAL_SIZE
+# undef FROM_INTERNAL_SIZE
+# endif
+
+#endif
--- /dev/null
+/* regcomp.c
+ */
+
+/*
+ * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
+ *
+ * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
+ */
+
+/* This file contains functions for compiling a regular expression. See
+ * also regexec.c which funnily enough, contains functions for executing
+ * a regular expression.
+ *
+ * This file is also copied at build time to ext/re/re_comp.c, where
+ * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
+ * This causes the main functions to be compiled under new names and with
+ * debugging support added, which makes "use re 'debug'" work.
+ */
+
+/* NOTE: this is derived from Henry Spencer's regexp code, and should not
+ * confused with the original package (see point 3 below). Thanks, Henry!
+ */
+
+/* Additional note: this code is very heavily munged from Henry's version
+ * in places. In some spots I've traded clarity for efficiency, so don't
+ * blame Henry for some of the lack of readability.
+ */
+
+/* The names of the functions have been changed from regcomp and
+ * regexec to pregcomp and pregexec in order to avoid conflicts
+ * with the POSIX routines of the same names.
+*/
+
+#ifdef PERL_EXT_RE_BUILD
+#include "re_top.h"
+#endif
+
+/*
+ * pregcomp and pregexec -- regsub and regerror are not used in perl
+ *
+ * Copyright (c) 1986 by University of Toronto.
+ * Written by Henry Spencer. Not derived from licensed software.
+ *
+ * Permission is granted to anyone to use this software for any
+ * purpose on any computer system, and to redistribute it freely,
+ * subject to the following restrictions:
+ *
+ * 1. The author is not responsible for the consequences of use of
+ * this software, no matter how awful, even if they arise
+ * from defects in it.
+ *
+ * 2. The origin of this software must not be misrepresented, either
+ * by explicit claim or by omission.
+ *
+ * 3. Altered versions must be plainly marked as such, and must not
+ * be misrepresented as being the original software.
+ *
+ *
+ **** Alterations to Henry's code are...
+ ****
+ **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ **** by Larry Wall and others
+ ****
+ **** You may distribute under the terms of either the GNU General Public
+ **** License or the Artistic License, as specified in the README file.
+
+ *
+ * Beware that some of this code is subtly aware of the way operator
+ * precedence is structured in regular expressions. Serious changes in
+ * regular-expression syntax might require a total rethink.
+ */
+#include "EXTERN.h"
+#define PERL_IN_REGCOMP_C
+#include "perl.h"
+
+#ifndef PERL_IN_XSUB_RE
+# include "INTERN.h"
+#endif
+
+#define REG_COMP_C
+#ifdef PERL_IN_XSUB_RE
+# include "re_comp.h"
+EXTERN_C const struct regexp_engine my_reg_engine;
+#else
+# include "regcomp.h"
+#endif
+
+#include "dquote_static.c"
+#include "inline_invlist.c"
+#include "unicode_constants.h"
+
+#define HAS_NONLATIN1_FOLD_CLOSURE(i) \
+ _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
+#define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(i) \
+ _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
+#define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
+#define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
+
+#ifndef STATIC
+#define STATIC static
+#endif
+
+#ifndef MIN
+#define MIN(a,b) ((a) < (b) ? (a) : (b))
+#endif
+
+/* this is a chain of data about sub patterns we are processing that
+ need to be handled separately/specially in study_chunk. Its so
+ we can simulate recursion without losing state. */
+struct scan_frame;
+typedef struct scan_frame {
+ regnode *last_regnode; /* last node to process in this frame */
+ regnode *next_regnode; /* next node to process when last is reached */
+ U32 prev_recursed_depth;
+ I32 stopparen; /* what stopparen do we use */
+ U32 is_top_frame; /* what flags do we use? */
+
+ struct scan_frame *this_prev_frame; /* this previous frame */
+ struct scan_frame *prev_frame; /* previous frame */
+ struct scan_frame *next_frame; /* next frame */
+} scan_frame;
+
+/* Certain characters are output as a sequence with the first being a
+ * backslash. */
+#define isBACKSLASHED_PUNCT(c) \
+ ((c) == '-' || (c) == ']' || (c) == '\\' || (c) == '^')
+
+
+struct RExC_state_t {
+ U32 flags; /* RXf_* are we folding, multilining? */
+ U32 pm_flags; /* PMf_* stuff from the calling PMOP */
+ char *precomp; /* uncompiled string. */
+ REGEXP *rx_sv; /* The SV that is the regexp. */
+ regexp *rx; /* perl core regexp structure */
+ regexp_internal *rxi; /* internal data for regexp object
+ pprivate field */
+ char *start; /* Start of input for compile */
+ char *end; /* End of input for compile */
+ char *parse; /* Input-scan pointer. */
+ SSize_t whilem_seen; /* number of WHILEM in this expr */
+ regnode *emit_start; /* Start of emitted-code area */
+ regnode *emit_bound; /* First regnode outside of the
+ allocated space */
+ regnode *emit; /* Code-emit pointer; if = &emit_dummy,
+ implies compiling, so don't emit */
+ regnode_ssc emit_dummy; /* placeholder for emit to point to;
+ large enough for the largest
+ non-EXACTish node, so can use it as
+ scratch in pass1 */
+ I32 naughty; /* How bad is this pattern? */
+ I32 sawback; /* Did we see \1, ...? */
+ U32 seen;
+ SSize_t size; /* Code size. */
+ I32 npar; /* Capture buffer count, (OPEN) plus
+ one. ("par" 0 is the whole
+ pattern)*/
+ I32 nestroot; /* root parens we are in - used by
+ accept */
+ I32 extralen;
+ I32 seen_zerolen;
+ regnode **open_parens; /* pointers to open parens */
+ regnode **close_parens; /* pointers to close parens */
+ regnode *opend; /* END node in program */
+ I32 utf8; /* whether the pattern is utf8 or not */
+ I32 orig_utf8; /* whether the pattern was originally in utf8 */
+ /* XXX use this for future optimisation of case
+ * where pattern must be upgraded to utf8. */
+ I32 uni_semantics; /* If a d charset modifier should use unicode
+ rules, even if the pattern is not in
+ utf8 */
+ HV *paren_names; /* Paren names */
+
+ regnode **recurse; /* Recurse regops */
+ I32 recurse_count; /* Number of recurse regops */
+ U8 *study_chunk_recursed; /* bitmap of which subs we have moved
+ through */
+ U32 study_chunk_recursed_bytes; /* bytes in bitmap */
+ I32 in_lookbehind;
+ I32 contains_locale;
+ I32 contains_i;
+ I32 override_recoding;
+#ifdef EBCDIC
+ I32 recode_x_to_native;
+#endif
+ I32 in_multi_char_class;
+ struct reg_code_block *code_blocks; /* positions of literal (?{})
+ within pattern */
+ int num_code_blocks; /* size of code_blocks[] */
+ int code_index; /* next code_blocks[] slot */
+ SSize_t maxlen; /* mininum possible number of chars in string to match */
+ scan_frame *frame_head;
+ scan_frame *frame_last;
+ U32 frame_count;
+ U32 strict;
+#ifdef ADD_TO_REGEXEC
+ char *starttry; /* -Dr: where regtry was called. */
+#define RExC_starttry (pRExC_state->starttry)
+#endif
+ SV *runtime_code_qr; /* qr with the runtime code blocks */
+#ifdef DEBUGGING
+ const char *lastparse;
+ I32 lastnum;
+ AV *paren_name_list; /* idx -> name */
+ U32 study_chunk_recursed_count;
+ SV *mysv1;
+ SV *mysv2;
+#define RExC_lastparse (pRExC_state->lastparse)
+#define RExC_lastnum (pRExC_state->lastnum)
+#define RExC_paren_name_list (pRExC_state->paren_name_list)
+#define RExC_study_chunk_recursed_count (pRExC_state->study_chunk_recursed_count)
+#define RExC_mysv (pRExC_state->mysv1)
+#define RExC_mysv1 (pRExC_state->mysv1)
+#define RExC_mysv2 (pRExC_state->mysv2)
+
+#endif
+};
+
+#define RExC_flags (pRExC_state->flags)
+#define RExC_pm_flags (pRExC_state->pm_flags)
+#define RExC_precomp (pRExC_state->precomp)
+#define RExC_rx_sv (pRExC_state->rx_sv)
+#define RExC_rx (pRExC_state->rx)
+#define RExC_rxi (pRExC_state->rxi)
+#define RExC_start (pRExC_state->start)
+#define RExC_end (pRExC_state->end)
+#define RExC_parse (pRExC_state->parse)
+#define RExC_whilem_seen (pRExC_state->whilem_seen)
+#ifdef RE_TRACK_PATTERN_OFFSETS
+#define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the
+ others */
+#endif
+#define RExC_emit (pRExC_state->emit)
+#define RExC_emit_dummy (pRExC_state->emit_dummy)
+#define RExC_emit_start (pRExC_state->emit_start)
+#define RExC_emit_bound (pRExC_state->emit_bound)
+#define RExC_sawback (pRExC_state->sawback)
+#define RExC_seen (pRExC_state->seen)
+#define RExC_size (pRExC_state->size)
+#define RExC_maxlen (pRExC_state->maxlen)
+#define RExC_npar (pRExC_state->npar)
+#define RExC_nestroot (pRExC_state->nestroot)
+#define RExC_extralen (pRExC_state->extralen)
+#define RExC_seen_zerolen (pRExC_state->seen_zerolen)
+#define RExC_utf8 (pRExC_state->utf8)
+#define RExC_uni_semantics (pRExC_state->uni_semantics)
+#define RExC_orig_utf8 (pRExC_state->orig_utf8)
+#define RExC_open_parens (pRExC_state->open_parens)
+#define RExC_close_parens (pRExC_state->close_parens)
+#define RExC_opend (pRExC_state->opend)
+#define RExC_paren_names (pRExC_state->paren_names)
+#define RExC_recurse (pRExC_state->recurse)
+#define RExC_recurse_count (pRExC_state->recurse_count)
+#define RExC_study_chunk_recursed (pRExC_state->study_chunk_recursed)
+#define RExC_study_chunk_recursed_bytes \
+ (pRExC_state->study_chunk_recursed_bytes)
+#define RExC_in_lookbehind (pRExC_state->in_lookbehind)
+#define RExC_contains_locale (pRExC_state->contains_locale)
+#define RExC_contains_i (pRExC_state->contains_i)
+#define RExC_override_recoding (pRExC_state->override_recoding)
+#ifdef EBCDIC
+# define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)
+#endif
+#define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
+#define RExC_frame_head (pRExC_state->frame_head)
+#define RExC_frame_last (pRExC_state->frame_last)
+#define RExC_frame_count (pRExC_state->frame_count)
+#define RExC_strict (pRExC_state->strict)
+
+/* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
+ * a flag to disable back-off on the fixed/floating substrings - if it's
+ * a high complexity pattern we assume the benefit of avoiding a full match
+ * is worth the cost of checking for the substrings even if they rarely help.
+ */
+#define RExC_naughty (pRExC_state->naughty)
+#define TOO_NAUGHTY (10)
+#define MARK_NAUGHTY(add) \
+ if (RExC_naughty < TOO_NAUGHTY) \
+ RExC_naughty += (add)
+#define MARK_NAUGHTY_EXP(exp, add) \
+ if (RExC_naughty < TOO_NAUGHTY) \
+ RExC_naughty += RExC_naughty / (exp) + (add)
+
+#define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
+#define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
+ ((*s) == '{' && regcurly(s)))
+
+/*
+ * Flags to be passed up and down.
+ */
+#define WORST 0 /* Worst case. */
+#define HASWIDTH 0x01 /* Known to match non-null strings. */
+
+/* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
+ * character. (There needs to be a case: in the switch statement in regexec.c
+ * for any node marked SIMPLE.) Note that this is not the same thing as
+ * REGNODE_SIMPLE */
+#define SIMPLE 0x02
+#define SPSTART 0x04 /* Starts with * or + */
+#define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
+#define TRYAGAIN 0x10 /* Weeded out a declaration. */
+#define RESTART_UTF8 0x20 /* Restart, need to calcuate sizes as UTF-8 */
+
+#define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
+
+/* whether trie related optimizations are enabled */
+#if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
+#define TRIE_STUDY_OPT
+#define FULL_TRIE_STUDY
+#define TRIE_STCLASS
+#endif
+
+
+
+#define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
+#define PBITVAL(paren) (1 << ((paren) & 7))
+#define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
+#define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
+#define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
+
+#define REQUIRE_UTF8 STMT_START { \
+ if (!UTF) { \
+ *flagp = RESTART_UTF8; \
+ return NULL; \
+ } \
+ } STMT_END
+
+/* This converts the named class defined in regcomp.h to its equivalent class
+ * number defined in handy.h. */
+#define namedclass_to_classnum(class) ((int) ((class) / 2))
+#define classnum_to_namedclass(classnum) ((classnum) * 2)
+
+#define _invlist_union_complement_2nd(a, b, output) \
+ _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
+#define _invlist_intersection_complement_2nd(a, b, output) \
+ _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
+
+/* About scan_data_t.
+
+ During optimisation we recurse through the regexp program performing
+ various inplace (keyhole style) optimisations. In addition study_chunk
+ and scan_commit populate this data structure with information about
+ what strings MUST appear in the pattern. We look for the longest
+ string that must appear at a fixed location, and we look for the
+ longest string that may appear at a floating location. So for instance
+ in the pattern:
+
+ /FOO[xX]A.*B[xX]BAR/
+
+ Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
+ strings (because they follow a .* construct). study_chunk will identify
+ both FOO and BAR as being the longest fixed and floating strings respectively.
+
+ The strings can be composites, for instance
+
+ /(f)(o)(o)/
+
+ will result in a composite fixed substring 'foo'.
+
+ For each string some basic information is maintained:
+
+ - offset or min_offset
+ This is the position the string must appear at, or not before.
+ It also implicitly (when combined with minlenp) tells us how many
+ characters must match before the string we are searching for.
+ Likewise when combined with minlenp and the length of the string it
+ tells us how many characters must appear after the string we have
+ found.
+
+ - max_offset
+ Only used for floating strings. This is the rightmost point that
+ the string can appear at. If set to SSize_t_MAX it indicates that the
+ string can occur infinitely far to the right.
+
+ - minlenp
+ A pointer to the minimum number of characters of the pattern that the
+ string was found inside. This is important as in the case of positive
+ lookahead or positive lookbehind we can have multiple patterns
+ involved. Consider
+
+ /(?=FOO).*F/
+
+ The minimum length of the pattern overall is 3, the minimum length
+ of the lookahead part is 3, but the minimum length of the part that
+ will actually match is 1. So 'FOO's minimum length is 3, but the
+ minimum length for the F is 1. This is important as the minimum length
+ is used to determine offsets in front of and behind the string being
+ looked for. Since strings can be composites this is the length of the
+ pattern at the time it was committed with a scan_commit. Note that
+ the length is calculated by study_chunk, so that the minimum lengths
+ are not known until the full pattern has been compiled, thus the
+ pointer to the value.
+
+ - lookbehind
+
+ In the case of lookbehind the string being searched for can be
+ offset past the start point of the final matching string.
+ If this value was just blithely removed from the min_offset it would
+ invalidate some of the calculations for how many chars must match
+ before or after (as they are derived from min_offset and minlen and
+ the length of the string being searched for).
+ When the final pattern is compiled and the data is moved from the
+ scan_data_t structure into the regexp structure the information
+ about lookbehind is factored in, with the information that would
+ have been lost precalculated in the end_shift field for the
+ associated string.
+
+ The fields pos_min and pos_delta are used to store the minimum offset
+ and the delta to the maximum offset at the current point in the pattern.
+
+*/
+
+typedef struct scan_data_t {
+ /*I32 len_min; unused */
+ /*I32 len_delta; unused */
+ SSize_t pos_min;
+ SSize_t pos_delta;
+ SV *last_found;
+ SSize_t last_end; /* min value, <0 unless valid. */
+ SSize_t last_start_min;
+ SSize_t last_start_max;
+ SV **longest; /* Either &l_fixed, or &l_float. */
+ SV *longest_fixed; /* longest fixed string found in pattern */
+ SSize_t offset_fixed; /* offset where it starts */
+ SSize_t *minlen_fixed; /* pointer to the minlen relevant to the string */
+ I32 lookbehind_fixed; /* is the position of the string modfied by LB */
+ SV *longest_float; /* longest floating string found in pattern */
+ SSize_t offset_float_min; /* earliest point in string it can appear */
+ SSize_t offset_float_max; /* latest point in string it can appear */
+ SSize_t *minlen_float; /* pointer to the minlen relevant to the string */
+ SSize_t lookbehind_float; /* is the pos of the string modified by LB */
+ I32 flags;
+ I32 whilem_c;
+ SSize_t *last_closep;
+ regnode_ssc *start_class;
+} scan_data_t;
+
+/*
+ * Forward declarations for pregcomp()'s friends.
+ */
+
+static const scan_data_t zero_scan_data =
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
+
+#define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
+#define SF_BEFORE_SEOL 0x0001
+#define SF_BEFORE_MEOL 0x0002
+#define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
+#define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
+
+#define SF_FIX_SHIFT_EOL (+2)
+#define SF_FL_SHIFT_EOL (+4)
+
+#define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
+#define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
+
+#define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
+#define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
+#define SF_IS_INF 0x0040
+#define SF_HAS_PAR 0x0080
+#define SF_IN_PAR 0x0100
+#define SF_HAS_EVAL 0x0200
+#define SCF_DO_SUBSTR 0x0400
+#define SCF_DO_STCLASS_AND 0x0800
+#define SCF_DO_STCLASS_OR 0x1000
+#define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
+#define SCF_WHILEM_VISITED_POS 0x2000
+
+#define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
+#define SCF_SEEN_ACCEPT 0x8000
+#define SCF_TRIE_DOING_RESTUDY 0x10000
+#define SCF_IN_DEFINE 0x20000
+
+
+
+
+#define UTF cBOOL(RExC_utf8)
+
+/* The enums for all these are ordered so things work out correctly */
+#define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
+#define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) \
+ == REGEX_DEPENDS_CHARSET)
+#define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
+#define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) \
+ >= REGEX_UNICODE_CHARSET)
+#define ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
+ == REGEX_ASCII_RESTRICTED_CHARSET)
+#define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
+ >= REGEX_ASCII_RESTRICTED_CHARSET)
+#define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) \
+ == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
+
+#define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
+
+/* For programs that want to be strictly Unicode compatible by dying if any
+ * attempt is made to match a non-Unicode code point against a Unicode
+ * property. */
+#define ALWAYS_WARN_SUPER ckDEAD(packWARN(WARN_NON_UNICODE))
+
+#define OOB_NAMEDCLASS -1
+
+/* There is no code point that is out-of-bounds, so this is problematic. But
+ * its only current use is to initialize a variable that is always set before
+ * looked at. */
+#define OOB_UNICODE 0xDEADBEEF
+
+#define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
+#define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
+
+
+/* length of regex to show in messages that don't mark a position within */
+#define RegexLengthToShowInErrorMessages 127
+
+/*
+ * If MARKER[12] are adjusted, be sure to adjust the constants at the top
+ * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
+ * op/pragma/warn/regcomp.
+ */
+#define MARKER1 "<-- HERE" /* marker as it appears in the description */
+#define MARKER2 " <-- HERE " /* marker as it appears within the regex */
+
+#define REPORT_LOCATION " in regex; marked by " MARKER1 \
+ " in m/%"UTF8f MARKER2 "%"UTF8f"/"
+
+#define REPORT_LOCATION_ARGS(offset) \
+ UTF8fARG(UTF, offset, RExC_precomp), \
+ UTF8fARG(UTF, RExC_end - RExC_precomp - offset, RExC_precomp + offset)
+
+/* Used to point after bad bytes for an error message, but avoid skipping
+ * past a nul byte. */
+#define SKIP_IF_CHAR(s) (!*(s) ? 0 : UTF ? UTF8SKIP(s) : 1)
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
+ * arg. Show regex, up to a maximum length. If it's too long, chop and add
+ * "...".
+ */
+#define _FAIL(code) STMT_START { \
+ const char *ellipses = ""; \
+ IV len = RExC_end - RExC_precomp; \
+ \
+ if (!SIZE_ONLY) \
+ SAVEFREESV(RExC_rx_sv); \
+ if (len > RegexLengthToShowInErrorMessages) { \
+ /* chop 10 shorter than the max, to ensure meaning of "..." */ \
+ len = RegexLengthToShowInErrorMessages - 10; \
+ ellipses = "..."; \
+ } \
+ code; \
+} STMT_END
+
+#define FAIL(msg) _FAIL( \
+ Perl_croak(aTHX_ "%s in regex m/%"UTF8f"%s/", \
+ msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
+
+#define FAIL2(msg,arg) _FAIL( \
+ Perl_croak(aTHX_ msg " in regex m/%"UTF8f"%s/", \
+ arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
+
+/*
+ * Simple_vFAIL -- like FAIL, but marks the current location in the scan
+ */
+#define Simple_vFAIL(m) STMT_START { \
+ const IV offset = \
+ (RExC_parse > RExC_end ? RExC_end : RExC_parse) - RExC_precomp; \
+ Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
+ m, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
+ */
+#define vFAIL(m) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEFREESV(RExC_rx_sv); \
+ Simple_vFAIL(m); \
+} STMT_END
+
+/*
+ * Like Simple_vFAIL(), but accepts two arguments.
+ */
+#define Simple_vFAIL2(m,a1) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
+ */
+#define vFAIL2(m,a1) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEFREESV(RExC_rx_sv); \
+ Simple_vFAIL2(m, a1); \
+} STMT_END
+
+
+/*
+ * Like Simple_vFAIL(), but accepts three arguments.
+ */
+#define Simple_vFAIL3(m, a1, a2) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
+ */
+#define vFAIL3(m,a1,a2) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEFREESV(RExC_rx_sv); \
+ Simple_vFAIL3(m, a1, a2); \
+} STMT_END
+
+/*
+ * Like Simple_vFAIL(), but accepts four arguments.
+ */
+#define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, a3, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vFAIL4(m,a1,a2,a3) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEFREESV(RExC_rx_sv); \
+ Simple_vFAIL4(m, a1, a2, a3); \
+} STMT_END
+
+/* A specialized version of vFAIL2 that works with UTF8f */
+#define vFAIL2utf8f(m, a1) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ if (!SIZE_ONLY) \
+ SAVEFREESV(RExC_rx_sv); \
+ S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/* These have asserts in them because of [perl #122671] Many warnings in
+ * regcomp.c can occur twice. If they get output in pass1 and later in that
+ * pass, the pattern has to be converted to UTF-8 and the pass restarted, they
+ * would get output again. So they should be output in pass2, and these
+ * asserts make sure new warnings follow that paradigm. */
+
+/* m is not necessarily a "literal string", in this macro */
+#define reg_warn_non_literal_string(loc, m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s" REPORT_LOCATION, \
+ m, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARNreg(loc,m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vWARN(loc, m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vWARN_dep(loc, m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), m REPORT_LOCATION, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARNdep(loc,m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
+ m REPORT_LOCATION, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARNregdep(loc,m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
+ m REPORT_LOCATION, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARN2reg_d(loc,m, a1) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP), \
+ m REPORT_LOCATION, \
+ a1, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARN2reg(loc, m, a1) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vWARN3(loc, m, a1, a2) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARN3reg(loc, m, a1, a2) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vWARN4(loc, m, a1, a2, a3) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, a3, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, a3, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, a3, a4, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/* Macros for recording node offsets. 20001227 mjd@plover.com
+ * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
+ * element 2*n-1 of the array. Element #2n holds the byte length node #n.
+ * Element 0 holds the number n.
+ * Position is 1 indexed.
+ */
+#ifndef RE_TRACK_PATTERN_OFFSETS
+#define Set_Node_Offset_To_R(node,byte)
+#define Set_Node_Offset(node,byte)
+#define Set_Cur_Node_Offset
+#define Set_Node_Length_To_R(node,len)
+#define Set_Node_Length(node,len)
+#define Set_Node_Cur_Length(node,start)
+#define Node_Offset(n)
+#define Node_Length(n)
+#define Set_Node_Offset_Length(node,offset,len)
+#define ProgLen(ri) ri->u.proglen
+#define SetProgLen(ri,x) ri->u.proglen = x
+#else
+#define ProgLen(ri) ri->u.offsets[0]
+#define SetProgLen(ri,x) ri->u.offsets[0] = x
+#define Set_Node_Offset_To_R(node,byte) STMT_START { \
+ if (! SIZE_ONLY) { \
+ MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
+ __LINE__, (int)(node), (int)(byte))); \
+ if((node) < 0) { \
+ Perl_croak(aTHX_ "value of node is %d in Offset macro", \
+ (int)(node)); \
+ } else { \
+ RExC_offsets[2*(node)-1] = (byte); \
+ } \
+ } \
+} STMT_END
+
+#define Set_Node_Offset(node,byte) \
+ Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
+#define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
+
+#define Set_Node_Length_To_R(node,len) STMT_START { \
+ if (! SIZE_ONLY) { \
+ MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
+ __LINE__, (int)(node), (int)(len))); \
+ if((node) < 0) { \
+ Perl_croak(aTHX_ "value of node is %d in Length macro", \
+ (int)(node)); \
+ } else { \
+ RExC_offsets[2*(node)] = (len); \
+ } \
+ } \
+} STMT_END
+
+#define Set_Node_Length(node,len) \
+ Set_Node_Length_To_R((node)-RExC_emit_start, len)
+#define Set_Node_Cur_Length(node, start) \
+ Set_Node_Length(node, RExC_parse - start)
+
+/* Get offsets and lengths */
+#define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
+#define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
+
+#define Set_Node_Offset_Length(node,offset,len) STMT_START { \
+ Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
+ Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
+} STMT_END
+#endif
+
+#if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
+#define EXPERIMENTAL_INPLACESCAN
+#endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
+
+#define DEBUG_RExC_seen() \
+ DEBUG_OPTIMISE_MORE_r({ \
+ PerlIO_printf(Perl_debug_log,"RExC_seen: "); \
+ \
+ if (RExC_seen & REG_ZERO_LEN_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_ZERO_LEN_SEEN "); \
+ \
+ if (RExC_seen & REG_LOOKBEHIND_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_LOOKBEHIND_SEEN "); \
+ \
+ if (RExC_seen & REG_GPOS_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_GPOS_SEEN "); \
+ \
+ if (RExC_seen & REG_RECURSE_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_RECURSE_SEEN "); \
+ \
+ if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_TOP_LEVEL_BRANCHES_SEEN "); \
+ \
+ if (RExC_seen & REG_VERBARG_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_VERBARG_SEEN "); \
+ \
+ if (RExC_seen & REG_CUTGROUP_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_CUTGROUP_SEEN "); \
+ \
+ if (RExC_seen & REG_RUN_ON_COMMENT_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_RUN_ON_COMMENT_SEEN "); \
+ \
+ if (RExC_seen & REG_UNFOLDED_MULTI_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_UNFOLDED_MULTI_SEEN "); \
+ \
+ if (RExC_seen & REG_GOSTART_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_GOSTART_SEEN "); \
+ \
+ if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_UNBOUNDED_QUANTIFIER_SEEN "); \
+ \
+ PerlIO_printf(Perl_debug_log,"\n"); \
+ });
+
+#define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
+ if ((flags) & flag) PerlIO_printf(Perl_debug_log, "%s ", #flag)
+
+#define DEBUG_SHOW_STUDY_FLAGS(flags,open_str,close_str) \
+ if ( ( flags ) ) { \
+ PerlIO_printf(Perl_debug_log, "%s", open_str); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_SEOL); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_MEOL); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SF_IS_INF); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_PAR); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SF_IN_PAR); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_EVAL); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_SUBSTR); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_AND); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_OR); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_WHILEM_VISITED_POS); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_RESTUDY); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_SEEN_ACCEPT); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_DOING_RESTUDY); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_IN_DEFINE); \
+ PerlIO_printf(Perl_debug_log, "%s", close_str); \
+ }
+
+
+#define DEBUG_STUDYDATA(str,data,depth) \
+DEBUG_OPTIMISE_MORE_r(if(data){ \
+ PerlIO_printf(Perl_debug_log, \
+ "%*s" str "Pos:%"IVdf"/%"IVdf \
+ " Flags: 0x%"UVXf, \
+ (int)(depth)*2, "", \
+ (IV)((data)->pos_min), \
+ (IV)((data)->pos_delta), \
+ (UV)((data)->flags) \
+ ); \
+ DEBUG_SHOW_STUDY_FLAGS((data)->flags," [ ","]"); \
+ PerlIO_printf(Perl_debug_log, \
+ " Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
+ (IV)((data)->whilem_c), \
+ (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
+ is_inf ? "INF " : "" \
+ ); \
+ if ((data)->last_found) \
+ PerlIO_printf(Perl_debug_log, \
+ "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
+ " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
+ SvPVX_const((data)->last_found), \
+ (IV)((data)->last_end), \
+ (IV)((data)->last_start_min), \
+ (IV)((data)->last_start_max), \
+ ((data)->longest && \
+ (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
+ SvPVX_const((data)->longest_fixed), \
+ (IV)((data)->offset_fixed), \
+ ((data)->longest && \
+ (data)->longest==&((data)->longest_float)) ? "*" : "", \
+ SvPVX_const((data)->longest_float), \
+ (IV)((data)->offset_float_min), \
+ (IV)((data)->offset_float_max) \
+ ); \
+ PerlIO_printf(Perl_debug_log,"\n"); \
+});
+
+/* is c a control character for which we have a mnemonic? */
+#define isMNEMONIC_CNTRL(c) _IS_MNEMONIC_CNTRL_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
+
+STATIC const char *
+S_cntrl_to_mnemonic(const U8 c)
+{
+ /* Returns the mnemonic string that represents character 'c', if one
+ * exists; NULL otherwise. The only ones that exist for the purposes of
+ * this routine are a few control characters */
+
+ switch (c) {
+ case '\a': return "\\a";
+ case '\b': return "\\b";
+ case ESC_NATIVE: return "\\e";
+ case '\f': return "\\f";
+ case '\n': return "\\n";
+ case '\r': return "\\r";
+ case '\t': return "\\t";
+ }
+
+ return NULL;
+}
+
+/* Mark that we cannot extend a found fixed substring at this point.
+ Update the longest found anchored substring and the longest found
+ floating substrings if needed. */
+
+STATIC void
+S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
+ SSize_t *minlenp, int is_inf)
+{
+ const STRLEN l = CHR_SVLEN(data->last_found);
+ const STRLEN old_l = CHR_SVLEN(*data->longest);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_SCAN_COMMIT;
+
+ if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
+ SvSetMagicSV(*data->longest, data->last_found);
+ if (*data->longest == data->longest_fixed) {
+ data->offset_fixed = l ? data->last_start_min : data->pos_min;
+ if (data->flags & SF_BEFORE_EOL)
+ data->flags
+ |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
+ else
+ data->flags &= ~SF_FIX_BEFORE_EOL;
+ data->minlen_fixed=minlenp;
+ data->lookbehind_fixed=0;
+ }
+ else { /* *data->longest == data->longest_float */
+ data->offset_float_min = l ? data->last_start_min : data->pos_min;
+ data->offset_float_max = (l
+ ? data->last_start_max
+ : (data->pos_delta > SSize_t_MAX - data->pos_min
+ ? SSize_t_MAX
+ : data->pos_min + data->pos_delta));
+ if (is_inf
+ || (STRLEN)data->offset_float_max > (STRLEN)SSize_t_MAX)
+ data->offset_float_max = SSize_t_MAX;
+ if (data->flags & SF_BEFORE_EOL)
+ data->flags
+ |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
+ else
+ data->flags &= ~SF_FL_BEFORE_EOL;
+ data->minlen_float=minlenp;
+ data->lookbehind_float=0;
+ }
+ }
+ SvCUR_set(data->last_found, 0);
+ {
+ SV * const sv = data->last_found;
+ if (SvUTF8(sv) && SvMAGICAL(sv)) {
+ MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
+ if (mg)
+ mg->mg_len = 0;
+ }
+ }
+ data->last_end = -1;
+ data->flags &= ~SF_BEFORE_EOL;
+ DEBUG_STUDYDATA("commit: ",data,0);
+}
+
+/* An SSC is just a regnode_charclass_posix with an extra field: the inversion
+ * list that describes which code points it matches */
+
+STATIC void
+S_ssc_anything(pTHX_ regnode_ssc *ssc)
+{
+ /* Set the SSC 'ssc' to match an empty string or any code point */
+
+ PERL_ARGS_ASSERT_SSC_ANYTHING;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ ssc->invlist = sv_2mortal(_new_invlist(2)); /* mortalize so won't leak */
+ _append_range_to_invlist(ssc->invlist, 0, UV_MAX);
+ ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING; /* Plus matches empty */
+}
+
+STATIC int
+S_ssc_is_anything(const regnode_ssc *ssc)
+{
+ /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
+ * point; FALSE otherwise. Thus, this is used to see if using 'ssc' buys
+ * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
+ * in any way, so there's no point in using it */
+
+ UV start, end;
+ bool ret;
+
+ PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
+ return FALSE;
+ }
+
+ /* See if the list consists solely of the range 0 - Infinity */
+ invlist_iterinit(ssc->invlist);
+ ret = invlist_iternext(ssc->invlist, &start, &end)
+ && start == 0
+ && end == UV_MAX;
+
+ invlist_iterfinish(ssc->invlist);
+
+ if (ret) {
+ return TRUE;
+ }
+
+ /* If e.g., both \w and \W are set, matches everything */
+ if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+ int i;
+ for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
+ if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
+ return TRUE;
+ }
+ }
+ }
+
+ return FALSE;
+}
+
+STATIC void
+S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
+{
+ /* Initializes the SSC 'ssc'. This includes setting it to match an empty
+ * string, any code point, or any posix class under locale */
+
+ PERL_ARGS_ASSERT_SSC_INIT;
+
+ Zero(ssc, 1, regnode_ssc);
+ set_ANYOF_SYNTHETIC(ssc);
+ ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
+ ssc_anything(ssc);
+
+ /* If any portion of the regex is to operate under locale rules that aren't
+ * fully known at compile time, initialization includes it. The reason
+ * this isn't done for all regexes is that the optimizer was written under
+ * the assumption that locale was all-or-nothing. Given the complexity and
+ * lack of documentation in the optimizer, and that there are inadequate
+ * test cases for locale, many parts of it may not work properly, it is
+ * safest to avoid locale unless necessary. */
+ if (RExC_contains_locale) {
+ ANYOF_POSIXL_SETALL(ssc);
+ }
+ else {
+ ANYOF_POSIXL_ZERO(ssc);
+ }
+}
+
+STATIC int
+S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
+ const regnode_ssc *ssc)
+{
+ /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
+ * to the list of code points matched, and locale posix classes; hence does
+ * not check its flags) */
+
+ UV start, end;
+ bool ret;
+
+ PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ invlist_iterinit(ssc->invlist);
+ ret = invlist_iternext(ssc->invlist, &start, &end)
+ && start == 0
+ && end == UV_MAX;
+
+ invlist_iterfinish(ssc->invlist);
+
+ if (! ret) {
+ return FALSE;
+ }
+
+ if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
+ return FALSE;
+ }
+
+ return TRUE;
+}
+
+STATIC SV*
+S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
+ const regnode_charclass* const node)
+{
+ /* Returns a mortal inversion list defining which code points are matched
+ * by 'node', which is of type ANYOF. Handles complementing the result if
+ * appropriate. If some code points aren't knowable at this time, the
+ * returned list must, and will, contain every code point that is a
+ * possibility. */
+
+ SV* invlist = sv_2mortal(_new_invlist(0));
+ SV* only_utf8_locale_invlist = NULL;
+ unsigned int i;
+ const U32 n = ARG(node);
+ bool new_node_has_latin1 = FALSE;
+
+ PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
+
+ /* Look at the data structure created by S_set_ANYOF_arg() */
+ if (n != ANYOF_ONLY_HAS_BITMAP) {
+ SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
+ AV * const av = MUTABLE_AV(SvRV(rv));
+ SV **const ary = AvARRAY(av);
+ assert(RExC_rxi->data->what[n] == 's');
+
+ if (ary[1] && ary[1] != &PL_sv_undef) { /* Has compile-time swash */
+ invlist = sv_2mortal(invlist_clone(_get_swash_invlist(ary[1])));
+ }
+ else if (ary[0] && ary[0] != &PL_sv_undef) {
+
+ /* Here, no compile-time swash, and there are things that won't be
+ * known until runtime -- we have to assume it could be anything */
+ return _add_range_to_invlist(invlist, 0, UV_MAX);
+ }
+ else if (ary[3] && ary[3] != &PL_sv_undef) {
+
+ /* Here no compile-time swash, and no run-time only data. Use the
+ * node's inversion list */
+ invlist = sv_2mortal(invlist_clone(ary[3]));
+ }
+
+ /* Get the code points valid only under UTF-8 locales */
+ if ((ANYOF_FLAGS(node) & ANYOF_LOC_FOLD)
+ && ary[2] && ary[2] != &PL_sv_undef)
+ {
+ only_utf8_locale_invlist = ary[2];
+ }
+ }
+
+ /* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
+ * code points, and an inversion list for the others, but if there are code
+ * points that should match only conditionally on the target string being
+ * UTF-8, those are placed in the inversion list, and not the bitmap.
+ * Since there are circumstances under which they could match, they are
+ * included in the SSC. But if the ANYOF node is to be inverted, we have
+ * to exclude them here, so that when we invert below, the end result
+ * actually does include them. (Think about "\xe0" =~ /[^\xc0]/di;). We
+ * have to do this here before we add the unconditionally matched code
+ * points */
+ if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
+ _invlist_intersection_complement_2nd(invlist,
+ PL_UpperLatin1,
+ &invlist);
+ }
+
+ /* Add in the points from the bit map */
+ for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
+ if (ANYOF_BITMAP_TEST(node, i)) {
+ invlist = add_cp_to_invlist(invlist, i);
+ new_node_has_latin1 = TRUE;
+ }
+ }
+
+ /* If this can match all upper Latin1 code points, have to add them
+ * as well */
+ if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII) {
+ _invlist_union(invlist, PL_UpperLatin1, &invlist);
+ }
+
+ /* Similarly for these */
+ if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
+ _invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
+ }
+
+ if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
+ _invlist_invert(invlist);
+ }
+ else if (new_node_has_latin1 && ANYOF_FLAGS(node) & ANYOF_LOC_FOLD) {
+
+ /* Under /li, any 0-255 could fold to any other 0-255, depending on the
+ * locale. We can skip this if there are no 0-255 at all. */
+ _invlist_union(invlist, PL_Latin1, &invlist);
+ }
+
+ /* Similarly add the UTF-8 locale possible matches. These have to be
+ * deferred until after the non-UTF-8 locale ones are taken care of just
+ * above, or it leads to wrong results under ANYOF_INVERT */
+ if (only_utf8_locale_invlist) {
+ _invlist_union_maybe_complement_2nd(invlist,
+ only_utf8_locale_invlist,
+ ANYOF_FLAGS(node) & ANYOF_INVERT,
+ &invlist);
+ }
+
+ return invlist;
+}
+
+/* These two functions currently do the exact same thing */
+#define ssc_init_zero ssc_init
+
+#define ssc_add_cp(ssc, cp) ssc_add_range((ssc), (cp), (cp))
+#define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
+
+/* 'AND' a given class with another one. Can create false positives. 'ssc'
+ * should not be inverted. 'and_with->flags & ANYOF_MATCHES_POSIXL' should be
+ * 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */
+
+STATIC void
+S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
+ const regnode_charclass *and_with)
+{
+ /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
+ * another SSC or a regular ANYOF class. Can create false positives. */
+
+ SV* anded_cp_list;
+ U8 anded_flags;
+
+ PERL_ARGS_ASSERT_SSC_AND;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
+ * the code point inversion list and just the relevant flags */
+ if (is_ANYOF_SYNTHETIC(and_with)) {
+ anded_cp_list = ((regnode_ssc *)and_with)->invlist;
+ anded_flags = ANYOF_FLAGS(and_with);
+
+ /* XXX This is a kludge around what appears to be deficiencies in the
+ * optimizer. If we make S_ssc_anything() add in the WARN_SUPER flag,
+ * there are paths through the optimizer where it doesn't get weeded
+ * out when it should. And if we don't make some extra provision for
+ * it like the code just below, it doesn't get added when it should.
+ * This solution is to add it only when AND'ing, which is here, and
+ * only when what is being AND'ed is the pristine, original node
+ * matching anything. Thus it is like adding it to ssc_anything() but
+ * only when the result is to be AND'ed. Probably the same solution
+ * could be adopted for the same problem we have with /l matching,
+ * which is solved differently in S_ssc_init(), and that would lead to
+ * fewer false positives than that solution has. But if this solution
+ * creates bugs, the consequences are only that a warning isn't raised
+ * that should be; while the consequences for having /l bugs is
+ * incorrect matches */
+ if (ssc_is_anything((regnode_ssc *)and_with)) {
+ anded_flags |= ANYOF_WARN_SUPER;
+ }
+ }
+ else {
+ anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
+ anded_flags = ANYOF_FLAGS(and_with) & ANYOF_COMMON_FLAGS;
+ }
+
+ ANYOF_FLAGS(ssc) &= anded_flags;
+
+ /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
+ * C2 is the list of code points in 'and-with'; P2, its posix classes.
+ * 'and_with' may be inverted. When not inverted, we have the situation of
+ * computing:
+ * (C1 | P1) & (C2 | P2)
+ * = (C1 & (C2 | P2)) | (P1 & (C2 | P2))
+ * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
+ * <= ((C1 & C2) | P2)) | ( P1 | (P1 & P2))
+ * <= ((C1 & C2) | P1 | P2)
+ * Alternatively, the last few steps could be:
+ * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
+ * <= ((C1 & C2) | C1 ) | ( C2 | (P1 & P2))
+ * <= (C1 | C2 | (P1 & P2))
+ * We favor the second approach if either P1 or P2 is non-empty. This is
+ * because these components are a barrier to doing optimizations, as what
+ * they match cannot be known until the moment of matching as they are
+ * dependent on the current locale, 'AND"ing them likely will reduce or
+ * eliminate them.
+ * But we can do better if we know that C1,P1 are in their initial state (a
+ * frequent occurrence), each matching everything:
+ * (<everything>) & (C2 | P2) = C2 | P2
+ * Similarly, if C2,P2 are in their initial state (again a frequent
+ * occurrence), the result is a no-op
+ * (C1 | P1) & (<everything>) = C1 | P1
+ *
+ * Inverted, we have
+ * (C1 | P1) & ~(C2 | P2) = (C1 | P1) & (~C2 & ~P2)
+ * = (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
+ * <= (C1 & ~C2) | (P1 & ~P2)
+ * */
+
+ if ((ANYOF_FLAGS(and_with) & ANYOF_INVERT)
+ && ! is_ANYOF_SYNTHETIC(and_with))
+ {
+ unsigned int i;
+
+ ssc_intersection(ssc,
+ anded_cp_list,
+ FALSE /* Has already been inverted */
+ );
+
+ /* If either P1 or P2 is empty, the intersection will be also; can skip
+ * the loop */
+ if (! (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL)) {
+ ANYOF_POSIXL_ZERO(ssc);
+ }
+ else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+
+ /* Note that the Posix class component P from 'and_with' actually
+ * looks like:
+ * P = Pa | Pb | ... | Pn
+ * where each component is one posix class, such as in [\w\s].
+ * Thus
+ * ~P = ~(Pa | Pb | ... | Pn)
+ * = ~Pa & ~Pb & ... & ~Pn
+ * <= ~Pa | ~Pb | ... | ~Pn
+ * The last is something we can easily calculate, but unfortunately
+ * is likely to have many false positives. We could do better
+ * in some (but certainly not all) instances if two classes in
+ * P have known relationships. For example
+ * :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
+ * So
+ * :lower: & :print: = :lower:
+ * And similarly for classes that must be disjoint. For example,
+ * since \s and \w can have no elements in common based on rules in
+ * the POSIX standard,
+ * \w & ^\S = nothing
+ * Unfortunately, some vendor locales do not meet the Posix
+ * standard, in particular almost everything by Microsoft.
+ * The loop below just changes e.g., \w into \W and vice versa */
+
+ regnode_charclass_posixl temp;
+ int add = 1; /* To calculate the index of the complement */
+
+ ANYOF_POSIXL_ZERO(&temp);
+ for (i = 0; i < ANYOF_MAX; i++) {
+ assert(i % 2 != 0
+ || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
+ || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
+
+ if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
+ ANYOF_POSIXL_SET(&temp, i + add);
+ }
+ add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
+ }
+ ANYOF_POSIXL_AND(&temp, ssc);
+
+ } /* else ssc already has no posixes */
+ } /* else: Not inverted. This routine is a no-op if 'and_with' is an SSC
+ in its initial state */
+ else if (! is_ANYOF_SYNTHETIC(and_with)
+ || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
+ {
+ /* But if 'ssc' is in its initial state, the result is just 'and_with';
+ * copy it over 'ssc' */
+ if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
+ if (is_ANYOF_SYNTHETIC(and_with)) {
+ StructCopy(and_with, ssc, regnode_ssc);
+ }
+ else {
+ ssc->invlist = anded_cp_list;
+ ANYOF_POSIXL_ZERO(ssc);
+ if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
+ ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
+ }
+ }
+ }
+ else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
+ || (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL))
+ {
+ /* One or the other of P1, P2 is non-empty. */
+ if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
+ ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
+ }
+ ssc_union(ssc, anded_cp_list, FALSE);
+ }
+ else { /* P1 = P2 = empty */
+ ssc_intersection(ssc, anded_cp_list, FALSE);
+ }
+ }
+}
+
+STATIC void
+S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
+ const regnode_charclass *or_with)
+{
+ /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
+ * another SSC or a regular ANYOF class. Can create false positives if
+ * 'or_with' is to be inverted. */
+
+ SV* ored_cp_list;
+ U8 ored_flags;
+
+ PERL_ARGS_ASSERT_SSC_OR;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
+ * the code point inversion list and just the relevant flags */
+ if (is_ANYOF_SYNTHETIC(or_with)) {
+ ored_cp_list = ((regnode_ssc*) or_with)->invlist;
+ ored_flags = ANYOF_FLAGS(or_with);
+ }
+ else {
+ ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
+ ored_flags = ANYOF_FLAGS(or_with) & ANYOF_COMMON_FLAGS;
+ }
+
+ ANYOF_FLAGS(ssc) |= ored_flags;
+
+ /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
+ * C2 is the list of code points in 'or-with'; P2, its posix classes.
+ * 'or_with' may be inverted. When not inverted, we have the simple
+ * situation of computing:
+ * (C1 | P1) | (C2 | P2) = (C1 | C2) | (P1 | P2)
+ * If P1|P2 yields a situation with both a class and its complement are
+ * set, like having both \w and \W, this matches all code points, and we
+ * can delete these from the P component of the ssc going forward. XXX We
+ * might be able to delete all the P components, but I (khw) am not certain
+ * about this, and it is better to be safe.
+ *
+ * Inverted, we have
+ * (C1 | P1) | ~(C2 | P2) = (C1 | P1) | (~C2 & ~P2)
+ * <= (C1 | P1) | ~C2
+ * <= (C1 | ~C2) | P1
+ * (which results in actually simpler code than the non-inverted case)
+ * */
+
+ if ((ANYOF_FLAGS(or_with) & ANYOF_INVERT)
+ && ! is_ANYOF_SYNTHETIC(or_with))
+ {
+ /* We ignore P2, leaving P1 going forward */
+ } /* else Not inverted */
+ else if (ANYOF_FLAGS(or_with) & ANYOF_MATCHES_POSIXL) {
+ ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
+ if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+ unsigned int i;
+ for (i = 0; i < ANYOF_MAX; i += 2) {
+ if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
+ {
+ ssc_match_all_cp(ssc);
+ ANYOF_POSIXL_CLEAR(ssc, i);
+ ANYOF_POSIXL_CLEAR(ssc, i+1);
+ }
+ }
+ }
+ }
+
+ ssc_union(ssc,
+ ored_cp_list,
+ FALSE /* Already has been inverted */
+ );
+}
+
+PERL_STATIC_INLINE void
+S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
+{
+ PERL_ARGS_ASSERT_SSC_UNION;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ _invlist_union_maybe_complement_2nd(ssc->invlist,
+ invlist,
+ invert2nd,
+ &ssc->invlist);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_intersection(pTHX_ regnode_ssc *ssc,
+ SV* const invlist,
+ const bool invert2nd)
+{
+ PERL_ARGS_ASSERT_SSC_INTERSECTION;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ _invlist_intersection_maybe_complement_2nd(ssc->invlist,
+ invlist,
+ invert2nd,
+ &ssc->invlist);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
+{
+ PERL_ARGS_ASSERT_SSC_ADD_RANGE;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
+{
+ /* AND just the single code point 'cp' into the SSC 'ssc' */
+
+ SV* cp_list = _new_invlist(2);
+
+ PERL_ARGS_ASSERT_SSC_CP_AND;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ cp_list = add_cp_to_invlist(cp_list, cp);
+ ssc_intersection(ssc, cp_list,
+ FALSE /* Not inverted */
+ );
+ SvREFCNT_dec_NN(cp_list);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_clear_locale(regnode_ssc *ssc)
+{
+ /* Set the SSC 'ssc' to not match any locale things */
+ PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ ANYOF_POSIXL_ZERO(ssc);
+ ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
+}
+
+#define NON_OTHER_COUNT NON_OTHER_COUNT_FOR_USE_ONLY_BY_REGCOMP_DOT_C
+
+STATIC bool
+S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
+{
+ /* The synthetic start class is used to hopefully quickly winnow down
+ * places where a pattern could start a match in the target string. If it
+ * doesn't really narrow things down that much, there isn't much point to
+ * having the overhead of using it. This function uses some very crude
+ * heuristics to decide if to use the ssc or not.
+ *
+ * It returns TRUE if 'ssc' rules out more than half what it considers to
+ * be the "likely" possible matches, but of course it doesn't know what the
+ * actual things being matched are going to be; these are only guesses
+ *
+ * For /l matches, it assumes that the only likely matches are going to be
+ * in the 0-255 range, uniformly distributed, so half of that is 127
+ * For /a and /d matches, it assumes that the likely matches will be just
+ * the ASCII range, so half of that is 63
+ * For /u and there isn't anything matching above the Latin1 range, it
+ * assumes that that is the only range likely to be matched, and uses
+ * half that as the cut-off: 127. If anything matches above Latin1,
+ * it assumes that all of Unicode could match (uniformly), except for
+ * non-Unicode code points and things in the General Category "Other"
+ * (unassigned, private use, surrogates, controls and formats). This
+ * is a much large number. */
+
+ const U32 max_match = (LOC)
+ ? 127
+ : (! UNI_SEMANTICS)
+ ? 63
+ : (invlist_highest(ssc->invlist) < 256)
+ ? 127
+ : ((NON_OTHER_COUNT + 1) / 2) - 1;
+ U32 count = 0; /* Running total of number of code points matched by
+ 'ssc' */
+ UV start, end; /* Start and end points of current range in inversion
+ list */
+
+ PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;
+
+ invlist_iterinit(ssc->invlist);
+ while (invlist_iternext(ssc->invlist, &start, &end)) {
+
+ /* /u is the only thing that we expect to match above 255; so if not /u
+ * and even if there are matches above 255, ignore them. This catches
+ * things like \d under /d which does match the digits above 255, but
+ * since the pattern is /d, it is not likely to be expecting them */
+ if (! UNI_SEMANTICS) {
+ if (start > 255) {
+ break;
+ }
+ end = MIN(end, 255);
+ }
+ count += end - start + 1;
+ if (count > max_match) {
+ invlist_iterfinish(ssc->invlist);
+ return FALSE;
+ }
+ }
+
+ return TRUE;
+}
+
+
+STATIC void
+S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
+{
+ /* The inversion list in the SSC is marked mortal; now we need a more
+ * permanent copy, which is stored the same way that is done in a regular
+ * ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
+ * map */
+
+ SV* invlist = invlist_clone(ssc->invlist);
+
+ PERL_ARGS_ASSERT_SSC_FINALIZE;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ /* The code in this file assumes that all but these flags aren't relevant
+ * to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
+ * by the time we reach here */
+ assert(! (ANYOF_FLAGS(ssc) & ~ANYOF_COMMON_FLAGS));
+
+ populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
+
+ set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist,
+ NULL, NULL, NULL, FALSE);
+
+ /* Make sure is clone-safe */
+ ssc->invlist = NULL;
+
+ if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+ ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
+ }
+
+ assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
+}
+
+#define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
+#define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
+#define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
+#define TRIE_LIST_USED(idx) ( trie->states[state].trans.list \
+ ? (TRIE_LIST_CUR( idx ) - 1) \
+ : 0 )
+
+
+#ifdef DEBUGGING
+/*
+ dump_trie(trie,widecharmap,revcharmap)
+ dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
+ dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
+
+ These routines dump out a trie in a somewhat readable format.
+ The _interim_ variants are used for debugging the interim
+ tables that are used to generate the final compressed
+ representation which is what dump_trie expects.
+
+ Part of the reason for their existence is to provide a form
+ of documentation as to how the different representations function.
+
+*/
+
+/*
+ Dumps the final compressed table form of the trie to Perl_debug_log.
+ Used for debugging make_trie().
+*/
+
+STATIC void
+S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
+ AV *revcharmap, U32 depth)
+{
+ U32 state;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ U16 word;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE;
+
+ PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
+ (int)depth * 2 + 2,"",
+ "Match","Base","Ofs" );
+
+ for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
+ SV ** const tmp = av_fetch( revcharmap, state, 0);
+ if ( tmp ) {
+ PerlIO_printf( Perl_debug_log, "%*s",
+ colwidth,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ )
+ );
+ }
+ }
+ PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
+ (int)depth * 2 + 2,"");
+
+ for( state = 0 ; state < trie->uniquecharcount ; state++ )
+ PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
+ PerlIO_printf( Perl_debug_log, "\n");
+
+ for( state = 1 ; state < trie->statecount ; state++ ) {
+ const U32 base = trie->states[ state ].trans.base;
+
+ PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|",
+ (int)depth * 2 + 2,"", (UV)state);
+
+ if ( trie->states[ state ].wordnum ) {
+ PerlIO_printf( Perl_debug_log, " W%4X",
+ trie->states[ state ].wordnum );
+ } else {
+ PerlIO_printf( Perl_debug_log, "%6s", "" );
+ }
+
+ PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
+
+ if ( base ) {
+ U32 ofs = 0;
+
+ while( ( base + ofs < trie->uniquecharcount ) ||
+ ( base + ofs - trie->uniquecharcount < trie->lasttrans
+ && trie->trans[ base + ofs - trie->uniquecharcount ].check
+ != state))
+ ofs++;
+
+ PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
+
+ for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
+ if ( ( base + ofs >= trie->uniquecharcount )
+ && ( base + ofs - trie->uniquecharcount
+ < trie->lasttrans )
+ && trie->trans[ base + ofs
+ - trie->uniquecharcount ].check == state )
+ {
+ PerlIO_printf( Perl_debug_log, "%*"UVXf,
+ colwidth,
+ (UV)trie->trans[ base + ofs
+ - trie->uniquecharcount ].next );
+ } else {
+ PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
+ }
+ }
+
+ PerlIO_printf( Perl_debug_log, "]");
+
+ }
+ PerlIO_printf( Perl_debug_log, "\n" );
+ }
+ PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=",
+ (int)depth*2, "");
+ for (word=1; word <= trie->wordcount; word++) {
+ PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
+ (int)word, (int)(trie->wordinfo[word].prev),
+ (int)(trie->wordinfo[word].len));
+ }
+ PerlIO_printf(Perl_debug_log, "\n" );
+}
+/*
+ Dumps a fully constructed but uncompressed trie in list form.
+ List tries normally only are used for construction when the number of
+ possible chars (trie->uniquecharcount) is very high.
+ Used for debugging make_trie().
+*/
+STATIC void
+S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
+ HV *widecharmap, AV *revcharmap, U32 next_alloc,
+ U32 depth)
+{
+ U32 state;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
+
+ /* print out the table precompression. */
+ PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
+ (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
+ "------:-----+-----------------\n" );
+
+ for( state=1 ; state < next_alloc ; state ++ ) {
+ U16 charid;
+
+ PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
+ (int)depth * 2 + 2,"", (UV)state );
+ if ( ! trie->states[ state ].wordnum ) {
+ PerlIO_printf( Perl_debug_log, "%5s| ","");
+ } else {
+ PerlIO_printf( Perl_debug_log, "W%4x| ",
+ trie->states[ state ].wordnum
+ );
+ }
+ for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
+ SV ** const tmp = av_fetch( revcharmap,
+ TRIE_LIST_ITEM(state,charid).forid, 0);
+ if ( tmp ) {
+ PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
+ colwidth,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
+ colwidth,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
+ | PERL_PV_ESCAPE_FIRSTCHAR
+ ) ,
+ TRIE_LIST_ITEM(state,charid).forid,
+ (UV)TRIE_LIST_ITEM(state,charid).newstate
+ );
+ if (!(charid % 10))
+ PerlIO_printf(Perl_debug_log, "\n%*s| ",
+ (int)((depth * 2) + 14), "");
+ }
+ }
+ PerlIO_printf( Perl_debug_log, "\n");
+ }
+}
+
+/*
+ Dumps a fully constructed but uncompressed trie in table form.
+ This is the normal DFA style state transition table, with a few
+ twists to facilitate compression later.
+ Used for debugging make_trie().
+*/
+STATIC void
+S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
+ HV *widecharmap, AV *revcharmap, U32 next_alloc,
+ U32 depth)
+{
+ U32 state;
+ U16 charid;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
+
+ /*
+ print out the table precompression so that we can do a visual check
+ that they are identical.
+ */
+
+ PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
+
+ for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
+ SV ** const tmp = av_fetch( revcharmap, charid, 0);
+ if ( tmp ) {
+ PerlIO_printf( Perl_debug_log, "%*s",
+ colwidth,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ )
+ );
+ }
+ }
+
+ PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
+
+ for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
+ PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
+ }
+
+ PerlIO_printf( Perl_debug_log, "\n" );
+
+ for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
+
+ PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
+ (int)depth * 2 + 2,"",
+ (UV)TRIE_NODENUM( state ) );
+
+ for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
+ UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
+ if (v)
+ PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
+ else
+ PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
+ }
+ if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
+ PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n",
+ (UV)trie->trans[ state ].check );
+ } else {
+ PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n",
+ (UV)trie->trans[ state ].check,
+ trie->states[ TRIE_NODENUM( state ) ].wordnum );
+ }
+ }
+}
+
+#endif
+
+
+/* make_trie(startbranch,first,last,tail,word_count,flags,depth)
+ startbranch: the first branch in the whole branch sequence
+ first : start branch of sequence of branch-exact nodes.
+ May be the same as startbranch
+ last : Thing following the last branch.
+ May be the same as tail.
+ tail : item following the branch sequence
+ count : words in the sequence
+ flags : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
+ depth : indent depth
+
+Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
+
+A trie is an N'ary tree where the branches are determined by digital
+decomposition of the key. IE, at the root node you look up the 1st character and
+follow that branch repeat until you find the end of the branches. Nodes can be
+marked as "accepting" meaning they represent a complete word. Eg:
+
+ /he|she|his|hers/
+
+would convert into the following structure. Numbers represent states, letters
+following numbers represent valid transitions on the letter from that state, if
+the number is in square brackets it represents an accepting state, otherwise it
+will be in parenthesis.
+
+ +-h->+-e->[3]-+-r->(8)-+-s->[9]
+ | |
+ | (2)
+ | |
+ (1) +-i->(6)-+-s->[7]
+ |
+ +-s->(3)-+-h->(4)-+-e->[5]
+
+ Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
+
+This shows that when matching against the string 'hers' we will begin at state 1
+read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
+then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
+is also accepting. Thus we know that we can match both 'he' and 'hers' with a
+single traverse. We store a mapping from accepting to state to which word was
+matched, and then when we have multiple possibilities we try to complete the
+rest of the regex in the order in which they occurred in the alternation.
+
+The only prior NFA like behaviour that would be changed by the TRIE support is
+the silent ignoring of duplicate alternations which are of the form:
+
+ / (DUPE|DUPE) X? (?{ ... }) Y /x
+
+Thus EVAL blocks following a trie may be called a different number of times with
+and without the optimisation. With the optimisations dupes will be silently
+ignored. This inconsistent behaviour of EVAL type nodes is well established as
+the following demonstrates:
+
+ 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
+
+which prints out 'word' three times, but
+
+ 'words'=~/(word|word|word)(?{ print $1 })S/
+
+which doesnt print it out at all. This is due to other optimisations kicking in.
+
+Example of what happens on a structural level:
+
+The regexp /(ac|ad|ab)+/ will produce the following debug output:
+
+ 1: CURLYM[1] {1,32767}(18)
+ 5: BRANCH(8)
+ 6: EXACT <ac>(16)
+ 8: BRANCH(11)
+ 9: EXACT <ad>(16)
+ 11: BRANCH(14)
+ 12: EXACT <ab>(16)
+ 16: SUCCEED(0)
+ 17: NOTHING(18)
+ 18: END(0)
+
+This would be optimizable with startbranch=5, first=5, last=16, tail=16
+and should turn into:
+
+ 1: CURLYM[1] {1,32767}(18)
+ 5: TRIE(16)
+ [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
+ <ac>
+ <ad>
+ <ab>
+ 16: SUCCEED(0)
+ 17: NOTHING(18)
+ 18: END(0)
+
+Cases where tail != last would be like /(?foo|bar)baz/:
+
+ 1: BRANCH(4)
+ 2: EXACT <foo>(8)
+ 4: BRANCH(7)
+ 5: EXACT <bar>(8)
+ 7: TAIL(8)
+ 8: EXACT <baz>(10)
+ 10: END(0)
+
+which would be optimizable with startbranch=1, first=1, last=7, tail=8
+and would end up looking like:
+
+ 1: TRIE(8)
+ [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
+ <foo>
+ <bar>
+ 7: TAIL(8)
+ 8: EXACT <baz>(10)
+ 10: END(0)
+
+ d = uvchr_to_utf8_flags(d, uv, 0);
+
+is the recommended Unicode-aware way of saying
+
+ *(d++) = uv;
+*/
+
+#define TRIE_STORE_REVCHAR(val) \
+ STMT_START { \
+ if (UTF) { \
+ SV *zlopp = newSV(7); /* XXX: optimize me */ \
+ unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
+ unsigned const char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
+ SvCUR_set(zlopp, kapow - flrbbbbb); \
+ SvPOK_on(zlopp); \
+ SvUTF8_on(zlopp); \
+ av_push(revcharmap, zlopp); \
+ } else { \
+ char ooooff = (char)val; \
+ av_push(revcharmap, newSVpvn(&ooooff, 1)); \
+ } \
+ } STMT_END
+
+/* This gets the next character from the input, folding it if not already
+ * folded. */
+#define TRIE_READ_CHAR STMT_START { \
+ wordlen++; \
+ if ( UTF ) { \
+ /* if it is UTF then it is either already folded, or does not need \
+ * folding */ \
+ uvc = valid_utf8_to_uvchr( (const U8*) uc, &len); \
+ } \
+ else if (folder == PL_fold_latin1) { \
+ /* This folder implies Unicode rules, which in the range expressible \
+ * by not UTF is the lower case, with the two exceptions, one of \
+ * which should have been taken care of before calling this */ \
+ assert(*uc != LATIN_SMALL_LETTER_SHARP_S); \
+ uvc = toLOWER_L1(*uc); \
+ if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU; \
+ len = 1; \
+ } else { \
+ /* raw data, will be folded later if needed */ \
+ uvc = (U32)*uc; \
+ len = 1; \
+ } \
+} STMT_END
+
+
+
+#define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
+ if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
+ U32 ging = TRIE_LIST_LEN( state ) *= 2; \
+ Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
+ } \
+ TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
+ TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
+ TRIE_LIST_CUR( state )++; \
+} STMT_END
+
+#define TRIE_LIST_NEW(state) STMT_START { \
+ Newxz( trie->states[ state ].trans.list, \
+ 4, reg_trie_trans_le ); \
+ TRIE_LIST_CUR( state ) = 1; \
+ TRIE_LIST_LEN( state ) = 4; \
+} STMT_END
+
+#define TRIE_HANDLE_WORD(state) STMT_START { \
+ U16 dupe= trie->states[ state ].wordnum; \
+ regnode * const noper_next = regnext( noper ); \
+ \
+ DEBUG_r({ \
+ /* store the word for dumping */ \
+ SV* tmp; \
+ if (OP(noper) != NOTHING) \
+ tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
+ else \
+ tmp = newSVpvn_utf8( "", 0, UTF ); \
+ av_push( trie_words, tmp ); \
+ }); \
+ \
+ curword++; \
+ trie->wordinfo[curword].prev = 0; \
+ trie->wordinfo[curword].len = wordlen; \
+ trie->wordinfo[curword].accept = state; \
+ \
+ if ( noper_next < tail ) { \
+ if (!trie->jump) \
+ trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
+ sizeof(U16) ); \
+ trie->jump[curword] = (U16)(noper_next - convert); \
+ if (!jumper) \
+ jumper = noper_next; \
+ if (!nextbranch) \
+ nextbranch= regnext(cur); \
+ } \
+ \
+ if ( dupe ) { \
+ /* It's a dupe. Pre-insert into the wordinfo[].prev */\
+ /* chain, so that when the bits of chain are later */\
+ /* linked together, the dups appear in the chain */\
+ trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
+ trie->wordinfo[dupe].prev = curword; \
+ } else { \
+ /* we haven't inserted this word yet. */ \
+ trie->states[ state ].wordnum = curword; \
+ } \
+} STMT_END
+
+
+#define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
+ ( ( base + charid >= ucharcount \
+ && base + charid < ubound \
+ && state == trie->trans[ base - ucharcount + charid ].check \
+ && trie->trans[ base - ucharcount + charid ].next ) \
+ ? trie->trans[ base - ucharcount + charid ].next \
+ : ( state==1 ? special : 0 ) \
+ )
+
+#define MADE_TRIE 1
+#define MADE_JUMP_TRIE 2
+#define MADE_EXACT_TRIE 4
+
+STATIC I32
+S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
+ regnode *first, regnode *last, regnode *tail,
+ U32 word_count, U32 flags, U32 depth)
+{
+ /* first pass, loop through and scan words */
+ reg_trie_data *trie;
+ HV *widecharmap = NULL;
+ AV *revcharmap = newAV();
+ regnode *cur;
+ STRLEN len = 0;
+ UV uvc = 0;
+ U16 curword = 0;
+ U32 next_alloc = 0;
+ regnode *jumper = NULL;
+ regnode *nextbranch = NULL;
+ regnode *convert = NULL;
+ U32 *prev_states; /* temp array mapping each state to previous one */
+ /* we just use folder as a flag in utf8 */
+ const U8 * folder = NULL;
+
+#ifdef DEBUGGING
+ const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuuu"));
+ AV *trie_words = NULL;
+ /* along with revcharmap, this only used during construction but both are
+ * useful during debugging so we store them in the struct when debugging.
+ */
+#else
+ const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
+ STRLEN trie_charcount=0;
+#endif
+ SV *re_trie_maxbuff;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_MAKE_TRIE;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ switch (flags) {
+ case EXACT: case EXACTL: break;
+ case EXACTFA:
+ case EXACTFU_SS:
+ case EXACTFU:
+ case EXACTFLU8: folder = PL_fold_latin1; break;
+ case EXACTF: folder = PL_fold; break;
+ default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
+ }
+
+ trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
+ trie->refcount = 1;
+ trie->startstate = 1;
+ trie->wordcount = word_count;
+ RExC_rxi->data->data[ data_slot ] = (void*)trie;
+ trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
+ if (flags == EXACT || flags == EXACTL)
+ trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
+ trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
+ trie->wordcount+1, sizeof(reg_trie_wordinfo));
+
+ DEBUG_r({
+ trie_words = newAV();
+ });
+
+ re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
+ assert(re_trie_maxbuff);
+ if (!SvIOK(re_trie_maxbuff)) {
+ sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
+ }
+ DEBUG_TRIE_COMPILE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
+ (int)depth * 2 + 2, "",
+ REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
+ REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
+ });
+
+ /* Find the node we are going to overwrite */
+ if ( first == startbranch && OP( last ) != BRANCH ) {
+ /* whole branch chain */
+ convert = first;
+ } else {
+ /* branch sub-chain */
+ convert = NEXTOPER( first );
+ }
+
+ /* -- First loop and Setup --
+
+ We first traverse the branches and scan each word to determine if it
+ contains widechars, and how many unique chars there are, this is
+ important as we have to build a table with at least as many columns as we
+ have unique chars.
+
+ We use an array of integers to represent the character codes 0..255
+ (trie->charmap) and we use a an HV* to store Unicode characters. We use
+ the native representation of the character value as the key and IV's for
+ the coded index.
+
+ *TODO* If we keep track of how many times each character is used we can
+ remap the columns so that the table compression later on is more
+ efficient in terms of memory by ensuring the most common value is in the
+ middle and the least common are on the outside. IMO this would be better
+ than a most to least common mapping as theres a decent chance the most
+ common letter will share a node with the least common, meaning the node
+ will not be compressible. With a middle is most common approach the worst
+ case is when we have the least common nodes twice.
+
+ */
+
+ for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+ regnode *noper = NEXTOPER( cur );
+ const U8 *uc = (U8*)STRING( noper );
+ const U8 *e = uc + STR_LEN( noper );
+ int foldlen = 0;
+ U32 wordlen = 0; /* required init */
+ STRLEN minchars = 0;
+ STRLEN maxchars = 0;
+ bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
+ bitmap?*/
+
+ if (OP(noper) == NOTHING) {
+ regnode *noper_next= regnext(noper);
+ if (noper_next != tail && OP(noper_next) == flags) {
+ noper = noper_next;
+ uc= (U8*)STRING(noper);
+ e= uc + STR_LEN(noper);
+ trie->minlen= STR_LEN(noper);
+ } else {
+ trie->minlen= 0;
+ continue;
+ }
+ }
+
+ if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
+ TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
+ regardless of encoding */
+ if (OP( noper ) == EXACTFU_SS) {
+ /* false positives are ok, so just set this */
+ TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
+ }
+ }
+ for ( ; uc < e ; uc += len ) { /* Look at each char in the current
+ branch */
+ TRIE_CHARCOUNT(trie)++;
+ TRIE_READ_CHAR;
+
+ /* TRIE_READ_CHAR returns the current character, or its fold if /i
+ * is in effect. Under /i, this character can match itself, or
+ * anything that folds to it. If not under /i, it can match just
+ * itself. Most folds are 1-1, for example k, K, and KELVIN SIGN
+ * all fold to k, and all are single characters. But some folds
+ * expand to more than one character, so for example LATIN SMALL
+ * LIGATURE FFI folds to the three character sequence 'ffi'. If
+ * the string beginning at 'uc' is 'ffi', it could be matched by
+ * three characters, or just by the one ligature character. (It
+ * could also be matched by two characters: LATIN SMALL LIGATURE FF
+ * followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
+ * (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
+ * match.) The trie needs to know the minimum and maximum number
+ * of characters that could match so that it can use size alone to
+ * quickly reject many match attempts. The max is simple: it is
+ * the number of folded characters in this branch (since a fold is
+ * never shorter than what folds to it. */
+
+ maxchars++;
+
+ /* And the min is equal to the max if not under /i (indicated by
+ * 'folder' being NULL), or there are no multi-character folds. If
+ * there is a multi-character fold, the min is incremented just
+ * once, for the character that folds to the sequence. Each
+ * character in the sequence needs to be added to the list below of
+ * characters in the trie, but we count only the first towards the
+ * min number of characters needed. This is done through the
+ * variable 'foldlen', which is returned by the macros that look
+ * for these sequences as the number of bytes the sequence
+ * occupies. Each time through the loop, we decrement 'foldlen' by
+ * how many bytes the current char occupies. Only when it reaches
+ * 0 do we increment 'minchars' or look for another multi-character
+ * sequence. */
+ if (folder == NULL) {
+ minchars++;
+ }
+ else if (foldlen > 0) {
+ foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
+ }
+ else {
+ minchars++;
+
+ /* See if *uc is the beginning of a multi-character fold. If
+ * so, we decrement the length remaining to look at, to account
+ * for the current character this iteration. (We can use 'uc'
+ * instead of the fold returned by TRIE_READ_CHAR because for
+ * non-UTF, the latin1_safe macro is smart enough to account
+ * for all the unfolded characters, and because for UTF, the
+ * string will already have been folded earlier in the
+ * compilation process */
+ if (UTF) {
+ if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
+ foldlen -= UTF8SKIP(uc);
+ }
+ }
+ else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
+ foldlen--;
+ }
+ }
+
+ /* The current character (and any potential folds) should be added
+ * to the possible matching characters for this position in this
+ * branch */
+ if ( uvc < 256 ) {
+ if ( folder ) {
+ U8 folded= folder[ (U8) uvc ];
+ if ( !trie->charmap[ folded ] ) {
+ trie->charmap[ folded ]=( ++trie->uniquecharcount );
+ TRIE_STORE_REVCHAR( folded );
+ }
+ }
+ if ( !trie->charmap[ uvc ] ) {
+ trie->charmap[ uvc ]=( ++trie->uniquecharcount );
+ TRIE_STORE_REVCHAR( uvc );
+ }
+ if ( set_bit ) {
+ /* store the codepoint in the bitmap, and its folded
+ * equivalent. */
+ TRIE_BITMAP_SET(trie, uvc);
+
+ /* store the folded codepoint */
+ if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
+
+ if ( !UTF ) {
+ /* store first byte of utf8 representation of
+ variant codepoints */
+ if (! UVCHR_IS_INVARIANT(uvc)) {
+ TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
+ }
+ }
+ set_bit = 0; /* We've done our bit :-) */
+ }
+ } else {
+
+ /* XXX We could come up with the list of code points that fold
+ * to this using PL_utf8_foldclosures, except not for
+ * multi-char folds, as there may be multiple combinations
+ * there that could work, which needs to wait until runtime to
+ * resolve (The comment about LIGATURE FFI above is such an
+ * example */
+
+ SV** svpp;
+ if ( !widecharmap )
+ widecharmap = newHV();
+
+ svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
+
+ if ( !svpp )
+ Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
+
+ if ( !SvTRUE( *svpp ) ) {
+ sv_setiv( *svpp, ++trie->uniquecharcount );
+ TRIE_STORE_REVCHAR(uvc);
+ }
+ }
+ } /* end loop through characters in this branch of the trie */
+
+ /* We take the min and max for this branch and combine to find the min
+ * and max for all branches processed so far */
+ if( cur == first ) {
+ trie->minlen = minchars;
+ trie->maxlen = maxchars;
+ } else if (minchars < trie->minlen) {
+ trie->minlen = minchars;
+ } else if (maxchars > trie->maxlen) {
+ trie->maxlen = maxchars;
+ }
+ } /* end first pass */
+ DEBUG_TRIE_COMPILE_r(
+ PerlIO_printf( Perl_debug_log,
+ "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
+ (int)depth * 2 + 2,"",
+ ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
+ (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
+ (int)trie->minlen, (int)trie->maxlen )
+ );
+
+ /*
+ We now know what we are dealing with in terms of unique chars and
+ string sizes so we can calculate how much memory a naive
+ representation using a flat table will take. If it's over a reasonable
+ limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
+ conservative but potentially much slower representation using an array
+ of lists.
+
+ At the end we convert both representations into the same compressed
+ form that will be used in regexec.c for matching with. The latter
+ is a form that cannot be used to construct with but has memory
+ properties similar to the list form and access properties similar
+ to the table form making it both suitable for fast searches and
+ small enough that its feasable to store for the duration of a program.
+
+ See the comment in the code where the compressed table is produced
+ inplace from the flat tabe representation for an explanation of how
+ the compression works.
+
+ */
+
+
+ Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
+ prev_states[1] = 0;
+
+ if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
+ > SvIV(re_trie_maxbuff) )
+ {
+ /*
+ Second Pass -- Array Of Lists Representation
+
+ Each state will be represented by a list of charid:state records
+ (reg_trie_trans_le) the first such element holds the CUR and LEN
+ points of the allocated array. (See defines above).
+
+ We build the initial structure using the lists, and then convert
+ it into the compressed table form which allows faster lookups
+ (but cant be modified once converted).
+ */
+
+ STRLEN transcount = 1;
+
+ DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
+ "%*sCompiling trie using list compiler\n",
+ (int)depth * 2 + 2, ""));
+
+ trie->states = (reg_trie_state *)
+ PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
+ sizeof(reg_trie_state) );
+ TRIE_LIST_NEW(1);
+ next_alloc = 2;
+
+ for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+
+ regnode *noper = NEXTOPER( cur );
+ U8 *uc = (U8*)STRING( noper );
+ const U8 *e = uc + STR_LEN( noper );
+ U32 state = 1; /* required init */
+ U16 charid = 0; /* sanity init */
+ U32 wordlen = 0; /* required init */
+
+ if (OP(noper) == NOTHING) {
+ regnode *noper_next= regnext(noper);
+ if (noper_next != tail && OP(noper_next) == flags) {
+ noper = noper_next;
+ uc= (U8*)STRING(noper);
+ e= uc + STR_LEN(noper);
+ }
+ }
+
+ if (OP(noper) != NOTHING) {
+ for ( ; uc < e ; uc += len ) {
+
+ TRIE_READ_CHAR;
+
+ if ( uvc < 256 ) {
+ charid = trie->charmap[ uvc ];
+ } else {
+ SV** const svpp = hv_fetch( widecharmap,
+ (char*)&uvc,
+ sizeof( UV ),
+ 0);
+ if ( !svpp ) {
+ charid = 0;
+ } else {
+ charid=(U16)SvIV( *svpp );
+ }
+ }
+ /* charid is now 0 if we dont know the char read, or
+ * nonzero if we do */
+ if ( charid ) {
+
+ U16 check;
+ U32 newstate = 0;
+
+ charid--;
+ if ( !trie->states[ state ].trans.list ) {
+ TRIE_LIST_NEW( state );
+ }
+ for ( check = 1;
+ check <= TRIE_LIST_USED( state );
+ check++ )
+ {
+ if ( TRIE_LIST_ITEM( state, check ).forid
+ == charid )
+ {
+ newstate = TRIE_LIST_ITEM( state, check ).newstate;
+ break;
+ }
+ }
+ if ( ! newstate ) {
+ newstate = next_alloc++;
+ prev_states[newstate] = state;
+ TRIE_LIST_PUSH( state, charid, newstate );
+ transcount++;
+ }
+ state = newstate;
+ } else {
+ Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
+ }
+ }
+ }
+ TRIE_HANDLE_WORD(state);
+
+ } /* end second pass */
+
+ /* next alloc is the NEXT state to be allocated */
+ trie->statecount = next_alloc;
+ trie->states = (reg_trie_state *)
+ PerlMemShared_realloc( trie->states,
+ next_alloc
+ * sizeof(reg_trie_state) );
+
+ /* and now dump it out before we compress it */
+ DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
+ revcharmap, next_alloc,
+ depth+1)
+ );
+
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
+ {
+ U32 state;
+ U32 tp = 0;
+ U32 zp = 0;
+
+
+ for( state=1 ; state < next_alloc ; state ++ ) {
+ U32 base=0;
+
+ /*
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
+ );
+ */
+
+ if (trie->states[state].trans.list) {
+ U16 minid=TRIE_LIST_ITEM( state, 1).forid;
+ U16 maxid=minid;
+ U16 idx;
+
+ for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
+ const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
+ if ( forid < minid ) {
+ minid=forid;
+ } else if ( forid > maxid ) {
+ maxid=forid;
+ }
+ }
+ if ( transcount < tp + maxid - minid + 1) {
+ transcount *= 2;
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_realloc( trie->trans,
+ transcount
+ * sizeof(reg_trie_trans) );
+ Zero( trie->trans + (transcount / 2),
+ transcount / 2,
+ reg_trie_trans );
+ }
+ base = trie->uniquecharcount + tp - minid;
+ if ( maxid == minid ) {
+ U32 set = 0;
+ for ( ; zp < tp ; zp++ ) {
+ if ( ! trie->trans[ zp ].next ) {
+ base = trie->uniquecharcount + zp - minid;
+ trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
+ 1).newstate;
+ trie->trans[ zp ].check = state;
+ set = 1;
+ break;
+ }
+ }
+ if ( !set ) {
+ trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
+ 1).newstate;
+ trie->trans[ tp ].check = state;
+ tp++;
+ zp = tp;
+ }
+ } else {
+ for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
+ const U32 tid = base
+ - trie->uniquecharcount
+ + TRIE_LIST_ITEM( state, idx ).forid;
+ trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
+ idx ).newstate;
+ trie->trans[ tid ].check = state;
+ }
+ tp += ( maxid - minid + 1 );
+ }
+ Safefree(trie->states[ state ].trans.list);
+ }
+ /*
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf( Perl_debug_log, " base: %d\n",base);
+ );
+ */
+ trie->states[ state ].trans.base=base;
+ }
+ trie->lasttrans = tp + 1;
+ }
+ } else {
+ /*
+ Second Pass -- Flat Table Representation.
+
+ we dont use the 0 slot of either trans[] or states[] so we add 1 to
+ each. We know that we will need Charcount+1 trans at most to store
+ the data (one row per char at worst case) So we preallocate both
+ structures assuming worst case.
+
+ We then construct the trie using only the .next slots of the entry
+ structs.
+
+ We use the .check field of the first entry of the node temporarily
+ to make compression both faster and easier by keeping track of how
+ many non zero fields are in the node.
+
+ Since trans are numbered from 1 any 0 pointer in the table is a FAIL
+ transition.
+
+ There are two terms at use here: state as a TRIE_NODEIDX() which is
+ a number representing the first entry of the node, and state as a
+ TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
+ and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
+ if there are 2 entrys per node. eg:
+
+ A B A B
+ 1. 2 4 1. 3 7
+ 2. 0 3 3. 0 5
+ 3. 0 0 5. 0 0
+ 4. 0 0 7. 0 0
+
+ The table is internally in the right hand, idx form. However as we
+ also have to deal with the states array which is indexed by nodenum
+ we have to use TRIE_NODENUM() to convert.
+
+ */
+ DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
+ "%*sCompiling trie using table compiler\n",
+ (int)depth * 2 + 2, ""));
+
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
+ * trie->uniquecharcount + 1,
+ sizeof(reg_trie_trans) );
+ trie->states = (reg_trie_state *)
+ PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
+ sizeof(reg_trie_state) );
+ next_alloc = trie->uniquecharcount + 1;
+
+
+ for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+
+ regnode *noper = NEXTOPER( cur );
+ const U8 *uc = (U8*)STRING( noper );
+ const U8 *e = uc + STR_LEN( noper );
+
+ U32 state = 1; /* required init */
+
+ U16 charid = 0; /* sanity init */
+ U32 accept_state = 0; /* sanity init */
+
+ U32 wordlen = 0; /* required init */
+
+ if (OP(noper) == NOTHING) {
+ regnode *noper_next= regnext(noper);
+ if (noper_next != tail && OP(noper_next) == flags) {
+ noper = noper_next;
+ uc= (U8*)STRING(noper);
+ e= uc + STR_LEN(noper);
+ }
+ }
+
+ if ( OP(noper) != NOTHING ) {
+ for ( ; uc < e ; uc += len ) {
+
+ TRIE_READ_CHAR;
+
+ if ( uvc < 256 ) {
+ charid = trie->charmap[ uvc ];
+ } else {
+ SV* const * const svpp = hv_fetch( widecharmap,
+ (char*)&uvc,
+ sizeof( UV ),
+ 0);
+ charid = svpp ? (U16)SvIV(*svpp) : 0;
+ }
+ if ( charid ) {
+ charid--;
+ if ( !trie->trans[ state + charid ].next ) {
+ trie->trans[ state + charid ].next = next_alloc;
+ trie->trans[ state ].check++;
+ prev_states[TRIE_NODENUM(next_alloc)]
+ = TRIE_NODENUM(state);
+ next_alloc += trie->uniquecharcount;
+ }
+ state = trie->trans[ state + charid ].next;
+ } else {
+ Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
+ }
+ /* charid is now 0 if we dont know the char read, or
+ * nonzero if we do */
+ }
+ }
+ accept_state = TRIE_NODENUM( state );
+ TRIE_HANDLE_WORD(accept_state);
+
+ } /* end second pass */
+
+ /* and now dump it out before we compress it */
+ DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
+ revcharmap,
+ next_alloc, depth+1));
+
+ {
+ /*
+ * Inplace compress the table.*
+
+ For sparse data sets the table constructed by the trie algorithm will
+ be mostly 0/FAIL transitions or to put it another way mostly empty.
+ (Note that leaf nodes will not contain any transitions.)
+
+ This algorithm compresses the tables by eliminating most such
+ transitions, at the cost of a modest bit of extra work during lookup:
+
+ - Each states[] entry contains a .base field which indicates the
+ index in the state[] array wheres its transition data is stored.
+
+ - If .base is 0 there are no valid transitions from that node.
+
+ - If .base is nonzero then charid is added to it to find an entry in
+ the trans array.
+
+ -If trans[states[state].base+charid].check!=state then the
+ transition is taken to be a 0/Fail transition. Thus if there are fail
+ transitions at the front of the node then the .base offset will point
+ somewhere inside the previous nodes data (or maybe even into a node
+ even earlier), but the .check field determines if the transition is
+ valid.
+
+ XXX - wrong maybe?
+ The following process inplace converts the table to the compressed
+ table: We first do not compress the root node 1,and mark all its
+ .check pointers as 1 and set its .base pointer as 1 as well. This
+ allows us to do a DFA construction from the compressed table later,
+ and ensures that any .base pointers we calculate later are greater
+ than 0.
+
+ - We set 'pos' to indicate the first entry of the second node.
+
+ - We then iterate over the columns of the node, finding the first and
+ last used entry at l and m. We then copy l..m into pos..(pos+m-l),
+ and set the .check pointers accordingly, and advance pos
+ appropriately and repreat for the next node. Note that when we copy
+ the next pointers we have to convert them from the original
+ NODEIDX form to NODENUM form as the former is not valid post
+ compression.
+
+ - If a node has no transitions used we mark its base as 0 and do not
+ advance the pos pointer.
+
+ - If a node only has one transition we use a second pointer into the
+ structure to fill in allocated fail transitions from other states.
+ This pointer is independent of the main pointer and scans forward
+ looking for null transitions that are allocated to a state. When it
+ finds one it writes the single transition into the "hole". If the
+ pointer doesnt find one the single transition is appended as normal.
+
+ - Once compressed we can Renew/realloc the structures to release the
+ excess space.
+
+ See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
+ specifically Fig 3.47 and the associated pseudocode.
+
+ demq
+ */
+ const U32 laststate = TRIE_NODENUM( next_alloc );
+ U32 state, charid;
+ U32 pos = 0, zp=0;
+ trie->statecount = laststate;
+
+ for ( state = 1 ; state < laststate ; state++ ) {
+ U8 flag = 0;
+ const U32 stateidx = TRIE_NODEIDX( state );
+ const U32 o_used = trie->trans[ stateidx ].check;
+ U32 used = trie->trans[ stateidx ].check;
+ trie->trans[ stateidx ].check = 0;
+
+ for ( charid = 0;
+ used && charid < trie->uniquecharcount;
+ charid++ )
+ {
+ if ( flag || trie->trans[ stateidx + charid ].next ) {
+ if ( trie->trans[ stateidx + charid ].next ) {
+ if (o_used == 1) {
+ for ( ; zp < pos ; zp++ ) {
+ if ( ! trie->trans[ zp ].next ) {
+ break;
+ }
+ }
+ trie->states[ state ].trans.base
+ = zp
+ + trie->uniquecharcount
+ - charid ;
+ trie->trans[ zp ].next
+ = SAFE_TRIE_NODENUM( trie->trans[ stateidx
+ + charid ].next );
+ trie->trans[ zp ].check = state;
+ if ( ++zp > pos ) pos = zp;
+ break;
+ }
+ used--;
+ }
+ if ( !flag ) {
+ flag = 1;
+ trie->states[ state ].trans.base
+ = pos + trie->uniquecharcount - charid ;
+ }
+ trie->trans[ pos ].next
+ = SAFE_TRIE_NODENUM(
+ trie->trans[ stateidx + charid ].next );
+ trie->trans[ pos ].check = state;
+ pos++;
+ }
+ }
+ }
+ trie->lasttrans = pos + 1;
+ trie->states = (reg_trie_state *)
+ PerlMemShared_realloc( trie->states, laststate
+ * sizeof(reg_trie_state) );
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf( Perl_debug_log,
+ "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
+ (int)depth * 2 + 2,"",
+ (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
+ + 1 ),
+ (IV)next_alloc,
+ (IV)pos,
+ ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
+ );
+
+ } /* end table compress */
+ }
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
+ (int)depth * 2 + 2, "",
+ (UV)trie->statecount,
+ (UV)trie->lasttrans)
+ );
+ /* resize the trans array to remove unused space */
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_realloc( trie->trans, trie->lasttrans
+ * sizeof(reg_trie_trans) );
+
+ { /* Modify the program and insert the new TRIE node */
+ U8 nodetype =(U8)(flags & 0xFF);
+ char *str=NULL;
+
+#ifdef DEBUGGING
+ regnode *optimize = NULL;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+
+ U32 mjd_offset = 0;
+ U32 mjd_nodelen = 0;
+#endif /* RE_TRACK_PATTERN_OFFSETS */
+#endif /* DEBUGGING */
+ /*
+ This means we convert either the first branch or the first Exact,
+ depending on whether the thing following (in 'last') is a branch
+ or not and whther first is the startbranch (ie is it a sub part of
+ the alternation or is it the whole thing.)
+ Assuming its a sub part we convert the EXACT otherwise we convert
+ the whole branch sequence, including the first.
+ */
+ /* Find the node we are going to overwrite */
+ if ( first != startbranch || OP( last ) == BRANCH ) {
+ /* branch sub-chain */
+ NEXT_OFF( first ) = (U16)(last - first);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ DEBUG_r({
+ mjd_offset= Node_Offset((convert));
+ mjd_nodelen= Node_Length((convert));
+ });
+#endif
+ /* whole branch chain */
+ }
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ else {
+ DEBUG_r({
+ const regnode *nop = NEXTOPER( convert );
+ mjd_offset= Node_Offset((nop));
+ mjd_nodelen= Node_Length((nop));
+ });
+ }
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
+ (int)depth * 2 + 2, "",
+ (UV)mjd_offset, (UV)mjd_nodelen)
+ );
+#endif
+ /* But first we check to see if there is a common prefix we can
+ split out as an EXACT and put in front of the TRIE node. */
+ trie->startstate= 1;
+ if ( trie->bitmap && !widecharmap && !trie->jump ) {
+ U32 state;
+ for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
+ U32 ofs = 0;
+ I32 idx = -1;
+ U32 count = 0;
+ const U32 base = trie->states[ state ].trans.base;
+
+ if ( trie->states[state].wordnum )
+ count = 1;
+
+ for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
+ if ( ( base + ofs >= trie->uniquecharcount ) &&
+ ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
+ trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
+ {
+ if ( ++count > 1 ) {
+ SV **tmp = av_fetch( revcharmap, ofs, 0);
+ const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
+ if ( state == 1 ) break;
+ if ( count == 2 ) {
+ Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*sNew Start State=%"UVuf" Class: [",
+ (int)depth * 2 + 2, "",
+ (UV)state));
+ if (idx >= 0) {
+ SV ** const tmp = av_fetch( revcharmap, idx, 0);
+ const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
+
+ TRIE_BITMAP_SET(trie,*ch);
+ if ( folder )
+ TRIE_BITMAP_SET(trie, folder[ *ch ]);
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
+ );
+ }
+ }
+ TRIE_BITMAP_SET(trie,*ch);
+ if ( folder )
+ TRIE_BITMAP_SET(trie,folder[ *ch ]);
+ DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
+ }
+ idx = ofs;
+ }
+ }
+ if ( count == 1 ) {
+ SV **tmp = av_fetch( revcharmap, idx, 0);
+ STRLEN len;
+ char *ch = SvPV( *tmp, len );
+ DEBUG_OPTIMISE_r({
+ SV *sv=sv_newmortal();
+ PerlIO_printf( Perl_debug_log,
+ "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
+ (int)depth * 2 + 2, "",
+ (UV)state, (UV)idx,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ )
+ );
+ });
+ if ( state==1 ) {
+ OP( convert ) = nodetype;
+ str=STRING(convert);
+ STR_LEN(convert)=0;
+ }
+ STR_LEN(convert) += len;
+ while (len--)
+ *str++ = *ch++;
+ } else {
+#ifdef DEBUGGING
+ if (state>1)
+ DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
+#endif
+ break;
+ }
+ }
+ trie->prefixlen = (state-1);
+ if (str) {
+ regnode *n = convert+NODE_SZ_STR(convert);
+ NEXT_OFF(convert) = NODE_SZ_STR(convert);
+ trie->startstate = state;
+ trie->minlen -= (state - 1);
+ trie->maxlen -= (state - 1);
+#ifdef DEBUGGING
+ /* At least the UNICOS C compiler choked on this
+ * being argument to DEBUG_r(), so let's just have
+ * it right here. */
+ if (
+#ifdef PERL_EXT_RE_BUILD
+ 1
+#else
+ DEBUG_r_TEST
+#endif
+ ) {
+ regnode *fix = convert;
+ U32 word = trie->wordcount;
+ mjd_nodelen++;
+ Set_Node_Offset_Length(convert, mjd_offset, state - 1);
+ while( ++fix < n ) {
+ Set_Node_Offset_Length(fix, 0, 0);
+ }
+ while (word--) {
+ SV ** const tmp = av_fetch( trie_words, word, 0 );
+ if (tmp) {
+ if ( STR_LEN(convert) <= SvCUR(*tmp) )
+ sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
+ else
+ sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
+ }
+ }
+ }
+#endif
+ if (trie->maxlen) {
+ convert = n;
+ } else {
+ NEXT_OFF(convert) = (U16)(tail - convert);
+ DEBUG_r(optimize= n);
+ }
+ }
+ }
+ if (!jumper)
+ jumper = last;
+ if ( trie->maxlen ) {
+ NEXT_OFF( convert ) = (U16)(tail - convert);
+ ARG_SET( convert, data_slot );
+ /* Store the offset to the first unabsorbed branch in
+ jump[0], which is otherwise unused by the jump logic.
+ We use this when dumping a trie and during optimisation. */
+ if (trie->jump)
+ trie->jump[0] = (U16)(nextbranch - convert);
+
+ /* If the start state is not accepting (meaning there is no empty string/NOTHING)
+ * and there is a bitmap
+ * and the first "jump target" node we found leaves enough room
+ * then convert the TRIE node into a TRIEC node, with the bitmap
+ * embedded inline in the opcode - this is hypothetically faster.
+ */
+ if ( !trie->states[trie->startstate].wordnum
+ && trie->bitmap
+ && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
+ {
+ OP( convert ) = TRIEC;
+ Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
+ PerlMemShared_free(trie->bitmap);
+ trie->bitmap= NULL;
+ } else
+ OP( convert ) = TRIE;
+
+ /* store the type in the flags */
+ convert->flags = nodetype;
+ DEBUG_r({
+ optimize = convert
+ + NODE_STEP_REGNODE
+ + regarglen[ OP( convert ) ];
+ });
+ /* XXX We really should free up the resource in trie now,
+ as we won't use them - (which resources?) dmq */
+ }
+ /* needed for dumping*/
+ DEBUG_r(if (optimize) {
+ regnode *opt = convert;
+
+ while ( ++opt < optimize) {
+ Set_Node_Offset_Length(opt,0,0);
+ }
+ /*
+ Try to clean up some of the debris left after the
+ optimisation.
+ */
+ while( optimize < jumper ) {
+ mjd_nodelen += Node_Length((optimize));
+ OP( optimize ) = OPTIMIZED;
+ Set_Node_Offset_Length(optimize,0,0);
+ optimize++;
+ }
+ Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
+ });
+ } /* end node insert */
+
+ /* Finish populating the prev field of the wordinfo array. Walk back
+ * from each accept state until we find another accept state, and if
+ * so, point the first word's .prev field at the second word. If the
+ * second already has a .prev field set, stop now. This will be the
+ * case either if we've already processed that word's accept state,
+ * or that state had multiple words, and the overspill words were
+ * already linked up earlier.
+ */
+ {
+ U16 word;
+ U32 state;
+ U16 prev;
+
+ for (word=1; word <= trie->wordcount; word++) {
+ prev = 0;
+ if (trie->wordinfo[word].prev)
+ continue;
+ state = trie->wordinfo[word].accept;
+ while (state) {
+ state = prev_states[state];
+ if (!state)
+ break;
+ prev = trie->states[state].wordnum;
+ if (prev)
+ break;
+ }
+ trie->wordinfo[word].prev = prev;
+ }
+ Safefree(prev_states);
+ }
+
+
+ /* and now dump out the compressed format */
+ DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
+
+ RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
+#ifdef DEBUGGING
+ RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
+ RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
+#else
+ SvREFCNT_dec_NN(revcharmap);
+#endif
+ return trie->jump
+ ? MADE_JUMP_TRIE
+ : trie->startstate>1
+ ? MADE_EXACT_TRIE
+ : MADE_TRIE;
+}
+
+STATIC regnode *
+S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
+{
+/* The Trie is constructed and compressed now so we can build a fail array if
+ * it's needed
+
+ This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
+ 3.32 in the
+ "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
+ Ullman 1985/88
+ ISBN 0-201-10088-6
+
+ We find the fail state for each state in the trie, this state is the longest
+ proper suffix of the current state's 'word' that is also a proper prefix of
+ another word in our trie. State 1 represents the word '' and is thus the
+ default fail state. This allows the DFA not to have to restart after its
+ tried and failed a word at a given point, it simply continues as though it
+ had been matching the other word in the first place.
+ Consider
+ 'abcdgu'=~/abcdefg|cdgu/
+ When we get to 'd' we are still matching the first word, we would encounter
+ 'g' which would fail, which would bring us to the state representing 'd' in
+ the second word where we would try 'g' and succeed, proceeding to match
+ 'cdgu'.
+ */
+ /* add a fail transition */
+ const U32 trie_offset = ARG(source);
+ reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
+ U32 *q;
+ const U32 ucharcount = trie->uniquecharcount;
+ const U32 numstates = trie->statecount;
+ const U32 ubound = trie->lasttrans + ucharcount;
+ U32 q_read = 0;
+ U32 q_write = 0;
+ U32 charid;
+ U32 base = trie->states[ 1 ].trans.base;
+ U32 *fail;
+ reg_ac_data *aho;
+ const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
+ regnode *stclass;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
+ PERL_UNUSED_CONTEXT;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ if ( OP(source) == TRIE ) {
+ struct regnode_1 *op = (struct regnode_1 *)
+ PerlMemShared_calloc(1, sizeof(struct regnode_1));
+ StructCopy(source,op,struct regnode_1);
+ stclass = (regnode *)op;
+ } else {
+ struct regnode_charclass *op = (struct regnode_charclass *)
+ PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
+ StructCopy(source,op,struct regnode_charclass);
+ stclass = (regnode *)op;
+ }
+ OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */
+
+ ARG_SET( stclass, data_slot );
+ aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
+ RExC_rxi->data->data[ data_slot ] = (void*)aho;
+ aho->trie=trie_offset;
+ aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
+ Copy( trie->states, aho->states, numstates, reg_trie_state );
+ Newxz( q, numstates, U32);
+ aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
+ aho->refcount = 1;
+ fail = aho->fail;
+ /* initialize fail[0..1] to be 1 so that we always have
+ a valid final fail state */
+ fail[ 0 ] = fail[ 1 ] = 1;
+
+ for ( charid = 0; charid < ucharcount ; charid++ ) {
+ const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
+ if ( newstate ) {
+ q[ q_write ] = newstate;
+ /* set to point at the root */
+ fail[ q[ q_write++ ] ]=1;
+ }
+ }
+ while ( q_read < q_write) {
+ const U32 cur = q[ q_read++ % numstates ];
+ base = trie->states[ cur ].trans.base;
+
+ for ( charid = 0 ; charid < ucharcount ; charid++ ) {
+ const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
+ if (ch_state) {
+ U32 fail_state = cur;
+ U32 fail_base;
+ do {
+ fail_state = fail[ fail_state ];
+ fail_base = aho->states[ fail_state ].trans.base;
+ } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
+
+ fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
+ fail[ ch_state ] = fail_state;
+ if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
+ {
+ aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
+ }
+ q[ q_write++ % numstates] = ch_state;
+ }
+ }
+ }
+ /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
+ when we fail in state 1, this allows us to use the
+ charclass scan to find a valid start char. This is based on the principle
+ that theres a good chance the string being searched contains lots of stuff
+ that cant be a start char.
+ */
+ fail[ 0 ] = fail[ 1 ] = 0;
+ DEBUG_TRIE_COMPILE_r({
+ PerlIO_printf(Perl_debug_log,
+ "%*sStclass Failtable (%"UVuf" states): 0",
+ (int)(depth * 2), "", (UV)numstates
+ );
+ for( q_read=1; q_read<numstates; q_read++ ) {
+ PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
+ }
+ PerlIO_printf(Perl_debug_log, "\n");
+ });
+ Safefree(q);
+ /*RExC_seen |= REG_TRIEDFA_SEEN;*/
+ return stclass;
+}
+
+
+#define DEBUG_PEEP(str,scan,depth) \
+ DEBUG_OPTIMISE_r({if (scan){ \
+ regnode *Next = regnext(scan); \
+ regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state); \
+ PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)", \
+ (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),\
+ Next ? (REG_NODE_NUM(Next)) : 0 ); \
+ DEBUG_SHOW_STUDY_FLAGS(flags," [ ","]");\
+ PerlIO_printf(Perl_debug_log, "\n"); \
+ }});
+
+/* The below joins as many adjacent EXACTish nodes as possible into a single
+ * one. The regop may be changed if the node(s) contain certain sequences that
+ * require special handling. The joining is only done if:
+ * 1) there is room in the current conglomerated node to entirely contain the
+ * next one.
+ * 2) they are the exact same node type
+ *
+ * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
+ * these get optimized out
+ *
+ * If a node is to match under /i (folded), the number of characters it matches
+ * can be different than its character length if it contains a multi-character
+ * fold. *min_subtract is set to the total delta number of characters of the
+ * input nodes.
+ *
+ * And *unfolded_multi_char is set to indicate whether or not the node contains
+ * an unfolded multi-char fold. This happens when whether the fold is valid or
+ * not won't be known until runtime; namely for EXACTF nodes that contain LATIN
+ * SMALL LETTER SHARP S, as only if the target string being matched against
+ * turns out to be UTF-8 is that fold valid; and also for EXACTFL nodes whose
+ * folding rules depend on the locale in force at runtime. (Multi-char folds
+ * whose components are all above the Latin1 range are not run-time locale
+ * dependent, and have already been folded by the time this function is
+ * called.)
+ *
+ * This is as good a place as any to discuss the design of handling these
+ * multi-character fold sequences. It's been wrong in Perl for a very long
+ * time. There are three code points in Unicode whose multi-character folds
+ * were long ago discovered to mess things up. The previous designs for
+ * dealing with these involved assigning a special node for them. This
+ * approach doesn't always work, as evidenced by this example:
+ * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
+ * Both sides fold to "sss", but if the pattern is parsed to create a node that
+ * would match just the \xDF, it won't be able to handle the case where a
+ * successful match would have to cross the node's boundary. The new approach
+ * that hopefully generally solves the problem generates an EXACTFU_SS node
+ * that is "sss" in this case.
+ *
+ * It turns out that there are problems with all multi-character folds, and not
+ * just these three. Now the code is general, for all such cases. The
+ * approach taken is:
+ * 1) This routine examines each EXACTFish node that could contain multi-
+ * character folded sequences. Since a single character can fold into
+ * such a sequence, the minimum match length for this node is less than
+ * the number of characters in the node. This routine returns in
+ * *min_subtract how many characters to subtract from the the actual
+ * length of the string to get a real minimum match length; it is 0 if
+ * there are no multi-char foldeds. This delta is used by the caller to
+ * adjust the min length of the match, and the delta between min and max,
+ * so that the optimizer doesn't reject these possibilities based on size
+ * constraints.
+ * 2) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
+ * is used for an EXACTFU node that contains at least one "ss" sequence in
+ * it. For non-UTF-8 patterns and strings, this is the only case where
+ * there is a possible fold length change. That means that a regular
+ * EXACTFU node without UTF-8 involvement doesn't have to concern itself
+ * with length changes, and so can be processed faster. regexec.c takes
+ * advantage of this. Generally, an EXACTFish node that is in UTF-8 is
+ * pre-folded by regcomp.c (except EXACTFL, some of whose folds aren't
+ * known until runtime). This saves effort in regex matching. However,
+ * the pre-folding isn't done for non-UTF8 patterns because the fold of
+ * the MICRO SIGN requires UTF-8, and we don't want to slow things down by
+ * forcing the pattern into UTF8 unless necessary. Also what EXACTF (and,
+ * again, EXACTFL) nodes fold to isn't known until runtime. The fold
+ * possibilities for the non-UTF8 patterns are quite simple, except for
+ * the sharp s. All the ones that don't involve a UTF-8 target string are
+ * members of a fold-pair, and arrays are set up for all of them so that
+ * the other member of the pair can be found quickly. Code elsewhere in
+ * this file makes sure that in EXACTFU nodes, the sharp s gets folded to
+ * 'ss', even if the pattern isn't UTF-8. This avoids the issues
+ * described in the next item.
+ * 3) A problem remains for unfolded multi-char folds. (These occur when the
+ * validity of the fold won't be known until runtime, and so must remain
+ * unfolded for now. This happens for the sharp s in EXACTF and EXACTFA
+ * nodes when the pattern isn't in UTF-8. (Note, BTW, that there cannot
+ * be an EXACTF node with a UTF-8 pattern.) They also occur for various
+ * folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
+ * The reason this is a problem is that the optimizer part of regexec.c
+ * (probably unwittingly, in Perl_regexec_flags()) makes an assumption
+ * that a character in the pattern corresponds to at most a single
+ * character in the target string. (And I do mean character, and not byte
+ * here, unlike other parts of the documentation that have never been
+ * updated to account for multibyte Unicode.) sharp s in EXACTF and
+ * EXACTFL nodes can match the two character string 'ss'; in EXACTFA nodes
+ * it can match "\x{17F}\x{17F}". These, along with other ones in EXACTFL
+ * nodes, violate the assumption, and they are the only instances where it
+ * is violated. I'm reluctant to try to change the assumption, as the
+ * code involved is impenetrable to me (khw), so instead the code here
+ * punts. This routine examines EXACTFL nodes, and (when the pattern
+ * isn't UTF-8) EXACTF and EXACTFA for such unfolded folds, and returns a
+ * boolean indicating whether or not the node contains such a fold. When
+ * it is true, the caller sets a flag that later causes the optimizer in
+ * this file to not set values for the floating and fixed string lengths,
+ * and thus avoids the optimizer code in regexec.c that makes the invalid
+ * assumption. Thus, there is no optimization based on string lengths for
+ * EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
+ * EXACTF and EXACTFA nodes that contain the sharp s. (The reason the
+ * assumption is wrong only in these cases is that all other non-UTF-8
+ * folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
+ * their expanded versions. (Again, we can't prefold sharp s to 'ss' in
+ * EXACTF nodes because we don't know at compile time if it actually
+ * matches 'ss' or not. For EXACTF nodes it will match iff the target
+ * string is in UTF-8. This is in contrast to EXACTFU nodes, where it
+ * always matches; and EXACTFA where it never does. In an EXACTFA node in
+ * a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
+ * problem; but in a non-UTF8 pattern, folding it to that above-Latin1
+ * string would require the pattern to be forced into UTF-8, the overhead
+ * of which we want to avoid. Similarly the unfolded multi-char folds in
+ * EXACTFL nodes will match iff the locale at the time of match is a UTF-8
+ * locale.)
+ *
+ * Similarly, the code that generates tries doesn't currently handle
+ * not-already-folded multi-char folds, and it looks like a pain to change
+ * that. Therefore, trie generation of EXACTFA nodes with the sharp s
+ * doesn't work. Instead, such an EXACTFA is turned into a new regnode,
+ * EXACTFA_NO_TRIE, which the trie code knows not to handle. Most people
+ * using /iaa matching will be doing so almost entirely with ASCII
+ * strings, so this should rarely be encountered in practice */
+
+#define JOIN_EXACT(scan,min_subtract,unfolded_multi_char, flags) \
+ if (PL_regkind[OP(scan)] == EXACT) \
+ join_exact(pRExC_state,(scan),(min_subtract),unfolded_multi_char, (flags),NULL,depth+1)
+
+STATIC U32
+S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan,
+ UV *min_subtract, bool *unfolded_multi_char,
+ U32 flags,regnode *val, U32 depth)
+{
+ /* Merge several consecutive EXACTish nodes into one. */
+ regnode *n = regnext(scan);
+ U32 stringok = 1;
+ regnode *next = scan + NODE_SZ_STR(scan);
+ U32 merged = 0;
+ U32 stopnow = 0;
+#ifdef DEBUGGING
+ regnode *stop = scan;
+ GET_RE_DEBUG_FLAGS_DECL;
+#else
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ PERL_ARGS_ASSERT_JOIN_EXACT;
+#ifndef EXPERIMENTAL_INPLACESCAN
+ PERL_UNUSED_ARG(flags);
+ PERL_UNUSED_ARG(val);
+#endif
+ DEBUG_PEEP("join",scan,depth);
+
+ /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
+ * EXACT ones that are mergeable to the current one. */
+ while (n
+ && (PL_regkind[OP(n)] == NOTHING
+ || (stringok && OP(n) == OP(scan)))
+ && NEXT_OFF(n)
+ && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
+ {
+
+ if (OP(n) == TAIL || n > next)
+ stringok = 0;
+ if (PL_regkind[OP(n)] == NOTHING) {
+ DEBUG_PEEP("skip:",n,depth);
+ NEXT_OFF(scan) += NEXT_OFF(n);
+ next = n + NODE_STEP_REGNODE;
+#ifdef DEBUGGING
+ if (stringok)
+ stop = n;
+#endif
+ n = regnext(n);
+ }
+ else if (stringok) {
+ const unsigned int oldl = STR_LEN(scan);
+ regnode * const nnext = regnext(n);
+
+ /* XXX I (khw) kind of doubt that this works on platforms (should
+ * Perl ever run on one) where U8_MAX is above 255 because of lots
+ * of other assumptions */
+ /* Don't join if the sum can't fit into a single node */
+ if (oldl + STR_LEN(n) > U8_MAX)
+ break;
+
+ DEBUG_PEEP("merg",n,depth);
+ merged++;
+
+ NEXT_OFF(scan) += NEXT_OFF(n);
+ STR_LEN(scan) += STR_LEN(n);
+ next = n + NODE_SZ_STR(n);
+ /* Now we can overwrite *n : */
+ Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
+#ifdef DEBUGGING
+ stop = next - 1;
+#endif
+ n = nnext;
+ if (stopnow) break;
+ }
+
+#ifdef EXPERIMENTAL_INPLACESCAN
+ if (flags && !NEXT_OFF(n)) {
+ DEBUG_PEEP("atch", val, depth);
+ if (reg_off_by_arg[OP(n)]) {
+ ARG_SET(n, val - n);
+ }
+ else {
+ NEXT_OFF(n) = val - n;
+ }
+ stopnow = 1;
+ }
+#endif
+ }
+
+ *min_subtract = 0;
+ *unfolded_multi_char = FALSE;
+
+ /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
+ * can now analyze for sequences of problematic code points. (Prior to
+ * this final joining, sequences could have been split over boundaries, and
+ * hence missed). The sequences only happen in folding, hence for any
+ * non-EXACT EXACTish node */
+ if (OP(scan) != EXACT && OP(scan) != EXACTL) {
+ U8* s0 = (U8*) STRING(scan);
+ U8* s = s0;
+ U8* s_end = s0 + STR_LEN(scan);
+
+ int total_count_delta = 0; /* Total delta number of characters that
+ multi-char folds expand to */
+
+ /* One pass is made over the node's string looking for all the
+ * possibilities. To avoid some tests in the loop, there are two main
+ * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
+ * non-UTF-8 */
+ if (UTF) {
+ U8* folded = NULL;
+
+ if (OP(scan) == EXACTFL) {
+ U8 *d;
+
+ /* An EXACTFL node would already have been changed to another
+ * node type unless there is at least one character in it that
+ * is problematic; likely a character whose fold definition
+ * won't be known until runtime, and so has yet to be folded.
+ * For all but the UTF-8 locale, folds are 1-1 in length, but
+ * to handle the UTF-8 case, we need to create a temporary
+ * folded copy using UTF-8 locale rules in order to analyze it.
+ * This is because our macros that look to see if a sequence is
+ * a multi-char fold assume everything is folded (otherwise the
+ * tests in those macros would be too complicated and slow).
+ * Note that here, the non-problematic folds will have already
+ * been done, so we can just copy such characters. We actually
+ * don't completely fold the EXACTFL string. We skip the
+ * unfolded multi-char folds, as that would just create work
+ * below to figure out the size they already are */
+
+ Newx(folded, UTF8_MAX_FOLD_CHAR_EXPAND * STR_LEN(scan) + 1, U8);
+ d = folded;
+ while (s < s_end) {
+ STRLEN s_len = UTF8SKIP(s);
+ if (! is_PROBLEMATIC_LOCALE_FOLD_utf8(s)) {
+ Copy(s, d, s_len, U8);
+ d += s_len;
+ }
+ else if (is_FOLDS_TO_MULTI_utf8(s)) {
+ *unfolded_multi_char = TRUE;
+ Copy(s, d, s_len, U8);
+ d += s_len;
+ }
+ else if (isASCII(*s)) {
+ *(d++) = toFOLD(*s);
+ }
+ else {
+ STRLEN len;
+ _to_utf8_fold_flags(s, d, &len, FOLD_FLAGS_FULL);
+ d += len;
+ }
+ s += s_len;
+ }
+
+ /* Point the remainder of the routine to look at our temporary
+ * folded copy */
+ s = folded;
+ s_end = d;
+ } /* End of creating folded copy of EXACTFL string */
+
+ /* Examine the string for a multi-character fold sequence. UTF-8
+ * patterns have all characters pre-folded by the time this code is
+ * executed */
+ while (s < s_end - 1) /* Can stop 1 before the end, as minimum
+ length sequence we are looking for is 2 */
+ {
+ int count = 0; /* How many characters in a multi-char fold */
+ int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
+ if (! len) { /* Not a multi-char fold: get next char */
+ s += UTF8SKIP(s);
+ continue;
+ }
+
+ /* Nodes with 'ss' require special handling, except for
+ * EXACTFA-ish for which there is no multi-char fold to this */
+ if (len == 2 && *s == 's' && *(s+1) == 's'
+ && OP(scan) != EXACTFA
+ && OP(scan) != EXACTFA_NO_TRIE)
+ {
+ count = 2;
+ if (OP(scan) != EXACTFL) {
+ OP(scan) = EXACTFU_SS;
+ }
+ s += 2;
+ }
+ else { /* Here is a generic multi-char fold. */
+ U8* multi_end = s + len;
+
+ /* Count how many characters are in it. In the case of
+ * /aa, no folds which contain ASCII code points are
+ * allowed, so check for those, and skip if found. */
+ if (OP(scan) != EXACTFA && OP(scan) != EXACTFA_NO_TRIE) {
+ count = utf8_length(s, multi_end);
+ s = multi_end;
+ }
+ else {
+ while (s < multi_end) {
+ if (isASCII(*s)) {
+ s++;
+ goto next_iteration;
+ }
+ else {
+ s += UTF8SKIP(s);
+ }
+ count++;
+ }
+ }
+ }
+
+ /* The delta is how long the sequence is minus 1 (1 is how long
+ * the character that folds to the sequence is) */
+ total_count_delta += count - 1;
+ next_iteration: ;
+ }
+
+ /* We created a temporary folded copy of the string in EXACTFL
+ * nodes. Therefore we need to be sure it doesn't go below zero,
+ * as the real string could be shorter */
+ if (OP(scan) == EXACTFL) {
+ int total_chars = utf8_length((U8*) STRING(scan),
+ (U8*) STRING(scan) + STR_LEN(scan));
+ if (total_count_delta > total_chars) {
+ total_count_delta = total_chars;
+ }
+ }
+
+ *min_subtract += total_count_delta;
+ Safefree(folded);
+ }
+ else if (OP(scan) == EXACTFA) {
+
+ /* Non-UTF-8 pattern, EXACTFA node. There can't be a multi-char
+ * fold to the ASCII range (and there are no existing ones in the
+ * upper latin1 range). But, as outlined in the comments preceding
+ * this function, we need to flag any occurrences of the sharp s.
+ * This character forbids trie formation (because of added
+ * complexity) */
+ while (s < s_end) {
+ if (*s == LATIN_SMALL_LETTER_SHARP_S) {
+ OP(scan) = EXACTFA_NO_TRIE;
+ *unfolded_multi_char = TRUE;
+ break;
+ }
+ s++;
+ continue;
+ }
+ }
+ else {
+
+ /* Non-UTF-8 pattern, not EXACTFA node. Look for the multi-char
+ * folds that are all Latin1. As explained in the comments
+ * preceding this function, we look also for the sharp s in EXACTF
+ * and EXACTFL nodes; it can be in the final position. Otherwise
+ * we can stop looking 1 byte earlier because have to find at least
+ * two characters for a multi-fold */
+ const U8* upper = (OP(scan) == EXACTF || OP(scan) == EXACTFL)
+ ? s_end
+ : s_end -1;
+
+ while (s < upper) {
+ int len = is_MULTI_CHAR_FOLD_latin1_safe(s, s_end);
+ if (! len) { /* Not a multi-char fold. */
+ if (*s == LATIN_SMALL_LETTER_SHARP_S
+ && (OP(scan) == EXACTF || OP(scan) == EXACTFL))
+ {
+ *unfolded_multi_char = TRUE;
+ }
+ s++;
+ continue;
+ }
+
+ if (len == 2
+ && isALPHA_FOLD_EQ(*s, 's')
+ && isALPHA_FOLD_EQ(*(s+1), 's'))
+ {
+
+ /* EXACTF nodes need to know that the minimum length
+ * changed so that a sharp s in the string can match this
+ * ss in the pattern, but they remain EXACTF nodes, as they
+ * won't match this unless the target string is is UTF-8,
+ * which we don't know until runtime. EXACTFL nodes can't
+ * transform into EXACTFU nodes */
+ if (OP(scan) != EXACTF && OP(scan) != EXACTFL) {
+ OP(scan) = EXACTFU_SS;
+ }
+ }
+
+ *min_subtract += len - 1;
+ s += len;
+ }
+ }
+ }
+
+#ifdef DEBUGGING
+ /* Allow dumping but overwriting the collection of skipped
+ * ops and/or strings with fake optimized ops */
+ n = scan + NODE_SZ_STR(scan);
+ while (n <= stop) {
+ OP(n) = OPTIMIZED;
+ FLAGS(n) = 0;
+ NEXT_OFF(n) = 0;
+ n++;
+ }
+#endif
+ DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
+ return stopnow;
+}
+
+/* REx optimizer. Converts nodes into quicker variants "in place".
+ Finds fixed substrings. */
+
+/* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
+ to the position after last scanned or to NULL. */
+
+#define INIT_AND_WITHP \
+ assert(!and_withp); \
+ Newx(and_withp,1, regnode_ssc); \
+ SAVEFREEPV(and_withp)
+
+
+static void
+S_unwind_scan_frames(pTHX_ const void *p)
+{
+ scan_frame *f= (scan_frame *)p;
+ do {
+ scan_frame *n= f->next_frame;
+ Safefree(f);
+ f= n;
+ } while (f);
+}
+
+
+STATIC SSize_t
+S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
+ SSize_t *minlenp, SSize_t *deltap,
+ regnode *last,
+ scan_data_t *data,
+ I32 stopparen,
+ U32 recursed_depth,
+ regnode_ssc *and_withp,
+ U32 flags, U32 depth)
+ /* scanp: Start here (read-write). */
+ /* deltap: Write maxlen-minlen here. */
+ /* last: Stop before this one. */
+ /* data: string data about the pattern */
+ /* stopparen: treat close N as END */
+ /* recursed: which subroutines have we recursed into */
+ /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
+{
+ /* There must be at least this number of characters to match */
+ SSize_t min = 0;
+ I32 pars = 0, code;
+ regnode *scan = *scanp, *next;
+ SSize_t delta = 0;
+ int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
+ int is_inf_internal = 0; /* The studied chunk is infinite */
+ I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
+ scan_data_t data_fake;
+ SV *re_trie_maxbuff = NULL;
+ regnode *first_non_open = scan;
+ SSize_t stopmin = SSize_t_MAX;
+ scan_frame *frame = NULL;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_STUDY_CHUNK;
+
+
+ if ( depth == 0 ) {
+ while (first_non_open && OP(first_non_open) == OPEN)
+ first_non_open=regnext(first_non_open);
+ }
+
+
+ fake_study_recurse:
+ DEBUG_r(
+ RExC_study_chunk_recursed_count++;
+ );
+ DEBUG_OPTIMISE_MORE_r(
+ {
+ PerlIO_printf(Perl_debug_log,
+ "%*sstudy_chunk stopparen=%ld recursed_count=%lu depth=%lu recursed_depth=%lu scan=%p last=%p",
+ (int)(depth*2), "", (long)stopparen,
+ (unsigned long)RExC_study_chunk_recursed_count,
+ (unsigned long)depth, (unsigned long)recursed_depth,
+ scan,
+ last);
+ if (recursed_depth) {
+ U32 i;
+ U32 j;
+ for ( j = 0 ; j < recursed_depth ; j++ ) {
+ for ( i = 0 ; i < (U32)RExC_npar ; i++ ) {
+ if (
+ PAREN_TEST(RExC_study_chunk_recursed +
+ ( j * RExC_study_chunk_recursed_bytes), i )
+ && (
+ !j ||
+ !PAREN_TEST(RExC_study_chunk_recursed +
+ (( j - 1 ) * RExC_study_chunk_recursed_bytes), i)
+ )
+ ) {
+ PerlIO_printf(Perl_debug_log," %d",(int)i);
+ break;
+ }
+ }
+ if ( j + 1 < recursed_depth ) {
+ PerlIO_printf(Perl_debug_log, ",");
+ }
+ }
+ }
+ PerlIO_printf(Perl_debug_log,"\n");
+ }
+ );
+ while ( scan && OP(scan) != END && scan < last ){
+ UV min_subtract = 0; /* How mmany chars to subtract from the minimum
+ node length to get a real minimum (because
+ the folded version may be shorter) */
+ bool unfolded_multi_char = FALSE;
+ /* Peephole optimizer: */
+ DEBUG_STUDYDATA("Peep:", data, depth);
+ DEBUG_PEEP("Peep", scan, depth);
+
+
+ /* The reason we do this here we need to deal with things like /(?:f)(?:o)(?:o)/
+ * which cant be dealt with by the normal EXACT parsing code, as each (?:..) is handled
+ * by a different invocation of reg() -- Yves
+ */
+ JOIN_EXACT(scan,&min_subtract, &unfolded_multi_char, 0);
+
+ /* Follow the next-chain of the current node and optimize
+ away all the NOTHINGs from it. */
+ if (OP(scan) != CURLYX) {
+ const int max = (reg_off_by_arg[OP(scan)]
+ ? I32_MAX
+ /* I32 may be smaller than U16 on CRAYs! */
+ : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
+ int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
+ int noff;
+ regnode *n = scan;
+
+ /* Skip NOTHING and LONGJMP. */
+ while ((n = regnext(n))
+ && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
+ || ((OP(n) == LONGJMP) && (noff = ARG(n))))
+ && off + noff < max)
+ off += noff;
+ if (reg_off_by_arg[OP(scan)])
+ ARG(scan) = off;
+ else
+ NEXT_OFF(scan) = off;
+ }
+
+ /* The principal pseudo-switch. Cannot be a switch, since we
+ look into several different things. */
+ if ( OP(scan) == DEFINEP ) {
+ SSize_t minlen = 0;
+ SSize_t deltanext = 0;
+ SSize_t fake_last_close = 0;
+ I32 f = SCF_IN_DEFINE;
+
+ StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+ scan = regnext(scan);
+ assert( OP(scan) == IFTHEN );
+ DEBUG_PEEP("expect IFTHEN", scan, depth);
+
+ data_fake.last_closep= &fake_last_close;
+ minlen = *minlenp;
+ next = regnext(scan);
+ scan = NEXTOPER(NEXTOPER(scan));
+ DEBUG_PEEP("scan", scan, depth);
+ DEBUG_PEEP("next", next, depth);
+
+ /* we suppose the run is continuous, last=next...
+ * NOTE we dont use the return here! */
+ (void)study_chunk(pRExC_state, &scan, &minlen,
+ &deltanext, next, &data_fake, stopparen,
+ recursed_depth, NULL, f, depth+1);
+
+ scan = next;
+ } else
+ if (
+ OP(scan) == BRANCH ||
+ OP(scan) == BRANCHJ ||
+ OP(scan) == IFTHEN
+ ) {
+ next = regnext(scan);
+ code = OP(scan);
+
+ /* The op(next)==code check below is to see if we
+ * have "BRANCH-BRANCH", "BRANCHJ-BRANCHJ", "IFTHEN-IFTHEN"
+ * IFTHEN is special as it might not appear in pairs.
+ * Not sure whether BRANCH-BRANCHJ is possible, regardless
+ * we dont handle it cleanly. */
+ if (OP(next) == code || code == IFTHEN) {
+ /* NOTE - There is similar code to this block below for
+ * handling TRIE nodes on a re-study. If you change stuff here
+ * check there too. */
+ SSize_t max1 = 0, min1 = SSize_t_MAX, num = 0;
+ regnode_ssc accum;
+ regnode * const startbranch=scan;
+
+ if (flags & SCF_DO_SUBSTR) {
+ /* Cannot merge strings after this. */
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ }
+
+ if (flags & SCF_DO_STCLASS)
+ ssc_init_zero(pRExC_state, &accum);
+
+ while (OP(scan) == code) {
+ SSize_t deltanext, minnext, fake;
+ I32 f = 0;
+ regnode_ssc this_class;
+
+ DEBUG_PEEP("Branch", scan, depth);
+
+ num++;
+ StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+ if (data) {
+ data_fake.whilem_c = data->whilem_c;
+ data_fake.last_closep = data->last_closep;
+ }
+ else
+ data_fake.last_closep = &fake;
+
+ data_fake.pos_delta = delta;
+ next = regnext(scan);
+
+ scan = NEXTOPER(scan); /* everything */
+ if (code != BRANCH) /* everything but BRANCH */
+ scan = NEXTOPER(scan);
+
+ if (flags & SCF_DO_STCLASS) {
+ ssc_init(pRExC_state, &this_class);
+ data_fake.start_class = &this_class;
+ f = SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+
+ /* we suppose the run is continuous, last=next...*/
+ minnext = study_chunk(pRExC_state, &scan, minlenp,
+ &deltanext, next, &data_fake, stopparen,
+ recursed_depth, NULL, f,depth+1);
+
+ if (min1 > minnext)
+ min1 = minnext;
+ if (deltanext == SSize_t_MAX) {
+ is_inf = is_inf_internal = 1;
+ max1 = SSize_t_MAX;
+ } else if (max1 < minnext + deltanext)
+ max1 = minnext + deltanext;
+ scan = next;
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SCF_SEEN_ACCEPT) {
+ if ( stopmin > minnext)
+ stopmin = min + min1;
+ flags &= ~SCF_DO_SUBSTR;
+ if (data)
+ data->flags |= SCF_SEEN_ACCEPT;
+ }
+ if (data) {
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ }
+ if (flags & SCF_DO_STCLASS)
+ ssc_or(pRExC_state, &accum, (regnode_charclass*)&this_class);
+ }
+ if (code == IFTHEN && num < 2) /* Empty ELSE branch */
+ min1 = 0;
+ if (flags & SCF_DO_SUBSTR) {
+ data->pos_min += min1;
+ if (data->pos_delta >= SSize_t_MAX - (max1 - min1))
+ data->pos_delta = SSize_t_MAX;
+ else
+ data->pos_delta += max1 - min1;
+ if (max1 != min1 || is_inf)
+ data->longest = &(data->longest_float);
+ }
+ min += min1;
+ if (delta == SSize_t_MAX
+ || SSize_t_MAX - delta - (max1 - min1) < 0)
+ delta = SSize_t_MAX;
+ else
+ delta += max1 - min1;
+ if (flags & SCF_DO_STCLASS_OR) {
+ ssc_or(pRExC_state, data->start_class, (regnode_charclass*) &accum);
+ if (min1) {
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ if (min1) {
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else {
+ /* Switch to OR mode: cache the old value of
+ * data->start_class */
+ INIT_AND_WITHP;
+ StructCopy(data->start_class, and_withp, regnode_ssc);
+ flags &= ~SCF_DO_STCLASS_AND;
+ StructCopy(&accum, data->start_class, regnode_ssc);
+ flags |= SCF_DO_STCLASS_OR;
+ }
+ }
+
+ if (PERL_ENABLE_TRIE_OPTIMISATION &&
+ OP( startbranch ) == BRANCH )
+ {
+ /* demq.
+
+ Assuming this was/is a branch we are dealing with: 'scan'
+ now points at the item that follows the branch sequence,
+ whatever it is. We now start at the beginning of the
+ sequence and look for subsequences of
+
+ BRANCH->EXACT=>x1
+ BRANCH->EXACT=>x2
+ tail
+
+ which would be constructed from a pattern like
+ /A|LIST|OF|WORDS/
+
+ If we can find such a subsequence we need to turn the first
+ element into a trie and then add the subsequent branch exact
+ strings to the trie.
+
+ We have two cases
+
+ 1. patterns where the whole set of branches can be
+ converted.
+
+ 2. patterns where only a subset can be converted.
+
+ In case 1 we can replace the whole set with a single regop
+ for the trie. In case 2 we need to keep the start and end
+ branches so
+
+ 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
+ becomes BRANCH TRIE; BRANCH X;
+
+ There is an additional case, that being where there is a
+ common prefix, which gets split out into an EXACT like node
+ preceding the TRIE node.
+
+ If x(1..n)==tail then we can do a simple trie, if not we make
+ a "jump" trie, such that when we match the appropriate word
+ we "jump" to the appropriate tail node. Essentially we turn
+ a nested if into a case structure of sorts.
+
+ */
+
+ int made=0;
+ if (!re_trie_maxbuff) {
+ re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
+ if (!SvIOK(re_trie_maxbuff))
+ sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
+ }
+ if ( SvIV(re_trie_maxbuff)>=0 ) {
+ regnode *cur;
+ regnode *first = (regnode *)NULL;
+ regnode *last = (regnode *)NULL;
+ regnode *tail = scan;
+ U8 trietype = 0;
+ U32 count=0;
+
+ /* var tail is used because there may be a TAIL
+ regop in the way. Ie, the exacts will point to the
+ thing following the TAIL, but the last branch will
+ point at the TAIL. So we advance tail. If we
+ have nested (?:) we may have to move through several
+ tails.
+ */
+
+ while ( OP( tail ) == TAIL ) {
+ /* this is the TAIL generated by (?:) */
+ tail = regnext( tail );
+ }
+
+
+ DEBUG_TRIE_COMPILE_r({
+ regprop(RExC_rx, RExC_mysv, tail, NULL, pRExC_state);
+ PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
+ (int)depth * 2 + 2, "",
+ "Looking for TRIE'able sequences. Tail node is: ",
+ SvPV_nolen_const( RExC_mysv )
+ );
+ });
+
+ /*
+
+ Step through the branches
+ cur represents each branch,
+ noper is the first thing to be matched as part
+ of that branch
+ noper_next is the regnext() of that node.
+
+ We normally handle a case like this
+ /FOO[xyz]|BAR[pqr]/ via a "jump trie" but we also
+ support building with NOJUMPTRIE, which restricts
+ the trie logic to structures like /FOO|BAR/.
+
+ If noper is a trieable nodetype then the branch is
+ a possible optimization target. If we are building
+ under NOJUMPTRIE then we require that noper_next is
+ the same as scan (our current position in the regex
+ program).
+
+ Once we have two or more consecutive such branches
+ we can create a trie of the EXACT's contents and
+ stitch it in place into the program.
+
+ If the sequence represents all of the branches in
+ the alternation we replace the entire thing with a
+ single TRIE node.
+
+ Otherwise when it is a subsequence we need to
+ stitch it in place and replace only the relevant
+ branches. This means the first branch has to remain
+ as it is used by the alternation logic, and its
+ next pointer, and needs to be repointed at the item
+ on the branch chain following the last branch we
+ have optimized away.
+
+ This could be either a BRANCH, in which case the
+ subsequence is internal, or it could be the item
+ following the branch sequence in which case the
+ subsequence is at the end (which does not
+ necessarily mean the first node is the start of the
+ alternation).
+
+ TRIE_TYPE(X) is a define which maps the optype to a
+ trietype.
+
+ optype | trietype
+ ----------------+-----------
+ NOTHING | NOTHING
+ EXACT | EXACT
+ EXACTFU | EXACTFU
+ EXACTFU_SS | EXACTFU
+ EXACTFA | EXACTFA
+ EXACTL | EXACTL
+ EXACTFLU8 | EXACTFLU8
+
+
+ */
+#define TRIE_TYPE(X) ( ( NOTHING == (X) ) \
+ ? NOTHING \
+ : ( EXACT == (X) ) \
+ ? EXACT \
+ : ( EXACTFU == (X) || EXACTFU_SS == (X) ) \
+ ? EXACTFU \
+ : ( EXACTFA == (X) ) \
+ ? EXACTFA \
+ : ( EXACTL == (X) ) \
+ ? EXACTL \
+ : ( EXACTFLU8 == (X) ) \
+ ? EXACTFLU8 \
+ : 0 )
+
+ /* dont use tail as the end marker for this traverse */
+ for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
+ regnode * const noper = NEXTOPER( cur );
+ U8 noper_type = OP( noper );
+ U8 noper_trietype = TRIE_TYPE( noper_type );
+#if defined(DEBUGGING) || defined(NOJUMPTRIE)
+ regnode * const noper_next = regnext( noper );
+ U8 noper_next_type = (noper_next && noper_next != tail) ? OP(noper_next) : 0;
+ U8 noper_next_trietype = (noper_next && noper_next != tail) ? TRIE_TYPE( noper_next_type ) :0;
+#endif
+
+ DEBUG_TRIE_COMPILE_r({
+ regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
+ PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
+ (int)depth * 2 + 2,"", SvPV_nolen_const( RExC_mysv ), REG_NODE_NUM(cur) );
+
+ regprop(RExC_rx, RExC_mysv, noper, NULL, pRExC_state);
+ PerlIO_printf( Perl_debug_log, " -> %s",
+ SvPV_nolen_const(RExC_mysv));
+
+ if ( noper_next ) {
+ regprop(RExC_rx, RExC_mysv, noper_next, NULL, pRExC_state);
+ PerlIO_printf( Perl_debug_log,"\t=> %s\t",
+ SvPV_nolen_const(RExC_mysv));
+ }
+ PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d,tt==%s,nt==%s,nnt==%s)\n",
+ REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur),
+ PL_reg_name[trietype], PL_reg_name[noper_trietype], PL_reg_name[noper_next_trietype]
+ );
+ });
+
+ /* Is noper a trieable nodetype that can be merged
+ * with the current trie (if there is one)? */
+ if ( noper_trietype
+ &&
+ (
+ ( noper_trietype == NOTHING)
+ || ( trietype == NOTHING )
+ || ( trietype == noper_trietype )
+ )
+#ifdef NOJUMPTRIE
+ && noper_next == tail
+#endif
+ && count < U16_MAX)
+ {
+ /* Handle mergable triable node Either we are
+ * the first node in a new trieable sequence,
+ * in which case we do some bookkeeping,
+ * otherwise we update the end pointer. */
+ if ( !first ) {
+ first = cur;
+ if ( noper_trietype == NOTHING ) {
+#if !defined(DEBUGGING) && !defined(NOJUMPTRIE)
+ regnode * const noper_next = regnext( noper );
+ U8 noper_next_type = (noper_next && noper_next!=tail) ? OP(noper_next) : 0;
+ U8 noper_next_trietype = noper_next_type ? TRIE_TYPE( noper_next_type ) :0;
+#endif
+
+ if ( noper_next_trietype ) {
+ trietype = noper_next_trietype;
+ } else if (noper_next_type) {
+ /* a NOTHING regop is 1 regop wide.
+ * We need at least two for a trie
+ * so we can't merge this in */
+ first = NULL;
+ }
+ } else {
+ trietype = noper_trietype;
+ }
+ } else {
+ if ( trietype == NOTHING )
+ trietype = noper_trietype;
+ last = cur;
+ }
+ if (first)
+ count++;
+ } /* end handle mergable triable node */
+ else {
+ /* handle unmergable node -
+ * noper may either be a triable node which can
+ * not be tried together with the current trie,
+ * or a non triable node */
+ if ( last ) {
+ /* If last is set and trietype is not
+ * NOTHING then we have found at least two
+ * triable branch sequences in a row of a
+ * similar trietype so we can turn them
+ * into a trie. If/when we allow NOTHING to
+ * start a trie sequence this condition
+ * will be required, and it isn't expensive
+ * so we leave it in for now. */
+ if ( trietype && trietype != NOTHING )
+ make_trie( pRExC_state,
+ startbranch, first, cur, tail,
+ count, trietype, depth+1 );
+ last = NULL; /* note: we clear/update
+ first, trietype etc below,
+ so we dont do it here */
+ }
+ if ( noper_trietype
+#ifdef NOJUMPTRIE
+ && noper_next == tail
+#endif
+ ){
+ /* noper is triable, so we can start a new
+ * trie sequence */
+ count = 1;
+ first = cur;
+ trietype = noper_trietype;
+ } else if (first) {
+ /* if we already saw a first but the
+ * current node is not triable then we have
+ * to reset the first information. */
+ count = 0;
+ first = NULL;
+ trietype = 0;
+ }
+ } /* end handle unmergable node */
+ } /* loop over branches */
+ DEBUG_TRIE_COMPILE_r({
+ regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
+ PerlIO_printf( Perl_debug_log,
+ "%*s- %s (%d) <SCAN FINISHED>\n",
+ (int)depth * 2 + 2,
+ "", SvPV_nolen_const( RExC_mysv ),REG_NODE_NUM(cur));
+
+ });
+ if ( last && trietype ) {
+ if ( trietype != NOTHING ) {
+ /* the last branch of the sequence was part of
+ * a trie, so we have to construct it here
+ * outside of the loop */
+ made= make_trie( pRExC_state, startbranch,
+ first, scan, tail, count,
+ trietype, depth+1 );
+#ifdef TRIE_STUDY_OPT
+ if ( ((made == MADE_EXACT_TRIE &&
+ startbranch == first)
+ || ( first_non_open == first )) &&
+ depth==0 ) {
+ flags |= SCF_TRIE_RESTUDY;
+ if ( startbranch == first
+ && scan == tail )
+ {
+ RExC_seen &=~REG_TOP_LEVEL_BRANCHES_SEEN;
+ }
+ }
+#endif
+ } else {
+ /* at this point we know whatever we have is a
+ * NOTHING sequence/branch AND if 'startbranch'
+ * is 'first' then we can turn the whole thing
+ * into a NOTHING
+ */
+ if ( startbranch == first ) {
+ regnode *opt;
+ /* the entire thing is a NOTHING sequence,
+ * something like this: (?:|) So we can
+ * turn it into a plain NOTHING op. */
+ DEBUG_TRIE_COMPILE_r({
+ regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
+ PerlIO_printf( Perl_debug_log,
+ "%*s- %s (%d) <NOTHING BRANCH SEQUENCE>\n", (int)depth * 2 + 2,
+ "", SvPV_nolen_const( RExC_mysv ),REG_NODE_NUM(cur));
+
+ });
+ OP(startbranch)= NOTHING;
+ NEXT_OFF(startbranch)= tail - startbranch;
+ for ( opt= startbranch + 1; opt < tail ; opt++ )
+ OP(opt)= OPTIMIZED;
+ }
+ }
+ } /* end if ( last) */
+ } /* TRIE_MAXBUF is non zero */
+
+ } /* do trie */
+
+ }
+ else if ( code == BRANCHJ ) { /* single branch is optimized. */
+ scan = NEXTOPER(NEXTOPER(scan));
+ } else /* single branch is optimized. */
+ scan = NEXTOPER(scan);
+ continue;
+ } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
+ I32 paren = 0;
+ regnode *start = NULL;
+ regnode *end = NULL;
+ U32 my_recursed_depth= recursed_depth;
+
+
+ if (OP(scan) != SUSPEND) { /* GOSUB/GOSTART */
+ /* Do setup, note this code has side effects beyond
+ * the rest of this block. Specifically setting
+ * RExC_recurse[] must happen at least once during
+ * study_chunk(). */
+ if (OP(scan) == GOSUB) {
+ paren = ARG(scan);
+ RExC_recurse[ARG2L(scan)] = scan;
+ start = RExC_open_parens[paren-1];
+ end = RExC_close_parens[paren-1];
+ } else {
+ start = RExC_rxi->program + 1;
+ end = RExC_opend;
+ }
+ /* NOTE we MUST always execute the above code, even
+ * if we do nothing with a GOSUB/GOSTART */
+ if (
+ ( flags & SCF_IN_DEFINE )
+ ||
+ (
+ (is_inf_internal || is_inf || (data && data->flags & SF_IS_INF))
+ &&
+ ( (flags & (SCF_DO_STCLASS | SCF_DO_SUBSTR)) == 0 )
+ )
+ ) {
+ /* no need to do anything here if we are in a define. */
+ /* or we are after some kind of infinite construct
+ * so we can skip recursing into this item.
+ * Since it is infinite we will not change the maxlen
+ * or delta, and if we miss something that might raise
+ * the minlen it will merely pessimise a little.
+ *
+ * Iow /(?(DEFINE)(?<foo>foo|food))a+(?&foo)/
+ * might result in a minlen of 1 and not of 4,
+ * but this doesn't make us mismatch, just try a bit
+ * harder than we should.
+ * */
+ scan= regnext(scan);
+ continue;
+ }
+
+ if (
+ !recursed_depth
+ ||
+ !PAREN_TEST(RExC_study_chunk_recursed + ((recursed_depth-1) * RExC_study_chunk_recursed_bytes), paren)
+ ) {
+ /* it is quite possible that there are more efficient ways
+ * to do this. We maintain a bitmap per level of recursion
+ * of which patterns we have entered so we can detect if a
+ * pattern creates a possible infinite loop. When we
+ * recurse down a level we copy the previous levels bitmap
+ * down. When we are at recursion level 0 we zero the top
+ * level bitmap. It would be nice to implement a different
+ * more efficient way of doing this. In particular the top
+ * level bitmap may be unnecessary.
+ */
+ if (!recursed_depth) {
+ Zero(RExC_study_chunk_recursed, RExC_study_chunk_recursed_bytes, U8);
+ } else {
+ Copy(RExC_study_chunk_recursed + ((recursed_depth-1) * RExC_study_chunk_recursed_bytes),
+ RExC_study_chunk_recursed + (recursed_depth * RExC_study_chunk_recursed_bytes),
+ RExC_study_chunk_recursed_bytes, U8);
+ }
+ /* we havent recursed into this paren yet, so recurse into it */
+ DEBUG_STUDYDATA("set:", data,depth);
+ PAREN_SET(RExC_study_chunk_recursed + (recursed_depth * RExC_study_chunk_recursed_bytes), paren);
+ my_recursed_depth= recursed_depth + 1;
+ } else {
+ DEBUG_STUDYDATA("inf:", data,depth);
+ /* some form of infinite recursion, assume infinite length
+ * */
+ if (flags & SCF_DO_SUBSTR) {
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+ ssc_anything(data->start_class);
+ flags &= ~SCF_DO_STCLASS;
+
+ start= NULL; /* reset start so we dont recurse later on. */
+ }
+ } else {
+ paren = stopparen;
+ start = scan + 2;
+ end = regnext(scan);
+ }
+ if (start) {
+ scan_frame *newframe;
+ assert(end);
+ if (!RExC_frame_last) {
+ Newxz(newframe, 1, scan_frame);
+ SAVEDESTRUCTOR_X(S_unwind_scan_frames, newframe);
+ RExC_frame_head= newframe;
+ RExC_frame_count++;
+ } else if (!RExC_frame_last->next_frame) {
+ Newxz(newframe,1,scan_frame);
+ RExC_frame_last->next_frame= newframe;
+ newframe->prev_frame= RExC_frame_last;
+ RExC_frame_count++;
+ } else {
+ newframe= RExC_frame_last->next_frame;
+ }
+ RExC_frame_last= newframe;
+
+ newframe->next_regnode = regnext(scan);
+ newframe->last_regnode = last;
+ newframe->stopparen = stopparen;
+ newframe->prev_recursed_depth = recursed_depth;
+ newframe->this_prev_frame= frame;
+
+ DEBUG_STUDYDATA("frame-new:",data,depth);
+ DEBUG_PEEP("fnew", scan, depth);
+
+ frame = newframe;
+ scan = start;
+ stopparen = paren;
+ last = end;
+ depth = depth + 1;
+ recursed_depth= my_recursed_depth;
+
+ continue;
+ }
+ }
+ else if (OP(scan) == EXACT || OP(scan) == EXACTL) {
+ SSize_t l = STR_LEN(scan);
+ UV uc;
+ if (UTF) {
+ const U8 * const s = (U8*)STRING(scan);
+ uc = utf8_to_uvchr_buf(s, s + l, NULL);
+ l = utf8_length(s, s + l);
+ } else {
+ uc = *((U8*)STRING(scan));
+ }
+ min += l;
+ if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
+ /* The code below prefers earlier match for fixed
+ offset, later match for variable offset. */
+ if (data->last_end == -1) { /* Update the start info. */
+ data->last_start_min = data->pos_min;
+ data->last_start_max = is_inf
+ ? SSize_t_MAX : data->pos_min + data->pos_delta;
+ }
+ sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
+ if (UTF)
+ SvUTF8_on(data->last_found);
+ {
+ SV * const sv = data->last_found;
+ MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
+ mg_find(sv, PERL_MAGIC_utf8) : NULL;
+ if (mg && mg->mg_len >= 0)
+ mg->mg_len += utf8_length((U8*)STRING(scan),
+ (U8*)STRING(scan)+STR_LEN(scan));
+ }
+ data->last_end = data->pos_min + l;
+ data->pos_min += l; /* As in the first entry. */
+ data->flags &= ~SF_BEFORE_EOL;
+ }
+
+ /* ANDing the code point leaves at most it, and not in locale, and
+ * can't match null string */
+ if (flags & SCF_DO_STCLASS_AND) {
+ ssc_cp_and(data->start_class, uc);
+ ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+ ssc_clear_locale(data->start_class);
+ }
+ else if (flags & SCF_DO_STCLASS_OR) {
+ ssc_add_cp(data->start_class, uc);
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+
+ /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
+ ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+ }
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else if (PL_regkind[OP(scan)] == EXACT) {
+ /* But OP != EXACT!, so is EXACTFish */
+ SSize_t l = STR_LEN(scan);
+ const U8 * s = (U8*)STRING(scan);
+
+ /* Search for fixed substrings supports EXACT only. */
+ if (flags & SCF_DO_SUBSTR) {
+ assert(data);
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ }
+ if (UTF) {
+ l = utf8_length(s, s + l);
+ }
+ if (unfolded_multi_char) {
+ RExC_seen |= REG_UNFOLDED_MULTI_SEEN;
+ }
+ min += l - min_subtract;
+ assert (min >= 0);
+ delta += min_subtract;
+ if (flags & SCF_DO_SUBSTR) {
+ data->pos_min += l - min_subtract;
+ if (data->pos_min < 0) {
+ data->pos_min = 0;
+ }
+ data->pos_delta += min_subtract;
+ if (min_subtract) {
+ data->longest = &(data->longest_float);
+ }
+ }
+
+ if (flags & SCF_DO_STCLASS) {
+ SV* EXACTF_invlist = _make_exactf_invlist(pRExC_state, scan);
+
+ assert(EXACTF_invlist);
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (OP(scan) != EXACTFL)
+ ssc_clear_locale(data->start_class);
+ ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+ ANYOF_POSIXL_ZERO(data->start_class);
+ ssc_intersection(data->start_class, EXACTF_invlist, FALSE);
+ }
+ else { /* SCF_DO_STCLASS_OR */
+ ssc_union(data->start_class, EXACTF_invlist, FALSE);
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+
+ /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
+ ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+ }
+ flags &= ~SCF_DO_STCLASS;
+ SvREFCNT_dec(EXACTF_invlist);
+ }
+ }
+ else if (REGNODE_VARIES(OP(scan))) {
+ SSize_t mincount, maxcount, minnext, deltanext, pos_before = 0;
+ I32 fl = 0, f = flags;
+ regnode * const oscan = scan;
+ regnode_ssc this_class;
+ regnode_ssc *oclass = NULL;
+ I32 next_is_eval = 0;
+
+ switch (PL_regkind[OP(scan)]) {
+ case WHILEM: /* End of (?:...)* . */
+ scan = NEXTOPER(scan);
+ goto finish;
+ case PLUS:
+ if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
+ next = NEXTOPER(scan);
+ if (OP(next) == EXACT
+ || OP(next) == EXACTL
+ || (flags & SCF_DO_STCLASS))
+ {
+ mincount = 1;
+ maxcount = REG_INFTY;
+ next = regnext(scan);
+ scan = NEXTOPER(scan);
+ goto do_curly;
+ }
+ }
+ if (flags & SCF_DO_SUBSTR)
+ data->pos_min++;
+ min++;
+ /* FALLTHROUGH */
+ case STAR:
+ if (flags & SCF_DO_STCLASS) {
+ mincount = 0;
+ maxcount = REG_INFTY;
+ next = regnext(scan);
+ scan = NEXTOPER(scan);
+ goto do_curly;
+ }
+ if (flags & SCF_DO_SUBSTR) {
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ /* Cannot extend fixed substrings */
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ scan = regnext(scan);
+ goto optimize_curly_tail;
+ case CURLY:
+ if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
+ && (scan->flags == stopparen))
+ {
+ mincount = 1;
+ maxcount = 1;
+ } else {
+ mincount = ARG1(scan);
+ maxcount = ARG2(scan);
+ }
+ next = regnext(scan);
+ if (OP(scan) == CURLYX) {
+ I32 lp = (data ? *(data->last_closep) : 0);
+ scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
+ }
+ scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
+ next_is_eval = (OP(scan) == EVAL);
+ do_curly:
+ if (flags & SCF_DO_SUBSTR) {
+ if (mincount == 0)
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ /* Cannot extend fixed substrings */
+ pos_before = data->pos_min;
+ }
+ if (data) {
+ fl = data->flags;
+ data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
+ if (is_inf)
+ data->flags |= SF_IS_INF;
+ }
+ if (flags & SCF_DO_STCLASS) {
+ ssc_init(pRExC_state, &this_class);
+ oclass = data->start_class;
+ data->start_class = &this_class;
+ f |= SCF_DO_STCLASS_AND;
+ f &= ~SCF_DO_STCLASS_OR;
+ }
+ /* Exclude from super-linear cache processing any {n,m}
+ regops for which the combination of input pos and regex
+ pos is not enough information to determine if a match
+ will be possible.
+
+ For example, in the regex /foo(bar\s*){4,8}baz/ with the
+ regex pos at the \s*, the prospects for a match depend not
+ only on the input position but also on how many (bar\s*)
+ repeats into the {4,8} we are. */
+ if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
+ f &= ~SCF_WHILEM_VISITED_POS;
+
+ /* This will finish on WHILEM, setting scan, or on NULL: */
+ minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
+ last, data, stopparen, recursed_depth, NULL,
+ (mincount == 0
+ ? (f & ~SCF_DO_SUBSTR)
+ : f)
+ ,depth+1);
+
+ if (flags & SCF_DO_STCLASS)
+ data->start_class = oclass;
+ if (mincount == 0 || minnext == 0) {
+ if (flags & SCF_DO_STCLASS_OR) {
+ ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ /* Switch to OR mode: cache the old value of
+ * data->start_class */
+ INIT_AND_WITHP;
+ StructCopy(data->start_class, and_withp, regnode_ssc);
+ flags &= ~SCF_DO_STCLASS_AND;
+ StructCopy(&this_class, data->start_class, regnode_ssc);
+ flags |= SCF_DO_STCLASS_OR;
+ ANYOF_FLAGS(data->start_class)
+ |= SSC_MATCHES_EMPTY_STRING;
+ }
+ } else { /* Non-zero len */
+ if (flags & SCF_DO_STCLASS_OR) {
+ ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+ }
+ else if (flags & SCF_DO_STCLASS_AND)
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ if (!scan) /* It was not CURLYX, but CURLY. */
+ scan = next;
+ if (!(flags & SCF_TRIE_DOING_RESTUDY)
+ /* ? quantifier ok, except for (?{ ... }) */
+ && (next_is_eval || !(mincount == 0 && maxcount == 1))
+ && (minnext == 0) && (deltanext == 0)
+ && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
+ && maxcount <= REG_INFTY/3) /* Complement check for big
+ count */
+ {
+ /* Fatal warnings may leak the regexp without this: */
+ SAVEFREESV(RExC_rx_sv);
+ Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP),
+ "Quantifier unexpected on zero-length expression "
+ "in regex m/%"UTF8f"/",
+ UTF8fARG(UTF, RExC_end - RExC_precomp,
+ RExC_precomp));
+ (void)ReREFCNT_inc(RExC_rx_sv);
+ }
+
+ min += minnext * mincount;
+ is_inf_internal |= deltanext == SSize_t_MAX
+ || (maxcount == REG_INFTY && minnext + deltanext > 0);
+ is_inf |= is_inf_internal;
+ if (is_inf) {
+ delta = SSize_t_MAX;
+ } else {
+ delta += (minnext + deltanext) * maxcount
+ - minnext * mincount;
+ }
+ /* Try powerful optimization CURLYX => CURLYN. */
+ if ( OP(oscan) == CURLYX && data
+ && data->flags & SF_IN_PAR
+ && !(data->flags & SF_HAS_EVAL)
+ && !deltanext && minnext == 1 ) {
+ /* Try to optimize to CURLYN. */
+ regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
+ regnode * const nxt1 = nxt;
+#ifdef DEBUGGING
+ regnode *nxt2;
+#endif
+
+ /* Skip open. */
+ nxt = regnext(nxt);
+ if (!REGNODE_SIMPLE(OP(nxt))
+ && !(PL_regkind[OP(nxt)] == EXACT
+ && STR_LEN(nxt) == 1))
+ goto nogo;
+#ifdef DEBUGGING
+ nxt2 = nxt;
+#endif
+ nxt = regnext(nxt);
+ if (OP(nxt) != CLOSE)
+ goto nogo;
+ if (RExC_open_parens) {
+ RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
+ RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
+ }
+ /* Now we know that nxt2 is the only contents: */
+ oscan->flags = (U8)ARG(nxt);
+ OP(oscan) = CURLYN;
+ OP(nxt1) = NOTHING; /* was OPEN. */
+
+#ifdef DEBUGGING
+ OP(nxt1 + 1) = OPTIMIZED; /* was count. */
+ NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
+ NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
+ OP(nxt) = OPTIMIZED; /* was CLOSE. */
+ OP(nxt + 1) = OPTIMIZED; /* was count. */
+ NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
+#endif
+ }
+ nogo:
+
+ /* Try optimization CURLYX => CURLYM. */
+ if ( OP(oscan) == CURLYX && data
+ && !(data->flags & SF_HAS_PAR)
+ && !(data->flags & SF_HAS_EVAL)
+ && !deltanext /* atom is fixed width */
+ && minnext != 0 /* CURLYM can't handle zero width */
+
+ /* Nor characters whose fold at run-time may be
+ * multi-character */
+ && ! (RExC_seen & REG_UNFOLDED_MULTI_SEEN)
+ ) {
+ /* XXXX How to optimize if data == 0? */
+ /* Optimize to a simpler form. */
+ regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
+ regnode *nxt2;
+
+ OP(oscan) = CURLYM;
+ while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
+ && (OP(nxt2) != WHILEM))
+ nxt = nxt2;
+ OP(nxt2) = SUCCEED; /* Whas WHILEM */
+ /* Need to optimize away parenths. */
+ if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
+ /* Set the parenth number. */
+ regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
+
+ oscan->flags = (U8)ARG(nxt);
+ if (RExC_open_parens) {
+ RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
+ RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
+ }
+ OP(nxt1) = OPTIMIZED; /* was OPEN. */
+ OP(nxt) = OPTIMIZED; /* was CLOSE. */
+
+#ifdef DEBUGGING
+ OP(nxt1 + 1) = OPTIMIZED; /* was count. */
+ OP(nxt + 1) = OPTIMIZED; /* was count. */
+ NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
+ NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
+#endif
+#if 0
+ while ( nxt1 && (OP(nxt1) != WHILEM)) {
+ regnode *nnxt = regnext(nxt1);
+ if (nnxt == nxt) {
+ if (reg_off_by_arg[OP(nxt1)])
+ ARG_SET(nxt1, nxt2 - nxt1);
+ else if (nxt2 - nxt1 < U16_MAX)
+ NEXT_OFF(nxt1) = nxt2 - nxt1;
+ else
+ OP(nxt) = NOTHING; /* Cannot beautify */
+ }
+ nxt1 = nnxt;
+ }
+#endif
+ /* Optimize again: */
+ study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
+ NULL, stopparen, recursed_depth, NULL, 0,depth+1);
+ }
+ else
+ oscan->flags = 0;
+ }
+ else if ((OP(oscan) == CURLYX)
+ && (flags & SCF_WHILEM_VISITED_POS)
+ /* See the comment on a similar expression above.
+ However, this time it's not a subexpression
+ we care about, but the expression itself. */
+ && (maxcount == REG_INFTY)
+ && data && ++data->whilem_c < 16) {
+ /* This stays as CURLYX, we can put the count/of pair. */
+ /* Find WHILEM (as in regexec.c) */
+ regnode *nxt = oscan + NEXT_OFF(oscan);
+
+ if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
+ nxt += ARG(nxt);
+ PREVOPER(nxt)->flags = (U8)(data->whilem_c
+ | (RExC_whilem_seen << 4)); /* On WHILEM */
+ }
+ if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (flags & SCF_DO_SUBSTR) {
+ SV *last_str = NULL;
+ STRLEN last_chrs = 0;
+ int counted = mincount != 0;
+
+ if (data->last_end > 0 && mincount != 0) { /* Ends with a
+ string. */
+ SSize_t b = pos_before >= data->last_start_min
+ ? pos_before : data->last_start_min;
+ STRLEN l;
+ const char * const s = SvPV_const(data->last_found, l);
+ SSize_t old = b - data->last_start_min;
+
+ if (UTF)
+ old = utf8_hop((U8*)s, old) - (U8*)s;
+ l -= old;
+ /* Get the added string: */
+ last_str = newSVpvn_utf8(s + old, l, UTF);
+ last_chrs = UTF ? utf8_length((U8*)(s + old),
+ (U8*)(s + old + l)) : l;
+ if (deltanext == 0 && pos_before == b) {
+ /* What was added is a constant string */
+ if (mincount > 1) {
+
+ SvGROW(last_str, (mincount * l) + 1);
+ repeatcpy(SvPVX(last_str) + l,
+ SvPVX_const(last_str), l,
+ mincount - 1);
+ SvCUR_set(last_str, SvCUR(last_str) * mincount);
+ /* Add additional parts. */
+ SvCUR_set(data->last_found,
+ SvCUR(data->last_found) - l);
+ sv_catsv(data->last_found, last_str);
+ {
+ SV * sv = data->last_found;
+ MAGIC *mg =
+ SvUTF8(sv) && SvMAGICAL(sv) ?
+ mg_find(sv, PERL_MAGIC_utf8) : NULL;
+ if (mg && mg->mg_len >= 0)
+ mg->mg_len += last_chrs * (mincount-1);
+ }
+ last_chrs *= mincount;
+ data->last_end += l * (mincount - 1);
+ }
+ } else {
+ /* start offset must point into the last copy */
+ data->last_start_min += minnext * (mincount - 1);
+ data->last_start_max =
+ is_inf
+ ? SSize_t_MAX
+ : data->last_start_max +
+ (maxcount - 1) * (minnext + data->pos_delta);
+ }
+ }
+ /* It is counted once already... */
+ data->pos_min += minnext * (mincount - counted);
+#if 0
+PerlIO_printf(Perl_debug_log, "counted=%"UVuf" deltanext=%"UVuf
+ " SSize_t_MAX=%"UVuf" minnext=%"UVuf
+ " maxcount=%"UVuf" mincount=%"UVuf"\n",
+ (UV)counted, (UV)deltanext, (UV)SSize_t_MAX, (UV)minnext, (UV)maxcount,
+ (UV)mincount);
+if (deltanext != SSize_t_MAX)
+PerlIO_printf(Perl_debug_log, "LHS=%"UVuf" RHS=%"UVuf"\n",
+ (UV)(-counted * deltanext + (minnext + deltanext) * maxcount
+ - minnext * mincount), (UV)(SSize_t_MAX - data->pos_delta));
+#endif
+ if (deltanext == SSize_t_MAX
+ || -counted * deltanext + (minnext + deltanext) * maxcount - minnext * mincount >= SSize_t_MAX - data->pos_delta)
+ data->pos_delta = SSize_t_MAX;
+ else
+ data->pos_delta += - counted * deltanext +
+ (minnext + deltanext) * maxcount - minnext * mincount;
+ if (mincount != maxcount) {
+ /* Cannot extend fixed substrings found inside
+ the group. */
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ if (mincount && last_str) {
+ SV * const sv = data->last_found;
+ MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
+ mg_find(sv, PERL_MAGIC_utf8) : NULL;
+
+ if (mg)
+ mg->mg_len = -1;
+ sv_setsv(sv, last_str);
+ data->last_end = data->pos_min;
+ data->last_start_min = data->pos_min - last_chrs;
+ data->last_start_max = is_inf
+ ? SSize_t_MAX
+ : data->pos_min + data->pos_delta - last_chrs;
+ }
+ data->longest = &(data->longest_float);
+ }
+ SvREFCNT_dec(last_str);
+ }
+ if (data && (fl & SF_HAS_EVAL))
+ data->flags |= SF_HAS_EVAL;
+ optimize_curly_tail:
+ if (OP(oscan) != CURLYX) {
+ while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
+ && NEXT_OFF(next))
+ NEXT_OFF(oscan) += NEXT_OFF(next);
+ }
+ continue;
+
+ default:
+#ifdef DEBUGGING
+ Perl_croak(aTHX_ "panic: unexpected varying REx opcode %d",
+ OP(scan));
+#endif
+ case REF:
+ case CLUMP:
+ if (flags & SCF_DO_SUBSTR) {
+ /* Cannot expect anything... */
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ if (flags & SCF_DO_STCLASS_OR) {
+ if (OP(scan) == CLUMP) {
+ /* Actually is any start char, but very few code points
+ * aren't start characters */
+ ssc_match_all_cp(data->start_class);
+ }
+ else {
+ ssc_anything(data->start_class);
+ }
+ }
+ flags &= ~SCF_DO_STCLASS;
+ break;
+ }
+ }
+ else if (OP(scan) == LNBREAK) {
+ if (flags & SCF_DO_STCLASS) {
+ if (flags & SCF_DO_STCLASS_AND) {
+ ssc_intersection(data->start_class,
+ PL_XPosix_ptrs[_CC_VERTSPACE], FALSE);
+ ssc_clear_locale(data->start_class);
+ ANYOF_FLAGS(data->start_class)
+ &= ~SSC_MATCHES_EMPTY_STRING;
+ }
+ else if (flags & SCF_DO_STCLASS_OR) {
+ ssc_union(data->start_class,
+ PL_XPosix_ptrs[_CC_VERTSPACE],
+ FALSE);
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+
+ /* See commit msg for
+ * 749e076fceedeb708a624933726e7989f2302f6a */
+ ANYOF_FLAGS(data->start_class)
+ &= ~SSC_MATCHES_EMPTY_STRING;
+ }
+ flags &= ~SCF_DO_STCLASS;
+ }
+ min++;
+ if (delta != SSize_t_MAX)
+ delta++; /* Because of the 2 char string cr-lf */
+ if (flags & SCF_DO_SUBSTR) {
+ /* Cannot expect anything... */
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ data->pos_min += 1;
+ data->pos_delta += 1;
+ data->longest = &(data->longest_float);
+ }
+ }
+ else if (REGNODE_SIMPLE(OP(scan))) {
+
+ if (flags & SCF_DO_SUBSTR) {
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ data->pos_min++;
+ }
+ min++;
+ if (flags & SCF_DO_STCLASS) {
+ bool invert = 0;
+ SV* my_invlist = NULL;
+ U8 namedclass;
+
+ /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
+ ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+
+ /* Some of the logic below assumes that switching
+ locale on will only add false positives. */
+ switch (OP(scan)) {
+
+ default:
+#ifdef DEBUGGING
+ Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d",
+ OP(scan));
+#endif
+ case SANY:
+ if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+ ssc_match_all_cp(data->start_class);
+ break;
+
+ case REG_ANY:
+ {
+ SV* REG_ANY_invlist = _new_invlist(2);
+ REG_ANY_invlist = add_cp_to_invlist(REG_ANY_invlist,
+ '\n');
+ if (flags & SCF_DO_STCLASS_OR) {
+ ssc_union(data->start_class,
+ REG_ANY_invlist,
+ TRUE /* TRUE => invert, hence all but \n
+ */
+ );
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ ssc_intersection(data->start_class,
+ REG_ANY_invlist,
+ TRUE /* TRUE => invert */
+ );
+ ssc_clear_locale(data->start_class);
+ }
+ SvREFCNT_dec_NN(REG_ANY_invlist);
+ }
+ break;
+
+ case ANYOFL:
+ case ANYOF:
+ if (flags & SCF_DO_STCLASS_AND)
+ ssc_and(pRExC_state, data->start_class,
+ (regnode_charclass *) scan);
+ else
+ ssc_or(pRExC_state, data->start_class,
+ (regnode_charclass *) scan);
+ break;
+
+ case NPOSIXL:
+ invert = 1;
+ /* FALLTHROUGH */
+
+ case POSIXL:
+ namedclass = classnum_to_namedclass(FLAGS(scan)) + invert;
+ if (flags & SCF_DO_STCLASS_AND) {
+ bool was_there = cBOOL(
+ ANYOF_POSIXL_TEST(data->start_class,
+ namedclass));
+ ANYOF_POSIXL_ZERO(data->start_class);
+ if (was_there) { /* Do an AND */
+ ANYOF_POSIXL_SET(data->start_class, namedclass);
+ }
+ /* No individual code points can now match */
+ data->start_class->invlist
+ = sv_2mortal(_new_invlist(0));
+ }
+ else {
+ int complement = namedclass + ((invert) ? -1 : 1);
+
+ assert(flags & SCF_DO_STCLASS_OR);
+
+ /* If the complement of this class was already there,
+ * the result is that they match all code points,
+ * (\d + \D == everything). Remove the classes from
+ * future consideration. Locale is not relevant in
+ * this case */
+ if (ANYOF_POSIXL_TEST(data->start_class, complement)) {
+ ssc_match_all_cp(data->start_class);
+ ANYOF_POSIXL_CLEAR(data->start_class, namedclass);
+ ANYOF_POSIXL_CLEAR(data->start_class, complement);
+ }
+ else { /* The usual case; just add this class to the
+ existing set */
+ ANYOF_POSIXL_SET(data->start_class, namedclass);
+ }
+ }
+ break;
+
+ case NPOSIXA: /* For these, we always know the exact set of
+ what's matched */
+ invert = 1;
+ /* FALLTHROUGH */
+ case POSIXA:
+ if (FLAGS(scan) == _CC_ASCII) {
+ my_invlist = invlist_clone(PL_XPosix_ptrs[_CC_ASCII]);
+ }
+ else {
+ _invlist_intersection(PL_XPosix_ptrs[FLAGS(scan)],
+ PL_XPosix_ptrs[_CC_ASCII],
+ &my_invlist);
+ }
+ goto join_posix;
+
+ case NPOSIXD:
+ case NPOSIXU:
+ invert = 1;
+ /* FALLTHROUGH */
+ case POSIXD:
+ case POSIXU:
+ my_invlist = invlist_clone(PL_XPosix_ptrs[FLAGS(scan)]);
+
+ /* NPOSIXD matches all upper Latin1 code points unless the
+ * target string being matched is UTF-8, which is
+ * unknowable until match time. Since we are going to
+ * invert, we want to get rid of all of them so that the
+ * inversion will match all */
+ if (OP(scan) == NPOSIXD) {
+ _invlist_subtract(my_invlist, PL_UpperLatin1,
+ &my_invlist);
+ }
+
+ join_posix:
+
+ if (flags & SCF_DO_STCLASS_AND) {
+ ssc_intersection(data->start_class, my_invlist, invert);
+ ssc_clear_locale(data->start_class);
+ }
+ else {
+ assert(flags & SCF_DO_STCLASS_OR);
+ ssc_union(data->start_class, my_invlist, invert);
+ }
+ SvREFCNT_dec(my_invlist);
+ }
+ if (flags & SCF_DO_STCLASS_OR)
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ }
+ else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
+ data->flags |= (OP(scan) == MEOL
+ ? SF_BEFORE_MEOL
+ : SF_BEFORE_SEOL);
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+
+ }
+ else if ( PL_regkind[OP(scan)] == BRANCHJ
+ /* Lookbehind, or need to calculate parens/evals/stclass: */
+ && (scan->flags || data || (flags & SCF_DO_STCLASS))
+ && (OP(scan) == IFMATCH || OP(scan) == UNLESSM))
+ {
+ if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
+ || OP(scan) == UNLESSM )
+ {
+ /* Negative Lookahead/lookbehind
+ In this case we can't do fixed string optimisation.
+ */
+
+ SSize_t deltanext, minnext, fake = 0;
+ regnode *nscan;
+ regnode_ssc intrnl;
+ int f = 0;
+
+ StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+ if (data) {
+ data_fake.whilem_c = data->whilem_c;
+ data_fake.last_closep = data->last_closep;
+ }
+ else
+ data_fake.last_closep = &fake;
+ data_fake.pos_delta = delta;
+ if ( flags & SCF_DO_STCLASS && !scan->flags
+ && OP(scan) == IFMATCH ) { /* Lookahead */
+ ssc_init(pRExC_state, &intrnl);
+ data_fake.start_class = &intrnl;
+ f |= SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+ next = regnext(scan);
+ nscan = NEXTOPER(NEXTOPER(scan));
+ minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
+ last, &data_fake, stopparen,
+ recursed_depth, NULL, f, depth+1);
+ if (scan->flags) {
+ if (deltanext) {
+ FAIL("Variable length lookbehind not implemented");
+ }
+ else if (minnext > (I32)U8_MAX) {
+ FAIL2("Lookbehind longer than %"UVuf" not implemented",
+ (UV)U8_MAX);
+ }
+ scan->flags = (U8)minnext;
+ }
+ if (data) {
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ }
+ if (f & SCF_DO_STCLASS_AND) {
+ if (flags & SCF_DO_STCLASS_OR) {
+ /* OR before, AND after: ideally we would recurse with
+ * data_fake to get the AND applied by study of the
+ * remainder of the pattern, and then derecurse;
+ * *** HACK *** for now just treat as "no information".
+ * See [perl #56690].
+ */
+ ssc_init(pRExC_state, data->start_class);
+ } else {
+ /* AND before and after: combine and continue. These
+ * assertions are zero-length, so can match an EMPTY
+ * string */
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &intrnl);
+ ANYOF_FLAGS(data->start_class)
+ |= SSC_MATCHES_EMPTY_STRING;
+ }
+ }
+ }
+#if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
+ else {
+ /* Positive Lookahead/lookbehind
+ In this case we can do fixed string optimisation,
+ but we must be careful about it. Note in the case of
+ lookbehind the positions will be offset by the minimum
+ length of the pattern, something we won't know about
+ until after the recurse.
+ */
+ SSize_t deltanext, fake = 0;
+ regnode *nscan;
+ regnode_ssc intrnl;
+ int f = 0;
+ /* We use SAVEFREEPV so that when the full compile
+ is finished perl will clean up the allocated
+ minlens when it's all done. This way we don't
+ have to worry about freeing them when we know
+ they wont be used, which would be a pain.
+ */
+ SSize_t *minnextp;
+ Newx( minnextp, 1, SSize_t );
+ SAVEFREEPV(minnextp);
+
+ if (data) {
+ StructCopy(data, &data_fake, scan_data_t);
+ if ((flags & SCF_DO_SUBSTR) && data->last_found) {
+ f |= SCF_DO_SUBSTR;
+ if (scan->flags)
+ scan_commit(pRExC_state, &data_fake, minlenp, is_inf);
+ data_fake.last_found=newSVsv(data->last_found);
+ }
+ }
+ else
+ data_fake.last_closep = &fake;
+ data_fake.flags = 0;
+ data_fake.pos_delta = delta;
+ if (is_inf)
+ data_fake.flags |= SF_IS_INF;
+ if ( flags & SCF_DO_STCLASS && !scan->flags
+ && OP(scan) == IFMATCH ) { /* Lookahead */
+ ssc_init(pRExC_state, &intrnl);
+ data_fake.start_class = &intrnl;
+ f |= SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+ next = regnext(scan);
+ nscan = NEXTOPER(NEXTOPER(scan));
+
+ *minnextp = study_chunk(pRExC_state, &nscan, minnextp,
+ &deltanext, last, &data_fake,
+ stopparen, recursed_depth, NULL,
+ f,depth+1);
+ if (scan->flags) {
+ if (deltanext) {
+ FAIL("Variable length lookbehind not implemented");
+ }
+ else if (*minnextp > (I32)U8_MAX) {
+ FAIL2("Lookbehind longer than %"UVuf" not implemented",
+ (UV)U8_MAX);
+ }
+ scan->flags = (U8)*minnextp;
+ }
+
+ *minnextp += min;
+
+ if (f & SCF_DO_STCLASS_AND) {
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &intrnl);
+ ANYOF_FLAGS(data->start_class) |= SSC_MATCHES_EMPTY_STRING;
+ }
+ if (data) {
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
+ if (RExC_rx->minlen<*minnextp)
+ RExC_rx->minlen=*minnextp;
+ scan_commit(pRExC_state, &data_fake, minnextp, is_inf);
+ SvREFCNT_dec_NN(data_fake.last_found);
+
+ if ( data_fake.minlen_fixed != minlenp )
+ {
+ data->offset_fixed= data_fake.offset_fixed;
+ data->minlen_fixed= data_fake.minlen_fixed;
+ data->lookbehind_fixed+= scan->flags;
+ }
+ if ( data_fake.minlen_float != minlenp )
+ {
+ data->minlen_float= data_fake.minlen_float;
+ data->offset_float_min=data_fake.offset_float_min;
+ data->offset_float_max=data_fake.offset_float_max;
+ data->lookbehind_float+= scan->flags;
+ }
+ }
+ }
+ }
+#endif
+ }
+ else if (OP(scan) == OPEN) {
+ if (stopparen != (I32)ARG(scan))
+ pars++;
+ }
+ else if (OP(scan) == CLOSE) {
+ if (stopparen == (I32)ARG(scan)) {
+ break;
+ }
+ if ((I32)ARG(scan) == is_par) {
+ next = regnext(scan);
+
+ if ( next && (OP(next) != WHILEM) && next < last)
+ is_par = 0; /* Disable optimization */
+ }
+ if (data)
+ *(data->last_closep) = ARG(scan);
+ }
+ else if (OP(scan) == EVAL) {
+ if (data)
+ data->flags |= SF_HAS_EVAL;
+ }
+ else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
+ if (flags & SCF_DO_SUBSTR) {
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ flags &= ~SCF_DO_SUBSTR;
+ }
+ if (data && OP(scan)==ACCEPT) {
+ data->flags |= SCF_SEEN_ACCEPT;
+ if (stopmin > min)
+ stopmin = min;
+ }
+ }
+ else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
+ {
+ if (flags & SCF_DO_SUBSTR) {
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+ ssc_anything(data->start_class);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else if (OP(scan) == GPOS) {
+ if (!(RExC_rx->intflags & PREGf_GPOS_FLOAT) &&
+ !(delta || is_inf || (data && data->pos_delta)))
+ {
+ if (!(RExC_rx->intflags & PREGf_ANCH) && (flags & SCF_DO_SUBSTR))
+ RExC_rx->intflags |= PREGf_ANCH_GPOS;
+ if (RExC_rx->gofs < (STRLEN)min)
+ RExC_rx->gofs = min;
+ } else {
+ RExC_rx->intflags |= PREGf_GPOS_FLOAT;
+ RExC_rx->gofs = 0;
+ }
+ }
+#ifdef TRIE_STUDY_OPT
+#ifdef FULL_TRIE_STUDY
+ else if (PL_regkind[OP(scan)] == TRIE) {
+ /* NOTE - There is similar code to this block above for handling
+ BRANCH nodes on the initial study. If you change stuff here
+ check there too. */
+ regnode *trie_node= scan;
+ regnode *tail= regnext(scan);
+ reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
+ SSize_t max1 = 0, min1 = SSize_t_MAX;
+ regnode_ssc accum;
+
+ if (flags & SCF_DO_SUBSTR) { /* XXXX Add !SUSPEND? */
+ /* Cannot merge strings after this. */
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ }
+ if (flags & SCF_DO_STCLASS)
+ ssc_init_zero(pRExC_state, &accum);
+
+ if (!trie->jump) {
+ min1= trie->minlen;
+ max1= trie->maxlen;
+ } else {
+ const regnode *nextbranch= NULL;
+ U32 word;
+
+ for ( word=1 ; word <= trie->wordcount ; word++)
+ {
+ SSize_t deltanext=0, minnext=0, f = 0, fake;
+ regnode_ssc this_class;
+
+ StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+ if (data) {
+ data_fake.whilem_c = data->whilem_c;
+ data_fake.last_closep = data->last_closep;
+ }
+ else
+ data_fake.last_closep = &fake;
+ data_fake.pos_delta = delta;
+ if (flags & SCF_DO_STCLASS) {
+ ssc_init(pRExC_state, &this_class);
+ data_fake.start_class = &this_class;
+ f = SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+
+ if (trie->jump[word]) {
+ if (!nextbranch)
+ nextbranch = trie_node + trie->jump[0];
+ scan= trie_node + trie->jump[word];
+ /* We go from the jump point to the branch that follows
+ it. Note this means we need the vestigal unused
+ branches even though they arent otherwise used. */
+ minnext = study_chunk(pRExC_state, &scan, minlenp,
+ &deltanext, (regnode *)nextbranch, &data_fake,
+ stopparen, recursed_depth, NULL, f,depth+1);
+ }
+ if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
+ nextbranch= regnext((regnode*)nextbranch);
+
+ if (min1 > (SSize_t)(minnext + trie->minlen))
+ min1 = minnext + trie->minlen;
+ if (deltanext == SSize_t_MAX) {
+ is_inf = is_inf_internal = 1;
+ max1 = SSize_t_MAX;
+ } else if (max1 < (SSize_t)(minnext + deltanext + trie->maxlen))
+ max1 = minnext + deltanext + trie->maxlen;
+
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SCF_SEEN_ACCEPT) {
+ if ( stopmin > min + min1)
+ stopmin = min + min1;
+ flags &= ~SCF_DO_SUBSTR;
+ if (data)
+ data->flags |= SCF_SEEN_ACCEPT;
+ }
+ if (data) {
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ }
+ if (flags & SCF_DO_STCLASS)
+ ssc_or(pRExC_state, &accum, (regnode_charclass *) &this_class);
+ }
+ }
+ if (flags & SCF_DO_SUBSTR) {
+ data->pos_min += min1;
+ data->pos_delta += max1 - min1;
+ if (max1 != min1 || is_inf)
+ data->longest = &(data->longest_float);
+ }
+ min += min1;
+ if (delta != SSize_t_MAX)
+ delta += max1 - min1;
+ if (flags & SCF_DO_STCLASS_OR) {
+ ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &accum);
+ if (min1) {
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ if (min1) {
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else {
+ /* Switch to OR mode: cache the old value of
+ * data->start_class */
+ INIT_AND_WITHP;
+ StructCopy(data->start_class, and_withp, regnode_ssc);
+ flags &= ~SCF_DO_STCLASS_AND;
+ StructCopy(&accum, data->start_class, regnode_ssc);
+ flags |= SCF_DO_STCLASS_OR;
+ }
+ }
+ scan= tail;
+ continue;
+ }
+#else
+ else if (PL_regkind[OP(scan)] == TRIE) {
+ reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
+ U8*bang=NULL;
+
+ min += trie->minlen;
+ delta += (trie->maxlen - trie->minlen);
+ flags &= ~SCF_DO_STCLASS; /* xxx */
+ if (flags & SCF_DO_SUBSTR) {
+ /* Cannot expect anything... */
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ data->pos_min += trie->minlen;
+ data->pos_delta += (trie->maxlen - trie->minlen);
+ if (trie->maxlen != trie->minlen)
+ data->longest = &(data->longest_float);
+ }
+ if (trie->jump) /* no more substrings -- for now /grr*/
+ flags &= ~SCF_DO_SUBSTR;
+ }
+#endif /* old or new */
+#endif /* TRIE_STUDY_OPT */
+
+ /* Else: zero-length, ignore. */
+ scan = regnext(scan);
+ }
+ /* If we are exiting a recursion we can unset its recursed bit
+ * and allow ourselves to enter it again - no danger of an
+ * infinite loop there.
+ if (stopparen > -1 && recursed) {
+ DEBUG_STUDYDATA("unset:", data,depth);
+ PAREN_UNSET( recursed, stopparen);
+ }
+ */
+ if (frame) {
+ depth = depth - 1;
+
+ DEBUG_STUDYDATA("frame-end:",data,depth);
+ DEBUG_PEEP("fend", scan, depth);
+
+ /* restore previous context */
+ last = frame->last_regnode;
+ scan = frame->next_regnode;
+ stopparen = frame->stopparen;
+ recursed_depth = frame->prev_recursed_depth;
+
+ RExC_frame_last = frame->prev_frame;
+ frame = frame->this_prev_frame;
+ goto fake_study_recurse;
+ }
+
+ finish:
+ assert(!frame);
+ DEBUG_STUDYDATA("pre-fin:",data,depth);
+
+ *scanp = scan;
+ *deltap = is_inf_internal ? SSize_t_MAX : delta;
+
+ if (flags & SCF_DO_SUBSTR && is_inf)
+ data->pos_delta = SSize_t_MAX - data->pos_min;
+ if (is_par > (I32)U8_MAX)
+ is_par = 0;
+ if (is_par && pars==1 && data) {
+ data->flags |= SF_IN_PAR;
+ data->flags &= ~SF_HAS_PAR;
+ }
+ else if (pars && data) {
+ data->flags |= SF_HAS_PAR;
+ data->flags &= ~SF_IN_PAR;
+ }
+ if (flags & SCF_DO_STCLASS_OR)
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+ if (flags & SCF_TRIE_RESTUDY)
+ data->flags |= SCF_TRIE_RESTUDY;
+
+ DEBUG_STUDYDATA("post-fin:",data,depth);
+
+ {
+ SSize_t final_minlen= min < stopmin ? min : stopmin;
+
+ if (!(RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN)) {
+ if (final_minlen > SSize_t_MAX - delta)
+ RExC_maxlen = SSize_t_MAX;
+ else if (RExC_maxlen < final_minlen + delta)
+ RExC_maxlen = final_minlen + delta;
+ }
+ return final_minlen;
+ }
+ NOT_REACHED; /* NOTREACHED */
+}
+
+STATIC U32
+S_add_data(RExC_state_t* const pRExC_state, const char* const s, const U32 n)
+{
+ U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
+
+ PERL_ARGS_ASSERT_ADD_DATA;
+
+ Renewc(RExC_rxi->data,
+ sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
+ char, struct reg_data);
+ if(count)
+ Renew(RExC_rxi->data->what, count + n, U8);
+ else
+ Newx(RExC_rxi->data->what, n, U8);
+ RExC_rxi->data->count = count + n;
+ Copy(s, RExC_rxi->data->what + count, n, U8);
+ return count;
+}
+
+/*XXX: todo make this not included in a non debugging perl, but appears to be
+ * used anyway there, in 'use re' */
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_reginitcolors(pTHX)
+{
+ const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
+ if (s) {
+ char *t = savepv(s);
+ int i = 0;
+ PL_colors[0] = t;
+ while (++i < 6) {
+ t = strchr(t, '\t');
+ if (t) {
+ *t = '\0';
+ PL_colors[i] = ++t;
+ }
+ else
+ PL_colors[i] = t = (char *)"";
+ }
+ } else {
+ int i = 0;
+ while (i < 6)
+ PL_colors[i++] = (char *)"";
+ }
+ PL_colorset = 1;
+}
+#endif
+
+
+#ifdef TRIE_STUDY_OPT
+#define CHECK_RESTUDY_GOTO_butfirst(dOsomething) \
+ STMT_START { \
+ if ( \
+ (data.flags & SCF_TRIE_RESTUDY) \
+ && ! restudied++ \
+ ) { \
+ dOsomething; \
+ goto reStudy; \
+ } \
+ } STMT_END
+#else
+#define CHECK_RESTUDY_GOTO_butfirst
+#endif
+
+/*
+ * pregcomp - compile a regular expression into internal code
+ *
+ * Decides which engine's compiler to call based on the hint currently in
+ * scope
+ */
+
+#ifndef PERL_IN_XSUB_RE
+
+/* return the currently in-scope regex engine (or the default if none) */
+
+regexp_engine const *
+Perl_current_re_engine(pTHX)
+{
+ if (IN_PERL_COMPILETIME) {
+ HV * const table = GvHV(PL_hintgv);
+ SV **ptr;
+
+ if (!table || !(PL_hints & HINT_LOCALIZE_HH))
+ return &PL_core_reg_engine;
+ ptr = hv_fetchs(table, "regcomp", FALSE);
+ if ( !(ptr && SvIOK(*ptr) && SvIV(*ptr)))
+ return &PL_core_reg_engine;
+ return INT2PTR(regexp_engine*,SvIV(*ptr));
+ }
+ else {
+ SV *ptr;
+ if (!PL_curcop->cop_hints_hash)
+ return &PL_core_reg_engine;
+ ptr = cop_hints_fetch_pvs(PL_curcop, "regcomp", 0);
+ if ( !(ptr && SvIOK(ptr) && SvIV(ptr)))
+ return &PL_core_reg_engine;
+ return INT2PTR(regexp_engine*,SvIV(ptr));
+ }
+}
+
+
+REGEXP *
+Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
+{
+ regexp_engine const *eng = current_re_engine();
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_PREGCOMP;
+
+ /* Dispatch a request to compile a regexp to correct regexp engine. */
+ DEBUG_COMPILE_r({
+ PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
+ PTR2UV(eng));
+ });
+ return CALLREGCOMP_ENG(eng, pattern, flags);
+}
+#endif
+
+/* public(ish) entry point for the perl core's own regex compiling code.
+ * It's actually a wrapper for Perl_re_op_compile that only takes an SV
+ * pattern rather than a list of OPs, and uses the internal engine rather
+ * than the current one */
+
+REGEXP *
+Perl_re_compile(pTHX_ SV * const pattern, U32 rx_flags)
+{
+ SV *pat = pattern; /* defeat constness! */
+ PERL_ARGS_ASSERT_RE_COMPILE;
+ return Perl_re_op_compile(aTHX_ &pat, 1, NULL,
+#ifdef PERL_IN_XSUB_RE
+ &my_reg_engine,
+#else
+ &PL_core_reg_engine,
+#endif
+ NULL, NULL, rx_flags, 0);
+}
+
+
+/* upgrade pattern pat_p of length plen_p to UTF8, and if there are code
+ * blocks, recalculate the indices. Update pat_p and plen_p in-place to
+ * point to the realloced string and length.
+ *
+ * This is essentially a copy of Perl_bytes_to_utf8() with the code index
+ * stuff added */
+
+static void
+S_pat_upgrade_to_utf8(pTHX_ RExC_state_t * const pRExC_state,
+ char **pat_p, STRLEN *plen_p, int num_code_blocks)
+{
+ U8 *const src = (U8*)*pat_p;
+ U8 *dst, *d;
+ int n=0;
+ STRLEN s = 0;
+ bool do_end = 0;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+ "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
+
+ Newx(dst, *plen_p * 2 + 1, U8);
+ d = dst;
+
+ while (s < *plen_p) {
+ append_utf8_from_native_byte(src[s], &d);
+ if (n < num_code_blocks) {
+ if (!do_end && pRExC_state->code_blocks[n].start == s) {
+ pRExC_state->code_blocks[n].start = d - dst - 1;
+ assert(*(d - 1) == '(');
+ do_end = 1;
+ }
+ else if (do_end && pRExC_state->code_blocks[n].end == s) {
+ pRExC_state->code_blocks[n].end = d - dst - 1;
+ assert(*(d - 1) == ')');
+ do_end = 0;
+ n++;
+ }
+ }
+ s++;
+ }
+ *d = '\0';
+ *plen_p = d - dst;
+ *pat_p = (char*) dst;
+ SAVEFREEPV(*pat_p);
+ RExC_orig_utf8 = RExC_utf8 = 1;
+}
+
+
+
+/* S_concat_pat(): concatenate a list of args to the pattern string pat,
+ * while recording any code block indices, and handling overloading,
+ * nested qr// objects etc. If pat is null, it will allocate a new
+ * string, or just return the first arg, if there's only one.
+ *
+ * Returns the malloced/updated pat.
+ * patternp and pat_count is the array of SVs to be concatted;
+ * oplist is the optional list of ops that generated the SVs;
+ * recompile_p is a pointer to a boolean that will be set if
+ * the regex will need to be recompiled.
+ * delim, if non-null is an SV that will be inserted between each element
+ */
+
+static SV*
+S_concat_pat(pTHX_ RExC_state_t * const pRExC_state,
+ SV *pat, SV ** const patternp, int pat_count,
+ OP *oplist, bool *recompile_p, SV *delim)
+{
+ SV **svp;
+ int n = 0;
+ bool use_delim = FALSE;
+ bool alloced = FALSE;
+
+ /* if we know we have at least two args, create an empty string,
+ * then concatenate args to that. For no args, return an empty string */
+ if (!pat && pat_count != 1) {
+ pat = newSVpvs("");
+ SAVEFREESV(pat);
+ alloced = TRUE;
+ }
+
+ for (svp = patternp; svp < patternp + pat_count; svp++) {
+ SV *sv;
+ SV *rx = NULL;
+ STRLEN orig_patlen = 0;
+ bool code = 0;
+ SV *msv = use_delim ? delim : *svp;
+ if (!msv) msv = &PL_sv_undef;
+
+ /* if we've got a delimiter, we go round the loop twice for each
+ * svp slot (except the last), using the delimiter the second
+ * time round */
+ if (use_delim) {
+ svp--;
+ use_delim = FALSE;
+ }
+ else if (delim)
+ use_delim = TRUE;
+
+ if (SvTYPE(msv) == SVt_PVAV) {
+ /* we've encountered an interpolated array within
+ * the pattern, e.g. /...@a..../. Expand the list of elements,
+ * then recursively append elements.
+ * The code in this block is based on S_pushav() */
+
+ AV *const av = (AV*)msv;
+ const SSize_t maxarg = AvFILL(av) + 1;
+ SV **array;
+
+ if (oplist) {
+ assert(oplist->op_type == OP_PADAV
+ || oplist->op_type == OP_RV2AV);
+ oplist = OpSIBLING(oplist);
+ }
+
+ if (SvRMAGICAL(av)) {
+ SSize_t i;
+
+ Newx(array, maxarg, SV*);
+ SAVEFREEPV(array);
+ for (i=0; i < maxarg; i++) {
+ SV ** const svp = av_fetch(av, i, FALSE);
+ array[i] = svp ? *svp : &PL_sv_undef;
+ }
+ }
+ else
+ array = AvARRAY(av);
+
+ pat = S_concat_pat(aTHX_ pRExC_state, pat,
+ array, maxarg, NULL, recompile_p,
+ /* $" */
+ GvSV((gv_fetchpvs("\"", GV_ADDMULTI, SVt_PV))));
+
+ continue;
+ }
+
+
+ /* we make the assumption here that each op in the list of
+ * op_siblings maps to one SV pushed onto the stack,
+ * except for code blocks, with have both an OP_NULL and
+ * and OP_CONST.
+ * This allows us to match up the list of SVs against the
+ * list of OPs to find the next code block.
+ *
+ * Note that PUSHMARK PADSV PADSV ..
+ * is optimised to
+ * PADRANGE PADSV PADSV ..
+ * so the alignment still works. */
+
+ if (oplist) {
+ if (oplist->op_type == OP_NULL
+ && (oplist->op_flags & OPf_SPECIAL))
+ {
+ assert(n < pRExC_state->num_code_blocks);
+ pRExC_state->code_blocks[n].start = pat ? SvCUR(pat) : 0;
+ pRExC_state->code_blocks[n].block = oplist;
+ pRExC_state->code_blocks[n].src_regex = NULL;
+ n++;
+ code = 1;
+ oplist = OpSIBLING(oplist); /* skip CONST */
+ assert(oplist);
+ }
+ oplist = OpSIBLING(oplist);;
+ }
+
+ /* apply magic and QR overloading to arg */
+
+ SvGETMAGIC(msv);
+ if (SvROK(msv) && SvAMAGIC(msv)) {
+ SV *sv = AMG_CALLunary(msv, regexp_amg);
+ if (sv) {
+ if (SvROK(sv))
+ sv = SvRV(sv);
+ if (SvTYPE(sv) != SVt_REGEXP)
+ Perl_croak(aTHX_ "Overloaded qr did not return a REGEXP");
+ msv = sv;
+ }
+ }
+
+ /* try concatenation overload ... */
+ if (pat && (SvAMAGIC(pat) || SvAMAGIC(msv)) &&
+ (sv = amagic_call(pat, msv, concat_amg, AMGf_assign)))
+ {
+ sv_setsv(pat, sv);
+ /* overloading involved: all bets are off over literal
+ * code. Pretend we haven't seen it */
+ pRExC_state->num_code_blocks -= n;
+ n = 0;
+ }
+ else {
+ /* ... or failing that, try "" overload */
+ while (SvAMAGIC(msv)
+ && (sv = AMG_CALLunary(msv, string_amg))
+ && sv != msv
+ && !( SvROK(msv)
+ && SvROK(sv)
+ && SvRV(msv) == SvRV(sv))
+ ) {
+ msv = sv;
+ SvGETMAGIC(msv);
+ }
+ if (SvROK(msv) && SvTYPE(SvRV(msv)) == SVt_REGEXP)
+ msv = SvRV(msv);
+
+ if (pat) {
+ /* this is a partially unrolled
+ * sv_catsv_nomg(pat, msv);
+ * that allows us to adjust code block indices if
+ * needed */
+ STRLEN dlen;
+ char *dst = SvPV_force_nomg(pat, dlen);
+ orig_patlen = dlen;
+ if (SvUTF8(msv) && !SvUTF8(pat)) {
+ S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &dst, &dlen, n);
+ sv_setpvn(pat, dst, dlen);
+ SvUTF8_on(pat);
+ }
+ sv_catsv_nomg(pat, msv);
+ rx = msv;
+ }
+ else
+ pat = msv;
+
+ if (code)
+ pRExC_state->code_blocks[n-1].end = SvCUR(pat)-1;
+ }
+
+ /* extract any code blocks within any embedded qr//'s */
+ if (rx && SvTYPE(rx) == SVt_REGEXP
+ && RX_ENGINE((REGEXP*)rx)->op_comp)
+ {
+
+ RXi_GET_DECL(ReANY((REGEXP *)rx), ri);
+ if (ri->num_code_blocks) {
+ int i;
+ /* the presence of an embedded qr// with code means
+ * we should always recompile: the text of the
+ * qr// may not have changed, but it may be a
+ * different closure than last time */
+ *recompile_p = 1;
+ Renew(pRExC_state->code_blocks,
+ pRExC_state->num_code_blocks + ri->num_code_blocks,
+ struct reg_code_block);
+ pRExC_state->num_code_blocks += ri->num_code_blocks;
+
+ for (i=0; i < ri->num_code_blocks; i++) {
+ struct reg_code_block *src, *dst;
+ STRLEN offset = orig_patlen
+ + ReANY((REGEXP *)rx)->pre_prefix;
+ assert(n < pRExC_state->num_code_blocks);
+ src = &ri->code_blocks[i];
+ dst = &pRExC_state->code_blocks[n];
+ dst->start = src->start + offset;
+ dst->end = src->end + offset;
+ dst->block = src->block;
+ dst->src_regex = (REGEXP*) SvREFCNT_inc( (SV*)
+ src->src_regex
+ ? src->src_regex
+ : (REGEXP*)rx);
+ n++;
+ }
+ }
+ }
+ }
+ /* avoid calling magic multiple times on a single element e.g. =~ $qr */
+ if (alloced)
+ SvSETMAGIC(pat);
+
+ return pat;
+}
+
+
+
+/* see if there are any run-time code blocks in the pattern.
+ * False positives are allowed */
+
+static bool
+S_has_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
+ char *pat, STRLEN plen)
+{
+ int n = 0;
+ STRLEN s;
+
+ PERL_UNUSED_CONTEXT;
+
+ for (s = 0; s < plen; s++) {
+ if (n < pRExC_state->num_code_blocks
+ && s == pRExC_state->code_blocks[n].start)
+ {
+ s = pRExC_state->code_blocks[n].end;
+ n++;
+ continue;
+ }
+ /* TODO ideally should handle [..], (#..), /#.../x to reduce false
+ * positives here */
+ if (pat[s] == '(' && s+2 <= plen && pat[s+1] == '?' &&
+ (pat[s+2] == '{'
+ || (s + 2 <= plen && pat[s+2] == '?' && pat[s+3] == '{'))
+ )
+ return 1;
+ }
+ return 0;
+}
+
+/* Handle run-time code blocks. We will already have compiled any direct
+ * or indirect literal code blocks. Now, take the pattern 'pat' and make a
+ * copy of it, but with any literal code blocks blanked out and
+ * appropriate chars escaped; then feed it into
+ *
+ * eval "qr'modified_pattern'"
+ *
+ * For example,
+ *
+ * a\bc(?{"this was literal"})def'ghi\\jkl(?{"this is runtime"})mno
+ *
+ * becomes
+ *
+ * qr'a\\bc_______________________def\'ghi\\\\jkl(?{"this is runtime"})mno'
+ *
+ * After eval_sv()-ing that, grab any new code blocks from the returned qr
+ * and merge them with any code blocks of the original regexp.
+ *
+ * If the pat is non-UTF8, while the evalled qr is UTF8, don't merge;
+ * instead, just save the qr and return FALSE; this tells our caller that
+ * the original pattern needs upgrading to utf8.
+ */
+
+static bool
+S_compile_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
+ char *pat, STRLEN plen)
+{
+ SV *qr;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ if (pRExC_state->runtime_code_qr) {
+ /* this is the second time we've been called; this should
+ * only happen if the main pattern got upgraded to utf8
+ * during compilation; re-use the qr we compiled first time
+ * round (which should be utf8 too)
+ */
+ qr = pRExC_state->runtime_code_qr;
+ pRExC_state->runtime_code_qr = NULL;
+ assert(RExC_utf8 && SvUTF8(qr));
+ }
+ else {
+ int n = 0;
+ STRLEN s;
+ char *p, *newpat;
+ int newlen = plen + 6; /* allow for "qr''x\0" extra chars */
+ SV *sv, *qr_ref;
+ dSP;
+
+ /* determine how many extra chars we need for ' and \ escaping */
+ for (s = 0; s < plen; s++) {
+ if (pat[s] == '\'' || pat[s] == '\\')
+ newlen++;
+ }
+
+ Newx(newpat, newlen, char);
+ p = newpat;
+ *p++ = 'q'; *p++ = 'r'; *p++ = '\'';
+
+ for (s = 0; s < plen; s++) {
+ if (n < pRExC_state->num_code_blocks
+ && s == pRExC_state->code_blocks[n].start)
+ {
+ /* blank out literal code block */
+ assert(pat[s] == '(');
+ while (s <= pRExC_state->code_blocks[n].end) {
+ *p++ = '_';
+ s++;
+ }
+ s--;
+ n++;
+ continue;
+ }
+ if (pat[s] == '\'' || pat[s] == '\\')
+ *p++ = '\\';
+ *p++ = pat[s];
+ }
+ *p++ = '\'';
+ if (pRExC_state->pm_flags & RXf_PMf_EXTENDED)
+ *p++ = 'x';
+ *p++ = '\0';
+ DEBUG_COMPILE_r({
+ PerlIO_printf(Perl_debug_log,
+ "%sre-parsing pattern for runtime code:%s %s\n",
+ PL_colors[4],PL_colors[5],newpat);
+ });
+
+ sv = newSVpvn_flags(newpat, p-newpat-1, RExC_utf8 ? SVf_UTF8 : 0);
+ Safefree(newpat);
+
+ ENTER;
+ SAVETMPS;
+ save_re_context();
+ PUSHSTACKi(PERLSI_REQUIRE);
+ /* G_RE_REPARSING causes the toker to collapse \\ into \ when
+ * parsing qr''; normally only q'' does this. It also alters
+ * hints handling */
+ eval_sv(sv, G_SCALAR|G_RE_REPARSING);
+ SvREFCNT_dec_NN(sv);
+ SPAGAIN;
+ qr_ref = POPs;
+ PUTBACK;
+ {
+ SV * const errsv = ERRSV;
+ if (SvTRUE_NN(errsv))
+ {
+ Safefree(pRExC_state->code_blocks);
+ /* use croak_sv ? */
+ Perl_croak_nocontext("%"SVf, SVfARG(errsv));
+ }
+ }
+ assert(SvROK(qr_ref));
+ qr = SvRV(qr_ref);
+ assert(SvTYPE(qr) == SVt_REGEXP && RX_ENGINE((REGEXP*)qr)->op_comp);
+ /* the leaving below frees the tmp qr_ref.
+ * Give qr a life of its own */
+ SvREFCNT_inc(qr);
+ POPSTACK;
+ FREETMPS;
+ LEAVE;
+
+ }
+
+ if (!RExC_utf8 && SvUTF8(qr)) {
+ /* first time through; the pattern got upgraded; save the
+ * qr for the next time through */
+ assert(!pRExC_state->runtime_code_qr);
+ pRExC_state->runtime_code_qr = qr;
+ return 0;
+ }
+
+
+ /* extract any code blocks within the returned qr// */
+
+
+ /* merge the main (r1) and run-time (r2) code blocks into one */
+ {
+ RXi_GET_DECL(ReANY((REGEXP *)qr), r2);
+ struct reg_code_block *new_block, *dst;
+ RExC_state_t * const r1 = pRExC_state; /* convenient alias */
+ int i1 = 0, i2 = 0;
+
+ if (!r2->num_code_blocks) /* we guessed wrong */
+ {
+ SvREFCNT_dec_NN(qr);
+ return 1;
+ }
+
+ Newx(new_block,
+ r1->num_code_blocks + r2->num_code_blocks,
+ struct reg_code_block);
+ dst = new_block;
+
+ while ( i1 < r1->num_code_blocks
+ || i2 < r2->num_code_blocks)
+ {
+ struct reg_code_block *src;
+ bool is_qr = 0;
+
+ if (i1 == r1->num_code_blocks) {
+ src = &r2->code_blocks[i2++];
+ is_qr = 1;
+ }
+ else if (i2 == r2->num_code_blocks)
+ src = &r1->code_blocks[i1++];
+ else if ( r1->code_blocks[i1].start
+ < r2->code_blocks[i2].start)
+ {
+ src = &r1->code_blocks[i1++];
+ assert(src->end < r2->code_blocks[i2].start);
+ }
+ else {
+ assert( r1->code_blocks[i1].start
+ > r2->code_blocks[i2].start);
+ src = &r2->code_blocks[i2++];
+ is_qr = 1;
+ assert(src->end < r1->code_blocks[i1].start);
+ }
+
+ assert(pat[src->start] == '(');
+ assert(pat[src->end] == ')');
+ dst->start = src->start;
+ dst->end = src->end;
+ dst->block = src->block;
+ dst->src_regex = is_qr ? (REGEXP*) SvREFCNT_inc( (SV*) qr)
+ : src->src_regex;
+ dst++;
+ }
+ r1->num_code_blocks += r2->num_code_blocks;
+ Safefree(r1->code_blocks);
+ r1->code_blocks = new_block;
+ }
+
+ SvREFCNT_dec_NN(qr);
+ return 1;
+}
+
+
+STATIC bool
+S_setup_longest(pTHX_ RExC_state_t *pRExC_state, SV* sv_longest,
+ SV** rx_utf8, SV** rx_substr, SSize_t* rx_end_shift,
+ SSize_t lookbehind, SSize_t offset, SSize_t *minlen,
+ STRLEN longest_length, bool eol, bool meol)
+{
+ /* This is the common code for setting up the floating and fixed length
+ * string data extracted from Perl_re_op_compile() below. Returns a boolean
+ * as to whether succeeded or not */
+
+ I32 t;
+ SSize_t ml;
+
+ if (! (longest_length
+ || (eol /* Can't have SEOL and MULTI */
+ && (! meol || (RExC_flags & RXf_PMf_MULTILINE)))
+ )
+ /* See comments for join_exact for why REG_UNFOLDED_MULTI_SEEN */
+ || (RExC_seen & REG_UNFOLDED_MULTI_SEEN))
+ {
+ return FALSE;
+ }
+
+ /* copy the information about the longest from the reg_scan_data
+ over to the program. */
+ if (SvUTF8(sv_longest)) {
+ *rx_utf8 = sv_longest;
+ *rx_substr = NULL;
+ } else {
+ *rx_substr = sv_longest;
+ *rx_utf8 = NULL;
+ }
+ /* end_shift is how many chars that must be matched that
+ follow this item. We calculate it ahead of time as once the
+ lookbehind offset is added in we lose the ability to correctly
+ calculate it.*/
+ ml = minlen ? *(minlen) : (SSize_t)longest_length;
+ *rx_end_shift = ml - offset
+ - longest_length + (SvTAIL(sv_longest) != 0)
+ + lookbehind;
+
+ t = (eol/* Can't have SEOL and MULTI */
+ && (! meol || (RExC_flags & RXf_PMf_MULTILINE)));
+ fbm_compile(sv_longest, t ? FBMcf_TAIL : 0);
+
+ return TRUE;
+}
+
+/*
+ * Perl_re_op_compile - the perl internal RE engine's function to compile a
+ * regular expression into internal code.
+ * The pattern may be passed either as:
+ * a list of SVs (patternp plus pat_count)
+ * a list of OPs (expr)
+ * If both are passed, the SV list is used, but the OP list indicates
+ * which SVs are actually pre-compiled code blocks
+ *
+ * The SVs in the list have magic and qr overloading applied to them (and
+ * the list may be modified in-place with replacement SVs in the latter
+ * case).
+ *
+ * If the pattern hasn't changed from old_re, then old_re will be
+ * returned.
+ *
+ * eng is the current engine. If that engine has an op_comp method, then
+ * handle directly (i.e. we assume that op_comp was us); otherwise, just
+ * do the initial concatenation of arguments and pass on to the external
+ * engine.
+ *
+ * If is_bare_re is not null, set it to a boolean indicating whether the
+ * arg list reduced (after overloading) to a single bare regex which has
+ * been returned (i.e. /$qr/).
+ *
+ * orig_rx_flags contains RXf_* flags. See perlreapi.pod for more details.
+ *
+ * pm_flags contains the PMf_* flags, typically based on those from the
+ * pm_flags field of the related PMOP. Currently we're only interested in
+ * PMf_HAS_CV, PMf_IS_QR, PMf_USE_RE_EVAL.
+ *
+ * We can't allocate space until we know how big the compiled form will be,
+ * but we can't compile it (and thus know how big it is) until we've got a
+ * place to put the code. So we cheat: we compile it twice, once with code
+ * generation turned off and size counting turned on, and once "for real".
+ * This also means that we don't allocate space until we are sure that the
+ * thing really will compile successfully, and we never have to move the
+ * code and thus invalidate pointers into it. (Note that it has to be in
+ * one piece because free() must be able to free it all.) [NB: not true in perl]
+ *
+ * Beware that the optimization-preparation code in here knows about some
+ * of the structure of the compiled regexp. [I'll say.]
+ */
+
+REGEXP *
+Perl_re_op_compile(pTHX_ SV ** const patternp, int pat_count,
+ OP *expr, const regexp_engine* eng, REGEXP *old_re,
+ bool *is_bare_re, U32 orig_rx_flags, U32 pm_flags)
+{
+ REGEXP *rx;
+ struct regexp *r;
+ regexp_internal *ri;
+ STRLEN plen;
+ char *exp;
+ regnode *scan;
+ I32 flags;
+ SSize_t minlen = 0;
+ U32 rx_flags;
+ SV *pat;
+ SV *code_blocksv = NULL;
+ SV** new_patternp = patternp;
+
+ /* these are all flags - maybe they should be turned
+ * into a single int with different bit masks */
+ I32 sawlookahead = 0;
+ I32 sawplus = 0;
+ I32 sawopen = 0;
+ I32 sawminmod = 0;
+
+ regex_charset initial_charset = get_regex_charset(orig_rx_flags);
+ bool recompile = 0;
+ bool runtime_code = 0;
+ scan_data_t data;
+ RExC_state_t RExC_state;
+ RExC_state_t * const pRExC_state = &RExC_state;
+#ifdef TRIE_STUDY_OPT
+ int restudied = 0;
+ RExC_state_t copyRExC_state;
+#endif
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_OP_COMPILE;
+
+ DEBUG_r(if (!PL_colorset) reginitcolors());
+
+ /* Initialize these here instead of as-needed, as is quick and avoids
+ * having to test them each time otherwise */
+ if (! PL_AboveLatin1) {
+ PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist);
+ PL_Latin1 = _new_invlist_C_array(Latin1_invlist);
+ PL_UpperLatin1 = _new_invlist_C_array(UpperLatin1_invlist);
+ PL_utf8_foldable = _new_invlist_C_array(_Perl_Any_Folds_invlist);
+ PL_HasMultiCharFold =
+ _new_invlist_C_array(_Perl_Folds_To_Multi_Char_invlist);
+
+ /* This is calculated here, because the Perl program that generates the
+ * static global ones doesn't currently have access to
+ * NUM_ANYOF_CODE_POINTS */
+ PL_InBitmap = _new_invlist(2);
+ PL_InBitmap = _add_range_to_invlist(PL_InBitmap, 0,
+ NUM_ANYOF_CODE_POINTS - 1);
+ }
+
+ pRExC_state->code_blocks = NULL;
+ pRExC_state->num_code_blocks = 0;
+
+ if (is_bare_re)
+ *is_bare_re = FALSE;
+
+ if (expr && (expr->op_type == OP_LIST ||
+ (expr->op_type == OP_NULL && expr->op_targ == OP_LIST))) {
+ /* allocate code_blocks if needed */
+ OP *o;
+ int ncode = 0;
+
+ for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o))
+ if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL))
+ ncode++; /* count of DO blocks */
+ if (ncode) {
+ pRExC_state->num_code_blocks = ncode;
+ Newx(pRExC_state->code_blocks, ncode, struct reg_code_block);
+ }
+ }
+
+ if (!pat_count) {
+ /* compile-time pattern with just OP_CONSTs and DO blocks */
+
+ int n;
+ OP *o;
+
+ /* find how many CONSTs there are */
+ assert(expr);
+ n = 0;
+ if (expr->op_type == OP_CONST)
+ n = 1;
+ else
+ for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o)) {
+ if (o->op_type == OP_CONST)
+ n++;
+ }
+
+ /* fake up an SV array */
+
+ assert(!new_patternp);
+ Newx(new_patternp, n, SV*);
+ SAVEFREEPV(new_patternp);
+ pat_count = n;
+
+ n = 0;
+ if (expr->op_type == OP_CONST)
+ new_patternp[n] = cSVOPx_sv(expr);
+ else
+ for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o)) {
+ if (o->op_type == OP_CONST)
+ new_patternp[n++] = cSVOPo_sv;
+ }
+
+ }
+
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+ "Assembling pattern from %d elements%s\n", pat_count,
+ orig_rx_flags & RXf_SPLIT ? " for split" : ""));
+
+ /* set expr to the first arg op */
+
+ if (pRExC_state->num_code_blocks
+ && expr->op_type != OP_CONST)
+ {
+ expr = cLISTOPx(expr)->op_first;
+ assert( expr->op_type == OP_PUSHMARK
+ || (expr->op_type == OP_NULL && expr->op_targ == OP_PUSHMARK)
+ || expr->op_type == OP_PADRANGE);
+ expr = OpSIBLING(expr);
+ }
+
+ pat = S_concat_pat(aTHX_ pRExC_state, NULL, new_patternp, pat_count,
+ expr, &recompile, NULL);
+
+ /* handle bare (possibly after overloading) regex: foo =~ $re */
+ {
+ SV *re = pat;
+ if (SvROK(re))
+ re = SvRV(re);
+ if (SvTYPE(re) == SVt_REGEXP) {
+ if (is_bare_re)
+ *is_bare_re = TRUE;
+ SvREFCNT_inc(re);
+ Safefree(pRExC_state->code_blocks);
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+ "Precompiled pattern%s\n",
+ orig_rx_flags & RXf_SPLIT ? " for split" : ""));
+
+ return (REGEXP*)re;
+ }
+ }
+
+ exp = SvPV_nomg(pat, plen);
+
+ if (!eng->op_comp) {
+ if ((SvUTF8(pat) && IN_BYTES)
+ || SvGMAGICAL(pat) || SvAMAGIC(pat))
+ {
+ /* make a temporary copy; either to convert to bytes,
+ * or to avoid repeating get-magic / overloaded stringify */
+ pat = newSVpvn_flags(exp, plen, SVs_TEMP |
+ (IN_BYTES ? 0 : SvUTF8(pat)));
+ }
+ Safefree(pRExC_state->code_blocks);
+ return CALLREGCOMP_ENG(eng, pat, orig_rx_flags);
+ }
+
+ /* ignore the utf8ness if the pattern is 0 length */
+ RExC_utf8 = RExC_orig_utf8 = (plen == 0 || IN_BYTES) ? 0 : SvUTF8(pat);
+ RExC_uni_semantics = 0;
+ RExC_contains_locale = 0;
+ RExC_contains_i = 0;
+ RExC_strict = cBOOL(pm_flags & RXf_PMf_STRICT);
+ pRExC_state->runtime_code_qr = NULL;
+ RExC_frame_head= NULL;
+ RExC_frame_last= NULL;
+ RExC_frame_count= 0;
+
+ DEBUG_r({
+ RExC_mysv1= sv_newmortal();
+ RExC_mysv2= sv_newmortal();
+ });
+ DEBUG_COMPILE_r({
+ SV *dsv= sv_newmortal();
+ RE_PV_QUOTED_DECL(s, RExC_utf8, dsv, exp, plen, 60);
+ PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
+ PL_colors[4],PL_colors[5],s);
+ });
+
+ redo_first_pass:
+ /* we jump here if we upgrade the pattern to utf8 and have to
+ * recompile */
+
+ if ((pm_flags & PMf_USE_RE_EVAL)
+ /* this second condition covers the non-regex literal case,
+ * i.e. $foo =~ '(?{})'. */
+ || (IN_PERL_COMPILETIME && (PL_hints & HINT_RE_EVAL))
+ )
+ runtime_code = S_has_runtime_code(aTHX_ pRExC_state, exp, plen);
+
+ /* return old regex if pattern hasn't changed */
+ /* XXX: note in the below we have to check the flags as well as the
+ * pattern.
+ *
+ * Things get a touch tricky as we have to compare the utf8 flag
+ * independently from the compile flags. */
+
+ if ( old_re
+ && !recompile
+ && !!RX_UTF8(old_re) == !!RExC_utf8
+ && ( RX_COMPFLAGS(old_re) == ( orig_rx_flags & RXf_PMf_FLAGCOPYMASK ) )
+ && RX_PRECOMP(old_re)
+ && RX_PRELEN(old_re) == plen
+ && memEQ(RX_PRECOMP(old_re), exp, plen)
+ && !runtime_code /* with runtime code, always recompile */ )
+ {
+ Safefree(pRExC_state->code_blocks);
+ return old_re;
+ }
+
+ rx_flags = orig_rx_flags;
+
+ if (rx_flags & PMf_FOLD) {
+ RExC_contains_i = 1;
+ }
+ if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
+
+ /* Set to use unicode semantics if the pattern is in utf8 and has the
+ * 'depends' charset specified, as it means unicode when utf8 */
+ set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
+ }
+
+ RExC_precomp = exp;
+ RExC_flags = rx_flags;
+ RExC_pm_flags = pm_flags;
+
+ if (runtime_code) {
+ if (TAINTING_get && TAINT_get)
+ Perl_croak(aTHX_ "Eval-group in insecure regular expression");
+
+ if (!S_compile_runtime_code(aTHX_ pRExC_state, exp, plen)) {
+ /* whoops, we have a non-utf8 pattern, whilst run-time code
+ * got compiled as utf8. Try again with a utf8 pattern */
+ S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
+ pRExC_state->num_code_blocks);
+ goto redo_first_pass;
+ }
+ }
+ assert(!pRExC_state->runtime_code_qr);
+
+ RExC_sawback = 0;
+
+ RExC_seen = 0;
+ RExC_maxlen = 0;
+ RExC_in_lookbehind = 0;
+ RExC_seen_zerolen = *exp == '^' ? -1 : 0;
+ RExC_extralen = 0;
+ RExC_override_recoding = 0;
+#ifdef EBCDIC
+ RExC_recode_x_to_native = 0;
+#endif
+ RExC_in_multi_char_class = 0;
+
+ /* First pass: determine size, legality. */
+ RExC_parse = exp;
+ RExC_start = exp;
+ RExC_end = exp + plen;
+ RExC_naughty = 0;
+ RExC_npar = 1;
+ RExC_nestroot = 0;
+ RExC_size = 0L;
+ RExC_emit = (regnode *) &RExC_emit_dummy;
+ RExC_whilem_seen = 0;
+ RExC_open_parens = NULL;
+ RExC_close_parens = NULL;
+ RExC_opend = NULL;
+ RExC_paren_names = NULL;
+#ifdef DEBUGGING
+ RExC_paren_name_list = NULL;
+#endif
+ RExC_recurse = NULL;
+ RExC_study_chunk_recursed = NULL;
+ RExC_study_chunk_recursed_bytes= 0;
+ RExC_recurse_count = 0;
+ pRExC_state->code_index = 0;
+
+ DEBUG_PARSE_r(
+ PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n");
+ RExC_lastnum=0;
+ RExC_lastparse=NULL;
+ );
+ /* reg may croak on us, not giving us a chance to free
+ pRExC_state->code_blocks. We cannot SAVEFREEPV it now, as we may
+ need it to survive as long as the regexp (qr/(?{})/).
+ We must check that code_blocksv is not already set, because we may
+ have jumped back to restart the sizing pass. */
+ if (pRExC_state->code_blocks && !code_blocksv) {
+ code_blocksv = newSV_type(SVt_PV);
+ SAVEFREESV(code_blocksv);
+ SvPV_set(code_blocksv, (char *)pRExC_state->code_blocks);
+ SvLEN_set(code_blocksv, 1); /*sufficient to make sv_clear free it*/
+ }
+ if (reg(pRExC_state, 0, &flags,1) == NULL) {
+ /* It's possible to write a regexp in ascii that represents Unicode
+ codepoints outside of the byte range, such as via \x{100}. If we
+ detect such a sequence we have to convert the entire pattern to utf8
+ and then recompile, as our sizing calculation will have been based
+ on 1 byte == 1 character, but we will need to use utf8 to encode
+ at least some part of the pattern, and therefore must convert the whole
+ thing.
+ -- dmq */
+ if (flags & RESTART_UTF8) {
+ S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
+ pRExC_state->num_code_blocks);
+ goto redo_first_pass;
+ }
+ Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for sizing pass, flags=%#"UVxf"", (UV) flags);
+ }
+ if (code_blocksv)
+ SvLEN_set(code_blocksv,0); /* no you can't have it, sv_clear */
+
+ DEBUG_PARSE_r({
+ PerlIO_printf(Perl_debug_log,
+ "Required size %"IVdf" nodes\n"
+ "Starting second pass (creation)\n",
+ (IV)RExC_size);
+ RExC_lastnum=0;
+ RExC_lastparse=NULL;
+ });
+
+ /* The first pass could have found things that force Unicode semantics */
+ if ((RExC_utf8 || RExC_uni_semantics)
+ && get_regex_charset(rx_flags) == REGEX_DEPENDS_CHARSET)
+ {
+ set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
+ }
+
+ /* Small enough for pointer-storage convention?
+ If extralen==0, this means that we will not need long jumps. */
+ if (RExC_size >= 0x10000L && RExC_extralen)
+ RExC_size += RExC_extralen;
+ else
+ RExC_extralen = 0;
+ if (RExC_whilem_seen > 15)
+ RExC_whilem_seen = 15;
+
+ /* Allocate space and zero-initialize. Note, the two step process
+ of zeroing when in debug mode, thus anything assigned has to
+ happen after that */
+ rx = (REGEXP*) newSV_type(SVt_REGEXP);
+ r = ReANY(rx);
+ Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
+ char, regexp_internal);
+ if ( r == NULL || ri == NULL )
+ FAIL("Regexp out of space");
+#ifdef DEBUGGING
+ /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
+ Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
+ char);
+#else
+ /* bulk initialize base fields with 0. */
+ Zero(ri, sizeof(regexp_internal), char);
+#endif
+
+ /* non-zero initialization begins here */
+ RXi_SET( r, ri );
+ r->engine= eng;
+ r->extflags = rx_flags;
+ RXp_COMPFLAGS(r) = orig_rx_flags & RXf_PMf_FLAGCOPYMASK;
+
+ if (pm_flags & PMf_IS_QR) {
+ ri->code_blocks = pRExC_state->code_blocks;
+ ri->num_code_blocks = pRExC_state->num_code_blocks;
+ }
+ else
+ {
+ int n;
+ for (n = 0; n < pRExC_state->num_code_blocks; n++)
+ if (pRExC_state->code_blocks[n].src_regex)
+ SAVEFREESV(pRExC_state->code_blocks[n].src_regex);
+ SAVEFREEPV(pRExC_state->code_blocks);
+ }
+
+ {
+ bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
+ bool has_charset = (get_regex_charset(r->extflags)
+ != REGEX_DEPENDS_CHARSET);
+
+ /* The caret is output if there are any defaults: if not all the STD
+ * flags are set, or if no character set specifier is needed */
+ bool has_default =
+ (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
+ || ! has_charset);
+ bool has_runon = ((RExC_seen & REG_RUN_ON_COMMENT_SEEN)
+ == REG_RUN_ON_COMMENT_SEEN);
+ U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
+ >> RXf_PMf_STD_PMMOD_SHIFT);
+ const char *fptr = STD_PAT_MODS; /*"msixn"*/
+ char *p;
+ /* Allocate for the worst case, which is all the std flags are turned
+ * on. If more precision is desired, we could do a population count of
+ * the flags set. This could be done with a small lookup table, or by
+ * shifting, masking and adding, or even, when available, assembly
+ * language for a machine-language population count.
+ * We never output a minus, as all those are defaults, so are
+ * covered by the caret */
+ const STRLEN wraplen = plen + has_p + has_runon
+ + has_default /* If needs a caret */
+
+ /* If needs a character set specifier */
+ + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
+ + (sizeof(STD_PAT_MODS) - 1)
+ + (sizeof("(?:)") - 1);
+
+ Newx(p, wraplen + 1, char); /* +1 for the ending NUL */
+ r->xpv_len_u.xpvlenu_pv = p;
+ if (RExC_utf8)
+ SvFLAGS(rx) |= SVf_UTF8;
+ *p++='('; *p++='?';
+
+ /* If a default, cover it using the caret */
+ if (has_default) {
+ *p++= DEFAULT_PAT_MOD;
+ }
+ if (has_charset) {
+ STRLEN len;
+ const char* const name = get_regex_charset_name(r->extflags, &len);
+ Copy(name, p, len, char);
+ p += len;
+ }
+ if (has_p)
+ *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
+ {
+ char ch;
+ while((ch = *fptr++)) {
+ if(reganch & 1)
+ *p++ = ch;
+ reganch >>= 1;
+ }
+ }
+
+ *p++ = ':';
+ Copy(RExC_precomp, p, plen, char);
+ assert ((RX_WRAPPED(rx) - p) < 16);
+ r->pre_prefix = p - RX_WRAPPED(rx);
+ p += plen;
+ if (has_runon)
+ *p++ = '\n';
+ *p++ = ')';
+ *p = 0;
+ SvCUR_set(rx, p - RX_WRAPPED(rx));
+ }
+
+ r->intflags = 0;
+ r->nparens = RExC_npar - 1; /* set early to validate backrefs */
+
+ /* setup various meta data about recursion, this all requires
+ * RExC_npar to be correctly set, and a bit later on we clear it */
+ if (RExC_seen & REG_RECURSE_SEEN) {
+ Newxz(RExC_open_parens, RExC_npar,regnode *);
+ SAVEFREEPV(RExC_open_parens);
+ Newxz(RExC_close_parens,RExC_npar,regnode *);
+ SAVEFREEPV(RExC_close_parens);
+ }
+ if (RExC_seen & (REG_RECURSE_SEEN | REG_GOSTART_SEEN)) {
+ /* Note, RExC_npar is 1 + the number of parens in a pattern.
+ * So its 1 if there are no parens. */
+ RExC_study_chunk_recursed_bytes= (RExC_npar >> 3) +
+ ((RExC_npar & 0x07) != 0);
+ Newx(RExC_study_chunk_recursed,
+ RExC_study_chunk_recursed_bytes * RExC_npar, U8);
+ SAVEFREEPV(RExC_study_chunk_recursed);
+ }
+
+ /* Useful during FAIL. */
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
+ DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
+ "%s %"UVuf" bytes for offset annotations.\n",
+ ri->u.offsets ? "Got" : "Couldn't get",
+ (UV)((2*RExC_size+1) * sizeof(U32))));
+#endif
+ SetProgLen(ri,RExC_size);
+ RExC_rx_sv = rx;
+ RExC_rx = r;
+ RExC_rxi = ri;
+
+ /* Second pass: emit code. */
+ RExC_flags = rx_flags; /* don't let top level (?i) bleed */
+ RExC_pm_flags = pm_flags;
+ RExC_parse = exp;
+ RExC_end = exp + plen;
+ RExC_naughty = 0;
+ RExC_npar = 1;
+ RExC_emit_start = ri->program;
+ RExC_emit = ri->program;
+ RExC_emit_bound = ri->program + RExC_size + 1;
+ pRExC_state->code_index = 0;
+
+ *((char*) RExC_emit++) = (char) REG_MAGIC;
+ if (reg(pRExC_state, 0, &flags,1) == NULL) {
+ ReREFCNT_dec(rx);
+ Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for generation pass, flags=%#"UVxf"", (UV) flags);
+ }
+ /* XXXX To minimize changes to RE engine we always allocate
+ 3-units-long substrs field. */
+ Newx(r->substrs, 1, struct reg_substr_data);
+ if (RExC_recurse_count) {
+ Newxz(RExC_recurse,RExC_recurse_count,regnode *);
+ SAVEFREEPV(RExC_recurse);
+ }
+
+ reStudy:
+ r->minlen = minlen = sawlookahead = sawplus = sawopen = sawminmod = 0;
+ DEBUG_r(
+ RExC_study_chunk_recursed_count= 0;
+ );
+ Zero(r->substrs, 1, struct reg_substr_data);
+ if (RExC_study_chunk_recursed) {
+ Zero(RExC_study_chunk_recursed,
+ RExC_study_chunk_recursed_bytes * RExC_npar, U8);
+ }
+
+
+#ifdef TRIE_STUDY_OPT
+ if (!restudied) {
+ StructCopy(&zero_scan_data, &data, scan_data_t);
+ copyRExC_state = RExC_state;
+ } else {
+ U32 seen=RExC_seen;
+ DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
+
+ RExC_state = copyRExC_state;
+ if (seen & REG_TOP_LEVEL_BRANCHES_SEEN)
+ RExC_seen |= REG_TOP_LEVEL_BRANCHES_SEEN;
+ else
+ RExC_seen &= ~REG_TOP_LEVEL_BRANCHES_SEEN;
+ StructCopy(&zero_scan_data, &data, scan_data_t);
+ }
+#else
+ StructCopy(&zero_scan_data, &data, scan_data_t);
+#endif
+
+ /* Dig out information for optimizations. */
+ r->extflags = RExC_flags; /* was pm_op */
+ /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
+
+ if (UTF)
+ SvUTF8_on(rx); /* Unicode in it? */
+ ri->regstclass = NULL;
+ if (RExC_naughty >= TOO_NAUGHTY) /* Probably an expensive pattern. */
+ r->intflags |= PREGf_NAUGHTY;
+ scan = ri->program + 1; /* First BRANCH. */
+
+ /* testing for BRANCH here tells us whether there is "must appear"
+ data in the pattern. If there is then we can use it for optimisations */
+ if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN)) { /* Only one top-level choice.
+ */
+ SSize_t fake;
+ STRLEN longest_float_length, longest_fixed_length;
+ regnode_ssc ch_class; /* pointed to by data */
+ int stclass_flag;
+ SSize_t last_close = 0; /* pointed to by data */
+ regnode *first= scan;
+ regnode *first_next= regnext(first);
+ /*
+ * Skip introductions and multiplicators >= 1
+ * so that we can extract the 'meat' of the pattern that must
+ * match in the large if() sequence following.
+ * NOTE that EXACT is NOT covered here, as it is normally
+ * picked up by the optimiser separately.
+ *
+ * This is unfortunate as the optimiser isnt handling lookahead
+ * properly currently.
+ *
+ */
+ while ((OP(first) == OPEN && (sawopen = 1)) ||
+ /* An OR of *one* alternative - should not happen now. */
+ (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
+ /* for now we can't handle lookbehind IFMATCH*/
+ (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
+ (OP(first) == PLUS) ||
+ (OP(first) == MINMOD) ||
+ /* An {n,m} with n>0 */
+ (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
+ (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
+ {
+ /*
+ * the only op that could be a regnode is PLUS, all the rest
+ * will be regnode_1 or regnode_2.
+ *
+ * (yves doesn't think this is true)
+ */
+ if (OP(first) == PLUS)
+ sawplus = 1;
+ else {
+ if (OP(first) == MINMOD)
+ sawminmod = 1;
+ first += regarglen[OP(first)];
+ }
+ first = NEXTOPER(first);
+ first_next= regnext(first);
+ }
+
+ /* Starting-point info. */
+ again:
+ DEBUG_PEEP("first:",first,0);
+ /* Ignore EXACT as we deal with it later. */
+ if (PL_regkind[OP(first)] == EXACT) {
+ if (OP(first) == EXACT || OP(first) == EXACTL)
+ NOOP; /* Empty, get anchored substr later. */
+ else
+ ri->regstclass = first;
+ }
+#ifdef TRIE_STCLASS
+ else if (PL_regkind[OP(first)] == TRIE &&
+ ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
+ {
+ /* this can happen only on restudy */
+ ri->regstclass = construct_ahocorasick_from_trie(pRExC_state, (regnode *)first, 0);
+ }
+#endif
+ else if (REGNODE_SIMPLE(OP(first)))
+ ri->regstclass = first;
+ else if (PL_regkind[OP(first)] == BOUND ||
+ PL_regkind[OP(first)] == NBOUND)
+ ri->regstclass = first;
+ else if (PL_regkind[OP(first)] == BOL) {
+ r->intflags |= (OP(first) == MBOL
+ ? PREGf_ANCH_MBOL
+ : PREGf_ANCH_SBOL);
+ first = NEXTOPER(first);
+ goto again;
+ }
+ else if (OP(first) == GPOS) {
+ r->intflags |= PREGf_ANCH_GPOS;
+ first = NEXTOPER(first);
+ goto again;
+ }
+ else if ((!sawopen || !RExC_sawback) &&
+ !sawlookahead &&
+ (OP(first) == STAR &&
+ PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
+ !(r->intflags & PREGf_ANCH) && !pRExC_state->num_code_blocks)
+ {
+ /* turn .* into ^.* with an implied $*=1 */
+ const int type =
+ (OP(NEXTOPER(first)) == REG_ANY)
+ ? PREGf_ANCH_MBOL
+ : PREGf_ANCH_SBOL;
+ r->intflags |= (type | PREGf_IMPLICIT);
+ first = NEXTOPER(first);
+ goto again;
+ }
+ if (sawplus && !sawminmod && !sawlookahead
+ && (!sawopen || !RExC_sawback)
+ && !pRExC_state->num_code_blocks) /* May examine pos and $& */
+ /* x+ must match at the 1st pos of run of x's */
+ r->intflags |= PREGf_SKIP;
+
+ /* Scan is after the zeroth branch, first is atomic matcher. */
+#ifdef TRIE_STUDY_OPT
+ DEBUG_PARSE_r(
+ if (!restudied)
+ PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
+ (IV)(first - scan + 1))
+ );
+#else
+ DEBUG_PARSE_r(
+ PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
+ (IV)(first - scan + 1))
+ );
+#endif
+
+
+ /*
+ * If there's something expensive in the r.e., find the
+ * longest literal string that must appear and make it the
+ * regmust. Resolve ties in favor of later strings, since
+ * the regstart check works with the beginning of the r.e.
+ * and avoiding duplication strengthens checking. Not a
+ * strong reason, but sufficient in the absence of others.
+ * [Now we resolve ties in favor of the earlier string if
+ * it happens that c_offset_min has been invalidated, since the
+ * earlier string may buy us something the later one won't.]
+ */
+
+ data.longest_fixed = newSVpvs("");
+ data.longest_float = newSVpvs("");
+ data.last_found = newSVpvs("");
+ data.longest = &(data.longest_fixed);
+ ENTER_with_name("study_chunk");
+ SAVEFREESV(data.longest_fixed);
+ SAVEFREESV(data.longest_float);
+ SAVEFREESV(data.last_found);
+ first = scan;
+ if (!ri->regstclass) {
+ ssc_init(pRExC_state, &ch_class);
+ data.start_class = &ch_class;
+ stclass_flag = SCF_DO_STCLASS_AND;
+ } else /* XXXX Check for BOUND? */
+ stclass_flag = 0;
+ data.last_closep = &last_close;
+
+ DEBUG_RExC_seen();
+ minlen = study_chunk(pRExC_state, &first, &minlen, &fake,
+ scan + RExC_size, /* Up to end */
+ &data, -1, 0, NULL,
+ SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag
+ | (restudied ? SCF_TRIE_DOING_RESTUDY : 0),
+ 0);
+
+
+ CHECK_RESTUDY_GOTO_butfirst(LEAVE_with_name("study_chunk"));
+
+
+ if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
+ && data.last_start_min == 0 && data.last_end > 0
+ && !RExC_seen_zerolen
+ && !(RExC_seen & REG_VERBARG_SEEN)
+ && !(RExC_seen & REG_GPOS_SEEN)
+ ){
+ r->extflags |= RXf_CHECK_ALL;
+ }
+ scan_commit(pRExC_state, &data,&minlen,0);
+
+ longest_float_length = CHR_SVLEN(data.longest_float);
+
+ if (! ((SvCUR(data.longest_fixed) /* ok to leave SvCUR */
+ && data.offset_fixed == data.offset_float_min
+ && SvCUR(data.longest_fixed) == SvCUR(data.longest_float)))
+ && S_setup_longest (aTHX_ pRExC_state,
+ data.longest_float,
+ &(r->float_utf8),
+ &(r->float_substr),
+ &(r->float_end_shift),
+ data.lookbehind_float,
+ data.offset_float_min,
+ data.minlen_float,
+ longest_float_length,
+ cBOOL(data.flags & SF_FL_BEFORE_EOL),
+ cBOOL(data.flags & SF_FL_BEFORE_MEOL)))
+ {
+ r->float_min_offset = data.offset_float_min - data.lookbehind_float;
+ r->float_max_offset = data.offset_float_max;
+ if (data.offset_float_max < SSize_t_MAX) /* Don't offset infinity */
+ r->float_max_offset -= data.lookbehind_float;
+ SvREFCNT_inc_simple_void_NN(data.longest_float);
+ }
+ else {
+ r->float_substr = r->float_utf8 = NULL;
+ longest_float_length = 0;
+ }
+
+ longest_fixed_length = CHR_SVLEN(data.longest_fixed);
+
+ if (S_setup_longest (aTHX_ pRExC_state,
+ data.longest_fixed,
+ &(r->anchored_utf8),
+ &(r->anchored_substr),
+ &(r->anchored_end_shift),
+ data.lookbehind_fixed,
+ data.offset_fixed,
+ data.minlen_fixed,
+ longest_fixed_length,
+ cBOOL(data.flags & SF_FIX_BEFORE_EOL),
+ cBOOL(data.flags & SF_FIX_BEFORE_MEOL)))
+ {
+ r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
+ SvREFCNT_inc_simple_void_NN(data.longest_fixed);
+ }
+ else {
+ r->anchored_substr = r->anchored_utf8 = NULL;
+ longest_fixed_length = 0;
+ }
+ LEAVE_with_name("study_chunk");
+
+ if (ri->regstclass
+ && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
+ ri->regstclass = NULL;
+
+ if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
+ && stclass_flag
+ && ! (ANYOF_FLAGS(data.start_class) & SSC_MATCHES_EMPTY_STRING)
+ && is_ssc_worth_it(pRExC_state, data.start_class))
+ {
+ const U32 n = add_data(pRExC_state, STR_WITH_LEN("f"));
+
+ ssc_finalize(pRExC_state, data.start_class);
+
+ Newx(RExC_rxi->data->data[n], 1, regnode_ssc);
+ StructCopy(data.start_class,
+ (regnode_ssc*)RExC_rxi->data->data[n],
+ regnode_ssc);
+ ri->regstclass = (regnode*)RExC_rxi->data->data[n];
+ r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
+ DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
+ regprop(r, sv, (regnode*)data.start_class, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log,
+ "synthetic stclass \"%s\".\n",
+ SvPVX_const(sv));});
+ data.start_class = NULL;
+ }
+
+ /* A temporary algorithm prefers floated substr to fixed one to dig
+ * more info. */
+ if (longest_fixed_length > longest_float_length) {
+ r->substrs->check_ix = 0;
+ r->check_end_shift = r->anchored_end_shift;
+ r->check_substr = r->anchored_substr;
+ r->check_utf8 = r->anchored_utf8;
+ r->check_offset_min = r->check_offset_max = r->anchored_offset;
+ if (r->intflags & (PREGf_ANCH_SBOL|PREGf_ANCH_GPOS))
+ r->intflags |= PREGf_NOSCAN;
+ }
+ else {
+ r->substrs->check_ix = 1;
+ r->check_end_shift = r->float_end_shift;
+ r->check_substr = r->float_substr;
+ r->check_utf8 = r->float_utf8;
+ r->check_offset_min = r->float_min_offset;
+ r->check_offset_max = r->float_max_offset;
+ }
+ if ((r->check_substr || r->check_utf8) ) {
+ r->extflags |= RXf_USE_INTUIT;
+ if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
+ r->extflags |= RXf_INTUIT_TAIL;
+ }
+ r->substrs->data[0].max_offset = r->substrs->data[0].min_offset;
+
+ /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
+ if ( (STRLEN)minlen < longest_float_length )
+ minlen= longest_float_length;
+ if ( (STRLEN)minlen < longest_fixed_length )
+ minlen= longest_fixed_length;
+ */
+ }
+ else {
+ /* Several toplevels. Best we can is to set minlen. */
+ SSize_t fake;
+ regnode_ssc ch_class;
+ SSize_t last_close = 0;
+
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
+
+ scan = ri->program + 1;
+ ssc_init(pRExC_state, &ch_class);
+ data.start_class = &ch_class;
+ data.last_closep = &last_close;
+
+ DEBUG_RExC_seen();
+ minlen = study_chunk(pRExC_state,
+ &scan, &minlen, &fake, scan + RExC_size, &data, -1, 0, NULL,
+ SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS|(restudied
+ ? SCF_TRIE_DOING_RESTUDY
+ : 0),
+ 0);
+
+ CHECK_RESTUDY_GOTO_butfirst(NOOP);
+
+ r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
+ = r->float_substr = r->float_utf8 = NULL;
+
+ if (! (ANYOF_FLAGS(data.start_class) & SSC_MATCHES_EMPTY_STRING)
+ && is_ssc_worth_it(pRExC_state, data.start_class))
+ {
+ const U32 n = add_data(pRExC_state, STR_WITH_LEN("f"));
+
+ ssc_finalize(pRExC_state, data.start_class);
+
+ Newx(RExC_rxi->data->data[n], 1, regnode_ssc);
+ StructCopy(data.start_class,
+ (regnode_ssc*)RExC_rxi->data->data[n],
+ regnode_ssc);
+ ri->regstclass = (regnode*)RExC_rxi->data->data[n];
+ r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
+ DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
+ regprop(r, sv, (regnode*)data.start_class, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log,
+ "synthetic stclass \"%s\".\n",
+ SvPVX_const(sv));});
+ data.start_class = NULL;
+ }
+ }
+
+ if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) {
+ r->extflags |= RXf_UNBOUNDED_QUANTIFIER_SEEN;
+ r->maxlen = REG_INFTY;
+ }
+ else {
+ r->maxlen = RExC_maxlen;
+ }
+
+ /* Guard against an embedded (?=) or (?<=) with a longer minlen than
+ the "real" pattern. */
+ DEBUG_OPTIMISE_r({
+ PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf" maxlen:%"IVdf"\n",
+ (IV)minlen, (IV)r->minlen, (IV)RExC_maxlen);
+ });
+ r->minlenret = minlen;
+ if (r->minlen < minlen)
+ r->minlen = minlen;
+
+ if (RExC_seen & REG_GPOS_SEEN)
+ r->intflags |= PREGf_GPOS_SEEN;
+ if (RExC_seen & REG_LOOKBEHIND_SEEN)
+ r->extflags |= RXf_NO_INPLACE_SUBST; /* inplace might break the
+ lookbehind */
+ if (pRExC_state->num_code_blocks)
+ r->extflags |= RXf_EVAL_SEEN;
+ if (RExC_seen & REG_VERBARG_SEEN)
+ {
+ r->intflags |= PREGf_VERBARG_SEEN;
+ r->extflags |= RXf_NO_INPLACE_SUBST; /* don't understand this! Yves */
+ }
+ if (RExC_seen & REG_CUTGROUP_SEEN)
+ r->intflags |= PREGf_CUTGROUP_SEEN;
+ if (pm_flags & PMf_USE_RE_EVAL)
+ r->intflags |= PREGf_USE_RE_EVAL;
+ if (RExC_paren_names)
+ RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
+ else
+ RXp_PAREN_NAMES(r) = NULL;
+
+ /* If we have seen an anchor in our pattern then we set the extflag RXf_IS_ANCHORED
+ * so it can be used in pp.c */
+ if (r->intflags & PREGf_ANCH)
+ r->extflags |= RXf_IS_ANCHORED;
+
+
+ {
+ /* this is used to identify "special" patterns that might result
+ * in Perl NOT calling the regex engine and instead doing the match "itself",
+ * particularly special cases in split//. By having the regex compiler
+ * do this pattern matching at a regop level (instead of by inspecting the pattern)
+ * we avoid weird issues with equivalent patterns resulting in different behavior,
+ * AND we allow non Perl engines to get the same optimizations by the setting the
+ * flags appropriately - Yves */
+ regnode *first = ri->program + 1;
+ U8 fop = OP(first);
+ regnode *next = regnext(first);
+ U8 nop = OP(next);
+
+ if (PL_regkind[fop] == NOTHING && nop == END)
+ r->extflags |= RXf_NULL;
+ else if ((fop == MBOL || (fop == SBOL && !first->flags)) && nop == END)
+ /* when fop is SBOL first->flags will be true only when it was
+ * produced by parsing /\A/, and not when parsing /^/. This is
+ * very important for the split code as there we want to
+ * treat /^/ as /^/m, but we do not want to treat /\A/ as /^/m.
+ * See rt #122761 for more details. -- Yves */
+ r->extflags |= RXf_START_ONLY;
+ else if (fop == PLUS
+ && PL_regkind[nop] == POSIXD && FLAGS(next) == _CC_SPACE
+ && nop == END)
+ r->extflags |= RXf_WHITE;
+ else if ( r->extflags & RXf_SPLIT
+ && (fop == EXACT || fop == EXACTL)
+ && STR_LEN(first) == 1
+ && *(STRING(first)) == ' '
+ && nop == END )
+ r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
+
+ }
+
+ if (RExC_contains_locale) {
+ RXp_EXTFLAGS(r) |= RXf_TAINTED;
+ }
+
+#ifdef DEBUGGING
+ if (RExC_paren_names) {
+ ri->name_list_idx = add_data( pRExC_state, STR_WITH_LEN("a"));
+ ri->data->data[ri->name_list_idx]
+ = (void*)SvREFCNT_inc(RExC_paren_name_list);
+ } else
+#endif
+ ri->name_list_idx = 0;
+
+ if (RExC_recurse_count) {
+ for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
+ const regnode *scan = RExC_recurse[RExC_recurse_count-1];
+ ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
+ }
+ }
+ Newxz(r->offs, RExC_npar, regexp_paren_pair);
+ /* assume we don't need to swap parens around before we match */
+ DEBUG_TEST_r({
+ PerlIO_printf(Perl_debug_log,"study_chunk_recursed_count: %lu\n",
+ (unsigned long)RExC_study_chunk_recursed_count);
+ });
+ DEBUG_DUMP_r({
+ DEBUG_RExC_seen();
+ PerlIO_printf(Perl_debug_log,"Final program:\n");
+ regdump(r);
+ });
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ DEBUG_OFFSETS_r(if (ri->u.offsets) {
+ const STRLEN len = ri->u.offsets[0];
+ STRLEN i;
+ GET_RE_DEBUG_FLAGS_DECL;
+ PerlIO_printf(Perl_debug_log,
+ "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
+ for (i = 1; i <= len; i++) {
+ if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
+ PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
+ (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
+ }
+ PerlIO_printf(Perl_debug_log, "\n");
+ });
+#endif
+
+#ifdef USE_ITHREADS
+ /* under ithreads the ?pat? PMf_USED flag on the pmop is simulated
+ * by setting the regexp SV to readonly-only instead. If the
+ * pattern's been recompiled, the USEDness should remain. */
+ if (old_re && SvREADONLY(old_re))
+ SvREADONLY_on(rx);
+#endif
+ return rx;
+}
+
+
+SV*
+Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
+ const U32 flags)
+{
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF;
+
+ PERL_UNUSED_ARG(value);
+
+ if (flags & RXapif_FETCH) {
+ return reg_named_buff_fetch(rx, key, flags);
+ } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
+ Perl_croak_no_modify();
+ return NULL;
+ } else if (flags & RXapif_EXISTS) {
+ return reg_named_buff_exists(rx, key, flags)
+ ? &PL_sv_yes
+ : &PL_sv_no;
+ } else if (flags & RXapif_REGNAMES) {
+ return reg_named_buff_all(rx, flags);
+ } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
+ return reg_named_buff_scalar(rx, flags);
+ } else {
+ Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
+ return NULL;
+ }
+}
+
+SV*
+Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
+ const U32 flags)
+{
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
+ PERL_UNUSED_ARG(lastkey);
+
+ if (flags & RXapif_FIRSTKEY)
+ return reg_named_buff_firstkey(rx, flags);
+ else if (flags & RXapif_NEXTKEY)
+ return reg_named_buff_nextkey(rx, flags);
+ else {
+ Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter",
+ (int)flags);
+ return NULL;
+ }
+}
+
+SV*
+Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
+ const U32 flags)
+{
+ AV *retarray = NULL;
+ SV *ret;
+ struct regexp *const rx = ReANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
+
+ if (flags & RXapif_ALL)
+ retarray=newAV();
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
+ if (he_str) {
+ IV i;
+ SV* sv_dat=HeVAL(he_str);
+ I32 *nums=(I32*)SvPVX(sv_dat);
+ for ( i=0; i<SvIVX(sv_dat); i++ ) {
+ if ((I32)(rx->nparens) >= nums[i]
+ && rx->offs[nums[i]].start != -1
+ && rx->offs[nums[i]].end != -1)
+ {
+ ret = newSVpvs("");
+ CALLREG_NUMBUF_FETCH(r,nums[i],ret);
+ if (!retarray)
+ return ret;
+ } else {
+ if (retarray)
+ ret = newSVsv(&PL_sv_undef);
+ }
+ if (retarray)
+ av_push(retarray, ret);
+ }
+ if (retarray)
+ return newRV_noinc(MUTABLE_SV(retarray));
+ }
+ }
+ return NULL;
+}
+
+bool
+Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
+ const U32 flags)
+{
+ struct regexp *const rx = ReANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ if (flags & RXapif_ALL) {
+ return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
+ } else {
+ SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
+ if (sv) {
+ SvREFCNT_dec_NN(sv);
+ return TRUE;
+ } else {
+ return FALSE;
+ }
+ }
+ } else {
+ return FALSE;
+ }
+}
+
+SV*
+Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = ReANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
+
+ if ( rx && RXp_PAREN_NAMES(rx) ) {
+ (void)hv_iterinit(RXp_PAREN_NAMES(rx));
+
+ return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
+ } else {
+ return FALSE;
+ }
+}
+
+SV*
+Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = ReANY(r);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ HV *hv = RXp_PAREN_NAMES(rx);
+ HE *temphe;
+ while ( (temphe = hv_iternext_flags(hv,0)) ) {
+ IV i;
+ IV parno = 0;
+ SV* sv_dat = HeVAL(temphe);
+ I32 *nums = (I32*)SvPVX(sv_dat);
+ for ( i = 0; i < SvIVX(sv_dat); i++ ) {
+ if ((I32)(rx->lastparen) >= nums[i] &&
+ rx->offs[nums[i]].start != -1 &&
+ rx->offs[nums[i]].end != -1)
+ {
+ parno = nums[i];
+ break;
+ }
+ }
+ if (parno || flags & RXapif_ALL) {
+ return newSVhek(HeKEY_hek(temphe));
+ }
+ }
+ }
+ return NULL;
+}
+
+SV*
+Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
+{
+ SV *ret;
+ AV *av;
+ SSize_t length;
+ struct regexp *const rx = ReANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
+ return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
+ } else if (flags & RXapif_ONE) {
+ ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
+ av = MUTABLE_AV(SvRV(ret));
+ length = av_tindex(av);
+ SvREFCNT_dec_NN(ret);
+ return newSViv(length + 1);
+ } else {
+ Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar",
+ (int)flags);
+ return NULL;
+ }
+ }
+ return &PL_sv_undef;
+}
+
+SV*
+Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = ReANY(r);
+ AV *av = newAV();
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ HV *hv= RXp_PAREN_NAMES(rx);
+ HE *temphe;
+ (void)hv_iterinit(hv);
+ while ( (temphe = hv_iternext_flags(hv,0)) ) {
+ IV i;
+ IV parno = 0;
+ SV* sv_dat = HeVAL(temphe);
+ I32 *nums = (I32*)SvPVX(sv_dat);
+ for ( i = 0; i < SvIVX(sv_dat); i++ ) {
+ if ((I32)(rx->lastparen) >= nums[i] &&
+ rx->offs[nums[i]].start != -1 &&
+ rx->offs[nums[i]].end != -1)
+ {
+ parno = nums[i];
+ break;
+ }
+ }
+ if (parno || flags & RXapif_ALL) {
+ av_push(av, newSVhek(HeKEY_hek(temphe)));
+ }
+ }
+ }
+
+ return newRV_noinc(MUTABLE_SV(av));
+}
+
+void
+Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
+ SV * const sv)
+{
+ struct regexp *const rx = ReANY(r);
+ char *s = NULL;
+ SSize_t i = 0;
+ SSize_t s1, t1;
+ I32 n = paren;
+
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
+
+ if ( n == RX_BUFF_IDX_CARET_PREMATCH
+ || n == RX_BUFF_IDX_CARET_FULLMATCH
+ || n == RX_BUFF_IDX_CARET_POSTMATCH
+ )
+ {
+ bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
+ if (!keepcopy) {
+ /* on something like
+ * $r = qr/.../;
+ * /$qr/p;
+ * the KEEPCOPY is set on the PMOP rather than the regex */
+ if (PL_curpm && r == PM_GETRE(PL_curpm))
+ keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
+ }
+ if (!keepcopy)
+ goto ret_undef;
+ }
+
+ if (!rx->subbeg)
+ goto ret_undef;
+
+ if (n == RX_BUFF_IDX_CARET_FULLMATCH)
+ /* no need to distinguish between them any more */
+ n = RX_BUFF_IDX_FULLMATCH;
+
+ if ((n == RX_BUFF_IDX_PREMATCH || n == RX_BUFF_IDX_CARET_PREMATCH)
+ && rx->offs[0].start != -1)
+ {
+ /* $`, ${^PREMATCH} */
+ i = rx->offs[0].start;
+ s = rx->subbeg;
+ }
+ else
+ if ((n == RX_BUFF_IDX_POSTMATCH || n == RX_BUFF_IDX_CARET_POSTMATCH)
+ && rx->offs[0].end != -1)
+ {
+ /* $', ${^POSTMATCH} */
+ s = rx->subbeg - rx->suboffset + rx->offs[0].end;
+ i = rx->sublen + rx->suboffset - rx->offs[0].end;
+ }
+ else
+ if ( 0 <= n && n <= (I32)rx->nparens &&
+ (s1 = rx->offs[n].start) != -1 &&
+ (t1 = rx->offs[n].end) != -1)
+ {
+ /* $&, ${^MATCH}, $1 ... */
+ i = t1 - s1;
+ s = rx->subbeg + s1 - rx->suboffset;
+ } else {
+ goto ret_undef;
+ }
+
+ assert(s >= rx->subbeg);
+ assert((STRLEN)rx->sublen >= (STRLEN)((s - rx->subbeg) + i) );
+ if (i >= 0) {
+#ifdef NO_TAINT_SUPPORT
+ sv_setpvn(sv, s, i);
+#else
+ const int oldtainted = TAINT_get;
+ TAINT_NOT;
+ sv_setpvn(sv, s, i);
+ TAINT_set(oldtainted);
+#endif
+ if (RXp_MATCH_UTF8(rx))
+ SvUTF8_on(sv);
+ else
+ SvUTF8_off(sv);
+ if (TAINTING_get) {
+ if (RXp_MATCH_TAINTED(rx)) {
+ if (SvTYPE(sv) >= SVt_PVMG) {
+ MAGIC* const mg = SvMAGIC(sv);
+ MAGIC* mgt;
+ TAINT;
+ SvMAGIC_set(sv, mg->mg_moremagic);
+ SvTAINT(sv);
+ if ((mgt = SvMAGIC(sv))) {
+ mg->mg_moremagic = mgt;
+ SvMAGIC_set(sv, mg);
+ }
+ } else {
+ TAINT;
+ SvTAINT(sv);
+ }
+ } else
+ SvTAINTED_off(sv);
+ }
+ } else {
+ ret_undef:
+ sv_setsv(sv,&PL_sv_undef);
+ return;
+ }
+}
+
+void
+Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
+ SV const * const value)
+{
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
+
+ PERL_UNUSED_ARG(rx);
+ PERL_UNUSED_ARG(paren);
+ PERL_UNUSED_ARG(value);
+
+ if (!PL_localizing)
+ Perl_croak_no_modify();
+}
+
+I32
+Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
+ const I32 paren)
+{
+ struct regexp *const rx = ReANY(r);
+ I32 i;
+ I32 s1, t1;
+
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
+
+ if ( paren == RX_BUFF_IDX_CARET_PREMATCH
+ || paren == RX_BUFF_IDX_CARET_FULLMATCH
+ || paren == RX_BUFF_IDX_CARET_POSTMATCH
+ )
+ {
+ bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
+ if (!keepcopy) {
+ /* on something like
+ * $r = qr/.../;
+ * /$qr/p;
+ * the KEEPCOPY is set on the PMOP rather than the regex */
+ if (PL_curpm && r == PM_GETRE(PL_curpm))
+ keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
+ }
+ if (!keepcopy)
+ goto warn_undef;
+ }
+
+ /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
+ switch (paren) {
+ case RX_BUFF_IDX_CARET_PREMATCH: /* ${^PREMATCH} */
+ case RX_BUFF_IDX_PREMATCH: /* $` */
+ if (rx->offs[0].start != -1) {
+ i = rx->offs[0].start;
+ if (i > 0) {
+ s1 = 0;
+ t1 = i;
+ goto getlen;
+ }
+ }
+ return 0;
+
+ case RX_BUFF_IDX_CARET_POSTMATCH: /* ${^POSTMATCH} */
+ case RX_BUFF_IDX_POSTMATCH: /* $' */
+ if (rx->offs[0].end != -1) {
+ i = rx->sublen - rx->offs[0].end;
+ if (i > 0) {
+ s1 = rx->offs[0].end;
+ t1 = rx->sublen;
+ goto getlen;
+ }
+ }
+ return 0;
+
+ default: /* $& / ${^MATCH}, $1, $2, ... */
+ if (paren <= (I32)rx->nparens &&
+ (s1 = rx->offs[paren].start) != -1 &&
+ (t1 = rx->offs[paren].end) != -1)
+ {
+ i = t1 - s1;
+ goto getlen;
+ } else {
+ warn_undef:
+ if (ckWARN(WARN_UNINITIALIZED))
+ report_uninit((const SV *)sv);
+ return 0;
+ }
+ }
+ getlen:
+ if (i > 0 && RXp_MATCH_UTF8(rx)) {
+ const char * const s = rx->subbeg - rx->suboffset + s1;
+ const U8 *ep;
+ STRLEN el;
+
+ i = t1 - s1;
+ if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
+ i = el;
+ }
+ return i;
+}
+
+SV*
+Perl_reg_qr_package(pTHX_ REGEXP * const rx)
+{
+ PERL_ARGS_ASSERT_REG_QR_PACKAGE;
+ PERL_UNUSED_ARG(rx);
+ if (0)
+ return NULL;
+ else
+ return newSVpvs("Regexp");
+}
+
+/* Scans the name of a named buffer from the pattern.
+ * If flags is REG_RSN_RETURN_NULL returns null.
+ * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
+ * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
+ * to the parsed name as looked up in the RExC_paren_names hash.
+ * If there is an error throws a vFAIL().. type exception.
+ */
+
+#define REG_RSN_RETURN_NULL 0
+#define REG_RSN_RETURN_NAME 1
+#define REG_RSN_RETURN_DATA 2
+
+STATIC SV*
+S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
+{
+ char *name_start = RExC_parse;
+
+ PERL_ARGS_ASSERT_REG_SCAN_NAME;
+
+ assert (RExC_parse <= RExC_end);
+ if (RExC_parse == RExC_end) NOOP;
+ else if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
+ /* skip IDFIRST by using do...while */
+ if (UTF)
+ do {
+ RExC_parse += UTF8SKIP(RExC_parse);
+ } while (isWORDCHAR_utf8((U8*)RExC_parse));
+ else
+ do {
+ RExC_parse++;
+ } while (isWORDCHAR(*RExC_parse));
+ } else {
+ RExC_parse++; /* so the <- from the vFAIL is after the offending
+ character */
+ vFAIL("Group name must start with a non-digit word character");
+ }
+ if ( flags ) {
+ SV* sv_name
+ = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
+ SVs_TEMP | (UTF ? SVf_UTF8 : 0));
+ if ( flags == REG_RSN_RETURN_NAME)
+ return sv_name;
+ else if (flags==REG_RSN_RETURN_DATA) {
+ HE *he_str = NULL;
+ SV *sv_dat = NULL;
+ if ( ! sv_name ) /* should not happen*/
+ Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
+ if (RExC_paren_names)
+ he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
+ if ( he_str )
+ sv_dat = HeVAL(he_str);
+ if ( ! sv_dat )
+ vFAIL("Reference to nonexistent named group");
+ return sv_dat;
+ }
+ else {
+ Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name",
+ (unsigned long) flags);
+ }
+ NOT_REACHED; /* NOTREACHED */
+ }
+ return NULL;
+}
+
+#define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \
+ int num; \
+ if (RExC_lastparse!=RExC_parse) { \
+ PerlIO_printf(Perl_debug_log, "%s", \
+ Perl_pv_pretty(aTHX_ RExC_mysv1, RExC_parse, \
+ RExC_end - RExC_parse, 16, \
+ "", "", \
+ PERL_PV_ESCAPE_UNI_DETECT | \
+ PERL_PV_PRETTY_ELLIPSES | \
+ PERL_PV_PRETTY_LTGT | \
+ PERL_PV_ESCAPE_RE | \
+ PERL_PV_PRETTY_EXACTSIZE \
+ ) \
+ ); \
+ } else \
+ PerlIO_printf(Perl_debug_log,"%16s",""); \
+ \
+ if (SIZE_ONLY) \
+ num = RExC_size + 1; \
+ else \
+ num=REG_NODE_NUM(RExC_emit); \
+ if (RExC_lastnum!=num) \
+ PerlIO_printf(Perl_debug_log,"|%4d",num); \
+ else \
+ PerlIO_printf(Perl_debug_log,"|%4s",""); \
+ PerlIO_printf(Perl_debug_log,"|%*s%-4s", \
+ (int)((depth*2)), "", \
+ (funcname) \
+ ); \
+ RExC_lastnum=num; \
+ RExC_lastparse=RExC_parse; \
+})
+
+
+
+#define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \
+ DEBUG_PARSE_MSG((funcname)); \
+ PerlIO_printf(Perl_debug_log,"%4s","\n"); \
+})
+#define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \
+ DEBUG_PARSE_MSG((funcname)); \
+ PerlIO_printf(Perl_debug_log,fmt "\n",args); \
+})
+
+/* This section of code defines the inversion list object and its methods. The
+ * interfaces are highly subject to change, so as much as possible is static to
+ * this file. An inversion list is here implemented as a malloc'd C UV array
+ * as an SVt_INVLIST scalar.
+ *
+ * An inversion list for Unicode is an array of code points, sorted by ordinal
+ * number. The zeroth element is the first code point in the list. The 1th
+ * element is the first element beyond that not in the list. In other words,
+ * the first range is
+ * invlist[0]..(invlist[1]-1)
+ * The other ranges follow. Thus every element whose index is divisible by two
+ * marks the beginning of a range that is in the list, and every element not
+ * divisible by two marks the beginning of a range not in the list. A single
+ * element inversion list that contains the single code point N generally
+ * consists of two elements
+ * invlist[0] == N
+ * invlist[1] == N+1
+ * (The exception is when N is the highest representable value on the
+ * machine, in which case the list containing just it would be a single
+ * element, itself. By extension, if the last range in the list extends to
+ * infinity, then the first element of that range will be in the inversion list
+ * at a position that is divisible by two, and is the final element in the
+ * list.)
+ * Taking the complement (inverting) an inversion list is quite simple, if the
+ * first element is 0, remove it; otherwise add a 0 element at the beginning.
+ * This implementation reserves an element at the beginning of each inversion
+ * list to always contain 0; there is an additional flag in the header which
+ * indicates if the list begins at the 0, or is offset to begin at the next
+ * element.
+ *
+ * More about inversion lists can be found in "Unicode Demystified"
+ * Chapter 13 by Richard Gillam, published by Addison-Wesley.
+ * More will be coming when functionality is added later.
+ *
+ * The inversion list data structure is currently implemented as an SV pointing
+ * to an array of UVs that the SV thinks are bytes. This allows us to have an
+ * array of UV whose memory management is automatically handled by the existing
+ * facilities for SV's.
+ *
+ * Some of the methods should always be private to the implementation, and some
+ * should eventually be made public */
+
+/* The header definitions are in F<inline_invlist.c> */
+
+PERL_STATIC_INLINE UV*
+S__invlist_array_init(SV* const invlist, const bool will_have_0)
+{
+ /* Returns a pointer to the first element in the inversion list's array.
+ * This is called upon initialization of an inversion list. Where the
+ * array begins depends on whether the list has the code point U+0000 in it
+ * or not. The other parameter tells it whether the code that follows this
+ * call is about to put a 0 in the inversion list or not. The first
+ * element is either the element reserved for 0, if TRUE, or the element
+ * after it, if FALSE */
+
+ bool* offset = get_invlist_offset_addr(invlist);
+ UV* zero_addr = (UV *) SvPVX(invlist);
+
+ PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
+
+ /* Must be empty */
+ assert(! _invlist_len(invlist));
+
+ *zero_addr = 0;
+
+ /* 1^1 = 0; 1^0 = 1 */
+ *offset = 1 ^ will_have_0;
+ return zero_addr + *offset;
+}
+
+PERL_STATIC_INLINE void
+S_invlist_set_len(pTHX_ SV* const invlist, const UV len, const bool offset)
+{
+ /* Sets the current number of elements stored in the inversion list.
+ * Updates SvCUR correspondingly */
+ PERL_UNUSED_CONTEXT;
+ PERL_ARGS_ASSERT_INVLIST_SET_LEN;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ SvCUR_set(invlist,
+ (len == 0)
+ ? 0
+ : TO_INTERNAL_SIZE(len + offset));
+ assert(SvLEN(invlist) == 0 || SvCUR(invlist) <= SvLEN(invlist));
+}
+
+#ifndef PERL_IN_XSUB_RE
+
+PERL_STATIC_INLINE IV*
+S_get_invlist_previous_index_addr(SV* invlist)
+{
+ /* Return the address of the IV that is reserved to hold the cached index
+ * */
+ PERL_ARGS_ASSERT_GET_INVLIST_PREVIOUS_INDEX_ADDR;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ return &(((XINVLIST*) SvANY(invlist))->prev_index);
+}
+
+PERL_STATIC_INLINE IV
+S_invlist_previous_index(SV* const invlist)
+{
+ /* Returns cached index of previous search */
+
+ PERL_ARGS_ASSERT_INVLIST_PREVIOUS_INDEX;
+
+ return *get_invlist_previous_index_addr(invlist);
+}
+
+PERL_STATIC_INLINE void
+S_invlist_set_previous_index(SV* const invlist, const IV index)
+{
+ /* Caches <index> for later retrieval */
+
+ PERL_ARGS_ASSERT_INVLIST_SET_PREVIOUS_INDEX;
+
+ assert(index == 0 || index < (int) _invlist_len(invlist));
+
+ *get_invlist_previous_index_addr(invlist) = index;
+}
+
+PERL_STATIC_INLINE void
+S_invlist_trim(SV* const invlist)
+{
+ PERL_ARGS_ASSERT_INVLIST_TRIM;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ /* Change the length of the inversion list to how many entries it currently
+ * has */
+ SvPV_shrink_to_cur((SV *) invlist);
+}
+
+PERL_STATIC_INLINE bool
+S_invlist_is_iterating(SV* const invlist)
+{
+ PERL_ARGS_ASSERT_INVLIST_IS_ITERATING;
+
+ return *(get_invlist_iter_addr(invlist)) < (STRLEN) UV_MAX;
+}
+
+#endif /* ifndef PERL_IN_XSUB_RE */
+
+PERL_STATIC_INLINE UV
+S_invlist_max(SV* const invlist)
+{
+ /* Returns the maximum number of elements storable in the inversion list's
+ * array, without having to realloc() */
+
+ PERL_ARGS_ASSERT_INVLIST_MAX;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ /* Assumes worst case, in which the 0 element is not counted in the
+ * inversion list, so subtracts 1 for that */
+ return SvLEN(invlist) == 0 /* This happens under _new_invlist_C_array */
+ ? FROM_INTERNAL_SIZE(SvCUR(invlist)) - 1
+ : FROM_INTERNAL_SIZE(SvLEN(invlist)) - 1;
+}
+
+#ifndef PERL_IN_XSUB_RE
+SV*
+Perl__new_invlist(pTHX_ IV initial_size)
+{
+
+ /* Return a pointer to a newly constructed inversion list, with enough
+ * space to store 'initial_size' elements. If that number is negative, a
+ * system default is used instead */
+
+ SV* new_list;
+
+ if (initial_size < 0) {
+ initial_size = 10;
+ }
+
+ /* Allocate the initial space */
+ new_list = newSV_type(SVt_INVLIST);
+
+ /* First 1 is in case the zero element isn't in the list; second 1 is for
+ * trailing NUL */
+ SvGROW(new_list, TO_INTERNAL_SIZE(initial_size + 1) + 1);
+ invlist_set_len(new_list, 0, 0);
+
+ /* Force iterinit() to be used to get iteration to work */
+ *get_invlist_iter_addr(new_list) = (STRLEN) UV_MAX;
+
+ *get_invlist_previous_index_addr(new_list) = 0;
+
+ return new_list;
+}
+
+SV*
+Perl__new_invlist_C_array(pTHX_ const UV* const list)
+{
+ /* Return a pointer to a newly constructed inversion list, initialized to
+ * point to <list>, which has to be in the exact correct inversion list
+ * form, including internal fields. Thus this is a dangerous routine that
+ * should not be used in the wrong hands. The passed in 'list' contains
+ * several header fields at the beginning that are not part of the
+ * inversion list body proper */
+
+ const STRLEN length = (STRLEN) list[0];
+ const UV version_id = list[1];
+ const bool offset = cBOOL(list[2]);
+#define HEADER_LENGTH 3
+ /* If any of the above changes in any way, you must change HEADER_LENGTH
+ * (if appropriate) and regenerate INVLIST_VERSION_ID by running
+ * perl -E 'say int(rand 2**31-1)'
+ */
+#define INVLIST_VERSION_ID 148565664 /* This is a combination of a version and
+ data structure type, so that one being
+ passed in can be validated to be an
+ inversion list of the correct vintage.
+ */
+
+ SV* invlist = newSV_type(SVt_INVLIST);
+
+ PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY;
+
+ if (version_id != INVLIST_VERSION_ID) {
+ Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list");
+ }
+
+ /* The generated array passed in includes header elements that aren't part
+ * of the list proper, so start it just after them */
+ SvPV_set(invlist, (char *) (list + HEADER_LENGTH));
+
+ SvLEN_set(invlist, 0); /* Means we own the contents, and the system
+ shouldn't touch it */
+
+ *(get_invlist_offset_addr(invlist)) = offset;
+
+ /* The 'length' passed to us is the physical number of elements in the
+ * inversion list. But if there is an offset the logical number is one
+ * less than that */
+ invlist_set_len(invlist, length - offset, offset);
+
+ invlist_set_previous_index(invlist, 0);
+
+ /* Initialize the iteration pointer. */
+ invlist_iterfinish(invlist);
+
+ SvREADONLY_on(invlist);
+
+ return invlist;
+}
+#endif /* ifndef PERL_IN_XSUB_RE */
+
+STATIC void
+S_invlist_extend(pTHX_ SV* const invlist, const UV new_max)
+{
+ /* Grow the maximum size of an inversion list */
+
+ PERL_ARGS_ASSERT_INVLIST_EXTEND;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ /* Add one to account for the zero element at the beginning which may not
+ * be counted by the calling parameters */
+ SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max + 1));
+}
+
+STATIC void
+S__append_range_to_invlist(pTHX_ SV* const invlist,
+ const UV start, const UV end)
+{
+ /* Subject to change or removal. Append the range from 'start' to 'end' at
+ * the end of the inversion list. The range must be above any existing
+ * ones. */
+
+ UV* array;
+ UV max = invlist_max(invlist);
+ UV len = _invlist_len(invlist);
+ bool offset;
+
+ PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
+
+ if (len == 0) { /* Empty lists must be initialized */
+ offset = start != 0;
+ array = _invlist_array_init(invlist, ! offset);
+ }
+ else {
+ /* Here, the existing list is non-empty. The current max entry in the
+ * list is generally the first value not in the set, except when the
+ * set extends to the end of permissible values, in which case it is
+ * the first entry in that final set, and so this call is an attempt to
+ * append out-of-order */
+
+ UV final_element = len - 1;
+ array = invlist_array(invlist);
+ if (array[final_element] > start
+ || ELEMENT_RANGE_MATCHES_INVLIST(final_element))
+ {
+ Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%"UVuf", start=%"UVuf", match=%c",
+ array[final_element], start,
+ ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f');
+ }
+
+ /* Here, it is a legal append. If the new range begins with the first
+ * value not in the set, it is extending the set, so the new first
+ * value not in the set is one greater than the newly extended range.
+ * */
+ offset = *get_invlist_offset_addr(invlist);
+ if (array[final_element] == start) {
+ if (end != UV_MAX) {
+ array[final_element] = end + 1;
+ }
+ else {
+ /* But if the end is the maximum representable on the machine,
+ * just let the range that this would extend to have no end */
+ invlist_set_len(invlist, len - 1, offset);
+ }
+ return;
+ }
+ }
+
+ /* Here the new range doesn't extend any existing set. Add it */
+
+ len += 2; /* Includes an element each for the start and end of range */
+
+ /* If wll overflow the existing space, extend, which may cause the array to
+ * be moved */
+ if (max < len) {
+ invlist_extend(invlist, len);
+
+ /* Have to set len here to avoid assert failure in invlist_array() */
+ invlist_set_len(invlist, len, offset);
+
+ array = invlist_array(invlist);
+ }
+ else {
+ invlist_set_len(invlist, len, offset);
+ }
+
+ /* The next item on the list starts the range, the one after that is
+ * one past the new range. */
+ array[len - 2] = start;
+ if (end != UV_MAX) {
+ array[len - 1] = end + 1;
+ }
+ else {
+ /* But if the end is the maximum representable on the machine, just let
+ * the range have no end */
+ invlist_set_len(invlist, len - 1, offset);
+ }
+}
+
+#ifndef PERL_IN_XSUB_RE
+
+IV
+Perl__invlist_search(SV* const invlist, const UV cp)
+{
+ /* Searches the inversion list for the entry that contains the input code
+ * point <cp>. If <cp> is not in the list, -1 is returned. Otherwise, the
+ * return value is the index into the list's array of the range that
+ * contains <cp> */
+
+ IV low = 0;
+ IV mid;
+ IV high = _invlist_len(invlist);
+ const IV highest_element = high - 1;
+ const UV* array;
+
+ PERL_ARGS_ASSERT__INVLIST_SEARCH;
+
+ /* If list is empty, return failure. */
+ if (high == 0) {
+ return -1;
+ }
+
+ /* (We can't get the array unless we know the list is non-empty) */
+ array = invlist_array(invlist);
+
+ mid = invlist_previous_index(invlist);
+ assert(mid >=0 && mid <= highest_element);
+
+ /* <mid> contains the cache of the result of the previous call to this
+ * function (0 the first time). See if this call is for the same result,
+ * or if it is for mid-1. This is under the theory that calls to this
+ * function will often be for related code points that are near each other.
+ * And benchmarks show that caching gives better results. We also test
+ * here if the code point is within the bounds of the list. These tests
+ * replace others that would have had to be made anyway to make sure that
+ * the array bounds were not exceeded, and these give us extra information
+ * at the same time */
+ if (cp >= array[mid]) {
+ if (cp >= array[highest_element]) {
+ return highest_element;
+ }
+
+ /* Here, array[mid] <= cp < array[highest_element]. This means that
+ * the final element is not the answer, so can exclude it; it also
+ * means that <mid> is not the final element, so can refer to 'mid + 1'
+ * safely */
+ if (cp < array[mid + 1]) {
+ return mid;
+ }
+ high--;
+ low = mid + 1;
+ }
+ else { /* cp < aray[mid] */
+ if (cp < array[0]) { /* Fail if outside the array */
+ return -1;
+ }
+ high = mid;
+ if (cp >= array[mid - 1]) {
+ goto found_entry;
+ }
+ }
+
+ /* Binary search. What we are looking for is <i> such that
+ * array[i] <= cp < array[i+1]
+ * The loop below converges on the i+1. Note that there may not be an
+ * (i+1)th element in the array, and things work nonetheless */
+ while (low < high) {
+ mid = (low + high) / 2;
+ assert(mid <= highest_element);
+ if (array[mid] <= cp) { /* cp >= array[mid] */
+ low = mid + 1;
+
+ /* We could do this extra test to exit the loop early.
+ if (cp < array[low]) {
+ return mid;
+ }
+ */
+ }
+ else { /* cp < array[mid] */
+ high = mid;
+ }
+ }
+
+ found_entry:
+ high--;
+ invlist_set_previous_index(invlist, high);
+ return high;
+}
+
+void
+Perl__invlist_populate_swatch(SV* const invlist,
+ const UV start, const UV end, U8* swatch)
+{
+ /* populates a swatch of a swash the same way swatch_get() does in utf8.c,
+ * but is used when the swash has an inversion list. This makes this much
+ * faster, as it uses a binary search instead of a linear one. This is
+ * intimately tied to that function, and perhaps should be in utf8.c,
+ * except it is intimately tied to inversion lists as well. It assumes
+ * that <swatch> is all 0's on input */
+
+ UV current = start;
+ const IV len = _invlist_len(invlist);
+ IV i;
+ const UV * array;
+
+ PERL_ARGS_ASSERT__INVLIST_POPULATE_SWATCH;
+
+ if (len == 0) { /* Empty inversion list */
+ return;
+ }
+
+ array = invlist_array(invlist);
+
+ /* Find which element it is */
+ i = _invlist_search(invlist, start);
+
+ /* We populate from <start> to <end> */
+ while (current < end) {
+ UV upper;
+
+ /* The inversion list gives the results for every possible code point
+ * after the first one in the list. Only those ranges whose index is
+ * even are ones that the inversion list matches. For the odd ones,
+ * and if the initial code point is not in the list, we have to skip
+ * forward to the next element */
+ if (i == -1 || ! ELEMENT_RANGE_MATCHES_INVLIST(i)) {
+ i++;
+ if (i >= len) { /* Finished if beyond the end of the array */
+ return;
+ }
+ current = array[i];
+ if (current >= end) { /* Finished if beyond the end of what we
+ are populating */
+ if (LIKELY(end < UV_MAX)) {
+ return;
+ }
+
+ /* We get here when the upper bound is the maximum
+ * representable on the machine, and we are looking for just
+ * that code point. Have to special case it */
+ i = len;
+ goto join_end_of_list;
+ }
+ }
+ assert(current >= start);
+
+ /* The current range ends one below the next one, except don't go past
+ * <end> */
+ i++;
+ upper = (i < len && array[i] < end) ? array[i] : end;
+
+ /* Here we are in a range that matches. Populate a bit in the 3-bit U8
+ * for each code point in it */
+ for (; current < upper; current++) {
+ const STRLEN offset = (STRLEN)(current - start);
+ swatch[offset >> 3] |= 1 << (offset & 7);
+ }
+
+ join_end_of_list:
+
+ /* Quit if at the end of the list */
+ if (i >= len) {
+
+ /* But first, have to deal with the highest possible code point on
+ * the platform. The previous code assumes that <end> is one
+ * beyond where we want to populate, but that is impossible at the
+ * platform's infinity, so have to handle it specially */
+ if (UNLIKELY(end == UV_MAX && ELEMENT_RANGE_MATCHES_INVLIST(len-1)))
+ {
+ const STRLEN offset = (STRLEN)(end - start);
+ swatch[offset >> 3] |= 1 << (offset & 7);
+ }
+ return;
+ }
+
+ /* Advance to the next range, which will be for code points not in the
+ * inversion list */
+ current = array[i];
+ }
+
+ return;
+}
+
+void
+Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b,
+ const bool complement_b, SV** output)
+{
+ /* Take the union of two inversion lists and point <output> to it. *output
+ * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
+ * the reference count to that list will be decremented if not already a
+ * temporary (mortal); otherwise *output will be made correspondingly
+ * mortal. The first list, <a>, may be NULL, in which case a copy of the
+ * second list is returned. If <complement_b> is TRUE, the union is taken
+ * of the complement (inversion) of <b> instead of b itself.
+ *
+ * The basis for this comes from "Unicode Demystified" Chapter 13 by
+ * Richard Gillam, published by Addison-Wesley, and explained at some
+ * length there. The preface says to incorporate its examples into your
+ * code at your own risk.
+ *
+ * The algorithm is like a merge sort.
+ *
+ * XXX A potential performance improvement is to keep track as we go along
+ * if only one of the inputs contributes to the result, meaning the other
+ * is a subset of that one. In that case, we can skip the final copy and
+ * return the larger of the input lists, but then outside code might need
+ * to keep track of whether to free the input list or not */
+
+ const UV* array_a; /* a's array */
+ const UV* array_b;
+ UV len_a; /* length of a's array */
+ UV len_b;
+
+ SV* u; /* the resulting union */
+ UV* array_u;
+ UV len_u;
+
+ UV i_a = 0; /* current index into a's array */
+ UV i_b = 0;
+ UV i_u = 0;
+
+ /* running count, as explained in the algorithm source book; items are
+ * stopped accumulating and are output when the count changes to/from 0.
+ * The count is incremented when we start a range that's in the set, and
+ * decremented when we start a range that's not in the set. So its range
+ * is 0 to 2. Only when the count is zero is something not in the set.
+ */
+ UV count = 0;
+
+ PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND;
+ assert(a != b);
+
+ /* If either one is empty, the union is the other one */
+ if (a == NULL || ((len_a = _invlist_len(a)) == 0)) {
+ bool make_temp = FALSE; /* Should we mortalize the result? */
+
+ if (*output == a) {
+ if (a != NULL) {
+ if (! (make_temp = cBOOL(SvTEMP(a)))) {
+ SvREFCNT_dec_NN(a);
+ }
+ }
+ }
+ if (*output != b) {
+ *output = invlist_clone(b);
+ if (complement_b) {
+ _invlist_invert(*output);
+ }
+ } /* else *output already = b; */
+
+ if (make_temp) {
+ sv_2mortal(*output);
+ }
+ return;
+ }
+ else if ((len_b = _invlist_len(b)) == 0) {
+ bool make_temp = FALSE;
+ if (*output == b) {
+ if (! (make_temp = cBOOL(SvTEMP(b)))) {
+ SvREFCNT_dec_NN(b);
+ }
+ }
+
+ /* The complement of an empty list is a list that has everything in it,
+ * so the union with <a> includes everything too */
+ if (complement_b) {
+ if (a == *output) {
+ if (! (make_temp = cBOOL(SvTEMP(a)))) {
+ SvREFCNT_dec_NN(a);
+ }
+ }
+ *output = _new_invlist(1);
+ _append_range_to_invlist(*output, 0, UV_MAX);
+ }
+ else if (*output != a) {
+ *output = invlist_clone(a);
+ }
+ /* else *output already = a; */
+
+ if (make_temp) {
+ sv_2mortal(*output);
+ }
+ return;
+ }
+
+ /* Here both lists exist and are non-empty */
+ array_a = invlist_array(a);
+ array_b = invlist_array(b);
+
+ /* If are to take the union of 'a' with the complement of b, set it
+ * up so are looking at b's complement. */
+ if (complement_b) {
+
+ /* To complement, we invert: if the first element is 0, remove it. To
+ * do this, we just pretend the array starts one later */
+ if (array_b[0] == 0) {
+ array_b++;
+ len_b--;
+ }
+ else {
+
+ /* But if the first element is not zero, we pretend the list starts
+ * at the 0 that is always stored immediately before the array. */
+ array_b--;
+ len_b++;
+ }
+ }
+
+ /* Size the union for the worst case: that the sets are completely
+ * disjoint */
+ u = _new_invlist(len_a + len_b);
+
+ /* Will contain U+0000 if either component does */
+ array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0)
+ || (len_b > 0 && array_b[0] == 0));
+
+ /* Go through each list item by item, stopping when exhausted one of
+ * them */
+ while (i_a < len_a && i_b < len_b) {
+ UV cp; /* The element to potentially add to the union's array */
+ bool cp_in_set; /* is it in the the input list's set or not */
+
+ /* We need to take one or the other of the two inputs for the union.
+ * Since we are merging two sorted lists, we take the smaller of the
+ * next items. In case of a tie, we take the one that is in its set
+ * first. If we took one not in the set first, it would decrement the
+ * count, possibly to 0 which would cause it to be output as ending the
+ * range, and the next time through we would take the same number, and
+ * output it again as beginning the next range. By doing it the
+ * opposite way, there is no possibility that the count will be
+ * momentarily decremented to 0, and thus the two adjoining ranges will
+ * be seamlessly merged. (In a tie and both are in the set or both not
+ * in the set, it doesn't matter which we take first.) */
+ if (array_a[i_a] < array_b[i_b]
+ || (array_a[i_a] == array_b[i_b]
+ && ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
+ {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
+ cp= array_a[i_a++];
+ }
+ else {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
+ cp = array_b[i_b++];
+ }
+
+ /* Here, have chosen which of the two inputs to look at. Only output
+ * if the running count changes to/from 0, which marks the
+ * beginning/end of a range in that's in the set */
+ if (cp_in_set) {
+ if (count == 0) {
+ array_u[i_u++] = cp;
+ }
+ count++;
+ }
+ else {
+ count--;
+ if (count == 0) {
+ array_u[i_u++] = cp;
+ }
+ }
+ }
+
+ /* Here, we are finished going through at least one of the lists, which
+ * means there is something remaining in at most one. We check if the list
+ * that hasn't been exhausted is positioned such that we are in the middle
+ * of a range in its set or not. (i_a and i_b point to the element beyond
+ * the one we care about.) If in the set, we decrement 'count'; if 0, there
+ * is potentially more to output.
+ * There are four cases:
+ * 1) Both weren't in their sets, count is 0, and remains 0. What's left
+ * in the union is entirely from the non-exhausted set.
+ * 2) Both were in their sets, count is 2. Nothing further should
+ * be output, as everything that remains will be in the exhausted
+ * list's set, hence in the union; decrementing to 1 but not 0 insures
+ * that
+ * 3) the exhausted was in its set, non-exhausted isn't, count is 1.
+ * Nothing further should be output because the union includes
+ * everything from the exhausted set. Not decrementing ensures that.
+ * 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
+ * decrementing to 0 insures that we look at the remainder of the
+ * non-exhausted set */
+ if ((i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
+ || (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
+ {
+ count--;
+ }
+
+ /* The final length is what we've output so far, plus what else is about to
+ * be output. (If 'count' is non-zero, then the input list we exhausted
+ * has everything remaining up to the machine's limit in its set, and hence
+ * in the union, so there will be no further output. */
+ len_u = i_u;
+ if (count == 0) {
+ /* At most one of the subexpressions will be non-zero */
+ len_u += (len_a - i_a) + (len_b - i_b);
+ }
+
+ /* Set result to final length, which can change the pointer to array_u, so
+ * re-find it */
+ if (len_u != _invlist_len(u)) {
+ invlist_set_len(u, len_u, *get_invlist_offset_addr(u));
+ invlist_trim(u);
+ array_u = invlist_array(u);
+ }
+
+ /* When 'count' is 0, the list that was exhausted (if one was shorter than
+ * the other) ended with everything above it not in its set. That means
+ * that the remaining part of the union is precisely the same as the
+ * non-exhausted list, so can just copy it unchanged. (If both list were
+ * exhausted at the same time, then the operations below will be both 0.)
+ */
+ if (count == 0) {
+ IV copy_count; /* At most one will have a non-zero copy count */
+ if ((copy_count = len_a - i_a) > 0) {
+ Copy(array_a + i_a, array_u + i_u, copy_count, UV);
+ }
+ else if ((copy_count = len_b - i_b) > 0) {
+ Copy(array_b + i_b, array_u + i_u, copy_count, UV);
+ }
+ }
+
+ /* We may be removing a reference to one of the inputs. If so, the output
+ * is made mortal if the input was. (Mortal SVs shouldn't have their ref
+ * count decremented) */
+ if (a == *output || b == *output) {
+ assert(! invlist_is_iterating(*output));
+ if ((SvTEMP(*output))) {
+ sv_2mortal(u);
+ }
+ else {
+ SvREFCNT_dec_NN(*output);
+ }
+ }
+
+ *output = u;
+
+ return;
+}
+
+void
+Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b,
+ const bool complement_b, SV** i)
+{
+ /* Take the intersection of two inversion lists and point <i> to it. *i
+ * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
+ * the reference count to that list will be decremented if not already a
+ * temporary (mortal); otherwise *i will be made correspondingly mortal.
+ * The first list, <a>, may be NULL, in which case an empty list is
+ * returned. If <complement_b> is TRUE, the result will be the
+ * intersection of <a> and the complement (or inversion) of <b> instead of
+ * <b> directly.
+ *
+ * The basis for this comes from "Unicode Demystified" Chapter 13 by
+ * Richard Gillam, published by Addison-Wesley, and explained at some
+ * length there. The preface says to incorporate its examples into your
+ * code at your own risk. In fact, it had bugs
+ *
+ * The algorithm is like a merge sort, and is essentially the same as the
+ * union above
+ */
+
+ const UV* array_a; /* a's array */
+ const UV* array_b;
+ UV len_a; /* length of a's array */
+ UV len_b;
+
+ SV* r; /* the resulting intersection */
+ UV* array_r;
+ UV len_r;
+
+ UV i_a = 0; /* current index into a's array */
+ UV i_b = 0;
+ UV i_r = 0;
+
+ /* running count, as explained in the algorithm source book; items are
+ * stopped accumulating and are output when the count changes to/from 2.
+ * The count is incremented when we start a range that's in the set, and
+ * decremented when we start a range that's not in the set. So its range
+ * is 0 to 2. Only when the count is 2 is something in the intersection.
+ */
+ UV count = 0;
+
+ PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND;
+ assert(a != b);
+
+ /* Special case if either one is empty */
+ len_a = (a == NULL) ? 0 : _invlist_len(a);
+ if ((len_a == 0) || ((len_b = _invlist_len(b)) == 0)) {
+ bool make_temp = FALSE;
+
+ if (len_a != 0 && complement_b) {
+
+ /* Here, 'a' is not empty, therefore from the above 'if', 'b' must
+ * be empty. Here, also we are using 'b's complement, which hence
+ * must be every possible code point. Thus the intersection is
+ * simply 'a'. */
+ if (*i != a) {
+ if (*i == b) {
+ if (! (make_temp = cBOOL(SvTEMP(b)))) {
+ SvREFCNT_dec_NN(b);
+ }
+ }
+
+ *i = invlist_clone(a);
+ }
+ /* else *i is already 'a' */
+
+ if (make_temp) {
+ sv_2mortal(*i);
+ }
+ return;
+ }
+
+ /* Here, 'a' or 'b' is empty and not using the complement of 'b'. The
+ * intersection must be empty */
+ if (*i == a) {
+ if (! (make_temp = cBOOL(SvTEMP(a)))) {
+ SvREFCNT_dec_NN(a);
+ }
+ }
+ else if (*i == b) {
+ if (! (make_temp = cBOOL(SvTEMP(b)))) {
+ SvREFCNT_dec_NN(b);
+ }
+ }
+ *i = _new_invlist(0);
+ if (make_temp) {
+ sv_2mortal(*i);
+ }
+
+ return;
+ }
+
+ /* Here both lists exist and are non-empty */
+ array_a = invlist_array(a);
+ array_b = invlist_array(b);
+
+ /* If are to take the intersection of 'a' with the complement of b, set it
+ * up so are looking at b's complement. */
+ if (complement_b) {
+
+ /* To complement, we invert: if the first element is 0, remove it. To
+ * do this, we just pretend the array starts one later */
+ if (array_b[0] == 0) {
+ array_b++;
+ len_b--;
+ }
+ else {
+
+ /* But if the first element is not zero, we pretend the list starts
+ * at the 0 that is always stored immediately before the array. */
+ array_b--;
+ len_b++;
+ }
+ }
+
+ /* Size the intersection for the worst case: that the intersection ends up
+ * fragmenting everything to be completely disjoint */
+ r= _new_invlist(len_a + len_b);
+
+ /* Will contain U+0000 iff both components do */
+ array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0
+ && len_b > 0 && array_b[0] == 0);
+
+ /* Go through each list item by item, stopping when exhausted one of
+ * them */
+ while (i_a < len_a && i_b < len_b) {
+ UV cp; /* The element to potentially add to the intersection's
+ array */
+ bool cp_in_set; /* Is it in the input list's set or not */
+
+ /* We need to take one or the other of the two inputs for the
+ * intersection. Since we are merging two sorted lists, we take the
+ * smaller of the next items. In case of a tie, we take the one that
+ * is not in its set first (a difference from the union algorithm). If
+ * we took one in the set first, it would increment the count, possibly
+ * to 2 which would cause it to be output as starting a range in the
+ * intersection, and the next time through we would take that same
+ * number, and output it again as ending the set. By doing it the
+ * opposite of this, there is no possibility that the count will be
+ * momentarily incremented to 2. (In a tie and both are in the set or
+ * both not in the set, it doesn't matter which we take first.) */
+ if (array_a[i_a] < array_b[i_b]
+ || (array_a[i_a] == array_b[i_b]
+ && ! ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
+ {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
+ cp= array_a[i_a++];
+ }
+ else {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
+ cp= array_b[i_b++];
+ }
+
+ /* Here, have chosen which of the two inputs to look at. Only output
+ * if the running count changes to/from 2, which marks the
+ * beginning/end of a range that's in the intersection */
+ if (cp_in_set) {
+ count++;
+ if (count == 2) {
+ array_r[i_r++] = cp;
+ }
+ }
+ else {
+ if (count == 2) {
+ array_r[i_r++] = cp;
+ }
+ count--;
+ }
+ }
+
+ /* Here, we are finished going through at least one of the lists, which
+ * means there is something remaining in at most one. We check if the list
+ * that has been exhausted is positioned such that we are in the middle
+ * of a range in its set or not. (i_a and i_b point to elements 1 beyond
+ * the ones we care about.) There are four cases:
+ * 1) Both weren't in their sets, count is 0, and remains 0. There's
+ * nothing left in the intersection.
+ * 2) Both were in their sets, count is 2 and perhaps is incremented to
+ * above 2. What should be output is exactly that which is in the
+ * non-exhausted set, as everything it has is also in the intersection
+ * set, and everything it doesn't have can't be in the intersection
+ * 3) The exhausted was in its set, non-exhausted isn't, count is 1, and
+ * gets incremented to 2. Like the previous case, the intersection is
+ * everything that remains in the non-exhausted set.
+ * 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
+ * remains 1. And the intersection has nothing more. */
+ if ((i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
+ || (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
+ {
+ count++;
+ }
+
+ /* The final length is what we've output so far plus what else is in the
+ * intersection. At most one of the subexpressions below will be non-zero
+ * */
+ len_r = i_r;
+ if (count >= 2) {
+ len_r += (len_a - i_a) + (len_b - i_b);
+ }
+
+ /* Set result to final length, which can change the pointer to array_r, so
+ * re-find it */
+ if (len_r != _invlist_len(r)) {
+ invlist_set_len(r, len_r, *get_invlist_offset_addr(r));
+ invlist_trim(r);
+ array_r = invlist_array(r);
+ }
+
+ /* Finish outputting any remaining */
+ if (count >= 2) { /* At most one will have a non-zero copy count */
+ IV copy_count;
+ if ((copy_count = len_a - i_a) > 0) {
+ Copy(array_a + i_a, array_r + i_r, copy_count, UV);
+ }
+ else if ((copy_count = len_b - i_b) > 0) {
+ Copy(array_b + i_b, array_r + i_r, copy_count, UV);
+ }
+ }
+
+ /* We may be removing a reference to one of the inputs. If so, the output
+ * is made mortal if the input was. (Mortal SVs shouldn't have their ref
+ * count decremented) */
+ if (a == *i || b == *i) {
+ assert(! invlist_is_iterating(*i));
+ if (SvTEMP(*i)) {
+ sv_2mortal(r);
+ }
+ else {
+ SvREFCNT_dec_NN(*i);
+ }
+ }
+
+ *i = r;
+
+ return;
+}
+
+SV*
+Perl__add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end)
+{
+ /* Add the range from 'start' to 'end' inclusive to the inversion list's
+ * set. A pointer to the inversion list is returned. This may actually be
+ * a new list, in which case the passed in one has been destroyed. The
+ * passed-in inversion list can be NULL, in which case a new one is created
+ * with just the one range in it */
+
+ SV* range_invlist;
+ UV len;
+
+ if (invlist == NULL) {
+ invlist = _new_invlist(2);
+ len = 0;
+ }
+ else {
+ len = _invlist_len(invlist);
+ }
+
+ /* If comes after the final entry actually in the list, can just append it
+ * to the end, */
+ if (len == 0
+ || (! ELEMENT_RANGE_MATCHES_INVLIST(len - 1)
+ && start >= invlist_array(invlist)[len - 1]))
+ {
+ _append_range_to_invlist(invlist, start, end);
+ return invlist;
+ }
+
+ /* Here, can't just append things, create and return a new inversion list
+ * which is the union of this range and the existing inversion list */
+ range_invlist = _new_invlist(2);
+ _append_range_to_invlist(range_invlist, start, end);
+
+ _invlist_union(invlist, range_invlist, &invlist);
+
+ /* The temporary can be freed */
+ SvREFCNT_dec_NN(range_invlist);
+
+ return invlist;
+}
+
+SV*
+Perl__setup_canned_invlist(pTHX_ const STRLEN size, const UV element0,
+ UV** other_elements_ptr)
+{
+ /* Create and return an inversion list whose contents are to be populated
+ * by the caller. The caller gives the number of elements (in 'size') and
+ * the very first element ('element0'). This function will set
+ * '*other_elements_ptr' to an array of UVs, where the remaining elements
+ * are to be placed.
+ *
+ * Obviously there is some trust involved that the caller will properly
+ * fill in the other elements of the array.
+ *
+ * (The first element needs to be passed in, as the underlying code does
+ * things differently depending on whether it is zero or non-zero) */
+
+ SV* invlist = _new_invlist(size);
+ bool offset;
+
+ PERL_ARGS_ASSERT__SETUP_CANNED_INVLIST;
+
+ _append_range_to_invlist(invlist, element0, element0);
+ offset = *get_invlist_offset_addr(invlist);
+
+ invlist_set_len(invlist, size, offset);
+ *other_elements_ptr = invlist_array(invlist) + 1;
+ return invlist;
+}
+
+#endif
+
+PERL_STATIC_INLINE SV*
+S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) {
+ return _add_range_to_invlist(invlist, cp, cp);
+}
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl__invlist_invert(pTHX_ SV* const invlist)
+{
+ /* Complement the input inversion list. This adds a 0 if the list didn't
+ * have a zero; removes it otherwise. As described above, the data
+ * structure is set up so that this is very efficient */
+
+ PERL_ARGS_ASSERT__INVLIST_INVERT;
+
+ assert(! invlist_is_iterating(invlist));
+
+ /* The inverse of matching nothing is matching everything */
+ if (_invlist_len(invlist) == 0) {
+ _append_range_to_invlist(invlist, 0, UV_MAX);
+ return;
+ }
+
+ *get_invlist_offset_addr(invlist) = ! *get_invlist_offset_addr(invlist);
+}
+
+#endif
+
+PERL_STATIC_INLINE SV*
+S_invlist_clone(pTHX_ SV* const invlist)
+{
+
+ /* Return a new inversion list that is a copy of the input one, which is
+ * unchanged. The new list will not be mortal even if the old one was. */
+
+ /* Need to allocate extra space to accommodate Perl's addition of a
+ * trailing NUL to SvPV's, since it thinks they are always strings */
+ SV* new_invlist = _new_invlist(_invlist_len(invlist) + 1);
+ STRLEN physical_length = SvCUR(invlist);
+ bool offset = *(get_invlist_offset_addr(invlist));
+
+ PERL_ARGS_ASSERT_INVLIST_CLONE;
+
+ *(get_invlist_offset_addr(new_invlist)) = offset;
+ invlist_set_len(new_invlist, _invlist_len(invlist), offset);
+ Copy(SvPVX(invlist), SvPVX(new_invlist), physical_length, char);
+
+ return new_invlist;
+}
+
+PERL_STATIC_INLINE STRLEN*
+S_get_invlist_iter_addr(SV* invlist)
+{
+ /* Return the address of the UV that contains the current iteration
+ * position */
+
+ PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ return &(((XINVLIST*) SvANY(invlist))->iterator);
+}
+
+PERL_STATIC_INLINE void
+S_invlist_iterinit(SV* invlist) /* Initialize iterator for invlist */
+{
+ PERL_ARGS_ASSERT_INVLIST_ITERINIT;
+
+ *get_invlist_iter_addr(invlist) = 0;
+}
+
+PERL_STATIC_INLINE void
+S_invlist_iterfinish(SV* invlist)
+{
+ /* Terminate iterator for invlist. This is to catch development errors.
+ * Any iteration that is interrupted before completed should call this
+ * function. Functions that add code points anywhere else but to the end
+ * of an inversion list assert that they are not in the middle of an
+ * iteration. If they were, the addition would make the iteration
+ * problematical: if the iteration hadn't reached the place where things
+ * were being added, it would be ok */
+
+ PERL_ARGS_ASSERT_INVLIST_ITERFINISH;
+
+ *get_invlist_iter_addr(invlist) = (STRLEN) UV_MAX;
+}
+
+STATIC bool
+S_invlist_iternext(SV* invlist, UV* start, UV* end)
+{
+ /* An C<invlist_iterinit> call on <invlist> must be used to set this up.
+ * This call sets in <*start> and <*end>, the next range in <invlist>.
+ * Returns <TRUE> if successful and the next call will return the next
+ * range; <FALSE> if was already at the end of the list. If the latter,
+ * <*start> and <*end> are unchanged, and the next call to this function
+ * will start over at the beginning of the list */
+
+ STRLEN* pos = get_invlist_iter_addr(invlist);
+ UV len = _invlist_len(invlist);
+ UV *array;
+
+ PERL_ARGS_ASSERT_INVLIST_ITERNEXT;
+
+ if (*pos >= len) {
+ *pos = (STRLEN) UV_MAX; /* Force iterinit() to be required next time */
+ return FALSE;
+ }
+
+ array = invlist_array(invlist);
+
+ *start = array[(*pos)++];
+
+ if (*pos >= len) {
+ *end = UV_MAX;
+ }
+ else {
+ *end = array[(*pos)++] - 1;
+ }
+
+ return TRUE;
+}
+
+PERL_STATIC_INLINE UV
+S_invlist_highest(SV* const invlist)
+{
+ /* Returns the highest code point that matches an inversion list. This API
+ * has an ambiguity, as it returns 0 under either the highest is actually
+ * 0, or if the list is empty. If this distinction matters to you, check
+ * for emptiness before calling this function */
+
+ UV len = _invlist_len(invlist);
+ UV *array;
+
+ PERL_ARGS_ASSERT_INVLIST_HIGHEST;
+
+ if (len == 0) {
+ return 0;
+ }
+
+ array = invlist_array(invlist);
+
+ /* The last element in the array in the inversion list always starts a
+ * range that goes to infinity. That range may be for code points that are
+ * matched in the inversion list, or it may be for ones that aren't
+ * matched. In the latter case, the highest code point in the set is one
+ * less than the beginning of this range; otherwise it is the final element
+ * of this range: infinity */
+ return (ELEMENT_RANGE_MATCHES_INVLIST(len - 1))
+ ? UV_MAX
+ : array[len - 1] - 1;
+}
+
+#ifndef PERL_IN_XSUB_RE
+SV *
+Perl__invlist_contents(pTHX_ SV* const invlist)
+{
+ /* Get the contents of an inversion list into a string SV so that they can
+ * be printed out. It uses the format traditionally done for debug tracing
+ */
+
+ UV start, end;
+ SV* output = newSVpvs("\n");
+
+ PERL_ARGS_ASSERT__INVLIST_CONTENTS;
+
+ assert(! invlist_is_iterating(invlist));
+
+ invlist_iterinit(invlist);
+ while (invlist_iternext(invlist, &start, &end)) {
+ if (end == UV_MAX) {
+ Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\tINFINITY\n", start);
+ }
+ else if (end != start) {
+ Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\t%04"UVXf"\n",
+ start, end);
+ }
+ else {
+ Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\n", start);
+ }
+ }
+
+ return output;
+}
+#endif
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl__invlist_dump(pTHX_ PerlIO *file, I32 level,
+ const char * const indent, SV* const invlist)
+{
+ /* Designed to be called only by do_sv_dump(). Dumps out the ranges of the
+ * inversion list 'invlist' to 'file' at 'level' Each line is prefixed by
+ * the string 'indent'. The output looks like this:
+ [0] 0x000A .. 0x000D
+ [2] 0x0085
+ [4] 0x2028 .. 0x2029
+ [6] 0x3104 .. INFINITY
+ * This means that the first range of code points matched by the list are
+ * 0xA through 0xD; the second range contains only the single code point
+ * 0x85, etc. An inversion list is an array of UVs. Two array elements
+ * are used to define each range (except if the final range extends to
+ * infinity, only a single element is needed). The array index of the
+ * first element for the corresponding range is given in brackets. */
+
+ UV start, end;
+ STRLEN count = 0;
+
+ PERL_ARGS_ASSERT__INVLIST_DUMP;
+
+ if (invlist_is_iterating(invlist)) {
+ Perl_dump_indent(aTHX_ level, file,
+ "%sCan't dump inversion list because is in middle of iterating\n",
+ indent);
+ return;
+ }
+
+ invlist_iterinit(invlist);
+ while (invlist_iternext(invlist, &start, &end)) {
+ if (end == UV_MAX) {
+ Perl_dump_indent(aTHX_ level, file,
+ "%s[%"UVuf"] 0x%04"UVXf" .. INFINITY\n",
+ indent, (UV)count, start);
+ }
+ else if (end != start) {
+ Perl_dump_indent(aTHX_ level, file,
+ "%s[%"UVuf"] 0x%04"UVXf" .. 0x%04"UVXf"\n",
+ indent, (UV)count, start, end);
+ }
+ else {
+ Perl_dump_indent(aTHX_ level, file, "%s[%"UVuf"] 0x%04"UVXf"\n",
+ indent, (UV)count, start);
+ }
+ count += 2;
+ }
+}
+
+void
+Perl__load_PL_utf8_foldclosures (pTHX)
+{
+ assert(! PL_utf8_foldclosures);
+
+ /* If the folds haven't been read in, call a fold function
+ * to force that */
+ if (! PL_utf8_tofold) {
+ U8 dummy[UTF8_MAXBYTES_CASE+1];
+
+ /* This string is just a short named one above \xff */
+ to_utf8_fold((U8*) HYPHEN_UTF8, dummy, NULL);
+ assert(PL_utf8_tofold); /* Verify that worked */
+ }
+ PL_utf8_foldclosures = _swash_inversion_hash(PL_utf8_tofold);
+}
+#endif
+
+#ifdef PERL_ARGS_ASSERT__INVLISTEQ
+bool
+S__invlistEQ(pTHX_ SV* const a, SV* const b, const bool complement_b)
+{
+ /* Return a boolean as to if the two passed in inversion lists are
+ * identical. The final argument, if TRUE, says to take the complement of
+ * the second inversion list before doing the comparison */
+
+ const UV* array_a = invlist_array(a);
+ const UV* array_b = invlist_array(b);
+ UV len_a = _invlist_len(a);
+ UV len_b = _invlist_len(b);
+
+ UV i = 0; /* current index into the arrays */
+ bool retval = TRUE; /* Assume are identical until proven otherwise */
+
+ PERL_ARGS_ASSERT__INVLISTEQ;
+
+ /* If are to compare 'a' with the complement of b, set it
+ * up so are looking at b's complement. */
+ if (complement_b) {
+
+ /* The complement of nothing is everything, so <a> would have to have
+ * just one element, starting at zero (ending at infinity) */
+ if (len_b == 0) {
+ return (len_a == 1 && array_a[0] == 0);
+ }
+ else if (array_b[0] == 0) {
+
+ /* Otherwise, to complement, we invert. Here, the first element is
+ * 0, just remove it. To do this, we just pretend the array starts
+ * one later */
+
+ array_b++;
+ len_b--;
+ }
+ else {
+
+ /* But if the first element is not zero, we pretend the list starts
+ * at the 0 that is always stored immediately before the array. */
+ array_b--;
+ len_b++;
+ }
+ }
+
+ /* Make sure that the lengths are the same, as well as the final element
+ * before looping through the remainder. (Thus we test the length, final,
+ * and first elements right off the bat) */
+ if (len_a != len_b || array_a[len_a-1] != array_b[len_a-1]) {
+ retval = FALSE;
+ }
+ else for (i = 0; i < len_a - 1; i++) {
+ if (array_a[i] != array_b[i]) {
+ retval = FALSE;
+ break;
+ }
+ }
+
+ return retval;
+}
+#endif
+
+/*
+ * As best we can, determine the characters that can match the start of
+ * the given EXACTF-ish node.
+ *
+ * Returns the invlist as a new SV*; it is the caller's responsibility to
+ * call SvREFCNT_dec() when done with it.
+ */
+STATIC SV*
+S__make_exactf_invlist(pTHX_ RExC_state_t *pRExC_state, regnode *node)
+{
+ const U8 * s = (U8*)STRING(node);
+ SSize_t bytelen = STR_LEN(node);
+ UV uc;
+ /* Start out big enough for 2 separate code points */
+ SV* invlist = _new_invlist(4);
+
+ PERL_ARGS_ASSERT__MAKE_EXACTF_INVLIST;
+
+ if (! UTF) {
+ uc = *s;
+
+ /* We punt and assume can match anything if the node begins
+ * with a multi-character fold. Things are complicated. For
+ * example, /ffi/i could match any of:
+ * "\N{LATIN SMALL LIGATURE FFI}"
+ * "\N{LATIN SMALL LIGATURE FF}I"
+ * "F\N{LATIN SMALL LIGATURE FI}"
+ * plus several other things; and making sure we have all the
+ * possibilities is hard. */
+ if (is_MULTI_CHAR_FOLD_latin1_safe(s, s + bytelen)) {
+ invlist = _add_range_to_invlist(invlist, 0, UV_MAX);
+ }
+ else {
+ /* Any Latin1 range character can potentially match any
+ * other depending on the locale */
+ if (OP(node) == EXACTFL) {
+ _invlist_union(invlist, PL_Latin1, &invlist);
+ }
+ else {
+ /* But otherwise, it matches at least itself. We can
+ * quickly tell if it has a distinct fold, and if so,
+ * it matches that as well */
+ invlist = add_cp_to_invlist(invlist, uc);
+ if (IS_IN_SOME_FOLD_L1(uc))
+ invlist = add_cp_to_invlist(invlist, PL_fold_latin1[uc]);
+ }
+
+ /* Some characters match above-Latin1 ones under /i. This
+ * is true of EXACTFL ones when the locale is UTF-8 */
+ if (HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(uc)
+ && (! isASCII(uc) || (OP(node) != EXACTFA
+ && OP(node) != EXACTFA_NO_TRIE)))
+ {
+ add_above_Latin1_folds(pRExC_state, (U8) uc, &invlist);
+ }
+ }
+ }
+ else { /* Pattern is UTF-8 */
+ U8 folded[UTF8_MAX_FOLD_CHAR_EXPAND * UTF8_MAXBYTES_CASE + 1] = { '\0' };
+ STRLEN foldlen = UTF8SKIP(s);
+ const U8* e = s + bytelen;
+ SV** listp;
+
+ uc = utf8_to_uvchr_buf(s, s + bytelen, NULL);
+
+ /* The only code points that aren't folded in a UTF EXACTFish
+ * node are are the problematic ones in EXACTFL nodes */
+ if (OP(node) == EXACTFL && is_PROBLEMATIC_LOCALE_FOLDEDS_START_cp(uc)) {
+ /* We need to check for the possibility that this EXACTFL
+ * node begins with a multi-char fold. Therefore we fold
+ * the first few characters of it so that we can make that
+ * check */
+ U8 *d = folded;
+ int i;
+
+ for (i = 0; i < UTF8_MAX_FOLD_CHAR_EXPAND && s < e; i++) {
+ if (isASCII(*s)) {
+ *(d++) = (U8) toFOLD(*s);
+ s++;
+ }
+ else {
+ STRLEN len;
+ to_utf8_fold(s, d, &len);
+ d += len;
+ s += UTF8SKIP(s);
+ }
+ }
+
+ /* And set up so the code below that looks in this folded
+ * buffer instead of the node's string */
+ e = d;
+ foldlen = UTF8SKIP(folded);
+ s = folded;
+ }
+
+ /* When we reach here 's' points to the fold of the first
+ * character(s) of the node; and 'e' points to far enough along
+ * the folded string to be just past any possible multi-char
+ * fold. 'foldlen' is the length in bytes of the first
+ * character in 's'
+ *
+ * Unlike the non-UTF-8 case, the macro for determining if a
+ * string is a multi-char fold requires all the characters to
+ * already be folded. This is because of all the complications
+ * if not. Note that they are folded anyway, except in EXACTFL
+ * nodes. Like the non-UTF case above, we punt if the node
+ * begins with a multi-char fold */
+
+ if (is_MULTI_CHAR_FOLD_utf8_safe(s, e)) {
+ invlist = _add_range_to_invlist(invlist, 0, UV_MAX);
+ }
+ else { /* Single char fold */
+
+ /* It matches all the things that fold to it, which are
+ * found in PL_utf8_foldclosures (including itself) */
+ invlist = add_cp_to_invlist(invlist, uc);
+ if (! PL_utf8_foldclosures)
+ _load_PL_utf8_foldclosures();
+ if ((listp = hv_fetch(PL_utf8_foldclosures,
+ (char *) s, foldlen, FALSE)))
+ {
+ AV* list = (AV*) *listp;
+ IV k;
+ for (k = 0; k <= av_tindex(list); k++) {
+ SV** c_p = av_fetch(list, k, FALSE);
+ UV c;
+ assert(c_p);
+
+ c = SvUV(*c_p);
+
+ /* /aa doesn't allow folds between ASCII and non- */
+ if ((OP(node) == EXACTFA || OP(node) == EXACTFA_NO_TRIE)
+ && isASCII(c) != isASCII(uc))
+ {
+ continue;
+ }
+
+ invlist = add_cp_to_invlist(invlist, c);
+ }
+ }
+ }
+ }
+
+ return invlist;
+}
+
+#undef HEADER_LENGTH
+#undef TO_INTERNAL_SIZE
+#undef FROM_INTERNAL_SIZE
+#undef INVLIST_VERSION_ID
+
+/* End of inversion list object */
+
+STATIC void
+S_parse_lparen_question_flags(pTHX_ RExC_state_t *pRExC_state)
+{
+ /* This parses the flags that are in either the '(?foo)' or '(?foo:bar)'
+ * constructs, and updates RExC_flags with them. On input, RExC_parse
+ * should point to the first flag; it is updated on output to point to the
+ * final ')' or ':'. There needs to be at least one flag, or this will
+ * abort */
+
+ /* for (?g), (?gc), and (?o) warnings; warning
+ about (?c) will warn about (?g) -- japhy */
+
+#define WASTED_O 0x01
+#define WASTED_G 0x02
+#define WASTED_C 0x04
+#define WASTED_GC (WASTED_G|WASTED_C)
+ I32 wastedflags = 0x00;
+ U32 posflags = 0, negflags = 0;
+ U32 *flagsp = &posflags;
+ char has_charset_modifier = '\0';
+ regex_charset cs;
+ bool has_use_defaults = FALSE;
+ const char* const seqstart = RExC_parse - 1; /* Point to the '?' */
+ int x_mod_count = 0;
+
+ PERL_ARGS_ASSERT_PARSE_LPAREN_QUESTION_FLAGS;
+
+ /* '^' as an initial flag sets certain defaults */
+ if (UCHARAT(RExC_parse) == '^') {
+ RExC_parse++;
+ has_use_defaults = TRUE;
+ STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
+ set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
+ ? REGEX_UNICODE_CHARSET
+ : REGEX_DEPENDS_CHARSET);
+ }
+
+ cs = get_regex_charset(RExC_flags);
+ if (cs == REGEX_DEPENDS_CHARSET
+ && (RExC_utf8 || RExC_uni_semantics))
+ {
+ cs = REGEX_UNICODE_CHARSET;
+ }
+
+ while (*RExC_parse) {
+ /* && strchr("iogcmsx", *RExC_parse) */
+ /* (?g), (?gc) and (?o) are useless here
+ and must be globally applied -- japhy */
+ switch (*RExC_parse) {
+
+ /* Code for the imsxn flags */
+ CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp, x_mod_count);
+
+ case LOCALE_PAT_MOD:
+ if (has_charset_modifier) {
+ goto excess_modifier;
+ }
+ else if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ cs = REGEX_LOCALE_CHARSET;
+ has_charset_modifier = LOCALE_PAT_MOD;
+ break;
+ case UNICODE_PAT_MOD:
+ if (has_charset_modifier) {
+ goto excess_modifier;
+ }
+ else if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ cs = REGEX_UNICODE_CHARSET;
+ has_charset_modifier = UNICODE_PAT_MOD;
+ break;
+ case ASCII_RESTRICT_PAT_MOD:
+ if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ if (has_charset_modifier) {
+ if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
+ goto excess_modifier;
+ }
+ /* Doubled modifier implies more restricted */
+ cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
+ }
+ else {
+ cs = REGEX_ASCII_RESTRICTED_CHARSET;
+ }
+ has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
+ break;
+ case DEPENDS_PAT_MOD:
+ if (has_use_defaults) {
+ goto fail_modifiers;
+ }
+ else if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ else if (has_charset_modifier) {
+ goto excess_modifier;
+ }
+
+ /* The dual charset means unicode semantics if the
+ * pattern (or target, not known until runtime) are
+ * utf8, or something in the pattern indicates unicode
+ * semantics */
+ cs = (RExC_utf8 || RExC_uni_semantics)
+ ? REGEX_UNICODE_CHARSET
+ : REGEX_DEPENDS_CHARSET;
+ has_charset_modifier = DEPENDS_PAT_MOD;
+ break;
+ excess_modifier:
+ RExC_parse++;
+ if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
+ vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
+ }
+ else if (has_charset_modifier == *(RExC_parse - 1)) {
+ vFAIL2("Regexp modifier \"%c\" may not appear twice",
+ *(RExC_parse - 1));
+ }
+ else {
+ vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
+ }
+ NOT_REACHED; /*NOTREACHED*/
+ neg_modifier:
+ RExC_parse++;
+ vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"",
+ *(RExC_parse - 1));
+ NOT_REACHED; /*NOTREACHED*/
+ case ONCE_PAT_MOD: /* 'o' */
+ case GLOBAL_PAT_MOD: /* 'g' */
+ if (PASS2 && ckWARN(WARN_REGEXP)) {
+ const I32 wflagbit = *RExC_parse == 'o'
+ ? WASTED_O
+ : WASTED_G;
+ if (! (wastedflags & wflagbit) ) {
+ wastedflags |= wflagbit;
+ /* diag_listed_as: Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/ */
+ vWARN5(
+ RExC_parse + 1,
+ "Useless (%s%c) - %suse /%c modifier",
+ flagsp == &negflags ? "?-" : "?",
+ *RExC_parse,
+ flagsp == &negflags ? "don't " : "",
+ *RExC_parse
+ );
+ }
+ }
+ break;
+
+ case CONTINUE_PAT_MOD: /* 'c' */
+ if (PASS2 && ckWARN(WARN_REGEXP)) {
+ if (! (wastedflags & WASTED_C) ) {
+ wastedflags |= WASTED_GC;
+ /* diag_listed_as: Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/ */
+ vWARN3(
+ RExC_parse + 1,
+ "Useless (%sc) - %suse /gc modifier",
+ flagsp == &negflags ? "?-" : "?",
+ flagsp == &negflags ? "don't " : ""
+ );
+ }
+ }
+ break;
+ case KEEPCOPY_PAT_MOD: /* 'p' */
+ if (flagsp == &negflags) {
+ if (PASS2)
+ ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
+ } else {
+ *flagsp |= RXf_PMf_KEEPCOPY;
+ }
+ break;
+ case '-':
+ /* A flag is a default iff it is following a minus, so
+ * if there is a minus, it means will be trying to
+ * re-specify a default which is an error */
+ if (has_use_defaults || flagsp == &negflags) {
+ goto fail_modifiers;
+ }
+ flagsp = &negflags;
+ wastedflags = 0; /* reset so (?g-c) warns twice */
+ break;
+ case ':':
+ case ')':
+ RExC_flags |= posflags;
+ RExC_flags &= ~negflags;
+ set_regex_charset(&RExC_flags, cs);
+ if (RExC_flags & RXf_PMf_FOLD) {
+ RExC_contains_i = 1;
+ }
+ if (PASS2) {
+ STD_PMMOD_FLAGS_PARSE_X_WARN(x_mod_count);
+ }
+ return;
+ /*NOTREACHED*/
+ default:
+ fail_modifiers:
+ RExC_parse += SKIP_IF_CHAR(RExC_parse);
+ /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
+ vFAIL2utf8f("Sequence (%"UTF8f"...) not recognized",
+ UTF8fARG(UTF, RExC_parse-seqstart, seqstart));
+ NOT_REACHED; /*NOTREACHED*/
+ }
+
+ ++RExC_parse;
+ }
+
+ if (PASS2) {
+ STD_PMMOD_FLAGS_PARSE_X_WARN(x_mod_count);
+ }
+}
+
+/*
+ - reg - regular expression, i.e. main body or parenthesized thing
+ *
+ * Caller must absorb opening parenthesis.
+ *
+ * Combining parenthesis handling with the base level of regular expression
+ * is a trifle forced, but the need to tie the tails of the branches to what
+ * follows makes it hard to avoid.
+ */
+#define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
+#ifdef DEBUGGING
+#define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
+#else
+#define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
+#endif
+
+/* Returns NULL, setting *flagp to TRYAGAIN at the end of (?) that only sets
+ flags. Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan
+ needs to be restarted.
+ Otherwise would only return NULL if regbranch() returns NULL, which
+ cannot happen. */
+STATIC regnode *
+S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
+ /* paren: Parenthesized? 0=top; 1,2=inside '(': changed to letter.
+ * 2 is like 1, but indicates that nextchar() has been called to advance
+ * RExC_parse beyond the '('. Things like '(?' are indivisible tokens, and
+ * this flag alerts us to the need to check for that */
+{
+ regnode *ret; /* Will be the head of the group. */
+ regnode *br;
+ regnode *lastbr;
+ regnode *ender = NULL;
+ I32 parno = 0;
+ I32 flags;
+ U32 oregflags = RExC_flags;
+ bool have_branch = 0;
+ bool is_open = 0;
+ I32 freeze_paren = 0;
+ I32 after_freeze = 0;
+ I32 num; /* numeric backreferences */
+
+ char * parse_start = RExC_parse; /* MJD */
+ char * const oregcomp_parse = RExC_parse;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG;
+ DEBUG_PARSE("reg ");
+
+ *flagp = 0; /* Tentatively. */
+
+
+ /* Make an OPEN node, if parenthesized. */
+ if (paren) {
+
+ /* Under /x, space and comments can be gobbled up between the '(' and
+ * here (if paren ==2). The forms '(*VERB' and '(?...' disallow such
+ * intervening space, as the sequence is a token, and a token should be
+ * indivisible */
+ bool has_intervening_patws = paren == 2 && *(RExC_parse - 1) != '(';
+
+ if ( *RExC_parse == '*') { /* (*VERB:ARG) */
+ char *start_verb = RExC_parse;
+ STRLEN verb_len = 0;
+ char *start_arg = NULL;
+ unsigned char op = 0;
+ int argok = 1;
+ int internal_argval = 0; /* internal_argval is only useful if
+ !argok */
+
+ if (has_intervening_patws) {
+ RExC_parse++;
+ vFAIL("In '(*VERB...)', the '(' and '*' must be adjacent");
+ }
+ while ( *RExC_parse && *RExC_parse != ')' ) {
+ if ( *RExC_parse == ':' ) {
+ start_arg = RExC_parse + 1;
+ break;
+ }
+ RExC_parse++;
+ }
+ ++start_verb;
+ verb_len = RExC_parse - start_verb;
+ if ( start_arg ) {
+ RExC_parse++;
+ while ( *RExC_parse && *RExC_parse != ')' )
+ RExC_parse++;
+ if ( *RExC_parse != ')' )
+ vFAIL("Unterminated verb pattern argument");
+ if ( RExC_parse == start_arg )
+ start_arg = NULL;
+ } else {
+ if ( *RExC_parse != ')' )
+ vFAIL("Unterminated verb pattern");
+ }
+
+ switch ( *start_verb ) {
+ case 'A': /* (*ACCEPT) */
+ if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
+ op = ACCEPT;
+ internal_argval = RExC_nestroot;
+ }
+ break;
+ case 'C': /* (*COMMIT) */
+ if ( memEQs(start_verb,verb_len,"COMMIT") )
+ op = COMMIT;
+ break;
+ case 'F': /* (*FAIL) */
+ if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
+ op = OPFAIL;
+ argok = 0;
+ }
+ break;
+ case ':': /* (*:NAME) */
+ case 'M': /* (*MARK:NAME) */
+ if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
+ op = MARKPOINT;
+ argok = -1;
+ }
+ break;
+ case 'P': /* (*PRUNE) */
+ if ( memEQs(start_verb,verb_len,"PRUNE") )
+ op = PRUNE;
+ break;
+ case 'S': /* (*SKIP) */
+ if ( memEQs(start_verb,verb_len,"SKIP") )
+ op = SKIP;
+ break;
+ case 'T': /* (*THEN) */
+ /* [19:06] <TimToady> :: is then */
+ if ( memEQs(start_verb,verb_len,"THEN") ) {
+ op = CUTGROUP;
+ RExC_seen |= REG_CUTGROUP_SEEN;
+ }
+ break;
+ }
+ if ( ! op ) {
+ RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
+ vFAIL2utf8f(
+ "Unknown verb pattern '%"UTF8f"'",
+ UTF8fARG(UTF, verb_len, start_verb));
+ }
+ if ( argok ) {
+ if ( start_arg && internal_argval ) {
+ vFAIL3("Verb pattern '%.*s' may not have an argument",
+ verb_len, start_verb);
+ } else if ( argok < 0 && !start_arg ) {
+ vFAIL3("Verb pattern '%.*s' has a mandatory argument",
+ verb_len, start_verb);
+ } else {
+ ret = reganode(pRExC_state, op, internal_argval);
+ if ( ! internal_argval && ! SIZE_ONLY ) {
+ if (start_arg) {
+ SV *sv = newSVpvn( start_arg,
+ RExC_parse - start_arg);
+ ARG(ret) = add_data( pRExC_state,
+ STR_WITH_LEN("S"));
+ RExC_rxi->data->data[ARG(ret)]=(void*)sv;
+ ret->flags = 0;
+ } else {
+ ret->flags = 1;
+ }
+ }
+ }
+ if (!internal_argval)
+ RExC_seen |= REG_VERBARG_SEEN;
+ } else if ( start_arg ) {
+ vFAIL3("Verb pattern '%.*s' may not have an argument",
+ verb_len, start_verb);
+ } else {
+ ret = reg_node(pRExC_state, op);
+ }
+ nextchar(pRExC_state);
+ return ret;
+ }
+ else if (*RExC_parse == '?') { /* (?...) */
+ bool is_logical = 0;
+ const char * const seqstart = RExC_parse;
+ const char * endptr;
+ if (has_intervening_patws) {
+ RExC_parse++;
+ vFAIL("In '(?...)', the '(' and '?' must be adjacent");
+ }
+
+ RExC_parse++;
+ paren = *RExC_parse++;
+ ret = NULL; /* For look-ahead/behind. */
+ switch (paren) {
+
+ case 'P': /* (?P...) variants for those used to PCRE/Python */
+ paren = *RExC_parse++;
+ if ( paren == '<') /* (?P<...>) named capture */
+ goto named_capture;
+ else if (paren == '>') { /* (?P>name) named recursion */
+ goto named_recursion;
+ }
+ else if (paren == '=') { /* (?P=...) named backref */
+ /* this pretty much dupes the code for \k<NAME> in
+ * regatom(), if you change this make sure you change that
+ * */
+ char* name_start = RExC_parse;
+ U32 num = 0;
+ SV *sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ if (RExC_parse == name_start || *RExC_parse != ')')
+ /* diag_listed_as: Sequence ?P=... not terminated in regex; marked by <-- HERE in m/%s/ */
+ vFAIL2("Sequence %.3s... not terminated",parse_start);
+
+ if (!SIZE_ONLY) {
+ num = add_data( pRExC_state, STR_WITH_LEN("S"));
+ RExC_rxi->data->data[num]=(void*)sv_dat;
+ SvREFCNT_inc_simple_void(sv_dat);
+ }
+ RExC_sawback = 1;
+ ret = reganode(pRExC_state,
+ ((! FOLD)
+ ? NREF
+ : (ASCII_FOLD_RESTRICTED)
+ ? NREFFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? NREFFU
+ : (LOC)
+ ? NREFFL
+ : NREFF),
+ num);
+ *flagp |= HASWIDTH;
+
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Cur_Length(ret, parse_start);
+
+ nextchar(pRExC_state);
+ return ret;
+ }
+ --RExC_parse;
+ RExC_parse += SKIP_IF_CHAR(RExC_parse);
+ /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
+ vFAIL3("Sequence (%.*s...) not recognized",
+ RExC_parse-seqstart, seqstart);
+ NOT_REACHED; /*NOTREACHED*/
+ case '<': /* (?<...) */
+ if (*RExC_parse == '!')
+ paren = ',';
+ else if (*RExC_parse != '=')
+ named_capture:
+ { /* (?<...>) */
+ char *name_start;
+ SV *svname;
+ paren= '>';
+ case '\'': /* (?'...') */
+ name_start= RExC_parse;
+ svname = reg_scan_name(pRExC_state,
+ SIZE_ONLY /* reverse test from the others */
+ ? REG_RSN_RETURN_NAME
+ : REG_RSN_RETURN_NULL);
+ if (RExC_parse == name_start || *RExC_parse != paren)
+ vFAIL2("Sequence (?%c... not terminated",
+ paren=='>' ? '<' : paren);
+ if (SIZE_ONLY) {
+ HE *he_str;
+ SV *sv_dat = NULL;
+ if (!svname) /* shouldn't happen */
+ Perl_croak(aTHX_
+ "panic: reg_scan_name returned NULL");
+ if (!RExC_paren_names) {
+ RExC_paren_names= newHV();
+ sv_2mortal(MUTABLE_SV(RExC_paren_names));
+#ifdef DEBUGGING
+ RExC_paren_name_list= newAV();
+ sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
+#endif
+ }
+ he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
+ if ( he_str )
+ sv_dat = HeVAL(he_str);
+ if ( ! sv_dat ) {
+ /* croak baby croak */
+ Perl_croak(aTHX_
+ "panic: paren_name hash element allocation failed");
+ } else if ( SvPOK(sv_dat) ) {
+ /* (?|...) can mean we have dupes so scan to check
+ its already been stored. Maybe a flag indicating
+ we are inside such a construct would be useful,
+ but the arrays are likely to be quite small, so
+ for now we punt -- dmq */
+ IV count = SvIV(sv_dat);
+ I32 *pv = (I32*)SvPVX(sv_dat);
+ IV i;
+ for ( i = 0 ; i < count ; i++ ) {
+ if ( pv[i] == RExC_npar ) {
+ count = 0;
+ break;
+ }
+ }
+ if ( count ) {
+ pv = (I32*)SvGROW(sv_dat,
+ SvCUR(sv_dat) + sizeof(I32)+1);
+ SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
+ pv[count] = RExC_npar;
+ SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
+ }
+ } else {
+ (void)SvUPGRADE(sv_dat,SVt_PVNV);
+ sv_setpvn(sv_dat, (char *)&(RExC_npar),
+ sizeof(I32));
+ SvIOK_on(sv_dat);
+ SvIV_set(sv_dat, 1);
+ }
+#ifdef DEBUGGING
+ /* Yes this does cause a memory leak in debugging Perls
+ * */
+ if (!av_store(RExC_paren_name_list,
+ RExC_npar, SvREFCNT_inc(svname)))
+ SvREFCNT_dec_NN(svname);
+#endif
+
+ /*sv_dump(sv_dat);*/
+ }
+ nextchar(pRExC_state);
+ paren = 1;
+ goto capturing_parens;
+ }
+ RExC_seen |= REG_LOOKBEHIND_SEEN;
+ RExC_in_lookbehind++;
+ RExC_parse++;
+ /* FALLTHROUGH */
+ case '=': /* (?=...) */
+ RExC_seen_zerolen++;
+ break;
+ case '!': /* (?!...) */
+ RExC_seen_zerolen++;
+ /* check if we're really just a "FAIL" assertion */
+ --RExC_parse;
+ nextchar(pRExC_state);
+ if (*RExC_parse == ')') {
+ ret=reg_node(pRExC_state, OPFAIL);
+ nextchar(pRExC_state);
+ return ret;
+ }
+ break;
+ case '|': /* (?|...) */
+ /* branch reset, behave like a (?:...) except that
+ buffers in alternations share the same numbers */
+ paren = ':';
+ after_freeze = freeze_paren = RExC_npar;
+ break;
+ case ':': /* (?:...) */
+ case '>': /* (?>...) */
+ break;
+ case '$': /* (?$...) */
+ case '@': /* (?@...) */
+ vFAIL2("Sequence (?%c...) not implemented", (int)paren);
+ break;
+ case '0' : /* (?0) */
+ case 'R' : /* (?R) */
+ if (*RExC_parse != ')')
+ FAIL("Sequence (?R) not terminated");
+ ret = reg_node(pRExC_state, GOSTART);
+ RExC_seen |= REG_GOSTART_SEEN;
+ *flagp |= POSTPONED;
+ nextchar(pRExC_state);
+ return ret;
+ /*notreached*/
+ /* named and numeric backreferences */
+ case '&': /* (?&NAME) */
+ parse_start = RExC_parse - 1;
+ named_recursion:
+ {
+ SV *sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
+ }
+ if (RExC_parse == RExC_end || *RExC_parse != ')')
+ vFAIL("Sequence (?&... not terminated");
+ goto gen_recurse_regop;
+ /* NOTREACHED */
+ case '+':
+ if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
+ RExC_parse++;
+ vFAIL("Illegal pattern");
+ }
+ goto parse_recursion;
+ /* NOTREACHED*/
+ case '-': /* (?-1) */
+ if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
+ RExC_parse--; /* rewind to let it be handled later */
+ goto parse_flags;
+ }
+ /* FALLTHROUGH */
+ case '1': case '2': case '3': case '4': /* (?1) */
+ case '5': case '6': case '7': case '8': case '9':
+ RExC_parse--;
+ parse_recursion:
+ {
+ bool is_neg = FALSE;
+ UV unum;
+ parse_start = RExC_parse - 1; /* MJD */
+ if (*RExC_parse == '-') {
+ RExC_parse++;
+ is_neg = TRUE;
+ }
+ if (grok_atoUV(RExC_parse, &unum, &endptr)
+ && unum <= I32_MAX
+ ) {
+ num = (I32)unum;
+ RExC_parse = (char*)endptr;
+ } else
+ num = I32_MAX;
+ if (is_neg) {
+ /* Some limit for num? */
+ num = -num;
+ }
+ }
+ if (*RExC_parse!=')')
+ vFAIL("Expecting close bracket");
+
+ gen_recurse_regop:
+ if ( paren == '-' ) {
+ /*
+ Diagram of capture buffer numbering.
+ Top line is the normal capture buffer numbers
+ Bottom line is the negative indexing as from
+ the X (the (?-2))
+
+ + 1 2 3 4 5 X 6 7
+ /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
+ - 5 4 3 2 1 X x x
+
+ */
+ num = RExC_npar + num;
+ if (num < 1) {
+ RExC_parse++;
+ vFAIL("Reference to nonexistent group");
+ }
+ } else if ( paren == '+' ) {
+ num = RExC_npar + num - 1;
+ }
+
+ ret = reg2Lanode(pRExC_state, GOSUB, num, RExC_recurse_count);
+ if (!SIZE_ONLY) {
+ if (num > (I32)RExC_rx->nparens) {
+ RExC_parse++;
+ vFAIL("Reference to nonexistent group");
+ }
+ RExC_recurse_count++;
+ DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+ "%*s%*s Recurse #%"UVuf" to %"IVdf"\n",
+ 22, "| |", (int)(depth * 2 + 1), "",
+ (UV)ARG(ret), (IV)ARG2L(ret)));
+ }
+ RExC_seen |= REG_RECURSE_SEEN;
+ Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
+ Set_Node_Offset(ret, parse_start); /* MJD */
+
+ *flagp |= POSTPONED;
+ nextchar(pRExC_state);
+ return ret;
+
+ /* NOTREACHED */
+
+ case '?': /* (??...) */
+ is_logical = 1;
+ if (*RExC_parse != '{') {
+ RExC_parse += SKIP_IF_CHAR(RExC_parse);
+ /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
+ vFAIL2utf8f(
+ "Sequence (%"UTF8f"...) not recognized",
+ UTF8fARG(UTF, RExC_parse-seqstart, seqstart));
+ NOT_REACHED; /*NOTREACHED*/
+ }
+ *flagp |= POSTPONED;
+ paren = *RExC_parse++;
+ /* FALLTHROUGH */
+ case '{': /* (?{...}) */
+ {
+ U32 n = 0;
+ struct reg_code_block *cb;
+
+ RExC_seen_zerolen++;
+
+ if ( !pRExC_state->num_code_blocks
+ || pRExC_state->code_index >= pRExC_state->num_code_blocks
+ || pRExC_state->code_blocks[pRExC_state->code_index].start
+ != (STRLEN)((RExC_parse -3 - (is_logical ? 1 : 0))
+ - RExC_start)
+ ) {
+ if (RExC_pm_flags & PMf_USE_RE_EVAL)
+ FAIL("panic: Sequence (?{...}): no code block found\n");
+ FAIL("Eval-group not allowed at runtime, use re 'eval'");
+ }
+ /* this is a pre-compiled code block (?{...}) */
+ cb = &pRExC_state->code_blocks[pRExC_state->code_index];
+ RExC_parse = RExC_start + cb->end;
+ if (!SIZE_ONLY) {
+ OP *o = cb->block;
+ if (cb->src_regex) {
+ n = add_data(pRExC_state, STR_WITH_LEN("rl"));
+ RExC_rxi->data->data[n] =
+ (void*)SvREFCNT_inc((SV*)cb->src_regex);
+ RExC_rxi->data->data[n+1] = (void*)o;
+ }
+ else {
+ n = add_data(pRExC_state,
+ (RExC_pm_flags & PMf_HAS_CV) ? "L" : "l", 1);
+ RExC_rxi->data->data[n] = (void*)o;
+ }
+ }
+ pRExC_state->code_index++;
+ nextchar(pRExC_state);
+
+ if (is_logical) {
+ regnode *eval;
+ ret = reg_node(pRExC_state, LOGICAL);
+
+ eval = reg2Lanode(pRExC_state, EVAL,
+ n,
+
+ /* for later propagation into (??{})
+ * return value */
+ RExC_flags & RXf_PMf_COMPILETIME
+ );
+ if (!SIZE_ONLY) {
+ ret->flags = 2;
+ }
+ REGTAIL(pRExC_state, ret, eval);
+ /* deal with the length of this later - MJD */
+ return ret;
+ }
+ ret = reg2Lanode(pRExC_state, EVAL, n, 0);
+ Set_Node_Length(ret, RExC_parse - parse_start + 1);
+ Set_Node_Offset(ret, parse_start);
+ return ret;
+ }
+ case '(': /* (?(?{...})...) and (?(?=...)...) */
+ {
+ int is_define= 0;
+ const int DEFINE_len = sizeof("DEFINE") - 1;
+ if (RExC_parse[0] == '?') { /* (?(?...)) */
+ if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
+ || RExC_parse[1] == '<'
+ || RExC_parse[1] == '{') { /* Lookahead or eval. */
+ I32 flag;
+ regnode *tail;
+
+ ret = reg_node(pRExC_state, LOGICAL);
+ if (!SIZE_ONLY)
+ ret->flags = 1;
+
+ tail = reg(pRExC_state, 1, &flag, depth+1);
+ if (flag & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ REGTAIL(pRExC_state, ret, tail);
+ goto insert_if;
+ }
+ /* Fall through to ‘Unknown switch condition’ at the
+ end of the if/else chain. */
+ }
+ else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */
+ || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
+ {
+ char ch = RExC_parse[0] == '<' ? '>' : '\'';
+ char *name_start= RExC_parse++;
+ U32 num = 0;
+ SV *sv_dat=reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ if (RExC_parse == name_start || *RExC_parse != ch)
+ vFAIL2("Sequence (?(%c... not terminated",
+ (ch == '>' ? '<' : ch));
+ RExC_parse++;
+ if (!SIZE_ONLY) {
+ num = add_data( pRExC_state, STR_WITH_LEN("S"));
+ RExC_rxi->data->data[num]=(void*)sv_dat;
+ SvREFCNT_inc_simple_void(sv_dat);
+ }
+ ret = reganode(pRExC_state,NGROUPP,num);
+ goto insert_if_check_paren;
+ }
+ else if (RExC_end - RExC_parse >= DEFINE_len
+ && strnEQ(RExC_parse, "DEFINE", DEFINE_len))
+ {
+ ret = reganode(pRExC_state,DEFINEP,0);
+ RExC_parse += DEFINE_len;
+ is_define = 1;
+ goto insert_if_check_paren;
+ }
+ else if (RExC_parse[0] == 'R') {
+ RExC_parse++;
+ parno = 0;
+ if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
+ UV uv;
+ if (grok_atoUV(RExC_parse, &uv, &endptr)
+ && uv <= I32_MAX
+ ) {
+ parno = (I32)uv;
+ RExC_parse = (char*)endptr;
+ }
+ /* else "Switch condition not recognized" below */
+ } else if (RExC_parse[0] == '&') {
+ SV *sv_dat;
+ RExC_parse++;
+ sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY
+ ? REG_RSN_RETURN_NULL
+ : REG_RSN_RETURN_DATA);
+ parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
+ }
+ ret = reganode(pRExC_state,INSUBP,parno);
+ goto insert_if_check_paren;
+ }
+ else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
+ /* (?(1)...) */
+ char c;
+ char *tmp;
+ UV uv;
+ if (grok_atoUV(RExC_parse, &uv, &endptr)
+ && uv <= I32_MAX
+ ) {
+ parno = (I32)uv;
+ RExC_parse = (char*)endptr;
+ }
+ /* XXX else what? */
+ ret = reganode(pRExC_state, GROUPP, parno);
+
+ insert_if_check_paren:
+ if (*(tmp = nextchar(pRExC_state)) != ')') {
+ /* nextchar also skips comments, so undo its work
+ * and skip over the the next character.
+ */
+ RExC_parse = tmp;
+ RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
+ vFAIL("Switch condition not recognized");
+ }
+ insert_if:
+ REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
+ br = regbranch(pRExC_state, &flags, 1,depth+1);
+ if (br == NULL) {
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"",
+ (UV) flags);
+ } else
+ REGTAIL(pRExC_state, br, reganode(pRExC_state,
+ LONGJMP, 0));
+ c = *nextchar(pRExC_state);
+ if (flags&HASWIDTH)
+ *flagp |= HASWIDTH;
+ if (c == '|') {
+ if (is_define)
+ vFAIL("(?(DEFINE)....) does not allow branches");
+
+ /* Fake one for optimizer. */
+ lastbr = reganode(pRExC_state, IFTHEN, 0);
+
+ if (!regbranch(pRExC_state, &flags, 1,depth+1)) {
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"",
+ (UV) flags);
+ }
+ REGTAIL(pRExC_state, ret, lastbr);
+ if (flags&HASWIDTH)
+ *flagp |= HASWIDTH;
+ c = *nextchar(pRExC_state);
+ }
+ else
+ lastbr = NULL;
+ if (c != ')') {
+ if (RExC_parse>RExC_end)
+ vFAIL("Switch (?(condition)... not terminated");
+ else
+ vFAIL("Switch (?(condition)... contains too many branches");
+ }
+ ender = reg_node(pRExC_state, TAIL);
+ REGTAIL(pRExC_state, br, ender);
+ if (lastbr) {
+ REGTAIL(pRExC_state, lastbr, ender);
+ REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
+ }
+ else
+ REGTAIL(pRExC_state, ret, ender);
+ RExC_size++; /* XXX WHY do we need this?!!
+ For large programs it seems to be required
+ but I can't figure out why. -- dmq*/
+ return ret;
+ }
+ RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
+ vFAIL("Unknown switch condition (?(...))");
+ }
+ case '[': /* (?[ ... ]) */
+ return handle_regex_sets(pRExC_state, NULL, flagp, depth,
+ oregcomp_parse);
+ case 0:
+ RExC_parse--; /* for vFAIL to print correctly */
+ vFAIL("Sequence (? incomplete");
+ break;
+ default: /* e.g., (?i) */
+ --RExC_parse;
+ parse_flags:
+ parse_lparen_question_flags(pRExC_state);
+ if (UCHARAT(RExC_parse) != ':') {
+ if (*RExC_parse)
+ nextchar(pRExC_state);
+ *flagp = TRYAGAIN;
+ return NULL;
+ }
+ paren = ':';
+ nextchar(pRExC_state);
+ ret = NULL;
+ goto parse_rest;
+ } /* end switch */
+ }
+ else if (!(RExC_flags & RXf_PMf_NOCAPTURE)) { /* (...) */
+ capturing_parens:
+ parno = RExC_npar;
+ RExC_npar++;
+
+ ret = reganode(pRExC_state, OPEN, parno);
+ if (!SIZE_ONLY ){
+ if (!RExC_nestroot)
+ RExC_nestroot = parno;
+ if (RExC_seen & REG_RECURSE_SEEN
+ && !RExC_open_parens[parno-1])
+ {
+ DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+ "%*s%*s Setting open paren #%"IVdf" to %d\n",
+ 22, "| |", (int)(depth * 2 + 1), "",
+ (IV)parno, REG_NODE_NUM(ret)));
+ RExC_open_parens[parno-1]= ret;
+ }
+ }
+ Set_Node_Length(ret, 1); /* MJD */
+ Set_Node_Offset(ret, RExC_parse); /* MJD */
+ is_open = 1;
+ } else {
+ /* with RXf_PMf_NOCAPTURE treat (...) as (?:...) */
+ paren = ':';
+ ret = NULL;
+ }
+ }
+ else /* ! paren */
+ ret = NULL;
+
+ parse_rest:
+ /* Pick up the branches, linking them together. */
+ parse_start = RExC_parse; /* MJD */
+ br = regbranch(pRExC_state, &flags, 1,depth+1);
+
+ /* branch_len = (paren != 0); */
+
+ if (br == NULL) {
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"", (UV) flags);
+ }
+ if (*RExC_parse == '|') {
+ if (!SIZE_ONLY && RExC_extralen) {
+ reginsert(pRExC_state, BRANCHJ, br, depth+1);
+ }
+ else { /* MJD */
+ reginsert(pRExC_state, BRANCH, br, depth+1);
+ Set_Node_Length(br, paren != 0);
+ Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
+ }
+ have_branch = 1;
+ if (SIZE_ONLY)
+ RExC_extralen += 1; /* For BRANCHJ-BRANCH. */
+ }
+ else if (paren == ':') {
+ *flagp |= flags&SIMPLE;
+ }
+ if (is_open) { /* Starts with OPEN. */
+ REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */
+ }
+ else if (paren != '?') /* Not Conditional */
+ ret = br;
+ *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
+ lastbr = br;
+ while (*RExC_parse == '|') {
+ if (!SIZE_ONLY && RExC_extralen) {
+ ender = reganode(pRExC_state, LONGJMP,0);
+
+ /* Append to the previous. */
+ REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
+ }
+ if (SIZE_ONLY)
+ RExC_extralen += 2; /* Account for LONGJMP. */
+ nextchar(pRExC_state);
+ if (freeze_paren) {
+ if (RExC_npar > after_freeze)
+ after_freeze = RExC_npar;
+ RExC_npar = freeze_paren;
+ }
+ br = regbranch(pRExC_state, &flags, 0, depth+1);
+
+ if (br == NULL) {
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"", (UV) flags);
+ }
+ REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */
+ lastbr = br;
+ *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
+ }
+
+ if (have_branch || paren != ':') {
+ /* Make a closing node, and hook it on the end. */
+ switch (paren) {
+ case ':':
+ ender = reg_node(pRExC_state, TAIL);
+ break;
+ case 1: case 2:
+ ender = reganode(pRExC_state, CLOSE, parno);
+ if (!SIZE_ONLY && RExC_seen & REG_RECURSE_SEEN) {
+ DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+ "%*s%*s Setting close paren #%"IVdf" to %d\n",
+ 22, "| |", (int)(depth * 2 + 1), "", (IV)parno, REG_NODE_NUM(ender)));
+ RExC_close_parens[parno-1]= ender;
+ if (RExC_nestroot == parno)
+ RExC_nestroot = 0;
+ }
+ Set_Node_Offset(ender,RExC_parse+1); /* MJD */
+ Set_Node_Length(ender,1); /* MJD */
+ break;
+ case '<':
+ case ',':
+ case '=':
+ case '!':
+ *flagp &= ~HASWIDTH;
+ /* FALLTHROUGH */
+ case '>':
+ ender = reg_node(pRExC_state, SUCCEED);
+ break;
+ case 0:
+ ender = reg_node(pRExC_state, END);
+ if (!SIZE_ONLY) {
+ assert(!RExC_opend); /* there can only be one! */
+ RExC_opend = ender;
+ }
+ break;
+ }
+ DEBUG_PARSE_r(if (!SIZE_ONLY) {
+ DEBUG_PARSE_MSG("lsbr");
+ regprop(RExC_rx, RExC_mysv1, lastbr, NULL, pRExC_state);
+ regprop(RExC_rx, RExC_mysv2, ender, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log, "~ tying lastbr %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
+ SvPV_nolen_const(RExC_mysv1),
+ (IV)REG_NODE_NUM(lastbr),
+ SvPV_nolen_const(RExC_mysv2),
+ (IV)REG_NODE_NUM(ender),
+ (IV)(ender - lastbr)
+ );
+ });
+ REGTAIL(pRExC_state, lastbr, ender);
+
+ if (have_branch && !SIZE_ONLY) {
+ char is_nothing= 1;
+ if (depth==1)
+ RExC_seen |= REG_TOP_LEVEL_BRANCHES_SEEN;
+
+ /* Hook the tails of the branches to the closing node. */
+ for (br = ret; br; br = regnext(br)) {
+ const U8 op = PL_regkind[OP(br)];
+ if (op == BRANCH) {
+ REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
+ if ( OP(NEXTOPER(br)) != NOTHING
+ || regnext(NEXTOPER(br)) != ender)
+ is_nothing= 0;
+ }
+ else if (op == BRANCHJ) {
+ REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
+ /* for now we always disable this optimisation * /
+ if ( OP(NEXTOPER(NEXTOPER(br))) != NOTHING
+ || regnext(NEXTOPER(NEXTOPER(br))) != ender)
+ */
+ is_nothing= 0;
+ }
+ }
+ if (is_nothing) {
+ br= PL_regkind[OP(ret)] != BRANCH ? regnext(ret) : ret;
+ DEBUG_PARSE_r(if (!SIZE_ONLY) {
+ DEBUG_PARSE_MSG("NADA");
+ regprop(RExC_rx, RExC_mysv1, ret, NULL, pRExC_state);
+ regprop(RExC_rx, RExC_mysv2, ender, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log, "~ converting ret %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
+ SvPV_nolen_const(RExC_mysv1),
+ (IV)REG_NODE_NUM(ret),
+ SvPV_nolen_const(RExC_mysv2),
+ (IV)REG_NODE_NUM(ender),
+ (IV)(ender - ret)
+ );
+ });
+ OP(br)= NOTHING;
+ if (OP(ender) == TAIL) {
+ NEXT_OFF(br)= 0;
+ RExC_emit= br + 1;
+ } else {
+ regnode *opt;
+ for ( opt= br + 1; opt < ender ; opt++ )
+ OP(opt)= OPTIMIZED;
+ NEXT_OFF(br)= ender - br;
+ }
+ }
+ }
+ }
+
+ {
+ const char *p;
+ static const char parens[] = "=!<,>";
+
+ if (paren && (p = strchr(parens, paren))) {
+ U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
+ int flag = (p - parens) > 1;
+
+ if (paren == '>')
+ node = SUSPEND, flag = 0;
+ reginsert(pRExC_state, node,ret, depth+1);
+ Set_Node_Cur_Length(ret, parse_start);
+ Set_Node_Offset(ret, parse_start + 1);
+ ret->flags = flag;
+ REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
+ }
+ }
+
+ /* Check for proper termination. */
+ if (paren) {
+ /* restore original flags, but keep (?p) */
+ RExC_flags = oregflags | (RExC_flags & RXf_PMf_KEEPCOPY);
+ if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
+ RExC_parse = oregcomp_parse;
+ vFAIL("Unmatched (");
+ }
+ }
+ else if (!paren && RExC_parse < RExC_end) {
+ if (*RExC_parse == ')') {
+ RExC_parse++;
+ vFAIL("Unmatched )");
+ }
+ else
+ FAIL("Junk on end of regexp"); /* "Can't happen". */
+ NOT_REACHED; /* NOTREACHED */
+ }
+
+ if (RExC_in_lookbehind) {
+ RExC_in_lookbehind--;
+ }
+ if (after_freeze > RExC_npar)
+ RExC_npar = after_freeze;
+ return(ret);
+}
+
+/*
+ - regbranch - one alternative of an | operator
+ *
+ * Implements the concatenation operator.
+ *
+ * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
+ * restarted.
+ */
+STATIC regnode *
+S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
+{
+ regnode *ret;
+ regnode *chain = NULL;
+ regnode *latest;
+ I32 flags = 0, c = 0;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGBRANCH;
+
+ DEBUG_PARSE("brnc");
+
+ if (first)
+ ret = NULL;
+ else {
+ if (!SIZE_ONLY && RExC_extralen)
+ ret = reganode(pRExC_state, BRANCHJ,0);
+ else {
+ ret = reg_node(pRExC_state, BRANCH);
+ Set_Node_Length(ret, 1);
+ }
+ }
+
+ if (!first && SIZE_ONLY)
+ RExC_extralen += 1; /* BRANCHJ */
+
+ *flagp = WORST; /* Tentatively. */
+
+ RExC_parse--;
+ nextchar(pRExC_state);
+ while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
+ flags &= ~TRYAGAIN;
+ latest = regpiece(pRExC_state, &flags,depth+1);
+ if (latest == NULL) {
+ if (flags & TRYAGAIN)
+ continue;
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ FAIL2("panic: regpiece returned NULL, flags=%#"UVxf"", (UV) flags);
+ }
+ else if (ret == NULL)
+ ret = latest;
+ *flagp |= flags&(HASWIDTH|POSTPONED);
+ if (chain == NULL) /* First piece. */
+ *flagp |= flags&SPSTART;
+ else {
+ /* FIXME adding one for every branch after the first is probably
+ * excessive now we have TRIE support. (hv) */
+ MARK_NAUGHTY(1);
+ REGTAIL(pRExC_state, chain, latest);
+ }
+ chain = latest;
+ c++;
+ }
+ if (chain == NULL) { /* Loop ran zero times. */
+ chain = reg_node(pRExC_state, NOTHING);
+ if (ret == NULL)
+ ret = chain;
+ }
+ if (c == 1) {
+ *flagp |= flags&SIMPLE;
+ }
+
+ return ret;
+}
+
+/*
+ - regpiece - something followed by possible [*+?]
+ *
+ * Note that the branching code sequences used for ? and the general cases
+ * of * and + are somewhat optimized: they use the same NOTHING node as
+ * both the endmarker for their branch list and the body of the last branch.
+ * It might seem that this node could be dispensed with entirely, but the
+ * endmarker role is not redundant.
+ *
+ * Returns NULL, setting *flagp to TRYAGAIN if regatom() returns NULL with
+ * TRYAGAIN.
+ * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
+ * restarted.
+ */
+STATIC regnode *
+S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
+{
+ regnode *ret;
+ char op;
+ char *next;
+ I32 flags;
+ const char * const origparse = RExC_parse;
+ I32 min;
+ I32 max = REG_INFTY;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ char *parse_start;
+#endif
+ const char *maxpos = NULL;
+ UV uv;
+
+ /* Save the original in case we change the emitted regop to a FAIL. */
+ regnode * const orig_emit = RExC_emit;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGPIECE;
+
+ DEBUG_PARSE("piec");
+
+ ret = regatom(pRExC_state, &flags,depth+1);
+ if (ret == NULL) {
+ if (flags & (TRYAGAIN|RESTART_UTF8))
+ *flagp |= flags & (TRYAGAIN|RESTART_UTF8);
+ else
+ FAIL2("panic: regatom returned NULL, flags=%#"UVxf"", (UV) flags);
+ return(NULL);
+ }
+
+ op = *RExC_parse;
+
+ if (op == '{' && regcurly(RExC_parse)) {
+ maxpos = NULL;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ parse_start = RExC_parse; /* MJD */
+#endif
+ next = RExC_parse + 1;
+ while (isDIGIT(*next) || *next == ',') {
+ if (*next == ',') {
+ if (maxpos)
+ break;
+ else
+ maxpos = next;
+ }
+ next++;
+ }
+ if (*next == '}') { /* got one */
+ const char* endptr;
+ if (!maxpos)
+ maxpos = next;
+ RExC_parse++;
+ if (isDIGIT(*RExC_parse)) {
+ if (!grok_atoUV(RExC_parse, &uv, &endptr))
+ vFAIL("Invalid quantifier in {,}");
+ if (uv >= REG_INFTY)
+ vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
+ min = (I32)uv;
+ } else {
+ min = 0;
+ }
+ if (*maxpos == ',')
+ maxpos++;
+ else
+ maxpos = RExC_parse;
+ if (isDIGIT(*maxpos)) {
+ if (!grok_atoUV(maxpos, &uv, &endptr))
+ vFAIL("Invalid quantifier in {,}");
+ if (uv >= REG_INFTY)
+ vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
+ max = (I32)uv;
+ } else {
+ max = REG_INFTY; /* meaning "infinity" */
+ }
+ RExC_parse = next;
+ nextchar(pRExC_state);
+ if (max < min) { /* If can't match, warn and optimize to fail
+ unconditionally */
+ if (SIZE_ONLY) {
+
+ /* We can't back off the size because we have to reserve
+ * enough space for all the things we are about to throw
+ * away, but we can shrink it by the ammount we are about
+ * to re-use here */
+ RExC_size = PREVOPER(RExC_size) - regarglen[(U8)OPFAIL];
+ }
+ else {
+ ckWARNreg(RExC_parse, "Quantifier {n,m} with n > m can't match");
+ RExC_emit = orig_emit;
+ }
+ ret = reg_node(pRExC_state, OPFAIL);
+ return ret;
+ }
+ else if (min == max
+ && RExC_parse < RExC_end
+ && (*RExC_parse == '?' || *RExC_parse == '+'))
+ {
+ if (PASS2) {
+ ckWARN2reg(RExC_parse + 1,
+ "Useless use of greediness modifier '%c'",
+ *RExC_parse);
+ }
+ /* Absorb the modifier, so later code doesn't see nor use
+ * it */
+ nextchar(pRExC_state);
+ }
+
+ do_curly:
+ if ((flags&SIMPLE)) {
+ MARK_NAUGHTY_EXP(2, 2);
+ reginsert(pRExC_state, CURLY, ret, depth+1);
+ Set_Node_Offset(ret, parse_start+1); /* MJD */
+ Set_Node_Cur_Length(ret, parse_start);
+ }
+ else {
+ regnode * const w = reg_node(pRExC_state, WHILEM);
+
+ w->flags = 0;
+ REGTAIL(pRExC_state, ret, w);
+ if (!SIZE_ONLY && RExC_extralen) {
+ reginsert(pRExC_state, LONGJMP,ret, depth+1);
+ reginsert(pRExC_state, NOTHING,ret, depth+1);
+ NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
+ }
+ reginsert(pRExC_state, CURLYX,ret, depth+1);
+ /* MJD hk */
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Length(ret,
+ op == '{' ? (RExC_parse - parse_start) : 1);
+
+ if (!SIZE_ONLY && RExC_extralen)
+ NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
+ REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
+ if (SIZE_ONLY)
+ RExC_whilem_seen++, RExC_extralen += 3;
+ MARK_NAUGHTY_EXP(1, 4); /* compound interest */
+ }
+ ret->flags = 0;
+
+ if (min > 0)
+ *flagp = WORST;
+ if (max > 0)
+ *flagp |= HASWIDTH;
+ if (!SIZE_ONLY) {
+ ARG1_SET(ret, (U16)min);
+ ARG2_SET(ret, (U16)max);
+ }
+ if (max == REG_INFTY)
+ RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
+
+ goto nest_check;
+ }
+ }
+
+ if (!ISMULT1(op)) {
+ *flagp = flags;
+ return(ret);
+ }
+
+#if 0 /* Now runtime fix should be reliable. */
+
+ /* if this is reinstated, don't forget to put this back into perldiag:
+
+ =item Regexp *+ operand could be empty at {#} in regex m/%s/
+
+ (F) The part of the regexp subject to either the * or + quantifier
+ could match an empty string. The {#} shows in the regular
+ expression about where the problem was discovered.
+
+ */
+
+ if (!(flags&HASWIDTH) && op != '?')
+ vFAIL("Regexp *+ operand could be empty");
+#endif
+
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ parse_start = RExC_parse;
+#endif
+ nextchar(pRExC_state);
+
+ *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
+
+ if (op == '*' && (flags&SIMPLE)) {
+ reginsert(pRExC_state, STAR, ret, depth+1);
+ ret->flags = 0;
+ MARK_NAUGHTY(4);
+ RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
+ }
+ else if (op == '*') {
+ min = 0;
+ goto do_curly;
+ }
+ else if (op == '+' && (flags&SIMPLE)) {
+ reginsert(pRExC_state, PLUS, ret, depth+1);
+ ret->flags = 0;
+ MARK_NAUGHTY(3);
+ RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
+ }
+ else if (op == '+') {
+ min = 1;
+ goto do_curly;
+ }
+ else if (op == '?') {
+ min = 0; max = 1;
+ goto do_curly;
+ }
+ nest_check:
+ if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
+ SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
+ ckWARN2reg(RExC_parse,
+ "%"UTF8f" matches null string many times",
+ UTF8fARG(UTF, (RExC_parse >= origparse
+ ? RExC_parse - origparse
+ : 0),
+ origparse));
+ (void)ReREFCNT_inc(RExC_rx_sv);
+ }
+
+ if (RExC_parse < RExC_end && *RExC_parse == '?') {
+ nextchar(pRExC_state);
+ reginsert(pRExC_state, MINMOD, ret, depth+1);
+ REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
+ }
+ else
+ if (RExC_parse < RExC_end && *RExC_parse == '+') {
+ regnode *ender;
+ nextchar(pRExC_state);
+ ender = reg_node(pRExC_state, SUCCEED);
+ REGTAIL(pRExC_state, ret, ender);
+ reginsert(pRExC_state, SUSPEND, ret, depth+1);
+ ret->flags = 0;
+ ender = reg_node(pRExC_state, TAIL);
+ REGTAIL(pRExC_state, ret, ender);
+ }
+
+ if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
+ RExC_parse++;
+ vFAIL("Nested quantifiers");
+ }
+
+ return(ret);
+}
+
+STATIC bool
+S_grok_bslash_N(pTHX_ RExC_state_t *pRExC_state,
+ regnode ** node_p,
+ UV * code_point_p,
+ int * cp_count,
+ I32 * flagp,
+ const U32 depth
+ )
+{
+ /* This routine teases apart the various meanings of \N and returns
+ * accordingly. The input parameters constrain which meaning(s) is/are valid
+ * in the current context.
+ *
+ * Exactly one of <node_p> and <code_point_p> must be non-NULL.
+ *
+ * If <code_point_p> is not NULL, the context is expecting the result to be a
+ * single code point. If this \N instance turns out to a single code point,
+ * the function returns TRUE and sets *code_point_p to that code point.
+ *
+ * If <node_p> is not NULL, the context is expecting the result to be one of
+ * the things representable by a regnode. If this \N instance turns out to be
+ * one such, the function generates the regnode, returns TRUE and sets *node_p
+ * to point to that regnode.
+ *
+ * If this instance of \N isn't legal in any context, this function will
+ * generate a fatal error and not return.
+ *
+ * On input, RExC_parse should point to the first char following the \N at the
+ * time of the call. On successful return, RExC_parse will have been updated
+ * to point to just after the sequence identified by this routine. Also
+ * *flagp has been updated as needed.
+ *
+ * When there is some problem with the current context and this \N instance,
+ * the function returns FALSE, without advancing RExC_parse, nor setting
+ * *node_p, nor *code_point_p, nor *flagp.
+ *
+ * If <cp_count> is not NULL, the caller wants to know the length (in code
+ * points) that this \N sequence matches. This is set even if the function
+ * returns FALSE, as detailed below.
+ *
+ * There are 5 possibilities here, as detailed in the next 5 paragraphs.
+ *
+ * Probably the most common case is for the \N to specify a single code point.
+ * *cp_count will be set to 1, and *code_point_p will be set to that code
+ * point.
+ *
+ * Another possibility is for the input to be an empty \N{}, which for
+ * backwards compatibility we accept. *cp_count will be set to 0. *node_p
+ * will be set to a generated NOTHING node.
+ *
+ * Still another possibility is for the \N to mean [^\n]. *cp_count will be
+ * set to 0. *node_p will be set to a generated REG_ANY node.
+ *
+ * The fourth possibility is that \N resolves to a sequence of more than one
+ * code points. *cp_count will be set to the number of code points in the
+ * sequence. *node_p * will be set to a generated node returned by this
+ * function calling S_reg().
+ *
+ * The final possibility, which happens only when the fourth one would
+ * otherwise be in effect, is that one of those code points requires the
+ * pattern to be recompiled as UTF-8. The function returns FALSE, and sets
+ * the RESTART_UTF8 flag in *flagp. When this happens, the caller needs to
+ * desist from continuing parsing, and return this information to its caller.
+ * This is not set for when there is only one code point, as this can be
+ * called as part of an ANYOF node, and they can store above-Latin1 code
+ * points without the pattern having to be in UTF-8.
+ *
+ * For non-single-quoted regexes, the tokenizer has resolved character and
+ * sequence names inside \N{...} into their Unicode values, normalizing the
+ * result into what we should see here: '\N{U+c1.c2...}', where c1... are the
+ * hex-represented code points in the sequence. This is done there because
+ * the names can vary based on what charnames pragma is in scope at the time,
+ * so we need a way to take a snapshot of what they resolve to at the time of
+ * the original parse. [perl #56444].
+ *
+ * That parsing is skipped for single-quoted regexes, so we may here get
+ * '\N{NAME}'. This is a fatal error. These names have to be resolved by the
+ * parser. But if the single-quoted regex is something like '\N{U+41}', that
+ * is legal and handled here. The code point is Unicode, and has to be
+ * translated into the native character set for non-ASCII platforms.
+ * the tokenizer passes the \N sequence through unchanged; this code will not
+ * attempt to determine this nor expand those, instead raising a syntax error.
+ */
+
+ char * endbrace; /* points to '}' following the name */
+ char *endchar; /* Points to '.' or '}' ending cur char in the input
+ stream */
+ char* p; /* Temporary */
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_GROK_BSLASH_N;
+
+ GET_RE_DEBUG_FLAGS;
+
+ assert(cBOOL(node_p) ^ cBOOL(code_point_p)); /* Exactly one should be set */
+ assert(! (node_p && cp_count)); /* At most 1 should be set */
+
+ if (cp_count) { /* Initialize return for the most common case */
+ *cp_count = 1;
+ }
+
+ /* The [^\n] meaning of \N ignores spaces and comments under the /x
+ * modifier. The other meanings do not, so use a temporary until we find
+ * out which we are being called with */
+ p = (RExC_flags & RXf_PMf_EXTENDED)
+ ? regpatws(pRExC_state, RExC_parse,
+ TRUE) /* means recognize comments */
+ : RExC_parse;
+
+ /* Disambiguate between \N meaning a named character versus \N meaning
+ * [^\n]. The latter is assumed when the {...} following the \N is a legal
+ * quantifier, or there is no a '{' at all */
+ if (*p != '{' || regcurly(p)) {
+ RExC_parse = p;
+ if (cp_count) {
+ *cp_count = -1;
+ }
+
+ if (! node_p) {
+ return FALSE;
+ }
+ RExC_parse--; /* Need to back off so nextchar() doesn't skip the
+ current char */
+ nextchar(pRExC_state);
+ *node_p = reg_node(pRExC_state, REG_ANY);
+ *flagp |= HASWIDTH|SIMPLE;
+ MARK_NAUGHTY(1);
+ Set_Node_Length(*node_p, 1); /* MJD */
+ return TRUE;
+ }
+
+ /* Here, we have decided it should be a named character or sequence */
+
+ /* The test above made sure that the next real character is a '{', but
+ * under the /x modifier, it could be separated by space (or a comment and
+ * \n) and this is not allowed (for consistency with \x{...} and the
+ * tokenizer handling of \N{NAME}). */
+ if (*RExC_parse != '{') {
+ vFAIL("Missing braces on \\N{}");
+ }
+
+ RExC_parse++; /* Skip past the '{' */
+
+ if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */
+ || ! (endbrace == RExC_parse /* nothing between the {} */
+ || (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked... */
+ && strnEQ(RExC_parse, "U+", 2)))) /* ... below for a better
+ error msg) */
+ {
+ if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
+ vFAIL("\\N{NAME} must be resolved by the lexer");
+ }
+
+ RExC_uni_semantics = 1; /* Unicode named chars imply Unicode semantics */
+
+ if (endbrace == RExC_parse) { /* empty: \N{} */
+ if (cp_count) {
+ *cp_count = 0;
+ }
+ nextchar(pRExC_state);
+ if (! node_p) {
+ return FALSE;
+ }
+
+ *node_p = reg_node(pRExC_state,NOTHING);
+ return TRUE;
+ }
+
+ RExC_parse += 2; /* Skip past the 'U+' */
+
+ endchar = RExC_parse + strcspn(RExC_parse, ".}");
+
+ /* Code points are separated by dots. If none, there is only one code
+ * point, and is terminated by the brace */
+
+ if (endchar >= endbrace) {
+ STRLEN length_of_hex;
+ I32 grok_hex_flags;
+
+ /* Here, exactly one code point. If that isn't what is wanted, fail */
+ if (! code_point_p) {
+ RExC_parse = p;
+ return FALSE;
+ }
+
+ /* Convert code point from hex */
+ length_of_hex = (STRLEN)(endchar - RExC_parse);
+ grok_hex_flags = PERL_SCAN_ALLOW_UNDERSCORES
+ | PERL_SCAN_DISALLOW_PREFIX
+
+ /* No errors in the first pass (See [perl
+ * #122671].) We let the code below find the
+ * errors when there are multiple chars. */
+ | ((SIZE_ONLY)
+ ? PERL_SCAN_SILENT_ILLDIGIT
+ : 0);
+
+ /* This routine is the one place where both single- and double-quotish
+ * \N{U+xxxx} are evaluated. The value is a Unicode code point which
+ * must be converted to native. */
+ *code_point_p = UNI_TO_NATIVE(grok_hex(RExC_parse,
+ &length_of_hex,
+ &grok_hex_flags,
+ NULL));
+
+ /* The tokenizer should have guaranteed validity, but it's possible to
+ * bypass it by using single quoting, so check. Don't do the check
+ * here when there are multiple chars; we do it below anyway. */
+ if (length_of_hex == 0
+ || length_of_hex != (STRLEN)(endchar - RExC_parse) )
+ {
+ RExC_parse += length_of_hex; /* Includes all the valid */
+ RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
+ ? UTF8SKIP(RExC_parse)
+ : 1;
+ /* Guard against malformed utf8 */
+ if (RExC_parse >= endchar) {
+ RExC_parse = endchar;
+ }
+ vFAIL("Invalid hexadecimal number in \\N{U+...}");
+ }
+
+ RExC_parse = endbrace + 1;
+ return TRUE;
+ }
+ else { /* Is a multiple character sequence */
+ SV * substitute_parse;
+ STRLEN len;
+ char *orig_end = RExC_end;
+ I32 flags;
+
+ /* Count the code points, if desired, in the sequence */
+ if (cp_count) {
+ *cp_count = 0;
+ while (RExC_parse < endbrace) {
+ /* Point to the beginning of the next character in the sequence. */
+ RExC_parse = endchar + 1;
+ endchar = RExC_parse + strcspn(RExC_parse, ".}");
+ (*cp_count)++;
+ }
+ }
+
+ /* Fail if caller doesn't want to handle a multi-code-point sequence.
+ * But don't backup up the pointer if the caller want to know how many
+ * code points there are (they can then handle things) */
+ if (! node_p) {
+ if (! cp_count) {
+ RExC_parse = p;
+ }
+ return FALSE;
+ }
+
+ /* What is done here is to convert this to a sub-pattern of the form
+ * \x{char1}\x{char2}... and then call reg recursively to parse it
+ * (enclosing in "(?: ... )" ). That way, it retains its atomicness,
+ * while not having to worry about special handling that some code
+ * points may have. */
+
+ substitute_parse = newSVpvs("?:");
+
+ while (RExC_parse < endbrace) {
+
+ /* Convert to notation the rest of the code understands */
+ sv_catpv(substitute_parse, "\\x{");
+ sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
+ sv_catpv(substitute_parse, "}");
+
+ /* Point to the beginning of the next character in the sequence. */
+ RExC_parse = endchar + 1;
+ endchar = RExC_parse + strcspn(RExC_parse, ".}");
+
+ }
+ sv_catpv(substitute_parse, ")");
+
+ RExC_parse = SvPV(substitute_parse, len);
+
+ /* Don't allow empty number */
+ if (len < (STRLEN) 8) {
+ RExC_parse = endbrace;
+ vFAIL("Invalid hexadecimal number in \\N{U+...}");
+ }
+ RExC_end = RExC_parse + len;
+
+ /* The values are Unicode, and therefore not subject to recoding, but
+ * have to be converted to native on a non-Unicode (meaning non-ASCII)
+ * platform. */
+ RExC_override_recoding = 1;
+#ifdef EBCDIC
+ RExC_recode_x_to_native = 1;
+#endif
+
+ if (node_p) {
+ if (!(*node_p = reg(pRExC_state, 1, &flags, depth+1))) {
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return FALSE;
+ }
+ FAIL2("panic: reg returned NULL to grok_bslash_N, flags=%#"UVxf"",
+ (UV) flags);
+ }
+ *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
+ }
+
+ /* Restore the saved values */
+ RExC_parse = endbrace;
+ RExC_end = orig_end;
+ RExC_override_recoding = 0;
+#ifdef EBCDIC
+ RExC_recode_x_to_native = 0;
+#endif
+
+ SvREFCNT_dec_NN(substitute_parse);
+ nextchar(pRExC_state);
+
+ return TRUE;
+ }
+}
+
+
+/*
+ * reg_recode
+ *
+ * It returns the code point in utf8 for the value in *encp.
+ * value: a code value in the source encoding
+ * encp: a pointer to an Encode object
+ *
+ * If the result from Encode is not a single character,
+ * it returns U+FFFD (Replacement character) and sets *encp to NULL.
+ */
+STATIC UV
+S_reg_recode(pTHX_ const char value, SV **encp)
+{
+ STRLEN numlen = 1;
+ SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
+ const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
+ const STRLEN newlen = SvCUR(sv);
+ UV uv = UNICODE_REPLACEMENT;
+
+ PERL_ARGS_ASSERT_REG_RECODE;
+
+ if (newlen)
+ uv = SvUTF8(sv)
+ ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
+ : *(U8*)s;
+
+ if (!newlen || numlen != newlen) {
+ uv = UNICODE_REPLACEMENT;
+ *encp = NULL;
+ }
+ return uv;
+}
+
+PERL_STATIC_INLINE U8
+S_compute_EXACTish(RExC_state_t *pRExC_state)
+{
+ U8 op;
+
+ PERL_ARGS_ASSERT_COMPUTE_EXACTISH;
+
+ if (! FOLD) {
+ return (LOC)
+ ? EXACTL
+ : EXACT;
+ }
+
+ op = get_regex_charset(RExC_flags);
+ if (op >= REGEX_ASCII_RESTRICTED_CHARSET) {
+ op--; /* /a is same as /u, and map /aa's offset to what /a's would have
+ been, so there is no hole */
+ }
+
+ return op + EXACTF;
+}
+
+PERL_STATIC_INLINE void
+S_alloc_maybe_populate_EXACT(pTHX_ RExC_state_t *pRExC_state,
+ regnode *node, I32* flagp, STRLEN len, UV code_point,
+ bool downgradable)
+{
+ /* This knows the details about sizing an EXACTish node, setting flags for
+ * it (by setting <*flagp>, and potentially populating it with a single
+ * character.
+ *
+ * If <len> (the length in bytes) is non-zero, this function assumes that
+ * the node has already been populated, and just does the sizing. In this
+ * case <code_point> should be the final code point that has already been
+ * placed into the node. This value will be ignored except that under some
+ * circumstances <*flagp> is set based on it.
+ *
+ * If <len> is zero, the function assumes that the node is to contain only
+ * the single character given by <code_point> and calculates what <len>
+ * should be. In pass 1, it sizes the node appropriately. In pass 2, it
+ * additionally will populate the node's STRING with <code_point> or its
+ * fold if folding.
+ *
+ * In both cases <*flagp> is appropriately set
+ *
+ * It knows that under FOLD, the Latin Sharp S and UTF characters above
+ * 255, must be folded (the former only when the rules indicate it can
+ * match 'ss')
+ *
+ * When it does the populating, it looks at the flag 'downgradable'. If
+ * true with a node that folds, it checks if the single code point
+ * participates in a fold, and if not downgrades the node to an EXACT.
+ * This helps the optimizer */
+
+ bool len_passed_in = cBOOL(len != 0);
+ U8 character[UTF8_MAXBYTES_CASE+1];
+
+ PERL_ARGS_ASSERT_ALLOC_MAYBE_POPULATE_EXACT;
+
+ /* Don't bother to check for downgrading in PASS1, as it doesn't make any
+ * sizing difference, and is extra work that is thrown away */
+ if (downgradable && ! PASS2) {
+ downgradable = FALSE;
+ }
+
+ if (! len_passed_in) {
+ if (UTF) {
+ if (UVCHR_IS_INVARIANT(code_point)) {
+ if (LOC || ! FOLD) { /* /l defers folding until runtime */
+ *character = (U8) code_point;
+ }
+ else { /* Here is /i and not /l. (toFOLD() is defined on just
+ ASCII, which isn't the same thing as INVARIANT on
+ EBCDIC, but it works there, as the extra invariants
+ fold to themselves) */
+ *character = toFOLD((U8) code_point);
+
+ /* We can downgrade to an EXACT node if this character
+ * isn't a folding one. Note that this assumes that
+ * nothing above Latin1 folds to some other invariant than
+ * one of these alphabetics; otherwise we would also have
+ * to check:
+ * && (! HAS_NONLATIN1_FOLD_CLOSURE(code_point)
+ * || ASCII_FOLD_RESTRICTED))
+ */
+ if (downgradable && PL_fold[code_point] == code_point) {
+ OP(node) = EXACT;
+ }
+ }
+ len = 1;
+ }
+ else if (FOLD && (! LOC
+ || ! is_PROBLEMATIC_LOCALE_FOLD_cp(code_point)))
+ { /* Folding, and ok to do so now */
+ UV folded = _to_uni_fold_flags(
+ code_point,
+ character,
+ &len,
+ FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
+ ? FOLD_FLAGS_NOMIX_ASCII
+ : 0));
+ if (downgradable
+ && folded == code_point /* This quickly rules out many
+ cases, avoiding the
+ _invlist_contains_cp() overhead
+ for those. */
+ && ! _invlist_contains_cp(PL_utf8_foldable, code_point))
+ {
+ OP(node) = (LOC)
+ ? EXACTL
+ : EXACT;
+ }
+ }
+ else if (code_point <= MAX_UTF8_TWO_BYTE) {
+
+ /* Not folding this cp, and can output it directly */
+ *character = UTF8_TWO_BYTE_HI(code_point);
+ *(character + 1) = UTF8_TWO_BYTE_LO(code_point);
+ len = 2;
+ }
+ else {
+ uvchr_to_utf8( character, code_point);
+ len = UTF8SKIP(character);
+ }
+ } /* Else pattern isn't UTF8. */
+ else if (! FOLD) {
+ *character = (U8) code_point;
+ len = 1;
+ } /* Else is folded non-UTF8 */
+ else if (LIKELY(code_point != LATIN_SMALL_LETTER_SHARP_S)) {
+
+ /* We don't fold any non-UTF8 except possibly the Sharp s (see
+ * comments at join_exact()); */
+ *character = (U8) code_point;
+ len = 1;
+
+ /* Can turn into an EXACT node if we know the fold at compile time,
+ * and it folds to itself and doesn't particpate in other folds */
+ if (downgradable
+ && ! LOC
+ && PL_fold_latin1[code_point] == code_point
+ && (! HAS_NONLATIN1_FOLD_CLOSURE(code_point)
+ || (isASCII(code_point) && ASCII_FOLD_RESTRICTED)))
+ {
+ OP(node) = EXACT;
+ }
+ } /* else is Sharp s. May need to fold it */
+ else if (AT_LEAST_UNI_SEMANTICS && ! ASCII_FOLD_RESTRICTED) {
+ *character = 's';
+ *(character + 1) = 's';
+ len = 2;
+ }
+ else {
+ *character = LATIN_SMALL_LETTER_SHARP_S;
+ len = 1;
+ }
+ }
+
+ if (SIZE_ONLY) {
+ RExC_size += STR_SZ(len);
+ }
+ else {
+ RExC_emit += STR_SZ(len);
+ STR_LEN(node) = len;
+ if (! len_passed_in) {
+ Copy((char *) character, STRING(node), len, char);
+ }
+ }
+
+ *flagp |= HASWIDTH;
+
+ /* A single character node is SIMPLE, except for the special-cased SHARP S
+ * under /di. */
+ if ((len == 1 || (UTF && len == UNISKIP(code_point)))
+ && (code_point != LATIN_SMALL_LETTER_SHARP_S
+ || ! FOLD || ! DEPENDS_SEMANTICS))
+ {
+ *flagp |= SIMPLE;
+ }
+
+ /* The OP may not be well defined in PASS1 */
+ if (PASS2 && OP(node) == EXACTFL) {
+ RExC_contains_locale = 1;
+ }
+}
+
+
+/* Parse backref decimal value, unless it's too big to sensibly be a backref,
+ * in which case return I32_MAX (rather than possibly 32-bit wrapping) */
+
+static I32
+S_backref_value(char *p)
+{
+ const char* endptr;
+ UV val;
+ if (grok_atoUV(p, &val, &endptr) && val <= I32_MAX)
+ return (I32)val;
+ return I32_MAX;
+}
+
+
+/*
+ - regatom - the lowest level
+
+ Try to identify anything special at the start of the pattern. If there
+ is, then handle it as required. This may involve generating a single regop,
+ such as for an assertion; or it may involve recursing, such as to
+ handle a () structure.
+
+ If the string doesn't start with something special then we gobble up
+ as much literal text as we can.
+
+ Once we have been able to handle whatever type of thing started the
+ sequence, we return.
+
+ Note: we have to be careful with escapes, as they can be both literal
+ and special, and in the case of \10 and friends, context determines which.
+
+ A summary of the code structure is:
+
+ switch (first_byte) {
+ cases for each special:
+ handle this special;
+ break;
+ case '\\':
+ switch (2nd byte) {
+ cases for each unambiguous special:
+ handle this special;
+ break;
+ cases for each ambigous special/literal:
+ disambiguate;
+ if (special) handle here
+ else goto defchar;
+ default: // unambiguously literal:
+ goto defchar;
+ }
+ default: // is a literal char
+ // FALL THROUGH
+ defchar:
+ create EXACTish node for literal;
+ while (more input and node isn't full) {
+ switch (input_byte) {
+ cases for each special;
+ make sure parse pointer is set so that the next call to
+ regatom will see this special first
+ goto loopdone; // EXACTish node terminated by prev. char
+ default:
+ append char to EXACTISH node;
+ }
+ get next input byte;
+ }
+ loopdone:
+ }
+ return the generated node;
+
+ Specifically there are two separate switches for handling
+ escape sequences, with the one for handling literal escapes requiring
+ a dummy entry for all of the special escapes that are actually handled
+ by the other.
+
+ Returns NULL, setting *flagp to TRYAGAIN if reg() returns NULL with
+ TRYAGAIN.
+ Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
+ restarted.
+ Otherwise does not return NULL.
+*/
+
+STATIC regnode *
+S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
+{
+ regnode *ret = NULL;
+ I32 flags = 0;
+ char *parse_start = RExC_parse;
+ U8 op;
+ int invert = 0;
+ U8 arg;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ *flagp = WORST; /* Tentatively. */
+
+ DEBUG_PARSE("atom");
+
+ PERL_ARGS_ASSERT_REGATOM;
+
+ tryagain:
+ switch ((U8)*RExC_parse) {
+ case '^':
+ RExC_seen_zerolen++;
+ nextchar(pRExC_state);
+ if (RExC_flags & RXf_PMf_MULTILINE)
+ ret = reg_node(pRExC_state, MBOL);
+ else
+ ret = reg_node(pRExC_state, SBOL);
+ Set_Node_Length(ret, 1); /* MJD */
+ break;
+ case '$':
+ nextchar(pRExC_state);
+ if (*RExC_parse)
+ RExC_seen_zerolen++;
+ if (RExC_flags & RXf_PMf_MULTILINE)
+ ret = reg_node(pRExC_state, MEOL);
+ else
+ ret = reg_node(pRExC_state, SEOL);
+ Set_Node_Length(ret, 1); /* MJD */
+ break;
+ case '.':
+ nextchar(pRExC_state);
+ if (RExC_flags & RXf_PMf_SINGLELINE)
+ ret = reg_node(pRExC_state, SANY);
+ else
+ ret = reg_node(pRExC_state, REG_ANY);
+ *flagp |= HASWIDTH|SIMPLE;
+ MARK_NAUGHTY(1);
+ Set_Node_Length(ret, 1); /* MJD */
+ break;
+ case '[':
+ {
+ char * const oregcomp_parse = ++RExC_parse;
+ ret = regclass(pRExC_state, flagp,depth+1,
+ FALSE, /* means parse the whole char class */
+ TRUE, /* allow multi-char folds */
+ FALSE, /* don't silence non-portable warnings. */
+ (bool) RExC_strict,
+ NULL);
+ if (*RExC_parse != ']') {
+ RExC_parse = oregcomp_parse;
+ vFAIL("Unmatched [");
+ }
+ if (ret == NULL) {
+ if (*flagp & RESTART_UTF8)
+ return NULL;
+ FAIL2("panic: regclass returned NULL to regatom, flags=%#"UVxf"",
+ (UV) *flagp);
+ }
+ nextchar(pRExC_state);
+ Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
+ break;
+ }
+ case '(':
+ nextchar(pRExC_state);
+ ret = reg(pRExC_state, 2, &flags,depth+1);
+ if (ret == NULL) {
+ if (flags & TRYAGAIN) {
+ if (RExC_parse == RExC_end) {
+ /* Make parent create an empty node if needed. */
+ *flagp |= TRYAGAIN;
+ return(NULL);
+ }
+ goto tryagain;
+ }
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ FAIL2("panic: reg returned NULL to regatom, flags=%#"UVxf"",
+ (UV) flags);
+ }
+ *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
+ break;
+ case '|':
+ case ')':
+ if (flags & TRYAGAIN) {
+ *flagp |= TRYAGAIN;
+ return NULL;
+ }
+ vFAIL("Internal urp");
+ /* Supposed to be caught earlier. */
+ break;
+ case '?':
+ case '+':
+ case '*':
+ RExC_parse++;
+ vFAIL("Quantifier follows nothing");
+ break;
+ case '\\':
+ /* Special Escapes
+
+ This switch handles escape sequences that resolve to some kind
+ of special regop and not to literal text. Escape sequnces that
+ resolve to literal text are handled below in the switch marked
+ "Literal Escapes".
+
+ Every entry in this switch *must* have a corresponding entry
+ in the literal escape switch. However, the opposite is not
+ required, as the default for this switch is to jump to the
+ literal text handling code.
+ */
+ switch ((U8)*++RExC_parse) {
+ /* Special Escapes */
+ case 'A':
+ RExC_seen_zerolen++;
+ ret = reg_node(pRExC_state, SBOL);
+ /* SBOL is shared with /^/ so we set the flags so we can tell
+ * /\A/ from /^/ in split. We check ret because first pass we
+ * have no regop struct to set the flags on. */
+ if (PASS2)
+ ret->flags = 1;
+ *flagp |= SIMPLE;
+ goto finish_meta_pat;
+ case 'G':
+ ret = reg_node(pRExC_state, GPOS);
+ RExC_seen |= REG_GPOS_SEEN;
+ *flagp |= SIMPLE;
+ goto finish_meta_pat;
+ case 'K':
+ RExC_seen_zerolen++;
+ ret = reg_node(pRExC_state, KEEPS);
+ *flagp |= SIMPLE;
+ /* XXX:dmq : disabling in-place substitution seems to
+ * be necessary here to avoid cases of memory corruption, as
+ * with: C<$_="x" x 80; s/x\K/y/> -- rgs
+ */
+ RExC_seen |= REG_LOOKBEHIND_SEEN;
+ goto finish_meta_pat;
+ case 'Z':
+ ret = reg_node(pRExC_state, SEOL);
+ *flagp |= SIMPLE;
+ RExC_seen_zerolen++; /* Do not optimize RE away */
+ goto finish_meta_pat;
+ case 'z':
+ ret = reg_node(pRExC_state, EOS);
+ *flagp |= SIMPLE;
+ RExC_seen_zerolen++; /* Do not optimize RE away */
+ goto finish_meta_pat;
+ case 'C':
+ vFAIL("\\C no longer supported");
+ case 'X':
+ ret = reg_node(pRExC_state, CLUMP);
+ *flagp |= HASWIDTH;
+ goto finish_meta_pat;
+
+ case 'W':
+ invert = 1;
+ /* FALLTHROUGH */
+ case 'w':
+ arg = ANYOF_WORDCHAR;
+ goto join_posix;
+
+ case 'B':
+ invert = 1;
+ /* FALLTHROUGH */
+ case 'b':
+ {
+ regex_charset charset = get_regex_charset(RExC_flags);
+
+ RExC_seen_zerolen++;
+ RExC_seen |= REG_LOOKBEHIND_SEEN;
+ op = BOUND + charset;
+
+ if (op == BOUNDL) {
+ RExC_contains_locale = 1;
+ }
+
+ ret = reg_node(pRExC_state, op);
+ *flagp |= SIMPLE;
+ if (*(RExC_parse + 1) != '{') {
+ FLAGS(ret) = TRADITIONAL_BOUND;
+ if (PASS2 && op > BOUNDA) { /* /aa is same as /a */
+ OP(ret) = BOUNDA;
+ }
+ }
+ else {
+ STRLEN length;
+ char name = *RExC_parse;
+ char * endbrace;
+ RExC_parse += 2;
+ endbrace = strchr(RExC_parse, '}');
+
+ if (! endbrace) {
+ vFAIL2("Missing right brace on \\%c{}", name);
+ }
+ /* XXX Need to decide whether to take spaces or not. Should be
+ * consistent with \p{}, but that currently is SPACE, which
+ * means vertical too, which seems wrong
+ * while (isBLANK(*RExC_parse)) {
+ RExC_parse++;
+ }*/
+ if (endbrace == RExC_parse) {
+ RExC_parse++; /* After the '}' */
+ vFAIL2("Empty \\%c{}", name);
+ }
+ length = endbrace - RExC_parse;
+ /*while (isBLANK(*(RExC_parse + length - 1))) {
+ length--;
+ }*/
+ switch (*RExC_parse) {
+ case 'g':
+ if (length != 1
+ && (length != 3 || strnNE(RExC_parse + 1, "cb", 2)))
+ {
+ goto bad_bound_type;
+ }
+ FLAGS(ret) = GCB_BOUND;
+ break;
+ case 's':
+ if (length != 2 || *(RExC_parse + 1) != 'b') {
+ goto bad_bound_type;
+ }
+ FLAGS(ret) = SB_BOUND;
+ break;
+ case 'w':
+ if (length != 2 || *(RExC_parse + 1) != 'b') {
+ goto bad_bound_type;
+ }
+ FLAGS(ret) = WB_BOUND;
+ break;
+ default:
+ bad_bound_type:
+ RExC_parse = endbrace;
+ vFAIL2utf8f(
+ "'%"UTF8f"' is an unknown bound type",
+ UTF8fARG(UTF, length, endbrace - length));
+ NOT_REACHED; /*NOTREACHED*/
+ }
+ RExC_parse = endbrace;
+ RExC_uni_semantics = 1;
+
+ if (PASS2 && op >= BOUNDA) { /* /aa is same as /a */
+ OP(ret) = BOUNDU;
+ length += 4;
+
+ /* Don't have to worry about UTF-8, in this message because
+ * to get here the contents of the \b must be ASCII */
+ ckWARN4reg(RExC_parse + 1, /* Include the '}' in msg */
+ "Using /u for '%.*s' instead of /%s",
+ (unsigned) length,
+ endbrace - length + 1,
+ (charset == REGEX_ASCII_RESTRICTED_CHARSET)
+ ? ASCII_RESTRICT_PAT_MODS
+ : ASCII_MORE_RESTRICT_PAT_MODS);
+ }
+ }
+
+ if (PASS2 && invert) {
+ OP(ret) += NBOUND - BOUND;
+ }
+ goto finish_meta_pat;
+ }
+
+ case 'D':
+ invert = 1;
+ /* FALLTHROUGH */
+ case 'd':
+ arg = ANYOF_DIGIT;
+ if (! DEPENDS_SEMANTICS) {
+ goto join_posix;
+ }
+
+ /* \d doesn't have any matches in the upper Latin1 range, hence /d
+ * is equivalent to /u. Changing to /u saves some branches at
+ * runtime */
+ op = POSIXU;
+ goto join_posix_op_known;
+
+ case 'R':
+ ret = reg_node(pRExC_state, LNBREAK);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+
+ case 'H':
+ invert = 1;
+ /* FALLTHROUGH */
+ case 'h':
+ arg = ANYOF_BLANK;
+ op = POSIXU;
+ goto join_posix_op_known;
+
+ case 'V':
+ invert = 1;
+ /* FALLTHROUGH */
+ case 'v':
+ arg = ANYOF_VERTWS;
+ op = POSIXU;
+ goto join_posix_op_known;
+
+ case 'S':
+ invert = 1;
+ /* FALLTHROUGH */
+ case 's':
+ arg = ANYOF_SPACE;
+
+ join_posix:
+
+ op = POSIXD + get_regex_charset(RExC_flags);
+ if (op > POSIXA) { /* /aa is same as /a */
+ op = POSIXA;
+ }
+ else if (op == POSIXL) {
+ RExC_contains_locale = 1;
+ }
+
+ join_posix_op_known:
+
+ if (invert) {
+ op += NPOSIXD - POSIXD;
+ }
+
+ ret = reg_node(pRExC_state, op);
+ if (! SIZE_ONLY) {
+ FLAGS(ret) = namedclass_to_classnum(arg);
+ }
+
+ *flagp |= HASWIDTH|SIMPLE;
+ /* FALLTHROUGH */
+
+ finish_meta_pat:
+ nextchar(pRExC_state);
+ Set_Node_Length(ret, 2); /* MJD */
+ break;
+ case 'p':
+ case 'P':
+ {
+#ifdef DEBUGGING
+ char* parse_start = RExC_parse - 2;
+#endif
+
+ RExC_parse--;
+
+ ret = regclass(pRExC_state, flagp,depth+1,
+ TRUE, /* means just parse this element */
+ FALSE, /* don't allow multi-char folds */
+ FALSE, /* don't silence non-portable warnings.
+ It would be a bug if these returned
+ non-portables */
+ (bool) RExC_strict,
+ NULL);
+ /* regclass() can only return RESTART_UTF8 if multi-char folds
+ are allowed. */
+ if (!ret)
+ FAIL2("panic: regclass returned NULL to regatom, flags=%#"UVxf"",
+ (UV) *flagp);
+
+ RExC_parse--;
+
+ Set_Node_Offset(ret, parse_start + 2);
+ Set_Node_Cur_Length(ret, parse_start);
+ nextchar(pRExC_state);
+ }
+ break;
+ case 'N':
+ /* Handle \N, \N{} and \N{NAMED SEQUENCE} (the latter meaning the
+ * \N{...} evaluates to a sequence of more than one code points).
+ * The function call below returns a regnode, which is our result.
+ * The parameters cause it to fail if the \N{} evaluates to a
+ * single code point; we handle those like any other literal. The
+ * reason that the multicharacter case is handled here and not as
+ * part of the EXACtish code is because of quantifiers. In
+ * /\N{BLAH}+/, the '+' applies to the whole thing, and doing it
+ * this way makes that Just Happen. dmq.
+ * join_exact() will join this up with adjacent EXACTish nodes
+ * later on, if appropriate. */
+ ++RExC_parse;
+ if (grok_bslash_N(pRExC_state,
+ &ret, /* Want a regnode returned */
+ NULL, /* Fail if evaluates to a single code
+ point */
+ NULL, /* Don't need a count of how many code
+ points */
+ flagp,
+ depth)
+ ) {
+ break;
+ }
+
+ if (*flagp & RESTART_UTF8)
+ return NULL;
+ RExC_parse--;
+ goto defchar;
+
+ case 'k': /* Handle \k<NAME> and \k'NAME' */
+ parse_named_seq:
+ {
+ char ch= RExC_parse[1];
+ if (ch != '<' && ch != '\'' && ch != '{') {
+ RExC_parse++;
+ /* diag_listed_as: Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/ */
+ vFAIL2("Sequence %.2s... not terminated",parse_start);
+ } else {
+ /* this pretty much dupes the code for (?P=...) in reg(), if
+ you change this make sure you change that */
+ char* name_start = (RExC_parse += 2);
+ U32 num = 0;
+ SV *sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
+ if (RExC_parse == name_start || *RExC_parse != ch)
+ /* diag_listed_as: Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/ */
+ vFAIL2("Sequence %.3s... not terminated",parse_start);
+
+ if (!SIZE_ONLY) {
+ num = add_data( pRExC_state, STR_WITH_LEN("S"));
+ RExC_rxi->data->data[num]=(void*)sv_dat;
+ SvREFCNT_inc_simple_void(sv_dat);
+ }
+
+ RExC_sawback = 1;
+ ret = reganode(pRExC_state,
+ ((! FOLD)
+ ? NREF
+ : (ASCII_FOLD_RESTRICTED)
+ ? NREFFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? NREFFU
+ : (LOC)
+ ? NREFFL
+ : NREFF),
+ num);
+ *flagp |= HASWIDTH;
+
+ /* override incorrect value set in reganode MJD */
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Cur_Length(ret, parse_start);
+ nextchar(pRExC_state);
+
+ }
+ break;
+ }
+ case 'g':
+ case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ {
+ I32 num;
+ bool hasbrace = 0;
+
+ if (*RExC_parse == 'g') {
+ bool isrel = 0;
+
+ RExC_parse++;
+ if (*RExC_parse == '{') {
+ RExC_parse++;
+ hasbrace = 1;
+ }
+ if (*RExC_parse == '-') {
+ RExC_parse++;
+ isrel = 1;
+ }
+ if (hasbrace && !isDIGIT(*RExC_parse)) {
+ if (isrel) RExC_parse--;
+ RExC_parse -= 2;
+ goto parse_named_seq;
+ }
+
+ num = S_backref_value(RExC_parse);
+ if (num == 0)
+ vFAIL("Reference to invalid group 0");
+ else if (num == I32_MAX) {
+ if (isDIGIT(*RExC_parse))
+ vFAIL("Reference to nonexistent group");
+ else
+ vFAIL("Unterminated \\g... pattern");
+ }
+
+ if (isrel) {
+ num = RExC_npar - num;
+ if (num < 1)
+ vFAIL("Reference to nonexistent or unclosed group");
+ }
+ }
+ else {
+ num = S_backref_value(RExC_parse);
+ /* bare \NNN might be backref or octal - if it is larger
+ * than or equal RExC_npar then it is assumed to be an
+ * octal escape. Note RExC_npar is +1 from the actual
+ * number of parens. */
+ /* Note we do NOT check if num == I32_MAX here, as that is
+ * handled by the RExC_npar check */
+
+ if (
+ /* any numeric escape < 10 is always a backref */
+ num > 9
+ /* any numeric escape < RExC_npar is a backref */
+ && num >= RExC_npar
+ /* cannot be an octal escape if it starts with 8 */
+ && *RExC_parse != '8'
+ /* cannot be an octal escape it it starts with 9 */
+ && *RExC_parse != '9'
+ )
+ {
+ /* Probably not a backref, instead likely to be an
+ * octal character escape, e.g. \35 or \777.
+ * The above logic should make it obvious why using
+ * octal escapes in patterns is problematic. - Yves */
+ goto defchar;
+ }
+ }
+
+ /* At this point RExC_parse points at a numeric escape like
+ * \12 or \88 or something similar, which we should NOT treat
+ * as an octal escape. It may or may not be a valid backref
+ * escape. For instance \88888888 is unlikely to be a valid
+ * backref. */
+ {
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ char * const parse_start = RExC_parse - 1; /* MJD */
+#endif
+ while (isDIGIT(*RExC_parse))
+ RExC_parse++;
+ if (hasbrace) {
+ if (*RExC_parse != '}')
+ vFAIL("Unterminated \\g{...} pattern");
+ RExC_parse++;
+ }
+ if (!SIZE_ONLY) {
+ if (num > (I32)RExC_rx->nparens)
+ vFAIL("Reference to nonexistent group");
+ }
+ RExC_sawback = 1;
+ ret = reganode(pRExC_state,
+ ((! FOLD)
+ ? REF
+ : (ASCII_FOLD_RESTRICTED)
+ ? REFFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? REFFU
+ : (LOC)
+ ? REFFL
+ : REFF),
+ num);
+ *flagp |= HASWIDTH;
+
+ /* override incorrect value set in reganode MJD */
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Cur_Length(ret, parse_start);
+ RExC_parse--;
+ nextchar(pRExC_state);
+ }
+ }
+ break;
+ case '\0':
+ if (RExC_parse >= RExC_end)
+ FAIL("Trailing \\");
+ /* FALLTHROUGH */
+ default:
+ /* Do not generate "unrecognized" warnings here, we fall
+ back into the quick-grab loop below */
+ parse_start--;
+ goto defchar;
+ }
+ break;
+
+ case '#':
+ if (RExC_flags & RXf_PMf_EXTENDED) {
+ RExC_parse = reg_skipcomment( pRExC_state, RExC_parse );
+ if (RExC_parse < RExC_end)
+ goto tryagain;
+ }
+ /* FALLTHROUGH */
+
+ default:
+
+ parse_start = RExC_parse - 1;
+
+ RExC_parse++;
+
+ defchar: {
+ STRLEN len = 0;
+ UV ender = 0;
+ char *p;
+ char *s;
+#define MAX_NODE_STRING_SIZE 127
+ char foldbuf[MAX_NODE_STRING_SIZE+UTF8_MAXBYTES_CASE];
+ char *s0;
+ U8 upper_parse = MAX_NODE_STRING_SIZE;
+ U8 node_type = compute_EXACTish(pRExC_state);
+ bool next_is_quantifier;
+ char * oldp = NULL;
+
+ /* We can convert EXACTF nodes to EXACTFU if they contain only
+ * characters that match identically regardless of the target
+ * string's UTF8ness. The reason to do this is that EXACTF is not
+ * trie-able, EXACTFU is.
+ *
+ * Similarly, we can convert EXACTFL nodes to EXACTFU if they
+ * contain only above-Latin1 characters (hence must be in UTF8),
+ * which don't participate in folds with Latin1-range characters,
+ * as the latter's folds aren't known until runtime. (We don't
+ * need to figure this out until pass 2) */
+ bool maybe_exactfu = PASS2
+ && (node_type == EXACTF || node_type == EXACTFL);
+
+ /* If a folding node contains only code points that don't
+ * participate in folds, it can be changed into an EXACT node,
+ * which allows the optimizer more things to look for */
+ bool maybe_exact;
+
+ ret = reg_node(pRExC_state, node_type);
+
+ /* In pass1, folded, we use a temporary buffer instead of the
+ * actual node, as the node doesn't exist yet */
+ s = (SIZE_ONLY && FOLD) ? foldbuf : STRING(ret);
+
+ s0 = s;
+
+ reparse:
+
+ /* We do the EXACTFish to EXACT node only if folding. (And we
+ * don't need to figure this out until pass 2) */
+ maybe_exact = FOLD && PASS2;
+
+ /* XXX The node can hold up to 255 bytes, yet this only goes to
+ * 127. I (khw) do not know why. Keeping it somewhat less than
+ * 255 allows us to not have to worry about overflow due to
+ * converting to utf8 and fold expansion, but that value is
+ * 255-UTF8_MAXBYTES_CASE. join_exact() may join adjacent nodes
+ * split up by this limit into a single one using the real max of
+ * 255. Even at 127, this breaks under rare circumstances. If
+ * folding, we do not want to split a node at a character that is a
+ * non-final in a multi-char fold, as an input string could just
+ * happen to want to match across the node boundary. The join
+ * would solve that problem if the join actually happens. But a
+ * series of more than two nodes in a row each of 127 would cause
+ * the first join to succeed to get to 254, but then there wouldn't
+ * be room for the next one, which could at be one of those split
+ * multi-char folds. I don't know of any fool-proof solution. One
+ * could back off to end with only a code point that isn't such a
+ * non-final, but it is possible for there not to be any in the
+ * entire node. */
+ for (p = RExC_parse - 1;
+ len < upper_parse && p < RExC_end;
+ len++)
+ {
+ oldp = p;
+
+ if (RExC_flags & RXf_PMf_EXTENDED)
+ p = regpatws(pRExC_state, p,
+ TRUE); /* means recognize comments */
+ switch ((U8)*p) {
+ case '^':
+ case '$':
+ case '.':
+ case '[':
+ case '(':
+ case ')':
+ case '|':
+ goto loopdone;
+ case '\\':
+ /* Literal Escapes Switch
+
+ This switch is meant to handle escape sequences that
+ resolve to a literal character.
+
+ Every escape sequence that represents something
+ else, like an assertion or a char class, is handled
+ in the switch marked 'Special Escapes' above in this
+ routine, but also has an entry here as anything that
+ isn't explicitly mentioned here will be treated as
+ an unescaped equivalent literal.
+ */
+
+ switch ((U8)*++p) {
+ /* These are all the special escapes. */
+ case 'A': /* Start assertion */
+ case 'b': case 'B': /* Word-boundary assertion*/
+ case 'C': /* Single char !DANGEROUS! */
+ case 'd': case 'D': /* digit class */
+ case 'g': case 'G': /* generic-backref, pos assertion */
+ case 'h': case 'H': /* HORIZWS */
+ case 'k': case 'K': /* named backref, keep marker */
+ case 'p': case 'P': /* Unicode property */
+ case 'R': /* LNBREAK */
+ case 's': case 'S': /* space class */
+ case 'v': case 'V': /* VERTWS */
+ case 'w': case 'W': /* word class */
+ case 'X': /* eXtended Unicode "combining
+ character sequence" */
+ case 'z': case 'Z': /* End of line/string assertion */
+ --p;
+ goto loopdone;
+
+ /* Anything after here is an escape that resolves to a
+ literal. (Except digits, which may or may not)
+ */
+ case 'n':
+ ender = '\n';
+ p++;
+ break;
+ case 'N': /* Handle a single-code point named character. */
+ RExC_parse = p + 1;
+ if (! grok_bslash_N(pRExC_state,
+ NULL, /* Fail if evaluates to
+ anything other than a
+ single code point */
+ &ender, /* The returned single code
+ point */
+ NULL, /* Don't need a count of
+ how many code points */
+ flagp,
+ depth)
+ ) {
+ if (*flagp & RESTART_UTF8)
+ FAIL("panic: grok_bslash_N set RESTART_UTF8");
+
+ /* Here, it wasn't a single code point. Go close
+ * up this EXACTish node. The switch() prior to
+ * this switch handles the other cases */
+ RExC_parse = p = oldp;
+ goto loopdone;
+ }
+ p = RExC_parse;
+ if (ender > 0xff) {
+ REQUIRE_UTF8;
+ }
+ break;
+ case 'r':
+ ender = '\r';
+ p++;
+ break;
+ case 't':
+ ender = '\t';
+ p++;
+ break;
+ case 'f':
+ ender = '\f';
+ p++;
+ break;
+ case 'e':
+ ender = ESC_NATIVE;
+ p++;
+ break;
+ case 'a':
+ ender = '\a';
+ p++;
+ break;
+ case 'o':
+ {
+ UV result;
+ const char* error_msg;
+
+ bool valid = grok_bslash_o(&p,
+ &result,
+ &error_msg,
+ PASS2, /* out warnings */
+ (bool) RExC_strict,
+ TRUE, /* Output warnings
+ for non-
+ portables */
+ UTF);
+ if (! valid) {
+ RExC_parse = p; /* going to die anyway; point
+ to exact spot of failure */
+ vFAIL(error_msg);
+ }
+ ender = result;
+ if (IN_ENCODING && ender < 0x100) {
+ goto recode_encoding;
+ }
+ if (ender > 0xff) {
+ REQUIRE_UTF8;
+ }
+ break;
+ }
+ case 'x':
+ {
+ UV result = UV_MAX; /* initialize to erroneous
+ value */
+ const char* error_msg;
+
+ bool valid = grok_bslash_x(&p,
+ &result,
+ &error_msg,
+ PASS2, /* out warnings */
+ (bool) RExC_strict,
+ TRUE, /* Silence warnings
+ for non-
+ portables */
+ UTF);
+ if (! valid) {
+ RExC_parse = p; /* going to die anyway; point
+ to exact spot of failure */
+ vFAIL(error_msg);
+ }
+ ender = result;
+
+ if (ender < 0x100) {
+#ifdef EBCDIC
+ if (RExC_recode_x_to_native) {
+ ender = LATIN1_TO_NATIVE(ender);
+ }
+ else
+#endif
+ if (IN_ENCODING) {
+ goto recode_encoding;
+ }
+ }
+ else {
+ REQUIRE_UTF8;
+ }
+ break;
+ }
+ case 'c':
+ p++;
+ ender = grok_bslash_c(*p++, PASS2);
+ break;
+ case '8': case '9': /* must be a backreference */
+ --p;
+ /* we have an escape like \8 which cannot be an octal escape
+ * so we exit the loop, and let the outer loop handle this
+ * escape which may or may not be a legitimate backref. */
+ goto loopdone;
+ case '1': case '2': case '3':case '4':
+ case '5': case '6': case '7':
+ /* When we parse backslash escapes there is ambiguity
+ * between backreferences and octal escapes. Any escape
+ * from \1 - \9 is a backreference, any multi-digit
+ * escape which does not start with 0 and which when
+ * evaluated as decimal could refer to an already
+ * parsed capture buffer is a back reference. Anything
+ * else is octal.
+ *
+ * Note this implies that \118 could be interpreted as
+ * 118 OR as "\11" . "8" depending on whether there
+ * were 118 capture buffers defined already in the
+ * pattern. */
+
+ /* NOTE, RExC_npar is 1 more than the actual number of
+ * parens we have seen so far, hence the < RExC_npar below. */
+
+ if ( !isDIGIT(p[1]) || S_backref_value(p) < RExC_npar)
+ { /* Not to be treated as an octal constant, go
+ find backref */
+ --p;
+ goto loopdone;
+ }
+ /* FALLTHROUGH */
+ case '0':
+ {
+ I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
+ STRLEN numlen = 3;
+ ender = grok_oct(p, &numlen, &flags, NULL);
+ if (ender > 0xff) {
+ REQUIRE_UTF8;
+ }
+ p += numlen;
+ if (PASS2 /* like \08, \178 */
+ && numlen < 3
+ && p < RExC_end
+ && isDIGIT(*p) && ckWARN(WARN_REGEXP))
+ {
+ reg_warn_non_literal_string(
+ p + 1,
+ form_short_octal_warning(p, numlen));
+ }
+ }
+ if (IN_ENCODING && ender < 0x100)
+ goto recode_encoding;
+ break;
+ recode_encoding:
+ if (! RExC_override_recoding) {
+ SV* enc = _get_encoding();
+ ender = reg_recode((const char)(U8)ender, &enc);
+ if (!enc && PASS2)
+ ckWARNreg(p, "Invalid escape in the specified encoding");
+ REQUIRE_UTF8;
+ }
+ break;
+ case '\0':
+ if (p >= RExC_end)
+ FAIL("Trailing \\");
+ /* FALLTHROUGH */
+ default:
+ if (!SIZE_ONLY&& isALPHANUMERIC(*p)) {
+ /* Include any { following the alpha to emphasize
+ * that it could be part of an escape at some point
+ * in the future */
+ int len = (isALPHA(*p) && *(p + 1) == '{') ? 2 : 1;
+ ckWARN3reg(p + len, "Unrecognized escape \\%.*s passed through", len, p);
+ }
+ goto normal_default;
+ } /* End of switch on '\' */
+ break;
+ case '{':
+ /* Currently we don't warn when the lbrace is at the start
+ * of a construct. This catches it in the middle of a
+ * literal string, or when its the first thing after
+ * something like "\b" */
+ if (! SIZE_ONLY
+ && (len || (p > RExC_start && isALPHA_A(*(p -1)))))
+ {
+ ckWARNregdep(p + 1, "Unescaped left brace in regex is deprecated, passed through");
+ }
+ /*FALLTHROUGH*/
+ default: /* A literal character */
+ normal_default:
+ if (UTF8_IS_START(*p) && UTF) {
+ STRLEN numlen;
+ ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
+ &numlen, UTF8_ALLOW_DEFAULT);
+ p += numlen;
+ }
+ else
+ ender = (U8) *p++;
+ break;
+ } /* End of switch on the literal */
+
+ /* Here, have looked at the literal character and <ender>
+ * contains its ordinal, <p> points to the character after it
+ */
+
+ if ( RExC_flags & RXf_PMf_EXTENDED)
+ p = regpatws(pRExC_state, p,
+ TRUE); /* means recognize comments */
+
+ /* If the next thing is a quantifier, it applies to this
+ * character only, which means that this character has to be in
+ * its own node and can't just be appended to the string in an
+ * existing node, so if there are already other characters in
+ * the node, close the node with just them, and set up to do
+ * this character again next time through, when it will be the
+ * only thing in its new node */
+ if ((next_is_quantifier = (p < RExC_end && ISMULT2(p))) && len)
+ {
+ p = oldp;
+ goto loopdone;
+ }
+
+ if (! FOLD) { /* The simple case, just append the literal */
+
+ /* In the sizing pass, we need only the size of the
+ * character we are appending, hence we can delay getting
+ * its representation until PASS2. */
+ if (SIZE_ONLY) {
+ if (UTF) {
+ const STRLEN unilen = UNISKIP(ender);
+ s += unilen;
+
+ /* We have to subtract 1 just below (and again in
+ * the corresponding PASS2 code) because the loop
+ * increments <len> each time, as all but this path
+ * (and one other) through it add a single byte to
+ * the EXACTish node. But these paths would change
+ * len to be the correct final value, so cancel out
+ * the increment that follows */
+ len += unilen - 1;
+ }
+ else {
+ s++;
+ }
+ } else { /* PASS2 */
+ not_fold_common:
+ if (UTF) {
+ U8 * new_s = uvchr_to_utf8((U8*)s, ender);
+ len += (char *) new_s - s - 1;
+ s = (char *) new_s;
+ }
+ else {
+ *(s++) = (char) ender;
+ }
+ }
+ }
+ else if (LOC && is_PROBLEMATIC_LOCALE_FOLD_cp(ender)) {
+
+ /* Here are folding under /l, and the code point is
+ * problematic. First, we know we can't simplify things */
+ maybe_exact = FALSE;
+ maybe_exactfu = FALSE;
+
+ /* A problematic code point in this context means that its
+ * fold isn't known until runtime, so we can't fold it now.
+ * (The non-problematic code points are the above-Latin1
+ * ones that fold to also all above-Latin1. Their folds
+ * don't vary no matter what the locale is.) But here we
+ * have characters whose fold depends on the locale.
+ * Unlike the non-folding case above, we have to keep track
+ * of these in the sizing pass, so that we can make sure we
+ * don't split too-long nodes in the middle of a potential
+ * multi-char fold. And unlike the regular fold case
+ * handled in the else clauses below, we don't actually
+ * fold and don't have special cases to consider. What we
+ * do for both passes is the PASS2 code for non-folding */
+ goto not_fold_common;
+ }
+ else /* A regular FOLD code point */
+ if (! ( UTF
+ /* See comments for join_exact() as to why we fold this
+ * non-UTF at compile time */
+ || (node_type == EXACTFU
+ && ender == LATIN_SMALL_LETTER_SHARP_S)))
+ {
+ /* Here, are folding and are not UTF-8 encoded; therefore
+ * the character must be in the range 0-255, and is not /l
+ * (Not /l because we already handled these under /l in
+ * is_PROBLEMATIC_LOCALE_FOLD_cp) */
+ if (IS_IN_SOME_FOLD_L1(ender)) {
+ maybe_exact = FALSE;
+
+ /* See if the character's fold differs between /d and
+ * /u. This includes the multi-char fold SHARP S to
+ * 'ss' */
+ if (maybe_exactfu
+ && (PL_fold[ender] != PL_fold_latin1[ender]
+ || ender == LATIN_SMALL_LETTER_SHARP_S
+ || (len > 0
+ && isALPHA_FOLD_EQ(ender, 's')
+ && isALPHA_FOLD_EQ(*(s-1), 's'))))
+ {
+ maybe_exactfu = FALSE;
+ }
+ }
+
+ /* Even when folding, we store just the input character, as
+ * we have an array that finds its fold quickly */
+ *(s++) = (char) ender;
+ }
+ else { /* FOLD and UTF */
+ /* Unlike the non-fold case, we do actually have to
+ * calculate the results here in pass 1. This is for two
+ * reasons, the folded length may be longer than the
+ * unfolded, and we have to calculate how many EXACTish
+ * nodes it will take; and we may run out of room in a node
+ * in the middle of a potential multi-char fold, and have
+ * to back off accordingly. */
+
+ UV folded;
+ if (isASCII_uni(ender)) {
+ folded = toFOLD(ender);
+ *(s)++ = (U8) folded;
+ }
+ else {
+ STRLEN foldlen;
+
+ folded = _to_uni_fold_flags(
+ ender,
+ (U8 *) s,
+ &foldlen,
+ FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
+ ? FOLD_FLAGS_NOMIX_ASCII
+ : 0));
+ s += foldlen;
+
+ /* The loop increments <len> each time, as all but this
+ * path (and one other) through it add a single byte to
+ * the EXACTish node. But this one has changed len to
+ * be the correct final value, so subtract one to
+ * cancel out the increment that follows */
+ len += foldlen - 1;
+ }
+ /* If this node only contains non-folding code points so
+ * far, see if this new one is also non-folding */
+ if (maybe_exact) {
+ if (folded != ender) {
+ maybe_exact = FALSE;
+ }
+ else {
+ /* Here the fold is the original; we have to check
+ * further to see if anything folds to it */
+ if (_invlist_contains_cp(PL_utf8_foldable,
+ ender))
+ {
+ maybe_exact = FALSE;
+ }
+ }
+ }
+ ender = folded;
+ }
+
+ if (next_is_quantifier) {
+
+ /* Here, the next input is a quantifier, and to get here,
+ * the current character is the only one in the node.
+ * Also, here <len> doesn't include the final byte for this
+ * character */
+ len++;
+ goto loopdone;
+ }
+
+ } /* End of loop through literal characters */
+
+ /* Here we have either exhausted the input or ran out of room in
+ * the node. (If we encountered a character that can't be in the
+ * node, transfer is made directly to <loopdone>, and so we
+ * wouldn't have fallen off the end of the loop.) In the latter
+ * case, we artificially have to split the node into two, because
+ * we just don't have enough space to hold everything. This
+ * creates a problem if the final character participates in a
+ * multi-character fold in the non-final position, as a match that
+ * should have occurred won't, due to the way nodes are matched,
+ * and our artificial boundary. So back off until we find a non-
+ * problematic character -- one that isn't at the beginning or
+ * middle of such a fold. (Either it doesn't participate in any
+ * folds, or appears only in the final position of all the folds it
+ * does participate in.) A better solution with far fewer false
+ * positives, and that would fill the nodes more completely, would
+ * be to actually have available all the multi-character folds to
+ * test against, and to back-off only far enough to be sure that
+ * this node isn't ending with a partial one. <upper_parse> is set
+ * further below (if we need to reparse the node) to include just
+ * up through that final non-problematic character that this code
+ * identifies, so when it is set to less than the full node, we can
+ * skip the rest of this */
+ if (FOLD && p < RExC_end && upper_parse == MAX_NODE_STRING_SIZE) {
+
+ const STRLEN full_len = len;
+
+ assert(len >= MAX_NODE_STRING_SIZE);
+
+ /* Here, <s> points to the final byte of the final character.
+ * Look backwards through the string until find a non-
+ * problematic character */
+
+ if (! UTF) {
+
+ /* This has no multi-char folds to non-UTF characters */
+ if (ASCII_FOLD_RESTRICTED) {
+ goto loopdone;
+ }
+
+ while (--s >= s0 && IS_NON_FINAL_FOLD(*s)) { }
+ len = s - s0 + 1;
+ }
+ else {
+ if (! PL_NonL1NonFinalFold) {
+ PL_NonL1NonFinalFold = _new_invlist_C_array(
+ NonL1_Perl_Non_Final_Folds_invlist);
+ }
+
+ /* Point to the first byte of the final character */
+ s = (char *) utf8_hop((U8 *) s, -1);
+
+ while (s >= s0) { /* Search backwards until find
+ non-problematic char */
+ if (UTF8_IS_INVARIANT(*s)) {
+
+ /* There are no ascii characters that participate
+ * in multi-char folds under /aa. In EBCDIC, the
+ * non-ascii invariants are all control characters,
+ * so don't ever participate in any folds. */
+ if (ASCII_FOLD_RESTRICTED
+ || ! IS_NON_FINAL_FOLD(*s))
+ {
+ break;
+ }
+ }
+ else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
+ if (! IS_NON_FINAL_FOLD(TWO_BYTE_UTF8_TO_NATIVE(
+ *s, *(s+1))))
+ {
+ break;
+ }
+ }
+ else if (! _invlist_contains_cp(
+ PL_NonL1NonFinalFold,
+ valid_utf8_to_uvchr((U8 *) s, NULL)))
+ {
+ break;
+ }
+
+ /* Here, the current character is problematic in that
+ * it does occur in the non-final position of some
+ * fold, so try the character before it, but have to
+ * special case the very first byte in the string, so
+ * we don't read outside the string */
+ s = (s == s0) ? s -1 : (char *) utf8_hop((U8 *) s, -1);
+ } /* End of loop backwards through the string */
+
+ /* If there were only problematic characters in the string,
+ * <s> will point to before s0, in which case the length
+ * should be 0, otherwise include the length of the
+ * non-problematic character just found */
+ len = (s < s0) ? 0 : s - s0 + UTF8SKIP(s);
+ }
+
+ /* Here, have found the final character, if any, that is
+ * non-problematic as far as ending the node without splitting
+ * it across a potential multi-char fold. <len> contains the
+ * number of bytes in the node up-to and including that
+ * character, or is 0 if there is no such character, meaning
+ * the whole node contains only problematic characters. In
+ * this case, give up and just take the node as-is. We can't
+ * do any better */
+ if (len == 0) {
+ len = full_len;
+
+ /* If the node ends in an 's' we make sure it stays EXACTF,
+ * as if it turns into an EXACTFU, it could later get
+ * joined with another 's' that would then wrongly match
+ * the sharp s */
+ if (maybe_exactfu && isALPHA_FOLD_EQ(ender, 's'))
+ {
+ maybe_exactfu = FALSE;
+ }
+ } else {
+
+ /* Here, the node does contain some characters that aren't
+ * problematic. If one such is the final character in the
+ * node, we are done */
+ if (len == full_len) {
+ goto loopdone;
+ }
+ else if (len + ((UTF) ? UTF8SKIP(s) : 1) == full_len) {
+
+ /* If the final character is problematic, but the
+ * penultimate is not, back-off that last character to
+ * later start a new node with it */
+ p = oldp;
+ goto loopdone;
+ }
+
+ /* Here, the final non-problematic character is earlier
+ * in the input than the penultimate character. What we do
+ * is reparse from the beginning, going up only as far as
+ * this final ok one, thus guaranteeing that the node ends
+ * in an acceptable character. The reason we reparse is
+ * that we know how far in the character is, but we don't
+ * know how to correlate its position with the input parse.
+ * An alternate implementation would be to build that
+ * correlation as we go along during the original parse,
+ * but that would entail extra work for every node, whereas
+ * this code gets executed only when the string is too
+ * large for the node, and the final two characters are
+ * problematic, an infrequent occurrence. Yet another
+ * possible strategy would be to save the tail of the
+ * string, and the next time regatom is called, initialize
+ * with that. The problem with this is that unless you
+ * back off one more character, you won't be guaranteed
+ * regatom will get called again, unless regbranch,
+ * regpiece ... are also changed. If you do back off that
+ * extra character, so that there is input guaranteed to
+ * force calling regatom, you can't handle the case where
+ * just the first character in the node is acceptable. I
+ * (khw) decided to try this method which doesn't have that
+ * pitfall; if performance issues are found, we can do a
+ * combination of the current approach plus that one */
+ upper_parse = len;
+ len = 0;
+ s = s0;
+ goto reparse;
+ }
+ } /* End of verifying node ends with an appropriate char */
+
+ loopdone: /* Jumped to when encounters something that shouldn't be
+ in the node */
+
+ /* I (khw) don't know if you can get here with zero length, but the
+ * old code handled this situation by creating a zero-length EXACT
+ * node. Might as well be NOTHING instead */
+ if (len == 0) {
+ OP(ret) = NOTHING;
+ }
+ else {
+ if (FOLD) {
+ /* If 'maybe_exact' is still set here, means there are no
+ * code points in the node that participate in folds;
+ * similarly for 'maybe_exactfu' and code points that match
+ * differently depending on UTF8ness of the target string
+ * (for /u), or depending on locale for /l */
+ if (maybe_exact) {
+ OP(ret) = (LOC)
+ ? EXACTL
+ : EXACT;
+ }
+ else if (maybe_exactfu) {
+ OP(ret) = (LOC)
+ ? EXACTFLU8
+ : EXACTFU;
+ }
+ }
+ alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, len, ender,
+ FALSE /* Don't look to see if could
+ be turned into an EXACT
+ node, as we have already
+ computed that */
+ );
+ }
+
+ RExC_parse = p - 1;
+ Set_Node_Cur_Length(ret, parse_start);
+ nextchar(pRExC_state);
+ {
+ /* len is STRLEN which is unsigned, need to copy to signed */
+ IV iv = len;
+ if (iv < 0)
+ vFAIL("Internal disaster");
+ }
+
+ } /* End of label 'defchar:' */
+ break;
+ } /* End of giant switch on input character */
+
+ return(ret);
+}
+
+STATIC char *
+S_regpatws(RExC_state_t *pRExC_state, char *p , const bool recognize_comment )
+{
+ /* Returns the next non-pattern-white space, non-comment character (the
+ * latter only if 'recognize_comment is true) in the string p, which is
+ * ended by RExC_end. See also reg_skipcomment */
+ const char *e = RExC_end;
+
+ PERL_ARGS_ASSERT_REGPATWS;
+
+ while (p < e) {
+ STRLEN len;
+ if ((len = is_PATWS_safe(p, e, UTF))) {
+ p += len;
+ }
+ else if (recognize_comment && *p == '#') {
+ p = reg_skipcomment(pRExC_state, p);
+ }
+ else
+ break;
+ }
+ return p;
+}
+
+STATIC void
+S_populate_ANYOF_from_invlist(pTHX_ regnode *node, SV** invlist_ptr)
+{
+ /* Uses the inversion list '*invlist_ptr' to populate the ANYOF 'node'. It
+ * sets up the bitmap and any flags, removing those code points from the
+ * inversion list, setting it to NULL should it become completely empty */
+
+ PERL_ARGS_ASSERT_POPULATE_ANYOF_FROM_INVLIST;
+ assert(PL_regkind[OP(node)] == ANYOF);
+
+ ANYOF_BITMAP_ZERO(node);
+ if (*invlist_ptr) {
+
+ /* This gets set if we actually need to modify things */
+ bool change_invlist = FALSE;
+
+ UV start, end;
+
+ /* Start looking through *invlist_ptr */
+ invlist_iterinit(*invlist_ptr);
+ while (invlist_iternext(*invlist_ptr, &start, &end)) {
+ UV high;
+ int i;
+
+ if (end == UV_MAX && start <= NUM_ANYOF_CODE_POINTS) {
+ ANYOF_FLAGS(node) |= ANYOF_MATCHES_ALL_ABOVE_BITMAP;
+ }
+ else if (end >= NUM_ANYOF_CODE_POINTS) {
+ ANYOF_FLAGS(node) |= ANYOF_HAS_UTF8_NONBITMAP_MATCHES;
+ }
+
+ /* Quit if are above what we should change */
+ if (start >= NUM_ANYOF_CODE_POINTS) {
+ break;
+ }
+
+ change_invlist = TRUE;
+
+ /* Set all the bits in the range, up to the max that we are doing */
+ high = (end < NUM_ANYOF_CODE_POINTS - 1)
+ ? end
+ : NUM_ANYOF_CODE_POINTS - 1;
+ for (i = start; i <= (int) high; i++) {
+ if (! ANYOF_BITMAP_TEST(node, i)) {
+ ANYOF_BITMAP_SET(node, i);
+ }
+ }
+ }
+ invlist_iterfinish(*invlist_ptr);
+
+ /* Done with loop; remove any code points that are in the bitmap from
+ * *invlist_ptr; similarly for code points above the bitmap if we have
+ * a flag to match all of them anyways */
+ if (change_invlist) {
+ _invlist_subtract(*invlist_ptr, PL_InBitmap, invlist_ptr);
+ }
+ if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
+ _invlist_intersection(*invlist_ptr, PL_InBitmap, invlist_ptr);
+ }
+
+ /* If have completely emptied it, remove it completely */
+ if (_invlist_len(*invlist_ptr) == 0) {
+ SvREFCNT_dec_NN(*invlist_ptr);
+ *invlist_ptr = NULL;
+ }
+ }
+}
+
+/* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
+ Character classes ([:foo:]) can also be negated ([:^foo:]).
+ Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
+ Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
+ but trigger failures because they are currently unimplemented. */
+
+#define POSIXCC_DONE(c) ((c) == ':')
+#define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
+#define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
+
+PERL_STATIC_INLINE I32
+S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value, const bool strict)
+{
+ I32 namedclass = OOB_NAMEDCLASS;
+
+ PERL_ARGS_ASSERT_REGPPOSIXCC;
+
+ if (value == '[' && RExC_parse + 1 < RExC_end &&
+ /* I smell either [: or [= or [. -- POSIX has been here, right? */
+ POSIXCC(UCHARAT(RExC_parse)))
+ {
+ const char c = UCHARAT(RExC_parse);
+ char* const s = RExC_parse++;
+
+ while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
+ RExC_parse++;
+ if (RExC_parse == RExC_end) {
+ if (strict) {
+
+ /* Try to give a better location for the error (than the end of
+ * the string) by looking for the matching ']' */
+ RExC_parse = s;
+ while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
+ RExC_parse++;
+ }
+ vFAIL2("Unmatched '%c' in POSIX class", c);
+ }
+ /* Grandfather lone [:, [=, [. */
+ RExC_parse = s;
+ }
+ else {
+ const char* const t = RExC_parse++; /* skip over the c */
+ assert(*t == c);
+
+ if (UCHARAT(RExC_parse) == ']') {
+ const char *posixcc = s + 1;
+ RExC_parse++; /* skip over the ending ] */
+
+ if (*s == ':') {
+ const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
+ const I32 skip = t - posixcc;
+
+ /* Initially switch on the length of the name. */
+ switch (skip) {
+ case 4:
+ if (memEQ(posixcc, "word", 4)) /* this is not POSIX,
+ this is the Perl \w
+ */
+ namedclass = ANYOF_WORDCHAR;
+ break;
+ case 5:
+ /* Names all of length 5. */
+ /* alnum alpha ascii blank cntrl digit graph lower
+ print punct space upper */
+ /* Offset 4 gives the best switch position. */
+ switch (posixcc[4]) {
+ case 'a':
+ if (memEQ(posixcc, "alph", 4)) /* alpha */
+ namedclass = ANYOF_ALPHA;
+ break;
+ case 'e':
+ if (memEQ(posixcc, "spac", 4)) /* space */
+ namedclass = ANYOF_SPACE;
+ break;
+ case 'h':
+ if (memEQ(posixcc, "grap", 4)) /* graph */
+ namedclass = ANYOF_GRAPH;
+ break;
+ case 'i':
+ if (memEQ(posixcc, "asci", 4)) /* ascii */
+ namedclass = ANYOF_ASCII;
+ break;
+ case 'k':
+ if (memEQ(posixcc, "blan", 4)) /* blank */
+ namedclass = ANYOF_BLANK;
+ break;
+ case 'l':
+ if (memEQ(posixcc, "cntr", 4)) /* cntrl */
+ namedclass = ANYOF_CNTRL;
+ break;
+ case 'm':
+ if (memEQ(posixcc, "alnu", 4)) /* alnum */
+ namedclass = ANYOF_ALPHANUMERIC;
+ break;
+ case 'r':
+ if (memEQ(posixcc, "lowe", 4)) /* lower */
+ namedclass = (FOLD) ? ANYOF_CASED : ANYOF_LOWER;
+ else if (memEQ(posixcc, "uppe", 4)) /* upper */
+ namedclass = (FOLD) ? ANYOF_CASED : ANYOF_UPPER;
+ break;
+ case 't':
+ if (memEQ(posixcc, "digi", 4)) /* digit */
+ namedclass = ANYOF_DIGIT;
+ else if (memEQ(posixcc, "prin", 4)) /* print */
+ namedclass = ANYOF_PRINT;
+ else if (memEQ(posixcc, "punc", 4)) /* punct */
+ namedclass = ANYOF_PUNCT;
+ break;
+ }
+ break;
+ case 6:
+ if (memEQ(posixcc, "xdigit", 6))
+ namedclass = ANYOF_XDIGIT;
+ break;
+ }
+
+ if (namedclass == OOB_NAMEDCLASS)
+ vFAIL2utf8f(
+ "POSIX class [:%"UTF8f":] unknown",
+ UTF8fARG(UTF, t - s - 1, s + 1));
+
+ /* The #defines are structured so each complement is +1 to
+ * the normal one */
+ if (complement) {
+ namedclass++;
+ }
+ assert (posixcc[skip] == ':');
+ assert (posixcc[skip+1] == ']');
+ } else if (!SIZE_ONLY) {
+ /* [[=foo=]] and [[.foo.]] are still future. */
+
+ /* adjust RExC_parse so the warning shows after
+ the class closes */
+ while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
+ RExC_parse++;
+ vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
+ }
+ } else {
+ /* Maternal grandfather:
+ * "[:" ending in ":" but not in ":]" */
+ if (strict) {
+ vFAIL("Unmatched '[' in POSIX class");
+ }
+
+ /* Grandfather lone [:, [=, [. */
+ RExC_parse = s;
+ }
+ }
+ }
+
+ return namedclass;
+}
+
+STATIC bool
+S_could_it_be_a_POSIX_class(RExC_state_t *pRExC_state)
+{
+ /* This applies some heuristics at the current parse position (which should
+ * be at a '[') to see if what follows might be intended to be a [:posix:]
+ * class. It returns true if it really is a posix class, of course, but it
+ * also can return true if it thinks that what was intended was a posix
+ * class that didn't quite make it.
+ *
+ * It will return true for
+ * [:alphanumerics:
+ * [:alphanumerics] (as long as the ] isn't followed immediately by a
+ * ')' indicating the end of the (?[
+ * [:any garbage including %^&$ punctuation:]
+ *
+ * This is designed to be called only from S_handle_regex_sets; it could be
+ * easily adapted to be called from the spot at the beginning of regclass()
+ * that checks to see in a normal bracketed class if the surrounding []
+ * have been omitted ([:word:] instead of [[:word:]]). But doing so would
+ * change long-standing behavior, so I (khw) didn't do that */
+ char* p = RExC_parse + 1;
+ char first_char = *p;
+
+ PERL_ARGS_ASSERT_COULD_IT_BE_A_POSIX_CLASS;
+
+ assert(*(p - 1) == '[');
+
+ if (! POSIXCC(first_char)) {
+ return FALSE;
+ }
+
+ p++;
+ while (p < RExC_end && isWORDCHAR(*p)) p++;
+
+ if (p >= RExC_end) {
+ return FALSE;
+ }
+
+ if (p - RExC_parse > 2 /* Got at least 1 word character */
+ && (*p == first_char
+ || (*p == ']' && p + 1 < RExC_end && *(p + 1) != ')')))
+ {
+ return TRUE;
+ }
+
+ p = (char *) memchr(RExC_parse, ']', RExC_end - RExC_parse);
+
+ return (p
+ && p - RExC_parse > 2 /* [:] evaluates to colon;
+ [::] is a bad posix class. */
+ && first_char == *(p - 1));
+}
+
+STATIC unsigned int
+S_regex_set_precedence(const U8 my_operator) {
+
+ /* Returns the precedence in the (?[...]) construct of the input operator,
+ * specified by its character representation. The precedence follows
+ * general Perl rules, but it extends this so that ')' and ']' have (low)
+ * precedence even though they aren't really operators */
+
+ switch (my_operator) {
+ case '!':
+ return 5;
+ case '&':
+ return 4;
+ case '^':
+ case '|':
+ case '+':
+ case '-':
+ return 3;
+ case ')':
+ return 2;
+ case ']':
+ return 1;
+ }
+
+ NOT_REACHED; /* NOTREACHED */
+ return 0; /* Silence compiler warning */
+}
+
+STATIC regnode *
+S_handle_regex_sets(pTHX_ RExC_state_t *pRExC_state, SV** return_invlist,
+ I32 *flagp, U32 depth,
+ char * const oregcomp_parse)
+{
+ /* Handle the (?[...]) construct to do set operations */
+
+ U8 curchar; /* Current character being parsed */
+ UV start, end; /* End points of code point ranges */
+ SV* final = NULL; /* The end result inversion list */
+ SV* result_string; /* 'final' stringified */
+ AV* stack; /* stack of operators and operands not yet
+ resolved */
+ AV* fence_stack = NULL; /* A stack containing the positions in
+ 'stack' of where the undealt-with left
+ parens would be if they were actually
+ put there */
+ IV fence = 0; /* Position of where most recent undealt-
+ with left paren in stack is; -1 if none.
+ */
+ STRLEN len; /* Temporary */
+ regnode* node; /* Temporary, and final regnode returned by
+ this function */
+ const bool save_fold = FOLD; /* Temporary */
+ char *save_end, *save_parse; /* Temporaries */
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_HANDLE_REGEX_SETS;
+
+ if (LOC) { /* XXX could make valid in UTF-8 locales */
+ vFAIL("(?[...]) not valid in locale");
+ }
+ RExC_uni_semantics = 1; /* The use of this operator implies /u. This
+ is required so that the compile time values
+ are valid in all runtime cases */
+
+ /* This will return only an ANYOF regnode, or (unlikely) something smaller
+ * (such as EXACT). Thus we can skip most everything if just sizing. We
+ * call regclass to handle '[]' so as to not have to reinvent its parsing
+ * rules here (throwing away the size it computes each time). And, we exit
+ * upon an unescaped ']' that isn't one ending a regclass. To do both
+ * these things, we need to realize that something preceded by a backslash
+ * is escaped, so we have to keep track of backslashes */
+ if (SIZE_ONLY) {
+ UV depth = 0; /* how many nested (?[...]) constructs */
+
+ while (RExC_parse < RExC_end) {
+ SV* current = NULL;
+ RExC_parse = regpatws(pRExC_state, RExC_parse,
+ TRUE); /* means recognize comments */
+ switch (*RExC_parse) {
+ case '?':
+ if (RExC_parse[1] == '[') depth++, RExC_parse++;
+ /* FALLTHROUGH */
+ default:
+ break;
+ case '\\':
+ /* Skip the next byte (which could cause us to end up in
+ * the middle of a UTF-8 character, but since none of those
+ * are confusable with anything we currently handle in this
+ * switch (invariants all), it's safe. We'll just hit the
+ * default: case next time and keep on incrementing until
+ * we find one of the invariants we do handle. */
+ RExC_parse++;
+ break;
+ case '[':
+ {
+ /* If this looks like it is a [:posix:] class, leave the
+ * parse pointer at the '[' to fool regclass() into
+ * thinking it is part of a '[[:posix:]]'. That function
+ * will use strict checking to force a syntax error if it
+ * doesn't work out to a legitimate class */
+ bool is_posix_class
+ = could_it_be_a_POSIX_class(pRExC_state);
+ if (! is_posix_class) {
+ RExC_parse++;
+ }
+
+ /* regclass() can only return RESTART_UTF8 if multi-char
+ folds are allowed. */
+ if (!regclass(pRExC_state, flagp,depth+1,
+ is_posix_class, /* parse the whole char
+ class only if not a
+ posix class */
+ FALSE, /* don't allow multi-char folds */
+ TRUE, /* silence non-portable warnings. */
+ TRUE, /* strict */
+ ¤t
+ ))
+ FAIL2("panic: regclass returned NULL to handle_sets, "
+ "flags=%#"UVxf"", (UV) *flagp);
+
+ /* function call leaves parse pointing to the ']', except
+ * if we faked it */
+ if (is_posix_class) {
+ RExC_parse--;
+ }
+
+ SvREFCNT_dec(current); /* In case it returned something */
+ break;
+ }
+
+ case ']':
+ if (depth--) break;
+ RExC_parse++;
+ if (RExC_parse < RExC_end
+ && *RExC_parse == ')')
+ {
+ node = reganode(pRExC_state, ANYOF, 0);
+ RExC_size += ANYOF_SKIP;
+ nextchar(pRExC_state);
+ Set_Node_Length(node,
+ RExC_parse - oregcomp_parse + 1); /* MJD */
+ return node;
+ }
+ goto no_close;
+ }
+ RExC_parse++;
+ }
+
+ no_close:
+ FAIL("Syntax error in (?[...])");
+ }
+
+ /* Pass 2 only after this. */
+ Perl_ck_warner_d(aTHX_
+ packWARN(WARN_EXPERIMENTAL__REGEX_SETS),
+ "The regex_sets feature is experimental" REPORT_LOCATION,
+ UTF8fARG(UTF, (RExC_parse - RExC_precomp), RExC_precomp),
+ UTF8fARG(UTF,
+ RExC_end - RExC_start - (RExC_parse - RExC_precomp),
+ RExC_precomp + (RExC_parse - RExC_precomp)));
+
+ /* Everything in this construct is a metacharacter. Operands begin with
+ * either a '\' (for an escape sequence), or a '[' for a bracketed
+ * character class. Any other character should be an operator, or
+ * parenthesis for grouping. Both types of operands are handled by calling
+ * regclass() to parse them. It is called with a parameter to indicate to
+ * return the computed inversion list. The parsing here is implemented via
+ * a stack. Each entry on the stack is a single character representing one
+ * of the operators; or else a pointer to an operand inversion list. */
+
+#define IS_OPERAND(a) (! SvIOK(a))
+
+ /* The stack is kept in Łukasiewicz order. (That's pronounced similar
+ * to luke-a-shave-itch (or -itz), but people who didn't want to bother
+ * with prounouncing it called it Reverse Polish instead, but now that YOU
+ * know how to prounounce it you can use the correct term, thus giving due
+ * credit to the person who invented it, and impressing your geek friends.
+ * Wikipedia says that the pronounciation of "Ł" has been changing so that
+ * it is now more like an English initial W (as in wonk) than an L.)
+ *
+ * This means that, for example, 'a | b & c' is stored on the stack as
+ *
+ * c [4]
+ * b [3]
+ * & [2]
+ * a [1]
+ * | [0]
+ *
+ * where the numbers in brackets give the stack [array] element number.
+ * In this implementation, parentheses are not stored on the stack.
+ * Instead a '(' creates a "fence" so that the part of the stack below the
+ * fence is invisible except to the corresponding ')' (this allows us to
+ * replace testing for parens, by using instead subtraction of the fence
+ * position). As new operands are processed they are pushed onto the stack
+ * (except as noted in the next paragraph). New operators of higher
+ * precedence than the current final one are inserted on the stack before
+ * the lhs operand (so that when the rhs is pushed next, everything will be
+ * in the correct positions shown above. When an operator of equal or
+ * lower precedence is encountered in parsing, all the stacked operations
+ * of equal or higher precedence are evaluated, leaving the result as the
+ * top entry on the stack. This makes higher precedence operations
+ * evaluate before lower precedence ones, and causes operations of equal
+ * precedence to left associate.
+ *
+ * The only unary operator '!' is immediately pushed onto the stack when
+ * encountered. When an operand is encountered, if the top of the stack is
+ * a '!", the complement is immediately performed, and the '!' popped. The
+ * resulting value is treated as a new operand, and the logic in the
+ * previous paragraph is executed. Thus in the expression
+ * [a] + ! [b]
+ * the stack looks like
+ *
+ * !
+ * a
+ * +
+ *
+ * as 'b' gets parsed, the latter gets evaluated to '!b', and the stack
+ * becomes
+ *
+ * !b
+ * a
+ * +
+ *
+ * A ')' is treated as an operator with lower precedence than all the
+ * aforementioned ones, which causes all operations on the stack above the
+ * corresponding '(' to be evaluated down to a single resultant operand.
+ * Then the fence for the '(' is removed, and the operand goes through the
+ * algorithm above, without the fence.
+ *
+ * A separate stack is kept of the fence positions, so that the position of
+ * the latest so-far unbalanced '(' is at the top of it.
+ *
+ * The ']' ending the construct is treated as the lowest operator of all,
+ * so that everything gets evaluated down to a single operand, which is the
+ * result */
+
+ sv_2mortal((SV *)(stack = newAV()));
+ sv_2mortal((SV *)(fence_stack = newAV()));
+
+ while (RExC_parse < RExC_end) {
+ I32 top_index; /* Index of top-most element in 'stack' */
+ SV** top_ptr; /* Pointer to top 'stack' element */
+ SV* current = NULL; /* To contain the current inversion list
+ operand */
+ SV* only_to_avoid_leaks;
+
+ /* Skip white space */
+ RExC_parse = regpatws(pRExC_state, RExC_parse,
+ TRUE /* means recognize comments */ );
+ if (RExC_parse >= RExC_end) {
+ Perl_croak(aTHX_ "panic: Read past end of '(?[ ])'");
+ }
+
+ curchar = UCHARAT(RExC_parse);
+
+redo_curchar:
+
+ top_index = av_tindex(stack);
+
+ switch (curchar) {
+ SV** stacked_ptr; /* Ptr to something already on 'stack' */
+ char stacked_operator; /* The topmost operator on the 'stack'. */
+ SV* lhs; /* Operand to the left of the operator */
+ SV* rhs; /* Operand to the right of the operator */
+ SV* fence_ptr; /* Pointer to top element of the fence
+ stack */
+
+ case '(':
+
+ if (RExC_parse < RExC_end && (UCHARAT(RExC_parse + 1) == '?'))
+ {
+ /* If is a '(?', could be an embedded '(?flags:(?[...])'.
+ * This happens when we have some thing like
+ *
+ * my $thai_or_lao = qr/(?[ \p{Thai} + \p{Lao} ])/;
+ * ...
+ * qr/(?[ \p{Digit} & $thai_or_lao ])/;
+ *
+ * Here we would be handling the interpolated
+ * '$thai_or_lao'. We handle this by a recursive call to
+ * ourselves which returns the inversion list the
+ * interpolated expression evaluates to. We use the flags
+ * from the interpolated pattern. */
+ U32 save_flags = RExC_flags;
+ const char * save_parse;
+
+ RExC_parse += 2; /* Skip past the '(?' */
+ save_parse = RExC_parse;
+
+ /* Parse any flags for the '(?' */
+ parse_lparen_question_flags(pRExC_state);
+
+ if (RExC_parse == save_parse /* Makes sure there was at
+ least one flag (or else
+ this embedding wasn't
+ compiled) */
+ || RExC_parse >= RExC_end - 4
+ || UCHARAT(RExC_parse) != ':'
+ || UCHARAT(++RExC_parse) != '('
+ || UCHARAT(++RExC_parse) != '?'
+ || UCHARAT(++RExC_parse) != '[')
+ {
+
+ /* In combination with the above, this moves the
+ * pointer to the point just after the first erroneous
+ * character (or if there are no flags, to where they
+ * should have been) */
+ if (RExC_parse >= RExC_end - 4) {
+ RExC_parse = RExC_end;
+ }
+ else if (RExC_parse != save_parse) {
+ RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+ }
+ vFAIL("Expecting '(?flags:(?[...'");
+ }
+
+ /* Recurse, with the meat of the embedded expression */
+ RExC_parse++;
+ (void) handle_regex_sets(pRExC_state, ¤t, flagp,
+ depth+1, oregcomp_parse);
+
+ /* Here, 'current' contains the embedded expression's
+ * inversion list, and RExC_parse points to the trailing
+ * ']'; the next character should be the ')' */
+ RExC_parse++;
+ assert(RExC_parse < RExC_end && UCHARAT(RExC_parse) == ')');
+
+ /* Then the ')' matching the original '(' handled by this
+ * case: statement */
+ RExC_parse++;
+ assert(RExC_parse < RExC_end && UCHARAT(RExC_parse) == ')');
+
+ RExC_parse++;
+ RExC_flags = save_flags;
+ goto handle_operand;
+ }
+
+ /* A regular '('. Look behind for illegal syntax */
+ if (top_index - fence >= 0) {
+ /* If the top entry on the stack is an operator, it had
+ * better be a '!', otherwise the entry below the top
+ * operand should be an operator */
+ if ( ! (top_ptr = av_fetch(stack, top_index, FALSE))
+ || (! IS_OPERAND(*top_ptr) && SvUV(*top_ptr) != '!')
+ || top_index - fence < 1
+ || ! (stacked_ptr = av_fetch(stack,
+ top_index - 1,
+ FALSE))
+ || IS_OPERAND(*stacked_ptr))
+ {
+ RExC_parse++;
+ vFAIL("Unexpected '(' with no preceding operator");
+ }
+ }
+
+ /* Stack the position of this undealt-with left paren */
+ fence = top_index + 1;
+ av_push(fence_stack, newSViv(fence));
+ break;
+
+ case '\\':
+ /* regclass() can only return RESTART_UTF8 if multi-char
+ folds are allowed. */
+ if (!regclass(pRExC_state, flagp,depth+1,
+ TRUE, /* means parse just the next thing */
+ FALSE, /* don't allow multi-char folds */
+ FALSE, /* don't silence non-portable warnings. */
+ TRUE, /* strict */
+ ¤t))
+ {
+ FAIL2("panic: regclass returned NULL to handle_sets, "
+ "flags=%#"UVxf"", (UV) *flagp);
+ }
+
+ /* regclass() will return with parsing just the \ sequence,
+ * leaving the parse pointer at the next thing to parse */
+ RExC_parse--;
+ goto handle_operand;
+
+ case '[': /* Is a bracketed character class */
+ {
+ bool is_posix_class = could_it_be_a_POSIX_class(pRExC_state);
+
+ if (! is_posix_class) {
+ RExC_parse++;
+ }
+
+ /* regclass() can only return RESTART_UTF8 if multi-char
+ folds are allowed. */
+ if(!regclass(pRExC_state, flagp,depth+1,
+ is_posix_class, /* parse the whole char class
+ only if not a posix class */
+ FALSE, /* don't allow multi-char folds */
+ FALSE, /* don't silence non-portable warnings. */
+ TRUE, /* strict */
+ ¤t
+ ))
+ {
+ FAIL2("panic: regclass returned NULL to handle_sets, "
+ "flags=%#"UVxf"", (UV) *flagp);
+ }
+
+ /* function call leaves parse pointing to the ']', except if we
+ * faked it */
+ if (is_posix_class) {
+ RExC_parse--;
+ }
+
+ goto handle_operand;
+ }
+
+ case ']':
+ if (top_index >= 1) {
+ goto join_operators;
+ }
+
+ /* Only a single operand on the stack: are done */
+ goto done;
+
+ case ')':
+ if (av_tindex(fence_stack) < 0) {
+ RExC_parse++;
+ vFAIL("Unexpected ')'");
+ }
+
+ /* If at least two thing on the stack, treat this as an
+ * operator */
+ if (top_index - fence >= 1) {
+ goto join_operators;
+ }
+
+ /* Here only a single thing on the fenced stack, and there is a
+ * fence. Get rid of it */
+ fence_ptr = av_pop(fence_stack);
+ assert(fence_ptr);
+ fence = SvIV(fence_ptr) - 1;
+ SvREFCNT_dec_NN(fence_ptr);
+ fence_ptr = NULL;
+
+ if (fence < 0) {
+ fence = 0;
+ }
+
+ /* Having gotten rid of the fence, we pop the operand at the
+ * stack top and process it as a newly encountered operand */
+ current = av_pop(stack);
+ assert(IS_OPERAND(current));
+ goto handle_operand;
+
+ case '&':
+ case '|':
+ case '+':
+ case '-':
+ case '^':
+
+ /* These binary operators should have a left operand already
+ * parsed */
+ if ( top_index - fence < 0
+ || top_index - fence == 1
+ || ( ! (top_ptr = av_fetch(stack, top_index, FALSE)))
+ || ! IS_OPERAND(*top_ptr))
+ {
+ goto unexpected_binary;
+ }
+
+ /* If only the one operand is on the part of the stack visible
+ * to us, we just place this operator in the proper position */
+ if (top_index - fence < 2) {
+
+ /* Place the operator before the operand */
+
+ SV* lhs = av_pop(stack);
+ av_push(stack, newSVuv(curchar));
+ av_push(stack, lhs);
+ break;
+ }
+
+ /* But if there is something else on the stack, we need to
+ * process it before this new operator if and only if the
+ * stacked operation has equal or higher precedence than the
+ * new one */
+
+ join_operators:
+
+ /* The operator on the stack is supposed to be below both its
+ * operands */
+ if ( ! (stacked_ptr = av_fetch(stack, top_index - 2, FALSE))
+ || IS_OPERAND(*stacked_ptr))
+ {
+ /* But if not, it's legal and indicates we are completely
+ * done if and only if we're currently processing a ']',
+ * which should be the final thing in the expression */
+ if (curchar == ']') {
+ goto done;
+ }
+
+ unexpected_binary:
+ RExC_parse++;
+ vFAIL2("Unexpected binary operator '%c' with no "
+ "preceding operand", curchar);
+ }
+ stacked_operator = (char) SvUV(*stacked_ptr);
+
+ if (regex_set_precedence(curchar)
+ > regex_set_precedence(stacked_operator))
+ {
+ /* Here, the new operator has higher precedence than the
+ * stacked one. This means we need to add the new one to
+ * the stack to await its rhs operand (and maybe more
+ * stuff). We put it before the lhs operand, leaving
+ * untouched the stacked operator and everything below it
+ * */
+ lhs = av_pop(stack);
+ assert(IS_OPERAND(lhs));
+
+ av_push(stack, newSVuv(curchar));
+ av_push(stack, lhs);
+ break;
+ }
+
+ /* Here, the new operator has equal or lower precedence than
+ * what's already there. This means the operation already
+ * there should be performed now, before the new one. */
+ rhs = av_pop(stack);
+ lhs = av_pop(stack);
+
+ assert(IS_OPERAND(rhs));
+ assert(IS_OPERAND(lhs));
+
+ switch (stacked_operator) {
+ case '&':
+ _invlist_intersection(lhs, rhs, &rhs);
+ break;
+
+ case '|':
+ case '+':
+ _invlist_union(lhs, rhs, &rhs);
+ break;
+
+ case '-':
+ _invlist_subtract(lhs, rhs, &rhs);
+ break;
+
+ case '^': /* The union minus the intersection */
+ {
+ SV* i = NULL;
+ SV* u = NULL;
+ SV* element;
+
+ _invlist_union(lhs, rhs, &u);
+ _invlist_intersection(lhs, rhs, &i);
+ /* _invlist_subtract will overwrite rhs
+ without freeing what it already contains */
+ element = rhs;
+ _invlist_subtract(u, i, &rhs);
+ SvREFCNT_dec_NN(i);
+ SvREFCNT_dec_NN(u);
+ SvREFCNT_dec_NN(element);
+ break;
+ }
+ }
+ SvREFCNT_dec(lhs);
+
+ /* Here, the higher precedence operation has been done, and the
+ * result is in 'rhs'. We overwrite the stacked operator with
+ * the result. Then we redo this code to either push the new
+ * operator onto the stack or perform any higher precedence
+ * stacked operation */
+ only_to_avoid_leaks = av_pop(stack);
+ SvREFCNT_dec(only_to_avoid_leaks);
+ av_push(stack, rhs);
+ goto redo_curchar;
+
+ case '!': /* Highest priority, right associative, so just push
+ onto stack */
+ av_push(stack, newSVuv(curchar));
+ break;
+
+ default:
+ RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+ vFAIL("Unexpected character");
+
+ handle_operand:
+
+ /* Here 'current' is the operand. If something is already on the
+ * stack, we have to check if it is a !. */
+ top_index = av_tindex(stack); /* Code above may have altered the
+ * stack in the time since we
+ * earlier set 'top_index'. */
+ if (top_index - fence >= 0) {
+ /* If the top entry on the stack is an operator, it had better
+ * be a '!', otherwise the entry below the top operand should
+ * be an operator */
+ top_ptr = av_fetch(stack, top_index, FALSE);
+ assert(top_ptr);
+ if (! IS_OPERAND(*top_ptr)) {
+
+ /* The only permissible operator at the top of the stack is
+ * '!', which is applied immediately to this operand. */
+ curchar = (char) SvUV(*top_ptr);
+ if (curchar != '!') {
+ SvREFCNT_dec(current);
+ vFAIL2("Unexpected binary operator '%c' with no "
+ "preceding operand", curchar);
+ }
+
+ _invlist_invert(current);
+
+ only_to_avoid_leaks = av_pop(stack);
+ SvREFCNT_dec(only_to_avoid_leaks);
+ top_index = av_tindex(stack);
+
+ /* And we redo with the inverted operand. This allows
+ * handling multiple ! in a row */
+ goto handle_operand;
+ }
+ /* Single operand is ok only for the non-binary ')'
+ * operator */
+ else if ((top_index - fence == 0 && curchar != ')')
+ || (top_index - fence > 0
+ && (! (stacked_ptr = av_fetch(stack,
+ top_index - 1,
+ FALSE))
+ || IS_OPERAND(*stacked_ptr))))
+ {
+ SvREFCNT_dec(current);
+ vFAIL("Operand with no preceding operator");
+ }
+ }
+
+ /* Here there was nothing on the stack or the top element was
+ * another operand. Just add this new one */
+ av_push(stack, current);
+
+ } /* End of switch on next parse token */
+
+ RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+ } /* End of loop parsing through the construct */
+
+ done:
+ if (av_tindex(fence_stack) >= 0) {
+ vFAIL("Unmatched (");
+ }
+
+ if (av_tindex(stack) < 0 /* Was empty */
+ || ((final = av_pop(stack)) == NULL)
+ || ! IS_OPERAND(final)
+ || av_tindex(stack) >= 0) /* More left on stack */
+ {
+ SvREFCNT_dec(final);
+ vFAIL("Incomplete expression within '(?[ ])'");
+ }
+
+ /* Here, 'final' is the resultant inversion list from evaluating the
+ * expression. Return it if so requested */
+ if (return_invlist) {
+ *return_invlist = final;
+ return END;
+ }
+
+ /* Otherwise generate a resultant node, based on 'final'. regclass() is
+ * expecting a string of ranges and individual code points */
+ invlist_iterinit(final);
+ result_string = newSVpvs("");
+ while (invlist_iternext(final, &start, &end)) {
+ if (start == end) {
+ Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}", start);
+ }
+ else {
+ Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}-\\x{%"UVXf"}",
+ start, end);
+ }
+ }
+
+ /* About to generate an ANYOF (or similar) node from the inversion list we
+ * have calculated */
+ save_parse = RExC_parse;
+ RExC_parse = SvPV(result_string, len);
+ save_end = RExC_end;
+ RExC_end = RExC_parse + len;
+
+ /* We turn off folding around the call, as the class we have constructed
+ * already has all folding taken into consideration, and we don't want
+ * regclass() to add to that */
+ RExC_flags &= ~RXf_PMf_FOLD;
+ /* regclass() can only return RESTART_UTF8 if multi-char folds are allowed.
+ */
+ node = regclass(pRExC_state, flagp,depth+1,
+ FALSE, /* means parse the whole char class */
+ FALSE, /* don't allow multi-char folds */
+ TRUE, /* silence non-portable warnings. The above may very
+ well have generated non-portable code points, but
+ they're valid on this machine */
+ FALSE, /* similarly, no need for strict */
+ NULL
+ );
+ if (!node)
+ FAIL2("panic: regclass returned NULL to handle_sets, flags=%#"UVxf,
+ PTR2UV(flagp));
+ if (save_fold) {
+ RExC_flags |= RXf_PMf_FOLD;
+ }
+ RExC_parse = save_parse + 1;
+ RExC_end = save_end;
+ SvREFCNT_dec_NN(final);
+ SvREFCNT_dec_NN(result_string);
+
+ nextchar(pRExC_state);
+ Set_Node_Length(node, RExC_parse - oregcomp_parse + 1); /* MJD */
+ return node;
+}
+#undef IS_OPERAND
+
+STATIC void
+S_add_above_Latin1_folds(pTHX_ RExC_state_t *pRExC_state, const U8 cp, SV** invlist)
+{
+ /* This hard-codes the Latin1/above-Latin1 folding rules, so that an
+ * innocent-looking character class, like /[ks]/i won't have to go out to
+ * disk to find the possible matches.
+ *
+ * This should be called only for a Latin1-range code points, cp, which is
+ * known to be involved in a simple fold with other code points above
+ * Latin1. It would give false results if /aa has been specified.
+ * Multi-char folds are outside the scope of this, and must be handled
+ * specially.
+ *
+ * XXX It would be better to generate these via regen, in case a new
+ * version of the Unicode standard adds new mappings, though that is not
+ * really likely, and may be caught by the default: case of the switch
+ * below. */
+
+ PERL_ARGS_ASSERT_ADD_ABOVE_LATIN1_FOLDS;
+
+ assert(HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(cp));
+
+ switch (cp) {
+ case 'k':
+ case 'K':
+ *invlist =
+ add_cp_to_invlist(*invlist, KELVIN_SIGN);
+ break;
+ case 's':
+ case 'S':
+ *invlist = add_cp_to_invlist(*invlist, LATIN_SMALL_LETTER_LONG_S);
+ break;
+ case MICRO_SIGN:
+ *invlist = add_cp_to_invlist(*invlist, GREEK_CAPITAL_LETTER_MU);
+ *invlist = add_cp_to_invlist(*invlist, GREEK_SMALL_LETTER_MU);
+ break;
+ case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
+ case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
+ *invlist = add_cp_to_invlist(*invlist, ANGSTROM_SIGN);
+ break;
+ case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
+ *invlist = add_cp_to_invlist(*invlist,
+ LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
+ break;
+ case LATIN_SMALL_LETTER_SHARP_S:
+ *invlist = add_cp_to_invlist(*invlist, LATIN_CAPITAL_LETTER_SHARP_S);
+ break;
+ default:
+ /* Use deprecated warning to increase the chances of this being
+ * output */
+ if (PASS2) {
+ ckWARN2reg_d(RExC_parse, "Perl folding rules are not up-to-date for 0x%02X; please use the perlbug utility to report;", cp);
+ }
+ break;
+ }
+}
+
+STATIC AV *
+S_add_multi_match(pTHX_ AV* multi_char_matches, SV* multi_string, const STRLEN cp_count)
+{
+ /* This adds the string scalar <multi_string> to the array
+ * <multi_char_matches>. <multi_string> is known to have exactly
+ * <cp_count> code points in it. This is used when constructing a
+ * bracketed character class and we find something that needs to match more
+ * than a single character.
+ *
+ * <multi_char_matches> is actually an array of arrays. Each top-level
+ * element is an array that contains all the strings known so far that are
+ * the same length. And that length (in number of code points) is the same
+ * as the index of the top-level array. Hence, the [2] element is an
+ * array, each element thereof is a string containing TWO code points;
+ * while element [3] is for strings of THREE characters, and so on. Since
+ * this is for multi-char strings there can never be a [0] nor [1] element.
+ *
+ * When we rewrite the character class below, we will do so such that the
+ * longest strings are written first, so that it prefers the longest
+ * matching strings first. This is done even if it turns out that any
+ * quantifier is non-greedy, out of this programmer's (khw) laziness. Tom
+ * Christiansen has agreed that this is ok. This makes the test for the
+ * ligature 'ffi' come before the test for 'ff', for example */
+
+ AV* this_array;
+ AV** this_array_ptr;
+
+ PERL_ARGS_ASSERT_ADD_MULTI_MATCH;
+
+ if (! multi_char_matches) {
+ multi_char_matches = newAV();
+ }
+
+ if (av_exists(multi_char_matches, cp_count)) {
+ this_array_ptr = (AV**) av_fetch(multi_char_matches, cp_count, FALSE);
+ this_array = *this_array_ptr;
+ }
+ else {
+ this_array = newAV();
+ av_store(multi_char_matches, cp_count,
+ (SV*) this_array);
+ }
+ av_push(this_array, multi_string);
+
+ return multi_char_matches;
+}
+
+/* The names of properties whose definitions are not known at compile time are
+ * stored in this SV, after a constant heading. So if the length has been
+ * changed since initialization, then there is a run-time definition. */
+#define HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION \
+ (SvCUR(listsv) != initial_listsv_len)
+
+STATIC regnode *
+S_regclass(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth,
+ const bool stop_at_1, /* Just parse the next thing, don't
+ look for a full character class */
+ bool allow_multi_folds,
+ const bool silence_non_portable, /* Don't output warnings
+ about too large
+ characters */
+ const bool strict,
+ SV** ret_invlist /* Return an inversion list, not a node */
+ )
+{
+ /* parse a bracketed class specification. Most of these will produce an
+ * ANYOF node; but something like [a] will produce an EXACT node; [aA], an
+ * EXACTFish node; [[:ascii:]], a POSIXA node; etc. It is more complex
+ * under /i with multi-character folds: it will be rewritten following the
+ * paradigm of this example, where the <multi-fold>s are characters which
+ * fold to multiple character sequences:
+ * /[abc\x{multi-fold1}def\x{multi-fold2}ghi]/i
+ * gets effectively rewritten as:
+ * /(?:\x{multi-fold1}|\x{multi-fold2}|[abcdefghi]/i
+ * reg() gets called (recursively) on the rewritten version, and this
+ * function will return what it constructs. (Actually the <multi-fold>s
+ * aren't physically removed from the [abcdefghi], it's just that they are
+ * ignored in the recursion by means of a flag:
+ * <RExC_in_multi_char_class>.)
+ *
+ * ANYOF nodes contain a bit map for the first NUM_ANYOF_CODE_POINTS
+ * characters, with the corresponding bit set if that character is in the
+ * list. For characters above this, a range list or swash is used. There
+ * are extra bits for \w, etc. in locale ANYOFs, as what these match is not
+ * determinable at compile time
+ *
+ * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs
+ * to be restarted. This can only happen if ret_invlist is non-NULL.
+ */
+
+ UV prevvalue = OOB_UNICODE, save_prevvalue = OOB_UNICODE;
+ IV range = 0;
+ UV value = OOB_UNICODE, save_value = OOB_UNICODE;
+ regnode *ret;
+ STRLEN numlen;
+ IV namedclass = OOB_NAMEDCLASS;
+ char *rangebegin = NULL;
+ bool need_class = 0;
+ SV *listsv = NULL;
+ STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
+ than just initialized. */
+ SV* properties = NULL; /* Code points that match \p{} \P{} */
+ SV* posixes = NULL; /* Code points that match classes like [:word:],
+ extended beyond the Latin1 range. These have to
+ be kept separate from other code points for much
+ of this function because their handling is
+ different under /i, and for most classes under
+ /d as well */
+ SV* nposixes = NULL; /* Similarly for [:^word:]. These are kept
+ separate for a while from the non-complemented
+ versions because of complications with /d
+ matching */
+ SV* simple_posixes = NULL; /* But under some conditions, the classes can be
+ treated more simply than the general case,
+ leading to less compilation and execution
+ work */
+ UV element_count = 0; /* Number of distinct elements in the class.
+ Optimizations may be possible if this is tiny */
+ AV * multi_char_matches = NULL; /* Code points that fold to more than one
+ character; used under /i */
+ UV n;
+ char * stop_ptr = RExC_end; /* where to stop parsing */
+ const bool skip_white = cBOOL(ret_invlist); /* ignore unescaped white
+ space? */
+
+ /* Unicode properties are stored in a swash; this holds the current one
+ * being parsed. If this swash is the only above-latin1 component of the
+ * character class, an optimization is to pass it directly on to the
+ * execution engine. Otherwise, it is set to NULL to indicate that there
+ * are other things in the class that have to be dealt with at execution
+ * time */
+ SV* swash = NULL; /* Code points that match \p{} \P{} */
+
+ /* Set if a component of this character class is user-defined; just passed
+ * on to the engine */
+ bool has_user_defined_property = FALSE;
+
+ /* inversion list of code points this node matches only when the target
+ * string is in UTF-8. (Because is under /d) */
+ SV* depends_list = NULL;
+
+ /* Inversion list of code points this node matches regardless of things
+ * like locale, folding, utf8ness of the target string */
+ SV* cp_list = NULL;
+
+ /* Like cp_list, but code points on this list need to be checked for things
+ * that fold to/from them under /i */
+ SV* cp_foldable_list = NULL;
+
+ /* Like cp_list, but code points on this list are valid only when the
+ * runtime locale is UTF-8 */
+ SV* only_utf8_locale_list = NULL;
+
+ /* In a range, if one of the endpoints is non-character-set portable,
+ * meaning that it hard-codes a code point that may mean a different
+ * charactger in ASCII vs. EBCDIC, as opposed to, say, a literal 'A' or a
+ * mnemonic '\t' which each mean the same character no matter which
+ * character set the platform is on. */
+ unsigned int non_portable_endpoint = 0;
+
+ /* Is the range unicode? which means on a platform that isn't 1-1 native
+ * to Unicode (i.e. non-ASCII), each code point in it should be considered
+ * to be a Unicode value. */
+ bool unicode_range = FALSE;
+ bool invert = FALSE; /* Is this class to be complemented */
+
+ bool warn_super = ALWAYS_WARN_SUPER;
+
+ regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
+ case we need to change the emitted regop to an EXACT. */
+ const char * orig_parse = RExC_parse;
+ const SSize_t orig_size = RExC_size;
+ bool posixl_matches_all = FALSE; /* Does /l class have both e.g. \W,\w ? */
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGCLASS;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ DEBUG_PARSE("clas");
+
+ /* Assume we are going to generate an ANYOF node. */
+ ret = reganode(pRExC_state,
+ (LOC)
+ ? ANYOFL
+ : ANYOF,
+ 0);
+
+ if (SIZE_ONLY) {
+ RExC_size += ANYOF_SKIP;
+ listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
+ }
+ else {
+ ANYOF_FLAGS(ret) = 0;
+
+ RExC_emit += ANYOF_SKIP;
+ listsv = newSVpvs_flags("# comment\n", SVs_TEMP);
+ initial_listsv_len = SvCUR(listsv);
+ SvTEMP_off(listsv); /* Grr, TEMPs and mortals are conflated. */
+ }
+
+ if (skip_white) {
+ RExC_parse = regpatws(pRExC_state, RExC_parse,
+ FALSE /* means don't recognize comments */ );
+ }
+
+ if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
+ RExC_parse++;
+ invert = TRUE;
+ allow_multi_folds = FALSE;
+ MARK_NAUGHTY(1);
+ if (skip_white) {
+ RExC_parse = regpatws(pRExC_state, RExC_parse,
+ FALSE /* means don't recognize comments */ );
+ }
+ }
+
+ /* Check that they didn't say [:posix:] instead of [[:posix:]] */
+ if (!SIZE_ONLY && RExC_parse < RExC_end && POSIXCC(UCHARAT(RExC_parse))) {
+ const char *s = RExC_parse;
+ const char c = *s++;
+
+ if (*s == '^') {
+ s++;
+ }
+ while (isWORDCHAR(*s))
+ s++;
+ if (*s && c == *s && s[1] == ']') {
+ SAVEFREESV(RExC_rx_sv);
+ ckWARN3reg(s+2,
+ "POSIX syntax [%c %c] belongs inside character classes",
+ c, c);
+ (void)ReREFCNT_inc(RExC_rx_sv);
+ }
+ }
+
+ /* If the caller wants us to just parse a single element, accomplish this
+ * by faking the loop ending condition */
+ if (stop_at_1 && RExC_end > RExC_parse) {
+ stop_ptr = RExC_parse + 1;
+ }
+
+ /* allow 1st char to be ']' (allowing it to be '-' is dealt with later) */
+ if (UCHARAT(RExC_parse) == ']')
+ goto charclassloop;
+
+ while (1) {
+ if (RExC_parse >= stop_ptr) {
+ break;
+ }
+
+ if (skip_white) {
+ RExC_parse = regpatws(pRExC_state, RExC_parse,
+ FALSE /* means don't recognize comments */ );
+ }
+
+ if (UCHARAT(RExC_parse) == ']') {
+ break;
+ }
+
+ charclassloop:
+
+ namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
+ save_value = value;
+ save_prevvalue = prevvalue;
+
+ if (!range) {
+ rangebegin = RExC_parse;
+ element_count++;
+ non_portable_endpoint = 0;
+ }
+ if (UTF) {
+ value = utf8n_to_uvchr((U8*)RExC_parse,
+ RExC_end - RExC_parse,
+ &numlen, UTF8_ALLOW_DEFAULT);
+ RExC_parse += numlen;
+ }
+ else
+ value = UCHARAT(RExC_parse++);
+
+ if (value == '['
+ && RExC_parse < RExC_end
+ && POSIXCC(UCHARAT(RExC_parse)))
+ {
+ namedclass = regpposixcc(pRExC_state, value, strict);
+ }
+ else if (value == '\\') {
+ /* Is a backslash; get the code point of the char after it */
+ if (UTF && ! UTF8_IS_INVARIANT(UCHARAT(RExC_parse))) {
+ value = utf8n_to_uvchr((U8*)RExC_parse,
+ RExC_end - RExC_parse,
+ &numlen, UTF8_ALLOW_DEFAULT);
+ RExC_parse += numlen;
+ }
+ else
+ value = UCHARAT(RExC_parse++);
+
+ /* Some compilers cannot handle switching on 64-bit integer
+ * values, therefore value cannot be an UV. Yes, this will
+ * be a problem later if we want switch on Unicode.
+ * A similar issue a little bit later when switching on
+ * namedclass. --jhi */
+
+ /* If the \ is escaping white space when white space is being
+ * skipped, it means that that white space is wanted literally, and
+ * is already in 'value'. Otherwise, need to translate the escape
+ * into what it signifies. */
+ if (! skip_white || ! is_PATWS_cp(value)) switch ((I32)value) {
+
+ case 'w': namedclass = ANYOF_WORDCHAR; break;
+ case 'W': namedclass = ANYOF_NWORDCHAR; break;
+ case 's': namedclass = ANYOF_SPACE; break;
+ case 'S': namedclass = ANYOF_NSPACE; break;
+ case 'd': namedclass = ANYOF_DIGIT; break;
+ case 'D': namedclass = ANYOF_NDIGIT; break;
+ case 'v': namedclass = ANYOF_VERTWS; break;
+ case 'V': namedclass = ANYOF_NVERTWS; break;
+ case 'h': namedclass = ANYOF_HORIZWS; break;
+ case 'H': namedclass = ANYOF_NHORIZWS; break;
+ case 'N': /* Handle \N{NAME} in class */
+ {
+ const char * const backslash_N_beg = RExC_parse - 2;
+ int cp_count;
+
+ if (! grok_bslash_N(pRExC_state,
+ NULL, /* No regnode */
+ &value, /* Yes single value */
+ &cp_count, /* Multiple code pt count */
+ flagp,
+ depth)
+ ) {
+
+ if (*flagp & RESTART_UTF8)
+ FAIL("panic: grok_bslash_N set RESTART_UTF8");
+
+ if (cp_count < 0) {
+ vFAIL("\\N in a character class must be a named character: \\N{...}");
+ }
+ else if (cp_count == 0) {
+ if (strict) {
+ RExC_parse++; /* Position after the "}" */
+ vFAIL("Zero length \\N{}");
+ }
+ else if (PASS2) {
+ ckWARNreg(RExC_parse,
+ "Ignoring zero length \\N{} in character class");
+ }
+ }
+ else { /* cp_count > 1 */
+ if (! RExC_in_multi_char_class) {
+ if (invert || range || *RExC_parse == '-') {
+ if (strict) {
+ RExC_parse--;
+ vFAIL("\\N{} in inverted character class or as a range end-point is restricted to one character");
+ }
+ else if (PASS2) {
+ ckWARNreg(RExC_parse, "Using just the first character returned by \\N{} in character class");
+ }
+ break; /* <value> contains the first code
+ point. Drop out of the switch to
+ process it */
+ }
+ else {
+ SV * multi_char_N = newSVpvn(backslash_N_beg,
+ RExC_parse - backslash_N_beg);
+ multi_char_matches
+ = add_multi_match(multi_char_matches,
+ multi_char_N,
+ cp_count);
+ }
+ }
+ } /* End of cp_count != 1 */
+
+ /* This element should not be processed further in this
+ * class */
+ element_count--;
+ value = save_value;
+ prevvalue = save_prevvalue;
+ continue; /* Back to top of loop to get next char */
+ }
+
+ /* Here, is a single code point, and <value> contains it */
+ unicode_range = TRUE; /* \N{} are Unicode */
+ }
+ break;
+ case 'p':
+ case 'P':
+ {
+ char *e;
+
+ /* We will handle any undefined properties ourselves */
+ U8 swash_init_flags = _CORE_SWASH_INIT_RETURN_IF_UNDEF
+ /* And we actually would prefer to get
+ * the straight inversion list of the
+ * swash, since we will be accessing it
+ * anyway, to save a little time */
+ |_CORE_SWASH_INIT_ACCEPT_INVLIST;
+
+ if (RExC_parse >= RExC_end)
+ vFAIL2("Empty \\%c{}", (U8)value);
+ if (*RExC_parse == '{') {
+ const U8 c = (U8)value;
+ e = strchr(RExC_parse++, '}');
+ if (!e)
+ vFAIL2("Missing right brace on \\%c{}", c);
+ while (isSPACE(*RExC_parse))
+ RExC_parse++;
+ if (e == RExC_parse)
+ vFAIL2("Empty \\%c{}", c);
+ n = e - RExC_parse;
+ while (isSPACE(*(RExC_parse + n - 1)))
+ n--;
+ }
+ else {
+ e = RExC_parse;
+ n = 1;
+ }
+ if (!SIZE_ONLY) {
+ SV* invlist;
+ char* name;
+
+ if (UCHARAT(RExC_parse) == '^') {
+ RExC_parse++;
+ n--;
+ /* toggle. (The rhs xor gets the single bit that
+ * differs between P and p; the other xor inverts just
+ * that bit) */
+ value ^= 'P' ^ 'p';
+
+ while (isSPACE(*RExC_parse)) {
+ RExC_parse++;
+ n--;
+ }
+ }
+ /* Try to get the definition of the property into
+ * <invlist>. If /i is in effect, the effective property
+ * will have its name be <__NAME_i>. The design is
+ * discussed in commit
+ * 2f833f5208e26b208886e51e09e2c072b5eabb46 */
+ name = savepv(Perl_form(aTHX_
+ "%s%.*s%s\n",
+ (FOLD) ? "__" : "",
+ (int)n,
+ RExC_parse,
+ (FOLD) ? "_i" : ""
+ ));
+
+ /* Look up the property name, and get its swash and
+ * inversion list, if the property is found */
+ if (swash) {
+ SvREFCNT_dec_NN(swash);
+ }
+ swash = _core_swash_init("utf8", name, &PL_sv_undef,
+ 1, /* binary */
+ 0, /* not tr/// */
+ NULL, /* No inversion list */
+ &swash_init_flags
+ );
+ if (! swash || ! (invlist = _get_swash_invlist(swash))) {
+ HV* curpkg = (IN_PERL_COMPILETIME)
+ ? PL_curstash
+ : CopSTASH(PL_curcop);
+ if (swash) {
+ SvREFCNT_dec_NN(swash);
+ swash = NULL;
+ }
+
+ /* Here didn't find it. It could be a user-defined
+ * property that will be available at run-time. If we
+ * accept only compile-time properties, is an error;
+ * otherwise add it to the list for run-time look up */
+ if (ret_invlist) {
+ RExC_parse = e + 1;
+ vFAIL2utf8f(
+ "Property '%"UTF8f"' is unknown",
+ UTF8fARG(UTF, n, name));
+ }
+
+ /* If the property name doesn't already have a package
+ * name, add the current one to it so that it can be
+ * referred to outside it. [perl #121777] */
+ if (curpkg && ! instr(name, "::")) {
+ char* pkgname = HvNAME(curpkg);
+ if (strNE(pkgname, "main")) {
+ char* full_name = Perl_form(aTHX_
+ "%s::%s",
+ pkgname,
+ name);
+ n = strlen(full_name);
+ Safefree(name);
+ name = savepvn(full_name, n);
+ }
+ }
+ Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%"UTF8f"\n",
+ (value == 'p' ? '+' : '!'),
+ UTF8fARG(UTF, n, name));
+ has_user_defined_property = TRUE;
+
+ /* We don't know yet, so have to assume that the
+ * property could match something in the Latin1 range,
+ * hence something that isn't utf8. Note that this
+ * would cause things in <depends_list> to match
+ * inappropriately, except that any \p{}, including
+ * this one forces Unicode semantics, which means there
+ * is no <depends_list> */
+ ANYOF_FLAGS(ret)
+ |= ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES;
+ }
+ else {
+
+ /* Here, did get the swash and its inversion list. If
+ * the swash is from a user-defined property, then this
+ * whole character class should be regarded as such */
+ if (swash_init_flags
+ & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY)
+ {
+ has_user_defined_property = TRUE;
+ }
+ else if
+ /* We warn on matching an above-Unicode code point
+ * if the match would return true, except don't
+ * warn for \p{All}, which has exactly one element
+ * = 0 */
+ (_invlist_contains_cp(invlist, 0x110000)
+ && (! (_invlist_len(invlist) == 1
+ && *invlist_array(invlist) == 0)))
+ {
+ warn_super = TRUE;
+ }
+
+
+ /* Invert if asking for the complement */
+ if (value == 'P') {
+ _invlist_union_complement_2nd(properties,
+ invlist,
+ &properties);
+
+ /* The swash can't be used as-is, because we've
+ * inverted things; delay removing it to here after
+ * have copied its invlist above */
+ SvREFCNT_dec_NN(swash);
+ swash = NULL;
+ }
+ else {
+ _invlist_union(properties, invlist, &properties);
+ }
+ }
+ Safefree(name);
+ }
+ RExC_parse = e + 1;
+ namedclass = ANYOF_UNIPROP; /* no official name, but it's
+ named */
+
+ /* \p means they want Unicode semantics */
+ RExC_uni_semantics = 1;
+ }
+ break;
+ case 'n': value = '\n'; break;
+ case 'r': value = '\r'; break;
+ case 't': value = '\t'; break;
+ case 'f': value = '\f'; break;
+ case 'b': value = '\b'; break;
+ case 'e': value = ESC_NATIVE; break;
+ case 'a': value = '\a'; break;
+ case 'o':
+ RExC_parse--; /* function expects to be pointed at the 'o' */
+ {
+ const char* error_msg;
+ bool valid = grok_bslash_o(&RExC_parse,
+ &value,
+ &error_msg,
+ PASS2, /* warnings only in
+ pass 2 */
+ strict,
+ silence_non_portable,
+ UTF);
+ if (! valid) {
+ vFAIL(error_msg);
+ }
+ }
+ non_portable_endpoint++;
+ if (IN_ENCODING && value < 0x100) {
+ goto recode_encoding;
+ }
+ break;
+ case 'x':
+ RExC_parse--; /* function expects to be pointed at the 'x' */
+ {
+ const char* error_msg;
+ bool valid = grok_bslash_x(&RExC_parse,
+ &value,
+ &error_msg,
+ PASS2, /* Output warnings */
+ strict,
+ silence_non_portable,
+ UTF);
+ if (! valid) {
+ vFAIL(error_msg);
+ }
+ }
+ non_portable_endpoint++;
+ if (IN_ENCODING && value < 0x100)
+ goto recode_encoding;
+ break;
+ case 'c':
+ value = grok_bslash_c(*RExC_parse++, PASS2);
+ non_portable_endpoint++;
+ break;
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7':
+ {
+ /* Take 1-3 octal digits */
+ I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
+ numlen = (strict) ? 4 : 3;
+ value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
+ RExC_parse += numlen;
+ if (numlen != 3) {
+ if (strict) {
+ RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+ vFAIL("Need exactly 3 octal digits");
+ }
+ else if (! SIZE_ONLY /* like \08, \178 */
+ && numlen < 3
+ && RExC_parse < RExC_end
+ && isDIGIT(*RExC_parse)
+ && ckWARN(WARN_REGEXP))
+ {
+ SAVEFREESV(RExC_rx_sv);
+ reg_warn_non_literal_string(
+ RExC_parse + 1,
+ form_short_octal_warning(RExC_parse, numlen));
+ (void)ReREFCNT_inc(RExC_rx_sv);
+ }
+ }
+ non_portable_endpoint++;
+ if (IN_ENCODING && value < 0x100)
+ goto recode_encoding;
+ break;
+ }
+ recode_encoding:
+ if (! RExC_override_recoding) {
+ SV* enc = _get_encoding();
+ value = reg_recode((const char)(U8)value, &enc);
+ if (!enc) {
+ if (strict) {
+ vFAIL("Invalid escape in the specified encoding");
+ }
+ else if (PASS2) {
+ ckWARNreg(RExC_parse,
+ "Invalid escape in the specified encoding");
+ }
+ }
+ break;
+ }
+ default:
+ /* Allow \_ to not give an error */
+ if (!SIZE_ONLY && isWORDCHAR(value) && value != '_') {
+ if (strict) {
+ vFAIL2("Unrecognized escape \\%c in character class",
+ (int)value);
+ }
+ else {
+ SAVEFREESV(RExC_rx_sv);
+ ckWARN2reg(RExC_parse,
+ "Unrecognized escape \\%c in character class passed through",
+ (int)value);
+ (void)ReREFCNT_inc(RExC_rx_sv);
+ }
+ }
+ break;
+ } /* End of switch on char following backslash */
+ } /* end of handling backslash escape sequences */
+
+ /* Here, we have the current token in 'value' */
+
+ if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
+ U8 classnum;
+
+ /* a bad range like a-\d, a-[:digit:]. The '-' is taken as a
+ * literal, as is the character that began the false range, i.e.
+ * the 'a' in the examples */
+ if (range) {
+ if (!SIZE_ONLY) {
+ const int w = (RExC_parse >= rangebegin)
+ ? RExC_parse - rangebegin
+ : 0;
+ if (strict) {
+ vFAIL2utf8f(
+ "False [] range \"%"UTF8f"\"",
+ UTF8fARG(UTF, w, rangebegin));
+ }
+ else {
+ SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
+ ckWARN2reg(RExC_parse,
+ "False [] range \"%"UTF8f"\"",
+ UTF8fARG(UTF, w, rangebegin));
+ (void)ReREFCNT_inc(RExC_rx_sv);
+ cp_list = add_cp_to_invlist(cp_list, '-');
+ cp_foldable_list = add_cp_to_invlist(cp_foldable_list,
+ prevvalue);
+ }
+ }
+
+ range = 0; /* this was not a true range */
+ element_count += 2; /* So counts for three values */
+ }
+
+ classnum = namedclass_to_classnum(namedclass);
+
+ if (LOC && namedclass < ANYOF_POSIXL_MAX
+#ifndef HAS_ISASCII
+ && classnum != _CC_ASCII
+#endif
+ ) {
+ /* What the Posix classes (like \w, [:space:]) match in locale
+ * isn't knowable under locale until actual match time. Room
+ * must be reserved (one time per outer bracketed class) to
+ * store such classes. The space will contain a bit for each
+ * named class that is to be matched against. This isn't
+ * needed for \p{} and pseudo-classes, as they are not affected
+ * by locale, and hence are dealt with separately */
+ if (! need_class) {
+ need_class = 1;
+ if (SIZE_ONLY) {
+ RExC_size += ANYOF_POSIXL_SKIP - ANYOF_SKIP;
+ }
+ else {
+ RExC_emit += ANYOF_POSIXL_SKIP - ANYOF_SKIP;
+ }
+ ANYOF_FLAGS(ret) |= ANYOF_MATCHES_POSIXL;
+ ANYOF_POSIXL_ZERO(ret);
+ }
+
+ /* Coverity thinks it is possible for this to be negative; both
+ * jhi and khw think it's not, but be safer */
+ assert(! (ANYOF_FLAGS(ret) & ANYOF_MATCHES_POSIXL)
+ || (namedclass + ((namedclass % 2) ? -1 : 1)) >= 0);
+
+ /* See if it already matches the complement of this POSIX
+ * class */
+ if ((ANYOF_FLAGS(ret) & ANYOF_MATCHES_POSIXL)
+ && ANYOF_POSIXL_TEST(ret, namedclass + ((namedclass % 2)
+ ? -1
+ : 1)))
+ {
+ posixl_matches_all = TRUE;
+ break; /* No need to continue. Since it matches both
+ e.g., \w and \W, it matches everything, and the
+ bracketed class can be optimized into qr/./s */
+ }
+
+ /* Add this class to those that should be checked at runtime */
+ ANYOF_POSIXL_SET(ret, namedclass);
+
+ /* The above-Latin1 characters are not subject to locale rules.
+ * Just add them, in the second pass, to the
+ * unconditionally-matched list */
+ if (! SIZE_ONLY) {
+ SV* scratch_list = NULL;
+
+ /* Get the list of the above-Latin1 code points this
+ * matches */
+ _invlist_intersection_maybe_complement_2nd(PL_AboveLatin1,
+ PL_XPosix_ptrs[classnum],
+
+ /* Odd numbers are complements, like
+ * NDIGIT, NASCII, ... */
+ namedclass % 2 != 0,
+ &scratch_list);
+ /* Checking if 'cp_list' is NULL first saves an extra
+ * clone. Its reference count will be decremented at the
+ * next union, etc, or if this is the only instance, at the
+ * end of the routine */
+ if (! cp_list) {
+ cp_list = scratch_list;
+ }
+ else {
+ _invlist_union(cp_list, scratch_list, &cp_list);
+ SvREFCNT_dec_NN(scratch_list);
+ }
+ continue; /* Go get next character */
+ }
+ }
+ else if (! SIZE_ONLY) {
+
+ /* Here, not in pass1 (in that pass we skip calculating the
+ * contents of this class), and is /l, or is a POSIX class for
+ * which /l doesn't matter (or is a Unicode property, which is
+ * skipped here). */
+ if (namedclass >= ANYOF_POSIXL_MAX) { /* If a special class */
+ if (namedclass != ANYOF_UNIPROP) { /* UNIPROP = \p and \P */
+
+ /* Here, should be \h, \H, \v, or \V. None of /d, /i
+ * nor /l make a difference in what these match,
+ * therefore we just add what they match to cp_list. */
+ if (classnum != _CC_VERTSPACE) {
+ assert( namedclass == ANYOF_HORIZWS
+ || namedclass == ANYOF_NHORIZWS);
+
+ /* It turns out that \h is just a synonym for
+ * XPosixBlank */
+ classnum = _CC_BLANK;
+ }
+
+ _invlist_union_maybe_complement_2nd(
+ cp_list,
+ PL_XPosix_ptrs[classnum],
+ namedclass % 2 != 0, /* Complement if odd
+ (NHORIZWS, NVERTWS)
+ */
+ &cp_list);
+ }
+ }
+ else if (UNI_SEMANTICS
+ || classnum == _CC_ASCII
+ || (DEPENDS_SEMANTICS && (classnum == _CC_DIGIT
+ || classnum == _CC_XDIGIT)))
+ {
+ /* We usually have to worry about /d and /a affecting what
+ * POSIX classes match, with special code needed for /d
+ * because we won't know until runtime what all matches.
+ * But there is no extra work needed under /u, and
+ * [:ascii:] is unaffected by /a and /d; and :digit: and
+ * :xdigit: don't have runtime differences under /d. So we
+ * can special case these, and avoid some extra work below,
+ * and at runtime. */
+ _invlist_union_maybe_complement_2nd(
+ simple_posixes,
+ PL_XPosix_ptrs[classnum],
+ namedclass % 2 != 0,
+ &simple_posixes);
+ }
+ else { /* Garden variety class. If is NUPPER, NALPHA, ...
+ complement and use nposixes */
+ SV** posixes_ptr = namedclass % 2 == 0
+ ? &posixes
+ : &nposixes;
+ _invlist_union_maybe_complement_2nd(
+ *posixes_ptr,
+ PL_XPosix_ptrs[classnum],
+ namedclass % 2 != 0,
+ posixes_ptr);
+ }
+ }
+ } /* end of namedclass \blah */
+
+ if (skip_white) {
+ RExC_parse = regpatws(pRExC_state, RExC_parse,
+ FALSE /* means don't recognize comments */ );
+ }
+
+ /* If 'range' is set, 'value' is the ending of a range--check its
+ * validity. (If value isn't a single code point in the case of a
+ * range, we should have figured that out above in the code that
+ * catches false ranges). Later, we will handle each individual code
+ * point in the range. If 'range' isn't set, this could be the
+ * beginning of a range, so check for that by looking ahead to see if
+ * the next real character to be processed is the range indicator--the
+ * minus sign */
+
+ if (range) {
+#ifdef EBCDIC
+ /* For unicode ranges, we have to test that the Unicode as opposed
+ * to the native values are not decreasing. (Above 255, there is
+ * no difference between native and Unicode) */
+ if (unicode_range && prevvalue < 255 && value < 255) {
+ if (NATIVE_TO_LATIN1(prevvalue) > NATIVE_TO_LATIN1(value)) {
+ goto backwards_range;
+ }
+ }
+ else
+#endif
+ if (prevvalue > value) /* b-a */ {
+ int w;
+#ifdef EBCDIC
+ backwards_range:
+#endif
+ w = RExC_parse - rangebegin;
+ vFAIL2utf8f(
+ "Invalid [] range \"%"UTF8f"\"",
+ UTF8fARG(UTF, w, rangebegin));
+ NOT_REACHED; /* NOTREACHED */
+ }
+ }
+ else {
+ prevvalue = value; /* save the beginning of the potential range */
+ if (! stop_at_1 /* Can't be a range if parsing just one thing */
+ && *RExC_parse == '-')
+ {
+ char* next_char_ptr = RExC_parse + 1;
+ if (skip_white) { /* Get the next real char after the '-' */
+ next_char_ptr = regpatws(pRExC_state,
+ RExC_parse + 1,
+ FALSE); /* means don't recognize
+ comments */
+ }
+
+ /* If the '-' is at the end of the class (just before the ']',
+ * it is a literal minus; otherwise it is a range */
+ if (next_char_ptr < RExC_end && *next_char_ptr != ']') {
+ RExC_parse = next_char_ptr;
+
+ /* a bad range like \w-, [:word:]- ? */
+ if (namedclass > OOB_NAMEDCLASS) {
+ if (strict || (PASS2 && ckWARN(WARN_REGEXP))) {
+ const int w = RExC_parse >= rangebegin
+ ? RExC_parse - rangebegin
+ : 0;
+ if (strict) {
+ vFAIL4("False [] range \"%*.*s\"",
+ w, w, rangebegin);
+ }
+ else if (PASS2) {
+ vWARN4(RExC_parse,
+ "False [] range \"%*.*s\"",
+ w, w, rangebegin);
+ }
+ }
+ if (!SIZE_ONLY) {
+ cp_list = add_cp_to_invlist(cp_list, '-');
+ }
+ element_count++;
+ } else
+ range = 1; /* yeah, it's a range! */
+ continue; /* but do it the next time */
+ }
+ }
+ }
+
+ if (namedclass > OOB_NAMEDCLASS) {
+ continue;
+ }
+
+ /* Here, we have a single value this time through the loop, and
+ * <prevvalue> is the beginning of the range, if any; or <value> if
+ * not. */
+
+ /* non-Latin1 code point implies unicode semantics. Must be set in
+ * pass1 so is there for the whole of pass 2 */
+ if (value > 255) {
+ RExC_uni_semantics = 1;
+ }
+
+ /* Ready to process either the single value, or the completed range.
+ * For single-valued non-inverted ranges, we consider the possibility
+ * of multi-char folds. (We made a conscious decision to not do this
+ * for the other cases because it can often lead to non-intuitive
+ * results. For example, you have the peculiar case that:
+ * "s s" =~ /^[^\xDF]+$/i => Y
+ * "ss" =~ /^[^\xDF]+$/i => N
+ *
+ * See [perl #89750] */
+ if (FOLD && allow_multi_folds && value == prevvalue) {
+ if (value == LATIN_SMALL_LETTER_SHARP_S
+ || (value > 255 && _invlist_contains_cp(PL_HasMultiCharFold,
+ value)))
+ {
+ /* Here <value> is indeed a multi-char fold. Get what it is */
+
+ U8 foldbuf[UTF8_MAXBYTES_CASE];
+ STRLEN foldlen;
+
+ UV folded = _to_uni_fold_flags(
+ value,
+ foldbuf,
+ &foldlen,
+ FOLD_FLAGS_FULL | (ASCII_FOLD_RESTRICTED
+ ? FOLD_FLAGS_NOMIX_ASCII
+ : 0)
+ );
+
+ /* Here, <folded> should be the first character of the
+ * multi-char fold of <value>, with <foldbuf> containing the
+ * whole thing. But, if this fold is not allowed (because of
+ * the flags), <fold> will be the same as <value>, and should
+ * be processed like any other character, so skip the special
+ * handling */
+ if (folded != value) {
+
+ /* Skip if we are recursed, currently parsing the class
+ * again. Otherwise add this character to the list of
+ * multi-char folds. */
+ if (! RExC_in_multi_char_class) {
+ STRLEN cp_count = utf8_length(foldbuf,
+ foldbuf + foldlen);
+ SV* multi_fold = sv_2mortal(newSVpvs(""));
+
+ Perl_sv_catpvf(aTHX_ multi_fold, "\\x{%"UVXf"}", value);
+
+ multi_char_matches
+ = add_multi_match(multi_char_matches,
+ multi_fold,
+ cp_count);
+
+ }
+
+ /* This element should not be processed further in this
+ * class */
+ element_count--;
+ value = save_value;
+ prevvalue = save_prevvalue;
+ continue;
+ }
+ }
+ }
+
+ if (strict && PASS2 && ckWARN(WARN_REGEXP)) {
+ if (range) {
+
+ /* If the range starts above 255, everything is portable and
+ * likely to be so for any forseeable character set, so don't
+ * warn. */
+ if (unicode_range && non_portable_endpoint && prevvalue < 256) {
+ vWARN(RExC_parse, "Both or neither range ends should be Unicode");
+ }
+ else if (prevvalue != value) {
+
+ /* Under strict, ranges that stop and/or end in an ASCII
+ * printable should have each end point be a portable value
+ * for it (preferably like 'A', but we don't warn if it is
+ * a (portable) Unicode name or code point), and the range
+ * must be be all digits or all letters of the same case.
+ * Otherwise, the range is non-portable and unclear as to
+ * what it contains */
+ if ((isPRINT_A(prevvalue) || isPRINT_A(value))
+ && (non_portable_endpoint
+ || ! ((isDIGIT_A(prevvalue) && isDIGIT_A(value))
+ || (isLOWER_A(prevvalue) && isLOWER_A(value))
+ || (isUPPER_A(prevvalue) && isUPPER_A(value)))))
+ {
+ vWARN(RExC_parse, "Ranges of ASCII printables should be some subset of \"0-9\", \"A-Z\", or \"a-z\"");
+ }
+ else if (prevvalue >= 0x660) { /* ARABIC_INDIC_DIGIT_ZERO */
+
+ /* But the nature of Unicode and languages mean we
+ * can't do the same checks for above-ASCII ranges,
+ * except in the case of digit ones. These should
+ * contain only digits from the same group of 10. The
+ * ASCII case is handled just above. 0x660 is the
+ * first digit character beyond ASCII. Hence here, the
+ * range could be a range of digits. Find out. */
+ IV index_start = _invlist_search(PL_XPosix_ptrs[_CC_DIGIT],
+ prevvalue);
+ IV index_final = _invlist_search(PL_XPosix_ptrs[_CC_DIGIT],
+ value);
+
+ /* If the range start and final points are in the same
+ * inversion list element, it means that either both
+ * are not digits, or both are digits in a consecutive
+ * sequence of digits. (So far, Unicode has kept all
+ * such sequences as distinct groups of 10, but assert
+ * to make sure). If the end points are not in the
+ * same element, neither should be a digit. */
+ if (index_start == index_final) {
+ assert(! ELEMENT_RANGE_MATCHES_INVLIST(index_start)
+ || (invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start+1]
+ - invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
+ == 10)
+ /* But actually Unicode did have one group of 11
+ * 'digits' in 5.2, so in case we are operating
+ * on that version, let that pass */
+ || (invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start+1]
+ - invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
+ == 11
+ && invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
+ == 0x19D0)
+ );
+ }
+ else if ((index_start >= 0
+ && ELEMENT_RANGE_MATCHES_INVLIST(index_start))
+ || (index_final >= 0
+ && ELEMENT_RANGE_MATCHES_INVLIST(index_final)))
+ {
+ vWARN(RExC_parse, "Ranges of digits should be from the same group of 10");
+ }
+ }
+ }
+ }
+ if ((! range || prevvalue == value) && non_portable_endpoint) {
+ if (isPRINT_A(value)) {
+ char literal[3];
+ unsigned d = 0;
+ if (isBACKSLASHED_PUNCT(value)) {
+ literal[d++] = '\\';
+ }
+ literal[d++] = (char) value;
+ literal[d++] = '\0';
+
+ vWARN4(RExC_parse,
+ "\"%.*s\" is more clearly written simply as \"%s\"",
+ (int) (RExC_parse - rangebegin),
+ rangebegin,
+ literal
+ );
+ }
+ else if isMNEMONIC_CNTRL(value) {
+ vWARN4(RExC_parse,
+ "\"%.*s\" is more clearly written simply as \"%s\"",
+ (int) (RExC_parse - rangebegin),
+ rangebegin,
+ cntrl_to_mnemonic((char) value)
+ );
+ }
+ }
+ }
+
+ /* Deal with this element of the class */
+ if (! SIZE_ONLY) {
+
+#ifndef EBCDIC
+ cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
+ prevvalue, value);
+#else
+ /* On non-ASCII platforms, for ranges that span all of 0..255, and
+ * ones that don't require special handling, we can just add the
+ * range like we do for ASCII platforms */
+ if ((UNLIKELY(prevvalue == 0) && value >= 255)
+ || ! (prevvalue < 256
+ && (unicode_range
+ || (! non_portable_endpoint
+ && ((isLOWER_A(prevvalue) && isLOWER_A(value))
+ || (isUPPER_A(prevvalue)
+ && isUPPER_A(value)))))))
+ {
+ cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
+ prevvalue, value);
+ }
+ else {
+ /* Here, requires special handling. This can be because it is
+ * a range whose code points are considered to be Unicode, and
+ * so must be individually translated into native, or because
+ * its a subrange of 'A-Z' or 'a-z' which each aren't
+ * contiguous in EBCDIC, but we have defined them to include
+ * only the "expected" upper or lower case ASCII alphabetics.
+ * Subranges above 255 are the same in native and Unicode, so
+ * can be added as a range */
+ U8 start = NATIVE_TO_LATIN1(prevvalue);
+ unsigned j;
+ U8 end = (value < 256) ? NATIVE_TO_LATIN1(value) : 255;
+ for (j = start; j <= end; j++) {
+ cp_foldable_list = add_cp_to_invlist(cp_foldable_list, LATIN1_TO_NATIVE(j));
+ }
+ if (value > 255) {
+ cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
+ 256, value);
+ }
+ }
+#endif
+ }
+
+ range = 0; /* this range (if it was one) is done now */
+ } /* End of loop through all the text within the brackets */
+
+ /* If anything in the class expands to more than one character, we have to
+ * deal with them by building up a substitute parse string, and recursively
+ * calling reg() on it, instead of proceeding */
+ if (multi_char_matches) {
+ SV * substitute_parse = newSVpvn_flags("?:", 2, SVs_TEMP);
+ I32 cp_count;
+ STRLEN len;
+ char *save_end = RExC_end;
+ char *save_parse = RExC_parse;
+ bool first_time = TRUE; /* First multi-char occurrence doesn't get
+ a "|" */
+ I32 reg_flags;
+
+ assert(! invert);
+#if 0 /* Have decided not to deal with multi-char folds in inverted classes,
+ because too confusing */
+ if (invert) {
+ sv_catpv(substitute_parse, "(?:");
+ }
+#endif
+
+ /* Look at the longest folds first */
+ for (cp_count = av_tindex(multi_char_matches); cp_count > 0; cp_count--) {
+
+ if (av_exists(multi_char_matches, cp_count)) {
+ AV** this_array_ptr;
+ SV* this_sequence;
+
+ this_array_ptr = (AV**) av_fetch(multi_char_matches,
+ cp_count, FALSE);
+ while ((this_sequence = av_pop(*this_array_ptr)) !=
+ &PL_sv_undef)
+ {
+ if (! first_time) {
+ sv_catpv(substitute_parse, "|");
+ }
+ first_time = FALSE;
+
+ sv_catpv(substitute_parse, SvPVX(this_sequence));
+ }
+ }
+ }
+
+ /* If the character class contains anything else besides these
+ * multi-character folds, have to include it in recursive parsing */
+ if (element_count) {
+ sv_catpv(substitute_parse, "|[");
+ sv_catpvn(substitute_parse, orig_parse, RExC_parse - orig_parse);
+ sv_catpv(substitute_parse, "]");
+ }
+
+ sv_catpv(substitute_parse, ")");
+#if 0
+ if (invert) {
+ /* This is a way to get the parse to skip forward a whole named
+ * sequence instead of matching the 2nd character when it fails the
+ * first */
+ sv_catpv(substitute_parse, "(*THEN)(*SKIP)(*FAIL)|.)");
+ }
+#endif
+
+ RExC_parse = SvPV(substitute_parse, len);
+ RExC_end = RExC_parse + len;
+ RExC_in_multi_char_class = 1;
+ RExC_override_recoding = 1;
+ RExC_emit = (regnode *)orig_emit;
+
+ ret = reg(pRExC_state, 1, ®_flags, depth+1);
+
+ *flagp |= reg_flags&(HASWIDTH|SIMPLE|SPSTART|POSTPONED|RESTART_UTF8);
+
+ RExC_parse = save_parse;
+ RExC_end = save_end;
+ RExC_in_multi_char_class = 0;
+ RExC_override_recoding = 0;
+ SvREFCNT_dec_NN(multi_char_matches);
+ return ret;
+ }
+
+ /* Here, we've gone through the entire class and dealt with multi-char
+ * folds. We are now in a position that we can do some checks to see if we
+ * can optimize this ANYOF node into a simpler one, even in Pass 1.
+ * Currently we only do two checks:
+ * 1) is in the unlikely event that the user has specified both, eg. \w and
+ * \W under /l, then the class matches everything. (This optimization
+ * is done only to make the optimizer code run later work.)
+ * 2) if the character class contains only a single element (including a
+ * single range), we see if there is an equivalent node for it.
+ * Other checks are possible */
+ if (! ret_invlist /* Can't optimize if returning the constructed
+ inversion list */
+ && (UNLIKELY(posixl_matches_all) || element_count == 1))
+ {
+ U8 op = END;
+ U8 arg = 0;
+
+ if (UNLIKELY(posixl_matches_all)) {
+ op = SANY;
+ }
+ else if (namedclass > OOB_NAMEDCLASS) { /* this is a named class, like
+ \w or [:digit:] or \p{foo}
+ */
+
+ /* All named classes are mapped into POSIXish nodes, with its FLAG
+ * argument giving which class it is */
+ switch ((I32)namedclass) {
+ case ANYOF_UNIPROP:
+ break;
+
+ /* These don't depend on the charset modifiers. They always
+ * match under /u rules */
+ case ANYOF_NHORIZWS:
+ case ANYOF_HORIZWS:
+ namedclass = ANYOF_BLANK + namedclass - ANYOF_HORIZWS;
+ /* FALLTHROUGH */
+
+ case ANYOF_NVERTWS:
+ case ANYOF_VERTWS:
+ op = POSIXU;
+ goto join_posix;
+
+ /* The actual POSIXish node for all the rest depends on the
+ * charset modifier. The ones in the first set depend only on
+ * ASCII or, if available on this platform, also locale */
+ case ANYOF_ASCII:
+ case ANYOF_NASCII:
+#ifdef HAS_ISASCII
+ op = (LOC) ? POSIXL : POSIXA;
+#else
+ op = POSIXA;
+#endif
+ goto join_posix;
+
+ /* The following don't have any matches in the upper Latin1
+ * range, hence /d is equivalent to /u for them. Making it /u
+ * saves some branches at runtime */
+ case ANYOF_DIGIT:
+ case ANYOF_NDIGIT:
+ case ANYOF_XDIGIT:
+ case ANYOF_NXDIGIT:
+ if (! DEPENDS_SEMANTICS) {
+ goto treat_as_default;
+ }
+
+ op = POSIXU;
+ goto join_posix;
+
+ /* The following change to CASED under /i */
+ case ANYOF_LOWER:
+ case ANYOF_NLOWER:
+ case ANYOF_UPPER:
+ case ANYOF_NUPPER:
+ if (FOLD) {
+ namedclass = ANYOF_CASED + (namedclass % 2);
+ }
+ /* FALLTHROUGH */
+
+ /* The rest have more possibilities depending on the charset.
+ * We take advantage of the enum ordering of the charset
+ * modifiers to get the exact node type, */
+ default:
+ treat_as_default:
+ op = POSIXD + get_regex_charset(RExC_flags);
+ if (op > POSIXA) { /* /aa is same as /a */
+ op = POSIXA;
+ }
+
+ join_posix:
+ /* The odd numbered ones are the complements of the
+ * next-lower even number one */
+ if (namedclass % 2 == 1) {
+ invert = ! invert;
+ namedclass--;
+ }
+ arg = namedclass_to_classnum(namedclass);
+ break;
+ }
+ }
+ else if (value == prevvalue) {
+
+ /* Here, the class consists of just a single code point */
+
+ if (invert) {
+ if (! LOC && value == '\n') {
+ op = REG_ANY; /* Optimize [^\n] */
+ *flagp |= HASWIDTH|SIMPLE;
+ MARK_NAUGHTY(1);
+ }
+ }
+ else if (value < 256 || UTF) {
+
+ /* Optimize a single value into an EXACTish node, but not if it
+ * would require converting the pattern to UTF-8. */
+ op = compute_EXACTish(pRExC_state);
+ }
+ } /* Otherwise is a range */
+ else if (! LOC) { /* locale could vary these */
+ if (prevvalue == '0') {
+ if (value == '9') {
+ arg = _CC_DIGIT;
+ op = POSIXA;
+ }
+ }
+ else if (! FOLD || ASCII_FOLD_RESTRICTED) {
+ /* We can optimize A-Z or a-z, but not if they could match
+ * something like the KELVIN SIGN under /i. */
+ if (prevvalue == 'A') {
+ if (value == 'Z'
+#ifdef EBCDIC
+ && ! non_portable_endpoint
+#endif
+ ) {
+ arg = (FOLD) ? _CC_ALPHA : _CC_UPPER;
+ op = POSIXA;
+ }
+ }
+ else if (prevvalue == 'a') {
+ if (value == 'z'
+#ifdef EBCDIC
+ && ! non_portable_endpoint
+#endif
+ ) {
+ arg = (FOLD) ? _CC_ALPHA : _CC_LOWER;
+ op = POSIXA;
+ }
+ }
+ }
+ }
+
+ /* Here, we have changed <op> away from its initial value iff we found
+ * an optimization */
+ if (op != END) {
+
+ /* Throw away this ANYOF regnode, and emit the calculated one,
+ * which should correspond to the beginning, not current, state of
+ * the parse */
+ const char * cur_parse = RExC_parse;
+ RExC_parse = (char *)orig_parse;
+ if ( SIZE_ONLY) {
+ if (! LOC) {
+
+ /* To get locale nodes to not use the full ANYOF size would
+ * require moving the code above that writes the portions
+ * of it that aren't in other nodes to after this point.
+ * e.g. ANYOF_POSIXL_SET */
+ RExC_size = orig_size;
+ }
+ }
+ else {
+ RExC_emit = (regnode *)orig_emit;
+ if (PL_regkind[op] == POSIXD) {
+ if (op == POSIXL) {
+ RExC_contains_locale = 1;
+ }
+ if (invert) {
+ op += NPOSIXD - POSIXD;
+ }
+ }
+ }
+
+ ret = reg_node(pRExC_state, op);
+
+ if (PL_regkind[op] == POSIXD || PL_regkind[op] == NPOSIXD) {
+ if (! SIZE_ONLY) {
+ FLAGS(ret) = arg;
+ }
+ *flagp |= HASWIDTH|SIMPLE;
+ }
+ else if (PL_regkind[op] == EXACT) {
+ alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value,
+ TRUE /* downgradable to EXACT */
+ );
+ }
+
+ RExC_parse = (char *) cur_parse;
+
+ SvREFCNT_dec(posixes);
+ SvREFCNT_dec(nposixes);
+ SvREFCNT_dec(simple_posixes);
+ SvREFCNT_dec(cp_list);
+ SvREFCNT_dec(cp_foldable_list);
+ return ret;
+ }
+ }
+
+ if (SIZE_ONLY)
+ return ret;
+ /****** !SIZE_ONLY (Pass 2) AFTER HERE *********/
+
+ /* If folding, we calculate all characters that could fold to or from the
+ * ones already on the list */
+ if (cp_foldable_list) {
+ if (FOLD) {
+ UV start, end; /* End points of code point ranges */
+
+ SV* fold_intersection = NULL;
+ SV** use_list;
+
+ /* Our calculated list will be for Unicode rules. For locale
+ * matching, we have to keep a separate list that is consulted at
+ * runtime only when the locale indicates Unicode rules. For
+ * non-locale, we just use to the general list */
+ if (LOC) {
+ use_list = &only_utf8_locale_list;
+ }
+ else {
+ use_list = &cp_list;
+ }
+
+ /* Only the characters in this class that participate in folds need
+ * be checked. Get the intersection of this class and all the
+ * possible characters that are foldable. This can quickly narrow
+ * down a large class */
+ _invlist_intersection(PL_utf8_foldable, cp_foldable_list,
+ &fold_intersection);
+
+ /* The folds for all the Latin1 characters are hard-coded into this
+ * program, but we have to go out to disk to get the others. */
+ if (invlist_highest(cp_foldable_list) >= 256) {
+
+ /* This is a hash that for a particular fold gives all
+ * characters that are involved in it */
+ if (! PL_utf8_foldclosures) {
+ _load_PL_utf8_foldclosures();
+ }
+ }
+
+ /* Now look at the foldable characters in this class individually */
+ invlist_iterinit(fold_intersection);
+ while (invlist_iternext(fold_intersection, &start, &end)) {
+ UV j;
+
+ /* Look at every character in the range */
+ for (j = start; j <= end; j++) {
+ U8 foldbuf[UTF8_MAXBYTES_CASE+1];
+ STRLEN foldlen;
+ SV** listp;
+
+ if (j < 256) {
+
+ if (IS_IN_SOME_FOLD_L1(j)) {
+
+ /* ASCII is always matched; non-ASCII is matched
+ * only under Unicode rules (which could happen
+ * under /l if the locale is a UTF-8 one */
+ if (isASCII(j) || ! DEPENDS_SEMANTICS) {
+ *use_list = add_cp_to_invlist(*use_list,
+ PL_fold_latin1[j]);
+ }
+ else {
+ depends_list =
+ add_cp_to_invlist(depends_list,
+ PL_fold_latin1[j]);
+ }
+ }
+
+ if (HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(j)
+ && (! isASCII(j) || ! ASCII_FOLD_RESTRICTED))
+ {
+ add_above_Latin1_folds(pRExC_state,
+ (U8) j,
+ use_list);
+ }
+ continue;
+ }
+
+ /* Here is an above Latin1 character. We don't have the
+ * rules hard-coded for it. First, get its fold. This is
+ * the simple fold, as the multi-character folds have been
+ * handled earlier and separated out */
+ _to_uni_fold_flags(j, foldbuf, &foldlen,
+ (ASCII_FOLD_RESTRICTED)
+ ? FOLD_FLAGS_NOMIX_ASCII
+ : 0);
+
+ /* Single character fold of above Latin1. Add everything in
+ * its fold closure to the list that this node should match.
+ * The fold closures data structure is a hash with the keys
+ * being the UTF-8 of every character that is folded to, like
+ * 'k', and the values each an array of all code points that
+ * fold to its key. e.g. [ 'k', 'K', KELVIN_SIGN ].
+ * Multi-character folds are not included */
+ if ((listp = hv_fetch(PL_utf8_foldclosures,
+ (char *) foldbuf, foldlen, FALSE)))
+ {
+ AV* list = (AV*) *listp;
+ IV k;
+ for (k = 0; k <= av_tindex(list); k++) {
+ SV** c_p = av_fetch(list, k, FALSE);
+ UV c;
+ assert(c_p);
+
+ c = SvUV(*c_p);
+
+ /* /aa doesn't allow folds between ASCII and non- */
+ if ((ASCII_FOLD_RESTRICTED
+ && (isASCII(c) != isASCII(j))))
+ {
+ continue;
+ }
+
+ /* Folds under /l which cross the 255/256 boundary
+ * are added to a separate list. (These are valid
+ * only when the locale is UTF-8.) */
+ if (c < 256 && LOC) {
+ *use_list = add_cp_to_invlist(*use_list, c);
+ continue;
+ }
+
+ if (isASCII(c) || c > 255 || AT_LEAST_UNI_SEMANTICS)
+ {
+ cp_list = add_cp_to_invlist(cp_list, c);
+ }
+ else {
+ /* Similarly folds involving non-ascii Latin1
+ * characters under /d are added to their list */
+ depends_list = add_cp_to_invlist(depends_list,
+ c);
+ }
+ }
+ }
+ }
+ }
+ SvREFCNT_dec_NN(fold_intersection);
+ }
+
+ /* Now that we have finished adding all the folds, there is no reason
+ * to keep the foldable list separate */
+ _invlist_union(cp_list, cp_foldable_list, &cp_list);
+ SvREFCNT_dec_NN(cp_foldable_list);
+ }
+
+ /* And combine the result (if any) with any inversion list from posix
+ * classes. The lists are kept separate up to now because we don't want to
+ * fold the classes (folding of those is automatically handled by the swash
+ * fetching code) */
+ if (simple_posixes) {
+ _invlist_union(cp_list, simple_posixes, &cp_list);
+ SvREFCNT_dec_NN(simple_posixes);
+ }
+ if (posixes || nposixes) {
+ if (posixes && AT_LEAST_ASCII_RESTRICTED) {
+ /* Under /a and /aa, nothing above ASCII matches these */
+ _invlist_intersection(posixes,
+ PL_XPosix_ptrs[_CC_ASCII],
+ &posixes);
+ }
+ if (nposixes) {
+ if (DEPENDS_SEMANTICS) {
+ /* Under /d, everything in the upper half of the Latin1 range
+ * matches these complements */
+ ANYOF_FLAGS(ret) |= ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII;
+ }
+ else if (AT_LEAST_ASCII_RESTRICTED) {
+ /* Under /a and /aa, everything above ASCII matches these
+ * complements */
+ _invlist_union_complement_2nd(nposixes,
+ PL_XPosix_ptrs[_CC_ASCII],
+ &nposixes);
+ }
+ if (posixes) {
+ _invlist_union(posixes, nposixes, &posixes);
+ SvREFCNT_dec_NN(nposixes);
+ }
+ else {
+ posixes = nposixes;
+ }
+ }
+ if (! DEPENDS_SEMANTICS) {
+ if (cp_list) {
+ _invlist_union(cp_list, posixes, &cp_list);
+ SvREFCNT_dec_NN(posixes);
+ }
+ else {
+ cp_list = posixes;
+ }
+ }
+ else {
+ /* Under /d, we put into a separate list the Latin1 things that
+ * match only when the target string is utf8 */
+ SV* nonascii_but_latin1_properties = NULL;
+ _invlist_intersection(posixes, PL_UpperLatin1,
+ &nonascii_but_latin1_properties);
+ _invlist_subtract(posixes, nonascii_but_latin1_properties,
+ &posixes);
+ if (cp_list) {
+ _invlist_union(cp_list, posixes, &cp_list);
+ SvREFCNT_dec_NN(posixes);
+ }
+ else {
+ cp_list = posixes;
+ }
+
+ if (depends_list) {
+ _invlist_union(depends_list, nonascii_but_latin1_properties,
+ &depends_list);
+ SvREFCNT_dec_NN(nonascii_but_latin1_properties);
+ }
+ else {
+ depends_list = nonascii_but_latin1_properties;
+ }
+ }
+ }
+
+ /* And combine the result (if any) with any inversion list from properties.
+ * The lists are kept separate up to now so that we can distinguish the two
+ * in regards to matching above-Unicode. A run-time warning is generated
+ * if a Unicode property is matched against a non-Unicode code point. But,
+ * we allow user-defined properties to match anything, without any warning,
+ * and we also suppress the warning if there is a portion of the character
+ * class that isn't a Unicode property, and which matches above Unicode, \W
+ * or [\x{110000}] for example.
+ * (Note that in this case, unlike the Posix one above, there is no
+ * <depends_list>, because having a Unicode property forces Unicode
+ * semantics */
+ if (properties) {
+ if (cp_list) {
+
+ /* If it matters to the final outcome, see if a non-property
+ * component of the class matches above Unicode. If so, the
+ * warning gets suppressed. This is true even if just a single
+ * such code point is specified, as though not strictly correct if
+ * another such code point is matched against, the fact that they
+ * are using above-Unicode code points indicates they should know
+ * the issues involved */
+ if (warn_super) {
+ warn_super = ! (invert
+ ^ (invlist_highest(cp_list) > PERL_UNICODE_MAX));
+ }
+
+ _invlist_union(properties, cp_list, &cp_list);
+ SvREFCNT_dec_NN(properties);
+ }
+ else {
+ cp_list = properties;
+ }
+
+ if (warn_super) {
+ ANYOF_FLAGS(ret) |= ANYOF_WARN_SUPER;
+ }
+ }
+
+ /* Here, we have calculated what code points should be in the character
+ * class.
+ *
+ * Now we can see about various optimizations. Fold calculation (which we
+ * did above) needs to take place before inversion. Otherwise /[^k]/i
+ * would invert to include K, which under /i would match k, which it
+ * shouldn't. Therefore we can't invert folded locale now, as it won't be
+ * folded until runtime */
+
+ /* If we didn't do folding, it's because some information isn't available
+ * until runtime; set the run-time fold flag for these. (We don't have to
+ * worry about properties folding, as that is taken care of by the swash
+ * fetching). We know to set the flag if we have a non-NULL list for UTF-8
+ * locales, or the class matches at least one 0-255 range code point */
+ if (LOC && FOLD) {
+ if (only_utf8_locale_list) {
+ ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD;
+ }
+ else if (cp_list) { /* Look to see if there a 0-255 code point is in
+ the list */
+ UV start, end;
+ invlist_iterinit(cp_list);
+ if (invlist_iternext(cp_list, &start, &end) && start < 256) {
+ ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD;
+ }
+ invlist_iterfinish(cp_list);
+ }
+ }
+
+ /* Optimize inverted simple patterns (e.g. [^a-z]) when everything is known
+ * at compile time. Besides not inverting folded locale now, we can't
+ * invert if there are things such as \w, which aren't known until runtime
+ * */
+ if (cp_list
+ && invert
+ && ! (ANYOF_FLAGS(ret) & (ANYOF_LOCALE_FLAGS))
+ && ! depends_list
+ && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
+ {
+ _invlist_invert(cp_list);
+
+ /* Any swash can't be used as-is, because we've inverted things */
+ if (swash) {
+ SvREFCNT_dec_NN(swash);
+ swash = NULL;
+ }
+
+ /* Clear the invert flag since have just done it here */
+ invert = FALSE;
+ }
+
+ if (ret_invlist) {
+ assert(cp_list);
+
+ *ret_invlist = cp_list;
+ SvREFCNT_dec(swash);
+
+ /* Discard the generated node */
+ if (SIZE_ONLY) {
+ RExC_size = orig_size;
+ }
+ else {
+ RExC_emit = orig_emit;
+ }
+ return orig_emit;
+ }
+
+ /* Some character classes are equivalent to other nodes. Such nodes take
+ * up less room and generally fewer operations to execute than ANYOF nodes.
+ * Above, we checked for and optimized into some such equivalents for
+ * certain common classes that are easy to test. Getting to this point in
+ * the code means that the class didn't get optimized there. Since this
+ * code is only executed in Pass 2, it is too late to save space--it has
+ * been allocated in Pass 1, and currently isn't given back. But turning
+ * things into an EXACTish node can allow the optimizer to join it to any
+ * adjacent such nodes. And if the class is equivalent to things like /./,
+ * expensive run-time swashes can be avoided. Now that we have more
+ * complete information, we can find things necessarily missed by the
+ * earlier code. I (khw) am not sure how much to look for here. It would
+ * be easy, but perhaps too slow, to check any candidates against all the
+ * node types they could possibly match using _invlistEQ(). */
+
+ if (cp_list
+ && ! invert
+ && ! depends_list
+ && ! (ANYOF_FLAGS(ret) & (ANYOF_LOCALE_FLAGS))
+ && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
+
+ /* We don't optimize if we are supposed to make sure all non-Unicode
+ * code points raise a warning, as only ANYOF nodes have this check.
+ * */
+ && ! ((ANYOF_FLAGS(ret) & ANYOF_WARN_SUPER) && ALWAYS_WARN_SUPER))
+ {
+ UV start, end;
+ U8 op = END; /* The optimzation node-type */
+ const char * cur_parse= RExC_parse;
+
+ invlist_iterinit(cp_list);
+ if (! invlist_iternext(cp_list, &start, &end)) {
+
+ /* Here, the list is empty. This happens, for example, when a
+ * Unicode property is the only thing in the character class, and
+ * it doesn't match anything. (perluniprops.pod notes such
+ * properties) */
+ op = OPFAIL;
+ *flagp |= HASWIDTH|SIMPLE;
+ }
+ else if (start == end) { /* The range is a single code point */
+ if (! invlist_iternext(cp_list, &start, &end)
+
+ /* Don't do this optimization if it would require changing
+ * the pattern to UTF-8 */
+ && (start < 256 || UTF))
+ {
+ /* Here, the list contains a single code point. Can optimize
+ * into an EXACTish node */
+
+ value = start;
+
+ if (! FOLD) {
+ op = (LOC)
+ ? EXACTL
+ : EXACT;
+ }
+ else if (LOC) {
+
+ /* A locale node under folding with one code point can be
+ * an EXACTFL, as its fold won't be calculated until
+ * runtime */
+ op = EXACTFL;
+ }
+ else {
+
+ /* Here, we are generally folding, but there is only one
+ * code point to match. If we have to, we use an EXACT
+ * node, but it would be better for joining with adjacent
+ * nodes in the optimization pass if we used the same
+ * EXACTFish node that any such are likely to be. We can
+ * do this iff the code point doesn't participate in any
+ * folds. For example, an EXACTF of a colon is the same as
+ * an EXACT one, since nothing folds to or from a colon. */
+ if (value < 256) {
+ if (IS_IN_SOME_FOLD_L1(value)) {
+ op = EXACT;
+ }
+ }
+ else {
+ if (_invlist_contains_cp(PL_utf8_foldable, value)) {
+ op = EXACT;
+ }
+ }
+
+ /* If we haven't found the node type, above, it means we
+ * can use the prevailing one */
+ if (op == END) {
+ op = compute_EXACTish(pRExC_state);
+ }
+ }
+ }
+ }
+ else if (start == 0) {
+ if (end == UV_MAX) {
+ op = SANY;
+ *flagp |= HASWIDTH|SIMPLE;
+ MARK_NAUGHTY(1);
+ }
+ else if (end == '\n' - 1
+ && invlist_iternext(cp_list, &start, &end)
+ && start == '\n' + 1 && end == UV_MAX)
+ {
+ op = REG_ANY;
+ *flagp |= HASWIDTH|SIMPLE;
+ MARK_NAUGHTY(1);
+ }
+ }
+ invlist_iterfinish(cp_list);
+
+ if (op != END) {
+ RExC_parse = (char *)orig_parse;
+ RExC_emit = (regnode *)orig_emit;
+
+ ret = reg_node(pRExC_state, op);
+
+ RExC_parse = (char *)cur_parse;
+
+ if (PL_regkind[op] == EXACT) {
+ alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value,
+ TRUE /* downgradable to EXACT */
+ );
+ }
+
+ SvREFCNT_dec_NN(cp_list);
+ return ret;
+ }
+ }
+
+ /* Here, <cp_list> contains all the code points we can determine at
+ * compile time that match under all conditions. Go through it, and
+ * for things that belong in the bitmap, put them there, and delete from
+ * <cp_list>. While we are at it, see if everything above 255 is in the
+ * list, and if so, set a flag to speed up execution */
+
+ populate_ANYOF_from_invlist(ret, &cp_list);
+
+ if (invert) {
+ ANYOF_FLAGS(ret) |= ANYOF_INVERT;
+ }
+
+ /* Here, the bitmap has been populated with all the Latin1 code points that
+ * always match. Can now add to the overall list those that match only
+ * when the target string is UTF-8 (<depends_list>). */
+ if (depends_list) {
+ if (cp_list) {
+ _invlist_union(cp_list, depends_list, &cp_list);
+ SvREFCNT_dec_NN(depends_list);
+ }
+ else {
+ cp_list = depends_list;
+ }
+ ANYOF_FLAGS(ret) |= ANYOF_HAS_UTF8_NONBITMAP_MATCHES;
+ }
+
+ /* If there is a swash and more than one element, we can't use the swash in
+ * the optimization below. */
+ if (swash && element_count > 1) {
+ SvREFCNT_dec_NN(swash);
+ swash = NULL;
+ }
+
+ /* Note that the optimization of using 'swash' if it is the only thing in
+ * the class doesn't have us change swash at all, so it can include things
+ * that are also in the bitmap; otherwise we have purposely deleted that
+ * duplicate information */
+ set_ANYOF_arg(pRExC_state, ret, cp_list,
+ (HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
+ ? listsv : NULL,
+ only_utf8_locale_list,
+ swash, has_user_defined_property);
+
+ *flagp |= HASWIDTH|SIMPLE;
+
+ if (ANYOF_FLAGS(ret) & ANYOF_LOCALE_FLAGS) {
+ RExC_contains_locale = 1;
+ }
+
+ return ret;
+}
+
+#undef HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
+
+STATIC void
+S_set_ANYOF_arg(pTHX_ RExC_state_t* const pRExC_state,
+ regnode* const node,
+ SV* const cp_list,
+ SV* const runtime_defns,
+ SV* const only_utf8_locale_list,
+ SV* const swash,
+ const bool has_user_defined_property)
+{
+ /* Sets the arg field of an ANYOF-type node 'node', using information about
+ * the node passed-in. If there is nothing outside the node's bitmap, the
+ * arg is set to ANYOF_ONLY_HAS_BITMAP. Otherwise, it sets the argument to
+ * the count returned by add_data(), having allocated and stored an array,
+ * av, that that count references, as follows:
+ * av[0] stores the character class description in its textual form.
+ * This is used later (regexec.c:Perl_regclass_swash()) to
+ * initialize the appropriate swash, and is also useful for dumping
+ * the regnode. This is set to &PL_sv_undef if the textual
+ * description is not needed at run-time (as happens if the other
+ * elements completely define the class)
+ * av[1] if &PL_sv_undef, is a placeholder to later contain the swash
+ * computed from av[0]. But if no further computation need be done,
+ * the swash is stored here now (and av[0] is &PL_sv_undef).
+ * av[2] stores the inversion list of code points that match only if the
+ * current locale is UTF-8
+ * av[3] stores the cp_list inversion list for use in addition or instead
+ * of av[0]; used only if cp_list exists and av[1] is &PL_sv_undef.
+ * (Otherwise everything needed is already in av[0] and av[1])
+ * av[4] is set if any component of the class is from a user-defined
+ * property; used only if av[3] exists */
+
+ UV n;
+
+ PERL_ARGS_ASSERT_SET_ANYOF_ARG;
+
+ if (! cp_list && ! runtime_defns && ! only_utf8_locale_list) {
+ assert(! (ANYOF_FLAGS(node)
+ & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+ |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES)));
+ ARG_SET(node, ANYOF_ONLY_HAS_BITMAP);
+ }
+ else {
+ AV * const av = newAV();
+ SV *rv;
+
+ assert(ANYOF_FLAGS(node)
+ & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+ |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES|ANYOF_LOC_FOLD));
+
+ av_store(av, 0, (runtime_defns)
+ ? SvREFCNT_inc(runtime_defns) : &PL_sv_undef);
+ if (swash) {
+ assert(cp_list);
+ av_store(av, 1, swash);
+ SvREFCNT_dec_NN(cp_list);
+ }
+ else {
+ av_store(av, 1, &PL_sv_undef);
+ if (cp_list) {
+ av_store(av, 3, cp_list);
+ av_store(av, 4, newSVuv(has_user_defined_property));
+ }
+ }
+
+ if (only_utf8_locale_list) {
+ av_store(av, 2, only_utf8_locale_list);
+ }
+ else {
+ av_store(av, 2, &PL_sv_undef);
+ }
+
+ rv = newRV_noinc(MUTABLE_SV(av));
+ n = add_data(pRExC_state, STR_WITH_LEN("s"));
+ RExC_rxi->data->data[n] = (void*)rv;
+ ARG_SET(node, n);
+ }
+}
+
+#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
+SV *
+Perl__get_regclass_nonbitmap_data(pTHX_ const regexp *prog,
+ const regnode* node,
+ bool doinit,
+ SV** listsvp,
+ SV** only_utf8_locale_ptr,
+ SV* exclude_list)
+
+{
+ /* For internal core use only.
+ * Returns the swash for the input 'node' in the regex 'prog'.
+ * If <doinit> is 'true', will attempt to create the swash if not already
+ * done.
+ * If <listsvp> is non-null, will return the printable contents of the
+ * swash. This can be used to get debugging information even before the
+ * swash exists, by calling this function with 'doinit' set to false, in
+ * which case the components that will be used to eventually create the
+ * swash are returned (in a printable form).
+ * If <exclude_list> is not NULL, it is an inversion list of things to
+ * exclude from what's returned in <listsvp>.
+ * Tied intimately to how S_set_ANYOF_arg sets up the data structure. Note
+ * that, in spite of this function's name, the swash it returns may include
+ * the bitmap data as well */
+
+ SV *sw = NULL;
+ SV *si = NULL; /* Input swash initialization string */
+ SV* invlist = NULL;
+
+ RXi_GET_DECL(prog,progi);
+ const struct reg_data * const data = prog ? progi->data : NULL;
+
+ PERL_ARGS_ASSERT__GET_REGCLASS_NONBITMAP_DATA;
+
+ assert(ANYOF_FLAGS(node)
+ & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+ |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES|ANYOF_LOC_FOLD));
+
+ if (data && data->count) {
+ const U32 n = ARG(node);
+
+ if (data->what[n] == 's') {
+ SV * const rv = MUTABLE_SV(data->data[n]);
+ AV * const av = MUTABLE_AV(SvRV(rv));
+ SV **const ary = AvARRAY(av);
+ U8 swash_init_flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+
+ si = *ary; /* ary[0] = the string to initialize the swash with */
+
+ /* Elements 3 and 4 are either both present or both absent. [3] is
+ * any inversion list generated at compile time; [4] indicates if
+ * that inversion list has any user-defined properties in it. */
+ if (av_tindex(av) >= 2) {
+ if (only_utf8_locale_ptr
+ && ary[2]
+ && ary[2] != &PL_sv_undef)
+ {
+ *only_utf8_locale_ptr = ary[2];
+ }
+ else {
+ assert(only_utf8_locale_ptr);
+ *only_utf8_locale_ptr = NULL;
+ }
+
+ if (av_tindex(av) >= 3) {
+ invlist = ary[3];
+ if (SvUV(ary[4])) {
+ swash_init_flags |= _CORE_SWASH_INIT_USER_DEFINED_PROPERTY;
+ }
+ }
+ else {
+ invlist = NULL;
+ }
+ }
+
+ /* Element [1] is reserved for the set-up swash. If already there,
+ * return it; if not, create it and store it there */
+ if (ary[1] && SvROK(ary[1])) {
+ sw = ary[1];
+ }
+ else if (doinit && ((si && si != &PL_sv_undef)
+ || (invlist && invlist != &PL_sv_undef))) {
+ assert(si);
+ sw = _core_swash_init("utf8", /* the utf8 package */
+ "", /* nameless */
+ si,
+ 1, /* binary */
+ 0, /* not from tr/// */
+ invlist,
+ &swash_init_flags);
+ (void)av_store(av, 1, sw);
+ }
+ }
+ }
+
+ /* If requested, return a printable version of what this swash matches */
+ if (listsvp) {
+ SV* matches_string = newSVpvs("");
+
+ /* The swash should be used, if possible, to get the data, as it
+ * contains the resolved data. But this function can be called at
+ * compile-time, before everything gets resolved, in which case we
+ * return the currently best available information, which is the string
+ * that will eventually be used to do that resolving, 'si' */
+ if ((! sw || (invlist = _get_swash_invlist(sw)) == NULL)
+ && (si && si != &PL_sv_undef))
+ {
+ sv_catsv(matches_string, si);
+ }
+
+ /* Add the inversion list to whatever we have. This may have come from
+ * the swash, or from an input parameter */
+ if (invlist) {
+ if (exclude_list) {
+ SV* clone = invlist_clone(invlist);
+ _invlist_subtract(clone, exclude_list, &clone);
+ sv_catsv(matches_string, _invlist_contents(clone));
+ SvREFCNT_dec_NN(clone);
+ }
+ else {
+ sv_catsv(matches_string, _invlist_contents(invlist));
+ }
+ }
+ *listsvp = matches_string;
+ }
+
+ return sw;
+}
+#endif /* !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION) */
+
+/* reg_skipcomment()
+
+ Absorbs an /x style # comment from the input stream,
+ returning a pointer to the first character beyond the comment, or if the
+ comment terminates the pattern without anything following it, this returns
+ one past the final character of the pattern (in other words, RExC_end) and
+ sets the REG_RUN_ON_COMMENT_SEEN flag.
+
+ Note it's the callers responsibility to ensure that we are
+ actually in /x mode
+
+*/
+
+PERL_STATIC_INLINE char*
+S_reg_skipcomment(RExC_state_t *pRExC_state, char* p)
+{
+ PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
+
+ assert(*p == '#');
+
+ while (p < RExC_end) {
+ if (*(++p) == '\n') {
+ return p+1;
+ }
+ }
+
+ /* we ran off the end of the pattern without ending the comment, so we have
+ * to add an \n when wrapping */
+ RExC_seen |= REG_RUN_ON_COMMENT_SEEN;
+ return p;
+}
+
+/* nextchar()
+
+ Advances the parse position, and optionally absorbs
+ "whitespace" from the inputstream.
+
+ Without /x "whitespace" means (?#...) style comments only,
+ with /x this means (?#...) and # comments and whitespace proper.
+
+ Returns the RExC_parse point from BEFORE the scan occurs.
+
+ This is the /x friendly way of saying RExC_parse++.
+*/
+
+STATIC char*
+S_nextchar(pTHX_ RExC_state_t *pRExC_state)
+{
+ char* const retval = RExC_parse++;
+
+ PERL_ARGS_ASSERT_NEXTCHAR;
+
+ for (;;) {
+ if (RExC_end - RExC_parse >= 3
+ && *RExC_parse == '('
+ && RExC_parse[1] == '?'
+ && RExC_parse[2] == '#')
+ {
+ while (*RExC_parse != ')') {
+ if (RExC_parse == RExC_end)
+ FAIL("Sequence (?#... not terminated");
+ RExC_parse++;
+ }
+ RExC_parse++;
+ continue;
+ }
+ if (RExC_flags & RXf_PMf_EXTENDED) {
+ char * p = regpatws(pRExC_state, RExC_parse,
+ TRUE); /* means recognize comments */
+ if (p != RExC_parse) {
+ RExC_parse = p;
+ continue;
+ }
+ }
+ return retval;
+ }
+}
+
+STATIC regnode *
+S_regnode_guts(pTHX_ RExC_state_t *pRExC_state, const U8 op, const STRLEN extra_size, const char* const name)
+{
+ /* Allocate a regnode for 'op' and returns it, with 'extra_size' extra
+ * space. In pass1, it aligns and increments RExC_size; in pass2,
+ * RExC_emit */
+
+ regnode * const ret = RExC_emit;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGNODE_GUTS;
+
+ assert(extra_size >= regarglen[op]);
+
+ if (SIZE_ONLY) {
+ SIZE_ALIGN(RExC_size);
+ RExC_size += 1 + extra_size;
+ return(ret);
+ }
+ if (RExC_emit >= RExC_emit_bound)
+ Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
+ op, (void*)RExC_emit, (void*)RExC_emit_bound);
+
+ NODE_ALIGN_FILL(ret);
+#ifndef RE_TRACK_PATTERN_OFFSETS
+ PERL_UNUSED_ARG(name);
+#else
+ if (RExC_offsets) { /* MJD */
+ MJD_OFFSET_DEBUG(
+ ("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
+ name, __LINE__,
+ PL_reg_name[op],
+ (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
+ ? "Overwriting end of array!\n" : "OK",
+ (UV)(RExC_emit - RExC_emit_start),
+ (UV)(RExC_parse - RExC_start),
+ (UV)RExC_offsets[0]));
+ Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
+ }
+#endif
+ return(ret);
+}
+
+/*
+- reg_node - emit a node
+*/
+STATIC regnode * /* Location. */
+S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
+{
+ regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reg_node");
+
+ PERL_ARGS_ASSERT_REG_NODE;
+
+ assert(regarglen[op] == 0);
+
+ if (PASS2) {
+ regnode *ptr = ret;
+ FILL_ADVANCE_NODE(ptr, op);
+ RExC_emit = ptr;
+ }
+ return(ret);
+}
+
+/*
+- reganode - emit a node with an argument
+*/
+STATIC regnode * /* Location. */
+S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
+{
+ regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reganode");
+
+ PERL_ARGS_ASSERT_REGANODE;
+
+ assert(regarglen[op] == 1);
+
+ if (PASS2) {
+ regnode *ptr = ret;
+ FILL_ADVANCE_NODE_ARG(ptr, op, arg);
+ RExC_emit = ptr;
+ }
+ return(ret);
+}
+
+STATIC regnode *
+S_reg2Lanode(pTHX_ RExC_state_t *pRExC_state, const U8 op, const U32 arg1, const I32 arg2)
+{
+ /* emit a node with U32 and I32 arguments */
+
+ regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reg2Lanode");
+
+ PERL_ARGS_ASSERT_REG2LANODE;
+
+ assert(regarglen[op] == 2);
+
+ if (PASS2) {
+ regnode *ptr = ret;
+ FILL_ADVANCE_NODE_2L_ARG(ptr, op, arg1, arg2);
+ RExC_emit = ptr;
+ }
+ return(ret);
+}
+
+/*
+- reginsert - insert an operator in front of already-emitted operand
+*
+* Means relocating the operand.
+*/
+STATIC void
+S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
+{
+ regnode *src;
+ regnode *dst;
+ regnode *place;
+ const int offset = regarglen[(U8)op];
+ const int size = NODE_STEP_REGNODE + offset;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGINSERT;
+ PERL_UNUSED_CONTEXT;
+ PERL_UNUSED_ARG(depth);
+/* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
+ DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
+ if (SIZE_ONLY) {
+ RExC_size += size;
+ return;
+ }
+
+ src = RExC_emit;
+ RExC_emit += size;
+ dst = RExC_emit;
+ if (RExC_open_parens) {
+ int paren;
+ /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
+ for ( paren=0 ; paren < RExC_npar ; paren++ ) {
+ if ( RExC_open_parens[paren] >= opnd ) {
+ /*DEBUG_PARSE_FMT("open"," - %d",size);*/
+ RExC_open_parens[paren] += size;
+ } else {
+ /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
+ }
+ if ( RExC_close_parens[paren] >= opnd ) {
+ /*DEBUG_PARSE_FMT("close"," - %d",size);*/
+ RExC_close_parens[paren] += size;
+ } else {
+ /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
+ }
+ }
+ }
+
+ while (src > opnd) {
+ StructCopy(--src, --dst, regnode);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (RExC_offsets) { /* MJD 20010112 */
+ MJD_OFFSET_DEBUG(
+ ("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
+ "reg_insert",
+ __LINE__,
+ PL_reg_name[op],
+ (UV)(dst - RExC_emit_start) > RExC_offsets[0]
+ ? "Overwriting end of array!\n" : "OK",
+ (UV)(src - RExC_emit_start),
+ (UV)(dst - RExC_emit_start),
+ (UV)RExC_offsets[0]));
+ Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
+ Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
+ }
+#endif
+ }
+
+
+ place = opnd; /* Op node, where operand used to be. */
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (RExC_offsets) { /* MJD */
+ MJD_OFFSET_DEBUG(
+ ("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
+ "reginsert",
+ __LINE__,
+ PL_reg_name[op],
+ (UV)(place - RExC_emit_start) > RExC_offsets[0]
+ ? "Overwriting end of array!\n" : "OK",
+ (UV)(place - RExC_emit_start),
+ (UV)(RExC_parse - RExC_start),
+ (UV)RExC_offsets[0]));
+ Set_Node_Offset(place, RExC_parse);
+ Set_Node_Length(place, 1);
+ }
+#endif
+ src = NEXTOPER(place);
+ FILL_ADVANCE_NODE(place, op);
+ Zero(src, offset, regnode);
+}
+
+/*
+- regtail - set the next-pointer at the end of a node chain of p to val.
+- SEE ALSO: regtail_study
+*/
+/* TODO: All three parms should be const */
+STATIC void
+S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p,
+ const regnode *val,U32 depth)
+{
+ regnode *scan;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTAIL;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ if (SIZE_ONLY)
+ return;
+
+ /* Find last node. */
+ scan = p;
+ for (;;) {
+ regnode * const temp = regnext(scan);
+ DEBUG_PARSE_r({
+ DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
+ regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
+ SvPV_nolen_const(RExC_mysv), REG_NODE_NUM(scan),
+ (temp == NULL ? "->" : ""),
+ (temp == NULL ? PL_reg_name[OP(val)] : "")
+ );
+ });
+ if (temp == NULL)
+ break;
+ scan = temp;
+ }
+
+ if (reg_off_by_arg[OP(scan)]) {
+ ARG_SET(scan, val - scan);
+ }
+ else {
+ NEXT_OFF(scan) = val - scan;
+ }
+}
+
+#ifdef DEBUGGING
+/*
+- regtail_study - set the next-pointer at the end of a node chain of p to val.
+- Look for optimizable sequences at the same time.
+- currently only looks for EXACT chains.
+
+This is experimental code. The idea is to use this routine to perform
+in place optimizations on branches and groups as they are constructed,
+with the long term intention of removing optimization from study_chunk so
+that it is purely analytical.
+
+Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
+to control which is which.
+
+*/
+/* TODO: All four parms should be const */
+
+STATIC U8
+S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p,
+ const regnode *val,U32 depth)
+{
+ regnode *scan;
+ U8 exact = PSEUDO;
+#ifdef EXPERIMENTAL_INPLACESCAN
+ I32 min = 0;
+#endif
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTAIL_STUDY;
+
+
+ if (SIZE_ONLY)
+ return exact;
+
+ /* Find last node. */
+
+ scan = p;
+ for (;;) {
+ regnode * const temp = regnext(scan);
+#ifdef EXPERIMENTAL_INPLACESCAN
+ if (PL_regkind[OP(scan)] == EXACT) {
+ bool unfolded_multi_char; /* Unexamined in this routine */
+ if (join_exact(pRExC_state, scan, &min,
+ &unfolded_multi_char, 1, val, depth+1))
+ return EXACT;
+ }
+#endif
+ if ( exact ) {
+ switch (OP(scan)) {
+ case EXACT:
+ case EXACTL:
+ case EXACTF:
+ case EXACTFA_NO_TRIE:
+ case EXACTFA:
+ case EXACTFU:
+ case EXACTFLU8:
+ case EXACTFU_SS:
+ case EXACTFL:
+ if( exact == PSEUDO )
+ exact= OP(scan);
+ else if ( exact != OP(scan) )
+ exact= 0;
+ case NOTHING:
+ break;
+ default:
+ exact= 0;
+ }
+ }
+ DEBUG_PARSE_r({
+ DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
+ regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
+ SvPV_nolen_const(RExC_mysv),
+ REG_NODE_NUM(scan),
+ PL_reg_name[exact]);
+ });
+ if (temp == NULL)
+ break;
+ scan = temp;
+ }
+ DEBUG_PARSE_r({
+ DEBUG_PARSE_MSG("");
+ regprop(RExC_rx, RExC_mysv, val, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log,
+ "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
+ SvPV_nolen_const(RExC_mysv),
+ (IV)REG_NODE_NUM(val),
+ (IV)(val - scan)
+ );
+ });
+ if (reg_off_by_arg[OP(scan)]) {
+ ARG_SET(scan, val - scan);
+ }
+ else {
+ NEXT_OFF(scan) = val - scan;
+ }
+
+ return exact;
+}
+#endif
+
+/*
+ - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
+ */
+#ifdef DEBUGGING
+
+static void
+S_regdump_intflags(pTHX_ const char *lead, const U32 flags)
+{
+ int bit;
+ int set=0;
+
+ ASSUME(REG_INTFLAGS_NAME_SIZE <= sizeof(flags)*8);
+
+ for (bit=0; bit<REG_INTFLAGS_NAME_SIZE; bit++) {
+ if (flags & (1<<bit)) {
+ if (!set++ && lead)
+ PerlIO_printf(Perl_debug_log, "%s",lead);
+ PerlIO_printf(Perl_debug_log, "%s ",PL_reg_intflags_name[bit]);
+ }
+ }
+ if (lead) {
+ if (set)
+ PerlIO_printf(Perl_debug_log, "\n");
+ else
+ PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
+ }
+}
+
+static void
+S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
+{
+ int bit;
+ int set=0;
+ regex_charset cs;
+
+ ASSUME(REG_EXTFLAGS_NAME_SIZE <= sizeof(flags)*8);
+
+ for (bit=0; bit<REG_EXTFLAGS_NAME_SIZE; bit++) {
+ if (flags & (1<<bit)) {
+ if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
+ continue;
+ }
+ if (!set++ && lead)
+ PerlIO_printf(Perl_debug_log, "%s",lead);
+ PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
+ }
+ }
+ if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
+ if (!set++ && lead) {
+ PerlIO_printf(Perl_debug_log, "%s",lead);
+ }
+ switch (cs) {
+ case REGEX_UNICODE_CHARSET:
+ PerlIO_printf(Perl_debug_log, "UNICODE");
+ break;
+ case REGEX_LOCALE_CHARSET:
+ PerlIO_printf(Perl_debug_log, "LOCALE");
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
+ break;
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
+ break;
+ default:
+ PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
+ break;
+ }
+ }
+ if (lead) {
+ if (set)
+ PerlIO_printf(Perl_debug_log, "\n");
+ else
+ PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
+ }
+}
+#endif
+
+void
+Perl_regdump(pTHX_ const regexp *r)
+{
+#ifdef DEBUGGING
+ SV * const sv = sv_newmortal();
+ SV *dsv= sv_newmortal();
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGDUMP;
+
+ (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
+
+ /* Header fields of interest. */
+ if (r->anchored_substr) {
+ RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
+ RE_SV_DUMPLEN(r->anchored_substr), 30);
+ PerlIO_printf(Perl_debug_log,
+ "anchored %s%s at %"IVdf" ",
+ s, RE_SV_TAIL(r->anchored_substr),
+ (IV)r->anchored_offset);
+ } else if (r->anchored_utf8) {
+ RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
+ RE_SV_DUMPLEN(r->anchored_utf8), 30);
+ PerlIO_printf(Perl_debug_log,
+ "anchored utf8 %s%s at %"IVdf" ",
+ s, RE_SV_TAIL(r->anchored_utf8),
+ (IV)r->anchored_offset);
+ }
+ if (r->float_substr) {
+ RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
+ RE_SV_DUMPLEN(r->float_substr), 30);
+ PerlIO_printf(Perl_debug_log,
+ "floating %s%s at %"IVdf"..%"UVuf" ",
+ s, RE_SV_TAIL(r->float_substr),
+ (IV)r->float_min_offset, (UV)r->float_max_offset);
+ } else if (r->float_utf8) {
+ RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
+ RE_SV_DUMPLEN(r->float_utf8), 30);
+ PerlIO_printf(Perl_debug_log,
+ "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
+ s, RE_SV_TAIL(r->float_utf8),
+ (IV)r->float_min_offset, (UV)r->float_max_offset);
+ }
+ if (r->check_substr || r->check_utf8)
+ PerlIO_printf(Perl_debug_log,
+ (const char *)
+ (r->check_substr == r->float_substr
+ && r->check_utf8 == r->float_utf8
+ ? "(checking floating" : "(checking anchored"));
+ if (r->intflags & PREGf_NOSCAN)
+ PerlIO_printf(Perl_debug_log, " noscan");
+ if (r->extflags & RXf_CHECK_ALL)
+ PerlIO_printf(Perl_debug_log, " isall");
+ if (r->check_substr || r->check_utf8)
+ PerlIO_printf(Perl_debug_log, ") ");
+
+ if (ri->regstclass) {
+ regprop(r, sv, ri->regstclass, NULL, NULL);
+ PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
+ }
+ if (r->intflags & PREGf_ANCH) {
+ PerlIO_printf(Perl_debug_log, "anchored");
+ if (r->intflags & PREGf_ANCH_MBOL)
+ PerlIO_printf(Perl_debug_log, "(MBOL)");
+ if (r->intflags & PREGf_ANCH_SBOL)
+ PerlIO_printf(Perl_debug_log, "(SBOL)");
+ if (r->intflags & PREGf_ANCH_GPOS)
+ PerlIO_printf(Perl_debug_log, "(GPOS)");
+ PerlIO_putc(Perl_debug_log, ' ');
+ }
+ if (r->intflags & PREGf_GPOS_SEEN)
+ PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
+ if (r->intflags & PREGf_SKIP)
+ PerlIO_printf(Perl_debug_log, "plus ");
+ if (r->intflags & PREGf_IMPLICIT)
+ PerlIO_printf(Perl_debug_log, "implicit ");
+ PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
+ if (r->extflags & RXf_EVAL_SEEN)
+ PerlIO_printf(Perl_debug_log, "with eval ");
+ PerlIO_printf(Perl_debug_log, "\n");
+ DEBUG_FLAGS_r({
+ regdump_extflags("r->extflags: ",r->extflags);
+ regdump_intflags("r->intflags: ",r->intflags);
+ });
+#else
+ PERL_ARGS_ASSERT_REGDUMP;
+ PERL_UNUSED_CONTEXT;
+ PERL_UNUSED_ARG(r);
+#endif /* DEBUGGING */
+}
+
+/*
+- regprop - printable representation of opcode, with run time support
+*/
+
+void
+Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o, const regmatch_info *reginfo, const RExC_state_t *pRExC_state)
+{
+#ifdef DEBUGGING
+ int k;
+
+ /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
+ static const char * const anyofs[] = {
+#if _CC_WORDCHAR != 0 || _CC_DIGIT != 1 || _CC_ALPHA != 2 || _CC_LOWER != 3 \
+ || _CC_UPPER != 4 || _CC_PUNCT != 5 || _CC_PRINT != 6 \
+ || _CC_ALPHANUMERIC != 7 || _CC_GRAPH != 8 || _CC_CASED != 9 \
+ || _CC_SPACE != 10 || _CC_BLANK != 11 || _CC_XDIGIT != 12 \
+ || _CC_CNTRL != 13 || _CC_ASCII != 14 || _CC_VERTSPACE != 15
+ #error Need to adjust order of anyofs[]
+#endif
+ "\\w",
+ "\\W",
+ "\\d",
+ "\\D",
+ "[:alpha:]",
+ "[:^alpha:]",
+ "[:lower:]",
+ "[:^lower:]",
+ "[:upper:]",
+ "[:^upper:]",
+ "[:punct:]",
+ "[:^punct:]",
+ "[:print:]",
+ "[:^print:]",
+ "[:alnum:]",
+ "[:^alnum:]",
+ "[:graph:]",
+ "[:^graph:]",
+ "[:cased:]",
+ "[:^cased:]",
+ "\\s",
+ "\\S",
+ "[:blank:]",
+ "[:^blank:]",
+ "[:xdigit:]",
+ "[:^xdigit:]",
+ "[:cntrl:]",
+ "[:^cntrl:]",
+ "[:ascii:]",
+ "[:^ascii:]",
+ "\\v",
+ "\\V"
+ };
+ RXi_GET_DECL(prog,progi);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGPROP;
+
+ sv_setpvn(sv, "", 0);
+
+ if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */
+ /* It would be nice to FAIL() here, but this may be called from
+ regexec.c, and it would be hard to supply pRExC_state. */
+ Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d",
+ (int)OP(o), (int)REGNODE_MAX);
+ sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
+
+ k = PL_regkind[OP(o)];
+
+ if (k == EXACT) {
+ sv_catpvs(sv, " ");
+ /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
+ * is a crude hack but it may be the best for now since
+ * we have no flag "this EXACTish node was UTF-8"
+ * --jhi */
+ pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
+ PERL_PV_ESCAPE_UNI_DETECT |
+ PERL_PV_ESCAPE_NONASCII |
+ PERL_PV_PRETTY_ELLIPSES |
+ PERL_PV_PRETTY_LTGT |
+ PERL_PV_PRETTY_NOCLEAR
+ );
+ } else if (k == TRIE) {
+ /* print the details of the trie in dumpuntil instead, as
+ * progi->data isn't available here */
+ const char op = OP(o);
+ const U32 n = ARG(o);
+ const reg_ac_data * const ac = IS_TRIE_AC(op) ?
+ (reg_ac_data *)progi->data->data[n] :
+ NULL;
+ const reg_trie_data * const trie
+ = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
+
+ Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
+ DEBUG_TRIE_COMPILE_r(
+ Perl_sv_catpvf(aTHX_ sv,
+ "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
+ (UV)trie->startstate,
+ (IV)trie->statecount-1, /* -1 because of the unused 0 element */
+ (UV)trie->wordcount,
+ (UV)trie->minlen,
+ (UV)trie->maxlen,
+ (UV)TRIE_CHARCOUNT(trie),
+ (UV)trie->uniquecharcount
+ );
+ );
+ if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
+ sv_catpvs(sv, "[");
+ (void) put_charclass_bitmap_innards(sv,
+ (IS_ANYOF_TRIE(op))
+ ? ANYOF_BITMAP(o)
+ : TRIE_BITMAP(trie),
+ NULL);
+ sv_catpvs(sv, "]");
+ }
+
+ } else if (k == CURLY) {
+ if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
+ Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
+ Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
+ }
+ else if (k == WHILEM && o->flags) /* Ordinal/of */
+ Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
+ else if (k == REF || k == OPEN || k == CLOSE
+ || k == GROUPP || OP(o)==ACCEPT)
+ {
+ AV *name_list= NULL;
+ Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
+ if ( RXp_PAREN_NAMES(prog) ) {
+ name_list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
+ } else if ( pRExC_state ) {
+ name_list= RExC_paren_name_list;
+ }
+ if (name_list) {
+ if ( k != REF || (OP(o) < NREF)) {
+ SV **name= av_fetch(name_list, ARG(o), 0 );
+ if (name)
+ Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+ }
+ else {
+ SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
+ I32 *nums=(I32*)SvPVX(sv_dat);
+ SV **name= av_fetch(name_list, nums[0], 0 );
+ I32 n;
+ if (name) {
+ for ( n=0; n<SvIVX(sv_dat); n++ ) {
+ Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
+ (n ? "," : ""), (IV)nums[n]);
+ }
+ Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+ }
+ }
+ }
+ if ( k == REF && reginfo) {
+ U32 n = ARG(o); /* which paren pair */
+ I32 ln = prog->offs[n].start;
+ if (prog->lastparen < n || ln == -1)
+ Perl_sv_catpvf(aTHX_ sv, ": FAIL");
+ else if (ln == prog->offs[n].end)
+ Perl_sv_catpvf(aTHX_ sv, ": ACCEPT - EMPTY STRING");
+ else {
+ const char *s = reginfo->strbeg + ln;
+ Perl_sv_catpvf(aTHX_ sv, ": ");
+ Perl_pv_pretty( aTHX_ sv, s, prog->offs[n].end - prog->offs[n].start, 32, 0, 0,
+ PERL_PV_ESCAPE_UNI_DETECT|PERL_PV_PRETTY_NOCLEAR|PERL_PV_PRETTY_ELLIPSES|PERL_PV_PRETTY_QUOTE );
+ }
+ }
+ } else if (k == GOSUB) {
+ AV *name_list= NULL;
+ if ( RXp_PAREN_NAMES(prog) ) {
+ name_list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
+ } else if ( pRExC_state ) {
+ name_list= RExC_paren_name_list;
+ }
+
+ /* Paren and offset */
+ Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o));
+ if (name_list) {
+ SV **name= av_fetch(name_list, ARG(o), 0 );
+ if (name)
+ Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+ }
+ }
+ else if (k == VERB) {
+ if (!o->flags)
+ Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
+ SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
+ } else if (k == LOGICAL)
+ /* 2: embedded, otherwise 1 */
+ Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags);
+ else if (k == ANYOF) {
+ const U8 flags = ANYOF_FLAGS(o);
+ int do_sep = 0;
+ SV* bitmap_invlist; /* Will hold what the bit map contains */
+
+
+ if (OP(o) == ANYOFL)
+ sv_catpvs(sv, "{loc}");
+ if (flags & ANYOF_LOC_FOLD)
+ sv_catpvs(sv, "{i}");
+ Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
+ if (flags & ANYOF_INVERT)
+ sv_catpvs(sv, "^");
+
+ /* output what the standard cp 0-NUM_ANYOF_CODE_POINTS-1 bitmap matches
+ * */
+ do_sep = put_charclass_bitmap_innards(sv, ANYOF_BITMAP(o),
+ &bitmap_invlist);
+
+ /* output any special charclass tests (used entirely under use
+ * locale) * */
+ if (ANYOF_POSIXL_TEST_ANY_SET(o)) {
+ int i;
+ for (i = 0; i < ANYOF_POSIXL_MAX; i++) {
+ if (ANYOF_POSIXL_TEST(o,i)) {
+ sv_catpv(sv, anyofs[i]);
+ do_sep = 1;
+ }
+ }
+ }
+
+ if ((flags & (ANYOF_MATCHES_ALL_ABOVE_BITMAP
+ |ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+ |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES
+ |ANYOF_LOC_FOLD)))
+ {
+ if (do_sep) {
+ Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]);
+ if (flags & ANYOF_INVERT)
+ /*make sure the invert info is in each */
+ sv_catpvs(sv, "^");
+ }
+
+ if (flags & ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII) {
+ sv_catpvs(sv, "{non-utf8-latin1-all}");
+ }
+
+ if (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP)
+ sv_catpvs(sv, "{above_bitmap_all}");
+
+ if (ARG(o) != ANYOF_ONLY_HAS_BITMAP) {
+ SV *lv; /* Set if there is something outside the bit map. */
+ bool byte_output = FALSE; /* If something has been output */
+ SV *only_utf8_locale;
+
+ /* Get the stuff that wasn't in the bitmap. 'bitmap_invlist'
+ * is used to guarantee that nothing in the bitmap gets
+ * returned */
+ (void) _get_regclass_nonbitmap_data(prog, o, FALSE,
+ &lv, &only_utf8_locale,
+ bitmap_invlist);
+ if (lv && lv != &PL_sv_undef) {
+ char *s = savesvpv(lv);
+ char * const origs = s;
+
+ while (*s && *s != '\n')
+ s++;
+
+ if (*s == '\n') {
+ const char * const t = ++s;
+
+ if (flags & ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES) {
+ sv_catpvs(sv, "{outside bitmap}");
+ }
+ else {
+ sv_catpvs(sv, "{utf8}");
+ }
+
+ if (byte_output) {
+ sv_catpvs(sv, " ");
+ }
+
+ while (*s) {
+ if (*s == '\n') {
+
+ /* Truncate very long output */
+ if (s - origs > 256) {
+ Perl_sv_catpvf(aTHX_ sv,
+ "%.*s...",
+ (int) (s - origs - 1),
+ t);
+ goto out_dump;
+ }
+ *s = ' ';
+ }
+ else if (*s == '\t') {
+ *s = '-';
+ }
+ s++;
+ }
+ if (s[-1] == ' ')
+ s[-1] = 0;
+
+ sv_catpv(sv, t);
+ }
+
+ out_dump:
+
+ Safefree(origs);
+ SvREFCNT_dec_NN(lv);
+ }
+
+ if ((flags & ANYOF_LOC_FOLD)
+ && only_utf8_locale
+ && only_utf8_locale != &PL_sv_undef)
+ {
+ UV start, end;
+ int max_entries = 256;
+
+ sv_catpvs(sv, "{utf8 locale}");
+ invlist_iterinit(only_utf8_locale);
+ while (invlist_iternext(only_utf8_locale,
+ &start, &end)) {
+ put_range(sv, start, end, FALSE);
+ max_entries --;
+ if (max_entries < 0) {
+ sv_catpvs(sv, "...");
+ break;
+ }
+ }
+ invlist_iterfinish(only_utf8_locale);
+ }
+ }
+ }
+ SvREFCNT_dec(bitmap_invlist);
+
+
+ Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
+ }
+ else if (k == POSIXD || k == NPOSIXD) {
+ U8 index = FLAGS(o) * 2;
+ if (index < C_ARRAY_LENGTH(anyofs)) {
+ if (*anyofs[index] != '[') {
+ sv_catpv(sv, "[");
+ }
+ sv_catpv(sv, anyofs[index]);
+ if (*anyofs[index] != '[') {
+ sv_catpv(sv, "]");
+ }
+ }
+ else {
+ Perl_sv_catpvf(aTHX_ sv, "[illegal type=%d])", index);
+ }
+ }
+ else if (k == BOUND || k == NBOUND) {
+ /* Must be synced with order of 'bound_type' in regcomp.h */
+ const char * const bounds[] = {
+ "", /* Traditional */
+ "{gcb}",
+ "{sb}",
+ "{wb}"
+ };
+ sv_catpv(sv, bounds[FLAGS(o)]);
+ }
+ else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
+ Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
+ else if (OP(o) == SBOL)
+ Perl_sv_catpvf(aTHX_ sv, " /%s/", o->flags ? "\\A" : "^");
+#else
+ PERL_UNUSED_CONTEXT;
+ PERL_UNUSED_ARG(sv);
+ PERL_UNUSED_ARG(o);
+ PERL_UNUSED_ARG(prog);
+ PERL_UNUSED_ARG(reginfo);
+ PERL_UNUSED_ARG(pRExC_state);
+#endif /* DEBUGGING */
+}
+
+
+
+SV *
+Perl_re_intuit_string(pTHX_ REGEXP * const r)
+{ /* Assume that RE_INTUIT is set */
+ struct regexp *const prog = ReANY(r);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_INTUIT_STRING;
+ PERL_UNUSED_CONTEXT;
+
+ DEBUG_COMPILE_r(
+ {
+ const char * const s = SvPV_nolen_const(RX_UTF8(r)
+ ? prog->check_utf8 : prog->check_substr);
+
+ if (!PL_colorset) reginitcolors();
+ PerlIO_printf(Perl_debug_log,
+ "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
+ PL_colors[4],
+ RX_UTF8(r) ? "utf8 " : "",
+ PL_colors[5],PL_colors[0],
+ s,
+ PL_colors[1],
+ (strlen(s) > 60 ? "..." : ""));
+ } );
+
+ /* use UTF8 check substring if regexp pattern itself is in UTF8 */
+ return RX_UTF8(r) ? prog->check_utf8 : prog->check_substr;
+}
+
+/*
+ pregfree()
+
+ handles refcounting and freeing the perl core regexp structure. When
+ it is necessary to actually free the structure the first thing it
+ does is call the 'free' method of the regexp_engine associated to
+ the regexp, allowing the handling of the void *pprivate; member
+ first. (This routine is not overridable by extensions, which is why
+ the extensions free is called first.)
+
+ See regdupe and regdupe_internal if you change anything here.
+*/
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_pregfree(pTHX_ REGEXP *r)
+{
+ SvREFCNT_dec(r);
+}
+
+void
+Perl_pregfree2(pTHX_ REGEXP *rx)
+{
+ struct regexp *const r = ReANY(rx);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_PREGFREE2;
+
+ if (r->mother_re) {
+ ReREFCNT_dec(r->mother_re);
+ } else {
+ CALLREGFREE_PVT(rx); /* free the private data */
+ SvREFCNT_dec(RXp_PAREN_NAMES(r));
+ Safefree(r->xpv_len_u.xpvlenu_pv);
+ }
+ if (r->substrs) {
+ SvREFCNT_dec(r->anchored_substr);
+ SvREFCNT_dec(r->anchored_utf8);
+ SvREFCNT_dec(r->float_substr);
+ SvREFCNT_dec(r->float_utf8);
+ Safefree(r->substrs);
+ }
+ RX_MATCH_COPY_FREE(rx);
+#ifdef PERL_ANY_COW
+ SvREFCNT_dec(r->saved_copy);
+#endif
+ Safefree(r->offs);
+ SvREFCNT_dec(r->qr_anoncv);
+ rx->sv_u.svu_rx = 0;
+}
+
+/* reg_temp_copy()
+
+ This is a hacky workaround to the structural issue of match results
+ being stored in the regexp structure which is in turn stored in
+ PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
+ could be PL_curpm in multiple contexts, and could require multiple
+ result sets being associated with the pattern simultaneously, such
+ as when doing a recursive match with (??{$qr})
+
+ The solution is to make a lightweight copy of the regexp structure
+ when a qr// is returned from the code executed by (??{$qr}) this
+ lightweight copy doesn't actually own any of its data except for
+ the starp/end and the actual regexp structure itself.
+
+*/
+
+
+REGEXP *
+Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
+{
+ struct regexp *ret;
+ struct regexp *const r = ReANY(rx);
+ const bool islv = ret_x && SvTYPE(ret_x) == SVt_PVLV;
+
+ PERL_ARGS_ASSERT_REG_TEMP_COPY;
+
+ if (!ret_x)
+ ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
+ else {
+ SvOK_off((SV *)ret_x);
+ if (islv) {
+ /* For PVLVs, SvANY points to the xpvlv body while sv_u points
+ to the regexp. (For SVt_REGEXPs, sv_upgrade has already
+ made both spots point to the same regexp body.) */
+ REGEXP *temp = (REGEXP *)newSV_type(SVt_REGEXP);
+ assert(!SvPVX(ret_x));
+ ret_x->sv_u.svu_rx = temp->sv_any;
+ temp->sv_any = NULL;
+ SvFLAGS(temp) = (SvFLAGS(temp) & ~SVTYPEMASK) | SVt_NULL;
+ SvREFCNT_dec_NN(temp);
+ /* SvCUR still resides in the xpvlv struct, so the regexp copy-
+ ing below will not set it. */
+ SvCUR_set(ret_x, SvCUR(rx));
+ }
+ }
+ /* This ensures that SvTHINKFIRST(sv) is true, and hence that
+ sv_force_normal(sv) is called. */
+ SvFAKE_on(ret_x);
+ ret = ReANY(ret_x);
+
+ SvFLAGS(ret_x) |= SvUTF8(rx);
+ /* We share the same string buffer as the original regexp, on which we
+ hold a reference count, incremented when mother_re is set below.
+ The string pointer is copied here, being part of the regexp struct.
+ */
+ memcpy(&(ret->xpv_cur), &(r->xpv_cur),
+ sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
+ if (r->offs) {
+ const I32 npar = r->nparens+1;
+ Newx(ret->offs, npar, regexp_paren_pair);
+ Copy(r->offs, ret->offs, npar, regexp_paren_pair);
+ }
+ if (r->substrs) {
+ Newx(ret->substrs, 1, struct reg_substr_data);
+ StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
+
+ SvREFCNT_inc_void(ret->anchored_substr);
+ SvREFCNT_inc_void(ret->anchored_utf8);
+ SvREFCNT_inc_void(ret->float_substr);
+ SvREFCNT_inc_void(ret->float_utf8);
+
+ /* check_substr and check_utf8, if non-NULL, point to either their
+ anchored or float namesakes, and don't hold a second reference. */
+ }
+ RX_MATCH_COPIED_off(ret_x);
+#ifdef PERL_ANY_COW
+ ret->saved_copy = NULL;
+#endif
+ ret->mother_re = ReREFCNT_inc(r->mother_re ? r->mother_re : rx);
+ SvREFCNT_inc_void(ret->qr_anoncv);
+
+ return ret_x;
+}
+#endif
+
+/* regfree_internal()
+
+ Free the private data in a regexp. This is overloadable by
+ extensions. Perl takes care of the regexp structure in pregfree(),
+ this covers the *pprivate pointer which technically perl doesn't
+ know about, however of course we have to handle the
+ regexp_internal structure when no extension is in use.
+
+ Note this is called before freeing anything in the regexp
+ structure.
+ */
+
+void
+Perl_regfree_internal(pTHX_ REGEXP * const rx)
+{
+ struct regexp *const r = ReANY(rx);
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGFREE_INTERNAL;
+
+ DEBUG_COMPILE_r({
+ if (!PL_colorset)
+ reginitcolors();
+ {
+ SV *dsv= sv_newmortal();
+ RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
+ dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
+ PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
+ PL_colors[4],PL_colors[5],s);
+ }
+ });
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (ri->u.offsets)
+ Safefree(ri->u.offsets); /* 20010421 MJD */
+#endif
+ if (ri->code_blocks) {
+ int n;
+ for (n = 0; n < ri->num_code_blocks; n++)
+ SvREFCNT_dec(ri->code_blocks[n].src_regex);
+ Safefree(ri->code_blocks);
+ }
+
+ if (ri->data) {
+ int n = ri->data->count;
+
+ while (--n >= 0) {
+ /* If you add a ->what type here, update the comment in regcomp.h */
+ switch (ri->data->what[n]) {
+ case 'a':
+ case 'r':
+ case 's':
+ case 'S':
+ case 'u':
+ SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
+ break;
+ case 'f':
+ Safefree(ri->data->data[n]);
+ break;
+ case 'l':
+ case 'L':
+ break;
+ case 'T':
+ { /* Aho Corasick add-on structure for a trie node.
+ Used in stclass optimization only */
+ U32 refcount;
+ reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
+#ifdef USE_ITHREADS
+ dVAR;
+#endif
+ OP_REFCNT_LOCK;
+ refcount = --aho->refcount;
+ OP_REFCNT_UNLOCK;
+ if ( !refcount ) {
+ PerlMemShared_free(aho->states);
+ PerlMemShared_free(aho->fail);
+ /* do this last!!!! */
+ PerlMemShared_free(ri->data->data[n]);
+ /* we should only ever get called once, so
+ * assert as much, and also guard the free
+ * which /might/ happen twice. At the least
+ * it will make code anlyzers happy and it
+ * doesn't cost much. - Yves */
+ assert(ri->regstclass);
+ if (ri->regstclass) {
+ PerlMemShared_free(ri->regstclass);
+ ri->regstclass = 0;
+ }
+ }
+ }
+ break;
+ case 't':
+ {
+ /* trie structure. */
+ U32 refcount;
+ reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
+#ifdef USE_ITHREADS
+ dVAR;
+#endif
+ OP_REFCNT_LOCK;
+ refcount = --trie->refcount;
+ OP_REFCNT_UNLOCK;
+ if ( !refcount ) {
+ PerlMemShared_free(trie->charmap);
+ PerlMemShared_free(trie->states);
+ PerlMemShared_free(trie->trans);
+ if (trie->bitmap)
+ PerlMemShared_free(trie->bitmap);
+ if (trie->jump)
+ PerlMemShared_free(trie->jump);
+ PerlMemShared_free(trie->wordinfo);
+ /* do this last!!!! */
+ PerlMemShared_free(ri->data->data[n]);
+ }
+ }
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: regfree data code '%c'",
+ ri->data->what[n]);
+ }
+ }
+ Safefree(ri->data->what);
+ Safefree(ri->data);
+ }
+
+ Safefree(ri);
+}
+
+#define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
+#define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
+#define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
+
+/*
+ re_dup - duplicate a regexp.
+
+ This routine is expected to clone a given regexp structure. It is only
+ compiled under USE_ITHREADS.
+
+ After all of the core data stored in struct regexp is duplicated
+ the regexp_engine.dupe method is used to copy any private data
+ stored in the *pprivate pointer. This allows extensions to handle
+ any duplication it needs to do.
+
+ See pregfree() and regfree_internal() if you change anything here.
+*/
+#if defined(USE_ITHREADS)
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
+{
+ dVAR;
+ I32 npar;
+ const struct regexp *r = ReANY(sstr);
+ struct regexp *ret = ReANY(dstr);
+
+ PERL_ARGS_ASSERT_RE_DUP_GUTS;
+
+ npar = r->nparens+1;
+ Newx(ret->offs, npar, regexp_paren_pair);
+ Copy(r->offs, ret->offs, npar, regexp_paren_pair);
+
+ if (ret->substrs) {
+ /* Do it this way to avoid reading from *r after the StructCopy().
+ That way, if any of the sv_dup_inc()s dislodge *r from the L1
+ cache, it doesn't matter. */
+ const bool anchored = r->check_substr
+ ? r->check_substr == r->anchored_substr
+ : r->check_utf8 == r->anchored_utf8;
+ Newx(ret->substrs, 1, struct reg_substr_data);
+ StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
+
+ ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
+ ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
+ ret->float_substr = sv_dup_inc(ret->float_substr, param);
+ ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
+
+ /* check_substr and check_utf8, if non-NULL, point to either their
+ anchored or float namesakes, and don't hold a second reference. */
+
+ if (ret->check_substr) {
+ if (anchored) {
+ assert(r->check_utf8 == r->anchored_utf8);
+ ret->check_substr = ret->anchored_substr;
+ ret->check_utf8 = ret->anchored_utf8;
+ } else {
+ assert(r->check_substr == r->float_substr);
+ assert(r->check_utf8 == r->float_utf8);
+ ret->check_substr = ret->float_substr;
+ ret->check_utf8 = ret->float_utf8;
+ }
+ } else if (ret->check_utf8) {
+ if (anchored) {
+ ret->check_utf8 = ret->anchored_utf8;
+ } else {
+ ret->check_utf8 = ret->float_utf8;
+ }
+ }
+ }
+
+ RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
+ ret->qr_anoncv = MUTABLE_CV(sv_dup_inc((const SV *)ret->qr_anoncv, param));
+
+ if (ret->pprivate)
+ RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
+
+ if (RX_MATCH_COPIED(dstr))
+ ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen);
+ else
+ ret->subbeg = NULL;
+#ifdef PERL_ANY_COW
+ ret->saved_copy = NULL;
+#endif
+
+ /* Whether mother_re be set or no, we need to copy the string. We
+ cannot refrain from copying it when the storage points directly to
+ our mother regexp, because that's
+ 1: a buffer in a different thread
+ 2: something we no longer hold a reference on
+ so we need to copy it locally. */
+ RX_WRAPPED(dstr) = SAVEPVN(RX_WRAPPED(sstr), SvCUR(sstr)+1);
+ ret->mother_re = NULL;
+}
+#endif /* PERL_IN_XSUB_RE */
+
+/*
+ regdupe_internal()
+
+ This is the internal complement to regdupe() which is used to copy
+ the structure pointed to by the *pprivate pointer in the regexp.
+ This is the core version of the extension overridable cloning hook.
+ The regexp structure being duplicated will be copied by perl prior
+ to this and will be provided as the regexp *r argument, however
+ with the /old/ structures pprivate pointer value. Thus this routine
+ may override any copying normally done by perl.
+
+ It returns a pointer to the new regexp_internal structure.
+*/
+
+void *
+Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
+{
+ dVAR;
+ struct regexp *const r = ReANY(rx);
+ regexp_internal *reti;
+ int len;
+ RXi_GET_DECL(r,ri);
+
+ PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
+
+ len = ProgLen(ri);
+
+ Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode),
+ char, regexp_internal);
+ Copy(ri->program, reti->program, len+1, regnode);
+
+ reti->num_code_blocks = ri->num_code_blocks;
+ if (ri->code_blocks) {
+ int n;
+ Newxc(reti->code_blocks, ri->num_code_blocks, struct reg_code_block,
+ struct reg_code_block);
+ Copy(ri->code_blocks, reti->code_blocks, ri->num_code_blocks,
+ struct reg_code_block);
+ for (n = 0; n < ri->num_code_blocks; n++)
+ reti->code_blocks[n].src_regex = (REGEXP*)
+ sv_dup_inc((SV*)(ri->code_blocks[n].src_regex), param);
+ }
+ else
+ reti->code_blocks = NULL;
+
+ reti->regstclass = NULL;
+
+ if (ri->data) {
+ struct reg_data *d;
+ const int count = ri->data->count;
+ int i;
+
+ Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
+ char, struct reg_data);
+ Newx(d->what, count, U8);
+
+ d->count = count;
+ for (i = 0; i < count; i++) {
+ d->what[i] = ri->data->what[i];
+ switch (d->what[i]) {
+ /* see also regcomp.h and regfree_internal() */
+ case 'a': /* actually an AV, but the dup function is identical. */
+ case 'r':
+ case 's':
+ case 'S':
+ case 'u': /* actually an HV, but the dup function is identical. */
+ d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
+ break;
+ case 'f':
+ /* This is cheating. */
+ Newx(d->data[i], 1, regnode_ssc);
+ StructCopy(ri->data->data[i], d->data[i], regnode_ssc);
+ reti->regstclass = (regnode*)d->data[i];
+ break;
+ case 'T':
+ /* Trie stclasses are readonly and can thus be shared
+ * without duplication. We free the stclass in pregfree
+ * when the corresponding reg_ac_data struct is freed.
+ */
+ reti->regstclass= ri->regstclass;
+ /* FALLTHROUGH */
+ case 't':
+ OP_REFCNT_LOCK;
+ ((reg_trie_data*)ri->data->data[i])->refcount++;
+ OP_REFCNT_UNLOCK;
+ /* FALLTHROUGH */
+ case 'l':
+ case 'L':
+ d->data[i] = ri->data->data[i];
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'",
+ ri->data->what[i]);
+ }
+ }
+
+ reti->data = d;
+ }
+ else
+ reti->data = NULL;
+
+ reti->name_list_idx = ri->name_list_idx;
+
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (ri->u.offsets) {
+ Newx(reti->u.offsets, 2*len+1, U32);
+ Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
+ }
+#else
+ SetProgLen(reti,len);
+#endif
+
+ return (void*)reti;
+}
+
+#endif /* USE_ITHREADS */
+
+#ifndef PERL_IN_XSUB_RE
+
+/*
+ - regnext - dig the "next" pointer out of a node
+ */
+regnode *
+Perl_regnext(pTHX_ regnode *p)
+{
+ I32 offset;
+
+ if (!p)
+ return(NULL);
+
+ if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */
+ Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d",
+ (int)OP(p), (int)REGNODE_MAX);
+ }
+
+ offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
+ if (offset == 0)
+ return(NULL);
+
+ return(p+offset);
+}
+#endif
+
+STATIC void
+S_re_croak2(pTHX_ bool utf8, const char* pat1,const char* pat2,...)
+{
+ va_list args;
+ STRLEN l1 = strlen(pat1);
+ STRLEN l2 = strlen(pat2);
+ char buf[512];
+ SV *msv;
+ const char *message;
+
+ PERL_ARGS_ASSERT_RE_CROAK2;
+
+ if (l1 > 510)
+ l1 = 510;
+ if (l1 + l2 > 510)
+ l2 = 510 - l1;
+ Copy(pat1, buf, l1 , char);
+ Copy(pat2, buf + l1, l2 , char);
+ buf[l1 + l2] = '\n';
+ buf[l1 + l2 + 1] = '\0';
+ va_start(args, pat2);
+ msv = vmess(buf, &args);
+ va_end(args);
+ message = SvPV_const(msv,l1);
+ if (l1 > 512)
+ l1 = 512;
+ Copy(message, buf, l1 , char);
+ /* l1-1 to avoid \n */
+ Perl_croak(aTHX_ "%"UTF8f, UTF8fARG(utf8, l1-1, buf));
+}
+
+/* XXX Here's a total kludge. But we need to re-enter for swash routines. */
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_save_re_context(pTHX)
+{
+ I32 nparens = -1;
+ I32 i;
+
+ /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
+
+ if (PL_curpm) {
+ const REGEXP * const rx = PM_GETRE(PL_curpm);
+ if (rx)
+ nparens = RX_NPARENS(rx);
+ }
+
+ /* RT #124109. This is a complete hack; in the SWASHNEW case we know
+ * that PL_curpm will be null, but that utf8.pm and the modules it
+ * loads will only use $1..$3.
+ * The t/porting/re_context.t test file checks this assumption.
+ */
+ if (nparens == -1)
+ nparens = 3;
+
+ for (i = 1; i <= nparens; i++) {
+ char digits[TYPE_CHARS(long)];
+ const STRLEN len = my_snprintf(digits, sizeof(digits),
+ "%lu", (long)i);
+ GV *const *const gvp
+ = (GV**)hv_fetch(PL_defstash, digits, len, 0);
+
+ if (gvp) {
+ GV * const gv = *gvp;
+ if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
+ save_scalar(gv);
+ }
+ }
+}
+#endif
+
+#ifdef DEBUGGING
+
+STATIC void
+S_put_code_point(pTHX_ SV *sv, UV c)
+{
+ PERL_ARGS_ASSERT_PUT_CODE_POINT;
+
+ if (c > 255) {
+ Perl_sv_catpvf(aTHX_ sv, "\\x{%04"UVXf"}", c);
+ }
+ else if (isPRINT(c)) {
+ const char string = (char) c;
+ if (isBACKSLASHED_PUNCT(c))
+ sv_catpvs(sv, "\\");
+ sv_catpvn(sv, &string, 1);
+ }
+ else {
+ const char * const mnemonic = cntrl_to_mnemonic((char) c);
+ if (mnemonic) {
+ Perl_sv_catpvf(aTHX_ sv, "%s", mnemonic);
+ }
+ else {
+ Perl_sv_catpvf(aTHX_ sv, "\\x{%02X}", (U8) c);
+ }
+ }
+}
+
+#define MAX_PRINT_A MAX_PRINT_A_FOR_USE_ONLY_BY_REGCOMP_DOT_C
+
+STATIC void
+S_put_range(pTHX_ SV *sv, UV start, const UV end, const bool allow_literals)
+{
+ /* Appends to 'sv' a displayable version of the range of code points from
+ * 'start' to 'end'. It assumes that only ASCII printables are displayable
+ * as-is (though some of these will be escaped by put_code_point()). */
+
+ const unsigned int min_range_count = 3;
+
+ assert(start <= end);
+
+ PERL_ARGS_ASSERT_PUT_RANGE;
+
+ while (start <= end) {
+ UV this_end;
+ const char * format;
+
+ if (end - start < min_range_count) {
+
+ /* Individual chars in short ranges */
+ for (; start <= end; start++) {
+ put_code_point(sv, start);
+ }
+ break;
+ }
+
+ /* If permitted by the input options, and there is a possibility that
+ * this range contains a printable literal, look to see if there is
+ * one. */
+ if (allow_literals && start <= MAX_PRINT_A) {
+
+ /* If the range begin isn't an ASCII printable, effectively split
+ * the range into two parts:
+ * 1) the portion before the first such printable,
+ * 2) the rest
+ * and output them separately. */
+ if (! isPRINT_A(start)) {
+ UV temp_end = start + 1;
+
+ /* There is no point looking beyond the final possible
+ * printable, in MAX_PRINT_A */
+ UV max = MIN(end, MAX_PRINT_A);
+
+ while (temp_end <= max && ! isPRINT_A(temp_end)) {
+ temp_end++;
+ }
+
+ /* Here, temp_end points to one beyond the first printable if
+ * found, or to one beyond 'max' if not. If none found, make
+ * sure that we use the entire range */
+ if (temp_end > MAX_PRINT_A) {
+ temp_end = end + 1;
+ }
+
+ /* Output the first part of the split range, the part that
+ * doesn't have printables, with no looking for literals
+ * (otherwise we would infinitely recurse) */
+ put_range(sv, start, temp_end - 1, FALSE);
+
+ /* The 2nd part of the range (if any) starts here. */
+ start = temp_end;
+
+ /* We continue instead of dropping down because even if the 2nd
+ * part is non-empty, it could be so short that we want to
+ * output it specially, as tested for at the top of this loop.
+ * */
+ continue;
+ }
+
+ /* Here, 'start' is a printable ASCII. If it is an alphanumeric,
+ * output a sub-range of just the digits or letters, then process
+ * the remaining portion as usual. */
+ if (isALPHANUMERIC_A(start)) {
+ UV mask = (isDIGIT_A(start))
+ ? _CC_DIGIT
+ : isUPPER_A(start)
+ ? _CC_UPPER
+ : _CC_LOWER;
+ UV temp_end = start + 1;
+
+ /* Find the end of the sub-range that includes just the
+ * characters in the same class as the first character in it */
+ while (temp_end <= end && _generic_isCC_A(temp_end, mask)) {
+ temp_end++;
+ }
+ temp_end--;
+
+ /* For short ranges, don't duplicate the code above to output
+ * them; just call recursively */
+ if (temp_end - start < min_range_count) {
+ put_range(sv, start, temp_end, FALSE);
+ }
+ else { /* Output as a range */
+ put_code_point(sv, start);
+ sv_catpvs(sv, "-");
+ put_code_point(sv, temp_end);
+ }
+ start = temp_end + 1;
+ continue;
+ }
+
+ /* We output any other printables as individual characters */
+ if (isPUNCT_A(start) || isSPACE_A(start)) {
+ while (start <= end && (isPUNCT_A(start)
+ || isSPACE_A(start)))
+ {
+ put_code_point(sv, start);
+ start++;
+ }
+ continue;
+ }
+ } /* End of looking for literals */
+
+ /* Here is not to output as a literal. Some control characters have
+ * mnemonic names. Split off any of those at the beginning and end of
+ * the range to print mnemonically. It isn't possible for many of
+ * these to be in a row, so this won't overwhelm with output */
+ while (isMNEMONIC_CNTRL(start) && start <= end) {
+ put_code_point(sv, start);
+ start++;
+ }
+ if (start < end && isMNEMONIC_CNTRL(end)) {
+
+ /* Here, the final character in the range has a mnemonic name.
+ * Work backwards from the end to find the final non-mnemonic */
+ UV temp_end = end - 1;
+ while (isMNEMONIC_CNTRL(temp_end)) {
+ temp_end--;
+ }
+
+ /* And separately output the range that doesn't have mnemonics */
+ put_range(sv, start, temp_end, FALSE);
+
+ /* Then output the mnemonic trailing controls */
+ start = temp_end + 1;
+ while (start <= end) {
+ put_code_point(sv, start);
+ start++;
+ }
+ break;
+ }
+
+ /* As a final resort, output the range or subrange as hex. */
+
+ this_end = (end < NUM_ANYOF_CODE_POINTS)
+ ? end
+ : NUM_ANYOF_CODE_POINTS - 1;
+ format = (this_end < 256)
+ ? "\\x{%02"UVXf"}-\\x{%02"UVXf"}"
+ : "\\x{%04"UVXf"}-\\x{%04"UVXf"}";
+ GCC_DIAG_IGNORE(-Wformat-nonliteral);
+ Perl_sv_catpvf(aTHX_ sv, format, start, this_end);
+ GCC_DIAG_RESTORE;
+ break;
+ }
+}
+
+STATIC bool
+S_put_charclass_bitmap_innards(pTHX_ SV *sv, char *bitmap, SV** bitmap_invlist)
+{
+ /* Appends to 'sv' a displayable version of the innards of the bracketed
+ * character class whose bitmap is 'bitmap'; Returns 'TRUE' if it actually
+ * output anything, and bitmap_invlist, if not NULL, will point to an
+ * inversion list of what is in the bit map */
+
+ int i;
+ UV start, end;
+ unsigned int punct_count = 0;
+ SV* invlist = NULL;
+ SV** invlist_ptr; /* Temporary, in case bitmap_invlist is NULL */
+ bool allow_literals = TRUE;
+
+ PERL_ARGS_ASSERT_PUT_CHARCLASS_BITMAP_INNARDS;
+
+ invlist_ptr = (bitmap_invlist) ? bitmap_invlist : &invlist;
+
+ /* Worst case is exactly every-other code point is in the list */
+ *invlist_ptr = _new_invlist(NUM_ANYOF_CODE_POINTS / 2);
+
+ /* Convert the bit map to an inversion list, keeping track of how many
+ * ASCII puncts are set, including an extra amount for the backslashed
+ * ones. */
+ for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
+ if (BITMAP_TEST(bitmap, i)) {
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr, i);
+ if (isPUNCT_A(i)) {
+ punct_count++;
+ if isBACKSLASHED_PUNCT(i) {
+ punct_count++;
+ }
+ }
+ }
+ }
+
+ /* Nothing to output */
+ if (_invlist_len(*invlist_ptr) == 0) {
+ SvREFCNT_dec(invlist);
+ return FALSE;
+ }
+
+ /* Generally, it is more readable if printable characters are output as
+ * literals, but if a range (nearly) spans all of them, it's best to output
+ * it as a single range. This code will use a single range if all but 2
+ * printables are in it */
+ invlist_iterinit(*invlist_ptr);
+ while (invlist_iternext(*invlist_ptr, &start, &end)) {
+
+ /* If range starts beyond final printable, it doesn't have any in it */
+ if (start > MAX_PRINT_A) {
+ break;
+ }
+
+ /* In both ASCII and EBCDIC, a SPACE is the lowest printable. To span
+ * all but two, the range must start and end no later than 2 from
+ * either end */
+ if (start < ' ' + 2 && end > MAX_PRINT_A - 2) {
+ if (end > MAX_PRINT_A) {
+ end = MAX_PRINT_A;
+ }
+ if (start < ' ') {
+ start = ' ';
+ }
+ if (end - start >= MAX_PRINT_A - ' ' - 2) {
+ allow_literals = FALSE;
+ }
+ break;
+ }
+ }
+ invlist_iterfinish(*invlist_ptr);
+
+ /* The legibility of the output depends mostly on how many punctuation
+ * characters are output. There are 32 possible ASCII ones, and some have
+ * an additional backslash, bringing it to currently 36, so if any more
+ * than 18 are to be output, we can instead output it as its complement,
+ * yielding fewer puncts, and making it more legible. But give some weight
+ * to the fact that outputting it as a complement is less legible than a
+ * straight output, so don't complement unless we are somewhat over the 18
+ * mark */
+ if (allow_literals && punct_count > 22) {
+ sv_catpvs(sv, "^");
+
+ /* Add everything remaining to the list, so when we invert it just
+ * below, it will be excluded */
+ _invlist_union_complement_2nd(*invlist_ptr, PL_InBitmap, invlist_ptr);
+ _invlist_invert(*invlist_ptr);
+ }
+
+ /* Here we have figured things out. Output each range */
+ invlist_iterinit(*invlist_ptr);
+ while (invlist_iternext(*invlist_ptr, &start, &end)) {
+ if (start >= NUM_ANYOF_CODE_POINTS) {
+ break;
+ }
+ put_range(sv, start, end, allow_literals);
+ }
+ invlist_iterfinish(*invlist_ptr);
+
+ return TRUE;
+}
+
+#define CLEAR_OPTSTART \
+ if (optstart) STMT_START { \
+ DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, \
+ " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
+ optstart=NULL; \
+ } STMT_END
+
+#define DUMPUNTIL(b,e) \
+ CLEAR_OPTSTART; \
+ node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
+
+STATIC const regnode *
+S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
+ const regnode *last, const regnode *plast,
+ SV* sv, I32 indent, U32 depth)
+{
+ U8 op = PSEUDO; /* Arbitrary non-END op. */
+ const regnode *next;
+ const regnode *optstart= NULL;
+
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMPUNTIL;
+
+#ifdef DEBUG_DUMPUNTIL
+ PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
+ last ? last-start : 0,plast ? plast-start : 0);
+#endif
+
+ if (plast && plast < last)
+ last= plast;
+
+ while (PL_regkind[op] != END && (!last || node < last)) {
+ assert(node);
+ /* While that wasn't END last time... */
+ NODE_ALIGN(node);
+ op = OP(node);
+ if (op == CLOSE || op == WHILEM)
+ indent--;
+ next = regnext((regnode *)node);
+
+ /* Where, what. */
+ if (OP(node) == OPTIMIZED) {
+ if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
+ optstart = node;
+ else
+ goto after_print;
+ } else
+ CLEAR_OPTSTART;
+
+ regprop(r, sv, node, NULL, NULL);
+ PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
+ (int)(2*indent + 1), "", SvPVX_const(sv));
+
+ if (OP(node) != OPTIMIZED) {
+ if (next == NULL) /* Next ptr. */
+ PerlIO_printf(Perl_debug_log, " (0)");
+ else if (PL_regkind[(U8)op] == BRANCH
+ && PL_regkind[OP(next)] != BRANCH )
+ PerlIO_printf(Perl_debug_log, " (FAIL)");
+ else
+ PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
+ (void)PerlIO_putc(Perl_debug_log, '\n');
+ }
+
+ after_print:
+ if (PL_regkind[(U8)op] == BRANCHJ) {
+ assert(next);
+ {
+ const regnode *nnode = (OP(next) == LONGJMP
+ ? regnext((regnode *)next)
+ : next);
+ if (last && nnode > last)
+ nnode = last;
+ DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
+ }
+ }
+ else if (PL_regkind[(U8)op] == BRANCH) {
+ assert(next);
+ DUMPUNTIL(NEXTOPER(node), next);
+ }
+ else if ( PL_regkind[(U8)op] == TRIE ) {
+ const regnode *this_trie = node;
+ const char op = OP(node);
+ const U32 n = ARG(node);
+ const reg_ac_data * const ac = op>=AHOCORASICK ?
+ (reg_ac_data *)ri->data->data[n] :
+ NULL;
+ const reg_trie_data * const trie =
+ (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
+#ifdef DEBUGGING
+ AV *const trie_words
+ = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
+#endif
+ const regnode *nextbranch= NULL;
+ I32 word_idx;
+ sv_setpvs(sv, "");
+ for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
+ SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
+
+ PerlIO_printf(Perl_debug_log, "%*s%s ",
+ (int)(2*(indent+3)), "",
+ elem_ptr
+ ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr),
+ SvCUR(*elem_ptr), 60,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*elem_ptr)
+ ? PERL_PV_ESCAPE_UNI
+ : 0)
+ | PERL_PV_PRETTY_ELLIPSES
+ | PERL_PV_PRETTY_LTGT
+ )
+ : "???"
+ );
+ if (trie->jump) {
+ U16 dist= trie->jump[word_idx+1];
+ PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
+ (UV)((dist ? this_trie + dist : next) - start));
+ if (dist) {
+ if (!nextbranch)
+ nextbranch= this_trie + trie->jump[0];
+ DUMPUNTIL(this_trie + dist, nextbranch);
+ }
+ if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
+ nextbranch= regnext((regnode *)nextbranch);
+ } else {
+ PerlIO_printf(Perl_debug_log, "\n");
+ }
+ }
+ if (last && next > last)
+ node= last;
+ else
+ node= next;
+ }
+ else if ( op == CURLY ) { /* "next" might be very big: optimizer */
+ DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
+ NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
+ }
+ else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
+ assert(next);
+ DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
+ }
+ else if ( op == PLUS || op == STAR) {
+ DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
+ }
+ else if (PL_regkind[(U8)op] == ANYOF) {
+ /* arglen 1 + class block */
+ node += 1 + ((ANYOF_FLAGS(node) & ANYOF_MATCHES_POSIXL)
+ ? ANYOF_POSIXL_SKIP
+ : ANYOF_SKIP);
+ node = NEXTOPER(node);
+ }
+ else if (PL_regkind[(U8)op] == EXACT) {
+ /* Literal string, where present. */
+ node += NODE_SZ_STR(node) - 1;
+ node = NEXTOPER(node);
+ }
+ else {
+ node = NEXTOPER(node);
+ node += regarglen[(U8)op];
+ }
+ if (op == CURLYX || op == OPEN)
+ indent++;
+ }
+ CLEAR_OPTSTART;
+#ifdef DEBUG_DUMPUNTIL
+ PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
+#endif
+ return node;
+}
+
+#endif /* DEBUGGING */
+
+/*
+ * ex: set ts=8 sts=4 sw=4 et:
+ */
--- /dev/null
+/* regexec.c
+ */
+
+/*
+ * One Ring to rule them all, One Ring to find them
+ &
+ * [p.v of _The Lord of the Rings_, opening poem]
+ * [p.50 of _The Lord of the Rings_, I/iii: "The Shadow of the Past"]
+ * [p.254 of _The Lord of the Rings_, II/ii: "The Council of Elrond"]
+ */
+
+/* This file contains functions for executing a regular expression. See
+ * also regcomp.c which funnily enough, contains functions for compiling
+ * a regular expression.
+ *
+ * This file is also copied at build time to ext/re/re_exec.c, where
+ * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
+ * This causes the main functions to be compiled under new names and with
+ * debugging support added, which makes "use re 'debug'" work.
+ */
+
+/* NOTE: this is derived from Henry Spencer's regexp code, and should not
+ * confused with the original package (see point 3 below). Thanks, Henry!
+ */
+
+/* Additional note: this code is very heavily munged from Henry's version
+ * in places. In some spots I've traded clarity for efficiency, so don't
+ * blame Henry for some of the lack of readability.
+ */
+
+/* The names of the functions have been changed from regcomp and
+ * regexec to pregcomp and pregexec in order to avoid conflicts
+ * with the POSIX routines of the same names.
+*/
+
+#ifdef PERL_EXT_RE_BUILD
+#include "re_top.h"
+#endif
+
+#define B_ON_NON_UTF8_LOCALE_IS_WRONG \
+ "Use of \\b{} or \\B{} for non-UTF-8 locale is wrong. Assuming a UTF-8 locale"
+
+/*
+ * pregcomp and pregexec -- regsub and regerror are not used in perl
+ *
+ * Copyright (c) 1986 by University of Toronto.
+ * Written by Henry Spencer. Not derived from licensed software.
+ *
+ * Permission is granted to anyone to use this software for any
+ * purpose on any computer system, and to redistribute it freely,
+ * subject to the following restrictions:
+ *
+ * 1. The author is not responsible for the consequences of use of
+ * this software, no matter how awful, even if they arise
+ * from defects in it.
+ *
+ * 2. The origin of this software must not be misrepresented, either
+ * by explicit claim or by omission.
+ *
+ * 3. Altered versions must be plainly marked as such, and must not
+ * be misrepresented as being the original software.
+ *
+ **** Alterations to Henry's code are...
+ ****
+ **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ **** by Larry Wall and others
+ ****
+ **** You may distribute under the terms of either the GNU General Public
+ **** License or the Artistic License, as specified in the README file.
+ *
+ * Beware that some of this code is subtly aware of the way operator
+ * precedence is structured in regular expressions. Serious changes in
+ * regular-expression syntax might require a total rethink.
+ */
+#include "EXTERN.h"
+#define PERL_IN_REGEXEC_C
+#include "perl.h"
+
+#ifdef PERL_IN_XSUB_RE
+# include "re_comp.h"
+#else
+# include "regcomp.h"
+#endif
+
+#include "inline_invlist.c"
+#include "unicode_constants.h"
+
+#ifdef DEBUGGING
+/* At least one required character in the target string is expressible only in
+ * UTF-8. */
+static const char* const non_utf8_target_but_utf8_required
+ = "Can't match, because target string needs to be in UTF-8\n";
+#endif
+
+#define NON_UTF8_TARGET_BUT_UTF8_REQUIRED(target) STMT_START { \
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%s", non_utf8_target_but_utf8_required));\
+ goto target; \
+} STMT_END
+
+#define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
+
+#ifndef STATIC
+#define STATIC static
+#endif
+
+/* Valid only for non-utf8 strings: avoids the reginclass
+ * call if there are no complications: i.e., if everything matchable is
+ * straight forward in the bitmap */
+#define REGINCLASS(prog,p,c) (ANYOF_FLAGS(p) ? reginclass(prog,p,c,c+1,0) \
+ : ANYOF_BITMAP_TEST(p,*(c)))
+
+/*
+ * Forwards.
+ */
+
+#define CHR_SVLEN(sv) (utf8_target ? sv_len_utf8(sv) : SvCUR(sv))
+#define CHR_DIST(a,b) (reginfo->is_utf8_target ? utf8_distance(a,b) : a - b)
+
+#define HOPc(pos,off) \
+ (char *)(reginfo->is_utf8_target \
+ ? reghop3((U8*)pos, off, \
+ (U8*)(off >= 0 ? reginfo->strend : reginfo->strbeg)) \
+ : (U8*)(pos + off))
+
+#define HOPBACKc(pos, off) \
+ (char*)(reginfo->is_utf8_target \
+ ? reghopmaybe3((U8*)pos, -off, (U8*)(reginfo->strbeg)) \
+ : (pos - off >= reginfo->strbeg) \
+ ? (U8*)pos - off \
+ : NULL)
+
+#define HOP3(pos,off,lim) (reginfo->is_utf8_target ? reghop3((U8*)(pos), off, (U8*)(lim)) : (U8*)(pos + off))
+#define HOP3c(pos,off,lim) ((char*)HOP3(pos,off,lim))
+
+/* lim must be +ve. Returns NULL on overshoot */
+#define HOPMAYBE3(pos,off,lim) \
+ (reginfo->is_utf8_target \
+ ? reghopmaybe3((U8*)pos, off, (U8*)(lim)) \
+ : ((U8*)pos + off <= lim) \
+ ? (U8*)pos + off \
+ : NULL)
+
+/* like HOP3, but limits the result to <= lim even for the non-utf8 case.
+ * off must be >=0; args should be vars rather than expressions */
+#define HOP3lim(pos,off,lim) (reginfo->is_utf8_target \
+ ? reghop3((U8*)(pos), off, (U8*)(lim)) \
+ : (U8*)((pos + off) > lim ? lim : (pos + off)))
+
+#define HOP4(pos,off,llim, rlim) (reginfo->is_utf8_target \
+ ? reghop4((U8*)(pos), off, (U8*)(llim), (U8*)(rlim)) \
+ : (U8*)(pos + off))
+#define HOP4c(pos,off,llim, rlim) ((char*)HOP4(pos,off,llim, rlim))
+
+#define NEXTCHR_EOS -10 /* nextchr has fallen off the end */
+#define NEXTCHR_IS_EOS (nextchr < 0)
+
+#define SET_nextchr \
+ nextchr = ((locinput < reginfo->strend) ? UCHARAT(locinput) : NEXTCHR_EOS)
+
+#define SET_locinput(p) \
+ locinput = (p); \
+ SET_nextchr
+
+
+#define LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist) STMT_START { \
+ if (!swash_ptr) { \
+ U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST; \
+ swash_ptr = _core_swash_init("utf8", property_name, &PL_sv_undef, \
+ 1, 0, invlist, &flags); \
+ assert(swash_ptr); \
+ } \
+ } STMT_END
+
+/* If in debug mode, we test that a known character properly matches */
+#ifdef DEBUGGING
+# define LOAD_UTF8_CHARCLASS_DEBUG_TEST(swash_ptr, \
+ property_name, \
+ invlist, \
+ utf8_char_in_property) \
+ LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist); \
+ assert(swash_fetch(swash_ptr, (U8 *) utf8_char_in_property, TRUE));
+#else
+# define LOAD_UTF8_CHARCLASS_DEBUG_TEST(swash_ptr, \
+ property_name, \
+ invlist, \
+ utf8_char_in_property) \
+ LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist)
+#endif
+
+#define LOAD_UTF8_CHARCLASS_ALNUM() LOAD_UTF8_CHARCLASS_DEBUG_TEST( \
+ PL_utf8_swash_ptrs[_CC_WORDCHAR], \
+ "", \
+ PL_XPosix_ptrs[_CC_WORDCHAR], \
+ LATIN_CAPITAL_LETTER_SHARP_S_UTF8);
+
+#define PLACEHOLDER /* Something for the preprocessor to grab onto */
+/* TODO: Combine JUMPABLE and HAS_TEXT to cache OP(rn) */
+
+/* for use after a quantifier and before an EXACT-like node -- japhy */
+/* it would be nice to rework regcomp.sym to generate this stuff. sigh
+ *
+ * NOTE that *nothing* that affects backtracking should be in here, specifically
+ * VERBS must NOT be included. JUMPABLE is used to determine if we can ignore a
+ * node that is in between two EXACT like nodes when ascertaining what the required
+ * "follow" character is. This should probably be moved to regex compile time
+ * although it may be done at run time beause of the REF possibility - more
+ * investigation required. -- demerphq
+*/
+#define JUMPABLE(rn) ( \
+ OP(rn) == OPEN || \
+ (OP(rn) == CLOSE && (!cur_eval || cur_eval->u.eval.close_paren != ARG(rn))) || \
+ OP(rn) == EVAL || \
+ OP(rn) == SUSPEND || OP(rn) == IFMATCH || \
+ OP(rn) == PLUS || OP(rn) == MINMOD || \
+ OP(rn) == KEEPS || \
+ (PL_regkind[OP(rn)] == CURLY && ARG1(rn) > 0) \
+)
+#define IS_EXACT(rn) (PL_regkind[OP(rn)] == EXACT)
+
+#define HAS_TEXT(rn) ( IS_EXACT(rn) || PL_regkind[OP(rn)] == REF )
+
+#if 0
+/* Currently these are only used when PL_regkind[OP(rn)] == EXACT so
+ we don't need this definition. XXX These are now out-of-sync*/
+#define IS_TEXT(rn) ( OP(rn)==EXACT || OP(rn)==REF || OP(rn)==NREF )
+#define IS_TEXTF(rn) ( OP(rn)==EXACTFU || OP(rn)==EXACTFU_SS || OP(rn)==EXACTFA || OP(rn)==EXACTFA_NO_TRIE || OP(rn)==EXACTF || OP(rn)==REFF || OP(rn)==NREFF )
+#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL || OP(rn)==REFFL || OP(rn)==NREFFL )
+
+#else
+/* ... so we use this as its faster. */
+#define IS_TEXT(rn) ( OP(rn)==EXACT || OP(rn)==EXACTL )
+#define IS_TEXTFU(rn) ( OP(rn)==EXACTFU || OP(rn)==EXACTFLU8 || OP(rn)==EXACTFU_SS || OP(rn) == EXACTFA || OP(rn) == EXACTFA_NO_TRIE)
+#define IS_TEXTF(rn) ( OP(rn)==EXACTF )
+#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL )
+
+#endif
+
+/*
+ Search for mandatory following text node; for lookahead, the text must
+ follow but for lookbehind (rn->flags != 0) we skip to the next step.
+*/
+#define FIND_NEXT_IMPT(rn) STMT_START { \
+ while (JUMPABLE(rn)) { \
+ const OPCODE type = OP(rn); \
+ if (type == SUSPEND || PL_regkind[type] == CURLY) \
+ rn = NEXTOPER(NEXTOPER(rn)); \
+ else if (type == PLUS) \
+ rn = NEXTOPER(rn); \
+ else if (type == IFMATCH) \
+ rn = (rn->flags == 0) ? NEXTOPER(NEXTOPER(rn)) : rn + ARG(rn); \
+ else rn += NEXT_OFF(rn); \
+ } \
+} STMT_END
+
+#define SLAB_FIRST(s) (&(s)->states[0])
+#define SLAB_LAST(s) (&(s)->states[PERL_REGMATCH_SLAB_SLOTS-1])
+
+static void S_setup_eval_state(pTHX_ regmatch_info *const reginfo);
+static void S_cleanup_regmatch_info_aux(pTHX_ void *arg);
+static regmatch_state * S_push_slab(pTHX);
+
+#define REGCP_PAREN_ELEMS 3
+#define REGCP_OTHER_ELEMS 3
+#define REGCP_FRAME_ELEMS 1
+/* REGCP_FRAME_ELEMS are not part of the REGCP_OTHER_ELEMS and
+ * are needed for the regexp context stack bookkeeping. */
+
+STATIC CHECKPOINT
+S_regcppush(pTHX_ const regexp *rex, I32 parenfloor, U32 maxopenparen)
+{
+ const int retval = PL_savestack_ix;
+ const int paren_elems_to_push =
+ (maxopenparen - parenfloor) * REGCP_PAREN_ELEMS;
+ const UV total_elems = paren_elems_to_push + REGCP_OTHER_ELEMS;
+ const UV elems_shifted = total_elems << SAVE_TIGHT_SHIFT;
+ I32 p;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGCPPUSH;
+
+ if (paren_elems_to_push < 0)
+ Perl_croak(aTHX_ "panic: paren_elems_to_push, %i < 0, maxopenparen: %i parenfloor: %i REGCP_PAREN_ELEMS: %u",
+ (int)paren_elems_to_push, (int)maxopenparen,
+ (int)parenfloor, (unsigned)REGCP_PAREN_ELEMS);
+
+ if ((elems_shifted >> SAVE_TIGHT_SHIFT) != total_elems)
+ Perl_croak(aTHX_ "panic: paren_elems_to_push offset %"UVuf
+ " out of range (%lu-%ld)",
+ total_elems,
+ (unsigned long)maxopenparen,
+ (long)parenfloor);
+
+ SSGROW(total_elems + REGCP_FRAME_ELEMS);
+
+ DEBUG_BUFFERS_r(
+ if ((int)maxopenparen > (int)parenfloor)
+ PerlIO_printf(Perl_debug_log,
+ "rex=0x%"UVxf" offs=0x%"UVxf": saving capture indices:\n",
+ PTR2UV(rex),
+ PTR2UV(rex->offs)
+ );
+ );
+ for (p = parenfloor+1; p <= (I32)maxopenparen; p++) {
+/* REGCP_PARENS_ELEMS are pushed per pairs of parentheses. */
+ SSPUSHIV(rex->offs[p].end);
+ SSPUSHIV(rex->offs[p].start);
+ SSPUSHINT(rex->offs[p].start_tmp);
+ DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+ " \\%"UVuf": %"IVdf"(%"IVdf")..%"IVdf"\n",
+ (UV)p,
+ (IV)rex->offs[p].start,
+ (IV)rex->offs[p].start_tmp,
+ (IV)rex->offs[p].end
+ ));
+ }
+/* REGCP_OTHER_ELEMS are pushed in any case, parentheses or no. */
+ SSPUSHINT(maxopenparen);
+ SSPUSHINT(rex->lastparen);
+ SSPUSHINT(rex->lastcloseparen);
+ SSPUSHUV(SAVEt_REGCONTEXT | elems_shifted); /* Magic cookie. */
+
+ return retval;
+}
+
+/* These are needed since we do not localize EVAL nodes: */
+#define REGCP_SET(cp) \
+ DEBUG_STATE_r( \
+ PerlIO_printf(Perl_debug_log, \
+ " Setting an EVAL scope, savestack=%"IVdf"\n", \
+ (IV)PL_savestack_ix)); \
+ cp = PL_savestack_ix
+
+#define REGCP_UNWIND(cp) \
+ DEBUG_STATE_r( \
+ if (cp != PL_savestack_ix) \
+ PerlIO_printf(Perl_debug_log, \
+ " Clearing an EVAL scope, savestack=%"IVdf"..%"IVdf"\n", \
+ (IV)(cp), (IV)PL_savestack_ix)); \
+ regcpblow(cp)
+
+#define UNWIND_PAREN(lp, lcp) \
+ for (n = rex->lastparen; n > lp; n--) \
+ rex->offs[n].end = -1; \
+ rex->lastparen = n; \
+ rex->lastcloseparen = lcp;
+
+
+STATIC void
+S_regcppop(pTHX_ regexp *rex, U32 *maxopenparen_p)
+{
+ UV i;
+ U32 paren;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGCPPOP;
+
+ /* Pop REGCP_OTHER_ELEMS before the parentheses loop starts. */
+ i = SSPOPUV;
+ assert((i & SAVE_MASK) == SAVEt_REGCONTEXT); /* Check that the magic cookie is there. */
+ i >>= SAVE_TIGHT_SHIFT; /* Parentheses elements to pop. */
+ rex->lastcloseparen = SSPOPINT;
+ rex->lastparen = SSPOPINT;
+ *maxopenparen_p = SSPOPINT;
+
+ i -= REGCP_OTHER_ELEMS;
+ /* Now restore the parentheses context. */
+ DEBUG_BUFFERS_r(
+ if (i || rex->lastparen + 1 <= rex->nparens)
+ PerlIO_printf(Perl_debug_log,
+ "rex=0x%"UVxf" offs=0x%"UVxf": restoring capture indices to:\n",
+ PTR2UV(rex),
+ PTR2UV(rex->offs)
+ );
+ );
+ paren = *maxopenparen_p;
+ for ( ; i > 0; i -= REGCP_PAREN_ELEMS) {
+ SSize_t tmps;
+ rex->offs[paren].start_tmp = SSPOPINT;
+ rex->offs[paren].start = SSPOPIV;
+ tmps = SSPOPIV;
+ if (paren <= rex->lastparen)
+ rex->offs[paren].end = tmps;
+ DEBUG_BUFFERS_r( PerlIO_printf(Perl_debug_log,
+ " \\%"UVuf": %"IVdf"(%"IVdf")..%"IVdf"%s\n",
+ (UV)paren,
+ (IV)rex->offs[paren].start,
+ (IV)rex->offs[paren].start_tmp,
+ (IV)rex->offs[paren].end,
+ (paren > rex->lastparen ? "(skipped)" : ""));
+ );
+ paren--;
+ }
+#if 1
+ /* It would seem that the similar code in regtry()
+ * already takes care of this, and in fact it is in
+ * a better location to since this code can #if 0-ed out
+ * but the code in regtry() is needed or otherwise tests
+ * requiring null fields (pat.t#187 and split.t#{13,14}
+ * (as of patchlevel 7877) will fail. Then again,
+ * this code seems to be necessary or otherwise
+ * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
+ * --jhi updated by dapm */
+ for (i = rex->lastparen + 1; i <= rex->nparens; i++) {
+ if (i > *maxopenparen_p)
+ rex->offs[i].start = -1;
+ rex->offs[i].end = -1;
+ DEBUG_BUFFERS_r( PerlIO_printf(Perl_debug_log,
+ " \\%"UVuf": %s ..-1 undeffing\n",
+ (UV)i,
+ (i > *maxopenparen_p) ? "-1" : " "
+ ));
+ }
+#endif
+}
+
+/* restore the parens and associated vars at savestack position ix,
+ * but without popping the stack */
+
+STATIC void
+S_regcp_restore(pTHX_ regexp *rex, I32 ix, U32 *maxopenparen_p)
+{
+ I32 tmpix = PL_savestack_ix;
+ PL_savestack_ix = ix;
+ regcppop(rex, maxopenparen_p);
+ PL_savestack_ix = tmpix;
+}
+
+#define regcpblow(cp) LEAVE_SCOPE(cp) /* Ignores regcppush()ed data. */
+
+STATIC bool
+S_isFOO_lc(pTHX_ const U8 classnum, const U8 character)
+{
+ /* Returns a boolean as to whether or not 'character' is a member of the
+ * Posix character class given by 'classnum' that should be equivalent to a
+ * value in the typedef '_char_class_number'.
+ *
+ * Ideally this could be replaced by a just an array of function pointers
+ * to the C library functions that implement the macros this calls.
+ * However, to compile, the precise function signatures are required, and
+ * these may vary from platform to to platform. To avoid having to figure
+ * out what those all are on each platform, I (khw) am using this method,
+ * which adds an extra layer of function call overhead (unless the C
+ * optimizer strips it away). But we don't particularly care about
+ * performance with locales anyway. */
+
+ switch ((_char_class_number) classnum) {
+ case _CC_ENUM_ALPHANUMERIC: return isALPHANUMERIC_LC(character);
+ case _CC_ENUM_ALPHA: return isALPHA_LC(character);
+ case _CC_ENUM_ASCII: return isASCII_LC(character);
+ case _CC_ENUM_BLANK: return isBLANK_LC(character);
+ case _CC_ENUM_CASED: return isLOWER_LC(character)
+ || isUPPER_LC(character);
+ case _CC_ENUM_CNTRL: return isCNTRL_LC(character);
+ case _CC_ENUM_DIGIT: return isDIGIT_LC(character);
+ case _CC_ENUM_GRAPH: return isGRAPH_LC(character);
+ case _CC_ENUM_LOWER: return isLOWER_LC(character);
+ case _CC_ENUM_PRINT: return isPRINT_LC(character);
+ case _CC_ENUM_PUNCT: return isPUNCT_LC(character);
+ case _CC_ENUM_SPACE: return isSPACE_LC(character);
+ case _CC_ENUM_UPPER: return isUPPER_LC(character);
+ case _CC_ENUM_WORDCHAR: return isWORDCHAR_LC(character);
+ case _CC_ENUM_XDIGIT: return isXDIGIT_LC(character);
+ default: /* VERTSPACE should never occur in locales */
+ Perl_croak(aTHX_ "panic: isFOO_lc() has an unexpected character class '%d'", classnum);
+ }
+
+ NOT_REACHED; /* NOTREACHED */
+ return FALSE;
+}
+
+STATIC bool
+S_isFOO_utf8_lc(pTHX_ const U8 classnum, const U8* character)
+{
+ /* Returns a boolean as to whether or not the (well-formed) UTF-8-encoded
+ * 'character' is a member of the Posix character class given by 'classnum'
+ * that should be equivalent to a value in the typedef
+ * '_char_class_number'.
+ *
+ * This just calls isFOO_lc on the code point for the character if it is in
+ * the range 0-255. Outside that range, all characters use Unicode
+ * rules, ignoring any locale. So use the Unicode function if this class
+ * requires a swash, and use the Unicode macro otherwise. */
+
+ PERL_ARGS_ASSERT_ISFOO_UTF8_LC;
+
+ if (UTF8_IS_INVARIANT(*character)) {
+ return isFOO_lc(classnum, *character);
+ }
+ else if (UTF8_IS_DOWNGRADEABLE_START(*character)) {
+ return isFOO_lc(classnum,
+ TWO_BYTE_UTF8_TO_NATIVE(*character, *(character + 1)));
+ }
+
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(character, character + UTF8SKIP(character));
+
+ if (classnum < _FIRST_NON_SWASH_CC) {
+
+ /* Initialize the swash unless done already */
+ if (! PL_utf8_swash_ptrs[classnum]) {
+ U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+ PL_utf8_swash_ptrs[classnum] =
+ _core_swash_init("utf8",
+ "",
+ &PL_sv_undef, 1, 0,
+ PL_XPosix_ptrs[classnum], &flags);
+ }
+
+ return cBOOL(swash_fetch(PL_utf8_swash_ptrs[classnum], (U8 *)
+ character,
+ TRUE /* is UTF */ ));
+ }
+
+ switch ((_char_class_number) classnum) {
+ case _CC_ENUM_SPACE: return is_XPERLSPACE_high(character);
+ case _CC_ENUM_BLANK: return is_HORIZWS_high(character);
+ case _CC_ENUM_XDIGIT: return is_XDIGIT_high(character);
+ case _CC_ENUM_VERTSPACE: return is_VERTWS_high(character);
+ default: break;
+ }
+
+ return FALSE; /* Things like CNTRL are always below 256 */
+}
+
+/*
+ * pregexec and friends
+ */
+
+#ifndef PERL_IN_XSUB_RE
+/*
+ - pregexec - match a regexp against a string
+ */
+I32
+Perl_pregexec(pTHX_ REGEXP * const prog, char* stringarg, char *strend,
+ char *strbeg, SSize_t minend, SV *screamer, U32 nosave)
+/* stringarg: the point in the string at which to begin matching */
+/* strend: pointer to null at end of string */
+/* strbeg: real beginning of string */
+/* minend: end of match must be >= minend bytes after stringarg. */
+/* screamer: SV being matched: only used for utf8 flag, pos() etc; string
+ * itself is accessed via the pointers above */
+/* nosave: For optimizations. */
+{
+ PERL_ARGS_ASSERT_PREGEXEC;
+
+ return
+ regexec_flags(prog, stringarg, strend, strbeg, minend, screamer, NULL,
+ nosave ? 0 : REXEC_COPY_STR);
+}
+#endif
+
+
+
+/* re_intuit_start():
+ *
+ * Based on some optimiser hints, try to find the earliest position in the
+ * string where the regex could match.
+ *
+ * rx: the regex to match against
+ * sv: the SV being matched: only used for utf8 flag; the string
+ * itself is accessed via the pointers below. Note that on
+ * something like an overloaded SV, SvPOK(sv) may be false
+ * and the string pointers may point to something unrelated to
+ * the SV itself.
+ * strbeg: real beginning of string
+ * strpos: the point in the string at which to begin matching
+ * strend: pointer to the byte following the last char of the string
+ * flags currently unused; set to 0
+ * data: currently unused; set to NULL
+ *
+ * The basic idea of re_intuit_start() is to use some known information
+ * about the pattern, namely:
+ *
+ * a) the longest known anchored substring (i.e. one that's at a
+ * constant offset from the beginning of the pattern; but not
+ * necessarily at a fixed offset from the beginning of the
+ * string);
+ * b) the longest floating substring (i.e. one that's not at a constant
+ * offset from the beginning of the pattern);
+ * c) Whether the pattern is anchored to the string; either
+ * an absolute anchor: /^../, or anchored to \n: /^.../m,
+ * or anchored to pos(): /\G/;
+ * d) A start class: a real or synthetic character class which
+ * represents which characters are legal at the start of the pattern;
+ *
+ * to either quickly reject the match, or to find the earliest position
+ * within the string at which the pattern might match, thus avoiding
+ * running the full NFA engine at those earlier locations, only to
+ * eventually fail and retry further along.
+ *
+ * Returns NULL if the pattern can't match, or returns the address within
+ * the string which is the earliest place the match could occur.
+ *
+ * The longest of the anchored and floating substrings is called 'check'
+ * and is checked first. The other is called 'other' and is checked
+ * second. The 'other' substring may not be present. For example,
+ *
+ * /(abc|xyz)ABC\d{0,3}DEFG/
+ *
+ * will have
+ *
+ * check substr (float) = "DEFG", offset 6..9 chars
+ * other substr (anchored) = "ABC", offset 3..3 chars
+ * stclass = [ax]
+ *
+ * Be aware that during the course of this function, sometimes 'anchored'
+ * refers to a substring being anchored relative to the start of the
+ * pattern, and sometimes to the pattern itself being anchored relative to
+ * the string. For example:
+ *
+ * /\dabc/: "abc" is anchored to the pattern;
+ * /^\dabc/: "abc" is anchored to the pattern and the string;
+ * /\d+abc/: "abc" is anchored to neither the pattern nor the string;
+ * /^\d+abc/: "abc" is anchored to neither the pattern nor the string,
+ * but the pattern is anchored to the string.
+ */
+
+char *
+Perl_re_intuit_start(pTHX_
+ REGEXP * const rx,
+ SV *sv,
+ const char * const strbeg,
+ char *strpos,
+ char *strend,
+ const U32 flags,
+ re_scream_pos_data *data)
+{
+ struct regexp *const prog = ReANY(rx);
+ SSize_t start_shift = prog->check_offset_min;
+ /* Should be nonnegative! */
+ SSize_t end_shift = 0;
+ /* current lowest pos in string where the regex can start matching */
+ char *rx_origin = strpos;
+ SV *check;
+ const bool utf8_target = (sv && SvUTF8(sv)) ? 1 : 0; /* if no sv we have to assume bytes */
+ U8 other_ix = 1 - prog->substrs->check_ix;
+ bool ml_anch = 0;
+ char *other_last = strpos;/* latest pos 'other' substr already checked to */
+ char *check_at = NULL; /* check substr found at this pos */
+ const I32 multiline = prog->extflags & RXf_PMf_MULTILINE;
+ RXi_GET_DECL(prog,progi);
+ regmatch_info reginfo_buf; /* create some info to pass to find_byclass */
+ regmatch_info *const reginfo = ®info_buf;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_INTUIT_START;
+ PERL_UNUSED_ARG(flags);
+ PERL_UNUSED_ARG(data);
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "Intuit: trying to determine minimum start position...\n"));
+
+ /* for now, assume that all substr offsets are positive. If at some point
+ * in the future someone wants to do clever things with look-behind and
+ * -ve offsets, they'll need to fix up any code in this function
+ * which uses these offsets. See the thread beginning
+ * <20140113145929.GF27210@iabyn.com>
+ */
+ assert(prog->substrs->data[0].min_offset >= 0);
+ assert(prog->substrs->data[0].max_offset >= 0);
+ assert(prog->substrs->data[1].min_offset >= 0);
+ assert(prog->substrs->data[1].max_offset >= 0);
+ assert(prog->substrs->data[2].min_offset >= 0);
+ assert(prog->substrs->data[2].max_offset >= 0);
+
+ /* for now, assume that if both present, that the floating substring
+ * doesn't start before the anchored substring.
+ * If you break this assumption (e.g. doing better optimisations
+ * with lookahead/behind), then you'll need to audit the code in this
+ * function carefully first
+ */
+ assert(
+ ! ( (prog->anchored_utf8 || prog->anchored_substr)
+ && (prog->float_utf8 || prog->float_substr))
+ || (prog->float_min_offset >= prog->anchored_offset));
+
+ /* byte rather than char calculation for efficiency. It fails
+ * to quickly reject some cases that can't match, but will reject
+ * them later after doing full char arithmetic */
+ if (prog->minlen > strend - strpos) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " String too short...\n"));
+ goto fail;
+ }
+
+ RX_MATCH_UTF8_set(rx,utf8_target);
+ reginfo->is_utf8_target = cBOOL(utf8_target);
+ reginfo->info_aux = NULL;
+ reginfo->strbeg = strbeg;
+ reginfo->strend = strend;
+ reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx));
+ reginfo->intuit = 1;
+ /* not actually used within intuit, but zero for safety anyway */
+ reginfo->poscache_maxiter = 0;
+
+ if (utf8_target) {
+ if (!prog->check_utf8 && prog->check_substr)
+ to_utf8_substr(prog);
+ check = prog->check_utf8;
+ } else {
+ if (!prog->check_substr && prog->check_utf8) {
+ if (! to_byte_substr(prog)) {
+ NON_UTF8_TARGET_BUT_UTF8_REQUIRED(fail);
+ }
+ }
+ check = prog->check_substr;
+ }
+
+ /* dump the various substring data */
+ DEBUG_OPTIMISE_MORE_r({
+ int i;
+ for (i=0; i<=2; i++) {
+ SV *sv = (utf8_target ? prog->substrs->data[i].utf8_substr
+ : prog->substrs->data[i].substr);
+ if (!sv)
+ continue;
+
+ PerlIO_printf(Perl_debug_log,
+ " substrs[%d]: min=%"IVdf" max=%"IVdf" end shift=%"IVdf
+ " useful=%"IVdf" utf8=%d [%s]\n",
+ i,
+ (IV)prog->substrs->data[i].min_offset,
+ (IV)prog->substrs->data[i].max_offset,
+ (IV)prog->substrs->data[i].end_shift,
+ BmUSEFUL(sv),
+ utf8_target ? 1 : 0,
+ SvPEEK(sv));
+ }
+ });
+
+ if (prog->intflags & PREGf_ANCH) { /* Match at \G, beg-of-str or after \n */
+
+ /* ml_anch: check after \n?
+ *
+ * A note about PREGf_IMPLICIT: on an un-anchored pattern beginning
+ * with /.*.../, these flags will have been added by the
+ * compiler:
+ * /.*abc/, /.*abc/m: PREGf_IMPLICIT | PREGf_ANCH_MBOL
+ * /.*abc/s: PREGf_IMPLICIT | PREGf_ANCH_SBOL
+ */
+ ml_anch = (prog->intflags & PREGf_ANCH_MBOL)
+ && !(prog->intflags & PREGf_IMPLICIT);
+
+ if (!ml_anch && !(prog->intflags & PREGf_IMPLICIT)) {
+ /* we are only allowed to match at BOS or \G */
+
+ /* trivially reject if there's a BOS anchor and we're not at BOS.
+ *
+ * Note that we don't try to do a similar quick reject for
+ * \G, since generally the caller will have calculated strpos
+ * based on pos() and gofs, so the string is already correctly
+ * anchored by definition; and handling the exceptions would
+ * be too fiddly (e.g. REXEC_IGNOREPOS).
+ */
+ if ( strpos != strbeg
+ && (prog->intflags & PREGf_ANCH_SBOL))
+ {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Not at start...\n"));
+ goto fail;
+ }
+
+ /* in the presence of an anchor, the anchored (relative to the
+ * start of the regex) substr must also be anchored relative
+ * to strpos. So quickly reject if substr isn't found there.
+ * This works for \G too, because the caller will already have
+ * subtracted gofs from pos, and gofs is the offset from the
+ * \G to the start of the regex. For example, in /.abc\Gdef/,
+ * where substr="abcdef", pos()=3, gofs=4, offset_min=1:
+ * caller will have set strpos=pos()-4; we look for the substr
+ * at position pos()-4+1, which lines up with the "a" */
+
+ if (prog->check_offset_min == prog->check_offset_max) {
+ /* Substring at constant offset from beg-of-str... */
+ SSize_t slen = SvCUR(check);
+ char *s = HOP3c(strpos, prog->check_offset_min, strend);
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Looking for check substr at fixed offset %"IVdf"...\n",
+ (IV)prog->check_offset_min));
+
+ if (SvTAIL(check)) {
+ /* In this case, the regex is anchored at the end too.
+ * Unless it's a multiline match, the lengths must match
+ * exactly, give or take a \n. NB: slen >= 1 since
+ * the last char of check is \n */
+ if (!multiline
+ && ( strend - s > slen
+ || strend - s < slen - 1
+ || (strend - s == slen && strend[-1] != '\n')))
+ {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " String too long...\n"));
+ goto fail_finish;
+ }
+ /* Now should match s[0..slen-2] */
+ slen--;
+ }
+ if (slen && (*SvPVX_const(check) != *s
+ || (slen > 1 && memNE(SvPVX_const(check), s, slen))))
+ {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " String not equal...\n"));
+ goto fail_finish;
+ }
+
+ check_at = s;
+ goto success_at_start;
+ }
+ }
+ }
+
+ end_shift = prog->check_end_shift;
+
+#ifdef DEBUGGING /* 7/99: reports of failure (with the older version) */
+ if (end_shift < 0)
+ Perl_croak(aTHX_ "panic: end_shift: %"IVdf" pattern:\n%s\n ",
+ (IV)end_shift, RX_PRECOMP(prog));
+#endif
+
+ restart:
+
+ /* This is the (re)entry point of the main loop in this function.
+ * The goal of this loop is to:
+ * 1) find the "check" substring in the region rx_origin..strend
+ * (adjusted by start_shift / end_shift). If not found, reject
+ * immediately.
+ * 2) If it exists, look for the "other" substr too if defined; for
+ * example, if the check substr maps to the anchored substr, then
+ * check the floating substr, and vice-versa. If not found, go
+ * back to (1) with rx_origin suitably incremented.
+ * 3) If we find an rx_origin position that doesn't contradict
+ * either of the substrings, then check the possible additional
+ * constraints on rx_origin of /^.../m or a known start class.
+ * If these fail, then depending on which constraints fail, jump
+ * back to here, or to various other re-entry points further along
+ * that skip some of the first steps.
+ * 4) If we pass all those tests, update the BmUSEFUL() count on the
+ * substring. If the start position was determined to be at the
+ * beginning of the string - so, not rejected, but not optimised,
+ * since we have to run regmatch from position 0 - decrement the
+ * BmUSEFUL() count. Otherwise increment it.
+ */
+
+
+ /* first, look for the 'check' substring */
+
+ {
+ U8* start_point;
+ U8* end_point;
+
+ DEBUG_OPTIMISE_MORE_r({
+ PerlIO_printf(Perl_debug_log,
+ " At restart: rx_origin=%"IVdf" Check offset min: %"IVdf
+ " Start shift: %"IVdf" End shift %"IVdf
+ " Real end Shift: %"IVdf"\n",
+ (IV)(rx_origin - strbeg),
+ (IV)prog->check_offset_min,
+ (IV)start_shift,
+ (IV)end_shift,
+ (IV)prog->check_end_shift);
+ });
+
+ end_point = HOP3(strend, -end_shift, strbeg);
+ start_point = HOPMAYBE3(rx_origin, start_shift, end_point);
+ if (!start_point)
+ goto fail_finish;
+
+
+ /* If the regex is absolutely anchored to either the start of the
+ * string (SBOL) or to pos() (ANCH_GPOS), then
+ * check_offset_max represents an upper bound on the string where
+ * the substr could start. For the ANCH_GPOS case, we assume that
+ * the caller of intuit will have already set strpos to
+ * pos()-gofs, so in this case strpos + offset_max will still be
+ * an upper bound on the substr.
+ */
+ if (!ml_anch
+ && prog->intflags & PREGf_ANCH
+ && prog->check_offset_max != SSize_t_MAX)
+ {
+ SSize_t len = SvCUR(check) - !!SvTAIL(check);
+ const char * const anchor =
+ (prog->intflags & PREGf_ANCH_GPOS ? strpos : strbeg);
+
+ /* do a bytes rather than chars comparison. It's conservative;
+ * so it skips doing the HOP if the result can't possibly end
+ * up earlier than the old value of end_point.
+ */
+ if ((char*)end_point - anchor > prog->check_offset_max) {
+ end_point = HOP3lim((U8*)anchor,
+ prog->check_offset_max,
+ end_point -len)
+ + len;
+ }
+ }
+
+ check_at = fbm_instr( start_point, end_point,
+ check, multiline ? FBMrf_MULTILINE : 0);
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " doing 'check' fbm scan, [%"IVdf"..%"IVdf"] gave %"IVdf"\n",
+ (IV)((char*)start_point - strbeg),
+ (IV)((char*)end_point - strbeg),
+ (IV)(check_at ? check_at - strbeg : -1)
+ ));
+
+ /* Update the count-of-usability, remove useless subpatterns,
+ unshift s. */
+
+ DEBUG_EXECUTE_r({
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(check), RE_SV_DUMPLEN(check), 30);
+ PerlIO_printf(Perl_debug_log, " %s %s substr %s%s%s",
+ (check_at ? "Found" : "Did not find"),
+ (check == (utf8_target ? prog->anchored_utf8 : prog->anchored_substr)
+ ? "anchored" : "floating"),
+ quoted,
+ RE_SV_TAIL(check),
+ (check_at ? " at offset " : "...\n") );
+ });
+
+ if (!check_at)
+ goto fail_finish;
+ /* set rx_origin to the minimum position where the regex could start
+ * matching, given the constraint of the just-matched check substring.
+ * But don't set it lower than previously.
+ */
+
+ if (check_at - rx_origin > prog->check_offset_max)
+ rx_origin = HOP3c(check_at, -prog->check_offset_max, rx_origin);
+ /* Finish the diagnostic message */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%ld (rx_origin now %"IVdf")...\n",
+ (long)(check_at - strbeg),
+ (IV)(rx_origin - strbeg)
+ ));
+ }
+
+
+ /* now look for the 'other' substring if defined */
+
+ if (utf8_target ? prog->substrs->data[other_ix].utf8_substr
+ : prog->substrs->data[other_ix].substr)
+ {
+ /* Take into account the "other" substring. */
+ char *last, *last1;
+ char *s;
+ SV* must;
+ struct reg_substr_datum *other;
+
+ do_other_substr:
+ other = &prog->substrs->data[other_ix];
+
+ /* if "other" is anchored:
+ * we've previously found a floating substr starting at check_at.
+ * This means that the regex origin must lie somewhere
+ * between min (rx_origin): HOP3(check_at, -check_offset_max)
+ * and max: HOP3(check_at, -check_offset_min)
+ * (except that min will be >= strpos)
+ * So the fixed substr must lie somewhere between
+ * HOP3(min, anchored_offset)
+ * HOP3(max, anchored_offset) + SvCUR(substr)
+ */
+
+ /* if "other" is floating
+ * Calculate last1, the absolute latest point where the
+ * floating substr could start in the string, ignoring any
+ * constraints from the earlier fixed match. It is calculated
+ * as follows:
+ *
+ * strend - prog->minlen (in chars) is the absolute latest
+ * position within the string where the origin of the regex
+ * could appear. The latest start point for the floating
+ * substr is float_min_offset(*) on from the start of the
+ * regex. last1 simply combines thee two offsets.
+ *
+ * (*) You might think the latest start point should be
+ * float_max_offset from the regex origin, and technically
+ * you'd be correct. However, consider
+ * /a\d{2,4}bcd\w/
+ * Here, float min, max are 3,5 and minlen is 7.
+ * This can match either
+ * /a\d\dbcd\w/
+ * /a\d\d\dbcd\w/
+ * /a\d\d\d\dbcd\w/
+ * In the first case, the regex matches minlen chars; in the
+ * second, minlen+1, in the third, minlen+2.
+ * In the first case, the floating offset is 3 (which equals
+ * float_min), in the second, 4, and in the third, 5 (which
+ * equals float_max). In all cases, the floating string bcd
+ * can never start more than 4 chars from the end of the
+ * string, which equals minlen - float_min. As the substring
+ * starts to match more than float_min from the start of the
+ * regex, it makes the regex match more than minlen chars,
+ * and the two cancel each other out. So we can always use
+ * float_min - minlen, rather than float_max - minlen for the
+ * latest position in the string.
+ *
+ * Note that -minlen + float_min_offset is equivalent (AFAIKT)
+ * to CHR_SVLEN(must) - !!SvTAIL(must) + prog->float_end_shift
+ */
+
+ assert(prog->minlen >= other->min_offset);
+ last1 = HOP3c(strend,
+ other->min_offset - prog->minlen, strbeg);
+
+ if (other_ix) {/* i.e. if (other-is-float) */
+ /* last is the latest point where the floating substr could
+ * start, *given* any constraints from the earlier fixed
+ * match. This constraint is that the floating string starts
+ * <= float_max_offset chars from the regex origin (rx_origin).
+ * If this value is less than last1, use it instead.
+ */
+ assert(rx_origin <= last1);
+ last =
+ /* this condition handles the offset==infinity case, and
+ * is a short-cut otherwise. Although it's comparing a
+ * byte offset to a char length, it does so in a safe way,
+ * since 1 char always occupies 1 or more bytes,
+ * so if a string range is (last1 - rx_origin) bytes,
+ * it will be less than or equal to (last1 - rx_origin)
+ * chars; meaning it errs towards doing the accurate HOP3
+ * rather than just using last1 as a short-cut */
+ (last1 - rx_origin) < other->max_offset
+ ? last1
+ : (char*)HOP3lim(rx_origin, other->max_offset, last1);
+ }
+ else {
+ assert(strpos + start_shift <= check_at);
+ last = HOP4c(check_at, other->min_offset - start_shift,
+ strbeg, strend);
+ }
+
+ s = HOP3c(rx_origin, other->min_offset, strend);
+ if (s < other_last) /* These positions already checked */
+ s = other_last;
+
+ must = utf8_target ? other->utf8_substr : other->substr;
+ assert(SvPOK(must));
+ {
+ char *from = s;
+ char *to = last + SvCUR(must) - (SvTAIL(must)!=0);
+
+ if (from > to) {
+ s = NULL;
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " skipping 'other' fbm scan: %"IVdf" > %"IVdf"\n",
+ (IV)(from - strbeg),
+ (IV)(to - strbeg)
+ ));
+ }
+ else {
+ s = fbm_instr(
+ (unsigned char*)from,
+ (unsigned char*)to,
+ must,
+ multiline ? FBMrf_MULTILINE : 0
+ );
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " doing 'other' fbm scan, [%"IVdf"..%"IVdf"] gave %"IVdf"\n",
+ (IV)(from - strbeg),
+ (IV)(to - strbeg),
+ (IV)(s ? s - strbeg : -1)
+ ));
+ }
+ }
+
+ DEBUG_EXECUTE_r({
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+ PerlIO_printf(Perl_debug_log, " %s %s substr %s%s",
+ s ? "Found" : "Contradicts",
+ other_ix ? "floating" : "anchored",
+ quoted, RE_SV_TAIL(must));
+ });
+
+
+ if (!s) {
+ /* last1 is latest possible substr location. If we didn't
+ * find it before there, we never will */
+ if (last >= last1) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "; giving up...\n"));
+ goto fail_finish;
+ }
+
+ /* try to find the check substr again at a later
+ * position. Maybe next time we'll find the "other" substr
+ * in range too */
+ other_last = HOP3c(last, 1, strend) /* highest failure */;
+ rx_origin =
+ other_ix /* i.e. if other-is-float */
+ ? HOP3c(rx_origin, 1, strend)
+ : HOP4c(last, 1 - other->min_offset, strbeg, strend);
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "; about to retry %s at offset %ld (rx_origin now %"IVdf")...\n",
+ (other_ix ? "floating" : "anchored"),
+ (long)(HOP3c(check_at, 1, strend) - strbeg),
+ (IV)(rx_origin - strbeg)
+ ));
+ goto restart;
+ }
+ else {
+ if (other_ix) { /* if (other-is-float) */
+ /* other_last is set to s, not s+1, since its possible for
+ * a floating substr to fail first time, then succeed
+ * second time at the same floating position; e.g.:
+ * "-AB--AABZ" =~ /\wAB\d*Z/
+ * The first time round, anchored and float match at
+ * "-(AB)--AAB(Z)" then fail on the initial \w character
+ * class. Second time round, they match at "-AB--A(AB)(Z)".
+ */
+ other_last = s;
+ }
+ else {
+ rx_origin = HOP3c(s, -other->min_offset, strbeg);
+ other_last = HOP3c(s, 1, strend);
+ }
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " at offset %ld (rx_origin now %"IVdf")...\n",
+ (long)(s - strbeg),
+ (IV)(rx_origin - strbeg)
+ ));
+
+ }
+ }
+ else {
+ DEBUG_OPTIMISE_MORE_r(
+ PerlIO_printf(Perl_debug_log,
+ " Check-only match: offset min:%"IVdf" max:%"IVdf
+ " check_at:%"IVdf" rx_origin:%"IVdf" rx_origin-check_at:%"IVdf
+ " strend:%"IVdf"\n",
+ (IV)prog->check_offset_min,
+ (IV)prog->check_offset_max,
+ (IV)(check_at-strbeg),
+ (IV)(rx_origin-strbeg),
+ (IV)(rx_origin-check_at),
+ (IV)(strend-strbeg)
+ )
+ );
+ }
+
+ postprocess_substr_matches:
+
+ /* handle the extra constraint of /^.../m if present */
+
+ if (ml_anch && rx_origin != strbeg && rx_origin[-1] != '\n') {
+ char *s;
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " looking for /^/m anchor"));
+
+ /* we have failed the constraint of a \n before rx_origin.
+ * Find the next \n, if any, even if it's beyond the current
+ * anchored and/or floating substrings. Whether we should be
+ * scanning ahead for the next \n or the next substr is debatable.
+ * On the one hand you'd expect rare substrings to appear less
+ * often than \n's. On the other hand, searching for \n means
+ * we're effectively flipping between check_substr and "\n" on each
+ * iteration as the current "rarest" string candidate, which
+ * means for example that we'll quickly reject the whole string if
+ * hasn't got a \n, rather than trying every substr position
+ * first
+ */
+
+ s = HOP3c(strend, - prog->minlen, strpos);
+ if (s <= rx_origin ||
+ ! ( rx_origin = (char *)memchr(rx_origin, '\n', s - rx_origin)))
+ {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Did not find /%s^%s/m...\n",
+ PL_colors[0], PL_colors[1]));
+ goto fail_finish;
+ }
+
+ /* earliest possible origin is 1 char after the \n.
+ * (since *rx_origin == '\n', it's safe to ++ here rather than
+ * HOP(rx_origin, 1)) */
+ rx_origin++;
+
+ if (prog->substrs->check_ix == 0 /* check is anchored */
+ || rx_origin >= HOP3c(check_at, - prog->check_offset_min, strpos))
+ {
+ /* Position contradicts check-string; either because
+ * check was anchored (and thus has no wiggle room),
+ * or check was float and rx_origin is above the float range */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Found /%s^%s/m, about to restart lookup for check-string with rx_origin %ld...\n",
+ PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg)));
+ goto restart;
+ }
+
+ /* if we get here, the check substr must have been float,
+ * is in range, and we may or may not have had an anchored
+ * "other" substr which still contradicts */
+ assert(prog->substrs->check_ix); /* check is float */
+
+ if (utf8_target ? prog->anchored_utf8 : prog->anchored_substr) {
+ /* whoops, the anchored "other" substr exists, so we still
+ * contradict. On the other hand, the float "check" substr
+ * didn't contradict, so just retry the anchored "other"
+ * substr */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Found /%s^%s/m, rescanning for anchored from offset %ld (rx_origin now %"IVdf")...\n",
+ PL_colors[0], PL_colors[1],
+ (long)(rx_origin - strbeg + prog->anchored_offset),
+ (long)(rx_origin - strbeg)
+ ));
+ goto do_other_substr;
+ }
+
+ /* success: we don't contradict the found floating substring
+ * (and there's no anchored substr). */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Found /%s^%s/m with rx_origin %ld...\n",
+ PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg)));
+ }
+ else {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " (multiline anchor test skipped)\n"));
+ }
+
+ success_at_start:
+
+
+ /* if we have a starting character class, then test that extra constraint.
+ * (trie stclasses are too expensive to use here, we are better off to
+ * leave it to regmatch itself) */
+
+ if (progi->regstclass && PL_regkind[OP(progi->regstclass)]!=TRIE) {
+ const U8* const str = (U8*)STRING(progi->regstclass);
+
+ /* XXX this value could be pre-computed */
+ const int cl_l = (PL_regkind[OP(progi->regstclass)] == EXACT
+ ? (reginfo->is_utf8_pat
+ ? utf8_distance(str + STR_LEN(progi->regstclass), str)
+ : STR_LEN(progi->regstclass))
+ : 1);
+ char * endpos;
+ char *s;
+ /* latest pos that a matching float substr constrains rx start to */
+ char *rx_max_float = NULL;
+
+ /* if the current rx_origin is anchored, either by satisfying an
+ * anchored substring constraint, or a /^.../m constraint, then we
+ * can reject the current origin if the start class isn't found
+ * at the current position. If we have a float-only match, then
+ * rx_origin is constrained to a range; so look for the start class
+ * in that range. if neither, then look for the start class in the
+ * whole rest of the string */
+
+ /* XXX DAPM it's not clear what the minlen test is for, and why
+ * it's not used in the floating case. Nothing in the test suite
+ * causes minlen == 0 here. See <20140313134639.GS12844@iabyn.com>.
+ * Here are some old comments, which may or may not be correct:
+ *
+ * minlen == 0 is possible if regstclass is \b or \B,
+ * and the fixed substr is ''$.
+ * Since minlen is already taken into account, rx_origin+1 is
+ * before strend; accidentally, minlen >= 1 guaranties no false
+ * positives at rx_origin + 1 even for \b or \B. But (minlen? 1 :
+ * 0) below assumes that regstclass does not come from lookahead...
+ * If regstclass takes bytelength more than 1: If charlength==1, OK.
+ * This leaves EXACTF-ish only, which are dealt with in
+ * find_byclass().
+ */
+
+ if (prog->anchored_substr || prog->anchored_utf8 || ml_anch)
+ endpos= HOP3c(rx_origin, (prog->minlen ? cl_l : 0), strend);
+ else if (prog->float_substr || prog->float_utf8) {
+ rx_max_float = HOP3c(check_at, -start_shift, strbeg);
+ endpos= HOP3c(rx_max_float, cl_l, strend);
+ }
+ else
+ endpos= strend;
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " looking for class: start_shift: %"IVdf" check_at: %"IVdf
+ " rx_origin: %"IVdf" endpos: %"IVdf"\n",
+ (IV)start_shift, (IV)(check_at - strbeg),
+ (IV)(rx_origin - strbeg), (IV)(endpos - strbeg)));
+
+ s = find_byclass(prog, progi->regstclass, rx_origin, endpos,
+ reginfo);
+ if (!s) {
+ if (endpos == strend) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ " Could not match STCLASS...\n") );
+ goto fail;
+ }
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ " This position contradicts STCLASS...\n") );
+ if ((prog->intflags & PREGf_ANCH) && !ml_anch
+ && !(prog->intflags & PREGf_IMPLICIT))
+ goto fail;
+
+ /* Contradict one of substrings */
+ if (prog->anchored_substr || prog->anchored_utf8) {
+ if (prog->substrs->check_ix == 1) { /* check is float */
+ /* Have both, check_string is floating */
+ assert(rx_origin + start_shift <= check_at);
+ if (rx_origin + start_shift != check_at) {
+ /* not at latest position float substr could match:
+ * Recheck anchored substring, but not floating.
+ * The condition above is in bytes rather than
+ * chars for efficiency. It's conservative, in
+ * that it errs on the side of doing 'goto
+ * do_other_substr'. In this case, at worst,
+ * an extra anchored search may get done, but in
+ * practice the extra fbm_instr() is likely to
+ * get skipped anyway. */
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ " about to retry anchored at offset %ld (rx_origin now %"IVdf")...\n",
+ (long)(other_last - strbeg),
+ (IV)(rx_origin - strbeg)
+ ));
+ goto do_other_substr;
+ }
+ }
+ }
+ else {
+ /* float-only */
+
+ if (ml_anch) {
+ /* In the presence of ml_anch, we might be able to
+ * find another \n without breaking the current float
+ * constraint. */
+
+ /* strictly speaking this should be HOP3c(..., 1, ...),
+ * but since we goto a block of code that's going to
+ * search for the next \n if any, its safe here */
+ rx_origin++;
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ " about to look for /%s^%s/m starting at rx_origin %ld...\n",
+ PL_colors[0], PL_colors[1],
+ (long)(rx_origin - strbeg)) );
+ goto postprocess_substr_matches;
+ }
+
+ /* strictly speaking this can never be true; but might
+ * be if we ever allow intuit without substrings */
+ if (!(utf8_target ? prog->float_utf8 : prog->float_substr))
+ goto fail;
+
+ rx_origin = rx_max_float;
+ }
+
+ /* at this point, any matching substrings have been
+ * contradicted. Start again... */
+
+ rx_origin = HOP3c(rx_origin, 1, strend);
+
+ /* uses bytes rather than char calculations for efficiency.
+ * It's conservative: it errs on the side of doing 'goto restart',
+ * where there is code that does a proper char-based test */
+ if (rx_origin + start_shift + end_shift > strend) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ " Could not match STCLASS...\n") );
+ goto fail;
+ }
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ " about to look for %s substr starting at offset %ld (rx_origin now %"IVdf")...\n",
+ (prog->substrs->check_ix ? "floating" : "anchored"),
+ (long)(rx_origin + start_shift - strbeg),
+ (IV)(rx_origin - strbeg)
+ ));
+ goto restart;
+ }
+
+ /* Success !!! */
+
+ if (rx_origin != s) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " By STCLASS: moving %ld --> %ld\n",
+ (long)(rx_origin - strbeg), (long)(s - strbeg))
+ );
+ }
+ else {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Does not contradict STCLASS...\n");
+ );
+ }
+ }
+
+ /* Decide whether using the substrings helped */
+
+ if (rx_origin != strpos) {
+ /* Fixed substring is found far enough so that the match
+ cannot start at strpos. */
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, " try at offset...\n"));
+ ++BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr); /* hooray/5 */
+ }
+ else {
+ /* The found rx_origin position does not prohibit matching at
+ * strpos, so calling intuit didn't gain us anything. Decrement
+ * the BmUSEFUL() count on the check substring, and if we reach
+ * zero, free it. */
+ if (!(prog->intflags & PREGf_NAUGHTY)
+ && (utf8_target ? (
+ prog->check_utf8 /* Could be deleted already */
+ && --BmUSEFUL(prog->check_utf8) < 0
+ && (prog->check_utf8 == prog->float_utf8)
+ ) : (
+ prog->check_substr /* Could be deleted already */
+ && --BmUSEFUL(prog->check_substr) < 0
+ && (prog->check_substr == prog->float_substr)
+ )))
+ {
+ /* If flags & SOMETHING - do not do it many times on the same match */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, " ... Disabling check substring...\n"));
+ /* XXX Does the destruction order has to change with utf8_target? */
+ SvREFCNT_dec(utf8_target ? prog->check_utf8 : prog->check_substr);
+ SvREFCNT_dec(utf8_target ? prog->check_substr : prog->check_utf8);
+ prog->check_substr = prog->check_utf8 = NULL; /* disable */
+ prog->float_substr = prog->float_utf8 = NULL; /* clear */
+ check = NULL; /* abort */
+ /* XXXX This is a remnant of the old implementation. It
+ looks wasteful, since now INTUIT can use many
+ other heuristics. */
+ prog->extflags &= ~RXf_USE_INTUIT;
+ }
+ }
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "Intuit: %sSuccessfully guessed:%s match at offset %ld\n",
+ PL_colors[4], PL_colors[5], (long)(rx_origin - strbeg)) );
+
+ return rx_origin;
+
+ fail_finish: /* Substring not found */
+ if (prog->check_substr || prog->check_utf8) /* could be removed already */
+ BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr) += 5; /* hooray */
+ fail:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch rejected by optimizer%s\n",
+ PL_colors[4], PL_colors[5]));
+ return NULL;
+}
+
+
+#define DECL_TRIE_TYPE(scan) \
+ const enum { trie_plain, trie_utf8, trie_utf8_fold, trie_latin_utf8_fold, \
+ trie_utf8_exactfa_fold, trie_latin_utf8_exactfa_fold, \
+ trie_utf8l, trie_flu8 } \
+ trie_type = ((scan->flags == EXACT) \
+ ? (utf8_target ? trie_utf8 : trie_plain) \
+ : (scan->flags == EXACTL) \
+ ? (utf8_target ? trie_utf8l : trie_plain) \
+ : (scan->flags == EXACTFA) \
+ ? (utf8_target \
+ ? trie_utf8_exactfa_fold \
+ : trie_latin_utf8_exactfa_fold) \
+ : (scan->flags == EXACTFLU8 \
+ ? trie_flu8 \
+ : (utf8_target \
+ ? trie_utf8_fold \
+ : trie_latin_utf8_fold)))
+
+#define REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc, uscan, len, uvc, charid, foldlen, foldbuf, uniflags) \
+STMT_START { \
+ STRLEN skiplen; \
+ U8 flags = FOLD_FLAGS_FULL; \
+ switch (trie_type) { \
+ case trie_flu8: \
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \
+ if (utf8_target && UTF8_IS_ABOVE_LATIN1(*uc)) { \
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(uc, uc + UTF8SKIP(uc)); \
+ } \
+ goto do_trie_utf8_fold; \
+ case trie_utf8_exactfa_fold: \
+ flags |= FOLD_FLAGS_NOMIX_ASCII; \
+ /* FALLTHROUGH */ \
+ case trie_utf8_fold: \
+ do_trie_utf8_fold: \
+ if ( foldlen>0 ) { \
+ uvc = utf8n_to_uvchr( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
+ foldlen -= len; \
+ uscan += len; \
+ len=0; \
+ } else { \
+ uvc = _to_utf8_fold_flags( (const U8*) uc, foldbuf, &foldlen, flags); \
+ len = UTF8SKIP(uc); \
+ skiplen = UNISKIP( uvc ); \
+ foldlen -= skiplen; \
+ uscan = foldbuf + skiplen; \
+ } \
+ break; \
+ case trie_latin_utf8_exactfa_fold: \
+ flags |= FOLD_FLAGS_NOMIX_ASCII; \
+ /* FALLTHROUGH */ \
+ case trie_latin_utf8_fold: \
+ if ( foldlen>0 ) { \
+ uvc = utf8n_to_uvchr( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
+ foldlen -= len; \
+ uscan += len; \
+ len=0; \
+ } else { \
+ len = 1; \
+ uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, flags); \
+ skiplen = UNISKIP( uvc ); \
+ foldlen -= skiplen; \
+ uscan = foldbuf + skiplen; \
+ } \
+ break; \
+ case trie_utf8l: \
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \
+ if (utf8_target && UTF8_IS_ABOVE_LATIN1(*uc)) { \
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(uc, uc + UTF8SKIP(uc)); \
+ } \
+ /* FALLTHROUGH */ \
+ case trie_utf8: \
+ uvc = utf8n_to_uvchr( (const U8*) uc, UTF8_MAXLEN, &len, uniflags ); \
+ break; \
+ case trie_plain: \
+ uvc = (UV)*uc; \
+ len = 1; \
+ } \
+ if (uvc < 256) { \
+ charid = trie->charmap[ uvc ]; \
+ } \
+ else { \
+ charid = 0; \
+ if (widecharmap) { \
+ SV** const svpp = hv_fetch(widecharmap, \
+ (char*)&uvc, sizeof(UV), 0); \
+ if (svpp) \
+ charid = (U16)SvIV(*svpp); \
+ } \
+ } \
+} STMT_END
+
+#define DUMP_EXEC_POS(li,s,doutf8) \
+ dump_exec_pos(li,s,(reginfo->strend),(reginfo->strbeg), \
+ startpos, doutf8)
+
+#define REXEC_FBC_EXACTISH_SCAN(COND) \
+STMT_START { \
+ while (s <= e) { \
+ if ( (COND) \
+ && (ln == 1 || folder(s, pat_string, ln)) \
+ && (reginfo->intuit || regtry(reginfo, &s)) )\
+ goto got_it; \
+ s++; \
+ } \
+} STMT_END
+
+#define REXEC_FBC_UTF8_SCAN(CODE) \
+STMT_START { \
+ while (s < strend) { \
+ CODE \
+ s += UTF8SKIP(s); \
+ } \
+} STMT_END
+
+#define REXEC_FBC_SCAN(CODE) \
+STMT_START { \
+ while (s < strend) { \
+ CODE \
+ s++; \
+ } \
+} STMT_END
+
+#define REXEC_FBC_UTF8_CLASS_SCAN(COND) \
+REXEC_FBC_UTF8_SCAN( /* Loops while (s < strend) */ \
+ if (COND) { \
+ if (tmp && (reginfo->intuit || regtry(reginfo, &s))) \
+ goto got_it; \
+ else \
+ tmp = doevery; \
+ } \
+ else \
+ tmp = 1; \
+)
+
+#define REXEC_FBC_CLASS_SCAN(COND) \
+REXEC_FBC_SCAN( /* Loops while (s < strend) */ \
+ if (COND) { \
+ if (tmp && (reginfo->intuit || regtry(reginfo, &s))) \
+ goto got_it; \
+ else \
+ tmp = doevery; \
+ } \
+ else \
+ tmp = 1; \
+)
+
+#define REXEC_FBC_CSCAN(CONDUTF8,COND) \
+ if (utf8_target) { \
+ REXEC_FBC_UTF8_CLASS_SCAN(CONDUTF8); \
+ } \
+ else { \
+ REXEC_FBC_CLASS_SCAN(COND); \
+ }
+
+/* The three macros below are slightly different versions of the same logic.
+ *
+ * The first is for /a and /aa when the target string is UTF-8. This can only
+ * match ascii, but it must advance based on UTF-8. The other two handle the
+ * non-UTF-8 and the more generic UTF-8 cases. In all three, we are looking
+ * for the boundary (or non-boundary) between a word and non-word character.
+ * The utf8 and non-utf8 cases have the same logic, but the details must be
+ * different. Find the "wordness" of the character just prior to this one, and
+ * compare it with the wordness of this one. If they differ, we have a
+ * boundary. At the beginning of the string, pretend that the previous
+ * character was a new-line.
+ *
+ * All these macros uncleanly have side-effects with each other and outside
+ * variables. So far it's been too much trouble to clean-up
+ *
+ * TEST_NON_UTF8 is the macro or function to call to test if its byte input is
+ * a word character or not.
+ * IF_SUCCESS is code to do if it finds that we are at a boundary between
+ * word/non-word
+ * IF_FAIL is code to do if we aren't at a boundary between word/non-word
+ *
+ * Exactly one of the two IF_FOO parameters is a no-op, depending on whether we
+ * are looking for a boundary or for a non-boundary. If we are looking for a
+ * boundary, we want IF_FAIL to be the no-op, and for IF_SUCCESS to go out and
+ * see if this tentative match actually works, and if so, to quit the loop
+ * here. And vice-versa if we are looking for a non-boundary.
+ *
+ * 'tmp' below in the next three macros in the REXEC_FBC_SCAN and
+ * REXEC_FBC_UTF8_SCAN loops is a loop invariant, a bool giving the return of
+ * TEST_NON_UTF8(s-1). To see this, note that that's what it is defined to be
+ * at entry to the loop, and to get to the IF_FAIL branch, tmp must equal
+ * TEST_NON_UTF8(s), and in the opposite branch, IF_SUCCESS, tmp is that
+ * complement. But in that branch we complement tmp, meaning that at the
+ * bottom of the loop tmp is always going to be equal to TEST_NON_UTF8(s),
+ * which means at the top of the loop in the next iteration, it is
+ * TEST_NON_UTF8(s-1) */
+#define FBC_UTF8_A(TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
+ tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n'; \
+ tmp = TEST_NON_UTF8(tmp); \
+ REXEC_FBC_UTF8_SCAN( /* advances s while s < strend */ \
+ if (tmp == ! TEST_NON_UTF8((U8) *s)) { \
+ tmp = !tmp; \
+ IF_SUCCESS; /* Is a boundary if values for s-1 and s differ */ \
+ } \
+ else { \
+ IF_FAIL; \
+ } \
+ ); \
+
+/* Like FBC_UTF8_A, but TEST_UV is a macro which takes a UV as its input, and
+ * TEST_UTF8 is a macro that for the same input code points returns identically
+ * to TEST_UV, but takes a pointer to a UTF-8 encoded string instead */
+#define FBC_UTF8(TEST_UV, TEST_UTF8, IF_SUCCESS, IF_FAIL) \
+ if (s == reginfo->strbeg) { \
+ tmp = '\n'; \
+ } \
+ else { /* Back-up to the start of the previous character */ \
+ U8 * const r = reghop3((U8*)s, -1, (U8*)reginfo->strbeg); \
+ tmp = utf8n_to_uvchr(r, (U8*) reginfo->strend - r, \
+ 0, UTF8_ALLOW_DEFAULT); \
+ } \
+ tmp = TEST_UV(tmp); \
+ LOAD_UTF8_CHARCLASS_ALNUM(); \
+ REXEC_FBC_UTF8_SCAN( /* advances s while s < strend */ \
+ if (tmp == ! (TEST_UTF8((U8 *) s))) { \
+ tmp = !tmp; \
+ IF_SUCCESS; \
+ } \
+ else { \
+ IF_FAIL; \
+ } \
+ );
+
+/* Like the above two macros. UTF8_CODE is the complete code for handling
+ * UTF-8. Common to the BOUND and NBOUND cases, set-up by the FBC_BOUND, etc
+ * macros below */
+#define FBC_BOUND_COMMON(UTF8_CODE, TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
+ if (utf8_target) { \
+ UTF8_CODE \
+ } \
+ else { /* Not utf8 */ \
+ tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n'; \
+ tmp = TEST_NON_UTF8(tmp); \
+ REXEC_FBC_SCAN( /* advances s while s < strend */ \
+ if (tmp == ! TEST_NON_UTF8((U8) *s)) { \
+ IF_SUCCESS; \
+ tmp = !tmp; \
+ } \
+ else { \
+ IF_FAIL; \
+ } \
+ ); \
+ } \
+ /* Here, things have been set up by the previous code so that tmp is the \
+ * return of TEST_NON_UTF(s-1) or TEST_UTF8(s-1) (depending on the \
+ * utf8ness of the target). We also have to check if this matches against \
+ * the EOS, which we treat as a \n (which is the same value in both UTF-8 \
+ * or non-UTF8, so can use the non-utf8 test condition even for a UTF-8 \
+ * string */ \
+ if (tmp == ! TEST_NON_UTF8('\n')) { \
+ IF_SUCCESS; \
+ } \
+ else { \
+ IF_FAIL; \
+ }
+
+/* This is the macro to use when we want to see if something that looks like it
+ * could match, actually does, and if so exits the loop */
+#define REXEC_FBC_TRYIT \
+ if ((reginfo->intuit || regtry(reginfo, &s))) \
+ goto got_it
+
+/* The only difference between the BOUND and NBOUND cases is that
+ * REXEC_FBC_TRYIT is called when matched in BOUND, and when non-matched in
+ * NBOUND. This is accomplished by passing it as either the if or else clause,
+ * with the other one being empty (PLACEHOLDER is defined as empty).
+ *
+ * The TEST_FOO parameters are for operating on different forms of input, but
+ * all should be ones that return identically for the same underlying code
+ * points */
+#define FBC_BOUND(TEST_NON_UTF8, TEST_UV, TEST_UTF8) \
+ FBC_BOUND_COMMON( \
+ FBC_UTF8(TEST_UV, TEST_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), \
+ TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
+
+#define FBC_BOUND_A(TEST_NON_UTF8) \
+ FBC_BOUND_COMMON( \
+ FBC_UTF8_A(TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), \
+ TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
+
+#define FBC_NBOUND(TEST_NON_UTF8, TEST_UV, TEST_UTF8) \
+ FBC_BOUND_COMMON( \
+ FBC_UTF8(TEST_UV, TEST_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), \
+ TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
+
+#define FBC_NBOUND_A(TEST_NON_UTF8) \
+ FBC_BOUND_COMMON( \
+ FBC_UTF8_A(TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), \
+ TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
+
+/* Takes a pointer to an inversion list, a pointer to its corresponding
+ * inversion map, and a code point, and returns the code point's value
+ * according to the two arrays. It assumes that all code points have a value.
+ * This is used as the base macro for macros for particular properties */
+#define _generic_GET_BREAK_VAL_CP(invlist, invmap, cp) \
+ invmap[_invlist_search(invlist, cp)]
+
+/* Same as above, but takes begin, end ptrs to a UTF-8 encoded string instead
+ * of a code point, returning the value for the first code point in the string.
+ * And it takes the particular macro name that finds the desired value given a
+ * code point. Merely convert the UTF-8 to code point and call the cp macro */
+#define _generic_GET_BREAK_VAL_UTF8(cp_macro, pos, strend) \
+ (__ASSERT_(pos < strend) \
+ /* Note assumes is valid UTF-8 */ \
+ (cp_macro(utf8_to_uvchr_buf((pos), (strend), NULL))))
+
+/* Returns the GCB value for the input code point */
+#define getGCB_VAL_CP(cp) \
+ _generic_GET_BREAK_VAL_CP( \
+ PL_GCB_invlist, \
+ Grapheme_Cluster_Break_invmap, \
+ (cp))
+
+/* Returns the GCB value for the first code point in the UTF-8 encoded string
+ * bounded by pos and strend */
+#define getGCB_VAL_UTF8(pos, strend) \
+ _generic_GET_BREAK_VAL_UTF8(getGCB_VAL_CP, pos, strend)
+
+
+/* Returns the SB value for the input code point */
+#define getSB_VAL_CP(cp) \
+ _generic_GET_BREAK_VAL_CP( \
+ PL_SB_invlist, \
+ Sentence_Break_invmap, \
+ (cp))
+
+/* Returns the SB value for the first code point in the UTF-8 encoded string
+ * bounded by pos and strend */
+#define getSB_VAL_UTF8(pos, strend) \
+ _generic_GET_BREAK_VAL_UTF8(getSB_VAL_CP, pos, strend)
+
+/* Returns the WB value for the input code point */
+#define getWB_VAL_CP(cp) \
+ _generic_GET_BREAK_VAL_CP( \
+ PL_WB_invlist, \
+ Word_Break_invmap, \
+ (cp))
+
+/* Returns the WB value for the first code point in the UTF-8 encoded string
+ * bounded by pos and strend */
+#define getWB_VAL_UTF8(pos, strend) \
+ _generic_GET_BREAK_VAL_UTF8(getWB_VAL_CP, pos, strend)
+
+/* We know what class REx starts with. Try to find this position... */
+/* if reginfo->intuit, its a dryrun */
+/* annoyingly all the vars in this routine have different names from their counterparts
+ in regmatch. /grrr */
+STATIC char *
+S_find_byclass(pTHX_ regexp * prog, const regnode *c, char *s,
+ const char *strend, regmatch_info *reginfo)
+{
+ dVAR;
+ const I32 doevery = (prog->intflags & PREGf_SKIP) == 0;
+ char *pat_string; /* The pattern's exactish string */
+ char *pat_end; /* ptr to end char of pat_string */
+ re_fold_t folder; /* Function for computing non-utf8 folds */
+ const U8 *fold_array; /* array for folding ords < 256 */
+ STRLEN ln;
+ STRLEN lnc;
+ U8 c1;
+ U8 c2;
+ char *e;
+ I32 tmp = 1; /* Scratch variable? */
+ const bool utf8_target = reginfo->is_utf8_target;
+ UV utf8_fold_flags = 0;
+ const bool is_utf8_pat = reginfo->is_utf8_pat;
+ bool to_complement = FALSE; /* Invert the result? Taking the xor of this
+ with a result inverts that result, as 0^1 =
+ 1 and 1^1 = 0 */
+ _char_class_number classnum;
+
+ RXi_GET_DECL(prog,progi);
+
+ PERL_ARGS_ASSERT_FIND_BYCLASS;
+
+ /* We know what class it must start with. */
+ switch (OP(c)) {
+ case ANYOFL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ /* FALLTHROUGH */
+ case ANYOF:
+ if (utf8_target) {
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ reginclass(prog, c, (U8*)s, (U8*) strend, utf8_target));
+ }
+ else {
+ REXEC_FBC_CLASS_SCAN(REGINCLASS(prog, c, (U8*)s));
+ }
+ break;
+
+ case EXACTFA_NO_TRIE: /* This node only generated for non-utf8 patterns */
+ assert(! is_utf8_pat);
+ /* FALLTHROUGH */
+ case EXACTFA:
+ if (is_utf8_pat || utf8_target) {
+ utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_exactf_utf8;
+ }
+ fold_array = PL_fold_latin1; /* Latin1 folds are not affected by */
+ folder = foldEQ_latin1; /* /a, except the sharp s one which */
+ goto do_exactf_non_utf8; /* isn't dealt with by these */
+
+ case EXACTF: /* This node only generated for non-utf8 patterns */
+ assert(! is_utf8_pat);
+ if (utf8_target) {
+ utf8_fold_flags = 0;
+ goto do_exactf_utf8;
+ }
+ fold_array = PL_fold;
+ folder = foldEQ;
+ goto do_exactf_non_utf8;
+
+ case EXACTFL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (is_utf8_pat || utf8_target || IN_UTF8_CTYPE_LOCALE) {
+ utf8_fold_flags = FOLDEQ_LOCALE;
+ goto do_exactf_utf8;
+ }
+ fold_array = PL_fold_locale;
+ folder = foldEQ_locale;
+ goto do_exactf_non_utf8;
+
+ case EXACTFU_SS:
+ if (is_utf8_pat) {
+ utf8_fold_flags = FOLDEQ_S2_ALREADY_FOLDED;
+ }
+ goto do_exactf_utf8;
+
+ case EXACTFLU8:
+ if (! utf8_target) { /* All code points in this node require
+ UTF-8 to express. */
+ break;
+ }
+ utf8_fold_flags = FOLDEQ_LOCALE | FOLDEQ_S2_ALREADY_FOLDED
+ | FOLDEQ_S2_FOLDS_SANE;
+ goto do_exactf_utf8;
+
+ case EXACTFU:
+ if (is_utf8_pat || utf8_target) {
+ utf8_fold_flags = is_utf8_pat ? FOLDEQ_S2_ALREADY_FOLDED : 0;
+ goto do_exactf_utf8;
+ }
+
+ /* Any 'ss' in the pattern should have been replaced by regcomp,
+ * so we don't have to worry here about this single special case
+ * in the Latin1 range */
+ fold_array = PL_fold_latin1;
+ folder = foldEQ_latin1;
+
+ /* FALLTHROUGH */
+
+ do_exactf_non_utf8: /* Neither pattern nor string are UTF8, and there
+ are no glitches with fold-length differences
+ between the target string and pattern */
+
+ /* The idea in the non-utf8 EXACTF* cases is to first find the
+ * first character of the EXACTF* node and then, if necessary,
+ * case-insensitively compare the full text of the node. c1 is the
+ * first character. c2 is its fold. This logic will not work for
+ * Unicode semantics and the german sharp ss, which hence should
+ * not be compiled into a node that gets here. */
+ pat_string = STRING(c);
+ ln = STR_LEN(c); /* length to match in octets/bytes */
+
+ /* We know that we have to match at least 'ln' bytes (which is the
+ * same as characters, since not utf8). If we have to match 3
+ * characters, and there are only 2 availabe, we know without
+ * trying that it will fail; so don't start a match past the
+ * required minimum number from the far end */
+ e = HOP3c(strend, -((SSize_t)ln), s);
+
+ if (reginfo->intuit && e < s) {
+ e = s; /* Due to minlen logic of intuit() */
+ }
+
+ c1 = *pat_string;
+ c2 = fold_array[c1];
+ if (c1 == c2) { /* If char and fold are the same */
+ REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1);
+ }
+ else {
+ REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1 || *(U8*)s == c2);
+ }
+ break;
+
+ do_exactf_utf8:
+ {
+ unsigned expansion;
+
+ /* If one of the operands is in utf8, we can't use the simpler folding
+ * above, due to the fact that many different characters can have the
+ * same fold, or portion of a fold, or different- length fold */
+ pat_string = STRING(c);
+ ln = STR_LEN(c); /* length to match in octets/bytes */
+ pat_end = pat_string + ln;
+ lnc = is_utf8_pat /* length to match in characters */
+ ? utf8_length((U8 *) pat_string, (U8 *) pat_end)
+ : ln;
+
+ /* We have 'lnc' characters to match in the pattern, but because of
+ * multi-character folding, each character in the target can match
+ * up to 3 characters (Unicode guarantees it will never exceed
+ * this) if it is utf8-encoded; and up to 2 if not (based on the
+ * fact that the Latin 1 folds are already determined, and the
+ * only multi-char fold in that range is the sharp-s folding to
+ * 'ss'. Thus, a pattern character can match as little as 1/3 of a
+ * string character. Adjust lnc accordingly, rounding up, so that
+ * if we need to match at least 4+1/3 chars, that really is 5. */
+ expansion = (utf8_target) ? UTF8_MAX_FOLD_CHAR_EXPAND : 2;
+ lnc = (lnc + expansion - 1) / expansion;
+
+ /* As in the non-UTF8 case, if we have to match 3 characters, and
+ * only 2 are left, it's guaranteed to fail, so don't start a
+ * match that would require us to go beyond the end of the string
+ */
+ e = HOP3c(strend, -((SSize_t)lnc), s);
+
+ if (reginfo->intuit && e < s) {
+ e = s; /* Due to minlen logic of intuit() */
+ }
+
+ /* XXX Note that we could recalculate e to stop the loop earlier,
+ * as the worst case expansion above will rarely be met, and as we
+ * go along we would usually find that e moves further to the left.
+ * This would happen only after we reached the point in the loop
+ * where if there were no expansion we should fail. Unclear if
+ * worth the expense */
+
+ while (s <= e) {
+ char *my_strend= (char *)strend;
+ if (foldEQ_utf8_flags(s, &my_strend, 0, utf8_target,
+ pat_string, NULL, ln, is_utf8_pat, utf8_fold_flags)
+ && (reginfo->intuit || regtry(reginfo, &s)) )
+ {
+ goto got_it;
+ }
+ s += (utf8_target) ? UTF8SKIP(s) : 1;
+ }
+ break;
+ }
+
+ case BOUNDL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (FLAGS(c) != TRADITIONAL_BOUND) {
+ if (! IN_UTF8_CTYPE_LOCALE) {
+ Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
+ B_ON_NON_UTF8_LOCALE_IS_WRONG);
+ }
+ goto do_boundu;
+ }
+
+ FBC_BOUND(isWORDCHAR_LC, isWORDCHAR_LC_uvchr, isWORDCHAR_LC_utf8);
+ break;
+
+ case NBOUNDL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (FLAGS(c) != TRADITIONAL_BOUND) {
+ if (! IN_UTF8_CTYPE_LOCALE) {
+ Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
+ B_ON_NON_UTF8_LOCALE_IS_WRONG);
+ }
+ goto do_nboundu;
+ }
+
+ FBC_NBOUND(isWORDCHAR_LC, isWORDCHAR_LC_uvchr, isWORDCHAR_LC_utf8);
+ break;
+
+ case BOUND: /* regcomp.c makes sure that this only has the traditional \b
+ meaning */
+ assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+ FBC_BOUND(isWORDCHAR, isWORDCHAR_uni, isWORDCHAR_utf8);
+ break;
+
+ case BOUNDA: /* regcomp.c makes sure that this only has the traditional \b
+ meaning */
+ assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+ FBC_BOUND_A(isWORDCHAR_A);
+ break;
+
+ case NBOUND: /* regcomp.c makes sure that this only has the traditional \b
+ meaning */
+ assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+ FBC_NBOUND(isWORDCHAR, isWORDCHAR_uni, isWORDCHAR_utf8);
+ break;
+
+ case NBOUNDA: /* regcomp.c makes sure that this only has the traditional \b
+ meaning */
+ assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+ FBC_NBOUND_A(isWORDCHAR_A);
+ break;
+
+ case NBOUNDU:
+ if ((bound_type) FLAGS(c) == TRADITIONAL_BOUND) {
+ FBC_NBOUND(isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8);
+ break;
+ }
+
+ do_nboundu:
+
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case BOUNDU:
+ do_boundu:
+ switch((bound_type) FLAGS(c)) {
+ case TRADITIONAL_BOUND:
+ FBC_BOUND(isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8);
+ break;
+ case GCB_BOUND:
+ if (s == reginfo->strbeg) { /* GCB always matches at begin and
+ end */
+ if (to_complement ^ cBOOL(reginfo->intuit
+ || regtry(reginfo, &s)))
+ {
+ goto got_it;
+ }
+ s += (utf8_target) ? UTF8SKIP(s) : 1;
+ }
+
+ if (utf8_target) {
+ GCB_enum before = getGCB_VAL_UTF8(
+ reghop3((U8*)s, -1,
+ (U8*)(reginfo->strbeg)),
+ (U8*) reginfo->strend);
+ while (s < strend) {
+ GCB_enum after = getGCB_VAL_UTF8((U8*) s,
+ (U8*) reginfo->strend);
+ if (to_complement ^ isGCB(before, after)) {
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ goto got_it;
+ }
+ before = after;
+ }
+ s += UTF8SKIP(s);
+ }
+ }
+ else { /* Not utf8. Everything is a GCB except between CR and
+ LF */
+ while (s < strend) {
+ if (to_complement ^ (UCHARAT(s - 1) != '\r'
+ || UCHARAT(s) != '\n'))
+ {
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ goto got_it;
+ }
+ s++;
+ }
+ }
+ }
+
+ if (to_complement ^ cBOOL(reginfo->intuit || regtry(reginfo, &s))) {
+ goto got_it;
+ }
+ break;
+
+ case SB_BOUND:
+ if (s == reginfo->strbeg) { /* SB always matches at beginning */
+ if (to_complement
+ ^ cBOOL(reginfo->intuit || regtry(reginfo, &s)))
+ {
+ goto got_it;
+ }
+
+ /* Didn't match. Go try at the next position */
+ s += (utf8_target) ? UTF8SKIP(s) : 1;
+ }
+
+ if (utf8_target) {
+ SB_enum before = getSB_VAL_UTF8(reghop3((U8*)s,
+ -1,
+ (U8*)(reginfo->strbeg)),
+ (U8*) reginfo->strend);
+ while (s < strend) {
+ SB_enum after = getSB_VAL_UTF8((U8*) s,
+ (U8*) reginfo->strend);
+ if (to_complement ^ isSB(before,
+ after,
+ (U8*) reginfo->strbeg,
+ (U8*) s,
+ (U8*) reginfo->strend,
+ utf8_target))
+ {
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ goto got_it;
+ }
+ before = after;
+ }
+ s += UTF8SKIP(s);
+ }
+ }
+ else { /* Not utf8. */
+ SB_enum before = getSB_VAL_CP((U8) *(s -1));
+ while (s < strend) {
+ SB_enum after = getSB_VAL_CP((U8) *s);
+ if (to_complement ^ isSB(before,
+ after,
+ (U8*) reginfo->strbeg,
+ (U8*) s,
+ (U8*) reginfo->strend,
+ utf8_target))
+ {
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ goto got_it;
+ }
+ before = after;
+ }
+ s++;
+ }
+ }
+
+ /* Here are at the final position in the target string. The SB
+ * value is always true here, so matches, depending on other
+ * constraints */
+ if (to_complement ^ cBOOL(reginfo->intuit
+ || regtry(reginfo, &s)))
+ {
+ goto got_it;
+ }
+
+ break;
+
+ case WB_BOUND:
+ if (s == reginfo->strbeg) {
+ if (to_complement ^ cBOOL(reginfo->intuit
+ || regtry(reginfo, &s)))
+ {
+ goto got_it;
+ }
+ s += (utf8_target) ? UTF8SKIP(s) : 1;
+ }
+
+ if (utf8_target) {
+ /* We are at a boundary between char_sub_0 and char_sub_1.
+ * We also keep track of the value for char_sub_-1 as we
+ * loop through the line. Context may be needed to make a
+ * determination, and if so, this can save having to
+ * recalculate it */
+ WB_enum previous = WB_UNKNOWN;
+ WB_enum before = getWB_VAL_UTF8(
+ reghop3((U8*)s,
+ -1,
+ (U8*)(reginfo->strbeg)),
+ (U8*) reginfo->strend);
+ while (s < strend) {
+ WB_enum after = getWB_VAL_UTF8((U8*) s,
+ (U8*) reginfo->strend);
+ if (to_complement ^ isWB(previous,
+ before,
+ after,
+ (U8*) reginfo->strbeg,
+ (U8*) s,
+ (U8*) reginfo->strend,
+ utf8_target))
+ {
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ goto got_it;
+ }
+ previous = before;
+ before = after;
+ }
+ s += UTF8SKIP(s);
+ }
+ }
+ else { /* Not utf8. */
+ WB_enum previous = WB_UNKNOWN;
+ WB_enum before = getWB_VAL_CP((U8) *(s -1));
+ while (s < strend) {
+ WB_enum after = getWB_VAL_CP((U8) *s);
+ if (to_complement ^ isWB(previous,
+ before,
+ after,
+ (U8*) reginfo->strbeg,
+ (U8*) s,
+ (U8*) reginfo->strend,
+ utf8_target))
+ {
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ goto got_it;
+ }
+ previous = before;
+ before = after;
+ }
+ s++;
+ }
+ }
+
+ if (to_complement ^ cBOOL(reginfo->intuit
+ || regtry(reginfo, &s)))
+ {
+ goto got_it;
+ }
+
+ break;
+ }
+ break;
+
+ case LNBREAK:
+ REXEC_FBC_CSCAN(is_LNBREAK_utf8_safe(s, strend),
+ is_LNBREAK_latin1_safe(s, strend)
+ );
+ break;
+
+ /* The argument to all the POSIX node types is the class number to pass to
+ * _generic_isCC() to build a mask for searching in PL_charclass[] */
+
+ case NPOSIXL:
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ REXEC_FBC_CSCAN(to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(c), (U8 *) s)),
+ to_complement ^ cBOOL(isFOO_lc(FLAGS(c), *s)));
+ break;
+
+ case NPOSIXD:
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXD:
+ if (utf8_target) {
+ goto posix_utf8;
+ }
+ goto posixa;
+
+ case NPOSIXA:
+ if (utf8_target) {
+ /* The complement of something that matches only ASCII matches all
+ * non-ASCII, plus everything in ASCII that isn't in the class. */
+ REXEC_FBC_UTF8_CLASS_SCAN(! isASCII_utf8(s)
+ || ! _generic_isCC_A(*s, FLAGS(c)));
+ break;
+ }
+
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXA:
+ posixa:
+ /* Don't need to worry about utf8, as it can match only a single
+ * byte invariant character. */
+ REXEC_FBC_CLASS_SCAN(
+ to_complement ^ cBOOL(_generic_isCC_A(*s, FLAGS(c))));
+ break;
+
+ case NPOSIXU:
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXU:
+ if (! utf8_target) {
+ REXEC_FBC_CLASS_SCAN(to_complement ^ cBOOL(_generic_isCC(*s,
+ FLAGS(c))));
+ }
+ else {
+
+ posix_utf8:
+ classnum = (_char_class_number) FLAGS(c);
+ if (classnum < _FIRST_NON_SWASH_CC) {
+ while (s < strend) {
+
+ /* We avoid loading in the swash as long as possible, but
+ * should we have to, we jump to a separate loop. This
+ * extra 'if' statement is what keeps this code from being
+ * just a call to REXEC_FBC_UTF8_CLASS_SCAN() */
+ if (UTF8_IS_ABOVE_LATIN1(*s)) {
+ goto found_above_latin1;
+ }
+ if ((UTF8_IS_INVARIANT(*s)
+ && to_complement ^ cBOOL(_generic_isCC((U8) *s,
+ classnum)))
+ || (UTF8_IS_DOWNGRADEABLE_START(*s)
+ && to_complement ^ cBOOL(
+ _generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(*s,
+ *(s + 1)),
+ classnum))))
+ {
+ if (tmp && (reginfo->intuit || regtry(reginfo, &s)))
+ goto got_it;
+ else {
+ tmp = doevery;
+ }
+ }
+ else {
+ tmp = 1;
+ }
+ s += UTF8SKIP(s);
+ }
+ }
+ else switch (classnum) { /* These classes are implemented as
+ macros */
+ case _CC_ENUM_SPACE:
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ to_complement ^ cBOOL(isSPACE_utf8(s)));
+ break;
+
+ case _CC_ENUM_BLANK:
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ to_complement ^ cBOOL(isBLANK_utf8(s)));
+ break;
+
+ case _CC_ENUM_XDIGIT:
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ to_complement ^ cBOOL(isXDIGIT_utf8(s)));
+ break;
+
+ case _CC_ENUM_VERTSPACE:
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ to_complement ^ cBOOL(isVERTWS_utf8(s)));
+ break;
+
+ case _CC_ENUM_CNTRL:
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ to_complement ^ cBOOL(isCNTRL_utf8(s)));
+ break;
+
+ default:
+ Perl_croak(aTHX_ "panic: find_byclass() node %d='%s' has an unexpected character class '%d'", OP(c), PL_reg_name[OP(c)], classnum);
+ NOT_REACHED; /* NOTREACHED */
+ }
+ }
+ break;
+
+ found_above_latin1: /* Here we have to load a swash to get the result
+ for the current code point */
+ if (! PL_utf8_swash_ptrs[classnum]) {
+ U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+ PL_utf8_swash_ptrs[classnum] =
+ _core_swash_init("utf8",
+ "",
+ &PL_sv_undef, 1, 0,
+ PL_XPosix_ptrs[classnum], &flags);
+ }
+
+ /* This is a copy of the loop above for swash classes, though using the
+ * FBC macro instead of being expanded out. Since we've loaded the
+ * swash, we don't have to check for that each time through the loop */
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ to_complement ^ cBOOL(_generic_utf8(
+ classnum,
+ s,
+ swash_fetch(PL_utf8_swash_ptrs[classnum],
+ (U8 *) s, TRUE))));
+ break;
+
+ case AHOCORASICKC:
+ case AHOCORASICK:
+ {
+ DECL_TRIE_TYPE(c);
+ /* what trie are we using right now */
+ reg_ac_data *aho = (reg_ac_data*)progi->data->data[ ARG( c ) ];
+ reg_trie_data *trie = (reg_trie_data*)progi->data->data[ aho->trie ];
+ HV *widecharmap = MUTABLE_HV(progi->data->data[ aho->trie + 1 ]);
+
+ const char *last_start = strend - trie->minlen;
+#ifdef DEBUGGING
+ const char *real_start = s;
+#endif
+ STRLEN maxlen = trie->maxlen;
+ SV *sv_points;
+ U8 **points; /* map of where we were in the input string
+ when reading a given char. For ASCII this
+ is unnecessary overhead as the relationship
+ is always 1:1, but for Unicode, especially
+ case folded Unicode this is not true. */
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+ U8 *bitmap=NULL;
+
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ /* We can't just allocate points here. We need to wrap it in
+ * an SV so it gets freed properly if there is a croak while
+ * running the match */
+ ENTER;
+ SAVETMPS;
+ sv_points=newSV(maxlen * sizeof(U8 *));
+ SvCUR_set(sv_points,
+ maxlen * sizeof(U8 *));
+ SvPOK_on(sv_points);
+ sv_2mortal(sv_points);
+ points=(U8**)SvPV_nolen(sv_points );
+ if ( trie_type != trie_utf8_fold
+ && (trie->bitmap || OP(c)==AHOCORASICKC) )
+ {
+ if (trie->bitmap)
+ bitmap=(U8*)trie->bitmap;
+ else
+ bitmap=(U8*)ANYOF_BITMAP(c);
+ }
+ /* this is the Aho-Corasick algorithm modified a touch
+ to include special handling for long "unknown char" sequences.
+ The basic idea being that we use AC as long as we are dealing
+ with a possible matching char, when we encounter an unknown char
+ (and we have not encountered an accepting state) we scan forward
+ until we find a legal starting char.
+ AC matching is basically that of trie matching, except that when
+ we encounter a failing transition, we fall back to the current
+ states "fail state", and try the current char again, a process
+ we repeat until we reach the root state, state 1, or a legal
+ transition. If we fail on the root state then we can either
+ terminate if we have reached an accepting state previously, or
+ restart the entire process from the beginning if we have not.
+
+ */
+ while (s <= last_start) {
+ const U32 uniflags = UTF8_ALLOW_DEFAULT;
+ U8 *uc = (U8*)s;
+ U16 charid = 0;
+ U32 base = 1;
+ U32 state = 1;
+ UV uvc = 0;
+ STRLEN len = 0;
+ STRLEN foldlen = 0;
+ U8 *uscan = (U8*)NULL;
+ U8 *leftmost = NULL;
+#ifdef DEBUGGING
+ U32 accepted_word= 0;
+#endif
+ U32 pointpos = 0;
+
+ while ( state && uc <= (U8*)strend ) {
+ int failed=0;
+ U32 word = aho->states[ state ].wordnum;
+
+ if( state==1 ) {
+ if ( bitmap ) {
+ DEBUG_TRIE_EXECUTE_r(
+ if ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+ dump_exec_pos( (char *)uc, c, strend, real_start,
+ (char *)uc, utf8_target );
+ PerlIO_printf( Perl_debug_log,
+ " Scanning for legal start char...\n");
+ }
+ );
+ if (utf8_target) {
+ while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+ uc += UTF8SKIP(uc);
+ }
+ } else {
+ while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+ uc++;
+ }
+ }
+ s= (char *)uc;
+ }
+ if (uc >(U8*)last_start) break;
+ }
+
+ if ( word ) {
+ U8 *lpos= points[ (pointpos - trie->wordinfo[word].len) % maxlen ];
+ if (!leftmost || lpos < leftmost) {
+ DEBUG_r(accepted_word=word);
+ leftmost= lpos;
+ }
+ if (base==0) break;
+
+ }
+ points[pointpos++ % maxlen]= uc;
+ if (foldlen || uc < (U8*)strend) {
+ REXEC_TRIE_READ_CHAR(trie_type, trie,
+ widecharmap, uc,
+ uscan, len, uvc, charid, foldlen,
+ foldbuf, uniflags);
+ DEBUG_TRIE_EXECUTE_r({
+ dump_exec_pos( (char *)uc, c, strend,
+ real_start, s, utf8_target);
+ PerlIO_printf(Perl_debug_log,
+ " Charid:%3u CP:%4"UVxf" ",
+ charid, uvc);
+ });
+ }
+ else {
+ len = 0;
+ charid = 0;
+ }
+
+
+ do {
+#ifdef DEBUGGING
+ word = aho->states[ state ].wordnum;
+#endif
+ base = aho->states[ state ].trans.base;
+
+ DEBUG_TRIE_EXECUTE_r({
+ if (failed)
+ dump_exec_pos( (char *)uc, c, strend, real_start,
+ s, utf8_target );
+ PerlIO_printf( Perl_debug_log,
+ "%sState: %4"UVxf", word=%"UVxf,
+ failed ? " Fail transition to " : "",
+ (UV)state, (UV)word);
+ });
+ if ( base ) {
+ U32 tmp;
+ I32 offset;
+ if (charid &&
+ ( ((offset = base + charid
+ - 1 - trie->uniquecharcount)) >= 0)
+ && ((U32)offset < trie->lasttrans)
+ && trie->trans[offset].check == state
+ && (tmp=trie->trans[offset].next))
+ {
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log," - legal\n"));
+ state = tmp;
+ break;
+ }
+ else {
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log," - fail\n"));
+ failed = 1;
+ state = aho->fail[state];
+ }
+ }
+ else {
+ /* we must be accepting here */
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log," - accepting\n"));
+ failed = 1;
+ break;
+ }
+ } while(state);
+ uc += len;
+ if (failed) {
+ if (leftmost)
+ break;
+ if (!state) state = 1;
+ }
+ }
+ if ( aho->states[ state ].wordnum ) {
+ U8 *lpos = points[ (pointpos - trie->wordinfo[aho->states[ state ].wordnum].len) % maxlen ];
+ if (!leftmost || lpos < leftmost) {
+ DEBUG_r(accepted_word=aho->states[ state ].wordnum);
+ leftmost = lpos;
+ }
+ }
+ if (leftmost) {
+ s = (char*)leftmost;
+ DEBUG_TRIE_EXECUTE_r({
+ PerlIO_printf(
+ Perl_debug_log,"Matches word #%"UVxf" at position %"IVdf". Trying full pattern...\n",
+ (UV)accepted_word, (IV)(s - real_start)
+ );
+ });
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ FREETMPS;
+ LEAVE;
+ goto got_it;
+ }
+ s = HOPc(s,1);
+ DEBUG_TRIE_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,"Pattern failed. Looking for new start point...\n");
+ });
+ } else {
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log,"No match.\n"));
+ break;
+ }
+ }
+ FREETMPS;
+ LEAVE;
+ }
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: unknown regstclass %d", (int)OP(c));
+ }
+ return 0;
+ got_it:
+ return s;
+}
+
+/* set RX_SAVED_COPY, RX_SUBBEG etc.
+ * flags have same meanings as with regexec_flags() */
+
+static void
+S_reg_set_capture_string(pTHX_ REGEXP * const rx,
+ char *strbeg,
+ char *strend,
+ SV *sv,
+ U32 flags,
+ bool utf8_target)
+{
+ struct regexp *const prog = ReANY(rx);
+
+ if (flags & REXEC_COPY_STR) {
+#ifdef PERL_ANY_COW
+ if (SvCANCOW(sv)) {
+ if (DEBUG_C_TEST) {
+ PerlIO_printf(Perl_debug_log,
+ "Copy on write: regexp capture, type %d\n",
+ (int) SvTYPE(sv));
+ }
+ /* Create a new COW SV to share the match string and store
+ * in saved_copy, unless the current COW SV in saved_copy
+ * is valid and suitable for our purpose */
+ if (( prog->saved_copy
+ && SvIsCOW(prog->saved_copy)
+ && SvPOKp(prog->saved_copy)
+ && SvIsCOW(sv)
+ && SvPOKp(sv)
+ && SvPVX(sv) == SvPVX(prog->saved_copy)))
+ {
+ /* just reuse saved_copy SV */
+ if (RXp_MATCH_COPIED(prog)) {
+ Safefree(prog->subbeg);
+ RXp_MATCH_COPIED_off(prog);
+ }
+ }
+ else {
+ /* create new COW SV to share string */
+ RX_MATCH_COPY_FREE(rx);
+ prog->saved_copy = sv_setsv_cow(prog->saved_copy, sv);
+ }
+ prog->subbeg = (char *)SvPVX_const(prog->saved_copy);
+ assert (SvPOKp(prog->saved_copy));
+ prog->sublen = strend - strbeg;
+ prog->suboffset = 0;
+ prog->subcoffset = 0;
+ } else
+#endif
+ {
+ SSize_t min = 0;
+ SSize_t max = strend - strbeg;
+ SSize_t sublen;
+
+ if ( (flags & REXEC_COPY_SKIP_POST)
+ && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */
+ && !(PL_sawampersand & SAWAMPERSAND_RIGHT)
+ ) { /* don't copy $' part of string */
+ U32 n = 0;
+ max = -1;
+ /* calculate the right-most part of the string covered
+ * by a capture. Due to look-ahead, this may be to
+ * the right of $&, so we have to scan all captures */
+ while (n <= prog->lastparen) {
+ if (prog->offs[n].end > max)
+ max = prog->offs[n].end;
+ n++;
+ }
+ if (max == -1)
+ max = (PL_sawampersand & SAWAMPERSAND_LEFT)
+ ? prog->offs[0].start
+ : 0;
+ assert(max >= 0 && max <= strend - strbeg);
+ }
+
+ if ( (flags & REXEC_COPY_SKIP_PRE)
+ && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */
+ && !(PL_sawampersand & SAWAMPERSAND_LEFT)
+ ) { /* don't copy $` part of string */
+ U32 n = 0;
+ min = max;
+ /* calculate the left-most part of the string covered
+ * by a capture. Due to look-behind, this may be to
+ * the left of $&, so we have to scan all captures */
+ while (min && n <= prog->lastparen) {
+ if ( prog->offs[n].start != -1
+ && prog->offs[n].start < min)
+ {
+ min = prog->offs[n].start;
+ }
+ n++;
+ }
+ if ((PL_sawampersand & SAWAMPERSAND_RIGHT)
+ && min > prog->offs[0].end
+ )
+ min = prog->offs[0].end;
+
+ }
+
+ assert(min >= 0 && min <= max && min <= strend - strbeg);
+ sublen = max - min;
+
+ if (RX_MATCH_COPIED(rx)) {
+ if (sublen > prog->sublen)
+ prog->subbeg =
+ (char*)saferealloc(prog->subbeg, sublen+1);
+ }
+ else
+ prog->subbeg = (char*)safemalloc(sublen+1);
+ Copy(strbeg + min, prog->subbeg, sublen, char);
+ prog->subbeg[sublen] = '\0';
+ prog->suboffset = min;
+ prog->sublen = sublen;
+ RX_MATCH_COPIED_on(rx);
+ }
+ prog->subcoffset = prog->suboffset;
+ if (prog->suboffset && utf8_target) {
+ /* Convert byte offset to chars.
+ * XXX ideally should only compute this if @-/@+
+ * has been seen, a la PL_sawampersand ??? */
+
+ /* If there's a direct correspondence between the
+ * string which we're matching and the original SV,
+ * then we can use the utf8 len cache associated with
+ * the SV. In particular, it means that under //g,
+ * sv_pos_b2u() will use the previously cached
+ * position to speed up working out the new length of
+ * subcoffset, rather than counting from the start of
+ * the string each time. This stops
+ * $x = "\x{100}" x 1E6; 1 while $x =~ /(.)/g;
+ * from going quadratic */
+ if (SvPOKp(sv) && SvPVX(sv) == strbeg)
+ prog->subcoffset = sv_pos_b2u_flags(sv, prog->subcoffset,
+ SV_GMAGIC|SV_CONST_RETURN);
+ else
+ prog->subcoffset = utf8_length((U8*)strbeg,
+ (U8*)(strbeg+prog->suboffset));
+ }
+ }
+ else {
+ RX_MATCH_COPY_FREE(rx);
+ prog->subbeg = strbeg;
+ prog->suboffset = 0;
+ prog->subcoffset = 0;
+ prog->sublen = strend - strbeg;
+ }
+}
+
+
+
+
+/*
+ - regexec_flags - match a regexp against a string
+ */
+I32
+Perl_regexec_flags(pTHX_ REGEXP * const rx, char *stringarg, char *strend,
+ char *strbeg, SSize_t minend, SV *sv, void *data, U32 flags)
+/* stringarg: the point in the string at which to begin matching */
+/* strend: pointer to null at end of string */
+/* strbeg: real beginning of string */
+/* minend: end of match must be >= minend bytes after stringarg. */
+/* sv: SV being matched: only used for utf8 flag, pos() etc; string
+ * itself is accessed via the pointers above */
+/* data: May be used for some additional optimizations.
+ Currently unused. */
+/* flags: For optimizations. See REXEC_* in regexp.h */
+
+{
+ struct regexp *const prog = ReANY(rx);
+ char *s;
+ regnode *c;
+ char *startpos;
+ SSize_t minlen; /* must match at least this many chars */
+ SSize_t dontbother = 0; /* how many characters not to try at end */
+ const bool utf8_target = cBOOL(DO_UTF8(sv));
+ I32 multiline;
+ RXi_GET_DECL(prog,progi);
+ regmatch_info reginfo_buf; /* create some info to pass to regtry etc */
+ regmatch_info *const reginfo = ®info_buf;
+ regexp_paren_pair *swap = NULL;
+ I32 oldsave;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGEXEC_FLAGS;
+ PERL_UNUSED_ARG(data);
+
+ /* Be paranoid... */
+ if (prog == NULL) {
+ Perl_croak(aTHX_ "NULL regexp parameter");
+ }
+
+ DEBUG_EXECUTE_r(
+ debug_start_match(rx, utf8_target, stringarg, strend,
+ "Matching");
+ );
+
+ startpos = stringarg;
+
+ if (prog->intflags & PREGf_GPOS_SEEN) {
+ MAGIC *mg;
+
+ /* set reginfo->ganch, the position where \G can match */
+
+ reginfo->ganch =
+ (flags & REXEC_IGNOREPOS)
+ ? stringarg /* use start pos rather than pos() */
+ : ((mg = mg_find_mglob(sv)) && mg->mg_len >= 0)
+ /* Defined pos(): */
+ ? strbeg + MgBYTEPOS(mg, sv, strbeg, strend-strbeg)
+ : strbeg; /* pos() not defined; use start of string */
+
+ DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+ "GPOS ganch set to strbeg[%"IVdf"]\n", (IV)(reginfo->ganch - strbeg)));
+
+ /* in the presence of \G, we may need to start looking earlier in
+ * the string than the suggested start point of stringarg:
+ * if prog->gofs is set, then that's a known, fixed minimum
+ * offset, such as
+ * /..\G/: gofs = 2
+ * /ab|c\G/: gofs = 1
+ * or if the minimum offset isn't known, then we have to go back
+ * to the start of the string, e.g. /w+\G/
+ */
+
+ if (prog->intflags & PREGf_ANCH_GPOS) {
+ startpos = reginfo->ganch - prog->gofs;
+ if (startpos <
+ ((flags & REXEC_FAIL_ON_UNDERFLOW) ? stringarg : strbeg))
+ {
+ DEBUG_r(PerlIO_printf(Perl_debug_log,
+ "fail: ganch-gofs before earliest possible start\n"));
+ return 0;
+ }
+ }
+ else if (prog->gofs) {
+ if (startpos - prog->gofs < strbeg)
+ startpos = strbeg;
+ else
+ startpos -= prog->gofs;
+ }
+ else if (prog->intflags & PREGf_GPOS_FLOAT)
+ startpos = strbeg;
+ }
+
+ minlen = prog->minlen;
+ if ((startpos + minlen) > strend || startpos < strbeg) {
+ DEBUG_r(PerlIO_printf(Perl_debug_log,
+ "Regex match can't succeed, so not even tried\n"));
+ return 0;
+ }
+
+ /* at the end of this function, we'll do a LEAVE_SCOPE(oldsave),
+ * which will call destuctors to reset PL_regmatch_state, free higher
+ * PL_regmatch_slabs, and clean up regmatch_info_aux and
+ * regmatch_info_aux_eval */
+
+ oldsave = PL_savestack_ix;
+
+ s = startpos;
+
+ if ((prog->extflags & RXf_USE_INTUIT)
+ && !(flags & REXEC_CHECKED))
+ {
+ s = re_intuit_start(rx, sv, strbeg, startpos, strend,
+ flags, NULL);
+ if (!s)
+ return 0;
+
+ if (prog->extflags & RXf_CHECK_ALL) {
+ /* we can match based purely on the result of INTUIT.
+ * Set up captures etc just for $& and $-[0]
+ * (an intuit-only match wont have $1,$2,..) */
+ assert(!prog->nparens);
+
+ /* s/// doesn't like it if $& is earlier than where we asked it to
+ * start searching (which can happen on something like /.\G/) */
+ if ( (flags & REXEC_FAIL_ON_UNDERFLOW)
+ && (s < stringarg))
+ {
+ /* this should only be possible under \G */
+ assert(prog->intflags & PREGf_GPOS_SEEN);
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n"));
+ goto phooey;
+ }
+
+ /* match via INTUIT shouldn't have any captures.
+ * Let @-, @+, $^N know */
+ prog->lastparen = prog->lastcloseparen = 0;
+ RX_MATCH_UTF8_set(rx, utf8_target);
+ prog->offs[0].start = s - strbeg;
+ prog->offs[0].end = utf8_target
+ ? (char*)utf8_hop((U8*)s, prog->minlenret) - strbeg
+ : s - strbeg + prog->minlenret;
+ if ( !(flags & REXEC_NOT_FIRST) )
+ S_reg_set_capture_string(aTHX_ rx,
+ strbeg, strend,
+ sv, flags, utf8_target);
+
+ return 1;
+ }
+ }
+
+ multiline = prog->extflags & RXf_PMf_MULTILINE;
+
+ if (strend - s < (minlen+(prog->check_offset_min<0?prog->check_offset_min:0))) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "String too short [regexec_flags]...\n"));
+ goto phooey;
+ }
+
+ /* Check validity of program. */
+ if (UCHARAT(progi->program) != REG_MAGIC) {
+ Perl_croak(aTHX_ "corrupted regexp program");
+ }
+
+ RX_MATCH_TAINTED_off(rx);
+ RX_MATCH_UTF8_set(rx, utf8_target);
+
+ reginfo->prog = rx; /* Yes, sorry that this is confusing. */
+ reginfo->intuit = 0;
+ reginfo->is_utf8_target = cBOOL(utf8_target);
+ reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx));
+ reginfo->warned = FALSE;
+ reginfo->strbeg = strbeg;
+ reginfo->sv = sv;
+ reginfo->poscache_maxiter = 0; /* not yet started a countdown */
+ reginfo->strend = strend;
+ /* see how far we have to get to not match where we matched before */
+ reginfo->till = stringarg + minend;
+
+ if (prog->extflags & RXf_EVAL_SEEN && SvPADTMP(sv)) {
+ /* SAVEFREESV, not sv_mortalcopy, as this SV must last until after
+ S_cleanup_regmatch_info_aux has executed (registered by
+ SAVEDESTRUCTOR_X below). S_cleanup_regmatch_info_aux modifies
+ magic belonging to this SV.
+ Not newSVsv, either, as it does not COW.
+ */
+ reginfo->sv = newSV(0);
+ SvSetSV_nosteal(reginfo->sv, sv);
+ SAVEFREESV(reginfo->sv);
+ }
+
+ /* reserve next 2 or 3 slots in PL_regmatch_state:
+ * slot N+0: may currently be in use: skip it
+ * slot N+1: use for regmatch_info_aux struct
+ * slot N+2: use for regmatch_info_aux_eval struct if we have (?{})'s
+ * slot N+3: ready for use by regmatch()
+ */
+
+ {
+ regmatch_state *old_regmatch_state;
+ regmatch_slab *old_regmatch_slab;
+ int i, max = (prog->extflags & RXf_EVAL_SEEN) ? 2 : 1;
+
+ /* on first ever match, allocate first slab */
+ if (!PL_regmatch_slab) {
+ Newx(PL_regmatch_slab, 1, regmatch_slab);
+ PL_regmatch_slab->prev = NULL;
+ PL_regmatch_slab->next = NULL;
+ PL_regmatch_state = SLAB_FIRST(PL_regmatch_slab);
+ }
+
+ old_regmatch_state = PL_regmatch_state;
+ old_regmatch_slab = PL_regmatch_slab;
+
+ for (i=0; i <= max; i++) {
+ if (i == 1)
+ reginfo->info_aux = &(PL_regmatch_state->u.info_aux);
+ else if (i ==2)
+ reginfo->info_aux_eval =
+ reginfo->info_aux->info_aux_eval =
+ &(PL_regmatch_state->u.info_aux_eval);
+
+ if (++PL_regmatch_state > SLAB_LAST(PL_regmatch_slab))
+ PL_regmatch_state = S_push_slab(aTHX);
+ }
+
+ /* note initial PL_regmatch_state position; at end of match we'll
+ * pop back to there and free any higher slabs */
+
+ reginfo->info_aux->old_regmatch_state = old_regmatch_state;
+ reginfo->info_aux->old_regmatch_slab = old_regmatch_slab;
+ reginfo->info_aux->poscache = NULL;
+
+ SAVEDESTRUCTOR_X(S_cleanup_regmatch_info_aux, reginfo->info_aux);
+
+ if ((prog->extflags & RXf_EVAL_SEEN))
+ S_setup_eval_state(aTHX_ reginfo);
+ else
+ reginfo->info_aux_eval = reginfo->info_aux->info_aux_eval = NULL;
+ }
+
+ /* If there is a "must appear" string, look for it. */
+
+ if (PL_curpm && (PM_GETRE(PL_curpm) == rx)) {
+ /* We have to be careful. If the previous successful match
+ was from this regex we don't want a subsequent partially
+ successful match to clobber the old results.
+ So when we detect this possibility we add a swap buffer
+ to the re, and switch the buffer each match. If we fail,
+ we switch it back; otherwise we leave it swapped.
+ */
+ swap = prog->offs;
+ /* do we need a save destructor here for eval dies? */
+ Newxz(prog->offs, (prog->nparens + 1), regexp_paren_pair);
+ DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+ "rex=0x%"UVxf" saving offs: orig=0x%"UVxf" new=0x%"UVxf"\n",
+ PTR2UV(prog),
+ PTR2UV(swap),
+ PTR2UV(prog->offs)
+ ));
+ }
+
+ /* Simplest case: anchored match need be tried only once, or with
+ * MBOL, only at the beginning of each line.
+ *
+ * Note that /.*.../ sets PREGf_IMPLICIT|MBOL, while /.*.../s sets
+ * PREGf_IMPLICIT|SBOL. The idea is that with /.*.../s, if it doesn't
+ * match at the start of the string then it won't match anywhere else
+ * either; while with /.*.../, if it doesn't match at the beginning,
+ * the earliest it could match is at the start of the next line */
+
+ if (prog->intflags & (PREGf_ANCH & ~PREGf_ANCH_GPOS)) {
+ char *end;
+
+ if (regtry(reginfo, &s))
+ goto got_it;
+
+ if (!(prog->intflags & PREGf_ANCH_MBOL))
+ goto phooey;
+
+ /* didn't match at start, try at other newline positions */
+
+ if (minlen)
+ dontbother = minlen - 1;
+ end = HOP3c(strend, -dontbother, strbeg) - 1;
+
+ /* skip to next newline */
+
+ while (s <= end) { /* note it could be possible to match at the end of the string */
+ /* NB: newlines are the same in unicode as they are in latin */
+ if (*s++ != '\n')
+ continue;
+ if (prog->check_substr || prog->check_utf8) {
+ /* note that with PREGf_IMPLICIT, intuit can only fail
+ * or return the start position, so it's of limited utility.
+ * Nevertheless, I made the decision that the potential for
+ * quick fail was still worth it - DAPM */
+ s = re_intuit_start(rx, sv, strbeg, s, strend, flags, NULL);
+ if (!s)
+ goto phooey;
+ }
+ if (regtry(reginfo, &s))
+ goto got_it;
+ }
+ goto phooey;
+ } /* end anchored search */
+
+ if (prog->intflags & PREGf_ANCH_GPOS)
+ {
+ /* PREGf_ANCH_GPOS should never be true if PREGf_GPOS_SEEN is not true */
+ assert(prog->intflags & PREGf_GPOS_SEEN);
+ /* For anchored \G, the only position it can match from is
+ * (ganch-gofs); we already set startpos to this above; if intuit
+ * moved us on from there, we can't possibly succeed */
+ assert(startpos == reginfo->ganch - prog->gofs);
+ if (s == startpos && regtry(reginfo, &s))
+ goto got_it;
+ goto phooey;
+ }
+
+ /* Messy cases: unanchored match. */
+ if ((prog->anchored_substr || prog->anchored_utf8) && prog->intflags & PREGf_SKIP) {
+ /* we have /x+whatever/ */
+ /* it must be a one character string (XXXX Except is_utf8_pat?) */
+ char ch;
+#ifdef DEBUGGING
+ int did_match = 0;
+#endif
+ if (utf8_target) {
+ if (! prog->anchored_utf8) {
+ to_utf8_substr(prog);
+ }
+ ch = SvPVX_const(prog->anchored_utf8)[0];
+ REXEC_FBC_SCAN(
+ if (*s == ch) {
+ DEBUG_EXECUTE_r( did_match = 1 );
+ if (regtry(reginfo, &s)) goto got_it;
+ s += UTF8SKIP(s);
+ while (s < strend && *s == ch)
+ s += UTF8SKIP(s);
+ }
+ );
+
+ }
+ else {
+ if (! prog->anchored_substr) {
+ if (! to_byte_substr(prog)) {
+ NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+ }
+ }
+ ch = SvPVX_const(prog->anchored_substr)[0];
+ REXEC_FBC_SCAN(
+ if (*s == ch) {
+ DEBUG_EXECUTE_r( did_match = 1 );
+ if (regtry(reginfo, &s)) goto got_it;
+ s++;
+ while (s < strend && *s == ch)
+ s++;
+ }
+ );
+ }
+ DEBUG_EXECUTE_r(if (!did_match)
+ PerlIO_printf(Perl_debug_log,
+ "Did not find anchored character...\n")
+ );
+ }
+ else if (prog->anchored_substr != NULL
+ || prog->anchored_utf8 != NULL
+ || ((prog->float_substr != NULL || prog->float_utf8 != NULL)
+ && prog->float_max_offset < strend - s)) {
+ SV *must;
+ SSize_t back_max;
+ SSize_t back_min;
+ char *last;
+ char *last1; /* Last position checked before */
+#ifdef DEBUGGING
+ int did_match = 0;
+#endif
+ if (prog->anchored_substr || prog->anchored_utf8) {
+ if (utf8_target) {
+ if (! prog->anchored_utf8) {
+ to_utf8_substr(prog);
+ }
+ must = prog->anchored_utf8;
+ }
+ else {
+ if (! prog->anchored_substr) {
+ if (! to_byte_substr(prog)) {
+ NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+ }
+ }
+ must = prog->anchored_substr;
+ }
+ back_max = back_min = prog->anchored_offset;
+ } else {
+ if (utf8_target) {
+ if (! prog->float_utf8) {
+ to_utf8_substr(prog);
+ }
+ must = prog->float_utf8;
+ }
+ else {
+ if (! prog->float_substr) {
+ if (! to_byte_substr(prog)) {
+ NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+ }
+ }
+ must = prog->float_substr;
+ }
+ back_max = prog->float_max_offset;
+ back_min = prog->float_min_offset;
+ }
+
+ if (back_min<0) {
+ last = strend;
+ } else {
+ last = HOP3c(strend, /* Cannot start after this */
+ -(SSize_t)(CHR_SVLEN(must)
+ - (SvTAIL(must) != 0) + back_min), strbeg);
+ }
+ if (s > reginfo->strbeg)
+ last1 = HOPc(s, -1);
+ else
+ last1 = s - 1; /* bogus */
+
+ /* XXXX check_substr already used to find "s", can optimize if
+ check_substr==must. */
+ dontbother = 0;
+ strend = HOPc(strend, -dontbother);
+ while ( (s <= last) &&
+ (s = fbm_instr((unsigned char*)HOP4c(s, back_min, strbeg, strend),
+ (unsigned char*)strend, must,
+ multiline ? FBMrf_MULTILINE : 0)) ) {
+ DEBUG_EXECUTE_r( did_match = 1 );
+ if (HOPc(s, -back_max) > last1) {
+ last1 = HOPc(s, -back_min);
+ s = HOPc(s, -back_max);
+ }
+ else {
+ char * const t = (last1 >= reginfo->strbeg)
+ ? HOPc(last1, 1) : last1 + 1;
+
+ last1 = HOPc(s, -back_min);
+ s = t;
+ }
+ if (utf8_target) {
+ while (s <= last1) {
+ if (regtry(reginfo, &s))
+ goto got_it;
+ if (s >= last1) {
+ s++; /* to break out of outer loop */
+ break;
+ }
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ while (s <= last1) {
+ if (regtry(reginfo, &s))
+ goto got_it;
+ s++;
+ }
+ }
+ }
+ DEBUG_EXECUTE_r(if (!did_match) {
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+ PerlIO_printf(Perl_debug_log, "Did not find %s substr %s%s...\n",
+ ((must == prog->anchored_substr || must == prog->anchored_utf8)
+ ? "anchored" : "floating"),
+ quoted, RE_SV_TAIL(must));
+ });
+ goto phooey;
+ }
+ else if ( (c = progi->regstclass) ) {
+ if (minlen) {
+ const OPCODE op = OP(progi->regstclass);
+ /* don't bother with what can't match */
+ if (PL_regkind[op] != EXACT && PL_regkind[op] != TRIE)
+ strend = HOPc(strend, -(minlen - 1));
+ }
+ DEBUG_EXECUTE_r({
+ SV * const prop = sv_newmortal();
+ regprop(prog, prop, c, reginfo, NULL);
+ {
+ RE_PV_QUOTED_DECL(quoted,utf8_target,PERL_DEBUG_PAD_ZERO(1),
+ s,strend-s,60);
+ PerlIO_printf(Perl_debug_log,
+ "Matching stclass %.*s against %s (%d bytes)\n",
+ (int)SvCUR(prop), SvPVX_const(prop),
+ quoted, (int)(strend - s));
+ }
+ });
+ if (find_byclass(prog, c, s, strend, reginfo))
+ goto got_it;
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Contradicts stclass... [regexec_flags]\n"));
+ }
+ else {
+ dontbother = 0;
+ if (prog->float_substr != NULL || prog->float_utf8 != NULL) {
+ /* Trim the end. */
+ char *last= NULL;
+ SV* float_real;
+ STRLEN len;
+ const char *little;
+
+ if (utf8_target) {
+ if (! prog->float_utf8) {
+ to_utf8_substr(prog);
+ }
+ float_real = prog->float_utf8;
+ }
+ else {
+ if (! prog->float_substr) {
+ if (! to_byte_substr(prog)) {
+ NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+ }
+ }
+ float_real = prog->float_substr;
+ }
+
+ little = SvPV_const(float_real, len);
+ if (SvTAIL(float_real)) {
+ /* This means that float_real contains an artificial \n on
+ * the end due to the presence of something like this:
+ * /foo$/ where we can match both "foo" and "foo\n" at the
+ * end of the string. So we have to compare the end of the
+ * string first against the float_real without the \n and
+ * then against the full float_real with the string. We
+ * have to watch out for cases where the string might be
+ * smaller than the float_real or the float_real without
+ * the \n. */
+ char *checkpos= strend - len;
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sChecking for float_real.%s\n",
+ PL_colors[4], PL_colors[5]));
+ if (checkpos + 1 < strbeg) {
+ /* can't match, even if we remove the trailing \n
+ * string is too short to match */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString shorter than required trailing substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]));
+ goto phooey;
+ } else if (memEQ(checkpos + 1, little, len - 1)) {
+ /* can match, the end of the string matches without the
+ * "\n" */
+ last = checkpos + 1;
+ } else if (checkpos < strbeg) {
+ /* cant match, string is too short when the "\n" is
+ * included */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString does not contain required trailing substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]));
+ goto phooey;
+ } else if (!multiline) {
+ /* non multiline match, so compare with the "\n" at the
+ * end of the string */
+ if (memEQ(checkpos, little, len)) {
+ last= checkpos;
+ } else {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString does not contain required trailing substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]));
+ goto phooey;
+ }
+ } else {
+ /* multiline match, so we have to search for a place
+ * where the full string is located */
+ goto find_last;
+ }
+ } else {
+ find_last:
+ if (len)
+ last = rninstr(s, strend, little, little + len);
+ else
+ last = strend; /* matching "$" */
+ }
+ if (!last) {
+ /* at one point this block contained a comment which was
+ * probably incorrect, which said that this was a "should not
+ * happen" case. Even if it was true when it was written I am
+ * pretty sure it is not anymore, so I have removed the comment
+ * and replaced it with this one. Yves */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString does not contain required substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]
+ ));
+ goto phooey;
+ }
+ dontbother = strend - last + prog->float_min_offset;
+ }
+ if (minlen && (dontbother < minlen))
+ dontbother = minlen - 1;
+ strend -= dontbother; /* this one's always in bytes! */
+ /* We don't know much -- general case. */
+ if (utf8_target) {
+ for (;;) {
+ if (regtry(reginfo, &s))
+ goto got_it;
+ if (s >= strend)
+ break;
+ s += UTF8SKIP(s);
+ };
+ }
+ else {
+ do {
+ if (regtry(reginfo, &s))
+ goto got_it;
+ } while (s++ < strend);
+ }
+ }
+
+ /* Failure. */
+ goto phooey;
+
+ got_it:
+ /* s/// doesn't like it if $& is earlier than where we asked it to
+ * start searching (which can happen on something like /.\G/) */
+ if ( (flags & REXEC_FAIL_ON_UNDERFLOW)
+ && (prog->offs[0].start < stringarg - strbeg))
+ {
+ /* this should only be possible under \G */
+ assert(prog->intflags & PREGf_GPOS_SEEN);
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n"));
+ goto phooey;
+ }
+
+ DEBUG_BUFFERS_r(
+ if (swap)
+ PerlIO_printf(Perl_debug_log,
+ "rex=0x%"UVxf" freeing offs: 0x%"UVxf"\n",
+ PTR2UV(prog),
+ PTR2UV(swap)
+ );
+ );
+ Safefree(swap);
+
+ /* clean up; this will trigger destructors that will free all slabs
+ * above the current one, and cleanup the regmatch_info_aux
+ * and regmatch_info_aux_eval sructs */
+
+ LEAVE_SCOPE(oldsave);
+
+ if (RXp_PAREN_NAMES(prog))
+ (void)hv_iterinit(RXp_PAREN_NAMES(prog));
+
+ /* make sure $`, $&, $', and $digit will work later */
+ if ( !(flags & REXEC_NOT_FIRST) )
+ S_reg_set_capture_string(aTHX_ rx,
+ strbeg, reginfo->strend,
+ sv, flags, utf8_target);
+
+ return 1;
+
+ phooey:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch failed%s\n",
+ PL_colors[4], PL_colors[5]));
+
+ /* clean up; this will trigger destructors that will free all slabs
+ * above the current one, and cleanup the regmatch_info_aux
+ * and regmatch_info_aux_eval sructs */
+
+ LEAVE_SCOPE(oldsave);
+
+ if (swap) {
+ /* we failed :-( roll it back */
+ DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+ "rex=0x%"UVxf" rolling back offs: freeing=0x%"UVxf" restoring=0x%"UVxf"\n",
+ PTR2UV(prog),
+ PTR2UV(prog->offs),
+ PTR2UV(swap)
+ ));
+ Safefree(prog->offs);
+ prog->offs = swap;
+ }
+ return 0;
+}
+
+
+/* Set which rex is pointed to by PL_reg_curpm, handling ref counting.
+ * Do inc before dec, in case old and new rex are the same */
+#define SET_reg_curpm(Re2) \
+ if (reginfo->info_aux_eval) { \
+ (void)ReREFCNT_inc(Re2); \
+ ReREFCNT_dec(PM_GETRE(PL_reg_curpm)); \
+ PM_SETRE((PL_reg_curpm), (Re2)); \
+ }
+
+
+/*
+ - regtry - try match at specific point
+ */
+STATIC I32 /* 0 failure, 1 success */
+S_regtry(pTHX_ regmatch_info *reginfo, char **startposp)
+{
+ CHECKPOINT lastcp;
+ REGEXP *const rx = reginfo->prog;
+ regexp *const prog = ReANY(rx);
+ SSize_t result;
+ RXi_GET_DECL(prog,progi);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTRY;
+
+ reginfo->cutpoint=NULL;
+
+ prog->offs[0].start = *startposp - reginfo->strbeg;
+ prog->lastparen = 0;
+ prog->lastcloseparen = 0;
+
+ /* XXXX What this code is doing here?!!! There should be no need
+ to do this again and again, prog->lastparen should take care of
+ this! --ilya*/
+
+ /* Tests pat.t#187 and split.t#{13,14} seem to depend on this code.
+ * Actually, the code in regcppop() (which Ilya may be meaning by
+ * prog->lastparen), is not needed at all by the test suite
+ * (op/regexp, op/pat, op/split), but that code is needed otherwise
+ * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
+ * Meanwhile, this code *is* needed for the
+ * above-mentioned test suite tests to succeed. The common theme
+ * on those tests seems to be returning null fields from matches.
+ * --jhi updated by dapm */
+#if 1
+ if (prog->nparens) {
+ regexp_paren_pair *pp = prog->offs;
+ I32 i;
+ for (i = prog->nparens; i > (I32)prog->lastparen; i--) {
+ ++pp;
+ pp->start = -1;
+ pp->end = -1;
+ }
+ }
+#endif
+ REGCP_SET(lastcp);
+ result = regmatch(reginfo, *startposp, progi->program + 1);
+ if (result != -1) {
+ prog->offs[0].end = result;
+ return 1;
+ }
+ if (reginfo->cutpoint)
+ *startposp= reginfo->cutpoint;
+ REGCP_UNWIND(lastcp);
+ return 0;
+}
+
+
+#define sayYES goto yes
+#define sayNO goto no
+#define sayNO_SILENT goto no_silent
+
+/* we dont use STMT_START/END here because it leads to
+ "unreachable code" warnings, which are bogus, but distracting. */
+#define CACHEsayNO \
+ if (ST.cache_mask) \
+ reginfo->info_aux->poscache[ST.cache_offset] |= ST.cache_mask; \
+ sayNO
+
+/* this is used to determine how far from the left messages like
+ 'failed...' are printed. It should be set such that messages
+ are inline with the regop output that created them.
+*/
+#define REPORT_CODE_OFF 32
+
+
+#define CHRTEST_UNINIT -1001 /* c1/c2 haven't been calculated yet */
+#define CHRTEST_VOID -1000 /* the c1/c2 "next char" test should be skipped */
+#define CHRTEST_NOT_A_CP_1 -999
+#define CHRTEST_NOT_A_CP_2 -998
+
+/* grab a new slab and return the first slot in it */
+
+STATIC regmatch_state *
+S_push_slab(pTHX)
+{
+#if PERL_VERSION < 9 && !defined(PERL_CORE)
+ dMY_CXT;
+#endif
+ regmatch_slab *s = PL_regmatch_slab->next;
+ if (!s) {
+ Newx(s, 1, regmatch_slab);
+ s->prev = PL_regmatch_slab;
+ s->next = NULL;
+ PL_regmatch_slab->next = s;
+ }
+ PL_regmatch_slab = s;
+ return SLAB_FIRST(s);
+}
+
+
+/* push a new state then goto it */
+
+#define PUSH_STATE_GOTO(state, node, input) \
+ pushinput = input; \
+ scan = node; \
+ st->resume_state = state; \
+ goto push_state;
+
+/* push a new state with success backtracking, then goto it */
+
+#define PUSH_YES_STATE_GOTO(state, node, input) \
+ pushinput = input; \
+ scan = node; \
+ st->resume_state = state; \
+ goto push_yes_state;
+
+
+
+
+/*
+
+regmatch() - main matching routine
+
+This is basically one big switch statement in a loop. We execute an op,
+set 'next' to point the next op, and continue. If we come to a point which
+we may need to backtrack to on failure such as (A|B|C), we push a
+backtrack state onto the backtrack stack. On failure, we pop the top
+state, and re-enter the loop at the state indicated. If there are no more
+states to pop, we return failure.
+
+Sometimes we also need to backtrack on success; for example /A+/, where
+after successfully matching one A, we need to go back and try to
+match another one; similarly for lookahead assertions: if the assertion
+completes successfully, we backtrack to the state just before the assertion
+and then carry on. In these cases, the pushed state is marked as
+'backtrack on success too'. This marking is in fact done by a chain of
+pointers, each pointing to the previous 'yes' state. On success, we pop to
+the nearest yes state, discarding any intermediate failure-only states.
+Sometimes a yes state is pushed just to force some cleanup code to be
+called at the end of a successful match or submatch; e.g. (??{$re}) uses
+it to free the inner regex.
+
+Note that failure backtracking rewinds the cursor position, while
+success backtracking leaves it alone.
+
+A pattern is complete when the END op is executed, while a subpattern
+such as (?=foo) is complete when the SUCCESS op is executed. Both of these
+ops trigger the "pop to last yes state if any, otherwise return true"
+behaviour.
+
+A common convention in this function is to use A and B to refer to the two
+subpatterns (or to the first nodes thereof) in patterns like /A*B/: so A is
+the subpattern to be matched possibly multiple times, while B is the entire
+rest of the pattern. Variable and state names reflect this convention.
+
+The states in the main switch are the union of ops and failure/success of
+substates associated with with that op. For example, IFMATCH is the op
+that does lookahead assertions /(?=A)B/ and so the IFMATCH state means
+'execute IFMATCH'; while IFMATCH_A is a state saying that we have just
+successfully matched A and IFMATCH_A_fail is a state saying that we have
+just failed to match A. Resume states always come in pairs. The backtrack
+state we push is marked as 'IFMATCH_A', but when that is popped, we resume
+at IFMATCH_A or IFMATCH_A_fail, depending on whether we are backtracking
+on success or failure.
+
+The struct that holds a backtracking state is actually a big union, with
+one variant for each major type of op. The variable st points to the
+top-most backtrack struct. To make the code clearer, within each
+block of code we #define ST to alias the relevant union.
+
+Here's a concrete example of a (vastly oversimplified) IFMATCH
+implementation:
+
+ switch (state) {
+ ....
+
+#define ST st->u.ifmatch
+
+ case IFMATCH: // we are executing the IFMATCH op, (?=A)B
+ ST.foo = ...; // some state we wish to save
+ ...
+ // push a yes backtrack state with a resume value of
+ // IFMATCH_A/IFMATCH_A_fail, then continue execution at the
+ // first node of A:
+ PUSH_YES_STATE_GOTO(IFMATCH_A, A, newinput);
+ // NOTREACHED
+
+ case IFMATCH_A: // we have successfully executed A; now continue with B
+ next = B;
+ bar = ST.foo; // do something with the preserved value
+ break;
+
+ case IFMATCH_A_fail: // A failed, so the assertion failed
+ ...; // do some housekeeping, then ...
+ sayNO; // propagate the failure
+
+#undef ST
+
+ ...
+ }
+
+For any old-timers reading this who are familiar with the old recursive
+approach, the code above is equivalent to:
+
+ case IFMATCH: // we are executing the IFMATCH op, (?=A)B
+ {
+ int foo = ...
+ ...
+ if (regmatch(A)) {
+ next = B;
+ bar = foo;
+ break;
+ }
+ ...; // do some housekeeping, then ...
+ sayNO; // propagate the failure
+ }
+
+The topmost backtrack state, pointed to by st, is usually free. If you
+want to claim it, populate any ST.foo fields in it with values you wish to
+save, then do one of
+
+ PUSH_STATE_GOTO(resume_state, node, newinput);
+ PUSH_YES_STATE_GOTO(resume_state, node, newinput);
+
+which sets that backtrack state's resume value to 'resume_state', pushes a
+new free entry to the top of the backtrack stack, then goes to 'node'.
+On backtracking, the free slot is popped, and the saved state becomes the
+new free state. An ST.foo field in this new top state can be temporarily
+accessed to retrieve values, but once the main loop is re-entered, it
+becomes available for reuse.
+
+Note that the depth of the backtrack stack constantly increases during the
+left-to-right execution of the pattern, rather than going up and down with
+the pattern nesting. For example the stack is at its maximum at Z at the
+end of the pattern, rather than at X in the following:
+
+ /(((X)+)+)+....(Y)+....Z/
+
+The only exceptions to this are lookahead/behind assertions and the cut,
+(?>A), which pop all the backtrack states associated with A before
+continuing.
+
+Backtrack state structs are allocated in slabs of about 4K in size.
+PL_regmatch_state and st always point to the currently active state,
+and PL_regmatch_slab points to the slab currently containing
+PL_regmatch_state. The first time regmatch() is called, the first slab is
+allocated, and is never freed until interpreter destruction. When the slab
+is full, a new one is allocated and chained to the end. At exit from
+regmatch(), slabs allocated since entry are freed.
+
+*/
+
+
+#define DEBUG_STATE_pp(pp) \
+ DEBUG_STATE_r({ \
+ DUMP_EXEC_POS(locinput, scan, utf8_target); \
+ PerlIO_printf(Perl_debug_log, \
+ " %*s"pp" %s%s%s%s%s\n", \
+ depth*2, "", \
+ PL_reg_name[st->resume_state], \
+ ((st==yes_state||st==mark_state) ? "[" : ""), \
+ ((st==yes_state) ? "Y" : ""), \
+ ((st==mark_state) ? "M" : ""), \
+ ((st==yes_state||st==mark_state) ? "]" : "") \
+ ); \
+ });
+
+
+#define REG_NODE_NUM(x) ((x) ? (int)((x)-prog) : -1)
+
+#ifdef DEBUGGING
+
+STATIC void
+S_debug_start_match(pTHX_ const REGEXP *prog, const bool utf8_target,
+ const char *start, const char *end, const char *blurb)
+{
+ const bool utf8_pat = RX_UTF8(prog) ? 1 : 0;
+
+ PERL_ARGS_ASSERT_DEBUG_START_MATCH;
+
+ if (!PL_colorset)
+ reginitcolors();
+ {
+ RE_PV_QUOTED_DECL(s0, utf8_pat, PERL_DEBUG_PAD_ZERO(0),
+ RX_PRECOMP_const(prog), RX_PRELEN(prog), 60);
+
+ RE_PV_QUOTED_DECL(s1, utf8_target, PERL_DEBUG_PAD_ZERO(1),
+ start, end - start, 60);
+
+ PerlIO_printf(Perl_debug_log,
+ "%s%s REx%s %s against %s\n",
+ PL_colors[4], blurb, PL_colors[5], s0, s1);
+
+ if (utf8_target||utf8_pat)
+ PerlIO_printf(Perl_debug_log, "UTF-8 %s%s%s...\n",
+ utf8_pat ? "pattern" : "",
+ utf8_pat && utf8_target ? " and " : "",
+ utf8_target ? "string" : ""
+ );
+ }
+}
+
+STATIC void
+S_dump_exec_pos(pTHX_ const char *locinput,
+ const regnode *scan,
+ const char *loc_regeol,
+ const char *loc_bostr,
+ const char *loc_reg_starttry,
+ const bool utf8_target)
+{
+ const int docolor = *PL_colors[0] || *PL_colors[2] || *PL_colors[4];
+ const int taill = (docolor ? 10 : 7); /* 3 chars for "> <" */
+ int l = (loc_regeol - locinput) > taill ? taill : (loc_regeol - locinput);
+ /* The part of the string before starttry has one color
+ (pref0_len chars), between starttry and current
+ position another one (pref_len - pref0_len chars),
+ after the current position the third one.
+ We assume that pref0_len <= pref_len, otherwise we
+ decrease pref0_len. */
+ int pref_len = (locinput - loc_bostr) > (5 + taill) - l
+ ? (5 + taill) - l : locinput - loc_bostr;
+ int pref0_len;
+
+ PERL_ARGS_ASSERT_DUMP_EXEC_POS;
+
+ while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput - pref_len)))
+ pref_len++;
+ pref0_len = pref_len - (locinput - loc_reg_starttry);
+ if (l + pref_len < (5 + taill) && l < loc_regeol - locinput)
+ l = ( loc_regeol - locinput > (5 + taill) - pref_len
+ ? (5 + taill) - pref_len : loc_regeol - locinput);
+ while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput + l)))
+ l--;
+ if (pref0_len < 0)
+ pref0_len = 0;
+ if (pref0_len > pref_len)
+ pref0_len = pref_len;
+ {
+ const int is_uni = utf8_target ? 1 : 0;
+
+ RE_PV_COLOR_DECL(s0,len0,is_uni,PERL_DEBUG_PAD(0),
+ (locinput - pref_len),pref0_len, 60, 4, 5);
+
+ RE_PV_COLOR_DECL(s1,len1,is_uni,PERL_DEBUG_PAD(1),
+ (locinput - pref_len + pref0_len),
+ pref_len - pref0_len, 60, 2, 3);
+
+ RE_PV_COLOR_DECL(s2,len2,is_uni,PERL_DEBUG_PAD(2),
+ locinput, loc_regeol - locinput, 10, 0, 1);
+
+ const STRLEN tlen=len0+len1+len2;
+ PerlIO_printf(Perl_debug_log,
+ "%4"IVdf" <%.*s%.*s%s%.*s>%*s|",
+ (IV)(locinput - loc_bostr),
+ len0, s0,
+ len1, s1,
+ (docolor ? "" : "> <"),
+ len2, s2,
+ (int)(tlen > 19 ? 0 : 19 - tlen),
+ "");
+ }
+}
+
+#endif
+
+/* reg_check_named_buff_matched()
+ * Checks to see if a named buffer has matched. The data array of
+ * buffer numbers corresponding to the buffer is expected to reside
+ * in the regexp->data->data array in the slot stored in the ARG() of
+ * node involved. Note that this routine doesn't actually care about the
+ * name, that information is not preserved from compilation to execution.
+ * Returns the index of the leftmost defined buffer with the given name
+ * or 0 if non of the buffers matched.
+ */
+STATIC I32
+S_reg_check_named_buff_matched(const regexp *rex, const regnode *scan)
+{
+ I32 n;
+ RXi_GET_DECL(rex,rexi);
+ SV *sv_dat= MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ I32 *nums=(I32*)SvPVX(sv_dat);
+
+ PERL_ARGS_ASSERT_REG_CHECK_NAMED_BUFF_MATCHED;
+
+ for ( n=0; n<SvIVX(sv_dat); n++ ) {
+ if ((I32)rex->lastparen >= nums[n] &&
+ rex->offs[nums[n]].end != -1)
+ {
+ return nums[n];
+ }
+ }
+ return 0;
+}
+
+
+static bool
+S_setup_EXACTISH_ST_c1_c2(pTHX_ const regnode * const text_node, int *c1p,
+ U8* c1_utf8, int *c2p, U8* c2_utf8, regmatch_info *reginfo)
+{
+ /* This function determines if there are one or two characters that match
+ * the first character of the passed-in EXACTish node <text_node>, and if
+ * so, returns them in the passed-in pointers.
+ *
+ * If it determines that no possible character in the target string can
+ * match, it returns FALSE; otherwise TRUE. (The FALSE situation occurs if
+ * the first character in <text_node> requires UTF-8 to represent, and the
+ * target string isn't in UTF-8.)
+ *
+ * If there are more than two characters that could match the beginning of
+ * <text_node>, or if more context is required to determine a match or not,
+ * it sets both *<c1p> and *<c2p> to CHRTEST_VOID.
+ *
+ * The motiviation behind this function is to allow the caller to set up
+ * tight loops for matching. If <text_node> is of type EXACT, there is
+ * only one possible character that can match its first character, and so
+ * the situation is quite simple. But things get much more complicated if
+ * folding is involved. It may be that the first character of an EXACTFish
+ * node doesn't participate in any possible fold, e.g., punctuation, so it
+ * can be matched only by itself. The vast majority of characters that are
+ * in folds match just two things, their lower and upper-case equivalents.
+ * But not all are like that; some have multiple possible matches, or match
+ * sequences of more than one character. This function sorts all that out.
+ *
+ * Consider the patterns A*B or A*?B where A and B are arbitrary. In a
+ * loop of trying to match A*, we know we can't exit where the thing
+ * following it isn't a B. And something can't be a B unless it is the
+ * beginning of B. By putting a quick test for that beginning in a tight
+ * loop, we can rule out things that can't possibly be B without having to
+ * break out of the loop, thus avoiding work. Similarly, if A is a single
+ * character, we can make a tight loop matching A*, using the outputs of
+ * this function.
+ *
+ * If the target string to match isn't in UTF-8, and there aren't
+ * complications which require CHRTEST_VOID, *<c1p> and *<c2p> are set to
+ * the one or two possible octets (which are characters in this situation)
+ * that can match. In all cases, if there is only one character that can
+ * match, *<c1p> and *<c2p> will be identical.
+ *
+ * If the target string is in UTF-8, the buffers pointed to by <c1_utf8>
+ * and <c2_utf8> will contain the one or two UTF-8 sequences of bytes that
+ * can match the beginning of <text_node>. They should be declared with at
+ * least length UTF8_MAXBYTES+1. (If the target string isn't in UTF-8, it is
+ * undefined what these contain.) If one or both of the buffers are
+ * invariant under UTF-8, *<c1p>, and *<c2p> will also be set to the
+ * corresponding invariant. If variant, the corresponding *<c1p> and/or
+ * *<c2p> will be set to a negative number(s) that shouldn't match any code
+ * point (unless inappropriately coerced to unsigned). *<c1p> will equal
+ * *<c2p> if and only if <c1_utf8> and <c2_utf8> are the same. */
+
+ const bool utf8_target = reginfo->is_utf8_target;
+
+ UV c1 = (UV)CHRTEST_NOT_A_CP_1;
+ UV c2 = (UV)CHRTEST_NOT_A_CP_2;
+ bool use_chrtest_void = FALSE;
+ const bool is_utf8_pat = reginfo->is_utf8_pat;
+
+ /* Used when we have both utf8 input and utf8 output, to avoid converting
+ * to/from code points */
+ bool utf8_has_been_setup = FALSE;
+
+ dVAR;
+
+ U8 *pat = (U8*)STRING(text_node);
+ U8 folded[UTF8_MAX_FOLD_CHAR_EXPAND * UTF8_MAXBYTES_CASE + 1] = { '\0' };
+
+ if (OP(text_node) == EXACT || OP(text_node) == EXACTL) {
+
+ /* In an exact node, only one thing can be matched, that first
+ * character. If both the pat and the target are UTF-8, we can just
+ * copy the input to the output, avoiding finding the code point of
+ * that character */
+ if (!is_utf8_pat) {
+ c2 = c1 = *pat;
+ }
+ else if (utf8_target) {
+ Copy(pat, c1_utf8, UTF8SKIP(pat), U8);
+ Copy(pat, c2_utf8, UTF8SKIP(pat), U8);
+ utf8_has_been_setup = TRUE;
+ }
+ else {
+ c2 = c1 = valid_utf8_to_uvchr(pat, NULL);
+ }
+ }
+ else { /* an EXACTFish node */
+ U8 *pat_end = pat + STR_LEN(text_node);
+
+ /* An EXACTFL node has at least some characters unfolded, because what
+ * they match is not known until now. So, now is the time to fold
+ * the first few of them, as many as are needed to determine 'c1' and
+ * 'c2' later in the routine. If the pattern isn't UTF-8, we only need
+ * to fold if in a UTF-8 locale, and then only the Sharp S; everything
+ * else is 1-1 and isn't assumed to be folded. In a UTF-8 pattern, we
+ * need to fold as many characters as a single character can fold to,
+ * so that later we can check if the first ones are such a multi-char
+ * fold. But, in such a pattern only locale-problematic characters
+ * aren't folded, so we can skip this completely if the first character
+ * in the node isn't one of the tricky ones */
+ if (OP(text_node) == EXACTFL) {
+
+ if (! is_utf8_pat) {
+ if (IN_UTF8_CTYPE_LOCALE && *pat == LATIN_SMALL_LETTER_SHARP_S)
+ {
+ folded[0] = folded[1] = 's';
+ pat = folded;
+ pat_end = folded + 2;
+ }
+ }
+ else if (is_PROBLEMATIC_LOCALE_FOLDEDS_START_utf8(pat)) {
+ U8 *s = pat;
+ U8 *d = folded;
+ int i;
+
+ for (i = 0; i < UTF8_MAX_FOLD_CHAR_EXPAND && s < pat_end; i++) {
+ if (isASCII(*s)) {
+ *(d++) = (U8) toFOLD_LC(*s);
+ s++;
+ }
+ else {
+ STRLEN len;
+ _to_utf8_fold_flags(s,
+ d,
+ &len,
+ FOLD_FLAGS_FULL | FOLD_FLAGS_LOCALE);
+ d += len;
+ s += UTF8SKIP(s);
+ }
+ }
+
+ pat = folded;
+ pat_end = d;
+ }
+ }
+
+ if ((is_utf8_pat && is_MULTI_CHAR_FOLD_utf8_safe(pat, pat_end))
+ || (!is_utf8_pat && is_MULTI_CHAR_FOLD_latin1_safe(pat, pat_end)))
+ {
+ /* Multi-character folds require more context to sort out. Also
+ * PL_utf8_foldclosures used below doesn't handle them, so have to
+ * be handled outside this routine */
+ use_chrtest_void = TRUE;
+ }
+ else { /* an EXACTFish node which doesn't begin with a multi-char fold */
+ c1 = is_utf8_pat ? valid_utf8_to_uvchr(pat, NULL) : *pat;
+ if (c1 > 255) {
+ /* Load the folds hash, if not already done */
+ SV** listp;
+ if (! PL_utf8_foldclosures) {
+ _load_PL_utf8_foldclosures();
+ }
+
+ /* The fold closures data structure is a hash with the keys
+ * being the UTF-8 of every character that is folded to, like
+ * 'k', and the values each an array of all code points that
+ * fold to its key. e.g. [ 'k', 'K', KELVIN_SIGN ].
+ * Multi-character folds are not included */
+ if ((! (listp = hv_fetch(PL_utf8_foldclosures,
+ (char *) pat,
+ UTF8SKIP(pat),
+ FALSE))))
+ {
+ /* Not found in the hash, therefore there are no folds
+ * containing it, so there is only a single character that
+ * could match */
+ c2 = c1;
+ }
+ else { /* Does participate in folds */
+ AV* list = (AV*) *listp;
+ if (av_tindex(list) != 1) {
+
+ /* If there aren't exactly two folds to this, it is
+ * outside the scope of this function */
+ use_chrtest_void = TRUE;
+ }
+ else { /* There are two. Get them */
+ SV** c_p = av_fetch(list, 0, FALSE);
+ if (c_p == NULL) {
+ Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
+ }
+ c1 = SvUV(*c_p);
+
+ c_p = av_fetch(list, 1, FALSE);
+ if (c_p == NULL) {
+ Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
+ }
+ c2 = SvUV(*c_p);
+
+ /* Folds that cross the 255/256 boundary are forbidden
+ * if EXACTFL (and isnt a UTF8 locale), or EXACTFA and
+ * one is ASCIII. Since the pattern character is above
+ * 255, and its only other match is below 256, the only
+ * legal match will be to itself. We have thrown away
+ * the original, so have to compute which is the one
+ * above 255. */
+ if ((c1 < 256) != (c2 < 256)) {
+ if ((OP(text_node) == EXACTFL
+ && ! IN_UTF8_CTYPE_LOCALE)
+ || ((OP(text_node) == EXACTFA
+ || OP(text_node) == EXACTFA_NO_TRIE)
+ && (isASCII(c1) || isASCII(c2))))
+ {
+ if (c1 < 256) {
+ c1 = c2;
+ }
+ else {
+ c2 = c1;
+ }
+ }
+ }
+ }
+ }
+ }
+ else /* Here, c1 is <= 255 */
+ if (utf8_target
+ && HAS_NONLATIN1_FOLD_CLOSURE(c1)
+ && ( ! (OP(text_node) == EXACTFL && ! IN_UTF8_CTYPE_LOCALE))
+ && ((OP(text_node) != EXACTFA
+ && OP(text_node) != EXACTFA_NO_TRIE)
+ || ! isASCII(c1)))
+ {
+ /* Here, there could be something above Latin1 in the target
+ * which folds to this character in the pattern. All such
+ * cases except LATIN SMALL LETTER Y WITH DIAERESIS have more
+ * than two characters involved in their folds, so are outside
+ * the scope of this function */
+ if (UNLIKELY(c1 == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) {
+ c2 = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS;
+ }
+ else {
+ use_chrtest_void = TRUE;
+ }
+ }
+ else { /* Here nothing above Latin1 can fold to the pattern
+ character */
+ switch (OP(text_node)) {
+
+ case EXACTFL: /* /l rules */
+ c2 = PL_fold_locale[c1];
+ break;
+
+ case EXACTF: /* This node only generated for non-utf8
+ patterns */
+ assert(! is_utf8_pat);
+ if (! utf8_target) { /* /d rules */
+ c2 = PL_fold[c1];
+ break;
+ }
+ /* FALLTHROUGH */
+ /* /u rules for all these. This happens to work for
+ * EXACTFA as nothing in Latin1 folds to ASCII */
+ case EXACTFA_NO_TRIE: /* This node only generated for
+ non-utf8 patterns */
+ assert(! is_utf8_pat);
+ /* FALLTHROUGH */
+ case EXACTFA:
+ case EXACTFU_SS:
+ case EXACTFU:
+ c2 = PL_fold_latin1[c1];
+ break;
+
+ default:
+ Perl_croak(aTHX_ "panic: Unexpected op %u", OP(text_node));
+ NOT_REACHED; /* NOTREACHED */
+ }
+ }
+ }
+ }
+
+ /* Here have figured things out. Set up the returns */
+ if (use_chrtest_void) {
+ *c2p = *c1p = CHRTEST_VOID;
+ }
+ else if (utf8_target) {
+ if (! utf8_has_been_setup) { /* Don't have the utf8; must get it */
+ uvchr_to_utf8(c1_utf8, c1);
+ uvchr_to_utf8(c2_utf8, c2);
+ }
+
+ /* Invariants are stored in both the utf8 and byte outputs; Use
+ * negative numbers otherwise for the byte ones. Make sure that the
+ * byte ones are the same iff the utf8 ones are the same */
+ *c1p = (UTF8_IS_INVARIANT(*c1_utf8)) ? *c1_utf8 : CHRTEST_NOT_A_CP_1;
+ *c2p = (UTF8_IS_INVARIANT(*c2_utf8))
+ ? *c2_utf8
+ : (c1 == c2)
+ ? CHRTEST_NOT_A_CP_1
+ : CHRTEST_NOT_A_CP_2;
+ }
+ else if (c1 > 255) {
+ if (c2 > 255) { /* both possibilities are above what a non-utf8 string
+ can represent */
+ return FALSE;
+ }
+
+ *c1p = *c2p = c2; /* c2 is the only representable value */
+ }
+ else { /* c1 is representable; see about c2 */
+ *c1p = c1;
+ *c2p = (c2 < 256) ? c2 : c1;
+ }
+
+ return TRUE;
+}
+
+/* This creates a single number by combining two, with 'before' being like the
+ * 10's digit, but this isn't necessarily base 10; it is base however many
+ * elements of the enum there are */
+#define GCBcase(before, after) ((GCB_ENUM_COUNT * before) + after)
+
+STATIC bool
+S_isGCB(const GCB_enum before, const GCB_enum after)
+{
+ /* returns a boolean indicating if there is a Grapheme Cluster Boundary
+ * between the inputs. See http://www.unicode.org/reports/tr29/ */
+
+ switch (GCBcase(before, after)) {
+
+ /* Break at the start and end of text.
+ GB1. sot ÷
+ GB2. ÷ eot
+
+ Break before and after controls except between CR and LF
+ GB4. ( Control | CR | LF ) ÷
+ GB5. ÷ ( Control | CR | LF )
+
+ Otherwise, break everywhere.
+ GB10. Any ÷ Any */
+ default:
+ return TRUE;
+
+ /* Do not break between a CR and LF.
+ GB3. CR × LF */
+ case GCBcase(GCB_CR, GCB_LF):
+ return FALSE;
+
+ /* Do not break Hangul syllable sequences.
+ GB6. L × ( L | V | LV | LVT ) */
+ case GCBcase(GCB_L, GCB_L):
+ case GCBcase(GCB_L, GCB_V):
+ case GCBcase(GCB_L, GCB_LV):
+ case GCBcase(GCB_L, GCB_LVT):
+ return FALSE;
+
+ /* GB7. ( LV | V ) × ( V | T ) */
+ case GCBcase(GCB_LV, GCB_V):
+ case GCBcase(GCB_LV, GCB_T):
+ case GCBcase(GCB_V, GCB_V):
+ case GCBcase(GCB_V, GCB_T):
+ return FALSE;
+
+ /* GB8. ( LVT | T) × T */
+ case GCBcase(GCB_LVT, GCB_T):
+ case GCBcase(GCB_T, GCB_T):
+ return FALSE;
+
+ /* Do not break between regional indicator symbols.
+ GB8a. Regional_Indicator × Regional_Indicator */
+ case GCBcase(GCB_Regional_Indicator, GCB_Regional_Indicator):
+ return FALSE;
+
+ /* Do not break before extending characters.
+ GB9. × Extend */
+ case GCBcase(GCB_Other, GCB_Extend):
+ case GCBcase(GCB_Extend, GCB_Extend):
+ case GCBcase(GCB_L, GCB_Extend):
+ case GCBcase(GCB_LV, GCB_Extend):
+ case GCBcase(GCB_LVT, GCB_Extend):
+ case GCBcase(GCB_Prepend, GCB_Extend):
+ case GCBcase(GCB_Regional_Indicator, GCB_Extend):
+ case GCBcase(GCB_SpacingMark, GCB_Extend):
+ case GCBcase(GCB_T, GCB_Extend):
+ case GCBcase(GCB_V, GCB_Extend):
+ return FALSE;
+
+ /* Do not break before SpacingMarks, or after Prepend characters.
+ GB9a. × SpacingMark */
+ case GCBcase(GCB_Other, GCB_SpacingMark):
+ case GCBcase(GCB_Extend, GCB_SpacingMark):
+ case GCBcase(GCB_L, GCB_SpacingMark):
+ case GCBcase(GCB_LV, GCB_SpacingMark):
+ case GCBcase(GCB_LVT, GCB_SpacingMark):
+ case GCBcase(GCB_Prepend, GCB_SpacingMark):
+ case GCBcase(GCB_Regional_Indicator, GCB_SpacingMark):
+ case GCBcase(GCB_SpacingMark, GCB_SpacingMark):
+ case GCBcase(GCB_T, GCB_SpacingMark):
+ case GCBcase(GCB_V, GCB_SpacingMark):
+ return FALSE;
+
+ /* GB9b. Prepend × */
+ case GCBcase(GCB_Prepend, GCB_Other):
+ case GCBcase(GCB_Prepend, GCB_L):
+ case GCBcase(GCB_Prepend, GCB_LV):
+ case GCBcase(GCB_Prepend, GCB_LVT):
+ case GCBcase(GCB_Prepend, GCB_Prepend):
+ case GCBcase(GCB_Prepend, GCB_Regional_Indicator):
+ case GCBcase(GCB_Prepend, GCB_T):
+ case GCBcase(GCB_Prepend, GCB_V):
+ return FALSE;
+ }
+
+ NOT_REACHED; /* NOTREACHED */
+}
+
+#define SBcase(before, after) ((SB_ENUM_COUNT * before) + after)
+
+STATIC bool
+S_isSB(pTHX_ SB_enum before,
+ SB_enum after,
+ const U8 * const strbeg,
+ const U8 * const curpos,
+ const U8 * const strend,
+ const bool utf8_target)
+{
+ /* returns a boolean indicating if there is a Sentence Boundary Break
+ * between the inputs. See http://www.unicode.org/reports/tr29/ */
+
+ U8 * lpos = (U8 *) curpos;
+ U8 * temp_pos;
+ SB_enum backup;
+
+ PERL_ARGS_ASSERT_ISSB;
+
+ /* Break at the start and end of text.
+ SB1. sot ÷
+ SB2. ÷ eot */
+ if (before == SB_EDGE || after == SB_EDGE) {
+ return TRUE;
+ }
+
+ /* SB 3: Do not break within CRLF. */
+ if (before == SB_CR && after == SB_LF) {
+ return FALSE;
+ }
+
+ /* Break after paragraph separators. (though why CR and LF are considered
+ * so is beyond me (khw)
+ SB4. Sep | CR | LF ÷ */
+ if (before == SB_Sep || before == SB_CR || before == SB_LF) {
+ return TRUE;
+ }
+
+ /* Ignore Format and Extend characters, except after sot, Sep, CR, or LF.
+ * (See Section 6.2, Replacing Ignore Rules.)
+ SB5. X (Extend | Format)* → X */
+ if (after == SB_Extend || after == SB_Format) {
+ return FALSE;
+ }
+
+ if (before == SB_Extend || before == SB_Format) {
+ before = backup_one_SB(strbeg, &lpos, utf8_target);
+ }
+
+ /* Do not break after ambiguous terminators like period, if they are
+ * immediately followed by a number or lowercase letter, if they are
+ * between uppercase letters, if the first following letter (optionally
+ * after certain punctuation) is lowercase, or if they are followed by
+ * "continuation" punctuation such as comma, colon, or semicolon. For
+ * example, a period may be an abbreviation or numeric period, and thus may
+ * not mark the end of a sentence.
+
+ * SB6. ATerm × Numeric */
+ if (before == SB_ATerm && after == SB_Numeric) {
+ return FALSE;
+ }
+
+ /* SB7. (Upper | Lower) ATerm × Upper */
+ if (before == SB_ATerm && after == SB_Upper) {
+ temp_pos = lpos;
+ backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ if (backup == SB_Upper || backup == SB_Lower) {
+ return FALSE;
+ }
+ }
+
+ /* SB8a. (STerm | ATerm) Close* Sp* × (SContinue | STerm | ATerm)
+ * SB10. (STerm | ATerm) Close* Sp* × ( Sp | Sep | CR | LF ) */
+ backup = before;
+ temp_pos = lpos;
+ while (backup == SB_Sp) {
+ backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ }
+ while (backup == SB_Close) {
+ backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ }
+ if ((backup == SB_STerm || backup == SB_ATerm)
+ && ( after == SB_SContinue
+ || after == SB_STerm
+ || after == SB_ATerm
+ || after == SB_Sp
+ || after == SB_Sep
+ || after == SB_CR
+ || after == SB_LF))
+ {
+ return FALSE;
+ }
+
+ /* SB8. ATerm Close* Sp* × ( ¬(OLetter | Upper | Lower | Sep | CR | LF |
+ * STerm | ATerm) )* Lower */
+ if (backup == SB_ATerm) {
+ U8 * rpos = (U8 *) curpos;
+ SB_enum later = after;
+
+ while ( later != SB_OLetter
+ && later != SB_Upper
+ && later != SB_Lower
+ && later != SB_Sep
+ && later != SB_CR
+ && later != SB_LF
+ && later != SB_STerm
+ && later != SB_ATerm
+ && later != SB_EDGE)
+ {
+ later = advance_one_SB(&rpos, strend, utf8_target);
+ }
+ if (later == SB_Lower) {
+ return FALSE;
+ }
+ }
+
+ /* Break after sentence terminators, but include closing punctuation,
+ * trailing spaces, and a paragraph separator (if present). [See note
+ * below.]
+ * SB9. ( STerm | ATerm ) Close* × ( Close | Sp | Sep | CR | LF ) */
+ backup = before;
+ temp_pos = lpos;
+ while (backup == SB_Close) {
+ backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ }
+ if ((backup == SB_STerm || backup == SB_ATerm)
+ && ( after == SB_Close
+ || after == SB_Sp
+ || after == SB_Sep
+ || after == SB_CR
+ || after == SB_LF))
+ {
+ return FALSE;
+ }
+
+
+ /* SB11. ( STerm | ATerm ) Close* Sp* ( Sep | CR | LF )? ÷ */
+ temp_pos = lpos;
+ backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ if ( backup == SB_Sep
+ || backup == SB_CR
+ || backup == SB_LF)
+ {
+ lpos = temp_pos;
+ }
+ else {
+ backup = before;
+ }
+ while (backup == SB_Sp) {
+ backup = backup_one_SB(strbeg, &lpos, utf8_target);
+ }
+ while (backup == SB_Close) {
+ backup = backup_one_SB(strbeg, &lpos, utf8_target);
+ }
+ if (backup == SB_STerm || backup == SB_ATerm) {
+ return TRUE;
+ }
+
+ /* Otherwise, do not break.
+ SB12. Any × Any */
+
+ return FALSE;
+}
+
+STATIC SB_enum
+S_advance_one_SB(pTHX_ U8 ** curpos, const U8 * const strend, const bool utf8_target)
+{
+ SB_enum sb;
+
+ PERL_ARGS_ASSERT_ADVANCE_ONE_SB;
+
+ if (*curpos >= strend) {
+ return SB_EDGE;
+ }
+
+ if (utf8_target) {
+ do {
+ *curpos += UTF8SKIP(*curpos);
+ if (*curpos >= strend) {
+ return SB_EDGE;
+ }
+ sb = getSB_VAL_UTF8(*curpos, strend);
+ } while (sb == SB_Extend || sb == SB_Format);
+ }
+ else {
+ do {
+ (*curpos)++;
+ if (*curpos >= strend) {
+ return SB_EDGE;
+ }
+ sb = getSB_VAL_CP(**curpos);
+ } while (sb == SB_Extend || sb == SB_Format);
+ }
+
+ return sb;
+}
+
+STATIC SB_enum
+S_backup_one_SB(pTHX_ const U8 * const strbeg, U8 ** curpos, const bool utf8_target)
+{
+ SB_enum sb;
+
+ PERL_ARGS_ASSERT_BACKUP_ONE_SB;
+
+ if (*curpos < strbeg) {
+ return SB_EDGE;
+ }
+
+ if (utf8_target) {
+ U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg);
+ if (! prev_char_pos) {
+ return SB_EDGE;
+ }
+
+ /* Back up over Extend and Format. curpos is always just to the right
+ * of the characater whose value we are getting */
+ do {
+ U8 * prev_prev_char_pos;
+ if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos, -1,
+ strbeg)))
+ {
+ sb = getSB_VAL_UTF8(prev_prev_char_pos, prev_char_pos);
+ *curpos = prev_char_pos;
+ prev_char_pos = prev_prev_char_pos;
+ }
+ else {
+ *curpos = (U8 *) strbeg;
+ return SB_EDGE;
+ }
+ } while (sb == SB_Extend || sb == SB_Format);
+ }
+ else {
+ do {
+ if (*curpos - 2 < strbeg) {
+ *curpos = (U8 *) strbeg;
+ return SB_EDGE;
+ }
+ (*curpos)--;
+ sb = getSB_VAL_CP(*(*curpos - 1));
+ } while (sb == SB_Extend || sb == SB_Format);
+ }
+
+ return sb;
+}
+
+#define WBcase(before, after) ((WB_ENUM_COUNT * before) + after)
+
+STATIC bool
+S_isWB(pTHX_ WB_enum previous,
+ WB_enum before,
+ WB_enum after,
+ const U8 * const strbeg,
+ const U8 * const curpos,
+ const U8 * const strend,
+ const bool utf8_target)
+{
+ /* Return a boolean as to if the boundary between 'before' and 'after' is
+ * a Unicode word break, using their published algorithm. Context may be
+ * needed to make this determination. If the value for the character
+ * before 'before' is known, it is passed as 'previous'; otherwise that
+ * should be set to WB_UNKNOWN. The other input parameters give the
+ * boundaries and current position in the matching of the string. That
+ * is, 'curpos' marks the position where the character whose wb value is
+ * 'after' begins. See http://www.unicode.org/reports/tr29/ */
+
+ U8 * before_pos = (U8 *) curpos;
+ U8 * after_pos = (U8 *) curpos;
+
+ PERL_ARGS_ASSERT_ISWB;
+
+ /* WB1 and WB2: Break at the start and end of text. */
+ if (before == WB_EDGE || after == WB_EDGE) {
+ return TRUE;
+ }
+
+ /* WB 3: Do not break within CRLF. */
+ if (before == WB_CR && after == WB_LF) {
+ return FALSE;
+ }
+
+ /* WB 3a and WB 3b: Otherwise break before and after Newlines (including CR
+ * and LF) */
+ if ( before == WB_CR || before == WB_LF || before == WB_Newline
+ || after == WB_CR || after == WB_LF || after == WB_Newline)
+ {
+ return TRUE;
+ }
+
+ /* Ignore Format and Extend characters, except when they appear at the
+ * beginning of a region of text.
+ * WB4. X (Extend | Format)* → X. */
+
+ if (after == WB_Extend || after == WB_Format) {
+ return FALSE;
+ }
+
+ if (before == WB_Extend || before == WB_Format) {
+ before = backup_one_WB(&previous, strbeg, &before_pos, utf8_target);
+ }
+
+ switch (WBcase(before, after)) {
+ /* Otherwise, break everywhere (including around ideographs).
+ WB14. Any ÷ Any */
+ default:
+ return TRUE;
+
+ /* Do not break between most letters.
+ WB5. (ALetter | Hebrew_Letter) × (ALetter | Hebrew_Letter) */
+ case WBcase(WB_ALetter, WB_ALetter):
+ case WBcase(WB_ALetter, WB_Hebrew_Letter):
+ case WBcase(WB_Hebrew_Letter, WB_ALetter):
+ case WBcase(WB_Hebrew_Letter, WB_Hebrew_Letter):
+ return FALSE;
+
+ /* Do not break letters across certain punctuation.
+ WB6. (ALetter | Hebrew_Letter)
+ × (MidLetter | MidNumLet | Single_Quote) (ALetter
+ | Hebrew_Letter) */
+ case WBcase(WB_ALetter, WB_MidLetter):
+ case WBcase(WB_ALetter, WB_MidNumLet):
+ case WBcase(WB_ALetter, WB_Single_Quote):
+ case WBcase(WB_Hebrew_Letter, WB_MidLetter):
+ case WBcase(WB_Hebrew_Letter, WB_MidNumLet):
+ /*case WBcase(WB_Hebrew_Letter, WB_Single_Quote):*/
+ after = advance_one_WB(&after_pos, strend, utf8_target);
+ return after != WB_ALetter && after != WB_Hebrew_Letter;
+
+ /* WB7. (ALetter | Hebrew_Letter) (MidLetter | MidNumLet |
+ * Single_Quote) × (ALetter | Hebrew_Letter) */
+ case WBcase(WB_MidLetter, WB_ALetter):
+ case WBcase(WB_MidLetter, WB_Hebrew_Letter):
+ case WBcase(WB_MidNumLet, WB_ALetter):
+ case WBcase(WB_MidNumLet, WB_Hebrew_Letter):
+ case WBcase(WB_Single_Quote, WB_ALetter):
+ case WBcase(WB_Single_Quote, WB_Hebrew_Letter):
+ before
+ = backup_one_WB(&previous, strbeg, &before_pos, utf8_target);
+ return before != WB_ALetter && before != WB_Hebrew_Letter;
+
+ /* WB7a. Hebrew_Letter × Single_Quote */
+ case WBcase(WB_Hebrew_Letter, WB_Single_Quote):
+ return FALSE;
+
+ /* WB7b. Hebrew_Letter × Double_Quote Hebrew_Letter */
+ case WBcase(WB_Hebrew_Letter, WB_Double_Quote):
+ return advance_one_WB(&after_pos, strend, utf8_target)
+ != WB_Hebrew_Letter;
+
+ /* WB7c. Hebrew_Letter Double_Quote × Hebrew_Letter */
+ case WBcase(WB_Double_Quote, WB_Hebrew_Letter):
+ return backup_one_WB(&previous, strbeg, &before_pos, utf8_target)
+ != WB_Hebrew_Letter;
+
+ /* Do not break within sequences of digits, or digits adjacent to
+ * letters (“3a”, or “A3”).
+ WB8. Numeric × Numeric */
+ case WBcase(WB_Numeric, WB_Numeric):
+ return FALSE;
+
+ /* WB9. (ALetter | Hebrew_Letter) × Numeric */
+ case WBcase(WB_ALetter, WB_Numeric):
+ case WBcase(WB_Hebrew_Letter, WB_Numeric):
+ return FALSE;
+
+ /* WB10. Numeric × (ALetter | Hebrew_Letter) */
+ case WBcase(WB_Numeric, WB_ALetter):
+ case WBcase(WB_Numeric, WB_Hebrew_Letter):
+ return FALSE;
+
+ /* Do not break within sequences, such as “3.2” or “3,456.789”.
+ WB11. Numeric (MidNum | MidNumLet | Single_Quote) × Numeric
+ */
+ case WBcase(WB_MidNum, WB_Numeric):
+ case WBcase(WB_MidNumLet, WB_Numeric):
+ case WBcase(WB_Single_Quote, WB_Numeric):
+ return backup_one_WB(&previous, strbeg, &before_pos, utf8_target)
+ != WB_Numeric;
+
+ /* WB12. Numeric × (MidNum | MidNumLet | Single_Quote) Numeric
+ * */
+ case WBcase(WB_Numeric, WB_MidNum):
+ case WBcase(WB_Numeric, WB_MidNumLet):
+ case WBcase(WB_Numeric, WB_Single_Quote):
+ return advance_one_WB(&after_pos, strend, utf8_target)
+ != WB_Numeric;
+
+ /* Do not break between Katakana.
+ WB13. Katakana × Katakana */
+ case WBcase(WB_Katakana, WB_Katakana):
+ return FALSE;
+
+ /* Do not break from extenders.
+ WB13a. (ALetter | Hebrew_Letter | Numeric | Katakana |
+ ExtendNumLet) × ExtendNumLet */
+ case WBcase(WB_ALetter, WB_ExtendNumLet):
+ case WBcase(WB_Hebrew_Letter, WB_ExtendNumLet):
+ case WBcase(WB_Numeric, WB_ExtendNumLet):
+ case WBcase(WB_Katakana, WB_ExtendNumLet):
+ case WBcase(WB_ExtendNumLet, WB_ExtendNumLet):
+ return FALSE;
+
+ /* WB13b. ExtendNumLet × (ALetter | Hebrew_Letter | Numeric
+ * | Katakana) */
+ case WBcase(WB_ExtendNumLet, WB_ALetter):
+ case WBcase(WB_ExtendNumLet, WB_Hebrew_Letter):
+ case WBcase(WB_ExtendNumLet, WB_Numeric):
+ case WBcase(WB_ExtendNumLet, WB_Katakana):
+ return FALSE;
+
+ /* Do not break between regional indicator symbols.
+ WB13c. Regional_Indicator × Regional_Indicator */
+ case WBcase(WB_Regional_Indicator, WB_Regional_Indicator):
+ return FALSE;
+
+ }
+
+ NOT_REACHED; /* NOTREACHED */
+}
+
+STATIC WB_enum
+S_advance_one_WB(pTHX_ U8 ** curpos, const U8 * const strend, const bool utf8_target)
+{
+ WB_enum wb;
+
+ PERL_ARGS_ASSERT_ADVANCE_ONE_WB;
+
+ if (*curpos >= strend) {
+ return WB_EDGE;
+ }
+
+ if (utf8_target) {
+
+ /* Advance over Extend and Format */
+ do {
+ *curpos += UTF8SKIP(*curpos);
+ if (*curpos >= strend) {
+ return WB_EDGE;
+ }
+ wb = getWB_VAL_UTF8(*curpos, strend);
+ } while (wb == WB_Extend || wb == WB_Format);
+ }
+ else {
+ do {
+ (*curpos)++;
+ if (*curpos >= strend) {
+ return WB_EDGE;
+ }
+ wb = getWB_VAL_CP(**curpos);
+ } while (wb == WB_Extend || wb == WB_Format);
+ }
+
+ return wb;
+}
+
+STATIC WB_enum
+S_backup_one_WB(pTHX_ WB_enum * previous, const U8 * const strbeg, U8 ** curpos, const bool utf8_target)
+{
+ WB_enum wb;
+
+ PERL_ARGS_ASSERT_BACKUP_ONE_WB;
+
+ /* If we know what the previous character's break value is, don't have
+ * to look it up */
+ if (*previous != WB_UNKNOWN) {
+ wb = *previous;
+ *previous = WB_UNKNOWN;
+ /* XXX Note that doesn't change curpos, and maybe should */
+
+ /* But we always back up over these two types */
+ if (wb != WB_Extend && wb != WB_Format) {
+ return wb;
+ }
+ }
+
+ if (*curpos < strbeg) {
+ return WB_EDGE;
+ }
+
+ if (utf8_target) {
+ U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg);
+ if (! prev_char_pos) {
+ return WB_EDGE;
+ }
+
+ /* Back up over Extend and Format. curpos is always just to the right
+ * of the characater whose value we are getting */
+ do {
+ U8 * prev_prev_char_pos;
+ if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos,
+ -1,
+ strbeg)))
+ {
+ wb = getWB_VAL_UTF8(prev_prev_char_pos, prev_char_pos);
+ *curpos = prev_char_pos;
+ prev_char_pos = prev_prev_char_pos;
+ }
+ else {
+ *curpos = (U8 *) strbeg;
+ return WB_EDGE;
+ }
+ } while (wb == WB_Extend || wb == WB_Format);
+ }
+ else {
+ do {
+ if (*curpos - 2 < strbeg) {
+ *curpos = (U8 *) strbeg;
+ return WB_EDGE;
+ }
+ (*curpos)--;
+ wb = getWB_VAL_CP(*(*curpos - 1));
+ } while (wb == WB_Extend || wb == WB_Format);
+ }
+
+ return wb;
+}
+
+/* returns -1 on failure, $+[0] on success */
+STATIC SSize_t
+S_regmatch(pTHX_ regmatch_info *reginfo, char *startpos, regnode *prog)
+{
+#if PERL_VERSION < 9 && !defined(PERL_CORE)
+ dMY_CXT;
+#endif
+ dVAR;
+ const bool utf8_target = reginfo->is_utf8_target;
+ const U32 uniflags = UTF8_ALLOW_DEFAULT;
+ REGEXP *rex_sv = reginfo->prog;
+ regexp *rex = ReANY(rex_sv);
+ RXi_GET_DECL(rex,rexi);
+ /* the current state. This is a cached copy of PL_regmatch_state */
+ regmatch_state *st;
+ /* cache heavy used fields of st in registers */
+ regnode *scan;
+ regnode *next;
+ U32 n = 0; /* general value; init to avoid compiler warning */
+ SSize_t ln = 0; /* len or last; init to avoid compiler warning */
+ char *locinput = startpos;
+ char *pushinput; /* where to continue after a PUSH */
+ I32 nextchr; /* is always set to UCHARAT(locinput) */
+
+ bool result = 0; /* return value of S_regmatch */
+ int depth = 0; /* depth of backtrack stack */
+ U32 nochange_depth = 0; /* depth of GOSUB recursion with nochange */
+ const U32 max_nochange_depth =
+ (3 * rex->nparens > MAX_RECURSE_EVAL_NOCHANGE_DEPTH) ?
+ 3 * rex->nparens : MAX_RECURSE_EVAL_NOCHANGE_DEPTH;
+ regmatch_state *yes_state = NULL; /* state to pop to on success of
+ subpattern */
+ /* mark_state piggy backs on the yes_state logic so that when we unwind
+ the stack on success we can update the mark_state as we go */
+ regmatch_state *mark_state = NULL; /* last mark state we have seen */
+ regmatch_state *cur_eval = NULL; /* most recent EVAL_AB state */
+ struct regmatch_state *cur_curlyx = NULL; /* most recent curlyx */
+ U32 state_num;
+ bool no_final = 0; /* prevent failure from backtracking? */
+ bool do_cutgroup = 0; /* no_final only until next branch/trie entry */
+ char *startpoint = locinput;
+ SV *popmark = NULL; /* are we looking for a mark? */
+ SV *sv_commit = NULL; /* last mark name seen in failure */
+ SV *sv_yes_mark = NULL; /* last mark name we have seen
+ during a successful match */
+ U32 lastopen = 0; /* last open we saw */
+ bool has_cutgroup = RX_HAS_CUTGROUP(rex) ? 1 : 0;
+ SV* const oreplsv = GvSVn(PL_replgv);
+ /* these three flags are set by various ops to signal information to
+ * the very next op. They have a useful lifetime of exactly one loop
+ * iteration, and are not preserved or restored by state pushes/pops
+ */
+ bool sw = 0; /* the condition value in (?(cond)a|b) */
+ bool minmod = 0; /* the next "{n,m}" is a "{n,m}?" */
+ int logical = 0; /* the following EVAL is:
+ 0: (?{...})
+ 1: (?(?{...})X|Y)
+ 2: (??{...})
+ or the following IFMATCH/UNLESSM is:
+ false: plain (?=foo)
+ true: used as a condition: (?(?=foo))
+ */
+ PAD* last_pad = NULL;
+ dMULTICALL;
+ I32 gimme = G_SCALAR;
+ CV *caller_cv = NULL; /* who called us */
+ CV *last_pushed_cv = NULL; /* most recently called (?{}) CV */
+ CHECKPOINT runops_cp; /* savestack position before executing EVAL */
+ U32 maxopenparen = 0; /* max '(' index seen so far */
+ int to_complement; /* Invert the result? */
+ _char_class_number classnum;
+ bool is_utf8_pat = reginfo->is_utf8_pat;
+ bool match = FALSE;
+
+
+#ifdef DEBUGGING
+ GET_RE_DEBUG_FLAGS_DECL;
+#endif
+
+ /* protect against undef(*^R) */
+ SAVEFREESV(SvREFCNT_inc_simple_NN(oreplsv));
+
+ /* shut up 'may be used uninitialized' compiler warnings for dMULTICALL */
+ multicall_oldcatch = 0;
+ multicall_cv = NULL;
+ cx = NULL;
+ PERL_UNUSED_VAR(multicall_cop);
+ PERL_UNUSED_VAR(newsp);
+
+
+ PERL_ARGS_ASSERT_REGMATCH;
+
+ DEBUG_OPTIMISE_r( DEBUG_EXECUTE_r({
+ PerlIO_printf(Perl_debug_log,"regmatch start\n");
+ }));
+
+ st = PL_regmatch_state;
+
+ /* Note that nextchr is a byte even in UTF */
+ SET_nextchr;
+ scan = prog;
+ while (scan != NULL) {
+
+ DEBUG_EXECUTE_r( {
+ SV * const prop = sv_newmortal();
+ regnode *rnext=regnext(scan);
+ DUMP_EXEC_POS( locinput, scan, utf8_target );
+ regprop(rex, prop, scan, reginfo, NULL);
+
+ PerlIO_printf(Perl_debug_log,
+ "%3"IVdf":%*s%s(%"IVdf")\n",
+ (IV)(scan - rexi->program), depth*2, "",
+ SvPVX_const(prop),
+ (PL_regkind[OP(scan)] == END || !rnext) ?
+ 0 : (IV)(rnext - rexi->program));
+ });
+
+ next = scan + NEXT_OFF(scan);
+ if (next == scan)
+ next = NULL;
+ state_num = OP(scan);
+
+ reenter_switch:
+ to_complement = 0;
+
+ SET_nextchr;
+ assert(nextchr < 256 && (nextchr >= 0 || nextchr == NEXTCHR_EOS));
+
+ switch (state_num) {
+ case SBOL: /* /^../ and /\A../ */
+ if (locinput == reginfo->strbeg)
+ break;
+ sayNO;
+
+ case MBOL: /* /^../m */
+ if (locinput == reginfo->strbeg ||
+ (!NEXTCHR_IS_EOS && locinput[-1] == '\n'))
+ {
+ break;
+ }
+ sayNO;
+
+ case GPOS: /* \G */
+ if (locinput == reginfo->ganch)
+ break;
+ sayNO;
+
+ case KEEPS: /* \K */
+ /* update the startpoint */
+ st->u.keeper.val = rex->offs[0].start;
+ rex->offs[0].start = locinput - reginfo->strbeg;
+ PUSH_STATE_GOTO(KEEPS_next, next, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case KEEPS_next_fail:
+ /* rollback the start point change */
+ rex->offs[0].start = st->u.keeper.val;
+ sayNO_SILENT;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case MEOL: /* /..$/m */
+ if (!NEXTCHR_IS_EOS && nextchr != '\n')
+ sayNO;
+ break;
+
+ case SEOL: /* /..$/ */
+ if (!NEXTCHR_IS_EOS && nextchr != '\n')
+ sayNO;
+ if (reginfo->strend - locinput > 1)
+ sayNO;
+ break;
+
+ case EOS: /* \z */
+ if (!NEXTCHR_IS_EOS)
+ sayNO;
+ break;
+
+ case SANY: /* /./s */
+ if (NEXTCHR_IS_EOS)
+ sayNO;
+ goto increment_locinput;
+
+ case REG_ANY: /* /./ */
+ if ((NEXTCHR_IS_EOS) || nextchr == '\n')
+ sayNO;
+ goto increment_locinput;
+
+
+#undef ST
+#define ST st->u.trie
+ case TRIEC: /* (ab|cd) with known charclass */
+ /* In this case the charclass data is available inline so
+ we can fail fast without a lot of extra overhead.
+ */
+ if(!NEXTCHR_IS_EOS && !ANYOF_BITMAP_TEST(scan, nextchr)) {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %sfailed to match trie start class...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+ );
+ sayNO_SILENT;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+ /* FALLTHROUGH */
+ case TRIE: /* (ab|cd) */
+ /* the basic plan of execution of the trie is:
+ * At the beginning, run though all the states, and
+ * find the longest-matching word. Also remember the position
+ * of the shortest matching word. For example, this pattern:
+ * 1 2 3 4 5
+ * ab|a|x|abcd|abc
+ * when matched against the string "abcde", will generate
+ * accept states for all words except 3, with the longest
+ * matching word being 4, and the shortest being 2 (with
+ * the position being after char 1 of the string).
+ *
+ * Then for each matching word, in word order (i.e. 1,2,4,5),
+ * we run the remainder of the pattern; on each try setting
+ * the current position to the character following the word,
+ * returning to try the next word on failure.
+ *
+ * We avoid having to build a list of words at runtime by
+ * using a compile-time structure, wordinfo[].prev, which
+ * gives, for each word, the previous accepting word (if any).
+ * In the case above it would contain the mappings 1->2, 2->0,
+ * 3->0, 4->5, 5->1. We can use this table to generate, from
+ * the longest word (4 above), a list of all words, by
+ * following the list of prev pointers; this gives us the
+ * unordered list 4,5,1,2. Then given the current word we have
+ * just tried, we can go through the list and find the
+ * next-biggest word to try (so if we just failed on word 2,
+ * the next in the list is 4).
+ *
+ * Since at runtime we don't record the matching position in
+ * the string for each word, we have to work that out for
+ * each word we're about to process. The wordinfo table holds
+ * the character length of each word; given that we recorded
+ * at the start: the position of the shortest word and its
+ * length in chars, we just need to move the pointer the
+ * difference between the two char lengths. Depending on
+ * Unicode status and folding, that's cheap or expensive.
+ *
+ * This algorithm is optimised for the case where are only a
+ * small number of accept states, i.e. 0,1, or maybe 2.
+ * With lots of accepts states, and having to try all of them,
+ * it becomes quadratic on number of accept states to find all
+ * the next words.
+ */
+
+ {
+ /* what type of TRIE am I? (utf8 makes this contextual) */
+ DECL_TRIE_TYPE(scan);
+
+ /* what trie are we using right now */
+ reg_trie_data * const trie
+ = (reg_trie_data*)rexi->data->data[ ARG( scan ) ];
+ HV * widecharmap = MUTABLE_HV(rexi->data->data[ ARG( scan ) + 1 ]);
+ U32 state = trie->startstate;
+
+ if (scan->flags == EXACTL || scan->flags == EXACTFLU8) {
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (utf8_target
+ && UTF8_IS_ABOVE_LATIN1(nextchr)
+ && scan->flags == EXACTL)
+ {
+ /* We only output for EXACTL, as we let the folder
+ * output this message for EXACTFLU8 to avoid
+ * duplication */
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput,
+ reginfo->strend);
+ }
+ }
+ if ( trie->bitmap
+ && (NEXTCHR_IS_EOS || !TRIE_BITMAP_TEST(trie, nextchr)))
+ {
+ if (trie->states[ state ].wordnum) {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %smatched empty string...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+ );
+ if (!trie->jump)
+ break;
+ } else {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %sfailed to match trie start class...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+ );
+ sayNO_SILENT;
+ }
+ }
+
+ {
+ U8 *uc = ( U8* )locinput;
+
+ STRLEN len = 0;
+ STRLEN foldlen = 0;
+ U8 *uscan = (U8*)NULL;
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+ U32 charcount = 0; /* how many input chars we have matched */
+ U32 accepted = 0; /* have we seen any accepting states? */
+
+ ST.jump = trie->jump;
+ ST.me = scan;
+ ST.firstpos = NULL;
+ ST.longfold = FALSE; /* char longer if folded => it's harder */
+ ST.nextword = 0;
+
+ /* fully traverse the TRIE; note the position of the
+ shortest accept state and the wordnum of the longest
+ accept state */
+
+ while ( state && uc <= (U8*)(reginfo->strend) ) {
+ U32 base = trie->states[ state ].trans.base;
+ UV uvc = 0;
+ U16 charid = 0;
+ U16 wordnum;
+ wordnum = trie->states[ state ].wordnum;
+
+ if (wordnum) { /* it's an accept state */
+ if (!accepted) {
+ accepted = 1;
+ /* record first match position */
+ if (ST.longfold) {
+ ST.firstpos = (U8*)locinput;
+ ST.firstchars = 0;
+ }
+ else {
+ ST.firstpos = uc;
+ ST.firstchars = charcount;
+ }
+ }
+ if (!ST.nextword || wordnum < ST.nextword)
+ ST.nextword = wordnum;
+ ST.topword = wordnum;
+ }
+
+ DEBUG_TRIE_EXECUTE_r({
+ DUMP_EXEC_POS( (char *)uc, scan, utf8_target );
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sState: %4"UVxf" Accepted: %c ",
+ 2+depth * 2, "", PL_colors[4],
+ (UV)state, (accepted ? 'Y' : 'N'));
+ });
+
+ /* read a char and goto next state */
+ if ( base && (foldlen || uc < (U8*)(reginfo->strend))) {
+ I32 offset;
+ REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc,
+ uscan, len, uvc, charid, foldlen,
+ foldbuf, uniflags);
+ charcount++;
+ if (foldlen>0)
+ ST.longfold = TRUE;
+ if (charid &&
+ ( ((offset =
+ base + charid - 1 - trie->uniquecharcount)) >= 0)
+
+ && ((U32)offset < trie->lasttrans)
+ && trie->trans[offset].check == state)
+ {
+ state = trie->trans[offset].next;
+ }
+ else {
+ state = 0;
+ }
+ uc += len;
+
+ }
+ else {
+ state = 0;
+ }
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log,
+ "Charid:%3x CP:%4"UVxf" After State: %4"UVxf"%s\n",
+ charid, uvc, (UV)state, PL_colors[5] );
+ );
+ }
+ if (!accepted)
+ sayNO;
+
+ /* calculate total number of accept states */
+ {
+ U16 w = ST.topword;
+ accepted = 0;
+ while (w) {
+ w = trie->wordinfo[w].prev;
+ accepted++;
+ }
+ ST.accepted = accepted;
+ }
+
+ DEBUG_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sgot %"IVdf" possible matches%s\n",
+ REPORT_CODE_OFF + depth * 2, "",
+ PL_colors[4], (IV)ST.accepted, PL_colors[5] );
+ );
+ goto trie_first_try; /* jump into the fail handler */
+ }}
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case TRIE_next_fail: /* we failed - try next alternative */
+ {
+ U8 *uc;
+ if ( ST.jump) {
+ REGCP_UNWIND(ST.cp);
+ UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+ }
+ if (!--ST.accepted) {
+ DEBUG_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sTRIE failed...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4],
+ PL_colors[5] );
+ });
+ sayNO_SILENT;
+ }
+ {
+ /* Find next-highest word to process. Note that this code
+ * is O(N^2) per trie run (O(N) per branch), so keep tight */
+ U16 min = 0;
+ U16 word;
+ U16 const nextword = ST.nextword;
+ reg_trie_wordinfo * const wordinfo
+ = ((reg_trie_data*)rexi->data->data[ARG(ST.me)])->wordinfo;
+ for (word=ST.topword; word; word=wordinfo[word].prev) {
+ if (word > nextword && (!min || word < min))
+ min = word;
+ }
+ ST.nextword = min;
+ }
+
+ trie_first_try:
+ if (do_cutgroup) {
+ do_cutgroup = 0;
+ no_final = 0;
+ }
+
+ if ( ST.jump) {
+ ST.lastparen = rex->lastparen;
+ ST.lastcloseparen = rex->lastcloseparen;
+ REGCP_SET(ST.cp);
+ }
+
+ /* find start char of end of current word */
+ {
+ U32 chars; /* how many chars to skip */
+ reg_trie_data * const trie
+ = (reg_trie_data*)rexi->data->data[ARG(ST.me)];
+
+ assert((trie->wordinfo[ST.nextword].len - trie->prefixlen)
+ >= ST.firstchars);
+ chars = (trie->wordinfo[ST.nextword].len - trie->prefixlen)
+ - ST.firstchars;
+ uc = ST.firstpos;
+
+ if (ST.longfold) {
+ /* the hard option - fold each char in turn and find
+ * its folded length (which may be different */
+ U8 foldbuf[UTF8_MAXBYTES_CASE + 1];
+ STRLEN foldlen;
+ STRLEN len;
+ UV uvc;
+ U8 *uscan;
+
+ while (chars) {
+ if (utf8_target) {
+ uvc = utf8n_to_uvchr((U8*)uc, UTF8_MAXLEN, &len,
+ uniflags);
+ uc += len;
+ }
+ else {
+ uvc = *uc;
+ uc++;
+ }
+ uvc = to_uni_fold(uvc, foldbuf, &foldlen);
+ uscan = foldbuf;
+ while (foldlen) {
+ if (!--chars)
+ break;
+ uvc = utf8n_to_uvchr(uscan, UTF8_MAXLEN, &len,
+ uniflags);
+ uscan += len;
+ foldlen -= len;
+ }
+ }
+ }
+ else {
+ if (utf8_target)
+ while (chars--)
+ uc += UTF8SKIP(uc);
+ else
+ uc += chars;
+ }
+ }
+
+ scan = ST.me + ((ST.jump && ST.jump[ST.nextword])
+ ? ST.jump[ST.nextword]
+ : NEXT_OFF(ST.me));
+
+ DEBUG_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sTRIE matched word #%d, continuing%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4],
+ ST.nextword,
+ PL_colors[5]
+ );
+ });
+
+ if (ST.accepted > 1 || has_cutgroup) {
+ PUSH_STATE_GOTO(TRIE_next, scan, (char*)uc);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+ /* only one choice left - just continue */
+ DEBUG_EXECUTE_r({
+ AV *const trie_words
+ = MUTABLE_AV(rexi->data->data[ARG(ST.me)+TRIE_WORDS_OFFSET]);
+ SV ** const tmp = trie_words
+ ? av_fetch(trie_words, ST.nextword - 1, 0) : NULL;
+ SV *sv= tmp ? sv_newmortal() : NULL;
+
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sonly one match left, short-circuiting: #%d <%s>%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4],
+ ST.nextword,
+ tmp ? pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 0,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)|PERL_PV_ESCAPE_NONASCII
+ )
+ : "not compiled under -Dr",
+ PL_colors[5] );
+ });
+
+ locinput = (char*)uc;
+ continue; /* execute rest of RE */
+ /* NOTREACHED */
+ }
+#undef ST
+
+ case EXACTL: /* /abc/l */
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+
+ /* Complete checking would involve going through every character
+ * matched by the string to see if any is above latin1. But the
+ * comparision otherwise might very well be a fast assembly
+ * language routine, and I (khw) don't think slowing things down
+ * just to check for this warning is worth it. So this just checks
+ * the first character */
+ if (utf8_target && UTF8_IS_ABOVE_LATIN1(*locinput)) {
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput, reginfo->strend);
+ }
+ /* FALLTHROUGH */
+ case EXACT: { /* /abc/ */
+ char *s = STRING(scan);
+ ln = STR_LEN(scan);
+ if (utf8_target != is_utf8_pat) {
+ /* The target and the pattern have differing utf8ness. */
+ char *l = locinput;
+ const char * const e = s + ln;
+
+ if (utf8_target) {
+ /* The target is utf8, the pattern is not utf8.
+ * Above-Latin1 code points can't match the pattern;
+ * invariants match exactly, and the other Latin1 ones need
+ * to be downgraded to a single byte in order to do the
+ * comparison. (If we could be confident that the target
+ * is not malformed, this could be refactored to have fewer
+ * tests by just assuming that if the first bytes match, it
+ * is an invariant, but there are tests in the test suite
+ * dealing with (??{...}) which violate this) */
+ while (s < e) {
+ if (l >= reginfo->strend
+ || UTF8_IS_ABOVE_LATIN1(* (U8*) l))
+ {
+ sayNO;
+ }
+ if (UTF8_IS_INVARIANT(*(U8*)l)) {
+ if (*l != *s) {
+ sayNO;
+ }
+ l++;
+ }
+ else {
+ if (TWO_BYTE_UTF8_TO_NATIVE(*l, *(l+1)) != * (U8*) s)
+ {
+ sayNO;
+ }
+ l += 2;
+ }
+ s++;
+ }
+ }
+ else {
+ /* The target is not utf8, the pattern is utf8. */
+ while (s < e) {
+ if (l >= reginfo->strend
+ || UTF8_IS_ABOVE_LATIN1(* (U8*) s))
+ {
+ sayNO;
+ }
+ if (UTF8_IS_INVARIANT(*(U8*)s)) {
+ if (*s != *l) {
+ sayNO;
+ }
+ s++;
+ }
+ else {
+ if (TWO_BYTE_UTF8_TO_NATIVE(*s, *(s+1)) != * (U8*) l)
+ {
+ sayNO;
+ }
+ s += 2;
+ }
+ l++;
+ }
+ }
+ locinput = l;
+ }
+ else {
+ /* The target and the pattern have the same utf8ness. */
+ /* Inline the first character, for speed. */
+ if (reginfo->strend - locinput < ln
+ || UCHARAT(s) != nextchr
+ || (ln > 1 && memNE(s, locinput, ln)))
+ {
+ sayNO;
+ }
+ locinput += ln;
+ }
+ break;
+ }
+
+ case EXACTFL: { /* /abc/il */
+ re_fold_t folder;
+ const U8 * fold_array;
+ const char * s;
+ U32 fold_utf8_flags;
+
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ folder = foldEQ_locale;
+ fold_array = PL_fold_locale;
+ fold_utf8_flags = FOLDEQ_LOCALE;
+ goto do_exactf;
+
+ case EXACTFLU8: /* /abc/il; but all 'abc' are above 255, so
+ is effectively /u; hence to match, target
+ must be UTF-8. */
+ if (! utf8_target) {
+ sayNO;
+ }
+ fold_utf8_flags = FOLDEQ_LOCALE | FOLDEQ_S1_ALREADY_FOLDED
+ | FOLDEQ_S1_FOLDS_SANE;
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ goto do_exactf;
+
+ case EXACTFU_SS: /* /\x{df}/iu */
+ case EXACTFU: /* /abc/iu */
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ fold_utf8_flags = is_utf8_pat ? FOLDEQ_S1_ALREADY_FOLDED : 0;
+ goto do_exactf;
+
+ case EXACTFA_NO_TRIE: /* This node only generated for non-utf8
+ patterns */
+ assert(! is_utf8_pat);
+ /* FALLTHROUGH */
+ case EXACTFA: /* /abc/iaa */
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ fold_utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_exactf;
+
+ case EXACTF: /* /abc/i This node only generated for
+ non-utf8 patterns */
+ assert(! is_utf8_pat);
+ folder = foldEQ;
+ fold_array = PL_fold;
+ fold_utf8_flags = 0;
+
+ do_exactf:
+ s = STRING(scan);
+ ln = STR_LEN(scan);
+
+ if (utf8_target
+ || is_utf8_pat
+ || state_num == EXACTFU_SS
+ || (state_num == EXACTFL && IN_UTF8_CTYPE_LOCALE))
+ {
+ /* Either target or the pattern are utf8, or has the issue where
+ * the fold lengths may differ. */
+ const char * const l = locinput;
+ char *e = reginfo->strend;
+
+ if (! foldEQ_utf8_flags(s, 0, ln, is_utf8_pat,
+ l, &e, 0, utf8_target, fold_utf8_flags))
+ {
+ sayNO;
+ }
+ locinput = e;
+ break;
+ }
+
+ /* Neither the target nor the pattern are utf8 */
+ if (UCHARAT(s) != nextchr
+ && !NEXTCHR_IS_EOS
+ && UCHARAT(s) != fold_array[nextchr])
+ {
+ sayNO;
+ }
+ if (reginfo->strend - locinput < ln)
+ sayNO;
+ if (ln > 1 && ! folder(s, locinput, ln))
+ sayNO;
+ locinput += ln;
+ break;
+ }
+
+ case NBOUNDL: /* /\B/l */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case BOUNDL: /* /\b/l */
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+
+ if (FLAGS(scan) != TRADITIONAL_BOUND) {
+ if (! IN_UTF8_CTYPE_LOCALE) {
+ Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
+ B_ON_NON_UTF8_LOCALE_IS_WRONG);
+ }
+ goto boundu;
+ }
+
+ if (utf8_target) {
+ if (locinput == reginfo->strbeg)
+ ln = isWORDCHAR_LC('\n');
+ else {
+ ln = isWORDCHAR_LC_utf8(reghop3((U8*)locinput, -1,
+ (U8*)(reginfo->strbeg)));
+ }
+ n = (NEXTCHR_IS_EOS)
+ ? isWORDCHAR_LC('\n')
+ : isWORDCHAR_LC_utf8((U8*)locinput);
+ }
+ else { /* Here the string isn't utf8 */
+ ln = (locinput == reginfo->strbeg)
+ ? isWORDCHAR_LC('\n')
+ : isWORDCHAR_LC(UCHARAT(locinput - 1));
+ n = (NEXTCHR_IS_EOS)
+ ? isWORDCHAR_LC('\n')
+ : isWORDCHAR_LC(nextchr);
+ }
+ if (to_complement ^ (ln == n)) {
+ sayNO;
+ }
+ break;
+
+ case NBOUND: /* /\B/ */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case BOUND: /* /\b/ */
+ if (utf8_target) {
+ goto bound_utf8;
+ }
+ goto bound_ascii_match_only;
+
+ case NBOUNDA: /* /\B/a */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case BOUNDA: /* /\b/a */
+
+ bound_ascii_match_only:
+ /* Here the string isn't utf8, or is utf8 and only ascii characters
+ * are to match \w. In the latter case looking at the byte just
+ * prior to the current one may be just the final byte of a
+ * multi-byte character. This is ok. There are two cases:
+ * 1) it is a single byte character, and then the test is doing
+ * just what it's supposed to.
+ * 2) it is a multi-byte character, in which case the final byte is
+ * never mistakable for ASCII, and so the test will say it is
+ * not a word character, which is the correct answer. */
+ ln = (locinput == reginfo->strbeg)
+ ? isWORDCHAR_A('\n')
+ : isWORDCHAR_A(UCHARAT(locinput - 1));
+ n = (NEXTCHR_IS_EOS)
+ ? isWORDCHAR_A('\n')
+ : isWORDCHAR_A(nextchr);
+ if (to_complement ^ (ln == n)) {
+ sayNO;
+ }
+ break;
+
+ case NBOUNDU: /* /\B/u */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case BOUNDU: /* /\b/u */
+
+ boundu:
+ if (utf8_target) {
+
+ bound_utf8:
+ switch((bound_type) FLAGS(scan)) {
+ case TRADITIONAL_BOUND:
+ ln = (locinput == reginfo->strbeg)
+ ? 0 /* isWORDCHAR_L1('\n') */
+ : isWORDCHAR_utf8(reghop3((U8*)locinput, -1,
+ (U8*)(reginfo->strbeg)));
+ n = (NEXTCHR_IS_EOS)
+ ? 0 /* isWORDCHAR_L1('\n') */
+ : isWORDCHAR_utf8((U8*)locinput);
+ match = cBOOL(ln != n);
+ break;
+ case GCB_BOUND:
+ if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+ match = TRUE; /* GCB always matches at begin and
+ end */
+ }
+ else {
+ /* Find the gcb values of previous and current
+ * chars, then see if is a break point */
+ match = isGCB(getGCB_VAL_UTF8(
+ reghop3((U8*)locinput,
+ -1,
+ (U8*)(reginfo->strbeg)),
+ (U8*) reginfo->strend),
+ getGCB_VAL_UTF8((U8*) locinput,
+ (U8*) reginfo->strend));
+ }
+ break;
+
+ case SB_BOUND: /* Always matches at begin and end */
+ if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+ match = TRUE;
+ }
+ else {
+ match = isSB(getSB_VAL_UTF8(
+ reghop3((U8*)locinput,
+ -1,
+ (U8*)(reginfo->strbeg)),
+ (U8*) reginfo->strend),
+ getSB_VAL_UTF8((U8*) locinput,
+ (U8*) reginfo->strend),
+ (U8*) reginfo->strbeg,
+ (U8*) locinput,
+ (U8*) reginfo->strend,
+ utf8_target);
+ }
+ break;
+
+ case WB_BOUND:
+ if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+ match = TRUE;
+ }
+ else {
+ match = isWB(WB_UNKNOWN,
+ getWB_VAL_UTF8(
+ reghop3((U8*)locinput,
+ -1,
+ (U8*)(reginfo->strbeg)),
+ (U8*) reginfo->strend),
+ getWB_VAL_UTF8((U8*) locinput,
+ (U8*) reginfo->strend),
+ (U8*) reginfo->strbeg,
+ (U8*) locinput,
+ (U8*) reginfo->strend,
+ utf8_target);
+ }
+ break;
+ }
+ }
+ else { /* Not utf8 target */
+ switch((bound_type) FLAGS(scan)) {
+ case TRADITIONAL_BOUND:
+ ln = (locinput == reginfo->strbeg)
+ ? 0 /* isWORDCHAR_L1('\n') */
+ : isWORDCHAR_L1(UCHARAT(locinput - 1));
+ n = (NEXTCHR_IS_EOS)
+ ? 0 /* isWORDCHAR_L1('\n') */
+ : isWORDCHAR_L1(nextchr);
+ match = cBOOL(ln != n);
+ break;
+
+ case GCB_BOUND:
+ if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+ match = TRUE; /* GCB always matches at begin and
+ end */
+ }
+ else { /* Only CR-LF combo isn't a GCB in 0-255
+ range */
+ match = UCHARAT(locinput - 1) != '\r'
+ || UCHARAT(locinput) != '\n';
+ }
+ break;
+
+ case SB_BOUND: /* Always matches at begin and end */
+ if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+ match = TRUE;
+ }
+ else {
+ match = isSB(getSB_VAL_CP(UCHARAT(locinput -1)),
+ getSB_VAL_CP(UCHARAT(locinput)),
+ (U8*) reginfo->strbeg,
+ (U8*) locinput,
+ (U8*) reginfo->strend,
+ utf8_target);
+ }
+ break;
+
+ case WB_BOUND:
+ if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+ match = TRUE;
+ }
+ else {
+ match = isWB(WB_UNKNOWN,
+ getWB_VAL_CP(UCHARAT(locinput -1)),
+ getWB_VAL_CP(UCHARAT(locinput)),
+ (U8*) reginfo->strbeg,
+ (U8*) locinput,
+ (U8*) reginfo->strend,
+ utf8_target);
+ }
+ break;
+ }
+ }
+
+ if (to_complement ^ ! match) {
+ sayNO;
+ }
+ break;
+
+ case ANYOFL: /* /[abc]/l */
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ /* FALLTHROUGH */
+ case ANYOF: /* /[abc]/ */
+ if (NEXTCHR_IS_EOS)
+ sayNO;
+ if (utf8_target) {
+ if (!reginclass(rex, scan, (U8*)locinput, (U8*)reginfo->strend,
+ utf8_target))
+ sayNO;
+ locinput += UTF8SKIP(locinput);
+ }
+ else {
+ if (!REGINCLASS(rex, scan, (U8*)locinput))
+ sayNO;
+ locinput++;
+ }
+ break;
+
+ /* The argument (FLAGS) to all the POSIX node types is the class number
+ * */
+
+ case NPOSIXL: /* \W or [:^punct:] etc. under /l */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXL: /* \w or [:punct:] etc. under /l */
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (NEXTCHR_IS_EOS)
+ sayNO;
+
+ /* Use isFOO_lc() for characters within Latin1. (Note that
+ * UTF8_IS_INVARIANT works even on non-UTF-8 strings, or else
+ * wouldn't be invariant) */
+ if (UTF8_IS_INVARIANT(nextchr) || ! utf8_target) {
+ if (! (to_complement ^ cBOOL(isFOO_lc(FLAGS(scan), (U8) nextchr)))) {
+ sayNO;
+ }
+ }
+ else if (UTF8_IS_DOWNGRADEABLE_START(nextchr)) {
+ if (! (to_complement ^ cBOOL(isFOO_lc(FLAGS(scan),
+ (U8) TWO_BYTE_UTF8_TO_NATIVE(nextchr,
+ *(locinput + 1))))))
+ {
+ sayNO;
+ }
+ }
+ else { /* Here, must be an above Latin-1 code point */
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput, reginfo->strend);
+ goto utf8_posix_above_latin1;
+ }
+
+ /* Here, must be utf8 */
+ locinput += UTF8SKIP(locinput);
+ break;
+
+ case NPOSIXD: /* \W or [:^punct:] etc. under /d */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXD: /* \w or [:punct:] etc. under /d */
+ if (utf8_target) {
+ goto utf8_posix;
+ }
+ goto posixa;
+
+ case NPOSIXA: /* \W or [:^punct:] etc. under /a */
+
+ if (NEXTCHR_IS_EOS) {
+ sayNO;
+ }
+
+ /* All UTF-8 variants match */
+ if (! UTF8_IS_INVARIANT(nextchr)) {
+ goto increment_locinput;
+ }
+
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXA: /* \w or [:punct:] etc. under /a */
+
+ posixa:
+ /* We get here through POSIXD, NPOSIXD, and NPOSIXA when not in
+ * UTF-8, and also from NPOSIXA even in UTF-8 when the current
+ * character is a single byte */
+
+ if (NEXTCHR_IS_EOS
+ || ! (to_complement ^ cBOOL(_generic_isCC_A(nextchr,
+ FLAGS(scan)))))
+ {
+ sayNO;
+ }
+
+ /* Here we are either not in utf8, or we matched a utf8-invariant,
+ * so the next char is the next byte */
+ locinput++;
+ break;
+
+ case NPOSIXU: /* \W or [:^punct:] etc. under /u */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXU: /* \w or [:punct:] etc. under /u */
+ utf8_posix:
+ if (NEXTCHR_IS_EOS) {
+ sayNO;
+ }
+
+ /* Use _generic_isCC() for characters within Latin1. (Note that
+ * UTF8_IS_INVARIANT works even on non-UTF-8 strings, or else
+ * wouldn't be invariant) */
+ if (UTF8_IS_INVARIANT(nextchr) || ! utf8_target) {
+ if (! (to_complement ^ cBOOL(_generic_isCC(nextchr,
+ FLAGS(scan)))))
+ {
+ sayNO;
+ }
+ locinput++;
+ }
+ else if (UTF8_IS_DOWNGRADEABLE_START(nextchr)) {
+ if (! (to_complement
+ ^ cBOOL(_generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(nextchr,
+ *(locinput + 1)),
+ FLAGS(scan)))))
+ {
+ sayNO;
+ }
+ locinput += 2;
+ }
+ else { /* Handle above Latin-1 code points */
+ utf8_posix_above_latin1:
+ classnum = (_char_class_number) FLAGS(scan);
+ if (classnum < _FIRST_NON_SWASH_CC) {
+
+ /* Here, uses a swash to find such code points. Load if if
+ * not done already */
+ if (! PL_utf8_swash_ptrs[classnum]) {
+ U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+ PL_utf8_swash_ptrs[classnum]
+ = _core_swash_init("utf8",
+ "",
+ &PL_sv_undef, 1, 0,
+ PL_XPosix_ptrs[classnum], &flags);
+ }
+ if (! (to_complement
+ ^ cBOOL(swash_fetch(PL_utf8_swash_ptrs[classnum],
+ (U8 *) locinput, TRUE))))
+ {
+ sayNO;
+ }
+ }
+ else { /* Here, uses macros to find above Latin-1 code points */
+ switch (classnum) {
+ case _CC_ENUM_SPACE:
+ if (! (to_complement
+ ^ cBOOL(is_XPERLSPACE_high(locinput))))
+ {
+ sayNO;
+ }
+ break;
+ case _CC_ENUM_BLANK:
+ if (! (to_complement
+ ^ cBOOL(is_HORIZWS_high(locinput))))
+ {
+ sayNO;
+ }
+ break;
+ case _CC_ENUM_XDIGIT:
+ if (! (to_complement
+ ^ cBOOL(is_XDIGIT_high(locinput))))
+ {
+ sayNO;
+ }
+ break;
+ case _CC_ENUM_VERTSPACE:
+ if (! (to_complement
+ ^ cBOOL(is_VERTWS_high(locinput))))
+ {
+ sayNO;
+ }
+ break;
+ default: /* The rest, e.g. [:cntrl:], can't match
+ above Latin1 */
+ if (! to_complement) {
+ sayNO;
+ }
+ break;
+ }
+ }
+ locinput += UTF8SKIP(locinput);
+ }
+ break;
+
+ case CLUMP: /* Match \X: logical Unicode character. This is defined as
+ a Unicode extended Grapheme Cluster */
+ if (NEXTCHR_IS_EOS)
+ sayNO;
+ if (! utf8_target) {
+
+ /* Match either CR LF or '.', as all the other possibilities
+ * require utf8 */
+ locinput++; /* Match the . or CR */
+ if (nextchr == '\r' /* And if it was CR, and the next is LF,
+ match the LF */
+ && locinput < reginfo->strend
+ && UCHARAT(locinput) == '\n')
+ {
+ locinput++;
+ }
+ }
+ else {
+
+ /* Get the gcb type for the current character */
+ GCB_enum prev_gcb = getGCB_VAL_UTF8((U8*) locinput,
+ (U8*) reginfo->strend);
+
+ /* Then scan through the input until we get to the first
+ * character whose type is supposed to be a gcb with the
+ * current character. (There is always a break at the
+ * end-of-input) */
+ locinput += UTF8SKIP(locinput);
+ while (locinput < reginfo->strend) {
+ GCB_enum cur_gcb = getGCB_VAL_UTF8((U8*) locinput,
+ (U8*) reginfo->strend);
+ if (isGCB(prev_gcb, cur_gcb)) {
+ break;
+ }
+
+ prev_gcb = cur_gcb;
+ locinput += UTF8SKIP(locinput);
+ }
+
+
+ }
+ break;
+
+ case NREFFL: /* /\g{name}/il */
+ { /* The capture buffer cases. The ones beginning with N for the
+ named buffers just convert to the equivalent numbered and
+ pretend they were called as the corresponding numbered buffer
+ op. */
+ /* don't initialize these in the declaration, it makes C++
+ unhappy */
+ const char *s;
+ char type;
+ re_fold_t folder;
+ const U8 *fold_array;
+ UV utf8_fold_flags;
+
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ folder = foldEQ_locale;
+ fold_array = PL_fold_locale;
+ type = REFFL;
+ utf8_fold_flags = FOLDEQ_LOCALE;
+ goto do_nref;
+
+ case NREFFA: /* /\g{name}/iaa */
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ type = REFFA;
+ utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_nref;
+
+ case NREFFU: /* /\g{name}/iu */
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ type = REFFU;
+ utf8_fold_flags = 0;
+ goto do_nref;
+
+ case NREFF: /* /\g{name}/i */
+ folder = foldEQ;
+ fold_array = PL_fold;
+ type = REFF;
+ utf8_fold_flags = 0;
+ goto do_nref;
+
+ case NREF: /* /\g{name}/ */
+ type = REF;
+ folder = NULL;
+ fold_array = NULL;
+ utf8_fold_flags = 0;
+ do_nref:
+
+ /* For the named back references, find the corresponding buffer
+ * number */
+ n = reg_check_named_buff_matched(rex,scan);
+
+ if ( ! n ) {
+ sayNO;
+ }
+ goto do_nref_ref_common;
+
+ case REFFL: /* /\1/il */
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ folder = foldEQ_locale;
+ fold_array = PL_fold_locale;
+ utf8_fold_flags = FOLDEQ_LOCALE;
+ goto do_ref;
+
+ case REFFA: /* /\1/iaa */
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_ref;
+
+ case REFFU: /* /\1/iu */
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ utf8_fold_flags = 0;
+ goto do_ref;
+
+ case REFF: /* /\1/i */
+ folder = foldEQ;
+ fold_array = PL_fold;
+ utf8_fold_flags = 0;
+ goto do_ref;
+
+ case REF: /* /\1/ */
+ folder = NULL;
+ fold_array = NULL;
+ utf8_fold_flags = 0;
+
+ do_ref:
+ type = OP(scan);
+ n = ARG(scan); /* which paren pair */
+
+ do_nref_ref_common:
+ ln = rex->offs[n].start;
+ reginfo->poscache_iter = reginfo->poscache_maxiter; /* Void cache */
+ if (rex->lastparen < n || ln == -1)
+ sayNO; /* Do not match unless seen CLOSEn. */
+ if (ln == rex->offs[n].end)
+ break;
+
+ s = reginfo->strbeg + ln;
+ if (type != REF /* REF can do byte comparison */
+ && (utf8_target || type == REFFU || type == REFFL))
+ {
+ char * limit = reginfo->strend;
+
+ /* This call case insensitively compares the entire buffer
+ * at s, with the current input starting at locinput, but
+ * not going off the end given by reginfo->strend, and
+ * returns in <limit> upon success, how much of the
+ * current input was matched */
+ if (! foldEQ_utf8_flags(s, NULL, rex->offs[n].end - ln, utf8_target,
+ locinput, &limit, 0, utf8_target, utf8_fold_flags))
+ {
+ sayNO;
+ }
+ locinput = limit;
+ break;
+ }
+
+ /* Not utf8: Inline the first character, for speed. */
+ if (!NEXTCHR_IS_EOS &&
+ UCHARAT(s) != nextchr &&
+ (type == REF ||
+ UCHARAT(s) != fold_array[nextchr]))
+ sayNO;
+ ln = rex->offs[n].end - ln;
+ if (locinput + ln > reginfo->strend)
+ sayNO;
+ if (ln > 1 && (type == REF
+ ? memNE(s, locinput, ln)
+ : ! folder(s, locinput, ln)))
+ sayNO;
+ locinput += ln;
+ break;
+ }
+
+ case NOTHING: /* null op; e.g. the 'nothing' following
+ * the '*' in m{(a+|b)*}' */
+ break;
+ case TAIL: /* placeholder while compiling (A|B|C) */
+ break;
+
+#undef ST
+#define ST st->u.eval
+ {
+ SV *ret;
+ REGEXP *re_sv;
+ regexp *re;
+ regexp_internal *rei;
+ regnode *startpoint;
+
+ case GOSTART: /* (?R) */
+ case GOSUB: /* /(...(?1))/ /(...(?&foo))/ */
+ if (cur_eval && cur_eval->locinput==locinput) {
+ if (cur_eval->u.eval.close_paren == (U32)ARG(scan))
+ Perl_croak(aTHX_ "Infinite recursion in regex");
+ if ( ++nochange_depth > max_nochange_depth )
+ Perl_croak(aTHX_
+ "Pattern subroutine nesting without pos change"
+ " exceeded limit in regex");
+ } else {
+ nochange_depth = 0;
+ }
+ re_sv = rex_sv;
+ re = rex;
+ rei = rexi;
+ if (OP(scan)==GOSUB) {
+ startpoint = scan + ARG2L(scan);
+ ST.close_paren = ARG(scan);
+ } else {
+ startpoint = rei->program+1;
+ ST.close_paren = 0;
+ }
+
+ /* Save all the positions seen so far. */
+ ST.cp = regcppush(rex, 0, maxopenparen);
+ REGCP_SET(ST.lastcp);
+
+ /* and then jump to the code we share with EVAL */
+ goto eval_recurse_doit;
+ /* NOTREACHED */
+
+ case EVAL: /* /(?{A})B/ /(??{A})B/ and /(?(?{A})X|Y)B/ */
+ if (cur_eval && cur_eval->locinput==locinput) {
+ if ( ++nochange_depth > max_nochange_depth )
+ Perl_croak(aTHX_ "EVAL without pos change exceeded limit in regex");
+ } else {
+ nochange_depth = 0;
+ }
+ {
+ /* execute the code in the {...} */
+
+ dSP;
+ IV before;
+ OP * const oop = PL_op;
+ COP * const ocurcop = PL_curcop;
+ OP *nop;
+ CV *newcv;
+
+ /* save *all* paren positions */
+ regcppush(rex, 0, maxopenparen);
+ REGCP_SET(runops_cp);
+
+ if (!caller_cv)
+ caller_cv = find_runcv(NULL);
+
+ n = ARG(scan);
+
+ if (rexi->data->what[n] == 'r') { /* code from an external qr */
+ newcv = (ReANY(
+ (REGEXP*)(rexi->data->data[n])
+ ))->qr_anoncv
+ ;
+ nop = (OP*)rexi->data->data[n+1];
+ }
+ else if (rexi->data->what[n] == 'l') { /* literal code */
+ newcv = caller_cv;
+ nop = (OP*)rexi->data->data[n];
+ assert(CvDEPTH(newcv));
+ }
+ else {
+ /* literal with own CV */
+ assert(rexi->data->what[n] == 'L');
+ newcv = rex->qr_anoncv;
+ nop = (OP*)rexi->data->data[n];
+ }
+
+ /* normally if we're about to execute code from the same
+ * CV that we used previously, we just use the existing
+ * CX stack entry. However, its possible that in the
+ * meantime we may have backtracked, popped from the save
+ * stack, and undone the SAVECOMPPAD(s) associated with
+ * PUSH_MULTICALL; in which case PL_comppad no longer
+ * points to newcv's pad. */
+ if (newcv != last_pushed_cv || PL_comppad != last_pad)
+ {
+ U8 flags = (CXp_SUB_RE |
+ ((newcv == caller_cv) ? CXp_SUB_RE_FAKE : 0));
+ if (last_pushed_cv) {
+ CHANGE_MULTICALL_FLAGS(newcv, flags);
+ }
+ else {
+ PUSH_MULTICALL_FLAGS(newcv, flags);
+ }
+ last_pushed_cv = newcv;
+ }
+ else {
+ /* these assignments are just to silence compiler
+ * warnings */
+ multicall_cop = NULL;
+ newsp = NULL;
+ }
+ last_pad = PL_comppad;
+
+ /* the initial nextstate you would normally execute
+ * at the start of an eval (which would cause error
+ * messages to come from the eval), may be optimised
+ * away from the execution path in the regex code blocks;
+ * so manually set PL_curcop to it initially */
+ {
+ OP *o = cUNOPx(nop)->op_first;
+ assert(o->op_type == OP_NULL);
+ if (o->op_targ == OP_SCOPE) {
+ o = cUNOPo->op_first;
+ }
+ else {
+ assert(o->op_targ == OP_LEAVE);
+ o = cUNOPo->op_first;
+ assert(o->op_type == OP_ENTER);
+ o = OpSIBLING(o);
+ }
+
+ if (o->op_type != OP_STUB) {
+ assert( o->op_type == OP_NEXTSTATE
+ || o->op_type == OP_DBSTATE
+ || (o->op_type == OP_NULL
+ && ( o->op_targ == OP_NEXTSTATE
+ || o->op_targ == OP_DBSTATE
+ )
+ )
+ );
+ PL_curcop = (COP*)o;
+ }
+ }
+ nop = nop->op_next;
+
+ DEBUG_STATE_r( PerlIO_printf(Perl_debug_log,
+ " re EVAL PL_op=0x%"UVxf"\n", PTR2UV(nop)) );
+
+ rex->offs[0].end = locinput - reginfo->strbeg;
+ if (reginfo->info_aux_eval->pos_magic)
+ MgBYTEPOS_set(reginfo->info_aux_eval->pos_magic,
+ reginfo->sv, reginfo->strbeg,
+ locinput - reginfo->strbeg);
+
+ if (sv_yes_mark) {
+ SV *sv_mrk = get_sv("REGMARK", 1);
+ sv_setsv(sv_mrk, sv_yes_mark);
+ }
+
+ /* we don't use MULTICALL here as we want to call the
+ * first op of the block of interest, rather than the
+ * first op of the sub */
+ before = (IV)(SP-PL_stack_base);
+ PL_op = nop;
+ CALLRUNOPS(aTHX); /* Scalar context. */
+ SPAGAIN;
+ if ((IV)(SP-PL_stack_base) == before)
+ ret = &PL_sv_undef; /* protect against empty (?{}) blocks. */
+ else {
+ ret = POPs;
+ PUTBACK;
+ }
+
+ /* before restoring everything, evaluate the returned
+ * value, so that 'uninit' warnings don't use the wrong
+ * PL_op or pad. Also need to process any magic vars
+ * (e.g. $1) *before* parentheses are restored */
+
+ PL_op = NULL;
+
+ re_sv = NULL;
+ if (logical == 0) /* (?{})/ */
+ sv_setsv(save_scalar(PL_replgv), ret); /* $^R */
+ else if (logical == 1) { /* /(?(?{...})X|Y)/ */
+ sw = cBOOL(SvTRUE(ret));
+ logical = 0;
+ }
+ else { /* /(??{}) */
+ /* if its overloaded, let the regex compiler handle
+ * it; otherwise extract regex, or stringify */
+ if (SvGMAGICAL(ret))
+ ret = sv_mortalcopy(ret);
+ if (!SvAMAGIC(ret)) {
+ SV *sv = ret;
+ if (SvROK(sv))
+ sv = SvRV(sv);
+ if (SvTYPE(sv) == SVt_REGEXP)
+ re_sv = (REGEXP*) sv;
+ else if (SvSMAGICAL(ret)) {
+ MAGIC *mg = mg_find(ret, PERL_MAGIC_qr);
+ if (mg)
+ re_sv = (REGEXP *) mg->mg_obj;
+ }
+
+ /* force any undef warnings here */
+ if (!re_sv && !SvPOK(ret) && !SvNIOK(ret)) {
+ ret = sv_mortalcopy(ret);
+ (void) SvPV_force_nolen(ret);
+ }
+ }
+
+ }
+
+ /* *** Note that at this point we don't restore
+ * PL_comppad, (or pop the CxSUB) on the assumption it may
+ * be used again soon. This is safe as long as nothing
+ * in the regexp code uses the pad ! */
+ PL_op = oop;
+ PL_curcop = ocurcop;
+ S_regcp_restore(aTHX_ rex, runops_cp, &maxopenparen);
+ PL_curpm = PL_reg_curpm;
+
+ if (logical != 2)
+ break;
+ }
+
+ /* only /(??{})/ from now on */
+ logical = 0;
+ {
+ /* extract RE object from returned value; compiling if
+ * necessary */
+
+ if (re_sv) {
+ re_sv = reg_temp_copy(NULL, re_sv);
+ }
+ else {
+ U32 pm_flags = 0;
+
+ if (SvUTF8(ret) && IN_BYTES) {
+ /* In use 'bytes': make a copy of the octet
+ * sequence, but without the flag on */
+ STRLEN len;
+ const char *const p = SvPV(ret, len);
+ ret = newSVpvn_flags(p, len, SVs_TEMP);
+ }
+ if (rex->intflags & PREGf_USE_RE_EVAL)
+ pm_flags |= PMf_USE_RE_EVAL;
+
+ /* if we got here, it should be an engine which
+ * supports compiling code blocks and stuff */
+ assert(rex->engine && rex->engine->op_comp);
+ assert(!(scan->flags & ~RXf_PMf_COMPILETIME));
+ re_sv = rex->engine->op_comp(aTHX_ &ret, 1, NULL,
+ rex->engine, NULL, NULL,
+ /* copy /msixn etc to inner pattern */
+ ARG2L(scan),
+ pm_flags);
+
+ if (!(SvFLAGS(ret)
+ & (SVs_TEMP | SVs_GMG | SVf_ROK))
+ && (!SvPADTMP(ret) || SvREADONLY(ret))) {
+ /* This isn't a first class regexp. Instead, it's
+ caching a regexp onto an existing, Perl visible
+ scalar. */
+ sv_magic(ret, MUTABLE_SV(re_sv), PERL_MAGIC_qr, 0, 0);
+ }
+ }
+ SAVEFREESV(re_sv);
+ re = ReANY(re_sv);
+ }
+ RXp_MATCH_COPIED_off(re);
+ re->subbeg = rex->subbeg;
+ re->sublen = rex->sublen;
+ re->suboffset = rex->suboffset;
+ re->subcoffset = rex->subcoffset;
+ re->lastparen = 0;
+ re->lastcloseparen = 0;
+ rei = RXi_GET(re);
+ DEBUG_EXECUTE_r(
+ debug_start_match(re_sv, utf8_target, locinput,
+ reginfo->strend, "Matching embedded");
+ );
+ startpoint = rei->program + 1;
+ ST.close_paren = 0; /* only used for GOSUB */
+ /* Save all the seen positions so far. */
+ ST.cp = regcppush(rex, 0, maxopenparen);
+ REGCP_SET(ST.lastcp);
+ /* and set maxopenparen to 0, since we are starting a "fresh" match */
+ maxopenparen = 0;
+ /* run the pattern returned from (??{...}) */
+
+ eval_recurse_doit: /* Share code with GOSUB below this line
+ * At this point we expect the stack context to be
+ * set up correctly */
+
+ /* invalidate the S-L poscache. We're now executing a
+ * different set of WHILEM ops (and their associated
+ * indexes) against the same string, so the bits in the
+ * cache are meaningless. Setting maxiter to zero forces
+ * the cache to be invalidated and zeroed before reuse.
+ * XXX This is too dramatic a measure. Ideally we should
+ * save the old cache and restore when running the outer
+ * pattern again */
+ reginfo->poscache_maxiter = 0;
+
+ /* the new regexp might have a different is_utf8_pat than we do */
+ is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(re_sv));
+
+ ST.prev_rex = rex_sv;
+ ST.prev_curlyx = cur_curlyx;
+ rex_sv = re_sv;
+ SET_reg_curpm(rex_sv);
+ rex = re;
+ rexi = rei;
+ cur_curlyx = NULL;
+ ST.B = next;
+ ST.prev_eval = cur_eval;
+ cur_eval = st;
+ /* now continue from first node in postoned RE */
+ PUSH_YES_STATE_GOTO(EVAL_AB, startpoint, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+
+ case EVAL_AB: /* cleanup after a successful (??{A})B */
+ /* note: this is called twice; first after popping B, then A */
+ rex_sv = ST.prev_rex;
+ is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
+ SET_reg_curpm(rex_sv);
+ rex = ReANY(rex_sv);
+ rexi = RXi_GET(rex);
+ {
+ /* preserve $^R across LEAVE's. See Bug 121070. */
+ SV *save_sv= GvSV(PL_replgv);
+ SvREFCNT_inc(save_sv);
+ regcpblow(ST.cp); /* LEAVE in disguise */
+ sv_setsv(GvSV(PL_replgv), save_sv);
+ SvREFCNT_dec(save_sv);
+ }
+ cur_eval = ST.prev_eval;
+ cur_curlyx = ST.prev_curlyx;
+
+ /* Invalidate cache. See "invalidate" comment above. */
+ reginfo->poscache_maxiter = 0;
+ if ( nochange_depth )
+ nochange_depth--;
+ sayYES;
+
+
+ case EVAL_AB_fail: /* unsuccessfully ran A or B in (??{A})B */
+ /* note: this is called twice; first after popping B, then A */
+ rex_sv = ST.prev_rex;
+ is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
+ SET_reg_curpm(rex_sv);
+ rex = ReANY(rex_sv);
+ rexi = RXi_GET(rex);
+
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex, &maxopenparen);
+ cur_eval = ST.prev_eval;
+ cur_curlyx = ST.prev_curlyx;
+ /* Invalidate cache. See "invalidate" comment above. */
+ reginfo->poscache_maxiter = 0;
+ if ( nochange_depth )
+ nochange_depth--;
+ sayNO_SILENT;
+#undef ST
+
+ case OPEN: /* ( */
+ n = ARG(scan); /* which paren pair */
+ rex->offs[n].start_tmp = locinput - reginfo->strbeg;
+ if (n > maxopenparen)
+ maxopenparen = n;
+ DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+ "rex=0x%"UVxf" offs=0x%"UVxf": \\%"UVuf": set %"IVdf" tmp; maxopenparen=%"UVuf"\n",
+ PTR2UV(rex),
+ PTR2UV(rex->offs),
+ (UV)n,
+ (IV)rex->offs[n].start_tmp,
+ (UV)maxopenparen
+ ));
+ lastopen = n;
+ break;
+
+/* XXX really need to log other places start/end are set too */
+#define CLOSE_CAPTURE \
+ rex->offs[n].start = rex->offs[n].start_tmp; \
+ rex->offs[n].end = locinput - reginfo->strbeg; \
+ DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log, \
+ "rex=0x%"UVxf" offs=0x%"UVxf": \\%"UVuf": set %"IVdf"..%"IVdf"\n", \
+ PTR2UV(rex), \
+ PTR2UV(rex->offs), \
+ (UV)n, \
+ (IV)rex->offs[n].start, \
+ (IV)rex->offs[n].end \
+ ))
+
+ case CLOSE: /* ) */
+ n = ARG(scan); /* which paren pair */
+ CLOSE_CAPTURE;
+ if (n > rex->lastparen)
+ rex->lastparen = n;
+ rex->lastcloseparen = n;
+ if (cur_eval && cur_eval->u.eval.close_paren == n) {
+ goto fake_end;
+ }
+ break;
+
+ case ACCEPT: /* (*ACCEPT) */
+ if (ARG(scan)){
+ regnode *cursor;
+ for (cursor=scan;
+ cursor && OP(cursor)!=END;
+ cursor=regnext(cursor))
+ {
+ if ( OP(cursor)==CLOSE ){
+ n = ARG(cursor);
+ if ( n <= lastopen ) {
+ CLOSE_CAPTURE;
+ if (n > rex->lastparen)
+ rex->lastparen = n;
+ rex->lastcloseparen = n;
+ if ( n == ARG(scan) || (cur_eval &&
+ cur_eval->u.eval.close_paren == n))
+ break;
+ }
+ }
+ }
+ }
+ goto fake_end;
+ /* NOTREACHED */
+
+ case GROUPP: /* (?(1)) */
+ n = ARG(scan); /* which paren pair */
+ sw = cBOOL(rex->lastparen >= n && rex->offs[n].end != -1);
+ break;
+
+ case NGROUPP: /* (?(<name>)) */
+ /* reg_check_named_buff_matched returns 0 for no match */
+ sw = cBOOL(0 < reg_check_named_buff_matched(rex,scan));
+ break;
+
+ case INSUBP: /* (?(R)) */
+ n = ARG(scan);
+ sw = (cur_eval && (!n || cur_eval->u.eval.close_paren == n));
+ break;
+
+ case DEFINEP: /* (?(DEFINE)) */
+ sw = 0;
+ break;
+
+ case IFTHEN: /* (?(cond)A|B) */
+ reginfo->poscache_iter = reginfo->poscache_maxiter; /* Void cache */
+ if (sw)
+ next = NEXTOPER(NEXTOPER(scan));
+ else {
+ next = scan + ARG(scan);
+ if (OP(next) == IFTHEN) /* Fake one. */
+ next = NEXTOPER(NEXTOPER(next));
+ }
+ break;
+
+ case LOGICAL: /* modifier for EVAL and IFMATCH */
+ logical = scan->flags;
+ break;
+
+/*******************************************************************
+
+The CURLYX/WHILEM pair of ops handle the most generic case of the /A*B/
+pattern, where A and B are subpatterns. (For simple A, CURLYM or
+STAR/PLUS/CURLY/CURLYN are used instead.)
+
+A*B is compiled as <CURLYX><A><WHILEM><B>
+
+On entry to the subpattern, CURLYX is called. This pushes a CURLYX
+state, which contains the current count, initialised to -1. It also sets
+cur_curlyx to point to this state, with any previous value saved in the
+state block.
+
+CURLYX then jumps straight to the WHILEM op, rather than executing A,
+since the pattern may possibly match zero times (i.e. it's a while {} loop
+rather than a do {} while loop).
+
+Each entry to WHILEM represents a successful match of A. The count in the
+CURLYX block is incremented, another WHILEM state is pushed, and execution
+passes to A or B depending on greediness and the current count.
+
+For example, if matching against the string a1a2a3b (where the aN are
+substrings that match /A/), then the match progresses as follows: (the
+pushed states are interspersed with the bits of strings matched so far):
+
+ <CURLYX cnt=-1>
+ <CURLYX cnt=0><WHILEM>
+ <CURLYX cnt=1><WHILEM> a1 <WHILEM>
+ <CURLYX cnt=2><WHILEM> a1 <WHILEM> a2 <WHILEM>
+ <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM>
+ <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM> b
+
+(Contrast this with something like CURLYM, which maintains only a single
+backtrack state:
+
+ <CURLYM cnt=0> a1
+ a1 <CURLYM cnt=1> a2
+ a1 a2 <CURLYM cnt=2> a3
+ a1 a2 a3 <CURLYM cnt=3> b
+)
+
+Each WHILEM state block marks a point to backtrack to upon partial failure
+of A or B, and also contains some minor state data related to that
+iteration. The CURLYX block, pointed to by cur_curlyx, contains the
+overall state, such as the count, and pointers to the A and B ops.
+
+This is complicated slightly by nested CURLYX/WHILEM's. Since cur_curlyx
+must always point to the *current* CURLYX block, the rules are:
+
+When executing CURLYX, save the old cur_curlyx in the CURLYX state block,
+and set cur_curlyx to point the new block.
+
+When popping the CURLYX block after a successful or unsuccessful match,
+restore the previous cur_curlyx.
+
+When WHILEM is about to execute B, save the current cur_curlyx, and set it
+to the outer one saved in the CURLYX block.
+
+When popping the WHILEM block after a successful or unsuccessful B match,
+restore the previous cur_curlyx.
+
+Here's an example for the pattern (AI* BI)*BO
+I and O refer to inner and outer, C and W refer to CURLYX and WHILEM:
+
+cur_
+curlyx backtrack stack
+------ ---------------
+NULL
+CO <CO prev=NULL> <WO>
+CI <CO prev=NULL> <WO> <CI prev=CO> <WI> ai
+CO <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi
+NULL <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi <WO prev=CO> bo
+
+At this point the pattern succeeds, and we work back down the stack to
+clean up, restoring as we go:
+
+CO <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi
+CI <CO prev=NULL> <WO> <CI prev=CO> <WI> ai
+CO <CO prev=NULL> <WO>
+NULL
+
+*******************************************************************/
+
+#define ST st->u.curlyx
+
+ case CURLYX: /* start of /A*B/ (for complex A) */
+ {
+ /* No need to save/restore up to this paren */
+ I32 parenfloor = scan->flags;
+
+ assert(next); /* keep Coverity happy */
+ if (OP(PREVOPER(next)) == NOTHING) /* LONGJMP */
+ next += ARG(next);
+
+ /* XXXX Probably it is better to teach regpush to support
+ parenfloor > maxopenparen ... */
+ if (parenfloor > (I32)rex->lastparen)
+ parenfloor = rex->lastparen; /* Pessimization... */
+
+ ST.prev_curlyx= cur_curlyx;
+ cur_curlyx = st;
+ ST.cp = PL_savestack_ix;
+
+ /* these fields contain the state of the current curly.
+ * they are accessed by subsequent WHILEMs */
+ ST.parenfloor = parenfloor;
+ ST.me = scan;
+ ST.B = next;
+ ST.minmod = minmod;
+ minmod = 0;
+ ST.count = -1; /* this will be updated by WHILEM */
+ ST.lastloc = NULL; /* this will be updated by WHILEM */
+
+ PUSH_YES_STATE_GOTO(CURLYX_end, PREVOPER(next), locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+
+ case CURLYX_end: /* just finished matching all of A*B */
+ cur_curlyx = ST.prev_curlyx;
+ sayYES;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CURLYX_end_fail: /* just failed to match all of A*B */
+ regcpblow(ST.cp);
+ cur_curlyx = ST.prev_curlyx;
+ sayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+
+#undef ST
+#define ST st->u.whilem
+
+ case WHILEM: /* just matched an A in /A*B/ (for complex A) */
+ {
+ /* see the discussion above about CURLYX/WHILEM */
+ I32 n;
+ int min, max;
+ regnode *A;
+
+ assert(cur_curlyx); /* keep Coverity happy */
+
+ min = ARG1(cur_curlyx->u.curlyx.me);
+ max = ARG2(cur_curlyx->u.curlyx.me);
+ A = NEXTOPER(cur_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS;
+ n = ++cur_curlyx->u.curlyx.count; /* how many A's matched */
+ ST.save_lastloc = cur_curlyx->u.curlyx.lastloc;
+ ST.cache_offset = 0;
+ ST.cache_mask = 0;
+
+
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%*s whilem: matched %ld out of %d..%d\n",
+ REPORT_CODE_OFF+depth*2, "", (long)n, min, max)
+ );
+
+ /* First just match a string of min A's. */
+
+ if (n < min) {
+ ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
+ maxopenparen);
+ cur_curlyx->u.curlyx.lastloc = locinput;
+ REGCP_SET(ST.lastcp);
+
+ PUSH_STATE_GOTO(WHILEM_A_pre, A, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+
+ /* If degenerate A matches "", assume A done. */
+
+ if (locinput == cur_curlyx->u.curlyx.lastloc) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%*s whilem: empty match detected, trying continuation...\n",
+ REPORT_CODE_OFF+depth*2, "")
+ );
+ goto do_whilem_B_max;
+ }
+
+ /* super-linear cache processing.
+ *
+ * The idea here is that for certain types of CURLYX/WHILEM -
+ * principally those whose upper bound is infinity (and
+ * excluding regexes that have things like \1 and other very
+ * non-regular expresssiony things), then if a pattern like
+ * /....A*.../ fails and we backtrack to the WHILEM, then we
+ * make a note that this particular WHILEM op was at string
+ * position 47 (say) when the rest of pattern failed. Then, if
+ * we ever find ourselves back at that WHILEM, and at string
+ * position 47 again, we can just fail immediately rather than
+ * running the rest of the pattern again.
+ *
+ * This is very handy when patterns start to go
+ * 'super-linear', like in (a+)*(a+)*(a+)*, where you end up
+ * with a combinatorial explosion of backtracking.
+ *
+ * The cache is implemented as a bit array, with one bit per
+ * string byte position per WHILEM op (up to 16) - so its
+ * between 0.25 and 2x the string size.
+ *
+ * To avoid allocating a poscache buffer every time, we do an
+ * initially countdown; only after we have executed a WHILEM
+ * op (string-length x #WHILEMs) times do we allocate the
+ * cache.
+ *
+ * The top 4 bits of scan->flags byte say how many different
+ * relevant CURLLYX/WHILEM op pairs there are, while the
+ * bottom 4-bits is the identifying index number of this
+ * WHILEM.
+ */
+
+ if (scan->flags) {
+
+ if (!reginfo->poscache_maxiter) {
+ /* start the countdown: Postpone detection until we
+ * know the match is not *that* much linear. */
+ reginfo->poscache_maxiter
+ = (reginfo->strend - reginfo->strbeg + 1)
+ * (scan->flags>>4);
+ /* possible overflow for long strings and many CURLYX's */
+ if (reginfo->poscache_maxiter < 0)
+ reginfo->poscache_maxiter = I32_MAX;
+ reginfo->poscache_iter = reginfo->poscache_maxiter;
+ }
+
+ if (reginfo->poscache_iter-- == 0) {
+ /* initialise cache */
+ const SSize_t size = (reginfo->poscache_maxiter + 7)/8;
+ regmatch_info_aux *const aux = reginfo->info_aux;
+ if (aux->poscache) {
+ if ((SSize_t)reginfo->poscache_size < size) {
+ Renew(aux->poscache, size, char);
+ reginfo->poscache_size = size;
+ }
+ Zero(aux->poscache, size, char);
+ }
+ else {
+ reginfo->poscache_size = size;
+ Newxz(aux->poscache, size, char);
+ }
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%swhilem: Detected a super-linear match, switching on caching%s...\n",
+ PL_colors[4], PL_colors[5])
+ );
+ }
+
+ if (reginfo->poscache_iter < 0) {
+ /* have we already failed at this position? */
+ SSize_t offset, mask;
+
+ reginfo->poscache_iter = -1; /* stop eventual underflow */
+ offset = (scan->flags & 0xf) - 1
+ + (locinput - reginfo->strbeg)
+ * (scan->flags>>4);
+ mask = 1 << (offset % 8);
+ offset /= 8;
+ if (reginfo->info_aux->poscache[offset] & mask) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%*s whilem: (cache) already tried at this position...\n",
+ REPORT_CODE_OFF+depth*2, "")
+ );
+ sayNO; /* cache records failure */
+ }
+ ST.cache_offset = offset;
+ ST.cache_mask = mask;
+ }
+ }
+
+ /* Prefer B over A for minimal matching. */
+
+ if (cur_curlyx->u.curlyx.minmod) {
+ ST.save_curlyx = cur_curlyx;
+ cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
+ ST.cp = regcppush(rex, ST.save_curlyx->u.curlyx.parenfloor,
+ maxopenparen);
+ REGCP_SET(ST.lastcp);
+ PUSH_YES_STATE_GOTO(WHILEM_B_min, ST.save_curlyx->u.curlyx.B,
+ locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+
+ /* Prefer A over B for maximal matching. */
+
+ if (n < max) { /* More greed allowed? */
+ ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
+ maxopenparen);
+ cur_curlyx->u.curlyx.lastloc = locinput;
+ REGCP_SET(ST.lastcp);
+ PUSH_STATE_GOTO(WHILEM_A_max, A, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+ goto do_whilem_B_max;
+ }
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case WHILEM_B_min: /* just matched B in a minimal match */
+ case WHILEM_B_max: /* just matched B in a maximal match */
+ cur_curlyx = ST.save_curlyx;
+ sayYES;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case WHILEM_B_max_fail: /* just failed to match B in a maximal match */
+ cur_curlyx = ST.save_curlyx;
+ cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
+ cur_curlyx->u.curlyx.count--;
+ CACHEsayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case WHILEM_A_min_fail: /* just failed to match A in a minimal match */
+ /* FALLTHROUGH */
+ case WHILEM_A_pre_fail: /* just failed to match even minimal A */
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex, &maxopenparen);
+ cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
+ cur_curlyx->u.curlyx.count--;
+ CACHEsayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case WHILEM_A_max_fail: /* just failed to match A in a maximal match */
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex, &maxopenparen); /* Restore some previous $<digit>s? */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%*s whilem: failed, trying continuation...\n",
+ REPORT_CODE_OFF+depth*2, "")
+ );
+ do_whilem_B_max:
+ if (cur_curlyx->u.curlyx.count >= REG_INFTY
+ && ckWARN(WARN_REGEXP)
+ && !reginfo->warned)
+ {
+ reginfo->warned = TRUE;
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP),
+ "Complex regular subexpression recursion limit (%d) "
+ "exceeded",
+ REG_INFTY - 1);
+ }
+
+ /* now try B */
+ ST.save_curlyx = cur_curlyx;
+ cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
+ PUSH_YES_STATE_GOTO(WHILEM_B_max, ST.save_curlyx->u.curlyx.B,
+ locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case WHILEM_B_min_fail: /* just failed to match B in a minimal match */
+ cur_curlyx = ST.save_curlyx;
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex, &maxopenparen);
+
+ if (cur_curlyx->u.curlyx.count >= /*max*/ARG2(cur_curlyx->u.curlyx.me)) {
+ /* Maximum greed exceeded */
+ if (cur_curlyx->u.curlyx.count >= REG_INFTY
+ && ckWARN(WARN_REGEXP)
+ && !reginfo->warned)
+ {
+ reginfo->warned = TRUE;
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP),
+ "Complex regular subexpression recursion "
+ "limit (%d) exceeded",
+ REG_INFTY - 1);
+ }
+ cur_curlyx->u.curlyx.count--;
+ CACHEsayNO;
+ }
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%*s trying longer...\n", REPORT_CODE_OFF+depth*2, "")
+ );
+ /* Try grabbing another A and see if it helps. */
+ cur_curlyx->u.curlyx.lastloc = locinput;
+ ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
+ maxopenparen);
+ REGCP_SET(ST.lastcp);
+ PUSH_STATE_GOTO(WHILEM_A_min,
+ /*A*/ NEXTOPER(ST.save_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS,
+ locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+#undef ST
+#define ST st->u.branch
+
+ case BRANCHJ: /* /(...|A|...)/ with long next pointer */
+ next = scan + ARG(scan);
+ if (next == scan)
+ next = NULL;
+ scan = NEXTOPER(scan);
+ /* FALLTHROUGH */
+
+ case BRANCH: /* /(...|A|...)/ */
+ scan = NEXTOPER(scan); /* scan now points to inner node */
+ ST.lastparen = rex->lastparen;
+ ST.lastcloseparen = rex->lastcloseparen;
+ ST.next_branch = next;
+ REGCP_SET(ST.cp);
+
+ /* Now go into the branch */
+ if (has_cutgroup) {
+ PUSH_YES_STATE_GOTO(BRANCH_next, scan, locinput);
+ } else {
+ PUSH_STATE_GOTO(BRANCH_next, scan, locinput);
+ }
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CUTGROUP: /* /(*THEN)/ */
+ sv_yes_mark = st->u.mark.mark_name = scan->flags ? NULL :
+ MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ PUSH_STATE_GOTO(CUTGROUP_next, next, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CUTGROUP_next_fail:
+ do_cutgroup = 1;
+ no_final = 1;
+ if (st->u.mark.mark_name)
+ sv_commit = st->u.mark.mark_name;
+ sayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case BRANCH_next:
+ sayYES;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case BRANCH_next_fail: /* that branch failed; try the next, if any */
+ if (do_cutgroup) {
+ do_cutgroup = 0;
+ no_final = 0;
+ }
+ REGCP_UNWIND(ST.cp);
+ UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+ scan = ST.next_branch;
+ /* no more branches? */
+ if (!scan || (OP(scan) != BRANCH && OP(scan) != BRANCHJ)) {
+ DEBUG_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sBRANCH failed...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4],
+ PL_colors[5] );
+ });
+ sayNO_SILENT;
+ }
+ continue; /* execute next BRANCH[J] op */
+ /* NOTREACHED */
+
+ case MINMOD: /* next op will be non-greedy, e.g. A*? */
+ minmod = 1;
+ break;
+
+#undef ST
+#define ST st->u.curlym
+
+ case CURLYM: /* /A{m,n}B/ where A is fixed-length */
+
+ /* This is an optimisation of CURLYX that enables us to push
+ * only a single backtracking state, no matter how many matches
+ * there are in {m,n}. It relies on the pattern being constant
+ * length, with no parens to influence future backrefs
+ */
+
+ ST.me = scan;
+ scan = NEXTOPER(scan) + NODE_STEP_REGNODE;
+
+ ST.lastparen = rex->lastparen;
+ ST.lastcloseparen = rex->lastcloseparen;
+
+ /* if paren positive, emulate an OPEN/CLOSE around A */
+ if (ST.me->flags) {
+ U32 paren = ST.me->flags;
+ if (paren > maxopenparen)
+ maxopenparen = paren;
+ scan += NEXT_OFF(scan); /* Skip former OPEN. */
+ }
+ ST.A = scan;
+ ST.B = next;
+ ST.alen = 0;
+ ST.count = 0;
+ ST.minmod = minmod;
+ minmod = 0;
+ ST.c1 = CHRTEST_UNINIT;
+ REGCP_SET(ST.cp);
+
+ if (!(ST.minmod ? ARG1(ST.me) : ARG2(ST.me))) /* min/max */
+ goto curlym_do_B;
+
+ curlym_do_A: /* execute the A in /A{m,n}B/ */
+ PUSH_YES_STATE_GOTO(CURLYM_A, ST.A, locinput); /* match A */
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CURLYM_A: /* we've just matched an A */
+ ST.count++;
+ /* after first match, determine A's length: u.curlym.alen */
+ if (ST.count == 1) {
+ if (reginfo->is_utf8_target) {
+ char *s = st->locinput;
+ while (s < locinput) {
+ ST.alen++;
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ ST.alen = locinput - st->locinput;
+ }
+ if (ST.alen == 0)
+ ST.count = ST.minmod ? ARG1(ST.me) : ARG2(ST.me);
+ }
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM now matched %"IVdf" times, len=%"IVdf"...\n",
+ (int)(REPORT_CODE_OFF+(depth*2)), "",
+ (IV) ST.count, (IV)ST.alen)
+ );
+
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.me->flags)
+ goto fake_end;
+
+ {
+ I32 max = (ST.minmod ? ARG1(ST.me) : ARG2(ST.me));
+ if ( max == REG_INFTY || ST.count < max )
+ goto curlym_do_A; /* try to match another A */
+ }
+ goto curlym_do_B; /* try to match B */
+
+ case CURLYM_A_fail: /* just failed to match an A */
+ REGCP_UNWIND(ST.cp);
+
+ if (ST.minmod || ST.count < ARG1(ST.me) /* min*/
+ || (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.me->flags))
+ sayNO;
+
+ curlym_do_B: /* execute the B in /A{m,n}B/ */
+ if (ST.c1 == CHRTEST_UNINIT) {
+ /* calculate c1 and c2 for possible match of 1st char
+ * following curly */
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ assert(ST.B);
+ if (HAS_TEXT(ST.B) || JUMPABLE(ST.B)) {
+ regnode *text_node = ST.B;
+ if (! HAS_TEXT(text_node))
+ FIND_NEXT_IMPT(text_node);
+ /* this used to be
+
+ (HAS_TEXT(text_node) && PL_regkind[OP(text_node)] == EXACT)
+
+ But the former is redundant in light of the latter.
+
+ if this changes back then the macro for
+ IS_TEXT and friends need to change.
+ */
+ if (PL_regkind[OP(text_node)] == EXACT) {
+ if (! S_setup_EXACTISH_ST_c1_c2(aTHX_
+ text_node, &ST.c1, ST.c1_utf8, &ST.c2, ST.c2_utf8,
+ reginfo))
+ {
+ sayNO;
+ }
+ }
+ }
+ }
+
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM trying tail with matches=%"IVdf"...\n",
+ (int)(REPORT_CODE_OFF+(depth*2)),
+ "", (IV)ST.count)
+ );
+ if (! NEXTCHR_IS_EOS && ST.c1 != CHRTEST_VOID) {
+ if (! UTF8_IS_INVARIANT(nextchr) && utf8_target) {
+ if (memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput))
+ && memNE(locinput, ST.c2_utf8, UTF8SKIP(locinput)))
+ {
+ /* simulate B failing */
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM Fast bail next target=0x%"UVXf" c1=0x%"UVXf" c2=0x%"UVXf"\n",
+ (int)(REPORT_CODE_OFF+(depth*2)),"",
+ valid_utf8_to_uvchr((U8 *) locinput, NULL),
+ valid_utf8_to_uvchr(ST.c1_utf8, NULL),
+ valid_utf8_to_uvchr(ST.c2_utf8, NULL))
+ );
+ state_num = CURLYM_B_fail;
+ goto reenter_switch;
+ }
+ }
+ else if (nextchr != ST.c1 && nextchr != ST.c2) {
+ /* simulate B failing */
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM Fast bail next target=0x%X c1=0x%X c2=0x%X\n",
+ (int)(REPORT_CODE_OFF+(depth*2)),"",
+ (int) nextchr, ST.c1, ST.c2)
+ );
+ state_num = CURLYM_B_fail;
+ goto reenter_switch;
+ }
+ }
+
+ if (ST.me->flags) {
+ /* emulate CLOSE: mark current A as captured */
+ I32 paren = ST.me->flags;
+ if (ST.count) {
+ rex->offs[paren].start
+ = HOPc(locinput, -ST.alen) - reginfo->strbeg;
+ rex->offs[paren].end = locinput - reginfo->strbeg;
+ if ((U32)paren > rex->lastparen)
+ rex->lastparen = paren;
+ rex->lastcloseparen = paren;
+ }
+ else
+ rex->offs[paren].end = -1;
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.me->flags)
+ {
+ if (ST.count)
+ goto fake_end;
+ else
+ sayNO;
+ }
+ }
+
+ PUSH_STATE_GOTO(CURLYM_B, ST.B, locinput); /* match B */
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CURLYM_B_fail: /* just failed to match a B */
+ REGCP_UNWIND(ST.cp);
+ UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+ if (ST.minmod) {
+ I32 max = ARG2(ST.me);
+ if (max != REG_INFTY && ST.count == max)
+ sayNO;
+ goto curlym_do_A; /* try to match a further A */
+ }
+ /* backtrack one A */
+ if (ST.count == ARG1(ST.me) /* min */)
+ sayNO;
+ ST.count--;
+ SET_locinput(HOPc(locinput, -ST.alen));
+ goto curlym_do_B; /* try to match B */
+
+#undef ST
+#define ST st->u.curly
+
+#define CURLY_SETPAREN(paren, success) \
+ if (paren) { \
+ if (success) { \
+ rex->offs[paren].start = HOPc(locinput, -1) - reginfo->strbeg; \
+ rex->offs[paren].end = locinput - reginfo->strbeg; \
+ if (paren > rex->lastparen) \
+ rex->lastparen = paren; \
+ rex->lastcloseparen = paren; \
+ } \
+ else { \
+ rex->offs[paren].end = -1; \
+ rex->lastparen = ST.lastparen; \
+ rex->lastcloseparen = ST.lastcloseparen; \
+ } \
+ }
+
+ case STAR: /* /A*B/ where A is width 1 char */
+ ST.paren = 0;
+ ST.min = 0;
+ ST.max = REG_INFTY;
+ scan = NEXTOPER(scan);
+ goto repeat;
+
+ case PLUS: /* /A+B/ where A is width 1 char */
+ ST.paren = 0;
+ ST.min = 1;
+ ST.max = REG_INFTY;
+ scan = NEXTOPER(scan);
+ goto repeat;
+
+ case CURLYN: /* /(A){m,n}B/ where A is width 1 char */
+ ST.paren = scan->flags; /* Which paren to set */
+ ST.lastparen = rex->lastparen;
+ ST.lastcloseparen = rex->lastcloseparen;
+ if (ST.paren > maxopenparen)
+ maxopenparen = ST.paren;
+ ST.min = ARG1(scan); /* min to match */
+ ST.max = ARG2(scan); /* max to match */
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ ST.min=1;
+ ST.max=1;
+ }
+ scan = regnext(NEXTOPER(scan) + NODE_STEP_REGNODE);
+ goto repeat;
+
+ case CURLY: /* /A{m,n}B/ where A is width 1 char */
+ ST.paren = 0;
+ ST.min = ARG1(scan); /* min to match */
+ ST.max = ARG2(scan); /* max to match */
+ scan = NEXTOPER(scan) + NODE_STEP_REGNODE;
+ repeat:
+ /*
+ * Lookahead to avoid useless match attempts
+ * when we know what character comes next.
+ *
+ * Used to only do .*x and .*?x, but now it allows
+ * for )'s, ('s and (?{ ... })'s to be in the way
+ * of the quantifier and the EXACT-like node. -- japhy
+ */
+
+ assert(ST.min <= ST.max);
+ if (! HAS_TEXT(next) && ! JUMPABLE(next)) {
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ }
+ else {
+ regnode *text_node = next;
+
+ if (! HAS_TEXT(text_node))
+ FIND_NEXT_IMPT(text_node);
+
+ if (! HAS_TEXT(text_node))
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ else {
+ if ( PL_regkind[OP(text_node)] != EXACT ) {
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ }
+ else {
+
+ /* Currently we only get here when
+
+ PL_rekind[OP(text_node)] == EXACT
+
+ if this changes back then the macro for IS_TEXT and
+ friends need to change. */
+ if (! S_setup_EXACTISH_ST_c1_c2(aTHX_
+ text_node, &ST.c1, ST.c1_utf8, &ST.c2, ST.c2_utf8,
+ reginfo))
+ {
+ sayNO;
+ }
+ }
+ }
+ }
+
+ ST.A = scan;
+ ST.B = next;
+ if (minmod) {
+ char *li = locinput;
+ minmod = 0;
+ if (ST.min &&
+ regrepeat(rex, &li, ST.A, reginfo, ST.min, depth)
+ < ST.min)
+ sayNO;
+ SET_locinput(li);
+ ST.count = ST.min;
+ REGCP_SET(ST.cp);
+ if (ST.c1 == CHRTEST_VOID)
+ goto curly_try_B_min;
+
+ ST.oldloc = locinput;
+
+ /* set ST.maxpos to the furthest point along the
+ * string that could possibly match */
+ if (ST.max == REG_INFTY) {
+ ST.maxpos = reginfo->strend - 1;
+ if (utf8_target)
+ while (UTF8_IS_CONTINUATION(*(U8*)ST.maxpos))
+ ST.maxpos--;
+ }
+ else if (utf8_target) {
+ int m = ST.max - ST.min;
+ for (ST.maxpos = locinput;
+ m >0 && ST.maxpos < reginfo->strend; m--)
+ ST.maxpos += UTF8SKIP(ST.maxpos);
+ }
+ else {
+ ST.maxpos = locinput + ST.max - ST.min;
+ if (ST.maxpos >= reginfo->strend)
+ ST.maxpos = reginfo->strend - 1;
+ }
+ goto curly_try_B_min_known;
+
+ }
+ else {
+ /* avoid taking address of locinput, so it can remain
+ * a register var */
+ char *li = locinput;
+ ST.count = regrepeat(rex, &li, ST.A, reginfo, ST.max, depth);
+ if (ST.count < ST.min)
+ sayNO;
+ SET_locinput(li);
+ if ((ST.count > ST.min)
+ && (PL_regkind[OP(ST.B)] == EOL) && (OP(ST.B) != MEOL))
+ {
+ /* A{m,n} must come at the end of the string, there's
+ * no point in backing off ... */
+ ST.min = ST.count;
+ /* ...except that $ and \Z can match before *and* after
+ newline at the end. Consider "\n\n" =~ /\n+\Z\n/.
+ We may back off by one in this case. */
+ if (UCHARAT(locinput - 1) == '\n' && OP(ST.B) != EOS)
+ ST.min--;
+ }
+ REGCP_SET(ST.cp);
+ goto curly_try_B_max;
+ }
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CURLY_B_min_known_fail:
+ /* failed to find B in a non-greedy match where c1,c2 valid */
+
+ REGCP_UNWIND(ST.cp);
+ if (ST.paren) {
+ UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+ }
+ /* Couldn't or didn't -- move forward. */
+ ST.oldloc = locinput;
+ if (utf8_target)
+ locinput += UTF8SKIP(locinput);
+ else
+ locinput++;
+ ST.count++;
+ curly_try_B_min_known:
+ /* find the next place where 'B' could work, then call B */
+ {
+ int n;
+ if (utf8_target) {
+ n = (ST.oldloc == locinput) ? 0 : 1;
+ if (ST.c1 == ST.c2) {
+ /* set n to utf8_distance(oldloc, locinput) */
+ while (locinput <= ST.maxpos
+ && memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput)))
+ {
+ locinput += UTF8SKIP(locinput);
+ n++;
+ }
+ }
+ else {
+ /* set n to utf8_distance(oldloc, locinput) */
+ while (locinput <= ST.maxpos
+ && memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput))
+ && memNE(locinput, ST.c2_utf8, UTF8SKIP(locinput)))
+ {
+ locinput += UTF8SKIP(locinput);
+ n++;
+ }
+ }
+ }
+ else { /* Not utf8_target */
+ if (ST.c1 == ST.c2) {
+ while (locinput <= ST.maxpos &&
+ UCHARAT(locinput) != ST.c1)
+ locinput++;
+ }
+ else {
+ while (locinput <= ST.maxpos
+ && UCHARAT(locinput) != ST.c1
+ && UCHARAT(locinput) != ST.c2)
+ locinput++;
+ }
+ n = locinput - ST.oldloc;
+ }
+ if (locinput > ST.maxpos)
+ sayNO;
+ if (n) {
+ /* In /a{m,n}b/, ST.oldloc is at "a" x m, locinput is
+ * at b; check that everything between oldloc and
+ * locinput matches */
+ char *li = ST.oldloc;
+ ST.count += n;
+ if (regrepeat(rex, &li, ST.A, reginfo, n, depth) < n)
+ sayNO;
+ assert(n == REG_INFTY || locinput == li);
+ }
+ CURLY_SETPAREN(ST.paren, ST.count);
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ goto fake_end;
+ }
+ PUSH_STATE_GOTO(CURLY_B_min_known, ST.B, locinput);
+ }
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CURLY_B_min_fail:
+ /* failed to find B in a non-greedy match where c1,c2 invalid */
+
+ REGCP_UNWIND(ST.cp);
+ if (ST.paren) {
+ UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+ }
+ /* failed -- move forward one */
+ {
+ char *li = locinput;
+ if (!regrepeat(rex, &li, ST.A, reginfo, 1, depth)) {
+ sayNO;
+ }
+ locinput = li;
+ }
+ {
+ ST.count++;
+ if (ST.count <= ST.max || (ST.max == REG_INFTY &&
+ ST.count > 0)) /* count overflow ? */
+ {
+ curly_try_B_min:
+ CURLY_SETPAREN(ST.paren, ST.count);
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ goto fake_end;
+ }
+ PUSH_STATE_GOTO(CURLY_B_min, ST.B, locinput);
+ }
+ }
+ sayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ curly_try_B_max:
+ /* a successful greedy match: now try to match B */
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ goto fake_end;
+ }
+ {
+ bool could_match = locinput < reginfo->strend;
+
+ /* If it could work, try it. */
+ if (ST.c1 != CHRTEST_VOID && could_match) {
+ if (! UTF8_IS_INVARIANT(UCHARAT(locinput)) && utf8_target)
+ {
+ could_match = memEQ(locinput,
+ ST.c1_utf8,
+ UTF8SKIP(locinput))
+ || memEQ(locinput,
+ ST.c2_utf8,
+ UTF8SKIP(locinput));
+ }
+ else {
+ could_match = UCHARAT(locinput) == ST.c1
+ || UCHARAT(locinput) == ST.c2;
+ }
+ }
+ if (ST.c1 == CHRTEST_VOID || could_match) {
+ CURLY_SETPAREN(ST.paren, ST.count);
+ PUSH_STATE_GOTO(CURLY_B_max, ST.B, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+ }
+ /* FALLTHROUGH */
+
+ case CURLY_B_max_fail:
+ /* failed to find B in a greedy match */
+
+ REGCP_UNWIND(ST.cp);
+ if (ST.paren) {
+ UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+ }
+ /* back up. */
+ if (--ST.count < ST.min)
+ sayNO;
+ locinput = HOPc(locinput, -1);
+ goto curly_try_B_max;
+
+#undef ST
+
+ case END: /* last op of main pattern */
+ fake_end:
+ if (cur_eval) {
+ /* we've just finished A in /(??{A})B/; now continue with B */
+
+ st->u.eval.prev_rex = rex_sv; /* inner */
+
+ /* Save *all* the positions. */
+ st->u.eval.cp = regcppush(rex, 0, maxopenparen);
+ rex_sv = cur_eval->u.eval.prev_rex;
+ is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
+ SET_reg_curpm(rex_sv);
+ rex = ReANY(rex_sv);
+ rexi = RXi_GET(rex);
+ cur_curlyx = cur_eval->u.eval.prev_curlyx;
+
+ REGCP_SET(st->u.eval.lastcp);
+
+ /* Restore parens of the outer rex without popping the
+ * savestack */
+ S_regcp_restore(aTHX_ rex, cur_eval->u.eval.lastcp,
+ &maxopenparen);
+
+ st->u.eval.prev_eval = cur_eval;
+ cur_eval = cur_eval->u.eval.prev_eval;
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log, "%*s EVAL trying tail ... %"UVxf"\n",
+ REPORT_CODE_OFF+depth*2, "",PTR2UV(cur_eval)););
+ if ( nochange_depth )
+ nochange_depth--;
+
+ PUSH_YES_STATE_GOTO(EVAL_AB, st->u.eval.prev_eval->u.eval.B,
+ locinput); /* match B */
+ }
+
+ if (locinput < reginfo->till) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%sMatch possible, but length=%ld is smaller than requested=%ld, failing!%s\n",
+ PL_colors[4],
+ (long)(locinput - startpos),
+ (long)(reginfo->till - startpos),
+ PL_colors[5]));
+
+ sayNO_SILENT; /* Cannot match: too short. */
+ }
+ sayYES; /* Success! */
+
+ case SUCCEED: /* successful SUSPEND/UNLESSM/IFMATCH/CURLYM */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %ssubpattern success...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5]));
+ sayYES; /* Success! */
+
+#undef ST
+#define ST st->u.ifmatch
+
+ {
+ char *newstart;
+
+ case SUSPEND: /* (?>A) */
+ ST.wanted = 1;
+ newstart = locinput;
+ goto do_ifmatch;
+
+ case UNLESSM: /* -ve lookaround: (?!A), or with flags, (?<!A) */
+ ST.wanted = 0;
+ goto ifmatch_trivial_fail_test;
+
+ case IFMATCH: /* +ve lookaround: (?=A), or with flags, (?<=A) */
+ ST.wanted = 1;
+ ifmatch_trivial_fail_test:
+ if (scan->flags) {
+ char * const s = HOPBACKc(locinput, scan->flags);
+ if (!s) {
+ /* trivial fail */
+ if (logical) {
+ logical = 0;
+ sw = 1 - cBOOL(ST.wanted);
+ }
+ else if (ST.wanted)
+ sayNO;
+ next = scan + ARG(scan);
+ if (next == scan)
+ next = NULL;
+ break;
+ }
+ newstart = s;
+ }
+ else
+ newstart = locinput;
+
+ do_ifmatch:
+ ST.me = scan;
+ ST.logical = logical;
+ logical = 0; /* XXX: reset state of logical once it has been saved into ST */
+
+ /* execute body of (?...A) */
+ PUSH_YES_STATE_GOTO(IFMATCH_A, NEXTOPER(NEXTOPER(scan)), newstart);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+
+ case IFMATCH_A_fail: /* body of (?...A) failed */
+ ST.wanted = !ST.wanted;
+ /* FALLTHROUGH */
+
+ case IFMATCH_A: /* body of (?...A) succeeded */
+ if (ST.logical) {
+ sw = cBOOL(ST.wanted);
+ }
+ else if (!ST.wanted)
+ sayNO;
+
+ if (OP(ST.me) != SUSPEND) {
+ /* restore old position except for (?>...) */
+ locinput = st->locinput;
+ }
+ scan = ST.me + ARG(ST.me);
+ if (scan == ST.me)
+ scan = NULL;
+ continue; /* execute B */
+
+#undef ST
+
+ case LONGJMP: /* alternative with many branches compiles to
+ * (BRANCHJ; EXACT ...; LONGJMP ) x N */
+ next = scan + ARG(scan);
+ if (next == scan)
+ next = NULL;
+ break;
+
+ case COMMIT: /* (*COMMIT) */
+ reginfo->cutpoint = reginfo->strend;
+ /* FALLTHROUGH */
+
+ case PRUNE: /* (*PRUNE) */
+ if (!scan->flags)
+ sv_yes_mark = sv_commit = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ PUSH_STATE_GOTO(COMMIT_next, next, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case COMMIT_next_fail:
+ no_final = 1;
+ /* FALLTHROUGH */
+
+ case OPFAIL: /* (*FAIL) */
+ sayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+#define ST st->u.mark
+ case MARKPOINT: /* (*MARK:foo) */
+ ST.prev_mark = mark_state;
+ ST.mark_name = sv_commit = sv_yes_mark
+ = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ mark_state = st;
+ ST.mark_loc = locinput;
+ PUSH_YES_STATE_GOTO(MARKPOINT_next, next, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case MARKPOINT_next:
+ mark_state = ST.prev_mark;
+ sayYES;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case MARKPOINT_next_fail:
+ if (popmark && sv_eq(ST.mark_name,popmark))
+ {
+ if (ST.mark_loc > startpoint)
+ reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
+ popmark = NULL; /* we found our mark */
+ sv_commit = ST.mark_name;
+
+ DEBUG_EXECUTE_r({
+ PerlIO_printf(Perl_debug_log,
+ "%*s %ssetting cutpoint to mark:%"SVf"...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4], SVfARG(sv_commit), PL_colors[5]);
+ });
+ }
+ mark_state = ST.prev_mark;
+ sv_yes_mark = mark_state ?
+ mark_state->u.mark.mark_name : NULL;
+ sayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case SKIP: /* (*SKIP) */
+ if (scan->flags) {
+ /* (*SKIP) : if we fail we cut here*/
+ ST.mark_name = NULL;
+ ST.mark_loc = locinput;
+ PUSH_STATE_GOTO(SKIP_next,next, locinput);
+ } else {
+ /* (*SKIP:NAME) : if there is a (*MARK:NAME) fail where it was,
+ otherwise do nothing. Meaning we need to scan
+ */
+ regmatch_state *cur = mark_state;
+ SV *find = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+
+ while (cur) {
+ if ( sv_eq( cur->u.mark.mark_name,
+ find ) )
+ {
+ ST.mark_name = find;
+ PUSH_STATE_GOTO( SKIP_next, next, locinput);
+ }
+ cur = cur->u.mark.prev_mark;
+ }
+ }
+ /* Didn't find our (*MARK:NAME) so ignore this (*SKIP:NAME) */
+ break;
+
+ case SKIP_next_fail:
+ if (ST.mark_name) {
+ /* (*CUT:NAME) - Set up to search for the name as we
+ collapse the stack*/
+ popmark = ST.mark_name;
+ } else {
+ /* (*CUT) - No name, we cut here.*/
+ if (ST.mark_loc > startpoint)
+ reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
+ /* but we set sv_commit to latest mark_name if there
+ is one so they can test to see how things lead to this
+ cut */
+ if (mark_state)
+ sv_commit=mark_state->u.mark.mark_name;
+ }
+ no_final = 1;
+ sayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+#undef ST
+
+ case LNBREAK: /* \R */
+ if ((n=is_LNBREAK_safe(locinput, reginfo->strend, utf8_target))) {
+ locinput += n;
+ } else
+ sayNO;
+ break;
+
+ default:
+ PerlIO_printf(Perl_error_log, "%"UVxf" %d\n",
+ PTR2UV(scan), OP(scan));
+ Perl_croak(aTHX_ "regexp memory corruption");
+
+ /* this is a point to jump to in order to increment
+ * locinput by one character */
+ increment_locinput:
+ assert(!NEXTCHR_IS_EOS);
+ if (utf8_target) {
+ locinput += PL_utf8skip[nextchr];
+ /* locinput is allowed to go 1 char off the end, but not 2+ */
+ if (locinput > reginfo->strend)
+ sayNO;
+ }
+ else
+ locinput++;
+ break;
+
+ } /* end switch */
+
+ /* switch break jumps here */
+ scan = next; /* prepare to execute the next op and ... */
+ continue; /* ... jump back to the top, reusing st */
+ /* NOTREACHED */
+
+ push_yes_state:
+ /* push a state that backtracks on success */
+ st->u.yes.prev_yes_state = yes_state;
+ yes_state = st;
+ /* FALLTHROUGH */
+ push_state:
+ /* push a new regex state, then continue at scan */
+ {
+ regmatch_state *newst;
+
+ DEBUG_STACK_r({
+ regmatch_state *cur = st;
+ regmatch_state *curyes = yes_state;
+ int curd = depth;
+ regmatch_slab *slab = PL_regmatch_slab;
+ for (;curd > -1;cur--,curd--) {
+ if (cur < SLAB_FIRST(slab)) {
+ slab = slab->prev;
+ cur = SLAB_LAST(slab);
+ }
+ PerlIO_printf(Perl_error_log, "%*s#%-3d %-10s %s\n",
+ REPORT_CODE_OFF + 2 + depth * 2,"",
+ curd, PL_reg_name[cur->resume_state],
+ (curyes == cur) ? "yes" : ""
+ );
+ if (curyes == cur)
+ curyes = cur->u.yes.prev_yes_state;
+ }
+ } else
+ DEBUG_STATE_pp("push")
+ );
+ depth++;
+ st->locinput = locinput;
+ newst = st+1;
+ if (newst > SLAB_LAST(PL_regmatch_slab))
+ newst = S_push_slab(aTHX);
+ PL_regmatch_state = newst;
+
+ locinput = pushinput;
+ st = newst;
+ continue;
+ /* NOTREACHED */
+ }
+ }
+
+ /*
+ * We get here only if there's trouble -- normally "case END" is
+ * the terminating point.
+ */
+ Perl_croak(aTHX_ "corrupted regexp pointers");
+ /* NOTREACHED */
+ sayNO;
+ NOT_REACHED; /* NOTREACHED */
+
+ yes:
+ if (yes_state) {
+ /* we have successfully completed a subexpression, but we must now
+ * pop to the state marked by yes_state and continue from there */
+ assert(st != yes_state);
+#ifdef DEBUGGING
+ while (st != yes_state) {
+ st--;
+ if (st < SLAB_FIRST(PL_regmatch_slab)) {
+ PL_regmatch_slab = PL_regmatch_slab->prev;
+ st = SLAB_LAST(PL_regmatch_slab);
+ }
+ DEBUG_STATE_r({
+ if (no_final) {
+ DEBUG_STATE_pp("pop (no final)");
+ } else {
+ DEBUG_STATE_pp("pop (yes)");
+ }
+ });
+ depth--;
+ }
+#else
+ while (yes_state < SLAB_FIRST(PL_regmatch_slab)
+ || yes_state > SLAB_LAST(PL_regmatch_slab))
+ {
+ /* not in this slab, pop slab */
+ depth -= (st - SLAB_FIRST(PL_regmatch_slab) + 1);
+ PL_regmatch_slab = PL_regmatch_slab->prev;
+ st = SLAB_LAST(PL_regmatch_slab);
+ }
+ depth -= (st - yes_state);
+#endif
+ st = yes_state;
+ yes_state = st->u.yes.prev_yes_state;
+ PL_regmatch_state = st;
+
+ if (no_final)
+ locinput= st->locinput;
+ state_num = st->resume_state + no_final;
+ goto reenter_switch;
+ }
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch successful!%s\n",
+ PL_colors[4], PL_colors[5]));
+
+ if (reginfo->info_aux_eval) {
+ /* each successfully executed (?{...}) block does the equivalent of
+ * local $^R = do {...}
+ * When popping the save stack, all these locals would be undone;
+ * bypass this by setting the outermost saved $^R to the latest
+ * value */
+ /* I dont know if this is needed or works properly now.
+ * see code related to PL_replgv elsewhere in this file.
+ * Yves
+ */
+ if (oreplsv != GvSV(PL_replgv))
+ sv_setsv(oreplsv, GvSV(PL_replgv));
+ }
+ result = 1;
+ goto final_exit;
+
+ no:
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %sfailed...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4], PL_colors[5])
+ );
+
+ no_silent:
+ if (no_final) {
+ if (yes_state) {
+ goto yes;
+ } else {
+ goto final_exit;
+ }
+ }
+ if (depth) {
+ /* there's a previous state to backtrack to */
+ st--;
+ if (st < SLAB_FIRST(PL_regmatch_slab)) {
+ PL_regmatch_slab = PL_regmatch_slab->prev;
+ st = SLAB_LAST(PL_regmatch_slab);
+ }
+ PL_regmatch_state = st;
+ locinput= st->locinput;
+
+ DEBUG_STATE_pp("pop");
+ depth--;
+ if (yes_state == st)
+ yes_state = st->u.yes.prev_yes_state;
+
+ state_num = st->resume_state + 1; /* failure = success + 1 */
+ goto reenter_switch;
+ }
+ result = 0;
+
+ final_exit:
+ if (rex->intflags & PREGf_VERBARG_SEEN) {
+ SV *sv_err = get_sv("REGERROR", 1);
+ SV *sv_mrk = get_sv("REGMARK", 1);
+ if (result) {
+ sv_commit = &PL_sv_no;
+ if (!sv_yes_mark)
+ sv_yes_mark = &PL_sv_yes;
+ } else {
+ if (!sv_commit)
+ sv_commit = &PL_sv_yes;
+ sv_yes_mark = &PL_sv_no;
+ }
+ assert(sv_err);
+ assert(sv_mrk);
+ sv_setsv(sv_err, sv_commit);
+ sv_setsv(sv_mrk, sv_yes_mark);
+ }
+
+
+ if (last_pushed_cv) {
+ dSP;
+ POP_MULTICALL;
+ PERL_UNUSED_VAR(SP);
+ }
+
+ assert(!result || locinput - reginfo->strbeg >= 0);
+ return result ? locinput - reginfo->strbeg : -1;
+}
+
+/*
+ - regrepeat - repeatedly match something simple, report how many
+ *
+ * What 'simple' means is a node which can be the operand of a quantifier like
+ * '+', or {1,3}
+ *
+ * startposp - pointer a pointer to the start position. This is updated
+ * to point to the byte following the highest successful
+ * match.
+ * p - the regnode to be repeatedly matched against.
+ * reginfo - struct holding match state, such as strend
+ * max - maximum number of things to match.
+ * depth - (for debugging) backtracking depth.
+ */
+STATIC I32
+S_regrepeat(pTHX_ regexp *prog, char **startposp, const regnode *p,
+ regmatch_info *const reginfo, I32 max, int depth)
+{
+ char *scan; /* Pointer to current position in target string */
+ I32 c;
+ char *loceol = reginfo->strend; /* local version */
+ I32 hardcount = 0; /* How many matches so far */
+ bool utf8_target = reginfo->is_utf8_target;
+ unsigned int to_complement = 0; /* Invert the result? */
+ UV utf8_flags;
+ _char_class_number classnum;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ PERL_ARGS_ASSERT_REGREPEAT;
+
+ scan = *startposp;
+ if (max == REG_INFTY)
+ max = I32_MAX;
+ else if (! utf8_target && loceol - scan > max)
+ loceol = scan + max;
+
+ /* Here, for the case of a non-UTF-8 target we have adjusted <loceol> down
+ * to the maximum of how far we should go in it (leaving it set to the real
+ * end, if the maximum permissible would take us beyond that). This allows
+ * us to make the loop exit condition that we haven't gone past <loceol> to
+ * also mean that we haven't exceeded the max permissible count, saving a
+ * test each time through the loop. But it assumes that the OP matches a
+ * single byte, which is true for most of the OPs below when applied to a
+ * non-UTF-8 target. Those relatively few OPs that don't have this
+ * characteristic will have to compensate.
+ *
+ * There is no adjustment for UTF-8 targets, as the number of bytes per
+ * character varies. OPs will have to test both that the count is less
+ * than the max permissible (using <hardcount> to keep track), and that we
+ * are still within the bounds of the string (using <loceol>. A few OPs
+ * match a single byte no matter what the encoding. They can omit the max
+ * test if, for the UTF-8 case, they do the adjustment that was skipped
+ * above.
+ *
+ * Thus, the code above sets things up for the common case; and exceptional
+ * cases need extra work; the common case is to make sure <scan> doesn't
+ * go past <loceol>, and for UTF-8 to also use <hardcount> to make sure the
+ * count doesn't exceed the maximum permissible */
+
+ switch (OP(p)) {
+ case REG_ANY:
+ if (utf8_target) {
+ while (scan < loceol && hardcount < max && *scan != '\n') {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && *scan != '\n')
+ scan++;
+ }
+ break;
+ case SANY:
+ if (utf8_target) {
+ while (scan < loceol && hardcount < max) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ }
+ else
+ scan = loceol;
+ break;
+ case EXACTL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (utf8_target && UTF8_IS_ABOVE_LATIN1(*scan)) {
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(scan, loceol);
+ }
+ /* FALLTHROUGH */
+ case EXACT:
+ assert(STR_LEN(p) == reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1);
+
+ c = (U8)*STRING(p);
+
+ /* Can use a simple loop if the pattern char to match on is invariant
+ * under UTF-8, or both target and pattern aren't UTF-8. Note that we
+ * can use UTF8_IS_INVARIANT() even if the pattern isn't UTF-8, as it's
+ * true iff it doesn't matter if the argument is in UTF-8 or not */
+ if (UTF8_IS_INVARIANT(c) || (! utf8_target && ! reginfo->is_utf8_pat)) {
+ if (utf8_target && loceol - scan > max) {
+ /* We didn't adjust <loceol> because is UTF-8, but ok to do so,
+ * since here, to match at all, 1 char == 1 byte */
+ loceol = scan + max;
+ }
+ while (scan < loceol && UCHARAT(scan) == c) {
+ scan++;
+ }
+ }
+ else if (reginfo->is_utf8_pat) {
+ if (utf8_target) {
+ STRLEN scan_char_len;
+
+ /* When both target and pattern are UTF-8, we have to do
+ * string EQ */
+ while (hardcount < max
+ && scan < loceol
+ && (scan_char_len = UTF8SKIP(scan)) <= STR_LEN(p)
+ && memEQ(scan, STRING(p), scan_char_len))
+ {
+ scan += scan_char_len;
+ hardcount++;
+ }
+ }
+ else if (! UTF8_IS_ABOVE_LATIN1(c)) {
+
+ /* Target isn't utf8; convert the character in the UTF-8
+ * pattern to non-UTF8, and do a simple loop */
+ c = TWO_BYTE_UTF8_TO_NATIVE(c, *(STRING(p) + 1));
+ while (scan < loceol && UCHARAT(scan) == c) {
+ scan++;
+ }
+ } /* else pattern char is above Latin1, can't possibly match the
+ non-UTF-8 target */
+ }
+ else {
+
+ /* Here, the string must be utf8; pattern isn't, and <c> is
+ * different in utf8 than not, so can't compare them directly.
+ * Outside the loop, find the two utf8 bytes that represent c, and
+ * then look for those in sequence in the utf8 string */
+ U8 high = UTF8_TWO_BYTE_HI(c);
+ U8 low = UTF8_TWO_BYTE_LO(c);
+
+ while (hardcount < max
+ && scan + 1 < loceol
+ && UCHARAT(scan) == high
+ && UCHARAT(scan + 1) == low)
+ {
+ scan += 2;
+ hardcount++;
+ }
+ }
+ break;
+
+ case EXACTFA_NO_TRIE: /* This node only generated for non-utf8 patterns */
+ assert(! reginfo->is_utf8_pat);
+ /* FALLTHROUGH */
+ case EXACTFA:
+ utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_exactf;
+
+ case EXACTFL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ utf8_flags = FOLDEQ_LOCALE;
+ goto do_exactf;
+
+ case EXACTF: /* This node only generated for non-utf8 patterns */
+ assert(! reginfo->is_utf8_pat);
+ utf8_flags = 0;
+ goto do_exactf;
+
+ case EXACTFLU8:
+ if (! utf8_target) {
+ break;
+ }
+ utf8_flags = FOLDEQ_LOCALE | FOLDEQ_S2_ALREADY_FOLDED
+ | FOLDEQ_S2_FOLDS_SANE;
+ goto do_exactf;
+
+ case EXACTFU_SS:
+ case EXACTFU:
+ utf8_flags = reginfo->is_utf8_pat ? FOLDEQ_S2_ALREADY_FOLDED : 0;
+
+ do_exactf: {
+ int c1, c2;
+ U8 c1_utf8[UTF8_MAXBYTES+1], c2_utf8[UTF8_MAXBYTES+1];
+
+ assert(STR_LEN(p) == reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1);
+
+ if (S_setup_EXACTISH_ST_c1_c2(aTHX_ p, &c1, c1_utf8, &c2, c2_utf8,
+ reginfo))
+ {
+ if (c1 == CHRTEST_VOID) {
+ /* Use full Unicode fold matching */
+ char *tmpeol = reginfo->strend;
+ STRLEN pat_len = reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1;
+ while (hardcount < max
+ && foldEQ_utf8_flags(scan, &tmpeol, 0, utf8_target,
+ STRING(p), NULL, pat_len,
+ reginfo->is_utf8_pat, utf8_flags))
+ {
+ scan = tmpeol;
+ tmpeol = reginfo->strend;
+ hardcount++;
+ }
+ }
+ else if (utf8_target) {
+ if (c1 == c2) {
+ while (scan < loceol
+ && hardcount < max
+ && memEQ(scan, c1_utf8, UTF8SKIP(scan)))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ }
+ else {
+ while (scan < loceol
+ && hardcount < max
+ && (memEQ(scan, c1_utf8, UTF8SKIP(scan))
+ || memEQ(scan, c2_utf8, UTF8SKIP(scan))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ }
+ }
+ else if (c1 == c2) {
+ while (scan < loceol && UCHARAT(scan) == c1) {
+ scan++;
+ }
+ }
+ else {
+ while (scan < loceol &&
+ (UCHARAT(scan) == c1 || UCHARAT(scan) == c2))
+ {
+ scan++;
+ }
+ }
+ }
+ break;
+ }
+ case ANYOFL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ /* FALLTHROUGH */
+ case ANYOF:
+ if (utf8_target) {
+ while (hardcount < max
+ && scan < loceol
+ && reginclass(prog, p, (U8*)scan, (U8*) loceol, utf8_target))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && REGINCLASS(prog, p, (U8*)scan))
+ scan++;
+ }
+ break;
+
+ /* The argument (FLAGS) to all the POSIX node types is the class number */
+
+ case NPOSIXL:
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (! utf8_target) {
+ while (scan < loceol && to_complement ^ cBOOL(isFOO_lc(FLAGS(p),
+ *scan)))
+ {
+ scan++;
+ }
+ } else {
+ while (hardcount < max && scan < loceol
+ && to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(p),
+ (U8 *) scan)))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ }
+ break;
+
+ case POSIXD:
+ if (utf8_target) {
+ goto utf8_posix;
+ }
+ /* FALLTHROUGH */
+
+ case POSIXA:
+ if (utf8_target && loceol - scan > max) {
+
+ /* We didn't adjust <loceol> at the beginning of this routine
+ * because is UTF-8, but it is actually ok to do so, since here, to
+ * match, 1 char == 1 byte. */
+ loceol = scan + max;
+ }
+ while (scan < loceol && _generic_isCC_A((U8) *scan, FLAGS(p))) {
+ scan++;
+ }
+ break;
+
+ case NPOSIXD:
+ if (utf8_target) {
+ to_complement = 1;
+ goto utf8_posix;
+ }
+ /* FALLTHROUGH */
+
+ case NPOSIXA:
+ if (! utf8_target) {
+ while (scan < loceol && ! _generic_isCC_A((U8) *scan, FLAGS(p))) {
+ scan++;
+ }
+ }
+ else {
+
+ /* The complement of something that matches only ASCII matches all
+ * non-ASCII, plus everything in ASCII that isn't in the class. */
+ while (hardcount < max && scan < loceol
+ && (! isASCII_utf8(scan)
+ || ! _generic_isCC_A((U8) *scan, FLAGS(p))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ }
+ break;
+
+ case NPOSIXU:
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXU:
+ if (! utf8_target) {
+ while (scan < loceol && to_complement
+ ^ cBOOL(_generic_isCC((U8) *scan, FLAGS(p))))
+ {
+ scan++;
+ }
+ }
+ else {
+ utf8_posix:
+ classnum = (_char_class_number) FLAGS(p);
+ if (classnum < _FIRST_NON_SWASH_CC) {
+
+ /* Here, a swash is needed for above-Latin1 code points.
+ * Process as many Latin1 code points using the built-in rules.
+ * Go to another loop to finish processing upon encountering
+ * the first Latin1 code point. We could do that in this loop
+ * as well, but the other way saves having to test if the swash
+ * has been loaded every time through the loop: extra space to
+ * save a test. */
+ while (hardcount < max && scan < loceol) {
+ if (UTF8_IS_INVARIANT(*scan)) {
+ if (! (to_complement ^ cBOOL(_generic_isCC((U8) *scan,
+ classnum))))
+ {
+ break;
+ }
+ scan++;
+ }
+ else if (UTF8_IS_DOWNGRADEABLE_START(*scan)) {
+ if (! (to_complement
+ ^ cBOOL(_generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(*scan,
+ *(scan + 1)),
+ classnum))))
+ {
+ break;
+ }
+ scan += 2;
+ }
+ else {
+ goto found_above_latin1;
+ }
+
+ hardcount++;
+ }
+ }
+ else {
+ /* For these character classes, the knowledge of how to handle
+ * every code point is compiled in to Perl via a macro. This
+ * code is written for making the loops as tight as possible.
+ * It could be refactored to save space instead */
+ switch (classnum) {
+ case _CC_ENUM_SPACE:
+ while (hardcount < max
+ && scan < loceol
+ && (to_complement ^ cBOOL(isSPACE_utf8(scan))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ case _CC_ENUM_BLANK:
+ while (hardcount < max
+ && scan < loceol
+ && (to_complement ^ cBOOL(isBLANK_utf8(scan))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ case _CC_ENUM_XDIGIT:
+ while (hardcount < max
+ && scan < loceol
+ && (to_complement ^ cBOOL(isXDIGIT_utf8(scan))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ case _CC_ENUM_VERTSPACE:
+ while (hardcount < max
+ && scan < loceol
+ && (to_complement ^ cBOOL(isVERTWS_utf8(scan))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ case _CC_ENUM_CNTRL:
+ while (hardcount < max
+ && scan < loceol
+ && (to_complement ^ cBOOL(isCNTRL_utf8(scan))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: regrepeat() node %d='%s' has an unexpected character class '%d'", OP(p), PL_reg_name[OP(p)], classnum);
+ }
+ }
+ }
+ break;
+
+ found_above_latin1: /* Continuation of POSIXU and NPOSIXU */
+
+ /* Load the swash if not already present */
+ if (! PL_utf8_swash_ptrs[classnum]) {
+ U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+ PL_utf8_swash_ptrs[classnum] = _core_swash_init(
+ "utf8",
+ "",
+ &PL_sv_undef, 1, 0,
+ PL_XPosix_ptrs[classnum], &flags);
+ }
+
+ while (hardcount < max && scan < loceol
+ && to_complement ^ cBOOL(_generic_utf8(
+ classnum,
+ scan,
+ swash_fetch(PL_utf8_swash_ptrs[classnum],
+ (U8 *) scan,
+ TRUE))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+
+ case LNBREAK:
+ if (utf8_target) {
+ while (hardcount < max && scan < loceol &&
+ (c=is_LNBREAK_utf8_safe(scan, loceol))) {
+ scan += c;
+ hardcount++;
+ }
+ } else {
+ /* LNBREAK can match one or two latin chars, which is ok, but we
+ * have to use hardcount in this situation, and throw away the
+ * adjustment to <loceol> done before the switch statement */
+ loceol = reginfo->strend;
+ while (scan < loceol && (c=is_LNBREAK_latin1_safe(scan, loceol))) {
+ scan+=c;
+ hardcount++;
+ }
+ }
+ break;
+
+ case BOUNDL:
+ case NBOUNDL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ /* FALLTHROUGH */
+ case BOUND:
+ case BOUNDA:
+ case BOUNDU:
+ case EOS:
+ case GPOS:
+ case KEEPS:
+ case NBOUND:
+ case NBOUNDA:
+ case NBOUNDU:
+ case OPFAIL:
+ case SBOL:
+ case SEOL:
+ /* These are all 0 width, so match right here or not at all. */
+ break;
+
+ default:
+ Perl_croak(aTHX_ "panic: regrepeat() called with unrecognized node type %d='%s'", OP(p), PL_reg_name[OP(p)]);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ }
+
+ if (hardcount)
+ c = hardcount;
+ else
+ c = scan - *startposp;
+ *startposp = scan;
+
+ DEBUG_r({
+ GET_RE_DEBUG_FLAGS_DECL;
+ DEBUG_EXECUTE_r({
+ SV * const prop = sv_newmortal();
+ regprop(prog, prop, p, reginfo, NULL);
+ PerlIO_printf(Perl_debug_log,
+ "%*s %s can match %"IVdf" times out of %"IVdf"...\n",
+ REPORT_CODE_OFF + depth*2, "", SvPVX_const(prop),(IV)c,(IV)max);
+ });
+ });
+
+ return(c);
+}
+
+
+#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
+/*
+- regclass_swash - prepare the utf8 swash. Wraps the shared core version to
+create a copy so that changes the caller makes won't change the shared one.
+If <altsvp> is non-null, will return NULL in it, for back-compat.
+ */
+SV *
+Perl_regclass_swash(pTHX_ const regexp *prog, const regnode* node, bool doinit, SV** listsvp, SV **altsvp)
+{
+ PERL_ARGS_ASSERT_REGCLASS_SWASH;
+
+ if (altsvp) {
+ *altsvp = NULL;
+ }
+
+ return newSVsv(_get_regclass_nonbitmap_data(prog, node, doinit, listsvp, NULL, NULL));
+}
+
+#endif /* !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION) */
+
+/*
+ - reginclass - determine if a character falls into a character class
+
+ n is the ANYOF-type regnode
+ p is the target string
+ p_end points to one byte beyond the end of the target string
+ utf8_target tells whether p is in UTF-8.
+
+ Returns true if matched; false otherwise.
+
+ Note that this can be a synthetic start class, a combination of various
+ nodes, so things you think might be mutually exclusive, such as locale,
+ aren't. It can match both locale and non-locale
+
+ */
+
+STATIC bool
+S_reginclass(pTHX_ regexp * const prog, const regnode * const n, const U8* const p, const U8* const p_end, const bool utf8_target)
+{
+ dVAR;
+ const char flags = ANYOF_FLAGS(n);
+ bool match = FALSE;
+ UV c = *p;
+
+ PERL_ARGS_ASSERT_REGINCLASS;
+
+ /* If c is not already the code point, get it. Note that
+ * UTF8_IS_INVARIANT() works even if not in UTF-8 */
+ if (! UTF8_IS_INVARIANT(c) && utf8_target) {
+ STRLEN c_len = 0;
+ c = utf8n_to_uvchr(p, p_end - p, &c_len,
+ (UTF8_ALLOW_DEFAULT & UTF8_ALLOW_ANYUV)
+ | UTF8_ALLOW_FFFF | UTF8_CHECK_ONLY);
+ /* see [perl #37836] for UTF8_ALLOW_ANYUV; [perl #38293] for
+ * UTF8_ALLOW_FFFF */
+ if (c_len == (STRLEN)-1)
+ Perl_croak(aTHX_ "Malformed UTF-8 character (fatal)");
+ if (c > 255 && OP(n) == ANYOFL && ! is_ANYOF_SYNTHETIC(n)) {
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_CP_MSG(c);
+ }
+ }
+
+ /* If this character is potentially in the bitmap, check it */
+ if (c < NUM_ANYOF_CODE_POINTS) {
+ if (ANYOF_BITMAP_TEST(n, c))
+ match = TRUE;
+ else if ((flags & ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII)
+ && ! utf8_target
+ && ! isASCII(c))
+ {
+ match = TRUE;
+ }
+ else if (flags & ANYOF_LOCALE_FLAGS) {
+ if ((flags & ANYOF_LOC_FOLD)
+ && c < 256
+ && ANYOF_BITMAP_TEST(n, PL_fold_locale[c]))
+ {
+ match = TRUE;
+ }
+ else if (ANYOF_POSIXL_TEST_ANY_SET(n)
+ && c < 256
+ ) {
+
+ /* The data structure is arranged so bits 0, 2, 4, ... are set
+ * if the class includes the Posix character class given by
+ * bit/2; and 1, 3, 5, ... are set if the class includes the
+ * complemented Posix class given by int(bit/2). So we loop
+ * through the bits, each time changing whether we complement
+ * the result or not. Suppose for the sake of illustration
+ * that bits 0-3 mean respectively, \w, \W, \s, \S. If bit 0
+ * is set, it means there is a match for this ANYOF node if the
+ * character is in the class given by the expression (0 / 2 = 0
+ * = \w). If it is in that class, isFOO_lc() will return 1,
+ * and since 'to_complement' is 0, the result will stay TRUE,
+ * and we exit the loop. Suppose instead that bit 0 is 0, but
+ * bit 1 is 1. That means there is a match if the character
+ * matches \W. We won't bother to call isFOO_lc() on bit 0,
+ * but will on bit 1. On the second iteration 'to_complement'
+ * will be 1, so the exclusive or will reverse things, so we
+ * are testing for \W. On the third iteration, 'to_complement'
+ * will be 0, and we would be testing for \s; the fourth
+ * iteration would test for \S, etc.
+ *
+ * Note that this code assumes that all the classes are closed
+ * under folding. For example, if a character matches \w, then
+ * its fold does too; and vice versa. This should be true for
+ * any well-behaved locale for all the currently defined Posix
+ * classes, except for :lower: and :upper:, which are handled
+ * by the pseudo-class :cased: which matches if either of the
+ * other two does. To get rid of this assumption, an outer
+ * loop could be used below to iterate over both the source
+ * character, and its fold (if different) */
+
+ int count = 0;
+ int to_complement = 0;
+
+ while (count < ANYOF_MAX) {
+ if (ANYOF_POSIXL_TEST(n, count)
+ && to_complement ^ cBOOL(isFOO_lc(count/2, (U8) c)))
+ {
+ match = TRUE;
+ break;
+ }
+ count++;
+ to_complement ^= 1;
+ }
+ }
+ }
+ }
+
+
+ /* If the bitmap didn't (or couldn't) match, and something outside the
+ * bitmap could match, try that. */
+ if (!match) {
+ if (c >= NUM_ANYOF_CODE_POINTS
+ && (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP))
+ {
+ match = TRUE; /* Everything above the bitmap matches */
+ }
+ else if ((flags & ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES)
+ || (utf8_target && (flags & ANYOF_HAS_UTF8_NONBITMAP_MATCHES))
+ || ((flags & ANYOF_LOC_FOLD)
+ && IN_UTF8_CTYPE_LOCALE
+ && ARG(n) != ANYOF_ONLY_HAS_BITMAP))
+ {
+ SV* only_utf8_locale = NULL;
+ SV * const sw = _get_regclass_nonbitmap_data(prog, n, TRUE, 0,
+ &only_utf8_locale, NULL);
+ if (sw) {
+ U8 utf8_buffer[2];
+ U8 * utf8_p;
+ if (utf8_target) {
+ utf8_p = (U8 *) p;
+ } else { /* Convert to utf8 */
+ utf8_p = utf8_buffer;
+ append_utf8_from_native_byte(*p, &utf8_p);
+ utf8_p = utf8_buffer;
+ }
+
+ if (swash_fetch(sw, utf8_p, TRUE)) {
+ match = TRUE;
+ }
+ }
+ if (! match && only_utf8_locale && IN_UTF8_CTYPE_LOCALE) {
+ match = _invlist_contains_cp(only_utf8_locale, c);
+ }
+ }
+
+ if (UNICODE_IS_SUPER(c)
+ && (flags & ANYOF_WARN_SUPER)
+ && ckWARN_d(WARN_NON_UNICODE))
+ {
+ Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
+ "Matched non-Unicode code point 0x%04"UVXf" against Unicode property; may not be portable", c);
+ }
+ }
+
+#if ANYOF_INVERT != 1
+ /* Depending on compiler optimization cBOOL takes time, so if don't have to
+ * use it, don't */
+# error ANYOF_INVERT needs to be set to 1, or guarded with cBOOL below,
+#endif
+
+ /* The xor complements the return if to invert: 1^1 = 0, 1^0 = 1 */
+ return (flags & ANYOF_INVERT) ^ match;
+}
+
+STATIC U8 *
+S_reghop3(U8 *s, SSize_t off, const U8* lim)
+{
+ /* return the position 'off' UTF-8 characters away from 's', forward if
+ * 'off' >= 0, backwards if negative. But don't go outside of position
+ * 'lim', which better be < s if off < 0 */
+
+ PERL_ARGS_ASSERT_REGHOP3;
+
+ if (off >= 0) {
+ while (off-- && s < lim) {
+ /* XXX could check well-formedness here */
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ while (off++ && s > lim) {
+ s--;
+ if (UTF8_IS_CONTINUED(*s)) {
+ while (s > lim && UTF8_IS_CONTINUATION(*s))
+ s--;
+ }
+ /* XXX could check well-formedness here */
+ }
+ }
+ return s;
+}
+
+STATIC U8 *
+S_reghop4(U8 *s, SSize_t off, const U8* llim, const U8* rlim)
+{
+ PERL_ARGS_ASSERT_REGHOP4;
+
+ if (off >= 0) {
+ while (off-- && s < rlim) {
+ /* XXX could check well-formedness here */
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ while (off++ && s > llim) {
+ s--;
+ if (UTF8_IS_CONTINUED(*s)) {
+ while (s > llim && UTF8_IS_CONTINUATION(*s))
+ s--;
+ }
+ /* XXX could check well-formedness here */
+ }
+ }
+ return s;
+}
+
+/* like reghop3, but returns NULL on overrun, rather than returning last
+ * char pos */
+
+STATIC U8 *
+S_reghopmaybe3(U8* s, SSize_t off, const U8* lim)
+{
+ PERL_ARGS_ASSERT_REGHOPMAYBE3;
+
+ if (off >= 0) {
+ while (off-- && s < lim) {
+ /* XXX could check well-formedness here */
+ s += UTF8SKIP(s);
+ }
+ if (off >= 0)
+ return NULL;
+ }
+ else {
+ while (off++ && s > lim) {
+ s--;
+ if (UTF8_IS_CONTINUED(*s)) {
+ while (s > lim && UTF8_IS_CONTINUATION(*s))
+ s--;
+ }
+ /* XXX could check well-formedness here */
+ }
+ if (off <= 0)
+ return NULL;
+ }
+ return s;
+}
+
+
+/* when executing a regex that may have (?{}), extra stuff needs setting
+ up that will be visible to the called code, even before the current
+ match has finished. In particular:
+
+ * $_ is localised to the SV currently being matched;
+ * pos($_) is created if necessary, ready to be updated on each call-out
+ to code;
+ * a fake PMOP is created that can be set to PL_curpm (normally PL_curpm
+ isn't set until the current pattern is successfully finished), so that
+ $1 etc of the match-so-far can be seen;
+ * save the old values of subbeg etc of the current regex, and set then
+ to the current string (again, this is normally only done at the end
+ of execution)
+*/
+
+static void
+S_setup_eval_state(pTHX_ regmatch_info *const reginfo)
+{
+ MAGIC *mg;
+ regexp *const rex = ReANY(reginfo->prog);
+ regmatch_info_aux_eval *eval_state = reginfo->info_aux_eval;
+
+ eval_state->rex = rex;
+
+ if (reginfo->sv) {
+ /* Make $_ available to executed code. */
+ if (reginfo->sv != DEFSV) {
+ SAVE_DEFSV;
+ DEFSV_set(reginfo->sv);
+ }
+
+ if (!(mg = mg_find_mglob(reginfo->sv))) {
+ /* prepare for quick setting of pos */
+ mg = sv_magicext_mglob(reginfo->sv);
+ mg->mg_len = -1;
+ }
+ eval_state->pos_magic = mg;
+ eval_state->pos = mg->mg_len;
+ eval_state->pos_flags = mg->mg_flags;
+ }
+ else
+ eval_state->pos_magic = NULL;
+
+ if (!PL_reg_curpm) {
+ /* PL_reg_curpm is a fake PMOP that we can attach the current
+ * regex to and point PL_curpm at, so that $1 et al are visible
+ * within a /(?{})/. It's just allocated once per interpreter the
+ * first time its needed */
+ Newxz(PL_reg_curpm, 1, PMOP);
+#ifdef USE_ITHREADS
+ {
+ SV* const repointer = &PL_sv_undef;
+ /* this regexp is also owned by the new PL_reg_curpm, which
+ will try to free it. */
+ av_push(PL_regex_padav, repointer);
+ PL_reg_curpm->op_pmoffset = av_tindex(PL_regex_padav);
+ PL_regex_pad = AvARRAY(PL_regex_padav);
+ }
+#endif
+ }
+ SET_reg_curpm(reginfo->prog);
+ eval_state->curpm = PL_curpm;
+ PL_curpm = PL_reg_curpm;
+ if (RXp_MATCH_COPIED(rex)) {
+ /* Here is a serious problem: we cannot rewrite subbeg,
+ since it may be needed if this match fails. Thus
+ $` inside (?{}) could fail... */
+ eval_state->subbeg = rex->subbeg;
+ eval_state->sublen = rex->sublen;
+ eval_state->suboffset = rex->suboffset;
+ eval_state->subcoffset = rex->subcoffset;
+#ifdef PERL_ANY_COW
+ eval_state->saved_copy = rex->saved_copy;
+#endif
+ RXp_MATCH_COPIED_off(rex);
+ }
+ else
+ eval_state->subbeg = NULL;
+ rex->subbeg = (char *)reginfo->strbeg;
+ rex->suboffset = 0;
+ rex->subcoffset = 0;
+ rex->sublen = reginfo->strend - reginfo->strbeg;
+}
+
+
+/* destructor to clear up regmatch_info_aux and regmatch_info_aux_eval */
+
+static void
+S_cleanup_regmatch_info_aux(pTHX_ void *arg)
+{
+ regmatch_info_aux *aux = (regmatch_info_aux *) arg;
+ regmatch_info_aux_eval *eval_state = aux->info_aux_eval;
+ regmatch_slab *s;
+
+ Safefree(aux->poscache);
+
+ if (eval_state) {
+
+ /* undo the effects of S_setup_eval_state() */
+
+ if (eval_state->subbeg) {
+ regexp * const rex = eval_state->rex;
+ rex->subbeg = eval_state->subbeg;
+ rex->sublen = eval_state->sublen;
+ rex->suboffset = eval_state->suboffset;
+ rex->subcoffset = eval_state->subcoffset;
+#ifdef PERL_ANY_COW
+ rex->saved_copy = eval_state->saved_copy;
+#endif
+ RXp_MATCH_COPIED_on(rex);
+ }
+ if (eval_state->pos_magic)
+ {
+ eval_state->pos_magic->mg_len = eval_state->pos;
+ eval_state->pos_magic->mg_flags =
+ (eval_state->pos_magic->mg_flags & ~MGf_BYTES)
+ | (eval_state->pos_flags & MGf_BYTES);
+ }
+
+ PL_curpm = eval_state->curpm;
+ }
+
+ PL_regmatch_state = aux->old_regmatch_state;
+ PL_regmatch_slab = aux->old_regmatch_slab;
+
+ /* free all slabs above current one - this must be the last action
+ * of this function, as aux and eval_state are allocated within
+ * slabs and may be freed here */
+
+ s = PL_regmatch_slab->next;
+ if (s) {
+ PL_regmatch_slab->next = NULL;
+ while (s) {
+ regmatch_slab * const osl = s;
+ s = s->next;
+ Safefree(osl);
+ }
+ }
+}
+
+
+STATIC void
+S_to_utf8_substr(pTHX_ regexp *prog)
+{
+ /* Converts substr fields in prog from bytes to UTF-8, calling fbm_compile
+ * on the converted value */
+
+ int i = 1;
+
+ PERL_ARGS_ASSERT_TO_UTF8_SUBSTR;
+
+ do {
+ if (prog->substrs->data[i].substr
+ && !prog->substrs->data[i].utf8_substr) {
+ SV* const sv = newSVsv(prog->substrs->data[i].substr);
+ prog->substrs->data[i].utf8_substr = sv;
+ sv_utf8_upgrade(sv);
+ if (SvVALID(prog->substrs->data[i].substr)) {
+ if (SvTAIL(prog->substrs->data[i].substr)) {
+ /* Trim the trailing \n that fbm_compile added last
+ time. */
+ SvCUR_set(sv, SvCUR(sv) - 1);
+ /* Whilst this makes the SV technically "invalid" (as its
+ buffer is no longer followed by "\0") when fbm_compile()
+ adds the "\n" back, a "\0" is restored. */
+ fbm_compile(sv, FBMcf_TAIL);
+ } else
+ fbm_compile(sv, 0);
+ }
+ if (prog->substrs->data[i].substr == prog->check_substr)
+ prog->check_utf8 = sv;
+ }
+ } while (i--);
+}
+
+STATIC bool
+S_to_byte_substr(pTHX_ regexp *prog)
+{
+ /* Converts substr fields in prog from UTF-8 to bytes, calling fbm_compile
+ * on the converted value; returns FALSE if can't be converted. */
+
+ int i = 1;
+
+ PERL_ARGS_ASSERT_TO_BYTE_SUBSTR;
+
+ do {
+ if (prog->substrs->data[i].utf8_substr
+ && !prog->substrs->data[i].substr) {
+ SV* sv = newSVsv(prog->substrs->data[i].utf8_substr);
+ if (! sv_utf8_downgrade(sv, TRUE)) {
+ return FALSE;
+ }
+ if (SvVALID(prog->substrs->data[i].utf8_substr)) {
+ if (SvTAIL(prog->substrs->data[i].utf8_substr)) {
+ /* Trim the trailing \n that fbm_compile added last
+ time. */
+ SvCUR_set(sv, SvCUR(sv) - 1);
+ fbm_compile(sv, FBMcf_TAIL);
+ } else
+ fbm_compile(sv, 0);
+ }
+ prog->substrs->data[i].substr = sv;
+ if (prog->substrs->data[i].utf8_substr == prog->check_utf8)
+ prog->check_substr = sv;
+ }
+ } while (i--);
+
+ return TRUE;
+}
+
+/*
+ * ex: set ts=8 sts=4 sw=4 et:
+ */
--- /dev/null
+/* regcomp.c
+ */
+
+/*
+ * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
+ *
+ * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
+ */
+
+/* This file contains functions for compiling a regular expression. See
+ * also regexec.c which funnily enough, contains functions for executing
+ * a regular expression.
+ *
+ * This file is also copied at build time to ext/re/re_comp.c, where
+ * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
+ * This causes the main functions to be compiled under new names and with
+ * debugging support added, which makes "use re 'debug'" work.
+ */
+
+/* NOTE: this is derived from Henry Spencer's regexp code, and should not
+ * confused with the original package (see point 3 below). Thanks, Henry!
+ */
+
+/* Additional note: this code is very heavily munged from Henry's version
+ * in places. In some spots I've traded clarity for efficiency, so don't
+ * blame Henry for some of the lack of readability.
+ */
+
+/* The names of the functions have been changed from regcomp and
+ * regexec to pregcomp and pregexec in order to avoid conflicts
+ * with the POSIX routines of the same names.
+*/
+
+#ifdef PERL_EXT_RE_BUILD
+#include "re_top.h"
+#endif
+
+/*
+ * pregcomp and pregexec -- regsub and regerror are not used in perl
+ *
+ * Copyright (c) 1986 by University of Toronto.
+ * Written by Henry Spencer. Not derived from licensed software.
+ *
+ * Permission is granted to anyone to use this software for any
+ * purpose on any computer system, and to redistribute it freely,
+ * subject to the following restrictions:
+ *
+ * 1. The author is not responsible for the consequences of use of
+ * this software, no matter how awful, even if they arise
+ * from defects in it.
+ *
+ * 2. The origin of this software must not be misrepresented, either
+ * by explicit claim or by omission.
+ *
+ * 3. Altered versions must be plainly marked as such, and must not
+ * be misrepresented as being the original software.
+ *
+ *
+ **** Alterations to Henry's code are...
+ ****
+ **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ **** by Larry Wall and others
+ ****
+ **** You may distribute under the terms of either the GNU General Public
+ **** License or the Artistic License, as specified in the README file.
+
+ *
+ * Beware that some of this code is subtly aware of the way operator
+ * precedence is structured in regular expressions. Serious changes in
+ * regular-expression syntax might require a total rethink.
+ */
+#include "EXTERN.h"
+#define PERL_IN_REGCOMP_C
+#undef PERL_IN_XSUB_RE
+#define PERL_IN_XSUB_RE 1
+#include "perl.h"
+#undef PERL_IN_XSUB_RE
+
+#ifndef PERL_IN_XSUB_RE
+#include "re_defs.h"
+#endif
+
+#define REG_COMP_C
+#ifdef PERL_IN_XSUB_RE
+# include "re_comp.h"
+EXTERN_C const struct regexp_engine my_reg_engine;
+#else
+# include "regcomp.h"
+#endif
+
+#include "dquote_static.c"
+#include "inline_invlist.c"
+#include "unicode_constants.h"
+
+#define HAS_NONLATIN1_FOLD_CLOSURE(i) \
+ _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
+#define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(i) \
+ _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
+#define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
+#define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
+
+#ifndef STATIC
+#define STATIC static
+#endif
+
+#ifndef MIN
+#define MIN(a,b) ((a) < (b) ? (a) : (b))
+#endif
+
+/* this is a chain of data about sub patterns we are processing that
+ need to be handled separately/specially in study_chunk. Its so
+ we can simulate recursion without losing state. */
+struct scan_frame;
+typedef struct scan_frame {
+ regnode *last_regnode; /* last node to process in this frame */
+ regnode *next_regnode; /* next node to process when last is reached */
+ U32 prev_recursed_depth;
+ I32 stopparen; /* what stopparen do we use */
+ U32 is_top_frame; /* what flags do we use? */
+
+ struct scan_frame *this_prev_frame; /* this previous frame */
+ struct scan_frame *prev_frame; /* previous frame */
+ struct scan_frame *next_frame; /* next frame */
+} scan_frame;
+
+/* Certain characters are output as a sequence with the first being a
+ * backslash. */
+#define isBACKSLASHED_PUNCT(c) \
+ ((c) == '-' || (c) == ']' || (c) == '\\' || (c) == '^')
+
+
+struct RExC_state_t {
+ U32 flags; /* RXf_* are we folding, multilining? */
+ U32 pm_flags; /* PMf_* stuff from the calling PMOP */
+ char *precomp; /* uncompiled string. */
+ REGEXP *rx_sv; /* The SV that is the regexp. */
+ regexp *rx; /* perl core regexp structure */
+ regexp_internal *rxi; /* internal data for regexp object
+ pprivate field */
+ char *start; /* Start of input for compile */
+ char *end; /* End of input for compile */
+ char *parse; /* Input-scan pointer. */
+ SSize_t whilem_seen; /* number of WHILEM in this expr */
+ regnode *emit_start; /* Start of emitted-code area */
+ regnode *emit_bound; /* First regnode outside of the
+ allocated space */
+ regnode *emit; /* Code-emit pointer; if = &emit_dummy,
+ implies compiling, so don't emit */
+ regnode_ssc emit_dummy; /* placeholder for emit to point to;
+ large enough for the largest
+ non-EXACTish node, so can use it as
+ scratch in pass1 */
+ I32 naughty; /* How bad is this pattern? */
+ I32 sawback; /* Did we see \1, ...? */
+ U32 seen;
+ SSize_t size; /* Code size. */
+ I32 npar; /* Capture buffer count, (OPEN) plus
+ one. ("par" 0 is the whole
+ pattern)*/
+ I32 nestroot; /* root parens we are in - used by
+ accept */
+ I32 extralen;
+ I32 seen_zerolen;
+ regnode **open_parens; /* pointers to open parens */
+ regnode **close_parens; /* pointers to close parens */
+ regnode *opend; /* END node in program */
+ I32 utf8; /* whether the pattern is utf8 or not */
+ I32 orig_utf8; /* whether the pattern was originally in utf8 */
+ /* XXX use this for future optimisation of case
+ * where pattern must be upgraded to utf8. */
+ I32 uni_semantics; /* If a d charset modifier should use unicode
+ rules, even if the pattern is not in
+ utf8 */
+ HV *paren_names; /* Paren names */
+
+ regnode **recurse; /* Recurse regops */
+ I32 recurse_count; /* Number of recurse regops */
+ U8 *study_chunk_recursed; /* bitmap of which subs we have moved
+ through */
+ U32 study_chunk_recursed_bytes; /* bytes in bitmap */
+ I32 in_lookbehind;
+ I32 contains_locale;
+ I32 contains_i;
+ I32 override_recoding;
+#ifdef EBCDIC
+ I32 recode_x_to_native;
+#endif
+ I32 in_multi_char_class;
+ struct reg_code_block *code_blocks; /* positions of literal (?{})
+ within pattern */
+ int num_code_blocks; /* size of code_blocks[] */
+ int code_index; /* next code_blocks[] slot */
+ SSize_t maxlen; /* mininum possible number of chars in string to match */
+ scan_frame *frame_head;
+ scan_frame *frame_last;
+ U32 frame_count;
+ U32 strict;
+#ifdef ADD_TO_REGEXEC
+ char *starttry; /* -Dr: where regtry was called. */
+#define RExC_starttry (pRExC_state->starttry)
+#endif
+ SV *runtime_code_qr; /* qr with the runtime code blocks */
+#ifdef DEBUGGING
+ const char *lastparse;
+ I32 lastnum;
+ AV *paren_name_list; /* idx -> name */
+ U32 study_chunk_recursed_count;
+ SV *mysv1;
+ SV *mysv2;
+#define RExC_lastparse (pRExC_state->lastparse)
+#define RExC_lastnum (pRExC_state->lastnum)
+#define RExC_paren_name_list (pRExC_state->paren_name_list)
+#define RExC_study_chunk_recursed_count (pRExC_state->study_chunk_recursed_count)
+#define RExC_mysv (pRExC_state->mysv1)
+#define RExC_mysv1 (pRExC_state->mysv1)
+#define RExC_mysv2 (pRExC_state->mysv2)
+
+#endif
+};
+
+#define RExC_flags (pRExC_state->flags)
+#define RExC_pm_flags (pRExC_state->pm_flags)
+#define RExC_precomp (pRExC_state->precomp)
+#define RExC_rx_sv (pRExC_state->rx_sv)
+#define RExC_rx (pRExC_state->rx)
+#define RExC_rxi (pRExC_state->rxi)
+#define RExC_start (pRExC_state->start)
+#define RExC_end (pRExC_state->end)
+#define RExC_parse (pRExC_state->parse)
+#define RExC_whilem_seen (pRExC_state->whilem_seen)
+#ifdef RE_TRACK_PATTERN_OFFSETS
+#define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the
+ others */
+#endif
+#define RExC_emit (pRExC_state->emit)
+#define RExC_emit_dummy (pRExC_state->emit_dummy)
+#define RExC_emit_start (pRExC_state->emit_start)
+#define RExC_emit_bound (pRExC_state->emit_bound)
+#define RExC_sawback (pRExC_state->sawback)
+#define RExC_seen (pRExC_state->seen)
+#define RExC_size (pRExC_state->size)
+#define RExC_maxlen (pRExC_state->maxlen)
+#define RExC_npar (pRExC_state->npar)
+#define RExC_nestroot (pRExC_state->nestroot)
+#define RExC_extralen (pRExC_state->extralen)
+#define RExC_seen_zerolen (pRExC_state->seen_zerolen)
+#define RExC_utf8 (pRExC_state->utf8)
+#define RExC_uni_semantics (pRExC_state->uni_semantics)
+#define RExC_orig_utf8 (pRExC_state->orig_utf8)
+#define RExC_open_parens (pRExC_state->open_parens)
+#define RExC_close_parens (pRExC_state->close_parens)
+#define RExC_opend (pRExC_state->opend)
+#define RExC_paren_names (pRExC_state->paren_names)
+#define RExC_recurse (pRExC_state->recurse)
+#define RExC_recurse_count (pRExC_state->recurse_count)
+#define RExC_study_chunk_recursed (pRExC_state->study_chunk_recursed)
+#define RExC_study_chunk_recursed_bytes \
+ (pRExC_state->study_chunk_recursed_bytes)
+#define RExC_in_lookbehind (pRExC_state->in_lookbehind)
+#define RExC_contains_locale (pRExC_state->contains_locale)
+#define RExC_contains_i (pRExC_state->contains_i)
+#define RExC_override_recoding (pRExC_state->override_recoding)
+#ifdef EBCDIC
+# define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)
+#endif
+#define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
+#define RExC_frame_head (pRExC_state->frame_head)
+#define RExC_frame_last (pRExC_state->frame_last)
+#define RExC_frame_count (pRExC_state->frame_count)
+#define RExC_strict (pRExC_state->strict)
+
+/* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
+ * a flag to disable back-off on the fixed/floating substrings - if it's
+ * a high complexity pattern we assume the benefit of avoiding a full match
+ * is worth the cost of checking for the substrings even if they rarely help.
+ */
+#define RExC_naughty (pRExC_state->naughty)
+#define TOO_NAUGHTY (10)
+#define MARK_NAUGHTY(add) \
+ if (RExC_naughty < TOO_NAUGHTY) \
+ RExC_naughty += (add)
+#define MARK_NAUGHTY_EXP(exp, add) \
+ if (RExC_naughty < TOO_NAUGHTY) \
+ RExC_naughty += RExC_naughty / (exp) + (add)
+
+#define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
+#define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
+ ((*s) == '{' && regcurly(s)))
+
+/*
+ * Flags to be passed up and down.
+ */
+#define WORST 0 /* Worst case. */
+#define HASWIDTH 0x01 /* Known to match non-null strings. */
+
+/* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
+ * character. (There needs to be a case: in the switch statement in regexec.c
+ * for any node marked SIMPLE.) Note that this is not the same thing as
+ * REGNODE_SIMPLE */
+#define SIMPLE 0x02
+#define SPSTART 0x04 /* Starts with * or + */
+#define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
+#define TRYAGAIN 0x10 /* Weeded out a declaration. */
+#define RESTART_UTF8 0x20 /* Restart, need to calcuate sizes as UTF-8 */
+
+#define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
+
+/* whether trie related optimizations are enabled */
+#if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
+#define TRIE_STUDY_OPT
+#define FULL_TRIE_STUDY
+#define TRIE_STCLASS
+#endif
+
+
+
+#define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
+#define PBITVAL(paren) (1 << ((paren) & 7))
+#define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
+#define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
+#define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
+
+#define REQUIRE_UTF8 STMT_START { \
+ if (!UTF) { \
+ *flagp = RESTART_UTF8; \
+ return NULL; \
+ } \
+ } STMT_END
+
+/* This converts the named class defined in regcomp.h to its equivalent class
+ * number defined in handy.h. */
+#define namedclass_to_classnum(class) ((int) ((class) / 2))
+#define classnum_to_namedclass(classnum) ((classnum) * 2)
+
+#define _invlist_union_complement_2nd(a, b, output) \
+ _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
+#define _invlist_intersection_complement_2nd(a, b, output) \
+ _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
+
+/* About scan_data_t.
+
+ During optimisation we recurse through the regexp program performing
+ various inplace (keyhole style) optimisations. In addition study_chunk
+ and scan_commit populate this data structure with information about
+ what strings MUST appear in the pattern. We look for the longest
+ string that must appear at a fixed location, and we look for the
+ longest string that may appear at a floating location. So for instance
+ in the pattern:
+
+ /FOO[xX]A.*B[xX]BAR/
+
+ Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
+ strings (because they follow a .* construct). study_chunk will identify
+ both FOO and BAR as being the longest fixed and floating strings respectively.
+
+ The strings can be composites, for instance
+
+ /(f)(o)(o)/
+
+ will result in a composite fixed substring 'foo'.
+
+ For each string some basic information is maintained:
+
+ - offset or min_offset
+ This is the position the string must appear at, or not before.
+ It also implicitly (when combined with minlenp) tells us how many
+ characters must match before the string we are searching for.
+ Likewise when combined with minlenp and the length of the string it
+ tells us how many characters must appear after the string we have
+ found.
+
+ - max_offset
+ Only used for floating strings. This is the rightmost point that
+ the string can appear at. If set to SSize_t_MAX it indicates that the
+ string can occur infinitely far to the right.
+
+ - minlenp
+ A pointer to the minimum number of characters of the pattern that the
+ string was found inside. This is important as in the case of positive
+ lookahead or positive lookbehind we can have multiple patterns
+ involved. Consider
+
+ /(?=FOO).*F/
+
+ The minimum length of the pattern overall is 3, the minimum length
+ of the lookahead part is 3, but the minimum length of the part that
+ will actually match is 1. So 'FOO's minimum length is 3, but the
+ minimum length for the F is 1. This is important as the minimum length
+ is used to determine offsets in front of and behind the string being
+ looked for. Since strings can be composites this is the length of the
+ pattern at the time it was committed with a scan_commit. Note that
+ the length is calculated by study_chunk, so that the minimum lengths
+ are not known until the full pattern has been compiled, thus the
+ pointer to the value.
+
+ - lookbehind
+
+ In the case of lookbehind the string being searched for can be
+ offset past the start point of the final matching string.
+ If this value was just blithely removed from the min_offset it would
+ invalidate some of the calculations for how many chars must match
+ before or after (as they are derived from min_offset and minlen and
+ the length of the string being searched for).
+ When the final pattern is compiled and the data is moved from the
+ scan_data_t structure into the regexp structure the information
+ about lookbehind is factored in, with the information that would
+ have been lost precalculated in the end_shift field for the
+ associated string.
+
+ The fields pos_min and pos_delta are used to store the minimum offset
+ and the delta to the maximum offset at the current point in the pattern.
+
+*/
+
+typedef struct scan_data_t {
+ /*I32 len_min; unused */
+ /*I32 len_delta; unused */
+ SSize_t pos_min;
+ SSize_t pos_delta;
+ SV *last_found;
+ SSize_t last_end; /* min value, <0 unless valid. */
+ SSize_t last_start_min;
+ SSize_t last_start_max;
+ SV **longest; /* Either &l_fixed, or &l_float. */
+ SV *longest_fixed; /* longest fixed string found in pattern */
+ SSize_t offset_fixed; /* offset where it starts */
+ SSize_t *minlen_fixed; /* pointer to the minlen relevant to the string */
+ I32 lookbehind_fixed; /* is the position of the string modfied by LB */
+ SV *longest_float; /* longest floating string found in pattern */
+ SSize_t offset_float_min; /* earliest point in string it can appear */
+ SSize_t offset_float_max; /* latest point in string it can appear */
+ SSize_t *minlen_float; /* pointer to the minlen relevant to the string */
+ SSize_t lookbehind_float; /* is the pos of the string modified by LB */
+ I32 flags;
+ I32 whilem_c;
+ SSize_t *last_closep;
+ regnode_ssc *start_class;
+} scan_data_t;
+
+/*
+ * Forward declarations for pregcomp()'s friends.
+ */
+
+static const scan_data_t zero_scan_data =
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
+
+#define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
+#define SF_BEFORE_SEOL 0x0001
+#define SF_BEFORE_MEOL 0x0002
+#define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
+#define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
+
+#define SF_FIX_SHIFT_EOL (+2)
+#define SF_FL_SHIFT_EOL (+4)
+
+#define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
+#define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
+
+#define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
+#define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
+#define SF_IS_INF 0x0040
+#define SF_HAS_PAR 0x0080
+#define SF_IN_PAR 0x0100
+#define SF_HAS_EVAL 0x0200
+#define SCF_DO_SUBSTR 0x0400
+#define SCF_DO_STCLASS_AND 0x0800
+#define SCF_DO_STCLASS_OR 0x1000
+#define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
+#define SCF_WHILEM_VISITED_POS 0x2000
+
+#define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
+#define SCF_SEEN_ACCEPT 0x8000
+#define SCF_TRIE_DOING_RESTUDY 0x10000
+#define SCF_IN_DEFINE 0x20000
+
+
+
+
+#define UTF cBOOL(RExC_utf8)
+
+/* The enums for all these are ordered so things work out correctly */
+#define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
+#define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) \
+ == REGEX_DEPENDS_CHARSET)
+#define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
+#define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) \
+ >= REGEX_UNICODE_CHARSET)
+#define ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
+ == REGEX_ASCII_RESTRICTED_CHARSET)
+#define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
+ >= REGEX_ASCII_RESTRICTED_CHARSET)
+#define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) \
+ == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
+
+#define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
+
+/* For programs that want to be strictly Unicode compatible by dying if any
+ * attempt is made to match a non-Unicode code point against a Unicode
+ * property. */
+#define ALWAYS_WARN_SUPER ckDEAD(packWARN(WARN_NON_UNICODE))
+
+#define OOB_NAMEDCLASS -1
+
+/* There is no code point that is out-of-bounds, so this is problematic. But
+ * its only current use is to initialize a variable that is always set before
+ * looked at. */
+#define OOB_UNICODE 0xDEADBEEF
+
+#define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
+#define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
+
+
+/* length of regex to show in messages that don't mark a position within */
+#define RegexLengthToShowInErrorMessages 127
+
+/*
+ * If MARKER[12] are adjusted, be sure to adjust the constants at the top
+ * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
+ * op/pragma/warn/regcomp.
+ */
+#define MARKER1 "<-- HERE" /* marker as it appears in the description */
+#define MARKER2 " <-- HERE " /* marker as it appears within the regex */
+
+#define REPORT_LOCATION " in regex; marked by " MARKER1 \
+ " in m/%"UTF8f MARKER2 "%"UTF8f"/"
+
+#define REPORT_LOCATION_ARGS(offset) \
+ UTF8fARG(UTF, offset, RExC_precomp), \
+ UTF8fARG(UTF, RExC_end - RExC_precomp - offset, RExC_precomp + offset)
+
+/* Used to point after bad bytes for an error message, but avoid skipping
+ * past a nul byte. */
+#define SKIP_IF_CHAR(s) (!*(s) ? 0 : UTF ? UTF8SKIP(s) : 1)
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
+ * arg. Show regex, up to a maximum length. If it's too long, chop and add
+ * "...".
+ */
+#define _FAIL(code) STMT_START { \
+ const char *ellipses = ""; \
+ IV len = RExC_end - RExC_precomp; \
+ \
+ if (!SIZE_ONLY) \
+ SAVEFREESV(RExC_rx_sv); \
+ if (len > RegexLengthToShowInErrorMessages) { \
+ /* chop 10 shorter than the max, to ensure meaning of "..." */ \
+ len = RegexLengthToShowInErrorMessages - 10; \
+ ellipses = "..."; \
+ } \
+ code; \
+} STMT_END
+
+#define FAIL(msg) _FAIL( \
+ Perl_croak(aTHX_ "%s in regex m/%"UTF8f"%s/", \
+ msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
+
+#define FAIL2(msg,arg) _FAIL( \
+ Perl_croak(aTHX_ msg " in regex m/%"UTF8f"%s/", \
+ arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
+
+/*
+ * Simple_vFAIL -- like FAIL, but marks the current location in the scan
+ */
+#define Simple_vFAIL(m) STMT_START { \
+ const IV offset = \
+ (RExC_parse > RExC_end ? RExC_end : RExC_parse) - RExC_precomp; \
+ Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
+ m, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
+ */
+#define vFAIL(m) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEFREESV(RExC_rx_sv); \
+ Simple_vFAIL(m); \
+} STMT_END
+
+/*
+ * Like Simple_vFAIL(), but accepts two arguments.
+ */
+#define Simple_vFAIL2(m,a1) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
+ */
+#define vFAIL2(m,a1) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEFREESV(RExC_rx_sv); \
+ Simple_vFAIL2(m, a1); \
+} STMT_END
+
+
+/*
+ * Like Simple_vFAIL(), but accepts three arguments.
+ */
+#define Simple_vFAIL3(m, a1, a2) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
+ */
+#define vFAIL3(m,a1,a2) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEFREESV(RExC_rx_sv); \
+ Simple_vFAIL3(m, a1, a2); \
+} STMT_END
+
+/*
+ * Like Simple_vFAIL(), but accepts four arguments.
+ */
+#define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, a3, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vFAIL4(m,a1,a2,a3) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEFREESV(RExC_rx_sv); \
+ Simple_vFAIL4(m, a1, a2, a3); \
+} STMT_END
+
+/* A specialized version of vFAIL2 that works with UTF8f */
+#define vFAIL2utf8f(m, a1) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ if (!SIZE_ONLY) \
+ SAVEFREESV(RExC_rx_sv); \
+ S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/* These have asserts in them because of [perl #122671] Many warnings in
+ * regcomp.c can occur twice. If they get output in pass1 and later in that
+ * pass, the pattern has to be converted to UTF-8 and the pass restarted, they
+ * would get output again. So they should be output in pass2, and these
+ * asserts make sure new warnings follow that paradigm. */
+
+/* m is not necessarily a "literal string", in this macro */
+#define reg_warn_non_literal_string(loc, m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s" REPORT_LOCATION, \
+ m, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARNreg(loc,m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vWARN(loc, m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vWARN_dep(loc, m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), m REPORT_LOCATION, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARNdep(loc,m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
+ m REPORT_LOCATION, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARNregdep(loc,m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
+ m REPORT_LOCATION, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARN2reg_d(loc,m, a1) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP), \
+ m REPORT_LOCATION, \
+ a1, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARN2reg(loc, m, a1) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vWARN3(loc, m, a1, a2) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARN3reg(loc, m, a1, a2) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vWARN4(loc, m, a1, a2, a3) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, a3, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, a3, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, a3, a4, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/* Macros for recording node offsets. 20001227 mjd@plover.com
+ * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
+ * element 2*n-1 of the array. Element #2n holds the byte length node #n.
+ * Element 0 holds the number n.
+ * Position is 1 indexed.
+ */
+#ifndef RE_TRACK_PATTERN_OFFSETS
+#define Set_Node_Offset_To_R(node,byte)
+#define Set_Node_Offset(node,byte)
+#define Set_Cur_Node_Offset
+#define Set_Node_Length_To_R(node,len)
+#define Set_Node_Length(node,len)
+#define Set_Node_Cur_Length(node,start)
+#define Node_Offset(n)
+#define Node_Length(n)
+#define Set_Node_Offset_Length(node,offset,len)
+#define ProgLen(ri) ri->u.proglen
+#define SetProgLen(ri,x) ri->u.proglen = x
+#else
+#define ProgLen(ri) ri->u.offsets[0]
+#define SetProgLen(ri,x) ri->u.offsets[0] = x
+#define Set_Node_Offset_To_R(node,byte) STMT_START { \
+ if (! SIZE_ONLY) { \
+ MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
+ __LINE__, (int)(node), (int)(byte))); \
+ if((node) < 0) { \
+ Perl_croak(aTHX_ "value of node is %d in Offset macro", \
+ (int)(node)); \
+ } else { \
+ RExC_offsets[2*(node)-1] = (byte); \
+ } \
+ } \
+} STMT_END
+
+#define Set_Node_Offset(node,byte) \
+ Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
+#define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
+
+#define Set_Node_Length_To_R(node,len) STMT_START { \
+ if (! SIZE_ONLY) { \
+ MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
+ __LINE__, (int)(node), (int)(len))); \
+ if((node) < 0) { \
+ Perl_croak(aTHX_ "value of node is %d in Length macro", \
+ (int)(node)); \
+ } else { \
+ RExC_offsets[2*(node)] = (len); \
+ } \
+ } \
+} STMT_END
+
+#define Set_Node_Length(node,len) \
+ Set_Node_Length_To_R((node)-RExC_emit_start, len)
+#define Set_Node_Cur_Length(node, start) \
+ Set_Node_Length(node, RExC_parse - start)
+
+/* Get offsets and lengths */
+#define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
+#define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
+
+#define Set_Node_Offset_Length(node,offset,len) STMT_START { \
+ Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
+ Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
+} STMT_END
+#endif
+
+#if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
+#define EXPERIMENTAL_INPLACESCAN
+#endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
+
+#define DEBUG_RExC_seen() \
+ DEBUG_OPTIMISE_MORE_r({ \
+ PerlIO_printf(Perl_debug_log,"RExC_seen: "); \
+ \
+ if (RExC_seen & REG_ZERO_LEN_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_ZERO_LEN_SEEN "); \
+ \
+ if (RExC_seen & REG_LOOKBEHIND_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_LOOKBEHIND_SEEN "); \
+ \
+ if (RExC_seen & REG_GPOS_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_GPOS_SEEN "); \
+ \
+ if (RExC_seen & REG_RECURSE_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_RECURSE_SEEN "); \
+ \
+ if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_TOP_LEVEL_BRANCHES_SEEN "); \
+ \
+ if (RExC_seen & REG_VERBARG_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_VERBARG_SEEN "); \
+ \
+ if (RExC_seen & REG_CUTGROUP_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_CUTGROUP_SEEN "); \
+ \
+ if (RExC_seen & REG_RUN_ON_COMMENT_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_RUN_ON_COMMENT_SEEN "); \
+ \
+ if (RExC_seen & REG_UNFOLDED_MULTI_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_UNFOLDED_MULTI_SEEN "); \
+ \
+ if (RExC_seen & REG_GOSTART_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_GOSTART_SEEN "); \
+ \
+ if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_UNBOUNDED_QUANTIFIER_SEEN "); \
+ \
+ PerlIO_printf(Perl_debug_log,"\n"); \
+ });
+
+#define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
+ if ((flags) & flag) PerlIO_printf(Perl_debug_log, "%s ", #flag)
+
+#define DEBUG_SHOW_STUDY_FLAGS(flags,open_str,close_str) \
+ if ( ( flags ) ) { \
+ PerlIO_printf(Perl_debug_log, "%s", open_str); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_SEOL); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_MEOL); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SF_IS_INF); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_PAR); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SF_IN_PAR); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_EVAL); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_SUBSTR); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_AND); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_OR); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_WHILEM_VISITED_POS); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_RESTUDY); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_SEEN_ACCEPT); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_DOING_RESTUDY); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_IN_DEFINE); \
+ PerlIO_printf(Perl_debug_log, "%s", close_str); \
+ }
+
+
+#define DEBUG_STUDYDATA(str,data,depth) \
+DEBUG_OPTIMISE_MORE_r(if(data){ \
+ PerlIO_printf(Perl_debug_log, \
+ "%*s" str "Pos:%"IVdf"/%"IVdf \
+ " Flags: 0x%"UVXf, \
+ (int)(depth)*2, "", \
+ (IV)((data)->pos_min), \
+ (IV)((data)->pos_delta), \
+ (UV)((data)->flags) \
+ ); \
+ DEBUG_SHOW_STUDY_FLAGS((data)->flags," [ ","]"); \
+ PerlIO_printf(Perl_debug_log, \
+ " Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
+ (IV)((data)->whilem_c), \
+ (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
+ is_inf ? "INF " : "" \
+ ); \
+ if ((data)->last_found) \
+ PerlIO_printf(Perl_debug_log, \
+ "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
+ " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
+ SvPVX_const((data)->last_found), \
+ (IV)((data)->last_end), \
+ (IV)((data)->last_start_min), \
+ (IV)((data)->last_start_max), \
+ ((data)->longest && \
+ (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
+ SvPVX_const((data)->longest_fixed), \
+ (IV)((data)->offset_fixed), \
+ ((data)->longest && \
+ (data)->longest==&((data)->longest_float)) ? "*" : "", \
+ SvPVX_const((data)->longest_float), \
+ (IV)((data)->offset_float_min), \
+ (IV)((data)->offset_float_max) \
+ ); \
+ PerlIO_printf(Perl_debug_log,"\n"); \
+});
+
+/* is c a control character for which we have a mnemonic? */
+#define isMNEMONIC_CNTRL(c) _IS_MNEMONIC_CNTRL_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
+
+STATIC const char *
+S_cntrl_to_mnemonic(const U8 c)
+{
+ /* Returns the mnemonic string that represents character 'c', if one
+ * exists; NULL otherwise. The only ones that exist for the purposes of
+ * this routine are a few control characters */
+
+ switch (c) {
+ case '\a': return "\\a";
+ case '\b': return "\\b";
+ case ESC_NATIVE: return "\\e";
+ case '\f': return "\\f";
+ case '\n': return "\\n";
+ case '\r': return "\\r";
+ case '\t': return "\\t";
+ }
+
+ return NULL;
+}
+
+/* Mark that we cannot extend a found fixed substring at this point.
+ Update the longest found anchored substring and the longest found
+ floating substrings if needed. */
+
+STATIC void
+S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
+ SSize_t *minlenp, int is_inf)
+{
+ const STRLEN l = CHR_SVLEN(data->last_found);
+ const STRLEN old_l = CHR_SVLEN(*data->longest);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_SCAN_COMMIT;
+
+ if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
+ SvSetMagicSV(*data->longest, data->last_found);
+ if (*data->longest == data->longest_fixed) {
+ data->offset_fixed = l ? data->last_start_min : data->pos_min;
+ if (data->flags & SF_BEFORE_EOL)
+ data->flags
+ |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
+ else
+ data->flags &= ~SF_FIX_BEFORE_EOL;
+ data->minlen_fixed=minlenp;
+ data->lookbehind_fixed=0;
+ }
+ else { /* *data->longest == data->longest_float */
+ data->offset_float_min = l ? data->last_start_min : data->pos_min;
+ data->offset_float_max = (l
+ ? data->last_start_max
+ : (data->pos_delta > SSize_t_MAX - data->pos_min
+ ? SSize_t_MAX
+ : data->pos_min + data->pos_delta));
+ if (is_inf
+ || (STRLEN)data->offset_float_max > (STRLEN)SSize_t_MAX)
+ data->offset_float_max = SSize_t_MAX;
+ if (data->flags & SF_BEFORE_EOL)
+ data->flags
+ |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
+ else
+ data->flags &= ~SF_FL_BEFORE_EOL;
+ data->minlen_float=minlenp;
+ data->lookbehind_float=0;
+ }
+ }
+ SvCUR_set(data->last_found, 0);
+ {
+ SV * const sv = data->last_found;
+ if (SvUTF8(sv) && SvMAGICAL(sv)) {
+ MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
+ if (mg)
+ mg->mg_len = 0;
+ }
+ }
+ data->last_end = -1;
+ data->flags &= ~SF_BEFORE_EOL;
+ DEBUG_STUDYDATA("commit: ",data,0);
+}
+
+/* An SSC is just a regnode_charclass_posix with an extra field: the inversion
+ * list that describes which code points it matches */
+
+STATIC void
+S_ssc_anything(pTHX_ regnode_ssc *ssc)
+{
+ /* Set the SSC 'ssc' to match an empty string or any code point */
+
+ PERL_ARGS_ASSERT_SSC_ANYTHING;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ ssc->invlist = sv_2mortal(_new_invlist(2)); /* mortalize so won't leak */
+ _append_range_to_invlist(ssc->invlist, 0, UV_MAX);
+ ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING; /* Plus matches empty */
+}
+
+STATIC int
+S_ssc_is_anything(const regnode_ssc *ssc)
+{
+ /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
+ * point; FALSE otherwise. Thus, this is used to see if using 'ssc' buys
+ * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
+ * in any way, so there's no point in using it */
+
+ UV start, end;
+ bool ret;
+
+ PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
+ return FALSE;
+ }
+
+ /* See if the list consists solely of the range 0 - Infinity */
+ invlist_iterinit(ssc->invlist);
+ ret = invlist_iternext(ssc->invlist, &start, &end)
+ && start == 0
+ && end == UV_MAX;
+
+ invlist_iterfinish(ssc->invlist);
+
+ if (ret) {
+ return TRUE;
+ }
+
+ /* If e.g., both \w and \W are set, matches everything */
+ if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+ int i;
+ for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
+ if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
+ return TRUE;
+ }
+ }
+ }
+
+ return FALSE;
+}
+
+STATIC void
+S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
+{
+ /* Initializes the SSC 'ssc'. This includes setting it to match an empty
+ * string, any code point, or any posix class under locale */
+
+ PERL_ARGS_ASSERT_SSC_INIT;
+
+ Zero(ssc, 1, regnode_ssc);
+ set_ANYOF_SYNTHETIC(ssc);
+ ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
+ ssc_anything(ssc);
+
+ /* If any portion of the regex is to operate under locale rules that aren't
+ * fully known at compile time, initialization includes it. The reason
+ * this isn't done for all regexes is that the optimizer was written under
+ * the assumption that locale was all-or-nothing. Given the complexity and
+ * lack of documentation in the optimizer, and that there are inadequate
+ * test cases for locale, many parts of it may not work properly, it is
+ * safest to avoid locale unless necessary. */
+ if (RExC_contains_locale) {
+ ANYOF_POSIXL_SETALL(ssc);
+ }
+ else {
+ ANYOF_POSIXL_ZERO(ssc);
+ }
+}
+
+STATIC int
+S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
+ const regnode_ssc *ssc)
+{
+ /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
+ * to the list of code points matched, and locale posix classes; hence does
+ * not check its flags) */
+
+ UV start, end;
+ bool ret;
+
+ PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ invlist_iterinit(ssc->invlist);
+ ret = invlist_iternext(ssc->invlist, &start, &end)
+ && start == 0
+ && end == UV_MAX;
+
+ invlist_iterfinish(ssc->invlist);
+
+ if (! ret) {
+ return FALSE;
+ }
+
+ if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
+ return FALSE;
+ }
+
+ return TRUE;
+}
+
+STATIC SV*
+S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
+ const regnode_charclass* const node)
+{
+ /* Returns a mortal inversion list defining which code points are matched
+ * by 'node', which is of type ANYOF. Handles complementing the result if
+ * appropriate. If some code points aren't knowable at this time, the
+ * returned list must, and will, contain every code point that is a
+ * possibility. */
+
+ SV* invlist = sv_2mortal(_new_invlist(0));
+ SV* only_utf8_locale_invlist = NULL;
+ unsigned int i;
+ const U32 n = ARG(node);
+ bool new_node_has_latin1 = FALSE;
+
+ PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
+
+ /* Look at the data structure created by S_set_ANYOF_arg() */
+ if (n != ANYOF_ONLY_HAS_BITMAP) {
+ SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
+ AV * const av = MUTABLE_AV(SvRV(rv));
+ SV **const ary = AvARRAY(av);
+ assert(RExC_rxi->data->what[n] == 's');
+
+ if (ary[1] && ary[1] != &PL_sv_undef) { /* Has compile-time swash */
+ invlist = sv_2mortal(invlist_clone(_get_swash_invlist(ary[1])));
+ }
+ else if (ary[0] && ary[0] != &PL_sv_undef) {
+
+ /* Here, no compile-time swash, and there are things that won't be
+ * known until runtime -- we have to assume it could be anything */
+ return _add_range_to_invlist(invlist, 0, UV_MAX);
+ }
+ else if (ary[3] && ary[3] != &PL_sv_undef) {
+
+ /* Here no compile-time swash, and no run-time only data. Use the
+ * node's inversion list */
+ invlist = sv_2mortal(invlist_clone(ary[3]));
+ }
+
+ /* Get the code points valid only under UTF-8 locales */
+ if ((ANYOF_FLAGS(node) & ANYOF_LOC_FOLD)
+ && ary[2] && ary[2] != &PL_sv_undef)
+ {
+ only_utf8_locale_invlist = ary[2];
+ }
+ }
+
+ /* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
+ * code points, and an inversion list for the others, but if there are code
+ * points that should match only conditionally on the target string being
+ * UTF-8, those are placed in the inversion list, and not the bitmap.
+ * Since there are circumstances under which they could match, they are
+ * included in the SSC. But if the ANYOF node is to be inverted, we have
+ * to exclude them here, so that when we invert below, the end result
+ * actually does include them. (Think about "\xe0" =~ /[^\xc0]/di;). We
+ * have to do this here before we add the unconditionally matched code
+ * points */
+ if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
+ _invlist_intersection_complement_2nd(invlist,
+ PL_UpperLatin1,
+ &invlist);
+ }
+
+ /* Add in the points from the bit map */
+ for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
+ if (ANYOF_BITMAP_TEST(node, i)) {
+ invlist = add_cp_to_invlist(invlist, i);
+ new_node_has_latin1 = TRUE;
+ }
+ }
+
+ /* If this can match all upper Latin1 code points, have to add them
+ * as well */
+ if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII) {
+ _invlist_union(invlist, PL_UpperLatin1, &invlist);
+ }
+
+ /* Similarly for these */
+ if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
+ _invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
+ }
+
+ if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
+ _invlist_invert(invlist);
+ }
+ else if (new_node_has_latin1 && ANYOF_FLAGS(node) & ANYOF_LOC_FOLD) {
+
+ /* Under /li, any 0-255 could fold to any other 0-255, depending on the
+ * locale. We can skip this if there are no 0-255 at all. */
+ _invlist_union(invlist, PL_Latin1, &invlist);
+ }
+
+ /* Similarly add the UTF-8 locale possible matches. These have to be
+ * deferred until after the non-UTF-8 locale ones are taken care of just
+ * above, or it leads to wrong results under ANYOF_INVERT */
+ if (only_utf8_locale_invlist) {
+ _invlist_union_maybe_complement_2nd(invlist,
+ only_utf8_locale_invlist,
+ ANYOF_FLAGS(node) & ANYOF_INVERT,
+ &invlist);
+ }
+
+ return invlist;
+}
+
+/* These two functions currently do the exact same thing */
+#define ssc_init_zero ssc_init
+
+#define ssc_add_cp(ssc, cp) ssc_add_range((ssc), (cp), (cp))
+#define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
+
+/* 'AND' a given class with another one. Can create false positives. 'ssc'
+ * should not be inverted. 'and_with->flags & ANYOF_MATCHES_POSIXL' should be
+ * 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */
+
+STATIC void
+S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
+ const regnode_charclass *and_with)
+{
+ /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
+ * another SSC or a regular ANYOF class. Can create false positives. */
+
+ SV* anded_cp_list;
+ U8 anded_flags;
+
+ PERL_ARGS_ASSERT_SSC_AND;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
+ * the code point inversion list and just the relevant flags */
+ if (is_ANYOF_SYNTHETIC(and_with)) {
+ anded_cp_list = ((regnode_ssc *)and_with)->invlist;
+ anded_flags = ANYOF_FLAGS(and_with);
+
+ /* XXX This is a kludge around what appears to be deficiencies in the
+ * optimizer. If we make S_ssc_anything() add in the WARN_SUPER flag,
+ * there are paths through the optimizer where it doesn't get weeded
+ * out when it should. And if we don't make some extra provision for
+ * it like the code just below, it doesn't get added when it should.
+ * This solution is to add it only when AND'ing, which is here, and
+ * only when what is being AND'ed is the pristine, original node
+ * matching anything. Thus it is like adding it to ssc_anything() but
+ * only when the result is to be AND'ed. Probably the same solution
+ * could be adopted for the same problem we have with /l matching,
+ * which is solved differently in S_ssc_init(), and that would lead to
+ * fewer false positives than that solution has. But if this solution
+ * creates bugs, the consequences are only that a warning isn't raised
+ * that should be; while the consequences for having /l bugs is
+ * incorrect matches */
+ if (ssc_is_anything((regnode_ssc *)and_with)) {
+ anded_flags |= ANYOF_WARN_SUPER;
+ }
+ }
+ else {
+ anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
+ anded_flags = ANYOF_FLAGS(and_with) & ANYOF_COMMON_FLAGS;
+ }
+
+ ANYOF_FLAGS(ssc) &= anded_flags;
+
+ /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
+ * C2 is the list of code points in 'and-with'; P2, its posix classes.
+ * 'and_with' may be inverted. When not inverted, we have the situation of
+ * computing:
+ * (C1 | P1) & (C2 | P2)
+ * = (C1 & (C2 | P2)) | (P1 & (C2 | P2))
+ * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
+ * <= ((C1 & C2) | P2)) | ( P1 | (P1 & P2))
+ * <= ((C1 & C2) | P1 | P2)
+ * Alternatively, the last few steps could be:
+ * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
+ * <= ((C1 & C2) | C1 ) | ( C2 | (P1 & P2))
+ * <= (C1 | C2 | (P1 & P2))
+ * We favor the second approach if either P1 or P2 is non-empty. This is
+ * because these components are a barrier to doing optimizations, as what
+ * they match cannot be known until the moment of matching as they are
+ * dependent on the current locale, 'AND"ing them likely will reduce or
+ * eliminate them.
+ * But we can do better if we know that C1,P1 are in their initial state (a
+ * frequent occurrence), each matching everything:
+ * (<everything>) & (C2 | P2) = C2 | P2
+ * Similarly, if C2,P2 are in their initial state (again a frequent
+ * occurrence), the result is a no-op
+ * (C1 | P1) & (<everything>) = C1 | P1
+ *
+ * Inverted, we have
+ * (C1 | P1) & ~(C2 | P2) = (C1 | P1) & (~C2 & ~P2)
+ * = (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
+ * <= (C1 & ~C2) | (P1 & ~P2)
+ * */
+
+ if ((ANYOF_FLAGS(and_with) & ANYOF_INVERT)
+ && ! is_ANYOF_SYNTHETIC(and_with))
+ {
+ unsigned int i;
+
+ ssc_intersection(ssc,
+ anded_cp_list,
+ FALSE /* Has already been inverted */
+ );
+
+ /* If either P1 or P2 is empty, the intersection will be also; can skip
+ * the loop */
+ if (! (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL)) {
+ ANYOF_POSIXL_ZERO(ssc);
+ }
+ else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+
+ /* Note that the Posix class component P from 'and_with' actually
+ * looks like:
+ * P = Pa | Pb | ... | Pn
+ * where each component is one posix class, such as in [\w\s].
+ * Thus
+ * ~P = ~(Pa | Pb | ... | Pn)
+ * = ~Pa & ~Pb & ... & ~Pn
+ * <= ~Pa | ~Pb | ... | ~Pn
+ * The last is something we can easily calculate, but unfortunately
+ * is likely to have many false positives. We could do better
+ * in some (but certainly not all) instances if two classes in
+ * P have known relationships. For example
+ * :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
+ * So
+ * :lower: & :print: = :lower:
+ * And similarly for classes that must be disjoint. For example,
+ * since \s and \w can have no elements in common based on rules in
+ * the POSIX standard,
+ * \w & ^\S = nothing
+ * Unfortunately, some vendor locales do not meet the Posix
+ * standard, in particular almost everything by Microsoft.
+ * The loop below just changes e.g., \w into \W and vice versa */
+
+ regnode_charclass_posixl temp;
+ int add = 1; /* To calculate the index of the complement */
+
+ ANYOF_POSIXL_ZERO(&temp);
+ for (i = 0; i < ANYOF_MAX; i++) {
+ assert(i % 2 != 0
+ || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
+ || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
+
+ if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
+ ANYOF_POSIXL_SET(&temp, i + add);
+ }
+ add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
+ }
+ ANYOF_POSIXL_AND(&temp, ssc);
+
+ } /* else ssc already has no posixes */
+ } /* else: Not inverted. This routine is a no-op if 'and_with' is an SSC
+ in its initial state */
+ else if (! is_ANYOF_SYNTHETIC(and_with)
+ || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
+ {
+ /* But if 'ssc' is in its initial state, the result is just 'and_with';
+ * copy it over 'ssc' */
+ if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
+ if (is_ANYOF_SYNTHETIC(and_with)) {
+ StructCopy(and_with, ssc, regnode_ssc);
+ }
+ else {
+ ssc->invlist = anded_cp_list;
+ ANYOF_POSIXL_ZERO(ssc);
+ if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
+ ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
+ }
+ }
+ }
+ else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
+ || (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL))
+ {
+ /* One or the other of P1, P2 is non-empty. */
+ if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
+ ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
+ }
+ ssc_union(ssc, anded_cp_list, FALSE);
+ }
+ else { /* P1 = P2 = empty */
+ ssc_intersection(ssc, anded_cp_list, FALSE);
+ }
+ }
+}
+
+STATIC void
+S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
+ const regnode_charclass *or_with)
+{
+ /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
+ * another SSC or a regular ANYOF class. Can create false positives if
+ * 'or_with' is to be inverted. */
+
+ SV* ored_cp_list;
+ U8 ored_flags;
+
+ PERL_ARGS_ASSERT_SSC_OR;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
+ * the code point inversion list and just the relevant flags */
+ if (is_ANYOF_SYNTHETIC(or_with)) {
+ ored_cp_list = ((regnode_ssc*) or_with)->invlist;
+ ored_flags = ANYOF_FLAGS(or_with);
+ }
+ else {
+ ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
+ ored_flags = ANYOF_FLAGS(or_with) & ANYOF_COMMON_FLAGS;
+ }
+
+ ANYOF_FLAGS(ssc) |= ored_flags;
+
+ /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
+ * C2 is the list of code points in 'or-with'; P2, its posix classes.
+ * 'or_with' may be inverted. When not inverted, we have the simple
+ * situation of computing:
+ * (C1 | P1) | (C2 | P2) = (C1 | C2) | (P1 | P2)
+ * If P1|P2 yields a situation with both a class and its complement are
+ * set, like having both \w and \W, this matches all code points, and we
+ * can delete these from the P component of the ssc going forward. XXX We
+ * might be able to delete all the P components, but I (khw) am not certain
+ * about this, and it is better to be safe.
+ *
+ * Inverted, we have
+ * (C1 | P1) | ~(C2 | P2) = (C1 | P1) | (~C2 & ~P2)
+ * <= (C1 | P1) | ~C2
+ * <= (C1 | ~C2) | P1
+ * (which results in actually simpler code than the non-inverted case)
+ * */
+
+ if ((ANYOF_FLAGS(or_with) & ANYOF_INVERT)
+ && ! is_ANYOF_SYNTHETIC(or_with))
+ {
+ /* We ignore P2, leaving P1 going forward */
+ } /* else Not inverted */
+ else if (ANYOF_FLAGS(or_with) & ANYOF_MATCHES_POSIXL) {
+ ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
+ if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+ unsigned int i;
+ for (i = 0; i < ANYOF_MAX; i += 2) {
+ if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
+ {
+ ssc_match_all_cp(ssc);
+ ANYOF_POSIXL_CLEAR(ssc, i);
+ ANYOF_POSIXL_CLEAR(ssc, i+1);
+ }
+ }
+ }
+ }
+
+ ssc_union(ssc,
+ ored_cp_list,
+ FALSE /* Already has been inverted */
+ );
+}
+
+PERL_STATIC_INLINE void
+S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
+{
+ PERL_ARGS_ASSERT_SSC_UNION;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ _invlist_union_maybe_complement_2nd(ssc->invlist,
+ invlist,
+ invert2nd,
+ &ssc->invlist);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_intersection(pTHX_ regnode_ssc *ssc,
+ SV* const invlist,
+ const bool invert2nd)
+{
+ PERL_ARGS_ASSERT_SSC_INTERSECTION;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ _invlist_intersection_maybe_complement_2nd(ssc->invlist,
+ invlist,
+ invert2nd,
+ &ssc->invlist);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
+{
+ PERL_ARGS_ASSERT_SSC_ADD_RANGE;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
+{
+ /* AND just the single code point 'cp' into the SSC 'ssc' */
+
+ SV* cp_list = _new_invlist(2);
+
+ PERL_ARGS_ASSERT_SSC_CP_AND;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ cp_list = add_cp_to_invlist(cp_list, cp);
+ ssc_intersection(ssc, cp_list,
+ FALSE /* Not inverted */
+ );
+ SvREFCNT_dec_NN(cp_list);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_clear_locale(regnode_ssc *ssc)
+{
+ /* Set the SSC 'ssc' to not match any locale things */
+ PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ ANYOF_POSIXL_ZERO(ssc);
+ ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
+}
+
+#define NON_OTHER_COUNT NON_OTHER_COUNT_FOR_USE_ONLY_BY_REGCOMP_DOT_C
+
+STATIC bool
+S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
+{
+ /* The synthetic start class is used to hopefully quickly winnow down
+ * places where a pattern could start a match in the target string. If it
+ * doesn't really narrow things down that much, there isn't much point to
+ * having the overhead of using it. This function uses some very crude
+ * heuristics to decide if to use the ssc or not.
+ *
+ * It returns TRUE if 'ssc' rules out more than half what it considers to
+ * be the "likely" possible matches, but of course it doesn't know what the
+ * actual things being matched are going to be; these are only guesses
+ *
+ * For /l matches, it assumes that the only likely matches are going to be
+ * in the 0-255 range, uniformly distributed, so half of that is 127
+ * For /a and /d matches, it assumes that the likely matches will be just
+ * the ASCII range, so half of that is 63
+ * For /u and there isn't anything matching above the Latin1 range, it
+ * assumes that that is the only range likely to be matched, and uses
+ * half that as the cut-off: 127. If anything matches above Latin1,
+ * it assumes that all of Unicode could match (uniformly), except for
+ * non-Unicode code points and things in the General Category "Other"
+ * (unassigned, private use, surrogates, controls and formats). This
+ * is a much large number. */
+
+ const U32 max_match = (LOC)
+ ? 127
+ : (! UNI_SEMANTICS)
+ ? 63
+ : (invlist_highest(ssc->invlist) < 256)
+ ? 127
+ : ((NON_OTHER_COUNT + 1) / 2) - 1;
+ U32 count = 0; /* Running total of number of code points matched by
+ 'ssc' */
+ UV start, end; /* Start and end points of current range in inversion
+ list */
+
+ PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;
+
+ invlist_iterinit(ssc->invlist);
+ while (invlist_iternext(ssc->invlist, &start, &end)) {
+
+ /* /u is the only thing that we expect to match above 255; so if not /u
+ * and even if there are matches above 255, ignore them. This catches
+ * things like \d under /d which does match the digits above 255, but
+ * since the pattern is /d, it is not likely to be expecting them */
+ if (! UNI_SEMANTICS) {
+ if (start > 255) {
+ break;
+ }
+ end = MIN(end, 255);
+ }
+ count += end - start + 1;
+ if (count > max_match) {
+ invlist_iterfinish(ssc->invlist);
+ return FALSE;
+ }
+ }
+
+ return TRUE;
+}
+
+
+STATIC void
+S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
+{
+ /* The inversion list in the SSC is marked mortal; now we need a more
+ * permanent copy, which is stored the same way that is done in a regular
+ * ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
+ * map */
+
+ SV* invlist = invlist_clone(ssc->invlist);
+
+ PERL_ARGS_ASSERT_SSC_FINALIZE;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ /* The code in this file assumes that all but these flags aren't relevant
+ * to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
+ * by the time we reach here */
+ assert(! (ANYOF_FLAGS(ssc) & ~ANYOF_COMMON_FLAGS));
+
+ populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
+
+ set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist,
+ NULL, NULL, NULL, FALSE);
+
+ /* Make sure is clone-safe */
+ ssc->invlist = NULL;
+
+ if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+ ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
+ }
+
+ assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
+}
+
+#define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
+#define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
+#define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
+#define TRIE_LIST_USED(idx) ( trie->states[state].trans.list \
+ ? (TRIE_LIST_CUR( idx ) - 1) \
+ : 0 )
+
+
+#ifdef DEBUGGING
+/*
+ dump_trie(trie,widecharmap,revcharmap)
+ dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
+ dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
+
+ These routines dump out a trie in a somewhat readable format.
+ The _interim_ variants are used for debugging the interim
+ tables that are used to generate the final compressed
+ representation which is what dump_trie expects.
+
+ Part of the reason for their existence is to provide a form
+ of documentation as to how the different representations function.
+
+*/
+
+/*
+ Dumps the final compressed table form of the trie to Perl_debug_log.
+ Used for debugging make_trie().
+*/
+
+STATIC void
+S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
+ AV *revcharmap, U32 depth)
+{
+ U32 state;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ U16 word;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE;
+
+ PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
+ (int)depth * 2 + 2,"",
+ "Match","Base","Ofs" );
+
+ for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
+ SV ** const tmp = av_fetch( revcharmap, state, 0);
+ if ( tmp ) {
+ PerlIO_printf( Perl_debug_log, "%*s",
+ colwidth,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ )
+ );
+ }
+ }
+ PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
+ (int)depth * 2 + 2,"");
+
+ for( state = 0 ; state < trie->uniquecharcount ; state++ )
+ PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
+ PerlIO_printf( Perl_debug_log, "\n");
+
+ for( state = 1 ; state < trie->statecount ; state++ ) {
+ const U32 base = trie->states[ state ].trans.base;
+
+ PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|",
+ (int)depth * 2 + 2,"", (UV)state);
+
+ if ( trie->states[ state ].wordnum ) {
+ PerlIO_printf( Perl_debug_log, " W%4X",
+ trie->states[ state ].wordnum );
+ } else {
+ PerlIO_printf( Perl_debug_log, "%6s", "" );
+ }
+
+ PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
+
+ if ( base ) {
+ U32 ofs = 0;
+
+ while( ( base + ofs < trie->uniquecharcount ) ||
+ ( base + ofs - trie->uniquecharcount < trie->lasttrans
+ && trie->trans[ base + ofs - trie->uniquecharcount ].check
+ != state))
+ ofs++;
+
+ PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
+
+ for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
+ if ( ( base + ofs >= trie->uniquecharcount )
+ && ( base + ofs - trie->uniquecharcount
+ < trie->lasttrans )
+ && trie->trans[ base + ofs
+ - trie->uniquecharcount ].check == state )
+ {
+ PerlIO_printf( Perl_debug_log, "%*"UVXf,
+ colwidth,
+ (UV)trie->trans[ base + ofs
+ - trie->uniquecharcount ].next );
+ } else {
+ PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
+ }
+ }
+
+ PerlIO_printf( Perl_debug_log, "]");
+
+ }
+ PerlIO_printf( Perl_debug_log, "\n" );
+ }
+ PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=",
+ (int)depth*2, "");
+ for (word=1; word <= trie->wordcount; word++) {
+ PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
+ (int)word, (int)(trie->wordinfo[word].prev),
+ (int)(trie->wordinfo[word].len));
+ }
+ PerlIO_printf(Perl_debug_log, "\n" );
+}
+/*
+ Dumps a fully constructed but uncompressed trie in list form.
+ List tries normally only are used for construction when the number of
+ possible chars (trie->uniquecharcount) is very high.
+ Used for debugging make_trie().
+*/
+STATIC void
+S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
+ HV *widecharmap, AV *revcharmap, U32 next_alloc,
+ U32 depth)
+{
+ U32 state;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
+
+ /* print out the table precompression. */
+ PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
+ (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
+ "------:-----+-----------------\n" );
+
+ for( state=1 ; state < next_alloc ; state ++ ) {
+ U16 charid;
+
+ PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
+ (int)depth * 2 + 2,"", (UV)state );
+ if ( ! trie->states[ state ].wordnum ) {
+ PerlIO_printf( Perl_debug_log, "%5s| ","");
+ } else {
+ PerlIO_printf( Perl_debug_log, "W%4x| ",
+ trie->states[ state ].wordnum
+ );
+ }
+ for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
+ SV ** const tmp = av_fetch( revcharmap,
+ TRIE_LIST_ITEM(state,charid).forid, 0);
+ if ( tmp ) {
+ PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
+ colwidth,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
+ colwidth,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
+ | PERL_PV_ESCAPE_FIRSTCHAR
+ ) ,
+ TRIE_LIST_ITEM(state,charid).forid,
+ (UV)TRIE_LIST_ITEM(state,charid).newstate
+ );
+ if (!(charid % 10))
+ PerlIO_printf(Perl_debug_log, "\n%*s| ",
+ (int)((depth * 2) + 14), "");
+ }
+ }
+ PerlIO_printf( Perl_debug_log, "\n");
+ }
+}
+
+/*
+ Dumps a fully constructed but uncompressed trie in table form.
+ This is the normal DFA style state transition table, with a few
+ twists to facilitate compression later.
+ Used for debugging make_trie().
+*/
+STATIC void
+S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
+ HV *widecharmap, AV *revcharmap, U32 next_alloc,
+ U32 depth)
+{
+ U32 state;
+ U16 charid;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
+
+ /*
+ print out the table precompression so that we can do a visual check
+ that they are identical.
+ */
+
+ PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
+
+ for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
+ SV ** const tmp = av_fetch( revcharmap, charid, 0);
+ if ( tmp ) {
+ PerlIO_printf( Perl_debug_log, "%*s",
+ colwidth,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ )
+ );
+ }
+ }
+
+ PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
+
+ for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
+ PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
+ }
+
+ PerlIO_printf( Perl_debug_log, "\n" );
+
+ for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
+
+ PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
+ (int)depth * 2 + 2,"",
+ (UV)TRIE_NODENUM( state ) );
+
+ for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
+ UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
+ if (v)
+ PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
+ else
+ PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
+ }
+ if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
+ PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n",
+ (UV)trie->trans[ state ].check );
+ } else {
+ PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n",
+ (UV)trie->trans[ state ].check,
+ trie->states[ TRIE_NODENUM( state ) ].wordnum );
+ }
+ }
+}
+
+#endif
+
+
+/* make_trie(startbranch,first,last,tail,word_count,flags,depth)
+ startbranch: the first branch in the whole branch sequence
+ first : start branch of sequence of branch-exact nodes.
+ May be the same as startbranch
+ last : Thing following the last branch.
+ May be the same as tail.
+ tail : item following the branch sequence
+ count : words in the sequence
+ flags : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
+ depth : indent depth
+
+Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
+
+A trie is an N'ary tree where the branches are determined by digital
+decomposition of the key. IE, at the root node you look up the 1st character and
+follow that branch repeat until you find the end of the branches. Nodes can be
+marked as "accepting" meaning they represent a complete word. Eg:
+
+ /he|she|his|hers/
+
+would convert into the following structure. Numbers represent states, letters
+following numbers represent valid transitions on the letter from that state, if
+the number is in square brackets it represents an accepting state, otherwise it
+will be in parenthesis.
+
+ +-h->+-e->[3]-+-r->(8)-+-s->[9]
+ | |
+ | (2)
+ | |
+ (1) +-i->(6)-+-s->[7]
+ |
+ +-s->(3)-+-h->(4)-+-e->[5]
+
+ Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
+
+This shows that when matching against the string 'hers' we will begin at state 1
+read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
+then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
+is also accepting. Thus we know that we can match both 'he' and 'hers' with a
+single traverse. We store a mapping from accepting to state to which word was
+matched, and then when we have multiple possibilities we try to complete the
+rest of the regex in the order in which they occurred in the alternation.
+
+The only prior NFA like behaviour that would be changed by the TRIE support is
+the silent ignoring of duplicate alternations which are of the form:
+
+ / (DUPE|DUPE) X? (?{ ... }) Y /x
+
+Thus EVAL blocks following a trie may be called a different number of times with
+and without the optimisation. With the optimisations dupes will be silently
+ignored. This inconsistent behaviour of EVAL type nodes is well established as
+the following demonstrates:
+
+ 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
+
+which prints out 'word' three times, but
+
+ 'words'=~/(word|word|word)(?{ print $1 })S/
+
+which doesnt print it out at all. This is due to other optimisations kicking in.
+
+Example of what happens on a structural level:
+
+The regexp /(ac|ad|ab)+/ will produce the following debug output:
+
+ 1: CURLYM[1] {1,32767}(18)
+ 5: BRANCH(8)
+ 6: EXACT <ac>(16)
+ 8: BRANCH(11)
+ 9: EXACT <ad>(16)
+ 11: BRANCH(14)
+ 12: EXACT <ab>(16)
+ 16: SUCCEED(0)
+ 17: NOTHING(18)
+ 18: END(0)
+
+This would be optimizable with startbranch=5, first=5, last=16, tail=16
+and should turn into:
+
+ 1: CURLYM[1] {1,32767}(18)
+ 5: TRIE(16)
+ [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
+ <ac>
+ <ad>
+ <ab>
+ 16: SUCCEED(0)
+ 17: NOTHING(18)
+ 18: END(0)
+
+Cases where tail != last would be like /(?foo|bar)baz/:
+
+ 1: BRANCH(4)
+ 2: EXACT <foo>(8)
+ 4: BRANCH(7)
+ 5: EXACT <bar>(8)
+ 7: TAIL(8)
+ 8: EXACT <baz>(10)
+ 10: END(0)
+
+which would be optimizable with startbranch=1, first=1, last=7, tail=8
+and would end up looking like:
+
+ 1: TRIE(8)
+ [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
+ <foo>
+ <bar>
+ 7: TAIL(8)
+ 8: EXACT <baz>(10)
+ 10: END(0)
+
+ d = uvchr_to_utf8_flags(d, uv, 0);
+
+is the recommended Unicode-aware way of saying
+
+ *(d++) = uv;
+*/
+
+#define TRIE_STORE_REVCHAR(val) \
+ STMT_START { \
+ if (UTF) { \
+ SV *zlopp = newSV(7); /* XXX: optimize me */ \
+ unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
+ unsigned const char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
+ SvCUR_set(zlopp, kapow - flrbbbbb); \
+ SvPOK_on(zlopp); \
+ SvUTF8_on(zlopp); \
+ av_push(revcharmap, zlopp); \
+ } else { \
+ char ooooff = (char)val; \
+ av_push(revcharmap, newSVpvn(&ooooff, 1)); \
+ } \
+ } STMT_END
+
+/* This gets the next character from the input, folding it if not already
+ * folded. */
+#define TRIE_READ_CHAR STMT_START { \
+ wordlen++; \
+ if ( UTF ) { \
+ /* if it is UTF then it is either already folded, or does not need \
+ * folding */ \
+ uvc = valid_utf8_to_uvchr( (const U8*) uc, &len); \
+ } \
+ else if (folder == PL_fold_latin1) { \
+ /* This folder implies Unicode rules, which in the range expressible \
+ * by not UTF is the lower case, with the two exceptions, one of \
+ * which should have been taken care of before calling this */ \
+ assert(*uc != LATIN_SMALL_LETTER_SHARP_S); \
+ uvc = toLOWER_L1(*uc); \
+ if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU; \
+ len = 1; \
+ } else { \
+ /* raw data, will be folded later if needed */ \
+ uvc = (U32)*uc; \
+ len = 1; \
+ } \
+} STMT_END
+
+
+
+#define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
+ if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
+ U32 ging = TRIE_LIST_LEN( state ) *= 2; \
+ Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
+ } \
+ TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
+ TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
+ TRIE_LIST_CUR( state )++; \
+} STMT_END
+
+#define TRIE_LIST_NEW(state) STMT_START { \
+ Newxz( trie->states[ state ].trans.list, \
+ 4, reg_trie_trans_le ); \
+ TRIE_LIST_CUR( state ) = 1; \
+ TRIE_LIST_LEN( state ) = 4; \
+} STMT_END
+
+#define TRIE_HANDLE_WORD(state) STMT_START { \
+ U16 dupe= trie->states[ state ].wordnum; \
+ regnode * const noper_next = regnext( noper ); \
+ \
+ DEBUG_r({ \
+ /* store the word for dumping */ \
+ SV* tmp; \
+ if (OP(noper) != NOTHING) \
+ tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
+ else \
+ tmp = newSVpvn_utf8( "", 0, UTF ); \
+ av_push( trie_words, tmp ); \
+ }); \
+ \
+ curword++; \
+ trie->wordinfo[curword].prev = 0; \
+ trie->wordinfo[curword].len = wordlen; \
+ trie->wordinfo[curword].accept = state; \
+ \
+ if ( noper_next < tail ) { \
+ if (!trie->jump) \
+ trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
+ sizeof(U16) ); \
+ trie->jump[curword] = (U16)(noper_next - convert); \
+ if (!jumper) \
+ jumper = noper_next; \
+ if (!nextbranch) \
+ nextbranch= regnext(cur); \
+ } \
+ \
+ if ( dupe ) { \
+ /* It's a dupe. Pre-insert into the wordinfo[].prev */\
+ /* chain, so that when the bits of chain are later */\
+ /* linked together, the dups appear in the chain */\
+ trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
+ trie->wordinfo[dupe].prev = curword; \
+ } else { \
+ /* we haven't inserted this word yet. */ \
+ trie->states[ state ].wordnum = curword; \
+ } \
+} STMT_END
+
+
+#define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
+ ( ( base + charid >= ucharcount \
+ && base + charid < ubound \
+ && state == trie->trans[ base - ucharcount + charid ].check \
+ && trie->trans[ base - ucharcount + charid ].next ) \
+ ? trie->trans[ base - ucharcount + charid ].next \
+ : ( state==1 ? special : 0 ) \
+ )
+
+#define MADE_TRIE 1
+#define MADE_JUMP_TRIE 2
+#define MADE_EXACT_TRIE 4
+
+STATIC I32
+S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
+ regnode *first, regnode *last, regnode *tail,
+ U32 word_count, U32 flags, U32 depth)
+{
+ /* first pass, loop through and scan words */
+ reg_trie_data *trie;
+ HV *widecharmap = NULL;
+ AV *revcharmap = newAV();
+ regnode *cur;
+ STRLEN len = 0;
+ UV uvc = 0;
+ U16 curword = 0;
+ U32 next_alloc = 0;
+ regnode *jumper = NULL;
+ regnode *nextbranch = NULL;
+ regnode *convert = NULL;
+ U32 *prev_states; /* temp array mapping each state to previous one */
+ /* we just use folder as a flag in utf8 */
+ const U8 * folder = NULL;
+
+#ifdef DEBUGGING
+ const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuuu"));
+ AV *trie_words = NULL;
+ /* along with revcharmap, this only used during construction but both are
+ * useful during debugging so we store them in the struct when debugging.
+ */
+#else
+ const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
+ STRLEN trie_charcount=0;
+#endif
+ SV *re_trie_maxbuff;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_MAKE_TRIE;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ switch (flags) {
+ case EXACT: case EXACTL: break;
+ case EXACTFA:
+ case EXACTFU_SS:
+ case EXACTFU:
+ case EXACTFLU8: folder = PL_fold_latin1; break;
+ case EXACTF: folder = PL_fold; break;
+ default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
+ }
+
+ trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
+ trie->refcount = 1;
+ trie->startstate = 1;
+ trie->wordcount = word_count;
+ RExC_rxi->data->data[ data_slot ] = (void*)trie;
+ trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
+ if (flags == EXACT || flags == EXACTL)
+ trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
+ trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
+ trie->wordcount+1, sizeof(reg_trie_wordinfo));
+
+ DEBUG_r({
+ trie_words = newAV();
+ });
+
+ re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
+ assert(re_trie_maxbuff);
+ if (!SvIOK(re_trie_maxbuff)) {
+ sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
+ }
+ DEBUG_TRIE_COMPILE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
+ (int)depth * 2 + 2, "",
+ REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
+ REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
+ });
+
+ /* Find the node we are going to overwrite */
+ if ( first == startbranch && OP( last ) != BRANCH ) {
+ /* whole branch chain */
+ convert = first;
+ } else {
+ /* branch sub-chain */
+ convert = NEXTOPER( first );
+ }
+
+ /* -- First loop and Setup --
+
+ We first traverse the branches and scan each word to determine if it
+ contains widechars, and how many unique chars there are, this is
+ important as we have to build a table with at least as many columns as we
+ have unique chars.
+
+ We use an array of integers to represent the character codes 0..255
+ (trie->charmap) and we use a an HV* to store Unicode characters. We use
+ the native representation of the character value as the key and IV's for
+ the coded index.
+
+ *TODO* If we keep track of how many times each character is used we can
+ remap the columns so that the table compression later on is more
+ efficient in terms of memory by ensuring the most common value is in the
+ middle and the least common are on the outside. IMO this would be better
+ than a most to least common mapping as theres a decent chance the most
+ common letter will share a node with the least common, meaning the node
+ will not be compressible. With a middle is most common approach the worst
+ case is when we have the least common nodes twice.
+
+ */
+
+ for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+ regnode *noper = NEXTOPER( cur );
+ const U8 *uc = (U8*)STRING( noper );
+ const U8 *e = uc + STR_LEN( noper );
+ int foldlen = 0;
+ U32 wordlen = 0; /* required init */
+ STRLEN minchars = 0;
+ STRLEN maxchars = 0;
+ bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
+ bitmap?*/
+
+ if (OP(noper) == NOTHING) {
+ regnode *noper_next= regnext(noper);
+ if (noper_next != tail && OP(noper_next) == flags) {
+ noper = noper_next;
+ uc= (U8*)STRING(noper);
+ e= uc + STR_LEN(noper);
+ trie->minlen= STR_LEN(noper);
+ } else {
+ trie->minlen= 0;
+ continue;
+ }
+ }
+
+ if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
+ TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
+ regardless of encoding */
+ if (OP( noper ) == EXACTFU_SS) {
+ /* false positives are ok, so just set this */
+ TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
+ }
+ }
+ for ( ; uc < e ; uc += len ) { /* Look at each char in the current
+ branch */
+ TRIE_CHARCOUNT(trie)++;
+ TRIE_READ_CHAR;
+
+ /* TRIE_READ_CHAR returns the current character, or its fold if /i
+ * is in effect. Under /i, this character can match itself, or
+ * anything that folds to it. If not under /i, it can match just
+ * itself. Most folds are 1-1, for example k, K, and KELVIN SIGN
+ * all fold to k, and all are single characters. But some folds
+ * expand to more than one character, so for example LATIN SMALL
+ * LIGATURE FFI folds to the three character sequence 'ffi'. If
+ * the string beginning at 'uc' is 'ffi', it could be matched by
+ * three characters, or just by the one ligature character. (It
+ * could also be matched by two characters: LATIN SMALL LIGATURE FF
+ * followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
+ * (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
+ * match.) The trie needs to know the minimum and maximum number
+ * of characters that could match so that it can use size alone to
+ * quickly reject many match attempts. The max is simple: it is
+ * the number of folded characters in this branch (since a fold is
+ * never shorter than what folds to it. */
+
+ maxchars++;
+
+ /* And the min is equal to the max if not under /i (indicated by
+ * 'folder' being NULL), or there are no multi-character folds. If
+ * there is a multi-character fold, the min is incremented just
+ * once, for the character that folds to the sequence. Each
+ * character in the sequence needs to be added to the list below of
+ * characters in the trie, but we count only the first towards the
+ * min number of characters needed. This is done through the
+ * variable 'foldlen', which is returned by the macros that look
+ * for these sequences as the number of bytes the sequence
+ * occupies. Each time through the loop, we decrement 'foldlen' by
+ * how many bytes the current char occupies. Only when it reaches
+ * 0 do we increment 'minchars' or look for another multi-character
+ * sequence. */
+ if (folder == NULL) {
+ minchars++;
+ }
+ else if (foldlen > 0) {
+ foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
+ }
+ else {
+ minchars++;
+
+ /* See if *uc is the beginning of a multi-character fold. If
+ * so, we decrement the length remaining to look at, to account
+ * for the current character this iteration. (We can use 'uc'
+ * instead of the fold returned by TRIE_READ_CHAR because for
+ * non-UTF, the latin1_safe macro is smart enough to account
+ * for all the unfolded characters, and because for UTF, the
+ * string will already have been folded earlier in the
+ * compilation process */
+ if (UTF) {
+ if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
+ foldlen -= UTF8SKIP(uc);
+ }
+ }
+ else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
+ foldlen--;
+ }
+ }
+
+ /* The current character (and any potential folds) should be added
+ * to the possible matching characters for this position in this
+ * branch */
+ if ( uvc < 256 ) {
+ if ( folder ) {
+ U8 folded= folder[ (U8) uvc ];
+ if ( !trie->charmap[ folded ] ) {
+ trie->charmap[ folded ]=( ++trie->uniquecharcount );
+ TRIE_STORE_REVCHAR( folded );
+ }
+ }
+ if ( !trie->charmap[ uvc ] ) {
+ trie->charmap[ uvc ]=( ++trie->uniquecharcount );
+ TRIE_STORE_REVCHAR( uvc );
+ }
+ if ( set_bit ) {
+ /* store the codepoint in the bitmap, and its folded
+ * equivalent. */
+ TRIE_BITMAP_SET(trie, uvc);
+
+ /* store the folded codepoint */
+ if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
+
+ if ( !UTF ) {
+ /* store first byte of utf8 representation of
+ variant codepoints */
+ if (! UVCHR_IS_INVARIANT(uvc)) {
+ TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
+ }
+ }
+ set_bit = 0; /* We've done our bit :-) */
+ }
+ } else {
+
+ /* XXX We could come up with the list of code points that fold
+ * to this using PL_utf8_foldclosures, except not for
+ * multi-char folds, as there may be multiple combinations
+ * there that could work, which needs to wait until runtime to
+ * resolve (The comment about LIGATURE FFI above is such an
+ * example */
+
+ SV** svpp;
+ if ( !widecharmap )
+ widecharmap = newHV();
+
+ svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
+
+ if ( !svpp )
+ Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
+
+ if ( !SvTRUE( *svpp ) ) {
+ sv_setiv( *svpp, ++trie->uniquecharcount );
+ TRIE_STORE_REVCHAR(uvc);
+ }
+ }
+ } /* end loop through characters in this branch of the trie */
+
+ /* We take the min and max for this branch and combine to find the min
+ * and max for all branches processed so far */
+ if( cur == first ) {
+ trie->minlen = minchars;
+ trie->maxlen = maxchars;
+ } else if (minchars < trie->minlen) {
+ trie->minlen = minchars;
+ } else if (maxchars > trie->maxlen) {
+ trie->maxlen = maxchars;
+ }
+ } /* end first pass */
+ DEBUG_TRIE_COMPILE_r(
+ PerlIO_printf( Perl_debug_log,
+ "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
+ (int)depth * 2 + 2,"",
+ ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
+ (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
+ (int)trie->minlen, (int)trie->maxlen )
+ );
+
+ /*
+ We now know what we are dealing with in terms of unique chars and
+ string sizes so we can calculate how much memory a naive
+ representation using a flat table will take. If it's over a reasonable
+ limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
+ conservative but potentially much slower representation using an array
+ of lists.
+
+ At the end we convert both representations into the same compressed
+ form that will be used in regexec.c for matching with. The latter
+ is a form that cannot be used to construct with but has memory
+ properties similar to the list form and access properties similar
+ to the table form making it both suitable for fast searches and
+ small enough that its feasable to store for the duration of a program.
+
+ See the comment in the code where the compressed table is produced
+ inplace from the flat tabe representation for an explanation of how
+ the compression works.
+
+ */
+
+
+ Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
+ prev_states[1] = 0;
+
+ if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
+ > SvIV(re_trie_maxbuff) )
+ {
+ /*
+ Second Pass -- Array Of Lists Representation
+
+ Each state will be represented by a list of charid:state records
+ (reg_trie_trans_le) the first such element holds the CUR and LEN
+ points of the allocated array. (See defines above).
+
+ We build the initial structure using the lists, and then convert
+ it into the compressed table form which allows faster lookups
+ (but cant be modified once converted).
+ */
+
+ STRLEN transcount = 1;
+
+ DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
+ "%*sCompiling trie using list compiler\n",
+ (int)depth * 2 + 2, ""));
+
+ trie->states = (reg_trie_state *)
+ PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
+ sizeof(reg_trie_state) );
+ TRIE_LIST_NEW(1);
+ next_alloc = 2;
+
+ for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+
+ regnode *noper = NEXTOPER( cur );
+ U8 *uc = (U8*)STRING( noper );
+ const U8 *e = uc + STR_LEN( noper );
+ U32 state = 1; /* required init */
+ U16 charid = 0; /* sanity init */
+ U32 wordlen = 0; /* required init */
+
+ if (OP(noper) == NOTHING) {
+ regnode *noper_next= regnext(noper);
+ if (noper_next != tail && OP(noper_next) == flags) {
+ noper = noper_next;
+ uc= (U8*)STRING(noper);
+ e= uc + STR_LEN(noper);
+ }
+ }
+
+ if (OP(noper) != NOTHING) {
+ for ( ; uc < e ; uc += len ) {
+
+ TRIE_READ_CHAR;
+
+ if ( uvc < 256 ) {
+ charid = trie->charmap[ uvc ];
+ } else {
+ SV** const svpp = hv_fetch( widecharmap,
+ (char*)&uvc,
+ sizeof( UV ),
+ 0);
+ if ( !svpp ) {
+ charid = 0;
+ } else {
+ charid=(U16)SvIV( *svpp );
+ }
+ }
+ /* charid is now 0 if we dont know the char read, or
+ * nonzero if we do */
+ if ( charid ) {
+
+ U16 check;
+ U32 newstate = 0;
+
+ charid--;
+ if ( !trie->states[ state ].trans.list ) {
+ TRIE_LIST_NEW( state );
+ }
+ for ( check = 1;
+ check <= TRIE_LIST_USED( state );
+ check++ )
+ {
+ if ( TRIE_LIST_ITEM( state, check ).forid
+ == charid )
+ {
+ newstate = TRIE_LIST_ITEM( state, check ).newstate;
+ break;
+ }
+ }
+ if ( ! newstate ) {
+ newstate = next_alloc++;
+ prev_states[newstate] = state;
+ TRIE_LIST_PUSH( state, charid, newstate );
+ transcount++;
+ }
+ state = newstate;
+ } else {
+ Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
+ }
+ }
+ }
+ TRIE_HANDLE_WORD(state);
+
+ } /* end second pass */
+
+ /* next alloc is the NEXT state to be allocated */
+ trie->statecount = next_alloc;
+ trie->states = (reg_trie_state *)
+ PerlMemShared_realloc( trie->states,
+ next_alloc
+ * sizeof(reg_trie_state) );
+
+ /* and now dump it out before we compress it */
+ DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
+ revcharmap, next_alloc,
+ depth+1)
+ );
+
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
+ {
+ U32 state;
+ U32 tp = 0;
+ U32 zp = 0;
+
+
+ for( state=1 ; state < next_alloc ; state ++ ) {
+ U32 base=0;
+
+ /*
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
+ );
+ */
+
+ if (trie->states[state].trans.list) {
+ U16 minid=TRIE_LIST_ITEM( state, 1).forid;
+ U16 maxid=minid;
+ U16 idx;
+
+ for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
+ const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
+ if ( forid < minid ) {
+ minid=forid;
+ } else if ( forid > maxid ) {
+ maxid=forid;
+ }
+ }
+ if ( transcount < tp + maxid - minid + 1) {
+ transcount *= 2;
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_realloc( trie->trans,
+ transcount
+ * sizeof(reg_trie_trans) );
+ Zero( trie->trans + (transcount / 2),
+ transcount / 2,
+ reg_trie_trans );
+ }
+ base = trie->uniquecharcount + tp - minid;
+ if ( maxid == minid ) {
+ U32 set = 0;
+ for ( ; zp < tp ; zp++ ) {
+ if ( ! trie->trans[ zp ].next ) {
+ base = trie->uniquecharcount + zp - minid;
+ trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
+ 1).newstate;
+ trie->trans[ zp ].check = state;
+ set = 1;
+ break;
+ }
+ }
+ if ( !set ) {
+ trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
+ 1).newstate;
+ trie->trans[ tp ].check = state;
+ tp++;
+ zp = tp;
+ }
+ } else {
+ for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
+ const U32 tid = base
+ - trie->uniquecharcount
+ + TRIE_LIST_ITEM( state, idx ).forid;
+ trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
+ idx ).newstate;
+ trie->trans[ tid ].check = state;
+ }
+ tp += ( maxid - minid + 1 );
+ }
+ Safefree(trie->states[ state ].trans.list);
+ }
+ /*
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf( Perl_debug_log, " base: %d\n",base);
+ );
+ */
+ trie->states[ state ].trans.base=base;
+ }
+ trie->lasttrans = tp + 1;
+ }
+ } else {
+ /*
+ Second Pass -- Flat Table Representation.
+
+ we dont use the 0 slot of either trans[] or states[] so we add 1 to
+ each. We know that we will need Charcount+1 trans at most to store
+ the data (one row per char at worst case) So we preallocate both
+ structures assuming worst case.
+
+ We then construct the trie using only the .next slots of the entry
+ structs.
+
+ We use the .check field of the first entry of the node temporarily
+ to make compression both faster and easier by keeping track of how
+ many non zero fields are in the node.
+
+ Since trans are numbered from 1 any 0 pointer in the table is a FAIL
+ transition.
+
+ There are two terms at use here: state as a TRIE_NODEIDX() which is
+ a number representing the first entry of the node, and state as a
+ TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
+ and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
+ if there are 2 entrys per node. eg:
+
+ A B A B
+ 1. 2 4 1. 3 7
+ 2. 0 3 3. 0 5
+ 3. 0 0 5. 0 0
+ 4. 0 0 7. 0 0
+
+ The table is internally in the right hand, idx form. However as we
+ also have to deal with the states array which is indexed by nodenum
+ we have to use TRIE_NODENUM() to convert.
+
+ */
+ DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
+ "%*sCompiling trie using table compiler\n",
+ (int)depth * 2 + 2, ""));
+
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
+ * trie->uniquecharcount + 1,
+ sizeof(reg_trie_trans) );
+ trie->states = (reg_trie_state *)
+ PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
+ sizeof(reg_trie_state) );
+ next_alloc = trie->uniquecharcount + 1;
+
+
+ for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+
+ regnode *noper = NEXTOPER( cur );
+ const U8 *uc = (U8*)STRING( noper );
+ const U8 *e = uc + STR_LEN( noper );
+
+ U32 state = 1; /* required init */
+
+ U16 charid = 0; /* sanity init */
+ U32 accept_state = 0; /* sanity init */
+
+ U32 wordlen = 0; /* required init */
+
+ if (OP(noper) == NOTHING) {
+ regnode *noper_next= regnext(noper);
+ if (noper_next != tail && OP(noper_next) == flags) {
+ noper = noper_next;
+ uc= (U8*)STRING(noper);
+ e= uc + STR_LEN(noper);
+ }
+ }
+
+ if ( OP(noper) != NOTHING ) {
+ for ( ; uc < e ; uc += len ) {
+
+ TRIE_READ_CHAR;
+
+ if ( uvc < 256 ) {
+ charid = trie->charmap[ uvc ];
+ } else {
+ SV* const * const svpp = hv_fetch( widecharmap,
+ (char*)&uvc,
+ sizeof( UV ),
+ 0);
+ charid = svpp ? (U16)SvIV(*svpp) : 0;
+ }
+ if ( charid ) {
+ charid--;
+ if ( !trie->trans[ state + charid ].next ) {
+ trie->trans[ state + charid ].next = next_alloc;
+ trie->trans[ state ].check++;
+ prev_states[TRIE_NODENUM(next_alloc)]
+ = TRIE_NODENUM(state);
+ next_alloc += trie->uniquecharcount;
+ }
+ state = trie->trans[ state + charid ].next;
+ } else {
+ Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
+ }
+ /* charid is now 0 if we dont know the char read, or
+ * nonzero if we do */
+ }
+ }
+ accept_state = TRIE_NODENUM( state );
+ TRIE_HANDLE_WORD(accept_state);
+
+ } /* end second pass */
+
+ /* and now dump it out before we compress it */
+ DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
+ revcharmap,
+ next_alloc, depth+1));
+
+ {
+ /*
+ * Inplace compress the table.*
+
+ For sparse data sets the table constructed by the trie algorithm will
+ be mostly 0/FAIL transitions or to put it another way mostly empty.
+ (Note that leaf nodes will not contain any transitions.)
+
+ This algorithm compresses the tables by eliminating most such
+ transitions, at the cost of a modest bit of extra work during lookup:
+
+ - Each states[] entry contains a .base field which indicates the
+ index in the state[] array wheres its transition data is stored.
+
+ - If .base is 0 there are no valid transitions from that node.
+
+ - If .base is nonzero then charid is added to it to find an entry in
+ the trans array.
+
+ -If trans[states[state].base+charid].check!=state then the
+ transition is taken to be a 0/Fail transition. Thus if there are fail
+ transitions at the front of the node then the .base offset will point
+ somewhere inside the previous nodes data (or maybe even into a node
+ even earlier), but the .check field determines if the transition is
+ valid.
+
+ XXX - wrong maybe?
+ The following process inplace converts the table to the compressed
+ table: We first do not compress the root node 1,and mark all its
+ .check pointers as 1 and set its .base pointer as 1 as well. This
+ allows us to do a DFA construction from the compressed table later,
+ and ensures that any .base pointers we calculate later are greater
+ than 0.
+
+ - We set 'pos' to indicate the first entry of the second node.
+
+ - We then iterate over the columns of the node, finding the first and
+ last used entry at l and m. We then copy l..m into pos..(pos+m-l),
+ and set the .check pointers accordingly, and advance pos
+ appropriately and repreat for the next node. Note that when we copy
+ the next pointers we have to convert them from the original
+ NODEIDX form to NODENUM form as the former is not valid post
+ compression.
+
+ - If a node has no transitions used we mark its base as 0 and do not
+ advance the pos pointer.
+
+ - If a node only has one transition we use a second pointer into the
+ structure to fill in allocated fail transitions from other states.
+ This pointer is independent of the main pointer and scans forward
+ looking for null transitions that are allocated to a state. When it
+ finds one it writes the single transition into the "hole". If the
+ pointer doesnt find one the single transition is appended as normal.
+
+ - Once compressed we can Renew/realloc the structures to release the
+ excess space.
+
+ See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
+ specifically Fig 3.47 and the associated pseudocode.
+
+ demq
+ */
+ const U32 laststate = TRIE_NODENUM( next_alloc );
+ U32 state, charid;
+ U32 pos = 0, zp=0;
+ trie->statecount = laststate;
+
+ for ( state = 1 ; state < laststate ; state++ ) {
+ U8 flag = 0;
+ const U32 stateidx = TRIE_NODEIDX( state );
+ const U32 o_used = trie->trans[ stateidx ].check;
+ U32 used = trie->trans[ stateidx ].check;
+ trie->trans[ stateidx ].check = 0;
+
+ for ( charid = 0;
+ used && charid < trie->uniquecharcount;
+ charid++ )
+ {
+ if ( flag || trie->trans[ stateidx + charid ].next ) {
+ if ( trie->trans[ stateidx + charid ].next ) {
+ if (o_used == 1) {
+ for ( ; zp < pos ; zp++ ) {
+ if ( ! trie->trans[ zp ].next ) {
+ break;
+ }
+ }
+ trie->states[ state ].trans.base
+ = zp
+ + trie->uniquecharcount
+ - charid ;
+ trie->trans[ zp ].next
+ = SAFE_TRIE_NODENUM( trie->trans[ stateidx
+ + charid ].next );
+ trie->trans[ zp ].check = state;
+ if ( ++zp > pos ) pos = zp;
+ break;
+ }
+ used--;
+ }
+ if ( !flag ) {
+ flag = 1;
+ trie->states[ state ].trans.base
+ = pos + trie->uniquecharcount - charid ;
+ }
+ trie->trans[ pos ].next
+ = SAFE_TRIE_NODENUM(
+ trie->trans[ stateidx + charid ].next );
+ trie->trans[ pos ].check = state;
+ pos++;
+ }
+ }
+ }
+ trie->lasttrans = pos + 1;
+ trie->states = (reg_trie_state *)
+ PerlMemShared_realloc( trie->states, laststate
+ * sizeof(reg_trie_state) );
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf( Perl_debug_log,
+ "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
+ (int)depth * 2 + 2,"",
+ (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
+ + 1 ),
+ (IV)next_alloc,
+ (IV)pos,
+ ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
+ );
+
+ } /* end table compress */
+ }
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
+ (int)depth * 2 + 2, "",
+ (UV)trie->statecount,
+ (UV)trie->lasttrans)
+ );
+ /* resize the trans array to remove unused space */
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_realloc( trie->trans, trie->lasttrans
+ * sizeof(reg_trie_trans) );
+
+ { /* Modify the program and insert the new TRIE node */
+ U8 nodetype =(U8)(flags & 0xFF);
+ char *str=NULL;
+
+#ifdef DEBUGGING
+ regnode *optimize = NULL;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+
+ U32 mjd_offset = 0;
+ U32 mjd_nodelen = 0;
+#endif /* RE_TRACK_PATTERN_OFFSETS */
+#endif /* DEBUGGING */
+ /*
+ This means we convert either the first branch or the first Exact,
+ depending on whether the thing following (in 'last') is a branch
+ or not and whther first is the startbranch (ie is it a sub part of
+ the alternation or is it the whole thing.)
+ Assuming its a sub part we convert the EXACT otherwise we convert
+ the whole branch sequence, including the first.
+ */
+ /* Find the node we are going to overwrite */
+ if ( first != startbranch || OP( last ) == BRANCH ) {
+ /* branch sub-chain */
+ NEXT_OFF( first ) = (U16)(last - first);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ DEBUG_r({
+ mjd_offset= Node_Offset((convert));
+ mjd_nodelen= Node_Length((convert));
+ });
+#endif
+ /* whole branch chain */
+ }
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ else {
+ DEBUG_r({
+ const regnode *nop = NEXTOPER( convert );
+ mjd_offset= Node_Offset((nop));
+ mjd_nodelen= Node_Length((nop));
+ });
+ }
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
+ (int)depth * 2 + 2, "",
+ (UV)mjd_offset, (UV)mjd_nodelen)
+ );
+#endif
+ /* But first we check to see if there is a common prefix we can
+ split out as an EXACT and put in front of the TRIE node. */
+ trie->startstate= 1;
+ if ( trie->bitmap && !widecharmap && !trie->jump ) {
+ U32 state;
+ for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
+ U32 ofs = 0;
+ I32 idx = -1;
+ U32 count = 0;
+ const U32 base = trie->states[ state ].trans.base;
+
+ if ( trie->states[state].wordnum )
+ count = 1;
+
+ for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
+ if ( ( base + ofs >= trie->uniquecharcount ) &&
+ ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
+ trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
+ {
+ if ( ++count > 1 ) {
+ SV **tmp = av_fetch( revcharmap, ofs, 0);
+ const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
+ if ( state == 1 ) break;
+ if ( count == 2 ) {
+ Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*sNew Start State=%"UVuf" Class: [",
+ (int)depth * 2 + 2, "",
+ (UV)state));
+ if (idx >= 0) {
+ SV ** const tmp = av_fetch( revcharmap, idx, 0);
+ const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
+
+ TRIE_BITMAP_SET(trie,*ch);
+ if ( folder )
+ TRIE_BITMAP_SET(trie, folder[ *ch ]);
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
+ );
+ }
+ }
+ TRIE_BITMAP_SET(trie,*ch);
+ if ( folder )
+ TRIE_BITMAP_SET(trie,folder[ *ch ]);
+ DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
+ }
+ idx = ofs;
+ }
+ }
+ if ( count == 1 ) {
+ SV **tmp = av_fetch( revcharmap, idx, 0);
+ STRLEN len;
+ char *ch = SvPV( *tmp, len );
+ DEBUG_OPTIMISE_r({
+ SV *sv=sv_newmortal();
+ PerlIO_printf( Perl_debug_log,
+ "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
+ (int)depth * 2 + 2, "",
+ (UV)state, (UV)idx,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ )
+ );
+ });
+ if ( state==1 ) {
+ OP( convert ) = nodetype;
+ str=STRING(convert);
+ STR_LEN(convert)=0;
+ }
+ STR_LEN(convert) += len;
+ while (len--)
+ *str++ = *ch++;
+ } else {
+#ifdef DEBUGGING
+ if (state>1)
+ DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
+#endif
+ break;
+ }
+ }
+ trie->prefixlen = (state-1);
+ if (str) {
+ regnode *n = convert+NODE_SZ_STR(convert);
+ NEXT_OFF(convert) = NODE_SZ_STR(convert);
+ trie->startstate = state;
+ trie->minlen -= (state - 1);
+ trie->maxlen -= (state - 1);
+#ifdef DEBUGGING
+ /* At least the UNICOS C compiler choked on this
+ * being argument to DEBUG_r(), so let's just have
+ * it right here. */
+ if (
+#ifdef PERL_EXT_RE_BUILD
+ 1
+#else
+ DEBUG_r_TEST
+#endif
+ ) {
+ regnode *fix = convert;
+ U32 word = trie->wordcount;
+ mjd_nodelen++;
+ Set_Node_Offset_Length(convert, mjd_offset, state - 1);
+ while( ++fix < n ) {
+ Set_Node_Offset_Length(fix, 0, 0);
+ }
+ while (word--) {
+ SV ** const tmp = av_fetch( trie_words, word, 0 );
+ if (tmp) {
+ if ( STR_LEN(convert) <= SvCUR(*tmp) )
+ sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
+ else
+ sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
+ }
+ }
+ }
+#endif
+ if (trie->maxlen) {
+ convert = n;
+ } else {
+ NEXT_OFF(convert) = (U16)(tail - convert);
+ DEBUG_r(optimize= n);
+ }
+ }
+ }
+ if (!jumper)
+ jumper = last;
+ if ( trie->maxlen ) {
+ NEXT_OFF( convert ) = (U16)(tail - convert);
+ ARG_SET( convert, data_slot );
+ /* Store the offset to the first unabsorbed branch in
+ jump[0], which is otherwise unused by the jump logic.
+ We use this when dumping a trie and during optimisation. */
+ if (trie->jump)
+ trie->jump[0] = (U16)(nextbranch - convert);
+
+ /* If the start state is not accepting (meaning there is no empty string/NOTHING)
+ * and there is a bitmap
+ * and the first "jump target" node we found leaves enough room
+ * then convert the TRIE node into a TRIEC node, with the bitmap
+ * embedded inline in the opcode - this is hypothetically faster.
+ */
+ if ( !trie->states[trie->startstate].wordnum
+ && trie->bitmap
+ && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
+ {
+ OP( convert ) = TRIEC;
+ Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
+ PerlMemShared_free(trie->bitmap);
+ trie->bitmap= NULL;
+ } else
+ OP( convert ) = TRIE;
+
+ /* store the type in the flags */
+ convert->flags = nodetype;
+ DEBUG_r({
+ optimize = convert
+ + NODE_STEP_REGNODE
+ + regarglen[ OP( convert ) ];
+ });
+ /* XXX We really should free up the resource in trie now,
+ as we won't use them - (which resources?) dmq */
+ }
+ /* needed for dumping*/
+ DEBUG_r(if (optimize) {
+ regnode *opt = convert;
+
+ while ( ++opt < optimize) {
+ Set_Node_Offset_Length(opt,0,0);
+ }
+ /*
+ Try to clean up some of the debris left after the
+ optimisation.
+ */
+ while( optimize < jumper ) {
+ mjd_nodelen += Node_Length((optimize));
+ OP( optimize ) = OPTIMIZED;
+ Set_Node_Offset_Length(optimize,0,0);
+ optimize++;
+ }
+ Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
+ });
+ } /* end node insert */
+ REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, convert);
+
+ /* Finish populating the prev field of the wordinfo array. Walk back
+ * from each accept state until we find another accept state, and if
+ * so, point the first word's .prev field at the second word. If the
+ * second already has a .prev field set, stop now. This will be the
+ * case either if we've already processed that word's accept state,
+ * or that state had multiple words, and the overspill words were
+ * already linked up earlier.
+ */
+ {
+ U16 word;
+ U32 state;
+ U16 prev;
+
+ for (word=1; word <= trie->wordcount; word++) {
+ prev = 0;
+ if (trie->wordinfo[word].prev)
+ continue;
+ state = trie->wordinfo[word].accept;
+ while (state) {
+ state = prev_states[state];
+ if (!state)
+ break;
+ prev = trie->states[state].wordnum;
+ if (prev)
+ break;
+ }
+ trie->wordinfo[word].prev = prev;
+ }
+ Safefree(prev_states);
+ }
+
+
+ /* and now dump out the compressed format */
+ DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
+
+ RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
+#ifdef DEBUGGING
+ RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
+ RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
+#else
+ SvREFCNT_dec_NN(revcharmap);
+#endif
+ return trie->jump
+ ? MADE_JUMP_TRIE
+ : trie->startstate>1
+ ? MADE_EXACT_TRIE
+ : MADE_TRIE;
+}
+
+STATIC regnode *
+S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
+{
+/* The Trie is constructed and compressed now so we can build a fail array if
+ * it's needed
+
+ This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
+ 3.32 in the
+ "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
+ Ullman 1985/88
+ ISBN 0-201-10088-6
+
+ We find the fail state for each state in the trie, this state is the longest
+ proper suffix of the current state's 'word' that is also a proper prefix of
+ another word in our trie. State 1 represents the word '' and is thus the
+ default fail state. This allows the DFA not to have to restart after its
+ tried and failed a word at a given point, it simply continues as though it
+ had been matching the other word in the first place.
+ Consider
+ 'abcdgu'=~/abcdefg|cdgu/
+ When we get to 'd' we are still matching the first word, we would encounter
+ 'g' which would fail, which would bring us to the state representing 'd' in
+ the second word where we would try 'g' and succeed, proceeding to match
+ 'cdgu'.
+ */
+ /* add a fail transition */
+ const U32 trie_offset = ARG(source);
+ reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
+ U32 *q;
+ const U32 ucharcount = trie->uniquecharcount;
+ const U32 numstates = trie->statecount;
+ const U32 ubound = trie->lasttrans + ucharcount;
+ U32 q_read = 0;
+ U32 q_write = 0;
+ U32 charid;
+ U32 base = trie->states[ 1 ].trans.base;
+ U32 *fail;
+ reg_ac_data *aho;
+ const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
+ regnode *stclass;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
+ PERL_UNUSED_CONTEXT;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ if ( OP(source) == TRIE ) {
+ struct regnode_1 *op = (struct regnode_1 *)
+ PerlMemShared_calloc(1, sizeof(struct regnode_1));
+ StructCopy(source,op,struct regnode_1);
+ stclass = (regnode *)op;
+ } else {
+ struct regnode_charclass *op = (struct regnode_charclass *)
+ PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
+ StructCopy(source,op,struct regnode_charclass);
+ stclass = (regnode *)op;
+ }
+ OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */
+
+ ARG_SET( stclass, data_slot );
+ aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
+ RExC_rxi->data->data[ data_slot ] = (void*)aho;
+ aho->trie=trie_offset;
+ aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
+ Copy( trie->states, aho->states, numstates, reg_trie_state );
+ Newxz( q, numstates, U32);
+ aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
+ aho->refcount = 1;
+ fail = aho->fail;
+ /* initialize fail[0..1] to be 1 so that we always have
+ a valid final fail state */
+ fail[ 0 ] = fail[ 1 ] = 1;
+
+ for ( charid = 0; charid < ucharcount ; charid++ ) {
+ const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
+ if ( newstate ) {
+ q[ q_write ] = newstate;
+ /* set to point at the root */
+ fail[ q[ q_write++ ] ]=1;
+ }
+ }
+ while ( q_read < q_write) {
+ const U32 cur = q[ q_read++ % numstates ];
+ base = trie->states[ cur ].trans.base;
+
+ for ( charid = 0 ; charid < ucharcount ; charid++ ) {
+ const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
+ if (ch_state) {
+ U32 fail_state = cur;
+ U32 fail_base;
+ do {
+ fail_state = fail[ fail_state ];
+ fail_base = aho->states[ fail_state ].trans.base;
+ } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
+
+ fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
+ fail[ ch_state ] = fail_state;
+ if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
+ {
+ aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
+ }
+ q[ q_write++ % numstates] = ch_state;
+ }
+ }
+ }
+ /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
+ when we fail in state 1, this allows us to use the
+ charclass scan to find a valid start char. This is based on the principle
+ that theres a good chance the string being searched contains lots of stuff
+ that cant be a start char.
+ */
+ fail[ 0 ] = fail[ 1 ] = 0;
+ DEBUG_TRIE_COMPILE_r({
+ PerlIO_printf(Perl_debug_log,
+ "%*sStclass Failtable (%"UVuf" states): 0",
+ (int)(depth * 2), "", (UV)numstates
+ );
+ for( q_read=1; q_read<numstates; q_read++ ) {
+ PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
+ }
+ PerlIO_printf(Perl_debug_log, "\n");
+ });
+ Safefree(q);
+ /*RExC_seen |= REG_TRIEDFA_SEEN;*/
+ return stclass;
+}
+
+
+#define DEBUG_PEEP(str,scan,depth) \
+ DEBUG_OPTIMISE_r({if (scan){ \
+ regnode *Next = regnext(scan); \
+ regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state); \
+ PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)", \
+ (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),\
+ Next ? (REG_NODE_NUM(Next)) : 0 ); \
+ DEBUG_SHOW_STUDY_FLAGS(flags," [ ","]");\
+ PerlIO_printf(Perl_debug_log, "\n"); \
+ }});
+
+/* The below joins as many adjacent EXACTish nodes as possible into a single
+ * one. The regop may be changed if the node(s) contain certain sequences that
+ * require special handling. The joining is only done if:
+ * 1) there is room in the current conglomerated node to entirely contain the
+ * next one.
+ * 2) they are the exact same node type
+ *
+ * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
+ * these get optimized out
+ *
+ * If a node is to match under /i (folded), the number of characters it matches
+ * can be different than its character length if it contains a multi-character
+ * fold. *min_subtract is set to the total delta number of characters of the
+ * input nodes.
+ *
+ * And *unfolded_multi_char is set to indicate whether or not the node contains
+ * an unfolded multi-char fold. This happens when whether the fold is valid or
+ * not won't be known until runtime; namely for EXACTF nodes that contain LATIN
+ * SMALL LETTER SHARP S, as only if the target string being matched against
+ * turns out to be UTF-8 is that fold valid; and also for EXACTFL nodes whose
+ * folding rules depend on the locale in force at runtime. (Multi-char folds
+ * whose components are all above the Latin1 range are not run-time locale
+ * dependent, and have already been folded by the time this function is
+ * called.)
+ *
+ * This is as good a place as any to discuss the design of handling these
+ * multi-character fold sequences. It's been wrong in Perl for a very long
+ * time. There are three code points in Unicode whose multi-character folds
+ * were long ago discovered to mess things up. The previous designs for
+ * dealing with these involved assigning a special node for them. This
+ * approach doesn't always work, as evidenced by this example:
+ * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
+ * Both sides fold to "sss", but if the pattern is parsed to create a node that
+ * would match just the \xDF, it won't be able to handle the case where a
+ * successful match would have to cross the node's boundary. The new approach
+ * that hopefully generally solves the problem generates an EXACTFU_SS node
+ * that is "sss" in this case.
+ *
+ * It turns out that there are problems with all multi-character folds, and not
+ * just these three. Now the code is general, for all such cases. The
+ * approach taken is:
+ * 1) This routine examines each EXACTFish node that could contain multi-
+ * character folded sequences. Since a single character can fold into
+ * such a sequence, the minimum match length for this node is less than
+ * the number of characters in the node. This routine returns in
+ * *min_subtract how many characters to subtract from the the actual
+ * length of the string to get a real minimum match length; it is 0 if
+ * there are no multi-char foldeds. This delta is used by the caller to
+ * adjust the min length of the match, and the delta between min and max,
+ * so that the optimizer doesn't reject these possibilities based on size
+ * constraints.
+ * 2) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
+ * is used for an EXACTFU node that contains at least one "ss" sequence in
+ * it. For non-UTF-8 patterns and strings, this is the only case where
+ * there is a possible fold length change. That means that a regular
+ * EXACTFU node without UTF-8 involvement doesn't have to concern itself
+ * with length changes, and so can be processed faster. regexec.c takes
+ * advantage of this. Generally, an EXACTFish node that is in UTF-8 is
+ * pre-folded by regcomp.c (except EXACTFL, some of whose folds aren't
+ * known until runtime). This saves effort in regex matching. However,
+ * the pre-folding isn't done for non-UTF8 patterns because the fold of
+ * the MICRO SIGN requires UTF-8, and we don't want to slow things down by
+ * forcing the pattern into UTF8 unless necessary. Also what EXACTF (and,
+ * again, EXACTFL) nodes fold to isn't known until runtime. The fold
+ * possibilities for the non-UTF8 patterns are quite simple, except for
+ * the sharp s. All the ones that don't involve a UTF-8 target string are
+ * members of a fold-pair, and arrays are set up for all of them so that
+ * the other member of the pair can be found quickly. Code elsewhere in
+ * this file makes sure that in EXACTFU nodes, the sharp s gets folded to
+ * 'ss', even if the pattern isn't UTF-8. This avoids the issues
+ * described in the next item.
+ * 3) A problem remains for unfolded multi-char folds. (These occur when the
+ * validity of the fold won't be known until runtime, and so must remain
+ * unfolded for now. This happens for the sharp s in EXACTF and EXACTFA
+ * nodes when the pattern isn't in UTF-8. (Note, BTW, that there cannot
+ * be an EXACTF node with a UTF-8 pattern.) They also occur for various
+ * folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
+ * The reason this is a problem is that the optimizer part of regexec.c
+ * (probably unwittingly, in Perl_regexec_flags()) makes an assumption
+ * that a character in the pattern corresponds to at most a single
+ * character in the target string. (And I do mean character, and not byte
+ * here, unlike other parts of the documentation that have never been
+ * updated to account for multibyte Unicode.) sharp s in EXACTF and
+ * EXACTFL nodes can match the two character string 'ss'; in EXACTFA nodes
+ * it can match "\x{17F}\x{17F}". These, along with other ones in EXACTFL
+ * nodes, violate the assumption, and they are the only instances where it
+ * is violated. I'm reluctant to try to change the assumption, as the
+ * code involved is impenetrable to me (khw), so instead the code here
+ * punts. This routine examines EXACTFL nodes, and (when the pattern
+ * isn't UTF-8) EXACTF and EXACTFA for such unfolded folds, and returns a
+ * boolean indicating whether or not the node contains such a fold. When
+ * it is true, the caller sets a flag that later causes the optimizer in
+ * this file to not set values for the floating and fixed string lengths,
+ * and thus avoids the optimizer code in regexec.c that makes the invalid
+ * assumption. Thus, there is no optimization based on string lengths for
+ * EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
+ * EXACTF and EXACTFA nodes that contain the sharp s. (The reason the
+ * assumption is wrong only in these cases is that all other non-UTF-8
+ * folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
+ * their expanded versions. (Again, we can't prefold sharp s to 'ss' in
+ * EXACTF nodes because we don't know at compile time if it actually
+ * matches 'ss' or not. For EXACTF nodes it will match iff the target
+ * string is in UTF-8. This is in contrast to EXACTFU nodes, where it
+ * always matches; and EXACTFA where it never does. In an EXACTFA node in
+ * a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
+ * problem; but in a non-UTF8 pattern, folding it to that above-Latin1
+ * string would require the pattern to be forced into UTF-8, the overhead
+ * of which we want to avoid. Similarly the unfolded multi-char folds in
+ * EXACTFL nodes will match iff the locale at the time of match is a UTF-8
+ * locale.)
+ *
+ * Similarly, the code that generates tries doesn't currently handle
+ * not-already-folded multi-char folds, and it looks like a pain to change
+ * that. Therefore, trie generation of EXACTFA nodes with the sharp s
+ * doesn't work. Instead, such an EXACTFA is turned into a new regnode,
+ * EXACTFA_NO_TRIE, which the trie code knows not to handle. Most people
+ * using /iaa matching will be doing so almost entirely with ASCII
+ * strings, so this should rarely be encountered in practice */
+
+#define JOIN_EXACT(scan,min_subtract,unfolded_multi_char, flags) \
+ if (PL_regkind[OP(scan)] == EXACT) \
+ join_exact(pRExC_state,(scan),(min_subtract),unfolded_multi_char, (flags),NULL,depth+1)
+
+STATIC U32
+S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan,
+ UV *min_subtract, bool *unfolded_multi_char,
+ U32 flags,regnode *val, U32 depth)
+{
+ /* Merge several consecutive EXACTish nodes into one. */
+ regnode *n = regnext(scan);
+ U32 stringok = 1;
+ regnode *next = scan + NODE_SZ_STR(scan);
+ U32 merged = 0;
+ U32 stopnow = 0;
+#ifdef DEBUGGING
+ regnode *stop = scan;
+ GET_RE_DEBUG_FLAGS_DECL;
+#else
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ PERL_ARGS_ASSERT_JOIN_EXACT;
+#ifndef EXPERIMENTAL_INPLACESCAN
+ PERL_UNUSED_ARG(flags);
+ PERL_UNUSED_ARG(val);
+#endif
+ DEBUG_PEEP("join",scan,depth);
+
+ /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
+ * EXACT ones that are mergeable to the current one. */
+ while (n
+ && (PL_regkind[OP(n)] == NOTHING
+ || (stringok && OP(n) == OP(scan)))
+ && NEXT_OFF(n)
+ && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
+ {
+
+ if (OP(n) == TAIL || n > next)
+ stringok = 0;
+ if (PL_regkind[OP(n)] == NOTHING) {
+ DEBUG_PEEP("skip:",n,depth);
+ NEXT_OFF(scan) += NEXT_OFF(n);
+ next = n + NODE_STEP_REGNODE;
+#ifdef DEBUGGING
+ if (stringok)
+ stop = n;
+#endif
+ n = regnext(n);
+ }
+ else if (stringok) {
+ const unsigned int oldl = STR_LEN(scan);
+ regnode * const nnext = regnext(n);
+
+ /* XXX I (khw) kind of doubt that this works on platforms (should
+ * Perl ever run on one) where U8_MAX is above 255 because of lots
+ * of other assumptions */
+ /* Don't join if the sum can't fit into a single node */
+ if (oldl + STR_LEN(n) > U8_MAX)
+ break;
+
+ DEBUG_PEEP("merg",n,depth);
+ merged++;
+
+ NEXT_OFF(scan) += NEXT_OFF(n);
+ STR_LEN(scan) += STR_LEN(n);
+ next = n + NODE_SZ_STR(n);
+ /* Now we can overwrite *n : */
+ Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
+#ifdef DEBUGGING
+ stop = next - 1;
+#endif
+ n = nnext;
+ if (stopnow) break;
+ }
+
+#ifdef EXPERIMENTAL_INPLACESCAN
+ if (flags && !NEXT_OFF(n)) {
+ DEBUG_PEEP("atch", val, depth);
+ if (reg_off_by_arg[OP(n)]) {
+ ARG_SET(n, val - n);
+ }
+ else {
+ NEXT_OFF(n) = val - n;
+ }
+ stopnow = 1;
+ }
+#endif
+ }
+
+ *min_subtract = 0;
+ *unfolded_multi_char = FALSE;
+
+ /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
+ * can now analyze for sequences of problematic code points. (Prior to
+ * this final joining, sequences could have been split over boundaries, and
+ * hence missed). The sequences only happen in folding, hence for any
+ * non-EXACT EXACTish node */
+ if (OP(scan) != EXACT && OP(scan) != EXACTL) {
+ U8* s0 = (U8*) STRING(scan);
+ U8* s = s0;
+ U8* s_end = s0 + STR_LEN(scan);
+
+ int total_count_delta = 0; /* Total delta number of characters that
+ multi-char folds expand to */
+
+ /* One pass is made over the node's string looking for all the
+ * possibilities. To avoid some tests in the loop, there are two main
+ * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
+ * non-UTF-8 */
+ if (UTF) {
+ U8* folded = NULL;
+
+ if (OP(scan) == EXACTFL) {
+ U8 *d;
+
+ /* An EXACTFL node would already have been changed to another
+ * node type unless there is at least one character in it that
+ * is problematic; likely a character whose fold definition
+ * won't be known until runtime, and so has yet to be folded.
+ * For all but the UTF-8 locale, folds are 1-1 in length, but
+ * to handle the UTF-8 case, we need to create a temporary
+ * folded copy using UTF-8 locale rules in order to analyze it.
+ * This is because our macros that look to see if a sequence is
+ * a multi-char fold assume everything is folded (otherwise the
+ * tests in those macros would be too complicated and slow).
+ * Note that here, the non-problematic folds will have already
+ * been done, so we can just copy such characters. We actually
+ * don't completely fold the EXACTFL string. We skip the
+ * unfolded multi-char folds, as that would just create work
+ * below to figure out the size they already are */
+
+ Newx(folded, UTF8_MAX_FOLD_CHAR_EXPAND * STR_LEN(scan) + 1, U8);
+ d = folded;
+ while (s < s_end) {
+ STRLEN s_len = UTF8SKIP(s);
+ if (! is_PROBLEMATIC_LOCALE_FOLD_utf8(s)) {
+ Copy(s, d, s_len, U8);
+ d += s_len;
+ }
+ else if (is_FOLDS_TO_MULTI_utf8(s)) {
+ *unfolded_multi_char = TRUE;
+ Copy(s, d, s_len, U8);
+ d += s_len;
+ }
+ else if (isASCII(*s)) {
+ *(d++) = toFOLD(*s);
+ }
+ else {
+ STRLEN len;
+ _to_utf8_fold_flags(s, d, &len, FOLD_FLAGS_FULL);
+ d += len;
+ }
+ s += s_len;
+ }
+
+ /* Point the remainder of the routine to look at our temporary
+ * folded copy */
+ s = folded;
+ s_end = d;
+ } /* End of creating folded copy of EXACTFL string */
+
+ /* Examine the string for a multi-character fold sequence. UTF-8
+ * patterns have all characters pre-folded by the time this code is
+ * executed */
+ while (s < s_end - 1) /* Can stop 1 before the end, as minimum
+ length sequence we are looking for is 2 */
+ {
+ int count = 0; /* How many characters in a multi-char fold */
+ int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
+ if (! len) { /* Not a multi-char fold: get next char */
+ s += UTF8SKIP(s);
+ continue;
+ }
+
+ /* Nodes with 'ss' require special handling, except for
+ * EXACTFA-ish for which there is no multi-char fold to this */
+ if (len == 2 && *s == 's' && *(s+1) == 's'
+ && OP(scan) != EXACTFA
+ && OP(scan) != EXACTFA_NO_TRIE)
+ {
+ count = 2;
+ if (OP(scan) != EXACTFL) {
+ OP(scan) = EXACTFU_SS;
+ }
+ s += 2;
+ }
+ else { /* Here is a generic multi-char fold. */
+ U8* multi_end = s + len;
+
+ /* Count how many characters are in it. In the case of
+ * /aa, no folds which contain ASCII code points are
+ * allowed, so check for those, and skip if found. */
+ if (OP(scan) != EXACTFA && OP(scan) != EXACTFA_NO_TRIE) {
+ count = utf8_length(s, multi_end);
+ s = multi_end;
+ }
+ else {
+ while (s < multi_end) {
+ if (isASCII(*s)) {
+ s++;
+ goto next_iteration;
+ }
+ else {
+ s += UTF8SKIP(s);
+ }
+ count++;
+ }
+ }
+ }
+
+ /* The delta is how long the sequence is minus 1 (1 is how long
+ * the character that folds to the sequence is) */
+ total_count_delta += count - 1;
+ next_iteration: ;
+ }
+
+ /* We created a temporary folded copy of the string in EXACTFL
+ * nodes. Therefore we need to be sure it doesn't go below zero,
+ * as the real string could be shorter */
+ if (OP(scan) == EXACTFL) {
+ int total_chars = utf8_length((U8*) STRING(scan),
+ (U8*) STRING(scan) + STR_LEN(scan));
+ if (total_count_delta > total_chars) {
+ total_count_delta = total_chars;
+ }
+ }
+
+ *min_subtract += total_count_delta;
+ Safefree(folded);
+ }
+ else if (OP(scan) == EXACTFA) {
+
+ /* Non-UTF-8 pattern, EXACTFA node. There can't be a multi-char
+ * fold to the ASCII range (and there are no existing ones in the
+ * upper latin1 range). But, as outlined in the comments preceding
+ * this function, we need to flag any occurrences of the sharp s.
+ * This character forbids trie formation (because of added
+ * complexity) */
+ while (s < s_end) {
+ if (*s == LATIN_SMALL_LETTER_SHARP_S) {
+ OP(scan) = EXACTFA_NO_TRIE;
+ *unfolded_multi_char = TRUE;
+ break;
+ }
+ s++;
+ continue;
+ }
+ }
+ else {
+
+ /* Non-UTF-8 pattern, not EXACTFA node. Look for the multi-char
+ * folds that are all Latin1. As explained in the comments
+ * preceding this function, we look also for the sharp s in EXACTF
+ * and EXACTFL nodes; it can be in the final position. Otherwise
+ * we can stop looking 1 byte earlier because have to find at least
+ * two characters for a multi-fold */
+ const U8* upper = (OP(scan) == EXACTF || OP(scan) == EXACTFL)
+ ? s_end
+ : s_end -1;
+
+ while (s < upper) {
+ int len = is_MULTI_CHAR_FOLD_latin1_safe(s, s_end);
+ if (! len) { /* Not a multi-char fold. */
+ if (*s == LATIN_SMALL_LETTER_SHARP_S
+ && (OP(scan) == EXACTF || OP(scan) == EXACTFL))
+ {
+ *unfolded_multi_char = TRUE;
+ }
+ s++;
+ continue;
+ }
+
+ if (len == 2
+ && isALPHA_FOLD_EQ(*s, 's')
+ && isALPHA_FOLD_EQ(*(s+1), 's'))
+ {
+
+ /* EXACTF nodes need to know that the minimum length
+ * changed so that a sharp s in the string can match this
+ * ss in the pattern, but they remain EXACTF nodes, as they
+ * won't match this unless the target string is is UTF-8,
+ * which we don't know until runtime. EXACTFL nodes can't
+ * transform into EXACTFU nodes */
+ if (OP(scan) != EXACTF && OP(scan) != EXACTFL) {
+ OP(scan) = EXACTFU_SS;
+ }
+ }
+
+ *min_subtract += len - 1;
+ s += len;
+ }
+ }
+ }
+
+#ifdef DEBUGGING
+ /* Allow dumping but overwriting the collection of skipped
+ * ops and/or strings with fake optimized ops */
+ n = scan + NODE_SZ_STR(scan);
+ while (n <= stop) {
+ OP(n) = OPTIMIZED;
+ FLAGS(n) = 0;
+ NEXT_OFF(n) = 0;
+ n++;
+ }
+#endif
+ DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
+ return stopnow;
+}
+
+/* REx optimizer. Converts nodes into quicker variants "in place".
+ Finds fixed substrings. */
+
+/* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
+ to the position after last scanned or to NULL. */
+
+#define INIT_AND_WITHP \
+ assert(!and_withp); \
+ Newx(and_withp,1, regnode_ssc); \
+ SAVEFREEPV(and_withp)
+
+
+static void
+S_unwind_scan_frames(pTHX_ const void *p)
+{
+ scan_frame *f= (scan_frame *)p;
+ do {
+ scan_frame *n= f->next_frame;
+ Safefree(f);
+ f= n;
+ } while (f);
+}
+
+
+STATIC SSize_t
+S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
+ SSize_t *minlenp, SSize_t *deltap,
+ regnode *last,
+ scan_data_t *data,
+ I32 stopparen,
+ U32 recursed_depth,
+ regnode_ssc *and_withp,
+ U32 flags, U32 depth)
+ /* scanp: Start here (read-write). */
+ /* deltap: Write maxlen-minlen here. */
+ /* last: Stop before this one. */
+ /* data: string data about the pattern */
+ /* stopparen: treat close N as END */
+ /* recursed: which subroutines have we recursed into */
+ /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
+{
+ /* There must be at least this number of characters to match */
+ SSize_t min = 0;
+ I32 pars = 0, code;
+ regnode *scan = *scanp, *next;
+ SSize_t delta = 0;
+ int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
+ int is_inf_internal = 0; /* The studied chunk is infinite */
+ I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
+ scan_data_t data_fake;
+ SV *re_trie_maxbuff = NULL;
+ regnode *first_non_open = scan;
+ SSize_t stopmin = SSize_t_MAX;
+ scan_frame *frame = NULL;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_STUDY_CHUNK;
+
+
+ if ( depth == 0 ) {
+ while (first_non_open && OP(first_non_open) == OPEN)
+ first_non_open=regnext(first_non_open);
+ }
+
+
+ fake_study_recurse:
+ DEBUG_r(
+ RExC_study_chunk_recursed_count++;
+ );
+ DEBUG_OPTIMISE_MORE_r(
+ {
+ PerlIO_printf(Perl_debug_log,
+ "%*sstudy_chunk stopparen=%ld recursed_count=%lu depth=%lu recursed_depth=%lu scan=%p last=%p",
+ (int)(depth*2), "", (long)stopparen,
+ (unsigned long)RExC_study_chunk_recursed_count,
+ (unsigned long)depth, (unsigned long)recursed_depth,
+ scan,
+ last);
+ if (recursed_depth) {
+ U32 i;
+ U32 j;
+ for ( j = 0 ; j < recursed_depth ; j++ ) {
+ for ( i = 0 ; i < (U32)RExC_npar ; i++ ) {
+ if (
+ PAREN_TEST(RExC_study_chunk_recursed +
+ ( j * RExC_study_chunk_recursed_bytes), i )
+ && (
+ !j ||
+ !PAREN_TEST(RExC_study_chunk_recursed +
+ (( j - 1 ) * RExC_study_chunk_recursed_bytes), i)
+ )
+ ) {
+ PerlIO_printf(Perl_debug_log," %d",(int)i);
+ break;
+ }
+ }
+ if ( j + 1 < recursed_depth ) {
+ PerlIO_printf(Perl_debug_log, ",");
+ }
+ }
+ }
+ PerlIO_printf(Perl_debug_log,"\n");
+ }
+ );
+ while ( scan && OP(scan) != END && scan < last ){
+ UV min_subtract = 0; /* How mmany chars to subtract from the minimum
+ node length to get a real minimum (because
+ the folded version may be shorter) */
+ bool unfolded_multi_char = FALSE;
+ /* Peephole optimizer: */
+ DEBUG_STUDYDATA("Peep:", data, depth);
+ DEBUG_PEEP("Peep", scan, depth);
+
+
+ /* The reason we do this here we need to deal with things like /(?:f)(?:o)(?:o)/
+ * which cant be dealt with by the normal EXACT parsing code, as each (?:..) is handled
+ * by a different invocation of reg() -- Yves
+ */
+ JOIN_EXACT(scan,&min_subtract, &unfolded_multi_char, 0);
+
+ /* Follow the next-chain of the current node and optimize
+ away all the NOTHINGs from it. */
+ if (OP(scan) != CURLYX) {
+ const int max = (reg_off_by_arg[OP(scan)]
+ ? I32_MAX
+ /* I32 may be smaller than U16 on CRAYs! */
+ : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
+ int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
+ int noff;
+ regnode *n = scan;
+
+ /* Skip NOTHING and LONGJMP. */
+ while ((n = regnext(n))
+ && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
+ || ((OP(n) == LONGJMP) && (noff = ARG(n))))
+ && off + noff < max)
+ off += noff;
+ if (reg_off_by_arg[OP(scan)])
+ ARG(scan) = off;
+ else
+ NEXT_OFF(scan) = off;
+ }
+
+ /* The principal pseudo-switch. Cannot be a switch, since we
+ look into several different things. */
+ if ( OP(scan) == DEFINEP ) {
+ SSize_t minlen = 0;
+ SSize_t deltanext = 0;
+ SSize_t fake_last_close = 0;
+ I32 f = SCF_IN_DEFINE;
+
+ StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+ scan = regnext(scan);
+ assert( OP(scan) == IFTHEN );
+ DEBUG_PEEP("expect IFTHEN", scan, depth);
+
+ data_fake.last_closep= &fake_last_close;
+ minlen = *minlenp;
+ next = regnext(scan);
+ scan = NEXTOPER(NEXTOPER(scan));
+ DEBUG_PEEP("scan", scan, depth);
+ DEBUG_PEEP("next", next, depth);
+
+ /* we suppose the run is continuous, last=next...
+ * NOTE we dont use the return here! */
+ (void)study_chunk(pRExC_state, &scan, &minlen,
+ &deltanext, next, &data_fake, stopparen,
+ recursed_depth, NULL, f, depth+1);
+
+ scan = next;
+ } else
+ if (
+ OP(scan) == BRANCH ||
+ OP(scan) == BRANCHJ ||
+ OP(scan) == IFTHEN
+ ) {
+ next = regnext(scan);
+ code = OP(scan);
+
+ /* The op(next)==code check below is to see if we
+ * have "BRANCH-BRANCH", "BRANCHJ-BRANCHJ", "IFTHEN-IFTHEN"
+ * IFTHEN is special as it might not appear in pairs.
+ * Not sure whether BRANCH-BRANCHJ is possible, regardless
+ * we dont handle it cleanly. */
+ if (OP(next) == code || code == IFTHEN) {
+ /* NOTE - There is similar code to this block below for
+ * handling TRIE nodes on a re-study. If you change stuff here
+ * check there too. */
+ SSize_t max1 = 0, min1 = SSize_t_MAX, num = 0;
+ regnode_ssc accum;
+ regnode * const startbranch=scan;
+
+ if (flags & SCF_DO_SUBSTR) {
+ /* Cannot merge strings after this. */
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ }
+
+ if (flags & SCF_DO_STCLASS)
+ ssc_init_zero(pRExC_state, &accum);
+
+ while (OP(scan) == code) {
+ SSize_t deltanext, minnext, fake;
+ I32 f = 0;
+ regnode_ssc this_class;
+
+ DEBUG_PEEP("Branch", scan, depth);
+
+ num++;
+ StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+ if (data) {
+ data_fake.whilem_c = data->whilem_c;
+ data_fake.last_closep = data->last_closep;
+ }
+ else
+ data_fake.last_closep = &fake;
+
+ data_fake.pos_delta = delta;
+ next = regnext(scan);
+
+ scan = NEXTOPER(scan); /* everything */
+ if (code != BRANCH) /* everything but BRANCH */
+ scan = NEXTOPER(scan);
+
+ if (flags & SCF_DO_STCLASS) {
+ ssc_init(pRExC_state, &this_class);
+ data_fake.start_class = &this_class;
+ f = SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+
+ /* we suppose the run is continuous, last=next...*/
+ minnext = study_chunk(pRExC_state, &scan, minlenp,
+ &deltanext, next, &data_fake, stopparen,
+ recursed_depth, NULL, f,depth+1);
+
+ if (min1 > minnext)
+ min1 = minnext;
+ if (deltanext == SSize_t_MAX) {
+ is_inf = is_inf_internal = 1;
+ max1 = SSize_t_MAX;
+ } else if (max1 < minnext + deltanext)
+ max1 = minnext + deltanext;
+ scan = next;
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SCF_SEEN_ACCEPT) {
+ if ( stopmin > minnext)
+ stopmin = min + min1;
+ flags &= ~SCF_DO_SUBSTR;
+ if (data)
+ data->flags |= SCF_SEEN_ACCEPT;
+ }
+ if (data) {
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ }
+ if (flags & SCF_DO_STCLASS)
+ ssc_or(pRExC_state, &accum, (regnode_charclass*)&this_class);
+ }
+ if (code == IFTHEN && num < 2) /* Empty ELSE branch */
+ min1 = 0;
+ if (flags & SCF_DO_SUBSTR) {
+ data->pos_min += min1;
+ if (data->pos_delta >= SSize_t_MAX - (max1 - min1))
+ data->pos_delta = SSize_t_MAX;
+ else
+ data->pos_delta += max1 - min1;
+ if (max1 != min1 || is_inf)
+ data->longest = &(data->longest_float);
+ }
+ min += min1;
+ if (delta == SSize_t_MAX
+ || SSize_t_MAX - delta - (max1 - min1) < 0)
+ delta = SSize_t_MAX;
+ else
+ delta += max1 - min1;
+ if (flags & SCF_DO_STCLASS_OR) {
+ ssc_or(pRExC_state, data->start_class, (regnode_charclass*) &accum);
+ if (min1) {
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ if (min1) {
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else {
+ /* Switch to OR mode: cache the old value of
+ * data->start_class */
+ INIT_AND_WITHP;
+ StructCopy(data->start_class, and_withp, regnode_ssc);
+ flags &= ~SCF_DO_STCLASS_AND;
+ StructCopy(&accum, data->start_class, regnode_ssc);
+ flags |= SCF_DO_STCLASS_OR;
+ }
+ }
+
+ if (PERL_ENABLE_TRIE_OPTIMISATION &&
+ OP( startbranch ) == BRANCH )
+ {
+ /* demq.
+
+ Assuming this was/is a branch we are dealing with: 'scan'
+ now points at the item that follows the branch sequence,
+ whatever it is. We now start at the beginning of the
+ sequence and look for subsequences of
+
+ BRANCH->EXACT=>x1
+ BRANCH->EXACT=>x2
+ tail
+
+ which would be constructed from a pattern like
+ /A|LIST|OF|WORDS/
+
+ If we can find such a subsequence we need to turn the first
+ element into a trie and then add the subsequent branch exact
+ strings to the trie.
+
+ We have two cases
+
+ 1. patterns where the whole set of branches can be
+ converted.
+
+ 2. patterns where only a subset can be converted.
+
+ In case 1 we can replace the whole set with a single regop
+ for the trie. In case 2 we need to keep the start and end
+ branches so
+
+ 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
+ becomes BRANCH TRIE; BRANCH X;
+
+ There is an additional case, that being where there is a
+ common prefix, which gets split out into an EXACT like node
+ preceding the TRIE node.
+
+ If x(1..n)==tail then we can do a simple trie, if not we make
+ a "jump" trie, such that when we match the appropriate word
+ we "jump" to the appropriate tail node. Essentially we turn
+ a nested if into a case structure of sorts.
+
+ */
+
+ int made=0;
+ if (!re_trie_maxbuff) {
+ re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
+ if (!SvIOK(re_trie_maxbuff))
+ sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
+ }
+ if ( SvIV(re_trie_maxbuff)>=0 ) {
+ regnode *cur;
+ regnode *first = (regnode *)NULL;
+ regnode *last = (regnode *)NULL;
+ regnode *tail = scan;
+ U8 trietype = 0;
+ U32 count=0;
+
+ /* var tail is used because there may be a TAIL
+ regop in the way. Ie, the exacts will point to the
+ thing following the TAIL, but the last branch will
+ point at the TAIL. So we advance tail. If we
+ have nested (?:) we may have to move through several
+ tails.
+ */
+
+ while ( OP( tail ) == TAIL ) {
+ /* this is the TAIL generated by (?:) */
+ tail = regnext( tail );
+ }
+
+
+ DEBUG_TRIE_COMPILE_r({
+ regprop(RExC_rx, RExC_mysv, tail, NULL, pRExC_state);
+ PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
+ (int)depth * 2 + 2, "",
+ "Looking for TRIE'able sequences. Tail node is: ",
+ SvPV_nolen_const( RExC_mysv )
+ );
+ });
+
+ /*
+
+ Step through the branches
+ cur represents each branch,
+ noper is the first thing to be matched as part
+ of that branch
+ noper_next is the regnext() of that node.
+
+ We normally handle a case like this
+ /FOO[xyz]|BAR[pqr]/ via a "jump trie" but we also
+ support building with NOJUMPTRIE, which restricts
+ the trie logic to structures like /FOO|BAR/.
+
+ If noper is a trieable nodetype then the branch is
+ a possible optimization target. If we are building
+ under NOJUMPTRIE then we require that noper_next is
+ the same as scan (our current position in the regex
+ program).
+
+ Once we have two or more consecutive such branches
+ we can create a trie of the EXACT's contents and
+ stitch it in place into the program.
+
+ If the sequence represents all of the branches in
+ the alternation we replace the entire thing with a
+ single TRIE node.
+
+ Otherwise when it is a subsequence we need to
+ stitch it in place and replace only the relevant
+ branches. This means the first branch has to remain
+ as it is used by the alternation logic, and its
+ next pointer, and needs to be repointed at the item
+ on the branch chain following the last branch we
+ have optimized away.
+
+ This could be either a BRANCH, in which case the
+ subsequence is internal, or it could be the item
+ following the branch sequence in which case the
+ subsequence is at the end (which does not
+ necessarily mean the first node is the start of the
+ alternation).
+
+ TRIE_TYPE(X) is a define which maps the optype to a
+ trietype.
+
+ optype | trietype
+ ----------------+-----------
+ NOTHING | NOTHING
+ EXACT | EXACT
+ EXACTFU | EXACTFU
+ EXACTFU_SS | EXACTFU
+ EXACTFA | EXACTFA
+ EXACTL | EXACTL
+ EXACTFLU8 | EXACTFLU8
+
+
+ */
+#define TRIE_TYPE(X) ( ( NOTHING == (X) ) \
+ ? NOTHING \
+ : ( EXACT == (X) ) \
+ ? EXACT \
+ : ( EXACTFU == (X) || EXACTFU_SS == (X) ) \
+ ? EXACTFU \
+ : ( EXACTFA == (X) ) \
+ ? EXACTFA \
+ : ( EXACTL == (X) ) \
+ ? EXACTL \
+ : ( EXACTFLU8 == (X) ) \
+ ? EXACTFLU8 \
+ : 0 )
+
+ /* dont use tail as the end marker for this traverse */
+ for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
+ regnode * const noper = NEXTOPER( cur );
+ U8 noper_type = OP( noper );
+ U8 noper_trietype = TRIE_TYPE( noper_type );
+#if defined(DEBUGGING) || defined(NOJUMPTRIE)
+ regnode * const noper_next = regnext( noper );
+ U8 noper_next_type = (noper_next && noper_next != tail) ? OP(noper_next) : 0;
+ U8 noper_next_trietype = (noper_next && noper_next != tail) ? TRIE_TYPE( noper_next_type ) :0;
+#endif
+
+ DEBUG_TRIE_COMPILE_r({
+ regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
+ PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
+ (int)depth * 2 + 2,"", SvPV_nolen_const( RExC_mysv ), REG_NODE_NUM(cur) );
+
+ regprop(RExC_rx, RExC_mysv, noper, NULL, pRExC_state);
+ PerlIO_printf( Perl_debug_log, " -> %s",
+ SvPV_nolen_const(RExC_mysv));
+
+ if ( noper_next ) {
+ regprop(RExC_rx, RExC_mysv, noper_next, NULL, pRExC_state);
+ PerlIO_printf( Perl_debug_log,"\t=> %s\t",
+ SvPV_nolen_const(RExC_mysv));
+ }
+ PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d,tt==%s,nt==%s,nnt==%s)\n",
+ REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur),
+ PL_reg_name[trietype], PL_reg_name[noper_trietype], PL_reg_name[noper_next_trietype]
+ );
+ });
+
+ /* Is noper a trieable nodetype that can be merged
+ * with the current trie (if there is one)? */
+ if ( noper_trietype
+ &&
+ (
+ ( noper_trietype == NOTHING)
+ || ( trietype == NOTHING )
+ || ( trietype == noper_trietype )
+ )
+#ifdef NOJUMPTRIE
+ && noper_next == tail
+#endif
+ && count < U16_MAX)
+ {
+ /* Handle mergable triable node Either we are
+ * the first node in a new trieable sequence,
+ * in which case we do some bookkeeping,
+ * otherwise we update the end pointer. */
+ if ( !first ) {
+ first = cur;
+ if ( noper_trietype == NOTHING ) {
+#if !defined(DEBUGGING) && !defined(NOJUMPTRIE)
+ regnode * const noper_next = regnext( noper );
+ U8 noper_next_type = (noper_next && noper_next!=tail) ? OP(noper_next) : 0;
+ U8 noper_next_trietype = noper_next_type ? TRIE_TYPE( noper_next_type ) :0;
+#endif
+
+ if ( noper_next_trietype ) {
+ trietype = noper_next_trietype;
+ } else if (noper_next_type) {
+ /* a NOTHING regop is 1 regop wide.
+ * We need at least two for a trie
+ * so we can't merge this in */
+ first = NULL;
+ }
+ } else {
+ trietype = noper_trietype;
+ }
+ } else {
+ if ( trietype == NOTHING )
+ trietype = noper_trietype;
+ last = cur;
+ }
+ if (first)
+ count++;
+ } /* end handle mergable triable node */
+ else {
+ /* handle unmergable node -
+ * noper may either be a triable node which can
+ * not be tried together with the current trie,
+ * or a non triable node */
+ if ( last ) {
+ /* If last is set and trietype is not
+ * NOTHING then we have found at least two
+ * triable branch sequences in a row of a
+ * similar trietype so we can turn them
+ * into a trie. If/when we allow NOTHING to
+ * start a trie sequence this condition
+ * will be required, and it isn't expensive
+ * so we leave it in for now. */
+ if ( trietype && trietype != NOTHING )
+ make_trie( pRExC_state,
+ startbranch, first, cur, tail,
+ count, trietype, depth+1 );
+ last = NULL; /* note: we clear/update
+ first, trietype etc below,
+ so we dont do it here */
+ }
+ if ( noper_trietype
+#ifdef NOJUMPTRIE
+ && noper_next == tail
+#endif
+ ){
+ /* noper is triable, so we can start a new
+ * trie sequence */
+ count = 1;
+ first = cur;
+ trietype = noper_trietype;
+ } else if (first) {
+ /* if we already saw a first but the
+ * current node is not triable then we have
+ * to reset the first information. */
+ count = 0;
+ first = NULL;
+ trietype = 0;
+ }
+ } /* end handle unmergable node */
+ } /* loop over branches */
+ DEBUG_TRIE_COMPILE_r({
+ regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
+ PerlIO_printf( Perl_debug_log,
+ "%*s- %s (%d) <SCAN FINISHED>\n",
+ (int)depth * 2 + 2,
+ "", SvPV_nolen_const( RExC_mysv ),REG_NODE_NUM(cur));
+
+ });
+ if ( last && trietype ) {
+ if ( trietype != NOTHING ) {
+ /* the last branch of the sequence was part of
+ * a trie, so we have to construct it here
+ * outside of the loop */
+ made= make_trie( pRExC_state, startbranch,
+ first, scan, tail, count,
+ trietype, depth+1 );
+#ifdef TRIE_STUDY_OPT
+ if ( ((made == MADE_EXACT_TRIE &&
+ startbranch == first)
+ || ( first_non_open == first )) &&
+ depth==0 ) {
+ flags |= SCF_TRIE_RESTUDY;
+ if ( startbranch == first
+ && scan == tail )
+ {
+ RExC_seen &=~REG_TOP_LEVEL_BRANCHES_SEEN;
+ }
+ }
+#endif
+ } else {
+ /* at this point we know whatever we have is a
+ * NOTHING sequence/branch AND if 'startbranch'
+ * is 'first' then we can turn the whole thing
+ * into a NOTHING
+ */
+ if ( startbranch == first ) {
+ regnode *opt;
+ /* the entire thing is a NOTHING sequence,
+ * something like this: (?:|) So we can
+ * turn it into a plain NOTHING op. */
+ DEBUG_TRIE_COMPILE_r({
+ regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
+ PerlIO_printf( Perl_debug_log,
+ "%*s- %s (%d) <NOTHING BRANCH SEQUENCE>\n", (int)depth * 2 + 2,
+ "", SvPV_nolen_const( RExC_mysv ),REG_NODE_NUM(cur));
+
+ });
+ OP(startbranch)= NOTHING;
+ NEXT_OFF(startbranch)= tail - startbranch;
+ for ( opt= startbranch + 1; opt < tail ; opt++ )
+ OP(opt)= OPTIMIZED;
+ }
+ }
+ } /* end if ( last) */
+ } /* TRIE_MAXBUF is non zero */
+
+ } /* do trie */
+
+ }
+ else if ( code == BRANCHJ ) { /* single branch is optimized. */
+ scan = NEXTOPER(NEXTOPER(scan));
+ } else /* single branch is optimized. */
+ scan = NEXTOPER(scan);
+ continue;
+ } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
+ I32 paren = 0;
+ regnode *start = NULL;
+ regnode *end = NULL;
+ U32 my_recursed_depth= recursed_depth;
+
+
+ if (OP(scan) != SUSPEND) { /* GOSUB/GOSTART */
+ /* Do setup, note this code has side effects beyond
+ * the rest of this block. Specifically setting
+ * RExC_recurse[] must happen at least once during
+ * study_chunk(). */
+ if (OP(scan) == GOSUB) {
+ paren = ARG(scan);
+ RExC_recurse[ARG2L(scan)] = scan;
+ start = RExC_open_parens[paren-1];
+ end = RExC_close_parens[paren-1];
+ } else {
+ start = RExC_rxi->program + 1;
+ end = RExC_opend;
+ }
+ /* NOTE we MUST always execute the above code, even
+ * if we do nothing with a GOSUB/GOSTART */
+ if (
+ ( flags & SCF_IN_DEFINE )
+ ||
+ (
+ (is_inf_internal || is_inf || (data && data->flags & SF_IS_INF))
+ &&
+ ( (flags & (SCF_DO_STCLASS | SCF_DO_SUBSTR)) == 0 )
+ )
+ ) {
+ /* no need to do anything here if we are in a define. */
+ /* or we are after some kind of infinite construct
+ * so we can skip recursing into this item.
+ * Since it is infinite we will not change the maxlen
+ * or delta, and if we miss something that might raise
+ * the minlen it will merely pessimise a little.
+ *
+ * Iow /(?(DEFINE)(?<foo>foo|food))a+(?&foo)/
+ * might result in a minlen of 1 and not of 4,
+ * but this doesn't make us mismatch, just try a bit
+ * harder than we should.
+ * */
+ scan= regnext(scan);
+ continue;
+ }
+
+ if (
+ !recursed_depth
+ ||
+ !PAREN_TEST(RExC_study_chunk_recursed + ((recursed_depth-1) * RExC_study_chunk_recursed_bytes), paren)
+ ) {
+ /* it is quite possible that there are more efficient ways
+ * to do this. We maintain a bitmap per level of recursion
+ * of which patterns we have entered so we can detect if a
+ * pattern creates a possible infinite loop. When we
+ * recurse down a level we copy the previous levels bitmap
+ * down. When we are at recursion level 0 we zero the top
+ * level bitmap. It would be nice to implement a different
+ * more efficient way of doing this. In particular the top
+ * level bitmap may be unnecessary.
+ */
+ if (!recursed_depth) {
+ Zero(RExC_study_chunk_recursed, RExC_study_chunk_recursed_bytes, U8);
+ } else {
+ Copy(RExC_study_chunk_recursed + ((recursed_depth-1) * RExC_study_chunk_recursed_bytes),
+ RExC_study_chunk_recursed + (recursed_depth * RExC_study_chunk_recursed_bytes),
+ RExC_study_chunk_recursed_bytes, U8);
+ }
+ /* we havent recursed into this paren yet, so recurse into it */
+ DEBUG_STUDYDATA("set:", data,depth);
+ PAREN_SET(RExC_study_chunk_recursed + (recursed_depth * RExC_study_chunk_recursed_bytes), paren);
+ my_recursed_depth= recursed_depth + 1;
+ } else {
+ DEBUG_STUDYDATA("inf:", data,depth);
+ /* some form of infinite recursion, assume infinite length
+ * */
+ if (flags & SCF_DO_SUBSTR) {
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+ ssc_anything(data->start_class);
+ flags &= ~SCF_DO_STCLASS;
+
+ start= NULL; /* reset start so we dont recurse later on. */
+ }
+ } else {
+ paren = stopparen;
+ start = scan + 2;
+ end = regnext(scan);
+ }
+ if (start) {
+ scan_frame *newframe;
+ assert(end);
+ if (!RExC_frame_last) {
+ Newxz(newframe, 1, scan_frame);
+ SAVEDESTRUCTOR_X(S_unwind_scan_frames, newframe);
+ RExC_frame_head= newframe;
+ RExC_frame_count++;
+ } else if (!RExC_frame_last->next_frame) {
+ Newxz(newframe,1,scan_frame);
+ RExC_frame_last->next_frame= newframe;
+ newframe->prev_frame= RExC_frame_last;
+ RExC_frame_count++;
+ } else {
+ newframe= RExC_frame_last->next_frame;
+ }
+ RExC_frame_last= newframe;
+
+ newframe->next_regnode = regnext(scan);
+ newframe->last_regnode = last;
+ newframe->stopparen = stopparen;
+ newframe->prev_recursed_depth = recursed_depth;
+ newframe->this_prev_frame= frame;
+
+ DEBUG_STUDYDATA("frame-new:",data,depth);
+ DEBUG_PEEP("fnew", scan, depth);
+
+ frame = newframe;
+ scan = start;
+ stopparen = paren;
+ last = end;
+ depth = depth + 1;
+ recursed_depth= my_recursed_depth;
+
+ continue;
+ }
+ }
+ else if (OP(scan) == EXACT || OP(scan) == EXACTL) {
+ SSize_t l = STR_LEN(scan);
+ UV uc;
+ if (UTF) {
+ const U8 * const s = (U8*)STRING(scan);
+ uc = utf8_to_uvchr_buf(s, s + l, NULL);
+ l = utf8_length(s, s + l);
+ } else {
+ uc = *((U8*)STRING(scan));
+ }
+ min += l;
+ if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
+ /* The code below prefers earlier match for fixed
+ offset, later match for variable offset. */
+ if (data->last_end == -1) { /* Update the start info. */
+ data->last_start_min = data->pos_min;
+ data->last_start_max = is_inf
+ ? SSize_t_MAX : data->pos_min + data->pos_delta;
+ }
+ sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
+ if (UTF)
+ SvUTF8_on(data->last_found);
+ {
+ SV * const sv = data->last_found;
+ MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
+ mg_find(sv, PERL_MAGIC_utf8) : NULL;
+ if (mg && mg->mg_len >= 0)
+ mg->mg_len += utf8_length((U8*)STRING(scan),
+ (U8*)STRING(scan)+STR_LEN(scan));
+ }
+ data->last_end = data->pos_min + l;
+ data->pos_min += l; /* As in the first entry. */
+ data->flags &= ~SF_BEFORE_EOL;
+ }
+
+ /* ANDing the code point leaves at most it, and not in locale, and
+ * can't match null string */
+ if (flags & SCF_DO_STCLASS_AND) {
+ ssc_cp_and(data->start_class, uc);
+ ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+ ssc_clear_locale(data->start_class);
+ }
+ else if (flags & SCF_DO_STCLASS_OR) {
+ ssc_add_cp(data->start_class, uc);
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+
+ /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
+ ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+ }
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else if (PL_regkind[OP(scan)] == EXACT) {
+ /* But OP != EXACT!, so is EXACTFish */
+ SSize_t l = STR_LEN(scan);
+ const U8 * s = (U8*)STRING(scan);
+
+ /* Search for fixed substrings supports EXACT only. */
+ if (flags & SCF_DO_SUBSTR) {
+ assert(data);
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ }
+ if (UTF) {
+ l = utf8_length(s, s + l);
+ }
+ if (unfolded_multi_char) {
+ RExC_seen |= REG_UNFOLDED_MULTI_SEEN;
+ }
+ min += l - min_subtract;
+ assert (min >= 0);
+ delta += min_subtract;
+ if (flags & SCF_DO_SUBSTR) {
+ data->pos_min += l - min_subtract;
+ if (data->pos_min < 0) {
+ data->pos_min = 0;
+ }
+ data->pos_delta += min_subtract;
+ if (min_subtract) {
+ data->longest = &(data->longest_float);
+ }
+ }
+
+ if (flags & SCF_DO_STCLASS) {
+ SV* EXACTF_invlist = _make_exactf_invlist(pRExC_state, scan);
+
+ assert(EXACTF_invlist);
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (OP(scan) != EXACTFL)
+ ssc_clear_locale(data->start_class);
+ ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+ ANYOF_POSIXL_ZERO(data->start_class);
+ ssc_intersection(data->start_class, EXACTF_invlist, FALSE);
+ }
+ else { /* SCF_DO_STCLASS_OR */
+ ssc_union(data->start_class, EXACTF_invlist, FALSE);
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+
+ /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
+ ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+ }
+ flags &= ~SCF_DO_STCLASS;
+ SvREFCNT_dec(EXACTF_invlist);
+ }
+ }
+ else if (REGNODE_VARIES(OP(scan))) {
+ SSize_t mincount, maxcount, minnext, deltanext, pos_before = 0;
+ I32 fl = 0, f = flags;
+ regnode * const oscan = scan;
+ regnode_ssc this_class;
+ regnode_ssc *oclass = NULL;
+ I32 next_is_eval = 0;
+
+ switch (PL_regkind[OP(scan)]) {
+ case WHILEM: /* End of (?:...)* . */
+ scan = NEXTOPER(scan);
+ goto finish;
+ case PLUS:
+ if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
+ next = NEXTOPER(scan);
+ if (OP(next) == EXACT
+ || OP(next) == EXACTL
+ || (flags & SCF_DO_STCLASS))
+ {
+ mincount = 1;
+ maxcount = REG_INFTY;
+ next = regnext(scan);
+ scan = NEXTOPER(scan);
+ goto do_curly;
+ }
+ }
+ if (flags & SCF_DO_SUBSTR)
+ data->pos_min++;
+ min++;
+ /* FALLTHROUGH */
+ case STAR:
+ if (flags & SCF_DO_STCLASS) {
+ mincount = 0;
+ maxcount = REG_INFTY;
+ next = regnext(scan);
+ scan = NEXTOPER(scan);
+ goto do_curly;
+ }
+ if (flags & SCF_DO_SUBSTR) {
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ /* Cannot extend fixed substrings */
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ scan = regnext(scan);
+ goto optimize_curly_tail;
+ case CURLY:
+ if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
+ && (scan->flags == stopparen))
+ {
+ mincount = 1;
+ maxcount = 1;
+ } else {
+ mincount = ARG1(scan);
+ maxcount = ARG2(scan);
+ }
+ next = regnext(scan);
+ if (OP(scan) == CURLYX) {
+ I32 lp = (data ? *(data->last_closep) : 0);
+ scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
+ }
+ scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
+ next_is_eval = (OP(scan) == EVAL);
+ do_curly:
+ if (flags & SCF_DO_SUBSTR) {
+ if (mincount == 0)
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ /* Cannot extend fixed substrings */
+ pos_before = data->pos_min;
+ }
+ if (data) {
+ fl = data->flags;
+ data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
+ if (is_inf)
+ data->flags |= SF_IS_INF;
+ }
+ if (flags & SCF_DO_STCLASS) {
+ ssc_init(pRExC_state, &this_class);
+ oclass = data->start_class;
+ data->start_class = &this_class;
+ f |= SCF_DO_STCLASS_AND;
+ f &= ~SCF_DO_STCLASS_OR;
+ }
+ /* Exclude from super-linear cache processing any {n,m}
+ regops for which the combination of input pos and regex
+ pos is not enough information to determine if a match
+ will be possible.
+
+ For example, in the regex /foo(bar\s*){4,8}baz/ with the
+ regex pos at the \s*, the prospects for a match depend not
+ only on the input position but also on how many (bar\s*)
+ repeats into the {4,8} we are. */
+ if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
+ f &= ~SCF_WHILEM_VISITED_POS;
+
+ /* This will finish on WHILEM, setting scan, or on NULL: */
+ minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
+ last, data, stopparen, recursed_depth, NULL,
+ (mincount == 0
+ ? (f & ~SCF_DO_SUBSTR)
+ : f)
+ ,depth+1);
+
+ if (flags & SCF_DO_STCLASS)
+ data->start_class = oclass;
+ if (mincount == 0 || minnext == 0) {
+ if (flags & SCF_DO_STCLASS_OR) {
+ ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ /* Switch to OR mode: cache the old value of
+ * data->start_class */
+ INIT_AND_WITHP;
+ StructCopy(data->start_class, and_withp, regnode_ssc);
+ flags &= ~SCF_DO_STCLASS_AND;
+ StructCopy(&this_class, data->start_class, regnode_ssc);
+ flags |= SCF_DO_STCLASS_OR;
+ ANYOF_FLAGS(data->start_class)
+ |= SSC_MATCHES_EMPTY_STRING;
+ }
+ } else { /* Non-zero len */
+ if (flags & SCF_DO_STCLASS_OR) {
+ ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+ }
+ else if (flags & SCF_DO_STCLASS_AND)
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ if (!scan) /* It was not CURLYX, but CURLY. */
+ scan = next;
+ if (!(flags & SCF_TRIE_DOING_RESTUDY)
+ /* ? quantifier ok, except for (?{ ... }) */
+ && (next_is_eval || !(mincount == 0 && maxcount == 1))
+ && (minnext == 0) && (deltanext == 0)
+ && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
+ && maxcount <= REG_INFTY/3) /* Complement check for big
+ count */
+ {
+ /* Fatal warnings may leak the regexp without this: */
+ SAVEFREESV(RExC_rx_sv);
+ Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP),
+ "Quantifier unexpected on zero-length expression "
+ "in regex m/%"UTF8f"/",
+ UTF8fARG(UTF, RExC_end - RExC_precomp,
+ RExC_precomp));
+ (void)ReREFCNT_inc(RExC_rx_sv);
+ }
+
+ min += minnext * mincount;
+ is_inf_internal |= deltanext == SSize_t_MAX
+ || (maxcount == REG_INFTY && minnext + deltanext > 0);
+ is_inf |= is_inf_internal;
+ if (is_inf) {
+ delta = SSize_t_MAX;
+ } else {
+ delta += (minnext + deltanext) * maxcount
+ - minnext * mincount;
+ }
+ /* Try powerful optimization CURLYX => CURLYN. */
+ if ( OP(oscan) == CURLYX && data
+ && data->flags & SF_IN_PAR
+ && !(data->flags & SF_HAS_EVAL)
+ && !deltanext && minnext == 1 ) {
+ /* Try to optimize to CURLYN. */
+ regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
+ regnode * const nxt1 = nxt;
+#ifdef DEBUGGING
+ regnode *nxt2;
+#endif
+
+ /* Skip open. */
+ nxt = regnext(nxt);
+ if (!REGNODE_SIMPLE(OP(nxt))
+ && !(PL_regkind[OP(nxt)] == EXACT
+ && STR_LEN(nxt) == 1))
+ goto nogo;
+#ifdef DEBUGGING
+ nxt2 = nxt;
+#endif
+ nxt = regnext(nxt);
+ if (OP(nxt) != CLOSE)
+ goto nogo;
+ if (RExC_open_parens) {
+ RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
+ RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
+ }
+ /* Now we know that nxt2 is the only contents: */
+ oscan->flags = (U8)ARG(nxt);
+ OP(oscan) = CURLYN;
+ OP(nxt1) = NOTHING; /* was OPEN. */
+
+#ifdef DEBUGGING
+ OP(nxt1 + 1) = OPTIMIZED; /* was count. */
+ NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
+ NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
+ OP(nxt) = OPTIMIZED; /* was CLOSE. */
+ OP(nxt + 1) = OPTIMIZED; /* was count. */
+ NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
+#endif
+ }
+ nogo:
+
+ /* Try optimization CURLYX => CURLYM. */
+ if ( OP(oscan) == CURLYX && data
+ && !(data->flags & SF_HAS_PAR)
+ && !(data->flags & SF_HAS_EVAL)
+ && !deltanext /* atom is fixed width */
+ && minnext != 0 /* CURLYM can't handle zero width */
+
+ /* Nor characters whose fold at run-time may be
+ * multi-character */
+ && ! (RExC_seen & REG_UNFOLDED_MULTI_SEEN)
+ ) {
+ /* XXXX How to optimize if data == 0? */
+ /* Optimize to a simpler form. */
+ regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
+ regnode *nxt2;
+
+ OP(oscan) = CURLYM;
+ while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
+ && (OP(nxt2) != WHILEM))
+ nxt = nxt2;
+ OP(nxt2) = SUCCEED; /* Whas WHILEM */
+ /* Need to optimize away parenths. */
+ if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
+ /* Set the parenth number. */
+ regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
+
+ oscan->flags = (U8)ARG(nxt);
+ if (RExC_open_parens) {
+ RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
+ RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
+ }
+ OP(nxt1) = OPTIMIZED; /* was OPEN. */
+ OP(nxt) = OPTIMIZED; /* was CLOSE. */
+
+#ifdef DEBUGGING
+ OP(nxt1 + 1) = OPTIMIZED; /* was count. */
+ OP(nxt + 1) = OPTIMIZED; /* was count. */
+ NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
+ NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
+#endif
+#if 0
+ while ( nxt1 && (OP(nxt1) != WHILEM)) {
+ regnode *nnxt = regnext(nxt1);
+ if (nnxt == nxt) {
+ if (reg_off_by_arg[OP(nxt1)])
+ ARG_SET(nxt1, nxt2 - nxt1);
+ else if (nxt2 - nxt1 < U16_MAX)
+ NEXT_OFF(nxt1) = nxt2 - nxt1;
+ else
+ OP(nxt) = NOTHING; /* Cannot beautify */
+ }
+ nxt1 = nnxt;
+ }
+#endif
+ /* Optimize again: */
+ study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
+ NULL, stopparen, recursed_depth, NULL, 0,depth+1);
+ }
+ else
+ oscan->flags = 0;
+ }
+ else if ((OP(oscan) == CURLYX)
+ && (flags & SCF_WHILEM_VISITED_POS)
+ /* See the comment on a similar expression above.
+ However, this time it's not a subexpression
+ we care about, but the expression itself. */
+ && (maxcount == REG_INFTY)
+ && data && ++data->whilem_c < 16) {
+ /* This stays as CURLYX, we can put the count/of pair. */
+ /* Find WHILEM (as in regexec.c) */
+ regnode *nxt = oscan + NEXT_OFF(oscan);
+
+ if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
+ nxt += ARG(nxt);
+ PREVOPER(nxt)->flags = (U8)(data->whilem_c
+ | (RExC_whilem_seen << 4)); /* On WHILEM */
+ }
+ if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (flags & SCF_DO_SUBSTR) {
+ SV *last_str = NULL;
+ STRLEN last_chrs = 0;
+ int counted = mincount != 0;
+
+ if (data->last_end > 0 && mincount != 0) { /* Ends with a
+ string. */
+ SSize_t b = pos_before >= data->last_start_min
+ ? pos_before : data->last_start_min;
+ STRLEN l;
+ const char * const s = SvPV_const(data->last_found, l);
+ SSize_t old = b - data->last_start_min;
+
+ if (UTF)
+ old = utf8_hop((U8*)s, old) - (U8*)s;
+ l -= old;
+ /* Get the added string: */
+ last_str = newSVpvn_utf8(s + old, l, UTF);
+ last_chrs = UTF ? utf8_length((U8*)(s + old),
+ (U8*)(s + old + l)) : l;
+ if (deltanext == 0 && pos_before == b) {
+ /* What was added is a constant string */
+ if (mincount > 1) {
+
+ SvGROW(last_str, (mincount * l) + 1);
+ repeatcpy(SvPVX(last_str) + l,
+ SvPVX_const(last_str), l,
+ mincount - 1);
+ SvCUR_set(last_str, SvCUR(last_str) * mincount);
+ /* Add additional parts. */
+ SvCUR_set(data->last_found,
+ SvCUR(data->last_found) - l);
+ sv_catsv(data->last_found, last_str);
+ {
+ SV * sv = data->last_found;
+ MAGIC *mg =
+ SvUTF8(sv) && SvMAGICAL(sv) ?
+ mg_find(sv, PERL_MAGIC_utf8) : NULL;
+ if (mg && mg->mg_len >= 0)
+ mg->mg_len += last_chrs * (mincount-1);
+ }
+ last_chrs *= mincount;
+ data->last_end += l * (mincount - 1);
+ }
+ } else {
+ /* start offset must point into the last copy */
+ data->last_start_min += minnext * (mincount - 1);
+ data->last_start_max =
+ is_inf
+ ? SSize_t_MAX
+ : data->last_start_max +
+ (maxcount - 1) * (minnext + data->pos_delta);
+ }
+ }
+ /* It is counted once already... */
+ data->pos_min += minnext * (mincount - counted);
+#if 0
+PerlIO_printf(Perl_debug_log, "counted=%"UVuf" deltanext=%"UVuf
+ " SSize_t_MAX=%"UVuf" minnext=%"UVuf
+ " maxcount=%"UVuf" mincount=%"UVuf"\n",
+ (UV)counted, (UV)deltanext, (UV)SSize_t_MAX, (UV)minnext, (UV)maxcount,
+ (UV)mincount);
+if (deltanext != SSize_t_MAX)
+PerlIO_printf(Perl_debug_log, "LHS=%"UVuf" RHS=%"UVuf"\n",
+ (UV)(-counted * deltanext + (minnext + deltanext) * maxcount
+ - minnext * mincount), (UV)(SSize_t_MAX - data->pos_delta));
+#endif
+ if (deltanext == SSize_t_MAX
+ || -counted * deltanext + (minnext + deltanext) * maxcount - minnext * mincount >= SSize_t_MAX - data->pos_delta)
+ data->pos_delta = SSize_t_MAX;
+ else
+ data->pos_delta += - counted * deltanext +
+ (minnext + deltanext) * maxcount - minnext * mincount;
+ if (mincount != maxcount) {
+ /* Cannot extend fixed substrings found inside
+ the group. */
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ if (mincount && last_str) {
+ SV * const sv = data->last_found;
+ MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
+ mg_find(sv, PERL_MAGIC_utf8) : NULL;
+
+ if (mg)
+ mg->mg_len = -1;
+ sv_setsv(sv, last_str);
+ data->last_end = data->pos_min;
+ data->last_start_min = data->pos_min - last_chrs;
+ data->last_start_max = is_inf
+ ? SSize_t_MAX
+ : data->pos_min + data->pos_delta - last_chrs;
+ }
+ data->longest = &(data->longest_float);
+ }
+ SvREFCNT_dec(last_str);
+ }
+ if (data && (fl & SF_HAS_EVAL))
+ data->flags |= SF_HAS_EVAL;
+ optimize_curly_tail:
+ if (OP(oscan) != CURLYX) {
+ while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
+ && NEXT_OFF(next))
+ NEXT_OFF(oscan) += NEXT_OFF(next);
+ }
+ continue;
+
+ default:
+#ifdef DEBUGGING
+ Perl_croak(aTHX_ "panic: unexpected varying REx opcode %d",
+ OP(scan));
+#endif
+ case REF:
+ case CLUMP:
+ if (flags & SCF_DO_SUBSTR) {
+ /* Cannot expect anything... */
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ if (flags & SCF_DO_STCLASS_OR) {
+ if (OP(scan) == CLUMP) {
+ /* Actually is any start char, but very few code points
+ * aren't start characters */
+ ssc_match_all_cp(data->start_class);
+ }
+ else {
+ ssc_anything(data->start_class);
+ }
+ }
+ flags &= ~SCF_DO_STCLASS;
+ break;
+ }
+ }
+ else if (OP(scan) == LNBREAK) {
+ if (flags & SCF_DO_STCLASS) {
+ if (flags & SCF_DO_STCLASS_AND) {
+ ssc_intersection(data->start_class,
+ PL_XPosix_ptrs[_CC_VERTSPACE], FALSE);
+ ssc_clear_locale(data->start_class);
+ ANYOF_FLAGS(data->start_class)
+ &= ~SSC_MATCHES_EMPTY_STRING;
+ }
+ else if (flags & SCF_DO_STCLASS_OR) {
+ ssc_union(data->start_class,
+ PL_XPosix_ptrs[_CC_VERTSPACE],
+ FALSE);
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+
+ /* See commit msg for
+ * 749e076fceedeb708a624933726e7989f2302f6a */
+ ANYOF_FLAGS(data->start_class)
+ &= ~SSC_MATCHES_EMPTY_STRING;
+ }
+ flags &= ~SCF_DO_STCLASS;
+ }
+ min++;
+ if (delta != SSize_t_MAX)
+ delta++; /* Because of the 2 char string cr-lf */
+ if (flags & SCF_DO_SUBSTR) {
+ /* Cannot expect anything... */
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ data->pos_min += 1;
+ data->pos_delta += 1;
+ data->longest = &(data->longest_float);
+ }
+ }
+ else if (REGNODE_SIMPLE(OP(scan))) {
+
+ if (flags & SCF_DO_SUBSTR) {
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ data->pos_min++;
+ }
+ min++;
+ if (flags & SCF_DO_STCLASS) {
+ bool invert = 0;
+ SV* my_invlist = NULL;
+ U8 namedclass;
+
+ /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
+ ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+
+ /* Some of the logic below assumes that switching
+ locale on will only add false positives. */
+ switch (OP(scan)) {
+
+ default:
+#ifdef DEBUGGING
+ Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d",
+ OP(scan));
+#endif
+ case SANY:
+ if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+ ssc_match_all_cp(data->start_class);
+ break;
+
+ case REG_ANY:
+ {
+ SV* REG_ANY_invlist = _new_invlist(2);
+ REG_ANY_invlist = add_cp_to_invlist(REG_ANY_invlist,
+ '\n');
+ if (flags & SCF_DO_STCLASS_OR) {
+ ssc_union(data->start_class,
+ REG_ANY_invlist,
+ TRUE /* TRUE => invert, hence all but \n
+ */
+ );
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ ssc_intersection(data->start_class,
+ REG_ANY_invlist,
+ TRUE /* TRUE => invert */
+ );
+ ssc_clear_locale(data->start_class);
+ }
+ SvREFCNT_dec_NN(REG_ANY_invlist);
+ }
+ break;
+
+ case ANYOFL:
+ case ANYOF:
+ if (flags & SCF_DO_STCLASS_AND)
+ ssc_and(pRExC_state, data->start_class,
+ (regnode_charclass *) scan);
+ else
+ ssc_or(pRExC_state, data->start_class,
+ (regnode_charclass *) scan);
+ break;
+
+ case NPOSIXL:
+ invert = 1;
+ /* FALLTHROUGH */
+
+ case POSIXL:
+ namedclass = classnum_to_namedclass(FLAGS(scan)) + invert;
+ if (flags & SCF_DO_STCLASS_AND) {
+ bool was_there = cBOOL(
+ ANYOF_POSIXL_TEST(data->start_class,
+ namedclass));
+ ANYOF_POSIXL_ZERO(data->start_class);
+ if (was_there) { /* Do an AND */
+ ANYOF_POSIXL_SET(data->start_class, namedclass);
+ }
+ /* No individual code points can now match */
+ data->start_class->invlist
+ = sv_2mortal(_new_invlist(0));
+ }
+ else {
+ int complement = namedclass + ((invert) ? -1 : 1);
+
+ assert(flags & SCF_DO_STCLASS_OR);
+
+ /* If the complement of this class was already there,
+ * the result is that they match all code points,
+ * (\d + \D == everything). Remove the classes from
+ * future consideration. Locale is not relevant in
+ * this case */
+ if (ANYOF_POSIXL_TEST(data->start_class, complement)) {
+ ssc_match_all_cp(data->start_class);
+ ANYOF_POSIXL_CLEAR(data->start_class, namedclass);
+ ANYOF_POSIXL_CLEAR(data->start_class, complement);
+ }
+ else { /* The usual case; just add this class to the
+ existing set */
+ ANYOF_POSIXL_SET(data->start_class, namedclass);
+ }
+ }
+ break;
+
+ case NPOSIXA: /* For these, we always know the exact set of
+ what's matched */
+ invert = 1;
+ /* FALLTHROUGH */
+ case POSIXA:
+ if (FLAGS(scan) == _CC_ASCII) {
+ my_invlist = invlist_clone(PL_XPosix_ptrs[_CC_ASCII]);
+ }
+ else {
+ _invlist_intersection(PL_XPosix_ptrs[FLAGS(scan)],
+ PL_XPosix_ptrs[_CC_ASCII],
+ &my_invlist);
+ }
+ goto join_posix;
+
+ case NPOSIXD:
+ case NPOSIXU:
+ invert = 1;
+ /* FALLTHROUGH */
+ case POSIXD:
+ case POSIXU:
+ my_invlist = invlist_clone(PL_XPosix_ptrs[FLAGS(scan)]);
+
+ /* NPOSIXD matches all upper Latin1 code points unless the
+ * target string being matched is UTF-8, which is
+ * unknowable until match time. Since we are going to
+ * invert, we want to get rid of all of them so that the
+ * inversion will match all */
+ if (OP(scan) == NPOSIXD) {
+ _invlist_subtract(my_invlist, PL_UpperLatin1,
+ &my_invlist);
+ }
+
+ join_posix:
+
+ if (flags & SCF_DO_STCLASS_AND) {
+ ssc_intersection(data->start_class, my_invlist, invert);
+ ssc_clear_locale(data->start_class);
+ }
+ else {
+ assert(flags & SCF_DO_STCLASS_OR);
+ ssc_union(data->start_class, my_invlist, invert);
+ }
+ SvREFCNT_dec(my_invlist);
+ }
+ if (flags & SCF_DO_STCLASS_OR)
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ }
+ else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
+ data->flags |= (OP(scan) == MEOL
+ ? SF_BEFORE_MEOL
+ : SF_BEFORE_SEOL);
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+
+ }
+ else if ( PL_regkind[OP(scan)] == BRANCHJ
+ /* Lookbehind, or need to calculate parens/evals/stclass: */
+ && (scan->flags || data || (flags & SCF_DO_STCLASS))
+ && (OP(scan) == IFMATCH || OP(scan) == UNLESSM))
+ {
+ if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
+ || OP(scan) == UNLESSM )
+ {
+ /* Negative Lookahead/lookbehind
+ In this case we can't do fixed string optimisation.
+ */
+
+ SSize_t deltanext, minnext, fake = 0;
+ regnode *nscan;
+ regnode_ssc intrnl;
+ int f = 0;
+
+ StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+ if (data) {
+ data_fake.whilem_c = data->whilem_c;
+ data_fake.last_closep = data->last_closep;
+ }
+ else
+ data_fake.last_closep = &fake;
+ data_fake.pos_delta = delta;
+ if ( flags & SCF_DO_STCLASS && !scan->flags
+ && OP(scan) == IFMATCH ) { /* Lookahead */
+ ssc_init(pRExC_state, &intrnl);
+ data_fake.start_class = &intrnl;
+ f |= SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+ next = regnext(scan);
+ nscan = NEXTOPER(NEXTOPER(scan));
+ minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
+ last, &data_fake, stopparen,
+ recursed_depth, NULL, f, depth+1);
+ if (scan->flags) {
+ if (deltanext) {
+ FAIL("Variable length lookbehind not implemented");
+ }
+ else if (minnext > (I32)U8_MAX) {
+ FAIL2("Lookbehind longer than %"UVuf" not implemented",
+ (UV)U8_MAX);
+ }
+ scan->flags = (U8)minnext;
+ }
+ if (data) {
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ }
+ if (f & SCF_DO_STCLASS_AND) {
+ if (flags & SCF_DO_STCLASS_OR) {
+ /* OR before, AND after: ideally we would recurse with
+ * data_fake to get the AND applied by study of the
+ * remainder of the pattern, and then derecurse;
+ * *** HACK *** for now just treat as "no information".
+ * See [perl #56690].
+ */
+ ssc_init(pRExC_state, data->start_class);
+ } else {
+ /* AND before and after: combine and continue. These
+ * assertions are zero-length, so can match an EMPTY
+ * string */
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &intrnl);
+ ANYOF_FLAGS(data->start_class)
+ |= SSC_MATCHES_EMPTY_STRING;
+ }
+ }
+ }
+#if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
+ else {
+ /* Positive Lookahead/lookbehind
+ In this case we can do fixed string optimisation,
+ but we must be careful about it. Note in the case of
+ lookbehind the positions will be offset by the minimum
+ length of the pattern, something we won't know about
+ until after the recurse.
+ */
+ SSize_t deltanext, fake = 0;
+ regnode *nscan;
+ regnode_ssc intrnl;
+ int f = 0;
+ /* We use SAVEFREEPV so that when the full compile
+ is finished perl will clean up the allocated
+ minlens when it's all done. This way we don't
+ have to worry about freeing them when we know
+ they wont be used, which would be a pain.
+ */
+ SSize_t *minnextp;
+ Newx( minnextp, 1, SSize_t );
+ SAVEFREEPV(minnextp);
+
+ if (data) {
+ StructCopy(data, &data_fake, scan_data_t);
+ if ((flags & SCF_DO_SUBSTR) && data->last_found) {
+ f |= SCF_DO_SUBSTR;
+ if (scan->flags)
+ scan_commit(pRExC_state, &data_fake, minlenp, is_inf);
+ data_fake.last_found=newSVsv(data->last_found);
+ }
+ }
+ else
+ data_fake.last_closep = &fake;
+ data_fake.flags = 0;
+ data_fake.pos_delta = delta;
+ if (is_inf)
+ data_fake.flags |= SF_IS_INF;
+ if ( flags & SCF_DO_STCLASS && !scan->flags
+ && OP(scan) == IFMATCH ) { /* Lookahead */
+ ssc_init(pRExC_state, &intrnl);
+ data_fake.start_class = &intrnl;
+ f |= SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+ next = regnext(scan);
+ nscan = NEXTOPER(NEXTOPER(scan));
+
+ *minnextp = study_chunk(pRExC_state, &nscan, minnextp,
+ &deltanext, last, &data_fake,
+ stopparen, recursed_depth, NULL,
+ f,depth+1);
+ if (scan->flags) {
+ if (deltanext) {
+ FAIL("Variable length lookbehind not implemented");
+ }
+ else if (*minnextp > (I32)U8_MAX) {
+ FAIL2("Lookbehind longer than %"UVuf" not implemented",
+ (UV)U8_MAX);
+ }
+ scan->flags = (U8)*minnextp;
+ }
+
+ *minnextp += min;
+
+ if (f & SCF_DO_STCLASS_AND) {
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &intrnl);
+ ANYOF_FLAGS(data->start_class) |= SSC_MATCHES_EMPTY_STRING;
+ }
+ if (data) {
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
+ if (RExC_rx->minlen<*minnextp)
+ RExC_rx->minlen=*minnextp;
+ scan_commit(pRExC_state, &data_fake, minnextp, is_inf);
+ SvREFCNT_dec_NN(data_fake.last_found);
+
+ if ( data_fake.minlen_fixed != minlenp )
+ {
+ data->offset_fixed= data_fake.offset_fixed;
+ data->minlen_fixed= data_fake.minlen_fixed;
+ data->lookbehind_fixed+= scan->flags;
+ }
+ if ( data_fake.minlen_float != minlenp )
+ {
+ data->minlen_float= data_fake.minlen_float;
+ data->offset_float_min=data_fake.offset_float_min;
+ data->offset_float_max=data_fake.offset_float_max;
+ data->lookbehind_float+= scan->flags;
+ }
+ }
+ }
+ }
+#endif
+ }
+ else if (OP(scan) == OPEN) {
+ if (stopparen != (I32)ARG(scan))
+ pars++;
+ }
+ else if (OP(scan) == CLOSE) {
+ if (stopparen == (I32)ARG(scan)) {
+ break;
+ }
+ if ((I32)ARG(scan) == is_par) {
+ next = regnext(scan);
+
+ if ( next && (OP(next) != WHILEM) && next < last)
+ is_par = 0; /* Disable optimization */
+ }
+ if (data)
+ *(data->last_closep) = ARG(scan);
+ }
+ else if (OP(scan) == EVAL) {
+ if (data)
+ data->flags |= SF_HAS_EVAL;
+ }
+ else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
+ if (flags & SCF_DO_SUBSTR) {
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ flags &= ~SCF_DO_SUBSTR;
+ }
+ if (data && OP(scan)==ACCEPT) {
+ data->flags |= SCF_SEEN_ACCEPT;
+ if (stopmin > min)
+ stopmin = min;
+ }
+ }
+ else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
+ {
+ if (flags & SCF_DO_SUBSTR) {
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+ ssc_anything(data->start_class);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else if (OP(scan) == GPOS) {
+ if (!(RExC_rx->intflags & PREGf_GPOS_FLOAT) &&
+ !(delta || is_inf || (data && data->pos_delta)))
+ {
+ if (!(RExC_rx->intflags & PREGf_ANCH) && (flags & SCF_DO_SUBSTR))
+ RExC_rx->intflags |= PREGf_ANCH_GPOS;
+ if (RExC_rx->gofs < (STRLEN)min)
+ RExC_rx->gofs = min;
+ } else {
+ RExC_rx->intflags |= PREGf_GPOS_FLOAT;
+ RExC_rx->gofs = 0;
+ }
+ }
+#ifdef TRIE_STUDY_OPT
+#ifdef FULL_TRIE_STUDY
+ else if (PL_regkind[OP(scan)] == TRIE) {
+ /* NOTE - There is similar code to this block above for handling
+ BRANCH nodes on the initial study. If you change stuff here
+ check there too. */
+ regnode *trie_node= scan;
+ regnode *tail= regnext(scan);
+ reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
+ SSize_t max1 = 0, min1 = SSize_t_MAX;
+ regnode_ssc accum;
+
+ if (flags & SCF_DO_SUBSTR) { /* XXXX Add !SUSPEND? */
+ /* Cannot merge strings after this. */
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ }
+ if (flags & SCF_DO_STCLASS)
+ ssc_init_zero(pRExC_state, &accum);
+
+ if (!trie->jump) {
+ min1= trie->minlen;
+ max1= trie->maxlen;
+ } else {
+ const regnode *nextbranch= NULL;
+ U32 word;
+
+ for ( word=1 ; word <= trie->wordcount ; word++)
+ {
+ SSize_t deltanext=0, minnext=0, f = 0, fake;
+ regnode_ssc this_class;
+
+ StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+ if (data) {
+ data_fake.whilem_c = data->whilem_c;
+ data_fake.last_closep = data->last_closep;
+ }
+ else
+ data_fake.last_closep = &fake;
+ data_fake.pos_delta = delta;
+ if (flags & SCF_DO_STCLASS) {
+ ssc_init(pRExC_state, &this_class);
+ data_fake.start_class = &this_class;
+ f = SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+
+ if (trie->jump[word]) {
+ if (!nextbranch)
+ nextbranch = trie_node + trie->jump[0];
+ scan= trie_node + trie->jump[word];
+ /* We go from the jump point to the branch that follows
+ it. Note this means we need the vestigal unused
+ branches even though they arent otherwise used. */
+ minnext = study_chunk(pRExC_state, &scan, minlenp,
+ &deltanext, (regnode *)nextbranch, &data_fake,
+ stopparen, recursed_depth, NULL, f,depth+1);
+ }
+ if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
+ nextbranch= regnext((regnode*)nextbranch);
+
+ if (min1 > (SSize_t)(minnext + trie->minlen))
+ min1 = minnext + trie->minlen;
+ if (deltanext == SSize_t_MAX) {
+ is_inf = is_inf_internal = 1;
+ max1 = SSize_t_MAX;
+ } else if (max1 < (SSize_t)(minnext + deltanext + trie->maxlen))
+ max1 = minnext + deltanext + trie->maxlen;
+
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SCF_SEEN_ACCEPT) {
+ if ( stopmin > min + min1)
+ stopmin = min + min1;
+ flags &= ~SCF_DO_SUBSTR;
+ if (data)
+ data->flags |= SCF_SEEN_ACCEPT;
+ }
+ if (data) {
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ }
+ if (flags & SCF_DO_STCLASS)
+ ssc_or(pRExC_state, &accum, (regnode_charclass *) &this_class);
+ }
+ }
+ if (flags & SCF_DO_SUBSTR) {
+ data->pos_min += min1;
+ data->pos_delta += max1 - min1;
+ if (max1 != min1 || is_inf)
+ data->longest = &(data->longest_float);
+ }
+ min += min1;
+ if (delta != SSize_t_MAX)
+ delta += max1 - min1;
+ if (flags & SCF_DO_STCLASS_OR) {
+ ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &accum);
+ if (min1) {
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ if (min1) {
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else {
+ /* Switch to OR mode: cache the old value of
+ * data->start_class */
+ INIT_AND_WITHP;
+ StructCopy(data->start_class, and_withp, regnode_ssc);
+ flags &= ~SCF_DO_STCLASS_AND;
+ StructCopy(&accum, data->start_class, regnode_ssc);
+ flags |= SCF_DO_STCLASS_OR;
+ }
+ }
+ scan= tail;
+ continue;
+ }
+#else
+ else if (PL_regkind[OP(scan)] == TRIE) {
+ reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
+ U8*bang=NULL;
+
+ min += trie->minlen;
+ delta += (trie->maxlen - trie->minlen);
+ flags &= ~SCF_DO_STCLASS; /* xxx */
+ if (flags & SCF_DO_SUBSTR) {
+ /* Cannot expect anything... */
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ data->pos_min += trie->minlen;
+ data->pos_delta += (trie->maxlen - trie->minlen);
+ if (trie->maxlen != trie->minlen)
+ data->longest = &(data->longest_float);
+ }
+ if (trie->jump) /* no more substrings -- for now /grr*/
+ flags &= ~SCF_DO_SUBSTR;
+ }
+#endif /* old or new */
+#endif /* TRIE_STUDY_OPT */
+
+ /* Else: zero-length, ignore. */
+ scan = regnext(scan);
+ }
+ /* If we are exiting a recursion we can unset its recursed bit
+ * and allow ourselves to enter it again - no danger of an
+ * infinite loop there.
+ if (stopparen > -1 && recursed) {
+ DEBUG_STUDYDATA("unset:", data,depth);
+ PAREN_UNSET( recursed, stopparen);
+ }
+ */
+ if (frame) {
+ depth = depth - 1;
+
+ DEBUG_STUDYDATA("frame-end:",data,depth);
+ DEBUG_PEEP("fend", scan, depth);
+
+ /* restore previous context */
+ last = frame->last_regnode;
+ scan = frame->next_regnode;
+ stopparen = frame->stopparen;
+ recursed_depth = frame->prev_recursed_depth;
+
+ RExC_frame_last = frame->prev_frame;
+ frame = frame->this_prev_frame;
+ goto fake_study_recurse;
+ }
+
+ finish:
+ assert(!frame);
+ DEBUG_STUDYDATA("pre-fin:",data,depth);
+
+ *scanp = scan;
+ *deltap = is_inf_internal ? SSize_t_MAX : delta;
+
+ if (flags & SCF_DO_SUBSTR && is_inf)
+ data->pos_delta = SSize_t_MAX - data->pos_min;
+ if (is_par > (I32)U8_MAX)
+ is_par = 0;
+ if (is_par && pars==1 && data) {
+ data->flags |= SF_IN_PAR;
+ data->flags &= ~SF_HAS_PAR;
+ }
+ else if (pars && data) {
+ data->flags |= SF_HAS_PAR;
+ data->flags &= ~SF_IN_PAR;
+ }
+ if (flags & SCF_DO_STCLASS_OR)
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+ if (flags & SCF_TRIE_RESTUDY)
+ data->flags |= SCF_TRIE_RESTUDY;
+
+ DEBUG_STUDYDATA("post-fin:",data,depth);
+
+ {
+ SSize_t final_minlen= min < stopmin ? min : stopmin;
+
+ if (!(RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN)) {
+ if (final_minlen > SSize_t_MAX - delta)
+ RExC_maxlen = SSize_t_MAX;
+ else if (RExC_maxlen < final_minlen + delta)
+ RExC_maxlen = final_minlen + delta;
+ }
+ return final_minlen;
+ }
+ NOT_REACHED; /* NOTREACHED */
+}
+
+STATIC U32
+S_add_data(RExC_state_t* const pRExC_state, const char* const s, const U32 n)
+{
+ U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
+
+ PERL_ARGS_ASSERT_ADD_DATA;
+
+ Renewc(RExC_rxi->data,
+ sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
+ char, struct reg_data);
+ if(count)
+ Renew(RExC_rxi->data->what, count + n, U8);
+ else
+ Newx(RExC_rxi->data->what, n, U8);
+ RExC_rxi->data->count = count + n;
+ Copy(s, RExC_rxi->data->what + count, n, U8);
+ return count;
+}
+
+/*XXX: todo make this not included in a non debugging perl, but appears to be
+ * used anyway there, in 'use re' */
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_reginitcolors(pTHX)
+{
+ const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
+ if (s) {
+ char *t = savepv(s);
+ int i = 0;
+ PL_colors[0] = t;
+ while (++i < 6) {
+ t = strchr(t, '\t');
+ if (t) {
+ *t = '\0';
+ PL_colors[i] = ++t;
+ }
+ else
+ PL_colors[i] = t = (char *)"";
+ }
+ } else {
+ int i = 0;
+ while (i < 6)
+ PL_colors[i++] = (char *)"";
+ }
+ PL_colorset = 1;
+}
+#endif
+
+
+#ifdef TRIE_STUDY_OPT
+#define CHECK_RESTUDY_GOTO_butfirst(dOsomething) \
+ STMT_START { \
+ if ( \
+ (data.flags & SCF_TRIE_RESTUDY) \
+ && ! restudied++ \
+ ) { \
+ dOsomething; \
+ goto reStudy; \
+ } \
+ } STMT_END
+#else
+#define CHECK_RESTUDY_GOTO_butfirst
+#endif
+
+/*
+ * pregcomp - compile a regular expression into internal code
+ *
+ * Decides which engine's compiler to call based on the hint currently in
+ * scope
+ */
+
+#ifndef PERL_IN_XSUB_RE
+
+/* return the currently in-scope regex engine (or the default if none) */
+
+regexp_engine const *
+Perl_current_re_engine(pTHX)
+{
+ if (IN_PERL_COMPILETIME) {
+ HV * const table = GvHV(PL_hintgv);
+ SV **ptr;
+
+ if (!table || !(PL_hints & HINT_LOCALIZE_HH))
+ return &reh_regexp_engine;
+ ptr = hv_fetchs(table, "regcomp", FALSE);
+ if ( !(ptr && SvIOK(*ptr) && SvIV(*ptr)))
+ return &reh_regexp_engine;
+ return INT2PTR(regexp_engine*,SvIV(*ptr));
+ }
+ else {
+ SV *ptr;
+ if (!PL_curcop->cop_hints_hash)
+ return &reh_regexp_engine;
+ ptr = cop_hints_fetch_pvs(PL_curcop, "regcomp", 0);
+ if ( !(ptr && SvIOK(ptr) && SvIV(ptr)))
+ return &reh_regexp_engine;
+ return INT2PTR(regexp_engine*,SvIV(ptr));
+ }
+}
+
+
+REGEXP *
+Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
+{
+ regexp_engine const *eng = current_re_engine();
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_PREGCOMP;
+
+ /* Dispatch a request to compile a regexp to correct regexp engine. */
+ DEBUG_COMPILE_r({
+ PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
+ PTR2UV(eng));
+ });
+ return CALLREGCOMP_ENG(eng, pattern, flags);
+}
+#endif
+
+/* public(ish) entry point for the perl core's own regex compiling code.
+ * It's actually a wrapper for Perl_re_op_compile that only takes an SV
+ * pattern rather than a list of OPs, and uses the internal engine rather
+ * than the current one */
+
+REGEXP *
+Perl_re_compile(pTHX_ SV * const pattern, U32 rx_flags)
+{
+ SV *pat = pattern; /* defeat constness! */
+ PERL_ARGS_ASSERT_RE_COMPILE;
+ return Perl_re_op_compile(aTHX_ &pat, 1, NULL,
+#ifdef PERL_IN_XSUB_RE
+ &my_reg_engine,
+#else
+ &reh_regexp_engine,
+#endif
+ NULL, NULL, rx_flags, 0);
+}
+
+
+/* upgrade pattern pat_p of length plen_p to UTF8, and if there are code
+ * blocks, recalculate the indices. Update pat_p and plen_p in-place to
+ * point to the realloced string and length.
+ *
+ * This is essentially a copy of Perl_bytes_to_utf8() with the code index
+ * stuff added */
+
+static void
+S_pat_upgrade_to_utf8(pTHX_ RExC_state_t * const pRExC_state,
+ char **pat_p, STRLEN *plen_p, int num_code_blocks)
+{
+ U8 *const src = (U8*)*pat_p;
+ U8 *dst, *d;
+ int n=0;
+ STRLEN s = 0;
+ bool do_end = 0;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+ "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
+
+ Newx(dst, *plen_p * 2 + 1, U8);
+ d = dst;
+
+ while (s < *plen_p) {
+ append_utf8_from_native_byte(src[s], &d);
+ if (n < num_code_blocks) {
+ if (!do_end && pRExC_state->code_blocks[n].start == s) {
+ pRExC_state->code_blocks[n].start = d - dst - 1;
+ assert(*(d - 1) == '(');
+ do_end = 1;
+ }
+ else if (do_end && pRExC_state->code_blocks[n].end == s) {
+ pRExC_state->code_blocks[n].end = d - dst - 1;
+ assert(*(d - 1) == ')');
+ do_end = 0;
+ n++;
+ }
+ }
+ s++;
+ }
+ *d = '\0';
+ *plen_p = d - dst;
+ *pat_p = (char*) dst;
+ SAVEFREEPV(*pat_p);
+ RExC_orig_utf8 = RExC_utf8 = 1;
+}
+
+
+
+/* S_concat_pat(): concatenate a list of args to the pattern string pat,
+ * while recording any code block indices, and handling overloading,
+ * nested qr// objects etc. If pat is null, it will allocate a new
+ * string, or just return the first arg, if there's only one.
+ *
+ * Returns the malloced/updated pat.
+ * patternp and pat_count is the array of SVs to be concatted;
+ * oplist is the optional list of ops that generated the SVs;
+ * recompile_p is a pointer to a boolean that will be set if
+ * the regex will need to be recompiled.
+ * delim, if non-null is an SV that will be inserted between each element
+ */
+
+static SV*
+S_concat_pat(pTHX_ RExC_state_t * const pRExC_state,
+ SV *pat, SV ** const patternp, int pat_count,
+ OP *oplist, bool *recompile_p, SV *delim)
+{
+ SV **svp;
+ int n = 0;
+ bool use_delim = FALSE;
+ bool alloced = FALSE;
+
+ /* if we know we have at least two args, create an empty string,
+ * then concatenate args to that. For no args, return an empty string */
+ if (!pat && pat_count != 1) {
+ pat = newSVpvs("");
+ SAVEFREESV(pat);
+ alloced = TRUE;
+ }
+
+ for (svp = patternp; svp < patternp + pat_count; svp++) {
+ SV *sv;
+ SV *rx = NULL;
+ STRLEN orig_patlen = 0;
+ bool code = 0;
+ SV *msv = use_delim ? delim : *svp;
+ if (!msv) msv = &PL_sv_undef;
+
+ /* if we've got a delimiter, we go round the loop twice for each
+ * svp slot (except the last), using the delimiter the second
+ * time round */
+ if (use_delim) {
+ svp--;
+ use_delim = FALSE;
+ }
+ else if (delim)
+ use_delim = TRUE;
+
+ if (SvTYPE(msv) == SVt_PVAV) {
+ /* we've encountered an interpolated array within
+ * the pattern, e.g. /...@a..../. Expand the list of elements,
+ * then recursively append elements.
+ * The code in this block is based on S_pushav() */
+
+ AV *const av = (AV*)msv;
+ const SSize_t maxarg = AvFILL(av) + 1;
+ SV **array;
+
+ if (oplist) {
+ assert(oplist->op_type == OP_PADAV
+ || oplist->op_type == OP_RV2AV);
+ oplist = OpSIBLING(oplist);
+ }
+
+ if (SvRMAGICAL(av)) {
+ SSize_t i;
+
+ Newx(array, maxarg, SV*);
+ SAVEFREEPV(array);
+ for (i=0; i < maxarg; i++) {
+ SV ** const svp = av_fetch(av, i, FALSE);
+ array[i] = svp ? *svp : &PL_sv_undef;
+ }
+ }
+ else
+ array = AvARRAY(av);
+
+ pat = S_concat_pat(aTHX_ pRExC_state, pat,
+ array, maxarg, NULL, recompile_p,
+ /* $" */
+ GvSV((gv_fetchpvs("\"", GV_ADDMULTI, SVt_PV))));
+
+ continue;
+ }
+
+
+ /* we make the assumption here that each op in the list of
+ * op_siblings maps to one SV pushed onto the stack,
+ * except for code blocks, with have both an OP_NULL and
+ * and OP_CONST.
+ * This allows us to match up the list of SVs against the
+ * list of OPs to find the next code block.
+ *
+ * Note that PUSHMARK PADSV PADSV ..
+ * is optimised to
+ * PADRANGE PADSV PADSV ..
+ * so the alignment still works. */
+
+ if (oplist) {
+ if (oplist->op_type == OP_NULL
+ && (oplist->op_flags & OPf_SPECIAL))
+ {
+ assert(n < pRExC_state->num_code_blocks);
+ pRExC_state->code_blocks[n].start = pat ? SvCUR(pat) : 0;
+ pRExC_state->code_blocks[n].block = oplist;
+ pRExC_state->code_blocks[n].src_regex = NULL;
+ n++;
+ code = 1;
+ oplist = OpSIBLING(oplist); /* skip CONST */
+ assert(oplist);
+ }
+ oplist = OpSIBLING(oplist);;
+ }
+
+ /* apply magic and QR overloading to arg */
+
+ SvGETMAGIC(msv);
+ if (SvROK(msv) && SvAMAGIC(msv)) {
+ SV *sv = AMG_CALLunary(msv, regexp_amg);
+ if (sv) {
+ if (SvROK(sv))
+ sv = SvRV(sv);
+ if (SvTYPE(sv) != SVt_REGEXP)
+ Perl_croak(aTHX_ "Overloaded qr did not return a REGEXP");
+ msv = sv;
+ }
+ }
+
+ /* try concatenation overload ... */
+ if (pat && (SvAMAGIC(pat) || SvAMAGIC(msv)) &&
+ (sv = amagic_call(pat, msv, concat_amg, AMGf_assign)))
+ {
+ sv_setsv(pat, sv);
+ /* overloading involved: all bets are off over literal
+ * code. Pretend we haven't seen it */
+ pRExC_state->num_code_blocks -= n;
+ n = 0;
+ }
+ else {
+ /* ... or failing that, try "" overload */
+ while (SvAMAGIC(msv)
+ && (sv = AMG_CALLunary(msv, string_amg))
+ && sv != msv
+ && !( SvROK(msv)
+ && SvROK(sv)
+ && SvRV(msv) == SvRV(sv))
+ ) {
+ msv = sv;
+ SvGETMAGIC(msv);
+ }
+ if (SvROK(msv) && SvTYPE(SvRV(msv)) == SVt_REGEXP)
+ msv = SvRV(msv);
+
+ if (pat) {
+ /* this is a partially unrolled
+ * sv_catsv_nomg(pat, msv);
+ * that allows us to adjust code block indices if
+ * needed */
+ STRLEN dlen;
+ char *dst = SvPV_force_nomg(pat, dlen);
+ orig_patlen = dlen;
+ if (SvUTF8(msv) && !SvUTF8(pat)) {
+ S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &dst, &dlen, n);
+ sv_setpvn(pat, dst, dlen);
+ SvUTF8_on(pat);
+ }
+ sv_catsv_nomg(pat, msv);
+ rx = msv;
+ }
+ else
+ pat = msv;
+
+ if (code)
+ pRExC_state->code_blocks[n-1].end = SvCUR(pat)-1;
+ }
+
+ /* extract any code blocks within any embedded qr//'s */
+ if (rx && SvTYPE(rx) == SVt_REGEXP
+ && RX_ENGINE((REGEXP*)rx)->op_comp)
+ {
+
+ RXi_GET_DECL(ReANY((REGEXP *)rx), ri);
+ if (ri->num_code_blocks) {
+ int i;
+ /* the presence of an embedded qr// with code means
+ * we should always recompile: the text of the
+ * qr// may not have changed, but it may be a
+ * different closure than last time */
+ *recompile_p = 1;
+ Renew(pRExC_state->code_blocks,
+ pRExC_state->num_code_blocks + ri->num_code_blocks,
+ struct reg_code_block);
+ pRExC_state->num_code_blocks += ri->num_code_blocks;
+
+ for (i=0; i < ri->num_code_blocks; i++) {
+ struct reg_code_block *src, *dst;
+ STRLEN offset = orig_patlen
+ + ReANY((REGEXP *)rx)->pre_prefix;
+ assert(n < pRExC_state->num_code_blocks);
+ src = &ri->code_blocks[i];
+ dst = &pRExC_state->code_blocks[n];
+ dst->start = src->start + offset;
+ dst->end = src->end + offset;
+ dst->block = src->block;
+ dst->src_regex = (REGEXP*) SvREFCNT_inc( (SV*)
+ src->src_regex
+ ? src->src_regex
+ : (REGEXP*)rx);
+ n++;
+ }
+ }
+ }
+ }
+ /* avoid calling magic multiple times on a single element e.g. =~ $qr */
+ if (alloced)
+ SvSETMAGIC(pat);
+
+ return pat;
+}
+
+
+
+/* see if there are any run-time code blocks in the pattern.
+ * False positives are allowed */
+
+static bool
+S_has_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
+ char *pat, STRLEN plen)
+{
+ int n = 0;
+ STRLEN s;
+
+ PERL_UNUSED_CONTEXT;
+
+ for (s = 0; s < plen; s++) {
+ if (n < pRExC_state->num_code_blocks
+ && s == pRExC_state->code_blocks[n].start)
+ {
+ s = pRExC_state->code_blocks[n].end;
+ n++;
+ continue;
+ }
+ /* TODO ideally should handle [..], (#..), /#.../x to reduce false
+ * positives here */
+ if (pat[s] == '(' && s+2 <= plen && pat[s+1] == '?' &&
+ (pat[s+2] == '{'
+ || (s + 2 <= plen && pat[s+2] == '?' && pat[s+3] == '{'))
+ )
+ return 1;
+ }
+ return 0;
+}
+
+/* Handle run-time code blocks. We will already have compiled any direct
+ * or indirect literal code blocks. Now, take the pattern 'pat' and make a
+ * copy of it, but with any literal code blocks blanked out and
+ * appropriate chars escaped; then feed it into
+ *
+ * eval "qr'modified_pattern'"
+ *
+ * For example,
+ *
+ * a\bc(?{"this was literal"})def'ghi\\jkl(?{"this is runtime"})mno
+ *
+ * becomes
+ *
+ * qr'a\\bc_______________________def\'ghi\\\\jkl(?{"this is runtime"})mno'
+ *
+ * After eval_sv()-ing that, grab any new code blocks from the returned qr
+ * and merge them with any code blocks of the original regexp.
+ *
+ * If the pat is non-UTF8, while the evalled qr is UTF8, don't merge;
+ * instead, just save the qr and return FALSE; this tells our caller that
+ * the original pattern needs upgrading to utf8.
+ */
+
+static bool
+S_compile_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
+ char *pat, STRLEN plen)
+{
+ SV *qr;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ if (pRExC_state->runtime_code_qr) {
+ /* this is the second time we've been called; this should
+ * only happen if the main pattern got upgraded to utf8
+ * during compilation; re-use the qr we compiled first time
+ * round (which should be utf8 too)
+ */
+ qr = pRExC_state->runtime_code_qr;
+ pRExC_state->runtime_code_qr = NULL;
+ assert(RExC_utf8 && SvUTF8(qr));
+ }
+ else {
+ int n = 0;
+ STRLEN s;
+ char *p, *newpat;
+ int newlen = plen + 6; /* allow for "qr''x\0" extra chars */
+ SV *sv, *qr_ref;
+ dSP;
+
+ /* determine how many extra chars we need for ' and \ escaping */
+ for (s = 0; s < plen; s++) {
+ if (pat[s] == '\'' || pat[s] == '\\')
+ newlen++;
+ }
+
+ Newx(newpat, newlen, char);
+ p = newpat;
+ *p++ = 'q'; *p++ = 'r'; *p++ = '\'';
+
+ for (s = 0; s < plen; s++) {
+ if (n < pRExC_state->num_code_blocks
+ && s == pRExC_state->code_blocks[n].start)
+ {
+ /* blank out literal code block */
+ assert(pat[s] == '(');
+ while (s <= pRExC_state->code_blocks[n].end) {
+ *p++ = '_';
+ s++;
+ }
+ s--;
+ n++;
+ continue;
+ }
+ if (pat[s] == '\'' || pat[s] == '\\')
+ *p++ = '\\';
+ *p++ = pat[s];
+ }
+ *p++ = '\'';
+ if (pRExC_state->pm_flags & RXf_PMf_EXTENDED)
+ *p++ = 'x';
+ *p++ = '\0';
+ DEBUG_COMPILE_r({
+ PerlIO_printf(Perl_debug_log,
+ "%sre-parsing pattern for runtime code:%s %s\n",
+ PL_colors[4],PL_colors[5],newpat);
+ });
+
+ sv = newSVpvn_flags(newpat, p-newpat-1, RExC_utf8 ? SVf_UTF8 : 0);
+ Safefree(newpat);
+
+ ENTER;
+ SAVETMPS;
+ save_re_context();
+ PUSHSTACKi(PERLSI_REQUIRE);
+ /* G_RE_REPARSING causes the toker to collapse \\ into \ when
+ * parsing qr''; normally only q'' does this. It also alters
+ * hints handling */
+ eval_sv(sv, G_SCALAR|G_RE_REPARSING);
+ SvREFCNT_dec_NN(sv);
+ SPAGAIN;
+ qr_ref = POPs;
+ PUTBACK;
+ {
+ SV * const errsv = ERRSV;
+ if (SvTRUE_NN(errsv))
+ {
+ Safefree(pRExC_state->code_blocks);
+ /* use croak_sv ? */
+ Perl_croak_nocontext("%"SVf, SVfARG(errsv));
+ }
+ }
+ assert(SvROK(qr_ref));
+ qr = SvRV(qr_ref);
+ assert(SvTYPE(qr) == SVt_REGEXP && RX_ENGINE((REGEXP*)qr)->op_comp);
+ /* the leaving below frees the tmp qr_ref.
+ * Give qr a life of its own */
+ SvREFCNT_inc(qr);
+ POPSTACK;
+ FREETMPS;
+ LEAVE;
+
+ }
+
+ if (!RExC_utf8 && SvUTF8(qr)) {
+ /* first time through; the pattern got upgraded; save the
+ * qr for the next time through */
+ assert(!pRExC_state->runtime_code_qr);
+ pRExC_state->runtime_code_qr = qr;
+ return 0;
+ }
+
+
+ /* extract any code blocks within the returned qr// */
+
+
+ /* merge the main (r1) and run-time (r2) code blocks into one */
+ {
+ RXi_GET_DECL(ReANY((REGEXP *)qr), r2);
+ struct reg_code_block *new_block, *dst;
+ RExC_state_t * const r1 = pRExC_state; /* convenient alias */
+ int i1 = 0, i2 = 0;
+
+ if (!r2->num_code_blocks) /* we guessed wrong */
+ {
+ SvREFCNT_dec_NN(qr);
+ return 1;
+ }
+
+ Newx(new_block,
+ r1->num_code_blocks + r2->num_code_blocks,
+ struct reg_code_block);
+ dst = new_block;
+
+ while ( i1 < r1->num_code_blocks
+ || i2 < r2->num_code_blocks)
+ {
+ struct reg_code_block *src;
+ bool is_qr = 0;
+
+ if (i1 == r1->num_code_blocks) {
+ src = &r2->code_blocks[i2++];
+ is_qr = 1;
+ }
+ else if (i2 == r2->num_code_blocks)
+ src = &r1->code_blocks[i1++];
+ else if ( r1->code_blocks[i1].start
+ < r2->code_blocks[i2].start)
+ {
+ src = &r1->code_blocks[i1++];
+ assert(src->end < r2->code_blocks[i2].start);
+ }
+ else {
+ assert( r1->code_blocks[i1].start
+ > r2->code_blocks[i2].start);
+ src = &r2->code_blocks[i2++];
+ is_qr = 1;
+ assert(src->end < r1->code_blocks[i1].start);
+ }
+
+ assert(pat[src->start] == '(');
+ assert(pat[src->end] == ')');
+ dst->start = src->start;
+ dst->end = src->end;
+ dst->block = src->block;
+ dst->src_regex = is_qr ? (REGEXP*) SvREFCNT_inc( (SV*) qr)
+ : src->src_regex;
+ dst++;
+ }
+ r1->num_code_blocks += r2->num_code_blocks;
+ Safefree(r1->code_blocks);
+ r1->code_blocks = new_block;
+ }
+
+ SvREFCNT_dec_NN(qr);
+ return 1;
+}
+
+
+STATIC bool
+S_setup_longest(pTHX_ RExC_state_t *pRExC_state, SV* sv_longest,
+ SV** rx_utf8, SV** rx_substr, SSize_t* rx_end_shift,
+ SSize_t lookbehind, SSize_t offset, SSize_t *minlen,
+ STRLEN longest_length, bool eol, bool meol)
+{
+ /* This is the common code for setting up the floating and fixed length
+ * string data extracted from Perl_re_op_compile() below. Returns a boolean
+ * as to whether succeeded or not */
+
+ I32 t;
+ SSize_t ml;
+
+ if (! (longest_length
+ || (eol /* Can't have SEOL and MULTI */
+ && (! meol || (RExC_flags & RXf_PMf_MULTILINE)))
+ )
+ /* See comments for join_exact for why REG_UNFOLDED_MULTI_SEEN */
+ || (RExC_seen & REG_UNFOLDED_MULTI_SEEN))
+ {
+ return FALSE;
+ }
+
+ /* copy the information about the longest from the reg_scan_data
+ over to the program. */
+ if (SvUTF8(sv_longest)) {
+ *rx_utf8 = sv_longest;
+ *rx_substr = NULL;
+ } else {
+ *rx_substr = sv_longest;
+ *rx_utf8 = NULL;
+ }
+ /* end_shift is how many chars that must be matched that
+ follow this item. We calculate it ahead of time as once the
+ lookbehind offset is added in we lose the ability to correctly
+ calculate it.*/
+ ml = minlen ? *(minlen) : (SSize_t)longest_length;
+ *rx_end_shift = ml - offset
+ - longest_length + (SvTAIL(sv_longest) != 0)
+ + lookbehind;
+
+ t = (eol/* Can't have SEOL and MULTI */
+ && (! meol || (RExC_flags & RXf_PMf_MULTILINE)));
+ fbm_compile(sv_longest, t ? FBMcf_TAIL : 0);
+
+ return TRUE;
+}
+
+/*
+ * Perl_re_op_compile - the perl internal RE engine's function to compile a
+ * regular expression into internal code.
+ * The pattern may be passed either as:
+ * a list of SVs (patternp plus pat_count)
+ * a list of OPs (expr)
+ * If both are passed, the SV list is used, but the OP list indicates
+ * which SVs are actually pre-compiled code blocks
+ *
+ * The SVs in the list have magic and qr overloading applied to them (and
+ * the list may be modified in-place with replacement SVs in the latter
+ * case).
+ *
+ * If the pattern hasn't changed from old_re, then old_re will be
+ * returned.
+ *
+ * eng is the current engine. If that engine has an op_comp method, then
+ * handle directly (i.e. we assume that op_comp was us); otherwise, just
+ * do the initial concatenation of arguments and pass on to the external
+ * engine.
+ *
+ * If is_bare_re is not null, set it to a boolean indicating whether the
+ * arg list reduced (after overloading) to a single bare regex which has
+ * been returned (i.e. /$qr/).
+ *
+ * orig_rx_flags contains RXf_* flags. See perlreapi.pod for more details.
+ *
+ * pm_flags contains the PMf_* flags, typically based on those from the
+ * pm_flags field of the related PMOP. Currently we're only interested in
+ * PMf_HAS_CV, PMf_IS_QR, PMf_USE_RE_EVAL.
+ *
+ * We can't allocate space until we know how big the compiled form will be,
+ * but we can't compile it (and thus know how big it is) until we've got a
+ * place to put the code. So we cheat: we compile it twice, once with code
+ * generation turned off and size counting turned on, and once "for real".
+ * This also means that we don't allocate space until we are sure that the
+ * thing really will compile successfully, and we never have to move the
+ * code and thus invalidate pointers into it. (Note that it has to be in
+ * one piece because free() must be able to free it all.) [NB: not true in perl]
+ *
+ * Beware that the optimization-preparation code in here knows about some
+ * of the structure of the compiled regexp. [I'll say.]
+ */
+
+REGEXP *
+Perl_re_op_compile(pTHX_ SV ** const patternp, int pat_count,
+ OP *expr, const regexp_engine* eng, REGEXP *old_re,
+ bool *is_bare_re, U32 orig_rx_flags, U32 pm_flags)
+{
+ REGEXP *rx;
+ struct regexp *r;
+ regexp_internal *ri;
+ STRLEN plen;
+ char *exp;
+ regnode *scan;
+ I32 flags;
+ SSize_t minlen = 0;
+ U32 rx_flags;
+ SV *pat;
+ SV *code_blocksv = NULL;
+ SV** new_patternp = patternp;
+
+ /* these are all flags - maybe they should be turned
+ * into a single int with different bit masks */
+ I32 sawlookahead = 0;
+ I32 sawplus = 0;
+ I32 sawopen = 0;
+ I32 sawminmod = 0;
+
+ regex_charset initial_charset = get_regex_charset(orig_rx_flags);
+ bool recompile = 0;
+ bool runtime_code = 0;
+ scan_data_t data;
+ RExC_state_t RExC_state;
+ RExC_state_t * const pRExC_state = &RExC_state;
+#ifdef TRIE_STUDY_OPT
+ int restudied = 0;
+ RExC_state_t copyRExC_state;
+#endif
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_OP_COMPILE;
+
+ DEBUG_r(if (!PL_colorset) reginitcolors());
+
+ /* Initialize these here instead of as-needed, as is quick and avoids
+ * having to test them each time otherwise */
+ if (! PL_AboveLatin1) {
+ PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist);
+ PL_Latin1 = _new_invlist_C_array(Latin1_invlist);
+ PL_UpperLatin1 = _new_invlist_C_array(UpperLatin1_invlist);
+ PL_utf8_foldable = _new_invlist_C_array(_Perl_Any_Folds_invlist);
+ PL_HasMultiCharFold =
+ _new_invlist_C_array(_Perl_Folds_To_Multi_Char_invlist);
+
+ /* This is calculated here, because the Perl program that generates the
+ * static global ones doesn't currently have access to
+ * NUM_ANYOF_CODE_POINTS */
+ PL_InBitmap = _new_invlist(2);
+ PL_InBitmap = _add_range_to_invlist(PL_InBitmap, 0,
+ NUM_ANYOF_CODE_POINTS - 1);
+ }
+
+ pRExC_state->code_blocks = NULL;
+ pRExC_state->num_code_blocks = 0;
+
+ if (is_bare_re)
+ *is_bare_re = FALSE;
+
+ if (expr && (expr->op_type == OP_LIST ||
+ (expr->op_type == OP_NULL && expr->op_targ == OP_LIST))) {
+ /* allocate code_blocks if needed */
+ OP *o;
+ int ncode = 0;
+
+ for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o))
+ if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL))
+ ncode++; /* count of DO blocks */
+ if (ncode) {
+ pRExC_state->num_code_blocks = ncode;
+ Newx(pRExC_state->code_blocks, ncode, struct reg_code_block);
+ }
+ }
+
+ if (!pat_count) {
+ /* compile-time pattern with just OP_CONSTs and DO blocks */
+
+ int n;
+ OP *o;
+
+ /* find how many CONSTs there are */
+ assert(expr);
+ n = 0;
+ if (expr->op_type == OP_CONST)
+ n = 1;
+ else
+ for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o)) {
+ if (o->op_type == OP_CONST)
+ n++;
+ }
+
+ /* fake up an SV array */
+
+ assert(!new_patternp);
+ Newx(new_patternp, n, SV*);
+ SAVEFREEPV(new_patternp);
+ pat_count = n;
+
+ n = 0;
+ if (expr->op_type == OP_CONST)
+ new_patternp[n] = cSVOPx_sv(expr);
+ else
+ for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o)) {
+ if (o->op_type == OP_CONST)
+ new_patternp[n++] = cSVOPo_sv;
+ }
+
+ }
+
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+ "Assembling pattern from %d elements%s\n", pat_count,
+ orig_rx_flags & RXf_SPLIT ? " for split" : ""));
+
+ /* set expr to the first arg op */
+
+ if (pRExC_state->num_code_blocks
+ && expr->op_type != OP_CONST)
+ {
+ expr = cLISTOPx(expr)->op_first;
+ assert( expr->op_type == OP_PUSHMARK
+ || (expr->op_type == OP_NULL && expr->op_targ == OP_PUSHMARK)
+ || expr->op_type == OP_PADRANGE);
+ expr = OpSIBLING(expr);
+ }
+
+ pat = S_concat_pat(aTHX_ pRExC_state, NULL, new_patternp, pat_count,
+ expr, &recompile, NULL);
+
+ /* handle bare (possibly after overloading) regex: foo =~ $re */
+ {
+ SV *re = pat;
+ if (SvROK(re))
+ re = SvRV(re);
+ if (SvTYPE(re) == SVt_REGEXP) {
+ if (is_bare_re)
+ *is_bare_re = TRUE;
+ SvREFCNT_inc(re);
+ Safefree(pRExC_state->code_blocks);
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+ "Precompiled pattern%s\n",
+ orig_rx_flags & RXf_SPLIT ? " for split" : ""));
+
+ return (REGEXP*)re;
+ }
+ }
+
+ exp = SvPV_nomg(pat, plen);
+
+ if (!eng->op_comp) {
+ if ((SvUTF8(pat) && IN_BYTES)
+ || SvGMAGICAL(pat) || SvAMAGIC(pat))
+ {
+ /* make a temporary copy; either to convert to bytes,
+ * or to avoid repeating get-magic / overloaded stringify */
+ pat = newSVpvn_flags(exp, plen, SVs_TEMP |
+ (IN_BYTES ? 0 : SvUTF8(pat)));
+ }
+ Safefree(pRExC_state->code_blocks);
+ return CALLREGCOMP_ENG(eng, pat, orig_rx_flags);
+ }
+
+ /* ignore the utf8ness if the pattern is 0 length */
+ RExC_utf8 = RExC_orig_utf8 = (plen == 0 || IN_BYTES) ? 0 : SvUTF8(pat);
+ RExC_uni_semantics = 0;
+ RExC_contains_locale = 0;
+ RExC_contains_i = 0;
+ RExC_strict = cBOOL(pm_flags & RXf_PMf_STRICT);
+ pRExC_state->runtime_code_qr = NULL;
+ RExC_frame_head= NULL;
+ RExC_frame_last= NULL;
+ RExC_frame_count= 0;
+
+ DEBUG_r({
+ RExC_mysv1= sv_newmortal();
+ RExC_mysv2= sv_newmortal();
+ });
+ DEBUG_COMPILE_r({
+ SV *dsv= sv_newmortal();
+ RE_PV_QUOTED_DECL(s, RExC_utf8, dsv, exp, plen, 60);
+ PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
+ PL_colors[4],PL_colors[5],s);
+ });
+
+ redo_first_pass:
+ /* we jump here if we upgrade the pattern to utf8 and have to
+ * recompile */
+
+ if ((pm_flags & PMf_USE_RE_EVAL)
+ /* this second condition covers the non-regex literal case,
+ * i.e. $foo =~ '(?{})'. */
+ || (IN_PERL_COMPILETIME && (PL_hints & HINT_RE_EVAL))
+ )
+ runtime_code = S_has_runtime_code(aTHX_ pRExC_state, exp, plen);
+
+ /* return old regex if pattern hasn't changed */
+ /* XXX: note in the below we have to check the flags as well as the
+ * pattern.
+ *
+ * Things get a touch tricky as we have to compare the utf8 flag
+ * independently from the compile flags. */
+
+ if ( old_re
+ && !recompile
+ && !!RX_UTF8(old_re) == !!RExC_utf8
+ && ( RX_COMPFLAGS(old_re) == ( orig_rx_flags & RXf_PMf_FLAGCOPYMASK ) )
+ && RX_PRECOMP(old_re)
+ && RX_PRELEN(old_re) == plen
+ && memEQ(RX_PRECOMP(old_re), exp, plen)
+ && !runtime_code /* with runtime code, always recompile */ )
+ {
+ Safefree(pRExC_state->code_blocks);
+ return old_re;
+ }
+
+ rx_flags = orig_rx_flags;
+
+ if (rx_flags & PMf_FOLD) {
+ RExC_contains_i = 1;
+ }
+ if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
+
+ /* Set to use unicode semantics if the pattern is in utf8 and has the
+ * 'depends' charset specified, as it means unicode when utf8 */
+ set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
+ }
+
+ RExC_precomp = exp;
+ RExC_flags = rx_flags;
+ RExC_pm_flags = pm_flags;
+
+ if (runtime_code) {
+ if (TAINTING_get && TAINT_get)
+ Perl_croak(aTHX_ "Eval-group in insecure regular expression");
+
+ if (!S_compile_runtime_code(aTHX_ pRExC_state, exp, plen)) {
+ /* whoops, we have a non-utf8 pattern, whilst run-time code
+ * got compiled as utf8. Try again with a utf8 pattern */
+ S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
+ pRExC_state->num_code_blocks);
+ goto redo_first_pass;
+ }
+ }
+ assert(!pRExC_state->runtime_code_qr);
+
+ RExC_sawback = 0;
+
+ RExC_seen = 0;
+ RExC_maxlen = 0;
+ RExC_in_lookbehind = 0;
+ RExC_seen_zerolen = *exp == '^' ? -1 : 0;
+ RExC_extralen = 0;
+ RExC_override_recoding = 0;
+#ifdef EBCDIC
+ RExC_recode_x_to_native = 0;
+#endif
+ RExC_in_multi_char_class = 0;
+
+ /* First pass: determine size, legality. */
+ RExC_parse = exp;
+ RExC_start = exp;
+ RExC_end = exp + plen;
+ RExC_naughty = 0;
+ RExC_npar = 1;
+ RExC_nestroot = 0;
+ RExC_size = 0L;
+ RExC_emit = (regnode *) &RExC_emit_dummy;
+ RExC_whilem_seen = 0;
+ RExC_open_parens = NULL;
+ RExC_close_parens = NULL;
+ RExC_opend = NULL;
+ RExC_paren_names = NULL;
+#ifdef DEBUGGING
+ RExC_paren_name_list = NULL;
+#endif
+ RExC_recurse = NULL;
+ RExC_study_chunk_recursed = NULL;
+ RExC_study_chunk_recursed_bytes= 0;
+ RExC_recurse_count = 0;
+ pRExC_state->code_index = 0;
+
+ DEBUG_PARSE_r(
+ PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n");
+ RExC_lastnum=0;
+ RExC_lastparse=NULL;
+ );
+ /* reg may croak on us, not giving us a chance to free
+ pRExC_state->code_blocks. We cannot SAVEFREEPV it now, as we may
+ need it to survive as long as the regexp (qr/(?{})/).
+ We must check that code_blocksv is not already set, because we may
+ have jumped back to restart the sizing pass. */
+ if (pRExC_state->code_blocks && !code_blocksv) {
+ code_blocksv = newSV_type(SVt_PV);
+ SAVEFREESV(code_blocksv);
+ SvPV_set(code_blocksv, (char *)pRExC_state->code_blocks);
+ SvLEN_set(code_blocksv, 1); /*sufficient to make sv_clear free it*/
+ }
+ if (reg(pRExC_state, 0, &flags,1) == NULL) {
+ /* It's possible to write a regexp in ascii that represents Unicode
+ codepoints outside of the byte range, such as via \x{100}. If we
+ detect such a sequence we have to convert the entire pattern to utf8
+ and then recompile, as our sizing calculation will have been based
+ on 1 byte == 1 character, but we will need to use utf8 to encode
+ at least some part of the pattern, and therefore must convert the whole
+ thing.
+ -- dmq */
+ if (flags & RESTART_UTF8) {
+ S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
+ pRExC_state->num_code_blocks);
+ goto redo_first_pass;
+ }
+ Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for sizing pass, flags=%#"UVxf"", (UV) flags);
+ }
+ if (code_blocksv)
+ SvLEN_set(code_blocksv,0); /* no you can't have it, sv_clear */
+
+ DEBUG_PARSE_r({
+ PerlIO_printf(Perl_debug_log,
+ "Required size %"IVdf" nodes\n"
+ "Starting second pass (creation)\n",
+ (IV)RExC_size);
+ RExC_lastnum=0;
+ RExC_lastparse=NULL;
+ });
+
+ /* The first pass could have found things that force Unicode semantics */
+ if ((RExC_utf8 || RExC_uni_semantics)
+ && get_regex_charset(rx_flags) == REGEX_DEPENDS_CHARSET)
+ {
+ set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
+ }
+
+ /* Small enough for pointer-storage convention?
+ If extralen==0, this means that we will not need long jumps. */
+ if (RExC_size >= 0x10000L && RExC_extralen)
+ RExC_size += RExC_extralen;
+ else
+ RExC_extralen = 0;
+ if (RExC_whilem_seen > 15)
+ RExC_whilem_seen = 15;
+
+ /* Allocate space and zero-initialize. Note, the two step process
+ of zeroing when in debug mode, thus anything assigned has to
+ happen after that */
+ rx = (REGEXP*) newSV_type(SVt_REGEXP);
+ r = ReANY(rx);
+ Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
+ char, regexp_internal);
+ if ( r == NULL || ri == NULL )
+ FAIL("Regexp out of space");
+#ifdef DEBUGGING
+ /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
+ Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
+ char);
+#else
+ /* bulk initialize base fields with 0. */
+ Zero(ri, sizeof(regexp_internal), char);
+#endif
+
+ /* non-zero initialization begins here */
+ RXi_SET( r, ri );
+ r->engine= eng;
+ r->extflags = rx_flags;
+ RXp_COMPFLAGS(r) = orig_rx_flags & RXf_PMf_FLAGCOPYMASK;
+
+ if (pm_flags & PMf_IS_QR) {
+ ri->code_blocks = pRExC_state->code_blocks;
+ ri->num_code_blocks = pRExC_state->num_code_blocks;
+ }
+ else
+ {
+ int n;
+ for (n = 0; n < pRExC_state->num_code_blocks; n++)
+ if (pRExC_state->code_blocks[n].src_regex)
+ SAVEFREESV(pRExC_state->code_blocks[n].src_regex);
+ SAVEFREEPV(pRExC_state->code_blocks);
+ }
+
+ {
+ bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
+ bool has_charset = (get_regex_charset(r->extflags)
+ != REGEX_DEPENDS_CHARSET);
+
+ /* The caret is output if there are any defaults: if not all the STD
+ * flags are set, or if no character set specifier is needed */
+ bool has_default =
+ (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
+ || ! has_charset);
+ bool has_runon = ((RExC_seen & REG_RUN_ON_COMMENT_SEEN)
+ == REG_RUN_ON_COMMENT_SEEN);
+ U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
+ >> RXf_PMf_STD_PMMOD_SHIFT);
+ const char *fptr = STD_PAT_MODS; /*"msixn"*/
+ char *p;
+ /* Allocate for the worst case, which is all the std flags are turned
+ * on. If more precision is desired, we could do a population count of
+ * the flags set. This could be done with a small lookup table, or by
+ * shifting, masking and adding, or even, when available, assembly
+ * language for a machine-language population count.
+ * We never output a minus, as all those are defaults, so are
+ * covered by the caret */
+ const STRLEN wraplen = plen + has_p + has_runon
+ + has_default /* If needs a caret */
+
+ /* If needs a character set specifier */
+ + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
+ + (sizeof(STD_PAT_MODS) - 1)
+ + (sizeof("(?:)") - 1);
+
+ Newx(p, wraplen + 1, char); /* +1 for the ending NUL */
+ r->xpv_len_u.xpvlenu_pv = p;
+ if (RExC_utf8)
+ SvFLAGS(rx) |= SVf_UTF8;
+ *p++='('; *p++='?';
+
+ /* If a default, cover it using the caret */
+ if (has_default) {
+ *p++= DEFAULT_PAT_MOD;
+ }
+ if (has_charset) {
+ STRLEN len;
+ const char* const name = get_regex_charset_name(r->extflags, &len);
+ Copy(name, p, len, char);
+ p += len;
+ }
+ if (has_p)
+ *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
+ {
+ char ch;
+ while((ch = *fptr++)) {
+ if(reganch & 1)
+ *p++ = ch;
+ reganch >>= 1;
+ }
+ }
+
+ *p++ = ':';
+ Copy(RExC_precomp, p, plen, char);
+ assert ((RX_WRAPPED(rx) - p) < 16);
+ r->pre_prefix = p - RX_WRAPPED(rx);
+ p += plen;
+ if (has_runon)
+ *p++ = '\n';
+ *p++ = ')';
+ *p = 0;
+ SvCUR_set(rx, p - RX_WRAPPED(rx));
+ }
+
+ r->intflags = 0;
+ r->nparens = RExC_npar - 1; /* set early to validate backrefs */
+
+ /* setup various meta data about recursion, this all requires
+ * RExC_npar to be correctly set, and a bit later on we clear it */
+ if (RExC_seen & REG_RECURSE_SEEN) {
+ Newxz(RExC_open_parens, RExC_npar,regnode *);
+ SAVEFREEPV(RExC_open_parens);
+ Newxz(RExC_close_parens,RExC_npar,regnode *);
+ SAVEFREEPV(RExC_close_parens);
+ }
+ if (RExC_seen & (REG_RECURSE_SEEN | REG_GOSTART_SEEN)) {
+ /* Note, RExC_npar is 1 + the number of parens in a pattern.
+ * So its 1 if there are no parens. */
+ RExC_study_chunk_recursed_bytes= (RExC_npar >> 3) +
+ ((RExC_npar & 0x07) != 0);
+ Newx(RExC_study_chunk_recursed,
+ RExC_study_chunk_recursed_bytes * RExC_npar, U8);
+ SAVEFREEPV(RExC_study_chunk_recursed);
+ }
+
+ /* Useful during FAIL. */
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
+ DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
+ "%s %"UVuf" bytes for offset annotations.\n",
+ ri->u.offsets ? "Got" : "Couldn't get",
+ (UV)((2*RExC_size+1) * sizeof(U32))));
+#endif
+ SetProgLen(ri,RExC_size);
+ RExC_rx_sv = rx;
+ RExC_rx = r;
+ RExC_rxi = ri;
+ REH_CALL_COMP_BEGIN_HOOK(pRExC_state->rx);
+
+ /* Second pass: emit code. */
+ RExC_flags = rx_flags; /* don't let top level (?i) bleed */
+ RExC_pm_flags = pm_flags;
+ RExC_parse = exp;
+ RExC_end = exp + plen;
+ RExC_naughty = 0;
+ RExC_npar = 1;
+ RExC_emit_start = ri->program;
+ RExC_emit = ri->program;
+ RExC_emit_bound = ri->program + RExC_size + 1;
+ pRExC_state->code_index = 0;
+
+ *((char*) RExC_emit++) = (char) REG_MAGIC;
+ if (reg(pRExC_state, 0, &flags,1) == NULL) {
+ ReREFCNT_dec(rx);
+ Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for generation pass, flags=%#"UVxf"", (UV) flags);
+ }
+ /* XXXX To minimize changes to RE engine we always allocate
+ 3-units-long substrs field. */
+ Newx(r->substrs, 1, struct reg_substr_data);
+ if (RExC_recurse_count) {
+ Newxz(RExC_recurse,RExC_recurse_count,regnode *);
+ SAVEFREEPV(RExC_recurse);
+ }
+
+ reStudy:
+ r->minlen = minlen = sawlookahead = sawplus = sawopen = sawminmod = 0;
+ DEBUG_r(
+ RExC_study_chunk_recursed_count= 0;
+ );
+ Zero(r->substrs, 1, struct reg_substr_data);
+ if (RExC_study_chunk_recursed) {
+ Zero(RExC_study_chunk_recursed,
+ RExC_study_chunk_recursed_bytes * RExC_npar, U8);
+ }
+
+
+#ifdef TRIE_STUDY_OPT
+ if (!restudied) {
+ StructCopy(&zero_scan_data, &data, scan_data_t);
+ copyRExC_state = RExC_state;
+ } else {
+ U32 seen=RExC_seen;
+ DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
+
+ RExC_state = copyRExC_state;
+ if (seen & REG_TOP_LEVEL_BRANCHES_SEEN)
+ RExC_seen |= REG_TOP_LEVEL_BRANCHES_SEEN;
+ else
+ RExC_seen &= ~REG_TOP_LEVEL_BRANCHES_SEEN;
+ StructCopy(&zero_scan_data, &data, scan_data_t);
+ }
+#else
+ StructCopy(&zero_scan_data, &data, scan_data_t);
+#endif
+
+ /* Dig out information for optimizations. */
+ r->extflags = RExC_flags; /* was pm_op */
+ /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
+
+ if (UTF)
+ SvUTF8_on(rx); /* Unicode in it? */
+ ri->regstclass = NULL;
+ if (RExC_naughty >= TOO_NAUGHTY) /* Probably an expensive pattern. */
+ r->intflags |= PREGf_NAUGHTY;
+ scan = ri->program + 1; /* First BRANCH. */
+
+ /* testing for BRANCH here tells us whether there is "must appear"
+ data in the pattern. If there is then we can use it for optimisations */
+ if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN)) { /* Only one top-level choice.
+ */
+ SSize_t fake;
+ STRLEN longest_float_length, longest_fixed_length;
+ regnode_ssc ch_class; /* pointed to by data */
+ int stclass_flag;
+ SSize_t last_close = 0; /* pointed to by data */
+ regnode *first= scan;
+ regnode *first_next= regnext(first);
+ /*
+ * Skip introductions and multiplicators >= 1
+ * so that we can extract the 'meat' of the pattern that must
+ * match in the large if() sequence following.
+ * NOTE that EXACT is NOT covered here, as it is normally
+ * picked up by the optimiser separately.
+ *
+ * This is unfortunate as the optimiser isnt handling lookahead
+ * properly currently.
+ *
+ */
+ while ((OP(first) == OPEN && (sawopen = 1)) ||
+ /* An OR of *one* alternative - should not happen now. */
+ (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
+ /* for now we can't handle lookbehind IFMATCH*/
+ (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
+ (OP(first) == PLUS) ||
+ (OP(first) == MINMOD) ||
+ /* An {n,m} with n>0 */
+ (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
+ (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
+ {
+ /*
+ * the only op that could be a regnode is PLUS, all the rest
+ * will be regnode_1 or regnode_2.
+ *
+ * (yves doesn't think this is true)
+ */
+ if (OP(first) == PLUS)
+ sawplus = 1;
+ else {
+ if (OP(first) == MINMOD)
+ sawminmod = 1;
+ first += regarglen[OP(first)];
+ }
+ first = NEXTOPER(first);
+ first_next= regnext(first);
+ }
+
+ /* Starting-point info. */
+ again:
+ DEBUG_PEEP("first:",first,0);
+ /* Ignore EXACT as we deal with it later. */
+ if (PL_regkind[OP(first)] == EXACT) {
+ if (OP(first) == EXACT || OP(first) == EXACTL)
+ NOOP; /* Empty, get anchored substr later. */
+ else
+ ri->regstclass = first;
+ }
+#ifdef TRIE_STCLASS
+ else if (PL_regkind[OP(first)] == TRIE &&
+ ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
+ {
+ /* this can happen only on restudy */
+ ri->regstclass = construct_ahocorasick_from_trie(pRExC_state, (regnode *)first, 0);
+ }
+#endif
+ else if (REGNODE_SIMPLE(OP(first)))
+ ri->regstclass = first;
+ else if (PL_regkind[OP(first)] == BOUND ||
+ PL_regkind[OP(first)] == NBOUND)
+ ri->regstclass = first;
+ else if (PL_regkind[OP(first)] == BOL) {
+ r->intflags |= (OP(first) == MBOL
+ ? PREGf_ANCH_MBOL
+ : PREGf_ANCH_SBOL);
+ first = NEXTOPER(first);
+ goto again;
+ }
+ else if (OP(first) == GPOS) {
+ r->intflags |= PREGf_ANCH_GPOS;
+ first = NEXTOPER(first);
+ goto again;
+ }
+ else if ((!sawopen || !RExC_sawback) &&
+ !sawlookahead &&
+ (OP(first) == STAR &&
+ PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
+ !(r->intflags & PREGf_ANCH) && !pRExC_state->num_code_blocks)
+ {
+ /* turn .* into ^.* with an implied $*=1 */
+ const int type =
+ (OP(NEXTOPER(first)) == REG_ANY)
+ ? PREGf_ANCH_MBOL
+ : PREGf_ANCH_SBOL;
+ r->intflags |= (type | PREGf_IMPLICIT);
+ first = NEXTOPER(first);
+ goto again;
+ }
+ if (sawplus && !sawminmod && !sawlookahead
+ && (!sawopen || !RExC_sawback)
+ && !pRExC_state->num_code_blocks) /* May examine pos and $& */
+ /* x+ must match at the 1st pos of run of x's */
+ r->intflags |= PREGf_SKIP;
+
+ /* Scan is after the zeroth branch, first is atomic matcher. */
+#ifdef TRIE_STUDY_OPT
+ DEBUG_PARSE_r(
+ if (!restudied)
+ PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
+ (IV)(first - scan + 1))
+ );
+#else
+ DEBUG_PARSE_r(
+ PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
+ (IV)(first - scan + 1))
+ );
+#endif
+
+
+ /*
+ * If there's something expensive in the r.e., find the
+ * longest literal string that must appear and make it the
+ * regmust. Resolve ties in favor of later strings, since
+ * the regstart check works with the beginning of the r.e.
+ * and avoiding duplication strengthens checking. Not a
+ * strong reason, but sufficient in the absence of others.
+ * [Now we resolve ties in favor of the earlier string if
+ * it happens that c_offset_min has been invalidated, since the
+ * earlier string may buy us something the later one won't.]
+ */
+
+ data.longest_fixed = newSVpvs("");
+ data.longest_float = newSVpvs("");
+ data.last_found = newSVpvs("");
+ data.longest = &(data.longest_fixed);
+ ENTER_with_name("study_chunk");
+ SAVEFREESV(data.longest_fixed);
+ SAVEFREESV(data.longest_float);
+ SAVEFREESV(data.last_found);
+ first = scan;
+ if (!ri->regstclass) {
+ ssc_init(pRExC_state, &ch_class);
+ data.start_class = &ch_class;
+ stclass_flag = SCF_DO_STCLASS_AND;
+ } else /* XXXX Check for BOUND? */
+ stclass_flag = 0;
+ data.last_closep = &last_close;
+
+ DEBUG_RExC_seen();
+ minlen = study_chunk(pRExC_state, &first, &minlen, &fake,
+ scan + RExC_size, /* Up to end */
+ &data, -1, 0, NULL,
+ SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag
+ | (restudied ? SCF_TRIE_DOING_RESTUDY : 0),
+ 0);
+
+
+ CHECK_RESTUDY_GOTO_butfirst(LEAVE_with_name("study_chunk"));
+
+
+ if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
+ && data.last_start_min == 0 && data.last_end > 0
+ && !RExC_seen_zerolen
+ && !(RExC_seen & REG_VERBARG_SEEN)
+ && !(RExC_seen & REG_GPOS_SEEN)
+ ){
+ r->extflags |= RXf_CHECK_ALL;
+ }
+ scan_commit(pRExC_state, &data,&minlen,0);
+
+ longest_float_length = CHR_SVLEN(data.longest_float);
+
+ if (! ((SvCUR(data.longest_fixed) /* ok to leave SvCUR */
+ && data.offset_fixed == data.offset_float_min
+ && SvCUR(data.longest_fixed) == SvCUR(data.longest_float)))
+ && S_setup_longest (aTHX_ pRExC_state,
+ data.longest_float,
+ &(r->float_utf8),
+ &(r->float_substr),
+ &(r->float_end_shift),
+ data.lookbehind_float,
+ data.offset_float_min,
+ data.minlen_float,
+ longest_float_length,
+ cBOOL(data.flags & SF_FL_BEFORE_EOL),
+ cBOOL(data.flags & SF_FL_BEFORE_MEOL)))
+ {
+ r->float_min_offset = data.offset_float_min - data.lookbehind_float;
+ r->float_max_offset = data.offset_float_max;
+ if (data.offset_float_max < SSize_t_MAX) /* Don't offset infinity */
+ r->float_max_offset -= data.lookbehind_float;
+ SvREFCNT_inc_simple_void_NN(data.longest_float);
+ }
+ else {
+ r->float_substr = r->float_utf8 = NULL;
+ longest_float_length = 0;
+ }
+
+ longest_fixed_length = CHR_SVLEN(data.longest_fixed);
+
+ if (S_setup_longest (aTHX_ pRExC_state,
+ data.longest_fixed,
+ &(r->anchored_utf8),
+ &(r->anchored_substr),
+ &(r->anchored_end_shift),
+ data.lookbehind_fixed,
+ data.offset_fixed,
+ data.minlen_fixed,
+ longest_fixed_length,
+ cBOOL(data.flags & SF_FIX_BEFORE_EOL),
+ cBOOL(data.flags & SF_FIX_BEFORE_MEOL)))
+ {
+ r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
+ SvREFCNT_inc_simple_void_NN(data.longest_fixed);
+ }
+ else {
+ r->anchored_substr = r->anchored_utf8 = NULL;
+ longest_fixed_length = 0;
+ }
+ LEAVE_with_name("study_chunk");
+
+ if (ri->regstclass
+ && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
+ ri->regstclass = NULL;
+
+ if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
+ && stclass_flag
+ && ! (ANYOF_FLAGS(data.start_class) & SSC_MATCHES_EMPTY_STRING)
+ && is_ssc_worth_it(pRExC_state, data.start_class))
+ {
+ const U32 n = add_data(pRExC_state, STR_WITH_LEN("f"));
+
+ ssc_finalize(pRExC_state, data.start_class);
+
+ Newx(RExC_rxi->data->data[n], 1, regnode_ssc);
+ StructCopy(data.start_class,
+ (regnode_ssc*)RExC_rxi->data->data[n],
+ regnode_ssc);
+ ri->regstclass = (regnode*)RExC_rxi->data->data[n];
+ r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
+ DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
+ regprop(r, sv, (regnode*)data.start_class, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log,
+ "synthetic stclass \"%s\".\n",
+ SvPVX_const(sv));});
+ data.start_class = NULL;
+ }
+
+ /* A temporary algorithm prefers floated substr to fixed one to dig
+ * more info. */
+ if (longest_fixed_length > longest_float_length) {
+ r->substrs->check_ix = 0;
+ r->check_end_shift = r->anchored_end_shift;
+ r->check_substr = r->anchored_substr;
+ r->check_utf8 = r->anchored_utf8;
+ r->check_offset_min = r->check_offset_max = r->anchored_offset;
+ if (r->intflags & (PREGf_ANCH_SBOL|PREGf_ANCH_GPOS))
+ r->intflags |= PREGf_NOSCAN;
+ }
+ else {
+ r->substrs->check_ix = 1;
+ r->check_end_shift = r->float_end_shift;
+ r->check_substr = r->float_substr;
+ r->check_utf8 = r->float_utf8;
+ r->check_offset_min = r->float_min_offset;
+ r->check_offset_max = r->float_max_offset;
+ }
+ if ((r->check_substr || r->check_utf8) ) {
+ r->extflags |= RXf_USE_INTUIT;
+ if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
+ r->extflags |= RXf_INTUIT_TAIL;
+ }
+ r->substrs->data[0].max_offset = r->substrs->data[0].min_offset;
+
+ /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
+ if ( (STRLEN)minlen < longest_float_length )
+ minlen= longest_float_length;
+ if ( (STRLEN)minlen < longest_fixed_length )
+ minlen= longest_fixed_length;
+ */
+ }
+ else {
+ /* Several toplevels. Best we can is to set minlen. */
+ SSize_t fake;
+ regnode_ssc ch_class;
+ SSize_t last_close = 0;
+
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
+
+ scan = ri->program + 1;
+ ssc_init(pRExC_state, &ch_class);
+ data.start_class = &ch_class;
+ data.last_closep = &last_close;
+
+ DEBUG_RExC_seen();
+ minlen = study_chunk(pRExC_state,
+ &scan, &minlen, &fake, scan + RExC_size, &data, -1, 0, NULL,
+ SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS|(restudied
+ ? SCF_TRIE_DOING_RESTUDY
+ : 0),
+ 0);
+
+ CHECK_RESTUDY_GOTO_butfirst(NOOP);
+
+ r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
+ = r->float_substr = r->float_utf8 = NULL;
+
+ if (! (ANYOF_FLAGS(data.start_class) & SSC_MATCHES_EMPTY_STRING)
+ && is_ssc_worth_it(pRExC_state, data.start_class))
+ {
+ const U32 n = add_data(pRExC_state, STR_WITH_LEN("f"));
+
+ ssc_finalize(pRExC_state, data.start_class);
+
+ Newx(RExC_rxi->data->data[n], 1, regnode_ssc);
+ StructCopy(data.start_class,
+ (regnode_ssc*)RExC_rxi->data->data[n],
+ regnode_ssc);
+ ri->regstclass = (regnode*)RExC_rxi->data->data[n];
+ r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
+ DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
+ regprop(r, sv, (regnode*)data.start_class, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log,
+ "synthetic stclass \"%s\".\n",
+ SvPVX_const(sv));});
+ data.start_class = NULL;
+ }
+ }
+
+ if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) {
+ r->extflags |= RXf_UNBOUNDED_QUANTIFIER_SEEN;
+ r->maxlen = REG_INFTY;
+ }
+ else {
+ r->maxlen = RExC_maxlen;
+ }
+
+ /* Guard against an embedded (?=) or (?<=) with a longer minlen than
+ the "real" pattern. */
+ DEBUG_OPTIMISE_r({
+ PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf" maxlen:%"IVdf"\n",
+ (IV)minlen, (IV)r->minlen, (IV)RExC_maxlen);
+ });
+ r->minlenret = minlen;
+ if (r->minlen < minlen)
+ r->minlen = minlen;
+
+ if (RExC_seen & REG_GPOS_SEEN)
+ r->intflags |= PREGf_GPOS_SEEN;
+ if (RExC_seen & REG_LOOKBEHIND_SEEN)
+ r->extflags |= RXf_NO_INPLACE_SUBST; /* inplace might break the
+ lookbehind */
+ if (pRExC_state->num_code_blocks)
+ r->extflags |= RXf_EVAL_SEEN;
+ if (RExC_seen & REG_VERBARG_SEEN)
+ {
+ r->intflags |= PREGf_VERBARG_SEEN;
+ r->extflags |= RXf_NO_INPLACE_SUBST; /* don't understand this! Yves */
+ }
+ if (RExC_seen & REG_CUTGROUP_SEEN)
+ r->intflags |= PREGf_CUTGROUP_SEEN;
+ if (pm_flags & PMf_USE_RE_EVAL)
+ r->intflags |= PREGf_USE_RE_EVAL;
+ if (RExC_paren_names)
+ RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
+ else
+ RXp_PAREN_NAMES(r) = NULL;
+
+ /* If we have seen an anchor in our pattern then we set the extflag RXf_IS_ANCHORED
+ * so it can be used in pp.c */
+ if (r->intflags & PREGf_ANCH)
+ r->extflags |= RXf_IS_ANCHORED;
+
+
+ {
+ /* this is used to identify "special" patterns that might result
+ * in Perl NOT calling the regex engine and instead doing the match "itself",
+ * particularly special cases in split//. By having the regex compiler
+ * do this pattern matching at a regop level (instead of by inspecting the pattern)
+ * we avoid weird issues with equivalent patterns resulting in different behavior,
+ * AND we allow non Perl engines to get the same optimizations by the setting the
+ * flags appropriately - Yves */
+ regnode *first = ri->program + 1;
+ U8 fop = OP(first);
+ regnode *next = regnext(first);
+ U8 nop = OP(next);
+
+ if (PL_regkind[fop] == NOTHING && nop == END)
+ r->extflags |= RXf_NULL;
+ else if ((fop == MBOL || (fop == SBOL && !first->flags)) && nop == END)
+ /* when fop is SBOL first->flags will be true only when it was
+ * produced by parsing /\A/, and not when parsing /^/. This is
+ * very important for the split code as there we want to
+ * treat /^/ as /^/m, but we do not want to treat /\A/ as /^/m.
+ * See rt #122761 for more details. -- Yves */
+ r->extflags |= RXf_START_ONLY;
+ else if (fop == PLUS
+ && PL_regkind[nop] == POSIXD && FLAGS(next) == _CC_SPACE
+ && nop == END)
+ r->extflags |= RXf_WHITE;
+ else if ( r->extflags & RXf_SPLIT
+ && (fop == EXACT || fop == EXACTL)
+ && STR_LEN(first) == 1
+ && *(STRING(first)) == ' '
+ && nop == END )
+ r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
+
+ }
+
+ if (RExC_contains_locale) {
+ RXp_EXTFLAGS(r) |= RXf_TAINTED;
+ }
+
+#ifdef DEBUGGING
+ if (RExC_paren_names) {
+ ri->name_list_idx = add_data( pRExC_state, STR_WITH_LEN("a"));
+ ri->data->data[ri->name_list_idx]
+ = (void*)SvREFCNT_inc(RExC_paren_name_list);
+ } else
+#endif
+ ri->name_list_idx = 0;
+
+ if (RExC_recurse_count) {
+ for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
+ const regnode *scan = RExC_recurse[RExC_recurse_count-1];
+ ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
+ }
+ }
+ Newxz(r->offs, RExC_npar, regexp_paren_pair);
+ /* assume we don't need to swap parens around before we match */
+ DEBUG_TEST_r({
+ PerlIO_printf(Perl_debug_log,"study_chunk_recursed_count: %lu\n",
+ (unsigned long)RExC_study_chunk_recursed_count);
+ });
+ DEBUG_DUMP_r({
+ DEBUG_RExC_seen();
+ PerlIO_printf(Perl_debug_log,"Final program:\n");
+ regdump(r);
+ });
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ DEBUG_OFFSETS_r(if (ri->u.offsets) {
+ const STRLEN len = ri->u.offsets[0];
+ STRLEN i;
+ GET_RE_DEBUG_FLAGS_DECL;
+ PerlIO_printf(Perl_debug_log,
+ "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
+ for (i = 1; i <= len; i++) {
+ if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
+ PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
+ (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
+ }
+ PerlIO_printf(Perl_debug_log, "\n");
+ });
+#endif
+
+#ifdef USE_ITHREADS
+ /* under ithreads the ?pat? PMf_USED flag on the pmop is simulated
+ * by setting the regexp SV to readonly-only instead. If the
+ * pattern's been recompiled, the USEDness should remain. */
+ if (old_re && SvREADONLY(old_re))
+ SvREADONLY_on(rx);
+#endif
+ return rx;
+}
+
+
+SV*
+Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
+ const U32 flags)
+{
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF;
+
+ PERL_UNUSED_ARG(value);
+
+ if (flags & RXapif_FETCH) {
+ return reg_named_buff_fetch(rx, key, flags);
+ } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
+ Perl_croak_no_modify();
+ return NULL;
+ } else if (flags & RXapif_EXISTS) {
+ return reg_named_buff_exists(rx, key, flags)
+ ? &PL_sv_yes
+ : &PL_sv_no;
+ } else if (flags & RXapif_REGNAMES) {
+ return reg_named_buff_all(rx, flags);
+ } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
+ return reg_named_buff_scalar(rx, flags);
+ } else {
+ Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
+ return NULL;
+ }
+}
+
+SV*
+Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
+ const U32 flags)
+{
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
+ PERL_UNUSED_ARG(lastkey);
+
+ if (flags & RXapif_FIRSTKEY)
+ return reg_named_buff_firstkey(rx, flags);
+ else if (flags & RXapif_NEXTKEY)
+ return reg_named_buff_nextkey(rx, flags);
+ else {
+ Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter",
+ (int)flags);
+ return NULL;
+ }
+}
+
+SV*
+Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
+ const U32 flags)
+{
+ AV *retarray = NULL;
+ SV *ret;
+ struct regexp *const rx = ReANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
+
+ if (flags & RXapif_ALL)
+ retarray=newAV();
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
+ if (he_str) {
+ IV i;
+ SV* sv_dat=HeVAL(he_str);
+ I32 *nums=(I32*)SvPVX(sv_dat);
+ for ( i=0; i<SvIVX(sv_dat); i++ ) {
+ if ((I32)(rx->nparens) >= nums[i]
+ && rx->offs[nums[i]].start != -1
+ && rx->offs[nums[i]].end != -1)
+ {
+ ret = newSVpvs("");
+ CALLREG_NUMBUF_FETCH(r,nums[i],ret);
+ if (!retarray)
+ return ret;
+ } else {
+ if (retarray)
+ ret = newSVsv(&PL_sv_undef);
+ }
+ if (retarray)
+ av_push(retarray, ret);
+ }
+ if (retarray)
+ return newRV_noinc(MUTABLE_SV(retarray));
+ }
+ }
+ return NULL;
+}
+
+bool
+Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
+ const U32 flags)
+{
+ struct regexp *const rx = ReANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ if (flags & RXapif_ALL) {
+ return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
+ } else {
+ SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
+ if (sv) {
+ SvREFCNT_dec_NN(sv);
+ return TRUE;
+ } else {
+ return FALSE;
+ }
+ }
+ } else {
+ return FALSE;
+ }
+}
+
+SV*
+Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = ReANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
+
+ if ( rx && RXp_PAREN_NAMES(rx) ) {
+ (void)hv_iterinit(RXp_PAREN_NAMES(rx));
+
+ return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
+ } else {
+ return FALSE;
+ }
+}
+
+SV*
+Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = ReANY(r);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ HV *hv = RXp_PAREN_NAMES(rx);
+ HE *temphe;
+ while ( (temphe = hv_iternext_flags(hv,0)) ) {
+ IV i;
+ IV parno = 0;
+ SV* sv_dat = HeVAL(temphe);
+ I32 *nums = (I32*)SvPVX(sv_dat);
+ for ( i = 0; i < SvIVX(sv_dat); i++ ) {
+ if ((I32)(rx->lastparen) >= nums[i] &&
+ rx->offs[nums[i]].start != -1 &&
+ rx->offs[nums[i]].end != -1)
+ {
+ parno = nums[i];
+ break;
+ }
+ }
+ if (parno || flags & RXapif_ALL) {
+ return newSVhek(HeKEY_hek(temphe));
+ }
+ }
+ }
+ return NULL;
+}
+
+SV*
+Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
+{
+ SV *ret;
+ AV *av;
+ SSize_t length;
+ struct regexp *const rx = ReANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
+ return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
+ } else if (flags & RXapif_ONE) {
+ ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
+ av = MUTABLE_AV(SvRV(ret));
+ length = av_tindex(av);
+ SvREFCNT_dec_NN(ret);
+ return newSViv(length + 1);
+ } else {
+ Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar",
+ (int)flags);
+ return NULL;
+ }
+ }
+ return &PL_sv_undef;
+}
+
+SV*
+Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = ReANY(r);
+ AV *av = newAV();
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ HV *hv= RXp_PAREN_NAMES(rx);
+ HE *temphe;
+ (void)hv_iterinit(hv);
+ while ( (temphe = hv_iternext_flags(hv,0)) ) {
+ IV i;
+ IV parno = 0;
+ SV* sv_dat = HeVAL(temphe);
+ I32 *nums = (I32*)SvPVX(sv_dat);
+ for ( i = 0; i < SvIVX(sv_dat); i++ ) {
+ if ((I32)(rx->lastparen) >= nums[i] &&
+ rx->offs[nums[i]].start != -1 &&
+ rx->offs[nums[i]].end != -1)
+ {
+ parno = nums[i];
+ break;
+ }
+ }
+ if (parno || flags & RXapif_ALL) {
+ av_push(av, newSVhek(HeKEY_hek(temphe)));
+ }
+ }
+ }
+
+ return newRV_noinc(MUTABLE_SV(av));
+}
+
+void
+Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
+ SV * const sv)
+{
+ struct regexp *const rx = ReANY(r);
+ char *s = NULL;
+ SSize_t i = 0;
+ SSize_t s1, t1;
+ I32 n = paren;
+
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
+
+ if ( n == RX_BUFF_IDX_CARET_PREMATCH
+ || n == RX_BUFF_IDX_CARET_FULLMATCH
+ || n == RX_BUFF_IDX_CARET_POSTMATCH
+ )
+ {
+ bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
+ if (!keepcopy) {
+ /* on something like
+ * $r = qr/.../;
+ * /$qr/p;
+ * the KEEPCOPY is set on the PMOP rather than the regex */
+ if (PL_curpm && r == PM_GETRE(PL_curpm))
+ keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
+ }
+ if (!keepcopy)
+ goto ret_undef;
+ }
+
+ if (!rx->subbeg)
+ goto ret_undef;
+
+ if (n == RX_BUFF_IDX_CARET_FULLMATCH)
+ /* no need to distinguish between them any more */
+ n = RX_BUFF_IDX_FULLMATCH;
+
+ if ((n == RX_BUFF_IDX_PREMATCH || n == RX_BUFF_IDX_CARET_PREMATCH)
+ && rx->offs[0].start != -1)
+ {
+ /* $`, ${^PREMATCH} */
+ i = rx->offs[0].start;
+ s = rx->subbeg;
+ }
+ else
+ if ((n == RX_BUFF_IDX_POSTMATCH || n == RX_BUFF_IDX_CARET_POSTMATCH)
+ && rx->offs[0].end != -1)
+ {
+ /* $', ${^POSTMATCH} */
+ s = rx->subbeg - rx->suboffset + rx->offs[0].end;
+ i = rx->sublen + rx->suboffset - rx->offs[0].end;
+ }
+ else
+ if ( 0 <= n && n <= (I32)rx->nparens &&
+ (s1 = rx->offs[n].start) != -1 &&
+ (t1 = rx->offs[n].end) != -1)
+ {
+ /* $&, ${^MATCH}, $1 ... */
+ i = t1 - s1;
+ s = rx->subbeg + s1 - rx->suboffset;
+ } else {
+ goto ret_undef;
+ }
+
+ assert(s >= rx->subbeg);
+ assert((STRLEN)rx->sublen >= (STRLEN)((s - rx->subbeg) + i) );
+ if (i >= 0) {
+#ifdef NO_TAINT_SUPPORT
+ sv_setpvn(sv, s, i);
+#else
+ const int oldtainted = TAINT_get;
+ TAINT_NOT;
+ sv_setpvn(sv, s, i);
+ TAINT_set(oldtainted);
+#endif
+ if (RXp_MATCH_UTF8(rx))
+ SvUTF8_on(sv);
+ else
+ SvUTF8_off(sv);
+ if (TAINTING_get) {
+ if (RXp_MATCH_TAINTED(rx)) {
+ if (SvTYPE(sv) >= SVt_PVMG) {
+ MAGIC* const mg = SvMAGIC(sv);
+ MAGIC* mgt;
+ TAINT;
+ SvMAGIC_set(sv, mg->mg_moremagic);
+ SvTAINT(sv);
+ if ((mgt = SvMAGIC(sv))) {
+ mg->mg_moremagic = mgt;
+ SvMAGIC_set(sv, mg);
+ }
+ } else {
+ TAINT;
+ SvTAINT(sv);
+ }
+ } else
+ SvTAINTED_off(sv);
+ }
+ } else {
+ ret_undef:
+ sv_setsv(sv,&PL_sv_undef);
+ return;
+ }
+}
+
+void
+Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
+ SV const * const value)
+{
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
+
+ PERL_UNUSED_ARG(rx);
+ PERL_UNUSED_ARG(paren);
+ PERL_UNUSED_ARG(value);
+
+ if (!PL_localizing)
+ Perl_croak_no_modify();
+}
+
+I32
+Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
+ const I32 paren)
+{
+ struct regexp *const rx = ReANY(r);
+ I32 i;
+ I32 s1, t1;
+
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
+
+ if ( paren == RX_BUFF_IDX_CARET_PREMATCH
+ || paren == RX_BUFF_IDX_CARET_FULLMATCH
+ || paren == RX_BUFF_IDX_CARET_POSTMATCH
+ )
+ {
+ bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
+ if (!keepcopy) {
+ /* on something like
+ * $r = qr/.../;
+ * /$qr/p;
+ * the KEEPCOPY is set on the PMOP rather than the regex */
+ if (PL_curpm && r == PM_GETRE(PL_curpm))
+ keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
+ }
+ if (!keepcopy)
+ goto warn_undef;
+ }
+
+ /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
+ switch (paren) {
+ case RX_BUFF_IDX_CARET_PREMATCH: /* ${^PREMATCH} */
+ case RX_BUFF_IDX_PREMATCH: /* $` */
+ if (rx->offs[0].start != -1) {
+ i = rx->offs[0].start;
+ if (i > 0) {
+ s1 = 0;
+ t1 = i;
+ goto getlen;
+ }
+ }
+ return 0;
+
+ case RX_BUFF_IDX_CARET_POSTMATCH: /* ${^POSTMATCH} */
+ case RX_BUFF_IDX_POSTMATCH: /* $' */
+ if (rx->offs[0].end != -1) {
+ i = rx->sublen - rx->offs[0].end;
+ if (i > 0) {
+ s1 = rx->offs[0].end;
+ t1 = rx->sublen;
+ goto getlen;
+ }
+ }
+ return 0;
+
+ default: /* $& / ${^MATCH}, $1, $2, ... */
+ if (paren <= (I32)rx->nparens &&
+ (s1 = rx->offs[paren].start) != -1 &&
+ (t1 = rx->offs[paren].end) != -1)
+ {
+ i = t1 - s1;
+ goto getlen;
+ } else {
+ warn_undef:
+ if (ckWARN(WARN_UNINITIALIZED))
+ report_uninit((const SV *)sv);
+ return 0;
+ }
+ }
+ getlen:
+ if (i > 0 && RXp_MATCH_UTF8(rx)) {
+ const char * const s = rx->subbeg - rx->suboffset + s1;
+ const U8 *ep;
+ STRLEN el;
+
+ i = t1 - s1;
+ if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
+ i = el;
+ }
+ return i;
+}
+
+SV*
+Perl_reg_qr_package(pTHX_ REGEXP * const rx)
+{
+ PERL_ARGS_ASSERT_REG_QR_PACKAGE;
+ PERL_UNUSED_ARG(rx);
+ if (0)
+ return NULL;
+ else
+ return newSVpvs("Regexp");
+}
+
+/* Scans the name of a named buffer from the pattern.
+ * If flags is REG_RSN_RETURN_NULL returns null.
+ * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
+ * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
+ * to the parsed name as looked up in the RExC_paren_names hash.
+ * If there is an error throws a vFAIL().. type exception.
+ */
+
+#define REG_RSN_RETURN_NULL 0
+#define REG_RSN_RETURN_NAME 1
+#define REG_RSN_RETURN_DATA 2
+
+STATIC SV*
+S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
+{
+ char *name_start = RExC_parse;
+
+ PERL_ARGS_ASSERT_REG_SCAN_NAME;
+
+ assert (RExC_parse <= RExC_end);
+ if (RExC_parse == RExC_end) NOOP;
+ else if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
+ /* skip IDFIRST by using do...while */
+ if (UTF)
+ do {
+ RExC_parse += UTF8SKIP(RExC_parse);
+ } while (isWORDCHAR_utf8((U8*)RExC_parse));
+ else
+ do {
+ RExC_parse++;
+ } while (isWORDCHAR(*RExC_parse));
+ } else {
+ RExC_parse++; /* so the <- from the vFAIL is after the offending
+ character */
+ vFAIL("Group name must start with a non-digit word character");
+ }
+ if ( flags ) {
+ SV* sv_name
+ = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
+ SVs_TEMP | (UTF ? SVf_UTF8 : 0));
+ if ( flags == REG_RSN_RETURN_NAME)
+ return sv_name;
+ else if (flags==REG_RSN_RETURN_DATA) {
+ HE *he_str = NULL;
+ SV *sv_dat = NULL;
+ if ( ! sv_name ) /* should not happen*/
+ Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
+ if (RExC_paren_names)
+ he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
+ if ( he_str )
+ sv_dat = HeVAL(he_str);
+ if ( ! sv_dat )
+ vFAIL("Reference to nonexistent named group");
+ return sv_dat;
+ }
+ else {
+ Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name",
+ (unsigned long) flags);
+ }
+ NOT_REACHED; /* NOTREACHED */
+ }
+ return NULL;
+}
+
+#define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \
+ int num; \
+ if (RExC_lastparse!=RExC_parse) { \
+ PerlIO_printf(Perl_debug_log, "%s", \
+ Perl_pv_pretty(aTHX_ RExC_mysv1, RExC_parse, \
+ RExC_end - RExC_parse, 16, \
+ "", "", \
+ PERL_PV_ESCAPE_UNI_DETECT | \
+ PERL_PV_PRETTY_ELLIPSES | \
+ PERL_PV_PRETTY_LTGT | \
+ PERL_PV_ESCAPE_RE | \
+ PERL_PV_PRETTY_EXACTSIZE \
+ ) \
+ ); \
+ } else \
+ PerlIO_printf(Perl_debug_log,"%16s",""); \
+ \
+ if (SIZE_ONLY) \
+ num = RExC_size + 1; \
+ else \
+ num=REG_NODE_NUM(RExC_emit); \
+ if (RExC_lastnum!=num) \
+ PerlIO_printf(Perl_debug_log,"|%4d",num); \
+ else \
+ PerlIO_printf(Perl_debug_log,"|%4s",""); \
+ PerlIO_printf(Perl_debug_log,"|%*s%-4s", \
+ (int)((depth*2)), "", \
+ (funcname) \
+ ); \
+ RExC_lastnum=num; \
+ RExC_lastparse=RExC_parse; \
+})
+
+
+
+#define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \
+ DEBUG_PARSE_MSG((funcname)); \
+ PerlIO_printf(Perl_debug_log,"%4s","\n"); \
+})
+#define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \
+ DEBUG_PARSE_MSG((funcname)); \
+ PerlIO_printf(Perl_debug_log,fmt "\n",args); \
+})
+
+/* This section of code defines the inversion list object and its methods. The
+ * interfaces are highly subject to change, so as much as possible is static to
+ * this file. An inversion list is here implemented as a malloc'd C UV array
+ * as an SVt_INVLIST scalar.
+ *
+ * An inversion list for Unicode is an array of code points, sorted by ordinal
+ * number. The zeroth element is the first code point in the list. The 1th
+ * element is the first element beyond that not in the list. In other words,
+ * the first range is
+ * invlist[0]..(invlist[1]-1)
+ * The other ranges follow. Thus every element whose index is divisible by two
+ * marks the beginning of a range that is in the list, and every element not
+ * divisible by two marks the beginning of a range not in the list. A single
+ * element inversion list that contains the single code point N generally
+ * consists of two elements
+ * invlist[0] == N
+ * invlist[1] == N+1
+ * (The exception is when N is the highest representable value on the
+ * machine, in which case the list containing just it would be a single
+ * element, itself. By extension, if the last range in the list extends to
+ * infinity, then the first element of that range will be in the inversion list
+ * at a position that is divisible by two, and is the final element in the
+ * list.)
+ * Taking the complement (inverting) an inversion list is quite simple, if the
+ * first element is 0, remove it; otherwise add a 0 element at the beginning.
+ * This implementation reserves an element at the beginning of each inversion
+ * list to always contain 0; there is an additional flag in the header which
+ * indicates if the list begins at the 0, or is offset to begin at the next
+ * element.
+ *
+ * More about inversion lists can be found in "Unicode Demystified"
+ * Chapter 13 by Richard Gillam, published by Addison-Wesley.
+ * More will be coming when functionality is added later.
+ *
+ * The inversion list data structure is currently implemented as an SV pointing
+ * to an array of UVs that the SV thinks are bytes. This allows us to have an
+ * array of UV whose memory management is automatically handled by the existing
+ * facilities for SV's.
+ *
+ * Some of the methods should always be private to the implementation, and some
+ * should eventually be made public */
+
+/* The header definitions are in F<inline_invlist.c> */
+
+PERL_STATIC_INLINE UV*
+S__invlist_array_init(SV* const invlist, const bool will_have_0)
+{
+ /* Returns a pointer to the first element in the inversion list's array.
+ * This is called upon initialization of an inversion list. Where the
+ * array begins depends on whether the list has the code point U+0000 in it
+ * or not. The other parameter tells it whether the code that follows this
+ * call is about to put a 0 in the inversion list or not. The first
+ * element is either the element reserved for 0, if TRUE, or the element
+ * after it, if FALSE */
+
+ bool* offset = get_invlist_offset_addr(invlist);
+ UV* zero_addr = (UV *) SvPVX(invlist);
+
+ PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
+
+ /* Must be empty */
+ assert(! _invlist_len(invlist));
+
+ *zero_addr = 0;
+
+ /* 1^1 = 0; 1^0 = 1 */
+ *offset = 1 ^ will_have_0;
+ return zero_addr + *offset;
+}
+
+PERL_STATIC_INLINE void
+S_invlist_set_len(pTHX_ SV* const invlist, const UV len, const bool offset)
+{
+ /* Sets the current number of elements stored in the inversion list.
+ * Updates SvCUR correspondingly */
+ PERL_UNUSED_CONTEXT;
+ PERL_ARGS_ASSERT_INVLIST_SET_LEN;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ SvCUR_set(invlist,
+ (len == 0)
+ ? 0
+ : TO_INTERNAL_SIZE(len + offset));
+ assert(SvLEN(invlist) == 0 || SvCUR(invlist) <= SvLEN(invlist));
+}
+
+#ifndef PERL_IN_XSUB_RE
+
+PERL_STATIC_INLINE IV*
+S_get_invlist_previous_index_addr(SV* invlist)
+{
+ /* Return the address of the IV that is reserved to hold the cached index
+ * */
+ PERL_ARGS_ASSERT_GET_INVLIST_PREVIOUS_INDEX_ADDR;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ return &(((XINVLIST*) SvANY(invlist))->prev_index);
+}
+
+PERL_STATIC_INLINE IV
+S_invlist_previous_index(SV* const invlist)
+{
+ /* Returns cached index of previous search */
+
+ PERL_ARGS_ASSERT_INVLIST_PREVIOUS_INDEX;
+
+ return *get_invlist_previous_index_addr(invlist);
+}
+
+PERL_STATIC_INLINE void
+S_invlist_set_previous_index(SV* const invlist, const IV index)
+{
+ /* Caches <index> for later retrieval */
+
+ PERL_ARGS_ASSERT_INVLIST_SET_PREVIOUS_INDEX;
+
+ assert(index == 0 || index < (int) _invlist_len(invlist));
+
+ *get_invlist_previous_index_addr(invlist) = index;
+}
+
+PERL_STATIC_INLINE void
+S_invlist_trim(SV* const invlist)
+{
+ PERL_ARGS_ASSERT_INVLIST_TRIM;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ /* Change the length of the inversion list to how many entries it currently
+ * has */
+ SvPV_shrink_to_cur((SV *) invlist);
+}
+
+PERL_STATIC_INLINE bool
+S_invlist_is_iterating(SV* const invlist)
+{
+ PERL_ARGS_ASSERT_INVLIST_IS_ITERATING;
+
+ return *(get_invlist_iter_addr(invlist)) < (STRLEN) UV_MAX;
+}
+
+#endif /* ifndef PERL_IN_XSUB_RE */
+
+PERL_STATIC_INLINE UV
+S_invlist_max(SV* const invlist)
+{
+ /* Returns the maximum number of elements storable in the inversion list's
+ * array, without having to realloc() */
+
+ PERL_ARGS_ASSERT_INVLIST_MAX;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ /* Assumes worst case, in which the 0 element is not counted in the
+ * inversion list, so subtracts 1 for that */
+ return SvLEN(invlist) == 0 /* This happens under _new_invlist_C_array */
+ ? FROM_INTERNAL_SIZE(SvCUR(invlist)) - 1
+ : FROM_INTERNAL_SIZE(SvLEN(invlist)) - 1;
+}
+
+#ifndef PERL_IN_XSUB_RE
+SV*
+Perl__new_invlist(pTHX_ IV initial_size)
+{
+
+ /* Return a pointer to a newly constructed inversion list, with enough
+ * space to store 'initial_size' elements. If that number is negative, a
+ * system default is used instead */
+
+ SV* new_list;
+
+ if (initial_size < 0) {
+ initial_size = 10;
+ }
+
+ /* Allocate the initial space */
+ new_list = newSV_type(SVt_INVLIST);
+
+ /* First 1 is in case the zero element isn't in the list; second 1 is for
+ * trailing NUL */
+ SvGROW(new_list, TO_INTERNAL_SIZE(initial_size + 1) + 1);
+ invlist_set_len(new_list, 0, 0);
+
+ /* Force iterinit() to be used to get iteration to work */
+ *get_invlist_iter_addr(new_list) = (STRLEN) UV_MAX;
+
+ *get_invlist_previous_index_addr(new_list) = 0;
+
+ return new_list;
+}
+
+SV*
+Perl__new_invlist_C_array(pTHX_ const UV* const list)
+{
+ /* Return a pointer to a newly constructed inversion list, initialized to
+ * point to <list>, which has to be in the exact correct inversion list
+ * form, including internal fields. Thus this is a dangerous routine that
+ * should not be used in the wrong hands. The passed in 'list' contains
+ * several header fields at the beginning that are not part of the
+ * inversion list body proper */
+
+ const STRLEN length = (STRLEN) list[0];
+ const UV version_id = list[1];
+ const bool offset = cBOOL(list[2]);
+#define HEADER_LENGTH 3
+ /* If any of the above changes in any way, you must change HEADER_LENGTH
+ * (if appropriate) and regenerate INVLIST_VERSION_ID by running
+ * perl -E 'say int(rand 2**31-1)'
+ */
+#define INVLIST_VERSION_ID 148565664 /* This is a combination of a version and
+ data structure type, so that one being
+ passed in can be validated to be an
+ inversion list of the correct vintage.
+ */
+
+ SV* invlist = newSV_type(SVt_INVLIST);
+
+ PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY;
+
+ if (version_id != INVLIST_VERSION_ID) {
+ Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list");
+ }
+
+ /* The generated array passed in includes header elements that aren't part
+ * of the list proper, so start it just after them */
+ SvPV_set(invlist, (char *) (list + HEADER_LENGTH));
+
+ SvLEN_set(invlist, 0); /* Means we own the contents, and the system
+ shouldn't touch it */
+
+ *(get_invlist_offset_addr(invlist)) = offset;
+
+ /* The 'length' passed to us is the physical number of elements in the
+ * inversion list. But if there is an offset the logical number is one
+ * less than that */
+ invlist_set_len(invlist, length - offset, offset);
+
+ invlist_set_previous_index(invlist, 0);
+
+ /* Initialize the iteration pointer. */
+ invlist_iterfinish(invlist);
+
+ SvREADONLY_on(invlist);
+
+ return invlist;
+}
+#endif /* ifndef PERL_IN_XSUB_RE */
+
+STATIC void
+S_invlist_extend(pTHX_ SV* const invlist, const UV new_max)
+{
+ /* Grow the maximum size of an inversion list */
+
+ PERL_ARGS_ASSERT_INVLIST_EXTEND;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ /* Add one to account for the zero element at the beginning which may not
+ * be counted by the calling parameters */
+ SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max + 1));
+}
+
+STATIC void
+S__append_range_to_invlist(pTHX_ SV* const invlist,
+ const UV start, const UV end)
+{
+ /* Subject to change or removal. Append the range from 'start' to 'end' at
+ * the end of the inversion list. The range must be above any existing
+ * ones. */
+
+ UV* array;
+ UV max = invlist_max(invlist);
+ UV len = _invlist_len(invlist);
+ bool offset;
+
+ PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
+
+ if (len == 0) { /* Empty lists must be initialized */
+ offset = start != 0;
+ array = _invlist_array_init(invlist, ! offset);
+ }
+ else {
+ /* Here, the existing list is non-empty. The current max entry in the
+ * list is generally the first value not in the set, except when the
+ * set extends to the end of permissible values, in which case it is
+ * the first entry in that final set, and so this call is an attempt to
+ * append out-of-order */
+
+ UV final_element = len - 1;
+ array = invlist_array(invlist);
+ if (array[final_element] > start
+ || ELEMENT_RANGE_MATCHES_INVLIST(final_element))
+ {
+ Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%"UVuf", start=%"UVuf", match=%c",
+ array[final_element], start,
+ ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f');
+ }
+
+ /* Here, it is a legal append. If the new range begins with the first
+ * value not in the set, it is extending the set, so the new first
+ * value not in the set is one greater than the newly extended range.
+ * */
+ offset = *get_invlist_offset_addr(invlist);
+ if (array[final_element] == start) {
+ if (end != UV_MAX) {
+ array[final_element] = end + 1;
+ }
+ else {
+ /* But if the end is the maximum representable on the machine,
+ * just let the range that this would extend to have no end */
+ invlist_set_len(invlist, len - 1, offset);
+ }
+ return;
+ }
+ }
+
+ /* Here the new range doesn't extend any existing set. Add it */
+
+ len += 2; /* Includes an element each for the start and end of range */
+
+ /* If wll overflow the existing space, extend, which may cause the array to
+ * be moved */
+ if (max < len) {
+ invlist_extend(invlist, len);
+
+ /* Have to set len here to avoid assert failure in invlist_array() */
+ invlist_set_len(invlist, len, offset);
+
+ array = invlist_array(invlist);
+ }
+ else {
+ invlist_set_len(invlist, len, offset);
+ }
+
+ /* The next item on the list starts the range, the one after that is
+ * one past the new range. */
+ array[len - 2] = start;
+ if (end != UV_MAX) {
+ array[len - 1] = end + 1;
+ }
+ else {
+ /* But if the end is the maximum representable on the machine, just let
+ * the range have no end */
+ invlist_set_len(invlist, len - 1, offset);
+ }
+}
+
+#ifndef PERL_IN_XSUB_RE
+
+IV
+Perl__invlist_search(SV* const invlist, const UV cp)
+{
+ /* Searches the inversion list for the entry that contains the input code
+ * point <cp>. If <cp> is not in the list, -1 is returned. Otherwise, the
+ * return value is the index into the list's array of the range that
+ * contains <cp> */
+
+ IV low = 0;
+ IV mid;
+ IV high = _invlist_len(invlist);
+ const IV highest_element = high - 1;
+ const UV* array;
+
+ PERL_ARGS_ASSERT__INVLIST_SEARCH;
+
+ /* If list is empty, return failure. */
+ if (high == 0) {
+ return -1;
+ }
+
+ /* (We can't get the array unless we know the list is non-empty) */
+ array = invlist_array(invlist);
+
+ mid = invlist_previous_index(invlist);
+ assert(mid >=0 && mid <= highest_element);
+
+ /* <mid> contains the cache of the result of the previous call to this
+ * function (0 the first time). See if this call is for the same result,
+ * or if it is for mid-1. This is under the theory that calls to this
+ * function will often be for related code points that are near each other.
+ * And benchmarks show that caching gives better results. We also test
+ * here if the code point is within the bounds of the list. These tests
+ * replace others that would have had to be made anyway to make sure that
+ * the array bounds were not exceeded, and these give us extra information
+ * at the same time */
+ if (cp >= array[mid]) {
+ if (cp >= array[highest_element]) {
+ return highest_element;
+ }
+
+ /* Here, array[mid] <= cp < array[highest_element]. This means that
+ * the final element is not the answer, so can exclude it; it also
+ * means that <mid> is not the final element, so can refer to 'mid + 1'
+ * safely */
+ if (cp < array[mid + 1]) {
+ return mid;
+ }
+ high--;
+ low = mid + 1;
+ }
+ else { /* cp < aray[mid] */
+ if (cp < array[0]) { /* Fail if outside the array */
+ return -1;
+ }
+ high = mid;
+ if (cp >= array[mid - 1]) {
+ goto found_entry;
+ }
+ }
+
+ /* Binary search. What we are looking for is <i> such that
+ * array[i] <= cp < array[i+1]
+ * The loop below converges on the i+1. Note that there may not be an
+ * (i+1)th element in the array, and things work nonetheless */
+ while (low < high) {
+ mid = (low + high) / 2;
+ assert(mid <= highest_element);
+ if (array[mid] <= cp) { /* cp >= array[mid] */
+ low = mid + 1;
+
+ /* We could do this extra test to exit the loop early.
+ if (cp < array[low]) {
+ return mid;
+ }
+ */
+ }
+ else { /* cp < array[mid] */
+ high = mid;
+ }
+ }
+
+ found_entry:
+ high--;
+ invlist_set_previous_index(invlist, high);
+ return high;
+}
+
+void
+Perl__invlist_populate_swatch(SV* const invlist,
+ const UV start, const UV end, U8* swatch)
+{
+ /* populates a swatch of a swash the same way swatch_get() does in utf8.c,
+ * but is used when the swash has an inversion list. This makes this much
+ * faster, as it uses a binary search instead of a linear one. This is
+ * intimately tied to that function, and perhaps should be in utf8.c,
+ * except it is intimately tied to inversion lists as well. It assumes
+ * that <swatch> is all 0's on input */
+
+ UV current = start;
+ const IV len = _invlist_len(invlist);
+ IV i;
+ const UV * array;
+
+ PERL_ARGS_ASSERT__INVLIST_POPULATE_SWATCH;
+
+ if (len == 0) { /* Empty inversion list */
+ return;
+ }
+
+ array = invlist_array(invlist);
+
+ /* Find which element it is */
+ i = _invlist_search(invlist, start);
+
+ /* We populate from <start> to <end> */
+ while (current < end) {
+ UV upper;
+
+ /* The inversion list gives the results for every possible code point
+ * after the first one in the list. Only those ranges whose index is
+ * even are ones that the inversion list matches. For the odd ones,
+ * and if the initial code point is not in the list, we have to skip
+ * forward to the next element */
+ if (i == -1 || ! ELEMENT_RANGE_MATCHES_INVLIST(i)) {
+ i++;
+ if (i >= len) { /* Finished if beyond the end of the array */
+ return;
+ }
+ current = array[i];
+ if (current >= end) { /* Finished if beyond the end of what we
+ are populating */
+ if (LIKELY(end < UV_MAX)) {
+ return;
+ }
+
+ /* We get here when the upper bound is the maximum
+ * representable on the machine, and we are looking for just
+ * that code point. Have to special case it */
+ i = len;
+ goto join_end_of_list;
+ }
+ }
+ assert(current >= start);
+
+ /* The current range ends one below the next one, except don't go past
+ * <end> */
+ i++;
+ upper = (i < len && array[i] < end) ? array[i] : end;
+
+ /* Here we are in a range that matches. Populate a bit in the 3-bit U8
+ * for each code point in it */
+ for (; current < upper; current++) {
+ const STRLEN offset = (STRLEN)(current - start);
+ swatch[offset >> 3] |= 1 << (offset & 7);
+ }
+
+ join_end_of_list:
+
+ /* Quit if at the end of the list */
+ if (i >= len) {
+
+ /* But first, have to deal with the highest possible code point on
+ * the platform. The previous code assumes that <end> is one
+ * beyond where we want to populate, but that is impossible at the
+ * platform's infinity, so have to handle it specially */
+ if (UNLIKELY(end == UV_MAX && ELEMENT_RANGE_MATCHES_INVLIST(len-1)))
+ {
+ const STRLEN offset = (STRLEN)(end - start);
+ swatch[offset >> 3] |= 1 << (offset & 7);
+ }
+ return;
+ }
+
+ /* Advance to the next range, which will be for code points not in the
+ * inversion list */
+ current = array[i];
+ }
+
+ return;
+}
+
+void
+Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b,
+ const bool complement_b, SV** output)
+{
+ /* Take the union of two inversion lists and point <output> to it. *output
+ * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
+ * the reference count to that list will be decremented if not already a
+ * temporary (mortal); otherwise *output will be made correspondingly
+ * mortal. The first list, <a>, may be NULL, in which case a copy of the
+ * second list is returned. If <complement_b> is TRUE, the union is taken
+ * of the complement (inversion) of <b> instead of b itself.
+ *
+ * The basis for this comes from "Unicode Demystified" Chapter 13 by
+ * Richard Gillam, published by Addison-Wesley, and explained at some
+ * length there. The preface says to incorporate its examples into your
+ * code at your own risk.
+ *
+ * The algorithm is like a merge sort.
+ *
+ * XXX A potential performance improvement is to keep track as we go along
+ * if only one of the inputs contributes to the result, meaning the other
+ * is a subset of that one. In that case, we can skip the final copy and
+ * return the larger of the input lists, but then outside code might need
+ * to keep track of whether to free the input list or not */
+
+ const UV* array_a; /* a's array */
+ const UV* array_b;
+ UV len_a; /* length of a's array */
+ UV len_b;
+
+ SV* u; /* the resulting union */
+ UV* array_u;
+ UV len_u;
+
+ UV i_a = 0; /* current index into a's array */
+ UV i_b = 0;
+ UV i_u = 0;
+
+ /* running count, as explained in the algorithm source book; items are
+ * stopped accumulating and are output when the count changes to/from 0.
+ * The count is incremented when we start a range that's in the set, and
+ * decremented when we start a range that's not in the set. So its range
+ * is 0 to 2. Only when the count is zero is something not in the set.
+ */
+ UV count = 0;
+
+ PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND;
+ assert(a != b);
+
+ /* If either one is empty, the union is the other one */
+ if (a == NULL || ((len_a = _invlist_len(a)) == 0)) {
+ bool make_temp = FALSE; /* Should we mortalize the result? */
+
+ if (*output == a) {
+ if (a != NULL) {
+ if (! (make_temp = cBOOL(SvTEMP(a)))) {
+ SvREFCNT_dec_NN(a);
+ }
+ }
+ }
+ if (*output != b) {
+ *output = invlist_clone(b);
+ if (complement_b) {
+ _invlist_invert(*output);
+ }
+ } /* else *output already = b; */
+
+ if (make_temp) {
+ sv_2mortal(*output);
+ }
+ return;
+ }
+ else if ((len_b = _invlist_len(b)) == 0) {
+ bool make_temp = FALSE;
+ if (*output == b) {
+ if (! (make_temp = cBOOL(SvTEMP(b)))) {
+ SvREFCNT_dec_NN(b);
+ }
+ }
+
+ /* The complement of an empty list is a list that has everything in it,
+ * so the union with <a> includes everything too */
+ if (complement_b) {
+ if (a == *output) {
+ if (! (make_temp = cBOOL(SvTEMP(a)))) {
+ SvREFCNT_dec_NN(a);
+ }
+ }
+ *output = _new_invlist(1);
+ _append_range_to_invlist(*output, 0, UV_MAX);
+ }
+ else if (*output != a) {
+ *output = invlist_clone(a);
+ }
+ /* else *output already = a; */
+
+ if (make_temp) {
+ sv_2mortal(*output);
+ }
+ return;
+ }
+
+ /* Here both lists exist and are non-empty */
+ array_a = invlist_array(a);
+ array_b = invlist_array(b);
+
+ /* If are to take the union of 'a' with the complement of b, set it
+ * up so are looking at b's complement. */
+ if (complement_b) {
+
+ /* To complement, we invert: if the first element is 0, remove it. To
+ * do this, we just pretend the array starts one later */
+ if (array_b[0] == 0) {
+ array_b++;
+ len_b--;
+ }
+ else {
+
+ /* But if the first element is not zero, we pretend the list starts
+ * at the 0 that is always stored immediately before the array. */
+ array_b--;
+ len_b++;
+ }
+ }
+
+ /* Size the union for the worst case: that the sets are completely
+ * disjoint */
+ u = _new_invlist(len_a + len_b);
+
+ /* Will contain U+0000 if either component does */
+ array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0)
+ || (len_b > 0 && array_b[0] == 0));
+
+ /* Go through each list item by item, stopping when exhausted one of
+ * them */
+ while (i_a < len_a && i_b < len_b) {
+ UV cp; /* The element to potentially add to the union's array */
+ bool cp_in_set; /* is it in the the input list's set or not */
+
+ /* We need to take one or the other of the two inputs for the union.
+ * Since we are merging two sorted lists, we take the smaller of the
+ * next items. In case of a tie, we take the one that is in its set
+ * first. If we took one not in the set first, it would decrement the
+ * count, possibly to 0 which would cause it to be output as ending the
+ * range, and the next time through we would take the same number, and
+ * output it again as beginning the next range. By doing it the
+ * opposite way, there is no possibility that the count will be
+ * momentarily decremented to 0, and thus the two adjoining ranges will
+ * be seamlessly merged. (In a tie and both are in the set or both not
+ * in the set, it doesn't matter which we take first.) */
+ if (array_a[i_a] < array_b[i_b]
+ || (array_a[i_a] == array_b[i_b]
+ && ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
+ {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
+ cp= array_a[i_a++];
+ }
+ else {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
+ cp = array_b[i_b++];
+ }
+
+ /* Here, have chosen which of the two inputs to look at. Only output
+ * if the running count changes to/from 0, which marks the
+ * beginning/end of a range in that's in the set */
+ if (cp_in_set) {
+ if (count == 0) {
+ array_u[i_u++] = cp;
+ }
+ count++;
+ }
+ else {
+ count--;
+ if (count == 0) {
+ array_u[i_u++] = cp;
+ }
+ }
+ }
+
+ /* Here, we are finished going through at least one of the lists, which
+ * means there is something remaining in at most one. We check if the list
+ * that hasn't been exhausted is positioned such that we are in the middle
+ * of a range in its set or not. (i_a and i_b point to the element beyond
+ * the one we care about.) If in the set, we decrement 'count'; if 0, there
+ * is potentially more to output.
+ * There are four cases:
+ * 1) Both weren't in their sets, count is 0, and remains 0. What's left
+ * in the union is entirely from the non-exhausted set.
+ * 2) Both were in their sets, count is 2. Nothing further should
+ * be output, as everything that remains will be in the exhausted
+ * list's set, hence in the union; decrementing to 1 but not 0 insures
+ * that
+ * 3) the exhausted was in its set, non-exhausted isn't, count is 1.
+ * Nothing further should be output because the union includes
+ * everything from the exhausted set. Not decrementing ensures that.
+ * 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
+ * decrementing to 0 insures that we look at the remainder of the
+ * non-exhausted set */
+ if ((i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
+ || (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
+ {
+ count--;
+ }
+
+ /* The final length is what we've output so far, plus what else is about to
+ * be output. (If 'count' is non-zero, then the input list we exhausted
+ * has everything remaining up to the machine's limit in its set, and hence
+ * in the union, so there will be no further output. */
+ len_u = i_u;
+ if (count == 0) {
+ /* At most one of the subexpressions will be non-zero */
+ len_u += (len_a - i_a) + (len_b - i_b);
+ }
+
+ /* Set result to final length, which can change the pointer to array_u, so
+ * re-find it */
+ if (len_u != _invlist_len(u)) {
+ invlist_set_len(u, len_u, *get_invlist_offset_addr(u));
+ invlist_trim(u);
+ array_u = invlist_array(u);
+ }
+
+ /* When 'count' is 0, the list that was exhausted (if one was shorter than
+ * the other) ended with everything above it not in its set. That means
+ * that the remaining part of the union is precisely the same as the
+ * non-exhausted list, so can just copy it unchanged. (If both list were
+ * exhausted at the same time, then the operations below will be both 0.)
+ */
+ if (count == 0) {
+ IV copy_count; /* At most one will have a non-zero copy count */
+ if ((copy_count = len_a - i_a) > 0) {
+ Copy(array_a + i_a, array_u + i_u, copy_count, UV);
+ }
+ else if ((copy_count = len_b - i_b) > 0) {
+ Copy(array_b + i_b, array_u + i_u, copy_count, UV);
+ }
+ }
+
+ /* We may be removing a reference to one of the inputs. If so, the output
+ * is made mortal if the input was. (Mortal SVs shouldn't have their ref
+ * count decremented) */
+ if (a == *output || b == *output) {
+ assert(! invlist_is_iterating(*output));
+ if ((SvTEMP(*output))) {
+ sv_2mortal(u);
+ }
+ else {
+ SvREFCNT_dec_NN(*output);
+ }
+ }
+
+ *output = u;
+
+ return;
+}
+
+void
+Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b,
+ const bool complement_b, SV** i)
+{
+ /* Take the intersection of two inversion lists and point <i> to it. *i
+ * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
+ * the reference count to that list will be decremented if not already a
+ * temporary (mortal); otherwise *i will be made correspondingly mortal.
+ * The first list, <a>, may be NULL, in which case an empty list is
+ * returned. If <complement_b> is TRUE, the result will be the
+ * intersection of <a> and the complement (or inversion) of <b> instead of
+ * <b> directly.
+ *
+ * The basis for this comes from "Unicode Demystified" Chapter 13 by
+ * Richard Gillam, published by Addison-Wesley, and explained at some
+ * length there. The preface says to incorporate its examples into your
+ * code at your own risk. In fact, it had bugs
+ *
+ * The algorithm is like a merge sort, and is essentially the same as the
+ * union above
+ */
+
+ const UV* array_a; /* a's array */
+ const UV* array_b;
+ UV len_a; /* length of a's array */
+ UV len_b;
+
+ SV* r; /* the resulting intersection */
+ UV* array_r;
+ UV len_r;
+
+ UV i_a = 0; /* current index into a's array */
+ UV i_b = 0;
+ UV i_r = 0;
+
+ /* running count, as explained in the algorithm source book; items are
+ * stopped accumulating and are output when the count changes to/from 2.
+ * The count is incremented when we start a range that's in the set, and
+ * decremented when we start a range that's not in the set. So its range
+ * is 0 to 2. Only when the count is 2 is something in the intersection.
+ */
+ UV count = 0;
+
+ PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND;
+ assert(a != b);
+
+ /* Special case if either one is empty */
+ len_a = (a == NULL) ? 0 : _invlist_len(a);
+ if ((len_a == 0) || ((len_b = _invlist_len(b)) == 0)) {
+ bool make_temp = FALSE;
+
+ if (len_a != 0 && complement_b) {
+
+ /* Here, 'a' is not empty, therefore from the above 'if', 'b' must
+ * be empty. Here, also we are using 'b's complement, which hence
+ * must be every possible code point. Thus the intersection is
+ * simply 'a'. */
+ if (*i != a) {
+ if (*i == b) {
+ if (! (make_temp = cBOOL(SvTEMP(b)))) {
+ SvREFCNT_dec_NN(b);
+ }
+ }
+
+ *i = invlist_clone(a);
+ }
+ /* else *i is already 'a' */
+
+ if (make_temp) {
+ sv_2mortal(*i);
+ }
+ return;
+ }
+
+ /* Here, 'a' or 'b' is empty and not using the complement of 'b'. The
+ * intersection must be empty */
+ if (*i == a) {
+ if (! (make_temp = cBOOL(SvTEMP(a)))) {
+ SvREFCNT_dec_NN(a);
+ }
+ }
+ else if (*i == b) {
+ if (! (make_temp = cBOOL(SvTEMP(b)))) {
+ SvREFCNT_dec_NN(b);
+ }
+ }
+ *i = _new_invlist(0);
+ if (make_temp) {
+ sv_2mortal(*i);
+ }
+
+ return;
+ }
+
+ /* Here both lists exist and are non-empty */
+ array_a = invlist_array(a);
+ array_b = invlist_array(b);
+
+ /* If are to take the intersection of 'a' with the complement of b, set it
+ * up so are looking at b's complement. */
+ if (complement_b) {
+
+ /* To complement, we invert: if the first element is 0, remove it. To
+ * do this, we just pretend the array starts one later */
+ if (array_b[0] == 0) {
+ array_b++;
+ len_b--;
+ }
+ else {
+
+ /* But if the first element is not zero, we pretend the list starts
+ * at the 0 that is always stored immediately before the array. */
+ array_b--;
+ len_b++;
+ }
+ }
+
+ /* Size the intersection for the worst case: that the intersection ends up
+ * fragmenting everything to be completely disjoint */
+ r= _new_invlist(len_a + len_b);
+
+ /* Will contain U+0000 iff both components do */
+ array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0
+ && len_b > 0 && array_b[0] == 0);
+
+ /* Go through each list item by item, stopping when exhausted one of
+ * them */
+ while (i_a < len_a && i_b < len_b) {
+ UV cp; /* The element to potentially add to the intersection's
+ array */
+ bool cp_in_set; /* Is it in the input list's set or not */
+
+ /* We need to take one or the other of the two inputs for the
+ * intersection. Since we are merging two sorted lists, we take the
+ * smaller of the next items. In case of a tie, we take the one that
+ * is not in its set first (a difference from the union algorithm). If
+ * we took one in the set first, it would increment the count, possibly
+ * to 2 which would cause it to be output as starting a range in the
+ * intersection, and the next time through we would take that same
+ * number, and output it again as ending the set. By doing it the
+ * opposite of this, there is no possibility that the count will be
+ * momentarily incremented to 2. (In a tie and both are in the set or
+ * both not in the set, it doesn't matter which we take first.) */
+ if (array_a[i_a] < array_b[i_b]
+ || (array_a[i_a] == array_b[i_b]
+ && ! ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
+ {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
+ cp= array_a[i_a++];
+ }
+ else {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
+ cp= array_b[i_b++];
+ }
+
+ /* Here, have chosen which of the two inputs to look at. Only output
+ * if the running count changes to/from 2, which marks the
+ * beginning/end of a range that's in the intersection */
+ if (cp_in_set) {
+ count++;
+ if (count == 2) {
+ array_r[i_r++] = cp;
+ }
+ }
+ else {
+ if (count == 2) {
+ array_r[i_r++] = cp;
+ }
+ count--;
+ }
+ }
+
+ /* Here, we are finished going through at least one of the lists, which
+ * means there is something remaining in at most one. We check if the list
+ * that has been exhausted is positioned such that we are in the middle
+ * of a range in its set or not. (i_a and i_b point to elements 1 beyond
+ * the ones we care about.) There are four cases:
+ * 1) Both weren't in their sets, count is 0, and remains 0. There's
+ * nothing left in the intersection.
+ * 2) Both were in their sets, count is 2 and perhaps is incremented to
+ * above 2. What should be output is exactly that which is in the
+ * non-exhausted set, as everything it has is also in the intersection
+ * set, and everything it doesn't have can't be in the intersection
+ * 3) The exhausted was in its set, non-exhausted isn't, count is 1, and
+ * gets incremented to 2. Like the previous case, the intersection is
+ * everything that remains in the non-exhausted set.
+ * 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
+ * remains 1. And the intersection has nothing more. */
+ if ((i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
+ || (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
+ {
+ count++;
+ }
+
+ /* The final length is what we've output so far plus what else is in the
+ * intersection. At most one of the subexpressions below will be non-zero
+ * */
+ len_r = i_r;
+ if (count >= 2) {
+ len_r += (len_a - i_a) + (len_b - i_b);
+ }
+
+ /* Set result to final length, which can change the pointer to array_r, so
+ * re-find it */
+ if (len_r != _invlist_len(r)) {
+ invlist_set_len(r, len_r, *get_invlist_offset_addr(r));
+ invlist_trim(r);
+ array_r = invlist_array(r);
+ }
+
+ /* Finish outputting any remaining */
+ if (count >= 2) { /* At most one will have a non-zero copy count */
+ IV copy_count;
+ if ((copy_count = len_a - i_a) > 0) {
+ Copy(array_a + i_a, array_r + i_r, copy_count, UV);
+ }
+ else if ((copy_count = len_b - i_b) > 0) {
+ Copy(array_b + i_b, array_r + i_r, copy_count, UV);
+ }
+ }
+
+ /* We may be removing a reference to one of the inputs. If so, the output
+ * is made mortal if the input was. (Mortal SVs shouldn't have their ref
+ * count decremented) */
+ if (a == *i || b == *i) {
+ assert(! invlist_is_iterating(*i));
+ if (SvTEMP(*i)) {
+ sv_2mortal(r);
+ }
+ else {
+ SvREFCNT_dec_NN(*i);
+ }
+ }
+
+ *i = r;
+
+ return;
+}
+
+SV*
+Perl__add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end)
+{
+ /* Add the range from 'start' to 'end' inclusive to the inversion list's
+ * set. A pointer to the inversion list is returned. This may actually be
+ * a new list, in which case the passed in one has been destroyed. The
+ * passed-in inversion list can be NULL, in which case a new one is created
+ * with just the one range in it */
+
+ SV* range_invlist;
+ UV len;
+
+ if (invlist == NULL) {
+ invlist = _new_invlist(2);
+ len = 0;
+ }
+ else {
+ len = _invlist_len(invlist);
+ }
+
+ /* If comes after the final entry actually in the list, can just append it
+ * to the end, */
+ if (len == 0
+ || (! ELEMENT_RANGE_MATCHES_INVLIST(len - 1)
+ && start >= invlist_array(invlist)[len - 1]))
+ {
+ _append_range_to_invlist(invlist, start, end);
+ return invlist;
+ }
+
+ /* Here, can't just append things, create and return a new inversion list
+ * which is the union of this range and the existing inversion list */
+ range_invlist = _new_invlist(2);
+ _append_range_to_invlist(range_invlist, start, end);
+
+ _invlist_union(invlist, range_invlist, &invlist);
+
+ /* The temporary can be freed */
+ SvREFCNT_dec_NN(range_invlist);
+
+ return invlist;
+}
+
+SV*
+Perl__setup_canned_invlist(pTHX_ const STRLEN size, const UV element0,
+ UV** other_elements_ptr)
+{
+ /* Create and return an inversion list whose contents are to be populated
+ * by the caller. The caller gives the number of elements (in 'size') and
+ * the very first element ('element0'). This function will set
+ * '*other_elements_ptr' to an array of UVs, where the remaining elements
+ * are to be placed.
+ *
+ * Obviously there is some trust involved that the caller will properly
+ * fill in the other elements of the array.
+ *
+ * (The first element needs to be passed in, as the underlying code does
+ * things differently depending on whether it is zero or non-zero) */
+
+ SV* invlist = _new_invlist(size);
+ bool offset;
+
+ PERL_ARGS_ASSERT__SETUP_CANNED_INVLIST;
+
+ _append_range_to_invlist(invlist, element0, element0);
+ offset = *get_invlist_offset_addr(invlist);
+
+ invlist_set_len(invlist, size, offset);
+ *other_elements_ptr = invlist_array(invlist) + 1;
+ return invlist;
+}
+
+#endif
+
+PERL_STATIC_INLINE SV*
+S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) {
+ return _add_range_to_invlist(invlist, cp, cp);
+}
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl__invlist_invert(pTHX_ SV* const invlist)
+{
+ /* Complement the input inversion list. This adds a 0 if the list didn't
+ * have a zero; removes it otherwise. As described above, the data
+ * structure is set up so that this is very efficient */
+
+ PERL_ARGS_ASSERT__INVLIST_INVERT;
+
+ assert(! invlist_is_iterating(invlist));
+
+ /* The inverse of matching nothing is matching everything */
+ if (_invlist_len(invlist) == 0) {
+ _append_range_to_invlist(invlist, 0, UV_MAX);
+ return;
+ }
+
+ *get_invlist_offset_addr(invlist) = ! *get_invlist_offset_addr(invlist);
+}
+
+#endif
+
+PERL_STATIC_INLINE SV*
+S_invlist_clone(pTHX_ SV* const invlist)
+{
+
+ /* Return a new inversion list that is a copy of the input one, which is
+ * unchanged. The new list will not be mortal even if the old one was. */
+
+ /* Need to allocate extra space to accommodate Perl's addition of a
+ * trailing NUL to SvPV's, since it thinks they are always strings */
+ SV* new_invlist = _new_invlist(_invlist_len(invlist) + 1);
+ STRLEN physical_length = SvCUR(invlist);
+ bool offset = *(get_invlist_offset_addr(invlist));
+
+ PERL_ARGS_ASSERT_INVLIST_CLONE;
+
+ *(get_invlist_offset_addr(new_invlist)) = offset;
+ invlist_set_len(new_invlist, _invlist_len(invlist), offset);
+ Copy(SvPVX(invlist), SvPVX(new_invlist), physical_length, char);
+
+ return new_invlist;
+}
+
+PERL_STATIC_INLINE STRLEN*
+S_get_invlist_iter_addr(SV* invlist)
+{
+ /* Return the address of the UV that contains the current iteration
+ * position */
+
+ PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ return &(((XINVLIST*) SvANY(invlist))->iterator);
+}
+
+PERL_STATIC_INLINE void
+S_invlist_iterinit(SV* invlist) /* Initialize iterator for invlist */
+{
+ PERL_ARGS_ASSERT_INVLIST_ITERINIT;
+
+ *get_invlist_iter_addr(invlist) = 0;
+}
+
+PERL_STATIC_INLINE void
+S_invlist_iterfinish(SV* invlist)
+{
+ /* Terminate iterator for invlist. This is to catch development errors.
+ * Any iteration that is interrupted before completed should call this
+ * function. Functions that add code points anywhere else but to the end
+ * of an inversion list assert that they are not in the middle of an
+ * iteration. If they were, the addition would make the iteration
+ * problematical: if the iteration hadn't reached the place where things
+ * were being added, it would be ok */
+
+ PERL_ARGS_ASSERT_INVLIST_ITERFINISH;
+
+ *get_invlist_iter_addr(invlist) = (STRLEN) UV_MAX;
+}
+
+STATIC bool
+S_invlist_iternext(SV* invlist, UV* start, UV* end)
+{
+ /* An C<invlist_iterinit> call on <invlist> must be used to set this up.
+ * This call sets in <*start> and <*end>, the next range in <invlist>.
+ * Returns <TRUE> if successful and the next call will return the next
+ * range; <FALSE> if was already at the end of the list. If the latter,
+ * <*start> and <*end> are unchanged, and the next call to this function
+ * will start over at the beginning of the list */
+
+ STRLEN* pos = get_invlist_iter_addr(invlist);
+ UV len = _invlist_len(invlist);
+ UV *array;
+
+ PERL_ARGS_ASSERT_INVLIST_ITERNEXT;
+
+ if (*pos >= len) {
+ *pos = (STRLEN) UV_MAX; /* Force iterinit() to be required next time */
+ return FALSE;
+ }
+
+ array = invlist_array(invlist);
+
+ *start = array[(*pos)++];
+
+ if (*pos >= len) {
+ *end = UV_MAX;
+ }
+ else {
+ *end = array[(*pos)++] - 1;
+ }
+
+ return TRUE;
+}
+
+PERL_STATIC_INLINE UV
+S_invlist_highest(SV* const invlist)
+{
+ /* Returns the highest code point that matches an inversion list. This API
+ * has an ambiguity, as it returns 0 under either the highest is actually
+ * 0, or if the list is empty. If this distinction matters to you, check
+ * for emptiness before calling this function */
+
+ UV len = _invlist_len(invlist);
+ UV *array;
+
+ PERL_ARGS_ASSERT_INVLIST_HIGHEST;
+
+ if (len == 0) {
+ return 0;
+ }
+
+ array = invlist_array(invlist);
+
+ /* The last element in the array in the inversion list always starts a
+ * range that goes to infinity. That range may be for code points that are
+ * matched in the inversion list, or it may be for ones that aren't
+ * matched. In the latter case, the highest code point in the set is one
+ * less than the beginning of this range; otherwise it is the final element
+ * of this range: infinity */
+ return (ELEMENT_RANGE_MATCHES_INVLIST(len - 1))
+ ? UV_MAX
+ : array[len - 1] - 1;
+}
+
+#ifndef PERL_IN_XSUB_RE
+SV *
+Perl__invlist_contents(pTHX_ SV* const invlist)
+{
+ /* Get the contents of an inversion list into a string SV so that they can
+ * be printed out. It uses the format traditionally done for debug tracing
+ */
+
+ UV start, end;
+ SV* output = newSVpvs("\n");
+
+ PERL_ARGS_ASSERT__INVLIST_CONTENTS;
+
+ assert(! invlist_is_iterating(invlist));
+
+ invlist_iterinit(invlist);
+ while (invlist_iternext(invlist, &start, &end)) {
+ if (end == UV_MAX) {
+ Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\tINFINITY\n", start);
+ }
+ else if (end != start) {
+ Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\t%04"UVXf"\n",
+ start, end);
+ }
+ else {
+ Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\n", start);
+ }
+ }
+
+ return output;
+}
+#endif
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl__invlist_dump(pTHX_ PerlIO *file, I32 level,
+ const char * const indent, SV* const invlist)
+{
+ /* Designed to be called only by do_sv_dump(). Dumps out the ranges of the
+ * inversion list 'invlist' to 'file' at 'level' Each line is prefixed by
+ * the string 'indent'. The output looks like this:
+ [0] 0x000A .. 0x000D
+ [2] 0x0085
+ [4] 0x2028 .. 0x2029
+ [6] 0x3104 .. INFINITY
+ * This means that the first range of code points matched by the list are
+ * 0xA through 0xD; the second range contains only the single code point
+ * 0x85, etc. An inversion list is an array of UVs. Two array elements
+ * are used to define each range (except if the final range extends to
+ * infinity, only a single element is needed). The array index of the
+ * first element for the corresponding range is given in brackets. */
+
+ UV start, end;
+ STRLEN count = 0;
+
+ PERL_ARGS_ASSERT__INVLIST_DUMP;
+
+ if (invlist_is_iterating(invlist)) {
+ Perl_dump_indent(aTHX_ level, file,
+ "%sCan't dump inversion list because is in middle of iterating\n",
+ indent);
+ return;
+ }
+
+ invlist_iterinit(invlist);
+ while (invlist_iternext(invlist, &start, &end)) {
+ if (end == UV_MAX) {
+ Perl_dump_indent(aTHX_ level, file,
+ "%s[%"UVuf"] 0x%04"UVXf" .. INFINITY\n",
+ indent, (UV)count, start);
+ }
+ else if (end != start) {
+ Perl_dump_indent(aTHX_ level, file,
+ "%s[%"UVuf"] 0x%04"UVXf" .. 0x%04"UVXf"\n",
+ indent, (UV)count, start, end);
+ }
+ else {
+ Perl_dump_indent(aTHX_ level, file, "%s[%"UVuf"] 0x%04"UVXf"\n",
+ indent, (UV)count, start);
+ }
+ count += 2;
+ }
+}
+
+void
+Perl__load_PL_utf8_foldclosures (pTHX)
+{
+ assert(! PL_utf8_foldclosures);
+
+ /* If the folds haven't been read in, call a fold function
+ * to force that */
+ if (! PL_utf8_tofold) {
+ U8 dummy[UTF8_MAXBYTES_CASE+1];
+
+ /* This string is just a short named one above \xff */
+ to_utf8_fold((U8*) HYPHEN_UTF8, dummy, NULL);
+ assert(PL_utf8_tofold); /* Verify that worked */
+ }
+ PL_utf8_foldclosures = _swash_inversion_hash(PL_utf8_tofold);
+}
+#endif
+
+#ifdef PERL_ARGS_ASSERT__INVLISTEQ
+bool
+S__invlistEQ(pTHX_ SV* const a, SV* const b, const bool complement_b)
+{
+ /* Return a boolean as to if the two passed in inversion lists are
+ * identical. The final argument, if TRUE, says to take the complement of
+ * the second inversion list before doing the comparison */
+
+ const UV* array_a = invlist_array(a);
+ const UV* array_b = invlist_array(b);
+ UV len_a = _invlist_len(a);
+ UV len_b = _invlist_len(b);
+
+ UV i = 0; /* current index into the arrays */
+ bool retval = TRUE; /* Assume are identical until proven otherwise */
+
+ PERL_ARGS_ASSERT__INVLISTEQ;
+
+ /* If are to compare 'a' with the complement of b, set it
+ * up so are looking at b's complement. */
+ if (complement_b) {
+
+ /* The complement of nothing is everything, so <a> would have to have
+ * just one element, starting at zero (ending at infinity) */
+ if (len_b == 0) {
+ return (len_a == 1 && array_a[0] == 0);
+ }
+ else if (array_b[0] == 0) {
+
+ /* Otherwise, to complement, we invert. Here, the first element is
+ * 0, just remove it. To do this, we just pretend the array starts
+ * one later */
+
+ array_b++;
+ len_b--;
+ }
+ else {
+
+ /* But if the first element is not zero, we pretend the list starts
+ * at the 0 that is always stored immediately before the array. */
+ array_b--;
+ len_b++;
+ }
+ }
+
+ /* Make sure that the lengths are the same, as well as the final element
+ * before looping through the remainder. (Thus we test the length, final,
+ * and first elements right off the bat) */
+ if (len_a != len_b || array_a[len_a-1] != array_b[len_a-1]) {
+ retval = FALSE;
+ }
+ else for (i = 0; i < len_a - 1; i++) {
+ if (array_a[i] != array_b[i]) {
+ retval = FALSE;
+ break;
+ }
+ }
+
+ return retval;
+}
+#endif
+
+/*
+ * As best we can, determine the characters that can match the start of
+ * the given EXACTF-ish node.
+ *
+ * Returns the invlist as a new SV*; it is the caller's responsibility to
+ * call SvREFCNT_dec() when done with it.
+ */
+STATIC SV*
+S__make_exactf_invlist(pTHX_ RExC_state_t *pRExC_state, regnode *node)
+{
+ const U8 * s = (U8*)STRING(node);
+ SSize_t bytelen = STR_LEN(node);
+ UV uc;
+ /* Start out big enough for 2 separate code points */
+ SV* invlist = _new_invlist(4);
+
+ PERL_ARGS_ASSERT__MAKE_EXACTF_INVLIST;
+
+ if (! UTF) {
+ uc = *s;
+
+ /* We punt and assume can match anything if the node begins
+ * with a multi-character fold. Things are complicated. For
+ * example, /ffi/i could match any of:
+ * "\N{LATIN SMALL LIGATURE FFI}"
+ * "\N{LATIN SMALL LIGATURE FF}I"
+ * "F\N{LATIN SMALL LIGATURE FI}"
+ * plus several other things; and making sure we have all the
+ * possibilities is hard. */
+ if (is_MULTI_CHAR_FOLD_latin1_safe(s, s + bytelen)) {
+ invlist = _add_range_to_invlist(invlist, 0, UV_MAX);
+ }
+ else {
+ /* Any Latin1 range character can potentially match any
+ * other depending on the locale */
+ if (OP(node) == EXACTFL) {
+ _invlist_union(invlist, PL_Latin1, &invlist);
+ }
+ else {
+ /* But otherwise, it matches at least itself. We can
+ * quickly tell if it has a distinct fold, and if so,
+ * it matches that as well */
+ invlist = add_cp_to_invlist(invlist, uc);
+ if (IS_IN_SOME_FOLD_L1(uc))
+ invlist = add_cp_to_invlist(invlist, PL_fold_latin1[uc]);
+ }
+
+ /* Some characters match above-Latin1 ones under /i. This
+ * is true of EXACTFL ones when the locale is UTF-8 */
+ if (HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(uc)
+ && (! isASCII(uc) || (OP(node) != EXACTFA
+ && OP(node) != EXACTFA_NO_TRIE)))
+ {
+ add_above_Latin1_folds(pRExC_state, (U8) uc, &invlist);
+ }
+ }
+ }
+ else { /* Pattern is UTF-8 */
+ U8 folded[UTF8_MAX_FOLD_CHAR_EXPAND * UTF8_MAXBYTES_CASE + 1] = { '\0' };
+ STRLEN foldlen = UTF8SKIP(s);
+ const U8* e = s + bytelen;
+ SV** listp;
+
+ uc = utf8_to_uvchr_buf(s, s + bytelen, NULL);
+
+ /* The only code points that aren't folded in a UTF EXACTFish
+ * node are are the problematic ones in EXACTFL nodes */
+ if (OP(node) == EXACTFL && is_PROBLEMATIC_LOCALE_FOLDEDS_START_cp(uc)) {
+ /* We need to check for the possibility that this EXACTFL
+ * node begins with a multi-char fold. Therefore we fold
+ * the first few characters of it so that we can make that
+ * check */
+ U8 *d = folded;
+ int i;
+
+ for (i = 0; i < UTF8_MAX_FOLD_CHAR_EXPAND && s < e; i++) {
+ if (isASCII(*s)) {
+ *(d++) = (U8) toFOLD(*s);
+ s++;
+ }
+ else {
+ STRLEN len;
+ to_utf8_fold(s, d, &len);
+ d += len;
+ s += UTF8SKIP(s);
+ }
+ }
+
+ /* And set up so the code below that looks in this folded
+ * buffer instead of the node's string */
+ e = d;
+ foldlen = UTF8SKIP(folded);
+ s = folded;
+ }
+
+ /* When we reach here 's' points to the fold of the first
+ * character(s) of the node; and 'e' points to far enough along
+ * the folded string to be just past any possible multi-char
+ * fold. 'foldlen' is the length in bytes of the first
+ * character in 's'
+ *
+ * Unlike the non-UTF-8 case, the macro for determining if a
+ * string is a multi-char fold requires all the characters to
+ * already be folded. This is because of all the complications
+ * if not. Note that they are folded anyway, except in EXACTFL
+ * nodes. Like the non-UTF case above, we punt if the node
+ * begins with a multi-char fold */
+
+ if (is_MULTI_CHAR_FOLD_utf8_safe(s, e)) {
+ invlist = _add_range_to_invlist(invlist, 0, UV_MAX);
+ }
+ else { /* Single char fold */
+
+ /* It matches all the things that fold to it, which are
+ * found in PL_utf8_foldclosures (including itself) */
+ invlist = add_cp_to_invlist(invlist, uc);
+ if (! PL_utf8_foldclosures)
+ _load_PL_utf8_foldclosures();
+ if ((listp = hv_fetch(PL_utf8_foldclosures,
+ (char *) s, foldlen, FALSE)))
+ {
+ AV* list = (AV*) *listp;
+ IV k;
+ for (k = 0; k <= av_tindex(list); k++) {
+ SV** c_p = av_fetch(list, k, FALSE);
+ UV c;
+ assert(c_p);
+
+ c = SvUV(*c_p);
+
+ /* /aa doesn't allow folds between ASCII and non- */
+ if ((OP(node) == EXACTFA || OP(node) == EXACTFA_NO_TRIE)
+ && isASCII(c) != isASCII(uc))
+ {
+ continue;
+ }
+
+ invlist = add_cp_to_invlist(invlist, c);
+ }
+ }
+ }
+ }
+
+ return invlist;
+}
+
+#undef HEADER_LENGTH
+#undef TO_INTERNAL_SIZE
+#undef FROM_INTERNAL_SIZE
+#undef INVLIST_VERSION_ID
+
+/* End of inversion list object */
+
+STATIC void
+S_parse_lparen_question_flags(pTHX_ RExC_state_t *pRExC_state)
+{
+ /* This parses the flags that are in either the '(?foo)' or '(?foo:bar)'
+ * constructs, and updates RExC_flags with them. On input, RExC_parse
+ * should point to the first flag; it is updated on output to point to the
+ * final ')' or ':'. There needs to be at least one flag, or this will
+ * abort */
+
+ /* for (?g), (?gc), and (?o) warnings; warning
+ about (?c) will warn about (?g) -- japhy */
+
+#define WASTED_O 0x01
+#define WASTED_G 0x02
+#define WASTED_C 0x04
+#define WASTED_GC (WASTED_G|WASTED_C)
+ I32 wastedflags = 0x00;
+ U32 posflags = 0, negflags = 0;
+ U32 *flagsp = &posflags;
+ char has_charset_modifier = '\0';
+ regex_charset cs;
+ bool has_use_defaults = FALSE;
+ const char* const seqstart = RExC_parse - 1; /* Point to the '?' */
+ int x_mod_count = 0;
+
+ PERL_ARGS_ASSERT_PARSE_LPAREN_QUESTION_FLAGS;
+
+ /* '^' as an initial flag sets certain defaults */
+ if (UCHARAT(RExC_parse) == '^') {
+ RExC_parse++;
+ has_use_defaults = TRUE;
+ STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
+ set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
+ ? REGEX_UNICODE_CHARSET
+ : REGEX_DEPENDS_CHARSET);
+ }
+
+ cs = get_regex_charset(RExC_flags);
+ if (cs == REGEX_DEPENDS_CHARSET
+ && (RExC_utf8 || RExC_uni_semantics))
+ {
+ cs = REGEX_UNICODE_CHARSET;
+ }
+
+ while (*RExC_parse) {
+ /* && strchr("iogcmsx", *RExC_parse) */
+ /* (?g), (?gc) and (?o) are useless here
+ and must be globally applied -- japhy */
+ switch (*RExC_parse) {
+
+ /* Code for the imsxn flags */
+ CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp, x_mod_count);
+
+ case LOCALE_PAT_MOD:
+ if (has_charset_modifier) {
+ goto excess_modifier;
+ }
+ else if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ cs = REGEX_LOCALE_CHARSET;
+ has_charset_modifier = LOCALE_PAT_MOD;
+ break;
+ case UNICODE_PAT_MOD:
+ if (has_charset_modifier) {
+ goto excess_modifier;
+ }
+ else if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ cs = REGEX_UNICODE_CHARSET;
+ has_charset_modifier = UNICODE_PAT_MOD;
+ break;
+ case ASCII_RESTRICT_PAT_MOD:
+ if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ if (has_charset_modifier) {
+ if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
+ goto excess_modifier;
+ }
+ /* Doubled modifier implies more restricted */
+ cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
+ }
+ else {
+ cs = REGEX_ASCII_RESTRICTED_CHARSET;
+ }
+ has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
+ break;
+ case DEPENDS_PAT_MOD:
+ if (has_use_defaults) {
+ goto fail_modifiers;
+ }
+ else if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ else if (has_charset_modifier) {
+ goto excess_modifier;
+ }
+
+ /* The dual charset means unicode semantics if the
+ * pattern (or target, not known until runtime) are
+ * utf8, or something in the pattern indicates unicode
+ * semantics */
+ cs = (RExC_utf8 || RExC_uni_semantics)
+ ? REGEX_UNICODE_CHARSET
+ : REGEX_DEPENDS_CHARSET;
+ has_charset_modifier = DEPENDS_PAT_MOD;
+ break;
+ excess_modifier:
+ RExC_parse++;
+ if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
+ vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
+ }
+ else if (has_charset_modifier == *(RExC_parse - 1)) {
+ vFAIL2("Regexp modifier \"%c\" may not appear twice",
+ *(RExC_parse - 1));
+ }
+ else {
+ vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
+ }
+ NOT_REACHED; /*NOTREACHED*/
+ neg_modifier:
+ RExC_parse++;
+ vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"",
+ *(RExC_parse - 1));
+ NOT_REACHED; /*NOTREACHED*/
+ case ONCE_PAT_MOD: /* 'o' */
+ case GLOBAL_PAT_MOD: /* 'g' */
+ if (PASS2 && ckWARN(WARN_REGEXP)) {
+ const I32 wflagbit = *RExC_parse == 'o'
+ ? WASTED_O
+ : WASTED_G;
+ if (! (wastedflags & wflagbit) ) {
+ wastedflags |= wflagbit;
+ /* diag_listed_as: Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/ */
+ vWARN5(
+ RExC_parse + 1,
+ "Useless (%s%c) - %suse /%c modifier",
+ flagsp == &negflags ? "?-" : "?",
+ *RExC_parse,
+ flagsp == &negflags ? "don't " : "",
+ *RExC_parse
+ );
+ }
+ }
+ break;
+
+ case CONTINUE_PAT_MOD: /* 'c' */
+ if (PASS2 && ckWARN(WARN_REGEXP)) {
+ if (! (wastedflags & WASTED_C) ) {
+ wastedflags |= WASTED_GC;
+ /* diag_listed_as: Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/ */
+ vWARN3(
+ RExC_parse + 1,
+ "Useless (%sc) - %suse /gc modifier",
+ flagsp == &negflags ? "?-" : "?",
+ flagsp == &negflags ? "don't " : ""
+ );
+ }
+ }
+ break;
+ case KEEPCOPY_PAT_MOD: /* 'p' */
+ if (flagsp == &negflags) {
+ if (PASS2)
+ ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
+ } else {
+ *flagsp |= RXf_PMf_KEEPCOPY;
+ }
+ break;
+ case '-':
+ /* A flag is a default iff it is following a minus, so
+ * if there is a minus, it means will be trying to
+ * re-specify a default which is an error */
+ if (has_use_defaults || flagsp == &negflags) {
+ goto fail_modifiers;
+ }
+ flagsp = &negflags;
+ wastedflags = 0; /* reset so (?g-c) warns twice */
+ break;
+ case ':':
+ case ')':
+ RExC_flags |= posflags;
+ RExC_flags &= ~negflags;
+ set_regex_charset(&RExC_flags, cs);
+ if (RExC_flags & RXf_PMf_FOLD) {
+ RExC_contains_i = 1;
+ }
+ if (PASS2) {
+ STD_PMMOD_FLAGS_PARSE_X_WARN(x_mod_count);
+ }
+ return;
+ /*NOTREACHED*/
+ default:
+ fail_modifiers:
+ RExC_parse += SKIP_IF_CHAR(RExC_parse);
+ /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
+ vFAIL2utf8f("Sequence (%"UTF8f"...) not recognized",
+ UTF8fARG(UTF, RExC_parse-seqstart, seqstart));
+ NOT_REACHED; /*NOTREACHED*/
+ }
+
+ ++RExC_parse;
+ }
+
+ if (PASS2) {
+ STD_PMMOD_FLAGS_PARSE_X_WARN(x_mod_count);
+ }
+}
+
+/*
+ - reg - regular expression, i.e. main body or parenthesized thing
+ *
+ * Caller must absorb opening parenthesis.
+ *
+ * Combining parenthesis handling with the base level of regular expression
+ * is a trifle forced, but the need to tie the tails of the branches to what
+ * follows makes it hard to avoid.
+ */
+#define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
+#ifdef DEBUGGING
+#define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
+#else
+#define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
+#endif
+
+/* Returns NULL, setting *flagp to TRYAGAIN at the end of (?) that only sets
+ flags. Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan
+ needs to be restarted.
+ Otherwise would only return NULL if regbranch() returns NULL, which
+ cannot happen. */
+STATIC regnode *
+S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
+ /* paren: Parenthesized? 0=top; 1,2=inside '(': changed to letter.
+ * 2 is like 1, but indicates that nextchar() has been called to advance
+ * RExC_parse beyond the '('. Things like '(?' are indivisible tokens, and
+ * this flag alerts us to the need to check for that */
+{
+ regnode *ret; /* Will be the head of the group. */
+ regnode *br;
+ regnode *lastbr;
+ regnode *ender = NULL;
+ I32 parno = 0;
+ I32 flags;
+ U32 oregflags = RExC_flags;
+ bool have_branch = 0;
+ bool is_open = 0;
+ I32 freeze_paren = 0;
+ I32 after_freeze = 0;
+ I32 num; /* numeric backreferences */
+
+ char * parse_start = RExC_parse; /* MJD */
+ char * const oregcomp_parse = RExC_parse;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG;
+ DEBUG_PARSE("reg ");
+
+ *flagp = 0; /* Tentatively. */
+
+
+ /* Make an OPEN node, if parenthesized. */
+ if (paren) {
+
+ /* Under /x, space and comments can be gobbled up between the '(' and
+ * here (if paren ==2). The forms '(*VERB' and '(?...' disallow such
+ * intervening space, as the sequence is a token, and a token should be
+ * indivisible */
+ bool has_intervening_patws = paren == 2 && *(RExC_parse - 1) != '(';
+
+ if ( *RExC_parse == '*') { /* (*VERB:ARG) */
+ char *start_verb = RExC_parse;
+ STRLEN verb_len = 0;
+ char *start_arg = NULL;
+ unsigned char op = 0;
+ int argok = 1;
+ int internal_argval = 0; /* internal_argval is only useful if
+ !argok */
+
+ if (has_intervening_patws) {
+ RExC_parse++;
+ vFAIL("In '(*VERB...)', the '(' and '*' must be adjacent");
+ }
+ while ( *RExC_parse && *RExC_parse != ')' ) {
+ if ( *RExC_parse == ':' ) {
+ start_arg = RExC_parse + 1;
+ break;
+ }
+ RExC_parse++;
+ }
+ ++start_verb;
+ verb_len = RExC_parse - start_verb;
+ if ( start_arg ) {
+ RExC_parse++;
+ while ( *RExC_parse && *RExC_parse != ')' )
+ RExC_parse++;
+ if ( *RExC_parse != ')' )
+ vFAIL("Unterminated verb pattern argument");
+ if ( RExC_parse == start_arg )
+ start_arg = NULL;
+ } else {
+ if ( *RExC_parse != ')' )
+ vFAIL("Unterminated verb pattern");
+ }
+
+ switch ( *start_verb ) {
+ case 'A': /* (*ACCEPT) */
+ if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
+ op = ACCEPT;
+ internal_argval = RExC_nestroot;
+ }
+ break;
+ case 'C': /* (*COMMIT) */
+ if ( memEQs(start_verb,verb_len,"COMMIT") )
+ op = COMMIT;
+ break;
+ case 'F': /* (*FAIL) */
+ if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
+ op = OPFAIL;
+ argok = 0;
+ }
+ break;
+ case ':': /* (*:NAME) */
+ case 'M': /* (*MARK:NAME) */
+ if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
+ op = MARKPOINT;
+ argok = -1;
+ }
+ break;
+ case 'P': /* (*PRUNE) */
+ if ( memEQs(start_verb,verb_len,"PRUNE") )
+ op = PRUNE;
+ break;
+ case 'S': /* (*SKIP) */
+ if ( memEQs(start_verb,verb_len,"SKIP") )
+ op = SKIP;
+ break;
+ case 'T': /* (*THEN) */
+ /* [19:06] <TimToady> :: is then */
+ if ( memEQs(start_verb,verb_len,"THEN") ) {
+ op = CUTGROUP;
+ RExC_seen |= REG_CUTGROUP_SEEN;
+ }
+ break;
+ }
+ if ( ! op ) {
+ RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
+ vFAIL2utf8f(
+ "Unknown verb pattern '%"UTF8f"'",
+ UTF8fARG(UTF, verb_len, start_verb));
+ }
+ if ( argok ) {
+ if ( start_arg && internal_argval ) {
+ vFAIL3("Verb pattern '%.*s' may not have an argument",
+ verb_len, start_verb);
+ } else if ( argok < 0 && !start_arg ) {
+ vFAIL3("Verb pattern '%.*s' has a mandatory argument",
+ verb_len, start_verb);
+ } else {
+ ret = reganode(pRExC_state, op, internal_argval);
+ if ( ! internal_argval && ! SIZE_ONLY ) {
+ if (start_arg) {
+ SV *sv = newSVpvn( start_arg,
+ RExC_parse - start_arg);
+ ARG(ret) = add_data( pRExC_state,
+ STR_WITH_LEN("S"));
+ RExC_rxi->data->data[ARG(ret)]=(void*)sv;
+ ret->flags = 0;
+ } else {
+ ret->flags = 1;
+ }
+ }
+ }
+ if (!internal_argval)
+ RExC_seen |= REG_VERBARG_SEEN;
+ } else if ( start_arg ) {
+ vFAIL3("Verb pattern '%.*s' may not have an argument",
+ verb_len, start_verb);
+ } else {
+ ret = reg_node(pRExC_state, op);
+ }
+ nextchar(pRExC_state);
+ return ret;
+ }
+ else if (*RExC_parse == '?') { /* (?...) */
+ bool is_logical = 0;
+ const char * const seqstart = RExC_parse;
+ const char * endptr;
+ if (has_intervening_patws) {
+ RExC_parse++;
+ vFAIL("In '(?...)', the '(' and '?' must be adjacent");
+ }
+
+ RExC_parse++;
+ paren = *RExC_parse++;
+ ret = NULL; /* For look-ahead/behind. */
+ switch (paren) {
+
+ case 'P': /* (?P...) variants for those used to PCRE/Python */
+ paren = *RExC_parse++;
+ if ( paren == '<') /* (?P<...>) named capture */
+ goto named_capture;
+ else if (paren == '>') { /* (?P>name) named recursion */
+ goto named_recursion;
+ }
+ else if (paren == '=') { /* (?P=...) named backref */
+ /* this pretty much dupes the code for \k<NAME> in
+ * regatom(), if you change this make sure you change that
+ * */
+ char* name_start = RExC_parse;
+ U32 num = 0;
+ SV *sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ if (RExC_parse == name_start || *RExC_parse != ')')
+ /* diag_listed_as: Sequence ?P=... not terminated in regex; marked by <-- HERE in m/%s/ */
+ vFAIL2("Sequence %.3s... not terminated",parse_start);
+
+ if (!SIZE_ONLY) {
+ num = add_data( pRExC_state, STR_WITH_LEN("S"));
+ RExC_rxi->data->data[num]=(void*)sv_dat;
+ SvREFCNT_inc_simple_void(sv_dat);
+ }
+ RExC_sawback = 1;
+ ret = reganode(pRExC_state,
+ ((! FOLD)
+ ? NREF
+ : (ASCII_FOLD_RESTRICTED)
+ ? NREFFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? NREFFU
+ : (LOC)
+ ? NREFFL
+ : NREFF),
+ num);
+ *flagp |= HASWIDTH;
+
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Cur_Length(ret, parse_start);
+
+ nextchar(pRExC_state);
+ return ret;
+ }
+ --RExC_parse;
+ RExC_parse += SKIP_IF_CHAR(RExC_parse);
+ /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
+ vFAIL3("Sequence (%.*s...) not recognized",
+ RExC_parse-seqstart, seqstart);
+ NOT_REACHED; /*NOTREACHED*/
+ case '<': /* (?<...) */
+ if (*RExC_parse == '!')
+ paren = ',';
+ else if (*RExC_parse != '=')
+ named_capture:
+ { /* (?<...>) */
+ char *name_start;
+ SV *svname;
+ paren= '>';
+ case '\'': /* (?'...') */
+ name_start= RExC_parse;
+ svname = reg_scan_name(pRExC_state,
+ SIZE_ONLY /* reverse test from the others */
+ ? REG_RSN_RETURN_NAME
+ : REG_RSN_RETURN_NULL);
+ if (RExC_parse == name_start || *RExC_parse != paren)
+ vFAIL2("Sequence (?%c... not terminated",
+ paren=='>' ? '<' : paren);
+ if (SIZE_ONLY) {
+ HE *he_str;
+ SV *sv_dat = NULL;
+ if (!svname) /* shouldn't happen */
+ Perl_croak(aTHX_
+ "panic: reg_scan_name returned NULL");
+ if (!RExC_paren_names) {
+ RExC_paren_names= newHV();
+ sv_2mortal(MUTABLE_SV(RExC_paren_names));
+#ifdef DEBUGGING
+ RExC_paren_name_list= newAV();
+ sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
+#endif
+ }
+ he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
+ if ( he_str )
+ sv_dat = HeVAL(he_str);
+ if ( ! sv_dat ) {
+ /* croak baby croak */
+ Perl_croak(aTHX_
+ "panic: paren_name hash element allocation failed");
+ } else if ( SvPOK(sv_dat) ) {
+ /* (?|...) can mean we have dupes so scan to check
+ its already been stored. Maybe a flag indicating
+ we are inside such a construct would be useful,
+ but the arrays are likely to be quite small, so
+ for now we punt -- dmq */
+ IV count = SvIV(sv_dat);
+ I32 *pv = (I32*)SvPVX(sv_dat);
+ IV i;
+ for ( i = 0 ; i < count ; i++ ) {
+ if ( pv[i] == RExC_npar ) {
+ count = 0;
+ break;
+ }
+ }
+ if ( count ) {
+ pv = (I32*)SvGROW(sv_dat,
+ SvCUR(sv_dat) + sizeof(I32)+1);
+ SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
+ pv[count] = RExC_npar;
+ SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
+ }
+ } else {
+ (void)SvUPGRADE(sv_dat,SVt_PVNV);
+ sv_setpvn(sv_dat, (char *)&(RExC_npar),
+ sizeof(I32));
+ SvIOK_on(sv_dat);
+ SvIV_set(sv_dat, 1);
+ }
+#ifdef DEBUGGING
+ /* Yes this does cause a memory leak in debugging Perls
+ * */
+ if (!av_store(RExC_paren_name_list,
+ RExC_npar, SvREFCNT_inc(svname)))
+ SvREFCNT_dec_NN(svname);
+#endif
+
+ /*sv_dump(sv_dat);*/
+ }
+ nextchar(pRExC_state);
+ paren = 1;
+ goto capturing_parens;
+ }
+ RExC_seen |= REG_LOOKBEHIND_SEEN;
+ RExC_in_lookbehind++;
+ RExC_parse++;
+ /* FALLTHROUGH */
+ case '=': /* (?=...) */
+ RExC_seen_zerolen++;
+ break;
+ case '!': /* (?!...) */
+ RExC_seen_zerolen++;
+ /* check if we're really just a "FAIL" assertion */
+ --RExC_parse;
+ nextchar(pRExC_state);
+ if (*RExC_parse == ')') {
+ ret=reg_node(pRExC_state, OPFAIL);
+ nextchar(pRExC_state);
+ return ret;
+ }
+ break;
+ case '|': /* (?|...) */
+ /* branch reset, behave like a (?:...) except that
+ buffers in alternations share the same numbers */
+ paren = ':';
+ after_freeze = freeze_paren = RExC_npar;
+ break;
+ case ':': /* (?:...) */
+ case '>': /* (?>...) */
+ break;
+ case '$': /* (?$...) */
+ case '@': /* (?@...) */
+ vFAIL2("Sequence (?%c...) not implemented", (int)paren);
+ break;
+ case '0' : /* (?0) */
+ case 'R' : /* (?R) */
+ if (*RExC_parse != ')')
+ FAIL("Sequence (?R) not terminated");
+ ret = reg_node(pRExC_state, GOSTART);
+ RExC_seen |= REG_GOSTART_SEEN;
+ *flagp |= POSTPONED;
+ nextchar(pRExC_state);
+ return ret;
+ /*notreached*/
+ /* named and numeric backreferences */
+ case '&': /* (?&NAME) */
+ parse_start = RExC_parse - 1;
+ named_recursion:
+ {
+ SV *sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
+ }
+ if (RExC_parse == RExC_end || *RExC_parse != ')')
+ vFAIL("Sequence (?&... not terminated");
+ goto gen_recurse_regop;
+ /* NOTREACHED */
+ case '+':
+ if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
+ RExC_parse++;
+ vFAIL("Illegal pattern");
+ }
+ goto parse_recursion;
+ /* NOTREACHED*/
+ case '-': /* (?-1) */
+ if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
+ RExC_parse--; /* rewind to let it be handled later */
+ goto parse_flags;
+ }
+ /* FALLTHROUGH */
+ case '1': case '2': case '3': case '4': /* (?1) */
+ case '5': case '6': case '7': case '8': case '9':
+ RExC_parse--;
+ parse_recursion:
+ {
+ bool is_neg = FALSE;
+ UV unum;
+ parse_start = RExC_parse - 1; /* MJD */
+ if (*RExC_parse == '-') {
+ RExC_parse++;
+ is_neg = TRUE;
+ }
+ if (grok_atoUV(RExC_parse, &unum, &endptr)
+ && unum <= I32_MAX
+ ) {
+ num = (I32)unum;
+ RExC_parse = (char*)endptr;
+ } else
+ num = I32_MAX;
+ if (is_neg) {
+ /* Some limit for num? */
+ num = -num;
+ }
+ }
+ if (*RExC_parse!=')')
+ vFAIL("Expecting close bracket");
+
+ gen_recurse_regop:
+ if ( paren == '-' ) {
+ /*
+ Diagram of capture buffer numbering.
+ Top line is the normal capture buffer numbers
+ Bottom line is the negative indexing as from
+ the X (the (?-2))
+
+ + 1 2 3 4 5 X 6 7
+ /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
+ - 5 4 3 2 1 X x x
+
+ */
+ num = RExC_npar + num;
+ if (num < 1) {
+ RExC_parse++;
+ vFAIL("Reference to nonexistent group");
+ }
+ } else if ( paren == '+' ) {
+ num = RExC_npar + num - 1;
+ }
+
+ ret = reg2Lanode(pRExC_state, GOSUB, num, RExC_recurse_count);
+ if (!SIZE_ONLY) {
+ if (num > (I32)RExC_rx->nparens) {
+ RExC_parse++;
+ vFAIL("Reference to nonexistent group");
+ }
+ RExC_recurse_count++;
+ DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+ "%*s%*s Recurse #%"UVuf" to %"IVdf"\n",
+ 22, "| |", (int)(depth * 2 + 1), "",
+ (UV)ARG(ret), (IV)ARG2L(ret)));
+ }
+ RExC_seen |= REG_RECURSE_SEEN;
+ Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
+ Set_Node_Offset(ret, parse_start); /* MJD */
+
+ *flagp |= POSTPONED;
+ nextchar(pRExC_state);
+ return ret;
+
+ /* NOTREACHED */
+
+ case '?': /* (??...) */
+ is_logical = 1;
+ if (*RExC_parse != '{') {
+ RExC_parse += SKIP_IF_CHAR(RExC_parse);
+ /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
+ vFAIL2utf8f(
+ "Sequence (%"UTF8f"...) not recognized",
+ UTF8fARG(UTF, RExC_parse-seqstart, seqstart));
+ NOT_REACHED; /*NOTREACHED*/
+ }
+ *flagp |= POSTPONED;
+ paren = *RExC_parse++;
+ /* FALLTHROUGH */
+ case '{': /* (?{...}) */
+ {
+ U32 n = 0;
+ struct reg_code_block *cb;
+
+ RExC_seen_zerolen++;
+
+ if ( !pRExC_state->num_code_blocks
+ || pRExC_state->code_index >= pRExC_state->num_code_blocks
+ || pRExC_state->code_blocks[pRExC_state->code_index].start
+ != (STRLEN)((RExC_parse -3 - (is_logical ? 1 : 0))
+ - RExC_start)
+ ) {
+ if (RExC_pm_flags & PMf_USE_RE_EVAL)
+ FAIL("panic: Sequence (?{...}): no code block found\n");
+ FAIL("Eval-group not allowed at runtime, use re 'eval'");
+ }
+ /* this is a pre-compiled code block (?{...}) */
+ cb = &pRExC_state->code_blocks[pRExC_state->code_index];
+ RExC_parse = RExC_start + cb->end;
+ if (!SIZE_ONLY) {
+ OP *o = cb->block;
+ if (cb->src_regex) {
+ n = add_data(pRExC_state, STR_WITH_LEN("rl"));
+ RExC_rxi->data->data[n] =
+ (void*)SvREFCNT_inc((SV*)cb->src_regex);
+ RExC_rxi->data->data[n+1] = (void*)o;
+ }
+ else {
+ n = add_data(pRExC_state,
+ (RExC_pm_flags & PMf_HAS_CV) ? "L" : "l", 1);
+ RExC_rxi->data->data[n] = (void*)o;
+ }
+ }
+ pRExC_state->code_index++;
+ nextchar(pRExC_state);
+
+ if (is_logical) {
+ regnode *eval;
+ ret = reg_node(pRExC_state, LOGICAL);
+
+ eval = reg2Lanode(pRExC_state, EVAL,
+ n,
+
+ /* for later propagation into (??{})
+ * return value */
+ RExC_flags & RXf_PMf_COMPILETIME
+ );
+ if (!SIZE_ONLY) {
+ ret->flags = 2;
+ }
+ REGTAIL(pRExC_state, ret, eval);
+ /* deal with the length of this later - MJD */
+ return ret;
+ }
+ ret = reg2Lanode(pRExC_state, EVAL, n, 0);
+ Set_Node_Length(ret, RExC_parse - parse_start + 1);
+ Set_Node_Offset(ret, parse_start);
+ return ret;
+ }
+ case '(': /* (?(?{...})...) and (?(?=...)...) */
+ {
+ int is_define= 0;
+ const int DEFINE_len = sizeof("DEFINE") - 1;
+ if (RExC_parse[0] == '?') { /* (?(?...)) */
+ if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
+ || RExC_parse[1] == '<'
+ || RExC_parse[1] == '{') { /* Lookahead or eval. */
+ I32 flag;
+ regnode *tail;
+
+ ret = reg_node(pRExC_state, LOGICAL);
+ if (!SIZE_ONLY)
+ ret->flags = 1;
+
+ tail = reg(pRExC_state, 1, &flag, depth+1);
+ if (flag & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ REGTAIL(pRExC_state, ret, tail);
+ goto insert_if;
+ }
+ /* Fall through to ‘Unknown switch condition’ at the
+ end of the if/else chain. */
+ }
+ else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */
+ || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
+ {
+ char ch = RExC_parse[0] == '<' ? '>' : '\'';
+ char *name_start= RExC_parse++;
+ U32 num = 0;
+ SV *sv_dat=reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ if (RExC_parse == name_start || *RExC_parse != ch)
+ vFAIL2("Sequence (?(%c... not terminated",
+ (ch == '>' ? '<' : ch));
+ RExC_parse++;
+ if (!SIZE_ONLY) {
+ num = add_data( pRExC_state, STR_WITH_LEN("S"));
+ RExC_rxi->data->data[num]=(void*)sv_dat;
+ SvREFCNT_inc_simple_void(sv_dat);
+ }
+ ret = reganode(pRExC_state,NGROUPP,num);
+ goto insert_if_check_paren;
+ }
+ else if (RExC_end - RExC_parse >= DEFINE_len
+ && strnEQ(RExC_parse, "DEFINE", DEFINE_len))
+ {
+ ret = reganode(pRExC_state,DEFINEP,0);
+ RExC_parse += DEFINE_len;
+ is_define = 1;
+ goto insert_if_check_paren;
+ }
+ else if (RExC_parse[0] == 'R') {
+ RExC_parse++;
+ parno = 0;
+ if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
+ UV uv;
+ if (grok_atoUV(RExC_parse, &uv, &endptr)
+ && uv <= I32_MAX
+ ) {
+ parno = (I32)uv;
+ RExC_parse = (char*)endptr;
+ }
+ /* else "Switch condition not recognized" below */
+ } else if (RExC_parse[0] == '&') {
+ SV *sv_dat;
+ RExC_parse++;
+ sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY
+ ? REG_RSN_RETURN_NULL
+ : REG_RSN_RETURN_DATA);
+ parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
+ }
+ ret = reganode(pRExC_state,INSUBP,parno);
+ goto insert_if_check_paren;
+ }
+ else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
+ /* (?(1)...) */
+ char c;
+ char *tmp;
+ UV uv;
+ if (grok_atoUV(RExC_parse, &uv, &endptr)
+ && uv <= I32_MAX
+ ) {
+ parno = (I32)uv;
+ RExC_parse = (char*)endptr;
+ }
+ /* XXX else what? */
+ ret = reganode(pRExC_state, GROUPP, parno);
+
+ insert_if_check_paren:
+ if (*(tmp = nextchar(pRExC_state)) != ')') {
+ /* nextchar also skips comments, so undo its work
+ * and skip over the the next character.
+ */
+ RExC_parse = tmp;
+ RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
+ vFAIL("Switch condition not recognized");
+ }
+ insert_if:
+ REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
+ br = regbranch(pRExC_state, &flags, 1,depth+1);
+ if (br == NULL) {
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"",
+ (UV) flags);
+ } else
+ REGTAIL(pRExC_state, br, reganode(pRExC_state,
+ LONGJMP, 0));
+ c = *nextchar(pRExC_state);
+ if (flags&HASWIDTH)
+ *flagp |= HASWIDTH;
+ if (c == '|') {
+ if (is_define)
+ vFAIL("(?(DEFINE)....) does not allow branches");
+
+ /* Fake one for optimizer. */
+ lastbr = reganode(pRExC_state, IFTHEN, 0);
+
+ if (!regbranch(pRExC_state, &flags, 1,depth+1)) {
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"",
+ (UV) flags);
+ }
+ REGTAIL(pRExC_state, ret, lastbr);
+ if (flags&HASWIDTH)
+ *flagp |= HASWIDTH;
+ c = *nextchar(pRExC_state);
+ }
+ else
+ lastbr = NULL;
+ if (c != ')') {
+ if (RExC_parse>RExC_end)
+ vFAIL("Switch (?(condition)... not terminated");
+ else
+ vFAIL("Switch (?(condition)... contains too many branches");
+ }
+ ender = reg_node(pRExC_state, TAIL);
+ REGTAIL(pRExC_state, br, ender);
+ if (lastbr) {
+ REGTAIL(pRExC_state, lastbr, ender);
+ REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
+ }
+ else
+ REGTAIL(pRExC_state, ret, ender);
+ RExC_size++; /* XXX WHY do we need this?!!
+ For large programs it seems to be required
+ but I can't figure out why. -- dmq*/
+ return ret;
+ }
+ RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
+ vFAIL("Unknown switch condition (?(...))");
+ }
+ case '[': /* (?[ ... ]) */
+ return handle_regex_sets(pRExC_state, NULL, flagp, depth,
+ oregcomp_parse);
+ case 0:
+ RExC_parse--; /* for vFAIL to print correctly */
+ vFAIL("Sequence (? incomplete");
+ break;
+ default: /* e.g., (?i) */
+ --RExC_parse;
+ parse_flags:
+ parse_lparen_question_flags(pRExC_state);
+ if (UCHARAT(RExC_parse) != ':') {
+ if (*RExC_parse)
+ nextchar(pRExC_state);
+ *flagp = TRYAGAIN;
+ return NULL;
+ }
+ paren = ':';
+ nextchar(pRExC_state);
+ ret = NULL;
+ goto parse_rest;
+ } /* end switch */
+ }
+ else if (!(RExC_flags & RXf_PMf_NOCAPTURE)) { /* (...) */
+ capturing_parens:
+ parno = RExC_npar;
+ RExC_npar++;
+
+ ret = reganode(pRExC_state, OPEN, parno);
+ if (!SIZE_ONLY ){
+ if (!RExC_nestroot)
+ RExC_nestroot = parno;
+ if (RExC_seen & REG_RECURSE_SEEN
+ && !RExC_open_parens[parno-1])
+ {
+ DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+ "%*s%*s Setting open paren #%"IVdf" to %d\n",
+ 22, "| |", (int)(depth * 2 + 1), "",
+ (IV)parno, REG_NODE_NUM(ret)));
+ RExC_open_parens[parno-1]= ret;
+ }
+ }
+ Set_Node_Length(ret, 1); /* MJD */
+ Set_Node_Offset(ret, RExC_parse); /* MJD */
+ is_open = 1;
+ } else {
+ /* with RXf_PMf_NOCAPTURE treat (...) as (?:...) */
+ paren = ':';
+ ret = NULL;
+ }
+ }
+ else /* ! paren */
+ ret = NULL;
+
+ parse_rest:
+ /* Pick up the branches, linking them together. */
+ parse_start = RExC_parse; /* MJD */
+ br = regbranch(pRExC_state, &flags, 1,depth+1);
+
+ /* branch_len = (paren != 0); */
+
+ if (br == NULL) {
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"", (UV) flags);
+ }
+ if (*RExC_parse == '|') {
+ if (!SIZE_ONLY && RExC_extralen) {
+ reginsert(pRExC_state, BRANCHJ, br, depth+1);
+ }
+ else { /* MJD */
+ reginsert(pRExC_state, BRANCH, br, depth+1);
+ Set_Node_Length(br, paren != 0);
+ Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
+ }
+ have_branch = 1;
+ if (SIZE_ONLY)
+ RExC_extralen += 1; /* For BRANCHJ-BRANCH. */
+ }
+ else if (paren == ':') {
+ *flagp |= flags&SIMPLE;
+ }
+ if (is_open) { /* Starts with OPEN. */
+ REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */
+ }
+ else if (paren != '?') /* Not Conditional */
+ ret = br;
+ *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
+ lastbr = br;
+ while (*RExC_parse == '|') {
+ if (!SIZE_ONLY && RExC_extralen) {
+ ender = reganode(pRExC_state, LONGJMP,0);
+
+ /* Append to the previous. */
+ REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
+ }
+ if (SIZE_ONLY)
+ RExC_extralen += 2; /* Account for LONGJMP. */
+ nextchar(pRExC_state);
+ if (freeze_paren) {
+ if (RExC_npar > after_freeze)
+ after_freeze = RExC_npar;
+ RExC_npar = freeze_paren;
+ }
+ br = regbranch(pRExC_state, &flags, 0, depth+1);
+
+ if (br == NULL) {
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"", (UV) flags);
+ }
+ REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */
+ lastbr = br;
+ *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
+ }
+
+ if (have_branch || paren != ':') {
+ /* Make a closing node, and hook it on the end. */
+ switch (paren) {
+ case ':':
+ ender = reg_node(pRExC_state, TAIL);
+ break;
+ case 1: case 2:
+ ender = reganode(pRExC_state, CLOSE, parno);
+ if (!SIZE_ONLY && RExC_seen & REG_RECURSE_SEEN) {
+ DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+ "%*s%*s Setting close paren #%"IVdf" to %d\n",
+ 22, "| |", (int)(depth * 2 + 1), "", (IV)parno, REG_NODE_NUM(ender)));
+ RExC_close_parens[parno-1]= ender;
+ if (RExC_nestroot == parno)
+ RExC_nestroot = 0;
+ }
+ Set_Node_Offset(ender,RExC_parse+1); /* MJD */
+ Set_Node_Length(ender,1); /* MJD */
+ break;
+ case '<':
+ case ',':
+ case '=':
+ case '!':
+ *flagp &= ~HASWIDTH;
+ /* FALLTHROUGH */
+ case '>':
+ ender = reg_node(pRExC_state, SUCCEED);
+ break;
+ case 0:
+ ender = reg_node(pRExC_state, END);
+ if (!SIZE_ONLY) {
+ assert(!RExC_opend); /* there can only be one! */
+ RExC_opend = ender;
+ }
+ break;
+ }
+ DEBUG_PARSE_r(if (!SIZE_ONLY) {
+ DEBUG_PARSE_MSG("lsbr");
+ regprop(RExC_rx, RExC_mysv1, lastbr, NULL, pRExC_state);
+ regprop(RExC_rx, RExC_mysv2, ender, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log, "~ tying lastbr %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
+ SvPV_nolen_const(RExC_mysv1),
+ (IV)REG_NODE_NUM(lastbr),
+ SvPV_nolen_const(RExC_mysv2),
+ (IV)REG_NODE_NUM(ender),
+ (IV)(ender - lastbr)
+ );
+ });
+ REGTAIL(pRExC_state, lastbr, ender);
+
+ if (have_branch && !SIZE_ONLY) {
+ char is_nothing= 1;
+ if (depth==1)
+ RExC_seen |= REG_TOP_LEVEL_BRANCHES_SEEN;
+
+ /* Hook the tails of the branches to the closing node. */
+ for (br = ret; br; br = regnext(br)) {
+ const U8 op = PL_regkind[OP(br)];
+ if (op == BRANCH) {
+ REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
+ if ( OP(NEXTOPER(br)) != NOTHING
+ || regnext(NEXTOPER(br)) != ender)
+ is_nothing= 0;
+ }
+ else if (op == BRANCHJ) {
+ REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
+ /* for now we always disable this optimisation * /
+ if ( OP(NEXTOPER(NEXTOPER(br))) != NOTHING
+ || regnext(NEXTOPER(NEXTOPER(br))) != ender)
+ */
+ is_nothing= 0;
+ }
+ }
+ if (is_nothing) {
+ br= PL_regkind[OP(ret)] != BRANCH ? regnext(ret) : ret;
+ DEBUG_PARSE_r(if (!SIZE_ONLY) {
+ DEBUG_PARSE_MSG("NADA");
+ regprop(RExC_rx, RExC_mysv1, ret, NULL, pRExC_state);
+ regprop(RExC_rx, RExC_mysv2, ender, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log, "~ converting ret %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
+ SvPV_nolen_const(RExC_mysv1),
+ (IV)REG_NODE_NUM(ret),
+ SvPV_nolen_const(RExC_mysv2),
+ (IV)REG_NODE_NUM(ender),
+ (IV)(ender - ret)
+ );
+ });
+ OP(br)= NOTHING;
+ if (OP(ender) == TAIL) {
+ NEXT_OFF(br)= 0;
+ RExC_emit= br + 1;
+ } else {
+ regnode *opt;
+ for ( opt= br + 1; opt < ender ; opt++ )
+ OP(opt)= OPTIMIZED;
+ NEXT_OFF(br)= ender - br;
+ }
+ }
+ }
+ }
+
+ {
+ const char *p;
+ static const char parens[] = "=!<,>";
+
+ if (paren && (p = strchr(parens, paren))) {
+ U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
+ int flag = (p - parens) > 1;
+
+ if (paren == '>')
+ node = SUSPEND, flag = 0;
+ reginsert(pRExC_state, node,ret, depth+1);
+ Set_Node_Cur_Length(ret, parse_start);
+ Set_Node_Offset(ret, parse_start + 1);
+ ret->flags = flag;
+ REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
+ }
+ }
+
+ /* Check for proper termination. */
+ if (paren) {
+ /* restore original flags, but keep (?p) */
+ RExC_flags = oregflags | (RExC_flags & RXf_PMf_KEEPCOPY);
+ if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
+ RExC_parse = oregcomp_parse;
+ vFAIL("Unmatched (");
+ }
+ }
+ else if (!paren && RExC_parse < RExC_end) {
+ if (*RExC_parse == ')') {
+ RExC_parse++;
+ vFAIL("Unmatched )");
+ }
+ else
+ FAIL("Junk on end of regexp"); /* "Can't happen". */
+ NOT_REACHED; /* NOTREACHED */
+ }
+
+ if (RExC_in_lookbehind) {
+ RExC_in_lookbehind--;
+ }
+ if (after_freeze > RExC_npar)
+ RExC_npar = after_freeze;
+ return(ret);
+}
+
+/*
+ - regbranch - one alternative of an | operator
+ *
+ * Implements the concatenation operator.
+ *
+ * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
+ * restarted.
+ */
+STATIC regnode *
+S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
+{
+ regnode *ret;
+ regnode *chain = NULL;
+ regnode *latest;
+ I32 flags = 0, c = 0;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGBRANCH;
+
+ DEBUG_PARSE("brnc");
+
+ if (first)
+ ret = NULL;
+ else {
+ if (!SIZE_ONLY && RExC_extralen)
+ ret = reganode(pRExC_state, BRANCHJ,0);
+ else {
+ ret = reg_node(pRExC_state, BRANCH);
+ Set_Node_Length(ret, 1);
+ }
+ }
+
+ if (!first && SIZE_ONLY)
+ RExC_extralen += 1; /* BRANCHJ */
+
+ *flagp = WORST; /* Tentatively. */
+
+ RExC_parse--;
+ nextchar(pRExC_state);
+ while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
+ flags &= ~TRYAGAIN;
+ latest = regpiece(pRExC_state, &flags,depth+1);
+ if (latest == NULL) {
+ if (flags & TRYAGAIN)
+ continue;
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ FAIL2("panic: regpiece returned NULL, flags=%#"UVxf"", (UV) flags);
+ }
+ else if (ret == NULL)
+ ret = latest;
+ *flagp |= flags&(HASWIDTH|POSTPONED);
+ if (chain == NULL) /* First piece. */
+ *flagp |= flags&SPSTART;
+ else {
+ /* FIXME adding one for every branch after the first is probably
+ * excessive now we have TRIE support. (hv) */
+ MARK_NAUGHTY(1);
+ REGTAIL(pRExC_state, chain, latest);
+ }
+ chain = latest;
+ c++;
+ }
+ if (chain == NULL) { /* Loop ran zero times. */
+ chain = reg_node(pRExC_state, NOTHING);
+ if (ret == NULL)
+ ret = chain;
+ }
+ if (c == 1) {
+ *flagp |= flags&SIMPLE;
+ }
+
+ return ret;
+}
+
+/*
+ - regpiece - something followed by possible [*+?]
+ *
+ * Note that the branching code sequences used for ? and the general cases
+ * of * and + are somewhat optimized: they use the same NOTHING node as
+ * both the endmarker for their branch list and the body of the last branch.
+ * It might seem that this node could be dispensed with entirely, but the
+ * endmarker role is not redundant.
+ *
+ * Returns NULL, setting *flagp to TRYAGAIN if regatom() returns NULL with
+ * TRYAGAIN.
+ * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
+ * restarted.
+ */
+STATIC regnode *
+S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
+{
+ regnode *ret;
+ char op;
+ char *next;
+ I32 flags;
+ const char * const origparse = RExC_parse;
+ I32 min;
+ I32 max = REG_INFTY;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ char *parse_start;
+#endif
+ const char *maxpos = NULL;
+ UV uv;
+
+ /* Save the original in case we change the emitted regop to a FAIL. */
+ regnode * const orig_emit = RExC_emit;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGPIECE;
+
+ DEBUG_PARSE("piec");
+
+ ret = regatom(pRExC_state, &flags,depth+1);
+ if (ret == NULL) {
+ if (flags & (TRYAGAIN|RESTART_UTF8))
+ *flagp |= flags & (TRYAGAIN|RESTART_UTF8);
+ else
+ FAIL2("panic: regatom returned NULL, flags=%#"UVxf"", (UV) flags);
+ return(NULL);
+ }
+
+ op = *RExC_parse;
+
+ if (op == '{' && regcurly(RExC_parse)) {
+ maxpos = NULL;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ parse_start = RExC_parse; /* MJD */
+#endif
+ next = RExC_parse + 1;
+ while (isDIGIT(*next) || *next == ',') {
+ if (*next == ',') {
+ if (maxpos)
+ break;
+ else
+ maxpos = next;
+ }
+ next++;
+ }
+ if (*next == '}') { /* got one */
+ const char* endptr;
+ if (!maxpos)
+ maxpos = next;
+ RExC_parse++;
+ if (isDIGIT(*RExC_parse)) {
+ if (!grok_atoUV(RExC_parse, &uv, &endptr))
+ vFAIL("Invalid quantifier in {,}");
+ if (uv >= REG_INFTY)
+ vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
+ min = (I32)uv;
+ } else {
+ min = 0;
+ }
+ if (*maxpos == ',')
+ maxpos++;
+ else
+ maxpos = RExC_parse;
+ if (isDIGIT(*maxpos)) {
+ if (!grok_atoUV(maxpos, &uv, &endptr))
+ vFAIL("Invalid quantifier in {,}");
+ if (uv >= REG_INFTY)
+ vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
+ max = (I32)uv;
+ } else {
+ max = REG_INFTY; /* meaning "infinity" */
+ }
+ RExC_parse = next;
+ nextchar(pRExC_state);
+ if (max < min) { /* If can't match, warn and optimize to fail
+ unconditionally */
+ if (SIZE_ONLY) {
+
+ /* We can't back off the size because we have to reserve
+ * enough space for all the things we are about to throw
+ * away, but we can shrink it by the ammount we are about
+ * to re-use here */
+ RExC_size = PREVOPER(RExC_size) - regarglen[(U8)OPFAIL];
+ }
+ else {
+ ckWARNreg(RExC_parse, "Quantifier {n,m} with n > m can't match");
+ RExC_emit = orig_emit;
+ }
+ ret = reg_node(pRExC_state, OPFAIL);
+ return ret;
+ }
+ else if (min == max
+ && RExC_parse < RExC_end
+ && (*RExC_parse == '?' || *RExC_parse == '+'))
+ {
+ if (PASS2) {
+ ckWARN2reg(RExC_parse + 1,
+ "Useless use of greediness modifier '%c'",
+ *RExC_parse);
+ }
+ /* Absorb the modifier, so later code doesn't see nor use
+ * it */
+ nextchar(pRExC_state);
+ }
+
+ do_curly:
+ if ((flags&SIMPLE)) {
+ MARK_NAUGHTY_EXP(2, 2);
+ reginsert(pRExC_state, CURLY, ret, depth+1);
+ Set_Node_Offset(ret, parse_start+1); /* MJD */
+ Set_Node_Cur_Length(ret, parse_start);
+ }
+ else {
+ regnode * const w = reg_node(pRExC_state, WHILEM);
+
+ w->flags = 0;
+ REGTAIL(pRExC_state, ret, w);
+ if (!SIZE_ONLY && RExC_extralen) {
+ reginsert(pRExC_state, LONGJMP,ret, depth+1);
+ reginsert(pRExC_state, NOTHING,ret, depth+1);
+ NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
+ }
+ reginsert(pRExC_state, CURLYX,ret, depth+1);
+ /* MJD hk */
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Length(ret,
+ op == '{' ? (RExC_parse - parse_start) : 1);
+
+ if (!SIZE_ONLY && RExC_extralen)
+ NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
+ REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
+ if (SIZE_ONLY)
+ RExC_whilem_seen++, RExC_extralen += 3;
+ MARK_NAUGHTY_EXP(1, 4); /* compound interest */
+ }
+ ret->flags = 0;
+
+ if (min > 0)
+ *flagp = WORST;
+ if (max > 0)
+ *flagp |= HASWIDTH;
+ if (!SIZE_ONLY) {
+ ARG1_SET(ret, (U16)min);
+ ARG2_SET(ret, (U16)max);
+ }
+ if (max == REG_INFTY)
+ RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
+
+ goto nest_check;
+ }
+ }
+
+ if (!ISMULT1(op)) {
+ *flagp = flags;
+ return(ret);
+ }
+
+#if 0 /* Now runtime fix should be reliable. */
+
+ /* if this is reinstated, don't forget to put this back into perldiag:
+
+ =item Regexp *+ operand could be empty at {#} in regex m/%s/
+
+ (F) The part of the regexp subject to either the * or + quantifier
+ could match an empty string. The {#} shows in the regular
+ expression about where the problem was discovered.
+
+ */
+
+ if (!(flags&HASWIDTH) && op != '?')
+ vFAIL("Regexp *+ operand could be empty");
+#endif
+
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ parse_start = RExC_parse;
+#endif
+ nextchar(pRExC_state);
+
+ *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
+
+ if (op == '*' && (flags&SIMPLE)) {
+ reginsert(pRExC_state, STAR, ret, depth+1);
+ ret->flags = 0;
+ MARK_NAUGHTY(4);
+ RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
+ }
+ else if (op == '*') {
+ min = 0;
+ goto do_curly;
+ }
+ else if (op == '+' && (flags&SIMPLE)) {
+ reginsert(pRExC_state, PLUS, ret, depth+1);
+ ret->flags = 0;
+ MARK_NAUGHTY(3);
+ RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
+ }
+ else if (op == '+') {
+ min = 1;
+ goto do_curly;
+ }
+ else if (op == '?') {
+ min = 0; max = 1;
+ goto do_curly;
+ }
+ nest_check:
+ if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
+ SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
+ ckWARN2reg(RExC_parse,
+ "%"UTF8f" matches null string many times",
+ UTF8fARG(UTF, (RExC_parse >= origparse
+ ? RExC_parse - origparse
+ : 0),
+ origparse));
+ (void)ReREFCNT_inc(RExC_rx_sv);
+ }
+
+ if (RExC_parse < RExC_end && *RExC_parse == '?') {
+ nextchar(pRExC_state);
+ reginsert(pRExC_state, MINMOD, ret, depth+1);
+ REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
+ }
+ else
+ if (RExC_parse < RExC_end && *RExC_parse == '+') {
+ regnode *ender;
+ nextchar(pRExC_state);
+ ender = reg_node(pRExC_state, SUCCEED);
+ REGTAIL(pRExC_state, ret, ender);
+ reginsert(pRExC_state, SUSPEND, ret, depth+1);
+ ret->flags = 0;
+ ender = reg_node(pRExC_state, TAIL);
+ REGTAIL(pRExC_state, ret, ender);
+ }
+
+ if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
+ RExC_parse++;
+ vFAIL("Nested quantifiers");
+ }
+
+ return(ret);
+}
+
+STATIC bool
+S_grok_bslash_N(pTHX_ RExC_state_t *pRExC_state,
+ regnode ** node_p,
+ UV * code_point_p,
+ int * cp_count,
+ I32 * flagp,
+ const U32 depth
+ )
+{
+ /* This routine teases apart the various meanings of \N and returns
+ * accordingly. The input parameters constrain which meaning(s) is/are valid
+ * in the current context.
+ *
+ * Exactly one of <node_p> and <code_point_p> must be non-NULL.
+ *
+ * If <code_point_p> is not NULL, the context is expecting the result to be a
+ * single code point. If this \N instance turns out to a single code point,
+ * the function returns TRUE and sets *code_point_p to that code point.
+ *
+ * If <node_p> is not NULL, the context is expecting the result to be one of
+ * the things representable by a regnode. If this \N instance turns out to be
+ * one such, the function generates the regnode, returns TRUE and sets *node_p
+ * to point to that regnode.
+ *
+ * If this instance of \N isn't legal in any context, this function will
+ * generate a fatal error and not return.
+ *
+ * On input, RExC_parse should point to the first char following the \N at the
+ * time of the call. On successful return, RExC_parse will have been updated
+ * to point to just after the sequence identified by this routine. Also
+ * *flagp has been updated as needed.
+ *
+ * When there is some problem with the current context and this \N instance,
+ * the function returns FALSE, without advancing RExC_parse, nor setting
+ * *node_p, nor *code_point_p, nor *flagp.
+ *
+ * If <cp_count> is not NULL, the caller wants to know the length (in code
+ * points) that this \N sequence matches. This is set even if the function
+ * returns FALSE, as detailed below.
+ *
+ * There are 5 possibilities here, as detailed in the next 5 paragraphs.
+ *
+ * Probably the most common case is for the \N to specify a single code point.
+ * *cp_count will be set to 1, and *code_point_p will be set to that code
+ * point.
+ *
+ * Another possibility is for the input to be an empty \N{}, which for
+ * backwards compatibility we accept. *cp_count will be set to 0. *node_p
+ * will be set to a generated NOTHING node.
+ *
+ * Still another possibility is for the \N to mean [^\n]. *cp_count will be
+ * set to 0. *node_p will be set to a generated REG_ANY node.
+ *
+ * The fourth possibility is that \N resolves to a sequence of more than one
+ * code points. *cp_count will be set to the number of code points in the
+ * sequence. *node_p * will be set to a generated node returned by this
+ * function calling S_reg().
+ *
+ * The final possibility, which happens only when the fourth one would
+ * otherwise be in effect, is that one of those code points requires the
+ * pattern to be recompiled as UTF-8. The function returns FALSE, and sets
+ * the RESTART_UTF8 flag in *flagp. When this happens, the caller needs to
+ * desist from continuing parsing, and return this information to its caller.
+ * This is not set for when there is only one code point, as this can be
+ * called as part of an ANYOF node, and they can store above-Latin1 code
+ * points without the pattern having to be in UTF-8.
+ *
+ * For non-single-quoted regexes, the tokenizer has resolved character and
+ * sequence names inside \N{...} into their Unicode values, normalizing the
+ * result into what we should see here: '\N{U+c1.c2...}', where c1... are the
+ * hex-represented code points in the sequence. This is done there because
+ * the names can vary based on what charnames pragma is in scope at the time,
+ * so we need a way to take a snapshot of what they resolve to at the time of
+ * the original parse. [perl #56444].
+ *
+ * That parsing is skipped for single-quoted regexes, so we may here get
+ * '\N{NAME}'. This is a fatal error. These names have to be resolved by the
+ * parser. But if the single-quoted regex is something like '\N{U+41}', that
+ * is legal and handled here. The code point is Unicode, and has to be
+ * translated into the native character set for non-ASCII platforms.
+ * the tokenizer passes the \N sequence through unchanged; this code will not
+ * attempt to determine this nor expand those, instead raising a syntax error.
+ */
+
+ char * endbrace; /* points to '}' following the name */
+ char *endchar; /* Points to '.' or '}' ending cur char in the input
+ stream */
+ char* p; /* Temporary */
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_GROK_BSLASH_N;
+
+ GET_RE_DEBUG_FLAGS;
+
+ assert(cBOOL(node_p) ^ cBOOL(code_point_p)); /* Exactly one should be set */
+ assert(! (node_p && cp_count)); /* At most 1 should be set */
+
+ if (cp_count) { /* Initialize return for the most common case */
+ *cp_count = 1;
+ }
+
+ /* The [^\n] meaning of \N ignores spaces and comments under the /x
+ * modifier. The other meanings do not, so use a temporary until we find
+ * out which we are being called with */
+ p = (RExC_flags & RXf_PMf_EXTENDED)
+ ? regpatws(pRExC_state, RExC_parse,
+ TRUE) /* means recognize comments */
+ : RExC_parse;
+
+ /* Disambiguate between \N meaning a named character versus \N meaning
+ * [^\n]. The latter is assumed when the {...} following the \N is a legal
+ * quantifier, or there is no a '{' at all */
+ if (*p != '{' || regcurly(p)) {
+ RExC_parse = p;
+ if (cp_count) {
+ *cp_count = -1;
+ }
+
+ if (! node_p) {
+ return FALSE;
+ }
+ RExC_parse--; /* Need to back off so nextchar() doesn't skip the
+ current char */
+ nextchar(pRExC_state);
+ *node_p = reg_node(pRExC_state, REG_ANY);
+ *flagp |= HASWIDTH|SIMPLE;
+ MARK_NAUGHTY(1);
+ Set_Node_Length(*node_p, 1); /* MJD */
+ return TRUE;
+ }
+
+ /* Here, we have decided it should be a named character or sequence */
+
+ /* The test above made sure that the next real character is a '{', but
+ * under the /x modifier, it could be separated by space (or a comment and
+ * \n) and this is not allowed (for consistency with \x{...} and the
+ * tokenizer handling of \N{NAME}). */
+ if (*RExC_parse != '{') {
+ vFAIL("Missing braces on \\N{}");
+ }
+
+ RExC_parse++; /* Skip past the '{' */
+
+ if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */
+ || ! (endbrace == RExC_parse /* nothing between the {} */
+ || (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked... */
+ && strnEQ(RExC_parse, "U+", 2)))) /* ... below for a better
+ error msg) */
+ {
+ if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
+ vFAIL("\\N{NAME} must be resolved by the lexer");
+ }
+
+ RExC_uni_semantics = 1; /* Unicode named chars imply Unicode semantics */
+
+ if (endbrace == RExC_parse) { /* empty: \N{} */
+ if (cp_count) {
+ *cp_count = 0;
+ }
+ nextchar(pRExC_state);
+ if (! node_p) {
+ return FALSE;
+ }
+
+ *node_p = reg_node(pRExC_state,NOTHING);
+ return TRUE;
+ }
+
+ RExC_parse += 2; /* Skip past the 'U+' */
+
+ endchar = RExC_parse + strcspn(RExC_parse, ".}");
+
+ /* Code points are separated by dots. If none, there is only one code
+ * point, and is terminated by the brace */
+
+ if (endchar >= endbrace) {
+ STRLEN length_of_hex;
+ I32 grok_hex_flags;
+
+ /* Here, exactly one code point. If that isn't what is wanted, fail */
+ if (! code_point_p) {
+ RExC_parse = p;
+ return FALSE;
+ }
+
+ /* Convert code point from hex */
+ length_of_hex = (STRLEN)(endchar - RExC_parse);
+ grok_hex_flags = PERL_SCAN_ALLOW_UNDERSCORES
+ | PERL_SCAN_DISALLOW_PREFIX
+
+ /* No errors in the first pass (See [perl
+ * #122671].) We let the code below find the
+ * errors when there are multiple chars. */
+ | ((SIZE_ONLY)
+ ? PERL_SCAN_SILENT_ILLDIGIT
+ : 0);
+
+ /* This routine is the one place where both single- and double-quotish
+ * \N{U+xxxx} are evaluated. The value is a Unicode code point which
+ * must be converted to native. */
+ *code_point_p = UNI_TO_NATIVE(grok_hex(RExC_parse,
+ &length_of_hex,
+ &grok_hex_flags,
+ NULL));
+
+ /* The tokenizer should have guaranteed validity, but it's possible to
+ * bypass it by using single quoting, so check. Don't do the check
+ * here when there are multiple chars; we do it below anyway. */
+ if (length_of_hex == 0
+ || length_of_hex != (STRLEN)(endchar - RExC_parse) )
+ {
+ RExC_parse += length_of_hex; /* Includes all the valid */
+ RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
+ ? UTF8SKIP(RExC_parse)
+ : 1;
+ /* Guard against malformed utf8 */
+ if (RExC_parse >= endchar) {
+ RExC_parse = endchar;
+ }
+ vFAIL("Invalid hexadecimal number in \\N{U+...}");
+ }
+
+ RExC_parse = endbrace + 1;
+ return TRUE;
+ }
+ else { /* Is a multiple character sequence */
+ SV * substitute_parse;
+ STRLEN len;
+ char *orig_end = RExC_end;
+ I32 flags;
+
+ /* Count the code points, if desired, in the sequence */
+ if (cp_count) {
+ *cp_count = 0;
+ while (RExC_parse < endbrace) {
+ /* Point to the beginning of the next character in the sequence. */
+ RExC_parse = endchar + 1;
+ endchar = RExC_parse + strcspn(RExC_parse, ".}");
+ (*cp_count)++;
+ }
+ }
+
+ /* Fail if caller doesn't want to handle a multi-code-point sequence.
+ * But don't backup up the pointer if the caller want to know how many
+ * code points there are (they can then handle things) */
+ if (! node_p) {
+ if (! cp_count) {
+ RExC_parse = p;
+ }
+ return FALSE;
+ }
+
+ /* What is done here is to convert this to a sub-pattern of the form
+ * \x{char1}\x{char2}... and then call reg recursively to parse it
+ * (enclosing in "(?: ... )" ). That way, it retains its atomicness,
+ * while not having to worry about special handling that some code
+ * points may have. */
+
+ substitute_parse = newSVpvs("?:");
+
+ while (RExC_parse < endbrace) {
+
+ /* Convert to notation the rest of the code understands */
+ sv_catpv(substitute_parse, "\\x{");
+ sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
+ sv_catpv(substitute_parse, "}");
+
+ /* Point to the beginning of the next character in the sequence. */
+ RExC_parse = endchar + 1;
+ endchar = RExC_parse + strcspn(RExC_parse, ".}");
+
+ }
+ sv_catpv(substitute_parse, ")");
+
+ RExC_parse = SvPV(substitute_parse, len);
+
+ /* Don't allow empty number */
+ if (len < (STRLEN) 8) {
+ RExC_parse = endbrace;
+ vFAIL("Invalid hexadecimal number in \\N{U+...}");
+ }
+ RExC_end = RExC_parse + len;
+
+ /* The values are Unicode, and therefore not subject to recoding, but
+ * have to be converted to native on a non-Unicode (meaning non-ASCII)
+ * platform. */
+ RExC_override_recoding = 1;
+#ifdef EBCDIC
+ RExC_recode_x_to_native = 1;
+#endif
+
+ if (node_p) {
+ if (!(*node_p = reg(pRExC_state, 1, &flags, depth+1))) {
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return FALSE;
+ }
+ FAIL2("panic: reg returned NULL to grok_bslash_N, flags=%#"UVxf"",
+ (UV) flags);
+ }
+ *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
+ }
+
+ /* Restore the saved values */
+ RExC_parse = endbrace;
+ RExC_end = orig_end;
+ RExC_override_recoding = 0;
+#ifdef EBCDIC
+ RExC_recode_x_to_native = 0;
+#endif
+
+ SvREFCNT_dec_NN(substitute_parse);
+ nextchar(pRExC_state);
+
+ return TRUE;
+ }
+}
+
+
+/*
+ * reg_recode
+ *
+ * It returns the code point in utf8 for the value in *encp.
+ * value: a code value in the source encoding
+ * encp: a pointer to an Encode object
+ *
+ * If the result from Encode is not a single character,
+ * it returns U+FFFD (Replacement character) and sets *encp to NULL.
+ */
+STATIC UV
+S_reg_recode(pTHX_ const char value, SV **encp)
+{
+ STRLEN numlen = 1;
+ SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
+ const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
+ const STRLEN newlen = SvCUR(sv);
+ UV uv = UNICODE_REPLACEMENT;
+
+ PERL_ARGS_ASSERT_REG_RECODE;
+
+ if (newlen)
+ uv = SvUTF8(sv)
+ ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
+ : *(U8*)s;
+
+ if (!newlen || numlen != newlen) {
+ uv = UNICODE_REPLACEMENT;
+ *encp = NULL;
+ }
+ return uv;
+}
+
+PERL_STATIC_INLINE U8
+S_compute_EXACTish(RExC_state_t *pRExC_state)
+{
+ U8 op;
+
+ PERL_ARGS_ASSERT_COMPUTE_EXACTISH;
+
+ if (! FOLD) {
+ return (LOC)
+ ? EXACTL
+ : EXACT;
+ }
+
+ op = get_regex_charset(RExC_flags);
+ if (op >= REGEX_ASCII_RESTRICTED_CHARSET) {
+ op--; /* /a is same as /u, and map /aa's offset to what /a's would have
+ been, so there is no hole */
+ }
+
+ return op + EXACTF;
+}
+
+PERL_STATIC_INLINE void
+S_alloc_maybe_populate_EXACT(pTHX_ RExC_state_t *pRExC_state,
+ regnode *node, I32* flagp, STRLEN len, UV code_point,
+ bool downgradable)
+{
+ /* This knows the details about sizing an EXACTish node, setting flags for
+ * it (by setting <*flagp>, and potentially populating it with a single
+ * character.
+ *
+ * If <len> (the length in bytes) is non-zero, this function assumes that
+ * the node has already been populated, and just does the sizing. In this
+ * case <code_point> should be the final code point that has already been
+ * placed into the node. This value will be ignored except that under some
+ * circumstances <*flagp> is set based on it.
+ *
+ * If <len> is zero, the function assumes that the node is to contain only
+ * the single character given by <code_point> and calculates what <len>
+ * should be. In pass 1, it sizes the node appropriately. In pass 2, it
+ * additionally will populate the node's STRING with <code_point> or its
+ * fold if folding.
+ *
+ * In both cases <*flagp> is appropriately set
+ *
+ * It knows that under FOLD, the Latin Sharp S and UTF characters above
+ * 255, must be folded (the former only when the rules indicate it can
+ * match 'ss')
+ *
+ * When it does the populating, it looks at the flag 'downgradable'. If
+ * true with a node that folds, it checks if the single code point
+ * participates in a fold, and if not downgrades the node to an EXACT.
+ * This helps the optimizer */
+
+ bool len_passed_in = cBOOL(len != 0);
+ U8 character[UTF8_MAXBYTES_CASE+1];
+
+ PERL_ARGS_ASSERT_ALLOC_MAYBE_POPULATE_EXACT;
+
+ /* Don't bother to check for downgrading in PASS1, as it doesn't make any
+ * sizing difference, and is extra work that is thrown away */
+ if (downgradable && ! PASS2) {
+ downgradable = FALSE;
+ }
+
+ if (! len_passed_in) {
+ if (UTF) {
+ if (UVCHR_IS_INVARIANT(code_point)) {
+ if (LOC || ! FOLD) { /* /l defers folding until runtime */
+ *character = (U8) code_point;
+ }
+ else { /* Here is /i and not /l. (toFOLD() is defined on just
+ ASCII, which isn't the same thing as INVARIANT on
+ EBCDIC, but it works there, as the extra invariants
+ fold to themselves) */
+ *character = toFOLD((U8) code_point);
+
+ /* We can downgrade to an EXACT node if this character
+ * isn't a folding one. Note that this assumes that
+ * nothing above Latin1 folds to some other invariant than
+ * one of these alphabetics; otherwise we would also have
+ * to check:
+ * && (! HAS_NONLATIN1_FOLD_CLOSURE(code_point)
+ * || ASCII_FOLD_RESTRICTED))
+ */
+ if (downgradable && PL_fold[code_point] == code_point) {
+ OP(node) = EXACT;
+ }
+ }
+ len = 1;
+ }
+ else if (FOLD && (! LOC
+ || ! is_PROBLEMATIC_LOCALE_FOLD_cp(code_point)))
+ { /* Folding, and ok to do so now */
+ UV folded = _to_uni_fold_flags(
+ code_point,
+ character,
+ &len,
+ FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
+ ? FOLD_FLAGS_NOMIX_ASCII
+ : 0));
+ if (downgradable
+ && folded == code_point /* This quickly rules out many
+ cases, avoiding the
+ _invlist_contains_cp() overhead
+ for those. */
+ && ! _invlist_contains_cp(PL_utf8_foldable, code_point))
+ {
+ OP(node) = (LOC)
+ ? EXACTL
+ : EXACT;
+ }
+ }
+ else if (code_point <= MAX_UTF8_TWO_BYTE) {
+
+ /* Not folding this cp, and can output it directly */
+ *character = UTF8_TWO_BYTE_HI(code_point);
+ *(character + 1) = UTF8_TWO_BYTE_LO(code_point);
+ len = 2;
+ }
+ else {
+ uvchr_to_utf8( character, code_point);
+ len = UTF8SKIP(character);
+ }
+ } /* Else pattern isn't UTF8. */
+ else if (! FOLD) {
+ *character = (U8) code_point;
+ len = 1;
+ } /* Else is folded non-UTF8 */
+ else if (LIKELY(code_point != LATIN_SMALL_LETTER_SHARP_S)) {
+
+ /* We don't fold any non-UTF8 except possibly the Sharp s (see
+ * comments at join_exact()); */
+ *character = (U8) code_point;
+ len = 1;
+
+ /* Can turn into an EXACT node if we know the fold at compile time,
+ * and it folds to itself and doesn't particpate in other folds */
+ if (downgradable
+ && ! LOC
+ && PL_fold_latin1[code_point] == code_point
+ && (! HAS_NONLATIN1_FOLD_CLOSURE(code_point)
+ || (isASCII(code_point) && ASCII_FOLD_RESTRICTED)))
+ {
+ OP(node) = EXACT;
+ }
+ } /* else is Sharp s. May need to fold it */
+ else if (AT_LEAST_UNI_SEMANTICS && ! ASCII_FOLD_RESTRICTED) {
+ *character = 's';
+ *(character + 1) = 's';
+ len = 2;
+ }
+ else {
+ *character = LATIN_SMALL_LETTER_SHARP_S;
+ len = 1;
+ }
+ }
+
+ if (SIZE_ONLY) {
+ RExC_size += STR_SZ(len);
+ }
+ else {
+ RExC_emit += STR_SZ(len);
+ STR_LEN(node) = len;
+ if (! len_passed_in) {
+ Copy((char *) character, STRING(node), len, char);
+ }
+ }
+
+ *flagp |= HASWIDTH;
+
+ /* A single character node is SIMPLE, except for the special-cased SHARP S
+ * under /di. */
+ if ((len == 1 || (UTF && len == UNISKIP(code_point)))
+ && (code_point != LATIN_SMALL_LETTER_SHARP_S
+ || ! FOLD || ! DEPENDS_SEMANTICS))
+ {
+ *flagp |= SIMPLE;
+ }
+
+ /* The OP may not be well defined in PASS1 */
+ if (PASS2 && OP(node) == EXACTFL) {
+ RExC_contains_locale = 1;
+ }
+}
+
+
+/* Parse backref decimal value, unless it's too big to sensibly be a backref,
+ * in which case return I32_MAX (rather than possibly 32-bit wrapping) */
+
+static I32
+S_backref_value(char *p)
+{
+ const char* endptr;
+ UV val;
+ if (grok_atoUV(p, &val, &endptr) && val <= I32_MAX)
+ return (I32)val;
+ return I32_MAX;
+}
+
+
+/*
+ - regatom - the lowest level
+
+ Try to identify anything special at the start of the pattern. If there
+ is, then handle it as required. This may involve generating a single regop,
+ such as for an assertion; or it may involve recursing, such as to
+ handle a () structure.
+
+ If the string doesn't start with something special then we gobble up
+ as much literal text as we can.
+
+ Once we have been able to handle whatever type of thing started the
+ sequence, we return.
+
+ Note: we have to be careful with escapes, as they can be both literal
+ and special, and in the case of \10 and friends, context determines which.
+
+ A summary of the code structure is:
+
+ switch (first_byte) {
+ cases for each special:
+ handle this special;
+ break;
+ case '\\':
+ switch (2nd byte) {
+ cases for each unambiguous special:
+ handle this special;
+ break;
+ cases for each ambigous special/literal:
+ disambiguate;
+ if (special) handle here
+ else goto defchar;
+ default: // unambiguously literal:
+ goto defchar;
+ }
+ default: // is a literal char
+ // FALL THROUGH
+ defchar:
+ create EXACTish node for literal;
+ while (more input and node isn't full) {
+ switch (input_byte) {
+ cases for each special;
+ make sure parse pointer is set so that the next call to
+ regatom will see this special first
+ goto loopdone; // EXACTish node terminated by prev. char
+ default:
+ append char to EXACTISH node;
+ }
+ get next input byte;
+ }
+ loopdone:
+ }
+ return the generated node;
+
+ Specifically there are two separate switches for handling
+ escape sequences, with the one for handling literal escapes requiring
+ a dummy entry for all of the special escapes that are actually handled
+ by the other.
+
+ Returns NULL, setting *flagp to TRYAGAIN if reg() returns NULL with
+ TRYAGAIN.
+ Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
+ restarted.
+ Otherwise does not return NULL.
+*/
+
+STATIC regnode *
+S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
+{
+ regnode *ret = NULL;
+ I32 flags = 0;
+ char *parse_start = RExC_parse;
+ U8 op;
+ int invert = 0;
+ U8 arg;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ *flagp = WORST; /* Tentatively. */
+
+ DEBUG_PARSE("atom");
+
+ PERL_ARGS_ASSERT_REGATOM;
+
+ tryagain:
+ switch ((U8)*RExC_parse) {
+ case '^':
+ RExC_seen_zerolen++;
+ nextchar(pRExC_state);
+ if (RExC_flags & RXf_PMf_MULTILINE)
+ ret = reg_node(pRExC_state, MBOL);
+ else
+ ret = reg_node(pRExC_state, SBOL);
+ Set_Node_Length(ret, 1); /* MJD */
+ break;
+ case '$':
+ nextchar(pRExC_state);
+ if (*RExC_parse)
+ RExC_seen_zerolen++;
+ if (RExC_flags & RXf_PMf_MULTILINE)
+ ret = reg_node(pRExC_state, MEOL);
+ else
+ ret = reg_node(pRExC_state, SEOL);
+ Set_Node_Length(ret, 1); /* MJD */
+ break;
+ case '.':
+ nextchar(pRExC_state);
+ if (RExC_flags & RXf_PMf_SINGLELINE)
+ ret = reg_node(pRExC_state, SANY);
+ else
+ ret = reg_node(pRExC_state, REG_ANY);
+ *flagp |= HASWIDTH|SIMPLE;
+ MARK_NAUGHTY(1);
+ Set_Node_Length(ret, 1); /* MJD */
+ break;
+ case '[':
+ {
+ char * const oregcomp_parse = ++RExC_parse;
+ ret = regclass(pRExC_state, flagp,depth+1,
+ FALSE, /* means parse the whole char class */
+ TRUE, /* allow multi-char folds */
+ FALSE, /* don't silence non-portable warnings. */
+ (bool) RExC_strict,
+ NULL);
+ if (*RExC_parse != ']') {
+ RExC_parse = oregcomp_parse;
+ vFAIL("Unmatched [");
+ }
+ if (ret == NULL) {
+ if (*flagp & RESTART_UTF8)
+ return NULL;
+ FAIL2("panic: regclass returned NULL to regatom, flags=%#"UVxf"",
+ (UV) *flagp);
+ }
+ nextchar(pRExC_state);
+ Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
+ break;
+ }
+ case '(':
+ nextchar(pRExC_state);
+ ret = reg(pRExC_state, 2, &flags,depth+1);
+ if (ret == NULL) {
+ if (flags & TRYAGAIN) {
+ if (RExC_parse == RExC_end) {
+ /* Make parent create an empty node if needed. */
+ *flagp |= TRYAGAIN;
+ return(NULL);
+ }
+ goto tryagain;
+ }
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ FAIL2("panic: reg returned NULL to regatom, flags=%#"UVxf"",
+ (UV) flags);
+ }
+ *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
+ break;
+ case '|':
+ case ')':
+ if (flags & TRYAGAIN) {
+ *flagp |= TRYAGAIN;
+ return NULL;
+ }
+ vFAIL("Internal urp");
+ /* Supposed to be caught earlier. */
+ break;
+ case '?':
+ case '+':
+ case '*':
+ RExC_parse++;
+ vFAIL("Quantifier follows nothing");
+ break;
+ case '\\':
+ /* Special Escapes
+
+ This switch handles escape sequences that resolve to some kind
+ of special regop and not to literal text. Escape sequnces that
+ resolve to literal text are handled below in the switch marked
+ "Literal Escapes".
+
+ Every entry in this switch *must* have a corresponding entry
+ in the literal escape switch. However, the opposite is not
+ required, as the default for this switch is to jump to the
+ literal text handling code.
+ */
+ switch ((U8)*++RExC_parse) {
+ /* Special Escapes */
+ case 'A':
+ RExC_seen_zerolen++;
+ ret = reg_node(pRExC_state, SBOL);
+ /* SBOL is shared with /^/ so we set the flags so we can tell
+ * /\A/ from /^/ in split. We check ret because first pass we
+ * have no regop struct to set the flags on. */
+ if (PASS2)
+ ret->flags = 1;
+ *flagp |= SIMPLE;
+ goto finish_meta_pat;
+ case 'G':
+ ret = reg_node(pRExC_state, GPOS);
+ RExC_seen |= REG_GPOS_SEEN;
+ *flagp |= SIMPLE;
+ goto finish_meta_pat;
+ case 'K':
+ RExC_seen_zerolen++;
+ ret = reg_node(pRExC_state, KEEPS);
+ *flagp |= SIMPLE;
+ /* XXX:dmq : disabling in-place substitution seems to
+ * be necessary here to avoid cases of memory corruption, as
+ * with: C<$_="x" x 80; s/x\K/y/> -- rgs
+ */
+ RExC_seen |= REG_LOOKBEHIND_SEEN;
+ goto finish_meta_pat;
+ case 'Z':
+ ret = reg_node(pRExC_state, SEOL);
+ *flagp |= SIMPLE;
+ RExC_seen_zerolen++; /* Do not optimize RE away */
+ goto finish_meta_pat;
+ case 'z':
+ ret = reg_node(pRExC_state, EOS);
+ *flagp |= SIMPLE;
+ RExC_seen_zerolen++; /* Do not optimize RE away */
+ goto finish_meta_pat;
+ case 'C':
+ vFAIL("\\C no longer supported");
+ case 'X':
+ ret = reg_node(pRExC_state, CLUMP);
+ *flagp |= HASWIDTH;
+ goto finish_meta_pat;
+
+ case 'W':
+ invert = 1;
+ /* FALLTHROUGH */
+ case 'w':
+ arg = ANYOF_WORDCHAR;
+ goto join_posix;
+
+ case 'B':
+ invert = 1;
+ /* FALLTHROUGH */
+ case 'b':
+ {
+ regex_charset charset = get_regex_charset(RExC_flags);
+
+ RExC_seen_zerolen++;
+ RExC_seen |= REG_LOOKBEHIND_SEEN;
+ op = BOUND + charset;
+
+ if (op == BOUNDL) {
+ RExC_contains_locale = 1;
+ }
+
+ ret = reg_node(pRExC_state, op);
+ *flagp |= SIMPLE;
+ if (*(RExC_parse + 1) != '{') {
+ FLAGS(ret) = TRADITIONAL_BOUND;
+ if (PASS2 && op > BOUNDA) { /* /aa is same as /a */
+ OP(ret) = BOUNDA;
+ }
+ }
+ else {
+ STRLEN length;
+ char name = *RExC_parse;
+ char * endbrace;
+ RExC_parse += 2;
+ endbrace = strchr(RExC_parse, '}');
+
+ if (! endbrace) {
+ vFAIL2("Missing right brace on \\%c{}", name);
+ }
+ /* XXX Need to decide whether to take spaces or not. Should be
+ * consistent with \p{}, but that currently is SPACE, which
+ * means vertical too, which seems wrong
+ * while (isBLANK(*RExC_parse)) {
+ RExC_parse++;
+ }*/
+ if (endbrace == RExC_parse) {
+ RExC_parse++; /* After the '}' */
+ vFAIL2("Empty \\%c{}", name);
+ }
+ length = endbrace - RExC_parse;
+ /*while (isBLANK(*(RExC_parse + length - 1))) {
+ length--;
+ }*/
+ switch (*RExC_parse) {
+ case 'g':
+ if (length != 1
+ && (length != 3 || strnNE(RExC_parse + 1, "cb", 2)))
+ {
+ goto bad_bound_type;
+ }
+ FLAGS(ret) = GCB_BOUND;
+ break;
+ case 's':
+ if (length != 2 || *(RExC_parse + 1) != 'b') {
+ goto bad_bound_type;
+ }
+ FLAGS(ret) = SB_BOUND;
+ break;
+ case 'w':
+ if (length != 2 || *(RExC_parse + 1) != 'b') {
+ goto bad_bound_type;
+ }
+ FLAGS(ret) = WB_BOUND;
+ break;
+ default:
+ bad_bound_type:
+ RExC_parse = endbrace;
+ vFAIL2utf8f(
+ "'%"UTF8f"' is an unknown bound type",
+ UTF8fARG(UTF, length, endbrace - length));
+ NOT_REACHED; /*NOTREACHED*/
+ }
+ RExC_parse = endbrace;
+ RExC_uni_semantics = 1;
+
+ if (PASS2 && op >= BOUNDA) { /* /aa is same as /a */
+ OP(ret) = BOUNDU;
+ length += 4;
+
+ /* Don't have to worry about UTF-8, in this message because
+ * to get here the contents of the \b must be ASCII */
+ ckWARN4reg(RExC_parse + 1, /* Include the '}' in msg */
+ "Using /u for '%.*s' instead of /%s",
+ (unsigned) length,
+ endbrace - length + 1,
+ (charset == REGEX_ASCII_RESTRICTED_CHARSET)
+ ? ASCII_RESTRICT_PAT_MODS
+ : ASCII_MORE_RESTRICT_PAT_MODS);
+ }
+ }
+
+ if (PASS2 && invert) {
+ OP(ret) += NBOUND - BOUND;
+ }
+ goto finish_meta_pat;
+ }
+
+ case 'D':
+ invert = 1;
+ /* FALLTHROUGH */
+ case 'd':
+ arg = ANYOF_DIGIT;
+ if (! DEPENDS_SEMANTICS) {
+ goto join_posix;
+ }
+
+ /* \d doesn't have any matches in the upper Latin1 range, hence /d
+ * is equivalent to /u. Changing to /u saves some branches at
+ * runtime */
+ op = POSIXU;
+ goto join_posix_op_known;
+
+ case 'R':
+ ret = reg_node(pRExC_state, LNBREAK);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+
+ case 'H':
+ invert = 1;
+ /* FALLTHROUGH */
+ case 'h':
+ arg = ANYOF_BLANK;
+ op = POSIXU;
+ goto join_posix_op_known;
+
+ case 'V':
+ invert = 1;
+ /* FALLTHROUGH */
+ case 'v':
+ arg = ANYOF_VERTWS;
+ op = POSIXU;
+ goto join_posix_op_known;
+
+ case 'S':
+ invert = 1;
+ /* FALLTHROUGH */
+ case 's':
+ arg = ANYOF_SPACE;
+
+ join_posix:
+
+ op = POSIXD + get_regex_charset(RExC_flags);
+ if (op > POSIXA) { /* /aa is same as /a */
+ op = POSIXA;
+ }
+ else if (op == POSIXL) {
+ RExC_contains_locale = 1;
+ }
+
+ join_posix_op_known:
+
+ if (invert) {
+ op += NPOSIXD - POSIXD;
+ }
+
+ ret = reg_node(pRExC_state, op);
+ if (! SIZE_ONLY) {
+ FLAGS(ret) = namedclass_to_classnum(arg);
+ }
+
+ *flagp |= HASWIDTH|SIMPLE;
+ /* FALLTHROUGH */
+
+ finish_meta_pat:
+ nextchar(pRExC_state);
+ Set_Node_Length(ret, 2); /* MJD */
+ break;
+ case 'p':
+ case 'P':
+ {
+#ifdef DEBUGGING
+ char* parse_start = RExC_parse - 2;
+#endif
+
+ RExC_parse--;
+
+ ret = regclass(pRExC_state, flagp,depth+1,
+ TRUE, /* means just parse this element */
+ FALSE, /* don't allow multi-char folds */
+ FALSE, /* don't silence non-portable warnings.
+ It would be a bug if these returned
+ non-portables */
+ (bool) RExC_strict,
+ NULL);
+ /* regclass() can only return RESTART_UTF8 if multi-char folds
+ are allowed. */
+ if (!ret)
+ FAIL2("panic: regclass returned NULL to regatom, flags=%#"UVxf"",
+ (UV) *flagp);
+
+ RExC_parse--;
+
+ Set_Node_Offset(ret, parse_start + 2);
+ Set_Node_Cur_Length(ret, parse_start);
+ nextchar(pRExC_state);
+ }
+ break;
+ case 'N':
+ /* Handle \N, \N{} and \N{NAMED SEQUENCE} (the latter meaning the
+ * \N{...} evaluates to a sequence of more than one code points).
+ * The function call below returns a regnode, which is our result.
+ * The parameters cause it to fail if the \N{} evaluates to a
+ * single code point; we handle those like any other literal. The
+ * reason that the multicharacter case is handled here and not as
+ * part of the EXACtish code is because of quantifiers. In
+ * /\N{BLAH}+/, the '+' applies to the whole thing, and doing it
+ * this way makes that Just Happen. dmq.
+ * join_exact() will join this up with adjacent EXACTish nodes
+ * later on, if appropriate. */
+ ++RExC_parse;
+ if (grok_bslash_N(pRExC_state,
+ &ret, /* Want a regnode returned */
+ NULL, /* Fail if evaluates to a single code
+ point */
+ NULL, /* Don't need a count of how many code
+ points */
+ flagp,
+ depth)
+ ) {
+ break;
+ }
+
+ if (*flagp & RESTART_UTF8)
+ return NULL;
+ RExC_parse--;
+ goto defchar;
+
+ case 'k': /* Handle \k<NAME> and \k'NAME' */
+ parse_named_seq:
+ {
+ char ch= RExC_parse[1];
+ if (ch != '<' && ch != '\'' && ch != '{') {
+ RExC_parse++;
+ /* diag_listed_as: Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/ */
+ vFAIL2("Sequence %.2s... not terminated",parse_start);
+ } else {
+ /* this pretty much dupes the code for (?P=...) in reg(), if
+ you change this make sure you change that */
+ char* name_start = (RExC_parse += 2);
+ U32 num = 0;
+ SV *sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
+ if (RExC_parse == name_start || *RExC_parse != ch)
+ /* diag_listed_as: Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/ */
+ vFAIL2("Sequence %.3s... not terminated",parse_start);
+
+ if (!SIZE_ONLY) {
+ num = add_data( pRExC_state, STR_WITH_LEN("S"));
+ RExC_rxi->data->data[num]=(void*)sv_dat;
+ SvREFCNT_inc_simple_void(sv_dat);
+ }
+
+ RExC_sawback = 1;
+ ret = reganode(pRExC_state,
+ ((! FOLD)
+ ? NREF
+ : (ASCII_FOLD_RESTRICTED)
+ ? NREFFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? NREFFU
+ : (LOC)
+ ? NREFFL
+ : NREFF),
+ num);
+ *flagp |= HASWIDTH;
+
+ /* override incorrect value set in reganode MJD */
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Cur_Length(ret, parse_start);
+ nextchar(pRExC_state);
+
+ }
+ break;
+ }
+ case 'g':
+ case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ {
+ I32 num;
+ bool hasbrace = 0;
+
+ if (*RExC_parse == 'g') {
+ bool isrel = 0;
+
+ RExC_parse++;
+ if (*RExC_parse == '{') {
+ RExC_parse++;
+ hasbrace = 1;
+ }
+ if (*RExC_parse == '-') {
+ RExC_parse++;
+ isrel = 1;
+ }
+ if (hasbrace && !isDIGIT(*RExC_parse)) {
+ if (isrel) RExC_parse--;
+ RExC_parse -= 2;
+ goto parse_named_seq;
+ }
+
+ num = S_backref_value(RExC_parse);
+ if (num == 0)
+ vFAIL("Reference to invalid group 0");
+ else if (num == I32_MAX) {
+ if (isDIGIT(*RExC_parse))
+ vFAIL("Reference to nonexistent group");
+ else
+ vFAIL("Unterminated \\g... pattern");
+ }
+
+ if (isrel) {
+ num = RExC_npar - num;
+ if (num < 1)
+ vFAIL("Reference to nonexistent or unclosed group");
+ }
+ }
+ else {
+ num = S_backref_value(RExC_parse);
+ /* bare \NNN might be backref or octal - if it is larger
+ * than or equal RExC_npar then it is assumed to be an
+ * octal escape. Note RExC_npar is +1 from the actual
+ * number of parens. */
+ /* Note we do NOT check if num == I32_MAX here, as that is
+ * handled by the RExC_npar check */
+
+ if (
+ /* any numeric escape < 10 is always a backref */
+ num > 9
+ /* any numeric escape < RExC_npar is a backref */
+ && num >= RExC_npar
+ /* cannot be an octal escape if it starts with 8 */
+ && *RExC_parse != '8'
+ /* cannot be an octal escape it it starts with 9 */
+ && *RExC_parse != '9'
+ )
+ {
+ /* Probably not a backref, instead likely to be an
+ * octal character escape, e.g. \35 or \777.
+ * The above logic should make it obvious why using
+ * octal escapes in patterns is problematic. - Yves */
+ goto defchar;
+ }
+ }
+
+ /* At this point RExC_parse points at a numeric escape like
+ * \12 or \88 or something similar, which we should NOT treat
+ * as an octal escape. It may or may not be a valid backref
+ * escape. For instance \88888888 is unlikely to be a valid
+ * backref. */
+ {
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ char * const parse_start = RExC_parse - 1; /* MJD */
+#endif
+ while (isDIGIT(*RExC_parse))
+ RExC_parse++;
+ if (hasbrace) {
+ if (*RExC_parse != '}')
+ vFAIL("Unterminated \\g{...} pattern");
+ RExC_parse++;
+ }
+ if (!SIZE_ONLY) {
+ if (num > (I32)RExC_rx->nparens)
+ vFAIL("Reference to nonexistent group");
+ }
+ RExC_sawback = 1;
+ ret = reganode(pRExC_state,
+ ((! FOLD)
+ ? REF
+ : (ASCII_FOLD_RESTRICTED)
+ ? REFFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? REFFU
+ : (LOC)
+ ? REFFL
+ : REFF),
+ num);
+ *flagp |= HASWIDTH;
+
+ /* override incorrect value set in reganode MJD */
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Cur_Length(ret, parse_start);
+ RExC_parse--;
+ nextchar(pRExC_state);
+ }
+ }
+ break;
+ case '\0':
+ if (RExC_parse >= RExC_end)
+ FAIL("Trailing \\");
+ /* FALLTHROUGH */
+ default:
+ /* Do not generate "unrecognized" warnings here, we fall
+ back into the quick-grab loop below */
+ parse_start--;
+ goto defchar;
+ }
+ break;
+
+ case '#':
+ if (RExC_flags & RXf_PMf_EXTENDED) {
+ RExC_parse = reg_skipcomment( pRExC_state, RExC_parse );
+ if (RExC_parse < RExC_end)
+ goto tryagain;
+ }
+ /* FALLTHROUGH */
+
+ default:
+
+ parse_start = RExC_parse - 1;
+
+ RExC_parse++;
+
+ defchar: {
+ STRLEN len = 0;
+ UV ender = 0;
+ char *p;
+ char *s;
+#define MAX_NODE_STRING_SIZE 127
+ char foldbuf[MAX_NODE_STRING_SIZE+UTF8_MAXBYTES_CASE];
+ char *s0;
+ U8 upper_parse = MAX_NODE_STRING_SIZE;
+ U8 node_type = compute_EXACTish(pRExC_state);
+ bool next_is_quantifier;
+ char * oldp = NULL;
+
+ /* We can convert EXACTF nodes to EXACTFU if they contain only
+ * characters that match identically regardless of the target
+ * string's UTF8ness. The reason to do this is that EXACTF is not
+ * trie-able, EXACTFU is.
+ *
+ * Similarly, we can convert EXACTFL nodes to EXACTFU if they
+ * contain only above-Latin1 characters (hence must be in UTF8),
+ * which don't participate in folds with Latin1-range characters,
+ * as the latter's folds aren't known until runtime. (We don't
+ * need to figure this out until pass 2) */
+ bool maybe_exactfu = PASS2
+ && (node_type == EXACTF || node_type == EXACTFL);
+
+ /* If a folding node contains only code points that don't
+ * participate in folds, it can be changed into an EXACT node,
+ * which allows the optimizer more things to look for */
+ bool maybe_exact;
+
+ ret = reg_node(pRExC_state, node_type);
+
+ /* In pass1, folded, we use a temporary buffer instead of the
+ * actual node, as the node doesn't exist yet */
+ s = (SIZE_ONLY && FOLD) ? foldbuf : STRING(ret);
+
+ s0 = s;
+
+ reparse:
+
+ /* We do the EXACTFish to EXACT node only if folding. (And we
+ * don't need to figure this out until pass 2) */
+ maybe_exact = FOLD && PASS2;
+
+ /* XXX The node can hold up to 255 bytes, yet this only goes to
+ * 127. I (khw) do not know why. Keeping it somewhat less than
+ * 255 allows us to not have to worry about overflow due to
+ * converting to utf8 and fold expansion, but that value is
+ * 255-UTF8_MAXBYTES_CASE. join_exact() may join adjacent nodes
+ * split up by this limit into a single one using the real max of
+ * 255. Even at 127, this breaks under rare circumstances. If
+ * folding, we do not want to split a node at a character that is a
+ * non-final in a multi-char fold, as an input string could just
+ * happen to want to match across the node boundary. The join
+ * would solve that problem if the join actually happens. But a
+ * series of more than two nodes in a row each of 127 would cause
+ * the first join to succeed to get to 254, but then there wouldn't
+ * be room for the next one, which could at be one of those split
+ * multi-char folds. I don't know of any fool-proof solution. One
+ * could back off to end with only a code point that isn't such a
+ * non-final, but it is possible for there not to be any in the
+ * entire node. */
+ for (p = RExC_parse - 1;
+ len < upper_parse && p < RExC_end;
+ len++)
+ {
+ oldp = p;
+
+ if (RExC_flags & RXf_PMf_EXTENDED)
+ p = regpatws(pRExC_state, p,
+ TRUE); /* means recognize comments */
+ switch ((U8)*p) {
+ case '^':
+ case '$':
+ case '.':
+ case '[':
+ case '(':
+ case ')':
+ case '|':
+ goto loopdone;
+ case '\\':
+ /* Literal Escapes Switch
+
+ This switch is meant to handle escape sequences that
+ resolve to a literal character.
+
+ Every escape sequence that represents something
+ else, like an assertion or a char class, is handled
+ in the switch marked 'Special Escapes' above in this
+ routine, but also has an entry here as anything that
+ isn't explicitly mentioned here will be treated as
+ an unescaped equivalent literal.
+ */
+
+ switch ((U8)*++p) {
+ /* These are all the special escapes. */
+ case 'A': /* Start assertion */
+ case 'b': case 'B': /* Word-boundary assertion*/
+ case 'C': /* Single char !DANGEROUS! */
+ case 'd': case 'D': /* digit class */
+ case 'g': case 'G': /* generic-backref, pos assertion */
+ case 'h': case 'H': /* HORIZWS */
+ case 'k': case 'K': /* named backref, keep marker */
+ case 'p': case 'P': /* Unicode property */
+ case 'R': /* LNBREAK */
+ case 's': case 'S': /* space class */
+ case 'v': case 'V': /* VERTWS */
+ case 'w': case 'W': /* word class */
+ case 'X': /* eXtended Unicode "combining
+ character sequence" */
+ case 'z': case 'Z': /* End of line/string assertion */
+ --p;
+ goto loopdone;
+
+ /* Anything after here is an escape that resolves to a
+ literal. (Except digits, which may or may not)
+ */
+ case 'n':
+ ender = '\n';
+ p++;
+ break;
+ case 'N': /* Handle a single-code point named character. */
+ RExC_parse = p + 1;
+ if (! grok_bslash_N(pRExC_state,
+ NULL, /* Fail if evaluates to
+ anything other than a
+ single code point */
+ &ender, /* The returned single code
+ point */
+ NULL, /* Don't need a count of
+ how many code points */
+ flagp,
+ depth)
+ ) {
+ if (*flagp & RESTART_UTF8)
+ FAIL("panic: grok_bslash_N set RESTART_UTF8");
+
+ /* Here, it wasn't a single code point. Go close
+ * up this EXACTish node. The switch() prior to
+ * this switch handles the other cases */
+ RExC_parse = p = oldp;
+ goto loopdone;
+ }
+ p = RExC_parse;
+ if (ender > 0xff) {
+ REQUIRE_UTF8;
+ }
+ break;
+ case 'r':
+ ender = '\r';
+ p++;
+ break;
+ case 't':
+ ender = '\t';
+ p++;
+ break;
+ case 'f':
+ ender = '\f';
+ p++;
+ break;
+ case 'e':
+ ender = ESC_NATIVE;
+ p++;
+ break;
+ case 'a':
+ ender = '\a';
+ p++;
+ break;
+ case 'o':
+ {
+ UV result;
+ const char* error_msg;
+
+ bool valid = grok_bslash_o(&p,
+ &result,
+ &error_msg,
+ PASS2, /* out warnings */
+ (bool) RExC_strict,
+ TRUE, /* Output warnings
+ for non-
+ portables */
+ UTF);
+ if (! valid) {
+ RExC_parse = p; /* going to die anyway; point
+ to exact spot of failure */
+ vFAIL(error_msg);
+ }
+ ender = result;
+ if (IN_ENCODING && ender < 0x100) {
+ goto recode_encoding;
+ }
+ if (ender > 0xff) {
+ REQUIRE_UTF8;
+ }
+ break;
+ }
+ case 'x':
+ {
+ UV result = UV_MAX; /* initialize to erroneous
+ value */
+ const char* error_msg;
+
+ bool valid = grok_bslash_x(&p,
+ &result,
+ &error_msg,
+ PASS2, /* out warnings */
+ (bool) RExC_strict,
+ TRUE, /* Silence warnings
+ for non-
+ portables */
+ UTF);
+ if (! valid) {
+ RExC_parse = p; /* going to die anyway; point
+ to exact spot of failure */
+ vFAIL(error_msg);
+ }
+ ender = result;
+
+ if (ender < 0x100) {
+#ifdef EBCDIC
+ if (RExC_recode_x_to_native) {
+ ender = LATIN1_TO_NATIVE(ender);
+ }
+ else
+#endif
+ if (IN_ENCODING) {
+ goto recode_encoding;
+ }
+ }
+ else {
+ REQUIRE_UTF8;
+ }
+ break;
+ }
+ case 'c':
+ p++;
+ ender = grok_bslash_c(*p++, PASS2);
+ break;
+ case '8': case '9': /* must be a backreference */
+ --p;
+ /* we have an escape like \8 which cannot be an octal escape
+ * so we exit the loop, and let the outer loop handle this
+ * escape which may or may not be a legitimate backref. */
+ goto loopdone;
+ case '1': case '2': case '3':case '4':
+ case '5': case '6': case '7':
+ /* When we parse backslash escapes there is ambiguity
+ * between backreferences and octal escapes. Any escape
+ * from \1 - \9 is a backreference, any multi-digit
+ * escape which does not start with 0 and which when
+ * evaluated as decimal could refer to an already
+ * parsed capture buffer is a back reference. Anything
+ * else is octal.
+ *
+ * Note this implies that \118 could be interpreted as
+ * 118 OR as "\11" . "8" depending on whether there
+ * were 118 capture buffers defined already in the
+ * pattern. */
+
+ /* NOTE, RExC_npar is 1 more than the actual number of
+ * parens we have seen so far, hence the < RExC_npar below. */
+
+ if ( !isDIGIT(p[1]) || S_backref_value(p) < RExC_npar)
+ { /* Not to be treated as an octal constant, go
+ find backref */
+ --p;
+ goto loopdone;
+ }
+ /* FALLTHROUGH */
+ case '0':
+ {
+ I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
+ STRLEN numlen = 3;
+ ender = grok_oct(p, &numlen, &flags, NULL);
+ if (ender > 0xff) {
+ REQUIRE_UTF8;
+ }
+ p += numlen;
+ if (PASS2 /* like \08, \178 */
+ && numlen < 3
+ && p < RExC_end
+ && isDIGIT(*p) && ckWARN(WARN_REGEXP))
+ {
+ reg_warn_non_literal_string(
+ p + 1,
+ form_short_octal_warning(p, numlen));
+ }
+ }
+ if (IN_ENCODING && ender < 0x100)
+ goto recode_encoding;
+ break;
+ recode_encoding:
+ if (! RExC_override_recoding) {
+ SV* enc = _get_encoding();
+ ender = reg_recode((const char)(U8)ender, &enc);
+ if (!enc && PASS2)
+ ckWARNreg(p, "Invalid escape in the specified encoding");
+ REQUIRE_UTF8;
+ }
+ break;
+ case '\0':
+ if (p >= RExC_end)
+ FAIL("Trailing \\");
+ /* FALLTHROUGH */
+ default:
+ if (!SIZE_ONLY&& isALPHANUMERIC(*p)) {
+ /* Include any { following the alpha to emphasize
+ * that it could be part of an escape at some point
+ * in the future */
+ int len = (isALPHA(*p) && *(p + 1) == '{') ? 2 : 1;
+ ckWARN3reg(p + len, "Unrecognized escape \\%.*s passed through", len, p);
+ }
+ goto normal_default;
+ } /* End of switch on '\' */
+ break;
+ case '{':
+ /* Currently we don't warn when the lbrace is at the start
+ * of a construct. This catches it in the middle of a
+ * literal string, or when its the first thing after
+ * something like "\b" */
+ if (! SIZE_ONLY
+ && (len || (p > RExC_start && isALPHA_A(*(p -1)))))
+ {
+ ckWARNregdep(p + 1, "Unescaped left brace in regex is deprecated, passed through");
+ }
+ /*FALLTHROUGH*/
+ default: /* A literal character */
+ normal_default:
+ if (UTF8_IS_START(*p) && UTF) {
+ STRLEN numlen;
+ ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
+ &numlen, UTF8_ALLOW_DEFAULT);
+ p += numlen;
+ }
+ else
+ ender = (U8) *p++;
+ break;
+ } /* End of switch on the literal */
+
+ /* Here, have looked at the literal character and <ender>
+ * contains its ordinal, <p> points to the character after it
+ */
+
+ if ( RExC_flags & RXf_PMf_EXTENDED)
+ p = regpatws(pRExC_state, p,
+ TRUE); /* means recognize comments */
+
+ /* If the next thing is a quantifier, it applies to this
+ * character only, which means that this character has to be in
+ * its own node and can't just be appended to the string in an
+ * existing node, so if there are already other characters in
+ * the node, close the node with just them, and set up to do
+ * this character again next time through, when it will be the
+ * only thing in its new node */
+ if ((next_is_quantifier = (p < RExC_end && ISMULT2(p))) && len)
+ {
+ p = oldp;
+ goto loopdone;
+ }
+
+ if (! FOLD) { /* The simple case, just append the literal */
+
+ /* In the sizing pass, we need only the size of the
+ * character we are appending, hence we can delay getting
+ * its representation until PASS2. */
+ if (SIZE_ONLY) {
+ if (UTF) {
+ const STRLEN unilen = UNISKIP(ender);
+ s += unilen;
+
+ /* We have to subtract 1 just below (and again in
+ * the corresponding PASS2 code) because the loop
+ * increments <len> each time, as all but this path
+ * (and one other) through it add a single byte to
+ * the EXACTish node. But these paths would change
+ * len to be the correct final value, so cancel out
+ * the increment that follows */
+ len += unilen - 1;
+ }
+ else {
+ s++;
+ }
+ } else { /* PASS2 */
+ not_fold_common:
+ if (UTF) {
+ U8 * new_s = uvchr_to_utf8((U8*)s, ender);
+ len += (char *) new_s - s - 1;
+ s = (char *) new_s;
+ }
+ else {
+ *(s++) = (char) ender;
+ }
+ }
+ }
+ else if (LOC && is_PROBLEMATIC_LOCALE_FOLD_cp(ender)) {
+
+ /* Here are folding under /l, and the code point is
+ * problematic. First, we know we can't simplify things */
+ maybe_exact = FALSE;
+ maybe_exactfu = FALSE;
+
+ /* A problematic code point in this context means that its
+ * fold isn't known until runtime, so we can't fold it now.
+ * (The non-problematic code points are the above-Latin1
+ * ones that fold to also all above-Latin1. Their folds
+ * don't vary no matter what the locale is.) But here we
+ * have characters whose fold depends on the locale.
+ * Unlike the non-folding case above, we have to keep track
+ * of these in the sizing pass, so that we can make sure we
+ * don't split too-long nodes in the middle of a potential
+ * multi-char fold. And unlike the regular fold case
+ * handled in the else clauses below, we don't actually
+ * fold and don't have special cases to consider. What we
+ * do for both passes is the PASS2 code for non-folding */
+ goto not_fold_common;
+ }
+ else /* A regular FOLD code point */
+ if (! ( UTF
+ /* See comments for join_exact() as to why we fold this
+ * non-UTF at compile time */
+ || (node_type == EXACTFU
+ && ender == LATIN_SMALL_LETTER_SHARP_S)))
+ {
+ /* Here, are folding and are not UTF-8 encoded; therefore
+ * the character must be in the range 0-255, and is not /l
+ * (Not /l because we already handled these under /l in
+ * is_PROBLEMATIC_LOCALE_FOLD_cp) */
+ if (IS_IN_SOME_FOLD_L1(ender)) {
+ maybe_exact = FALSE;
+
+ /* See if the character's fold differs between /d and
+ * /u. This includes the multi-char fold SHARP S to
+ * 'ss' */
+ if (maybe_exactfu
+ && (PL_fold[ender] != PL_fold_latin1[ender]
+ || ender == LATIN_SMALL_LETTER_SHARP_S
+ || (len > 0
+ && isALPHA_FOLD_EQ(ender, 's')
+ && isALPHA_FOLD_EQ(*(s-1), 's'))))
+ {
+ maybe_exactfu = FALSE;
+ }
+ }
+
+ /* Even when folding, we store just the input character, as
+ * we have an array that finds its fold quickly */
+ *(s++) = (char) ender;
+ }
+ else { /* FOLD and UTF */
+ /* Unlike the non-fold case, we do actually have to
+ * calculate the results here in pass 1. This is for two
+ * reasons, the folded length may be longer than the
+ * unfolded, and we have to calculate how many EXACTish
+ * nodes it will take; and we may run out of room in a node
+ * in the middle of a potential multi-char fold, and have
+ * to back off accordingly. */
+
+ UV folded;
+ if (isASCII_uni(ender)) {
+ folded = toFOLD(ender);
+ *(s)++ = (U8) folded;
+ }
+ else {
+ STRLEN foldlen;
+
+ folded = _to_uni_fold_flags(
+ ender,
+ (U8 *) s,
+ &foldlen,
+ FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
+ ? FOLD_FLAGS_NOMIX_ASCII
+ : 0));
+ s += foldlen;
+
+ /* The loop increments <len> each time, as all but this
+ * path (and one other) through it add a single byte to
+ * the EXACTish node. But this one has changed len to
+ * be the correct final value, so subtract one to
+ * cancel out the increment that follows */
+ len += foldlen - 1;
+ }
+ /* If this node only contains non-folding code points so
+ * far, see if this new one is also non-folding */
+ if (maybe_exact) {
+ if (folded != ender) {
+ maybe_exact = FALSE;
+ }
+ else {
+ /* Here the fold is the original; we have to check
+ * further to see if anything folds to it */
+ if (_invlist_contains_cp(PL_utf8_foldable,
+ ender))
+ {
+ maybe_exact = FALSE;
+ }
+ }
+ }
+ ender = folded;
+ }
+
+ if (next_is_quantifier) {
+
+ /* Here, the next input is a quantifier, and to get here,
+ * the current character is the only one in the node.
+ * Also, here <len> doesn't include the final byte for this
+ * character */
+ len++;
+ goto loopdone;
+ }
+
+ } /* End of loop through literal characters */
+
+ /* Here we have either exhausted the input or ran out of room in
+ * the node. (If we encountered a character that can't be in the
+ * node, transfer is made directly to <loopdone>, and so we
+ * wouldn't have fallen off the end of the loop.) In the latter
+ * case, we artificially have to split the node into two, because
+ * we just don't have enough space to hold everything. This
+ * creates a problem if the final character participates in a
+ * multi-character fold in the non-final position, as a match that
+ * should have occurred won't, due to the way nodes are matched,
+ * and our artificial boundary. So back off until we find a non-
+ * problematic character -- one that isn't at the beginning or
+ * middle of such a fold. (Either it doesn't participate in any
+ * folds, or appears only in the final position of all the folds it
+ * does participate in.) A better solution with far fewer false
+ * positives, and that would fill the nodes more completely, would
+ * be to actually have available all the multi-character folds to
+ * test against, and to back-off only far enough to be sure that
+ * this node isn't ending with a partial one. <upper_parse> is set
+ * further below (if we need to reparse the node) to include just
+ * up through that final non-problematic character that this code
+ * identifies, so when it is set to less than the full node, we can
+ * skip the rest of this */
+ if (FOLD && p < RExC_end && upper_parse == MAX_NODE_STRING_SIZE) {
+
+ const STRLEN full_len = len;
+
+ assert(len >= MAX_NODE_STRING_SIZE);
+
+ /* Here, <s> points to the final byte of the final character.
+ * Look backwards through the string until find a non-
+ * problematic character */
+
+ if (! UTF) {
+
+ /* This has no multi-char folds to non-UTF characters */
+ if (ASCII_FOLD_RESTRICTED) {
+ goto loopdone;
+ }
+
+ while (--s >= s0 && IS_NON_FINAL_FOLD(*s)) { }
+ len = s - s0 + 1;
+ }
+ else {
+ if (! PL_NonL1NonFinalFold) {
+ PL_NonL1NonFinalFold = _new_invlist_C_array(
+ NonL1_Perl_Non_Final_Folds_invlist);
+ }
+
+ /* Point to the first byte of the final character */
+ s = (char *) utf8_hop((U8 *) s, -1);
+
+ while (s >= s0) { /* Search backwards until find
+ non-problematic char */
+ if (UTF8_IS_INVARIANT(*s)) {
+
+ /* There are no ascii characters that participate
+ * in multi-char folds under /aa. In EBCDIC, the
+ * non-ascii invariants are all control characters,
+ * so don't ever participate in any folds. */
+ if (ASCII_FOLD_RESTRICTED
+ || ! IS_NON_FINAL_FOLD(*s))
+ {
+ break;
+ }
+ }
+ else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
+ if (! IS_NON_FINAL_FOLD(TWO_BYTE_UTF8_TO_NATIVE(
+ *s, *(s+1))))
+ {
+ break;
+ }
+ }
+ else if (! _invlist_contains_cp(
+ PL_NonL1NonFinalFold,
+ valid_utf8_to_uvchr((U8 *) s, NULL)))
+ {
+ break;
+ }
+
+ /* Here, the current character is problematic in that
+ * it does occur in the non-final position of some
+ * fold, so try the character before it, but have to
+ * special case the very first byte in the string, so
+ * we don't read outside the string */
+ s = (s == s0) ? s -1 : (char *) utf8_hop((U8 *) s, -1);
+ } /* End of loop backwards through the string */
+
+ /* If there were only problematic characters in the string,
+ * <s> will point to before s0, in which case the length
+ * should be 0, otherwise include the length of the
+ * non-problematic character just found */
+ len = (s < s0) ? 0 : s - s0 + UTF8SKIP(s);
+ }
+
+ /* Here, have found the final character, if any, that is
+ * non-problematic as far as ending the node without splitting
+ * it across a potential multi-char fold. <len> contains the
+ * number of bytes in the node up-to and including that
+ * character, or is 0 if there is no such character, meaning
+ * the whole node contains only problematic characters. In
+ * this case, give up and just take the node as-is. We can't
+ * do any better */
+ if (len == 0) {
+ len = full_len;
+
+ /* If the node ends in an 's' we make sure it stays EXACTF,
+ * as if it turns into an EXACTFU, it could later get
+ * joined with another 's' that would then wrongly match
+ * the sharp s */
+ if (maybe_exactfu && isALPHA_FOLD_EQ(ender, 's'))
+ {
+ maybe_exactfu = FALSE;
+ }
+ } else {
+
+ /* Here, the node does contain some characters that aren't
+ * problematic. If one such is the final character in the
+ * node, we are done */
+ if (len == full_len) {
+ goto loopdone;
+ }
+ else if (len + ((UTF) ? UTF8SKIP(s) : 1) == full_len) {
+
+ /* If the final character is problematic, but the
+ * penultimate is not, back-off that last character to
+ * later start a new node with it */
+ p = oldp;
+ goto loopdone;
+ }
+
+ /* Here, the final non-problematic character is earlier
+ * in the input than the penultimate character. What we do
+ * is reparse from the beginning, going up only as far as
+ * this final ok one, thus guaranteeing that the node ends
+ * in an acceptable character. The reason we reparse is
+ * that we know how far in the character is, but we don't
+ * know how to correlate its position with the input parse.
+ * An alternate implementation would be to build that
+ * correlation as we go along during the original parse,
+ * but that would entail extra work for every node, whereas
+ * this code gets executed only when the string is too
+ * large for the node, and the final two characters are
+ * problematic, an infrequent occurrence. Yet another
+ * possible strategy would be to save the tail of the
+ * string, and the next time regatom is called, initialize
+ * with that. The problem with this is that unless you
+ * back off one more character, you won't be guaranteed
+ * regatom will get called again, unless regbranch,
+ * regpiece ... are also changed. If you do back off that
+ * extra character, so that there is input guaranteed to
+ * force calling regatom, you can't handle the case where
+ * just the first character in the node is acceptable. I
+ * (khw) decided to try this method which doesn't have that
+ * pitfall; if performance issues are found, we can do a
+ * combination of the current approach plus that one */
+ upper_parse = len;
+ len = 0;
+ s = s0;
+ goto reparse;
+ }
+ } /* End of verifying node ends with an appropriate char */
+
+ loopdone: /* Jumped to when encounters something that shouldn't be
+ in the node */
+
+ /* I (khw) don't know if you can get here with zero length, but the
+ * old code handled this situation by creating a zero-length EXACT
+ * node. Might as well be NOTHING instead */
+ if (len == 0) {
+ OP(ret) = NOTHING;
+ }
+ else {
+ if (FOLD) {
+ /* If 'maybe_exact' is still set here, means there are no
+ * code points in the node that participate in folds;
+ * similarly for 'maybe_exactfu' and code points that match
+ * differently depending on UTF8ness of the target string
+ * (for /u), or depending on locale for /l */
+ if (maybe_exact) {
+ OP(ret) = (LOC)
+ ? EXACTL
+ : EXACT;
+ }
+ else if (maybe_exactfu) {
+ OP(ret) = (LOC)
+ ? EXACTFLU8
+ : EXACTFU;
+ }
+ }
+ alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, len, ender,
+ FALSE /* Don't look to see if could
+ be turned into an EXACT
+ node, as we have already
+ computed that */
+ );
+ }
+
+ RExC_parse = p - 1;
+ Set_Node_Cur_Length(ret, parse_start);
+ nextchar(pRExC_state);
+ {
+ /* len is STRLEN which is unsigned, need to copy to signed */
+ IV iv = len;
+ if (iv < 0)
+ vFAIL("Internal disaster");
+ }
+
+ } /* End of label 'defchar:' */
+ break;
+ } /* End of giant switch on input character */
+
+ return(ret);
+}
+
+STATIC char *
+S_regpatws(RExC_state_t *pRExC_state, char *p , const bool recognize_comment )
+{
+ /* Returns the next non-pattern-white space, non-comment character (the
+ * latter only if 'recognize_comment is true) in the string p, which is
+ * ended by RExC_end. See also reg_skipcomment */
+ const char *e = RExC_end;
+
+ PERL_ARGS_ASSERT_REGPATWS;
+
+ while (p < e) {
+ STRLEN len;
+ if ((len = is_PATWS_safe(p, e, UTF))) {
+ p += len;
+ }
+ else if (recognize_comment && *p == '#') {
+ p = reg_skipcomment(pRExC_state, p);
+ }
+ else
+ break;
+ }
+ return p;
+}
+
+STATIC void
+S_populate_ANYOF_from_invlist(pTHX_ regnode *node, SV** invlist_ptr)
+{
+ /* Uses the inversion list '*invlist_ptr' to populate the ANYOF 'node'. It
+ * sets up the bitmap and any flags, removing those code points from the
+ * inversion list, setting it to NULL should it become completely empty */
+
+ PERL_ARGS_ASSERT_POPULATE_ANYOF_FROM_INVLIST;
+ assert(PL_regkind[OP(node)] == ANYOF);
+
+ ANYOF_BITMAP_ZERO(node);
+ if (*invlist_ptr) {
+
+ /* This gets set if we actually need to modify things */
+ bool change_invlist = FALSE;
+
+ UV start, end;
+
+ /* Start looking through *invlist_ptr */
+ invlist_iterinit(*invlist_ptr);
+ while (invlist_iternext(*invlist_ptr, &start, &end)) {
+ UV high;
+ int i;
+
+ if (end == UV_MAX && start <= NUM_ANYOF_CODE_POINTS) {
+ ANYOF_FLAGS(node) |= ANYOF_MATCHES_ALL_ABOVE_BITMAP;
+ }
+ else if (end >= NUM_ANYOF_CODE_POINTS) {
+ ANYOF_FLAGS(node) |= ANYOF_HAS_UTF8_NONBITMAP_MATCHES;
+ }
+
+ /* Quit if are above what we should change */
+ if (start >= NUM_ANYOF_CODE_POINTS) {
+ break;
+ }
+
+ change_invlist = TRUE;
+
+ /* Set all the bits in the range, up to the max that we are doing */
+ high = (end < NUM_ANYOF_CODE_POINTS - 1)
+ ? end
+ : NUM_ANYOF_CODE_POINTS - 1;
+ for (i = start; i <= (int) high; i++) {
+ if (! ANYOF_BITMAP_TEST(node, i)) {
+ ANYOF_BITMAP_SET(node, i);
+ }
+ }
+ }
+ invlist_iterfinish(*invlist_ptr);
+
+ /* Done with loop; remove any code points that are in the bitmap from
+ * *invlist_ptr; similarly for code points above the bitmap if we have
+ * a flag to match all of them anyways */
+ if (change_invlist) {
+ _invlist_subtract(*invlist_ptr, PL_InBitmap, invlist_ptr);
+ }
+ if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
+ _invlist_intersection(*invlist_ptr, PL_InBitmap, invlist_ptr);
+ }
+
+ /* If have completely emptied it, remove it completely */
+ if (_invlist_len(*invlist_ptr) == 0) {
+ SvREFCNT_dec_NN(*invlist_ptr);
+ *invlist_ptr = NULL;
+ }
+ }
+}
+
+/* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
+ Character classes ([:foo:]) can also be negated ([:^foo:]).
+ Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
+ Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
+ but trigger failures because they are currently unimplemented. */
+
+#define POSIXCC_DONE(c) ((c) == ':')
+#define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
+#define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
+
+PERL_STATIC_INLINE I32
+S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value, const bool strict)
+{
+ I32 namedclass = OOB_NAMEDCLASS;
+
+ PERL_ARGS_ASSERT_REGPPOSIXCC;
+
+ if (value == '[' && RExC_parse + 1 < RExC_end &&
+ /* I smell either [: or [= or [. -- POSIX has been here, right? */
+ POSIXCC(UCHARAT(RExC_parse)))
+ {
+ const char c = UCHARAT(RExC_parse);
+ char* const s = RExC_parse++;
+
+ while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
+ RExC_parse++;
+ if (RExC_parse == RExC_end) {
+ if (strict) {
+
+ /* Try to give a better location for the error (than the end of
+ * the string) by looking for the matching ']' */
+ RExC_parse = s;
+ while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
+ RExC_parse++;
+ }
+ vFAIL2("Unmatched '%c' in POSIX class", c);
+ }
+ /* Grandfather lone [:, [=, [. */
+ RExC_parse = s;
+ }
+ else {
+ const char* const t = RExC_parse++; /* skip over the c */
+ assert(*t == c);
+
+ if (UCHARAT(RExC_parse) == ']') {
+ const char *posixcc = s + 1;
+ RExC_parse++; /* skip over the ending ] */
+
+ if (*s == ':') {
+ const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
+ const I32 skip = t - posixcc;
+
+ /* Initially switch on the length of the name. */
+ switch (skip) {
+ case 4:
+ if (memEQ(posixcc, "word", 4)) /* this is not POSIX,
+ this is the Perl \w
+ */
+ namedclass = ANYOF_WORDCHAR;
+ break;
+ case 5:
+ /* Names all of length 5. */
+ /* alnum alpha ascii blank cntrl digit graph lower
+ print punct space upper */
+ /* Offset 4 gives the best switch position. */
+ switch (posixcc[4]) {
+ case 'a':
+ if (memEQ(posixcc, "alph", 4)) /* alpha */
+ namedclass = ANYOF_ALPHA;
+ break;
+ case 'e':
+ if (memEQ(posixcc, "spac", 4)) /* space */
+ namedclass = ANYOF_SPACE;
+ break;
+ case 'h':
+ if (memEQ(posixcc, "grap", 4)) /* graph */
+ namedclass = ANYOF_GRAPH;
+ break;
+ case 'i':
+ if (memEQ(posixcc, "asci", 4)) /* ascii */
+ namedclass = ANYOF_ASCII;
+ break;
+ case 'k':
+ if (memEQ(posixcc, "blan", 4)) /* blank */
+ namedclass = ANYOF_BLANK;
+ break;
+ case 'l':
+ if (memEQ(posixcc, "cntr", 4)) /* cntrl */
+ namedclass = ANYOF_CNTRL;
+ break;
+ case 'm':
+ if (memEQ(posixcc, "alnu", 4)) /* alnum */
+ namedclass = ANYOF_ALPHANUMERIC;
+ break;
+ case 'r':
+ if (memEQ(posixcc, "lowe", 4)) /* lower */
+ namedclass = (FOLD) ? ANYOF_CASED : ANYOF_LOWER;
+ else if (memEQ(posixcc, "uppe", 4)) /* upper */
+ namedclass = (FOLD) ? ANYOF_CASED : ANYOF_UPPER;
+ break;
+ case 't':
+ if (memEQ(posixcc, "digi", 4)) /* digit */
+ namedclass = ANYOF_DIGIT;
+ else if (memEQ(posixcc, "prin", 4)) /* print */
+ namedclass = ANYOF_PRINT;
+ else if (memEQ(posixcc, "punc", 4)) /* punct */
+ namedclass = ANYOF_PUNCT;
+ break;
+ }
+ break;
+ case 6:
+ if (memEQ(posixcc, "xdigit", 6))
+ namedclass = ANYOF_XDIGIT;
+ break;
+ }
+
+ if (namedclass == OOB_NAMEDCLASS)
+ vFAIL2utf8f(
+ "POSIX class [:%"UTF8f":] unknown",
+ UTF8fARG(UTF, t - s - 1, s + 1));
+
+ /* The #defines are structured so each complement is +1 to
+ * the normal one */
+ if (complement) {
+ namedclass++;
+ }
+ assert (posixcc[skip] == ':');
+ assert (posixcc[skip+1] == ']');
+ } else if (!SIZE_ONLY) {
+ /* [[=foo=]] and [[.foo.]] are still future. */
+
+ /* adjust RExC_parse so the warning shows after
+ the class closes */
+ while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
+ RExC_parse++;
+ vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
+ }
+ } else {
+ /* Maternal grandfather:
+ * "[:" ending in ":" but not in ":]" */
+ if (strict) {
+ vFAIL("Unmatched '[' in POSIX class");
+ }
+
+ /* Grandfather lone [:, [=, [. */
+ RExC_parse = s;
+ }
+ }
+ }
+
+ return namedclass;
+}
+
+STATIC bool
+S_could_it_be_a_POSIX_class(RExC_state_t *pRExC_state)
+{
+ /* This applies some heuristics at the current parse position (which should
+ * be at a '[') to see if what follows might be intended to be a [:posix:]
+ * class. It returns true if it really is a posix class, of course, but it
+ * also can return true if it thinks that what was intended was a posix
+ * class that didn't quite make it.
+ *
+ * It will return true for
+ * [:alphanumerics:
+ * [:alphanumerics] (as long as the ] isn't followed immediately by a
+ * ')' indicating the end of the (?[
+ * [:any garbage including %^&$ punctuation:]
+ *
+ * This is designed to be called only from S_handle_regex_sets; it could be
+ * easily adapted to be called from the spot at the beginning of regclass()
+ * that checks to see in a normal bracketed class if the surrounding []
+ * have been omitted ([:word:] instead of [[:word:]]). But doing so would
+ * change long-standing behavior, so I (khw) didn't do that */
+ char* p = RExC_parse + 1;
+ char first_char = *p;
+
+ PERL_ARGS_ASSERT_COULD_IT_BE_A_POSIX_CLASS;
+
+ assert(*(p - 1) == '[');
+
+ if (! POSIXCC(first_char)) {
+ return FALSE;
+ }
+
+ p++;
+ while (p < RExC_end && isWORDCHAR(*p)) p++;
+
+ if (p >= RExC_end) {
+ return FALSE;
+ }
+
+ if (p - RExC_parse > 2 /* Got at least 1 word character */
+ && (*p == first_char
+ || (*p == ']' && p + 1 < RExC_end && *(p + 1) != ')')))
+ {
+ return TRUE;
+ }
+
+ p = (char *) memchr(RExC_parse, ']', RExC_end - RExC_parse);
+
+ return (p
+ && p - RExC_parse > 2 /* [:] evaluates to colon;
+ [::] is a bad posix class. */
+ && first_char == *(p - 1));
+}
+
+STATIC unsigned int
+S_regex_set_precedence(const U8 my_operator) {
+
+ /* Returns the precedence in the (?[...]) construct of the input operator,
+ * specified by its character representation. The precedence follows
+ * general Perl rules, but it extends this so that ')' and ']' have (low)
+ * precedence even though they aren't really operators */
+
+ switch (my_operator) {
+ case '!':
+ return 5;
+ case '&':
+ return 4;
+ case '^':
+ case '|':
+ case '+':
+ case '-':
+ return 3;
+ case ')':
+ return 2;
+ case ']':
+ return 1;
+ }
+
+ NOT_REACHED; /* NOTREACHED */
+ return 0; /* Silence compiler warning */
+}
+
+STATIC regnode *
+S_handle_regex_sets(pTHX_ RExC_state_t *pRExC_state, SV** return_invlist,
+ I32 *flagp, U32 depth,
+ char * const oregcomp_parse)
+{
+ /* Handle the (?[...]) construct to do set operations */
+
+ U8 curchar; /* Current character being parsed */
+ UV start, end; /* End points of code point ranges */
+ SV* final = NULL; /* The end result inversion list */
+ SV* result_string; /* 'final' stringified */
+ AV* stack; /* stack of operators and operands not yet
+ resolved */
+ AV* fence_stack = NULL; /* A stack containing the positions in
+ 'stack' of where the undealt-with left
+ parens would be if they were actually
+ put there */
+ IV fence = 0; /* Position of where most recent undealt-
+ with left paren in stack is; -1 if none.
+ */
+ STRLEN len; /* Temporary */
+ regnode* node; /* Temporary, and final regnode returned by
+ this function */
+ const bool save_fold = FOLD; /* Temporary */
+ char *save_end, *save_parse; /* Temporaries */
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_HANDLE_REGEX_SETS;
+
+ if (LOC) { /* XXX could make valid in UTF-8 locales */
+ vFAIL("(?[...]) not valid in locale");
+ }
+ RExC_uni_semantics = 1; /* The use of this operator implies /u. This
+ is required so that the compile time values
+ are valid in all runtime cases */
+
+ /* This will return only an ANYOF regnode, or (unlikely) something smaller
+ * (such as EXACT). Thus we can skip most everything if just sizing. We
+ * call regclass to handle '[]' so as to not have to reinvent its parsing
+ * rules here (throwing away the size it computes each time). And, we exit
+ * upon an unescaped ']' that isn't one ending a regclass. To do both
+ * these things, we need to realize that something preceded by a backslash
+ * is escaped, so we have to keep track of backslashes */
+ if (SIZE_ONLY) {
+ UV depth = 0; /* how many nested (?[...]) constructs */
+
+ while (RExC_parse < RExC_end) {
+ SV* current = NULL;
+ RExC_parse = regpatws(pRExC_state, RExC_parse,
+ TRUE); /* means recognize comments */
+ switch (*RExC_parse) {
+ case '?':
+ if (RExC_parse[1] == '[') depth++, RExC_parse++;
+ /* FALLTHROUGH */
+ default:
+ break;
+ case '\\':
+ /* Skip the next byte (which could cause us to end up in
+ * the middle of a UTF-8 character, but since none of those
+ * are confusable with anything we currently handle in this
+ * switch (invariants all), it's safe. We'll just hit the
+ * default: case next time and keep on incrementing until
+ * we find one of the invariants we do handle. */
+ RExC_parse++;
+ break;
+ case '[':
+ {
+ /* If this looks like it is a [:posix:] class, leave the
+ * parse pointer at the '[' to fool regclass() into
+ * thinking it is part of a '[[:posix:]]'. That function
+ * will use strict checking to force a syntax error if it
+ * doesn't work out to a legitimate class */
+ bool is_posix_class
+ = could_it_be_a_POSIX_class(pRExC_state);
+ if (! is_posix_class) {
+ RExC_parse++;
+ }
+
+ /* regclass() can only return RESTART_UTF8 if multi-char
+ folds are allowed. */
+ if (!regclass(pRExC_state, flagp,depth+1,
+ is_posix_class, /* parse the whole char
+ class only if not a
+ posix class */
+ FALSE, /* don't allow multi-char folds */
+ TRUE, /* silence non-portable warnings. */
+ TRUE, /* strict */
+ ¤t
+ ))
+ FAIL2("panic: regclass returned NULL to handle_sets, "
+ "flags=%#"UVxf"", (UV) *flagp);
+
+ /* function call leaves parse pointing to the ']', except
+ * if we faked it */
+ if (is_posix_class) {
+ RExC_parse--;
+ }
+
+ SvREFCNT_dec(current); /* In case it returned something */
+ break;
+ }
+
+ case ']':
+ if (depth--) break;
+ RExC_parse++;
+ if (RExC_parse < RExC_end
+ && *RExC_parse == ')')
+ {
+ node = reganode(pRExC_state, ANYOF, 0);
+ RExC_size += ANYOF_SKIP;
+ nextchar(pRExC_state);
+ Set_Node_Length(node,
+ RExC_parse - oregcomp_parse + 1); /* MJD */
+ return node;
+ }
+ goto no_close;
+ }
+ RExC_parse++;
+ }
+
+ no_close:
+ FAIL("Syntax error in (?[...])");
+ }
+
+ /* Pass 2 only after this. */
+ Perl_ck_warner_d(aTHX_
+ packWARN(WARN_EXPERIMENTAL__REGEX_SETS),
+ "The regex_sets feature is experimental" REPORT_LOCATION,
+ UTF8fARG(UTF, (RExC_parse - RExC_precomp), RExC_precomp),
+ UTF8fARG(UTF,
+ RExC_end - RExC_start - (RExC_parse - RExC_precomp),
+ RExC_precomp + (RExC_parse - RExC_precomp)));
+
+ /* Everything in this construct is a metacharacter. Operands begin with
+ * either a '\' (for an escape sequence), or a '[' for a bracketed
+ * character class. Any other character should be an operator, or
+ * parenthesis for grouping. Both types of operands are handled by calling
+ * regclass() to parse them. It is called with a parameter to indicate to
+ * return the computed inversion list. The parsing here is implemented via
+ * a stack. Each entry on the stack is a single character representing one
+ * of the operators; or else a pointer to an operand inversion list. */
+
+#define IS_OPERAND(a) (! SvIOK(a))
+
+ /* The stack is kept in Łukasiewicz order. (That's pronounced similar
+ * to luke-a-shave-itch (or -itz), but people who didn't want to bother
+ * with prounouncing it called it Reverse Polish instead, but now that YOU
+ * know how to prounounce it you can use the correct term, thus giving due
+ * credit to the person who invented it, and impressing your geek friends.
+ * Wikipedia says that the pronounciation of "Ł" has been changing so that
+ * it is now more like an English initial W (as in wonk) than an L.)
+ *
+ * This means that, for example, 'a | b & c' is stored on the stack as
+ *
+ * c [4]
+ * b [3]
+ * & [2]
+ * a [1]
+ * | [0]
+ *
+ * where the numbers in brackets give the stack [array] element number.
+ * In this implementation, parentheses are not stored on the stack.
+ * Instead a '(' creates a "fence" so that the part of the stack below the
+ * fence is invisible except to the corresponding ')' (this allows us to
+ * replace testing for parens, by using instead subtraction of the fence
+ * position). As new operands are processed they are pushed onto the stack
+ * (except as noted in the next paragraph). New operators of higher
+ * precedence than the current final one are inserted on the stack before
+ * the lhs operand (so that when the rhs is pushed next, everything will be
+ * in the correct positions shown above. When an operator of equal or
+ * lower precedence is encountered in parsing, all the stacked operations
+ * of equal or higher precedence are evaluated, leaving the result as the
+ * top entry on the stack. This makes higher precedence operations
+ * evaluate before lower precedence ones, and causes operations of equal
+ * precedence to left associate.
+ *
+ * The only unary operator '!' is immediately pushed onto the stack when
+ * encountered. When an operand is encountered, if the top of the stack is
+ * a '!", the complement is immediately performed, and the '!' popped. The
+ * resulting value is treated as a new operand, and the logic in the
+ * previous paragraph is executed. Thus in the expression
+ * [a] + ! [b]
+ * the stack looks like
+ *
+ * !
+ * a
+ * +
+ *
+ * as 'b' gets parsed, the latter gets evaluated to '!b', and the stack
+ * becomes
+ *
+ * !b
+ * a
+ * +
+ *
+ * A ')' is treated as an operator with lower precedence than all the
+ * aforementioned ones, which causes all operations on the stack above the
+ * corresponding '(' to be evaluated down to a single resultant operand.
+ * Then the fence for the '(' is removed, and the operand goes through the
+ * algorithm above, without the fence.
+ *
+ * A separate stack is kept of the fence positions, so that the position of
+ * the latest so-far unbalanced '(' is at the top of it.
+ *
+ * The ']' ending the construct is treated as the lowest operator of all,
+ * so that everything gets evaluated down to a single operand, which is the
+ * result */
+
+ sv_2mortal((SV *)(stack = newAV()));
+ sv_2mortal((SV *)(fence_stack = newAV()));
+
+ while (RExC_parse < RExC_end) {
+ I32 top_index; /* Index of top-most element in 'stack' */
+ SV** top_ptr; /* Pointer to top 'stack' element */
+ SV* current = NULL; /* To contain the current inversion list
+ operand */
+ SV* only_to_avoid_leaks;
+
+ /* Skip white space */
+ RExC_parse = regpatws(pRExC_state, RExC_parse,
+ TRUE /* means recognize comments */ );
+ if (RExC_parse >= RExC_end) {
+ Perl_croak(aTHX_ "panic: Read past end of '(?[ ])'");
+ }
+
+ curchar = UCHARAT(RExC_parse);
+
+redo_curchar:
+
+ top_index = av_tindex(stack);
+
+ switch (curchar) {
+ SV** stacked_ptr; /* Ptr to something already on 'stack' */
+ char stacked_operator; /* The topmost operator on the 'stack'. */
+ SV* lhs; /* Operand to the left of the operator */
+ SV* rhs; /* Operand to the right of the operator */
+ SV* fence_ptr; /* Pointer to top element of the fence
+ stack */
+
+ case '(':
+
+ if (RExC_parse < RExC_end && (UCHARAT(RExC_parse + 1) == '?'))
+ {
+ /* If is a '(?', could be an embedded '(?flags:(?[...])'.
+ * This happens when we have some thing like
+ *
+ * my $thai_or_lao = qr/(?[ \p{Thai} + \p{Lao} ])/;
+ * ...
+ * qr/(?[ \p{Digit} & $thai_or_lao ])/;
+ *
+ * Here we would be handling the interpolated
+ * '$thai_or_lao'. We handle this by a recursive call to
+ * ourselves which returns the inversion list the
+ * interpolated expression evaluates to. We use the flags
+ * from the interpolated pattern. */
+ U32 save_flags = RExC_flags;
+ const char * save_parse;
+
+ RExC_parse += 2; /* Skip past the '(?' */
+ save_parse = RExC_parse;
+
+ /* Parse any flags for the '(?' */
+ parse_lparen_question_flags(pRExC_state);
+
+ if (RExC_parse == save_parse /* Makes sure there was at
+ least one flag (or else
+ this embedding wasn't
+ compiled) */
+ || RExC_parse >= RExC_end - 4
+ || UCHARAT(RExC_parse) != ':'
+ || UCHARAT(++RExC_parse) != '('
+ || UCHARAT(++RExC_parse) != '?'
+ || UCHARAT(++RExC_parse) != '[')
+ {
+
+ /* In combination with the above, this moves the
+ * pointer to the point just after the first erroneous
+ * character (or if there are no flags, to where they
+ * should have been) */
+ if (RExC_parse >= RExC_end - 4) {
+ RExC_parse = RExC_end;
+ }
+ else if (RExC_parse != save_parse) {
+ RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+ }
+ vFAIL("Expecting '(?flags:(?[...'");
+ }
+
+ /* Recurse, with the meat of the embedded expression */
+ RExC_parse++;
+ (void) handle_regex_sets(pRExC_state, ¤t, flagp,
+ depth+1, oregcomp_parse);
+
+ /* Here, 'current' contains the embedded expression's
+ * inversion list, and RExC_parse points to the trailing
+ * ']'; the next character should be the ')' */
+ RExC_parse++;
+ assert(RExC_parse < RExC_end && UCHARAT(RExC_parse) == ')');
+
+ /* Then the ')' matching the original '(' handled by this
+ * case: statement */
+ RExC_parse++;
+ assert(RExC_parse < RExC_end && UCHARAT(RExC_parse) == ')');
+
+ RExC_parse++;
+ RExC_flags = save_flags;
+ goto handle_operand;
+ }
+
+ /* A regular '('. Look behind for illegal syntax */
+ if (top_index - fence >= 0) {
+ /* If the top entry on the stack is an operator, it had
+ * better be a '!', otherwise the entry below the top
+ * operand should be an operator */
+ if ( ! (top_ptr = av_fetch(stack, top_index, FALSE))
+ || (! IS_OPERAND(*top_ptr) && SvUV(*top_ptr) != '!')
+ || top_index - fence < 1
+ || ! (stacked_ptr = av_fetch(stack,
+ top_index - 1,
+ FALSE))
+ || IS_OPERAND(*stacked_ptr))
+ {
+ RExC_parse++;
+ vFAIL("Unexpected '(' with no preceding operator");
+ }
+ }
+
+ /* Stack the position of this undealt-with left paren */
+ fence = top_index + 1;
+ av_push(fence_stack, newSViv(fence));
+ break;
+
+ case '\\':
+ /* regclass() can only return RESTART_UTF8 if multi-char
+ folds are allowed. */
+ if (!regclass(pRExC_state, flagp,depth+1,
+ TRUE, /* means parse just the next thing */
+ FALSE, /* don't allow multi-char folds */
+ FALSE, /* don't silence non-portable warnings. */
+ TRUE, /* strict */
+ ¤t))
+ {
+ FAIL2("panic: regclass returned NULL to handle_sets, "
+ "flags=%#"UVxf"", (UV) *flagp);
+ }
+
+ /* regclass() will return with parsing just the \ sequence,
+ * leaving the parse pointer at the next thing to parse */
+ RExC_parse--;
+ goto handle_operand;
+
+ case '[': /* Is a bracketed character class */
+ {
+ bool is_posix_class = could_it_be_a_POSIX_class(pRExC_state);
+
+ if (! is_posix_class) {
+ RExC_parse++;
+ }
+
+ /* regclass() can only return RESTART_UTF8 if multi-char
+ folds are allowed. */
+ if(!regclass(pRExC_state, flagp,depth+1,
+ is_posix_class, /* parse the whole char class
+ only if not a posix class */
+ FALSE, /* don't allow multi-char folds */
+ FALSE, /* don't silence non-portable warnings. */
+ TRUE, /* strict */
+ ¤t
+ ))
+ {
+ FAIL2("panic: regclass returned NULL to handle_sets, "
+ "flags=%#"UVxf"", (UV) *flagp);
+ }
+
+ /* function call leaves parse pointing to the ']', except if we
+ * faked it */
+ if (is_posix_class) {
+ RExC_parse--;
+ }
+
+ goto handle_operand;
+ }
+
+ case ']':
+ if (top_index >= 1) {
+ goto join_operators;
+ }
+
+ /* Only a single operand on the stack: are done */
+ goto done;
+
+ case ')':
+ if (av_tindex(fence_stack) < 0) {
+ RExC_parse++;
+ vFAIL("Unexpected ')'");
+ }
+
+ /* If at least two thing on the stack, treat this as an
+ * operator */
+ if (top_index - fence >= 1) {
+ goto join_operators;
+ }
+
+ /* Here only a single thing on the fenced stack, and there is a
+ * fence. Get rid of it */
+ fence_ptr = av_pop(fence_stack);
+ assert(fence_ptr);
+ fence = SvIV(fence_ptr) - 1;
+ SvREFCNT_dec_NN(fence_ptr);
+ fence_ptr = NULL;
+
+ if (fence < 0) {
+ fence = 0;
+ }
+
+ /* Having gotten rid of the fence, we pop the operand at the
+ * stack top and process it as a newly encountered operand */
+ current = av_pop(stack);
+ assert(IS_OPERAND(current));
+ goto handle_operand;
+
+ case '&':
+ case '|':
+ case '+':
+ case '-':
+ case '^':
+
+ /* These binary operators should have a left operand already
+ * parsed */
+ if ( top_index - fence < 0
+ || top_index - fence == 1
+ || ( ! (top_ptr = av_fetch(stack, top_index, FALSE)))
+ || ! IS_OPERAND(*top_ptr))
+ {
+ goto unexpected_binary;
+ }
+
+ /* If only the one operand is on the part of the stack visible
+ * to us, we just place this operator in the proper position */
+ if (top_index - fence < 2) {
+
+ /* Place the operator before the operand */
+
+ SV* lhs = av_pop(stack);
+ av_push(stack, newSVuv(curchar));
+ av_push(stack, lhs);
+ break;
+ }
+
+ /* But if there is something else on the stack, we need to
+ * process it before this new operator if and only if the
+ * stacked operation has equal or higher precedence than the
+ * new one */
+
+ join_operators:
+
+ /* The operator on the stack is supposed to be below both its
+ * operands */
+ if ( ! (stacked_ptr = av_fetch(stack, top_index - 2, FALSE))
+ || IS_OPERAND(*stacked_ptr))
+ {
+ /* But if not, it's legal and indicates we are completely
+ * done if and only if we're currently processing a ']',
+ * which should be the final thing in the expression */
+ if (curchar == ']') {
+ goto done;
+ }
+
+ unexpected_binary:
+ RExC_parse++;
+ vFAIL2("Unexpected binary operator '%c' with no "
+ "preceding operand", curchar);
+ }
+ stacked_operator = (char) SvUV(*stacked_ptr);
+
+ if (regex_set_precedence(curchar)
+ > regex_set_precedence(stacked_operator))
+ {
+ /* Here, the new operator has higher precedence than the
+ * stacked one. This means we need to add the new one to
+ * the stack to await its rhs operand (and maybe more
+ * stuff). We put it before the lhs operand, leaving
+ * untouched the stacked operator and everything below it
+ * */
+ lhs = av_pop(stack);
+ assert(IS_OPERAND(lhs));
+
+ av_push(stack, newSVuv(curchar));
+ av_push(stack, lhs);
+ break;
+ }
+
+ /* Here, the new operator has equal or lower precedence than
+ * what's already there. This means the operation already
+ * there should be performed now, before the new one. */
+ rhs = av_pop(stack);
+ lhs = av_pop(stack);
+
+ assert(IS_OPERAND(rhs));
+ assert(IS_OPERAND(lhs));
+
+ switch (stacked_operator) {
+ case '&':
+ _invlist_intersection(lhs, rhs, &rhs);
+ break;
+
+ case '|':
+ case '+':
+ _invlist_union(lhs, rhs, &rhs);
+ break;
+
+ case '-':
+ _invlist_subtract(lhs, rhs, &rhs);
+ break;
+
+ case '^': /* The union minus the intersection */
+ {
+ SV* i = NULL;
+ SV* u = NULL;
+ SV* element;
+
+ _invlist_union(lhs, rhs, &u);
+ _invlist_intersection(lhs, rhs, &i);
+ /* _invlist_subtract will overwrite rhs
+ without freeing what it already contains */
+ element = rhs;
+ _invlist_subtract(u, i, &rhs);
+ SvREFCNT_dec_NN(i);
+ SvREFCNT_dec_NN(u);
+ SvREFCNT_dec_NN(element);
+ break;
+ }
+ }
+ SvREFCNT_dec(lhs);
+
+ /* Here, the higher precedence operation has been done, and the
+ * result is in 'rhs'. We overwrite the stacked operator with
+ * the result. Then we redo this code to either push the new
+ * operator onto the stack or perform any higher precedence
+ * stacked operation */
+ only_to_avoid_leaks = av_pop(stack);
+ SvREFCNT_dec(only_to_avoid_leaks);
+ av_push(stack, rhs);
+ goto redo_curchar;
+
+ case '!': /* Highest priority, right associative, so just push
+ onto stack */
+ av_push(stack, newSVuv(curchar));
+ break;
+
+ default:
+ RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+ vFAIL("Unexpected character");
+
+ handle_operand:
+
+ /* Here 'current' is the operand. If something is already on the
+ * stack, we have to check if it is a !. */
+ top_index = av_tindex(stack); /* Code above may have altered the
+ * stack in the time since we
+ * earlier set 'top_index'. */
+ if (top_index - fence >= 0) {
+ /* If the top entry on the stack is an operator, it had better
+ * be a '!', otherwise the entry below the top operand should
+ * be an operator */
+ top_ptr = av_fetch(stack, top_index, FALSE);
+ assert(top_ptr);
+ if (! IS_OPERAND(*top_ptr)) {
+
+ /* The only permissible operator at the top of the stack is
+ * '!', which is applied immediately to this operand. */
+ curchar = (char) SvUV(*top_ptr);
+ if (curchar != '!') {
+ SvREFCNT_dec(current);
+ vFAIL2("Unexpected binary operator '%c' with no "
+ "preceding operand", curchar);
+ }
+
+ _invlist_invert(current);
+
+ only_to_avoid_leaks = av_pop(stack);
+ SvREFCNT_dec(only_to_avoid_leaks);
+ top_index = av_tindex(stack);
+
+ /* And we redo with the inverted operand. This allows
+ * handling multiple ! in a row */
+ goto handle_operand;
+ }
+ /* Single operand is ok only for the non-binary ')'
+ * operator */
+ else if ((top_index - fence == 0 && curchar != ')')
+ || (top_index - fence > 0
+ && (! (stacked_ptr = av_fetch(stack,
+ top_index - 1,
+ FALSE))
+ || IS_OPERAND(*stacked_ptr))))
+ {
+ SvREFCNT_dec(current);
+ vFAIL("Operand with no preceding operator");
+ }
+ }
+
+ /* Here there was nothing on the stack or the top element was
+ * another operand. Just add this new one */
+ av_push(stack, current);
+
+ } /* End of switch on next parse token */
+
+ RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+ } /* End of loop parsing through the construct */
+
+ done:
+ if (av_tindex(fence_stack) >= 0) {
+ vFAIL("Unmatched (");
+ }
+
+ if (av_tindex(stack) < 0 /* Was empty */
+ || ((final = av_pop(stack)) == NULL)
+ || ! IS_OPERAND(final)
+ || av_tindex(stack) >= 0) /* More left on stack */
+ {
+ SvREFCNT_dec(final);
+ vFAIL("Incomplete expression within '(?[ ])'");
+ }
+
+ /* Here, 'final' is the resultant inversion list from evaluating the
+ * expression. Return it if so requested */
+ if (return_invlist) {
+ *return_invlist = final;
+ return END;
+ }
+
+ /* Otherwise generate a resultant node, based on 'final'. regclass() is
+ * expecting a string of ranges and individual code points */
+ invlist_iterinit(final);
+ result_string = newSVpvs("");
+ while (invlist_iternext(final, &start, &end)) {
+ if (start == end) {
+ Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}", start);
+ }
+ else {
+ Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}-\\x{%"UVXf"}",
+ start, end);
+ }
+ }
+
+ /* About to generate an ANYOF (or similar) node from the inversion list we
+ * have calculated */
+ save_parse = RExC_parse;
+ RExC_parse = SvPV(result_string, len);
+ save_end = RExC_end;
+ RExC_end = RExC_parse + len;
+
+ /* We turn off folding around the call, as the class we have constructed
+ * already has all folding taken into consideration, and we don't want
+ * regclass() to add to that */
+ RExC_flags &= ~RXf_PMf_FOLD;
+ /* regclass() can only return RESTART_UTF8 if multi-char folds are allowed.
+ */
+ node = regclass(pRExC_state, flagp,depth+1,
+ FALSE, /* means parse the whole char class */
+ FALSE, /* don't allow multi-char folds */
+ TRUE, /* silence non-portable warnings. The above may very
+ well have generated non-portable code points, but
+ they're valid on this machine */
+ FALSE, /* similarly, no need for strict */
+ NULL
+ );
+ if (!node)
+ FAIL2("panic: regclass returned NULL to handle_sets, flags=%#"UVxf,
+ PTR2UV(flagp));
+ if (save_fold) {
+ RExC_flags |= RXf_PMf_FOLD;
+ }
+ RExC_parse = save_parse + 1;
+ RExC_end = save_end;
+ SvREFCNT_dec_NN(final);
+ SvREFCNT_dec_NN(result_string);
+
+ nextchar(pRExC_state);
+ Set_Node_Length(node, RExC_parse - oregcomp_parse + 1); /* MJD */
+ return node;
+}
+#undef IS_OPERAND
+
+STATIC void
+S_add_above_Latin1_folds(pTHX_ RExC_state_t *pRExC_state, const U8 cp, SV** invlist)
+{
+ /* This hard-codes the Latin1/above-Latin1 folding rules, so that an
+ * innocent-looking character class, like /[ks]/i won't have to go out to
+ * disk to find the possible matches.
+ *
+ * This should be called only for a Latin1-range code points, cp, which is
+ * known to be involved in a simple fold with other code points above
+ * Latin1. It would give false results if /aa has been specified.
+ * Multi-char folds are outside the scope of this, and must be handled
+ * specially.
+ *
+ * XXX It would be better to generate these via regen, in case a new
+ * version of the Unicode standard adds new mappings, though that is not
+ * really likely, and may be caught by the default: case of the switch
+ * below. */
+
+ PERL_ARGS_ASSERT_ADD_ABOVE_LATIN1_FOLDS;
+
+ assert(HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(cp));
+
+ switch (cp) {
+ case 'k':
+ case 'K':
+ *invlist =
+ add_cp_to_invlist(*invlist, KELVIN_SIGN);
+ break;
+ case 's':
+ case 'S':
+ *invlist = add_cp_to_invlist(*invlist, LATIN_SMALL_LETTER_LONG_S);
+ break;
+ case MICRO_SIGN:
+ *invlist = add_cp_to_invlist(*invlist, GREEK_CAPITAL_LETTER_MU);
+ *invlist = add_cp_to_invlist(*invlist, GREEK_SMALL_LETTER_MU);
+ break;
+ case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
+ case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
+ *invlist = add_cp_to_invlist(*invlist, ANGSTROM_SIGN);
+ break;
+ case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
+ *invlist = add_cp_to_invlist(*invlist,
+ LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
+ break;
+ case LATIN_SMALL_LETTER_SHARP_S:
+ *invlist = add_cp_to_invlist(*invlist, LATIN_CAPITAL_LETTER_SHARP_S);
+ break;
+ default:
+ /* Use deprecated warning to increase the chances of this being
+ * output */
+ if (PASS2) {
+ ckWARN2reg_d(RExC_parse, "Perl folding rules are not up-to-date for 0x%02X; please use the perlbug utility to report;", cp);
+ }
+ break;
+ }
+}
+
+STATIC AV *
+S_add_multi_match(pTHX_ AV* multi_char_matches, SV* multi_string, const STRLEN cp_count)
+{
+ /* This adds the string scalar <multi_string> to the array
+ * <multi_char_matches>. <multi_string> is known to have exactly
+ * <cp_count> code points in it. This is used when constructing a
+ * bracketed character class and we find something that needs to match more
+ * than a single character.
+ *
+ * <multi_char_matches> is actually an array of arrays. Each top-level
+ * element is an array that contains all the strings known so far that are
+ * the same length. And that length (in number of code points) is the same
+ * as the index of the top-level array. Hence, the [2] element is an
+ * array, each element thereof is a string containing TWO code points;
+ * while element [3] is for strings of THREE characters, and so on. Since
+ * this is for multi-char strings there can never be a [0] nor [1] element.
+ *
+ * When we rewrite the character class below, we will do so such that the
+ * longest strings are written first, so that it prefers the longest
+ * matching strings first. This is done even if it turns out that any
+ * quantifier is non-greedy, out of this programmer's (khw) laziness. Tom
+ * Christiansen has agreed that this is ok. This makes the test for the
+ * ligature 'ffi' come before the test for 'ff', for example */
+
+ AV* this_array;
+ AV** this_array_ptr;
+
+ PERL_ARGS_ASSERT_ADD_MULTI_MATCH;
+
+ if (! multi_char_matches) {
+ multi_char_matches = newAV();
+ }
+
+ if (av_exists(multi_char_matches, cp_count)) {
+ this_array_ptr = (AV**) av_fetch(multi_char_matches, cp_count, FALSE);
+ this_array = *this_array_ptr;
+ }
+ else {
+ this_array = newAV();
+ av_store(multi_char_matches, cp_count,
+ (SV*) this_array);
+ }
+ av_push(this_array, multi_string);
+
+ return multi_char_matches;
+}
+
+/* The names of properties whose definitions are not known at compile time are
+ * stored in this SV, after a constant heading. So if the length has been
+ * changed since initialization, then there is a run-time definition. */
+#define HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION \
+ (SvCUR(listsv) != initial_listsv_len)
+
+STATIC regnode *
+S_regclass(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth,
+ const bool stop_at_1, /* Just parse the next thing, don't
+ look for a full character class */
+ bool allow_multi_folds,
+ const bool silence_non_portable, /* Don't output warnings
+ about too large
+ characters */
+ const bool strict,
+ SV** ret_invlist /* Return an inversion list, not a node */
+ )
+{
+ /* parse a bracketed class specification. Most of these will produce an
+ * ANYOF node; but something like [a] will produce an EXACT node; [aA], an
+ * EXACTFish node; [[:ascii:]], a POSIXA node; etc. It is more complex
+ * under /i with multi-character folds: it will be rewritten following the
+ * paradigm of this example, where the <multi-fold>s are characters which
+ * fold to multiple character sequences:
+ * /[abc\x{multi-fold1}def\x{multi-fold2}ghi]/i
+ * gets effectively rewritten as:
+ * /(?:\x{multi-fold1}|\x{multi-fold2}|[abcdefghi]/i
+ * reg() gets called (recursively) on the rewritten version, and this
+ * function will return what it constructs. (Actually the <multi-fold>s
+ * aren't physically removed from the [abcdefghi], it's just that they are
+ * ignored in the recursion by means of a flag:
+ * <RExC_in_multi_char_class>.)
+ *
+ * ANYOF nodes contain a bit map for the first NUM_ANYOF_CODE_POINTS
+ * characters, with the corresponding bit set if that character is in the
+ * list. For characters above this, a range list or swash is used. There
+ * are extra bits for \w, etc. in locale ANYOFs, as what these match is not
+ * determinable at compile time
+ *
+ * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs
+ * to be restarted. This can only happen if ret_invlist is non-NULL.
+ */
+
+ UV prevvalue = OOB_UNICODE, save_prevvalue = OOB_UNICODE;
+ IV range = 0;
+ UV value = OOB_UNICODE, save_value = OOB_UNICODE;
+ regnode *ret;
+ STRLEN numlen;
+ IV namedclass = OOB_NAMEDCLASS;
+ char *rangebegin = NULL;
+ bool need_class = 0;
+ SV *listsv = NULL;
+ STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
+ than just initialized. */
+ SV* properties = NULL; /* Code points that match \p{} \P{} */
+ SV* posixes = NULL; /* Code points that match classes like [:word:],
+ extended beyond the Latin1 range. These have to
+ be kept separate from other code points for much
+ of this function because their handling is
+ different under /i, and for most classes under
+ /d as well */
+ SV* nposixes = NULL; /* Similarly for [:^word:]. These are kept
+ separate for a while from the non-complemented
+ versions because of complications with /d
+ matching */
+ SV* simple_posixes = NULL; /* But under some conditions, the classes can be
+ treated more simply than the general case,
+ leading to less compilation and execution
+ work */
+ UV element_count = 0; /* Number of distinct elements in the class.
+ Optimizations may be possible if this is tiny */
+ AV * multi_char_matches = NULL; /* Code points that fold to more than one
+ character; used under /i */
+ UV n;
+ char * stop_ptr = RExC_end; /* where to stop parsing */
+ const bool skip_white = cBOOL(ret_invlist); /* ignore unescaped white
+ space? */
+
+ /* Unicode properties are stored in a swash; this holds the current one
+ * being parsed. If this swash is the only above-latin1 component of the
+ * character class, an optimization is to pass it directly on to the
+ * execution engine. Otherwise, it is set to NULL to indicate that there
+ * are other things in the class that have to be dealt with at execution
+ * time */
+ SV* swash = NULL; /* Code points that match \p{} \P{} */
+
+ /* Set if a component of this character class is user-defined; just passed
+ * on to the engine */
+ bool has_user_defined_property = FALSE;
+
+ /* inversion list of code points this node matches only when the target
+ * string is in UTF-8. (Because is under /d) */
+ SV* depends_list = NULL;
+
+ /* Inversion list of code points this node matches regardless of things
+ * like locale, folding, utf8ness of the target string */
+ SV* cp_list = NULL;
+
+ /* Like cp_list, but code points on this list need to be checked for things
+ * that fold to/from them under /i */
+ SV* cp_foldable_list = NULL;
+
+ /* Like cp_list, but code points on this list are valid only when the
+ * runtime locale is UTF-8 */
+ SV* only_utf8_locale_list = NULL;
+
+ /* In a range, if one of the endpoints is non-character-set portable,
+ * meaning that it hard-codes a code point that may mean a different
+ * charactger in ASCII vs. EBCDIC, as opposed to, say, a literal 'A' or a
+ * mnemonic '\t' which each mean the same character no matter which
+ * character set the platform is on. */
+ unsigned int non_portable_endpoint = 0;
+
+ /* Is the range unicode? which means on a platform that isn't 1-1 native
+ * to Unicode (i.e. non-ASCII), each code point in it should be considered
+ * to be a Unicode value. */
+ bool unicode_range = FALSE;
+ bool invert = FALSE; /* Is this class to be complemented */
+
+ bool warn_super = ALWAYS_WARN_SUPER;
+
+ regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
+ case we need to change the emitted regop to an EXACT. */
+ const char * orig_parse = RExC_parse;
+ const SSize_t orig_size = RExC_size;
+ bool posixl_matches_all = FALSE; /* Does /l class have both e.g. \W,\w ? */
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGCLASS;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ DEBUG_PARSE("clas");
+
+ /* Assume we are going to generate an ANYOF node. */
+ ret = reganode(pRExC_state,
+ (LOC)
+ ? ANYOFL
+ : ANYOF,
+ 0);
+
+ if (SIZE_ONLY) {
+ RExC_size += ANYOF_SKIP;
+ listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
+ }
+ else {
+ ANYOF_FLAGS(ret) = 0;
+
+ RExC_emit += ANYOF_SKIP;
+ listsv = newSVpvs_flags("# comment\n", SVs_TEMP);
+ initial_listsv_len = SvCUR(listsv);
+ SvTEMP_off(listsv); /* Grr, TEMPs and mortals are conflated. */
+ }
+
+ if (skip_white) {
+ RExC_parse = regpatws(pRExC_state, RExC_parse,
+ FALSE /* means don't recognize comments */ );
+ }
+
+ if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
+ RExC_parse++;
+ invert = TRUE;
+ allow_multi_folds = FALSE;
+ MARK_NAUGHTY(1);
+ if (skip_white) {
+ RExC_parse = regpatws(pRExC_state, RExC_parse,
+ FALSE /* means don't recognize comments */ );
+ }
+ }
+
+ /* Check that they didn't say [:posix:] instead of [[:posix:]] */
+ if (!SIZE_ONLY && RExC_parse < RExC_end && POSIXCC(UCHARAT(RExC_parse))) {
+ const char *s = RExC_parse;
+ const char c = *s++;
+
+ if (*s == '^') {
+ s++;
+ }
+ while (isWORDCHAR(*s))
+ s++;
+ if (*s && c == *s && s[1] == ']') {
+ SAVEFREESV(RExC_rx_sv);
+ ckWARN3reg(s+2,
+ "POSIX syntax [%c %c] belongs inside character classes",
+ c, c);
+ (void)ReREFCNT_inc(RExC_rx_sv);
+ }
+ }
+
+ /* If the caller wants us to just parse a single element, accomplish this
+ * by faking the loop ending condition */
+ if (stop_at_1 && RExC_end > RExC_parse) {
+ stop_ptr = RExC_parse + 1;
+ }
+
+ /* allow 1st char to be ']' (allowing it to be '-' is dealt with later) */
+ if (UCHARAT(RExC_parse) == ']')
+ goto charclassloop;
+
+ while (1) {
+ if (RExC_parse >= stop_ptr) {
+ break;
+ }
+
+ if (skip_white) {
+ RExC_parse = regpatws(pRExC_state, RExC_parse,
+ FALSE /* means don't recognize comments */ );
+ }
+
+ if (UCHARAT(RExC_parse) == ']') {
+ break;
+ }
+
+ charclassloop:
+
+ namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
+ save_value = value;
+ save_prevvalue = prevvalue;
+
+ if (!range) {
+ rangebegin = RExC_parse;
+ element_count++;
+ non_portable_endpoint = 0;
+ }
+ if (UTF) {
+ value = utf8n_to_uvchr((U8*)RExC_parse,
+ RExC_end - RExC_parse,
+ &numlen, UTF8_ALLOW_DEFAULT);
+ RExC_parse += numlen;
+ }
+ else
+ value = UCHARAT(RExC_parse++);
+
+ if (value == '['
+ && RExC_parse < RExC_end
+ && POSIXCC(UCHARAT(RExC_parse)))
+ {
+ namedclass = regpposixcc(pRExC_state, value, strict);
+ }
+ else if (value == '\\') {
+ /* Is a backslash; get the code point of the char after it */
+ if (UTF && ! UTF8_IS_INVARIANT(UCHARAT(RExC_parse))) {
+ value = utf8n_to_uvchr((U8*)RExC_parse,
+ RExC_end - RExC_parse,
+ &numlen, UTF8_ALLOW_DEFAULT);
+ RExC_parse += numlen;
+ }
+ else
+ value = UCHARAT(RExC_parse++);
+
+ /* Some compilers cannot handle switching on 64-bit integer
+ * values, therefore value cannot be an UV. Yes, this will
+ * be a problem later if we want switch on Unicode.
+ * A similar issue a little bit later when switching on
+ * namedclass. --jhi */
+
+ /* If the \ is escaping white space when white space is being
+ * skipped, it means that that white space is wanted literally, and
+ * is already in 'value'. Otherwise, need to translate the escape
+ * into what it signifies. */
+ if (! skip_white || ! is_PATWS_cp(value)) switch ((I32)value) {
+
+ case 'w': namedclass = ANYOF_WORDCHAR; break;
+ case 'W': namedclass = ANYOF_NWORDCHAR; break;
+ case 's': namedclass = ANYOF_SPACE; break;
+ case 'S': namedclass = ANYOF_NSPACE; break;
+ case 'd': namedclass = ANYOF_DIGIT; break;
+ case 'D': namedclass = ANYOF_NDIGIT; break;
+ case 'v': namedclass = ANYOF_VERTWS; break;
+ case 'V': namedclass = ANYOF_NVERTWS; break;
+ case 'h': namedclass = ANYOF_HORIZWS; break;
+ case 'H': namedclass = ANYOF_NHORIZWS; break;
+ case 'N': /* Handle \N{NAME} in class */
+ {
+ const char * const backslash_N_beg = RExC_parse - 2;
+ int cp_count;
+
+ if (! grok_bslash_N(pRExC_state,
+ NULL, /* No regnode */
+ &value, /* Yes single value */
+ &cp_count, /* Multiple code pt count */
+ flagp,
+ depth)
+ ) {
+
+ if (*flagp & RESTART_UTF8)
+ FAIL("panic: grok_bslash_N set RESTART_UTF8");
+
+ if (cp_count < 0) {
+ vFAIL("\\N in a character class must be a named character: \\N{...}");
+ }
+ else if (cp_count == 0) {
+ if (strict) {
+ RExC_parse++; /* Position after the "}" */
+ vFAIL("Zero length \\N{}");
+ }
+ else if (PASS2) {
+ ckWARNreg(RExC_parse,
+ "Ignoring zero length \\N{} in character class");
+ }
+ }
+ else { /* cp_count > 1 */
+ if (! RExC_in_multi_char_class) {
+ if (invert || range || *RExC_parse == '-') {
+ if (strict) {
+ RExC_parse--;
+ vFAIL("\\N{} in inverted character class or as a range end-point is restricted to one character");
+ }
+ else if (PASS2) {
+ ckWARNreg(RExC_parse, "Using just the first character returned by \\N{} in character class");
+ }
+ break; /* <value> contains the first code
+ point. Drop out of the switch to
+ process it */
+ }
+ else {
+ SV * multi_char_N = newSVpvn(backslash_N_beg,
+ RExC_parse - backslash_N_beg);
+ multi_char_matches
+ = add_multi_match(multi_char_matches,
+ multi_char_N,
+ cp_count);
+ }
+ }
+ } /* End of cp_count != 1 */
+
+ /* This element should not be processed further in this
+ * class */
+ element_count--;
+ value = save_value;
+ prevvalue = save_prevvalue;
+ continue; /* Back to top of loop to get next char */
+ }
+
+ /* Here, is a single code point, and <value> contains it */
+ unicode_range = TRUE; /* \N{} are Unicode */
+ }
+ break;
+ case 'p':
+ case 'P':
+ {
+ char *e;
+
+ /* We will handle any undefined properties ourselves */
+ U8 swash_init_flags = _CORE_SWASH_INIT_RETURN_IF_UNDEF
+ /* And we actually would prefer to get
+ * the straight inversion list of the
+ * swash, since we will be accessing it
+ * anyway, to save a little time */
+ |_CORE_SWASH_INIT_ACCEPT_INVLIST;
+
+ if (RExC_parse >= RExC_end)
+ vFAIL2("Empty \\%c{}", (U8)value);
+ if (*RExC_parse == '{') {
+ const U8 c = (U8)value;
+ e = strchr(RExC_parse++, '}');
+ if (!e)
+ vFAIL2("Missing right brace on \\%c{}", c);
+ while (isSPACE(*RExC_parse))
+ RExC_parse++;
+ if (e == RExC_parse)
+ vFAIL2("Empty \\%c{}", c);
+ n = e - RExC_parse;
+ while (isSPACE(*(RExC_parse + n - 1)))
+ n--;
+ }
+ else {
+ e = RExC_parse;
+ n = 1;
+ }
+ if (!SIZE_ONLY) {
+ SV* invlist;
+ char* name;
+
+ if (UCHARAT(RExC_parse) == '^') {
+ RExC_parse++;
+ n--;
+ /* toggle. (The rhs xor gets the single bit that
+ * differs between P and p; the other xor inverts just
+ * that bit) */
+ value ^= 'P' ^ 'p';
+
+ while (isSPACE(*RExC_parse)) {
+ RExC_parse++;
+ n--;
+ }
+ }
+ /* Try to get the definition of the property into
+ * <invlist>. If /i is in effect, the effective property
+ * will have its name be <__NAME_i>. The design is
+ * discussed in commit
+ * 2f833f5208e26b208886e51e09e2c072b5eabb46 */
+ name = savepv(Perl_form(aTHX_
+ "%s%.*s%s\n",
+ (FOLD) ? "__" : "",
+ (int)n,
+ RExC_parse,
+ (FOLD) ? "_i" : ""
+ ));
+
+ /* Look up the property name, and get its swash and
+ * inversion list, if the property is found */
+ if (swash) {
+ SvREFCNT_dec_NN(swash);
+ }
+ swash = _core_swash_init("utf8", name, &PL_sv_undef,
+ 1, /* binary */
+ 0, /* not tr/// */
+ NULL, /* No inversion list */
+ &swash_init_flags
+ );
+ if (! swash || ! (invlist = _get_swash_invlist(swash))) {
+ HV* curpkg = (IN_PERL_COMPILETIME)
+ ? PL_curstash
+ : CopSTASH(PL_curcop);
+ if (swash) {
+ SvREFCNT_dec_NN(swash);
+ swash = NULL;
+ }
+
+ /* Here didn't find it. It could be a user-defined
+ * property that will be available at run-time. If we
+ * accept only compile-time properties, is an error;
+ * otherwise add it to the list for run-time look up */
+ if (ret_invlist) {
+ RExC_parse = e + 1;
+ vFAIL2utf8f(
+ "Property '%"UTF8f"' is unknown",
+ UTF8fARG(UTF, n, name));
+ }
+
+ /* If the property name doesn't already have a package
+ * name, add the current one to it so that it can be
+ * referred to outside it. [perl #121777] */
+ if (curpkg && ! instr(name, "::")) {
+ char* pkgname = HvNAME(curpkg);
+ if (strNE(pkgname, "main")) {
+ char* full_name = Perl_form(aTHX_
+ "%s::%s",
+ pkgname,
+ name);
+ n = strlen(full_name);
+ Safefree(name);
+ name = savepvn(full_name, n);
+ }
+ }
+ Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%"UTF8f"\n",
+ (value == 'p' ? '+' : '!'),
+ UTF8fARG(UTF, n, name));
+ has_user_defined_property = TRUE;
+
+ /* We don't know yet, so have to assume that the
+ * property could match something in the Latin1 range,
+ * hence something that isn't utf8. Note that this
+ * would cause things in <depends_list> to match
+ * inappropriately, except that any \p{}, including
+ * this one forces Unicode semantics, which means there
+ * is no <depends_list> */
+ ANYOF_FLAGS(ret)
+ |= ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES;
+ }
+ else {
+
+ /* Here, did get the swash and its inversion list. If
+ * the swash is from a user-defined property, then this
+ * whole character class should be regarded as such */
+ if (swash_init_flags
+ & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY)
+ {
+ has_user_defined_property = TRUE;
+ }
+ else if
+ /* We warn on matching an above-Unicode code point
+ * if the match would return true, except don't
+ * warn for \p{All}, which has exactly one element
+ * = 0 */
+ (_invlist_contains_cp(invlist, 0x110000)
+ && (! (_invlist_len(invlist) == 1
+ && *invlist_array(invlist) == 0)))
+ {
+ warn_super = TRUE;
+ }
+
+
+ /* Invert if asking for the complement */
+ if (value == 'P') {
+ _invlist_union_complement_2nd(properties,
+ invlist,
+ &properties);
+
+ /* The swash can't be used as-is, because we've
+ * inverted things; delay removing it to here after
+ * have copied its invlist above */
+ SvREFCNT_dec_NN(swash);
+ swash = NULL;
+ }
+ else {
+ _invlist_union(properties, invlist, &properties);
+ }
+ }
+ Safefree(name);
+ }
+ RExC_parse = e + 1;
+ namedclass = ANYOF_UNIPROP; /* no official name, but it's
+ named */
+
+ /* \p means they want Unicode semantics */
+ RExC_uni_semantics = 1;
+ }
+ break;
+ case 'n': value = '\n'; break;
+ case 'r': value = '\r'; break;
+ case 't': value = '\t'; break;
+ case 'f': value = '\f'; break;
+ case 'b': value = '\b'; break;
+ case 'e': value = ESC_NATIVE; break;
+ case 'a': value = '\a'; break;
+ case 'o':
+ RExC_parse--; /* function expects to be pointed at the 'o' */
+ {
+ const char* error_msg;
+ bool valid = grok_bslash_o(&RExC_parse,
+ &value,
+ &error_msg,
+ PASS2, /* warnings only in
+ pass 2 */
+ strict,
+ silence_non_portable,
+ UTF);
+ if (! valid) {
+ vFAIL(error_msg);
+ }
+ }
+ non_portable_endpoint++;
+ if (IN_ENCODING && value < 0x100) {
+ goto recode_encoding;
+ }
+ break;
+ case 'x':
+ RExC_parse--; /* function expects to be pointed at the 'x' */
+ {
+ const char* error_msg;
+ bool valid = grok_bslash_x(&RExC_parse,
+ &value,
+ &error_msg,
+ PASS2, /* Output warnings */
+ strict,
+ silence_non_portable,
+ UTF);
+ if (! valid) {
+ vFAIL(error_msg);
+ }
+ }
+ non_portable_endpoint++;
+ if (IN_ENCODING && value < 0x100)
+ goto recode_encoding;
+ break;
+ case 'c':
+ value = grok_bslash_c(*RExC_parse++, PASS2);
+ non_portable_endpoint++;
+ break;
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7':
+ {
+ /* Take 1-3 octal digits */
+ I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
+ numlen = (strict) ? 4 : 3;
+ value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
+ RExC_parse += numlen;
+ if (numlen != 3) {
+ if (strict) {
+ RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+ vFAIL("Need exactly 3 octal digits");
+ }
+ else if (! SIZE_ONLY /* like \08, \178 */
+ && numlen < 3
+ && RExC_parse < RExC_end
+ && isDIGIT(*RExC_parse)
+ && ckWARN(WARN_REGEXP))
+ {
+ SAVEFREESV(RExC_rx_sv);
+ reg_warn_non_literal_string(
+ RExC_parse + 1,
+ form_short_octal_warning(RExC_parse, numlen));
+ (void)ReREFCNT_inc(RExC_rx_sv);
+ }
+ }
+ non_portable_endpoint++;
+ if (IN_ENCODING && value < 0x100)
+ goto recode_encoding;
+ break;
+ }
+ recode_encoding:
+ if (! RExC_override_recoding) {
+ SV* enc = _get_encoding();
+ value = reg_recode((const char)(U8)value, &enc);
+ if (!enc) {
+ if (strict) {
+ vFAIL("Invalid escape in the specified encoding");
+ }
+ else if (PASS2) {
+ ckWARNreg(RExC_parse,
+ "Invalid escape in the specified encoding");
+ }
+ }
+ break;
+ }
+ default:
+ /* Allow \_ to not give an error */
+ if (!SIZE_ONLY && isWORDCHAR(value) && value != '_') {
+ if (strict) {
+ vFAIL2("Unrecognized escape \\%c in character class",
+ (int)value);
+ }
+ else {
+ SAVEFREESV(RExC_rx_sv);
+ ckWARN2reg(RExC_parse,
+ "Unrecognized escape \\%c in character class passed through",
+ (int)value);
+ (void)ReREFCNT_inc(RExC_rx_sv);
+ }
+ }
+ break;
+ } /* End of switch on char following backslash */
+ } /* end of handling backslash escape sequences */
+
+ /* Here, we have the current token in 'value' */
+
+ if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
+ U8 classnum;
+
+ /* a bad range like a-\d, a-[:digit:]. The '-' is taken as a
+ * literal, as is the character that began the false range, i.e.
+ * the 'a' in the examples */
+ if (range) {
+ if (!SIZE_ONLY) {
+ const int w = (RExC_parse >= rangebegin)
+ ? RExC_parse - rangebegin
+ : 0;
+ if (strict) {
+ vFAIL2utf8f(
+ "False [] range \"%"UTF8f"\"",
+ UTF8fARG(UTF, w, rangebegin));
+ }
+ else {
+ SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
+ ckWARN2reg(RExC_parse,
+ "False [] range \"%"UTF8f"\"",
+ UTF8fARG(UTF, w, rangebegin));
+ (void)ReREFCNT_inc(RExC_rx_sv);
+ cp_list = add_cp_to_invlist(cp_list, '-');
+ cp_foldable_list = add_cp_to_invlist(cp_foldable_list,
+ prevvalue);
+ }
+ }
+
+ range = 0; /* this was not a true range */
+ element_count += 2; /* So counts for three values */
+ }
+
+ classnum = namedclass_to_classnum(namedclass);
+
+ if (LOC && namedclass < ANYOF_POSIXL_MAX
+#ifndef HAS_ISASCII
+ && classnum != _CC_ASCII
+#endif
+ ) {
+ /* What the Posix classes (like \w, [:space:]) match in locale
+ * isn't knowable under locale until actual match time. Room
+ * must be reserved (one time per outer bracketed class) to
+ * store such classes. The space will contain a bit for each
+ * named class that is to be matched against. This isn't
+ * needed for \p{} and pseudo-classes, as they are not affected
+ * by locale, and hence are dealt with separately */
+ if (! need_class) {
+ need_class = 1;
+ if (SIZE_ONLY) {
+ RExC_size += ANYOF_POSIXL_SKIP - ANYOF_SKIP;
+ }
+ else {
+ RExC_emit += ANYOF_POSIXL_SKIP - ANYOF_SKIP;
+ }
+ ANYOF_FLAGS(ret) |= ANYOF_MATCHES_POSIXL;
+ ANYOF_POSIXL_ZERO(ret);
+ }
+
+ /* Coverity thinks it is possible for this to be negative; both
+ * jhi and khw think it's not, but be safer */
+ assert(! (ANYOF_FLAGS(ret) & ANYOF_MATCHES_POSIXL)
+ || (namedclass + ((namedclass % 2) ? -1 : 1)) >= 0);
+
+ /* See if it already matches the complement of this POSIX
+ * class */
+ if ((ANYOF_FLAGS(ret) & ANYOF_MATCHES_POSIXL)
+ && ANYOF_POSIXL_TEST(ret, namedclass + ((namedclass % 2)
+ ? -1
+ : 1)))
+ {
+ posixl_matches_all = TRUE;
+ break; /* No need to continue. Since it matches both
+ e.g., \w and \W, it matches everything, and the
+ bracketed class can be optimized into qr/./s */
+ }
+
+ /* Add this class to those that should be checked at runtime */
+ ANYOF_POSIXL_SET(ret, namedclass);
+
+ /* The above-Latin1 characters are not subject to locale rules.
+ * Just add them, in the second pass, to the
+ * unconditionally-matched list */
+ if (! SIZE_ONLY) {
+ SV* scratch_list = NULL;
+
+ /* Get the list of the above-Latin1 code points this
+ * matches */
+ _invlist_intersection_maybe_complement_2nd(PL_AboveLatin1,
+ PL_XPosix_ptrs[classnum],
+
+ /* Odd numbers are complements, like
+ * NDIGIT, NASCII, ... */
+ namedclass % 2 != 0,
+ &scratch_list);
+ /* Checking if 'cp_list' is NULL first saves an extra
+ * clone. Its reference count will be decremented at the
+ * next union, etc, or if this is the only instance, at the
+ * end of the routine */
+ if (! cp_list) {
+ cp_list = scratch_list;
+ }
+ else {
+ _invlist_union(cp_list, scratch_list, &cp_list);
+ SvREFCNT_dec_NN(scratch_list);
+ }
+ continue; /* Go get next character */
+ }
+ }
+ else if (! SIZE_ONLY) {
+
+ /* Here, not in pass1 (in that pass we skip calculating the
+ * contents of this class), and is /l, or is a POSIX class for
+ * which /l doesn't matter (or is a Unicode property, which is
+ * skipped here). */
+ if (namedclass >= ANYOF_POSIXL_MAX) { /* If a special class */
+ if (namedclass != ANYOF_UNIPROP) { /* UNIPROP = \p and \P */
+
+ /* Here, should be \h, \H, \v, or \V. None of /d, /i
+ * nor /l make a difference in what these match,
+ * therefore we just add what they match to cp_list. */
+ if (classnum != _CC_VERTSPACE) {
+ assert( namedclass == ANYOF_HORIZWS
+ || namedclass == ANYOF_NHORIZWS);
+
+ /* It turns out that \h is just a synonym for
+ * XPosixBlank */
+ classnum = _CC_BLANK;
+ }
+
+ _invlist_union_maybe_complement_2nd(
+ cp_list,
+ PL_XPosix_ptrs[classnum],
+ namedclass % 2 != 0, /* Complement if odd
+ (NHORIZWS, NVERTWS)
+ */
+ &cp_list);
+ }
+ }
+ else if (UNI_SEMANTICS
+ || classnum == _CC_ASCII
+ || (DEPENDS_SEMANTICS && (classnum == _CC_DIGIT
+ || classnum == _CC_XDIGIT)))
+ {
+ /* We usually have to worry about /d and /a affecting what
+ * POSIX classes match, with special code needed for /d
+ * because we won't know until runtime what all matches.
+ * But there is no extra work needed under /u, and
+ * [:ascii:] is unaffected by /a and /d; and :digit: and
+ * :xdigit: don't have runtime differences under /d. So we
+ * can special case these, and avoid some extra work below,
+ * and at runtime. */
+ _invlist_union_maybe_complement_2nd(
+ simple_posixes,
+ PL_XPosix_ptrs[classnum],
+ namedclass % 2 != 0,
+ &simple_posixes);
+ }
+ else { /* Garden variety class. If is NUPPER, NALPHA, ...
+ complement and use nposixes */
+ SV** posixes_ptr = namedclass % 2 == 0
+ ? &posixes
+ : &nposixes;
+ _invlist_union_maybe_complement_2nd(
+ *posixes_ptr,
+ PL_XPosix_ptrs[classnum],
+ namedclass % 2 != 0,
+ posixes_ptr);
+ }
+ }
+ } /* end of namedclass \blah */
+
+ if (skip_white) {
+ RExC_parse = regpatws(pRExC_state, RExC_parse,
+ FALSE /* means don't recognize comments */ );
+ }
+
+ /* If 'range' is set, 'value' is the ending of a range--check its
+ * validity. (If value isn't a single code point in the case of a
+ * range, we should have figured that out above in the code that
+ * catches false ranges). Later, we will handle each individual code
+ * point in the range. If 'range' isn't set, this could be the
+ * beginning of a range, so check for that by looking ahead to see if
+ * the next real character to be processed is the range indicator--the
+ * minus sign */
+
+ if (range) {
+#ifdef EBCDIC
+ /* For unicode ranges, we have to test that the Unicode as opposed
+ * to the native values are not decreasing. (Above 255, there is
+ * no difference between native and Unicode) */
+ if (unicode_range && prevvalue < 255 && value < 255) {
+ if (NATIVE_TO_LATIN1(prevvalue) > NATIVE_TO_LATIN1(value)) {
+ goto backwards_range;
+ }
+ }
+ else
+#endif
+ if (prevvalue > value) /* b-a */ {
+ int w;
+#ifdef EBCDIC
+ backwards_range:
+#endif
+ w = RExC_parse - rangebegin;
+ vFAIL2utf8f(
+ "Invalid [] range \"%"UTF8f"\"",
+ UTF8fARG(UTF, w, rangebegin));
+ NOT_REACHED; /* NOTREACHED */
+ }
+ }
+ else {
+ prevvalue = value; /* save the beginning of the potential range */
+ if (! stop_at_1 /* Can't be a range if parsing just one thing */
+ && *RExC_parse == '-')
+ {
+ char* next_char_ptr = RExC_parse + 1;
+ if (skip_white) { /* Get the next real char after the '-' */
+ next_char_ptr = regpatws(pRExC_state,
+ RExC_parse + 1,
+ FALSE); /* means don't recognize
+ comments */
+ }
+
+ /* If the '-' is at the end of the class (just before the ']',
+ * it is a literal minus; otherwise it is a range */
+ if (next_char_ptr < RExC_end && *next_char_ptr != ']') {
+ RExC_parse = next_char_ptr;
+
+ /* a bad range like \w-, [:word:]- ? */
+ if (namedclass > OOB_NAMEDCLASS) {
+ if (strict || (PASS2 && ckWARN(WARN_REGEXP))) {
+ const int w = RExC_parse >= rangebegin
+ ? RExC_parse - rangebegin
+ : 0;
+ if (strict) {
+ vFAIL4("False [] range \"%*.*s\"",
+ w, w, rangebegin);
+ }
+ else if (PASS2) {
+ vWARN4(RExC_parse,
+ "False [] range \"%*.*s\"",
+ w, w, rangebegin);
+ }
+ }
+ if (!SIZE_ONLY) {
+ cp_list = add_cp_to_invlist(cp_list, '-');
+ }
+ element_count++;
+ } else
+ range = 1; /* yeah, it's a range! */
+ continue; /* but do it the next time */
+ }
+ }
+ }
+
+ if (namedclass > OOB_NAMEDCLASS) {
+ continue;
+ }
+
+ /* Here, we have a single value this time through the loop, and
+ * <prevvalue> is the beginning of the range, if any; or <value> if
+ * not. */
+
+ /* non-Latin1 code point implies unicode semantics. Must be set in
+ * pass1 so is there for the whole of pass 2 */
+ if (value > 255) {
+ RExC_uni_semantics = 1;
+ }
+
+ /* Ready to process either the single value, or the completed range.
+ * For single-valued non-inverted ranges, we consider the possibility
+ * of multi-char folds. (We made a conscious decision to not do this
+ * for the other cases because it can often lead to non-intuitive
+ * results. For example, you have the peculiar case that:
+ * "s s" =~ /^[^\xDF]+$/i => Y
+ * "ss" =~ /^[^\xDF]+$/i => N
+ *
+ * See [perl #89750] */
+ if (FOLD && allow_multi_folds && value == prevvalue) {
+ if (value == LATIN_SMALL_LETTER_SHARP_S
+ || (value > 255 && _invlist_contains_cp(PL_HasMultiCharFold,
+ value)))
+ {
+ /* Here <value> is indeed a multi-char fold. Get what it is */
+
+ U8 foldbuf[UTF8_MAXBYTES_CASE];
+ STRLEN foldlen;
+
+ UV folded = _to_uni_fold_flags(
+ value,
+ foldbuf,
+ &foldlen,
+ FOLD_FLAGS_FULL | (ASCII_FOLD_RESTRICTED
+ ? FOLD_FLAGS_NOMIX_ASCII
+ : 0)
+ );
+
+ /* Here, <folded> should be the first character of the
+ * multi-char fold of <value>, with <foldbuf> containing the
+ * whole thing. But, if this fold is not allowed (because of
+ * the flags), <fold> will be the same as <value>, and should
+ * be processed like any other character, so skip the special
+ * handling */
+ if (folded != value) {
+
+ /* Skip if we are recursed, currently parsing the class
+ * again. Otherwise add this character to the list of
+ * multi-char folds. */
+ if (! RExC_in_multi_char_class) {
+ STRLEN cp_count = utf8_length(foldbuf,
+ foldbuf + foldlen);
+ SV* multi_fold = sv_2mortal(newSVpvs(""));
+
+ Perl_sv_catpvf(aTHX_ multi_fold, "\\x{%"UVXf"}", value);
+
+ multi_char_matches
+ = add_multi_match(multi_char_matches,
+ multi_fold,
+ cp_count);
+
+ }
+
+ /* This element should not be processed further in this
+ * class */
+ element_count--;
+ value = save_value;
+ prevvalue = save_prevvalue;
+ continue;
+ }
+ }
+ }
+
+ if (strict && PASS2 && ckWARN(WARN_REGEXP)) {
+ if (range) {
+
+ /* If the range starts above 255, everything is portable and
+ * likely to be so for any forseeable character set, so don't
+ * warn. */
+ if (unicode_range && non_portable_endpoint && prevvalue < 256) {
+ vWARN(RExC_parse, "Both or neither range ends should be Unicode");
+ }
+ else if (prevvalue != value) {
+
+ /* Under strict, ranges that stop and/or end in an ASCII
+ * printable should have each end point be a portable value
+ * for it (preferably like 'A', but we don't warn if it is
+ * a (portable) Unicode name or code point), and the range
+ * must be be all digits or all letters of the same case.
+ * Otherwise, the range is non-portable and unclear as to
+ * what it contains */
+ if ((isPRINT_A(prevvalue) || isPRINT_A(value))
+ && (non_portable_endpoint
+ || ! ((isDIGIT_A(prevvalue) && isDIGIT_A(value))
+ || (isLOWER_A(prevvalue) && isLOWER_A(value))
+ || (isUPPER_A(prevvalue) && isUPPER_A(value)))))
+ {
+ vWARN(RExC_parse, "Ranges of ASCII printables should be some subset of \"0-9\", \"A-Z\", or \"a-z\"");
+ }
+ else if (prevvalue >= 0x660) { /* ARABIC_INDIC_DIGIT_ZERO */
+
+ /* But the nature of Unicode and languages mean we
+ * can't do the same checks for above-ASCII ranges,
+ * except in the case of digit ones. These should
+ * contain only digits from the same group of 10. The
+ * ASCII case is handled just above. 0x660 is the
+ * first digit character beyond ASCII. Hence here, the
+ * range could be a range of digits. Find out. */
+ IV index_start = _invlist_search(PL_XPosix_ptrs[_CC_DIGIT],
+ prevvalue);
+ IV index_final = _invlist_search(PL_XPosix_ptrs[_CC_DIGIT],
+ value);
+
+ /* If the range start and final points are in the same
+ * inversion list element, it means that either both
+ * are not digits, or both are digits in a consecutive
+ * sequence of digits. (So far, Unicode has kept all
+ * such sequences as distinct groups of 10, but assert
+ * to make sure). If the end points are not in the
+ * same element, neither should be a digit. */
+ if (index_start == index_final) {
+ assert(! ELEMENT_RANGE_MATCHES_INVLIST(index_start)
+ || (invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start+1]
+ - invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
+ == 10)
+ /* But actually Unicode did have one group of 11
+ * 'digits' in 5.2, so in case we are operating
+ * on that version, let that pass */
+ || (invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start+1]
+ - invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
+ == 11
+ && invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
+ == 0x19D0)
+ );
+ }
+ else if ((index_start >= 0
+ && ELEMENT_RANGE_MATCHES_INVLIST(index_start))
+ || (index_final >= 0
+ && ELEMENT_RANGE_MATCHES_INVLIST(index_final)))
+ {
+ vWARN(RExC_parse, "Ranges of digits should be from the same group of 10");
+ }
+ }
+ }
+ }
+ if ((! range || prevvalue == value) && non_portable_endpoint) {
+ if (isPRINT_A(value)) {
+ char literal[3];
+ unsigned d = 0;
+ if (isBACKSLASHED_PUNCT(value)) {
+ literal[d++] = '\\';
+ }
+ literal[d++] = (char) value;
+ literal[d++] = '\0';
+
+ vWARN4(RExC_parse,
+ "\"%.*s\" is more clearly written simply as \"%s\"",
+ (int) (RExC_parse - rangebegin),
+ rangebegin,
+ literal
+ );
+ }
+ else if isMNEMONIC_CNTRL(value) {
+ vWARN4(RExC_parse,
+ "\"%.*s\" is more clearly written simply as \"%s\"",
+ (int) (RExC_parse - rangebegin),
+ rangebegin,
+ cntrl_to_mnemonic((char) value)
+ );
+ }
+ }
+ }
+
+ /* Deal with this element of the class */
+ if (! SIZE_ONLY) {
+
+#ifndef EBCDIC
+ cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
+ prevvalue, value);
+#else
+ /* On non-ASCII platforms, for ranges that span all of 0..255, and
+ * ones that don't require special handling, we can just add the
+ * range like we do for ASCII platforms */
+ if ((UNLIKELY(prevvalue == 0) && value >= 255)
+ || ! (prevvalue < 256
+ && (unicode_range
+ || (! non_portable_endpoint
+ && ((isLOWER_A(prevvalue) && isLOWER_A(value))
+ || (isUPPER_A(prevvalue)
+ && isUPPER_A(value)))))))
+ {
+ cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
+ prevvalue, value);
+ }
+ else {
+ /* Here, requires special handling. This can be because it is
+ * a range whose code points are considered to be Unicode, and
+ * so must be individually translated into native, or because
+ * its a subrange of 'A-Z' or 'a-z' which each aren't
+ * contiguous in EBCDIC, but we have defined them to include
+ * only the "expected" upper or lower case ASCII alphabetics.
+ * Subranges above 255 are the same in native and Unicode, so
+ * can be added as a range */
+ U8 start = NATIVE_TO_LATIN1(prevvalue);
+ unsigned j;
+ U8 end = (value < 256) ? NATIVE_TO_LATIN1(value) : 255;
+ for (j = start; j <= end; j++) {
+ cp_foldable_list = add_cp_to_invlist(cp_foldable_list, LATIN1_TO_NATIVE(j));
+ }
+ if (value > 255) {
+ cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
+ 256, value);
+ }
+ }
+#endif
+ }
+
+ range = 0; /* this range (if it was one) is done now */
+ } /* End of loop through all the text within the brackets */
+
+ /* If anything in the class expands to more than one character, we have to
+ * deal with them by building up a substitute parse string, and recursively
+ * calling reg() on it, instead of proceeding */
+ if (multi_char_matches) {
+ SV * substitute_parse = newSVpvn_flags("?:", 2, SVs_TEMP);
+ I32 cp_count;
+ STRLEN len;
+ char *save_end = RExC_end;
+ char *save_parse = RExC_parse;
+ bool first_time = TRUE; /* First multi-char occurrence doesn't get
+ a "|" */
+ I32 reg_flags;
+
+ assert(! invert);
+#if 0 /* Have decided not to deal with multi-char folds in inverted classes,
+ because too confusing */
+ if (invert) {
+ sv_catpv(substitute_parse, "(?:");
+ }
+#endif
+
+ /* Look at the longest folds first */
+ for (cp_count = av_tindex(multi_char_matches); cp_count > 0; cp_count--) {
+
+ if (av_exists(multi_char_matches, cp_count)) {
+ AV** this_array_ptr;
+ SV* this_sequence;
+
+ this_array_ptr = (AV**) av_fetch(multi_char_matches,
+ cp_count, FALSE);
+ while ((this_sequence = av_pop(*this_array_ptr)) !=
+ &PL_sv_undef)
+ {
+ if (! first_time) {
+ sv_catpv(substitute_parse, "|");
+ }
+ first_time = FALSE;
+
+ sv_catpv(substitute_parse, SvPVX(this_sequence));
+ }
+ }
+ }
+
+ /* If the character class contains anything else besides these
+ * multi-character folds, have to include it in recursive parsing */
+ if (element_count) {
+ sv_catpv(substitute_parse, "|[");
+ sv_catpvn(substitute_parse, orig_parse, RExC_parse - orig_parse);
+ sv_catpv(substitute_parse, "]");
+ }
+
+ sv_catpv(substitute_parse, ")");
+#if 0
+ if (invert) {
+ /* This is a way to get the parse to skip forward a whole named
+ * sequence instead of matching the 2nd character when it fails the
+ * first */
+ sv_catpv(substitute_parse, "(*THEN)(*SKIP)(*FAIL)|.)");
+ }
+#endif
+
+ RExC_parse = SvPV(substitute_parse, len);
+ RExC_end = RExC_parse + len;
+ RExC_in_multi_char_class = 1;
+ RExC_override_recoding = 1;
+ RExC_emit = (regnode *)orig_emit;
+
+ ret = reg(pRExC_state, 1, ®_flags, depth+1);
+
+ *flagp |= reg_flags&(HASWIDTH|SIMPLE|SPSTART|POSTPONED|RESTART_UTF8);
+
+ RExC_parse = save_parse;
+ RExC_end = save_end;
+ RExC_in_multi_char_class = 0;
+ RExC_override_recoding = 0;
+ SvREFCNT_dec_NN(multi_char_matches);
+ return ret;
+ }
+
+ /* Here, we've gone through the entire class and dealt with multi-char
+ * folds. We are now in a position that we can do some checks to see if we
+ * can optimize this ANYOF node into a simpler one, even in Pass 1.
+ * Currently we only do two checks:
+ * 1) is in the unlikely event that the user has specified both, eg. \w and
+ * \W under /l, then the class matches everything. (This optimization
+ * is done only to make the optimizer code run later work.)
+ * 2) if the character class contains only a single element (including a
+ * single range), we see if there is an equivalent node for it.
+ * Other checks are possible */
+ if (! ret_invlist /* Can't optimize if returning the constructed
+ inversion list */
+ && (UNLIKELY(posixl_matches_all) || element_count == 1))
+ {
+ U8 op = END;
+ U8 arg = 0;
+
+ if (UNLIKELY(posixl_matches_all)) {
+ op = SANY;
+ }
+ else if (namedclass > OOB_NAMEDCLASS) { /* this is a named class, like
+ \w or [:digit:] or \p{foo}
+ */
+
+ /* All named classes are mapped into POSIXish nodes, with its FLAG
+ * argument giving which class it is */
+ switch ((I32)namedclass) {
+ case ANYOF_UNIPROP:
+ break;
+
+ /* These don't depend on the charset modifiers. They always
+ * match under /u rules */
+ case ANYOF_NHORIZWS:
+ case ANYOF_HORIZWS:
+ namedclass = ANYOF_BLANK + namedclass - ANYOF_HORIZWS;
+ /* FALLTHROUGH */
+
+ case ANYOF_NVERTWS:
+ case ANYOF_VERTWS:
+ op = POSIXU;
+ goto join_posix;
+
+ /* The actual POSIXish node for all the rest depends on the
+ * charset modifier. The ones in the first set depend only on
+ * ASCII or, if available on this platform, also locale */
+ case ANYOF_ASCII:
+ case ANYOF_NASCII:
+#ifdef HAS_ISASCII
+ op = (LOC) ? POSIXL : POSIXA;
+#else
+ op = POSIXA;
+#endif
+ goto join_posix;
+
+ /* The following don't have any matches in the upper Latin1
+ * range, hence /d is equivalent to /u for them. Making it /u
+ * saves some branches at runtime */
+ case ANYOF_DIGIT:
+ case ANYOF_NDIGIT:
+ case ANYOF_XDIGIT:
+ case ANYOF_NXDIGIT:
+ if (! DEPENDS_SEMANTICS) {
+ goto treat_as_default;
+ }
+
+ op = POSIXU;
+ goto join_posix;
+
+ /* The following change to CASED under /i */
+ case ANYOF_LOWER:
+ case ANYOF_NLOWER:
+ case ANYOF_UPPER:
+ case ANYOF_NUPPER:
+ if (FOLD) {
+ namedclass = ANYOF_CASED + (namedclass % 2);
+ }
+ /* FALLTHROUGH */
+
+ /* The rest have more possibilities depending on the charset.
+ * We take advantage of the enum ordering of the charset
+ * modifiers to get the exact node type, */
+ default:
+ treat_as_default:
+ op = POSIXD + get_regex_charset(RExC_flags);
+ if (op > POSIXA) { /* /aa is same as /a */
+ op = POSIXA;
+ }
+
+ join_posix:
+ /* The odd numbered ones are the complements of the
+ * next-lower even number one */
+ if (namedclass % 2 == 1) {
+ invert = ! invert;
+ namedclass--;
+ }
+ arg = namedclass_to_classnum(namedclass);
+ break;
+ }
+ }
+ else if (value == prevvalue) {
+
+ /* Here, the class consists of just a single code point */
+
+ if (invert) {
+ if (! LOC && value == '\n') {
+ op = REG_ANY; /* Optimize [^\n] */
+ *flagp |= HASWIDTH|SIMPLE;
+ MARK_NAUGHTY(1);
+ }
+ }
+ else if (value < 256 || UTF) {
+
+ /* Optimize a single value into an EXACTish node, but not if it
+ * would require converting the pattern to UTF-8. */
+ op = compute_EXACTish(pRExC_state);
+ }
+ } /* Otherwise is a range */
+ else if (! LOC) { /* locale could vary these */
+ if (prevvalue == '0') {
+ if (value == '9') {
+ arg = _CC_DIGIT;
+ op = POSIXA;
+ }
+ }
+ else if (! FOLD || ASCII_FOLD_RESTRICTED) {
+ /* We can optimize A-Z or a-z, but not if they could match
+ * something like the KELVIN SIGN under /i. */
+ if (prevvalue == 'A') {
+ if (value == 'Z'
+#ifdef EBCDIC
+ && ! non_portable_endpoint
+#endif
+ ) {
+ arg = (FOLD) ? _CC_ALPHA : _CC_UPPER;
+ op = POSIXA;
+ }
+ }
+ else if (prevvalue == 'a') {
+ if (value == 'z'
+#ifdef EBCDIC
+ && ! non_portable_endpoint
+#endif
+ ) {
+ arg = (FOLD) ? _CC_ALPHA : _CC_LOWER;
+ op = POSIXA;
+ }
+ }
+ }
+ }
+
+ /* Here, we have changed <op> away from its initial value iff we found
+ * an optimization */
+ if (op != END) {
+
+ /* Throw away this ANYOF regnode, and emit the calculated one,
+ * which should correspond to the beginning, not current, state of
+ * the parse */
+ const char * cur_parse = RExC_parse;
+ RExC_parse = (char *)orig_parse;
+ if ( SIZE_ONLY) {
+ if (! LOC) {
+
+ /* To get locale nodes to not use the full ANYOF size would
+ * require moving the code above that writes the portions
+ * of it that aren't in other nodes to after this point.
+ * e.g. ANYOF_POSIXL_SET */
+ RExC_size = orig_size;
+ }
+ }
+ else {
+ RExC_emit = (regnode *)orig_emit;
+ if (PL_regkind[op] == POSIXD) {
+ if (op == POSIXL) {
+ RExC_contains_locale = 1;
+ }
+ if (invert) {
+ op += NPOSIXD - POSIXD;
+ }
+ }
+ }
+
+ ret = reg_node(pRExC_state, op);
+
+ if (PL_regkind[op] == POSIXD || PL_regkind[op] == NPOSIXD) {
+ if (! SIZE_ONLY) {
+ FLAGS(ret) = arg;
+ }
+ *flagp |= HASWIDTH|SIMPLE;
+ }
+ else if (PL_regkind[op] == EXACT) {
+ alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value,
+ TRUE /* downgradable to EXACT */
+ );
+ }
+
+ RExC_parse = (char *) cur_parse;
+
+ SvREFCNT_dec(posixes);
+ SvREFCNT_dec(nposixes);
+ SvREFCNT_dec(simple_posixes);
+ SvREFCNT_dec(cp_list);
+ SvREFCNT_dec(cp_foldable_list);
+ return ret;
+ }
+ }
+
+ if (SIZE_ONLY)
+ return ret;
+ /****** !SIZE_ONLY (Pass 2) AFTER HERE *********/
+
+ /* If folding, we calculate all characters that could fold to or from the
+ * ones already on the list */
+ if (cp_foldable_list) {
+ if (FOLD) {
+ UV start, end; /* End points of code point ranges */
+
+ SV* fold_intersection = NULL;
+ SV** use_list;
+
+ /* Our calculated list will be for Unicode rules. For locale
+ * matching, we have to keep a separate list that is consulted at
+ * runtime only when the locale indicates Unicode rules. For
+ * non-locale, we just use to the general list */
+ if (LOC) {
+ use_list = &only_utf8_locale_list;
+ }
+ else {
+ use_list = &cp_list;
+ }
+
+ /* Only the characters in this class that participate in folds need
+ * be checked. Get the intersection of this class and all the
+ * possible characters that are foldable. This can quickly narrow
+ * down a large class */
+ _invlist_intersection(PL_utf8_foldable, cp_foldable_list,
+ &fold_intersection);
+
+ /* The folds for all the Latin1 characters are hard-coded into this
+ * program, but we have to go out to disk to get the others. */
+ if (invlist_highest(cp_foldable_list) >= 256) {
+
+ /* This is a hash that for a particular fold gives all
+ * characters that are involved in it */
+ if (! PL_utf8_foldclosures) {
+ _load_PL_utf8_foldclosures();
+ }
+ }
+
+ /* Now look at the foldable characters in this class individually */
+ invlist_iterinit(fold_intersection);
+ while (invlist_iternext(fold_intersection, &start, &end)) {
+ UV j;
+
+ /* Look at every character in the range */
+ for (j = start; j <= end; j++) {
+ U8 foldbuf[UTF8_MAXBYTES_CASE+1];
+ STRLEN foldlen;
+ SV** listp;
+
+ if (j < 256) {
+
+ if (IS_IN_SOME_FOLD_L1(j)) {
+
+ /* ASCII is always matched; non-ASCII is matched
+ * only under Unicode rules (which could happen
+ * under /l if the locale is a UTF-8 one */
+ if (isASCII(j) || ! DEPENDS_SEMANTICS) {
+ *use_list = add_cp_to_invlist(*use_list,
+ PL_fold_latin1[j]);
+ }
+ else {
+ depends_list =
+ add_cp_to_invlist(depends_list,
+ PL_fold_latin1[j]);
+ }
+ }
+
+ if (HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(j)
+ && (! isASCII(j) || ! ASCII_FOLD_RESTRICTED))
+ {
+ add_above_Latin1_folds(pRExC_state,
+ (U8) j,
+ use_list);
+ }
+ continue;
+ }
+
+ /* Here is an above Latin1 character. We don't have the
+ * rules hard-coded for it. First, get its fold. This is
+ * the simple fold, as the multi-character folds have been
+ * handled earlier and separated out */
+ _to_uni_fold_flags(j, foldbuf, &foldlen,
+ (ASCII_FOLD_RESTRICTED)
+ ? FOLD_FLAGS_NOMIX_ASCII
+ : 0);
+
+ /* Single character fold of above Latin1. Add everything in
+ * its fold closure to the list that this node should match.
+ * The fold closures data structure is a hash with the keys
+ * being the UTF-8 of every character that is folded to, like
+ * 'k', and the values each an array of all code points that
+ * fold to its key. e.g. [ 'k', 'K', KELVIN_SIGN ].
+ * Multi-character folds are not included */
+ if ((listp = hv_fetch(PL_utf8_foldclosures,
+ (char *) foldbuf, foldlen, FALSE)))
+ {
+ AV* list = (AV*) *listp;
+ IV k;
+ for (k = 0; k <= av_tindex(list); k++) {
+ SV** c_p = av_fetch(list, k, FALSE);
+ UV c;
+ assert(c_p);
+
+ c = SvUV(*c_p);
+
+ /* /aa doesn't allow folds between ASCII and non- */
+ if ((ASCII_FOLD_RESTRICTED
+ && (isASCII(c) != isASCII(j))))
+ {
+ continue;
+ }
+
+ /* Folds under /l which cross the 255/256 boundary
+ * are added to a separate list. (These are valid
+ * only when the locale is UTF-8.) */
+ if (c < 256 && LOC) {
+ *use_list = add_cp_to_invlist(*use_list, c);
+ continue;
+ }
+
+ if (isASCII(c) || c > 255 || AT_LEAST_UNI_SEMANTICS)
+ {
+ cp_list = add_cp_to_invlist(cp_list, c);
+ }
+ else {
+ /* Similarly folds involving non-ascii Latin1
+ * characters under /d are added to their list */
+ depends_list = add_cp_to_invlist(depends_list,
+ c);
+ }
+ }
+ }
+ }
+ }
+ SvREFCNT_dec_NN(fold_intersection);
+ }
+
+ /* Now that we have finished adding all the folds, there is no reason
+ * to keep the foldable list separate */
+ _invlist_union(cp_list, cp_foldable_list, &cp_list);
+ SvREFCNT_dec_NN(cp_foldable_list);
+ }
+
+ /* And combine the result (if any) with any inversion list from posix
+ * classes. The lists are kept separate up to now because we don't want to
+ * fold the classes (folding of those is automatically handled by the swash
+ * fetching code) */
+ if (simple_posixes) {
+ _invlist_union(cp_list, simple_posixes, &cp_list);
+ SvREFCNT_dec_NN(simple_posixes);
+ }
+ if (posixes || nposixes) {
+ if (posixes && AT_LEAST_ASCII_RESTRICTED) {
+ /* Under /a and /aa, nothing above ASCII matches these */
+ _invlist_intersection(posixes,
+ PL_XPosix_ptrs[_CC_ASCII],
+ &posixes);
+ }
+ if (nposixes) {
+ if (DEPENDS_SEMANTICS) {
+ /* Under /d, everything in the upper half of the Latin1 range
+ * matches these complements */
+ ANYOF_FLAGS(ret) |= ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII;
+ }
+ else if (AT_LEAST_ASCII_RESTRICTED) {
+ /* Under /a and /aa, everything above ASCII matches these
+ * complements */
+ _invlist_union_complement_2nd(nposixes,
+ PL_XPosix_ptrs[_CC_ASCII],
+ &nposixes);
+ }
+ if (posixes) {
+ _invlist_union(posixes, nposixes, &posixes);
+ SvREFCNT_dec_NN(nposixes);
+ }
+ else {
+ posixes = nposixes;
+ }
+ }
+ if (! DEPENDS_SEMANTICS) {
+ if (cp_list) {
+ _invlist_union(cp_list, posixes, &cp_list);
+ SvREFCNT_dec_NN(posixes);
+ }
+ else {
+ cp_list = posixes;
+ }
+ }
+ else {
+ /* Under /d, we put into a separate list the Latin1 things that
+ * match only when the target string is utf8 */
+ SV* nonascii_but_latin1_properties = NULL;
+ _invlist_intersection(posixes, PL_UpperLatin1,
+ &nonascii_but_latin1_properties);
+ _invlist_subtract(posixes, nonascii_but_latin1_properties,
+ &posixes);
+ if (cp_list) {
+ _invlist_union(cp_list, posixes, &cp_list);
+ SvREFCNT_dec_NN(posixes);
+ }
+ else {
+ cp_list = posixes;
+ }
+
+ if (depends_list) {
+ _invlist_union(depends_list, nonascii_but_latin1_properties,
+ &depends_list);
+ SvREFCNT_dec_NN(nonascii_but_latin1_properties);
+ }
+ else {
+ depends_list = nonascii_but_latin1_properties;
+ }
+ }
+ }
+
+ /* And combine the result (if any) with any inversion list from properties.
+ * The lists are kept separate up to now so that we can distinguish the two
+ * in regards to matching above-Unicode. A run-time warning is generated
+ * if a Unicode property is matched against a non-Unicode code point. But,
+ * we allow user-defined properties to match anything, without any warning,
+ * and we also suppress the warning if there is a portion of the character
+ * class that isn't a Unicode property, and which matches above Unicode, \W
+ * or [\x{110000}] for example.
+ * (Note that in this case, unlike the Posix one above, there is no
+ * <depends_list>, because having a Unicode property forces Unicode
+ * semantics */
+ if (properties) {
+ if (cp_list) {
+
+ /* If it matters to the final outcome, see if a non-property
+ * component of the class matches above Unicode. If so, the
+ * warning gets suppressed. This is true even if just a single
+ * such code point is specified, as though not strictly correct if
+ * another such code point is matched against, the fact that they
+ * are using above-Unicode code points indicates they should know
+ * the issues involved */
+ if (warn_super) {
+ warn_super = ! (invert
+ ^ (invlist_highest(cp_list) > PERL_UNICODE_MAX));
+ }
+
+ _invlist_union(properties, cp_list, &cp_list);
+ SvREFCNT_dec_NN(properties);
+ }
+ else {
+ cp_list = properties;
+ }
+
+ if (warn_super) {
+ ANYOF_FLAGS(ret) |= ANYOF_WARN_SUPER;
+ }
+ }
+
+ /* Here, we have calculated what code points should be in the character
+ * class.
+ *
+ * Now we can see about various optimizations. Fold calculation (which we
+ * did above) needs to take place before inversion. Otherwise /[^k]/i
+ * would invert to include K, which under /i would match k, which it
+ * shouldn't. Therefore we can't invert folded locale now, as it won't be
+ * folded until runtime */
+
+ /* If we didn't do folding, it's because some information isn't available
+ * until runtime; set the run-time fold flag for these. (We don't have to
+ * worry about properties folding, as that is taken care of by the swash
+ * fetching). We know to set the flag if we have a non-NULL list for UTF-8
+ * locales, or the class matches at least one 0-255 range code point */
+ if (LOC && FOLD) {
+ if (only_utf8_locale_list) {
+ ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD;
+ }
+ else if (cp_list) { /* Look to see if there a 0-255 code point is in
+ the list */
+ UV start, end;
+ invlist_iterinit(cp_list);
+ if (invlist_iternext(cp_list, &start, &end) && start < 256) {
+ ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD;
+ }
+ invlist_iterfinish(cp_list);
+ }
+ }
+
+ /* Optimize inverted simple patterns (e.g. [^a-z]) when everything is known
+ * at compile time. Besides not inverting folded locale now, we can't
+ * invert if there are things such as \w, which aren't known until runtime
+ * */
+ if (cp_list
+ && invert
+ && ! (ANYOF_FLAGS(ret) & (ANYOF_LOCALE_FLAGS))
+ && ! depends_list
+ && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
+ {
+ _invlist_invert(cp_list);
+
+ /* Any swash can't be used as-is, because we've inverted things */
+ if (swash) {
+ SvREFCNT_dec_NN(swash);
+ swash = NULL;
+ }
+
+ /* Clear the invert flag since have just done it here */
+ invert = FALSE;
+ }
+
+ if (ret_invlist) {
+ assert(cp_list);
+
+ *ret_invlist = cp_list;
+ SvREFCNT_dec(swash);
+
+ /* Discard the generated node */
+ if (SIZE_ONLY) {
+ RExC_size = orig_size;
+ }
+ else {
+ RExC_emit = orig_emit;
+ }
+ return orig_emit;
+ }
+
+ /* Some character classes are equivalent to other nodes. Such nodes take
+ * up less room and generally fewer operations to execute than ANYOF nodes.
+ * Above, we checked for and optimized into some such equivalents for
+ * certain common classes that are easy to test. Getting to this point in
+ * the code means that the class didn't get optimized there. Since this
+ * code is only executed in Pass 2, it is too late to save space--it has
+ * been allocated in Pass 1, and currently isn't given back. But turning
+ * things into an EXACTish node can allow the optimizer to join it to any
+ * adjacent such nodes. And if the class is equivalent to things like /./,
+ * expensive run-time swashes can be avoided. Now that we have more
+ * complete information, we can find things necessarily missed by the
+ * earlier code. I (khw) am not sure how much to look for here. It would
+ * be easy, but perhaps too slow, to check any candidates against all the
+ * node types they could possibly match using _invlistEQ(). */
+
+ if (cp_list
+ && ! invert
+ && ! depends_list
+ && ! (ANYOF_FLAGS(ret) & (ANYOF_LOCALE_FLAGS))
+ && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
+
+ /* We don't optimize if we are supposed to make sure all non-Unicode
+ * code points raise a warning, as only ANYOF nodes have this check.
+ * */
+ && ! ((ANYOF_FLAGS(ret) & ANYOF_WARN_SUPER) && ALWAYS_WARN_SUPER))
+ {
+ UV start, end;
+ U8 op = END; /* The optimzation node-type */
+ const char * cur_parse= RExC_parse;
+
+ invlist_iterinit(cp_list);
+ if (! invlist_iternext(cp_list, &start, &end)) {
+
+ /* Here, the list is empty. This happens, for example, when a
+ * Unicode property is the only thing in the character class, and
+ * it doesn't match anything. (perluniprops.pod notes such
+ * properties) */
+ op = OPFAIL;
+ *flagp |= HASWIDTH|SIMPLE;
+ }
+ else if (start == end) { /* The range is a single code point */
+ if (! invlist_iternext(cp_list, &start, &end)
+
+ /* Don't do this optimization if it would require changing
+ * the pattern to UTF-8 */
+ && (start < 256 || UTF))
+ {
+ /* Here, the list contains a single code point. Can optimize
+ * into an EXACTish node */
+
+ value = start;
+
+ if (! FOLD) {
+ op = (LOC)
+ ? EXACTL
+ : EXACT;
+ }
+ else if (LOC) {
+
+ /* A locale node under folding with one code point can be
+ * an EXACTFL, as its fold won't be calculated until
+ * runtime */
+ op = EXACTFL;
+ }
+ else {
+
+ /* Here, we are generally folding, but there is only one
+ * code point to match. If we have to, we use an EXACT
+ * node, but it would be better for joining with adjacent
+ * nodes in the optimization pass if we used the same
+ * EXACTFish node that any such are likely to be. We can
+ * do this iff the code point doesn't participate in any
+ * folds. For example, an EXACTF of a colon is the same as
+ * an EXACT one, since nothing folds to or from a colon. */
+ if (value < 256) {
+ if (IS_IN_SOME_FOLD_L1(value)) {
+ op = EXACT;
+ }
+ }
+ else {
+ if (_invlist_contains_cp(PL_utf8_foldable, value)) {
+ op = EXACT;
+ }
+ }
+
+ /* If we haven't found the node type, above, it means we
+ * can use the prevailing one */
+ if (op == END) {
+ op = compute_EXACTish(pRExC_state);
+ }
+ }
+ }
+ }
+ else if (start == 0) {
+ if (end == UV_MAX) {
+ op = SANY;
+ *flagp |= HASWIDTH|SIMPLE;
+ MARK_NAUGHTY(1);
+ }
+ else if (end == '\n' - 1
+ && invlist_iternext(cp_list, &start, &end)
+ && start == '\n' + 1 && end == UV_MAX)
+ {
+ op = REG_ANY;
+ *flagp |= HASWIDTH|SIMPLE;
+ MARK_NAUGHTY(1);
+ }
+ }
+ invlist_iterfinish(cp_list);
+
+ if (op != END) {
+ RExC_parse = (char *)orig_parse;
+ RExC_emit = (regnode *)orig_emit;
+
+ ret = reg_node(pRExC_state, op);
+
+ RExC_parse = (char *)cur_parse;
+
+ if (PL_regkind[op] == EXACT) {
+ alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value,
+ TRUE /* downgradable to EXACT */
+ );
+ }
+
+ SvREFCNT_dec_NN(cp_list);
+ return ret;
+ }
+ }
+
+ /* Here, <cp_list> contains all the code points we can determine at
+ * compile time that match under all conditions. Go through it, and
+ * for things that belong in the bitmap, put them there, and delete from
+ * <cp_list>. While we are at it, see if everything above 255 is in the
+ * list, and if so, set a flag to speed up execution */
+
+ populate_ANYOF_from_invlist(ret, &cp_list);
+
+ if (invert) {
+ ANYOF_FLAGS(ret) |= ANYOF_INVERT;
+ }
+
+ /* Here, the bitmap has been populated with all the Latin1 code points that
+ * always match. Can now add to the overall list those that match only
+ * when the target string is UTF-8 (<depends_list>). */
+ if (depends_list) {
+ if (cp_list) {
+ _invlist_union(cp_list, depends_list, &cp_list);
+ SvREFCNT_dec_NN(depends_list);
+ }
+ else {
+ cp_list = depends_list;
+ }
+ ANYOF_FLAGS(ret) |= ANYOF_HAS_UTF8_NONBITMAP_MATCHES;
+ }
+
+ /* If there is a swash and more than one element, we can't use the swash in
+ * the optimization below. */
+ if (swash && element_count > 1) {
+ SvREFCNT_dec_NN(swash);
+ swash = NULL;
+ }
+
+ /* Note that the optimization of using 'swash' if it is the only thing in
+ * the class doesn't have us change swash at all, so it can include things
+ * that are also in the bitmap; otherwise we have purposely deleted that
+ * duplicate information */
+ set_ANYOF_arg(pRExC_state, ret, cp_list,
+ (HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
+ ? listsv : NULL,
+ only_utf8_locale_list,
+ swash, has_user_defined_property);
+
+ *flagp |= HASWIDTH|SIMPLE;
+
+ if (ANYOF_FLAGS(ret) & ANYOF_LOCALE_FLAGS) {
+ RExC_contains_locale = 1;
+ }
+
+ return ret;
+}
+
+#undef HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
+
+STATIC void
+S_set_ANYOF_arg(pTHX_ RExC_state_t* const pRExC_state,
+ regnode* const node,
+ SV* const cp_list,
+ SV* const runtime_defns,
+ SV* const only_utf8_locale_list,
+ SV* const swash,
+ const bool has_user_defined_property)
+{
+ /* Sets the arg field of an ANYOF-type node 'node', using information about
+ * the node passed-in. If there is nothing outside the node's bitmap, the
+ * arg is set to ANYOF_ONLY_HAS_BITMAP. Otherwise, it sets the argument to
+ * the count returned by add_data(), having allocated and stored an array,
+ * av, that that count references, as follows:
+ * av[0] stores the character class description in its textual form.
+ * This is used later (regexec.c:Perl_regclass_swash()) to
+ * initialize the appropriate swash, and is also useful for dumping
+ * the regnode. This is set to &PL_sv_undef if the textual
+ * description is not needed at run-time (as happens if the other
+ * elements completely define the class)
+ * av[1] if &PL_sv_undef, is a placeholder to later contain the swash
+ * computed from av[0]. But if no further computation need be done,
+ * the swash is stored here now (and av[0] is &PL_sv_undef).
+ * av[2] stores the inversion list of code points that match only if the
+ * current locale is UTF-8
+ * av[3] stores the cp_list inversion list for use in addition or instead
+ * of av[0]; used only if cp_list exists and av[1] is &PL_sv_undef.
+ * (Otherwise everything needed is already in av[0] and av[1])
+ * av[4] is set if any component of the class is from a user-defined
+ * property; used only if av[3] exists */
+
+ UV n;
+
+ PERL_ARGS_ASSERT_SET_ANYOF_ARG;
+
+ if (! cp_list && ! runtime_defns && ! only_utf8_locale_list) {
+ assert(! (ANYOF_FLAGS(node)
+ & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+ |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES)));
+ ARG_SET(node, ANYOF_ONLY_HAS_BITMAP);
+ }
+ else {
+ AV * const av = newAV();
+ SV *rv;
+
+ assert(ANYOF_FLAGS(node)
+ & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+ |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES|ANYOF_LOC_FOLD));
+
+ av_store(av, 0, (runtime_defns)
+ ? SvREFCNT_inc(runtime_defns) : &PL_sv_undef);
+ if (swash) {
+ assert(cp_list);
+ av_store(av, 1, swash);
+ SvREFCNT_dec_NN(cp_list);
+ }
+ else {
+ av_store(av, 1, &PL_sv_undef);
+ if (cp_list) {
+ av_store(av, 3, cp_list);
+ av_store(av, 4, newSVuv(has_user_defined_property));
+ }
+ }
+
+ if (only_utf8_locale_list) {
+ av_store(av, 2, only_utf8_locale_list);
+ }
+ else {
+ av_store(av, 2, &PL_sv_undef);
+ }
+
+ rv = newRV_noinc(MUTABLE_SV(av));
+ n = add_data(pRExC_state, STR_WITH_LEN("s"));
+ RExC_rxi->data->data[n] = (void*)rv;
+ ARG_SET(node, n);
+ }
+}
+
+#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
+SV *
+Perl__get_regclass_nonbitmap_data(pTHX_ const regexp *prog,
+ const regnode* node,
+ bool doinit,
+ SV** listsvp,
+ SV** only_utf8_locale_ptr,
+ SV* exclude_list)
+
+{
+ /* For internal core use only.
+ * Returns the swash for the input 'node' in the regex 'prog'.
+ * If <doinit> is 'true', will attempt to create the swash if not already
+ * done.
+ * If <listsvp> is non-null, will return the printable contents of the
+ * swash. This can be used to get debugging information even before the
+ * swash exists, by calling this function with 'doinit' set to false, in
+ * which case the components that will be used to eventually create the
+ * swash are returned (in a printable form).
+ * If <exclude_list> is not NULL, it is an inversion list of things to
+ * exclude from what's returned in <listsvp>.
+ * Tied intimately to how S_set_ANYOF_arg sets up the data structure. Note
+ * that, in spite of this function's name, the swash it returns may include
+ * the bitmap data as well */
+
+ SV *sw = NULL;
+ SV *si = NULL; /* Input swash initialization string */
+ SV* invlist = NULL;
+
+ RXi_GET_DECL(prog,progi);
+ const struct reg_data * const data = prog ? progi->data : NULL;
+
+ PERL_ARGS_ASSERT__GET_REGCLASS_NONBITMAP_DATA;
+
+ assert(ANYOF_FLAGS(node)
+ & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+ |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES|ANYOF_LOC_FOLD));
+
+ if (data && data->count) {
+ const U32 n = ARG(node);
+
+ if (data->what[n] == 's') {
+ SV * const rv = MUTABLE_SV(data->data[n]);
+ AV * const av = MUTABLE_AV(SvRV(rv));
+ SV **const ary = AvARRAY(av);
+ U8 swash_init_flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+
+ si = *ary; /* ary[0] = the string to initialize the swash with */
+
+ /* Elements 3 and 4 are either both present or both absent. [3] is
+ * any inversion list generated at compile time; [4] indicates if
+ * that inversion list has any user-defined properties in it. */
+ if (av_tindex(av) >= 2) {
+ if (only_utf8_locale_ptr
+ && ary[2]
+ && ary[2] != &PL_sv_undef)
+ {
+ *only_utf8_locale_ptr = ary[2];
+ }
+ else {
+ assert(only_utf8_locale_ptr);
+ *only_utf8_locale_ptr = NULL;
+ }
+
+ if (av_tindex(av) >= 3) {
+ invlist = ary[3];
+ if (SvUV(ary[4])) {
+ swash_init_flags |= _CORE_SWASH_INIT_USER_DEFINED_PROPERTY;
+ }
+ }
+ else {
+ invlist = NULL;
+ }
+ }
+
+ /* Element [1] is reserved for the set-up swash. If already there,
+ * return it; if not, create it and store it there */
+ if (ary[1] && SvROK(ary[1])) {
+ sw = ary[1];
+ }
+ else if (doinit && ((si && si != &PL_sv_undef)
+ || (invlist && invlist != &PL_sv_undef))) {
+ assert(si);
+ sw = _core_swash_init("utf8", /* the utf8 package */
+ "", /* nameless */
+ si,
+ 1, /* binary */
+ 0, /* not from tr/// */
+ invlist,
+ &swash_init_flags);
+ (void)av_store(av, 1, sw);
+ }
+ }
+ }
+
+ /* If requested, return a printable version of what this swash matches */
+ if (listsvp) {
+ SV* matches_string = newSVpvs("");
+
+ /* The swash should be used, if possible, to get the data, as it
+ * contains the resolved data. But this function can be called at
+ * compile-time, before everything gets resolved, in which case we
+ * return the currently best available information, which is the string
+ * that will eventually be used to do that resolving, 'si' */
+ if ((! sw || (invlist = _get_swash_invlist(sw)) == NULL)
+ && (si && si != &PL_sv_undef))
+ {
+ sv_catsv(matches_string, si);
+ }
+
+ /* Add the inversion list to whatever we have. This may have come from
+ * the swash, or from an input parameter */
+ if (invlist) {
+ if (exclude_list) {
+ SV* clone = invlist_clone(invlist);
+ _invlist_subtract(clone, exclude_list, &clone);
+ sv_catsv(matches_string, _invlist_contents(clone));
+ SvREFCNT_dec_NN(clone);
+ }
+ else {
+ sv_catsv(matches_string, _invlist_contents(invlist));
+ }
+ }
+ *listsvp = matches_string;
+ }
+
+ return sw;
+}
+#endif /* !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION) */
+
+/* reg_skipcomment()
+
+ Absorbs an /x style # comment from the input stream,
+ returning a pointer to the first character beyond the comment, or if the
+ comment terminates the pattern without anything following it, this returns
+ one past the final character of the pattern (in other words, RExC_end) and
+ sets the REG_RUN_ON_COMMENT_SEEN flag.
+
+ Note it's the callers responsibility to ensure that we are
+ actually in /x mode
+
+*/
+
+PERL_STATIC_INLINE char*
+S_reg_skipcomment(RExC_state_t *pRExC_state, char* p)
+{
+ PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
+
+ assert(*p == '#');
+
+ while (p < RExC_end) {
+ if (*(++p) == '\n') {
+ return p+1;
+ }
+ }
+
+ /* we ran off the end of the pattern without ending the comment, so we have
+ * to add an \n when wrapping */
+ RExC_seen |= REG_RUN_ON_COMMENT_SEEN;
+ return p;
+}
+
+/* nextchar()
+
+ Advances the parse position, and optionally absorbs
+ "whitespace" from the inputstream.
+
+ Without /x "whitespace" means (?#...) style comments only,
+ with /x this means (?#...) and # comments and whitespace proper.
+
+ Returns the RExC_parse point from BEFORE the scan occurs.
+
+ This is the /x friendly way of saying RExC_parse++.
+*/
+
+STATIC char*
+S_nextchar(pTHX_ RExC_state_t *pRExC_state)
+{
+ char* const retval = RExC_parse++;
+
+ PERL_ARGS_ASSERT_NEXTCHAR;
+
+ for (;;) {
+ if (RExC_end - RExC_parse >= 3
+ && *RExC_parse == '('
+ && RExC_parse[1] == '?'
+ && RExC_parse[2] == '#')
+ {
+ while (*RExC_parse != ')') {
+ if (RExC_parse == RExC_end)
+ FAIL("Sequence (?#... not terminated");
+ RExC_parse++;
+ }
+ RExC_parse++;
+ continue;
+ }
+ if (RExC_flags & RXf_PMf_EXTENDED) {
+ char * p = regpatws(pRExC_state, RExC_parse,
+ TRUE); /* means recognize comments */
+ if (p != RExC_parse) {
+ RExC_parse = p;
+ continue;
+ }
+ }
+ return retval;
+ }
+}
+
+STATIC regnode *
+S_regnode_guts(pTHX_ RExC_state_t *pRExC_state, const U8 op, const STRLEN extra_size, const char* const name)
+{
+ /* Allocate a regnode for 'op' and returns it, with 'extra_size' extra
+ * space. In pass1, it aligns and increments RExC_size; in pass2,
+ * RExC_emit */
+
+ regnode * const ret = RExC_emit;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGNODE_GUTS;
+
+ assert(extra_size >= regarglen[op]);
+
+ if (SIZE_ONLY) {
+ SIZE_ALIGN(RExC_size);
+ RExC_size += 1 + extra_size;
+ return(ret);
+ }
+ if (RExC_emit >= RExC_emit_bound)
+ Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
+ op, (void*)RExC_emit, (void*)RExC_emit_bound);
+
+ NODE_ALIGN_FILL(ret);
+#ifndef RE_TRACK_PATTERN_OFFSETS
+ PERL_UNUSED_ARG(name);
+#else
+ if (RExC_offsets) { /* MJD */
+ MJD_OFFSET_DEBUG(
+ ("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
+ name, __LINE__,
+ PL_reg_name[op],
+ (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
+ ? "Overwriting end of array!\n" : "OK",
+ (UV)(RExC_emit - RExC_emit_start),
+ (UV)(RExC_parse - RExC_start),
+ (UV)RExC_offsets[0]));
+ Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
+ }
+#endif
+ return(ret);
+}
+
+/*
+- reg_node - emit a node
+*/
+STATIC regnode * /* Location. */
+S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
+{
+ regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reg_node");
+
+ PERL_ARGS_ASSERT_REG_NODE;
+
+ assert(regarglen[op] == 0);
+
+ if (PASS2) {
+ regnode *ptr = ret;
+ FILL_ADVANCE_NODE(ptr, op);
+ REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 1);
+ RExC_emit = ptr;
+ }
+ return(ret);
+}
+
+/*
+- reganode - emit a node with an argument
+*/
+STATIC regnode * /* Location. */
+S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
+{
+ regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reganode");
+
+ PERL_ARGS_ASSERT_REGANODE;
+
+ assert(regarglen[op] == 1);
+
+ if (PASS2) {
+ regnode *ptr = ret;
+ FILL_ADVANCE_NODE_ARG(ptr, op, arg);
+ REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 2);
+ RExC_emit = ptr;
+ }
+ return(ret);
+}
+
+STATIC regnode *
+S_reg2Lanode(pTHX_ RExC_state_t *pRExC_state, const U8 op, const U32 arg1, const I32 arg2)
+{
+ /* emit a node with U32 and I32 arguments */
+
+ regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reg2Lanode");
+
+ PERL_ARGS_ASSERT_REG2LANODE;
+
+ assert(regarglen[op] == 2);
+
+ if (PASS2) {
+ regnode *ptr = ret;
+ FILL_ADVANCE_NODE_2L_ARG(ptr, op, arg1, arg2);
+ RExC_emit = ptr;
+ }
+ return(ret);
+}
+
+/*
+- reginsert - insert an operator in front of already-emitted operand
+*
+* Means relocating the operand.
+*/
+STATIC void
+S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
+{
+ regnode *src;
+ regnode *dst;
+ regnode *place;
+ const int offset = regarglen[(U8)op];
+ const int size = NODE_STEP_REGNODE + offset;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGINSERT;
+ PERL_UNUSED_CONTEXT;
+ PERL_UNUSED_ARG(depth);
+/* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
+ DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
+ if (SIZE_ONLY) {
+ RExC_size += size;
+ return;
+ }
+
+ src = RExC_emit;
+ RExC_emit += size;
+ dst = RExC_emit;
+ if (RExC_open_parens) {
+ int paren;
+ /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
+ for ( paren=0 ; paren < RExC_npar ; paren++ ) {
+ if ( RExC_open_parens[paren] >= opnd ) {
+ /*DEBUG_PARSE_FMT("open"," - %d",size);*/
+ RExC_open_parens[paren] += size;
+ } else {
+ /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
+ }
+ if ( RExC_close_parens[paren] >= opnd ) {
+ /*DEBUG_PARSE_FMT("close"," - %d",size);*/
+ RExC_close_parens[paren] += size;
+ } else {
+ /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
+ }
+ }
+ }
+
+ while (src > opnd) {
+ StructCopy(--src, --dst, regnode);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (RExC_offsets) { /* MJD 20010112 */
+ MJD_OFFSET_DEBUG(
+ ("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
+ "reg_insert",
+ __LINE__,
+ PL_reg_name[op],
+ (UV)(dst - RExC_emit_start) > RExC_offsets[0]
+ ? "Overwriting end of array!\n" : "OK",
+ (UV)(src - RExC_emit_start),
+ (UV)(dst - RExC_emit_start),
+ (UV)RExC_offsets[0]));
+ Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
+ Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
+ }
+#endif
+ }
+
+
+ place = opnd; /* Op node, where operand used to be. */
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (RExC_offsets) { /* MJD */
+ MJD_OFFSET_DEBUG(
+ ("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
+ "reginsert",
+ __LINE__,
+ PL_reg_name[op],
+ (UV)(place - RExC_emit_start) > RExC_offsets[0]
+ ? "Overwriting end of array!\n" : "OK",
+ (UV)(place - RExC_emit_start),
+ (UV)(RExC_parse - RExC_start),
+ (UV)RExC_offsets[0]));
+ Set_Node_Offset(place, RExC_parse);
+ Set_Node_Length(place, 1);
+ }
+#endif
+ src = NEXTOPER(place);
+ FILL_ADVANCE_NODE(place, op);
+ REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (place) - 1);
+ Zero(src, offset, regnode);
+}
+
+/*
+- regtail - set the next-pointer at the end of a node chain of p to val.
+- SEE ALSO: regtail_study
+*/
+/* TODO: All three parms should be const */
+STATIC void
+S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p,
+ const regnode *val,U32 depth)
+{
+ regnode *scan;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTAIL;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ if (SIZE_ONLY)
+ return;
+
+ /* Find last node. */
+ scan = p;
+ for (;;) {
+ regnode * const temp = regnext(scan);
+ DEBUG_PARSE_r({
+ DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
+ regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
+ SvPV_nolen_const(RExC_mysv), REG_NODE_NUM(scan),
+ (temp == NULL ? "->" : ""),
+ (temp == NULL ? PL_reg_name[OP(val)] : "")
+ );
+ });
+ if (temp == NULL)
+ break;
+ scan = temp;
+ }
+
+ if (reg_off_by_arg[OP(scan)]) {
+ ARG_SET(scan, val - scan);
+ }
+ else {
+ NEXT_OFF(scan) = val - scan;
+ }
+}
+
+#ifdef DEBUGGING
+/*
+- regtail_study - set the next-pointer at the end of a node chain of p to val.
+- Look for optimizable sequences at the same time.
+- currently only looks for EXACT chains.
+
+This is experimental code. The idea is to use this routine to perform
+in place optimizations on branches and groups as they are constructed,
+with the long term intention of removing optimization from study_chunk so
+that it is purely analytical.
+
+Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
+to control which is which.
+
+*/
+/* TODO: All four parms should be const */
+
+STATIC U8
+S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p,
+ const regnode *val,U32 depth)
+{
+ regnode *scan;
+ U8 exact = PSEUDO;
+#ifdef EXPERIMENTAL_INPLACESCAN
+ I32 min = 0;
+#endif
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTAIL_STUDY;
+
+
+ if (SIZE_ONLY)
+ return exact;
+
+ /* Find last node. */
+
+ scan = p;
+ for (;;) {
+ regnode * const temp = regnext(scan);
+#ifdef EXPERIMENTAL_INPLACESCAN
+ if (PL_regkind[OP(scan)] == EXACT) {
+ bool unfolded_multi_char; /* Unexamined in this routine */
+ if (join_exact(pRExC_state, scan, &min,
+ &unfolded_multi_char, 1, val, depth+1))
+ return EXACT;
+ }
+#endif
+ if ( exact ) {
+ switch (OP(scan)) {
+ case EXACT:
+ case EXACTL:
+ case EXACTF:
+ case EXACTFA_NO_TRIE:
+ case EXACTFA:
+ case EXACTFU:
+ case EXACTFLU8:
+ case EXACTFU_SS:
+ case EXACTFL:
+ if( exact == PSEUDO )
+ exact= OP(scan);
+ else if ( exact != OP(scan) )
+ exact= 0;
+ case NOTHING:
+ break;
+ default:
+ exact= 0;
+ }
+ }
+ DEBUG_PARSE_r({
+ DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
+ regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
+ SvPV_nolen_const(RExC_mysv),
+ REG_NODE_NUM(scan),
+ PL_reg_name[exact]);
+ });
+ if (temp == NULL)
+ break;
+ scan = temp;
+ }
+ DEBUG_PARSE_r({
+ DEBUG_PARSE_MSG("");
+ regprop(RExC_rx, RExC_mysv, val, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log,
+ "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
+ SvPV_nolen_const(RExC_mysv),
+ (IV)REG_NODE_NUM(val),
+ (IV)(val - scan)
+ );
+ });
+ if (reg_off_by_arg[OP(scan)]) {
+ ARG_SET(scan, val - scan);
+ }
+ else {
+ NEXT_OFF(scan) = val - scan;
+ }
+
+ return exact;
+}
+#endif
+
+/*
+ - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
+ */
+#ifdef DEBUGGING
+
+static void
+S_regdump_intflags(pTHX_ const char *lead, const U32 flags)
+{
+ int bit;
+ int set=0;
+
+ ASSUME(REG_INTFLAGS_NAME_SIZE <= sizeof(flags)*8);
+
+ for (bit=0; bit<REG_INTFLAGS_NAME_SIZE; bit++) {
+ if (flags & (1<<bit)) {
+ if (!set++ && lead)
+ PerlIO_printf(Perl_debug_log, "%s",lead);
+ PerlIO_printf(Perl_debug_log, "%s ",PL_reg_intflags_name[bit]);
+ }
+ }
+ if (lead) {
+ if (set)
+ PerlIO_printf(Perl_debug_log, "\n");
+ else
+ PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
+ }
+}
+
+static void
+S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
+{
+ int bit;
+ int set=0;
+ regex_charset cs;
+
+ ASSUME(REG_EXTFLAGS_NAME_SIZE <= sizeof(flags)*8);
+
+ for (bit=0; bit<REG_EXTFLAGS_NAME_SIZE; bit++) {
+ if (flags & (1<<bit)) {
+ if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
+ continue;
+ }
+ if (!set++ && lead)
+ PerlIO_printf(Perl_debug_log, "%s",lead);
+ PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
+ }
+ }
+ if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
+ if (!set++ && lead) {
+ PerlIO_printf(Perl_debug_log, "%s",lead);
+ }
+ switch (cs) {
+ case REGEX_UNICODE_CHARSET:
+ PerlIO_printf(Perl_debug_log, "UNICODE");
+ break;
+ case REGEX_LOCALE_CHARSET:
+ PerlIO_printf(Perl_debug_log, "LOCALE");
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
+ break;
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
+ break;
+ default:
+ PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
+ break;
+ }
+ }
+ if (lead) {
+ if (set)
+ PerlIO_printf(Perl_debug_log, "\n");
+ else
+ PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
+ }
+}
+#endif
+
+void
+Perl_regdump(pTHX_ const regexp *r)
+{
+#ifdef DEBUGGING
+ SV * const sv = sv_newmortal();
+ SV *dsv= sv_newmortal();
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGDUMP;
+
+ (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
+
+ /* Header fields of interest. */
+ if (r->anchored_substr) {
+ RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
+ RE_SV_DUMPLEN(r->anchored_substr), 30);
+ PerlIO_printf(Perl_debug_log,
+ "anchored %s%s at %"IVdf" ",
+ s, RE_SV_TAIL(r->anchored_substr),
+ (IV)r->anchored_offset);
+ } else if (r->anchored_utf8) {
+ RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
+ RE_SV_DUMPLEN(r->anchored_utf8), 30);
+ PerlIO_printf(Perl_debug_log,
+ "anchored utf8 %s%s at %"IVdf" ",
+ s, RE_SV_TAIL(r->anchored_utf8),
+ (IV)r->anchored_offset);
+ }
+ if (r->float_substr) {
+ RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
+ RE_SV_DUMPLEN(r->float_substr), 30);
+ PerlIO_printf(Perl_debug_log,
+ "floating %s%s at %"IVdf"..%"UVuf" ",
+ s, RE_SV_TAIL(r->float_substr),
+ (IV)r->float_min_offset, (UV)r->float_max_offset);
+ } else if (r->float_utf8) {
+ RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
+ RE_SV_DUMPLEN(r->float_utf8), 30);
+ PerlIO_printf(Perl_debug_log,
+ "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
+ s, RE_SV_TAIL(r->float_utf8),
+ (IV)r->float_min_offset, (UV)r->float_max_offset);
+ }
+ if (r->check_substr || r->check_utf8)
+ PerlIO_printf(Perl_debug_log,
+ (const char *)
+ (r->check_substr == r->float_substr
+ && r->check_utf8 == r->float_utf8
+ ? "(checking floating" : "(checking anchored"));
+ if (r->intflags & PREGf_NOSCAN)
+ PerlIO_printf(Perl_debug_log, " noscan");
+ if (r->extflags & RXf_CHECK_ALL)
+ PerlIO_printf(Perl_debug_log, " isall");
+ if (r->check_substr || r->check_utf8)
+ PerlIO_printf(Perl_debug_log, ") ");
+
+ if (ri->regstclass) {
+ regprop(r, sv, ri->regstclass, NULL, NULL);
+ PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
+ }
+ if (r->intflags & PREGf_ANCH) {
+ PerlIO_printf(Perl_debug_log, "anchored");
+ if (r->intflags & PREGf_ANCH_MBOL)
+ PerlIO_printf(Perl_debug_log, "(MBOL)");
+ if (r->intflags & PREGf_ANCH_SBOL)
+ PerlIO_printf(Perl_debug_log, "(SBOL)");
+ if (r->intflags & PREGf_ANCH_GPOS)
+ PerlIO_printf(Perl_debug_log, "(GPOS)");
+ PerlIO_putc(Perl_debug_log, ' ');
+ }
+ if (r->intflags & PREGf_GPOS_SEEN)
+ PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
+ if (r->intflags & PREGf_SKIP)
+ PerlIO_printf(Perl_debug_log, "plus ");
+ if (r->intflags & PREGf_IMPLICIT)
+ PerlIO_printf(Perl_debug_log, "implicit ");
+ PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
+ if (r->extflags & RXf_EVAL_SEEN)
+ PerlIO_printf(Perl_debug_log, "with eval ");
+ PerlIO_printf(Perl_debug_log, "\n");
+ DEBUG_FLAGS_r({
+ regdump_extflags("r->extflags: ",r->extflags);
+ regdump_intflags("r->intflags: ",r->intflags);
+ });
+#else
+ PERL_ARGS_ASSERT_REGDUMP;
+ PERL_UNUSED_CONTEXT;
+ PERL_UNUSED_ARG(r);
+#endif /* DEBUGGING */
+}
+
+/*
+- regprop - printable representation of opcode, with run time support
+*/
+
+void
+Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o, const regmatch_info *reginfo, const RExC_state_t *pRExC_state)
+{
+#ifdef DEBUGGING
+ int k;
+
+ /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
+ static const char * const anyofs[] = {
+#if _CC_WORDCHAR != 0 || _CC_DIGIT != 1 || _CC_ALPHA != 2 || _CC_LOWER != 3 \
+ || _CC_UPPER != 4 || _CC_PUNCT != 5 || _CC_PRINT != 6 \
+ || _CC_ALPHANUMERIC != 7 || _CC_GRAPH != 8 || _CC_CASED != 9 \
+ || _CC_SPACE != 10 || _CC_BLANK != 11 || _CC_XDIGIT != 12 \
+ || _CC_CNTRL != 13 || _CC_ASCII != 14 || _CC_VERTSPACE != 15
+ #error Need to adjust order of anyofs[]
+#endif
+ "\\w",
+ "\\W",
+ "\\d",
+ "\\D",
+ "[:alpha:]",
+ "[:^alpha:]",
+ "[:lower:]",
+ "[:^lower:]",
+ "[:upper:]",
+ "[:^upper:]",
+ "[:punct:]",
+ "[:^punct:]",
+ "[:print:]",
+ "[:^print:]",
+ "[:alnum:]",
+ "[:^alnum:]",
+ "[:graph:]",
+ "[:^graph:]",
+ "[:cased:]",
+ "[:^cased:]",
+ "\\s",
+ "\\S",
+ "[:blank:]",
+ "[:^blank:]",
+ "[:xdigit:]",
+ "[:^xdigit:]",
+ "[:cntrl:]",
+ "[:^cntrl:]",
+ "[:ascii:]",
+ "[:^ascii:]",
+ "\\v",
+ "\\V"
+ };
+ RXi_GET_DECL(prog,progi);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGPROP;
+
+ sv_setpvn(sv, "", 0);
+
+ if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */
+ /* It would be nice to FAIL() here, but this may be called from
+ regexec.c, and it would be hard to supply pRExC_state. */
+ Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d",
+ (int)OP(o), (int)REGNODE_MAX);
+ sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
+
+ k = PL_regkind[OP(o)];
+
+ if (k == EXACT) {
+ sv_catpvs(sv, " ");
+ /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
+ * is a crude hack but it may be the best for now since
+ * we have no flag "this EXACTish node was UTF-8"
+ * --jhi */
+ pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
+ PERL_PV_ESCAPE_UNI_DETECT |
+ PERL_PV_ESCAPE_NONASCII |
+ PERL_PV_PRETTY_ELLIPSES |
+ PERL_PV_PRETTY_LTGT |
+ PERL_PV_PRETTY_NOCLEAR
+ );
+ } else if (k == TRIE) {
+ /* print the details of the trie in dumpuntil instead, as
+ * progi->data isn't available here */
+ const char op = OP(o);
+ const U32 n = ARG(o);
+ const reg_ac_data * const ac = IS_TRIE_AC(op) ?
+ (reg_ac_data *)progi->data->data[n] :
+ NULL;
+ const reg_trie_data * const trie
+ = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
+
+ Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
+ DEBUG_TRIE_COMPILE_r(
+ Perl_sv_catpvf(aTHX_ sv,
+ "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
+ (UV)trie->startstate,
+ (IV)trie->statecount-1, /* -1 because of the unused 0 element */
+ (UV)trie->wordcount,
+ (UV)trie->minlen,
+ (UV)trie->maxlen,
+ (UV)TRIE_CHARCOUNT(trie),
+ (UV)trie->uniquecharcount
+ );
+ );
+ if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
+ sv_catpvs(sv, "[");
+ (void) put_charclass_bitmap_innards(sv,
+ (IS_ANYOF_TRIE(op))
+ ? ANYOF_BITMAP(o)
+ : TRIE_BITMAP(trie),
+ NULL);
+ sv_catpvs(sv, "]");
+ }
+
+ } else if (k == CURLY) {
+ if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
+ Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
+ Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
+ }
+ else if (k == WHILEM && o->flags) /* Ordinal/of */
+ Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
+ else if (k == REF || k == OPEN || k == CLOSE
+ || k == GROUPP || OP(o)==ACCEPT)
+ {
+ AV *name_list= NULL;
+ Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
+ if ( RXp_PAREN_NAMES(prog) ) {
+ name_list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
+ } else if ( pRExC_state ) {
+ name_list= RExC_paren_name_list;
+ }
+ if (name_list) {
+ if ( k != REF || (OP(o) < NREF)) {
+ SV **name= av_fetch(name_list, ARG(o), 0 );
+ if (name)
+ Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+ }
+ else {
+ SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
+ I32 *nums=(I32*)SvPVX(sv_dat);
+ SV **name= av_fetch(name_list, nums[0], 0 );
+ I32 n;
+ if (name) {
+ for ( n=0; n<SvIVX(sv_dat); n++ ) {
+ Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
+ (n ? "," : ""), (IV)nums[n]);
+ }
+ Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+ }
+ }
+ }
+ if ( k == REF && reginfo) {
+ U32 n = ARG(o); /* which paren pair */
+ I32 ln = prog->offs[n].start;
+ if (prog->lastparen < n || ln == -1)
+ Perl_sv_catpvf(aTHX_ sv, ": FAIL");
+ else if (ln == prog->offs[n].end)
+ Perl_sv_catpvf(aTHX_ sv, ": ACCEPT - EMPTY STRING");
+ else {
+ const char *s = reginfo->strbeg + ln;
+ Perl_sv_catpvf(aTHX_ sv, ": ");
+ Perl_pv_pretty( aTHX_ sv, s, prog->offs[n].end - prog->offs[n].start, 32, 0, 0,
+ PERL_PV_ESCAPE_UNI_DETECT|PERL_PV_PRETTY_NOCLEAR|PERL_PV_PRETTY_ELLIPSES|PERL_PV_PRETTY_QUOTE );
+ }
+ }
+ } else if (k == GOSUB) {
+ AV *name_list= NULL;
+ if ( RXp_PAREN_NAMES(prog) ) {
+ name_list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
+ } else if ( pRExC_state ) {
+ name_list= RExC_paren_name_list;
+ }
+
+ /* Paren and offset */
+ Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o));
+ if (name_list) {
+ SV **name= av_fetch(name_list, ARG(o), 0 );
+ if (name)
+ Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+ }
+ }
+ else if (k == VERB) {
+ if (!o->flags)
+ Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
+ SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
+ } else if (k == LOGICAL)
+ /* 2: embedded, otherwise 1 */
+ Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags);
+ else if (k == ANYOF) {
+ const U8 flags = ANYOF_FLAGS(o);
+ int do_sep = 0;
+ SV* bitmap_invlist; /* Will hold what the bit map contains */
+
+
+ if (OP(o) == ANYOFL)
+ sv_catpvs(sv, "{loc}");
+ if (flags & ANYOF_LOC_FOLD)
+ sv_catpvs(sv, "{i}");
+ Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
+ if (flags & ANYOF_INVERT)
+ sv_catpvs(sv, "^");
+
+ /* output what the standard cp 0-NUM_ANYOF_CODE_POINTS-1 bitmap matches
+ * */
+ do_sep = put_charclass_bitmap_innards(sv, ANYOF_BITMAP(o),
+ &bitmap_invlist);
+
+ /* output any special charclass tests (used entirely under use
+ * locale) * */
+ if (ANYOF_POSIXL_TEST_ANY_SET(o)) {
+ int i;
+ for (i = 0; i < ANYOF_POSIXL_MAX; i++) {
+ if (ANYOF_POSIXL_TEST(o,i)) {
+ sv_catpv(sv, anyofs[i]);
+ do_sep = 1;
+ }
+ }
+ }
+
+ if ((flags & (ANYOF_MATCHES_ALL_ABOVE_BITMAP
+ |ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+ |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES
+ |ANYOF_LOC_FOLD)))
+ {
+ if (do_sep) {
+ Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]);
+ if (flags & ANYOF_INVERT)
+ /*make sure the invert info is in each */
+ sv_catpvs(sv, "^");
+ }
+
+ if (flags & ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII) {
+ sv_catpvs(sv, "{non-utf8-latin1-all}");
+ }
+
+ if (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP)
+ sv_catpvs(sv, "{above_bitmap_all}");
+
+ if (ARG(o) != ANYOF_ONLY_HAS_BITMAP) {
+ SV *lv; /* Set if there is something outside the bit map. */
+ bool byte_output = FALSE; /* If something has been output */
+ SV *only_utf8_locale;
+
+ /* Get the stuff that wasn't in the bitmap. 'bitmap_invlist'
+ * is used to guarantee that nothing in the bitmap gets
+ * returned */
+ (void) _get_regclass_nonbitmap_data(prog, o, FALSE,
+ &lv, &only_utf8_locale,
+ bitmap_invlist);
+ if (lv && lv != &PL_sv_undef) {
+ char *s = savesvpv(lv);
+ char * const origs = s;
+
+ while (*s && *s != '\n')
+ s++;
+
+ if (*s == '\n') {
+ const char * const t = ++s;
+
+ if (flags & ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES) {
+ sv_catpvs(sv, "{outside bitmap}");
+ }
+ else {
+ sv_catpvs(sv, "{utf8}");
+ }
+
+ if (byte_output) {
+ sv_catpvs(sv, " ");
+ }
+
+ while (*s) {
+ if (*s == '\n') {
+
+ /* Truncate very long output */
+ if (s - origs > 256) {
+ Perl_sv_catpvf(aTHX_ sv,
+ "%.*s...",
+ (int) (s - origs - 1),
+ t);
+ goto out_dump;
+ }
+ *s = ' ';
+ }
+ else if (*s == '\t') {
+ *s = '-';
+ }
+ s++;
+ }
+ if (s[-1] == ' ')
+ s[-1] = 0;
+
+ sv_catpv(sv, t);
+ }
+
+ out_dump:
+
+ Safefree(origs);
+ SvREFCNT_dec_NN(lv);
+ }
+
+ if ((flags & ANYOF_LOC_FOLD)
+ && only_utf8_locale
+ && only_utf8_locale != &PL_sv_undef)
+ {
+ UV start, end;
+ int max_entries = 256;
+
+ sv_catpvs(sv, "{utf8 locale}");
+ invlist_iterinit(only_utf8_locale);
+ while (invlist_iternext(only_utf8_locale,
+ &start, &end)) {
+ put_range(sv, start, end, FALSE);
+ max_entries --;
+ if (max_entries < 0) {
+ sv_catpvs(sv, "...");
+ break;
+ }
+ }
+ invlist_iterfinish(only_utf8_locale);
+ }
+ }
+ }
+ SvREFCNT_dec(bitmap_invlist);
+
+
+ Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
+ }
+ else if (k == POSIXD || k == NPOSIXD) {
+ U8 index = FLAGS(o) * 2;
+ if (index < C_ARRAY_LENGTH(anyofs)) {
+ if (*anyofs[index] != '[') {
+ sv_catpv(sv, "[");
+ }
+ sv_catpv(sv, anyofs[index]);
+ if (*anyofs[index] != '[') {
+ sv_catpv(sv, "]");
+ }
+ }
+ else {
+ Perl_sv_catpvf(aTHX_ sv, "[illegal type=%d])", index);
+ }
+ }
+ else if (k == BOUND || k == NBOUND) {
+ /* Must be synced with order of 'bound_type' in regcomp.h */
+ const char * const bounds[] = {
+ "", /* Traditional */
+ "{gcb}",
+ "{sb}",
+ "{wb}"
+ };
+ sv_catpv(sv, bounds[FLAGS(o)]);
+ }
+ else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
+ Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
+ else if (OP(o) == SBOL)
+ Perl_sv_catpvf(aTHX_ sv, " /%s/", o->flags ? "\\A" : "^");
+#else
+ PERL_UNUSED_CONTEXT;
+ PERL_UNUSED_ARG(sv);
+ PERL_UNUSED_ARG(o);
+ PERL_UNUSED_ARG(prog);
+ PERL_UNUSED_ARG(reginfo);
+ PERL_UNUSED_ARG(pRExC_state);
+#endif /* DEBUGGING */
+}
+
+
+
+SV *
+Perl_re_intuit_string(pTHX_ REGEXP * const r)
+{ /* Assume that RE_INTUIT is set */
+ struct regexp *const prog = ReANY(r);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_INTUIT_STRING;
+ PERL_UNUSED_CONTEXT;
+
+ DEBUG_COMPILE_r(
+ {
+ const char * const s = SvPV_nolen_const(RX_UTF8(r)
+ ? prog->check_utf8 : prog->check_substr);
+
+ if (!PL_colorset) reginitcolors();
+ PerlIO_printf(Perl_debug_log,
+ "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
+ PL_colors[4],
+ RX_UTF8(r) ? "utf8 " : "",
+ PL_colors[5],PL_colors[0],
+ s,
+ PL_colors[1],
+ (strlen(s) > 60 ? "..." : ""));
+ } );
+
+ /* use UTF8 check substring if regexp pattern itself is in UTF8 */
+ return RX_UTF8(r) ? prog->check_utf8 : prog->check_substr;
+}
+
+/*
+ pregfree()
+
+ handles refcounting and freeing the perl core regexp structure. When
+ it is necessary to actually free the structure the first thing it
+ does is call the 'free' method of the regexp_engine associated to
+ the regexp, allowing the handling of the void *pprivate; member
+ first. (This routine is not overridable by extensions, which is why
+ the extensions free is called first.)
+
+ See regdupe and regdupe_internal if you change anything here.
+*/
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_pregfree(pTHX_ REGEXP *r)
+{
+ SvREFCNT_dec(r);
+}
+
+void
+Perl_pregfree2(pTHX_ REGEXP *rx)
+{
+ struct regexp *const r = ReANY(rx);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_PREGFREE2;
+
+ if (r->mother_re) {
+ ReREFCNT_dec(r->mother_re);
+ } else {
+ CALLREGFREE_PVT(rx); /* free the private data */
+ SvREFCNT_dec(RXp_PAREN_NAMES(r));
+ Safefree(r->xpv_len_u.xpvlenu_pv);
+ }
+ if (r->substrs) {
+ SvREFCNT_dec(r->anchored_substr);
+ SvREFCNT_dec(r->anchored_utf8);
+ SvREFCNT_dec(r->float_substr);
+ SvREFCNT_dec(r->float_utf8);
+ Safefree(r->substrs);
+ }
+ RX_MATCH_COPY_FREE(rx);
+#ifdef PERL_ANY_COW
+ SvREFCNT_dec(r->saved_copy);
+#endif
+ Safefree(r->offs);
+ SvREFCNT_dec(r->qr_anoncv);
+ rx->sv_u.svu_rx = 0;
+}
+
+/* reg_temp_copy()
+
+ This is a hacky workaround to the structural issue of match results
+ being stored in the regexp structure which is in turn stored in
+ PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
+ could be PL_curpm in multiple contexts, and could require multiple
+ result sets being associated with the pattern simultaneously, such
+ as when doing a recursive match with (??{$qr})
+
+ The solution is to make a lightweight copy of the regexp structure
+ when a qr// is returned from the code executed by (??{$qr}) this
+ lightweight copy doesn't actually own any of its data except for
+ the starp/end and the actual regexp structure itself.
+
+*/
+
+
+REGEXP *
+Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
+{
+ struct regexp *ret;
+ struct regexp *const r = ReANY(rx);
+ const bool islv = ret_x && SvTYPE(ret_x) == SVt_PVLV;
+
+ PERL_ARGS_ASSERT_REG_TEMP_COPY;
+
+ if (!ret_x)
+ ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
+ else {
+ SvOK_off((SV *)ret_x);
+ if (islv) {
+ /* For PVLVs, SvANY points to the xpvlv body while sv_u points
+ to the regexp. (For SVt_REGEXPs, sv_upgrade has already
+ made both spots point to the same regexp body.) */
+ REGEXP *temp = (REGEXP *)newSV_type(SVt_REGEXP);
+ assert(!SvPVX(ret_x));
+ ret_x->sv_u.svu_rx = temp->sv_any;
+ temp->sv_any = NULL;
+ SvFLAGS(temp) = (SvFLAGS(temp) & ~SVTYPEMASK) | SVt_NULL;
+ SvREFCNT_dec_NN(temp);
+ /* SvCUR still resides in the xpvlv struct, so the regexp copy-
+ ing below will not set it. */
+ SvCUR_set(ret_x, SvCUR(rx));
+ }
+ }
+ /* This ensures that SvTHINKFIRST(sv) is true, and hence that
+ sv_force_normal(sv) is called. */
+ SvFAKE_on(ret_x);
+ ret = ReANY(ret_x);
+
+ SvFLAGS(ret_x) |= SvUTF8(rx);
+ /* We share the same string buffer as the original regexp, on which we
+ hold a reference count, incremented when mother_re is set below.
+ The string pointer is copied here, being part of the regexp struct.
+ */
+ memcpy(&(ret->xpv_cur), &(r->xpv_cur),
+ sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
+ if (r->offs) {
+ const I32 npar = r->nparens+1;
+ Newx(ret->offs, npar, regexp_paren_pair);
+ Copy(r->offs, ret->offs, npar, regexp_paren_pair);
+ }
+ if (r->substrs) {
+ Newx(ret->substrs, 1, struct reg_substr_data);
+ StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
+
+ SvREFCNT_inc_void(ret->anchored_substr);
+ SvREFCNT_inc_void(ret->anchored_utf8);
+ SvREFCNT_inc_void(ret->float_substr);
+ SvREFCNT_inc_void(ret->float_utf8);
+
+ /* check_substr and check_utf8, if non-NULL, point to either their
+ anchored or float namesakes, and don't hold a second reference. */
+ }
+ RX_MATCH_COPIED_off(ret_x);
+#ifdef PERL_ANY_COW
+ ret->saved_copy = NULL;
+#endif
+ ret->mother_re = ReREFCNT_inc(r->mother_re ? r->mother_re : rx);
+ SvREFCNT_inc_void(ret->qr_anoncv);
+
+ return ret_x;
+}
+#endif
+
+/* regfree_internal()
+
+ Free the private data in a regexp. This is overloadable by
+ extensions. Perl takes care of the regexp structure in pregfree(),
+ this covers the *pprivate pointer which technically perl doesn't
+ know about, however of course we have to handle the
+ regexp_internal structure when no extension is in use.
+
+ Note this is called before freeing anything in the regexp
+ structure.
+ */
+
+void
+Perl_regfree_internal(pTHX_ REGEXP * const rx)
+{
+ struct regexp *const r = ReANY(rx);
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGFREE_INTERNAL;
+
+ DEBUG_COMPILE_r({
+ if (!PL_colorset)
+ reginitcolors();
+ {
+ SV *dsv= sv_newmortal();
+ RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
+ dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
+ PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
+ PL_colors[4],PL_colors[5],s);
+ }
+ });
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (ri->u.offsets)
+ Safefree(ri->u.offsets); /* 20010421 MJD */
+#endif
+ if (ri->code_blocks) {
+ int n;
+ for (n = 0; n < ri->num_code_blocks; n++)
+ SvREFCNT_dec(ri->code_blocks[n].src_regex);
+ Safefree(ri->code_blocks);
+ }
+
+ if (ri->data) {
+ int n = ri->data->count;
+
+ while (--n >= 0) {
+ /* If you add a ->what type here, update the comment in regcomp.h */
+ switch (ri->data->what[n]) {
+ case 'a':
+ case 'r':
+ case 's':
+ case 'S':
+ case 'u':
+ SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
+ break;
+ case 'f':
+ Safefree(ri->data->data[n]);
+ break;
+ case 'l':
+ case 'L':
+ break;
+ case 'T':
+ { /* Aho Corasick add-on structure for a trie node.
+ Used in stclass optimization only */
+ U32 refcount;
+ reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
+#ifdef USE_ITHREADS
+ dVAR;
+#endif
+ OP_REFCNT_LOCK;
+ refcount = --aho->refcount;
+ OP_REFCNT_UNLOCK;
+ if ( !refcount ) {
+ PerlMemShared_free(aho->states);
+ PerlMemShared_free(aho->fail);
+ /* do this last!!!! */
+ PerlMemShared_free(ri->data->data[n]);
+ /* we should only ever get called once, so
+ * assert as much, and also guard the free
+ * which /might/ happen twice. At the least
+ * it will make code anlyzers happy and it
+ * doesn't cost much. - Yves */
+ assert(ri->regstclass);
+ if (ri->regstclass) {
+ PerlMemShared_free(ri->regstclass);
+ ri->regstclass = 0;
+ }
+ }
+ }
+ break;
+ case 't':
+ {
+ /* trie structure. */
+ U32 refcount;
+ reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
+#ifdef USE_ITHREADS
+ dVAR;
+#endif
+ OP_REFCNT_LOCK;
+ refcount = --trie->refcount;
+ OP_REFCNT_UNLOCK;
+ if ( !refcount ) {
+ PerlMemShared_free(trie->charmap);
+ PerlMemShared_free(trie->states);
+ PerlMemShared_free(trie->trans);
+ if (trie->bitmap)
+ PerlMemShared_free(trie->bitmap);
+ if (trie->jump)
+ PerlMemShared_free(trie->jump);
+ PerlMemShared_free(trie->wordinfo);
+ /* do this last!!!! */
+ PerlMemShared_free(ri->data->data[n]);
+ }
+ }
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: regfree data code '%c'",
+ ri->data->what[n]);
+ }
+ }
+ Safefree(ri->data->what);
+ Safefree(ri->data);
+ }
+
+ Safefree(ri);
+}
+
+#define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
+#define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
+#define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
+
+/*
+ re_dup - duplicate a regexp.
+
+ This routine is expected to clone a given regexp structure. It is only
+ compiled under USE_ITHREADS.
+
+ After all of the core data stored in struct regexp is duplicated
+ the regexp_engine.dupe method is used to copy any private data
+ stored in the *pprivate pointer. This allows extensions to handle
+ any duplication it needs to do.
+
+ See pregfree() and regfree_internal() if you change anything here.
+*/
+#if defined(USE_ITHREADS)
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
+{
+ dVAR;
+ I32 npar;
+ const struct regexp *r = ReANY(sstr);
+ struct regexp *ret = ReANY(dstr);
+
+ PERL_ARGS_ASSERT_RE_DUP_GUTS;
+
+ npar = r->nparens+1;
+ Newx(ret->offs, npar, regexp_paren_pair);
+ Copy(r->offs, ret->offs, npar, regexp_paren_pair);
+
+ if (ret->substrs) {
+ /* Do it this way to avoid reading from *r after the StructCopy().
+ That way, if any of the sv_dup_inc()s dislodge *r from the L1
+ cache, it doesn't matter. */
+ const bool anchored = r->check_substr
+ ? r->check_substr == r->anchored_substr
+ : r->check_utf8 == r->anchored_utf8;
+ Newx(ret->substrs, 1, struct reg_substr_data);
+ StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
+
+ ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
+ ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
+ ret->float_substr = sv_dup_inc(ret->float_substr, param);
+ ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
+
+ /* check_substr and check_utf8, if non-NULL, point to either their
+ anchored or float namesakes, and don't hold a second reference. */
+
+ if (ret->check_substr) {
+ if (anchored) {
+ assert(r->check_utf8 == r->anchored_utf8);
+ ret->check_substr = ret->anchored_substr;
+ ret->check_utf8 = ret->anchored_utf8;
+ } else {
+ assert(r->check_substr == r->float_substr);
+ assert(r->check_utf8 == r->float_utf8);
+ ret->check_substr = ret->float_substr;
+ ret->check_utf8 = ret->float_utf8;
+ }
+ } else if (ret->check_utf8) {
+ if (anchored) {
+ ret->check_utf8 = ret->anchored_utf8;
+ } else {
+ ret->check_utf8 = ret->float_utf8;
+ }
+ }
+ }
+
+ RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
+ ret->qr_anoncv = MUTABLE_CV(sv_dup_inc((const SV *)ret->qr_anoncv, param));
+
+ if (ret->pprivate)
+ RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
+
+ if (RX_MATCH_COPIED(dstr))
+ ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen);
+ else
+ ret->subbeg = NULL;
+#ifdef PERL_ANY_COW
+ ret->saved_copy = NULL;
+#endif
+
+ /* Whether mother_re be set or no, we need to copy the string. We
+ cannot refrain from copying it when the storage points directly to
+ our mother regexp, because that's
+ 1: a buffer in a different thread
+ 2: something we no longer hold a reference on
+ so we need to copy it locally. */
+ RX_WRAPPED(dstr) = SAVEPVN(RX_WRAPPED(sstr), SvCUR(sstr)+1);
+ ret->mother_re = NULL;
+}
+#endif /* PERL_IN_XSUB_RE */
+
+/*
+ regdupe_internal()
+
+ This is the internal complement to regdupe() which is used to copy
+ the structure pointed to by the *pprivate pointer in the regexp.
+ This is the core version of the extension overridable cloning hook.
+ The regexp structure being duplicated will be copied by perl prior
+ to this and will be provided as the regexp *r argument, however
+ with the /old/ structures pprivate pointer value. Thus this routine
+ may override any copying normally done by perl.
+
+ It returns a pointer to the new regexp_internal structure.
+*/
+
+void *
+Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
+{
+ dVAR;
+ struct regexp *const r = ReANY(rx);
+ regexp_internal *reti;
+ int len;
+ RXi_GET_DECL(r,ri);
+
+ PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
+
+ len = ProgLen(ri);
+
+ Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode),
+ char, regexp_internal);
+ Copy(ri->program, reti->program, len+1, regnode);
+
+ reti->num_code_blocks = ri->num_code_blocks;
+ if (ri->code_blocks) {
+ int n;
+ Newxc(reti->code_blocks, ri->num_code_blocks, struct reg_code_block,
+ struct reg_code_block);
+ Copy(ri->code_blocks, reti->code_blocks, ri->num_code_blocks,
+ struct reg_code_block);
+ for (n = 0; n < ri->num_code_blocks; n++)
+ reti->code_blocks[n].src_regex = (REGEXP*)
+ sv_dup_inc((SV*)(ri->code_blocks[n].src_regex), param);
+ }
+ else
+ reti->code_blocks = NULL;
+
+ reti->regstclass = NULL;
+
+ if (ri->data) {
+ struct reg_data *d;
+ const int count = ri->data->count;
+ int i;
+
+ Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
+ char, struct reg_data);
+ Newx(d->what, count, U8);
+
+ d->count = count;
+ for (i = 0; i < count; i++) {
+ d->what[i] = ri->data->what[i];
+ switch (d->what[i]) {
+ /* see also regcomp.h and regfree_internal() */
+ case 'a': /* actually an AV, but the dup function is identical. */
+ case 'r':
+ case 's':
+ case 'S':
+ case 'u': /* actually an HV, but the dup function is identical. */
+ d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
+ break;
+ case 'f':
+ /* This is cheating. */
+ Newx(d->data[i], 1, regnode_ssc);
+ StructCopy(ri->data->data[i], d->data[i], regnode_ssc);
+ reti->regstclass = (regnode*)d->data[i];
+ break;
+ case 'T':
+ /* Trie stclasses are readonly and can thus be shared
+ * without duplication. We free the stclass in pregfree
+ * when the corresponding reg_ac_data struct is freed.
+ */
+ reti->regstclass= ri->regstclass;
+ /* FALLTHROUGH */
+ case 't':
+ OP_REFCNT_LOCK;
+ ((reg_trie_data*)ri->data->data[i])->refcount++;
+ OP_REFCNT_UNLOCK;
+ /* FALLTHROUGH */
+ case 'l':
+ case 'L':
+ d->data[i] = ri->data->data[i];
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'",
+ ri->data->what[i]);
+ }
+ }
+
+ reti->data = d;
+ }
+ else
+ reti->data = NULL;
+
+ reti->name_list_idx = ri->name_list_idx;
+
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (ri->u.offsets) {
+ Newx(reti->u.offsets, 2*len+1, U32);
+ Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
+ }
+#else
+ SetProgLen(reti,len);
+#endif
+
+ return (void*)reti;
+}
+
+#endif /* USE_ITHREADS */
+
+#ifndef PERL_IN_XSUB_RE
+
+/*
+ - regnext - dig the "next" pointer out of a node
+ */
+regnode *
+Perl_regnext(pTHX_ regnode *p)
+{
+ I32 offset;
+
+ if (!p)
+ return(NULL);
+
+ if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */
+ Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d",
+ (int)OP(p), (int)REGNODE_MAX);
+ }
+
+ offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
+ if (offset == 0)
+ return(NULL);
+
+ return(p+offset);
+}
+#endif
+
+STATIC void
+S_re_croak2(pTHX_ bool utf8, const char* pat1,const char* pat2,...)
+{
+ va_list args;
+ STRLEN l1 = strlen(pat1);
+ STRLEN l2 = strlen(pat2);
+ char buf[512];
+ SV *msv;
+ const char *message;
+
+ PERL_ARGS_ASSERT_RE_CROAK2;
+
+ if (l1 > 510)
+ l1 = 510;
+ if (l1 + l2 > 510)
+ l2 = 510 - l1;
+ Copy(pat1, buf, l1 , char);
+ Copy(pat2, buf + l1, l2 , char);
+ buf[l1 + l2] = '\n';
+ buf[l1 + l2 + 1] = '\0';
+ va_start(args, pat2);
+ msv = vmess(buf, &args);
+ va_end(args);
+ message = SvPV_const(msv,l1);
+ if (l1 > 512)
+ l1 = 512;
+ Copy(message, buf, l1 , char);
+ /* l1-1 to avoid \n */
+ Perl_croak(aTHX_ "%"UTF8f, UTF8fARG(utf8, l1-1, buf));
+}
+
+/* XXX Here's a total kludge. But we need to re-enter for swash routines. */
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_save_re_context(pTHX)
+{
+ I32 nparens = -1;
+ I32 i;
+
+ /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
+
+ if (PL_curpm) {
+ const REGEXP * const rx = PM_GETRE(PL_curpm);
+ if (rx)
+ nparens = RX_NPARENS(rx);
+ }
+
+ /* RT #124109. This is a complete hack; in the SWASHNEW case we know
+ * that PL_curpm will be null, but that utf8.pm and the modules it
+ * loads will only use $1..$3.
+ * The t/porting/re_context.t test file checks this assumption.
+ */
+ if (nparens == -1)
+ nparens = 3;
+
+ for (i = 1; i <= nparens; i++) {
+ char digits[TYPE_CHARS(long)];
+ const STRLEN len = my_snprintf(digits, sizeof(digits),
+ "%lu", (long)i);
+ GV *const *const gvp
+ = (GV**)hv_fetch(PL_defstash, digits, len, 0);
+
+ if (gvp) {
+ GV * const gv = *gvp;
+ if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
+ save_scalar(gv);
+ }
+ }
+}
+#endif
+
+#ifdef DEBUGGING
+
+STATIC void
+S_put_code_point(pTHX_ SV *sv, UV c)
+{
+ PERL_ARGS_ASSERT_PUT_CODE_POINT;
+
+ if (c > 255) {
+ Perl_sv_catpvf(aTHX_ sv, "\\x{%04"UVXf"}", c);
+ }
+ else if (isPRINT(c)) {
+ const char string = (char) c;
+ if (isBACKSLASHED_PUNCT(c))
+ sv_catpvs(sv, "\\");
+ sv_catpvn(sv, &string, 1);
+ }
+ else {
+ const char * const mnemonic = cntrl_to_mnemonic((char) c);
+ if (mnemonic) {
+ Perl_sv_catpvf(aTHX_ sv, "%s", mnemonic);
+ }
+ else {
+ Perl_sv_catpvf(aTHX_ sv, "\\x{%02X}", (U8) c);
+ }
+ }
+}
+
+#define MAX_PRINT_A MAX_PRINT_A_FOR_USE_ONLY_BY_REGCOMP_DOT_C
+
+STATIC void
+S_put_range(pTHX_ SV *sv, UV start, const UV end, const bool allow_literals)
+{
+ /* Appends to 'sv' a displayable version of the range of code points from
+ * 'start' to 'end'. It assumes that only ASCII printables are displayable
+ * as-is (though some of these will be escaped by put_code_point()). */
+
+ const unsigned int min_range_count = 3;
+
+ assert(start <= end);
+
+ PERL_ARGS_ASSERT_PUT_RANGE;
+
+ while (start <= end) {
+ UV this_end;
+ const char * format;
+
+ if (end - start < min_range_count) {
+
+ /* Individual chars in short ranges */
+ for (; start <= end; start++) {
+ put_code_point(sv, start);
+ }
+ break;
+ }
+
+ /* If permitted by the input options, and there is a possibility that
+ * this range contains a printable literal, look to see if there is
+ * one. */
+ if (allow_literals && start <= MAX_PRINT_A) {
+
+ /* If the range begin isn't an ASCII printable, effectively split
+ * the range into two parts:
+ * 1) the portion before the first such printable,
+ * 2) the rest
+ * and output them separately. */
+ if (! isPRINT_A(start)) {
+ UV temp_end = start + 1;
+
+ /* There is no point looking beyond the final possible
+ * printable, in MAX_PRINT_A */
+ UV max = MIN(end, MAX_PRINT_A);
+
+ while (temp_end <= max && ! isPRINT_A(temp_end)) {
+ temp_end++;
+ }
+
+ /* Here, temp_end points to one beyond the first printable if
+ * found, or to one beyond 'max' if not. If none found, make
+ * sure that we use the entire range */
+ if (temp_end > MAX_PRINT_A) {
+ temp_end = end + 1;
+ }
+
+ /* Output the first part of the split range, the part that
+ * doesn't have printables, with no looking for literals
+ * (otherwise we would infinitely recurse) */
+ put_range(sv, start, temp_end - 1, FALSE);
+
+ /* The 2nd part of the range (if any) starts here. */
+ start = temp_end;
+
+ /* We continue instead of dropping down because even if the 2nd
+ * part is non-empty, it could be so short that we want to
+ * output it specially, as tested for at the top of this loop.
+ * */
+ continue;
+ }
+
+ /* Here, 'start' is a printable ASCII. If it is an alphanumeric,
+ * output a sub-range of just the digits or letters, then process
+ * the remaining portion as usual. */
+ if (isALPHANUMERIC_A(start)) {
+ UV mask = (isDIGIT_A(start))
+ ? _CC_DIGIT
+ : isUPPER_A(start)
+ ? _CC_UPPER
+ : _CC_LOWER;
+ UV temp_end = start + 1;
+
+ /* Find the end of the sub-range that includes just the
+ * characters in the same class as the first character in it */
+ while (temp_end <= end && _generic_isCC_A(temp_end, mask)) {
+ temp_end++;
+ }
+ temp_end--;
+
+ /* For short ranges, don't duplicate the code above to output
+ * them; just call recursively */
+ if (temp_end - start < min_range_count) {
+ put_range(sv, start, temp_end, FALSE);
+ }
+ else { /* Output as a range */
+ put_code_point(sv, start);
+ sv_catpvs(sv, "-");
+ put_code_point(sv, temp_end);
+ }
+ start = temp_end + 1;
+ continue;
+ }
+
+ /* We output any other printables as individual characters */
+ if (isPUNCT_A(start) || isSPACE_A(start)) {
+ while (start <= end && (isPUNCT_A(start)
+ || isSPACE_A(start)))
+ {
+ put_code_point(sv, start);
+ start++;
+ }
+ continue;
+ }
+ } /* End of looking for literals */
+
+ /* Here is not to output as a literal. Some control characters have
+ * mnemonic names. Split off any of those at the beginning and end of
+ * the range to print mnemonically. It isn't possible for many of
+ * these to be in a row, so this won't overwhelm with output */
+ while (isMNEMONIC_CNTRL(start) && start <= end) {
+ put_code_point(sv, start);
+ start++;
+ }
+ if (start < end && isMNEMONIC_CNTRL(end)) {
+
+ /* Here, the final character in the range has a mnemonic name.
+ * Work backwards from the end to find the final non-mnemonic */
+ UV temp_end = end - 1;
+ while (isMNEMONIC_CNTRL(temp_end)) {
+ temp_end--;
+ }
+
+ /* And separately output the range that doesn't have mnemonics */
+ put_range(sv, start, temp_end, FALSE);
+
+ /* Then output the mnemonic trailing controls */
+ start = temp_end + 1;
+ while (start <= end) {
+ put_code_point(sv, start);
+ start++;
+ }
+ break;
+ }
+
+ /* As a final resort, output the range or subrange as hex. */
+
+ this_end = (end < NUM_ANYOF_CODE_POINTS)
+ ? end
+ : NUM_ANYOF_CODE_POINTS - 1;
+ format = (this_end < 256)
+ ? "\\x{%02"UVXf"}-\\x{%02"UVXf"}"
+ : "\\x{%04"UVXf"}-\\x{%04"UVXf"}";
+ GCC_DIAG_IGNORE(-Wformat-nonliteral);
+ Perl_sv_catpvf(aTHX_ sv, format, start, this_end);
+ GCC_DIAG_RESTORE;
+ break;
+ }
+}
+
+STATIC bool
+S_put_charclass_bitmap_innards(pTHX_ SV *sv, char *bitmap, SV** bitmap_invlist)
+{
+ /* Appends to 'sv' a displayable version of the innards of the bracketed
+ * character class whose bitmap is 'bitmap'; Returns 'TRUE' if it actually
+ * output anything, and bitmap_invlist, if not NULL, will point to an
+ * inversion list of what is in the bit map */
+
+ int i;
+ UV start, end;
+ unsigned int punct_count = 0;
+ SV* invlist = NULL;
+ SV** invlist_ptr; /* Temporary, in case bitmap_invlist is NULL */
+ bool allow_literals = TRUE;
+
+ PERL_ARGS_ASSERT_PUT_CHARCLASS_BITMAP_INNARDS;
+
+ invlist_ptr = (bitmap_invlist) ? bitmap_invlist : &invlist;
+
+ /* Worst case is exactly every-other code point is in the list */
+ *invlist_ptr = _new_invlist(NUM_ANYOF_CODE_POINTS / 2);
+
+ /* Convert the bit map to an inversion list, keeping track of how many
+ * ASCII puncts are set, including an extra amount for the backslashed
+ * ones. */
+ for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
+ if (BITMAP_TEST(bitmap, i)) {
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr, i);
+ if (isPUNCT_A(i)) {
+ punct_count++;
+ if isBACKSLASHED_PUNCT(i) {
+ punct_count++;
+ }
+ }
+ }
+ }
+
+ /* Nothing to output */
+ if (_invlist_len(*invlist_ptr) == 0) {
+ SvREFCNT_dec(invlist);
+ return FALSE;
+ }
+
+ /* Generally, it is more readable if printable characters are output as
+ * literals, but if a range (nearly) spans all of them, it's best to output
+ * it as a single range. This code will use a single range if all but 2
+ * printables are in it */
+ invlist_iterinit(*invlist_ptr);
+ while (invlist_iternext(*invlist_ptr, &start, &end)) {
+
+ /* If range starts beyond final printable, it doesn't have any in it */
+ if (start > MAX_PRINT_A) {
+ break;
+ }
+
+ /* In both ASCII and EBCDIC, a SPACE is the lowest printable. To span
+ * all but two, the range must start and end no later than 2 from
+ * either end */
+ if (start < ' ' + 2 && end > MAX_PRINT_A - 2) {
+ if (end > MAX_PRINT_A) {
+ end = MAX_PRINT_A;
+ }
+ if (start < ' ') {
+ start = ' ';
+ }
+ if (end - start >= MAX_PRINT_A - ' ' - 2) {
+ allow_literals = FALSE;
+ }
+ break;
+ }
+ }
+ invlist_iterfinish(*invlist_ptr);
+
+ /* The legibility of the output depends mostly on how many punctuation
+ * characters are output. There are 32 possible ASCII ones, and some have
+ * an additional backslash, bringing it to currently 36, so if any more
+ * than 18 are to be output, we can instead output it as its complement,
+ * yielding fewer puncts, and making it more legible. But give some weight
+ * to the fact that outputting it as a complement is less legible than a
+ * straight output, so don't complement unless we are somewhat over the 18
+ * mark */
+ if (allow_literals && punct_count > 22) {
+ sv_catpvs(sv, "^");
+
+ /* Add everything remaining to the list, so when we invert it just
+ * below, it will be excluded */
+ _invlist_union_complement_2nd(*invlist_ptr, PL_InBitmap, invlist_ptr);
+ _invlist_invert(*invlist_ptr);
+ }
+
+ /* Here we have figured things out. Output each range */
+ invlist_iterinit(*invlist_ptr);
+ while (invlist_iternext(*invlist_ptr, &start, &end)) {
+ if (start >= NUM_ANYOF_CODE_POINTS) {
+ break;
+ }
+ put_range(sv, start, end, allow_literals);
+ }
+ invlist_iterfinish(*invlist_ptr);
+
+ return TRUE;
+}
+
+#define CLEAR_OPTSTART \
+ if (optstart) STMT_START { \
+ DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, \
+ " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
+ optstart=NULL; \
+ } STMT_END
+
+#define DUMPUNTIL(b,e) \
+ CLEAR_OPTSTART; \
+ node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
+
+STATIC const regnode *
+S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
+ const regnode *last, const regnode *plast,
+ SV* sv, I32 indent, U32 depth)
+{
+ U8 op = PSEUDO; /* Arbitrary non-END op. */
+ const regnode *next;
+ const regnode *optstart= NULL;
+
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMPUNTIL;
+
+#ifdef DEBUG_DUMPUNTIL
+ PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
+ last ? last-start : 0,plast ? plast-start : 0);
+#endif
+
+ if (plast && plast < last)
+ last= plast;
+
+ while (PL_regkind[op] != END && (!last || node < last)) {
+ assert(node);
+ /* While that wasn't END last time... */
+ NODE_ALIGN(node);
+ op = OP(node);
+ if (op == CLOSE || op == WHILEM)
+ indent--;
+ next = regnext((regnode *)node);
+
+ /* Where, what. */
+ if (OP(node) == OPTIMIZED) {
+ if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
+ optstart = node;
+ else
+ goto after_print;
+ } else
+ CLEAR_OPTSTART;
+
+ regprop(r, sv, node, NULL, NULL);
+ PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
+ (int)(2*indent + 1), "", SvPVX_const(sv));
+
+ if (OP(node) != OPTIMIZED) {
+ if (next == NULL) /* Next ptr. */
+ PerlIO_printf(Perl_debug_log, " (0)");
+ else if (PL_regkind[(U8)op] == BRANCH
+ && PL_regkind[OP(next)] != BRANCH )
+ PerlIO_printf(Perl_debug_log, " (FAIL)");
+ else
+ PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
+ (void)PerlIO_putc(Perl_debug_log, '\n');
+ }
+
+ after_print:
+ if (PL_regkind[(U8)op] == BRANCHJ) {
+ assert(next);
+ {
+ const regnode *nnode = (OP(next) == LONGJMP
+ ? regnext((regnode *)next)
+ : next);
+ if (last && nnode > last)
+ nnode = last;
+ DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
+ }
+ }
+ else if (PL_regkind[(U8)op] == BRANCH) {
+ assert(next);
+ DUMPUNTIL(NEXTOPER(node), next);
+ }
+ else if ( PL_regkind[(U8)op] == TRIE ) {
+ const regnode *this_trie = node;
+ const char op = OP(node);
+ const U32 n = ARG(node);
+ const reg_ac_data * const ac = op>=AHOCORASICK ?
+ (reg_ac_data *)ri->data->data[n] :
+ NULL;
+ const reg_trie_data * const trie =
+ (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
+#ifdef DEBUGGING
+ AV *const trie_words
+ = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
+#endif
+ const regnode *nextbranch= NULL;
+ I32 word_idx;
+ sv_setpvs(sv, "");
+ for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
+ SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
+
+ PerlIO_printf(Perl_debug_log, "%*s%s ",
+ (int)(2*(indent+3)), "",
+ elem_ptr
+ ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr),
+ SvCUR(*elem_ptr), 60,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*elem_ptr)
+ ? PERL_PV_ESCAPE_UNI
+ : 0)
+ | PERL_PV_PRETTY_ELLIPSES
+ | PERL_PV_PRETTY_LTGT
+ )
+ : "???"
+ );
+ if (trie->jump) {
+ U16 dist= trie->jump[word_idx+1];
+ PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
+ (UV)((dist ? this_trie + dist : next) - start));
+ if (dist) {
+ if (!nextbranch)
+ nextbranch= this_trie + trie->jump[0];
+ DUMPUNTIL(this_trie + dist, nextbranch);
+ }
+ if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
+ nextbranch= regnext((regnode *)nextbranch);
+ } else {
+ PerlIO_printf(Perl_debug_log, "\n");
+ }
+ }
+ if (last && next > last)
+ node= last;
+ else
+ node= next;
+ }
+ else if ( op == CURLY ) { /* "next" might be very big: optimizer */
+ DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
+ NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
+ }
+ else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
+ assert(next);
+ DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
+ }
+ else if ( op == PLUS || op == STAR) {
+ DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
+ }
+ else if (PL_regkind[(U8)op] == ANYOF) {
+ /* arglen 1 + class block */
+ node += 1 + ((ANYOF_FLAGS(node) & ANYOF_MATCHES_POSIXL)
+ ? ANYOF_POSIXL_SKIP
+ : ANYOF_SKIP);
+ node = NEXTOPER(node);
+ }
+ else if (PL_regkind[(U8)op] == EXACT) {
+ /* Literal string, where present. */
+ node += NODE_SZ_STR(node) - 1;
+ node = NEXTOPER(node);
+ }
+ else {
+ node = NEXTOPER(node);
+ node += regarglen[(U8)op];
+ }
+ if (op == CURLYX || op == OPEN)
+ indent++;
+ }
+ CLEAR_OPTSTART;
+#ifdef DEBUG_DUMPUNTIL
+ PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
+#endif
+ return node;
+}
+
+#endif /* DEBUGGING */
+
+/*
+ * ex: set ts=8 sts=4 sw=4 et:
+ */
--- /dev/null
+/* regexec.c
+ */
+
+/*
+ * One Ring to rule them all, One Ring to find them
+ &
+ * [p.v of _The Lord of the Rings_, opening poem]
+ * [p.50 of _The Lord of the Rings_, I/iii: "The Shadow of the Past"]
+ * [p.254 of _The Lord of the Rings_, II/ii: "The Council of Elrond"]
+ */
+
+/* This file contains functions for executing a regular expression. See
+ * also regcomp.c which funnily enough, contains functions for compiling
+ * a regular expression.
+ *
+ * This file is also copied at build time to ext/re/re_exec.c, where
+ * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
+ * This causes the main functions to be compiled under new names and with
+ * debugging support added, which makes "use re 'debug'" work.
+ */
+
+/* NOTE: this is derived from Henry Spencer's regexp code, and should not
+ * confused with the original package (see point 3 below). Thanks, Henry!
+ */
+
+/* Additional note: this code is very heavily munged from Henry's version
+ * in places. In some spots I've traded clarity for efficiency, so don't
+ * blame Henry for some of the lack of readability.
+ */
+
+/* The names of the functions have been changed from regcomp and
+ * regexec to pregcomp and pregexec in order to avoid conflicts
+ * with the POSIX routines of the same names.
+*/
+
+#ifdef PERL_EXT_RE_BUILD
+#include "re_top.h"
+#endif
+
+#define B_ON_NON_UTF8_LOCALE_IS_WRONG \
+ "Use of \\b{} or \\B{} for non-UTF-8 locale is wrong. Assuming a UTF-8 locale"
+
+/*
+ * pregcomp and pregexec -- regsub and regerror are not used in perl
+ *
+ * Copyright (c) 1986 by University of Toronto.
+ * Written by Henry Spencer. Not derived from licensed software.
+ *
+ * Permission is granted to anyone to use this software for any
+ * purpose on any computer system, and to redistribute it freely,
+ * subject to the following restrictions:
+ *
+ * 1. The author is not responsible for the consequences of use of
+ * this software, no matter how awful, even if they arise
+ * from defects in it.
+ *
+ * 2. The origin of this software must not be misrepresented, either
+ * by explicit claim or by omission.
+ *
+ * 3. Altered versions must be plainly marked as such, and must not
+ * be misrepresented as being the original software.
+ *
+ **** Alterations to Henry's code are...
+ ****
+ **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ **** by Larry Wall and others
+ ****
+ **** You may distribute under the terms of either the GNU General Public
+ **** License or the Artistic License, as specified in the README file.
+ *
+ * Beware that some of this code is subtly aware of the way operator
+ * precedence is structured in regular expressions. Serious changes in
+ * regular-expression syntax might require a total rethink.
+ */
+#include "EXTERN.h"
+#define PERL_IN_REGEXEC_C
+#undef PERL_IN_XSUB_RE
+#define PERL_IN_XSUB_RE 1
+#include "perl.h"
+#include "re_defs.h"
+#undef PERL_IN_XSUB_RE
+
+#ifdef PERL_IN_XSUB_RE
+# include "re_comp.h"
+#else
+# include "regcomp.h"
+#endif
+
+#include "inline_invlist.c"
+#include "unicode_constants.h"
+
+#ifdef DEBUGGING
+/* At least one required character in the target string is expressible only in
+ * UTF-8. */
+static const char* const non_utf8_target_but_utf8_required
+ = "Can't match, because target string needs to be in UTF-8\n";
+#endif
+
+#define NON_UTF8_TARGET_BUT_UTF8_REQUIRED(target) STMT_START { \
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%s", non_utf8_target_but_utf8_required));\
+ goto target; \
+} STMT_END
+
+#define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
+
+#ifndef STATIC
+#define STATIC static
+#endif
+
+/* Valid only for non-utf8 strings: avoids the reginclass
+ * call if there are no complications: i.e., if everything matchable is
+ * straight forward in the bitmap */
+#define REGINCLASS(prog,p,c) (ANYOF_FLAGS(p) ? reginclass(prog,p,c,c+1,0) \
+ : ANYOF_BITMAP_TEST(p,*(c)))
+
+/*
+ * Forwards.
+ */
+
+#define CHR_SVLEN(sv) (utf8_target ? sv_len_utf8(sv) : SvCUR(sv))
+#define CHR_DIST(a,b) (reginfo->is_utf8_target ? utf8_distance(a,b) : a - b)
+
+#define HOPc(pos,off) \
+ (char *)(reginfo->is_utf8_target \
+ ? reghop3((U8*)pos, off, \
+ (U8*)(off >= 0 ? reginfo->strend : reginfo->strbeg)) \
+ : (U8*)(pos + off))
+
+#define HOPBACKc(pos, off) \
+ (char*)(reginfo->is_utf8_target \
+ ? reghopmaybe3((U8*)pos, -off, (U8*)(reginfo->strbeg)) \
+ : (pos - off >= reginfo->strbeg) \
+ ? (U8*)pos - off \
+ : NULL)
+
+#define HOP3(pos,off,lim) (reginfo->is_utf8_target ? reghop3((U8*)(pos), off, (U8*)(lim)) : (U8*)(pos + off))
+#define HOP3c(pos,off,lim) ((char*)HOP3(pos,off,lim))
+
+/* lim must be +ve. Returns NULL on overshoot */
+#define HOPMAYBE3(pos,off,lim) \
+ (reginfo->is_utf8_target \
+ ? reghopmaybe3((U8*)pos, off, (U8*)(lim)) \
+ : ((U8*)pos + off <= lim) \
+ ? (U8*)pos + off \
+ : NULL)
+
+/* like HOP3, but limits the result to <= lim even for the non-utf8 case.
+ * off must be >=0; args should be vars rather than expressions */
+#define HOP3lim(pos,off,lim) (reginfo->is_utf8_target \
+ ? reghop3((U8*)(pos), off, (U8*)(lim)) \
+ : (U8*)((pos + off) > lim ? lim : (pos + off)))
+
+#define HOP4(pos,off,llim, rlim) (reginfo->is_utf8_target \
+ ? reghop4((U8*)(pos), off, (U8*)(llim), (U8*)(rlim)) \
+ : (U8*)(pos + off))
+#define HOP4c(pos,off,llim, rlim) ((char*)HOP4(pos,off,llim, rlim))
+
+#define NEXTCHR_EOS -10 /* nextchr has fallen off the end */
+#define NEXTCHR_IS_EOS (nextchr < 0)
+
+#define SET_nextchr \
+ nextchr = ((locinput < reginfo->strend) ? UCHARAT(locinput) : NEXTCHR_EOS)
+
+#define SET_locinput(p) \
+ locinput = (p); \
+ SET_nextchr
+
+
+#define LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist) STMT_START { \
+ if (!swash_ptr) { \
+ U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST; \
+ swash_ptr = _core_swash_init("utf8", property_name, &PL_sv_undef, \
+ 1, 0, invlist, &flags); \
+ assert(swash_ptr); \
+ } \
+ } STMT_END
+
+/* If in debug mode, we test that a known character properly matches */
+#ifdef DEBUGGING
+# define LOAD_UTF8_CHARCLASS_DEBUG_TEST(swash_ptr, \
+ property_name, \
+ invlist, \
+ utf8_char_in_property) \
+ LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist); \
+ assert(swash_fetch(swash_ptr, (U8 *) utf8_char_in_property, TRUE));
+#else
+# define LOAD_UTF8_CHARCLASS_DEBUG_TEST(swash_ptr, \
+ property_name, \
+ invlist, \
+ utf8_char_in_property) \
+ LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist)
+#endif
+
+#define LOAD_UTF8_CHARCLASS_ALNUM() LOAD_UTF8_CHARCLASS_DEBUG_TEST( \
+ PL_utf8_swash_ptrs[_CC_WORDCHAR], \
+ "", \
+ PL_XPosix_ptrs[_CC_WORDCHAR], \
+ LATIN_CAPITAL_LETTER_SHARP_S_UTF8);
+
+#define PLACEHOLDER /* Something for the preprocessor to grab onto */
+/* TODO: Combine JUMPABLE and HAS_TEXT to cache OP(rn) */
+
+/* for use after a quantifier and before an EXACT-like node -- japhy */
+/* it would be nice to rework regcomp.sym to generate this stuff. sigh
+ *
+ * NOTE that *nothing* that affects backtracking should be in here, specifically
+ * VERBS must NOT be included. JUMPABLE is used to determine if we can ignore a
+ * node that is in between two EXACT like nodes when ascertaining what the required
+ * "follow" character is. This should probably be moved to regex compile time
+ * although it may be done at run time beause of the REF possibility - more
+ * investigation required. -- demerphq
+*/
+#define JUMPABLE(rn) ( \
+ OP(rn) == OPEN || \
+ (OP(rn) == CLOSE && (!cur_eval || cur_eval->u.eval.close_paren != ARG(rn))) || \
+ OP(rn) == EVAL || \
+ OP(rn) == SUSPEND || OP(rn) == IFMATCH || \
+ OP(rn) == PLUS || OP(rn) == MINMOD || \
+ OP(rn) == KEEPS || \
+ (PL_regkind[OP(rn)] == CURLY && ARG1(rn) > 0) \
+)
+#define IS_EXACT(rn) (PL_regkind[OP(rn)] == EXACT)
+
+#define HAS_TEXT(rn) ( IS_EXACT(rn) || PL_regkind[OP(rn)] == REF )
+
+#if 0
+/* Currently these are only used when PL_regkind[OP(rn)] == EXACT so
+ we don't need this definition. XXX These are now out-of-sync*/
+#define IS_TEXT(rn) ( OP(rn)==EXACT || OP(rn)==REF || OP(rn)==NREF )
+#define IS_TEXTF(rn) ( OP(rn)==EXACTFU || OP(rn)==EXACTFU_SS || OP(rn)==EXACTFA || OP(rn)==EXACTFA_NO_TRIE || OP(rn)==EXACTF || OP(rn)==REFF || OP(rn)==NREFF )
+#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL || OP(rn)==REFFL || OP(rn)==NREFFL )
+
+#else
+/* ... so we use this as its faster. */
+#define IS_TEXT(rn) ( OP(rn)==EXACT || OP(rn)==EXACTL )
+#define IS_TEXTFU(rn) ( OP(rn)==EXACTFU || OP(rn)==EXACTFLU8 || OP(rn)==EXACTFU_SS || OP(rn) == EXACTFA || OP(rn) == EXACTFA_NO_TRIE)
+#define IS_TEXTF(rn) ( OP(rn)==EXACTF )
+#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL )
+
+#endif
+
+/*
+ Search for mandatory following text node; for lookahead, the text must
+ follow but for lookbehind (rn->flags != 0) we skip to the next step.
+*/
+#define FIND_NEXT_IMPT(rn) STMT_START { \
+ while (JUMPABLE(rn)) { \
+ const OPCODE type = OP(rn); \
+ if (type == SUSPEND || PL_regkind[type] == CURLY) \
+ rn = NEXTOPER(NEXTOPER(rn)); \
+ else if (type == PLUS) \
+ rn = NEXTOPER(rn); \
+ else if (type == IFMATCH) \
+ rn = (rn->flags == 0) ? NEXTOPER(NEXTOPER(rn)) : rn + ARG(rn); \
+ else rn += NEXT_OFF(rn); \
+ } \
+} STMT_END
+
+#define SLAB_FIRST(s) (&(s)->states[0])
+#define SLAB_LAST(s) (&(s)->states[PERL_REGMATCH_SLAB_SLOTS-1])
+
+static void S_setup_eval_state(pTHX_ regmatch_info *const reginfo);
+static void S_cleanup_regmatch_info_aux(pTHX_ void *arg);
+static regmatch_state * S_push_slab(pTHX);
+
+#define REGCP_PAREN_ELEMS 3
+#define REGCP_OTHER_ELEMS 3
+#define REGCP_FRAME_ELEMS 1
+/* REGCP_FRAME_ELEMS are not part of the REGCP_OTHER_ELEMS and
+ * are needed for the regexp context stack bookkeeping. */
+
+STATIC CHECKPOINT
+S_regcppush(pTHX_ const regexp *rex, I32 parenfloor, U32 maxopenparen)
+{
+ const int retval = PL_savestack_ix;
+ const int paren_elems_to_push =
+ (maxopenparen - parenfloor) * REGCP_PAREN_ELEMS;
+ const UV total_elems = paren_elems_to_push + REGCP_OTHER_ELEMS;
+ const UV elems_shifted = total_elems << SAVE_TIGHT_SHIFT;
+ I32 p;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGCPPUSH;
+
+ if (paren_elems_to_push < 0)
+ Perl_croak(aTHX_ "panic: paren_elems_to_push, %i < 0, maxopenparen: %i parenfloor: %i REGCP_PAREN_ELEMS: %u",
+ (int)paren_elems_to_push, (int)maxopenparen,
+ (int)parenfloor, (unsigned)REGCP_PAREN_ELEMS);
+
+ if ((elems_shifted >> SAVE_TIGHT_SHIFT) != total_elems)
+ Perl_croak(aTHX_ "panic: paren_elems_to_push offset %"UVuf
+ " out of range (%lu-%ld)",
+ total_elems,
+ (unsigned long)maxopenparen,
+ (long)parenfloor);
+
+ SSGROW(total_elems + REGCP_FRAME_ELEMS);
+
+ DEBUG_BUFFERS_r(
+ if ((int)maxopenparen > (int)parenfloor)
+ PerlIO_printf(Perl_debug_log,
+ "rex=0x%"UVxf" offs=0x%"UVxf": saving capture indices:\n",
+ PTR2UV(rex),
+ PTR2UV(rex->offs)
+ );
+ );
+ for (p = parenfloor+1; p <= (I32)maxopenparen; p++) {
+/* REGCP_PARENS_ELEMS are pushed per pairs of parentheses. */
+ SSPUSHIV(rex->offs[p].end);
+ SSPUSHIV(rex->offs[p].start);
+ SSPUSHINT(rex->offs[p].start_tmp);
+ DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+ " \\%"UVuf": %"IVdf"(%"IVdf")..%"IVdf"\n",
+ (UV)p,
+ (IV)rex->offs[p].start,
+ (IV)rex->offs[p].start_tmp,
+ (IV)rex->offs[p].end
+ ));
+ }
+/* REGCP_OTHER_ELEMS are pushed in any case, parentheses or no. */
+ SSPUSHINT(maxopenparen);
+ SSPUSHINT(rex->lastparen);
+ SSPUSHINT(rex->lastcloseparen);
+ SSPUSHUV(SAVEt_REGCONTEXT | elems_shifted); /* Magic cookie. */
+
+ return retval;
+}
+
+/* These are needed since we do not localize EVAL nodes: */
+#define REGCP_SET(cp) \
+ DEBUG_STATE_r( \
+ PerlIO_printf(Perl_debug_log, \
+ " Setting an EVAL scope, savestack=%"IVdf"\n", \
+ (IV)PL_savestack_ix)); \
+ cp = PL_savestack_ix
+
+#define REGCP_UNWIND(cp) \
+ DEBUG_STATE_r( \
+ if (cp != PL_savestack_ix) \
+ PerlIO_printf(Perl_debug_log, \
+ " Clearing an EVAL scope, savestack=%"IVdf"..%"IVdf"\n", \
+ (IV)(cp), (IV)PL_savestack_ix)); \
+ regcpblow(cp)
+
+#define UNWIND_PAREN(lp, lcp) \
+ for (n = rex->lastparen; n > lp; n--) \
+ rex->offs[n].end = -1; \
+ rex->lastparen = n; \
+ rex->lastcloseparen = lcp;
+
+
+STATIC void
+S_regcppop(pTHX_ regexp *rex, U32 *maxopenparen_p)
+{
+ UV i;
+ U32 paren;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGCPPOP;
+
+ /* Pop REGCP_OTHER_ELEMS before the parentheses loop starts. */
+ i = SSPOPUV;
+ assert((i & SAVE_MASK) == SAVEt_REGCONTEXT); /* Check that the magic cookie is there. */
+ i >>= SAVE_TIGHT_SHIFT; /* Parentheses elements to pop. */
+ rex->lastcloseparen = SSPOPINT;
+ rex->lastparen = SSPOPINT;
+ *maxopenparen_p = SSPOPINT;
+
+ i -= REGCP_OTHER_ELEMS;
+ /* Now restore the parentheses context. */
+ DEBUG_BUFFERS_r(
+ if (i || rex->lastparen + 1 <= rex->nparens)
+ PerlIO_printf(Perl_debug_log,
+ "rex=0x%"UVxf" offs=0x%"UVxf": restoring capture indices to:\n",
+ PTR2UV(rex),
+ PTR2UV(rex->offs)
+ );
+ );
+ paren = *maxopenparen_p;
+ for ( ; i > 0; i -= REGCP_PAREN_ELEMS) {
+ SSize_t tmps;
+ rex->offs[paren].start_tmp = SSPOPINT;
+ rex->offs[paren].start = SSPOPIV;
+ tmps = SSPOPIV;
+ if (paren <= rex->lastparen)
+ rex->offs[paren].end = tmps;
+ DEBUG_BUFFERS_r( PerlIO_printf(Perl_debug_log,
+ " \\%"UVuf": %"IVdf"(%"IVdf")..%"IVdf"%s\n",
+ (UV)paren,
+ (IV)rex->offs[paren].start,
+ (IV)rex->offs[paren].start_tmp,
+ (IV)rex->offs[paren].end,
+ (paren > rex->lastparen ? "(skipped)" : ""));
+ );
+ paren--;
+ }
+#if 1
+ /* It would seem that the similar code in regtry()
+ * already takes care of this, and in fact it is in
+ * a better location to since this code can #if 0-ed out
+ * but the code in regtry() is needed or otherwise tests
+ * requiring null fields (pat.t#187 and split.t#{13,14}
+ * (as of patchlevel 7877) will fail. Then again,
+ * this code seems to be necessary or otherwise
+ * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
+ * --jhi updated by dapm */
+ for (i = rex->lastparen + 1; i <= rex->nparens; i++) {
+ if (i > *maxopenparen_p)
+ rex->offs[i].start = -1;
+ rex->offs[i].end = -1;
+ DEBUG_BUFFERS_r( PerlIO_printf(Perl_debug_log,
+ " \\%"UVuf": %s ..-1 undeffing\n",
+ (UV)i,
+ (i > *maxopenparen_p) ? "-1" : " "
+ ));
+ }
+#endif
+}
+
+/* restore the parens and associated vars at savestack position ix,
+ * but without popping the stack */
+
+STATIC void
+S_regcp_restore(pTHX_ regexp *rex, I32 ix, U32 *maxopenparen_p)
+{
+ I32 tmpix = PL_savestack_ix;
+ PL_savestack_ix = ix;
+ regcppop(rex, maxopenparen_p);
+ PL_savestack_ix = tmpix;
+}
+
+#define regcpblow(cp) LEAVE_SCOPE(cp) /* Ignores regcppush()ed data. */
+
+STATIC bool
+S_isFOO_lc(pTHX_ const U8 classnum, const U8 character)
+{
+ /* Returns a boolean as to whether or not 'character' is a member of the
+ * Posix character class given by 'classnum' that should be equivalent to a
+ * value in the typedef '_char_class_number'.
+ *
+ * Ideally this could be replaced by a just an array of function pointers
+ * to the C library functions that implement the macros this calls.
+ * However, to compile, the precise function signatures are required, and
+ * these may vary from platform to to platform. To avoid having to figure
+ * out what those all are on each platform, I (khw) am using this method,
+ * which adds an extra layer of function call overhead (unless the C
+ * optimizer strips it away). But we don't particularly care about
+ * performance with locales anyway. */
+
+ switch ((_char_class_number) classnum) {
+ case _CC_ENUM_ALPHANUMERIC: return isALPHANUMERIC_LC(character);
+ case _CC_ENUM_ALPHA: return isALPHA_LC(character);
+ case _CC_ENUM_ASCII: return isASCII_LC(character);
+ case _CC_ENUM_BLANK: return isBLANK_LC(character);
+ case _CC_ENUM_CASED: return isLOWER_LC(character)
+ || isUPPER_LC(character);
+ case _CC_ENUM_CNTRL: return isCNTRL_LC(character);
+ case _CC_ENUM_DIGIT: return isDIGIT_LC(character);
+ case _CC_ENUM_GRAPH: return isGRAPH_LC(character);
+ case _CC_ENUM_LOWER: return isLOWER_LC(character);
+ case _CC_ENUM_PRINT: return isPRINT_LC(character);
+ case _CC_ENUM_PUNCT: return isPUNCT_LC(character);
+ case _CC_ENUM_SPACE: return isSPACE_LC(character);
+ case _CC_ENUM_UPPER: return isUPPER_LC(character);
+ case _CC_ENUM_WORDCHAR: return isWORDCHAR_LC(character);
+ case _CC_ENUM_XDIGIT: return isXDIGIT_LC(character);
+ default: /* VERTSPACE should never occur in locales */
+ Perl_croak(aTHX_ "panic: isFOO_lc() has an unexpected character class '%d'", classnum);
+ }
+
+ NOT_REACHED; /* NOTREACHED */
+ return FALSE;
+}
+
+STATIC bool
+S_isFOO_utf8_lc(pTHX_ const U8 classnum, const U8* character)
+{
+ /* Returns a boolean as to whether or not the (well-formed) UTF-8-encoded
+ * 'character' is a member of the Posix character class given by 'classnum'
+ * that should be equivalent to a value in the typedef
+ * '_char_class_number'.
+ *
+ * This just calls isFOO_lc on the code point for the character if it is in
+ * the range 0-255. Outside that range, all characters use Unicode
+ * rules, ignoring any locale. So use the Unicode function if this class
+ * requires a swash, and use the Unicode macro otherwise. */
+
+ PERL_ARGS_ASSERT_ISFOO_UTF8_LC;
+
+ if (UTF8_IS_INVARIANT(*character)) {
+ return isFOO_lc(classnum, *character);
+ }
+ else if (UTF8_IS_DOWNGRADEABLE_START(*character)) {
+ return isFOO_lc(classnum,
+ TWO_BYTE_UTF8_TO_NATIVE(*character, *(character + 1)));
+ }
+
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(character, character + UTF8SKIP(character));
+
+ if (classnum < _FIRST_NON_SWASH_CC) {
+
+ /* Initialize the swash unless done already */
+ if (! PL_utf8_swash_ptrs[classnum]) {
+ U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+ PL_utf8_swash_ptrs[classnum] =
+ _core_swash_init("utf8",
+ "",
+ &PL_sv_undef, 1, 0,
+ PL_XPosix_ptrs[classnum], &flags);
+ }
+
+ return cBOOL(swash_fetch(PL_utf8_swash_ptrs[classnum], (U8 *)
+ character,
+ TRUE /* is UTF */ ));
+ }
+
+ switch ((_char_class_number) classnum) {
+ case _CC_ENUM_SPACE: return is_XPERLSPACE_high(character);
+ case _CC_ENUM_BLANK: return is_HORIZWS_high(character);
+ case _CC_ENUM_XDIGIT: return is_XDIGIT_high(character);
+ case _CC_ENUM_VERTSPACE: return is_VERTWS_high(character);
+ default: break;
+ }
+
+ return FALSE; /* Things like CNTRL are always below 256 */
+}
+
+/*
+ * pregexec and friends
+ */
+
+#ifndef PERL_IN_XSUB_RE
+/*
+ - pregexec - match a regexp against a string
+ */
+I32
+Perl_pregexec(pTHX_ REGEXP * const prog, char* stringarg, char *strend,
+ char *strbeg, SSize_t minend, SV *screamer, U32 nosave)
+/* stringarg: the point in the string at which to begin matching */
+/* strend: pointer to null at end of string */
+/* strbeg: real beginning of string */
+/* minend: end of match must be >= minend bytes after stringarg. */
+/* screamer: SV being matched: only used for utf8 flag, pos() etc; string
+ * itself is accessed via the pointers above */
+/* nosave: For optimizations. */
+{
+ PERL_ARGS_ASSERT_PREGEXEC;
+
+ return
+ regexec_flags(prog, stringarg, strend, strbeg, minend, screamer, NULL,
+ nosave ? 0 : REXEC_COPY_STR);
+}
+#endif
+
+
+
+/* re_intuit_start():
+ *
+ * Based on some optimiser hints, try to find the earliest position in the
+ * string where the regex could match.
+ *
+ * rx: the regex to match against
+ * sv: the SV being matched: only used for utf8 flag; the string
+ * itself is accessed via the pointers below. Note that on
+ * something like an overloaded SV, SvPOK(sv) may be false
+ * and the string pointers may point to something unrelated to
+ * the SV itself.
+ * strbeg: real beginning of string
+ * strpos: the point in the string at which to begin matching
+ * strend: pointer to the byte following the last char of the string
+ * flags currently unused; set to 0
+ * data: currently unused; set to NULL
+ *
+ * The basic idea of re_intuit_start() is to use some known information
+ * about the pattern, namely:
+ *
+ * a) the longest known anchored substring (i.e. one that's at a
+ * constant offset from the beginning of the pattern; but not
+ * necessarily at a fixed offset from the beginning of the
+ * string);
+ * b) the longest floating substring (i.e. one that's not at a constant
+ * offset from the beginning of the pattern);
+ * c) Whether the pattern is anchored to the string; either
+ * an absolute anchor: /^../, or anchored to \n: /^.../m,
+ * or anchored to pos(): /\G/;
+ * d) A start class: a real or synthetic character class which
+ * represents which characters are legal at the start of the pattern;
+ *
+ * to either quickly reject the match, or to find the earliest position
+ * within the string at which the pattern might match, thus avoiding
+ * running the full NFA engine at those earlier locations, only to
+ * eventually fail and retry further along.
+ *
+ * Returns NULL if the pattern can't match, or returns the address within
+ * the string which is the earliest place the match could occur.
+ *
+ * The longest of the anchored and floating substrings is called 'check'
+ * and is checked first. The other is called 'other' and is checked
+ * second. The 'other' substring may not be present. For example,
+ *
+ * /(abc|xyz)ABC\d{0,3}DEFG/
+ *
+ * will have
+ *
+ * check substr (float) = "DEFG", offset 6..9 chars
+ * other substr (anchored) = "ABC", offset 3..3 chars
+ * stclass = [ax]
+ *
+ * Be aware that during the course of this function, sometimes 'anchored'
+ * refers to a substring being anchored relative to the start of the
+ * pattern, and sometimes to the pattern itself being anchored relative to
+ * the string. For example:
+ *
+ * /\dabc/: "abc" is anchored to the pattern;
+ * /^\dabc/: "abc" is anchored to the pattern and the string;
+ * /\d+abc/: "abc" is anchored to neither the pattern nor the string;
+ * /^\d+abc/: "abc" is anchored to neither the pattern nor the string,
+ * but the pattern is anchored to the string.
+ */
+
+char *
+Perl_re_intuit_start(pTHX_
+ REGEXP * const rx,
+ SV *sv,
+ const char * const strbeg,
+ char *strpos,
+ char *strend,
+ const U32 flags,
+ re_scream_pos_data *data)
+{
+ struct regexp *const prog = ReANY(rx);
+ SSize_t start_shift = prog->check_offset_min;
+ /* Should be nonnegative! */
+ SSize_t end_shift = 0;
+ /* current lowest pos in string where the regex can start matching */
+ char *rx_origin = strpos;
+ SV *check;
+ const bool utf8_target = (sv && SvUTF8(sv)) ? 1 : 0; /* if no sv we have to assume bytes */
+ U8 other_ix = 1 - prog->substrs->check_ix;
+ bool ml_anch = 0;
+ char *other_last = strpos;/* latest pos 'other' substr already checked to */
+ char *check_at = NULL; /* check substr found at this pos */
+ const I32 multiline = prog->extflags & RXf_PMf_MULTILINE;
+ RXi_GET_DECL(prog,progi);
+ regmatch_info reginfo_buf; /* create some info to pass to find_byclass */
+ regmatch_info *const reginfo = ®info_buf;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_INTUIT_START;
+ PERL_UNUSED_ARG(flags);
+ PERL_UNUSED_ARG(data);
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "Intuit: trying to determine minimum start position...\n"));
+
+ /* for now, assume that all substr offsets are positive. If at some point
+ * in the future someone wants to do clever things with look-behind and
+ * -ve offsets, they'll need to fix up any code in this function
+ * which uses these offsets. See the thread beginning
+ * <20140113145929.GF27210@iabyn.com>
+ */
+ assert(prog->substrs->data[0].min_offset >= 0);
+ assert(prog->substrs->data[0].max_offset >= 0);
+ assert(prog->substrs->data[1].min_offset >= 0);
+ assert(prog->substrs->data[1].max_offset >= 0);
+ assert(prog->substrs->data[2].min_offset >= 0);
+ assert(prog->substrs->data[2].max_offset >= 0);
+
+ /* for now, assume that if both present, that the floating substring
+ * doesn't start before the anchored substring.
+ * If you break this assumption (e.g. doing better optimisations
+ * with lookahead/behind), then you'll need to audit the code in this
+ * function carefully first
+ */
+ assert(
+ ! ( (prog->anchored_utf8 || prog->anchored_substr)
+ && (prog->float_utf8 || prog->float_substr))
+ || (prog->float_min_offset >= prog->anchored_offset));
+
+ /* byte rather than char calculation for efficiency. It fails
+ * to quickly reject some cases that can't match, but will reject
+ * them later after doing full char arithmetic */
+ if (prog->minlen > strend - strpos) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " String too short...\n"));
+ goto fail;
+ }
+
+ RX_MATCH_UTF8_set(rx,utf8_target);
+ reginfo->is_utf8_target = cBOOL(utf8_target);
+ reginfo->info_aux = NULL;
+ reginfo->strbeg = strbeg;
+ reginfo->strend = strend;
+ reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx));
+ reginfo->intuit = 1;
+ /* not actually used within intuit, but zero for safety anyway */
+ reginfo->poscache_maxiter = 0;
+
+ if (utf8_target) {
+ if (!prog->check_utf8 && prog->check_substr)
+ to_utf8_substr(prog);
+ check = prog->check_utf8;
+ } else {
+ if (!prog->check_substr && prog->check_utf8) {
+ if (! to_byte_substr(prog)) {
+ NON_UTF8_TARGET_BUT_UTF8_REQUIRED(fail);
+ }
+ }
+ check = prog->check_substr;
+ }
+
+ /* dump the various substring data */
+ DEBUG_OPTIMISE_MORE_r({
+ int i;
+ for (i=0; i<=2; i++) {
+ SV *sv = (utf8_target ? prog->substrs->data[i].utf8_substr
+ : prog->substrs->data[i].substr);
+ if (!sv)
+ continue;
+
+ PerlIO_printf(Perl_debug_log,
+ " substrs[%d]: min=%"IVdf" max=%"IVdf" end shift=%"IVdf
+ " useful=%"IVdf" utf8=%d [%s]\n",
+ i,
+ (IV)prog->substrs->data[i].min_offset,
+ (IV)prog->substrs->data[i].max_offset,
+ (IV)prog->substrs->data[i].end_shift,
+ BmUSEFUL(sv),
+ utf8_target ? 1 : 0,
+ SvPEEK(sv));
+ }
+ });
+
+ if (prog->intflags & PREGf_ANCH) { /* Match at \G, beg-of-str or after \n */
+
+ /* ml_anch: check after \n?
+ *
+ * A note about PREGf_IMPLICIT: on an un-anchored pattern beginning
+ * with /.*.../, these flags will have been added by the
+ * compiler:
+ * /.*abc/, /.*abc/m: PREGf_IMPLICIT | PREGf_ANCH_MBOL
+ * /.*abc/s: PREGf_IMPLICIT | PREGf_ANCH_SBOL
+ */
+ ml_anch = (prog->intflags & PREGf_ANCH_MBOL)
+ && !(prog->intflags & PREGf_IMPLICIT);
+
+ if (!ml_anch && !(prog->intflags & PREGf_IMPLICIT)) {
+ /* we are only allowed to match at BOS or \G */
+
+ /* trivially reject if there's a BOS anchor and we're not at BOS.
+ *
+ * Note that we don't try to do a similar quick reject for
+ * \G, since generally the caller will have calculated strpos
+ * based on pos() and gofs, so the string is already correctly
+ * anchored by definition; and handling the exceptions would
+ * be too fiddly (e.g. REXEC_IGNOREPOS).
+ */
+ if ( strpos != strbeg
+ && (prog->intflags & PREGf_ANCH_SBOL))
+ {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Not at start...\n"));
+ goto fail;
+ }
+
+ /* in the presence of an anchor, the anchored (relative to the
+ * start of the regex) substr must also be anchored relative
+ * to strpos. So quickly reject if substr isn't found there.
+ * This works for \G too, because the caller will already have
+ * subtracted gofs from pos, and gofs is the offset from the
+ * \G to the start of the regex. For example, in /.abc\Gdef/,
+ * where substr="abcdef", pos()=3, gofs=4, offset_min=1:
+ * caller will have set strpos=pos()-4; we look for the substr
+ * at position pos()-4+1, which lines up with the "a" */
+
+ if (prog->check_offset_min == prog->check_offset_max) {
+ /* Substring at constant offset from beg-of-str... */
+ SSize_t slen = SvCUR(check);
+ char *s = HOP3c(strpos, prog->check_offset_min, strend);
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Looking for check substr at fixed offset %"IVdf"...\n",
+ (IV)prog->check_offset_min));
+
+ if (SvTAIL(check)) {
+ /* In this case, the regex is anchored at the end too.
+ * Unless it's a multiline match, the lengths must match
+ * exactly, give or take a \n. NB: slen >= 1 since
+ * the last char of check is \n */
+ if (!multiline
+ && ( strend - s > slen
+ || strend - s < slen - 1
+ || (strend - s == slen && strend[-1] != '\n')))
+ {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " String too long...\n"));
+ goto fail_finish;
+ }
+ /* Now should match s[0..slen-2] */
+ slen--;
+ }
+ if (slen && (*SvPVX_const(check) != *s
+ || (slen > 1 && memNE(SvPVX_const(check), s, slen))))
+ {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " String not equal...\n"));
+ goto fail_finish;
+ }
+
+ check_at = s;
+ goto success_at_start;
+ }
+ }
+ }
+
+ end_shift = prog->check_end_shift;
+
+#ifdef DEBUGGING /* 7/99: reports of failure (with the older version) */
+ if (end_shift < 0)
+ Perl_croak(aTHX_ "panic: end_shift: %"IVdf" pattern:\n%s\n ",
+ (IV)end_shift, RX_PRECOMP(prog));
+#endif
+
+ restart:
+
+ /* This is the (re)entry point of the main loop in this function.
+ * The goal of this loop is to:
+ * 1) find the "check" substring in the region rx_origin..strend
+ * (adjusted by start_shift / end_shift). If not found, reject
+ * immediately.
+ * 2) If it exists, look for the "other" substr too if defined; for
+ * example, if the check substr maps to the anchored substr, then
+ * check the floating substr, and vice-versa. If not found, go
+ * back to (1) with rx_origin suitably incremented.
+ * 3) If we find an rx_origin position that doesn't contradict
+ * either of the substrings, then check the possible additional
+ * constraints on rx_origin of /^.../m or a known start class.
+ * If these fail, then depending on which constraints fail, jump
+ * back to here, or to various other re-entry points further along
+ * that skip some of the first steps.
+ * 4) If we pass all those tests, update the BmUSEFUL() count on the
+ * substring. If the start position was determined to be at the
+ * beginning of the string - so, not rejected, but not optimised,
+ * since we have to run regmatch from position 0 - decrement the
+ * BmUSEFUL() count. Otherwise increment it.
+ */
+
+
+ /* first, look for the 'check' substring */
+
+ {
+ U8* start_point;
+ U8* end_point;
+
+ DEBUG_OPTIMISE_MORE_r({
+ PerlIO_printf(Perl_debug_log,
+ " At restart: rx_origin=%"IVdf" Check offset min: %"IVdf
+ " Start shift: %"IVdf" End shift %"IVdf
+ " Real end Shift: %"IVdf"\n",
+ (IV)(rx_origin - strbeg),
+ (IV)prog->check_offset_min,
+ (IV)start_shift,
+ (IV)end_shift,
+ (IV)prog->check_end_shift);
+ });
+
+ end_point = HOP3(strend, -end_shift, strbeg);
+ start_point = HOPMAYBE3(rx_origin, start_shift, end_point);
+ if (!start_point)
+ goto fail_finish;
+
+
+ /* If the regex is absolutely anchored to either the start of the
+ * string (SBOL) or to pos() (ANCH_GPOS), then
+ * check_offset_max represents an upper bound on the string where
+ * the substr could start. For the ANCH_GPOS case, we assume that
+ * the caller of intuit will have already set strpos to
+ * pos()-gofs, so in this case strpos + offset_max will still be
+ * an upper bound on the substr.
+ */
+ if (!ml_anch
+ && prog->intflags & PREGf_ANCH
+ && prog->check_offset_max != SSize_t_MAX)
+ {
+ SSize_t len = SvCUR(check) - !!SvTAIL(check);
+ const char * const anchor =
+ (prog->intflags & PREGf_ANCH_GPOS ? strpos : strbeg);
+
+ /* do a bytes rather than chars comparison. It's conservative;
+ * so it skips doing the HOP if the result can't possibly end
+ * up earlier than the old value of end_point.
+ */
+ if ((char*)end_point - anchor > prog->check_offset_max) {
+ end_point = HOP3lim((U8*)anchor,
+ prog->check_offset_max,
+ end_point -len)
+ + len;
+ }
+ }
+
+ check_at = fbm_instr( start_point, end_point,
+ check, multiline ? FBMrf_MULTILINE : 0);
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " doing 'check' fbm scan, [%"IVdf"..%"IVdf"] gave %"IVdf"\n",
+ (IV)((char*)start_point - strbeg),
+ (IV)((char*)end_point - strbeg),
+ (IV)(check_at ? check_at - strbeg : -1)
+ ));
+
+ /* Update the count-of-usability, remove useless subpatterns,
+ unshift s. */
+
+ DEBUG_EXECUTE_r({
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(check), RE_SV_DUMPLEN(check), 30);
+ PerlIO_printf(Perl_debug_log, " %s %s substr %s%s%s",
+ (check_at ? "Found" : "Did not find"),
+ (check == (utf8_target ? prog->anchored_utf8 : prog->anchored_substr)
+ ? "anchored" : "floating"),
+ quoted,
+ RE_SV_TAIL(check),
+ (check_at ? " at offset " : "...\n") );
+ });
+
+ if (!check_at)
+ goto fail_finish;
+ /* set rx_origin to the minimum position where the regex could start
+ * matching, given the constraint of the just-matched check substring.
+ * But don't set it lower than previously.
+ */
+
+ if (check_at - rx_origin > prog->check_offset_max)
+ rx_origin = HOP3c(check_at, -prog->check_offset_max, rx_origin);
+ /* Finish the diagnostic message */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%ld (rx_origin now %"IVdf")...\n",
+ (long)(check_at - strbeg),
+ (IV)(rx_origin - strbeg)
+ ));
+ }
+
+
+ /* now look for the 'other' substring if defined */
+
+ if (utf8_target ? prog->substrs->data[other_ix].utf8_substr
+ : prog->substrs->data[other_ix].substr)
+ {
+ /* Take into account the "other" substring. */
+ char *last, *last1;
+ char *s;
+ SV* must;
+ struct reg_substr_datum *other;
+
+ do_other_substr:
+ other = &prog->substrs->data[other_ix];
+
+ /* if "other" is anchored:
+ * we've previously found a floating substr starting at check_at.
+ * This means that the regex origin must lie somewhere
+ * between min (rx_origin): HOP3(check_at, -check_offset_max)
+ * and max: HOP3(check_at, -check_offset_min)
+ * (except that min will be >= strpos)
+ * So the fixed substr must lie somewhere between
+ * HOP3(min, anchored_offset)
+ * HOP3(max, anchored_offset) + SvCUR(substr)
+ */
+
+ /* if "other" is floating
+ * Calculate last1, the absolute latest point where the
+ * floating substr could start in the string, ignoring any
+ * constraints from the earlier fixed match. It is calculated
+ * as follows:
+ *
+ * strend - prog->minlen (in chars) is the absolute latest
+ * position within the string where the origin of the regex
+ * could appear. The latest start point for the floating
+ * substr is float_min_offset(*) on from the start of the
+ * regex. last1 simply combines thee two offsets.
+ *
+ * (*) You might think the latest start point should be
+ * float_max_offset from the regex origin, and technically
+ * you'd be correct. However, consider
+ * /a\d{2,4}bcd\w/
+ * Here, float min, max are 3,5 and minlen is 7.
+ * This can match either
+ * /a\d\dbcd\w/
+ * /a\d\d\dbcd\w/
+ * /a\d\d\d\dbcd\w/
+ * In the first case, the regex matches minlen chars; in the
+ * second, minlen+1, in the third, minlen+2.
+ * In the first case, the floating offset is 3 (which equals
+ * float_min), in the second, 4, and in the third, 5 (which
+ * equals float_max). In all cases, the floating string bcd
+ * can never start more than 4 chars from the end of the
+ * string, which equals minlen - float_min. As the substring
+ * starts to match more than float_min from the start of the
+ * regex, it makes the regex match more than minlen chars,
+ * and the two cancel each other out. So we can always use
+ * float_min - minlen, rather than float_max - minlen for the
+ * latest position in the string.
+ *
+ * Note that -minlen + float_min_offset is equivalent (AFAIKT)
+ * to CHR_SVLEN(must) - !!SvTAIL(must) + prog->float_end_shift
+ */
+
+ assert(prog->minlen >= other->min_offset);
+ last1 = HOP3c(strend,
+ other->min_offset - prog->minlen, strbeg);
+
+ if (other_ix) {/* i.e. if (other-is-float) */
+ /* last is the latest point where the floating substr could
+ * start, *given* any constraints from the earlier fixed
+ * match. This constraint is that the floating string starts
+ * <= float_max_offset chars from the regex origin (rx_origin).
+ * If this value is less than last1, use it instead.
+ */
+ assert(rx_origin <= last1);
+ last =
+ /* this condition handles the offset==infinity case, and
+ * is a short-cut otherwise. Although it's comparing a
+ * byte offset to a char length, it does so in a safe way,
+ * since 1 char always occupies 1 or more bytes,
+ * so if a string range is (last1 - rx_origin) bytes,
+ * it will be less than or equal to (last1 - rx_origin)
+ * chars; meaning it errs towards doing the accurate HOP3
+ * rather than just using last1 as a short-cut */
+ (last1 - rx_origin) < other->max_offset
+ ? last1
+ : (char*)HOP3lim(rx_origin, other->max_offset, last1);
+ }
+ else {
+ assert(strpos + start_shift <= check_at);
+ last = HOP4c(check_at, other->min_offset - start_shift,
+ strbeg, strend);
+ }
+
+ s = HOP3c(rx_origin, other->min_offset, strend);
+ if (s < other_last) /* These positions already checked */
+ s = other_last;
+
+ must = utf8_target ? other->utf8_substr : other->substr;
+ assert(SvPOK(must));
+ {
+ char *from = s;
+ char *to = last + SvCUR(must) - (SvTAIL(must)!=0);
+
+ if (from > to) {
+ s = NULL;
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " skipping 'other' fbm scan: %"IVdf" > %"IVdf"\n",
+ (IV)(from - strbeg),
+ (IV)(to - strbeg)
+ ));
+ }
+ else {
+ s = fbm_instr(
+ (unsigned char*)from,
+ (unsigned char*)to,
+ must,
+ multiline ? FBMrf_MULTILINE : 0
+ );
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " doing 'other' fbm scan, [%"IVdf"..%"IVdf"] gave %"IVdf"\n",
+ (IV)(from - strbeg),
+ (IV)(to - strbeg),
+ (IV)(s ? s - strbeg : -1)
+ ));
+ }
+ }
+
+ DEBUG_EXECUTE_r({
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+ PerlIO_printf(Perl_debug_log, " %s %s substr %s%s",
+ s ? "Found" : "Contradicts",
+ other_ix ? "floating" : "anchored",
+ quoted, RE_SV_TAIL(must));
+ });
+
+
+ if (!s) {
+ /* last1 is latest possible substr location. If we didn't
+ * find it before there, we never will */
+ if (last >= last1) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "; giving up...\n"));
+ goto fail_finish;
+ }
+
+ /* try to find the check substr again at a later
+ * position. Maybe next time we'll find the "other" substr
+ * in range too */
+ other_last = HOP3c(last, 1, strend) /* highest failure */;
+ rx_origin =
+ other_ix /* i.e. if other-is-float */
+ ? HOP3c(rx_origin, 1, strend)
+ : HOP4c(last, 1 - other->min_offset, strbeg, strend);
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "; about to retry %s at offset %ld (rx_origin now %"IVdf")...\n",
+ (other_ix ? "floating" : "anchored"),
+ (long)(HOP3c(check_at, 1, strend) - strbeg),
+ (IV)(rx_origin - strbeg)
+ ));
+ goto restart;
+ }
+ else {
+ if (other_ix) { /* if (other-is-float) */
+ /* other_last is set to s, not s+1, since its possible for
+ * a floating substr to fail first time, then succeed
+ * second time at the same floating position; e.g.:
+ * "-AB--AABZ" =~ /\wAB\d*Z/
+ * The first time round, anchored and float match at
+ * "-(AB)--AAB(Z)" then fail on the initial \w character
+ * class. Second time round, they match at "-AB--A(AB)(Z)".
+ */
+ other_last = s;
+ }
+ else {
+ rx_origin = HOP3c(s, -other->min_offset, strbeg);
+ other_last = HOP3c(s, 1, strend);
+ }
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " at offset %ld (rx_origin now %"IVdf")...\n",
+ (long)(s - strbeg),
+ (IV)(rx_origin - strbeg)
+ ));
+
+ }
+ }
+ else {
+ DEBUG_OPTIMISE_MORE_r(
+ PerlIO_printf(Perl_debug_log,
+ " Check-only match: offset min:%"IVdf" max:%"IVdf
+ " check_at:%"IVdf" rx_origin:%"IVdf" rx_origin-check_at:%"IVdf
+ " strend:%"IVdf"\n",
+ (IV)prog->check_offset_min,
+ (IV)prog->check_offset_max,
+ (IV)(check_at-strbeg),
+ (IV)(rx_origin-strbeg),
+ (IV)(rx_origin-check_at),
+ (IV)(strend-strbeg)
+ )
+ );
+ }
+
+ postprocess_substr_matches:
+
+ /* handle the extra constraint of /^.../m if present */
+
+ if (ml_anch && rx_origin != strbeg && rx_origin[-1] != '\n') {
+ char *s;
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " looking for /^/m anchor"));
+
+ /* we have failed the constraint of a \n before rx_origin.
+ * Find the next \n, if any, even if it's beyond the current
+ * anchored and/or floating substrings. Whether we should be
+ * scanning ahead for the next \n or the next substr is debatable.
+ * On the one hand you'd expect rare substrings to appear less
+ * often than \n's. On the other hand, searching for \n means
+ * we're effectively flipping between check_substr and "\n" on each
+ * iteration as the current "rarest" string candidate, which
+ * means for example that we'll quickly reject the whole string if
+ * hasn't got a \n, rather than trying every substr position
+ * first
+ */
+
+ s = HOP3c(strend, - prog->minlen, strpos);
+ if (s <= rx_origin ||
+ ! ( rx_origin = (char *)memchr(rx_origin, '\n', s - rx_origin)))
+ {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Did not find /%s^%s/m...\n",
+ PL_colors[0], PL_colors[1]));
+ goto fail_finish;
+ }
+
+ /* earliest possible origin is 1 char after the \n.
+ * (since *rx_origin == '\n', it's safe to ++ here rather than
+ * HOP(rx_origin, 1)) */
+ rx_origin++;
+
+ if (prog->substrs->check_ix == 0 /* check is anchored */
+ || rx_origin >= HOP3c(check_at, - prog->check_offset_min, strpos))
+ {
+ /* Position contradicts check-string; either because
+ * check was anchored (and thus has no wiggle room),
+ * or check was float and rx_origin is above the float range */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Found /%s^%s/m, about to restart lookup for check-string with rx_origin %ld...\n",
+ PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg)));
+ goto restart;
+ }
+
+ /* if we get here, the check substr must have been float,
+ * is in range, and we may or may not have had an anchored
+ * "other" substr which still contradicts */
+ assert(prog->substrs->check_ix); /* check is float */
+
+ if (utf8_target ? prog->anchored_utf8 : prog->anchored_substr) {
+ /* whoops, the anchored "other" substr exists, so we still
+ * contradict. On the other hand, the float "check" substr
+ * didn't contradict, so just retry the anchored "other"
+ * substr */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Found /%s^%s/m, rescanning for anchored from offset %ld (rx_origin now %"IVdf")...\n",
+ PL_colors[0], PL_colors[1],
+ (long)(rx_origin - strbeg + prog->anchored_offset),
+ (long)(rx_origin - strbeg)
+ ));
+ goto do_other_substr;
+ }
+
+ /* success: we don't contradict the found floating substring
+ * (and there's no anchored substr). */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Found /%s^%s/m with rx_origin %ld...\n",
+ PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg)));
+ }
+ else {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " (multiline anchor test skipped)\n"));
+ }
+
+ success_at_start:
+
+
+ /* if we have a starting character class, then test that extra constraint.
+ * (trie stclasses are too expensive to use here, we are better off to
+ * leave it to regmatch itself) */
+
+ if (progi->regstclass && PL_regkind[OP(progi->regstclass)]!=TRIE) {
+ const U8* const str = (U8*)STRING(progi->regstclass);
+
+ /* XXX this value could be pre-computed */
+ const int cl_l = (PL_regkind[OP(progi->regstclass)] == EXACT
+ ? (reginfo->is_utf8_pat
+ ? utf8_distance(str + STR_LEN(progi->regstclass), str)
+ : STR_LEN(progi->regstclass))
+ : 1);
+ char * endpos;
+ char *s;
+ /* latest pos that a matching float substr constrains rx start to */
+ char *rx_max_float = NULL;
+
+ /* if the current rx_origin is anchored, either by satisfying an
+ * anchored substring constraint, or a /^.../m constraint, then we
+ * can reject the current origin if the start class isn't found
+ * at the current position. If we have a float-only match, then
+ * rx_origin is constrained to a range; so look for the start class
+ * in that range. if neither, then look for the start class in the
+ * whole rest of the string */
+
+ /* XXX DAPM it's not clear what the minlen test is for, and why
+ * it's not used in the floating case. Nothing in the test suite
+ * causes minlen == 0 here. See <20140313134639.GS12844@iabyn.com>.
+ * Here are some old comments, which may or may not be correct:
+ *
+ * minlen == 0 is possible if regstclass is \b or \B,
+ * and the fixed substr is ''$.
+ * Since minlen is already taken into account, rx_origin+1 is
+ * before strend; accidentally, minlen >= 1 guaranties no false
+ * positives at rx_origin + 1 even for \b or \B. But (minlen? 1 :
+ * 0) below assumes that regstclass does not come from lookahead...
+ * If regstclass takes bytelength more than 1: If charlength==1, OK.
+ * This leaves EXACTF-ish only, which are dealt with in
+ * find_byclass().
+ */
+
+ if (prog->anchored_substr || prog->anchored_utf8 || ml_anch)
+ endpos= HOP3c(rx_origin, (prog->minlen ? cl_l : 0), strend);
+ else if (prog->float_substr || prog->float_utf8) {
+ rx_max_float = HOP3c(check_at, -start_shift, strbeg);
+ endpos= HOP3c(rx_max_float, cl_l, strend);
+ }
+ else
+ endpos= strend;
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " looking for class: start_shift: %"IVdf" check_at: %"IVdf
+ " rx_origin: %"IVdf" endpos: %"IVdf"\n",
+ (IV)start_shift, (IV)(check_at - strbeg),
+ (IV)(rx_origin - strbeg), (IV)(endpos - strbeg)));
+
+ s = find_byclass(prog, progi->regstclass, rx_origin, endpos,
+ reginfo);
+ if (!s) {
+ if (endpos == strend) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ " Could not match STCLASS...\n") );
+ goto fail;
+ }
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ " This position contradicts STCLASS...\n") );
+ if ((prog->intflags & PREGf_ANCH) && !ml_anch
+ && !(prog->intflags & PREGf_IMPLICIT))
+ goto fail;
+
+ /* Contradict one of substrings */
+ if (prog->anchored_substr || prog->anchored_utf8) {
+ if (prog->substrs->check_ix == 1) { /* check is float */
+ /* Have both, check_string is floating */
+ assert(rx_origin + start_shift <= check_at);
+ if (rx_origin + start_shift != check_at) {
+ /* not at latest position float substr could match:
+ * Recheck anchored substring, but not floating.
+ * The condition above is in bytes rather than
+ * chars for efficiency. It's conservative, in
+ * that it errs on the side of doing 'goto
+ * do_other_substr'. In this case, at worst,
+ * an extra anchored search may get done, but in
+ * practice the extra fbm_instr() is likely to
+ * get skipped anyway. */
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ " about to retry anchored at offset %ld (rx_origin now %"IVdf")...\n",
+ (long)(other_last - strbeg),
+ (IV)(rx_origin - strbeg)
+ ));
+ goto do_other_substr;
+ }
+ }
+ }
+ else {
+ /* float-only */
+
+ if (ml_anch) {
+ /* In the presence of ml_anch, we might be able to
+ * find another \n without breaking the current float
+ * constraint. */
+
+ /* strictly speaking this should be HOP3c(..., 1, ...),
+ * but since we goto a block of code that's going to
+ * search for the next \n if any, its safe here */
+ rx_origin++;
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ " about to look for /%s^%s/m starting at rx_origin %ld...\n",
+ PL_colors[0], PL_colors[1],
+ (long)(rx_origin - strbeg)) );
+ goto postprocess_substr_matches;
+ }
+
+ /* strictly speaking this can never be true; but might
+ * be if we ever allow intuit without substrings */
+ if (!(utf8_target ? prog->float_utf8 : prog->float_substr))
+ goto fail;
+
+ rx_origin = rx_max_float;
+ }
+
+ /* at this point, any matching substrings have been
+ * contradicted. Start again... */
+
+ rx_origin = HOP3c(rx_origin, 1, strend);
+
+ /* uses bytes rather than char calculations for efficiency.
+ * It's conservative: it errs on the side of doing 'goto restart',
+ * where there is code that does a proper char-based test */
+ if (rx_origin + start_shift + end_shift > strend) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ " Could not match STCLASS...\n") );
+ goto fail;
+ }
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ " about to look for %s substr starting at offset %ld (rx_origin now %"IVdf")...\n",
+ (prog->substrs->check_ix ? "floating" : "anchored"),
+ (long)(rx_origin + start_shift - strbeg),
+ (IV)(rx_origin - strbeg)
+ ));
+ goto restart;
+ }
+
+ /* Success !!! */
+
+ if (rx_origin != s) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " By STCLASS: moving %ld --> %ld\n",
+ (long)(rx_origin - strbeg), (long)(s - strbeg))
+ );
+ }
+ else {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Does not contradict STCLASS...\n");
+ );
+ }
+ }
+
+ /* Decide whether using the substrings helped */
+
+ if (rx_origin != strpos) {
+ /* Fixed substring is found far enough so that the match
+ cannot start at strpos. */
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, " try at offset...\n"));
+ ++BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr); /* hooray/5 */
+ }
+ else {
+ /* The found rx_origin position does not prohibit matching at
+ * strpos, so calling intuit didn't gain us anything. Decrement
+ * the BmUSEFUL() count on the check substring, and if we reach
+ * zero, free it. */
+ if (!(prog->intflags & PREGf_NAUGHTY)
+ && (utf8_target ? (
+ prog->check_utf8 /* Could be deleted already */
+ && --BmUSEFUL(prog->check_utf8) < 0
+ && (prog->check_utf8 == prog->float_utf8)
+ ) : (
+ prog->check_substr /* Could be deleted already */
+ && --BmUSEFUL(prog->check_substr) < 0
+ && (prog->check_substr == prog->float_substr)
+ )))
+ {
+ /* If flags & SOMETHING - do not do it many times on the same match */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, " ... Disabling check substring...\n"));
+ /* XXX Does the destruction order has to change with utf8_target? */
+ SvREFCNT_dec(utf8_target ? prog->check_utf8 : prog->check_substr);
+ SvREFCNT_dec(utf8_target ? prog->check_substr : prog->check_utf8);
+ prog->check_substr = prog->check_utf8 = NULL; /* disable */
+ prog->float_substr = prog->float_utf8 = NULL; /* clear */
+ check = NULL; /* abort */
+ /* XXXX This is a remnant of the old implementation. It
+ looks wasteful, since now INTUIT can use many
+ other heuristics. */
+ prog->extflags &= ~RXf_USE_INTUIT;
+ }
+ }
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "Intuit: %sSuccessfully guessed:%s match at offset %ld\n",
+ PL_colors[4], PL_colors[5], (long)(rx_origin - strbeg)) );
+
+ return rx_origin;
+
+ fail_finish: /* Substring not found */
+ if (prog->check_substr || prog->check_utf8) /* could be removed already */
+ BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr) += 5; /* hooray */
+ fail:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch rejected by optimizer%s\n",
+ PL_colors[4], PL_colors[5]));
+ return NULL;
+}
+
+
+#define DECL_TRIE_TYPE(scan) \
+ const enum { trie_plain, trie_utf8, trie_utf8_fold, trie_latin_utf8_fold, \
+ trie_utf8_exactfa_fold, trie_latin_utf8_exactfa_fold, \
+ trie_utf8l, trie_flu8 } \
+ trie_type = ((scan->flags == EXACT) \
+ ? (utf8_target ? trie_utf8 : trie_plain) \
+ : (scan->flags == EXACTL) \
+ ? (utf8_target ? trie_utf8l : trie_plain) \
+ : (scan->flags == EXACTFA) \
+ ? (utf8_target \
+ ? trie_utf8_exactfa_fold \
+ : trie_latin_utf8_exactfa_fold) \
+ : (scan->flags == EXACTFLU8 \
+ ? trie_flu8 \
+ : (utf8_target \
+ ? trie_utf8_fold \
+ : trie_latin_utf8_fold)))
+
+#define REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc, uscan, len, uvc, charid, foldlen, foldbuf, uniflags) \
+STMT_START { \
+ STRLEN skiplen; \
+ U8 flags = FOLD_FLAGS_FULL; \
+ switch (trie_type) { \
+ case trie_flu8: \
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \
+ if (utf8_target && UTF8_IS_ABOVE_LATIN1(*uc)) { \
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(uc, uc + UTF8SKIP(uc)); \
+ } \
+ goto do_trie_utf8_fold; \
+ case trie_utf8_exactfa_fold: \
+ flags |= FOLD_FLAGS_NOMIX_ASCII; \
+ /* FALLTHROUGH */ \
+ case trie_utf8_fold: \
+ do_trie_utf8_fold: \
+ if ( foldlen>0 ) { \
+ uvc = utf8n_to_uvchr( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
+ foldlen -= len; \
+ uscan += len; \
+ len=0; \
+ } else { \
+ uvc = _to_utf8_fold_flags( (const U8*) uc, foldbuf, &foldlen, flags); \
+ len = UTF8SKIP(uc); \
+ skiplen = UNISKIP( uvc ); \
+ foldlen -= skiplen; \
+ uscan = foldbuf + skiplen; \
+ } \
+ break; \
+ case trie_latin_utf8_exactfa_fold: \
+ flags |= FOLD_FLAGS_NOMIX_ASCII; \
+ /* FALLTHROUGH */ \
+ case trie_latin_utf8_fold: \
+ if ( foldlen>0 ) { \
+ uvc = utf8n_to_uvchr( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
+ foldlen -= len; \
+ uscan += len; \
+ len=0; \
+ } else { \
+ len = 1; \
+ uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, flags); \
+ skiplen = UNISKIP( uvc ); \
+ foldlen -= skiplen; \
+ uscan = foldbuf + skiplen; \
+ } \
+ break; \
+ case trie_utf8l: \
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \
+ if (utf8_target && UTF8_IS_ABOVE_LATIN1(*uc)) { \
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(uc, uc + UTF8SKIP(uc)); \
+ } \
+ /* FALLTHROUGH */ \
+ case trie_utf8: \
+ uvc = utf8n_to_uvchr( (const U8*) uc, UTF8_MAXLEN, &len, uniflags ); \
+ break; \
+ case trie_plain: \
+ uvc = (UV)*uc; \
+ len = 1; \
+ } \
+ if (uvc < 256) { \
+ charid = trie->charmap[ uvc ]; \
+ } \
+ else { \
+ charid = 0; \
+ if (widecharmap) { \
+ SV** const svpp = hv_fetch(widecharmap, \
+ (char*)&uvc, sizeof(UV), 0); \
+ if (svpp) \
+ charid = (U16)SvIV(*svpp); \
+ } \
+ } \
+} STMT_END
+
+#define DUMP_EXEC_POS(li,s,doutf8) \
+ dump_exec_pos(li,s,(reginfo->strend),(reginfo->strbeg), \
+ startpos, doutf8)
+
+#define REXEC_FBC_EXACTISH_SCAN(COND) \
+STMT_START { \
+ while (s <= e) { \
+ if ( (COND) \
+ && (ln == 1 || folder(s, pat_string, ln)) \
+ && (reginfo->intuit || regtry(reginfo, &s)) )\
+ goto got_it; \
+ s++; \
+ } \
+} STMT_END
+
+#define REXEC_FBC_UTF8_SCAN(CODE) \
+STMT_START { \
+ while (s < strend) { \
+ CODE \
+ s += UTF8SKIP(s); \
+ } \
+} STMT_END
+
+#define REXEC_FBC_SCAN(CODE) \
+STMT_START { \
+ while (s < strend) { \
+ CODE \
+ s++; \
+ } \
+} STMT_END
+
+#define REXEC_FBC_UTF8_CLASS_SCAN(COND) \
+REXEC_FBC_UTF8_SCAN( /* Loops while (s < strend) */ \
+ if (COND) { \
+ if (tmp && (reginfo->intuit || regtry(reginfo, &s))) \
+ goto got_it; \
+ else \
+ tmp = doevery; \
+ } \
+ else \
+ tmp = 1; \
+)
+
+#define REXEC_FBC_CLASS_SCAN(COND) \
+REXEC_FBC_SCAN( /* Loops while (s < strend) */ \
+ if (COND) { \
+ if (tmp && (reginfo->intuit || regtry(reginfo, &s))) \
+ goto got_it; \
+ else \
+ tmp = doevery; \
+ } \
+ else \
+ tmp = 1; \
+)
+
+#define REXEC_FBC_CSCAN(CONDUTF8,COND) \
+ if (utf8_target) { \
+ REXEC_FBC_UTF8_CLASS_SCAN(CONDUTF8); \
+ } \
+ else { \
+ REXEC_FBC_CLASS_SCAN(COND); \
+ }
+
+/* The three macros below are slightly different versions of the same logic.
+ *
+ * The first is for /a and /aa when the target string is UTF-8. This can only
+ * match ascii, but it must advance based on UTF-8. The other two handle the
+ * non-UTF-8 and the more generic UTF-8 cases. In all three, we are looking
+ * for the boundary (or non-boundary) between a word and non-word character.
+ * The utf8 and non-utf8 cases have the same logic, but the details must be
+ * different. Find the "wordness" of the character just prior to this one, and
+ * compare it with the wordness of this one. If they differ, we have a
+ * boundary. At the beginning of the string, pretend that the previous
+ * character was a new-line.
+ *
+ * All these macros uncleanly have side-effects with each other and outside
+ * variables. So far it's been too much trouble to clean-up
+ *
+ * TEST_NON_UTF8 is the macro or function to call to test if its byte input is
+ * a word character or not.
+ * IF_SUCCESS is code to do if it finds that we are at a boundary between
+ * word/non-word
+ * IF_FAIL is code to do if we aren't at a boundary between word/non-word
+ *
+ * Exactly one of the two IF_FOO parameters is a no-op, depending on whether we
+ * are looking for a boundary or for a non-boundary. If we are looking for a
+ * boundary, we want IF_FAIL to be the no-op, and for IF_SUCCESS to go out and
+ * see if this tentative match actually works, and if so, to quit the loop
+ * here. And vice-versa if we are looking for a non-boundary.
+ *
+ * 'tmp' below in the next three macros in the REXEC_FBC_SCAN and
+ * REXEC_FBC_UTF8_SCAN loops is a loop invariant, a bool giving the return of
+ * TEST_NON_UTF8(s-1). To see this, note that that's what it is defined to be
+ * at entry to the loop, and to get to the IF_FAIL branch, tmp must equal
+ * TEST_NON_UTF8(s), and in the opposite branch, IF_SUCCESS, tmp is that
+ * complement. But in that branch we complement tmp, meaning that at the
+ * bottom of the loop tmp is always going to be equal to TEST_NON_UTF8(s),
+ * which means at the top of the loop in the next iteration, it is
+ * TEST_NON_UTF8(s-1) */
+#define FBC_UTF8_A(TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
+ tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n'; \
+ tmp = TEST_NON_UTF8(tmp); \
+ REXEC_FBC_UTF8_SCAN( /* advances s while s < strend */ \
+ if (tmp == ! TEST_NON_UTF8((U8) *s)) { \
+ tmp = !tmp; \
+ IF_SUCCESS; /* Is a boundary if values for s-1 and s differ */ \
+ } \
+ else { \
+ IF_FAIL; \
+ } \
+ ); \
+
+/* Like FBC_UTF8_A, but TEST_UV is a macro which takes a UV as its input, and
+ * TEST_UTF8 is a macro that for the same input code points returns identically
+ * to TEST_UV, but takes a pointer to a UTF-8 encoded string instead */
+#define FBC_UTF8(TEST_UV, TEST_UTF8, IF_SUCCESS, IF_FAIL) \
+ if (s == reginfo->strbeg) { \
+ tmp = '\n'; \
+ } \
+ else { /* Back-up to the start of the previous character */ \
+ U8 * const r = reghop3((U8*)s, -1, (U8*)reginfo->strbeg); \
+ tmp = utf8n_to_uvchr(r, (U8*) reginfo->strend - r, \
+ 0, UTF8_ALLOW_DEFAULT); \
+ } \
+ tmp = TEST_UV(tmp); \
+ LOAD_UTF8_CHARCLASS_ALNUM(); \
+ REXEC_FBC_UTF8_SCAN( /* advances s while s < strend */ \
+ if (tmp == ! (TEST_UTF8((U8 *) s))) { \
+ tmp = !tmp; \
+ IF_SUCCESS; \
+ } \
+ else { \
+ IF_FAIL; \
+ } \
+ );
+
+/* Like the above two macros. UTF8_CODE is the complete code for handling
+ * UTF-8. Common to the BOUND and NBOUND cases, set-up by the FBC_BOUND, etc
+ * macros below */
+#define FBC_BOUND_COMMON(UTF8_CODE, TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
+ if (utf8_target) { \
+ UTF8_CODE \
+ } \
+ else { /* Not utf8 */ \
+ tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n'; \
+ tmp = TEST_NON_UTF8(tmp); \
+ REXEC_FBC_SCAN( /* advances s while s < strend */ \
+ if (tmp == ! TEST_NON_UTF8((U8) *s)) { \
+ IF_SUCCESS; \
+ tmp = !tmp; \
+ } \
+ else { \
+ IF_FAIL; \
+ } \
+ ); \
+ } \
+ /* Here, things have been set up by the previous code so that tmp is the \
+ * return of TEST_NON_UTF(s-1) or TEST_UTF8(s-1) (depending on the \
+ * utf8ness of the target). We also have to check if this matches against \
+ * the EOS, which we treat as a \n (which is the same value in both UTF-8 \
+ * or non-UTF8, so can use the non-utf8 test condition even for a UTF-8 \
+ * string */ \
+ if (tmp == ! TEST_NON_UTF8('\n')) { \
+ IF_SUCCESS; \
+ } \
+ else { \
+ IF_FAIL; \
+ }
+
+/* This is the macro to use when we want to see if something that looks like it
+ * could match, actually does, and if so exits the loop */
+#define REXEC_FBC_TRYIT \
+ if ((reginfo->intuit || regtry(reginfo, &s))) \
+ goto got_it
+
+/* The only difference between the BOUND and NBOUND cases is that
+ * REXEC_FBC_TRYIT is called when matched in BOUND, and when non-matched in
+ * NBOUND. This is accomplished by passing it as either the if or else clause,
+ * with the other one being empty (PLACEHOLDER is defined as empty).
+ *
+ * The TEST_FOO parameters are for operating on different forms of input, but
+ * all should be ones that return identically for the same underlying code
+ * points */
+#define FBC_BOUND(TEST_NON_UTF8, TEST_UV, TEST_UTF8) \
+ FBC_BOUND_COMMON( \
+ FBC_UTF8(TEST_UV, TEST_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), \
+ TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
+
+#define FBC_BOUND_A(TEST_NON_UTF8) \
+ FBC_BOUND_COMMON( \
+ FBC_UTF8_A(TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), \
+ TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
+
+#define FBC_NBOUND(TEST_NON_UTF8, TEST_UV, TEST_UTF8) \
+ FBC_BOUND_COMMON( \
+ FBC_UTF8(TEST_UV, TEST_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), \
+ TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
+
+#define FBC_NBOUND_A(TEST_NON_UTF8) \
+ FBC_BOUND_COMMON( \
+ FBC_UTF8_A(TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), \
+ TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
+
+/* Takes a pointer to an inversion list, a pointer to its corresponding
+ * inversion map, and a code point, and returns the code point's value
+ * according to the two arrays. It assumes that all code points have a value.
+ * This is used as the base macro for macros for particular properties */
+#define _generic_GET_BREAK_VAL_CP(invlist, invmap, cp) \
+ invmap[_invlist_search(invlist, cp)]
+
+/* Same as above, but takes begin, end ptrs to a UTF-8 encoded string instead
+ * of a code point, returning the value for the first code point in the string.
+ * And it takes the particular macro name that finds the desired value given a
+ * code point. Merely convert the UTF-8 to code point and call the cp macro */
+#define _generic_GET_BREAK_VAL_UTF8(cp_macro, pos, strend) \
+ (__ASSERT_(pos < strend) \
+ /* Note assumes is valid UTF-8 */ \
+ (cp_macro(utf8_to_uvchr_buf((pos), (strend), NULL))))
+
+/* Returns the GCB value for the input code point */
+#define getGCB_VAL_CP(cp) \
+ _generic_GET_BREAK_VAL_CP( \
+ PL_GCB_invlist, \
+ Grapheme_Cluster_Break_invmap, \
+ (cp))
+
+/* Returns the GCB value for the first code point in the UTF-8 encoded string
+ * bounded by pos and strend */
+#define getGCB_VAL_UTF8(pos, strend) \
+ _generic_GET_BREAK_VAL_UTF8(getGCB_VAL_CP, pos, strend)
+
+
+/* Returns the SB value for the input code point */
+#define getSB_VAL_CP(cp) \
+ _generic_GET_BREAK_VAL_CP( \
+ PL_SB_invlist, \
+ Sentence_Break_invmap, \
+ (cp))
+
+/* Returns the SB value for the first code point in the UTF-8 encoded string
+ * bounded by pos and strend */
+#define getSB_VAL_UTF8(pos, strend) \
+ _generic_GET_BREAK_VAL_UTF8(getSB_VAL_CP, pos, strend)
+
+/* Returns the WB value for the input code point */
+#define getWB_VAL_CP(cp) \
+ _generic_GET_BREAK_VAL_CP( \
+ PL_WB_invlist, \
+ Word_Break_invmap, \
+ (cp))
+
+/* Returns the WB value for the first code point in the UTF-8 encoded string
+ * bounded by pos and strend */
+#define getWB_VAL_UTF8(pos, strend) \
+ _generic_GET_BREAK_VAL_UTF8(getWB_VAL_CP, pos, strend)
+
+/* We know what class REx starts with. Try to find this position... */
+/* if reginfo->intuit, its a dryrun */
+/* annoyingly all the vars in this routine have different names from their counterparts
+ in regmatch. /grrr */
+STATIC char *
+S_find_byclass(pTHX_ regexp * prog, const regnode *c, char *s,
+ const char *strend, regmatch_info *reginfo)
+{
+ dVAR;
+ const I32 doevery = (prog->intflags & PREGf_SKIP) == 0;
+ char *pat_string; /* The pattern's exactish string */
+ char *pat_end; /* ptr to end char of pat_string */
+ re_fold_t folder; /* Function for computing non-utf8 folds */
+ const U8 *fold_array; /* array for folding ords < 256 */
+ STRLEN ln;
+ STRLEN lnc;
+ U8 c1;
+ U8 c2;
+ char *e;
+ I32 tmp = 1; /* Scratch variable? */
+ const bool utf8_target = reginfo->is_utf8_target;
+ UV utf8_fold_flags = 0;
+ const bool is_utf8_pat = reginfo->is_utf8_pat;
+ bool to_complement = FALSE; /* Invert the result? Taking the xor of this
+ with a result inverts that result, as 0^1 =
+ 1 and 1^1 = 0 */
+ _char_class_number classnum;
+
+ RXi_GET_DECL(prog,progi);
+
+ PERL_ARGS_ASSERT_FIND_BYCLASS;
+
+ /* We know what class it must start with. */
+ switch (OP(c)) {
+ case ANYOFL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ /* FALLTHROUGH */
+ case ANYOF:
+ if (utf8_target) {
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ reginclass(prog, c, (U8*)s, (U8*) strend, utf8_target));
+ }
+ else {
+ REXEC_FBC_CLASS_SCAN(REGINCLASS(prog, c, (U8*)s));
+ }
+ break;
+
+ case EXACTFA_NO_TRIE: /* This node only generated for non-utf8 patterns */
+ assert(! is_utf8_pat);
+ /* FALLTHROUGH */
+ case EXACTFA:
+ if (is_utf8_pat || utf8_target) {
+ utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_exactf_utf8;
+ }
+ fold_array = PL_fold_latin1; /* Latin1 folds are not affected by */
+ folder = foldEQ_latin1; /* /a, except the sharp s one which */
+ goto do_exactf_non_utf8; /* isn't dealt with by these */
+
+ case EXACTF: /* This node only generated for non-utf8 patterns */
+ assert(! is_utf8_pat);
+ if (utf8_target) {
+ utf8_fold_flags = 0;
+ goto do_exactf_utf8;
+ }
+ fold_array = PL_fold;
+ folder = foldEQ;
+ goto do_exactf_non_utf8;
+
+ case EXACTFL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (is_utf8_pat || utf8_target || IN_UTF8_CTYPE_LOCALE) {
+ utf8_fold_flags = FOLDEQ_LOCALE;
+ goto do_exactf_utf8;
+ }
+ fold_array = PL_fold_locale;
+ folder = foldEQ_locale;
+ goto do_exactf_non_utf8;
+
+ case EXACTFU_SS:
+ if (is_utf8_pat) {
+ utf8_fold_flags = FOLDEQ_S2_ALREADY_FOLDED;
+ }
+ goto do_exactf_utf8;
+
+ case EXACTFLU8:
+ if (! utf8_target) { /* All code points in this node require
+ UTF-8 to express. */
+ break;
+ }
+ utf8_fold_flags = FOLDEQ_LOCALE | FOLDEQ_S2_ALREADY_FOLDED
+ | FOLDEQ_S2_FOLDS_SANE;
+ goto do_exactf_utf8;
+
+ case EXACTFU:
+ if (is_utf8_pat || utf8_target) {
+ utf8_fold_flags = is_utf8_pat ? FOLDEQ_S2_ALREADY_FOLDED : 0;
+ goto do_exactf_utf8;
+ }
+
+ /* Any 'ss' in the pattern should have been replaced by regcomp,
+ * so we don't have to worry here about this single special case
+ * in the Latin1 range */
+ fold_array = PL_fold_latin1;
+ folder = foldEQ_latin1;
+
+ /* FALLTHROUGH */
+
+ do_exactf_non_utf8: /* Neither pattern nor string are UTF8, and there
+ are no glitches with fold-length differences
+ between the target string and pattern */
+
+ /* The idea in the non-utf8 EXACTF* cases is to first find the
+ * first character of the EXACTF* node and then, if necessary,
+ * case-insensitively compare the full text of the node. c1 is the
+ * first character. c2 is its fold. This logic will not work for
+ * Unicode semantics and the german sharp ss, which hence should
+ * not be compiled into a node that gets here. */
+ pat_string = STRING(c);
+ ln = STR_LEN(c); /* length to match in octets/bytes */
+
+ /* We know that we have to match at least 'ln' bytes (which is the
+ * same as characters, since not utf8). If we have to match 3
+ * characters, and there are only 2 availabe, we know without
+ * trying that it will fail; so don't start a match past the
+ * required minimum number from the far end */
+ e = HOP3c(strend, -((SSize_t)ln), s);
+
+ if (reginfo->intuit && e < s) {
+ e = s; /* Due to minlen logic of intuit() */
+ }
+
+ c1 = *pat_string;
+ c2 = fold_array[c1];
+ if (c1 == c2) { /* If char and fold are the same */
+ REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1);
+ }
+ else {
+ REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1 || *(U8*)s == c2);
+ }
+ break;
+
+ do_exactf_utf8:
+ {
+ unsigned expansion;
+
+ /* If one of the operands is in utf8, we can't use the simpler folding
+ * above, due to the fact that many different characters can have the
+ * same fold, or portion of a fold, or different- length fold */
+ pat_string = STRING(c);
+ ln = STR_LEN(c); /* length to match in octets/bytes */
+ pat_end = pat_string + ln;
+ lnc = is_utf8_pat /* length to match in characters */
+ ? utf8_length((U8 *) pat_string, (U8 *) pat_end)
+ : ln;
+
+ /* We have 'lnc' characters to match in the pattern, but because of
+ * multi-character folding, each character in the target can match
+ * up to 3 characters (Unicode guarantees it will never exceed
+ * this) if it is utf8-encoded; and up to 2 if not (based on the
+ * fact that the Latin 1 folds are already determined, and the
+ * only multi-char fold in that range is the sharp-s folding to
+ * 'ss'. Thus, a pattern character can match as little as 1/3 of a
+ * string character. Adjust lnc accordingly, rounding up, so that
+ * if we need to match at least 4+1/3 chars, that really is 5. */
+ expansion = (utf8_target) ? UTF8_MAX_FOLD_CHAR_EXPAND : 2;
+ lnc = (lnc + expansion - 1) / expansion;
+
+ /* As in the non-UTF8 case, if we have to match 3 characters, and
+ * only 2 are left, it's guaranteed to fail, so don't start a
+ * match that would require us to go beyond the end of the string
+ */
+ e = HOP3c(strend, -((SSize_t)lnc), s);
+
+ if (reginfo->intuit && e < s) {
+ e = s; /* Due to minlen logic of intuit() */
+ }
+
+ /* XXX Note that we could recalculate e to stop the loop earlier,
+ * as the worst case expansion above will rarely be met, and as we
+ * go along we would usually find that e moves further to the left.
+ * This would happen only after we reached the point in the loop
+ * where if there were no expansion we should fail. Unclear if
+ * worth the expense */
+
+ while (s <= e) {
+ char *my_strend= (char *)strend;
+ if (foldEQ_utf8_flags(s, &my_strend, 0, utf8_target,
+ pat_string, NULL, ln, is_utf8_pat, utf8_fold_flags)
+ && (reginfo->intuit || regtry(reginfo, &s)) )
+ {
+ goto got_it;
+ }
+ s += (utf8_target) ? UTF8SKIP(s) : 1;
+ }
+ break;
+ }
+
+ case BOUNDL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (FLAGS(c) != TRADITIONAL_BOUND) {
+ if (! IN_UTF8_CTYPE_LOCALE) {
+ Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
+ B_ON_NON_UTF8_LOCALE_IS_WRONG);
+ }
+ goto do_boundu;
+ }
+
+ FBC_BOUND(isWORDCHAR_LC, isWORDCHAR_LC_uvchr, isWORDCHAR_LC_utf8);
+ break;
+
+ case NBOUNDL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (FLAGS(c) != TRADITIONAL_BOUND) {
+ if (! IN_UTF8_CTYPE_LOCALE) {
+ Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
+ B_ON_NON_UTF8_LOCALE_IS_WRONG);
+ }
+ goto do_nboundu;
+ }
+
+ FBC_NBOUND(isWORDCHAR_LC, isWORDCHAR_LC_uvchr, isWORDCHAR_LC_utf8);
+ break;
+
+ case BOUND: /* regcomp.c makes sure that this only has the traditional \b
+ meaning */
+ assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+ FBC_BOUND(isWORDCHAR, isWORDCHAR_uni, isWORDCHAR_utf8);
+ break;
+
+ case BOUNDA: /* regcomp.c makes sure that this only has the traditional \b
+ meaning */
+ assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+ FBC_BOUND_A(isWORDCHAR_A);
+ break;
+
+ case NBOUND: /* regcomp.c makes sure that this only has the traditional \b
+ meaning */
+ assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+ FBC_NBOUND(isWORDCHAR, isWORDCHAR_uni, isWORDCHAR_utf8);
+ break;
+
+ case NBOUNDA: /* regcomp.c makes sure that this only has the traditional \b
+ meaning */
+ assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+ FBC_NBOUND_A(isWORDCHAR_A);
+ break;
+
+ case NBOUNDU:
+ if ((bound_type) FLAGS(c) == TRADITIONAL_BOUND) {
+ FBC_NBOUND(isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8);
+ break;
+ }
+
+ do_nboundu:
+
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case BOUNDU:
+ do_boundu:
+ switch((bound_type) FLAGS(c)) {
+ case TRADITIONAL_BOUND:
+ FBC_BOUND(isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8);
+ break;
+ case GCB_BOUND:
+ if (s == reginfo->strbeg) { /* GCB always matches at begin and
+ end */
+ if (to_complement ^ cBOOL(reginfo->intuit
+ || regtry(reginfo, &s)))
+ {
+ goto got_it;
+ }
+ s += (utf8_target) ? UTF8SKIP(s) : 1;
+ }
+
+ if (utf8_target) {
+ GCB_enum before = getGCB_VAL_UTF8(
+ reghop3((U8*)s, -1,
+ (U8*)(reginfo->strbeg)),
+ (U8*) reginfo->strend);
+ while (s < strend) {
+ GCB_enum after = getGCB_VAL_UTF8((U8*) s,
+ (U8*) reginfo->strend);
+ if (to_complement ^ isGCB(before, after)) {
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ goto got_it;
+ }
+ before = after;
+ }
+ s += UTF8SKIP(s);
+ }
+ }
+ else { /* Not utf8. Everything is a GCB except between CR and
+ LF */
+ while (s < strend) {
+ if (to_complement ^ (UCHARAT(s - 1) != '\r'
+ || UCHARAT(s) != '\n'))
+ {
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ goto got_it;
+ }
+ s++;
+ }
+ }
+ }
+
+ if (to_complement ^ cBOOL(reginfo->intuit || regtry(reginfo, &s))) {
+ goto got_it;
+ }
+ break;
+
+ case SB_BOUND:
+ if (s == reginfo->strbeg) { /* SB always matches at beginning */
+ if (to_complement
+ ^ cBOOL(reginfo->intuit || regtry(reginfo, &s)))
+ {
+ goto got_it;
+ }
+
+ /* Didn't match. Go try at the next position */
+ s += (utf8_target) ? UTF8SKIP(s) : 1;
+ }
+
+ if (utf8_target) {
+ SB_enum before = getSB_VAL_UTF8(reghop3((U8*)s,
+ -1,
+ (U8*)(reginfo->strbeg)),
+ (U8*) reginfo->strend);
+ while (s < strend) {
+ SB_enum after = getSB_VAL_UTF8((U8*) s,
+ (U8*) reginfo->strend);
+ if (to_complement ^ isSB(before,
+ after,
+ (U8*) reginfo->strbeg,
+ (U8*) s,
+ (U8*) reginfo->strend,
+ utf8_target))
+ {
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ goto got_it;
+ }
+ before = after;
+ }
+ s += UTF8SKIP(s);
+ }
+ }
+ else { /* Not utf8. */
+ SB_enum before = getSB_VAL_CP((U8) *(s -1));
+ while (s < strend) {
+ SB_enum after = getSB_VAL_CP((U8) *s);
+ if (to_complement ^ isSB(before,
+ after,
+ (U8*) reginfo->strbeg,
+ (U8*) s,
+ (U8*) reginfo->strend,
+ utf8_target))
+ {
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ goto got_it;
+ }
+ before = after;
+ }
+ s++;
+ }
+ }
+
+ /* Here are at the final position in the target string. The SB
+ * value is always true here, so matches, depending on other
+ * constraints */
+ if (to_complement ^ cBOOL(reginfo->intuit
+ || regtry(reginfo, &s)))
+ {
+ goto got_it;
+ }
+
+ break;
+
+ case WB_BOUND:
+ if (s == reginfo->strbeg) {
+ if (to_complement ^ cBOOL(reginfo->intuit
+ || regtry(reginfo, &s)))
+ {
+ goto got_it;
+ }
+ s += (utf8_target) ? UTF8SKIP(s) : 1;
+ }
+
+ if (utf8_target) {
+ /* We are at a boundary between char_sub_0 and char_sub_1.
+ * We also keep track of the value for char_sub_-1 as we
+ * loop through the line. Context may be needed to make a
+ * determination, and if so, this can save having to
+ * recalculate it */
+ WB_enum previous = WB_UNKNOWN;
+ WB_enum before = getWB_VAL_UTF8(
+ reghop3((U8*)s,
+ -1,
+ (U8*)(reginfo->strbeg)),
+ (U8*) reginfo->strend);
+ while (s < strend) {
+ WB_enum after = getWB_VAL_UTF8((U8*) s,
+ (U8*) reginfo->strend);
+ if (to_complement ^ isWB(previous,
+ before,
+ after,
+ (U8*) reginfo->strbeg,
+ (U8*) s,
+ (U8*) reginfo->strend,
+ utf8_target))
+ {
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ goto got_it;
+ }
+ previous = before;
+ before = after;
+ }
+ s += UTF8SKIP(s);
+ }
+ }
+ else { /* Not utf8. */
+ WB_enum previous = WB_UNKNOWN;
+ WB_enum before = getWB_VAL_CP((U8) *(s -1));
+ while (s < strend) {
+ WB_enum after = getWB_VAL_CP((U8) *s);
+ if (to_complement ^ isWB(previous,
+ before,
+ after,
+ (U8*) reginfo->strbeg,
+ (U8*) s,
+ (U8*) reginfo->strend,
+ utf8_target))
+ {
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ goto got_it;
+ }
+ previous = before;
+ before = after;
+ }
+ s++;
+ }
+ }
+
+ if (to_complement ^ cBOOL(reginfo->intuit
+ || regtry(reginfo, &s)))
+ {
+ goto got_it;
+ }
+
+ break;
+ }
+ break;
+
+ case LNBREAK:
+ REXEC_FBC_CSCAN(is_LNBREAK_utf8_safe(s, strend),
+ is_LNBREAK_latin1_safe(s, strend)
+ );
+ break;
+
+ /* The argument to all the POSIX node types is the class number to pass to
+ * _generic_isCC() to build a mask for searching in PL_charclass[] */
+
+ case NPOSIXL:
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ REXEC_FBC_CSCAN(to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(c), (U8 *) s)),
+ to_complement ^ cBOOL(isFOO_lc(FLAGS(c), *s)));
+ break;
+
+ case NPOSIXD:
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXD:
+ if (utf8_target) {
+ goto posix_utf8;
+ }
+ goto posixa;
+
+ case NPOSIXA:
+ if (utf8_target) {
+ /* The complement of something that matches only ASCII matches all
+ * non-ASCII, plus everything in ASCII that isn't in the class. */
+ REXEC_FBC_UTF8_CLASS_SCAN(! isASCII_utf8(s)
+ || ! _generic_isCC_A(*s, FLAGS(c)));
+ break;
+ }
+
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXA:
+ posixa:
+ /* Don't need to worry about utf8, as it can match only a single
+ * byte invariant character. */
+ REXEC_FBC_CLASS_SCAN(
+ to_complement ^ cBOOL(_generic_isCC_A(*s, FLAGS(c))));
+ break;
+
+ case NPOSIXU:
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXU:
+ if (! utf8_target) {
+ REXEC_FBC_CLASS_SCAN(to_complement ^ cBOOL(_generic_isCC(*s,
+ FLAGS(c))));
+ }
+ else {
+
+ posix_utf8:
+ classnum = (_char_class_number) FLAGS(c);
+ if (classnum < _FIRST_NON_SWASH_CC) {
+ while (s < strend) {
+
+ /* We avoid loading in the swash as long as possible, but
+ * should we have to, we jump to a separate loop. This
+ * extra 'if' statement is what keeps this code from being
+ * just a call to REXEC_FBC_UTF8_CLASS_SCAN() */
+ if (UTF8_IS_ABOVE_LATIN1(*s)) {
+ goto found_above_latin1;
+ }
+ if ((UTF8_IS_INVARIANT(*s)
+ && to_complement ^ cBOOL(_generic_isCC((U8) *s,
+ classnum)))
+ || (UTF8_IS_DOWNGRADEABLE_START(*s)
+ && to_complement ^ cBOOL(
+ _generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(*s,
+ *(s + 1)),
+ classnum))))
+ {
+ if (tmp && (reginfo->intuit || regtry(reginfo, &s)))
+ goto got_it;
+ else {
+ tmp = doevery;
+ }
+ }
+ else {
+ tmp = 1;
+ }
+ s += UTF8SKIP(s);
+ }
+ }
+ else switch (classnum) { /* These classes are implemented as
+ macros */
+ case _CC_ENUM_SPACE:
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ to_complement ^ cBOOL(isSPACE_utf8(s)));
+ break;
+
+ case _CC_ENUM_BLANK:
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ to_complement ^ cBOOL(isBLANK_utf8(s)));
+ break;
+
+ case _CC_ENUM_XDIGIT:
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ to_complement ^ cBOOL(isXDIGIT_utf8(s)));
+ break;
+
+ case _CC_ENUM_VERTSPACE:
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ to_complement ^ cBOOL(isVERTWS_utf8(s)));
+ break;
+
+ case _CC_ENUM_CNTRL:
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ to_complement ^ cBOOL(isCNTRL_utf8(s)));
+ break;
+
+ default:
+ Perl_croak(aTHX_ "panic: find_byclass() node %d='%s' has an unexpected character class '%d'", OP(c), PL_reg_name[OP(c)], classnum);
+ NOT_REACHED; /* NOTREACHED */
+ }
+ }
+ break;
+
+ found_above_latin1: /* Here we have to load a swash to get the result
+ for the current code point */
+ if (! PL_utf8_swash_ptrs[classnum]) {
+ U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+ PL_utf8_swash_ptrs[classnum] =
+ _core_swash_init("utf8",
+ "",
+ &PL_sv_undef, 1, 0,
+ PL_XPosix_ptrs[classnum], &flags);
+ }
+
+ /* This is a copy of the loop above for swash classes, though using the
+ * FBC macro instead of being expanded out. Since we've loaded the
+ * swash, we don't have to check for that each time through the loop */
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ to_complement ^ cBOOL(_generic_utf8(
+ classnum,
+ s,
+ swash_fetch(PL_utf8_swash_ptrs[classnum],
+ (U8 *) s, TRUE))));
+ break;
+
+ case AHOCORASICKC:
+ case AHOCORASICK:
+ {
+ DECL_TRIE_TYPE(c);
+ /* what trie are we using right now */
+ reg_ac_data *aho = (reg_ac_data*)progi->data->data[ ARG( c ) ];
+ reg_trie_data *trie = (reg_trie_data*)progi->data->data[ aho->trie ];
+ HV *widecharmap = MUTABLE_HV(progi->data->data[ aho->trie + 1 ]);
+
+ const char *last_start = strend - trie->minlen;
+#ifdef DEBUGGING
+ const char *real_start = s;
+#endif
+ STRLEN maxlen = trie->maxlen;
+ SV *sv_points;
+ U8 **points; /* map of where we were in the input string
+ when reading a given char. For ASCII this
+ is unnecessary overhead as the relationship
+ is always 1:1, but for Unicode, especially
+ case folded Unicode this is not true. */
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+ U8 *bitmap=NULL;
+
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ /* We can't just allocate points here. We need to wrap it in
+ * an SV so it gets freed properly if there is a croak while
+ * running the match */
+ ENTER;
+ SAVETMPS;
+ sv_points=newSV(maxlen * sizeof(U8 *));
+ SvCUR_set(sv_points,
+ maxlen * sizeof(U8 *));
+ SvPOK_on(sv_points);
+ sv_2mortal(sv_points);
+ points=(U8**)SvPV_nolen(sv_points );
+ if ( trie_type != trie_utf8_fold
+ && (trie->bitmap || OP(c)==AHOCORASICKC) )
+ {
+ if (trie->bitmap)
+ bitmap=(U8*)trie->bitmap;
+ else
+ bitmap=(U8*)ANYOF_BITMAP(c);
+ }
+ /* this is the Aho-Corasick algorithm modified a touch
+ to include special handling for long "unknown char" sequences.
+ The basic idea being that we use AC as long as we are dealing
+ with a possible matching char, when we encounter an unknown char
+ (and we have not encountered an accepting state) we scan forward
+ until we find a legal starting char.
+ AC matching is basically that of trie matching, except that when
+ we encounter a failing transition, we fall back to the current
+ states "fail state", and try the current char again, a process
+ we repeat until we reach the root state, state 1, or a legal
+ transition. If we fail on the root state then we can either
+ terminate if we have reached an accepting state previously, or
+ restart the entire process from the beginning if we have not.
+
+ */
+ while (s <= last_start) {
+ const U32 uniflags = UTF8_ALLOW_DEFAULT;
+ U8 *uc = (U8*)s;
+ U16 charid = 0;
+ U32 base = 1;
+ U32 state = 1;
+ UV uvc = 0;
+ STRLEN len = 0;
+ STRLEN foldlen = 0;
+ U8 *uscan = (U8*)NULL;
+ U8 *leftmost = NULL;
+#ifdef DEBUGGING
+ U32 accepted_word= 0;
+#endif
+ U32 pointpos = 0;
+
+ while ( state && uc <= (U8*)strend ) {
+ int failed=0;
+ U32 word = aho->states[ state ].wordnum;
+
+ if( state==1 ) {
+ if ( bitmap ) {
+ DEBUG_TRIE_EXECUTE_r(
+ if ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+ dump_exec_pos( (char *)uc, c, strend, real_start,
+ (char *)uc, utf8_target );
+ PerlIO_printf( Perl_debug_log,
+ " Scanning for legal start char...\n");
+ }
+ );
+ if (utf8_target) {
+ while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+ uc += UTF8SKIP(uc);
+ }
+ } else {
+ while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+ uc++;
+ }
+ }
+ s= (char *)uc;
+ }
+ if (uc >(U8*)last_start) break;
+ }
+
+ if ( word ) {
+ U8 *lpos= points[ (pointpos - trie->wordinfo[word].len) % maxlen ];
+ if (!leftmost || lpos < leftmost) {
+ DEBUG_r(accepted_word=word);
+ leftmost= lpos;
+ }
+ if (base==0) break;
+
+ }
+ points[pointpos++ % maxlen]= uc;
+ if (foldlen || uc < (U8*)strend) {
+ REXEC_TRIE_READ_CHAR(trie_type, trie,
+ widecharmap, uc,
+ uscan, len, uvc, charid, foldlen,
+ foldbuf, uniflags);
+ DEBUG_TRIE_EXECUTE_r({
+ dump_exec_pos( (char *)uc, c, strend,
+ real_start, s, utf8_target);
+ PerlIO_printf(Perl_debug_log,
+ " Charid:%3u CP:%4"UVxf" ",
+ charid, uvc);
+ });
+ }
+ else {
+ len = 0;
+ charid = 0;
+ }
+
+
+ do {
+#ifdef DEBUGGING
+ word = aho->states[ state ].wordnum;
+#endif
+ base = aho->states[ state ].trans.base;
+
+ DEBUG_TRIE_EXECUTE_r({
+ if (failed)
+ dump_exec_pos( (char *)uc, c, strend, real_start,
+ s, utf8_target );
+ PerlIO_printf( Perl_debug_log,
+ "%sState: %4"UVxf", word=%"UVxf,
+ failed ? " Fail transition to " : "",
+ (UV)state, (UV)word);
+ });
+ if ( base ) {
+ U32 tmp;
+ I32 offset;
+ if (charid &&
+ ( ((offset = base + charid
+ - 1 - trie->uniquecharcount)) >= 0)
+ && ((U32)offset < trie->lasttrans)
+ && trie->trans[offset].check == state
+ && (tmp=trie->trans[offset].next))
+ {
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log," - legal\n"));
+ state = tmp;
+ break;
+ }
+ else {
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log," - fail\n"));
+ failed = 1;
+ state = aho->fail[state];
+ }
+ }
+ else {
+ /* we must be accepting here */
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log," - accepting\n"));
+ failed = 1;
+ break;
+ }
+ } while(state);
+ uc += len;
+ if (failed) {
+ if (leftmost)
+ break;
+ if (!state) state = 1;
+ }
+ }
+ if ( aho->states[ state ].wordnum ) {
+ U8 *lpos = points[ (pointpos - trie->wordinfo[aho->states[ state ].wordnum].len) % maxlen ];
+ if (!leftmost || lpos < leftmost) {
+ DEBUG_r(accepted_word=aho->states[ state ].wordnum);
+ leftmost = lpos;
+ }
+ }
+ if (leftmost) {
+ s = (char*)leftmost;
+ DEBUG_TRIE_EXECUTE_r({
+ PerlIO_printf(
+ Perl_debug_log,"Matches word #%"UVxf" at position %"IVdf". Trying full pattern...\n",
+ (UV)accepted_word, (IV)(s - real_start)
+ );
+ });
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ FREETMPS;
+ LEAVE;
+ goto got_it;
+ }
+ s = HOPc(s,1);
+ DEBUG_TRIE_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,"Pattern failed. Looking for new start point...\n");
+ });
+ } else {
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log,"No match.\n"));
+ break;
+ }
+ }
+ FREETMPS;
+ LEAVE;
+ }
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: unknown regstclass %d", (int)OP(c));
+ }
+ return 0;
+ got_it:
+ return s;
+}
+
+/* set RX_SAVED_COPY, RX_SUBBEG etc.
+ * flags have same meanings as with regexec_flags() */
+
+static void
+S_reg_set_capture_string(pTHX_ REGEXP * const rx,
+ char *strbeg,
+ char *strend,
+ SV *sv,
+ U32 flags,
+ bool utf8_target)
+{
+ struct regexp *const prog = ReANY(rx);
+
+ if (flags & REXEC_COPY_STR) {
+#ifdef PERL_ANY_COW
+ if (SvCANCOW(sv)) {
+ if (DEBUG_C_TEST) {
+ PerlIO_printf(Perl_debug_log,
+ "Copy on write: regexp capture, type %d\n",
+ (int) SvTYPE(sv));
+ }
+ /* Create a new COW SV to share the match string and store
+ * in saved_copy, unless the current COW SV in saved_copy
+ * is valid and suitable for our purpose */
+ if (( prog->saved_copy
+ && SvIsCOW(prog->saved_copy)
+ && SvPOKp(prog->saved_copy)
+ && SvIsCOW(sv)
+ && SvPOKp(sv)
+ && SvPVX(sv) == SvPVX(prog->saved_copy)))
+ {
+ /* just reuse saved_copy SV */
+ if (RXp_MATCH_COPIED(prog)) {
+ Safefree(prog->subbeg);
+ RXp_MATCH_COPIED_off(prog);
+ }
+ }
+ else {
+ /* create new COW SV to share string */
+ RX_MATCH_COPY_FREE(rx);
+ prog->saved_copy = sv_setsv_cow(prog->saved_copy, sv);
+ }
+ prog->subbeg = (char *)SvPVX_const(prog->saved_copy);
+ assert (SvPOKp(prog->saved_copy));
+ prog->sublen = strend - strbeg;
+ prog->suboffset = 0;
+ prog->subcoffset = 0;
+ } else
+#endif
+ {
+ SSize_t min = 0;
+ SSize_t max = strend - strbeg;
+ SSize_t sublen;
+
+ if ( (flags & REXEC_COPY_SKIP_POST)
+ && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */
+ && !(PL_sawampersand & SAWAMPERSAND_RIGHT)
+ ) { /* don't copy $' part of string */
+ U32 n = 0;
+ max = -1;
+ /* calculate the right-most part of the string covered
+ * by a capture. Due to look-ahead, this may be to
+ * the right of $&, so we have to scan all captures */
+ while (n <= prog->lastparen) {
+ if (prog->offs[n].end > max)
+ max = prog->offs[n].end;
+ n++;
+ }
+ if (max == -1)
+ max = (PL_sawampersand & SAWAMPERSAND_LEFT)
+ ? prog->offs[0].start
+ : 0;
+ assert(max >= 0 && max <= strend - strbeg);
+ }
+
+ if ( (flags & REXEC_COPY_SKIP_PRE)
+ && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */
+ && !(PL_sawampersand & SAWAMPERSAND_LEFT)
+ ) { /* don't copy $` part of string */
+ U32 n = 0;
+ min = max;
+ /* calculate the left-most part of the string covered
+ * by a capture. Due to look-behind, this may be to
+ * the left of $&, so we have to scan all captures */
+ while (min && n <= prog->lastparen) {
+ if ( prog->offs[n].start != -1
+ && prog->offs[n].start < min)
+ {
+ min = prog->offs[n].start;
+ }
+ n++;
+ }
+ if ((PL_sawampersand & SAWAMPERSAND_RIGHT)
+ && min > prog->offs[0].end
+ )
+ min = prog->offs[0].end;
+
+ }
+
+ assert(min >= 0 && min <= max && min <= strend - strbeg);
+ sublen = max - min;
+
+ if (RX_MATCH_COPIED(rx)) {
+ if (sublen > prog->sublen)
+ prog->subbeg =
+ (char*)saferealloc(prog->subbeg, sublen+1);
+ }
+ else
+ prog->subbeg = (char*)safemalloc(sublen+1);
+ Copy(strbeg + min, prog->subbeg, sublen, char);
+ prog->subbeg[sublen] = '\0';
+ prog->suboffset = min;
+ prog->sublen = sublen;
+ RX_MATCH_COPIED_on(rx);
+ }
+ prog->subcoffset = prog->suboffset;
+ if (prog->suboffset && utf8_target) {
+ /* Convert byte offset to chars.
+ * XXX ideally should only compute this if @-/@+
+ * has been seen, a la PL_sawampersand ??? */
+
+ /* If there's a direct correspondence between the
+ * string which we're matching and the original SV,
+ * then we can use the utf8 len cache associated with
+ * the SV. In particular, it means that under //g,
+ * sv_pos_b2u() will use the previously cached
+ * position to speed up working out the new length of
+ * subcoffset, rather than counting from the start of
+ * the string each time. This stops
+ * $x = "\x{100}" x 1E6; 1 while $x =~ /(.)/g;
+ * from going quadratic */
+ if (SvPOKp(sv) && SvPVX(sv) == strbeg)
+ prog->subcoffset = sv_pos_b2u_flags(sv, prog->subcoffset,
+ SV_GMAGIC|SV_CONST_RETURN);
+ else
+ prog->subcoffset = utf8_length((U8*)strbeg,
+ (U8*)(strbeg+prog->suboffset));
+ }
+ }
+ else {
+ RX_MATCH_COPY_FREE(rx);
+ prog->subbeg = strbeg;
+ prog->suboffset = 0;
+ prog->subcoffset = 0;
+ prog->sublen = strend - strbeg;
+ }
+}
+
+
+
+
+/*
+ - regexec_flags - match a regexp against a string
+ */
+I32
+Perl_regexec_flags(pTHX_ REGEXP * const rx, char *stringarg, char *strend,
+ char *strbeg, SSize_t minend, SV *sv, void *data, U32 flags)
+/* stringarg: the point in the string at which to begin matching */
+/* strend: pointer to null at end of string */
+/* strbeg: real beginning of string */
+/* minend: end of match must be >= minend bytes after stringarg. */
+/* sv: SV being matched: only used for utf8 flag, pos() etc; string
+ * itself is accessed via the pointers above */
+/* data: May be used for some additional optimizations.
+ Currently unused. */
+/* flags: For optimizations. See REXEC_* in regexp.h */
+
+{
+ struct regexp *const prog = ReANY(rx);
+ char *s;
+ regnode *c;
+ char *startpos;
+ SSize_t minlen; /* must match at least this many chars */
+ SSize_t dontbother = 0; /* how many characters not to try at end */
+ const bool utf8_target = cBOOL(DO_UTF8(sv));
+ I32 multiline;
+ RXi_GET_DECL(prog,progi);
+ regmatch_info reginfo_buf; /* create some info to pass to regtry etc */
+ regmatch_info *const reginfo = ®info_buf;
+ regexp_paren_pair *swap = NULL;
+ I32 oldsave;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGEXEC_FLAGS;
+ PERL_UNUSED_ARG(data);
+
+ /* Be paranoid... */
+ if (prog == NULL) {
+ Perl_croak(aTHX_ "NULL regexp parameter");
+ }
+
+ DEBUG_EXECUTE_r(
+ debug_start_match(rx, utf8_target, stringarg, strend,
+ "Matching");
+ );
+
+ startpos = stringarg;
+
+ if (prog->intflags & PREGf_GPOS_SEEN) {
+ MAGIC *mg;
+
+ /* set reginfo->ganch, the position where \G can match */
+
+ reginfo->ganch =
+ (flags & REXEC_IGNOREPOS)
+ ? stringarg /* use start pos rather than pos() */
+ : ((mg = mg_find_mglob(sv)) && mg->mg_len >= 0)
+ /* Defined pos(): */
+ ? strbeg + MgBYTEPOS(mg, sv, strbeg, strend-strbeg)
+ : strbeg; /* pos() not defined; use start of string */
+
+ DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+ "GPOS ganch set to strbeg[%"IVdf"]\n", (IV)(reginfo->ganch - strbeg)));
+
+ /* in the presence of \G, we may need to start looking earlier in
+ * the string than the suggested start point of stringarg:
+ * if prog->gofs is set, then that's a known, fixed minimum
+ * offset, such as
+ * /..\G/: gofs = 2
+ * /ab|c\G/: gofs = 1
+ * or if the minimum offset isn't known, then we have to go back
+ * to the start of the string, e.g. /w+\G/
+ */
+
+ if (prog->intflags & PREGf_ANCH_GPOS) {
+ startpos = reginfo->ganch - prog->gofs;
+ if (startpos <
+ ((flags & REXEC_FAIL_ON_UNDERFLOW) ? stringarg : strbeg))
+ {
+ DEBUG_r(PerlIO_printf(Perl_debug_log,
+ "fail: ganch-gofs before earliest possible start\n"));
+ return 0;
+ }
+ }
+ else if (prog->gofs) {
+ if (startpos - prog->gofs < strbeg)
+ startpos = strbeg;
+ else
+ startpos -= prog->gofs;
+ }
+ else if (prog->intflags & PREGf_GPOS_FLOAT)
+ startpos = strbeg;
+ }
+
+ minlen = prog->minlen;
+ if ((startpos + minlen) > strend || startpos < strbeg) {
+ DEBUG_r(PerlIO_printf(Perl_debug_log,
+ "Regex match can't succeed, so not even tried\n"));
+ return 0;
+ }
+
+ /* at the end of this function, we'll do a LEAVE_SCOPE(oldsave),
+ * which will call destuctors to reset PL_regmatch_state, free higher
+ * PL_regmatch_slabs, and clean up regmatch_info_aux and
+ * regmatch_info_aux_eval */
+
+ oldsave = PL_savestack_ix;
+
+ s = startpos;
+
+ if ((prog->extflags & RXf_USE_INTUIT)
+ && !(flags & REXEC_CHECKED))
+ {
+ s = re_intuit_start(rx, sv, strbeg, startpos, strend,
+ flags, NULL);
+ if (!s)
+ return 0;
+
+ if (prog->extflags & RXf_CHECK_ALL) {
+ /* we can match based purely on the result of INTUIT.
+ * Set up captures etc just for $& and $-[0]
+ * (an intuit-only match wont have $1,$2,..) */
+ assert(!prog->nparens);
+
+ /* s/// doesn't like it if $& is earlier than where we asked it to
+ * start searching (which can happen on something like /.\G/) */
+ if ( (flags & REXEC_FAIL_ON_UNDERFLOW)
+ && (s < stringarg))
+ {
+ /* this should only be possible under \G */
+ assert(prog->intflags & PREGf_GPOS_SEEN);
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n"));
+ goto phooey;
+ }
+
+ /* match via INTUIT shouldn't have any captures.
+ * Let @-, @+, $^N know */
+ prog->lastparen = prog->lastcloseparen = 0;
+ RX_MATCH_UTF8_set(rx, utf8_target);
+ prog->offs[0].start = s - strbeg;
+ prog->offs[0].end = utf8_target
+ ? (char*)utf8_hop((U8*)s, prog->minlenret) - strbeg
+ : s - strbeg + prog->minlenret;
+ if ( !(flags & REXEC_NOT_FIRST) )
+ S_reg_set_capture_string(aTHX_ rx,
+ strbeg, strend,
+ sv, flags, utf8_target);
+
+ return 1;
+ }
+ }
+
+ multiline = prog->extflags & RXf_PMf_MULTILINE;
+
+ if (strend - s < (minlen+(prog->check_offset_min<0?prog->check_offset_min:0))) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "String too short [regexec_flags]...\n"));
+ goto phooey;
+ }
+
+ /* Check validity of program. */
+ if (UCHARAT(progi->program) != REG_MAGIC) {
+ Perl_croak(aTHX_ "corrupted regexp program");
+ }
+
+ RX_MATCH_TAINTED_off(rx);
+ RX_MATCH_UTF8_set(rx, utf8_target);
+
+ reginfo->prog = rx; /* Yes, sorry that this is confusing. */
+ reginfo->intuit = 0;
+ reginfo->is_utf8_target = cBOOL(utf8_target);
+ reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx));
+ reginfo->warned = FALSE;
+ reginfo->strbeg = strbeg;
+ reginfo->sv = sv;
+ reginfo->poscache_maxiter = 0; /* not yet started a countdown */
+ reginfo->strend = strend;
+ /* see how far we have to get to not match where we matched before */
+ reginfo->till = stringarg + minend;
+
+ if (prog->extflags & RXf_EVAL_SEEN && SvPADTMP(sv)) {
+ /* SAVEFREESV, not sv_mortalcopy, as this SV must last until after
+ S_cleanup_regmatch_info_aux has executed (registered by
+ SAVEDESTRUCTOR_X below). S_cleanup_regmatch_info_aux modifies
+ magic belonging to this SV.
+ Not newSVsv, either, as it does not COW.
+ */
+ reginfo->sv = newSV(0);
+ SvSetSV_nosteal(reginfo->sv, sv);
+ SAVEFREESV(reginfo->sv);
+ }
+
+ /* reserve next 2 or 3 slots in PL_regmatch_state:
+ * slot N+0: may currently be in use: skip it
+ * slot N+1: use for regmatch_info_aux struct
+ * slot N+2: use for regmatch_info_aux_eval struct if we have (?{})'s
+ * slot N+3: ready for use by regmatch()
+ */
+
+ {
+ regmatch_state *old_regmatch_state;
+ regmatch_slab *old_regmatch_slab;
+ int i, max = (prog->extflags & RXf_EVAL_SEEN) ? 2 : 1;
+
+ /* on first ever match, allocate first slab */
+ if (!PL_regmatch_slab) {
+ Newx(PL_regmatch_slab, 1, regmatch_slab);
+ PL_regmatch_slab->prev = NULL;
+ PL_regmatch_slab->next = NULL;
+ PL_regmatch_state = SLAB_FIRST(PL_regmatch_slab);
+ }
+
+ old_regmatch_state = PL_regmatch_state;
+ old_regmatch_slab = PL_regmatch_slab;
+
+ for (i=0; i <= max; i++) {
+ if (i == 1)
+ reginfo->info_aux = &(PL_regmatch_state->u.info_aux);
+ else if (i ==2)
+ reginfo->info_aux_eval =
+ reginfo->info_aux->info_aux_eval =
+ &(PL_regmatch_state->u.info_aux_eval);
+
+ if (++PL_regmatch_state > SLAB_LAST(PL_regmatch_slab))
+ PL_regmatch_state = S_push_slab(aTHX);
+ }
+
+ /* note initial PL_regmatch_state position; at end of match we'll
+ * pop back to there and free any higher slabs */
+
+ reginfo->info_aux->old_regmatch_state = old_regmatch_state;
+ reginfo->info_aux->old_regmatch_slab = old_regmatch_slab;
+ reginfo->info_aux->poscache = NULL;
+
+ SAVEDESTRUCTOR_X(S_cleanup_regmatch_info_aux, reginfo->info_aux);
+
+ if ((prog->extflags & RXf_EVAL_SEEN))
+ S_setup_eval_state(aTHX_ reginfo);
+ else
+ reginfo->info_aux_eval = reginfo->info_aux->info_aux_eval = NULL;
+ }
+
+ /* If there is a "must appear" string, look for it. */
+
+ if (PL_curpm && (PM_GETRE(PL_curpm) == rx)) {
+ /* We have to be careful. If the previous successful match
+ was from this regex we don't want a subsequent partially
+ successful match to clobber the old results.
+ So when we detect this possibility we add a swap buffer
+ to the re, and switch the buffer each match. If we fail,
+ we switch it back; otherwise we leave it swapped.
+ */
+ swap = prog->offs;
+ /* do we need a save destructor here for eval dies? */
+ Newxz(prog->offs, (prog->nparens + 1), regexp_paren_pair);
+ DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+ "rex=0x%"UVxf" saving offs: orig=0x%"UVxf" new=0x%"UVxf"\n",
+ PTR2UV(prog),
+ PTR2UV(swap),
+ PTR2UV(prog->offs)
+ ));
+ }
+
+ /* Simplest case: anchored match need be tried only once, or with
+ * MBOL, only at the beginning of each line.
+ *
+ * Note that /.*.../ sets PREGf_IMPLICIT|MBOL, while /.*.../s sets
+ * PREGf_IMPLICIT|SBOL. The idea is that with /.*.../s, if it doesn't
+ * match at the start of the string then it won't match anywhere else
+ * either; while with /.*.../, if it doesn't match at the beginning,
+ * the earliest it could match is at the start of the next line */
+
+ if (prog->intflags & (PREGf_ANCH & ~PREGf_ANCH_GPOS)) {
+ char *end;
+
+ if (regtry(reginfo, &s))
+ goto got_it;
+
+ if (!(prog->intflags & PREGf_ANCH_MBOL))
+ goto phooey;
+
+ /* didn't match at start, try at other newline positions */
+
+ if (minlen)
+ dontbother = minlen - 1;
+ end = HOP3c(strend, -dontbother, strbeg) - 1;
+
+ /* skip to next newline */
+
+ while (s <= end) { /* note it could be possible to match at the end of the string */
+ /* NB: newlines are the same in unicode as they are in latin */
+ if (*s++ != '\n')
+ continue;
+ if (prog->check_substr || prog->check_utf8) {
+ /* note that with PREGf_IMPLICIT, intuit can only fail
+ * or return the start position, so it's of limited utility.
+ * Nevertheless, I made the decision that the potential for
+ * quick fail was still worth it - DAPM */
+ s = re_intuit_start(rx, sv, strbeg, s, strend, flags, NULL);
+ if (!s)
+ goto phooey;
+ }
+ if (regtry(reginfo, &s))
+ goto got_it;
+ }
+ goto phooey;
+ } /* end anchored search */
+
+ if (prog->intflags & PREGf_ANCH_GPOS)
+ {
+ /* PREGf_ANCH_GPOS should never be true if PREGf_GPOS_SEEN is not true */
+ assert(prog->intflags & PREGf_GPOS_SEEN);
+ /* For anchored \G, the only position it can match from is
+ * (ganch-gofs); we already set startpos to this above; if intuit
+ * moved us on from there, we can't possibly succeed */
+ assert(startpos == reginfo->ganch - prog->gofs);
+ if (s == startpos && regtry(reginfo, &s))
+ goto got_it;
+ goto phooey;
+ }
+
+ /* Messy cases: unanchored match. */
+ if ((prog->anchored_substr || prog->anchored_utf8) && prog->intflags & PREGf_SKIP) {
+ /* we have /x+whatever/ */
+ /* it must be a one character string (XXXX Except is_utf8_pat?) */
+ char ch;
+#ifdef DEBUGGING
+ int did_match = 0;
+#endif
+ if (utf8_target) {
+ if (! prog->anchored_utf8) {
+ to_utf8_substr(prog);
+ }
+ ch = SvPVX_const(prog->anchored_utf8)[0];
+ REXEC_FBC_SCAN(
+ if (*s == ch) {
+ DEBUG_EXECUTE_r( did_match = 1 );
+ if (regtry(reginfo, &s)) goto got_it;
+ s += UTF8SKIP(s);
+ while (s < strend && *s == ch)
+ s += UTF8SKIP(s);
+ }
+ );
+
+ }
+ else {
+ if (! prog->anchored_substr) {
+ if (! to_byte_substr(prog)) {
+ NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+ }
+ }
+ ch = SvPVX_const(prog->anchored_substr)[0];
+ REXEC_FBC_SCAN(
+ if (*s == ch) {
+ DEBUG_EXECUTE_r( did_match = 1 );
+ if (regtry(reginfo, &s)) goto got_it;
+ s++;
+ while (s < strend && *s == ch)
+ s++;
+ }
+ );
+ }
+ DEBUG_EXECUTE_r(if (!did_match)
+ PerlIO_printf(Perl_debug_log,
+ "Did not find anchored character...\n")
+ );
+ }
+ else if (prog->anchored_substr != NULL
+ || prog->anchored_utf8 != NULL
+ || ((prog->float_substr != NULL || prog->float_utf8 != NULL)
+ && prog->float_max_offset < strend - s)) {
+ SV *must;
+ SSize_t back_max;
+ SSize_t back_min;
+ char *last;
+ char *last1; /* Last position checked before */
+#ifdef DEBUGGING
+ int did_match = 0;
+#endif
+ if (prog->anchored_substr || prog->anchored_utf8) {
+ if (utf8_target) {
+ if (! prog->anchored_utf8) {
+ to_utf8_substr(prog);
+ }
+ must = prog->anchored_utf8;
+ }
+ else {
+ if (! prog->anchored_substr) {
+ if (! to_byte_substr(prog)) {
+ NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+ }
+ }
+ must = prog->anchored_substr;
+ }
+ back_max = back_min = prog->anchored_offset;
+ } else {
+ if (utf8_target) {
+ if (! prog->float_utf8) {
+ to_utf8_substr(prog);
+ }
+ must = prog->float_utf8;
+ }
+ else {
+ if (! prog->float_substr) {
+ if (! to_byte_substr(prog)) {
+ NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+ }
+ }
+ must = prog->float_substr;
+ }
+ back_max = prog->float_max_offset;
+ back_min = prog->float_min_offset;
+ }
+
+ if (back_min<0) {
+ last = strend;
+ } else {
+ last = HOP3c(strend, /* Cannot start after this */
+ -(SSize_t)(CHR_SVLEN(must)
+ - (SvTAIL(must) != 0) + back_min), strbeg);
+ }
+ if (s > reginfo->strbeg)
+ last1 = HOPc(s, -1);
+ else
+ last1 = s - 1; /* bogus */
+
+ /* XXXX check_substr already used to find "s", can optimize if
+ check_substr==must. */
+ dontbother = 0;
+ strend = HOPc(strend, -dontbother);
+ while ( (s <= last) &&
+ (s = fbm_instr((unsigned char*)HOP4c(s, back_min, strbeg, strend),
+ (unsigned char*)strend, must,
+ multiline ? FBMrf_MULTILINE : 0)) ) {
+ DEBUG_EXECUTE_r( did_match = 1 );
+ if (HOPc(s, -back_max) > last1) {
+ last1 = HOPc(s, -back_min);
+ s = HOPc(s, -back_max);
+ }
+ else {
+ char * const t = (last1 >= reginfo->strbeg)
+ ? HOPc(last1, 1) : last1 + 1;
+
+ last1 = HOPc(s, -back_min);
+ s = t;
+ }
+ if (utf8_target) {
+ while (s <= last1) {
+ if (regtry(reginfo, &s))
+ goto got_it;
+ if (s >= last1) {
+ s++; /* to break out of outer loop */
+ break;
+ }
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ while (s <= last1) {
+ if (regtry(reginfo, &s))
+ goto got_it;
+ s++;
+ }
+ }
+ }
+ DEBUG_EXECUTE_r(if (!did_match) {
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+ PerlIO_printf(Perl_debug_log, "Did not find %s substr %s%s...\n",
+ ((must == prog->anchored_substr || must == prog->anchored_utf8)
+ ? "anchored" : "floating"),
+ quoted, RE_SV_TAIL(must));
+ });
+ goto phooey;
+ }
+ else if ( (c = progi->regstclass) ) {
+ if (minlen) {
+ const OPCODE op = OP(progi->regstclass);
+ /* don't bother with what can't match */
+ if (PL_regkind[op] != EXACT && PL_regkind[op] != TRIE)
+ strend = HOPc(strend, -(minlen - 1));
+ }
+ DEBUG_EXECUTE_r({
+ SV * const prop = sv_newmortal();
+ regprop(prog, prop, c, reginfo, NULL);
+ {
+ RE_PV_QUOTED_DECL(quoted,utf8_target,PERL_DEBUG_PAD_ZERO(1),
+ s,strend-s,60);
+ PerlIO_printf(Perl_debug_log,
+ "Matching stclass %.*s against %s (%d bytes)\n",
+ (int)SvCUR(prop), SvPVX_const(prop),
+ quoted, (int)(strend - s));
+ }
+ });
+ if (find_byclass(prog, c, s, strend, reginfo))
+ goto got_it;
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Contradicts stclass... [regexec_flags]\n"));
+ }
+ else {
+ dontbother = 0;
+ if (prog->float_substr != NULL || prog->float_utf8 != NULL) {
+ /* Trim the end. */
+ char *last= NULL;
+ SV* float_real;
+ STRLEN len;
+ const char *little;
+
+ if (utf8_target) {
+ if (! prog->float_utf8) {
+ to_utf8_substr(prog);
+ }
+ float_real = prog->float_utf8;
+ }
+ else {
+ if (! prog->float_substr) {
+ if (! to_byte_substr(prog)) {
+ NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+ }
+ }
+ float_real = prog->float_substr;
+ }
+
+ little = SvPV_const(float_real, len);
+ if (SvTAIL(float_real)) {
+ /* This means that float_real contains an artificial \n on
+ * the end due to the presence of something like this:
+ * /foo$/ where we can match both "foo" and "foo\n" at the
+ * end of the string. So we have to compare the end of the
+ * string first against the float_real without the \n and
+ * then against the full float_real with the string. We
+ * have to watch out for cases where the string might be
+ * smaller than the float_real or the float_real without
+ * the \n. */
+ char *checkpos= strend - len;
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sChecking for float_real.%s\n",
+ PL_colors[4], PL_colors[5]));
+ if (checkpos + 1 < strbeg) {
+ /* can't match, even if we remove the trailing \n
+ * string is too short to match */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString shorter than required trailing substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]));
+ goto phooey;
+ } else if (memEQ(checkpos + 1, little, len - 1)) {
+ /* can match, the end of the string matches without the
+ * "\n" */
+ last = checkpos + 1;
+ } else if (checkpos < strbeg) {
+ /* cant match, string is too short when the "\n" is
+ * included */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString does not contain required trailing substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]));
+ goto phooey;
+ } else if (!multiline) {
+ /* non multiline match, so compare with the "\n" at the
+ * end of the string */
+ if (memEQ(checkpos, little, len)) {
+ last= checkpos;
+ } else {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString does not contain required trailing substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]));
+ goto phooey;
+ }
+ } else {
+ /* multiline match, so we have to search for a place
+ * where the full string is located */
+ goto find_last;
+ }
+ } else {
+ find_last:
+ if (len)
+ last = rninstr(s, strend, little, little + len);
+ else
+ last = strend; /* matching "$" */
+ }
+ if (!last) {
+ /* at one point this block contained a comment which was
+ * probably incorrect, which said that this was a "should not
+ * happen" case. Even if it was true when it was written I am
+ * pretty sure it is not anymore, so I have removed the comment
+ * and replaced it with this one. Yves */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString does not contain required substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]
+ ));
+ goto phooey;
+ }
+ dontbother = strend - last + prog->float_min_offset;
+ }
+ if (minlen && (dontbother < minlen))
+ dontbother = minlen - 1;
+ strend -= dontbother; /* this one's always in bytes! */
+ /* We don't know much -- general case. */
+ if (utf8_target) {
+ for (;;) {
+ if (regtry(reginfo, &s))
+ goto got_it;
+ if (s >= strend)
+ break;
+ s += UTF8SKIP(s);
+ };
+ }
+ else {
+ do {
+ if (regtry(reginfo, &s))
+ goto got_it;
+ } while (s++ < strend);
+ }
+ }
+
+ /* Failure. */
+ goto phooey;
+
+ got_it:
+ /* s/// doesn't like it if $& is earlier than where we asked it to
+ * start searching (which can happen on something like /.\G/) */
+ if ( (flags & REXEC_FAIL_ON_UNDERFLOW)
+ && (prog->offs[0].start < stringarg - strbeg))
+ {
+ /* this should only be possible under \G */
+ assert(prog->intflags & PREGf_GPOS_SEEN);
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n"));
+ goto phooey;
+ }
+
+ DEBUG_BUFFERS_r(
+ if (swap)
+ PerlIO_printf(Perl_debug_log,
+ "rex=0x%"UVxf" freeing offs: 0x%"UVxf"\n",
+ PTR2UV(prog),
+ PTR2UV(swap)
+ );
+ );
+ Safefree(swap);
+
+ /* clean up; this will trigger destructors that will free all slabs
+ * above the current one, and cleanup the regmatch_info_aux
+ * and regmatch_info_aux_eval sructs */
+
+ LEAVE_SCOPE(oldsave);
+
+ if (RXp_PAREN_NAMES(prog))
+ (void)hv_iterinit(RXp_PAREN_NAMES(prog));
+
+ /* make sure $`, $&, $', and $digit will work later */
+ if ( !(flags & REXEC_NOT_FIRST) )
+ S_reg_set_capture_string(aTHX_ rx,
+ strbeg, reginfo->strend,
+ sv, flags, utf8_target);
+
+ return 1;
+
+ phooey:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch failed%s\n",
+ PL_colors[4], PL_colors[5]));
+
+ /* clean up; this will trigger destructors that will free all slabs
+ * above the current one, and cleanup the regmatch_info_aux
+ * and regmatch_info_aux_eval sructs */
+
+ LEAVE_SCOPE(oldsave);
+
+ if (swap) {
+ /* we failed :-( roll it back */
+ DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+ "rex=0x%"UVxf" rolling back offs: freeing=0x%"UVxf" restoring=0x%"UVxf"\n",
+ PTR2UV(prog),
+ PTR2UV(prog->offs),
+ PTR2UV(swap)
+ ));
+ Safefree(prog->offs);
+ prog->offs = swap;
+ }
+ return 0;
+}
+
+
+/* Set which rex is pointed to by PL_reg_curpm, handling ref counting.
+ * Do inc before dec, in case old and new rex are the same */
+#define SET_reg_curpm(Re2) \
+ if (reginfo->info_aux_eval) { \
+ (void)ReREFCNT_inc(Re2); \
+ ReREFCNT_dec(PM_GETRE(PL_reg_curpm)); \
+ PM_SETRE((PL_reg_curpm), (Re2)); \
+ }
+
+
+/*
+ - regtry - try match at specific point
+ */
+STATIC I32 /* 0 failure, 1 success */
+S_regtry(pTHX_ regmatch_info *reginfo, char **startposp)
+{
+ CHECKPOINT lastcp;
+ REGEXP *const rx = reginfo->prog;
+ regexp *const prog = ReANY(rx);
+ SSize_t result;
+ RXi_GET_DECL(prog,progi);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTRY;
+
+ reginfo->cutpoint=NULL;
+
+ prog->offs[0].start = *startposp - reginfo->strbeg;
+ prog->lastparen = 0;
+ prog->lastcloseparen = 0;
+
+ /* XXXX What this code is doing here?!!! There should be no need
+ to do this again and again, prog->lastparen should take care of
+ this! --ilya*/
+
+ /* Tests pat.t#187 and split.t#{13,14} seem to depend on this code.
+ * Actually, the code in regcppop() (which Ilya may be meaning by
+ * prog->lastparen), is not needed at all by the test suite
+ * (op/regexp, op/pat, op/split), but that code is needed otherwise
+ * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
+ * Meanwhile, this code *is* needed for the
+ * above-mentioned test suite tests to succeed. The common theme
+ * on those tests seems to be returning null fields from matches.
+ * --jhi updated by dapm */
+#if 1
+ if (prog->nparens) {
+ regexp_paren_pair *pp = prog->offs;
+ I32 i;
+ for (i = prog->nparens; i > (I32)prog->lastparen; i--) {
+ ++pp;
+ pp->start = -1;
+ pp->end = -1;
+ }
+ }
+#endif
+ REGCP_SET(lastcp);
+ result = regmatch(reginfo, *startposp, progi->program + 1);
+ if (result != -1) {
+ prog->offs[0].end = result;
+ return 1;
+ }
+ if (reginfo->cutpoint)
+ *startposp= reginfo->cutpoint;
+ REGCP_UNWIND(lastcp);
+ return 0;
+}
+
+
+#define sayYES goto yes
+#define sayNO goto no
+#define sayNO_SILENT goto no_silent
+
+/* we dont use STMT_START/END here because it leads to
+ "unreachable code" warnings, which are bogus, but distracting. */
+#define CACHEsayNO \
+ if (ST.cache_mask) \
+ reginfo->info_aux->poscache[ST.cache_offset] |= ST.cache_mask; \
+ sayNO
+
+/* this is used to determine how far from the left messages like
+ 'failed...' are printed. It should be set such that messages
+ are inline with the regop output that created them.
+*/
+#define REPORT_CODE_OFF 32
+
+
+#define CHRTEST_UNINIT -1001 /* c1/c2 haven't been calculated yet */
+#define CHRTEST_VOID -1000 /* the c1/c2 "next char" test should be skipped */
+#define CHRTEST_NOT_A_CP_1 -999
+#define CHRTEST_NOT_A_CP_2 -998
+
+/* grab a new slab and return the first slot in it */
+
+STATIC regmatch_state *
+S_push_slab(pTHX)
+{
+#if PERL_VERSION < 9 && !defined(PERL_CORE)
+ dMY_CXT;
+#endif
+ regmatch_slab *s = PL_regmatch_slab->next;
+ if (!s) {
+ Newx(s, 1, regmatch_slab);
+ s->prev = PL_regmatch_slab;
+ s->next = NULL;
+ PL_regmatch_slab->next = s;
+ }
+ PL_regmatch_slab = s;
+ return SLAB_FIRST(s);
+}
+
+
+/* push a new state then goto it */
+
+#define PUSH_STATE_GOTO(state, node, input) \
+ pushinput = input; \
+ scan = node; \
+ st->resume_state = state; \
+ goto push_state;
+
+/* push a new state with success backtracking, then goto it */
+
+#define PUSH_YES_STATE_GOTO(state, node, input) \
+ pushinput = input; \
+ scan = node; \
+ st->resume_state = state; \
+ goto push_yes_state;
+
+
+
+
+/*
+
+regmatch() - main matching routine
+
+This is basically one big switch statement in a loop. We execute an op,
+set 'next' to point the next op, and continue. If we come to a point which
+we may need to backtrack to on failure such as (A|B|C), we push a
+backtrack state onto the backtrack stack. On failure, we pop the top
+state, and re-enter the loop at the state indicated. If there are no more
+states to pop, we return failure.
+
+Sometimes we also need to backtrack on success; for example /A+/, where
+after successfully matching one A, we need to go back and try to
+match another one; similarly for lookahead assertions: if the assertion
+completes successfully, we backtrack to the state just before the assertion
+and then carry on. In these cases, the pushed state is marked as
+'backtrack on success too'. This marking is in fact done by a chain of
+pointers, each pointing to the previous 'yes' state. On success, we pop to
+the nearest yes state, discarding any intermediate failure-only states.
+Sometimes a yes state is pushed just to force some cleanup code to be
+called at the end of a successful match or submatch; e.g. (??{$re}) uses
+it to free the inner regex.
+
+Note that failure backtracking rewinds the cursor position, while
+success backtracking leaves it alone.
+
+A pattern is complete when the END op is executed, while a subpattern
+such as (?=foo) is complete when the SUCCESS op is executed. Both of these
+ops trigger the "pop to last yes state if any, otherwise return true"
+behaviour.
+
+A common convention in this function is to use A and B to refer to the two
+subpatterns (or to the first nodes thereof) in patterns like /A*B/: so A is
+the subpattern to be matched possibly multiple times, while B is the entire
+rest of the pattern. Variable and state names reflect this convention.
+
+The states in the main switch are the union of ops and failure/success of
+substates associated with with that op. For example, IFMATCH is the op
+that does lookahead assertions /(?=A)B/ and so the IFMATCH state means
+'execute IFMATCH'; while IFMATCH_A is a state saying that we have just
+successfully matched A and IFMATCH_A_fail is a state saying that we have
+just failed to match A. Resume states always come in pairs. The backtrack
+state we push is marked as 'IFMATCH_A', but when that is popped, we resume
+at IFMATCH_A or IFMATCH_A_fail, depending on whether we are backtracking
+on success or failure.
+
+The struct that holds a backtracking state is actually a big union, with
+one variant for each major type of op. The variable st points to the
+top-most backtrack struct. To make the code clearer, within each
+block of code we #define ST to alias the relevant union.
+
+Here's a concrete example of a (vastly oversimplified) IFMATCH
+implementation:
+
+ switch (state) {
+ ....
+
+#define ST st->u.ifmatch
+
+ case IFMATCH: // we are executing the IFMATCH op, (?=A)B
+ ST.foo = ...; // some state we wish to save
+ ...
+ // push a yes backtrack state with a resume value of
+ // IFMATCH_A/IFMATCH_A_fail, then continue execution at the
+ // first node of A:
+ PUSH_YES_STATE_GOTO(IFMATCH_A, A, newinput);
+ // NOTREACHED
+
+ case IFMATCH_A: // we have successfully executed A; now continue with B
+ next = B;
+ bar = ST.foo; // do something with the preserved value
+ break;
+
+ case IFMATCH_A_fail: // A failed, so the assertion failed
+ ...; // do some housekeeping, then ...
+ sayNO; // propagate the failure
+
+#undef ST
+
+ ...
+ }
+
+For any old-timers reading this who are familiar with the old recursive
+approach, the code above is equivalent to:
+
+ case IFMATCH: // we are executing the IFMATCH op, (?=A)B
+ {
+ int foo = ...
+ ...
+ if (regmatch(A)) {
+ next = B;
+ bar = foo;
+ break;
+ }
+ ...; // do some housekeeping, then ...
+ sayNO; // propagate the failure
+ }
+
+The topmost backtrack state, pointed to by st, is usually free. If you
+want to claim it, populate any ST.foo fields in it with values you wish to
+save, then do one of
+
+ PUSH_STATE_GOTO(resume_state, node, newinput);
+ PUSH_YES_STATE_GOTO(resume_state, node, newinput);
+
+which sets that backtrack state's resume value to 'resume_state', pushes a
+new free entry to the top of the backtrack stack, then goes to 'node'.
+On backtracking, the free slot is popped, and the saved state becomes the
+new free state. An ST.foo field in this new top state can be temporarily
+accessed to retrieve values, but once the main loop is re-entered, it
+becomes available for reuse.
+
+Note that the depth of the backtrack stack constantly increases during the
+left-to-right execution of the pattern, rather than going up and down with
+the pattern nesting. For example the stack is at its maximum at Z at the
+end of the pattern, rather than at X in the following:
+
+ /(((X)+)+)+....(Y)+....Z/
+
+The only exceptions to this are lookahead/behind assertions and the cut,
+(?>A), which pop all the backtrack states associated with A before
+continuing.
+
+Backtrack state structs are allocated in slabs of about 4K in size.
+PL_regmatch_state and st always point to the currently active state,
+and PL_regmatch_slab points to the slab currently containing
+PL_regmatch_state. The first time regmatch() is called, the first slab is
+allocated, and is never freed until interpreter destruction. When the slab
+is full, a new one is allocated and chained to the end. At exit from
+regmatch(), slabs allocated since entry are freed.
+
+*/
+
+
+#define DEBUG_STATE_pp(pp) \
+ DEBUG_STATE_r({ \
+ DUMP_EXEC_POS(locinput, scan, utf8_target); \
+ PerlIO_printf(Perl_debug_log, \
+ " %*s"pp" %s%s%s%s%s\n", \
+ depth*2, "", \
+ PL_reg_name[st->resume_state], \
+ ((st==yes_state||st==mark_state) ? "[" : ""), \
+ ((st==yes_state) ? "Y" : ""), \
+ ((st==mark_state) ? "M" : ""), \
+ ((st==yes_state||st==mark_state) ? "]" : "") \
+ ); \
+ });
+
+
+#define REG_NODE_NUM(x) ((x) ? (int)((x)-prog) : -1)
+
+#ifdef DEBUGGING
+
+STATIC void
+S_debug_start_match(pTHX_ const REGEXP *prog, const bool utf8_target,
+ const char *start, const char *end, const char *blurb)
+{
+ const bool utf8_pat = RX_UTF8(prog) ? 1 : 0;
+
+ PERL_ARGS_ASSERT_DEBUG_START_MATCH;
+
+ if (!PL_colorset)
+ reginitcolors();
+ {
+ RE_PV_QUOTED_DECL(s0, utf8_pat, PERL_DEBUG_PAD_ZERO(0),
+ RX_PRECOMP_const(prog), RX_PRELEN(prog), 60);
+
+ RE_PV_QUOTED_DECL(s1, utf8_target, PERL_DEBUG_PAD_ZERO(1),
+ start, end - start, 60);
+
+ PerlIO_printf(Perl_debug_log,
+ "%s%s REx%s %s against %s\n",
+ PL_colors[4], blurb, PL_colors[5], s0, s1);
+
+ if (utf8_target||utf8_pat)
+ PerlIO_printf(Perl_debug_log, "UTF-8 %s%s%s...\n",
+ utf8_pat ? "pattern" : "",
+ utf8_pat && utf8_target ? " and " : "",
+ utf8_target ? "string" : ""
+ );
+ }
+}
+
+STATIC void
+S_dump_exec_pos(pTHX_ const char *locinput,
+ const regnode *scan,
+ const char *loc_regeol,
+ const char *loc_bostr,
+ const char *loc_reg_starttry,
+ const bool utf8_target)
+{
+ const int docolor = *PL_colors[0] || *PL_colors[2] || *PL_colors[4];
+ const int taill = (docolor ? 10 : 7); /* 3 chars for "> <" */
+ int l = (loc_regeol - locinput) > taill ? taill : (loc_regeol - locinput);
+ /* The part of the string before starttry has one color
+ (pref0_len chars), between starttry and current
+ position another one (pref_len - pref0_len chars),
+ after the current position the third one.
+ We assume that pref0_len <= pref_len, otherwise we
+ decrease pref0_len. */
+ int pref_len = (locinput - loc_bostr) > (5 + taill) - l
+ ? (5 + taill) - l : locinput - loc_bostr;
+ int pref0_len;
+
+ PERL_ARGS_ASSERT_DUMP_EXEC_POS;
+
+ while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput - pref_len)))
+ pref_len++;
+ pref0_len = pref_len - (locinput - loc_reg_starttry);
+ if (l + pref_len < (5 + taill) && l < loc_regeol - locinput)
+ l = ( loc_regeol - locinput > (5 + taill) - pref_len
+ ? (5 + taill) - pref_len : loc_regeol - locinput);
+ while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput + l)))
+ l--;
+ if (pref0_len < 0)
+ pref0_len = 0;
+ if (pref0_len > pref_len)
+ pref0_len = pref_len;
+ {
+ const int is_uni = utf8_target ? 1 : 0;
+
+ RE_PV_COLOR_DECL(s0,len0,is_uni,PERL_DEBUG_PAD(0),
+ (locinput - pref_len),pref0_len, 60, 4, 5);
+
+ RE_PV_COLOR_DECL(s1,len1,is_uni,PERL_DEBUG_PAD(1),
+ (locinput - pref_len + pref0_len),
+ pref_len - pref0_len, 60, 2, 3);
+
+ RE_PV_COLOR_DECL(s2,len2,is_uni,PERL_DEBUG_PAD(2),
+ locinput, loc_regeol - locinput, 10, 0, 1);
+
+ const STRLEN tlen=len0+len1+len2;
+ PerlIO_printf(Perl_debug_log,
+ "%4"IVdf" <%.*s%.*s%s%.*s>%*s|",
+ (IV)(locinput - loc_bostr),
+ len0, s0,
+ len1, s1,
+ (docolor ? "" : "> <"),
+ len2, s2,
+ (int)(tlen > 19 ? 0 : 19 - tlen),
+ "");
+ }
+}
+
+#endif
+
+/* reg_check_named_buff_matched()
+ * Checks to see if a named buffer has matched. The data array of
+ * buffer numbers corresponding to the buffer is expected to reside
+ * in the regexp->data->data array in the slot stored in the ARG() of
+ * node involved. Note that this routine doesn't actually care about the
+ * name, that information is not preserved from compilation to execution.
+ * Returns the index of the leftmost defined buffer with the given name
+ * or 0 if non of the buffers matched.
+ */
+STATIC I32
+S_reg_check_named_buff_matched(const regexp *rex, const regnode *scan)
+{
+ I32 n;
+ RXi_GET_DECL(rex,rexi);
+ SV *sv_dat= MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ I32 *nums=(I32*)SvPVX(sv_dat);
+
+ PERL_ARGS_ASSERT_REG_CHECK_NAMED_BUFF_MATCHED;
+
+ for ( n=0; n<SvIVX(sv_dat); n++ ) {
+ if ((I32)rex->lastparen >= nums[n] &&
+ rex->offs[nums[n]].end != -1)
+ {
+ return nums[n];
+ }
+ }
+ return 0;
+}
+
+
+static bool
+S_setup_EXACTISH_ST_c1_c2(pTHX_ const regnode * const text_node, int *c1p,
+ U8* c1_utf8, int *c2p, U8* c2_utf8, regmatch_info *reginfo)
+{
+ /* This function determines if there are one or two characters that match
+ * the first character of the passed-in EXACTish node <text_node>, and if
+ * so, returns them in the passed-in pointers.
+ *
+ * If it determines that no possible character in the target string can
+ * match, it returns FALSE; otherwise TRUE. (The FALSE situation occurs if
+ * the first character in <text_node> requires UTF-8 to represent, and the
+ * target string isn't in UTF-8.)
+ *
+ * If there are more than two characters that could match the beginning of
+ * <text_node>, or if more context is required to determine a match or not,
+ * it sets both *<c1p> and *<c2p> to CHRTEST_VOID.
+ *
+ * The motiviation behind this function is to allow the caller to set up
+ * tight loops for matching. If <text_node> is of type EXACT, there is
+ * only one possible character that can match its first character, and so
+ * the situation is quite simple. But things get much more complicated if
+ * folding is involved. It may be that the first character of an EXACTFish
+ * node doesn't participate in any possible fold, e.g., punctuation, so it
+ * can be matched only by itself. The vast majority of characters that are
+ * in folds match just two things, their lower and upper-case equivalents.
+ * But not all are like that; some have multiple possible matches, or match
+ * sequences of more than one character. This function sorts all that out.
+ *
+ * Consider the patterns A*B or A*?B where A and B are arbitrary. In a
+ * loop of trying to match A*, we know we can't exit where the thing
+ * following it isn't a B. And something can't be a B unless it is the
+ * beginning of B. By putting a quick test for that beginning in a tight
+ * loop, we can rule out things that can't possibly be B without having to
+ * break out of the loop, thus avoiding work. Similarly, if A is a single
+ * character, we can make a tight loop matching A*, using the outputs of
+ * this function.
+ *
+ * If the target string to match isn't in UTF-8, and there aren't
+ * complications which require CHRTEST_VOID, *<c1p> and *<c2p> are set to
+ * the one or two possible octets (which are characters in this situation)
+ * that can match. In all cases, if there is only one character that can
+ * match, *<c1p> and *<c2p> will be identical.
+ *
+ * If the target string is in UTF-8, the buffers pointed to by <c1_utf8>
+ * and <c2_utf8> will contain the one or two UTF-8 sequences of bytes that
+ * can match the beginning of <text_node>. They should be declared with at
+ * least length UTF8_MAXBYTES+1. (If the target string isn't in UTF-8, it is
+ * undefined what these contain.) If one or both of the buffers are
+ * invariant under UTF-8, *<c1p>, and *<c2p> will also be set to the
+ * corresponding invariant. If variant, the corresponding *<c1p> and/or
+ * *<c2p> will be set to a negative number(s) that shouldn't match any code
+ * point (unless inappropriately coerced to unsigned). *<c1p> will equal
+ * *<c2p> if and only if <c1_utf8> and <c2_utf8> are the same. */
+
+ const bool utf8_target = reginfo->is_utf8_target;
+
+ UV c1 = (UV)CHRTEST_NOT_A_CP_1;
+ UV c2 = (UV)CHRTEST_NOT_A_CP_2;
+ bool use_chrtest_void = FALSE;
+ const bool is_utf8_pat = reginfo->is_utf8_pat;
+
+ /* Used when we have both utf8 input and utf8 output, to avoid converting
+ * to/from code points */
+ bool utf8_has_been_setup = FALSE;
+
+ dVAR;
+
+ U8 *pat = (U8*)STRING(text_node);
+ U8 folded[UTF8_MAX_FOLD_CHAR_EXPAND * UTF8_MAXBYTES_CASE + 1] = { '\0' };
+
+ if (OP(text_node) == EXACT || OP(text_node) == EXACTL) {
+
+ /* In an exact node, only one thing can be matched, that first
+ * character. If both the pat and the target are UTF-8, we can just
+ * copy the input to the output, avoiding finding the code point of
+ * that character */
+ if (!is_utf8_pat) {
+ c2 = c1 = *pat;
+ }
+ else if (utf8_target) {
+ Copy(pat, c1_utf8, UTF8SKIP(pat), U8);
+ Copy(pat, c2_utf8, UTF8SKIP(pat), U8);
+ utf8_has_been_setup = TRUE;
+ }
+ else {
+ c2 = c1 = valid_utf8_to_uvchr(pat, NULL);
+ }
+ }
+ else { /* an EXACTFish node */
+ U8 *pat_end = pat + STR_LEN(text_node);
+
+ /* An EXACTFL node has at least some characters unfolded, because what
+ * they match is not known until now. So, now is the time to fold
+ * the first few of them, as many as are needed to determine 'c1' and
+ * 'c2' later in the routine. If the pattern isn't UTF-8, we only need
+ * to fold if in a UTF-8 locale, and then only the Sharp S; everything
+ * else is 1-1 and isn't assumed to be folded. In a UTF-8 pattern, we
+ * need to fold as many characters as a single character can fold to,
+ * so that later we can check if the first ones are such a multi-char
+ * fold. But, in such a pattern only locale-problematic characters
+ * aren't folded, so we can skip this completely if the first character
+ * in the node isn't one of the tricky ones */
+ if (OP(text_node) == EXACTFL) {
+
+ if (! is_utf8_pat) {
+ if (IN_UTF8_CTYPE_LOCALE && *pat == LATIN_SMALL_LETTER_SHARP_S)
+ {
+ folded[0] = folded[1] = 's';
+ pat = folded;
+ pat_end = folded + 2;
+ }
+ }
+ else if (is_PROBLEMATIC_LOCALE_FOLDEDS_START_utf8(pat)) {
+ U8 *s = pat;
+ U8 *d = folded;
+ int i;
+
+ for (i = 0; i < UTF8_MAX_FOLD_CHAR_EXPAND && s < pat_end; i++) {
+ if (isASCII(*s)) {
+ *(d++) = (U8) toFOLD_LC(*s);
+ s++;
+ }
+ else {
+ STRLEN len;
+ _to_utf8_fold_flags(s,
+ d,
+ &len,
+ FOLD_FLAGS_FULL | FOLD_FLAGS_LOCALE);
+ d += len;
+ s += UTF8SKIP(s);
+ }
+ }
+
+ pat = folded;
+ pat_end = d;
+ }
+ }
+
+ if ((is_utf8_pat && is_MULTI_CHAR_FOLD_utf8_safe(pat, pat_end))
+ || (!is_utf8_pat && is_MULTI_CHAR_FOLD_latin1_safe(pat, pat_end)))
+ {
+ /* Multi-character folds require more context to sort out. Also
+ * PL_utf8_foldclosures used below doesn't handle them, so have to
+ * be handled outside this routine */
+ use_chrtest_void = TRUE;
+ }
+ else { /* an EXACTFish node which doesn't begin with a multi-char fold */
+ c1 = is_utf8_pat ? valid_utf8_to_uvchr(pat, NULL) : *pat;
+ if (c1 > 255) {
+ /* Load the folds hash, if not already done */
+ SV** listp;
+ if (! PL_utf8_foldclosures) {
+ _load_PL_utf8_foldclosures();
+ }
+
+ /* The fold closures data structure is a hash with the keys
+ * being the UTF-8 of every character that is folded to, like
+ * 'k', and the values each an array of all code points that
+ * fold to its key. e.g. [ 'k', 'K', KELVIN_SIGN ].
+ * Multi-character folds are not included */
+ if ((! (listp = hv_fetch(PL_utf8_foldclosures,
+ (char *) pat,
+ UTF8SKIP(pat),
+ FALSE))))
+ {
+ /* Not found in the hash, therefore there are no folds
+ * containing it, so there is only a single character that
+ * could match */
+ c2 = c1;
+ }
+ else { /* Does participate in folds */
+ AV* list = (AV*) *listp;
+ if (av_tindex(list) != 1) {
+
+ /* If there aren't exactly two folds to this, it is
+ * outside the scope of this function */
+ use_chrtest_void = TRUE;
+ }
+ else { /* There are two. Get them */
+ SV** c_p = av_fetch(list, 0, FALSE);
+ if (c_p == NULL) {
+ Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
+ }
+ c1 = SvUV(*c_p);
+
+ c_p = av_fetch(list, 1, FALSE);
+ if (c_p == NULL) {
+ Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
+ }
+ c2 = SvUV(*c_p);
+
+ /* Folds that cross the 255/256 boundary are forbidden
+ * if EXACTFL (and isnt a UTF8 locale), or EXACTFA and
+ * one is ASCIII. Since the pattern character is above
+ * 255, and its only other match is below 256, the only
+ * legal match will be to itself. We have thrown away
+ * the original, so have to compute which is the one
+ * above 255. */
+ if ((c1 < 256) != (c2 < 256)) {
+ if ((OP(text_node) == EXACTFL
+ && ! IN_UTF8_CTYPE_LOCALE)
+ || ((OP(text_node) == EXACTFA
+ || OP(text_node) == EXACTFA_NO_TRIE)
+ && (isASCII(c1) || isASCII(c2))))
+ {
+ if (c1 < 256) {
+ c1 = c2;
+ }
+ else {
+ c2 = c1;
+ }
+ }
+ }
+ }
+ }
+ }
+ else /* Here, c1 is <= 255 */
+ if (utf8_target
+ && HAS_NONLATIN1_FOLD_CLOSURE(c1)
+ && ( ! (OP(text_node) == EXACTFL && ! IN_UTF8_CTYPE_LOCALE))
+ && ((OP(text_node) != EXACTFA
+ && OP(text_node) != EXACTFA_NO_TRIE)
+ || ! isASCII(c1)))
+ {
+ /* Here, there could be something above Latin1 in the target
+ * which folds to this character in the pattern. All such
+ * cases except LATIN SMALL LETTER Y WITH DIAERESIS have more
+ * than two characters involved in their folds, so are outside
+ * the scope of this function */
+ if (UNLIKELY(c1 == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) {
+ c2 = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS;
+ }
+ else {
+ use_chrtest_void = TRUE;
+ }
+ }
+ else { /* Here nothing above Latin1 can fold to the pattern
+ character */
+ switch (OP(text_node)) {
+
+ case EXACTFL: /* /l rules */
+ c2 = PL_fold_locale[c1];
+ break;
+
+ case EXACTF: /* This node only generated for non-utf8
+ patterns */
+ assert(! is_utf8_pat);
+ if (! utf8_target) { /* /d rules */
+ c2 = PL_fold[c1];
+ break;
+ }
+ /* FALLTHROUGH */
+ /* /u rules for all these. This happens to work for
+ * EXACTFA as nothing in Latin1 folds to ASCII */
+ case EXACTFA_NO_TRIE: /* This node only generated for
+ non-utf8 patterns */
+ assert(! is_utf8_pat);
+ /* FALLTHROUGH */
+ case EXACTFA:
+ case EXACTFU_SS:
+ case EXACTFU:
+ c2 = PL_fold_latin1[c1];
+ break;
+
+ default:
+ Perl_croak(aTHX_ "panic: Unexpected op %u", OP(text_node));
+ NOT_REACHED; /* NOTREACHED */
+ }
+ }
+ }
+ }
+
+ /* Here have figured things out. Set up the returns */
+ if (use_chrtest_void) {
+ *c2p = *c1p = CHRTEST_VOID;
+ }
+ else if (utf8_target) {
+ if (! utf8_has_been_setup) { /* Don't have the utf8; must get it */
+ uvchr_to_utf8(c1_utf8, c1);
+ uvchr_to_utf8(c2_utf8, c2);
+ }
+
+ /* Invariants are stored in both the utf8 and byte outputs; Use
+ * negative numbers otherwise for the byte ones. Make sure that the
+ * byte ones are the same iff the utf8 ones are the same */
+ *c1p = (UTF8_IS_INVARIANT(*c1_utf8)) ? *c1_utf8 : CHRTEST_NOT_A_CP_1;
+ *c2p = (UTF8_IS_INVARIANT(*c2_utf8))
+ ? *c2_utf8
+ : (c1 == c2)
+ ? CHRTEST_NOT_A_CP_1
+ : CHRTEST_NOT_A_CP_2;
+ }
+ else if (c1 > 255) {
+ if (c2 > 255) { /* both possibilities are above what a non-utf8 string
+ can represent */
+ return FALSE;
+ }
+
+ *c1p = *c2p = c2; /* c2 is the only representable value */
+ }
+ else { /* c1 is representable; see about c2 */
+ *c1p = c1;
+ *c2p = (c2 < 256) ? c2 : c1;
+ }
+
+ return TRUE;
+}
+
+/* This creates a single number by combining two, with 'before' being like the
+ * 10's digit, but this isn't necessarily base 10; it is base however many
+ * elements of the enum there are */
+#define GCBcase(before, after) ((GCB_ENUM_COUNT * before) + after)
+
+STATIC bool
+S_isGCB(const GCB_enum before, const GCB_enum after)
+{
+ /* returns a boolean indicating if there is a Grapheme Cluster Boundary
+ * between the inputs. See http://www.unicode.org/reports/tr29/ */
+
+ switch (GCBcase(before, after)) {
+
+ /* Break at the start and end of text.
+ GB1. sot ÷
+ GB2. ÷ eot
+
+ Break before and after controls except between CR and LF
+ GB4. ( Control | CR | LF ) ÷
+ GB5. ÷ ( Control | CR | LF )
+
+ Otherwise, break everywhere.
+ GB10. Any ÷ Any */
+ default:
+ return TRUE;
+
+ /* Do not break between a CR and LF.
+ GB3. CR × LF */
+ case GCBcase(GCB_CR, GCB_LF):
+ return FALSE;
+
+ /* Do not break Hangul syllable sequences.
+ GB6. L × ( L | V | LV | LVT ) */
+ case GCBcase(GCB_L, GCB_L):
+ case GCBcase(GCB_L, GCB_V):
+ case GCBcase(GCB_L, GCB_LV):
+ case GCBcase(GCB_L, GCB_LVT):
+ return FALSE;
+
+ /* GB7. ( LV | V ) × ( V | T ) */
+ case GCBcase(GCB_LV, GCB_V):
+ case GCBcase(GCB_LV, GCB_T):
+ case GCBcase(GCB_V, GCB_V):
+ case GCBcase(GCB_V, GCB_T):
+ return FALSE;
+
+ /* GB8. ( LVT | T) × T */
+ case GCBcase(GCB_LVT, GCB_T):
+ case GCBcase(GCB_T, GCB_T):
+ return FALSE;
+
+ /* Do not break between regional indicator symbols.
+ GB8a. Regional_Indicator × Regional_Indicator */
+ case GCBcase(GCB_Regional_Indicator, GCB_Regional_Indicator):
+ return FALSE;
+
+ /* Do not break before extending characters.
+ GB9. × Extend */
+ case GCBcase(GCB_Other, GCB_Extend):
+ case GCBcase(GCB_Extend, GCB_Extend):
+ case GCBcase(GCB_L, GCB_Extend):
+ case GCBcase(GCB_LV, GCB_Extend):
+ case GCBcase(GCB_LVT, GCB_Extend):
+ case GCBcase(GCB_Prepend, GCB_Extend):
+ case GCBcase(GCB_Regional_Indicator, GCB_Extend):
+ case GCBcase(GCB_SpacingMark, GCB_Extend):
+ case GCBcase(GCB_T, GCB_Extend):
+ case GCBcase(GCB_V, GCB_Extend):
+ return FALSE;
+
+ /* Do not break before SpacingMarks, or after Prepend characters.
+ GB9a. × SpacingMark */
+ case GCBcase(GCB_Other, GCB_SpacingMark):
+ case GCBcase(GCB_Extend, GCB_SpacingMark):
+ case GCBcase(GCB_L, GCB_SpacingMark):
+ case GCBcase(GCB_LV, GCB_SpacingMark):
+ case GCBcase(GCB_LVT, GCB_SpacingMark):
+ case GCBcase(GCB_Prepend, GCB_SpacingMark):
+ case GCBcase(GCB_Regional_Indicator, GCB_SpacingMark):
+ case GCBcase(GCB_SpacingMark, GCB_SpacingMark):
+ case GCBcase(GCB_T, GCB_SpacingMark):
+ case GCBcase(GCB_V, GCB_SpacingMark):
+ return FALSE;
+
+ /* GB9b. Prepend × */
+ case GCBcase(GCB_Prepend, GCB_Other):
+ case GCBcase(GCB_Prepend, GCB_L):
+ case GCBcase(GCB_Prepend, GCB_LV):
+ case GCBcase(GCB_Prepend, GCB_LVT):
+ case GCBcase(GCB_Prepend, GCB_Prepend):
+ case GCBcase(GCB_Prepend, GCB_Regional_Indicator):
+ case GCBcase(GCB_Prepend, GCB_T):
+ case GCBcase(GCB_Prepend, GCB_V):
+ return FALSE;
+ }
+
+ NOT_REACHED; /* NOTREACHED */
+}
+
+#define SBcase(before, after) ((SB_ENUM_COUNT * before) + after)
+
+STATIC bool
+S_isSB(pTHX_ SB_enum before,
+ SB_enum after,
+ const U8 * const strbeg,
+ const U8 * const curpos,
+ const U8 * const strend,
+ const bool utf8_target)
+{
+ /* returns a boolean indicating if there is a Sentence Boundary Break
+ * between the inputs. See http://www.unicode.org/reports/tr29/ */
+
+ U8 * lpos = (U8 *) curpos;
+ U8 * temp_pos;
+ SB_enum backup;
+
+ PERL_ARGS_ASSERT_ISSB;
+
+ /* Break at the start and end of text.
+ SB1. sot ÷
+ SB2. ÷ eot */
+ if (before == SB_EDGE || after == SB_EDGE) {
+ return TRUE;
+ }
+
+ /* SB 3: Do not break within CRLF. */
+ if (before == SB_CR && after == SB_LF) {
+ return FALSE;
+ }
+
+ /* Break after paragraph separators. (though why CR and LF are considered
+ * so is beyond me (khw)
+ SB4. Sep | CR | LF ÷ */
+ if (before == SB_Sep || before == SB_CR || before == SB_LF) {
+ return TRUE;
+ }
+
+ /* Ignore Format and Extend characters, except after sot, Sep, CR, or LF.
+ * (See Section 6.2, Replacing Ignore Rules.)
+ SB5. X (Extend | Format)* → X */
+ if (after == SB_Extend || after == SB_Format) {
+ return FALSE;
+ }
+
+ if (before == SB_Extend || before == SB_Format) {
+ before = backup_one_SB(strbeg, &lpos, utf8_target);
+ }
+
+ /* Do not break after ambiguous terminators like period, if they are
+ * immediately followed by a number or lowercase letter, if they are
+ * between uppercase letters, if the first following letter (optionally
+ * after certain punctuation) is lowercase, or if they are followed by
+ * "continuation" punctuation such as comma, colon, or semicolon. For
+ * example, a period may be an abbreviation or numeric period, and thus may
+ * not mark the end of a sentence.
+
+ * SB6. ATerm × Numeric */
+ if (before == SB_ATerm && after == SB_Numeric) {
+ return FALSE;
+ }
+
+ /* SB7. (Upper | Lower) ATerm × Upper */
+ if (before == SB_ATerm && after == SB_Upper) {
+ temp_pos = lpos;
+ backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ if (backup == SB_Upper || backup == SB_Lower) {
+ return FALSE;
+ }
+ }
+
+ /* SB8a. (STerm | ATerm) Close* Sp* × (SContinue | STerm | ATerm)
+ * SB10. (STerm | ATerm) Close* Sp* × ( Sp | Sep | CR | LF ) */
+ backup = before;
+ temp_pos = lpos;
+ while (backup == SB_Sp) {
+ backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ }
+ while (backup == SB_Close) {
+ backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ }
+ if ((backup == SB_STerm || backup == SB_ATerm)
+ && ( after == SB_SContinue
+ || after == SB_STerm
+ || after == SB_ATerm
+ || after == SB_Sp
+ || after == SB_Sep
+ || after == SB_CR
+ || after == SB_LF))
+ {
+ return FALSE;
+ }
+
+ /* SB8. ATerm Close* Sp* × ( ¬(OLetter | Upper | Lower | Sep | CR | LF |
+ * STerm | ATerm) )* Lower */
+ if (backup == SB_ATerm) {
+ U8 * rpos = (U8 *) curpos;
+ SB_enum later = after;
+
+ while ( later != SB_OLetter
+ && later != SB_Upper
+ && later != SB_Lower
+ && later != SB_Sep
+ && later != SB_CR
+ && later != SB_LF
+ && later != SB_STerm
+ && later != SB_ATerm
+ && later != SB_EDGE)
+ {
+ later = advance_one_SB(&rpos, strend, utf8_target);
+ }
+ if (later == SB_Lower) {
+ return FALSE;
+ }
+ }
+
+ /* Break after sentence terminators, but include closing punctuation,
+ * trailing spaces, and a paragraph separator (if present). [See note
+ * below.]
+ * SB9. ( STerm | ATerm ) Close* × ( Close | Sp | Sep | CR | LF ) */
+ backup = before;
+ temp_pos = lpos;
+ while (backup == SB_Close) {
+ backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ }
+ if ((backup == SB_STerm || backup == SB_ATerm)
+ && ( after == SB_Close
+ || after == SB_Sp
+ || after == SB_Sep
+ || after == SB_CR
+ || after == SB_LF))
+ {
+ return FALSE;
+ }
+
+
+ /* SB11. ( STerm | ATerm ) Close* Sp* ( Sep | CR | LF )? ÷ */
+ temp_pos = lpos;
+ backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ if ( backup == SB_Sep
+ || backup == SB_CR
+ || backup == SB_LF)
+ {
+ lpos = temp_pos;
+ }
+ else {
+ backup = before;
+ }
+ while (backup == SB_Sp) {
+ backup = backup_one_SB(strbeg, &lpos, utf8_target);
+ }
+ while (backup == SB_Close) {
+ backup = backup_one_SB(strbeg, &lpos, utf8_target);
+ }
+ if (backup == SB_STerm || backup == SB_ATerm) {
+ return TRUE;
+ }
+
+ /* Otherwise, do not break.
+ SB12. Any × Any */
+
+ return FALSE;
+}
+
+STATIC SB_enum
+S_advance_one_SB(pTHX_ U8 ** curpos, const U8 * const strend, const bool utf8_target)
+{
+ SB_enum sb;
+
+ PERL_ARGS_ASSERT_ADVANCE_ONE_SB;
+
+ if (*curpos >= strend) {
+ return SB_EDGE;
+ }
+
+ if (utf8_target) {
+ do {
+ *curpos += UTF8SKIP(*curpos);
+ if (*curpos >= strend) {
+ return SB_EDGE;
+ }
+ sb = getSB_VAL_UTF8(*curpos, strend);
+ } while (sb == SB_Extend || sb == SB_Format);
+ }
+ else {
+ do {
+ (*curpos)++;
+ if (*curpos >= strend) {
+ return SB_EDGE;
+ }
+ sb = getSB_VAL_CP(**curpos);
+ } while (sb == SB_Extend || sb == SB_Format);
+ }
+
+ return sb;
+}
+
+STATIC SB_enum
+S_backup_one_SB(pTHX_ const U8 * const strbeg, U8 ** curpos, const bool utf8_target)
+{
+ SB_enum sb;
+
+ PERL_ARGS_ASSERT_BACKUP_ONE_SB;
+
+ if (*curpos < strbeg) {
+ return SB_EDGE;
+ }
+
+ if (utf8_target) {
+ U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg);
+ if (! prev_char_pos) {
+ return SB_EDGE;
+ }
+
+ /* Back up over Extend and Format. curpos is always just to the right
+ * of the characater whose value we are getting */
+ do {
+ U8 * prev_prev_char_pos;
+ if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos, -1,
+ strbeg)))
+ {
+ sb = getSB_VAL_UTF8(prev_prev_char_pos, prev_char_pos);
+ *curpos = prev_char_pos;
+ prev_char_pos = prev_prev_char_pos;
+ }
+ else {
+ *curpos = (U8 *) strbeg;
+ return SB_EDGE;
+ }
+ } while (sb == SB_Extend || sb == SB_Format);
+ }
+ else {
+ do {
+ if (*curpos - 2 < strbeg) {
+ *curpos = (U8 *) strbeg;
+ return SB_EDGE;
+ }
+ (*curpos)--;
+ sb = getSB_VAL_CP(*(*curpos - 1));
+ } while (sb == SB_Extend || sb == SB_Format);
+ }
+
+ return sb;
+}
+
+#define WBcase(before, after) ((WB_ENUM_COUNT * before) + after)
+
+STATIC bool
+S_isWB(pTHX_ WB_enum previous,
+ WB_enum before,
+ WB_enum after,
+ const U8 * const strbeg,
+ const U8 * const curpos,
+ const U8 * const strend,
+ const bool utf8_target)
+{
+ /* Return a boolean as to if the boundary between 'before' and 'after' is
+ * a Unicode word break, using their published algorithm. Context may be
+ * needed to make this determination. If the value for the character
+ * before 'before' is known, it is passed as 'previous'; otherwise that
+ * should be set to WB_UNKNOWN. The other input parameters give the
+ * boundaries and current position in the matching of the string. That
+ * is, 'curpos' marks the position where the character whose wb value is
+ * 'after' begins. See http://www.unicode.org/reports/tr29/ */
+
+ U8 * before_pos = (U8 *) curpos;
+ U8 * after_pos = (U8 *) curpos;
+
+ PERL_ARGS_ASSERT_ISWB;
+
+ /* WB1 and WB2: Break at the start and end of text. */
+ if (before == WB_EDGE || after == WB_EDGE) {
+ return TRUE;
+ }
+
+ /* WB 3: Do not break within CRLF. */
+ if (before == WB_CR && after == WB_LF) {
+ return FALSE;
+ }
+
+ /* WB 3a and WB 3b: Otherwise break before and after Newlines (including CR
+ * and LF) */
+ if ( before == WB_CR || before == WB_LF || before == WB_Newline
+ || after == WB_CR || after == WB_LF || after == WB_Newline)
+ {
+ return TRUE;
+ }
+
+ /* Ignore Format and Extend characters, except when they appear at the
+ * beginning of a region of text.
+ * WB4. X (Extend | Format)* → X. */
+
+ if (after == WB_Extend || after == WB_Format) {
+ return FALSE;
+ }
+
+ if (before == WB_Extend || before == WB_Format) {
+ before = backup_one_WB(&previous, strbeg, &before_pos, utf8_target);
+ }
+
+ switch (WBcase(before, after)) {
+ /* Otherwise, break everywhere (including around ideographs).
+ WB14. Any ÷ Any */
+ default:
+ return TRUE;
+
+ /* Do not break between most letters.
+ WB5. (ALetter | Hebrew_Letter) × (ALetter | Hebrew_Letter) */
+ case WBcase(WB_ALetter, WB_ALetter):
+ case WBcase(WB_ALetter, WB_Hebrew_Letter):
+ case WBcase(WB_Hebrew_Letter, WB_ALetter):
+ case WBcase(WB_Hebrew_Letter, WB_Hebrew_Letter):
+ return FALSE;
+
+ /* Do not break letters across certain punctuation.
+ WB6. (ALetter | Hebrew_Letter)
+ × (MidLetter | MidNumLet | Single_Quote) (ALetter
+ | Hebrew_Letter) */
+ case WBcase(WB_ALetter, WB_MidLetter):
+ case WBcase(WB_ALetter, WB_MidNumLet):
+ case WBcase(WB_ALetter, WB_Single_Quote):
+ case WBcase(WB_Hebrew_Letter, WB_MidLetter):
+ case WBcase(WB_Hebrew_Letter, WB_MidNumLet):
+ /*case WBcase(WB_Hebrew_Letter, WB_Single_Quote):*/
+ after = advance_one_WB(&after_pos, strend, utf8_target);
+ return after != WB_ALetter && after != WB_Hebrew_Letter;
+
+ /* WB7. (ALetter | Hebrew_Letter) (MidLetter | MidNumLet |
+ * Single_Quote) × (ALetter | Hebrew_Letter) */
+ case WBcase(WB_MidLetter, WB_ALetter):
+ case WBcase(WB_MidLetter, WB_Hebrew_Letter):
+ case WBcase(WB_MidNumLet, WB_ALetter):
+ case WBcase(WB_MidNumLet, WB_Hebrew_Letter):
+ case WBcase(WB_Single_Quote, WB_ALetter):
+ case WBcase(WB_Single_Quote, WB_Hebrew_Letter):
+ before
+ = backup_one_WB(&previous, strbeg, &before_pos, utf8_target);
+ return before != WB_ALetter && before != WB_Hebrew_Letter;
+
+ /* WB7a. Hebrew_Letter × Single_Quote */
+ case WBcase(WB_Hebrew_Letter, WB_Single_Quote):
+ return FALSE;
+
+ /* WB7b. Hebrew_Letter × Double_Quote Hebrew_Letter */
+ case WBcase(WB_Hebrew_Letter, WB_Double_Quote):
+ return advance_one_WB(&after_pos, strend, utf8_target)
+ != WB_Hebrew_Letter;
+
+ /* WB7c. Hebrew_Letter Double_Quote × Hebrew_Letter */
+ case WBcase(WB_Double_Quote, WB_Hebrew_Letter):
+ return backup_one_WB(&previous, strbeg, &before_pos, utf8_target)
+ != WB_Hebrew_Letter;
+
+ /* Do not break within sequences of digits, or digits adjacent to
+ * letters (“3a”, or “A3”).
+ WB8. Numeric × Numeric */
+ case WBcase(WB_Numeric, WB_Numeric):
+ return FALSE;
+
+ /* WB9. (ALetter | Hebrew_Letter) × Numeric */
+ case WBcase(WB_ALetter, WB_Numeric):
+ case WBcase(WB_Hebrew_Letter, WB_Numeric):
+ return FALSE;
+
+ /* WB10. Numeric × (ALetter | Hebrew_Letter) */
+ case WBcase(WB_Numeric, WB_ALetter):
+ case WBcase(WB_Numeric, WB_Hebrew_Letter):
+ return FALSE;
+
+ /* Do not break within sequences, such as “3.2” or “3,456.789”.
+ WB11. Numeric (MidNum | MidNumLet | Single_Quote) × Numeric
+ */
+ case WBcase(WB_MidNum, WB_Numeric):
+ case WBcase(WB_MidNumLet, WB_Numeric):
+ case WBcase(WB_Single_Quote, WB_Numeric):
+ return backup_one_WB(&previous, strbeg, &before_pos, utf8_target)
+ != WB_Numeric;
+
+ /* WB12. Numeric × (MidNum | MidNumLet | Single_Quote) Numeric
+ * */
+ case WBcase(WB_Numeric, WB_MidNum):
+ case WBcase(WB_Numeric, WB_MidNumLet):
+ case WBcase(WB_Numeric, WB_Single_Quote):
+ return advance_one_WB(&after_pos, strend, utf8_target)
+ != WB_Numeric;
+
+ /* Do not break between Katakana.
+ WB13. Katakana × Katakana */
+ case WBcase(WB_Katakana, WB_Katakana):
+ return FALSE;
+
+ /* Do not break from extenders.
+ WB13a. (ALetter | Hebrew_Letter | Numeric | Katakana |
+ ExtendNumLet) × ExtendNumLet */
+ case WBcase(WB_ALetter, WB_ExtendNumLet):
+ case WBcase(WB_Hebrew_Letter, WB_ExtendNumLet):
+ case WBcase(WB_Numeric, WB_ExtendNumLet):
+ case WBcase(WB_Katakana, WB_ExtendNumLet):
+ case WBcase(WB_ExtendNumLet, WB_ExtendNumLet):
+ return FALSE;
+
+ /* WB13b. ExtendNumLet × (ALetter | Hebrew_Letter | Numeric
+ * | Katakana) */
+ case WBcase(WB_ExtendNumLet, WB_ALetter):
+ case WBcase(WB_ExtendNumLet, WB_Hebrew_Letter):
+ case WBcase(WB_ExtendNumLet, WB_Numeric):
+ case WBcase(WB_ExtendNumLet, WB_Katakana):
+ return FALSE;
+
+ /* Do not break between regional indicator symbols.
+ WB13c. Regional_Indicator × Regional_Indicator */
+ case WBcase(WB_Regional_Indicator, WB_Regional_Indicator):
+ return FALSE;
+
+ }
+
+ NOT_REACHED; /* NOTREACHED */
+}
+
+STATIC WB_enum
+S_advance_one_WB(pTHX_ U8 ** curpos, const U8 * const strend, const bool utf8_target)
+{
+ WB_enum wb;
+
+ PERL_ARGS_ASSERT_ADVANCE_ONE_WB;
+
+ if (*curpos >= strend) {
+ return WB_EDGE;
+ }
+
+ if (utf8_target) {
+
+ /* Advance over Extend and Format */
+ do {
+ *curpos += UTF8SKIP(*curpos);
+ if (*curpos >= strend) {
+ return WB_EDGE;
+ }
+ wb = getWB_VAL_UTF8(*curpos, strend);
+ } while (wb == WB_Extend || wb == WB_Format);
+ }
+ else {
+ do {
+ (*curpos)++;
+ if (*curpos >= strend) {
+ return WB_EDGE;
+ }
+ wb = getWB_VAL_CP(**curpos);
+ } while (wb == WB_Extend || wb == WB_Format);
+ }
+
+ return wb;
+}
+
+STATIC WB_enum
+S_backup_one_WB(pTHX_ WB_enum * previous, const U8 * const strbeg, U8 ** curpos, const bool utf8_target)
+{
+ WB_enum wb;
+
+ PERL_ARGS_ASSERT_BACKUP_ONE_WB;
+
+ /* If we know what the previous character's break value is, don't have
+ * to look it up */
+ if (*previous != WB_UNKNOWN) {
+ wb = *previous;
+ *previous = WB_UNKNOWN;
+ /* XXX Note that doesn't change curpos, and maybe should */
+
+ /* But we always back up over these two types */
+ if (wb != WB_Extend && wb != WB_Format) {
+ return wb;
+ }
+ }
+
+ if (*curpos < strbeg) {
+ return WB_EDGE;
+ }
+
+ if (utf8_target) {
+ U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg);
+ if (! prev_char_pos) {
+ return WB_EDGE;
+ }
+
+ /* Back up over Extend and Format. curpos is always just to the right
+ * of the characater whose value we are getting */
+ do {
+ U8 * prev_prev_char_pos;
+ if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos,
+ -1,
+ strbeg)))
+ {
+ wb = getWB_VAL_UTF8(prev_prev_char_pos, prev_char_pos);
+ *curpos = prev_char_pos;
+ prev_char_pos = prev_prev_char_pos;
+ }
+ else {
+ *curpos = (U8 *) strbeg;
+ return WB_EDGE;
+ }
+ } while (wb == WB_Extend || wb == WB_Format);
+ }
+ else {
+ do {
+ if (*curpos - 2 < strbeg) {
+ *curpos = (U8 *) strbeg;
+ return WB_EDGE;
+ }
+ (*curpos)--;
+ wb = getWB_VAL_CP(*(*curpos - 1));
+ } while (wb == WB_Extend || wb == WB_Format);
+ }
+
+ return wb;
+}
+
+/* returns -1 on failure, $+[0] on success */
+STATIC SSize_t
+S_regmatch(pTHX_ regmatch_info *reginfo, char *startpos, regnode *prog)
+{
+#if PERL_VERSION < 9 && !defined(PERL_CORE)
+ dMY_CXT;
+#endif
+ dVAR;
+ const bool utf8_target = reginfo->is_utf8_target;
+ const U32 uniflags = UTF8_ALLOW_DEFAULT;
+ REGEXP *rex_sv = reginfo->prog;
+ regexp *rex = ReANY(rex_sv);
+ RXi_GET_DECL(rex,rexi);
+ /* the current state. This is a cached copy of PL_regmatch_state */
+ regmatch_state *st;
+ /* cache heavy used fields of st in registers */
+ regnode *scan;
+ regnode *next;
+ U32 n = 0; /* general value; init to avoid compiler warning */
+ SSize_t ln = 0; /* len or last; init to avoid compiler warning */
+ char *locinput = startpos;
+ char *pushinput; /* where to continue after a PUSH */
+ I32 nextchr; /* is always set to UCHARAT(locinput) */
+
+ bool result = 0; /* return value of S_regmatch */
+ int depth = 0; /* depth of backtrack stack */
+ U32 nochange_depth = 0; /* depth of GOSUB recursion with nochange */
+ const U32 max_nochange_depth =
+ (3 * rex->nparens > MAX_RECURSE_EVAL_NOCHANGE_DEPTH) ?
+ 3 * rex->nparens : MAX_RECURSE_EVAL_NOCHANGE_DEPTH;
+ regmatch_state *yes_state = NULL; /* state to pop to on success of
+ subpattern */
+ /* mark_state piggy backs on the yes_state logic so that when we unwind
+ the stack on success we can update the mark_state as we go */
+ regmatch_state *mark_state = NULL; /* last mark state we have seen */
+ regmatch_state *cur_eval = NULL; /* most recent EVAL_AB state */
+ struct regmatch_state *cur_curlyx = NULL; /* most recent curlyx */
+ U32 state_num;
+ bool no_final = 0; /* prevent failure from backtracking? */
+ bool do_cutgroup = 0; /* no_final only until next branch/trie entry */
+ char *startpoint = locinput;
+ SV *popmark = NULL; /* are we looking for a mark? */
+ SV *sv_commit = NULL; /* last mark name seen in failure */
+ SV *sv_yes_mark = NULL; /* last mark name we have seen
+ during a successful match */
+ U32 lastopen = 0; /* last open we saw */
+ bool has_cutgroup = RX_HAS_CUTGROUP(rex) ? 1 : 0;
+ SV* const oreplsv = GvSVn(PL_replgv);
+ /* these three flags are set by various ops to signal information to
+ * the very next op. They have a useful lifetime of exactly one loop
+ * iteration, and are not preserved or restored by state pushes/pops
+ */
+ bool sw = 0; /* the condition value in (?(cond)a|b) */
+ bool minmod = 0; /* the next "{n,m}" is a "{n,m}?" */
+ int logical = 0; /* the following EVAL is:
+ 0: (?{...})
+ 1: (?(?{...})X|Y)
+ 2: (??{...})
+ or the following IFMATCH/UNLESSM is:
+ false: plain (?=foo)
+ true: used as a condition: (?(?=foo))
+ */
+ PAD* last_pad = NULL;
+ dMULTICALL;
+ I32 gimme = G_SCALAR;
+ CV *caller_cv = NULL; /* who called us */
+ CV *last_pushed_cv = NULL; /* most recently called (?{}) CV */
+ CHECKPOINT runops_cp; /* savestack position before executing EVAL */
+ U32 maxopenparen = 0; /* max '(' index seen so far */
+ int to_complement; /* Invert the result? */
+ _char_class_number classnum;
+ bool is_utf8_pat = reginfo->is_utf8_pat;
+ bool match = FALSE;
+
+
+#ifdef DEBUGGING
+ GET_RE_DEBUG_FLAGS_DECL;
+#endif
+
+ /* protect against undef(*^R) */
+ SAVEFREESV(SvREFCNT_inc_simple_NN(oreplsv));
+
+ /* shut up 'may be used uninitialized' compiler warnings for dMULTICALL */
+ multicall_oldcatch = 0;
+ multicall_cv = NULL;
+ cx = NULL;
+ PERL_UNUSED_VAR(multicall_cop);
+ PERL_UNUSED_VAR(newsp);
+
+
+ PERL_ARGS_ASSERT_REGMATCH;
+
+ DEBUG_OPTIMISE_r( DEBUG_EXECUTE_r({
+ PerlIO_printf(Perl_debug_log,"regmatch start\n");
+ }));
+
+ st = PL_regmatch_state;
+
+ /* Note that nextchr is a byte even in UTF */
+ SET_nextchr;
+ scan = prog;
+ while (scan != NULL) {
+
+ DEBUG_EXECUTE_r( {
+ SV * const prop = sv_newmortal();
+ regnode *rnext=regnext(scan);
+ DUMP_EXEC_POS( locinput, scan, utf8_target );
+ regprop(rex, prop, scan, reginfo, NULL);
+
+ PerlIO_printf(Perl_debug_log,
+ "%3"IVdf":%*s%s(%"IVdf")\n",
+ (IV)(scan - rexi->program), depth*2, "",
+ SvPVX_const(prop),
+ (PL_regkind[OP(scan)] == END || !rnext) ?
+ 0 : (IV)(rnext - rexi->program));
+ });
+
+ next = scan + NEXT_OFF(scan);
+ if (next == scan)
+ next = NULL;
+ state_num = OP(scan);
+
+ REH_CALL_EXEC_NODE_HOOK(rex, scan, reginfo, st);
+ reenter_switch:
+ to_complement = 0;
+
+ SET_nextchr;
+ assert(nextchr < 256 && (nextchr >= 0 || nextchr == NEXTCHR_EOS));
+
+ switch (state_num) {
+ case SBOL: /* /^../ and /\A../ */
+ if (locinput == reginfo->strbeg)
+ break;
+ sayNO;
+
+ case MBOL: /* /^../m */
+ if (locinput == reginfo->strbeg ||
+ (!NEXTCHR_IS_EOS && locinput[-1] == '\n'))
+ {
+ break;
+ }
+ sayNO;
+
+ case GPOS: /* \G */
+ if (locinput == reginfo->ganch)
+ break;
+ sayNO;
+
+ case KEEPS: /* \K */
+ /* update the startpoint */
+ st->u.keeper.val = rex->offs[0].start;
+ rex->offs[0].start = locinput - reginfo->strbeg;
+ PUSH_STATE_GOTO(KEEPS_next, next, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case KEEPS_next_fail:
+ /* rollback the start point change */
+ rex->offs[0].start = st->u.keeper.val;
+ sayNO_SILENT;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case MEOL: /* /..$/m */
+ if (!NEXTCHR_IS_EOS && nextchr != '\n')
+ sayNO;
+ break;
+
+ case SEOL: /* /..$/ */
+ if (!NEXTCHR_IS_EOS && nextchr != '\n')
+ sayNO;
+ if (reginfo->strend - locinput > 1)
+ sayNO;
+ break;
+
+ case EOS: /* \z */
+ if (!NEXTCHR_IS_EOS)
+ sayNO;
+ break;
+
+ case SANY: /* /./s */
+ if (NEXTCHR_IS_EOS)
+ sayNO;
+ goto increment_locinput;
+
+ case REG_ANY: /* /./ */
+ if ((NEXTCHR_IS_EOS) || nextchr == '\n')
+ sayNO;
+ goto increment_locinput;
+
+
+#undef ST
+#define ST st->u.trie
+ case TRIEC: /* (ab|cd) with known charclass */
+ /* In this case the charclass data is available inline so
+ we can fail fast without a lot of extra overhead.
+ */
+ if(!NEXTCHR_IS_EOS && !ANYOF_BITMAP_TEST(scan, nextchr)) {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %sfailed to match trie start class...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+ );
+ sayNO_SILENT;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+ /* FALLTHROUGH */
+ case TRIE: /* (ab|cd) */
+ /* the basic plan of execution of the trie is:
+ * At the beginning, run though all the states, and
+ * find the longest-matching word. Also remember the position
+ * of the shortest matching word. For example, this pattern:
+ * 1 2 3 4 5
+ * ab|a|x|abcd|abc
+ * when matched against the string "abcde", will generate
+ * accept states for all words except 3, with the longest
+ * matching word being 4, and the shortest being 2 (with
+ * the position being after char 1 of the string).
+ *
+ * Then for each matching word, in word order (i.e. 1,2,4,5),
+ * we run the remainder of the pattern; on each try setting
+ * the current position to the character following the word,
+ * returning to try the next word on failure.
+ *
+ * We avoid having to build a list of words at runtime by
+ * using a compile-time structure, wordinfo[].prev, which
+ * gives, for each word, the previous accepting word (if any).
+ * In the case above it would contain the mappings 1->2, 2->0,
+ * 3->0, 4->5, 5->1. We can use this table to generate, from
+ * the longest word (4 above), a list of all words, by
+ * following the list of prev pointers; this gives us the
+ * unordered list 4,5,1,2. Then given the current word we have
+ * just tried, we can go through the list and find the
+ * next-biggest word to try (so if we just failed on word 2,
+ * the next in the list is 4).
+ *
+ * Since at runtime we don't record the matching position in
+ * the string for each word, we have to work that out for
+ * each word we're about to process. The wordinfo table holds
+ * the character length of each word; given that we recorded
+ * at the start: the position of the shortest word and its
+ * length in chars, we just need to move the pointer the
+ * difference between the two char lengths. Depending on
+ * Unicode status and folding, that's cheap or expensive.
+ *
+ * This algorithm is optimised for the case where are only a
+ * small number of accept states, i.e. 0,1, or maybe 2.
+ * With lots of accepts states, and having to try all of them,
+ * it becomes quadratic on number of accept states to find all
+ * the next words.
+ */
+
+ {
+ /* what type of TRIE am I? (utf8 makes this contextual) */
+ DECL_TRIE_TYPE(scan);
+
+ /* what trie are we using right now */
+ reg_trie_data * const trie
+ = (reg_trie_data*)rexi->data->data[ ARG( scan ) ];
+ HV * widecharmap = MUTABLE_HV(rexi->data->data[ ARG( scan ) + 1 ]);
+ U32 state = trie->startstate;
+
+ if (scan->flags == EXACTL || scan->flags == EXACTFLU8) {
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (utf8_target
+ && UTF8_IS_ABOVE_LATIN1(nextchr)
+ && scan->flags == EXACTL)
+ {
+ /* We only output for EXACTL, as we let the folder
+ * output this message for EXACTFLU8 to avoid
+ * duplication */
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput,
+ reginfo->strend);
+ }
+ }
+ if ( trie->bitmap
+ && (NEXTCHR_IS_EOS || !TRIE_BITMAP_TEST(trie, nextchr)))
+ {
+ if (trie->states[ state ].wordnum) {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %smatched empty string...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+ );
+ if (!trie->jump)
+ break;
+ } else {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %sfailed to match trie start class...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+ );
+ sayNO_SILENT;
+ }
+ }
+
+ {
+ U8 *uc = ( U8* )locinput;
+
+ STRLEN len = 0;
+ STRLEN foldlen = 0;
+ U8 *uscan = (U8*)NULL;
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+ U32 charcount = 0; /* how many input chars we have matched */
+ U32 accepted = 0; /* have we seen any accepting states? */
+
+ ST.jump = trie->jump;
+ ST.me = scan;
+ ST.firstpos = NULL;
+ ST.longfold = FALSE; /* char longer if folded => it's harder */
+ ST.nextword = 0;
+
+ /* fully traverse the TRIE; note the position of the
+ shortest accept state and the wordnum of the longest
+ accept state */
+
+ while ( state && uc <= (U8*)(reginfo->strend) ) {
+ U32 base = trie->states[ state ].trans.base;
+ UV uvc = 0;
+ U16 charid = 0;
+ U16 wordnum;
+ wordnum = trie->states[ state ].wordnum;
+
+ if (wordnum) { /* it's an accept state */
+ if (!accepted) {
+ accepted = 1;
+ /* record first match position */
+ if (ST.longfold) {
+ ST.firstpos = (U8*)locinput;
+ ST.firstchars = 0;
+ }
+ else {
+ ST.firstpos = uc;
+ ST.firstchars = charcount;
+ }
+ }
+ if (!ST.nextword || wordnum < ST.nextword)
+ ST.nextword = wordnum;
+ ST.topword = wordnum;
+ }
+
+ DEBUG_TRIE_EXECUTE_r({
+ DUMP_EXEC_POS( (char *)uc, scan, utf8_target );
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sState: %4"UVxf" Accepted: %c ",
+ 2+depth * 2, "", PL_colors[4],
+ (UV)state, (accepted ? 'Y' : 'N'));
+ });
+
+ /* read a char and goto next state */
+ if ( base && (foldlen || uc < (U8*)(reginfo->strend))) {
+ I32 offset;
+ REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc,
+ uscan, len, uvc, charid, foldlen,
+ foldbuf, uniflags);
+ charcount++;
+ if (foldlen>0)
+ ST.longfold = TRUE;
+ if (charid &&
+ ( ((offset =
+ base + charid - 1 - trie->uniquecharcount)) >= 0)
+
+ && ((U32)offset < trie->lasttrans)
+ && trie->trans[offset].check == state)
+ {
+ state = trie->trans[offset].next;
+ }
+ else {
+ state = 0;
+ }
+ uc += len;
+
+ }
+ else {
+ state = 0;
+ }
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log,
+ "Charid:%3x CP:%4"UVxf" After State: %4"UVxf"%s\n",
+ charid, uvc, (UV)state, PL_colors[5] );
+ );
+ }
+ if (!accepted)
+ sayNO;
+
+ /* calculate total number of accept states */
+ {
+ U16 w = ST.topword;
+ accepted = 0;
+ while (w) {
+ w = trie->wordinfo[w].prev;
+ accepted++;
+ }
+ ST.accepted = accepted;
+ }
+
+ DEBUG_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sgot %"IVdf" possible matches%s\n",
+ REPORT_CODE_OFF + depth * 2, "",
+ PL_colors[4], (IV)ST.accepted, PL_colors[5] );
+ );
+ goto trie_first_try; /* jump into the fail handler */
+ }}
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case TRIE_next_fail: /* we failed - try next alternative */
+ {
+ U8 *uc;
+ if ( ST.jump) {
+ REGCP_UNWIND(ST.cp);
+ UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+ }
+ if (!--ST.accepted) {
+ DEBUG_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sTRIE failed...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4],
+ PL_colors[5] );
+ });
+ sayNO_SILENT;
+ }
+ {
+ /* Find next-highest word to process. Note that this code
+ * is O(N^2) per trie run (O(N) per branch), so keep tight */
+ U16 min = 0;
+ U16 word;
+ U16 const nextword = ST.nextword;
+ reg_trie_wordinfo * const wordinfo
+ = ((reg_trie_data*)rexi->data->data[ARG(ST.me)])->wordinfo;
+ for (word=ST.topword; word; word=wordinfo[word].prev) {
+ if (word > nextword && (!min || word < min))
+ min = word;
+ }
+ ST.nextword = min;
+ }
+
+ trie_first_try:
+ if (do_cutgroup) {
+ do_cutgroup = 0;
+ no_final = 0;
+ }
+
+ if ( ST.jump) {
+ ST.lastparen = rex->lastparen;
+ ST.lastcloseparen = rex->lastcloseparen;
+ REGCP_SET(ST.cp);
+ }
+
+ /* find start char of end of current word */
+ {
+ U32 chars; /* how many chars to skip */
+ reg_trie_data * const trie
+ = (reg_trie_data*)rexi->data->data[ARG(ST.me)];
+
+ assert((trie->wordinfo[ST.nextword].len - trie->prefixlen)
+ >= ST.firstchars);
+ chars = (trie->wordinfo[ST.nextword].len - trie->prefixlen)
+ - ST.firstchars;
+ uc = ST.firstpos;
+
+ if (ST.longfold) {
+ /* the hard option - fold each char in turn and find
+ * its folded length (which may be different */
+ U8 foldbuf[UTF8_MAXBYTES_CASE + 1];
+ STRLEN foldlen;
+ STRLEN len;
+ UV uvc;
+ U8 *uscan;
+
+ while (chars) {
+ if (utf8_target) {
+ uvc = utf8n_to_uvchr((U8*)uc, UTF8_MAXLEN, &len,
+ uniflags);
+ uc += len;
+ }
+ else {
+ uvc = *uc;
+ uc++;
+ }
+ uvc = to_uni_fold(uvc, foldbuf, &foldlen);
+ uscan = foldbuf;
+ while (foldlen) {
+ if (!--chars)
+ break;
+ uvc = utf8n_to_uvchr(uscan, UTF8_MAXLEN, &len,
+ uniflags);
+ uscan += len;
+ foldlen -= len;
+ }
+ }
+ }
+ else {
+ if (utf8_target)
+ while (chars--)
+ uc += UTF8SKIP(uc);
+ else
+ uc += chars;
+ }
+ }
+
+ scan = ST.me + ((ST.jump && ST.jump[ST.nextword])
+ ? ST.jump[ST.nextword]
+ : NEXT_OFF(ST.me));
+
+ DEBUG_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sTRIE matched word #%d, continuing%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4],
+ ST.nextword,
+ PL_colors[5]
+ );
+ });
+
+ if (ST.accepted > 1 || has_cutgroup) {
+ PUSH_STATE_GOTO(TRIE_next, scan, (char*)uc);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+ /* only one choice left - just continue */
+ DEBUG_EXECUTE_r({
+ AV *const trie_words
+ = MUTABLE_AV(rexi->data->data[ARG(ST.me)+TRIE_WORDS_OFFSET]);
+ SV ** const tmp = trie_words
+ ? av_fetch(trie_words, ST.nextword - 1, 0) : NULL;
+ SV *sv= tmp ? sv_newmortal() : NULL;
+
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sonly one match left, short-circuiting: #%d <%s>%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4],
+ ST.nextword,
+ tmp ? pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 0,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)|PERL_PV_ESCAPE_NONASCII
+ )
+ : "not compiled under -Dr",
+ PL_colors[5] );
+ });
+
+ locinput = (char*)uc;
+ continue; /* execute rest of RE */
+ /* NOTREACHED */
+ }
+#undef ST
+
+ case EXACTL: /* /abc/l */
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+
+ /* Complete checking would involve going through every character
+ * matched by the string to see if any is above latin1. But the
+ * comparision otherwise might very well be a fast assembly
+ * language routine, and I (khw) don't think slowing things down
+ * just to check for this warning is worth it. So this just checks
+ * the first character */
+ if (utf8_target && UTF8_IS_ABOVE_LATIN1(*locinput)) {
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput, reginfo->strend);
+ }
+ /* FALLTHROUGH */
+ case EXACT: { /* /abc/ */
+ char *s = STRING(scan);
+ ln = STR_LEN(scan);
+ if (utf8_target != is_utf8_pat) {
+ /* The target and the pattern have differing utf8ness. */
+ char *l = locinput;
+ const char * const e = s + ln;
+
+ if (utf8_target) {
+ /* The target is utf8, the pattern is not utf8.
+ * Above-Latin1 code points can't match the pattern;
+ * invariants match exactly, and the other Latin1 ones need
+ * to be downgraded to a single byte in order to do the
+ * comparison. (If we could be confident that the target
+ * is not malformed, this could be refactored to have fewer
+ * tests by just assuming that if the first bytes match, it
+ * is an invariant, but there are tests in the test suite
+ * dealing with (??{...}) which violate this) */
+ while (s < e) {
+ if (l >= reginfo->strend
+ || UTF8_IS_ABOVE_LATIN1(* (U8*) l))
+ {
+ sayNO;
+ }
+ if (UTF8_IS_INVARIANT(*(U8*)l)) {
+ if (*l != *s) {
+ sayNO;
+ }
+ l++;
+ }
+ else {
+ if (TWO_BYTE_UTF8_TO_NATIVE(*l, *(l+1)) != * (U8*) s)
+ {
+ sayNO;
+ }
+ l += 2;
+ }
+ s++;
+ }
+ }
+ else {
+ /* The target is not utf8, the pattern is utf8. */
+ while (s < e) {
+ if (l >= reginfo->strend
+ || UTF8_IS_ABOVE_LATIN1(* (U8*) s))
+ {
+ sayNO;
+ }
+ if (UTF8_IS_INVARIANT(*(U8*)s)) {
+ if (*s != *l) {
+ sayNO;
+ }
+ s++;
+ }
+ else {
+ if (TWO_BYTE_UTF8_TO_NATIVE(*s, *(s+1)) != * (U8*) l)
+ {
+ sayNO;
+ }
+ s += 2;
+ }
+ l++;
+ }
+ }
+ locinput = l;
+ }
+ else {
+ /* The target and the pattern have the same utf8ness. */
+ /* Inline the first character, for speed. */
+ if (reginfo->strend - locinput < ln
+ || UCHARAT(s) != nextchr
+ || (ln > 1 && memNE(s, locinput, ln)))
+ {
+ sayNO;
+ }
+ locinput += ln;
+ }
+ break;
+ }
+
+ case EXACTFL: { /* /abc/il */
+ re_fold_t folder;
+ const U8 * fold_array;
+ const char * s;
+ U32 fold_utf8_flags;
+
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ folder = foldEQ_locale;
+ fold_array = PL_fold_locale;
+ fold_utf8_flags = FOLDEQ_LOCALE;
+ goto do_exactf;
+
+ case EXACTFLU8: /* /abc/il; but all 'abc' are above 255, so
+ is effectively /u; hence to match, target
+ must be UTF-8. */
+ if (! utf8_target) {
+ sayNO;
+ }
+ fold_utf8_flags = FOLDEQ_LOCALE | FOLDEQ_S1_ALREADY_FOLDED
+ | FOLDEQ_S1_FOLDS_SANE;
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ goto do_exactf;
+
+ case EXACTFU_SS: /* /\x{df}/iu */
+ case EXACTFU: /* /abc/iu */
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ fold_utf8_flags = is_utf8_pat ? FOLDEQ_S1_ALREADY_FOLDED : 0;
+ goto do_exactf;
+
+ case EXACTFA_NO_TRIE: /* This node only generated for non-utf8
+ patterns */
+ assert(! is_utf8_pat);
+ /* FALLTHROUGH */
+ case EXACTFA: /* /abc/iaa */
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ fold_utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_exactf;
+
+ case EXACTF: /* /abc/i This node only generated for
+ non-utf8 patterns */
+ assert(! is_utf8_pat);
+ folder = foldEQ;
+ fold_array = PL_fold;
+ fold_utf8_flags = 0;
+
+ do_exactf:
+ s = STRING(scan);
+ ln = STR_LEN(scan);
+
+ if (utf8_target
+ || is_utf8_pat
+ || state_num == EXACTFU_SS
+ || (state_num == EXACTFL && IN_UTF8_CTYPE_LOCALE))
+ {
+ /* Either target or the pattern are utf8, or has the issue where
+ * the fold lengths may differ. */
+ const char * const l = locinput;
+ char *e = reginfo->strend;
+
+ if (! foldEQ_utf8_flags(s, 0, ln, is_utf8_pat,
+ l, &e, 0, utf8_target, fold_utf8_flags))
+ {
+ sayNO;
+ }
+ locinput = e;
+ break;
+ }
+
+ /* Neither the target nor the pattern are utf8 */
+ if (UCHARAT(s) != nextchr
+ && !NEXTCHR_IS_EOS
+ && UCHARAT(s) != fold_array[nextchr])
+ {
+ sayNO;
+ }
+ if (reginfo->strend - locinput < ln)
+ sayNO;
+ if (ln > 1 && ! folder(s, locinput, ln))
+ sayNO;
+ locinput += ln;
+ break;
+ }
+
+ case NBOUNDL: /* /\B/l */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case BOUNDL: /* /\b/l */
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+
+ if (FLAGS(scan) != TRADITIONAL_BOUND) {
+ if (! IN_UTF8_CTYPE_LOCALE) {
+ Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
+ B_ON_NON_UTF8_LOCALE_IS_WRONG);
+ }
+ goto boundu;
+ }
+
+ if (utf8_target) {
+ if (locinput == reginfo->strbeg)
+ ln = isWORDCHAR_LC('\n');
+ else {
+ ln = isWORDCHAR_LC_utf8(reghop3((U8*)locinput, -1,
+ (U8*)(reginfo->strbeg)));
+ }
+ n = (NEXTCHR_IS_EOS)
+ ? isWORDCHAR_LC('\n')
+ : isWORDCHAR_LC_utf8((U8*)locinput);
+ }
+ else { /* Here the string isn't utf8 */
+ ln = (locinput == reginfo->strbeg)
+ ? isWORDCHAR_LC('\n')
+ : isWORDCHAR_LC(UCHARAT(locinput - 1));
+ n = (NEXTCHR_IS_EOS)
+ ? isWORDCHAR_LC('\n')
+ : isWORDCHAR_LC(nextchr);
+ }
+ if (to_complement ^ (ln == n)) {
+ sayNO;
+ }
+ break;
+
+ case NBOUND: /* /\B/ */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case BOUND: /* /\b/ */
+ if (utf8_target) {
+ goto bound_utf8;
+ }
+ goto bound_ascii_match_only;
+
+ case NBOUNDA: /* /\B/a */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case BOUNDA: /* /\b/a */
+
+ bound_ascii_match_only:
+ /* Here the string isn't utf8, or is utf8 and only ascii characters
+ * are to match \w. In the latter case looking at the byte just
+ * prior to the current one may be just the final byte of a
+ * multi-byte character. This is ok. There are two cases:
+ * 1) it is a single byte character, and then the test is doing
+ * just what it's supposed to.
+ * 2) it is a multi-byte character, in which case the final byte is
+ * never mistakable for ASCII, and so the test will say it is
+ * not a word character, which is the correct answer. */
+ ln = (locinput == reginfo->strbeg)
+ ? isWORDCHAR_A('\n')
+ : isWORDCHAR_A(UCHARAT(locinput - 1));
+ n = (NEXTCHR_IS_EOS)
+ ? isWORDCHAR_A('\n')
+ : isWORDCHAR_A(nextchr);
+ if (to_complement ^ (ln == n)) {
+ sayNO;
+ }
+ break;
+
+ case NBOUNDU: /* /\B/u */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case BOUNDU: /* /\b/u */
+
+ boundu:
+ if (utf8_target) {
+
+ bound_utf8:
+ switch((bound_type) FLAGS(scan)) {
+ case TRADITIONAL_BOUND:
+ ln = (locinput == reginfo->strbeg)
+ ? 0 /* isWORDCHAR_L1('\n') */
+ : isWORDCHAR_utf8(reghop3((U8*)locinput, -1,
+ (U8*)(reginfo->strbeg)));
+ n = (NEXTCHR_IS_EOS)
+ ? 0 /* isWORDCHAR_L1('\n') */
+ : isWORDCHAR_utf8((U8*)locinput);
+ match = cBOOL(ln != n);
+ break;
+ case GCB_BOUND:
+ if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+ match = TRUE; /* GCB always matches at begin and
+ end */
+ }
+ else {
+ /* Find the gcb values of previous and current
+ * chars, then see if is a break point */
+ match = isGCB(getGCB_VAL_UTF8(
+ reghop3((U8*)locinput,
+ -1,
+ (U8*)(reginfo->strbeg)),
+ (U8*) reginfo->strend),
+ getGCB_VAL_UTF8((U8*) locinput,
+ (U8*) reginfo->strend));
+ }
+ break;
+
+ case SB_BOUND: /* Always matches at begin and end */
+ if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+ match = TRUE;
+ }
+ else {
+ match = isSB(getSB_VAL_UTF8(
+ reghop3((U8*)locinput,
+ -1,
+ (U8*)(reginfo->strbeg)),
+ (U8*) reginfo->strend),
+ getSB_VAL_UTF8((U8*) locinput,
+ (U8*) reginfo->strend),
+ (U8*) reginfo->strbeg,
+ (U8*) locinput,
+ (U8*) reginfo->strend,
+ utf8_target);
+ }
+ break;
+
+ case WB_BOUND:
+ if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+ match = TRUE;
+ }
+ else {
+ match = isWB(WB_UNKNOWN,
+ getWB_VAL_UTF8(
+ reghop3((U8*)locinput,
+ -1,
+ (U8*)(reginfo->strbeg)),
+ (U8*) reginfo->strend),
+ getWB_VAL_UTF8((U8*) locinput,
+ (U8*) reginfo->strend),
+ (U8*) reginfo->strbeg,
+ (U8*) locinput,
+ (U8*) reginfo->strend,
+ utf8_target);
+ }
+ break;
+ }
+ }
+ else { /* Not utf8 target */
+ switch((bound_type) FLAGS(scan)) {
+ case TRADITIONAL_BOUND:
+ ln = (locinput == reginfo->strbeg)
+ ? 0 /* isWORDCHAR_L1('\n') */
+ : isWORDCHAR_L1(UCHARAT(locinput - 1));
+ n = (NEXTCHR_IS_EOS)
+ ? 0 /* isWORDCHAR_L1('\n') */
+ : isWORDCHAR_L1(nextchr);
+ match = cBOOL(ln != n);
+ break;
+
+ case GCB_BOUND:
+ if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+ match = TRUE; /* GCB always matches at begin and
+ end */
+ }
+ else { /* Only CR-LF combo isn't a GCB in 0-255
+ range */
+ match = UCHARAT(locinput - 1) != '\r'
+ || UCHARAT(locinput) != '\n';
+ }
+ break;
+
+ case SB_BOUND: /* Always matches at begin and end */
+ if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+ match = TRUE;
+ }
+ else {
+ match = isSB(getSB_VAL_CP(UCHARAT(locinput -1)),
+ getSB_VAL_CP(UCHARAT(locinput)),
+ (U8*) reginfo->strbeg,
+ (U8*) locinput,
+ (U8*) reginfo->strend,
+ utf8_target);
+ }
+ break;
+
+ case WB_BOUND:
+ if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+ match = TRUE;
+ }
+ else {
+ match = isWB(WB_UNKNOWN,
+ getWB_VAL_CP(UCHARAT(locinput -1)),
+ getWB_VAL_CP(UCHARAT(locinput)),
+ (U8*) reginfo->strbeg,
+ (U8*) locinput,
+ (U8*) reginfo->strend,
+ utf8_target);
+ }
+ break;
+ }
+ }
+
+ if (to_complement ^ ! match) {
+ sayNO;
+ }
+ break;
+
+ case ANYOFL: /* /[abc]/l */
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ /* FALLTHROUGH */
+ case ANYOF: /* /[abc]/ */
+ if (NEXTCHR_IS_EOS)
+ sayNO;
+ if (utf8_target) {
+ if (!reginclass(rex, scan, (U8*)locinput, (U8*)reginfo->strend,
+ utf8_target))
+ sayNO;
+ locinput += UTF8SKIP(locinput);
+ }
+ else {
+ if (!REGINCLASS(rex, scan, (U8*)locinput))
+ sayNO;
+ locinput++;
+ }
+ break;
+
+ /* The argument (FLAGS) to all the POSIX node types is the class number
+ * */
+
+ case NPOSIXL: /* \W or [:^punct:] etc. under /l */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXL: /* \w or [:punct:] etc. under /l */
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (NEXTCHR_IS_EOS)
+ sayNO;
+
+ /* Use isFOO_lc() for characters within Latin1. (Note that
+ * UTF8_IS_INVARIANT works even on non-UTF-8 strings, or else
+ * wouldn't be invariant) */
+ if (UTF8_IS_INVARIANT(nextchr) || ! utf8_target) {
+ if (! (to_complement ^ cBOOL(isFOO_lc(FLAGS(scan), (U8) nextchr)))) {
+ sayNO;
+ }
+ }
+ else if (UTF8_IS_DOWNGRADEABLE_START(nextchr)) {
+ if (! (to_complement ^ cBOOL(isFOO_lc(FLAGS(scan),
+ (U8) TWO_BYTE_UTF8_TO_NATIVE(nextchr,
+ *(locinput + 1))))))
+ {
+ sayNO;
+ }
+ }
+ else { /* Here, must be an above Latin-1 code point */
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput, reginfo->strend);
+ goto utf8_posix_above_latin1;
+ }
+
+ /* Here, must be utf8 */
+ locinput += UTF8SKIP(locinput);
+ break;
+
+ case NPOSIXD: /* \W or [:^punct:] etc. under /d */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXD: /* \w or [:punct:] etc. under /d */
+ if (utf8_target) {
+ goto utf8_posix;
+ }
+ goto posixa;
+
+ case NPOSIXA: /* \W or [:^punct:] etc. under /a */
+
+ if (NEXTCHR_IS_EOS) {
+ sayNO;
+ }
+
+ /* All UTF-8 variants match */
+ if (! UTF8_IS_INVARIANT(nextchr)) {
+ goto increment_locinput;
+ }
+
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXA: /* \w or [:punct:] etc. under /a */
+
+ posixa:
+ /* We get here through POSIXD, NPOSIXD, and NPOSIXA when not in
+ * UTF-8, and also from NPOSIXA even in UTF-8 when the current
+ * character is a single byte */
+
+ if (NEXTCHR_IS_EOS
+ || ! (to_complement ^ cBOOL(_generic_isCC_A(nextchr,
+ FLAGS(scan)))))
+ {
+ sayNO;
+ }
+
+ /* Here we are either not in utf8, or we matched a utf8-invariant,
+ * so the next char is the next byte */
+ locinput++;
+ break;
+
+ case NPOSIXU: /* \W or [:^punct:] etc. under /u */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXU: /* \w or [:punct:] etc. under /u */
+ utf8_posix:
+ if (NEXTCHR_IS_EOS) {
+ sayNO;
+ }
+
+ /* Use _generic_isCC() for characters within Latin1. (Note that
+ * UTF8_IS_INVARIANT works even on non-UTF-8 strings, or else
+ * wouldn't be invariant) */
+ if (UTF8_IS_INVARIANT(nextchr) || ! utf8_target) {
+ if (! (to_complement ^ cBOOL(_generic_isCC(nextchr,
+ FLAGS(scan)))))
+ {
+ sayNO;
+ }
+ locinput++;
+ }
+ else if (UTF8_IS_DOWNGRADEABLE_START(nextchr)) {
+ if (! (to_complement
+ ^ cBOOL(_generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(nextchr,
+ *(locinput + 1)),
+ FLAGS(scan)))))
+ {
+ sayNO;
+ }
+ locinput += 2;
+ }
+ else { /* Handle above Latin-1 code points */
+ utf8_posix_above_latin1:
+ classnum = (_char_class_number) FLAGS(scan);
+ if (classnum < _FIRST_NON_SWASH_CC) {
+
+ /* Here, uses a swash to find such code points. Load if if
+ * not done already */
+ if (! PL_utf8_swash_ptrs[classnum]) {
+ U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+ PL_utf8_swash_ptrs[classnum]
+ = _core_swash_init("utf8",
+ "",
+ &PL_sv_undef, 1, 0,
+ PL_XPosix_ptrs[classnum], &flags);
+ }
+ if (! (to_complement
+ ^ cBOOL(swash_fetch(PL_utf8_swash_ptrs[classnum],
+ (U8 *) locinput, TRUE))))
+ {
+ sayNO;
+ }
+ }
+ else { /* Here, uses macros to find above Latin-1 code points */
+ switch (classnum) {
+ case _CC_ENUM_SPACE:
+ if (! (to_complement
+ ^ cBOOL(is_XPERLSPACE_high(locinput))))
+ {
+ sayNO;
+ }
+ break;
+ case _CC_ENUM_BLANK:
+ if (! (to_complement
+ ^ cBOOL(is_HORIZWS_high(locinput))))
+ {
+ sayNO;
+ }
+ break;
+ case _CC_ENUM_XDIGIT:
+ if (! (to_complement
+ ^ cBOOL(is_XDIGIT_high(locinput))))
+ {
+ sayNO;
+ }
+ break;
+ case _CC_ENUM_VERTSPACE:
+ if (! (to_complement
+ ^ cBOOL(is_VERTWS_high(locinput))))
+ {
+ sayNO;
+ }
+ break;
+ default: /* The rest, e.g. [:cntrl:], can't match
+ above Latin1 */
+ if (! to_complement) {
+ sayNO;
+ }
+ break;
+ }
+ }
+ locinput += UTF8SKIP(locinput);
+ }
+ break;
+
+ case CLUMP: /* Match \X: logical Unicode character. This is defined as
+ a Unicode extended Grapheme Cluster */
+ if (NEXTCHR_IS_EOS)
+ sayNO;
+ if (! utf8_target) {
+
+ /* Match either CR LF or '.', as all the other possibilities
+ * require utf8 */
+ locinput++; /* Match the . or CR */
+ if (nextchr == '\r' /* And if it was CR, and the next is LF,
+ match the LF */
+ && locinput < reginfo->strend
+ && UCHARAT(locinput) == '\n')
+ {
+ locinput++;
+ }
+ }
+ else {
+
+ /* Get the gcb type for the current character */
+ GCB_enum prev_gcb = getGCB_VAL_UTF8((U8*) locinput,
+ (U8*) reginfo->strend);
+
+ /* Then scan through the input until we get to the first
+ * character whose type is supposed to be a gcb with the
+ * current character. (There is always a break at the
+ * end-of-input) */
+ locinput += UTF8SKIP(locinput);
+ while (locinput < reginfo->strend) {
+ GCB_enum cur_gcb = getGCB_VAL_UTF8((U8*) locinput,
+ (U8*) reginfo->strend);
+ if (isGCB(prev_gcb, cur_gcb)) {
+ break;
+ }
+
+ prev_gcb = cur_gcb;
+ locinput += UTF8SKIP(locinput);
+ }
+
+
+ }
+ break;
+
+ case NREFFL: /* /\g{name}/il */
+ { /* The capture buffer cases. The ones beginning with N for the
+ named buffers just convert to the equivalent numbered and
+ pretend they were called as the corresponding numbered buffer
+ op. */
+ /* don't initialize these in the declaration, it makes C++
+ unhappy */
+ const char *s;
+ char type;
+ re_fold_t folder;
+ const U8 *fold_array;
+ UV utf8_fold_flags;
+
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ folder = foldEQ_locale;
+ fold_array = PL_fold_locale;
+ type = REFFL;
+ utf8_fold_flags = FOLDEQ_LOCALE;
+ goto do_nref;
+
+ case NREFFA: /* /\g{name}/iaa */
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ type = REFFA;
+ utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_nref;
+
+ case NREFFU: /* /\g{name}/iu */
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ type = REFFU;
+ utf8_fold_flags = 0;
+ goto do_nref;
+
+ case NREFF: /* /\g{name}/i */
+ folder = foldEQ;
+ fold_array = PL_fold;
+ type = REFF;
+ utf8_fold_flags = 0;
+ goto do_nref;
+
+ case NREF: /* /\g{name}/ */
+ type = REF;
+ folder = NULL;
+ fold_array = NULL;
+ utf8_fold_flags = 0;
+ do_nref:
+
+ /* For the named back references, find the corresponding buffer
+ * number */
+ n = reg_check_named_buff_matched(rex,scan);
+
+ if ( ! n ) {
+ sayNO;
+ }
+ goto do_nref_ref_common;
+
+ case REFFL: /* /\1/il */
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ folder = foldEQ_locale;
+ fold_array = PL_fold_locale;
+ utf8_fold_flags = FOLDEQ_LOCALE;
+ goto do_ref;
+
+ case REFFA: /* /\1/iaa */
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_ref;
+
+ case REFFU: /* /\1/iu */
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ utf8_fold_flags = 0;
+ goto do_ref;
+
+ case REFF: /* /\1/i */
+ folder = foldEQ;
+ fold_array = PL_fold;
+ utf8_fold_flags = 0;
+ goto do_ref;
+
+ case REF: /* /\1/ */
+ folder = NULL;
+ fold_array = NULL;
+ utf8_fold_flags = 0;
+
+ do_ref:
+ type = OP(scan);
+ n = ARG(scan); /* which paren pair */
+
+ do_nref_ref_common:
+ ln = rex->offs[n].start;
+ reginfo->poscache_iter = reginfo->poscache_maxiter; /* Void cache */
+ if (rex->lastparen < n || ln == -1)
+ sayNO; /* Do not match unless seen CLOSEn. */
+ if (ln == rex->offs[n].end)
+ break;
+
+ s = reginfo->strbeg + ln;
+ if (type != REF /* REF can do byte comparison */
+ && (utf8_target || type == REFFU || type == REFFL))
+ {
+ char * limit = reginfo->strend;
+
+ /* This call case insensitively compares the entire buffer
+ * at s, with the current input starting at locinput, but
+ * not going off the end given by reginfo->strend, and
+ * returns in <limit> upon success, how much of the
+ * current input was matched */
+ if (! foldEQ_utf8_flags(s, NULL, rex->offs[n].end - ln, utf8_target,
+ locinput, &limit, 0, utf8_target, utf8_fold_flags))
+ {
+ sayNO;
+ }
+ locinput = limit;
+ break;
+ }
+
+ /* Not utf8: Inline the first character, for speed. */
+ if (!NEXTCHR_IS_EOS &&
+ UCHARAT(s) != nextchr &&
+ (type == REF ||
+ UCHARAT(s) != fold_array[nextchr]))
+ sayNO;
+ ln = rex->offs[n].end - ln;
+ if (locinput + ln > reginfo->strend)
+ sayNO;
+ if (ln > 1 && (type == REF
+ ? memNE(s, locinput, ln)
+ : ! folder(s, locinput, ln)))
+ sayNO;
+ locinput += ln;
+ break;
+ }
+
+ case NOTHING: /* null op; e.g. the 'nothing' following
+ * the '*' in m{(a+|b)*}' */
+ break;
+ case TAIL: /* placeholder while compiling (A|B|C) */
+ break;
+
+#undef ST
+#define ST st->u.eval
+ {
+ SV *ret;
+ REGEXP *re_sv;
+ regexp *re;
+ regexp_internal *rei;
+ regnode *startpoint;
+
+ case GOSTART: /* (?R) */
+ case GOSUB: /* /(...(?1))/ /(...(?&foo))/ */
+ if (cur_eval && cur_eval->locinput==locinput) {
+ if (cur_eval->u.eval.close_paren == (U32)ARG(scan))
+ Perl_croak(aTHX_ "Infinite recursion in regex");
+ if ( ++nochange_depth > max_nochange_depth )
+ Perl_croak(aTHX_
+ "Pattern subroutine nesting without pos change"
+ " exceeded limit in regex");
+ } else {
+ nochange_depth = 0;
+ }
+ re_sv = rex_sv;
+ re = rex;
+ rei = rexi;
+ if (OP(scan)==GOSUB) {
+ startpoint = scan + ARG2L(scan);
+ ST.close_paren = ARG(scan);
+ } else {
+ startpoint = rei->program+1;
+ ST.close_paren = 0;
+ }
+
+ /* Save all the positions seen so far. */
+ ST.cp = regcppush(rex, 0, maxopenparen);
+ REGCP_SET(ST.lastcp);
+
+ /* and then jump to the code we share with EVAL */
+ goto eval_recurse_doit;
+ /* NOTREACHED */
+
+ case EVAL: /* /(?{A})B/ /(??{A})B/ and /(?(?{A})X|Y)B/ */
+ if (cur_eval && cur_eval->locinput==locinput) {
+ if ( ++nochange_depth > max_nochange_depth )
+ Perl_croak(aTHX_ "EVAL without pos change exceeded limit in regex");
+ } else {
+ nochange_depth = 0;
+ }
+ {
+ /* execute the code in the {...} */
+
+ dSP;
+ IV before;
+ OP * const oop = PL_op;
+ COP * const ocurcop = PL_curcop;
+ OP *nop;
+ CV *newcv;
+
+ /* save *all* paren positions */
+ regcppush(rex, 0, maxopenparen);
+ REGCP_SET(runops_cp);
+
+ if (!caller_cv)
+ caller_cv = find_runcv(NULL);
+
+ n = ARG(scan);
+
+ if (rexi->data->what[n] == 'r') { /* code from an external qr */
+ newcv = (ReANY(
+ (REGEXP*)(rexi->data->data[n])
+ ))->qr_anoncv
+ ;
+ nop = (OP*)rexi->data->data[n+1];
+ }
+ else if (rexi->data->what[n] == 'l') { /* literal code */
+ newcv = caller_cv;
+ nop = (OP*)rexi->data->data[n];
+ assert(CvDEPTH(newcv));
+ }
+ else {
+ /* literal with own CV */
+ assert(rexi->data->what[n] == 'L');
+ newcv = rex->qr_anoncv;
+ nop = (OP*)rexi->data->data[n];
+ }
+
+ /* normally if we're about to execute code from the same
+ * CV that we used previously, we just use the existing
+ * CX stack entry. However, its possible that in the
+ * meantime we may have backtracked, popped from the save
+ * stack, and undone the SAVECOMPPAD(s) associated with
+ * PUSH_MULTICALL; in which case PL_comppad no longer
+ * points to newcv's pad. */
+ if (newcv != last_pushed_cv || PL_comppad != last_pad)
+ {
+ U8 flags = (CXp_SUB_RE |
+ ((newcv == caller_cv) ? CXp_SUB_RE_FAKE : 0));
+ if (last_pushed_cv) {
+ CHANGE_MULTICALL_FLAGS(newcv, flags);
+ }
+ else {
+ PUSH_MULTICALL_FLAGS(newcv, flags);
+ }
+ last_pushed_cv = newcv;
+ }
+ else {
+ /* these assignments are just to silence compiler
+ * warnings */
+ multicall_cop = NULL;
+ newsp = NULL;
+ }
+ last_pad = PL_comppad;
+
+ /* the initial nextstate you would normally execute
+ * at the start of an eval (which would cause error
+ * messages to come from the eval), may be optimised
+ * away from the execution path in the regex code blocks;
+ * so manually set PL_curcop to it initially */
+ {
+ OP *o = cUNOPx(nop)->op_first;
+ assert(o->op_type == OP_NULL);
+ if (o->op_targ == OP_SCOPE) {
+ o = cUNOPo->op_first;
+ }
+ else {
+ assert(o->op_targ == OP_LEAVE);
+ o = cUNOPo->op_first;
+ assert(o->op_type == OP_ENTER);
+ o = OpSIBLING(o);
+ }
+
+ if (o->op_type != OP_STUB) {
+ assert( o->op_type == OP_NEXTSTATE
+ || o->op_type == OP_DBSTATE
+ || (o->op_type == OP_NULL
+ && ( o->op_targ == OP_NEXTSTATE
+ || o->op_targ == OP_DBSTATE
+ )
+ )
+ );
+ PL_curcop = (COP*)o;
+ }
+ }
+ nop = nop->op_next;
+
+ DEBUG_STATE_r( PerlIO_printf(Perl_debug_log,
+ " re EVAL PL_op=0x%"UVxf"\n", PTR2UV(nop)) );
+
+ rex->offs[0].end = locinput - reginfo->strbeg;
+ if (reginfo->info_aux_eval->pos_magic)
+ MgBYTEPOS_set(reginfo->info_aux_eval->pos_magic,
+ reginfo->sv, reginfo->strbeg,
+ locinput - reginfo->strbeg);
+
+ if (sv_yes_mark) {
+ SV *sv_mrk = get_sv("REGMARK", 1);
+ sv_setsv(sv_mrk, sv_yes_mark);
+ }
+
+ /* we don't use MULTICALL here as we want to call the
+ * first op of the block of interest, rather than the
+ * first op of the sub */
+ before = (IV)(SP-PL_stack_base);
+ PL_op = nop;
+ CALLRUNOPS(aTHX); /* Scalar context. */
+ SPAGAIN;
+ if ((IV)(SP-PL_stack_base) == before)
+ ret = &PL_sv_undef; /* protect against empty (?{}) blocks. */
+ else {
+ ret = POPs;
+ PUTBACK;
+ }
+
+ /* before restoring everything, evaluate the returned
+ * value, so that 'uninit' warnings don't use the wrong
+ * PL_op or pad. Also need to process any magic vars
+ * (e.g. $1) *before* parentheses are restored */
+
+ PL_op = NULL;
+
+ re_sv = NULL;
+ if (logical == 0) /* (?{})/ */
+ sv_setsv(save_scalar(PL_replgv), ret); /* $^R */
+ else if (logical == 1) { /* /(?(?{...})X|Y)/ */
+ sw = cBOOL(SvTRUE(ret));
+ logical = 0;
+ }
+ else { /* /(??{}) */
+ /* if its overloaded, let the regex compiler handle
+ * it; otherwise extract regex, or stringify */
+ if (SvGMAGICAL(ret))
+ ret = sv_mortalcopy(ret);
+ if (!SvAMAGIC(ret)) {
+ SV *sv = ret;
+ if (SvROK(sv))
+ sv = SvRV(sv);
+ if (SvTYPE(sv) == SVt_REGEXP)
+ re_sv = (REGEXP*) sv;
+ else if (SvSMAGICAL(ret)) {
+ MAGIC *mg = mg_find(ret, PERL_MAGIC_qr);
+ if (mg)
+ re_sv = (REGEXP *) mg->mg_obj;
+ }
+
+ /* force any undef warnings here */
+ if (!re_sv && !SvPOK(ret) && !SvNIOK(ret)) {
+ ret = sv_mortalcopy(ret);
+ (void) SvPV_force_nolen(ret);
+ }
+ }
+
+ }
+
+ /* *** Note that at this point we don't restore
+ * PL_comppad, (or pop the CxSUB) on the assumption it may
+ * be used again soon. This is safe as long as nothing
+ * in the regexp code uses the pad ! */
+ PL_op = oop;
+ PL_curcop = ocurcop;
+ S_regcp_restore(aTHX_ rex, runops_cp, &maxopenparen);
+ PL_curpm = PL_reg_curpm;
+
+ if (logical != 2)
+ break;
+ }
+
+ /* only /(??{})/ from now on */
+ logical = 0;
+ {
+ /* extract RE object from returned value; compiling if
+ * necessary */
+
+ if (re_sv) {
+ re_sv = reg_temp_copy(NULL, re_sv);
+ }
+ else {
+ U32 pm_flags = 0;
+
+ if (SvUTF8(ret) && IN_BYTES) {
+ /* In use 'bytes': make a copy of the octet
+ * sequence, but without the flag on */
+ STRLEN len;
+ const char *const p = SvPV(ret, len);
+ ret = newSVpvn_flags(p, len, SVs_TEMP);
+ }
+ if (rex->intflags & PREGf_USE_RE_EVAL)
+ pm_flags |= PMf_USE_RE_EVAL;
+
+ /* if we got here, it should be an engine which
+ * supports compiling code blocks and stuff */
+ assert(rex->engine && rex->engine->op_comp);
+ assert(!(scan->flags & ~RXf_PMf_COMPILETIME));
+ re_sv = rex->engine->op_comp(aTHX_ &ret, 1, NULL,
+ rex->engine, NULL, NULL,
+ /* copy /msixn etc to inner pattern */
+ ARG2L(scan),
+ pm_flags);
+
+ if (!(SvFLAGS(ret)
+ & (SVs_TEMP | SVs_GMG | SVf_ROK))
+ && (!SvPADTMP(ret) || SvREADONLY(ret))) {
+ /* This isn't a first class regexp. Instead, it's
+ caching a regexp onto an existing, Perl visible
+ scalar. */
+ sv_magic(ret, MUTABLE_SV(re_sv), PERL_MAGIC_qr, 0, 0);
+ }
+ }
+ SAVEFREESV(re_sv);
+ re = ReANY(re_sv);
+ }
+ RXp_MATCH_COPIED_off(re);
+ re->subbeg = rex->subbeg;
+ re->sublen = rex->sublen;
+ re->suboffset = rex->suboffset;
+ re->subcoffset = rex->subcoffset;
+ re->lastparen = 0;
+ re->lastcloseparen = 0;
+ rei = RXi_GET(re);
+ DEBUG_EXECUTE_r(
+ debug_start_match(re_sv, utf8_target, locinput,
+ reginfo->strend, "Matching embedded");
+ );
+ startpoint = rei->program + 1;
+ ST.close_paren = 0; /* only used for GOSUB */
+ /* Save all the seen positions so far. */
+ ST.cp = regcppush(rex, 0, maxopenparen);
+ REGCP_SET(ST.lastcp);
+ /* and set maxopenparen to 0, since we are starting a "fresh" match */
+ maxopenparen = 0;
+ /* run the pattern returned from (??{...}) */
+
+ eval_recurse_doit: /* Share code with GOSUB below this line
+ * At this point we expect the stack context to be
+ * set up correctly */
+
+ /* invalidate the S-L poscache. We're now executing a
+ * different set of WHILEM ops (and their associated
+ * indexes) against the same string, so the bits in the
+ * cache are meaningless. Setting maxiter to zero forces
+ * the cache to be invalidated and zeroed before reuse.
+ * XXX This is too dramatic a measure. Ideally we should
+ * save the old cache and restore when running the outer
+ * pattern again */
+ reginfo->poscache_maxiter = 0;
+
+ /* the new regexp might have a different is_utf8_pat than we do */
+ is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(re_sv));
+
+ ST.prev_rex = rex_sv;
+ ST.prev_curlyx = cur_curlyx;
+ rex_sv = re_sv;
+ SET_reg_curpm(rex_sv);
+ rex = re;
+ rexi = rei;
+ cur_curlyx = NULL;
+ ST.B = next;
+ ST.prev_eval = cur_eval;
+ cur_eval = st;
+ /* now continue from first node in postoned RE */
+ PUSH_YES_STATE_GOTO(EVAL_AB, startpoint, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+
+ case EVAL_AB: /* cleanup after a successful (??{A})B */
+ /* note: this is called twice; first after popping B, then A */
+ rex_sv = ST.prev_rex;
+ is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
+ SET_reg_curpm(rex_sv);
+ rex = ReANY(rex_sv);
+ rexi = RXi_GET(rex);
+ {
+ /* preserve $^R across LEAVE's. See Bug 121070. */
+ SV *save_sv= GvSV(PL_replgv);
+ SvREFCNT_inc(save_sv);
+ regcpblow(ST.cp); /* LEAVE in disguise */
+ sv_setsv(GvSV(PL_replgv), save_sv);
+ SvREFCNT_dec(save_sv);
+ }
+ cur_eval = ST.prev_eval;
+ cur_curlyx = ST.prev_curlyx;
+
+ /* Invalidate cache. See "invalidate" comment above. */
+ reginfo->poscache_maxiter = 0;
+ if ( nochange_depth )
+ nochange_depth--;
+ sayYES;
+
+
+ case EVAL_AB_fail: /* unsuccessfully ran A or B in (??{A})B */
+ /* note: this is called twice; first after popping B, then A */
+ rex_sv = ST.prev_rex;
+ is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
+ SET_reg_curpm(rex_sv);
+ rex = ReANY(rex_sv);
+ rexi = RXi_GET(rex);
+
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex, &maxopenparen);
+ cur_eval = ST.prev_eval;
+ cur_curlyx = ST.prev_curlyx;
+ /* Invalidate cache. See "invalidate" comment above. */
+ reginfo->poscache_maxiter = 0;
+ if ( nochange_depth )
+ nochange_depth--;
+ sayNO_SILENT;
+#undef ST
+
+ case OPEN: /* ( */
+ n = ARG(scan); /* which paren pair */
+ rex->offs[n].start_tmp = locinput - reginfo->strbeg;
+ if (n > maxopenparen)
+ maxopenparen = n;
+ DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+ "rex=0x%"UVxf" offs=0x%"UVxf": \\%"UVuf": set %"IVdf" tmp; maxopenparen=%"UVuf"\n",
+ PTR2UV(rex),
+ PTR2UV(rex->offs),
+ (UV)n,
+ (IV)rex->offs[n].start_tmp,
+ (UV)maxopenparen
+ ));
+ lastopen = n;
+ break;
+
+/* XXX really need to log other places start/end are set too */
+#define CLOSE_CAPTURE \
+ rex->offs[n].start = rex->offs[n].start_tmp; \
+ rex->offs[n].end = locinput - reginfo->strbeg; \
+ DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log, \
+ "rex=0x%"UVxf" offs=0x%"UVxf": \\%"UVuf": set %"IVdf"..%"IVdf"\n", \
+ PTR2UV(rex), \
+ PTR2UV(rex->offs), \
+ (UV)n, \
+ (IV)rex->offs[n].start, \
+ (IV)rex->offs[n].end \
+ ))
+
+ case CLOSE: /* ) */
+ n = ARG(scan); /* which paren pair */
+ CLOSE_CAPTURE;
+ if (n > rex->lastparen)
+ rex->lastparen = n;
+ rex->lastcloseparen = n;
+ if (cur_eval && cur_eval->u.eval.close_paren == n) {
+ goto fake_end;
+ }
+ break;
+
+ case ACCEPT: /* (*ACCEPT) */
+ if (ARG(scan)){
+ regnode *cursor;
+ for (cursor=scan;
+ cursor && OP(cursor)!=END;
+ cursor=regnext(cursor))
+ {
+ if ( OP(cursor)==CLOSE ){
+ n = ARG(cursor);
+ if ( n <= lastopen ) {
+ CLOSE_CAPTURE;
+ if (n > rex->lastparen)
+ rex->lastparen = n;
+ rex->lastcloseparen = n;
+ if ( n == ARG(scan) || (cur_eval &&
+ cur_eval->u.eval.close_paren == n))
+ break;
+ }
+ }
+ }
+ }
+ goto fake_end;
+ /* NOTREACHED */
+
+ case GROUPP: /* (?(1)) */
+ n = ARG(scan); /* which paren pair */
+ sw = cBOOL(rex->lastparen >= n && rex->offs[n].end != -1);
+ break;
+
+ case NGROUPP: /* (?(<name>)) */
+ /* reg_check_named_buff_matched returns 0 for no match */
+ sw = cBOOL(0 < reg_check_named_buff_matched(rex,scan));
+ break;
+
+ case INSUBP: /* (?(R)) */
+ n = ARG(scan);
+ sw = (cur_eval && (!n || cur_eval->u.eval.close_paren == n));
+ break;
+
+ case DEFINEP: /* (?(DEFINE)) */
+ sw = 0;
+ break;
+
+ case IFTHEN: /* (?(cond)A|B) */
+ reginfo->poscache_iter = reginfo->poscache_maxiter; /* Void cache */
+ if (sw)
+ next = NEXTOPER(NEXTOPER(scan));
+ else {
+ next = scan + ARG(scan);
+ if (OP(next) == IFTHEN) /* Fake one. */
+ next = NEXTOPER(NEXTOPER(next));
+ }
+ break;
+
+ case LOGICAL: /* modifier for EVAL and IFMATCH */
+ logical = scan->flags;
+ break;
+
+/*******************************************************************
+
+The CURLYX/WHILEM pair of ops handle the most generic case of the /A*B/
+pattern, where A and B are subpatterns. (For simple A, CURLYM or
+STAR/PLUS/CURLY/CURLYN are used instead.)
+
+A*B is compiled as <CURLYX><A><WHILEM><B>
+
+On entry to the subpattern, CURLYX is called. This pushes a CURLYX
+state, which contains the current count, initialised to -1. It also sets
+cur_curlyx to point to this state, with any previous value saved in the
+state block.
+
+CURLYX then jumps straight to the WHILEM op, rather than executing A,
+since the pattern may possibly match zero times (i.e. it's a while {} loop
+rather than a do {} while loop).
+
+Each entry to WHILEM represents a successful match of A. The count in the
+CURLYX block is incremented, another WHILEM state is pushed, and execution
+passes to A or B depending on greediness and the current count.
+
+For example, if matching against the string a1a2a3b (where the aN are
+substrings that match /A/), then the match progresses as follows: (the
+pushed states are interspersed with the bits of strings matched so far):
+
+ <CURLYX cnt=-1>
+ <CURLYX cnt=0><WHILEM>
+ <CURLYX cnt=1><WHILEM> a1 <WHILEM>
+ <CURLYX cnt=2><WHILEM> a1 <WHILEM> a2 <WHILEM>
+ <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM>
+ <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM> b
+
+(Contrast this with something like CURLYM, which maintains only a single
+backtrack state:
+
+ <CURLYM cnt=0> a1
+ a1 <CURLYM cnt=1> a2
+ a1 a2 <CURLYM cnt=2> a3
+ a1 a2 a3 <CURLYM cnt=3> b
+)
+
+Each WHILEM state block marks a point to backtrack to upon partial failure
+of A or B, and also contains some minor state data related to that
+iteration. The CURLYX block, pointed to by cur_curlyx, contains the
+overall state, such as the count, and pointers to the A and B ops.
+
+This is complicated slightly by nested CURLYX/WHILEM's. Since cur_curlyx
+must always point to the *current* CURLYX block, the rules are:
+
+When executing CURLYX, save the old cur_curlyx in the CURLYX state block,
+and set cur_curlyx to point the new block.
+
+When popping the CURLYX block after a successful or unsuccessful match,
+restore the previous cur_curlyx.
+
+When WHILEM is about to execute B, save the current cur_curlyx, and set it
+to the outer one saved in the CURLYX block.
+
+When popping the WHILEM block after a successful or unsuccessful B match,
+restore the previous cur_curlyx.
+
+Here's an example for the pattern (AI* BI)*BO
+I and O refer to inner and outer, C and W refer to CURLYX and WHILEM:
+
+cur_
+curlyx backtrack stack
+------ ---------------
+NULL
+CO <CO prev=NULL> <WO>
+CI <CO prev=NULL> <WO> <CI prev=CO> <WI> ai
+CO <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi
+NULL <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi <WO prev=CO> bo
+
+At this point the pattern succeeds, and we work back down the stack to
+clean up, restoring as we go:
+
+CO <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi
+CI <CO prev=NULL> <WO> <CI prev=CO> <WI> ai
+CO <CO prev=NULL> <WO>
+NULL
+
+*******************************************************************/
+
+#define ST st->u.curlyx
+
+ case CURLYX: /* start of /A*B/ (for complex A) */
+ {
+ /* No need to save/restore up to this paren */
+ I32 parenfloor = scan->flags;
+
+ assert(next); /* keep Coverity happy */
+ if (OP(PREVOPER(next)) == NOTHING) /* LONGJMP */
+ next += ARG(next);
+
+ /* XXXX Probably it is better to teach regpush to support
+ parenfloor > maxopenparen ... */
+ if (parenfloor > (I32)rex->lastparen)
+ parenfloor = rex->lastparen; /* Pessimization... */
+
+ ST.prev_curlyx= cur_curlyx;
+ cur_curlyx = st;
+ ST.cp = PL_savestack_ix;
+
+ /* these fields contain the state of the current curly.
+ * they are accessed by subsequent WHILEMs */
+ ST.parenfloor = parenfloor;
+ ST.me = scan;
+ ST.B = next;
+ ST.minmod = minmod;
+ minmod = 0;
+ ST.count = -1; /* this will be updated by WHILEM */
+ ST.lastloc = NULL; /* this will be updated by WHILEM */
+
+ PUSH_YES_STATE_GOTO(CURLYX_end, PREVOPER(next), locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+
+ case CURLYX_end: /* just finished matching all of A*B */
+ cur_curlyx = ST.prev_curlyx;
+ sayYES;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CURLYX_end_fail: /* just failed to match all of A*B */
+ regcpblow(ST.cp);
+ cur_curlyx = ST.prev_curlyx;
+ sayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+
+#undef ST
+#define ST st->u.whilem
+
+ case WHILEM: /* just matched an A in /A*B/ (for complex A) */
+ {
+ /* see the discussion above about CURLYX/WHILEM */
+ I32 n;
+ int min, max;
+ regnode *A;
+
+ assert(cur_curlyx); /* keep Coverity happy */
+
+ min = ARG1(cur_curlyx->u.curlyx.me);
+ max = ARG2(cur_curlyx->u.curlyx.me);
+ A = NEXTOPER(cur_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS;
+ n = ++cur_curlyx->u.curlyx.count; /* how many A's matched */
+ ST.save_lastloc = cur_curlyx->u.curlyx.lastloc;
+ ST.cache_offset = 0;
+ ST.cache_mask = 0;
+
+
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%*s whilem: matched %ld out of %d..%d\n",
+ REPORT_CODE_OFF+depth*2, "", (long)n, min, max)
+ );
+
+ /* First just match a string of min A's. */
+
+ if (n < min) {
+ ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
+ maxopenparen);
+ cur_curlyx->u.curlyx.lastloc = locinput;
+ REGCP_SET(ST.lastcp);
+
+ PUSH_STATE_GOTO(WHILEM_A_pre, A, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+
+ /* If degenerate A matches "", assume A done. */
+
+ if (locinput == cur_curlyx->u.curlyx.lastloc) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%*s whilem: empty match detected, trying continuation...\n",
+ REPORT_CODE_OFF+depth*2, "")
+ );
+ goto do_whilem_B_max;
+ }
+
+ /* super-linear cache processing.
+ *
+ * The idea here is that for certain types of CURLYX/WHILEM -
+ * principally those whose upper bound is infinity (and
+ * excluding regexes that have things like \1 and other very
+ * non-regular expresssiony things), then if a pattern like
+ * /....A*.../ fails and we backtrack to the WHILEM, then we
+ * make a note that this particular WHILEM op was at string
+ * position 47 (say) when the rest of pattern failed. Then, if
+ * we ever find ourselves back at that WHILEM, and at string
+ * position 47 again, we can just fail immediately rather than
+ * running the rest of the pattern again.
+ *
+ * This is very handy when patterns start to go
+ * 'super-linear', like in (a+)*(a+)*(a+)*, where you end up
+ * with a combinatorial explosion of backtracking.
+ *
+ * The cache is implemented as a bit array, with one bit per
+ * string byte position per WHILEM op (up to 16) - so its
+ * between 0.25 and 2x the string size.
+ *
+ * To avoid allocating a poscache buffer every time, we do an
+ * initially countdown; only after we have executed a WHILEM
+ * op (string-length x #WHILEMs) times do we allocate the
+ * cache.
+ *
+ * The top 4 bits of scan->flags byte say how many different
+ * relevant CURLLYX/WHILEM op pairs there are, while the
+ * bottom 4-bits is the identifying index number of this
+ * WHILEM.
+ */
+
+ if (scan->flags) {
+
+ if (!reginfo->poscache_maxiter) {
+ /* start the countdown: Postpone detection until we
+ * know the match is not *that* much linear. */
+ reginfo->poscache_maxiter
+ = (reginfo->strend - reginfo->strbeg + 1)
+ * (scan->flags>>4);
+ /* possible overflow for long strings and many CURLYX's */
+ if (reginfo->poscache_maxiter < 0)
+ reginfo->poscache_maxiter = I32_MAX;
+ reginfo->poscache_iter = reginfo->poscache_maxiter;
+ }
+
+ if (reginfo->poscache_iter-- == 0) {
+ /* initialise cache */
+ const SSize_t size = (reginfo->poscache_maxiter + 7)/8;
+ regmatch_info_aux *const aux = reginfo->info_aux;
+ if (aux->poscache) {
+ if ((SSize_t)reginfo->poscache_size < size) {
+ Renew(aux->poscache, size, char);
+ reginfo->poscache_size = size;
+ }
+ Zero(aux->poscache, size, char);
+ }
+ else {
+ reginfo->poscache_size = size;
+ Newxz(aux->poscache, size, char);
+ }
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%swhilem: Detected a super-linear match, switching on caching%s...\n",
+ PL_colors[4], PL_colors[5])
+ );
+ }
+
+ if (reginfo->poscache_iter < 0) {
+ /* have we already failed at this position? */
+ SSize_t offset, mask;
+
+ reginfo->poscache_iter = -1; /* stop eventual underflow */
+ offset = (scan->flags & 0xf) - 1
+ + (locinput - reginfo->strbeg)
+ * (scan->flags>>4);
+ mask = 1 << (offset % 8);
+ offset /= 8;
+ if (reginfo->info_aux->poscache[offset] & mask) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%*s whilem: (cache) already tried at this position...\n",
+ REPORT_CODE_OFF+depth*2, "")
+ );
+ sayNO; /* cache records failure */
+ }
+ ST.cache_offset = offset;
+ ST.cache_mask = mask;
+ }
+ }
+
+ /* Prefer B over A for minimal matching. */
+
+ if (cur_curlyx->u.curlyx.minmod) {
+ ST.save_curlyx = cur_curlyx;
+ cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
+ ST.cp = regcppush(rex, ST.save_curlyx->u.curlyx.parenfloor,
+ maxopenparen);
+ REGCP_SET(ST.lastcp);
+ PUSH_YES_STATE_GOTO(WHILEM_B_min, ST.save_curlyx->u.curlyx.B,
+ locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+
+ /* Prefer A over B for maximal matching. */
+
+ if (n < max) { /* More greed allowed? */
+ ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
+ maxopenparen);
+ cur_curlyx->u.curlyx.lastloc = locinput;
+ REGCP_SET(ST.lastcp);
+ PUSH_STATE_GOTO(WHILEM_A_max, A, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+ goto do_whilem_B_max;
+ }
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case WHILEM_B_min: /* just matched B in a minimal match */
+ case WHILEM_B_max: /* just matched B in a maximal match */
+ cur_curlyx = ST.save_curlyx;
+ sayYES;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case WHILEM_B_max_fail: /* just failed to match B in a maximal match */
+ cur_curlyx = ST.save_curlyx;
+ cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
+ cur_curlyx->u.curlyx.count--;
+ CACHEsayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case WHILEM_A_min_fail: /* just failed to match A in a minimal match */
+ /* FALLTHROUGH */
+ case WHILEM_A_pre_fail: /* just failed to match even minimal A */
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex, &maxopenparen);
+ cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
+ cur_curlyx->u.curlyx.count--;
+ CACHEsayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case WHILEM_A_max_fail: /* just failed to match A in a maximal match */
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex, &maxopenparen); /* Restore some previous $<digit>s? */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%*s whilem: failed, trying continuation...\n",
+ REPORT_CODE_OFF+depth*2, "")
+ );
+ do_whilem_B_max:
+ if (cur_curlyx->u.curlyx.count >= REG_INFTY
+ && ckWARN(WARN_REGEXP)
+ && !reginfo->warned)
+ {
+ reginfo->warned = TRUE;
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP),
+ "Complex regular subexpression recursion limit (%d) "
+ "exceeded",
+ REG_INFTY - 1);
+ }
+
+ /* now try B */
+ ST.save_curlyx = cur_curlyx;
+ cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
+ PUSH_YES_STATE_GOTO(WHILEM_B_max, ST.save_curlyx->u.curlyx.B,
+ locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case WHILEM_B_min_fail: /* just failed to match B in a minimal match */
+ cur_curlyx = ST.save_curlyx;
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex, &maxopenparen);
+
+ if (cur_curlyx->u.curlyx.count >= /*max*/ARG2(cur_curlyx->u.curlyx.me)) {
+ /* Maximum greed exceeded */
+ if (cur_curlyx->u.curlyx.count >= REG_INFTY
+ && ckWARN(WARN_REGEXP)
+ && !reginfo->warned)
+ {
+ reginfo->warned = TRUE;
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP),
+ "Complex regular subexpression recursion "
+ "limit (%d) exceeded",
+ REG_INFTY - 1);
+ }
+ cur_curlyx->u.curlyx.count--;
+ CACHEsayNO;
+ }
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%*s trying longer...\n", REPORT_CODE_OFF+depth*2, "")
+ );
+ /* Try grabbing another A and see if it helps. */
+ cur_curlyx->u.curlyx.lastloc = locinput;
+ ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
+ maxopenparen);
+ REGCP_SET(ST.lastcp);
+ PUSH_STATE_GOTO(WHILEM_A_min,
+ /*A*/ NEXTOPER(ST.save_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS,
+ locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+#undef ST
+#define ST st->u.branch
+
+ case BRANCHJ: /* /(...|A|...)/ with long next pointer */
+ next = scan + ARG(scan);
+ if (next == scan)
+ next = NULL;
+ scan = NEXTOPER(scan);
+ /* FALLTHROUGH */
+
+ case BRANCH: /* /(...|A|...)/ */
+ scan = NEXTOPER(scan); /* scan now points to inner node */
+ ST.lastparen = rex->lastparen;
+ ST.lastcloseparen = rex->lastcloseparen;
+ ST.next_branch = next;
+ REGCP_SET(ST.cp);
+
+ /* Now go into the branch */
+ if (has_cutgroup) {
+ PUSH_YES_STATE_GOTO(BRANCH_next, scan, locinput);
+ } else {
+ PUSH_STATE_GOTO(BRANCH_next, scan, locinput);
+ }
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CUTGROUP: /* /(*THEN)/ */
+ sv_yes_mark = st->u.mark.mark_name = scan->flags ? NULL :
+ MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ PUSH_STATE_GOTO(CUTGROUP_next, next, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CUTGROUP_next_fail:
+ do_cutgroup = 1;
+ no_final = 1;
+ if (st->u.mark.mark_name)
+ sv_commit = st->u.mark.mark_name;
+ sayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case BRANCH_next:
+ sayYES;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case BRANCH_next_fail: /* that branch failed; try the next, if any */
+ if (do_cutgroup) {
+ do_cutgroup = 0;
+ no_final = 0;
+ }
+ REGCP_UNWIND(ST.cp);
+ UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+ scan = ST.next_branch;
+ /* no more branches? */
+ if (!scan || (OP(scan) != BRANCH && OP(scan) != BRANCHJ)) {
+ DEBUG_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sBRANCH failed...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4],
+ PL_colors[5] );
+ });
+ sayNO_SILENT;
+ }
+ continue; /* execute next BRANCH[J] op */
+ /* NOTREACHED */
+
+ case MINMOD: /* next op will be non-greedy, e.g. A*? */
+ minmod = 1;
+ break;
+
+#undef ST
+#define ST st->u.curlym
+
+ case CURLYM: /* /A{m,n}B/ where A is fixed-length */
+
+ /* This is an optimisation of CURLYX that enables us to push
+ * only a single backtracking state, no matter how many matches
+ * there are in {m,n}. It relies on the pattern being constant
+ * length, with no parens to influence future backrefs
+ */
+
+ ST.me = scan;
+ scan = NEXTOPER(scan) + NODE_STEP_REGNODE;
+
+ ST.lastparen = rex->lastparen;
+ ST.lastcloseparen = rex->lastcloseparen;
+
+ /* if paren positive, emulate an OPEN/CLOSE around A */
+ if (ST.me->flags) {
+ U32 paren = ST.me->flags;
+ if (paren > maxopenparen)
+ maxopenparen = paren;
+ scan += NEXT_OFF(scan); /* Skip former OPEN. */
+ }
+ ST.A = scan;
+ ST.B = next;
+ ST.alen = 0;
+ ST.count = 0;
+ ST.minmod = minmod;
+ minmod = 0;
+ ST.c1 = CHRTEST_UNINIT;
+ REGCP_SET(ST.cp);
+
+ if (!(ST.minmod ? ARG1(ST.me) : ARG2(ST.me))) /* min/max */
+ goto curlym_do_B;
+
+ curlym_do_A: /* execute the A in /A{m,n}B/ */
+ PUSH_YES_STATE_GOTO(CURLYM_A, ST.A, locinput); /* match A */
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CURLYM_A: /* we've just matched an A */
+ ST.count++;
+ /* after first match, determine A's length: u.curlym.alen */
+ if (ST.count == 1) {
+ if (reginfo->is_utf8_target) {
+ char *s = st->locinput;
+ while (s < locinput) {
+ ST.alen++;
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ ST.alen = locinput - st->locinput;
+ }
+ if (ST.alen == 0)
+ ST.count = ST.minmod ? ARG1(ST.me) : ARG2(ST.me);
+ }
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM now matched %"IVdf" times, len=%"IVdf"...\n",
+ (int)(REPORT_CODE_OFF+(depth*2)), "",
+ (IV) ST.count, (IV)ST.alen)
+ );
+
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.me->flags)
+ goto fake_end;
+
+ {
+ I32 max = (ST.minmod ? ARG1(ST.me) : ARG2(ST.me));
+ if ( max == REG_INFTY || ST.count < max )
+ goto curlym_do_A; /* try to match another A */
+ }
+ goto curlym_do_B; /* try to match B */
+
+ case CURLYM_A_fail: /* just failed to match an A */
+ REGCP_UNWIND(ST.cp);
+
+ if (ST.minmod || ST.count < ARG1(ST.me) /* min*/
+ || (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.me->flags))
+ sayNO;
+
+ curlym_do_B: /* execute the B in /A{m,n}B/ */
+ if (ST.c1 == CHRTEST_UNINIT) {
+ /* calculate c1 and c2 for possible match of 1st char
+ * following curly */
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ assert(ST.B);
+ if (HAS_TEXT(ST.B) || JUMPABLE(ST.B)) {
+ regnode *text_node = ST.B;
+ if (! HAS_TEXT(text_node))
+ FIND_NEXT_IMPT(text_node);
+ /* this used to be
+
+ (HAS_TEXT(text_node) && PL_regkind[OP(text_node)] == EXACT)
+
+ But the former is redundant in light of the latter.
+
+ if this changes back then the macro for
+ IS_TEXT and friends need to change.
+ */
+ if (PL_regkind[OP(text_node)] == EXACT) {
+ if (! S_setup_EXACTISH_ST_c1_c2(aTHX_
+ text_node, &ST.c1, ST.c1_utf8, &ST.c2, ST.c2_utf8,
+ reginfo))
+ {
+ sayNO;
+ }
+ }
+ }
+ }
+
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM trying tail with matches=%"IVdf"...\n",
+ (int)(REPORT_CODE_OFF+(depth*2)),
+ "", (IV)ST.count)
+ );
+ if (! NEXTCHR_IS_EOS && ST.c1 != CHRTEST_VOID) {
+ if (! UTF8_IS_INVARIANT(nextchr) && utf8_target) {
+ if (memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput))
+ && memNE(locinput, ST.c2_utf8, UTF8SKIP(locinput)))
+ {
+ /* simulate B failing */
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM Fast bail next target=0x%"UVXf" c1=0x%"UVXf" c2=0x%"UVXf"\n",
+ (int)(REPORT_CODE_OFF+(depth*2)),"",
+ valid_utf8_to_uvchr((U8 *) locinput, NULL),
+ valid_utf8_to_uvchr(ST.c1_utf8, NULL),
+ valid_utf8_to_uvchr(ST.c2_utf8, NULL))
+ );
+ state_num = CURLYM_B_fail;
+ goto reenter_switch;
+ }
+ }
+ else if (nextchr != ST.c1 && nextchr != ST.c2) {
+ /* simulate B failing */
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM Fast bail next target=0x%X c1=0x%X c2=0x%X\n",
+ (int)(REPORT_CODE_OFF+(depth*2)),"",
+ (int) nextchr, ST.c1, ST.c2)
+ );
+ state_num = CURLYM_B_fail;
+ goto reenter_switch;
+ }
+ }
+
+ if (ST.me->flags) {
+ /* emulate CLOSE: mark current A as captured */
+ I32 paren = ST.me->flags;
+ if (ST.count) {
+ rex->offs[paren].start
+ = HOPc(locinput, -ST.alen) - reginfo->strbeg;
+ rex->offs[paren].end = locinput - reginfo->strbeg;
+ if ((U32)paren > rex->lastparen)
+ rex->lastparen = paren;
+ rex->lastcloseparen = paren;
+ }
+ else
+ rex->offs[paren].end = -1;
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.me->flags)
+ {
+ if (ST.count)
+ goto fake_end;
+ else
+ sayNO;
+ }
+ }
+
+ PUSH_STATE_GOTO(CURLYM_B, ST.B, locinput); /* match B */
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CURLYM_B_fail: /* just failed to match a B */
+ REGCP_UNWIND(ST.cp);
+ UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+ if (ST.minmod) {
+ I32 max = ARG2(ST.me);
+ if (max != REG_INFTY && ST.count == max)
+ sayNO;
+ goto curlym_do_A; /* try to match a further A */
+ }
+ /* backtrack one A */
+ if (ST.count == ARG1(ST.me) /* min */)
+ sayNO;
+ ST.count--;
+ SET_locinput(HOPc(locinput, -ST.alen));
+ goto curlym_do_B; /* try to match B */
+
+#undef ST
+#define ST st->u.curly
+
+#define CURLY_SETPAREN(paren, success) \
+ if (paren) { \
+ if (success) { \
+ rex->offs[paren].start = HOPc(locinput, -1) - reginfo->strbeg; \
+ rex->offs[paren].end = locinput - reginfo->strbeg; \
+ if (paren > rex->lastparen) \
+ rex->lastparen = paren; \
+ rex->lastcloseparen = paren; \
+ } \
+ else { \
+ rex->offs[paren].end = -1; \
+ rex->lastparen = ST.lastparen; \
+ rex->lastcloseparen = ST.lastcloseparen; \
+ } \
+ }
+
+ case STAR: /* /A*B/ where A is width 1 char */
+ ST.paren = 0;
+ ST.min = 0;
+ ST.max = REG_INFTY;
+ scan = NEXTOPER(scan);
+ goto repeat;
+
+ case PLUS: /* /A+B/ where A is width 1 char */
+ ST.paren = 0;
+ ST.min = 1;
+ ST.max = REG_INFTY;
+ scan = NEXTOPER(scan);
+ goto repeat;
+
+ case CURLYN: /* /(A){m,n}B/ where A is width 1 char */
+ ST.paren = scan->flags; /* Which paren to set */
+ ST.lastparen = rex->lastparen;
+ ST.lastcloseparen = rex->lastcloseparen;
+ if (ST.paren > maxopenparen)
+ maxopenparen = ST.paren;
+ ST.min = ARG1(scan); /* min to match */
+ ST.max = ARG2(scan); /* max to match */
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ ST.min=1;
+ ST.max=1;
+ }
+ scan = regnext(NEXTOPER(scan) + NODE_STEP_REGNODE);
+ goto repeat;
+
+ case CURLY: /* /A{m,n}B/ where A is width 1 char */
+ ST.paren = 0;
+ ST.min = ARG1(scan); /* min to match */
+ ST.max = ARG2(scan); /* max to match */
+ scan = NEXTOPER(scan) + NODE_STEP_REGNODE;
+ repeat:
+ /*
+ * Lookahead to avoid useless match attempts
+ * when we know what character comes next.
+ *
+ * Used to only do .*x and .*?x, but now it allows
+ * for )'s, ('s and (?{ ... })'s to be in the way
+ * of the quantifier and the EXACT-like node. -- japhy
+ */
+
+ assert(ST.min <= ST.max);
+ if (! HAS_TEXT(next) && ! JUMPABLE(next)) {
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ }
+ else {
+ regnode *text_node = next;
+
+ if (! HAS_TEXT(text_node))
+ FIND_NEXT_IMPT(text_node);
+
+ if (! HAS_TEXT(text_node))
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ else {
+ if ( PL_regkind[OP(text_node)] != EXACT ) {
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ }
+ else {
+
+ /* Currently we only get here when
+
+ PL_rekind[OP(text_node)] == EXACT
+
+ if this changes back then the macro for IS_TEXT and
+ friends need to change. */
+ if (! S_setup_EXACTISH_ST_c1_c2(aTHX_
+ text_node, &ST.c1, ST.c1_utf8, &ST.c2, ST.c2_utf8,
+ reginfo))
+ {
+ sayNO;
+ }
+ }
+ }
+ }
+
+ ST.A = scan;
+ ST.B = next;
+ if (minmod) {
+ char *li = locinput;
+ minmod = 0;
+ if (ST.min &&
+ regrepeat(rex, &li, ST.A, reginfo, ST.min, depth)
+ < ST.min)
+ sayNO;
+ SET_locinput(li);
+ ST.count = ST.min;
+ REGCP_SET(ST.cp);
+ if (ST.c1 == CHRTEST_VOID)
+ goto curly_try_B_min;
+
+ ST.oldloc = locinput;
+
+ /* set ST.maxpos to the furthest point along the
+ * string that could possibly match */
+ if (ST.max == REG_INFTY) {
+ ST.maxpos = reginfo->strend - 1;
+ if (utf8_target)
+ while (UTF8_IS_CONTINUATION(*(U8*)ST.maxpos))
+ ST.maxpos--;
+ }
+ else if (utf8_target) {
+ int m = ST.max - ST.min;
+ for (ST.maxpos = locinput;
+ m >0 && ST.maxpos < reginfo->strend; m--)
+ ST.maxpos += UTF8SKIP(ST.maxpos);
+ }
+ else {
+ ST.maxpos = locinput + ST.max - ST.min;
+ if (ST.maxpos >= reginfo->strend)
+ ST.maxpos = reginfo->strend - 1;
+ }
+ goto curly_try_B_min_known;
+
+ }
+ else {
+ /* avoid taking address of locinput, so it can remain
+ * a register var */
+ char *li = locinput;
+ ST.count = regrepeat(rex, &li, ST.A, reginfo, ST.max, depth);
+ if (ST.count < ST.min)
+ sayNO;
+ SET_locinput(li);
+ if ((ST.count > ST.min)
+ && (PL_regkind[OP(ST.B)] == EOL) && (OP(ST.B) != MEOL))
+ {
+ /* A{m,n} must come at the end of the string, there's
+ * no point in backing off ... */
+ ST.min = ST.count;
+ /* ...except that $ and \Z can match before *and* after
+ newline at the end. Consider "\n\n" =~ /\n+\Z\n/.
+ We may back off by one in this case. */
+ if (UCHARAT(locinput - 1) == '\n' && OP(ST.B) != EOS)
+ ST.min--;
+ }
+ REGCP_SET(ST.cp);
+ goto curly_try_B_max;
+ }
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CURLY_B_min_known_fail:
+ /* failed to find B in a non-greedy match where c1,c2 valid */
+
+ REGCP_UNWIND(ST.cp);
+ if (ST.paren) {
+ UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+ }
+ /* Couldn't or didn't -- move forward. */
+ ST.oldloc = locinput;
+ if (utf8_target)
+ locinput += UTF8SKIP(locinput);
+ else
+ locinput++;
+ ST.count++;
+ curly_try_B_min_known:
+ /* find the next place where 'B' could work, then call B */
+ {
+ int n;
+ if (utf8_target) {
+ n = (ST.oldloc == locinput) ? 0 : 1;
+ if (ST.c1 == ST.c2) {
+ /* set n to utf8_distance(oldloc, locinput) */
+ while (locinput <= ST.maxpos
+ && memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput)))
+ {
+ locinput += UTF8SKIP(locinput);
+ n++;
+ }
+ }
+ else {
+ /* set n to utf8_distance(oldloc, locinput) */
+ while (locinput <= ST.maxpos
+ && memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput))
+ && memNE(locinput, ST.c2_utf8, UTF8SKIP(locinput)))
+ {
+ locinput += UTF8SKIP(locinput);
+ n++;
+ }
+ }
+ }
+ else { /* Not utf8_target */
+ if (ST.c1 == ST.c2) {
+ while (locinput <= ST.maxpos &&
+ UCHARAT(locinput) != ST.c1)
+ locinput++;
+ }
+ else {
+ while (locinput <= ST.maxpos
+ && UCHARAT(locinput) != ST.c1
+ && UCHARAT(locinput) != ST.c2)
+ locinput++;
+ }
+ n = locinput - ST.oldloc;
+ }
+ if (locinput > ST.maxpos)
+ sayNO;
+ if (n) {
+ /* In /a{m,n}b/, ST.oldloc is at "a" x m, locinput is
+ * at b; check that everything between oldloc and
+ * locinput matches */
+ char *li = ST.oldloc;
+ ST.count += n;
+ if (regrepeat(rex, &li, ST.A, reginfo, n, depth) < n)
+ sayNO;
+ assert(n == REG_INFTY || locinput == li);
+ }
+ CURLY_SETPAREN(ST.paren, ST.count);
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ goto fake_end;
+ }
+ PUSH_STATE_GOTO(CURLY_B_min_known, ST.B, locinput);
+ }
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CURLY_B_min_fail:
+ /* failed to find B in a non-greedy match where c1,c2 invalid */
+
+ REGCP_UNWIND(ST.cp);
+ if (ST.paren) {
+ UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+ }
+ /* failed -- move forward one */
+ {
+ char *li = locinput;
+ if (!regrepeat(rex, &li, ST.A, reginfo, 1, depth)) {
+ sayNO;
+ }
+ locinput = li;
+ }
+ {
+ ST.count++;
+ if (ST.count <= ST.max || (ST.max == REG_INFTY &&
+ ST.count > 0)) /* count overflow ? */
+ {
+ curly_try_B_min:
+ CURLY_SETPAREN(ST.paren, ST.count);
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ goto fake_end;
+ }
+ PUSH_STATE_GOTO(CURLY_B_min, ST.B, locinput);
+ }
+ }
+ sayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ curly_try_B_max:
+ /* a successful greedy match: now try to match B */
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ goto fake_end;
+ }
+ {
+ bool could_match = locinput < reginfo->strend;
+
+ /* If it could work, try it. */
+ if (ST.c1 != CHRTEST_VOID && could_match) {
+ if (! UTF8_IS_INVARIANT(UCHARAT(locinput)) && utf8_target)
+ {
+ could_match = memEQ(locinput,
+ ST.c1_utf8,
+ UTF8SKIP(locinput))
+ || memEQ(locinput,
+ ST.c2_utf8,
+ UTF8SKIP(locinput));
+ }
+ else {
+ could_match = UCHARAT(locinput) == ST.c1
+ || UCHARAT(locinput) == ST.c2;
+ }
+ }
+ if (ST.c1 == CHRTEST_VOID || could_match) {
+ CURLY_SETPAREN(ST.paren, ST.count);
+ PUSH_STATE_GOTO(CURLY_B_max, ST.B, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+ }
+ /* FALLTHROUGH */
+
+ case CURLY_B_max_fail:
+ /* failed to find B in a greedy match */
+
+ REGCP_UNWIND(ST.cp);
+ if (ST.paren) {
+ UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+ }
+ /* back up. */
+ if (--ST.count < ST.min)
+ sayNO;
+ locinput = HOPc(locinput, -1);
+ goto curly_try_B_max;
+
+#undef ST
+
+ case END: /* last op of main pattern */
+ fake_end:
+ if (cur_eval) {
+ /* we've just finished A in /(??{A})B/; now continue with B */
+
+ st->u.eval.prev_rex = rex_sv; /* inner */
+
+ /* Save *all* the positions. */
+ st->u.eval.cp = regcppush(rex, 0, maxopenparen);
+ rex_sv = cur_eval->u.eval.prev_rex;
+ is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
+ SET_reg_curpm(rex_sv);
+ rex = ReANY(rex_sv);
+ rexi = RXi_GET(rex);
+ cur_curlyx = cur_eval->u.eval.prev_curlyx;
+
+ REGCP_SET(st->u.eval.lastcp);
+
+ /* Restore parens of the outer rex without popping the
+ * savestack */
+ S_regcp_restore(aTHX_ rex, cur_eval->u.eval.lastcp,
+ &maxopenparen);
+
+ st->u.eval.prev_eval = cur_eval;
+ cur_eval = cur_eval->u.eval.prev_eval;
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log, "%*s EVAL trying tail ... %"UVxf"\n",
+ REPORT_CODE_OFF+depth*2, "",PTR2UV(cur_eval)););
+ if ( nochange_depth )
+ nochange_depth--;
+
+ PUSH_YES_STATE_GOTO(EVAL_AB, st->u.eval.prev_eval->u.eval.B,
+ locinput); /* match B */
+ }
+
+ if (locinput < reginfo->till) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%sMatch possible, but length=%ld is smaller than requested=%ld, failing!%s\n",
+ PL_colors[4],
+ (long)(locinput - startpos),
+ (long)(reginfo->till - startpos),
+ PL_colors[5]));
+
+ sayNO_SILENT; /* Cannot match: too short. */
+ }
+ sayYES; /* Success! */
+
+ case SUCCEED: /* successful SUSPEND/UNLESSM/IFMATCH/CURLYM */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %ssubpattern success...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5]));
+ sayYES; /* Success! */
+
+#undef ST
+#define ST st->u.ifmatch
+
+ {
+ char *newstart;
+
+ case SUSPEND: /* (?>A) */
+ ST.wanted = 1;
+ newstart = locinput;
+ goto do_ifmatch;
+
+ case UNLESSM: /* -ve lookaround: (?!A), or with flags, (?<!A) */
+ ST.wanted = 0;
+ goto ifmatch_trivial_fail_test;
+
+ case IFMATCH: /* +ve lookaround: (?=A), or with flags, (?<=A) */
+ ST.wanted = 1;
+ ifmatch_trivial_fail_test:
+ if (scan->flags) {
+ char * const s = HOPBACKc(locinput, scan->flags);
+ if (!s) {
+ /* trivial fail */
+ if (logical) {
+ logical = 0;
+ sw = 1 - cBOOL(ST.wanted);
+ }
+ else if (ST.wanted)
+ sayNO;
+ next = scan + ARG(scan);
+ if (next == scan)
+ next = NULL;
+ break;
+ }
+ newstart = s;
+ }
+ else
+ newstart = locinput;
+
+ do_ifmatch:
+ ST.me = scan;
+ ST.logical = logical;
+ logical = 0; /* XXX: reset state of logical once it has been saved into ST */
+
+ /* execute body of (?...A) */
+ PUSH_YES_STATE_GOTO(IFMATCH_A, NEXTOPER(NEXTOPER(scan)), newstart);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+
+ case IFMATCH_A_fail: /* body of (?...A) failed */
+ ST.wanted = !ST.wanted;
+ /* FALLTHROUGH */
+
+ case IFMATCH_A: /* body of (?...A) succeeded */
+ if (ST.logical) {
+ sw = cBOOL(ST.wanted);
+ }
+ else if (!ST.wanted)
+ sayNO;
+
+ if (OP(ST.me) != SUSPEND) {
+ /* restore old position except for (?>...) */
+ locinput = st->locinput;
+ }
+ scan = ST.me + ARG(ST.me);
+ if (scan == ST.me)
+ scan = NULL;
+ continue; /* execute B */
+
+#undef ST
+
+ case LONGJMP: /* alternative with many branches compiles to
+ * (BRANCHJ; EXACT ...; LONGJMP ) x N */
+ next = scan + ARG(scan);
+ if (next == scan)
+ next = NULL;
+ break;
+
+ case COMMIT: /* (*COMMIT) */
+ reginfo->cutpoint = reginfo->strend;
+ /* FALLTHROUGH */
+
+ case PRUNE: /* (*PRUNE) */
+ if (!scan->flags)
+ sv_yes_mark = sv_commit = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ PUSH_STATE_GOTO(COMMIT_next, next, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case COMMIT_next_fail:
+ no_final = 1;
+ /* FALLTHROUGH */
+
+ case OPFAIL: /* (*FAIL) */
+ sayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+#define ST st->u.mark
+ case MARKPOINT: /* (*MARK:foo) */
+ ST.prev_mark = mark_state;
+ ST.mark_name = sv_commit = sv_yes_mark
+ = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ mark_state = st;
+ ST.mark_loc = locinput;
+ PUSH_YES_STATE_GOTO(MARKPOINT_next, next, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case MARKPOINT_next:
+ mark_state = ST.prev_mark;
+ sayYES;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case MARKPOINT_next_fail:
+ if (popmark && sv_eq(ST.mark_name,popmark))
+ {
+ if (ST.mark_loc > startpoint)
+ reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
+ popmark = NULL; /* we found our mark */
+ sv_commit = ST.mark_name;
+
+ DEBUG_EXECUTE_r({
+ PerlIO_printf(Perl_debug_log,
+ "%*s %ssetting cutpoint to mark:%"SVf"...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4], SVfARG(sv_commit), PL_colors[5]);
+ });
+ }
+ mark_state = ST.prev_mark;
+ sv_yes_mark = mark_state ?
+ mark_state->u.mark.mark_name : NULL;
+ sayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case SKIP: /* (*SKIP) */
+ if (scan->flags) {
+ /* (*SKIP) : if we fail we cut here*/
+ ST.mark_name = NULL;
+ ST.mark_loc = locinput;
+ PUSH_STATE_GOTO(SKIP_next,next, locinput);
+ } else {
+ /* (*SKIP:NAME) : if there is a (*MARK:NAME) fail where it was,
+ otherwise do nothing. Meaning we need to scan
+ */
+ regmatch_state *cur = mark_state;
+ SV *find = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+
+ while (cur) {
+ if ( sv_eq( cur->u.mark.mark_name,
+ find ) )
+ {
+ ST.mark_name = find;
+ PUSH_STATE_GOTO( SKIP_next, next, locinput);
+ }
+ cur = cur->u.mark.prev_mark;
+ }
+ }
+ /* Didn't find our (*MARK:NAME) so ignore this (*SKIP:NAME) */
+ break;
+
+ case SKIP_next_fail:
+ if (ST.mark_name) {
+ /* (*CUT:NAME) - Set up to search for the name as we
+ collapse the stack*/
+ popmark = ST.mark_name;
+ } else {
+ /* (*CUT) - No name, we cut here.*/
+ if (ST.mark_loc > startpoint)
+ reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
+ /* but we set sv_commit to latest mark_name if there
+ is one so they can test to see how things lead to this
+ cut */
+ if (mark_state)
+ sv_commit=mark_state->u.mark.mark_name;
+ }
+ no_final = 1;
+ sayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+#undef ST
+
+ case LNBREAK: /* \R */
+ if ((n=is_LNBREAK_safe(locinput, reginfo->strend, utf8_target))) {
+ locinput += n;
+ } else
+ sayNO;
+ break;
+
+ default:
+ PerlIO_printf(Perl_error_log, "%"UVxf" %d\n",
+ PTR2UV(scan), OP(scan));
+ Perl_croak(aTHX_ "regexp memory corruption");
+
+ /* this is a point to jump to in order to increment
+ * locinput by one character */
+ increment_locinput:
+ assert(!NEXTCHR_IS_EOS);
+ if (utf8_target) {
+ locinput += PL_utf8skip[nextchr];
+ /* locinput is allowed to go 1 char off the end, but not 2+ */
+ if (locinput > reginfo->strend)
+ sayNO;
+ }
+ else
+ locinput++;
+ break;
+
+ } /* end switch */
+
+ /* switch break jumps here */
+ scan = next; /* prepare to execute the next op and ... */
+ continue; /* ... jump back to the top, reusing st */
+ /* NOTREACHED */
+
+ push_yes_state:
+ /* push a state that backtracks on success */
+ st->u.yes.prev_yes_state = yes_state;
+ yes_state = st;
+ /* FALLTHROUGH */
+ push_state:
+ /* push a new regex state, then continue at scan */
+ {
+ regmatch_state *newst;
+
+ DEBUG_STACK_r({
+ regmatch_state *cur = st;
+ regmatch_state *curyes = yes_state;
+ int curd = depth;
+ regmatch_slab *slab = PL_regmatch_slab;
+ for (;curd > -1;cur--,curd--) {
+ if (cur < SLAB_FIRST(slab)) {
+ slab = slab->prev;
+ cur = SLAB_LAST(slab);
+ }
+ PerlIO_printf(Perl_error_log, "%*s#%-3d %-10s %s\n",
+ REPORT_CODE_OFF + 2 + depth * 2,"",
+ curd, PL_reg_name[cur->resume_state],
+ (curyes == cur) ? "yes" : ""
+ );
+ if (curyes == cur)
+ curyes = cur->u.yes.prev_yes_state;
+ }
+ } else
+ DEBUG_STATE_pp("push")
+ );
+ depth++;
+ st->locinput = locinput;
+ newst = st+1;
+ if (newst > SLAB_LAST(PL_regmatch_slab))
+ newst = S_push_slab(aTHX);
+ PL_regmatch_state = newst;
+
+ locinput = pushinput;
+ st = newst;
+ continue;
+ /* NOTREACHED */
+ }
+ }
+
+ /*
+ * We get here only if there's trouble -- normally "case END" is
+ * the terminating point.
+ */
+ Perl_croak(aTHX_ "corrupted regexp pointers");
+ /* NOTREACHED */
+ sayNO;
+ NOT_REACHED; /* NOTREACHED */
+
+ yes:
+ if (yes_state) {
+ /* we have successfully completed a subexpression, but we must now
+ * pop to the state marked by yes_state and continue from there */
+ assert(st != yes_state);
+#ifdef DEBUGGING
+ while (st != yes_state) {
+ st--;
+ if (st < SLAB_FIRST(PL_regmatch_slab)) {
+ PL_regmatch_slab = PL_regmatch_slab->prev;
+ st = SLAB_LAST(PL_regmatch_slab);
+ }
+ DEBUG_STATE_r({
+ if (no_final) {
+ DEBUG_STATE_pp("pop (no final)");
+ } else {
+ DEBUG_STATE_pp("pop (yes)");
+ }
+ });
+ depth--;
+ }
+#else
+ while (yes_state < SLAB_FIRST(PL_regmatch_slab)
+ || yes_state > SLAB_LAST(PL_regmatch_slab))
+ {
+ /* not in this slab, pop slab */
+ depth -= (st - SLAB_FIRST(PL_regmatch_slab) + 1);
+ PL_regmatch_slab = PL_regmatch_slab->prev;
+ st = SLAB_LAST(PL_regmatch_slab);
+ }
+ depth -= (st - yes_state);
+#endif
+ st = yes_state;
+ yes_state = st->u.yes.prev_yes_state;
+ PL_regmatch_state = st;
+
+ if (no_final)
+ locinput= st->locinput;
+ state_num = st->resume_state + no_final;
+ goto reenter_switch;
+ }
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch successful!%s\n",
+ PL_colors[4], PL_colors[5]));
+
+ if (reginfo->info_aux_eval) {
+ /* each successfully executed (?{...}) block does the equivalent of
+ * local $^R = do {...}
+ * When popping the save stack, all these locals would be undone;
+ * bypass this by setting the outermost saved $^R to the latest
+ * value */
+ /* I dont know if this is needed or works properly now.
+ * see code related to PL_replgv elsewhere in this file.
+ * Yves
+ */
+ if (oreplsv != GvSV(PL_replgv))
+ sv_setsv(oreplsv, GvSV(PL_replgv));
+ }
+ result = 1;
+ goto final_exit;
+
+ no:
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %sfailed...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4], PL_colors[5])
+ );
+
+ no_silent:
+ if (no_final) {
+ if (yes_state) {
+ goto yes;
+ } else {
+ goto final_exit;
+ }
+ }
+ if (depth) {
+ /* there's a previous state to backtrack to */
+ st--;
+ if (st < SLAB_FIRST(PL_regmatch_slab)) {
+ PL_regmatch_slab = PL_regmatch_slab->prev;
+ st = SLAB_LAST(PL_regmatch_slab);
+ }
+ PL_regmatch_state = st;
+ locinput= st->locinput;
+
+ DEBUG_STATE_pp("pop");
+ depth--;
+ if (yes_state == st)
+ yes_state = st->u.yes.prev_yes_state;
+
+ state_num = st->resume_state + 1; /* failure = success + 1 */
+ goto reenter_switch;
+ }
+ result = 0;
+
+ final_exit:
+ if (rex->intflags & PREGf_VERBARG_SEEN) {
+ SV *sv_err = get_sv("REGERROR", 1);
+ SV *sv_mrk = get_sv("REGMARK", 1);
+ if (result) {
+ sv_commit = &PL_sv_no;
+ if (!sv_yes_mark)
+ sv_yes_mark = &PL_sv_yes;
+ } else {
+ if (!sv_commit)
+ sv_commit = &PL_sv_yes;
+ sv_yes_mark = &PL_sv_no;
+ }
+ assert(sv_err);
+ assert(sv_mrk);
+ sv_setsv(sv_err, sv_commit);
+ sv_setsv(sv_mrk, sv_yes_mark);
+ }
+
+
+ if (last_pushed_cv) {
+ dSP;
+ POP_MULTICALL;
+ PERL_UNUSED_VAR(SP);
+ }
+
+ assert(!result || locinput - reginfo->strbeg >= 0);
+ return result ? locinput - reginfo->strbeg : -1;
+}
+
+/*
+ - regrepeat - repeatedly match something simple, report how many
+ *
+ * What 'simple' means is a node which can be the operand of a quantifier like
+ * '+', or {1,3}
+ *
+ * startposp - pointer a pointer to the start position. This is updated
+ * to point to the byte following the highest successful
+ * match.
+ * p - the regnode to be repeatedly matched against.
+ * reginfo - struct holding match state, such as strend
+ * max - maximum number of things to match.
+ * depth - (for debugging) backtracking depth.
+ */
+STATIC I32
+S_regrepeat(pTHX_ regexp *prog, char **startposp, const regnode *p,
+ regmatch_info *const reginfo, I32 max, int depth)
+{
+ char *scan; /* Pointer to current position in target string */
+ I32 c;
+ char *loceol = reginfo->strend; /* local version */
+ I32 hardcount = 0; /* How many matches so far */
+ bool utf8_target = reginfo->is_utf8_target;
+ unsigned int to_complement = 0; /* Invert the result? */
+ UV utf8_flags;
+ _char_class_number classnum;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ PERL_ARGS_ASSERT_REGREPEAT;
+
+ scan = *startposp;
+ if (max == REG_INFTY)
+ max = I32_MAX;
+ else if (! utf8_target && loceol - scan > max)
+ loceol = scan + max;
+
+ /* Here, for the case of a non-UTF-8 target we have adjusted <loceol> down
+ * to the maximum of how far we should go in it (leaving it set to the real
+ * end, if the maximum permissible would take us beyond that). This allows
+ * us to make the loop exit condition that we haven't gone past <loceol> to
+ * also mean that we haven't exceeded the max permissible count, saving a
+ * test each time through the loop. But it assumes that the OP matches a
+ * single byte, which is true for most of the OPs below when applied to a
+ * non-UTF-8 target. Those relatively few OPs that don't have this
+ * characteristic will have to compensate.
+ *
+ * There is no adjustment for UTF-8 targets, as the number of bytes per
+ * character varies. OPs will have to test both that the count is less
+ * than the max permissible (using <hardcount> to keep track), and that we
+ * are still within the bounds of the string (using <loceol>. A few OPs
+ * match a single byte no matter what the encoding. They can omit the max
+ * test if, for the UTF-8 case, they do the adjustment that was skipped
+ * above.
+ *
+ * Thus, the code above sets things up for the common case; and exceptional
+ * cases need extra work; the common case is to make sure <scan> doesn't
+ * go past <loceol>, and for UTF-8 to also use <hardcount> to make sure the
+ * count doesn't exceed the maximum permissible */
+
+ switch (OP(p)) {
+ case REG_ANY:
+ if (utf8_target) {
+ while (scan < loceol && hardcount < max && *scan != '\n') {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && *scan != '\n')
+ scan++;
+ }
+ break;
+ case SANY:
+ if (utf8_target) {
+ while (scan < loceol && hardcount < max) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ }
+ else
+ scan = loceol;
+ break;
+ case EXACTL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (utf8_target && UTF8_IS_ABOVE_LATIN1(*scan)) {
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(scan, loceol);
+ }
+ /* FALLTHROUGH */
+ case EXACT:
+ assert(STR_LEN(p) == reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1);
+
+ c = (U8)*STRING(p);
+
+ /* Can use a simple loop if the pattern char to match on is invariant
+ * under UTF-8, or both target and pattern aren't UTF-8. Note that we
+ * can use UTF8_IS_INVARIANT() even if the pattern isn't UTF-8, as it's
+ * true iff it doesn't matter if the argument is in UTF-8 or not */
+ if (UTF8_IS_INVARIANT(c) || (! utf8_target && ! reginfo->is_utf8_pat)) {
+ if (utf8_target && loceol - scan > max) {
+ /* We didn't adjust <loceol> because is UTF-8, but ok to do so,
+ * since here, to match at all, 1 char == 1 byte */
+ loceol = scan + max;
+ }
+ while (scan < loceol && UCHARAT(scan) == c) {
+ scan++;
+ }
+ }
+ else if (reginfo->is_utf8_pat) {
+ if (utf8_target) {
+ STRLEN scan_char_len;
+
+ /* When both target and pattern are UTF-8, we have to do
+ * string EQ */
+ while (hardcount < max
+ && scan < loceol
+ && (scan_char_len = UTF8SKIP(scan)) <= STR_LEN(p)
+ && memEQ(scan, STRING(p), scan_char_len))
+ {
+ scan += scan_char_len;
+ hardcount++;
+ }
+ }
+ else if (! UTF8_IS_ABOVE_LATIN1(c)) {
+
+ /* Target isn't utf8; convert the character in the UTF-8
+ * pattern to non-UTF8, and do a simple loop */
+ c = TWO_BYTE_UTF8_TO_NATIVE(c, *(STRING(p) + 1));
+ while (scan < loceol && UCHARAT(scan) == c) {
+ scan++;
+ }
+ } /* else pattern char is above Latin1, can't possibly match the
+ non-UTF-8 target */
+ }
+ else {
+
+ /* Here, the string must be utf8; pattern isn't, and <c> is
+ * different in utf8 than not, so can't compare them directly.
+ * Outside the loop, find the two utf8 bytes that represent c, and
+ * then look for those in sequence in the utf8 string */
+ U8 high = UTF8_TWO_BYTE_HI(c);
+ U8 low = UTF8_TWO_BYTE_LO(c);
+
+ while (hardcount < max
+ && scan + 1 < loceol
+ && UCHARAT(scan) == high
+ && UCHARAT(scan + 1) == low)
+ {
+ scan += 2;
+ hardcount++;
+ }
+ }
+ break;
+
+ case EXACTFA_NO_TRIE: /* This node only generated for non-utf8 patterns */
+ assert(! reginfo->is_utf8_pat);
+ /* FALLTHROUGH */
+ case EXACTFA:
+ utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_exactf;
+
+ case EXACTFL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ utf8_flags = FOLDEQ_LOCALE;
+ goto do_exactf;
+
+ case EXACTF: /* This node only generated for non-utf8 patterns */
+ assert(! reginfo->is_utf8_pat);
+ utf8_flags = 0;
+ goto do_exactf;
+
+ case EXACTFLU8:
+ if (! utf8_target) {
+ break;
+ }
+ utf8_flags = FOLDEQ_LOCALE | FOLDEQ_S2_ALREADY_FOLDED
+ | FOLDEQ_S2_FOLDS_SANE;
+ goto do_exactf;
+
+ case EXACTFU_SS:
+ case EXACTFU:
+ utf8_flags = reginfo->is_utf8_pat ? FOLDEQ_S2_ALREADY_FOLDED : 0;
+
+ do_exactf: {
+ int c1, c2;
+ U8 c1_utf8[UTF8_MAXBYTES+1], c2_utf8[UTF8_MAXBYTES+1];
+
+ assert(STR_LEN(p) == reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1);
+
+ if (S_setup_EXACTISH_ST_c1_c2(aTHX_ p, &c1, c1_utf8, &c2, c2_utf8,
+ reginfo))
+ {
+ if (c1 == CHRTEST_VOID) {
+ /* Use full Unicode fold matching */
+ char *tmpeol = reginfo->strend;
+ STRLEN pat_len = reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1;
+ while (hardcount < max
+ && foldEQ_utf8_flags(scan, &tmpeol, 0, utf8_target,
+ STRING(p), NULL, pat_len,
+ reginfo->is_utf8_pat, utf8_flags))
+ {
+ scan = tmpeol;
+ tmpeol = reginfo->strend;
+ hardcount++;
+ }
+ }
+ else if (utf8_target) {
+ if (c1 == c2) {
+ while (scan < loceol
+ && hardcount < max
+ && memEQ(scan, c1_utf8, UTF8SKIP(scan)))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ }
+ else {
+ while (scan < loceol
+ && hardcount < max
+ && (memEQ(scan, c1_utf8, UTF8SKIP(scan))
+ || memEQ(scan, c2_utf8, UTF8SKIP(scan))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ }
+ }
+ else if (c1 == c2) {
+ while (scan < loceol && UCHARAT(scan) == c1) {
+ scan++;
+ }
+ }
+ else {
+ while (scan < loceol &&
+ (UCHARAT(scan) == c1 || UCHARAT(scan) == c2))
+ {
+ scan++;
+ }
+ }
+ }
+ break;
+ }
+ case ANYOFL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ /* FALLTHROUGH */
+ case ANYOF:
+ if (utf8_target) {
+ while (hardcount < max
+ && scan < loceol
+ && reginclass(prog, p, (U8*)scan, (U8*) loceol, utf8_target))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && REGINCLASS(prog, p, (U8*)scan))
+ scan++;
+ }
+ break;
+
+ /* The argument (FLAGS) to all the POSIX node types is the class number */
+
+ case NPOSIXL:
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (! utf8_target) {
+ while (scan < loceol && to_complement ^ cBOOL(isFOO_lc(FLAGS(p),
+ *scan)))
+ {
+ scan++;
+ }
+ } else {
+ while (hardcount < max && scan < loceol
+ && to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(p),
+ (U8 *) scan)))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ }
+ break;
+
+ case POSIXD:
+ if (utf8_target) {
+ goto utf8_posix;
+ }
+ /* FALLTHROUGH */
+
+ case POSIXA:
+ if (utf8_target && loceol - scan > max) {
+
+ /* We didn't adjust <loceol> at the beginning of this routine
+ * because is UTF-8, but it is actually ok to do so, since here, to
+ * match, 1 char == 1 byte. */
+ loceol = scan + max;
+ }
+ while (scan < loceol && _generic_isCC_A((U8) *scan, FLAGS(p))) {
+ scan++;
+ }
+ break;
+
+ case NPOSIXD:
+ if (utf8_target) {
+ to_complement = 1;
+ goto utf8_posix;
+ }
+ /* FALLTHROUGH */
+
+ case NPOSIXA:
+ if (! utf8_target) {
+ while (scan < loceol && ! _generic_isCC_A((U8) *scan, FLAGS(p))) {
+ scan++;
+ }
+ }
+ else {
+
+ /* The complement of something that matches only ASCII matches all
+ * non-ASCII, plus everything in ASCII that isn't in the class. */
+ while (hardcount < max && scan < loceol
+ && (! isASCII_utf8(scan)
+ || ! _generic_isCC_A((U8) *scan, FLAGS(p))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ }
+ break;
+
+ case NPOSIXU:
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXU:
+ if (! utf8_target) {
+ while (scan < loceol && to_complement
+ ^ cBOOL(_generic_isCC((U8) *scan, FLAGS(p))))
+ {
+ scan++;
+ }
+ }
+ else {
+ utf8_posix:
+ classnum = (_char_class_number) FLAGS(p);
+ if (classnum < _FIRST_NON_SWASH_CC) {
+
+ /* Here, a swash is needed for above-Latin1 code points.
+ * Process as many Latin1 code points using the built-in rules.
+ * Go to another loop to finish processing upon encountering
+ * the first Latin1 code point. We could do that in this loop
+ * as well, but the other way saves having to test if the swash
+ * has been loaded every time through the loop: extra space to
+ * save a test. */
+ while (hardcount < max && scan < loceol) {
+ if (UTF8_IS_INVARIANT(*scan)) {
+ if (! (to_complement ^ cBOOL(_generic_isCC((U8) *scan,
+ classnum))))
+ {
+ break;
+ }
+ scan++;
+ }
+ else if (UTF8_IS_DOWNGRADEABLE_START(*scan)) {
+ if (! (to_complement
+ ^ cBOOL(_generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(*scan,
+ *(scan + 1)),
+ classnum))))
+ {
+ break;
+ }
+ scan += 2;
+ }
+ else {
+ goto found_above_latin1;
+ }
+
+ hardcount++;
+ }
+ }
+ else {
+ /* For these character classes, the knowledge of how to handle
+ * every code point is compiled in to Perl via a macro. This
+ * code is written for making the loops as tight as possible.
+ * It could be refactored to save space instead */
+ switch (classnum) {
+ case _CC_ENUM_SPACE:
+ while (hardcount < max
+ && scan < loceol
+ && (to_complement ^ cBOOL(isSPACE_utf8(scan))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ case _CC_ENUM_BLANK:
+ while (hardcount < max
+ && scan < loceol
+ && (to_complement ^ cBOOL(isBLANK_utf8(scan))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ case _CC_ENUM_XDIGIT:
+ while (hardcount < max
+ && scan < loceol
+ && (to_complement ^ cBOOL(isXDIGIT_utf8(scan))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ case _CC_ENUM_VERTSPACE:
+ while (hardcount < max
+ && scan < loceol
+ && (to_complement ^ cBOOL(isVERTWS_utf8(scan))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ case _CC_ENUM_CNTRL:
+ while (hardcount < max
+ && scan < loceol
+ && (to_complement ^ cBOOL(isCNTRL_utf8(scan))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: regrepeat() node %d='%s' has an unexpected character class '%d'", OP(p), PL_reg_name[OP(p)], classnum);
+ }
+ }
+ }
+ break;
+
+ found_above_latin1: /* Continuation of POSIXU and NPOSIXU */
+
+ /* Load the swash if not already present */
+ if (! PL_utf8_swash_ptrs[classnum]) {
+ U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+ PL_utf8_swash_ptrs[classnum] = _core_swash_init(
+ "utf8",
+ "",
+ &PL_sv_undef, 1, 0,
+ PL_XPosix_ptrs[classnum], &flags);
+ }
+
+ while (hardcount < max && scan < loceol
+ && to_complement ^ cBOOL(_generic_utf8(
+ classnum,
+ scan,
+ swash_fetch(PL_utf8_swash_ptrs[classnum],
+ (U8 *) scan,
+ TRUE))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+
+ case LNBREAK:
+ if (utf8_target) {
+ while (hardcount < max && scan < loceol &&
+ (c=is_LNBREAK_utf8_safe(scan, loceol))) {
+ scan += c;
+ hardcount++;
+ }
+ } else {
+ /* LNBREAK can match one or two latin chars, which is ok, but we
+ * have to use hardcount in this situation, and throw away the
+ * adjustment to <loceol> done before the switch statement */
+ loceol = reginfo->strend;
+ while (scan < loceol && (c=is_LNBREAK_latin1_safe(scan, loceol))) {
+ scan+=c;
+ hardcount++;
+ }
+ }
+ break;
+
+ case BOUNDL:
+ case NBOUNDL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ /* FALLTHROUGH */
+ case BOUND:
+ case BOUNDA:
+ case BOUNDU:
+ case EOS:
+ case GPOS:
+ case KEEPS:
+ case NBOUND:
+ case NBOUNDA:
+ case NBOUNDU:
+ case OPFAIL:
+ case SBOL:
+ case SEOL:
+ /* These are all 0 width, so match right here or not at all. */
+ break;
+
+ default:
+ Perl_croak(aTHX_ "panic: regrepeat() called with unrecognized node type %d='%s'", OP(p), PL_reg_name[OP(p)]);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ }
+
+ if (hardcount)
+ c = hardcount;
+ else
+ c = scan - *startposp;
+ *startposp = scan;
+
+ DEBUG_r({
+ GET_RE_DEBUG_FLAGS_DECL;
+ DEBUG_EXECUTE_r({
+ SV * const prop = sv_newmortal();
+ regprop(prog, prop, p, reginfo, NULL);
+ PerlIO_printf(Perl_debug_log,
+ "%*s %s can match %"IVdf" times out of %"IVdf"...\n",
+ REPORT_CODE_OFF + depth*2, "", SvPVX_const(prop),(IV)c,(IV)max);
+ });
+ });
+
+ return(c);
+}
+
+
+#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
+/*
+- regclass_swash - prepare the utf8 swash. Wraps the shared core version to
+create a copy so that changes the caller makes won't change the shared one.
+If <altsvp> is non-null, will return NULL in it, for back-compat.
+ */
+SV *
+Perl_regclass_swash(pTHX_ const regexp *prog, const regnode* node, bool doinit, SV** listsvp, SV **altsvp)
+{
+ PERL_ARGS_ASSERT_REGCLASS_SWASH;
+
+ if (altsvp) {
+ *altsvp = NULL;
+ }
+
+ return newSVsv(_get_regclass_nonbitmap_data(prog, node, doinit, listsvp, NULL, NULL));
+}
+
+#endif /* !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION) */
+
+/*
+ - reginclass - determine if a character falls into a character class
+
+ n is the ANYOF-type regnode
+ p is the target string
+ p_end points to one byte beyond the end of the target string
+ utf8_target tells whether p is in UTF-8.
+
+ Returns true if matched; false otherwise.
+
+ Note that this can be a synthetic start class, a combination of various
+ nodes, so things you think might be mutually exclusive, such as locale,
+ aren't. It can match both locale and non-locale
+
+ */
+
+STATIC bool
+S_reginclass(pTHX_ regexp * const prog, const regnode * const n, const U8* const p, const U8* const p_end, const bool utf8_target)
+{
+ dVAR;
+ const char flags = ANYOF_FLAGS(n);
+ bool match = FALSE;
+ UV c = *p;
+
+ PERL_ARGS_ASSERT_REGINCLASS;
+
+ /* If c is not already the code point, get it. Note that
+ * UTF8_IS_INVARIANT() works even if not in UTF-8 */
+ if (! UTF8_IS_INVARIANT(c) && utf8_target) {
+ STRLEN c_len = 0;
+ c = utf8n_to_uvchr(p, p_end - p, &c_len,
+ (UTF8_ALLOW_DEFAULT & UTF8_ALLOW_ANYUV)
+ | UTF8_ALLOW_FFFF | UTF8_CHECK_ONLY);
+ /* see [perl #37836] for UTF8_ALLOW_ANYUV; [perl #38293] for
+ * UTF8_ALLOW_FFFF */
+ if (c_len == (STRLEN)-1)
+ Perl_croak(aTHX_ "Malformed UTF-8 character (fatal)");
+ if (c > 255 && OP(n) == ANYOFL && ! is_ANYOF_SYNTHETIC(n)) {
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_CP_MSG(c);
+ }
+ }
+
+ /* If this character is potentially in the bitmap, check it */
+ if (c < NUM_ANYOF_CODE_POINTS) {
+ if (ANYOF_BITMAP_TEST(n, c))
+ match = TRUE;
+ else if ((flags & ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII)
+ && ! utf8_target
+ && ! isASCII(c))
+ {
+ match = TRUE;
+ }
+ else if (flags & ANYOF_LOCALE_FLAGS) {
+ if ((flags & ANYOF_LOC_FOLD)
+ && c < 256
+ && ANYOF_BITMAP_TEST(n, PL_fold_locale[c]))
+ {
+ match = TRUE;
+ }
+ else if (ANYOF_POSIXL_TEST_ANY_SET(n)
+ && c < 256
+ ) {
+
+ /* The data structure is arranged so bits 0, 2, 4, ... are set
+ * if the class includes the Posix character class given by
+ * bit/2; and 1, 3, 5, ... are set if the class includes the
+ * complemented Posix class given by int(bit/2). So we loop
+ * through the bits, each time changing whether we complement
+ * the result or not. Suppose for the sake of illustration
+ * that bits 0-3 mean respectively, \w, \W, \s, \S. If bit 0
+ * is set, it means there is a match for this ANYOF node if the
+ * character is in the class given by the expression (0 / 2 = 0
+ * = \w). If it is in that class, isFOO_lc() will return 1,
+ * and since 'to_complement' is 0, the result will stay TRUE,
+ * and we exit the loop. Suppose instead that bit 0 is 0, but
+ * bit 1 is 1. That means there is a match if the character
+ * matches \W. We won't bother to call isFOO_lc() on bit 0,
+ * but will on bit 1. On the second iteration 'to_complement'
+ * will be 1, so the exclusive or will reverse things, so we
+ * are testing for \W. On the third iteration, 'to_complement'
+ * will be 0, and we would be testing for \s; the fourth
+ * iteration would test for \S, etc.
+ *
+ * Note that this code assumes that all the classes are closed
+ * under folding. For example, if a character matches \w, then
+ * its fold does too; and vice versa. This should be true for
+ * any well-behaved locale for all the currently defined Posix
+ * classes, except for :lower: and :upper:, which are handled
+ * by the pseudo-class :cased: which matches if either of the
+ * other two does. To get rid of this assumption, an outer
+ * loop could be used below to iterate over both the source
+ * character, and its fold (if different) */
+
+ int count = 0;
+ int to_complement = 0;
+
+ while (count < ANYOF_MAX) {
+ if (ANYOF_POSIXL_TEST(n, count)
+ && to_complement ^ cBOOL(isFOO_lc(count/2, (U8) c)))
+ {
+ match = TRUE;
+ break;
+ }
+ count++;
+ to_complement ^= 1;
+ }
+ }
+ }
+ }
+
+
+ /* If the bitmap didn't (or couldn't) match, and something outside the
+ * bitmap could match, try that. */
+ if (!match) {
+ if (c >= NUM_ANYOF_CODE_POINTS
+ && (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP))
+ {
+ match = TRUE; /* Everything above the bitmap matches */
+ }
+ else if ((flags & ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES)
+ || (utf8_target && (flags & ANYOF_HAS_UTF8_NONBITMAP_MATCHES))
+ || ((flags & ANYOF_LOC_FOLD)
+ && IN_UTF8_CTYPE_LOCALE
+ && ARG(n) != ANYOF_ONLY_HAS_BITMAP))
+ {
+ SV* only_utf8_locale = NULL;
+ SV * const sw = _get_regclass_nonbitmap_data(prog, n, TRUE, 0,
+ &only_utf8_locale, NULL);
+ if (sw) {
+ U8 utf8_buffer[2];
+ U8 * utf8_p;
+ if (utf8_target) {
+ utf8_p = (U8 *) p;
+ } else { /* Convert to utf8 */
+ utf8_p = utf8_buffer;
+ append_utf8_from_native_byte(*p, &utf8_p);
+ utf8_p = utf8_buffer;
+ }
+
+ if (swash_fetch(sw, utf8_p, TRUE)) {
+ match = TRUE;
+ }
+ }
+ if (! match && only_utf8_locale && IN_UTF8_CTYPE_LOCALE) {
+ match = _invlist_contains_cp(only_utf8_locale, c);
+ }
+ }
+
+ if (UNICODE_IS_SUPER(c)
+ && (flags & ANYOF_WARN_SUPER)
+ && ckWARN_d(WARN_NON_UNICODE))
+ {
+ Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
+ "Matched non-Unicode code point 0x%04"UVXf" against Unicode property; may not be portable", c);
+ }
+ }
+
+#if ANYOF_INVERT != 1
+ /* Depending on compiler optimization cBOOL takes time, so if don't have to
+ * use it, don't */
+# error ANYOF_INVERT needs to be set to 1, or guarded with cBOOL below,
+#endif
+
+ /* The xor complements the return if to invert: 1^1 = 0, 1^0 = 1 */
+ return (flags & ANYOF_INVERT) ^ match;
+}
+
+STATIC U8 *
+S_reghop3(U8 *s, SSize_t off, const U8* lim)
+{
+ /* return the position 'off' UTF-8 characters away from 's', forward if
+ * 'off' >= 0, backwards if negative. But don't go outside of position
+ * 'lim', which better be < s if off < 0 */
+
+ PERL_ARGS_ASSERT_REGHOP3;
+
+ if (off >= 0) {
+ while (off-- && s < lim) {
+ /* XXX could check well-formedness here */
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ while (off++ && s > lim) {
+ s--;
+ if (UTF8_IS_CONTINUED(*s)) {
+ while (s > lim && UTF8_IS_CONTINUATION(*s))
+ s--;
+ }
+ /* XXX could check well-formedness here */
+ }
+ }
+ return s;
+}
+
+STATIC U8 *
+S_reghop4(U8 *s, SSize_t off, const U8* llim, const U8* rlim)
+{
+ PERL_ARGS_ASSERT_REGHOP4;
+
+ if (off >= 0) {
+ while (off-- && s < rlim) {
+ /* XXX could check well-formedness here */
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ while (off++ && s > llim) {
+ s--;
+ if (UTF8_IS_CONTINUED(*s)) {
+ while (s > llim && UTF8_IS_CONTINUATION(*s))
+ s--;
+ }
+ /* XXX could check well-formedness here */
+ }
+ }
+ return s;
+}
+
+/* like reghop3, but returns NULL on overrun, rather than returning last
+ * char pos */
+
+STATIC U8 *
+S_reghopmaybe3(U8* s, SSize_t off, const U8* lim)
+{
+ PERL_ARGS_ASSERT_REGHOPMAYBE3;
+
+ if (off >= 0) {
+ while (off-- && s < lim) {
+ /* XXX could check well-formedness here */
+ s += UTF8SKIP(s);
+ }
+ if (off >= 0)
+ return NULL;
+ }
+ else {
+ while (off++ && s > lim) {
+ s--;
+ if (UTF8_IS_CONTINUED(*s)) {
+ while (s > lim && UTF8_IS_CONTINUATION(*s))
+ s--;
+ }
+ /* XXX could check well-formedness here */
+ }
+ if (off <= 0)
+ return NULL;
+ }
+ return s;
+}
+
+
+/* when executing a regex that may have (?{}), extra stuff needs setting
+ up that will be visible to the called code, even before the current
+ match has finished. In particular:
+
+ * $_ is localised to the SV currently being matched;
+ * pos($_) is created if necessary, ready to be updated on each call-out
+ to code;
+ * a fake PMOP is created that can be set to PL_curpm (normally PL_curpm
+ isn't set until the current pattern is successfully finished), so that
+ $1 etc of the match-so-far can be seen;
+ * save the old values of subbeg etc of the current regex, and set then
+ to the current string (again, this is normally only done at the end
+ of execution)
+*/
+
+static void
+S_setup_eval_state(pTHX_ regmatch_info *const reginfo)
+{
+ MAGIC *mg;
+ regexp *const rex = ReANY(reginfo->prog);
+ regmatch_info_aux_eval *eval_state = reginfo->info_aux_eval;
+
+ eval_state->rex = rex;
+
+ if (reginfo->sv) {
+ /* Make $_ available to executed code. */
+ if (reginfo->sv != DEFSV) {
+ SAVE_DEFSV;
+ DEFSV_set(reginfo->sv);
+ }
+
+ if (!(mg = mg_find_mglob(reginfo->sv))) {
+ /* prepare for quick setting of pos */
+ mg = sv_magicext_mglob(reginfo->sv);
+ mg->mg_len = -1;
+ }
+ eval_state->pos_magic = mg;
+ eval_state->pos = mg->mg_len;
+ eval_state->pos_flags = mg->mg_flags;
+ }
+ else
+ eval_state->pos_magic = NULL;
+
+ if (!PL_reg_curpm) {
+ /* PL_reg_curpm is a fake PMOP that we can attach the current
+ * regex to and point PL_curpm at, so that $1 et al are visible
+ * within a /(?{})/. It's just allocated once per interpreter the
+ * first time its needed */
+ Newxz(PL_reg_curpm, 1, PMOP);
+#ifdef USE_ITHREADS
+ {
+ SV* const repointer = &PL_sv_undef;
+ /* this regexp is also owned by the new PL_reg_curpm, which
+ will try to free it. */
+ av_push(PL_regex_padav, repointer);
+ PL_reg_curpm->op_pmoffset = av_tindex(PL_regex_padav);
+ PL_regex_pad = AvARRAY(PL_regex_padav);
+ }
+#endif
+ }
+ SET_reg_curpm(reginfo->prog);
+ eval_state->curpm = PL_curpm;
+ PL_curpm = PL_reg_curpm;
+ if (RXp_MATCH_COPIED(rex)) {
+ /* Here is a serious problem: we cannot rewrite subbeg,
+ since it may be needed if this match fails. Thus
+ $` inside (?{}) could fail... */
+ eval_state->subbeg = rex->subbeg;
+ eval_state->sublen = rex->sublen;
+ eval_state->suboffset = rex->suboffset;
+ eval_state->subcoffset = rex->subcoffset;
+#ifdef PERL_ANY_COW
+ eval_state->saved_copy = rex->saved_copy;
+#endif
+ RXp_MATCH_COPIED_off(rex);
+ }
+ else
+ eval_state->subbeg = NULL;
+ rex->subbeg = (char *)reginfo->strbeg;
+ rex->suboffset = 0;
+ rex->subcoffset = 0;
+ rex->sublen = reginfo->strend - reginfo->strbeg;
+}
+
+
+/* destructor to clear up regmatch_info_aux and regmatch_info_aux_eval */
+
+static void
+S_cleanup_regmatch_info_aux(pTHX_ void *arg)
+{
+ regmatch_info_aux *aux = (regmatch_info_aux *) arg;
+ regmatch_info_aux_eval *eval_state = aux->info_aux_eval;
+ regmatch_slab *s;
+
+ Safefree(aux->poscache);
+
+ if (eval_state) {
+
+ /* undo the effects of S_setup_eval_state() */
+
+ if (eval_state->subbeg) {
+ regexp * const rex = eval_state->rex;
+ rex->subbeg = eval_state->subbeg;
+ rex->sublen = eval_state->sublen;
+ rex->suboffset = eval_state->suboffset;
+ rex->subcoffset = eval_state->subcoffset;
+#ifdef PERL_ANY_COW
+ rex->saved_copy = eval_state->saved_copy;
+#endif
+ RXp_MATCH_COPIED_on(rex);
+ }
+ if (eval_state->pos_magic)
+ {
+ eval_state->pos_magic->mg_len = eval_state->pos;
+ eval_state->pos_magic->mg_flags =
+ (eval_state->pos_magic->mg_flags & ~MGf_BYTES)
+ | (eval_state->pos_flags & MGf_BYTES);
+ }
+
+ PL_curpm = eval_state->curpm;
+ }
+
+ PL_regmatch_state = aux->old_regmatch_state;
+ PL_regmatch_slab = aux->old_regmatch_slab;
+
+ /* free all slabs above current one - this must be the last action
+ * of this function, as aux and eval_state are allocated within
+ * slabs and may be freed here */
+
+ s = PL_regmatch_slab->next;
+ if (s) {
+ PL_regmatch_slab->next = NULL;
+ while (s) {
+ regmatch_slab * const osl = s;
+ s = s->next;
+ Safefree(osl);
+ }
+ }
+}
+
+
+STATIC void
+S_to_utf8_substr(pTHX_ regexp *prog)
+{
+ /* Converts substr fields in prog from bytes to UTF-8, calling fbm_compile
+ * on the converted value */
+
+ int i = 1;
+
+ PERL_ARGS_ASSERT_TO_UTF8_SUBSTR;
+
+ do {
+ if (prog->substrs->data[i].substr
+ && !prog->substrs->data[i].utf8_substr) {
+ SV* const sv = newSVsv(prog->substrs->data[i].substr);
+ prog->substrs->data[i].utf8_substr = sv;
+ sv_utf8_upgrade(sv);
+ if (SvVALID(prog->substrs->data[i].substr)) {
+ if (SvTAIL(prog->substrs->data[i].substr)) {
+ /* Trim the trailing \n that fbm_compile added last
+ time. */
+ SvCUR_set(sv, SvCUR(sv) - 1);
+ /* Whilst this makes the SV technically "invalid" (as its
+ buffer is no longer followed by "\0") when fbm_compile()
+ adds the "\n" back, a "\0" is restored. */
+ fbm_compile(sv, FBMcf_TAIL);
+ } else
+ fbm_compile(sv, 0);
+ }
+ if (prog->substrs->data[i].substr == prog->check_substr)
+ prog->check_utf8 = sv;
+ }
+ } while (i--);
+}
+
+STATIC bool
+S_to_byte_substr(pTHX_ regexp *prog)
+{
+ /* Converts substr fields in prog from UTF-8 to bytes, calling fbm_compile
+ * on the converted value; returns FALSE if can't be converted. */
+
+ int i = 1;
+
+ PERL_ARGS_ASSERT_TO_BYTE_SUBSTR;
+
+ do {
+ if (prog->substrs->data[i].utf8_substr
+ && !prog->substrs->data[i].substr) {
+ SV* sv = newSVsv(prog->substrs->data[i].utf8_substr);
+ if (! sv_utf8_downgrade(sv, TRUE)) {
+ return FALSE;
+ }
+ if (SvVALID(prog->substrs->data[i].utf8_substr)) {
+ if (SvTAIL(prog->substrs->data[i].utf8_substr)) {
+ /* Trim the trailing \n that fbm_compile added last
+ time. */
+ SvCUR_set(sv, SvCUR(sv) - 1);
+ fbm_compile(sv, FBMcf_TAIL);
+ } else
+ fbm_compile(sv, 0);
+ }
+ prog->substrs->data[i].substr = sv;
+ if (prog->substrs->data[i].utf8_substr == prog->check_utf8)
+ prog->check_substr = sv;
+ }
+ } while (i--);
+
+ return TRUE;
+}
+
+/*
+ * ex: set ts=8 sts=4 sw=4 et:
+ */
--- /dev/null
+/* dquote_static.c
+ *
+ * This file contains static functions that are related to
+ * parsing double-quotish expressions, but are used in more than
+ * one file.
+ *
+ * It is currently #included by regcomp.c and toke.c.
+*/
+
+#define PERL_IN_DQUOTE_STATIC_C
+#include "embed.h"
+
+/*
+ - regcurly - a little FSA that accepts {\d+,?\d*}
+ Pulled from regcomp.c.
+ */
+PERL_STATIC_INLINE I32
+S_regcurly(const char *s)
+{
+ PERL_ARGS_ASSERT_REGCURLY;
+
+ if (*s++ != '{')
+ return FALSE;
+ if (!isDIGIT(*s))
+ return FALSE;
+ while (isDIGIT(*s))
+ s++;
+ if (*s == ',') {
+ s++;
+ while (isDIGIT(*s))
+ s++;
+ }
+
+ return *s == '}';
+}
+
+/* XXX Add documentation after final interface and behavior is decided */
+/* May want to show context for error, so would pass Perl_bslash_c(pTHX_ const char* current, const char* start, const bool output_warning)
+ U8 source = *current;
+*/
+
+STATIC char
+S_grok_bslash_c(pTHX_ const char source, const bool output_warning)
+{
+
+ U8 result;
+
+ if (! isPRINT_A(source)) {
+ Perl_croak(aTHX_ "%s",
+ "Character following \"\\c\" must be printable ASCII");
+ }
+ else if (source == '{') {
+ const char control = toCTRL('{');
+ if (isPRINT_A(control)) {
+ /* diag_listed_as: Use "%s" instead of "%s" */
+ Perl_croak(aTHX_ "Use \"%c\" instead of \"\\c{\"", control);
+ }
+ else {
+ Perl_croak(aTHX_ "Sequence \"\\c{\" invalid");
+ }
+ }
+
+ result = toCTRL(source);
+ if (output_warning && isPRINT_A(result)) {
+ U8 clearer[3];
+ U8 i = 0;
+ if (! isWORDCHAR(result)) {
+ clearer[i++] = '\\';
+ }
+ clearer[i++] = result;
+ clearer[i++] = '\0';
+
+ Perl_ck_warner(aTHX_ packWARN(WARN_SYNTAX),
+ "\"\\c%c\" is more clearly written simply as \"%s\"",
+ source,
+ clearer);
+ }
+
+ return result;
+}
+
+STATIC bool
+S_grok_bslash_o(pTHX_ char **s, UV *uv, const char** error_msg,
+ const bool output_warning, const bool strict,
+ const bool silence_non_portable,
+ const bool UTF)
+{
+
+/* Documentation to be supplied when interface nailed down finally
+ * This returns FALSE if there is an error which the caller need not recover
+ * from; otherwise TRUE. In either case the caller should look at *len [???].
+ * It guarantees that the returned codepoint, *uv, when expressed as
+ * utf8 bytes, would fit within the skipped "\o{...}" bytes.
+ * On input:
+ * s is the address of a pointer to a NULL terminated string that begins
+ * with 'o', and the previous character was a backslash. At exit, *s
+ * will be advanced to the byte just after those absorbed by this
+ * function. Hence the caller can continue parsing from there. In
+ * the case of an error, this routine has generally positioned *s to
+ * point just to the right of the first bad spot, so that a message
+ * that has a "<--" to mark the spot will be correctly positioned.
+ * uv points to a UV that will hold the output value, valid only if the
+ * return from the function is TRUE
+ * error_msg is a pointer that will be set to an internal buffer giving an
+ * error message upon failure (the return is FALSE). Untouched if
+ * function succeeds
+ * output_warning says whether to output any warning messages, or suppress
+ * them
+ * strict is true if this should fail instead of warn if there are
+ * non-octal digits within the braces
+ * silence_non_portable is true if to suppress warnings about the code
+ * point returned being too large to fit on all platforms.
+ * UTF is true iff the string *s is encoded in UTF-8.
+ */
+ char* e;
+ STRLEN numbers_len;
+ I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
+ | PERL_SCAN_DISALLOW_PREFIX
+ /* XXX Until the message is improved in grok_oct, handle errors
+ * ourselves */
+ | PERL_SCAN_SILENT_ILLDIGIT;
+
+#ifdef DEBUGGING
+ char *start = *s - 1;
+ assert(*start == '\\');
+#endif
+
+ PERL_ARGS_ASSERT_GROK_BSLASH_O;
+
+
+ assert(**s == 'o');
+ (*s)++;
+
+ if (**s != '{') {
+ *error_msg = "Missing braces on \\o{}";
+ return FALSE;
+ }
+
+ e = strchr(*s, '}');
+ if (!e) {
+ (*s)++; /* Move past the '{' */
+ while (isOCTAL(**s)) { /* Position beyond the legal digits */
+ (*s)++;
+ }
+ *error_msg = "Missing right brace on \\o{";
+ return FALSE;
+ }
+
+ (*s)++; /* Point to expected first digit (could be first byte of utf8
+ sequence if not a digit) */
+ numbers_len = e - *s;
+ if (numbers_len == 0) {
+ (*s)++; /* Move past the } */
+ *error_msg = "Number with no digits";
+ return FALSE;
+ }
+
+ if (silence_non_portable) {
+ flags |= PERL_SCAN_SILENT_NON_PORTABLE;
+ }
+
+ *uv = grok_oct(*s, &numbers_len, &flags, NULL);
+ /* Note that if has non-octal, will ignore everything starting with that up
+ * to the '}' */
+
+ if (numbers_len != (STRLEN) (e - *s)) {
+ if (strict) {
+ *s += numbers_len;
+ *s += (UTF) ? UTF8SKIP(*s) : (STRLEN) 1;
+ *error_msg = "Non-octal character";
+ return FALSE;
+ }
+ else if (output_warning) {
+ Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
+ /* diag_listed_as: Non-octal character '%c'. Resolved as "%s" */
+ "Non-octal character '%c'. Resolved as \"\\o{%.*s}\"",
+ *(*s + numbers_len),
+ (int) numbers_len,
+ *s);
+ }
+ }
+
+ /* Return past the '}' */
+ *s = e + 1;
+
+ /* guarantee replacing "\o{...}" with utf8 bytes fits within
+ * existing space */
+ assert(OFFUNISKIP(*uv) < *s - start);
+
+ return TRUE;
+}
+
+PERL_STATIC_INLINE bool
+S_grok_bslash_x(pTHX_ char **s, UV *uv, const char** error_msg,
+ const bool output_warning, const bool strict,
+ const bool silence_non_portable,
+ const bool UTF)
+{
+
+/* Documentation to be supplied when interface nailed down finally
+ * This returns FALSE if there is an error which the caller need not recover
+ * from; otherwise TRUE.
+ * It guarantees that the returned codepoint, *uv, when expressed as
+ * utf8 bytes, would fit within the skipped "\x{...}" bytes.
+ *
+ * On input:
+ * s is the address of a pointer to a NULL terminated string that begins
+ * with 'x', and the previous character was a backslash. At exit, *s
+ * will be advanced to the byte just after those absorbed by this
+ * function. Hence the caller can continue parsing from there. In
+ * the case of an error, this routine has generally positioned *s to
+ * point just to the right of the first bad spot, so that a message
+ * that has a "<--" to mark the spot will be correctly positioned.
+ * uv points to a UV that will hold the output value, valid only if the
+ * return from the function is TRUE
+ * error_msg is a pointer that will be set to an internal buffer giving an
+ * error message upon failure (the return is FALSE). Untouched if
+ * function succeeds
+ * output_warning says whether to output any warning messages, or suppress
+ * them
+ * strict is true if anything out of the ordinary should cause this to
+ * fail instead of warn or be silent. For example, it requires
+ * exactly 2 digits following the \x (when there are no braces).
+ * 3 digits could be a mistake, so is forbidden in this mode.
+ * silence_non_portable is true if to suppress warnings about the code
+ * point returned being too large to fit on all platforms.
+ * UTF is true iff the string *s is encoded in UTF-8.
+ */
+ char* e;
+ STRLEN numbers_len;
+ I32 flags = PERL_SCAN_DISALLOW_PREFIX;
+#ifdef DEBUGGING
+ char *start = *s - 1;
+ assert(*start == '\\');
+#endif
+
+ PERL_ARGS_ASSERT_GROK_BSLASH_X;
+
+ assert(**s == 'x');
+ (*s)++;
+
+ if (strict || ! output_warning) {
+ flags |= PERL_SCAN_SILENT_ILLDIGIT;
+ }
+
+ if (**s != '{') {
+ STRLEN len = (strict) ? 3 : 2;
+
+ *uv = grok_hex(*s, &len, &flags, NULL);
+ *s += len;
+ if (strict && len != 2) {
+ if (len < 2) {
+ *s += (UTF) ? UTF8SKIP(*s) : 1;
+ *error_msg = "Non-hex character";
+ }
+ else {
+ *error_msg = "Use \\x{...} for more than two hex characters";
+ }
+ return FALSE;
+ }
+ goto ok;
+ }
+
+ e = strchr(*s, '}');
+ if (!e) {
+ (*s)++; /* Move past the '{' */
+ while (isXDIGIT(**s)) { /* Position beyond the legal digits */
+ (*s)++;
+ }
+ /* XXX The corresponding message above for \o is just '\\o{'; other
+ * messages for other constructs include the '}', so are inconsistent.
+ */
+ *error_msg = "Missing right brace on \\x{}";
+ return FALSE;
+ }
+
+ (*s)++; /* Point to expected first digit (could be first byte of utf8
+ sequence if not a digit) */
+ numbers_len = e - *s;
+ if (numbers_len == 0) {
+ if (strict) {
+ (*s)++; /* Move past the } */
+ *error_msg = "Number with no digits";
+ return FALSE;
+ }
+ *s = e + 1;
+ *uv = 0;
+ goto ok;
+ }
+
+ flags |= PERL_SCAN_ALLOW_UNDERSCORES;
+ if (silence_non_portable) {
+ flags |= PERL_SCAN_SILENT_NON_PORTABLE;
+ }
+
+ *uv = grok_hex(*s, &numbers_len, &flags, NULL);
+ /* Note that if has non-hex, will ignore everything starting with that up
+ * to the '}' */
+
+ if (strict && numbers_len != (STRLEN) (e - *s)) {
+ *s += numbers_len;
+ *s += (UTF) ? UTF8SKIP(*s) : 1;
+ *error_msg = "Non-hex character";
+ return FALSE;
+ }
+
+ /* Return past the '}' */
+ *s = e + 1;
+
+ ok:
+ /* guarantee replacing "\x{...}" with utf8 bytes fits within
+ * existing space */
+ assert(OFFUNISKIP(*uv) < *s - start);
+ return TRUE;
+}
+
+STATIC char*
+S_form_short_octal_warning(pTHX_
+ const char * const s, /* Points to first non-octal */
+ const STRLEN len /* Length of octals string, so
+ (s-len) points to first
+ octal */
+) {
+ /* Return a character string consisting of a warning message for when a
+ * string constant in octal is weird, like "\078". */
+
+ const char * sans_leading_zeros = s - len;
+
+ PERL_ARGS_ASSERT_FORM_SHORT_OCTAL_WARNING;
+
+ assert(*s == '8' || *s == '9');
+
+ /* Remove the leading zeros, retaining one zero so won't be zero length */
+ while (*sans_leading_zeros == '0') sans_leading_zeros++;
+ if (sans_leading_zeros == s) {
+ sans_leading_zeros--;
+ }
+
+ return Perl_form(aTHX_
+ "'%.*s' resolved to '\\o{%.*s}%c'",
+ (int) (len + 2), s - len - 1,
+ (int) (s - sans_leading_zeros), sans_leading_zeros,
+ *s);
+}
+
+/*
+ * ex: set ts=8 sts=4 sw=4 et:
+ */
--- /dev/null
+/* inline_invlist.c
+ *
+ * Copyright (C) 2012 by Larry Wall and others
+ *
+ * You may distribute under the terms of either the GNU General Public
+ * License or the Artistic License, as specified in the README file.
+ */
+
+#if defined(PERL_IN_UTF8_C) || defined(PERL_IN_REGCOMP_C) || defined(PERL_IN_REGEXEC_C)
+
+/* An element is in an inversion list iff its index is even numbered: 0, 2, 4,
+ * etc */
+#define ELEMENT_RANGE_MATCHES_INVLIST(i) (! ((i) & 1))
+#define PREV_RANGE_MATCHES_INVLIST(i) (! ELEMENT_RANGE_MATCHES_INVLIST(i))
+
+/* This converts to/from our UVs to what the SV code is expecting: bytes. */
+#define TO_INTERNAL_SIZE(x) ((x) * sizeof(UV))
+#define FROM_INTERNAL_SIZE(x) ((x)/ sizeof(UV))
+
+PERL_STATIC_INLINE bool*
+S_get_invlist_offset_addr(SV* invlist)
+{
+ /* Return the address of the field that says whether the inversion list is
+ * offset (it contains 1) or not (contains 0) */
+ PERL_ARGS_ASSERT_GET_INVLIST_OFFSET_ADDR;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ return &(((XINVLIST*) SvANY(invlist))->is_offset);
+}
+
+PERL_STATIC_INLINE UV
+S__invlist_len(SV* const invlist)
+{
+ /* Returns the current number of elements stored in the inversion list's
+ * array */
+
+ PERL_ARGS_ASSERT__INVLIST_LEN;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ return (SvCUR(invlist) == 0)
+ ? 0
+ : FROM_INTERNAL_SIZE(SvCUR(invlist)) - *get_invlist_offset_addr(invlist);
+}
+
+PERL_STATIC_INLINE bool
+S__invlist_contains_cp(SV* const invlist, const UV cp)
+{
+ /* Does <invlist> contain code point <cp> as part of the set? */
+
+ IV index = _invlist_search(invlist, cp);
+
+ PERL_ARGS_ASSERT__INVLIST_CONTAINS_CP;
+
+ return index >= 0 && ELEMENT_RANGE_MATCHES_INVLIST(index);
+}
+
+PERL_STATIC_INLINE UV*
+S_invlist_array(SV* const invlist)
+{
+ /* Returns the pointer to the inversion list's array. Every time the
+ * length changes, this needs to be called in case malloc or realloc moved
+ * it */
+
+ PERL_ARGS_ASSERT_INVLIST_ARRAY;
+
+ /* Must not be empty. If these fail, you probably didn't check for <len>
+ * being non-zero before trying to get the array */
+ assert(_invlist_len(invlist));
+
+ /* The very first element always contains zero, The array begins either
+ * there, or if the inversion list is offset, at the element after it.
+ * The offset header field determines which; it contains 0 or 1 to indicate
+ * how much additionally to add */
+ assert(0 == *(SvPVX(invlist)));
+ return ((UV *) SvPVX(invlist) + *get_invlist_offset_addr(invlist));
+}
+
+# if defined(PERL_IN_UTF8_C) || defined(PERL_IN_REGEXEC_C)
+
+/* These symbols are only needed later in regcomp.c */
+# undef TO_INTERNAL_SIZE
+# undef FROM_INTERNAL_SIZE
+# endif
+
+#endif
--- /dev/null
+/* dquote_static.c
+ *
+ * This file contains static functions that are related to
+ * parsing double-quotish expressions, but are used in more than
+ * one file.
+ *
+ * It is currently #included by regcomp.c and toke.c.
+*/
+
+#define PERL_IN_DQUOTE_STATIC_C
+#include "embed.h"
+
+/*
+ - regcurly - a little FSA that accepts {\d+,?\d*}
+ Pulled from regcomp.c.
+ */
+PERL_STATIC_INLINE I32
+S_regcurly(const char *s)
+{
+ PERL_ARGS_ASSERT_REGCURLY;
+
+ if (*s++ != '{')
+ return FALSE;
+ if (!isDIGIT(*s))
+ return FALSE;
+ while (isDIGIT(*s))
+ s++;
+ if (*s == ',') {
+ s++;
+ while (isDIGIT(*s))
+ s++;
+ }
+
+ return *s == '}';
+}
+
+/* XXX Add documentation after final interface and behavior is decided */
+/* May want to show context for error, so would pass Perl_bslash_c(pTHX_ const char* current, const char* start, const bool output_warning)
+ U8 source = *current;
+*/
+
+STATIC char
+S_grok_bslash_c(pTHX_ const char source, const bool output_warning)
+{
+
+ U8 result;
+
+ if (! isPRINT_A(source)) {
+ Perl_croak(aTHX_ "%s",
+ "Character following \"\\c\" must be printable ASCII");
+ }
+ else if (source == '{') {
+ const char control = toCTRL('{');
+ if (isPRINT_A(control)) {
+ /* diag_listed_as: Use "%s" instead of "%s" */
+ Perl_croak(aTHX_ "Use \"%c\" instead of \"\\c{\"", control);
+ }
+ else {
+ Perl_croak(aTHX_ "Sequence \"\\c{\" invalid");
+ }
+ }
+
+ result = toCTRL(source);
+ if (output_warning && isPRINT_A(result)) {
+ U8 clearer[3];
+ U8 i = 0;
+ if (! isWORDCHAR(result)) {
+ clearer[i++] = '\\';
+ }
+ clearer[i++] = result;
+ clearer[i++] = '\0';
+
+ Perl_ck_warner(aTHX_ packWARN(WARN_SYNTAX),
+ "\"\\c%c\" is more clearly written simply as \"%s\"",
+ source,
+ clearer);
+ }
+
+ return result;
+}
+
+STATIC bool
+S_grok_bslash_o(pTHX_ char **s, UV *uv, const char** error_msg,
+ const bool output_warning, const bool strict,
+ const bool silence_non_portable,
+ const bool UTF)
+{
+
+/* Documentation to be supplied when interface nailed down finally
+ * This returns FALSE if there is an error which the caller need not recover
+ * from; otherwise TRUE. In either case the caller should look at *len [???].
+ * It guarantees that the returned codepoint, *uv, when expressed as
+ * utf8 bytes, would fit within the skipped "\o{...}" bytes.
+ * On input:
+ * s is the address of a pointer to a NULL terminated string that begins
+ * with 'o', and the previous character was a backslash. At exit, *s
+ * will be advanced to the byte just after those absorbed by this
+ * function. Hence the caller can continue parsing from there. In
+ * the case of an error, this routine has generally positioned *s to
+ * point just to the right of the first bad spot, so that a message
+ * that has a "<--" to mark the spot will be correctly positioned.
+ * uv points to a UV that will hold the output value, valid only if the
+ * return from the function is TRUE
+ * error_msg is a pointer that will be set to an internal buffer giving an
+ * error message upon failure (the return is FALSE). Untouched if
+ * function succeeds
+ * output_warning says whether to output any warning messages, or suppress
+ * them
+ * strict is true if this should fail instead of warn if there are
+ * non-octal digits within the braces
+ * silence_non_portable is true if to suppress warnings about the code
+ * point returned being too large to fit on all platforms.
+ * UTF is true iff the string *s is encoded in UTF-8.
+ */
+ char* e;
+ STRLEN numbers_len;
+ I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
+ | PERL_SCAN_DISALLOW_PREFIX
+ /* XXX Until the message is improved in grok_oct, handle errors
+ * ourselves */
+ | PERL_SCAN_SILENT_ILLDIGIT;
+
+#ifdef DEBUGGING
+ char *start = *s - 1;
+ assert(*start == '\\');
+#endif
+
+ PERL_ARGS_ASSERT_GROK_BSLASH_O;
+
+
+ assert(**s == 'o');
+ (*s)++;
+
+ if (**s != '{') {
+ *error_msg = "Missing braces on \\o{}";
+ return FALSE;
+ }
+
+ e = strchr(*s, '}');
+ if (!e) {
+ (*s)++; /* Move past the '{' */
+ while (isOCTAL(**s)) { /* Position beyond the legal digits */
+ (*s)++;
+ }
+ *error_msg = "Missing right brace on \\o{";
+ return FALSE;
+ }
+
+ (*s)++; /* Point to expected first digit (could be first byte of utf8
+ sequence if not a digit) */
+ numbers_len = e - *s;
+ if (numbers_len == 0) {
+ (*s)++; /* Move past the } */
+ *error_msg = "Number with no digits";
+ return FALSE;
+ }
+
+ if (silence_non_portable) {
+ flags |= PERL_SCAN_SILENT_NON_PORTABLE;
+ }
+
+ *uv = grok_oct(*s, &numbers_len, &flags, NULL);
+ /* Note that if has non-octal, will ignore everything starting with that up
+ * to the '}' */
+
+ if (numbers_len != (STRLEN) (e - *s)) {
+ if (strict) {
+ *s += numbers_len;
+ *s += (UTF) ? UTF8SKIP(*s) : (STRLEN) 1;
+ *error_msg = "Non-octal character";
+ return FALSE;
+ }
+ else if (output_warning) {
+ Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
+ /* diag_listed_as: Non-octal character '%c'. Resolved as "%s" */
+ "Non-octal character '%c'. Resolved as \"\\o{%.*s}\"",
+ *(*s + numbers_len),
+ (int) numbers_len,
+ *s);
+ }
+ }
+
+ /* Return past the '}' */
+ *s = e + 1;
+
+ /* guarantee replacing "\o{...}" with utf8 bytes fits within
+ * existing space */
+ assert(OFFUNISKIP(*uv) < *s - start);
+
+ return TRUE;
+}
+
+PERL_STATIC_INLINE bool
+S_grok_bslash_x(pTHX_ char **s, UV *uv, const char** error_msg,
+ const bool output_warning, const bool strict,
+ const bool silence_non_portable,
+ const bool UTF)
+{
+
+/* Documentation to be supplied when interface nailed down finally
+ * This returns FALSE if there is an error which the caller need not recover
+ * from; otherwise TRUE.
+ * It guarantees that the returned codepoint, *uv, when expressed as
+ * utf8 bytes, would fit within the skipped "\x{...}" bytes.
+ *
+ * On input:
+ * s is the address of a pointer to a NULL terminated string that begins
+ * with 'x', and the previous character was a backslash. At exit, *s
+ * will be advanced to the byte just after those absorbed by this
+ * function. Hence the caller can continue parsing from there. In
+ * the case of an error, this routine has generally positioned *s to
+ * point just to the right of the first bad spot, so that a message
+ * that has a "<--" to mark the spot will be correctly positioned.
+ * uv points to a UV that will hold the output value, valid only if the
+ * return from the function is TRUE
+ * error_msg is a pointer that will be set to an internal buffer giving an
+ * error message upon failure (the return is FALSE). Untouched if
+ * function succeeds
+ * output_warning says whether to output any warning messages, or suppress
+ * them
+ * strict is true if anything out of the ordinary should cause this to
+ * fail instead of warn or be silent. For example, it requires
+ * exactly 2 digits following the \x (when there are no braces).
+ * 3 digits could be a mistake, so is forbidden in this mode.
+ * silence_non_portable is true if to suppress warnings about the code
+ * point returned being too large to fit on all platforms.
+ * UTF is true iff the string *s is encoded in UTF-8.
+ */
+ char* e;
+ STRLEN numbers_len;
+ I32 flags = PERL_SCAN_DISALLOW_PREFIX;
+#ifdef DEBUGGING
+ char *start = *s - 1;
+ assert(*start == '\\');
+#endif
+
+ PERL_ARGS_ASSERT_GROK_BSLASH_X;
+
+ assert(**s == 'x');
+ (*s)++;
+
+ if (strict || ! output_warning) {
+ flags |= PERL_SCAN_SILENT_ILLDIGIT;
+ }
+
+ if (**s != '{') {
+ STRLEN len = (strict) ? 3 : 2;
+
+ *uv = grok_hex(*s, &len, &flags, NULL);
+ *s += len;
+ if (strict && len != 2) {
+ if (len < 2) {
+ *s += (UTF) ? UTF8SKIP(*s) : 1;
+ *error_msg = "Non-hex character";
+ }
+ else {
+ *error_msg = "Use \\x{...} for more than two hex characters";
+ }
+ return FALSE;
+ }
+ goto ok;
+ }
+
+ e = strchr(*s, '}');
+ if (!e) {
+ (*s)++; /* Move past the '{' */
+ while (isXDIGIT(**s)) { /* Position beyond the legal digits */
+ (*s)++;
+ }
+ /* XXX The corresponding message above for \o is just '\\o{'; other
+ * messages for other constructs include the '}', so are inconsistent.
+ */
+ *error_msg = "Missing right brace on \\x{}";
+ return FALSE;
+ }
+
+ (*s)++; /* Point to expected first digit (could be first byte of utf8
+ sequence if not a digit) */
+ numbers_len = e - *s;
+ if (numbers_len == 0) {
+ if (strict) {
+ (*s)++; /* Move past the } */
+ *error_msg = "Number with no digits";
+ return FALSE;
+ }
+ *s = e + 1;
+ *uv = 0;
+ goto ok;
+ }
+
+ flags |= PERL_SCAN_ALLOW_UNDERSCORES;
+ if (silence_non_portable) {
+ flags |= PERL_SCAN_SILENT_NON_PORTABLE;
+ }
+
+ *uv = grok_hex(*s, &numbers_len, &flags, NULL);
+ /* Note that if has non-hex, will ignore everything starting with that up
+ * to the '}' */
+
+ if (strict && numbers_len != (STRLEN) (e - *s)) {
+ *s += numbers_len;
+ *s += (UTF) ? UTF8SKIP(*s) : 1;
+ *error_msg = "Non-hex character";
+ return FALSE;
+ }
+
+ /* Return past the '}' */
+ *s = e + 1;
+
+ ok:
+ /* guarantee replacing "\x{...}" with utf8 bytes fits within
+ * existing space */
+ assert(OFFUNISKIP(*uv) < *s - start);
+ return TRUE;
+}
+
+STATIC char*
+S_form_short_octal_warning(pTHX_
+ const char * const s, /* Points to first non-octal */
+ const STRLEN len /* Length of octals string, so
+ (s-len) points to first
+ octal */
+) {
+ /* Return a character string consisting of a warning message for when a
+ * string constant in octal is weird, like "\078". */
+
+ const char * sans_leading_zeros = s - len;
+
+ PERL_ARGS_ASSERT_FORM_SHORT_OCTAL_WARNING;
+
+ assert(*s == '8' || *s == '9');
+
+ /* Remove the leading zeros, retaining one zero so won't be zero length */
+ while (*sans_leading_zeros == '0') sans_leading_zeros++;
+ if (sans_leading_zeros == s) {
+ sans_leading_zeros--;
+ }
+
+ return Perl_form(aTHX_
+ "'%.*s' resolved to '\\o{%.*s}%c'",
+ (int) (len + 2), s - len - 1,
+ (int) (s - sans_leading_zeros), sans_leading_zeros,
+ *s);
+}
+
+/*
+ * ex: set ts=8 sts=4 sw=4 et:
+ */
--- /dev/null
+/* inline_invlist.c
+ *
+ * Copyright (C) 2012 by Larry Wall and others
+ *
+ * You may distribute under the terms of either the GNU General Public
+ * License or the Artistic License, as specified in the README file.
+ */
+
+#if defined(PERL_IN_UTF8_C) || defined(PERL_IN_REGCOMP_C) || defined(PERL_IN_REGEXEC_C)
+
+/* An element is in an inversion list iff its index is even numbered: 0, 2, 4,
+ * etc */
+#define ELEMENT_RANGE_MATCHES_INVLIST(i) (! ((i) & 1))
+#define PREV_RANGE_MATCHES_INVLIST(i) (! ELEMENT_RANGE_MATCHES_INVLIST(i))
+
+/* This converts to/from our UVs to what the SV code is expecting: bytes. */
+#define TO_INTERNAL_SIZE(x) ((x) * sizeof(UV))
+#define FROM_INTERNAL_SIZE(x) ((x)/ sizeof(UV))
+
+PERL_STATIC_INLINE bool*
+S_get_invlist_offset_addr(SV* invlist)
+{
+ /* Return the address of the field that says whether the inversion list is
+ * offset (it contains 1) or not (contains 0) */
+ PERL_ARGS_ASSERT_GET_INVLIST_OFFSET_ADDR;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ return &(((XINVLIST*) SvANY(invlist))->is_offset);
+}
+
+PERL_STATIC_INLINE UV
+S__invlist_len(SV* const invlist)
+{
+ /* Returns the current number of elements stored in the inversion list's
+ * array */
+
+ PERL_ARGS_ASSERT__INVLIST_LEN;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ return (SvCUR(invlist) == 0)
+ ? 0
+ : FROM_INTERNAL_SIZE(SvCUR(invlist)) - *get_invlist_offset_addr(invlist);
+}
+
+PERL_STATIC_INLINE bool
+S__invlist_contains_cp(SV* const invlist, const UV cp)
+{
+ /* Does <invlist> contain code point <cp> as part of the set? */
+
+ IV index = _invlist_search(invlist, cp);
+
+ PERL_ARGS_ASSERT__INVLIST_CONTAINS_CP;
+
+ return index >= 0 && ELEMENT_RANGE_MATCHES_INVLIST(index);
+}
+
+PERL_STATIC_INLINE UV*
+S_invlist_array(SV* const invlist)
+{
+ /* Returns the pointer to the inversion list's array. Every time the
+ * length changes, this needs to be called in case malloc or realloc moved
+ * it */
+
+ PERL_ARGS_ASSERT_INVLIST_ARRAY;
+
+ /* Must not be empty. If these fail, you probably didn't check for <len>
+ * being non-zero before trying to get the array */
+ assert(_invlist_len(invlist));
+
+ /* The very first element always contains zero, The array begins either
+ * there, or if the inversion list is offset, at the element after it.
+ * The offset header field determines which; it contains 0 or 1 to indicate
+ * how much additionally to add */
+ assert(0 == *(SvPVX(invlist)));
+ return ((UV *) SvPVX(invlist) + *get_invlist_offset_addr(invlist));
+}
+
+# if defined(PERL_IN_UTF8_C) || defined(PERL_IN_REGEXEC_C)
+
+/* These symbols are only needed later in regcomp.c */
+# undef TO_INTERNAL_SIZE
+# undef FROM_INTERNAL_SIZE
+# endif
+
+#endif
--- /dev/null
+/* regcomp.c
+ */
+
+/*
+ * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
+ *
+ * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
+ */
+
+/* This file contains functions for compiling a regular expression. See
+ * also regexec.c which funnily enough, contains functions for executing
+ * a regular expression.
+ *
+ * This file is also copied at build time to ext/re/re_comp.c, where
+ * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
+ * This causes the main functions to be compiled under new names and with
+ * debugging support added, which makes "use re 'debug'" work.
+ */
+
+/* NOTE: this is derived from Henry Spencer's regexp code, and should not
+ * confused with the original package (see point 3 below). Thanks, Henry!
+ */
+
+/* Additional note: this code is very heavily munged from Henry's version
+ * in places. In some spots I've traded clarity for efficiency, so don't
+ * blame Henry for some of the lack of readability.
+ */
+
+/* The names of the functions have been changed from regcomp and
+ * regexec to pregcomp and pregexec in order to avoid conflicts
+ * with the POSIX routines of the same names.
+*/
+
+#ifdef PERL_EXT_RE_BUILD
+#include "re_top.h"
+#endif
+
+/*
+ * pregcomp and pregexec -- regsub and regerror are not used in perl
+ *
+ * Copyright (c) 1986 by University of Toronto.
+ * Written by Henry Spencer. Not derived from licensed software.
+ *
+ * Permission is granted to anyone to use this software for any
+ * purpose on any computer system, and to redistribute it freely,
+ * subject to the following restrictions:
+ *
+ * 1. The author is not responsible for the consequences of use of
+ * this software, no matter how awful, even if they arise
+ * from defects in it.
+ *
+ * 2. The origin of this software must not be misrepresented, either
+ * by explicit claim or by omission.
+ *
+ * 3. Altered versions must be plainly marked as such, and must not
+ * be misrepresented as being the original software.
+ *
+ *
+ **** Alterations to Henry's code are...
+ ****
+ **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ **** by Larry Wall and others
+ ****
+ **** You may distribute under the terms of either the GNU General Public
+ **** License or the Artistic License, as specified in the README file.
+
+ *
+ * Beware that some of this code is subtly aware of the way operator
+ * precedence is structured in regular expressions. Serious changes in
+ * regular-expression syntax might require a total rethink.
+ */
+#include "EXTERN.h"
+#define PERL_IN_REGCOMP_C
+#include "perl.h"
+
+#ifndef PERL_IN_XSUB_RE
+# include "INTERN.h"
+#endif
+
+#define REG_COMP_C
+#ifdef PERL_IN_XSUB_RE
+# include "re_comp.h"
+EXTERN_C const struct regexp_engine my_reg_engine;
+#else
+# include "regcomp.h"
+#endif
+
+#include "dquote_static.c"
+#include "inline_invlist.c"
+#include "unicode_constants.h"
+
+#define HAS_NONLATIN1_FOLD_CLOSURE(i) \
+ _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
+#define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(i) \
+ _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
+#define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
+#define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
+
+#ifndef STATIC
+#define STATIC static
+#endif
+
+#ifndef MIN
+#define MIN(a,b) ((a) < (b) ? (a) : (b))
+#endif
+
+/* this is a chain of data about sub patterns we are processing that
+ need to be handled separately/specially in study_chunk. Its so
+ we can simulate recursion without losing state. */
+struct scan_frame;
+typedef struct scan_frame {
+ regnode *last_regnode; /* last node to process in this frame */
+ regnode *next_regnode; /* next node to process when last is reached */
+ U32 prev_recursed_depth;
+ I32 stopparen; /* what stopparen do we use */
+ U32 is_top_frame; /* what flags do we use? */
+
+ struct scan_frame *this_prev_frame; /* this previous frame */
+ struct scan_frame *prev_frame; /* previous frame */
+ struct scan_frame *next_frame; /* next frame */
+} scan_frame;
+
+/* Certain characters are output as a sequence with the first being a
+ * backslash. */
+#define isBACKSLASHED_PUNCT(c) \
+ ((c) == '-' || (c) == ']' || (c) == '\\' || (c) == '^')
+
+
+struct RExC_state_t {
+ U32 flags; /* RXf_* are we folding, multilining? */
+ U32 pm_flags; /* PMf_* stuff from the calling PMOP */
+ char *precomp; /* uncompiled string. */
+ REGEXP *rx_sv; /* The SV that is the regexp. */
+ regexp *rx; /* perl core regexp structure */
+ regexp_internal *rxi; /* internal data for regexp object
+ pprivate field */
+ char *start; /* Start of input for compile */
+ char *end; /* End of input for compile */
+ char *parse; /* Input-scan pointer. */
+ SSize_t whilem_seen; /* number of WHILEM in this expr */
+ regnode *emit_start; /* Start of emitted-code area */
+ regnode *emit_bound; /* First regnode outside of the
+ allocated space */
+ regnode *emit; /* Code-emit pointer; if = &emit_dummy,
+ implies compiling, so don't emit */
+ regnode_ssc emit_dummy; /* placeholder for emit to point to;
+ large enough for the largest
+ non-EXACTish node, so can use it as
+ scratch in pass1 */
+ I32 naughty; /* How bad is this pattern? */
+ I32 sawback; /* Did we see \1, ...? */
+ U32 seen;
+ SSize_t size; /* Code size. */
+ I32 npar; /* Capture buffer count, (OPEN) plus
+ one. ("par" 0 is the whole
+ pattern)*/
+ I32 nestroot; /* root parens we are in - used by
+ accept */
+ I32 extralen;
+ I32 seen_zerolen;
+ regnode **open_parens; /* pointers to open parens */
+ regnode **close_parens; /* pointers to close parens */
+ regnode *opend; /* END node in program */
+ I32 utf8; /* whether the pattern is utf8 or not */
+ I32 orig_utf8; /* whether the pattern was originally in utf8 */
+ /* XXX use this for future optimisation of case
+ * where pattern must be upgraded to utf8. */
+ I32 uni_semantics; /* If a d charset modifier should use unicode
+ rules, even if the pattern is not in
+ utf8 */
+ HV *paren_names; /* Paren names */
+
+ regnode **recurse; /* Recurse regops */
+ I32 recurse_count; /* Number of recurse regops */
+ U8 *study_chunk_recursed; /* bitmap of which subs we have moved
+ through */
+ U32 study_chunk_recursed_bytes; /* bytes in bitmap */
+ I32 in_lookbehind;
+ I32 contains_locale;
+ I32 contains_i;
+ I32 override_recoding;
+#ifdef EBCDIC
+ I32 recode_x_to_native;
+#endif
+ I32 in_multi_char_class;
+ struct reg_code_block *code_blocks; /* positions of literal (?{})
+ within pattern */
+ int num_code_blocks; /* size of code_blocks[] */
+ int code_index; /* next code_blocks[] slot */
+ SSize_t maxlen; /* mininum possible number of chars in string to match */
+ scan_frame *frame_head;
+ scan_frame *frame_last;
+ U32 frame_count;
+ U32 strict;
+#ifdef ADD_TO_REGEXEC
+ char *starttry; /* -Dr: where regtry was called. */
+#define RExC_starttry (pRExC_state->starttry)
+#endif
+ SV *runtime_code_qr; /* qr with the runtime code blocks */
+#ifdef DEBUGGING
+ const char *lastparse;
+ I32 lastnum;
+ AV *paren_name_list; /* idx -> name */
+ U32 study_chunk_recursed_count;
+ SV *mysv1;
+ SV *mysv2;
+#define RExC_lastparse (pRExC_state->lastparse)
+#define RExC_lastnum (pRExC_state->lastnum)
+#define RExC_paren_name_list (pRExC_state->paren_name_list)
+#define RExC_study_chunk_recursed_count (pRExC_state->study_chunk_recursed_count)
+#define RExC_mysv (pRExC_state->mysv1)
+#define RExC_mysv1 (pRExC_state->mysv1)
+#define RExC_mysv2 (pRExC_state->mysv2)
+
+#endif
+};
+
+#define RExC_flags (pRExC_state->flags)
+#define RExC_pm_flags (pRExC_state->pm_flags)
+#define RExC_precomp (pRExC_state->precomp)
+#define RExC_rx_sv (pRExC_state->rx_sv)
+#define RExC_rx (pRExC_state->rx)
+#define RExC_rxi (pRExC_state->rxi)
+#define RExC_start (pRExC_state->start)
+#define RExC_end (pRExC_state->end)
+#define RExC_parse (pRExC_state->parse)
+#define RExC_whilem_seen (pRExC_state->whilem_seen)
+#ifdef RE_TRACK_PATTERN_OFFSETS
+#define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the
+ others */
+#endif
+#define RExC_emit (pRExC_state->emit)
+#define RExC_emit_dummy (pRExC_state->emit_dummy)
+#define RExC_emit_start (pRExC_state->emit_start)
+#define RExC_emit_bound (pRExC_state->emit_bound)
+#define RExC_sawback (pRExC_state->sawback)
+#define RExC_seen (pRExC_state->seen)
+#define RExC_size (pRExC_state->size)
+#define RExC_maxlen (pRExC_state->maxlen)
+#define RExC_npar (pRExC_state->npar)
+#define RExC_nestroot (pRExC_state->nestroot)
+#define RExC_extralen (pRExC_state->extralen)
+#define RExC_seen_zerolen (pRExC_state->seen_zerolen)
+#define RExC_utf8 (pRExC_state->utf8)
+#define RExC_uni_semantics (pRExC_state->uni_semantics)
+#define RExC_orig_utf8 (pRExC_state->orig_utf8)
+#define RExC_open_parens (pRExC_state->open_parens)
+#define RExC_close_parens (pRExC_state->close_parens)
+#define RExC_opend (pRExC_state->opend)
+#define RExC_paren_names (pRExC_state->paren_names)
+#define RExC_recurse (pRExC_state->recurse)
+#define RExC_recurse_count (pRExC_state->recurse_count)
+#define RExC_study_chunk_recursed (pRExC_state->study_chunk_recursed)
+#define RExC_study_chunk_recursed_bytes \
+ (pRExC_state->study_chunk_recursed_bytes)
+#define RExC_in_lookbehind (pRExC_state->in_lookbehind)
+#define RExC_contains_locale (pRExC_state->contains_locale)
+#define RExC_contains_i (pRExC_state->contains_i)
+#define RExC_override_recoding (pRExC_state->override_recoding)
+#ifdef EBCDIC
+# define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)
+#endif
+#define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
+#define RExC_frame_head (pRExC_state->frame_head)
+#define RExC_frame_last (pRExC_state->frame_last)
+#define RExC_frame_count (pRExC_state->frame_count)
+#define RExC_strict (pRExC_state->strict)
+
+/* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
+ * a flag to disable back-off on the fixed/floating substrings - if it's
+ * a high complexity pattern we assume the benefit of avoiding a full match
+ * is worth the cost of checking for the substrings even if they rarely help.
+ */
+#define RExC_naughty (pRExC_state->naughty)
+#define TOO_NAUGHTY (10)
+#define MARK_NAUGHTY(add) \
+ if (RExC_naughty < TOO_NAUGHTY) \
+ RExC_naughty += (add)
+#define MARK_NAUGHTY_EXP(exp, add) \
+ if (RExC_naughty < TOO_NAUGHTY) \
+ RExC_naughty += RExC_naughty / (exp) + (add)
+
+#define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
+#define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
+ ((*s) == '{' && regcurly(s)))
+
+/*
+ * Flags to be passed up and down.
+ */
+#define WORST 0 /* Worst case. */
+#define HASWIDTH 0x01 /* Known to match non-null strings. */
+
+/* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
+ * character. (There needs to be a case: in the switch statement in regexec.c
+ * for any node marked SIMPLE.) Note that this is not the same thing as
+ * REGNODE_SIMPLE */
+#define SIMPLE 0x02
+#define SPSTART 0x04 /* Starts with * or + */
+#define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
+#define TRYAGAIN 0x10 /* Weeded out a declaration. */
+#define RESTART_UTF8 0x20 /* Restart, need to calcuate sizes as UTF-8 */
+
+#define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
+
+/* whether trie related optimizations are enabled */
+#if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
+#define TRIE_STUDY_OPT
+#define FULL_TRIE_STUDY
+#define TRIE_STCLASS
+#endif
+
+
+
+#define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
+#define PBITVAL(paren) (1 << ((paren) & 7))
+#define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
+#define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
+#define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
+
+#define REQUIRE_UTF8 STMT_START { \
+ if (!UTF) { \
+ *flagp = RESTART_UTF8; \
+ return NULL; \
+ } \
+ } STMT_END
+
+/* This converts the named class defined in regcomp.h to its equivalent class
+ * number defined in handy.h. */
+#define namedclass_to_classnum(class) ((int) ((class) / 2))
+#define classnum_to_namedclass(classnum) ((classnum) * 2)
+
+#define _invlist_union_complement_2nd(a, b, output) \
+ _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
+#define _invlist_intersection_complement_2nd(a, b, output) \
+ _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
+
+/* About scan_data_t.
+
+ During optimisation we recurse through the regexp program performing
+ various inplace (keyhole style) optimisations. In addition study_chunk
+ and scan_commit populate this data structure with information about
+ what strings MUST appear in the pattern. We look for the longest
+ string that must appear at a fixed location, and we look for the
+ longest string that may appear at a floating location. So for instance
+ in the pattern:
+
+ /FOO[xX]A.*B[xX]BAR/
+
+ Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
+ strings (because they follow a .* construct). study_chunk will identify
+ both FOO and BAR as being the longest fixed and floating strings respectively.
+
+ The strings can be composites, for instance
+
+ /(f)(o)(o)/
+
+ will result in a composite fixed substring 'foo'.
+
+ For each string some basic information is maintained:
+
+ - offset or min_offset
+ This is the position the string must appear at, or not before.
+ It also implicitly (when combined with minlenp) tells us how many
+ characters must match before the string we are searching for.
+ Likewise when combined with minlenp and the length of the string it
+ tells us how many characters must appear after the string we have
+ found.
+
+ - max_offset
+ Only used for floating strings. This is the rightmost point that
+ the string can appear at. If set to SSize_t_MAX it indicates that the
+ string can occur infinitely far to the right.
+
+ - minlenp
+ A pointer to the minimum number of characters of the pattern that the
+ string was found inside. This is important as in the case of positive
+ lookahead or positive lookbehind we can have multiple patterns
+ involved. Consider
+
+ /(?=FOO).*F/
+
+ The minimum length of the pattern overall is 3, the minimum length
+ of the lookahead part is 3, but the minimum length of the part that
+ will actually match is 1. So 'FOO's minimum length is 3, but the
+ minimum length for the F is 1. This is important as the minimum length
+ is used to determine offsets in front of and behind the string being
+ looked for. Since strings can be composites this is the length of the
+ pattern at the time it was committed with a scan_commit. Note that
+ the length is calculated by study_chunk, so that the minimum lengths
+ are not known until the full pattern has been compiled, thus the
+ pointer to the value.
+
+ - lookbehind
+
+ In the case of lookbehind the string being searched for can be
+ offset past the start point of the final matching string.
+ If this value was just blithely removed from the min_offset it would
+ invalidate some of the calculations for how many chars must match
+ before or after (as they are derived from min_offset and minlen and
+ the length of the string being searched for).
+ When the final pattern is compiled and the data is moved from the
+ scan_data_t structure into the regexp structure the information
+ about lookbehind is factored in, with the information that would
+ have been lost precalculated in the end_shift field for the
+ associated string.
+
+ The fields pos_min and pos_delta are used to store the minimum offset
+ and the delta to the maximum offset at the current point in the pattern.
+
+*/
+
+typedef struct scan_data_t {
+ /*I32 len_min; unused */
+ /*I32 len_delta; unused */
+ SSize_t pos_min;
+ SSize_t pos_delta;
+ SV *last_found;
+ SSize_t last_end; /* min value, <0 unless valid. */
+ SSize_t last_start_min;
+ SSize_t last_start_max;
+ SV **longest; /* Either &l_fixed, or &l_float. */
+ SV *longest_fixed; /* longest fixed string found in pattern */
+ SSize_t offset_fixed; /* offset where it starts */
+ SSize_t *minlen_fixed; /* pointer to the minlen relevant to the string */
+ I32 lookbehind_fixed; /* is the position of the string modfied by LB */
+ SV *longest_float; /* longest floating string found in pattern */
+ SSize_t offset_float_min; /* earliest point in string it can appear */
+ SSize_t offset_float_max; /* latest point in string it can appear */
+ SSize_t *minlen_float; /* pointer to the minlen relevant to the string */
+ SSize_t lookbehind_float; /* is the pos of the string modified by LB */
+ I32 flags;
+ I32 whilem_c;
+ SSize_t *last_closep;
+ regnode_ssc *start_class;
+} scan_data_t;
+
+/*
+ * Forward declarations for pregcomp()'s friends.
+ */
+
+static const scan_data_t zero_scan_data =
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
+
+#define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
+#define SF_BEFORE_SEOL 0x0001
+#define SF_BEFORE_MEOL 0x0002
+#define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
+#define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
+
+#define SF_FIX_SHIFT_EOL (+2)
+#define SF_FL_SHIFT_EOL (+4)
+
+#define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
+#define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
+
+#define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
+#define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
+#define SF_IS_INF 0x0040
+#define SF_HAS_PAR 0x0080
+#define SF_IN_PAR 0x0100
+#define SF_HAS_EVAL 0x0200
+#define SCF_DO_SUBSTR 0x0400
+#define SCF_DO_STCLASS_AND 0x0800
+#define SCF_DO_STCLASS_OR 0x1000
+#define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
+#define SCF_WHILEM_VISITED_POS 0x2000
+
+#define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
+#define SCF_SEEN_ACCEPT 0x8000
+#define SCF_TRIE_DOING_RESTUDY 0x10000
+#define SCF_IN_DEFINE 0x20000
+
+
+
+
+#define UTF cBOOL(RExC_utf8)
+
+/* The enums for all these are ordered so things work out correctly */
+#define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
+#define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) \
+ == REGEX_DEPENDS_CHARSET)
+#define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
+#define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) \
+ >= REGEX_UNICODE_CHARSET)
+#define ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
+ == REGEX_ASCII_RESTRICTED_CHARSET)
+#define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
+ >= REGEX_ASCII_RESTRICTED_CHARSET)
+#define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) \
+ == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
+
+#define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
+
+/* For programs that want to be strictly Unicode compatible by dying if any
+ * attempt is made to match a non-Unicode code point against a Unicode
+ * property. */
+#define ALWAYS_WARN_SUPER ckDEAD(packWARN(WARN_NON_UNICODE))
+
+#define OOB_NAMEDCLASS -1
+
+/* There is no code point that is out-of-bounds, so this is problematic. But
+ * its only current use is to initialize a variable that is always set before
+ * looked at. */
+#define OOB_UNICODE 0xDEADBEEF
+
+#define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
+#define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
+
+
+/* length of regex to show in messages that don't mark a position within */
+#define RegexLengthToShowInErrorMessages 127
+
+/*
+ * If MARKER[12] are adjusted, be sure to adjust the constants at the top
+ * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
+ * op/pragma/warn/regcomp.
+ */
+#define MARKER1 "<-- HERE" /* marker as it appears in the description */
+#define MARKER2 " <-- HERE " /* marker as it appears within the regex */
+
+#define REPORT_LOCATION " in regex; marked by " MARKER1 \
+ " in m/%"UTF8f MARKER2 "%"UTF8f"/"
+
+#define REPORT_LOCATION_ARGS(offset) \
+ UTF8fARG(UTF, offset, RExC_precomp), \
+ UTF8fARG(UTF, RExC_end - RExC_precomp - offset, RExC_precomp + offset)
+
+/* Used to point after bad bytes for an error message, but avoid skipping
+ * past a nul byte. */
+#define SKIP_IF_CHAR(s) (!*(s) ? 0 : UTF ? UTF8SKIP(s) : 1)
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
+ * arg. Show regex, up to a maximum length. If it's too long, chop and add
+ * "...".
+ */
+#define _FAIL(code) STMT_START { \
+ const char *ellipses = ""; \
+ IV len = RExC_end - RExC_precomp; \
+ \
+ if (!SIZE_ONLY) \
+ SAVEFREESV(RExC_rx_sv); \
+ if (len > RegexLengthToShowInErrorMessages) { \
+ /* chop 10 shorter than the max, to ensure meaning of "..." */ \
+ len = RegexLengthToShowInErrorMessages - 10; \
+ ellipses = "..."; \
+ } \
+ code; \
+} STMT_END
+
+#define FAIL(msg) _FAIL( \
+ Perl_croak(aTHX_ "%s in regex m/%"UTF8f"%s/", \
+ msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
+
+#define FAIL2(msg,arg) _FAIL( \
+ Perl_croak(aTHX_ msg " in regex m/%"UTF8f"%s/", \
+ arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
+
+/*
+ * Simple_vFAIL -- like FAIL, but marks the current location in the scan
+ */
+#define Simple_vFAIL(m) STMT_START { \
+ const IV offset = \
+ (RExC_parse > RExC_end ? RExC_end : RExC_parse) - RExC_precomp; \
+ Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
+ m, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
+ */
+#define vFAIL(m) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEFREESV(RExC_rx_sv); \
+ Simple_vFAIL(m); \
+} STMT_END
+
+/*
+ * Like Simple_vFAIL(), but accepts two arguments.
+ */
+#define Simple_vFAIL2(m,a1) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
+ */
+#define vFAIL2(m,a1) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEFREESV(RExC_rx_sv); \
+ Simple_vFAIL2(m, a1); \
+} STMT_END
+
+
+/*
+ * Like Simple_vFAIL(), but accepts three arguments.
+ */
+#define Simple_vFAIL3(m, a1, a2) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
+ */
+#define vFAIL3(m,a1,a2) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEFREESV(RExC_rx_sv); \
+ Simple_vFAIL3(m, a1, a2); \
+} STMT_END
+
+/*
+ * Like Simple_vFAIL(), but accepts four arguments.
+ */
+#define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, a3, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vFAIL4(m,a1,a2,a3) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEFREESV(RExC_rx_sv); \
+ Simple_vFAIL4(m, a1, a2, a3); \
+} STMT_END
+
+/* A specialized version of vFAIL2 that works with UTF8f */
+#define vFAIL2utf8f(m, a1) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ if (!SIZE_ONLY) \
+ SAVEFREESV(RExC_rx_sv); \
+ S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/* These have asserts in them because of [perl #122671] Many warnings in
+ * regcomp.c can occur twice. If they get output in pass1 and later in that
+ * pass, the pattern has to be converted to UTF-8 and the pass restarted, they
+ * would get output again. So they should be output in pass2, and these
+ * asserts make sure new warnings follow that paradigm. */
+
+/* m is not necessarily a "literal string", in this macro */
+#define reg_warn_non_literal_string(loc, m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s" REPORT_LOCATION, \
+ m, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARNreg(loc,m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vWARN(loc, m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vWARN_dep(loc, m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), m REPORT_LOCATION, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARNdep(loc,m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
+ m REPORT_LOCATION, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARNregdep(loc,m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
+ m REPORT_LOCATION, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARN2reg_d(loc,m, a1) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP), \
+ m REPORT_LOCATION, \
+ a1, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARN2reg(loc, m, a1) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vWARN3(loc, m, a1, a2) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARN3reg(loc, m, a1, a2) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vWARN4(loc, m, a1, a2, a3) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, a3, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, a3, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, a3, a4, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/* Macros for recording node offsets. 20001227 mjd@plover.com
+ * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
+ * element 2*n-1 of the array. Element #2n holds the byte length node #n.
+ * Element 0 holds the number n.
+ * Position is 1 indexed.
+ */
+#ifndef RE_TRACK_PATTERN_OFFSETS
+#define Set_Node_Offset_To_R(node,byte)
+#define Set_Node_Offset(node,byte)
+#define Set_Cur_Node_Offset
+#define Set_Node_Length_To_R(node,len)
+#define Set_Node_Length(node,len)
+#define Set_Node_Cur_Length(node,start)
+#define Node_Offset(n)
+#define Node_Length(n)
+#define Set_Node_Offset_Length(node,offset,len)
+#define ProgLen(ri) ri->u.proglen
+#define SetProgLen(ri,x) ri->u.proglen = x
+#else
+#define ProgLen(ri) ri->u.offsets[0]
+#define SetProgLen(ri,x) ri->u.offsets[0] = x
+#define Set_Node_Offset_To_R(node,byte) STMT_START { \
+ if (! SIZE_ONLY) { \
+ MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
+ __LINE__, (int)(node), (int)(byte))); \
+ if((node) < 0) { \
+ Perl_croak(aTHX_ "value of node is %d in Offset macro", \
+ (int)(node)); \
+ } else { \
+ RExC_offsets[2*(node)-1] = (byte); \
+ } \
+ } \
+} STMT_END
+
+#define Set_Node_Offset(node,byte) \
+ Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
+#define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
+
+#define Set_Node_Length_To_R(node,len) STMT_START { \
+ if (! SIZE_ONLY) { \
+ MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
+ __LINE__, (int)(node), (int)(len))); \
+ if((node) < 0) { \
+ Perl_croak(aTHX_ "value of node is %d in Length macro", \
+ (int)(node)); \
+ } else { \
+ RExC_offsets[2*(node)] = (len); \
+ } \
+ } \
+} STMT_END
+
+#define Set_Node_Length(node,len) \
+ Set_Node_Length_To_R((node)-RExC_emit_start, len)
+#define Set_Node_Cur_Length(node, start) \
+ Set_Node_Length(node, RExC_parse - start)
+
+/* Get offsets and lengths */
+#define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
+#define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
+
+#define Set_Node_Offset_Length(node,offset,len) STMT_START { \
+ Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
+ Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
+} STMT_END
+#endif
+
+#if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
+#define EXPERIMENTAL_INPLACESCAN
+#endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
+
+#define DEBUG_RExC_seen() \
+ DEBUG_OPTIMISE_MORE_r({ \
+ PerlIO_printf(Perl_debug_log,"RExC_seen: "); \
+ \
+ if (RExC_seen & REG_ZERO_LEN_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_ZERO_LEN_SEEN "); \
+ \
+ if (RExC_seen & REG_LOOKBEHIND_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_LOOKBEHIND_SEEN "); \
+ \
+ if (RExC_seen & REG_GPOS_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_GPOS_SEEN "); \
+ \
+ if (RExC_seen & REG_RECURSE_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_RECURSE_SEEN "); \
+ \
+ if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_TOP_LEVEL_BRANCHES_SEEN "); \
+ \
+ if (RExC_seen & REG_VERBARG_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_VERBARG_SEEN "); \
+ \
+ if (RExC_seen & REG_CUTGROUP_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_CUTGROUP_SEEN "); \
+ \
+ if (RExC_seen & REG_RUN_ON_COMMENT_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_RUN_ON_COMMENT_SEEN "); \
+ \
+ if (RExC_seen & REG_UNFOLDED_MULTI_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_UNFOLDED_MULTI_SEEN "); \
+ \
+ if (RExC_seen & REG_GOSTART_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_GOSTART_SEEN "); \
+ \
+ if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_UNBOUNDED_QUANTIFIER_SEEN "); \
+ \
+ PerlIO_printf(Perl_debug_log,"\n"); \
+ });
+
+#define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
+ if ((flags) & flag) PerlIO_printf(Perl_debug_log, "%s ", #flag)
+
+#define DEBUG_SHOW_STUDY_FLAGS(flags,open_str,close_str) \
+ if ( ( flags ) ) { \
+ PerlIO_printf(Perl_debug_log, "%s", open_str); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_SEOL); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_MEOL); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SF_IS_INF); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_PAR); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SF_IN_PAR); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_EVAL); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_SUBSTR); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_AND); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_OR); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_WHILEM_VISITED_POS); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_RESTUDY); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_SEEN_ACCEPT); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_DOING_RESTUDY); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_IN_DEFINE); \
+ PerlIO_printf(Perl_debug_log, "%s", close_str); \
+ }
+
+
+#define DEBUG_STUDYDATA(str,data,depth) \
+DEBUG_OPTIMISE_MORE_r(if(data){ \
+ PerlIO_printf(Perl_debug_log, \
+ "%*s" str "Pos:%"IVdf"/%"IVdf \
+ " Flags: 0x%"UVXf, \
+ (int)(depth)*2, "", \
+ (IV)((data)->pos_min), \
+ (IV)((data)->pos_delta), \
+ (UV)((data)->flags) \
+ ); \
+ DEBUG_SHOW_STUDY_FLAGS((data)->flags," [ ","]"); \
+ PerlIO_printf(Perl_debug_log, \
+ " Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
+ (IV)((data)->whilem_c), \
+ (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
+ is_inf ? "INF " : "" \
+ ); \
+ if ((data)->last_found) \
+ PerlIO_printf(Perl_debug_log, \
+ "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
+ " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
+ SvPVX_const((data)->last_found), \
+ (IV)((data)->last_end), \
+ (IV)((data)->last_start_min), \
+ (IV)((data)->last_start_max), \
+ ((data)->longest && \
+ (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
+ SvPVX_const((data)->longest_fixed), \
+ (IV)((data)->offset_fixed), \
+ ((data)->longest && \
+ (data)->longest==&((data)->longest_float)) ? "*" : "", \
+ SvPVX_const((data)->longest_float), \
+ (IV)((data)->offset_float_min), \
+ (IV)((data)->offset_float_max) \
+ ); \
+ PerlIO_printf(Perl_debug_log,"\n"); \
+});
+
+/* is c a control character for which we have a mnemonic? */
+#define isMNEMONIC_CNTRL(c) _IS_MNEMONIC_CNTRL_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
+
+STATIC const char *
+S_cntrl_to_mnemonic(const U8 c)
+{
+ /* Returns the mnemonic string that represents character 'c', if one
+ * exists; NULL otherwise. The only ones that exist for the purposes of
+ * this routine are a few control characters */
+
+ switch (c) {
+ case '\a': return "\\a";
+ case '\b': return "\\b";
+ case ESC_NATIVE: return "\\e";
+ case '\f': return "\\f";
+ case '\n': return "\\n";
+ case '\r': return "\\r";
+ case '\t': return "\\t";
+ }
+
+ return NULL;
+}
+
+/* Mark that we cannot extend a found fixed substring at this point.
+ Update the longest found anchored substring and the longest found
+ floating substrings if needed. */
+
+STATIC void
+S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
+ SSize_t *minlenp, int is_inf)
+{
+ const STRLEN l = CHR_SVLEN(data->last_found);
+ const STRLEN old_l = CHR_SVLEN(*data->longest);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_SCAN_COMMIT;
+
+ if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
+ SvSetMagicSV(*data->longest, data->last_found);
+ if (*data->longest == data->longest_fixed) {
+ data->offset_fixed = l ? data->last_start_min : data->pos_min;
+ if (data->flags & SF_BEFORE_EOL)
+ data->flags
+ |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
+ else
+ data->flags &= ~SF_FIX_BEFORE_EOL;
+ data->minlen_fixed=minlenp;
+ data->lookbehind_fixed=0;
+ }
+ else { /* *data->longest == data->longest_float */
+ data->offset_float_min = l ? data->last_start_min : data->pos_min;
+ data->offset_float_max = (l
+ ? data->last_start_max
+ : (data->pos_delta > SSize_t_MAX - data->pos_min
+ ? SSize_t_MAX
+ : data->pos_min + data->pos_delta));
+ if (is_inf
+ || (STRLEN)data->offset_float_max > (STRLEN)SSize_t_MAX)
+ data->offset_float_max = SSize_t_MAX;
+ if (data->flags & SF_BEFORE_EOL)
+ data->flags
+ |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
+ else
+ data->flags &= ~SF_FL_BEFORE_EOL;
+ data->minlen_float=minlenp;
+ data->lookbehind_float=0;
+ }
+ }
+ SvCUR_set(data->last_found, 0);
+ {
+ SV * const sv = data->last_found;
+ if (SvUTF8(sv) && SvMAGICAL(sv)) {
+ MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
+ if (mg)
+ mg->mg_len = 0;
+ }
+ }
+ data->last_end = -1;
+ data->flags &= ~SF_BEFORE_EOL;
+ DEBUG_STUDYDATA("commit: ",data,0);
+}
+
+/* An SSC is just a regnode_charclass_posix with an extra field: the inversion
+ * list that describes which code points it matches */
+
+STATIC void
+S_ssc_anything(pTHX_ regnode_ssc *ssc)
+{
+ /* Set the SSC 'ssc' to match an empty string or any code point */
+
+ PERL_ARGS_ASSERT_SSC_ANYTHING;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ ssc->invlist = sv_2mortal(_new_invlist(2)); /* mortalize so won't leak */
+ _append_range_to_invlist(ssc->invlist, 0, UV_MAX);
+ ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING; /* Plus matches empty */
+}
+
+STATIC int
+S_ssc_is_anything(const regnode_ssc *ssc)
+{
+ /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
+ * point; FALSE otherwise. Thus, this is used to see if using 'ssc' buys
+ * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
+ * in any way, so there's no point in using it */
+
+ UV start, end;
+ bool ret;
+
+ PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
+ return FALSE;
+ }
+
+ /* See if the list consists solely of the range 0 - Infinity */
+ invlist_iterinit(ssc->invlist);
+ ret = invlist_iternext(ssc->invlist, &start, &end)
+ && start == 0
+ && end == UV_MAX;
+
+ invlist_iterfinish(ssc->invlist);
+
+ if (ret) {
+ return TRUE;
+ }
+
+ /* If e.g., both \w and \W are set, matches everything */
+ if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+ int i;
+ for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
+ if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
+ return TRUE;
+ }
+ }
+ }
+
+ return FALSE;
+}
+
+STATIC void
+S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
+{
+ /* Initializes the SSC 'ssc'. This includes setting it to match an empty
+ * string, any code point, or any posix class under locale */
+
+ PERL_ARGS_ASSERT_SSC_INIT;
+
+ Zero(ssc, 1, regnode_ssc);
+ set_ANYOF_SYNTHETIC(ssc);
+ ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
+ ssc_anything(ssc);
+
+ /* If any portion of the regex is to operate under locale rules that aren't
+ * fully known at compile time, initialization includes it. The reason
+ * this isn't done for all regexes is that the optimizer was written under
+ * the assumption that locale was all-or-nothing. Given the complexity and
+ * lack of documentation in the optimizer, and that there are inadequate
+ * test cases for locale, many parts of it may not work properly, it is
+ * safest to avoid locale unless necessary. */
+ if (RExC_contains_locale) {
+ ANYOF_POSIXL_SETALL(ssc);
+ }
+ else {
+ ANYOF_POSIXL_ZERO(ssc);
+ }
+}
+
+STATIC int
+S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
+ const regnode_ssc *ssc)
+{
+ /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
+ * to the list of code points matched, and locale posix classes; hence does
+ * not check its flags) */
+
+ UV start, end;
+ bool ret;
+
+ PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ invlist_iterinit(ssc->invlist);
+ ret = invlist_iternext(ssc->invlist, &start, &end)
+ && start == 0
+ && end == UV_MAX;
+
+ invlist_iterfinish(ssc->invlist);
+
+ if (! ret) {
+ return FALSE;
+ }
+
+ if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
+ return FALSE;
+ }
+
+ return TRUE;
+}
+
+STATIC SV*
+S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
+ const regnode_charclass* const node)
+{
+ /* Returns a mortal inversion list defining which code points are matched
+ * by 'node', which is of type ANYOF. Handles complementing the result if
+ * appropriate. If some code points aren't knowable at this time, the
+ * returned list must, and will, contain every code point that is a
+ * possibility. */
+
+ SV* invlist = sv_2mortal(_new_invlist(0));
+ SV* only_utf8_locale_invlist = NULL;
+ unsigned int i;
+ const U32 n = ARG(node);
+ bool new_node_has_latin1 = FALSE;
+
+ PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
+
+ /* Look at the data structure created by S_set_ANYOF_arg() */
+ if (n != ANYOF_ONLY_HAS_BITMAP) {
+ SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
+ AV * const av = MUTABLE_AV(SvRV(rv));
+ SV **const ary = AvARRAY(av);
+ assert(RExC_rxi->data->what[n] == 's');
+
+ if (ary[1] && ary[1] != &PL_sv_undef) { /* Has compile-time swash */
+ invlist = sv_2mortal(invlist_clone(_get_swash_invlist(ary[1])));
+ }
+ else if (ary[0] && ary[0] != &PL_sv_undef) {
+
+ /* Here, no compile-time swash, and there are things that won't be
+ * known until runtime -- we have to assume it could be anything */
+ return _add_range_to_invlist(invlist, 0, UV_MAX);
+ }
+ else if (ary[3] && ary[3] != &PL_sv_undef) {
+
+ /* Here no compile-time swash, and no run-time only data. Use the
+ * node's inversion list */
+ invlist = sv_2mortal(invlist_clone(ary[3]));
+ }
+
+ /* Get the code points valid only under UTF-8 locales */
+ if ((ANYOF_FLAGS(node) & ANYOF_LOC_FOLD)
+ && ary[2] && ary[2] != &PL_sv_undef)
+ {
+ only_utf8_locale_invlist = ary[2];
+ }
+ }
+
+ /* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
+ * code points, and an inversion list for the others, but if there are code
+ * points that should match only conditionally on the target string being
+ * UTF-8, those are placed in the inversion list, and not the bitmap.
+ * Since there are circumstances under which they could match, they are
+ * included in the SSC. But if the ANYOF node is to be inverted, we have
+ * to exclude them here, so that when we invert below, the end result
+ * actually does include them. (Think about "\xe0" =~ /[^\xc0]/di;). We
+ * have to do this here before we add the unconditionally matched code
+ * points */
+ if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
+ _invlist_intersection_complement_2nd(invlist,
+ PL_UpperLatin1,
+ &invlist);
+ }
+
+ /* Add in the points from the bit map */
+ for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
+ if (ANYOF_BITMAP_TEST(node, i)) {
+ invlist = add_cp_to_invlist(invlist, i);
+ new_node_has_latin1 = TRUE;
+ }
+ }
+
+ /* If this can match all upper Latin1 code points, have to add them
+ * as well */
+ if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII) {
+ _invlist_union(invlist, PL_UpperLatin1, &invlist);
+ }
+
+ /* Similarly for these */
+ if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
+ _invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
+ }
+
+ if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
+ _invlist_invert(invlist);
+ }
+ else if (new_node_has_latin1 && ANYOF_FLAGS(node) & ANYOF_LOC_FOLD) {
+
+ /* Under /li, any 0-255 could fold to any other 0-255, depending on the
+ * locale. We can skip this if there are no 0-255 at all. */
+ _invlist_union(invlist, PL_Latin1, &invlist);
+ }
+
+ /* Similarly add the UTF-8 locale possible matches. These have to be
+ * deferred until after the non-UTF-8 locale ones are taken care of just
+ * above, or it leads to wrong results under ANYOF_INVERT */
+ if (only_utf8_locale_invlist) {
+ _invlist_union_maybe_complement_2nd(invlist,
+ only_utf8_locale_invlist,
+ ANYOF_FLAGS(node) & ANYOF_INVERT,
+ &invlist);
+ }
+
+ return invlist;
+}
+
+/* These two functions currently do the exact same thing */
+#define ssc_init_zero ssc_init
+
+#define ssc_add_cp(ssc, cp) ssc_add_range((ssc), (cp), (cp))
+#define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
+
+/* 'AND' a given class with another one. Can create false positives. 'ssc'
+ * should not be inverted. 'and_with->flags & ANYOF_MATCHES_POSIXL' should be
+ * 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */
+
+STATIC void
+S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
+ const regnode_charclass *and_with)
+{
+ /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
+ * another SSC or a regular ANYOF class. Can create false positives. */
+
+ SV* anded_cp_list;
+ U8 anded_flags;
+
+ PERL_ARGS_ASSERT_SSC_AND;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
+ * the code point inversion list and just the relevant flags */
+ if (is_ANYOF_SYNTHETIC(and_with)) {
+ anded_cp_list = ((regnode_ssc *)and_with)->invlist;
+ anded_flags = ANYOF_FLAGS(and_with);
+
+ /* XXX This is a kludge around what appears to be deficiencies in the
+ * optimizer. If we make S_ssc_anything() add in the WARN_SUPER flag,
+ * there are paths through the optimizer where it doesn't get weeded
+ * out when it should. And if we don't make some extra provision for
+ * it like the code just below, it doesn't get added when it should.
+ * This solution is to add it only when AND'ing, which is here, and
+ * only when what is being AND'ed is the pristine, original node
+ * matching anything. Thus it is like adding it to ssc_anything() but
+ * only when the result is to be AND'ed. Probably the same solution
+ * could be adopted for the same problem we have with /l matching,
+ * which is solved differently in S_ssc_init(), and that would lead to
+ * fewer false positives than that solution has. But if this solution
+ * creates bugs, the consequences are only that a warning isn't raised
+ * that should be; while the consequences for having /l bugs is
+ * incorrect matches */
+ if (ssc_is_anything((regnode_ssc *)and_with)) {
+ anded_flags |= ANYOF_WARN_SUPER;
+ }
+ }
+ else {
+ anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
+ anded_flags = ANYOF_FLAGS(and_with) & ANYOF_COMMON_FLAGS;
+ }
+
+ ANYOF_FLAGS(ssc) &= anded_flags;
+
+ /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
+ * C2 is the list of code points in 'and-with'; P2, its posix classes.
+ * 'and_with' may be inverted. When not inverted, we have the situation of
+ * computing:
+ * (C1 | P1) & (C2 | P2)
+ * = (C1 & (C2 | P2)) | (P1 & (C2 | P2))
+ * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
+ * <= ((C1 & C2) | P2)) | ( P1 | (P1 & P2))
+ * <= ((C1 & C2) | P1 | P2)
+ * Alternatively, the last few steps could be:
+ * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
+ * <= ((C1 & C2) | C1 ) | ( C2 | (P1 & P2))
+ * <= (C1 | C2 | (P1 & P2))
+ * We favor the second approach if either P1 or P2 is non-empty. This is
+ * because these components are a barrier to doing optimizations, as what
+ * they match cannot be known until the moment of matching as they are
+ * dependent on the current locale, 'AND"ing them likely will reduce or
+ * eliminate them.
+ * But we can do better if we know that C1,P1 are in their initial state (a
+ * frequent occurrence), each matching everything:
+ * (<everything>) & (C2 | P2) = C2 | P2
+ * Similarly, if C2,P2 are in their initial state (again a frequent
+ * occurrence), the result is a no-op
+ * (C1 | P1) & (<everything>) = C1 | P1
+ *
+ * Inverted, we have
+ * (C1 | P1) & ~(C2 | P2) = (C1 | P1) & (~C2 & ~P2)
+ * = (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
+ * <= (C1 & ~C2) | (P1 & ~P2)
+ * */
+
+ if ((ANYOF_FLAGS(and_with) & ANYOF_INVERT)
+ && ! is_ANYOF_SYNTHETIC(and_with))
+ {
+ unsigned int i;
+
+ ssc_intersection(ssc,
+ anded_cp_list,
+ FALSE /* Has already been inverted */
+ );
+
+ /* If either P1 or P2 is empty, the intersection will be also; can skip
+ * the loop */
+ if (! (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL)) {
+ ANYOF_POSIXL_ZERO(ssc);
+ }
+ else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+
+ /* Note that the Posix class component P from 'and_with' actually
+ * looks like:
+ * P = Pa | Pb | ... | Pn
+ * where each component is one posix class, such as in [\w\s].
+ * Thus
+ * ~P = ~(Pa | Pb | ... | Pn)
+ * = ~Pa & ~Pb & ... & ~Pn
+ * <= ~Pa | ~Pb | ... | ~Pn
+ * The last is something we can easily calculate, but unfortunately
+ * is likely to have many false positives. We could do better
+ * in some (but certainly not all) instances if two classes in
+ * P have known relationships. For example
+ * :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
+ * So
+ * :lower: & :print: = :lower:
+ * And similarly for classes that must be disjoint. For example,
+ * since \s and \w can have no elements in common based on rules in
+ * the POSIX standard,
+ * \w & ^\S = nothing
+ * Unfortunately, some vendor locales do not meet the Posix
+ * standard, in particular almost everything by Microsoft.
+ * The loop below just changes e.g., \w into \W and vice versa */
+
+ regnode_charclass_posixl temp;
+ int add = 1; /* To calculate the index of the complement */
+
+ ANYOF_POSIXL_ZERO(&temp);
+ for (i = 0; i < ANYOF_MAX; i++) {
+ assert(i % 2 != 0
+ || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
+ || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
+
+ if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
+ ANYOF_POSIXL_SET(&temp, i + add);
+ }
+ add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
+ }
+ ANYOF_POSIXL_AND(&temp, ssc);
+
+ } /* else ssc already has no posixes */
+ } /* else: Not inverted. This routine is a no-op if 'and_with' is an SSC
+ in its initial state */
+ else if (! is_ANYOF_SYNTHETIC(and_with)
+ || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
+ {
+ /* But if 'ssc' is in its initial state, the result is just 'and_with';
+ * copy it over 'ssc' */
+ if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
+ if (is_ANYOF_SYNTHETIC(and_with)) {
+ StructCopy(and_with, ssc, regnode_ssc);
+ }
+ else {
+ ssc->invlist = anded_cp_list;
+ ANYOF_POSIXL_ZERO(ssc);
+ if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
+ ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
+ }
+ }
+ }
+ else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
+ || (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL))
+ {
+ /* One or the other of P1, P2 is non-empty. */
+ if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
+ ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
+ }
+ ssc_union(ssc, anded_cp_list, FALSE);
+ }
+ else { /* P1 = P2 = empty */
+ ssc_intersection(ssc, anded_cp_list, FALSE);
+ }
+ }
+}
+
+STATIC void
+S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
+ const regnode_charclass *or_with)
+{
+ /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
+ * another SSC or a regular ANYOF class. Can create false positives if
+ * 'or_with' is to be inverted. */
+
+ SV* ored_cp_list;
+ U8 ored_flags;
+
+ PERL_ARGS_ASSERT_SSC_OR;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
+ * the code point inversion list and just the relevant flags */
+ if (is_ANYOF_SYNTHETIC(or_with)) {
+ ored_cp_list = ((regnode_ssc*) or_with)->invlist;
+ ored_flags = ANYOF_FLAGS(or_with);
+ }
+ else {
+ ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
+ ored_flags = ANYOF_FLAGS(or_with) & ANYOF_COMMON_FLAGS;
+ }
+
+ ANYOF_FLAGS(ssc) |= ored_flags;
+
+ /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
+ * C2 is the list of code points in 'or-with'; P2, its posix classes.
+ * 'or_with' may be inverted. When not inverted, we have the simple
+ * situation of computing:
+ * (C1 | P1) | (C2 | P2) = (C1 | C2) | (P1 | P2)
+ * If P1|P2 yields a situation with both a class and its complement are
+ * set, like having both \w and \W, this matches all code points, and we
+ * can delete these from the P component of the ssc going forward. XXX We
+ * might be able to delete all the P components, but I (khw) am not certain
+ * about this, and it is better to be safe.
+ *
+ * Inverted, we have
+ * (C1 | P1) | ~(C2 | P2) = (C1 | P1) | (~C2 & ~P2)
+ * <= (C1 | P1) | ~C2
+ * <= (C1 | ~C2) | P1
+ * (which results in actually simpler code than the non-inverted case)
+ * */
+
+ if ((ANYOF_FLAGS(or_with) & ANYOF_INVERT)
+ && ! is_ANYOF_SYNTHETIC(or_with))
+ {
+ /* We ignore P2, leaving P1 going forward */
+ } /* else Not inverted */
+ else if (ANYOF_FLAGS(or_with) & ANYOF_MATCHES_POSIXL) {
+ ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
+ if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+ unsigned int i;
+ for (i = 0; i < ANYOF_MAX; i += 2) {
+ if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
+ {
+ ssc_match_all_cp(ssc);
+ ANYOF_POSIXL_CLEAR(ssc, i);
+ ANYOF_POSIXL_CLEAR(ssc, i+1);
+ }
+ }
+ }
+ }
+
+ ssc_union(ssc,
+ ored_cp_list,
+ FALSE /* Already has been inverted */
+ );
+}
+
+PERL_STATIC_INLINE void
+S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
+{
+ PERL_ARGS_ASSERT_SSC_UNION;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ _invlist_union_maybe_complement_2nd(ssc->invlist,
+ invlist,
+ invert2nd,
+ &ssc->invlist);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_intersection(pTHX_ regnode_ssc *ssc,
+ SV* const invlist,
+ const bool invert2nd)
+{
+ PERL_ARGS_ASSERT_SSC_INTERSECTION;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ _invlist_intersection_maybe_complement_2nd(ssc->invlist,
+ invlist,
+ invert2nd,
+ &ssc->invlist);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
+{
+ PERL_ARGS_ASSERT_SSC_ADD_RANGE;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
+{
+ /* AND just the single code point 'cp' into the SSC 'ssc' */
+
+ SV* cp_list = _new_invlist(2);
+
+ PERL_ARGS_ASSERT_SSC_CP_AND;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ cp_list = add_cp_to_invlist(cp_list, cp);
+ ssc_intersection(ssc, cp_list,
+ FALSE /* Not inverted */
+ );
+ SvREFCNT_dec_NN(cp_list);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_clear_locale(regnode_ssc *ssc)
+{
+ /* Set the SSC 'ssc' to not match any locale things */
+ PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ ANYOF_POSIXL_ZERO(ssc);
+ ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
+}
+
+#define NON_OTHER_COUNT NON_OTHER_COUNT_FOR_USE_ONLY_BY_REGCOMP_DOT_C
+
+STATIC bool
+S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
+{
+ /* The synthetic start class is used to hopefully quickly winnow down
+ * places where a pattern could start a match in the target string. If it
+ * doesn't really narrow things down that much, there isn't much point to
+ * having the overhead of using it. This function uses some very crude
+ * heuristics to decide if to use the ssc or not.
+ *
+ * It returns TRUE if 'ssc' rules out more than half what it considers to
+ * be the "likely" possible matches, but of course it doesn't know what the
+ * actual things being matched are going to be; these are only guesses
+ *
+ * For /l matches, it assumes that the only likely matches are going to be
+ * in the 0-255 range, uniformly distributed, so half of that is 127
+ * For /a and /d matches, it assumes that the likely matches will be just
+ * the ASCII range, so half of that is 63
+ * For /u and there isn't anything matching above the Latin1 range, it
+ * assumes that that is the only range likely to be matched, and uses
+ * half that as the cut-off: 127. If anything matches above Latin1,
+ * it assumes that all of Unicode could match (uniformly), except for
+ * non-Unicode code points and things in the General Category "Other"
+ * (unassigned, private use, surrogates, controls and formats). This
+ * is a much large number. */
+
+ const U32 max_match = (LOC)
+ ? 127
+ : (! UNI_SEMANTICS)
+ ? 63
+ : (invlist_highest(ssc->invlist) < 256)
+ ? 127
+ : ((NON_OTHER_COUNT + 1) / 2) - 1;
+ U32 count = 0; /* Running total of number of code points matched by
+ 'ssc' */
+ UV start, end; /* Start and end points of current range in inversion
+ list */
+
+ PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;
+
+ invlist_iterinit(ssc->invlist);
+ while (invlist_iternext(ssc->invlist, &start, &end)) {
+
+ /* /u is the only thing that we expect to match above 255; so if not /u
+ * and even if there are matches above 255, ignore them. This catches
+ * things like \d under /d which does match the digits above 255, but
+ * since the pattern is /d, it is not likely to be expecting them */
+ if (! UNI_SEMANTICS) {
+ if (start > 255) {
+ break;
+ }
+ end = MIN(end, 255);
+ }
+ count += end - start + 1;
+ if (count > max_match) {
+ invlist_iterfinish(ssc->invlist);
+ return FALSE;
+ }
+ }
+
+ return TRUE;
+}
+
+
+STATIC void
+S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
+{
+ /* The inversion list in the SSC is marked mortal; now we need a more
+ * permanent copy, which is stored the same way that is done in a regular
+ * ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
+ * map */
+
+ SV* invlist = invlist_clone(ssc->invlist);
+
+ PERL_ARGS_ASSERT_SSC_FINALIZE;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ /* The code in this file assumes that all but these flags aren't relevant
+ * to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
+ * by the time we reach here */
+ assert(! (ANYOF_FLAGS(ssc) & ~ANYOF_COMMON_FLAGS));
+
+ populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
+
+ set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist,
+ NULL, NULL, NULL, FALSE);
+
+ /* Make sure is clone-safe */
+ ssc->invlist = NULL;
+
+ if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+ ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
+ }
+
+ assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
+}
+
+#define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
+#define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
+#define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
+#define TRIE_LIST_USED(idx) ( trie->states[state].trans.list \
+ ? (TRIE_LIST_CUR( idx ) - 1) \
+ : 0 )
+
+
+#ifdef DEBUGGING
+/*
+ dump_trie(trie,widecharmap,revcharmap)
+ dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
+ dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
+
+ These routines dump out a trie in a somewhat readable format.
+ The _interim_ variants are used for debugging the interim
+ tables that are used to generate the final compressed
+ representation which is what dump_trie expects.
+
+ Part of the reason for their existence is to provide a form
+ of documentation as to how the different representations function.
+
+*/
+
+/*
+ Dumps the final compressed table form of the trie to Perl_debug_log.
+ Used for debugging make_trie().
+*/
+
+STATIC void
+S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
+ AV *revcharmap, U32 depth)
+{
+ U32 state;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ U16 word;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE;
+
+ PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
+ (int)depth * 2 + 2,"",
+ "Match","Base","Ofs" );
+
+ for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
+ SV ** const tmp = av_fetch( revcharmap, state, 0);
+ if ( tmp ) {
+ PerlIO_printf( Perl_debug_log, "%*s",
+ colwidth,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ )
+ );
+ }
+ }
+ PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
+ (int)depth * 2 + 2,"");
+
+ for( state = 0 ; state < trie->uniquecharcount ; state++ )
+ PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
+ PerlIO_printf( Perl_debug_log, "\n");
+
+ for( state = 1 ; state < trie->statecount ; state++ ) {
+ const U32 base = trie->states[ state ].trans.base;
+
+ PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|",
+ (int)depth * 2 + 2,"", (UV)state);
+
+ if ( trie->states[ state ].wordnum ) {
+ PerlIO_printf( Perl_debug_log, " W%4X",
+ trie->states[ state ].wordnum );
+ } else {
+ PerlIO_printf( Perl_debug_log, "%6s", "" );
+ }
+
+ PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
+
+ if ( base ) {
+ U32 ofs = 0;
+
+ while( ( base + ofs < trie->uniquecharcount ) ||
+ ( base + ofs - trie->uniquecharcount < trie->lasttrans
+ && trie->trans[ base + ofs - trie->uniquecharcount ].check
+ != state))
+ ofs++;
+
+ PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
+
+ for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
+ if ( ( base + ofs >= trie->uniquecharcount )
+ && ( base + ofs - trie->uniquecharcount
+ < trie->lasttrans )
+ && trie->trans[ base + ofs
+ - trie->uniquecharcount ].check == state )
+ {
+ PerlIO_printf( Perl_debug_log, "%*"UVXf,
+ colwidth,
+ (UV)trie->trans[ base + ofs
+ - trie->uniquecharcount ].next );
+ } else {
+ PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
+ }
+ }
+
+ PerlIO_printf( Perl_debug_log, "]");
+
+ }
+ PerlIO_printf( Perl_debug_log, "\n" );
+ }
+ PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=",
+ (int)depth*2, "");
+ for (word=1; word <= trie->wordcount; word++) {
+ PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
+ (int)word, (int)(trie->wordinfo[word].prev),
+ (int)(trie->wordinfo[word].len));
+ }
+ PerlIO_printf(Perl_debug_log, "\n" );
+}
+/*
+ Dumps a fully constructed but uncompressed trie in list form.
+ List tries normally only are used for construction when the number of
+ possible chars (trie->uniquecharcount) is very high.
+ Used for debugging make_trie().
+*/
+STATIC void
+S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
+ HV *widecharmap, AV *revcharmap, U32 next_alloc,
+ U32 depth)
+{
+ U32 state;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
+
+ /* print out the table precompression. */
+ PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
+ (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
+ "------:-----+-----------------\n" );
+
+ for( state=1 ; state < next_alloc ; state ++ ) {
+ U16 charid;
+
+ PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
+ (int)depth * 2 + 2,"", (UV)state );
+ if ( ! trie->states[ state ].wordnum ) {
+ PerlIO_printf( Perl_debug_log, "%5s| ","");
+ } else {
+ PerlIO_printf( Perl_debug_log, "W%4x| ",
+ trie->states[ state ].wordnum
+ );
+ }
+ for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
+ SV ** const tmp = av_fetch( revcharmap,
+ TRIE_LIST_ITEM(state,charid).forid, 0);
+ if ( tmp ) {
+ PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
+ colwidth,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
+ colwidth,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
+ | PERL_PV_ESCAPE_FIRSTCHAR
+ ) ,
+ TRIE_LIST_ITEM(state,charid).forid,
+ (UV)TRIE_LIST_ITEM(state,charid).newstate
+ );
+ if (!(charid % 10))
+ PerlIO_printf(Perl_debug_log, "\n%*s| ",
+ (int)((depth * 2) + 14), "");
+ }
+ }
+ PerlIO_printf( Perl_debug_log, "\n");
+ }
+}
+
+/*
+ Dumps a fully constructed but uncompressed trie in table form.
+ This is the normal DFA style state transition table, with a few
+ twists to facilitate compression later.
+ Used for debugging make_trie().
+*/
+STATIC void
+S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
+ HV *widecharmap, AV *revcharmap, U32 next_alloc,
+ U32 depth)
+{
+ U32 state;
+ U16 charid;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
+
+ /*
+ print out the table precompression so that we can do a visual check
+ that they are identical.
+ */
+
+ PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
+
+ for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
+ SV ** const tmp = av_fetch( revcharmap, charid, 0);
+ if ( tmp ) {
+ PerlIO_printf( Perl_debug_log, "%*s",
+ colwidth,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ )
+ );
+ }
+ }
+
+ PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
+
+ for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
+ PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
+ }
+
+ PerlIO_printf( Perl_debug_log, "\n" );
+
+ for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
+
+ PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
+ (int)depth * 2 + 2,"",
+ (UV)TRIE_NODENUM( state ) );
+
+ for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
+ UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
+ if (v)
+ PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
+ else
+ PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
+ }
+ if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
+ PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n",
+ (UV)trie->trans[ state ].check );
+ } else {
+ PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n",
+ (UV)trie->trans[ state ].check,
+ trie->states[ TRIE_NODENUM( state ) ].wordnum );
+ }
+ }
+}
+
+#endif
+
+
+/* make_trie(startbranch,first,last,tail,word_count,flags,depth)
+ startbranch: the first branch in the whole branch sequence
+ first : start branch of sequence of branch-exact nodes.
+ May be the same as startbranch
+ last : Thing following the last branch.
+ May be the same as tail.
+ tail : item following the branch sequence
+ count : words in the sequence
+ flags : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
+ depth : indent depth
+
+Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
+
+A trie is an N'ary tree where the branches are determined by digital
+decomposition of the key. IE, at the root node you look up the 1st character and
+follow that branch repeat until you find the end of the branches. Nodes can be
+marked as "accepting" meaning they represent a complete word. Eg:
+
+ /he|she|his|hers/
+
+would convert into the following structure. Numbers represent states, letters
+following numbers represent valid transitions on the letter from that state, if
+the number is in square brackets it represents an accepting state, otherwise it
+will be in parenthesis.
+
+ +-h->+-e->[3]-+-r->(8)-+-s->[9]
+ | |
+ | (2)
+ | |
+ (1) +-i->(6)-+-s->[7]
+ |
+ +-s->(3)-+-h->(4)-+-e->[5]
+
+ Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
+
+This shows that when matching against the string 'hers' we will begin at state 1
+read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
+then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
+is also accepting. Thus we know that we can match both 'he' and 'hers' with a
+single traverse. We store a mapping from accepting to state to which word was
+matched, and then when we have multiple possibilities we try to complete the
+rest of the regex in the order in which they occurred in the alternation.
+
+The only prior NFA like behaviour that would be changed by the TRIE support is
+the silent ignoring of duplicate alternations which are of the form:
+
+ / (DUPE|DUPE) X? (?{ ... }) Y /x
+
+Thus EVAL blocks following a trie may be called a different number of times with
+and without the optimisation. With the optimisations dupes will be silently
+ignored. This inconsistent behaviour of EVAL type nodes is well established as
+the following demonstrates:
+
+ 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
+
+which prints out 'word' three times, but
+
+ 'words'=~/(word|word|word)(?{ print $1 })S/
+
+which doesnt print it out at all. This is due to other optimisations kicking in.
+
+Example of what happens on a structural level:
+
+The regexp /(ac|ad|ab)+/ will produce the following debug output:
+
+ 1: CURLYM[1] {1,32767}(18)
+ 5: BRANCH(8)
+ 6: EXACT <ac>(16)
+ 8: BRANCH(11)
+ 9: EXACT <ad>(16)
+ 11: BRANCH(14)
+ 12: EXACT <ab>(16)
+ 16: SUCCEED(0)
+ 17: NOTHING(18)
+ 18: END(0)
+
+This would be optimizable with startbranch=5, first=5, last=16, tail=16
+and should turn into:
+
+ 1: CURLYM[1] {1,32767}(18)
+ 5: TRIE(16)
+ [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
+ <ac>
+ <ad>
+ <ab>
+ 16: SUCCEED(0)
+ 17: NOTHING(18)
+ 18: END(0)
+
+Cases where tail != last would be like /(?foo|bar)baz/:
+
+ 1: BRANCH(4)
+ 2: EXACT <foo>(8)
+ 4: BRANCH(7)
+ 5: EXACT <bar>(8)
+ 7: TAIL(8)
+ 8: EXACT <baz>(10)
+ 10: END(0)
+
+which would be optimizable with startbranch=1, first=1, last=7, tail=8
+and would end up looking like:
+
+ 1: TRIE(8)
+ [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
+ <foo>
+ <bar>
+ 7: TAIL(8)
+ 8: EXACT <baz>(10)
+ 10: END(0)
+
+ d = uvchr_to_utf8_flags(d, uv, 0);
+
+is the recommended Unicode-aware way of saying
+
+ *(d++) = uv;
+*/
+
+#define TRIE_STORE_REVCHAR(val) \
+ STMT_START { \
+ if (UTF) { \
+ SV *zlopp = newSV(7); /* XXX: optimize me */ \
+ unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
+ unsigned const char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
+ SvCUR_set(zlopp, kapow - flrbbbbb); \
+ SvPOK_on(zlopp); \
+ SvUTF8_on(zlopp); \
+ av_push(revcharmap, zlopp); \
+ } else { \
+ char ooooff = (char)val; \
+ av_push(revcharmap, newSVpvn(&ooooff, 1)); \
+ } \
+ } STMT_END
+
+/* This gets the next character from the input, folding it if not already
+ * folded. */
+#define TRIE_READ_CHAR STMT_START { \
+ wordlen++; \
+ if ( UTF ) { \
+ /* if it is UTF then it is either already folded, or does not need \
+ * folding */ \
+ uvc = valid_utf8_to_uvchr( (const U8*) uc, &len); \
+ } \
+ else if (folder == PL_fold_latin1) { \
+ /* This folder implies Unicode rules, which in the range expressible \
+ * by not UTF is the lower case, with the two exceptions, one of \
+ * which should have been taken care of before calling this */ \
+ assert(*uc != LATIN_SMALL_LETTER_SHARP_S); \
+ uvc = toLOWER_L1(*uc); \
+ if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU; \
+ len = 1; \
+ } else { \
+ /* raw data, will be folded later if needed */ \
+ uvc = (U32)*uc; \
+ len = 1; \
+ } \
+} STMT_END
+
+
+
+#define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
+ if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
+ U32 ging = TRIE_LIST_LEN( state ) *= 2; \
+ Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
+ } \
+ TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
+ TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
+ TRIE_LIST_CUR( state )++; \
+} STMT_END
+
+#define TRIE_LIST_NEW(state) STMT_START { \
+ Newxz( trie->states[ state ].trans.list, \
+ 4, reg_trie_trans_le ); \
+ TRIE_LIST_CUR( state ) = 1; \
+ TRIE_LIST_LEN( state ) = 4; \
+} STMT_END
+
+#define TRIE_HANDLE_WORD(state) STMT_START { \
+ U16 dupe= trie->states[ state ].wordnum; \
+ regnode * const noper_next = regnext( noper ); \
+ \
+ DEBUG_r({ \
+ /* store the word for dumping */ \
+ SV* tmp; \
+ if (OP(noper) != NOTHING) \
+ tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
+ else \
+ tmp = newSVpvn_utf8( "", 0, UTF ); \
+ av_push( trie_words, tmp ); \
+ }); \
+ \
+ curword++; \
+ trie->wordinfo[curword].prev = 0; \
+ trie->wordinfo[curword].len = wordlen; \
+ trie->wordinfo[curword].accept = state; \
+ \
+ if ( noper_next < tail ) { \
+ if (!trie->jump) \
+ trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
+ sizeof(U16) ); \
+ trie->jump[curword] = (U16)(noper_next - convert); \
+ if (!jumper) \
+ jumper = noper_next; \
+ if (!nextbranch) \
+ nextbranch= regnext(cur); \
+ } \
+ \
+ if ( dupe ) { \
+ /* It's a dupe. Pre-insert into the wordinfo[].prev */\
+ /* chain, so that when the bits of chain are later */\
+ /* linked together, the dups appear in the chain */\
+ trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
+ trie->wordinfo[dupe].prev = curword; \
+ } else { \
+ /* we haven't inserted this word yet. */ \
+ trie->states[ state ].wordnum = curword; \
+ } \
+} STMT_END
+
+
+#define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
+ ( ( base + charid >= ucharcount \
+ && base + charid < ubound \
+ && state == trie->trans[ base - ucharcount + charid ].check \
+ && trie->trans[ base - ucharcount + charid ].next ) \
+ ? trie->trans[ base - ucharcount + charid ].next \
+ : ( state==1 ? special : 0 ) \
+ )
+
+#define MADE_TRIE 1
+#define MADE_JUMP_TRIE 2
+#define MADE_EXACT_TRIE 4
+
+STATIC I32
+S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
+ regnode *first, regnode *last, regnode *tail,
+ U32 word_count, U32 flags, U32 depth)
+{
+ /* first pass, loop through and scan words */
+ reg_trie_data *trie;
+ HV *widecharmap = NULL;
+ AV *revcharmap = newAV();
+ regnode *cur;
+ STRLEN len = 0;
+ UV uvc = 0;
+ U16 curword = 0;
+ U32 next_alloc = 0;
+ regnode *jumper = NULL;
+ regnode *nextbranch = NULL;
+ regnode *convert = NULL;
+ U32 *prev_states; /* temp array mapping each state to previous one */
+ /* we just use folder as a flag in utf8 */
+ const U8 * folder = NULL;
+
+#ifdef DEBUGGING
+ const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuuu"));
+ AV *trie_words = NULL;
+ /* along with revcharmap, this only used during construction but both are
+ * useful during debugging so we store them in the struct when debugging.
+ */
+#else
+ const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
+ STRLEN trie_charcount=0;
+#endif
+ SV *re_trie_maxbuff;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_MAKE_TRIE;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ switch (flags) {
+ case EXACT: case EXACTL: break;
+ case EXACTFA:
+ case EXACTFU_SS:
+ case EXACTFU:
+ case EXACTFLU8: folder = PL_fold_latin1; break;
+ case EXACTF: folder = PL_fold; break;
+ default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
+ }
+
+ trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
+ trie->refcount = 1;
+ trie->startstate = 1;
+ trie->wordcount = word_count;
+ RExC_rxi->data->data[ data_slot ] = (void*)trie;
+ trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
+ if (flags == EXACT || flags == EXACTL)
+ trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
+ trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
+ trie->wordcount+1, sizeof(reg_trie_wordinfo));
+
+ DEBUG_r({
+ trie_words = newAV();
+ });
+
+ re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
+ assert(re_trie_maxbuff);
+ if (!SvIOK(re_trie_maxbuff)) {
+ sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
+ }
+ DEBUG_TRIE_COMPILE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
+ (int)depth * 2 + 2, "",
+ REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
+ REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
+ });
+
+ /* Find the node we are going to overwrite */
+ if ( first == startbranch && OP( last ) != BRANCH ) {
+ /* whole branch chain */
+ convert = first;
+ } else {
+ /* branch sub-chain */
+ convert = NEXTOPER( first );
+ }
+
+ /* -- First loop and Setup --
+
+ We first traverse the branches and scan each word to determine if it
+ contains widechars, and how many unique chars there are, this is
+ important as we have to build a table with at least as many columns as we
+ have unique chars.
+
+ We use an array of integers to represent the character codes 0..255
+ (trie->charmap) and we use a an HV* to store Unicode characters. We use
+ the native representation of the character value as the key and IV's for
+ the coded index.
+
+ *TODO* If we keep track of how many times each character is used we can
+ remap the columns so that the table compression later on is more
+ efficient in terms of memory by ensuring the most common value is in the
+ middle and the least common are on the outside. IMO this would be better
+ than a most to least common mapping as theres a decent chance the most
+ common letter will share a node with the least common, meaning the node
+ will not be compressible. With a middle is most common approach the worst
+ case is when we have the least common nodes twice.
+
+ */
+
+ for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+ regnode *noper = NEXTOPER( cur );
+ const U8 *uc = (U8*)STRING( noper );
+ const U8 *e = uc + STR_LEN( noper );
+ int foldlen = 0;
+ U32 wordlen = 0; /* required init */
+ STRLEN minchars = 0;
+ STRLEN maxchars = 0;
+ bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
+ bitmap?*/
+
+ if (OP(noper) == NOTHING) {
+ regnode *noper_next= regnext(noper);
+ if (noper_next != tail && OP(noper_next) == flags) {
+ noper = noper_next;
+ uc= (U8*)STRING(noper);
+ e= uc + STR_LEN(noper);
+ trie->minlen= STR_LEN(noper);
+ } else {
+ trie->minlen= 0;
+ continue;
+ }
+ }
+
+ if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
+ TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
+ regardless of encoding */
+ if (OP( noper ) == EXACTFU_SS) {
+ /* false positives are ok, so just set this */
+ TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
+ }
+ }
+ for ( ; uc < e ; uc += len ) { /* Look at each char in the current
+ branch */
+ TRIE_CHARCOUNT(trie)++;
+ TRIE_READ_CHAR;
+
+ /* TRIE_READ_CHAR returns the current character, or its fold if /i
+ * is in effect. Under /i, this character can match itself, or
+ * anything that folds to it. If not under /i, it can match just
+ * itself. Most folds are 1-1, for example k, K, and KELVIN SIGN
+ * all fold to k, and all are single characters. But some folds
+ * expand to more than one character, so for example LATIN SMALL
+ * LIGATURE FFI folds to the three character sequence 'ffi'. If
+ * the string beginning at 'uc' is 'ffi', it could be matched by
+ * three characters, or just by the one ligature character. (It
+ * could also be matched by two characters: LATIN SMALL LIGATURE FF
+ * followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
+ * (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
+ * match.) The trie needs to know the minimum and maximum number
+ * of characters that could match so that it can use size alone to
+ * quickly reject many match attempts. The max is simple: it is
+ * the number of folded characters in this branch (since a fold is
+ * never shorter than what folds to it. */
+
+ maxchars++;
+
+ /* And the min is equal to the max if not under /i (indicated by
+ * 'folder' being NULL), or there are no multi-character folds. If
+ * there is a multi-character fold, the min is incremented just
+ * once, for the character that folds to the sequence. Each
+ * character in the sequence needs to be added to the list below of
+ * characters in the trie, but we count only the first towards the
+ * min number of characters needed. This is done through the
+ * variable 'foldlen', which is returned by the macros that look
+ * for these sequences as the number of bytes the sequence
+ * occupies. Each time through the loop, we decrement 'foldlen' by
+ * how many bytes the current char occupies. Only when it reaches
+ * 0 do we increment 'minchars' or look for another multi-character
+ * sequence. */
+ if (folder == NULL) {
+ minchars++;
+ }
+ else if (foldlen > 0) {
+ foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
+ }
+ else {
+ minchars++;
+
+ /* See if *uc is the beginning of a multi-character fold. If
+ * so, we decrement the length remaining to look at, to account
+ * for the current character this iteration. (We can use 'uc'
+ * instead of the fold returned by TRIE_READ_CHAR because for
+ * non-UTF, the latin1_safe macro is smart enough to account
+ * for all the unfolded characters, and because for UTF, the
+ * string will already have been folded earlier in the
+ * compilation process */
+ if (UTF) {
+ if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
+ foldlen -= UTF8SKIP(uc);
+ }
+ }
+ else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
+ foldlen--;
+ }
+ }
+
+ /* The current character (and any potential folds) should be added
+ * to the possible matching characters for this position in this
+ * branch */
+ if ( uvc < 256 ) {
+ if ( folder ) {
+ U8 folded= folder[ (U8) uvc ];
+ if ( !trie->charmap[ folded ] ) {
+ trie->charmap[ folded ]=( ++trie->uniquecharcount );
+ TRIE_STORE_REVCHAR( folded );
+ }
+ }
+ if ( !trie->charmap[ uvc ] ) {
+ trie->charmap[ uvc ]=( ++trie->uniquecharcount );
+ TRIE_STORE_REVCHAR( uvc );
+ }
+ if ( set_bit ) {
+ /* store the codepoint in the bitmap, and its folded
+ * equivalent. */
+ TRIE_BITMAP_SET(trie, uvc);
+
+ /* store the folded codepoint */
+ if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
+
+ if ( !UTF ) {
+ /* store first byte of utf8 representation of
+ variant codepoints */
+ if (! UVCHR_IS_INVARIANT(uvc)) {
+ TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
+ }
+ }
+ set_bit = 0; /* We've done our bit :-) */
+ }
+ } else {
+
+ /* XXX We could come up with the list of code points that fold
+ * to this using PL_utf8_foldclosures, except not for
+ * multi-char folds, as there may be multiple combinations
+ * there that could work, which needs to wait until runtime to
+ * resolve (The comment about LIGATURE FFI above is such an
+ * example */
+
+ SV** svpp;
+ if ( !widecharmap )
+ widecharmap = newHV();
+
+ svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
+
+ if ( !svpp )
+ Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
+
+ if ( !SvTRUE( *svpp ) ) {
+ sv_setiv( *svpp, ++trie->uniquecharcount );
+ TRIE_STORE_REVCHAR(uvc);
+ }
+ }
+ } /* end loop through characters in this branch of the trie */
+
+ /* We take the min and max for this branch and combine to find the min
+ * and max for all branches processed so far */
+ if( cur == first ) {
+ trie->minlen = minchars;
+ trie->maxlen = maxchars;
+ } else if (minchars < trie->minlen) {
+ trie->minlen = minchars;
+ } else if (maxchars > trie->maxlen) {
+ trie->maxlen = maxchars;
+ }
+ } /* end first pass */
+ DEBUG_TRIE_COMPILE_r(
+ PerlIO_printf( Perl_debug_log,
+ "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
+ (int)depth * 2 + 2,"",
+ ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
+ (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
+ (int)trie->minlen, (int)trie->maxlen )
+ );
+
+ /*
+ We now know what we are dealing with in terms of unique chars and
+ string sizes so we can calculate how much memory a naive
+ representation using a flat table will take. If it's over a reasonable
+ limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
+ conservative but potentially much slower representation using an array
+ of lists.
+
+ At the end we convert both representations into the same compressed
+ form that will be used in regexec.c for matching with. The latter
+ is a form that cannot be used to construct with but has memory
+ properties similar to the list form and access properties similar
+ to the table form making it both suitable for fast searches and
+ small enough that its feasable to store for the duration of a program.
+
+ See the comment in the code where the compressed table is produced
+ inplace from the flat tabe representation for an explanation of how
+ the compression works.
+
+ */
+
+
+ Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
+ prev_states[1] = 0;
+
+ if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
+ > SvIV(re_trie_maxbuff) )
+ {
+ /*
+ Second Pass -- Array Of Lists Representation
+
+ Each state will be represented by a list of charid:state records
+ (reg_trie_trans_le) the first such element holds the CUR and LEN
+ points of the allocated array. (See defines above).
+
+ We build the initial structure using the lists, and then convert
+ it into the compressed table form which allows faster lookups
+ (but cant be modified once converted).
+ */
+
+ STRLEN transcount = 1;
+
+ DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
+ "%*sCompiling trie using list compiler\n",
+ (int)depth * 2 + 2, ""));
+
+ trie->states = (reg_trie_state *)
+ PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
+ sizeof(reg_trie_state) );
+ TRIE_LIST_NEW(1);
+ next_alloc = 2;
+
+ for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+
+ regnode *noper = NEXTOPER( cur );
+ U8 *uc = (U8*)STRING( noper );
+ const U8 *e = uc + STR_LEN( noper );
+ U32 state = 1; /* required init */
+ U16 charid = 0; /* sanity init */
+ U32 wordlen = 0; /* required init */
+
+ if (OP(noper) == NOTHING) {
+ regnode *noper_next= regnext(noper);
+ if (noper_next != tail && OP(noper_next) == flags) {
+ noper = noper_next;
+ uc= (U8*)STRING(noper);
+ e= uc + STR_LEN(noper);
+ }
+ }
+
+ if (OP(noper) != NOTHING) {
+ for ( ; uc < e ; uc += len ) {
+
+ TRIE_READ_CHAR;
+
+ if ( uvc < 256 ) {
+ charid = trie->charmap[ uvc ];
+ } else {
+ SV** const svpp = hv_fetch( widecharmap,
+ (char*)&uvc,
+ sizeof( UV ),
+ 0);
+ if ( !svpp ) {
+ charid = 0;
+ } else {
+ charid=(U16)SvIV( *svpp );
+ }
+ }
+ /* charid is now 0 if we dont know the char read, or
+ * nonzero if we do */
+ if ( charid ) {
+
+ U16 check;
+ U32 newstate = 0;
+
+ charid--;
+ if ( !trie->states[ state ].trans.list ) {
+ TRIE_LIST_NEW( state );
+ }
+ for ( check = 1;
+ check <= TRIE_LIST_USED( state );
+ check++ )
+ {
+ if ( TRIE_LIST_ITEM( state, check ).forid
+ == charid )
+ {
+ newstate = TRIE_LIST_ITEM( state, check ).newstate;
+ break;
+ }
+ }
+ if ( ! newstate ) {
+ newstate = next_alloc++;
+ prev_states[newstate] = state;
+ TRIE_LIST_PUSH( state, charid, newstate );
+ transcount++;
+ }
+ state = newstate;
+ } else {
+ Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
+ }
+ }
+ }
+ TRIE_HANDLE_WORD(state);
+
+ } /* end second pass */
+
+ /* next alloc is the NEXT state to be allocated */
+ trie->statecount = next_alloc;
+ trie->states = (reg_trie_state *)
+ PerlMemShared_realloc( trie->states,
+ next_alloc
+ * sizeof(reg_trie_state) );
+
+ /* and now dump it out before we compress it */
+ DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
+ revcharmap, next_alloc,
+ depth+1)
+ );
+
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
+ {
+ U32 state;
+ U32 tp = 0;
+ U32 zp = 0;
+
+
+ for( state=1 ; state < next_alloc ; state ++ ) {
+ U32 base=0;
+
+ /*
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
+ );
+ */
+
+ if (trie->states[state].trans.list) {
+ U16 minid=TRIE_LIST_ITEM( state, 1).forid;
+ U16 maxid=minid;
+ U16 idx;
+
+ for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
+ const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
+ if ( forid < minid ) {
+ minid=forid;
+ } else if ( forid > maxid ) {
+ maxid=forid;
+ }
+ }
+ if ( transcount < tp + maxid - minid + 1) {
+ transcount *= 2;
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_realloc( trie->trans,
+ transcount
+ * sizeof(reg_trie_trans) );
+ Zero( trie->trans + (transcount / 2),
+ transcount / 2,
+ reg_trie_trans );
+ }
+ base = trie->uniquecharcount + tp - minid;
+ if ( maxid == minid ) {
+ U32 set = 0;
+ for ( ; zp < tp ; zp++ ) {
+ if ( ! trie->trans[ zp ].next ) {
+ base = trie->uniquecharcount + zp - minid;
+ trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
+ 1).newstate;
+ trie->trans[ zp ].check = state;
+ set = 1;
+ break;
+ }
+ }
+ if ( !set ) {
+ trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
+ 1).newstate;
+ trie->trans[ tp ].check = state;
+ tp++;
+ zp = tp;
+ }
+ } else {
+ for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
+ const U32 tid = base
+ - trie->uniquecharcount
+ + TRIE_LIST_ITEM( state, idx ).forid;
+ trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
+ idx ).newstate;
+ trie->trans[ tid ].check = state;
+ }
+ tp += ( maxid - minid + 1 );
+ }
+ Safefree(trie->states[ state ].trans.list);
+ }
+ /*
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf( Perl_debug_log, " base: %d\n",base);
+ );
+ */
+ trie->states[ state ].trans.base=base;
+ }
+ trie->lasttrans = tp + 1;
+ }
+ } else {
+ /*
+ Second Pass -- Flat Table Representation.
+
+ we dont use the 0 slot of either trans[] or states[] so we add 1 to
+ each. We know that we will need Charcount+1 trans at most to store
+ the data (one row per char at worst case) So we preallocate both
+ structures assuming worst case.
+
+ We then construct the trie using only the .next slots of the entry
+ structs.
+
+ We use the .check field of the first entry of the node temporarily
+ to make compression both faster and easier by keeping track of how
+ many non zero fields are in the node.
+
+ Since trans are numbered from 1 any 0 pointer in the table is a FAIL
+ transition.
+
+ There are two terms at use here: state as a TRIE_NODEIDX() which is
+ a number representing the first entry of the node, and state as a
+ TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
+ and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
+ if there are 2 entrys per node. eg:
+
+ A B A B
+ 1. 2 4 1. 3 7
+ 2. 0 3 3. 0 5
+ 3. 0 0 5. 0 0
+ 4. 0 0 7. 0 0
+
+ The table is internally in the right hand, idx form. However as we
+ also have to deal with the states array which is indexed by nodenum
+ we have to use TRIE_NODENUM() to convert.
+
+ */
+ DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
+ "%*sCompiling trie using table compiler\n",
+ (int)depth * 2 + 2, ""));
+
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
+ * trie->uniquecharcount + 1,
+ sizeof(reg_trie_trans) );
+ trie->states = (reg_trie_state *)
+ PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
+ sizeof(reg_trie_state) );
+ next_alloc = trie->uniquecharcount + 1;
+
+
+ for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+
+ regnode *noper = NEXTOPER( cur );
+ const U8 *uc = (U8*)STRING( noper );
+ const U8 *e = uc + STR_LEN( noper );
+
+ U32 state = 1; /* required init */
+
+ U16 charid = 0; /* sanity init */
+ U32 accept_state = 0; /* sanity init */
+
+ U32 wordlen = 0; /* required init */
+
+ if (OP(noper) == NOTHING) {
+ regnode *noper_next= regnext(noper);
+ if (noper_next != tail && OP(noper_next) == flags) {
+ noper = noper_next;
+ uc= (U8*)STRING(noper);
+ e= uc + STR_LEN(noper);
+ }
+ }
+
+ if ( OP(noper) != NOTHING ) {
+ for ( ; uc < e ; uc += len ) {
+
+ TRIE_READ_CHAR;
+
+ if ( uvc < 256 ) {
+ charid = trie->charmap[ uvc ];
+ } else {
+ SV* const * const svpp = hv_fetch( widecharmap,
+ (char*)&uvc,
+ sizeof( UV ),
+ 0);
+ charid = svpp ? (U16)SvIV(*svpp) : 0;
+ }
+ if ( charid ) {
+ charid--;
+ if ( !trie->trans[ state + charid ].next ) {
+ trie->trans[ state + charid ].next = next_alloc;
+ trie->trans[ state ].check++;
+ prev_states[TRIE_NODENUM(next_alloc)]
+ = TRIE_NODENUM(state);
+ next_alloc += trie->uniquecharcount;
+ }
+ state = trie->trans[ state + charid ].next;
+ } else {
+ Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
+ }
+ /* charid is now 0 if we dont know the char read, or
+ * nonzero if we do */
+ }
+ }
+ accept_state = TRIE_NODENUM( state );
+ TRIE_HANDLE_WORD(accept_state);
+
+ } /* end second pass */
+
+ /* and now dump it out before we compress it */
+ DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
+ revcharmap,
+ next_alloc, depth+1));
+
+ {
+ /*
+ * Inplace compress the table.*
+
+ For sparse data sets the table constructed by the trie algorithm will
+ be mostly 0/FAIL transitions or to put it another way mostly empty.
+ (Note that leaf nodes will not contain any transitions.)
+
+ This algorithm compresses the tables by eliminating most such
+ transitions, at the cost of a modest bit of extra work during lookup:
+
+ - Each states[] entry contains a .base field which indicates the
+ index in the state[] array wheres its transition data is stored.
+
+ - If .base is 0 there are no valid transitions from that node.
+
+ - If .base is nonzero then charid is added to it to find an entry in
+ the trans array.
+
+ -If trans[states[state].base+charid].check!=state then the
+ transition is taken to be a 0/Fail transition. Thus if there are fail
+ transitions at the front of the node then the .base offset will point
+ somewhere inside the previous nodes data (or maybe even into a node
+ even earlier), but the .check field determines if the transition is
+ valid.
+
+ XXX - wrong maybe?
+ The following process inplace converts the table to the compressed
+ table: We first do not compress the root node 1,and mark all its
+ .check pointers as 1 and set its .base pointer as 1 as well. This
+ allows us to do a DFA construction from the compressed table later,
+ and ensures that any .base pointers we calculate later are greater
+ than 0.
+
+ - We set 'pos' to indicate the first entry of the second node.
+
+ - We then iterate over the columns of the node, finding the first and
+ last used entry at l and m. We then copy l..m into pos..(pos+m-l),
+ and set the .check pointers accordingly, and advance pos
+ appropriately and repreat for the next node. Note that when we copy
+ the next pointers we have to convert them from the original
+ NODEIDX form to NODENUM form as the former is not valid post
+ compression.
+
+ - If a node has no transitions used we mark its base as 0 and do not
+ advance the pos pointer.
+
+ - If a node only has one transition we use a second pointer into the
+ structure to fill in allocated fail transitions from other states.
+ This pointer is independent of the main pointer and scans forward
+ looking for null transitions that are allocated to a state. When it
+ finds one it writes the single transition into the "hole". If the
+ pointer doesnt find one the single transition is appended as normal.
+
+ - Once compressed we can Renew/realloc the structures to release the
+ excess space.
+
+ See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
+ specifically Fig 3.47 and the associated pseudocode.
+
+ demq
+ */
+ const U32 laststate = TRIE_NODENUM( next_alloc );
+ U32 state, charid;
+ U32 pos = 0, zp=0;
+ trie->statecount = laststate;
+
+ for ( state = 1 ; state < laststate ; state++ ) {
+ U8 flag = 0;
+ const U32 stateidx = TRIE_NODEIDX( state );
+ const U32 o_used = trie->trans[ stateidx ].check;
+ U32 used = trie->trans[ stateidx ].check;
+ trie->trans[ stateidx ].check = 0;
+
+ for ( charid = 0;
+ used && charid < trie->uniquecharcount;
+ charid++ )
+ {
+ if ( flag || trie->trans[ stateidx + charid ].next ) {
+ if ( trie->trans[ stateidx + charid ].next ) {
+ if (o_used == 1) {
+ for ( ; zp < pos ; zp++ ) {
+ if ( ! trie->trans[ zp ].next ) {
+ break;
+ }
+ }
+ trie->states[ state ].trans.base
+ = zp
+ + trie->uniquecharcount
+ - charid ;
+ trie->trans[ zp ].next
+ = SAFE_TRIE_NODENUM( trie->trans[ stateidx
+ + charid ].next );
+ trie->trans[ zp ].check = state;
+ if ( ++zp > pos ) pos = zp;
+ break;
+ }
+ used--;
+ }
+ if ( !flag ) {
+ flag = 1;
+ trie->states[ state ].trans.base
+ = pos + trie->uniquecharcount - charid ;
+ }
+ trie->trans[ pos ].next
+ = SAFE_TRIE_NODENUM(
+ trie->trans[ stateidx + charid ].next );
+ trie->trans[ pos ].check = state;
+ pos++;
+ }
+ }
+ }
+ trie->lasttrans = pos + 1;
+ trie->states = (reg_trie_state *)
+ PerlMemShared_realloc( trie->states, laststate
+ * sizeof(reg_trie_state) );
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf( Perl_debug_log,
+ "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
+ (int)depth * 2 + 2,"",
+ (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
+ + 1 ),
+ (IV)next_alloc,
+ (IV)pos,
+ ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
+ );
+
+ } /* end table compress */
+ }
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
+ (int)depth * 2 + 2, "",
+ (UV)trie->statecount,
+ (UV)trie->lasttrans)
+ );
+ /* resize the trans array to remove unused space */
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_realloc( trie->trans, trie->lasttrans
+ * sizeof(reg_trie_trans) );
+
+ { /* Modify the program and insert the new TRIE node */
+ U8 nodetype =(U8)(flags & 0xFF);
+ char *str=NULL;
+
+#ifdef DEBUGGING
+ regnode *optimize = NULL;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+
+ U32 mjd_offset = 0;
+ U32 mjd_nodelen = 0;
+#endif /* RE_TRACK_PATTERN_OFFSETS */
+#endif /* DEBUGGING */
+ /*
+ This means we convert either the first branch or the first Exact,
+ depending on whether the thing following (in 'last') is a branch
+ or not and whther first is the startbranch (ie is it a sub part of
+ the alternation or is it the whole thing.)
+ Assuming its a sub part we convert the EXACT otherwise we convert
+ the whole branch sequence, including the first.
+ */
+ /* Find the node we are going to overwrite */
+ if ( first != startbranch || OP( last ) == BRANCH ) {
+ /* branch sub-chain */
+ NEXT_OFF( first ) = (U16)(last - first);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ DEBUG_r({
+ mjd_offset= Node_Offset((convert));
+ mjd_nodelen= Node_Length((convert));
+ });
+#endif
+ /* whole branch chain */
+ }
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ else {
+ DEBUG_r({
+ const regnode *nop = NEXTOPER( convert );
+ mjd_offset= Node_Offset((nop));
+ mjd_nodelen= Node_Length((nop));
+ });
+ }
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
+ (int)depth * 2 + 2, "",
+ (UV)mjd_offset, (UV)mjd_nodelen)
+ );
+#endif
+ /* But first we check to see if there is a common prefix we can
+ split out as an EXACT and put in front of the TRIE node. */
+ trie->startstate= 1;
+ if ( trie->bitmap && !widecharmap && !trie->jump ) {
+ U32 state;
+ for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
+ U32 ofs = 0;
+ I32 idx = -1;
+ U32 count = 0;
+ const U32 base = trie->states[ state ].trans.base;
+
+ if ( trie->states[state].wordnum )
+ count = 1;
+
+ for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
+ if ( ( base + ofs >= trie->uniquecharcount ) &&
+ ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
+ trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
+ {
+ if ( ++count > 1 ) {
+ SV **tmp = av_fetch( revcharmap, ofs, 0);
+ const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
+ if ( state == 1 ) break;
+ if ( count == 2 ) {
+ Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*sNew Start State=%"UVuf" Class: [",
+ (int)depth * 2 + 2, "",
+ (UV)state));
+ if (idx >= 0) {
+ SV ** const tmp = av_fetch( revcharmap, idx, 0);
+ const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
+
+ TRIE_BITMAP_SET(trie,*ch);
+ if ( folder )
+ TRIE_BITMAP_SET(trie, folder[ *ch ]);
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
+ );
+ }
+ }
+ TRIE_BITMAP_SET(trie,*ch);
+ if ( folder )
+ TRIE_BITMAP_SET(trie,folder[ *ch ]);
+ DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
+ }
+ idx = ofs;
+ }
+ }
+ if ( count == 1 ) {
+ SV **tmp = av_fetch( revcharmap, idx, 0);
+ STRLEN len;
+ char *ch = SvPV( *tmp, len );
+ DEBUG_OPTIMISE_r({
+ SV *sv=sv_newmortal();
+ PerlIO_printf( Perl_debug_log,
+ "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
+ (int)depth * 2 + 2, "",
+ (UV)state, (UV)idx,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ )
+ );
+ });
+ if ( state==1 ) {
+ OP( convert ) = nodetype;
+ str=STRING(convert);
+ STR_LEN(convert)=0;
+ }
+ STR_LEN(convert) += len;
+ while (len--)
+ *str++ = *ch++;
+ } else {
+#ifdef DEBUGGING
+ if (state>1)
+ DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
+#endif
+ break;
+ }
+ }
+ trie->prefixlen = (state-1);
+ if (str) {
+ regnode *n = convert+NODE_SZ_STR(convert);
+ NEXT_OFF(convert) = NODE_SZ_STR(convert);
+ trie->startstate = state;
+ trie->minlen -= (state - 1);
+ trie->maxlen -= (state - 1);
+#ifdef DEBUGGING
+ /* At least the UNICOS C compiler choked on this
+ * being argument to DEBUG_r(), so let's just have
+ * it right here. */
+ if (
+#ifdef PERL_EXT_RE_BUILD
+ 1
+#else
+ DEBUG_r_TEST
+#endif
+ ) {
+ regnode *fix = convert;
+ U32 word = trie->wordcount;
+ mjd_nodelen++;
+ Set_Node_Offset_Length(convert, mjd_offset, state - 1);
+ while( ++fix < n ) {
+ Set_Node_Offset_Length(fix, 0, 0);
+ }
+ while (word--) {
+ SV ** const tmp = av_fetch( trie_words, word, 0 );
+ if (tmp) {
+ if ( STR_LEN(convert) <= SvCUR(*tmp) )
+ sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
+ else
+ sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
+ }
+ }
+ }
+#endif
+ if (trie->maxlen) {
+ convert = n;
+ } else {
+ NEXT_OFF(convert) = (U16)(tail - convert);
+ DEBUG_r(optimize= n);
+ }
+ }
+ }
+ if (!jumper)
+ jumper = last;
+ if ( trie->maxlen ) {
+ NEXT_OFF( convert ) = (U16)(tail - convert);
+ ARG_SET( convert, data_slot );
+ /* Store the offset to the first unabsorbed branch in
+ jump[0], which is otherwise unused by the jump logic.
+ We use this when dumping a trie and during optimisation. */
+ if (trie->jump)
+ trie->jump[0] = (U16)(nextbranch - convert);
+
+ /* If the start state is not accepting (meaning there is no empty string/NOTHING)
+ * and there is a bitmap
+ * and the first "jump target" node we found leaves enough room
+ * then convert the TRIE node into a TRIEC node, with the bitmap
+ * embedded inline in the opcode - this is hypothetically faster.
+ */
+ if ( !trie->states[trie->startstate].wordnum
+ && trie->bitmap
+ && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
+ {
+ OP( convert ) = TRIEC;
+ Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
+ PerlMemShared_free(trie->bitmap);
+ trie->bitmap= NULL;
+ } else
+ OP( convert ) = TRIE;
+
+ /* store the type in the flags */
+ convert->flags = nodetype;
+ DEBUG_r({
+ optimize = convert
+ + NODE_STEP_REGNODE
+ + regarglen[ OP( convert ) ];
+ });
+ /* XXX We really should free up the resource in trie now,
+ as we won't use them - (which resources?) dmq */
+ }
+ /* needed for dumping*/
+ DEBUG_r(if (optimize) {
+ regnode *opt = convert;
+
+ while ( ++opt < optimize) {
+ Set_Node_Offset_Length(opt,0,0);
+ }
+ /*
+ Try to clean up some of the debris left after the
+ optimisation.
+ */
+ while( optimize < jumper ) {
+ mjd_nodelen += Node_Length((optimize));
+ OP( optimize ) = OPTIMIZED;
+ Set_Node_Offset_Length(optimize,0,0);
+ optimize++;
+ }
+ Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
+ });
+ } /* end node insert */
+
+ /* Finish populating the prev field of the wordinfo array. Walk back
+ * from each accept state until we find another accept state, and if
+ * so, point the first word's .prev field at the second word. If the
+ * second already has a .prev field set, stop now. This will be the
+ * case either if we've already processed that word's accept state,
+ * or that state had multiple words, and the overspill words were
+ * already linked up earlier.
+ */
+ {
+ U16 word;
+ U32 state;
+ U16 prev;
+
+ for (word=1; word <= trie->wordcount; word++) {
+ prev = 0;
+ if (trie->wordinfo[word].prev)
+ continue;
+ state = trie->wordinfo[word].accept;
+ while (state) {
+ state = prev_states[state];
+ if (!state)
+ break;
+ prev = trie->states[state].wordnum;
+ if (prev)
+ break;
+ }
+ trie->wordinfo[word].prev = prev;
+ }
+ Safefree(prev_states);
+ }
+
+
+ /* and now dump out the compressed format */
+ DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
+
+ RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
+#ifdef DEBUGGING
+ RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
+ RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
+#else
+ SvREFCNT_dec_NN(revcharmap);
+#endif
+ return trie->jump
+ ? MADE_JUMP_TRIE
+ : trie->startstate>1
+ ? MADE_EXACT_TRIE
+ : MADE_TRIE;
+}
+
+STATIC regnode *
+S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
+{
+/* The Trie is constructed and compressed now so we can build a fail array if
+ * it's needed
+
+ This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
+ 3.32 in the
+ "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
+ Ullman 1985/88
+ ISBN 0-201-10088-6
+
+ We find the fail state for each state in the trie, this state is the longest
+ proper suffix of the current state's 'word' that is also a proper prefix of
+ another word in our trie. State 1 represents the word '' and is thus the
+ default fail state. This allows the DFA not to have to restart after its
+ tried and failed a word at a given point, it simply continues as though it
+ had been matching the other word in the first place.
+ Consider
+ 'abcdgu'=~/abcdefg|cdgu/
+ When we get to 'd' we are still matching the first word, we would encounter
+ 'g' which would fail, which would bring us to the state representing 'd' in
+ the second word where we would try 'g' and succeed, proceeding to match
+ 'cdgu'.
+ */
+ /* add a fail transition */
+ const U32 trie_offset = ARG(source);
+ reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
+ U32 *q;
+ const U32 ucharcount = trie->uniquecharcount;
+ const U32 numstates = trie->statecount;
+ const U32 ubound = trie->lasttrans + ucharcount;
+ U32 q_read = 0;
+ U32 q_write = 0;
+ U32 charid;
+ U32 base = trie->states[ 1 ].trans.base;
+ U32 *fail;
+ reg_ac_data *aho;
+ const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
+ regnode *stclass;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
+ PERL_UNUSED_CONTEXT;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ if ( OP(source) == TRIE ) {
+ struct regnode_1 *op = (struct regnode_1 *)
+ PerlMemShared_calloc(1, sizeof(struct regnode_1));
+ StructCopy(source,op,struct regnode_1);
+ stclass = (regnode *)op;
+ } else {
+ struct regnode_charclass *op = (struct regnode_charclass *)
+ PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
+ StructCopy(source,op,struct regnode_charclass);
+ stclass = (regnode *)op;
+ }
+ OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */
+
+ ARG_SET( stclass, data_slot );
+ aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
+ RExC_rxi->data->data[ data_slot ] = (void*)aho;
+ aho->trie=trie_offset;
+ aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
+ Copy( trie->states, aho->states, numstates, reg_trie_state );
+ Newxz( q, numstates, U32);
+ aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
+ aho->refcount = 1;
+ fail = aho->fail;
+ /* initialize fail[0..1] to be 1 so that we always have
+ a valid final fail state */
+ fail[ 0 ] = fail[ 1 ] = 1;
+
+ for ( charid = 0; charid < ucharcount ; charid++ ) {
+ const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
+ if ( newstate ) {
+ q[ q_write ] = newstate;
+ /* set to point at the root */
+ fail[ q[ q_write++ ] ]=1;
+ }
+ }
+ while ( q_read < q_write) {
+ const U32 cur = q[ q_read++ % numstates ];
+ base = trie->states[ cur ].trans.base;
+
+ for ( charid = 0 ; charid < ucharcount ; charid++ ) {
+ const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
+ if (ch_state) {
+ U32 fail_state = cur;
+ U32 fail_base;
+ do {
+ fail_state = fail[ fail_state ];
+ fail_base = aho->states[ fail_state ].trans.base;
+ } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
+
+ fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
+ fail[ ch_state ] = fail_state;
+ if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
+ {
+ aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
+ }
+ q[ q_write++ % numstates] = ch_state;
+ }
+ }
+ }
+ /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
+ when we fail in state 1, this allows us to use the
+ charclass scan to find a valid start char. This is based on the principle
+ that theres a good chance the string being searched contains lots of stuff
+ that cant be a start char.
+ */
+ fail[ 0 ] = fail[ 1 ] = 0;
+ DEBUG_TRIE_COMPILE_r({
+ PerlIO_printf(Perl_debug_log,
+ "%*sStclass Failtable (%"UVuf" states): 0",
+ (int)(depth * 2), "", (UV)numstates
+ );
+ for( q_read=1; q_read<numstates; q_read++ ) {
+ PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
+ }
+ PerlIO_printf(Perl_debug_log, "\n");
+ });
+ Safefree(q);
+ /*RExC_seen |= REG_TRIEDFA_SEEN;*/
+ return stclass;
+}
+
+
+#define DEBUG_PEEP(str,scan,depth) \
+ DEBUG_OPTIMISE_r({if (scan){ \
+ regnode *Next = regnext(scan); \
+ regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state); \
+ PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)", \
+ (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),\
+ Next ? (REG_NODE_NUM(Next)) : 0 ); \
+ DEBUG_SHOW_STUDY_FLAGS(flags," [ ","]");\
+ PerlIO_printf(Perl_debug_log, "\n"); \
+ }});
+
+/* The below joins as many adjacent EXACTish nodes as possible into a single
+ * one. The regop may be changed if the node(s) contain certain sequences that
+ * require special handling. The joining is only done if:
+ * 1) there is room in the current conglomerated node to entirely contain the
+ * next one.
+ * 2) they are the exact same node type
+ *
+ * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
+ * these get optimized out
+ *
+ * If a node is to match under /i (folded), the number of characters it matches
+ * can be different than its character length if it contains a multi-character
+ * fold. *min_subtract is set to the total delta number of characters of the
+ * input nodes.
+ *
+ * And *unfolded_multi_char is set to indicate whether or not the node contains
+ * an unfolded multi-char fold. This happens when whether the fold is valid or
+ * not won't be known until runtime; namely for EXACTF nodes that contain LATIN
+ * SMALL LETTER SHARP S, as only if the target string being matched against
+ * turns out to be UTF-8 is that fold valid; and also for EXACTFL nodes whose
+ * folding rules depend on the locale in force at runtime. (Multi-char folds
+ * whose components are all above the Latin1 range are not run-time locale
+ * dependent, and have already been folded by the time this function is
+ * called.)
+ *
+ * This is as good a place as any to discuss the design of handling these
+ * multi-character fold sequences. It's been wrong in Perl for a very long
+ * time. There are three code points in Unicode whose multi-character folds
+ * were long ago discovered to mess things up. The previous designs for
+ * dealing with these involved assigning a special node for them. This
+ * approach doesn't always work, as evidenced by this example:
+ * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
+ * Both sides fold to "sss", but if the pattern is parsed to create a node that
+ * would match just the \xDF, it won't be able to handle the case where a
+ * successful match would have to cross the node's boundary. The new approach
+ * that hopefully generally solves the problem generates an EXACTFU_SS node
+ * that is "sss" in this case.
+ *
+ * It turns out that there are problems with all multi-character folds, and not
+ * just these three. Now the code is general, for all such cases. The
+ * approach taken is:
+ * 1) This routine examines each EXACTFish node that could contain multi-
+ * character folded sequences. Since a single character can fold into
+ * such a sequence, the minimum match length for this node is less than
+ * the number of characters in the node. This routine returns in
+ * *min_subtract how many characters to subtract from the the actual
+ * length of the string to get a real minimum match length; it is 0 if
+ * there are no multi-char foldeds. This delta is used by the caller to
+ * adjust the min length of the match, and the delta between min and max,
+ * so that the optimizer doesn't reject these possibilities based on size
+ * constraints.
+ * 2) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
+ * is used for an EXACTFU node that contains at least one "ss" sequence in
+ * it. For non-UTF-8 patterns and strings, this is the only case where
+ * there is a possible fold length change. That means that a regular
+ * EXACTFU node without UTF-8 involvement doesn't have to concern itself
+ * with length changes, and so can be processed faster. regexec.c takes
+ * advantage of this. Generally, an EXACTFish node that is in UTF-8 is
+ * pre-folded by regcomp.c (except EXACTFL, some of whose folds aren't
+ * known until runtime). This saves effort in regex matching. However,
+ * the pre-folding isn't done for non-UTF8 patterns because the fold of
+ * the MICRO SIGN requires UTF-8, and we don't want to slow things down by
+ * forcing the pattern into UTF8 unless necessary. Also what EXACTF (and,
+ * again, EXACTFL) nodes fold to isn't known until runtime. The fold
+ * possibilities for the non-UTF8 patterns are quite simple, except for
+ * the sharp s. All the ones that don't involve a UTF-8 target string are
+ * members of a fold-pair, and arrays are set up for all of them so that
+ * the other member of the pair can be found quickly. Code elsewhere in
+ * this file makes sure that in EXACTFU nodes, the sharp s gets folded to
+ * 'ss', even if the pattern isn't UTF-8. This avoids the issues
+ * described in the next item.
+ * 3) A problem remains for unfolded multi-char folds. (These occur when the
+ * validity of the fold won't be known until runtime, and so must remain
+ * unfolded for now. This happens for the sharp s in EXACTF and EXACTFA
+ * nodes when the pattern isn't in UTF-8. (Note, BTW, that there cannot
+ * be an EXACTF node with a UTF-8 pattern.) They also occur for various
+ * folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
+ * The reason this is a problem is that the optimizer part of regexec.c
+ * (probably unwittingly, in Perl_regexec_flags()) makes an assumption
+ * that a character in the pattern corresponds to at most a single
+ * character in the target string. (And I do mean character, and not byte
+ * here, unlike other parts of the documentation that have never been
+ * updated to account for multibyte Unicode.) sharp s in EXACTF and
+ * EXACTFL nodes can match the two character string 'ss'; in EXACTFA nodes
+ * it can match "\x{17F}\x{17F}". These, along with other ones in EXACTFL
+ * nodes, violate the assumption, and they are the only instances where it
+ * is violated. I'm reluctant to try to change the assumption, as the
+ * code involved is impenetrable to me (khw), so instead the code here
+ * punts. This routine examines EXACTFL nodes, and (when the pattern
+ * isn't UTF-8) EXACTF and EXACTFA for such unfolded folds, and returns a
+ * boolean indicating whether or not the node contains such a fold. When
+ * it is true, the caller sets a flag that later causes the optimizer in
+ * this file to not set values for the floating and fixed string lengths,
+ * and thus avoids the optimizer code in regexec.c that makes the invalid
+ * assumption. Thus, there is no optimization based on string lengths for
+ * EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
+ * EXACTF and EXACTFA nodes that contain the sharp s. (The reason the
+ * assumption is wrong only in these cases is that all other non-UTF-8
+ * folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
+ * their expanded versions. (Again, we can't prefold sharp s to 'ss' in
+ * EXACTF nodes because we don't know at compile time if it actually
+ * matches 'ss' or not. For EXACTF nodes it will match iff the target
+ * string is in UTF-8. This is in contrast to EXACTFU nodes, where it
+ * always matches; and EXACTFA where it never does. In an EXACTFA node in
+ * a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
+ * problem; but in a non-UTF8 pattern, folding it to that above-Latin1
+ * string would require the pattern to be forced into UTF-8, the overhead
+ * of which we want to avoid. Similarly the unfolded multi-char folds in
+ * EXACTFL nodes will match iff the locale at the time of match is a UTF-8
+ * locale.)
+ *
+ * Similarly, the code that generates tries doesn't currently handle
+ * not-already-folded multi-char folds, and it looks like a pain to change
+ * that. Therefore, trie generation of EXACTFA nodes with the sharp s
+ * doesn't work. Instead, such an EXACTFA is turned into a new regnode,
+ * EXACTFA_NO_TRIE, which the trie code knows not to handle. Most people
+ * using /iaa matching will be doing so almost entirely with ASCII
+ * strings, so this should rarely be encountered in practice */
+
+#define JOIN_EXACT(scan,min_subtract,unfolded_multi_char, flags) \
+ if (PL_regkind[OP(scan)] == EXACT) \
+ join_exact(pRExC_state,(scan),(min_subtract),unfolded_multi_char, (flags),NULL,depth+1)
+
+STATIC U32
+S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan,
+ UV *min_subtract, bool *unfolded_multi_char,
+ U32 flags,regnode *val, U32 depth)
+{
+ /* Merge several consecutive EXACTish nodes into one. */
+ regnode *n = regnext(scan);
+ U32 stringok = 1;
+ regnode *next = scan + NODE_SZ_STR(scan);
+ U32 merged = 0;
+ U32 stopnow = 0;
+#ifdef DEBUGGING
+ regnode *stop = scan;
+ GET_RE_DEBUG_FLAGS_DECL;
+#else
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ PERL_ARGS_ASSERT_JOIN_EXACT;
+#ifndef EXPERIMENTAL_INPLACESCAN
+ PERL_UNUSED_ARG(flags);
+ PERL_UNUSED_ARG(val);
+#endif
+ DEBUG_PEEP("join",scan,depth);
+
+ /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
+ * EXACT ones that are mergeable to the current one. */
+ while (n
+ && (PL_regkind[OP(n)] == NOTHING
+ || (stringok && OP(n) == OP(scan)))
+ && NEXT_OFF(n)
+ && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
+ {
+
+ if (OP(n) == TAIL || n > next)
+ stringok = 0;
+ if (PL_regkind[OP(n)] == NOTHING) {
+ DEBUG_PEEP("skip:",n,depth);
+ NEXT_OFF(scan) += NEXT_OFF(n);
+ next = n + NODE_STEP_REGNODE;
+#ifdef DEBUGGING
+ if (stringok)
+ stop = n;
+#endif
+ n = regnext(n);
+ }
+ else if (stringok) {
+ const unsigned int oldl = STR_LEN(scan);
+ regnode * const nnext = regnext(n);
+
+ /* XXX I (khw) kind of doubt that this works on platforms (should
+ * Perl ever run on one) where U8_MAX is above 255 because of lots
+ * of other assumptions */
+ /* Don't join if the sum can't fit into a single node */
+ if (oldl + STR_LEN(n) > U8_MAX)
+ break;
+
+ DEBUG_PEEP("merg",n,depth);
+ merged++;
+
+ NEXT_OFF(scan) += NEXT_OFF(n);
+ STR_LEN(scan) += STR_LEN(n);
+ next = n + NODE_SZ_STR(n);
+ /* Now we can overwrite *n : */
+ Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
+#ifdef DEBUGGING
+ stop = next - 1;
+#endif
+ n = nnext;
+ if (stopnow) break;
+ }
+
+#ifdef EXPERIMENTAL_INPLACESCAN
+ if (flags && !NEXT_OFF(n)) {
+ DEBUG_PEEP("atch", val, depth);
+ if (reg_off_by_arg[OP(n)]) {
+ ARG_SET(n, val - n);
+ }
+ else {
+ NEXT_OFF(n) = val - n;
+ }
+ stopnow = 1;
+ }
+#endif
+ }
+
+ *min_subtract = 0;
+ *unfolded_multi_char = FALSE;
+
+ /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
+ * can now analyze for sequences of problematic code points. (Prior to
+ * this final joining, sequences could have been split over boundaries, and
+ * hence missed). The sequences only happen in folding, hence for any
+ * non-EXACT EXACTish node */
+ if (OP(scan) != EXACT && OP(scan) != EXACTL) {
+ U8* s0 = (U8*) STRING(scan);
+ U8* s = s0;
+ U8* s_end = s0 + STR_LEN(scan);
+
+ int total_count_delta = 0; /* Total delta number of characters that
+ multi-char folds expand to */
+
+ /* One pass is made over the node's string looking for all the
+ * possibilities. To avoid some tests in the loop, there are two main
+ * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
+ * non-UTF-8 */
+ if (UTF) {
+ U8* folded = NULL;
+
+ if (OP(scan) == EXACTFL) {
+ U8 *d;
+
+ /* An EXACTFL node would already have been changed to another
+ * node type unless there is at least one character in it that
+ * is problematic; likely a character whose fold definition
+ * won't be known until runtime, and so has yet to be folded.
+ * For all but the UTF-8 locale, folds are 1-1 in length, but
+ * to handle the UTF-8 case, we need to create a temporary
+ * folded copy using UTF-8 locale rules in order to analyze it.
+ * This is because our macros that look to see if a sequence is
+ * a multi-char fold assume everything is folded (otherwise the
+ * tests in those macros would be too complicated and slow).
+ * Note that here, the non-problematic folds will have already
+ * been done, so we can just copy such characters. We actually
+ * don't completely fold the EXACTFL string. We skip the
+ * unfolded multi-char folds, as that would just create work
+ * below to figure out the size they already are */
+
+ Newx(folded, UTF8_MAX_FOLD_CHAR_EXPAND * STR_LEN(scan) + 1, U8);
+ d = folded;
+ while (s < s_end) {
+ STRLEN s_len = UTF8SKIP(s);
+ if (! is_PROBLEMATIC_LOCALE_FOLD_utf8(s)) {
+ Copy(s, d, s_len, U8);
+ d += s_len;
+ }
+ else if (is_FOLDS_TO_MULTI_utf8(s)) {
+ *unfolded_multi_char = TRUE;
+ Copy(s, d, s_len, U8);
+ d += s_len;
+ }
+ else if (isASCII(*s)) {
+ *(d++) = toFOLD(*s);
+ }
+ else {
+ STRLEN len;
+ _to_utf8_fold_flags(s, d, &len, FOLD_FLAGS_FULL);
+ d += len;
+ }
+ s += s_len;
+ }
+
+ /* Point the remainder of the routine to look at our temporary
+ * folded copy */
+ s = folded;
+ s_end = d;
+ } /* End of creating folded copy of EXACTFL string */
+
+ /* Examine the string for a multi-character fold sequence. UTF-8
+ * patterns have all characters pre-folded by the time this code is
+ * executed */
+ while (s < s_end - 1) /* Can stop 1 before the end, as minimum
+ length sequence we are looking for is 2 */
+ {
+ int count = 0; /* How many characters in a multi-char fold */
+ int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
+ if (! len) { /* Not a multi-char fold: get next char */
+ s += UTF8SKIP(s);
+ continue;
+ }
+
+ /* Nodes with 'ss' require special handling, except for
+ * EXACTFA-ish for which there is no multi-char fold to this */
+ if (len == 2 && *s == 's' && *(s+1) == 's'
+ && OP(scan) != EXACTFA
+ && OP(scan) != EXACTFA_NO_TRIE)
+ {
+ count = 2;
+ if (OP(scan) != EXACTFL) {
+ OP(scan) = EXACTFU_SS;
+ }
+ s += 2;
+ }
+ else { /* Here is a generic multi-char fold. */
+ U8* multi_end = s + len;
+
+ /* Count how many characters are in it. In the case of
+ * /aa, no folds which contain ASCII code points are
+ * allowed, so check for those, and skip if found. */
+ if (OP(scan) != EXACTFA && OP(scan) != EXACTFA_NO_TRIE) {
+ count = utf8_length(s, multi_end);
+ s = multi_end;
+ }
+ else {
+ while (s < multi_end) {
+ if (isASCII(*s)) {
+ s++;
+ goto next_iteration;
+ }
+ else {
+ s += UTF8SKIP(s);
+ }
+ count++;
+ }
+ }
+ }
+
+ /* The delta is how long the sequence is minus 1 (1 is how long
+ * the character that folds to the sequence is) */
+ total_count_delta += count - 1;
+ next_iteration: ;
+ }
+
+ /* We created a temporary folded copy of the string in EXACTFL
+ * nodes. Therefore we need to be sure it doesn't go below zero,
+ * as the real string could be shorter */
+ if (OP(scan) == EXACTFL) {
+ int total_chars = utf8_length((U8*) STRING(scan),
+ (U8*) STRING(scan) + STR_LEN(scan));
+ if (total_count_delta > total_chars) {
+ total_count_delta = total_chars;
+ }
+ }
+
+ *min_subtract += total_count_delta;
+ Safefree(folded);
+ }
+ else if (OP(scan) == EXACTFA) {
+
+ /* Non-UTF-8 pattern, EXACTFA node. There can't be a multi-char
+ * fold to the ASCII range (and there are no existing ones in the
+ * upper latin1 range). But, as outlined in the comments preceding
+ * this function, we need to flag any occurrences of the sharp s.
+ * This character forbids trie formation (because of added
+ * complexity) */
+ while (s < s_end) {
+ if (*s == LATIN_SMALL_LETTER_SHARP_S) {
+ OP(scan) = EXACTFA_NO_TRIE;
+ *unfolded_multi_char = TRUE;
+ break;
+ }
+ s++;
+ continue;
+ }
+ }
+ else {
+
+ /* Non-UTF-8 pattern, not EXACTFA node. Look for the multi-char
+ * folds that are all Latin1. As explained in the comments
+ * preceding this function, we look also for the sharp s in EXACTF
+ * and EXACTFL nodes; it can be in the final position. Otherwise
+ * we can stop looking 1 byte earlier because have to find at least
+ * two characters for a multi-fold */
+ const U8* upper = (OP(scan) == EXACTF || OP(scan) == EXACTFL)
+ ? s_end
+ : s_end -1;
+
+ while (s < upper) {
+ int len = is_MULTI_CHAR_FOLD_latin1_safe(s, s_end);
+ if (! len) { /* Not a multi-char fold. */
+ if (*s == LATIN_SMALL_LETTER_SHARP_S
+ && (OP(scan) == EXACTF || OP(scan) == EXACTFL))
+ {
+ *unfolded_multi_char = TRUE;
+ }
+ s++;
+ continue;
+ }
+
+ if (len == 2
+ && isALPHA_FOLD_EQ(*s, 's')
+ && isALPHA_FOLD_EQ(*(s+1), 's'))
+ {
+
+ /* EXACTF nodes need to know that the minimum length
+ * changed so that a sharp s in the string can match this
+ * ss in the pattern, but they remain EXACTF nodes, as they
+ * won't match this unless the target string is is UTF-8,
+ * which we don't know until runtime. EXACTFL nodes can't
+ * transform into EXACTFU nodes */
+ if (OP(scan) != EXACTF && OP(scan) != EXACTFL) {
+ OP(scan) = EXACTFU_SS;
+ }
+ }
+
+ *min_subtract += len - 1;
+ s += len;
+ }
+ }
+ }
+
+#ifdef DEBUGGING
+ /* Allow dumping but overwriting the collection of skipped
+ * ops and/or strings with fake optimized ops */
+ n = scan + NODE_SZ_STR(scan);
+ while (n <= stop) {
+ OP(n) = OPTIMIZED;
+ FLAGS(n) = 0;
+ NEXT_OFF(n) = 0;
+ n++;
+ }
+#endif
+ DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
+ return stopnow;
+}
+
+/* REx optimizer. Converts nodes into quicker variants "in place".
+ Finds fixed substrings. */
+
+/* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
+ to the position after last scanned or to NULL. */
+
+#define INIT_AND_WITHP \
+ assert(!and_withp); \
+ Newx(and_withp,1, regnode_ssc); \
+ SAVEFREEPV(and_withp)
+
+
+static void
+S_unwind_scan_frames(pTHX_ const void *p)
+{
+ scan_frame *f= (scan_frame *)p;
+ do {
+ scan_frame *n= f->next_frame;
+ Safefree(f);
+ f= n;
+ } while (f);
+}
+
+
+STATIC SSize_t
+S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
+ SSize_t *minlenp, SSize_t *deltap,
+ regnode *last,
+ scan_data_t *data,
+ I32 stopparen,
+ U32 recursed_depth,
+ regnode_ssc *and_withp,
+ U32 flags, U32 depth)
+ /* scanp: Start here (read-write). */
+ /* deltap: Write maxlen-minlen here. */
+ /* last: Stop before this one. */
+ /* data: string data about the pattern */
+ /* stopparen: treat close N as END */
+ /* recursed: which subroutines have we recursed into */
+ /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
+{
+ /* There must be at least this number of characters to match */
+ SSize_t min = 0;
+ I32 pars = 0, code;
+ regnode *scan = *scanp, *next;
+ SSize_t delta = 0;
+ int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
+ int is_inf_internal = 0; /* The studied chunk is infinite */
+ I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
+ scan_data_t data_fake;
+ SV *re_trie_maxbuff = NULL;
+ regnode *first_non_open = scan;
+ SSize_t stopmin = SSize_t_MAX;
+ scan_frame *frame = NULL;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_STUDY_CHUNK;
+
+
+ if ( depth == 0 ) {
+ while (first_non_open && OP(first_non_open) == OPEN)
+ first_non_open=regnext(first_non_open);
+ }
+
+
+ fake_study_recurse:
+ DEBUG_r(
+ RExC_study_chunk_recursed_count++;
+ );
+ DEBUG_OPTIMISE_MORE_r(
+ {
+ PerlIO_printf(Perl_debug_log,
+ "%*sstudy_chunk stopparen=%ld recursed_count=%lu depth=%lu recursed_depth=%lu scan=%p last=%p",
+ (int)(depth*2), "", (long)stopparen,
+ (unsigned long)RExC_study_chunk_recursed_count,
+ (unsigned long)depth, (unsigned long)recursed_depth,
+ scan,
+ last);
+ if (recursed_depth) {
+ U32 i;
+ U32 j;
+ for ( j = 0 ; j < recursed_depth ; j++ ) {
+ for ( i = 0 ; i < (U32)RExC_npar ; i++ ) {
+ if (
+ PAREN_TEST(RExC_study_chunk_recursed +
+ ( j * RExC_study_chunk_recursed_bytes), i )
+ && (
+ !j ||
+ !PAREN_TEST(RExC_study_chunk_recursed +
+ (( j - 1 ) * RExC_study_chunk_recursed_bytes), i)
+ )
+ ) {
+ PerlIO_printf(Perl_debug_log," %d",(int)i);
+ break;
+ }
+ }
+ if ( j + 1 < recursed_depth ) {
+ PerlIO_printf(Perl_debug_log, ",");
+ }
+ }
+ }
+ PerlIO_printf(Perl_debug_log,"\n");
+ }
+ );
+ while ( scan && OP(scan) != END && scan < last ){
+ UV min_subtract = 0; /* How mmany chars to subtract from the minimum
+ node length to get a real minimum (because
+ the folded version may be shorter) */
+ bool unfolded_multi_char = FALSE;
+ /* Peephole optimizer: */
+ DEBUG_STUDYDATA("Peep:", data, depth);
+ DEBUG_PEEP("Peep", scan, depth);
+
+
+ /* The reason we do this here we need to deal with things like /(?:f)(?:o)(?:o)/
+ * which cant be dealt with by the normal EXACT parsing code, as each (?:..) is handled
+ * by a different invocation of reg() -- Yves
+ */
+ JOIN_EXACT(scan,&min_subtract, &unfolded_multi_char, 0);
+
+ /* Follow the next-chain of the current node and optimize
+ away all the NOTHINGs from it. */
+ if (OP(scan) != CURLYX) {
+ const int max = (reg_off_by_arg[OP(scan)]
+ ? I32_MAX
+ /* I32 may be smaller than U16 on CRAYs! */
+ : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
+ int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
+ int noff;
+ regnode *n = scan;
+
+ /* Skip NOTHING and LONGJMP. */
+ while ((n = regnext(n))
+ && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
+ || ((OP(n) == LONGJMP) && (noff = ARG(n))))
+ && off + noff < max)
+ off += noff;
+ if (reg_off_by_arg[OP(scan)])
+ ARG(scan) = off;
+ else
+ NEXT_OFF(scan) = off;
+ }
+
+ /* The principal pseudo-switch. Cannot be a switch, since we
+ look into several different things. */
+ if ( OP(scan) == DEFINEP ) {
+ SSize_t minlen = 0;
+ SSize_t deltanext = 0;
+ SSize_t fake_last_close = 0;
+ I32 f = SCF_IN_DEFINE;
+
+ StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+ scan = regnext(scan);
+ assert( OP(scan) == IFTHEN );
+ DEBUG_PEEP("expect IFTHEN", scan, depth);
+
+ data_fake.last_closep= &fake_last_close;
+ minlen = *minlenp;
+ next = regnext(scan);
+ scan = NEXTOPER(NEXTOPER(scan));
+ DEBUG_PEEP("scan", scan, depth);
+ DEBUG_PEEP("next", next, depth);
+
+ /* we suppose the run is continuous, last=next...
+ * NOTE we dont use the return here! */
+ (void)study_chunk(pRExC_state, &scan, &minlen,
+ &deltanext, next, &data_fake, stopparen,
+ recursed_depth, NULL, f, depth+1);
+
+ scan = next;
+ } else
+ if (
+ OP(scan) == BRANCH ||
+ OP(scan) == BRANCHJ ||
+ OP(scan) == IFTHEN
+ ) {
+ next = regnext(scan);
+ code = OP(scan);
+
+ /* The op(next)==code check below is to see if we
+ * have "BRANCH-BRANCH", "BRANCHJ-BRANCHJ", "IFTHEN-IFTHEN"
+ * IFTHEN is special as it might not appear in pairs.
+ * Not sure whether BRANCH-BRANCHJ is possible, regardless
+ * we dont handle it cleanly. */
+ if (OP(next) == code || code == IFTHEN) {
+ /* NOTE - There is similar code to this block below for
+ * handling TRIE nodes on a re-study. If you change stuff here
+ * check there too. */
+ SSize_t max1 = 0, min1 = SSize_t_MAX, num = 0;
+ regnode_ssc accum;
+ regnode * const startbranch=scan;
+
+ if (flags & SCF_DO_SUBSTR) {
+ /* Cannot merge strings after this. */
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ }
+
+ if (flags & SCF_DO_STCLASS)
+ ssc_init_zero(pRExC_state, &accum);
+
+ while (OP(scan) == code) {
+ SSize_t deltanext, minnext, fake;
+ I32 f = 0;
+ regnode_ssc this_class;
+
+ DEBUG_PEEP("Branch", scan, depth);
+
+ num++;
+ StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+ if (data) {
+ data_fake.whilem_c = data->whilem_c;
+ data_fake.last_closep = data->last_closep;
+ }
+ else
+ data_fake.last_closep = &fake;
+
+ data_fake.pos_delta = delta;
+ next = regnext(scan);
+
+ scan = NEXTOPER(scan); /* everything */
+ if (code != BRANCH) /* everything but BRANCH */
+ scan = NEXTOPER(scan);
+
+ if (flags & SCF_DO_STCLASS) {
+ ssc_init(pRExC_state, &this_class);
+ data_fake.start_class = &this_class;
+ f = SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+
+ /* we suppose the run is continuous, last=next...*/
+ minnext = study_chunk(pRExC_state, &scan, minlenp,
+ &deltanext, next, &data_fake, stopparen,
+ recursed_depth, NULL, f,depth+1);
+
+ if (min1 > minnext)
+ min1 = minnext;
+ if (deltanext == SSize_t_MAX) {
+ is_inf = is_inf_internal = 1;
+ max1 = SSize_t_MAX;
+ } else if (max1 < minnext + deltanext)
+ max1 = minnext + deltanext;
+ scan = next;
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SCF_SEEN_ACCEPT) {
+ if ( stopmin > minnext)
+ stopmin = min + min1;
+ flags &= ~SCF_DO_SUBSTR;
+ if (data)
+ data->flags |= SCF_SEEN_ACCEPT;
+ }
+ if (data) {
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ }
+ if (flags & SCF_DO_STCLASS)
+ ssc_or(pRExC_state, &accum, (regnode_charclass*)&this_class);
+ }
+ if (code == IFTHEN && num < 2) /* Empty ELSE branch */
+ min1 = 0;
+ if (flags & SCF_DO_SUBSTR) {
+ data->pos_min += min1;
+ if (data->pos_delta >= SSize_t_MAX - (max1 - min1))
+ data->pos_delta = SSize_t_MAX;
+ else
+ data->pos_delta += max1 - min1;
+ if (max1 != min1 || is_inf)
+ data->longest = &(data->longest_float);
+ }
+ min += min1;
+ if (delta == SSize_t_MAX
+ || SSize_t_MAX - delta - (max1 - min1) < 0)
+ delta = SSize_t_MAX;
+ else
+ delta += max1 - min1;
+ if (flags & SCF_DO_STCLASS_OR) {
+ ssc_or(pRExC_state, data->start_class, (regnode_charclass*) &accum);
+ if (min1) {
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ if (min1) {
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else {
+ /* Switch to OR mode: cache the old value of
+ * data->start_class */
+ INIT_AND_WITHP;
+ StructCopy(data->start_class, and_withp, regnode_ssc);
+ flags &= ~SCF_DO_STCLASS_AND;
+ StructCopy(&accum, data->start_class, regnode_ssc);
+ flags |= SCF_DO_STCLASS_OR;
+ }
+ }
+
+ if (PERL_ENABLE_TRIE_OPTIMISATION &&
+ OP( startbranch ) == BRANCH )
+ {
+ /* demq.
+
+ Assuming this was/is a branch we are dealing with: 'scan'
+ now points at the item that follows the branch sequence,
+ whatever it is. We now start at the beginning of the
+ sequence and look for subsequences of
+
+ BRANCH->EXACT=>x1
+ BRANCH->EXACT=>x2
+ tail
+
+ which would be constructed from a pattern like
+ /A|LIST|OF|WORDS/
+
+ If we can find such a subsequence we need to turn the first
+ element into a trie and then add the subsequent branch exact
+ strings to the trie.
+
+ We have two cases
+
+ 1. patterns where the whole set of branches can be
+ converted.
+
+ 2. patterns where only a subset can be converted.
+
+ In case 1 we can replace the whole set with a single regop
+ for the trie. In case 2 we need to keep the start and end
+ branches so
+
+ 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
+ becomes BRANCH TRIE; BRANCH X;
+
+ There is an additional case, that being where there is a
+ common prefix, which gets split out into an EXACT like node
+ preceding the TRIE node.
+
+ If x(1..n)==tail then we can do a simple trie, if not we make
+ a "jump" trie, such that when we match the appropriate word
+ we "jump" to the appropriate tail node. Essentially we turn
+ a nested if into a case structure of sorts.
+
+ */
+
+ int made=0;
+ if (!re_trie_maxbuff) {
+ re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
+ if (!SvIOK(re_trie_maxbuff))
+ sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
+ }
+ if ( SvIV(re_trie_maxbuff)>=0 ) {
+ regnode *cur;
+ regnode *first = (regnode *)NULL;
+ regnode *last = (regnode *)NULL;
+ regnode *tail = scan;
+ U8 trietype = 0;
+ U32 count=0;
+
+ /* var tail is used because there may be a TAIL
+ regop in the way. Ie, the exacts will point to the
+ thing following the TAIL, but the last branch will
+ point at the TAIL. So we advance tail. If we
+ have nested (?:) we may have to move through several
+ tails.
+ */
+
+ while ( OP( tail ) == TAIL ) {
+ /* this is the TAIL generated by (?:) */
+ tail = regnext( tail );
+ }
+
+
+ DEBUG_TRIE_COMPILE_r({
+ regprop(RExC_rx, RExC_mysv, tail, NULL, pRExC_state);
+ PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
+ (int)depth * 2 + 2, "",
+ "Looking for TRIE'able sequences. Tail node is: ",
+ SvPV_nolen_const( RExC_mysv )
+ );
+ });
+
+ /*
+
+ Step through the branches
+ cur represents each branch,
+ noper is the first thing to be matched as part
+ of that branch
+ noper_next is the regnext() of that node.
+
+ We normally handle a case like this
+ /FOO[xyz]|BAR[pqr]/ via a "jump trie" but we also
+ support building with NOJUMPTRIE, which restricts
+ the trie logic to structures like /FOO|BAR/.
+
+ If noper is a trieable nodetype then the branch is
+ a possible optimization target. If we are building
+ under NOJUMPTRIE then we require that noper_next is
+ the same as scan (our current position in the regex
+ program).
+
+ Once we have two or more consecutive such branches
+ we can create a trie of the EXACT's contents and
+ stitch it in place into the program.
+
+ If the sequence represents all of the branches in
+ the alternation we replace the entire thing with a
+ single TRIE node.
+
+ Otherwise when it is a subsequence we need to
+ stitch it in place and replace only the relevant
+ branches. This means the first branch has to remain
+ as it is used by the alternation logic, and its
+ next pointer, and needs to be repointed at the item
+ on the branch chain following the last branch we
+ have optimized away.
+
+ This could be either a BRANCH, in which case the
+ subsequence is internal, or it could be the item
+ following the branch sequence in which case the
+ subsequence is at the end (which does not
+ necessarily mean the first node is the start of the
+ alternation).
+
+ TRIE_TYPE(X) is a define which maps the optype to a
+ trietype.
+
+ optype | trietype
+ ----------------+-----------
+ NOTHING | NOTHING
+ EXACT | EXACT
+ EXACTFU | EXACTFU
+ EXACTFU_SS | EXACTFU
+ EXACTFA | EXACTFA
+ EXACTL | EXACTL
+ EXACTFLU8 | EXACTFLU8
+
+
+ */
+#define TRIE_TYPE(X) ( ( NOTHING == (X) ) \
+ ? NOTHING \
+ : ( EXACT == (X) ) \
+ ? EXACT \
+ : ( EXACTFU == (X) || EXACTFU_SS == (X) ) \
+ ? EXACTFU \
+ : ( EXACTFA == (X) ) \
+ ? EXACTFA \
+ : ( EXACTL == (X) ) \
+ ? EXACTL \
+ : ( EXACTFLU8 == (X) ) \
+ ? EXACTFLU8 \
+ : 0 )
+
+ /* dont use tail as the end marker for this traverse */
+ for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
+ regnode * const noper = NEXTOPER( cur );
+ U8 noper_type = OP( noper );
+ U8 noper_trietype = TRIE_TYPE( noper_type );
+#if defined(DEBUGGING) || defined(NOJUMPTRIE)
+ regnode * const noper_next = regnext( noper );
+ U8 noper_next_type = (noper_next && noper_next != tail) ? OP(noper_next) : 0;
+ U8 noper_next_trietype = (noper_next && noper_next != tail) ? TRIE_TYPE( noper_next_type ) :0;
+#endif
+
+ DEBUG_TRIE_COMPILE_r({
+ regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
+ PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
+ (int)depth * 2 + 2,"", SvPV_nolen_const( RExC_mysv ), REG_NODE_NUM(cur) );
+
+ regprop(RExC_rx, RExC_mysv, noper, NULL, pRExC_state);
+ PerlIO_printf( Perl_debug_log, " -> %s",
+ SvPV_nolen_const(RExC_mysv));
+
+ if ( noper_next ) {
+ regprop(RExC_rx, RExC_mysv, noper_next, NULL, pRExC_state);
+ PerlIO_printf( Perl_debug_log,"\t=> %s\t",
+ SvPV_nolen_const(RExC_mysv));
+ }
+ PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d,tt==%s,nt==%s,nnt==%s)\n",
+ REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur),
+ PL_reg_name[trietype], PL_reg_name[noper_trietype], PL_reg_name[noper_next_trietype]
+ );
+ });
+
+ /* Is noper a trieable nodetype that can be merged
+ * with the current trie (if there is one)? */
+ if ( noper_trietype
+ &&
+ (
+ ( noper_trietype == NOTHING)
+ || ( trietype == NOTHING )
+ || ( trietype == noper_trietype )
+ )
+#ifdef NOJUMPTRIE
+ && noper_next == tail
+#endif
+ && count < U16_MAX)
+ {
+ /* Handle mergable triable node Either we are
+ * the first node in a new trieable sequence,
+ * in which case we do some bookkeeping,
+ * otherwise we update the end pointer. */
+ if ( !first ) {
+ first = cur;
+ if ( noper_trietype == NOTHING ) {
+#if !defined(DEBUGGING) && !defined(NOJUMPTRIE)
+ regnode * const noper_next = regnext( noper );
+ U8 noper_next_type = (noper_next && noper_next!=tail) ? OP(noper_next) : 0;
+ U8 noper_next_trietype = noper_next_type ? TRIE_TYPE( noper_next_type ) :0;
+#endif
+
+ if ( noper_next_trietype ) {
+ trietype = noper_next_trietype;
+ } else if (noper_next_type) {
+ /* a NOTHING regop is 1 regop wide.
+ * We need at least two for a trie
+ * so we can't merge this in */
+ first = NULL;
+ }
+ } else {
+ trietype = noper_trietype;
+ }
+ } else {
+ if ( trietype == NOTHING )
+ trietype = noper_trietype;
+ last = cur;
+ }
+ if (first)
+ count++;
+ } /* end handle mergable triable node */
+ else {
+ /* handle unmergable node -
+ * noper may either be a triable node which can
+ * not be tried together with the current trie,
+ * or a non triable node */
+ if ( last ) {
+ /* If last is set and trietype is not
+ * NOTHING then we have found at least two
+ * triable branch sequences in a row of a
+ * similar trietype so we can turn them
+ * into a trie. If/when we allow NOTHING to
+ * start a trie sequence this condition
+ * will be required, and it isn't expensive
+ * so we leave it in for now. */
+ if ( trietype && trietype != NOTHING )
+ make_trie( pRExC_state,
+ startbranch, first, cur, tail,
+ count, trietype, depth+1 );
+ last = NULL; /* note: we clear/update
+ first, trietype etc below,
+ so we dont do it here */
+ }
+ if ( noper_trietype
+#ifdef NOJUMPTRIE
+ && noper_next == tail
+#endif
+ ){
+ /* noper is triable, so we can start a new
+ * trie sequence */
+ count = 1;
+ first = cur;
+ trietype = noper_trietype;
+ } else if (first) {
+ /* if we already saw a first but the
+ * current node is not triable then we have
+ * to reset the first information. */
+ count = 0;
+ first = NULL;
+ trietype = 0;
+ }
+ } /* end handle unmergable node */
+ } /* loop over branches */
+ DEBUG_TRIE_COMPILE_r({
+ regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
+ PerlIO_printf( Perl_debug_log,
+ "%*s- %s (%d) <SCAN FINISHED>\n",
+ (int)depth * 2 + 2,
+ "", SvPV_nolen_const( RExC_mysv ),REG_NODE_NUM(cur));
+
+ });
+ if ( last && trietype ) {
+ if ( trietype != NOTHING ) {
+ /* the last branch of the sequence was part of
+ * a trie, so we have to construct it here
+ * outside of the loop */
+ made= make_trie( pRExC_state, startbranch,
+ first, scan, tail, count,
+ trietype, depth+1 );
+#ifdef TRIE_STUDY_OPT
+ if ( ((made == MADE_EXACT_TRIE &&
+ startbranch == first)
+ || ( first_non_open == first )) &&
+ depth==0 ) {
+ flags |= SCF_TRIE_RESTUDY;
+ if ( startbranch == first
+ && scan == tail )
+ {
+ RExC_seen &=~REG_TOP_LEVEL_BRANCHES_SEEN;
+ }
+ }
+#endif
+ } else {
+ /* at this point we know whatever we have is a
+ * NOTHING sequence/branch AND if 'startbranch'
+ * is 'first' then we can turn the whole thing
+ * into a NOTHING
+ */
+ if ( startbranch == first ) {
+ regnode *opt;
+ /* the entire thing is a NOTHING sequence,
+ * something like this: (?:|) So we can
+ * turn it into a plain NOTHING op. */
+ DEBUG_TRIE_COMPILE_r({
+ regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
+ PerlIO_printf( Perl_debug_log,
+ "%*s- %s (%d) <NOTHING BRANCH SEQUENCE>\n", (int)depth * 2 + 2,
+ "", SvPV_nolen_const( RExC_mysv ),REG_NODE_NUM(cur));
+
+ });
+ OP(startbranch)= NOTHING;
+ NEXT_OFF(startbranch)= tail - startbranch;
+ for ( opt= startbranch + 1; opt < tail ; opt++ )
+ OP(opt)= OPTIMIZED;
+ }
+ }
+ } /* end if ( last) */
+ } /* TRIE_MAXBUF is non zero */
+
+ } /* do trie */
+
+ }
+ else if ( code == BRANCHJ ) { /* single branch is optimized. */
+ scan = NEXTOPER(NEXTOPER(scan));
+ } else /* single branch is optimized. */
+ scan = NEXTOPER(scan);
+ continue;
+ } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
+ I32 paren = 0;
+ regnode *start = NULL;
+ regnode *end = NULL;
+ U32 my_recursed_depth= recursed_depth;
+
+
+ if (OP(scan) != SUSPEND) { /* GOSUB/GOSTART */
+ /* Do setup, note this code has side effects beyond
+ * the rest of this block. Specifically setting
+ * RExC_recurse[] must happen at least once during
+ * study_chunk(). */
+ if (OP(scan) == GOSUB) {
+ paren = ARG(scan);
+ RExC_recurse[ARG2L(scan)] = scan;
+ start = RExC_open_parens[paren-1];
+ end = RExC_close_parens[paren-1];
+ } else {
+ start = RExC_rxi->program + 1;
+ end = RExC_opend;
+ }
+ /* NOTE we MUST always execute the above code, even
+ * if we do nothing with a GOSUB/GOSTART */
+ if (
+ ( flags & SCF_IN_DEFINE )
+ ||
+ (
+ (is_inf_internal || is_inf || (data && data->flags & SF_IS_INF))
+ &&
+ ( (flags & (SCF_DO_STCLASS | SCF_DO_SUBSTR)) == 0 )
+ )
+ ) {
+ /* no need to do anything here if we are in a define. */
+ /* or we are after some kind of infinite construct
+ * so we can skip recursing into this item.
+ * Since it is infinite we will not change the maxlen
+ * or delta, and if we miss something that might raise
+ * the minlen it will merely pessimise a little.
+ *
+ * Iow /(?(DEFINE)(?<foo>foo|food))a+(?&foo)/
+ * might result in a minlen of 1 and not of 4,
+ * but this doesn't make us mismatch, just try a bit
+ * harder than we should.
+ * */
+ scan= regnext(scan);
+ continue;
+ }
+
+ if (
+ !recursed_depth
+ ||
+ !PAREN_TEST(RExC_study_chunk_recursed + ((recursed_depth-1) * RExC_study_chunk_recursed_bytes), paren)
+ ) {
+ /* it is quite possible that there are more efficient ways
+ * to do this. We maintain a bitmap per level of recursion
+ * of which patterns we have entered so we can detect if a
+ * pattern creates a possible infinite loop. When we
+ * recurse down a level we copy the previous levels bitmap
+ * down. When we are at recursion level 0 we zero the top
+ * level bitmap. It would be nice to implement a different
+ * more efficient way of doing this. In particular the top
+ * level bitmap may be unnecessary.
+ */
+ if (!recursed_depth) {
+ Zero(RExC_study_chunk_recursed, RExC_study_chunk_recursed_bytes, U8);
+ } else {
+ Copy(RExC_study_chunk_recursed + ((recursed_depth-1) * RExC_study_chunk_recursed_bytes),
+ RExC_study_chunk_recursed + (recursed_depth * RExC_study_chunk_recursed_bytes),
+ RExC_study_chunk_recursed_bytes, U8);
+ }
+ /* we havent recursed into this paren yet, so recurse into it */
+ DEBUG_STUDYDATA("set:", data,depth);
+ PAREN_SET(RExC_study_chunk_recursed + (recursed_depth * RExC_study_chunk_recursed_bytes), paren);
+ my_recursed_depth= recursed_depth + 1;
+ } else {
+ DEBUG_STUDYDATA("inf:", data,depth);
+ /* some form of infinite recursion, assume infinite length
+ * */
+ if (flags & SCF_DO_SUBSTR) {
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+ ssc_anything(data->start_class);
+ flags &= ~SCF_DO_STCLASS;
+
+ start= NULL; /* reset start so we dont recurse later on. */
+ }
+ } else {
+ paren = stopparen;
+ start = scan + 2;
+ end = regnext(scan);
+ }
+ if (start) {
+ scan_frame *newframe;
+ assert(end);
+ if (!RExC_frame_last) {
+ Newxz(newframe, 1, scan_frame);
+ SAVEDESTRUCTOR_X(S_unwind_scan_frames, newframe);
+ RExC_frame_head= newframe;
+ RExC_frame_count++;
+ } else if (!RExC_frame_last->next_frame) {
+ Newxz(newframe,1,scan_frame);
+ RExC_frame_last->next_frame= newframe;
+ newframe->prev_frame= RExC_frame_last;
+ RExC_frame_count++;
+ } else {
+ newframe= RExC_frame_last->next_frame;
+ }
+ RExC_frame_last= newframe;
+
+ newframe->next_regnode = regnext(scan);
+ newframe->last_regnode = last;
+ newframe->stopparen = stopparen;
+ newframe->prev_recursed_depth = recursed_depth;
+ newframe->this_prev_frame= frame;
+
+ DEBUG_STUDYDATA("frame-new:",data,depth);
+ DEBUG_PEEP("fnew", scan, depth);
+
+ frame = newframe;
+ scan = start;
+ stopparen = paren;
+ last = end;
+ depth = depth + 1;
+ recursed_depth= my_recursed_depth;
+
+ continue;
+ }
+ }
+ else if (OP(scan) == EXACT || OP(scan) == EXACTL) {
+ SSize_t l = STR_LEN(scan);
+ UV uc;
+ if (UTF) {
+ const U8 * const s = (U8*)STRING(scan);
+ uc = utf8_to_uvchr_buf(s, s + l, NULL);
+ l = utf8_length(s, s + l);
+ } else {
+ uc = *((U8*)STRING(scan));
+ }
+ min += l;
+ if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
+ /* The code below prefers earlier match for fixed
+ offset, later match for variable offset. */
+ if (data->last_end == -1) { /* Update the start info. */
+ data->last_start_min = data->pos_min;
+ data->last_start_max = is_inf
+ ? SSize_t_MAX : data->pos_min + data->pos_delta;
+ }
+ sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
+ if (UTF)
+ SvUTF8_on(data->last_found);
+ {
+ SV * const sv = data->last_found;
+ MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
+ mg_find(sv, PERL_MAGIC_utf8) : NULL;
+ if (mg && mg->mg_len >= 0)
+ mg->mg_len += utf8_length((U8*)STRING(scan),
+ (U8*)STRING(scan)+STR_LEN(scan));
+ }
+ data->last_end = data->pos_min + l;
+ data->pos_min += l; /* As in the first entry. */
+ data->flags &= ~SF_BEFORE_EOL;
+ }
+
+ /* ANDing the code point leaves at most it, and not in locale, and
+ * can't match null string */
+ if (flags & SCF_DO_STCLASS_AND) {
+ ssc_cp_and(data->start_class, uc);
+ ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+ ssc_clear_locale(data->start_class);
+ }
+ else if (flags & SCF_DO_STCLASS_OR) {
+ ssc_add_cp(data->start_class, uc);
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+
+ /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
+ ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+ }
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else if (PL_regkind[OP(scan)] == EXACT) {
+ /* But OP != EXACT!, so is EXACTFish */
+ SSize_t l = STR_LEN(scan);
+ const U8 * s = (U8*)STRING(scan);
+
+ /* Search for fixed substrings supports EXACT only. */
+ if (flags & SCF_DO_SUBSTR) {
+ assert(data);
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ }
+ if (UTF) {
+ l = utf8_length(s, s + l);
+ }
+ if (unfolded_multi_char) {
+ RExC_seen |= REG_UNFOLDED_MULTI_SEEN;
+ }
+ min += l - min_subtract;
+ assert (min >= 0);
+ delta += min_subtract;
+ if (flags & SCF_DO_SUBSTR) {
+ data->pos_min += l - min_subtract;
+ if (data->pos_min < 0) {
+ data->pos_min = 0;
+ }
+ data->pos_delta += min_subtract;
+ if (min_subtract) {
+ data->longest = &(data->longest_float);
+ }
+ }
+
+ if (flags & SCF_DO_STCLASS) {
+ SV* EXACTF_invlist = _make_exactf_invlist(pRExC_state, scan);
+
+ assert(EXACTF_invlist);
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (OP(scan) != EXACTFL)
+ ssc_clear_locale(data->start_class);
+ ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+ ANYOF_POSIXL_ZERO(data->start_class);
+ ssc_intersection(data->start_class, EXACTF_invlist, FALSE);
+ }
+ else { /* SCF_DO_STCLASS_OR */
+ ssc_union(data->start_class, EXACTF_invlist, FALSE);
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+
+ /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
+ ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+ }
+ flags &= ~SCF_DO_STCLASS;
+ SvREFCNT_dec(EXACTF_invlist);
+ }
+ }
+ else if (REGNODE_VARIES(OP(scan))) {
+ SSize_t mincount, maxcount, minnext, deltanext, pos_before = 0;
+ I32 fl = 0, f = flags;
+ regnode * const oscan = scan;
+ regnode_ssc this_class;
+ regnode_ssc *oclass = NULL;
+ I32 next_is_eval = 0;
+
+ switch (PL_regkind[OP(scan)]) {
+ case WHILEM: /* End of (?:...)* . */
+ scan = NEXTOPER(scan);
+ goto finish;
+ case PLUS:
+ if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
+ next = NEXTOPER(scan);
+ if (OP(next) == EXACT
+ || OP(next) == EXACTL
+ || (flags & SCF_DO_STCLASS))
+ {
+ mincount = 1;
+ maxcount = REG_INFTY;
+ next = regnext(scan);
+ scan = NEXTOPER(scan);
+ goto do_curly;
+ }
+ }
+ if (flags & SCF_DO_SUBSTR)
+ data->pos_min++;
+ min++;
+ /* FALLTHROUGH */
+ case STAR:
+ if (flags & SCF_DO_STCLASS) {
+ mincount = 0;
+ maxcount = REG_INFTY;
+ next = regnext(scan);
+ scan = NEXTOPER(scan);
+ goto do_curly;
+ }
+ if (flags & SCF_DO_SUBSTR) {
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ /* Cannot extend fixed substrings */
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ scan = regnext(scan);
+ goto optimize_curly_tail;
+ case CURLY:
+ if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
+ && (scan->flags == stopparen))
+ {
+ mincount = 1;
+ maxcount = 1;
+ } else {
+ mincount = ARG1(scan);
+ maxcount = ARG2(scan);
+ }
+ next = regnext(scan);
+ if (OP(scan) == CURLYX) {
+ I32 lp = (data ? *(data->last_closep) : 0);
+ scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
+ }
+ scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
+ next_is_eval = (OP(scan) == EVAL);
+ do_curly:
+ if (flags & SCF_DO_SUBSTR) {
+ if (mincount == 0)
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ /* Cannot extend fixed substrings */
+ pos_before = data->pos_min;
+ }
+ if (data) {
+ fl = data->flags;
+ data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
+ if (is_inf)
+ data->flags |= SF_IS_INF;
+ }
+ if (flags & SCF_DO_STCLASS) {
+ ssc_init(pRExC_state, &this_class);
+ oclass = data->start_class;
+ data->start_class = &this_class;
+ f |= SCF_DO_STCLASS_AND;
+ f &= ~SCF_DO_STCLASS_OR;
+ }
+ /* Exclude from super-linear cache processing any {n,m}
+ regops for which the combination of input pos and regex
+ pos is not enough information to determine if a match
+ will be possible.
+
+ For example, in the regex /foo(bar\s*){4,8}baz/ with the
+ regex pos at the \s*, the prospects for a match depend not
+ only on the input position but also on how many (bar\s*)
+ repeats into the {4,8} we are. */
+ if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
+ f &= ~SCF_WHILEM_VISITED_POS;
+
+ /* This will finish on WHILEM, setting scan, or on NULL: */
+ minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
+ last, data, stopparen, recursed_depth, NULL,
+ (mincount == 0
+ ? (f & ~SCF_DO_SUBSTR)
+ : f)
+ ,depth+1);
+
+ if (flags & SCF_DO_STCLASS)
+ data->start_class = oclass;
+ if (mincount == 0 || minnext == 0) {
+ if (flags & SCF_DO_STCLASS_OR) {
+ ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ /* Switch to OR mode: cache the old value of
+ * data->start_class */
+ INIT_AND_WITHP;
+ StructCopy(data->start_class, and_withp, regnode_ssc);
+ flags &= ~SCF_DO_STCLASS_AND;
+ StructCopy(&this_class, data->start_class, regnode_ssc);
+ flags |= SCF_DO_STCLASS_OR;
+ ANYOF_FLAGS(data->start_class)
+ |= SSC_MATCHES_EMPTY_STRING;
+ }
+ } else { /* Non-zero len */
+ if (flags & SCF_DO_STCLASS_OR) {
+ ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+ }
+ else if (flags & SCF_DO_STCLASS_AND)
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ if (!scan) /* It was not CURLYX, but CURLY. */
+ scan = next;
+ if (!(flags & SCF_TRIE_DOING_RESTUDY)
+ /* ? quantifier ok, except for (?{ ... }) */
+ && (next_is_eval || !(mincount == 0 && maxcount == 1))
+ && (minnext == 0) && (deltanext == 0)
+ && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
+ && maxcount <= REG_INFTY/3) /* Complement check for big
+ count */
+ {
+ /* Fatal warnings may leak the regexp without this: */
+ SAVEFREESV(RExC_rx_sv);
+ Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP),
+ "Quantifier unexpected on zero-length expression "
+ "in regex m/%"UTF8f"/",
+ UTF8fARG(UTF, RExC_end - RExC_precomp,
+ RExC_precomp));
+ (void)ReREFCNT_inc(RExC_rx_sv);
+ }
+
+ min += minnext * mincount;
+ is_inf_internal |= deltanext == SSize_t_MAX
+ || (maxcount == REG_INFTY && minnext + deltanext > 0);
+ is_inf |= is_inf_internal;
+ if (is_inf) {
+ delta = SSize_t_MAX;
+ } else {
+ delta += (minnext + deltanext) * maxcount
+ - minnext * mincount;
+ }
+ /* Try powerful optimization CURLYX => CURLYN. */
+ if ( OP(oscan) == CURLYX && data
+ && data->flags & SF_IN_PAR
+ && !(data->flags & SF_HAS_EVAL)
+ && !deltanext && minnext == 1 ) {
+ /* Try to optimize to CURLYN. */
+ regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
+ regnode * const nxt1 = nxt;
+#ifdef DEBUGGING
+ regnode *nxt2;
+#endif
+
+ /* Skip open. */
+ nxt = regnext(nxt);
+ if (!REGNODE_SIMPLE(OP(nxt))
+ && !(PL_regkind[OP(nxt)] == EXACT
+ && STR_LEN(nxt) == 1))
+ goto nogo;
+#ifdef DEBUGGING
+ nxt2 = nxt;
+#endif
+ nxt = regnext(nxt);
+ if (OP(nxt) != CLOSE)
+ goto nogo;
+ if (RExC_open_parens) {
+ RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
+ RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
+ }
+ /* Now we know that nxt2 is the only contents: */
+ oscan->flags = (U8)ARG(nxt);
+ OP(oscan) = CURLYN;
+ OP(nxt1) = NOTHING; /* was OPEN. */
+
+#ifdef DEBUGGING
+ OP(nxt1 + 1) = OPTIMIZED; /* was count. */
+ NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
+ NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
+ OP(nxt) = OPTIMIZED; /* was CLOSE. */
+ OP(nxt + 1) = OPTIMIZED; /* was count. */
+ NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
+#endif
+ }
+ nogo:
+
+ /* Try optimization CURLYX => CURLYM. */
+ if ( OP(oscan) == CURLYX && data
+ && !(data->flags & SF_HAS_PAR)
+ && !(data->flags & SF_HAS_EVAL)
+ && !deltanext /* atom is fixed width */
+ && minnext != 0 /* CURLYM can't handle zero width */
+
+ /* Nor characters whose fold at run-time may be
+ * multi-character */
+ && ! (RExC_seen & REG_UNFOLDED_MULTI_SEEN)
+ ) {
+ /* XXXX How to optimize if data == 0? */
+ /* Optimize to a simpler form. */
+ regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
+ regnode *nxt2;
+
+ OP(oscan) = CURLYM;
+ while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
+ && (OP(nxt2) != WHILEM))
+ nxt = nxt2;
+ OP(nxt2) = SUCCEED; /* Whas WHILEM */
+ /* Need to optimize away parenths. */
+ if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
+ /* Set the parenth number. */
+ regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
+
+ oscan->flags = (U8)ARG(nxt);
+ if (RExC_open_parens) {
+ RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
+ RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
+ }
+ OP(nxt1) = OPTIMIZED; /* was OPEN. */
+ OP(nxt) = OPTIMIZED; /* was CLOSE. */
+
+#ifdef DEBUGGING
+ OP(nxt1 + 1) = OPTIMIZED; /* was count. */
+ OP(nxt + 1) = OPTIMIZED; /* was count. */
+ NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
+ NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
+#endif
+#if 0
+ while ( nxt1 && (OP(nxt1) != WHILEM)) {
+ regnode *nnxt = regnext(nxt1);
+ if (nnxt == nxt) {
+ if (reg_off_by_arg[OP(nxt1)])
+ ARG_SET(nxt1, nxt2 - nxt1);
+ else if (nxt2 - nxt1 < U16_MAX)
+ NEXT_OFF(nxt1) = nxt2 - nxt1;
+ else
+ OP(nxt) = NOTHING; /* Cannot beautify */
+ }
+ nxt1 = nnxt;
+ }
+#endif
+ /* Optimize again: */
+ study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
+ NULL, stopparen, recursed_depth, NULL, 0,depth+1);
+ }
+ else
+ oscan->flags = 0;
+ }
+ else if ((OP(oscan) == CURLYX)
+ && (flags & SCF_WHILEM_VISITED_POS)
+ /* See the comment on a similar expression above.
+ However, this time it's not a subexpression
+ we care about, but the expression itself. */
+ && (maxcount == REG_INFTY)
+ && data && ++data->whilem_c < 16) {
+ /* This stays as CURLYX, we can put the count/of pair. */
+ /* Find WHILEM (as in regexec.c) */
+ regnode *nxt = oscan + NEXT_OFF(oscan);
+
+ if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
+ nxt += ARG(nxt);
+ PREVOPER(nxt)->flags = (U8)(data->whilem_c
+ | (RExC_whilem_seen << 4)); /* On WHILEM */
+ }
+ if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (flags & SCF_DO_SUBSTR) {
+ SV *last_str = NULL;
+ STRLEN last_chrs = 0;
+ int counted = mincount != 0;
+
+ if (data->last_end > 0 && mincount != 0) { /* Ends with a
+ string. */
+ SSize_t b = pos_before >= data->last_start_min
+ ? pos_before : data->last_start_min;
+ STRLEN l;
+ const char * const s = SvPV_const(data->last_found, l);
+ SSize_t old = b - data->last_start_min;
+
+ if (UTF)
+ old = utf8_hop((U8*)s, old) - (U8*)s;
+ l -= old;
+ /* Get the added string: */
+ last_str = newSVpvn_utf8(s + old, l, UTF);
+ last_chrs = UTF ? utf8_length((U8*)(s + old),
+ (U8*)(s + old + l)) : l;
+ if (deltanext == 0 && pos_before == b) {
+ /* What was added is a constant string */
+ if (mincount > 1) {
+
+ SvGROW(last_str, (mincount * l) + 1);
+ repeatcpy(SvPVX(last_str) + l,
+ SvPVX_const(last_str), l,
+ mincount - 1);
+ SvCUR_set(last_str, SvCUR(last_str) * mincount);
+ /* Add additional parts. */
+ SvCUR_set(data->last_found,
+ SvCUR(data->last_found) - l);
+ sv_catsv(data->last_found, last_str);
+ {
+ SV * sv = data->last_found;
+ MAGIC *mg =
+ SvUTF8(sv) && SvMAGICAL(sv) ?
+ mg_find(sv, PERL_MAGIC_utf8) : NULL;
+ if (mg && mg->mg_len >= 0)
+ mg->mg_len += last_chrs * (mincount-1);
+ }
+ last_chrs *= mincount;
+ data->last_end += l * (mincount - 1);
+ }
+ } else {
+ /* start offset must point into the last copy */
+ data->last_start_min += minnext * (mincount - 1);
+ data->last_start_max =
+ is_inf
+ ? SSize_t_MAX
+ : data->last_start_max +
+ (maxcount - 1) * (minnext + data->pos_delta);
+ }
+ }
+ /* It is counted once already... */
+ data->pos_min += minnext * (mincount - counted);
+#if 0
+PerlIO_printf(Perl_debug_log, "counted=%"UVuf" deltanext=%"UVuf
+ " SSize_t_MAX=%"UVuf" minnext=%"UVuf
+ " maxcount=%"UVuf" mincount=%"UVuf"\n",
+ (UV)counted, (UV)deltanext, (UV)SSize_t_MAX, (UV)minnext, (UV)maxcount,
+ (UV)mincount);
+if (deltanext != SSize_t_MAX)
+PerlIO_printf(Perl_debug_log, "LHS=%"UVuf" RHS=%"UVuf"\n",
+ (UV)(-counted * deltanext + (minnext + deltanext) * maxcount
+ - minnext * mincount), (UV)(SSize_t_MAX - data->pos_delta));
+#endif
+ if (deltanext == SSize_t_MAX
+ || -counted * deltanext + (minnext + deltanext) * maxcount - minnext * mincount >= SSize_t_MAX - data->pos_delta)
+ data->pos_delta = SSize_t_MAX;
+ else
+ data->pos_delta += - counted * deltanext +
+ (minnext + deltanext) * maxcount - minnext * mincount;
+ if (mincount != maxcount) {
+ /* Cannot extend fixed substrings found inside
+ the group. */
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ if (mincount && last_str) {
+ SV * const sv = data->last_found;
+ MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
+ mg_find(sv, PERL_MAGIC_utf8) : NULL;
+
+ if (mg)
+ mg->mg_len = -1;
+ sv_setsv(sv, last_str);
+ data->last_end = data->pos_min;
+ data->last_start_min = data->pos_min - last_chrs;
+ data->last_start_max = is_inf
+ ? SSize_t_MAX
+ : data->pos_min + data->pos_delta - last_chrs;
+ }
+ data->longest = &(data->longest_float);
+ }
+ SvREFCNT_dec(last_str);
+ }
+ if (data && (fl & SF_HAS_EVAL))
+ data->flags |= SF_HAS_EVAL;
+ optimize_curly_tail:
+ if (OP(oscan) != CURLYX) {
+ while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
+ && NEXT_OFF(next))
+ NEXT_OFF(oscan) += NEXT_OFF(next);
+ }
+ continue;
+
+ default:
+#ifdef DEBUGGING
+ Perl_croak(aTHX_ "panic: unexpected varying REx opcode %d",
+ OP(scan));
+#endif
+ case REF:
+ case CLUMP:
+ if (flags & SCF_DO_SUBSTR) {
+ /* Cannot expect anything... */
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ if (flags & SCF_DO_STCLASS_OR) {
+ if (OP(scan) == CLUMP) {
+ /* Actually is any start char, but very few code points
+ * aren't start characters */
+ ssc_match_all_cp(data->start_class);
+ }
+ else {
+ ssc_anything(data->start_class);
+ }
+ }
+ flags &= ~SCF_DO_STCLASS;
+ break;
+ }
+ }
+ else if (OP(scan) == LNBREAK) {
+ if (flags & SCF_DO_STCLASS) {
+ if (flags & SCF_DO_STCLASS_AND) {
+ ssc_intersection(data->start_class,
+ PL_XPosix_ptrs[_CC_VERTSPACE], FALSE);
+ ssc_clear_locale(data->start_class);
+ ANYOF_FLAGS(data->start_class)
+ &= ~SSC_MATCHES_EMPTY_STRING;
+ }
+ else if (flags & SCF_DO_STCLASS_OR) {
+ ssc_union(data->start_class,
+ PL_XPosix_ptrs[_CC_VERTSPACE],
+ FALSE);
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+
+ /* See commit msg for
+ * 749e076fceedeb708a624933726e7989f2302f6a */
+ ANYOF_FLAGS(data->start_class)
+ &= ~SSC_MATCHES_EMPTY_STRING;
+ }
+ flags &= ~SCF_DO_STCLASS;
+ }
+ min++;
+ if (delta != SSize_t_MAX)
+ delta++; /* Because of the 2 char string cr-lf */
+ if (flags & SCF_DO_SUBSTR) {
+ /* Cannot expect anything... */
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ data->pos_min += 1;
+ data->pos_delta += 1;
+ data->longest = &(data->longest_float);
+ }
+ }
+ else if (REGNODE_SIMPLE(OP(scan))) {
+
+ if (flags & SCF_DO_SUBSTR) {
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ data->pos_min++;
+ }
+ min++;
+ if (flags & SCF_DO_STCLASS) {
+ bool invert = 0;
+ SV* my_invlist = NULL;
+ U8 namedclass;
+
+ /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
+ ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+
+ /* Some of the logic below assumes that switching
+ locale on will only add false positives. */
+ switch (OP(scan)) {
+
+ default:
+#ifdef DEBUGGING
+ Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d",
+ OP(scan));
+#endif
+ case SANY:
+ if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+ ssc_match_all_cp(data->start_class);
+ break;
+
+ case REG_ANY:
+ {
+ SV* REG_ANY_invlist = _new_invlist(2);
+ REG_ANY_invlist = add_cp_to_invlist(REG_ANY_invlist,
+ '\n');
+ if (flags & SCF_DO_STCLASS_OR) {
+ ssc_union(data->start_class,
+ REG_ANY_invlist,
+ TRUE /* TRUE => invert, hence all but \n
+ */
+ );
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ ssc_intersection(data->start_class,
+ REG_ANY_invlist,
+ TRUE /* TRUE => invert */
+ );
+ ssc_clear_locale(data->start_class);
+ }
+ SvREFCNT_dec_NN(REG_ANY_invlist);
+ }
+ break;
+
+ case ANYOFL:
+ case ANYOF:
+ if (flags & SCF_DO_STCLASS_AND)
+ ssc_and(pRExC_state, data->start_class,
+ (regnode_charclass *) scan);
+ else
+ ssc_or(pRExC_state, data->start_class,
+ (regnode_charclass *) scan);
+ break;
+
+ case NPOSIXL:
+ invert = 1;
+ /* FALLTHROUGH */
+
+ case POSIXL:
+ namedclass = classnum_to_namedclass(FLAGS(scan)) + invert;
+ if (flags & SCF_DO_STCLASS_AND) {
+ bool was_there = cBOOL(
+ ANYOF_POSIXL_TEST(data->start_class,
+ namedclass));
+ ANYOF_POSIXL_ZERO(data->start_class);
+ if (was_there) { /* Do an AND */
+ ANYOF_POSIXL_SET(data->start_class, namedclass);
+ }
+ /* No individual code points can now match */
+ data->start_class->invlist
+ = sv_2mortal(_new_invlist(0));
+ }
+ else {
+ int complement = namedclass + ((invert) ? -1 : 1);
+
+ assert(flags & SCF_DO_STCLASS_OR);
+
+ /* If the complement of this class was already there,
+ * the result is that they match all code points,
+ * (\d + \D == everything). Remove the classes from
+ * future consideration. Locale is not relevant in
+ * this case */
+ if (ANYOF_POSIXL_TEST(data->start_class, complement)) {
+ ssc_match_all_cp(data->start_class);
+ ANYOF_POSIXL_CLEAR(data->start_class, namedclass);
+ ANYOF_POSIXL_CLEAR(data->start_class, complement);
+ }
+ else { /* The usual case; just add this class to the
+ existing set */
+ ANYOF_POSIXL_SET(data->start_class, namedclass);
+ }
+ }
+ break;
+
+ case NPOSIXA: /* For these, we always know the exact set of
+ what's matched */
+ invert = 1;
+ /* FALLTHROUGH */
+ case POSIXA:
+ if (FLAGS(scan) == _CC_ASCII) {
+ my_invlist = invlist_clone(PL_XPosix_ptrs[_CC_ASCII]);
+ }
+ else {
+ _invlist_intersection(PL_XPosix_ptrs[FLAGS(scan)],
+ PL_XPosix_ptrs[_CC_ASCII],
+ &my_invlist);
+ }
+ goto join_posix;
+
+ case NPOSIXD:
+ case NPOSIXU:
+ invert = 1;
+ /* FALLTHROUGH */
+ case POSIXD:
+ case POSIXU:
+ my_invlist = invlist_clone(PL_XPosix_ptrs[FLAGS(scan)]);
+
+ /* NPOSIXD matches all upper Latin1 code points unless the
+ * target string being matched is UTF-8, which is
+ * unknowable until match time. Since we are going to
+ * invert, we want to get rid of all of them so that the
+ * inversion will match all */
+ if (OP(scan) == NPOSIXD) {
+ _invlist_subtract(my_invlist, PL_UpperLatin1,
+ &my_invlist);
+ }
+
+ join_posix:
+
+ if (flags & SCF_DO_STCLASS_AND) {
+ ssc_intersection(data->start_class, my_invlist, invert);
+ ssc_clear_locale(data->start_class);
+ }
+ else {
+ assert(flags & SCF_DO_STCLASS_OR);
+ ssc_union(data->start_class, my_invlist, invert);
+ }
+ SvREFCNT_dec(my_invlist);
+ }
+ if (flags & SCF_DO_STCLASS_OR)
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ }
+ else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
+ data->flags |= (OP(scan) == MEOL
+ ? SF_BEFORE_MEOL
+ : SF_BEFORE_SEOL);
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+
+ }
+ else if ( PL_regkind[OP(scan)] == BRANCHJ
+ /* Lookbehind, or need to calculate parens/evals/stclass: */
+ && (scan->flags || data || (flags & SCF_DO_STCLASS))
+ && (OP(scan) == IFMATCH || OP(scan) == UNLESSM))
+ {
+ if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
+ || OP(scan) == UNLESSM )
+ {
+ /* Negative Lookahead/lookbehind
+ In this case we can't do fixed string optimisation.
+ */
+
+ SSize_t deltanext, minnext, fake = 0;
+ regnode *nscan;
+ regnode_ssc intrnl;
+ int f = 0;
+
+ StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+ if (data) {
+ data_fake.whilem_c = data->whilem_c;
+ data_fake.last_closep = data->last_closep;
+ }
+ else
+ data_fake.last_closep = &fake;
+ data_fake.pos_delta = delta;
+ if ( flags & SCF_DO_STCLASS && !scan->flags
+ && OP(scan) == IFMATCH ) { /* Lookahead */
+ ssc_init(pRExC_state, &intrnl);
+ data_fake.start_class = &intrnl;
+ f |= SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+ next = regnext(scan);
+ nscan = NEXTOPER(NEXTOPER(scan));
+ minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
+ last, &data_fake, stopparen,
+ recursed_depth, NULL, f, depth+1);
+ if (scan->flags) {
+ if (deltanext) {
+ FAIL("Variable length lookbehind not implemented");
+ }
+ else if (minnext > (I32)U8_MAX) {
+ FAIL2("Lookbehind longer than %"UVuf" not implemented",
+ (UV)U8_MAX);
+ }
+ scan->flags = (U8)minnext;
+ }
+ if (data) {
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ }
+ if (f & SCF_DO_STCLASS_AND) {
+ if (flags & SCF_DO_STCLASS_OR) {
+ /* OR before, AND after: ideally we would recurse with
+ * data_fake to get the AND applied by study of the
+ * remainder of the pattern, and then derecurse;
+ * *** HACK *** for now just treat as "no information".
+ * See [perl #56690].
+ */
+ ssc_init(pRExC_state, data->start_class);
+ } else {
+ /* AND before and after: combine and continue. These
+ * assertions are zero-length, so can match an EMPTY
+ * string */
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &intrnl);
+ ANYOF_FLAGS(data->start_class)
+ |= SSC_MATCHES_EMPTY_STRING;
+ }
+ }
+ }
+#if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
+ else {
+ /* Positive Lookahead/lookbehind
+ In this case we can do fixed string optimisation,
+ but we must be careful about it. Note in the case of
+ lookbehind the positions will be offset by the minimum
+ length of the pattern, something we won't know about
+ until after the recurse.
+ */
+ SSize_t deltanext, fake = 0;
+ regnode *nscan;
+ regnode_ssc intrnl;
+ int f = 0;
+ /* We use SAVEFREEPV so that when the full compile
+ is finished perl will clean up the allocated
+ minlens when it's all done. This way we don't
+ have to worry about freeing them when we know
+ they wont be used, which would be a pain.
+ */
+ SSize_t *minnextp;
+ Newx( minnextp, 1, SSize_t );
+ SAVEFREEPV(minnextp);
+
+ if (data) {
+ StructCopy(data, &data_fake, scan_data_t);
+ if ((flags & SCF_DO_SUBSTR) && data->last_found) {
+ f |= SCF_DO_SUBSTR;
+ if (scan->flags)
+ scan_commit(pRExC_state, &data_fake, minlenp, is_inf);
+ data_fake.last_found=newSVsv(data->last_found);
+ }
+ }
+ else
+ data_fake.last_closep = &fake;
+ data_fake.flags = 0;
+ data_fake.pos_delta = delta;
+ if (is_inf)
+ data_fake.flags |= SF_IS_INF;
+ if ( flags & SCF_DO_STCLASS && !scan->flags
+ && OP(scan) == IFMATCH ) { /* Lookahead */
+ ssc_init(pRExC_state, &intrnl);
+ data_fake.start_class = &intrnl;
+ f |= SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+ next = regnext(scan);
+ nscan = NEXTOPER(NEXTOPER(scan));
+
+ *minnextp = study_chunk(pRExC_state, &nscan, minnextp,
+ &deltanext, last, &data_fake,
+ stopparen, recursed_depth, NULL,
+ f,depth+1);
+ if (scan->flags) {
+ if (deltanext) {
+ FAIL("Variable length lookbehind not implemented");
+ }
+ else if (*minnextp > (I32)U8_MAX) {
+ FAIL2("Lookbehind longer than %"UVuf" not implemented",
+ (UV)U8_MAX);
+ }
+ scan->flags = (U8)*minnextp;
+ }
+
+ *minnextp += min;
+
+ if (f & SCF_DO_STCLASS_AND) {
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &intrnl);
+ ANYOF_FLAGS(data->start_class) |= SSC_MATCHES_EMPTY_STRING;
+ }
+ if (data) {
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
+ if (RExC_rx->minlen<*minnextp)
+ RExC_rx->minlen=*minnextp;
+ scan_commit(pRExC_state, &data_fake, minnextp, is_inf);
+ SvREFCNT_dec_NN(data_fake.last_found);
+
+ if ( data_fake.minlen_fixed != minlenp )
+ {
+ data->offset_fixed= data_fake.offset_fixed;
+ data->minlen_fixed= data_fake.minlen_fixed;
+ data->lookbehind_fixed+= scan->flags;
+ }
+ if ( data_fake.minlen_float != minlenp )
+ {
+ data->minlen_float= data_fake.minlen_float;
+ data->offset_float_min=data_fake.offset_float_min;
+ data->offset_float_max=data_fake.offset_float_max;
+ data->lookbehind_float+= scan->flags;
+ }
+ }
+ }
+ }
+#endif
+ }
+ else if (OP(scan) == OPEN) {
+ if (stopparen != (I32)ARG(scan))
+ pars++;
+ }
+ else if (OP(scan) == CLOSE) {
+ if (stopparen == (I32)ARG(scan)) {
+ break;
+ }
+ if ((I32)ARG(scan) == is_par) {
+ next = regnext(scan);
+
+ if ( next && (OP(next) != WHILEM) && next < last)
+ is_par = 0; /* Disable optimization */
+ }
+ if (data)
+ *(data->last_closep) = ARG(scan);
+ }
+ else if (OP(scan) == EVAL) {
+ if (data)
+ data->flags |= SF_HAS_EVAL;
+ }
+ else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
+ if (flags & SCF_DO_SUBSTR) {
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ flags &= ~SCF_DO_SUBSTR;
+ }
+ if (data && OP(scan)==ACCEPT) {
+ data->flags |= SCF_SEEN_ACCEPT;
+ if (stopmin > min)
+ stopmin = min;
+ }
+ }
+ else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
+ {
+ if (flags & SCF_DO_SUBSTR) {
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+ ssc_anything(data->start_class);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else if (OP(scan) == GPOS) {
+ if (!(RExC_rx->intflags & PREGf_GPOS_FLOAT) &&
+ !(delta || is_inf || (data && data->pos_delta)))
+ {
+ if (!(RExC_rx->intflags & PREGf_ANCH) && (flags & SCF_DO_SUBSTR))
+ RExC_rx->intflags |= PREGf_ANCH_GPOS;
+ if (RExC_rx->gofs < (STRLEN)min)
+ RExC_rx->gofs = min;
+ } else {
+ RExC_rx->intflags |= PREGf_GPOS_FLOAT;
+ RExC_rx->gofs = 0;
+ }
+ }
+#ifdef TRIE_STUDY_OPT
+#ifdef FULL_TRIE_STUDY
+ else if (PL_regkind[OP(scan)] == TRIE) {
+ /* NOTE - There is similar code to this block above for handling
+ BRANCH nodes on the initial study. If you change stuff here
+ check there too. */
+ regnode *trie_node= scan;
+ regnode *tail= regnext(scan);
+ reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
+ SSize_t max1 = 0, min1 = SSize_t_MAX;
+ regnode_ssc accum;
+
+ if (flags & SCF_DO_SUBSTR) { /* XXXX Add !SUSPEND? */
+ /* Cannot merge strings after this. */
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ }
+ if (flags & SCF_DO_STCLASS)
+ ssc_init_zero(pRExC_state, &accum);
+
+ if (!trie->jump) {
+ min1= trie->minlen;
+ max1= trie->maxlen;
+ } else {
+ const regnode *nextbranch= NULL;
+ U32 word;
+
+ for ( word=1 ; word <= trie->wordcount ; word++)
+ {
+ SSize_t deltanext=0, minnext=0, f = 0, fake;
+ regnode_ssc this_class;
+
+ StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+ if (data) {
+ data_fake.whilem_c = data->whilem_c;
+ data_fake.last_closep = data->last_closep;
+ }
+ else
+ data_fake.last_closep = &fake;
+ data_fake.pos_delta = delta;
+ if (flags & SCF_DO_STCLASS) {
+ ssc_init(pRExC_state, &this_class);
+ data_fake.start_class = &this_class;
+ f = SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+
+ if (trie->jump[word]) {
+ if (!nextbranch)
+ nextbranch = trie_node + trie->jump[0];
+ scan= trie_node + trie->jump[word];
+ /* We go from the jump point to the branch that follows
+ it. Note this means we need the vestigal unused
+ branches even though they arent otherwise used. */
+ minnext = study_chunk(pRExC_state, &scan, minlenp,
+ &deltanext, (regnode *)nextbranch, &data_fake,
+ stopparen, recursed_depth, NULL, f,depth+1);
+ }
+ if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
+ nextbranch= regnext((regnode*)nextbranch);
+
+ if (min1 > (SSize_t)(minnext + trie->minlen))
+ min1 = minnext + trie->minlen;
+ if (deltanext == SSize_t_MAX) {
+ is_inf = is_inf_internal = 1;
+ max1 = SSize_t_MAX;
+ } else if (max1 < (SSize_t)(minnext + deltanext + trie->maxlen))
+ max1 = minnext + deltanext + trie->maxlen;
+
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SCF_SEEN_ACCEPT) {
+ if ( stopmin > min + min1)
+ stopmin = min + min1;
+ flags &= ~SCF_DO_SUBSTR;
+ if (data)
+ data->flags |= SCF_SEEN_ACCEPT;
+ }
+ if (data) {
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ }
+ if (flags & SCF_DO_STCLASS)
+ ssc_or(pRExC_state, &accum, (regnode_charclass *) &this_class);
+ }
+ }
+ if (flags & SCF_DO_SUBSTR) {
+ data->pos_min += min1;
+ data->pos_delta += max1 - min1;
+ if (max1 != min1 || is_inf)
+ data->longest = &(data->longest_float);
+ }
+ min += min1;
+ if (delta != SSize_t_MAX)
+ delta += max1 - min1;
+ if (flags & SCF_DO_STCLASS_OR) {
+ ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &accum);
+ if (min1) {
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ if (min1) {
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else {
+ /* Switch to OR mode: cache the old value of
+ * data->start_class */
+ INIT_AND_WITHP;
+ StructCopy(data->start_class, and_withp, regnode_ssc);
+ flags &= ~SCF_DO_STCLASS_AND;
+ StructCopy(&accum, data->start_class, regnode_ssc);
+ flags |= SCF_DO_STCLASS_OR;
+ }
+ }
+ scan= tail;
+ continue;
+ }
+#else
+ else if (PL_regkind[OP(scan)] == TRIE) {
+ reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
+ U8*bang=NULL;
+
+ min += trie->minlen;
+ delta += (trie->maxlen - trie->minlen);
+ flags &= ~SCF_DO_STCLASS; /* xxx */
+ if (flags & SCF_DO_SUBSTR) {
+ /* Cannot expect anything... */
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ data->pos_min += trie->minlen;
+ data->pos_delta += (trie->maxlen - trie->minlen);
+ if (trie->maxlen != trie->minlen)
+ data->longest = &(data->longest_float);
+ }
+ if (trie->jump) /* no more substrings -- for now /grr*/
+ flags &= ~SCF_DO_SUBSTR;
+ }
+#endif /* old or new */
+#endif /* TRIE_STUDY_OPT */
+
+ /* Else: zero-length, ignore. */
+ scan = regnext(scan);
+ }
+ /* If we are exiting a recursion we can unset its recursed bit
+ * and allow ourselves to enter it again - no danger of an
+ * infinite loop there.
+ if (stopparen > -1 && recursed) {
+ DEBUG_STUDYDATA("unset:", data,depth);
+ PAREN_UNSET( recursed, stopparen);
+ }
+ */
+ if (frame) {
+ depth = depth - 1;
+
+ DEBUG_STUDYDATA("frame-end:",data,depth);
+ DEBUG_PEEP("fend", scan, depth);
+
+ /* restore previous context */
+ last = frame->last_regnode;
+ scan = frame->next_regnode;
+ stopparen = frame->stopparen;
+ recursed_depth = frame->prev_recursed_depth;
+
+ RExC_frame_last = frame->prev_frame;
+ frame = frame->this_prev_frame;
+ goto fake_study_recurse;
+ }
+
+ finish:
+ assert(!frame);
+ DEBUG_STUDYDATA("pre-fin:",data,depth);
+
+ *scanp = scan;
+ *deltap = is_inf_internal ? SSize_t_MAX : delta;
+
+ if (flags & SCF_DO_SUBSTR && is_inf)
+ data->pos_delta = SSize_t_MAX - data->pos_min;
+ if (is_par > (I32)U8_MAX)
+ is_par = 0;
+ if (is_par && pars==1 && data) {
+ data->flags |= SF_IN_PAR;
+ data->flags &= ~SF_HAS_PAR;
+ }
+ else if (pars && data) {
+ data->flags |= SF_HAS_PAR;
+ data->flags &= ~SF_IN_PAR;
+ }
+ if (flags & SCF_DO_STCLASS_OR)
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+ if (flags & SCF_TRIE_RESTUDY)
+ data->flags |= SCF_TRIE_RESTUDY;
+
+ DEBUG_STUDYDATA("post-fin:",data,depth);
+
+ {
+ SSize_t final_minlen= min < stopmin ? min : stopmin;
+
+ if (!(RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN)) {
+ if (final_minlen > SSize_t_MAX - delta)
+ RExC_maxlen = SSize_t_MAX;
+ else if (RExC_maxlen < final_minlen + delta)
+ RExC_maxlen = final_minlen + delta;
+ }
+ return final_minlen;
+ }
+ NOT_REACHED; /* NOTREACHED */
+}
+
+STATIC U32
+S_add_data(RExC_state_t* const pRExC_state, const char* const s, const U32 n)
+{
+ U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
+
+ PERL_ARGS_ASSERT_ADD_DATA;
+
+ Renewc(RExC_rxi->data,
+ sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
+ char, struct reg_data);
+ if(count)
+ Renew(RExC_rxi->data->what, count + n, U8);
+ else
+ Newx(RExC_rxi->data->what, n, U8);
+ RExC_rxi->data->count = count + n;
+ Copy(s, RExC_rxi->data->what + count, n, U8);
+ return count;
+}
+
+/*XXX: todo make this not included in a non debugging perl, but appears to be
+ * used anyway there, in 'use re' */
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_reginitcolors(pTHX)
+{
+ const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
+ if (s) {
+ char *t = savepv(s);
+ int i = 0;
+ PL_colors[0] = t;
+ while (++i < 6) {
+ t = strchr(t, '\t');
+ if (t) {
+ *t = '\0';
+ PL_colors[i] = ++t;
+ }
+ else
+ PL_colors[i] = t = (char *)"";
+ }
+ } else {
+ int i = 0;
+ while (i < 6)
+ PL_colors[i++] = (char *)"";
+ }
+ PL_colorset = 1;
+}
+#endif
+
+
+#ifdef TRIE_STUDY_OPT
+#define CHECK_RESTUDY_GOTO_butfirst(dOsomething) \
+ STMT_START { \
+ if ( \
+ (data.flags & SCF_TRIE_RESTUDY) \
+ && ! restudied++ \
+ ) { \
+ dOsomething; \
+ goto reStudy; \
+ } \
+ } STMT_END
+#else
+#define CHECK_RESTUDY_GOTO_butfirst
+#endif
+
+/*
+ * pregcomp - compile a regular expression into internal code
+ *
+ * Decides which engine's compiler to call based on the hint currently in
+ * scope
+ */
+
+#ifndef PERL_IN_XSUB_RE
+
+/* return the currently in-scope regex engine (or the default if none) */
+
+regexp_engine const *
+Perl_current_re_engine(pTHX)
+{
+ if (IN_PERL_COMPILETIME) {
+ HV * const table = GvHV(PL_hintgv);
+ SV **ptr;
+
+ if (!table || !(PL_hints & HINT_LOCALIZE_HH))
+ return &PL_core_reg_engine;
+ ptr = hv_fetchs(table, "regcomp", FALSE);
+ if ( !(ptr && SvIOK(*ptr) && SvIV(*ptr)))
+ return &PL_core_reg_engine;
+ return INT2PTR(regexp_engine*,SvIV(*ptr));
+ }
+ else {
+ SV *ptr;
+ if (!PL_curcop->cop_hints_hash)
+ return &PL_core_reg_engine;
+ ptr = cop_hints_fetch_pvs(PL_curcop, "regcomp", 0);
+ if ( !(ptr && SvIOK(ptr) && SvIV(ptr)))
+ return &PL_core_reg_engine;
+ return INT2PTR(regexp_engine*,SvIV(ptr));
+ }
+}
+
+
+REGEXP *
+Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
+{
+ regexp_engine const *eng = current_re_engine();
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_PREGCOMP;
+
+ /* Dispatch a request to compile a regexp to correct regexp engine. */
+ DEBUG_COMPILE_r({
+ PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
+ PTR2UV(eng));
+ });
+ return CALLREGCOMP_ENG(eng, pattern, flags);
+}
+#endif
+
+/* public(ish) entry point for the perl core's own regex compiling code.
+ * It's actually a wrapper for Perl_re_op_compile that only takes an SV
+ * pattern rather than a list of OPs, and uses the internal engine rather
+ * than the current one */
+
+REGEXP *
+Perl_re_compile(pTHX_ SV * const pattern, U32 rx_flags)
+{
+ SV *pat = pattern; /* defeat constness! */
+ PERL_ARGS_ASSERT_RE_COMPILE;
+ return Perl_re_op_compile(aTHX_ &pat, 1, NULL,
+#ifdef PERL_IN_XSUB_RE
+ &my_reg_engine,
+#else
+ &PL_core_reg_engine,
+#endif
+ NULL, NULL, rx_flags, 0);
+}
+
+
+/* upgrade pattern pat_p of length plen_p to UTF8, and if there are code
+ * blocks, recalculate the indices. Update pat_p and plen_p in-place to
+ * point to the realloced string and length.
+ *
+ * This is essentially a copy of Perl_bytes_to_utf8() with the code index
+ * stuff added */
+
+static void
+S_pat_upgrade_to_utf8(pTHX_ RExC_state_t * const pRExC_state,
+ char **pat_p, STRLEN *plen_p, int num_code_blocks)
+{
+ U8 *const src = (U8*)*pat_p;
+ U8 *dst, *d;
+ int n=0;
+ STRLEN s = 0;
+ bool do_end = 0;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+ "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
+
+ Newx(dst, *plen_p * 2 + 1, U8);
+ d = dst;
+
+ while (s < *plen_p) {
+ append_utf8_from_native_byte(src[s], &d);
+ if (n < num_code_blocks) {
+ if (!do_end && pRExC_state->code_blocks[n].start == s) {
+ pRExC_state->code_blocks[n].start = d - dst - 1;
+ assert(*(d - 1) == '(');
+ do_end = 1;
+ }
+ else if (do_end && pRExC_state->code_blocks[n].end == s) {
+ pRExC_state->code_blocks[n].end = d - dst - 1;
+ assert(*(d - 1) == ')');
+ do_end = 0;
+ n++;
+ }
+ }
+ s++;
+ }
+ *d = '\0';
+ *plen_p = d - dst;
+ *pat_p = (char*) dst;
+ SAVEFREEPV(*pat_p);
+ RExC_orig_utf8 = RExC_utf8 = 1;
+}
+
+
+
+/* S_concat_pat(): concatenate a list of args to the pattern string pat,
+ * while recording any code block indices, and handling overloading,
+ * nested qr// objects etc. If pat is null, it will allocate a new
+ * string, or just return the first arg, if there's only one.
+ *
+ * Returns the malloced/updated pat.
+ * patternp and pat_count is the array of SVs to be concatted;
+ * oplist is the optional list of ops that generated the SVs;
+ * recompile_p is a pointer to a boolean that will be set if
+ * the regex will need to be recompiled.
+ * delim, if non-null is an SV that will be inserted between each element
+ */
+
+static SV*
+S_concat_pat(pTHX_ RExC_state_t * const pRExC_state,
+ SV *pat, SV ** const patternp, int pat_count,
+ OP *oplist, bool *recompile_p, SV *delim)
+{
+ SV **svp;
+ int n = 0;
+ bool use_delim = FALSE;
+ bool alloced = FALSE;
+
+ /* if we know we have at least two args, create an empty string,
+ * then concatenate args to that. For no args, return an empty string */
+ if (!pat && pat_count != 1) {
+ pat = newSVpvs("");
+ SAVEFREESV(pat);
+ alloced = TRUE;
+ }
+
+ for (svp = patternp; svp < patternp + pat_count; svp++) {
+ SV *sv;
+ SV *rx = NULL;
+ STRLEN orig_patlen = 0;
+ bool code = 0;
+ SV *msv = use_delim ? delim : *svp;
+ if (!msv) msv = &PL_sv_undef;
+
+ /* if we've got a delimiter, we go round the loop twice for each
+ * svp slot (except the last), using the delimiter the second
+ * time round */
+ if (use_delim) {
+ svp--;
+ use_delim = FALSE;
+ }
+ else if (delim)
+ use_delim = TRUE;
+
+ if (SvTYPE(msv) == SVt_PVAV) {
+ /* we've encountered an interpolated array within
+ * the pattern, e.g. /...@a..../. Expand the list of elements,
+ * then recursively append elements.
+ * The code in this block is based on S_pushav() */
+
+ AV *const av = (AV*)msv;
+ const SSize_t maxarg = AvFILL(av) + 1;
+ SV **array;
+
+ if (oplist) {
+ assert(oplist->op_type == OP_PADAV
+ || oplist->op_type == OP_RV2AV);
+ oplist = OpSIBLING(oplist);
+ }
+
+ if (SvRMAGICAL(av)) {
+ SSize_t i;
+
+ Newx(array, maxarg, SV*);
+ SAVEFREEPV(array);
+ for (i=0; i < maxarg; i++) {
+ SV ** const svp = av_fetch(av, i, FALSE);
+ array[i] = svp ? *svp : &PL_sv_undef;
+ }
+ }
+ else
+ array = AvARRAY(av);
+
+ pat = S_concat_pat(aTHX_ pRExC_state, pat,
+ array, maxarg, NULL, recompile_p,
+ /* $" */
+ GvSV((gv_fetchpvs("\"", GV_ADDMULTI, SVt_PV))));
+
+ continue;
+ }
+
+
+ /* we make the assumption here that each op in the list of
+ * op_siblings maps to one SV pushed onto the stack,
+ * except for code blocks, with have both an OP_NULL and
+ * and OP_CONST.
+ * This allows us to match up the list of SVs against the
+ * list of OPs to find the next code block.
+ *
+ * Note that PUSHMARK PADSV PADSV ..
+ * is optimised to
+ * PADRANGE PADSV PADSV ..
+ * so the alignment still works. */
+
+ if (oplist) {
+ if (oplist->op_type == OP_NULL
+ && (oplist->op_flags & OPf_SPECIAL))
+ {
+ assert(n < pRExC_state->num_code_blocks);
+ pRExC_state->code_blocks[n].start = pat ? SvCUR(pat) : 0;
+ pRExC_state->code_blocks[n].block = oplist;
+ pRExC_state->code_blocks[n].src_regex = NULL;
+ n++;
+ code = 1;
+ oplist = OpSIBLING(oplist); /* skip CONST */
+ assert(oplist);
+ }
+ oplist = OpSIBLING(oplist);;
+ }
+
+ /* apply magic and QR overloading to arg */
+
+ SvGETMAGIC(msv);
+ if (SvROK(msv) && SvAMAGIC(msv)) {
+ SV *sv = AMG_CALLunary(msv, regexp_amg);
+ if (sv) {
+ if (SvROK(sv))
+ sv = SvRV(sv);
+ if (SvTYPE(sv) != SVt_REGEXP)
+ Perl_croak(aTHX_ "Overloaded qr did not return a REGEXP");
+ msv = sv;
+ }
+ }
+
+ /* try concatenation overload ... */
+ if (pat && (SvAMAGIC(pat) || SvAMAGIC(msv)) &&
+ (sv = amagic_call(pat, msv, concat_amg, AMGf_assign)))
+ {
+ sv_setsv(pat, sv);
+ /* overloading involved: all bets are off over literal
+ * code. Pretend we haven't seen it */
+ pRExC_state->num_code_blocks -= n;
+ n = 0;
+ }
+ else {
+ /* ... or failing that, try "" overload */
+ while (SvAMAGIC(msv)
+ && (sv = AMG_CALLunary(msv, string_amg))
+ && sv != msv
+ && !( SvROK(msv)
+ && SvROK(sv)
+ && SvRV(msv) == SvRV(sv))
+ ) {
+ msv = sv;
+ SvGETMAGIC(msv);
+ }
+ if (SvROK(msv) && SvTYPE(SvRV(msv)) == SVt_REGEXP)
+ msv = SvRV(msv);
+
+ if (pat) {
+ /* this is a partially unrolled
+ * sv_catsv_nomg(pat, msv);
+ * that allows us to adjust code block indices if
+ * needed */
+ STRLEN dlen;
+ char *dst = SvPV_force_nomg(pat, dlen);
+ orig_patlen = dlen;
+ if (SvUTF8(msv) && !SvUTF8(pat)) {
+ S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &dst, &dlen, n);
+ sv_setpvn(pat, dst, dlen);
+ SvUTF8_on(pat);
+ }
+ sv_catsv_nomg(pat, msv);
+ rx = msv;
+ }
+ else
+ pat = msv;
+
+ if (code)
+ pRExC_state->code_blocks[n-1].end = SvCUR(pat)-1;
+ }
+
+ /* extract any code blocks within any embedded qr//'s */
+ if (rx && SvTYPE(rx) == SVt_REGEXP
+ && RX_ENGINE((REGEXP*)rx)->op_comp)
+ {
+
+ RXi_GET_DECL(ReANY((REGEXP *)rx), ri);
+ if (ri->num_code_blocks) {
+ int i;
+ /* the presence of an embedded qr// with code means
+ * we should always recompile: the text of the
+ * qr// may not have changed, but it may be a
+ * different closure than last time */
+ *recompile_p = 1;
+ Renew(pRExC_state->code_blocks,
+ pRExC_state->num_code_blocks + ri->num_code_blocks,
+ struct reg_code_block);
+ pRExC_state->num_code_blocks += ri->num_code_blocks;
+
+ for (i=0; i < ri->num_code_blocks; i++) {
+ struct reg_code_block *src, *dst;
+ STRLEN offset = orig_patlen
+ + ReANY((REGEXP *)rx)->pre_prefix;
+ assert(n < pRExC_state->num_code_blocks);
+ src = &ri->code_blocks[i];
+ dst = &pRExC_state->code_blocks[n];
+ dst->start = src->start + offset;
+ dst->end = src->end + offset;
+ dst->block = src->block;
+ dst->src_regex = (REGEXP*) SvREFCNT_inc( (SV*)
+ src->src_regex
+ ? src->src_regex
+ : (REGEXP*)rx);
+ n++;
+ }
+ }
+ }
+ }
+ /* avoid calling magic multiple times on a single element e.g. =~ $qr */
+ if (alloced)
+ SvSETMAGIC(pat);
+
+ return pat;
+}
+
+
+
+/* see if there are any run-time code blocks in the pattern.
+ * False positives are allowed */
+
+static bool
+S_has_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
+ char *pat, STRLEN plen)
+{
+ int n = 0;
+ STRLEN s;
+
+ PERL_UNUSED_CONTEXT;
+
+ for (s = 0; s < plen; s++) {
+ if (n < pRExC_state->num_code_blocks
+ && s == pRExC_state->code_blocks[n].start)
+ {
+ s = pRExC_state->code_blocks[n].end;
+ n++;
+ continue;
+ }
+ /* TODO ideally should handle [..], (#..), /#.../x to reduce false
+ * positives here */
+ if (pat[s] == '(' && s+2 <= plen && pat[s+1] == '?' &&
+ (pat[s+2] == '{'
+ || (s + 2 <= plen && pat[s+2] == '?' && pat[s+3] == '{'))
+ )
+ return 1;
+ }
+ return 0;
+}
+
+/* Handle run-time code blocks. We will already have compiled any direct
+ * or indirect literal code blocks. Now, take the pattern 'pat' and make a
+ * copy of it, but with any literal code blocks blanked out and
+ * appropriate chars escaped; then feed it into
+ *
+ * eval "qr'modified_pattern'"
+ *
+ * For example,
+ *
+ * a\bc(?{"this was literal"})def'ghi\\jkl(?{"this is runtime"})mno
+ *
+ * becomes
+ *
+ * qr'a\\bc_______________________def\'ghi\\\\jkl(?{"this is runtime"})mno'
+ *
+ * After eval_sv()-ing that, grab any new code blocks from the returned qr
+ * and merge them with any code blocks of the original regexp.
+ *
+ * If the pat is non-UTF8, while the evalled qr is UTF8, don't merge;
+ * instead, just save the qr and return FALSE; this tells our caller that
+ * the original pattern needs upgrading to utf8.
+ */
+
+static bool
+S_compile_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
+ char *pat, STRLEN plen)
+{
+ SV *qr;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ if (pRExC_state->runtime_code_qr) {
+ /* this is the second time we've been called; this should
+ * only happen if the main pattern got upgraded to utf8
+ * during compilation; re-use the qr we compiled first time
+ * round (which should be utf8 too)
+ */
+ qr = pRExC_state->runtime_code_qr;
+ pRExC_state->runtime_code_qr = NULL;
+ assert(RExC_utf8 && SvUTF8(qr));
+ }
+ else {
+ int n = 0;
+ STRLEN s;
+ char *p, *newpat;
+ int newlen = plen + 6; /* allow for "qr''x\0" extra chars */
+ SV *sv, *qr_ref;
+ dSP;
+
+ /* determine how many extra chars we need for ' and \ escaping */
+ for (s = 0; s < plen; s++) {
+ if (pat[s] == '\'' || pat[s] == '\\')
+ newlen++;
+ }
+
+ Newx(newpat, newlen, char);
+ p = newpat;
+ *p++ = 'q'; *p++ = 'r'; *p++ = '\'';
+
+ for (s = 0; s < plen; s++) {
+ if (n < pRExC_state->num_code_blocks
+ && s == pRExC_state->code_blocks[n].start)
+ {
+ /* blank out literal code block */
+ assert(pat[s] == '(');
+ while (s <= pRExC_state->code_blocks[n].end) {
+ *p++ = '_';
+ s++;
+ }
+ s--;
+ n++;
+ continue;
+ }
+ if (pat[s] == '\'' || pat[s] == '\\')
+ *p++ = '\\';
+ *p++ = pat[s];
+ }
+ *p++ = '\'';
+ if (pRExC_state->pm_flags & RXf_PMf_EXTENDED)
+ *p++ = 'x';
+ *p++ = '\0';
+ DEBUG_COMPILE_r({
+ PerlIO_printf(Perl_debug_log,
+ "%sre-parsing pattern for runtime code:%s %s\n",
+ PL_colors[4],PL_colors[5],newpat);
+ });
+
+ sv = newSVpvn_flags(newpat, p-newpat-1, RExC_utf8 ? SVf_UTF8 : 0);
+ Safefree(newpat);
+
+ ENTER;
+ SAVETMPS;
+ save_re_context();
+ PUSHSTACKi(PERLSI_REQUIRE);
+ /* G_RE_REPARSING causes the toker to collapse \\ into \ when
+ * parsing qr''; normally only q'' does this. It also alters
+ * hints handling */
+ eval_sv(sv, G_SCALAR|G_RE_REPARSING);
+ SvREFCNT_dec_NN(sv);
+ SPAGAIN;
+ qr_ref = POPs;
+ PUTBACK;
+ {
+ SV * const errsv = ERRSV;
+ if (SvTRUE_NN(errsv))
+ {
+ Safefree(pRExC_state->code_blocks);
+ /* use croak_sv ? */
+ Perl_croak_nocontext("%"SVf, SVfARG(errsv));
+ }
+ }
+ assert(SvROK(qr_ref));
+ qr = SvRV(qr_ref);
+ assert(SvTYPE(qr) == SVt_REGEXP && RX_ENGINE((REGEXP*)qr)->op_comp);
+ /* the leaving below frees the tmp qr_ref.
+ * Give qr a life of its own */
+ SvREFCNT_inc(qr);
+ POPSTACK;
+ FREETMPS;
+ LEAVE;
+
+ }
+
+ if (!RExC_utf8 && SvUTF8(qr)) {
+ /* first time through; the pattern got upgraded; save the
+ * qr for the next time through */
+ assert(!pRExC_state->runtime_code_qr);
+ pRExC_state->runtime_code_qr = qr;
+ return 0;
+ }
+
+
+ /* extract any code blocks within the returned qr// */
+
+
+ /* merge the main (r1) and run-time (r2) code blocks into one */
+ {
+ RXi_GET_DECL(ReANY((REGEXP *)qr), r2);
+ struct reg_code_block *new_block, *dst;
+ RExC_state_t * const r1 = pRExC_state; /* convenient alias */
+ int i1 = 0, i2 = 0;
+
+ if (!r2->num_code_blocks) /* we guessed wrong */
+ {
+ SvREFCNT_dec_NN(qr);
+ return 1;
+ }
+
+ Newx(new_block,
+ r1->num_code_blocks + r2->num_code_blocks,
+ struct reg_code_block);
+ dst = new_block;
+
+ while ( i1 < r1->num_code_blocks
+ || i2 < r2->num_code_blocks)
+ {
+ struct reg_code_block *src;
+ bool is_qr = 0;
+
+ if (i1 == r1->num_code_blocks) {
+ src = &r2->code_blocks[i2++];
+ is_qr = 1;
+ }
+ else if (i2 == r2->num_code_blocks)
+ src = &r1->code_blocks[i1++];
+ else if ( r1->code_blocks[i1].start
+ < r2->code_blocks[i2].start)
+ {
+ src = &r1->code_blocks[i1++];
+ assert(src->end < r2->code_blocks[i2].start);
+ }
+ else {
+ assert( r1->code_blocks[i1].start
+ > r2->code_blocks[i2].start);
+ src = &r2->code_blocks[i2++];
+ is_qr = 1;
+ assert(src->end < r1->code_blocks[i1].start);
+ }
+
+ assert(pat[src->start] == '(');
+ assert(pat[src->end] == ')');
+ dst->start = src->start;
+ dst->end = src->end;
+ dst->block = src->block;
+ dst->src_regex = is_qr ? (REGEXP*) SvREFCNT_inc( (SV*) qr)
+ : src->src_regex;
+ dst++;
+ }
+ r1->num_code_blocks += r2->num_code_blocks;
+ Safefree(r1->code_blocks);
+ r1->code_blocks = new_block;
+ }
+
+ SvREFCNT_dec_NN(qr);
+ return 1;
+}
+
+
+STATIC bool
+S_setup_longest(pTHX_ RExC_state_t *pRExC_state, SV* sv_longest,
+ SV** rx_utf8, SV** rx_substr, SSize_t* rx_end_shift,
+ SSize_t lookbehind, SSize_t offset, SSize_t *minlen,
+ STRLEN longest_length, bool eol, bool meol)
+{
+ /* This is the common code for setting up the floating and fixed length
+ * string data extracted from Perl_re_op_compile() below. Returns a boolean
+ * as to whether succeeded or not */
+
+ I32 t;
+ SSize_t ml;
+
+ if (! (longest_length
+ || (eol /* Can't have SEOL and MULTI */
+ && (! meol || (RExC_flags & RXf_PMf_MULTILINE)))
+ )
+ /* See comments for join_exact for why REG_UNFOLDED_MULTI_SEEN */
+ || (RExC_seen & REG_UNFOLDED_MULTI_SEEN))
+ {
+ return FALSE;
+ }
+
+ /* copy the information about the longest from the reg_scan_data
+ over to the program. */
+ if (SvUTF8(sv_longest)) {
+ *rx_utf8 = sv_longest;
+ *rx_substr = NULL;
+ } else {
+ *rx_substr = sv_longest;
+ *rx_utf8 = NULL;
+ }
+ /* end_shift is how many chars that must be matched that
+ follow this item. We calculate it ahead of time as once the
+ lookbehind offset is added in we lose the ability to correctly
+ calculate it.*/
+ ml = minlen ? *(minlen) : (SSize_t)longest_length;
+ *rx_end_shift = ml - offset
+ - longest_length + (SvTAIL(sv_longest) != 0)
+ + lookbehind;
+
+ t = (eol/* Can't have SEOL and MULTI */
+ && (! meol || (RExC_flags & RXf_PMf_MULTILINE)));
+ fbm_compile(sv_longest, t ? FBMcf_TAIL : 0);
+
+ return TRUE;
+}
+
+/*
+ * Perl_re_op_compile - the perl internal RE engine's function to compile a
+ * regular expression into internal code.
+ * The pattern may be passed either as:
+ * a list of SVs (patternp plus pat_count)
+ * a list of OPs (expr)
+ * If both are passed, the SV list is used, but the OP list indicates
+ * which SVs are actually pre-compiled code blocks
+ *
+ * The SVs in the list have magic and qr overloading applied to them (and
+ * the list may be modified in-place with replacement SVs in the latter
+ * case).
+ *
+ * If the pattern hasn't changed from old_re, then old_re will be
+ * returned.
+ *
+ * eng is the current engine. If that engine has an op_comp method, then
+ * handle directly (i.e. we assume that op_comp was us); otherwise, just
+ * do the initial concatenation of arguments and pass on to the external
+ * engine.
+ *
+ * If is_bare_re is not null, set it to a boolean indicating whether the
+ * arg list reduced (after overloading) to a single bare regex which has
+ * been returned (i.e. /$qr/).
+ *
+ * orig_rx_flags contains RXf_* flags. See perlreapi.pod for more details.
+ *
+ * pm_flags contains the PMf_* flags, typically based on those from the
+ * pm_flags field of the related PMOP. Currently we're only interested in
+ * PMf_HAS_CV, PMf_IS_QR, PMf_USE_RE_EVAL.
+ *
+ * We can't allocate space until we know how big the compiled form will be,
+ * but we can't compile it (and thus know how big it is) until we've got a
+ * place to put the code. So we cheat: we compile it twice, once with code
+ * generation turned off and size counting turned on, and once "for real".
+ * This also means that we don't allocate space until we are sure that the
+ * thing really will compile successfully, and we never have to move the
+ * code and thus invalidate pointers into it. (Note that it has to be in
+ * one piece because free() must be able to free it all.) [NB: not true in perl]
+ *
+ * Beware that the optimization-preparation code in here knows about some
+ * of the structure of the compiled regexp. [I'll say.]
+ */
+
+REGEXP *
+Perl_re_op_compile(pTHX_ SV ** const patternp, int pat_count,
+ OP *expr, const regexp_engine* eng, REGEXP *old_re,
+ bool *is_bare_re, U32 orig_rx_flags, U32 pm_flags)
+{
+ REGEXP *rx;
+ struct regexp *r;
+ regexp_internal *ri;
+ STRLEN plen;
+ char *exp;
+ regnode *scan;
+ I32 flags;
+ SSize_t minlen = 0;
+ U32 rx_flags;
+ SV *pat;
+ SV *code_blocksv = NULL;
+ SV** new_patternp = patternp;
+
+ /* these are all flags - maybe they should be turned
+ * into a single int with different bit masks */
+ I32 sawlookahead = 0;
+ I32 sawplus = 0;
+ I32 sawopen = 0;
+ I32 sawminmod = 0;
+
+ regex_charset initial_charset = get_regex_charset(orig_rx_flags);
+ bool recompile = 0;
+ bool runtime_code = 0;
+ scan_data_t data;
+ RExC_state_t RExC_state;
+ RExC_state_t * const pRExC_state = &RExC_state;
+#ifdef TRIE_STUDY_OPT
+ int restudied = 0;
+ RExC_state_t copyRExC_state;
+#endif
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_OP_COMPILE;
+
+ DEBUG_r(if (!PL_colorset) reginitcolors());
+
+ /* Initialize these here instead of as-needed, as is quick and avoids
+ * having to test them each time otherwise */
+ if (! PL_AboveLatin1) {
+ PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist);
+ PL_Latin1 = _new_invlist_C_array(Latin1_invlist);
+ PL_UpperLatin1 = _new_invlist_C_array(UpperLatin1_invlist);
+ PL_utf8_foldable = _new_invlist_C_array(_Perl_Any_Folds_invlist);
+ PL_HasMultiCharFold =
+ _new_invlist_C_array(_Perl_Folds_To_Multi_Char_invlist);
+
+ /* This is calculated here, because the Perl program that generates the
+ * static global ones doesn't currently have access to
+ * NUM_ANYOF_CODE_POINTS */
+ PL_InBitmap = _new_invlist(2);
+ PL_InBitmap = _add_range_to_invlist(PL_InBitmap, 0,
+ NUM_ANYOF_CODE_POINTS - 1);
+ }
+
+ pRExC_state->code_blocks = NULL;
+ pRExC_state->num_code_blocks = 0;
+
+ if (is_bare_re)
+ *is_bare_re = FALSE;
+
+ if (expr && (expr->op_type == OP_LIST ||
+ (expr->op_type == OP_NULL && expr->op_targ == OP_LIST))) {
+ /* allocate code_blocks if needed */
+ OP *o;
+ int ncode = 0;
+
+ for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o))
+ if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL))
+ ncode++; /* count of DO blocks */
+ if (ncode) {
+ pRExC_state->num_code_blocks = ncode;
+ Newx(pRExC_state->code_blocks, ncode, struct reg_code_block);
+ }
+ }
+
+ if (!pat_count) {
+ /* compile-time pattern with just OP_CONSTs and DO blocks */
+
+ int n;
+ OP *o;
+
+ /* find how many CONSTs there are */
+ assert(expr);
+ n = 0;
+ if (expr->op_type == OP_CONST)
+ n = 1;
+ else
+ for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o)) {
+ if (o->op_type == OP_CONST)
+ n++;
+ }
+
+ /* fake up an SV array */
+
+ assert(!new_patternp);
+ Newx(new_patternp, n, SV*);
+ SAVEFREEPV(new_patternp);
+ pat_count = n;
+
+ n = 0;
+ if (expr->op_type == OP_CONST)
+ new_patternp[n] = cSVOPx_sv(expr);
+ else
+ for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o)) {
+ if (o->op_type == OP_CONST)
+ new_patternp[n++] = cSVOPo_sv;
+ }
+
+ }
+
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+ "Assembling pattern from %d elements%s\n", pat_count,
+ orig_rx_flags & RXf_SPLIT ? " for split" : ""));
+
+ /* set expr to the first arg op */
+
+ if (pRExC_state->num_code_blocks
+ && expr->op_type != OP_CONST)
+ {
+ expr = cLISTOPx(expr)->op_first;
+ assert( expr->op_type == OP_PUSHMARK
+ || (expr->op_type == OP_NULL && expr->op_targ == OP_PUSHMARK)
+ || expr->op_type == OP_PADRANGE);
+ expr = OpSIBLING(expr);
+ }
+
+ pat = S_concat_pat(aTHX_ pRExC_state, NULL, new_patternp, pat_count,
+ expr, &recompile, NULL);
+
+ /* handle bare (possibly after overloading) regex: foo =~ $re */
+ {
+ SV *re = pat;
+ if (SvROK(re))
+ re = SvRV(re);
+ if (SvTYPE(re) == SVt_REGEXP) {
+ if (is_bare_re)
+ *is_bare_re = TRUE;
+ SvREFCNT_inc(re);
+ Safefree(pRExC_state->code_blocks);
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+ "Precompiled pattern%s\n",
+ orig_rx_flags & RXf_SPLIT ? " for split" : ""));
+
+ return (REGEXP*)re;
+ }
+ }
+
+ exp = SvPV_nomg(pat, plen);
+
+ if (!eng->op_comp) {
+ if ((SvUTF8(pat) && IN_BYTES)
+ || SvGMAGICAL(pat) || SvAMAGIC(pat))
+ {
+ /* make a temporary copy; either to convert to bytes,
+ * or to avoid repeating get-magic / overloaded stringify */
+ pat = newSVpvn_flags(exp, plen, SVs_TEMP |
+ (IN_BYTES ? 0 : SvUTF8(pat)));
+ }
+ Safefree(pRExC_state->code_blocks);
+ return CALLREGCOMP_ENG(eng, pat, orig_rx_flags);
+ }
+
+ /* ignore the utf8ness if the pattern is 0 length */
+ RExC_utf8 = RExC_orig_utf8 = (plen == 0 || IN_BYTES) ? 0 : SvUTF8(pat);
+ RExC_uni_semantics = 0;
+ RExC_contains_locale = 0;
+ RExC_contains_i = 0;
+ RExC_strict = cBOOL(pm_flags & RXf_PMf_STRICT);
+ pRExC_state->runtime_code_qr = NULL;
+ RExC_frame_head= NULL;
+ RExC_frame_last= NULL;
+ RExC_frame_count= 0;
+
+ DEBUG_r({
+ RExC_mysv1= sv_newmortal();
+ RExC_mysv2= sv_newmortal();
+ });
+ DEBUG_COMPILE_r({
+ SV *dsv= sv_newmortal();
+ RE_PV_QUOTED_DECL(s, RExC_utf8, dsv, exp, plen, 60);
+ PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
+ PL_colors[4],PL_colors[5],s);
+ });
+
+ redo_first_pass:
+ /* we jump here if we upgrade the pattern to utf8 and have to
+ * recompile */
+
+ if ((pm_flags & PMf_USE_RE_EVAL)
+ /* this second condition covers the non-regex literal case,
+ * i.e. $foo =~ '(?{})'. */
+ || (IN_PERL_COMPILETIME && (PL_hints & HINT_RE_EVAL))
+ )
+ runtime_code = S_has_runtime_code(aTHX_ pRExC_state, exp, plen);
+
+ /* return old regex if pattern hasn't changed */
+ /* XXX: note in the below we have to check the flags as well as the
+ * pattern.
+ *
+ * Things get a touch tricky as we have to compare the utf8 flag
+ * independently from the compile flags. */
+
+ if ( old_re
+ && !recompile
+ && !!RX_UTF8(old_re) == !!RExC_utf8
+ && ( RX_COMPFLAGS(old_re) == ( orig_rx_flags & RXf_PMf_FLAGCOPYMASK ) )
+ && RX_PRECOMP(old_re)
+ && RX_PRELEN(old_re) == plen
+ && memEQ(RX_PRECOMP(old_re), exp, plen)
+ && !runtime_code /* with runtime code, always recompile */ )
+ {
+ Safefree(pRExC_state->code_blocks);
+ return old_re;
+ }
+
+ rx_flags = orig_rx_flags;
+
+ if (rx_flags & PMf_FOLD) {
+ RExC_contains_i = 1;
+ }
+ if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
+
+ /* Set to use unicode semantics if the pattern is in utf8 and has the
+ * 'depends' charset specified, as it means unicode when utf8 */
+ set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
+ }
+
+ RExC_precomp = exp;
+ RExC_flags = rx_flags;
+ RExC_pm_flags = pm_flags;
+
+ if (runtime_code) {
+ if (TAINTING_get && TAINT_get)
+ Perl_croak(aTHX_ "Eval-group in insecure regular expression");
+
+ if (!S_compile_runtime_code(aTHX_ pRExC_state, exp, plen)) {
+ /* whoops, we have a non-utf8 pattern, whilst run-time code
+ * got compiled as utf8. Try again with a utf8 pattern */
+ S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
+ pRExC_state->num_code_blocks);
+ goto redo_first_pass;
+ }
+ }
+ assert(!pRExC_state->runtime_code_qr);
+
+ RExC_sawback = 0;
+
+ RExC_seen = 0;
+ RExC_maxlen = 0;
+ RExC_in_lookbehind = 0;
+ RExC_seen_zerolen = *exp == '^' ? -1 : 0;
+ RExC_extralen = 0;
+ RExC_override_recoding = 0;
+#ifdef EBCDIC
+ RExC_recode_x_to_native = 0;
+#endif
+ RExC_in_multi_char_class = 0;
+
+ /* First pass: determine size, legality. */
+ RExC_parse = exp;
+ RExC_start = exp;
+ RExC_end = exp + plen;
+ RExC_naughty = 0;
+ RExC_npar = 1;
+ RExC_nestroot = 0;
+ RExC_size = 0L;
+ RExC_emit = (regnode *) &RExC_emit_dummy;
+ RExC_whilem_seen = 0;
+ RExC_open_parens = NULL;
+ RExC_close_parens = NULL;
+ RExC_opend = NULL;
+ RExC_paren_names = NULL;
+#ifdef DEBUGGING
+ RExC_paren_name_list = NULL;
+#endif
+ RExC_recurse = NULL;
+ RExC_study_chunk_recursed = NULL;
+ RExC_study_chunk_recursed_bytes= 0;
+ RExC_recurse_count = 0;
+ pRExC_state->code_index = 0;
+
+ DEBUG_PARSE_r(
+ PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n");
+ RExC_lastnum=0;
+ RExC_lastparse=NULL;
+ );
+ /* reg may croak on us, not giving us a chance to free
+ pRExC_state->code_blocks. We cannot SAVEFREEPV it now, as we may
+ need it to survive as long as the regexp (qr/(?{})/).
+ We must check that code_blocksv is not already set, because we may
+ have jumped back to restart the sizing pass. */
+ if (pRExC_state->code_blocks && !code_blocksv) {
+ code_blocksv = newSV_type(SVt_PV);
+ SAVEFREESV(code_blocksv);
+ SvPV_set(code_blocksv, (char *)pRExC_state->code_blocks);
+ SvLEN_set(code_blocksv, 1); /*sufficient to make sv_clear free it*/
+ }
+ if (reg(pRExC_state, 0, &flags,1) == NULL) {
+ /* It's possible to write a regexp in ascii that represents Unicode
+ codepoints outside of the byte range, such as via \x{100}. If we
+ detect such a sequence we have to convert the entire pattern to utf8
+ and then recompile, as our sizing calculation will have been based
+ on 1 byte == 1 character, but we will need to use utf8 to encode
+ at least some part of the pattern, and therefore must convert the whole
+ thing.
+ -- dmq */
+ if (flags & RESTART_UTF8) {
+ S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
+ pRExC_state->num_code_blocks);
+ goto redo_first_pass;
+ }
+ Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for sizing pass, flags=%#"UVxf"", (UV) flags);
+ }
+ if (code_blocksv)
+ SvLEN_set(code_blocksv,0); /* no you can't have it, sv_clear */
+
+ DEBUG_PARSE_r({
+ PerlIO_printf(Perl_debug_log,
+ "Required size %"IVdf" nodes\n"
+ "Starting second pass (creation)\n",
+ (IV)RExC_size);
+ RExC_lastnum=0;
+ RExC_lastparse=NULL;
+ });
+
+ /* The first pass could have found things that force Unicode semantics */
+ if ((RExC_utf8 || RExC_uni_semantics)
+ && get_regex_charset(rx_flags) == REGEX_DEPENDS_CHARSET)
+ {
+ set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
+ }
+
+ /* Small enough for pointer-storage convention?
+ If extralen==0, this means that we will not need long jumps. */
+ if (RExC_size >= 0x10000L && RExC_extralen)
+ RExC_size += RExC_extralen;
+ else
+ RExC_extralen = 0;
+ if (RExC_whilem_seen > 15)
+ RExC_whilem_seen = 15;
+
+ /* Allocate space and zero-initialize. Note, the two step process
+ of zeroing when in debug mode, thus anything assigned has to
+ happen after that */
+ rx = (REGEXP*) newSV_type(SVt_REGEXP);
+ r = ReANY(rx);
+ Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
+ char, regexp_internal);
+ if ( r == NULL || ri == NULL )
+ FAIL("Regexp out of space");
+#ifdef DEBUGGING
+ /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
+ Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
+ char);
+#else
+ /* bulk initialize base fields with 0. */
+ Zero(ri, sizeof(regexp_internal), char);
+#endif
+
+ /* non-zero initialization begins here */
+ RXi_SET( r, ri );
+ r->engine= eng;
+ r->extflags = rx_flags;
+ RXp_COMPFLAGS(r) = orig_rx_flags & RXf_PMf_FLAGCOPYMASK;
+
+ if (pm_flags & PMf_IS_QR) {
+ ri->code_blocks = pRExC_state->code_blocks;
+ ri->num_code_blocks = pRExC_state->num_code_blocks;
+ }
+ else
+ {
+ int n;
+ for (n = 0; n < pRExC_state->num_code_blocks; n++)
+ if (pRExC_state->code_blocks[n].src_regex)
+ SAVEFREESV(pRExC_state->code_blocks[n].src_regex);
+ SAVEFREEPV(pRExC_state->code_blocks);
+ }
+
+ {
+ bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
+ bool has_charset = (get_regex_charset(r->extflags)
+ != REGEX_DEPENDS_CHARSET);
+
+ /* The caret is output if there are any defaults: if not all the STD
+ * flags are set, or if no character set specifier is needed */
+ bool has_default =
+ (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
+ || ! has_charset);
+ bool has_runon = ((RExC_seen & REG_RUN_ON_COMMENT_SEEN)
+ == REG_RUN_ON_COMMENT_SEEN);
+ U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
+ >> RXf_PMf_STD_PMMOD_SHIFT);
+ const char *fptr = STD_PAT_MODS; /*"msixn"*/
+ char *p;
+ /* Allocate for the worst case, which is all the std flags are turned
+ * on. If more precision is desired, we could do a population count of
+ * the flags set. This could be done with a small lookup table, or by
+ * shifting, masking and adding, or even, when available, assembly
+ * language for a machine-language population count.
+ * We never output a minus, as all those are defaults, so are
+ * covered by the caret */
+ const STRLEN wraplen = plen + has_p + has_runon
+ + has_default /* If needs a caret */
+
+ /* If needs a character set specifier */
+ + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
+ + (sizeof(STD_PAT_MODS) - 1)
+ + (sizeof("(?:)") - 1);
+
+ Newx(p, wraplen + 1, char); /* +1 for the ending NUL */
+ r->xpv_len_u.xpvlenu_pv = p;
+ if (RExC_utf8)
+ SvFLAGS(rx) |= SVf_UTF8;
+ *p++='('; *p++='?';
+
+ /* If a default, cover it using the caret */
+ if (has_default) {
+ *p++= DEFAULT_PAT_MOD;
+ }
+ if (has_charset) {
+ STRLEN len;
+ const char* const name = get_regex_charset_name(r->extflags, &len);
+ Copy(name, p, len, char);
+ p += len;
+ }
+ if (has_p)
+ *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
+ {
+ char ch;
+ while((ch = *fptr++)) {
+ if(reganch & 1)
+ *p++ = ch;
+ reganch >>= 1;
+ }
+ }
+
+ *p++ = ':';
+ Copy(RExC_precomp, p, plen, char);
+ assert ((RX_WRAPPED(rx) - p) < 16);
+ r->pre_prefix = p - RX_WRAPPED(rx);
+ p += plen;
+ if (has_runon)
+ *p++ = '\n';
+ *p++ = ')';
+ *p = 0;
+ SvCUR_set(rx, p - RX_WRAPPED(rx));
+ }
+
+ r->intflags = 0;
+ r->nparens = RExC_npar - 1; /* set early to validate backrefs */
+
+ /* setup various meta data about recursion, this all requires
+ * RExC_npar to be correctly set, and a bit later on we clear it */
+ if (RExC_seen & REG_RECURSE_SEEN) {
+ Newxz(RExC_open_parens, RExC_npar,regnode *);
+ SAVEFREEPV(RExC_open_parens);
+ Newxz(RExC_close_parens,RExC_npar,regnode *);
+ SAVEFREEPV(RExC_close_parens);
+ }
+ if (RExC_seen & (REG_RECURSE_SEEN | REG_GOSTART_SEEN)) {
+ /* Note, RExC_npar is 1 + the number of parens in a pattern.
+ * So its 1 if there are no parens. */
+ RExC_study_chunk_recursed_bytes= (RExC_npar >> 3) +
+ ((RExC_npar & 0x07) != 0);
+ Newx(RExC_study_chunk_recursed,
+ RExC_study_chunk_recursed_bytes * RExC_npar, U8);
+ SAVEFREEPV(RExC_study_chunk_recursed);
+ }
+
+ /* Useful during FAIL. */
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
+ DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
+ "%s %"UVuf" bytes for offset annotations.\n",
+ ri->u.offsets ? "Got" : "Couldn't get",
+ (UV)((2*RExC_size+1) * sizeof(U32))));
+#endif
+ SetProgLen(ri,RExC_size);
+ RExC_rx_sv = rx;
+ RExC_rx = r;
+ RExC_rxi = ri;
+
+ /* Second pass: emit code. */
+ RExC_flags = rx_flags; /* don't let top level (?i) bleed */
+ RExC_pm_flags = pm_flags;
+ RExC_parse = exp;
+ RExC_end = exp + plen;
+ RExC_naughty = 0;
+ RExC_npar = 1;
+ RExC_emit_start = ri->program;
+ RExC_emit = ri->program;
+ RExC_emit_bound = ri->program + RExC_size + 1;
+ pRExC_state->code_index = 0;
+
+ *((char*) RExC_emit++) = (char) REG_MAGIC;
+ if (reg(pRExC_state, 0, &flags,1) == NULL) {
+ ReREFCNT_dec(rx);
+ Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for generation pass, flags=%#"UVxf"", (UV) flags);
+ }
+ /* XXXX To minimize changes to RE engine we always allocate
+ 3-units-long substrs field. */
+ Newx(r->substrs, 1, struct reg_substr_data);
+ if (RExC_recurse_count) {
+ Newxz(RExC_recurse,RExC_recurse_count,regnode *);
+ SAVEFREEPV(RExC_recurse);
+ }
+
+ reStudy:
+ r->minlen = minlen = sawlookahead = sawplus = sawopen = sawminmod = 0;
+ DEBUG_r(
+ RExC_study_chunk_recursed_count= 0;
+ );
+ Zero(r->substrs, 1, struct reg_substr_data);
+ if (RExC_study_chunk_recursed) {
+ Zero(RExC_study_chunk_recursed,
+ RExC_study_chunk_recursed_bytes * RExC_npar, U8);
+ }
+
+
+#ifdef TRIE_STUDY_OPT
+ if (!restudied) {
+ StructCopy(&zero_scan_data, &data, scan_data_t);
+ copyRExC_state = RExC_state;
+ } else {
+ U32 seen=RExC_seen;
+ DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
+
+ RExC_state = copyRExC_state;
+ if (seen & REG_TOP_LEVEL_BRANCHES_SEEN)
+ RExC_seen |= REG_TOP_LEVEL_BRANCHES_SEEN;
+ else
+ RExC_seen &= ~REG_TOP_LEVEL_BRANCHES_SEEN;
+ StructCopy(&zero_scan_data, &data, scan_data_t);
+ }
+#else
+ StructCopy(&zero_scan_data, &data, scan_data_t);
+#endif
+
+ /* Dig out information for optimizations. */
+ r->extflags = RExC_flags; /* was pm_op */
+ /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
+
+ if (UTF)
+ SvUTF8_on(rx); /* Unicode in it? */
+ ri->regstclass = NULL;
+ if (RExC_naughty >= TOO_NAUGHTY) /* Probably an expensive pattern. */
+ r->intflags |= PREGf_NAUGHTY;
+ scan = ri->program + 1; /* First BRANCH. */
+
+ /* testing for BRANCH here tells us whether there is "must appear"
+ data in the pattern. If there is then we can use it for optimisations */
+ if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN)) { /* Only one top-level choice.
+ */
+ SSize_t fake;
+ STRLEN longest_float_length, longest_fixed_length;
+ regnode_ssc ch_class; /* pointed to by data */
+ int stclass_flag;
+ SSize_t last_close = 0; /* pointed to by data */
+ regnode *first= scan;
+ regnode *first_next= regnext(first);
+ /*
+ * Skip introductions and multiplicators >= 1
+ * so that we can extract the 'meat' of the pattern that must
+ * match in the large if() sequence following.
+ * NOTE that EXACT is NOT covered here, as it is normally
+ * picked up by the optimiser separately.
+ *
+ * This is unfortunate as the optimiser isnt handling lookahead
+ * properly currently.
+ *
+ */
+ while ((OP(first) == OPEN && (sawopen = 1)) ||
+ /* An OR of *one* alternative - should not happen now. */
+ (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
+ /* for now we can't handle lookbehind IFMATCH*/
+ (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
+ (OP(first) == PLUS) ||
+ (OP(first) == MINMOD) ||
+ /* An {n,m} with n>0 */
+ (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
+ (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
+ {
+ /*
+ * the only op that could be a regnode is PLUS, all the rest
+ * will be regnode_1 or regnode_2.
+ *
+ * (yves doesn't think this is true)
+ */
+ if (OP(first) == PLUS)
+ sawplus = 1;
+ else {
+ if (OP(first) == MINMOD)
+ sawminmod = 1;
+ first += regarglen[OP(first)];
+ }
+ first = NEXTOPER(first);
+ first_next= regnext(first);
+ }
+
+ /* Starting-point info. */
+ again:
+ DEBUG_PEEP("first:",first,0);
+ /* Ignore EXACT as we deal with it later. */
+ if (PL_regkind[OP(first)] == EXACT) {
+ if (OP(first) == EXACT || OP(first) == EXACTL)
+ NOOP; /* Empty, get anchored substr later. */
+ else
+ ri->regstclass = first;
+ }
+#ifdef TRIE_STCLASS
+ else if (PL_regkind[OP(first)] == TRIE &&
+ ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
+ {
+ /* this can happen only on restudy */
+ ri->regstclass = construct_ahocorasick_from_trie(pRExC_state, (regnode *)first, 0);
+ }
+#endif
+ else if (REGNODE_SIMPLE(OP(first)))
+ ri->regstclass = first;
+ else if (PL_regkind[OP(first)] == BOUND ||
+ PL_regkind[OP(first)] == NBOUND)
+ ri->regstclass = first;
+ else if (PL_regkind[OP(first)] == BOL) {
+ r->intflags |= (OP(first) == MBOL
+ ? PREGf_ANCH_MBOL
+ : PREGf_ANCH_SBOL);
+ first = NEXTOPER(first);
+ goto again;
+ }
+ else if (OP(first) == GPOS) {
+ r->intflags |= PREGf_ANCH_GPOS;
+ first = NEXTOPER(first);
+ goto again;
+ }
+ else if ((!sawopen || !RExC_sawback) &&
+ !sawlookahead &&
+ (OP(first) == STAR &&
+ PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
+ !(r->intflags & PREGf_ANCH) && !pRExC_state->num_code_blocks)
+ {
+ /* turn .* into ^.* with an implied $*=1 */
+ const int type =
+ (OP(NEXTOPER(first)) == REG_ANY)
+ ? PREGf_ANCH_MBOL
+ : PREGf_ANCH_SBOL;
+ r->intflags |= (type | PREGf_IMPLICIT);
+ first = NEXTOPER(first);
+ goto again;
+ }
+ if (sawplus && !sawminmod && !sawlookahead
+ && (!sawopen || !RExC_sawback)
+ && !pRExC_state->num_code_blocks) /* May examine pos and $& */
+ /* x+ must match at the 1st pos of run of x's */
+ r->intflags |= PREGf_SKIP;
+
+ /* Scan is after the zeroth branch, first is atomic matcher. */
+#ifdef TRIE_STUDY_OPT
+ DEBUG_PARSE_r(
+ if (!restudied)
+ PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
+ (IV)(first - scan + 1))
+ );
+#else
+ DEBUG_PARSE_r(
+ PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
+ (IV)(first - scan + 1))
+ );
+#endif
+
+
+ /*
+ * If there's something expensive in the r.e., find the
+ * longest literal string that must appear and make it the
+ * regmust. Resolve ties in favor of later strings, since
+ * the regstart check works with the beginning of the r.e.
+ * and avoiding duplication strengthens checking. Not a
+ * strong reason, but sufficient in the absence of others.
+ * [Now we resolve ties in favor of the earlier string if
+ * it happens that c_offset_min has been invalidated, since the
+ * earlier string may buy us something the later one won't.]
+ */
+
+ data.longest_fixed = newSVpvs("");
+ data.longest_float = newSVpvs("");
+ data.last_found = newSVpvs("");
+ data.longest = &(data.longest_fixed);
+ ENTER_with_name("study_chunk");
+ SAVEFREESV(data.longest_fixed);
+ SAVEFREESV(data.longest_float);
+ SAVEFREESV(data.last_found);
+ first = scan;
+ if (!ri->regstclass) {
+ ssc_init(pRExC_state, &ch_class);
+ data.start_class = &ch_class;
+ stclass_flag = SCF_DO_STCLASS_AND;
+ } else /* XXXX Check for BOUND? */
+ stclass_flag = 0;
+ data.last_closep = &last_close;
+
+ DEBUG_RExC_seen();
+ minlen = study_chunk(pRExC_state, &first, &minlen, &fake,
+ scan + RExC_size, /* Up to end */
+ &data, -1, 0, NULL,
+ SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag
+ | (restudied ? SCF_TRIE_DOING_RESTUDY : 0),
+ 0);
+
+
+ CHECK_RESTUDY_GOTO_butfirst(LEAVE_with_name("study_chunk"));
+
+
+ if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
+ && data.last_start_min == 0 && data.last_end > 0
+ && !RExC_seen_zerolen
+ && !(RExC_seen & REG_VERBARG_SEEN)
+ && !(RExC_seen & REG_GPOS_SEEN)
+ ){
+ r->extflags |= RXf_CHECK_ALL;
+ }
+ scan_commit(pRExC_state, &data,&minlen,0);
+
+ longest_float_length = CHR_SVLEN(data.longest_float);
+
+ if (! ((SvCUR(data.longest_fixed) /* ok to leave SvCUR */
+ && data.offset_fixed == data.offset_float_min
+ && SvCUR(data.longest_fixed) == SvCUR(data.longest_float)))
+ && S_setup_longest (aTHX_ pRExC_state,
+ data.longest_float,
+ &(r->float_utf8),
+ &(r->float_substr),
+ &(r->float_end_shift),
+ data.lookbehind_float,
+ data.offset_float_min,
+ data.minlen_float,
+ longest_float_length,
+ cBOOL(data.flags & SF_FL_BEFORE_EOL),
+ cBOOL(data.flags & SF_FL_BEFORE_MEOL)))
+ {
+ r->float_min_offset = data.offset_float_min - data.lookbehind_float;
+ r->float_max_offset = data.offset_float_max;
+ if (data.offset_float_max < SSize_t_MAX) /* Don't offset infinity */
+ r->float_max_offset -= data.lookbehind_float;
+ SvREFCNT_inc_simple_void_NN(data.longest_float);
+ }
+ else {
+ r->float_substr = r->float_utf8 = NULL;
+ longest_float_length = 0;
+ }
+
+ longest_fixed_length = CHR_SVLEN(data.longest_fixed);
+
+ if (S_setup_longest (aTHX_ pRExC_state,
+ data.longest_fixed,
+ &(r->anchored_utf8),
+ &(r->anchored_substr),
+ &(r->anchored_end_shift),
+ data.lookbehind_fixed,
+ data.offset_fixed,
+ data.minlen_fixed,
+ longest_fixed_length,
+ cBOOL(data.flags & SF_FIX_BEFORE_EOL),
+ cBOOL(data.flags & SF_FIX_BEFORE_MEOL)))
+ {
+ r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
+ SvREFCNT_inc_simple_void_NN(data.longest_fixed);
+ }
+ else {
+ r->anchored_substr = r->anchored_utf8 = NULL;
+ longest_fixed_length = 0;
+ }
+ LEAVE_with_name("study_chunk");
+
+ if (ri->regstclass
+ && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
+ ri->regstclass = NULL;
+
+ if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
+ && stclass_flag
+ && ! (ANYOF_FLAGS(data.start_class) & SSC_MATCHES_EMPTY_STRING)
+ && is_ssc_worth_it(pRExC_state, data.start_class))
+ {
+ const U32 n = add_data(pRExC_state, STR_WITH_LEN("f"));
+
+ ssc_finalize(pRExC_state, data.start_class);
+
+ Newx(RExC_rxi->data->data[n], 1, regnode_ssc);
+ StructCopy(data.start_class,
+ (regnode_ssc*)RExC_rxi->data->data[n],
+ regnode_ssc);
+ ri->regstclass = (regnode*)RExC_rxi->data->data[n];
+ r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
+ DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
+ regprop(r, sv, (regnode*)data.start_class, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log,
+ "synthetic stclass \"%s\".\n",
+ SvPVX_const(sv));});
+ data.start_class = NULL;
+ }
+
+ /* A temporary algorithm prefers floated substr to fixed one to dig
+ * more info. */
+ if (longest_fixed_length > longest_float_length) {
+ r->substrs->check_ix = 0;
+ r->check_end_shift = r->anchored_end_shift;
+ r->check_substr = r->anchored_substr;
+ r->check_utf8 = r->anchored_utf8;
+ r->check_offset_min = r->check_offset_max = r->anchored_offset;
+ if (r->intflags & (PREGf_ANCH_SBOL|PREGf_ANCH_GPOS))
+ r->intflags |= PREGf_NOSCAN;
+ }
+ else {
+ r->substrs->check_ix = 1;
+ r->check_end_shift = r->float_end_shift;
+ r->check_substr = r->float_substr;
+ r->check_utf8 = r->float_utf8;
+ r->check_offset_min = r->float_min_offset;
+ r->check_offset_max = r->float_max_offset;
+ }
+ if ((r->check_substr || r->check_utf8) ) {
+ r->extflags |= RXf_USE_INTUIT;
+ if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
+ r->extflags |= RXf_INTUIT_TAIL;
+ }
+ r->substrs->data[0].max_offset = r->substrs->data[0].min_offset;
+
+ /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
+ if ( (STRLEN)minlen < longest_float_length )
+ minlen= longest_float_length;
+ if ( (STRLEN)minlen < longest_fixed_length )
+ minlen= longest_fixed_length;
+ */
+ }
+ else {
+ /* Several toplevels. Best we can is to set minlen. */
+ SSize_t fake;
+ regnode_ssc ch_class;
+ SSize_t last_close = 0;
+
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
+
+ scan = ri->program + 1;
+ ssc_init(pRExC_state, &ch_class);
+ data.start_class = &ch_class;
+ data.last_closep = &last_close;
+
+ DEBUG_RExC_seen();
+ minlen = study_chunk(pRExC_state,
+ &scan, &minlen, &fake, scan + RExC_size, &data, -1, 0, NULL,
+ SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS|(restudied
+ ? SCF_TRIE_DOING_RESTUDY
+ : 0),
+ 0);
+
+ CHECK_RESTUDY_GOTO_butfirst(NOOP);
+
+ r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
+ = r->float_substr = r->float_utf8 = NULL;
+
+ if (! (ANYOF_FLAGS(data.start_class) & SSC_MATCHES_EMPTY_STRING)
+ && is_ssc_worth_it(pRExC_state, data.start_class))
+ {
+ const U32 n = add_data(pRExC_state, STR_WITH_LEN("f"));
+
+ ssc_finalize(pRExC_state, data.start_class);
+
+ Newx(RExC_rxi->data->data[n], 1, regnode_ssc);
+ StructCopy(data.start_class,
+ (regnode_ssc*)RExC_rxi->data->data[n],
+ regnode_ssc);
+ ri->regstclass = (regnode*)RExC_rxi->data->data[n];
+ r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
+ DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
+ regprop(r, sv, (regnode*)data.start_class, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log,
+ "synthetic stclass \"%s\".\n",
+ SvPVX_const(sv));});
+ data.start_class = NULL;
+ }
+ }
+
+ if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) {
+ r->extflags |= RXf_UNBOUNDED_QUANTIFIER_SEEN;
+ r->maxlen = REG_INFTY;
+ }
+ else {
+ r->maxlen = RExC_maxlen;
+ }
+
+ /* Guard against an embedded (?=) or (?<=) with a longer minlen than
+ the "real" pattern. */
+ DEBUG_OPTIMISE_r({
+ PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf" maxlen:%"IVdf"\n",
+ (IV)minlen, (IV)r->minlen, (IV)RExC_maxlen);
+ });
+ r->minlenret = minlen;
+ if (r->minlen < minlen)
+ r->minlen = minlen;
+
+ if (RExC_seen & REG_GPOS_SEEN)
+ r->intflags |= PREGf_GPOS_SEEN;
+ if (RExC_seen & REG_LOOKBEHIND_SEEN)
+ r->extflags |= RXf_NO_INPLACE_SUBST; /* inplace might break the
+ lookbehind */
+ if (pRExC_state->num_code_blocks)
+ r->extflags |= RXf_EVAL_SEEN;
+ if (RExC_seen & REG_VERBARG_SEEN)
+ {
+ r->intflags |= PREGf_VERBARG_SEEN;
+ r->extflags |= RXf_NO_INPLACE_SUBST; /* don't understand this! Yves */
+ }
+ if (RExC_seen & REG_CUTGROUP_SEEN)
+ r->intflags |= PREGf_CUTGROUP_SEEN;
+ if (pm_flags & PMf_USE_RE_EVAL)
+ r->intflags |= PREGf_USE_RE_EVAL;
+ if (RExC_paren_names)
+ RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
+ else
+ RXp_PAREN_NAMES(r) = NULL;
+
+ /* If we have seen an anchor in our pattern then we set the extflag RXf_IS_ANCHORED
+ * so it can be used in pp.c */
+ if (r->intflags & PREGf_ANCH)
+ r->extflags |= RXf_IS_ANCHORED;
+
+
+ {
+ /* this is used to identify "special" patterns that might result
+ * in Perl NOT calling the regex engine and instead doing the match "itself",
+ * particularly special cases in split//. By having the regex compiler
+ * do this pattern matching at a regop level (instead of by inspecting the pattern)
+ * we avoid weird issues with equivalent patterns resulting in different behavior,
+ * AND we allow non Perl engines to get the same optimizations by the setting the
+ * flags appropriately - Yves */
+ regnode *first = ri->program + 1;
+ U8 fop = OP(first);
+ regnode *next = regnext(first);
+ U8 nop = OP(next);
+
+ if (PL_regkind[fop] == NOTHING && nop == END)
+ r->extflags |= RXf_NULL;
+ else if ((fop == MBOL || (fop == SBOL && !first->flags)) && nop == END)
+ /* when fop is SBOL first->flags will be true only when it was
+ * produced by parsing /\A/, and not when parsing /^/. This is
+ * very important for the split code as there we want to
+ * treat /^/ as /^/m, but we do not want to treat /\A/ as /^/m.
+ * See rt #122761 for more details. -- Yves */
+ r->extflags |= RXf_START_ONLY;
+ else if (fop == PLUS
+ && PL_regkind[nop] == POSIXD && FLAGS(next) == _CC_SPACE
+ && nop == END)
+ r->extflags |= RXf_WHITE;
+ else if ( r->extflags & RXf_SPLIT
+ && (fop == EXACT || fop == EXACTL)
+ && STR_LEN(first) == 1
+ && *(STRING(first)) == ' '
+ && nop == END )
+ r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
+
+ }
+
+ if (RExC_contains_locale) {
+ RXp_EXTFLAGS(r) |= RXf_TAINTED;
+ }
+
+#ifdef DEBUGGING
+ if (RExC_paren_names) {
+ ri->name_list_idx = add_data( pRExC_state, STR_WITH_LEN("a"));
+ ri->data->data[ri->name_list_idx]
+ = (void*)SvREFCNT_inc(RExC_paren_name_list);
+ } else
+#endif
+ ri->name_list_idx = 0;
+
+ if (RExC_recurse_count) {
+ for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
+ const regnode *scan = RExC_recurse[RExC_recurse_count-1];
+ ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
+ }
+ }
+ Newxz(r->offs, RExC_npar, regexp_paren_pair);
+ /* assume we don't need to swap parens around before we match */
+ DEBUG_TEST_r({
+ PerlIO_printf(Perl_debug_log,"study_chunk_recursed_count: %lu\n",
+ (unsigned long)RExC_study_chunk_recursed_count);
+ });
+ DEBUG_DUMP_r({
+ DEBUG_RExC_seen();
+ PerlIO_printf(Perl_debug_log,"Final program:\n");
+ regdump(r);
+ });
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ DEBUG_OFFSETS_r(if (ri->u.offsets) {
+ const STRLEN len = ri->u.offsets[0];
+ STRLEN i;
+ GET_RE_DEBUG_FLAGS_DECL;
+ PerlIO_printf(Perl_debug_log,
+ "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
+ for (i = 1; i <= len; i++) {
+ if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
+ PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
+ (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
+ }
+ PerlIO_printf(Perl_debug_log, "\n");
+ });
+#endif
+
+#ifdef USE_ITHREADS
+ /* under ithreads the ?pat? PMf_USED flag on the pmop is simulated
+ * by setting the regexp SV to readonly-only instead. If the
+ * pattern's been recompiled, the USEDness should remain. */
+ if (old_re && SvREADONLY(old_re))
+ SvREADONLY_on(rx);
+#endif
+ return rx;
+}
+
+
+SV*
+Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
+ const U32 flags)
+{
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF;
+
+ PERL_UNUSED_ARG(value);
+
+ if (flags & RXapif_FETCH) {
+ return reg_named_buff_fetch(rx, key, flags);
+ } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
+ Perl_croak_no_modify();
+ return NULL;
+ } else if (flags & RXapif_EXISTS) {
+ return reg_named_buff_exists(rx, key, flags)
+ ? &PL_sv_yes
+ : &PL_sv_no;
+ } else if (flags & RXapif_REGNAMES) {
+ return reg_named_buff_all(rx, flags);
+ } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
+ return reg_named_buff_scalar(rx, flags);
+ } else {
+ Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
+ return NULL;
+ }
+}
+
+SV*
+Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
+ const U32 flags)
+{
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
+ PERL_UNUSED_ARG(lastkey);
+
+ if (flags & RXapif_FIRSTKEY)
+ return reg_named_buff_firstkey(rx, flags);
+ else if (flags & RXapif_NEXTKEY)
+ return reg_named_buff_nextkey(rx, flags);
+ else {
+ Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter",
+ (int)flags);
+ return NULL;
+ }
+}
+
+SV*
+Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
+ const U32 flags)
+{
+ AV *retarray = NULL;
+ SV *ret;
+ struct regexp *const rx = ReANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
+
+ if (flags & RXapif_ALL)
+ retarray=newAV();
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
+ if (he_str) {
+ IV i;
+ SV* sv_dat=HeVAL(he_str);
+ I32 *nums=(I32*)SvPVX(sv_dat);
+ for ( i=0; i<SvIVX(sv_dat); i++ ) {
+ if ((I32)(rx->nparens) >= nums[i]
+ && rx->offs[nums[i]].start != -1
+ && rx->offs[nums[i]].end != -1)
+ {
+ ret = newSVpvs("");
+ CALLREG_NUMBUF_FETCH(r,nums[i],ret);
+ if (!retarray)
+ return ret;
+ } else {
+ if (retarray)
+ ret = newSVsv(&PL_sv_undef);
+ }
+ if (retarray)
+ av_push(retarray, ret);
+ }
+ if (retarray)
+ return newRV_noinc(MUTABLE_SV(retarray));
+ }
+ }
+ return NULL;
+}
+
+bool
+Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
+ const U32 flags)
+{
+ struct regexp *const rx = ReANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ if (flags & RXapif_ALL) {
+ return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
+ } else {
+ SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
+ if (sv) {
+ SvREFCNT_dec_NN(sv);
+ return TRUE;
+ } else {
+ return FALSE;
+ }
+ }
+ } else {
+ return FALSE;
+ }
+}
+
+SV*
+Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = ReANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
+
+ if ( rx && RXp_PAREN_NAMES(rx) ) {
+ (void)hv_iterinit(RXp_PAREN_NAMES(rx));
+
+ return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
+ } else {
+ return FALSE;
+ }
+}
+
+SV*
+Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = ReANY(r);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ HV *hv = RXp_PAREN_NAMES(rx);
+ HE *temphe;
+ while ( (temphe = hv_iternext_flags(hv,0)) ) {
+ IV i;
+ IV parno = 0;
+ SV* sv_dat = HeVAL(temphe);
+ I32 *nums = (I32*)SvPVX(sv_dat);
+ for ( i = 0; i < SvIVX(sv_dat); i++ ) {
+ if ((I32)(rx->lastparen) >= nums[i] &&
+ rx->offs[nums[i]].start != -1 &&
+ rx->offs[nums[i]].end != -1)
+ {
+ parno = nums[i];
+ break;
+ }
+ }
+ if (parno || flags & RXapif_ALL) {
+ return newSVhek(HeKEY_hek(temphe));
+ }
+ }
+ }
+ return NULL;
+}
+
+SV*
+Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
+{
+ SV *ret;
+ AV *av;
+ SSize_t length;
+ struct regexp *const rx = ReANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
+ return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
+ } else if (flags & RXapif_ONE) {
+ ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
+ av = MUTABLE_AV(SvRV(ret));
+ length = av_tindex(av);
+ SvREFCNT_dec_NN(ret);
+ return newSViv(length + 1);
+ } else {
+ Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar",
+ (int)flags);
+ return NULL;
+ }
+ }
+ return &PL_sv_undef;
+}
+
+SV*
+Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = ReANY(r);
+ AV *av = newAV();
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ HV *hv= RXp_PAREN_NAMES(rx);
+ HE *temphe;
+ (void)hv_iterinit(hv);
+ while ( (temphe = hv_iternext_flags(hv,0)) ) {
+ IV i;
+ IV parno = 0;
+ SV* sv_dat = HeVAL(temphe);
+ I32 *nums = (I32*)SvPVX(sv_dat);
+ for ( i = 0; i < SvIVX(sv_dat); i++ ) {
+ if ((I32)(rx->lastparen) >= nums[i] &&
+ rx->offs[nums[i]].start != -1 &&
+ rx->offs[nums[i]].end != -1)
+ {
+ parno = nums[i];
+ break;
+ }
+ }
+ if (parno || flags & RXapif_ALL) {
+ av_push(av, newSVhek(HeKEY_hek(temphe)));
+ }
+ }
+ }
+
+ return newRV_noinc(MUTABLE_SV(av));
+}
+
+void
+Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
+ SV * const sv)
+{
+ struct regexp *const rx = ReANY(r);
+ char *s = NULL;
+ SSize_t i = 0;
+ SSize_t s1, t1;
+ I32 n = paren;
+
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
+
+ if ( n == RX_BUFF_IDX_CARET_PREMATCH
+ || n == RX_BUFF_IDX_CARET_FULLMATCH
+ || n == RX_BUFF_IDX_CARET_POSTMATCH
+ )
+ {
+ bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
+ if (!keepcopy) {
+ /* on something like
+ * $r = qr/.../;
+ * /$qr/p;
+ * the KEEPCOPY is set on the PMOP rather than the regex */
+ if (PL_curpm && r == PM_GETRE(PL_curpm))
+ keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
+ }
+ if (!keepcopy)
+ goto ret_undef;
+ }
+
+ if (!rx->subbeg)
+ goto ret_undef;
+
+ if (n == RX_BUFF_IDX_CARET_FULLMATCH)
+ /* no need to distinguish between them any more */
+ n = RX_BUFF_IDX_FULLMATCH;
+
+ if ((n == RX_BUFF_IDX_PREMATCH || n == RX_BUFF_IDX_CARET_PREMATCH)
+ && rx->offs[0].start != -1)
+ {
+ /* $`, ${^PREMATCH} */
+ i = rx->offs[0].start;
+ s = rx->subbeg;
+ }
+ else
+ if ((n == RX_BUFF_IDX_POSTMATCH || n == RX_BUFF_IDX_CARET_POSTMATCH)
+ && rx->offs[0].end != -1)
+ {
+ /* $', ${^POSTMATCH} */
+ s = rx->subbeg - rx->suboffset + rx->offs[0].end;
+ i = rx->sublen + rx->suboffset - rx->offs[0].end;
+ }
+ else
+ if ( 0 <= n && n <= (I32)rx->nparens &&
+ (s1 = rx->offs[n].start) != -1 &&
+ (t1 = rx->offs[n].end) != -1)
+ {
+ /* $&, ${^MATCH}, $1 ... */
+ i = t1 - s1;
+ s = rx->subbeg + s1 - rx->suboffset;
+ } else {
+ goto ret_undef;
+ }
+
+ assert(s >= rx->subbeg);
+ assert((STRLEN)rx->sublen >= (STRLEN)((s - rx->subbeg) + i) );
+ if (i >= 0) {
+#ifdef NO_TAINT_SUPPORT
+ sv_setpvn(sv, s, i);
+#else
+ const int oldtainted = TAINT_get;
+ TAINT_NOT;
+ sv_setpvn(sv, s, i);
+ TAINT_set(oldtainted);
+#endif
+ if (RXp_MATCH_UTF8(rx))
+ SvUTF8_on(sv);
+ else
+ SvUTF8_off(sv);
+ if (TAINTING_get) {
+ if (RXp_MATCH_TAINTED(rx)) {
+ if (SvTYPE(sv) >= SVt_PVMG) {
+ MAGIC* const mg = SvMAGIC(sv);
+ MAGIC* mgt;
+ TAINT;
+ SvMAGIC_set(sv, mg->mg_moremagic);
+ SvTAINT(sv);
+ if ((mgt = SvMAGIC(sv))) {
+ mg->mg_moremagic = mgt;
+ SvMAGIC_set(sv, mg);
+ }
+ } else {
+ TAINT;
+ SvTAINT(sv);
+ }
+ } else
+ SvTAINTED_off(sv);
+ }
+ } else {
+ ret_undef:
+ sv_setsv(sv,&PL_sv_undef);
+ return;
+ }
+}
+
+void
+Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
+ SV const * const value)
+{
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
+
+ PERL_UNUSED_ARG(rx);
+ PERL_UNUSED_ARG(paren);
+ PERL_UNUSED_ARG(value);
+
+ if (!PL_localizing)
+ Perl_croak_no_modify();
+}
+
+I32
+Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
+ const I32 paren)
+{
+ struct regexp *const rx = ReANY(r);
+ I32 i;
+ I32 s1, t1;
+
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
+
+ if ( paren == RX_BUFF_IDX_CARET_PREMATCH
+ || paren == RX_BUFF_IDX_CARET_FULLMATCH
+ || paren == RX_BUFF_IDX_CARET_POSTMATCH
+ )
+ {
+ bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
+ if (!keepcopy) {
+ /* on something like
+ * $r = qr/.../;
+ * /$qr/p;
+ * the KEEPCOPY is set on the PMOP rather than the regex */
+ if (PL_curpm && r == PM_GETRE(PL_curpm))
+ keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
+ }
+ if (!keepcopy)
+ goto warn_undef;
+ }
+
+ /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
+ switch (paren) {
+ case RX_BUFF_IDX_CARET_PREMATCH: /* ${^PREMATCH} */
+ case RX_BUFF_IDX_PREMATCH: /* $` */
+ if (rx->offs[0].start != -1) {
+ i = rx->offs[0].start;
+ if (i > 0) {
+ s1 = 0;
+ t1 = i;
+ goto getlen;
+ }
+ }
+ return 0;
+
+ case RX_BUFF_IDX_CARET_POSTMATCH: /* ${^POSTMATCH} */
+ case RX_BUFF_IDX_POSTMATCH: /* $' */
+ if (rx->offs[0].end != -1) {
+ i = rx->sublen - rx->offs[0].end;
+ if (i > 0) {
+ s1 = rx->offs[0].end;
+ t1 = rx->sublen;
+ goto getlen;
+ }
+ }
+ return 0;
+
+ default: /* $& / ${^MATCH}, $1, $2, ... */
+ if (paren <= (I32)rx->nparens &&
+ (s1 = rx->offs[paren].start) != -1 &&
+ (t1 = rx->offs[paren].end) != -1)
+ {
+ i = t1 - s1;
+ goto getlen;
+ } else {
+ warn_undef:
+ if (ckWARN(WARN_UNINITIALIZED))
+ report_uninit((const SV *)sv);
+ return 0;
+ }
+ }
+ getlen:
+ if (i > 0 && RXp_MATCH_UTF8(rx)) {
+ const char * const s = rx->subbeg - rx->suboffset + s1;
+ const U8 *ep;
+ STRLEN el;
+
+ i = t1 - s1;
+ if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
+ i = el;
+ }
+ return i;
+}
+
+SV*
+Perl_reg_qr_package(pTHX_ REGEXP * const rx)
+{
+ PERL_ARGS_ASSERT_REG_QR_PACKAGE;
+ PERL_UNUSED_ARG(rx);
+ if (0)
+ return NULL;
+ else
+ return newSVpvs("Regexp");
+}
+
+/* Scans the name of a named buffer from the pattern.
+ * If flags is REG_RSN_RETURN_NULL returns null.
+ * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
+ * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
+ * to the parsed name as looked up in the RExC_paren_names hash.
+ * If there is an error throws a vFAIL().. type exception.
+ */
+
+#define REG_RSN_RETURN_NULL 0
+#define REG_RSN_RETURN_NAME 1
+#define REG_RSN_RETURN_DATA 2
+
+STATIC SV*
+S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
+{
+ char *name_start = RExC_parse;
+
+ PERL_ARGS_ASSERT_REG_SCAN_NAME;
+
+ assert (RExC_parse <= RExC_end);
+ if (RExC_parse == RExC_end) NOOP;
+ else if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
+ /* skip IDFIRST by using do...while */
+ if (UTF)
+ do {
+ RExC_parse += UTF8SKIP(RExC_parse);
+ } while (isWORDCHAR_utf8((U8*)RExC_parse));
+ else
+ do {
+ RExC_parse++;
+ } while (isWORDCHAR(*RExC_parse));
+ } else {
+ RExC_parse++; /* so the <- from the vFAIL is after the offending
+ character */
+ vFAIL("Group name must start with a non-digit word character");
+ }
+ if ( flags ) {
+ SV* sv_name
+ = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
+ SVs_TEMP | (UTF ? SVf_UTF8 : 0));
+ if ( flags == REG_RSN_RETURN_NAME)
+ return sv_name;
+ else if (flags==REG_RSN_RETURN_DATA) {
+ HE *he_str = NULL;
+ SV *sv_dat = NULL;
+ if ( ! sv_name ) /* should not happen*/
+ Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
+ if (RExC_paren_names)
+ he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
+ if ( he_str )
+ sv_dat = HeVAL(he_str);
+ if ( ! sv_dat )
+ vFAIL("Reference to nonexistent named group");
+ return sv_dat;
+ }
+ else {
+ Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name",
+ (unsigned long) flags);
+ }
+ NOT_REACHED; /* NOTREACHED */
+ }
+ return NULL;
+}
+
+#define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \
+ int num; \
+ if (RExC_lastparse!=RExC_parse) { \
+ PerlIO_printf(Perl_debug_log, "%s", \
+ Perl_pv_pretty(aTHX_ RExC_mysv1, RExC_parse, \
+ RExC_end - RExC_parse, 16, \
+ "", "", \
+ PERL_PV_ESCAPE_UNI_DETECT | \
+ PERL_PV_PRETTY_ELLIPSES | \
+ PERL_PV_PRETTY_LTGT | \
+ PERL_PV_ESCAPE_RE | \
+ PERL_PV_PRETTY_EXACTSIZE \
+ ) \
+ ); \
+ } else \
+ PerlIO_printf(Perl_debug_log,"%16s",""); \
+ \
+ if (SIZE_ONLY) \
+ num = RExC_size + 1; \
+ else \
+ num=REG_NODE_NUM(RExC_emit); \
+ if (RExC_lastnum!=num) \
+ PerlIO_printf(Perl_debug_log,"|%4d",num); \
+ else \
+ PerlIO_printf(Perl_debug_log,"|%4s",""); \
+ PerlIO_printf(Perl_debug_log,"|%*s%-4s", \
+ (int)((depth*2)), "", \
+ (funcname) \
+ ); \
+ RExC_lastnum=num; \
+ RExC_lastparse=RExC_parse; \
+})
+
+
+
+#define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \
+ DEBUG_PARSE_MSG((funcname)); \
+ PerlIO_printf(Perl_debug_log,"%4s","\n"); \
+})
+#define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \
+ DEBUG_PARSE_MSG((funcname)); \
+ PerlIO_printf(Perl_debug_log,fmt "\n",args); \
+})
+
+/* This section of code defines the inversion list object and its methods. The
+ * interfaces are highly subject to change, so as much as possible is static to
+ * this file. An inversion list is here implemented as a malloc'd C UV array
+ * as an SVt_INVLIST scalar.
+ *
+ * An inversion list for Unicode is an array of code points, sorted by ordinal
+ * number. The zeroth element is the first code point in the list. The 1th
+ * element is the first element beyond that not in the list. In other words,
+ * the first range is
+ * invlist[0]..(invlist[1]-1)
+ * The other ranges follow. Thus every element whose index is divisible by two
+ * marks the beginning of a range that is in the list, and every element not
+ * divisible by two marks the beginning of a range not in the list. A single
+ * element inversion list that contains the single code point N generally
+ * consists of two elements
+ * invlist[0] == N
+ * invlist[1] == N+1
+ * (The exception is when N is the highest representable value on the
+ * machine, in which case the list containing just it would be a single
+ * element, itself. By extension, if the last range in the list extends to
+ * infinity, then the first element of that range will be in the inversion list
+ * at a position that is divisible by two, and is the final element in the
+ * list.)
+ * Taking the complement (inverting) an inversion list is quite simple, if the
+ * first element is 0, remove it; otherwise add a 0 element at the beginning.
+ * This implementation reserves an element at the beginning of each inversion
+ * list to always contain 0; there is an additional flag in the header which
+ * indicates if the list begins at the 0, or is offset to begin at the next
+ * element.
+ *
+ * More about inversion lists can be found in "Unicode Demystified"
+ * Chapter 13 by Richard Gillam, published by Addison-Wesley.
+ * More will be coming when functionality is added later.
+ *
+ * The inversion list data structure is currently implemented as an SV pointing
+ * to an array of UVs that the SV thinks are bytes. This allows us to have an
+ * array of UV whose memory management is automatically handled by the existing
+ * facilities for SV's.
+ *
+ * Some of the methods should always be private to the implementation, and some
+ * should eventually be made public */
+
+/* The header definitions are in F<inline_invlist.c> */
+
+PERL_STATIC_INLINE UV*
+S__invlist_array_init(SV* const invlist, const bool will_have_0)
+{
+ /* Returns a pointer to the first element in the inversion list's array.
+ * This is called upon initialization of an inversion list. Where the
+ * array begins depends on whether the list has the code point U+0000 in it
+ * or not. The other parameter tells it whether the code that follows this
+ * call is about to put a 0 in the inversion list or not. The first
+ * element is either the element reserved for 0, if TRUE, or the element
+ * after it, if FALSE */
+
+ bool* offset = get_invlist_offset_addr(invlist);
+ UV* zero_addr = (UV *) SvPVX(invlist);
+
+ PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
+
+ /* Must be empty */
+ assert(! _invlist_len(invlist));
+
+ *zero_addr = 0;
+
+ /* 1^1 = 0; 1^0 = 1 */
+ *offset = 1 ^ will_have_0;
+ return zero_addr + *offset;
+}
+
+PERL_STATIC_INLINE void
+S_invlist_set_len(pTHX_ SV* const invlist, const UV len, const bool offset)
+{
+ /* Sets the current number of elements stored in the inversion list.
+ * Updates SvCUR correspondingly */
+ PERL_UNUSED_CONTEXT;
+ PERL_ARGS_ASSERT_INVLIST_SET_LEN;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ SvCUR_set(invlist,
+ (len == 0)
+ ? 0
+ : TO_INTERNAL_SIZE(len + offset));
+ assert(SvLEN(invlist) == 0 || SvCUR(invlist) <= SvLEN(invlist));
+}
+
+#ifndef PERL_IN_XSUB_RE
+
+PERL_STATIC_INLINE IV*
+S_get_invlist_previous_index_addr(SV* invlist)
+{
+ /* Return the address of the IV that is reserved to hold the cached index
+ * */
+ PERL_ARGS_ASSERT_GET_INVLIST_PREVIOUS_INDEX_ADDR;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ return &(((XINVLIST*) SvANY(invlist))->prev_index);
+}
+
+PERL_STATIC_INLINE IV
+S_invlist_previous_index(SV* const invlist)
+{
+ /* Returns cached index of previous search */
+
+ PERL_ARGS_ASSERT_INVLIST_PREVIOUS_INDEX;
+
+ return *get_invlist_previous_index_addr(invlist);
+}
+
+PERL_STATIC_INLINE void
+S_invlist_set_previous_index(SV* const invlist, const IV index)
+{
+ /* Caches <index> for later retrieval */
+
+ PERL_ARGS_ASSERT_INVLIST_SET_PREVIOUS_INDEX;
+
+ assert(index == 0 || index < (int) _invlist_len(invlist));
+
+ *get_invlist_previous_index_addr(invlist) = index;
+}
+
+PERL_STATIC_INLINE void
+S_invlist_trim(SV* const invlist)
+{
+ PERL_ARGS_ASSERT_INVLIST_TRIM;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ /* Change the length of the inversion list to how many entries it currently
+ * has */
+ SvPV_shrink_to_cur((SV *) invlist);
+}
+
+PERL_STATIC_INLINE bool
+S_invlist_is_iterating(SV* const invlist)
+{
+ PERL_ARGS_ASSERT_INVLIST_IS_ITERATING;
+
+ return *(get_invlist_iter_addr(invlist)) < (STRLEN) UV_MAX;
+}
+
+#endif /* ifndef PERL_IN_XSUB_RE */
+
+PERL_STATIC_INLINE UV
+S_invlist_max(SV* const invlist)
+{
+ /* Returns the maximum number of elements storable in the inversion list's
+ * array, without having to realloc() */
+
+ PERL_ARGS_ASSERT_INVLIST_MAX;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ /* Assumes worst case, in which the 0 element is not counted in the
+ * inversion list, so subtracts 1 for that */
+ return SvLEN(invlist) == 0 /* This happens under _new_invlist_C_array */
+ ? FROM_INTERNAL_SIZE(SvCUR(invlist)) - 1
+ : FROM_INTERNAL_SIZE(SvLEN(invlist)) - 1;
+}
+
+#ifndef PERL_IN_XSUB_RE
+SV*
+Perl__new_invlist(pTHX_ IV initial_size)
+{
+
+ /* Return a pointer to a newly constructed inversion list, with enough
+ * space to store 'initial_size' elements. If that number is negative, a
+ * system default is used instead */
+
+ SV* new_list;
+
+ if (initial_size < 0) {
+ initial_size = 10;
+ }
+
+ /* Allocate the initial space */
+ new_list = newSV_type(SVt_INVLIST);
+
+ /* First 1 is in case the zero element isn't in the list; second 1 is for
+ * trailing NUL */
+ SvGROW(new_list, TO_INTERNAL_SIZE(initial_size + 1) + 1);
+ invlist_set_len(new_list, 0, 0);
+
+ /* Force iterinit() to be used to get iteration to work */
+ *get_invlist_iter_addr(new_list) = (STRLEN) UV_MAX;
+
+ *get_invlist_previous_index_addr(new_list) = 0;
+
+ return new_list;
+}
+
+SV*
+Perl__new_invlist_C_array(pTHX_ const UV* const list)
+{
+ /* Return a pointer to a newly constructed inversion list, initialized to
+ * point to <list>, which has to be in the exact correct inversion list
+ * form, including internal fields. Thus this is a dangerous routine that
+ * should not be used in the wrong hands. The passed in 'list' contains
+ * several header fields at the beginning that are not part of the
+ * inversion list body proper */
+
+ const STRLEN length = (STRLEN) list[0];
+ const UV version_id = list[1];
+ const bool offset = cBOOL(list[2]);
+#define HEADER_LENGTH 3
+ /* If any of the above changes in any way, you must change HEADER_LENGTH
+ * (if appropriate) and regenerate INVLIST_VERSION_ID by running
+ * perl -E 'say int(rand 2**31-1)'
+ */
+#define INVLIST_VERSION_ID 148565664 /* This is a combination of a version and
+ data structure type, so that one being
+ passed in can be validated to be an
+ inversion list of the correct vintage.
+ */
+
+ SV* invlist = newSV_type(SVt_INVLIST);
+
+ PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY;
+
+ if (version_id != INVLIST_VERSION_ID) {
+ Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list");
+ }
+
+ /* The generated array passed in includes header elements that aren't part
+ * of the list proper, so start it just after them */
+ SvPV_set(invlist, (char *) (list + HEADER_LENGTH));
+
+ SvLEN_set(invlist, 0); /* Means we own the contents, and the system
+ shouldn't touch it */
+
+ *(get_invlist_offset_addr(invlist)) = offset;
+
+ /* The 'length' passed to us is the physical number of elements in the
+ * inversion list. But if there is an offset the logical number is one
+ * less than that */
+ invlist_set_len(invlist, length - offset, offset);
+
+ invlist_set_previous_index(invlist, 0);
+
+ /* Initialize the iteration pointer. */
+ invlist_iterfinish(invlist);
+
+ SvREADONLY_on(invlist);
+
+ return invlist;
+}
+#endif /* ifndef PERL_IN_XSUB_RE */
+
+STATIC void
+S_invlist_extend(pTHX_ SV* const invlist, const UV new_max)
+{
+ /* Grow the maximum size of an inversion list */
+
+ PERL_ARGS_ASSERT_INVLIST_EXTEND;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ /* Add one to account for the zero element at the beginning which may not
+ * be counted by the calling parameters */
+ SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max + 1));
+}
+
+STATIC void
+S__append_range_to_invlist(pTHX_ SV* const invlist,
+ const UV start, const UV end)
+{
+ /* Subject to change or removal. Append the range from 'start' to 'end' at
+ * the end of the inversion list. The range must be above any existing
+ * ones. */
+
+ UV* array;
+ UV max = invlist_max(invlist);
+ UV len = _invlist_len(invlist);
+ bool offset;
+
+ PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
+
+ if (len == 0) { /* Empty lists must be initialized */
+ offset = start != 0;
+ array = _invlist_array_init(invlist, ! offset);
+ }
+ else {
+ /* Here, the existing list is non-empty. The current max entry in the
+ * list is generally the first value not in the set, except when the
+ * set extends to the end of permissible values, in which case it is
+ * the first entry in that final set, and so this call is an attempt to
+ * append out-of-order */
+
+ UV final_element = len - 1;
+ array = invlist_array(invlist);
+ if (array[final_element] > start
+ || ELEMENT_RANGE_MATCHES_INVLIST(final_element))
+ {
+ Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%"UVuf", start=%"UVuf", match=%c",
+ array[final_element], start,
+ ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f');
+ }
+
+ /* Here, it is a legal append. If the new range begins with the first
+ * value not in the set, it is extending the set, so the new first
+ * value not in the set is one greater than the newly extended range.
+ * */
+ offset = *get_invlist_offset_addr(invlist);
+ if (array[final_element] == start) {
+ if (end != UV_MAX) {
+ array[final_element] = end + 1;
+ }
+ else {
+ /* But if the end is the maximum representable on the machine,
+ * just let the range that this would extend to have no end */
+ invlist_set_len(invlist, len - 1, offset);
+ }
+ return;
+ }
+ }
+
+ /* Here the new range doesn't extend any existing set. Add it */
+
+ len += 2; /* Includes an element each for the start and end of range */
+
+ /* If wll overflow the existing space, extend, which may cause the array to
+ * be moved */
+ if (max < len) {
+ invlist_extend(invlist, len);
+
+ /* Have to set len here to avoid assert failure in invlist_array() */
+ invlist_set_len(invlist, len, offset);
+
+ array = invlist_array(invlist);
+ }
+ else {
+ invlist_set_len(invlist, len, offset);
+ }
+
+ /* The next item on the list starts the range, the one after that is
+ * one past the new range. */
+ array[len - 2] = start;
+ if (end != UV_MAX) {
+ array[len - 1] = end + 1;
+ }
+ else {
+ /* But if the end is the maximum representable on the machine, just let
+ * the range have no end */
+ invlist_set_len(invlist, len - 1, offset);
+ }
+}
+
+#ifndef PERL_IN_XSUB_RE
+
+IV
+Perl__invlist_search(SV* const invlist, const UV cp)
+{
+ /* Searches the inversion list for the entry that contains the input code
+ * point <cp>. If <cp> is not in the list, -1 is returned. Otherwise, the
+ * return value is the index into the list's array of the range that
+ * contains <cp> */
+
+ IV low = 0;
+ IV mid;
+ IV high = _invlist_len(invlist);
+ const IV highest_element = high - 1;
+ const UV* array;
+
+ PERL_ARGS_ASSERT__INVLIST_SEARCH;
+
+ /* If list is empty, return failure. */
+ if (high == 0) {
+ return -1;
+ }
+
+ /* (We can't get the array unless we know the list is non-empty) */
+ array = invlist_array(invlist);
+
+ mid = invlist_previous_index(invlist);
+ assert(mid >=0 && mid <= highest_element);
+
+ /* <mid> contains the cache of the result of the previous call to this
+ * function (0 the first time). See if this call is for the same result,
+ * or if it is for mid-1. This is under the theory that calls to this
+ * function will often be for related code points that are near each other.
+ * And benchmarks show that caching gives better results. We also test
+ * here if the code point is within the bounds of the list. These tests
+ * replace others that would have had to be made anyway to make sure that
+ * the array bounds were not exceeded, and these give us extra information
+ * at the same time */
+ if (cp >= array[mid]) {
+ if (cp >= array[highest_element]) {
+ return highest_element;
+ }
+
+ /* Here, array[mid] <= cp < array[highest_element]. This means that
+ * the final element is not the answer, so can exclude it; it also
+ * means that <mid> is not the final element, so can refer to 'mid + 1'
+ * safely */
+ if (cp < array[mid + 1]) {
+ return mid;
+ }
+ high--;
+ low = mid + 1;
+ }
+ else { /* cp < aray[mid] */
+ if (cp < array[0]) { /* Fail if outside the array */
+ return -1;
+ }
+ high = mid;
+ if (cp >= array[mid - 1]) {
+ goto found_entry;
+ }
+ }
+
+ /* Binary search. What we are looking for is <i> such that
+ * array[i] <= cp < array[i+1]
+ * The loop below converges on the i+1. Note that there may not be an
+ * (i+1)th element in the array, and things work nonetheless */
+ while (low < high) {
+ mid = (low + high) / 2;
+ assert(mid <= highest_element);
+ if (array[mid] <= cp) { /* cp >= array[mid] */
+ low = mid + 1;
+
+ /* We could do this extra test to exit the loop early.
+ if (cp < array[low]) {
+ return mid;
+ }
+ */
+ }
+ else { /* cp < array[mid] */
+ high = mid;
+ }
+ }
+
+ found_entry:
+ high--;
+ invlist_set_previous_index(invlist, high);
+ return high;
+}
+
+void
+Perl__invlist_populate_swatch(SV* const invlist,
+ const UV start, const UV end, U8* swatch)
+{
+ /* populates a swatch of a swash the same way swatch_get() does in utf8.c,
+ * but is used when the swash has an inversion list. This makes this much
+ * faster, as it uses a binary search instead of a linear one. This is
+ * intimately tied to that function, and perhaps should be in utf8.c,
+ * except it is intimately tied to inversion lists as well. It assumes
+ * that <swatch> is all 0's on input */
+
+ UV current = start;
+ const IV len = _invlist_len(invlist);
+ IV i;
+ const UV * array;
+
+ PERL_ARGS_ASSERT__INVLIST_POPULATE_SWATCH;
+
+ if (len == 0) { /* Empty inversion list */
+ return;
+ }
+
+ array = invlist_array(invlist);
+
+ /* Find which element it is */
+ i = _invlist_search(invlist, start);
+
+ /* We populate from <start> to <end> */
+ while (current < end) {
+ UV upper;
+
+ /* The inversion list gives the results for every possible code point
+ * after the first one in the list. Only those ranges whose index is
+ * even are ones that the inversion list matches. For the odd ones,
+ * and if the initial code point is not in the list, we have to skip
+ * forward to the next element */
+ if (i == -1 || ! ELEMENT_RANGE_MATCHES_INVLIST(i)) {
+ i++;
+ if (i >= len) { /* Finished if beyond the end of the array */
+ return;
+ }
+ current = array[i];
+ if (current >= end) { /* Finished if beyond the end of what we
+ are populating */
+ if (LIKELY(end < UV_MAX)) {
+ return;
+ }
+
+ /* We get here when the upper bound is the maximum
+ * representable on the machine, and we are looking for just
+ * that code point. Have to special case it */
+ i = len;
+ goto join_end_of_list;
+ }
+ }
+ assert(current >= start);
+
+ /* The current range ends one below the next one, except don't go past
+ * <end> */
+ i++;
+ upper = (i < len && array[i] < end) ? array[i] : end;
+
+ /* Here we are in a range that matches. Populate a bit in the 3-bit U8
+ * for each code point in it */
+ for (; current < upper; current++) {
+ const STRLEN offset = (STRLEN)(current - start);
+ swatch[offset >> 3] |= 1 << (offset & 7);
+ }
+
+ join_end_of_list:
+
+ /* Quit if at the end of the list */
+ if (i >= len) {
+
+ /* But first, have to deal with the highest possible code point on
+ * the platform. The previous code assumes that <end> is one
+ * beyond where we want to populate, but that is impossible at the
+ * platform's infinity, so have to handle it specially */
+ if (UNLIKELY(end == UV_MAX && ELEMENT_RANGE_MATCHES_INVLIST(len-1)))
+ {
+ const STRLEN offset = (STRLEN)(end - start);
+ swatch[offset >> 3] |= 1 << (offset & 7);
+ }
+ return;
+ }
+
+ /* Advance to the next range, which will be for code points not in the
+ * inversion list */
+ current = array[i];
+ }
+
+ return;
+}
+
+void
+Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b,
+ const bool complement_b, SV** output)
+{
+ /* Take the union of two inversion lists and point <output> to it. *output
+ * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
+ * the reference count to that list will be decremented if not already a
+ * temporary (mortal); otherwise *output will be made correspondingly
+ * mortal. The first list, <a>, may be NULL, in which case a copy of the
+ * second list is returned. If <complement_b> is TRUE, the union is taken
+ * of the complement (inversion) of <b> instead of b itself.
+ *
+ * The basis for this comes from "Unicode Demystified" Chapter 13 by
+ * Richard Gillam, published by Addison-Wesley, and explained at some
+ * length there. The preface says to incorporate its examples into your
+ * code at your own risk.
+ *
+ * The algorithm is like a merge sort.
+ *
+ * XXX A potential performance improvement is to keep track as we go along
+ * if only one of the inputs contributes to the result, meaning the other
+ * is a subset of that one. In that case, we can skip the final copy and
+ * return the larger of the input lists, but then outside code might need
+ * to keep track of whether to free the input list or not */
+
+ const UV* array_a; /* a's array */
+ const UV* array_b;
+ UV len_a; /* length of a's array */
+ UV len_b;
+
+ SV* u; /* the resulting union */
+ UV* array_u;
+ UV len_u;
+
+ UV i_a = 0; /* current index into a's array */
+ UV i_b = 0;
+ UV i_u = 0;
+
+ /* running count, as explained in the algorithm source book; items are
+ * stopped accumulating and are output when the count changes to/from 0.
+ * The count is incremented when we start a range that's in the set, and
+ * decremented when we start a range that's not in the set. So its range
+ * is 0 to 2. Only when the count is zero is something not in the set.
+ */
+ UV count = 0;
+
+ PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND;
+ assert(a != b);
+
+ /* If either one is empty, the union is the other one */
+ if (a == NULL || ((len_a = _invlist_len(a)) == 0)) {
+ bool make_temp = FALSE; /* Should we mortalize the result? */
+
+ if (*output == a) {
+ if (a != NULL) {
+ if (! (make_temp = cBOOL(SvTEMP(a)))) {
+ SvREFCNT_dec_NN(a);
+ }
+ }
+ }
+ if (*output != b) {
+ *output = invlist_clone(b);
+ if (complement_b) {
+ _invlist_invert(*output);
+ }
+ } /* else *output already = b; */
+
+ if (make_temp) {
+ sv_2mortal(*output);
+ }
+ return;
+ }
+ else if ((len_b = _invlist_len(b)) == 0) {
+ bool make_temp = FALSE;
+ if (*output == b) {
+ if (! (make_temp = cBOOL(SvTEMP(b)))) {
+ SvREFCNT_dec_NN(b);
+ }
+ }
+
+ /* The complement of an empty list is a list that has everything in it,
+ * so the union with <a> includes everything too */
+ if (complement_b) {
+ if (a == *output) {
+ if (! (make_temp = cBOOL(SvTEMP(a)))) {
+ SvREFCNT_dec_NN(a);
+ }
+ }
+ *output = _new_invlist(1);
+ _append_range_to_invlist(*output, 0, UV_MAX);
+ }
+ else if (*output != a) {
+ *output = invlist_clone(a);
+ }
+ /* else *output already = a; */
+
+ if (make_temp) {
+ sv_2mortal(*output);
+ }
+ return;
+ }
+
+ /* Here both lists exist and are non-empty */
+ array_a = invlist_array(a);
+ array_b = invlist_array(b);
+
+ /* If are to take the union of 'a' with the complement of b, set it
+ * up so are looking at b's complement. */
+ if (complement_b) {
+
+ /* To complement, we invert: if the first element is 0, remove it. To
+ * do this, we just pretend the array starts one later */
+ if (array_b[0] == 0) {
+ array_b++;
+ len_b--;
+ }
+ else {
+
+ /* But if the first element is not zero, we pretend the list starts
+ * at the 0 that is always stored immediately before the array. */
+ array_b--;
+ len_b++;
+ }
+ }
+
+ /* Size the union for the worst case: that the sets are completely
+ * disjoint */
+ u = _new_invlist(len_a + len_b);
+
+ /* Will contain U+0000 if either component does */
+ array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0)
+ || (len_b > 0 && array_b[0] == 0));
+
+ /* Go through each list item by item, stopping when exhausted one of
+ * them */
+ while (i_a < len_a && i_b < len_b) {
+ UV cp; /* The element to potentially add to the union's array */
+ bool cp_in_set; /* is it in the the input list's set or not */
+
+ /* We need to take one or the other of the two inputs for the union.
+ * Since we are merging two sorted lists, we take the smaller of the
+ * next items. In case of a tie, we take the one that is in its set
+ * first. If we took one not in the set first, it would decrement the
+ * count, possibly to 0 which would cause it to be output as ending the
+ * range, and the next time through we would take the same number, and
+ * output it again as beginning the next range. By doing it the
+ * opposite way, there is no possibility that the count will be
+ * momentarily decremented to 0, and thus the two adjoining ranges will
+ * be seamlessly merged. (In a tie and both are in the set or both not
+ * in the set, it doesn't matter which we take first.) */
+ if (array_a[i_a] < array_b[i_b]
+ || (array_a[i_a] == array_b[i_b]
+ && ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
+ {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
+ cp= array_a[i_a++];
+ }
+ else {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
+ cp = array_b[i_b++];
+ }
+
+ /* Here, have chosen which of the two inputs to look at. Only output
+ * if the running count changes to/from 0, which marks the
+ * beginning/end of a range in that's in the set */
+ if (cp_in_set) {
+ if (count == 0) {
+ array_u[i_u++] = cp;
+ }
+ count++;
+ }
+ else {
+ count--;
+ if (count == 0) {
+ array_u[i_u++] = cp;
+ }
+ }
+ }
+
+ /* Here, we are finished going through at least one of the lists, which
+ * means there is something remaining in at most one. We check if the list
+ * that hasn't been exhausted is positioned such that we are in the middle
+ * of a range in its set or not. (i_a and i_b point to the element beyond
+ * the one we care about.) If in the set, we decrement 'count'; if 0, there
+ * is potentially more to output.
+ * There are four cases:
+ * 1) Both weren't in their sets, count is 0, and remains 0. What's left
+ * in the union is entirely from the non-exhausted set.
+ * 2) Both were in their sets, count is 2. Nothing further should
+ * be output, as everything that remains will be in the exhausted
+ * list's set, hence in the union; decrementing to 1 but not 0 insures
+ * that
+ * 3) the exhausted was in its set, non-exhausted isn't, count is 1.
+ * Nothing further should be output because the union includes
+ * everything from the exhausted set. Not decrementing ensures that.
+ * 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
+ * decrementing to 0 insures that we look at the remainder of the
+ * non-exhausted set */
+ if ((i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
+ || (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
+ {
+ count--;
+ }
+
+ /* The final length is what we've output so far, plus what else is about to
+ * be output. (If 'count' is non-zero, then the input list we exhausted
+ * has everything remaining up to the machine's limit in its set, and hence
+ * in the union, so there will be no further output. */
+ len_u = i_u;
+ if (count == 0) {
+ /* At most one of the subexpressions will be non-zero */
+ len_u += (len_a - i_a) + (len_b - i_b);
+ }
+
+ /* Set result to final length, which can change the pointer to array_u, so
+ * re-find it */
+ if (len_u != _invlist_len(u)) {
+ invlist_set_len(u, len_u, *get_invlist_offset_addr(u));
+ invlist_trim(u);
+ array_u = invlist_array(u);
+ }
+
+ /* When 'count' is 0, the list that was exhausted (if one was shorter than
+ * the other) ended with everything above it not in its set. That means
+ * that the remaining part of the union is precisely the same as the
+ * non-exhausted list, so can just copy it unchanged. (If both list were
+ * exhausted at the same time, then the operations below will be both 0.)
+ */
+ if (count == 0) {
+ IV copy_count; /* At most one will have a non-zero copy count */
+ if ((copy_count = len_a - i_a) > 0) {
+ Copy(array_a + i_a, array_u + i_u, copy_count, UV);
+ }
+ else if ((copy_count = len_b - i_b) > 0) {
+ Copy(array_b + i_b, array_u + i_u, copy_count, UV);
+ }
+ }
+
+ /* We may be removing a reference to one of the inputs. If so, the output
+ * is made mortal if the input was. (Mortal SVs shouldn't have their ref
+ * count decremented) */
+ if (a == *output || b == *output) {
+ assert(! invlist_is_iterating(*output));
+ if ((SvTEMP(*output))) {
+ sv_2mortal(u);
+ }
+ else {
+ SvREFCNT_dec_NN(*output);
+ }
+ }
+
+ *output = u;
+
+ return;
+}
+
+void
+Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b,
+ const bool complement_b, SV** i)
+{
+ /* Take the intersection of two inversion lists and point <i> to it. *i
+ * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
+ * the reference count to that list will be decremented if not already a
+ * temporary (mortal); otherwise *i will be made correspondingly mortal.
+ * The first list, <a>, may be NULL, in which case an empty list is
+ * returned. If <complement_b> is TRUE, the result will be the
+ * intersection of <a> and the complement (or inversion) of <b> instead of
+ * <b> directly.
+ *
+ * The basis for this comes from "Unicode Demystified" Chapter 13 by
+ * Richard Gillam, published by Addison-Wesley, and explained at some
+ * length there. The preface says to incorporate its examples into your
+ * code at your own risk. In fact, it had bugs
+ *
+ * The algorithm is like a merge sort, and is essentially the same as the
+ * union above
+ */
+
+ const UV* array_a; /* a's array */
+ const UV* array_b;
+ UV len_a; /* length of a's array */
+ UV len_b;
+
+ SV* r; /* the resulting intersection */
+ UV* array_r;
+ UV len_r;
+
+ UV i_a = 0; /* current index into a's array */
+ UV i_b = 0;
+ UV i_r = 0;
+
+ /* running count, as explained in the algorithm source book; items are
+ * stopped accumulating and are output when the count changes to/from 2.
+ * The count is incremented when we start a range that's in the set, and
+ * decremented when we start a range that's not in the set. So its range
+ * is 0 to 2. Only when the count is 2 is something in the intersection.
+ */
+ UV count = 0;
+
+ PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND;
+ assert(a != b);
+
+ /* Special case if either one is empty */
+ len_a = (a == NULL) ? 0 : _invlist_len(a);
+ if ((len_a == 0) || ((len_b = _invlist_len(b)) == 0)) {
+ bool make_temp = FALSE;
+
+ if (len_a != 0 && complement_b) {
+
+ /* Here, 'a' is not empty, therefore from the above 'if', 'b' must
+ * be empty. Here, also we are using 'b's complement, which hence
+ * must be every possible code point. Thus the intersection is
+ * simply 'a'. */
+ if (*i != a) {
+ if (*i == b) {
+ if (! (make_temp = cBOOL(SvTEMP(b)))) {
+ SvREFCNT_dec_NN(b);
+ }
+ }
+
+ *i = invlist_clone(a);
+ }
+ /* else *i is already 'a' */
+
+ if (make_temp) {
+ sv_2mortal(*i);
+ }
+ return;
+ }
+
+ /* Here, 'a' or 'b' is empty and not using the complement of 'b'. The
+ * intersection must be empty */
+ if (*i == a) {
+ if (! (make_temp = cBOOL(SvTEMP(a)))) {
+ SvREFCNT_dec_NN(a);
+ }
+ }
+ else if (*i == b) {
+ if (! (make_temp = cBOOL(SvTEMP(b)))) {
+ SvREFCNT_dec_NN(b);
+ }
+ }
+ *i = _new_invlist(0);
+ if (make_temp) {
+ sv_2mortal(*i);
+ }
+
+ return;
+ }
+
+ /* Here both lists exist and are non-empty */
+ array_a = invlist_array(a);
+ array_b = invlist_array(b);
+
+ /* If are to take the intersection of 'a' with the complement of b, set it
+ * up so are looking at b's complement. */
+ if (complement_b) {
+
+ /* To complement, we invert: if the first element is 0, remove it. To
+ * do this, we just pretend the array starts one later */
+ if (array_b[0] == 0) {
+ array_b++;
+ len_b--;
+ }
+ else {
+
+ /* But if the first element is not zero, we pretend the list starts
+ * at the 0 that is always stored immediately before the array. */
+ array_b--;
+ len_b++;
+ }
+ }
+
+ /* Size the intersection for the worst case: that the intersection ends up
+ * fragmenting everything to be completely disjoint */
+ r= _new_invlist(len_a + len_b);
+
+ /* Will contain U+0000 iff both components do */
+ array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0
+ && len_b > 0 && array_b[0] == 0);
+
+ /* Go through each list item by item, stopping when exhausted one of
+ * them */
+ while (i_a < len_a && i_b < len_b) {
+ UV cp; /* The element to potentially add to the intersection's
+ array */
+ bool cp_in_set; /* Is it in the input list's set or not */
+
+ /* We need to take one or the other of the two inputs for the
+ * intersection. Since we are merging two sorted lists, we take the
+ * smaller of the next items. In case of a tie, we take the one that
+ * is not in its set first (a difference from the union algorithm). If
+ * we took one in the set first, it would increment the count, possibly
+ * to 2 which would cause it to be output as starting a range in the
+ * intersection, and the next time through we would take that same
+ * number, and output it again as ending the set. By doing it the
+ * opposite of this, there is no possibility that the count will be
+ * momentarily incremented to 2. (In a tie and both are in the set or
+ * both not in the set, it doesn't matter which we take first.) */
+ if (array_a[i_a] < array_b[i_b]
+ || (array_a[i_a] == array_b[i_b]
+ && ! ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
+ {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
+ cp= array_a[i_a++];
+ }
+ else {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
+ cp= array_b[i_b++];
+ }
+
+ /* Here, have chosen which of the two inputs to look at. Only output
+ * if the running count changes to/from 2, which marks the
+ * beginning/end of a range that's in the intersection */
+ if (cp_in_set) {
+ count++;
+ if (count == 2) {
+ array_r[i_r++] = cp;
+ }
+ }
+ else {
+ if (count == 2) {
+ array_r[i_r++] = cp;
+ }
+ count--;
+ }
+ }
+
+ /* Here, we are finished going through at least one of the lists, which
+ * means there is something remaining in at most one. We check if the list
+ * that has been exhausted is positioned such that we are in the middle
+ * of a range in its set or not. (i_a and i_b point to elements 1 beyond
+ * the ones we care about.) There are four cases:
+ * 1) Both weren't in their sets, count is 0, and remains 0. There's
+ * nothing left in the intersection.
+ * 2) Both were in their sets, count is 2 and perhaps is incremented to
+ * above 2. What should be output is exactly that which is in the
+ * non-exhausted set, as everything it has is also in the intersection
+ * set, and everything it doesn't have can't be in the intersection
+ * 3) The exhausted was in its set, non-exhausted isn't, count is 1, and
+ * gets incremented to 2. Like the previous case, the intersection is
+ * everything that remains in the non-exhausted set.
+ * 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
+ * remains 1. And the intersection has nothing more. */
+ if ((i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
+ || (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
+ {
+ count++;
+ }
+
+ /* The final length is what we've output so far plus what else is in the
+ * intersection. At most one of the subexpressions below will be non-zero
+ * */
+ len_r = i_r;
+ if (count >= 2) {
+ len_r += (len_a - i_a) + (len_b - i_b);
+ }
+
+ /* Set result to final length, which can change the pointer to array_r, so
+ * re-find it */
+ if (len_r != _invlist_len(r)) {
+ invlist_set_len(r, len_r, *get_invlist_offset_addr(r));
+ invlist_trim(r);
+ array_r = invlist_array(r);
+ }
+
+ /* Finish outputting any remaining */
+ if (count >= 2) { /* At most one will have a non-zero copy count */
+ IV copy_count;
+ if ((copy_count = len_a - i_a) > 0) {
+ Copy(array_a + i_a, array_r + i_r, copy_count, UV);
+ }
+ else if ((copy_count = len_b - i_b) > 0) {
+ Copy(array_b + i_b, array_r + i_r, copy_count, UV);
+ }
+ }
+
+ /* We may be removing a reference to one of the inputs. If so, the output
+ * is made mortal if the input was. (Mortal SVs shouldn't have their ref
+ * count decremented) */
+ if (a == *i || b == *i) {
+ assert(! invlist_is_iterating(*i));
+ if (SvTEMP(*i)) {
+ sv_2mortal(r);
+ }
+ else {
+ SvREFCNT_dec_NN(*i);
+ }
+ }
+
+ *i = r;
+
+ return;
+}
+
+SV*
+Perl__add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end)
+{
+ /* Add the range from 'start' to 'end' inclusive to the inversion list's
+ * set. A pointer to the inversion list is returned. This may actually be
+ * a new list, in which case the passed in one has been destroyed. The
+ * passed-in inversion list can be NULL, in which case a new one is created
+ * with just the one range in it */
+
+ SV* range_invlist;
+ UV len;
+
+ if (invlist == NULL) {
+ invlist = _new_invlist(2);
+ len = 0;
+ }
+ else {
+ len = _invlist_len(invlist);
+ }
+
+ /* If comes after the final entry actually in the list, can just append it
+ * to the end, */
+ if (len == 0
+ || (! ELEMENT_RANGE_MATCHES_INVLIST(len - 1)
+ && start >= invlist_array(invlist)[len - 1]))
+ {
+ _append_range_to_invlist(invlist, start, end);
+ return invlist;
+ }
+
+ /* Here, can't just append things, create and return a new inversion list
+ * which is the union of this range and the existing inversion list */
+ range_invlist = _new_invlist(2);
+ _append_range_to_invlist(range_invlist, start, end);
+
+ _invlist_union(invlist, range_invlist, &invlist);
+
+ /* The temporary can be freed */
+ SvREFCNT_dec_NN(range_invlist);
+
+ return invlist;
+}
+
+SV*
+Perl__setup_canned_invlist(pTHX_ const STRLEN size, const UV element0,
+ UV** other_elements_ptr)
+{
+ /* Create and return an inversion list whose contents are to be populated
+ * by the caller. The caller gives the number of elements (in 'size') and
+ * the very first element ('element0'). This function will set
+ * '*other_elements_ptr' to an array of UVs, where the remaining elements
+ * are to be placed.
+ *
+ * Obviously there is some trust involved that the caller will properly
+ * fill in the other elements of the array.
+ *
+ * (The first element needs to be passed in, as the underlying code does
+ * things differently depending on whether it is zero or non-zero) */
+
+ SV* invlist = _new_invlist(size);
+ bool offset;
+
+ PERL_ARGS_ASSERT__SETUP_CANNED_INVLIST;
+
+ _append_range_to_invlist(invlist, element0, element0);
+ offset = *get_invlist_offset_addr(invlist);
+
+ invlist_set_len(invlist, size, offset);
+ *other_elements_ptr = invlist_array(invlist) + 1;
+ return invlist;
+}
+
+#endif
+
+PERL_STATIC_INLINE SV*
+S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) {
+ return _add_range_to_invlist(invlist, cp, cp);
+}
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl__invlist_invert(pTHX_ SV* const invlist)
+{
+ /* Complement the input inversion list. This adds a 0 if the list didn't
+ * have a zero; removes it otherwise. As described above, the data
+ * structure is set up so that this is very efficient */
+
+ PERL_ARGS_ASSERT__INVLIST_INVERT;
+
+ assert(! invlist_is_iterating(invlist));
+
+ /* The inverse of matching nothing is matching everything */
+ if (_invlist_len(invlist) == 0) {
+ _append_range_to_invlist(invlist, 0, UV_MAX);
+ return;
+ }
+
+ *get_invlist_offset_addr(invlist) = ! *get_invlist_offset_addr(invlist);
+}
+
+#endif
+
+PERL_STATIC_INLINE SV*
+S_invlist_clone(pTHX_ SV* const invlist)
+{
+
+ /* Return a new inversion list that is a copy of the input one, which is
+ * unchanged. The new list will not be mortal even if the old one was. */
+
+ /* Need to allocate extra space to accommodate Perl's addition of a
+ * trailing NUL to SvPV's, since it thinks they are always strings */
+ SV* new_invlist = _new_invlist(_invlist_len(invlist) + 1);
+ STRLEN physical_length = SvCUR(invlist);
+ bool offset = *(get_invlist_offset_addr(invlist));
+
+ PERL_ARGS_ASSERT_INVLIST_CLONE;
+
+ *(get_invlist_offset_addr(new_invlist)) = offset;
+ invlist_set_len(new_invlist, _invlist_len(invlist), offset);
+ Copy(SvPVX(invlist), SvPVX(new_invlist), physical_length, char);
+
+ return new_invlist;
+}
+
+PERL_STATIC_INLINE STRLEN*
+S_get_invlist_iter_addr(SV* invlist)
+{
+ /* Return the address of the UV that contains the current iteration
+ * position */
+
+ PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ return &(((XINVLIST*) SvANY(invlist))->iterator);
+}
+
+PERL_STATIC_INLINE void
+S_invlist_iterinit(SV* invlist) /* Initialize iterator for invlist */
+{
+ PERL_ARGS_ASSERT_INVLIST_ITERINIT;
+
+ *get_invlist_iter_addr(invlist) = 0;
+}
+
+PERL_STATIC_INLINE void
+S_invlist_iterfinish(SV* invlist)
+{
+ /* Terminate iterator for invlist. This is to catch development errors.
+ * Any iteration that is interrupted before completed should call this
+ * function. Functions that add code points anywhere else but to the end
+ * of an inversion list assert that they are not in the middle of an
+ * iteration. If they were, the addition would make the iteration
+ * problematical: if the iteration hadn't reached the place where things
+ * were being added, it would be ok */
+
+ PERL_ARGS_ASSERT_INVLIST_ITERFINISH;
+
+ *get_invlist_iter_addr(invlist) = (STRLEN) UV_MAX;
+}
+
+STATIC bool
+S_invlist_iternext(SV* invlist, UV* start, UV* end)
+{
+ /* An C<invlist_iterinit> call on <invlist> must be used to set this up.
+ * This call sets in <*start> and <*end>, the next range in <invlist>.
+ * Returns <TRUE> if successful and the next call will return the next
+ * range; <FALSE> if was already at the end of the list. If the latter,
+ * <*start> and <*end> are unchanged, and the next call to this function
+ * will start over at the beginning of the list */
+
+ STRLEN* pos = get_invlist_iter_addr(invlist);
+ UV len = _invlist_len(invlist);
+ UV *array;
+
+ PERL_ARGS_ASSERT_INVLIST_ITERNEXT;
+
+ if (*pos >= len) {
+ *pos = (STRLEN) UV_MAX; /* Force iterinit() to be required next time */
+ return FALSE;
+ }
+
+ array = invlist_array(invlist);
+
+ *start = array[(*pos)++];
+
+ if (*pos >= len) {
+ *end = UV_MAX;
+ }
+ else {
+ *end = array[(*pos)++] - 1;
+ }
+
+ return TRUE;
+}
+
+PERL_STATIC_INLINE UV
+S_invlist_highest(SV* const invlist)
+{
+ /* Returns the highest code point that matches an inversion list. This API
+ * has an ambiguity, as it returns 0 under either the highest is actually
+ * 0, or if the list is empty. If this distinction matters to you, check
+ * for emptiness before calling this function */
+
+ UV len = _invlist_len(invlist);
+ UV *array;
+
+ PERL_ARGS_ASSERT_INVLIST_HIGHEST;
+
+ if (len == 0) {
+ return 0;
+ }
+
+ array = invlist_array(invlist);
+
+ /* The last element in the array in the inversion list always starts a
+ * range that goes to infinity. That range may be for code points that are
+ * matched in the inversion list, or it may be for ones that aren't
+ * matched. In the latter case, the highest code point in the set is one
+ * less than the beginning of this range; otherwise it is the final element
+ * of this range: infinity */
+ return (ELEMENT_RANGE_MATCHES_INVLIST(len - 1))
+ ? UV_MAX
+ : array[len - 1] - 1;
+}
+
+#ifndef PERL_IN_XSUB_RE
+SV *
+Perl__invlist_contents(pTHX_ SV* const invlist)
+{
+ /* Get the contents of an inversion list into a string SV so that they can
+ * be printed out. It uses the format traditionally done for debug tracing
+ */
+
+ UV start, end;
+ SV* output = newSVpvs("\n");
+
+ PERL_ARGS_ASSERT__INVLIST_CONTENTS;
+
+ assert(! invlist_is_iterating(invlist));
+
+ invlist_iterinit(invlist);
+ while (invlist_iternext(invlist, &start, &end)) {
+ if (end == UV_MAX) {
+ Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\tINFINITY\n", start);
+ }
+ else if (end != start) {
+ Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\t%04"UVXf"\n",
+ start, end);
+ }
+ else {
+ Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\n", start);
+ }
+ }
+
+ return output;
+}
+#endif
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl__invlist_dump(pTHX_ PerlIO *file, I32 level,
+ const char * const indent, SV* const invlist)
+{
+ /* Designed to be called only by do_sv_dump(). Dumps out the ranges of the
+ * inversion list 'invlist' to 'file' at 'level' Each line is prefixed by
+ * the string 'indent'. The output looks like this:
+ [0] 0x000A .. 0x000D
+ [2] 0x0085
+ [4] 0x2028 .. 0x2029
+ [6] 0x3104 .. INFINITY
+ * This means that the first range of code points matched by the list are
+ * 0xA through 0xD; the second range contains only the single code point
+ * 0x85, etc. An inversion list is an array of UVs. Two array elements
+ * are used to define each range (except if the final range extends to
+ * infinity, only a single element is needed). The array index of the
+ * first element for the corresponding range is given in brackets. */
+
+ UV start, end;
+ STRLEN count = 0;
+
+ PERL_ARGS_ASSERT__INVLIST_DUMP;
+
+ if (invlist_is_iterating(invlist)) {
+ Perl_dump_indent(aTHX_ level, file,
+ "%sCan't dump inversion list because is in middle of iterating\n",
+ indent);
+ return;
+ }
+
+ invlist_iterinit(invlist);
+ while (invlist_iternext(invlist, &start, &end)) {
+ if (end == UV_MAX) {
+ Perl_dump_indent(aTHX_ level, file,
+ "%s[%"UVuf"] 0x%04"UVXf" .. INFINITY\n",
+ indent, (UV)count, start);
+ }
+ else if (end != start) {
+ Perl_dump_indent(aTHX_ level, file,
+ "%s[%"UVuf"] 0x%04"UVXf" .. 0x%04"UVXf"\n",
+ indent, (UV)count, start, end);
+ }
+ else {
+ Perl_dump_indent(aTHX_ level, file, "%s[%"UVuf"] 0x%04"UVXf"\n",
+ indent, (UV)count, start);
+ }
+ count += 2;
+ }
+}
+
+void
+Perl__load_PL_utf8_foldclosures (pTHX)
+{
+ assert(! PL_utf8_foldclosures);
+
+ /* If the folds haven't been read in, call a fold function
+ * to force that */
+ if (! PL_utf8_tofold) {
+ U8 dummy[UTF8_MAXBYTES_CASE+1];
+
+ /* This string is just a short named one above \xff */
+ to_utf8_fold((U8*) HYPHEN_UTF8, dummy, NULL);
+ assert(PL_utf8_tofold); /* Verify that worked */
+ }
+ PL_utf8_foldclosures = _swash_inversion_hash(PL_utf8_tofold);
+}
+#endif
+
+#ifdef PERL_ARGS_ASSERT__INVLISTEQ
+bool
+S__invlistEQ(pTHX_ SV* const a, SV* const b, const bool complement_b)
+{
+ /* Return a boolean as to if the two passed in inversion lists are
+ * identical. The final argument, if TRUE, says to take the complement of
+ * the second inversion list before doing the comparison */
+
+ const UV* array_a = invlist_array(a);
+ const UV* array_b = invlist_array(b);
+ UV len_a = _invlist_len(a);
+ UV len_b = _invlist_len(b);
+
+ UV i = 0; /* current index into the arrays */
+ bool retval = TRUE; /* Assume are identical until proven otherwise */
+
+ PERL_ARGS_ASSERT__INVLISTEQ;
+
+ /* If are to compare 'a' with the complement of b, set it
+ * up so are looking at b's complement. */
+ if (complement_b) {
+
+ /* The complement of nothing is everything, so <a> would have to have
+ * just one element, starting at zero (ending at infinity) */
+ if (len_b == 0) {
+ return (len_a == 1 && array_a[0] == 0);
+ }
+ else if (array_b[0] == 0) {
+
+ /* Otherwise, to complement, we invert. Here, the first element is
+ * 0, just remove it. To do this, we just pretend the array starts
+ * one later */
+
+ array_b++;
+ len_b--;
+ }
+ else {
+
+ /* But if the first element is not zero, we pretend the list starts
+ * at the 0 that is always stored immediately before the array. */
+ array_b--;
+ len_b++;
+ }
+ }
+
+ /* Make sure that the lengths are the same, as well as the final element
+ * before looping through the remainder. (Thus we test the length, final,
+ * and first elements right off the bat) */
+ if (len_a != len_b || array_a[len_a-1] != array_b[len_a-1]) {
+ retval = FALSE;
+ }
+ else for (i = 0; i < len_a - 1; i++) {
+ if (array_a[i] != array_b[i]) {
+ retval = FALSE;
+ break;
+ }
+ }
+
+ return retval;
+}
+#endif
+
+/*
+ * As best we can, determine the characters that can match the start of
+ * the given EXACTF-ish node.
+ *
+ * Returns the invlist as a new SV*; it is the caller's responsibility to
+ * call SvREFCNT_dec() when done with it.
+ */
+STATIC SV*
+S__make_exactf_invlist(pTHX_ RExC_state_t *pRExC_state, regnode *node)
+{
+ const U8 * s = (U8*)STRING(node);
+ SSize_t bytelen = STR_LEN(node);
+ UV uc;
+ /* Start out big enough for 2 separate code points */
+ SV* invlist = _new_invlist(4);
+
+ PERL_ARGS_ASSERT__MAKE_EXACTF_INVLIST;
+
+ if (! UTF) {
+ uc = *s;
+
+ /* We punt and assume can match anything if the node begins
+ * with a multi-character fold. Things are complicated. For
+ * example, /ffi/i could match any of:
+ * "\N{LATIN SMALL LIGATURE FFI}"
+ * "\N{LATIN SMALL LIGATURE FF}I"
+ * "F\N{LATIN SMALL LIGATURE FI}"
+ * plus several other things; and making sure we have all the
+ * possibilities is hard. */
+ if (is_MULTI_CHAR_FOLD_latin1_safe(s, s + bytelen)) {
+ invlist = _add_range_to_invlist(invlist, 0, UV_MAX);
+ }
+ else {
+ /* Any Latin1 range character can potentially match any
+ * other depending on the locale */
+ if (OP(node) == EXACTFL) {
+ _invlist_union(invlist, PL_Latin1, &invlist);
+ }
+ else {
+ /* But otherwise, it matches at least itself. We can
+ * quickly tell if it has a distinct fold, and if so,
+ * it matches that as well */
+ invlist = add_cp_to_invlist(invlist, uc);
+ if (IS_IN_SOME_FOLD_L1(uc))
+ invlist = add_cp_to_invlist(invlist, PL_fold_latin1[uc]);
+ }
+
+ /* Some characters match above-Latin1 ones under /i. This
+ * is true of EXACTFL ones when the locale is UTF-8 */
+ if (HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(uc)
+ && (! isASCII(uc) || (OP(node) != EXACTFA
+ && OP(node) != EXACTFA_NO_TRIE)))
+ {
+ add_above_Latin1_folds(pRExC_state, (U8) uc, &invlist);
+ }
+ }
+ }
+ else { /* Pattern is UTF-8 */
+ U8 folded[UTF8_MAX_FOLD_CHAR_EXPAND * UTF8_MAXBYTES_CASE + 1] = { '\0' };
+ STRLEN foldlen = UTF8SKIP(s);
+ const U8* e = s + bytelen;
+ SV** listp;
+
+ uc = utf8_to_uvchr_buf(s, s + bytelen, NULL);
+
+ /* The only code points that aren't folded in a UTF EXACTFish
+ * node are are the problematic ones in EXACTFL nodes */
+ if (OP(node) == EXACTFL && is_PROBLEMATIC_LOCALE_FOLDEDS_START_cp(uc)) {
+ /* We need to check for the possibility that this EXACTFL
+ * node begins with a multi-char fold. Therefore we fold
+ * the first few characters of it so that we can make that
+ * check */
+ U8 *d = folded;
+ int i;
+
+ for (i = 0; i < UTF8_MAX_FOLD_CHAR_EXPAND && s < e; i++) {
+ if (isASCII(*s)) {
+ *(d++) = (U8) toFOLD(*s);
+ s++;
+ }
+ else {
+ STRLEN len;
+ to_utf8_fold(s, d, &len);
+ d += len;
+ s += UTF8SKIP(s);
+ }
+ }
+
+ /* And set up so the code below that looks in this folded
+ * buffer instead of the node's string */
+ e = d;
+ foldlen = UTF8SKIP(folded);
+ s = folded;
+ }
+
+ /* When we reach here 's' points to the fold of the first
+ * character(s) of the node; and 'e' points to far enough along
+ * the folded string to be just past any possible multi-char
+ * fold. 'foldlen' is the length in bytes of the first
+ * character in 's'
+ *
+ * Unlike the non-UTF-8 case, the macro for determining if a
+ * string is a multi-char fold requires all the characters to
+ * already be folded. This is because of all the complications
+ * if not. Note that they are folded anyway, except in EXACTFL
+ * nodes. Like the non-UTF case above, we punt if the node
+ * begins with a multi-char fold */
+
+ if (is_MULTI_CHAR_FOLD_utf8_safe(s, e)) {
+ invlist = _add_range_to_invlist(invlist, 0, UV_MAX);
+ }
+ else { /* Single char fold */
+
+ /* It matches all the things that fold to it, which are
+ * found in PL_utf8_foldclosures (including itself) */
+ invlist = add_cp_to_invlist(invlist, uc);
+ if (! PL_utf8_foldclosures)
+ _load_PL_utf8_foldclosures();
+ if ((listp = hv_fetch(PL_utf8_foldclosures,
+ (char *) s, foldlen, FALSE)))
+ {
+ AV* list = (AV*) *listp;
+ IV k;
+ for (k = 0; k <= av_tindex(list); k++) {
+ SV** c_p = av_fetch(list, k, FALSE);
+ UV c;
+ assert(c_p);
+
+ c = SvUV(*c_p);
+
+ /* /aa doesn't allow folds between ASCII and non- */
+ if ((OP(node) == EXACTFA || OP(node) == EXACTFA_NO_TRIE)
+ && isASCII(c) != isASCII(uc))
+ {
+ continue;
+ }
+
+ invlist = add_cp_to_invlist(invlist, c);
+ }
+ }
+ }
+ }
+
+ return invlist;
+}
+
+#undef HEADER_LENGTH
+#undef TO_INTERNAL_SIZE
+#undef FROM_INTERNAL_SIZE
+#undef INVLIST_VERSION_ID
+
+/* End of inversion list object */
+
+STATIC void
+S_parse_lparen_question_flags(pTHX_ RExC_state_t *pRExC_state)
+{
+ /* This parses the flags that are in either the '(?foo)' or '(?foo:bar)'
+ * constructs, and updates RExC_flags with them. On input, RExC_parse
+ * should point to the first flag; it is updated on output to point to the
+ * final ')' or ':'. There needs to be at least one flag, or this will
+ * abort */
+
+ /* for (?g), (?gc), and (?o) warnings; warning
+ about (?c) will warn about (?g) -- japhy */
+
+#define WASTED_O 0x01
+#define WASTED_G 0x02
+#define WASTED_C 0x04
+#define WASTED_GC (WASTED_G|WASTED_C)
+ I32 wastedflags = 0x00;
+ U32 posflags = 0, negflags = 0;
+ U32 *flagsp = &posflags;
+ char has_charset_modifier = '\0';
+ regex_charset cs;
+ bool has_use_defaults = FALSE;
+ const char* const seqstart = RExC_parse - 1; /* Point to the '?' */
+ int x_mod_count = 0;
+
+ PERL_ARGS_ASSERT_PARSE_LPAREN_QUESTION_FLAGS;
+
+ /* '^' as an initial flag sets certain defaults */
+ if (UCHARAT(RExC_parse) == '^') {
+ RExC_parse++;
+ has_use_defaults = TRUE;
+ STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
+ set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
+ ? REGEX_UNICODE_CHARSET
+ : REGEX_DEPENDS_CHARSET);
+ }
+
+ cs = get_regex_charset(RExC_flags);
+ if (cs == REGEX_DEPENDS_CHARSET
+ && (RExC_utf8 || RExC_uni_semantics))
+ {
+ cs = REGEX_UNICODE_CHARSET;
+ }
+
+ while (*RExC_parse) {
+ /* && strchr("iogcmsx", *RExC_parse) */
+ /* (?g), (?gc) and (?o) are useless here
+ and must be globally applied -- japhy */
+ switch (*RExC_parse) {
+
+ /* Code for the imsxn flags */
+ CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp, x_mod_count);
+
+ case LOCALE_PAT_MOD:
+ if (has_charset_modifier) {
+ goto excess_modifier;
+ }
+ else if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ cs = REGEX_LOCALE_CHARSET;
+ has_charset_modifier = LOCALE_PAT_MOD;
+ break;
+ case UNICODE_PAT_MOD:
+ if (has_charset_modifier) {
+ goto excess_modifier;
+ }
+ else if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ cs = REGEX_UNICODE_CHARSET;
+ has_charset_modifier = UNICODE_PAT_MOD;
+ break;
+ case ASCII_RESTRICT_PAT_MOD:
+ if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ if (has_charset_modifier) {
+ if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
+ goto excess_modifier;
+ }
+ /* Doubled modifier implies more restricted */
+ cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
+ }
+ else {
+ cs = REGEX_ASCII_RESTRICTED_CHARSET;
+ }
+ has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
+ break;
+ case DEPENDS_PAT_MOD:
+ if (has_use_defaults) {
+ goto fail_modifiers;
+ }
+ else if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ else if (has_charset_modifier) {
+ goto excess_modifier;
+ }
+
+ /* The dual charset means unicode semantics if the
+ * pattern (or target, not known until runtime) are
+ * utf8, or something in the pattern indicates unicode
+ * semantics */
+ cs = (RExC_utf8 || RExC_uni_semantics)
+ ? REGEX_UNICODE_CHARSET
+ : REGEX_DEPENDS_CHARSET;
+ has_charset_modifier = DEPENDS_PAT_MOD;
+ break;
+ excess_modifier:
+ RExC_parse++;
+ if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
+ vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
+ }
+ else if (has_charset_modifier == *(RExC_parse - 1)) {
+ vFAIL2("Regexp modifier \"%c\" may not appear twice",
+ *(RExC_parse - 1));
+ }
+ else {
+ vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
+ }
+ NOT_REACHED; /*NOTREACHED*/
+ neg_modifier:
+ RExC_parse++;
+ vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"",
+ *(RExC_parse - 1));
+ NOT_REACHED; /*NOTREACHED*/
+ case ONCE_PAT_MOD: /* 'o' */
+ case GLOBAL_PAT_MOD: /* 'g' */
+ if (PASS2 && ckWARN(WARN_REGEXP)) {
+ const I32 wflagbit = *RExC_parse == 'o'
+ ? WASTED_O
+ : WASTED_G;
+ if (! (wastedflags & wflagbit) ) {
+ wastedflags |= wflagbit;
+ /* diag_listed_as: Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/ */
+ vWARN5(
+ RExC_parse + 1,
+ "Useless (%s%c) - %suse /%c modifier",
+ flagsp == &negflags ? "?-" : "?",
+ *RExC_parse,
+ flagsp == &negflags ? "don't " : "",
+ *RExC_parse
+ );
+ }
+ }
+ break;
+
+ case CONTINUE_PAT_MOD: /* 'c' */
+ if (PASS2 && ckWARN(WARN_REGEXP)) {
+ if (! (wastedflags & WASTED_C) ) {
+ wastedflags |= WASTED_GC;
+ /* diag_listed_as: Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/ */
+ vWARN3(
+ RExC_parse + 1,
+ "Useless (%sc) - %suse /gc modifier",
+ flagsp == &negflags ? "?-" : "?",
+ flagsp == &negflags ? "don't " : ""
+ );
+ }
+ }
+ break;
+ case KEEPCOPY_PAT_MOD: /* 'p' */
+ if (flagsp == &negflags) {
+ if (PASS2)
+ ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
+ } else {
+ *flagsp |= RXf_PMf_KEEPCOPY;
+ }
+ break;
+ case '-':
+ /* A flag is a default iff it is following a minus, so
+ * if there is a minus, it means will be trying to
+ * re-specify a default which is an error */
+ if (has_use_defaults || flagsp == &negflags) {
+ goto fail_modifiers;
+ }
+ flagsp = &negflags;
+ wastedflags = 0; /* reset so (?g-c) warns twice */
+ break;
+ case ':':
+ case ')':
+ RExC_flags |= posflags;
+ RExC_flags &= ~negflags;
+ set_regex_charset(&RExC_flags, cs);
+ if (RExC_flags & RXf_PMf_FOLD) {
+ RExC_contains_i = 1;
+ }
+ if (PASS2) {
+ STD_PMMOD_FLAGS_PARSE_X_WARN(x_mod_count);
+ }
+ return;
+ /*NOTREACHED*/
+ default:
+ fail_modifiers:
+ RExC_parse += SKIP_IF_CHAR(RExC_parse);
+ /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
+ vFAIL2utf8f("Sequence (%"UTF8f"...) not recognized",
+ UTF8fARG(UTF, RExC_parse-seqstart, seqstart));
+ NOT_REACHED; /*NOTREACHED*/
+ }
+
+ ++RExC_parse;
+ }
+
+ if (PASS2) {
+ STD_PMMOD_FLAGS_PARSE_X_WARN(x_mod_count);
+ }
+}
+
+/*
+ - reg - regular expression, i.e. main body or parenthesized thing
+ *
+ * Caller must absorb opening parenthesis.
+ *
+ * Combining parenthesis handling with the base level of regular expression
+ * is a trifle forced, but the need to tie the tails of the branches to what
+ * follows makes it hard to avoid.
+ */
+#define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
+#ifdef DEBUGGING
+#define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
+#else
+#define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
+#endif
+
+/* Returns NULL, setting *flagp to TRYAGAIN at the end of (?) that only sets
+ flags. Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan
+ needs to be restarted.
+ Otherwise would only return NULL if regbranch() returns NULL, which
+ cannot happen. */
+STATIC regnode *
+S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
+ /* paren: Parenthesized? 0=top; 1,2=inside '(': changed to letter.
+ * 2 is like 1, but indicates that nextchar() has been called to advance
+ * RExC_parse beyond the '('. Things like '(?' are indivisible tokens, and
+ * this flag alerts us to the need to check for that */
+{
+ regnode *ret; /* Will be the head of the group. */
+ regnode *br;
+ regnode *lastbr;
+ regnode *ender = NULL;
+ I32 parno = 0;
+ I32 flags;
+ U32 oregflags = RExC_flags;
+ bool have_branch = 0;
+ bool is_open = 0;
+ I32 freeze_paren = 0;
+ I32 after_freeze = 0;
+ I32 num; /* numeric backreferences */
+
+ char * parse_start = RExC_parse; /* MJD */
+ char * const oregcomp_parse = RExC_parse;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG;
+ DEBUG_PARSE("reg ");
+
+ *flagp = 0; /* Tentatively. */
+
+
+ /* Make an OPEN node, if parenthesized. */
+ if (paren) {
+
+ /* Under /x, space and comments can be gobbled up between the '(' and
+ * here (if paren ==2). The forms '(*VERB' and '(?...' disallow such
+ * intervening space, as the sequence is a token, and a token should be
+ * indivisible */
+ bool has_intervening_patws = paren == 2 && *(RExC_parse - 1) != '(';
+
+ if ( *RExC_parse == '*') { /* (*VERB:ARG) */
+ char *start_verb = RExC_parse;
+ STRLEN verb_len = 0;
+ char *start_arg = NULL;
+ unsigned char op = 0;
+ int argok = 1;
+ int internal_argval = 0; /* internal_argval is only useful if
+ !argok */
+
+ if (has_intervening_patws) {
+ RExC_parse++;
+ vFAIL("In '(*VERB...)', the '(' and '*' must be adjacent");
+ }
+ while ( *RExC_parse && *RExC_parse != ')' ) {
+ if ( *RExC_parse == ':' ) {
+ start_arg = RExC_parse + 1;
+ break;
+ }
+ RExC_parse++;
+ }
+ ++start_verb;
+ verb_len = RExC_parse - start_verb;
+ if ( start_arg ) {
+ RExC_parse++;
+ while ( *RExC_parse && *RExC_parse != ')' )
+ RExC_parse++;
+ if ( *RExC_parse != ')' )
+ vFAIL("Unterminated verb pattern argument");
+ if ( RExC_parse == start_arg )
+ start_arg = NULL;
+ } else {
+ if ( *RExC_parse != ')' )
+ vFAIL("Unterminated verb pattern");
+ }
+
+ switch ( *start_verb ) {
+ case 'A': /* (*ACCEPT) */
+ if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
+ op = ACCEPT;
+ internal_argval = RExC_nestroot;
+ }
+ break;
+ case 'C': /* (*COMMIT) */
+ if ( memEQs(start_verb,verb_len,"COMMIT") )
+ op = COMMIT;
+ break;
+ case 'F': /* (*FAIL) */
+ if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
+ op = OPFAIL;
+ argok = 0;
+ }
+ break;
+ case ':': /* (*:NAME) */
+ case 'M': /* (*MARK:NAME) */
+ if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
+ op = MARKPOINT;
+ argok = -1;
+ }
+ break;
+ case 'P': /* (*PRUNE) */
+ if ( memEQs(start_verb,verb_len,"PRUNE") )
+ op = PRUNE;
+ break;
+ case 'S': /* (*SKIP) */
+ if ( memEQs(start_verb,verb_len,"SKIP") )
+ op = SKIP;
+ break;
+ case 'T': /* (*THEN) */
+ /* [19:06] <TimToady> :: is then */
+ if ( memEQs(start_verb,verb_len,"THEN") ) {
+ op = CUTGROUP;
+ RExC_seen |= REG_CUTGROUP_SEEN;
+ }
+ break;
+ }
+ if ( ! op ) {
+ RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
+ vFAIL2utf8f(
+ "Unknown verb pattern '%"UTF8f"'",
+ UTF8fARG(UTF, verb_len, start_verb));
+ }
+ if ( argok ) {
+ if ( start_arg && internal_argval ) {
+ vFAIL3("Verb pattern '%.*s' may not have an argument",
+ verb_len, start_verb);
+ } else if ( argok < 0 && !start_arg ) {
+ vFAIL3("Verb pattern '%.*s' has a mandatory argument",
+ verb_len, start_verb);
+ } else {
+ ret = reganode(pRExC_state, op, internal_argval);
+ if ( ! internal_argval && ! SIZE_ONLY ) {
+ if (start_arg) {
+ SV *sv = newSVpvn( start_arg,
+ RExC_parse - start_arg);
+ ARG(ret) = add_data( pRExC_state,
+ STR_WITH_LEN("S"));
+ RExC_rxi->data->data[ARG(ret)]=(void*)sv;
+ ret->flags = 0;
+ } else {
+ ret->flags = 1;
+ }
+ }
+ }
+ if (!internal_argval)
+ RExC_seen |= REG_VERBARG_SEEN;
+ } else if ( start_arg ) {
+ vFAIL3("Verb pattern '%.*s' may not have an argument",
+ verb_len, start_verb);
+ } else {
+ ret = reg_node(pRExC_state, op);
+ }
+ nextchar(pRExC_state);
+ return ret;
+ }
+ else if (*RExC_parse == '?') { /* (?...) */
+ bool is_logical = 0;
+ const char * const seqstart = RExC_parse;
+ const char * endptr;
+ if (has_intervening_patws) {
+ RExC_parse++;
+ vFAIL("In '(?...)', the '(' and '?' must be adjacent");
+ }
+
+ RExC_parse++;
+ paren = *RExC_parse++;
+ ret = NULL; /* For look-ahead/behind. */
+ switch (paren) {
+
+ case 'P': /* (?P...) variants for those used to PCRE/Python */
+ paren = *RExC_parse++;
+ if ( paren == '<') /* (?P<...>) named capture */
+ goto named_capture;
+ else if (paren == '>') { /* (?P>name) named recursion */
+ goto named_recursion;
+ }
+ else if (paren == '=') { /* (?P=...) named backref */
+ /* this pretty much dupes the code for \k<NAME> in
+ * regatom(), if you change this make sure you change that
+ * */
+ char* name_start = RExC_parse;
+ U32 num = 0;
+ SV *sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ if (RExC_parse == name_start || *RExC_parse != ')')
+ /* diag_listed_as: Sequence ?P=... not terminated in regex; marked by <-- HERE in m/%s/ */
+ vFAIL2("Sequence %.3s... not terminated",parse_start);
+
+ if (!SIZE_ONLY) {
+ num = add_data( pRExC_state, STR_WITH_LEN("S"));
+ RExC_rxi->data->data[num]=(void*)sv_dat;
+ SvREFCNT_inc_simple_void(sv_dat);
+ }
+ RExC_sawback = 1;
+ ret = reganode(pRExC_state,
+ ((! FOLD)
+ ? NREF
+ : (ASCII_FOLD_RESTRICTED)
+ ? NREFFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? NREFFU
+ : (LOC)
+ ? NREFFL
+ : NREFF),
+ num);
+ *flagp |= HASWIDTH;
+
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Cur_Length(ret, parse_start);
+
+ nextchar(pRExC_state);
+ return ret;
+ }
+ --RExC_parse;
+ RExC_parse += SKIP_IF_CHAR(RExC_parse);
+ /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
+ vFAIL3("Sequence (%.*s...) not recognized",
+ RExC_parse-seqstart, seqstart);
+ NOT_REACHED; /*NOTREACHED*/
+ case '<': /* (?<...) */
+ if (*RExC_parse == '!')
+ paren = ',';
+ else if (*RExC_parse != '=')
+ named_capture:
+ { /* (?<...>) */
+ char *name_start;
+ SV *svname;
+ paren= '>';
+ case '\'': /* (?'...') */
+ name_start= RExC_parse;
+ svname = reg_scan_name(pRExC_state,
+ SIZE_ONLY /* reverse test from the others */
+ ? REG_RSN_RETURN_NAME
+ : REG_RSN_RETURN_NULL);
+ if (RExC_parse == name_start || *RExC_parse != paren)
+ vFAIL2("Sequence (?%c... not terminated",
+ paren=='>' ? '<' : paren);
+ if (SIZE_ONLY) {
+ HE *he_str;
+ SV *sv_dat = NULL;
+ if (!svname) /* shouldn't happen */
+ Perl_croak(aTHX_
+ "panic: reg_scan_name returned NULL");
+ if (!RExC_paren_names) {
+ RExC_paren_names= newHV();
+ sv_2mortal(MUTABLE_SV(RExC_paren_names));
+#ifdef DEBUGGING
+ RExC_paren_name_list= newAV();
+ sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
+#endif
+ }
+ he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
+ if ( he_str )
+ sv_dat = HeVAL(he_str);
+ if ( ! sv_dat ) {
+ /* croak baby croak */
+ Perl_croak(aTHX_
+ "panic: paren_name hash element allocation failed");
+ } else if ( SvPOK(sv_dat) ) {
+ /* (?|...) can mean we have dupes so scan to check
+ its already been stored. Maybe a flag indicating
+ we are inside such a construct would be useful,
+ but the arrays are likely to be quite small, so
+ for now we punt -- dmq */
+ IV count = SvIV(sv_dat);
+ I32 *pv = (I32*)SvPVX(sv_dat);
+ IV i;
+ for ( i = 0 ; i < count ; i++ ) {
+ if ( pv[i] == RExC_npar ) {
+ count = 0;
+ break;
+ }
+ }
+ if ( count ) {
+ pv = (I32*)SvGROW(sv_dat,
+ SvCUR(sv_dat) + sizeof(I32)+1);
+ SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
+ pv[count] = RExC_npar;
+ SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
+ }
+ } else {
+ (void)SvUPGRADE(sv_dat,SVt_PVNV);
+ sv_setpvn(sv_dat, (char *)&(RExC_npar),
+ sizeof(I32));
+ SvIOK_on(sv_dat);
+ SvIV_set(sv_dat, 1);
+ }
+#ifdef DEBUGGING
+ /* Yes this does cause a memory leak in debugging Perls
+ * */
+ if (!av_store(RExC_paren_name_list,
+ RExC_npar, SvREFCNT_inc(svname)))
+ SvREFCNT_dec_NN(svname);
+#endif
+
+ /*sv_dump(sv_dat);*/
+ }
+ nextchar(pRExC_state);
+ paren = 1;
+ goto capturing_parens;
+ }
+ RExC_seen |= REG_LOOKBEHIND_SEEN;
+ RExC_in_lookbehind++;
+ RExC_parse++;
+ /* FALLTHROUGH */
+ case '=': /* (?=...) */
+ RExC_seen_zerolen++;
+ break;
+ case '!': /* (?!...) */
+ RExC_seen_zerolen++;
+ /* check if we're really just a "FAIL" assertion */
+ --RExC_parse;
+ nextchar(pRExC_state);
+ if (*RExC_parse == ')') {
+ ret=reg_node(pRExC_state, OPFAIL);
+ nextchar(pRExC_state);
+ return ret;
+ }
+ break;
+ case '|': /* (?|...) */
+ /* branch reset, behave like a (?:...) except that
+ buffers in alternations share the same numbers */
+ paren = ':';
+ after_freeze = freeze_paren = RExC_npar;
+ break;
+ case ':': /* (?:...) */
+ case '>': /* (?>...) */
+ break;
+ case '$': /* (?$...) */
+ case '@': /* (?@...) */
+ vFAIL2("Sequence (?%c...) not implemented", (int)paren);
+ break;
+ case '0' : /* (?0) */
+ case 'R' : /* (?R) */
+ if (*RExC_parse != ')')
+ FAIL("Sequence (?R) not terminated");
+ ret = reg_node(pRExC_state, GOSTART);
+ RExC_seen |= REG_GOSTART_SEEN;
+ *flagp |= POSTPONED;
+ nextchar(pRExC_state);
+ return ret;
+ /*notreached*/
+ /* named and numeric backreferences */
+ case '&': /* (?&NAME) */
+ parse_start = RExC_parse - 1;
+ named_recursion:
+ {
+ SV *sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
+ }
+ if (RExC_parse == RExC_end || *RExC_parse != ')')
+ vFAIL("Sequence (?&... not terminated");
+ goto gen_recurse_regop;
+ /* NOTREACHED */
+ case '+':
+ if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
+ RExC_parse++;
+ vFAIL("Illegal pattern");
+ }
+ goto parse_recursion;
+ /* NOTREACHED*/
+ case '-': /* (?-1) */
+ if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
+ RExC_parse--; /* rewind to let it be handled later */
+ goto parse_flags;
+ }
+ /* FALLTHROUGH */
+ case '1': case '2': case '3': case '4': /* (?1) */
+ case '5': case '6': case '7': case '8': case '9':
+ RExC_parse--;
+ parse_recursion:
+ {
+ bool is_neg = FALSE;
+ UV unum;
+ parse_start = RExC_parse - 1; /* MJD */
+ if (*RExC_parse == '-') {
+ RExC_parse++;
+ is_neg = TRUE;
+ }
+ if (grok_atoUV(RExC_parse, &unum, &endptr)
+ && unum <= I32_MAX
+ ) {
+ num = (I32)unum;
+ RExC_parse = (char*)endptr;
+ } else
+ num = I32_MAX;
+ if (is_neg) {
+ /* Some limit for num? */
+ num = -num;
+ }
+ }
+ if (*RExC_parse!=')')
+ vFAIL("Expecting close bracket");
+
+ gen_recurse_regop:
+ if ( paren == '-' ) {
+ /*
+ Diagram of capture buffer numbering.
+ Top line is the normal capture buffer numbers
+ Bottom line is the negative indexing as from
+ the X (the (?-2))
+
+ + 1 2 3 4 5 X 6 7
+ /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
+ - 5 4 3 2 1 X x x
+
+ */
+ num = RExC_npar + num;
+ if (num < 1) {
+ RExC_parse++;
+ vFAIL("Reference to nonexistent group");
+ }
+ } else if ( paren == '+' ) {
+ num = RExC_npar + num - 1;
+ }
+
+ ret = reg2Lanode(pRExC_state, GOSUB, num, RExC_recurse_count);
+ if (!SIZE_ONLY) {
+ if (num > (I32)RExC_rx->nparens) {
+ RExC_parse++;
+ vFAIL("Reference to nonexistent group");
+ }
+ RExC_recurse_count++;
+ DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+ "%*s%*s Recurse #%"UVuf" to %"IVdf"\n",
+ 22, "| |", (int)(depth * 2 + 1), "",
+ (UV)ARG(ret), (IV)ARG2L(ret)));
+ }
+ RExC_seen |= REG_RECURSE_SEEN;
+ Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
+ Set_Node_Offset(ret, parse_start); /* MJD */
+
+ *flagp |= POSTPONED;
+ nextchar(pRExC_state);
+ return ret;
+
+ /* NOTREACHED */
+
+ case '?': /* (??...) */
+ is_logical = 1;
+ if (*RExC_parse != '{') {
+ RExC_parse += SKIP_IF_CHAR(RExC_parse);
+ /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
+ vFAIL2utf8f(
+ "Sequence (%"UTF8f"...) not recognized",
+ UTF8fARG(UTF, RExC_parse-seqstart, seqstart));
+ NOT_REACHED; /*NOTREACHED*/
+ }
+ *flagp |= POSTPONED;
+ paren = *RExC_parse++;
+ /* FALLTHROUGH */
+ case '{': /* (?{...}) */
+ {
+ U32 n = 0;
+ struct reg_code_block *cb;
+
+ RExC_seen_zerolen++;
+
+ if ( !pRExC_state->num_code_blocks
+ || pRExC_state->code_index >= pRExC_state->num_code_blocks
+ || pRExC_state->code_blocks[pRExC_state->code_index].start
+ != (STRLEN)((RExC_parse -3 - (is_logical ? 1 : 0))
+ - RExC_start)
+ ) {
+ if (RExC_pm_flags & PMf_USE_RE_EVAL)
+ FAIL("panic: Sequence (?{...}): no code block found\n");
+ FAIL("Eval-group not allowed at runtime, use re 'eval'");
+ }
+ /* this is a pre-compiled code block (?{...}) */
+ cb = &pRExC_state->code_blocks[pRExC_state->code_index];
+ RExC_parse = RExC_start + cb->end;
+ if (!SIZE_ONLY) {
+ OP *o = cb->block;
+ if (cb->src_regex) {
+ n = add_data(pRExC_state, STR_WITH_LEN("rl"));
+ RExC_rxi->data->data[n] =
+ (void*)SvREFCNT_inc((SV*)cb->src_regex);
+ RExC_rxi->data->data[n+1] = (void*)o;
+ }
+ else {
+ n = add_data(pRExC_state,
+ (RExC_pm_flags & PMf_HAS_CV) ? "L" : "l", 1);
+ RExC_rxi->data->data[n] = (void*)o;
+ }
+ }
+ pRExC_state->code_index++;
+ nextchar(pRExC_state);
+
+ if (is_logical) {
+ regnode *eval;
+ ret = reg_node(pRExC_state, LOGICAL);
+
+ eval = reg2Lanode(pRExC_state, EVAL,
+ n,
+
+ /* for later propagation into (??{})
+ * return value */
+ RExC_flags & RXf_PMf_COMPILETIME
+ );
+ if (!SIZE_ONLY) {
+ ret->flags = 2;
+ }
+ REGTAIL(pRExC_state, ret, eval);
+ /* deal with the length of this later - MJD */
+ return ret;
+ }
+ ret = reg2Lanode(pRExC_state, EVAL, n, 0);
+ Set_Node_Length(ret, RExC_parse - parse_start + 1);
+ Set_Node_Offset(ret, parse_start);
+ return ret;
+ }
+ case '(': /* (?(?{...})...) and (?(?=...)...) */
+ {
+ int is_define= 0;
+ const int DEFINE_len = sizeof("DEFINE") - 1;
+ if (RExC_parse[0] == '?') { /* (?(?...)) */
+ if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
+ || RExC_parse[1] == '<'
+ || RExC_parse[1] == '{') { /* Lookahead or eval. */
+ I32 flag;
+ regnode *tail;
+
+ ret = reg_node(pRExC_state, LOGICAL);
+ if (!SIZE_ONLY)
+ ret->flags = 1;
+
+ tail = reg(pRExC_state, 1, &flag, depth+1);
+ if (flag & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ REGTAIL(pRExC_state, ret, tail);
+ goto insert_if;
+ }
+ /* Fall through to ‘Unknown switch condition’ at the
+ end of the if/else chain. */
+ }
+ else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */
+ || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
+ {
+ char ch = RExC_parse[0] == '<' ? '>' : '\'';
+ char *name_start= RExC_parse++;
+ U32 num = 0;
+ SV *sv_dat=reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ if (RExC_parse == name_start || *RExC_parse != ch)
+ vFAIL2("Sequence (?(%c... not terminated",
+ (ch == '>' ? '<' : ch));
+ RExC_parse++;
+ if (!SIZE_ONLY) {
+ num = add_data( pRExC_state, STR_WITH_LEN("S"));
+ RExC_rxi->data->data[num]=(void*)sv_dat;
+ SvREFCNT_inc_simple_void(sv_dat);
+ }
+ ret = reganode(pRExC_state,NGROUPP,num);
+ goto insert_if_check_paren;
+ }
+ else if (RExC_end - RExC_parse >= DEFINE_len
+ && strnEQ(RExC_parse, "DEFINE", DEFINE_len))
+ {
+ ret = reganode(pRExC_state,DEFINEP,0);
+ RExC_parse += DEFINE_len;
+ is_define = 1;
+ goto insert_if_check_paren;
+ }
+ else if (RExC_parse[0] == 'R') {
+ RExC_parse++;
+ parno = 0;
+ if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
+ UV uv;
+ if (grok_atoUV(RExC_parse, &uv, &endptr)
+ && uv <= I32_MAX
+ ) {
+ parno = (I32)uv;
+ RExC_parse = (char*)endptr;
+ }
+ /* else "Switch condition not recognized" below */
+ } else if (RExC_parse[0] == '&') {
+ SV *sv_dat;
+ RExC_parse++;
+ sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY
+ ? REG_RSN_RETURN_NULL
+ : REG_RSN_RETURN_DATA);
+ parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
+ }
+ ret = reganode(pRExC_state,INSUBP,parno);
+ goto insert_if_check_paren;
+ }
+ else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
+ /* (?(1)...) */
+ char c;
+ char *tmp;
+ UV uv;
+ if (grok_atoUV(RExC_parse, &uv, &endptr)
+ && uv <= I32_MAX
+ ) {
+ parno = (I32)uv;
+ RExC_parse = (char*)endptr;
+ }
+ /* XXX else what? */
+ ret = reganode(pRExC_state, GROUPP, parno);
+
+ insert_if_check_paren:
+ if (*(tmp = nextchar(pRExC_state)) != ')') {
+ /* nextchar also skips comments, so undo its work
+ * and skip over the the next character.
+ */
+ RExC_parse = tmp;
+ RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
+ vFAIL("Switch condition not recognized");
+ }
+ insert_if:
+ REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
+ br = regbranch(pRExC_state, &flags, 1,depth+1);
+ if (br == NULL) {
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"",
+ (UV) flags);
+ } else
+ REGTAIL(pRExC_state, br, reganode(pRExC_state,
+ LONGJMP, 0));
+ c = *nextchar(pRExC_state);
+ if (flags&HASWIDTH)
+ *flagp |= HASWIDTH;
+ if (c == '|') {
+ if (is_define)
+ vFAIL("(?(DEFINE)....) does not allow branches");
+
+ /* Fake one for optimizer. */
+ lastbr = reganode(pRExC_state, IFTHEN, 0);
+
+ if (!regbranch(pRExC_state, &flags, 1,depth+1)) {
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"",
+ (UV) flags);
+ }
+ REGTAIL(pRExC_state, ret, lastbr);
+ if (flags&HASWIDTH)
+ *flagp |= HASWIDTH;
+ c = *nextchar(pRExC_state);
+ }
+ else
+ lastbr = NULL;
+ if (c != ')') {
+ if (RExC_parse>RExC_end)
+ vFAIL("Switch (?(condition)... not terminated");
+ else
+ vFAIL("Switch (?(condition)... contains too many branches");
+ }
+ ender = reg_node(pRExC_state, TAIL);
+ REGTAIL(pRExC_state, br, ender);
+ if (lastbr) {
+ REGTAIL(pRExC_state, lastbr, ender);
+ REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
+ }
+ else
+ REGTAIL(pRExC_state, ret, ender);
+ RExC_size++; /* XXX WHY do we need this?!!
+ For large programs it seems to be required
+ but I can't figure out why. -- dmq*/
+ return ret;
+ }
+ RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
+ vFAIL("Unknown switch condition (?(...))");
+ }
+ case '[': /* (?[ ... ]) */
+ return handle_regex_sets(pRExC_state, NULL, flagp, depth,
+ oregcomp_parse);
+ case 0:
+ RExC_parse--; /* for vFAIL to print correctly */
+ vFAIL("Sequence (? incomplete");
+ break;
+ default: /* e.g., (?i) */
+ --RExC_parse;
+ parse_flags:
+ parse_lparen_question_flags(pRExC_state);
+ if (UCHARAT(RExC_parse) != ':') {
+ if (*RExC_parse)
+ nextchar(pRExC_state);
+ *flagp = TRYAGAIN;
+ return NULL;
+ }
+ paren = ':';
+ nextchar(pRExC_state);
+ ret = NULL;
+ goto parse_rest;
+ } /* end switch */
+ }
+ else if (!(RExC_flags & RXf_PMf_NOCAPTURE)) { /* (...) */
+ capturing_parens:
+ parno = RExC_npar;
+ RExC_npar++;
+
+ ret = reganode(pRExC_state, OPEN, parno);
+ if (!SIZE_ONLY ){
+ if (!RExC_nestroot)
+ RExC_nestroot = parno;
+ if (RExC_seen & REG_RECURSE_SEEN
+ && !RExC_open_parens[parno-1])
+ {
+ DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+ "%*s%*s Setting open paren #%"IVdf" to %d\n",
+ 22, "| |", (int)(depth * 2 + 1), "",
+ (IV)parno, REG_NODE_NUM(ret)));
+ RExC_open_parens[parno-1]= ret;
+ }
+ }
+ Set_Node_Length(ret, 1); /* MJD */
+ Set_Node_Offset(ret, RExC_parse); /* MJD */
+ is_open = 1;
+ } else {
+ /* with RXf_PMf_NOCAPTURE treat (...) as (?:...) */
+ paren = ':';
+ ret = NULL;
+ }
+ }
+ else /* ! paren */
+ ret = NULL;
+
+ parse_rest:
+ /* Pick up the branches, linking them together. */
+ parse_start = RExC_parse; /* MJD */
+ br = regbranch(pRExC_state, &flags, 1,depth+1);
+
+ /* branch_len = (paren != 0); */
+
+ if (br == NULL) {
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"", (UV) flags);
+ }
+ if (*RExC_parse == '|') {
+ if (!SIZE_ONLY && RExC_extralen) {
+ reginsert(pRExC_state, BRANCHJ, br, depth+1);
+ }
+ else { /* MJD */
+ reginsert(pRExC_state, BRANCH, br, depth+1);
+ Set_Node_Length(br, paren != 0);
+ Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
+ }
+ have_branch = 1;
+ if (SIZE_ONLY)
+ RExC_extralen += 1; /* For BRANCHJ-BRANCH. */
+ }
+ else if (paren == ':') {
+ *flagp |= flags&SIMPLE;
+ }
+ if (is_open) { /* Starts with OPEN. */
+ REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */
+ }
+ else if (paren != '?') /* Not Conditional */
+ ret = br;
+ *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
+ lastbr = br;
+ while (*RExC_parse == '|') {
+ if (!SIZE_ONLY && RExC_extralen) {
+ ender = reganode(pRExC_state, LONGJMP,0);
+
+ /* Append to the previous. */
+ REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
+ }
+ if (SIZE_ONLY)
+ RExC_extralen += 2; /* Account for LONGJMP. */
+ nextchar(pRExC_state);
+ if (freeze_paren) {
+ if (RExC_npar > after_freeze)
+ after_freeze = RExC_npar;
+ RExC_npar = freeze_paren;
+ }
+ br = regbranch(pRExC_state, &flags, 0, depth+1);
+
+ if (br == NULL) {
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"", (UV) flags);
+ }
+ REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */
+ lastbr = br;
+ *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
+ }
+
+ if (have_branch || paren != ':') {
+ /* Make a closing node, and hook it on the end. */
+ switch (paren) {
+ case ':':
+ ender = reg_node(pRExC_state, TAIL);
+ break;
+ case 1: case 2:
+ ender = reganode(pRExC_state, CLOSE, parno);
+ if (!SIZE_ONLY && RExC_seen & REG_RECURSE_SEEN) {
+ DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+ "%*s%*s Setting close paren #%"IVdf" to %d\n",
+ 22, "| |", (int)(depth * 2 + 1), "", (IV)parno, REG_NODE_NUM(ender)));
+ RExC_close_parens[parno-1]= ender;
+ if (RExC_nestroot == parno)
+ RExC_nestroot = 0;
+ }
+ Set_Node_Offset(ender,RExC_parse+1); /* MJD */
+ Set_Node_Length(ender,1); /* MJD */
+ break;
+ case '<':
+ case ',':
+ case '=':
+ case '!':
+ *flagp &= ~HASWIDTH;
+ /* FALLTHROUGH */
+ case '>':
+ ender = reg_node(pRExC_state, SUCCEED);
+ break;
+ case 0:
+ ender = reg_node(pRExC_state, END);
+ if (!SIZE_ONLY) {
+ assert(!RExC_opend); /* there can only be one! */
+ RExC_opend = ender;
+ }
+ break;
+ }
+ DEBUG_PARSE_r(if (!SIZE_ONLY) {
+ DEBUG_PARSE_MSG("lsbr");
+ regprop(RExC_rx, RExC_mysv1, lastbr, NULL, pRExC_state);
+ regprop(RExC_rx, RExC_mysv2, ender, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log, "~ tying lastbr %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
+ SvPV_nolen_const(RExC_mysv1),
+ (IV)REG_NODE_NUM(lastbr),
+ SvPV_nolen_const(RExC_mysv2),
+ (IV)REG_NODE_NUM(ender),
+ (IV)(ender - lastbr)
+ );
+ });
+ REGTAIL(pRExC_state, lastbr, ender);
+
+ if (have_branch && !SIZE_ONLY) {
+ char is_nothing= 1;
+ if (depth==1)
+ RExC_seen |= REG_TOP_LEVEL_BRANCHES_SEEN;
+
+ /* Hook the tails of the branches to the closing node. */
+ for (br = ret; br; br = regnext(br)) {
+ const U8 op = PL_regkind[OP(br)];
+ if (op == BRANCH) {
+ REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
+ if ( OP(NEXTOPER(br)) != NOTHING
+ || regnext(NEXTOPER(br)) != ender)
+ is_nothing= 0;
+ }
+ else if (op == BRANCHJ) {
+ REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
+ /* for now we always disable this optimisation * /
+ if ( OP(NEXTOPER(NEXTOPER(br))) != NOTHING
+ || regnext(NEXTOPER(NEXTOPER(br))) != ender)
+ */
+ is_nothing= 0;
+ }
+ }
+ if (is_nothing) {
+ br= PL_regkind[OP(ret)] != BRANCH ? regnext(ret) : ret;
+ DEBUG_PARSE_r(if (!SIZE_ONLY) {
+ DEBUG_PARSE_MSG("NADA");
+ regprop(RExC_rx, RExC_mysv1, ret, NULL, pRExC_state);
+ regprop(RExC_rx, RExC_mysv2, ender, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log, "~ converting ret %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
+ SvPV_nolen_const(RExC_mysv1),
+ (IV)REG_NODE_NUM(ret),
+ SvPV_nolen_const(RExC_mysv2),
+ (IV)REG_NODE_NUM(ender),
+ (IV)(ender - ret)
+ );
+ });
+ OP(br)= NOTHING;
+ if (OP(ender) == TAIL) {
+ NEXT_OFF(br)= 0;
+ RExC_emit= br + 1;
+ } else {
+ regnode *opt;
+ for ( opt= br + 1; opt < ender ; opt++ )
+ OP(opt)= OPTIMIZED;
+ NEXT_OFF(br)= ender - br;
+ }
+ }
+ }
+ }
+
+ {
+ const char *p;
+ static const char parens[] = "=!<,>";
+
+ if (paren && (p = strchr(parens, paren))) {
+ U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
+ int flag = (p - parens) > 1;
+
+ if (paren == '>')
+ node = SUSPEND, flag = 0;
+ reginsert(pRExC_state, node,ret, depth+1);
+ Set_Node_Cur_Length(ret, parse_start);
+ Set_Node_Offset(ret, parse_start + 1);
+ ret->flags = flag;
+ REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
+ }
+ }
+
+ /* Check for proper termination. */
+ if (paren) {
+ /* restore original flags, but keep (?p) */
+ RExC_flags = oregflags | (RExC_flags & RXf_PMf_KEEPCOPY);
+ if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
+ RExC_parse = oregcomp_parse;
+ vFAIL("Unmatched (");
+ }
+ }
+ else if (!paren && RExC_parse < RExC_end) {
+ if (*RExC_parse == ')') {
+ RExC_parse++;
+ vFAIL("Unmatched )");
+ }
+ else
+ FAIL("Junk on end of regexp"); /* "Can't happen". */
+ NOT_REACHED; /* NOTREACHED */
+ }
+
+ if (RExC_in_lookbehind) {
+ RExC_in_lookbehind--;
+ }
+ if (after_freeze > RExC_npar)
+ RExC_npar = after_freeze;
+ return(ret);
+}
+
+/*
+ - regbranch - one alternative of an | operator
+ *
+ * Implements the concatenation operator.
+ *
+ * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
+ * restarted.
+ */
+STATIC regnode *
+S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
+{
+ regnode *ret;
+ regnode *chain = NULL;
+ regnode *latest;
+ I32 flags = 0, c = 0;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGBRANCH;
+
+ DEBUG_PARSE("brnc");
+
+ if (first)
+ ret = NULL;
+ else {
+ if (!SIZE_ONLY && RExC_extralen)
+ ret = reganode(pRExC_state, BRANCHJ,0);
+ else {
+ ret = reg_node(pRExC_state, BRANCH);
+ Set_Node_Length(ret, 1);
+ }
+ }
+
+ if (!first && SIZE_ONLY)
+ RExC_extralen += 1; /* BRANCHJ */
+
+ *flagp = WORST; /* Tentatively. */
+
+ RExC_parse--;
+ nextchar(pRExC_state);
+ while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
+ flags &= ~TRYAGAIN;
+ latest = regpiece(pRExC_state, &flags,depth+1);
+ if (latest == NULL) {
+ if (flags & TRYAGAIN)
+ continue;
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ FAIL2("panic: regpiece returned NULL, flags=%#"UVxf"", (UV) flags);
+ }
+ else if (ret == NULL)
+ ret = latest;
+ *flagp |= flags&(HASWIDTH|POSTPONED);
+ if (chain == NULL) /* First piece. */
+ *flagp |= flags&SPSTART;
+ else {
+ /* FIXME adding one for every branch after the first is probably
+ * excessive now we have TRIE support. (hv) */
+ MARK_NAUGHTY(1);
+ REGTAIL(pRExC_state, chain, latest);
+ }
+ chain = latest;
+ c++;
+ }
+ if (chain == NULL) { /* Loop ran zero times. */
+ chain = reg_node(pRExC_state, NOTHING);
+ if (ret == NULL)
+ ret = chain;
+ }
+ if (c == 1) {
+ *flagp |= flags&SIMPLE;
+ }
+
+ return ret;
+}
+
+/*
+ - regpiece - something followed by possible [*+?]
+ *
+ * Note that the branching code sequences used for ? and the general cases
+ * of * and + are somewhat optimized: they use the same NOTHING node as
+ * both the endmarker for their branch list and the body of the last branch.
+ * It might seem that this node could be dispensed with entirely, but the
+ * endmarker role is not redundant.
+ *
+ * Returns NULL, setting *flagp to TRYAGAIN if regatom() returns NULL with
+ * TRYAGAIN.
+ * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
+ * restarted.
+ */
+STATIC regnode *
+S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
+{
+ regnode *ret;
+ char op;
+ char *next;
+ I32 flags;
+ const char * const origparse = RExC_parse;
+ I32 min;
+ I32 max = REG_INFTY;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ char *parse_start;
+#endif
+ const char *maxpos = NULL;
+ UV uv;
+
+ /* Save the original in case we change the emitted regop to a FAIL. */
+ regnode * const orig_emit = RExC_emit;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGPIECE;
+
+ DEBUG_PARSE("piec");
+
+ ret = regatom(pRExC_state, &flags,depth+1);
+ if (ret == NULL) {
+ if (flags & (TRYAGAIN|RESTART_UTF8))
+ *flagp |= flags & (TRYAGAIN|RESTART_UTF8);
+ else
+ FAIL2("panic: regatom returned NULL, flags=%#"UVxf"", (UV) flags);
+ return(NULL);
+ }
+
+ op = *RExC_parse;
+
+ if (op == '{' && regcurly(RExC_parse)) {
+ maxpos = NULL;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ parse_start = RExC_parse; /* MJD */
+#endif
+ next = RExC_parse + 1;
+ while (isDIGIT(*next) || *next == ',') {
+ if (*next == ',') {
+ if (maxpos)
+ break;
+ else
+ maxpos = next;
+ }
+ next++;
+ }
+ if (*next == '}') { /* got one */
+ const char* endptr;
+ if (!maxpos)
+ maxpos = next;
+ RExC_parse++;
+ if (isDIGIT(*RExC_parse)) {
+ if (!grok_atoUV(RExC_parse, &uv, &endptr))
+ vFAIL("Invalid quantifier in {,}");
+ if (uv >= REG_INFTY)
+ vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
+ min = (I32)uv;
+ } else {
+ min = 0;
+ }
+ if (*maxpos == ',')
+ maxpos++;
+ else
+ maxpos = RExC_parse;
+ if (isDIGIT(*maxpos)) {
+ if (!grok_atoUV(maxpos, &uv, &endptr))
+ vFAIL("Invalid quantifier in {,}");
+ if (uv >= REG_INFTY)
+ vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
+ max = (I32)uv;
+ } else {
+ max = REG_INFTY; /* meaning "infinity" */
+ }
+ RExC_parse = next;
+ nextchar(pRExC_state);
+ if (max < min) { /* If can't match, warn and optimize to fail
+ unconditionally */
+ if (SIZE_ONLY) {
+
+ /* We can't back off the size because we have to reserve
+ * enough space for all the things we are about to throw
+ * away, but we can shrink it by the ammount we are about
+ * to re-use here */
+ RExC_size = PREVOPER(RExC_size) - regarglen[(U8)OPFAIL];
+ }
+ else {
+ ckWARNreg(RExC_parse, "Quantifier {n,m} with n > m can't match");
+ RExC_emit = orig_emit;
+ }
+ ret = reg_node(pRExC_state, OPFAIL);
+ return ret;
+ }
+ else if (min == max
+ && RExC_parse < RExC_end
+ && (*RExC_parse == '?' || *RExC_parse == '+'))
+ {
+ if (PASS2) {
+ ckWARN2reg(RExC_parse + 1,
+ "Useless use of greediness modifier '%c'",
+ *RExC_parse);
+ }
+ /* Absorb the modifier, so later code doesn't see nor use
+ * it */
+ nextchar(pRExC_state);
+ }
+
+ do_curly:
+ if ((flags&SIMPLE)) {
+ MARK_NAUGHTY_EXP(2, 2);
+ reginsert(pRExC_state, CURLY, ret, depth+1);
+ Set_Node_Offset(ret, parse_start+1); /* MJD */
+ Set_Node_Cur_Length(ret, parse_start);
+ }
+ else {
+ regnode * const w = reg_node(pRExC_state, WHILEM);
+
+ w->flags = 0;
+ REGTAIL(pRExC_state, ret, w);
+ if (!SIZE_ONLY && RExC_extralen) {
+ reginsert(pRExC_state, LONGJMP,ret, depth+1);
+ reginsert(pRExC_state, NOTHING,ret, depth+1);
+ NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
+ }
+ reginsert(pRExC_state, CURLYX,ret, depth+1);
+ /* MJD hk */
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Length(ret,
+ op == '{' ? (RExC_parse - parse_start) : 1);
+
+ if (!SIZE_ONLY && RExC_extralen)
+ NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
+ REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
+ if (SIZE_ONLY)
+ RExC_whilem_seen++, RExC_extralen += 3;
+ MARK_NAUGHTY_EXP(1, 4); /* compound interest */
+ }
+ ret->flags = 0;
+
+ if (min > 0)
+ *flagp = WORST;
+ if (max > 0)
+ *flagp |= HASWIDTH;
+ if (!SIZE_ONLY) {
+ ARG1_SET(ret, (U16)min);
+ ARG2_SET(ret, (U16)max);
+ }
+ if (max == REG_INFTY)
+ RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
+
+ goto nest_check;
+ }
+ }
+
+ if (!ISMULT1(op)) {
+ *flagp = flags;
+ return(ret);
+ }
+
+#if 0 /* Now runtime fix should be reliable. */
+
+ /* if this is reinstated, don't forget to put this back into perldiag:
+
+ =item Regexp *+ operand could be empty at {#} in regex m/%s/
+
+ (F) The part of the regexp subject to either the * or + quantifier
+ could match an empty string. The {#} shows in the regular
+ expression about where the problem was discovered.
+
+ */
+
+ if (!(flags&HASWIDTH) && op != '?')
+ vFAIL("Regexp *+ operand could be empty");
+#endif
+
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ parse_start = RExC_parse;
+#endif
+ nextchar(pRExC_state);
+
+ *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
+
+ if (op == '*' && (flags&SIMPLE)) {
+ reginsert(pRExC_state, STAR, ret, depth+1);
+ ret->flags = 0;
+ MARK_NAUGHTY(4);
+ RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
+ }
+ else if (op == '*') {
+ min = 0;
+ goto do_curly;
+ }
+ else if (op == '+' && (flags&SIMPLE)) {
+ reginsert(pRExC_state, PLUS, ret, depth+1);
+ ret->flags = 0;
+ MARK_NAUGHTY(3);
+ RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
+ }
+ else if (op == '+') {
+ min = 1;
+ goto do_curly;
+ }
+ else if (op == '?') {
+ min = 0; max = 1;
+ goto do_curly;
+ }
+ nest_check:
+ if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
+ SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
+ ckWARN2reg(RExC_parse,
+ "%"UTF8f" matches null string many times",
+ UTF8fARG(UTF, (RExC_parse >= origparse
+ ? RExC_parse - origparse
+ : 0),
+ origparse));
+ (void)ReREFCNT_inc(RExC_rx_sv);
+ }
+
+ if (RExC_parse < RExC_end && *RExC_parse == '?') {
+ nextchar(pRExC_state);
+ reginsert(pRExC_state, MINMOD, ret, depth+1);
+ REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
+ }
+ else
+ if (RExC_parse < RExC_end && *RExC_parse == '+') {
+ regnode *ender;
+ nextchar(pRExC_state);
+ ender = reg_node(pRExC_state, SUCCEED);
+ REGTAIL(pRExC_state, ret, ender);
+ reginsert(pRExC_state, SUSPEND, ret, depth+1);
+ ret->flags = 0;
+ ender = reg_node(pRExC_state, TAIL);
+ REGTAIL(pRExC_state, ret, ender);
+ }
+
+ if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
+ RExC_parse++;
+ vFAIL("Nested quantifiers");
+ }
+
+ return(ret);
+}
+
+STATIC bool
+S_grok_bslash_N(pTHX_ RExC_state_t *pRExC_state,
+ regnode ** node_p,
+ UV * code_point_p,
+ int * cp_count,
+ I32 * flagp,
+ const U32 depth
+ )
+{
+ /* This routine teases apart the various meanings of \N and returns
+ * accordingly. The input parameters constrain which meaning(s) is/are valid
+ * in the current context.
+ *
+ * Exactly one of <node_p> and <code_point_p> must be non-NULL.
+ *
+ * If <code_point_p> is not NULL, the context is expecting the result to be a
+ * single code point. If this \N instance turns out to a single code point,
+ * the function returns TRUE and sets *code_point_p to that code point.
+ *
+ * If <node_p> is not NULL, the context is expecting the result to be one of
+ * the things representable by a regnode. If this \N instance turns out to be
+ * one such, the function generates the regnode, returns TRUE and sets *node_p
+ * to point to that regnode.
+ *
+ * If this instance of \N isn't legal in any context, this function will
+ * generate a fatal error and not return.
+ *
+ * On input, RExC_parse should point to the first char following the \N at the
+ * time of the call. On successful return, RExC_parse will have been updated
+ * to point to just after the sequence identified by this routine. Also
+ * *flagp has been updated as needed.
+ *
+ * When there is some problem with the current context and this \N instance,
+ * the function returns FALSE, without advancing RExC_parse, nor setting
+ * *node_p, nor *code_point_p, nor *flagp.
+ *
+ * If <cp_count> is not NULL, the caller wants to know the length (in code
+ * points) that this \N sequence matches. This is set even if the function
+ * returns FALSE, as detailed below.
+ *
+ * There are 5 possibilities here, as detailed in the next 5 paragraphs.
+ *
+ * Probably the most common case is for the \N to specify a single code point.
+ * *cp_count will be set to 1, and *code_point_p will be set to that code
+ * point.
+ *
+ * Another possibility is for the input to be an empty \N{}, which for
+ * backwards compatibility we accept. *cp_count will be set to 0. *node_p
+ * will be set to a generated NOTHING node.
+ *
+ * Still another possibility is for the \N to mean [^\n]. *cp_count will be
+ * set to 0. *node_p will be set to a generated REG_ANY node.
+ *
+ * The fourth possibility is that \N resolves to a sequence of more than one
+ * code points. *cp_count will be set to the number of code points in the
+ * sequence. *node_p * will be set to a generated node returned by this
+ * function calling S_reg().
+ *
+ * The final possibility, which happens only when the fourth one would
+ * otherwise be in effect, is that one of those code points requires the
+ * pattern to be recompiled as UTF-8. The function returns FALSE, and sets
+ * the RESTART_UTF8 flag in *flagp. When this happens, the caller needs to
+ * desist from continuing parsing, and return this information to its caller.
+ * This is not set for when there is only one code point, as this can be
+ * called as part of an ANYOF node, and they can store above-Latin1 code
+ * points without the pattern having to be in UTF-8.
+ *
+ * For non-single-quoted regexes, the tokenizer has resolved character and
+ * sequence names inside \N{...} into their Unicode values, normalizing the
+ * result into what we should see here: '\N{U+c1.c2...}', where c1... are the
+ * hex-represented code points in the sequence. This is done there because
+ * the names can vary based on what charnames pragma is in scope at the time,
+ * so we need a way to take a snapshot of what they resolve to at the time of
+ * the original parse. [perl #56444].
+ *
+ * That parsing is skipped for single-quoted regexes, so we may here get
+ * '\N{NAME}'. This is a fatal error. These names have to be resolved by the
+ * parser. But if the single-quoted regex is something like '\N{U+41}', that
+ * is legal and handled here. The code point is Unicode, and has to be
+ * translated into the native character set for non-ASCII platforms.
+ * the tokenizer passes the \N sequence through unchanged; this code will not
+ * attempt to determine this nor expand those, instead raising a syntax error.
+ */
+
+ char * endbrace; /* points to '}' following the name */
+ char *endchar; /* Points to '.' or '}' ending cur char in the input
+ stream */
+ char* p; /* Temporary */
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_GROK_BSLASH_N;
+
+ GET_RE_DEBUG_FLAGS;
+
+ assert(cBOOL(node_p) ^ cBOOL(code_point_p)); /* Exactly one should be set */
+ assert(! (node_p && cp_count)); /* At most 1 should be set */
+
+ if (cp_count) { /* Initialize return for the most common case */
+ *cp_count = 1;
+ }
+
+ /* The [^\n] meaning of \N ignores spaces and comments under the /x
+ * modifier. The other meanings do not, so use a temporary until we find
+ * out which we are being called with */
+ p = (RExC_flags & RXf_PMf_EXTENDED)
+ ? regpatws(pRExC_state, RExC_parse,
+ TRUE) /* means recognize comments */
+ : RExC_parse;
+
+ /* Disambiguate between \N meaning a named character versus \N meaning
+ * [^\n]. The latter is assumed when the {...} following the \N is a legal
+ * quantifier, or there is no a '{' at all */
+ if (*p != '{' || regcurly(p)) {
+ RExC_parse = p;
+ if (cp_count) {
+ *cp_count = -1;
+ }
+
+ if (! node_p) {
+ return FALSE;
+ }
+ RExC_parse--; /* Need to back off so nextchar() doesn't skip the
+ current char */
+ nextchar(pRExC_state);
+ *node_p = reg_node(pRExC_state, REG_ANY);
+ *flagp |= HASWIDTH|SIMPLE;
+ MARK_NAUGHTY(1);
+ Set_Node_Length(*node_p, 1); /* MJD */
+ return TRUE;
+ }
+
+ /* Here, we have decided it should be a named character or sequence */
+
+ /* The test above made sure that the next real character is a '{', but
+ * under the /x modifier, it could be separated by space (or a comment and
+ * \n) and this is not allowed (for consistency with \x{...} and the
+ * tokenizer handling of \N{NAME}). */
+ if (*RExC_parse != '{') {
+ vFAIL("Missing braces on \\N{}");
+ }
+
+ RExC_parse++; /* Skip past the '{' */
+
+ if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */
+ || ! (endbrace == RExC_parse /* nothing between the {} */
+ || (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked... */
+ && strnEQ(RExC_parse, "U+", 2)))) /* ... below for a better
+ error msg) */
+ {
+ if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
+ vFAIL("\\N{NAME} must be resolved by the lexer");
+ }
+
+ RExC_uni_semantics = 1; /* Unicode named chars imply Unicode semantics */
+
+ if (endbrace == RExC_parse) { /* empty: \N{} */
+ if (cp_count) {
+ *cp_count = 0;
+ }
+ nextchar(pRExC_state);
+ if (! node_p) {
+ return FALSE;
+ }
+
+ *node_p = reg_node(pRExC_state,NOTHING);
+ return TRUE;
+ }
+
+ RExC_parse += 2; /* Skip past the 'U+' */
+
+ endchar = RExC_parse + strcspn(RExC_parse, ".}");
+
+ /* Code points are separated by dots. If none, there is only one code
+ * point, and is terminated by the brace */
+
+ if (endchar >= endbrace) {
+ STRLEN length_of_hex;
+ I32 grok_hex_flags;
+
+ /* Here, exactly one code point. If that isn't what is wanted, fail */
+ if (! code_point_p) {
+ RExC_parse = p;
+ return FALSE;
+ }
+
+ /* Convert code point from hex */
+ length_of_hex = (STRLEN)(endchar - RExC_parse);
+ grok_hex_flags = PERL_SCAN_ALLOW_UNDERSCORES
+ | PERL_SCAN_DISALLOW_PREFIX
+
+ /* No errors in the first pass (See [perl
+ * #122671].) We let the code below find the
+ * errors when there are multiple chars. */
+ | ((SIZE_ONLY)
+ ? PERL_SCAN_SILENT_ILLDIGIT
+ : 0);
+
+ /* This routine is the one place where both single- and double-quotish
+ * \N{U+xxxx} are evaluated. The value is a Unicode code point which
+ * must be converted to native. */
+ *code_point_p = UNI_TO_NATIVE(grok_hex(RExC_parse,
+ &length_of_hex,
+ &grok_hex_flags,
+ NULL));
+
+ /* The tokenizer should have guaranteed validity, but it's possible to
+ * bypass it by using single quoting, so check. Don't do the check
+ * here when there are multiple chars; we do it below anyway. */
+ if (length_of_hex == 0
+ || length_of_hex != (STRLEN)(endchar - RExC_parse) )
+ {
+ RExC_parse += length_of_hex; /* Includes all the valid */
+ RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
+ ? UTF8SKIP(RExC_parse)
+ : 1;
+ /* Guard against malformed utf8 */
+ if (RExC_parse >= endchar) {
+ RExC_parse = endchar;
+ }
+ vFAIL("Invalid hexadecimal number in \\N{U+...}");
+ }
+
+ RExC_parse = endbrace + 1;
+ return TRUE;
+ }
+ else { /* Is a multiple character sequence */
+ SV * substitute_parse;
+ STRLEN len;
+ char *orig_end = RExC_end;
+ I32 flags;
+
+ /* Count the code points, if desired, in the sequence */
+ if (cp_count) {
+ *cp_count = 0;
+ while (RExC_parse < endbrace) {
+ /* Point to the beginning of the next character in the sequence. */
+ RExC_parse = endchar + 1;
+ endchar = RExC_parse + strcspn(RExC_parse, ".}");
+ (*cp_count)++;
+ }
+ }
+
+ /* Fail if caller doesn't want to handle a multi-code-point sequence.
+ * But don't backup up the pointer if the caller want to know how many
+ * code points there are (they can then handle things) */
+ if (! node_p) {
+ if (! cp_count) {
+ RExC_parse = p;
+ }
+ return FALSE;
+ }
+
+ /* What is done here is to convert this to a sub-pattern of the form
+ * \x{char1}\x{char2}... and then call reg recursively to parse it
+ * (enclosing in "(?: ... )" ). That way, it retains its atomicness,
+ * while not having to worry about special handling that some code
+ * points may have. */
+
+ substitute_parse = newSVpvs("?:");
+
+ while (RExC_parse < endbrace) {
+
+ /* Convert to notation the rest of the code understands */
+ sv_catpv(substitute_parse, "\\x{");
+ sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
+ sv_catpv(substitute_parse, "}");
+
+ /* Point to the beginning of the next character in the sequence. */
+ RExC_parse = endchar + 1;
+ endchar = RExC_parse + strcspn(RExC_parse, ".}");
+
+ }
+ sv_catpv(substitute_parse, ")");
+
+ RExC_parse = SvPV(substitute_parse, len);
+
+ /* Don't allow empty number */
+ if (len < (STRLEN) 8) {
+ RExC_parse = endbrace;
+ vFAIL("Invalid hexadecimal number in \\N{U+...}");
+ }
+ RExC_end = RExC_parse + len;
+
+ /* The values are Unicode, and therefore not subject to recoding, but
+ * have to be converted to native on a non-Unicode (meaning non-ASCII)
+ * platform. */
+ RExC_override_recoding = 1;
+#ifdef EBCDIC
+ RExC_recode_x_to_native = 1;
+#endif
+
+ if (node_p) {
+ if (!(*node_p = reg(pRExC_state, 1, &flags, depth+1))) {
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return FALSE;
+ }
+ FAIL2("panic: reg returned NULL to grok_bslash_N, flags=%#"UVxf"",
+ (UV) flags);
+ }
+ *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
+ }
+
+ /* Restore the saved values */
+ RExC_parse = endbrace;
+ RExC_end = orig_end;
+ RExC_override_recoding = 0;
+#ifdef EBCDIC
+ RExC_recode_x_to_native = 0;
+#endif
+
+ SvREFCNT_dec_NN(substitute_parse);
+ nextchar(pRExC_state);
+
+ return TRUE;
+ }
+}
+
+
+/*
+ * reg_recode
+ *
+ * It returns the code point in utf8 for the value in *encp.
+ * value: a code value in the source encoding
+ * encp: a pointer to an Encode object
+ *
+ * If the result from Encode is not a single character,
+ * it returns U+FFFD (Replacement character) and sets *encp to NULL.
+ */
+STATIC UV
+S_reg_recode(pTHX_ const char value, SV **encp)
+{
+ STRLEN numlen = 1;
+ SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
+ const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
+ const STRLEN newlen = SvCUR(sv);
+ UV uv = UNICODE_REPLACEMENT;
+
+ PERL_ARGS_ASSERT_REG_RECODE;
+
+ if (newlen)
+ uv = SvUTF8(sv)
+ ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
+ : *(U8*)s;
+
+ if (!newlen || numlen != newlen) {
+ uv = UNICODE_REPLACEMENT;
+ *encp = NULL;
+ }
+ return uv;
+}
+
+PERL_STATIC_INLINE U8
+S_compute_EXACTish(RExC_state_t *pRExC_state)
+{
+ U8 op;
+
+ PERL_ARGS_ASSERT_COMPUTE_EXACTISH;
+
+ if (! FOLD) {
+ return (LOC)
+ ? EXACTL
+ : EXACT;
+ }
+
+ op = get_regex_charset(RExC_flags);
+ if (op >= REGEX_ASCII_RESTRICTED_CHARSET) {
+ op--; /* /a is same as /u, and map /aa's offset to what /a's would have
+ been, so there is no hole */
+ }
+
+ return op + EXACTF;
+}
+
+PERL_STATIC_INLINE void
+S_alloc_maybe_populate_EXACT(pTHX_ RExC_state_t *pRExC_state,
+ regnode *node, I32* flagp, STRLEN len, UV code_point,
+ bool downgradable)
+{
+ /* This knows the details about sizing an EXACTish node, setting flags for
+ * it (by setting <*flagp>, and potentially populating it with a single
+ * character.
+ *
+ * If <len> (the length in bytes) is non-zero, this function assumes that
+ * the node has already been populated, and just does the sizing. In this
+ * case <code_point> should be the final code point that has already been
+ * placed into the node. This value will be ignored except that under some
+ * circumstances <*flagp> is set based on it.
+ *
+ * If <len> is zero, the function assumes that the node is to contain only
+ * the single character given by <code_point> and calculates what <len>
+ * should be. In pass 1, it sizes the node appropriately. In pass 2, it
+ * additionally will populate the node's STRING with <code_point> or its
+ * fold if folding.
+ *
+ * In both cases <*flagp> is appropriately set
+ *
+ * It knows that under FOLD, the Latin Sharp S and UTF characters above
+ * 255, must be folded (the former only when the rules indicate it can
+ * match 'ss')
+ *
+ * When it does the populating, it looks at the flag 'downgradable'. If
+ * true with a node that folds, it checks if the single code point
+ * participates in a fold, and if not downgrades the node to an EXACT.
+ * This helps the optimizer */
+
+ bool len_passed_in = cBOOL(len != 0);
+ U8 character[UTF8_MAXBYTES_CASE+1];
+
+ PERL_ARGS_ASSERT_ALLOC_MAYBE_POPULATE_EXACT;
+
+ /* Don't bother to check for downgrading in PASS1, as it doesn't make any
+ * sizing difference, and is extra work that is thrown away */
+ if (downgradable && ! PASS2) {
+ downgradable = FALSE;
+ }
+
+ if (! len_passed_in) {
+ if (UTF) {
+ if (UVCHR_IS_INVARIANT(code_point)) {
+ if (LOC || ! FOLD) { /* /l defers folding until runtime */
+ *character = (U8) code_point;
+ }
+ else { /* Here is /i and not /l. (toFOLD() is defined on just
+ ASCII, which isn't the same thing as INVARIANT on
+ EBCDIC, but it works there, as the extra invariants
+ fold to themselves) */
+ *character = toFOLD((U8) code_point);
+
+ /* We can downgrade to an EXACT node if this character
+ * isn't a folding one. Note that this assumes that
+ * nothing above Latin1 folds to some other invariant than
+ * one of these alphabetics; otherwise we would also have
+ * to check:
+ * && (! HAS_NONLATIN1_FOLD_CLOSURE(code_point)
+ * || ASCII_FOLD_RESTRICTED))
+ */
+ if (downgradable && PL_fold[code_point] == code_point) {
+ OP(node) = EXACT;
+ }
+ }
+ len = 1;
+ }
+ else if (FOLD && (! LOC
+ || ! is_PROBLEMATIC_LOCALE_FOLD_cp(code_point)))
+ { /* Folding, and ok to do so now */
+ UV folded = _to_uni_fold_flags(
+ code_point,
+ character,
+ &len,
+ FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
+ ? FOLD_FLAGS_NOMIX_ASCII
+ : 0));
+ if (downgradable
+ && folded == code_point /* This quickly rules out many
+ cases, avoiding the
+ _invlist_contains_cp() overhead
+ for those. */
+ && ! _invlist_contains_cp(PL_utf8_foldable, code_point))
+ {
+ OP(node) = (LOC)
+ ? EXACTL
+ : EXACT;
+ }
+ }
+ else if (code_point <= MAX_UTF8_TWO_BYTE) {
+
+ /* Not folding this cp, and can output it directly */
+ *character = UTF8_TWO_BYTE_HI(code_point);
+ *(character + 1) = UTF8_TWO_BYTE_LO(code_point);
+ len = 2;
+ }
+ else {
+ uvchr_to_utf8( character, code_point);
+ len = UTF8SKIP(character);
+ }
+ } /* Else pattern isn't UTF8. */
+ else if (! FOLD) {
+ *character = (U8) code_point;
+ len = 1;
+ } /* Else is folded non-UTF8 */
+ else if (LIKELY(code_point != LATIN_SMALL_LETTER_SHARP_S)) {
+
+ /* We don't fold any non-UTF8 except possibly the Sharp s (see
+ * comments at join_exact()); */
+ *character = (U8) code_point;
+ len = 1;
+
+ /* Can turn into an EXACT node if we know the fold at compile time,
+ * and it folds to itself and doesn't particpate in other folds */
+ if (downgradable
+ && ! LOC
+ && PL_fold_latin1[code_point] == code_point
+ && (! HAS_NONLATIN1_FOLD_CLOSURE(code_point)
+ || (isASCII(code_point) && ASCII_FOLD_RESTRICTED)))
+ {
+ OP(node) = EXACT;
+ }
+ } /* else is Sharp s. May need to fold it */
+ else if (AT_LEAST_UNI_SEMANTICS && ! ASCII_FOLD_RESTRICTED) {
+ *character = 's';
+ *(character + 1) = 's';
+ len = 2;
+ }
+ else {
+ *character = LATIN_SMALL_LETTER_SHARP_S;
+ len = 1;
+ }
+ }
+
+ if (SIZE_ONLY) {
+ RExC_size += STR_SZ(len);
+ }
+ else {
+ RExC_emit += STR_SZ(len);
+ STR_LEN(node) = len;
+ if (! len_passed_in) {
+ Copy((char *) character, STRING(node), len, char);
+ }
+ }
+
+ *flagp |= HASWIDTH;
+
+ /* A single character node is SIMPLE, except for the special-cased SHARP S
+ * under /di. */
+ if ((len == 1 || (UTF && len == UNISKIP(code_point)))
+ && (code_point != LATIN_SMALL_LETTER_SHARP_S
+ || ! FOLD || ! DEPENDS_SEMANTICS))
+ {
+ *flagp |= SIMPLE;
+ }
+
+ /* The OP may not be well defined in PASS1 */
+ if (PASS2 && OP(node) == EXACTFL) {
+ RExC_contains_locale = 1;
+ }
+}
+
+
+/* Parse backref decimal value, unless it's too big to sensibly be a backref,
+ * in which case return I32_MAX (rather than possibly 32-bit wrapping) */
+
+static I32
+S_backref_value(char *p)
+{
+ const char* endptr;
+ UV val;
+ if (grok_atoUV(p, &val, &endptr) && val <= I32_MAX)
+ return (I32)val;
+ return I32_MAX;
+}
+
+
+/*
+ - regatom - the lowest level
+
+ Try to identify anything special at the start of the pattern. If there
+ is, then handle it as required. This may involve generating a single regop,
+ such as for an assertion; or it may involve recursing, such as to
+ handle a () structure.
+
+ If the string doesn't start with something special then we gobble up
+ as much literal text as we can.
+
+ Once we have been able to handle whatever type of thing started the
+ sequence, we return.
+
+ Note: we have to be careful with escapes, as they can be both literal
+ and special, and in the case of \10 and friends, context determines which.
+
+ A summary of the code structure is:
+
+ switch (first_byte) {
+ cases for each special:
+ handle this special;
+ break;
+ case '\\':
+ switch (2nd byte) {
+ cases for each unambiguous special:
+ handle this special;
+ break;
+ cases for each ambigous special/literal:
+ disambiguate;
+ if (special) handle here
+ else goto defchar;
+ default: // unambiguously literal:
+ goto defchar;
+ }
+ default: // is a literal char
+ // FALL THROUGH
+ defchar:
+ create EXACTish node for literal;
+ while (more input and node isn't full) {
+ switch (input_byte) {
+ cases for each special;
+ make sure parse pointer is set so that the next call to
+ regatom will see this special first
+ goto loopdone; // EXACTish node terminated by prev. char
+ default:
+ append char to EXACTISH node;
+ }
+ get next input byte;
+ }
+ loopdone:
+ }
+ return the generated node;
+
+ Specifically there are two separate switches for handling
+ escape sequences, with the one for handling literal escapes requiring
+ a dummy entry for all of the special escapes that are actually handled
+ by the other.
+
+ Returns NULL, setting *flagp to TRYAGAIN if reg() returns NULL with
+ TRYAGAIN.
+ Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
+ restarted.
+ Otherwise does not return NULL.
+*/
+
+STATIC regnode *
+S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
+{
+ regnode *ret = NULL;
+ I32 flags = 0;
+ char *parse_start = RExC_parse;
+ U8 op;
+ int invert = 0;
+ U8 arg;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ *flagp = WORST; /* Tentatively. */
+
+ DEBUG_PARSE("atom");
+
+ PERL_ARGS_ASSERT_REGATOM;
+
+ tryagain:
+ switch ((U8)*RExC_parse) {
+ case '^':
+ RExC_seen_zerolen++;
+ nextchar(pRExC_state);
+ if (RExC_flags & RXf_PMf_MULTILINE)
+ ret = reg_node(pRExC_state, MBOL);
+ else
+ ret = reg_node(pRExC_state, SBOL);
+ Set_Node_Length(ret, 1); /* MJD */
+ break;
+ case '$':
+ nextchar(pRExC_state);
+ if (*RExC_parse)
+ RExC_seen_zerolen++;
+ if (RExC_flags & RXf_PMf_MULTILINE)
+ ret = reg_node(pRExC_state, MEOL);
+ else
+ ret = reg_node(pRExC_state, SEOL);
+ Set_Node_Length(ret, 1); /* MJD */
+ break;
+ case '.':
+ nextchar(pRExC_state);
+ if (RExC_flags & RXf_PMf_SINGLELINE)
+ ret = reg_node(pRExC_state, SANY);
+ else
+ ret = reg_node(pRExC_state, REG_ANY);
+ *flagp |= HASWIDTH|SIMPLE;
+ MARK_NAUGHTY(1);
+ Set_Node_Length(ret, 1); /* MJD */
+ break;
+ case '[':
+ {
+ char * const oregcomp_parse = ++RExC_parse;
+ ret = regclass(pRExC_state, flagp,depth+1,
+ FALSE, /* means parse the whole char class */
+ TRUE, /* allow multi-char folds */
+ FALSE, /* don't silence non-portable warnings. */
+ (bool) RExC_strict,
+ NULL);
+ if (*RExC_parse != ']') {
+ RExC_parse = oregcomp_parse;
+ vFAIL("Unmatched [");
+ }
+ if (ret == NULL) {
+ if (*flagp & RESTART_UTF8)
+ return NULL;
+ FAIL2("panic: regclass returned NULL to regatom, flags=%#"UVxf"",
+ (UV) *flagp);
+ }
+ nextchar(pRExC_state);
+ Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
+ break;
+ }
+ case '(':
+ nextchar(pRExC_state);
+ ret = reg(pRExC_state, 2, &flags,depth+1);
+ if (ret == NULL) {
+ if (flags & TRYAGAIN) {
+ if (RExC_parse == RExC_end) {
+ /* Make parent create an empty node if needed. */
+ *flagp |= TRYAGAIN;
+ return(NULL);
+ }
+ goto tryagain;
+ }
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ FAIL2("panic: reg returned NULL to regatom, flags=%#"UVxf"",
+ (UV) flags);
+ }
+ *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
+ break;
+ case '|':
+ case ')':
+ if (flags & TRYAGAIN) {
+ *flagp |= TRYAGAIN;
+ return NULL;
+ }
+ vFAIL("Internal urp");
+ /* Supposed to be caught earlier. */
+ break;
+ case '?':
+ case '+':
+ case '*':
+ RExC_parse++;
+ vFAIL("Quantifier follows nothing");
+ break;
+ case '\\':
+ /* Special Escapes
+
+ This switch handles escape sequences that resolve to some kind
+ of special regop and not to literal text. Escape sequnces that
+ resolve to literal text are handled below in the switch marked
+ "Literal Escapes".
+
+ Every entry in this switch *must* have a corresponding entry
+ in the literal escape switch. However, the opposite is not
+ required, as the default for this switch is to jump to the
+ literal text handling code.
+ */
+ switch ((U8)*++RExC_parse) {
+ /* Special Escapes */
+ case 'A':
+ RExC_seen_zerolen++;
+ ret = reg_node(pRExC_state, SBOL);
+ /* SBOL is shared with /^/ so we set the flags so we can tell
+ * /\A/ from /^/ in split. We check ret because first pass we
+ * have no regop struct to set the flags on. */
+ if (PASS2)
+ ret->flags = 1;
+ *flagp |= SIMPLE;
+ goto finish_meta_pat;
+ case 'G':
+ ret = reg_node(pRExC_state, GPOS);
+ RExC_seen |= REG_GPOS_SEEN;
+ *flagp |= SIMPLE;
+ goto finish_meta_pat;
+ case 'K':
+ RExC_seen_zerolen++;
+ ret = reg_node(pRExC_state, KEEPS);
+ *flagp |= SIMPLE;
+ /* XXX:dmq : disabling in-place substitution seems to
+ * be necessary here to avoid cases of memory corruption, as
+ * with: C<$_="x" x 80; s/x\K/y/> -- rgs
+ */
+ RExC_seen |= REG_LOOKBEHIND_SEEN;
+ goto finish_meta_pat;
+ case 'Z':
+ ret = reg_node(pRExC_state, SEOL);
+ *flagp |= SIMPLE;
+ RExC_seen_zerolen++; /* Do not optimize RE away */
+ goto finish_meta_pat;
+ case 'z':
+ ret = reg_node(pRExC_state, EOS);
+ *flagp |= SIMPLE;
+ RExC_seen_zerolen++; /* Do not optimize RE away */
+ goto finish_meta_pat;
+ case 'C':
+ vFAIL("\\C no longer supported");
+ case 'X':
+ ret = reg_node(pRExC_state, CLUMP);
+ *flagp |= HASWIDTH;
+ goto finish_meta_pat;
+
+ case 'W':
+ invert = 1;
+ /* FALLTHROUGH */
+ case 'w':
+ arg = ANYOF_WORDCHAR;
+ goto join_posix;
+
+ case 'B':
+ invert = 1;
+ /* FALLTHROUGH */
+ case 'b':
+ {
+ regex_charset charset = get_regex_charset(RExC_flags);
+
+ RExC_seen_zerolen++;
+ RExC_seen |= REG_LOOKBEHIND_SEEN;
+ op = BOUND + charset;
+
+ if (op == BOUNDL) {
+ RExC_contains_locale = 1;
+ }
+
+ ret = reg_node(pRExC_state, op);
+ *flagp |= SIMPLE;
+ if (*(RExC_parse + 1) != '{') {
+ FLAGS(ret) = TRADITIONAL_BOUND;
+ if (PASS2 && op > BOUNDA) { /* /aa is same as /a */
+ OP(ret) = BOUNDA;
+ }
+ }
+ else {
+ STRLEN length;
+ char name = *RExC_parse;
+ char * endbrace;
+ RExC_parse += 2;
+ endbrace = strchr(RExC_parse, '}');
+
+ if (! endbrace) {
+ vFAIL2("Missing right brace on \\%c{}", name);
+ }
+ /* XXX Need to decide whether to take spaces or not. Should be
+ * consistent with \p{}, but that currently is SPACE, which
+ * means vertical too, which seems wrong
+ * while (isBLANK(*RExC_parse)) {
+ RExC_parse++;
+ }*/
+ if (endbrace == RExC_parse) {
+ RExC_parse++; /* After the '}' */
+ vFAIL2("Empty \\%c{}", name);
+ }
+ length = endbrace - RExC_parse;
+ /*while (isBLANK(*(RExC_parse + length - 1))) {
+ length--;
+ }*/
+ switch (*RExC_parse) {
+ case 'g':
+ if (length != 1
+ && (length != 3 || strnNE(RExC_parse + 1, "cb", 2)))
+ {
+ goto bad_bound_type;
+ }
+ FLAGS(ret) = GCB_BOUND;
+ break;
+ case 's':
+ if (length != 2 || *(RExC_parse + 1) != 'b') {
+ goto bad_bound_type;
+ }
+ FLAGS(ret) = SB_BOUND;
+ break;
+ case 'w':
+ if (length != 2 || *(RExC_parse + 1) != 'b') {
+ goto bad_bound_type;
+ }
+ FLAGS(ret) = WB_BOUND;
+ break;
+ default:
+ bad_bound_type:
+ RExC_parse = endbrace;
+ vFAIL2utf8f(
+ "'%"UTF8f"' is an unknown bound type",
+ UTF8fARG(UTF, length, endbrace - length));
+ NOT_REACHED; /*NOTREACHED*/
+ }
+ RExC_parse = endbrace;
+ RExC_uni_semantics = 1;
+
+ if (PASS2 && op >= BOUNDA) { /* /aa is same as /a */
+ OP(ret) = BOUNDU;
+ length += 4;
+
+ /* Don't have to worry about UTF-8, in this message because
+ * to get here the contents of the \b must be ASCII */
+ ckWARN4reg(RExC_parse + 1, /* Include the '}' in msg */
+ "Using /u for '%.*s' instead of /%s",
+ (unsigned) length,
+ endbrace - length + 1,
+ (charset == REGEX_ASCII_RESTRICTED_CHARSET)
+ ? ASCII_RESTRICT_PAT_MODS
+ : ASCII_MORE_RESTRICT_PAT_MODS);
+ }
+ }
+
+ if (PASS2 && invert) {
+ OP(ret) += NBOUND - BOUND;
+ }
+ goto finish_meta_pat;
+ }
+
+ case 'D':
+ invert = 1;
+ /* FALLTHROUGH */
+ case 'd':
+ arg = ANYOF_DIGIT;
+ if (! DEPENDS_SEMANTICS) {
+ goto join_posix;
+ }
+
+ /* \d doesn't have any matches in the upper Latin1 range, hence /d
+ * is equivalent to /u. Changing to /u saves some branches at
+ * runtime */
+ op = POSIXU;
+ goto join_posix_op_known;
+
+ case 'R':
+ ret = reg_node(pRExC_state, LNBREAK);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+
+ case 'H':
+ invert = 1;
+ /* FALLTHROUGH */
+ case 'h':
+ arg = ANYOF_BLANK;
+ op = POSIXU;
+ goto join_posix_op_known;
+
+ case 'V':
+ invert = 1;
+ /* FALLTHROUGH */
+ case 'v':
+ arg = ANYOF_VERTWS;
+ op = POSIXU;
+ goto join_posix_op_known;
+
+ case 'S':
+ invert = 1;
+ /* FALLTHROUGH */
+ case 's':
+ arg = ANYOF_SPACE;
+
+ join_posix:
+
+ op = POSIXD + get_regex_charset(RExC_flags);
+ if (op > POSIXA) { /* /aa is same as /a */
+ op = POSIXA;
+ }
+ else if (op == POSIXL) {
+ RExC_contains_locale = 1;
+ }
+
+ join_posix_op_known:
+
+ if (invert) {
+ op += NPOSIXD - POSIXD;
+ }
+
+ ret = reg_node(pRExC_state, op);
+ if (! SIZE_ONLY) {
+ FLAGS(ret) = namedclass_to_classnum(arg);
+ }
+
+ *flagp |= HASWIDTH|SIMPLE;
+ /* FALLTHROUGH */
+
+ finish_meta_pat:
+ nextchar(pRExC_state);
+ Set_Node_Length(ret, 2); /* MJD */
+ break;
+ case 'p':
+ case 'P':
+ {
+#ifdef DEBUGGING
+ char* parse_start = RExC_parse - 2;
+#endif
+
+ RExC_parse--;
+
+ ret = regclass(pRExC_state, flagp,depth+1,
+ TRUE, /* means just parse this element */
+ FALSE, /* don't allow multi-char folds */
+ FALSE, /* don't silence non-portable warnings.
+ It would be a bug if these returned
+ non-portables */
+ (bool) RExC_strict,
+ NULL);
+ /* regclass() can only return RESTART_UTF8 if multi-char folds
+ are allowed. */
+ if (!ret)
+ FAIL2("panic: regclass returned NULL to regatom, flags=%#"UVxf"",
+ (UV) *flagp);
+
+ RExC_parse--;
+
+ Set_Node_Offset(ret, parse_start + 2);
+ Set_Node_Cur_Length(ret, parse_start);
+ nextchar(pRExC_state);
+ }
+ break;
+ case 'N':
+ /* Handle \N, \N{} and \N{NAMED SEQUENCE} (the latter meaning the
+ * \N{...} evaluates to a sequence of more than one code points).
+ * The function call below returns a regnode, which is our result.
+ * The parameters cause it to fail if the \N{} evaluates to a
+ * single code point; we handle those like any other literal. The
+ * reason that the multicharacter case is handled here and not as
+ * part of the EXACtish code is because of quantifiers. In
+ * /\N{BLAH}+/, the '+' applies to the whole thing, and doing it
+ * this way makes that Just Happen. dmq.
+ * join_exact() will join this up with adjacent EXACTish nodes
+ * later on, if appropriate. */
+ ++RExC_parse;
+ if (grok_bslash_N(pRExC_state,
+ &ret, /* Want a regnode returned */
+ NULL, /* Fail if evaluates to a single code
+ point */
+ NULL, /* Don't need a count of how many code
+ points */
+ flagp,
+ depth)
+ ) {
+ break;
+ }
+
+ if (*flagp & RESTART_UTF8)
+ return NULL;
+ RExC_parse--;
+ goto defchar;
+
+ case 'k': /* Handle \k<NAME> and \k'NAME' */
+ parse_named_seq:
+ {
+ char ch= RExC_parse[1];
+ if (ch != '<' && ch != '\'' && ch != '{') {
+ RExC_parse++;
+ /* diag_listed_as: Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/ */
+ vFAIL2("Sequence %.2s... not terminated",parse_start);
+ } else {
+ /* this pretty much dupes the code for (?P=...) in reg(), if
+ you change this make sure you change that */
+ char* name_start = (RExC_parse += 2);
+ U32 num = 0;
+ SV *sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
+ if (RExC_parse == name_start || *RExC_parse != ch)
+ /* diag_listed_as: Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/ */
+ vFAIL2("Sequence %.3s... not terminated",parse_start);
+
+ if (!SIZE_ONLY) {
+ num = add_data( pRExC_state, STR_WITH_LEN("S"));
+ RExC_rxi->data->data[num]=(void*)sv_dat;
+ SvREFCNT_inc_simple_void(sv_dat);
+ }
+
+ RExC_sawback = 1;
+ ret = reganode(pRExC_state,
+ ((! FOLD)
+ ? NREF
+ : (ASCII_FOLD_RESTRICTED)
+ ? NREFFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? NREFFU
+ : (LOC)
+ ? NREFFL
+ : NREFF),
+ num);
+ *flagp |= HASWIDTH;
+
+ /* override incorrect value set in reganode MJD */
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Cur_Length(ret, parse_start);
+ nextchar(pRExC_state);
+
+ }
+ break;
+ }
+ case 'g':
+ case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ {
+ I32 num;
+ bool hasbrace = 0;
+
+ if (*RExC_parse == 'g') {
+ bool isrel = 0;
+
+ RExC_parse++;
+ if (*RExC_parse == '{') {
+ RExC_parse++;
+ hasbrace = 1;
+ }
+ if (*RExC_parse == '-') {
+ RExC_parse++;
+ isrel = 1;
+ }
+ if (hasbrace && !isDIGIT(*RExC_parse)) {
+ if (isrel) RExC_parse--;
+ RExC_parse -= 2;
+ goto parse_named_seq;
+ }
+
+ num = S_backref_value(RExC_parse);
+ if (num == 0)
+ vFAIL("Reference to invalid group 0");
+ else if (num == I32_MAX) {
+ if (isDIGIT(*RExC_parse))
+ vFAIL("Reference to nonexistent group");
+ else
+ vFAIL("Unterminated \\g... pattern");
+ }
+
+ if (isrel) {
+ num = RExC_npar - num;
+ if (num < 1)
+ vFAIL("Reference to nonexistent or unclosed group");
+ }
+ }
+ else {
+ num = S_backref_value(RExC_parse);
+ /* bare \NNN might be backref or octal - if it is larger
+ * than or equal RExC_npar then it is assumed to be an
+ * octal escape. Note RExC_npar is +1 from the actual
+ * number of parens. */
+ /* Note we do NOT check if num == I32_MAX here, as that is
+ * handled by the RExC_npar check */
+
+ if (
+ /* any numeric escape < 10 is always a backref */
+ num > 9
+ /* any numeric escape < RExC_npar is a backref */
+ && num >= RExC_npar
+ /* cannot be an octal escape if it starts with 8 */
+ && *RExC_parse != '8'
+ /* cannot be an octal escape it it starts with 9 */
+ && *RExC_parse != '9'
+ )
+ {
+ /* Probably not a backref, instead likely to be an
+ * octal character escape, e.g. \35 or \777.
+ * The above logic should make it obvious why using
+ * octal escapes in patterns is problematic. - Yves */
+ goto defchar;
+ }
+ }
+
+ /* At this point RExC_parse points at a numeric escape like
+ * \12 or \88 or something similar, which we should NOT treat
+ * as an octal escape. It may or may not be a valid backref
+ * escape. For instance \88888888 is unlikely to be a valid
+ * backref. */
+ {
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ char * const parse_start = RExC_parse - 1; /* MJD */
+#endif
+ while (isDIGIT(*RExC_parse))
+ RExC_parse++;
+ if (hasbrace) {
+ if (*RExC_parse != '}')
+ vFAIL("Unterminated \\g{...} pattern");
+ RExC_parse++;
+ }
+ if (!SIZE_ONLY) {
+ if (num > (I32)RExC_rx->nparens)
+ vFAIL("Reference to nonexistent group");
+ }
+ RExC_sawback = 1;
+ ret = reganode(pRExC_state,
+ ((! FOLD)
+ ? REF
+ : (ASCII_FOLD_RESTRICTED)
+ ? REFFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? REFFU
+ : (LOC)
+ ? REFFL
+ : REFF),
+ num);
+ *flagp |= HASWIDTH;
+
+ /* override incorrect value set in reganode MJD */
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Cur_Length(ret, parse_start);
+ RExC_parse--;
+ nextchar(pRExC_state);
+ }
+ }
+ break;
+ case '\0':
+ if (RExC_parse >= RExC_end)
+ FAIL("Trailing \\");
+ /* FALLTHROUGH */
+ default:
+ /* Do not generate "unrecognized" warnings here, we fall
+ back into the quick-grab loop below */
+ parse_start--;
+ goto defchar;
+ }
+ break;
+
+ case '#':
+ if (RExC_flags & RXf_PMf_EXTENDED) {
+ RExC_parse = reg_skipcomment( pRExC_state, RExC_parse );
+ if (RExC_parse < RExC_end)
+ goto tryagain;
+ }
+ /* FALLTHROUGH */
+
+ default:
+
+ parse_start = RExC_parse - 1;
+
+ RExC_parse++;
+
+ defchar: {
+ STRLEN len = 0;
+ UV ender = 0;
+ char *p;
+ char *s;
+#define MAX_NODE_STRING_SIZE 127
+ char foldbuf[MAX_NODE_STRING_SIZE+UTF8_MAXBYTES_CASE];
+ char *s0;
+ U8 upper_parse = MAX_NODE_STRING_SIZE;
+ U8 node_type = compute_EXACTish(pRExC_state);
+ bool next_is_quantifier;
+ char * oldp = NULL;
+
+ /* We can convert EXACTF nodes to EXACTFU if they contain only
+ * characters that match identically regardless of the target
+ * string's UTF8ness. The reason to do this is that EXACTF is not
+ * trie-able, EXACTFU is.
+ *
+ * Similarly, we can convert EXACTFL nodes to EXACTFU if they
+ * contain only above-Latin1 characters (hence must be in UTF8),
+ * which don't participate in folds with Latin1-range characters,
+ * as the latter's folds aren't known until runtime. (We don't
+ * need to figure this out until pass 2) */
+ bool maybe_exactfu = PASS2
+ && (node_type == EXACTF || node_type == EXACTFL);
+
+ /* If a folding node contains only code points that don't
+ * participate in folds, it can be changed into an EXACT node,
+ * which allows the optimizer more things to look for */
+ bool maybe_exact;
+
+ ret = reg_node(pRExC_state, node_type);
+
+ /* In pass1, folded, we use a temporary buffer instead of the
+ * actual node, as the node doesn't exist yet */
+ s = (SIZE_ONLY && FOLD) ? foldbuf : STRING(ret);
+
+ s0 = s;
+
+ reparse:
+
+ /* We do the EXACTFish to EXACT node only if folding. (And we
+ * don't need to figure this out until pass 2) */
+ maybe_exact = FOLD && PASS2;
+
+ /* XXX The node can hold up to 255 bytes, yet this only goes to
+ * 127. I (khw) do not know why. Keeping it somewhat less than
+ * 255 allows us to not have to worry about overflow due to
+ * converting to utf8 and fold expansion, but that value is
+ * 255-UTF8_MAXBYTES_CASE. join_exact() may join adjacent nodes
+ * split up by this limit into a single one using the real max of
+ * 255. Even at 127, this breaks under rare circumstances. If
+ * folding, we do not want to split a node at a character that is a
+ * non-final in a multi-char fold, as an input string could just
+ * happen to want to match across the node boundary. The join
+ * would solve that problem if the join actually happens. But a
+ * series of more than two nodes in a row each of 127 would cause
+ * the first join to succeed to get to 254, but then there wouldn't
+ * be room for the next one, which could at be one of those split
+ * multi-char folds. I don't know of any fool-proof solution. One
+ * could back off to end with only a code point that isn't such a
+ * non-final, but it is possible for there not to be any in the
+ * entire node. */
+ for (p = RExC_parse - 1;
+ len < upper_parse && p < RExC_end;
+ len++)
+ {
+ oldp = p;
+
+ if (RExC_flags & RXf_PMf_EXTENDED)
+ p = regpatws(pRExC_state, p,
+ TRUE); /* means recognize comments */
+ switch ((U8)*p) {
+ case '^':
+ case '$':
+ case '.':
+ case '[':
+ case '(':
+ case ')':
+ case '|':
+ goto loopdone;
+ case '\\':
+ /* Literal Escapes Switch
+
+ This switch is meant to handle escape sequences that
+ resolve to a literal character.
+
+ Every escape sequence that represents something
+ else, like an assertion or a char class, is handled
+ in the switch marked 'Special Escapes' above in this
+ routine, but also has an entry here as anything that
+ isn't explicitly mentioned here will be treated as
+ an unescaped equivalent literal.
+ */
+
+ switch ((U8)*++p) {
+ /* These are all the special escapes. */
+ case 'A': /* Start assertion */
+ case 'b': case 'B': /* Word-boundary assertion*/
+ case 'C': /* Single char !DANGEROUS! */
+ case 'd': case 'D': /* digit class */
+ case 'g': case 'G': /* generic-backref, pos assertion */
+ case 'h': case 'H': /* HORIZWS */
+ case 'k': case 'K': /* named backref, keep marker */
+ case 'p': case 'P': /* Unicode property */
+ case 'R': /* LNBREAK */
+ case 's': case 'S': /* space class */
+ case 'v': case 'V': /* VERTWS */
+ case 'w': case 'W': /* word class */
+ case 'X': /* eXtended Unicode "combining
+ character sequence" */
+ case 'z': case 'Z': /* End of line/string assertion */
+ --p;
+ goto loopdone;
+
+ /* Anything after here is an escape that resolves to a
+ literal. (Except digits, which may or may not)
+ */
+ case 'n':
+ ender = '\n';
+ p++;
+ break;
+ case 'N': /* Handle a single-code point named character. */
+ RExC_parse = p + 1;
+ if (! grok_bslash_N(pRExC_state,
+ NULL, /* Fail if evaluates to
+ anything other than a
+ single code point */
+ &ender, /* The returned single code
+ point */
+ NULL, /* Don't need a count of
+ how many code points */
+ flagp,
+ depth)
+ ) {
+ if (*flagp & RESTART_UTF8)
+ FAIL("panic: grok_bslash_N set RESTART_UTF8");
+
+ /* Here, it wasn't a single code point. Go close
+ * up this EXACTish node. The switch() prior to
+ * this switch handles the other cases */
+ RExC_parse = p = oldp;
+ goto loopdone;
+ }
+ p = RExC_parse;
+ if (ender > 0xff) {
+ REQUIRE_UTF8;
+ }
+ break;
+ case 'r':
+ ender = '\r';
+ p++;
+ break;
+ case 't':
+ ender = '\t';
+ p++;
+ break;
+ case 'f':
+ ender = '\f';
+ p++;
+ break;
+ case 'e':
+ ender = ESC_NATIVE;
+ p++;
+ break;
+ case 'a':
+ ender = '\a';
+ p++;
+ break;
+ case 'o':
+ {
+ UV result;
+ const char* error_msg;
+
+ bool valid = grok_bslash_o(&p,
+ &result,
+ &error_msg,
+ PASS2, /* out warnings */
+ (bool) RExC_strict,
+ TRUE, /* Output warnings
+ for non-
+ portables */
+ UTF);
+ if (! valid) {
+ RExC_parse = p; /* going to die anyway; point
+ to exact spot of failure */
+ vFAIL(error_msg);
+ }
+ ender = result;
+ if (IN_ENCODING && ender < 0x100) {
+ goto recode_encoding;
+ }
+ if (ender > 0xff) {
+ REQUIRE_UTF8;
+ }
+ break;
+ }
+ case 'x':
+ {
+ UV result = UV_MAX; /* initialize to erroneous
+ value */
+ const char* error_msg;
+
+ bool valid = grok_bslash_x(&p,
+ &result,
+ &error_msg,
+ PASS2, /* out warnings */
+ (bool) RExC_strict,
+ TRUE, /* Silence warnings
+ for non-
+ portables */
+ UTF);
+ if (! valid) {
+ RExC_parse = p; /* going to die anyway; point
+ to exact spot of failure */
+ vFAIL(error_msg);
+ }
+ ender = result;
+
+ if (ender < 0x100) {
+#ifdef EBCDIC
+ if (RExC_recode_x_to_native) {
+ ender = LATIN1_TO_NATIVE(ender);
+ }
+ else
+#endif
+ if (IN_ENCODING) {
+ goto recode_encoding;
+ }
+ }
+ else {
+ REQUIRE_UTF8;
+ }
+ break;
+ }
+ case 'c':
+ p++;
+ ender = grok_bslash_c(*p++, PASS2);
+ break;
+ case '8': case '9': /* must be a backreference */
+ --p;
+ /* we have an escape like \8 which cannot be an octal escape
+ * so we exit the loop, and let the outer loop handle this
+ * escape which may or may not be a legitimate backref. */
+ goto loopdone;
+ case '1': case '2': case '3':case '4':
+ case '5': case '6': case '7':
+ /* When we parse backslash escapes there is ambiguity
+ * between backreferences and octal escapes. Any escape
+ * from \1 - \9 is a backreference, any multi-digit
+ * escape which does not start with 0 and which when
+ * evaluated as decimal could refer to an already
+ * parsed capture buffer is a back reference. Anything
+ * else is octal.
+ *
+ * Note this implies that \118 could be interpreted as
+ * 118 OR as "\11" . "8" depending on whether there
+ * were 118 capture buffers defined already in the
+ * pattern. */
+
+ /* NOTE, RExC_npar is 1 more than the actual number of
+ * parens we have seen so far, hence the < RExC_npar below. */
+
+ if ( !isDIGIT(p[1]) || S_backref_value(p) < RExC_npar)
+ { /* Not to be treated as an octal constant, go
+ find backref */
+ --p;
+ goto loopdone;
+ }
+ /* FALLTHROUGH */
+ case '0':
+ {
+ I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
+ STRLEN numlen = 3;
+ ender = grok_oct(p, &numlen, &flags, NULL);
+ if (ender > 0xff) {
+ REQUIRE_UTF8;
+ }
+ p += numlen;
+ if (PASS2 /* like \08, \178 */
+ && numlen < 3
+ && p < RExC_end
+ && isDIGIT(*p) && ckWARN(WARN_REGEXP))
+ {
+ reg_warn_non_literal_string(
+ p + 1,
+ form_short_octal_warning(p, numlen));
+ }
+ }
+ if (IN_ENCODING && ender < 0x100)
+ goto recode_encoding;
+ break;
+ recode_encoding:
+ if (! RExC_override_recoding) {
+ SV* enc = _get_encoding();
+ ender = reg_recode((const char)(U8)ender, &enc);
+ if (!enc && PASS2)
+ ckWARNreg(p, "Invalid escape in the specified encoding");
+ REQUIRE_UTF8;
+ }
+ break;
+ case '\0':
+ if (p >= RExC_end)
+ FAIL("Trailing \\");
+ /* FALLTHROUGH */
+ default:
+ if (!SIZE_ONLY&& isALPHANUMERIC(*p)) {
+ /* Include any { following the alpha to emphasize
+ * that it could be part of an escape at some point
+ * in the future */
+ int len = (isALPHA(*p) && *(p + 1) == '{') ? 2 : 1;
+ ckWARN3reg(p + len, "Unrecognized escape \\%.*s passed through", len, p);
+ }
+ goto normal_default;
+ } /* End of switch on '\' */
+ break;
+ case '{':
+ /* Currently we don't warn when the lbrace is at the start
+ * of a construct. This catches it in the middle of a
+ * literal string, or when its the first thing after
+ * something like "\b" */
+ if (! SIZE_ONLY
+ && (len || (p > RExC_start && isALPHA_A(*(p -1)))))
+ {
+ ckWARNregdep(p + 1, "Unescaped left brace in regex is deprecated, passed through");
+ }
+ /*FALLTHROUGH*/
+ default: /* A literal character */
+ normal_default:
+ if (UTF8_IS_START(*p) && UTF) {
+ STRLEN numlen;
+ ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
+ &numlen, UTF8_ALLOW_DEFAULT);
+ p += numlen;
+ }
+ else
+ ender = (U8) *p++;
+ break;
+ } /* End of switch on the literal */
+
+ /* Here, have looked at the literal character and <ender>
+ * contains its ordinal, <p> points to the character after it
+ */
+
+ if ( RExC_flags & RXf_PMf_EXTENDED)
+ p = regpatws(pRExC_state, p,
+ TRUE); /* means recognize comments */
+
+ /* If the next thing is a quantifier, it applies to this
+ * character only, which means that this character has to be in
+ * its own node and can't just be appended to the string in an
+ * existing node, so if there are already other characters in
+ * the node, close the node with just them, and set up to do
+ * this character again next time through, when it will be the
+ * only thing in its new node */
+ if ((next_is_quantifier = (p < RExC_end && ISMULT2(p))) && len)
+ {
+ p = oldp;
+ goto loopdone;
+ }
+
+ if (! FOLD) { /* The simple case, just append the literal */
+
+ /* In the sizing pass, we need only the size of the
+ * character we are appending, hence we can delay getting
+ * its representation until PASS2. */
+ if (SIZE_ONLY) {
+ if (UTF) {
+ const STRLEN unilen = UNISKIP(ender);
+ s += unilen;
+
+ /* We have to subtract 1 just below (and again in
+ * the corresponding PASS2 code) because the loop
+ * increments <len> each time, as all but this path
+ * (and one other) through it add a single byte to
+ * the EXACTish node. But these paths would change
+ * len to be the correct final value, so cancel out
+ * the increment that follows */
+ len += unilen - 1;
+ }
+ else {
+ s++;
+ }
+ } else { /* PASS2 */
+ not_fold_common:
+ if (UTF) {
+ U8 * new_s = uvchr_to_utf8((U8*)s, ender);
+ len += (char *) new_s - s - 1;
+ s = (char *) new_s;
+ }
+ else {
+ *(s++) = (char) ender;
+ }
+ }
+ }
+ else if (LOC && is_PROBLEMATIC_LOCALE_FOLD_cp(ender)) {
+
+ /* Here are folding under /l, and the code point is
+ * problematic. First, we know we can't simplify things */
+ maybe_exact = FALSE;
+ maybe_exactfu = FALSE;
+
+ /* A problematic code point in this context means that its
+ * fold isn't known until runtime, so we can't fold it now.
+ * (The non-problematic code points are the above-Latin1
+ * ones that fold to also all above-Latin1. Their folds
+ * don't vary no matter what the locale is.) But here we
+ * have characters whose fold depends on the locale.
+ * Unlike the non-folding case above, we have to keep track
+ * of these in the sizing pass, so that we can make sure we
+ * don't split too-long nodes in the middle of a potential
+ * multi-char fold. And unlike the regular fold case
+ * handled in the else clauses below, we don't actually
+ * fold and don't have special cases to consider. What we
+ * do for both passes is the PASS2 code for non-folding */
+ goto not_fold_common;
+ }
+ else /* A regular FOLD code point */
+ if (! ( UTF
+ /* See comments for join_exact() as to why we fold this
+ * non-UTF at compile time */
+ || (node_type == EXACTFU
+ && ender == LATIN_SMALL_LETTER_SHARP_S)))
+ {
+ /* Here, are folding and are not UTF-8 encoded; therefore
+ * the character must be in the range 0-255, and is not /l
+ * (Not /l because we already handled these under /l in
+ * is_PROBLEMATIC_LOCALE_FOLD_cp) */
+ if (IS_IN_SOME_FOLD_L1(ender)) {
+ maybe_exact = FALSE;
+
+ /* See if the character's fold differs between /d and
+ * /u. This includes the multi-char fold SHARP S to
+ * 'ss' */
+ if (maybe_exactfu
+ && (PL_fold[ender] != PL_fold_latin1[ender]
+ || ender == LATIN_SMALL_LETTER_SHARP_S
+ || (len > 0
+ && isALPHA_FOLD_EQ(ender, 's')
+ && isALPHA_FOLD_EQ(*(s-1), 's'))))
+ {
+ maybe_exactfu = FALSE;
+ }
+ }
+
+ /* Even when folding, we store just the input character, as
+ * we have an array that finds its fold quickly */
+ *(s++) = (char) ender;
+ }
+ else { /* FOLD and UTF */
+ /* Unlike the non-fold case, we do actually have to
+ * calculate the results here in pass 1. This is for two
+ * reasons, the folded length may be longer than the
+ * unfolded, and we have to calculate how many EXACTish
+ * nodes it will take; and we may run out of room in a node
+ * in the middle of a potential multi-char fold, and have
+ * to back off accordingly. */
+
+ UV folded;
+ if (isASCII_uni(ender)) {
+ folded = toFOLD(ender);
+ *(s)++ = (U8) folded;
+ }
+ else {
+ STRLEN foldlen;
+
+ folded = _to_uni_fold_flags(
+ ender,
+ (U8 *) s,
+ &foldlen,
+ FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
+ ? FOLD_FLAGS_NOMIX_ASCII
+ : 0));
+ s += foldlen;
+
+ /* The loop increments <len> each time, as all but this
+ * path (and one other) through it add a single byte to
+ * the EXACTish node. But this one has changed len to
+ * be the correct final value, so subtract one to
+ * cancel out the increment that follows */
+ len += foldlen - 1;
+ }
+ /* If this node only contains non-folding code points so
+ * far, see if this new one is also non-folding */
+ if (maybe_exact) {
+ if (folded != ender) {
+ maybe_exact = FALSE;
+ }
+ else {
+ /* Here the fold is the original; we have to check
+ * further to see if anything folds to it */
+ if (_invlist_contains_cp(PL_utf8_foldable,
+ ender))
+ {
+ maybe_exact = FALSE;
+ }
+ }
+ }
+ ender = folded;
+ }
+
+ if (next_is_quantifier) {
+
+ /* Here, the next input is a quantifier, and to get here,
+ * the current character is the only one in the node.
+ * Also, here <len> doesn't include the final byte for this
+ * character */
+ len++;
+ goto loopdone;
+ }
+
+ } /* End of loop through literal characters */
+
+ /* Here we have either exhausted the input or ran out of room in
+ * the node. (If we encountered a character that can't be in the
+ * node, transfer is made directly to <loopdone>, and so we
+ * wouldn't have fallen off the end of the loop.) In the latter
+ * case, we artificially have to split the node into two, because
+ * we just don't have enough space to hold everything. This
+ * creates a problem if the final character participates in a
+ * multi-character fold in the non-final position, as a match that
+ * should have occurred won't, due to the way nodes are matched,
+ * and our artificial boundary. So back off until we find a non-
+ * problematic character -- one that isn't at the beginning or
+ * middle of such a fold. (Either it doesn't participate in any
+ * folds, or appears only in the final position of all the folds it
+ * does participate in.) A better solution with far fewer false
+ * positives, and that would fill the nodes more completely, would
+ * be to actually have available all the multi-character folds to
+ * test against, and to back-off only far enough to be sure that
+ * this node isn't ending with a partial one. <upper_parse> is set
+ * further below (if we need to reparse the node) to include just
+ * up through that final non-problematic character that this code
+ * identifies, so when it is set to less than the full node, we can
+ * skip the rest of this */
+ if (FOLD && p < RExC_end && upper_parse == MAX_NODE_STRING_SIZE) {
+
+ const STRLEN full_len = len;
+
+ assert(len >= MAX_NODE_STRING_SIZE);
+
+ /* Here, <s> points to the final byte of the final character.
+ * Look backwards through the string until find a non-
+ * problematic character */
+
+ if (! UTF) {
+
+ /* This has no multi-char folds to non-UTF characters */
+ if (ASCII_FOLD_RESTRICTED) {
+ goto loopdone;
+ }
+
+ while (--s >= s0 && IS_NON_FINAL_FOLD(*s)) { }
+ len = s - s0 + 1;
+ }
+ else {
+ if (! PL_NonL1NonFinalFold) {
+ PL_NonL1NonFinalFold = _new_invlist_C_array(
+ NonL1_Perl_Non_Final_Folds_invlist);
+ }
+
+ /* Point to the first byte of the final character */
+ s = (char *) utf8_hop((U8 *) s, -1);
+
+ while (s >= s0) { /* Search backwards until find
+ non-problematic char */
+ if (UTF8_IS_INVARIANT(*s)) {
+
+ /* There are no ascii characters that participate
+ * in multi-char folds under /aa. In EBCDIC, the
+ * non-ascii invariants are all control characters,
+ * so don't ever participate in any folds. */
+ if (ASCII_FOLD_RESTRICTED
+ || ! IS_NON_FINAL_FOLD(*s))
+ {
+ break;
+ }
+ }
+ else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
+ if (! IS_NON_FINAL_FOLD(TWO_BYTE_UTF8_TO_NATIVE(
+ *s, *(s+1))))
+ {
+ break;
+ }
+ }
+ else if (! _invlist_contains_cp(
+ PL_NonL1NonFinalFold,
+ valid_utf8_to_uvchr((U8 *) s, NULL)))
+ {
+ break;
+ }
+
+ /* Here, the current character is problematic in that
+ * it does occur in the non-final position of some
+ * fold, so try the character before it, but have to
+ * special case the very first byte in the string, so
+ * we don't read outside the string */
+ s = (s == s0) ? s -1 : (char *) utf8_hop((U8 *) s, -1);
+ } /* End of loop backwards through the string */
+
+ /* If there were only problematic characters in the string,
+ * <s> will point to before s0, in which case the length
+ * should be 0, otherwise include the length of the
+ * non-problematic character just found */
+ len = (s < s0) ? 0 : s - s0 + UTF8SKIP(s);
+ }
+
+ /* Here, have found the final character, if any, that is
+ * non-problematic as far as ending the node without splitting
+ * it across a potential multi-char fold. <len> contains the
+ * number of bytes in the node up-to and including that
+ * character, or is 0 if there is no such character, meaning
+ * the whole node contains only problematic characters. In
+ * this case, give up and just take the node as-is. We can't
+ * do any better */
+ if (len == 0) {
+ len = full_len;
+
+ /* If the node ends in an 's' we make sure it stays EXACTF,
+ * as if it turns into an EXACTFU, it could later get
+ * joined with another 's' that would then wrongly match
+ * the sharp s */
+ if (maybe_exactfu && isALPHA_FOLD_EQ(ender, 's'))
+ {
+ maybe_exactfu = FALSE;
+ }
+ } else {
+
+ /* Here, the node does contain some characters that aren't
+ * problematic. If one such is the final character in the
+ * node, we are done */
+ if (len == full_len) {
+ goto loopdone;
+ }
+ else if (len + ((UTF) ? UTF8SKIP(s) : 1) == full_len) {
+
+ /* If the final character is problematic, but the
+ * penultimate is not, back-off that last character to
+ * later start a new node with it */
+ p = oldp;
+ goto loopdone;
+ }
+
+ /* Here, the final non-problematic character is earlier
+ * in the input than the penultimate character. What we do
+ * is reparse from the beginning, going up only as far as
+ * this final ok one, thus guaranteeing that the node ends
+ * in an acceptable character. The reason we reparse is
+ * that we know how far in the character is, but we don't
+ * know how to correlate its position with the input parse.
+ * An alternate implementation would be to build that
+ * correlation as we go along during the original parse,
+ * but that would entail extra work for every node, whereas
+ * this code gets executed only when the string is too
+ * large for the node, and the final two characters are
+ * problematic, an infrequent occurrence. Yet another
+ * possible strategy would be to save the tail of the
+ * string, and the next time regatom is called, initialize
+ * with that. The problem with this is that unless you
+ * back off one more character, you won't be guaranteed
+ * regatom will get called again, unless regbranch,
+ * regpiece ... are also changed. If you do back off that
+ * extra character, so that there is input guaranteed to
+ * force calling regatom, you can't handle the case where
+ * just the first character in the node is acceptable. I
+ * (khw) decided to try this method which doesn't have that
+ * pitfall; if performance issues are found, we can do a
+ * combination of the current approach plus that one */
+ upper_parse = len;
+ len = 0;
+ s = s0;
+ goto reparse;
+ }
+ } /* End of verifying node ends with an appropriate char */
+
+ loopdone: /* Jumped to when encounters something that shouldn't be
+ in the node */
+
+ /* I (khw) don't know if you can get here with zero length, but the
+ * old code handled this situation by creating a zero-length EXACT
+ * node. Might as well be NOTHING instead */
+ if (len == 0) {
+ OP(ret) = NOTHING;
+ }
+ else {
+ if (FOLD) {
+ /* If 'maybe_exact' is still set here, means there are no
+ * code points in the node that participate in folds;
+ * similarly for 'maybe_exactfu' and code points that match
+ * differently depending on UTF8ness of the target string
+ * (for /u), or depending on locale for /l */
+ if (maybe_exact) {
+ OP(ret) = (LOC)
+ ? EXACTL
+ : EXACT;
+ }
+ else if (maybe_exactfu) {
+ OP(ret) = (LOC)
+ ? EXACTFLU8
+ : EXACTFU;
+ }
+ }
+ alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, len, ender,
+ FALSE /* Don't look to see if could
+ be turned into an EXACT
+ node, as we have already
+ computed that */
+ );
+ }
+
+ RExC_parse = p - 1;
+ Set_Node_Cur_Length(ret, parse_start);
+ nextchar(pRExC_state);
+ {
+ /* len is STRLEN which is unsigned, need to copy to signed */
+ IV iv = len;
+ if (iv < 0)
+ vFAIL("Internal disaster");
+ }
+
+ } /* End of label 'defchar:' */
+ break;
+ } /* End of giant switch on input character */
+
+ return(ret);
+}
+
+STATIC char *
+S_regpatws(RExC_state_t *pRExC_state, char *p , const bool recognize_comment )
+{
+ /* Returns the next non-pattern-white space, non-comment character (the
+ * latter only if 'recognize_comment is true) in the string p, which is
+ * ended by RExC_end. See also reg_skipcomment */
+ const char *e = RExC_end;
+
+ PERL_ARGS_ASSERT_REGPATWS;
+
+ while (p < e) {
+ STRLEN len;
+ if ((len = is_PATWS_safe(p, e, UTF))) {
+ p += len;
+ }
+ else if (recognize_comment && *p == '#') {
+ p = reg_skipcomment(pRExC_state, p);
+ }
+ else
+ break;
+ }
+ return p;
+}
+
+STATIC void
+S_populate_ANYOF_from_invlist(pTHX_ regnode *node, SV** invlist_ptr)
+{
+ /* Uses the inversion list '*invlist_ptr' to populate the ANYOF 'node'. It
+ * sets up the bitmap and any flags, removing those code points from the
+ * inversion list, setting it to NULL should it become completely empty */
+
+ PERL_ARGS_ASSERT_POPULATE_ANYOF_FROM_INVLIST;
+ assert(PL_regkind[OP(node)] == ANYOF);
+
+ ANYOF_BITMAP_ZERO(node);
+ if (*invlist_ptr) {
+
+ /* This gets set if we actually need to modify things */
+ bool change_invlist = FALSE;
+
+ UV start, end;
+
+ /* Start looking through *invlist_ptr */
+ invlist_iterinit(*invlist_ptr);
+ while (invlist_iternext(*invlist_ptr, &start, &end)) {
+ UV high;
+ int i;
+
+ if (end == UV_MAX && start <= NUM_ANYOF_CODE_POINTS) {
+ ANYOF_FLAGS(node) |= ANYOF_MATCHES_ALL_ABOVE_BITMAP;
+ }
+ else if (end >= NUM_ANYOF_CODE_POINTS) {
+ ANYOF_FLAGS(node) |= ANYOF_HAS_UTF8_NONBITMAP_MATCHES;
+ }
+
+ /* Quit if are above what we should change */
+ if (start >= NUM_ANYOF_CODE_POINTS) {
+ break;
+ }
+
+ change_invlist = TRUE;
+
+ /* Set all the bits in the range, up to the max that we are doing */
+ high = (end < NUM_ANYOF_CODE_POINTS - 1)
+ ? end
+ : NUM_ANYOF_CODE_POINTS - 1;
+ for (i = start; i <= (int) high; i++) {
+ if (! ANYOF_BITMAP_TEST(node, i)) {
+ ANYOF_BITMAP_SET(node, i);
+ }
+ }
+ }
+ invlist_iterfinish(*invlist_ptr);
+
+ /* Done with loop; remove any code points that are in the bitmap from
+ * *invlist_ptr; similarly for code points above the bitmap if we have
+ * a flag to match all of them anyways */
+ if (change_invlist) {
+ _invlist_subtract(*invlist_ptr, PL_InBitmap, invlist_ptr);
+ }
+ if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
+ _invlist_intersection(*invlist_ptr, PL_InBitmap, invlist_ptr);
+ }
+
+ /* If have completely emptied it, remove it completely */
+ if (_invlist_len(*invlist_ptr) == 0) {
+ SvREFCNT_dec_NN(*invlist_ptr);
+ *invlist_ptr = NULL;
+ }
+ }
+}
+
+/* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
+ Character classes ([:foo:]) can also be negated ([:^foo:]).
+ Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
+ Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
+ but trigger failures because they are currently unimplemented. */
+
+#define POSIXCC_DONE(c) ((c) == ':')
+#define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
+#define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
+
+PERL_STATIC_INLINE I32
+S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value, const bool strict)
+{
+ I32 namedclass = OOB_NAMEDCLASS;
+
+ PERL_ARGS_ASSERT_REGPPOSIXCC;
+
+ if (value == '[' && RExC_parse + 1 < RExC_end &&
+ /* I smell either [: or [= or [. -- POSIX has been here, right? */
+ POSIXCC(UCHARAT(RExC_parse)))
+ {
+ const char c = UCHARAT(RExC_parse);
+ char* const s = RExC_parse++;
+
+ while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
+ RExC_parse++;
+ if (RExC_parse == RExC_end) {
+ if (strict) {
+
+ /* Try to give a better location for the error (than the end of
+ * the string) by looking for the matching ']' */
+ RExC_parse = s;
+ while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
+ RExC_parse++;
+ }
+ vFAIL2("Unmatched '%c' in POSIX class", c);
+ }
+ /* Grandfather lone [:, [=, [. */
+ RExC_parse = s;
+ }
+ else {
+ const char* const t = RExC_parse++; /* skip over the c */
+ assert(*t == c);
+
+ if (UCHARAT(RExC_parse) == ']') {
+ const char *posixcc = s + 1;
+ RExC_parse++; /* skip over the ending ] */
+
+ if (*s == ':') {
+ const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
+ const I32 skip = t - posixcc;
+
+ /* Initially switch on the length of the name. */
+ switch (skip) {
+ case 4:
+ if (memEQ(posixcc, "word", 4)) /* this is not POSIX,
+ this is the Perl \w
+ */
+ namedclass = ANYOF_WORDCHAR;
+ break;
+ case 5:
+ /* Names all of length 5. */
+ /* alnum alpha ascii blank cntrl digit graph lower
+ print punct space upper */
+ /* Offset 4 gives the best switch position. */
+ switch (posixcc[4]) {
+ case 'a':
+ if (memEQ(posixcc, "alph", 4)) /* alpha */
+ namedclass = ANYOF_ALPHA;
+ break;
+ case 'e':
+ if (memEQ(posixcc, "spac", 4)) /* space */
+ namedclass = ANYOF_SPACE;
+ break;
+ case 'h':
+ if (memEQ(posixcc, "grap", 4)) /* graph */
+ namedclass = ANYOF_GRAPH;
+ break;
+ case 'i':
+ if (memEQ(posixcc, "asci", 4)) /* ascii */
+ namedclass = ANYOF_ASCII;
+ break;
+ case 'k':
+ if (memEQ(posixcc, "blan", 4)) /* blank */
+ namedclass = ANYOF_BLANK;
+ break;
+ case 'l':
+ if (memEQ(posixcc, "cntr", 4)) /* cntrl */
+ namedclass = ANYOF_CNTRL;
+ break;
+ case 'm':
+ if (memEQ(posixcc, "alnu", 4)) /* alnum */
+ namedclass = ANYOF_ALPHANUMERIC;
+ break;
+ case 'r':
+ if (memEQ(posixcc, "lowe", 4)) /* lower */
+ namedclass = (FOLD) ? ANYOF_CASED : ANYOF_LOWER;
+ else if (memEQ(posixcc, "uppe", 4)) /* upper */
+ namedclass = (FOLD) ? ANYOF_CASED : ANYOF_UPPER;
+ break;
+ case 't':
+ if (memEQ(posixcc, "digi", 4)) /* digit */
+ namedclass = ANYOF_DIGIT;
+ else if (memEQ(posixcc, "prin", 4)) /* print */
+ namedclass = ANYOF_PRINT;
+ else if (memEQ(posixcc, "punc", 4)) /* punct */
+ namedclass = ANYOF_PUNCT;
+ break;
+ }
+ break;
+ case 6:
+ if (memEQ(posixcc, "xdigit", 6))
+ namedclass = ANYOF_XDIGIT;
+ break;
+ }
+
+ if (namedclass == OOB_NAMEDCLASS)
+ vFAIL2utf8f(
+ "POSIX class [:%"UTF8f":] unknown",
+ UTF8fARG(UTF, t - s - 1, s + 1));
+
+ /* The #defines are structured so each complement is +1 to
+ * the normal one */
+ if (complement) {
+ namedclass++;
+ }
+ assert (posixcc[skip] == ':');
+ assert (posixcc[skip+1] == ']');
+ } else if (!SIZE_ONLY) {
+ /* [[=foo=]] and [[.foo.]] are still future. */
+
+ /* adjust RExC_parse so the warning shows after
+ the class closes */
+ while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
+ RExC_parse++;
+ vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
+ }
+ } else {
+ /* Maternal grandfather:
+ * "[:" ending in ":" but not in ":]" */
+ if (strict) {
+ vFAIL("Unmatched '[' in POSIX class");
+ }
+
+ /* Grandfather lone [:, [=, [. */
+ RExC_parse = s;
+ }
+ }
+ }
+
+ return namedclass;
+}
+
+STATIC bool
+S_could_it_be_a_POSIX_class(RExC_state_t *pRExC_state)
+{
+ /* This applies some heuristics at the current parse position (which should
+ * be at a '[') to see if what follows might be intended to be a [:posix:]
+ * class. It returns true if it really is a posix class, of course, but it
+ * also can return true if it thinks that what was intended was a posix
+ * class that didn't quite make it.
+ *
+ * It will return true for
+ * [:alphanumerics:
+ * [:alphanumerics] (as long as the ] isn't followed immediately by a
+ * ')' indicating the end of the (?[
+ * [:any garbage including %^&$ punctuation:]
+ *
+ * This is designed to be called only from S_handle_regex_sets; it could be
+ * easily adapted to be called from the spot at the beginning of regclass()
+ * that checks to see in a normal bracketed class if the surrounding []
+ * have been omitted ([:word:] instead of [[:word:]]). But doing so would
+ * change long-standing behavior, so I (khw) didn't do that */
+ char* p = RExC_parse + 1;
+ char first_char = *p;
+
+ PERL_ARGS_ASSERT_COULD_IT_BE_A_POSIX_CLASS;
+
+ assert(*(p - 1) == '[');
+
+ if (! POSIXCC(first_char)) {
+ return FALSE;
+ }
+
+ p++;
+ while (p < RExC_end && isWORDCHAR(*p)) p++;
+
+ if (p >= RExC_end) {
+ return FALSE;
+ }
+
+ if (p - RExC_parse > 2 /* Got at least 1 word character */
+ && (*p == first_char
+ || (*p == ']' && p + 1 < RExC_end && *(p + 1) != ')')))
+ {
+ return TRUE;
+ }
+
+ p = (char *) memchr(RExC_parse, ']', RExC_end - RExC_parse);
+
+ return (p
+ && p - RExC_parse > 2 /* [:] evaluates to colon;
+ [::] is a bad posix class. */
+ && first_char == *(p - 1));
+}
+
+STATIC unsigned int
+S_regex_set_precedence(const U8 my_operator) {
+
+ /* Returns the precedence in the (?[...]) construct of the input operator,
+ * specified by its character representation. The precedence follows
+ * general Perl rules, but it extends this so that ')' and ']' have (low)
+ * precedence even though they aren't really operators */
+
+ switch (my_operator) {
+ case '!':
+ return 5;
+ case '&':
+ return 4;
+ case '^':
+ case '|':
+ case '+':
+ case '-':
+ return 3;
+ case ')':
+ return 2;
+ case ']':
+ return 1;
+ }
+
+ NOT_REACHED; /* NOTREACHED */
+ return 0; /* Silence compiler warning */
+}
+
+STATIC regnode *
+S_handle_regex_sets(pTHX_ RExC_state_t *pRExC_state, SV** return_invlist,
+ I32 *flagp, U32 depth,
+ char * const oregcomp_parse)
+{
+ /* Handle the (?[...]) construct to do set operations */
+
+ U8 curchar; /* Current character being parsed */
+ UV start, end; /* End points of code point ranges */
+ SV* final = NULL; /* The end result inversion list */
+ SV* result_string; /* 'final' stringified */
+ AV* stack; /* stack of operators and operands not yet
+ resolved */
+ AV* fence_stack = NULL; /* A stack containing the positions in
+ 'stack' of where the undealt-with left
+ parens would be if they were actually
+ put there */
+ IV fence = 0; /* Position of where most recent undealt-
+ with left paren in stack is; -1 if none.
+ */
+ STRLEN len; /* Temporary */
+ regnode* node; /* Temporary, and final regnode returned by
+ this function */
+ const bool save_fold = FOLD; /* Temporary */
+ char *save_end, *save_parse; /* Temporaries */
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_HANDLE_REGEX_SETS;
+
+ if (LOC) { /* XXX could make valid in UTF-8 locales */
+ vFAIL("(?[...]) not valid in locale");
+ }
+ RExC_uni_semantics = 1; /* The use of this operator implies /u. This
+ is required so that the compile time values
+ are valid in all runtime cases */
+
+ /* This will return only an ANYOF regnode, or (unlikely) something smaller
+ * (such as EXACT). Thus we can skip most everything if just sizing. We
+ * call regclass to handle '[]' so as to not have to reinvent its parsing
+ * rules here (throwing away the size it computes each time). And, we exit
+ * upon an unescaped ']' that isn't one ending a regclass. To do both
+ * these things, we need to realize that something preceded by a backslash
+ * is escaped, so we have to keep track of backslashes */
+ if (SIZE_ONLY) {
+ UV depth = 0; /* how many nested (?[...]) constructs */
+
+ while (RExC_parse < RExC_end) {
+ SV* current = NULL;
+ RExC_parse = regpatws(pRExC_state, RExC_parse,
+ TRUE); /* means recognize comments */
+ switch (*RExC_parse) {
+ case '?':
+ if (RExC_parse[1] == '[') depth++, RExC_parse++;
+ /* FALLTHROUGH */
+ default:
+ break;
+ case '\\':
+ /* Skip the next byte (which could cause us to end up in
+ * the middle of a UTF-8 character, but since none of those
+ * are confusable with anything we currently handle in this
+ * switch (invariants all), it's safe. We'll just hit the
+ * default: case next time and keep on incrementing until
+ * we find one of the invariants we do handle. */
+ RExC_parse++;
+ break;
+ case '[':
+ {
+ /* If this looks like it is a [:posix:] class, leave the
+ * parse pointer at the '[' to fool regclass() into
+ * thinking it is part of a '[[:posix:]]'. That function
+ * will use strict checking to force a syntax error if it
+ * doesn't work out to a legitimate class */
+ bool is_posix_class
+ = could_it_be_a_POSIX_class(pRExC_state);
+ if (! is_posix_class) {
+ RExC_parse++;
+ }
+
+ /* regclass() can only return RESTART_UTF8 if multi-char
+ folds are allowed. */
+ if (!regclass(pRExC_state, flagp,depth+1,
+ is_posix_class, /* parse the whole char
+ class only if not a
+ posix class */
+ FALSE, /* don't allow multi-char folds */
+ TRUE, /* silence non-portable warnings. */
+ TRUE, /* strict */
+ ¤t
+ ))
+ FAIL2("panic: regclass returned NULL to handle_sets, "
+ "flags=%#"UVxf"", (UV) *flagp);
+
+ /* function call leaves parse pointing to the ']', except
+ * if we faked it */
+ if (is_posix_class) {
+ RExC_parse--;
+ }
+
+ SvREFCNT_dec(current); /* In case it returned something */
+ break;
+ }
+
+ case ']':
+ if (depth--) break;
+ RExC_parse++;
+ if (RExC_parse < RExC_end
+ && *RExC_parse == ')')
+ {
+ node = reganode(pRExC_state, ANYOF, 0);
+ RExC_size += ANYOF_SKIP;
+ nextchar(pRExC_state);
+ Set_Node_Length(node,
+ RExC_parse - oregcomp_parse + 1); /* MJD */
+ return node;
+ }
+ goto no_close;
+ }
+ RExC_parse++;
+ }
+
+ no_close:
+ FAIL("Syntax error in (?[...])");
+ }
+
+ /* Pass 2 only after this. */
+ Perl_ck_warner_d(aTHX_
+ packWARN(WARN_EXPERIMENTAL__REGEX_SETS),
+ "The regex_sets feature is experimental" REPORT_LOCATION,
+ UTF8fARG(UTF, (RExC_parse - RExC_precomp), RExC_precomp),
+ UTF8fARG(UTF,
+ RExC_end - RExC_start - (RExC_parse - RExC_precomp),
+ RExC_precomp + (RExC_parse - RExC_precomp)));
+
+ /* Everything in this construct is a metacharacter. Operands begin with
+ * either a '\' (for an escape sequence), or a '[' for a bracketed
+ * character class. Any other character should be an operator, or
+ * parenthesis for grouping. Both types of operands are handled by calling
+ * regclass() to parse them. It is called with a parameter to indicate to
+ * return the computed inversion list. The parsing here is implemented via
+ * a stack. Each entry on the stack is a single character representing one
+ * of the operators; or else a pointer to an operand inversion list. */
+
+#define IS_OPERAND(a) (! SvIOK(a))
+
+ /* The stack is kept in Łukasiewicz order. (That's pronounced similar
+ * to luke-a-shave-itch (or -itz), but people who didn't want to bother
+ * with prounouncing it called it Reverse Polish instead, but now that YOU
+ * know how to prounounce it you can use the correct term, thus giving due
+ * credit to the person who invented it, and impressing your geek friends.
+ * Wikipedia says that the pronounciation of "Ł" has been changing so that
+ * it is now more like an English initial W (as in wonk) than an L.)
+ *
+ * This means that, for example, 'a | b & c' is stored on the stack as
+ *
+ * c [4]
+ * b [3]
+ * & [2]
+ * a [1]
+ * | [0]
+ *
+ * where the numbers in brackets give the stack [array] element number.
+ * In this implementation, parentheses are not stored on the stack.
+ * Instead a '(' creates a "fence" so that the part of the stack below the
+ * fence is invisible except to the corresponding ')' (this allows us to
+ * replace testing for parens, by using instead subtraction of the fence
+ * position). As new operands are processed they are pushed onto the stack
+ * (except as noted in the next paragraph). New operators of higher
+ * precedence than the current final one are inserted on the stack before
+ * the lhs operand (so that when the rhs is pushed next, everything will be
+ * in the correct positions shown above. When an operator of equal or
+ * lower precedence is encountered in parsing, all the stacked operations
+ * of equal or higher precedence are evaluated, leaving the result as the
+ * top entry on the stack. This makes higher precedence operations
+ * evaluate before lower precedence ones, and causes operations of equal
+ * precedence to left associate.
+ *
+ * The only unary operator '!' is immediately pushed onto the stack when
+ * encountered. When an operand is encountered, if the top of the stack is
+ * a '!", the complement is immediately performed, and the '!' popped. The
+ * resulting value is treated as a new operand, and the logic in the
+ * previous paragraph is executed. Thus in the expression
+ * [a] + ! [b]
+ * the stack looks like
+ *
+ * !
+ * a
+ * +
+ *
+ * as 'b' gets parsed, the latter gets evaluated to '!b', and the stack
+ * becomes
+ *
+ * !b
+ * a
+ * +
+ *
+ * A ')' is treated as an operator with lower precedence than all the
+ * aforementioned ones, which causes all operations on the stack above the
+ * corresponding '(' to be evaluated down to a single resultant operand.
+ * Then the fence for the '(' is removed, and the operand goes through the
+ * algorithm above, without the fence.
+ *
+ * A separate stack is kept of the fence positions, so that the position of
+ * the latest so-far unbalanced '(' is at the top of it.
+ *
+ * The ']' ending the construct is treated as the lowest operator of all,
+ * so that everything gets evaluated down to a single operand, which is the
+ * result */
+
+ sv_2mortal((SV *)(stack = newAV()));
+ sv_2mortal((SV *)(fence_stack = newAV()));
+
+ while (RExC_parse < RExC_end) {
+ I32 top_index; /* Index of top-most element in 'stack' */
+ SV** top_ptr; /* Pointer to top 'stack' element */
+ SV* current = NULL; /* To contain the current inversion list
+ operand */
+ SV* only_to_avoid_leaks;
+
+ /* Skip white space */
+ RExC_parse = regpatws(pRExC_state, RExC_parse,
+ TRUE /* means recognize comments */ );
+ if (RExC_parse >= RExC_end) {
+ Perl_croak(aTHX_ "panic: Read past end of '(?[ ])'");
+ }
+
+ curchar = UCHARAT(RExC_parse);
+
+redo_curchar:
+
+ top_index = av_tindex(stack);
+
+ switch (curchar) {
+ SV** stacked_ptr; /* Ptr to something already on 'stack' */
+ char stacked_operator; /* The topmost operator on the 'stack'. */
+ SV* lhs; /* Operand to the left of the operator */
+ SV* rhs; /* Operand to the right of the operator */
+ SV* fence_ptr; /* Pointer to top element of the fence
+ stack */
+
+ case '(':
+
+ if (RExC_parse < RExC_end && (UCHARAT(RExC_parse + 1) == '?'))
+ {
+ /* If is a '(?', could be an embedded '(?flags:(?[...])'.
+ * This happens when we have some thing like
+ *
+ * my $thai_or_lao = qr/(?[ \p{Thai} + \p{Lao} ])/;
+ * ...
+ * qr/(?[ \p{Digit} & $thai_or_lao ])/;
+ *
+ * Here we would be handling the interpolated
+ * '$thai_or_lao'. We handle this by a recursive call to
+ * ourselves which returns the inversion list the
+ * interpolated expression evaluates to. We use the flags
+ * from the interpolated pattern. */
+ U32 save_flags = RExC_flags;
+ const char * save_parse;
+
+ RExC_parse += 2; /* Skip past the '(?' */
+ save_parse = RExC_parse;
+
+ /* Parse any flags for the '(?' */
+ parse_lparen_question_flags(pRExC_state);
+
+ if (RExC_parse == save_parse /* Makes sure there was at
+ least one flag (or else
+ this embedding wasn't
+ compiled) */
+ || RExC_parse >= RExC_end - 4
+ || UCHARAT(RExC_parse) != ':'
+ || UCHARAT(++RExC_parse) != '('
+ || UCHARAT(++RExC_parse) != '?'
+ || UCHARAT(++RExC_parse) != '[')
+ {
+
+ /* In combination with the above, this moves the
+ * pointer to the point just after the first erroneous
+ * character (or if there are no flags, to where they
+ * should have been) */
+ if (RExC_parse >= RExC_end - 4) {
+ RExC_parse = RExC_end;
+ }
+ else if (RExC_parse != save_parse) {
+ RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+ }
+ vFAIL("Expecting '(?flags:(?[...'");
+ }
+
+ /* Recurse, with the meat of the embedded expression */
+ RExC_parse++;
+ (void) handle_regex_sets(pRExC_state, ¤t, flagp,
+ depth+1, oregcomp_parse);
+
+ /* Here, 'current' contains the embedded expression's
+ * inversion list, and RExC_parse points to the trailing
+ * ']'; the next character should be the ')' */
+ RExC_parse++;
+ assert(RExC_parse < RExC_end && UCHARAT(RExC_parse) == ')');
+
+ /* Then the ')' matching the original '(' handled by this
+ * case: statement */
+ RExC_parse++;
+ assert(RExC_parse < RExC_end && UCHARAT(RExC_parse) == ')');
+
+ RExC_parse++;
+ RExC_flags = save_flags;
+ goto handle_operand;
+ }
+
+ /* A regular '('. Look behind for illegal syntax */
+ if (top_index - fence >= 0) {
+ /* If the top entry on the stack is an operator, it had
+ * better be a '!', otherwise the entry below the top
+ * operand should be an operator */
+ if ( ! (top_ptr = av_fetch(stack, top_index, FALSE))
+ || (! IS_OPERAND(*top_ptr) && SvUV(*top_ptr) != '!')
+ || top_index - fence < 1
+ || ! (stacked_ptr = av_fetch(stack,
+ top_index - 1,
+ FALSE))
+ || IS_OPERAND(*stacked_ptr))
+ {
+ RExC_parse++;
+ vFAIL("Unexpected '(' with no preceding operator");
+ }
+ }
+
+ /* Stack the position of this undealt-with left paren */
+ fence = top_index + 1;
+ av_push(fence_stack, newSViv(fence));
+ break;
+
+ case '\\':
+ /* regclass() can only return RESTART_UTF8 if multi-char
+ folds are allowed. */
+ if (!regclass(pRExC_state, flagp,depth+1,
+ TRUE, /* means parse just the next thing */
+ FALSE, /* don't allow multi-char folds */
+ FALSE, /* don't silence non-portable warnings. */
+ TRUE, /* strict */
+ ¤t))
+ {
+ FAIL2("panic: regclass returned NULL to handle_sets, "
+ "flags=%#"UVxf"", (UV) *flagp);
+ }
+
+ /* regclass() will return with parsing just the \ sequence,
+ * leaving the parse pointer at the next thing to parse */
+ RExC_parse--;
+ goto handle_operand;
+
+ case '[': /* Is a bracketed character class */
+ {
+ bool is_posix_class = could_it_be_a_POSIX_class(pRExC_state);
+
+ if (! is_posix_class) {
+ RExC_parse++;
+ }
+
+ /* regclass() can only return RESTART_UTF8 if multi-char
+ folds are allowed. */
+ if(!regclass(pRExC_state, flagp,depth+1,
+ is_posix_class, /* parse the whole char class
+ only if not a posix class */
+ FALSE, /* don't allow multi-char folds */
+ FALSE, /* don't silence non-portable warnings. */
+ TRUE, /* strict */
+ ¤t
+ ))
+ {
+ FAIL2("panic: regclass returned NULL to handle_sets, "
+ "flags=%#"UVxf"", (UV) *flagp);
+ }
+
+ /* function call leaves parse pointing to the ']', except if we
+ * faked it */
+ if (is_posix_class) {
+ RExC_parse--;
+ }
+
+ goto handle_operand;
+ }
+
+ case ']':
+ if (top_index >= 1) {
+ goto join_operators;
+ }
+
+ /* Only a single operand on the stack: are done */
+ goto done;
+
+ case ')':
+ if (av_tindex(fence_stack) < 0) {
+ RExC_parse++;
+ vFAIL("Unexpected ')'");
+ }
+
+ /* If at least two thing on the stack, treat this as an
+ * operator */
+ if (top_index - fence >= 1) {
+ goto join_operators;
+ }
+
+ /* Here only a single thing on the fenced stack, and there is a
+ * fence. Get rid of it */
+ fence_ptr = av_pop(fence_stack);
+ assert(fence_ptr);
+ fence = SvIV(fence_ptr) - 1;
+ SvREFCNT_dec_NN(fence_ptr);
+ fence_ptr = NULL;
+
+ if (fence < 0) {
+ fence = 0;
+ }
+
+ /* Having gotten rid of the fence, we pop the operand at the
+ * stack top and process it as a newly encountered operand */
+ current = av_pop(stack);
+ assert(IS_OPERAND(current));
+ goto handle_operand;
+
+ case '&':
+ case '|':
+ case '+':
+ case '-':
+ case '^':
+
+ /* These binary operators should have a left operand already
+ * parsed */
+ if ( top_index - fence < 0
+ || top_index - fence == 1
+ || ( ! (top_ptr = av_fetch(stack, top_index, FALSE)))
+ || ! IS_OPERAND(*top_ptr))
+ {
+ goto unexpected_binary;
+ }
+
+ /* If only the one operand is on the part of the stack visible
+ * to us, we just place this operator in the proper position */
+ if (top_index - fence < 2) {
+
+ /* Place the operator before the operand */
+
+ SV* lhs = av_pop(stack);
+ av_push(stack, newSVuv(curchar));
+ av_push(stack, lhs);
+ break;
+ }
+
+ /* But if there is something else on the stack, we need to
+ * process it before this new operator if and only if the
+ * stacked operation has equal or higher precedence than the
+ * new one */
+
+ join_operators:
+
+ /* The operator on the stack is supposed to be below both its
+ * operands */
+ if ( ! (stacked_ptr = av_fetch(stack, top_index - 2, FALSE))
+ || IS_OPERAND(*stacked_ptr))
+ {
+ /* But if not, it's legal and indicates we are completely
+ * done if and only if we're currently processing a ']',
+ * which should be the final thing in the expression */
+ if (curchar == ']') {
+ goto done;
+ }
+
+ unexpected_binary:
+ RExC_parse++;
+ vFAIL2("Unexpected binary operator '%c' with no "
+ "preceding operand", curchar);
+ }
+ stacked_operator = (char) SvUV(*stacked_ptr);
+
+ if (regex_set_precedence(curchar)
+ > regex_set_precedence(stacked_operator))
+ {
+ /* Here, the new operator has higher precedence than the
+ * stacked one. This means we need to add the new one to
+ * the stack to await its rhs operand (and maybe more
+ * stuff). We put it before the lhs operand, leaving
+ * untouched the stacked operator and everything below it
+ * */
+ lhs = av_pop(stack);
+ assert(IS_OPERAND(lhs));
+
+ av_push(stack, newSVuv(curchar));
+ av_push(stack, lhs);
+ break;
+ }
+
+ /* Here, the new operator has equal or lower precedence than
+ * what's already there. This means the operation already
+ * there should be performed now, before the new one. */
+ rhs = av_pop(stack);
+ lhs = av_pop(stack);
+
+ assert(IS_OPERAND(rhs));
+ assert(IS_OPERAND(lhs));
+
+ switch (stacked_operator) {
+ case '&':
+ _invlist_intersection(lhs, rhs, &rhs);
+ break;
+
+ case '|':
+ case '+':
+ _invlist_union(lhs, rhs, &rhs);
+ break;
+
+ case '-':
+ _invlist_subtract(lhs, rhs, &rhs);
+ break;
+
+ case '^': /* The union minus the intersection */
+ {
+ SV* i = NULL;
+ SV* u = NULL;
+ SV* element;
+
+ _invlist_union(lhs, rhs, &u);
+ _invlist_intersection(lhs, rhs, &i);
+ /* _invlist_subtract will overwrite rhs
+ without freeing what it already contains */
+ element = rhs;
+ _invlist_subtract(u, i, &rhs);
+ SvREFCNT_dec_NN(i);
+ SvREFCNT_dec_NN(u);
+ SvREFCNT_dec_NN(element);
+ break;
+ }
+ }
+ SvREFCNT_dec(lhs);
+
+ /* Here, the higher precedence operation has been done, and the
+ * result is in 'rhs'. We overwrite the stacked operator with
+ * the result. Then we redo this code to either push the new
+ * operator onto the stack or perform any higher precedence
+ * stacked operation */
+ only_to_avoid_leaks = av_pop(stack);
+ SvREFCNT_dec(only_to_avoid_leaks);
+ av_push(stack, rhs);
+ goto redo_curchar;
+
+ case '!': /* Highest priority, right associative, so just push
+ onto stack */
+ av_push(stack, newSVuv(curchar));
+ break;
+
+ default:
+ RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+ vFAIL("Unexpected character");
+
+ handle_operand:
+
+ /* Here 'current' is the operand. If something is already on the
+ * stack, we have to check if it is a !. */
+ top_index = av_tindex(stack); /* Code above may have altered the
+ * stack in the time since we
+ * earlier set 'top_index'. */
+ if (top_index - fence >= 0) {
+ /* If the top entry on the stack is an operator, it had better
+ * be a '!', otherwise the entry below the top operand should
+ * be an operator */
+ top_ptr = av_fetch(stack, top_index, FALSE);
+ assert(top_ptr);
+ if (! IS_OPERAND(*top_ptr)) {
+
+ /* The only permissible operator at the top of the stack is
+ * '!', which is applied immediately to this operand. */
+ curchar = (char) SvUV(*top_ptr);
+ if (curchar != '!') {
+ SvREFCNT_dec(current);
+ vFAIL2("Unexpected binary operator '%c' with no "
+ "preceding operand", curchar);
+ }
+
+ _invlist_invert(current);
+
+ only_to_avoid_leaks = av_pop(stack);
+ SvREFCNT_dec(only_to_avoid_leaks);
+ top_index = av_tindex(stack);
+
+ /* And we redo with the inverted operand. This allows
+ * handling multiple ! in a row */
+ goto handle_operand;
+ }
+ /* Single operand is ok only for the non-binary ')'
+ * operator */
+ else if ((top_index - fence == 0 && curchar != ')')
+ || (top_index - fence > 0
+ && (! (stacked_ptr = av_fetch(stack,
+ top_index - 1,
+ FALSE))
+ || IS_OPERAND(*stacked_ptr))))
+ {
+ SvREFCNT_dec(current);
+ vFAIL("Operand with no preceding operator");
+ }
+ }
+
+ /* Here there was nothing on the stack or the top element was
+ * another operand. Just add this new one */
+ av_push(stack, current);
+
+ } /* End of switch on next parse token */
+
+ RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+ } /* End of loop parsing through the construct */
+
+ done:
+ if (av_tindex(fence_stack) >= 0) {
+ vFAIL("Unmatched (");
+ }
+
+ if (av_tindex(stack) < 0 /* Was empty */
+ || ((final = av_pop(stack)) == NULL)
+ || ! IS_OPERAND(final)
+ || av_tindex(stack) >= 0) /* More left on stack */
+ {
+ SvREFCNT_dec(final);
+ vFAIL("Incomplete expression within '(?[ ])'");
+ }
+
+ /* Here, 'final' is the resultant inversion list from evaluating the
+ * expression. Return it if so requested */
+ if (return_invlist) {
+ *return_invlist = final;
+ return END;
+ }
+
+ /* Otherwise generate a resultant node, based on 'final'. regclass() is
+ * expecting a string of ranges and individual code points */
+ invlist_iterinit(final);
+ result_string = newSVpvs("");
+ while (invlist_iternext(final, &start, &end)) {
+ if (start == end) {
+ Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}", start);
+ }
+ else {
+ Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}-\\x{%"UVXf"}",
+ start, end);
+ }
+ }
+
+ /* About to generate an ANYOF (or similar) node from the inversion list we
+ * have calculated */
+ save_parse = RExC_parse;
+ RExC_parse = SvPV(result_string, len);
+ save_end = RExC_end;
+ RExC_end = RExC_parse + len;
+
+ /* We turn off folding around the call, as the class we have constructed
+ * already has all folding taken into consideration, and we don't want
+ * regclass() to add to that */
+ RExC_flags &= ~RXf_PMf_FOLD;
+ /* regclass() can only return RESTART_UTF8 if multi-char folds are allowed.
+ */
+ node = regclass(pRExC_state, flagp,depth+1,
+ FALSE, /* means parse the whole char class */
+ FALSE, /* don't allow multi-char folds */
+ TRUE, /* silence non-portable warnings. The above may very
+ well have generated non-portable code points, but
+ they're valid on this machine */
+ FALSE, /* similarly, no need for strict */
+ NULL
+ );
+ if (!node)
+ FAIL2("panic: regclass returned NULL to handle_sets, flags=%#"UVxf,
+ PTR2UV(flagp));
+ if (save_fold) {
+ RExC_flags |= RXf_PMf_FOLD;
+ }
+ RExC_parse = save_parse + 1;
+ RExC_end = save_end;
+ SvREFCNT_dec_NN(final);
+ SvREFCNT_dec_NN(result_string);
+
+ nextchar(pRExC_state);
+ Set_Node_Length(node, RExC_parse - oregcomp_parse + 1); /* MJD */
+ return node;
+}
+#undef IS_OPERAND
+
+STATIC void
+S_add_above_Latin1_folds(pTHX_ RExC_state_t *pRExC_state, const U8 cp, SV** invlist)
+{
+ /* This hard-codes the Latin1/above-Latin1 folding rules, so that an
+ * innocent-looking character class, like /[ks]/i won't have to go out to
+ * disk to find the possible matches.
+ *
+ * This should be called only for a Latin1-range code points, cp, which is
+ * known to be involved in a simple fold with other code points above
+ * Latin1. It would give false results if /aa has been specified.
+ * Multi-char folds are outside the scope of this, and must be handled
+ * specially.
+ *
+ * XXX It would be better to generate these via regen, in case a new
+ * version of the Unicode standard adds new mappings, though that is not
+ * really likely, and may be caught by the default: case of the switch
+ * below. */
+
+ PERL_ARGS_ASSERT_ADD_ABOVE_LATIN1_FOLDS;
+
+ assert(HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(cp));
+
+ switch (cp) {
+ case 'k':
+ case 'K':
+ *invlist =
+ add_cp_to_invlist(*invlist, KELVIN_SIGN);
+ break;
+ case 's':
+ case 'S':
+ *invlist = add_cp_to_invlist(*invlist, LATIN_SMALL_LETTER_LONG_S);
+ break;
+ case MICRO_SIGN:
+ *invlist = add_cp_to_invlist(*invlist, GREEK_CAPITAL_LETTER_MU);
+ *invlist = add_cp_to_invlist(*invlist, GREEK_SMALL_LETTER_MU);
+ break;
+ case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
+ case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
+ *invlist = add_cp_to_invlist(*invlist, ANGSTROM_SIGN);
+ break;
+ case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
+ *invlist = add_cp_to_invlist(*invlist,
+ LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
+ break;
+ case LATIN_SMALL_LETTER_SHARP_S:
+ *invlist = add_cp_to_invlist(*invlist, LATIN_CAPITAL_LETTER_SHARP_S);
+ break;
+ default:
+ /* Use deprecated warning to increase the chances of this being
+ * output */
+ if (PASS2) {
+ ckWARN2reg_d(RExC_parse, "Perl folding rules are not up-to-date for 0x%02X; please use the perlbug utility to report;", cp);
+ }
+ break;
+ }
+}
+
+STATIC AV *
+S_add_multi_match(pTHX_ AV* multi_char_matches, SV* multi_string, const STRLEN cp_count)
+{
+ /* This adds the string scalar <multi_string> to the array
+ * <multi_char_matches>. <multi_string> is known to have exactly
+ * <cp_count> code points in it. This is used when constructing a
+ * bracketed character class and we find something that needs to match more
+ * than a single character.
+ *
+ * <multi_char_matches> is actually an array of arrays. Each top-level
+ * element is an array that contains all the strings known so far that are
+ * the same length. And that length (in number of code points) is the same
+ * as the index of the top-level array. Hence, the [2] element is an
+ * array, each element thereof is a string containing TWO code points;
+ * while element [3] is for strings of THREE characters, and so on. Since
+ * this is for multi-char strings there can never be a [0] nor [1] element.
+ *
+ * When we rewrite the character class below, we will do so such that the
+ * longest strings are written first, so that it prefers the longest
+ * matching strings first. This is done even if it turns out that any
+ * quantifier is non-greedy, out of this programmer's (khw) laziness. Tom
+ * Christiansen has agreed that this is ok. This makes the test for the
+ * ligature 'ffi' come before the test for 'ff', for example */
+
+ AV* this_array;
+ AV** this_array_ptr;
+
+ PERL_ARGS_ASSERT_ADD_MULTI_MATCH;
+
+ if (! multi_char_matches) {
+ multi_char_matches = newAV();
+ }
+
+ if (av_exists(multi_char_matches, cp_count)) {
+ this_array_ptr = (AV**) av_fetch(multi_char_matches, cp_count, FALSE);
+ this_array = *this_array_ptr;
+ }
+ else {
+ this_array = newAV();
+ av_store(multi_char_matches, cp_count,
+ (SV*) this_array);
+ }
+ av_push(this_array, multi_string);
+
+ return multi_char_matches;
+}
+
+/* The names of properties whose definitions are not known at compile time are
+ * stored in this SV, after a constant heading. So if the length has been
+ * changed since initialization, then there is a run-time definition. */
+#define HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION \
+ (SvCUR(listsv) != initial_listsv_len)
+
+STATIC regnode *
+S_regclass(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth,
+ const bool stop_at_1, /* Just parse the next thing, don't
+ look for a full character class */
+ bool allow_multi_folds,
+ const bool silence_non_portable, /* Don't output warnings
+ about too large
+ characters */
+ const bool strict,
+ SV** ret_invlist /* Return an inversion list, not a node */
+ )
+{
+ /* parse a bracketed class specification. Most of these will produce an
+ * ANYOF node; but something like [a] will produce an EXACT node; [aA], an
+ * EXACTFish node; [[:ascii:]], a POSIXA node; etc. It is more complex
+ * under /i with multi-character folds: it will be rewritten following the
+ * paradigm of this example, where the <multi-fold>s are characters which
+ * fold to multiple character sequences:
+ * /[abc\x{multi-fold1}def\x{multi-fold2}ghi]/i
+ * gets effectively rewritten as:
+ * /(?:\x{multi-fold1}|\x{multi-fold2}|[abcdefghi]/i
+ * reg() gets called (recursively) on the rewritten version, and this
+ * function will return what it constructs. (Actually the <multi-fold>s
+ * aren't physically removed from the [abcdefghi], it's just that they are
+ * ignored in the recursion by means of a flag:
+ * <RExC_in_multi_char_class>.)
+ *
+ * ANYOF nodes contain a bit map for the first NUM_ANYOF_CODE_POINTS
+ * characters, with the corresponding bit set if that character is in the
+ * list. For characters above this, a range list or swash is used. There
+ * are extra bits for \w, etc. in locale ANYOFs, as what these match is not
+ * determinable at compile time
+ *
+ * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs
+ * to be restarted. This can only happen if ret_invlist is non-NULL.
+ */
+
+ UV prevvalue = OOB_UNICODE, save_prevvalue = OOB_UNICODE;
+ IV range = 0;
+ UV value = OOB_UNICODE, save_value = OOB_UNICODE;
+ regnode *ret;
+ STRLEN numlen;
+ IV namedclass = OOB_NAMEDCLASS;
+ char *rangebegin = NULL;
+ bool need_class = 0;
+ SV *listsv = NULL;
+ STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
+ than just initialized. */
+ SV* properties = NULL; /* Code points that match \p{} \P{} */
+ SV* posixes = NULL; /* Code points that match classes like [:word:],
+ extended beyond the Latin1 range. These have to
+ be kept separate from other code points for much
+ of this function because their handling is
+ different under /i, and for most classes under
+ /d as well */
+ SV* nposixes = NULL; /* Similarly for [:^word:]. These are kept
+ separate for a while from the non-complemented
+ versions because of complications with /d
+ matching */
+ SV* simple_posixes = NULL; /* But under some conditions, the classes can be
+ treated more simply than the general case,
+ leading to less compilation and execution
+ work */
+ UV element_count = 0; /* Number of distinct elements in the class.
+ Optimizations may be possible if this is tiny */
+ AV * multi_char_matches = NULL; /* Code points that fold to more than one
+ character; used under /i */
+ UV n;
+ char * stop_ptr = RExC_end; /* where to stop parsing */
+ const bool skip_white = cBOOL(ret_invlist); /* ignore unescaped white
+ space? */
+
+ /* Unicode properties are stored in a swash; this holds the current one
+ * being parsed. If this swash is the only above-latin1 component of the
+ * character class, an optimization is to pass it directly on to the
+ * execution engine. Otherwise, it is set to NULL to indicate that there
+ * are other things in the class that have to be dealt with at execution
+ * time */
+ SV* swash = NULL; /* Code points that match \p{} \P{} */
+
+ /* Set if a component of this character class is user-defined; just passed
+ * on to the engine */
+ bool has_user_defined_property = FALSE;
+
+ /* inversion list of code points this node matches only when the target
+ * string is in UTF-8. (Because is under /d) */
+ SV* depends_list = NULL;
+
+ /* Inversion list of code points this node matches regardless of things
+ * like locale, folding, utf8ness of the target string */
+ SV* cp_list = NULL;
+
+ /* Like cp_list, but code points on this list need to be checked for things
+ * that fold to/from them under /i */
+ SV* cp_foldable_list = NULL;
+
+ /* Like cp_list, but code points on this list are valid only when the
+ * runtime locale is UTF-8 */
+ SV* only_utf8_locale_list = NULL;
+
+ /* In a range, if one of the endpoints is non-character-set portable,
+ * meaning that it hard-codes a code point that may mean a different
+ * charactger in ASCII vs. EBCDIC, as opposed to, say, a literal 'A' or a
+ * mnemonic '\t' which each mean the same character no matter which
+ * character set the platform is on. */
+ unsigned int non_portable_endpoint = 0;
+
+ /* Is the range unicode? which means on a platform that isn't 1-1 native
+ * to Unicode (i.e. non-ASCII), each code point in it should be considered
+ * to be a Unicode value. */
+ bool unicode_range = FALSE;
+ bool invert = FALSE; /* Is this class to be complemented */
+
+ bool warn_super = ALWAYS_WARN_SUPER;
+
+ regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
+ case we need to change the emitted regop to an EXACT. */
+ const char * orig_parse = RExC_parse;
+ const SSize_t orig_size = RExC_size;
+ bool posixl_matches_all = FALSE; /* Does /l class have both e.g. \W,\w ? */
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGCLASS;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ DEBUG_PARSE("clas");
+
+ /* Assume we are going to generate an ANYOF node. */
+ ret = reganode(pRExC_state,
+ (LOC)
+ ? ANYOFL
+ : ANYOF,
+ 0);
+
+ if (SIZE_ONLY) {
+ RExC_size += ANYOF_SKIP;
+ listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
+ }
+ else {
+ ANYOF_FLAGS(ret) = 0;
+
+ RExC_emit += ANYOF_SKIP;
+ listsv = newSVpvs_flags("# comment\n", SVs_TEMP);
+ initial_listsv_len = SvCUR(listsv);
+ SvTEMP_off(listsv); /* Grr, TEMPs and mortals are conflated. */
+ }
+
+ if (skip_white) {
+ RExC_parse = regpatws(pRExC_state, RExC_parse,
+ FALSE /* means don't recognize comments */ );
+ }
+
+ if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
+ RExC_parse++;
+ invert = TRUE;
+ allow_multi_folds = FALSE;
+ MARK_NAUGHTY(1);
+ if (skip_white) {
+ RExC_parse = regpatws(pRExC_state, RExC_parse,
+ FALSE /* means don't recognize comments */ );
+ }
+ }
+
+ /* Check that they didn't say [:posix:] instead of [[:posix:]] */
+ if (!SIZE_ONLY && RExC_parse < RExC_end && POSIXCC(UCHARAT(RExC_parse))) {
+ const char *s = RExC_parse;
+ const char c = *s++;
+
+ if (*s == '^') {
+ s++;
+ }
+ while (isWORDCHAR(*s))
+ s++;
+ if (*s && c == *s && s[1] == ']') {
+ SAVEFREESV(RExC_rx_sv);
+ ckWARN3reg(s+2,
+ "POSIX syntax [%c %c] belongs inside character classes",
+ c, c);
+ (void)ReREFCNT_inc(RExC_rx_sv);
+ }
+ }
+
+ /* If the caller wants us to just parse a single element, accomplish this
+ * by faking the loop ending condition */
+ if (stop_at_1 && RExC_end > RExC_parse) {
+ stop_ptr = RExC_parse + 1;
+ }
+
+ /* allow 1st char to be ']' (allowing it to be '-' is dealt with later) */
+ if (UCHARAT(RExC_parse) == ']')
+ goto charclassloop;
+
+ while (1) {
+ if (RExC_parse >= stop_ptr) {
+ break;
+ }
+
+ if (skip_white) {
+ RExC_parse = regpatws(pRExC_state, RExC_parse,
+ FALSE /* means don't recognize comments */ );
+ }
+
+ if (UCHARAT(RExC_parse) == ']') {
+ break;
+ }
+
+ charclassloop:
+
+ namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
+ save_value = value;
+ save_prevvalue = prevvalue;
+
+ if (!range) {
+ rangebegin = RExC_parse;
+ element_count++;
+ non_portable_endpoint = 0;
+ }
+ if (UTF) {
+ value = utf8n_to_uvchr((U8*)RExC_parse,
+ RExC_end - RExC_parse,
+ &numlen, UTF8_ALLOW_DEFAULT);
+ RExC_parse += numlen;
+ }
+ else
+ value = UCHARAT(RExC_parse++);
+
+ if (value == '['
+ && RExC_parse < RExC_end
+ && POSIXCC(UCHARAT(RExC_parse)))
+ {
+ namedclass = regpposixcc(pRExC_state, value, strict);
+ }
+ else if (value == '\\') {
+ /* Is a backslash; get the code point of the char after it */
+ if (UTF && ! UTF8_IS_INVARIANT(UCHARAT(RExC_parse))) {
+ value = utf8n_to_uvchr((U8*)RExC_parse,
+ RExC_end - RExC_parse,
+ &numlen, UTF8_ALLOW_DEFAULT);
+ RExC_parse += numlen;
+ }
+ else
+ value = UCHARAT(RExC_parse++);
+
+ /* Some compilers cannot handle switching on 64-bit integer
+ * values, therefore value cannot be an UV. Yes, this will
+ * be a problem later if we want switch on Unicode.
+ * A similar issue a little bit later when switching on
+ * namedclass. --jhi */
+
+ /* If the \ is escaping white space when white space is being
+ * skipped, it means that that white space is wanted literally, and
+ * is already in 'value'. Otherwise, need to translate the escape
+ * into what it signifies. */
+ if (! skip_white || ! is_PATWS_cp(value)) switch ((I32)value) {
+
+ case 'w': namedclass = ANYOF_WORDCHAR; break;
+ case 'W': namedclass = ANYOF_NWORDCHAR; break;
+ case 's': namedclass = ANYOF_SPACE; break;
+ case 'S': namedclass = ANYOF_NSPACE; break;
+ case 'd': namedclass = ANYOF_DIGIT; break;
+ case 'D': namedclass = ANYOF_NDIGIT; break;
+ case 'v': namedclass = ANYOF_VERTWS; break;
+ case 'V': namedclass = ANYOF_NVERTWS; break;
+ case 'h': namedclass = ANYOF_HORIZWS; break;
+ case 'H': namedclass = ANYOF_NHORIZWS; break;
+ case 'N': /* Handle \N{NAME} in class */
+ {
+ const char * const backslash_N_beg = RExC_parse - 2;
+ int cp_count;
+
+ if (! grok_bslash_N(pRExC_state,
+ NULL, /* No regnode */
+ &value, /* Yes single value */
+ &cp_count, /* Multiple code pt count */
+ flagp,
+ depth)
+ ) {
+
+ if (*flagp & RESTART_UTF8)
+ FAIL("panic: grok_bslash_N set RESTART_UTF8");
+
+ if (cp_count < 0) {
+ vFAIL("\\N in a character class must be a named character: \\N{...}");
+ }
+ else if (cp_count == 0) {
+ if (strict) {
+ RExC_parse++; /* Position after the "}" */
+ vFAIL("Zero length \\N{}");
+ }
+ else if (PASS2) {
+ ckWARNreg(RExC_parse,
+ "Ignoring zero length \\N{} in character class");
+ }
+ }
+ else { /* cp_count > 1 */
+ if (! RExC_in_multi_char_class) {
+ if (invert || range || *RExC_parse == '-') {
+ if (strict) {
+ RExC_parse--;
+ vFAIL("\\N{} in inverted character class or as a range end-point is restricted to one character");
+ }
+ else if (PASS2) {
+ ckWARNreg(RExC_parse, "Using just the first character returned by \\N{} in character class");
+ }
+ break; /* <value> contains the first code
+ point. Drop out of the switch to
+ process it */
+ }
+ else {
+ SV * multi_char_N = newSVpvn(backslash_N_beg,
+ RExC_parse - backslash_N_beg);
+ multi_char_matches
+ = add_multi_match(multi_char_matches,
+ multi_char_N,
+ cp_count);
+ }
+ }
+ } /* End of cp_count != 1 */
+
+ /* This element should not be processed further in this
+ * class */
+ element_count--;
+ value = save_value;
+ prevvalue = save_prevvalue;
+ continue; /* Back to top of loop to get next char */
+ }
+
+ /* Here, is a single code point, and <value> contains it */
+ unicode_range = TRUE; /* \N{} are Unicode */
+ }
+ break;
+ case 'p':
+ case 'P':
+ {
+ char *e;
+
+ /* We will handle any undefined properties ourselves */
+ U8 swash_init_flags = _CORE_SWASH_INIT_RETURN_IF_UNDEF
+ /* And we actually would prefer to get
+ * the straight inversion list of the
+ * swash, since we will be accessing it
+ * anyway, to save a little time */
+ |_CORE_SWASH_INIT_ACCEPT_INVLIST;
+
+ if (RExC_parse >= RExC_end)
+ vFAIL2("Empty \\%c{}", (U8)value);
+ if (*RExC_parse == '{') {
+ const U8 c = (U8)value;
+ e = strchr(RExC_parse++, '}');
+ if (!e)
+ vFAIL2("Missing right brace on \\%c{}", c);
+ while (isSPACE(*RExC_parse))
+ RExC_parse++;
+ if (e == RExC_parse)
+ vFAIL2("Empty \\%c{}", c);
+ n = e - RExC_parse;
+ while (isSPACE(*(RExC_parse + n - 1)))
+ n--;
+ }
+ else {
+ e = RExC_parse;
+ n = 1;
+ }
+ if (!SIZE_ONLY) {
+ SV* invlist;
+ char* name;
+
+ if (UCHARAT(RExC_parse) == '^') {
+ RExC_parse++;
+ n--;
+ /* toggle. (The rhs xor gets the single bit that
+ * differs between P and p; the other xor inverts just
+ * that bit) */
+ value ^= 'P' ^ 'p';
+
+ while (isSPACE(*RExC_parse)) {
+ RExC_parse++;
+ n--;
+ }
+ }
+ /* Try to get the definition of the property into
+ * <invlist>. If /i is in effect, the effective property
+ * will have its name be <__NAME_i>. The design is
+ * discussed in commit
+ * 2f833f5208e26b208886e51e09e2c072b5eabb46 */
+ name = savepv(Perl_form(aTHX_
+ "%s%.*s%s\n",
+ (FOLD) ? "__" : "",
+ (int)n,
+ RExC_parse,
+ (FOLD) ? "_i" : ""
+ ));
+
+ /* Look up the property name, and get its swash and
+ * inversion list, if the property is found */
+ if (swash) {
+ SvREFCNT_dec_NN(swash);
+ }
+ swash = _core_swash_init("utf8", name, &PL_sv_undef,
+ 1, /* binary */
+ 0, /* not tr/// */
+ NULL, /* No inversion list */
+ &swash_init_flags
+ );
+ if (! swash || ! (invlist = _get_swash_invlist(swash))) {
+ HV* curpkg = (IN_PERL_COMPILETIME)
+ ? PL_curstash
+ : CopSTASH(PL_curcop);
+ if (swash) {
+ SvREFCNT_dec_NN(swash);
+ swash = NULL;
+ }
+
+ /* Here didn't find it. It could be a user-defined
+ * property that will be available at run-time. If we
+ * accept only compile-time properties, is an error;
+ * otherwise add it to the list for run-time look up */
+ if (ret_invlist) {
+ RExC_parse = e + 1;
+ vFAIL2utf8f(
+ "Property '%"UTF8f"' is unknown",
+ UTF8fARG(UTF, n, name));
+ }
+
+ /* If the property name doesn't already have a package
+ * name, add the current one to it so that it can be
+ * referred to outside it. [perl #121777] */
+ if (curpkg && ! instr(name, "::")) {
+ char* pkgname = HvNAME(curpkg);
+ if (strNE(pkgname, "main")) {
+ char* full_name = Perl_form(aTHX_
+ "%s::%s",
+ pkgname,
+ name);
+ n = strlen(full_name);
+ Safefree(name);
+ name = savepvn(full_name, n);
+ }
+ }
+ Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%"UTF8f"\n",
+ (value == 'p' ? '+' : '!'),
+ UTF8fARG(UTF, n, name));
+ has_user_defined_property = TRUE;
+
+ /* We don't know yet, so have to assume that the
+ * property could match something in the Latin1 range,
+ * hence something that isn't utf8. Note that this
+ * would cause things in <depends_list> to match
+ * inappropriately, except that any \p{}, including
+ * this one forces Unicode semantics, which means there
+ * is no <depends_list> */
+ ANYOF_FLAGS(ret)
+ |= ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES;
+ }
+ else {
+
+ /* Here, did get the swash and its inversion list. If
+ * the swash is from a user-defined property, then this
+ * whole character class should be regarded as such */
+ if (swash_init_flags
+ & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY)
+ {
+ has_user_defined_property = TRUE;
+ }
+ else if
+ /* We warn on matching an above-Unicode code point
+ * if the match would return true, except don't
+ * warn for \p{All}, which has exactly one element
+ * = 0 */
+ (_invlist_contains_cp(invlist, 0x110000)
+ && (! (_invlist_len(invlist) == 1
+ && *invlist_array(invlist) == 0)))
+ {
+ warn_super = TRUE;
+ }
+
+
+ /* Invert if asking for the complement */
+ if (value == 'P') {
+ _invlist_union_complement_2nd(properties,
+ invlist,
+ &properties);
+
+ /* The swash can't be used as-is, because we've
+ * inverted things; delay removing it to here after
+ * have copied its invlist above */
+ SvREFCNT_dec_NN(swash);
+ swash = NULL;
+ }
+ else {
+ _invlist_union(properties, invlist, &properties);
+ }
+ }
+ Safefree(name);
+ }
+ RExC_parse = e + 1;
+ namedclass = ANYOF_UNIPROP; /* no official name, but it's
+ named */
+
+ /* \p means they want Unicode semantics */
+ RExC_uni_semantics = 1;
+ }
+ break;
+ case 'n': value = '\n'; break;
+ case 'r': value = '\r'; break;
+ case 't': value = '\t'; break;
+ case 'f': value = '\f'; break;
+ case 'b': value = '\b'; break;
+ case 'e': value = ESC_NATIVE; break;
+ case 'a': value = '\a'; break;
+ case 'o':
+ RExC_parse--; /* function expects to be pointed at the 'o' */
+ {
+ const char* error_msg;
+ bool valid = grok_bslash_o(&RExC_parse,
+ &value,
+ &error_msg,
+ PASS2, /* warnings only in
+ pass 2 */
+ strict,
+ silence_non_portable,
+ UTF);
+ if (! valid) {
+ vFAIL(error_msg);
+ }
+ }
+ non_portable_endpoint++;
+ if (IN_ENCODING && value < 0x100) {
+ goto recode_encoding;
+ }
+ break;
+ case 'x':
+ RExC_parse--; /* function expects to be pointed at the 'x' */
+ {
+ const char* error_msg;
+ bool valid = grok_bslash_x(&RExC_parse,
+ &value,
+ &error_msg,
+ PASS2, /* Output warnings */
+ strict,
+ silence_non_portable,
+ UTF);
+ if (! valid) {
+ vFAIL(error_msg);
+ }
+ }
+ non_portable_endpoint++;
+ if (IN_ENCODING && value < 0x100)
+ goto recode_encoding;
+ break;
+ case 'c':
+ value = grok_bslash_c(*RExC_parse++, PASS2);
+ non_portable_endpoint++;
+ break;
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7':
+ {
+ /* Take 1-3 octal digits */
+ I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
+ numlen = (strict) ? 4 : 3;
+ value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
+ RExC_parse += numlen;
+ if (numlen != 3) {
+ if (strict) {
+ RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+ vFAIL("Need exactly 3 octal digits");
+ }
+ else if (! SIZE_ONLY /* like \08, \178 */
+ && numlen < 3
+ && RExC_parse < RExC_end
+ && isDIGIT(*RExC_parse)
+ && ckWARN(WARN_REGEXP))
+ {
+ SAVEFREESV(RExC_rx_sv);
+ reg_warn_non_literal_string(
+ RExC_parse + 1,
+ form_short_octal_warning(RExC_parse, numlen));
+ (void)ReREFCNT_inc(RExC_rx_sv);
+ }
+ }
+ non_portable_endpoint++;
+ if (IN_ENCODING && value < 0x100)
+ goto recode_encoding;
+ break;
+ }
+ recode_encoding:
+ if (! RExC_override_recoding) {
+ SV* enc = _get_encoding();
+ value = reg_recode((const char)(U8)value, &enc);
+ if (!enc) {
+ if (strict) {
+ vFAIL("Invalid escape in the specified encoding");
+ }
+ else if (PASS2) {
+ ckWARNreg(RExC_parse,
+ "Invalid escape in the specified encoding");
+ }
+ }
+ break;
+ }
+ default:
+ /* Allow \_ to not give an error */
+ if (!SIZE_ONLY && isWORDCHAR(value) && value != '_') {
+ if (strict) {
+ vFAIL2("Unrecognized escape \\%c in character class",
+ (int)value);
+ }
+ else {
+ SAVEFREESV(RExC_rx_sv);
+ ckWARN2reg(RExC_parse,
+ "Unrecognized escape \\%c in character class passed through",
+ (int)value);
+ (void)ReREFCNT_inc(RExC_rx_sv);
+ }
+ }
+ break;
+ } /* End of switch on char following backslash */
+ } /* end of handling backslash escape sequences */
+
+ /* Here, we have the current token in 'value' */
+
+ if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
+ U8 classnum;
+
+ /* a bad range like a-\d, a-[:digit:]. The '-' is taken as a
+ * literal, as is the character that began the false range, i.e.
+ * the 'a' in the examples */
+ if (range) {
+ if (!SIZE_ONLY) {
+ const int w = (RExC_parse >= rangebegin)
+ ? RExC_parse - rangebegin
+ : 0;
+ if (strict) {
+ vFAIL2utf8f(
+ "False [] range \"%"UTF8f"\"",
+ UTF8fARG(UTF, w, rangebegin));
+ }
+ else {
+ SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
+ ckWARN2reg(RExC_parse,
+ "False [] range \"%"UTF8f"\"",
+ UTF8fARG(UTF, w, rangebegin));
+ (void)ReREFCNT_inc(RExC_rx_sv);
+ cp_list = add_cp_to_invlist(cp_list, '-');
+ cp_foldable_list = add_cp_to_invlist(cp_foldable_list,
+ prevvalue);
+ }
+ }
+
+ range = 0; /* this was not a true range */
+ element_count += 2; /* So counts for three values */
+ }
+
+ classnum = namedclass_to_classnum(namedclass);
+
+ if (LOC && namedclass < ANYOF_POSIXL_MAX
+#ifndef HAS_ISASCII
+ && classnum != _CC_ASCII
+#endif
+ ) {
+ /* What the Posix classes (like \w, [:space:]) match in locale
+ * isn't knowable under locale until actual match time. Room
+ * must be reserved (one time per outer bracketed class) to
+ * store such classes. The space will contain a bit for each
+ * named class that is to be matched against. This isn't
+ * needed for \p{} and pseudo-classes, as they are not affected
+ * by locale, and hence are dealt with separately */
+ if (! need_class) {
+ need_class = 1;
+ if (SIZE_ONLY) {
+ RExC_size += ANYOF_POSIXL_SKIP - ANYOF_SKIP;
+ }
+ else {
+ RExC_emit += ANYOF_POSIXL_SKIP - ANYOF_SKIP;
+ }
+ ANYOF_FLAGS(ret) |= ANYOF_MATCHES_POSIXL;
+ ANYOF_POSIXL_ZERO(ret);
+ }
+
+ /* Coverity thinks it is possible for this to be negative; both
+ * jhi and khw think it's not, but be safer */
+ assert(! (ANYOF_FLAGS(ret) & ANYOF_MATCHES_POSIXL)
+ || (namedclass + ((namedclass % 2) ? -1 : 1)) >= 0);
+
+ /* See if it already matches the complement of this POSIX
+ * class */
+ if ((ANYOF_FLAGS(ret) & ANYOF_MATCHES_POSIXL)
+ && ANYOF_POSIXL_TEST(ret, namedclass + ((namedclass % 2)
+ ? -1
+ : 1)))
+ {
+ posixl_matches_all = TRUE;
+ break; /* No need to continue. Since it matches both
+ e.g., \w and \W, it matches everything, and the
+ bracketed class can be optimized into qr/./s */
+ }
+
+ /* Add this class to those that should be checked at runtime */
+ ANYOF_POSIXL_SET(ret, namedclass);
+
+ /* The above-Latin1 characters are not subject to locale rules.
+ * Just add them, in the second pass, to the
+ * unconditionally-matched list */
+ if (! SIZE_ONLY) {
+ SV* scratch_list = NULL;
+
+ /* Get the list of the above-Latin1 code points this
+ * matches */
+ _invlist_intersection_maybe_complement_2nd(PL_AboveLatin1,
+ PL_XPosix_ptrs[classnum],
+
+ /* Odd numbers are complements, like
+ * NDIGIT, NASCII, ... */
+ namedclass % 2 != 0,
+ &scratch_list);
+ /* Checking if 'cp_list' is NULL first saves an extra
+ * clone. Its reference count will be decremented at the
+ * next union, etc, or if this is the only instance, at the
+ * end of the routine */
+ if (! cp_list) {
+ cp_list = scratch_list;
+ }
+ else {
+ _invlist_union(cp_list, scratch_list, &cp_list);
+ SvREFCNT_dec_NN(scratch_list);
+ }
+ continue; /* Go get next character */
+ }
+ }
+ else if (! SIZE_ONLY) {
+
+ /* Here, not in pass1 (in that pass we skip calculating the
+ * contents of this class), and is /l, or is a POSIX class for
+ * which /l doesn't matter (or is a Unicode property, which is
+ * skipped here). */
+ if (namedclass >= ANYOF_POSIXL_MAX) { /* If a special class */
+ if (namedclass != ANYOF_UNIPROP) { /* UNIPROP = \p and \P */
+
+ /* Here, should be \h, \H, \v, or \V. None of /d, /i
+ * nor /l make a difference in what these match,
+ * therefore we just add what they match to cp_list. */
+ if (classnum != _CC_VERTSPACE) {
+ assert( namedclass == ANYOF_HORIZWS
+ || namedclass == ANYOF_NHORIZWS);
+
+ /* It turns out that \h is just a synonym for
+ * XPosixBlank */
+ classnum = _CC_BLANK;
+ }
+
+ _invlist_union_maybe_complement_2nd(
+ cp_list,
+ PL_XPosix_ptrs[classnum],
+ namedclass % 2 != 0, /* Complement if odd
+ (NHORIZWS, NVERTWS)
+ */
+ &cp_list);
+ }
+ }
+ else if (UNI_SEMANTICS
+ || classnum == _CC_ASCII
+ || (DEPENDS_SEMANTICS && (classnum == _CC_DIGIT
+ || classnum == _CC_XDIGIT)))
+ {
+ /* We usually have to worry about /d and /a affecting what
+ * POSIX classes match, with special code needed for /d
+ * because we won't know until runtime what all matches.
+ * But there is no extra work needed under /u, and
+ * [:ascii:] is unaffected by /a and /d; and :digit: and
+ * :xdigit: don't have runtime differences under /d. So we
+ * can special case these, and avoid some extra work below,
+ * and at runtime. */
+ _invlist_union_maybe_complement_2nd(
+ simple_posixes,
+ PL_XPosix_ptrs[classnum],
+ namedclass % 2 != 0,
+ &simple_posixes);
+ }
+ else { /* Garden variety class. If is NUPPER, NALPHA, ...
+ complement and use nposixes */
+ SV** posixes_ptr = namedclass % 2 == 0
+ ? &posixes
+ : &nposixes;
+ _invlist_union_maybe_complement_2nd(
+ *posixes_ptr,
+ PL_XPosix_ptrs[classnum],
+ namedclass % 2 != 0,
+ posixes_ptr);
+ }
+ }
+ } /* end of namedclass \blah */
+
+ if (skip_white) {
+ RExC_parse = regpatws(pRExC_state, RExC_parse,
+ FALSE /* means don't recognize comments */ );
+ }
+
+ /* If 'range' is set, 'value' is the ending of a range--check its
+ * validity. (If value isn't a single code point in the case of a
+ * range, we should have figured that out above in the code that
+ * catches false ranges). Later, we will handle each individual code
+ * point in the range. If 'range' isn't set, this could be the
+ * beginning of a range, so check for that by looking ahead to see if
+ * the next real character to be processed is the range indicator--the
+ * minus sign */
+
+ if (range) {
+#ifdef EBCDIC
+ /* For unicode ranges, we have to test that the Unicode as opposed
+ * to the native values are not decreasing. (Above 255, there is
+ * no difference between native and Unicode) */
+ if (unicode_range && prevvalue < 255 && value < 255) {
+ if (NATIVE_TO_LATIN1(prevvalue) > NATIVE_TO_LATIN1(value)) {
+ goto backwards_range;
+ }
+ }
+ else
+#endif
+ if (prevvalue > value) /* b-a */ {
+ int w;
+#ifdef EBCDIC
+ backwards_range:
+#endif
+ w = RExC_parse - rangebegin;
+ vFAIL2utf8f(
+ "Invalid [] range \"%"UTF8f"\"",
+ UTF8fARG(UTF, w, rangebegin));
+ NOT_REACHED; /* NOTREACHED */
+ }
+ }
+ else {
+ prevvalue = value; /* save the beginning of the potential range */
+ if (! stop_at_1 /* Can't be a range if parsing just one thing */
+ && *RExC_parse == '-')
+ {
+ char* next_char_ptr = RExC_parse + 1;
+ if (skip_white) { /* Get the next real char after the '-' */
+ next_char_ptr = regpatws(pRExC_state,
+ RExC_parse + 1,
+ FALSE); /* means don't recognize
+ comments */
+ }
+
+ /* If the '-' is at the end of the class (just before the ']',
+ * it is a literal minus; otherwise it is a range */
+ if (next_char_ptr < RExC_end && *next_char_ptr != ']') {
+ RExC_parse = next_char_ptr;
+
+ /* a bad range like \w-, [:word:]- ? */
+ if (namedclass > OOB_NAMEDCLASS) {
+ if (strict || (PASS2 && ckWARN(WARN_REGEXP))) {
+ const int w = RExC_parse >= rangebegin
+ ? RExC_parse - rangebegin
+ : 0;
+ if (strict) {
+ vFAIL4("False [] range \"%*.*s\"",
+ w, w, rangebegin);
+ }
+ else if (PASS2) {
+ vWARN4(RExC_parse,
+ "False [] range \"%*.*s\"",
+ w, w, rangebegin);
+ }
+ }
+ if (!SIZE_ONLY) {
+ cp_list = add_cp_to_invlist(cp_list, '-');
+ }
+ element_count++;
+ } else
+ range = 1; /* yeah, it's a range! */
+ continue; /* but do it the next time */
+ }
+ }
+ }
+
+ if (namedclass > OOB_NAMEDCLASS) {
+ continue;
+ }
+
+ /* Here, we have a single value this time through the loop, and
+ * <prevvalue> is the beginning of the range, if any; or <value> if
+ * not. */
+
+ /* non-Latin1 code point implies unicode semantics. Must be set in
+ * pass1 so is there for the whole of pass 2 */
+ if (value > 255) {
+ RExC_uni_semantics = 1;
+ }
+
+ /* Ready to process either the single value, or the completed range.
+ * For single-valued non-inverted ranges, we consider the possibility
+ * of multi-char folds. (We made a conscious decision to not do this
+ * for the other cases because it can often lead to non-intuitive
+ * results. For example, you have the peculiar case that:
+ * "s s" =~ /^[^\xDF]+$/i => Y
+ * "ss" =~ /^[^\xDF]+$/i => N
+ *
+ * See [perl #89750] */
+ if (FOLD && allow_multi_folds && value == prevvalue) {
+ if (value == LATIN_SMALL_LETTER_SHARP_S
+ || (value > 255 && _invlist_contains_cp(PL_HasMultiCharFold,
+ value)))
+ {
+ /* Here <value> is indeed a multi-char fold. Get what it is */
+
+ U8 foldbuf[UTF8_MAXBYTES_CASE];
+ STRLEN foldlen;
+
+ UV folded = _to_uni_fold_flags(
+ value,
+ foldbuf,
+ &foldlen,
+ FOLD_FLAGS_FULL | (ASCII_FOLD_RESTRICTED
+ ? FOLD_FLAGS_NOMIX_ASCII
+ : 0)
+ );
+
+ /* Here, <folded> should be the first character of the
+ * multi-char fold of <value>, with <foldbuf> containing the
+ * whole thing. But, if this fold is not allowed (because of
+ * the flags), <fold> will be the same as <value>, and should
+ * be processed like any other character, so skip the special
+ * handling */
+ if (folded != value) {
+
+ /* Skip if we are recursed, currently parsing the class
+ * again. Otherwise add this character to the list of
+ * multi-char folds. */
+ if (! RExC_in_multi_char_class) {
+ STRLEN cp_count = utf8_length(foldbuf,
+ foldbuf + foldlen);
+ SV* multi_fold = sv_2mortal(newSVpvs(""));
+
+ Perl_sv_catpvf(aTHX_ multi_fold, "\\x{%"UVXf"}", value);
+
+ multi_char_matches
+ = add_multi_match(multi_char_matches,
+ multi_fold,
+ cp_count);
+
+ }
+
+ /* This element should not be processed further in this
+ * class */
+ element_count--;
+ value = save_value;
+ prevvalue = save_prevvalue;
+ continue;
+ }
+ }
+ }
+
+ if (strict && PASS2 && ckWARN(WARN_REGEXP)) {
+ if (range) {
+
+ /* If the range starts above 255, everything is portable and
+ * likely to be so for any forseeable character set, so don't
+ * warn. */
+ if (unicode_range && non_portable_endpoint && prevvalue < 256) {
+ vWARN(RExC_parse, "Both or neither range ends should be Unicode");
+ }
+ else if (prevvalue != value) {
+
+ /* Under strict, ranges that stop and/or end in an ASCII
+ * printable should have each end point be a portable value
+ * for it (preferably like 'A', but we don't warn if it is
+ * a (portable) Unicode name or code point), and the range
+ * must be be all digits or all letters of the same case.
+ * Otherwise, the range is non-portable and unclear as to
+ * what it contains */
+ if ((isPRINT_A(prevvalue) || isPRINT_A(value))
+ && (non_portable_endpoint
+ || ! ((isDIGIT_A(prevvalue) && isDIGIT_A(value))
+ || (isLOWER_A(prevvalue) && isLOWER_A(value))
+ || (isUPPER_A(prevvalue) && isUPPER_A(value)))))
+ {
+ vWARN(RExC_parse, "Ranges of ASCII printables should be some subset of \"0-9\", \"A-Z\", or \"a-z\"");
+ }
+ else if (prevvalue >= 0x660) { /* ARABIC_INDIC_DIGIT_ZERO */
+
+ /* But the nature of Unicode and languages mean we
+ * can't do the same checks for above-ASCII ranges,
+ * except in the case of digit ones. These should
+ * contain only digits from the same group of 10. The
+ * ASCII case is handled just above. 0x660 is the
+ * first digit character beyond ASCII. Hence here, the
+ * range could be a range of digits. Find out. */
+ IV index_start = _invlist_search(PL_XPosix_ptrs[_CC_DIGIT],
+ prevvalue);
+ IV index_final = _invlist_search(PL_XPosix_ptrs[_CC_DIGIT],
+ value);
+
+ /* If the range start and final points are in the same
+ * inversion list element, it means that either both
+ * are not digits, or both are digits in a consecutive
+ * sequence of digits. (So far, Unicode has kept all
+ * such sequences as distinct groups of 10, but assert
+ * to make sure). If the end points are not in the
+ * same element, neither should be a digit. */
+ if (index_start == index_final) {
+ assert(! ELEMENT_RANGE_MATCHES_INVLIST(index_start)
+ || (invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start+1]
+ - invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
+ == 10)
+ /* But actually Unicode did have one group of 11
+ * 'digits' in 5.2, so in case we are operating
+ * on that version, let that pass */
+ || (invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start+1]
+ - invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
+ == 11
+ && invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
+ == 0x19D0)
+ );
+ }
+ else if ((index_start >= 0
+ && ELEMENT_RANGE_MATCHES_INVLIST(index_start))
+ || (index_final >= 0
+ && ELEMENT_RANGE_MATCHES_INVLIST(index_final)))
+ {
+ vWARN(RExC_parse, "Ranges of digits should be from the same group of 10");
+ }
+ }
+ }
+ }
+ if ((! range || prevvalue == value) && non_portable_endpoint) {
+ if (isPRINT_A(value)) {
+ char literal[3];
+ unsigned d = 0;
+ if (isBACKSLASHED_PUNCT(value)) {
+ literal[d++] = '\\';
+ }
+ literal[d++] = (char) value;
+ literal[d++] = '\0';
+
+ vWARN4(RExC_parse,
+ "\"%.*s\" is more clearly written simply as \"%s\"",
+ (int) (RExC_parse - rangebegin),
+ rangebegin,
+ literal
+ );
+ }
+ else if isMNEMONIC_CNTRL(value) {
+ vWARN4(RExC_parse,
+ "\"%.*s\" is more clearly written simply as \"%s\"",
+ (int) (RExC_parse - rangebegin),
+ rangebegin,
+ cntrl_to_mnemonic((char) value)
+ );
+ }
+ }
+ }
+
+ /* Deal with this element of the class */
+ if (! SIZE_ONLY) {
+
+#ifndef EBCDIC
+ cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
+ prevvalue, value);
+#else
+ /* On non-ASCII platforms, for ranges that span all of 0..255, and
+ * ones that don't require special handling, we can just add the
+ * range like we do for ASCII platforms */
+ if ((UNLIKELY(prevvalue == 0) && value >= 255)
+ || ! (prevvalue < 256
+ && (unicode_range
+ || (! non_portable_endpoint
+ && ((isLOWER_A(prevvalue) && isLOWER_A(value))
+ || (isUPPER_A(prevvalue)
+ && isUPPER_A(value)))))))
+ {
+ cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
+ prevvalue, value);
+ }
+ else {
+ /* Here, requires special handling. This can be because it is
+ * a range whose code points are considered to be Unicode, and
+ * so must be individually translated into native, or because
+ * its a subrange of 'A-Z' or 'a-z' which each aren't
+ * contiguous in EBCDIC, but we have defined them to include
+ * only the "expected" upper or lower case ASCII alphabetics.
+ * Subranges above 255 are the same in native and Unicode, so
+ * can be added as a range */
+ U8 start = NATIVE_TO_LATIN1(prevvalue);
+ unsigned j;
+ U8 end = (value < 256) ? NATIVE_TO_LATIN1(value) : 255;
+ for (j = start; j <= end; j++) {
+ cp_foldable_list = add_cp_to_invlist(cp_foldable_list, LATIN1_TO_NATIVE(j));
+ }
+ if (value > 255) {
+ cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
+ 256, value);
+ }
+ }
+#endif
+ }
+
+ range = 0; /* this range (if it was one) is done now */
+ } /* End of loop through all the text within the brackets */
+
+ /* If anything in the class expands to more than one character, we have to
+ * deal with them by building up a substitute parse string, and recursively
+ * calling reg() on it, instead of proceeding */
+ if (multi_char_matches) {
+ SV * substitute_parse = newSVpvn_flags("?:", 2, SVs_TEMP);
+ I32 cp_count;
+ STRLEN len;
+ char *save_end = RExC_end;
+ char *save_parse = RExC_parse;
+ bool first_time = TRUE; /* First multi-char occurrence doesn't get
+ a "|" */
+ I32 reg_flags;
+
+ assert(! invert);
+#if 0 /* Have decided not to deal with multi-char folds in inverted classes,
+ because too confusing */
+ if (invert) {
+ sv_catpv(substitute_parse, "(?:");
+ }
+#endif
+
+ /* Look at the longest folds first */
+ for (cp_count = av_tindex(multi_char_matches); cp_count > 0; cp_count--) {
+
+ if (av_exists(multi_char_matches, cp_count)) {
+ AV** this_array_ptr;
+ SV* this_sequence;
+
+ this_array_ptr = (AV**) av_fetch(multi_char_matches,
+ cp_count, FALSE);
+ while ((this_sequence = av_pop(*this_array_ptr)) !=
+ &PL_sv_undef)
+ {
+ if (! first_time) {
+ sv_catpv(substitute_parse, "|");
+ }
+ first_time = FALSE;
+
+ sv_catpv(substitute_parse, SvPVX(this_sequence));
+ }
+ }
+ }
+
+ /* If the character class contains anything else besides these
+ * multi-character folds, have to include it in recursive parsing */
+ if (element_count) {
+ sv_catpv(substitute_parse, "|[");
+ sv_catpvn(substitute_parse, orig_parse, RExC_parse - orig_parse);
+ sv_catpv(substitute_parse, "]");
+ }
+
+ sv_catpv(substitute_parse, ")");
+#if 0
+ if (invert) {
+ /* This is a way to get the parse to skip forward a whole named
+ * sequence instead of matching the 2nd character when it fails the
+ * first */
+ sv_catpv(substitute_parse, "(*THEN)(*SKIP)(*FAIL)|.)");
+ }
+#endif
+
+ RExC_parse = SvPV(substitute_parse, len);
+ RExC_end = RExC_parse + len;
+ RExC_in_multi_char_class = 1;
+ RExC_override_recoding = 1;
+ RExC_emit = (regnode *)orig_emit;
+
+ ret = reg(pRExC_state, 1, ®_flags, depth+1);
+
+ *flagp |= reg_flags&(HASWIDTH|SIMPLE|SPSTART|POSTPONED|RESTART_UTF8);
+
+ RExC_parse = save_parse;
+ RExC_end = save_end;
+ RExC_in_multi_char_class = 0;
+ RExC_override_recoding = 0;
+ SvREFCNT_dec_NN(multi_char_matches);
+ return ret;
+ }
+
+ /* Here, we've gone through the entire class and dealt with multi-char
+ * folds. We are now in a position that we can do some checks to see if we
+ * can optimize this ANYOF node into a simpler one, even in Pass 1.
+ * Currently we only do two checks:
+ * 1) is in the unlikely event that the user has specified both, eg. \w and
+ * \W under /l, then the class matches everything. (This optimization
+ * is done only to make the optimizer code run later work.)
+ * 2) if the character class contains only a single element (including a
+ * single range), we see if there is an equivalent node for it.
+ * Other checks are possible */
+ if (! ret_invlist /* Can't optimize if returning the constructed
+ inversion list */
+ && (UNLIKELY(posixl_matches_all) || element_count == 1))
+ {
+ U8 op = END;
+ U8 arg = 0;
+
+ if (UNLIKELY(posixl_matches_all)) {
+ op = SANY;
+ }
+ else if (namedclass > OOB_NAMEDCLASS) { /* this is a named class, like
+ \w or [:digit:] or \p{foo}
+ */
+
+ /* All named classes are mapped into POSIXish nodes, with its FLAG
+ * argument giving which class it is */
+ switch ((I32)namedclass) {
+ case ANYOF_UNIPROP:
+ break;
+
+ /* These don't depend on the charset modifiers. They always
+ * match under /u rules */
+ case ANYOF_NHORIZWS:
+ case ANYOF_HORIZWS:
+ namedclass = ANYOF_BLANK + namedclass - ANYOF_HORIZWS;
+ /* FALLTHROUGH */
+
+ case ANYOF_NVERTWS:
+ case ANYOF_VERTWS:
+ op = POSIXU;
+ goto join_posix;
+
+ /* The actual POSIXish node for all the rest depends on the
+ * charset modifier. The ones in the first set depend only on
+ * ASCII or, if available on this platform, also locale */
+ case ANYOF_ASCII:
+ case ANYOF_NASCII:
+#ifdef HAS_ISASCII
+ op = (LOC) ? POSIXL : POSIXA;
+#else
+ op = POSIXA;
+#endif
+ goto join_posix;
+
+ /* The following don't have any matches in the upper Latin1
+ * range, hence /d is equivalent to /u for them. Making it /u
+ * saves some branches at runtime */
+ case ANYOF_DIGIT:
+ case ANYOF_NDIGIT:
+ case ANYOF_XDIGIT:
+ case ANYOF_NXDIGIT:
+ if (! DEPENDS_SEMANTICS) {
+ goto treat_as_default;
+ }
+
+ op = POSIXU;
+ goto join_posix;
+
+ /* The following change to CASED under /i */
+ case ANYOF_LOWER:
+ case ANYOF_NLOWER:
+ case ANYOF_UPPER:
+ case ANYOF_NUPPER:
+ if (FOLD) {
+ namedclass = ANYOF_CASED + (namedclass % 2);
+ }
+ /* FALLTHROUGH */
+
+ /* The rest have more possibilities depending on the charset.
+ * We take advantage of the enum ordering of the charset
+ * modifiers to get the exact node type, */
+ default:
+ treat_as_default:
+ op = POSIXD + get_regex_charset(RExC_flags);
+ if (op > POSIXA) { /* /aa is same as /a */
+ op = POSIXA;
+ }
+
+ join_posix:
+ /* The odd numbered ones are the complements of the
+ * next-lower even number one */
+ if (namedclass % 2 == 1) {
+ invert = ! invert;
+ namedclass--;
+ }
+ arg = namedclass_to_classnum(namedclass);
+ break;
+ }
+ }
+ else if (value == prevvalue) {
+
+ /* Here, the class consists of just a single code point */
+
+ if (invert) {
+ if (! LOC && value == '\n') {
+ op = REG_ANY; /* Optimize [^\n] */
+ *flagp |= HASWIDTH|SIMPLE;
+ MARK_NAUGHTY(1);
+ }
+ }
+ else if (value < 256 || UTF) {
+
+ /* Optimize a single value into an EXACTish node, but not if it
+ * would require converting the pattern to UTF-8. */
+ op = compute_EXACTish(pRExC_state);
+ }
+ } /* Otherwise is a range */
+ else if (! LOC) { /* locale could vary these */
+ if (prevvalue == '0') {
+ if (value == '9') {
+ arg = _CC_DIGIT;
+ op = POSIXA;
+ }
+ }
+ else if (! FOLD || ASCII_FOLD_RESTRICTED) {
+ /* We can optimize A-Z or a-z, but not if they could match
+ * something like the KELVIN SIGN under /i. */
+ if (prevvalue == 'A') {
+ if (value == 'Z'
+#ifdef EBCDIC
+ && ! non_portable_endpoint
+#endif
+ ) {
+ arg = (FOLD) ? _CC_ALPHA : _CC_UPPER;
+ op = POSIXA;
+ }
+ }
+ else if (prevvalue == 'a') {
+ if (value == 'z'
+#ifdef EBCDIC
+ && ! non_portable_endpoint
+#endif
+ ) {
+ arg = (FOLD) ? _CC_ALPHA : _CC_LOWER;
+ op = POSIXA;
+ }
+ }
+ }
+ }
+
+ /* Here, we have changed <op> away from its initial value iff we found
+ * an optimization */
+ if (op != END) {
+
+ /* Throw away this ANYOF regnode, and emit the calculated one,
+ * which should correspond to the beginning, not current, state of
+ * the parse */
+ const char * cur_parse = RExC_parse;
+ RExC_parse = (char *)orig_parse;
+ if ( SIZE_ONLY) {
+ if (! LOC) {
+
+ /* To get locale nodes to not use the full ANYOF size would
+ * require moving the code above that writes the portions
+ * of it that aren't in other nodes to after this point.
+ * e.g. ANYOF_POSIXL_SET */
+ RExC_size = orig_size;
+ }
+ }
+ else {
+ RExC_emit = (regnode *)orig_emit;
+ if (PL_regkind[op] == POSIXD) {
+ if (op == POSIXL) {
+ RExC_contains_locale = 1;
+ }
+ if (invert) {
+ op += NPOSIXD - POSIXD;
+ }
+ }
+ }
+
+ ret = reg_node(pRExC_state, op);
+
+ if (PL_regkind[op] == POSIXD || PL_regkind[op] == NPOSIXD) {
+ if (! SIZE_ONLY) {
+ FLAGS(ret) = arg;
+ }
+ *flagp |= HASWIDTH|SIMPLE;
+ }
+ else if (PL_regkind[op] == EXACT) {
+ alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value,
+ TRUE /* downgradable to EXACT */
+ );
+ }
+
+ RExC_parse = (char *) cur_parse;
+
+ SvREFCNT_dec(posixes);
+ SvREFCNT_dec(nposixes);
+ SvREFCNT_dec(simple_posixes);
+ SvREFCNT_dec(cp_list);
+ SvREFCNT_dec(cp_foldable_list);
+ return ret;
+ }
+ }
+
+ if (SIZE_ONLY)
+ return ret;
+ /****** !SIZE_ONLY (Pass 2) AFTER HERE *********/
+
+ /* If folding, we calculate all characters that could fold to or from the
+ * ones already on the list */
+ if (cp_foldable_list) {
+ if (FOLD) {
+ UV start, end; /* End points of code point ranges */
+
+ SV* fold_intersection = NULL;
+ SV** use_list;
+
+ /* Our calculated list will be for Unicode rules. For locale
+ * matching, we have to keep a separate list that is consulted at
+ * runtime only when the locale indicates Unicode rules. For
+ * non-locale, we just use to the general list */
+ if (LOC) {
+ use_list = &only_utf8_locale_list;
+ }
+ else {
+ use_list = &cp_list;
+ }
+
+ /* Only the characters in this class that participate in folds need
+ * be checked. Get the intersection of this class and all the
+ * possible characters that are foldable. This can quickly narrow
+ * down a large class */
+ _invlist_intersection(PL_utf8_foldable, cp_foldable_list,
+ &fold_intersection);
+
+ /* The folds for all the Latin1 characters are hard-coded into this
+ * program, but we have to go out to disk to get the others. */
+ if (invlist_highest(cp_foldable_list) >= 256) {
+
+ /* This is a hash that for a particular fold gives all
+ * characters that are involved in it */
+ if (! PL_utf8_foldclosures) {
+ _load_PL_utf8_foldclosures();
+ }
+ }
+
+ /* Now look at the foldable characters in this class individually */
+ invlist_iterinit(fold_intersection);
+ while (invlist_iternext(fold_intersection, &start, &end)) {
+ UV j;
+
+ /* Look at every character in the range */
+ for (j = start; j <= end; j++) {
+ U8 foldbuf[UTF8_MAXBYTES_CASE+1];
+ STRLEN foldlen;
+ SV** listp;
+
+ if (j < 256) {
+
+ if (IS_IN_SOME_FOLD_L1(j)) {
+
+ /* ASCII is always matched; non-ASCII is matched
+ * only under Unicode rules (which could happen
+ * under /l if the locale is a UTF-8 one */
+ if (isASCII(j) || ! DEPENDS_SEMANTICS) {
+ *use_list = add_cp_to_invlist(*use_list,
+ PL_fold_latin1[j]);
+ }
+ else {
+ depends_list =
+ add_cp_to_invlist(depends_list,
+ PL_fold_latin1[j]);
+ }
+ }
+
+ if (HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(j)
+ && (! isASCII(j) || ! ASCII_FOLD_RESTRICTED))
+ {
+ add_above_Latin1_folds(pRExC_state,
+ (U8) j,
+ use_list);
+ }
+ continue;
+ }
+
+ /* Here is an above Latin1 character. We don't have the
+ * rules hard-coded for it. First, get its fold. This is
+ * the simple fold, as the multi-character folds have been
+ * handled earlier and separated out */
+ _to_uni_fold_flags(j, foldbuf, &foldlen,
+ (ASCII_FOLD_RESTRICTED)
+ ? FOLD_FLAGS_NOMIX_ASCII
+ : 0);
+
+ /* Single character fold of above Latin1. Add everything in
+ * its fold closure to the list that this node should match.
+ * The fold closures data structure is a hash with the keys
+ * being the UTF-8 of every character that is folded to, like
+ * 'k', and the values each an array of all code points that
+ * fold to its key. e.g. [ 'k', 'K', KELVIN_SIGN ].
+ * Multi-character folds are not included */
+ if ((listp = hv_fetch(PL_utf8_foldclosures,
+ (char *) foldbuf, foldlen, FALSE)))
+ {
+ AV* list = (AV*) *listp;
+ IV k;
+ for (k = 0; k <= av_tindex(list); k++) {
+ SV** c_p = av_fetch(list, k, FALSE);
+ UV c;
+ assert(c_p);
+
+ c = SvUV(*c_p);
+
+ /* /aa doesn't allow folds between ASCII and non- */
+ if ((ASCII_FOLD_RESTRICTED
+ && (isASCII(c) != isASCII(j))))
+ {
+ continue;
+ }
+
+ /* Folds under /l which cross the 255/256 boundary
+ * are added to a separate list. (These are valid
+ * only when the locale is UTF-8.) */
+ if (c < 256 && LOC) {
+ *use_list = add_cp_to_invlist(*use_list, c);
+ continue;
+ }
+
+ if (isASCII(c) || c > 255 || AT_LEAST_UNI_SEMANTICS)
+ {
+ cp_list = add_cp_to_invlist(cp_list, c);
+ }
+ else {
+ /* Similarly folds involving non-ascii Latin1
+ * characters under /d are added to their list */
+ depends_list = add_cp_to_invlist(depends_list,
+ c);
+ }
+ }
+ }
+ }
+ }
+ SvREFCNT_dec_NN(fold_intersection);
+ }
+
+ /* Now that we have finished adding all the folds, there is no reason
+ * to keep the foldable list separate */
+ _invlist_union(cp_list, cp_foldable_list, &cp_list);
+ SvREFCNT_dec_NN(cp_foldable_list);
+ }
+
+ /* And combine the result (if any) with any inversion list from posix
+ * classes. The lists are kept separate up to now because we don't want to
+ * fold the classes (folding of those is automatically handled by the swash
+ * fetching code) */
+ if (simple_posixes) {
+ _invlist_union(cp_list, simple_posixes, &cp_list);
+ SvREFCNT_dec_NN(simple_posixes);
+ }
+ if (posixes || nposixes) {
+ if (posixes && AT_LEAST_ASCII_RESTRICTED) {
+ /* Under /a and /aa, nothing above ASCII matches these */
+ _invlist_intersection(posixes,
+ PL_XPosix_ptrs[_CC_ASCII],
+ &posixes);
+ }
+ if (nposixes) {
+ if (DEPENDS_SEMANTICS) {
+ /* Under /d, everything in the upper half of the Latin1 range
+ * matches these complements */
+ ANYOF_FLAGS(ret) |= ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII;
+ }
+ else if (AT_LEAST_ASCII_RESTRICTED) {
+ /* Under /a and /aa, everything above ASCII matches these
+ * complements */
+ _invlist_union_complement_2nd(nposixes,
+ PL_XPosix_ptrs[_CC_ASCII],
+ &nposixes);
+ }
+ if (posixes) {
+ _invlist_union(posixes, nposixes, &posixes);
+ SvREFCNT_dec_NN(nposixes);
+ }
+ else {
+ posixes = nposixes;
+ }
+ }
+ if (! DEPENDS_SEMANTICS) {
+ if (cp_list) {
+ _invlist_union(cp_list, posixes, &cp_list);
+ SvREFCNT_dec_NN(posixes);
+ }
+ else {
+ cp_list = posixes;
+ }
+ }
+ else {
+ /* Under /d, we put into a separate list the Latin1 things that
+ * match only when the target string is utf8 */
+ SV* nonascii_but_latin1_properties = NULL;
+ _invlist_intersection(posixes, PL_UpperLatin1,
+ &nonascii_but_latin1_properties);
+ _invlist_subtract(posixes, nonascii_but_latin1_properties,
+ &posixes);
+ if (cp_list) {
+ _invlist_union(cp_list, posixes, &cp_list);
+ SvREFCNT_dec_NN(posixes);
+ }
+ else {
+ cp_list = posixes;
+ }
+
+ if (depends_list) {
+ _invlist_union(depends_list, nonascii_but_latin1_properties,
+ &depends_list);
+ SvREFCNT_dec_NN(nonascii_but_latin1_properties);
+ }
+ else {
+ depends_list = nonascii_but_latin1_properties;
+ }
+ }
+ }
+
+ /* And combine the result (if any) with any inversion list from properties.
+ * The lists are kept separate up to now so that we can distinguish the two
+ * in regards to matching above-Unicode. A run-time warning is generated
+ * if a Unicode property is matched against a non-Unicode code point. But,
+ * we allow user-defined properties to match anything, without any warning,
+ * and we also suppress the warning if there is a portion of the character
+ * class that isn't a Unicode property, and which matches above Unicode, \W
+ * or [\x{110000}] for example.
+ * (Note that in this case, unlike the Posix one above, there is no
+ * <depends_list>, because having a Unicode property forces Unicode
+ * semantics */
+ if (properties) {
+ if (cp_list) {
+
+ /* If it matters to the final outcome, see if a non-property
+ * component of the class matches above Unicode. If so, the
+ * warning gets suppressed. This is true even if just a single
+ * such code point is specified, as though not strictly correct if
+ * another such code point is matched against, the fact that they
+ * are using above-Unicode code points indicates they should know
+ * the issues involved */
+ if (warn_super) {
+ warn_super = ! (invert
+ ^ (invlist_highest(cp_list) > PERL_UNICODE_MAX));
+ }
+
+ _invlist_union(properties, cp_list, &cp_list);
+ SvREFCNT_dec_NN(properties);
+ }
+ else {
+ cp_list = properties;
+ }
+
+ if (warn_super) {
+ ANYOF_FLAGS(ret) |= ANYOF_WARN_SUPER;
+ }
+ }
+
+ /* Here, we have calculated what code points should be in the character
+ * class.
+ *
+ * Now we can see about various optimizations. Fold calculation (which we
+ * did above) needs to take place before inversion. Otherwise /[^k]/i
+ * would invert to include K, which under /i would match k, which it
+ * shouldn't. Therefore we can't invert folded locale now, as it won't be
+ * folded until runtime */
+
+ /* If we didn't do folding, it's because some information isn't available
+ * until runtime; set the run-time fold flag for these. (We don't have to
+ * worry about properties folding, as that is taken care of by the swash
+ * fetching). We know to set the flag if we have a non-NULL list for UTF-8
+ * locales, or the class matches at least one 0-255 range code point */
+ if (LOC && FOLD) {
+ if (only_utf8_locale_list) {
+ ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD;
+ }
+ else if (cp_list) { /* Look to see if there a 0-255 code point is in
+ the list */
+ UV start, end;
+ invlist_iterinit(cp_list);
+ if (invlist_iternext(cp_list, &start, &end) && start < 256) {
+ ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD;
+ }
+ invlist_iterfinish(cp_list);
+ }
+ }
+
+ /* Optimize inverted simple patterns (e.g. [^a-z]) when everything is known
+ * at compile time. Besides not inverting folded locale now, we can't
+ * invert if there are things such as \w, which aren't known until runtime
+ * */
+ if (cp_list
+ && invert
+ && ! (ANYOF_FLAGS(ret) & (ANYOF_LOCALE_FLAGS))
+ && ! depends_list
+ && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
+ {
+ _invlist_invert(cp_list);
+
+ /* Any swash can't be used as-is, because we've inverted things */
+ if (swash) {
+ SvREFCNT_dec_NN(swash);
+ swash = NULL;
+ }
+
+ /* Clear the invert flag since have just done it here */
+ invert = FALSE;
+ }
+
+ if (ret_invlist) {
+ assert(cp_list);
+
+ *ret_invlist = cp_list;
+ SvREFCNT_dec(swash);
+
+ /* Discard the generated node */
+ if (SIZE_ONLY) {
+ RExC_size = orig_size;
+ }
+ else {
+ RExC_emit = orig_emit;
+ }
+ return orig_emit;
+ }
+
+ /* Some character classes are equivalent to other nodes. Such nodes take
+ * up less room and generally fewer operations to execute than ANYOF nodes.
+ * Above, we checked for and optimized into some such equivalents for
+ * certain common classes that are easy to test. Getting to this point in
+ * the code means that the class didn't get optimized there. Since this
+ * code is only executed in Pass 2, it is too late to save space--it has
+ * been allocated in Pass 1, and currently isn't given back. But turning
+ * things into an EXACTish node can allow the optimizer to join it to any
+ * adjacent such nodes. And if the class is equivalent to things like /./,
+ * expensive run-time swashes can be avoided. Now that we have more
+ * complete information, we can find things necessarily missed by the
+ * earlier code. I (khw) am not sure how much to look for here. It would
+ * be easy, but perhaps too slow, to check any candidates against all the
+ * node types they could possibly match using _invlistEQ(). */
+
+ if (cp_list
+ && ! invert
+ && ! depends_list
+ && ! (ANYOF_FLAGS(ret) & (ANYOF_LOCALE_FLAGS))
+ && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
+
+ /* We don't optimize if we are supposed to make sure all non-Unicode
+ * code points raise a warning, as only ANYOF nodes have this check.
+ * */
+ && ! ((ANYOF_FLAGS(ret) & ANYOF_WARN_SUPER) && ALWAYS_WARN_SUPER))
+ {
+ UV start, end;
+ U8 op = END; /* The optimzation node-type */
+ const char * cur_parse= RExC_parse;
+
+ invlist_iterinit(cp_list);
+ if (! invlist_iternext(cp_list, &start, &end)) {
+
+ /* Here, the list is empty. This happens, for example, when a
+ * Unicode property is the only thing in the character class, and
+ * it doesn't match anything. (perluniprops.pod notes such
+ * properties) */
+ op = OPFAIL;
+ *flagp |= HASWIDTH|SIMPLE;
+ }
+ else if (start == end) { /* The range is a single code point */
+ if (! invlist_iternext(cp_list, &start, &end)
+
+ /* Don't do this optimization if it would require changing
+ * the pattern to UTF-8 */
+ && (start < 256 || UTF))
+ {
+ /* Here, the list contains a single code point. Can optimize
+ * into an EXACTish node */
+
+ value = start;
+
+ if (! FOLD) {
+ op = (LOC)
+ ? EXACTL
+ : EXACT;
+ }
+ else if (LOC) {
+
+ /* A locale node under folding with one code point can be
+ * an EXACTFL, as its fold won't be calculated until
+ * runtime */
+ op = EXACTFL;
+ }
+ else {
+
+ /* Here, we are generally folding, but there is only one
+ * code point to match. If we have to, we use an EXACT
+ * node, but it would be better for joining with adjacent
+ * nodes in the optimization pass if we used the same
+ * EXACTFish node that any such are likely to be. We can
+ * do this iff the code point doesn't participate in any
+ * folds. For example, an EXACTF of a colon is the same as
+ * an EXACT one, since nothing folds to or from a colon. */
+ if (value < 256) {
+ if (IS_IN_SOME_FOLD_L1(value)) {
+ op = EXACT;
+ }
+ }
+ else {
+ if (_invlist_contains_cp(PL_utf8_foldable, value)) {
+ op = EXACT;
+ }
+ }
+
+ /* If we haven't found the node type, above, it means we
+ * can use the prevailing one */
+ if (op == END) {
+ op = compute_EXACTish(pRExC_state);
+ }
+ }
+ }
+ }
+ else if (start == 0) {
+ if (end == UV_MAX) {
+ op = SANY;
+ *flagp |= HASWIDTH|SIMPLE;
+ MARK_NAUGHTY(1);
+ }
+ else if (end == '\n' - 1
+ && invlist_iternext(cp_list, &start, &end)
+ && start == '\n' + 1 && end == UV_MAX)
+ {
+ op = REG_ANY;
+ *flagp |= HASWIDTH|SIMPLE;
+ MARK_NAUGHTY(1);
+ }
+ }
+ invlist_iterfinish(cp_list);
+
+ if (op != END) {
+ RExC_parse = (char *)orig_parse;
+ RExC_emit = (regnode *)orig_emit;
+
+ ret = reg_node(pRExC_state, op);
+
+ RExC_parse = (char *)cur_parse;
+
+ if (PL_regkind[op] == EXACT) {
+ alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value,
+ TRUE /* downgradable to EXACT */
+ );
+ }
+
+ SvREFCNT_dec_NN(cp_list);
+ return ret;
+ }
+ }
+
+ /* Here, <cp_list> contains all the code points we can determine at
+ * compile time that match under all conditions. Go through it, and
+ * for things that belong in the bitmap, put them there, and delete from
+ * <cp_list>. While we are at it, see if everything above 255 is in the
+ * list, and if so, set a flag to speed up execution */
+
+ populate_ANYOF_from_invlist(ret, &cp_list);
+
+ if (invert) {
+ ANYOF_FLAGS(ret) |= ANYOF_INVERT;
+ }
+
+ /* Here, the bitmap has been populated with all the Latin1 code points that
+ * always match. Can now add to the overall list those that match only
+ * when the target string is UTF-8 (<depends_list>). */
+ if (depends_list) {
+ if (cp_list) {
+ _invlist_union(cp_list, depends_list, &cp_list);
+ SvREFCNT_dec_NN(depends_list);
+ }
+ else {
+ cp_list = depends_list;
+ }
+ ANYOF_FLAGS(ret) |= ANYOF_HAS_UTF8_NONBITMAP_MATCHES;
+ }
+
+ /* If there is a swash and more than one element, we can't use the swash in
+ * the optimization below. */
+ if (swash && element_count > 1) {
+ SvREFCNT_dec_NN(swash);
+ swash = NULL;
+ }
+
+ /* Note that the optimization of using 'swash' if it is the only thing in
+ * the class doesn't have us change swash at all, so it can include things
+ * that are also in the bitmap; otherwise we have purposely deleted that
+ * duplicate information */
+ set_ANYOF_arg(pRExC_state, ret, cp_list,
+ (HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
+ ? listsv : NULL,
+ only_utf8_locale_list,
+ swash, has_user_defined_property);
+
+ *flagp |= HASWIDTH|SIMPLE;
+
+ if (ANYOF_FLAGS(ret) & ANYOF_LOCALE_FLAGS) {
+ RExC_contains_locale = 1;
+ }
+
+ return ret;
+}
+
+#undef HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
+
+STATIC void
+S_set_ANYOF_arg(pTHX_ RExC_state_t* const pRExC_state,
+ regnode* const node,
+ SV* const cp_list,
+ SV* const runtime_defns,
+ SV* const only_utf8_locale_list,
+ SV* const swash,
+ const bool has_user_defined_property)
+{
+ /* Sets the arg field of an ANYOF-type node 'node', using information about
+ * the node passed-in. If there is nothing outside the node's bitmap, the
+ * arg is set to ANYOF_ONLY_HAS_BITMAP. Otherwise, it sets the argument to
+ * the count returned by add_data(), having allocated and stored an array,
+ * av, that that count references, as follows:
+ * av[0] stores the character class description in its textual form.
+ * This is used later (regexec.c:Perl_regclass_swash()) to
+ * initialize the appropriate swash, and is also useful for dumping
+ * the regnode. This is set to &PL_sv_undef if the textual
+ * description is not needed at run-time (as happens if the other
+ * elements completely define the class)
+ * av[1] if &PL_sv_undef, is a placeholder to later contain the swash
+ * computed from av[0]. But if no further computation need be done,
+ * the swash is stored here now (and av[0] is &PL_sv_undef).
+ * av[2] stores the inversion list of code points that match only if the
+ * current locale is UTF-8
+ * av[3] stores the cp_list inversion list for use in addition or instead
+ * of av[0]; used only if cp_list exists and av[1] is &PL_sv_undef.
+ * (Otherwise everything needed is already in av[0] and av[1])
+ * av[4] is set if any component of the class is from a user-defined
+ * property; used only if av[3] exists */
+
+ UV n;
+
+ PERL_ARGS_ASSERT_SET_ANYOF_ARG;
+
+ if (! cp_list && ! runtime_defns && ! only_utf8_locale_list) {
+ assert(! (ANYOF_FLAGS(node)
+ & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+ |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES)));
+ ARG_SET(node, ANYOF_ONLY_HAS_BITMAP);
+ }
+ else {
+ AV * const av = newAV();
+ SV *rv;
+
+ assert(ANYOF_FLAGS(node)
+ & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+ |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES|ANYOF_LOC_FOLD));
+
+ av_store(av, 0, (runtime_defns)
+ ? SvREFCNT_inc(runtime_defns) : &PL_sv_undef);
+ if (swash) {
+ assert(cp_list);
+ av_store(av, 1, swash);
+ SvREFCNT_dec_NN(cp_list);
+ }
+ else {
+ av_store(av, 1, &PL_sv_undef);
+ if (cp_list) {
+ av_store(av, 3, cp_list);
+ av_store(av, 4, newSVuv(has_user_defined_property));
+ }
+ }
+
+ if (only_utf8_locale_list) {
+ av_store(av, 2, only_utf8_locale_list);
+ }
+ else {
+ av_store(av, 2, &PL_sv_undef);
+ }
+
+ rv = newRV_noinc(MUTABLE_SV(av));
+ n = add_data(pRExC_state, STR_WITH_LEN("s"));
+ RExC_rxi->data->data[n] = (void*)rv;
+ ARG_SET(node, n);
+ }
+}
+
+#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
+SV *
+Perl__get_regclass_nonbitmap_data(pTHX_ const regexp *prog,
+ const regnode* node,
+ bool doinit,
+ SV** listsvp,
+ SV** only_utf8_locale_ptr,
+ SV* exclude_list)
+
+{
+ /* For internal core use only.
+ * Returns the swash for the input 'node' in the regex 'prog'.
+ * If <doinit> is 'true', will attempt to create the swash if not already
+ * done.
+ * If <listsvp> is non-null, will return the printable contents of the
+ * swash. This can be used to get debugging information even before the
+ * swash exists, by calling this function with 'doinit' set to false, in
+ * which case the components that will be used to eventually create the
+ * swash are returned (in a printable form).
+ * If <exclude_list> is not NULL, it is an inversion list of things to
+ * exclude from what's returned in <listsvp>.
+ * Tied intimately to how S_set_ANYOF_arg sets up the data structure. Note
+ * that, in spite of this function's name, the swash it returns may include
+ * the bitmap data as well */
+
+ SV *sw = NULL;
+ SV *si = NULL; /* Input swash initialization string */
+ SV* invlist = NULL;
+
+ RXi_GET_DECL(prog,progi);
+ const struct reg_data * const data = prog ? progi->data : NULL;
+
+ PERL_ARGS_ASSERT__GET_REGCLASS_NONBITMAP_DATA;
+
+ assert(ANYOF_FLAGS(node)
+ & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+ |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES|ANYOF_LOC_FOLD));
+
+ if (data && data->count) {
+ const U32 n = ARG(node);
+
+ if (data->what[n] == 's') {
+ SV * const rv = MUTABLE_SV(data->data[n]);
+ AV * const av = MUTABLE_AV(SvRV(rv));
+ SV **const ary = AvARRAY(av);
+ U8 swash_init_flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+
+ si = *ary; /* ary[0] = the string to initialize the swash with */
+
+ /* Elements 3 and 4 are either both present or both absent. [3] is
+ * any inversion list generated at compile time; [4] indicates if
+ * that inversion list has any user-defined properties in it. */
+ if (av_tindex(av) >= 2) {
+ if (only_utf8_locale_ptr
+ && ary[2]
+ && ary[2] != &PL_sv_undef)
+ {
+ *only_utf8_locale_ptr = ary[2];
+ }
+ else {
+ assert(only_utf8_locale_ptr);
+ *only_utf8_locale_ptr = NULL;
+ }
+
+ if (av_tindex(av) >= 3) {
+ invlist = ary[3];
+ if (SvUV(ary[4])) {
+ swash_init_flags |= _CORE_SWASH_INIT_USER_DEFINED_PROPERTY;
+ }
+ }
+ else {
+ invlist = NULL;
+ }
+ }
+
+ /* Element [1] is reserved for the set-up swash. If already there,
+ * return it; if not, create it and store it there */
+ if (ary[1] && SvROK(ary[1])) {
+ sw = ary[1];
+ }
+ else if (doinit && ((si && si != &PL_sv_undef)
+ || (invlist && invlist != &PL_sv_undef))) {
+ assert(si);
+ sw = _core_swash_init("utf8", /* the utf8 package */
+ "", /* nameless */
+ si,
+ 1, /* binary */
+ 0, /* not from tr/// */
+ invlist,
+ &swash_init_flags);
+ (void)av_store(av, 1, sw);
+ }
+ }
+ }
+
+ /* If requested, return a printable version of what this swash matches */
+ if (listsvp) {
+ SV* matches_string = newSVpvs("");
+
+ /* The swash should be used, if possible, to get the data, as it
+ * contains the resolved data. But this function can be called at
+ * compile-time, before everything gets resolved, in which case we
+ * return the currently best available information, which is the string
+ * that will eventually be used to do that resolving, 'si' */
+ if ((! sw || (invlist = _get_swash_invlist(sw)) == NULL)
+ && (si && si != &PL_sv_undef))
+ {
+ sv_catsv(matches_string, si);
+ }
+
+ /* Add the inversion list to whatever we have. This may have come from
+ * the swash, or from an input parameter */
+ if (invlist) {
+ if (exclude_list) {
+ SV* clone = invlist_clone(invlist);
+ _invlist_subtract(clone, exclude_list, &clone);
+ sv_catsv(matches_string, _invlist_contents(clone));
+ SvREFCNT_dec_NN(clone);
+ }
+ else {
+ sv_catsv(matches_string, _invlist_contents(invlist));
+ }
+ }
+ *listsvp = matches_string;
+ }
+
+ return sw;
+}
+#endif /* !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION) */
+
+/* reg_skipcomment()
+
+ Absorbs an /x style # comment from the input stream,
+ returning a pointer to the first character beyond the comment, or if the
+ comment terminates the pattern without anything following it, this returns
+ one past the final character of the pattern (in other words, RExC_end) and
+ sets the REG_RUN_ON_COMMENT_SEEN flag.
+
+ Note it's the callers responsibility to ensure that we are
+ actually in /x mode
+
+*/
+
+PERL_STATIC_INLINE char*
+S_reg_skipcomment(RExC_state_t *pRExC_state, char* p)
+{
+ PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
+
+ assert(*p == '#');
+
+ while (p < RExC_end) {
+ if (*(++p) == '\n') {
+ return p+1;
+ }
+ }
+
+ /* we ran off the end of the pattern without ending the comment, so we have
+ * to add an \n when wrapping */
+ RExC_seen |= REG_RUN_ON_COMMENT_SEEN;
+ return p;
+}
+
+/* nextchar()
+
+ Advances the parse position, and optionally absorbs
+ "whitespace" from the inputstream.
+
+ Without /x "whitespace" means (?#...) style comments only,
+ with /x this means (?#...) and # comments and whitespace proper.
+
+ Returns the RExC_parse point from BEFORE the scan occurs.
+
+ This is the /x friendly way of saying RExC_parse++.
+*/
+
+STATIC char*
+S_nextchar(pTHX_ RExC_state_t *pRExC_state)
+{
+ char* const retval = RExC_parse++;
+
+ PERL_ARGS_ASSERT_NEXTCHAR;
+
+ for (;;) {
+ if (RExC_end - RExC_parse >= 3
+ && *RExC_parse == '('
+ && RExC_parse[1] == '?'
+ && RExC_parse[2] == '#')
+ {
+ while (*RExC_parse != ')') {
+ if (RExC_parse == RExC_end)
+ FAIL("Sequence (?#... not terminated");
+ RExC_parse++;
+ }
+ RExC_parse++;
+ continue;
+ }
+ if (RExC_flags & RXf_PMf_EXTENDED) {
+ char * p = regpatws(pRExC_state, RExC_parse,
+ TRUE); /* means recognize comments */
+ if (p != RExC_parse) {
+ RExC_parse = p;
+ continue;
+ }
+ }
+ return retval;
+ }
+}
+
+STATIC regnode *
+S_regnode_guts(pTHX_ RExC_state_t *pRExC_state, const U8 op, const STRLEN extra_size, const char* const name)
+{
+ /* Allocate a regnode for 'op' and returns it, with 'extra_size' extra
+ * space. In pass1, it aligns and increments RExC_size; in pass2,
+ * RExC_emit */
+
+ regnode * const ret = RExC_emit;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGNODE_GUTS;
+
+ assert(extra_size >= regarglen[op]);
+
+ if (SIZE_ONLY) {
+ SIZE_ALIGN(RExC_size);
+ RExC_size += 1 + extra_size;
+ return(ret);
+ }
+ if (RExC_emit >= RExC_emit_bound)
+ Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
+ op, (void*)RExC_emit, (void*)RExC_emit_bound);
+
+ NODE_ALIGN_FILL(ret);
+#ifndef RE_TRACK_PATTERN_OFFSETS
+ PERL_UNUSED_ARG(name);
+#else
+ if (RExC_offsets) { /* MJD */
+ MJD_OFFSET_DEBUG(
+ ("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
+ name, __LINE__,
+ PL_reg_name[op],
+ (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
+ ? "Overwriting end of array!\n" : "OK",
+ (UV)(RExC_emit - RExC_emit_start),
+ (UV)(RExC_parse - RExC_start),
+ (UV)RExC_offsets[0]));
+ Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
+ }
+#endif
+ return(ret);
+}
+
+/*
+- reg_node - emit a node
+*/
+STATIC regnode * /* Location. */
+S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
+{
+ regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reg_node");
+
+ PERL_ARGS_ASSERT_REG_NODE;
+
+ assert(regarglen[op] == 0);
+
+ if (PASS2) {
+ regnode *ptr = ret;
+ FILL_ADVANCE_NODE(ptr, op);
+ RExC_emit = ptr;
+ }
+ return(ret);
+}
+
+/*
+- reganode - emit a node with an argument
+*/
+STATIC regnode * /* Location. */
+S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
+{
+ regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reganode");
+
+ PERL_ARGS_ASSERT_REGANODE;
+
+ assert(regarglen[op] == 1);
+
+ if (PASS2) {
+ regnode *ptr = ret;
+ FILL_ADVANCE_NODE_ARG(ptr, op, arg);
+ RExC_emit = ptr;
+ }
+ return(ret);
+}
+
+STATIC regnode *
+S_reg2Lanode(pTHX_ RExC_state_t *pRExC_state, const U8 op, const U32 arg1, const I32 arg2)
+{
+ /* emit a node with U32 and I32 arguments */
+
+ regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reg2Lanode");
+
+ PERL_ARGS_ASSERT_REG2LANODE;
+
+ assert(regarglen[op] == 2);
+
+ if (PASS2) {
+ regnode *ptr = ret;
+ FILL_ADVANCE_NODE_2L_ARG(ptr, op, arg1, arg2);
+ RExC_emit = ptr;
+ }
+ return(ret);
+}
+
+/*
+- reginsert - insert an operator in front of already-emitted operand
+*
+* Means relocating the operand.
+*/
+STATIC void
+S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
+{
+ regnode *src;
+ regnode *dst;
+ regnode *place;
+ const int offset = regarglen[(U8)op];
+ const int size = NODE_STEP_REGNODE + offset;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGINSERT;
+ PERL_UNUSED_CONTEXT;
+ PERL_UNUSED_ARG(depth);
+/* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
+ DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
+ if (SIZE_ONLY) {
+ RExC_size += size;
+ return;
+ }
+
+ src = RExC_emit;
+ RExC_emit += size;
+ dst = RExC_emit;
+ if (RExC_open_parens) {
+ int paren;
+ /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
+ for ( paren=0 ; paren < RExC_npar ; paren++ ) {
+ if ( RExC_open_parens[paren] >= opnd ) {
+ /*DEBUG_PARSE_FMT("open"," - %d",size);*/
+ RExC_open_parens[paren] += size;
+ } else {
+ /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
+ }
+ if ( RExC_close_parens[paren] >= opnd ) {
+ /*DEBUG_PARSE_FMT("close"," - %d",size);*/
+ RExC_close_parens[paren] += size;
+ } else {
+ /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
+ }
+ }
+ }
+
+ while (src > opnd) {
+ StructCopy(--src, --dst, regnode);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (RExC_offsets) { /* MJD 20010112 */
+ MJD_OFFSET_DEBUG(
+ ("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
+ "reg_insert",
+ __LINE__,
+ PL_reg_name[op],
+ (UV)(dst - RExC_emit_start) > RExC_offsets[0]
+ ? "Overwriting end of array!\n" : "OK",
+ (UV)(src - RExC_emit_start),
+ (UV)(dst - RExC_emit_start),
+ (UV)RExC_offsets[0]));
+ Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
+ Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
+ }
+#endif
+ }
+
+
+ place = opnd; /* Op node, where operand used to be. */
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (RExC_offsets) { /* MJD */
+ MJD_OFFSET_DEBUG(
+ ("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
+ "reginsert",
+ __LINE__,
+ PL_reg_name[op],
+ (UV)(place - RExC_emit_start) > RExC_offsets[0]
+ ? "Overwriting end of array!\n" : "OK",
+ (UV)(place - RExC_emit_start),
+ (UV)(RExC_parse - RExC_start),
+ (UV)RExC_offsets[0]));
+ Set_Node_Offset(place, RExC_parse);
+ Set_Node_Length(place, 1);
+ }
+#endif
+ src = NEXTOPER(place);
+ FILL_ADVANCE_NODE(place, op);
+ Zero(src, offset, regnode);
+}
+
+/*
+- regtail - set the next-pointer at the end of a node chain of p to val.
+- SEE ALSO: regtail_study
+*/
+/* TODO: All three parms should be const */
+STATIC void
+S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p,
+ const regnode *val,U32 depth)
+{
+ regnode *scan;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTAIL;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ if (SIZE_ONLY)
+ return;
+
+ /* Find last node. */
+ scan = p;
+ for (;;) {
+ regnode * const temp = regnext(scan);
+ DEBUG_PARSE_r({
+ DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
+ regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
+ SvPV_nolen_const(RExC_mysv), REG_NODE_NUM(scan),
+ (temp == NULL ? "->" : ""),
+ (temp == NULL ? PL_reg_name[OP(val)] : "")
+ );
+ });
+ if (temp == NULL)
+ break;
+ scan = temp;
+ }
+
+ if (reg_off_by_arg[OP(scan)]) {
+ ARG_SET(scan, val - scan);
+ }
+ else {
+ NEXT_OFF(scan) = val - scan;
+ }
+}
+
+#ifdef DEBUGGING
+/*
+- regtail_study - set the next-pointer at the end of a node chain of p to val.
+- Look for optimizable sequences at the same time.
+- currently only looks for EXACT chains.
+
+This is experimental code. The idea is to use this routine to perform
+in place optimizations on branches and groups as they are constructed,
+with the long term intention of removing optimization from study_chunk so
+that it is purely analytical.
+
+Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
+to control which is which.
+
+*/
+/* TODO: All four parms should be const */
+
+STATIC U8
+S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p,
+ const regnode *val,U32 depth)
+{
+ regnode *scan;
+ U8 exact = PSEUDO;
+#ifdef EXPERIMENTAL_INPLACESCAN
+ I32 min = 0;
+#endif
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTAIL_STUDY;
+
+
+ if (SIZE_ONLY)
+ return exact;
+
+ /* Find last node. */
+
+ scan = p;
+ for (;;) {
+ regnode * const temp = regnext(scan);
+#ifdef EXPERIMENTAL_INPLACESCAN
+ if (PL_regkind[OP(scan)] == EXACT) {
+ bool unfolded_multi_char; /* Unexamined in this routine */
+ if (join_exact(pRExC_state, scan, &min,
+ &unfolded_multi_char, 1, val, depth+1))
+ return EXACT;
+ }
+#endif
+ if ( exact ) {
+ switch (OP(scan)) {
+ case EXACT:
+ case EXACTL:
+ case EXACTF:
+ case EXACTFA_NO_TRIE:
+ case EXACTFA:
+ case EXACTFU:
+ case EXACTFLU8:
+ case EXACTFU_SS:
+ case EXACTFL:
+ if( exact == PSEUDO )
+ exact= OP(scan);
+ else if ( exact != OP(scan) )
+ exact= 0;
+ case NOTHING:
+ break;
+ default:
+ exact= 0;
+ }
+ }
+ DEBUG_PARSE_r({
+ DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
+ regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
+ SvPV_nolen_const(RExC_mysv),
+ REG_NODE_NUM(scan),
+ PL_reg_name[exact]);
+ });
+ if (temp == NULL)
+ break;
+ scan = temp;
+ }
+ DEBUG_PARSE_r({
+ DEBUG_PARSE_MSG("");
+ regprop(RExC_rx, RExC_mysv, val, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log,
+ "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
+ SvPV_nolen_const(RExC_mysv),
+ (IV)REG_NODE_NUM(val),
+ (IV)(val - scan)
+ );
+ });
+ if (reg_off_by_arg[OP(scan)]) {
+ ARG_SET(scan, val - scan);
+ }
+ else {
+ NEXT_OFF(scan) = val - scan;
+ }
+
+ return exact;
+}
+#endif
+
+/*
+ - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
+ */
+#ifdef DEBUGGING
+
+static void
+S_regdump_intflags(pTHX_ const char *lead, const U32 flags)
+{
+ int bit;
+ int set=0;
+
+ ASSUME(REG_INTFLAGS_NAME_SIZE <= sizeof(flags)*8);
+
+ for (bit=0; bit<REG_INTFLAGS_NAME_SIZE; bit++) {
+ if (flags & (1<<bit)) {
+ if (!set++ && lead)
+ PerlIO_printf(Perl_debug_log, "%s",lead);
+ PerlIO_printf(Perl_debug_log, "%s ",PL_reg_intflags_name[bit]);
+ }
+ }
+ if (lead) {
+ if (set)
+ PerlIO_printf(Perl_debug_log, "\n");
+ else
+ PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
+ }
+}
+
+static void
+S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
+{
+ int bit;
+ int set=0;
+ regex_charset cs;
+
+ ASSUME(REG_EXTFLAGS_NAME_SIZE <= sizeof(flags)*8);
+
+ for (bit=0; bit<REG_EXTFLAGS_NAME_SIZE; bit++) {
+ if (flags & (1<<bit)) {
+ if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
+ continue;
+ }
+ if (!set++ && lead)
+ PerlIO_printf(Perl_debug_log, "%s",lead);
+ PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
+ }
+ }
+ if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
+ if (!set++ && lead) {
+ PerlIO_printf(Perl_debug_log, "%s",lead);
+ }
+ switch (cs) {
+ case REGEX_UNICODE_CHARSET:
+ PerlIO_printf(Perl_debug_log, "UNICODE");
+ break;
+ case REGEX_LOCALE_CHARSET:
+ PerlIO_printf(Perl_debug_log, "LOCALE");
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
+ break;
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
+ break;
+ default:
+ PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
+ break;
+ }
+ }
+ if (lead) {
+ if (set)
+ PerlIO_printf(Perl_debug_log, "\n");
+ else
+ PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
+ }
+}
+#endif
+
+void
+Perl_regdump(pTHX_ const regexp *r)
+{
+#ifdef DEBUGGING
+ SV * const sv = sv_newmortal();
+ SV *dsv= sv_newmortal();
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGDUMP;
+
+ (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
+
+ /* Header fields of interest. */
+ if (r->anchored_substr) {
+ RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
+ RE_SV_DUMPLEN(r->anchored_substr), 30);
+ PerlIO_printf(Perl_debug_log,
+ "anchored %s%s at %"IVdf" ",
+ s, RE_SV_TAIL(r->anchored_substr),
+ (IV)r->anchored_offset);
+ } else if (r->anchored_utf8) {
+ RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
+ RE_SV_DUMPLEN(r->anchored_utf8), 30);
+ PerlIO_printf(Perl_debug_log,
+ "anchored utf8 %s%s at %"IVdf" ",
+ s, RE_SV_TAIL(r->anchored_utf8),
+ (IV)r->anchored_offset);
+ }
+ if (r->float_substr) {
+ RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
+ RE_SV_DUMPLEN(r->float_substr), 30);
+ PerlIO_printf(Perl_debug_log,
+ "floating %s%s at %"IVdf"..%"UVuf" ",
+ s, RE_SV_TAIL(r->float_substr),
+ (IV)r->float_min_offset, (UV)r->float_max_offset);
+ } else if (r->float_utf8) {
+ RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
+ RE_SV_DUMPLEN(r->float_utf8), 30);
+ PerlIO_printf(Perl_debug_log,
+ "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
+ s, RE_SV_TAIL(r->float_utf8),
+ (IV)r->float_min_offset, (UV)r->float_max_offset);
+ }
+ if (r->check_substr || r->check_utf8)
+ PerlIO_printf(Perl_debug_log,
+ (const char *)
+ (r->check_substr == r->float_substr
+ && r->check_utf8 == r->float_utf8
+ ? "(checking floating" : "(checking anchored"));
+ if (r->intflags & PREGf_NOSCAN)
+ PerlIO_printf(Perl_debug_log, " noscan");
+ if (r->extflags & RXf_CHECK_ALL)
+ PerlIO_printf(Perl_debug_log, " isall");
+ if (r->check_substr || r->check_utf8)
+ PerlIO_printf(Perl_debug_log, ") ");
+
+ if (ri->regstclass) {
+ regprop(r, sv, ri->regstclass, NULL, NULL);
+ PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
+ }
+ if (r->intflags & PREGf_ANCH) {
+ PerlIO_printf(Perl_debug_log, "anchored");
+ if (r->intflags & PREGf_ANCH_MBOL)
+ PerlIO_printf(Perl_debug_log, "(MBOL)");
+ if (r->intflags & PREGf_ANCH_SBOL)
+ PerlIO_printf(Perl_debug_log, "(SBOL)");
+ if (r->intflags & PREGf_ANCH_GPOS)
+ PerlIO_printf(Perl_debug_log, "(GPOS)");
+ (void)PerlIO_putc(Perl_debug_log, ' ');
+ }
+ if (r->intflags & PREGf_GPOS_SEEN)
+ PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
+ if (r->intflags & PREGf_SKIP)
+ PerlIO_printf(Perl_debug_log, "plus ");
+ if (r->intflags & PREGf_IMPLICIT)
+ PerlIO_printf(Perl_debug_log, "implicit ");
+ PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
+ if (r->extflags & RXf_EVAL_SEEN)
+ PerlIO_printf(Perl_debug_log, "with eval ");
+ PerlIO_printf(Perl_debug_log, "\n");
+ DEBUG_FLAGS_r({
+ regdump_extflags("r->extflags: ",r->extflags);
+ regdump_intflags("r->intflags: ",r->intflags);
+ });
+#else
+ PERL_ARGS_ASSERT_REGDUMP;
+ PERL_UNUSED_CONTEXT;
+ PERL_UNUSED_ARG(r);
+#endif /* DEBUGGING */
+}
+
+/*
+- regprop - printable representation of opcode, with run time support
+*/
+
+void
+Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o, const regmatch_info *reginfo, const RExC_state_t *pRExC_state)
+{
+#ifdef DEBUGGING
+ int k;
+
+ /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
+ static const char * const anyofs[] = {
+#if _CC_WORDCHAR != 0 || _CC_DIGIT != 1 || _CC_ALPHA != 2 || _CC_LOWER != 3 \
+ || _CC_UPPER != 4 || _CC_PUNCT != 5 || _CC_PRINT != 6 \
+ || _CC_ALPHANUMERIC != 7 || _CC_GRAPH != 8 || _CC_CASED != 9 \
+ || _CC_SPACE != 10 || _CC_BLANK != 11 || _CC_XDIGIT != 12 \
+ || _CC_CNTRL != 13 || _CC_ASCII != 14 || _CC_VERTSPACE != 15
+ #error Need to adjust order of anyofs[]
+#endif
+ "\\w",
+ "\\W",
+ "\\d",
+ "\\D",
+ "[:alpha:]",
+ "[:^alpha:]",
+ "[:lower:]",
+ "[:^lower:]",
+ "[:upper:]",
+ "[:^upper:]",
+ "[:punct:]",
+ "[:^punct:]",
+ "[:print:]",
+ "[:^print:]",
+ "[:alnum:]",
+ "[:^alnum:]",
+ "[:graph:]",
+ "[:^graph:]",
+ "[:cased:]",
+ "[:^cased:]",
+ "\\s",
+ "\\S",
+ "[:blank:]",
+ "[:^blank:]",
+ "[:xdigit:]",
+ "[:^xdigit:]",
+ "[:cntrl:]",
+ "[:^cntrl:]",
+ "[:ascii:]",
+ "[:^ascii:]",
+ "\\v",
+ "\\V"
+ };
+ RXi_GET_DECL(prog,progi);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGPROP;
+
+ sv_setpvn(sv, "", 0);
+
+ if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */
+ /* It would be nice to FAIL() here, but this may be called from
+ regexec.c, and it would be hard to supply pRExC_state. */
+ Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d",
+ (int)OP(o), (int)REGNODE_MAX);
+ sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
+
+ k = PL_regkind[OP(o)];
+
+ if (k == EXACT) {
+ sv_catpvs(sv, " ");
+ /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
+ * is a crude hack but it may be the best for now since
+ * we have no flag "this EXACTish node was UTF-8"
+ * --jhi */
+ pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
+ PERL_PV_ESCAPE_UNI_DETECT |
+ PERL_PV_ESCAPE_NONASCII |
+ PERL_PV_PRETTY_ELLIPSES |
+ PERL_PV_PRETTY_LTGT |
+ PERL_PV_PRETTY_NOCLEAR
+ );
+ } else if (k == TRIE) {
+ /* print the details of the trie in dumpuntil instead, as
+ * progi->data isn't available here */
+ const char op = OP(o);
+ const U32 n = ARG(o);
+ const reg_ac_data * const ac = IS_TRIE_AC(op) ?
+ (reg_ac_data *)progi->data->data[n] :
+ NULL;
+ const reg_trie_data * const trie
+ = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
+
+ Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
+ DEBUG_TRIE_COMPILE_r(
+ Perl_sv_catpvf(aTHX_ sv,
+ "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
+ (UV)trie->startstate,
+ (IV)trie->statecount-1, /* -1 because of the unused 0 element */
+ (UV)trie->wordcount,
+ (UV)trie->minlen,
+ (UV)trie->maxlen,
+ (UV)TRIE_CHARCOUNT(trie),
+ (UV)trie->uniquecharcount
+ );
+ );
+ if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
+ sv_catpvs(sv, "[");
+ (void) put_charclass_bitmap_innards(sv,
+ (IS_ANYOF_TRIE(op))
+ ? ANYOF_BITMAP(o)
+ : TRIE_BITMAP(trie),
+ NULL);
+ sv_catpvs(sv, "]");
+ }
+
+ } else if (k == CURLY) {
+ if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
+ Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
+ Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
+ }
+ else if (k == WHILEM && o->flags) /* Ordinal/of */
+ Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
+ else if (k == REF || k == OPEN || k == CLOSE
+ || k == GROUPP || OP(o)==ACCEPT)
+ {
+ AV *name_list= NULL;
+ Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
+ if ( RXp_PAREN_NAMES(prog) ) {
+ name_list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
+ } else if ( pRExC_state ) {
+ name_list= RExC_paren_name_list;
+ }
+ if (name_list) {
+ if ( k != REF || (OP(o) < NREF)) {
+ SV **name= av_fetch(name_list, ARG(o), 0 );
+ if (name)
+ Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+ }
+ else {
+ SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
+ I32 *nums=(I32*)SvPVX(sv_dat);
+ SV **name= av_fetch(name_list, nums[0], 0 );
+ I32 n;
+ if (name) {
+ for ( n=0; n<SvIVX(sv_dat); n++ ) {
+ Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
+ (n ? "," : ""), (IV)nums[n]);
+ }
+ Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+ }
+ }
+ }
+ if ( k == REF && reginfo) {
+ U32 n = ARG(o); /* which paren pair */
+ I32 ln = prog->offs[n].start;
+ if (prog->lastparen < n || ln == -1)
+ Perl_sv_catpvf(aTHX_ sv, ": FAIL");
+ else if (ln == prog->offs[n].end)
+ Perl_sv_catpvf(aTHX_ sv, ": ACCEPT - EMPTY STRING");
+ else {
+ const char *s = reginfo->strbeg + ln;
+ Perl_sv_catpvf(aTHX_ sv, ": ");
+ Perl_pv_pretty( aTHX_ sv, s, prog->offs[n].end - prog->offs[n].start, 32, 0, 0,
+ PERL_PV_ESCAPE_UNI_DETECT|PERL_PV_PRETTY_NOCLEAR|PERL_PV_PRETTY_ELLIPSES|PERL_PV_PRETTY_QUOTE );
+ }
+ }
+ } else if (k == GOSUB) {
+ AV *name_list= NULL;
+ if ( RXp_PAREN_NAMES(prog) ) {
+ name_list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
+ } else if ( pRExC_state ) {
+ name_list= RExC_paren_name_list;
+ }
+
+ /* Paren and offset */
+ Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o));
+ if (name_list) {
+ SV **name= av_fetch(name_list, ARG(o), 0 );
+ if (name)
+ Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+ }
+ }
+ else if (k == VERB) {
+ if (!o->flags)
+ Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
+ SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
+ } else if (k == LOGICAL)
+ /* 2: embedded, otherwise 1 */
+ Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags);
+ else if (k == ANYOF) {
+ const U8 flags = ANYOF_FLAGS(o);
+ int do_sep = 0;
+ SV* bitmap_invlist; /* Will hold what the bit map contains */
+
+
+ if (OP(o) == ANYOFL)
+ sv_catpvs(sv, "{loc}");
+ if (flags & ANYOF_LOC_FOLD)
+ sv_catpvs(sv, "{i}");
+ Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
+ if (flags & ANYOF_INVERT)
+ sv_catpvs(sv, "^");
+
+ /* output what the standard cp 0-NUM_ANYOF_CODE_POINTS-1 bitmap matches
+ * */
+ do_sep = put_charclass_bitmap_innards(sv, ANYOF_BITMAP(o),
+ &bitmap_invlist);
+
+ /* output any special charclass tests (used entirely under use
+ * locale) * */
+ if (ANYOF_POSIXL_TEST_ANY_SET(o)) {
+ int i;
+ for (i = 0; i < ANYOF_POSIXL_MAX; i++) {
+ if (ANYOF_POSIXL_TEST(o,i)) {
+ sv_catpv(sv, anyofs[i]);
+ do_sep = 1;
+ }
+ }
+ }
+
+ if ((flags & (ANYOF_MATCHES_ALL_ABOVE_BITMAP
+ |ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+ |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES
+ |ANYOF_LOC_FOLD)))
+ {
+ if (do_sep) {
+ Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]);
+ if (flags & ANYOF_INVERT)
+ /*make sure the invert info is in each */
+ sv_catpvs(sv, "^");
+ }
+
+ if (flags & ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII) {
+ sv_catpvs(sv, "{non-utf8-latin1-all}");
+ }
+
+ if (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP)
+ sv_catpvs(sv, "{above_bitmap_all}");
+
+ if (ARG(o) != ANYOF_ONLY_HAS_BITMAP) {
+ SV *lv; /* Set if there is something outside the bit map. */
+ bool byte_output = FALSE; /* If something has been output */
+ SV *only_utf8_locale;
+
+ /* Get the stuff that wasn't in the bitmap. 'bitmap_invlist'
+ * is used to guarantee that nothing in the bitmap gets
+ * returned */
+ (void) _get_regclass_nonbitmap_data(prog, o, FALSE,
+ &lv, &only_utf8_locale,
+ bitmap_invlist);
+ if (lv && lv != &PL_sv_undef) {
+ char *s = savesvpv(lv);
+ char * const origs = s;
+
+ while (*s && *s != '\n')
+ s++;
+
+ if (*s == '\n') {
+ const char * const t = ++s;
+
+ if (flags & ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES) {
+ sv_catpvs(sv, "{outside bitmap}");
+ }
+ else {
+ sv_catpvs(sv, "{utf8}");
+ }
+
+ if (byte_output) {
+ sv_catpvs(sv, " ");
+ }
+
+ while (*s) {
+ if (*s == '\n') {
+
+ /* Truncate very long output */
+ if (s - origs > 256) {
+ Perl_sv_catpvf(aTHX_ sv,
+ "%.*s...",
+ (int) (s - origs - 1),
+ t);
+ goto out_dump;
+ }
+ *s = ' ';
+ }
+ else if (*s == '\t') {
+ *s = '-';
+ }
+ s++;
+ }
+ if (s[-1] == ' ')
+ s[-1] = 0;
+
+ sv_catpv(sv, t);
+ }
+
+ out_dump:
+
+ Safefree(origs);
+ SvREFCNT_dec_NN(lv);
+ }
+
+ if ((flags & ANYOF_LOC_FOLD)
+ && only_utf8_locale
+ && only_utf8_locale != &PL_sv_undef)
+ {
+ UV start, end;
+ int max_entries = 256;
+
+ sv_catpvs(sv, "{utf8 locale}");
+ invlist_iterinit(only_utf8_locale);
+ while (invlist_iternext(only_utf8_locale,
+ &start, &end)) {
+ put_range(sv, start, end, FALSE);
+ max_entries --;
+ if (max_entries < 0) {
+ sv_catpvs(sv, "...");
+ break;
+ }
+ }
+ invlist_iterfinish(only_utf8_locale);
+ }
+ }
+ }
+ SvREFCNT_dec(bitmap_invlist);
+
+
+ Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
+ }
+ else if (k == POSIXD || k == NPOSIXD) {
+ U8 index = FLAGS(o) * 2;
+ if (index < C_ARRAY_LENGTH(anyofs)) {
+ if (*anyofs[index] != '[') {
+ sv_catpv(sv, "[");
+ }
+ sv_catpv(sv, anyofs[index]);
+ if (*anyofs[index] != '[') {
+ sv_catpv(sv, "]");
+ }
+ }
+ else {
+ Perl_sv_catpvf(aTHX_ sv, "[illegal type=%d])", index);
+ }
+ }
+ else if (k == BOUND || k == NBOUND) {
+ /* Must be synced with order of 'bound_type' in regcomp.h */
+ const char * const bounds[] = {
+ "", /* Traditional */
+ "{gcb}",
+ "{sb}",
+ "{wb}"
+ };
+ sv_catpv(sv, bounds[FLAGS(o)]);
+ }
+ else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
+ Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
+ else if (OP(o) == SBOL)
+ Perl_sv_catpvf(aTHX_ sv, " /%s/", o->flags ? "\\A" : "^");
+#else
+ PERL_UNUSED_CONTEXT;
+ PERL_UNUSED_ARG(sv);
+ PERL_UNUSED_ARG(o);
+ PERL_UNUSED_ARG(prog);
+ PERL_UNUSED_ARG(reginfo);
+ PERL_UNUSED_ARG(pRExC_state);
+#endif /* DEBUGGING */
+}
+
+
+
+SV *
+Perl_re_intuit_string(pTHX_ REGEXP * const r)
+{ /* Assume that RE_INTUIT is set */
+ struct regexp *const prog = ReANY(r);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_INTUIT_STRING;
+ PERL_UNUSED_CONTEXT;
+
+ DEBUG_COMPILE_r(
+ {
+ const char * const s = SvPV_nolen_const(RX_UTF8(r)
+ ? prog->check_utf8 : prog->check_substr);
+
+ if (!PL_colorset) reginitcolors();
+ PerlIO_printf(Perl_debug_log,
+ "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
+ PL_colors[4],
+ RX_UTF8(r) ? "utf8 " : "",
+ PL_colors[5],PL_colors[0],
+ s,
+ PL_colors[1],
+ (strlen(s) > 60 ? "..." : ""));
+ } );
+
+ /* use UTF8 check substring if regexp pattern itself is in UTF8 */
+ return RX_UTF8(r) ? prog->check_utf8 : prog->check_substr;
+}
+
+/*
+ pregfree()
+
+ handles refcounting and freeing the perl core regexp structure. When
+ it is necessary to actually free the structure the first thing it
+ does is call the 'free' method of the regexp_engine associated to
+ the regexp, allowing the handling of the void *pprivate; member
+ first. (This routine is not overridable by extensions, which is why
+ the extensions free is called first.)
+
+ See regdupe and regdupe_internal if you change anything here.
+*/
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_pregfree(pTHX_ REGEXP *r)
+{
+ SvREFCNT_dec(r);
+}
+
+void
+Perl_pregfree2(pTHX_ REGEXP *rx)
+{
+ struct regexp *const r = ReANY(rx);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_PREGFREE2;
+
+ if (r->mother_re) {
+ ReREFCNT_dec(r->mother_re);
+ } else {
+ CALLREGFREE_PVT(rx); /* free the private data */
+ SvREFCNT_dec(RXp_PAREN_NAMES(r));
+ Safefree(r->xpv_len_u.xpvlenu_pv);
+ }
+ if (r->substrs) {
+ SvREFCNT_dec(r->anchored_substr);
+ SvREFCNT_dec(r->anchored_utf8);
+ SvREFCNT_dec(r->float_substr);
+ SvREFCNT_dec(r->float_utf8);
+ Safefree(r->substrs);
+ }
+ RX_MATCH_COPY_FREE(rx);
+#ifdef PERL_ANY_COW
+ SvREFCNT_dec(r->saved_copy);
+#endif
+ Safefree(r->offs);
+ SvREFCNT_dec(r->qr_anoncv);
+ rx->sv_u.svu_rx = 0;
+}
+
+/* reg_temp_copy()
+
+ This is a hacky workaround to the structural issue of match results
+ being stored in the regexp structure which is in turn stored in
+ PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
+ could be PL_curpm in multiple contexts, and could require multiple
+ result sets being associated with the pattern simultaneously, such
+ as when doing a recursive match with (??{$qr})
+
+ The solution is to make a lightweight copy of the regexp structure
+ when a qr// is returned from the code executed by (??{$qr}) this
+ lightweight copy doesn't actually own any of its data except for
+ the starp/end and the actual regexp structure itself.
+
+*/
+
+
+REGEXP *
+Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
+{
+ struct regexp *ret;
+ struct regexp *const r = ReANY(rx);
+ const bool islv = ret_x && SvTYPE(ret_x) == SVt_PVLV;
+
+ PERL_ARGS_ASSERT_REG_TEMP_COPY;
+
+ if (!ret_x)
+ ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
+ else {
+ SvOK_off((SV *)ret_x);
+ if (islv) {
+ /* For PVLVs, SvANY points to the xpvlv body while sv_u points
+ to the regexp. (For SVt_REGEXPs, sv_upgrade has already
+ made both spots point to the same regexp body.) */
+ REGEXP *temp = (REGEXP *)newSV_type(SVt_REGEXP);
+ assert(!SvPVX(ret_x));
+ ret_x->sv_u.svu_rx = temp->sv_any;
+ temp->sv_any = NULL;
+ SvFLAGS(temp) = (SvFLAGS(temp) & ~SVTYPEMASK) | SVt_NULL;
+ SvREFCNT_dec_NN(temp);
+ /* SvCUR still resides in the xpvlv struct, so the regexp copy-
+ ing below will not set it. */
+ SvCUR_set(ret_x, SvCUR(rx));
+ }
+ }
+ /* This ensures that SvTHINKFIRST(sv) is true, and hence that
+ sv_force_normal(sv) is called. */
+ SvFAKE_on(ret_x);
+ ret = ReANY(ret_x);
+
+ SvFLAGS(ret_x) |= SvUTF8(rx);
+ /* We share the same string buffer as the original regexp, on which we
+ hold a reference count, incremented when mother_re is set below.
+ The string pointer is copied here, being part of the regexp struct.
+ */
+ memcpy(&(ret->xpv_cur), &(r->xpv_cur),
+ sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
+ if (r->offs) {
+ const I32 npar = r->nparens+1;
+ Newx(ret->offs, npar, regexp_paren_pair);
+ Copy(r->offs, ret->offs, npar, regexp_paren_pair);
+ }
+ if (r->substrs) {
+ Newx(ret->substrs, 1, struct reg_substr_data);
+ StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
+
+ SvREFCNT_inc_void(ret->anchored_substr);
+ SvREFCNT_inc_void(ret->anchored_utf8);
+ SvREFCNT_inc_void(ret->float_substr);
+ SvREFCNT_inc_void(ret->float_utf8);
+
+ /* check_substr and check_utf8, if non-NULL, point to either their
+ anchored or float namesakes, and don't hold a second reference. */
+ }
+ RX_MATCH_COPIED_off(ret_x);
+#ifdef PERL_ANY_COW
+ ret->saved_copy = NULL;
+#endif
+ ret->mother_re = ReREFCNT_inc(r->mother_re ? r->mother_re : rx);
+ SvREFCNT_inc_void(ret->qr_anoncv);
+
+ return ret_x;
+}
+#endif
+
+/* regfree_internal()
+
+ Free the private data in a regexp. This is overloadable by
+ extensions. Perl takes care of the regexp structure in pregfree(),
+ this covers the *pprivate pointer which technically perl doesn't
+ know about, however of course we have to handle the
+ regexp_internal structure when no extension is in use.
+
+ Note this is called before freeing anything in the regexp
+ structure.
+ */
+
+void
+Perl_regfree_internal(pTHX_ REGEXP * const rx)
+{
+ struct regexp *const r = ReANY(rx);
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGFREE_INTERNAL;
+
+ DEBUG_COMPILE_r({
+ if (!PL_colorset)
+ reginitcolors();
+ {
+ SV *dsv= sv_newmortal();
+ RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
+ dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
+ PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
+ PL_colors[4],PL_colors[5],s);
+ }
+ });
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (ri->u.offsets)
+ Safefree(ri->u.offsets); /* 20010421 MJD */
+#endif
+ if (ri->code_blocks) {
+ int n;
+ for (n = 0; n < ri->num_code_blocks; n++)
+ SvREFCNT_dec(ri->code_blocks[n].src_regex);
+ Safefree(ri->code_blocks);
+ }
+
+ if (ri->data) {
+ int n = ri->data->count;
+
+ while (--n >= 0) {
+ /* If you add a ->what type here, update the comment in regcomp.h */
+ switch (ri->data->what[n]) {
+ case 'a':
+ case 'r':
+ case 's':
+ case 'S':
+ case 'u':
+ SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
+ break;
+ case 'f':
+ Safefree(ri->data->data[n]);
+ break;
+ case 'l':
+ case 'L':
+ break;
+ case 'T':
+ { /* Aho Corasick add-on structure for a trie node.
+ Used in stclass optimization only */
+ U32 refcount;
+ reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
+#ifdef USE_ITHREADS
+ dVAR;
+#endif
+ OP_REFCNT_LOCK;
+ refcount = --aho->refcount;
+ OP_REFCNT_UNLOCK;
+ if ( !refcount ) {
+ PerlMemShared_free(aho->states);
+ PerlMemShared_free(aho->fail);
+ /* do this last!!!! */
+ PerlMemShared_free(ri->data->data[n]);
+ /* we should only ever get called once, so
+ * assert as much, and also guard the free
+ * which /might/ happen twice. At the least
+ * it will make code anlyzers happy and it
+ * doesn't cost much. - Yves */
+ assert(ri->regstclass);
+ if (ri->regstclass) {
+ PerlMemShared_free(ri->regstclass);
+ ri->regstclass = 0;
+ }
+ }
+ }
+ break;
+ case 't':
+ {
+ /* trie structure. */
+ U32 refcount;
+ reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
+#ifdef USE_ITHREADS
+ dVAR;
+#endif
+ OP_REFCNT_LOCK;
+ refcount = --trie->refcount;
+ OP_REFCNT_UNLOCK;
+ if ( !refcount ) {
+ PerlMemShared_free(trie->charmap);
+ PerlMemShared_free(trie->states);
+ PerlMemShared_free(trie->trans);
+ if (trie->bitmap)
+ PerlMemShared_free(trie->bitmap);
+ if (trie->jump)
+ PerlMemShared_free(trie->jump);
+ PerlMemShared_free(trie->wordinfo);
+ /* do this last!!!! */
+ PerlMemShared_free(ri->data->data[n]);
+ }
+ }
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: regfree data code '%c'",
+ ri->data->what[n]);
+ }
+ }
+ Safefree(ri->data->what);
+ Safefree(ri->data);
+ }
+
+ Safefree(ri);
+}
+
+#define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
+#define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
+#define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
+
+/*
+ re_dup - duplicate a regexp.
+
+ This routine is expected to clone a given regexp structure. It is only
+ compiled under USE_ITHREADS.
+
+ After all of the core data stored in struct regexp is duplicated
+ the regexp_engine.dupe method is used to copy any private data
+ stored in the *pprivate pointer. This allows extensions to handle
+ any duplication it needs to do.
+
+ See pregfree() and regfree_internal() if you change anything here.
+*/
+#if defined(USE_ITHREADS)
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
+{
+ dVAR;
+ I32 npar;
+ const struct regexp *r = ReANY(sstr);
+ struct regexp *ret = ReANY(dstr);
+
+ PERL_ARGS_ASSERT_RE_DUP_GUTS;
+
+ npar = r->nparens+1;
+ Newx(ret->offs, npar, regexp_paren_pair);
+ Copy(r->offs, ret->offs, npar, regexp_paren_pair);
+
+ if (ret->substrs) {
+ /* Do it this way to avoid reading from *r after the StructCopy().
+ That way, if any of the sv_dup_inc()s dislodge *r from the L1
+ cache, it doesn't matter. */
+ const bool anchored = r->check_substr
+ ? r->check_substr == r->anchored_substr
+ : r->check_utf8 == r->anchored_utf8;
+ Newx(ret->substrs, 1, struct reg_substr_data);
+ StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
+
+ ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
+ ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
+ ret->float_substr = sv_dup_inc(ret->float_substr, param);
+ ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
+
+ /* check_substr and check_utf8, if non-NULL, point to either their
+ anchored or float namesakes, and don't hold a second reference. */
+
+ if (ret->check_substr) {
+ if (anchored) {
+ assert(r->check_utf8 == r->anchored_utf8);
+ ret->check_substr = ret->anchored_substr;
+ ret->check_utf8 = ret->anchored_utf8;
+ } else {
+ assert(r->check_substr == r->float_substr);
+ assert(r->check_utf8 == r->float_utf8);
+ ret->check_substr = ret->float_substr;
+ ret->check_utf8 = ret->float_utf8;
+ }
+ } else if (ret->check_utf8) {
+ if (anchored) {
+ ret->check_utf8 = ret->anchored_utf8;
+ } else {
+ ret->check_utf8 = ret->float_utf8;
+ }
+ }
+ }
+
+ RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
+ ret->qr_anoncv = MUTABLE_CV(sv_dup_inc((const SV *)ret->qr_anoncv, param));
+
+ if (ret->pprivate)
+ RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
+
+ if (RX_MATCH_COPIED(dstr))
+ ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen);
+ else
+ ret->subbeg = NULL;
+#ifdef PERL_ANY_COW
+ ret->saved_copy = NULL;
+#endif
+
+ /* Whether mother_re be set or no, we need to copy the string. We
+ cannot refrain from copying it when the storage points directly to
+ our mother regexp, because that's
+ 1: a buffer in a different thread
+ 2: something we no longer hold a reference on
+ so we need to copy it locally. */
+ RX_WRAPPED(dstr) = SAVEPVN(RX_WRAPPED(sstr), SvCUR(sstr)+1);
+ ret->mother_re = NULL;
+}
+#endif /* PERL_IN_XSUB_RE */
+
+/*
+ regdupe_internal()
+
+ This is the internal complement to regdupe() which is used to copy
+ the structure pointed to by the *pprivate pointer in the regexp.
+ This is the core version of the extension overridable cloning hook.
+ The regexp structure being duplicated will be copied by perl prior
+ to this and will be provided as the regexp *r argument, however
+ with the /old/ structures pprivate pointer value. Thus this routine
+ may override any copying normally done by perl.
+
+ It returns a pointer to the new regexp_internal structure.
+*/
+
+void *
+Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
+{
+ dVAR;
+ struct regexp *const r = ReANY(rx);
+ regexp_internal *reti;
+ int len;
+ RXi_GET_DECL(r,ri);
+
+ PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
+
+ len = ProgLen(ri);
+
+ Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode),
+ char, regexp_internal);
+ Copy(ri->program, reti->program, len+1, regnode);
+
+ reti->num_code_blocks = ri->num_code_blocks;
+ if (ri->code_blocks) {
+ int n;
+ Newxc(reti->code_blocks, ri->num_code_blocks, struct reg_code_block,
+ struct reg_code_block);
+ Copy(ri->code_blocks, reti->code_blocks, ri->num_code_blocks,
+ struct reg_code_block);
+ for (n = 0; n < ri->num_code_blocks; n++)
+ reti->code_blocks[n].src_regex = (REGEXP*)
+ sv_dup_inc((SV*)(ri->code_blocks[n].src_regex), param);
+ }
+ else
+ reti->code_blocks = NULL;
+
+ reti->regstclass = NULL;
+
+ if (ri->data) {
+ struct reg_data *d;
+ const int count = ri->data->count;
+ int i;
+
+ Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
+ char, struct reg_data);
+ Newx(d->what, count, U8);
+
+ d->count = count;
+ for (i = 0; i < count; i++) {
+ d->what[i] = ri->data->what[i];
+ switch (d->what[i]) {
+ /* see also regcomp.h and regfree_internal() */
+ case 'a': /* actually an AV, but the dup function is identical. */
+ case 'r':
+ case 's':
+ case 'S':
+ case 'u': /* actually an HV, but the dup function is identical. */
+ d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
+ break;
+ case 'f':
+ /* This is cheating. */
+ Newx(d->data[i], 1, regnode_ssc);
+ StructCopy(ri->data->data[i], d->data[i], regnode_ssc);
+ reti->regstclass = (regnode*)d->data[i];
+ break;
+ case 'T':
+ /* Trie stclasses are readonly and can thus be shared
+ * without duplication. We free the stclass in pregfree
+ * when the corresponding reg_ac_data struct is freed.
+ */
+ reti->regstclass= ri->regstclass;
+ /* FALLTHROUGH */
+ case 't':
+ OP_REFCNT_LOCK;
+ ((reg_trie_data*)ri->data->data[i])->refcount++;
+ OP_REFCNT_UNLOCK;
+ /* FALLTHROUGH */
+ case 'l':
+ case 'L':
+ d->data[i] = ri->data->data[i];
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'",
+ ri->data->what[i]);
+ }
+ }
+
+ reti->data = d;
+ }
+ else
+ reti->data = NULL;
+
+ reti->name_list_idx = ri->name_list_idx;
+
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (ri->u.offsets) {
+ Newx(reti->u.offsets, 2*len+1, U32);
+ Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
+ }
+#else
+ SetProgLen(reti,len);
+#endif
+
+ return (void*)reti;
+}
+
+#endif /* USE_ITHREADS */
+
+#ifndef PERL_IN_XSUB_RE
+
+/*
+ - regnext - dig the "next" pointer out of a node
+ */
+regnode *
+Perl_regnext(pTHX_ regnode *p)
+{
+ I32 offset;
+
+ if (!p)
+ return(NULL);
+
+ if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */
+ Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d",
+ (int)OP(p), (int)REGNODE_MAX);
+ }
+
+ offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
+ if (offset == 0)
+ return(NULL);
+
+ return(p+offset);
+}
+#endif
+
+STATIC void
+S_re_croak2(pTHX_ bool utf8, const char* pat1,const char* pat2,...)
+{
+ va_list args;
+ STRLEN l1 = strlen(pat1);
+ STRLEN l2 = strlen(pat2);
+ char buf[512];
+ SV *msv;
+ const char *message;
+
+ PERL_ARGS_ASSERT_RE_CROAK2;
+
+ if (l1 > 510)
+ l1 = 510;
+ if (l1 + l2 > 510)
+ l2 = 510 - l1;
+ Copy(pat1, buf, l1 , char);
+ Copy(pat2, buf + l1, l2 , char);
+ buf[l1 + l2] = '\n';
+ buf[l1 + l2 + 1] = '\0';
+ va_start(args, pat2);
+ msv = vmess(buf, &args);
+ va_end(args);
+ message = SvPV_const(msv,l1);
+ if (l1 > 512)
+ l1 = 512;
+ Copy(message, buf, l1 , char);
+ /* l1-1 to avoid \n */
+ Perl_croak(aTHX_ "%"UTF8f, UTF8fARG(utf8, l1-1, buf));
+}
+
+/* XXX Here's a total kludge. But we need to re-enter for swash routines. */
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_save_re_context(pTHX)
+{
+ I32 nparens = -1;
+ I32 i;
+
+ /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
+
+ if (PL_curpm) {
+ const REGEXP * const rx = PM_GETRE(PL_curpm);
+ if (rx)
+ nparens = RX_NPARENS(rx);
+ }
+
+ /* RT #124109. This is a complete hack; in the SWASHNEW case we know
+ * that PL_curpm will be null, but that utf8.pm and the modules it
+ * loads will only use $1..$3.
+ * The t/porting/re_context.t test file checks this assumption.
+ */
+ if (nparens == -1)
+ nparens = 3;
+
+ for (i = 1; i <= nparens; i++) {
+ char digits[TYPE_CHARS(long)];
+ const STRLEN len = my_snprintf(digits, sizeof(digits),
+ "%lu", (long)i);
+ GV *const *const gvp
+ = (GV**)hv_fetch(PL_defstash, digits, len, 0);
+
+ if (gvp) {
+ GV * const gv = *gvp;
+ if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
+ save_scalar(gv);
+ }
+ }
+}
+#endif
+
+#ifdef DEBUGGING
+
+STATIC void
+S_put_code_point(pTHX_ SV *sv, UV c)
+{
+ PERL_ARGS_ASSERT_PUT_CODE_POINT;
+
+ if (c > 255) {
+ Perl_sv_catpvf(aTHX_ sv, "\\x{%04"UVXf"}", c);
+ }
+ else if (isPRINT(c)) {
+ const char string = (char) c;
+ if (isBACKSLASHED_PUNCT(c))
+ sv_catpvs(sv, "\\");
+ sv_catpvn(sv, &string, 1);
+ }
+ else {
+ const char * const mnemonic = cntrl_to_mnemonic((char) c);
+ if (mnemonic) {
+ Perl_sv_catpvf(aTHX_ sv, "%s", mnemonic);
+ }
+ else {
+ Perl_sv_catpvf(aTHX_ sv, "\\x{%02X}", (U8) c);
+ }
+ }
+}
+
+#define MAX_PRINT_A MAX_PRINT_A_FOR_USE_ONLY_BY_REGCOMP_DOT_C
+
+STATIC void
+S_put_range(pTHX_ SV *sv, UV start, const UV end, const bool allow_literals)
+{
+ /* Appends to 'sv' a displayable version of the range of code points from
+ * 'start' to 'end'. It assumes that only ASCII printables are displayable
+ * as-is (though some of these will be escaped by put_code_point()). */
+
+ const unsigned int min_range_count = 3;
+
+ assert(start <= end);
+
+ PERL_ARGS_ASSERT_PUT_RANGE;
+
+ while (start <= end) {
+ UV this_end;
+ const char * format;
+
+ if (end - start < min_range_count) {
+
+ /* Individual chars in short ranges */
+ for (; start <= end; start++) {
+ put_code_point(sv, start);
+ }
+ break;
+ }
+
+ /* If permitted by the input options, and there is a possibility that
+ * this range contains a printable literal, look to see if there is
+ * one. */
+ if (allow_literals && start <= MAX_PRINT_A) {
+
+ /* If the range begin isn't an ASCII printable, effectively split
+ * the range into two parts:
+ * 1) the portion before the first such printable,
+ * 2) the rest
+ * and output them separately. */
+ if (! isPRINT_A(start)) {
+ UV temp_end = start + 1;
+
+ /* There is no point looking beyond the final possible
+ * printable, in MAX_PRINT_A */
+ UV max = MIN(end, MAX_PRINT_A);
+
+ while (temp_end <= max && ! isPRINT_A(temp_end)) {
+ temp_end++;
+ }
+
+ /* Here, temp_end points to one beyond the first printable if
+ * found, or to one beyond 'max' if not. If none found, make
+ * sure that we use the entire range */
+ if (temp_end > MAX_PRINT_A) {
+ temp_end = end + 1;
+ }
+
+ /* Output the first part of the split range, the part that
+ * doesn't have printables, with no looking for literals
+ * (otherwise we would infinitely recurse) */
+ put_range(sv, start, temp_end - 1, FALSE);
+
+ /* The 2nd part of the range (if any) starts here. */
+ start = temp_end;
+
+ /* We continue instead of dropping down because even if the 2nd
+ * part is non-empty, it could be so short that we want to
+ * output it specially, as tested for at the top of this loop.
+ * */
+ continue;
+ }
+
+ /* Here, 'start' is a printable ASCII. If it is an alphanumeric,
+ * output a sub-range of just the digits or letters, then process
+ * the remaining portion as usual. */
+ if (isALPHANUMERIC_A(start)) {
+ UV mask = (isDIGIT_A(start))
+ ? _CC_DIGIT
+ : isUPPER_A(start)
+ ? _CC_UPPER
+ : _CC_LOWER;
+ UV temp_end = start + 1;
+
+ /* Find the end of the sub-range that includes just the
+ * characters in the same class as the first character in it */
+ while (temp_end <= end && _generic_isCC_A(temp_end, mask)) {
+ temp_end++;
+ }
+ temp_end--;
+
+ /* For short ranges, don't duplicate the code above to output
+ * them; just call recursively */
+ if (temp_end - start < min_range_count) {
+ put_range(sv, start, temp_end, FALSE);
+ }
+ else { /* Output as a range */
+ put_code_point(sv, start);
+ sv_catpvs(sv, "-");
+ put_code_point(sv, temp_end);
+ }
+ start = temp_end + 1;
+ continue;
+ }
+
+ /* We output any other printables as individual characters */
+ if (isPUNCT_A(start) || isSPACE_A(start)) {
+ while (start <= end && (isPUNCT_A(start)
+ || isSPACE_A(start)))
+ {
+ put_code_point(sv, start);
+ start++;
+ }
+ continue;
+ }
+ } /* End of looking for literals */
+
+ /* Here is not to output as a literal. Some control characters have
+ * mnemonic names. Split off any of those at the beginning and end of
+ * the range to print mnemonically. It isn't possible for many of
+ * these to be in a row, so this won't overwhelm with output */
+ while (isMNEMONIC_CNTRL(start) && start <= end) {
+ put_code_point(sv, start);
+ start++;
+ }
+ if (start < end && isMNEMONIC_CNTRL(end)) {
+
+ /* Here, the final character in the range has a mnemonic name.
+ * Work backwards from the end to find the final non-mnemonic */
+ UV temp_end = end - 1;
+ while (isMNEMONIC_CNTRL(temp_end)) {
+ temp_end--;
+ }
+
+ /* And separately output the range that doesn't have mnemonics */
+ put_range(sv, start, temp_end, FALSE);
+
+ /* Then output the mnemonic trailing controls */
+ start = temp_end + 1;
+ while (start <= end) {
+ put_code_point(sv, start);
+ start++;
+ }
+ break;
+ }
+
+ /* As a final resort, output the range or subrange as hex. */
+
+ this_end = (end < NUM_ANYOF_CODE_POINTS)
+ ? end
+ : NUM_ANYOF_CODE_POINTS - 1;
+ format = (this_end < 256)
+ ? "\\x{%02"UVXf"}-\\x{%02"UVXf"}"
+ : "\\x{%04"UVXf"}-\\x{%04"UVXf"}";
+ GCC_DIAG_IGNORE(-Wformat-nonliteral);
+ Perl_sv_catpvf(aTHX_ sv, format, start, this_end);
+ GCC_DIAG_RESTORE;
+ break;
+ }
+}
+
+STATIC bool
+S_put_charclass_bitmap_innards(pTHX_ SV *sv, char *bitmap, SV** bitmap_invlist)
+{
+ /* Appends to 'sv' a displayable version of the innards of the bracketed
+ * character class whose bitmap is 'bitmap'; Returns 'TRUE' if it actually
+ * output anything, and bitmap_invlist, if not NULL, will point to an
+ * inversion list of what is in the bit map */
+
+ int i;
+ UV start, end;
+ unsigned int punct_count = 0;
+ SV* invlist = NULL;
+ SV** invlist_ptr; /* Temporary, in case bitmap_invlist is NULL */
+ bool allow_literals = TRUE;
+
+ PERL_ARGS_ASSERT_PUT_CHARCLASS_BITMAP_INNARDS;
+
+ invlist_ptr = (bitmap_invlist) ? bitmap_invlist : &invlist;
+
+ /* Worst case is exactly every-other code point is in the list */
+ *invlist_ptr = _new_invlist(NUM_ANYOF_CODE_POINTS / 2);
+
+ /* Convert the bit map to an inversion list, keeping track of how many
+ * ASCII puncts are set, including an extra amount for the backslashed
+ * ones. */
+ for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
+ if (BITMAP_TEST(bitmap, i)) {
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr, i);
+ if (isPUNCT_A(i)) {
+ punct_count++;
+ if isBACKSLASHED_PUNCT(i) {
+ punct_count++;
+ }
+ }
+ }
+ }
+
+ /* Nothing to output */
+ if (_invlist_len(*invlist_ptr) == 0) {
+ SvREFCNT_dec(invlist);
+ return FALSE;
+ }
+
+ /* Generally, it is more readable if printable characters are output as
+ * literals, but if a range (nearly) spans all of them, it's best to output
+ * it as a single range. This code will use a single range if all but 2
+ * printables are in it */
+ invlist_iterinit(*invlist_ptr);
+ while (invlist_iternext(*invlist_ptr, &start, &end)) {
+
+ /* If range starts beyond final printable, it doesn't have any in it */
+ if (start > MAX_PRINT_A) {
+ break;
+ }
+
+ /* In both ASCII and EBCDIC, a SPACE is the lowest printable. To span
+ * all but two, the range must start and end no later than 2 from
+ * either end */
+ if (start < ' ' + 2 && end > MAX_PRINT_A - 2) {
+ if (end > MAX_PRINT_A) {
+ end = MAX_PRINT_A;
+ }
+ if (start < ' ') {
+ start = ' ';
+ }
+ if (end - start >= MAX_PRINT_A - ' ' - 2) {
+ allow_literals = FALSE;
+ }
+ break;
+ }
+ }
+ invlist_iterfinish(*invlist_ptr);
+
+ /* The legibility of the output depends mostly on how many punctuation
+ * characters are output. There are 32 possible ASCII ones, and some have
+ * an additional backslash, bringing it to currently 36, so if any more
+ * than 18 are to be output, we can instead output it as its complement,
+ * yielding fewer puncts, and making it more legible. But give some weight
+ * to the fact that outputting it as a complement is less legible than a
+ * straight output, so don't complement unless we are somewhat over the 18
+ * mark */
+ if (allow_literals && punct_count > 22) {
+ sv_catpvs(sv, "^");
+
+ /* Add everything remaining to the list, so when we invert it just
+ * below, it will be excluded */
+ _invlist_union_complement_2nd(*invlist_ptr, PL_InBitmap, invlist_ptr);
+ _invlist_invert(*invlist_ptr);
+ }
+
+ /* Here we have figured things out. Output each range */
+ invlist_iterinit(*invlist_ptr);
+ while (invlist_iternext(*invlist_ptr, &start, &end)) {
+ if (start >= NUM_ANYOF_CODE_POINTS) {
+ break;
+ }
+ put_range(sv, start, end, allow_literals);
+ }
+ invlist_iterfinish(*invlist_ptr);
+
+ return TRUE;
+}
+
+#define CLEAR_OPTSTART \
+ if (optstart) STMT_START { \
+ DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, \
+ " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
+ optstart=NULL; \
+ } STMT_END
+
+#define DUMPUNTIL(b,e) \
+ CLEAR_OPTSTART; \
+ node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
+
+STATIC const regnode *
+S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
+ const regnode *last, const regnode *plast,
+ SV* sv, I32 indent, U32 depth)
+{
+ U8 op = PSEUDO; /* Arbitrary non-END op. */
+ const regnode *next;
+ const regnode *optstart= NULL;
+
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMPUNTIL;
+
+#ifdef DEBUG_DUMPUNTIL
+ PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
+ last ? last-start : 0,plast ? plast-start : 0);
+#endif
+
+ if (plast && plast < last)
+ last= plast;
+
+ while (PL_regkind[op] != END && (!last || node < last)) {
+ assert(node);
+ /* While that wasn't END last time... */
+ NODE_ALIGN(node);
+ op = OP(node);
+ if (op == CLOSE || op == WHILEM)
+ indent--;
+ next = regnext((regnode *)node);
+
+ /* Where, what. */
+ if (OP(node) == OPTIMIZED) {
+ if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
+ optstart = node;
+ else
+ goto after_print;
+ } else
+ CLEAR_OPTSTART;
+
+ regprop(r, sv, node, NULL, NULL);
+ PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
+ (int)(2*indent + 1), "", SvPVX_const(sv));
+
+ if (OP(node) != OPTIMIZED) {
+ if (next == NULL) /* Next ptr. */
+ PerlIO_printf(Perl_debug_log, " (0)");
+ else if (PL_regkind[(U8)op] == BRANCH
+ && PL_regkind[OP(next)] != BRANCH )
+ PerlIO_printf(Perl_debug_log, " (FAIL)");
+ else
+ PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
+ (void)PerlIO_putc(Perl_debug_log, '\n');
+ }
+
+ after_print:
+ if (PL_regkind[(U8)op] == BRANCHJ) {
+ assert(next);
+ {
+ const regnode *nnode = (OP(next) == LONGJMP
+ ? regnext((regnode *)next)
+ : next);
+ if (last && nnode > last)
+ nnode = last;
+ DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
+ }
+ }
+ else if (PL_regkind[(U8)op] == BRANCH) {
+ assert(next);
+ DUMPUNTIL(NEXTOPER(node), next);
+ }
+ else if ( PL_regkind[(U8)op] == TRIE ) {
+ const regnode *this_trie = node;
+ const char op = OP(node);
+ const U32 n = ARG(node);
+ const reg_ac_data * const ac = op>=AHOCORASICK ?
+ (reg_ac_data *)ri->data->data[n] :
+ NULL;
+ const reg_trie_data * const trie =
+ (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
+#ifdef DEBUGGING
+ AV *const trie_words
+ = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
+#endif
+ const regnode *nextbranch= NULL;
+ I32 word_idx;
+ sv_setpvs(sv, "");
+ for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
+ SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
+
+ PerlIO_printf(Perl_debug_log, "%*s%s ",
+ (int)(2*(indent+3)), "",
+ elem_ptr
+ ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr),
+ SvCUR(*elem_ptr), 60,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*elem_ptr)
+ ? PERL_PV_ESCAPE_UNI
+ : 0)
+ | PERL_PV_PRETTY_ELLIPSES
+ | PERL_PV_PRETTY_LTGT
+ )
+ : "???"
+ );
+ if (trie->jump) {
+ U16 dist= trie->jump[word_idx+1];
+ PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
+ (UV)((dist ? this_trie + dist : next) - start));
+ if (dist) {
+ if (!nextbranch)
+ nextbranch= this_trie + trie->jump[0];
+ DUMPUNTIL(this_trie + dist, nextbranch);
+ }
+ if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
+ nextbranch= regnext((regnode *)nextbranch);
+ } else {
+ PerlIO_printf(Perl_debug_log, "\n");
+ }
+ }
+ if (last && next > last)
+ node= last;
+ else
+ node= next;
+ }
+ else if ( op == CURLY ) { /* "next" might be very big: optimizer */
+ DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
+ NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
+ }
+ else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
+ assert(next);
+ DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
+ }
+ else if ( op == PLUS || op == STAR) {
+ DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
+ }
+ else if (PL_regkind[(U8)op] == ANYOF) {
+ /* arglen 1 + class block */
+ node += 1 + ((ANYOF_FLAGS(node) & ANYOF_MATCHES_POSIXL)
+ ? ANYOF_POSIXL_SKIP
+ : ANYOF_SKIP);
+ node = NEXTOPER(node);
+ }
+ else if (PL_regkind[(U8)op] == EXACT) {
+ /* Literal string, where present. */
+ node += NODE_SZ_STR(node) - 1;
+ node = NEXTOPER(node);
+ }
+ else {
+ node = NEXTOPER(node);
+ node += regarglen[(U8)op];
+ }
+ if (op == CURLYX || op == OPEN)
+ indent++;
+ }
+ CLEAR_OPTSTART;
+#ifdef DEBUG_DUMPUNTIL
+ PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
+#endif
+ return node;
+}
+
+#endif /* DEBUGGING */
+
+/*
+ * ex: set ts=8 sts=4 sw=4 et:
+ */
--- /dev/null
+/* regexec.c
+ */
+
+/*
+ * One Ring to rule them all, One Ring to find them
+ *
+ * [p.v of _The Lord of the Rings_, opening poem]
+ * [p.50 of _The Lord of the Rings_, I/iii: "The Shadow of the Past"]
+ * [p.254 of _The Lord of the Rings_, II/ii: "The Council of Elrond"]
+ */
+
+/* This file contains functions for executing a regular expression. See
+ * also regcomp.c which funnily enough, contains functions for compiling
+ * a regular expression.
+ *
+ * This file is also copied at build time to ext/re/re_exec.c, where
+ * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
+ * This causes the main functions to be compiled under new names and with
+ * debugging support added, which makes "use re 'debug'" work.
+ */
+
+/* NOTE: this is derived from Henry Spencer's regexp code, and should not
+ * confused with the original package (see point 3 below). Thanks, Henry!
+ */
+
+/* Additional note: this code is very heavily munged from Henry's version
+ * in places. In some spots I've traded clarity for efficiency, so don't
+ * blame Henry for some of the lack of readability.
+ */
+
+/* The names of the functions have been changed from regcomp and
+ * regexec to pregcomp and pregexec in order to avoid conflicts
+ * with the POSIX routines of the same names.
+*/
+
+#ifdef PERL_EXT_RE_BUILD
+#include "re_top.h"
+#endif
+
+#define B_ON_NON_UTF8_LOCALE_IS_WRONG \
+ "Use of \\b{} or \\B{} for non-UTF-8 locale is wrong. Assuming a UTF-8 locale"
+
+/*
+ * pregcomp and pregexec -- regsub and regerror are not used in perl
+ *
+ * Copyright (c) 1986 by University of Toronto.
+ * Written by Henry Spencer. Not derived from licensed software.
+ *
+ * Permission is granted to anyone to use this software for any
+ * purpose on any computer system, and to redistribute it freely,
+ * subject to the following restrictions:
+ *
+ * 1. The author is not responsible for the consequences of use of
+ * this software, no matter how awful, even if they arise
+ * from defects in it.
+ *
+ * 2. The origin of this software must not be misrepresented, either
+ * by explicit claim or by omission.
+ *
+ * 3. Altered versions must be plainly marked as such, and must not
+ * be misrepresented as being the original software.
+ *
+ **** Alterations to Henry's code are...
+ ****
+ **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ **** by Larry Wall and others
+ ****
+ **** You may distribute under the terms of either the GNU General Public
+ **** License or the Artistic License, as specified in the README file.
+ *
+ * Beware that some of this code is subtly aware of the way operator
+ * precedence is structured in regular expressions. Serious changes in
+ * regular-expression syntax might require a total rethink.
+ */
+#include "EXTERN.h"
+#define PERL_IN_REGEXEC_C
+#include "perl.h"
+
+#ifdef PERL_IN_XSUB_RE
+# include "re_comp.h"
+#else
+# include "regcomp.h"
+#endif
+
+#include "inline_invlist.c"
+#include "unicode_constants.h"
+
+#ifdef DEBUGGING
+/* At least one required character in the target string is expressible only in
+ * UTF-8. */
+static const char* const non_utf8_target_but_utf8_required
+ = "Can't match, because target string needs to be in UTF-8\n";
+#endif
+
+#define NON_UTF8_TARGET_BUT_UTF8_REQUIRED(target) STMT_START { \
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%s", non_utf8_target_but_utf8_required));\
+ goto target; \
+} STMT_END
+
+#define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
+
+#ifndef STATIC
+#define STATIC static
+#endif
+
+/* Valid only for non-utf8 strings: avoids the reginclass
+ * call if there are no complications: i.e., if everything matchable is
+ * straight forward in the bitmap */
+#define REGINCLASS(prog,p,c) (ANYOF_FLAGS(p) ? reginclass(prog,p,c,c+1,0) \
+ : ANYOF_BITMAP_TEST(p,*(c)))
+
+/*
+ * Forwards.
+ */
+
+#define CHR_SVLEN(sv) (utf8_target ? sv_len_utf8(sv) : SvCUR(sv))
+#define CHR_DIST(a,b) (reginfo->is_utf8_target ? utf8_distance(a,b) : a - b)
+
+#define HOPc(pos,off) \
+ (char *)(reginfo->is_utf8_target \
+ ? reghop3((U8*)pos, off, \
+ (U8*)(off >= 0 ? reginfo->strend : reginfo->strbeg)) \
+ : (U8*)(pos + off))
+
+#define HOPBACKc(pos, off) \
+ (char*)(reginfo->is_utf8_target \
+ ? reghopmaybe3((U8*)pos, -off, (U8*)(reginfo->strbeg)) \
+ : (pos - off >= reginfo->strbeg) \
+ ? (U8*)pos - off \
+ : NULL)
+
+#define HOP3(pos,off,lim) (reginfo->is_utf8_target ? reghop3((U8*)(pos), off, (U8*)(lim)) : (U8*)(pos + off))
+#define HOP3c(pos,off,lim) ((char*)HOP3(pos,off,lim))
+
+/* lim must be +ve. Returns NULL on overshoot */
+#define HOPMAYBE3(pos,off,lim) \
+ (reginfo->is_utf8_target \
+ ? reghopmaybe3((U8*)pos, off, (U8*)(lim)) \
+ : ((U8*)pos + off <= lim) \
+ ? (U8*)pos + off \
+ : NULL)
+
+/* like HOP3, but limits the result to <= lim even for the non-utf8 case.
+ * off must be >=0; args should be vars rather than expressions */
+#define HOP3lim(pos,off,lim) (reginfo->is_utf8_target \
+ ? reghop3((U8*)(pos), off, (U8*)(lim)) \
+ : (U8*)((pos + off) > lim ? lim : (pos + off)))
+
+#define HOP4(pos,off,llim, rlim) (reginfo->is_utf8_target \
+ ? reghop4((U8*)(pos), off, (U8*)(llim), (U8*)(rlim)) \
+ : (U8*)(pos + off))
+#define HOP4c(pos,off,llim, rlim) ((char*)HOP4(pos,off,llim, rlim))
+
+#define NEXTCHR_EOS -10 /* nextchr has fallen off the end */
+#define NEXTCHR_IS_EOS (nextchr < 0)
+
+#define SET_nextchr \
+ nextchr = ((locinput < reginfo->strend) ? UCHARAT(locinput) : NEXTCHR_EOS)
+
+#define SET_locinput(p) \
+ locinput = (p); \
+ SET_nextchr
+
+
+#define LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist) STMT_START { \
+ if (!swash_ptr) { \
+ U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST; \
+ swash_ptr = _core_swash_init("utf8", property_name, &PL_sv_undef, \
+ 1, 0, invlist, &flags); \
+ assert(swash_ptr); \
+ } \
+ } STMT_END
+
+/* If in debug mode, we test that a known character properly matches */
+#ifdef DEBUGGING
+# define LOAD_UTF8_CHARCLASS_DEBUG_TEST(swash_ptr, \
+ property_name, \
+ invlist, \
+ utf8_char_in_property) \
+ LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist); \
+ assert(swash_fetch(swash_ptr, (U8 *) utf8_char_in_property, TRUE));
+#else
+# define LOAD_UTF8_CHARCLASS_DEBUG_TEST(swash_ptr, \
+ property_name, \
+ invlist, \
+ utf8_char_in_property) \
+ LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist)
+#endif
+
+#define LOAD_UTF8_CHARCLASS_ALNUM() LOAD_UTF8_CHARCLASS_DEBUG_TEST( \
+ PL_utf8_swash_ptrs[_CC_WORDCHAR], \
+ "", \
+ PL_XPosix_ptrs[_CC_WORDCHAR], \
+ LATIN_CAPITAL_LETTER_SHARP_S_UTF8);
+
+#define PLACEHOLDER /* Something for the preprocessor to grab onto */
+/* TODO: Combine JUMPABLE and HAS_TEXT to cache OP(rn) */
+
+/* for use after a quantifier and before an EXACT-like node -- japhy */
+/* it would be nice to rework regcomp.sym to generate this stuff. sigh
+ *
+ * NOTE that *nothing* that affects backtracking should be in here, specifically
+ * VERBS must NOT be included. JUMPABLE is used to determine if we can ignore a
+ * node that is in between two EXACT like nodes when ascertaining what the required
+ * "follow" character is. This should probably be moved to regex compile time
+ * although it may be done at run time beause of the REF possibility - more
+ * investigation required. -- demerphq
+*/
+#define JUMPABLE(rn) ( \
+ OP(rn) == OPEN || \
+ (OP(rn) == CLOSE && (!cur_eval || cur_eval->u.eval.close_paren != ARG(rn))) || \
+ OP(rn) == EVAL || \
+ OP(rn) == SUSPEND || OP(rn) == IFMATCH || \
+ OP(rn) == PLUS || OP(rn) == MINMOD || \
+ OP(rn) == KEEPS || \
+ (PL_regkind[OP(rn)] == CURLY && ARG1(rn) > 0) \
+)
+#define IS_EXACT(rn) (PL_regkind[OP(rn)] == EXACT)
+
+#define HAS_TEXT(rn) ( IS_EXACT(rn) || PL_regkind[OP(rn)] == REF )
+
+#if 0
+/* Currently these are only used when PL_regkind[OP(rn)] == EXACT so
+ we don't need this definition. XXX These are now out-of-sync*/
+#define IS_TEXT(rn) ( OP(rn)==EXACT || OP(rn)==REF || OP(rn)==NREF )
+#define IS_TEXTF(rn) ( OP(rn)==EXACTFU || OP(rn)==EXACTFU_SS || OP(rn)==EXACTFA || OP(rn)==EXACTFA_NO_TRIE || OP(rn)==EXACTF || OP(rn)==REFF || OP(rn)==NREFF )
+#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL || OP(rn)==REFFL || OP(rn)==NREFFL )
+
+#else
+/* ... so we use this as its faster. */
+#define IS_TEXT(rn) ( OP(rn)==EXACT || OP(rn)==EXACTL )
+#define IS_TEXTFU(rn) ( OP(rn)==EXACTFU || OP(rn)==EXACTFLU8 || OP(rn)==EXACTFU_SS || OP(rn) == EXACTFA || OP(rn) == EXACTFA_NO_TRIE)
+#define IS_TEXTF(rn) ( OP(rn)==EXACTF )
+#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL )
+
+#endif
+
+/*
+ Search for mandatory following text node; for lookahead, the text must
+ follow but for lookbehind (rn->flags != 0) we skip to the next step.
+*/
+#define FIND_NEXT_IMPT(rn) STMT_START { \
+ while (JUMPABLE(rn)) { \
+ const OPCODE type = OP(rn); \
+ if (type == SUSPEND || PL_regkind[type] == CURLY) \
+ rn = NEXTOPER(NEXTOPER(rn)); \
+ else if (type == PLUS) \
+ rn = NEXTOPER(rn); \
+ else if (type == IFMATCH) \
+ rn = (rn->flags == 0) ? NEXTOPER(NEXTOPER(rn)) : rn + ARG(rn); \
+ else rn += NEXT_OFF(rn); \
+ } \
+} STMT_END
+
+#define SLAB_FIRST(s) (&(s)->states[0])
+#define SLAB_LAST(s) (&(s)->states[PERL_REGMATCH_SLAB_SLOTS-1])
+
+static void S_setup_eval_state(pTHX_ regmatch_info *const reginfo);
+static void S_cleanup_regmatch_info_aux(pTHX_ void *arg);
+static regmatch_state * S_push_slab(pTHX);
+
+#define REGCP_PAREN_ELEMS 3
+#define REGCP_OTHER_ELEMS 3
+#define REGCP_FRAME_ELEMS 1
+/* REGCP_FRAME_ELEMS are not part of the REGCP_OTHER_ELEMS and
+ * are needed for the regexp context stack bookkeeping. */
+
+STATIC CHECKPOINT
+S_regcppush(pTHX_ const regexp *rex, I32 parenfloor, U32 maxopenparen)
+{
+ const int retval = PL_savestack_ix;
+ const int paren_elems_to_push =
+ (maxopenparen - parenfloor) * REGCP_PAREN_ELEMS;
+ const UV total_elems = paren_elems_to_push + REGCP_OTHER_ELEMS;
+ const UV elems_shifted = total_elems << SAVE_TIGHT_SHIFT;
+ I32 p;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGCPPUSH;
+
+ if (paren_elems_to_push < 0)
+ Perl_croak(aTHX_ "panic: paren_elems_to_push, %i < 0, maxopenparen: %i parenfloor: %i REGCP_PAREN_ELEMS: %u",
+ (int)paren_elems_to_push, (int)maxopenparen,
+ (int)parenfloor, (unsigned)REGCP_PAREN_ELEMS);
+
+ if ((elems_shifted >> SAVE_TIGHT_SHIFT) != total_elems)
+ Perl_croak(aTHX_ "panic: paren_elems_to_push offset %"UVuf
+ " out of range (%lu-%ld)",
+ total_elems,
+ (unsigned long)maxopenparen,
+ (long)parenfloor);
+
+ SSGROW(total_elems + REGCP_FRAME_ELEMS);
+
+ DEBUG_BUFFERS_r(
+ if ((int)maxopenparen > (int)parenfloor)
+ PerlIO_printf(Perl_debug_log,
+ "rex=0x%"UVxf" offs=0x%"UVxf": saving capture indices:\n",
+ PTR2UV(rex),
+ PTR2UV(rex->offs)
+ );
+ );
+ for (p = parenfloor+1; p <= (I32)maxopenparen; p++) {
+/* REGCP_PARENS_ELEMS are pushed per pairs of parentheses. */
+ SSPUSHIV(rex->offs[p].end);
+ SSPUSHIV(rex->offs[p].start);
+ SSPUSHINT(rex->offs[p].start_tmp);
+ DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+ " \\%"UVuf": %"IVdf"(%"IVdf")..%"IVdf"\n",
+ (UV)p,
+ (IV)rex->offs[p].start,
+ (IV)rex->offs[p].start_tmp,
+ (IV)rex->offs[p].end
+ ));
+ }
+/* REGCP_OTHER_ELEMS are pushed in any case, parentheses or no. */
+ SSPUSHINT(maxopenparen);
+ SSPUSHINT(rex->lastparen);
+ SSPUSHINT(rex->lastcloseparen);
+ SSPUSHUV(SAVEt_REGCONTEXT | elems_shifted); /* Magic cookie. */
+
+ return retval;
+}
+
+/* These are needed since we do not localize EVAL nodes: */
+#define REGCP_SET(cp) \
+ DEBUG_STATE_r( \
+ PerlIO_printf(Perl_debug_log, \
+ " Setting an EVAL scope, savestack=%"IVdf"\n", \
+ (IV)PL_savestack_ix)); \
+ cp = PL_savestack_ix
+
+#define REGCP_UNWIND(cp) \
+ DEBUG_STATE_r( \
+ if (cp != PL_savestack_ix) \
+ PerlIO_printf(Perl_debug_log, \
+ " Clearing an EVAL scope, savestack=%"IVdf"..%"IVdf"\n", \
+ (IV)(cp), (IV)PL_savestack_ix)); \
+ regcpblow(cp)
+
+#define UNWIND_PAREN(lp, lcp) \
+ for (n = rex->lastparen; n > lp; n--) \
+ rex->offs[n].end = -1; \
+ rex->lastparen = n; \
+ rex->lastcloseparen = lcp;
+
+
+STATIC void
+S_regcppop(pTHX_ regexp *rex, U32 *maxopenparen_p)
+{
+ UV i;
+ U32 paren;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGCPPOP;
+
+ /* Pop REGCP_OTHER_ELEMS before the parentheses loop starts. */
+ i = SSPOPUV;
+ assert((i & SAVE_MASK) == SAVEt_REGCONTEXT); /* Check that the magic cookie is there. */
+ i >>= SAVE_TIGHT_SHIFT; /* Parentheses elements to pop. */
+ rex->lastcloseparen = SSPOPINT;
+ rex->lastparen = SSPOPINT;
+ *maxopenparen_p = SSPOPINT;
+
+ i -= REGCP_OTHER_ELEMS;
+ /* Now restore the parentheses context. */
+ DEBUG_BUFFERS_r(
+ if (i || rex->lastparen + 1 <= rex->nparens)
+ PerlIO_printf(Perl_debug_log,
+ "rex=0x%"UVxf" offs=0x%"UVxf": restoring capture indices to:\n",
+ PTR2UV(rex),
+ PTR2UV(rex->offs)
+ );
+ );
+ paren = *maxopenparen_p;
+ for ( ; i > 0; i -= REGCP_PAREN_ELEMS) {
+ SSize_t tmps;
+ rex->offs[paren].start_tmp = SSPOPINT;
+ rex->offs[paren].start = SSPOPIV;
+ tmps = SSPOPIV;
+ if (paren <= rex->lastparen)
+ rex->offs[paren].end = tmps;
+ DEBUG_BUFFERS_r( PerlIO_printf(Perl_debug_log,
+ " \\%"UVuf": %"IVdf"(%"IVdf")..%"IVdf"%s\n",
+ (UV)paren,
+ (IV)rex->offs[paren].start,
+ (IV)rex->offs[paren].start_tmp,
+ (IV)rex->offs[paren].end,
+ (paren > rex->lastparen ? "(skipped)" : ""));
+ );
+ paren--;
+ }
+#if 1
+ /* It would seem that the similar code in regtry()
+ * already takes care of this, and in fact it is in
+ * a better location to since this code can #if 0-ed out
+ * but the code in regtry() is needed or otherwise tests
+ * requiring null fields (pat.t#187 and split.t#{13,14}
+ * (as of patchlevel 7877) will fail. Then again,
+ * this code seems to be necessary or otherwise
+ * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
+ * --jhi updated by dapm */
+ for (i = rex->lastparen + 1; i <= rex->nparens; i++) {
+ if (i > *maxopenparen_p)
+ rex->offs[i].start = -1;
+ rex->offs[i].end = -1;
+ DEBUG_BUFFERS_r( PerlIO_printf(Perl_debug_log,
+ " \\%"UVuf": %s ..-1 undeffing\n",
+ (UV)i,
+ (i > *maxopenparen_p) ? "-1" : " "
+ ));
+ }
+#endif
+}
+
+/* restore the parens and associated vars at savestack position ix,
+ * but without popping the stack */
+
+STATIC void
+S_regcp_restore(pTHX_ regexp *rex, I32 ix, U32 *maxopenparen_p)
+{
+ I32 tmpix = PL_savestack_ix;
+ PL_savestack_ix = ix;
+ regcppop(rex, maxopenparen_p);
+ PL_savestack_ix = tmpix;
+}
+
+#define regcpblow(cp) LEAVE_SCOPE(cp) /* Ignores regcppush()ed data. */
+
+STATIC bool
+S_isFOO_lc(pTHX_ const U8 classnum, const U8 character)
+{
+ /* Returns a boolean as to whether or not 'character' is a member of the
+ * Posix character class given by 'classnum' that should be equivalent to a
+ * value in the typedef '_char_class_number'.
+ *
+ * Ideally this could be replaced by a just an array of function pointers
+ * to the C library functions that implement the macros this calls.
+ * However, to compile, the precise function signatures are required, and
+ * these may vary from platform to to platform. To avoid having to figure
+ * out what those all are on each platform, I (khw) am using this method,
+ * which adds an extra layer of function call overhead (unless the C
+ * optimizer strips it away). But we don't particularly care about
+ * performance with locales anyway. */
+
+ switch ((_char_class_number) classnum) {
+ case _CC_ENUM_ALPHANUMERIC: return isALPHANUMERIC_LC(character);
+ case _CC_ENUM_ALPHA: return isALPHA_LC(character);
+ case _CC_ENUM_ASCII: return isASCII_LC(character);
+ case _CC_ENUM_BLANK: return isBLANK_LC(character);
+ case _CC_ENUM_CASED: return isLOWER_LC(character)
+ || isUPPER_LC(character);
+ case _CC_ENUM_CNTRL: return isCNTRL_LC(character);
+ case _CC_ENUM_DIGIT: return isDIGIT_LC(character);
+ case _CC_ENUM_GRAPH: return isGRAPH_LC(character);
+ case _CC_ENUM_LOWER: return isLOWER_LC(character);
+ case _CC_ENUM_PRINT: return isPRINT_LC(character);
+ case _CC_ENUM_PUNCT: return isPUNCT_LC(character);
+ case _CC_ENUM_SPACE: return isSPACE_LC(character);
+ case _CC_ENUM_UPPER: return isUPPER_LC(character);
+ case _CC_ENUM_WORDCHAR: return isWORDCHAR_LC(character);
+ case _CC_ENUM_XDIGIT: return isXDIGIT_LC(character);
+ default: /* VERTSPACE should never occur in locales */
+ Perl_croak(aTHX_ "panic: isFOO_lc() has an unexpected character class '%d'", classnum);
+ }
+
+ NOT_REACHED; /* NOTREACHED */
+ return FALSE;
+}
+
+STATIC bool
+S_isFOO_utf8_lc(pTHX_ const U8 classnum, const U8* character)
+{
+ /* Returns a boolean as to whether or not the (well-formed) UTF-8-encoded
+ * 'character' is a member of the Posix character class given by 'classnum'
+ * that should be equivalent to a value in the typedef
+ * '_char_class_number'.
+ *
+ * This just calls isFOO_lc on the code point for the character if it is in
+ * the range 0-255. Outside that range, all characters use Unicode
+ * rules, ignoring any locale. So use the Unicode function if this class
+ * requires a swash, and use the Unicode macro otherwise. */
+
+ PERL_ARGS_ASSERT_ISFOO_UTF8_LC;
+
+ if (UTF8_IS_INVARIANT(*character)) {
+ return isFOO_lc(classnum, *character);
+ }
+ else if (UTF8_IS_DOWNGRADEABLE_START(*character)) {
+ return isFOO_lc(classnum,
+ TWO_BYTE_UTF8_TO_NATIVE(*character, *(character + 1)));
+ }
+
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(character, character + UTF8SKIP(character));
+
+ if (classnum < _FIRST_NON_SWASH_CC) {
+
+ /* Initialize the swash unless done already */
+ if (! PL_utf8_swash_ptrs[classnum]) {
+ U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+ PL_utf8_swash_ptrs[classnum] =
+ _core_swash_init("utf8",
+ "",
+ &PL_sv_undef, 1, 0,
+ PL_XPosix_ptrs[classnum], &flags);
+ }
+
+ return cBOOL(swash_fetch(PL_utf8_swash_ptrs[classnum], (U8 *)
+ character,
+ TRUE /* is UTF */ ));
+ }
+
+ switch ((_char_class_number) classnum) {
+ case _CC_ENUM_SPACE: return is_XPERLSPACE_high(character);
+ case _CC_ENUM_BLANK: return is_HORIZWS_high(character);
+ case _CC_ENUM_XDIGIT: return is_XDIGIT_high(character);
+ case _CC_ENUM_VERTSPACE: return is_VERTWS_high(character);
+ default: break;
+ }
+
+ return FALSE; /* Things like CNTRL are always below 256 */
+}
+
+/*
+ * pregexec and friends
+ */
+
+#ifndef PERL_IN_XSUB_RE
+/*
+ - pregexec - match a regexp against a string
+ */
+I32
+Perl_pregexec(pTHX_ REGEXP * const prog, char* stringarg, char *strend,
+ char *strbeg, SSize_t minend, SV *screamer, U32 nosave)
+/* stringarg: the point in the string at which to begin matching */
+/* strend: pointer to null at end of string */
+/* strbeg: real beginning of string */
+/* minend: end of match must be >= minend bytes after stringarg. */
+/* screamer: SV being matched: only used for utf8 flag, pos() etc; string
+ * itself is accessed via the pointers above */
+/* nosave: For optimizations. */
+{
+ PERL_ARGS_ASSERT_PREGEXEC;
+
+ return
+ regexec_flags(prog, stringarg, strend, strbeg, minend, screamer, NULL,
+ nosave ? 0 : REXEC_COPY_STR);
+}
+#endif
+
+
+
+/* re_intuit_start():
+ *
+ * Based on some optimiser hints, try to find the earliest position in the
+ * string where the regex could match.
+ *
+ * rx: the regex to match against
+ * sv: the SV being matched: only used for utf8 flag; the string
+ * itself is accessed via the pointers below. Note that on
+ * something like an overloaded SV, SvPOK(sv) may be false
+ * and the string pointers may point to something unrelated to
+ * the SV itself.
+ * strbeg: real beginning of string
+ * strpos: the point in the string at which to begin matching
+ * strend: pointer to the byte following the last char of the string
+ * flags currently unused; set to 0
+ * data: currently unused; set to NULL
+ *
+ * The basic idea of re_intuit_start() is to use some known information
+ * about the pattern, namely:
+ *
+ * a) the longest known anchored substring (i.e. one that's at a
+ * constant offset from the beginning of the pattern; but not
+ * necessarily at a fixed offset from the beginning of the
+ * string);
+ * b) the longest floating substring (i.e. one that's not at a constant
+ * offset from the beginning of the pattern);
+ * c) Whether the pattern is anchored to the string; either
+ * an absolute anchor: /^../, or anchored to \n: /^.../m,
+ * or anchored to pos(): /\G/;
+ * d) A start class: a real or synthetic character class which
+ * represents which characters are legal at the start of the pattern;
+ *
+ * to either quickly reject the match, or to find the earliest position
+ * within the string at which the pattern might match, thus avoiding
+ * running the full NFA engine at those earlier locations, only to
+ * eventually fail and retry further along.
+ *
+ * Returns NULL if the pattern can't match, or returns the address within
+ * the string which is the earliest place the match could occur.
+ *
+ * The longest of the anchored and floating substrings is called 'check'
+ * and is checked first. The other is called 'other' and is checked
+ * second. The 'other' substring may not be present. For example,
+ *
+ * /(abc|xyz)ABC\d{0,3}DEFG/
+ *
+ * will have
+ *
+ * check substr (float) = "DEFG", offset 6..9 chars
+ * other substr (anchored) = "ABC", offset 3..3 chars
+ * stclass = [ax]
+ *
+ * Be aware that during the course of this function, sometimes 'anchored'
+ * refers to a substring being anchored relative to the start of the
+ * pattern, and sometimes to the pattern itself being anchored relative to
+ * the string. For example:
+ *
+ * /\dabc/: "abc" is anchored to the pattern;
+ * /^\dabc/: "abc" is anchored to the pattern and the string;
+ * /\d+abc/: "abc" is anchored to neither the pattern nor the string;
+ * /^\d+abc/: "abc" is anchored to neither the pattern nor the string,
+ * but the pattern is anchored to the string.
+ */
+
+char *
+Perl_re_intuit_start(pTHX_
+ REGEXP * const rx,
+ SV *sv,
+ const char * const strbeg,
+ char *strpos,
+ char *strend,
+ const U32 flags,
+ re_scream_pos_data *data)
+{
+ struct regexp *const prog = ReANY(rx);
+ SSize_t start_shift = prog->check_offset_min;
+ /* Should be nonnegative! */
+ SSize_t end_shift = 0;
+ /* current lowest pos in string where the regex can start matching */
+ char *rx_origin = strpos;
+ SV *check;
+ const bool utf8_target = (sv && SvUTF8(sv)) ? 1 : 0; /* if no sv we have to assume bytes */
+ U8 other_ix = 1 - prog->substrs->check_ix;
+ bool ml_anch = 0;
+ char *other_last = strpos;/* latest pos 'other' substr already checked to */
+ char *check_at = NULL; /* check substr found at this pos */
+ const I32 multiline = prog->extflags & RXf_PMf_MULTILINE;
+ RXi_GET_DECL(prog,progi);
+ regmatch_info reginfo_buf; /* create some info to pass to find_byclass */
+ regmatch_info *const reginfo = ®info_buf;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_INTUIT_START;
+ PERL_UNUSED_ARG(flags);
+ PERL_UNUSED_ARG(data);
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "Intuit: trying to determine minimum start position...\n"));
+
+ /* for now, assume that all substr offsets are positive. If at some point
+ * in the future someone wants to do clever things with look-behind and
+ * -ve offsets, they'll need to fix up any code in this function
+ * which uses these offsets. See the thread beginning
+ * <20140113145929.GF27210@iabyn.com>
+ */
+ assert(prog->substrs->data[0].min_offset >= 0);
+ assert(prog->substrs->data[0].max_offset >= 0);
+ assert(prog->substrs->data[1].min_offset >= 0);
+ assert(prog->substrs->data[1].max_offset >= 0);
+ assert(prog->substrs->data[2].min_offset >= 0);
+ assert(prog->substrs->data[2].max_offset >= 0);
+
+ /* for now, assume that if both present, that the floating substring
+ * doesn't start before the anchored substring.
+ * If you break this assumption (e.g. doing better optimisations
+ * with lookahead/behind), then you'll need to audit the code in this
+ * function carefully first
+ */
+ assert(
+ ! ( (prog->anchored_utf8 || prog->anchored_substr)
+ && (prog->float_utf8 || prog->float_substr))
+ || (prog->float_min_offset >= prog->anchored_offset));
+
+ /* byte rather than char calculation for efficiency. It fails
+ * to quickly reject some cases that can't match, but will reject
+ * them later after doing full char arithmetic */
+ if (prog->minlen > strend - strpos) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " String too short...\n"));
+ goto fail;
+ }
+
+ RX_MATCH_UTF8_set(rx,utf8_target);
+ reginfo->is_utf8_target = cBOOL(utf8_target);
+ reginfo->info_aux = NULL;
+ reginfo->strbeg = strbeg;
+ reginfo->strend = strend;
+ reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx));
+ reginfo->intuit = 1;
+ /* not actually used within intuit, but zero for safety anyway */
+ reginfo->poscache_maxiter = 0;
+
+ if (utf8_target) {
+ if (!prog->check_utf8 && prog->check_substr)
+ to_utf8_substr(prog);
+ check = prog->check_utf8;
+ } else {
+ if (!prog->check_substr && prog->check_utf8) {
+ if (! to_byte_substr(prog)) {
+ NON_UTF8_TARGET_BUT_UTF8_REQUIRED(fail);
+ }
+ }
+ check = prog->check_substr;
+ }
+
+ /* dump the various substring data */
+ DEBUG_OPTIMISE_MORE_r({
+ int i;
+ for (i=0; i<=2; i++) {
+ SV *sv = (utf8_target ? prog->substrs->data[i].utf8_substr
+ : prog->substrs->data[i].substr);
+ if (!sv)
+ continue;
+
+ PerlIO_printf(Perl_debug_log,
+ " substrs[%d]: min=%"IVdf" max=%"IVdf" end shift=%"IVdf
+ " useful=%"IVdf" utf8=%d [%s]\n",
+ i,
+ (IV)prog->substrs->data[i].min_offset,
+ (IV)prog->substrs->data[i].max_offset,
+ (IV)prog->substrs->data[i].end_shift,
+ BmUSEFUL(sv),
+ utf8_target ? 1 : 0,
+ SvPEEK(sv));
+ }
+ });
+
+ if (prog->intflags & PREGf_ANCH) { /* Match at \G, beg-of-str or after \n */
+
+ /* ml_anch: check after \n?
+ *
+ * A note about PREGf_IMPLICIT: on an un-anchored pattern beginning
+ * with /.*.../, these flags will have been added by the
+ * compiler:
+ * /.*abc/, /.*abc/m: PREGf_IMPLICIT | PREGf_ANCH_MBOL
+ * /.*abc/s: PREGf_IMPLICIT | PREGf_ANCH_SBOL
+ */
+ ml_anch = (prog->intflags & PREGf_ANCH_MBOL)
+ && !(prog->intflags & PREGf_IMPLICIT);
+
+ if (!ml_anch && !(prog->intflags & PREGf_IMPLICIT)) {
+ /* we are only allowed to match at BOS or \G */
+
+ /* trivially reject if there's a BOS anchor and we're not at BOS.
+ *
+ * Note that we don't try to do a similar quick reject for
+ * \G, since generally the caller will have calculated strpos
+ * based on pos() and gofs, so the string is already correctly
+ * anchored by definition; and handling the exceptions would
+ * be too fiddly (e.g. REXEC_IGNOREPOS).
+ */
+ if ( strpos != strbeg
+ && (prog->intflags & PREGf_ANCH_SBOL))
+ {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Not at start...\n"));
+ goto fail;
+ }
+
+ /* in the presence of an anchor, the anchored (relative to the
+ * start of the regex) substr must also be anchored relative
+ * to strpos. So quickly reject if substr isn't found there.
+ * This works for \G too, because the caller will already have
+ * subtracted gofs from pos, and gofs is the offset from the
+ * \G to the start of the regex. For example, in /.abc\Gdef/,
+ * where substr="abcdef", pos()=3, gofs=4, offset_min=1:
+ * caller will have set strpos=pos()-4; we look for the substr
+ * at position pos()-4+1, which lines up with the "a" */
+
+ if (prog->check_offset_min == prog->check_offset_max) {
+ /* Substring at constant offset from beg-of-str... */
+ SSize_t slen = SvCUR(check);
+ char *s = HOP3c(strpos, prog->check_offset_min, strend);
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Looking for check substr at fixed offset %"IVdf"...\n",
+ (IV)prog->check_offset_min));
+
+ if (SvTAIL(check)) {
+ /* In this case, the regex is anchored at the end too.
+ * Unless it's a multiline match, the lengths must match
+ * exactly, give or take a \n. NB: slen >= 1 since
+ * the last char of check is \n */
+ if (!multiline
+ && ( strend - s > slen
+ || strend - s < slen - 1
+ || (strend - s == slen && strend[-1] != '\n')))
+ {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " String too long...\n"));
+ goto fail_finish;
+ }
+ /* Now should match s[0..slen-2] */
+ slen--;
+ }
+ if (slen && (*SvPVX_const(check) != *s
+ || (slen > 1 && memNE(SvPVX_const(check), s, slen))))
+ {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " String not equal...\n"));
+ goto fail_finish;
+ }
+
+ check_at = s;
+ goto success_at_start;
+ }
+ }
+ }
+
+ end_shift = prog->check_end_shift;
+
+#ifdef DEBUGGING /* 7/99: reports of failure (with the older version) */
+ if (end_shift < 0)
+ Perl_croak(aTHX_ "panic: end_shift: %"IVdf" pattern:\n%s\n ",
+ (IV)end_shift, RX_PRECOMP(prog));
+#endif
+
+ restart:
+
+ /* This is the (re)entry point of the main loop in this function.
+ * The goal of this loop is to:
+ * 1) find the "check" substring in the region rx_origin..strend
+ * (adjusted by start_shift / end_shift). If not found, reject
+ * immediately.
+ * 2) If it exists, look for the "other" substr too if defined; for
+ * example, if the check substr maps to the anchored substr, then
+ * check the floating substr, and vice-versa. If not found, go
+ * back to (1) with rx_origin suitably incremented.
+ * 3) If we find an rx_origin position that doesn't contradict
+ * either of the substrings, then check the possible additional
+ * constraints on rx_origin of /^.../m or a known start class.
+ * If these fail, then depending on which constraints fail, jump
+ * back to here, or to various other re-entry points further along
+ * that skip some of the first steps.
+ * 4) If we pass all those tests, update the BmUSEFUL() count on the
+ * substring. If the start position was determined to be at the
+ * beginning of the string - so, not rejected, but not optimised,
+ * since we have to run regmatch from position 0 - decrement the
+ * BmUSEFUL() count. Otherwise increment it.
+ */
+
+
+ /* first, look for the 'check' substring */
+
+ {
+ U8* start_point;
+ U8* end_point;
+
+ DEBUG_OPTIMISE_MORE_r({
+ PerlIO_printf(Perl_debug_log,
+ " At restart: rx_origin=%"IVdf" Check offset min: %"IVdf
+ " Start shift: %"IVdf" End shift %"IVdf
+ " Real end Shift: %"IVdf"\n",
+ (IV)(rx_origin - strbeg),
+ (IV)prog->check_offset_min,
+ (IV)start_shift,
+ (IV)end_shift,
+ (IV)prog->check_end_shift);
+ });
+
+ end_point = HOP3(strend, -end_shift, strbeg);
+ start_point = HOPMAYBE3(rx_origin, start_shift, end_point);
+ if (!start_point)
+ goto fail_finish;
+
+
+ /* If the regex is absolutely anchored to either the start of the
+ * string (SBOL) or to pos() (ANCH_GPOS), then
+ * check_offset_max represents an upper bound on the string where
+ * the substr could start. For the ANCH_GPOS case, we assume that
+ * the caller of intuit will have already set strpos to
+ * pos()-gofs, so in this case strpos + offset_max will still be
+ * an upper bound on the substr.
+ */
+ if (!ml_anch
+ && prog->intflags & PREGf_ANCH
+ && prog->check_offset_max != SSize_t_MAX)
+ {
+ SSize_t len = SvCUR(check) - !!SvTAIL(check);
+ const char * const anchor =
+ (prog->intflags & PREGf_ANCH_GPOS ? strpos : strbeg);
+
+ /* do a bytes rather than chars comparison. It's conservative;
+ * so it skips doing the HOP if the result can't possibly end
+ * up earlier than the old value of end_point.
+ */
+ if ((char*)end_point - anchor > prog->check_offset_max) {
+ end_point = HOP3lim((U8*)anchor,
+ prog->check_offset_max,
+ end_point -len)
+ + len;
+ }
+ }
+
+ check_at = fbm_instr( start_point, end_point,
+ check, multiline ? FBMrf_MULTILINE : 0);
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " doing 'check' fbm scan, [%"IVdf"..%"IVdf"] gave %"IVdf"\n",
+ (IV)((char*)start_point - strbeg),
+ (IV)((char*)end_point - strbeg),
+ (IV)(check_at ? check_at - strbeg : -1)
+ ));
+
+ /* Update the count-of-usability, remove useless subpatterns,
+ unshift s. */
+
+ DEBUG_EXECUTE_r({
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(check), RE_SV_DUMPLEN(check), 30);
+ PerlIO_printf(Perl_debug_log, " %s %s substr %s%s%s",
+ (check_at ? "Found" : "Did not find"),
+ (check == (utf8_target ? prog->anchored_utf8 : prog->anchored_substr)
+ ? "anchored" : "floating"),
+ quoted,
+ RE_SV_TAIL(check),
+ (check_at ? " at offset " : "...\n") );
+ });
+
+ if (!check_at)
+ goto fail_finish;
+ /* set rx_origin to the minimum position where the regex could start
+ * matching, given the constraint of the just-matched check substring.
+ * But don't set it lower than previously.
+ */
+
+ if (check_at - rx_origin > prog->check_offset_max)
+ rx_origin = HOP3c(check_at, -prog->check_offset_max, rx_origin);
+ /* Finish the diagnostic message */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%ld (rx_origin now %"IVdf")...\n",
+ (long)(check_at - strbeg),
+ (IV)(rx_origin - strbeg)
+ ));
+ }
+
+
+ /* now look for the 'other' substring if defined */
+
+ if (utf8_target ? prog->substrs->data[other_ix].utf8_substr
+ : prog->substrs->data[other_ix].substr)
+ {
+ /* Take into account the "other" substring. */
+ char *last, *last1;
+ char *s;
+ SV* must;
+ struct reg_substr_datum *other;
+
+ do_other_substr:
+ other = &prog->substrs->data[other_ix];
+
+ /* if "other" is anchored:
+ * we've previously found a floating substr starting at check_at.
+ * This means that the regex origin must lie somewhere
+ * between min (rx_origin): HOP3(check_at, -check_offset_max)
+ * and max: HOP3(check_at, -check_offset_min)
+ * (except that min will be >= strpos)
+ * So the fixed substr must lie somewhere between
+ * HOP3(min, anchored_offset)
+ * HOP3(max, anchored_offset) + SvCUR(substr)
+ */
+
+ /* if "other" is floating
+ * Calculate last1, the absolute latest point where the
+ * floating substr could start in the string, ignoring any
+ * constraints from the earlier fixed match. It is calculated
+ * as follows:
+ *
+ * strend - prog->minlen (in chars) is the absolute latest
+ * position within the string where the origin of the regex
+ * could appear. The latest start point for the floating
+ * substr is float_min_offset(*) on from the start of the
+ * regex. last1 simply combines thee two offsets.
+ *
+ * (*) You might think the latest start point should be
+ * float_max_offset from the regex origin, and technically
+ * you'd be correct. However, consider
+ * /a\d{2,4}bcd\w/
+ * Here, float min, max are 3,5 and minlen is 7.
+ * This can match either
+ * /a\d\dbcd\w/
+ * /a\d\d\dbcd\w/
+ * /a\d\d\d\dbcd\w/
+ * In the first case, the regex matches minlen chars; in the
+ * second, minlen+1, in the third, minlen+2.
+ * In the first case, the floating offset is 3 (which equals
+ * float_min), in the second, 4, and in the third, 5 (which
+ * equals float_max). In all cases, the floating string bcd
+ * can never start more than 4 chars from the end of the
+ * string, which equals minlen - float_min. As the substring
+ * starts to match more than float_min from the start of the
+ * regex, it makes the regex match more than minlen chars,
+ * and the two cancel each other out. So we can always use
+ * float_min - minlen, rather than float_max - minlen for the
+ * latest position in the string.
+ *
+ * Note that -minlen + float_min_offset is equivalent (AFAIKT)
+ * to CHR_SVLEN(must) - !!SvTAIL(must) + prog->float_end_shift
+ */
+
+ assert(prog->minlen >= other->min_offset);
+ last1 = HOP3c(strend,
+ other->min_offset - prog->minlen, strbeg);
+
+ if (other_ix) {/* i.e. if (other-is-float) */
+ /* last is the latest point where the floating substr could
+ * start, *given* any constraints from the earlier fixed
+ * match. This constraint is that the floating string starts
+ * <= float_max_offset chars from the regex origin (rx_origin).
+ * If this value is less than last1, use it instead.
+ */
+ assert(rx_origin <= last1);
+ last =
+ /* this condition handles the offset==infinity case, and
+ * is a short-cut otherwise. Although it's comparing a
+ * byte offset to a char length, it does so in a safe way,
+ * since 1 char always occupies 1 or more bytes,
+ * so if a string range is (last1 - rx_origin) bytes,
+ * it will be less than or equal to (last1 - rx_origin)
+ * chars; meaning it errs towards doing the accurate HOP3
+ * rather than just using last1 as a short-cut */
+ (last1 - rx_origin) < other->max_offset
+ ? last1
+ : (char*)HOP3lim(rx_origin, other->max_offset, last1);
+ }
+ else {
+ assert(strpos + start_shift <= check_at);
+ last = HOP4c(check_at, other->min_offset - start_shift,
+ strbeg, strend);
+ }
+
+ s = HOP3c(rx_origin, other->min_offset, strend);
+ if (s < other_last) /* These positions already checked */
+ s = other_last;
+
+ must = utf8_target ? other->utf8_substr : other->substr;
+ assert(SvPOK(must));
+ {
+ char *from = s;
+ char *to = last + SvCUR(must) - (SvTAIL(must)!=0);
+
+ if (from > to) {
+ s = NULL;
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " skipping 'other' fbm scan: %"IVdf" > %"IVdf"\n",
+ (IV)(from - strbeg),
+ (IV)(to - strbeg)
+ ));
+ }
+ else {
+ s = fbm_instr(
+ (unsigned char*)from,
+ (unsigned char*)to,
+ must,
+ multiline ? FBMrf_MULTILINE : 0
+ );
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " doing 'other' fbm scan, [%"IVdf"..%"IVdf"] gave %"IVdf"\n",
+ (IV)(from - strbeg),
+ (IV)(to - strbeg),
+ (IV)(s ? s - strbeg : -1)
+ ));
+ }
+ }
+
+ DEBUG_EXECUTE_r({
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+ PerlIO_printf(Perl_debug_log, " %s %s substr %s%s",
+ s ? "Found" : "Contradicts",
+ other_ix ? "floating" : "anchored",
+ quoted, RE_SV_TAIL(must));
+ });
+
+
+ if (!s) {
+ /* last1 is latest possible substr location. If we didn't
+ * find it before there, we never will */
+ if (last >= last1) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "; giving up...\n"));
+ goto fail_finish;
+ }
+
+ /* try to find the check substr again at a later
+ * position. Maybe next time we'll find the "other" substr
+ * in range too */
+ other_last = HOP3c(last, 1, strend) /* highest failure */;
+ rx_origin =
+ other_ix /* i.e. if other-is-float */
+ ? HOP3c(rx_origin, 1, strend)
+ : HOP4c(last, 1 - other->min_offset, strbeg, strend);
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "; about to retry %s at offset %ld (rx_origin now %"IVdf")...\n",
+ (other_ix ? "floating" : "anchored"),
+ (long)(HOP3c(check_at, 1, strend) - strbeg),
+ (IV)(rx_origin - strbeg)
+ ));
+ goto restart;
+ }
+ else {
+ if (other_ix) { /* if (other-is-float) */
+ /* other_last is set to s, not s+1, since its possible for
+ * a floating substr to fail first time, then succeed
+ * second time at the same floating position; e.g.:
+ * "-AB--AABZ" =~ /\wAB\d*Z/
+ * The first time round, anchored and float match at
+ * "-(AB)--AAB(Z)" then fail on the initial \w character
+ * class. Second time round, they match at "-AB--A(AB)(Z)".
+ */
+ other_last = s;
+ }
+ else {
+ rx_origin = HOP3c(s, -other->min_offset, strbeg);
+ other_last = HOP3c(s, 1, strend);
+ }
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " at offset %ld (rx_origin now %"IVdf")...\n",
+ (long)(s - strbeg),
+ (IV)(rx_origin - strbeg)
+ ));
+
+ }
+ }
+ else {
+ DEBUG_OPTIMISE_MORE_r(
+ PerlIO_printf(Perl_debug_log,
+ " Check-only match: offset min:%"IVdf" max:%"IVdf
+ " check_at:%"IVdf" rx_origin:%"IVdf" rx_origin-check_at:%"IVdf
+ " strend:%"IVdf"\n",
+ (IV)prog->check_offset_min,
+ (IV)prog->check_offset_max,
+ (IV)(check_at-strbeg),
+ (IV)(rx_origin-strbeg),
+ (IV)(rx_origin-check_at),
+ (IV)(strend-strbeg)
+ )
+ );
+ }
+
+ postprocess_substr_matches:
+
+ /* handle the extra constraint of /^.../m if present */
+
+ if (ml_anch && rx_origin != strbeg && rx_origin[-1] != '\n') {
+ char *s;
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " looking for /^/m anchor"));
+
+ /* we have failed the constraint of a \n before rx_origin.
+ * Find the next \n, if any, even if it's beyond the current
+ * anchored and/or floating substrings. Whether we should be
+ * scanning ahead for the next \n or the next substr is debatable.
+ * On the one hand you'd expect rare substrings to appear less
+ * often than \n's. On the other hand, searching for \n means
+ * we're effectively flipping between check_substr and "\n" on each
+ * iteration as the current "rarest" string candidate, which
+ * means for example that we'll quickly reject the whole string if
+ * hasn't got a \n, rather than trying every substr position
+ * first
+ */
+
+ s = HOP3c(strend, - prog->minlen, strpos);
+ if (s <= rx_origin ||
+ ! ( rx_origin = (char *)memchr(rx_origin, '\n', s - rx_origin)))
+ {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Did not find /%s^%s/m...\n",
+ PL_colors[0], PL_colors[1]));
+ goto fail_finish;
+ }
+
+ /* earliest possible origin is 1 char after the \n.
+ * (since *rx_origin == '\n', it's safe to ++ here rather than
+ * HOP(rx_origin, 1)) */
+ rx_origin++;
+
+ if (prog->substrs->check_ix == 0 /* check is anchored */
+ || rx_origin >= HOP3c(check_at, - prog->check_offset_min, strpos))
+ {
+ /* Position contradicts check-string; either because
+ * check was anchored (and thus has no wiggle room),
+ * or check was float and rx_origin is above the float range */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Found /%s^%s/m, about to restart lookup for check-string with rx_origin %ld...\n",
+ PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg)));
+ goto restart;
+ }
+
+ /* if we get here, the check substr must have been float,
+ * is in range, and we may or may not have had an anchored
+ * "other" substr which still contradicts */
+ assert(prog->substrs->check_ix); /* check is float */
+
+ if (utf8_target ? prog->anchored_utf8 : prog->anchored_substr) {
+ /* whoops, the anchored "other" substr exists, so we still
+ * contradict. On the other hand, the float "check" substr
+ * didn't contradict, so just retry the anchored "other"
+ * substr */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Found /%s^%s/m, rescanning for anchored from offset %ld (rx_origin now %"IVdf")...\n",
+ PL_colors[0], PL_colors[1],
+ (long)(rx_origin - strbeg + prog->anchored_offset),
+ (long)(rx_origin - strbeg)
+ ));
+ goto do_other_substr;
+ }
+
+ /* success: we don't contradict the found floating substring
+ * (and there's no anchored substr). */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Found /%s^%s/m with rx_origin %ld...\n",
+ PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg)));
+ }
+ else {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " (multiline anchor test skipped)\n"));
+ }
+
+ success_at_start:
+
+
+ /* if we have a starting character class, then test that extra constraint.
+ * (trie stclasses are too expensive to use here, we are better off to
+ * leave it to regmatch itself) */
+
+ if (progi->regstclass && PL_regkind[OP(progi->regstclass)]!=TRIE) {
+ const U8* const str = (U8*)STRING(progi->regstclass);
+
+ /* XXX this value could be pre-computed */
+ const int cl_l = (PL_regkind[OP(progi->regstclass)] == EXACT
+ ? (reginfo->is_utf8_pat
+ ? utf8_distance(str + STR_LEN(progi->regstclass), str)
+ : STR_LEN(progi->regstclass))
+ : 1);
+ char * endpos;
+ char *s;
+ /* latest pos that a matching float substr constrains rx start to */
+ char *rx_max_float = NULL;
+
+ /* if the current rx_origin is anchored, either by satisfying an
+ * anchored substring constraint, or a /^.../m constraint, then we
+ * can reject the current origin if the start class isn't found
+ * at the current position. If we have a float-only match, then
+ * rx_origin is constrained to a range; so look for the start class
+ * in that range. if neither, then look for the start class in the
+ * whole rest of the string */
+
+ /* XXX DAPM it's not clear what the minlen test is for, and why
+ * it's not used in the floating case. Nothing in the test suite
+ * causes minlen == 0 here. See <20140313134639.GS12844@iabyn.com>.
+ * Here are some old comments, which may or may not be correct:
+ *
+ * minlen == 0 is possible if regstclass is \b or \B,
+ * and the fixed substr is ''$.
+ * Since minlen is already taken into account, rx_origin+1 is
+ * before strend; accidentally, minlen >= 1 guaranties no false
+ * positives at rx_origin + 1 even for \b or \B. But (minlen? 1 :
+ * 0) below assumes that regstclass does not come from lookahead...
+ * If regstclass takes bytelength more than 1: If charlength==1, OK.
+ * This leaves EXACTF-ish only, which are dealt with in
+ * find_byclass().
+ */
+
+ if (prog->anchored_substr || prog->anchored_utf8 || ml_anch)
+ endpos= HOP3c(rx_origin, (prog->minlen ? cl_l : 0), strend);
+ else if (prog->float_substr || prog->float_utf8) {
+ rx_max_float = HOP3c(check_at, -start_shift, strbeg);
+ endpos= HOP3c(rx_max_float, cl_l, strend);
+ }
+ else
+ endpos= strend;
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " looking for class: start_shift: %"IVdf" check_at: %"IVdf
+ " rx_origin: %"IVdf" endpos: %"IVdf"\n",
+ (IV)start_shift, (IV)(check_at - strbeg),
+ (IV)(rx_origin - strbeg), (IV)(endpos - strbeg)));
+
+ s = find_byclass(prog, progi->regstclass, rx_origin, endpos,
+ reginfo);
+ if (!s) {
+ if (endpos == strend) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ " Could not match STCLASS...\n") );
+ goto fail;
+ }
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ " This position contradicts STCLASS...\n") );
+ if ((prog->intflags & PREGf_ANCH) && !ml_anch
+ && !(prog->intflags & PREGf_IMPLICIT))
+ goto fail;
+
+ /* Contradict one of substrings */
+ if (prog->anchored_substr || prog->anchored_utf8) {
+ if (prog->substrs->check_ix == 1) { /* check is float */
+ /* Have both, check_string is floating */
+ assert(rx_origin + start_shift <= check_at);
+ if (rx_origin + start_shift != check_at) {
+ /* not at latest position float substr could match:
+ * Recheck anchored substring, but not floating.
+ * The condition above is in bytes rather than
+ * chars for efficiency. It's conservative, in
+ * that it errs on the side of doing 'goto
+ * do_other_substr'. In this case, at worst,
+ * an extra anchored search may get done, but in
+ * practice the extra fbm_instr() is likely to
+ * get skipped anyway. */
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ " about to retry anchored at offset %ld (rx_origin now %"IVdf")...\n",
+ (long)(other_last - strbeg),
+ (IV)(rx_origin - strbeg)
+ ));
+ goto do_other_substr;
+ }
+ }
+ }
+ else {
+ /* float-only */
+
+ if (ml_anch) {
+ /* In the presence of ml_anch, we might be able to
+ * find another \n without breaking the current float
+ * constraint. */
+
+ /* strictly speaking this should be HOP3c(..., 1, ...),
+ * but since we goto a block of code that's going to
+ * search for the next \n if any, its safe here */
+ rx_origin++;
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ " about to look for /%s^%s/m starting at rx_origin %ld...\n",
+ PL_colors[0], PL_colors[1],
+ (long)(rx_origin - strbeg)) );
+ goto postprocess_substr_matches;
+ }
+
+ /* strictly speaking this can never be true; but might
+ * be if we ever allow intuit without substrings */
+ if (!(utf8_target ? prog->float_utf8 : prog->float_substr))
+ goto fail;
+
+ rx_origin = rx_max_float;
+ }
+
+ /* at this point, any matching substrings have been
+ * contradicted. Start again... */
+
+ rx_origin = HOP3c(rx_origin, 1, strend);
+
+ /* uses bytes rather than char calculations for efficiency.
+ * It's conservative: it errs on the side of doing 'goto restart',
+ * where there is code that does a proper char-based test */
+ if (rx_origin + start_shift + end_shift > strend) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ " Could not match STCLASS...\n") );
+ goto fail;
+ }
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ " about to look for %s substr starting at offset %ld (rx_origin now %"IVdf")...\n",
+ (prog->substrs->check_ix ? "floating" : "anchored"),
+ (long)(rx_origin + start_shift - strbeg),
+ (IV)(rx_origin - strbeg)
+ ));
+ goto restart;
+ }
+
+ /* Success !!! */
+
+ if (rx_origin != s) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " By STCLASS: moving %ld --> %ld\n",
+ (long)(rx_origin - strbeg), (long)(s - strbeg))
+ );
+ }
+ else {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Does not contradict STCLASS...\n");
+ );
+ }
+ }
+
+ /* Decide whether using the substrings helped */
+
+ if (rx_origin != strpos) {
+ /* Fixed substring is found far enough so that the match
+ cannot start at strpos. */
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, " try at offset...\n"));
+ ++BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr); /* hooray/5 */
+ }
+ else {
+ /* The found rx_origin position does not prohibit matching at
+ * strpos, so calling intuit didn't gain us anything. Decrement
+ * the BmUSEFUL() count on the check substring, and if we reach
+ * zero, free it. */
+ if (!(prog->intflags & PREGf_NAUGHTY)
+ && (utf8_target ? (
+ prog->check_utf8 /* Could be deleted already */
+ && --BmUSEFUL(prog->check_utf8) < 0
+ && (prog->check_utf8 == prog->float_utf8)
+ ) : (
+ prog->check_substr /* Could be deleted already */
+ && --BmUSEFUL(prog->check_substr) < 0
+ && (prog->check_substr == prog->float_substr)
+ )))
+ {
+ /* If flags & SOMETHING - do not do it many times on the same match */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, " ... Disabling check substring...\n"));
+ /* XXX Does the destruction order has to change with utf8_target? */
+ SvREFCNT_dec(utf8_target ? prog->check_utf8 : prog->check_substr);
+ SvREFCNT_dec(utf8_target ? prog->check_substr : prog->check_utf8);
+ prog->check_substr = prog->check_utf8 = NULL; /* disable */
+ prog->float_substr = prog->float_utf8 = NULL; /* clear */
+ check = NULL; /* abort */
+ /* XXXX This is a remnant of the old implementation. It
+ looks wasteful, since now INTUIT can use many
+ other heuristics. */
+ prog->extflags &= ~RXf_USE_INTUIT;
+ }
+ }
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "Intuit: %sSuccessfully guessed:%s match at offset %ld\n",
+ PL_colors[4], PL_colors[5], (long)(rx_origin - strbeg)) );
+
+ return rx_origin;
+
+ fail_finish: /* Substring not found */
+ if (prog->check_substr || prog->check_utf8) /* could be removed already */
+ BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr) += 5; /* hooray */
+ fail:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch rejected by optimizer%s\n",
+ PL_colors[4], PL_colors[5]));
+ return NULL;
+}
+
+
+#define DECL_TRIE_TYPE(scan) \
+ const enum { trie_plain, trie_utf8, trie_utf8_fold, trie_latin_utf8_fold, \
+ trie_utf8_exactfa_fold, trie_latin_utf8_exactfa_fold, \
+ trie_utf8l, trie_flu8 } \
+ trie_type = ((scan->flags == EXACT) \
+ ? (utf8_target ? trie_utf8 : trie_plain) \
+ : (scan->flags == EXACTL) \
+ ? (utf8_target ? trie_utf8l : trie_plain) \
+ : (scan->flags == EXACTFA) \
+ ? (utf8_target \
+ ? trie_utf8_exactfa_fold \
+ : trie_latin_utf8_exactfa_fold) \
+ : (scan->flags == EXACTFLU8 \
+ ? trie_flu8 \
+ : (utf8_target \
+ ? trie_utf8_fold \
+ : trie_latin_utf8_fold)))
+
+#define REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc, uscan, len, uvc, charid, foldlen, foldbuf, uniflags) \
+STMT_START { \
+ STRLEN skiplen; \
+ U8 flags = FOLD_FLAGS_FULL; \
+ switch (trie_type) { \
+ case trie_flu8: \
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \
+ if (utf8_target && UTF8_IS_ABOVE_LATIN1(*uc)) { \
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(uc, uc + UTF8SKIP(uc)); \
+ } \
+ goto do_trie_utf8_fold; \
+ case trie_utf8_exactfa_fold: \
+ flags |= FOLD_FLAGS_NOMIX_ASCII; \
+ /* FALLTHROUGH */ \
+ case trie_utf8_fold: \
+ do_trie_utf8_fold: \
+ if ( foldlen>0 ) { \
+ uvc = utf8n_to_uvchr( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
+ foldlen -= len; \
+ uscan += len; \
+ len=0; \
+ } else { \
+ uvc = _to_utf8_fold_flags( (const U8*) uc, foldbuf, &foldlen, flags); \
+ len = UTF8SKIP(uc); \
+ skiplen = UNISKIP( uvc ); \
+ foldlen -= skiplen; \
+ uscan = foldbuf + skiplen; \
+ } \
+ break; \
+ case trie_latin_utf8_exactfa_fold: \
+ flags |= FOLD_FLAGS_NOMIX_ASCII; \
+ /* FALLTHROUGH */ \
+ case trie_latin_utf8_fold: \
+ if ( foldlen>0 ) { \
+ uvc = utf8n_to_uvchr( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
+ foldlen -= len; \
+ uscan += len; \
+ len=0; \
+ } else { \
+ len = 1; \
+ uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, flags); \
+ skiplen = UNISKIP( uvc ); \
+ foldlen -= skiplen; \
+ uscan = foldbuf + skiplen; \
+ } \
+ break; \
+ case trie_utf8l: \
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \
+ if (utf8_target && UTF8_IS_ABOVE_LATIN1(*uc)) { \
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(uc, uc + UTF8SKIP(uc)); \
+ } \
+ /* FALLTHROUGH */ \
+ case trie_utf8: \
+ uvc = utf8n_to_uvchr( (const U8*) uc, UTF8_MAXLEN, &len, uniflags ); \
+ break; \
+ case trie_plain: \
+ uvc = (UV)*uc; \
+ len = 1; \
+ } \
+ if (uvc < 256) { \
+ charid = trie->charmap[ uvc ]; \
+ } \
+ else { \
+ charid = 0; \
+ if (widecharmap) { \
+ SV** const svpp = hv_fetch(widecharmap, \
+ (char*)&uvc, sizeof(UV), 0); \
+ if (svpp) \
+ charid = (U16)SvIV(*svpp); \
+ } \
+ } \
+} STMT_END
+
+#define DUMP_EXEC_POS(li,s,doutf8) \
+ dump_exec_pos(li,s,(reginfo->strend),(reginfo->strbeg), \
+ startpos, doutf8)
+
+#define REXEC_FBC_EXACTISH_SCAN(COND) \
+STMT_START { \
+ while (s <= e) { \
+ if ( (COND) \
+ && (ln == 1 || folder(s, pat_string, ln)) \
+ && (reginfo->intuit || regtry(reginfo, &s)) )\
+ goto got_it; \
+ s++; \
+ } \
+} STMT_END
+
+#define REXEC_FBC_UTF8_SCAN(CODE) \
+STMT_START { \
+ while (s < strend) { \
+ CODE \
+ s += UTF8SKIP(s); \
+ } \
+} STMT_END
+
+#define REXEC_FBC_SCAN(CODE) \
+STMT_START { \
+ while (s < strend) { \
+ CODE \
+ s++; \
+ } \
+} STMT_END
+
+#define REXEC_FBC_UTF8_CLASS_SCAN(COND) \
+REXEC_FBC_UTF8_SCAN( /* Loops while (s < strend) */ \
+ if (COND) { \
+ if (tmp && (reginfo->intuit || regtry(reginfo, &s))) \
+ goto got_it; \
+ else \
+ tmp = doevery; \
+ } \
+ else \
+ tmp = 1; \
+)
+
+#define REXEC_FBC_CLASS_SCAN(COND) \
+REXEC_FBC_SCAN( /* Loops while (s < strend) */ \
+ if (COND) { \
+ if (tmp && (reginfo->intuit || regtry(reginfo, &s))) \
+ goto got_it; \
+ else \
+ tmp = doevery; \
+ } \
+ else \
+ tmp = 1; \
+)
+
+#define REXEC_FBC_CSCAN(CONDUTF8,COND) \
+ if (utf8_target) { \
+ REXEC_FBC_UTF8_CLASS_SCAN(CONDUTF8); \
+ } \
+ else { \
+ REXEC_FBC_CLASS_SCAN(COND); \
+ }
+
+/* The three macros below are slightly different versions of the same logic.
+ *
+ * The first is for /a and /aa when the target string is UTF-8. This can only
+ * match ascii, but it must advance based on UTF-8. The other two handle the
+ * non-UTF-8 and the more generic UTF-8 cases. In all three, we are looking
+ * for the boundary (or non-boundary) between a word and non-word character.
+ * The utf8 and non-utf8 cases have the same logic, but the details must be
+ * different. Find the "wordness" of the character just prior to this one, and
+ * compare it with the wordness of this one. If they differ, we have a
+ * boundary. At the beginning of the string, pretend that the previous
+ * character was a new-line.
+ *
+ * All these macros uncleanly have side-effects with each other and outside
+ * variables. So far it's been too much trouble to clean-up
+ *
+ * TEST_NON_UTF8 is the macro or function to call to test if its byte input is
+ * a word character or not.
+ * IF_SUCCESS is code to do if it finds that we are at a boundary between
+ * word/non-word
+ * IF_FAIL is code to do if we aren't at a boundary between word/non-word
+ *
+ * Exactly one of the two IF_FOO parameters is a no-op, depending on whether we
+ * are looking for a boundary or for a non-boundary. If we are looking for a
+ * boundary, we want IF_FAIL to be the no-op, and for IF_SUCCESS to go out and
+ * see if this tentative match actually works, and if so, to quit the loop
+ * here. And vice-versa if we are looking for a non-boundary.
+ *
+ * 'tmp' below in the next three macros in the REXEC_FBC_SCAN and
+ * REXEC_FBC_UTF8_SCAN loops is a loop invariant, a bool giving the return of
+ * TEST_NON_UTF8(s-1). To see this, note that that's what it is defined to be
+ * at entry to the loop, and to get to the IF_FAIL branch, tmp must equal
+ * TEST_NON_UTF8(s), and in the opposite branch, IF_SUCCESS, tmp is that
+ * complement. But in that branch we complement tmp, meaning that at the
+ * bottom of the loop tmp is always going to be equal to TEST_NON_UTF8(s),
+ * which means at the top of the loop in the next iteration, it is
+ * TEST_NON_UTF8(s-1) */
+#define FBC_UTF8_A(TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
+ tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n'; \
+ tmp = TEST_NON_UTF8(tmp); \
+ REXEC_FBC_UTF8_SCAN( /* advances s while s < strend */ \
+ if (tmp == ! TEST_NON_UTF8((U8) *s)) { \
+ tmp = !tmp; \
+ IF_SUCCESS; /* Is a boundary if values for s-1 and s differ */ \
+ } \
+ else { \
+ IF_FAIL; \
+ } \
+ ); \
+
+/* Like FBC_UTF8_A, but TEST_UV is a macro which takes a UV as its input, and
+ * TEST_UTF8 is a macro that for the same input code points returns identically
+ * to TEST_UV, but takes a pointer to a UTF-8 encoded string instead */
+#define FBC_UTF8(TEST_UV, TEST_UTF8, IF_SUCCESS, IF_FAIL) \
+ if (s == reginfo->strbeg) { \
+ tmp = '\n'; \
+ } \
+ else { /* Back-up to the start of the previous character */ \
+ U8 * const r = reghop3((U8*)s, -1, (U8*)reginfo->strbeg); \
+ tmp = utf8n_to_uvchr(r, (U8*) reginfo->strend - r, \
+ 0, UTF8_ALLOW_DEFAULT); \
+ } \
+ tmp = TEST_UV(tmp); \
+ LOAD_UTF8_CHARCLASS_ALNUM(); \
+ REXEC_FBC_UTF8_SCAN( /* advances s while s < strend */ \
+ if (tmp == ! (TEST_UTF8((U8 *) s))) { \
+ tmp = !tmp; \
+ IF_SUCCESS; \
+ } \
+ else { \
+ IF_FAIL; \
+ } \
+ );
+
+/* Like the above two macros. UTF8_CODE is the complete code for handling
+ * UTF-8. Common to the BOUND and NBOUND cases, set-up by the FBC_BOUND, etc
+ * macros below */
+#define FBC_BOUND_COMMON(UTF8_CODE, TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
+ if (utf8_target) { \
+ UTF8_CODE \
+ } \
+ else { /* Not utf8 */ \
+ tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n'; \
+ tmp = TEST_NON_UTF8(tmp); \
+ REXEC_FBC_SCAN( /* advances s while s < strend */ \
+ if (tmp == ! TEST_NON_UTF8((U8) *s)) { \
+ IF_SUCCESS; \
+ tmp = !tmp; \
+ } \
+ else { \
+ IF_FAIL; \
+ } \
+ ); \
+ } \
+ /* Here, things have been set up by the previous code so that tmp is the \
+ * return of TEST_NON_UTF(s-1) or TEST_UTF8(s-1) (depending on the \
+ * utf8ness of the target). We also have to check if this matches against \
+ * the EOS, which we treat as a \n (which is the same value in both UTF-8 \
+ * or non-UTF8, so can use the non-utf8 test condition even for a UTF-8 \
+ * string */ \
+ if (tmp == ! TEST_NON_UTF8('\n')) { \
+ IF_SUCCESS; \
+ } \
+ else { \
+ IF_FAIL; \
+ }
+
+/* This is the macro to use when we want to see if something that looks like it
+ * could match, actually does, and if so exits the loop */
+#define REXEC_FBC_TRYIT \
+ if ((reginfo->intuit || regtry(reginfo, &s))) \
+ goto got_it
+
+/* The only difference between the BOUND and NBOUND cases is that
+ * REXEC_FBC_TRYIT is called when matched in BOUND, and when non-matched in
+ * NBOUND. This is accomplished by passing it as either the if or else clause,
+ * with the other one being empty (PLACEHOLDER is defined as empty).
+ *
+ * The TEST_FOO parameters are for operating on different forms of input, but
+ * all should be ones that return identically for the same underlying code
+ * points */
+#define FBC_BOUND(TEST_NON_UTF8, TEST_UV, TEST_UTF8) \
+ FBC_BOUND_COMMON( \
+ FBC_UTF8(TEST_UV, TEST_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), \
+ TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
+
+#define FBC_BOUND_A(TEST_NON_UTF8) \
+ FBC_BOUND_COMMON( \
+ FBC_UTF8_A(TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), \
+ TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
+
+#define FBC_NBOUND(TEST_NON_UTF8, TEST_UV, TEST_UTF8) \
+ FBC_BOUND_COMMON( \
+ FBC_UTF8(TEST_UV, TEST_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), \
+ TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
+
+#define FBC_NBOUND_A(TEST_NON_UTF8) \
+ FBC_BOUND_COMMON( \
+ FBC_UTF8_A(TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), \
+ TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
+
+/* Takes a pointer to an inversion list, a pointer to its corresponding
+ * inversion map, and a code point, and returns the code point's value
+ * according to the two arrays. It assumes that all code points have a value.
+ * This is used as the base macro for macros for particular properties */
+#define _generic_GET_BREAK_VAL_CP(invlist, invmap, cp) \
+ invmap[_invlist_search(invlist, cp)]
+
+/* Same as above, but takes begin, end ptrs to a UTF-8 encoded string instead
+ * of a code point, returning the value for the first code point in the string.
+ * And it takes the particular macro name that finds the desired value given a
+ * code point. Merely convert the UTF-8 to code point and call the cp macro */
+#define _generic_GET_BREAK_VAL_UTF8(cp_macro, pos, strend) \
+ (__ASSERT_(pos < strend) \
+ /* Note assumes is valid UTF-8 */ \
+ (cp_macro(utf8_to_uvchr_buf((pos), (strend), NULL))))
+
+/* Returns the GCB value for the input code point */
+#define getGCB_VAL_CP(cp) \
+ _generic_GET_BREAK_VAL_CP( \
+ PL_GCB_invlist, \
+ Grapheme_Cluster_Break_invmap, \
+ (cp))
+
+/* Returns the GCB value for the first code point in the UTF-8 encoded string
+ * bounded by pos and strend */
+#define getGCB_VAL_UTF8(pos, strend) \
+ _generic_GET_BREAK_VAL_UTF8(getGCB_VAL_CP, pos, strend)
+
+
+/* Returns the SB value for the input code point */
+#define getSB_VAL_CP(cp) \
+ _generic_GET_BREAK_VAL_CP( \
+ PL_SB_invlist, \
+ Sentence_Break_invmap, \
+ (cp))
+
+/* Returns the SB value for the first code point in the UTF-8 encoded string
+ * bounded by pos and strend */
+#define getSB_VAL_UTF8(pos, strend) \
+ _generic_GET_BREAK_VAL_UTF8(getSB_VAL_CP, pos, strend)
+
+/* Returns the WB value for the input code point */
+#define getWB_VAL_CP(cp) \
+ _generic_GET_BREAK_VAL_CP( \
+ PL_WB_invlist, \
+ Word_Break_invmap, \
+ (cp))
+
+/* Returns the WB value for the first code point in the UTF-8 encoded string
+ * bounded by pos and strend */
+#define getWB_VAL_UTF8(pos, strend) \
+ _generic_GET_BREAK_VAL_UTF8(getWB_VAL_CP, pos, strend)
+
+/* We know what class REx starts with. Try to find this position... */
+/* if reginfo->intuit, its a dryrun */
+/* annoyingly all the vars in this routine have different names from their counterparts
+ in regmatch. /grrr */
+STATIC char *
+S_find_byclass(pTHX_ regexp * prog, const regnode *c, char *s,
+ const char *strend, regmatch_info *reginfo)
+{
+ dVAR;
+ const I32 doevery = (prog->intflags & PREGf_SKIP) == 0;
+ char *pat_string; /* The pattern's exactish string */
+ char *pat_end; /* ptr to end char of pat_string */
+ re_fold_t folder; /* Function for computing non-utf8 folds */
+ const U8 *fold_array; /* array for folding ords < 256 */
+ STRLEN ln;
+ STRLEN lnc;
+ U8 c1;
+ U8 c2;
+ char *e;
+ I32 tmp = 1; /* Scratch variable? */
+ const bool utf8_target = reginfo->is_utf8_target;
+ UV utf8_fold_flags = 0;
+ const bool is_utf8_pat = reginfo->is_utf8_pat;
+ bool to_complement = FALSE; /* Invert the result? Taking the xor of this
+ with a result inverts that result, as 0^1 =
+ 1 and 1^1 = 0 */
+ _char_class_number classnum;
+
+ RXi_GET_DECL(prog,progi);
+
+ PERL_ARGS_ASSERT_FIND_BYCLASS;
+
+ /* We know what class it must start with. */
+ switch (OP(c)) {
+ case ANYOFL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ /* FALLTHROUGH */
+ case ANYOF:
+ if (utf8_target) {
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ reginclass(prog, c, (U8*)s, (U8*) strend, utf8_target));
+ }
+ else {
+ REXEC_FBC_CLASS_SCAN(REGINCLASS(prog, c, (U8*)s));
+ }
+ break;
+
+ case EXACTFA_NO_TRIE: /* This node only generated for non-utf8 patterns */
+ assert(! is_utf8_pat);
+ /* FALLTHROUGH */
+ case EXACTFA:
+ if (is_utf8_pat || utf8_target) {
+ utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_exactf_utf8;
+ }
+ fold_array = PL_fold_latin1; /* Latin1 folds are not affected by */
+ folder = foldEQ_latin1; /* /a, except the sharp s one which */
+ goto do_exactf_non_utf8; /* isn't dealt with by these */
+
+ case EXACTF: /* This node only generated for non-utf8 patterns */
+ assert(! is_utf8_pat);
+ if (utf8_target) {
+ utf8_fold_flags = 0;
+ goto do_exactf_utf8;
+ }
+ fold_array = PL_fold;
+ folder = foldEQ;
+ goto do_exactf_non_utf8;
+
+ case EXACTFL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (is_utf8_pat || utf8_target || IN_UTF8_CTYPE_LOCALE) {
+ utf8_fold_flags = FOLDEQ_LOCALE;
+ goto do_exactf_utf8;
+ }
+ fold_array = PL_fold_locale;
+ folder = foldEQ_locale;
+ goto do_exactf_non_utf8;
+
+ case EXACTFU_SS:
+ if (is_utf8_pat) {
+ utf8_fold_flags = FOLDEQ_S2_ALREADY_FOLDED;
+ }
+ goto do_exactf_utf8;
+
+ case EXACTFLU8:
+ if (! utf8_target) { /* All code points in this node require
+ UTF-8 to express. */
+ break;
+ }
+ utf8_fold_flags = FOLDEQ_LOCALE | FOLDEQ_S2_ALREADY_FOLDED
+ | FOLDEQ_S2_FOLDS_SANE;
+ goto do_exactf_utf8;
+
+ case EXACTFU:
+ if (is_utf8_pat || utf8_target) {
+ utf8_fold_flags = is_utf8_pat ? FOLDEQ_S2_ALREADY_FOLDED : 0;
+ goto do_exactf_utf8;
+ }
+
+ /* Any 'ss' in the pattern should have been replaced by regcomp,
+ * so we don't have to worry here about this single special case
+ * in the Latin1 range */
+ fold_array = PL_fold_latin1;
+ folder = foldEQ_latin1;
+
+ /* FALLTHROUGH */
+
+ do_exactf_non_utf8: /* Neither pattern nor string are UTF8, and there
+ are no glitches with fold-length differences
+ between the target string and pattern */
+
+ /* The idea in the non-utf8 EXACTF* cases is to first find the
+ * first character of the EXACTF* node and then, if necessary,
+ * case-insensitively compare the full text of the node. c1 is the
+ * first character. c2 is its fold. This logic will not work for
+ * Unicode semantics and the german sharp ss, which hence should
+ * not be compiled into a node that gets here. */
+ pat_string = STRING(c);
+ ln = STR_LEN(c); /* length to match in octets/bytes */
+
+ /* We know that we have to match at least 'ln' bytes (which is the
+ * same as characters, since not utf8). If we have to match 3
+ * characters, and there are only 2 availabe, we know without
+ * trying that it will fail; so don't start a match past the
+ * required minimum number from the far end */
+ e = HOP3c(strend, -((SSize_t)ln), s);
+
+ if (reginfo->intuit && e < s) {
+ e = s; /* Due to minlen logic of intuit() */
+ }
+
+ c1 = *pat_string;
+ c2 = fold_array[c1];
+ if (c1 == c2) { /* If char and fold are the same */
+ REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1);
+ }
+ else {
+ REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1 || *(U8*)s == c2);
+ }
+ break;
+
+ do_exactf_utf8:
+ {
+ unsigned expansion;
+
+ /* If one of the operands is in utf8, we can't use the simpler folding
+ * above, due to the fact that many different characters can have the
+ * same fold, or portion of a fold, or different- length fold */
+ pat_string = STRING(c);
+ ln = STR_LEN(c); /* length to match in octets/bytes */
+ pat_end = pat_string + ln;
+ lnc = is_utf8_pat /* length to match in characters */
+ ? utf8_length((U8 *) pat_string, (U8 *) pat_end)
+ : ln;
+
+ /* We have 'lnc' characters to match in the pattern, but because of
+ * multi-character folding, each character in the target can match
+ * up to 3 characters (Unicode guarantees it will never exceed
+ * this) if it is utf8-encoded; and up to 2 if not (based on the
+ * fact that the Latin 1 folds are already determined, and the
+ * only multi-char fold in that range is the sharp-s folding to
+ * 'ss'. Thus, a pattern character can match as little as 1/3 of a
+ * string character. Adjust lnc accordingly, rounding up, so that
+ * if we need to match at least 4+1/3 chars, that really is 5. */
+ expansion = (utf8_target) ? UTF8_MAX_FOLD_CHAR_EXPAND : 2;
+ lnc = (lnc + expansion - 1) / expansion;
+
+ /* As in the non-UTF8 case, if we have to match 3 characters, and
+ * only 2 are left, it's guaranteed to fail, so don't start a
+ * match that would require us to go beyond the end of the string
+ */
+ e = HOP3c(strend, -((SSize_t)lnc), s);
+
+ if (reginfo->intuit && e < s) {
+ e = s; /* Due to minlen logic of intuit() */
+ }
+
+ /* XXX Note that we could recalculate e to stop the loop earlier,
+ * as the worst case expansion above will rarely be met, and as we
+ * go along we would usually find that e moves further to the left.
+ * This would happen only after we reached the point in the loop
+ * where if there were no expansion we should fail. Unclear if
+ * worth the expense */
+
+ while (s <= e) {
+ char *my_strend= (char *)strend;
+ if (foldEQ_utf8_flags(s, &my_strend, 0, utf8_target,
+ pat_string, NULL, ln, is_utf8_pat, utf8_fold_flags)
+ && (reginfo->intuit || regtry(reginfo, &s)) )
+ {
+ goto got_it;
+ }
+ s += (utf8_target) ? UTF8SKIP(s) : 1;
+ }
+ break;
+ }
+
+ case BOUNDL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (FLAGS(c) != TRADITIONAL_BOUND) {
+ if (! IN_UTF8_CTYPE_LOCALE) {
+ Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
+ B_ON_NON_UTF8_LOCALE_IS_WRONG);
+ }
+ goto do_boundu;
+ }
+
+ FBC_BOUND(isWORDCHAR_LC, isWORDCHAR_LC_uvchr, isWORDCHAR_LC_utf8);
+ break;
+
+ case NBOUNDL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (FLAGS(c) != TRADITIONAL_BOUND) {
+ if (! IN_UTF8_CTYPE_LOCALE) {
+ Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
+ B_ON_NON_UTF8_LOCALE_IS_WRONG);
+ }
+ goto do_nboundu;
+ }
+
+ FBC_NBOUND(isWORDCHAR_LC, isWORDCHAR_LC_uvchr, isWORDCHAR_LC_utf8);
+ break;
+
+ case BOUND: /* regcomp.c makes sure that this only has the traditional \b
+ meaning */
+ assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+ FBC_BOUND(isWORDCHAR, isWORDCHAR_uni, isWORDCHAR_utf8);
+ break;
+
+ case BOUNDA: /* regcomp.c makes sure that this only has the traditional \b
+ meaning */
+ assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+ FBC_BOUND_A(isWORDCHAR_A);
+ break;
+
+ case NBOUND: /* regcomp.c makes sure that this only has the traditional \b
+ meaning */
+ assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+ FBC_NBOUND(isWORDCHAR, isWORDCHAR_uni, isWORDCHAR_utf8);
+ break;
+
+ case NBOUNDA: /* regcomp.c makes sure that this only has the traditional \b
+ meaning */
+ assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+ FBC_NBOUND_A(isWORDCHAR_A);
+ break;
+
+ case NBOUNDU:
+ if ((bound_type) FLAGS(c) == TRADITIONAL_BOUND) {
+ FBC_NBOUND(isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8);
+ break;
+ }
+
+ do_nboundu:
+
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case BOUNDU:
+ do_boundu:
+ switch((bound_type) FLAGS(c)) {
+ case TRADITIONAL_BOUND:
+ FBC_BOUND(isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8);
+ break;
+ case GCB_BOUND:
+ if (s == reginfo->strbeg) { /* GCB always matches at begin and
+ end */
+ if (to_complement ^ cBOOL(reginfo->intuit
+ || regtry(reginfo, &s)))
+ {
+ goto got_it;
+ }
+ s += (utf8_target) ? UTF8SKIP(s) : 1;
+ }
+
+ if (utf8_target) {
+ GCB_enum before = getGCB_VAL_UTF8(
+ reghop3((U8*)s, -1,
+ (U8*)(reginfo->strbeg)),
+ (U8*) reginfo->strend);
+ while (s < strend) {
+ GCB_enum after = getGCB_VAL_UTF8((U8*) s,
+ (U8*) reginfo->strend);
+ if (to_complement ^ isGCB(before, after)) {
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ goto got_it;
+ }
+ before = after;
+ }
+ s += UTF8SKIP(s);
+ }
+ }
+ else { /* Not utf8. Everything is a GCB except between CR and
+ LF */
+ while (s < strend) {
+ if (to_complement ^ (UCHARAT(s - 1) != '\r'
+ || UCHARAT(s) != '\n'))
+ {
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ goto got_it;
+ }
+ s++;
+ }
+ }
+ }
+
+ if (to_complement ^ cBOOL(reginfo->intuit || regtry(reginfo, &s))) {
+ goto got_it;
+ }
+ break;
+
+ case SB_BOUND:
+ if (s == reginfo->strbeg) { /* SB always matches at beginning */
+ if (to_complement
+ ^ cBOOL(reginfo->intuit || regtry(reginfo, &s)))
+ {
+ goto got_it;
+ }
+
+ /* Didn't match. Go try at the next position */
+ s += (utf8_target) ? UTF8SKIP(s) : 1;
+ }
+
+ if (utf8_target) {
+ SB_enum before = getSB_VAL_UTF8(reghop3((U8*)s,
+ -1,
+ (U8*)(reginfo->strbeg)),
+ (U8*) reginfo->strend);
+ while (s < strend) {
+ SB_enum after = getSB_VAL_UTF8((U8*) s,
+ (U8*) reginfo->strend);
+ if (to_complement ^ isSB(before,
+ after,
+ (U8*) reginfo->strbeg,
+ (U8*) s,
+ (U8*) reginfo->strend,
+ utf8_target))
+ {
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ goto got_it;
+ }
+ before = after;
+ }
+ s += UTF8SKIP(s);
+ }
+ }
+ else { /* Not utf8. */
+ SB_enum before = getSB_VAL_CP((U8) *(s -1));
+ while (s < strend) {
+ SB_enum after = getSB_VAL_CP((U8) *s);
+ if (to_complement ^ isSB(before,
+ after,
+ (U8*) reginfo->strbeg,
+ (U8*) s,
+ (U8*) reginfo->strend,
+ utf8_target))
+ {
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ goto got_it;
+ }
+ before = after;
+ }
+ s++;
+ }
+ }
+
+ /* Here are at the final position in the target string. The SB
+ * value is always true here, so matches, depending on other
+ * constraints */
+ if (to_complement ^ cBOOL(reginfo->intuit
+ || regtry(reginfo, &s)))
+ {
+ goto got_it;
+ }
+
+ break;
+
+ case WB_BOUND:
+ if (s == reginfo->strbeg) {
+ if (to_complement ^ cBOOL(reginfo->intuit
+ || regtry(reginfo, &s)))
+ {
+ goto got_it;
+ }
+ s += (utf8_target) ? UTF8SKIP(s) : 1;
+ }
+
+ if (utf8_target) {
+ /* We are at a boundary between char_sub_0 and char_sub_1.
+ * We also keep track of the value for char_sub_-1 as we
+ * loop through the line. Context may be needed to make a
+ * determination, and if so, this can save having to
+ * recalculate it */
+ WB_enum previous = WB_UNKNOWN;
+ WB_enum before = getWB_VAL_UTF8(
+ reghop3((U8*)s,
+ -1,
+ (U8*)(reginfo->strbeg)),
+ (U8*) reginfo->strend);
+ while (s < strend) {
+ WB_enum after = getWB_VAL_UTF8((U8*) s,
+ (U8*) reginfo->strend);
+ if (to_complement ^ isWB(previous,
+ before,
+ after,
+ (U8*) reginfo->strbeg,
+ (U8*) s,
+ (U8*) reginfo->strend,
+ utf8_target))
+ {
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ goto got_it;
+ }
+ previous = before;
+ before = after;
+ }
+ s += UTF8SKIP(s);
+ }
+ }
+ else { /* Not utf8. */
+ WB_enum previous = WB_UNKNOWN;
+ WB_enum before = getWB_VAL_CP((U8) *(s -1));
+ while (s < strend) {
+ WB_enum after = getWB_VAL_CP((U8) *s);
+ if (to_complement ^ isWB(previous,
+ before,
+ after,
+ (U8*) reginfo->strbeg,
+ (U8*) s,
+ (U8*) reginfo->strend,
+ utf8_target))
+ {
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ goto got_it;
+ }
+ previous = before;
+ before = after;
+ }
+ s++;
+ }
+ }
+
+ if (to_complement ^ cBOOL(reginfo->intuit
+ || regtry(reginfo, &s)))
+ {
+ goto got_it;
+ }
+
+ break;
+ }
+ break;
+
+ case LNBREAK:
+ REXEC_FBC_CSCAN(is_LNBREAK_utf8_safe(s, strend),
+ is_LNBREAK_latin1_safe(s, strend)
+ );
+ break;
+
+ /* The argument to all the POSIX node types is the class number to pass to
+ * _generic_isCC() to build a mask for searching in PL_charclass[] */
+
+ case NPOSIXL:
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ REXEC_FBC_CSCAN(to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(c), (U8 *) s)),
+ to_complement ^ cBOOL(isFOO_lc(FLAGS(c), *s)));
+ break;
+
+ case NPOSIXD:
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXD:
+ if (utf8_target) {
+ goto posix_utf8;
+ }
+ goto posixa;
+
+ case NPOSIXA:
+ if (utf8_target) {
+ /* The complement of something that matches only ASCII matches all
+ * non-ASCII, plus everything in ASCII that isn't in the class. */
+ REXEC_FBC_UTF8_CLASS_SCAN(! isASCII_utf8(s)
+ || ! _generic_isCC_A(*s, FLAGS(c)));
+ break;
+ }
+
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXA:
+ posixa:
+ /* Don't need to worry about utf8, as it can match only a single
+ * byte invariant character. */
+ REXEC_FBC_CLASS_SCAN(
+ to_complement ^ cBOOL(_generic_isCC_A(*s, FLAGS(c))));
+ break;
+
+ case NPOSIXU:
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXU:
+ if (! utf8_target) {
+ REXEC_FBC_CLASS_SCAN(to_complement ^ cBOOL(_generic_isCC(*s,
+ FLAGS(c))));
+ }
+ else {
+
+ posix_utf8:
+ classnum = (_char_class_number) FLAGS(c);
+ if (classnum < _FIRST_NON_SWASH_CC) {
+ while (s < strend) {
+
+ /* We avoid loading in the swash as long as possible, but
+ * should we have to, we jump to a separate loop. This
+ * extra 'if' statement is what keeps this code from being
+ * just a call to REXEC_FBC_UTF8_CLASS_SCAN() */
+ if (UTF8_IS_ABOVE_LATIN1(*s)) {
+ goto found_above_latin1;
+ }
+ if ((UTF8_IS_INVARIANT(*s)
+ && to_complement ^ cBOOL(_generic_isCC((U8) *s,
+ classnum)))
+ || (UTF8_IS_DOWNGRADEABLE_START(*s)
+ && to_complement ^ cBOOL(
+ _generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(*s,
+ *(s + 1)),
+ classnum))))
+ {
+ if (tmp && (reginfo->intuit || regtry(reginfo, &s)))
+ goto got_it;
+ else {
+ tmp = doevery;
+ }
+ }
+ else {
+ tmp = 1;
+ }
+ s += UTF8SKIP(s);
+ }
+ }
+ else switch (classnum) { /* These classes are implemented as
+ macros */
+ case _CC_ENUM_SPACE:
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ to_complement ^ cBOOL(isSPACE_utf8(s)));
+ break;
+
+ case _CC_ENUM_BLANK:
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ to_complement ^ cBOOL(isBLANK_utf8(s)));
+ break;
+
+ case _CC_ENUM_XDIGIT:
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ to_complement ^ cBOOL(isXDIGIT_utf8(s)));
+ break;
+
+ case _CC_ENUM_VERTSPACE:
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ to_complement ^ cBOOL(isVERTWS_utf8(s)));
+ break;
+
+ case _CC_ENUM_CNTRL:
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ to_complement ^ cBOOL(isCNTRL_utf8(s)));
+ break;
+
+ default:
+ Perl_croak(aTHX_ "panic: find_byclass() node %d='%s' has an unexpected character class '%d'", OP(c), PL_reg_name[OP(c)], classnum);
+ NOT_REACHED; /* NOTREACHED */
+ }
+ }
+ break;
+
+ found_above_latin1: /* Here we have to load a swash to get the result
+ for the current code point */
+ if (! PL_utf8_swash_ptrs[classnum]) {
+ U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+ PL_utf8_swash_ptrs[classnum] =
+ _core_swash_init("utf8",
+ "",
+ &PL_sv_undef, 1, 0,
+ PL_XPosix_ptrs[classnum], &flags);
+ }
+
+ /* This is a copy of the loop above for swash classes, though using the
+ * FBC macro instead of being expanded out. Since we've loaded the
+ * swash, we don't have to check for that each time through the loop */
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ to_complement ^ cBOOL(_generic_utf8(
+ classnum,
+ s,
+ swash_fetch(PL_utf8_swash_ptrs[classnum],
+ (U8 *) s, TRUE))));
+ break;
+
+ case AHOCORASICKC:
+ case AHOCORASICK:
+ {
+ DECL_TRIE_TYPE(c);
+ /* what trie are we using right now */
+ reg_ac_data *aho = (reg_ac_data*)progi->data->data[ ARG( c ) ];
+ reg_trie_data *trie = (reg_trie_data*)progi->data->data[ aho->trie ];
+ HV *widecharmap = MUTABLE_HV(progi->data->data[ aho->trie + 1 ]);
+
+ const char *last_start = strend - trie->minlen;
+#ifdef DEBUGGING
+ const char *real_start = s;
+#endif
+ STRLEN maxlen = trie->maxlen;
+ SV *sv_points;
+ U8 **points; /* map of where we were in the input string
+ when reading a given char. For ASCII this
+ is unnecessary overhead as the relationship
+ is always 1:1, but for Unicode, especially
+ case folded Unicode this is not true. */
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+ U8 *bitmap=NULL;
+
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ /* We can't just allocate points here. We need to wrap it in
+ * an SV so it gets freed properly if there is a croak while
+ * running the match */
+ ENTER;
+ SAVETMPS;
+ sv_points=newSV(maxlen * sizeof(U8 *));
+ SvCUR_set(sv_points,
+ maxlen * sizeof(U8 *));
+ SvPOK_on(sv_points);
+ sv_2mortal(sv_points);
+ points=(U8**)SvPV_nolen(sv_points );
+ if ( trie_type != trie_utf8_fold
+ && (trie->bitmap || OP(c)==AHOCORASICKC) )
+ {
+ if (trie->bitmap)
+ bitmap=(U8*)trie->bitmap;
+ else
+ bitmap=(U8*)ANYOF_BITMAP(c);
+ }
+ /* this is the Aho-Corasick algorithm modified a touch
+ to include special handling for long "unknown char" sequences.
+ The basic idea being that we use AC as long as we are dealing
+ with a possible matching char, when we encounter an unknown char
+ (and we have not encountered an accepting state) we scan forward
+ until we find a legal starting char.
+ AC matching is basically that of trie matching, except that when
+ we encounter a failing transition, we fall back to the current
+ states "fail state", and try the current char again, a process
+ we repeat until we reach the root state, state 1, or a legal
+ transition. If we fail on the root state then we can either
+ terminate if we have reached an accepting state previously, or
+ restart the entire process from the beginning if we have not.
+
+ */
+ while (s <= last_start) {
+ const U32 uniflags = UTF8_ALLOW_DEFAULT;
+ U8 *uc = (U8*)s;
+ U16 charid = 0;
+ U32 base = 1;
+ U32 state = 1;
+ UV uvc = 0;
+ STRLEN len = 0;
+ STRLEN foldlen = 0;
+ U8 *uscan = (U8*)NULL;
+ U8 *leftmost = NULL;
+#ifdef DEBUGGING
+ U32 accepted_word= 0;
+#endif
+ U32 pointpos = 0;
+
+ while ( state && uc <= (U8*)strend ) {
+ int failed=0;
+ U32 word = aho->states[ state ].wordnum;
+
+ if( state==1 ) {
+ if ( bitmap ) {
+ DEBUG_TRIE_EXECUTE_r(
+ if ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+ dump_exec_pos( (char *)uc, c, strend, real_start,
+ (char *)uc, utf8_target );
+ PerlIO_printf( Perl_debug_log,
+ " Scanning for legal start char...\n");
+ }
+ );
+ if (utf8_target) {
+ while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+ uc += UTF8SKIP(uc);
+ }
+ } else {
+ while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+ uc++;
+ }
+ }
+ s= (char *)uc;
+ }
+ if (uc >(U8*)last_start) break;
+ }
+
+ if ( word ) {
+ U8 *lpos= points[ (pointpos - trie->wordinfo[word].len) % maxlen ];
+ if (!leftmost || lpos < leftmost) {
+ DEBUG_r(accepted_word=word);
+ leftmost= lpos;
+ }
+ if (base==0) break;
+
+ }
+ points[pointpos++ % maxlen]= uc;
+ if (foldlen || uc < (U8*)strend) {
+ REXEC_TRIE_READ_CHAR(trie_type, trie,
+ widecharmap, uc,
+ uscan, len, uvc, charid, foldlen,
+ foldbuf, uniflags);
+ DEBUG_TRIE_EXECUTE_r({
+ dump_exec_pos( (char *)uc, c, strend,
+ real_start, s, utf8_target);
+ PerlIO_printf(Perl_debug_log,
+ " Charid:%3u CP:%4"UVxf" ",
+ charid, uvc);
+ });
+ }
+ else {
+ len = 0;
+ charid = 0;
+ }
+
+
+ do {
+#ifdef DEBUGGING
+ word = aho->states[ state ].wordnum;
+#endif
+ base = aho->states[ state ].trans.base;
+
+ DEBUG_TRIE_EXECUTE_r({
+ if (failed)
+ dump_exec_pos( (char *)uc, c, strend, real_start,
+ s, utf8_target );
+ PerlIO_printf( Perl_debug_log,
+ "%sState: %4"UVxf", word=%"UVxf,
+ failed ? " Fail transition to " : "",
+ (UV)state, (UV)word);
+ });
+ if ( base ) {
+ U32 tmp;
+ I32 offset;
+ if (charid &&
+ ( ((offset = base + charid
+ - 1 - trie->uniquecharcount)) >= 0)
+ && ((U32)offset < trie->lasttrans)
+ && trie->trans[offset].check == state
+ && (tmp=trie->trans[offset].next))
+ {
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log," - legal\n"));
+ state = tmp;
+ break;
+ }
+ else {
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log," - fail\n"));
+ failed = 1;
+ state = aho->fail[state];
+ }
+ }
+ else {
+ /* we must be accepting here */
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log," - accepting\n"));
+ failed = 1;
+ break;
+ }
+ } while(state);
+ uc += len;
+ if (failed) {
+ if (leftmost)
+ break;
+ if (!state) state = 1;
+ }
+ }
+ if ( aho->states[ state ].wordnum ) {
+ U8 *lpos = points[ (pointpos - trie->wordinfo[aho->states[ state ].wordnum].len) % maxlen ];
+ if (!leftmost || lpos < leftmost) {
+ DEBUG_r(accepted_word=aho->states[ state ].wordnum);
+ leftmost = lpos;
+ }
+ }
+ if (leftmost) {
+ s = (char*)leftmost;
+ DEBUG_TRIE_EXECUTE_r({
+ PerlIO_printf(
+ Perl_debug_log,"Matches word #%"UVxf" at position %"IVdf". Trying full pattern...\n",
+ (UV)accepted_word, (IV)(s - real_start)
+ );
+ });
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ FREETMPS;
+ LEAVE;
+ goto got_it;
+ }
+ s = HOPc(s,1);
+ DEBUG_TRIE_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,"Pattern failed. Looking for new start point...\n");
+ });
+ } else {
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log,"No match.\n"));
+ break;
+ }
+ }
+ FREETMPS;
+ LEAVE;
+ }
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: unknown regstclass %d", (int)OP(c));
+ }
+ return 0;
+ got_it:
+ return s;
+}
+
+/* set RX_SAVED_COPY, RX_SUBBEG etc.
+ * flags have same meanings as with regexec_flags() */
+
+static void
+S_reg_set_capture_string(pTHX_ REGEXP * const rx,
+ char *strbeg,
+ char *strend,
+ SV *sv,
+ U32 flags,
+ bool utf8_target)
+{
+ struct regexp *const prog = ReANY(rx);
+
+ if (flags & REXEC_COPY_STR) {
+#ifdef PERL_ANY_COW
+ if (SvCANCOW(sv)) {
+ if (DEBUG_C_TEST) {
+ PerlIO_printf(Perl_debug_log,
+ "Copy on write: regexp capture, type %d\n",
+ (int) SvTYPE(sv));
+ }
+ /* Create a new COW SV to share the match string and store
+ * in saved_copy, unless the current COW SV in saved_copy
+ * is valid and suitable for our purpose */
+ if (( prog->saved_copy
+ && SvIsCOW(prog->saved_copy)
+ && SvPOKp(prog->saved_copy)
+ && SvIsCOW(sv)
+ && SvPOKp(sv)
+ && SvPVX(sv) == SvPVX(prog->saved_copy)))
+ {
+ /* just reuse saved_copy SV */
+ if (RXp_MATCH_COPIED(prog)) {
+ Safefree(prog->subbeg);
+ RXp_MATCH_COPIED_off(prog);
+ }
+ }
+ else {
+ /* create new COW SV to share string */
+ RX_MATCH_COPY_FREE(rx);
+ prog->saved_copy = sv_setsv_cow(prog->saved_copy, sv);
+ }
+ prog->subbeg = (char *)SvPVX_const(prog->saved_copy);
+ assert (SvPOKp(prog->saved_copy));
+ prog->sublen = strend - strbeg;
+ prog->suboffset = 0;
+ prog->subcoffset = 0;
+ } else
+#endif
+ {
+ SSize_t min = 0;
+ SSize_t max = strend - strbeg;
+ SSize_t sublen;
+
+ if ( (flags & REXEC_COPY_SKIP_POST)
+ && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */
+ && !(PL_sawampersand & SAWAMPERSAND_RIGHT)
+ ) { /* don't copy $' part of string */
+ U32 n = 0;
+ max = -1;
+ /* calculate the right-most part of the string covered
+ * by a capture. Due to look-ahead, this may be to
+ * the right of $&, so we have to scan all captures */
+ while (n <= prog->lastparen) {
+ if (prog->offs[n].end > max)
+ max = prog->offs[n].end;
+ n++;
+ }
+ if (max == -1)
+ max = (PL_sawampersand & SAWAMPERSAND_LEFT)
+ ? prog->offs[0].start
+ : 0;
+ assert(max >= 0 && max <= strend - strbeg);
+ }
+
+ if ( (flags & REXEC_COPY_SKIP_PRE)
+ && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */
+ && !(PL_sawampersand & SAWAMPERSAND_LEFT)
+ ) { /* don't copy $` part of string */
+ U32 n = 0;
+ min = max;
+ /* calculate the left-most part of the string covered
+ * by a capture. Due to look-behind, this may be to
+ * the left of $&, so we have to scan all captures */
+ while (min && n <= prog->lastparen) {
+ if ( prog->offs[n].start != -1
+ && prog->offs[n].start < min)
+ {
+ min = prog->offs[n].start;
+ }
+ n++;
+ }
+ if ((PL_sawampersand & SAWAMPERSAND_RIGHT)
+ && min > prog->offs[0].end
+ )
+ min = prog->offs[0].end;
+
+ }
+
+ assert(min >= 0 && min <= max && min <= strend - strbeg);
+ sublen = max - min;
+
+ if (RX_MATCH_COPIED(rx)) {
+ if (sublen > prog->sublen)
+ prog->subbeg =
+ (char*)saferealloc(prog->subbeg, sublen+1);
+ }
+ else
+ prog->subbeg = (char*)safemalloc(sublen+1);
+ Copy(strbeg + min, prog->subbeg, sublen, char);
+ prog->subbeg[sublen] = '\0';
+ prog->suboffset = min;
+ prog->sublen = sublen;
+ RX_MATCH_COPIED_on(rx);
+ }
+ prog->subcoffset = prog->suboffset;
+ if (prog->suboffset && utf8_target) {
+ /* Convert byte offset to chars.
+ * XXX ideally should only compute this if @-/@+
+ * has been seen, a la PL_sawampersand ??? */
+
+ /* If there's a direct correspondence between the
+ * string which we're matching and the original SV,
+ * then we can use the utf8 len cache associated with
+ * the SV. In particular, it means that under //g,
+ * sv_pos_b2u() will use the previously cached
+ * position to speed up working out the new length of
+ * subcoffset, rather than counting from the start of
+ * the string each time. This stops
+ * $x = "\x{100}" x 1E6; 1 while $x =~ /(.)/g;
+ * from going quadratic */
+ if (SvPOKp(sv) && SvPVX(sv) == strbeg)
+ prog->subcoffset = sv_pos_b2u_flags(sv, prog->subcoffset,
+ SV_GMAGIC|SV_CONST_RETURN);
+ else
+ prog->subcoffset = utf8_length((U8*)strbeg,
+ (U8*)(strbeg+prog->suboffset));
+ }
+ }
+ else {
+ RX_MATCH_COPY_FREE(rx);
+ prog->subbeg = strbeg;
+ prog->suboffset = 0;
+ prog->subcoffset = 0;
+ prog->sublen = strend - strbeg;
+ }
+}
+
+
+
+
+/*
+ - regexec_flags - match a regexp against a string
+ */
+I32
+Perl_regexec_flags(pTHX_ REGEXP * const rx, char *stringarg, char *strend,
+ char *strbeg, SSize_t minend, SV *sv, void *data, U32 flags)
+/* stringarg: the point in the string at which to begin matching */
+/* strend: pointer to null at end of string */
+/* strbeg: real beginning of string */
+/* minend: end of match must be >= minend bytes after stringarg. */
+/* sv: SV being matched: only used for utf8 flag, pos() etc; string
+ * itself is accessed via the pointers above */
+/* data: May be used for some additional optimizations.
+ Currently unused. */
+/* flags: For optimizations. See REXEC_* in regexp.h */
+
+{
+ struct regexp *const prog = ReANY(rx);
+ char *s;
+ regnode *c;
+ char *startpos;
+ SSize_t minlen; /* must match at least this many chars */
+ SSize_t dontbother = 0; /* how many characters not to try at end */
+ const bool utf8_target = cBOOL(DO_UTF8(sv));
+ I32 multiline;
+ RXi_GET_DECL(prog,progi);
+ regmatch_info reginfo_buf; /* create some info to pass to regtry etc */
+ regmatch_info *const reginfo = ®info_buf;
+ regexp_paren_pair *swap = NULL;
+ I32 oldsave;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGEXEC_FLAGS;
+ PERL_UNUSED_ARG(data);
+
+ /* Be paranoid... */
+ if (prog == NULL) {
+ Perl_croak(aTHX_ "NULL regexp parameter");
+ }
+
+ DEBUG_EXECUTE_r(
+ debug_start_match(rx, utf8_target, stringarg, strend,
+ "Matching");
+ );
+
+ startpos = stringarg;
+
+ if (prog->intflags & PREGf_GPOS_SEEN) {
+ MAGIC *mg;
+
+ /* set reginfo->ganch, the position where \G can match */
+
+ reginfo->ganch =
+ (flags & REXEC_IGNOREPOS)
+ ? stringarg /* use start pos rather than pos() */
+ : ((mg = mg_find_mglob(sv)) && mg->mg_len >= 0)
+ /* Defined pos(): */
+ ? strbeg + MgBYTEPOS(mg, sv, strbeg, strend-strbeg)
+ : strbeg; /* pos() not defined; use start of string */
+
+ DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+ "GPOS ganch set to strbeg[%"IVdf"]\n", (IV)(reginfo->ganch - strbeg)));
+
+ /* in the presence of \G, we may need to start looking earlier in
+ * the string than the suggested start point of stringarg:
+ * if prog->gofs is set, then that's a known, fixed minimum
+ * offset, such as
+ * /..\G/: gofs = 2
+ * /ab|c\G/: gofs = 1
+ * or if the minimum offset isn't known, then we have to go back
+ * to the start of the string, e.g. /w+\G/
+ */
+
+ if (prog->intflags & PREGf_ANCH_GPOS) {
+ startpos = reginfo->ganch - prog->gofs;
+ if (startpos <
+ ((flags & REXEC_FAIL_ON_UNDERFLOW) ? stringarg : strbeg))
+ {
+ DEBUG_r(PerlIO_printf(Perl_debug_log,
+ "fail: ganch-gofs before earliest possible start\n"));
+ return 0;
+ }
+ }
+ else if (prog->gofs) {
+ if (startpos - prog->gofs < strbeg)
+ startpos = strbeg;
+ else
+ startpos -= prog->gofs;
+ }
+ else if (prog->intflags & PREGf_GPOS_FLOAT)
+ startpos = strbeg;
+ }
+
+ minlen = prog->minlen;
+ if ((startpos + minlen) > strend || startpos < strbeg) {
+ DEBUG_r(PerlIO_printf(Perl_debug_log,
+ "Regex match can't succeed, so not even tried\n"));
+ return 0;
+ }
+
+ /* at the end of this function, we'll do a LEAVE_SCOPE(oldsave),
+ * which will call destuctors to reset PL_regmatch_state, free higher
+ * PL_regmatch_slabs, and clean up regmatch_info_aux and
+ * regmatch_info_aux_eval */
+
+ oldsave = PL_savestack_ix;
+
+ s = startpos;
+
+ if ((prog->extflags & RXf_USE_INTUIT)
+ && !(flags & REXEC_CHECKED))
+ {
+ s = re_intuit_start(rx, sv, strbeg, startpos, strend,
+ flags, NULL);
+ if (!s)
+ return 0;
+
+ if (prog->extflags & RXf_CHECK_ALL) {
+ /* we can match based purely on the result of INTUIT.
+ * Set up captures etc just for $& and $-[0]
+ * (an intuit-only match wont have $1,$2,..) */
+ assert(!prog->nparens);
+
+ /* s/// doesn't like it if $& is earlier than where we asked it to
+ * start searching (which can happen on something like /.\G/) */
+ if ( (flags & REXEC_FAIL_ON_UNDERFLOW)
+ && (s < stringarg))
+ {
+ /* this should only be possible under \G */
+ assert(prog->intflags & PREGf_GPOS_SEEN);
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n"));
+ goto phooey;
+ }
+
+ /* match via INTUIT shouldn't have any captures.
+ * Let @-, @+, $^N know */
+ prog->lastparen = prog->lastcloseparen = 0;
+ RX_MATCH_UTF8_set(rx, utf8_target);
+ prog->offs[0].start = s - strbeg;
+ prog->offs[0].end = utf8_target
+ ? (char*)utf8_hop((U8*)s, prog->minlenret) - strbeg
+ : s - strbeg + prog->minlenret;
+ if ( !(flags & REXEC_NOT_FIRST) )
+ S_reg_set_capture_string(aTHX_ rx,
+ strbeg, strend,
+ sv, flags, utf8_target);
+
+ return 1;
+ }
+ }
+
+ multiline = prog->extflags & RXf_PMf_MULTILINE;
+
+ if (strend - s < (minlen+(prog->check_offset_min<0?prog->check_offset_min:0))) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "String too short [regexec_flags]...\n"));
+ goto phooey;
+ }
+
+ /* Check validity of program. */
+ if (UCHARAT(progi->program) != REG_MAGIC) {
+ Perl_croak(aTHX_ "corrupted regexp program");
+ }
+
+ RX_MATCH_TAINTED_off(rx);
+ RX_MATCH_UTF8_set(rx, utf8_target);
+
+ reginfo->prog = rx; /* Yes, sorry that this is confusing. */
+ reginfo->intuit = 0;
+ reginfo->is_utf8_target = cBOOL(utf8_target);
+ reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx));
+ reginfo->warned = FALSE;
+ reginfo->strbeg = strbeg;
+ reginfo->sv = sv;
+ reginfo->poscache_maxiter = 0; /* not yet started a countdown */
+ reginfo->strend = strend;
+ /* see how far we have to get to not match where we matched before */
+ reginfo->till = stringarg + minend;
+
+ if (prog->extflags & RXf_EVAL_SEEN && SvPADTMP(sv)) {
+ /* SAVEFREESV, not sv_mortalcopy, as this SV must last until after
+ S_cleanup_regmatch_info_aux has executed (registered by
+ SAVEDESTRUCTOR_X below). S_cleanup_regmatch_info_aux modifies
+ magic belonging to this SV.
+ Not newSVsv, either, as it does not COW.
+ */
+ reginfo->sv = newSV(0);
+ SvSetSV_nosteal(reginfo->sv, sv);
+ SAVEFREESV(reginfo->sv);
+ }
+
+ /* reserve next 2 or 3 slots in PL_regmatch_state:
+ * slot N+0: may currently be in use: skip it
+ * slot N+1: use for regmatch_info_aux struct
+ * slot N+2: use for regmatch_info_aux_eval struct if we have (?{})'s
+ * slot N+3: ready for use by regmatch()
+ */
+
+ {
+ regmatch_state *old_regmatch_state;
+ regmatch_slab *old_regmatch_slab;
+ int i, max = (prog->extflags & RXf_EVAL_SEEN) ? 2 : 1;
+
+ /* on first ever match, allocate first slab */
+ if (!PL_regmatch_slab) {
+ Newx(PL_regmatch_slab, 1, regmatch_slab);
+ PL_regmatch_slab->prev = NULL;
+ PL_regmatch_slab->next = NULL;
+ PL_regmatch_state = SLAB_FIRST(PL_regmatch_slab);
+ }
+
+ old_regmatch_state = PL_regmatch_state;
+ old_regmatch_slab = PL_regmatch_slab;
+
+ for (i=0; i <= max; i++) {
+ if (i == 1)
+ reginfo->info_aux = &(PL_regmatch_state->u.info_aux);
+ else if (i ==2)
+ reginfo->info_aux_eval =
+ reginfo->info_aux->info_aux_eval =
+ &(PL_regmatch_state->u.info_aux_eval);
+
+ if (++PL_regmatch_state > SLAB_LAST(PL_regmatch_slab))
+ PL_regmatch_state = S_push_slab(aTHX);
+ }
+
+ /* note initial PL_regmatch_state position; at end of match we'll
+ * pop back to there and free any higher slabs */
+
+ reginfo->info_aux->old_regmatch_state = old_regmatch_state;
+ reginfo->info_aux->old_regmatch_slab = old_regmatch_slab;
+ reginfo->info_aux->poscache = NULL;
+
+ SAVEDESTRUCTOR_X(S_cleanup_regmatch_info_aux, reginfo->info_aux);
+
+ if ((prog->extflags & RXf_EVAL_SEEN))
+ S_setup_eval_state(aTHX_ reginfo);
+ else
+ reginfo->info_aux_eval = reginfo->info_aux->info_aux_eval = NULL;
+ }
+
+ /* If there is a "must appear" string, look for it. */
+
+ if (PL_curpm && (PM_GETRE(PL_curpm) == rx)) {
+ /* We have to be careful. If the previous successful match
+ was from this regex we don't want a subsequent partially
+ successful match to clobber the old results.
+ So when we detect this possibility we add a swap buffer
+ to the re, and switch the buffer each match. If we fail,
+ we switch it back; otherwise we leave it swapped.
+ */
+ swap = prog->offs;
+ /* do we need a save destructor here for eval dies? */
+ Newxz(prog->offs, (prog->nparens + 1), regexp_paren_pair);
+ DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+ "rex=0x%"UVxf" saving offs: orig=0x%"UVxf" new=0x%"UVxf"\n",
+ PTR2UV(prog),
+ PTR2UV(swap),
+ PTR2UV(prog->offs)
+ ));
+ }
+
+ /* Simplest case: anchored match need be tried only once, or with
+ * MBOL, only at the beginning of each line.
+ *
+ * Note that /.*.../ sets PREGf_IMPLICIT|MBOL, while /.*.../s sets
+ * PREGf_IMPLICIT|SBOL. The idea is that with /.*.../s, if it doesn't
+ * match at the start of the string then it won't match anywhere else
+ * either; while with /.*.../, if it doesn't match at the beginning,
+ * the earliest it could match is at the start of the next line */
+
+ if (prog->intflags & (PREGf_ANCH & ~PREGf_ANCH_GPOS)) {
+ char *end;
+
+ if (regtry(reginfo, &s))
+ goto got_it;
+
+ if (!(prog->intflags & PREGf_ANCH_MBOL))
+ goto phooey;
+
+ /* didn't match at start, try at other newline positions */
+
+ if (minlen)
+ dontbother = minlen - 1;
+ end = HOP3c(strend, -dontbother, strbeg) - 1;
+
+ /* skip to next newline */
+
+ while (s <= end) { /* note it could be possible to match at the end of the string */
+ /* NB: newlines are the same in unicode as they are in latin */
+ if (*s++ != '\n')
+ continue;
+ if (prog->check_substr || prog->check_utf8) {
+ /* note that with PREGf_IMPLICIT, intuit can only fail
+ * or return the start position, so it's of limited utility.
+ * Nevertheless, I made the decision that the potential for
+ * quick fail was still worth it - DAPM */
+ s = re_intuit_start(rx, sv, strbeg, s, strend, flags, NULL);
+ if (!s)
+ goto phooey;
+ }
+ if (regtry(reginfo, &s))
+ goto got_it;
+ }
+ goto phooey;
+ } /* end anchored search */
+
+ if (prog->intflags & PREGf_ANCH_GPOS)
+ {
+ /* PREGf_ANCH_GPOS should never be true if PREGf_GPOS_SEEN is not true */
+ assert(prog->intflags & PREGf_GPOS_SEEN);
+ /* For anchored \G, the only position it can match from is
+ * (ganch-gofs); we already set startpos to this above; if intuit
+ * moved us on from there, we can't possibly succeed */
+ assert(startpos == reginfo->ganch - prog->gofs);
+ if (s == startpos && regtry(reginfo, &s))
+ goto got_it;
+ goto phooey;
+ }
+
+ /* Messy cases: unanchored match. */
+ if ((prog->anchored_substr || prog->anchored_utf8) && prog->intflags & PREGf_SKIP) {
+ /* we have /x+whatever/ */
+ /* it must be a one character string (XXXX Except is_utf8_pat?) */
+ char ch;
+#ifdef DEBUGGING
+ int did_match = 0;
+#endif
+ if (utf8_target) {
+ if (! prog->anchored_utf8) {
+ to_utf8_substr(prog);
+ }
+ ch = SvPVX_const(prog->anchored_utf8)[0];
+ REXEC_FBC_SCAN(
+ if (*s == ch) {
+ DEBUG_EXECUTE_r( did_match = 1 );
+ if (regtry(reginfo, &s)) goto got_it;
+ s += UTF8SKIP(s);
+ while (s < strend && *s == ch)
+ s += UTF8SKIP(s);
+ }
+ );
+
+ }
+ else {
+ if (! prog->anchored_substr) {
+ if (! to_byte_substr(prog)) {
+ NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+ }
+ }
+ ch = SvPVX_const(prog->anchored_substr)[0];
+ REXEC_FBC_SCAN(
+ if (*s == ch) {
+ DEBUG_EXECUTE_r( did_match = 1 );
+ if (regtry(reginfo, &s)) goto got_it;
+ s++;
+ while (s < strend && *s == ch)
+ s++;
+ }
+ );
+ }
+ DEBUG_EXECUTE_r(if (!did_match)
+ PerlIO_printf(Perl_debug_log,
+ "Did not find anchored character...\n")
+ );
+ }
+ else if (prog->anchored_substr != NULL
+ || prog->anchored_utf8 != NULL
+ || ((prog->float_substr != NULL || prog->float_utf8 != NULL)
+ && prog->float_max_offset < strend - s)) {
+ SV *must;
+ SSize_t back_max;
+ SSize_t back_min;
+ char *last;
+ char *last1; /* Last position checked before */
+#ifdef DEBUGGING
+ int did_match = 0;
+#endif
+ if (prog->anchored_substr || prog->anchored_utf8) {
+ if (utf8_target) {
+ if (! prog->anchored_utf8) {
+ to_utf8_substr(prog);
+ }
+ must = prog->anchored_utf8;
+ }
+ else {
+ if (! prog->anchored_substr) {
+ if (! to_byte_substr(prog)) {
+ NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+ }
+ }
+ must = prog->anchored_substr;
+ }
+ back_max = back_min = prog->anchored_offset;
+ } else {
+ if (utf8_target) {
+ if (! prog->float_utf8) {
+ to_utf8_substr(prog);
+ }
+ must = prog->float_utf8;
+ }
+ else {
+ if (! prog->float_substr) {
+ if (! to_byte_substr(prog)) {
+ NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+ }
+ }
+ must = prog->float_substr;
+ }
+ back_max = prog->float_max_offset;
+ back_min = prog->float_min_offset;
+ }
+
+ if (back_min<0) {
+ last = strend;
+ } else {
+ last = HOP3c(strend, /* Cannot start after this */
+ -(SSize_t)(CHR_SVLEN(must)
+ - (SvTAIL(must) != 0) + back_min), strbeg);
+ }
+ if (s > reginfo->strbeg)
+ last1 = HOPc(s, -1);
+ else
+ last1 = s - 1; /* bogus */
+
+ /* XXXX check_substr already used to find "s", can optimize if
+ check_substr==must. */
+ dontbother = 0;
+ strend = HOPc(strend, -dontbother);
+ while ( (s <= last) &&
+ (s = fbm_instr((unsigned char*)HOP4c(s, back_min, strbeg, strend),
+ (unsigned char*)strend, must,
+ multiline ? FBMrf_MULTILINE : 0)) ) {
+ DEBUG_EXECUTE_r( did_match = 1 );
+ if (HOPc(s, -back_max) > last1) {
+ last1 = HOPc(s, -back_min);
+ s = HOPc(s, -back_max);
+ }
+ else {
+ char * const t = (last1 >= reginfo->strbeg)
+ ? HOPc(last1, 1) : last1 + 1;
+
+ last1 = HOPc(s, -back_min);
+ s = t;
+ }
+ if (utf8_target) {
+ while (s <= last1) {
+ if (regtry(reginfo, &s))
+ goto got_it;
+ if (s >= last1) {
+ s++; /* to break out of outer loop */
+ break;
+ }
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ while (s <= last1) {
+ if (regtry(reginfo, &s))
+ goto got_it;
+ s++;
+ }
+ }
+ }
+ DEBUG_EXECUTE_r(if (!did_match) {
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+ PerlIO_printf(Perl_debug_log, "Did not find %s substr %s%s...\n",
+ ((must == prog->anchored_substr || must == prog->anchored_utf8)
+ ? "anchored" : "floating"),
+ quoted, RE_SV_TAIL(must));
+ });
+ goto phooey;
+ }
+ else if ( (c = progi->regstclass) ) {
+ if (minlen) {
+ const OPCODE op = OP(progi->regstclass);
+ /* don't bother with what can't match */
+ if (PL_regkind[op] != EXACT && PL_regkind[op] != TRIE)
+ strend = HOPc(strend, -(minlen - 1));
+ }
+ DEBUG_EXECUTE_r({
+ SV * const prop = sv_newmortal();
+ regprop(prog, prop, c, reginfo, NULL);
+ {
+ RE_PV_QUOTED_DECL(quoted,utf8_target,PERL_DEBUG_PAD_ZERO(1),
+ s,strend-s,60);
+ PerlIO_printf(Perl_debug_log,
+ "Matching stclass %.*s against %s (%d bytes)\n",
+ (int)SvCUR(prop), SvPVX_const(prop),
+ quoted, (int)(strend - s));
+ }
+ });
+ if (find_byclass(prog, c, s, strend, reginfo))
+ goto got_it;
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Contradicts stclass... [regexec_flags]\n"));
+ }
+ else {
+ dontbother = 0;
+ if (prog->float_substr != NULL || prog->float_utf8 != NULL) {
+ /* Trim the end. */
+ char *last= NULL;
+ SV* float_real;
+ STRLEN len;
+ const char *little;
+
+ if (utf8_target) {
+ if (! prog->float_utf8) {
+ to_utf8_substr(prog);
+ }
+ float_real = prog->float_utf8;
+ }
+ else {
+ if (! prog->float_substr) {
+ if (! to_byte_substr(prog)) {
+ NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+ }
+ }
+ float_real = prog->float_substr;
+ }
+
+ little = SvPV_const(float_real, len);
+ if (SvTAIL(float_real)) {
+ /* This means that float_real contains an artificial \n on
+ * the end due to the presence of something like this:
+ * /foo$/ where we can match both "foo" and "foo\n" at the
+ * end of the string. So we have to compare the end of the
+ * string first against the float_real without the \n and
+ * then against the full float_real with the string. We
+ * have to watch out for cases where the string might be
+ * smaller than the float_real or the float_real without
+ * the \n. */
+ char *checkpos= strend - len;
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sChecking for float_real.%s\n",
+ PL_colors[4], PL_colors[5]));
+ if (checkpos + 1 < strbeg) {
+ /* can't match, even if we remove the trailing \n
+ * string is too short to match */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString shorter than required trailing substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]));
+ goto phooey;
+ } else if (memEQ(checkpos + 1, little, len - 1)) {
+ /* can match, the end of the string matches without the
+ * "\n" */
+ last = checkpos + 1;
+ } else if (checkpos < strbeg) {
+ /* cant match, string is too short when the "\n" is
+ * included */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString does not contain required trailing substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]));
+ goto phooey;
+ } else if (!multiline) {
+ /* non multiline match, so compare with the "\n" at the
+ * end of the string */
+ if (memEQ(checkpos, little, len)) {
+ last= checkpos;
+ } else {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString does not contain required trailing substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]));
+ goto phooey;
+ }
+ } else {
+ /* multiline match, so we have to search for a place
+ * where the full string is located */
+ goto find_last;
+ }
+ } else {
+ find_last:
+ if (len)
+ last = rninstr(s, strend, little, little + len);
+ else
+ last = strend; /* matching "$" */
+ }
+ if (!last) {
+ /* at one point this block contained a comment which was
+ * probably incorrect, which said that this was a "should not
+ * happen" case. Even if it was true when it was written I am
+ * pretty sure it is not anymore, so I have removed the comment
+ * and replaced it with this one. Yves */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString does not contain required substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]
+ ));
+ goto phooey;
+ }
+ dontbother = strend - last + prog->float_min_offset;
+ }
+ if (minlen && (dontbother < minlen))
+ dontbother = minlen - 1;
+ strend -= dontbother; /* this one's always in bytes! */
+ /* We don't know much -- general case. */
+ if (utf8_target) {
+ for (;;) {
+ if (regtry(reginfo, &s))
+ goto got_it;
+ if (s >= strend)
+ break;
+ s += UTF8SKIP(s);
+ };
+ }
+ else {
+ do {
+ if (regtry(reginfo, &s))
+ goto got_it;
+ } while (s++ < strend);
+ }
+ }
+
+ /* Failure. */
+ goto phooey;
+
+ got_it:
+ /* s/// doesn't like it if $& is earlier than where we asked it to
+ * start searching (which can happen on something like /.\G/) */
+ if ( (flags & REXEC_FAIL_ON_UNDERFLOW)
+ && (prog->offs[0].start < stringarg - strbeg))
+ {
+ /* this should only be possible under \G */
+ assert(prog->intflags & PREGf_GPOS_SEEN);
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n"));
+ goto phooey;
+ }
+
+ DEBUG_BUFFERS_r(
+ if (swap)
+ PerlIO_printf(Perl_debug_log,
+ "rex=0x%"UVxf" freeing offs: 0x%"UVxf"\n",
+ PTR2UV(prog),
+ PTR2UV(swap)
+ );
+ );
+ Safefree(swap);
+
+ /* clean up; this will trigger destructors that will free all slabs
+ * above the current one, and cleanup the regmatch_info_aux
+ * and regmatch_info_aux_eval sructs */
+
+ LEAVE_SCOPE(oldsave);
+
+ if (RXp_PAREN_NAMES(prog))
+ (void)hv_iterinit(RXp_PAREN_NAMES(prog));
+
+ /* make sure $`, $&, $', and $digit will work later */
+ if ( !(flags & REXEC_NOT_FIRST) )
+ S_reg_set_capture_string(aTHX_ rx,
+ strbeg, reginfo->strend,
+ sv, flags, utf8_target);
+
+ return 1;
+
+ phooey:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch failed%s\n",
+ PL_colors[4], PL_colors[5]));
+
+ /* clean up; this will trigger destructors that will free all slabs
+ * above the current one, and cleanup the regmatch_info_aux
+ * and regmatch_info_aux_eval sructs */
+
+ LEAVE_SCOPE(oldsave);
+
+ if (swap) {
+ /* we failed :-( roll it back */
+ DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+ "rex=0x%"UVxf" rolling back offs: freeing=0x%"UVxf" restoring=0x%"UVxf"\n",
+ PTR2UV(prog),
+ PTR2UV(prog->offs),
+ PTR2UV(swap)
+ ));
+ Safefree(prog->offs);
+ prog->offs = swap;
+ }
+ return 0;
+}
+
+
+/* Set which rex is pointed to by PL_reg_curpm, handling ref counting.
+ * Do inc before dec, in case old and new rex are the same */
+#define SET_reg_curpm(Re2) \
+ if (reginfo->info_aux_eval) { \
+ (void)ReREFCNT_inc(Re2); \
+ ReREFCNT_dec(PM_GETRE(PL_reg_curpm)); \
+ PM_SETRE((PL_reg_curpm), (Re2)); \
+ }
+
+
+/*
+ - regtry - try match at specific point
+ */
+STATIC I32 /* 0 failure, 1 success */
+S_regtry(pTHX_ regmatch_info *reginfo, char **startposp)
+{
+ CHECKPOINT lastcp;
+ REGEXP *const rx = reginfo->prog;
+ regexp *const prog = ReANY(rx);
+ SSize_t result;
+ RXi_GET_DECL(prog,progi);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTRY;
+
+ reginfo->cutpoint=NULL;
+
+ prog->offs[0].start = *startposp - reginfo->strbeg;
+ prog->lastparen = 0;
+ prog->lastcloseparen = 0;
+
+ /* XXXX What this code is doing here?!!! There should be no need
+ to do this again and again, prog->lastparen should take care of
+ this! --ilya*/
+
+ /* Tests pat.t#187 and split.t#{13,14} seem to depend on this code.
+ * Actually, the code in regcppop() (which Ilya may be meaning by
+ * prog->lastparen), is not needed at all by the test suite
+ * (op/regexp, op/pat, op/split), but that code is needed otherwise
+ * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
+ * Meanwhile, this code *is* needed for the
+ * above-mentioned test suite tests to succeed. The common theme
+ * on those tests seems to be returning null fields from matches.
+ * --jhi updated by dapm */
+#if 1
+ if (prog->nparens) {
+ regexp_paren_pair *pp = prog->offs;
+ I32 i;
+ for (i = prog->nparens; i > (I32)prog->lastparen; i--) {
+ ++pp;
+ pp->start = -1;
+ pp->end = -1;
+ }
+ }
+#endif
+ REGCP_SET(lastcp);
+ result = regmatch(reginfo, *startposp, progi->program + 1);
+ if (result != -1) {
+ prog->offs[0].end = result;
+ return 1;
+ }
+ if (reginfo->cutpoint)
+ *startposp= reginfo->cutpoint;
+ REGCP_UNWIND(lastcp);
+ return 0;
+}
+
+
+#define sayYES goto yes
+#define sayNO goto no
+#define sayNO_SILENT goto no_silent
+
+/* we dont use STMT_START/END here because it leads to
+ "unreachable code" warnings, which are bogus, but distracting. */
+#define CACHEsayNO \
+ if (ST.cache_mask) \
+ reginfo->info_aux->poscache[ST.cache_offset] |= ST.cache_mask; \
+ sayNO
+
+/* this is used to determine how far from the left messages like
+ 'failed...' are printed. It should be set such that messages
+ are inline with the regop output that created them.
+*/
+#define REPORT_CODE_OFF 32
+
+
+#define CHRTEST_UNINIT -1001 /* c1/c2 haven't been calculated yet */
+#define CHRTEST_VOID -1000 /* the c1/c2 "next char" test should be skipped */
+#define CHRTEST_NOT_A_CP_1 -999
+#define CHRTEST_NOT_A_CP_2 -998
+
+/* grab a new slab and return the first slot in it */
+
+STATIC regmatch_state *
+S_push_slab(pTHX)
+{
+#if PERL_VERSION < 9 && !defined(PERL_CORE)
+ dMY_CXT;
+#endif
+ regmatch_slab *s = PL_regmatch_slab->next;
+ if (!s) {
+ Newx(s, 1, regmatch_slab);
+ s->prev = PL_regmatch_slab;
+ s->next = NULL;
+ PL_regmatch_slab->next = s;
+ }
+ PL_regmatch_slab = s;
+ return SLAB_FIRST(s);
+}
+
+
+/* push a new state then goto it */
+
+#define PUSH_STATE_GOTO(state, node, input) \
+ pushinput = input; \
+ scan = node; \
+ st->resume_state = state; \
+ goto push_state;
+
+/* push a new state with success backtracking, then goto it */
+
+#define PUSH_YES_STATE_GOTO(state, node, input) \
+ pushinput = input; \
+ scan = node; \
+ st->resume_state = state; \
+ goto push_yes_state;
+
+
+
+
+/*
+
+regmatch() - main matching routine
+
+This is basically one big switch statement in a loop. We execute an op,
+set 'next' to point the next op, and continue. If we come to a point which
+we may need to backtrack to on failure such as (A|B|C), we push a
+backtrack state onto the backtrack stack. On failure, we pop the top
+state, and re-enter the loop at the state indicated. If there are no more
+states to pop, we return failure.
+
+Sometimes we also need to backtrack on success; for example /A+/, where
+after successfully matching one A, we need to go back and try to
+match another one; similarly for lookahead assertions: if the assertion
+completes successfully, we backtrack to the state just before the assertion
+and then carry on. In these cases, the pushed state is marked as
+'backtrack on success too'. This marking is in fact done by a chain of
+pointers, each pointing to the previous 'yes' state. On success, we pop to
+the nearest yes state, discarding any intermediate failure-only states.
+Sometimes a yes state is pushed just to force some cleanup code to be
+called at the end of a successful match or submatch; e.g. (??{$re}) uses
+it to free the inner regex.
+
+Note that failure backtracking rewinds the cursor position, while
+success backtracking leaves it alone.
+
+A pattern is complete when the END op is executed, while a subpattern
+such as (?=foo) is complete when the SUCCESS op is executed. Both of these
+ops trigger the "pop to last yes state if any, otherwise return true"
+behaviour.
+
+A common convention in this function is to use A and B to refer to the two
+subpatterns (or to the first nodes thereof) in patterns like /A*B/: so A is
+the subpattern to be matched possibly multiple times, while B is the entire
+rest of the pattern. Variable and state names reflect this convention.
+
+The states in the main switch are the union of ops and failure/success of
+substates associated with with that op. For example, IFMATCH is the op
+that does lookahead assertions /(?=A)B/ and so the IFMATCH state means
+'execute IFMATCH'; while IFMATCH_A is a state saying that we have just
+successfully matched A and IFMATCH_A_fail is a state saying that we have
+just failed to match A. Resume states always come in pairs. The backtrack
+state we push is marked as 'IFMATCH_A', but when that is popped, we resume
+at IFMATCH_A or IFMATCH_A_fail, depending on whether we are backtracking
+on success or failure.
+
+The struct that holds a backtracking state is actually a big union, with
+one variant for each major type of op. The variable st points to the
+top-most backtrack struct. To make the code clearer, within each
+block of code we #define ST to alias the relevant union.
+
+Here's a concrete example of a (vastly oversimplified) IFMATCH
+implementation:
+
+ switch (state) {
+ ....
+
+#define ST st->u.ifmatch
+
+ case IFMATCH: // we are executing the IFMATCH op, (?=A)B
+ ST.foo = ...; // some state we wish to save
+ ...
+ // push a yes backtrack state with a resume value of
+ // IFMATCH_A/IFMATCH_A_fail, then continue execution at the
+ // first node of A:
+ PUSH_YES_STATE_GOTO(IFMATCH_A, A, newinput);
+ // NOTREACHED
+
+ case IFMATCH_A: // we have successfully executed A; now continue with B
+ next = B;
+ bar = ST.foo; // do something with the preserved value
+ break;
+
+ case IFMATCH_A_fail: // A failed, so the assertion failed
+ ...; // do some housekeeping, then ...
+ sayNO; // propagate the failure
+
+#undef ST
+
+ ...
+ }
+
+For any old-timers reading this who are familiar with the old recursive
+approach, the code above is equivalent to:
+
+ case IFMATCH: // we are executing the IFMATCH op, (?=A)B
+ {
+ int foo = ...
+ ...
+ if (regmatch(A)) {
+ next = B;
+ bar = foo;
+ break;
+ }
+ ...; // do some housekeeping, then ...
+ sayNO; // propagate the failure
+ }
+
+The topmost backtrack state, pointed to by st, is usually free. If you
+want to claim it, populate any ST.foo fields in it with values you wish to
+save, then do one of
+
+ PUSH_STATE_GOTO(resume_state, node, newinput);
+ PUSH_YES_STATE_GOTO(resume_state, node, newinput);
+
+which sets that backtrack state's resume value to 'resume_state', pushes a
+new free entry to the top of the backtrack stack, then goes to 'node'.
+On backtracking, the free slot is popped, and the saved state becomes the
+new free state. An ST.foo field in this new top state can be temporarily
+accessed to retrieve values, but once the main loop is re-entered, it
+becomes available for reuse.
+
+Note that the depth of the backtrack stack constantly increases during the
+left-to-right execution of the pattern, rather than going up and down with
+the pattern nesting. For example the stack is at its maximum at Z at the
+end of the pattern, rather than at X in the following:
+
+ /(((X)+)+)+....(Y)+....Z/
+
+The only exceptions to this are lookahead/behind assertions and the cut,
+(?>A), which pop all the backtrack states associated with A before
+continuing.
+
+Backtrack state structs are allocated in slabs of about 4K in size.
+PL_regmatch_state and st always point to the currently active state,
+and PL_regmatch_slab points to the slab currently containing
+PL_regmatch_state. The first time regmatch() is called, the first slab is
+allocated, and is never freed until interpreter destruction. When the slab
+is full, a new one is allocated and chained to the end. At exit from
+regmatch(), slabs allocated since entry are freed.
+
+*/
+
+
+#define DEBUG_STATE_pp(pp) \
+ DEBUG_STATE_r({ \
+ DUMP_EXEC_POS(locinput, scan, utf8_target); \
+ PerlIO_printf(Perl_debug_log, \
+ " %*s"pp" %s%s%s%s%s\n", \
+ depth*2, "", \
+ PL_reg_name[st->resume_state], \
+ ((st==yes_state||st==mark_state) ? "[" : ""), \
+ ((st==yes_state) ? "Y" : ""), \
+ ((st==mark_state) ? "M" : ""), \
+ ((st==yes_state||st==mark_state) ? "]" : "") \
+ ); \
+ });
+
+
+#define REG_NODE_NUM(x) ((x) ? (int)((x)-prog) : -1)
+
+#ifdef DEBUGGING
+
+STATIC void
+S_debug_start_match(pTHX_ const REGEXP *prog, const bool utf8_target,
+ const char *start, const char *end, const char *blurb)
+{
+ const bool utf8_pat = RX_UTF8(prog) ? 1 : 0;
+
+ PERL_ARGS_ASSERT_DEBUG_START_MATCH;
+
+ if (!PL_colorset)
+ reginitcolors();
+ {
+ RE_PV_QUOTED_DECL(s0, utf8_pat, PERL_DEBUG_PAD_ZERO(0),
+ RX_PRECOMP_const(prog), RX_PRELEN(prog), 60);
+
+ RE_PV_QUOTED_DECL(s1, utf8_target, PERL_DEBUG_PAD_ZERO(1),
+ start, end - start, 60);
+
+ PerlIO_printf(Perl_debug_log,
+ "%s%s REx%s %s against %s\n",
+ PL_colors[4], blurb, PL_colors[5], s0, s1);
+
+ if (utf8_target||utf8_pat)
+ PerlIO_printf(Perl_debug_log, "UTF-8 %s%s%s...\n",
+ utf8_pat ? "pattern" : "",
+ utf8_pat && utf8_target ? " and " : "",
+ utf8_target ? "string" : ""
+ );
+ }
+}
+
+STATIC void
+S_dump_exec_pos(pTHX_ const char *locinput,
+ const regnode *scan,
+ const char *loc_regeol,
+ const char *loc_bostr,
+ const char *loc_reg_starttry,
+ const bool utf8_target)
+{
+ const int docolor = *PL_colors[0] || *PL_colors[2] || *PL_colors[4];
+ const int taill = (docolor ? 10 : 7); /* 3 chars for "> <" */
+ int l = (loc_regeol - locinput) > taill ? taill : (loc_regeol - locinput);
+ /* The part of the string before starttry has one color
+ (pref0_len chars), between starttry and current
+ position another one (pref_len - pref0_len chars),
+ after the current position the third one.
+ We assume that pref0_len <= pref_len, otherwise we
+ decrease pref0_len. */
+ int pref_len = (locinput - loc_bostr) > (5 + taill) - l
+ ? (5 + taill) - l : locinput - loc_bostr;
+ int pref0_len;
+
+ PERL_ARGS_ASSERT_DUMP_EXEC_POS;
+
+ while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput - pref_len)))
+ pref_len++;
+ pref0_len = pref_len - (locinput - loc_reg_starttry);
+ if (l + pref_len < (5 + taill) && l < loc_regeol - locinput)
+ l = ( loc_regeol - locinput > (5 + taill) - pref_len
+ ? (5 + taill) - pref_len : loc_regeol - locinput);
+ while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput + l)))
+ l--;
+ if (pref0_len < 0)
+ pref0_len = 0;
+ if (pref0_len > pref_len)
+ pref0_len = pref_len;
+ {
+ const int is_uni = utf8_target ? 1 : 0;
+
+ RE_PV_COLOR_DECL(s0,len0,is_uni,PERL_DEBUG_PAD(0),
+ (locinput - pref_len),pref0_len, 60, 4, 5);
+
+ RE_PV_COLOR_DECL(s1,len1,is_uni,PERL_DEBUG_PAD(1),
+ (locinput - pref_len + pref0_len),
+ pref_len - pref0_len, 60, 2, 3);
+
+ RE_PV_COLOR_DECL(s2,len2,is_uni,PERL_DEBUG_PAD(2),
+ locinput, loc_regeol - locinput, 10, 0, 1);
+
+ const STRLEN tlen=len0+len1+len2;
+ PerlIO_printf(Perl_debug_log,
+ "%4"IVdf" <%.*s%.*s%s%.*s>%*s|",
+ (IV)(locinput - loc_bostr),
+ len0, s0,
+ len1, s1,
+ (docolor ? "" : "> <"),
+ len2, s2,
+ (int)(tlen > 19 ? 0 : 19 - tlen),
+ "");
+ }
+}
+
+#endif
+
+/* reg_check_named_buff_matched()
+ * Checks to see if a named buffer has matched. The data array of
+ * buffer numbers corresponding to the buffer is expected to reside
+ * in the regexp->data->data array in the slot stored in the ARG() of
+ * node involved. Note that this routine doesn't actually care about the
+ * name, that information is not preserved from compilation to execution.
+ * Returns the index of the leftmost defined buffer with the given name
+ * or 0 if non of the buffers matched.
+ */
+STATIC I32
+S_reg_check_named_buff_matched(const regexp *rex, const regnode *scan)
+{
+ I32 n;
+ RXi_GET_DECL(rex,rexi);
+ SV *sv_dat= MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ I32 *nums=(I32*)SvPVX(sv_dat);
+
+ PERL_ARGS_ASSERT_REG_CHECK_NAMED_BUFF_MATCHED;
+
+ for ( n=0; n<SvIVX(sv_dat); n++ ) {
+ if ((I32)rex->lastparen >= nums[n] &&
+ rex->offs[nums[n]].end != -1)
+ {
+ return nums[n];
+ }
+ }
+ return 0;
+}
+
+
+static bool
+S_setup_EXACTISH_ST_c1_c2(pTHX_ const regnode * const text_node, int *c1p,
+ U8* c1_utf8, int *c2p, U8* c2_utf8, regmatch_info *reginfo)
+{
+ /* This function determines if there are one or two characters that match
+ * the first character of the passed-in EXACTish node <text_node>, and if
+ * so, returns them in the passed-in pointers.
+ *
+ * If it determines that no possible character in the target string can
+ * match, it returns FALSE; otherwise TRUE. (The FALSE situation occurs if
+ * the first character in <text_node> requires UTF-8 to represent, and the
+ * target string isn't in UTF-8.)
+ *
+ * If there are more than two characters that could match the beginning of
+ * <text_node>, or if more context is required to determine a match or not,
+ * it sets both *<c1p> and *<c2p> to CHRTEST_VOID.
+ *
+ * The motiviation behind this function is to allow the caller to set up
+ * tight loops for matching. If <text_node> is of type EXACT, there is
+ * only one possible character that can match its first character, and so
+ * the situation is quite simple. But things get much more complicated if
+ * folding is involved. It may be that the first character of an EXACTFish
+ * node doesn't participate in any possible fold, e.g., punctuation, so it
+ * can be matched only by itself. The vast majority of characters that are
+ * in folds match just two things, their lower and upper-case equivalents.
+ * But not all are like that; some have multiple possible matches, or match
+ * sequences of more than one character. This function sorts all that out.
+ *
+ * Consider the patterns A*B or A*?B where A and B are arbitrary. In a
+ * loop of trying to match A*, we know we can't exit where the thing
+ * following it isn't a B. And something can't be a B unless it is the
+ * beginning of B. By putting a quick test for that beginning in a tight
+ * loop, we can rule out things that can't possibly be B without having to
+ * break out of the loop, thus avoiding work. Similarly, if A is a single
+ * character, we can make a tight loop matching A*, using the outputs of
+ * this function.
+ *
+ * If the target string to match isn't in UTF-8, and there aren't
+ * complications which require CHRTEST_VOID, *<c1p> and *<c2p> are set to
+ * the one or two possible octets (which are characters in this situation)
+ * that can match. In all cases, if there is only one character that can
+ * match, *<c1p> and *<c2p> will be identical.
+ *
+ * If the target string is in UTF-8, the buffers pointed to by <c1_utf8>
+ * and <c2_utf8> will contain the one or two UTF-8 sequences of bytes that
+ * can match the beginning of <text_node>. They should be declared with at
+ * least length UTF8_MAXBYTES+1. (If the target string isn't in UTF-8, it is
+ * undefined what these contain.) If one or both of the buffers are
+ * invariant under UTF-8, *<c1p>, and *<c2p> will also be set to the
+ * corresponding invariant. If variant, the corresponding *<c1p> and/or
+ * *<c2p> will be set to a negative number(s) that shouldn't match any code
+ * point (unless inappropriately coerced to unsigned). *<c1p> will equal
+ * *<c2p> if and only if <c1_utf8> and <c2_utf8> are the same. */
+
+ const bool utf8_target = reginfo->is_utf8_target;
+
+ UV c1 = (UV)CHRTEST_NOT_A_CP_1;
+ UV c2 = (UV)CHRTEST_NOT_A_CP_2;
+ bool use_chrtest_void = FALSE;
+ const bool is_utf8_pat = reginfo->is_utf8_pat;
+
+ /* Used when we have both utf8 input and utf8 output, to avoid converting
+ * to/from code points */
+ bool utf8_has_been_setup = FALSE;
+
+ dVAR;
+
+ U8 *pat = (U8*)STRING(text_node);
+ U8 folded[UTF8_MAX_FOLD_CHAR_EXPAND * UTF8_MAXBYTES_CASE + 1] = { '\0' };
+
+ if (OP(text_node) == EXACT || OP(text_node) == EXACTL) {
+
+ /* In an exact node, only one thing can be matched, that first
+ * character. If both the pat and the target are UTF-8, we can just
+ * copy the input to the output, avoiding finding the code point of
+ * that character */
+ if (!is_utf8_pat) {
+ c2 = c1 = *pat;
+ }
+ else if (utf8_target) {
+ Copy(pat, c1_utf8, UTF8SKIP(pat), U8);
+ Copy(pat, c2_utf8, UTF8SKIP(pat), U8);
+ utf8_has_been_setup = TRUE;
+ }
+ else {
+ c2 = c1 = valid_utf8_to_uvchr(pat, NULL);
+ }
+ }
+ else { /* an EXACTFish node */
+ U8 *pat_end = pat + STR_LEN(text_node);
+
+ /* An EXACTFL node has at least some characters unfolded, because what
+ * they match is not known until now. So, now is the time to fold
+ * the first few of them, as many as are needed to determine 'c1' and
+ * 'c2' later in the routine. If the pattern isn't UTF-8, we only need
+ * to fold if in a UTF-8 locale, and then only the Sharp S; everything
+ * else is 1-1 and isn't assumed to be folded. In a UTF-8 pattern, we
+ * need to fold as many characters as a single character can fold to,
+ * so that later we can check if the first ones are such a multi-char
+ * fold. But, in such a pattern only locale-problematic characters
+ * aren't folded, so we can skip this completely if the first character
+ * in the node isn't one of the tricky ones */
+ if (OP(text_node) == EXACTFL) {
+
+ if (! is_utf8_pat) {
+ if (IN_UTF8_CTYPE_LOCALE && *pat == LATIN_SMALL_LETTER_SHARP_S)
+ {
+ folded[0] = folded[1] = 's';
+ pat = folded;
+ pat_end = folded + 2;
+ }
+ }
+ else if (is_PROBLEMATIC_LOCALE_FOLDEDS_START_utf8(pat)) {
+ U8 *s = pat;
+ U8 *d = folded;
+ int i;
+
+ for (i = 0; i < UTF8_MAX_FOLD_CHAR_EXPAND && s < pat_end; i++) {
+ if (isASCII(*s)) {
+ *(d++) = (U8) toFOLD_LC(*s);
+ s++;
+ }
+ else {
+ STRLEN len;
+ _to_utf8_fold_flags(s,
+ d,
+ &len,
+ FOLD_FLAGS_FULL | FOLD_FLAGS_LOCALE);
+ d += len;
+ s += UTF8SKIP(s);
+ }
+ }
+
+ pat = folded;
+ pat_end = d;
+ }
+ }
+
+ if ((is_utf8_pat && is_MULTI_CHAR_FOLD_utf8_safe(pat, pat_end))
+ || (!is_utf8_pat && is_MULTI_CHAR_FOLD_latin1_safe(pat, pat_end)))
+ {
+ /* Multi-character folds require more context to sort out. Also
+ * PL_utf8_foldclosures used below doesn't handle them, so have to
+ * be handled outside this routine */
+ use_chrtest_void = TRUE;
+ }
+ else { /* an EXACTFish node which doesn't begin with a multi-char fold */
+ c1 = is_utf8_pat ? valid_utf8_to_uvchr(pat, NULL) : *pat;
+ if (c1 > 255) {
+ /* Load the folds hash, if not already done */
+ SV** listp;
+ if (! PL_utf8_foldclosures) {
+ _load_PL_utf8_foldclosures();
+ }
+
+ /* The fold closures data structure is a hash with the keys
+ * being the UTF-8 of every character that is folded to, like
+ * 'k', and the values each an array of all code points that
+ * fold to its key. e.g. [ 'k', 'K', KELVIN_SIGN ].
+ * Multi-character folds are not included */
+ if ((! (listp = hv_fetch(PL_utf8_foldclosures,
+ (char *) pat,
+ UTF8SKIP(pat),
+ FALSE))))
+ {
+ /* Not found in the hash, therefore there are no folds
+ * containing it, so there is only a single character that
+ * could match */
+ c2 = c1;
+ }
+ else { /* Does participate in folds */
+ AV* list = (AV*) *listp;
+ if (av_tindex(list) != 1) {
+
+ /* If there aren't exactly two folds to this, it is
+ * outside the scope of this function */
+ use_chrtest_void = TRUE;
+ }
+ else { /* There are two. Get them */
+ SV** c_p = av_fetch(list, 0, FALSE);
+ if (c_p == NULL) {
+ Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
+ }
+ c1 = SvUV(*c_p);
+
+ c_p = av_fetch(list, 1, FALSE);
+ if (c_p == NULL) {
+ Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
+ }
+ c2 = SvUV(*c_p);
+
+ /* Folds that cross the 255/256 boundary are forbidden
+ * if EXACTFL (and isnt a UTF8 locale), or EXACTFA and
+ * one is ASCIII. Since the pattern character is above
+ * 255, and its only other match is below 256, the only
+ * legal match will be to itself. We have thrown away
+ * the original, so have to compute which is the one
+ * above 255. */
+ if ((c1 < 256) != (c2 < 256)) {
+ if ((OP(text_node) == EXACTFL
+ && ! IN_UTF8_CTYPE_LOCALE)
+ || ((OP(text_node) == EXACTFA
+ || OP(text_node) == EXACTFA_NO_TRIE)
+ && (isASCII(c1) || isASCII(c2))))
+ {
+ if (c1 < 256) {
+ c1 = c2;
+ }
+ else {
+ c2 = c1;
+ }
+ }
+ }
+ }
+ }
+ }
+ else /* Here, c1 is <= 255 */
+ if (utf8_target
+ && HAS_NONLATIN1_FOLD_CLOSURE(c1)
+ && ( ! (OP(text_node) == EXACTFL && ! IN_UTF8_CTYPE_LOCALE))
+ && ((OP(text_node) != EXACTFA
+ && OP(text_node) != EXACTFA_NO_TRIE)
+ || ! isASCII(c1)))
+ {
+ /* Here, there could be something above Latin1 in the target
+ * which folds to this character in the pattern. All such
+ * cases except LATIN SMALL LETTER Y WITH DIAERESIS have more
+ * than two characters involved in their folds, so are outside
+ * the scope of this function */
+ if (UNLIKELY(c1 == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) {
+ c2 = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS;
+ }
+ else {
+ use_chrtest_void = TRUE;
+ }
+ }
+ else { /* Here nothing above Latin1 can fold to the pattern
+ character */
+ switch (OP(text_node)) {
+
+ case EXACTFL: /* /l rules */
+ c2 = PL_fold_locale[c1];
+ break;
+
+ case EXACTF: /* This node only generated for non-utf8
+ patterns */
+ assert(! is_utf8_pat);
+ if (! utf8_target) { /* /d rules */
+ c2 = PL_fold[c1];
+ break;
+ }
+ /* FALLTHROUGH */
+ /* /u rules for all these. This happens to work for
+ * EXACTFA as nothing in Latin1 folds to ASCII */
+ case EXACTFA_NO_TRIE: /* This node only generated for
+ non-utf8 patterns */
+ assert(! is_utf8_pat);
+ /* FALLTHROUGH */
+ case EXACTFA:
+ case EXACTFU_SS:
+ case EXACTFU:
+ c2 = PL_fold_latin1[c1];
+ break;
+
+ default:
+ Perl_croak(aTHX_ "panic: Unexpected op %u", OP(text_node));
+ NOT_REACHED; /* NOTREACHED */
+ }
+ }
+ }
+ }
+
+ /* Here have figured things out. Set up the returns */
+ if (use_chrtest_void) {
+ *c2p = *c1p = CHRTEST_VOID;
+ }
+ else if (utf8_target) {
+ if (! utf8_has_been_setup) { /* Don't have the utf8; must get it */
+ uvchr_to_utf8(c1_utf8, c1);
+ uvchr_to_utf8(c2_utf8, c2);
+ }
+
+ /* Invariants are stored in both the utf8 and byte outputs; Use
+ * negative numbers otherwise for the byte ones. Make sure that the
+ * byte ones are the same iff the utf8 ones are the same */
+ *c1p = (UTF8_IS_INVARIANT(*c1_utf8)) ? *c1_utf8 : CHRTEST_NOT_A_CP_1;
+ *c2p = (UTF8_IS_INVARIANT(*c2_utf8))
+ ? *c2_utf8
+ : (c1 == c2)
+ ? CHRTEST_NOT_A_CP_1
+ : CHRTEST_NOT_A_CP_2;
+ }
+ else if (c1 > 255) {
+ if (c2 > 255) { /* both possibilities are above what a non-utf8 string
+ can represent */
+ return FALSE;
+ }
+
+ *c1p = *c2p = c2; /* c2 is the only representable value */
+ }
+ else { /* c1 is representable; see about c2 */
+ *c1p = c1;
+ *c2p = (c2 < 256) ? c2 : c1;
+ }
+
+ return TRUE;
+}
+
+/* This creates a single number by combining two, with 'before' being like the
+ * 10's digit, but this isn't necessarily base 10; it is base however many
+ * elements of the enum there are */
+#define GCBcase(before, after) ((GCB_ENUM_COUNT * before) + after)
+
+STATIC bool
+S_isGCB(const GCB_enum before, const GCB_enum after)
+{
+ /* returns a boolean indicating if there is a Grapheme Cluster Boundary
+ * between the inputs. See http://www.unicode.org/reports/tr29/ */
+
+ switch (GCBcase(before, after)) {
+
+ /* Break at the start and end of text.
+ GB1. sot ÷
+ GB2. ÷ eot
+
+ Break before and after controls except between CR and LF
+ GB4. ( Control | CR | LF ) ÷
+ GB5. ÷ ( Control | CR | LF )
+
+ Otherwise, break everywhere.
+ GB10. Any ÷ Any */
+ default:
+ return TRUE;
+
+ /* Do not break between a CR and LF.
+ GB3. CR × LF */
+ case GCBcase(GCB_CR, GCB_LF):
+ return FALSE;
+
+ /* Do not break Hangul syllable sequences.
+ GB6. L × ( L | V | LV | LVT ) */
+ case GCBcase(GCB_L, GCB_L):
+ case GCBcase(GCB_L, GCB_V):
+ case GCBcase(GCB_L, GCB_LV):
+ case GCBcase(GCB_L, GCB_LVT):
+ return FALSE;
+
+ /* GB7. ( LV | V ) × ( V | T ) */
+ case GCBcase(GCB_LV, GCB_V):
+ case GCBcase(GCB_LV, GCB_T):
+ case GCBcase(GCB_V, GCB_V):
+ case GCBcase(GCB_V, GCB_T):
+ return FALSE;
+
+ /* GB8. ( LVT | T) × T */
+ case GCBcase(GCB_LVT, GCB_T):
+ case GCBcase(GCB_T, GCB_T):
+ return FALSE;
+
+ /* Do not break between regional indicator symbols.
+ GB8a. Regional_Indicator × Regional_Indicator */
+ case GCBcase(GCB_Regional_Indicator, GCB_Regional_Indicator):
+ return FALSE;
+
+ /* Do not break before extending characters.
+ GB9. × Extend */
+ case GCBcase(GCB_Other, GCB_Extend):
+ case GCBcase(GCB_Extend, GCB_Extend):
+ case GCBcase(GCB_L, GCB_Extend):
+ case GCBcase(GCB_LV, GCB_Extend):
+ case GCBcase(GCB_LVT, GCB_Extend):
+ case GCBcase(GCB_Prepend, GCB_Extend):
+ case GCBcase(GCB_Regional_Indicator, GCB_Extend):
+ case GCBcase(GCB_SpacingMark, GCB_Extend):
+ case GCBcase(GCB_T, GCB_Extend):
+ case GCBcase(GCB_V, GCB_Extend):
+ return FALSE;
+
+ /* Do not break before SpacingMarks, or after Prepend characters.
+ GB9a. × SpacingMark */
+ case GCBcase(GCB_Other, GCB_SpacingMark):
+ case GCBcase(GCB_Extend, GCB_SpacingMark):
+ case GCBcase(GCB_L, GCB_SpacingMark):
+ case GCBcase(GCB_LV, GCB_SpacingMark):
+ case GCBcase(GCB_LVT, GCB_SpacingMark):
+ case GCBcase(GCB_Prepend, GCB_SpacingMark):
+ case GCBcase(GCB_Regional_Indicator, GCB_SpacingMark):
+ case GCBcase(GCB_SpacingMark, GCB_SpacingMark):
+ case GCBcase(GCB_T, GCB_SpacingMark):
+ case GCBcase(GCB_V, GCB_SpacingMark):
+ return FALSE;
+
+ /* GB9b. Prepend × */
+ case GCBcase(GCB_Prepend, GCB_Other):
+ case GCBcase(GCB_Prepend, GCB_L):
+ case GCBcase(GCB_Prepend, GCB_LV):
+ case GCBcase(GCB_Prepend, GCB_LVT):
+ case GCBcase(GCB_Prepend, GCB_Prepend):
+ case GCBcase(GCB_Prepend, GCB_Regional_Indicator):
+ case GCBcase(GCB_Prepend, GCB_T):
+ case GCBcase(GCB_Prepend, GCB_V):
+ return FALSE;
+ }
+
+ NOT_REACHED; /* NOTREACHED */
+}
+
+#define SBcase(before, after) ((SB_ENUM_COUNT * before) + after)
+
+STATIC bool
+S_isSB(pTHX_ SB_enum before,
+ SB_enum after,
+ const U8 * const strbeg,
+ const U8 * const curpos,
+ const U8 * const strend,
+ const bool utf8_target)
+{
+ /* returns a boolean indicating if there is a Sentence Boundary Break
+ * between the inputs. See http://www.unicode.org/reports/tr29/ */
+
+ U8 * lpos = (U8 *) curpos;
+ U8 * temp_pos;
+ SB_enum backup;
+
+ PERL_ARGS_ASSERT_ISSB;
+
+ /* Break at the start and end of text.
+ SB1. sot ÷
+ SB2. ÷ eot */
+ if (before == SB_EDGE || after == SB_EDGE) {
+ return TRUE;
+ }
+
+ /* SB 3: Do not break within CRLF. */
+ if (before == SB_CR && after == SB_LF) {
+ return FALSE;
+ }
+
+ /* Break after paragraph separators. (though why CR and LF are considered
+ * so is beyond me (khw)
+ SB4. Sep | CR | LF ÷ */
+ if (before == SB_Sep || before == SB_CR || before == SB_LF) {
+ return TRUE;
+ }
+
+ /* Ignore Format and Extend characters, except after sot, Sep, CR, or LF.
+ * (See Section 6.2, Replacing Ignore Rules.)
+ SB5. X (Extend | Format)* → X */
+ if (after == SB_Extend || after == SB_Format) {
+ return FALSE;
+ }
+
+ if (before == SB_Extend || before == SB_Format) {
+ before = backup_one_SB(strbeg, &lpos, utf8_target);
+ }
+
+ /* Do not break after ambiguous terminators like period, if they are
+ * immediately followed by a number or lowercase letter, if they are
+ * between uppercase letters, if the first following letter (optionally
+ * after certain punctuation) is lowercase, or if they are followed by
+ * "continuation" punctuation such as comma, colon, or semicolon. For
+ * example, a period may be an abbreviation or numeric period, and thus may
+ * not mark the end of a sentence.
+
+ * SB6. ATerm × Numeric */
+ if (before == SB_ATerm && after == SB_Numeric) {
+ return FALSE;
+ }
+
+ /* SB7. (Upper | Lower) ATerm × Upper */
+ if (before == SB_ATerm && after == SB_Upper) {
+ temp_pos = lpos;
+ backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ if (backup == SB_Upper || backup == SB_Lower) {
+ return FALSE;
+ }
+ }
+
+ /* SB8a. (STerm | ATerm) Close* Sp* × (SContinue | STerm | ATerm)
+ * SB10. (STerm | ATerm) Close* Sp* × ( Sp | Sep | CR | LF ) */
+ backup = before;
+ temp_pos = lpos;
+ while (backup == SB_Sp) {
+ backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ }
+ while (backup == SB_Close) {
+ backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ }
+ if ((backup == SB_STerm || backup == SB_ATerm)
+ && ( after == SB_SContinue
+ || after == SB_STerm
+ || after == SB_ATerm
+ || after == SB_Sp
+ || after == SB_Sep
+ || after == SB_CR
+ || after == SB_LF))
+ {
+ return FALSE;
+ }
+
+ /* SB8. ATerm Close* Sp* × ( ¬(OLetter | Upper | Lower | Sep | CR | LF |
+ * STerm | ATerm) )* Lower */
+ if (backup == SB_ATerm) {
+ U8 * rpos = (U8 *) curpos;
+ SB_enum later = after;
+
+ while ( later != SB_OLetter
+ && later != SB_Upper
+ && later != SB_Lower
+ && later != SB_Sep
+ && later != SB_CR
+ && later != SB_LF
+ && later != SB_STerm
+ && later != SB_ATerm
+ && later != SB_EDGE)
+ {
+ later = advance_one_SB(&rpos, strend, utf8_target);
+ }
+ if (later == SB_Lower) {
+ return FALSE;
+ }
+ }
+
+ /* Break after sentence terminators, but include closing punctuation,
+ * trailing spaces, and a paragraph separator (if present). [See note
+ * below.]
+ * SB9. ( STerm | ATerm ) Close* × ( Close | Sp | Sep | CR | LF ) */
+ backup = before;
+ temp_pos = lpos;
+ while (backup == SB_Close) {
+ backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ }
+ if ((backup == SB_STerm || backup == SB_ATerm)
+ && ( after == SB_Close
+ || after == SB_Sp
+ || after == SB_Sep
+ || after == SB_CR
+ || after == SB_LF))
+ {
+ return FALSE;
+ }
+
+
+ /* SB11. ( STerm | ATerm ) Close* Sp* ( Sep | CR | LF )? ÷ */
+ temp_pos = lpos;
+ backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ if ( backup == SB_Sep
+ || backup == SB_CR
+ || backup == SB_LF)
+ {
+ lpos = temp_pos;
+ }
+ else {
+ backup = before;
+ }
+ while (backup == SB_Sp) {
+ backup = backup_one_SB(strbeg, &lpos, utf8_target);
+ }
+ while (backup == SB_Close) {
+ backup = backup_one_SB(strbeg, &lpos, utf8_target);
+ }
+ if (backup == SB_STerm || backup == SB_ATerm) {
+ return TRUE;
+ }
+
+ /* Otherwise, do not break.
+ SB12. Any × Any */
+
+ return FALSE;
+}
+
+STATIC SB_enum
+S_advance_one_SB(pTHX_ U8 ** curpos, const U8 * const strend, const bool utf8_target)
+{
+ SB_enum sb;
+
+ PERL_ARGS_ASSERT_ADVANCE_ONE_SB;
+
+ if (*curpos >= strend) {
+ return SB_EDGE;
+ }
+
+ if (utf8_target) {
+ do {
+ *curpos += UTF8SKIP(*curpos);
+ if (*curpos >= strend) {
+ return SB_EDGE;
+ }
+ sb = getSB_VAL_UTF8(*curpos, strend);
+ } while (sb == SB_Extend || sb == SB_Format);
+ }
+ else {
+ do {
+ (*curpos)++;
+ if (*curpos >= strend) {
+ return SB_EDGE;
+ }
+ sb = getSB_VAL_CP(**curpos);
+ } while (sb == SB_Extend || sb == SB_Format);
+ }
+
+ return sb;
+}
+
+STATIC SB_enum
+S_backup_one_SB(pTHX_ const U8 * const strbeg, U8 ** curpos, const bool utf8_target)
+{
+ SB_enum sb;
+
+ PERL_ARGS_ASSERT_BACKUP_ONE_SB;
+
+ if (*curpos < strbeg) {
+ return SB_EDGE;
+ }
+
+ if (utf8_target) {
+ U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg);
+ if (! prev_char_pos) {
+ return SB_EDGE;
+ }
+
+ /* Back up over Extend and Format. curpos is always just to the right
+ * of the characater whose value we are getting */
+ do {
+ U8 * prev_prev_char_pos;
+ if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos, -1,
+ strbeg)))
+ {
+ sb = getSB_VAL_UTF8(prev_prev_char_pos, prev_char_pos);
+ *curpos = prev_char_pos;
+ prev_char_pos = prev_prev_char_pos;
+ }
+ else {
+ *curpos = (U8 *) strbeg;
+ return SB_EDGE;
+ }
+ } while (sb == SB_Extend || sb == SB_Format);
+ }
+ else {
+ do {
+ if (*curpos - 2 < strbeg) {
+ *curpos = (U8 *) strbeg;
+ return SB_EDGE;
+ }
+ (*curpos)--;
+ sb = getSB_VAL_CP(*(*curpos - 1));
+ } while (sb == SB_Extend || sb == SB_Format);
+ }
+
+ return sb;
+}
+
+#define WBcase(before, after) ((WB_ENUM_COUNT * before) + after)
+
+STATIC bool
+S_isWB(pTHX_ WB_enum previous,
+ WB_enum before,
+ WB_enum after,
+ const U8 * const strbeg,
+ const U8 * const curpos,
+ const U8 * const strend,
+ const bool utf8_target)
+{
+ /* Return a boolean as to if the boundary between 'before' and 'after' is
+ * a Unicode word break, using their published algorithm. Context may be
+ * needed to make this determination. If the value for the character
+ * before 'before' is known, it is passed as 'previous'; otherwise that
+ * should be set to WB_UNKNOWN. The other input parameters give the
+ * boundaries and current position in the matching of the string. That
+ * is, 'curpos' marks the position where the character whose wb value is
+ * 'after' begins. See http://www.unicode.org/reports/tr29/ */
+
+ U8 * before_pos = (U8 *) curpos;
+ U8 * after_pos = (U8 *) curpos;
+
+ PERL_ARGS_ASSERT_ISWB;
+
+ /* WB1 and WB2: Break at the start and end of text. */
+ if (before == WB_EDGE || after == WB_EDGE) {
+ return TRUE;
+ }
+
+ /* WB 3: Do not break within CRLF. */
+ if (before == WB_CR && after == WB_LF) {
+ return FALSE;
+ }
+
+ /* WB 3a and WB 3b: Otherwise break before and after Newlines (including CR
+ * and LF) */
+ if ( before == WB_CR || before == WB_LF || before == WB_Newline
+ || after == WB_CR || after == WB_LF || after == WB_Newline)
+ {
+ return TRUE;
+ }
+
+ /* Ignore Format and Extend characters, except when they appear at the
+ * beginning of a region of text.
+ * WB4. X (Extend | Format)* → X. */
+
+ if (after == WB_Extend || after == WB_Format) {
+ return FALSE;
+ }
+
+ if (before == WB_Extend || before == WB_Format) {
+ before = backup_one_WB(&previous, strbeg, &before_pos, utf8_target);
+ }
+
+ switch (WBcase(before, after)) {
+ /* Otherwise, break everywhere (including around ideographs).
+ WB14. Any ÷ Any */
+ default:
+ return TRUE;
+
+ /* Do not break between most letters.
+ WB5. (ALetter | Hebrew_Letter) × (ALetter | Hebrew_Letter) */
+ case WBcase(WB_ALetter, WB_ALetter):
+ case WBcase(WB_ALetter, WB_Hebrew_Letter):
+ case WBcase(WB_Hebrew_Letter, WB_ALetter):
+ case WBcase(WB_Hebrew_Letter, WB_Hebrew_Letter):
+ return FALSE;
+
+ /* Do not break letters across certain punctuation.
+ WB6. (ALetter | Hebrew_Letter)
+ × (MidLetter | MidNumLet | Single_Quote) (ALetter
+ | Hebrew_Letter) */
+ case WBcase(WB_ALetter, WB_MidLetter):
+ case WBcase(WB_ALetter, WB_MidNumLet):
+ case WBcase(WB_ALetter, WB_Single_Quote):
+ case WBcase(WB_Hebrew_Letter, WB_MidLetter):
+ case WBcase(WB_Hebrew_Letter, WB_MidNumLet):
+ /*case WBcase(WB_Hebrew_Letter, WB_Single_Quote):*/
+ after = advance_one_WB(&after_pos, strend, utf8_target);
+ return after != WB_ALetter && after != WB_Hebrew_Letter;
+
+ /* WB7. (ALetter | Hebrew_Letter) (MidLetter | MidNumLet |
+ * Single_Quote) × (ALetter | Hebrew_Letter) */
+ case WBcase(WB_MidLetter, WB_ALetter):
+ case WBcase(WB_MidLetter, WB_Hebrew_Letter):
+ case WBcase(WB_MidNumLet, WB_ALetter):
+ case WBcase(WB_MidNumLet, WB_Hebrew_Letter):
+ case WBcase(WB_Single_Quote, WB_ALetter):
+ case WBcase(WB_Single_Quote, WB_Hebrew_Letter):
+ before
+ = backup_one_WB(&previous, strbeg, &before_pos, utf8_target);
+ return before != WB_ALetter && before != WB_Hebrew_Letter;
+
+ /* WB7a. Hebrew_Letter × Single_Quote */
+ case WBcase(WB_Hebrew_Letter, WB_Single_Quote):
+ return FALSE;
+
+ /* WB7b. Hebrew_Letter × Double_Quote Hebrew_Letter */
+ case WBcase(WB_Hebrew_Letter, WB_Double_Quote):
+ return advance_one_WB(&after_pos, strend, utf8_target)
+ != WB_Hebrew_Letter;
+
+ /* WB7c. Hebrew_Letter Double_Quote × Hebrew_Letter */
+ case WBcase(WB_Double_Quote, WB_Hebrew_Letter):
+ return backup_one_WB(&previous, strbeg, &before_pos, utf8_target)
+ != WB_Hebrew_Letter;
+
+ /* Do not break within sequences of digits, or digits adjacent to
+ * letters (“3a”, or “A3”).
+ WB8. Numeric × Numeric */
+ case WBcase(WB_Numeric, WB_Numeric):
+ return FALSE;
+
+ /* WB9. (ALetter | Hebrew_Letter) × Numeric */
+ case WBcase(WB_ALetter, WB_Numeric):
+ case WBcase(WB_Hebrew_Letter, WB_Numeric):
+ return FALSE;
+
+ /* WB10. Numeric × (ALetter | Hebrew_Letter) */
+ case WBcase(WB_Numeric, WB_ALetter):
+ case WBcase(WB_Numeric, WB_Hebrew_Letter):
+ return FALSE;
+
+ /* Do not break within sequences, such as “3.2” or “3,456.789”.
+ WB11. Numeric (MidNum | MidNumLet | Single_Quote) × Numeric
+ */
+ case WBcase(WB_MidNum, WB_Numeric):
+ case WBcase(WB_MidNumLet, WB_Numeric):
+ case WBcase(WB_Single_Quote, WB_Numeric):
+ return backup_one_WB(&previous, strbeg, &before_pos, utf8_target)
+ != WB_Numeric;
+
+ /* WB12. Numeric × (MidNum | MidNumLet | Single_Quote) Numeric
+ * */
+ case WBcase(WB_Numeric, WB_MidNum):
+ case WBcase(WB_Numeric, WB_MidNumLet):
+ case WBcase(WB_Numeric, WB_Single_Quote):
+ return advance_one_WB(&after_pos, strend, utf8_target)
+ != WB_Numeric;
+
+ /* Do not break between Katakana.
+ WB13. Katakana × Katakana */
+ case WBcase(WB_Katakana, WB_Katakana):
+ return FALSE;
+
+ /* Do not break from extenders.
+ WB13a. (ALetter | Hebrew_Letter | Numeric | Katakana |
+ ExtendNumLet) × ExtendNumLet */
+ case WBcase(WB_ALetter, WB_ExtendNumLet):
+ case WBcase(WB_Hebrew_Letter, WB_ExtendNumLet):
+ case WBcase(WB_Numeric, WB_ExtendNumLet):
+ case WBcase(WB_Katakana, WB_ExtendNumLet):
+ case WBcase(WB_ExtendNumLet, WB_ExtendNumLet):
+ return FALSE;
+
+ /* WB13b. ExtendNumLet × (ALetter | Hebrew_Letter | Numeric
+ * | Katakana) */
+ case WBcase(WB_ExtendNumLet, WB_ALetter):
+ case WBcase(WB_ExtendNumLet, WB_Hebrew_Letter):
+ case WBcase(WB_ExtendNumLet, WB_Numeric):
+ case WBcase(WB_ExtendNumLet, WB_Katakana):
+ return FALSE;
+
+ /* Do not break between regional indicator symbols.
+ WB13c. Regional_Indicator × Regional_Indicator */
+ case WBcase(WB_Regional_Indicator, WB_Regional_Indicator):
+ return FALSE;
+
+ }
+
+ NOT_REACHED; /* NOTREACHED */
+}
+
+STATIC WB_enum
+S_advance_one_WB(pTHX_ U8 ** curpos, const U8 * const strend, const bool utf8_target)
+{
+ WB_enum wb;
+
+ PERL_ARGS_ASSERT_ADVANCE_ONE_WB;
+
+ if (*curpos >= strend) {
+ return WB_EDGE;
+ }
+
+ if (utf8_target) {
+
+ /* Advance over Extend and Format */
+ do {
+ *curpos += UTF8SKIP(*curpos);
+ if (*curpos >= strend) {
+ return WB_EDGE;
+ }
+ wb = getWB_VAL_UTF8(*curpos, strend);
+ } while (wb == WB_Extend || wb == WB_Format);
+ }
+ else {
+ do {
+ (*curpos)++;
+ if (*curpos >= strend) {
+ return WB_EDGE;
+ }
+ wb = getWB_VAL_CP(**curpos);
+ } while (wb == WB_Extend || wb == WB_Format);
+ }
+
+ return wb;
+}
+
+STATIC WB_enum
+S_backup_one_WB(pTHX_ WB_enum * previous, const U8 * const strbeg, U8 ** curpos, const bool utf8_target)
+{
+ WB_enum wb;
+
+ PERL_ARGS_ASSERT_BACKUP_ONE_WB;
+
+ /* If we know what the previous character's break value is, don't have
+ * to look it up */
+ if (*previous != WB_UNKNOWN) {
+ wb = *previous;
+ *previous = WB_UNKNOWN;
+ /* XXX Note that doesn't change curpos, and maybe should */
+
+ /* But we always back up over these two types */
+ if (wb != WB_Extend && wb != WB_Format) {
+ return wb;
+ }
+ }
+
+ if (*curpos < strbeg) {
+ return WB_EDGE;
+ }
+
+ if (utf8_target) {
+ U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg);
+ if (! prev_char_pos) {
+ return WB_EDGE;
+ }
+
+ /* Back up over Extend and Format. curpos is always just to the right
+ * of the characater whose value we are getting */
+ do {
+ U8 * prev_prev_char_pos;
+ if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos,
+ -1,
+ strbeg)))
+ {
+ wb = getWB_VAL_UTF8(prev_prev_char_pos, prev_char_pos);
+ *curpos = prev_char_pos;
+ prev_char_pos = prev_prev_char_pos;
+ }
+ else {
+ *curpos = (U8 *) strbeg;
+ return WB_EDGE;
+ }
+ } while (wb == WB_Extend || wb == WB_Format);
+ }
+ else {
+ do {
+ if (*curpos - 2 < strbeg) {
+ *curpos = (U8 *) strbeg;
+ return WB_EDGE;
+ }
+ (*curpos)--;
+ wb = getWB_VAL_CP(*(*curpos - 1));
+ } while (wb == WB_Extend || wb == WB_Format);
+ }
+
+ return wb;
+}
+
+/* returns -1 on failure, $+[0] on success */
+STATIC SSize_t
+S_regmatch(pTHX_ regmatch_info *reginfo, char *startpos, regnode *prog)
+{
+#if PERL_VERSION < 9 && !defined(PERL_CORE)
+ dMY_CXT;
+#endif
+ dVAR;
+ const bool utf8_target = reginfo->is_utf8_target;
+ const U32 uniflags = UTF8_ALLOW_DEFAULT;
+ REGEXP *rex_sv = reginfo->prog;
+ regexp *rex = ReANY(rex_sv);
+ RXi_GET_DECL(rex,rexi);
+ /* the current state. This is a cached copy of PL_regmatch_state */
+ regmatch_state *st;
+ /* cache heavy used fields of st in registers */
+ regnode *scan;
+ regnode *next;
+ U32 n = 0; /* general value; init to avoid compiler warning */
+ SSize_t ln = 0; /* len or last; init to avoid compiler warning */
+ char *locinput = startpos;
+ char *pushinput; /* where to continue after a PUSH */
+ I32 nextchr; /* is always set to UCHARAT(locinput) */
+
+ bool result = 0; /* return value of S_regmatch */
+ int depth = 0; /* depth of backtrack stack */
+ U32 nochange_depth = 0; /* depth of GOSUB recursion with nochange */
+ const U32 max_nochange_depth =
+ (3 * rex->nparens > MAX_RECURSE_EVAL_NOCHANGE_DEPTH) ?
+ 3 * rex->nparens : MAX_RECURSE_EVAL_NOCHANGE_DEPTH;
+ regmatch_state *yes_state = NULL; /* state to pop to on success of
+ subpattern */
+ /* mark_state piggy backs on the yes_state logic so that when we unwind
+ the stack on success we can update the mark_state as we go */
+ regmatch_state *mark_state = NULL; /* last mark state we have seen */
+ regmatch_state *cur_eval = NULL; /* most recent EVAL_AB state */
+ struct regmatch_state *cur_curlyx = NULL; /* most recent curlyx */
+ U32 state_num;
+ bool no_final = 0; /* prevent failure from backtracking? */
+ bool do_cutgroup = 0; /* no_final only until next branch/trie entry */
+ char *startpoint = locinput;
+ SV *popmark = NULL; /* are we looking for a mark? */
+ SV *sv_commit = NULL; /* last mark name seen in failure */
+ SV *sv_yes_mark = NULL; /* last mark name we have seen
+ during a successful match */
+ U32 lastopen = 0; /* last open we saw */
+ bool has_cutgroup = RX_HAS_CUTGROUP(rex) ? 1 : 0;
+ SV* const oreplsv = GvSVn(PL_replgv);
+ /* these three flags are set by various ops to signal information to
+ * the very next op. They have a useful lifetime of exactly one loop
+ * iteration, and are not preserved or restored by state pushes/pops
+ */
+ bool sw = 0; /* the condition value in (?(cond)a|b) */
+ bool minmod = 0; /* the next "{n,m}" is a "{n,m}?" */
+ int logical = 0; /* the following EVAL is:
+ 0: (?{...})
+ 1: (?(?{...})X|Y)
+ 2: (??{...})
+ or the following IFMATCH/UNLESSM is:
+ false: plain (?=foo)
+ true: used as a condition: (?(?=foo))
+ */
+ PAD* last_pad = NULL;
+ dMULTICALL;
+ I32 gimme = G_SCALAR;
+ CV *caller_cv = NULL; /* who called us */
+ CV *last_pushed_cv = NULL; /* most recently called (?{}) CV */
+ CHECKPOINT runops_cp; /* savestack position before executing EVAL */
+ U32 maxopenparen = 0; /* max '(' index seen so far */
+ int to_complement; /* Invert the result? */
+ _char_class_number classnum;
+ bool is_utf8_pat = reginfo->is_utf8_pat;
+ bool match = FALSE;
+
+
+#ifdef DEBUGGING
+ GET_RE_DEBUG_FLAGS_DECL;
+#endif
+
+ /* protect against undef(*^R) */
+ SAVEFREESV(SvREFCNT_inc_simple_NN(oreplsv));
+
+ /* shut up 'may be used uninitialized' compiler warnings for dMULTICALL */
+ multicall_oldcatch = 0;
+ multicall_cv = NULL;
+ cx = NULL;
+ PERL_UNUSED_VAR(multicall_cop);
+ PERL_UNUSED_VAR(newsp);
+
+
+ PERL_ARGS_ASSERT_REGMATCH;
+
+ DEBUG_OPTIMISE_r( DEBUG_EXECUTE_r({
+ PerlIO_printf(Perl_debug_log,"regmatch start\n");
+ }));
+
+ st = PL_regmatch_state;
+
+ /* Note that nextchr is a byte even in UTF */
+ SET_nextchr;
+ scan = prog;
+ while (scan != NULL) {
+
+ DEBUG_EXECUTE_r( {
+ SV * const prop = sv_newmortal();
+ regnode *rnext=regnext(scan);
+ DUMP_EXEC_POS( locinput, scan, utf8_target );
+ regprop(rex, prop, scan, reginfo, NULL);
+
+ PerlIO_printf(Perl_debug_log,
+ "%3"IVdf":%*s%s(%"IVdf")\n",
+ (IV)(scan - rexi->program), depth*2, "",
+ SvPVX_const(prop),
+ (PL_regkind[OP(scan)] == END || !rnext) ?
+ 0 : (IV)(rnext - rexi->program));
+ });
+
+ next = scan + NEXT_OFF(scan);
+ if (next == scan)
+ next = NULL;
+ state_num = OP(scan);
+
+ reenter_switch:
+ to_complement = 0;
+
+ SET_nextchr;
+ assert(nextchr < 256 && (nextchr >= 0 || nextchr == NEXTCHR_EOS));
+
+ switch (state_num) {
+ case SBOL: /* /^../ and /\A../ */
+ if (locinput == reginfo->strbeg)
+ break;
+ sayNO;
+
+ case MBOL: /* /^../m */
+ if (locinput == reginfo->strbeg ||
+ (!NEXTCHR_IS_EOS && locinput[-1] == '\n'))
+ {
+ break;
+ }
+ sayNO;
+
+ case GPOS: /* \G */
+ if (locinput == reginfo->ganch)
+ break;
+ sayNO;
+
+ case KEEPS: /* \K */
+ /* update the startpoint */
+ st->u.keeper.val = rex->offs[0].start;
+ rex->offs[0].start = locinput - reginfo->strbeg;
+ PUSH_STATE_GOTO(KEEPS_next, next, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case KEEPS_next_fail:
+ /* rollback the start point change */
+ rex->offs[0].start = st->u.keeper.val;
+ sayNO_SILENT;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case MEOL: /* /..$/m */
+ if (!NEXTCHR_IS_EOS && nextchr != '\n')
+ sayNO;
+ break;
+
+ case SEOL: /* /..$/ */
+ if (!NEXTCHR_IS_EOS && nextchr != '\n')
+ sayNO;
+ if (reginfo->strend - locinput > 1)
+ sayNO;
+ break;
+
+ case EOS: /* \z */
+ if (!NEXTCHR_IS_EOS)
+ sayNO;
+ break;
+
+ case SANY: /* /./s */
+ if (NEXTCHR_IS_EOS)
+ sayNO;
+ goto increment_locinput;
+
+ case REG_ANY: /* /./ */
+ if ((NEXTCHR_IS_EOS) || nextchr == '\n')
+ sayNO;
+ goto increment_locinput;
+
+
+#undef ST
+#define ST st->u.trie
+ case TRIEC: /* (ab|cd) with known charclass */
+ /* In this case the charclass data is available inline so
+ we can fail fast without a lot of extra overhead.
+ */
+ if(!NEXTCHR_IS_EOS && !ANYOF_BITMAP_TEST(scan, nextchr)) {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %sfailed to match trie start class...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+ );
+ sayNO_SILENT;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+ /* FALLTHROUGH */
+ case TRIE: /* (ab|cd) */
+ /* the basic plan of execution of the trie is:
+ * At the beginning, run though all the states, and
+ * find the longest-matching word. Also remember the position
+ * of the shortest matching word. For example, this pattern:
+ * 1 2 3 4 5
+ * ab|a|x|abcd|abc
+ * when matched against the string "abcde", will generate
+ * accept states for all words except 3, with the longest
+ * matching word being 4, and the shortest being 2 (with
+ * the position being after char 1 of the string).
+ *
+ * Then for each matching word, in word order (i.e. 1,2,4,5),
+ * we run the remainder of the pattern; on each try setting
+ * the current position to the character following the word,
+ * returning to try the next word on failure.
+ *
+ * We avoid having to build a list of words at runtime by
+ * using a compile-time structure, wordinfo[].prev, which
+ * gives, for each word, the previous accepting word (if any).
+ * In the case above it would contain the mappings 1->2, 2->0,
+ * 3->0, 4->5, 5->1. We can use this table to generate, from
+ * the longest word (4 above), a list of all words, by
+ * following the list of prev pointers; this gives us the
+ * unordered list 4,5,1,2. Then given the current word we have
+ * just tried, we can go through the list and find the
+ * next-biggest word to try (so if we just failed on word 2,
+ * the next in the list is 4).
+ *
+ * Since at runtime we don't record the matching position in
+ * the string for each word, we have to work that out for
+ * each word we're about to process. The wordinfo table holds
+ * the character length of each word; given that we recorded
+ * at the start: the position of the shortest word and its
+ * length in chars, we just need to move the pointer the
+ * difference between the two char lengths. Depending on
+ * Unicode status and folding, that's cheap or expensive.
+ *
+ * This algorithm is optimised for the case where are only a
+ * small number of accept states, i.e. 0,1, or maybe 2.
+ * With lots of accepts states, and having to try all of them,
+ * it becomes quadratic on number of accept states to find all
+ * the next words.
+ */
+
+ {
+ /* what type of TRIE am I? (utf8 makes this contextual) */
+ DECL_TRIE_TYPE(scan);
+
+ /* what trie are we using right now */
+ reg_trie_data * const trie
+ = (reg_trie_data*)rexi->data->data[ ARG( scan ) ];
+ HV * widecharmap = MUTABLE_HV(rexi->data->data[ ARG( scan ) + 1 ]);
+ U32 state = trie->startstate;
+
+ if (scan->flags == EXACTL || scan->flags == EXACTFLU8) {
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (utf8_target
+ && UTF8_IS_ABOVE_LATIN1(nextchr)
+ && scan->flags == EXACTL)
+ {
+ /* We only output for EXACTL, as we let the folder
+ * output this message for EXACTFLU8 to avoid
+ * duplication */
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput,
+ reginfo->strend);
+ }
+ }
+ if ( trie->bitmap
+ && (NEXTCHR_IS_EOS || !TRIE_BITMAP_TEST(trie, nextchr)))
+ {
+ if (trie->states[ state ].wordnum) {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %smatched empty string...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+ );
+ if (!trie->jump)
+ break;
+ } else {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %sfailed to match trie start class...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+ );
+ sayNO_SILENT;
+ }
+ }
+
+ {
+ U8 *uc = ( U8* )locinput;
+
+ STRLEN len = 0;
+ STRLEN foldlen = 0;
+ U8 *uscan = (U8*)NULL;
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+ U32 charcount = 0; /* how many input chars we have matched */
+ U32 accepted = 0; /* have we seen any accepting states? */
+
+ ST.jump = trie->jump;
+ ST.me = scan;
+ ST.firstpos = NULL;
+ ST.longfold = FALSE; /* char longer if folded => it's harder */
+ ST.nextword = 0;
+
+ /* fully traverse the TRIE; note the position of the
+ shortest accept state and the wordnum of the longest
+ accept state */
+
+ while ( state && uc <= (U8*)(reginfo->strend) ) {
+ U32 base = trie->states[ state ].trans.base;
+ UV uvc = 0;
+ U16 charid = 0;
+ U16 wordnum;
+ wordnum = trie->states[ state ].wordnum;
+
+ if (wordnum) { /* it's an accept state */
+ if (!accepted) {
+ accepted = 1;
+ /* record first match position */
+ if (ST.longfold) {
+ ST.firstpos = (U8*)locinput;
+ ST.firstchars = 0;
+ }
+ else {
+ ST.firstpos = uc;
+ ST.firstchars = charcount;
+ }
+ }
+ if (!ST.nextword || wordnum < ST.nextword)
+ ST.nextword = wordnum;
+ ST.topword = wordnum;
+ }
+
+ DEBUG_TRIE_EXECUTE_r({
+ DUMP_EXEC_POS( (char *)uc, scan, utf8_target );
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sState: %4"UVxf" Accepted: %c ",
+ 2+depth * 2, "", PL_colors[4],
+ (UV)state, (accepted ? 'Y' : 'N'));
+ });
+
+ /* read a char and goto next state */
+ if ( base && (foldlen || uc < (U8*)(reginfo->strend))) {
+ I32 offset;
+ REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc,
+ uscan, len, uvc, charid, foldlen,
+ foldbuf, uniflags);
+ charcount++;
+ if (foldlen>0)
+ ST.longfold = TRUE;
+ if (charid &&
+ ( ((offset =
+ base + charid - 1 - trie->uniquecharcount)) >= 0)
+
+ && ((U32)offset < trie->lasttrans)
+ && trie->trans[offset].check == state)
+ {
+ state = trie->trans[offset].next;
+ }
+ else {
+ state = 0;
+ }
+ uc += len;
+
+ }
+ else {
+ state = 0;
+ }
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log,
+ "Charid:%3x CP:%4"UVxf" After State: %4"UVxf"%s\n",
+ charid, uvc, (UV)state, PL_colors[5] );
+ );
+ }
+ if (!accepted)
+ sayNO;
+
+ /* calculate total number of accept states */
+ {
+ U16 w = ST.topword;
+ accepted = 0;
+ while (w) {
+ w = trie->wordinfo[w].prev;
+ accepted++;
+ }
+ ST.accepted = accepted;
+ }
+
+ DEBUG_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sgot %"IVdf" possible matches%s\n",
+ REPORT_CODE_OFF + depth * 2, "",
+ PL_colors[4], (IV)ST.accepted, PL_colors[5] );
+ );
+ goto trie_first_try; /* jump into the fail handler */
+ }}
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case TRIE_next_fail: /* we failed - try next alternative */
+ {
+ U8 *uc;
+ if ( ST.jump) {
+ REGCP_UNWIND(ST.cp);
+ UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+ }
+ if (!--ST.accepted) {
+ DEBUG_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sTRIE failed...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4],
+ PL_colors[5] );
+ });
+ sayNO_SILENT;
+ }
+ {
+ /* Find next-highest word to process. Note that this code
+ * is O(N^2) per trie run (O(N) per branch), so keep tight */
+ U16 min = 0;
+ U16 word;
+ U16 const nextword = ST.nextword;
+ reg_trie_wordinfo * const wordinfo
+ = ((reg_trie_data*)rexi->data->data[ARG(ST.me)])->wordinfo;
+ for (word=ST.topword; word; word=wordinfo[word].prev) {
+ if (word > nextword && (!min || word < min))
+ min = word;
+ }
+ ST.nextword = min;
+ }
+
+ trie_first_try:
+ if (do_cutgroup) {
+ do_cutgroup = 0;
+ no_final = 0;
+ }
+
+ if ( ST.jump) {
+ ST.lastparen = rex->lastparen;
+ ST.lastcloseparen = rex->lastcloseparen;
+ REGCP_SET(ST.cp);
+ }
+
+ /* find start char of end of current word */
+ {
+ U32 chars; /* how many chars to skip */
+ reg_trie_data * const trie
+ = (reg_trie_data*)rexi->data->data[ARG(ST.me)];
+
+ assert((trie->wordinfo[ST.nextword].len - trie->prefixlen)
+ >= ST.firstchars);
+ chars = (trie->wordinfo[ST.nextword].len - trie->prefixlen)
+ - ST.firstchars;
+ uc = ST.firstpos;
+
+ if (ST.longfold) {
+ /* the hard option - fold each char in turn and find
+ * its folded length (which may be different */
+ U8 foldbuf[UTF8_MAXBYTES_CASE + 1];
+ STRLEN foldlen;
+ STRLEN len;
+ UV uvc;
+ U8 *uscan;
+
+ while (chars) {
+ if (utf8_target) {
+ uvc = utf8n_to_uvchr((U8*)uc, UTF8_MAXLEN, &len,
+ uniflags);
+ uc += len;
+ }
+ else {
+ uvc = *uc;
+ uc++;
+ }
+ uvc = to_uni_fold(uvc, foldbuf, &foldlen);
+ uscan = foldbuf;
+ while (foldlen) {
+ if (!--chars)
+ break;
+ uvc = utf8n_to_uvchr(uscan, UTF8_MAXLEN, &len,
+ uniflags);
+ uscan += len;
+ foldlen -= len;
+ }
+ }
+ }
+ else {
+ if (utf8_target)
+ while (chars--)
+ uc += UTF8SKIP(uc);
+ else
+ uc += chars;
+ }
+ }
+
+ scan = ST.me + ((ST.jump && ST.jump[ST.nextword])
+ ? ST.jump[ST.nextword]
+ : NEXT_OFF(ST.me));
+
+ DEBUG_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sTRIE matched word #%d, continuing%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4],
+ ST.nextword,
+ PL_colors[5]
+ );
+ });
+
+ if (ST.accepted > 1 || has_cutgroup) {
+ PUSH_STATE_GOTO(TRIE_next, scan, (char*)uc);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+ /* only one choice left - just continue */
+ DEBUG_EXECUTE_r({
+ AV *const trie_words
+ = MUTABLE_AV(rexi->data->data[ARG(ST.me)+TRIE_WORDS_OFFSET]);
+ SV ** const tmp = trie_words
+ ? av_fetch(trie_words, ST.nextword - 1, 0) : NULL;
+ SV *sv= tmp ? sv_newmortal() : NULL;
+
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sonly one match left, short-circuiting: #%d <%s>%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4],
+ ST.nextword,
+ tmp ? pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 0,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)|PERL_PV_ESCAPE_NONASCII
+ )
+ : "not compiled under -Dr",
+ PL_colors[5] );
+ });
+
+ locinput = (char*)uc;
+ continue; /* execute rest of RE */
+ /* NOTREACHED */
+ }
+#undef ST
+
+ case EXACTL: /* /abc/l */
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+
+ /* Complete checking would involve going through every character
+ * matched by the string to see if any is above latin1. But the
+ * comparision otherwise might very well be a fast assembly
+ * language routine, and I (khw) don't think slowing things down
+ * just to check for this warning is worth it. So this just checks
+ * the first character */
+ if (utf8_target && UTF8_IS_ABOVE_LATIN1(*locinput)) {
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput, reginfo->strend);
+ }
+ /* FALLTHROUGH */
+ case EXACT: { /* /abc/ */
+ char *s = STRING(scan);
+ ln = STR_LEN(scan);
+ if (utf8_target != is_utf8_pat) {
+ /* The target and the pattern have differing utf8ness. */
+ char *l = locinput;
+ const char * const e = s + ln;
+
+ if (utf8_target) {
+ /* The target is utf8, the pattern is not utf8.
+ * Above-Latin1 code points can't match the pattern;
+ * invariants match exactly, and the other Latin1 ones need
+ * to be downgraded to a single byte in order to do the
+ * comparison. (If we could be confident that the target
+ * is not malformed, this could be refactored to have fewer
+ * tests by just assuming that if the first bytes match, it
+ * is an invariant, but there are tests in the test suite
+ * dealing with (??{...}) which violate this) */
+ while (s < e) {
+ if (l >= reginfo->strend
+ || UTF8_IS_ABOVE_LATIN1(* (U8*) l))
+ {
+ sayNO;
+ }
+ if (UTF8_IS_INVARIANT(*(U8*)l)) {
+ if (*l != *s) {
+ sayNO;
+ }
+ l++;
+ }
+ else {
+ if (TWO_BYTE_UTF8_TO_NATIVE(*l, *(l+1)) != * (U8*) s)
+ {
+ sayNO;
+ }
+ l += 2;
+ }
+ s++;
+ }
+ }
+ else {
+ /* The target is not utf8, the pattern is utf8. */
+ while (s < e) {
+ if (l >= reginfo->strend
+ || UTF8_IS_ABOVE_LATIN1(* (U8*) s))
+ {
+ sayNO;
+ }
+ if (UTF8_IS_INVARIANT(*(U8*)s)) {
+ if (*s != *l) {
+ sayNO;
+ }
+ s++;
+ }
+ else {
+ if (TWO_BYTE_UTF8_TO_NATIVE(*s, *(s+1)) != * (U8*) l)
+ {
+ sayNO;
+ }
+ s += 2;
+ }
+ l++;
+ }
+ }
+ locinput = l;
+ }
+ else {
+ /* The target and the pattern have the same utf8ness. */
+ /* Inline the first character, for speed. */
+ if (reginfo->strend - locinput < ln
+ || UCHARAT(s) != nextchr
+ || (ln > 1 && memNE(s, locinput, ln)))
+ {
+ sayNO;
+ }
+ locinput += ln;
+ }
+ break;
+ }
+
+ case EXACTFL: { /* /abc/il */
+ re_fold_t folder;
+ const U8 * fold_array;
+ const char * s;
+ U32 fold_utf8_flags;
+
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ folder = foldEQ_locale;
+ fold_array = PL_fold_locale;
+ fold_utf8_flags = FOLDEQ_LOCALE;
+ goto do_exactf;
+
+ case EXACTFLU8: /* /abc/il; but all 'abc' are above 255, so
+ is effectively /u; hence to match, target
+ must be UTF-8. */
+ if (! utf8_target) {
+ sayNO;
+ }
+ fold_utf8_flags = FOLDEQ_LOCALE | FOLDEQ_S1_ALREADY_FOLDED
+ | FOLDEQ_S1_FOLDS_SANE;
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ goto do_exactf;
+
+ case EXACTFU_SS: /* /\x{df}/iu */
+ case EXACTFU: /* /abc/iu */
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ fold_utf8_flags = is_utf8_pat ? FOLDEQ_S1_ALREADY_FOLDED : 0;
+ goto do_exactf;
+
+ case EXACTFA_NO_TRIE: /* This node only generated for non-utf8
+ patterns */
+ assert(! is_utf8_pat);
+ /* FALLTHROUGH */
+ case EXACTFA: /* /abc/iaa */
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ fold_utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_exactf;
+
+ case EXACTF: /* /abc/i This node only generated for
+ non-utf8 patterns */
+ assert(! is_utf8_pat);
+ folder = foldEQ;
+ fold_array = PL_fold;
+ fold_utf8_flags = 0;
+
+ do_exactf:
+ s = STRING(scan);
+ ln = STR_LEN(scan);
+
+ if (utf8_target
+ || is_utf8_pat
+ || state_num == EXACTFU_SS
+ || (state_num == EXACTFL && IN_UTF8_CTYPE_LOCALE))
+ {
+ /* Either target or the pattern are utf8, or has the issue where
+ * the fold lengths may differ. */
+ const char * const l = locinput;
+ char *e = reginfo->strend;
+
+ if (! foldEQ_utf8_flags(s, 0, ln, is_utf8_pat,
+ l, &e, 0, utf8_target, fold_utf8_flags))
+ {
+ sayNO;
+ }
+ locinput = e;
+ break;
+ }
+
+ /* Neither the target nor the pattern are utf8 */
+ if (UCHARAT(s) != nextchr
+ && !NEXTCHR_IS_EOS
+ && UCHARAT(s) != fold_array[nextchr])
+ {
+ sayNO;
+ }
+ if (reginfo->strend - locinput < ln)
+ sayNO;
+ if (ln > 1 && ! folder(s, locinput, ln))
+ sayNO;
+ locinput += ln;
+ break;
+ }
+
+ case NBOUNDL: /* /\B/l */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case BOUNDL: /* /\b/l */
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+
+ if (FLAGS(scan) != TRADITIONAL_BOUND) {
+ if (! IN_UTF8_CTYPE_LOCALE) {
+ Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
+ B_ON_NON_UTF8_LOCALE_IS_WRONG);
+ }
+ goto boundu;
+ }
+
+ if (utf8_target) {
+ if (locinput == reginfo->strbeg)
+ ln = isWORDCHAR_LC('\n');
+ else {
+ ln = isWORDCHAR_LC_utf8(reghop3((U8*)locinput, -1,
+ (U8*)(reginfo->strbeg)));
+ }
+ n = (NEXTCHR_IS_EOS)
+ ? isWORDCHAR_LC('\n')
+ : isWORDCHAR_LC_utf8((U8*)locinput);
+ }
+ else { /* Here the string isn't utf8 */
+ ln = (locinput == reginfo->strbeg)
+ ? isWORDCHAR_LC('\n')
+ : isWORDCHAR_LC(UCHARAT(locinput - 1));
+ n = (NEXTCHR_IS_EOS)
+ ? isWORDCHAR_LC('\n')
+ : isWORDCHAR_LC(nextchr);
+ }
+ if (to_complement ^ (ln == n)) {
+ sayNO;
+ }
+ break;
+
+ case NBOUND: /* /\B/ */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case BOUND: /* /\b/ */
+ if (utf8_target) {
+ goto bound_utf8;
+ }
+ goto bound_ascii_match_only;
+
+ case NBOUNDA: /* /\B/a */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case BOUNDA: /* /\b/a */
+
+ bound_ascii_match_only:
+ /* Here the string isn't utf8, or is utf8 and only ascii characters
+ * are to match \w. In the latter case looking at the byte just
+ * prior to the current one may be just the final byte of a
+ * multi-byte character. This is ok. There are two cases:
+ * 1) it is a single byte character, and then the test is doing
+ * just what it's supposed to.
+ * 2) it is a multi-byte character, in which case the final byte is
+ * never mistakable for ASCII, and so the test will say it is
+ * not a word character, which is the correct answer. */
+ ln = (locinput == reginfo->strbeg)
+ ? isWORDCHAR_A('\n')
+ : isWORDCHAR_A(UCHARAT(locinput - 1));
+ n = (NEXTCHR_IS_EOS)
+ ? isWORDCHAR_A('\n')
+ : isWORDCHAR_A(nextchr);
+ if (to_complement ^ (ln == n)) {
+ sayNO;
+ }
+ break;
+
+ case NBOUNDU: /* /\B/u */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case BOUNDU: /* /\b/u */
+
+ boundu:
+ if (utf8_target) {
+
+ bound_utf8:
+ switch((bound_type) FLAGS(scan)) {
+ case TRADITIONAL_BOUND:
+ ln = (locinput == reginfo->strbeg)
+ ? 0 /* isWORDCHAR_L1('\n') */
+ : isWORDCHAR_utf8(reghop3((U8*)locinput, -1,
+ (U8*)(reginfo->strbeg)));
+ n = (NEXTCHR_IS_EOS)
+ ? 0 /* isWORDCHAR_L1('\n') */
+ : isWORDCHAR_utf8((U8*)locinput);
+ match = cBOOL(ln != n);
+ break;
+ case GCB_BOUND:
+ if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+ match = TRUE; /* GCB always matches at begin and
+ end */
+ }
+ else {
+ /* Find the gcb values of previous and current
+ * chars, then see if is a break point */
+ match = isGCB(getGCB_VAL_UTF8(
+ reghop3((U8*)locinput,
+ -1,
+ (U8*)(reginfo->strbeg)),
+ (U8*) reginfo->strend),
+ getGCB_VAL_UTF8((U8*) locinput,
+ (U8*) reginfo->strend));
+ }
+ break;
+
+ case SB_BOUND: /* Always matches at begin and end */
+ if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+ match = TRUE;
+ }
+ else {
+ match = isSB(getSB_VAL_UTF8(
+ reghop3((U8*)locinput,
+ -1,
+ (U8*)(reginfo->strbeg)),
+ (U8*) reginfo->strend),
+ getSB_VAL_UTF8((U8*) locinput,
+ (U8*) reginfo->strend),
+ (U8*) reginfo->strbeg,
+ (U8*) locinput,
+ (U8*) reginfo->strend,
+ utf8_target);
+ }
+ break;
+
+ case WB_BOUND:
+ if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+ match = TRUE;
+ }
+ else {
+ match = isWB(WB_UNKNOWN,
+ getWB_VAL_UTF8(
+ reghop3((U8*)locinput,
+ -1,
+ (U8*)(reginfo->strbeg)),
+ (U8*) reginfo->strend),
+ getWB_VAL_UTF8((U8*) locinput,
+ (U8*) reginfo->strend),
+ (U8*) reginfo->strbeg,
+ (U8*) locinput,
+ (U8*) reginfo->strend,
+ utf8_target);
+ }
+ break;
+ }
+ }
+ else { /* Not utf8 target */
+ switch((bound_type) FLAGS(scan)) {
+ case TRADITIONAL_BOUND:
+ ln = (locinput == reginfo->strbeg)
+ ? 0 /* isWORDCHAR_L1('\n') */
+ : isWORDCHAR_L1(UCHARAT(locinput - 1));
+ n = (NEXTCHR_IS_EOS)
+ ? 0 /* isWORDCHAR_L1('\n') */
+ : isWORDCHAR_L1(nextchr);
+ match = cBOOL(ln != n);
+ break;
+
+ case GCB_BOUND:
+ if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+ match = TRUE; /* GCB always matches at begin and
+ end */
+ }
+ else { /* Only CR-LF combo isn't a GCB in 0-255
+ range */
+ match = UCHARAT(locinput - 1) != '\r'
+ || UCHARAT(locinput) != '\n';
+ }
+ break;
+
+ case SB_BOUND: /* Always matches at begin and end */
+ if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+ match = TRUE;
+ }
+ else {
+ match = isSB(getSB_VAL_CP(UCHARAT(locinput -1)),
+ getSB_VAL_CP(UCHARAT(locinput)),
+ (U8*) reginfo->strbeg,
+ (U8*) locinput,
+ (U8*) reginfo->strend,
+ utf8_target);
+ }
+ break;
+
+ case WB_BOUND:
+ if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+ match = TRUE;
+ }
+ else {
+ match = isWB(WB_UNKNOWN,
+ getWB_VAL_CP(UCHARAT(locinput -1)),
+ getWB_VAL_CP(UCHARAT(locinput)),
+ (U8*) reginfo->strbeg,
+ (U8*) locinput,
+ (U8*) reginfo->strend,
+ utf8_target);
+ }
+ break;
+ }
+ }
+
+ if (to_complement ^ ! match) {
+ sayNO;
+ }
+ break;
+
+ case ANYOFL: /* /[abc]/l */
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ /* FALLTHROUGH */
+ case ANYOF: /* /[abc]/ */
+ if (NEXTCHR_IS_EOS)
+ sayNO;
+ if (utf8_target) {
+ if (!reginclass(rex, scan, (U8*)locinput, (U8*)reginfo->strend,
+ utf8_target))
+ sayNO;
+ locinput += UTF8SKIP(locinput);
+ }
+ else {
+ if (!REGINCLASS(rex, scan, (U8*)locinput))
+ sayNO;
+ locinput++;
+ }
+ break;
+
+ /* The argument (FLAGS) to all the POSIX node types is the class number
+ * */
+
+ case NPOSIXL: /* \W or [:^punct:] etc. under /l */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXL: /* \w or [:punct:] etc. under /l */
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (NEXTCHR_IS_EOS)
+ sayNO;
+
+ /* Use isFOO_lc() for characters within Latin1. (Note that
+ * UTF8_IS_INVARIANT works even on non-UTF-8 strings, or else
+ * wouldn't be invariant) */
+ if (UTF8_IS_INVARIANT(nextchr) || ! utf8_target) {
+ if (! (to_complement ^ cBOOL(isFOO_lc(FLAGS(scan), (U8) nextchr)))) {
+ sayNO;
+ }
+ }
+ else if (UTF8_IS_DOWNGRADEABLE_START(nextchr)) {
+ if (! (to_complement ^ cBOOL(isFOO_lc(FLAGS(scan),
+ (U8) TWO_BYTE_UTF8_TO_NATIVE(nextchr,
+ *(locinput + 1))))))
+ {
+ sayNO;
+ }
+ }
+ else { /* Here, must be an above Latin-1 code point */
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput, reginfo->strend);
+ goto utf8_posix_above_latin1;
+ }
+
+ /* Here, must be utf8 */
+ locinput += UTF8SKIP(locinput);
+ break;
+
+ case NPOSIXD: /* \W or [:^punct:] etc. under /d */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXD: /* \w or [:punct:] etc. under /d */
+ if (utf8_target) {
+ goto utf8_posix;
+ }
+ goto posixa;
+
+ case NPOSIXA: /* \W or [:^punct:] etc. under /a */
+
+ if (NEXTCHR_IS_EOS) {
+ sayNO;
+ }
+
+ /* All UTF-8 variants match */
+ if (! UTF8_IS_INVARIANT(nextchr)) {
+ goto increment_locinput;
+ }
+
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXA: /* \w or [:punct:] etc. under /a */
+
+ posixa:
+ /* We get here through POSIXD, NPOSIXD, and NPOSIXA when not in
+ * UTF-8, and also from NPOSIXA even in UTF-8 when the current
+ * character is a single byte */
+
+ if (NEXTCHR_IS_EOS
+ || ! (to_complement ^ cBOOL(_generic_isCC_A(nextchr,
+ FLAGS(scan)))))
+ {
+ sayNO;
+ }
+
+ /* Here we are either not in utf8, or we matched a utf8-invariant,
+ * so the next char is the next byte */
+ locinput++;
+ break;
+
+ case NPOSIXU: /* \W or [:^punct:] etc. under /u */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXU: /* \w or [:punct:] etc. under /u */
+ utf8_posix:
+ if (NEXTCHR_IS_EOS) {
+ sayNO;
+ }
+
+ /* Use _generic_isCC() for characters within Latin1. (Note that
+ * UTF8_IS_INVARIANT works even on non-UTF-8 strings, or else
+ * wouldn't be invariant) */
+ if (UTF8_IS_INVARIANT(nextchr) || ! utf8_target) {
+ if (! (to_complement ^ cBOOL(_generic_isCC(nextchr,
+ FLAGS(scan)))))
+ {
+ sayNO;
+ }
+ locinput++;
+ }
+ else if (UTF8_IS_DOWNGRADEABLE_START(nextchr)) {
+ if (! (to_complement
+ ^ cBOOL(_generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(nextchr,
+ *(locinput + 1)),
+ FLAGS(scan)))))
+ {
+ sayNO;
+ }
+ locinput += 2;
+ }
+ else { /* Handle above Latin-1 code points */
+ utf8_posix_above_latin1:
+ classnum = (_char_class_number) FLAGS(scan);
+ if (classnum < _FIRST_NON_SWASH_CC) {
+
+ /* Here, uses a swash to find such code points. Load if if
+ * not done already */
+ if (! PL_utf8_swash_ptrs[classnum]) {
+ U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+ PL_utf8_swash_ptrs[classnum]
+ = _core_swash_init("utf8",
+ "",
+ &PL_sv_undef, 1, 0,
+ PL_XPosix_ptrs[classnum], &flags);
+ }
+ if (! (to_complement
+ ^ cBOOL(swash_fetch(PL_utf8_swash_ptrs[classnum],
+ (U8 *) locinput, TRUE))))
+ {
+ sayNO;
+ }
+ }
+ else { /* Here, uses macros to find above Latin-1 code points */
+ switch (classnum) {
+ case _CC_ENUM_SPACE:
+ if (! (to_complement
+ ^ cBOOL(is_XPERLSPACE_high(locinput))))
+ {
+ sayNO;
+ }
+ break;
+ case _CC_ENUM_BLANK:
+ if (! (to_complement
+ ^ cBOOL(is_HORIZWS_high(locinput))))
+ {
+ sayNO;
+ }
+ break;
+ case _CC_ENUM_XDIGIT:
+ if (! (to_complement
+ ^ cBOOL(is_XDIGIT_high(locinput))))
+ {
+ sayNO;
+ }
+ break;
+ case _CC_ENUM_VERTSPACE:
+ if (! (to_complement
+ ^ cBOOL(is_VERTWS_high(locinput))))
+ {
+ sayNO;
+ }
+ break;
+ default: /* The rest, e.g. [:cntrl:], can't match
+ above Latin1 */
+ if (! to_complement) {
+ sayNO;
+ }
+ break;
+ }
+ }
+ locinput += UTF8SKIP(locinput);
+ }
+ break;
+
+ case CLUMP: /* Match \X: logical Unicode character. This is defined as
+ a Unicode extended Grapheme Cluster */
+ if (NEXTCHR_IS_EOS)
+ sayNO;
+ if (! utf8_target) {
+
+ /* Match either CR LF or '.', as all the other possibilities
+ * require utf8 */
+ locinput++; /* Match the . or CR */
+ if (nextchr == '\r' /* And if it was CR, and the next is LF,
+ match the LF */
+ && locinput < reginfo->strend
+ && UCHARAT(locinput) == '\n')
+ {
+ locinput++;
+ }
+ }
+ else {
+
+ /* Get the gcb type for the current character */
+ GCB_enum prev_gcb = getGCB_VAL_UTF8((U8*) locinput,
+ (U8*) reginfo->strend);
+
+ /* Then scan through the input until we get to the first
+ * character whose type is supposed to be a gcb with the
+ * current character. (There is always a break at the
+ * end-of-input) */
+ locinput += UTF8SKIP(locinput);
+ while (locinput < reginfo->strend) {
+ GCB_enum cur_gcb = getGCB_VAL_UTF8((U8*) locinput,
+ (U8*) reginfo->strend);
+ if (isGCB(prev_gcb, cur_gcb)) {
+ break;
+ }
+
+ prev_gcb = cur_gcb;
+ locinput += UTF8SKIP(locinput);
+ }
+
+
+ }
+ break;
+
+ case NREFFL: /* /\g{name}/il */
+ { /* The capture buffer cases. The ones beginning with N for the
+ named buffers just convert to the equivalent numbered and
+ pretend they were called as the corresponding numbered buffer
+ op. */
+ /* don't initialize these in the declaration, it makes C++
+ unhappy */
+ const char *s;
+ char type;
+ re_fold_t folder;
+ const U8 *fold_array;
+ UV utf8_fold_flags;
+
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ folder = foldEQ_locale;
+ fold_array = PL_fold_locale;
+ type = REFFL;
+ utf8_fold_flags = FOLDEQ_LOCALE;
+ goto do_nref;
+
+ case NREFFA: /* /\g{name}/iaa */
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ type = REFFA;
+ utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_nref;
+
+ case NREFFU: /* /\g{name}/iu */
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ type = REFFU;
+ utf8_fold_flags = 0;
+ goto do_nref;
+
+ case NREFF: /* /\g{name}/i */
+ folder = foldEQ;
+ fold_array = PL_fold;
+ type = REFF;
+ utf8_fold_flags = 0;
+ goto do_nref;
+
+ case NREF: /* /\g{name}/ */
+ type = REF;
+ folder = NULL;
+ fold_array = NULL;
+ utf8_fold_flags = 0;
+ do_nref:
+
+ /* For the named back references, find the corresponding buffer
+ * number */
+ n = reg_check_named_buff_matched(rex,scan);
+
+ if ( ! n ) {
+ sayNO;
+ }
+ goto do_nref_ref_common;
+
+ case REFFL: /* /\1/il */
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ folder = foldEQ_locale;
+ fold_array = PL_fold_locale;
+ utf8_fold_flags = FOLDEQ_LOCALE;
+ goto do_ref;
+
+ case REFFA: /* /\1/iaa */
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_ref;
+
+ case REFFU: /* /\1/iu */
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ utf8_fold_flags = 0;
+ goto do_ref;
+
+ case REFF: /* /\1/i */
+ folder = foldEQ;
+ fold_array = PL_fold;
+ utf8_fold_flags = 0;
+ goto do_ref;
+
+ case REF: /* /\1/ */
+ folder = NULL;
+ fold_array = NULL;
+ utf8_fold_flags = 0;
+
+ do_ref:
+ type = OP(scan);
+ n = ARG(scan); /* which paren pair */
+
+ do_nref_ref_common:
+ ln = rex->offs[n].start;
+ reginfo->poscache_iter = reginfo->poscache_maxiter; /* Void cache */
+ if (rex->lastparen < n || ln == -1)
+ sayNO; /* Do not match unless seen CLOSEn. */
+ if (ln == rex->offs[n].end)
+ break;
+
+ s = reginfo->strbeg + ln;
+ if (type != REF /* REF can do byte comparison */
+ && (utf8_target || type == REFFU || type == REFFL))
+ {
+ char * limit = reginfo->strend;
+
+ /* This call case insensitively compares the entire buffer
+ * at s, with the current input starting at locinput, but
+ * not going off the end given by reginfo->strend, and
+ * returns in <limit> upon success, how much of the
+ * current input was matched */
+ if (! foldEQ_utf8_flags(s, NULL, rex->offs[n].end - ln, utf8_target,
+ locinput, &limit, 0, utf8_target, utf8_fold_flags))
+ {
+ sayNO;
+ }
+ locinput = limit;
+ break;
+ }
+
+ /* Not utf8: Inline the first character, for speed. */
+ if (!NEXTCHR_IS_EOS &&
+ UCHARAT(s) != nextchr &&
+ (type == REF ||
+ UCHARAT(s) != fold_array[nextchr]))
+ sayNO;
+ ln = rex->offs[n].end - ln;
+ if (locinput + ln > reginfo->strend)
+ sayNO;
+ if (ln > 1 && (type == REF
+ ? memNE(s, locinput, ln)
+ : ! folder(s, locinput, ln)))
+ sayNO;
+ locinput += ln;
+ break;
+ }
+
+ case NOTHING: /* null op; e.g. the 'nothing' following
+ * the '*' in m{(a+|b)*}' */
+ break;
+ case TAIL: /* placeholder while compiling (A|B|C) */
+ break;
+
+#undef ST
+#define ST st->u.eval
+ {
+ SV *ret;
+ REGEXP *re_sv;
+ regexp *re;
+ regexp_internal *rei;
+ regnode *startpoint;
+
+ case GOSTART: /* (?R) */
+ case GOSUB: /* /(...(?1))/ /(...(?&foo))/ */
+ if (cur_eval && cur_eval->locinput==locinput) {
+ if (cur_eval->u.eval.close_paren == (U32)ARG(scan))
+ Perl_croak(aTHX_ "Infinite recursion in regex");
+ if ( ++nochange_depth > max_nochange_depth )
+ Perl_croak(aTHX_
+ "Pattern subroutine nesting without pos change"
+ " exceeded limit in regex");
+ } else {
+ nochange_depth = 0;
+ }
+ re_sv = rex_sv;
+ re = rex;
+ rei = rexi;
+ if (OP(scan)==GOSUB) {
+ startpoint = scan + ARG2L(scan);
+ ST.close_paren = ARG(scan);
+ } else {
+ startpoint = rei->program+1;
+ ST.close_paren = 0;
+ }
+
+ /* Save all the positions seen so far. */
+ ST.cp = regcppush(rex, 0, maxopenparen);
+ REGCP_SET(ST.lastcp);
+
+ /* and then jump to the code we share with EVAL */
+ goto eval_recurse_doit;
+ /* NOTREACHED */
+
+ case EVAL: /* /(?{A})B/ /(??{A})B/ and /(?(?{A})X|Y)B/ */
+ if (cur_eval && cur_eval->locinput==locinput) {
+ if ( ++nochange_depth > max_nochange_depth )
+ Perl_croak(aTHX_ "EVAL without pos change exceeded limit in regex");
+ } else {
+ nochange_depth = 0;
+ }
+ {
+ /* execute the code in the {...} */
+
+ dSP;
+ IV before;
+ OP * const oop = PL_op;
+ COP * const ocurcop = PL_curcop;
+ OP *nop;
+ CV *newcv;
+
+ /* save *all* paren positions */
+ regcppush(rex, 0, maxopenparen);
+ REGCP_SET(runops_cp);
+
+ if (!caller_cv)
+ caller_cv = find_runcv(NULL);
+
+ n = ARG(scan);
+
+ if (rexi->data->what[n] == 'r') { /* code from an external qr */
+ newcv = (ReANY(
+ (REGEXP*)(rexi->data->data[n])
+ ))->qr_anoncv
+ ;
+ nop = (OP*)rexi->data->data[n+1];
+ }
+ else if (rexi->data->what[n] == 'l') { /* literal code */
+ newcv = caller_cv;
+ nop = (OP*)rexi->data->data[n];
+ assert(CvDEPTH(newcv));
+ }
+ else {
+ /* literal with own CV */
+ assert(rexi->data->what[n] == 'L');
+ newcv = rex->qr_anoncv;
+ nop = (OP*)rexi->data->data[n];
+ }
+
+ /* normally if we're about to execute code from the same
+ * CV that we used previously, we just use the existing
+ * CX stack entry. However, its possible that in the
+ * meantime we may have backtracked, popped from the save
+ * stack, and undone the SAVECOMPPAD(s) associated with
+ * PUSH_MULTICALL; in which case PL_comppad no longer
+ * points to newcv's pad. */
+ if (newcv != last_pushed_cv || PL_comppad != last_pad)
+ {
+ U8 flags = (CXp_SUB_RE |
+ ((newcv == caller_cv) ? CXp_SUB_RE_FAKE : 0));
+ if (last_pushed_cv) {
+ CHANGE_MULTICALL_FLAGS(newcv, flags);
+ }
+ else {
+ PUSH_MULTICALL_FLAGS(newcv, flags);
+ }
+ last_pushed_cv = newcv;
+ }
+ else {
+ /* these assignments are just to silence compiler
+ * warnings */
+ multicall_cop = NULL;
+ newsp = NULL;
+ }
+ last_pad = PL_comppad;
+
+ /* the initial nextstate you would normally execute
+ * at the start of an eval (which would cause error
+ * messages to come from the eval), may be optimised
+ * away from the execution path in the regex code blocks;
+ * so manually set PL_curcop to it initially */
+ {
+ OP *o = cUNOPx(nop)->op_first;
+ assert(o->op_type == OP_NULL);
+ if (o->op_targ == OP_SCOPE) {
+ o = cUNOPo->op_first;
+ }
+ else {
+ assert(o->op_targ == OP_LEAVE);
+ o = cUNOPo->op_first;
+ assert(o->op_type == OP_ENTER);
+ o = OpSIBLING(o);
+ }
+
+ if (o->op_type != OP_STUB) {
+ assert( o->op_type == OP_NEXTSTATE
+ || o->op_type == OP_DBSTATE
+ || (o->op_type == OP_NULL
+ && ( o->op_targ == OP_NEXTSTATE
+ || o->op_targ == OP_DBSTATE
+ )
+ )
+ );
+ PL_curcop = (COP*)o;
+ }
+ }
+ nop = nop->op_next;
+
+ DEBUG_STATE_r( PerlIO_printf(Perl_debug_log,
+ " re EVAL PL_op=0x%"UVxf"\n", PTR2UV(nop)) );
+
+ rex->offs[0].end = locinput - reginfo->strbeg;
+ if (reginfo->info_aux_eval->pos_magic)
+ MgBYTEPOS_set(reginfo->info_aux_eval->pos_magic,
+ reginfo->sv, reginfo->strbeg,
+ locinput - reginfo->strbeg);
+
+ if (sv_yes_mark) {
+ SV *sv_mrk = get_sv("REGMARK", 1);
+ sv_setsv(sv_mrk, sv_yes_mark);
+ }
+
+ /* we don't use MULTICALL here as we want to call the
+ * first op of the block of interest, rather than the
+ * first op of the sub */
+ before = (IV)(SP-PL_stack_base);
+ PL_op = nop;
+ CALLRUNOPS(aTHX); /* Scalar context. */
+ SPAGAIN;
+ if ((IV)(SP-PL_stack_base) == before)
+ ret = &PL_sv_undef; /* protect against empty (?{}) blocks. */
+ else {
+ ret = POPs;
+ PUTBACK;
+ }
+
+ /* before restoring everything, evaluate the returned
+ * value, so that 'uninit' warnings don't use the wrong
+ * PL_op or pad. Also need to process any magic vars
+ * (e.g. $1) *before* parentheses are restored */
+
+ PL_op = NULL;
+
+ re_sv = NULL;
+ if (logical == 0) /* (?{})/ */
+ sv_setsv(save_scalar(PL_replgv), ret); /* $^R */
+ else if (logical == 1) { /* /(?(?{...})X|Y)/ */
+ sw = cBOOL(SvTRUE(ret));
+ logical = 0;
+ }
+ else { /* /(??{}) */
+ /* if its overloaded, let the regex compiler handle
+ * it; otherwise extract regex, or stringify */
+ if (SvGMAGICAL(ret))
+ ret = sv_mortalcopy(ret);
+ if (!SvAMAGIC(ret)) {
+ SV *sv = ret;
+ if (SvROK(sv))
+ sv = SvRV(sv);
+ if (SvTYPE(sv) == SVt_REGEXP)
+ re_sv = (REGEXP*) sv;
+ else if (SvSMAGICAL(ret)) {
+ MAGIC *mg = mg_find(ret, PERL_MAGIC_qr);
+ if (mg)
+ re_sv = (REGEXP *) mg->mg_obj;
+ }
+
+ /* force any undef warnings here */
+ if (!re_sv && !SvPOK(ret) && !SvNIOK(ret)) {
+ ret = sv_mortalcopy(ret);
+ (void) SvPV_force_nolen(ret);
+ }
+ }
+
+ }
+
+ /* *** Note that at this point we don't restore
+ * PL_comppad, (or pop the CxSUB) on the assumption it may
+ * be used again soon. This is safe as long as nothing
+ * in the regexp code uses the pad ! */
+ PL_op = oop;
+ PL_curcop = ocurcop;
+ S_regcp_restore(aTHX_ rex, runops_cp, &maxopenparen);
+ PL_curpm = PL_reg_curpm;
+
+ if (logical != 2)
+ break;
+ }
+
+ /* only /(??{})/ from now on */
+ logical = 0;
+ {
+ /* extract RE object from returned value; compiling if
+ * necessary */
+
+ if (re_sv) {
+ re_sv = reg_temp_copy(NULL, re_sv);
+ }
+ else {
+ U32 pm_flags = 0;
+
+ if (SvUTF8(ret) && IN_BYTES) {
+ /* In use 'bytes': make a copy of the octet
+ * sequence, but without the flag on */
+ STRLEN len;
+ const char *const p = SvPV(ret, len);
+ ret = newSVpvn_flags(p, len, SVs_TEMP);
+ }
+ if (rex->intflags & PREGf_USE_RE_EVAL)
+ pm_flags |= PMf_USE_RE_EVAL;
+
+ /* if we got here, it should be an engine which
+ * supports compiling code blocks and stuff */
+ assert(rex->engine && rex->engine->op_comp);
+ assert(!(scan->flags & ~RXf_PMf_COMPILETIME));
+ re_sv = rex->engine->op_comp(aTHX_ &ret, 1, NULL,
+ rex->engine, NULL, NULL,
+ /* copy /msixn etc to inner pattern */
+ ARG2L(scan),
+ pm_flags);
+
+ if (!(SvFLAGS(ret)
+ & (SVs_TEMP | SVs_GMG | SVf_ROK))
+ && (!SvPADTMP(ret) || SvREADONLY(ret))) {
+ /* This isn't a first class regexp. Instead, it's
+ caching a regexp onto an existing, Perl visible
+ scalar. */
+ sv_magic(ret, MUTABLE_SV(re_sv), PERL_MAGIC_qr, 0, 0);
+ }
+ }
+ SAVEFREESV(re_sv);
+ re = ReANY(re_sv);
+ }
+ RXp_MATCH_COPIED_off(re);
+ re->subbeg = rex->subbeg;
+ re->sublen = rex->sublen;
+ re->suboffset = rex->suboffset;
+ re->subcoffset = rex->subcoffset;
+ re->lastparen = 0;
+ re->lastcloseparen = 0;
+ rei = RXi_GET(re);
+ DEBUG_EXECUTE_r(
+ debug_start_match(re_sv, utf8_target, locinput,
+ reginfo->strend, "Matching embedded");
+ );
+ startpoint = rei->program + 1;
+ ST.close_paren = 0; /* only used for GOSUB */
+ /* Save all the seen positions so far. */
+ ST.cp = regcppush(rex, 0, maxopenparen);
+ REGCP_SET(ST.lastcp);
+ /* and set maxopenparen to 0, since we are starting a "fresh" match */
+ maxopenparen = 0;
+ /* run the pattern returned from (??{...}) */
+
+ eval_recurse_doit: /* Share code with GOSUB below this line
+ * At this point we expect the stack context to be
+ * set up correctly */
+
+ /* invalidate the S-L poscache. We're now executing a
+ * different set of WHILEM ops (and their associated
+ * indexes) against the same string, so the bits in the
+ * cache are meaningless. Setting maxiter to zero forces
+ * the cache to be invalidated and zeroed before reuse.
+ * XXX This is too dramatic a measure. Ideally we should
+ * save the old cache and restore when running the outer
+ * pattern again */
+ reginfo->poscache_maxiter = 0;
+
+ /* the new regexp might have a different is_utf8_pat than we do */
+ is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(re_sv));
+
+ ST.prev_rex = rex_sv;
+ ST.prev_curlyx = cur_curlyx;
+ rex_sv = re_sv;
+ SET_reg_curpm(rex_sv);
+ rex = re;
+ rexi = rei;
+ cur_curlyx = NULL;
+ ST.B = next;
+ ST.prev_eval = cur_eval;
+ cur_eval = st;
+ /* now continue from first node in postoned RE */
+ PUSH_YES_STATE_GOTO(EVAL_AB, startpoint, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+
+ case EVAL_AB: /* cleanup after a successful (??{A})B */
+ /* note: this is called twice; first after popping B, then A */
+ rex_sv = ST.prev_rex;
+ is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
+ SET_reg_curpm(rex_sv);
+ rex = ReANY(rex_sv);
+ rexi = RXi_GET(rex);
+ {
+ /* preserve $^R across LEAVE's. See Bug 121070. */
+ SV *save_sv= GvSV(PL_replgv);
+ SvREFCNT_inc(save_sv);
+ regcpblow(ST.cp); /* LEAVE in disguise */
+ sv_setsv(GvSV(PL_replgv), save_sv);
+ SvREFCNT_dec(save_sv);
+ }
+ cur_eval = ST.prev_eval;
+ cur_curlyx = ST.prev_curlyx;
+
+ /* Invalidate cache. See "invalidate" comment above. */
+ reginfo->poscache_maxiter = 0;
+ if ( nochange_depth )
+ nochange_depth--;
+ sayYES;
+
+
+ case EVAL_AB_fail: /* unsuccessfully ran A or B in (??{A})B */
+ /* note: this is called twice; first after popping B, then A */
+ rex_sv = ST.prev_rex;
+ is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
+ SET_reg_curpm(rex_sv);
+ rex = ReANY(rex_sv);
+ rexi = RXi_GET(rex);
+
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex, &maxopenparen);
+ cur_eval = ST.prev_eval;
+ cur_curlyx = ST.prev_curlyx;
+ /* Invalidate cache. See "invalidate" comment above. */
+ reginfo->poscache_maxiter = 0;
+ if ( nochange_depth )
+ nochange_depth--;
+ sayNO_SILENT;
+#undef ST
+
+ case OPEN: /* ( */
+ n = ARG(scan); /* which paren pair */
+ rex->offs[n].start_tmp = locinput - reginfo->strbeg;
+ if (n > maxopenparen)
+ maxopenparen = n;
+ DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+ "rex=0x%"UVxf" offs=0x%"UVxf": \\%"UVuf": set %"IVdf" tmp; maxopenparen=%"UVuf"\n",
+ PTR2UV(rex),
+ PTR2UV(rex->offs),
+ (UV)n,
+ (IV)rex->offs[n].start_tmp,
+ (UV)maxopenparen
+ ));
+ lastopen = n;
+ break;
+
+/* XXX really need to log other places start/end are set too */
+#define CLOSE_CAPTURE \
+ rex->offs[n].start = rex->offs[n].start_tmp; \
+ rex->offs[n].end = locinput - reginfo->strbeg; \
+ DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log, \
+ "rex=0x%"UVxf" offs=0x%"UVxf": \\%"UVuf": set %"IVdf"..%"IVdf"\n", \
+ PTR2UV(rex), \
+ PTR2UV(rex->offs), \
+ (UV)n, \
+ (IV)rex->offs[n].start, \
+ (IV)rex->offs[n].end \
+ ))
+
+ case CLOSE: /* ) */
+ n = ARG(scan); /* which paren pair */
+ CLOSE_CAPTURE;
+ if (n > rex->lastparen)
+ rex->lastparen = n;
+ rex->lastcloseparen = n;
+ if (cur_eval && cur_eval->u.eval.close_paren == n) {
+ goto fake_end;
+ }
+ break;
+
+ case ACCEPT: /* (*ACCEPT) */
+ if (ARG(scan)){
+ regnode *cursor;
+ for (cursor=scan;
+ cursor && OP(cursor)!=END;
+ cursor=regnext(cursor))
+ {
+ if ( OP(cursor)==CLOSE ){
+ n = ARG(cursor);
+ if ( n <= lastopen ) {
+ CLOSE_CAPTURE;
+ if (n > rex->lastparen)
+ rex->lastparen = n;
+ rex->lastcloseparen = n;
+ if ( n == ARG(scan) || (cur_eval &&
+ cur_eval->u.eval.close_paren == n))
+ break;
+ }
+ }
+ }
+ }
+ goto fake_end;
+ /* NOTREACHED */
+
+ case GROUPP: /* (?(1)) */
+ n = ARG(scan); /* which paren pair */
+ sw = cBOOL(rex->lastparen >= n && rex->offs[n].end != -1);
+ break;
+
+ case NGROUPP: /* (?(<name>)) */
+ /* reg_check_named_buff_matched returns 0 for no match */
+ sw = cBOOL(0 < reg_check_named_buff_matched(rex,scan));
+ break;
+
+ case INSUBP: /* (?(R)) */
+ n = ARG(scan);
+ sw = (cur_eval && (!n || cur_eval->u.eval.close_paren == n));
+ break;
+
+ case DEFINEP: /* (?(DEFINE)) */
+ sw = 0;
+ break;
+
+ case IFTHEN: /* (?(cond)A|B) */
+ reginfo->poscache_iter = reginfo->poscache_maxiter; /* Void cache */
+ if (sw)
+ next = NEXTOPER(NEXTOPER(scan));
+ else {
+ next = scan + ARG(scan);
+ if (OP(next) == IFTHEN) /* Fake one. */
+ next = NEXTOPER(NEXTOPER(next));
+ }
+ break;
+
+ case LOGICAL: /* modifier for EVAL and IFMATCH */
+ logical = scan->flags;
+ break;
+
+/*******************************************************************
+
+The CURLYX/WHILEM pair of ops handle the most generic case of the /A*B/
+pattern, where A and B are subpatterns. (For simple A, CURLYM or
+STAR/PLUS/CURLY/CURLYN are used instead.)
+
+A*B is compiled as <CURLYX><A><WHILEM><B>
+
+On entry to the subpattern, CURLYX is called. This pushes a CURLYX
+state, which contains the current count, initialised to -1. It also sets
+cur_curlyx to point to this state, with any previous value saved in the
+state block.
+
+CURLYX then jumps straight to the WHILEM op, rather than executing A,
+since the pattern may possibly match zero times (i.e. it's a while {} loop
+rather than a do {} while loop).
+
+Each entry to WHILEM represents a successful match of A. The count in the
+CURLYX block is incremented, another WHILEM state is pushed, and execution
+passes to A or B depending on greediness and the current count.
+
+For example, if matching against the string a1a2a3b (where the aN are
+substrings that match /A/), then the match progresses as follows: (the
+pushed states are interspersed with the bits of strings matched so far):
+
+ <CURLYX cnt=-1>
+ <CURLYX cnt=0><WHILEM>
+ <CURLYX cnt=1><WHILEM> a1 <WHILEM>
+ <CURLYX cnt=2><WHILEM> a1 <WHILEM> a2 <WHILEM>
+ <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM>
+ <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM> b
+
+(Contrast this with something like CURLYM, which maintains only a single
+backtrack state:
+
+ <CURLYM cnt=0> a1
+ a1 <CURLYM cnt=1> a2
+ a1 a2 <CURLYM cnt=2> a3
+ a1 a2 a3 <CURLYM cnt=3> b
+)
+
+Each WHILEM state block marks a point to backtrack to upon partial failure
+of A or B, and also contains some minor state data related to that
+iteration. The CURLYX block, pointed to by cur_curlyx, contains the
+overall state, such as the count, and pointers to the A and B ops.
+
+This is complicated slightly by nested CURLYX/WHILEM's. Since cur_curlyx
+must always point to the *current* CURLYX block, the rules are:
+
+When executing CURLYX, save the old cur_curlyx in the CURLYX state block,
+and set cur_curlyx to point the new block.
+
+When popping the CURLYX block after a successful or unsuccessful match,
+restore the previous cur_curlyx.
+
+When WHILEM is about to execute B, save the current cur_curlyx, and set it
+to the outer one saved in the CURLYX block.
+
+When popping the WHILEM block after a successful or unsuccessful B match,
+restore the previous cur_curlyx.
+
+Here's an example for the pattern (AI* BI)*BO
+I and O refer to inner and outer, C and W refer to CURLYX and WHILEM:
+
+cur_
+curlyx backtrack stack
+------ ---------------
+NULL
+CO <CO prev=NULL> <WO>
+CI <CO prev=NULL> <WO> <CI prev=CO> <WI> ai
+CO <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi
+NULL <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi <WO prev=CO> bo
+
+At this point the pattern succeeds, and we work back down the stack to
+clean up, restoring as we go:
+
+CO <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi
+CI <CO prev=NULL> <WO> <CI prev=CO> <WI> ai
+CO <CO prev=NULL> <WO>
+NULL
+
+*******************************************************************/
+
+#define ST st->u.curlyx
+
+ case CURLYX: /* start of /A*B/ (for complex A) */
+ {
+ /* No need to save/restore up to this paren */
+ I32 parenfloor = scan->flags;
+
+ assert(next); /* keep Coverity happy */
+ if (OP(PREVOPER(next)) == NOTHING) /* LONGJMP */
+ next += ARG(next);
+
+ /* XXXX Probably it is better to teach regpush to support
+ parenfloor > maxopenparen ... */
+ if (parenfloor > (I32)rex->lastparen)
+ parenfloor = rex->lastparen; /* Pessimization... */
+
+ ST.prev_curlyx= cur_curlyx;
+ cur_curlyx = st;
+ ST.cp = PL_savestack_ix;
+
+ /* these fields contain the state of the current curly.
+ * they are accessed by subsequent WHILEMs */
+ ST.parenfloor = parenfloor;
+ ST.me = scan;
+ ST.B = next;
+ ST.minmod = minmod;
+ minmod = 0;
+ ST.count = -1; /* this will be updated by WHILEM */
+ ST.lastloc = NULL; /* this will be updated by WHILEM */
+
+ PUSH_YES_STATE_GOTO(CURLYX_end, PREVOPER(next), locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+
+ case CURLYX_end: /* just finished matching all of A*B */
+ cur_curlyx = ST.prev_curlyx;
+ sayYES;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CURLYX_end_fail: /* just failed to match all of A*B */
+ regcpblow(ST.cp);
+ cur_curlyx = ST.prev_curlyx;
+ sayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+
+#undef ST
+#define ST st->u.whilem
+
+ case WHILEM: /* just matched an A in /A*B/ (for complex A) */
+ {
+ /* see the discussion above about CURLYX/WHILEM */
+ I32 n;
+ int min, max;
+ regnode *A;
+
+ assert(cur_curlyx); /* keep Coverity happy */
+
+ min = ARG1(cur_curlyx->u.curlyx.me);
+ max = ARG2(cur_curlyx->u.curlyx.me);
+ A = NEXTOPER(cur_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS;
+ n = ++cur_curlyx->u.curlyx.count; /* how many A's matched */
+ ST.save_lastloc = cur_curlyx->u.curlyx.lastloc;
+ ST.cache_offset = 0;
+ ST.cache_mask = 0;
+
+
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%*s whilem: matched %ld out of %d..%d\n",
+ REPORT_CODE_OFF+depth*2, "", (long)n, min, max)
+ );
+
+ /* First just match a string of min A's. */
+
+ if (n < min) {
+ ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
+ maxopenparen);
+ cur_curlyx->u.curlyx.lastloc = locinput;
+ REGCP_SET(ST.lastcp);
+
+ PUSH_STATE_GOTO(WHILEM_A_pre, A, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+
+ /* If degenerate A matches "", assume A done. */
+
+ if (locinput == cur_curlyx->u.curlyx.lastloc) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%*s whilem: empty match detected, trying continuation...\n",
+ REPORT_CODE_OFF+depth*2, "")
+ );
+ goto do_whilem_B_max;
+ }
+
+ /* super-linear cache processing.
+ *
+ * The idea here is that for certain types of CURLYX/WHILEM -
+ * principally those whose upper bound is infinity (and
+ * excluding regexes that have things like \1 and other very
+ * non-regular expresssiony things), then if a pattern like
+ * /....A*.../ fails and we backtrack to the WHILEM, then we
+ * make a note that this particular WHILEM op was at string
+ * position 47 (say) when the rest of pattern failed. Then, if
+ * we ever find ourselves back at that WHILEM, and at string
+ * position 47 again, we can just fail immediately rather than
+ * running the rest of the pattern again.
+ *
+ * This is very handy when patterns start to go
+ * 'super-linear', like in (a+)*(a+)*(a+)*, where you end up
+ * with a combinatorial explosion of backtracking.
+ *
+ * The cache is implemented as a bit array, with one bit per
+ * string byte position per WHILEM op (up to 16) - so its
+ * between 0.25 and 2x the string size.
+ *
+ * To avoid allocating a poscache buffer every time, we do an
+ * initially countdown; only after we have executed a WHILEM
+ * op (string-length x #WHILEMs) times do we allocate the
+ * cache.
+ *
+ * The top 4 bits of scan->flags byte say how many different
+ * relevant CURLLYX/WHILEM op pairs there are, while the
+ * bottom 4-bits is the identifying index number of this
+ * WHILEM.
+ */
+
+ if (scan->flags) {
+
+ if (!reginfo->poscache_maxiter) {
+ /* start the countdown: Postpone detection until we
+ * know the match is not *that* much linear. */
+ reginfo->poscache_maxiter
+ = (reginfo->strend - reginfo->strbeg + 1)
+ * (scan->flags>>4);
+ /* possible overflow for long strings and many CURLYX's */
+ if (reginfo->poscache_maxiter < 0)
+ reginfo->poscache_maxiter = I32_MAX;
+ reginfo->poscache_iter = reginfo->poscache_maxiter;
+ }
+
+ if (reginfo->poscache_iter-- == 0) {
+ /* initialise cache */
+ const SSize_t size = (reginfo->poscache_maxiter + 7)/8;
+ regmatch_info_aux *const aux = reginfo->info_aux;
+ if (aux->poscache) {
+ if ((SSize_t)reginfo->poscache_size < size) {
+ Renew(aux->poscache, size, char);
+ reginfo->poscache_size = size;
+ }
+ Zero(aux->poscache, size, char);
+ }
+ else {
+ reginfo->poscache_size = size;
+ Newxz(aux->poscache, size, char);
+ }
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%swhilem: Detected a super-linear match, switching on caching%s...\n",
+ PL_colors[4], PL_colors[5])
+ );
+ }
+
+ if (reginfo->poscache_iter < 0) {
+ /* have we already failed at this position? */
+ SSize_t offset, mask;
+
+ reginfo->poscache_iter = -1; /* stop eventual underflow */
+ offset = (scan->flags & 0xf) - 1
+ + (locinput - reginfo->strbeg)
+ * (scan->flags>>4);
+ mask = 1 << (offset % 8);
+ offset /= 8;
+ if (reginfo->info_aux->poscache[offset] & mask) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%*s whilem: (cache) already tried at this position...\n",
+ REPORT_CODE_OFF+depth*2, "")
+ );
+ sayNO; /* cache records failure */
+ }
+ ST.cache_offset = offset;
+ ST.cache_mask = mask;
+ }
+ }
+
+ /* Prefer B over A for minimal matching. */
+
+ if (cur_curlyx->u.curlyx.minmod) {
+ ST.save_curlyx = cur_curlyx;
+ cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
+ ST.cp = regcppush(rex, ST.save_curlyx->u.curlyx.parenfloor,
+ maxopenparen);
+ REGCP_SET(ST.lastcp);
+ PUSH_YES_STATE_GOTO(WHILEM_B_min, ST.save_curlyx->u.curlyx.B,
+ locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+
+ /* Prefer A over B for maximal matching. */
+
+ if (n < max) { /* More greed allowed? */
+ ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
+ maxopenparen);
+ cur_curlyx->u.curlyx.lastloc = locinput;
+ REGCP_SET(ST.lastcp);
+ PUSH_STATE_GOTO(WHILEM_A_max, A, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+ goto do_whilem_B_max;
+ }
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case WHILEM_B_min: /* just matched B in a minimal match */
+ case WHILEM_B_max: /* just matched B in a maximal match */
+ cur_curlyx = ST.save_curlyx;
+ sayYES;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case WHILEM_B_max_fail: /* just failed to match B in a maximal match */
+ cur_curlyx = ST.save_curlyx;
+ cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
+ cur_curlyx->u.curlyx.count--;
+ CACHEsayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case WHILEM_A_min_fail: /* just failed to match A in a minimal match */
+ /* FALLTHROUGH */
+ case WHILEM_A_pre_fail: /* just failed to match even minimal A */
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex, &maxopenparen);
+ cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
+ cur_curlyx->u.curlyx.count--;
+ CACHEsayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case WHILEM_A_max_fail: /* just failed to match A in a maximal match */
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex, &maxopenparen); /* Restore some previous $<digit>s? */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%*s whilem: failed, trying continuation...\n",
+ REPORT_CODE_OFF+depth*2, "")
+ );
+ do_whilem_B_max:
+ if (cur_curlyx->u.curlyx.count >= REG_INFTY
+ && ckWARN(WARN_REGEXP)
+ && !reginfo->warned)
+ {
+ reginfo->warned = TRUE;
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP),
+ "Complex regular subexpression recursion limit (%d) "
+ "exceeded",
+ REG_INFTY - 1);
+ }
+
+ /* now try B */
+ ST.save_curlyx = cur_curlyx;
+ cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
+ PUSH_YES_STATE_GOTO(WHILEM_B_max, ST.save_curlyx->u.curlyx.B,
+ locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case WHILEM_B_min_fail: /* just failed to match B in a minimal match */
+ cur_curlyx = ST.save_curlyx;
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex, &maxopenparen);
+
+ if (cur_curlyx->u.curlyx.count >= /*max*/ARG2(cur_curlyx->u.curlyx.me)) {
+ /* Maximum greed exceeded */
+ if (cur_curlyx->u.curlyx.count >= REG_INFTY
+ && ckWARN(WARN_REGEXP)
+ && !reginfo->warned)
+ {
+ reginfo->warned = TRUE;
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP),
+ "Complex regular subexpression recursion "
+ "limit (%d) exceeded",
+ REG_INFTY - 1);
+ }
+ cur_curlyx->u.curlyx.count--;
+ CACHEsayNO;
+ }
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%*s trying longer...\n", REPORT_CODE_OFF+depth*2, "")
+ );
+ /* Try grabbing another A and see if it helps. */
+ cur_curlyx->u.curlyx.lastloc = locinput;
+ ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
+ maxopenparen);
+ REGCP_SET(ST.lastcp);
+ PUSH_STATE_GOTO(WHILEM_A_min,
+ /*A*/ NEXTOPER(ST.save_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS,
+ locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+#undef ST
+#define ST st->u.branch
+
+ case BRANCHJ: /* /(...|A|...)/ with long next pointer */
+ next = scan + ARG(scan);
+ if (next == scan)
+ next = NULL;
+ scan = NEXTOPER(scan);
+ /* FALLTHROUGH */
+
+ case BRANCH: /* /(...|A|...)/ */
+ scan = NEXTOPER(scan); /* scan now points to inner node */
+ ST.lastparen = rex->lastparen;
+ ST.lastcloseparen = rex->lastcloseparen;
+ ST.next_branch = next;
+ REGCP_SET(ST.cp);
+
+ /* Now go into the branch */
+ if (has_cutgroup) {
+ PUSH_YES_STATE_GOTO(BRANCH_next, scan, locinput);
+ } else {
+ PUSH_STATE_GOTO(BRANCH_next, scan, locinput);
+ }
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CUTGROUP: /* /(*THEN)/ */
+ sv_yes_mark = st->u.mark.mark_name = scan->flags ? NULL :
+ MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ PUSH_STATE_GOTO(CUTGROUP_next, next, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CUTGROUP_next_fail:
+ do_cutgroup = 1;
+ no_final = 1;
+ if (st->u.mark.mark_name)
+ sv_commit = st->u.mark.mark_name;
+ sayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case BRANCH_next:
+ sayYES;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case BRANCH_next_fail: /* that branch failed; try the next, if any */
+ if (do_cutgroup) {
+ do_cutgroup = 0;
+ no_final = 0;
+ }
+ REGCP_UNWIND(ST.cp);
+ UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+ scan = ST.next_branch;
+ /* no more branches? */
+ if (!scan || (OP(scan) != BRANCH && OP(scan) != BRANCHJ)) {
+ DEBUG_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sBRANCH failed...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4],
+ PL_colors[5] );
+ });
+ sayNO_SILENT;
+ }
+ continue; /* execute next BRANCH[J] op */
+ /* NOTREACHED */
+
+ case MINMOD: /* next op will be non-greedy, e.g. A*? */
+ minmod = 1;
+ break;
+
+#undef ST
+#define ST st->u.curlym
+
+ case CURLYM: /* /A{m,n}B/ where A is fixed-length */
+
+ /* This is an optimisation of CURLYX that enables us to push
+ * only a single backtracking state, no matter how many matches
+ * there are in {m,n}. It relies on the pattern being constant
+ * length, with no parens to influence future backrefs
+ */
+
+ ST.me = scan;
+ scan = NEXTOPER(scan) + NODE_STEP_REGNODE;
+
+ ST.lastparen = rex->lastparen;
+ ST.lastcloseparen = rex->lastcloseparen;
+
+ /* if paren positive, emulate an OPEN/CLOSE around A */
+ if (ST.me->flags) {
+ U32 paren = ST.me->flags;
+ if (paren > maxopenparen)
+ maxopenparen = paren;
+ scan += NEXT_OFF(scan); /* Skip former OPEN. */
+ }
+ ST.A = scan;
+ ST.B = next;
+ ST.alen = 0;
+ ST.count = 0;
+ ST.minmod = minmod;
+ minmod = 0;
+ ST.c1 = CHRTEST_UNINIT;
+ REGCP_SET(ST.cp);
+
+ if (!(ST.minmod ? ARG1(ST.me) : ARG2(ST.me))) /* min/max */
+ goto curlym_do_B;
+
+ curlym_do_A: /* execute the A in /A{m,n}B/ */
+ PUSH_YES_STATE_GOTO(CURLYM_A, ST.A, locinput); /* match A */
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CURLYM_A: /* we've just matched an A */
+ ST.count++;
+ /* after first match, determine A's length: u.curlym.alen */
+ if (ST.count == 1) {
+ if (reginfo->is_utf8_target) {
+ char *s = st->locinput;
+ while (s < locinput) {
+ ST.alen++;
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ ST.alen = locinput - st->locinput;
+ }
+ if (ST.alen == 0)
+ ST.count = ST.minmod ? ARG1(ST.me) : ARG2(ST.me);
+ }
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM now matched %"IVdf" times, len=%"IVdf"...\n",
+ (int)(REPORT_CODE_OFF+(depth*2)), "",
+ (IV) ST.count, (IV)ST.alen)
+ );
+
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.me->flags)
+ goto fake_end;
+
+ {
+ I32 max = (ST.minmod ? ARG1(ST.me) : ARG2(ST.me));
+ if ( max == REG_INFTY || ST.count < max )
+ goto curlym_do_A; /* try to match another A */
+ }
+ goto curlym_do_B; /* try to match B */
+
+ case CURLYM_A_fail: /* just failed to match an A */
+ REGCP_UNWIND(ST.cp);
+
+ if (ST.minmod || ST.count < ARG1(ST.me) /* min*/
+ || (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.me->flags))
+ sayNO;
+
+ curlym_do_B: /* execute the B in /A{m,n}B/ */
+ if (ST.c1 == CHRTEST_UNINIT) {
+ /* calculate c1 and c2 for possible match of 1st char
+ * following curly */
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ assert(ST.B);
+ if (HAS_TEXT(ST.B) || JUMPABLE(ST.B)) {
+ regnode *text_node = ST.B;
+ if (! HAS_TEXT(text_node))
+ FIND_NEXT_IMPT(text_node);
+ /* this used to be
+
+ (HAS_TEXT(text_node) && PL_regkind[OP(text_node)] == EXACT)
+
+ But the former is redundant in light of the latter.
+
+ if this changes back then the macro for
+ IS_TEXT and friends need to change.
+ */
+ if (PL_regkind[OP(text_node)] == EXACT) {
+ if (! S_setup_EXACTISH_ST_c1_c2(aTHX_
+ text_node, &ST.c1, ST.c1_utf8, &ST.c2, ST.c2_utf8,
+ reginfo))
+ {
+ sayNO;
+ }
+ }
+ }
+ }
+
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM trying tail with matches=%"IVdf"...\n",
+ (int)(REPORT_CODE_OFF+(depth*2)),
+ "", (IV)ST.count)
+ );
+ if (! NEXTCHR_IS_EOS && ST.c1 != CHRTEST_VOID) {
+ if (! UTF8_IS_INVARIANT(nextchr) && utf8_target) {
+ if (memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput))
+ && memNE(locinput, ST.c2_utf8, UTF8SKIP(locinput)))
+ {
+ /* simulate B failing */
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM Fast bail next target=0x%"UVXf" c1=0x%"UVXf" c2=0x%"UVXf"\n",
+ (int)(REPORT_CODE_OFF+(depth*2)),"",
+ valid_utf8_to_uvchr((U8 *) locinput, NULL),
+ valid_utf8_to_uvchr(ST.c1_utf8, NULL),
+ valid_utf8_to_uvchr(ST.c2_utf8, NULL))
+ );
+ state_num = CURLYM_B_fail;
+ goto reenter_switch;
+ }
+ }
+ else if (nextchr != ST.c1 && nextchr != ST.c2) {
+ /* simulate B failing */
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM Fast bail next target=0x%X c1=0x%X c2=0x%X\n",
+ (int)(REPORT_CODE_OFF+(depth*2)),"",
+ (int) nextchr, ST.c1, ST.c2)
+ );
+ state_num = CURLYM_B_fail;
+ goto reenter_switch;
+ }
+ }
+
+ if (ST.me->flags) {
+ /* emulate CLOSE: mark current A as captured */
+ I32 paren = ST.me->flags;
+ if (ST.count) {
+ rex->offs[paren].start
+ = HOPc(locinput, -ST.alen) - reginfo->strbeg;
+ rex->offs[paren].end = locinput - reginfo->strbeg;
+ if ((U32)paren > rex->lastparen)
+ rex->lastparen = paren;
+ rex->lastcloseparen = paren;
+ }
+ else
+ rex->offs[paren].end = -1;
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.me->flags)
+ {
+ if (ST.count)
+ goto fake_end;
+ else
+ sayNO;
+ }
+ }
+
+ PUSH_STATE_GOTO(CURLYM_B, ST.B, locinput); /* match B */
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CURLYM_B_fail: /* just failed to match a B */
+ REGCP_UNWIND(ST.cp);
+ UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+ if (ST.minmod) {
+ I32 max = ARG2(ST.me);
+ if (max != REG_INFTY && ST.count == max)
+ sayNO;
+ goto curlym_do_A; /* try to match a further A */
+ }
+ /* backtrack one A */
+ if (ST.count == ARG1(ST.me) /* min */)
+ sayNO;
+ ST.count--;
+ SET_locinput(HOPc(locinput, -ST.alen));
+ goto curlym_do_B; /* try to match B */
+
+#undef ST
+#define ST st->u.curly
+
+#define CURLY_SETPAREN(paren, success) \
+ if (paren) { \
+ if (success) { \
+ rex->offs[paren].start = HOPc(locinput, -1) - reginfo->strbeg; \
+ rex->offs[paren].end = locinput - reginfo->strbeg; \
+ if (paren > rex->lastparen) \
+ rex->lastparen = paren; \
+ rex->lastcloseparen = paren; \
+ } \
+ else { \
+ rex->offs[paren].end = -1; \
+ rex->lastparen = ST.lastparen; \
+ rex->lastcloseparen = ST.lastcloseparen; \
+ } \
+ }
+
+ case STAR: /* /A*B/ where A is width 1 char */
+ ST.paren = 0;
+ ST.min = 0;
+ ST.max = REG_INFTY;
+ scan = NEXTOPER(scan);
+ goto repeat;
+
+ case PLUS: /* /A+B/ where A is width 1 char */
+ ST.paren = 0;
+ ST.min = 1;
+ ST.max = REG_INFTY;
+ scan = NEXTOPER(scan);
+ goto repeat;
+
+ case CURLYN: /* /(A){m,n}B/ where A is width 1 char */
+ ST.paren = scan->flags; /* Which paren to set */
+ ST.lastparen = rex->lastparen;
+ ST.lastcloseparen = rex->lastcloseparen;
+ if (ST.paren > maxopenparen)
+ maxopenparen = ST.paren;
+ ST.min = ARG1(scan); /* min to match */
+ ST.max = ARG2(scan); /* max to match */
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ ST.min=1;
+ ST.max=1;
+ }
+ scan = regnext(NEXTOPER(scan) + NODE_STEP_REGNODE);
+ goto repeat;
+
+ case CURLY: /* /A{m,n}B/ where A is width 1 char */
+ ST.paren = 0;
+ ST.min = ARG1(scan); /* min to match */
+ ST.max = ARG2(scan); /* max to match */
+ scan = NEXTOPER(scan) + NODE_STEP_REGNODE;
+ repeat:
+ /*
+ * Lookahead to avoid useless match attempts
+ * when we know what character comes next.
+ *
+ * Used to only do .*x and .*?x, but now it allows
+ * for )'s, ('s and (?{ ... })'s to be in the way
+ * of the quantifier and the EXACT-like node. -- japhy
+ */
+
+ assert(ST.min <= ST.max);
+ if (! HAS_TEXT(next) && ! JUMPABLE(next)) {
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ }
+ else {
+ regnode *text_node = next;
+
+ if (! HAS_TEXT(text_node))
+ FIND_NEXT_IMPT(text_node);
+
+ if (! HAS_TEXT(text_node))
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ else {
+ if ( PL_regkind[OP(text_node)] != EXACT ) {
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ }
+ else {
+
+ /* Currently we only get here when
+
+ PL_rekind[OP(text_node)] == EXACT
+
+ if this changes back then the macro for IS_TEXT and
+ friends need to change. */
+ if (! S_setup_EXACTISH_ST_c1_c2(aTHX_
+ text_node, &ST.c1, ST.c1_utf8, &ST.c2, ST.c2_utf8,
+ reginfo))
+ {
+ sayNO;
+ }
+ }
+ }
+ }
+
+ ST.A = scan;
+ ST.B = next;
+ if (minmod) {
+ char *li = locinput;
+ minmod = 0;
+ if (ST.min &&
+ regrepeat(rex, &li, ST.A, reginfo, ST.min, depth)
+ < ST.min)
+ sayNO;
+ SET_locinput(li);
+ ST.count = ST.min;
+ REGCP_SET(ST.cp);
+ if (ST.c1 == CHRTEST_VOID)
+ goto curly_try_B_min;
+
+ ST.oldloc = locinput;
+
+ /* set ST.maxpos to the furthest point along the
+ * string that could possibly match */
+ if (ST.max == REG_INFTY) {
+ ST.maxpos = reginfo->strend - 1;
+ if (utf8_target)
+ while (UTF8_IS_CONTINUATION(*(U8*)ST.maxpos))
+ ST.maxpos--;
+ }
+ else if (utf8_target) {
+ int m = ST.max - ST.min;
+ for (ST.maxpos = locinput;
+ m >0 && ST.maxpos < reginfo->strend; m--)
+ ST.maxpos += UTF8SKIP(ST.maxpos);
+ }
+ else {
+ ST.maxpos = locinput + ST.max - ST.min;
+ if (ST.maxpos >= reginfo->strend)
+ ST.maxpos = reginfo->strend - 1;
+ }
+ goto curly_try_B_min_known;
+
+ }
+ else {
+ /* avoid taking address of locinput, so it can remain
+ * a register var */
+ char *li = locinput;
+ ST.count = regrepeat(rex, &li, ST.A, reginfo, ST.max, depth);
+ if (ST.count < ST.min)
+ sayNO;
+ SET_locinput(li);
+ if ((ST.count > ST.min)
+ && (PL_regkind[OP(ST.B)] == EOL) && (OP(ST.B) != MEOL))
+ {
+ /* A{m,n} must come at the end of the string, there's
+ * no point in backing off ... */
+ ST.min = ST.count;
+ /* ...except that $ and \Z can match before *and* after
+ newline at the end. Consider "\n\n" =~ /\n+\Z\n/.
+ We may back off by one in this case. */
+ if (UCHARAT(locinput - 1) == '\n' && OP(ST.B) != EOS)
+ ST.min--;
+ }
+ REGCP_SET(ST.cp);
+ goto curly_try_B_max;
+ }
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CURLY_B_min_known_fail:
+ /* failed to find B in a non-greedy match where c1,c2 valid */
+
+ REGCP_UNWIND(ST.cp);
+ if (ST.paren) {
+ UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+ }
+ /* Couldn't or didn't -- move forward. */
+ ST.oldloc = locinput;
+ if (utf8_target)
+ locinput += UTF8SKIP(locinput);
+ else
+ locinput++;
+ ST.count++;
+ curly_try_B_min_known:
+ /* find the next place where 'B' could work, then call B */
+ {
+ int n;
+ if (utf8_target) {
+ n = (ST.oldloc == locinput) ? 0 : 1;
+ if (ST.c1 == ST.c2) {
+ /* set n to utf8_distance(oldloc, locinput) */
+ while (locinput <= ST.maxpos
+ && memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput)))
+ {
+ locinput += UTF8SKIP(locinput);
+ n++;
+ }
+ }
+ else {
+ /* set n to utf8_distance(oldloc, locinput) */
+ while (locinput <= ST.maxpos
+ && memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput))
+ && memNE(locinput, ST.c2_utf8, UTF8SKIP(locinput)))
+ {
+ locinput += UTF8SKIP(locinput);
+ n++;
+ }
+ }
+ }
+ else { /* Not utf8_target */
+ if (ST.c1 == ST.c2) {
+ while (locinput <= ST.maxpos &&
+ UCHARAT(locinput) != ST.c1)
+ locinput++;
+ }
+ else {
+ while (locinput <= ST.maxpos
+ && UCHARAT(locinput) != ST.c1
+ && UCHARAT(locinput) != ST.c2)
+ locinput++;
+ }
+ n = locinput - ST.oldloc;
+ }
+ if (locinput > ST.maxpos)
+ sayNO;
+ if (n) {
+ /* In /a{m,n}b/, ST.oldloc is at "a" x m, locinput is
+ * at b; check that everything between oldloc and
+ * locinput matches */
+ char *li = ST.oldloc;
+ ST.count += n;
+ if (regrepeat(rex, &li, ST.A, reginfo, n, depth) < n)
+ sayNO;
+ assert(n == REG_INFTY || locinput == li);
+ }
+ CURLY_SETPAREN(ST.paren, ST.count);
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ goto fake_end;
+ }
+ PUSH_STATE_GOTO(CURLY_B_min_known, ST.B, locinput);
+ }
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CURLY_B_min_fail:
+ /* failed to find B in a non-greedy match where c1,c2 invalid */
+
+ REGCP_UNWIND(ST.cp);
+ if (ST.paren) {
+ UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+ }
+ /* failed -- move forward one */
+ {
+ char *li = locinput;
+ if (!regrepeat(rex, &li, ST.A, reginfo, 1, depth)) {
+ sayNO;
+ }
+ locinput = li;
+ }
+ {
+ ST.count++;
+ if (ST.count <= ST.max || (ST.max == REG_INFTY &&
+ ST.count > 0)) /* count overflow ? */
+ {
+ curly_try_B_min:
+ CURLY_SETPAREN(ST.paren, ST.count);
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ goto fake_end;
+ }
+ PUSH_STATE_GOTO(CURLY_B_min, ST.B, locinput);
+ }
+ }
+ sayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ curly_try_B_max:
+ /* a successful greedy match: now try to match B */
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ goto fake_end;
+ }
+ {
+ bool could_match = locinput < reginfo->strend;
+
+ /* If it could work, try it. */
+ if (ST.c1 != CHRTEST_VOID && could_match) {
+ if (! UTF8_IS_INVARIANT(UCHARAT(locinput)) && utf8_target)
+ {
+ could_match = memEQ(locinput,
+ ST.c1_utf8,
+ UTF8SKIP(locinput))
+ || memEQ(locinput,
+ ST.c2_utf8,
+ UTF8SKIP(locinput));
+ }
+ else {
+ could_match = UCHARAT(locinput) == ST.c1
+ || UCHARAT(locinput) == ST.c2;
+ }
+ }
+ if (ST.c1 == CHRTEST_VOID || could_match) {
+ CURLY_SETPAREN(ST.paren, ST.count);
+ PUSH_STATE_GOTO(CURLY_B_max, ST.B, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+ }
+ /* FALLTHROUGH */
+
+ case CURLY_B_max_fail:
+ /* failed to find B in a greedy match */
+
+ REGCP_UNWIND(ST.cp);
+ if (ST.paren) {
+ UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+ }
+ /* back up. */
+ if (--ST.count < ST.min)
+ sayNO;
+ locinput = HOPc(locinput, -1);
+ goto curly_try_B_max;
+
+#undef ST
+
+ case END: /* last op of main pattern */
+ fake_end:
+ if (cur_eval) {
+ /* we've just finished A in /(??{A})B/; now continue with B */
+
+ st->u.eval.prev_rex = rex_sv; /* inner */
+
+ /* Save *all* the positions. */
+ st->u.eval.cp = regcppush(rex, 0, maxopenparen);
+ rex_sv = cur_eval->u.eval.prev_rex;
+ is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
+ SET_reg_curpm(rex_sv);
+ rex = ReANY(rex_sv);
+ rexi = RXi_GET(rex);
+ cur_curlyx = cur_eval->u.eval.prev_curlyx;
+
+ REGCP_SET(st->u.eval.lastcp);
+
+ /* Restore parens of the outer rex without popping the
+ * savestack */
+ S_regcp_restore(aTHX_ rex, cur_eval->u.eval.lastcp,
+ &maxopenparen);
+
+ st->u.eval.prev_eval = cur_eval;
+ cur_eval = cur_eval->u.eval.prev_eval;
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log, "%*s EVAL trying tail ... %"UVxf"\n",
+ REPORT_CODE_OFF+depth*2, "",PTR2UV(cur_eval)););
+ if ( nochange_depth )
+ nochange_depth--;
+
+ PUSH_YES_STATE_GOTO(EVAL_AB, st->u.eval.prev_eval->u.eval.B,
+ locinput); /* match B */
+ }
+
+ if (locinput < reginfo->till) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%sMatch possible, but length=%ld is smaller than requested=%ld, failing!%s\n",
+ PL_colors[4],
+ (long)(locinput - startpos),
+ (long)(reginfo->till - startpos),
+ PL_colors[5]));
+
+ sayNO_SILENT; /* Cannot match: too short. */
+ }
+ sayYES; /* Success! */
+
+ case SUCCEED: /* successful SUSPEND/UNLESSM/IFMATCH/CURLYM */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %ssubpattern success...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5]));
+ sayYES; /* Success! */
+
+#undef ST
+#define ST st->u.ifmatch
+
+ {
+ char *newstart;
+
+ case SUSPEND: /* (?>A) */
+ ST.wanted = 1;
+ newstart = locinput;
+ goto do_ifmatch;
+
+ case UNLESSM: /* -ve lookaround: (?!A), or with flags, (?<!A) */
+ ST.wanted = 0;
+ goto ifmatch_trivial_fail_test;
+
+ case IFMATCH: /* +ve lookaround: (?=A), or with flags, (?<=A) */
+ ST.wanted = 1;
+ ifmatch_trivial_fail_test:
+ if (scan->flags) {
+ char * const s = HOPBACKc(locinput, scan->flags);
+ if (!s) {
+ /* trivial fail */
+ if (logical) {
+ logical = 0;
+ sw = 1 - cBOOL(ST.wanted);
+ }
+ else if (ST.wanted)
+ sayNO;
+ next = scan + ARG(scan);
+ if (next == scan)
+ next = NULL;
+ break;
+ }
+ newstart = s;
+ }
+ else
+ newstart = locinput;
+
+ do_ifmatch:
+ ST.me = scan;
+ ST.logical = logical;
+ logical = 0; /* XXX: reset state of logical once it has been saved into ST */
+
+ /* execute body of (?...A) */
+ PUSH_YES_STATE_GOTO(IFMATCH_A, NEXTOPER(NEXTOPER(scan)), newstart);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+
+ case IFMATCH_A_fail: /* body of (?...A) failed */
+ ST.wanted = !ST.wanted;
+ /* FALLTHROUGH */
+
+ case IFMATCH_A: /* body of (?...A) succeeded */
+ if (ST.logical) {
+ sw = cBOOL(ST.wanted);
+ }
+ else if (!ST.wanted)
+ sayNO;
+
+ if (OP(ST.me) != SUSPEND) {
+ /* restore old position except for (?>...) */
+ locinput = st->locinput;
+ }
+ scan = ST.me + ARG(ST.me);
+ if (scan == ST.me)
+ scan = NULL;
+ continue; /* execute B */
+
+#undef ST
+
+ case LONGJMP: /* alternative with many branches compiles to
+ * (BRANCHJ; EXACT ...; LONGJMP ) x N */
+ next = scan + ARG(scan);
+ if (next == scan)
+ next = NULL;
+ break;
+
+ case COMMIT: /* (*COMMIT) */
+ reginfo->cutpoint = reginfo->strend;
+ /* FALLTHROUGH */
+
+ case PRUNE: /* (*PRUNE) */
+ if (!scan->flags)
+ sv_yes_mark = sv_commit = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ PUSH_STATE_GOTO(COMMIT_next, next, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case COMMIT_next_fail:
+ no_final = 1;
+ /* FALLTHROUGH */
+
+ case OPFAIL: /* (*FAIL) */
+ sayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+#define ST st->u.mark
+ case MARKPOINT: /* (*MARK:foo) */
+ ST.prev_mark = mark_state;
+ ST.mark_name = sv_commit = sv_yes_mark
+ = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ mark_state = st;
+ ST.mark_loc = locinput;
+ PUSH_YES_STATE_GOTO(MARKPOINT_next, next, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case MARKPOINT_next:
+ mark_state = ST.prev_mark;
+ sayYES;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case MARKPOINT_next_fail:
+ if (popmark && sv_eq(ST.mark_name,popmark))
+ {
+ if (ST.mark_loc > startpoint)
+ reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
+ popmark = NULL; /* we found our mark */
+ sv_commit = ST.mark_name;
+
+ DEBUG_EXECUTE_r({
+ PerlIO_printf(Perl_debug_log,
+ "%*s %ssetting cutpoint to mark:%"SVf"...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4], SVfARG(sv_commit), PL_colors[5]);
+ });
+ }
+ mark_state = ST.prev_mark;
+ sv_yes_mark = mark_state ?
+ mark_state->u.mark.mark_name : NULL;
+ sayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case SKIP: /* (*SKIP) */
+ if (scan->flags) {
+ /* (*SKIP) : if we fail we cut here*/
+ ST.mark_name = NULL;
+ ST.mark_loc = locinput;
+ PUSH_STATE_GOTO(SKIP_next,next, locinput);
+ } else {
+ /* (*SKIP:NAME) : if there is a (*MARK:NAME) fail where it was,
+ otherwise do nothing. Meaning we need to scan
+ */
+ regmatch_state *cur = mark_state;
+ SV *find = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+
+ while (cur) {
+ if ( sv_eq( cur->u.mark.mark_name,
+ find ) )
+ {
+ ST.mark_name = find;
+ PUSH_STATE_GOTO( SKIP_next, next, locinput);
+ }
+ cur = cur->u.mark.prev_mark;
+ }
+ }
+ /* Didn't find our (*MARK:NAME) so ignore this (*SKIP:NAME) */
+ break;
+
+ case SKIP_next_fail:
+ if (ST.mark_name) {
+ /* (*CUT:NAME) - Set up to search for the name as we
+ collapse the stack*/
+ popmark = ST.mark_name;
+ } else {
+ /* (*CUT) - No name, we cut here.*/
+ if (ST.mark_loc > startpoint)
+ reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
+ /* but we set sv_commit to latest mark_name if there
+ is one so they can test to see how things lead to this
+ cut */
+ if (mark_state)
+ sv_commit=mark_state->u.mark.mark_name;
+ }
+ no_final = 1;
+ sayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+#undef ST
+
+ case LNBREAK: /* \R */
+ if ((n=is_LNBREAK_safe(locinput, reginfo->strend, utf8_target))) {
+ locinput += n;
+ } else
+ sayNO;
+ break;
+
+ default:
+ PerlIO_printf(Perl_error_log, "%"UVxf" %d\n",
+ PTR2UV(scan), OP(scan));
+ Perl_croak(aTHX_ "regexp memory corruption");
+
+ /* this is a point to jump to in order to increment
+ * locinput by one character */
+ increment_locinput:
+ assert(!NEXTCHR_IS_EOS);
+ if (utf8_target) {
+ locinput += PL_utf8skip[nextchr];
+ /* locinput is allowed to go 1 char off the end, but not 2+ */
+ if (locinput > reginfo->strend)
+ sayNO;
+ }
+ else
+ locinput++;
+ break;
+
+ } /* end switch */
+
+ /* switch break jumps here */
+ scan = next; /* prepare to execute the next op and ... */
+ continue; /* ... jump back to the top, reusing st */
+ /* NOTREACHED */
+
+ push_yes_state:
+ /* push a state that backtracks on success */
+ st->u.yes.prev_yes_state = yes_state;
+ yes_state = st;
+ /* FALLTHROUGH */
+ push_state:
+ /* push a new regex state, then continue at scan */
+ {
+ regmatch_state *newst;
+
+ DEBUG_STACK_r({
+ regmatch_state *cur = st;
+ regmatch_state *curyes = yes_state;
+ int curd = depth;
+ regmatch_slab *slab = PL_regmatch_slab;
+ for (;curd > -1;cur--,curd--) {
+ if (cur < SLAB_FIRST(slab)) {
+ slab = slab->prev;
+ cur = SLAB_LAST(slab);
+ }
+ PerlIO_printf(Perl_error_log, "%*s#%-3d %-10s %s\n",
+ REPORT_CODE_OFF + 2 + depth * 2,"",
+ curd, PL_reg_name[cur->resume_state],
+ (curyes == cur) ? "yes" : ""
+ );
+ if (curyes == cur)
+ curyes = cur->u.yes.prev_yes_state;
+ }
+ } else
+ DEBUG_STATE_pp("push")
+ );
+ depth++;
+ st->locinput = locinput;
+ newst = st+1;
+ if (newst > SLAB_LAST(PL_regmatch_slab))
+ newst = S_push_slab(aTHX);
+ PL_regmatch_state = newst;
+
+ locinput = pushinput;
+ st = newst;
+ continue;
+ /* NOTREACHED */
+ }
+ }
+
+ /*
+ * We get here only if there's trouble -- normally "case END" is
+ * the terminating point.
+ */
+ Perl_croak(aTHX_ "corrupted regexp pointers");
+ /* NOTREACHED */
+ sayNO;
+ NOT_REACHED; /* NOTREACHED */
+
+ yes:
+ if (yes_state) {
+ /* we have successfully completed a subexpression, but we must now
+ * pop to the state marked by yes_state and continue from there */
+ assert(st != yes_state);
+#ifdef DEBUGGING
+ while (st != yes_state) {
+ st--;
+ if (st < SLAB_FIRST(PL_regmatch_slab)) {
+ PL_regmatch_slab = PL_regmatch_slab->prev;
+ st = SLAB_LAST(PL_regmatch_slab);
+ }
+ DEBUG_STATE_r({
+ if (no_final) {
+ DEBUG_STATE_pp("pop (no final)");
+ } else {
+ DEBUG_STATE_pp("pop (yes)");
+ }
+ });
+ depth--;
+ }
+#else
+ while (yes_state < SLAB_FIRST(PL_regmatch_slab)
+ || yes_state > SLAB_LAST(PL_regmatch_slab))
+ {
+ /* not in this slab, pop slab */
+ depth -= (st - SLAB_FIRST(PL_regmatch_slab) + 1);
+ PL_regmatch_slab = PL_regmatch_slab->prev;
+ st = SLAB_LAST(PL_regmatch_slab);
+ }
+ depth -= (st - yes_state);
+#endif
+ st = yes_state;
+ yes_state = st->u.yes.prev_yes_state;
+ PL_regmatch_state = st;
+
+ if (no_final)
+ locinput= st->locinput;
+ state_num = st->resume_state + no_final;
+ goto reenter_switch;
+ }
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch successful!%s\n",
+ PL_colors[4], PL_colors[5]));
+
+ if (reginfo->info_aux_eval) {
+ /* each successfully executed (?{...}) block does the equivalent of
+ * local $^R = do {...}
+ * When popping the save stack, all these locals would be undone;
+ * bypass this by setting the outermost saved $^R to the latest
+ * value */
+ /* I dont know if this is needed or works properly now.
+ * see code related to PL_replgv elsewhere in this file.
+ * Yves
+ */
+ if (oreplsv != GvSV(PL_replgv))
+ sv_setsv(oreplsv, GvSV(PL_replgv));
+ }
+ result = 1;
+ goto final_exit;
+
+ no:
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %sfailed...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4], PL_colors[5])
+ );
+
+ no_silent:
+ if (no_final) {
+ if (yes_state) {
+ goto yes;
+ } else {
+ goto final_exit;
+ }
+ }
+ if (depth) {
+ /* there's a previous state to backtrack to */
+ st--;
+ if (st < SLAB_FIRST(PL_regmatch_slab)) {
+ PL_regmatch_slab = PL_regmatch_slab->prev;
+ st = SLAB_LAST(PL_regmatch_slab);
+ }
+ PL_regmatch_state = st;
+ locinput= st->locinput;
+
+ DEBUG_STATE_pp("pop");
+ depth--;
+ if (yes_state == st)
+ yes_state = st->u.yes.prev_yes_state;
+
+ state_num = st->resume_state + 1; /* failure = success + 1 */
+ goto reenter_switch;
+ }
+ result = 0;
+
+ final_exit:
+ if (rex->intflags & PREGf_VERBARG_SEEN) {
+ SV *sv_err = get_sv("REGERROR", 1);
+ SV *sv_mrk = get_sv("REGMARK", 1);
+ if (result) {
+ sv_commit = &PL_sv_no;
+ if (!sv_yes_mark)
+ sv_yes_mark = &PL_sv_yes;
+ } else {
+ if (!sv_commit)
+ sv_commit = &PL_sv_yes;
+ sv_yes_mark = &PL_sv_no;
+ }
+ assert(sv_err);
+ assert(sv_mrk);
+ sv_setsv(sv_err, sv_commit);
+ sv_setsv(sv_mrk, sv_yes_mark);
+ }
+
+
+ if (last_pushed_cv) {
+ dSP;
+ POP_MULTICALL;
+ PERL_UNUSED_VAR(SP);
+ }
+
+ assert(!result || locinput - reginfo->strbeg >= 0);
+ return result ? locinput - reginfo->strbeg : -1;
+}
+
+/*
+ - regrepeat - repeatedly match something simple, report how many
+ *
+ * What 'simple' means is a node which can be the operand of a quantifier like
+ * '+', or {1,3}
+ *
+ * startposp - pointer a pointer to the start position. This is updated
+ * to point to the byte following the highest successful
+ * match.
+ * p - the regnode to be repeatedly matched against.
+ * reginfo - struct holding match state, such as strend
+ * max - maximum number of things to match.
+ * depth - (for debugging) backtracking depth.
+ */
+STATIC I32
+S_regrepeat(pTHX_ regexp *prog, char **startposp, const regnode *p,
+ regmatch_info *const reginfo, I32 max, int depth)
+{
+ char *scan; /* Pointer to current position in target string */
+ I32 c;
+ char *loceol = reginfo->strend; /* local version */
+ I32 hardcount = 0; /* How many matches so far */
+ bool utf8_target = reginfo->is_utf8_target;
+ unsigned int to_complement = 0; /* Invert the result? */
+ UV utf8_flags;
+ _char_class_number classnum;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ PERL_ARGS_ASSERT_REGREPEAT;
+
+ scan = *startposp;
+ if (max == REG_INFTY)
+ max = I32_MAX;
+ else if (! utf8_target && loceol - scan > max)
+ loceol = scan + max;
+
+ /* Here, for the case of a non-UTF-8 target we have adjusted <loceol> down
+ * to the maximum of how far we should go in it (leaving it set to the real
+ * end, if the maximum permissible would take us beyond that). This allows
+ * us to make the loop exit condition that we haven't gone past <loceol> to
+ * also mean that we haven't exceeded the max permissible count, saving a
+ * test each time through the loop. But it assumes that the OP matches a
+ * single byte, which is true for most of the OPs below when applied to a
+ * non-UTF-8 target. Those relatively few OPs that don't have this
+ * characteristic will have to compensate.
+ *
+ * There is no adjustment for UTF-8 targets, as the number of bytes per
+ * character varies. OPs will have to test both that the count is less
+ * than the max permissible (using <hardcount> to keep track), and that we
+ * are still within the bounds of the string (using <loceol>. A few OPs
+ * match a single byte no matter what the encoding. They can omit the max
+ * test if, for the UTF-8 case, they do the adjustment that was skipped
+ * above.
+ *
+ * Thus, the code above sets things up for the common case; and exceptional
+ * cases need extra work; the common case is to make sure <scan> doesn't
+ * go past <loceol>, and for UTF-8 to also use <hardcount> to make sure the
+ * count doesn't exceed the maximum permissible */
+
+ switch (OP(p)) {
+ case REG_ANY:
+ if (utf8_target) {
+ while (scan < loceol && hardcount < max && *scan != '\n') {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && *scan != '\n')
+ scan++;
+ }
+ break;
+ case SANY:
+ if (utf8_target) {
+ while (scan < loceol && hardcount < max) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ }
+ else
+ scan = loceol;
+ break;
+ case EXACTL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (utf8_target && UTF8_IS_ABOVE_LATIN1(*scan)) {
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(scan, loceol);
+ }
+ /* FALLTHROUGH */
+ case EXACT:
+ assert(STR_LEN(p) == reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1);
+
+ c = (U8)*STRING(p);
+
+ /* Can use a simple loop if the pattern char to match on is invariant
+ * under UTF-8, or both target and pattern aren't UTF-8. Note that we
+ * can use UTF8_IS_INVARIANT() even if the pattern isn't UTF-8, as it's
+ * true iff it doesn't matter if the argument is in UTF-8 or not */
+ if (UTF8_IS_INVARIANT(c) || (! utf8_target && ! reginfo->is_utf8_pat)) {
+ if (utf8_target && loceol - scan > max) {
+ /* We didn't adjust <loceol> because is UTF-8, but ok to do so,
+ * since here, to match at all, 1 char == 1 byte */
+ loceol = scan + max;
+ }
+ while (scan < loceol && UCHARAT(scan) == c) {
+ scan++;
+ }
+ }
+ else if (reginfo->is_utf8_pat) {
+ if (utf8_target) {
+ STRLEN scan_char_len;
+
+ /* When both target and pattern are UTF-8, we have to do
+ * string EQ */
+ while (hardcount < max
+ && scan < loceol
+ && (scan_char_len = UTF8SKIP(scan)) <= STR_LEN(p)
+ && memEQ(scan, STRING(p), scan_char_len))
+ {
+ scan += scan_char_len;
+ hardcount++;
+ }
+ }
+ else if (! UTF8_IS_ABOVE_LATIN1(c)) {
+
+ /* Target isn't utf8; convert the character in the UTF-8
+ * pattern to non-UTF8, and do a simple loop */
+ c = TWO_BYTE_UTF8_TO_NATIVE(c, *(STRING(p) + 1));
+ while (scan < loceol && UCHARAT(scan) == c) {
+ scan++;
+ }
+ } /* else pattern char is above Latin1, can't possibly match the
+ non-UTF-8 target */
+ }
+ else {
+
+ /* Here, the string must be utf8; pattern isn't, and <c> is
+ * different in utf8 than not, so can't compare them directly.
+ * Outside the loop, find the two utf8 bytes that represent c, and
+ * then look for those in sequence in the utf8 string */
+ U8 high = UTF8_TWO_BYTE_HI(c);
+ U8 low = UTF8_TWO_BYTE_LO(c);
+
+ while (hardcount < max
+ && scan + 1 < loceol
+ && UCHARAT(scan) == high
+ && UCHARAT(scan + 1) == low)
+ {
+ scan += 2;
+ hardcount++;
+ }
+ }
+ break;
+
+ case EXACTFA_NO_TRIE: /* This node only generated for non-utf8 patterns */
+ assert(! reginfo->is_utf8_pat);
+ /* FALLTHROUGH */
+ case EXACTFA:
+ utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_exactf;
+
+ case EXACTFL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ utf8_flags = FOLDEQ_LOCALE;
+ goto do_exactf;
+
+ case EXACTF: /* This node only generated for non-utf8 patterns */
+ assert(! reginfo->is_utf8_pat);
+ utf8_flags = 0;
+ goto do_exactf;
+
+ case EXACTFLU8:
+ if (! utf8_target) {
+ break;
+ }
+ utf8_flags = FOLDEQ_LOCALE | FOLDEQ_S2_ALREADY_FOLDED
+ | FOLDEQ_S2_FOLDS_SANE;
+ goto do_exactf;
+
+ case EXACTFU_SS:
+ case EXACTFU:
+ utf8_flags = reginfo->is_utf8_pat ? FOLDEQ_S2_ALREADY_FOLDED : 0;
+
+ do_exactf: {
+ int c1, c2;
+ U8 c1_utf8[UTF8_MAXBYTES+1], c2_utf8[UTF8_MAXBYTES+1];
+
+ assert(STR_LEN(p) == reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1);
+
+ if (S_setup_EXACTISH_ST_c1_c2(aTHX_ p, &c1, c1_utf8, &c2, c2_utf8,
+ reginfo))
+ {
+ if (c1 == CHRTEST_VOID) {
+ /* Use full Unicode fold matching */
+ char *tmpeol = reginfo->strend;
+ STRLEN pat_len = reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1;
+ while (hardcount < max
+ && foldEQ_utf8_flags(scan, &tmpeol, 0, utf8_target,
+ STRING(p), NULL, pat_len,
+ reginfo->is_utf8_pat, utf8_flags))
+ {
+ scan = tmpeol;
+ tmpeol = reginfo->strend;
+ hardcount++;
+ }
+ }
+ else if (utf8_target) {
+ if (c1 == c2) {
+ while (scan < loceol
+ && hardcount < max
+ && memEQ(scan, c1_utf8, UTF8SKIP(scan)))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ }
+ else {
+ while (scan < loceol
+ && hardcount < max
+ && (memEQ(scan, c1_utf8, UTF8SKIP(scan))
+ || memEQ(scan, c2_utf8, UTF8SKIP(scan))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ }
+ }
+ else if (c1 == c2) {
+ while (scan < loceol && UCHARAT(scan) == c1) {
+ scan++;
+ }
+ }
+ else {
+ while (scan < loceol &&
+ (UCHARAT(scan) == c1 || UCHARAT(scan) == c2))
+ {
+ scan++;
+ }
+ }
+ }
+ break;
+ }
+ case ANYOFL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ /* FALLTHROUGH */
+ case ANYOF:
+ if (utf8_target) {
+ while (hardcount < max
+ && scan < loceol
+ && reginclass(prog, p, (U8*)scan, (U8*) loceol, utf8_target))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && REGINCLASS(prog, p, (U8*)scan))
+ scan++;
+ }
+ break;
+
+ /* The argument (FLAGS) to all the POSIX node types is the class number */
+
+ case NPOSIXL:
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (! utf8_target) {
+ while (scan < loceol && to_complement ^ cBOOL(isFOO_lc(FLAGS(p),
+ *scan)))
+ {
+ scan++;
+ }
+ } else {
+ while (hardcount < max && scan < loceol
+ && to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(p),
+ (U8 *) scan)))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ }
+ break;
+
+ case POSIXD:
+ if (utf8_target) {
+ goto utf8_posix;
+ }
+ /* FALLTHROUGH */
+
+ case POSIXA:
+ if (utf8_target && loceol - scan > max) {
+
+ /* We didn't adjust <loceol> at the beginning of this routine
+ * because is UTF-8, but it is actually ok to do so, since here, to
+ * match, 1 char == 1 byte. */
+ loceol = scan + max;
+ }
+ while (scan < loceol && _generic_isCC_A((U8) *scan, FLAGS(p))) {
+ scan++;
+ }
+ break;
+
+ case NPOSIXD:
+ if (utf8_target) {
+ to_complement = 1;
+ goto utf8_posix;
+ }
+ /* FALLTHROUGH */
+
+ case NPOSIXA:
+ if (! utf8_target) {
+ while (scan < loceol && ! _generic_isCC_A((U8) *scan, FLAGS(p))) {
+ scan++;
+ }
+ }
+ else {
+
+ /* The complement of something that matches only ASCII matches all
+ * non-ASCII, plus everything in ASCII that isn't in the class. */
+ while (hardcount < max && scan < loceol
+ && (! isASCII_utf8(scan)
+ || ! _generic_isCC_A((U8) *scan, FLAGS(p))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ }
+ break;
+
+ case NPOSIXU:
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXU:
+ if (! utf8_target) {
+ while (scan < loceol && to_complement
+ ^ cBOOL(_generic_isCC((U8) *scan, FLAGS(p))))
+ {
+ scan++;
+ }
+ }
+ else {
+ utf8_posix:
+ classnum = (_char_class_number) FLAGS(p);
+ if (classnum < _FIRST_NON_SWASH_CC) {
+
+ /* Here, a swash is needed for above-Latin1 code points.
+ * Process as many Latin1 code points using the built-in rules.
+ * Go to another loop to finish processing upon encountering
+ * the first Latin1 code point. We could do that in this loop
+ * as well, but the other way saves having to test if the swash
+ * has been loaded every time through the loop: extra space to
+ * save a test. */
+ while (hardcount < max && scan < loceol) {
+ if (UTF8_IS_INVARIANT(*scan)) {
+ if (! (to_complement ^ cBOOL(_generic_isCC((U8) *scan,
+ classnum))))
+ {
+ break;
+ }
+ scan++;
+ }
+ else if (UTF8_IS_DOWNGRADEABLE_START(*scan)) {
+ if (! (to_complement
+ ^ cBOOL(_generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(*scan,
+ *(scan + 1)),
+ classnum))))
+ {
+ break;
+ }
+ scan += 2;
+ }
+ else {
+ goto found_above_latin1;
+ }
+
+ hardcount++;
+ }
+ }
+ else {
+ /* For these character classes, the knowledge of how to handle
+ * every code point is compiled in to Perl via a macro. This
+ * code is written for making the loops as tight as possible.
+ * It could be refactored to save space instead */
+ switch (classnum) {
+ case _CC_ENUM_SPACE:
+ while (hardcount < max
+ && scan < loceol
+ && (to_complement ^ cBOOL(isSPACE_utf8(scan))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ case _CC_ENUM_BLANK:
+ while (hardcount < max
+ && scan < loceol
+ && (to_complement ^ cBOOL(isBLANK_utf8(scan))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ case _CC_ENUM_XDIGIT:
+ while (hardcount < max
+ && scan < loceol
+ && (to_complement ^ cBOOL(isXDIGIT_utf8(scan))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ case _CC_ENUM_VERTSPACE:
+ while (hardcount < max
+ && scan < loceol
+ && (to_complement ^ cBOOL(isVERTWS_utf8(scan))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ case _CC_ENUM_CNTRL:
+ while (hardcount < max
+ && scan < loceol
+ && (to_complement ^ cBOOL(isCNTRL_utf8(scan))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: regrepeat() node %d='%s' has an unexpected character class '%d'", OP(p), PL_reg_name[OP(p)], classnum);
+ }
+ }
+ }
+ break;
+
+ found_above_latin1: /* Continuation of POSIXU and NPOSIXU */
+
+ /* Load the swash if not already present */
+ if (! PL_utf8_swash_ptrs[classnum]) {
+ U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+ PL_utf8_swash_ptrs[classnum] = _core_swash_init(
+ "utf8",
+ "",
+ &PL_sv_undef, 1, 0,
+ PL_XPosix_ptrs[classnum], &flags);
+ }
+
+ while (hardcount < max && scan < loceol
+ && to_complement ^ cBOOL(_generic_utf8(
+ classnum,
+ scan,
+ swash_fetch(PL_utf8_swash_ptrs[classnum],
+ (U8 *) scan,
+ TRUE))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+
+ case LNBREAK:
+ if (utf8_target) {
+ while (hardcount < max && scan < loceol &&
+ (c=is_LNBREAK_utf8_safe(scan, loceol))) {
+ scan += c;
+ hardcount++;
+ }
+ } else {
+ /* LNBREAK can match one or two latin chars, which is ok, but we
+ * have to use hardcount in this situation, and throw away the
+ * adjustment to <loceol> done before the switch statement */
+ loceol = reginfo->strend;
+ while (scan < loceol && (c=is_LNBREAK_latin1_safe(scan, loceol))) {
+ scan+=c;
+ hardcount++;
+ }
+ }
+ break;
+
+ case BOUNDL:
+ case NBOUNDL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ /* FALLTHROUGH */
+ case BOUND:
+ case BOUNDA:
+ case BOUNDU:
+ case EOS:
+ case GPOS:
+ case KEEPS:
+ case NBOUND:
+ case NBOUNDA:
+ case NBOUNDU:
+ case OPFAIL:
+ case SBOL:
+ case SEOL:
+ /* These are all 0 width, so match right here or not at all. */
+ break;
+
+ default:
+ Perl_croak(aTHX_ "panic: regrepeat() called with unrecognized node type %d='%s'", OP(p), PL_reg_name[OP(p)]);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ }
+
+ if (hardcount)
+ c = hardcount;
+ else
+ c = scan - *startposp;
+ *startposp = scan;
+
+ DEBUG_r({
+ GET_RE_DEBUG_FLAGS_DECL;
+ DEBUG_EXECUTE_r({
+ SV * const prop = sv_newmortal();
+ regprop(prog, prop, p, reginfo, NULL);
+ PerlIO_printf(Perl_debug_log,
+ "%*s %s can match %"IVdf" times out of %"IVdf"...\n",
+ REPORT_CODE_OFF + depth*2, "", SvPVX_const(prop),(IV)c,(IV)max);
+ });
+ });
+
+ return(c);
+}
+
+
+#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
+/*
+- regclass_swash - prepare the utf8 swash. Wraps the shared core version to
+create a copy so that changes the caller makes won't change the shared one.
+If <altsvp> is non-null, will return NULL in it, for back-compat.
+ */
+SV *
+Perl_regclass_swash(pTHX_ const regexp *prog, const regnode* node, bool doinit, SV** listsvp, SV **altsvp)
+{
+ PERL_ARGS_ASSERT_REGCLASS_SWASH;
+
+ if (altsvp) {
+ *altsvp = NULL;
+ }
+
+ return newSVsv(_get_regclass_nonbitmap_data(prog, node, doinit, listsvp, NULL, NULL));
+}
+
+#endif /* !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION) */
+
+/*
+ - reginclass - determine if a character falls into a character class
+
+ n is the ANYOF-type regnode
+ p is the target string
+ p_end points to one byte beyond the end of the target string
+ utf8_target tells whether p is in UTF-8.
+
+ Returns true if matched; false otherwise.
+
+ Note that this can be a synthetic start class, a combination of various
+ nodes, so things you think might be mutually exclusive, such as locale,
+ aren't. It can match both locale and non-locale
+
+ */
+
+STATIC bool
+S_reginclass(pTHX_ regexp * const prog, const regnode * const n, const U8* const p, const U8* const p_end, const bool utf8_target)
+{
+ dVAR;
+ const char flags = ANYOF_FLAGS(n);
+ bool match = FALSE;
+ UV c = *p;
+
+ PERL_ARGS_ASSERT_REGINCLASS;
+
+ /* If c is not already the code point, get it. Note that
+ * UTF8_IS_INVARIANT() works even if not in UTF-8 */
+ if (! UTF8_IS_INVARIANT(c) && utf8_target) {
+ STRLEN c_len = 0;
+ c = utf8n_to_uvchr(p, p_end - p, &c_len,
+ (UTF8_ALLOW_DEFAULT & UTF8_ALLOW_ANYUV)
+ | UTF8_ALLOW_FFFF | UTF8_CHECK_ONLY);
+ /* see [perl #37836] for UTF8_ALLOW_ANYUV; [perl #38293] for
+ * UTF8_ALLOW_FFFF */
+ if (c_len == (STRLEN)-1)
+ Perl_croak(aTHX_ "Malformed UTF-8 character (fatal)");
+ if (c > 255 && OP(n) == ANYOFL && ! is_ANYOF_SYNTHETIC(n)) {
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_CP_MSG(c);
+ }
+ }
+
+ /* If this character is potentially in the bitmap, check it */
+ if (c < NUM_ANYOF_CODE_POINTS) {
+ if (ANYOF_BITMAP_TEST(n, c))
+ match = TRUE;
+ else if ((flags & ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII)
+ && ! utf8_target
+ && ! isASCII(c))
+ {
+ match = TRUE;
+ }
+ else if (flags & ANYOF_LOCALE_FLAGS) {
+ if ((flags & ANYOF_LOC_FOLD)
+ && c < 256
+ && ANYOF_BITMAP_TEST(n, PL_fold_locale[c]))
+ {
+ match = TRUE;
+ }
+ else if (ANYOF_POSIXL_TEST_ANY_SET(n)
+ && c < 256
+ ) {
+
+ /* The data structure is arranged so bits 0, 2, 4, ... are set
+ * if the class includes the Posix character class given by
+ * bit/2; and 1, 3, 5, ... are set if the class includes the
+ * complemented Posix class given by int(bit/2). So we loop
+ * through the bits, each time changing whether we complement
+ * the result or not. Suppose for the sake of illustration
+ * that bits 0-3 mean respectively, \w, \W, \s, \S. If bit 0
+ * is set, it means there is a match for this ANYOF node if the
+ * character is in the class given by the expression (0 / 2 = 0
+ * = \w). If it is in that class, isFOO_lc() will return 1,
+ * and since 'to_complement' is 0, the result will stay TRUE,
+ * and we exit the loop. Suppose instead that bit 0 is 0, but
+ * bit 1 is 1. That means there is a match if the character
+ * matches \W. We won't bother to call isFOO_lc() on bit 0,
+ * but will on bit 1. On the second iteration 'to_complement'
+ * will be 1, so the exclusive or will reverse things, so we
+ * are testing for \W. On the third iteration, 'to_complement'
+ * will be 0, and we would be testing for \s; the fourth
+ * iteration would test for \S, etc.
+ *
+ * Note that this code assumes that all the classes are closed
+ * under folding. For example, if a character matches \w, then
+ * its fold does too; and vice versa. This should be true for
+ * any well-behaved locale for all the currently defined Posix
+ * classes, except for :lower: and :upper:, which are handled
+ * by the pseudo-class :cased: which matches if either of the
+ * other two does. To get rid of this assumption, an outer
+ * loop could be used below to iterate over both the source
+ * character, and its fold (if different) */
+
+ int count = 0;
+ int to_complement = 0;
+
+ while (count < ANYOF_MAX) {
+ if (ANYOF_POSIXL_TEST(n, count)
+ && to_complement ^ cBOOL(isFOO_lc(count/2, (U8) c)))
+ {
+ match = TRUE;
+ break;
+ }
+ count++;
+ to_complement ^= 1;
+ }
+ }
+ }
+ }
+
+
+ /* If the bitmap didn't (or couldn't) match, and something outside the
+ * bitmap could match, try that. */
+ if (!match) {
+ if (c >= NUM_ANYOF_CODE_POINTS
+ && (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP))
+ {
+ match = TRUE; /* Everything above the bitmap matches */
+ }
+ else if ((flags & ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES)
+ || (utf8_target && (flags & ANYOF_HAS_UTF8_NONBITMAP_MATCHES))
+ || ((flags & ANYOF_LOC_FOLD)
+ && IN_UTF8_CTYPE_LOCALE
+ && ARG(n) != ANYOF_ONLY_HAS_BITMAP))
+ {
+ SV* only_utf8_locale = NULL;
+ SV * const sw = _get_regclass_nonbitmap_data(prog, n, TRUE, 0,
+ &only_utf8_locale, NULL);
+ if (sw) {
+ U8 utf8_buffer[2];
+ U8 * utf8_p;
+ if (utf8_target) {
+ utf8_p = (U8 *) p;
+ } else { /* Convert to utf8 */
+ utf8_p = utf8_buffer;
+ append_utf8_from_native_byte(*p, &utf8_p);
+ utf8_p = utf8_buffer;
+ }
+
+ if (swash_fetch(sw, utf8_p, TRUE)) {
+ match = TRUE;
+ }
+ }
+ if (! match && only_utf8_locale && IN_UTF8_CTYPE_LOCALE) {
+ match = _invlist_contains_cp(only_utf8_locale, c);
+ }
+ }
+
+ if (UNICODE_IS_SUPER(c)
+ && (flags & ANYOF_WARN_SUPER)
+ && ckWARN_d(WARN_NON_UNICODE))
+ {
+ Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
+ "Matched non-Unicode code point 0x%04"UVXf" against Unicode property; may not be portable", c);
+ }
+ }
+
+#if ANYOF_INVERT != 1
+ /* Depending on compiler optimization cBOOL takes time, so if don't have to
+ * use it, don't */
+# error ANYOF_INVERT needs to be set to 1, or guarded with cBOOL below,
+#endif
+
+ /* The xor complements the return if to invert: 1^1 = 0, 1^0 = 1 */
+ return (flags & ANYOF_INVERT) ^ match;
+}
+
+STATIC U8 *
+S_reghop3(U8 *s, SSize_t off, const U8* lim)
+{
+ /* return the position 'off' UTF-8 characters away from 's', forward if
+ * 'off' >= 0, backwards if negative. But don't go outside of position
+ * 'lim', which better be < s if off < 0 */
+
+ PERL_ARGS_ASSERT_REGHOP3;
+
+ if (off >= 0) {
+ while (off-- && s < lim) {
+ /* XXX could check well-formedness here */
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ while (off++ && s > lim) {
+ s--;
+ if (UTF8_IS_CONTINUED(*s)) {
+ while (s > lim && UTF8_IS_CONTINUATION(*s))
+ s--;
+ }
+ /* XXX could check well-formedness here */
+ }
+ }
+ return s;
+}
+
+STATIC U8 *
+S_reghop4(U8 *s, SSize_t off, const U8* llim, const U8* rlim)
+{
+ PERL_ARGS_ASSERT_REGHOP4;
+
+ if (off >= 0) {
+ while (off-- && s < rlim) {
+ /* XXX could check well-formedness here */
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ while (off++ && s > llim) {
+ s--;
+ if (UTF8_IS_CONTINUED(*s)) {
+ while (s > llim && UTF8_IS_CONTINUATION(*s))
+ s--;
+ }
+ /* XXX could check well-formedness here */
+ }
+ }
+ return s;
+}
+
+/* like reghop3, but returns NULL on overrun, rather than returning last
+ * char pos */
+
+STATIC U8 *
+S_reghopmaybe3(U8* s, SSize_t off, const U8* lim)
+{
+ PERL_ARGS_ASSERT_REGHOPMAYBE3;
+
+ if (off >= 0) {
+ while (off-- && s < lim) {
+ /* XXX could check well-formedness here */
+ s += UTF8SKIP(s);
+ }
+ if (off >= 0)
+ return NULL;
+ }
+ else {
+ while (off++ && s > lim) {
+ s--;
+ if (UTF8_IS_CONTINUED(*s)) {
+ while (s > lim && UTF8_IS_CONTINUATION(*s))
+ s--;
+ }
+ /* XXX could check well-formedness here */
+ }
+ if (off <= 0)
+ return NULL;
+ }
+ return s;
+}
+
+
+/* when executing a regex that may have (?{}), extra stuff needs setting
+ up that will be visible to the called code, even before the current
+ match has finished. In particular:
+
+ * $_ is localised to the SV currently being matched;
+ * pos($_) is created if necessary, ready to be updated on each call-out
+ to code;
+ * a fake PMOP is created that can be set to PL_curpm (normally PL_curpm
+ isn't set until the current pattern is successfully finished), so that
+ $1 etc of the match-so-far can be seen;
+ * save the old values of subbeg etc of the current regex, and set then
+ to the current string (again, this is normally only done at the end
+ of execution)
+*/
+
+static void
+S_setup_eval_state(pTHX_ regmatch_info *const reginfo)
+{
+ MAGIC *mg;
+ regexp *const rex = ReANY(reginfo->prog);
+ regmatch_info_aux_eval *eval_state = reginfo->info_aux_eval;
+
+ eval_state->rex = rex;
+
+ if (reginfo->sv) {
+ /* Make $_ available to executed code. */
+ if (reginfo->sv != DEFSV) {
+ SAVE_DEFSV;
+ DEFSV_set(reginfo->sv);
+ }
+
+ if (!(mg = mg_find_mglob(reginfo->sv))) {
+ /* prepare for quick setting of pos */
+ mg = sv_magicext_mglob(reginfo->sv);
+ mg->mg_len = -1;
+ }
+ eval_state->pos_magic = mg;
+ eval_state->pos = mg->mg_len;
+ eval_state->pos_flags = mg->mg_flags;
+ }
+ else
+ eval_state->pos_magic = NULL;
+
+ if (!PL_reg_curpm) {
+ /* PL_reg_curpm is a fake PMOP that we can attach the current
+ * regex to and point PL_curpm at, so that $1 et al are visible
+ * within a /(?{})/. It's just allocated once per interpreter the
+ * first time its needed */
+ Newxz(PL_reg_curpm, 1, PMOP);
+#ifdef USE_ITHREADS
+ {
+ SV* const repointer = &PL_sv_undef;
+ /* this regexp is also owned by the new PL_reg_curpm, which
+ will try to free it. */
+ av_push(PL_regex_padav, repointer);
+ PL_reg_curpm->op_pmoffset = av_tindex(PL_regex_padav);
+ PL_regex_pad = AvARRAY(PL_regex_padav);
+ }
+#endif
+ }
+ SET_reg_curpm(reginfo->prog);
+ eval_state->curpm = PL_curpm;
+ PL_curpm = PL_reg_curpm;
+ if (RXp_MATCH_COPIED(rex)) {
+ /* Here is a serious problem: we cannot rewrite subbeg,
+ since it may be needed if this match fails. Thus
+ $` inside (?{}) could fail... */
+ eval_state->subbeg = rex->subbeg;
+ eval_state->sublen = rex->sublen;
+ eval_state->suboffset = rex->suboffset;
+ eval_state->subcoffset = rex->subcoffset;
+#ifdef PERL_ANY_COW
+ eval_state->saved_copy = rex->saved_copy;
+#endif
+ RXp_MATCH_COPIED_off(rex);
+ }
+ else
+ eval_state->subbeg = NULL;
+ rex->subbeg = (char *)reginfo->strbeg;
+ rex->suboffset = 0;
+ rex->subcoffset = 0;
+ rex->sublen = reginfo->strend - reginfo->strbeg;
+}
+
+
+/* destructor to clear up regmatch_info_aux and regmatch_info_aux_eval */
+
+static void
+S_cleanup_regmatch_info_aux(pTHX_ void *arg)
+{
+ regmatch_info_aux *aux = (regmatch_info_aux *) arg;
+ regmatch_info_aux_eval *eval_state = aux->info_aux_eval;
+ regmatch_slab *s;
+
+ Safefree(aux->poscache);
+
+ if (eval_state) {
+
+ /* undo the effects of S_setup_eval_state() */
+
+ if (eval_state->subbeg) {
+ regexp * const rex = eval_state->rex;
+ rex->subbeg = eval_state->subbeg;
+ rex->sublen = eval_state->sublen;
+ rex->suboffset = eval_state->suboffset;
+ rex->subcoffset = eval_state->subcoffset;
+#ifdef PERL_ANY_COW
+ rex->saved_copy = eval_state->saved_copy;
+#endif
+ RXp_MATCH_COPIED_on(rex);
+ }
+ if (eval_state->pos_magic)
+ {
+ eval_state->pos_magic->mg_len = eval_state->pos;
+ eval_state->pos_magic->mg_flags =
+ (eval_state->pos_magic->mg_flags & ~MGf_BYTES)
+ | (eval_state->pos_flags & MGf_BYTES);
+ }
+
+ PL_curpm = eval_state->curpm;
+ }
+
+ PL_regmatch_state = aux->old_regmatch_state;
+ PL_regmatch_slab = aux->old_regmatch_slab;
+
+ /* free all slabs above current one - this must be the last action
+ * of this function, as aux and eval_state are allocated within
+ * slabs and may be freed here */
+
+ s = PL_regmatch_slab->next;
+ if (s) {
+ PL_regmatch_slab->next = NULL;
+ while (s) {
+ regmatch_slab * const osl = s;
+ s = s->next;
+ Safefree(osl);
+ }
+ }
+}
+
+
+STATIC void
+S_to_utf8_substr(pTHX_ regexp *prog)
+{
+ /* Converts substr fields in prog from bytes to UTF-8, calling fbm_compile
+ * on the converted value */
+
+ int i = 1;
+
+ PERL_ARGS_ASSERT_TO_UTF8_SUBSTR;
+
+ do {
+ if (prog->substrs->data[i].substr
+ && !prog->substrs->data[i].utf8_substr) {
+ SV* const sv = newSVsv(prog->substrs->data[i].substr);
+ prog->substrs->data[i].utf8_substr = sv;
+ sv_utf8_upgrade(sv);
+ if (SvVALID(prog->substrs->data[i].substr)) {
+ if (SvTAIL(prog->substrs->data[i].substr)) {
+ /* Trim the trailing \n that fbm_compile added last
+ time. */
+ SvCUR_set(sv, SvCUR(sv) - 1);
+ /* Whilst this makes the SV technically "invalid" (as its
+ buffer is no longer followed by "\0") when fbm_compile()
+ adds the "\n" back, a "\0" is restored. */
+ fbm_compile(sv, FBMcf_TAIL);
+ } else
+ fbm_compile(sv, 0);
+ }
+ if (prog->substrs->data[i].substr == prog->check_substr)
+ prog->check_utf8 = sv;
+ }
+ } while (i--);
+}
+
+STATIC bool
+S_to_byte_substr(pTHX_ regexp *prog)
+{
+ /* Converts substr fields in prog from UTF-8 to bytes, calling fbm_compile
+ * on the converted value; returns FALSE if can't be converted. */
+
+ int i = 1;
+
+ PERL_ARGS_ASSERT_TO_BYTE_SUBSTR;
+
+ do {
+ if (prog->substrs->data[i].utf8_substr
+ && !prog->substrs->data[i].substr) {
+ SV* sv = newSVsv(prog->substrs->data[i].utf8_substr);
+ if (! sv_utf8_downgrade(sv, TRUE)) {
+ return FALSE;
+ }
+ if (SvVALID(prog->substrs->data[i].utf8_substr)) {
+ if (SvTAIL(prog->substrs->data[i].utf8_substr)) {
+ /* Trim the trailing \n that fbm_compile added last
+ time. */
+ SvCUR_set(sv, SvCUR(sv) - 1);
+ fbm_compile(sv, FBMcf_TAIL);
+ } else
+ fbm_compile(sv, 0);
+ }
+ prog->substrs->data[i].substr = sv;
+ if (prog->substrs->data[i].utf8_substr == prog->check_utf8)
+ prog->check_substr = sv;
+ }
+ } while (i--);
+
+ return TRUE;
+}
+
+/*
+ * ex: set ts=8 sts=4 sw=4 et:
+ */
--- /dev/null
+/* regcomp.c
+ */
+
+/*
+ * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
+ *
+ * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
+ */
+
+/* This file contains functions for compiling a regular expression. See
+ * also regexec.c which funnily enough, contains functions for executing
+ * a regular expression.
+ *
+ * This file is also copied at build time to ext/re/re_comp.c, where
+ * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
+ * This causes the main functions to be compiled under new names and with
+ * debugging support added, which makes "use re 'debug'" work.
+ */
+
+/* NOTE: this is derived from Henry Spencer's regexp code, and should not
+ * confused with the original package (see point 3 below). Thanks, Henry!
+ */
+
+/* Additional note: this code is very heavily munged from Henry's version
+ * in places. In some spots I've traded clarity for efficiency, so don't
+ * blame Henry for some of the lack of readability.
+ */
+
+/* The names of the functions have been changed from regcomp and
+ * regexec to pregcomp and pregexec in order to avoid conflicts
+ * with the POSIX routines of the same names.
+*/
+
+#ifdef PERL_EXT_RE_BUILD
+#include "re_top.h"
+#endif
+
+/*
+ * pregcomp and pregexec -- regsub and regerror are not used in perl
+ *
+ * Copyright (c) 1986 by University of Toronto.
+ * Written by Henry Spencer. Not derived from licensed software.
+ *
+ * Permission is granted to anyone to use this software for any
+ * purpose on any computer system, and to redistribute it freely,
+ * subject to the following restrictions:
+ *
+ * 1. The author is not responsible for the consequences of use of
+ * this software, no matter how awful, even if they arise
+ * from defects in it.
+ *
+ * 2. The origin of this software must not be misrepresented, either
+ * by explicit claim or by omission.
+ *
+ * 3. Altered versions must be plainly marked as such, and must not
+ * be misrepresented as being the original software.
+ *
+ *
+ **** Alterations to Henry's code are...
+ ****
+ **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ **** by Larry Wall and others
+ ****
+ **** You may distribute under the terms of either the GNU General Public
+ **** License or the Artistic License, as specified in the README file.
+
+ *
+ * Beware that some of this code is subtly aware of the way operator
+ * precedence is structured in regular expressions. Serious changes in
+ * regular-expression syntax might require a total rethink.
+ */
+#include "EXTERN.h"
+#define PERL_IN_REGCOMP_C
+#undef PERL_IN_XSUB_RE
+#define PERL_IN_XSUB_RE 1
+#include "perl.h"
+#undef PERL_IN_XSUB_RE
+
+#ifndef PERL_IN_XSUB_RE
+#include "re_defs.h"
+#endif
+
+#define REG_COMP_C
+#ifdef PERL_IN_XSUB_RE
+# include "re_comp.h"
+EXTERN_C const struct regexp_engine my_reg_engine;
+#else
+# include "regcomp.h"
+#endif
+
+#include "dquote_static.c"
+#include "inline_invlist.c"
+#include "unicode_constants.h"
+
+#define HAS_NONLATIN1_FOLD_CLOSURE(i) \
+ _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
+#define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(i) \
+ _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
+#define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
+#define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
+
+#ifndef STATIC
+#define STATIC static
+#endif
+
+#ifndef MIN
+#define MIN(a,b) ((a) < (b) ? (a) : (b))
+#endif
+
+/* this is a chain of data about sub patterns we are processing that
+ need to be handled separately/specially in study_chunk. Its so
+ we can simulate recursion without losing state. */
+struct scan_frame;
+typedef struct scan_frame {
+ regnode *last_regnode; /* last node to process in this frame */
+ regnode *next_regnode; /* next node to process when last is reached */
+ U32 prev_recursed_depth;
+ I32 stopparen; /* what stopparen do we use */
+ U32 is_top_frame; /* what flags do we use? */
+
+ struct scan_frame *this_prev_frame; /* this previous frame */
+ struct scan_frame *prev_frame; /* previous frame */
+ struct scan_frame *next_frame; /* next frame */
+} scan_frame;
+
+/* Certain characters are output as a sequence with the first being a
+ * backslash. */
+#define isBACKSLASHED_PUNCT(c) \
+ ((c) == '-' || (c) == ']' || (c) == '\\' || (c) == '^')
+
+
+struct RExC_state_t {
+ U32 flags; /* RXf_* are we folding, multilining? */
+ U32 pm_flags; /* PMf_* stuff from the calling PMOP */
+ char *precomp; /* uncompiled string. */
+ REGEXP *rx_sv; /* The SV that is the regexp. */
+ regexp *rx; /* perl core regexp structure */
+ regexp_internal *rxi; /* internal data for regexp object
+ pprivate field */
+ char *start; /* Start of input for compile */
+ char *end; /* End of input for compile */
+ char *parse; /* Input-scan pointer. */
+ SSize_t whilem_seen; /* number of WHILEM in this expr */
+ regnode *emit_start; /* Start of emitted-code area */
+ regnode *emit_bound; /* First regnode outside of the
+ allocated space */
+ regnode *emit; /* Code-emit pointer; if = &emit_dummy,
+ implies compiling, so don't emit */
+ regnode_ssc emit_dummy; /* placeholder for emit to point to;
+ large enough for the largest
+ non-EXACTish node, so can use it as
+ scratch in pass1 */
+ I32 naughty; /* How bad is this pattern? */
+ I32 sawback; /* Did we see \1, ...? */
+ U32 seen;
+ SSize_t size; /* Code size. */
+ I32 npar; /* Capture buffer count, (OPEN) plus
+ one. ("par" 0 is the whole
+ pattern)*/
+ I32 nestroot; /* root parens we are in - used by
+ accept */
+ I32 extralen;
+ I32 seen_zerolen;
+ regnode **open_parens; /* pointers to open parens */
+ regnode **close_parens; /* pointers to close parens */
+ regnode *opend; /* END node in program */
+ I32 utf8; /* whether the pattern is utf8 or not */
+ I32 orig_utf8; /* whether the pattern was originally in utf8 */
+ /* XXX use this for future optimisation of case
+ * where pattern must be upgraded to utf8. */
+ I32 uni_semantics; /* If a d charset modifier should use unicode
+ rules, even if the pattern is not in
+ utf8 */
+ HV *paren_names; /* Paren names */
+
+ regnode **recurse; /* Recurse regops */
+ I32 recurse_count; /* Number of recurse regops */
+ U8 *study_chunk_recursed; /* bitmap of which subs we have moved
+ through */
+ U32 study_chunk_recursed_bytes; /* bytes in bitmap */
+ I32 in_lookbehind;
+ I32 contains_locale;
+ I32 contains_i;
+ I32 override_recoding;
+#ifdef EBCDIC
+ I32 recode_x_to_native;
+#endif
+ I32 in_multi_char_class;
+ struct reg_code_block *code_blocks; /* positions of literal (?{})
+ within pattern */
+ int num_code_blocks; /* size of code_blocks[] */
+ int code_index; /* next code_blocks[] slot */
+ SSize_t maxlen; /* mininum possible number of chars in string to match */
+ scan_frame *frame_head;
+ scan_frame *frame_last;
+ U32 frame_count;
+ U32 strict;
+#ifdef ADD_TO_REGEXEC
+ char *starttry; /* -Dr: where regtry was called. */
+#define RExC_starttry (pRExC_state->starttry)
+#endif
+ SV *runtime_code_qr; /* qr with the runtime code blocks */
+#ifdef DEBUGGING
+ const char *lastparse;
+ I32 lastnum;
+ AV *paren_name_list; /* idx -> name */
+ U32 study_chunk_recursed_count;
+ SV *mysv1;
+ SV *mysv2;
+#define RExC_lastparse (pRExC_state->lastparse)
+#define RExC_lastnum (pRExC_state->lastnum)
+#define RExC_paren_name_list (pRExC_state->paren_name_list)
+#define RExC_study_chunk_recursed_count (pRExC_state->study_chunk_recursed_count)
+#define RExC_mysv (pRExC_state->mysv1)
+#define RExC_mysv1 (pRExC_state->mysv1)
+#define RExC_mysv2 (pRExC_state->mysv2)
+
+#endif
+};
+
+#define RExC_flags (pRExC_state->flags)
+#define RExC_pm_flags (pRExC_state->pm_flags)
+#define RExC_precomp (pRExC_state->precomp)
+#define RExC_rx_sv (pRExC_state->rx_sv)
+#define RExC_rx (pRExC_state->rx)
+#define RExC_rxi (pRExC_state->rxi)
+#define RExC_start (pRExC_state->start)
+#define RExC_end (pRExC_state->end)
+#define RExC_parse (pRExC_state->parse)
+#define RExC_whilem_seen (pRExC_state->whilem_seen)
+#ifdef RE_TRACK_PATTERN_OFFSETS
+#define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the
+ others */
+#endif
+#define RExC_emit (pRExC_state->emit)
+#define RExC_emit_dummy (pRExC_state->emit_dummy)
+#define RExC_emit_start (pRExC_state->emit_start)
+#define RExC_emit_bound (pRExC_state->emit_bound)
+#define RExC_sawback (pRExC_state->sawback)
+#define RExC_seen (pRExC_state->seen)
+#define RExC_size (pRExC_state->size)
+#define RExC_maxlen (pRExC_state->maxlen)
+#define RExC_npar (pRExC_state->npar)
+#define RExC_nestroot (pRExC_state->nestroot)
+#define RExC_extralen (pRExC_state->extralen)
+#define RExC_seen_zerolen (pRExC_state->seen_zerolen)
+#define RExC_utf8 (pRExC_state->utf8)
+#define RExC_uni_semantics (pRExC_state->uni_semantics)
+#define RExC_orig_utf8 (pRExC_state->orig_utf8)
+#define RExC_open_parens (pRExC_state->open_parens)
+#define RExC_close_parens (pRExC_state->close_parens)
+#define RExC_opend (pRExC_state->opend)
+#define RExC_paren_names (pRExC_state->paren_names)
+#define RExC_recurse (pRExC_state->recurse)
+#define RExC_recurse_count (pRExC_state->recurse_count)
+#define RExC_study_chunk_recursed (pRExC_state->study_chunk_recursed)
+#define RExC_study_chunk_recursed_bytes \
+ (pRExC_state->study_chunk_recursed_bytes)
+#define RExC_in_lookbehind (pRExC_state->in_lookbehind)
+#define RExC_contains_locale (pRExC_state->contains_locale)
+#define RExC_contains_i (pRExC_state->contains_i)
+#define RExC_override_recoding (pRExC_state->override_recoding)
+#ifdef EBCDIC
+# define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)
+#endif
+#define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
+#define RExC_frame_head (pRExC_state->frame_head)
+#define RExC_frame_last (pRExC_state->frame_last)
+#define RExC_frame_count (pRExC_state->frame_count)
+#define RExC_strict (pRExC_state->strict)
+
+/* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
+ * a flag to disable back-off on the fixed/floating substrings - if it's
+ * a high complexity pattern we assume the benefit of avoiding a full match
+ * is worth the cost of checking for the substrings even if they rarely help.
+ */
+#define RExC_naughty (pRExC_state->naughty)
+#define TOO_NAUGHTY (10)
+#define MARK_NAUGHTY(add) \
+ if (RExC_naughty < TOO_NAUGHTY) \
+ RExC_naughty += (add)
+#define MARK_NAUGHTY_EXP(exp, add) \
+ if (RExC_naughty < TOO_NAUGHTY) \
+ RExC_naughty += RExC_naughty / (exp) + (add)
+
+#define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
+#define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
+ ((*s) == '{' && regcurly(s)))
+
+/*
+ * Flags to be passed up and down.
+ */
+#define WORST 0 /* Worst case. */
+#define HASWIDTH 0x01 /* Known to match non-null strings. */
+
+/* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
+ * character. (There needs to be a case: in the switch statement in regexec.c
+ * for any node marked SIMPLE.) Note that this is not the same thing as
+ * REGNODE_SIMPLE */
+#define SIMPLE 0x02
+#define SPSTART 0x04 /* Starts with * or + */
+#define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
+#define TRYAGAIN 0x10 /* Weeded out a declaration. */
+#define RESTART_UTF8 0x20 /* Restart, need to calcuate sizes as UTF-8 */
+
+#define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
+
+/* whether trie related optimizations are enabled */
+#if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
+#define TRIE_STUDY_OPT
+#define FULL_TRIE_STUDY
+#define TRIE_STCLASS
+#endif
+
+
+
+#define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
+#define PBITVAL(paren) (1 << ((paren) & 7))
+#define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
+#define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
+#define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
+
+#define REQUIRE_UTF8 STMT_START { \
+ if (!UTF) { \
+ *flagp = RESTART_UTF8; \
+ return NULL; \
+ } \
+ } STMT_END
+
+/* This converts the named class defined in regcomp.h to its equivalent class
+ * number defined in handy.h. */
+#define namedclass_to_classnum(class) ((int) ((class) / 2))
+#define classnum_to_namedclass(classnum) ((classnum) * 2)
+
+#define _invlist_union_complement_2nd(a, b, output) \
+ _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
+#define _invlist_intersection_complement_2nd(a, b, output) \
+ _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
+
+/* About scan_data_t.
+
+ During optimisation we recurse through the regexp program performing
+ various inplace (keyhole style) optimisations. In addition study_chunk
+ and scan_commit populate this data structure with information about
+ what strings MUST appear in the pattern. We look for the longest
+ string that must appear at a fixed location, and we look for the
+ longest string that may appear at a floating location. So for instance
+ in the pattern:
+
+ /FOO[xX]A.*B[xX]BAR/
+
+ Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
+ strings (because they follow a .* construct). study_chunk will identify
+ both FOO and BAR as being the longest fixed and floating strings respectively.
+
+ The strings can be composites, for instance
+
+ /(f)(o)(o)/
+
+ will result in a composite fixed substring 'foo'.
+
+ For each string some basic information is maintained:
+
+ - offset or min_offset
+ This is the position the string must appear at, or not before.
+ It also implicitly (when combined with minlenp) tells us how many
+ characters must match before the string we are searching for.
+ Likewise when combined with minlenp and the length of the string it
+ tells us how many characters must appear after the string we have
+ found.
+
+ - max_offset
+ Only used for floating strings. This is the rightmost point that
+ the string can appear at. If set to SSize_t_MAX it indicates that the
+ string can occur infinitely far to the right.
+
+ - minlenp
+ A pointer to the minimum number of characters of the pattern that the
+ string was found inside. This is important as in the case of positive
+ lookahead or positive lookbehind we can have multiple patterns
+ involved. Consider
+
+ /(?=FOO).*F/
+
+ The minimum length of the pattern overall is 3, the minimum length
+ of the lookahead part is 3, but the minimum length of the part that
+ will actually match is 1. So 'FOO's minimum length is 3, but the
+ minimum length for the F is 1. This is important as the minimum length
+ is used to determine offsets in front of and behind the string being
+ looked for. Since strings can be composites this is the length of the
+ pattern at the time it was committed with a scan_commit. Note that
+ the length is calculated by study_chunk, so that the minimum lengths
+ are not known until the full pattern has been compiled, thus the
+ pointer to the value.
+
+ - lookbehind
+
+ In the case of lookbehind the string being searched for can be
+ offset past the start point of the final matching string.
+ If this value was just blithely removed from the min_offset it would
+ invalidate some of the calculations for how many chars must match
+ before or after (as they are derived from min_offset and minlen and
+ the length of the string being searched for).
+ When the final pattern is compiled and the data is moved from the
+ scan_data_t structure into the regexp structure the information
+ about lookbehind is factored in, with the information that would
+ have been lost precalculated in the end_shift field for the
+ associated string.
+
+ The fields pos_min and pos_delta are used to store the minimum offset
+ and the delta to the maximum offset at the current point in the pattern.
+
+*/
+
+typedef struct scan_data_t {
+ /*I32 len_min; unused */
+ /*I32 len_delta; unused */
+ SSize_t pos_min;
+ SSize_t pos_delta;
+ SV *last_found;
+ SSize_t last_end; /* min value, <0 unless valid. */
+ SSize_t last_start_min;
+ SSize_t last_start_max;
+ SV **longest; /* Either &l_fixed, or &l_float. */
+ SV *longest_fixed; /* longest fixed string found in pattern */
+ SSize_t offset_fixed; /* offset where it starts */
+ SSize_t *minlen_fixed; /* pointer to the minlen relevant to the string */
+ I32 lookbehind_fixed; /* is the position of the string modfied by LB */
+ SV *longest_float; /* longest floating string found in pattern */
+ SSize_t offset_float_min; /* earliest point in string it can appear */
+ SSize_t offset_float_max; /* latest point in string it can appear */
+ SSize_t *minlen_float; /* pointer to the minlen relevant to the string */
+ SSize_t lookbehind_float; /* is the pos of the string modified by LB */
+ I32 flags;
+ I32 whilem_c;
+ SSize_t *last_closep;
+ regnode_ssc *start_class;
+} scan_data_t;
+
+/*
+ * Forward declarations for pregcomp()'s friends.
+ */
+
+static const scan_data_t zero_scan_data =
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
+
+#define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
+#define SF_BEFORE_SEOL 0x0001
+#define SF_BEFORE_MEOL 0x0002
+#define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
+#define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
+
+#define SF_FIX_SHIFT_EOL (+2)
+#define SF_FL_SHIFT_EOL (+4)
+
+#define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
+#define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
+
+#define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
+#define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
+#define SF_IS_INF 0x0040
+#define SF_HAS_PAR 0x0080
+#define SF_IN_PAR 0x0100
+#define SF_HAS_EVAL 0x0200
+#define SCF_DO_SUBSTR 0x0400
+#define SCF_DO_STCLASS_AND 0x0800
+#define SCF_DO_STCLASS_OR 0x1000
+#define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
+#define SCF_WHILEM_VISITED_POS 0x2000
+
+#define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
+#define SCF_SEEN_ACCEPT 0x8000
+#define SCF_TRIE_DOING_RESTUDY 0x10000
+#define SCF_IN_DEFINE 0x20000
+
+
+
+
+#define UTF cBOOL(RExC_utf8)
+
+/* The enums for all these are ordered so things work out correctly */
+#define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
+#define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) \
+ == REGEX_DEPENDS_CHARSET)
+#define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
+#define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) \
+ >= REGEX_UNICODE_CHARSET)
+#define ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
+ == REGEX_ASCII_RESTRICTED_CHARSET)
+#define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
+ >= REGEX_ASCII_RESTRICTED_CHARSET)
+#define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) \
+ == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
+
+#define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
+
+/* For programs that want to be strictly Unicode compatible by dying if any
+ * attempt is made to match a non-Unicode code point against a Unicode
+ * property. */
+#define ALWAYS_WARN_SUPER ckDEAD(packWARN(WARN_NON_UNICODE))
+
+#define OOB_NAMEDCLASS -1
+
+/* There is no code point that is out-of-bounds, so this is problematic. But
+ * its only current use is to initialize a variable that is always set before
+ * looked at. */
+#define OOB_UNICODE 0xDEADBEEF
+
+#define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
+#define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
+
+
+/* length of regex to show in messages that don't mark a position within */
+#define RegexLengthToShowInErrorMessages 127
+
+/*
+ * If MARKER[12] are adjusted, be sure to adjust the constants at the top
+ * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
+ * op/pragma/warn/regcomp.
+ */
+#define MARKER1 "<-- HERE" /* marker as it appears in the description */
+#define MARKER2 " <-- HERE " /* marker as it appears within the regex */
+
+#define REPORT_LOCATION " in regex; marked by " MARKER1 \
+ " in m/%"UTF8f MARKER2 "%"UTF8f"/"
+
+#define REPORT_LOCATION_ARGS(offset) \
+ UTF8fARG(UTF, offset, RExC_precomp), \
+ UTF8fARG(UTF, RExC_end - RExC_precomp - offset, RExC_precomp + offset)
+
+/* Used to point after bad bytes for an error message, but avoid skipping
+ * past a nul byte. */
+#define SKIP_IF_CHAR(s) (!*(s) ? 0 : UTF ? UTF8SKIP(s) : 1)
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
+ * arg. Show regex, up to a maximum length. If it's too long, chop and add
+ * "...".
+ */
+#define _FAIL(code) STMT_START { \
+ const char *ellipses = ""; \
+ IV len = RExC_end - RExC_precomp; \
+ \
+ if (!SIZE_ONLY) \
+ SAVEFREESV(RExC_rx_sv); \
+ if (len > RegexLengthToShowInErrorMessages) { \
+ /* chop 10 shorter than the max, to ensure meaning of "..." */ \
+ len = RegexLengthToShowInErrorMessages - 10; \
+ ellipses = "..."; \
+ } \
+ code; \
+} STMT_END
+
+#define FAIL(msg) _FAIL( \
+ Perl_croak(aTHX_ "%s in regex m/%"UTF8f"%s/", \
+ msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
+
+#define FAIL2(msg,arg) _FAIL( \
+ Perl_croak(aTHX_ msg " in regex m/%"UTF8f"%s/", \
+ arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
+
+/*
+ * Simple_vFAIL -- like FAIL, but marks the current location in the scan
+ */
+#define Simple_vFAIL(m) STMT_START { \
+ const IV offset = \
+ (RExC_parse > RExC_end ? RExC_end : RExC_parse) - RExC_precomp; \
+ Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
+ m, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
+ */
+#define vFAIL(m) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEFREESV(RExC_rx_sv); \
+ Simple_vFAIL(m); \
+} STMT_END
+
+/*
+ * Like Simple_vFAIL(), but accepts two arguments.
+ */
+#define Simple_vFAIL2(m,a1) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
+ */
+#define vFAIL2(m,a1) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEFREESV(RExC_rx_sv); \
+ Simple_vFAIL2(m, a1); \
+} STMT_END
+
+
+/*
+ * Like Simple_vFAIL(), but accepts three arguments.
+ */
+#define Simple_vFAIL3(m, a1, a2) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
+ */
+#define vFAIL3(m,a1,a2) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEFREESV(RExC_rx_sv); \
+ Simple_vFAIL3(m, a1, a2); \
+} STMT_END
+
+/*
+ * Like Simple_vFAIL(), but accepts four arguments.
+ */
+#define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, a3, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vFAIL4(m,a1,a2,a3) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEFREESV(RExC_rx_sv); \
+ Simple_vFAIL4(m, a1, a2, a3); \
+} STMT_END
+
+/* A specialized version of vFAIL2 that works with UTF8f */
+#define vFAIL2utf8f(m, a1) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ if (!SIZE_ONLY) \
+ SAVEFREESV(RExC_rx_sv); \
+ S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/* These have asserts in them because of [perl #122671] Many warnings in
+ * regcomp.c can occur twice. If they get output in pass1 and later in that
+ * pass, the pattern has to be converted to UTF-8 and the pass restarted, they
+ * would get output again. So they should be output in pass2, and these
+ * asserts make sure new warnings follow that paradigm. */
+
+/* m is not necessarily a "literal string", in this macro */
+#define reg_warn_non_literal_string(loc, m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s" REPORT_LOCATION, \
+ m, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARNreg(loc,m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vWARN(loc, m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vWARN_dep(loc, m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), m REPORT_LOCATION, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARNdep(loc,m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
+ m REPORT_LOCATION, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARNregdep(loc,m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
+ m REPORT_LOCATION, \
+ REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARN2reg_d(loc,m, a1) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP), \
+ m REPORT_LOCATION, \
+ a1, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARN2reg(loc, m, a1) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vWARN3(loc, m, a1, a2) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARN3reg(loc, m, a1, a2) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vWARN4(loc, m, a1, a2, a3) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, a3, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, a3, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+#define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, a3, a4, REPORT_LOCATION_ARGS(offset)); \
+} STMT_END
+
+/* Macros for recording node offsets. 20001227 mjd@plover.com
+ * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
+ * element 2*n-1 of the array. Element #2n holds the byte length node #n.
+ * Element 0 holds the number n.
+ * Position is 1 indexed.
+ */
+#ifndef RE_TRACK_PATTERN_OFFSETS
+#define Set_Node_Offset_To_R(node,byte)
+#define Set_Node_Offset(node,byte)
+#define Set_Cur_Node_Offset
+#define Set_Node_Length_To_R(node,len)
+#define Set_Node_Length(node,len)
+#define Set_Node_Cur_Length(node,start)
+#define Node_Offset(n)
+#define Node_Length(n)
+#define Set_Node_Offset_Length(node,offset,len)
+#define ProgLen(ri) ri->u.proglen
+#define SetProgLen(ri,x) ri->u.proglen = x
+#else
+#define ProgLen(ri) ri->u.offsets[0]
+#define SetProgLen(ri,x) ri->u.offsets[0] = x
+#define Set_Node_Offset_To_R(node,byte) STMT_START { \
+ if (! SIZE_ONLY) { \
+ MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
+ __LINE__, (int)(node), (int)(byte))); \
+ if((node) < 0) { \
+ Perl_croak(aTHX_ "value of node is %d in Offset macro", \
+ (int)(node)); \
+ } else { \
+ RExC_offsets[2*(node)-1] = (byte); \
+ } \
+ } \
+} STMT_END
+
+#define Set_Node_Offset(node,byte) \
+ Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
+#define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
+
+#define Set_Node_Length_To_R(node,len) STMT_START { \
+ if (! SIZE_ONLY) { \
+ MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
+ __LINE__, (int)(node), (int)(len))); \
+ if((node) < 0) { \
+ Perl_croak(aTHX_ "value of node is %d in Length macro", \
+ (int)(node)); \
+ } else { \
+ RExC_offsets[2*(node)] = (len); \
+ } \
+ } \
+} STMT_END
+
+#define Set_Node_Length(node,len) \
+ Set_Node_Length_To_R((node)-RExC_emit_start, len)
+#define Set_Node_Cur_Length(node, start) \
+ Set_Node_Length(node, RExC_parse - start)
+
+/* Get offsets and lengths */
+#define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
+#define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
+
+#define Set_Node_Offset_Length(node,offset,len) STMT_START { \
+ Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
+ Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
+} STMT_END
+#endif
+
+#if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
+#define EXPERIMENTAL_INPLACESCAN
+#endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
+
+#define DEBUG_RExC_seen() \
+ DEBUG_OPTIMISE_MORE_r({ \
+ PerlIO_printf(Perl_debug_log,"RExC_seen: "); \
+ \
+ if (RExC_seen & REG_ZERO_LEN_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_ZERO_LEN_SEEN "); \
+ \
+ if (RExC_seen & REG_LOOKBEHIND_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_LOOKBEHIND_SEEN "); \
+ \
+ if (RExC_seen & REG_GPOS_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_GPOS_SEEN "); \
+ \
+ if (RExC_seen & REG_RECURSE_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_RECURSE_SEEN "); \
+ \
+ if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_TOP_LEVEL_BRANCHES_SEEN "); \
+ \
+ if (RExC_seen & REG_VERBARG_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_VERBARG_SEEN "); \
+ \
+ if (RExC_seen & REG_CUTGROUP_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_CUTGROUP_SEEN "); \
+ \
+ if (RExC_seen & REG_RUN_ON_COMMENT_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_RUN_ON_COMMENT_SEEN "); \
+ \
+ if (RExC_seen & REG_UNFOLDED_MULTI_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_UNFOLDED_MULTI_SEEN "); \
+ \
+ if (RExC_seen & REG_GOSTART_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_GOSTART_SEEN "); \
+ \
+ if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) \
+ PerlIO_printf(Perl_debug_log,"REG_UNBOUNDED_QUANTIFIER_SEEN "); \
+ \
+ PerlIO_printf(Perl_debug_log,"\n"); \
+ });
+
+#define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
+ if ((flags) & flag) PerlIO_printf(Perl_debug_log, "%s ", #flag)
+
+#define DEBUG_SHOW_STUDY_FLAGS(flags,open_str,close_str) \
+ if ( ( flags ) ) { \
+ PerlIO_printf(Perl_debug_log, "%s", open_str); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_SEOL); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_MEOL); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SF_IS_INF); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_PAR); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SF_IN_PAR); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_EVAL); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_SUBSTR); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_AND); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_OR); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_WHILEM_VISITED_POS); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_RESTUDY); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_SEEN_ACCEPT); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_DOING_RESTUDY); \
+ DEBUG_SHOW_STUDY_FLAG(flags,SCF_IN_DEFINE); \
+ PerlIO_printf(Perl_debug_log, "%s", close_str); \
+ }
+
+
+#define DEBUG_STUDYDATA(str,data,depth) \
+DEBUG_OPTIMISE_MORE_r(if(data){ \
+ PerlIO_printf(Perl_debug_log, \
+ "%*s" str "Pos:%"IVdf"/%"IVdf \
+ " Flags: 0x%"UVXf, \
+ (int)(depth)*2, "", \
+ (IV)((data)->pos_min), \
+ (IV)((data)->pos_delta), \
+ (UV)((data)->flags) \
+ ); \
+ DEBUG_SHOW_STUDY_FLAGS((data)->flags," [ ","]"); \
+ PerlIO_printf(Perl_debug_log, \
+ " Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
+ (IV)((data)->whilem_c), \
+ (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
+ is_inf ? "INF " : "" \
+ ); \
+ if ((data)->last_found) \
+ PerlIO_printf(Perl_debug_log, \
+ "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
+ " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
+ SvPVX_const((data)->last_found), \
+ (IV)((data)->last_end), \
+ (IV)((data)->last_start_min), \
+ (IV)((data)->last_start_max), \
+ ((data)->longest && \
+ (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
+ SvPVX_const((data)->longest_fixed), \
+ (IV)((data)->offset_fixed), \
+ ((data)->longest && \
+ (data)->longest==&((data)->longest_float)) ? "*" : "", \
+ SvPVX_const((data)->longest_float), \
+ (IV)((data)->offset_float_min), \
+ (IV)((data)->offset_float_max) \
+ ); \
+ PerlIO_printf(Perl_debug_log,"\n"); \
+});
+
+/* is c a control character for which we have a mnemonic? */
+#define isMNEMONIC_CNTRL(c) _IS_MNEMONIC_CNTRL_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
+
+STATIC const char *
+S_cntrl_to_mnemonic(const U8 c)
+{
+ /* Returns the mnemonic string that represents character 'c', if one
+ * exists; NULL otherwise. The only ones that exist for the purposes of
+ * this routine are a few control characters */
+
+ switch (c) {
+ case '\a': return "\\a";
+ case '\b': return "\\b";
+ case ESC_NATIVE: return "\\e";
+ case '\f': return "\\f";
+ case '\n': return "\\n";
+ case '\r': return "\\r";
+ case '\t': return "\\t";
+ }
+
+ return NULL;
+}
+
+/* Mark that we cannot extend a found fixed substring at this point.
+ Update the longest found anchored substring and the longest found
+ floating substrings if needed. */
+
+STATIC void
+S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
+ SSize_t *minlenp, int is_inf)
+{
+ const STRLEN l = CHR_SVLEN(data->last_found);
+ const STRLEN old_l = CHR_SVLEN(*data->longest);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_SCAN_COMMIT;
+
+ if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
+ SvSetMagicSV(*data->longest, data->last_found);
+ if (*data->longest == data->longest_fixed) {
+ data->offset_fixed = l ? data->last_start_min : data->pos_min;
+ if (data->flags & SF_BEFORE_EOL)
+ data->flags
+ |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
+ else
+ data->flags &= ~SF_FIX_BEFORE_EOL;
+ data->minlen_fixed=minlenp;
+ data->lookbehind_fixed=0;
+ }
+ else { /* *data->longest == data->longest_float */
+ data->offset_float_min = l ? data->last_start_min : data->pos_min;
+ data->offset_float_max = (l
+ ? data->last_start_max
+ : (data->pos_delta > SSize_t_MAX - data->pos_min
+ ? SSize_t_MAX
+ : data->pos_min + data->pos_delta));
+ if (is_inf
+ || (STRLEN)data->offset_float_max > (STRLEN)SSize_t_MAX)
+ data->offset_float_max = SSize_t_MAX;
+ if (data->flags & SF_BEFORE_EOL)
+ data->flags
+ |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
+ else
+ data->flags &= ~SF_FL_BEFORE_EOL;
+ data->minlen_float=minlenp;
+ data->lookbehind_float=0;
+ }
+ }
+ SvCUR_set(data->last_found, 0);
+ {
+ SV * const sv = data->last_found;
+ if (SvUTF8(sv) && SvMAGICAL(sv)) {
+ MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
+ if (mg)
+ mg->mg_len = 0;
+ }
+ }
+ data->last_end = -1;
+ data->flags &= ~SF_BEFORE_EOL;
+ DEBUG_STUDYDATA("commit: ",data,0);
+}
+
+/* An SSC is just a regnode_charclass_posix with an extra field: the inversion
+ * list that describes which code points it matches */
+
+STATIC void
+S_ssc_anything(pTHX_ regnode_ssc *ssc)
+{
+ /* Set the SSC 'ssc' to match an empty string or any code point */
+
+ PERL_ARGS_ASSERT_SSC_ANYTHING;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ ssc->invlist = sv_2mortal(_new_invlist(2)); /* mortalize so won't leak */
+ _append_range_to_invlist(ssc->invlist, 0, UV_MAX);
+ ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING; /* Plus matches empty */
+}
+
+STATIC int
+S_ssc_is_anything(const regnode_ssc *ssc)
+{
+ /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
+ * point; FALSE otherwise. Thus, this is used to see if using 'ssc' buys
+ * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
+ * in any way, so there's no point in using it */
+
+ UV start, end;
+ bool ret;
+
+ PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
+ return FALSE;
+ }
+
+ /* See if the list consists solely of the range 0 - Infinity */
+ invlist_iterinit(ssc->invlist);
+ ret = invlist_iternext(ssc->invlist, &start, &end)
+ && start == 0
+ && end == UV_MAX;
+
+ invlist_iterfinish(ssc->invlist);
+
+ if (ret) {
+ return TRUE;
+ }
+
+ /* If e.g., both \w and \W are set, matches everything */
+ if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+ int i;
+ for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
+ if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
+ return TRUE;
+ }
+ }
+ }
+
+ return FALSE;
+}
+
+STATIC void
+S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
+{
+ /* Initializes the SSC 'ssc'. This includes setting it to match an empty
+ * string, any code point, or any posix class under locale */
+
+ PERL_ARGS_ASSERT_SSC_INIT;
+
+ Zero(ssc, 1, regnode_ssc);
+ set_ANYOF_SYNTHETIC(ssc);
+ ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
+ ssc_anything(ssc);
+
+ /* If any portion of the regex is to operate under locale rules that aren't
+ * fully known at compile time, initialization includes it. The reason
+ * this isn't done for all regexes is that the optimizer was written under
+ * the assumption that locale was all-or-nothing. Given the complexity and
+ * lack of documentation in the optimizer, and that there are inadequate
+ * test cases for locale, many parts of it may not work properly, it is
+ * safest to avoid locale unless necessary. */
+ if (RExC_contains_locale) {
+ ANYOF_POSIXL_SETALL(ssc);
+ }
+ else {
+ ANYOF_POSIXL_ZERO(ssc);
+ }
+}
+
+STATIC int
+S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
+ const regnode_ssc *ssc)
+{
+ /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
+ * to the list of code points matched, and locale posix classes; hence does
+ * not check its flags) */
+
+ UV start, end;
+ bool ret;
+
+ PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ invlist_iterinit(ssc->invlist);
+ ret = invlist_iternext(ssc->invlist, &start, &end)
+ && start == 0
+ && end == UV_MAX;
+
+ invlist_iterfinish(ssc->invlist);
+
+ if (! ret) {
+ return FALSE;
+ }
+
+ if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
+ return FALSE;
+ }
+
+ return TRUE;
+}
+
+STATIC SV*
+S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
+ const regnode_charclass* const node)
+{
+ /* Returns a mortal inversion list defining which code points are matched
+ * by 'node', which is of type ANYOF. Handles complementing the result if
+ * appropriate. If some code points aren't knowable at this time, the
+ * returned list must, and will, contain every code point that is a
+ * possibility. */
+
+ SV* invlist = sv_2mortal(_new_invlist(0));
+ SV* only_utf8_locale_invlist = NULL;
+ unsigned int i;
+ const U32 n = ARG(node);
+ bool new_node_has_latin1 = FALSE;
+
+ PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
+
+ /* Look at the data structure created by S_set_ANYOF_arg() */
+ if (n != ANYOF_ONLY_HAS_BITMAP) {
+ SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
+ AV * const av = MUTABLE_AV(SvRV(rv));
+ SV **const ary = AvARRAY(av);
+ assert(RExC_rxi->data->what[n] == 's');
+
+ if (ary[1] && ary[1] != &PL_sv_undef) { /* Has compile-time swash */
+ invlist = sv_2mortal(invlist_clone(_get_swash_invlist(ary[1])));
+ }
+ else if (ary[0] && ary[0] != &PL_sv_undef) {
+
+ /* Here, no compile-time swash, and there are things that won't be
+ * known until runtime -- we have to assume it could be anything */
+ return _add_range_to_invlist(invlist, 0, UV_MAX);
+ }
+ else if (ary[3] && ary[3] != &PL_sv_undef) {
+
+ /* Here no compile-time swash, and no run-time only data. Use the
+ * node's inversion list */
+ invlist = sv_2mortal(invlist_clone(ary[3]));
+ }
+
+ /* Get the code points valid only under UTF-8 locales */
+ if ((ANYOF_FLAGS(node) & ANYOF_LOC_FOLD)
+ && ary[2] && ary[2] != &PL_sv_undef)
+ {
+ only_utf8_locale_invlist = ary[2];
+ }
+ }
+
+ /* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
+ * code points, and an inversion list for the others, but if there are code
+ * points that should match only conditionally on the target string being
+ * UTF-8, those are placed in the inversion list, and not the bitmap.
+ * Since there are circumstances under which they could match, they are
+ * included in the SSC. But if the ANYOF node is to be inverted, we have
+ * to exclude them here, so that when we invert below, the end result
+ * actually does include them. (Think about "\xe0" =~ /[^\xc0]/di;). We
+ * have to do this here before we add the unconditionally matched code
+ * points */
+ if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
+ _invlist_intersection_complement_2nd(invlist,
+ PL_UpperLatin1,
+ &invlist);
+ }
+
+ /* Add in the points from the bit map */
+ for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
+ if (ANYOF_BITMAP_TEST(node, i)) {
+ invlist = add_cp_to_invlist(invlist, i);
+ new_node_has_latin1 = TRUE;
+ }
+ }
+
+ /* If this can match all upper Latin1 code points, have to add them
+ * as well */
+ if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII) {
+ _invlist_union(invlist, PL_UpperLatin1, &invlist);
+ }
+
+ /* Similarly for these */
+ if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
+ _invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
+ }
+
+ if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
+ _invlist_invert(invlist);
+ }
+ else if (new_node_has_latin1 && ANYOF_FLAGS(node) & ANYOF_LOC_FOLD) {
+
+ /* Under /li, any 0-255 could fold to any other 0-255, depending on the
+ * locale. We can skip this if there are no 0-255 at all. */
+ _invlist_union(invlist, PL_Latin1, &invlist);
+ }
+
+ /* Similarly add the UTF-8 locale possible matches. These have to be
+ * deferred until after the non-UTF-8 locale ones are taken care of just
+ * above, or it leads to wrong results under ANYOF_INVERT */
+ if (only_utf8_locale_invlist) {
+ _invlist_union_maybe_complement_2nd(invlist,
+ only_utf8_locale_invlist,
+ ANYOF_FLAGS(node) & ANYOF_INVERT,
+ &invlist);
+ }
+
+ return invlist;
+}
+
+/* These two functions currently do the exact same thing */
+#define ssc_init_zero ssc_init
+
+#define ssc_add_cp(ssc, cp) ssc_add_range((ssc), (cp), (cp))
+#define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
+
+/* 'AND' a given class with another one. Can create false positives. 'ssc'
+ * should not be inverted. 'and_with->flags & ANYOF_MATCHES_POSIXL' should be
+ * 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */
+
+STATIC void
+S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
+ const regnode_charclass *and_with)
+{
+ /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
+ * another SSC or a regular ANYOF class. Can create false positives. */
+
+ SV* anded_cp_list;
+ U8 anded_flags;
+
+ PERL_ARGS_ASSERT_SSC_AND;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
+ * the code point inversion list and just the relevant flags */
+ if (is_ANYOF_SYNTHETIC(and_with)) {
+ anded_cp_list = ((regnode_ssc *)and_with)->invlist;
+ anded_flags = ANYOF_FLAGS(and_with);
+
+ /* XXX This is a kludge around what appears to be deficiencies in the
+ * optimizer. If we make S_ssc_anything() add in the WARN_SUPER flag,
+ * there are paths through the optimizer where it doesn't get weeded
+ * out when it should. And if we don't make some extra provision for
+ * it like the code just below, it doesn't get added when it should.
+ * This solution is to add it only when AND'ing, which is here, and
+ * only when what is being AND'ed is the pristine, original node
+ * matching anything. Thus it is like adding it to ssc_anything() but
+ * only when the result is to be AND'ed. Probably the same solution
+ * could be adopted for the same problem we have with /l matching,
+ * which is solved differently in S_ssc_init(), and that would lead to
+ * fewer false positives than that solution has. But if this solution
+ * creates bugs, the consequences are only that a warning isn't raised
+ * that should be; while the consequences for having /l bugs is
+ * incorrect matches */
+ if (ssc_is_anything((regnode_ssc *)and_with)) {
+ anded_flags |= ANYOF_WARN_SUPER;
+ }
+ }
+ else {
+ anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
+ anded_flags = ANYOF_FLAGS(and_with) & ANYOF_COMMON_FLAGS;
+ }
+
+ ANYOF_FLAGS(ssc) &= anded_flags;
+
+ /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
+ * C2 is the list of code points in 'and-with'; P2, its posix classes.
+ * 'and_with' may be inverted. When not inverted, we have the situation of
+ * computing:
+ * (C1 | P1) & (C2 | P2)
+ * = (C1 & (C2 | P2)) | (P1 & (C2 | P2))
+ * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
+ * <= ((C1 & C2) | P2)) | ( P1 | (P1 & P2))
+ * <= ((C1 & C2) | P1 | P2)
+ * Alternatively, the last few steps could be:
+ * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
+ * <= ((C1 & C2) | C1 ) | ( C2 | (P1 & P2))
+ * <= (C1 | C2 | (P1 & P2))
+ * We favor the second approach if either P1 or P2 is non-empty. This is
+ * because these components are a barrier to doing optimizations, as what
+ * they match cannot be known until the moment of matching as they are
+ * dependent on the current locale, 'AND"ing them likely will reduce or
+ * eliminate them.
+ * But we can do better if we know that C1,P1 are in their initial state (a
+ * frequent occurrence), each matching everything:
+ * (<everything>) & (C2 | P2) = C2 | P2
+ * Similarly, if C2,P2 are in their initial state (again a frequent
+ * occurrence), the result is a no-op
+ * (C1 | P1) & (<everything>) = C1 | P1
+ *
+ * Inverted, we have
+ * (C1 | P1) & ~(C2 | P2) = (C1 | P1) & (~C2 & ~P2)
+ * = (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
+ * <= (C1 & ~C2) | (P1 & ~P2)
+ * */
+
+ if ((ANYOF_FLAGS(and_with) & ANYOF_INVERT)
+ && ! is_ANYOF_SYNTHETIC(and_with))
+ {
+ unsigned int i;
+
+ ssc_intersection(ssc,
+ anded_cp_list,
+ FALSE /* Has already been inverted */
+ );
+
+ /* If either P1 or P2 is empty, the intersection will be also; can skip
+ * the loop */
+ if (! (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL)) {
+ ANYOF_POSIXL_ZERO(ssc);
+ }
+ else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+
+ /* Note that the Posix class component P from 'and_with' actually
+ * looks like:
+ * P = Pa | Pb | ... | Pn
+ * where each component is one posix class, such as in [\w\s].
+ * Thus
+ * ~P = ~(Pa | Pb | ... | Pn)
+ * = ~Pa & ~Pb & ... & ~Pn
+ * <= ~Pa | ~Pb | ... | ~Pn
+ * The last is something we can easily calculate, but unfortunately
+ * is likely to have many false positives. We could do better
+ * in some (but certainly not all) instances if two classes in
+ * P have known relationships. For example
+ * :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
+ * So
+ * :lower: & :print: = :lower:
+ * And similarly for classes that must be disjoint. For example,
+ * since \s and \w can have no elements in common based on rules in
+ * the POSIX standard,
+ * \w & ^\S = nothing
+ * Unfortunately, some vendor locales do not meet the Posix
+ * standard, in particular almost everything by Microsoft.
+ * The loop below just changes e.g., \w into \W and vice versa */
+
+ regnode_charclass_posixl temp;
+ int add = 1; /* To calculate the index of the complement */
+
+ ANYOF_POSIXL_ZERO(&temp);
+ for (i = 0; i < ANYOF_MAX; i++) {
+ assert(i % 2 != 0
+ || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
+ || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
+
+ if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
+ ANYOF_POSIXL_SET(&temp, i + add);
+ }
+ add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
+ }
+ ANYOF_POSIXL_AND(&temp, ssc);
+
+ } /* else ssc already has no posixes */
+ } /* else: Not inverted. This routine is a no-op if 'and_with' is an SSC
+ in its initial state */
+ else if (! is_ANYOF_SYNTHETIC(and_with)
+ || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
+ {
+ /* But if 'ssc' is in its initial state, the result is just 'and_with';
+ * copy it over 'ssc' */
+ if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
+ if (is_ANYOF_SYNTHETIC(and_with)) {
+ StructCopy(and_with, ssc, regnode_ssc);
+ }
+ else {
+ ssc->invlist = anded_cp_list;
+ ANYOF_POSIXL_ZERO(ssc);
+ if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
+ ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
+ }
+ }
+ }
+ else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
+ || (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL))
+ {
+ /* One or the other of P1, P2 is non-empty. */
+ if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
+ ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
+ }
+ ssc_union(ssc, anded_cp_list, FALSE);
+ }
+ else { /* P1 = P2 = empty */
+ ssc_intersection(ssc, anded_cp_list, FALSE);
+ }
+ }
+}
+
+STATIC void
+S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
+ const regnode_charclass *or_with)
+{
+ /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
+ * another SSC or a regular ANYOF class. Can create false positives if
+ * 'or_with' is to be inverted. */
+
+ SV* ored_cp_list;
+ U8 ored_flags;
+
+ PERL_ARGS_ASSERT_SSC_OR;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
+ * the code point inversion list and just the relevant flags */
+ if (is_ANYOF_SYNTHETIC(or_with)) {
+ ored_cp_list = ((regnode_ssc*) or_with)->invlist;
+ ored_flags = ANYOF_FLAGS(or_with);
+ }
+ else {
+ ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
+ ored_flags = ANYOF_FLAGS(or_with) & ANYOF_COMMON_FLAGS;
+ }
+
+ ANYOF_FLAGS(ssc) |= ored_flags;
+
+ /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
+ * C2 is the list of code points in 'or-with'; P2, its posix classes.
+ * 'or_with' may be inverted. When not inverted, we have the simple
+ * situation of computing:
+ * (C1 | P1) | (C2 | P2) = (C1 | C2) | (P1 | P2)
+ * If P1|P2 yields a situation with both a class and its complement are
+ * set, like having both \w and \W, this matches all code points, and we
+ * can delete these from the P component of the ssc going forward. XXX We
+ * might be able to delete all the P components, but I (khw) am not certain
+ * about this, and it is better to be safe.
+ *
+ * Inverted, we have
+ * (C1 | P1) | ~(C2 | P2) = (C1 | P1) | (~C2 & ~P2)
+ * <= (C1 | P1) | ~C2
+ * <= (C1 | ~C2) | P1
+ * (which results in actually simpler code than the non-inverted case)
+ * */
+
+ if ((ANYOF_FLAGS(or_with) & ANYOF_INVERT)
+ && ! is_ANYOF_SYNTHETIC(or_with))
+ {
+ /* We ignore P2, leaving P1 going forward */
+ } /* else Not inverted */
+ else if (ANYOF_FLAGS(or_with) & ANYOF_MATCHES_POSIXL) {
+ ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
+ if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+ unsigned int i;
+ for (i = 0; i < ANYOF_MAX; i += 2) {
+ if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
+ {
+ ssc_match_all_cp(ssc);
+ ANYOF_POSIXL_CLEAR(ssc, i);
+ ANYOF_POSIXL_CLEAR(ssc, i+1);
+ }
+ }
+ }
+ }
+
+ ssc_union(ssc,
+ ored_cp_list,
+ FALSE /* Already has been inverted */
+ );
+}
+
+PERL_STATIC_INLINE void
+S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
+{
+ PERL_ARGS_ASSERT_SSC_UNION;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ _invlist_union_maybe_complement_2nd(ssc->invlist,
+ invlist,
+ invert2nd,
+ &ssc->invlist);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_intersection(pTHX_ regnode_ssc *ssc,
+ SV* const invlist,
+ const bool invert2nd)
+{
+ PERL_ARGS_ASSERT_SSC_INTERSECTION;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ _invlist_intersection_maybe_complement_2nd(ssc->invlist,
+ invlist,
+ invert2nd,
+ &ssc->invlist);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
+{
+ PERL_ARGS_ASSERT_SSC_ADD_RANGE;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
+{
+ /* AND just the single code point 'cp' into the SSC 'ssc' */
+
+ SV* cp_list = _new_invlist(2);
+
+ PERL_ARGS_ASSERT_SSC_CP_AND;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ cp_list = add_cp_to_invlist(cp_list, cp);
+ ssc_intersection(ssc, cp_list,
+ FALSE /* Not inverted */
+ );
+ SvREFCNT_dec_NN(cp_list);
+}
+
+PERL_STATIC_INLINE void
+S_ssc_clear_locale(regnode_ssc *ssc)
+{
+ /* Set the SSC 'ssc' to not match any locale things */
+ PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ ANYOF_POSIXL_ZERO(ssc);
+ ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
+}
+
+#define NON_OTHER_COUNT NON_OTHER_COUNT_FOR_USE_ONLY_BY_REGCOMP_DOT_C
+
+STATIC bool
+S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
+{
+ /* The synthetic start class is used to hopefully quickly winnow down
+ * places where a pattern could start a match in the target string. If it
+ * doesn't really narrow things down that much, there isn't much point to
+ * having the overhead of using it. This function uses some very crude
+ * heuristics to decide if to use the ssc or not.
+ *
+ * It returns TRUE if 'ssc' rules out more than half what it considers to
+ * be the "likely" possible matches, but of course it doesn't know what the
+ * actual things being matched are going to be; these are only guesses
+ *
+ * For /l matches, it assumes that the only likely matches are going to be
+ * in the 0-255 range, uniformly distributed, so half of that is 127
+ * For /a and /d matches, it assumes that the likely matches will be just
+ * the ASCII range, so half of that is 63
+ * For /u and there isn't anything matching above the Latin1 range, it
+ * assumes that that is the only range likely to be matched, and uses
+ * half that as the cut-off: 127. If anything matches above Latin1,
+ * it assumes that all of Unicode could match (uniformly), except for
+ * non-Unicode code points and things in the General Category "Other"
+ * (unassigned, private use, surrogates, controls and formats). This
+ * is a much large number. */
+
+ const U32 max_match = (LOC)
+ ? 127
+ : (! UNI_SEMANTICS)
+ ? 63
+ : (invlist_highest(ssc->invlist) < 256)
+ ? 127
+ : ((NON_OTHER_COUNT + 1) / 2) - 1;
+ U32 count = 0; /* Running total of number of code points matched by
+ 'ssc' */
+ UV start, end; /* Start and end points of current range in inversion
+ list */
+
+ PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;
+
+ invlist_iterinit(ssc->invlist);
+ while (invlist_iternext(ssc->invlist, &start, &end)) {
+
+ /* /u is the only thing that we expect to match above 255; so if not /u
+ * and even if there are matches above 255, ignore them. This catches
+ * things like \d under /d which does match the digits above 255, but
+ * since the pattern is /d, it is not likely to be expecting them */
+ if (! UNI_SEMANTICS) {
+ if (start > 255) {
+ break;
+ }
+ end = MIN(end, 255);
+ }
+ count += end - start + 1;
+ if (count > max_match) {
+ invlist_iterfinish(ssc->invlist);
+ return FALSE;
+ }
+ }
+
+ return TRUE;
+}
+
+
+STATIC void
+S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
+{
+ /* The inversion list in the SSC is marked mortal; now we need a more
+ * permanent copy, which is stored the same way that is done in a regular
+ * ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
+ * map */
+
+ SV* invlist = invlist_clone(ssc->invlist);
+
+ PERL_ARGS_ASSERT_SSC_FINALIZE;
+
+ assert(is_ANYOF_SYNTHETIC(ssc));
+
+ /* The code in this file assumes that all but these flags aren't relevant
+ * to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
+ * by the time we reach here */
+ assert(! (ANYOF_FLAGS(ssc) & ~ANYOF_COMMON_FLAGS));
+
+ populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
+
+ set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist,
+ NULL, NULL, NULL, FALSE);
+
+ /* Make sure is clone-safe */
+ ssc->invlist = NULL;
+
+ if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
+ ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
+ }
+
+ assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
+}
+
+#define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
+#define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
+#define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
+#define TRIE_LIST_USED(idx) ( trie->states[state].trans.list \
+ ? (TRIE_LIST_CUR( idx ) - 1) \
+ : 0 )
+
+
+#ifdef DEBUGGING
+/*
+ dump_trie(trie,widecharmap,revcharmap)
+ dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
+ dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
+
+ These routines dump out a trie in a somewhat readable format.
+ The _interim_ variants are used for debugging the interim
+ tables that are used to generate the final compressed
+ representation which is what dump_trie expects.
+
+ Part of the reason for their existence is to provide a form
+ of documentation as to how the different representations function.
+
+*/
+
+/*
+ Dumps the final compressed table form of the trie to Perl_debug_log.
+ Used for debugging make_trie().
+*/
+
+STATIC void
+S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
+ AV *revcharmap, U32 depth)
+{
+ U32 state;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ U16 word;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE;
+
+ PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
+ (int)depth * 2 + 2,"",
+ "Match","Base","Ofs" );
+
+ for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
+ SV ** const tmp = av_fetch( revcharmap, state, 0);
+ if ( tmp ) {
+ PerlIO_printf( Perl_debug_log, "%*s",
+ colwidth,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ )
+ );
+ }
+ }
+ PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
+ (int)depth * 2 + 2,"");
+
+ for( state = 0 ; state < trie->uniquecharcount ; state++ )
+ PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
+ PerlIO_printf( Perl_debug_log, "\n");
+
+ for( state = 1 ; state < trie->statecount ; state++ ) {
+ const U32 base = trie->states[ state ].trans.base;
+
+ PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|",
+ (int)depth * 2 + 2,"", (UV)state);
+
+ if ( trie->states[ state ].wordnum ) {
+ PerlIO_printf( Perl_debug_log, " W%4X",
+ trie->states[ state ].wordnum );
+ } else {
+ PerlIO_printf( Perl_debug_log, "%6s", "" );
+ }
+
+ PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
+
+ if ( base ) {
+ U32 ofs = 0;
+
+ while( ( base + ofs < trie->uniquecharcount ) ||
+ ( base + ofs - trie->uniquecharcount < trie->lasttrans
+ && trie->trans[ base + ofs - trie->uniquecharcount ].check
+ != state))
+ ofs++;
+
+ PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
+
+ for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
+ if ( ( base + ofs >= trie->uniquecharcount )
+ && ( base + ofs - trie->uniquecharcount
+ < trie->lasttrans )
+ && trie->trans[ base + ofs
+ - trie->uniquecharcount ].check == state )
+ {
+ PerlIO_printf( Perl_debug_log, "%*"UVXf,
+ colwidth,
+ (UV)trie->trans[ base + ofs
+ - trie->uniquecharcount ].next );
+ } else {
+ PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
+ }
+ }
+
+ PerlIO_printf( Perl_debug_log, "]");
+
+ }
+ PerlIO_printf( Perl_debug_log, "\n" );
+ }
+ PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=",
+ (int)depth*2, "");
+ for (word=1; word <= trie->wordcount; word++) {
+ PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
+ (int)word, (int)(trie->wordinfo[word].prev),
+ (int)(trie->wordinfo[word].len));
+ }
+ PerlIO_printf(Perl_debug_log, "\n" );
+}
+/*
+ Dumps a fully constructed but uncompressed trie in list form.
+ List tries normally only are used for construction when the number of
+ possible chars (trie->uniquecharcount) is very high.
+ Used for debugging make_trie().
+*/
+STATIC void
+S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
+ HV *widecharmap, AV *revcharmap, U32 next_alloc,
+ U32 depth)
+{
+ U32 state;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
+
+ /* print out the table precompression. */
+ PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
+ (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
+ "------:-----+-----------------\n" );
+
+ for( state=1 ; state < next_alloc ; state ++ ) {
+ U16 charid;
+
+ PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
+ (int)depth * 2 + 2,"", (UV)state );
+ if ( ! trie->states[ state ].wordnum ) {
+ PerlIO_printf( Perl_debug_log, "%5s| ","");
+ } else {
+ PerlIO_printf( Perl_debug_log, "W%4x| ",
+ trie->states[ state ].wordnum
+ );
+ }
+ for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
+ SV ** const tmp = av_fetch( revcharmap,
+ TRIE_LIST_ITEM(state,charid).forid, 0);
+ if ( tmp ) {
+ PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
+ colwidth,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
+ colwidth,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
+ | PERL_PV_ESCAPE_FIRSTCHAR
+ ) ,
+ TRIE_LIST_ITEM(state,charid).forid,
+ (UV)TRIE_LIST_ITEM(state,charid).newstate
+ );
+ if (!(charid % 10))
+ PerlIO_printf(Perl_debug_log, "\n%*s| ",
+ (int)((depth * 2) + 14), "");
+ }
+ }
+ PerlIO_printf( Perl_debug_log, "\n");
+ }
+}
+
+/*
+ Dumps a fully constructed but uncompressed trie in table form.
+ This is the normal DFA style state transition table, with a few
+ twists to facilitate compression later.
+ Used for debugging make_trie().
+*/
+STATIC void
+S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
+ HV *widecharmap, AV *revcharmap, U32 next_alloc,
+ U32 depth)
+{
+ U32 state;
+ U16 charid;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
+
+ /*
+ print out the table precompression so that we can do a visual check
+ that they are identical.
+ */
+
+ PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
+
+ for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
+ SV ** const tmp = av_fetch( revcharmap, charid, 0);
+ if ( tmp ) {
+ PerlIO_printf( Perl_debug_log, "%*s",
+ colwidth,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ )
+ );
+ }
+ }
+
+ PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
+
+ for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
+ PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
+ }
+
+ PerlIO_printf( Perl_debug_log, "\n" );
+
+ for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
+
+ PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
+ (int)depth * 2 + 2,"",
+ (UV)TRIE_NODENUM( state ) );
+
+ for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
+ UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
+ if (v)
+ PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
+ else
+ PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
+ }
+ if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
+ PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n",
+ (UV)trie->trans[ state ].check );
+ } else {
+ PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n",
+ (UV)trie->trans[ state ].check,
+ trie->states[ TRIE_NODENUM( state ) ].wordnum );
+ }
+ }
+}
+
+#endif
+
+
+/* make_trie(startbranch,first,last,tail,word_count,flags,depth)
+ startbranch: the first branch in the whole branch sequence
+ first : start branch of sequence of branch-exact nodes.
+ May be the same as startbranch
+ last : Thing following the last branch.
+ May be the same as tail.
+ tail : item following the branch sequence
+ count : words in the sequence
+ flags : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
+ depth : indent depth
+
+Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
+
+A trie is an N'ary tree where the branches are determined by digital
+decomposition of the key. IE, at the root node you look up the 1st character and
+follow that branch repeat until you find the end of the branches. Nodes can be
+marked as "accepting" meaning they represent a complete word. Eg:
+
+ /he|she|his|hers/
+
+would convert into the following structure. Numbers represent states, letters
+following numbers represent valid transitions on the letter from that state, if
+the number is in square brackets it represents an accepting state, otherwise it
+will be in parenthesis.
+
+ +-h->+-e->[3]-+-r->(8)-+-s->[9]
+ | |
+ | (2)
+ | |
+ (1) +-i->(6)-+-s->[7]
+ |
+ +-s->(3)-+-h->(4)-+-e->[5]
+
+ Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
+
+This shows that when matching against the string 'hers' we will begin at state 1
+read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
+then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
+is also accepting. Thus we know that we can match both 'he' and 'hers' with a
+single traverse. We store a mapping from accepting to state to which word was
+matched, and then when we have multiple possibilities we try to complete the
+rest of the regex in the order in which they occurred in the alternation.
+
+The only prior NFA like behaviour that would be changed by the TRIE support is
+the silent ignoring of duplicate alternations which are of the form:
+
+ / (DUPE|DUPE) X? (?{ ... }) Y /x
+
+Thus EVAL blocks following a trie may be called a different number of times with
+and without the optimisation. With the optimisations dupes will be silently
+ignored. This inconsistent behaviour of EVAL type nodes is well established as
+the following demonstrates:
+
+ 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
+
+which prints out 'word' three times, but
+
+ 'words'=~/(word|word|word)(?{ print $1 })S/
+
+which doesnt print it out at all. This is due to other optimisations kicking in.
+
+Example of what happens on a structural level:
+
+The regexp /(ac|ad|ab)+/ will produce the following debug output:
+
+ 1: CURLYM[1] {1,32767}(18)
+ 5: BRANCH(8)
+ 6: EXACT <ac>(16)
+ 8: BRANCH(11)
+ 9: EXACT <ad>(16)
+ 11: BRANCH(14)
+ 12: EXACT <ab>(16)
+ 16: SUCCEED(0)
+ 17: NOTHING(18)
+ 18: END(0)
+
+This would be optimizable with startbranch=5, first=5, last=16, tail=16
+and should turn into:
+
+ 1: CURLYM[1] {1,32767}(18)
+ 5: TRIE(16)
+ [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
+ <ac>
+ <ad>
+ <ab>
+ 16: SUCCEED(0)
+ 17: NOTHING(18)
+ 18: END(0)
+
+Cases where tail != last would be like /(?foo|bar)baz/:
+
+ 1: BRANCH(4)
+ 2: EXACT <foo>(8)
+ 4: BRANCH(7)
+ 5: EXACT <bar>(8)
+ 7: TAIL(8)
+ 8: EXACT <baz>(10)
+ 10: END(0)
+
+which would be optimizable with startbranch=1, first=1, last=7, tail=8
+and would end up looking like:
+
+ 1: TRIE(8)
+ [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
+ <foo>
+ <bar>
+ 7: TAIL(8)
+ 8: EXACT <baz>(10)
+ 10: END(0)
+
+ d = uvchr_to_utf8_flags(d, uv, 0);
+
+is the recommended Unicode-aware way of saying
+
+ *(d++) = uv;
+*/
+
+#define TRIE_STORE_REVCHAR(val) \
+ STMT_START { \
+ if (UTF) { \
+ SV *zlopp = newSV(7); /* XXX: optimize me */ \
+ unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
+ unsigned const char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
+ SvCUR_set(zlopp, kapow - flrbbbbb); \
+ SvPOK_on(zlopp); \
+ SvUTF8_on(zlopp); \
+ av_push(revcharmap, zlopp); \
+ } else { \
+ char ooooff = (char)val; \
+ av_push(revcharmap, newSVpvn(&ooooff, 1)); \
+ } \
+ } STMT_END
+
+/* This gets the next character from the input, folding it if not already
+ * folded. */
+#define TRIE_READ_CHAR STMT_START { \
+ wordlen++; \
+ if ( UTF ) { \
+ /* if it is UTF then it is either already folded, or does not need \
+ * folding */ \
+ uvc = valid_utf8_to_uvchr( (const U8*) uc, &len); \
+ } \
+ else if (folder == PL_fold_latin1) { \
+ /* This folder implies Unicode rules, which in the range expressible \
+ * by not UTF is the lower case, with the two exceptions, one of \
+ * which should have been taken care of before calling this */ \
+ assert(*uc != LATIN_SMALL_LETTER_SHARP_S); \
+ uvc = toLOWER_L1(*uc); \
+ if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU; \
+ len = 1; \
+ } else { \
+ /* raw data, will be folded later if needed */ \
+ uvc = (U32)*uc; \
+ len = 1; \
+ } \
+} STMT_END
+
+
+
+#define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
+ if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
+ U32 ging = TRIE_LIST_LEN( state ) *= 2; \
+ Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
+ } \
+ TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
+ TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
+ TRIE_LIST_CUR( state )++; \
+} STMT_END
+
+#define TRIE_LIST_NEW(state) STMT_START { \
+ Newxz( trie->states[ state ].trans.list, \
+ 4, reg_trie_trans_le ); \
+ TRIE_LIST_CUR( state ) = 1; \
+ TRIE_LIST_LEN( state ) = 4; \
+} STMT_END
+
+#define TRIE_HANDLE_WORD(state) STMT_START { \
+ U16 dupe= trie->states[ state ].wordnum; \
+ regnode * const noper_next = regnext( noper ); \
+ \
+ DEBUG_r({ \
+ /* store the word for dumping */ \
+ SV* tmp; \
+ if (OP(noper) != NOTHING) \
+ tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
+ else \
+ tmp = newSVpvn_utf8( "", 0, UTF ); \
+ av_push( trie_words, tmp ); \
+ }); \
+ \
+ curword++; \
+ trie->wordinfo[curword].prev = 0; \
+ trie->wordinfo[curword].len = wordlen; \
+ trie->wordinfo[curword].accept = state; \
+ \
+ if ( noper_next < tail ) { \
+ if (!trie->jump) \
+ trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
+ sizeof(U16) ); \
+ trie->jump[curword] = (U16)(noper_next - convert); \
+ if (!jumper) \
+ jumper = noper_next; \
+ if (!nextbranch) \
+ nextbranch= regnext(cur); \
+ } \
+ \
+ if ( dupe ) { \
+ /* It's a dupe. Pre-insert into the wordinfo[].prev */\
+ /* chain, so that when the bits of chain are later */\
+ /* linked together, the dups appear in the chain */\
+ trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
+ trie->wordinfo[dupe].prev = curword; \
+ } else { \
+ /* we haven't inserted this word yet. */ \
+ trie->states[ state ].wordnum = curword; \
+ } \
+} STMT_END
+
+
+#define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
+ ( ( base + charid >= ucharcount \
+ && base + charid < ubound \
+ && state == trie->trans[ base - ucharcount + charid ].check \
+ && trie->trans[ base - ucharcount + charid ].next ) \
+ ? trie->trans[ base - ucharcount + charid ].next \
+ : ( state==1 ? special : 0 ) \
+ )
+
+#define MADE_TRIE 1
+#define MADE_JUMP_TRIE 2
+#define MADE_EXACT_TRIE 4
+
+STATIC I32
+S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
+ regnode *first, regnode *last, regnode *tail,
+ U32 word_count, U32 flags, U32 depth)
+{
+ /* first pass, loop through and scan words */
+ reg_trie_data *trie;
+ HV *widecharmap = NULL;
+ AV *revcharmap = newAV();
+ regnode *cur;
+ STRLEN len = 0;
+ UV uvc = 0;
+ U16 curword = 0;
+ U32 next_alloc = 0;
+ regnode *jumper = NULL;
+ regnode *nextbranch = NULL;
+ regnode *convert = NULL;
+ U32 *prev_states; /* temp array mapping each state to previous one */
+ /* we just use folder as a flag in utf8 */
+ const U8 * folder = NULL;
+
+#ifdef DEBUGGING
+ const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuuu"));
+ AV *trie_words = NULL;
+ /* along with revcharmap, this only used during construction but both are
+ * useful during debugging so we store them in the struct when debugging.
+ */
+#else
+ const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
+ STRLEN trie_charcount=0;
+#endif
+ SV *re_trie_maxbuff;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_MAKE_TRIE;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ switch (flags) {
+ case EXACT: case EXACTL: break;
+ case EXACTFA:
+ case EXACTFU_SS:
+ case EXACTFU:
+ case EXACTFLU8: folder = PL_fold_latin1; break;
+ case EXACTF: folder = PL_fold; break;
+ default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
+ }
+
+ trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
+ trie->refcount = 1;
+ trie->startstate = 1;
+ trie->wordcount = word_count;
+ RExC_rxi->data->data[ data_slot ] = (void*)trie;
+ trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
+ if (flags == EXACT || flags == EXACTL)
+ trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
+ trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
+ trie->wordcount+1, sizeof(reg_trie_wordinfo));
+
+ DEBUG_r({
+ trie_words = newAV();
+ });
+
+ re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
+ assert(re_trie_maxbuff);
+ if (!SvIOK(re_trie_maxbuff)) {
+ sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
+ }
+ DEBUG_TRIE_COMPILE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
+ (int)depth * 2 + 2, "",
+ REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
+ REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
+ });
+
+ /* Find the node we are going to overwrite */
+ if ( first == startbranch && OP( last ) != BRANCH ) {
+ /* whole branch chain */
+ convert = first;
+ } else {
+ /* branch sub-chain */
+ convert = NEXTOPER( first );
+ }
+
+ /* -- First loop and Setup --
+
+ We first traverse the branches and scan each word to determine if it
+ contains widechars, and how many unique chars there are, this is
+ important as we have to build a table with at least as many columns as we
+ have unique chars.
+
+ We use an array of integers to represent the character codes 0..255
+ (trie->charmap) and we use a an HV* to store Unicode characters. We use
+ the native representation of the character value as the key and IV's for
+ the coded index.
+
+ *TODO* If we keep track of how many times each character is used we can
+ remap the columns so that the table compression later on is more
+ efficient in terms of memory by ensuring the most common value is in the
+ middle and the least common are on the outside. IMO this would be better
+ than a most to least common mapping as theres a decent chance the most
+ common letter will share a node with the least common, meaning the node
+ will not be compressible. With a middle is most common approach the worst
+ case is when we have the least common nodes twice.
+
+ */
+
+ for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+ regnode *noper = NEXTOPER( cur );
+ const U8 *uc = (U8*)STRING( noper );
+ const U8 *e = uc + STR_LEN( noper );
+ int foldlen = 0;
+ U32 wordlen = 0; /* required init */
+ STRLEN minchars = 0;
+ STRLEN maxchars = 0;
+ bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
+ bitmap?*/
+
+ if (OP(noper) == NOTHING) {
+ regnode *noper_next= regnext(noper);
+ if (noper_next != tail && OP(noper_next) == flags) {
+ noper = noper_next;
+ uc= (U8*)STRING(noper);
+ e= uc + STR_LEN(noper);
+ trie->minlen= STR_LEN(noper);
+ } else {
+ trie->minlen= 0;
+ continue;
+ }
+ }
+
+ if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
+ TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
+ regardless of encoding */
+ if (OP( noper ) == EXACTFU_SS) {
+ /* false positives are ok, so just set this */
+ TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
+ }
+ }
+ for ( ; uc < e ; uc += len ) { /* Look at each char in the current
+ branch */
+ TRIE_CHARCOUNT(trie)++;
+ TRIE_READ_CHAR;
+
+ /* TRIE_READ_CHAR returns the current character, or its fold if /i
+ * is in effect. Under /i, this character can match itself, or
+ * anything that folds to it. If not under /i, it can match just
+ * itself. Most folds are 1-1, for example k, K, and KELVIN SIGN
+ * all fold to k, and all are single characters. But some folds
+ * expand to more than one character, so for example LATIN SMALL
+ * LIGATURE FFI folds to the three character sequence 'ffi'. If
+ * the string beginning at 'uc' is 'ffi', it could be matched by
+ * three characters, or just by the one ligature character. (It
+ * could also be matched by two characters: LATIN SMALL LIGATURE FF
+ * followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
+ * (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
+ * match.) The trie needs to know the minimum and maximum number
+ * of characters that could match so that it can use size alone to
+ * quickly reject many match attempts. The max is simple: it is
+ * the number of folded characters in this branch (since a fold is
+ * never shorter than what folds to it. */
+
+ maxchars++;
+
+ /* And the min is equal to the max if not under /i (indicated by
+ * 'folder' being NULL), or there are no multi-character folds. If
+ * there is a multi-character fold, the min is incremented just
+ * once, for the character that folds to the sequence. Each
+ * character in the sequence needs to be added to the list below of
+ * characters in the trie, but we count only the first towards the
+ * min number of characters needed. This is done through the
+ * variable 'foldlen', which is returned by the macros that look
+ * for these sequences as the number of bytes the sequence
+ * occupies. Each time through the loop, we decrement 'foldlen' by
+ * how many bytes the current char occupies. Only when it reaches
+ * 0 do we increment 'minchars' or look for another multi-character
+ * sequence. */
+ if (folder == NULL) {
+ minchars++;
+ }
+ else if (foldlen > 0) {
+ foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
+ }
+ else {
+ minchars++;
+
+ /* See if *uc is the beginning of a multi-character fold. If
+ * so, we decrement the length remaining to look at, to account
+ * for the current character this iteration. (We can use 'uc'
+ * instead of the fold returned by TRIE_READ_CHAR because for
+ * non-UTF, the latin1_safe macro is smart enough to account
+ * for all the unfolded characters, and because for UTF, the
+ * string will already have been folded earlier in the
+ * compilation process */
+ if (UTF) {
+ if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
+ foldlen -= UTF8SKIP(uc);
+ }
+ }
+ else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
+ foldlen--;
+ }
+ }
+
+ /* The current character (and any potential folds) should be added
+ * to the possible matching characters for this position in this
+ * branch */
+ if ( uvc < 256 ) {
+ if ( folder ) {
+ U8 folded= folder[ (U8) uvc ];
+ if ( !trie->charmap[ folded ] ) {
+ trie->charmap[ folded ]=( ++trie->uniquecharcount );
+ TRIE_STORE_REVCHAR( folded );
+ }
+ }
+ if ( !trie->charmap[ uvc ] ) {
+ trie->charmap[ uvc ]=( ++trie->uniquecharcount );
+ TRIE_STORE_REVCHAR( uvc );
+ }
+ if ( set_bit ) {
+ /* store the codepoint in the bitmap, and its folded
+ * equivalent. */
+ TRIE_BITMAP_SET(trie, uvc);
+
+ /* store the folded codepoint */
+ if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
+
+ if ( !UTF ) {
+ /* store first byte of utf8 representation of
+ variant codepoints */
+ if (! UVCHR_IS_INVARIANT(uvc)) {
+ TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
+ }
+ }
+ set_bit = 0; /* We've done our bit :-) */
+ }
+ } else {
+
+ /* XXX We could come up with the list of code points that fold
+ * to this using PL_utf8_foldclosures, except not for
+ * multi-char folds, as there may be multiple combinations
+ * there that could work, which needs to wait until runtime to
+ * resolve (The comment about LIGATURE FFI above is such an
+ * example */
+
+ SV** svpp;
+ if ( !widecharmap )
+ widecharmap = newHV();
+
+ svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
+
+ if ( !svpp )
+ Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
+
+ if ( !SvTRUE( *svpp ) ) {
+ sv_setiv( *svpp, ++trie->uniquecharcount );
+ TRIE_STORE_REVCHAR(uvc);
+ }
+ }
+ } /* end loop through characters in this branch of the trie */
+
+ /* We take the min and max for this branch and combine to find the min
+ * and max for all branches processed so far */
+ if( cur == first ) {
+ trie->minlen = minchars;
+ trie->maxlen = maxchars;
+ } else if (minchars < trie->minlen) {
+ trie->minlen = minchars;
+ } else if (maxchars > trie->maxlen) {
+ trie->maxlen = maxchars;
+ }
+ } /* end first pass */
+ DEBUG_TRIE_COMPILE_r(
+ PerlIO_printf( Perl_debug_log,
+ "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
+ (int)depth * 2 + 2,"",
+ ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
+ (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
+ (int)trie->minlen, (int)trie->maxlen )
+ );
+
+ /*
+ We now know what we are dealing with in terms of unique chars and
+ string sizes so we can calculate how much memory a naive
+ representation using a flat table will take. If it's over a reasonable
+ limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
+ conservative but potentially much slower representation using an array
+ of lists.
+
+ At the end we convert both representations into the same compressed
+ form that will be used in regexec.c for matching with. The latter
+ is a form that cannot be used to construct with but has memory
+ properties similar to the list form and access properties similar
+ to the table form making it both suitable for fast searches and
+ small enough that its feasable to store for the duration of a program.
+
+ See the comment in the code where the compressed table is produced
+ inplace from the flat tabe representation for an explanation of how
+ the compression works.
+
+ */
+
+
+ Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
+ prev_states[1] = 0;
+
+ if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
+ > SvIV(re_trie_maxbuff) )
+ {
+ /*
+ Second Pass -- Array Of Lists Representation
+
+ Each state will be represented by a list of charid:state records
+ (reg_trie_trans_le) the first such element holds the CUR and LEN
+ points of the allocated array. (See defines above).
+
+ We build the initial structure using the lists, and then convert
+ it into the compressed table form which allows faster lookups
+ (but cant be modified once converted).
+ */
+
+ STRLEN transcount = 1;
+
+ DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
+ "%*sCompiling trie using list compiler\n",
+ (int)depth * 2 + 2, ""));
+
+ trie->states = (reg_trie_state *)
+ PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
+ sizeof(reg_trie_state) );
+ TRIE_LIST_NEW(1);
+ next_alloc = 2;
+
+ for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+
+ regnode *noper = NEXTOPER( cur );
+ U8 *uc = (U8*)STRING( noper );
+ const U8 *e = uc + STR_LEN( noper );
+ U32 state = 1; /* required init */
+ U16 charid = 0; /* sanity init */
+ U32 wordlen = 0; /* required init */
+
+ if (OP(noper) == NOTHING) {
+ regnode *noper_next= regnext(noper);
+ if (noper_next != tail && OP(noper_next) == flags) {
+ noper = noper_next;
+ uc= (U8*)STRING(noper);
+ e= uc + STR_LEN(noper);
+ }
+ }
+
+ if (OP(noper) != NOTHING) {
+ for ( ; uc < e ; uc += len ) {
+
+ TRIE_READ_CHAR;
+
+ if ( uvc < 256 ) {
+ charid = trie->charmap[ uvc ];
+ } else {
+ SV** const svpp = hv_fetch( widecharmap,
+ (char*)&uvc,
+ sizeof( UV ),
+ 0);
+ if ( !svpp ) {
+ charid = 0;
+ } else {
+ charid=(U16)SvIV( *svpp );
+ }
+ }
+ /* charid is now 0 if we dont know the char read, or
+ * nonzero if we do */
+ if ( charid ) {
+
+ U16 check;
+ U32 newstate = 0;
+
+ charid--;
+ if ( !trie->states[ state ].trans.list ) {
+ TRIE_LIST_NEW( state );
+ }
+ for ( check = 1;
+ check <= TRIE_LIST_USED( state );
+ check++ )
+ {
+ if ( TRIE_LIST_ITEM( state, check ).forid
+ == charid )
+ {
+ newstate = TRIE_LIST_ITEM( state, check ).newstate;
+ break;
+ }
+ }
+ if ( ! newstate ) {
+ newstate = next_alloc++;
+ prev_states[newstate] = state;
+ TRIE_LIST_PUSH( state, charid, newstate );
+ transcount++;
+ }
+ state = newstate;
+ } else {
+ Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
+ }
+ }
+ }
+ TRIE_HANDLE_WORD(state);
+
+ } /* end second pass */
+
+ /* next alloc is the NEXT state to be allocated */
+ trie->statecount = next_alloc;
+ trie->states = (reg_trie_state *)
+ PerlMemShared_realloc( trie->states,
+ next_alloc
+ * sizeof(reg_trie_state) );
+
+ /* and now dump it out before we compress it */
+ DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
+ revcharmap, next_alloc,
+ depth+1)
+ );
+
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
+ {
+ U32 state;
+ U32 tp = 0;
+ U32 zp = 0;
+
+
+ for( state=1 ; state < next_alloc ; state ++ ) {
+ U32 base=0;
+
+ /*
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
+ );
+ */
+
+ if (trie->states[state].trans.list) {
+ U16 minid=TRIE_LIST_ITEM( state, 1).forid;
+ U16 maxid=minid;
+ U16 idx;
+
+ for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
+ const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
+ if ( forid < minid ) {
+ minid=forid;
+ } else if ( forid > maxid ) {
+ maxid=forid;
+ }
+ }
+ if ( transcount < tp + maxid - minid + 1) {
+ transcount *= 2;
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_realloc( trie->trans,
+ transcount
+ * sizeof(reg_trie_trans) );
+ Zero( trie->trans + (transcount / 2),
+ transcount / 2,
+ reg_trie_trans );
+ }
+ base = trie->uniquecharcount + tp - minid;
+ if ( maxid == minid ) {
+ U32 set = 0;
+ for ( ; zp < tp ; zp++ ) {
+ if ( ! trie->trans[ zp ].next ) {
+ base = trie->uniquecharcount + zp - minid;
+ trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
+ 1).newstate;
+ trie->trans[ zp ].check = state;
+ set = 1;
+ break;
+ }
+ }
+ if ( !set ) {
+ trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
+ 1).newstate;
+ trie->trans[ tp ].check = state;
+ tp++;
+ zp = tp;
+ }
+ } else {
+ for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
+ const U32 tid = base
+ - trie->uniquecharcount
+ + TRIE_LIST_ITEM( state, idx ).forid;
+ trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
+ idx ).newstate;
+ trie->trans[ tid ].check = state;
+ }
+ tp += ( maxid - minid + 1 );
+ }
+ Safefree(trie->states[ state ].trans.list);
+ }
+ /*
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf( Perl_debug_log, " base: %d\n",base);
+ );
+ */
+ trie->states[ state ].trans.base=base;
+ }
+ trie->lasttrans = tp + 1;
+ }
+ } else {
+ /*
+ Second Pass -- Flat Table Representation.
+
+ we dont use the 0 slot of either trans[] or states[] so we add 1 to
+ each. We know that we will need Charcount+1 trans at most to store
+ the data (one row per char at worst case) So we preallocate both
+ structures assuming worst case.
+
+ We then construct the trie using only the .next slots of the entry
+ structs.
+
+ We use the .check field of the first entry of the node temporarily
+ to make compression both faster and easier by keeping track of how
+ many non zero fields are in the node.
+
+ Since trans are numbered from 1 any 0 pointer in the table is a FAIL
+ transition.
+
+ There are two terms at use here: state as a TRIE_NODEIDX() which is
+ a number representing the first entry of the node, and state as a
+ TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
+ and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
+ if there are 2 entrys per node. eg:
+
+ A B A B
+ 1. 2 4 1. 3 7
+ 2. 0 3 3. 0 5
+ 3. 0 0 5. 0 0
+ 4. 0 0 7. 0 0
+
+ The table is internally in the right hand, idx form. However as we
+ also have to deal with the states array which is indexed by nodenum
+ we have to use TRIE_NODENUM() to convert.
+
+ */
+ DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
+ "%*sCompiling trie using table compiler\n",
+ (int)depth * 2 + 2, ""));
+
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
+ * trie->uniquecharcount + 1,
+ sizeof(reg_trie_trans) );
+ trie->states = (reg_trie_state *)
+ PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
+ sizeof(reg_trie_state) );
+ next_alloc = trie->uniquecharcount + 1;
+
+
+ for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+
+ regnode *noper = NEXTOPER( cur );
+ const U8 *uc = (U8*)STRING( noper );
+ const U8 *e = uc + STR_LEN( noper );
+
+ U32 state = 1; /* required init */
+
+ U16 charid = 0; /* sanity init */
+ U32 accept_state = 0; /* sanity init */
+
+ U32 wordlen = 0; /* required init */
+
+ if (OP(noper) == NOTHING) {
+ regnode *noper_next= regnext(noper);
+ if (noper_next != tail && OP(noper_next) == flags) {
+ noper = noper_next;
+ uc= (U8*)STRING(noper);
+ e= uc + STR_LEN(noper);
+ }
+ }
+
+ if ( OP(noper) != NOTHING ) {
+ for ( ; uc < e ; uc += len ) {
+
+ TRIE_READ_CHAR;
+
+ if ( uvc < 256 ) {
+ charid = trie->charmap[ uvc ];
+ } else {
+ SV* const * const svpp = hv_fetch( widecharmap,
+ (char*)&uvc,
+ sizeof( UV ),
+ 0);
+ charid = svpp ? (U16)SvIV(*svpp) : 0;
+ }
+ if ( charid ) {
+ charid--;
+ if ( !trie->trans[ state + charid ].next ) {
+ trie->trans[ state + charid ].next = next_alloc;
+ trie->trans[ state ].check++;
+ prev_states[TRIE_NODENUM(next_alloc)]
+ = TRIE_NODENUM(state);
+ next_alloc += trie->uniquecharcount;
+ }
+ state = trie->trans[ state + charid ].next;
+ } else {
+ Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
+ }
+ /* charid is now 0 if we dont know the char read, or
+ * nonzero if we do */
+ }
+ }
+ accept_state = TRIE_NODENUM( state );
+ TRIE_HANDLE_WORD(accept_state);
+
+ } /* end second pass */
+
+ /* and now dump it out before we compress it */
+ DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
+ revcharmap,
+ next_alloc, depth+1));
+
+ {
+ /*
+ * Inplace compress the table.*
+
+ For sparse data sets the table constructed by the trie algorithm will
+ be mostly 0/FAIL transitions or to put it another way mostly empty.
+ (Note that leaf nodes will not contain any transitions.)
+
+ This algorithm compresses the tables by eliminating most such
+ transitions, at the cost of a modest bit of extra work during lookup:
+
+ - Each states[] entry contains a .base field which indicates the
+ index in the state[] array wheres its transition data is stored.
+
+ - If .base is 0 there are no valid transitions from that node.
+
+ - If .base is nonzero then charid is added to it to find an entry in
+ the trans array.
+
+ -If trans[states[state].base+charid].check!=state then the
+ transition is taken to be a 0/Fail transition. Thus if there are fail
+ transitions at the front of the node then the .base offset will point
+ somewhere inside the previous nodes data (or maybe even into a node
+ even earlier), but the .check field determines if the transition is
+ valid.
+
+ XXX - wrong maybe?
+ The following process inplace converts the table to the compressed
+ table: We first do not compress the root node 1,and mark all its
+ .check pointers as 1 and set its .base pointer as 1 as well. This
+ allows us to do a DFA construction from the compressed table later,
+ and ensures that any .base pointers we calculate later are greater
+ than 0.
+
+ - We set 'pos' to indicate the first entry of the second node.
+
+ - We then iterate over the columns of the node, finding the first and
+ last used entry at l and m. We then copy l..m into pos..(pos+m-l),
+ and set the .check pointers accordingly, and advance pos
+ appropriately and repreat for the next node. Note that when we copy
+ the next pointers we have to convert them from the original
+ NODEIDX form to NODENUM form as the former is not valid post
+ compression.
+
+ - If a node has no transitions used we mark its base as 0 and do not
+ advance the pos pointer.
+
+ - If a node only has one transition we use a second pointer into the
+ structure to fill in allocated fail transitions from other states.
+ This pointer is independent of the main pointer and scans forward
+ looking for null transitions that are allocated to a state. When it
+ finds one it writes the single transition into the "hole". If the
+ pointer doesnt find one the single transition is appended as normal.
+
+ - Once compressed we can Renew/realloc the structures to release the
+ excess space.
+
+ See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
+ specifically Fig 3.47 and the associated pseudocode.
+
+ demq
+ */
+ const U32 laststate = TRIE_NODENUM( next_alloc );
+ U32 state, charid;
+ U32 pos = 0, zp=0;
+ trie->statecount = laststate;
+
+ for ( state = 1 ; state < laststate ; state++ ) {
+ U8 flag = 0;
+ const U32 stateidx = TRIE_NODEIDX( state );
+ const U32 o_used = trie->trans[ stateidx ].check;
+ U32 used = trie->trans[ stateidx ].check;
+ trie->trans[ stateidx ].check = 0;
+
+ for ( charid = 0;
+ used && charid < trie->uniquecharcount;
+ charid++ )
+ {
+ if ( flag || trie->trans[ stateidx + charid ].next ) {
+ if ( trie->trans[ stateidx + charid ].next ) {
+ if (o_used == 1) {
+ for ( ; zp < pos ; zp++ ) {
+ if ( ! trie->trans[ zp ].next ) {
+ break;
+ }
+ }
+ trie->states[ state ].trans.base
+ = zp
+ + trie->uniquecharcount
+ - charid ;
+ trie->trans[ zp ].next
+ = SAFE_TRIE_NODENUM( trie->trans[ stateidx
+ + charid ].next );
+ trie->trans[ zp ].check = state;
+ if ( ++zp > pos ) pos = zp;
+ break;
+ }
+ used--;
+ }
+ if ( !flag ) {
+ flag = 1;
+ trie->states[ state ].trans.base
+ = pos + trie->uniquecharcount - charid ;
+ }
+ trie->trans[ pos ].next
+ = SAFE_TRIE_NODENUM(
+ trie->trans[ stateidx + charid ].next );
+ trie->trans[ pos ].check = state;
+ pos++;
+ }
+ }
+ }
+ trie->lasttrans = pos + 1;
+ trie->states = (reg_trie_state *)
+ PerlMemShared_realloc( trie->states, laststate
+ * sizeof(reg_trie_state) );
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf( Perl_debug_log,
+ "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
+ (int)depth * 2 + 2,"",
+ (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
+ + 1 ),
+ (IV)next_alloc,
+ (IV)pos,
+ ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
+ );
+
+ } /* end table compress */
+ }
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
+ (int)depth * 2 + 2, "",
+ (UV)trie->statecount,
+ (UV)trie->lasttrans)
+ );
+ /* resize the trans array to remove unused space */
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_realloc( trie->trans, trie->lasttrans
+ * sizeof(reg_trie_trans) );
+
+ { /* Modify the program and insert the new TRIE node */
+ U8 nodetype =(U8)(flags & 0xFF);
+ char *str=NULL;
+
+#ifdef DEBUGGING
+ regnode *optimize = NULL;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+
+ U32 mjd_offset = 0;
+ U32 mjd_nodelen = 0;
+#endif /* RE_TRACK_PATTERN_OFFSETS */
+#endif /* DEBUGGING */
+ /*
+ This means we convert either the first branch or the first Exact,
+ depending on whether the thing following (in 'last') is a branch
+ or not and whther first is the startbranch (ie is it a sub part of
+ the alternation or is it the whole thing.)
+ Assuming its a sub part we convert the EXACT otherwise we convert
+ the whole branch sequence, including the first.
+ */
+ /* Find the node we are going to overwrite */
+ if ( first != startbranch || OP( last ) == BRANCH ) {
+ /* branch sub-chain */
+ NEXT_OFF( first ) = (U16)(last - first);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ DEBUG_r({
+ mjd_offset= Node_Offset((convert));
+ mjd_nodelen= Node_Length((convert));
+ });
+#endif
+ /* whole branch chain */
+ }
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ else {
+ DEBUG_r({
+ const regnode *nop = NEXTOPER( convert );
+ mjd_offset= Node_Offset((nop));
+ mjd_nodelen= Node_Length((nop));
+ });
+ }
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
+ (int)depth * 2 + 2, "",
+ (UV)mjd_offset, (UV)mjd_nodelen)
+ );
+#endif
+ /* But first we check to see if there is a common prefix we can
+ split out as an EXACT and put in front of the TRIE node. */
+ trie->startstate= 1;
+ if ( trie->bitmap && !widecharmap && !trie->jump ) {
+ U32 state;
+ for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
+ U32 ofs = 0;
+ I32 idx = -1;
+ U32 count = 0;
+ const U32 base = trie->states[ state ].trans.base;
+
+ if ( trie->states[state].wordnum )
+ count = 1;
+
+ for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
+ if ( ( base + ofs >= trie->uniquecharcount ) &&
+ ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
+ trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
+ {
+ if ( ++count > 1 ) {
+ SV **tmp = av_fetch( revcharmap, ofs, 0);
+ const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
+ if ( state == 1 ) break;
+ if ( count == 2 ) {
+ Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*sNew Start State=%"UVuf" Class: [",
+ (int)depth * 2 + 2, "",
+ (UV)state));
+ if (idx >= 0) {
+ SV ** const tmp = av_fetch( revcharmap, idx, 0);
+ const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
+
+ TRIE_BITMAP_SET(trie,*ch);
+ if ( folder )
+ TRIE_BITMAP_SET(trie, folder[ *ch ]);
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
+ );
+ }
+ }
+ TRIE_BITMAP_SET(trie,*ch);
+ if ( folder )
+ TRIE_BITMAP_SET(trie,folder[ *ch ]);
+ DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
+ }
+ idx = ofs;
+ }
+ }
+ if ( count == 1 ) {
+ SV **tmp = av_fetch( revcharmap, idx, 0);
+ STRLEN len;
+ char *ch = SvPV( *tmp, len );
+ DEBUG_OPTIMISE_r({
+ SV *sv=sv_newmortal();
+ PerlIO_printf( Perl_debug_log,
+ "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
+ (int)depth * 2 + 2, "",
+ (UV)state, (UV)idx,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ )
+ );
+ });
+ if ( state==1 ) {
+ OP( convert ) = nodetype;
+ str=STRING(convert);
+ STR_LEN(convert)=0;
+ }
+ STR_LEN(convert) += len;
+ while (len--)
+ *str++ = *ch++;
+ } else {
+#ifdef DEBUGGING
+ if (state>1)
+ DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
+#endif
+ break;
+ }
+ }
+ trie->prefixlen = (state-1);
+ if (str) {
+ regnode *n = convert+NODE_SZ_STR(convert);
+ NEXT_OFF(convert) = NODE_SZ_STR(convert);
+ trie->startstate = state;
+ trie->minlen -= (state - 1);
+ trie->maxlen -= (state - 1);
+#ifdef DEBUGGING
+ /* At least the UNICOS C compiler choked on this
+ * being argument to DEBUG_r(), so let's just have
+ * it right here. */
+ if (
+#ifdef PERL_EXT_RE_BUILD
+ 1
+#else
+ DEBUG_r_TEST
+#endif
+ ) {
+ regnode *fix = convert;
+ U32 word = trie->wordcount;
+ mjd_nodelen++;
+ Set_Node_Offset_Length(convert, mjd_offset, state - 1);
+ while( ++fix < n ) {
+ Set_Node_Offset_Length(fix, 0, 0);
+ }
+ while (word--) {
+ SV ** const tmp = av_fetch( trie_words, word, 0 );
+ if (tmp) {
+ if ( STR_LEN(convert) <= SvCUR(*tmp) )
+ sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
+ else
+ sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
+ }
+ }
+ }
+#endif
+ if (trie->maxlen) {
+ convert = n;
+ } else {
+ NEXT_OFF(convert) = (U16)(tail - convert);
+ DEBUG_r(optimize= n);
+ }
+ }
+ }
+ if (!jumper)
+ jumper = last;
+ if ( trie->maxlen ) {
+ NEXT_OFF( convert ) = (U16)(tail - convert);
+ ARG_SET( convert, data_slot );
+ /* Store the offset to the first unabsorbed branch in
+ jump[0], which is otherwise unused by the jump logic.
+ We use this when dumping a trie and during optimisation. */
+ if (trie->jump)
+ trie->jump[0] = (U16)(nextbranch - convert);
+
+ /* If the start state is not accepting (meaning there is no empty string/NOTHING)
+ * and there is a bitmap
+ * and the first "jump target" node we found leaves enough room
+ * then convert the TRIE node into a TRIEC node, with the bitmap
+ * embedded inline in the opcode - this is hypothetically faster.
+ */
+ if ( !trie->states[trie->startstate].wordnum
+ && trie->bitmap
+ && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
+ {
+ OP( convert ) = TRIEC;
+ Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
+ PerlMemShared_free(trie->bitmap);
+ trie->bitmap= NULL;
+ } else
+ OP( convert ) = TRIE;
+
+ /* store the type in the flags */
+ convert->flags = nodetype;
+ DEBUG_r({
+ optimize = convert
+ + NODE_STEP_REGNODE
+ + regarglen[ OP( convert ) ];
+ });
+ /* XXX We really should free up the resource in trie now,
+ as we won't use them - (which resources?) dmq */
+ }
+ /* needed for dumping*/
+ DEBUG_r(if (optimize) {
+ regnode *opt = convert;
+
+ while ( ++opt < optimize) {
+ Set_Node_Offset_Length(opt,0,0);
+ }
+ /*
+ Try to clean up some of the debris left after the
+ optimisation.
+ */
+ while( optimize < jumper ) {
+ mjd_nodelen += Node_Length((optimize));
+ OP( optimize ) = OPTIMIZED;
+ Set_Node_Offset_Length(optimize,0,0);
+ optimize++;
+ }
+ Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
+ });
+ } /* end node insert */
+ REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, convert);
+
+ /* Finish populating the prev field of the wordinfo array. Walk back
+ * from each accept state until we find another accept state, and if
+ * so, point the first word's .prev field at the second word. If the
+ * second already has a .prev field set, stop now. This will be the
+ * case either if we've already processed that word's accept state,
+ * or that state had multiple words, and the overspill words were
+ * already linked up earlier.
+ */
+ {
+ U16 word;
+ U32 state;
+ U16 prev;
+
+ for (word=1; word <= trie->wordcount; word++) {
+ prev = 0;
+ if (trie->wordinfo[word].prev)
+ continue;
+ state = trie->wordinfo[word].accept;
+ while (state) {
+ state = prev_states[state];
+ if (!state)
+ break;
+ prev = trie->states[state].wordnum;
+ if (prev)
+ break;
+ }
+ trie->wordinfo[word].prev = prev;
+ }
+ Safefree(prev_states);
+ }
+
+
+ /* and now dump out the compressed format */
+ DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
+
+ RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
+#ifdef DEBUGGING
+ RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
+ RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
+#else
+ SvREFCNT_dec_NN(revcharmap);
+#endif
+ return trie->jump
+ ? MADE_JUMP_TRIE
+ : trie->startstate>1
+ ? MADE_EXACT_TRIE
+ : MADE_TRIE;
+}
+
+STATIC regnode *
+S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
+{
+/* The Trie is constructed and compressed now so we can build a fail array if
+ * it's needed
+
+ This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
+ 3.32 in the
+ "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
+ Ullman 1985/88
+ ISBN 0-201-10088-6
+
+ We find the fail state for each state in the trie, this state is the longest
+ proper suffix of the current state's 'word' that is also a proper prefix of
+ another word in our trie. State 1 represents the word '' and is thus the
+ default fail state. This allows the DFA not to have to restart after its
+ tried and failed a word at a given point, it simply continues as though it
+ had been matching the other word in the first place.
+ Consider
+ 'abcdgu'=~/abcdefg|cdgu/
+ When we get to 'd' we are still matching the first word, we would encounter
+ 'g' which would fail, which would bring us to the state representing 'd' in
+ the second word where we would try 'g' and succeed, proceeding to match
+ 'cdgu'.
+ */
+ /* add a fail transition */
+ const U32 trie_offset = ARG(source);
+ reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
+ U32 *q;
+ const U32 ucharcount = trie->uniquecharcount;
+ const U32 numstates = trie->statecount;
+ const U32 ubound = trie->lasttrans + ucharcount;
+ U32 q_read = 0;
+ U32 q_write = 0;
+ U32 charid;
+ U32 base = trie->states[ 1 ].trans.base;
+ U32 *fail;
+ reg_ac_data *aho;
+ const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
+ regnode *stclass;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
+ PERL_UNUSED_CONTEXT;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ if ( OP(source) == TRIE ) {
+ struct regnode_1 *op = (struct regnode_1 *)
+ PerlMemShared_calloc(1, sizeof(struct regnode_1));
+ StructCopy(source,op,struct regnode_1);
+ stclass = (regnode *)op;
+ } else {
+ struct regnode_charclass *op = (struct regnode_charclass *)
+ PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
+ StructCopy(source,op,struct regnode_charclass);
+ stclass = (regnode *)op;
+ }
+ OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */
+
+ ARG_SET( stclass, data_slot );
+ aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
+ RExC_rxi->data->data[ data_slot ] = (void*)aho;
+ aho->trie=trie_offset;
+ aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
+ Copy( trie->states, aho->states, numstates, reg_trie_state );
+ Newxz( q, numstates, U32);
+ aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
+ aho->refcount = 1;
+ fail = aho->fail;
+ /* initialize fail[0..1] to be 1 so that we always have
+ a valid final fail state */
+ fail[ 0 ] = fail[ 1 ] = 1;
+
+ for ( charid = 0; charid < ucharcount ; charid++ ) {
+ const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
+ if ( newstate ) {
+ q[ q_write ] = newstate;
+ /* set to point at the root */
+ fail[ q[ q_write++ ] ]=1;
+ }
+ }
+ while ( q_read < q_write) {
+ const U32 cur = q[ q_read++ % numstates ];
+ base = trie->states[ cur ].trans.base;
+
+ for ( charid = 0 ; charid < ucharcount ; charid++ ) {
+ const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
+ if (ch_state) {
+ U32 fail_state = cur;
+ U32 fail_base;
+ do {
+ fail_state = fail[ fail_state ];
+ fail_base = aho->states[ fail_state ].trans.base;
+ } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
+
+ fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
+ fail[ ch_state ] = fail_state;
+ if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
+ {
+ aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
+ }
+ q[ q_write++ % numstates] = ch_state;
+ }
+ }
+ }
+ /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
+ when we fail in state 1, this allows us to use the
+ charclass scan to find a valid start char. This is based on the principle
+ that theres a good chance the string being searched contains lots of stuff
+ that cant be a start char.
+ */
+ fail[ 0 ] = fail[ 1 ] = 0;
+ DEBUG_TRIE_COMPILE_r({
+ PerlIO_printf(Perl_debug_log,
+ "%*sStclass Failtable (%"UVuf" states): 0",
+ (int)(depth * 2), "", (UV)numstates
+ );
+ for( q_read=1; q_read<numstates; q_read++ ) {
+ PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
+ }
+ PerlIO_printf(Perl_debug_log, "\n");
+ });
+ Safefree(q);
+ /*RExC_seen |= REG_TRIEDFA_SEEN;*/
+ return stclass;
+}
+
+
+#define DEBUG_PEEP(str,scan,depth) \
+ DEBUG_OPTIMISE_r({if (scan){ \
+ regnode *Next = regnext(scan); \
+ regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state); \
+ PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)", \
+ (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),\
+ Next ? (REG_NODE_NUM(Next)) : 0 ); \
+ DEBUG_SHOW_STUDY_FLAGS(flags," [ ","]");\
+ PerlIO_printf(Perl_debug_log, "\n"); \
+ }});
+
+/* The below joins as many adjacent EXACTish nodes as possible into a single
+ * one. The regop may be changed if the node(s) contain certain sequences that
+ * require special handling. The joining is only done if:
+ * 1) there is room in the current conglomerated node to entirely contain the
+ * next one.
+ * 2) they are the exact same node type
+ *
+ * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
+ * these get optimized out
+ *
+ * If a node is to match under /i (folded), the number of characters it matches
+ * can be different than its character length if it contains a multi-character
+ * fold. *min_subtract is set to the total delta number of characters of the
+ * input nodes.
+ *
+ * And *unfolded_multi_char is set to indicate whether or not the node contains
+ * an unfolded multi-char fold. This happens when whether the fold is valid or
+ * not won't be known until runtime; namely for EXACTF nodes that contain LATIN
+ * SMALL LETTER SHARP S, as only if the target string being matched against
+ * turns out to be UTF-8 is that fold valid; and also for EXACTFL nodes whose
+ * folding rules depend on the locale in force at runtime. (Multi-char folds
+ * whose components are all above the Latin1 range are not run-time locale
+ * dependent, and have already been folded by the time this function is
+ * called.)
+ *
+ * This is as good a place as any to discuss the design of handling these
+ * multi-character fold sequences. It's been wrong in Perl for a very long
+ * time. There are three code points in Unicode whose multi-character folds
+ * were long ago discovered to mess things up. The previous designs for
+ * dealing with these involved assigning a special node for them. This
+ * approach doesn't always work, as evidenced by this example:
+ * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
+ * Both sides fold to "sss", but if the pattern is parsed to create a node that
+ * would match just the \xDF, it won't be able to handle the case where a
+ * successful match would have to cross the node's boundary. The new approach
+ * that hopefully generally solves the problem generates an EXACTFU_SS node
+ * that is "sss" in this case.
+ *
+ * It turns out that there are problems with all multi-character folds, and not
+ * just these three. Now the code is general, for all such cases. The
+ * approach taken is:
+ * 1) This routine examines each EXACTFish node that could contain multi-
+ * character folded sequences. Since a single character can fold into
+ * such a sequence, the minimum match length for this node is less than
+ * the number of characters in the node. This routine returns in
+ * *min_subtract how many characters to subtract from the the actual
+ * length of the string to get a real minimum match length; it is 0 if
+ * there are no multi-char foldeds. This delta is used by the caller to
+ * adjust the min length of the match, and the delta between min and max,
+ * so that the optimizer doesn't reject these possibilities based on size
+ * constraints.
+ * 2) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
+ * is used for an EXACTFU node that contains at least one "ss" sequence in
+ * it. For non-UTF-8 patterns and strings, this is the only case where
+ * there is a possible fold length change. That means that a regular
+ * EXACTFU node without UTF-8 involvement doesn't have to concern itself
+ * with length changes, and so can be processed faster. regexec.c takes
+ * advantage of this. Generally, an EXACTFish node that is in UTF-8 is
+ * pre-folded by regcomp.c (except EXACTFL, some of whose folds aren't
+ * known until runtime). This saves effort in regex matching. However,
+ * the pre-folding isn't done for non-UTF8 patterns because the fold of
+ * the MICRO SIGN requires UTF-8, and we don't want to slow things down by
+ * forcing the pattern into UTF8 unless necessary. Also what EXACTF (and,
+ * again, EXACTFL) nodes fold to isn't known until runtime. The fold
+ * possibilities for the non-UTF8 patterns are quite simple, except for
+ * the sharp s. All the ones that don't involve a UTF-8 target string are
+ * members of a fold-pair, and arrays are set up for all of them so that
+ * the other member of the pair can be found quickly. Code elsewhere in
+ * this file makes sure that in EXACTFU nodes, the sharp s gets folded to
+ * 'ss', even if the pattern isn't UTF-8. This avoids the issues
+ * described in the next item.
+ * 3) A problem remains for unfolded multi-char folds. (These occur when the
+ * validity of the fold won't be known until runtime, and so must remain
+ * unfolded for now. This happens for the sharp s in EXACTF and EXACTFA
+ * nodes when the pattern isn't in UTF-8. (Note, BTW, that there cannot
+ * be an EXACTF node with a UTF-8 pattern.) They also occur for various
+ * folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
+ * The reason this is a problem is that the optimizer part of regexec.c
+ * (probably unwittingly, in Perl_regexec_flags()) makes an assumption
+ * that a character in the pattern corresponds to at most a single
+ * character in the target string. (And I do mean character, and not byte
+ * here, unlike other parts of the documentation that have never been
+ * updated to account for multibyte Unicode.) sharp s in EXACTF and
+ * EXACTFL nodes can match the two character string 'ss'; in EXACTFA nodes
+ * it can match "\x{17F}\x{17F}". These, along with other ones in EXACTFL
+ * nodes, violate the assumption, and they are the only instances where it
+ * is violated. I'm reluctant to try to change the assumption, as the
+ * code involved is impenetrable to me (khw), so instead the code here
+ * punts. This routine examines EXACTFL nodes, and (when the pattern
+ * isn't UTF-8) EXACTF and EXACTFA for such unfolded folds, and returns a
+ * boolean indicating whether or not the node contains such a fold. When
+ * it is true, the caller sets a flag that later causes the optimizer in
+ * this file to not set values for the floating and fixed string lengths,
+ * and thus avoids the optimizer code in regexec.c that makes the invalid
+ * assumption. Thus, there is no optimization based on string lengths for
+ * EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
+ * EXACTF and EXACTFA nodes that contain the sharp s. (The reason the
+ * assumption is wrong only in these cases is that all other non-UTF-8
+ * folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
+ * their expanded versions. (Again, we can't prefold sharp s to 'ss' in
+ * EXACTF nodes because we don't know at compile time if it actually
+ * matches 'ss' or not. For EXACTF nodes it will match iff the target
+ * string is in UTF-8. This is in contrast to EXACTFU nodes, where it
+ * always matches; and EXACTFA where it never does. In an EXACTFA node in
+ * a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
+ * problem; but in a non-UTF8 pattern, folding it to that above-Latin1
+ * string would require the pattern to be forced into UTF-8, the overhead
+ * of which we want to avoid. Similarly the unfolded multi-char folds in
+ * EXACTFL nodes will match iff the locale at the time of match is a UTF-8
+ * locale.)
+ *
+ * Similarly, the code that generates tries doesn't currently handle
+ * not-already-folded multi-char folds, and it looks like a pain to change
+ * that. Therefore, trie generation of EXACTFA nodes with the sharp s
+ * doesn't work. Instead, such an EXACTFA is turned into a new regnode,
+ * EXACTFA_NO_TRIE, which the trie code knows not to handle. Most people
+ * using /iaa matching will be doing so almost entirely with ASCII
+ * strings, so this should rarely be encountered in practice */
+
+#define JOIN_EXACT(scan,min_subtract,unfolded_multi_char, flags) \
+ if (PL_regkind[OP(scan)] == EXACT) \
+ join_exact(pRExC_state,(scan),(min_subtract),unfolded_multi_char, (flags),NULL,depth+1)
+
+STATIC U32
+S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan,
+ UV *min_subtract, bool *unfolded_multi_char,
+ U32 flags,regnode *val, U32 depth)
+{
+ /* Merge several consecutive EXACTish nodes into one. */
+ regnode *n = regnext(scan);
+ U32 stringok = 1;
+ regnode *next = scan + NODE_SZ_STR(scan);
+ U32 merged = 0;
+ U32 stopnow = 0;
+#ifdef DEBUGGING
+ regnode *stop = scan;
+ GET_RE_DEBUG_FLAGS_DECL;
+#else
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ PERL_ARGS_ASSERT_JOIN_EXACT;
+#ifndef EXPERIMENTAL_INPLACESCAN
+ PERL_UNUSED_ARG(flags);
+ PERL_UNUSED_ARG(val);
+#endif
+ DEBUG_PEEP("join",scan,depth);
+
+ /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
+ * EXACT ones that are mergeable to the current one. */
+ while (n
+ && (PL_regkind[OP(n)] == NOTHING
+ || (stringok && OP(n) == OP(scan)))
+ && NEXT_OFF(n)
+ && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
+ {
+
+ if (OP(n) == TAIL || n > next)
+ stringok = 0;
+ if (PL_regkind[OP(n)] == NOTHING) {
+ DEBUG_PEEP("skip:",n,depth);
+ NEXT_OFF(scan) += NEXT_OFF(n);
+ next = n + NODE_STEP_REGNODE;
+#ifdef DEBUGGING
+ if (stringok)
+ stop = n;
+#endif
+ n = regnext(n);
+ }
+ else if (stringok) {
+ const unsigned int oldl = STR_LEN(scan);
+ regnode * const nnext = regnext(n);
+
+ /* XXX I (khw) kind of doubt that this works on platforms (should
+ * Perl ever run on one) where U8_MAX is above 255 because of lots
+ * of other assumptions */
+ /* Don't join if the sum can't fit into a single node */
+ if (oldl + STR_LEN(n) > U8_MAX)
+ break;
+
+ DEBUG_PEEP("merg",n,depth);
+ merged++;
+
+ NEXT_OFF(scan) += NEXT_OFF(n);
+ STR_LEN(scan) += STR_LEN(n);
+ next = n + NODE_SZ_STR(n);
+ /* Now we can overwrite *n : */
+ Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
+#ifdef DEBUGGING
+ stop = next - 1;
+#endif
+ n = nnext;
+ if (stopnow) break;
+ }
+
+#ifdef EXPERIMENTAL_INPLACESCAN
+ if (flags && !NEXT_OFF(n)) {
+ DEBUG_PEEP("atch", val, depth);
+ if (reg_off_by_arg[OP(n)]) {
+ ARG_SET(n, val - n);
+ }
+ else {
+ NEXT_OFF(n) = val - n;
+ }
+ stopnow = 1;
+ }
+#endif
+ }
+
+ *min_subtract = 0;
+ *unfolded_multi_char = FALSE;
+
+ /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
+ * can now analyze for sequences of problematic code points. (Prior to
+ * this final joining, sequences could have been split over boundaries, and
+ * hence missed). The sequences only happen in folding, hence for any
+ * non-EXACT EXACTish node */
+ if (OP(scan) != EXACT && OP(scan) != EXACTL) {
+ U8* s0 = (U8*) STRING(scan);
+ U8* s = s0;
+ U8* s_end = s0 + STR_LEN(scan);
+
+ int total_count_delta = 0; /* Total delta number of characters that
+ multi-char folds expand to */
+
+ /* One pass is made over the node's string looking for all the
+ * possibilities. To avoid some tests in the loop, there are two main
+ * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
+ * non-UTF-8 */
+ if (UTF) {
+ U8* folded = NULL;
+
+ if (OP(scan) == EXACTFL) {
+ U8 *d;
+
+ /* An EXACTFL node would already have been changed to another
+ * node type unless there is at least one character in it that
+ * is problematic; likely a character whose fold definition
+ * won't be known until runtime, and so has yet to be folded.
+ * For all but the UTF-8 locale, folds are 1-1 in length, but
+ * to handle the UTF-8 case, we need to create a temporary
+ * folded copy using UTF-8 locale rules in order to analyze it.
+ * This is because our macros that look to see if a sequence is
+ * a multi-char fold assume everything is folded (otherwise the
+ * tests in those macros would be too complicated and slow).
+ * Note that here, the non-problematic folds will have already
+ * been done, so we can just copy such characters. We actually
+ * don't completely fold the EXACTFL string. We skip the
+ * unfolded multi-char folds, as that would just create work
+ * below to figure out the size they already are */
+
+ Newx(folded, UTF8_MAX_FOLD_CHAR_EXPAND * STR_LEN(scan) + 1, U8);
+ d = folded;
+ while (s < s_end) {
+ STRLEN s_len = UTF8SKIP(s);
+ if (! is_PROBLEMATIC_LOCALE_FOLD_utf8(s)) {
+ Copy(s, d, s_len, U8);
+ d += s_len;
+ }
+ else if (is_FOLDS_TO_MULTI_utf8(s)) {
+ *unfolded_multi_char = TRUE;
+ Copy(s, d, s_len, U8);
+ d += s_len;
+ }
+ else if (isASCII(*s)) {
+ *(d++) = toFOLD(*s);
+ }
+ else {
+ STRLEN len;
+ _to_utf8_fold_flags(s, d, &len, FOLD_FLAGS_FULL);
+ d += len;
+ }
+ s += s_len;
+ }
+
+ /* Point the remainder of the routine to look at our temporary
+ * folded copy */
+ s = folded;
+ s_end = d;
+ } /* End of creating folded copy of EXACTFL string */
+
+ /* Examine the string for a multi-character fold sequence. UTF-8
+ * patterns have all characters pre-folded by the time this code is
+ * executed */
+ while (s < s_end - 1) /* Can stop 1 before the end, as minimum
+ length sequence we are looking for is 2 */
+ {
+ int count = 0; /* How many characters in a multi-char fold */
+ int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
+ if (! len) { /* Not a multi-char fold: get next char */
+ s += UTF8SKIP(s);
+ continue;
+ }
+
+ /* Nodes with 'ss' require special handling, except for
+ * EXACTFA-ish for which there is no multi-char fold to this */
+ if (len == 2 && *s == 's' && *(s+1) == 's'
+ && OP(scan) != EXACTFA
+ && OP(scan) != EXACTFA_NO_TRIE)
+ {
+ count = 2;
+ if (OP(scan) != EXACTFL) {
+ OP(scan) = EXACTFU_SS;
+ }
+ s += 2;
+ }
+ else { /* Here is a generic multi-char fold. */
+ U8* multi_end = s + len;
+
+ /* Count how many characters are in it. In the case of
+ * /aa, no folds which contain ASCII code points are
+ * allowed, so check for those, and skip if found. */
+ if (OP(scan) != EXACTFA && OP(scan) != EXACTFA_NO_TRIE) {
+ count = utf8_length(s, multi_end);
+ s = multi_end;
+ }
+ else {
+ while (s < multi_end) {
+ if (isASCII(*s)) {
+ s++;
+ goto next_iteration;
+ }
+ else {
+ s += UTF8SKIP(s);
+ }
+ count++;
+ }
+ }
+ }
+
+ /* The delta is how long the sequence is minus 1 (1 is how long
+ * the character that folds to the sequence is) */
+ total_count_delta += count - 1;
+ next_iteration: ;
+ }
+
+ /* We created a temporary folded copy of the string in EXACTFL
+ * nodes. Therefore we need to be sure it doesn't go below zero,
+ * as the real string could be shorter */
+ if (OP(scan) == EXACTFL) {
+ int total_chars = utf8_length((U8*) STRING(scan),
+ (U8*) STRING(scan) + STR_LEN(scan));
+ if (total_count_delta > total_chars) {
+ total_count_delta = total_chars;
+ }
+ }
+
+ *min_subtract += total_count_delta;
+ Safefree(folded);
+ }
+ else if (OP(scan) == EXACTFA) {
+
+ /* Non-UTF-8 pattern, EXACTFA node. There can't be a multi-char
+ * fold to the ASCII range (and there are no existing ones in the
+ * upper latin1 range). But, as outlined in the comments preceding
+ * this function, we need to flag any occurrences of the sharp s.
+ * This character forbids trie formation (because of added
+ * complexity) */
+ while (s < s_end) {
+ if (*s == LATIN_SMALL_LETTER_SHARP_S) {
+ OP(scan) = EXACTFA_NO_TRIE;
+ *unfolded_multi_char = TRUE;
+ break;
+ }
+ s++;
+ continue;
+ }
+ }
+ else {
+
+ /* Non-UTF-8 pattern, not EXACTFA node. Look for the multi-char
+ * folds that are all Latin1. As explained in the comments
+ * preceding this function, we look also for the sharp s in EXACTF
+ * and EXACTFL nodes; it can be in the final position. Otherwise
+ * we can stop looking 1 byte earlier because have to find at least
+ * two characters for a multi-fold */
+ const U8* upper = (OP(scan) == EXACTF || OP(scan) == EXACTFL)
+ ? s_end
+ : s_end -1;
+
+ while (s < upper) {
+ int len = is_MULTI_CHAR_FOLD_latin1_safe(s, s_end);
+ if (! len) { /* Not a multi-char fold. */
+ if (*s == LATIN_SMALL_LETTER_SHARP_S
+ && (OP(scan) == EXACTF || OP(scan) == EXACTFL))
+ {
+ *unfolded_multi_char = TRUE;
+ }
+ s++;
+ continue;
+ }
+
+ if (len == 2
+ && isALPHA_FOLD_EQ(*s, 's')
+ && isALPHA_FOLD_EQ(*(s+1), 's'))
+ {
+
+ /* EXACTF nodes need to know that the minimum length
+ * changed so that a sharp s in the string can match this
+ * ss in the pattern, but they remain EXACTF nodes, as they
+ * won't match this unless the target string is is UTF-8,
+ * which we don't know until runtime. EXACTFL nodes can't
+ * transform into EXACTFU nodes */
+ if (OP(scan) != EXACTF && OP(scan) != EXACTFL) {
+ OP(scan) = EXACTFU_SS;
+ }
+ }
+
+ *min_subtract += len - 1;
+ s += len;
+ }
+ }
+ }
+
+#ifdef DEBUGGING
+ /* Allow dumping but overwriting the collection of skipped
+ * ops and/or strings with fake optimized ops */
+ n = scan + NODE_SZ_STR(scan);
+ while (n <= stop) {
+ OP(n) = OPTIMIZED;
+ FLAGS(n) = 0;
+ NEXT_OFF(n) = 0;
+ n++;
+ }
+#endif
+ DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
+ return stopnow;
+}
+
+/* REx optimizer. Converts nodes into quicker variants "in place".
+ Finds fixed substrings. */
+
+/* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
+ to the position after last scanned or to NULL. */
+
+#define INIT_AND_WITHP \
+ assert(!and_withp); \
+ Newx(and_withp,1, regnode_ssc); \
+ SAVEFREEPV(and_withp)
+
+
+static void
+S_unwind_scan_frames(pTHX_ const void *p)
+{
+ scan_frame *f= (scan_frame *)p;
+ do {
+ scan_frame *n= f->next_frame;
+ Safefree(f);
+ f= n;
+ } while (f);
+}
+
+
+STATIC SSize_t
+S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
+ SSize_t *minlenp, SSize_t *deltap,
+ regnode *last,
+ scan_data_t *data,
+ I32 stopparen,
+ U32 recursed_depth,
+ regnode_ssc *and_withp,
+ U32 flags, U32 depth)
+ /* scanp: Start here (read-write). */
+ /* deltap: Write maxlen-minlen here. */
+ /* last: Stop before this one. */
+ /* data: string data about the pattern */
+ /* stopparen: treat close N as END */
+ /* recursed: which subroutines have we recursed into */
+ /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
+{
+ /* There must be at least this number of characters to match */
+ SSize_t min = 0;
+ I32 pars = 0, code;
+ regnode *scan = *scanp, *next;
+ SSize_t delta = 0;
+ int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
+ int is_inf_internal = 0; /* The studied chunk is infinite */
+ I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
+ scan_data_t data_fake;
+ SV *re_trie_maxbuff = NULL;
+ regnode *first_non_open = scan;
+ SSize_t stopmin = SSize_t_MAX;
+ scan_frame *frame = NULL;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_STUDY_CHUNK;
+
+
+ if ( depth == 0 ) {
+ while (first_non_open && OP(first_non_open) == OPEN)
+ first_non_open=regnext(first_non_open);
+ }
+
+
+ fake_study_recurse:
+ DEBUG_r(
+ RExC_study_chunk_recursed_count++;
+ );
+ DEBUG_OPTIMISE_MORE_r(
+ {
+ PerlIO_printf(Perl_debug_log,
+ "%*sstudy_chunk stopparen=%ld recursed_count=%lu depth=%lu recursed_depth=%lu scan=%p last=%p",
+ (int)(depth*2), "", (long)stopparen,
+ (unsigned long)RExC_study_chunk_recursed_count,
+ (unsigned long)depth, (unsigned long)recursed_depth,
+ scan,
+ last);
+ if (recursed_depth) {
+ U32 i;
+ U32 j;
+ for ( j = 0 ; j < recursed_depth ; j++ ) {
+ for ( i = 0 ; i < (U32)RExC_npar ; i++ ) {
+ if (
+ PAREN_TEST(RExC_study_chunk_recursed +
+ ( j * RExC_study_chunk_recursed_bytes), i )
+ && (
+ !j ||
+ !PAREN_TEST(RExC_study_chunk_recursed +
+ (( j - 1 ) * RExC_study_chunk_recursed_bytes), i)
+ )
+ ) {
+ PerlIO_printf(Perl_debug_log," %d",(int)i);
+ break;
+ }
+ }
+ if ( j + 1 < recursed_depth ) {
+ PerlIO_printf(Perl_debug_log, ",");
+ }
+ }
+ }
+ PerlIO_printf(Perl_debug_log,"\n");
+ }
+ );
+ while ( scan && OP(scan) != END && scan < last ){
+ UV min_subtract = 0; /* How mmany chars to subtract from the minimum
+ node length to get a real minimum (because
+ the folded version may be shorter) */
+ bool unfolded_multi_char = FALSE;
+ /* Peephole optimizer: */
+ DEBUG_STUDYDATA("Peep:", data, depth);
+ DEBUG_PEEP("Peep", scan, depth);
+
+
+ /* The reason we do this here we need to deal with things like /(?:f)(?:o)(?:o)/
+ * which cant be dealt with by the normal EXACT parsing code, as each (?:..) is handled
+ * by a different invocation of reg() -- Yves
+ */
+ JOIN_EXACT(scan,&min_subtract, &unfolded_multi_char, 0);
+
+ /* Follow the next-chain of the current node and optimize
+ away all the NOTHINGs from it. */
+ if (OP(scan) != CURLYX) {
+ const int max = (reg_off_by_arg[OP(scan)]
+ ? I32_MAX
+ /* I32 may be smaller than U16 on CRAYs! */
+ : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
+ int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
+ int noff;
+ regnode *n = scan;
+
+ /* Skip NOTHING and LONGJMP. */
+ while ((n = regnext(n))
+ && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
+ || ((OP(n) == LONGJMP) && (noff = ARG(n))))
+ && off + noff < max)
+ off += noff;
+ if (reg_off_by_arg[OP(scan)])
+ ARG(scan) = off;
+ else
+ NEXT_OFF(scan) = off;
+ }
+
+ /* The principal pseudo-switch. Cannot be a switch, since we
+ look into several different things. */
+ if ( OP(scan) == DEFINEP ) {
+ SSize_t minlen = 0;
+ SSize_t deltanext = 0;
+ SSize_t fake_last_close = 0;
+ I32 f = SCF_IN_DEFINE;
+
+ StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+ scan = regnext(scan);
+ assert( OP(scan) == IFTHEN );
+ DEBUG_PEEP("expect IFTHEN", scan, depth);
+
+ data_fake.last_closep= &fake_last_close;
+ minlen = *minlenp;
+ next = regnext(scan);
+ scan = NEXTOPER(NEXTOPER(scan));
+ DEBUG_PEEP("scan", scan, depth);
+ DEBUG_PEEP("next", next, depth);
+
+ /* we suppose the run is continuous, last=next...
+ * NOTE we dont use the return here! */
+ (void)study_chunk(pRExC_state, &scan, &minlen,
+ &deltanext, next, &data_fake, stopparen,
+ recursed_depth, NULL, f, depth+1);
+
+ scan = next;
+ } else
+ if (
+ OP(scan) == BRANCH ||
+ OP(scan) == BRANCHJ ||
+ OP(scan) == IFTHEN
+ ) {
+ next = regnext(scan);
+ code = OP(scan);
+
+ /* The op(next)==code check below is to see if we
+ * have "BRANCH-BRANCH", "BRANCHJ-BRANCHJ", "IFTHEN-IFTHEN"
+ * IFTHEN is special as it might not appear in pairs.
+ * Not sure whether BRANCH-BRANCHJ is possible, regardless
+ * we dont handle it cleanly. */
+ if (OP(next) == code || code == IFTHEN) {
+ /* NOTE - There is similar code to this block below for
+ * handling TRIE nodes on a re-study. If you change stuff here
+ * check there too. */
+ SSize_t max1 = 0, min1 = SSize_t_MAX, num = 0;
+ regnode_ssc accum;
+ regnode * const startbranch=scan;
+
+ if (flags & SCF_DO_SUBSTR) {
+ /* Cannot merge strings after this. */
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ }
+
+ if (flags & SCF_DO_STCLASS)
+ ssc_init_zero(pRExC_state, &accum);
+
+ while (OP(scan) == code) {
+ SSize_t deltanext, minnext, fake;
+ I32 f = 0;
+ regnode_ssc this_class;
+
+ DEBUG_PEEP("Branch", scan, depth);
+
+ num++;
+ StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+ if (data) {
+ data_fake.whilem_c = data->whilem_c;
+ data_fake.last_closep = data->last_closep;
+ }
+ else
+ data_fake.last_closep = &fake;
+
+ data_fake.pos_delta = delta;
+ next = regnext(scan);
+
+ scan = NEXTOPER(scan); /* everything */
+ if (code != BRANCH) /* everything but BRANCH */
+ scan = NEXTOPER(scan);
+
+ if (flags & SCF_DO_STCLASS) {
+ ssc_init(pRExC_state, &this_class);
+ data_fake.start_class = &this_class;
+ f = SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+
+ /* we suppose the run is continuous, last=next...*/
+ minnext = study_chunk(pRExC_state, &scan, minlenp,
+ &deltanext, next, &data_fake, stopparen,
+ recursed_depth, NULL, f,depth+1);
+
+ if (min1 > minnext)
+ min1 = minnext;
+ if (deltanext == SSize_t_MAX) {
+ is_inf = is_inf_internal = 1;
+ max1 = SSize_t_MAX;
+ } else if (max1 < minnext + deltanext)
+ max1 = minnext + deltanext;
+ scan = next;
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SCF_SEEN_ACCEPT) {
+ if ( stopmin > minnext)
+ stopmin = min + min1;
+ flags &= ~SCF_DO_SUBSTR;
+ if (data)
+ data->flags |= SCF_SEEN_ACCEPT;
+ }
+ if (data) {
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ }
+ if (flags & SCF_DO_STCLASS)
+ ssc_or(pRExC_state, &accum, (regnode_charclass*)&this_class);
+ }
+ if (code == IFTHEN && num < 2) /* Empty ELSE branch */
+ min1 = 0;
+ if (flags & SCF_DO_SUBSTR) {
+ data->pos_min += min1;
+ if (data->pos_delta >= SSize_t_MAX - (max1 - min1))
+ data->pos_delta = SSize_t_MAX;
+ else
+ data->pos_delta += max1 - min1;
+ if (max1 != min1 || is_inf)
+ data->longest = &(data->longest_float);
+ }
+ min += min1;
+ if (delta == SSize_t_MAX
+ || SSize_t_MAX - delta - (max1 - min1) < 0)
+ delta = SSize_t_MAX;
+ else
+ delta += max1 - min1;
+ if (flags & SCF_DO_STCLASS_OR) {
+ ssc_or(pRExC_state, data->start_class, (regnode_charclass*) &accum);
+ if (min1) {
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ if (min1) {
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else {
+ /* Switch to OR mode: cache the old value of
+ * data->start_class */
+ INIT_AND_WITHP;
+ StructCopy(data->start_class, and_withp, regnode_ssc);
+ flags &= ~SCF_DO_STCLASS_AND;
+ StructCopy(&accum, data->start_class, regnode_ssc);
+ flags |= SCF_DO_STCLASS_OR;
+ }
+ }
+
+ if (PERL_ENABLE_TRIE_OPTIMISATION &&
+ OP( startbranch ) == BRANCH )
+ {
+ /* demq.
+
+ Assuming this was/is a branch we are dealing with: 'scan'
+ now points at the item that follows the branch sequence,
+ whatever it is. We now start at the beginning of the
+ sequence and look for subsequences of
+
+ BRANCH->EXACT=>x1
+ BRANCH->EXACT=>x2
+ tail
+
+ which would be constructed from a pattern like
+ /A|LIST|OF|WORDS/
+
+ If we can find such a subsequence we need to turn the first
+ element into a trie and then add the subsequent branch exact
+ strings to the trie.
+
+ We have two cases
+
+ 1. patterns where the whole set of branches can be
+ converted.
+
+ 2. patterns where only a subset can be converted.
+
+ In case 1 we can replace the whole set with a single regop
+ for the trie. In case 2 we need to keep the start and end
+ branches so
+
+ 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
+ becomes BRANCH TRIE; BRANCH X;
+
+ There is an additional case, that being where there is a
+ common prefix, which gets split out into an EXACT like node
+ preceding the TRIE node.
+
+ If x(1..n)==tail then we can do a simple trie, if not we make
+ a "jump" trie, such that when we match the appropriate word
+ we "jump" to the appropriate tail node. Essentially we turn
+ a nested if into a case structure of sorts.
+
+ */
+
+ int made=0;
+ if (!re_trie_maxbuff) {
+ re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
+ if (!SvIOK(re_trie_maxbuff))
+ sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
+ }
+ if ( SvIV(re_trie_maxbuff)>=0 ) {
+ regnode *cur;
+ regnode *first = (regnode *)NULL;
+ regnode *last = (regnode *)NULL;
+ regnode *tail = scan;
+ U8 trietype = 0;
+ U32 count=0;
+
+ /* var tail is used because there may be a TAIL
+ regop in the way. Ie, the exacts will point to the
+ thing following the TAIL, but the last branch will
+ point at the TAIL. So we advance tail. If we
+ have nested (?:) we may have to move through several
+ tails.
+ */
+
+ while ( OP( tail ) == TAIL ) {
+ /* this is the TAIL generated by (?:) */
+ tail = regnext( tail );
+ }
+
+
+ DEBUG_TRIE_COMPILE_r({
+ regprop(RExC_rx, RExC_mysv, tail, NULL, pRExC_state);
+ PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
+ (int)depth * 2 + 2, "",
+ "Looking for TRIE'able sequences. Tail node is: ",
+ SvPV_nolen_const( RExC_mysv )
+ );
+ });
+
+ /*
+
+ Step through the branches
+ cur represents each branch,
+ noper is the first thing to be matched as part
+ of that branch
+ noper_next is the regnext() of that node.
+
+ We normally handle a case like this
+ /FOO[xyz]|BAR[pqr]/ via a "jump trie" but we also
+ support building with NOJUMPTRIE, which restricts
+ the trie logic to structures like /FOO|BAR/.
+
+ If noper is a trieable nodetype then the branch is
+ a possible optimization target. If we are building
+ under NOJUMPTRIE then we require that noper_next is
+ the same as scan (our current position in the regex
+ program).
+
+ Once we have two or more consecutive such branches
+ we can create a trie of the EXACT's contents and
+ stitch it in place into the program.
+
+ If the sequence represents all of the branches in
+ the alternation we replace the entire thing with a
+ single TRIE node.
+
+ Otherwise when it is a subsequence we need to
+ stitch it in place and replace only the relevant
+ branches. This means the first branch has to remain
+ as it is used by the alternation logic, and its
+ next pointer, and needs to be repointed at the item
+ on the branch chain following the last branch we
+ have optimized away.
+
+ This could be either a BRANCH, in which case the
+ subsequence is internal, or it could be the item
+ following the branch sequence in which case the
+ subsequence is at the end (which does not
+ necessarily mean the first node is the start of the
+ alternation).
+
+ TRIE_TYPE(X) is a define which maps the optype to a
+ trietype.
+
+ optype | trietype
+ ----------------+-----------
+ NOTHING | NOTHING
+ EXACT | EXACT
+ EXACTFU | EXACTFU
+ EXACTFU_SS | EXACTFU
+ EXACTFA | EXACTFA
+ EXACTL | EXACTL
+ EXACTFLU8 | EXACTFLU8
+
+
+ */
+#define TRIE_TYPE(X) ( ( NOTHING == (X) ) \
+ ? NOTHING \
+ : ( EXACT == (X) ) \
+ ? EXACT \
+ : ( EXACTFU == (X) || EXACTFU_SS == (X) ) \
+ ? EXACTFU \
+ : ( EXACTFA == (X) ) \
+ ? EXACTFA \
+ : ( EXACTL == (X) ) \
+ ? EXACTL \
+ : ( EXACTFLU8 == (X) ) \
+ ? EXACTFLU8 \
+ : 0 )
+
+ /* dont use tail as the end marker for this traverse */
+ for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
+ regnode * const noper = NEXTOPER( cur );
+ U8 noper_type = OP( noper );
+ U8 noper_trietype = TRIE_TYPE( noper_type );
+#if defined(DEBUGGING) || defined(NOJUMPTRIE)
+ regnode * const noper_next = regnext( noper );
+ U8 noper_next_type = (noper_next && noper_next != tail) ? OP(noper_next) : 0;
+ U8 noper_next_trietype = (noper_next && noper_next != tail) ? TRIE_TYPE( noper_next_type ) :0;
+#endif
+
+ DEBUG_TRIE_COMPILE_r({
+ regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
+ PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
+ (int)depth * 2 + 2,"", SvPV_nolen_const( RExC_mysv ), REG_NODE_NUM(cur) );
+
+ regprop(RExC_rx, RExC_mysv, noper, NULL, pRExC_state);
+ PerlIO_printf( Perl_debug_log, " -> %s",
+ SvPV_nolen_const(RExC_mysv));
+
+ if ( noper_next ) {
+ regprop(RExC_rx, RExC_mysv, noper_next, NULL, pRExC_state);
+ PerlIO_printf( Perl_debug_log,"\t=> %s\t",
+ SvPV_nolen_const(RExC_mysv));
+ }
+ PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d,tt==%s,nt==%s,nnt==%s)\n",
+ REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur),
+ PL_reg_name[trietype], PL_reg_name[noper_trietype], PL_reg_name[noper_next_trietype]
+ );
+ });
+
+ /* Is noper a trieable nodetype that can be merged
+ * with the current trie (if there is one)? */
+ if ( noper_trietype
+ &&
+ (
+ ( noper_trietype == NOTHING)
+ || ( trietype == NOTHING )
+ || ( trietype == noper_trietype )
+ )
+#ifdef NOJUMPTRIE
+ && noper_next == tail
+#endif
+ && count < U16_MAX)
+ {
+ /* Handle mergable triable node Either we are
+ * the first node in a new trieable sequence,
+ * in which case we do some bookkeeping,
+ * otherwise we update the end pointer. */
+ if ( !first ) {
+ first = cur;
+ if ( noper_trietype == NOTHING ) {
+#if !defined(DEBUGGING) && !defined(NOJUMPTRIE)
+ regnode * const noper_next = regnext( noper );
+ U8 noper_next_type = (noper_next && noper_next!=tail) ? OP(noper_next) : 0;
+ U8 noper_next_trietype = noper_next_type ? TRIE_TYPE( noper_next_type ) :0;
+#endif
+
+ if ( noper_next_trietype ) {
+ trietype = noper_next_trietype;
+ } else if (noper_next_type) {
+ /* a NOTHING regop is 1 regop wide.
+ * We need at least two for a trie
+ * so we can't merge this in */
+ first = NULL;
+ }
+ } else {
+ trietype = noper_trietype;
+ }
+ } else {
+ if ( trietype == NOTHING )
+ trietype = noper_trietype;
+ last = cur;
+ }
+ if (first)
+ count++;
+ } /* end handle mergable triable node */
+ else {
+ /* handle unmergable node -
+ * noper may either be a triable node which can
+ * not be tried together with the current trie,
+ * or a non triable node */
+ if ( last ) {
+ /* If last is set and trietype is not
+ * NOTHING then we have found at least two
+ * triable branch sequences in a row of a
+ * similar trietype so we can turn them
+ * into a trie. If/when we allow NOTHING to
+ * start a trie sequence this condition
+ * will be required, and it isn't expensive
+ * so we leave it in for now. */
+ if ( trietype && trietype != NOTHING )
+ make_trie( pRExC_state,
+ startbranch, first, cur, tail,
+ count, trietype, depth+1 );
+ last = NULL; /* note: we clear/update
+ first, trietype etc below,
+ so we dont do it here */
+ }
+ if ( noper_trietype
+#ifdef NOJUMPTRIE
+ && noper_next == tail
+#endif
+ ){
+ /* noper is triable, so we can start a new
+ * trie sequence */
+ count = 1;
+ first = cur;
+ trietype = noper_trietype;
+ } else if (first) {
+ /* if we already saw a first but the
+ * current node is not triable then we have
+ * to reset the first information. */
+ count = 0;
+ first = NULL;
+ trietype = 0;
+ }
+ } /* end handle unmergable node */
+ } /* loop over branches */
+ DEBUG_TRIE_COMPILE_r({
+ regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
+ PerlIO_printf( Perl_debug_log,
+ "%*s- %s (%d) <SCAN FINISHED>\n",
+ (int)depth * 2 + 2,
+ "", SvPV_nolen_const( RExC_mysv ),REG_NODE_NUM(cur));
+
+ });
+ if ( last && trietype ) {
+ if ( trietype != NOTHING ) {
+ /* the last branch of the sequence was part of
+ * a trie, so we have to construct it here
+ * outside of the loop */
+ made= make_trie( pRExC_state, startbranch,
+ first, scan, tail, count,
+ trietype, depth+1 );
+#ifdef TRIE_STUDY_OPT
+ if ( ((made == MADE_EXACT_TRIE &&
+ startbranch == first)
+ || ( first_non_open == first )) &&
+ depth==0 ) {
+ flags |= SCF_TRIE_RESTUDY;
+ if ( startbranch == first
+ && scan == tail )
+ {
+ RExC_seen &=~REG_TOP_LEVEL_BRANCHES_SEEN;
+ }
+ }
+#endif
+ } else {
+ /* at this point we know whatever we have is a
+ * NOTHING sequence/branch AND if 'startbranch'
+ * is 'first' then we can turn the whole thing
+ * into a NOTHING
+ */
+ if ( startbranch == first ) {
+ regnode *opt;
+ /* the entire thing is a NOTHING sequence,
+ * something like this: (?:|) So we can
+ * turn it into a plain NOTHING op. */
+ DEBUG_TRIE_COMPILE_r({
+ regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
+ PerlIO_printf( Perl_debug_log,
+ "%*s- %s (%d) <NOTHING BRANCH SEQUENCE>\n", (int)depth * 2 + 2,
+ "", SvPV_nolen_const( RExC_mysv ),REG_NODE_NUM(cur));
+
+ });
+ OP(startbranch)= NOTHING;
+ NEXT_OFF(startbranch)= tail - startbranch;
+ for ( opt= startbranch + 1; opt < tail ; opt++ )
+ OP(opt)= OPTIMIZED;
+ }
+ }
+ } /* end if ( last) */
+ } /* TRIE_MAXBUF is non zero */
+
+ } /* do trie */
+
+ }
+ else if ( code == BRANCHJ ) { /* single branch is optimized. */
+ scan = NEXTOPER(NEXTOPER(scan));
+ } else /* single branch is optimized. */
+ scan = NEXTOPER(scan);
+ continue;
+ } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
+ I32 paren = 0;
+ regnode *start = NULL;
+ regnode *end = NULL;
+ U32 my_recursed_depth= recursed_depth;
+
+
+ if (OP(scan) != SUSPEND) { /* GOSUB/GOSTART */
+ /* Do setup, note this code has side effects beyond
+ * the rest of this block. Specifically setting
+ * RExC_recurse[] must happen at least once during
+ * study_chunk(). */
+ if (OP(scan) == GOSUB) {
+ paren = ARG(scan);
+ RExC_recurse[ARG2L(scan)] = scan;
+ start = RExC_open_parens[paren-1];
+ end = RExC_close_parens[paren-1];
+ } else {
+ start = RExC_rxi->program + 1;
+ end = RExC_opend;
+ }
+ /* NOTE we MUST always execute the above code, even
+ * if we do nothing with a GOSUB/GOSTART */
+ if (
+ ( flags & SCF_IN_DEFINE )
+ ||
+ (
+ (is_inf_internal || is_inf || (data && data->flags & SF_IS_INF))
+ &&
+ ( (flags & (SCF_DO_STCLASS | SCF_DO_SUBSTR)) == 0 )
+ )
+ ) {
+ /* no need to do anything here if we are in a define. */
+ /* or we are after some kind of infinite construct
+ * so we can skip recursing into this item.
+ * Since it is infinite we will not change the maxlen
+ * or delta, and if we miss something that might raise
+ * the minlen it will merely pessimise a little.
+ *
+ * Iow /(?(DEFINE)(?<foo>foo|food))a+(?&foo)/
+ * might result in a minlen of 1 and not of 4,
+ * but this doesn't make us mismatch, just try a bit
+ * harder than we should.
+ * */
+ scan= regnext(scan);
+ continue;
+ }
+
+ if (
+ !recursed_depth
+ ||
+ !PAREN_TEST(RExC_study_chunk_recursed + ((recursed_depth-1) * RExC_study_chunk_recursed_bytes), paren)
+ ) {
+ /* it is quite possible that there are more efficient ways
+ * to do this. We maintain a bitmap per level of recursion
+ * of which patterns we have entered so we can detect if a
+ * pattern creates a possible infinite loop. When we
+ * recurse down a level we copy the previous levels bitmap
+ * down. When we are at recursion level 0 we zero the top
+ * level bitmap. It would be nice to implement a different
+ * more efficient way of doing this. In particular the top
+ * level bitmap may be unnecessary.
+ */
+ if (!recursed_depth) {
+ Zero(RExC_study_chunk_recursed, RExC_study_chunk_recursed_bytes, U8);
+ } else {
+ Copy(RExC_study_chunk_recursed + ((recursed_depth-1) * RExC_study_chunk_recursed_bytes),
+ RExC_study_chunk_recursed + (recursed_depth * RExC_study_chunk_recursed_bytes),
+ RExC_study_chunk_recursed_bytes, U8);
+ }
+ /* we havent recursed into this paren yet, so recurse into it */
+ DEBUG_STUDYDATA("set:", data,depth);
+ PAREN_SET(RExC_study_chunk_recursed + (recursed_depth * RExC_study_chunk_recursed_bytes), paren);
+ my_recursed_depth= recursed_depth + 1;
+ } else {
+ DEBUG_STUDYDATA("inf:", data,depth);
+ /* some form of infinite recursion, assume infinite length
+ * */
+ if (flags & SCF_DO_SUBSTR) {
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+ ssc_anything(data->start_class);
+ flags &= ~SCF_DO_STCLASS;
+
+ start= NULL; /* reset start so we dont recurse later on. */
+ }
+ } else {
+ paren = stopparen;
+ start = scan + 2;
+ end = regnext(scan);
+ }
+ if (start) {
+ scan_frame *newframe;
+ assert(end);
+ if (!RExC_frame_last) {
+ Newxz(newframe, 1, scan_frame);
+ SAVEDESTRUCTOR_X(S_unwind_scan_frames, newframe);
+ RExC_frame_head= newframe;
+ RExC_frame_count++;
+ } else if (!RExC_frame_last->next_frame) {
+ Newxz(newframe,1,scan_frame);
+ RExC_frame_last->next_frame= newframe;
+ newframe->prev_frame= RExC_frame_last;
+ RExC_frame_count++;
+ } else {
+ newframe= RExC_frame_last->next_frame;
+ }
+ RExC_frame_last= newframe;
+
+ newframe->next_regnode = regnext(scan);
+ newframe->last_regnode = last;
+ newframe->stopparen = stopparen;
+ newframe->prev_recursed_depth = recursed_depth;
+ newframe->this_prev_frame= frame;
+
+ DEBUG_STUDYDATA("frame-new:",data,depth);
+ DEBUG_PEEP("fnew", scan, depth);
+
+ frame = newframe;
+ scan = start;
+ stopparen = paren;
+ last = end;
+ depth = depth + 1;
+ recursed_depth= my_recursed_depth;
+
+ continue;
+ }
+ }
+ else if (OP(scan) == EXACT || OP(scan) == EXACTL) {
+ SSize_t l = STR_LEN(scan);
+ UV uc;
+ if (UTF) {
+ const U8 * const s = (U8*)STRING(scan);
+ uc = utf8_to_uvchr_buf(s, s + l, NULL);
+ l = utf8_length(s, s + l);
+ } else {
+ uc = *((U8*)STRING(scan));
+ }
+ min += l;
+ if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
+ /* The code below prefers earlier match for fixed
+ offset, later match for variable offset. */
+ if (data->last_end == -1) { /* Update the start info. */
+ data->last_start_min = data->pos_min;
+ data->last_start_max = is_inf
+ ? SSize_t_MAX : data->pos_min + data->pos_delta;
+ }
+ sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
+ if (UTF)
+ SvUTF8_on(data->last_found);
+ {
+ SV * const sv = data->last_found;
+ MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
+ mg_find(sv, PERL_MAGIC_utf8) : NULL;
+ if (mg && mg->mg_len >= 0)
+ mg->mg_len += utf8_length((U8*)STRING(scan),
+ (U8*)STRING(scan)+STR_LEN(scan));
+ }
+ data->last_end = data->pos_min + l;
+ data->pos_min += l; /* As in the first entry. */
+ data->flags &= ~SF_BEFORE_EOL;
+ }
+
+ /* ANDing the code point leaves at most it, and not in locale, and
+ * can't match null string */
+ if (flags & SCF_DO_STCLASS_AND) {
+ ssc_cp_and(data->start_class, uc);
+ ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+ ssc_clear_locale(data->start_class);
+ }
+ else if (flags & SCF_DO_STCLASS_OR) {
+ ssc_add_cp(data->start_class, uc);
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+
+ /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
+ ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+ }
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else if (PL_regkind[OP(scan)] == EXACT) {
+ /* But OP != EXACT!, so is EXACTFish */
+ SSize_t l = STR_LEN(scan);
+ const U8 * s = (U8*)STRING(scan);
+
+ /* Search for fixed substrings supports EXACT only. */
+ if (flags & SCF_DO_SUBSTR) {
+ assert(data);
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ }
+ if (UTF) {
+ l = utf8_length(s, s + l);
+ }
+ if (unfolded_multi_char) {
+ RExC_seen |= REG_UNFOLDED_MULTI_SEEN;
+ }
+ min += l - min_subtract;
+ assert (min >= 0);
+ delta += min_subtract;
+ if (flags & SCF_DO_SUBSTR) {
+ data->pos_min += l - min_subtract;
+ if (data->pos_min < 0) {
+ data->pos_min = 0;
+ }
+ data->pos_delta += min_subtract;
+ if (min_subtract) {
+ data->longest = &(data->longest_float);
+ }
+ }
+
+ if (flags & SCF_DO_STCLASS) {
+ SV* EXACTF_invlist = _make_exactf_invlist(pRExC_state, scan);
+
+ assert(EXACTF_invlist);
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (OP(scan) != EXACTFL)
+ ssc_clear_locale(data->start_class);
+ ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+ ANYOF_POSIXL_ZERO(data->start_class);
+ ssc_intersection(data->start_class, EXACTF_invlist, FALSE);
+ }
+ else { /* SCF_DO_STCLASS_OR */
+ ssc_union(data->start_class, EXACTF_invlist, FALSE);
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+
+ /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
+ ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+ }
+ flags &= ~SCF_DO_STCLASS;
+ SvREFCNT_dec(EXACTF_invlist);
+ }
+ }
+ else if (REGNODE_VARIES(OP(scan))) {
+ SSize_t mincount, maxcount, minnext, deltanext, pos_before = 0;
+ I32 fl = 0, f = flags;
+ regnode * const oscan = scan;
+ regnode_ssc this_class;
+ regnode_ssc *oclass = NULL;
+ I32 next_is_eval = 0;
+
+ switch (PL_regkind[OP(scan)]) {
+ case WHILEM: /* End of (?:...)* . */
+ scan = NEXTOPER(scan);
+ goto finish;
+ case PLUS:
+ if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
+ next = NEXTOPER(scan);
+ if (OP(next) == EXACT
+ || OP(next) == EXACTL
+ || (flags & SCF_DO_STCLASS))
+ {
+ mincount = 1;
+ maxcount = REG_INFTY;
+ next = regnext(scan);
+ scan = NEXTOPER(scan);
+ goto do_curly;
+ }
+ }
+ if (flags & SCF_DO_SUBSTR)
+ data->pos_min++;
+ min++;
+ /* FALLTHROUGH */
+ case STAR:
+ if (flags & SCF_DO_STCLASS) {
+ mincount = 0;
+ maxcount = REG_INFTY;
+ next = regnext(scan);
+ scan = NEXTOPER(scan);
+ goto do_curly;
+ }
+ if (flags & SCF_DO_SUBSTR) {
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ /* Cannot extend fixed substrings */
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ scan = regnext(scan);
+ goto optimize_curly_tail;
+ case CURLY:
+ if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
+ && (scan->flags == stopparen))
+ {
+ mincount = 1;
+ maxcount = 1;
+ } else {
+ mincount = ARG1(scan);
+ maxcount = ARG2(scan);
+ }
+ next = regnext(scan);
+ if (OP(scan) == CURLYX) {
+ I32 lp = (data ? *(data->last_closep) : 0);
+ scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
+ }
+ scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
+ next_is_eval = (OP(scan) == EVAL);
+ do_curly:
+ if (flags & SCF_DO_SUBSTR) {
+ if (mincount == 0)
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ /* Cannot extend fixed substrings */
+ pos_before = data->pos_min;
+ }
+ if (data) {
+ fl = data->flags;
+ data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
+ if (is_inf)
+ data->flags |= SF_IS_INF;
+ }
+ if (flags & SCF_DO_STCLASS) {
+ ssc_init(pRExC_state, &this_class);
+ oclass = data->start_class;
+ data->start_class = &this_class;
+ f |= SCF_DO_STCLASS_AND;
+ f &= ~SCF_DO_STCLASS_OR;
+ }
+ /* Exclude from super-linear cache processing any {n,m}
+ regops for which the combination of input pos and regex
+ pos is not enough information to determine if a match
+ will be possible.
+
+ For example, in the regex /foo(bar\s*){4,8}baz/ with the
+ regex pos at the \s*, the prospects for a match depend not
+ only on the input position but also on how many (bar\s*)
+ repeats into the {4,8} we are. */
+ if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
+ f &= ~SCF_WHILEM_VISITED_POS;
+
+ /* This will finish on WHILEM, setting scan, or on NULL: */
+ minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
+ last, data, stopparen, recursed_depth, NULL,
+ (mincount == 0
+ ? (f & ~SCF_DO_SUBSTR)
+ : f)
+ ,depth+1);
+
+ if (flags & SCF_DO_STCLASS)
+ data->start_class = oclass;
+ if (mincount == 0 || minnext == 0) {
+ if (flags & SCF_DO_STCLASS_OR) {
+ ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ /* Switch to OR mode: cache the old value of
+ * data->start_class */
+ INIT_AND_WITHP;
+ StructCopy(data->start_class, and_withp, regnode_ssc);
+ flags &= ~SCF_DO_STCLASS_AND;
+ StructCopy(&this_class, data->start_class, regnode_ssc);
+ flags |= SCF_DO_STCLASS_OR;
+ ANYOF_FLAGS(data->start_class)
+ |= SSC_MATCHES_EMPTY_STRING;
+ }
+ } else { /* Non-zero len */
+ if (flags & SCF_DO_STCLASS_OR) {
+ ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+ }
+ else if (flags & SCF_DO_STCLASS_AND)
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ if (!scan) /* It was not CURLYX, but CURLY. */
+ scan = next;
+ if (!(flags & SCF_TRIE_DOING_RESTUDY)
+ /* ? quantifier ok, except for (?{ ... }) */
+ && (next_is_eval || !(mincount == 0 && maxcount == 1))
+ && (minnext == 0) && (deltanext == 0)
+ && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
+ && maxcount <= REG_INFTY/3) /* Complement check for big
+ count */
+ {
+ /* Fatal warnings may leak the regexp without this: */
+ SAVEFREESV(RExC_rx_sv);
+ Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP),
+ "Quantifier unexpected on zero-length expression "
+ "in regex m/%"UTF8f"/",
+ UTF8fARG(UTF, RExC_end - RExC_precomp,
+ RExC_precomp));
+ (void)ReREFCNT_inc(RExC_rx_sv);
+ }
+
+ min += minnext * mincount;
+ is_inf_internal |= deltanext == SSize_t_MAX
+ || (maxcount == REG_INFTY && minnext + deltanext > 0);
+ is_inf |= is_inf_internal;
+ if (is_inf) {
+ delta = SSize_t_MAX;
+ } else {
+ delta += (minnext + deltanext) * maxcount
+ - minnext * mincount;
+ }
+ /* Try powerful optimization CURLYX => CURLYN. */
+ if ( OP(oscan) == CURLYX && data
+ && data->flags & SF_IN_PAR
+ && !(data->flags & SF_HAS_EVAL)
+ && !deltanext && minnext == 1 ) {
+ /* Try to optimize to CURLYN. */
+ regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
+ regnode * const nxt1 = nxt;
+#ifdef DEBUGGING
+ regnode *nxt2;
+#endif
+
+ /* Skip open. */
+ nxt = regnext(nxt);
+ if (!REGNODE_SIMPLE(OP(nxt))
+ && !(PL_regkind[OP(nxt)] == EXACT
+ && STR_LEN(nxt) == 1))
+ goto nogo;
+#ifdef DEBUGGING
+ nxt2 = nxt;
+#endif
+ nxt = regnext(nxt);
+ if (OP(nxt) != CLOSE)
+ goto nogo;
+ if (RExC_open_parens) {
+ RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
+ RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
+ }
+ /* Now we know that nxt2 is the only contents: */
+ oscan->flags = (U8)ARG(nxt);
+ OP(oscan) = CURLYN;
+ OP(nxt1) = NOTHING; /* was OPEN. */
+
+#ifdef DEBUGGING
+ OP(nxt1 + 1) = OPTIMIZED; /* was count. */
+ NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
+ NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
+ OP(nxt) = OPTIMIZED; /* was CLOSE. */
+ OP(nxt + 1) = OPTIMIZED; /* was count. */
+ NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
+#endif
+ }
+ nogo:
+
+ /* Try optimization CURLYX => CURLYM. */
+ if ( OP(oscan) == CURLYX && data
+ && !(data->flags & SF_HAS_PAR)
+ && !(data->flags & SF_HAS_EVAL)
+ && !deltanext /* atom is fixed width */
+ && minnext != 0 /* CURLYM can't handle zero width */
+
+ /* Nor characters whose fold at run-time may be
+ * multi-character */
+ && ! (RExC_seen & REG_UNFOLDED_MULTI_SEEN)
+ ) {
+ /* XXXX How to optimize if data == 0? */
+ /* Optimize to a simpler form. */
+ regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
+ regnode *nxt2;
+
+ OP(oscan) = CURLYM;
+ while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
+ && (OP(nxt2) != WHILEM))
+ nxt = nxt2;
+ OP(nxt2) = SUCCEED; /* Whas WHILEM */
+ /* Need to optimize away parenths. */
+ if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
+ /* Set the parenth number. */
+ regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
+
+ oscan->flags = (U8)ARG(nxt);
+ if (RExC_open_parens) {
+ RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
+ RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
+ }
+ OP(nxt1) = OPTIMIZED; /* was OPEN. */
+ OP(nxt) = OPTIMIZED; /* was CLOSE. */
+
+#ifdef DEBUGGING
+ OP(nxt1 + 1) = OPTIMIZED; /* was count. */
+ OP(nxt + 1) = OPTIMIZED; /* was count. */
+ NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
+ NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
+#endif
+#if 0
+ while ( nxt1 && (OP(nxt1) != WHILEM)) {
+ regnode *nnxt = regnext(nxt1);
+ if (nnxt == nxt) {
+ if (reg_off_by_arg[OP(nxt1)])
+ ARG_SET(nxt1, nxt2 - nxt1);
+ else if (nxt2 - nxt1 < U16_MAX)
+ NEXT_OFF(nxt1) = nxt2 - nxt1;
+ else
+ OP(nxt) = NOTHING; /* Cannot beautify */
+ }
+ nxt1 = nnxt;
+ }
+#endif
+ /* Optimize again: */
+ study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
+ NULL, stopparen, recursed_depth, NULL, 0,depth+1);
+ }
+ else
+ oscan->flags = 0;
+ }
+ else if ((OP(oscan) == CURLYX)
+ && (flags & SCF_WHILEM_VISITED_POS)
+ /* See the comment on a similar expression above.
+ However, this time it's not a subexpression
+ we care about, but the expression itself. */
+ && (maxcount == REG_INFTY)
+ && data && ++data->whilem_c < 16) {
+ /* This stays as CURLYX, we can put the count/of pair. */
+ /* Find WHILEM (as in regexec.c) */
+ regnode *nxt = oscan + NEXT_OFF(oscan);
+
+ if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
+ nxt += ARG(nxt);
+ PREVOPER(nxt)->flags = (U8)(data->whilem_c
+ | (RExC_whilem_seen << 4)); /* On WHILEM */
+ }
+ if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (flags & SCF_DO_SUBSTR) {
+ SV *last_str = NULL;
+ STRLEN last_chrs = 0;
+ int counted = mincount != 0;
+
+ if (data->last_end > 0 && mincount != 0) { /* Ends with a
+ string. */
+ SSize_t b = pos_before >= data->last_start_min
+ ? pos_before : data->last_start_min;
+ STRLEN l;
+ const char * const s = SvPV_const(data->last_found, l);
+ SSize_t old = b - data->last_start_min;
+
+ if (UTF)
+ old = utf8_hop((U8*)s, old) - (U8*)s;
+ l -= old;
+ /* Get the added string: */
+ last_str = newSVpvn_utf8(s + old, l, UTF);
+ last_chrs = UTF ? utf8_length((U8*)(s + old),
+ (U8*)(s + old + l)) : l;
+ if (deltanext == 0 && pos_before == b) {
+ /* What was added is a constant string */
+ if (mincount > 1) {
+
+ SvGROW(last_str, (mincount * l) + 1);
+ repeatcpy(SvPVX(last_str) + l,
+ SvPVX_const(last_str), l,
+ mincount - 1);
+ SvCUR_set(last_str, SvCUR(last_str) * mincount);
+ /* Add additional parts. */
+ SvCUR_set(data->last_found,
+ SvCUR(data->last_found) - l);
+ sv_catsv(data->last_found, last_str);
+ {
+ SV * sv = data->last_found;
+ MAGIC *mg =
+ SvUTF8(sv) && SvMAGICAL(sv) ?
+ mg_find(sv, PERL_MAGIC_utf8) : NULL;
+ if (mg && mg->mg_len >= 0)
+ mg->mg_len += last_chrs * (mincount-1);
+ }
+ last_chrs *= mincount;
+ data->last_end += l * (mincount - 1);
+ }
+ } else {
+ /* start offset must point into the last copy */
+ data->last_start_min += minnext * (mincount - 1);
+ data->last_start_max =
+ is_inf
+ ? SSize_t_MAX
+ : data->last_start_max +
+ (maxcount - 1) * (minnext + data->pos_delta);
+ }
+ }
+ /* It is counted once already... */
+ data->pos_min += minnext * (mincount - counted);
+#if 0
+PerlIO_printf(Perl_debug_log, "counted=%"UVuf" deltanext=%"UVuf
+ " SSize_t_MAX=%"UVuf" minnext=%"UVuf
+ " maxcount=%"UVuf" mincount=%"UVuf"\n",
+ (UV)counted, (UV)deltanext, (UV)SSize_t_MAX, (UV)minnext, (UV)maxcount,
+ (UV)mincount);
+if (deltanext != SSize_t_MAX)
+PerlIO_printf(Perl_debug_log, "LHS=%"UVuf" RHS=%"UVuf"\n",
+ (UV)(-counted * deltanext + (minnext + deltanext) * maxcount
+ - minnext * mincount), (UV)(SSize_t_MAX - data->pos_delta));
+#endif
+ if (deltanext == SSize_t_MAX
+ || -counted * deltanext + (minnext + deltanext) * maxcount - minnext * mincount >= SSize_t_MAX - data->pos_delta)
+ data->pos_delta = SSize_t_MAX;
+ else
+ data->pos_delta += - counted * deltanext +
+ (minnext + deltanext) * maxcount - minnext * mincount;
+ if (mincount != maxcount) {
+ /* Cannot extend fixed substrings found inside
+ the group. */
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ if (mincount && last_str) {
+ SV * const sv = data->last_found;
+ MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
+ mg_find(sv, PERL_MAGIC_utf8) : NULL;
+
+ if (mg)
+ mg->mg_len = -1;
+ sv_setsv(sv, last_str);
+ data->last_end = data->pos_min;
+ data->last_start_min = data->pos_min - last_chrs;
+ data->last_start_max = is_inf
+ ? SSize_t_MAX
+ : data->pos_min + data->pos_delta - last_chrs;
+ }
+ data->longest = &(data->longest_float);
+ }
+ SvREFCNT_dec(last_str);
+ }
+ if (data && (fl & SF_HAS_EVAL))
+ data->flags |= SF_HAS_EVAL;
+ optimize_curly_tail:
+ if (OP(oscan) != CURLYX) {
+ while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
+ && NEXT_OFF(next))
+ NEXT_OFF(oscan) += NEXT_OFF(next);
+ }
+ continue;
+
+ default:
+#ifdef DEBUGGING
+ Perl_croak(aTHX_ "panic: unexpected varying REx opcode %d",
+ OP(scan));
+#endif
+ case REF:
+ case CLUMP:
+ if (flags & SCF_DO_SUBSTR) {
+ /* Cannot expect anything... */
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ if (flags & SCF_DO_STCLASS_OR) {
+ if (OP(scan) == CLUMP) {
+ /* Actually is any start char, but very few code points
+ * aren't start characters */
+ ssc_match_all_cp(data->start_class);
+ }
+ else {
+ ssc_anything(data->start_class);
+ }
+ }
+ flags &= ~SCF_DO_STCLASS;
+ break;
+ }
+ }
+ else if (OP(scan) == LNBREAK) {
+ if (flags & SCF_DO_STCLASS) {
+ if (flags & SCF_DO_STCLASS_AND) {
+ ssc_intersection(data->start_class,
+ PL_XPosix_ptrs[_CC_VERTSPACE], FALSE);
+ ssc_clear_locale(data->start_class);
+ ANYOF_FLAGS(data->start_class)
+ &= ~SSC_MATCHES_EMPTY_STRING;
+ }
+ else if (flags & SCF_DO_STCLASS_OR) {
+ ssc_union(data->start_class,
+ PL_XPosix_ptrs[_CC_VERTSPACE],
+ FALSE);
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+
+ /* See commit msg for
+ * 749e076fceedeb708a624933726e7989f2302f6a */
+ ANYOF_FLAGS(data->start_class)
+ &= ~SSC_MATCHES_EMPTY_STRING;
+ }
+ flags &= ~SCF_DO_STCLASS;
+ }
+ min++;
+ if (delta != SSize_t_MAX)
+ delta++; /* Because of the 2 char string cr-lf */
+ if (flags & SCF_DO_SUBSTR) {
+ /* Cannot expect anything... */
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ data->pos_min += 1;
+ data->pos_delta += 1;
+ data->longest = &(data->longest_float);
+ }
+ }
+ else if (REGNODE_SIMPLE(OP(scan))) {
+
+ if (flags & SCF_DO_SUBSTR) {
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ data->pos_min++;
+ }
+ min++;
+ if (flags & SCF_DO_STCLASS) {
+ bool invert = 0;
+ SV* my_invlist = NULL;
+ U8 namedclass;
+
+ /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
+ ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
+
+ /* Some of the logic below assumes that switching
+ locale on will only add false positives. */
+ switch (OP(scan)) {
+
+ default:
+#ifdef DEBUGGING
+ Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d",
+ OP(scan));
+#endif
+ case SANY:
+ if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+ ssc_match_all_cp(data->start_class);
+ break;
+
+ case REG_ANY:
+ {
+ SV* REG_ANY_invlist = _new_invlist(2);
+ REG_ANY_invlist = add_cp_to_invlist(REG_ANY_invlist,
+ '\n');
+ if (flags & SCF_DO_STCLASS_OR) {
+ ssc_union(data->start_class,
+ REG_ANY_invlist,
+ TRUE /* TRUE => invert, hence all but \n
+ */
+ );
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ ssc_intersection(data->start_class,
+ REG_ANY_invlist,
+ TRUE /* TRUE => invert */
+ );
+ ssc_clear_locale(data->start_class);
+ }
+ SvREFCNT_dec_NN(REG_ANY_invlist);
+ }
+ break;
+
+ case ANYOFL:
+ case ANYOF:
+ if (flags & SCF_DO_STCLASS_AND)
+ ssc_and(pRExC_state, data->start_class,
+ (regnode_charclass *) scan);
+ else
+ ssc_or(pRExC_state, data->start_class,
+ (regnode_charclass *) scan);
+ break;
+
+ case NPOSIXL:
+ invert = 1;
+ /* FALLTHROUGH */
+
+ case POSIXL:
+ namedclass = classnum_to_namedclass(FLAGS(scan)) + invert;
+ if (flags & SCF_DO_STCLASS_AND) {
+ bool was_there = cBOOL(
+ ANYOF_POSIXL_TEST(data->start_class,
+ namedclass));
+ ANYOF_POSIXL_ZERO(data->start_class);
+ if (was_there) { /* Do an AND */
+ ANYOF_POSIXL_SET(data->start_class, namedclass);
+ }
+ /* No individual code points can now match */
+ data->start_class->invlist
+ = sv_2mortal(_new_invlist(0));
+ }
+ else {
+ int complement = namedclass + ((invert) ? -1 : 1);
+
+ assert(flags & SCF_DO_STCLASS_OR);
+
+ /* If the complement of this class was already there,
+ * the result is that they match all code points,
+ * (\d + \D == everything). Remove the classes from
+ * future consideration. Locale is not relevant in
+ * this case */
+ if (ANYOF_POSIXL_TEST(data->start_class, complement)) {
+ ssc_match_all_cp(data->start_class);
+ ANYOF_POSIXL_CLEAR(data->start_class, namedclass);
+ ANYOF_POSIXL_CLEAR(data->start_class, complement);
+ }
+ else { /* The usual case; just add this class to the
+ existing set */
+ ANYOF_POSIXL_SET(data->start_class, namedclass);
+ }
+ }
+ break;
+
+ case NPOSIXA: /* For these, we always know the exact set of
+ what's matched */
+ invert = 1;
+ /* FALLTHROUGH */
+ case POSIXA:
+ if (FLAGS(scan) == _CC_ASCII) {
+ my_invlist = invlist_clone(PL_XPosix_ptrs[_CC_ASCII]);
+ }
+ else {
+ _invlist_intersection(PL_XPosix_ptrs[FLAGS(scan)],
+ PL_XPosix_ptrs[_CC_ASCII],
+ &my_invlist);
+ }
+ goto join_posix;
+
+ case NPOSIXD:
+ case NPOSIXU:
+ invert = 1;
+ /* FALLTHROUGH */
+ case POSIXD:
+ case POSIXU:
+ my_invlist = invlist_clone(PL_XPosix_ptrs[FLAGS(scan)]);
+
+ /* NPOSIXD matches all upper Latin1 code points unless the
+ * target string being matched is UTF-8, which is
+ * unknowable until match time. Since we are going to
+ * invert, we want to get rid of all of them so that the
+ * inversion will match all */
+ if (OP(scan) == NPOSIXD) {
+ _invlist_subtract(my_invlist, PL_UpperLatin1,
+ &my_invlist);
+ }
+
+ join_posix:
+
+ if (flags & SCF_DO_STCLASS_AND) {
+ ssc_intersection(data->start_class, my_invlist, invert);
+ ssc_clear_locale(data->start_class);
+ }
+ else {
+ assert(flags & SCF_DO_STCLASS_OR);
+ ssc_union(data->start_class, my_invlist, invert);
+ }
+ SvREFCNT_dec(my_invlist);
+ }
+ if (flags & SCF_DO_STCLASS_OR)
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ }
+ else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
+ data->flags |= (OP(scan) == MEOL
+ ? SF_BEFORE_MEOL
+ : SF_BEFORE_SEOL);
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+
+ }
+ else if ( PL_regkind[OP(scan)] == BRANCHJ
+ /* Lookbehind, or need to calculate parens/evals/stclass: */
+ && (scan->flags || data || (flags & SCF_DO_STCLASS))
+ && (OP(scan) == IFMATCH || OP(scan) == UNLESSM))
+ {
+ if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
+ || OP(scan) == UNLESSM )
+ {
+ /* Negative Lookahead/lookbehind
+ In this case we can't do fixed string optimisation.
+ */
+
+ SSize_t deltanext, minnext, fake = 0;
+ regnode *nscan;
+ regnode_ssc intrnl;
+ int f = 0;
+
+ StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+ if (data) {
+ data_fake.whilem_c = data->whilem_c;
+ data_fake.last_closep = data->last_closep;
+ }
+ else
+ data_fake.last_closep = &fake;
+ data_fake.pos_delta = delta;
+ if ( flags & SCF_DO_STCLASS && !scan->flags
+ && OP(scan) == IFMATCH ) { /* Lookahead */
+ ssc_init(pRExC_state, &intrnl);
+ data_fake.start_class = &intrnl;
+ f |= SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+ next = regnext(scan);
+ nscan = NEXTOPER(NEXTOPER(scan));
+ minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
+ last, &data_fake, stopparen,
+ recursed_depth, NULL, f, depth+1);
+ if (scan->flags) {
+ if (deltanext) {
+ FAIL("Variable length lookbehind not implemented");
+ }
+ else if (minnext > (I32)U8_MAX) {
+ FAIL2("Lookbehind longer than %"UVuf" not implemented",
+ (UV)U8_MAX);
+ }
+ scan->flags = (U8)minnext;
+ }
+ if (data) {
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ }
+ if (f & SCF_DO_STCLASS_AND) {
+ if (flags & SCF_DO_STCLASS_OR) {
+ /* OR before, AND after: ideally we would recurse with
+ * data_fake to get the AND applied by study of the
+ * remainder of the pattern, and then derecurse;
+ * *** HACK *** for now just treat as "no information".
+ * See [perl #56690].
+ */
+ ssc_init(pRExC_state, data->start_class);
+ } else {
+ /* AND before and after: combine and continue. These
+ * assertions are zero-length, so can match an EMPTY
+ * string */
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &intrnl);
+ ANYOF_FLAGS(data->start_class)
+ |= SSC_MATCHES_EMPTY_STRING;
+ }
+ }
+ }
+#if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
+ else {
+ /* Positive Lookahead/lookbehind
+ In this case we can do fixed string optimisation,
+ but we must be careful about it. Note in the case of
+ lookbehind the positions will be offset by the minimum
+ length of the pattern, something we won't know about
+ until after the recurse.
+ */
+ SSize_t deltanext, fake = 0;
+ regnode *nscan;
+ regnode_ssc intrnl;
+ int f = 0;
+ /* We use SAVEFREEPV so that when the full compile
+ is finished perl will clean up the allocated
+ minlens when it's all done. This way we don't
+ have to worry about freeing them when we know
+ they wont be used, which would be a pain.
+ */
+ SSize_t *minnextp;
+ Newx( minnextp, 1, SSize_t );
+ SAVEFREEPV(minnextp);
+
+ if (data) {
+ StructCopy(data, &data_fake, scan_data_t);
+ if ((flags & SCF_DO_SUBSTR) && data->last_found) {
+ f |= SCF_DO_SUBSTR;
+ if (scan->flags)
+ scan_commit(pRExC_state, &data_fake, minlenp, is_inf);
+ data_fake.last_found=newSVsv(data->last_found);
+ }
+ }
+ else
+ data_fake.last_closep = &fake;
+ data_fake.flags = 0;
+ data_fake.pos_delta = delta;
+ if (is_inf)
+ data_fake.flags |= SF_IS_INF;
+ if ( flags & SCF_DO_STCLASS && !scan->flags
+ && OP(scan) == IFMATCH ) { /* Lookahead */
+ ssc_init(pRExC_state, &intrnl);
+ data_fake.start_class = &intrnl;
+ f |= SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+ next = regnext(scan);
+ nscan = NEXTOPER(NEXTOPER(scan));
+
+ *minnextp = study_chunk(pRExC_state, &nscan, minnextp,
+ &deltanext, last, &data_fake,
+ stopparen, recursed_depth, NULL,
+ f,depth+1);
+ if (scan->flags) {
+ if (deltanext) {
+ FAIL("Variable length lookbehind not implemented");
+ }
+ else if (*minnextp > (I32)U8_MAX) {
+ FAIL2("Lookbehind longer than %"UVuf" not implemented",
+ (UV)U8_MAX);
+ }
+ scan->flags = (U8)*minnextp;
+ }
+
+ *minnextp += min;
+
+ if (f & SCF_DO_STCLASS_AND) {
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &intrnl);
+ ANYOF_FLAGS(data->start_class) |= SSC_MATCHES_EMPTY_STRING;
+ }
+ if (data) {
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
+ if (RExC_rx->minlen<*minnextp)
+ RExC_rx->minlen=*minnextp;
+ scan_commit(pRExC_state, &data_fake, minnextp, is_inf);
+ SvREFCNT_dec_NN(data_fake.last_found);
+
+ if ( data_fake.minlen_fixed != minlenp )
+ {
+ data->offset_fixed= data_fake.offset_fixed;
+ data->minlen_fixed= data_fake.minlen_fixed;
+ data->lookbehind_fixed+= scan->flags;
+ }
+ if ( data_fake.minlen_float != minlenp )
+ {
+ data->minlen_float= data_fake.minlen_float;
+ data->offset_float_min=data_fake.offset_float_min;
+ data->offset_float_max=data_fake.offset_float_max;
+ data->lookbehind_float+= scan->flags;
+ }
+ }
+ }
+ }
+#endif
+ }
+ else if (OP(scan) == OPEN) {
+ if (stopparen != (I32)ARG(scan))
+ pars++;
+ }
+ else if (OP(scan) == CLOSE) {
+ if (stopparen == (I32)ARG(scan)) {
+ break;
+ }
+ if ((I32)ARG(scan) == is_par) {
+ next = regnext(scan);
+
+ if ( next && (OP(next) != WHILEM) && next < last)
+ is_par = 0; /* Disable optimization */
+ }
+ if (data)
+ *(data->last_closep) = ARG(scan);
+ }
+ else if (OP(scan) == EVAL) {
+ if (data)
+ data->flags |= SF_HAS_EVAL;
+ }
+ else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
+ if (flags & SCF_DO_SUBSTR) {
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ flags &= ~SCF_DO_SUBSTR;
+ }
+ if (data && OP(scan)==ACCEPT) {
+ data->flags |= SCF_SEEN_ACCEPT;
+ if (stopmin > min)
+ stopmin = min;
+ }
+ }
+ else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
+ {
+ if (flags & SCF_DO_SUBSTR) {
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+ ssc_anything(data->start_class);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else if (OP(scan) == GPOS) {
+ if (!(RExC_rx->intflags & PREGf_GPOS_FLOAT) &&
+ !(delta || is_inf || (data && data->pos_delta)))
+ {
+ if (!(RExC_rx->intflags & PREGf_ANCH) && (flags & SCF_DO_SUBSTR))
+ RExC_rx->intflags |= PREGf_ANCH_GPOS;
+ if (RExC_rx->gofs < (STRLEN)min)
+ RExC_rx->gofs = min;
+ } else {
+ RExC_rx->intflags |= PREGf_GPOS_FLOAT;
+ RExC_rx->gofs = 0;
+ }
+ }
+#ifdef TRIE_STUDY_OPT
+#ifdef FULL_TRIE_STUDY
+ else if (PL_regkind[OP(scan)] == TRIE) {
+ /* NOTE - There is similar code to this block above for handling
+ BRANCH nodes on the initial study. If you change stuff here
+ check there too. */
+ regnode *trie_node= scan;
+ regnode *tail= regnext(scan);
+ reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
+ SSize_t max1 = 0, min1 = SSize_t_MAX;
+ regnode_ssc accum;
+
+ if (flags & SCF_DO_SUBSTR) { /* XXXX Add !SUSPEND? */
+ /* Cannot merge strings after this. */
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ }
+ if (flags & SCF_DO_STCLASS)
+ ssc_init_zero(pRExC_state, &accum);
+
+ if (!trie->jump) {
+ min1= trie->minlen;
+ max1= trie->maxlen;
+ } else {
+ const regnode *nextbranch= NULL;
+ U32 word;
+
+ for ( word=1 ; word <= trie->wordcount ; word++)
+ {
+ SSize_t deltanext=0, minnext=0, f = 0, fake;
+ regnode_ssc this_class;
+
+ StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+ if (data) {
+ data_fake.whilem_c = data->whilem_c;
+ data_fake.last_closep = data->last_closep;
+ }
+ else
+ data_fake.last_closep = &fake;
+ data_fake.pos_delta = delta;
+ if (flags & SCF_DO_STCLASS) {
+ ssc_init(pRExC_state, &this_class);
+ data_fake.start_class = &this_class;
+ f = SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+
+ if (trie->jump[word]) {
+ if (!nextbranch)
+ nextbranch = trie_node + trie->jump[0];
+ scan= trie_node + trie->jump[word];
+ /* We go from the jump point to the branch that follows
+ it. Note this means we need the vestigal unused
+ branches even though they arent otherwise used. */
+ minnext = study_chunk(pRExC_state, &scan, minlenp,
+ &deltanext, (regnode *)nextbranch, &data_fake,
+ stopparen, recursed_depth, NULL, f,depth+1);
+ }
+ if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
+ nextbranch= regnext((regnode*)nextbranch);
+
+ if (min1 > (SSize_t)(minnext + trie->minlen))
+ min1 = minnext + trie->minlen;
+ if (deltanext == SSize_t_MAX) {
+ is_inf = is_inf_internal = 1;
+ max1 = SSize_t_MAX;
+ } else if (max1 < (SSize_t)(minnext + deltanext + trie->maxlen))
+ max1 = minnext + deltanext + trie->maxlen;
+
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SCF_SEEN_ACCEPT) {
+ if ( stopmin > min + min1)
+ stopmin = min + min1;
+ flags &= ~SCF_DO_SUBSTR;
+ if (data)
+ data->flags |= SCF_SEEN_ACCEPT;
+ }
+ if (data) {
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ }
+ if (flags & SCF_DO_STCLASS)
+ ssc_or(pRExC_state, &accum, (regnode_charclass *) &this_class);
+ }
+ }
+ if (flags & SCF_DO_SUBSTR) {
+ data->pos_min += min1;
+ data->pos_delta += max1 - min1;
+ if (max1 != min1 || is_inf)
+ data->longest = &(data->longest_float);
+ }
+ min += min1;
+ if (delta != SSize_t_MAX)
+ delta += max1 - min1;
+ if (flags & SCF_DO_STCLASS_OR) {
+ ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &accum);
+ if (min1) {
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ if (min1) {
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else {
+ /* Switch to OR mode: cache the old value of
+ * data->start_class */
+ INIT_AND_WITHP;
+ StructCopy(data->start_class, and_withp, regnode_ssc);
+ flags &= ~SCF_DO_STCLASS_AND;
+ StructCopy(&accum, data->start_class, regnode_ssc);
+ flags |= SCF_DO_STCLASS_OR;
+ }
+ }
+ scan= tail;
+ continue;
+ }
+#else
+ else if (PL_regkind[OP(scan)] == TRIE) {
+ reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
+ U8*bang=NULL;
+
+ min += trie->minlen;
+ delta += (trie->maxlen - trie->minlen);
+ flags &= ~SCF_DO_STCLASS; /* xxx */
+ if (flags & SCF_DO_SUBSTR) {
+ /* Cannot expect anything... */
+ scan_commit(pRExC_state, data, minlenp, is_inf);
+ data->pos_min += trie->minlen;
+ data->pos_delta += (trie->maxlen - trie->minlen);
+ if (trie->maxlen != trie->minlen)
+ data->longest = &(data->longest_float);
+ }
+ if (trie->jump) /* no more substrings -- for now /grr*/
+ flags &= ~SCF_DO_SUBSTR;
+ }
+#endif /* old or new */
+#endif /* TRIE_STUDY_OPT */
+
+ /* Else: zero-length, ignore. */
+ scan = regnext(scan);
+ }
+ /* If we are exiting a recursion we can unset its recursed bit
+ * and allow ourselves to enter it again - no danger of an
+ * infinite loop there.
+ if (stopparen > -1 && recursed) {
+ DEBUG_STUDYDATA("unset:", data,depth);
+ PAREN_UNSET( recursed, stopparen);
+ }
+ */
+ if (frame) {
+ depth = depth - 1;
+
+ DEBUG_STUDYDATA("frame-end:",data,depth);
+ DEBUG_PEEP("fend", scan, depth);
+
+ /* restore previous context */
+ last = frame->last_regnode;
+ scan = frame->next_regnode;
+ stopparen = frame->stopparen;
+ recursed_depth = frame->prev_recursed_depth;
+
+ RExC_frame_last = frame->prev_frame;
+ frame = frame->this_prev_frame;
+ goto fake_study_recurse;
+ }
+
+ finish:
+ assert(!frame);
+ DEBUG_STUDYDATA("pre-fin:",data,depth);
+
+ *scanp = scan;
+ *deltap = is_inf_internal ? SSize_t_MAX : delta;
+
+ if (flags & SCF_DO_SUBSTR && is_inf)
+ data->pos_delta = SSize_t_MAX - data->pos_min;
+ if (is_par > (I32)U8_MAX)
+ is_par = 0;
+ if (is_par && pars==1 && data) {
+ data->flags |= SF_IN_PAR;
+ data->flags &= ~SF_HAS_PAR;
+ }
+ else if (pars && data) {
+ data->flags |= SF_HAS_PAR;
+ data->flags &= ~SF_IN_PAR;
+ }
+ if (flags & SCF_DO_STCLASS_OR)
+ ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
+ if (flags & SCF_TRIE_RESTUDY)
+ data->flags |= SCF_TRIE_RESTUDY;
+
+ DEBUG_STUDYDATA("post-fin:",data,depth);
+
+ {
+ SSize_t final_minlen= min < stopmin ? min : stopmin;
+
+ if (!(RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN)) {
+ if (final_minlen > SSize_t_MAX - delta)
+ RExC_maxlen = SSize_t_MAX;
+ else if (RExC_maxlen < final_minlen + delta)
+ RExC_maxlen = final_minlen + delta;
+ }
+ return final_minlen;
+ }
+ NOT_REACHED; /* NOTREACHED */
+}
+
+STATIC U32
+S_add_data(RExC_state_t* const pRExC_state, const char* const s, const U32 n)
+{
+ U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
+
+ PERL_ARGS_ASSERT_ADD_DATA;
+
+ Renewc(RExC_rxi->data,
+ sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
+ char, struct reg_data);
+ if(count)
+ Renew(RExC_rxi->data->what, count + n, U8);
+ else
+ Newx(RExC_rxi->data->what, n, U8);
+ RExC_rxi->data->count = count + n;
+ Copy(s, RExC_rxi->data->what + count, n, U8);
+ return count;
+}
+
+/*XXX: todo make this not included in a non debugging perl, but appears to be
+ * used anyway there, in 'use re' */
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_reginitcolors(pTHX)
+{
+ const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
+ if (s) {
+ char *t = savepv(s);
+ int i = 0;
+ PL_colors[0] = t;
+ while (++i < 6) {
+ t = strchr(t, '\t');
+ if (t) {
+ *t = '\0';
+ PL_colors[i] = ++t;
+ }
+ else
+ PL_colors[i] = t = (char *)"";
+ }
+ } else {
+ int i = 0;
+ while (i < 6)
+ PL_colors[i++] = (char *)"";
+ }
+ PL_colorset = 1;
+}
+#endif
+
+
+#ifdef TRIE_STUDY_OPT
+#define CHECK_RESTUDY_GOTO_butfirst(dOsomething) \
+ STMT_START { \
+ if ( \
+ (data.flags & SCF_TRIE_RESTUDY) \
+ && ! restudied++ \
+ ) { \
+ dOsomething; \
+ goto reStudy; \
+ } \
+ } STMT_END
+#else
+#define CHECK_RESTUDY_GOTO_butfirst
+#endif
+
+/*
+ * pregcomp - compile a regular expression into internal code
+ *
+ * Decides which engine's compiler to call based on the hint currently in
+ * scope
+ */
+
+#ifndef PERL_IN_XSUB_RE
+
+/* return the currently in-scope regex engine (or the default if none) */
+
+regexp_engine const *
+Perl_current_re_engine(pTHX)
+{
+ if (IN_PERL_COMPILETIME) {
+ HV * const table = GvHV(PL_hintgv);
+ SV **ptr;
+
+ if (!table || !(PL_hints & HINT_LOCALIZE_HH))
+ return &reh_regexp_engine;
+ ptr = hv_fetchs(table, "regcomp", FALSE);
+ if ( !(ptr && SvIOK(*ptr) && SvIV(*ptr)))
+ return &reh_regexp_engine;
+ return INT2PTR(regexp_engine*,SvIV(*ptr));
+ }
+ else {
+ SV *ptr;
+ if (!PL_curcop->cop_hints_hash)
+ return &reh_regexp_engine;
+ ptr = cop_hints_fetch_pvs(PL_curcop, "regcomp", 0);
+ if ( !(ptr && SvIOK(ptr) && SvIV(ptr)))
+ return &reh_regexp_engine;
+ return INT2PTR(regexp_engine*,SvIV(ptr));
+ }
+}
+
+
+REGEXP *
+Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
+{
+ regexp_engine const *eng = current_re_engine();
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_PREGCOMP;
+
+ /* Dispatch a request to compile a regexp to correct regexp engine. */
+ DEBUG_COMPILE_r({
+ PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
+ PTR2UV(eng));
+ });
+ return CALLREGCOMP_ENG(eng, pattern, flags);
+}
+#endif
+
+/* public(ish) entry point for the perl core's own regex compiling code.
+ * It's actually a wrapper for Perl_re_op_compile that only takes an SV
+ * pattern rather than a list of OPs, and uses the internal engine rather
+ * than the current one */
+
+REGEXP *
+Perl_re_compile(pTHX_ SV * const pattern, U32 rx_flags)
+{
+ SV *pat = pattern; /* defeat constness! */
+ PERL_ARGS_ASSERT_RE_COMPILE;
+ return Perl_re_op_compile(aTHX_ &pat, 1, NULL,
+#ifdef PERL_IN_XSUB_RE
+ &my_reg_engine,
+#else
+ &reh_regexp_engine,
+#endif
+ NULL, NULL, rx_flags, 0);
+}
+
+
+/* upgrade pattern pat_p of length plen_p to UTF8, and if there are code
+ * blocks, recalculate the indices. Update pat_p and plen_p in-place to
+ * point to the realloced string and length.
+ *
+ * This is essentially a copy of Perl_bytes_to_utf8() with the code index
+ * stuff added */
+
+static void
+S_pat_upgrade_to_utf8(pTHX_ RExC_state_t * const pRExC_state,
+ char **pat_p, STRLEN *plen_p, int num_code_blocks)
+{
+ U8 *const src = (U8*)*pat_p;
+ U8 *dst, *d;
+ int n=0;
+ STRLEN s = 0;
+ bool do_end = 0;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+ "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
+
+ Newx(dst, *plen_p * 2 + 1, U8);
+ d = dst;
+
+ while (s < *plen_p) {
+ append_utf8_from_native_byte(src[s], &d);
+ if (n < num_code_blocks) {
+ if (!do_end && pRExC_state->code_blocks[n].start == s) {
+ pRExC_state->code_blocks[n].start = d - dst - 1;
+ assert(*(d - 1) == '(');
+ do_end = 1;
+ }
+ else if (do_end && pRExC_state->code_blocks[n].end == s) {
+ pRExC_state->code_blocks[n].end = d - dst - 1;
+ assert(*(d - 1) == ')');
+ do_end = 0;
+ n++;
+ }
+ }
+ s++;
+ }
+ *d = '\0';
+ *plen_p = d - dst;
+ *pat_p = (char*) dst;
+ SAVEFREEPV(*pat_p);
+ RExC_orig_utf8 = RExC_utf8 = 1;
+}
+
+
+
+/* S_concat_pat(): concatenate a list of args to the pattern string pat,
+ * while recording any code block indices, and handling overloading,
+ * nested qr// objects etc. If pat is null, it will allocate a new
+ * string, or just return the first arg, if there's only one.
+ *
+ * Returns the malloced/updated pat.
+ * patternp and pat_count is the array of SVs to be concatted;
+ * oplist is the optional list of ops that generated the SVs;
+ * recompile_p is a pointer to a boolean that will be set if
+ * the regex will need to be recompiled.
+ * delim, if non-null is an SV that will be inserted between each element
+ */
+
+static SV*
+S_concat_pat(pTHX_ RExC_state_t * const pRExC_state,
+ SV *pat, SV ** const patternp, int pat_count,
+ OP *oplist, bool *recompile_p, SV *delim)
+{
+ SV **svp;
+ int n = 0;
+ bool use_delim = FALSE;
+ bool alloced = FALSE;
+
+ /* if we know we have at least two args, create an empty string,
+ * then concatenate args to that. For no args, return an empty string */
+ if (!pat && pat_count != 1) {
+ pat = newSVpvs("");
+ SAVEFREESV(pat);
+ alloced = TRUE;
+ }
+
+ for (svp = patternp; svp < patternp + pat_count; svp++) {
+ SV *sv;
+ SV *rx = NULL;
+ STRLEN orig_patlen = 0;
+ bool code = 0;
+ SV *msv = use_delim ? delim : *svp;
+ if (!msv) msv = &PL_sv_undef;
+
+ /* if we've got a delimiter, we go round the loop twice for each
+ * svp slot (except the last), using the delimiter the second
+ * time round */
+ if (use_delim) {
+ svp--;
+ use_delim = FALSE;
+ }
+ else if (delim)
+ use_delim = TRUE;
+
+ if (SvTYPE(msv) == SVt_PVAV) {
+ /* we've encountered an interpolated array within
+ * the pattern, e.g. /...@a..../. Expand the list of elements,
+ * then recursively append elements.
+ * The code in this block is based on S_pushav() */
+
+ AV *const av = (AV*)msv;
+ const SSize_t maxarg = AvFILL(av) + 1;
+ SV **array;
+
+ if (oplist) {
+ assert(oplist->op_type == OP_PADAV
+ || oplist->op_type == OP_RV2AV);
+ oplist = OpSIBLING(oplist);
+ }
+
+ if (SvRMAGICAL(av)) {
+ SSize_t i;
+
+ Newx(array, maxarg, SV*);
+ SAVEFREEPV(array);
+ for (i=0; i < maxarg; i++) {
+ SV ** const svp = av_fetch(av, i, FALSE);
+ array[i] = svp ? *svp : &PL_sv_undef;
+ }
+ }
+ else
+ array = AvARRAY(av);
+
+ pat = S_concat_pat(aTHX_ pRExC_state, pat,
+ array, maxarg, NULL, recompile_p,
+ /* $" */
+ GvSV((gv_fetchpvs("\"", GV_ADDMULTI, SVt_PV))));
+
+ continue;
+ }
+
+
+ /* we make the assumption here that each op in the list of
+ * op_siblings maps to one SV pushed onto the stack,
+ * except for code blocks, with have both an OP_NULL and
+ * and OP_CONST.
+ * This allows us to match up the list of SVs against the
+ * list of OPs to find the next code block.
+ *
+ * Note that PUSHMARK PADSV PADSV ..
+ * is optimised to
+ * PADRANGE PADSV PADSV ..
+ * so the alignment still works. */
+
+ if (oplist) {
+ if (oplist->op_type == OP_NULL
+ && (oplist->op_flags & OPf_SPECIAL))
+ {
+ assert(n < pRExC_state->num_code_blocks);
+ pRExC_state->code_blocks[n].start = pat ? SvCUR(pat) : 0;
+ pRExC_state->code_blocks[n].block = oplist;
+ pRExC_state->code_blocks[n].src_regex = NULL;
+ n++;
+ code = 1;
+ oplist = OpSIBLING(oplist); /* skip CONST */
+ assert(oplist);
+ }
+ oplist = OpSIBLING(oplist);;
+ }
+
+ /* apply magic and QR overloading to arg */
+
+ SvGETMAGIC(msv);
+ if (SvROK(msv) && SvAMAGIC(msv)) {
+ SV *sv = AMG_CALLunary(msv, regexp_amg);
+ if (sv) {
+ if (SvROK(sv))
+ sv = SvRV(sv);
+ if (SvTYPE(sv) != SVt_REGEXP)
+ Perl_croak(aTHX_ "Overloaded qr did not return a REGEXP");
+ msv = sv;
+ }
+ }
+
+ /* try concatenation overload ... */
+ if (pat && (SvAMAGIC(pat) || SvAMAGIC(msv)) &&
+ (sv = amagic_call(pat, msv, concat_amg, AMGf_assign)))
+ {
+ sv_setsv(pat, sv);
+ /* overloading involved: all bets are off over literal
+ * code. Pretend we haven't seen it */
+ pRExC_state->num_code_blocks -= n;
+ n = 0;
+ }
+ else {
+ /* ... or failing that, try "" overload */
+ while (SvAMAGIC(msv)
+ && (sv = AMG_CALLunary(msv, string_amg))
+ && sv != msv
+ && !( SvROK(msv)
+ && SvROK(sv)
+ && SvRV(msv) == SvRV(sv))
+ ) {
+ msv = sv;
+ SvGETMAGIC(msv);
+ }
+ if (SvROK(msv) && SvTYPE(SvRV(msv)) == SVt_REGEXP)
+ msv = SvRV(msv);
+
+ if (pat) {
+ /* this is a partially unrolled
+ * sv_catsv_nomg(pat, msv);
+ * that allows us to adjust code block indices if
+ * needed */
+ STRLEN dlen;
+ char *dst = SvPV_force_nomg(pat, dlen);
+ orig_patlen = dlen;
+ if (SvUTF8(msv) && !SvUTF8(pat)) {
+ S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &dst, &dlen, n);
+ sv_setpvn(pat, dst, dlen);
+ SvUTF8_on(pat);
+ }
+ sv_catsv_nomg(pat, msv);
+ rx = msv;
+ }
+ else
+ pat = msv;
+
+ if (code)
+ pRExC_state->code_blocks[n-1].end = SvCUR(pat)-1;
+ }
+
+ /* extract any code blocks within any embedded qr//'s */
+ if (rx && SvTYPE(rx) == SVt_REGEXP
+ && RX_ENGINE((REGEXP*)rx)->op_comp)
+ {
+
+ RXi_GET_DECL(ReANY((REGEXP *)rx), ri);
+ if (ri->num_code_blocks) {
+ int i;
+ /* the presence of an embedded qr// with code means
+ * we should always recompile: the text of the
+ * qr// may not have changed, but it may be a
+ * different closure than last time */
+ *recompile_p = 1;
+ Renew(pRExC_state->code_blocks,
+ pRExC_state->num_code_blocks + ri->num_code_blocks,
+ struct reg_code_block);
+ pRExC_state->num_code_blocks += ri->num_code_blocks;
+
+ for (i=0; i < ri->num_code_blocks; i++) {
+ struct reg_code_block *src, *dst;
+ STRLEN offset = orig_patlen
+ + ReANY((REGEXP *)rx)->pre_prefix;
+ assert(n < pRExC_state->num_code_blocks);
+ src = &ri->code_blocks[i];
+ dst = &pRExC_state->code_blocks[n];
+ dst->start = src->start + offset;
+ dst->end = src->end + offset;
+ dst->block = src->block;
+ dst->src_regex = (REGEXP*) SvREFCNT_inc( (SV*)
+ src->src_regex
+ ? src->src_regex
+ : (REGEXP*)rx);
+ n++;
+ }
+ }
+ }
+ }
+ /* avoid calling magic multiple times on a single element e.g. =~ $qr */
+ if (alloced)
+ SvSETMAGIC(pat);
+
+ return pat;
+}
+
+
+
+/* see if there are any run-time code blocks in the pattern.
+ * False positives are allowed */
+
+static bool
+S_has_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
+ char *pat, STRLEN plen)
+{
+ int n = 0;
+ STRLEN s;
+
+ PERL_UNUSED_CONTEXT;
+
+ for (s = 0; s < plen; s++) {
+ if (n < pRExC_state->num_code_blocks
+ && s == pRExC_state->code_blocks[n].start)
+ {
+ s = pRExC_state->code_blocks[n].end;
+ n++;
+ continue;
+ }
+ /* TODO ideally should handle [..], (#..), /#.../x to reduce false
+ * positives here */
+ if (pat[s] == '(' && s+2 <= plen && pat[s+1] == '?' &&
+ (pat[s+2] == '{'
+ || (s + 2 <= plen && pat[s+2] == '?' && pat[s+3] == '{'))
+ )
+ return 1;
+ }
+ return 0;
+}
+
+/* Handle run-time code blocks. We will already have compiled any direct
+ * or indirect literal code blocks. Now, take the pattern 'pat' and make a
+ * copy of it, but with any literal code blocks blanked out and
+ * appropriate chars escaped; then feed it into
+ *
+ * eval "qr'modified_pattern'"
+ *
+ * For example,
+ *
+ * a\bc(?{"this was literal"})def'ghi\\jkl(?{"this is runtime"})mno
+ *
+ * becomes
+ *
+ * qr'a\\bc_______________________def\'ghi\\\\jkl(?{"this is runtime"})mno'
+ *
+ * After eval_sv()-ing that, grab any new code blocks from the returned qr
+ * and merge them with any code blocks of the original regexp.
+ *
+ * If the pat is non-UTF8, while the evalled qr is UTF8, don't merge;
+ * instead, just save the qr and return FALSE; this tells our caller that
+ * the original pattern needs upgrading to utf8.
+ */
+
+static bool
+S_compile_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
+ char *pat, STRLEN plen)
+{
+ SV *qr;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ if (pRExC_state->runtime_code_qr) {
+ /* this is the second time we've been called; this should
+ * only happen if the main pattern got upgraded to utf8
+ * during compilation; re-use the qr we compiled first time
+ * round (which should be utf8 too)
+ */
+ qr = pRExC_state->runtime_code_qr;
+ pRExC_state->runtime_code_qr = NULL;
+ assert(RExC_utf8 && SvUTF8(qr));
+ }
+ else {
+ int n = 0;
+ STRLEN s;
+ char *p, *newpat;
+ int newlen = plen + 6; /* allow for "qr''x\0" extra chars */
+ SV *sv, *qr_ref;
+ dSP;
+
+ /* determine how many extra chars we need for ' and \ escaping */
+ for (s = 0; s < plen; s++) {
+ if (pat[s] == '\'' || pat[s] == '\\')
+ newlen++;
+ }
+
+ Newx(newpat, newlen, char);
+ p = newpat;
+ *p++ = 'q'; *p++ = 'r'; *p++ = '\'';
+
+ for (s = 0; s < plen; s++) {
+ if (n < pRExC_state->num_code_blocks
+ && s == pRExC_state->code_blocks[n].start)
+ {
+ /* blank out literal code block */
+ assert(pat[s] == '(');
+ while (s <= pRExC_state->code_blocks[n].end) {
+ *p++ = '_';
+ s++;
+ }
+ s--;
+ n++;
+ continue;
+ }
+ if (pat[s] == '\'' || pat[s] == '\\')
+ *p++ = '\\';
+ *p++ = pat[s];
+ }
+ *p++ = '\'';
+ if (pRExC_state->pm_flags & RXf_PMf_EXTENDED)
+ *p++ = 'x';
+ *p++ = '\0';
+ DEBUG_COMPILE_r({
+ PerlIO_printf(Perl_debug_log,
+ "%sre-parsing pattern for runtime code:%s %s\n",
+ PL_colors[4],PL_colors[5],newpat);
+ });
+
+ sv = newSVpvn_flags(newpat, p-newpat-1, RExC_utf8 ? SVf_UTF8 : 0);
+ Safefree(newpat);
+
+ ENTER;
+ SAVETMPS;
+ save_re_context();
+ PUSHSTACKi(PERLSI_REQUIRE);
+ /* G_RE_REPARSING causes the toker to collapse \\ into \ when
+ * parsing qr''; normally only q'' does this. It also alters
+ * hints handling */
+ eval_sv(sv, G_SCALAR|G_RE_REPARSING);
+ SvREFCNT_dec_NN(sv);
+ SPAGAIN;
+ qr_ref = POPs;
+ PUTBACK;
+ {
+ SV * const errsv = ERRSV;
+ if (SvTRUE_NN(errsv))
+ {
+ Safefree(pRExC_state->code_blocks);
+ /* use croak_sv ? */
+ Perl_croak_nocontext("%"SVf, SVfARG(errsv));
+ }
+ }
+ assert(SvROK(qr_ref));
+ qr = SvRV(qr_ref);
+ assert(SvTYPE(qr) == SVt_REGEXP && RX_ENGINE((REGEXP*)qr)->op_comp);
+ /* the leaving below frees the tmp qr_ref.
+ * Give qr a life of its own */
+ SvREFCNT_inc(qr);
+ POPSTACK;
+ FREETMPS;
+ LEAVE;
+
+ }
+
+ if (!RExC_utf8 && SvUTF8(qr)) {
+ /* first time through; the pattern got upgraded; save the
+ * qr for the next time through */
+ assert(!pRExC_state->runtime_code_qr);
+ pRExC_state->runtime_code_qr = qr;
+ return 0;
+ }
+
+
+ /* extract any code blocks within the returned qr// */
+
+
+ /* merge the main (r1) and run-time (r2) code blocks into one */
+ {
+ RXi_GET_DECL(ReANY((REGEXP *)qr), r2);
+ struct reg_code_block *new_block, *dst;
+ RExC_state_t * const r1 = pRExC_state; /* convenient alias */
+ int i1 = 0, i2 = 0;
+
+ if (!r2->num_code_blocks) /* we guessed wrong */
+ {
+ SvREFCNT_dec_NN(qr);
+ return 1;
+ }
+
+ Newx(new_block,
+ r1->num_code_blocks + r2->num_code_blocks,
+ struct reg_code_block);
+ dst = new_block;
+
+ while ( i1 < r1->num_code_blocks
+ || i2 < r2->num_code_blocks)
+ {
+ struct reg_code_block *src;
+ bool is_qr = 0;
+
+ if (i1 == r1->num_code_blocks) {
+ src = &r2->code_blocks[i2++];
+ is_qr = 1;
+ }
+ else if (i2 == r2->num_code_blocks)
+ src = &r1->code_blocks[i1++];
+ else if ( r1->code_blocks[i1].start
+ < r2->code_blocks[i2].start)
+ {
+ src = &r1->code_blocks[i1++];
+ assert(src->end < r2->code_blocks[i2].start);
+ }
+ else {
+ assert( r1->code_blocks[i1].start
+ > r2->code_blocks[i2].start);
+ src = &r2->code_blocks[i2++];
+ is_qr = 1;
+ assert(src->end < r1->code_blocks[i1].start);
+ }
+
+ assert(pat[src->start] == '(');
+ assert(pat[src->end] == ')');
+ dst->start = src->start;
+ dst->end = src->end;
+ dst->block = src->block;
+ dst->src_regex = is_qr ? (REGEXP*) SvREFCNT_inc( (SV*) qr)
+ : src->src_regex;
+ dst++;
+ }
+ r1->num_code_blocks += r2->num_code_blocks;
+ Safefree(r1->code_blocks);
+ r1->code_blocks = new_block;
+ }
+
+ SvREFCNT_dec_NN(qr);
+ return 1;
+}
+
+
+STATIC bool
+S_setup_longest(pTHX_ RExC_state_t *pRExC_state, SV* sv_longest,
+ SV** rx_utf8, SV** rx_substr, SSize_t* rx_end_shift,
+ SSize_t lookbehind, SSize_t offset, SSize_t *minlen,
+ STRLEN longest_length, bool eol, bool meol)
+{
+ /* This is the common code for setting up the floating and fixed length
+ * string data extracted from Perl_re_op_compile() below. Returns a boolean
+ * as to whether succeeded or not */
+
+ I32 t;
+ SSize_t ml;
+
+ if (! (longest_length
+ || (eol /* Can't have SEOL and MULTI */
+ && (! meol || (RExC_flags & RXf_PMf_MULTILINE)))
+ )
+ /* See comments for join_exact for why REG_UNFOLDED_MULTI_SEEN */
+ || (RExC_seen & REG_UNFOLDED_MULTI_SEEN))
+ {
+ return FALSE;
+ }
+
+ /* copy the information about the longest from the reg_scan_data
+ over to the program. */
+ if (SvUTF8(sv_longest)) {
+ *rx_utf8 = sv_longest;
+ *rx_substr = NULL;
+ } else {
+ *rx_substr = sv_longest;
+ *rx_utf8 = NULL;
+ }
+ /* end_shift is how many chars that must be matched that
+ follow this item. We calculate it ahead of time as once the
+ lookbehind offset is added in we lose the ability to correctly
+ calculate it.*/
+ ml = minlen ? *(minlen) : (SSize_t)longest_length;
+ *rx_end_shift = ml - offset
+ - longest_length + (SvTAIL(sv_longest) != 0)
+ + lookbehind;
+
+ t = (eol/* Can't have SEOL and MULTI */
+ && (! meol || (RExC_flags & RXf_PMf_MULTILINE)));
+ fbm_compile(sv_longest, t ? FBMcf_TAIL : 0);
+
+ return TRUE;
+}
+
+/*
+ * Perl_re_op_compile - the perl internal RE engine's function to compile a
+ * regular expression into internal code.
+ * The pattern may be passed either as:
+ * a list of SVs (patternp plus pat_count)
+ * a list of OPs (expr)
+ * If both are passed, the SV list is used, but the OP list indicates
+ * which SVs are actually pre-compiled code blocks
+ *
+ * The SVs in the list have magic and qr overloading applied to them (and
+ * the list may be modified in-place with replacement SVs in the latter
+ * case).
+ *
+ * If the pattern hasn't changed from old_re, then old_re will be
+ * returned.
+ *
+ * eng is the current engine. If that engine has an op_comp method, then
+ * handle directly (i.e. we assume that op_comp was us); otherwise, just
+ * do the initial concatenation of arguments and pass on to the external
+ * engine.
+ *
+ * If is_bare_re is not null, set it to a boolean indicating whether the
+ * arg list reduced (after overloading) to a single bare regex which has
+ * been returned (i.e. /$qr/).
+ *
+ * orig_rx_flags contains RXf_* flags. See perlreapi.pod for more details.
+ *
+ * pm_flags contains the PMf_* flags, typically based on those from the
+ * pm_flags field of the related PMOP. Currently we're only interested in
+ * PMf_HAS_CV, PMf_IS_QR, PMf_USE_RE_EVAL.
+ *
+ * We can't allocate space until we know how big the compiled form will be,
+ * but we can't compile it (and thus know how big it is) until we've got a
+ * place to put the code. So we cheat: we compile it twice, once with code
+ * generation turned off and size counting turned on, and once "for real".
+ * This also means that we don't allocate space until we are sure that the
+ * thing really will compile successfully, and we never have to move the
+ * code and thus invalidate pointers into it. (Note that it has to be in
+ * one piece because free() must be able to free it all.) [NB: not true in perl]
+ *
+ * Beware that the optimization-preparation code in here knows about some
+ * of the structure of the compiled regexp. [I'll say.]
+ */
+
+REGEXP *
+Perl_re_op_compile(pTHX_ SV ** const patternp, int pat_count,
+ OP *expr, const regexp_engine* eng, REGEXP *old_re,
+ bool *is_bare_re, U32 orig_rx_flags, U32 pm_flags)
+{
+ REGEXP *rx;
+ struct regexp *r;
+ regexp_internal *ri;
+ STRLEN plen;
+ char *exp;
+ regnode *scan;
+ I32 flags;
+ SSize_t minlen = 0;
+ U32 rx_flags;
+ SV *pat;
+ SV *code_blocksv = NULL;
+ SV** new_patternp = patternp;
+
+ /* these are all flags - maybe they should be turned
+ * into a single int with different bit masks */
+ I32 sawlookahead = 0;
+ I32 sawplus = 0;
+ I32 sawopen = 0;
+ I32 sawminmod = 0;
+
+ regex_charset initial_charset = get_regex_charset(orig_rx_flags);
+ bool recompile = 0;
+ bool runtime_code = 0;
+ scan_data_t data;
+ RExC_state_t RExC_state;
+ RExC_state_t * const pRExC_state = &RExC_state;
+#ifdef TRIE_STUDY_OPT
+ int restudied = 0;
+ RExC_state_t copyRExC_state;
+#endif
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_OP_COMPILE;
+
+ DEBUG_r(if (!PL_colorset) reginitcolors());
+
+ /* Initialize these here instead of as-needed, as is quick and avoids
+ * having to test them each time otherwise */
+ if (! PL_AboveLatin1) {
+ PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist);
+ PL_Latin1 = _new_invlist_C_array(Latin1_invlist);
+ PL_UpperLatin1 = _new_invlist_C_array(UpperLatin1_invlist);
+ PL_utf8_foldable = _new_invlist_C_array(_Perl_Any_Folds_invlist);
+ PL_HasMultiCharFold =
+ _new_invlist_C_array(_Perl_Folds_To_Multi_Char_invlist);
+
+ /* This is calculated here, because the Perl program that generates the
+ * static global ones doesn't currently have access to
+ * NUM_ANYOF_CODE_POINTS */
+ PL_InBitmap = _new_invlist(2);
+ PL_InBitmap = _add_range_to_invlist(PL_InBitmap, 0,
+ NUM_ANYOF_CODE_POINTS - 1);
+ }
+
+ pRExC_state->code_blocks = NULL;
+ pRExC_state->num_code_blocks = 0;
+
+ if (is_bare_re)
+ *is_bare_re = FALSE;
+
+ if (expr && (expr->op_type == OP_LIST ||
+ (expr->op_type == OP_NULL && expr->op_targ == OP_LIST))) {
+ /* allocate code_blocks if needed */
+ OP *o;
+ int ncode = 0;
+
+ for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o))
+ if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL))
+ ncode++; /* count of DO blocks */
+ if (ncode) {
+ pRExC_state->num_code_blocks = ncode;
+ Newx(pRExC_state->code_blocks, ncode, struct reg_code_block);
+ }
+ }
+
+ if (!pat_count) {
+ /* compile-time pattern with just OP_CONSTs and DO blocks */
+
+ int n;
+ OP *o;
+
+ /* find how many CONSTs there are */
+ assert(expr);
+ n = 0;
+ if (expr->op_type == OP_CONST)
+ n = 1;
+ else
+ for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o)) {
+ if (o->op_type == OP_CONST)
+ n++;
+ }
+
+ /* fake up an SV array */
+
+ assert(!new_patternp);
+ Newx(new_patternp, n, SV*);
+ SAVEFREEPV(new_patternp);
+ pat_count = n;
+
+ n = 0;
+ if (expr->op_type == OP_CONST)
+ new_patternp[n] = cSVOPx_sv(expr);
+ else
+ for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o)) {
+ if (o->op_type == OP_CONST)
+ new_patternp[n++] = cSVOPo_sv;
+ }
+
+ }
+
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+ "Assembling pattern from %d elements%s\n", pat_count,
+ orig_rx_flags & RXf_SPLIT ? " for split" : ""));
+
+ /* set expr to the first arg op */
+
+ if (pRExC_state->num_code_blocks
+ && expr->op_type != OP_CONST)
+ {
+ expr = cLISTOPx(expr)->op_first;
+ assert( expr->op_type == OP_PUSHMARK
+ || (expr->op_type == OP_NULL && expr->op_targ == OP_PUSHMARK)
+ || expr->op_type == OP_PADRANGE);
+ expr = OpSIBLING(expr);
+ }
+
+ pat = S_concat_pat(aTHX_ pRExC_state, NULL, new_patternp, pat_count,
+ expr, &recompile, NULL);
+
+ /* handle bare (possibly after overloading) regex: foo =~ $re */
+ {
+ SV *re = pat;
+ if (SvROK(re))
+ re = SvRV(re);
+ if (SvTYPE(re) == SVt_REGEXP) {
+ if (is_bare_re)
+ *is_bare_re = TRUE;
+ SvREFCNT_inc(re);
+ Safefree(pRExC_state->code_blocks);
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+ "Precompiled pattern%s\n",
+ orig_rx_flags & RXf_SPLIT ? " for split" : ""));
+
+ return (REGEXP*)re;
+ }
+ }
+
+ exp = SvPV_nomg(pat, plen);
+
+ if (!eng->op_comp) {
+ if ((SvUTF8(pat) && IN_BYTES)
+ || SvGMAGICAL(pat) || SvAMAGIC(pat))
+ {
+ /* make a temporary copy; either to convert to bytes,
+ * or to avoid repeating get-magic / overloaded stringify */
+ pat = newSVpvn_flags(exp, plen, SVs_TEMP |
+ (IN_BYTES ? 0 : SvUTF8(pat)));
+ }
+ Safefree(pRExC_state->code_blocks);
+ return CALLREGCOMP_ENG(eng, pat, orig_rx_flags);
+ }
+
+ /* ignore the utf8ness if the pattern is 0 length */
+ RExC_utf8 = RExC_orig_utf8 = (plen == 0 || IN_BYTES) ? 0 : SvUTF8(pat);
+ RExC_uni_semantics = 0;
+ RExC_contains_locale = 0;
+ RExC_contains_i = 0;
+ RExC_strict = cBOOL(pm_flags & RXf_PMf_STRICT);
+ pRExC_state->runtime_code_qr = NULL;
+ RExC_frame_head= NULL;
+ RExC_frame_last= NULL;
+ RExC_frame_count= 0;
+
+ DEBUG_r({
+ RExC_mysv1= sv_newmortal();
+ RExC_mysv2= sv_newmortal();
+ });
+ DEBUG_COMPILE_r({
+ SV *dsv= sv_newmortal();
+ RE_PV_QUOTED_DECL(s, RExC_utf8, dsv, exp, plen, 60);
+ PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
+ PL_colors[4],PL_colors[5],s);
+ });
+
+ redo_first_pass:
+ /* we jump here if we upgrade the pattern to utf8 and have to
+ * recompile */
+
+ if ((pm_flags & PMf_USE_RE_EVAL)
+ /* this second condition covers the non-regex literal case,
+ * i.e. $foo =~ '(?{})'. */
+ || (IN_PERL_COMPILETIME && (PL_hints & HINT_RE_EVAL))
+ )
+ runtime_code = S_has_runtime_code(aTHX_ pRExC_state, exp, plen);
+
+ /* return old regex if pattern hasn't changed */
+ /* XXX: note in the below we have to check the flags as well as the
+ * pattern.
+ *
+ * Things get a touch tricky as we have to compare the utf8 flag
+ * independently from the compile flags. */
+
+ if ( old_re
+ && !recompile
+ && !!RX_UTF8(old_re) == !!RExC_utf8
+ && ( RX_COMPFLAGS(old_re) == ( orig_rx_flags & RXf_PMf_FLAGCOPYMASK ) )
+ && RX_PRECOMP(old_re)
+ && RX_PRELEN(old_re) == plen
+ && memEQ(RX_PRECOMP(old_re), exp, plen)
+ && !runtime_code /* with runtime code, always recompile */ )
+ {
+ Safefree(pRExC_state->code_blocks);
+ return old_re;
+ }
+
+ rx_flags = orig_rx_flags;
+
+ if (rx_flags & PMf_FOLD) {
+ RExC_contains_i = 1;
+ }
+ if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
+
+ /* Set to use unicode semantics if the pattern is in utf8 and has the
+ * 'depends' charset specified, as it means unicode when utf8 */
+ set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
+ }
+
+ RExC_precomp = exp;
+ RExC_flags = rx_flags;
+ RExC_pm_flags = pm_flags;
+
+ if (runtime_code) {
+ if (TAINTING_get && TAINT_get)
+ Perl_croak(aTHX_ "Eval-group in insecure regular expression");
+
+ if (!S_compile_runtime_code(aTHX_ pRExC_state, exp, plen)) {
+ /* whoops, we have a non-utf8 pattern, whilst run-time code
+ * got compiled as utf8. Try again with a utf8 pattern */
+ S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
+ pRExC_state->num_code_blocks);
+ goto redo_first_pass;
+ }
+ }
+ assert(!pRExC_state->runtime_code_qr);
+
+ RExC_sawback = 0;
+
+ RExC_seen = 0;
+ RExC_maxlen = 0;
+ RExC_in_lookbehind = 0;
+ RExC_seen_zerolen = *exp == '^' ? -1 : 0;
+ RExC_extralen = 0;
+ RExC_override_recoding = 0;
+#ifdef EBCDIC
+ RExC_recode_x_to_native = 0;
+#endif
+ RExC_in_multi_char_class = 0;
+
+ /* First pass: determine size, legality. */
+ RExC_parse = exp;
+ RExC_start = exp;
+ RExC_end = exp + plen;
+ RExC_naughty = 0;
+ RExC_npar = 1;
+ RExC_nestroot = 0;
+ RExC_size = 0L;
+ RExC_emit = (regnode *) &RExC_emit_dummy;
+ RExC_whilem_seen = 0;
+ RExC_open_parens = NULL;
+ RExC_close_parens = NULL;
+ RExC_opend = NULL;
+ RExC_paren_names = NULL;
+#ifdef DEBUGGING
+ RExC_paren_name_list = NULL;
+#endif
+ RExC_recurse = NULL;
+ RExC_study_chunk_recursed = NULL;
+ RExC_study_chunk_recursed_bytes= 0;
+ RExC_recurse_count = 0;
+ pRExC_state->code_index = 0;
+
+ DEBUG_PARSE_r(
+ PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n");
+ RExC_lastnum=0;
+ RExC_lastparse=NULL;
+ );
+ /* reg may croak on us, not giving us a chance to free
+ pRExC_state->code_blocks. We cannot SAVEFREEPV it now, as we may
+ need it to survive as long as the regexp (qr/(?{})/).
+ We must check that code_blocksv is not already set, because we may
+ have jumped back to restart the sizing pass. */
+ if (pRExC_state->code_blocks && !code_blocksv) {
+ code_blocksv = newSV_type(SVt_PV);
+ SAVEFREESV(code_blocksv);
+ SvPV_set(code_blocksv, (char *)pRExC_state->code_blocks);
+ SvLEN_set(code_blocksv, 1); /*sufficient to make sv_clear free it*/
+ }
+ if (reg(pRExC_state, 0, &flags,1) == NULL) {
+ /* It's possible to write a regexp in ascii that represents Unicode
+ codepoints outside of the byte range, such as via \x{100}. If we
+ detect such a sequence we have to convert the entire pattern to utf8
+ and then recompile, as our sizing calculation will have been based
+ on 1 byte == 1 character, but we will need to use utf8 to encode
+ at least some part of the pattern, and therefore must convert the whole
+ thing.
+ -- dmq */
+ if (flags & RESTART_UTF8) {
+ S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
+ pRExC_state->num_code_blocks);
+ goto redo_first_pass;
+ }
+ Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for sizing pass, flags=%#"UVxf"", (UV) flags);
+ }
+ if (code_blocksv)
+ SvLEN_set(code_blocksv,0); /* no you can't have it, sv_clear */
+
+ DEBUG_PARSE_r({
+ PerlIO_printf(Perl_debug_log,
+ "Required size %"IVdf" nodes\n"
+ "Starting second pass (creation)\n",
+ (IV)RExC_size);
+ RExC_lastnum=0;
+ RExC_lastparse=NULL;
+ });
+
+ /* The first pass could have found things that force Unicode semantics */
+ if ((RExC_utf8 || RExC_uni_semantics)
+ && get_regex_charset(rx_flags) == REGEX_DEPENDS_CHARSET)
+ {
+ set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
+ }
+
+ /* Small enough for pointer-storage convention?
+ If extralen==0, this means that we will not need long jumps. */
+ if (RExC_size >= 0x10000L && RExC_extralen)
+ RExC_size += RExC_extralen;
+ else
+ RExC_extralen = 0;
+ if (RExC_whilem_seen > 15)
+ RExC_whilem_seen = 15;
+
+ /* Allocate space and zero-initialize. Note, the two step process
+ of zeroing when in debug mode, thus anything assigned has to
+ happen after that */
+ rx = (REGEXP*) newSV_type(SVt_REGEXP);
+ r = ReANY(rx);
+ Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
+ char, regexp_internal);
+ if ( r == NULL || ri == NULL )
+ FAIL("Regexp out of space");
+#ifdef DEBUGGING
+ /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
+ Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
+ char);
+#else
+ /* bulk initialize base fields with 0. */
+ Zero(ri, sizeof(regexp_internal), char);
+#endif
+
+ /* non-zero initialization begins here */
+ RXi_SET( r, ri );
+ r->engine= eng;
+ r->extflags = rx_flags;
+ RXp_COMPFLAGS(r) = orig_rx_flags & RXf_PMf_FLAGCOPYMASK;
+
+ if (pm_flags & PMf_IS_QR) {
+ ri->code_blocks = pRExC_state->code_blocks;
+ ri->num_code_blocks = pRExC_state->num_code_blocks;
+ }
+ else
+ {
+ int n;
+ for (n = 0; n < pRExC_state->num_code_blocks; n++)
+ if (pRExC_state->code_blocks[n].src_regex)
+ SAVEFREESV(pRExC_state->code_blocks[n].src_regex);
+ SAVEFREEPV(pRExC_state->code_blocks);
+ }
+
+ {
+ bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
+ bool has_charset = (get_regex_charset(r->extflags)
+ != REGEX_DEPENDS_CHARSET);
+
+ /* The caret is output if there are any defaults: if not all the STD
+ * flags are set, or if no character set specifier is needed */
+ bool has_default =
+ (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
+ || ! has_charset);
+ bool has_runon = ((RExC_seen & REG_RUN_ON_COMMENT_SEEN)
+ == REG_RUN_ON_COMMENT_SEEN);
+ U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
+ >> RXf_PMf_STD_PMMOD_SHIFT);
+ const char *fptr = STD_PAT_MODS; /*"msixn"*/
+ char *p;
+ /* Allocate for the worst case, which is all the std flags are turned
+ * on. If more precision is desired, we could do a population count of
+ * the flags set. This could be done with a small lookup table, or by
+ * shifting, masking and adding, or even, when available, assembly
+ * language for a machine-language population count.
+ * We never output a minus, as all those are defaults, so are
+ * covered by the caret */
+ const STRLEN wraplen = plen + has_p + has_runon
+ + has_default /* If needs a caret */
+
+ /* If needs a character set specifier */
+ + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
+ + (sizeof(STD_PAT_MODS) - 1)
+ + (sizeof("(?:)") - 1);
+
+ Newx(p, wraplen + 1, char); /* +1 for the ending NUL */
+ r->xpv_len_u.xpvlenu_pv = p;
+ if (RExC_utf8)
+ SvFLAGS(rx) |= SVf_UTF8;
+ *p++='('; *p++='?';
+
+ /* If a default, cover it using the caret */
+ if (has_default) {
+ *p++= DEFAULT_PAT_MOD;
+ }
+ if (has_charset) {
+ STRLEN len;
+ const char* const name = get_regex_charset_name(r->extflags, &len);
+ Copy(name, p, len, char);
+ p += len;
+ }
+ if (has_p)
+ *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
+ {
+ char ch;
+ while((ch = *fptr++)) {
+ if(reganch & 1)
+ *p++ = ch;
+ reganch >>= 1;
+ }
+ }
+
+ *p++ = ':';
+ Copy(RExC_precomp, p, plen, char);
+ assert ((RX_WRAPPED(rx) - p) < 16);
+ r->pre_prefix = p - RX_WRAPPED(rx);
+ p += plen;
+ if (has_runon)
+ *p++ = '\n';
+ *p++ = ')';
+ *p = 0;
+ SvCUR_set(rx, p - RX_WRAPPED(rx));
+ }
+
+ r->intflags = 0;
+ r->nparens = RExC_npar - 1; /* set early to validate backrefs */
+
+ /* setup various meta data about recursion, this all requires
+ * RExC_npar to be correctly set, and a bit later on we clear it */
+ if (RExC_seen & REG_RECURSE_SEEN) {
+ Newxz(RExC_open_parens, RExC_npar,regnode *);
+ SAVEFREEPV(RExC_open_parens);
+ Newxz(RExC_close_parens,RExC_npar,regnode *);
+ SAVEFREEPV(RExC_close_parens);
+ }
+ if (RExC_seen & (REG_RECURSE_SEEN | REG_GOSTART_SEEN)) {
+ /* Note, RExC_npar is 1 + the number of parens in a pattern.
+ * So its 1 if there are no parens. */
+ RExC_study_chunk_recursed_bytes= (RExC_npar >> 3) +
+ ((RExC_npar & 0x07) != 0);
+ Newx(RExC_study_chunk_recursed,
+ RExC_study_chunk_recursed_bytes * RExC_npar, U8);
+ SAVEFREEPV(RExC_study_chunk_recursed);
+ }
+
+ /* Useful during FAIL. */
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
+ DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
+ "%s %"UVuf" bytes for offset annotations.\n",
+ ri->u.offsets ? "Got" : "Couldn't get",
+ (UV)((2*RExC_size+1) * sizeof(U32))));
+#endif
+ SetProgLen(ri,RExC_size);
+ RExC_rx_sv = rx;
+ RExC_rx = r;
+ RExC_rxi = ri;
+ REH_CALL_COMP_BEGIN_HOOK(pRExC_state->rx);
+
+ /* Second pass: emit code. */
+ RExC_flags = rx_flags; /* don't let top level (?i) bleed */
+ RExC_pm_flags = pm_flags;
+ RExC_parse = exp;
+ RExC_end = exp + plen;
+ RExC_naughty = 0;
+ RExC_npar = 1;
+ RExC_emit_start = ri->program;
+ RExC_emit = ri->program;
+ RExC_emit_bound = ri->program + RExC_size + 1;
+ pRExC_state->code_index = 0;
+
+ *((char*) RExC_emit++) = (char) REG_MAGIC;
+ if (reg(pRExC_state, 0, &flags,1) == NULL) {
+ ReREFCNT_dec(rx);
+ Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for generation pass, flags=%#"UVxf"", (UV) flags);
+ }
+ /* XXXX To minimize changes to RE engine we always allocate
+ 3-units-long substrs field. */
+ Newx(r->substrs, 1, struct reg_substr_data);
+ if (RExC_recurse_count) {
+ Newxz(RExC_recurse,RExC_recurse_count,regnode *);
+ SAVEFREEPV(RExC_recurse);
+ }
+
+ reStudy:
+ r->minlen = minlen = sawlookahead = sawplus = sawopen = sawminmod = 0;
+ DEBUG_r(
+ RExC_study_chunk_recursed_count= 0;
+ );
+ Zero(r->substrs, 1, struct reg_substr_data);
+ if (RExC_study_chunk_recursed) {
+ Zero(RExC_study_chunk_recursed,
+ RExC_study_chunk_recursed_bytes * RExC_npar, U8);
+ }
+
+
+#ifdef TRIE_STUDY_OPT
+ if (!restudied) {
+ StructCopy(&zero_scan_data, &data, scan_data_t);
+ copyRExC_state = RExC_state;
+ } else {
+ U32 seen=RExC_seen;
+ DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
+
+ RExC_state = copyRExC_state;
+ if (seen & REG_TOP_LEVEL_BRANCHES_SEEN)
+ RExC_seen |= REG_TOP_LEVEL_BRANCHES_SEEN;
+ else
+ RExC_seen &= ~REG_TOP_LEVEL_BRANCHES_SEEN;
+ StructCopy(&zero_scan_data, &data, scan_data_t);
+ }
+#else
+ StructCopy(&zero_scan_data, &data, scan_data_t);
+#endif
+
+ /* Dig out information for optimizations. */
+ r->extflags = RExC_flags; /* was pm_op */
+ /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
+
+ if (UTF)
+ SvUTF8_on(rx); /* Unicode in it? */
+ ri->regstclass = NULL;
+ if (RExC_naughty >= TOO_NAUGHTY) /* Probably an expensive pattern. */
+ r->intflags |= PREGf_NAUGHTY;
+ scan = ri->program + 1; /* First BRANCH. */
+
+ /* testing for BRANCH here tells us whether there is "must appear"
+ data in the pattern. If there is then we can use it for optimisations */
+ if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN)) { /* Only one top-level choice.
+ */
+ SSize_t fake;
+ STRLEN longest_float_length, longest_fixed_length;
+ regnode_ssc ch_class; /* pointed to by data */
+ int stclass_flag;
+ SSize_t last_close = 0; /* pointed to by data */
+ regnode *first= scan;
+ regnode *first_next= regnext(first);
+ /*
+ * Skip introductions and multiplicators >= 1
+ * so that we can extract the 'meat' of the pattern that must
+ * match in the large if() sequence following.
+ * NOTE that EXACT is NOT covered here, as it is normally
+ * picked up by the optimiser separately.
+ *
+ * This is unfortunate as the optimiser isnt handling lookahead
+ * properly currently.
+ *
+ */
+ while ((OP(first) == OPEN && (sawopen = 1)) ||
+ /* An OR of *one* alternative - should not happen now. */
+ (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
+ /* for now we can't handle lookbehind IFMATCH*/
+ (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
+ (OP(first) == PLUS) ||
+ (OP(first) == MINMOD) ||
+ /* An {n,m} with n>0 */
+ (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
+ (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
+ {
+ /*
+ * the only op that could be a regnode is PLUS, all the rest
+ * will be regnode_1 or regnode_2.
+ *
+ * (yves doesn't think this is true)
+ */
+ if (OP(first) == PLUS)
+ sawplus = 1;
+ else {
+ if (OP(first) == MINMOD)
+ sawminmod = 1;
+ first += regarglen[OP(first)];
+ }
+ first = NEXTOPER(first);
+ first_next= regnext(first);
+ }
+
+ /* Starting-point info. */
+ again:
+ DEBUG_PEEP("first:",first,0);
+ /* Ignore EXACT as we deal with it later. */
+ if (PL_regkind[OP(first)] == EXACT) {
+ if (OP(first) == EXACT || OP(first) == EXACTL)
+ NOOP; /* Empty, get anchored substr later. */
+ else
+ ri->regstclass = first;
+ }
+#ifdef TRIE_STCLASS
+ else if (PL_regkind[OP(first)] == TRIE &&
+ ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
+ {
+ /* this can happen only on restudy */
+ ri->regstclass = construct_ahocorasick_from_trie(pRExC_state, (regnode *)first, 0);
+ }
+#endif
+ else if (REGNODE_SIMPLE(OP(first)))
+ ri->regstclass = first;
+ else if (PL_regkind[OP(first)] == BOUND ||
+ PL_regkind[OP(first)] == NBOUND)
+ ri->regstclass = first;
+ else if (PL_regkind[OP(first)] == BOL) {
+ r->intflags |= (OP(first) == MBOL
+ ? PREGf_ANCH_MBOL
+ : PREGf_ANCH_SBOL);
+ first = NEXTOPER(first);
+ goto again;
+ }
+ else if (OP(first) == GPOS) {
+ r->intflags |= PREGf_ANCH_GPOS;
+ first = NEXTOPER(first);
+ goto again;
+ }
+ else if ((!sawopen || !RExC_sawback) &&
+ !sawlookahead &&
+ (OP(first) == STAR &&
+ PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
+ !(r->intflags & PREGf_ANCH) && !pRExC_state->num_code_blocks)
+ {
+ /* turn .* into ^.* with an implied $*=1 */
+ const int type =
+ (OP(NEXTOPER(first)) == REG_ANY)
+ ? PREGf_ANCH_MBOL
+ : PREGf_ANCH_SBOL;
+ r->intflags |= (type | PREGf_IMPLICIT);
+ first = NEXTOPER(first);
+ goto again;
+ }
+ if (sawplus && !sawminmod && !sawlookahead
+ && (!sawopen || !RExC_sawback)
+ && !pRExC_state->num_code_blocks) /* May examine pos and $& */
+ /* x+ must match at the 1st pos of run of x's */
+ r->intflags |= PREGf_SKIP;
+
+ /* Scan is after the zeroth branch, first is atomic matcher. */
+#ifdef TRIE_STUDY_OPT
+ DEBUG_PARSE_r(
+ if (!restudied)
+ PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
+ (IV)(first - scan + 1))
+ );
+#else
+ DEBUG_PARSE_r(
+ PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
+ (IV)(first - scan + 1))
+ );
+#endif
+
+
+ /*
+ * If there's something expensive in the r.e., find the
+ * longest literal string that must appear and make it the
+ * regmust. Resolve ties in favor of later strings, since
+ * the regstart check works with the beginning of the r.e.
+ * and avoiding duplication strengthens checking. Not a
+ * strong reason, but sufficient in the absence of others.
+ * [Now we resolve ties in favor of the earlier string if
+ * it happens that c_offset_min has been invalidated, since the
+ * earlier string may buy us something the later one won't.]
+ */
+
+ data.longest_fixed = newSVpvs("");
+ data.longest_float = newSVpvs("");
+ data.last_found = newSVpvs("");
+ data.longest = &(data.longest_fixed);
+ ENTER_with_name("study_chunk");
+ SAVEFREESV(data.longest_fixed);
+ SAVEFREESV(data.longest_float);
+ SAVEFREESV(data.last_found);
+ first = scan;
+ if (!ri->regstclass) {
+ ssc_init(pRExC_state, &ch_class);
+ data.start_class = &ch_class;
+ stclass_flag = SCF_DO_STCLASS_AND;
+ } else /* XXXX Check for BOUND? */
+ stclass_flag = 0;
+ data.last_closep = &last_close;
+
+ DEBUG_RExC_seen();
+ minlen = study_chunk(pRExC_state, &first, &minlen, &fake,
+ scan + RExC_size, /* Up to end */
+ &data, -1, 0, NULL,
+ SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag
+ | (restudied ? SCF_TRIE_DOING_RESTUDY : 0),
+ 0);
+
+
+ CHECK_RESTUDY_GOTO_butfirst(LEAVE_with_name("study_chunk"));
+
+
+ if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
+ && data.last_start_min == 0 && data.last_end > 0
+ && !RExC_seen_zerolen
+ && !(RExC_seen & REG_VERBARG_SEEN)
+ && !(RExC_seen & REG_GPOS_SEEN)
+ ){
+ r->extflags |= RXf_CHECK_ALL;
+ }
+ scan_commit(pRExC_state, &data,&minlen,0);
+
+ longest_float_length = CHR_SVLEN(data.longest_float);
+
+ if (! ((SvCUR(data.longest_fixed) /* ok to leave SvCUR */
+ && data.offset_fixed == data.offset_float_min
+ && SvCUR(data.longest_fixed) == SvCUR(data.longest_float)))
+ && S_setup_longest (aTHX_ pRExC_state,
+ data.longest_float,
+ &(r->float_utf8),
+ &(r->float_substr),
+ &(r->float_end_shift),
+ data.lookbehind_float,
+ data.offset_float_min,
+ data.minlen_float,
+ longest_float_length,
+ cBOOL(data.flags & SF_FL_BEFORE_EOL),
+ cBOOL(data.flags & SF_FL_BEFORE_MEOL)))
+ {
+ r->float_min_offset = data.offset_float_min - data.lookbehind_float;
+ r->float_max_offset = data.offset_float_max;
+ if (data.offset_float_max < SSize_t_MAX) /* Don't offset infinity */
+ r->float_max_offset -= data.lookbehind_float;
+ SvREFCNT_inc_simple_void_NN(data.longest_float);
+ }
+ else {
+ r->float_substr = r->float_utf8 = NULL;
+ longest_float_length = 0;
+ }
+
+ longest_fixed_length = CHR_SVLEN(data.longest_fixed);
+
+ if (S_setup_longest (aTHX_ pRExC_state,
+ data.longest_fixed,
+ &(r->anchored_utf8),
+ &(r->anchored_substr),
+ &(r->anchored_end_shift),
+ data.lookbehind_fixed,
+ data.offset_fixed,
+ data.minlen_fixed,
+ longest_fixed_length,
+ cBOOL(data.flags & SF_FIX_BEFORE_EOL),
+ cBOOL(data.flags & SF_FIX_BEFORE_MEOL)))
+ {
+ r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
+ SvREFCNT_inc_simple_void_NN(data.longest_fixed);
+ }
+ else {
+ r->anchored_substr = r->anchored_utf8 = NULL;
+ longest_fixed_length = 0;
+ }
+ LEAVE_with_name("study_chunk");
+
+ if (ri->regstclass
+ && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
+ ri->regstclass = NULL;
+
+ if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
+ && stclass_flag
+ && ! (ANYOF_FLAGS(data.start_class) & SSC_MATCHES_EMPTY_STRING)
+ && is_ssc_worth_it(pRExC_state, data.start_class))
+ {
+ const U32 n = add_data(pRExC_state, STR_WITH_LEN("f"));
+
+ ssc_finalize(pRExC_state, data.start_class);
+
+ Newx(RExC_rxi->data->data[n], 1, regnode_ssc);
+ StructCopy(data.start_class,
+ (regnode_ssc*)RExC_rxi->data->data[n],
+ regnode_ssc);
+ ri->regstclass = (regnode*)RExC_rxi->data->data[n];
+ r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
+ DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
+ regprop(r, sv, (regnode*)data.start_class, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log,
+ "synthetic stclass \"%s\".\n",
+ SvPVX_const(sv));});
+ data.start_class = NULL;
+ }
+
+ /* A temporary algorithm prefers floated substr to fixed one to dig
+ * more info. */
+ if (longest_fixed_length > longest_float_length) {
+ r->substrs->check_ix = 0;
+ r->check_end_shift = r->anchored_end_shift;
+ r->check_substr = r->anchored_substr;
+ r->check_utf8 = r->anchored_utf8;
+ r->check_offset_min = r->check_offset_max = r->anchored_offset;
+ if (r->intflags & (PREGf_ANCH_SBOL|PREGf_ANCH_GPOS))
+ r->intflags |= PREGf_NOSCAN;
+ }
+ else {
+ r->substrs->check_ix = 1;
+ r->check_end_shift = r->float_end_shift;
+ r->check_substr = r->float_substr;
+ r->check_utf8 = r->float_utf8;
+ r->check_offset_min = r->float_min_offset;
+ r->check_offset_max = r->float_max_offset;
+ }
+ if ((r->check_substr || r->check_utf8) ) {
+ r->extflags |= RXf_USE_INTUIT;
+ if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
+ r->extflags |= RXf_INTUIT_TAIL;
+ }
+ r->substrs->data[0].max_offset = r->substrs->data[0].min_offset;
+
+ /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
+ if ( (STRLEN)minlen < longest_float_length )
+ minlen= longest_float_length;
+ if ( (STRLEN)minlen < longest_fixed_length )
+ minlen= longest_fixed_length;
+ */
+ }
+ else {
+ /* Several toplevels. Best we can is to set minlen. */
+ SSize_t fake;
+ regnode_ssc ch_class;
+ SSize_t last_close = 0;
+
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
+
+ scan = ri->program + 1;
+ ssc_init(pRExC_state, &ch_class);
+ data.start_class = &ch_class;
+ data.last_closep = &last_close;
+
+ DEBUG_RExC_seen();
+ minlen = study_chunk(pRExC_state,
+ &scan, &minlen, &fake, scan + RExC_size, &data, -1, 0, NULL,
+ SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS|(restudied
+ ? SCF_TRIE_DOING_RESTUDY
+ : 0),
+ 0);
+
+ CHECK_RESTUDY_GOTO_butfirst(NOOP);
+
+ r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
+ = r->float_substr = r->float_utf8 = NULL;
+
+ if (! (ANYOF_FLAGS(data.start_class) & SSC_MATCHES_EMPTY_STRING)
+ && is_ssc_worth_it(pRExC_state, data.start_class))
+ {
+ const U32 n = add_data(pRExC_state, STR_WITH_LEN("f"));
+
+ ssc_finalize(pRExC_state, data.start_class);
+
+ Newx(RExC_rxi->data->data[n], 1, regnode_ssc);
+ StructCopy(data.start_class,
+ (regnode_ssc*)RExC_rxi->data->data[n],
+ regnode_ssc);
+ ri->regstclass = (regnode*)RExC_rxi->data->data[n];
+ r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
+ DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
+ regprop(r, sv, (regnode*)data.start_class, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log,
+ "synthetic stclass \"%s\".\n",
+ SvPVX_const(sv));});
+ data.start_class = NULL;
+ }
+ }
+
+ if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) {
+ r->extflags |= RXf_UNBOUNDED_QUANTIFIER_SEEN;
+ r->maxlen = REG_INFTY;
+ }
+ else {
+ r->maxlen = RExC_maxlen;
+ }
+
+ /* Guard against an embedded (?=) or (?<=) with a longer minlen than
+ the "real" pattern. */
+ DEBUG_OPTIMISE_r({
+ PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf" maxlen:%"IVdf"\n",
+ (IV)minlen, (IV)r->minlen, (IV)RExC_maxlen);
+ });
+ r->minlenret = minlen;
+ if (r->minlen < minlen)
+ r->minlen = minlen;
+
+ if (RExC_seen & REG_GPOS_SEEN)
+ r->intflags |= PREGf_GPOS_SEEN;
+ if (RExC_seen & REG_LOOKBEHIND_SEEN)
+ r->extflags |= RXf_NO_INPLACE_SUBST; /* inplace might break the
+ lookbehind */
+ if (pRExC_state->num_code_blocks)
+ r->extflags |= RXf_EVAL_SEEN;
+ if (RExC_seen & REG_VERBARG_SEEN)
+ {
+ r->intflags |= PREGf_VERBARG_SEEN;
+ r->extflags |= RXf_NO_INPLACE_SUBST; /* don't understand this! Yves */
+ }
+ if (RExC_seen & REG_CUTGROUP_SEEN)
+ r->intflags |= PREGf_CUTGROUP_SEEN;
+ if (pm_flags & PMf_USE_RE_EVAL)
+ r->intflags |= PREGf_USE_RE_EVAL;
+ if (RExC_paren_names)
+ RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
+ else
+ RXp_PAREN_NAMES(r) = NULL;
+
+ /* If we have seen an anchor in our pattern then we set the extflag RXf_IS_ANCHORED
+ * so it can be used in pp.c */
+ if (r->intflags & PREGf_ANCH)
+ r->extflags |= RXf_IS_ANCHORED;
+
+
+ {
+ /* this is used to identify "special" patterns that might result
+ * in Perl NOT calling the regex engine and instead doing the match "itself",
+ * particularly special cases in split//. By having the regex compiler
+ * do this pattern matching at a regop level (instead of by inspecting the pattern)
+ * we avoid weird issues with equivalent patterns resulting in different behavior,
+ * AND we allow non Perl engines to get the same optimizations by the setting the
+ * flags appropriately - Yves */
+ regnode *first = ri->program + 1;
+ U8 fop = OP(first);
+ regnode *next = regnext(first);
+ U8 nop = OP(next);
+
+ if (PL_regkind[fop] == NOTHING && nop == END)
+ r->extflags |= RXf_NULL;
+ else if ((fop == MBOL || (fop == SBOL && !first->flags)) && nop == END)
+ /* when fop is SBOL first->flags will be true only when it was
+ * produced by parsing /\A/, and not when parsing /^/. This is
+ * very important for the split code as there we want to
+ * treat /^/ as /^/m, but we do not want to treat /\A/ as /^/m.
+ * See rt #122761 for more details. -- Yves */
+ r->extflags |= RXf_START_ONLY;
+ else if (fop == PLUS
+ && PL_regkind[nop] == POSIXD && FLAGS(next) == _CC_SPACE
+ && nop == END)
+ r->extflags |= RXf_WHITE;
+ else if ( r->extflags & RXf_SPLIT
+ && (fop == EXACT || fop == EXACTL)
+ && STR_LEN(first) == 1
+ && *(STRING(first)) == ' '
+ && nop == END )
+ r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
+
+ }
+
+ if (RExC_contains_locale) {
+ RXp_EXTFLAGS(r) |= RXf_TAINTED;
+ }
+
+#ifdef DEBUGGING
+ if (RExC_paren_names) {
+ ri->name_list_idx = add_data( pRExC_state, STR_WITH_LEN("a"));
+ ri->data->data[ri->name_list_idx]
+ = (void*)SvREFCNT_inc(RExC_paren_name_list);
+ } else
+#endif
+ ri->name_list_idx = 0;
+
+ if (RExC_recurse_count) {
+ for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
+ const regnode *scan = RExC_recurse[RExC_recurse_count-1];
+ ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
+ }
+ }
+ Newxz(r->offs, RExC_npar, regexp_paren_pair);
+ /* assume we don't need to swap parens around before we match */
+ DEBUG_TEST_r({
+ PerlIO_printf(Perl_debug_log,"study_chunk_recursed_count: %lu\n",
+ (unsigned long)RExC_study_chunk_recursed_count);
+ });
+ DEBUG_DUMP_r({
+ DEBUG_RExC_seen();
+ PerlIO_printf(Perl_debug_log,"Final program:\n");
+ regdump(r);
+ });
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ DEBUG_OFFSETS_r(if (ri->u.offsets) {
+ const STRLEN len = ri->u.offsets[0];
+ STRLEN i;
+ GET_RE_DEBUG_FLAGS_DECL;
+ PerlIO_printf(Perl_debug_log,
+ "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
+ for (i = 1; i <= len; i++) {
+ if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
+ PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
+ (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
+ }
+ PerlIO_printf(Perl_debug_log, "\n");
+ });
+#endif
+
+#ifdef USE_ITHREADS
+ /* under ithreads the ?pat? PMf_USED flag on the pmop is simulated
+ * by setting the regexp SV to readonly-only instead. If the
+ * pattern's been recompiled, the USEDness should remain. */
+ if (old_re && SvREADONLY(old_re))
+ SvREADONLY_on(rx);
+#endif
+ return rx;
+}
+
+
+SV*
+Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
+ const U32 flags)
+{
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF;
+
+ PERL_UNUSED_ARG(value);
+
+ if (flags & RXapif_FETCH) {
+ return reg_named_buff_fetch(rx, key, flags);
+ } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
+ Perl_croak_no_modify();
+ return NULL;
+ } else if (flags & RXapif_EXISTS) {
+ return reg_named_buff_exists(rx, key, flags)
+ ? &PL_sv_yes
+ : &PL_sv_no;
+ } else if (flags & RXapif_REGNAMES) {
+ return reg_named_buff_all(rx, flags);
+ } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
+ return reg_named_buff_scalar(rx, flags);
+ } else {
+ Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
+ return NULL;
+ }
+}
+
+SV*
+Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
+ const U32 flags)
+{
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
+ PERL_UNUSED_ARG(lastkey);
+
+ if (flags & RXapif_FIRSTKEY)
+ return reg_named_buff_firstkey(rx, flags);
+ else if (flags & RXapif_NEXTKEY)
+ return reg_named_buff_nextkey(rx, flags);
+ else {
+ Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter",
+ (int)flags);
+ return NULL;
+ }
+}
+
+SV*
+Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
+ const U32 flags)
+{
+ AV *retarray = NULL;
+ SV *ret;
+ struct regexp *const rx = ReANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
+
+ if (flags & RXapif_ALL)
+ retarray=newAV();
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
+ if (he_str) {
+ IV i;
+ SV* sv_dat=HeVAL(he_str);
+ I32 *nums=(I32*)SvPVX(sv_dat);
+ for ( i=0; i<SvIVX(sv_dat); i++ ) {
+ if ((I32)(rx->nparens) >= nums[i]
+ && rx->offs[nums[i]].start != -1
+ && rx->offs[nums[i]].end != -1)
+ {
+ ret = newSVpvs("");
+ CALLREG_NUMBUF_FETCH(r,nums[i],ret);
+ if (!retarray)
+ return ret;
+ } else {
+ if (retarray)
+ ret = newSVsv(&PL_sv_undef);
+ }
+ if (retarray)
+ av_push(retarray, ret);
+ }
+ if (retarray)
+ return newRV_noinc(MUTABLE_SV(retarray));
+ }
+ }
+ return NULL;
+}
+
+bool
+Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
+ const U32 flags)
+{
+ struct regexp *const rx = ReANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ if (flags & RXapif_ALL) {
+ return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
+ } else {
+ SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
+ if (sv) {
+ SvREFCNT_dec_NN(sv);
+ return TRUE;
+ } else {
+ return FALSE;
+ }
+ }
+ } else {
+ return FALSE;
+ }
+}
+
+SV*
+Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = ReANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
+
+ if ( rx && RXp_PAREN_NAMES(rx) ) {
+ (void)hv_iterinit(RXp_PAREN_NAMES(rx));
+
+ return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
+ } else {
+ return FALSE;
+ }
+}
+
+SV*
+Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = ReANY(r);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ HV *hv = RXp_PAREN_NAMES(rx);
+ HE *temphe;
+ while ( (temphe = hv_iternext_flags(hv,0)) ) {
+ IV i;
+ IV parno = 0;
+ SV* sv_dat = HeVAL(temphe);
+ I32 *nums = (I32*)SvPVX(sv_dat);
+ for ( i = 0; i < SvIVX(sv_dat); i++ ) {
+ if ((I32)(rx->lastparen) >= nums[i] &&
+ rx->offs[nums[i]].start != -1 &&
+ rx->offs[nums[i]].end != -1)
+ {
+ parno = nums[i];
+ break;
+ }
+ }
+ if (parno || flags & RXapif_ALL) {
+ return newSVhek(HeKEY_hek(temphe));
+ }
+ }
+ }
+ return NULL;
+}
+
+SV*
+Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
+{
+ SV *ret;
+ AV *av;
+ SSize_t length;
+ struct regexp *const rx = ReANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
+ return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
+ } else if (flags & RXapif_ONE) {
+ ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
+ av = MUTABLE_AV(SvRV(ret));
+ length = av_tindex(av);
+ SvREFCNT_dec_NN(ret);
+ return newSViv(length + 1);
+ } else {
+ Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar",
+ (int)flags);
+ return NULL;
+ }
+ }
+ return &PL_sv_undef;
+}
+
+SV*
+Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = ReANY(r);
+ AV *av = newAV();
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ HV *hv= RXp_PAREN_NAMES(rx);
+ HE *temphe;
+ (void)hv_iterinit(hv);
+ while ( (temphe = hv_iternext_flags(hv,0)) ) {
+ IV i;
+ IV parno = 0;
+ SV* sv_dat = HeVAL(temphe);
+ I32 *nums = (I32*)SvPVX(sv_dat);
+ for ( i = 0; i < SvIVX(sv_dat); i++ ) {
+ if ((I32)(rx->lastparen) >= nums[i] &&
+ rx->offs[nums[i]].start != -1 &&
+ rx->offs[nums[i]].end != -1)
+ {
+ parno = nums[i];
+ break;
+ }
+ }
+ if (parno || flags & RXapif_ALL) {
+ av_push(av, newSVhek(HeKEY_hek(temphe)));
+ }
+ }
+ }
+
+ return newRV_noinc(MUTABLE_SV(av));
+}
+
+void
+Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
+ SV * const sv)
+{
+ struct regexp *const rx = ReANY(r);
+ char *s = NULL;
+ SSize_t i = 0;
+ SSize_t s1, t1;
+ I32 n = paren;
+
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
+
+ if ( n == RX_BUFF_IDX_CARET_PREMATCH
+ || n == RX_BUFF_IDX_CARET_FULLMATCH
+ || n == RX_BUFF_IDX_CARET_POSTMATCH
+ )
+ {
+ bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
+ if (!keepcopy) {
+ /* on something like
+ * $r = qr/.../;
+ * /$qr/p;
+ * the KEEPCOPY is set on the PMOP rather than the regex */
+ if (PL_curpm && r == PM_GETRE(PL_curpm))
+ keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
+ }
+ if (!keepcopy)
+ goto ret_undef;
+ }
+
+ if (!rx->subbeg)
+ goto ret_undef;
+
+ if (n == RX_BUFF_IDX_CARET_FULLMATCH)
+ /* no need to distinguish between them any more */
+ n = RX_BUFF_IDX_FULLMATCH;
+
+ if ((n == RX_BUFF_IDX_PREMATCH || n == RX_BUFF_IDX_CARET_PREMATCH)
+ && rx->offs[0].start != -1)
+ {
+ /* $`, ${^PREMATCH} */
+ i = rx->offs[0].start;
+ s = rx->subbeg;
+ }
+ else
+ if ((n == RX_BUFF_IDX_POSTMATCH || n == RX_BUFF_IDX_CARET_POSTMATCH)
+ && rx->offs[0].end != -1)
+ {
+ /* $', ${^POSTMATCH} */
+ s = rx->subbeg - rx->suboffset + rx->offs[0].end;
+ i = rx->sublen + rx->suboffset - rx->offs[0].end;
+ }
+ else
+ if ( 0 <= n && n <= (I32)rx->nparens &&
+ (s1 = rx->offs[n].start) != -1 &&
+ (t1 = rx->offs[n].end) != -1)
+ {
+ /* $&, ${^MATCH}, $1 ... */
+ i = t1 - s1;
+ s = rx->subbeg + s1 - rx->suboffset;
+ } else {
+ goto ret_undef;
+ }
+
+ assert(s >= rx->subbeg);
+ assert((STRLEN)rx->sublen >= (STRLEN)((s - rx->subbeg) + i) );
+ if (i >= 0) {
+#ifdef NO_TAINT_SUPPORT
+ sv_setpvn(sv, s, i);
+#else
+ const int oldtainted = TAINT_get;
+ TAINT_NOT;
+ sv_setpvn(sv, s, i);
+ TAINT_set(oldtainted);
+#endif
+ if (RXp_MATCH_UTF8(rx))
+ SvUTF8_on(sv);
+ else
+ SvUTF8_off(sv);
+ if (TAINTING_get) {
+ if (RXp_MATCH_TAINTED(rx)) {
+ if (SvTYPE(sv) >= SVt_PVMG) {
+ MAGIC* const mg = SvMAGIC(sv);
+ MAGIC* mgt;
+ TAINT;
+ SvMAGIC_set(sv, mg->mg_moremagic);
+ SvTAINT(sv);
+ if ((mgt = SvMAGIC(sv))) {
+ mg->mg_moremagic = mgt;
+ SvMAGIC_set(sv, mg);
+ }
+ } else {
+ TAINT;
+ SvTAINT(sv);
+ }
+ } else
+ SvTAINTED_off(sv);
+ }
+ } else {
+ ret_undef:
+ sv_setsv(sv,&PL_sv_undef);
+ return;
+ }
+}
+
+void
+Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
+ SV const * const value)
+{
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
+
+ PERL_UNUSED_ARG(rx);
+ PERL_UNUSED_ARG(paren);
+ PERL_UNUSED_ARG(value);
+
+ if (!PL_localizing)
+ Perl_croak_no_modify();
+}
+
+I32
+Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
+ const I32 paren)
+{
+ struct regexp *const rx = ReANY(r);
+ I32 i;
+ I32 s1, t1;
+
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
+
+ if ( paren == RX_BUFF_IDX_CARET_PREMATCH
+ || paren == RX_BUFF_IDX_CARET_FULLMATCH
+ || paren == RX_BUFF_IDX_CARET_POSTMATCH
+ )
+ {
+ bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
+ if (!keepcopy) {
+ /* on something like
+ * $r = qr/.../;
+ * /$qr/p;
+ * the KEEPCOPY is set on the PMOP rather than the regex */
+ if (PL_curpm && r == PM_GETRE(PL_curpm))
+ keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
+ }
+ if (!keepcopy)
+ goto warn_undef;
+ }
+
+ /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
+ switch (paren) {
+ case RX_BUFF_IDX_CARET_PREMATCH: /* ${^PREMATCH} */
+ case RX_BUFF_IDX_PREMATCH: /* $` */
+ if (rx->offs[0].start != -1) {
+ i = rx->offs[0].start;
+ if (i > 0) {
+ s1 = 0;
+ t1 = i;
+ goto getlen;
+ }
+ }
+ return 0;
+
+ case RX_BUFF_IDX_CARET_POSTMATCH: /* ${^POSTMATCH} */
+ case RX_BUFF_IDX_POSTMATCH: /* $' */
+ if (rx->offs[0].end != -1) {
+ i = rx->sublen - rx->offs[0].end;
+ if (i > 0) {
+ s1 = rx->offs[0].end;
+ t1 = rx->sublen;
+ goto getlen;
+ }
+ }
+ return 0;
+
+ default: /* $& / ${^MATCH}, $1, $2, ... */
+ if (paren <= (I32)rx->nparens &&
+ (s1 = rx->offs[paren].start) != -1 &&
+ (t1 = rx->offs[paren].end) != -1)
+ {
+ i = t1 - s1;
+ goto getlen;
+ } else {
+ warn_undef:
+ if (ckWARN(WARN_UNINITIALIZED))
+ report_uninit((const SV *)sv);
+ return 0;
+ }
+ }
+ getlen:
+ if (i > 0 && RXp_MATCH_UTF8(rx)) {
+ const char * const s = rx->subbeg - rx->suboffset + s1;
+ const U8 *ep;
+ STRLEN el;
+
+ i = t1 - s1;
+ if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
+ i = el;
+ }
+ return i;
+}
+
+SV*
+Perl_reg_qr_package(pTHX_ REGEXP * const rx)
+{
+ PERL_ARGS_ASSERT_REG_QR_PACKAGE;
+ PERL_UNUSED_ARG(rx);
+ if (0)
+ return NULL;
+ else
+ return newSVpvs("Regexp");
+}
+
+/* Scans the name of a named buffer from the pattern.
+ * If flags is REG_RSN_RETURN_NULL returns null.
+ * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
+ * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
+ * to the parsed name as looked up in the RExC_paren_names hash.
+ * If there is an error throws a vFAIL().. type exception.
+ */
+
+#define REG_RSN_RETURN_NULL 0
+#define REG_RSN_RETURN_NAME 1
+#define REG_RSN_RETURN_DATA 2
+
+STATIC SV*
+S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
+{
+ char *name_start = RExC_parse;
+
+ PERL_ARGS_ASSERT_REG_SCAN_NAME;
+
+ assert (RExC_parse <= RExC_end);
+ if (RExC_parse == RExC_end) NOOP;
+ else if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
+ /* skip IDFIRST by using do...while */
+ if (UTF)
+ do {
+ RExC_parse += UTF8SKIP(RExC_parse);
+ } while (isWORDCHAR_utf8((U8*)RExC_parse));
+ else
+ do {
+ RExC_parse++;
+ } while (isWORDCHAR(*RExC_parse));
+ } else {
+ RExC_parse++; /* so the <- from the vFAIL is after the offending
+ character */
+ vFAIL("Group name must start with a non-digit word character");
+ }
+ if ( flags ) {
+ SV* sv_name
+ = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
+ SVs_TEMP | (UTF ? SVf_UTF8 : 0));
+ if ( flags == REG_RSN_RETURN_NAME)
+ return sv_name;
+ else if (flags==REG_RSN_RETURN_DATA) {
+ HE *he_str = NULL;
+ SV *sv_dat = NULL;
+ if ( ! sv_name ) /* should not happen*/
+ Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
+ if (RExC_paren_names)
+ he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
+ if ( he_str )
+ sv_dat = HeVAL(he_str);
+ if ( ! sv_dat )
+ vFAIL("Reference to nonexistent named group");
+ return sv_dat;
+ }
+ else {
+ Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name",
+ (unsigned long) flags);
+ }
+ NOT_REACHED; /* NOTREACHED */
+ }
+ return NULL;
+}
+
+#define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \
+ int num; \
+ if (RExC_lastparse!=RExC_parse) { \
+ PerlIO_printf(Perl_debug_log, "%s", \
+ Perl_pv_pretty(aTHX_ RExC_mysv1, RExC_parse, \
+ RExC_end - RExC_parse, 16, \
+ "", "", \
+ PERL_PV_ESCAPE_UNI_DETECT | \
+ PERL_PV_PRETTY_ELLIPSES | \
+ PERL_PV_PRETTY_LTGT | \
+ PERL_PV_ESCAPE_RE | \
+ PERL_PV_PRETTY_EXACTSIZE \
+ ) \
+ ); \
+ } else \
+ PerlIO_printf(Perl_debug_log,"%16s",""); \
+ \
+ if (SIZE_ONLY) \
+ num = RExC_size + 1; \
+ else \
+ num=REG_NODE_NUM(RExC_emit); \
+ if (RExC_lastnum!=num) \
+ PerlIO_printf(Perl_debug_log,"|%4d",num); \
+ else \
+ PerlIO_printf(Perl_debug_log,"|%4s",""); \
+ PerlIO_printf(Perl_debug_log,"|%*s%-4s", \
+ (int)((depth*2)), "", \
+ (funcname) \
+ ); \
+ RExC_lastnum=num; \
+ RExC_lastparse=RExC_parse; \
+})
+
+
+
+#define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \
+ DEBUG_PARSE_MSG((funcname)); \
+ PerlIO_printf(Perl_debug_log,"%4s","\n"); \
+})
+#define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \
+ DEBUG_PARSE_MSG((funcname)); \
+ PerlIO_printf(Perl_debug_log,fmt "\n",args); \
+})
+
+/* This section of code defines the inversion list object and its methods. The
+ * interfaces are highly subject to change, so as much as possible is static to
+ * this file. An inversion list is here implemented as a malloc'd C UV array
+ * as an SVt_INVLIST scalar.
+ *
+ * An inversion list for Unicode is an array of code points, sorted by ordinal
+ * number. The zeroth element is the first code point in the list. The 1th
+ * element is the first element beyond that not in the list. In other words,
+ * the first range is
+ * invlist[0]..(invlist[1]-1)
+ * The other ranges follow. Thus every element whose index is divisible by two
+ * marks the beginning of a range that is in the list, and every element not
+ * divisible by two marks the beginning of a range not in the list. A single
+ * element inversion list that contains the single code point N generally
+ * consists of two elements
+ * invlist[0] == N
+ * invlist[1] == N+1
+ * (The exception is when N is the highest representable value on the
+ * machine, in which case the list containing just it would be a single
+ * element, itself. By extension, if the last range in the list extends to
+ * infinity, then the first element of that range will be in the inversion list
+ * at a position that is divisible by two, and is the final element in the
+ * list.)
+ * Taking the complement (inverting) an inversion list is quite simple, if the
+ * first element is 0, remove it; otherwise add a 0 element at the beginning.
+ * This implementation reserves an element at the beginning of each inversion
+ * list to always contain 0; there is an additional flag in the header which
+ * indicates if the list begins at the 0, or is offset to begin at the next
+ * element.
+ *
+ * More about inversion lists can be found in "Unicode Demystified"
+ * Chapter 13 by Richard Gillam, published by Addison-Wesley.
+ * More will be coming when functionality is added later.
+ *
+ * The inversion list data structure is currently implemented as an SV pointing
+ * to an array of UVs that the SV thinks are bytes. This allows us to have an
+ * array of UV whose memory management is automatically handled by the existing
+ * facilities for SV's.
+ *
+ * Some of the methods should always be private to the implementation, and some
+ * should eventually be made public */
+
+/* The header definitions are in F<inline_invlist.c> */
+
+PERL_STATIC_INLINE UV*
+S__invlist_array_init(SV* const invlist, const bool will_have_0)
+{
+ /* Returns a pointer to the first element in the inversion list's array.
+ * This is called upon initialization of an inversion list. Where the
+ * array begins depends on whether the list has the code point U+0000 in it
+ * or not. The other parameter tells it whether the code that follows this
+ * call is about to put a 0 in the inversion list or not. The first
+ * element is either the element reserved for 0, if TRUE, or the element
+ * after it, if FALSE */
+
+ bool* offset = get_invlist_offset_addr(invlist);
+ UV* zero_addr = (UV *) SvPVX(invlist);
+
+ PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
+
+ /* Must be empty */
+ assert(! _invlist_len(invlist));
+
+ *zero_addr = 0;
+
+ /* 1^1 = 0; 1^0 = 1 */
+ *offset = 1 ^ will_have_0;
+ return zero_addr + *offset;
+}
+
+PERL_STATIC_INLINE void
+S_invlist_set_len(pTHX_ SV* const invlist, const UV len, const bool offset)
+{
+ /* Sets the current number of elements stored in the inversion list.
+ * Updates SvCUR correspondingly */
+ PERL_UNUSED_CONTEXT;
+ PERL_ARGS_ASSERT_INVLIST_SET_LEN;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ SvCUR_set(invlist,
+ (len == 0)
+ ? 0
+ : TO_INTERNAL_SIZE(len + offset));
+ assert(SvLEN(invlist) == 0 || SvCUR(invlist) <= SvLEN(invlist));
+}
+
+#ifndef PERL_IN_XSUB_RE
+
+PERL_STATIC_INLINE IV*
+S_get_invlist_previous_index_addr(SV* invlist)
+{
+ /* Return the address of the IV that is reserved to hold the cached index
+ * */
+ PERL_ARGS_ASSERT_GET_INVLIST_PREVIOUS_INDEX_ADDR;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ return &(((XINVLIST*) SvANY(invlist))->prev_index);
+}
+
+PERL_STATIC_INLINE IV
+S_invlist_previous_index(SV* const invlist)
+{
+ /* Returns cached index of previous search */
+
+ PERL_ARGS_ASSERT_INVLIST_PREVIOUS_INDEX;
+
+ return *get_invlist_previous_index_addr(invlist);
+}
+
+PERL_STATIC_INLINE void
+S_invlist_set_previous_index(SV* const invlist, const IV index)
+{
+ /* Caches <index> for later retrieval */
+
+ PERL_ARGS_ASSERT_INVLIST_SET_PREVIOUS_INDEX;
+
+ assert(index == 0 || index < (int) _invlist_len(invlist));
+
+ *get_invlist_previous_index_addr(invlist) = index;
+}
+
+PERL_STATIC_INLINE void
+S_invlist_trim(SV* const invlist)
+{
+ PERL_ARGS_ASSERT_INVLIST_TRIM;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ /* Change the length of the inversion list to how many entries it currently
+ * has */
+ SvPV_shrink_to_cur((SV *) invlist);
+}
+
+PERL_STATIC_INLINE bool
+S_invlist_is_iterating(SV* const invlist)
+{
+ PERL_ARGS_ASSERT_INVLIST_IS_ITERATING;
+
+ return *(get_invlist_iter_addr(invlist)) < (STRLEN) UV_MAX;
+}
+
+#endif /* ifndef PERL_IN_XSUB_RE */
+
+PERL_STATIC_INLINE UV
+S_invlist_max(SV* const invlist)
+{
+ /* Returns the maximum number of elements storable in the inversion list's
+ * array, without having to realloc() */
+
+ PERL_ARGS_ASSERT_INVLIST_MAX;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ /* Assumes worst case, in which the 0 element is not counted in the
+ * inversion list, so subtracts 1 for that */
+ return SvLEN(invlist) == 0 /* This happens under _new_invlist_C_array */
+ ? FROM_INTERNAL_SIZE(SvCUR(invlist)) - 1
+ : FROM_INTERNAL_SIZE(SvLEN(invlist)) - 1;
+}
+
+#ifndef PERL_IN_XSUB_RE
+SV*
+Perl__new_invlist(pTHX_ IV initial_size)
+{
+
+ /* Return a pointer to a newly constructed inversion list, with enough
+ * space to store 'initial_size' elements. If that number is negative, a
+ * system default is used instead */
+
+ SV* new_list;
+
+ if (initial_size < 0) {
+ initial_size = 10;
+ }
+
+ /* Allocate the initial space */
+ new_list = newSV_type(SVt_INVLIST);
+
+ /* First 1 is in case the zero element isn't in the list; second 1 is for
+ * trailing NUL */
+ SvGROW(new_list, TO_INTERNAL_SIZE(initial_size + 1) + 1);
+ invlist_set_len(new_list, 0, 0);
+
+ /* Force iterinit() to be used to get iteration to work */
+ *get_invlist_iter_addr(new_list) = (STRLEN) UV_MAX;
+
+ *get_invlist_previous_index_addr(new_list) = 0;
+
+ return new_list;
+}
+
+SV*
+Perl__new_invlist_C_array(pTHX_ const UV* const list)
+{
+ /* Return a pointer to a newly constructed inversion list, initialized to
+ * point to <list>, which has to be in the exact correct inversion list
+ * form, including internal fields. Thus this is a dangerous routine that
+ * should not be used in the wrong hands. The passed in 'list' contains
+ * several header fields at the beginning that are not part of the
+ * inversion list body proper */
+
+ const STRLEN length = (STRLEN) list[0];
+ const UV version_id = list[1];
+ const bool offset = cBOOL(list[2]);
+#define HEADER_LENGTH 3
+ /* If any of the above changes in any way, you must change HEADER_LENGTH
+ * (if appropriate) and regenerate INVLIST_VERSION_ID by running
+ * perl -E 'say int(rand 2**31-1)'
+ */
+#define INVLIST_VERSION_ID 148565664 /* This is a combination of a version and
+ data structure type, so that one being
+ passed in can be validated to be an
+ inversion list of the correct vintage.
+ */
+
+ SV* invlist = newSV_type(SVt_INVLIST);
+
+ PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY;
+
+ if (version_id != INVLIST_VERSION_ID) {
+ Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list");
+ }
+
+ /* The generated array passed in includes header elements that aren't part
+ * of the list proper, so start it just after them */
+ SvPV_set(invlist, (char *) (list + HEADER_LENGTH));
+
+ SvLEN_set(invlist, 0); /* Means we own the contents, and the system
+ shouldn't touch it */
+
+ *(get_invlist_offset_addr(invlist)) = offset;
+
+ /* The 'length' passed to us is the physical number of elements in the
+ * inversion list. But if there is an offset the logical number is one
+ * less than that */
+ invlist_set_len(invlist, length - offset, offset);
+
+ invlist_set_previous_index(invlist, 0);
+
+ /* Initialize the iteration pointer. */
+ invlist_iterfinish(invlist);
+
+ SvREADONLY_on(invlist);
+
+ return invlist;
+}
+#endif /* ifndef PERL_IN_XSUB_RE */
+
+STATIC void
+S_invlist_extend(pTHX_ SV* const invlist, const UV new_max)
+{
+ /* Grow the maximum size of an inversion list */
+
+ PERL_ARGS_ASSERT_INVLIST_EXTEND;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ /* Add one to account for the zero element at the beginning which may not
+ * be counted by the calling parameters */
+ SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max + 1));
+}
+
+STATIC void
+S__append_range_to_invlist(pTHX_ SV* const invlist,
+ const UV start, const UV end)
+{
+ /* Subject to change or removal. Append the range from 'start' to 'end' at
+ * the end of the inversion list. The range must be above any existing
+ * ones. */
+
+ UV* array;
+ UV max = invlist_max(invlist);
+ UV len = _invlist_len(invlist);
+ bool offset;
+
+ PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
+
+ if (len == 0) { /* Empty lists must be initialized */
+ offset = start != 0;
+ array = _invlist_array_init(invlist, ! offset);
+ }
+ else {
+ /* Here, the existing list is non-empty. The current max entry in the
+ * list is generally the first value not in the set, except when the
+ * set extends to the end of permissible values, in which case it is
+ * the first entry in that final set, and so this call is an attempt to
+ * append out-of-order */
+
+ UV final_element = len - 1;
+ array = invlist_array(invlist);
+ if (array[final_element] > start
+ || ELEMENT_RANGE_MATCHES_INVLIST(final_element))
+ {
+ Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%"UVuf", start=%"UVuf", match=%c",
+ array[final_element], start,
+ ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f');
+ }
+
+ /* Here, it is a legal append. If the new range begins with the first
+ * value not in the set, it is extending the set, so the new first
+ * value not in the set is one greater than the newly extended range.
+ * */
+ offset = *get_invlist_offset_addr(invlist);
+ if (array[final_element] == start) {
+ if (end != UV_MAX) {
+ array[final_element] = end + 1;
+ }
+ else {
+ /* But if the end is the maximum representable on the machine,
+ * just let the range that this would extend to have no end */
+ invlist_set_len(invlist, len - 1, offset);
+ }
+ return;
+ }
+ }
+
+ /* Here the new range doesn't extend any existing set. Add it */
+
+ len += 2; /* Includes an element each for the start and end of range */
+
+ /* If wll overflow the existing space, extend, which may cause the array to
+ * be moved */
+ if (max < len) {
+ invlist_extend(invlist, len);
+
+ /* Have to set len here to avoid assert failure in invlist_array() */
+ invlist_set_len(invlist, len, offset);
+
+ array = invlist_array(invlist);
+ }
+ else {
+ invlist_set_len(invlist, len, offset);
+ }
+
+ /* The next item on the list starts the range, the one after that is
+ * one past the new range. */
+ array[len - 2] = start;
+ if (end != UV_MAX) {
+ array[len - 1] = end + 1;
+ }
+ else {
+ /* But if the end is the maximum representable on the machine, just let
+ * the range have no end */
+ invlist_set_len(invlist, len - 1, offset);
+ }
+}
+
+#ifndef PERL_IN_XSUB_RE
+
+IV
+Perl__invlist_search(SV* const invlist, const UV cp)
+{
+ /* Searches the inversion list for the entry that contains the input code
+ * point <cp>. If <cp> is not in the list, -1 is returned. Otherwise, the
+ * return value is the index into the list's array of the range that
+ * contains <cp> */
+
+ IV low = 0;
+ IV mid;
+ IV high = _invlist_len(invlist);
+ const IV highest_element = high - 1;
+ const UV* array;
+
+ PERL_ARGS_ASSERT__INVLIST_SEARCH;
+
+ /* If list is empty, return failure. */
+ if (high == 0) {
+ return -1;
+ }
+
+ /* (We can't get the array unless we know the list is non-empty) */
+ array = invlist_array(invlist);
+
+ mid = invlist_previous_index(invlist);
+ assert(mid >=0 && mid <= highest_element);
+
+ /* <mid> contains the cache of the result of the previous call to this
+ * function (0 the first time). See if this call is for the same result,
+ * or if it is for mid-1. This is under the theory that calls to this
+ * function will often be for related code points that are near each other.
+ * And benchmarks show that caching gives better results. We also test
+ * here if the code point is within the bounds of the list. These tests
+ * replace others that would have had to be made anyway to make sure that
+ * the array bounds were not exceeded, and these give us extra information
+ * at the same time */
+ if (cp >= array[mid]) {
+ if (cp >= array[highest_element]) {
+ return highest_element;
+ }
+
+ /* Here, array[mid] <= cp < array[highest_element]. This means that
+ * the final element is not the answer, so can exclude it; it also
+ * means that <mid> is not the final element, so can refer to 'mid + 1'
+ * safely */
+ if (cp < array[mid + 1]) {
+ return mid;
+ }
+ high--;
+ low = mid + 1;
+ }
+ else { /* cp < aray[mid] */
+ if (cp < array[0]) { /* Fail if outside the array */
+ return -1;
+ }
+ high = mid;
+ if (cp >= array[mid - 1]) {
+ goto found_entry;
+ }
+ }
+
+ /* Binary search. What we are looking for is <i> such that
+ * array[i] <= cp < array[i+1]
+ * The loop below converges on the i+1. Note that there may not be an
+ * (i+1)th element in the array, and things work nonetheless */
+ while (low < high) {
+ mid = (low + high) / 2;
+ assert(mid <= highest_element);
+ if (array[mid] <= cp) { /* cp >= array[mid] */
+ low = mid + 1;
+
+ /* We could do this extra test to exit the loop early.
+ if (cp < array[low]) {
+ return mid;
+ }
+ */
+ }
+ else { /* cp < array[mid] */
+ high = mid;
+ }
+ }
+
+ found_entry:
+ high--;
+ invlist_set_previous_index(invlist, high);
+ return high;
+}
+
+void
+Perl__invlist_populate_swatch(SV* const invlist,
+ const UV start, const UV end, U8* swatch)
+{
+ /* populates a swatch of a swash the same way swatch_get() does in utf8.c,
+ * but is used when the swash has an inversion list. This makes this much
+ * faster, as it uses a binary search instead of a linear one. This is
+ * intimately tied to that function, and perhaps should be in utf8.c,
+ * except it is intimately tied to inversion lists as well. It assumes
+ * that <swatch> is all 0's on input */
+
+ UV current = start;
+ const IV len = _invlist_len(invlist);
+ IV i;
+ const UV * array;
+
+ PERL_ARGS_ASSERT__INVLIST_POPULATE_SWATCH;
+
+ if (len == 0) { /* Empty inversion list */
+ return;
+ }
+
+ array = invlist_array(invlist);
+
+ /* Find which element it is */
+ i = _invlist_search(invlist, start);
+
+ /* We populate from <start> to <end> */
+ while (current < end) {
+ UV upper;
+
+ /* The inversion list gives the results for every possible code point
+ * after the first one in the list. Only those ranges whose index is
+ * even are ones that the inversion list matches. For the odd ones,
+ * and if the initial code point is not in the list, we have to skip
+ * forward to the next element */
+ if (i == -1 || ! ELEMENT_RANGE_MATCHES_INVLIST(i)) {
+ i++;
+ if (i >= len) { /* Finished if beyond the end of the array */
+ return;
+ }
+ current = array[i];
+ if (current >= end) { /* Finished if beyond the end of what we
+ are populating */
+ if (LIKELY(end < UV_MAX)) {
+ return;
+ }
+
+ /* We get here when the upper bound is the maximum
+ * representable on the machine, and we are looking for just
+ * that code point. Have to special case it */
+ i = len;
+ goto join_end_of_list;
+ }
+ }
+ assert(current >= start);
+
+ /* The current range ends one below the next one, except don't go past
+ * <end> */
+ i++;
+ upper = (i < len && array[i] < end) ? array[i] : end;
+
+ /* Here we are in a range that matches. Populate a bit in the 3-bit U8
+ * for each code point in it */
+ for (; current < upper; current++) {
+ const STRLEN offset = (STRLEN)(current - start);
+ swatch[offset >> 3] |= 1 << (offset & 7);
+ }
+
+ join_end_of_list:
+
+ /* Quit if at the end of the list */
+ if (i >= len) {
+
+ /* But first, have to deal with the highest possible code point on
+ * the platform. The previous code assumes that <end> is one
+ * beyond where we want to populate, but that is impossible at the
+ * platform's infinity, so have to handle it specially */
+ if (UNLIKELY(end == UV_MAX && ELEMENT_RANGE_MATCHES_INVLIST(len-1)))
+ {
+ const STRLEN offset = (STRLEN)(end - start);
+ swatch[offset >> 3] |= 1 << (offset & 7);
+ }
+ return;
+ }
+
+ /* Advance to the next range, which will be for code points not in the
+ * inversion list */
+ current = array[i];
+ }
+
+ return;
+}
+
+void
+Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b,
+ const bool complement_b, SV** output)
+{
+ /* Take the union of two inversion lists and point <output> to it. *output
+ * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
+ * the reference count to that list will be decremented if not already a
+ * temporary (mortal); otherwise *output will be made correspondingly
+ * mortal. The first list, <a>, may be NULL, in which case a copy of the
+ * second list is returned. If <complement_b> is TRUE, the union is taken
+ * of the complement (inversion) of <b> instead of b itself.
+ *
+ * The basis for this comes from "Unicode Demystified" Chapter 13 by
+ * Richard Gillam, published by Addison-Wesley, and explained at some
+ * length there. The preface says to incorporate its examples into your
+ * code at your own risk.
+ *
+ * The algorithm is like a merge sort.
+ *
+ * XXX A potential performance improvement is to keep track as we go along
+ * if only one of the inputs contributes to the result, meaning the other
+ * is a subset of that one. In that case, we can skip the final copy and
+ * return the larger of the input lists, but then outside code might need
+ * to keep track of whether to free the input list or not */
+
+ const UV* array_a; /* a's array */
+ const UV* array_b;
+ UV len_a; /* length of a's array */
+ UV len_b;
+
+ SV* u; /* the resulting union */
+ UV* array_u;
+ UV len_u;
+
+ UV i_a = 0; /* current index into a's array */
+ UV i_b = 0;
+ UV i_u = 0;
+
+ /* running count, as explained in the algorithm source book; items are
+ * stopped accumulating and are output when the count changes to/from 0.
+ * The count is incremented when we start a range that's in the set, and
+ * decremented when we start a range that's not in the set. So its range
+ * is 0 to 2. Only when the count is zero is something not in the set.
+ */
+ UV count = 0;
+
+ PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND;
+ assert(a != b);
+
+ /* If either one is empty, the union is the other one */
+ if (a == NULL || ((len_a = _invlist_len(a)) == 0)) {
+ bool make_temp = FALSE; /* Should we mortalize the result? */
+
+ if (*output == a) {
+ if (a != NULL) {
+ if (! (make_temp = cBOOL(SvTEMP(a)))) {
+ SvREFCNT_dec_NN(a);
+ }
+ }
+ }
+ if (*output != b) {
+ *output = invlist_clone(b);
+ if (complement_b) {
+ _invlist_invert(*output);
+ }
+ } /* else *output already = b; */
+
+ if (make_temp) {
+ sv_2mortal(*output);
+ }
+ return;
+ }
+ else if ((len_b = _invlist_len(b)) == 0) {
+ bool make_temp = FALSE;
+ if (*output == b) {
+ if (! (make_temp = cBOOL(SvTEMP(b)))) {
+ SvREFCNT_dec_NN(b);
+ }
+ }
+
+ /* The complement of an empty list is a list that has everything in it,
+ * so the union with <a> includes everything too */
+ if (complement_b) {
+ if (a == *output) {
+ if (! (make_temp = cBOOL(SvTEMP(a)))) {
+ SvREFCNT_dec_NN(a);
+ }
+ }
+ *output = _new_invlist(1);
+ _append_range_to_invlist(*output, 0, UV_MAX);
+ }
+ else if (*output != a) {
+ *output = invlist_clone(a);
+ }
+ /* else *output already = a; */
+
+ if (make_temp) {
+ sv_2mortal(*output);
+ }
+ return;
+ }
+
+ /* Here both lists exist and are non-empty */
+ array_a = invlist_array(a);
+ array_b = invlist_array(b);
+
+ /* If are to take the union of 'a' with the complement of b, set it
+ * up so are looking at b's complement. */
+ if (complement_b) {
+
+ /* To complement, we invert: if the first element is 0, remove it. To
+ * do this, we just pretend the array starts one later */
+ if (array_b[0] == 0) {
+ array_b++;
+ len_b--;
+ }
+ else {
+
+ /* But if the first element is not zero, we pretend the list starts
+ * at the 0 that is always stored immediately before the array. */
+ array_b--;
+ len_b++;
+ }
+ }
+
+ /* Size the union for the worst case: that the sets are completely
+ * disjoint */
+ u = _new_invlist(len_a + len_b);
+
+ /* Will contain U+0000 if either component does */
+ array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0)
+ || (len_b > 0 && array_b[0] == 0));
+
+ /* Go through each list item by item, stopping when exhausted one of
+ * them */
+ while (i_a < len_a && i_b < len_b) {
+ UV cp; /* The element to potentially add to the union's array */
+ bool cp_in_set; /* is it in the the input list's set or not */
+
+ /* We need to take one or the other of the two inputs for the union.
+ * Since we are merging two sorted lists, we take the smaller of the
+ * next items. In case of a tie, we take the one that is in its set
+ * first. If we took one not in the set first, it would decrement the
+ * count, possibly to 0 which would cause it to be output as ending the
+ * range, and the next time through we would take the same number, and
+ * output it again as beginning the next range. By doing it the
+ * opposite way, there is no possibility that the count will be
+ * momentarily decremented to 0, and thus the two adjoining ranges will
+ * be seamlessly merged. (In a tie and both are in the set or both not
+ * in the set, it doesn't matter which we take first.) */
+ if (array_a[i_a] < array_b[i_b]
+ || (array_a[i_a] == array_b[i_b]
+ && ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
+ {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
+ cp= array_a[i_a++];
+ }
+ else {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
+ cp = array_b[i_b++];
+ }
+
+ /* Here, have chosen which of the two inputs to look at. Only output
+ * if the running count changes to/from 0, which marks the
+ * beginning/end of a range in that's in the set */
+ if (cp_in_set) {
+ if (count == 0) {
+ array_u[i_u++] = cp;
+ }
+ count++;
+ }
+ else {
+ count--;
+ if (count == 0) {
+ array_u[i_u++] = cp;
+ }
+ }
+ }
+
+ /* Here, we are finished going through at least one of the lists, which
+ * means there is something remaining in at most one. We check if the list
+ * that hasn't been exhausted is positioned such that we are in the middle
+ * of a range in its set or not. (i_a and i_b point to the element beyond
+ * the one we care about.) If in the set, we decrement 'count'; if 0, there
+ * is potentially more to output.
+ * There are four cases:
+ * 1) Both weren't in their sets, count is 0, and remains 0. What's left
+ * in the union is entirely from the non-exhausted set.
+ * 2) Both were in their sets, count is 2. Nothing further should
+ * be output, as everything that remains will be in the exhausted
+ * list's set, hence in the union; decrementing to 1 but not 0 insures
+ * that
+ * 3) the exhausted was in its set, non-exhausted isn't, count is 1.
+ * Nothing further should be output because the union includes
+ * everything from the exhausted set. Not decrementing ensures that.
+ * 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
+ * decrementing to 0 insures that we look at the remainder of the
+ * non-exhausted set */
+ if ((i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
+ || (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
+ {
+ count--;
+ }
+
+ /* The final length is what we've output so far, plus what else is about to
+ * be output. (If 'count' is non-zero, then the input list we exhausted
+ * has everything remaining up to the machine's limit in its set, and hence
+ * in the union, so there will be no further output. */
+ len_u = i_u;
+ if (count == 0) {
+ /* At most one of the subexpressions will be non-zero */
+ len_u += (len_a - i_a) + (len_b - i_b);
+ }
+
+ /* Set result to final length, which can change the pointer to array_u, so
+ * re-find it */
+ if (len_u != _invlist_len(u)) {
+ invlist_set_len(u, len_u, *get_invlist_offset_addr(u));
+ invlist_trim(u);
+ array_u = invlist_array(u);
+ }
+
+ /* When 'count' is 0, the list that was exhausted (if one was shorter than
+ * the other) ended with everything above it not in its set. That means
+ * that the remaining part of the union is precisely the same as the
+ * non-exhausted list, so can just copy it unchanged. (If both list were
+ * exhausted at the same time, then the operations below will be both 0.)
+ */
+ if (count == 0) {
+ IV copy_count; /* At most one will have a non-zero copy count */
+ if ((copy_count = len_a - i_a) > 0) {
+ Copy(array_a + i_a, array_u + i_u, copy_count, UV);
+ }
+ else if ((copy_count = len_b - i_b) > 0) {
+ Copy(array_b + i_b, array_u + i_u, copy_count, UV);
+ }
+ }
+
+ /* We may be removing a reference to one of the inputs. If so, the output
+ * is made mortal if the input was. (Mortal SVs shouldn't have their ref
+ * count decremented) */
+ if (a == *output || b == *output) {
+ assert(! invlist_is_iterating(*output));
+ if ((SvTEMP(*output))) {
+ sv_2mortal(u);
+ }
+ else {
+ SvREFCNT_dec_NN(*output);
+ }
+ }
+
+ *output = u;
+
+ return;
+}
+
+void
+Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b,
+ const bool complement_b, SV** i)
+{
+ /* Take the intersection of two inversion lists and point <i> to it. *i
+ * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
+ * the reference count to that list will be decremented if not already a
+ * temporary (mortal); otherwise *i will be made correspondingly mortal.
+ * The first list, <a>, may be NULL, in which case an empty list is
+ * returned. If <complement_b> is TRUE, the result will be the
+ * intersection of <a> and the complement (or inversion) of <b> instead of
+ * <b> directly.
+ *
+ * The basis for this comes from "Unicode Demystified" Chapter 13 by
+ * Richard Gillam, published by Addison-Wesley, and explained at some
+ * length there. The preface says to incorporate its examples into your
+ * code at your own risk. In fact, it had bugs
+ *
+ * The algorithm is like a merge sort, and is essentially the same as the
+ * union above
+ */
+
+ const UV* array_a; /* a's array */
+ const UV* array_b;
+ UV len_a; /* length of a's array */
+ UV len_b;
+
+ SV* r; /* the resulting intersection */
+ UV* array_r;
+ UV len_r;
+
+ UV i_a = 0; /* current index into a's array */
+ UV i_b = 0;
+ UV i_r = 0;
+
+ /* running count, as explained in the algorithm source book; items are
+ * stopped accumulating and are output when the count changes to/from 2.
+ * The count is incremented when we start a range that's in the set, and
+ * decremented when we start a range that's not in the set. So its range
+ * is 0 to 2. Only when the count is 2 is something in the intersection.
+ */
+ UV count = 0;
+
+ PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND;
+ assert(a != b);
+
+ /* Special case if either one is empty */
+ len_a = (a == NULL) ? 0 : _invlist_len(a);
+ if ((len_a == 0) || ((len_b = _invlist_len(b)) == 0)) {
+ bool make_temp = FALSE;
+
+ if (len_a != 0 && complement_b) {
+
+ /* Here, 'a' is not empty, therefore from the above 'if', 'b' must
+ * be empty. Here, also we are using 'b's complement, which hence
+ * must be every possible code point. Thus the intersection is
+ * simply 'a'. */
+ if (*i != a) {
+ if (*i == b) {
+ if (! (make_temp = cBOOL(SvTEMP(b)))) {
+ SvREFCNT_dec_NN(b);
+ }
+ }
+
+ *i = invlist_clone(a);
+ }
+ /* else *i is already 'a' */
+
+ if (make_temp) {
+ sv_2mortal(*i);
+ }
+ return;
+ }
+
+ /* Here, 'a' or 'b' is empty and not using the complement of 'b'. The
+ * intersection must be empty */
+ if (*i == a) {
+ if (! (make_temp = cBOOL(SvTEMP(a)))) {
+ SvREFCNT_dec_NN(a);
+ }
+ }
+ else if (*i == b) {
+ if (! (make_temp = cBOOL(SvTEMP(b)))) {
+ SvREFCNT_dec_NN(b);
+ }
+ }
+ *i = _new_invlist(0);
+ if (make_temp) {
+ sv_2mortal(*i);
+ }
+
+ return;
+ }
+
+ /* Here both lists exist and are non-empty */
+ array_a = invlist_array(a);
+ array_b = invlist_array(b);
+
+ /* If are to take the intersection of 'a' with the complement of b, set it
+ * up so are looking at b's complement. */
+ if (complement_b) {
+
+ /* To complement, we invert: if the first element is 0, remove it. To
+ * do this, we just pretend the array starts one later */
+ if (array_b[0] == 0) {
+ array_b++;
+ len_b--;
+ }
+ else {
+
+ /* But if the first element is not zero, we pretend the list starts
+ * at the 0 that is always stored immediately before the array. */
+ array_b--;
+ len_b++;
+ }
+ }
+
+ /* Size the intersection for the worst case: that the intersection ends up
+ * fragmenting everything to be completely disjoint */
+ r= _new_invlist(len_a + len_b);
+
+ /* Will contain U+0000 iff both components do */
+ array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0
+ && len_b > 0 && array_b[0] == 0);
+
+ /* Go through each list item by item, stopping when exhausted one of
+ * them */
+ while (i_a < len_a && i_b < len_b) {
+ UV cp; /* The element to potentially add to the intersection's
+ array */
+ bool cp_in_set; /* Is it in the input list's set or not */
+
+ /* We need to take one or the other of the two inputs for the
+ * intersection. Since we are merging two sorted lists, we take the
+ * smaller of the next items. In case of a tie, we take the one that
+ * is not in its set first (a difference from the union algorithm). If
+ * we took one in the set first, it would increment the count, possibly
+ * to 2 which would cause it to be output as starting a range in the
+ * intersection, and the next time through we would take that same
+ * number, and output it again as ending the set. By doing it the
+ * opposite of this, there is no possibility that the count will be
+ * momentarily incremented to 2. (In a tie and both are in the set or
+ * both not in the set, it doesn't matter which we take first.) */
+ if (array_a[i_a] < array_b[i_b]
+ || (array_a[i_a] == array_b[i_b]
+ && ! ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
+ {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
+ cp= array_a[i_a++];
+ }
+ else {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
+ cp= array_b[i_b++];
+ }
+
+ /* Here, have chosen which of the two inputs to look at. Only output
+ * if the running count changes to/from 2, which marks the
+ * beginning/end of a range that's in the intersection */
+ if (cp_in_set) {
+ count++;
+ if (count == 2) {
+ array_r[i_r++] = cp;
+ }
+ }
+ else {
+ if (count == 2) {
+ array_r[i_r++] = cp;
+ }
+ count--;
+ }
+ }
+
+ /* Here, we are finished going through at least one of the lists, which
+ * means there is something remaining in at most one. We check if the list
+ * that has been exhausted is positioned such that we are in the middle
+ * of a range in its set or not. (i_a and i_b point to elements 1 beyond
+ * the ones we care about.) There are four cases:
+ * 1) Both weren't in their sets, count is 0, and remains 0. There's
+ * nothing left in the intersection.
+ * 2) Both were in their sets, count is 2 and perhaps is incremented to
+ * above 2. What should be output is exactly that which is in the
+ * non-exhausted set, as everything it has is also in the intersection
+ * set, and everything it doesn't have can't be in the intersection
+ * 3) The exhausted was in its set, non-exhausted isn't, count is 1, and
+ * gets incremented to 2. Like the previous case, the intersection is
+ * everything that remains in the non-exhausted set.
+ * 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
+ * remains 1. And the intersection has nothing more. */
+ if ((i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
+ || (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
+ {
+ count++;
+ }
+
+ /* The final length is what we've output so far plus what else is in the
+ * intersection. At most one of the subexpressions below will be non-zero
+ * */
+ len_r = i_r;
+ if (count >= 2) {
+ len_r += (len_a - i_a) + (len_b - i_b);
+ }
+
+ /* Set result to final length, which can change the pointer to array_r, so
+ * re-find it */
+ if (len_r != _invlist_len(r)) {
+ invlist_set_len(r, len_r, *get_invlist_offset_addr(r));
+ invlist_trim(r);
+ array_r = invlist_array(r);
+ }
+
+ /* Finish outputting any remaining */
+ if (count >= 2) { /* At most one will have a non-zero copy count */
+ IV copy_count;
+ if ((copy_count = len_a - i_a) > 0) {
+ Copy(array_a + i_a, array_r + i_r, copy_count, UV);
+ }
+ else if ((copy_count = len_b - i_b) > 0) {
+ Copy(array_b + i_b, array_r + i_r, copy_count, UV);
+ }
+ }
+
+ /* We may be removing a reference to one of the inputs. If so, the output
+ * is made mortal if the input was. (Mortal SVs shouldn't have their ref
+ * count decremented) */
+ if (a == *i || b == *i) {
+ assert(! invlist_is_iterating(*i));
+ if (SvTEMP(*i)) {
+ sv_2mortal(r);
+ }
+ else {
+ SvREFCNT_dec_NN(*i);
+ }
+ }
+
+ *i = r;
+
+ return;
+}
+
+SV*
+Perl__add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end)
+{
+ /* Add the range from 'start' to 'end' inclusive to the inversion list's
+ * set. A pointer to the inversion list is returned. This may actually be
+ * a new list, in which case the passed in one has been destroyed. The
+ * passed-in inversion list can be NULL, in which case a new one is created
+ * with just the one range in it */
+
+ SV* range_invlist;
+ UV len;
+
+ if (invlist == NULL) {
+ invlist = _new_invlist(2);
+ len = 0;
+ }
+ else {
+ len = _invlist_len(invlist);
+ }
+
+ /* If comes after the final entry actually in the list, can just append it
+ * to the end, */
+ if (len == 0
+ || (! ELEMENT_RANGE_MATCHES_INVLIST(len - 1)
+ && start >= invlist_array(invlist)[len - 1]))
+ {
+ _append_range_to_invlist(invlist, start, end);
+ return invlist;
+ }
+
+ /* Here, can't just append things, create and return a new inversion list
+ * which is the union of this range and the existing inversion list */
+ range_invlist = _new_invlist(2);
+ _append_range_to_invlist(range_invlist, start, end);
+
+ _invlist_union(invlist, range_invlist, &invlist);
+
+ /* The temporary can be freed */
+ SvREFCNT_dec_NN(range_invlist);
+
+ return invlist;
+}
+
+SV*
+Perl__setup_canned_invlist(pTHX_ const STRLEN size, const UV element0,
+ UV** other_elements_ptr)
+{
+ /* Create and return an inversion list whose contents are to be populated
+ * by the caller. The caller gives the number of elements (in 'size') and
+ * the very first element ('element0'). This function will set
+ * '*other_elements_ptr' to an array of UVs, where the remaining elements
+ * are to be placed.
+ *
+ * Obviously there is some trust involved that the caller will properly
+ * fill in the other elements of the array.
+ *
+ * (The first element needs to be passed in, as the underlying code does
+ * things differently depending on whether it is zero or non-zero) */
+
+ SV* invlist = _new_invlist(size);
+ bool offset;
+
+ PERL_ARGS_ASSERT__SETUP_CANNED_INVLIST;
+
+ _append_range_to_invlist(invlist, element0, element0);
+ offset = *get_invlist_offset_addr(invlist);
+
+ invlist_set_len(invlist, size, offset);
+ *other_elements_ptr = invlist_array(invlist) + 1;
+ return invlist;
+}
+
+#endif
+
+PERL_STATIC_INLINE SV*
+S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) {
+ return _add_range_to_invlist(invlist, cp, cp);
+}
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl__invlist_invert(pTHX_ SV* const invlist)
+{
+ /* Complement the input inversion list. This adds a 0 if the list didn't
+ * have a zero; removes it otherwise. As described above, the data
+ * structure is set up so that this is very efficient */
+
+ PERL_ARGS_ASSERT__INVLIST_INVERT;
+
+ assert(! invlist_is_iterating(invlist));
+
+ /* The inverse of matching nothing is matching everything */
+ if (_invlist_len(invlist) == 0) {
+ _append_range_to_invlist(invlist, 0, UV_MAX);
+ return;
+ }
+
+ *get_invlist_offset_addr(invlist) = ! *get_invlist_offset_addr(invlist);
+}
+
+#endif
+
+PERL_STATIC_INLINE SV*
+S_invlist_clone(pTHX_ SV* const invlist)
+{
+
+ /* Return a new inversion list that is a copy of the input one, which is
+ * unchanged. The new list will not be mortal even if the old one was. */
+
+ /* Need to allocate extra space to accommodate Perl's addition of a
+ * trailing NUL to SvPV's, since it thinks they are always strings */
+ SV* new_invlist = _new_invlist(_invlist_len(invlist) + 1);
+ STRLEN physical_length = SvCUR(invlist);
+ bool offset = *(get_invlist_offset_addr(invlist));
+
+ PERL_ARGS_ASSERT_INVLIST_CLONE;
+
+ *(get_invlist_offset_addr(new_invlist)) = offset;
+ invlist_set_len(new_invlist, _invlist_len(invlist), offset);
+ Copy(SvPVX(invlist), SvPVX(new_invlist), physical_length, char);
+
+ return new_invlist;
+}
+
+PERL_STATIC_INLINE STRLEN*
+S_get_invlist_iter_addr(SV* invlist)
+{
+ /* Return the address of the UV that contains the current iteration
+ * position */
+
+ PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR;
+
+ assert(SvTYPE(invlist) == SVt_INVLIST);
+
+ return &(((XINVLIST*) SvANY(invlist))->iterator);
+}
+
+PERL_STATIC_INLINE void
+S_invlist_iterinit(SV* invlist) /* Initialize iterator for invlist */
+{
+ PERL_ARGS_ASSERT_INVLIST_ITERINIT;
+
+ *get_invlist_iter_addr(invlist) = 0;
+}
+
+PERL_STATIC_INLINE void
+S_invlist_iterfinish(SV* invlist)
+{
+ /* Terminate iterator for invlist. This is to catch development errors.
+ * Any iteration that is interrupted before completed should call this
+ * function. Functions that add code points anywhere else but to the end
+ * of an inversion list assert that they are not in the middle of an
+ * iteration. If they were, the addition would make the iteration
+ * problematical: if the iteration hadn't reached the place where things
+ * were being added, it would be ok */
+
+ PERL_ARGS_ASSERT_INVLIST_ITERFINISH;
+
+ *get_invlist_iter_addr(invlist) = (STRLEN) UV_MAX;
+}
+
+STATIC bool
+S_invlist_iternext(SV* invlist, UV* start, UV* end)
+{
+ /* An C<invlist_iterinit> call on <invlist> must be used to set this up.
+ * This call sets in <*start> and <*end>, the next range in <invlist>.
+ * Returns <TRUE> if successful and the next call will return the next
+ * range; <FALSE> if was already at the end of the list. If the latter,
+ * <*start> and <*end> are unchanged, and the next call to this function
+ * will start over at the beginning of the list */
+
+ STRLEN* pos = get_invlist_iter_addr(invlist);
+ UV len = _invlist_len(invlist);
+ UV *array;
+
+ PERL_ARGS_ASSERT_INVLIST_ITERNEXT;
+
+ if (*pos >= len) {
+ *pos = (STRLEN) UV_MAX; /* Force iterinit() to be required next time */
+ return FALSE;
+ }
+
+ array = invlist_array(invlist);
+
+ *start = array[(*pos)++];
+
+ if (*pos >= len) {
+ *end = UV_MAX;
+ }
+ else {
+ *end = array[(*pos)++] - 1;
+ }
+
+ return TRUE;
+}
+
+PERL_STATIC_INLINE UV
+S_invlist_highest(SV* const invlist)
+{
+ /* Returns the highest code point that matches an inversion list. This API
+ * has an ambiguity, as it returns 0 under either the highest is actually
+ * 0, or if the list is empty. If this distinction matters to you, check
+ * for emptiness before calling this function */
+
+ UV len = _invlist_len(invlist);
+ UV *array;
+
+ PERL_ARGS_ASSERT_INVLIST_HIGHEST;
+
+ if (len == 0) {
+ return 0;
+ }
+
+ array = invlist_array(invlist);
+
+ /* The last element in the array in the inversion list always starts a
+ * range that goes to infinity. That range may be for code points that are
+ * matched in the inversion list, or it may be for ones that aren't
+ * matched. In the latter case, the highest code point in the set is one
+ * less than the beginning of this range; otherwise it is the final element
+ * of this range: infinity */
+ return (ELEMENT_RANGE_MATCHES_INVLIST(len - 1))
+ ? UV_MAX
+ : array[len - 1] - 1;
+}
+
+#ifndef PERL_IN_XSUB_RE
+SV *
+Perl__invlist_contents(pTHX_ SV* const invlist)
+{
+ /* Get the contents of an inversion list into a string SV so that they can
+ * be printed out. It uses the format traditionally done for debug tracing
+ */
+
+ UV start, end;
+ SV* output = newSVpvs("\n");
+
+ PERL_ARGS_ASSERT__INVLIST_CONTENTS;
+
+ assert(! invlist_is_iterating(invlist));
+
+ invlist_iterinit(invlist);
+ while (invlist_iternext(invlist, &start, &end)) {
+ if (end == UV_MAX) {
+ Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\tINFINITY\n", start);
+ }
+ else if (end != start) {
+ Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\t%04"UVXf"\n",
+ start, end);
+ }
+ else {
+ Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\n", start);
+ }
+ }
+
+ return output;
+}
+#endif
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl__invlist_dump(pTHX_ PerlIO *file, I32 level,
+ const char * const indent, SV* const invlist)
+{
+ /* Designed to be called only by do_sv_dump(). Dumps out the ranges of the
+ * inversion list 'invlist' to 'file' at 'level' Each line is prefixed by
+ * the string 'indent'. The output looks like this:
+ [0] 0x000A .. 0x000D
+ [2] 0x0085
+ [4] 0x2028 .. 0x2029
+ [6] 0x3104 .. INFINITY
+ * This means that the first range of code points matched by the list are
+ * 0xA through 0xD; the second range contains only the single code point
+ * 0x85, etc. An inversion list is an array of UVs. Two array elements
+ * are used to define each range (except if the final range extends to
+ * infinity, only a single element is needed). The array index of the
+ * first element for the corresponding range is given in brackets. */
+
+ UV start, end;
+ STRLEN count = 0;
+
+ PERL_ARGS_ASSERT__INVLIST_DUMP;
+
+ if (invlist_is_iterating(invlist)) {
+ Perl_dump_indent(aTHX_ level, file,
+ "%sCan't dump inversion list because is in middle of iterating\n",
+ indent);
+ return;
+ }
+
+ invlist_iterinit(invlist);
+ while (invlist_iternext(invlist, &start, &end)) {
+ if (end == UV_MAX) {
+ Perl_dump_indent(aTHX_ level, file,
+ "%s[%"UVuf"] 0x%04"UVXf" .. INFINITY\n",
+ indent, (UV)count, start);
+ }
+ else if (end != start) {
+ Perl_dump_indent(aTHX_ level, file,
+ "%s[%"UVuf"] 0x%04"UVXf" .. 0x%04"UVXf"\n",
+ indent, (UV)count, start, end);
+ }
+ else {
+ Perl_dump_indent(aTHX_ level, file, "%s[%"UVuf"] 0x%04"UVXf"\n",
+ indent, (UV)count, start);
+ }
+ count += 2;
+ }
+}
+
+void
+Perl__load_PL_utf8_foldclosures (pTHX)
+{
+ assert(! PL_utf8_foldclosures);
+
+ /* If the folds haven't been read in, call a fold function
+ * to force that */
+ if (! PL_utf8_tofold) {
+ U8 dummy[UTF8_MAXBYTES_CASE+1];
+
+ /* This string is just a short named one above \xff */
+ to_utf8_fold((U8*) HYPHEN_UTF8, dummy, NULL);
+ assert(PL_utf8_tofold); /* Verify that worked */
+ }
+ PL_utf8_foldclosures = _swash_inversion_hash(PL_utf8_tofold);
+}
+#endif
+
+#ifdef PERL_ARGS_ASSERT__INVLISTEQ
+bool
+S__invlistEQ(pTHX_ SV* const a, SV* const b, const bool complement_b)
+{
+ /* Return a boolean as to if the two passed in inversion lists are
+ * identical. The final argument, if TRUE, says to take the complement of
+ * the second inversion list before doing the comparison */
+
+ const UV* array_a = invlist_array(a);
+ const UV* array_b = invlist_array(b);
+ UV len_a = _invlist_len(a);
+ UV len_b = _invlist_len(b);
+
+ UV i = 0; /* current index into the arrays */
+ bool retval = TRUE; /* Assume are identical until proven otherwise */
+
+ PERL_ARGS_ASSERT__INVLISTEQ;
+
+ /* If are to compare 'a' with the complement of b, set it
+ * up so are looking at b's complement. */
+ if (complement_b) {
+
+ /* The complement of nothing is everything, so <a> would have to have
+ * just one element, starting at zero (ending at infinity) */
+ if (len_b == 0) {
+ return (len_a == 1 && array_a[0] == 0);
+ }
+ else if (array_b[0] == 0) {
+
+ /* Otherwise, to complement, we invert. Here, the first element is
+ * 0, just remove it. To do this, we just pretend the array starts
+ * one later */
+
+ array_b++;
+ len_b--;
+ }
+ else {
+
+ /* But if the first element is not zero, we pretend the list starts
+ * at the 0 that is always stored immediately before the array. */
+ array_b--;
+ len_b++;
+ }
+ }
+
+ /* Make sure that the lengths are the same, as well as the final element
+ * before looping through the remainder. (Thus we test the length, final,
+ * and first elements right off the bat) */
+ if (len_a != len_b || array_a[len_a-1] != array_b[len_a-1]) {
+ retval = FALSE;
+ }
+ else for (i = 0; i < len_a - 1; i++) {
+ if (array_a[i] != array_b[i]) {
+ retval = FALSE;
+ break;
+ }
+ }
+
+ return retval;
+}
+#endif
+
+/*
+ * As best we can, determine the characters that can match the start of
+ * the given EXACTF-ish node.
+ *
+ * Returns the invlist as a new SV*; it is the caller's responsibility to
+ * call SvREFCNT_dec() when done with it.
+ */
+STATIC SV*
+S__make_exactf_invlist(pTHX_ RExC_state_t *pRExC_state, regnode *node)
+{
+ const U8 * s = (U8*)STRING(node);
+ SSize_t bytelen = STR_LEN(node);
+ UV uc;
+ /* Start out big enough for 2 separate code points */
+ SV* invlist = _new_invlist(4);
+
+ PERL_ARGS_ASSERT__MAKE_EXACTF_INVLIST;
+
+ if (! UTF) {
+ uc = *s;
+
+ /* We punt and assume can match anything if the node begins
+ * with a multi-character fold. Things are complicated. For
+ * example, /ffi/i could match any of:
+ * "\N{LATIN SMALL LIGATURE FFI}"
+ * "\N{LATIN SMALL LIGATURE FF}I"
+ * "F\N{LATIN SMALL LIGATURE FI}"
+ * plus several other things; and making sure we have all the
+ * possibilities is hard. */
+ if (is_MULTI_CHAR_FOLD_latin1_safe(s, s + bytelen)) {
+ invlist = _add_range_to_invlist(invlist, 0, UV_MAX);
+ }
+ else {
+ /* Any Latin1 range character can potentially match any
+ * other depending on the locale */
+ if (OP(node) == EXACTFL) {
+ _invlist_union(invlist, PL_Latin1, &invlist);
+ }
+ else {
+ /* But otherwise, it matches at least itself. We can
+ * quickly tell if it has a distinct fold, and if so,
+ * it matches that as well */
+ invlist = add_cp_to_invlist(invlist, uc);
+ if (IS_IN_SOME_FOLD_L1(uc))
+ invlist = add_cp_to_invlist(invlist, PL_fold_latin1[uc]);
+ }
+
+ /* Some characters match above-Latin1 ones under /i. This
+ * is true of EXACTFL ones when the locale is UTF-8 */
+ if (HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(uc)
+ && (! isASCII(uc) || (OP(node) != EXACTFA
+ && OP(node) != EXACTFA_NO_TRIE)))
+ {
+ add_above_Latin1_folds(pRExC_state, (U8) uc, &invlist);
+ }
+ }
+ }
+ else { /* Pattern is UTF-8 */
+ U8 folded[UTF8_MAX_FOLD_CHAR_EXPAND * UTF8_MAXBYTES_CASE + 1] = { '\0' };
+ STRLEN foldlen = UTF8SKIP(s);
+ const U8* e = s + bytelen;
+ SV** listp;
+
+ uc = utf8_to_uvchr_buf(s, s + bytelen, NULL);
+
+ /* The only code points that aren't folded in a UTF EXACTFish
+ * node are are the problematic ones in EXACTFL nodes */
+ if (OP(node) == EXACTFL && is_PROBLEMATIC_LOCALE_FOLDEDS_START_cp(uc)) {
+ /* We need to check for the possibility that this EXACTFL
+ * node begins with a multi-char fold. Therefore we fold
+ * the first few characters of it so that we can make that
+ * check */
+ U8 *d = folded;
+ int i;
+
+ for (i = 0; i < UTF8_MAX_FOLD_CHAR_EXPAND && s < e; i++) {
+ if (isASCII(*s)) {
+ *(d++) = (U8) toFOLD(*s);
+ s++;
+ }
+ else {
+ STRLEN len;
+ to_utf8_fold(s, d, &len);
+ d += len;
+ s += UTF8SKIP(s);
+ }
+ }
+
+ /* And set up so the code below that looks in this folded
+ * buffer instead of the node's string */
+ e = d;
+ foldlen = UTF8SKIP(folded);
+ s = folded;
+ }
+
+ /* When we reach here 's' points to the fold of the first
+ * character(s) of the node; and 'e' points to far enough along
+ * the folded string to be just past any possible multi-char
+ * fold. 'foldlen' is the length in bytes of the first
+ * character in 's'
+ *
+ * Unlike the non-UTF-8 case, the macro for determining if a
+ * string is a multi-char fold requires all the characters to
+ * already be folded. This is because of all the complications
+ * if not. Note that they are folded anyway, except in EXACTFL
+ * nodes. Like the non-UTF case above, we punt if the node
+ * begins with a multi-char fold */
+
+ if (is_MULTI_CHAR_FOLD_utf8_safe(s, e)) {
+ invlist = _add_range_to_invlist(invlist, 0, UV_MAX);
+ }
+ else { /* Single char fold */
+
+ /* It matches all the things that fold to it, which are
+ * found in PL_utf8_foldclosures (including itself) */
+ invlist = add_cp_to_invlist(invlist, uc);
+ if (! PL_utf8_foldclosures)
+ _load_PL_utf8_foldclosures();
+ if ((listp = hv_fetch(PL_utf8_foldclosures,
+ (char *) s, foldlen, FALSE)))
+ {
+ AV* list = (AV*) *listp;
+ IV k;
+ for (k = 0; k <= av_tindex(list); k++) {
+ SV** c_p = av_fetch(list, k, FALSE);
+ UV c;
+ assert(c_p);
+
+ c = SvUV(*c_p);
+
+ /* /aa doesn't allow folds between ASCII and non- */
+ if ((OP(node) == EXACTFA || OP(node) == EXACTFA_NO_TRIE)
+ && isASCII(c) != isASCII(uc))
+ {
+ continue;
+ }
+
+ invlist = add_cp_to_invlist(invlist, c);
+ }
+ }
+ }
+ }
+
+ return invlist;
+}
+
+#undef HEADER_LENGTH
+#undef TO_INTERNAL_SIZE
+#undef FROM_INTERNAL_SIZE
+#undef INVLIST_VERSION_ID
+
+/* End of inversion list object */
+
+STATIC void
+S_parse_lparen_question_flags(pTHX_ RExC_state_t *pRExC_state)
+{
+ /* This parses the flags that are in either the '(?foo)' or '(?foo:bar)'
+ * constructs, and updates RExC_flags with them. On input, RExC_parse
+ * should point to the first flag; it is updated on output to point to the
+ * final ')' or ':'. There needs to be at least one flag, or this will
+ * abort */
+
+ /* for (?g), (?gc), and (?o) warnings; warning
+ about (?c) will warn about (?g) -- japhy */
+
+#define WASTED_O 0x01
+#define WASTED_G 0x02
+#define WASTED_C 0x04
+#define WASTED_GC (WASTED_G|WASTED_C)
+ I32 wastedflags = 0x00;
+ U32 posflags = 0, negflags = 0;
+ U32 *flagsp = &posflags;
+ char has_charset_modifier = '\0';
+ regex_charset cs;
+ bool has_use_defaults = FALSE;
+ const char* const seqstart = RExC_parse - 1; /* Point to the '?' */
+ int x_mod_count = 0;
+
+ PERL_ARGS_ASSERT_PARSE_LPAREN_QUESTION_FLAGS;
+
+ /* '^' as an initial flag sets certain defaults */
+ if (UCHARAT(RExC_parse) == '^') {
+ RExC_parse++;
+ has_use_defaults = TRUE;
+ STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
+ set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
+ ? REGEX_UNICODE_CHARSET
+ : REGEX_DEPENDS_CHARSET);
+ }
+
+ cs = get_regex_charset(RExC_flags);
+ if (cs == REGEX_DEPENDS_CHARSET
+ && (RExC_utf8 || RExC_uni_semantics))
+ {
+ cs = REGEX_UNICODE_CHARSET;
+ }
+
+ while (*RExC_parse) {
+ /* && strchr("iogcmsx", *RExC_parse) */
+ /* (?g), (?gc) and (?o) are useless here
+ and must be globally applied -- japhy */
+ switch (*RExC_parse) {
+
+ /* Code for the imsxn flags */
+ CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp, x_mod_count);
+
+ case LOCALE_PAT_MOD:
+ if (has_charset_modifier) {
+ goto excess_modifier;
+ }
+ else if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ cs = REGEX_LOCALE_CHARSET;
+ has_charset_modifier = LOCALE_PAT_MOD;
+ break;
+ case UNICODE_PAT_MOD:
+ if (has_charset_modifier) {
+ goto excess_modifier;
+ }
+ else if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ cs = REGEX_UNICODE_CHARSET;
+ has_charset_modifier = UNICODE_PAT_MOD;
+ break;
+ case ASCII_RESTRICT_PAT_MOD:
+ if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ if (has_charset_modifier) {
+ if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
+ goto excess_modifier;
+ }
+ /* Doubled modifier implies more restricted */
+ cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
+ }
+ else {
+ cs = REGEX_ASCII_RESTRICTED_CHARSET;
+ }
+ has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
+ break;
+ case DEPENDS_PAT_MOD:
+ if (has_use_defaults) {
+ goto fail_modifiers;
+ }
+ else if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ else if (has_charset_modifier) {
+ goto excess_modifier;
+ }
+
+ /* The dual charset means unicode semantics if the
+ * pattern (or target, not known until runtime) are
+ * utf8, or something in the pattern indicates unicode
+ * semantics */
+ cs = (RExC_utf8 || RExC_uni_semantics)
+ ? REGEX_UNICODE_CHARSET
+ : REGEX_DEPENDS_CHARSET;
+ has_charset_modifier = DEPENDS_PAT_MOD;
+ break;
+ excess_modifier:
+ RExC_parse++;
+ if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
+ vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
+ }
+ else if (has_charset_modifier == *(RExC_parse - 1)) {
+ vFAIL2("Regexp modifier \"%c\" may not appear twice",
+ *(RExC_parse - 1));
+ }
+ else {
+ vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
+ }
+ NOT_REACHED; /*NOTREACHED*/
+ neg_modifier:
+ RExC_parse++;
+ vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"",
+ *(RExC_parse - 1));
+ NOT_REACHED; /*NOTREACHED*/
+ case ONCE_PAT_MOD: /* 'o' */
+ case GLOBAL_PAT_MOD: /* 'g' */
+ if (PASS2 && ckWARN(WARN_REGEXP)) {
+ const I32 wflagbit = *RExC_parse == 'o'
+ ? WASTED_O
+ : WASTED_G;
+ if (! (wastedflags & wflagbit) ) {
+ wastedflags |= wflagbit;
+ /* diag_listed_as: Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/ */
+ vWARN5(
+ RExC_parse + 1,
+ "Useless (%s%c) - %suse /%c modifier",
+ flagsp == &negflags ? "?-" : "?",
+ *RExC_parse,
+ flagsp == &negflags ? "don't " : "",
+ *RExC_parse
+ );
+ }
+ }
+ break;
+
+ case CONTINUE_PAT_MOD: /* 'c' */
+ if (PASS2 && ckWARN(WARN_REGEXP)) {
+ if (! (wastedflags & WASTED_C) ) {
+ wastedflags |= WASTED_GC;
+ /* diag_listed_as: Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/ */
+ vWARN3(
+ RExC_parse + 1,
+ "Useless (%sc) - %suse /gc modifier",
+ flagsp == &negflags ? "?-" : "?",
+ flagsp == &negflags ? "don't " : ""
+ );
+ }
+ }
+ break;
+ case KEEPCOPY_PAT_MOD: /* 'p' */
+ if (flagsp == &negflags) {
+ if (PASS2)
+ ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
+ } else {
+ *flagsp |= RXf_PMf_KEEPCOPY;
+ }
+ break;
+ case '-':
+ /* A flag is a default iff it is following a minus, so
+ * if there is a minus, it means will be trying to
+ * re-specify a default which is an error */
+ if (has_use_defaults || flagsp == &negflags) {
+ goto fail_modifiers;
+ }
+ flagsp = &negflags;
+ wastedflags = 0; /* reset so (?g-c) warns twice */
+ break;
+ case ':':
+ case ')':
+ RExC_flags |= posflags;
+ RExC_flags &= ~negflags;
+ set_regex_charset(&RExC_flags, cs);
+ if (RExC_flags & RXf_PMf_FOLD) {
+ RExC_contains_i = 1;
+ }
+ if (PASS2) {
+ STD_PMMOD_FLAGS_PARSE_X_WARN(x_mod_count);
+ }
+ return;
+ /*NOTREACHED*/
+ default:
+ fail_modifiers:
+ RExC_parse += SKIP_IF_CHAR(RExC_parse);
+ /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
+ vFAIL2utf8f("Sequence (%"UTF8f"...) not recognized",
+ UTF8fARG(UTF, RExC_parse-seqstart, seqstart));
+ NOT_REACHED; /*NOTREACHED*/
+ }
+
+ ++RExC_parse;
+ }
+
+ if (PASS2) {
+ STD_PMMOD_FLAGS_PARSE_X_WARN(x_mod_count);
+ }
+}
+
+/*
+ - reg - regular expression, i.e. main body or parenthesized thing
+ *
+ * Caller must absorb opening parenthesis.
+ *
+ * Combining parenthesis handling with the base level of regular expression
+ * is a trifle forced, but the need to tie the tails of the branches to what
+ * follows makes it hard to avoid.
+ */
+#define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
+#ifdef DEBUGGING
+#define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
+#else
+#define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
+#endif
+
+/* Returns NULL, setting *flagp to TRYAGAIN at the end of (?) that only sets
+ flags. Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan
+ needs to be restarted.
+ Otherwise would only return NULL if regbranch() returns NULL, which
+ cannot happen. */
+STATIC regnode *
+S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
+ /* paren: Parenthesized? 0=top; 1,2=inside '(': changed to letter.
+ * 2 is like 1, but indicates that nextchar() has been called to advance
+ * RExC_parse beyond the '('. Things like '(?' are indivisible tokens, and
+ * this flag alerts us to the need to check for that */
+{
+ regnode *ret; /* Will be the head of the group. */
+ regnode *br;
+ regnode *lastbr;
+ regnode *ender = NULL;
+ I32 parno = 0;
+ I32 flags;
+ U32 oregflags = RExC_flags;
+ bool have_branch = 0;
+ bool is_open = 0;
+ I32 freeze_paren = 0;
+ I32 after_freeze = 0;
+ I32 num; /* numeric backreferences */
+
+ char * parse_start = RExC_parse; /* MJD */
+ char * const oregcomp_parse = RExC_parse;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG;
+ DEBUG_PARSE("reg ");
+
+ *flagp = 0; /* Tentatively. */
+
+
+ /* Make an OPEN node, if parenthesized. */
+ if (paren) {
+
+ /* Under /x, space and comments can be gobbled up between the '(' and
+ * here (if paren ==2). The forms '(*VERB' and '(?...' disallow such
+ * intervening space, as the sequence is a token, and a token should be
+ * indivisible */
+ bool has_intervening_patws = paren == 2 && *(RExC_parse - 1) != '(';
+
+ if ( *RExC_parse == '*') { /* (*VERB:ARG) */
+ char *start_verb = RExC_parse;
+ STRLEN verb_len = 0;
+ char *start_arg = NULL;
+ unsigned char op = 0;
+ int argok = 1;
+ int internal_argval = 0; /* internal_argval is only useful if
+ !argok */
+
+ if (has_intervening_patws) {
+ RExC_parse++;
+ vFAIL("In '(*VERB...)', the '(' and '*' must be adjacent");
+ }
+ while ( *RExC_parse && *RExC_parse != ')' ) {
+ if ( *RExC_parse == ':' ) {
+ start_arg = RExC_parse + 1;
+ break;
+ }
+ RExC_parse++;
+ }
+ ++start_verb;
+ verb_len = RExC_parse - start_verb;
+ if ( start_arg ) {
+ RExC_parse++;
+ while ( *RExC_parse && *RExC_parse != ')' )
+ RExC_parse++;
+ if ( *RExC_parse != ')' )
+ vFAIL("Unterminated verb pattern argument");
+ if ( RExC_parse == start_arg )
+ start_arg = NULL;
+ } else {
+ if ( *RExC_parse != ')' )
+ vFAIL("Unterminated verb pattern");
+ }
+
+ switch ( *start_verb ) {
+ case 'A': /* (*ACCEPT) */
+ if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
+ op = ACCEPT;
+ internal_argval = RExC_nestroot;
+ }
+ break;
+ case 'C': /* (*COMMIT) */
+ if ( memEQs(start_verb,verb_len,"COMMIT") )
+ op = COMMIT;
+ break;
+ case 'F': /* (*FAIL) */
+ if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
+ op = OPFAIL;
+ argok = 0;
+ }
+ break;
+ case ':': /* (*:NAME) */
+ case 'M': /* (*MARK:NAME) */
+ if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
+ op = MARKPOINT;
+ argok = -1;
+ }
+ break;
+ case 'P': /* (*PRUNE) */
+ if ( memEQs(start_verb,verb_len,"PRUNE") )
+ op = PRUNE;
+ break;
+ case 'S': /* (*SKIP) */
+ if ( memEQs(start_verb,verb_len,"SKIP") )
+ op = SKIP;
+ break;
+ case 'T': /* (*THEN) */
+ /* [19:06] <TimToady> :: is then */
+ if ( memEQs(start_verb,verb_len,"THEN") ) {
+ op = CUTGROUP;
+ RExC_seen |= REG_CUTGROUP_SEEN;
+ }
+ break;
+ }
+ if ( ! op ) {
+ RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
+ vFAIL2utf8f(
+ "Unknown verb pattern '%"UTF8f"'",
+ UTF8fARG(UTF, verb_len, start_verb));
+ }
+ if ( argok ) {
+ if ( start_arg && internal_argval ) {
+ vFAIL3("Verb pattern '%.*s' may not have an argument",
+ verb_len, start_verb);
+ } else if ( argok < 0 && !start_arg ) {
+ vFAIL3("Verb pattern '%.*s' has a mandatory argument",
+ verb_len, start_verb);
+ } else {
+ ret = reganode(pRExC_state, op, internal_argval);
+ if ( ! internal_argval && ! SIZE_ONLY ) {
+ if (start_arg) {
+ SV *sv = newSVpvn( start_arg,
+ RExC_parse - start_arg);
+ ARG(ret) = add_data( pRExC_state,
+ STR_WITH_LEN("S"));
+ RExC_rxi->data->data[ARG(ret)]=(void*)sv;
+ ret->flags = 0;
+ } else {
+ ret->flags = 1;
+ }
+ }
+ }
+ if (!internal_argval)
+ RExC_seen |= REG_VERBARG_SEEN;
+ } else if ( start_arg ) {
+ vFAIL3("Verb pattern '%.*s' may not have an argument",
+ verb_len, start_verb);
+ } else {
+ ret = reg_node(pRExC_state, op);
+ }
+ nextchar(pRExC_state);
+ return ret;
+ }
+ else if (*RExC_parse == '?') { /* (?...) */
+ bool is_logical = 0;
+ const char * const seqstart = RExC_parse;
+ const char * endptr;
+ if (has_intervening_patws) {
+ RExC_parse++;
+ vFAIL("In '(?...)', the '(' and '?' must be adjacent");
+ }
+
+ RExC_parse++;
+ paren = *RExC_parse++;
+ ret = NULL; /* For look-ahead/behind. */
+ switch (paren) {
+
+ case 'P': /* (?P...) variants for those used to PCRE/Python */
+ paren = *RExC_parse++;
+ if ( paren == '<') /* (?P<...>) named capture */
+ goto named_capture;
+ else if (paren == '>') { /* (?P>name) named recursion */
+ goto named_recursion;
+ }
+ else if (paren == '=') { /* (?P=...) named backref */
+ /* this pretty much dupes the code for \k<NAME> in
+ * regatom(), if you change this make sure you change that
+ * */
+ char* name_start = RExC_parse;
+ U32 num = 0;
+ SV *sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ if (RExC_parse == name_start || *RExC_parse != ')')
+ /* diag_listed_as: Sequence ?P=... not terminated in regex; marked by <-- HERE in m/%s/ */
+ vFAIL2("Sequence %.3s... not terminated",parse_start);
+
+ if (!SIZE_ONLY) {
+ num = add_data( pRExC_state, STR_WITH_LEN("S"));
+ RExC_rxi->data->data[num]=(void*)sv_dat;
+ SvREFCNT_inc_simple_void(sv_dat);
+ }
+ RExC_sawback = 1;
+ ret = reganode(pRExC_state,
+ ((! FOLD)
+ ? NREF
+ : (ASCII_FOLD_RESTRICTED)
+ ? NREFFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? NREFFU
+ : (LOC)
+ ? NREFFL
+ : NREFF),
+ num);
+ *flagp |= HASWIDTH;
+
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Cur_Length(ret, parse_start);
+
+ nextchar(pRExC_state);
+ return ret;
+ }
+ --RExC_parse;
+ RExC_parse += SKIP_IF_CHAR(RExC_parse);
+ /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
+ vFAIL3("Sequence (%.*s...) not recognized",
+ RExC_parse-seqstart, seqstart);
+ NOT_REACHED; /*NOTREACHED*/
+ case '<': /* (?<...) */
+ if (*RExC_parse == '!')
+ paren = ',';
+ else if (*RExC_parse != '=')
+ named_capture:
+ { /* (?<...>) */
+ char *name_start;
+ SV *svname;
+ paren= '>';
+ case '\'': /* (?'...') */
+ name_start= RExC_parse;
+ svname = reg_scan_name(pRExC_state,
+ SIZE_ONLY /* reverse test from the others */
+ ? REG_RSN_RETURN_NAME
+ : REG_RSN_RETURN_NULL);
+ if (RExC_parse == name_start || *RExC_parse != paren)
+ vFAIL2("Sequence (?%c... not terminated",
+ paren=='>' ? '<' : paren);
+ if (SIZE_ONLY) {
+ HE *he_str;
+ SV *sv_dat = NULL;
+ if (!svname) /* shouldn't happen */
+ Perl_croak(aTHX_
+ "panic: reg_scan_name returned NULL");
+ if (!RExC_paren_names) {
+ RExC_paren_names= newHV();
+ sv_2mortal(MUTABLE_SV(RExC_paren_names));
+#ifdef DEBUGGING
+ RExC_paren_name_list= newAV();
+ sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
+#endif
+ }
+ he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
+ if ( he_str )
+ sv_dat = HeVAL(he_str);
+ if ( ! sv_dat ) {
+ /* croak baby croak */
+ Perl_croak(aTHX_
+ "panic: paren_name hash element allocation failed");
+ } else if ( SvPOK(sv_dat) ) {
+ /* (?|...) can mean we have dupes so scan to check
+ its already been stored. Maybe a flag indicating
+ we are inside such a construct would be useful,
+ but the arrays are likely to be quite small, so
+ for now we punt -- dmq */
+ IV count = SvIV(sv_dat);
+ I32 *pv = (I32*)SvPVX(sv_dat);
+ IV i;
+ for ( i = 0 ; i < count ; i++ ) {
+ if ( pv[i] == RExC_npar ) {
+ count = 0;
+ break;
+ }
+ }
+ if ( count ) {
+ pv = (I32*)SvGROW(sv_dat,
+ SvCUR(sv_dat) + sizeof(I32)+1);
+ SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
+ pv[count] = RExC_npar;
+ SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
+ }
+ } else {
+ (void)SvUPGRADE(sv_dat,SVt_PVNV);
+ sv_setpvn(sv_dat, (char *)&(RExC_npar),
+ sizeof(I32));
+ SvIOK_on(sv_dat);
+ SvIV_set(sv_dat, 1);
+ }
+#ifdef DEBUGGING
+ /* Yes this does cause a memory leak in debugging Perls
+ * */
+ if (!av_store(RExC_paren_name_list,
+ RExC_npar, SvREFCNT_inc(svname)))
+ SvREFCNT_dec_NN(svname);
+#endif
+
+ /*sv_dump(sv_dat);*/
+ }
+ nextchar(pRExC_state);
+ paren = 1;
+ goto capturing_parens;
+ }
+ RExC_seen |= REG_LOOKBEHIND_SEEN;
+ RExC_in_lookbehind++;
+ RExC_parse++;
+ /* FALLTHROUGH */
+ case '=': /* (?=...) */
+ RExC_seen_zerolen++;
+ break;
+ case '!': /* (?!...) */
+ RExC_seen_zerolen++;
+ /* check if we're really just a "FAIL" assertion */
+ --RExC_parse;
+ nextchar(pRExC_state);
+ if (*RExC_parse == ')') {
+ ret=reg_node(pRExC_state, OPFAIL);
+ nextchar(pRExC_state);
+ return ret;
+ }
+ break;
+ case '|': /* (?|...) */
+ /* branch reset, behave like a (?:...) except that
+ buffers in alternations share the same numbers */
+ paren = ':';
+ after_freeze = freeze_paren = RExC_npar;
+ break;
+ case ':': /* (?:...) */
+ case '>': /* (?>...) */
+ break;
+ case '$': /* (?$...) */
+ case '@': /* (?@...) */
+ vFAIL2("Sequence (?%c...) not implemented", (int)paren);
+ break;
+ case '0' : /* (?0) */
+ case 'R' : /* (?R) */
+ if (*RExC_parse != ')')
+ FAIL("Sequence (?R) not terminated");
+ ret = reg_node(pRExC_state, GOSTART);
+ RExC_seen |= REG_GOSTART_SEEN;
+ *flagp |= POSTPONED;
+ nextchar(pRExC_state);
+ return ret;
+ /*notreached*/
+ /* named and numeric backreferences */
+ case '&': /* (?&NAME) */
+ parse_start = RExC_parse - 1;
+ named_recursion:
+ {
+ SV *sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
+ }
+ if (RExC_parse == RExC_end || *RExC_parse != ')')
+ vFAIL("Sequence (?&... not terminated");
+ goto gen_recurse_regop;
+ /* NOTREACHED */
+ case '+':
+ if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
+ RExC_parse++;
+ vFAIL("Illegal pattern");
+ }
+ goto parse_recursion;
+ /* NOTREACHED*/
+ case '-': /* (?-1) */
+ if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
+ RExC_parse--; /* rewind to let it be handled later */
+ goto parse_flags;
+ }
+ /* FALLTHROUGH */
+ case '1': case '2': case '3': case '4': /* (?1) */
+ case '5': case '6': case '7': case '8': case '9':
+ RExC_parse--;
+ parse_recursion:
+ {
+ bool is_neg = FALSE;
+ UV unum;
+ parse_start = RExC_parse - 1; /* MJD */
+ if (*RExC_parse == '-') {
+ RExC_parse++;
+ is_neg = TRUE;
+ }
+ if (grok_atoUV(RExC_parse, &unum, &endptr)
+ && unum <= I32_MAX
+ ) {
+ num = (I32)unum;
+ RExC_parse = (char*)endptr;
+ } else
+ num = I32_MAX;
+ if (is_neg) {
+ /* Some limit for num? */
+ num = -num;
+ }
+ }
+ if (*RExC_parse!=')')
+ vFAIL("Expecting close bracket");
+
+ gen_recurse_regop:
+ if ( paren == '-' ) {
+ /*
+ Diagram of capture buffer numbering.
+ Top line is the normal capture buffer numbers
+ Bottom line is the negative indexing as from
+ the X (the (?-2))
+
+ + 1 2 3 4 5 X 6 7
+ /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
+ - 5 4 3 2 1 X x x
+
+ */
+ num = RExC_npar + num;
+ if (num < 1) {
+ RExC_parse++;
+ vFAIL("Reference to nonexistent group");
+ }
+ } else if ( paren == '+' ) {
+ num = RExC_npar + num - 1;
+ }
+
+ ret = reg2Lanode(pRExC_state, GOSUB, num, RExC_recurse_count);
+ if (!SIZE_ONLY) {
+ if (num > (I32)RExC_rx->nparens) {
+ RExC_parse++;
+ vFAIL("Reference to nonexistent group");
+ }
+ RExC_recurse_count++;
+ DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+ "%*s%*s Recurse #%"UVuf" to %"IVdf"\n",
+ 22, "| |", (int)(depth * 2 + 1), "",
+ (UV)ARG(ret), (IV)ARG2L(ret)));
+ }
+ RExC_seen |= REG_RECURSE_SEEN;
+ Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
+ Set_Node_Offset(ret, parse_start); /* MJD */
+
+ *flagp |= POSTPONED;
+ nextchar(pRExC_state);
+ return ret;
+
+ /* NOTREACHED */
+
+ case '?': /* (??...) */
+ is_logical = 1;
+ if (*RExC_parse != '{') {
+ RExC_parse += SKIP_IF_CHAR(RExC_parse);
+ /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
+ vFAIL2utf8f(
+ "Sequence (%"UTF8f"...) not recognized",
+ UTF8fARG(UTF, RExC_parse-seqstart, seqstart));
+ NOT_REACHED; /*NOTREACHED*/
+ }
+ *flagp |= POSTPONED;
+ paren = *RExC_parse++;
+ /* FALLTHROUGH */
+ case '{': /* (?{...}) */
+ {
+ U32 n = 0;
+ struct reg_code_block *cb;
+
+ RExC_seen_zerolen++;
+
+ if ( !pRExC_state->num_code_blocks
+ || pRExC_state->code_index >= pRExC_state->num_code_blocks
+ || pRExC_state->code_blocks[pRExC_state->code_index].start
+ != (STRLEN)((RExC_parse -3 - (is_logical ? 1 : 0))
+ - RExC_start)
+ ) {
+ if (RExC_pm_flags & PMf_USE_RE_EVAL)
+ FAIL("panic: Sequence (?{...}): no code block found\n");
+ FAIL("Eval-group not allowed at runtime, use re 'eval'");
+ }
+ /* this is a pre-compiled code block (?{...}) */
+ cb = &pRExC_state->code_blocks[pRExC_state->code_index];
+ RExC_parse = RExC_start + cb->end;
+ if (!SIZE_ONLY) {
+ OP *o = cb->block;
+ if (cb->src_regex) {
+ n = add_data(pRExC_state, STR_WITH_LEN("rl"));
+ RExC_rxi->data->data[n] =
+ (void*)SvREFCNT_inc((SV*)cb->src_regex);
+ RExC_rxi->data->data[n+1] = (void*)o;
+ }
+ else {
+ n = add_data(pRExC_state,
+ (RExC_pm_flags & PMf_HAS_CV) ? "L" : "l", 1);
+ RExC_rxi->data->data[n] = (void*)o;
+ }
+ }
+ pRExC_state->code_index++;
+ nextchar(pRExC_state);
+
+ if (is_logical) {
+ regnode *eval;
+ ret = reg_node(pRExC_state, LOGICAL);
+
+ eval = reg2Lanode(pRExC_state, EVAL,
+ n,
+
+ /* for later propagation into (??{})
+ * return value */
+ RExC_flags & RXf_PMf_COMPILETIME
+ );
+ if (!SIZE_ONLY) {
+ ret->flags = 2;
+ }
+ REGTAIL(pRExC_state, ret, eval);
+ /* deal with the length of this later - MJD */
+ return ret;
+ }
+ ret = reg2Lanode(pRExC_state, EVAL, n, 0);
+ Set_Node_Length(ret, RExC_parse - parse_start + 1);
+ Set_Node_Offset(ret, parse_start);
+ return ret;
+ }
+ case '(': /* (?(?{...})...) and (?(?=...)...) */
+ {
+ int is_define= 0;
+ const int DEFINE_len = sizeof("DEFINE") - 1;
+ if (RExC_parse[0] == '?') { /* (?(?...)) */
+ if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
+ || RExC_parse[1] == '<'
+ || RExC_parse[1] == '{') { /* Lookahead or eval. */
+ I32 flag;
+ regnode *tail;
+
+ ret = reg_node(pRExC_state, LOGICAL);
+ if (!SIZE_ONLY)
+ ret->flags = 1;
+
+ tail = reg(pRExC_state, 1, &flag, depth+1);
+ if (flag & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ REGTAIL(pRExC_state, ret, tail);
+ goto insert_if;
+ }
+ /* Fall through to ‘Unknown switch condition’ at the
+ end of the if/else chain. */
+ }
+ else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */
+ || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
+ {
+ char ch = RExC_parse[0] == '<' ? '>' : '\'';
+ char *name_start= RExC_parse++;
+ U32 num = 0;
+ SV *sv_dat=reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ if (RExC_parse == name_start || *RExC_parse != ch)
+ vFAIL2("Sequence (?(%c... not terminated",
+ (ch == '>' ? '<' : ch));
+ RExC_parse++;
+ if (!SIZE_ONLY) {
+ num = add_data( pRExC_state, STR_WITH_LEN("S"));
+ RExC_rxi->data->data[num]=(void*)sv_dat;
+ SvREFCNT_inc_simple_void(sv_dat);
+ }
+ ret = reganode(pRExC_state,NGROUPP,num);
+ goto insert_if_check_paren;
+ }
+ else if (RExC_end - RExC_parse >= DEFINE_len
+ && strnEQ(RExC_parse, "DEFINE", DEFINE_len))
+ {
+ ret = reganode(pRExC_state,DEFINEP,0);
+ RExC_parse += DEFINE_len;
+ is_define = 1;
+ goto insert_if_check_paren;
+ }
+ else if (RExC_parse[0] == 'R') {
+ RExC_parse++;
+ parno = 0;
+ if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
+ UV uv;
+ if (grok_atoUV(RExC_parse, &uv, &endptr)
+ && uv <= I32_MAX
+ ) {
+ parno = (I32)uv;
+ RExC_parse = (char*)endptr;
+ }
+ /* else "Switch condition not recognized" below */
+ } else if (RExC_parse[0] == '&') {
+ SV *sv_dat;
+ RExC_parse++;
+ sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY
+ ? REG_RSN_RETURN_NULL
+ : REG_RSN_RETURN_DATA);
+ parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
+ }
+ ret = reganode(pRExC_state,INSUBP,parno);
+ goto insert_if_check_paren;
+ }
+ else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
+ /* (?(1)...) */
+ char c;
+ char *tmp;
+ UV uv;
+ if (grok_atoUV(RExC_parse, &uv, &endptr)
+ && uv <= I32_MAX
+ ) {
+ parno = (I32)uv;
+ RExC_parse = (char*)endptr;
+ }
+ /* XXX else what? */
+ ret = reganode(pRExC_state, GROUPP, parno);
+
+ insert_if_check_paren:
+ if (*(tmp = nextchar(pRExC_state)) != ')') {
+ /* nextchar also skips comments, so undo its work
+ * and skip over the the next character.
+ */
+ RExC_parse = tmp;
+ RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
+ vFAIL("Switch condition not recognized");
+ }
+ insert_if:
+ REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
+ br = regbranch(pRExC_state, &flags, 1,depth+1);
+ if (br == NULL) {
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"",
+ (UV) flags);
+ } else
+ REGTAIL(pRExC_state, br, reganode(pRExC_state,
+ LONGJMP, 0));
+ c = *nextchar(pRExC_state);
+ if (flags&HASWIDTH)
+ *flagp |= HASWIDTH;
+ if (c == '|') {
+ if (is_define)
+ vFAIL("(?(DEFINE)....) does not allow branches");
+
+ /* Fake one for optimizer. */
+ lastbr = reganode(pRExC_state, IFTHEN, 0);
+
+ if (!regbranch(pRExC_state, &flags, 1,depth+1)) {
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"",
+ (UV) flags);
+ }
+ REGTAIL(pRExC_state, ret, lastbr);
+ if (flags&HASWIDTH)
+ *flagp |= HASWIDTH;
+ c = *nextchar(pRExC_state);
+ }
+ else
+ lastbr = NULL;
+ if (c != ')') {
+ if (RExC_parse>RExC_end)
+ vFAIL("Switch (?(condition)... not terminated");
+ else
+ vFAIL("Switch (?(condition)... contains too many branches");
+ }
+ ender = reg_node(pRExC_state, TAIL);
+ REGTAIL(pRExC_state, br, ender);
+ if (lastbr) {
+ REGTAIL(pRExC_state, lastbr, ender);
+ REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
+ }
+ else
+ REGTAIL(pRExC_state, ret, ender);
+ RExC_size++; /* XXX WHY do we need this?!!
+ For large programs it seems to be required
+ but I can't figure out why. -- dmq*/
+ return ret;
+ }
+ RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
+ vFAIL("Unknown switch condition (?(...))");
+ }
+ case '[': /* (?[ ... ]) */
+ return handle_regex_sets(pRExC_state, NULL, flagp, depth,
+ oregcomp_parse);
+ case 0:
+ RExC_parse--; /* for vFAIL to print correctly */
+ vFAIL("Sequence (? incomplete");
+ break;
+ default: /* e.g., (?i) */
+ --RExC_parse;
+ parse_flags:
+ parse_lparen_question_flags(pRExC_state);
+ if (UCHARAT(RExC_parse) != ':') {
+ if (*RExC_parse)
+ nextchar(pRExC_state);
+ *flagp = TRYAGAIN;
+ return NULL;
+ }
+ paren = ':';
+ nextchar(pRExC_state);
+ ret = NULL;
+ goto parse_rest;
+ } /* end switch */
+ }
+ else if (!(RExC_flags & RXf_PMf_NOCAPTURE)) { /* (...) */
+ capturing_parens:
+ parno = RExC_npar;
+ RExC_npar++;
+
+ ret = reganode(pRExC_state, OPEN, parno);
+ if (!SIZE_ONLY ){
+ if (!RExC_nestroot)
+ RExC_nestroot = parno;
+ if (RExC_seen & REG_RECURSE_SEEN
+ && !RExC_open_parens[parno-1])
+ {
+ DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+ "%*s%*s Setting open paren #%"IVdf" to %d\n",
+ 22, "| |", (int)(depth * 2 + 1), "",
+ (IV)parno, REG_NODE_NUM(ret)));
+ RExC_open_parens[parno-1]= ret;
+ }
+ }
+ Set_Node_Length(ret, 1); /* MJD */
+ Set_Node_Offset(ret, RExC_parse); /* MJD */
+ is_open = 1;
+ } else {
+ /* with RXf_PMf_NOCAPTURE treat (...) as (?:...) */
+ paren = ':';
+ ret = NULL;
+ }
+ }
+ else /* ! paren */
+ ret = NULL;
+
+ parse_rest:
+ /* Pick up the branches, linking them together. */
+ parse_start = RExC_parse; /* MJD */
+ br = regbranch(pRExC_state, &flags, 1,depth+1);
+
+ /* branch_len = (paren != 0); */
+
+ if (br == NULL) {
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"", (UV) flags);
+ }
+ if (*RExC_parse == '|') {
+ if (!SIZE_ONLY && RExC_extralen) {
+ reginsert(pRExC_state, BRANCHJ, br, depth+1);
+ }
+ else { /* MJD */
+ reginsert(pRExC_state, BRANCH, br, depth+1);
+ Set_Node_Length(br, paren != 0);
+ Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
+ }
+ have_branch = 1;
+ if (SIZE_ONLY)
+ RExC_extralen += 1; /* For BRANCHJ-BRANCH. */
+ }
+ else if (paren == ':') {
+ *flagp |= flags&SIMPLE;
+ }
+ if (is_open) { /* Starts with OPEN. */
+ REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */
+ }
+ else if (paren != '?') /* Not Conditional */
+ ret = br;
+ *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
+ lastbr = br;
+ while (*RExC_parse == '|') {
+ if (!SIZE_ONLY && RExC_extralen) {
+ ender = reganode(pRExC_state, LONGJMP,0);
+
+ /* Append to the previous. */
+ REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
+ }
+ if (SIZE_ONLY)
+ RExC_extralen += 2; /* Account for LONGJMP. */
+ nextchar(pRExC_state);
+ if (freeze_paren) {
+ if (RExC_npar > after_freeze)
+ after_freeze = RExC_npar;
+ RExC_npar = freeze_paren;
+ }
+ br = regbranch(pRExC_state, &flags, 0, depth+1);
+
+ if (br == NULL) {
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"", (UV) flags);
+ }
+ REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */
+ lastbr = br;
+ *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
+ }
+
+ if (have_branch || paren != ':') {
+ /* Make a closing node, and hook it on the end. */
+ switch (paren) {
+ case ':':
+ ender = reg_node(pRExC_state, TAIL);
+ break;
+ case 1: case 2:
+ ender = reganode(pRExC_state, CLOSE, parno);
+ if (!SIZE_ONLY && RExC_seen & REG_RECURSE_SEEN) {
+ DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+ "%*s%*s Setting close paren #%"IVdf" to %d\n",
+ 22, "| |", (int)(depth * 2 + 1), "", (IV)parno, REG_NODE_NUM(ender)));
+ RExC_close_parens[parno-1]= ender;
+ if (RExC_nestroot == parno)
+ RExC_nestroot = 0;
+ }
+ Set_Node_Offset(ender,RExC_parse+1); /* MJD */
+ Set_Node_Length(ender,1); /* MJD */
+ break;
+ case '<':
+ case ',':
+ case '=':
+ case '!':
+ *flagp &= ~HASWIDTH;
+ /* FALLTHROUGH */
+ case '>':
+ ender = reg_node(pRExC_state, SUCCEED);
+ break;
+ case 0:
+ ender = reg_node(pRExC_state, END);
+ if (!SIZE_ONLY) {
+ assert(!RExC_opend); /* there can only be one! */
+ RExC_opend = ender;
+ }
+ break;
+ }
+ DEBUG_PARSE_r(if (!SIZE_ONLY) {
+ DEBUG_PARSE_MSG("lsbr");
+ regprop(RExC_rx, RExC_mysv1, lastbr, NULL, pRExC_state);
+ regprop(RExC_rx, RExC_mysv2, ender, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log, "~ tying lastbr %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
+ SvPV_nolen_const(RExC_mysv1),
+ (IV)REG_NODE_NUM(lastbr),
+ SvPV_nolen_const(RExC_mysv2),
+ (IV)REG_NODE_NUM(ender),
+ (IV)(ender - lastbr)
+ );
+ });
+ REGTAIL(pRExC_state, lastbr, ender);
+
+ if (have_branch && !SIZE_ONLY) {
+ char is_nothing= 1;
+ if (depth==1)
+ RExC_seen |= REG_TOP_LEVEL_BRANCHES_SEEN;
+
+ /* Hook the tails of the branches to the closing node. */
+ for (br = ret; br; br = regnext(br)) {
+ const U8 op = PL_regkind[OP(br)];
+ if (op == BRANCH) {
+ REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
+ if ( OP(NEXTOPER(br)) != NOTHING
+ || regnext(NEXTOPER(br)) != ender)
+ is_nothing= 0;
+ }
+ else if (op == BRANCHJ) {
+ REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
+ /* for now we always disable this optimisation * /
+ if ( OP(NEXTOPER(NEXTOPER(br))) != NOTHING
+ || regnext(NEXTOPER(NEXTOPER(br))) != ender)
+ */
+ is_nothing= 0;
+ }
+ }
+ if (is_nothing) {
+ br= PL_regkind[OP(ret)] != BRANCH ? regnext(ret) : ret;
+ DEBUG_PARSE_r(if (!SIZE_ONLY) {
+ DEBUG_PARSE_MSG("NADA");
+ regprop(RExC_rx, RExC_mysv1, ret, NULL, pRExC_state);
+ regprop(RExC_rx, RExC_mysv2, ender, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log, "~ converting ret %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
+ SvPV_nolen_const(RExC_mysv1),
+ (IV)REG_NODE_NUM(ret),
+ SvPV_nolen_const(RExC_mysv2),
+ (IV)REG_NODE_NUM(ender),
+ (IV)(ender - ret)
+ );
+ });
+ OP(br)= NOTHING;
+ if (OP(ender) == TAIL) {
+ NEXT_OFF(br)= 0;
+ RExC_emit= br + 1;
+ } else {
+ regnode *opt;
+ for ( opt= br + 1; opt < ender ; opt++ )
+ OP(opt)= OPTIMIZED;
+ NEXT_OFF(br)= ender - br;
+ }
+ }
+ }
+ }
+
+ {
+ const char *p;
+ static const char parens[] = "=!<,>";
+
+ if (paren && (p = strchr(parens, paren))) {
+ U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
+ int flag = (p - parens) > 1;
+
+ if (paren == '>')
+ node = SUSPEND, flag = 0;
+ reginsert(pRExC_state, node,ret, depth+1);
+ Set_Node_Cur_Length(ret, parse_start);
+ Set_Node_Offset(ret, parse_start + 1);
+ ret->flags = flag;
+ REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
+ }
+ }
+
+ /* Check for proper termination. */
+ if (paren) {
+ /* restore original flags, but keep (?p) */
+ RExC_flags = oregflags | (RExC_flags & RXf_PMf_KEEPCOPY);
+ if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
+ RExC_parse = oregcomp_parse;
+ vFAIL("Unmatched (");
+ }
+ }
+ else if (!paren && RExC_parse < RExC_end) {
+ if (*RExC_parse == ')') {
+ RExC_parse++;
+ vFAIL("Unmatched )");
+ }
+ else
+ FAIL("Junk on end of regexp"); /* "Can't happen". */
+ NOT_REACHED; /* NOTREACHED */
+ }
+
+ if (RExC_in_lookbehind) {
+ RExC_in_lookbehind--;
+ }
+ if (after_freeze > RExC_npar)
+ RExC_npar = after_freeze;
+ return(ret);
+}
+
+/*
+ - regbranch - one alternative of an | operator
+ *
+ * Implements the concatenation operator.
+ *
+ * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
+ * restarted.
+ */
+STATIC regnode *
+S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
+{
+ regnode *ret;
+ regnode *chain = NULL;
+ regnode *latest;
+ I32 flags = 0, c = 0;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGBRANCH;
+
+ DEBUG_PARSE("brnc");
+
+ if (first)
+ ret = NULL;
+ else {
+ if (!SIZE_ONLY && RExC_extralen)
+ ret = reganode(pRExC_state, BRANCHJ,0);
+ else {
+ ret = reg_node(pRExC_state, BRANCH);
+ Set_Node_Length(ret, 1);
+ }
+ }
+
+ if (!first && SIZE_ONLY)
+ RExC_extralen += 1; /* BRANCHJ */
+
+ *flagp = WORST; /* Tentatively. */
+
+ RExC_parse--;
+ nextchar(pRExC_state);
+ while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
+ flags &= ~TRYAGAIN;
+ latest = regpiece(pRExC_state, &flags,depth+1);
+ if (latest == NULL) {
+ if (flags & TRYAGAIN)
+ continue;
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ FAIL2("panic: regpiece returned NULL, flags=%#"UVxf"", (UV) flags);
+ }
+ else if (ret == NULL)
+ ret = latest;
+ *flagp |= flags&(HASWIDTH|POSTPONED);
+ if (chain == NULL) /* First piece. */
+ *flagp |= flags&SPSTART;
+ else {
+ /* FIXME adding one for every branch after the first is probably
+ * excessive now we have TRIE support. (hv) */
+ MARK_NAUGHTY(1);
+ REGTAIL(pRExC_state, chain, latest);
+ }
+ chain = latest;
+ c++;
+ }
+ if (chain == NULL) { /* Loop ran zero times. */
+ chain = reg_node(pRExC_state, NOTHING);
+ if (ret == NULL)
+ ret = chain;
+ }
+ if (c == 1) {
+ *flagp |= flags&SIMPLE;
+ }
+
+ return ret;
+}
+
+/*
+ - regpiece - something followed by possible [*+?]
+ *
+ * Note that the branching code sequences used for ? and the general cases
+ * of * and + are somewhat optimized: they use the same NOTHING node as
+ * both the endmarker for their branch list and the body of the last branch.
+ * It might seem that this node could be dispensed with entirely, but the
+ * endmarker role is not redundant.
+ *
+ * Returns NULL, setting *flagp to TRYAGAIN if regatom() returns NULL with
+ * TRYAGAIN.
+ * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
+ * restarted.
+ */
+STATIC regnode *
+S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
+{
+ regnode *ret;
+ char op;
+ char *next;
+ I32 flags;
+ const char * const origparse = RExC_parse;
+ I32 min;
+ I32 max = REG_INFTY;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ char *parse_start;
+#endif
+ const char *maxpos = NULL;
+ UV uv;
+
+ /* Save the original in case we change the emitted regop to a FAIL. */
+ regnode * const orig_emit = RExC_emit;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGPIECE;
+
+ DEBUG_PARSE("piec");
+
+ ret = regatom(pRExC_state, &flags,depth+1);
+ if (ret == NULL) {
+ if (flags & (TRYAGAIN|RESTART_UTF8))
+ *flagp |= flags & (TRYAGAIN|RESTART_UTF8);
+ else
+ FAIL2("panic: regatom returned NULL, flags=%#"UVxf"", (UV) flags);
+ return(NULL);
+ }
+
+ op = *RExC_parse;
+
+ if (op == '{' && regcurly(RExC_parse)) {
+ maxpos = NULL;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ parse_start = RExC_parse; /* MJD */
+#endif
+ next = RExC_parse + 1;
+ while (isDIGIT(*next) || *next == ',') {
+ if (*next == ',') {
+ if (maxpos)
+ break;
+ else
+ maxpos = next;
+ }
+ next++;
+ }
+ if (*next == '}') { /* got one */
+ const char* endptr;
+ if (!maxpos)
+ maxpos = next;
+ RExC_parse++;
+ if (isDIGIT(*RExC_parse)) {
+ if (!grok_atoUV(RExC_parse, &uv, &endptr))
+ vFAIL("Invalid quantifier in {,}");
+ if (uv >= REG_INFTY)
+ vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
+ min = (I32)uv;
+ } else {
+ min = 0;
+ }
+ if (*maxpos == ',')
+ maxpos++;
+ else
+ maxpos = RExC_parse;
+ if (isDIGIT(*maxpos)) {
+ if (!grok_atoUV(maxpos, &uv, &endptr))
+ vFAIL("Invalid quantifier in {,}");
+ if (uv >= REG_INFTY)
+ vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
+ max = (I32)uv;
+ } else {
+ max = REG_INFTY; /* meaning "infinity" */
+ }
+ RExC_parse = next;
+ nextchar(pRExC_state);
+ if (max < min) { /* If can't match, warn and optimize to fail
+ unconditionally */
+ if (SIZE_ONLY) {
+
+ /* We can't back off the size because we have to reserve
+ * enough space for all the things we are about to throw
+ * away, but we can shrink it by the ammount we are about
+ * to re-use here */
+ RExC_size = PREVOPER(RExC_size) - regarglen[(U8)OPFAIL];
+ }
+ else {
+ ckWARNreg(RExC_parse, "Quantifier {n,m} with n > m can't match");
+ RExC_emit = orig_emit;
+ }
+ ret = reg_node(pRExC_state, OPFAIL);
+ return ret;
+ }
+ else if (min == max
+ && RExC_parse < RExC_end
+ && (*RExC_parse == '?' || *RExC_parse == '+'))
+ {
+ if (PASS2) {
+ ckWARN2reg(RExC_parse + 1,
+ "Useless use of greediness modifier '%c'",
+ *RExC_parse);
+ }
+ /* Absorb the modifier, so later code doesn't see nor use
+ * it */
+ nextchar(pRExC_state);
+ }
+
+ do_curly:
+ if ((flags&SIMPLE)) {
+ MARK_NAUGHTY_EXP(2, 2);
+ reginsert(pRExC_state, CURLY, ret, depth+1);
+ Set_Node_Offset(ret, parse_start+1); /* MJD */
+ Set_Node_Cur_Length(ret, parse_start);
+ }
+ else {
+ regnode * const w = reg_node(pRExC_state, WHILEM);
+
+ w->flags = 0;
+ REGTAIL(pRExC_state, ret, w);
+ if (!SIZE_ONLY && RExC_extralen) {
+ reginsert(pRExC_state, LONGJMP,ret, depth+1);
+ reginsert(pRExC_state, NOTHING,ret, depth+1);
+ NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
+ }
+ reginsert(pRExC_state, CURLYX,ret, depth+1);
+ /* MJD hk */
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Length(ret,
+ op == '{' ? (RExC_parse - parse_start) : 1);
+
+ if (!SIZE_ONLY && RExC_extralen)
+ NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
+ REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
+ if (SIZE_ONLY)
+ RExC_whilem_seen++, RExC_extralen += 3;
+ MARK_NAUGHTY_EXP(1, 4); /* compound interest */
+ }
+ ret->flags = 0;
+
+ if (min > 0)
+ *flagp = WORST;
+ if (max > 0)
+ *flagp |= HASWIDTH;
+ if (!SIZE_ONLY) {
+ ARG1_SET(ret, (U16)min);
+ ARG2_SET(ret, (U16)max);
+ }
+ if (max == REG_INFTY)
+ RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
+
+ goto nest_check;
+ }
+ }
+
+ if (!ISMULT1(op)) {
+ *flagp = flags;
+ return(ret);
+ }
+
+#if 0 /* Now runtime fix should be reliable. */
+
+ /* if this is reinstated, don't forget to put this back into perldiag:
+
+ =item Regexp *+ operand could be empty at {#} in regex m/%s/
+
+ (F) The part of the regexp subject to either the * or + quantifier
+ could match an empty string. The {#} shows in the regular
+ expression about where the problem was discovered.
+
+ */
+
+ if (!(flags&HASWIDTH) && op != '?')
+ vFAIL("Regexp *+ operand could be empty");
+#endif
+
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ parse_start = RExC_parse;
+#endif
+ nextchar(pRExC_state);
+
+ *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
+
+ if (op == '*' && (flags&SIMPLE)) {
+ reginsert(pRExC_state, STAR, ret, depth+1);
+ ret->flags = 0;
+ MARK_NAUGHTY(4);
+ RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
+ }
+ else if (op == '*') {
+ min = 0;
+ goto do_curly;
+ }
+ else if (op == '+' && (flags&SIMPLE)) {
+ reginsert(pRExC_state, PLUS, ret, depth+1);
+ ret->flags = 0;
+ MARK_NAUGHTY(3);
+ RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
+ }
+ else if (op == '+') {
+ min = 1;
+ goto do_curly;
+ }
+ else if (op == '?') {
+ min = 0; max = 1;
+ goto do_curly;
+ }
+ nest_check:
+ if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
+ SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
+ ckWARN2reg(RExC_parse,
+ "%"UTF8f" matches null string many times",
+ UTF8fARG(UTF, (RExC_parse >= origparse
+ ? RExC_parse - origparse
+ : 0),
+ origparse));
+ (void)ReREFCNT_inc(RExC_rx_sv);
+ }
+
+ if (RExC_parse < RExC_end && *RExC_parse == '?') {
+ nextchar(pRExC_state);
+ reginsert(pRExC_state, MINMOD, ret, depth+1);
+ REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
+ }
+ else
+ if (RExC_parse < RExC_end && *RExC_parse == '+') {
+ regnode *ender;
+ nextchar(pRExC_state);
+ ender = reg_node(pRExC_state, SUCCEED);
+ REGTAIL(pRExC_state, ret, ender);
+ reginsert(pRExC_state, SUSPEND, ret, depth+1);
+ ret->flags = 0;
+ ender = reg_node(pRExC_state, TAIL);
+ REGTAIL(pRExC_state, ret, ender);
+ }
+
+ if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
+ RExC_parse++;
+ vFAIL("Nested quantifiers");
+ }
+
+ return(ret);
+}
+
+STATIC bool
+S_grok_bslash_N(pTHX_ RExC_state_t *pRExC_state,
+ regnode ** node_p,
+ UV * code_point_p,
+ int * cp_count,
+ I32 * flagp,
+ const U32 depth
+ )
+{
+ /* This routine teases apart the various meanings of \N and returns
+ * accordingly. The input parameters constrain which meaning(s) is/are valid
+ * in the current context.
+ *
+ * Exactly one of <node_p> and <code_point_p> must be non-NULL.
+ *
+ * If <code_point_p> is not NULL, the context is expecting the result to be a
+ * single code point. If this \N instance turns out to a single code point,
+ * the function returns TRUE and sets *code_point_p to that code point.
+ *
+ * If <node_p> is not NULL, the context is expecting the result to be one of
+ * the things representable by a regnode. If this \N instance turns out to be
+ * one such, the function generates the regnode, returns TRUE and sets *node_p
+ * to point to that regnode.
+ *
+ * If this instance of \N isn't legal in any context, this function will
+ * generate a fatal error and not return.
+ *
+ * On input, RExC_parse should point to the first char following the \N at the
+ * time of the call. On successful return, RExC_parse will have been updated
+ * to point to just after the sequence identified by this routine. Also
+ * *flagp has been updated as needed.
+ *
+ * When there is some problem with the current context and this \N instance,
+ * the function returns FALSE, without advancing RExC_parse, nor setting
+ * *node_p, nor *code_point_p, nor *flagp.
+ *
+ * If <cp_count> is not NULL, the caller wants to know the length (in code
+ * points) that this \N sequence matches. This is set even if the function
+ * returns FALSE, as detailed below.
+ *
+ * There are 5 possibilities here, as detailed in the next 5 paragraphs.
+ *
+ * Probably the most common case is for the \N to specify a single code point.
+ * *cp_count will be set to 1, and *code_point_p will be set to that code
+ * point.
+ *
+ * Another possibility is for the input to be an empty \N{}, which for
+ * backwards compatibility we accept. *cp_count will be set to 0. *node_p
+ * will be set to a generated NOTHING node.
+ *
+ * Still another possibility is for the \N to mean [^\n]. *cp_count will be
+ * set to 0. *node_p will be set to a generated REG_ANY node.
+ *
+ * The fourth possibility is that \N resolves to a sequence of more than one
+ * code points. *cp_count will be set to the number of code points in the
+ * sequence. *node_p * will be set to a generated node returned by this
+ * function calling S_reg().
+ *
+ * The final possibility, which happens only when the fourth one would
+ * otherwise be in effect, is that one of those code points requires the
+ * pattern to be recompiled as UTF-8. The function returns FALSE, and sets
+ * the RESTART_UTF8 flag in *flagp. When this happens, the caller needs to
+ * desist from continuing parsing, and return this information to its caller.
+ * This is not set for when there is only one code point, as this can be
+ * called as part of an ANYOF node, and they can store above-Latin1 code
+ * points without the pattern having to be in UTF-8.
+ *
+ * For non-single-quoted regexes, the tokenizer has resolved character and
+ * sequence names inside \N{...} into their Unicode values, normalizing the
+ * result into what we should see here: '\N{U+c1.c2...}', where c1... are the
+ * hex-represented code points in the sequence. This is done there because
+ * the names can vary based on what charnames pragma is in scope at the time,
+ * so we need a way to take a snapshot of what they resolve to at the time of
+ * the original parse. [perl #56444].
+ *
+ * That parsing is skipped for single-quoted regexes, so we may here get
+ * '\N{NAME}'. This is a fatal error. These names have to be resolved by the
+ * parser. But if the single-quoted regex is something like '\N{U+41}', that
+ * is legal and handled here. The code point is Unicode, and has to be
+ * translated into the native character set for non-ASCII platforms.
+ * the tokenizer passes the \N sequence through unchanged; this code will not
+ * attempt to determine this nor expand those, instead raising a syntax error.
+ */
+
+ char * endbrace; /* points to '}' following the name */
+ char *endchar; /* Points to '.' or '}' ending cur char in the input
+ stream */
+ char* p; /* Temporary */
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_GROK_BSLASH_N;
+
+ GET_RE_DEBUG_FLAGS;
+
+ assert(cBOOL(node_p) ^ cBOOL(code_point_p)); /* Exactly one should be set */
+ assert(! (node_p && cp_count)); /* At most 1 should be set */
+
+ if (cp_count) { /* Initialize return for the most common case */
+ *cp_count = 1;
+ }
+
+ /* The [^\n] meaning of \N ignores spaces and comments under the /x
+ * modifier. The other meanings do not, so use a temporary until we find
+ * out which we are being called with */
+ p = (RExC_flags & RXf_PMf_EXTENDED)
+ ? regpatws(pRExC_state, RExC_parse,
+ TRUE) /* means recognize comments */
+ : RExC_parse;
+
+ /* Disambiguate between \N meaning a named character versus \N meaning
+ * [^\n]. The latter is assumed when the {...} following the \N is a legal
+ * quantifier, or there is no a '{' at all */
+ if (*p != '{' || regcurly(p)) {
+ RExC_parse = p;
+ if (cp_count) {
+ *cp_count = -1;
+ }
+
+ if (! node_p) {
+ return FALSE;
+ }
+ RExC_parse--; /* Need to back off so nextchar() doesn't skip the
+ current char */
+ nextchar(pRExC_state);
+ *node_p = reg_node(pRExC_state, REG_ANY);
+ *flagp |= HASWIDTH|SIMPLE;
+ MARK_NAUGHTY(1);
+ Set_Node_Length(*node_p, 1); /* MJD */
+ return TRUE;
+ }
+
+ /* Here, we have decided it should be a named character or sequence */
+
+ /* The test above made sure that the next real character is a '{', but
+ * under the /x modifier, it could be separated by space (or a comment and
+ * \n) and this is not allowed (for consistency with \x{...} and the
+ * tokenizer handling of \N{NAME}). */
+ if (*RExC_parse != '{') {
+ vFAIL("Missing braces on \\N{}");
+ }
+
+ RExC_parse++; /* Skip past the '{' */
+
+ if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */
+ || ! (endbrace == RExC_parse /* nothing between the {} */
+ || (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked... */
+ && strnEQ(RExC_parse, "U+", 2)))) /* ... below for a better
+ error msg) */
+ {
+ if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
+ vFAIL("\\N{NAME} must be resolved by the lexer");
+ }
+
+ RExC_uni_semantics = 1; /* Unicode named chars imply Unicode semantics */
+
+ if (endbrace == RExC_parse) { /* empty: \N{} */
+ if (cp_count) {
+ *cp_count = 0;
+ }
+ nextchar(pRExC_state);
+ if (! node_p) {
+ return FALSE;
+ }
+
+ *node_p = reg_node(pRExC_state,NOTHING);
+ return TRUE;
+ }
+
+ RExC_parse += 2; /* Skip past the 'U+' */
+
+ endchar = RExC_parse + strcspn(RExC_parse, ".}");
+
+ /* Code points are separated by dots. If none, there is only one code
+ * point, and is terminated by the brace */
+
+ if (endchar >= endbrace) {
+ STRLEN length_of_hex;
+ I32 grok_hex_flags;
+
+ /* Here, exactly one code point. If that isn't what is wanted, fail */
+ if (! code_point_p) {
+ RExC_parse = p;
+ return FALSE;
+ }
+
+ /* Convert code point from hex */
+ length_of_hex = (STRLEN)(endchar - RExC_parse);
+ grok_hex_flags = PERL_SCAN_ALLOW_UNDERSCORES
+ | PERL_SCAN_DISALLOW_PREFIX
+
+ /* No errors in the first pass (See [perl
+ * #122671].) We let the code below find the
+ * errors when there are multiple chars. */
+ | ((SIZE_ONLY)
+ ? PERL_SCAN_SILENT_ILLDIGIT
+ : 0);
+
+ /* This routine is the one place where both single- and double-quotish
+ * \N{U+xxxx} are evaluated. The value is a Unicode code point which
+ * must be converted to native. */
+ *code_point_p = UNI_TO_NATIVE(grok_hex(RExC_parse,
+ &length_of_hex,
+ &grok_hex_flags,
+ NULL));
+
+ /* The tokenizer should have guaranteed validity, but it's possible to
+ * bypass it by using single quoting, so check. Don't do the check
+ * here when there are multiple chars; we do it below anyway. */
+ if (length_of_hex == 0
+ || length_of_hex != (STRLEN)(endchar - RExC_parse) )
+ {
+ RExC_parse += length_of_hex; /* Includes all the valid */
+ RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
+ ? UTF8SKIP(RExC_parse)
+ : 1;
+ /* Guard against malformed utf8 */
+ if (RExC_parse >= endchar) {
+ RExC_parse = endchar;
+ }
+ vFAIL("Invalid hexadecimal number in \\N{U+...}");
+ }
+
+ RExC_parse = endbrace + 1;
+ return TRUE;
+ }
+ else { /* Is a multiple character sequence */
+ SV * substitute_parse;
+ STRLEN len;
+ char *orig_end = RExC_end;
+ I32 flags;
+
+ /* Count the code points, if desired, in the sequence */
+ if (cp_count) {
+ *cp_count = 0;
+ while (RExC_parse < endbrace) {
+ /* Point to the beginning of the next character in the sequence. */
+ RExC_parse = endchar + 1;
+ endchar = RExC_parse + strcspn(RExC_parse, ".}");
+ (*cp_count)++;
+ }
+ }
+
+ /* Fail if caller doesn't want to handle a multi-code-point sequence.
+ * But don't backup up the pointer if the caller want to know how many
+ * code points there are (they can then handle things) */
+ if (! node_p) {
+ if (! cp_count) {
+ RExC_parse = p;
+ }
+ return FALSE;
+ }
+
+ /* What is done here is to convert this to a sub-pattern of the form
+ * \x{char1}\x{char2}... and then call reg recursively to parse it
+ * (enclosing in "(?: ... )" ). That way, it retains its atomicness,
+ * while not having to worry about special handling that some code
+ * points may have. */
+
+ substitute_parse = newSVpvs("?:");
+
+ while (RExC_parse < endbrace) {
+
+ /* Convert to notation the rest of the code understands */
+ sv_catpv(substitute_parse, "\\x{");
+ sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
+ sv_catpv(substitute_parse, "}");
+
+ /* Point to the beginning of the next character in the sequence. */
+ RExC_parse = endchar + 1;
+ endchar = RExC_parse + strcspn(RExC_parse, ".}");
+
+ }
+ sv_catpv(substitute_parse, ")");
+
+ RExC_parse = SvPV(substitute_parse, len);
+
+ /* Don't allow empty number */
+ if (len < (STRLEN) 8) {
+ RExC_parse = endbrace;
+ vFAIL("Invalid hexadecimal number in \\N{U+...}");
+ }
+ RExC_end = RExC_parse + len;
+
+ /* The values are Unicode, and therefore not subject to recoding, but
+ * have to be converted to native on a non-Unicode (meaning non-ASCII)
+ * platform. */
+ RExC_override_recoding = 1;
+#ifdef EBCDIC
+ RExC_recode_x_to_native = 1;
+#endif
+
+ if (node_p) {
+ if (!(*node_p = reg(pRExC_state, 1, &flags, depth+1))) {
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return FALSE;
+ }
+ FAIL2("panic: reg returned NULL to grok_bslash_N, flags=%#"UVxf"",
+ (UV) flags);
+ }
+ *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
+ }
+
+ /* Restore the saved values */
+ RExC_parse = endbrace;
+ RExC_end = orig_end;
+ RExC_override_recoding = 0;
+#ifdef EBCDIC
+ RExC_recode_x_to_native = 0;
+#endif
+
+ SvREFCNT_dec_NN(substitute_parse);
+ nextchar(pRExC_state);
+
+ return TRUE;
+ }
+}
+
+
+/*
+ * reg_recode
+ *
+ * It returns the code point in utf8 for the value in *encp.
+ * value: a code value in the source encoding
+ * encp: a pointer to an Encode object
+ *
+ * If the result from Encode is not a single character,
+ * it returns U+FFFD (Replacement character) and sets *encp to NULL.
+ */
+STATIC UV
+S_reg_recode(pTHX_ const char value, SV **encp)
+{
+ STRLEN numlen = 1;
+ SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
+ const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
+ const STRLEN newlen = SvCUR(sv);
+ UV uv = UNICODE_REPLACEMENT;
+
+ PERL_ARGS_ASSERT_REG_RECODE;
+
+ if (newlen)
+ uv = SvUTF8(sv)
+ ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
+ : *(U8*)s;
+
+ if (!newlen || numlen != newlen) {
+ uv = UNICODE_REPLACEMENT;
+ *encp = NULL;
+ }
+ return uv;
+}
+
+PERL_STATIC_INLINE U8
+S_compute_EXACTish(RExC_state_t *pRExC_state)
+{
+ U8 op;
+
+ PERL_ARGS_ASSERT_COMPUTE_EXACTISH;
+
+ if (! FOLD) {
+ return (LOC)
+ ? EXACTL
+ : EXACT;
+ }
+
+ op = get_regex_charset(RExC_flags);
+ if (op >= REGEX_ASCII_RESTRICTED_CHARSET) {
+ op--; /* /a is same as /u, and map /aa's offset to what /a's would have
+ been, so there is no hole */
+ }
+
+ return op + EXACTF;
+}
+
+PERL_STATIC_INLINE void
+S_alloc_maybe_populate_EXACT(pTHX_ RExC_state_t *pRExC_state,
+ regnode *node, I32* flagp, STRLEN len, UV code_point,
+ bool downgradable)
+{
+ /* This knows the details about sizing an EXACTish node, setting flags for
+ * it (by setting <*flagp>, and potentially populating it with a single
+ * character.
+ *
+ * If <len> (the length in bytes) is non-zero, this function assumes that
+ * the node has already been populated, and just does the sizing. In this
+ * case <code_point> should be the final code point that has already been
+ * placed into the node. This value will be ignored except that under some
+ * circumstances <*flagp> is set based on it.
+ *
+ * If <len> is zero, the function assumes that the node is to contain only
+ * the single character given by <code_point> and calculates what <len>
+ * should be. In pass 1, it sizes the node appropriately. In pass 2, it
+ * additionally will populate the node's STRING with <code_point> or its
+ * fold if folding.
+ *
+ * In both cases <*flagp> is appropriately set
+ *
+ * It knows that under FOLD, the Latin Sharp S and UTF characters above
+ * 255, must be folded (the former only when the rules indicate it can
+ * match 'ss')
+ *
+ * When it does the populating, it looks at the flag 'downgradable'. If
+ * true with a node that folds, it checks if the single code point
+ * participates in a fold, and if not downgrades the node to an EXACT.
+ * This helps the optimizer */
+
+ bool len_passed_in = cBOOL(len != 0);
+ U8 character[UTF8_MAXBYTES_CASE+1];
+
+ PERL_ARGS_ASSERT_ALLOC_MAYBE_POPULATE_EXACT;
+
+ /* Don't bother to check for downgrading in PASS1, as it doesn't make any
+ * sizing difference, and is extra work that is thrown away */
+ if (downgradable && ! PASS2) {
+ downgradable = FALSE;
+ }
+
+ if (! len_passed_in) {
+ if (UTF) {
+ if (UVCHR_IS_INVARIANT(code_point)) {
+ if (LOC || ! FOLD) { /* /l defers folding until runtime */
+ *character = (U8) code_point;
+ }
+ else { /* Here is /i and not /l. (toFOLD() is defined on just
+ ASCII, which isn't the same thing as INVARIANT on
+ EBCDIC, but it works there, as the extra invariants
+ fold to themselves) */
+ *character = toFOLD((U8) code_point);
+
+ /* We can downgrade to an EXACT node if this character
+ * isn't a folding one. Note that this assumes that
+ * nothing above Latin1 folds to some other invariant than
+ * one of these alphabetics; otherwise we would also have
+ * to check:
+ * && (! HAS_NONLATIN1_FOLD_CLOSURE(code_point)
+ * || ASCII_FOLD_RESTRICTED))
+ */
+ if (downgradable && PL_fold[code_point] == code_point) {
+ OP(node) = EXACT;
+ }
+ }
+ len = 1;
+ }
+ else if (FOLD && (! LOC
+ || ! is_PROBLEMATIC_LOCALE_FOLD_cp(code_point)))
+ { /* Folding, and ok to do so now */
+ UV folded = _to_uni_fold_flags(
+ code_point,
+ character,
+ &len,
+ FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
+ ? FOLD_FLAGS_NOMIX_ASCII
+ : 0));
+ if (downgradable
+ && folded == code_point /* This quickly rules out many
+ cases, avoiding the
+ _invlist_contains_cp() overhead
+ for those. */
+ && ! _invlist_contains_cp(PL_utf8_foldable, code_point))
+ {
+ OP(node) = (LOC)
+ ? EXACTL
+ : EXACT;
+ }
+ }
+ else if (code_point <= MAX_UTF8_TWO_BYTE) {
+
+ /* Not folding this cp, and can output it directly */
+ *character = UTF8_TWO_BYTE_HI(code_point);
+ *(character + 1) = UTF8_TWO_BYTE_LO(code_point);
+ len = 2;
+ }
+ else {
+ uvchr_to_utf8( character, code_point);
+ len = UTF8SKIP(character);
+ }
+ } /* Else pattern isn't UTF8. */
+ else if (! FOLD) {
+ *character = (U8) code_point;
+ len = 1;
+ } /* Else is folded non-UTF8 */
+ else if (LIKELY(code_point != LATIN_SMALL_LETTER_SHARP_S)) {
+
+ /* We don't fold any non-UTF8 except possibly the Sharp s (see
+ * comments at join_exact()); */
+ *character = (U8) code_point;
+ len = 1;
+
+ /* Can turn into an EXACT node if we know the fold at compile time,
+ * and it folds to itself and doesn't particpate in other folds */
+ if (downgradable
+ && ! LOC
+ && PL_fold_latin1[code_point] == code_point
+ && (! HAS_NONLATIN1_FOLD_CLOSURE(code_point)
+ || (isASCII(code_point) && ASCII_FOLD_RESTRICTED)))
+ {
+ OP(node) = EXACT;
+ }
+ } /* else is Sharp s. May need to fold it */
+ else if (AT_LEAST_UNI_SEMANTICS && ! ASCII_FOLD_RESTRICTED) {
+ *character = 's';
+ *(character + 1) = 's';
+ len = 2;
+ }
+ else {
+ *character = LATIN_SMALL_LETTER_SHARP_S;
+ len = 1;
+ }
+ }
+
+ if (SIZE_ONLY) {
+ RExC_size += STR_SZ(len);
+ }
+ else {
+ RExC_emit += STR_SZ(len);
+ STR_LEN(node) = len;
+ if (! len_passed_in) {
+ Copy((char *) character, STRING(node), len, char);
+ }
+ }
+
+ *flagp |= HASWIDTH;
+
+ /* A single character node is SIMPLE, except for the special-cased SHARP S
+ * under /di. */
+ if ((len == 1 || (UTF && len == UNISKIP(code_point)))
+ && (code_point != LATIN_SMALL_LETTER_SHARP_S
+ || ! FOLD || ! DEPENDS_SEMANTICS))
+ {
+ *flagp |= SIMPLE;
+ }
+
+ /* The OP may not be well defined in PASS1 */
+ if (PASS2 && OP(node) == EXACTFL) {
+ RExC_contains_locale = 1;
+ }
+}
+
+
+/* Parse backref decimal value, unless it's too big to sensibly be a backref,
+ * in which case return I32_MAX (rather than possibly 32-bit wrapping) */
+
+static I32
+S_backref_value(char *p)
+{
+ const char* endptr;
+ UV val;
+ if (grok_atoUV(p, &val, &endptr) && val <= I32_MAX)
+ return (I32)val;
+ return I32_MAX;
+}
+
+
+/*
+ - regatom - the lowest level
+
+ Try to identify anything special at the start of the pattern. If there
+ is, then handle it as required. This may involve generating a single regop,
+ such as for an assertion; or it may involve recursing, such as to
+ handle a () structure.
+
+ If the string doesn't start with something special then we gobble up
+ as much literal text as we can.
+
+ Once we have been able to handle whatever type of thing started the
+ sequence, we return.
+
+ Note: we have to be careful with escapes, as they can be both literal
+ and special, and in the case of \10 and friends, context determines which.
+
+ A summary of the code structure is:
+
+ switch (first_byte) {
+ cases for each special:
+ handle this special;
+ break;
+ case '\\':
+ switch (2nd byte) {
+ cases for each unambiguous special:
+ handle this special;
+ break;
+ cases for each ambigous special/literal:
+ disambiguate;
+ if (special) handle here
+ else goto defchar;
+ default: // unambiguously literal:
+ goto defchar;
+ }
+ default: // is a literal char
+ // FALL THROUGH
+ defchar:
+ create EXACTish node for literal;
+ while (more input and node isn't full) {
+ switch (input_byte) {
+ cases for each special;
+ make sure parse pointer is set so that the next call to
+ regatom will see this special first
+ goto loopdone; // EXACTish node terminated by prev. char
+ default:
+ append char to EXACTISH node;
+ }
+ get next input byte;
+ }
+ loopdone:
+ }
+ return the generated node;
+
+ Specifically there are two separate switches for handling
+ escape sequences, with the one for handling literal escapes requiring
+ a dummy entry for all of the special escapes that are actually handled
+ by the other.
+
+ Returns NULL, setting *flagp to TRYAGAIN if reg() returns NULL with
+ TRYAGAIN.
+ Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
+ restarted.
+ Otherwise does not return NULL.
+*/
+
+STATIC regnode *
+S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
+{
+ regnode *ret = NULL;
+ I32 flags = 0;
+ char *parse_start = RExC_parse;
+ U8 op;
+ int invert = 0;
+ U8 arg;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ *flagp = WORST; /* Tentatively. */
+
+ DEBUG_PARSE("atom");
+
+ PERL_ARGS_ASSERT_REGATOM;
+
+ tryagain:
+ switch ((U8)*RExC_parse) {
+ case '^':
+ RExC_seen_zerolen++;
+ nextchar(pRExC_state);
+ if (RExC_flags & RXf_PMf_MULTILINE)
+ ret = reg_node(pRExC_state, MBOL);
+ else
+ ret = reg_node(pRExC_state, SBOL);
+ Set_Node_Length(ret, 1); /* MJD */
+ break;
+ case '$':
+ nextchar(pRExC_state);
+ if (*RExC_parse)
+ RExC_seen_zerolen++;
+ if (RExC_flags & RXf_PMf_MULTILINE)
+ ret = reg_node(pRExC_state, MEOL);
+ else
+ ret = reg_node(pRExC_state, SEOL);
+ Set_Node_Length(ret, 1); /* MJD */
+ break;
+ case '.':
+ nextchar(pRExC_state);
+ if (RExC_flags & RXf_PMf_SINGLELINE)
+ ret = reg_node(pRExC_state, SANY);
+ else
+ ret = reg_node(pRExC_state, REG_ANY);
+ *flagp |= HASWIDTH|SIMPLE;
+ MARK_NAUGHTY(1);
+ Set_Node_Length(ret, 1); /* MJD */
+ break;
+ case '[':
+ {
+ char * const oregcomp_parse = ++RExC_parse;
+ ret = regclass(pRExC_state, flagp,depth+1,
+ FALSE, /* means parse the whole char class */
+ TRUE, /* allow multi-char folds */
+ FALSE, /* don't silence non-portable warnings. */
+ (bool) RExC_strict,
+ NULL);
+ if (*RExC_parse != ']') {
+ RExC_parse = oregcomp_parse;
+ vFAIL("Unmatched [");
+ }
+ if (ret == NULL) {
+ if (*flagp & RESTART_UTF8)
+ return NULL;
+ FAIL2("panic: regclass returned NULL to regatom, flags=%#"UVxf"",
+ (UV) *flagp);
+ }
+ nextchar(pRExC_state);
+ Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
+ break;
+ }
+ case '(':
+ nextchar(pRExC_state);
+ ret = reg(pRExC_state, 2, &flags,depth+1);
+ if (ret == NULL) {
+ if (flags & TRYAGAIN) {
+ if (RExC_parse == RExC_end) {
+ /* Make parent create an empty node if needed. */
+ *flagp |= TRYAGAIN;
+ return(NULL);
+ }
+ goto tryagain;
+ }
+ if (flags & RESTART_UTF8) {
+ *flagp = RESTART_UTF8;
+ return NULL;
+ }
+ FAIL2("panic: reg returned NULL to regatom, flags=%#"UVxf"",
+ (UV) flags);
+ }
+ *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
+ break;
+ case '|':
+ case ')':
+ if (flags & TRYAGAIN) {
+ *flagp |= TRYAGAIN;
+ return NULL;
+ }
+ vFAIL("Internal urp");
+ /* Supposed to be caught earlier. */
+ break;
+ case '?':
+ case '+':
+ case '*':
+ RExC_parse++;
+ vFAIL("Quantifier follows nothing");
+ break;
+ case '\\':
+ /* Special Escapes
+
+ This switch handles escape sequences that resolve to some kind
+ of special regop and not to literal text. Escape sequnces that
+ resolve to literal text are handled below in the switch marked
+ "Literal Escapes".
+
+ Every entry in this switch *must* have a corresponding entry
+ in the literal escape switch. However, the opposite is not
+ required, as the default for this switch is to jump to the
+ literal text handling code.
+ */
+ switch ((U8)*++RExC_parse) {
+ /* Special Escapes */
+ case 'A':
+ RExC_seen_zerolen++;
+ ret = reg_node(pRExC_state, SBOL);
+ /* SBOL is shared with /^/ so we set the flags so we can tell
+ * /\A/ from /^/ in split. We check ret because first pass we
+ * have no regop struct to set the flags on. */
+ if (PASS2)
+ ret->flags = 1;
+ *flagp |= SIMPLE;
+ goto finish_meta_pat;
+ case 'G':
+ ret = reg_node(pRExC_state, GPOS);
+ RExC_seen |= REG_GPOS_SEEN;
+ *flagp |= SIMPLE;
+ goto finish_meta_pat;
+ case 'K':
+ RExC_seen_zerolen++;
+ ret = reg_node(pRExC_state, KEEPS);
+ *flagp |= SIMPLE;
+ /* XXX:dmq : disabling in-place substitution seems to
+ * be necessary here to avoid cases of memory corruption, as
+ * with: C<$_="x" x 80; s/x\K/y/> -- rgs
+ */
+ RExC_seen |= REG_LOOKBEHIND_SEEN;
+ goto finish_meta_pat;
+ case 'Z':
+ ret = reg_node(pRExC_state, SEOL);
+ *flagp |= SIMPLE;
+ RExC_seen_zerolen++; /* Do not optimize RE away */
+ goto finish_meta_pat;
+ case 'z':
+ ret = reg_node(pRExC_state, EOS);
+ *flagp |= SIMPLE;
+ RExC_seen_zerolen++; /* Do not optimize RE away */
+ goto finish_meta_pat;
+ case 'C':
+ vFAIL("\\C no longer supported");
+ case 'X':
+ ret = reg_node(pRExC_state, CLUMP);
+ *flagp |= HASWIDTH;
+ goto finish_meta_pat;
+
+ case 'W':
+ invert = 1;
+ /* FALLTHROUGH */
+ case 'w':
+ arg = ANYOF_WORDCHAR;
+ goto join_posix;
+
+ case 'B':
+ invert = 1;
+ /* FALLTHROUGH */
+ case 'b':
+ {
+ regex_charset charset = get_regex_charset(RExC_flags);
+
+ RExC_seen_zerolen++;
+ RExC_seen |= REG_LOOKBEHIND_SEEN;
+ op = BOUND + charset;
+
+ if (op == BOUNDL) {
+ RExC_contains_locale = 1;
+ }
+
+ ret = reg_node(pRExC_state, op);
+ *flagp |= SIMPLE;
+ if (*(RExC_parse + 1) != '{') {
+ FLAGS(ret) = TRADITIONAL_BOUND;
+ if (PASS2 && op > BOUNDA) { /* /aa is same as /a */
+ OP(ret) = BOUNDA;
+ }
+ }
+ else {
+ STRLEN length;
+ char name = *RExC_parse;
+ char * endbrace;
+ RExC_parse += 2;
+ endbrace = strchr(RExC_parse, '}');
+
+ if (! endbrace) {
+ vFAIL2("Missing right brace on \\%c{}", name);
+ }
+ /* XXX Need to decide whether to take spaces or not. Should be
+ * consistent with \p{}, but that currently is SPACE, which
+ * means vertical too, which seems wrong
+ * while (isBLANK(*RExC_parse)) {
+ RExC_parse++;
+ }*/
+ if (endbrace == RExC_parse) {
+ RExC_parse++; /* After the '}' */
+ vFAIL2("Empty \\%c{}", name);
+ }
+ length = endbrace - RExC_parse;
+ /*while (isBLANK(*(RExC_parse + length - 1))) {
+ length--;
+ }*/
+ switch (*RExC_parse) {
+ case 'g':
+ if (length != 1
+ && (length != 3 || strnNE(RExC_parse + 1, "cb", 2)))
+ {
+ goto bad_bound_type;
+ }
+ FLAGS(ret) = GCB_BOUND;
+ break;
+ case 's':
+ if (length != 2 || *(RExC_parse + 1) != 'b') {
+ goto bad_bound_type;
+ }
+ FLAGS(ret) = SB_BOUND;
+ break;
+ case 'w':
+ if (length != 2 || *(RExC_parse + 1) != 'b') {
+ goto bad_bound_type;
+ }
+ FLAGS(ret) = WB_BOUND;
+ break;
+ default:
+ bad_bound_type:
+ RExC_parse = endbrace;
+ vFAIL2utf8f(
+ "'%"UTF8f"' is an unknown bound type",
+ UTF8fARG(UTF, length, endbrace - length));
+ NOT_REACHED; /*NOTREACHED*/
+ }
+ RExC_parse = endbrace;
+ RExC_uni_semantics = 1;
+
+ if (PASS2 && op >= BOUNDA) { /* /aa is same as /a */
+ OP(ret) = BOUNDU;
+ length += 4;
+
+ /* Don't have to worry about UTF-8, in this message because
+ * to get here the contents of the \b must be ASCII */
+ ckWARN4reg(RExC_parse + 1, /* Include the '}' in msg */
+ "Using /u for '%.*s' instead of /%s",
+ (unsigned) length,
+ endbrace - length + 1,
+ (charset == REGEX_ASCII_RESTRICTED_CHARSET)
+ ? ASCII_RESTRICT_PAT_MODS
+ : ASCII_MORE_RESTRICT_PAT_MODS);
+ }
+ }
+
+ if (PASS2 && invert) {
+ OP(ret) += NBOUND - BOUND;
+ }
+ goto finish_meta_pat;
+ }
+
+ case 'D':
+ invert = 1;
+ /* FALLTHROUGH */
+ case 'd':
+ arg = ANYOF_DIGIT;
+ if (! DEPENDS_SEMANTICS) {
+ goto join_posix;
+ }
+
+ /* \d doesn't have any matches in the upper Latin1 range, hence /d
+ * is equivalent to /u. Changing to /u saves some branches at
+ * runtime */
+ op = POSIXU;
+ goto join_posix_op_known;
+
+ case 'R':
+ ret = reg_node(pRExC_state, LNBREAK);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+
+ case 'H':
+ invert = 1;
+ /* FALLTHROUGH */
+ case 'h':
+ arg = ANYOF_BLANK;
+ op = POSIXU;
+ goto join_posix_op_known;
+
+ case 'V':
+ invert = 1;
+ /* FALLTHROUGH */
+ case 'v':
+ arg = ANYOF_VERTWS;
+ op = POSIXU;
+ goto join_posix_op_known;
+
+ case 'S':
+ invert = 1;
+ /* FALLTHROUGH */
+ case 's':
+ arg = ANYOF_SPACE;
+
+ join_posix:
+
+ op = POSIXD + get_regex_charset(RExC_flags);
+ if (op > POSIXA) { /* /aa is same as /a */
+ op = POSIXA;
+ }
+ else if (op == POSIXL) {
+ RExC_contains_locale = 1;
+ }
+
+ join_posix_op_known:
+
+ if (invert) {
+ op += NPOSIXD - POSIXD;
+ }
+
+ ret = reg_node(pRExC_state, op);
+ if (! SIZE_ONLY) {
+ FLAGS(ret) = namedclass_to_classnum(arg);
+ }
+
+ *flagp |= HASWIDTH|SIMPLE;
+ /* FALLTHROUGH */
+
+ finish_meta_pat:
+ nextchar(pRExC_state);
+ Set_Node_Length(ret, 2); /* MJD */
+ break;
+ case 'p':
+ case 'P':
+ {
+#ifdef DEBUGGING
+ char* parse_start = RExC_parse - 2;
+#endif
+
+ RExC_parse--;
+
+ ret = regclass(pRExC_state, flagp,depth+1,
+ TRUE, /* means just parse this element */
+ FALSE, /* don't allow multi-char folds */
+ FALSE, /* don't silence non-portable warnings.
+ It would be a bug if these returned
+ non-portables */
+ (bool) RExC_strict,
+ NULL);
+ /* regclass() can only return RESTART_UTF8 if multi-char folds
+ are allowed. */
+ if (!ret)
+ FAIL2("panic: regclass returned NULL to regatom, flags=%#"UVxf"",
+ (UV) *flagp);
+
+ RExC_parse--;
+
+ Set_Node_Offset(ret, parse_start + 2);
+ Set_Node_Cur_Length(ret, parse_start);
+ nextchar(pRExC_state);
+ }
+ break;
+ case 'N':
+ /* Handle \N, \N{} and \N{NAMED SEQUENCE} (the latter meaning the
+ * \N{...} evaluates to a sequence of more than one code points).
+ * The function call below returns a regnode, which is our result.
+ * The parameters cause it to fail if the \N{} evaluates to a
+ * single code point; we handle those like any other literal. The
+ * reason that the multicharacter case is handled here and not as
+ * part of the EXACtish code is because of quantifiers. In
+ * /\N{BLAH}+/, the '+' applies to the whole thing, and doing it
+ * this way makes that Just Happen. dmq.
+ * join_exact() will join this up with adjacent EXACTish nodes
+ * later on, if appropriate. */
+ ++RExC_parse;
+ if (grok_bslash_N(pRExC_state,
+ &ret, /* Want a regnode returned */
+ NULL, /* Fail if evaluates to a single code
+ point */
+ NULL, /* Don't need a count of how many code
+ points */
+ flagp,
+ depth)
+ ) {
+ break;
+ }
+
+ if (*flagp & RESTART_UTF8)
+ return NULL;
+ RExC_parse--;
+ goto defchar;
+
+ case 'k': /* Handle \k<NAME> and \k'NAME' */
+ parse_named_seq:
+ {
+ char ch= RExC_parse[1];
+ if (ch != '<' && ch != '\'' && ch != '{') {
+ RExC_parse++;
+ /* diag_listed_as: Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/ */
+ vFAIL2("Sequence %.2s... not terminated",parse_start);
+ } else {
+ /* this pretty much dupes the code for (?P=...) in reg(), if
+ you change this make sure you change that */
+ char* name_start = (RExC_parse += 2);
+ U32 num = 0;
+ SV *sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
+ if (RExC_parse == name_start || *RExC_parse != ch)
+ /* diag_listed_as: Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/ */
+ vFAIL2("Sequence %.3s... not terminated",parse_start);
+
+ if (!SIZE_ONLY) {
+ num = add_data( pRExC_state, STR_WITH_LEN("S"));
+ RExC_rxi->data->data[num]=(void*)sv_dat;
+ SvREFCNT_inc_simple_void(sv_dat);
+ }
+
+ RExC_sawback = 1;
+ ret = reganode(pRExC_state,
+ ((! FOLD)
+ ? NREF
+ : (ASCII_FOLD_RESTRICTED)
+ ? NREFFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? NREFFU
+ : (LOC)
+ ? NREFFL
+ : NREFF),
+ num);
+ *flagp |= HASWIDTH;
+
+ /* override incorrect value set in reganode MJD */
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Cur_Length(ret, parse_start);
+ nextchar(pRExC_state);
+
+ }
+ break;
+ }
+ case 'g':
+ case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ {
+ I32 num;
+ bool hasbrace = 0;
+
+ if (*RExC_parse == 'g') {
+ bool isrel = 0;
+
+ RExC_parse++;
+ if (*RExC_parse == '{') {
+ RExC_parse++;
+ hasbrace = 1;
+ }
+ if (*RExC_parse == '-') {
+ RExC_parse++;
+ isrel = 1;
+ }
+ if (hasbrace && !isDIGIT(*RExC_parse)) {
+ if (isrel) RExC_parse--;
+ RExC_parse -= 2;
+ goto parse_named_seq;
+ }
+
+ num = S_backref_value(RExC_parse);
+ if (num == 0)
+ vFAIL("Reference to invalid group 0");
+ else if (num == I32_MAX) {
+ if (isDIGIT(*RExC_parse))
+ vFAIL("Reference to nonexistent group");
+ else
+ vFAIL("Unterminated \\g... pattern");
+ }
+
+ if (isrel) {
+ num = RExC_npar - num;
+ if (num < 1)
+ vFAIL("Reference to nonexistent or unclosed group");
+ }
+ }
+ else {
+ num = S_backref_value(RExC_parse);
+ /* bare \NNN might be backref or octal - if it is larger
+ * than or equal RExC_npar then it is assumed to be an
+ * octal escape. Note RExC_npar is +1 from the actual
+ * number of parens. */
+ /* Note we do NOT check if num == I32_MAX here, as that is
+ * handled by the RExC_npar check */
+
+ if (
+ /* any numeric escape < 10 is always a backref */
+ num > 9
+ /* any numeric escape < RExC_npar is a backref */
+ && num >= RExC_npar
+ /* cannot be an octal escape if it starts with 8 */
+ && *RExC_parse != '8'
+ /* cannot be an octal escape it it starts with 9 */
+ && *RExC_parse != '9'
+ )
+ {
+ /* Probably not a backref, instead likely to be an
+ * octal character escape, e.g. \35 or \777.
+ * The above logic should make it obvious why using
+ * octal escapes in patterns is problematic. - Yves */
+ goto defchar;
+ }
+ }
+
+ /* At this point RExC_parse points at a numeric escape like
+ * \12 or \88 or something similar, which we should NOT treat
+ * as an octal escape. It may or may not be a valid backref
+ * escape. For instance \88888888 is unlikely to be a valid
+ * backref. */
+ {
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ char * const parse_start = RExC_parse - 1; /* MJD */
+#endif
+ while (isDIGIT(*RExC_parse))
+ RExC_parse++;
+ if (hasbrace) {
+ if (*RExC_parse != '}')
+ vFAIL("Unterminated \\g{...} pattern");
+ RExC_parse++;
+ }
+ if (!SIZE_ONLY) {
+ if (num > (I32)RExC_rx->nparens)
+ vFAIL("Reference to nonexistent group");
+ }
+ RExC_sawback = 1;
+ ret = reganode(pRExC_state,
+ ((! FOLD)
+ ? REF
+ : (ASCII_FOLD_RESTRICTED)
+ ? REFFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? REFFU
+ : (LOC)
+ ? REFFL
+ : REFF),
+ num);
+ *flagp |= HASWIDTH;
+
+ /* override incorrect value set in reganode MJD */
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Cur_Length(ret, parse_start);
+ RExC_parse--;
+ nextchar(pRExC_state);
+ }
+ }
+ break;
+ case '\0':
+ if (RExC_parse >= RExC_end)
+ FAIL("Trailing \\");
+ /* FALLTHROUGH */
+ default:
+ /* Do not generate "unrecognized" warnings here, we fall
+ back into the quick-grab loop below */
+ parse_start--;
+ goto defchar;
+ }
+ break;
+
+ case '#':
+ if (RExC_flags & RXf_PMf_EXTENDED) {
+ RExC_parse = reg_skipcomment( pRExC_state, RExC_parse );
+ if (RExC_parse < RExC_end)
+ goto tryagain;
+ }
+ /* FALLTHROUGH */
+
+ default:
+
+ parse_start = RExC_parse - 1;
+
+ RExC_parse++;
+
+ defchar: {
+ STRLEN len = 0;
+ UV ender = 0;
+ char *p;
+ char *s;
+#define MAX_NODE_STRING_SIZE 127
+ char foldbuf[MAX_NODE_STRING_SIZE+UTF8_MAXBYTES_CASE];
+ char *s0;
+ U8 upper_parse = MAX_NODE_STRING_SIZE;
+ U8 node_type = compute_EXACTish(pRExC_state);
+ bool next_is_quantifier;
+ char * oldp = NULL;
+
+ /* We can convert EXACTF nodes to EXACTFU if they contain only
+ * characters that match identically regardless of the target
+ * string's UTF8ness. The reason to do this is that EXACTF is not
+ * trie-able, EXACTFU is.
+ *
+ * Similarly, we can convert EXACTFL nodes to EXACTFU if they
+ * contain only above-Latin1 characters (hence must be in UTF8),
+ * which don't participate in folds with Latin1-range characters,
+ * as the latter's folds aren't known until runtime. (We don't
+ * need to figure this out until pass 2) */
+ bool maybe_exactfu = PASS2
+ && (node_type == EXACTF || node_type == EXACTFL);
+
+ /* If a folding node contains only code points that don't
+ * participate in folds, it can be changed into an EXACT node,
+ * which allows the optimizer more things to look for */
+ bool maybe_exact;
+
+ ret = reg_node(pRExC_state, node_type);
+
+ /* In pass1, folded, we use a temporary buffer instead of the
+ * actual node, as the node doesn't exist yet */
+ s = (SIZE_ONLY && FOLD) ? foldbuf : STRING(ret);
+
+ s0 = s;
+
+ reparse:
+
+ /* We do the EXACTFish to EXACT node only if folding. (And we
+ * don't need to figure this out until pass 2) */
+ maybe_exact = FOLD && PASS2;
+
+ /* XXX The node can hold up to 255 bytes, yet this only goes to
+ * 127. I (khw) do not know why. Keeping it somewhat less than
+ * 255 allows us to not have to worry about overflow due to
+ * converting to utf8 and fold expansion, but that value is
+ * 255-UTF8_MAXBYTES_CASE. join_exact() may join adjacent nodes
+ * split up by this limit into a single one using the real max of
+ * 255. Even at 127, this breaks under rare circumstances. If
+ * folding, we do not want to split a node at a character that is a
+ * non-final in a multi-char fold, as an input string could just
+ * happen to want to match across the node boundary. The join
+ * would solve that problem if the join actually happens. But a
+ * series of more than two nodes in a row each of 127 would cause
+ * the first join to succeed to get to 254, but then there wouldn't
+ * be room for the next one, which could at be one of those split
+ * multi-char folds. I don't know of any fool-proof solution. One
+ * could back off to end with only a code point that isn't such a
+ * non-final, but it is possible for there not to be any in the
+ * entire node. */
+ for (p = RExC_parse - 1;
+ len < upper_parse && p < RExC_end;
+ len++)
+ {
+ oldp = p;
+
+ if (RExC_flags & RXf_PMf_EXTENDED)
+ p = regpatws(pRExC_state, p,
+ TRUE); /* means recognize comments */
+ switch ((U8)*p) {
+ case '^':
+ case '$':
+ case '.':
+ case '[':
+ case '(':
+ case ')':
+ case '|':
+ goto loopdone;
+ case '\\':
+ /* Literal Escapes Switch
+
+ This switch is meant to handle escape sequences that
+ resolve to a literal character.
+
+ Every escape sequence that represents something
+ else, like an assertion or a char class, is handled
+ in the switch marked 'Special Escapes' above in this
+ routine, but also has an entry here as anything that
+ isn't explicitly mentioned here will be treated as
+ an unescaped equivalent literal.
+ */
+
+ switch ((U8)*++p) {
+ /* These are all the special escapes. */
+ case 'A': /* Start assertion */
+ case 'b': case 'B': /* Word-boundary assertion*/
+ case 'C': /* Single char !DANGEROUS! */
+ case 'd': case 'D': /* digit class */
+ case 'g': case 'G': /* generic-backref, pos assertion */
+ case 'h': case 'H': /* HORIZWS */
+ case 'k': case 'K': /* named backref, keep marker */
+ case 'p': case 'P': /* Unicode property */
+ case 'R': /* LNBREAK */
+ case 's': case 'S': /* space class */
+ case 'v': case 'V': /* VERTWS */
+ case 'w': case 'W': /* word class */
+ case 'X': /* eXtended Unicode "combining
+ character sequence" */
+ case 'z': case 'Z': /* End of line/string assertion */
+ --p;
+ goto loopdone;
+
+ /* Anything after here is an escape that resolves to a
+ literal. (Except digits, which may or may not)
+ */
+ case 'n':
+ ender = '\n';
+ p++;
+ break;
+ case 'N': /* Handle a single-code point named character. */
+ RExC_parse = p + 1;
+ if (! grok_bslash_N(pRExC_state,
+ NULL, /* Fail if evaluates to
+ anything other than a
+ single code point */
+ &ender, /* The returned single code
+ point */
+ NULL, /* Don't need a count of
+ how many code points */
+ flagp,
+ depth)
+ ) {
+ if (*flagp & RESTART_UTF8)
+ FAIL("panic: grok_bslash_N set RESTART_UTF8");
+
+ /* Here, it wasn't a single code point. Go close
+ * up this EXACTish node. The switch() prior to
+ * this switch handles the other cases */
+ RExC_parse = p = oldp;
+ goto loopdone;
+ }
+ p = RExC_parse;
+ if (ender > 0xff) {
+ REQUIRE_UTF8;
+ }
+ break;
+ case 'r':
+ ender = '\r';
+ p++;
+ break;
+ case 't':
+ ender = '\t';
+ p++;
+ break;
+ case 'f':
+ ender = '\f';
+ p++;
+ break;
+ case 'e':
+ ender = ESC_NATIVE;
+ p++;
+ break;
+ case 'a':
+ ender = '\a';
+ p++;
+ break;
+ case 'o':
+ {
+ UV result;
+ const char* error_msg;
+
+ bool valid = grok_bslash_o(&p,
+ &result,
+ &error_msg,
+ PASS2, /* out warnings */
+ (bool) RExC_strict,
+ TRUE, /* Output warnings
+ for non-
+ portables */
+ UTF);
+ if (! valid) {
+ RExC_parse = p; /* going to die anyway; point
+ to exact spot of failure */
+ vFAIL(error_msg);
+ }
+ ender = result;
+ if (IN_ENCODING && ender < 0x100) {
+ goto recode_encoding;
+ }
+ if (ender > 0xff) {
+ REQUIRE_UTF8;
+ }
+ break;
+ }
+ case 'x':
+ {
+ UV result = UV_MAX; /* initialize to erroneous
+ value */
+ const char* error_msg;
+
+ bool valid = grok_bslash_x(&p,
+ &result,
+ &error_msg,
+ PASS2, /* out warnings */
+ (bool) RExC_strict,
+ TRUE, /* Silence warnings
+ for non-
+ portables */
+ UTF);
+ if (! valid) {
+ RExC_parse = p; /* going to die anyway; point
+ to exact spot of failure */
+ vFAIL(error_msg);
+ }
+ ender = result;
+
+ if (ender < 0x100) {
+#ifdef EBCDIC
+ if (RExC_recode_x_to_native) {
+ ender = LATIN1_TO_NATIVE(ender);
+ }
+ else
+#endif
+ if (IN_ENCODING) {
+ goto recode_encoding;
+ }
+ }
+ else {
+ REQUIRE_UTF8;
+ }
+ break;
+ }
+ case 'c':
+ p++;
+ ender = grok_bslash_c(*p++, PASS2);
+ break;
+ case '8': case '9': /* must be a backreference */
+ --p;
+ /* we have an escape like \8 which cannot be an octal escape
+ * so we exit the loop, and let the outer loop handle this
+ * escape which may or may not be a legitimate backref. */
+ goto loopdone;
+ case '1': case '2': case '3':case '4':
+ case '5': case '6': case '7':
+ /* When we parse backslash escapes there is ambiguity
+ * between backreferences and octal escapes. Any escape
+ * from \1 - \9 is a backreference, any multi-digit
+ * escape which does not start with 0 and which when
+ * evaluated as decimal could refer to an already
+ * parsed capture buffer is a back reference. Anything
+ * else is octal.
+ *
+ * Note this implies that \118 could be interpreted as
+ * 118 OR as "\11" . "8" depending on whether there
+ * were 118 capture buffers defined already in the
+ * pattern. */
+
+ /* NOTE, RExC_npar is 1 more than the actual number of
+ * parens we have seen so far, hence the < RExC_npar below. */
+
+ if ( !isDIGIT(p[1]) || S_backref_value(p) < RExC_npar)
+ { /* Not to be treated as an octal constant, go
+ find backref */
+ --p;
+ goto loopdone;
+ }
+ /* FALLTHROUGH */
+ case '0':
+ {
+ I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
+ STRLEN numlen = 3;
+ ender = grok_oct(p, &numlen, &flags, NULL);
+ if (ender > 0xff) {
+ REQUIRE_UTF8;
+ }
+ p += numlen;
+ if (PASS2 /* like \08, \178 */
+ && numlen < 3
+ && p < RExC_end
+ && isDIGIT(*p) && ckWARN(WARN_REGEXP))
+ {
+ reg_warn_non_literal_string(
+ p + 1,
+ form_short_octal_warning(p, numlen));
+ }
+ }
+ if (IN_ENCODING && ender < 0x100)
+ goto recode_encoding;
+ break;
+ recode_encoding:
+ if (! RExC_override_recoding) {
+ SV* enc = _get_encoding();
+ ender = reg_recode((const char)(U8)ender, &enc);
+ if (!enc && PASS2)
+ ckWARNreg(p, "Invalid escape in the specified encoding");
+ REQUIRE_UTF8;
+ }
+ break;
+ case '\0':
+ if (p >= RExC_end)
+ FAIL("Trailing \\");
+ /* FALLTHROUGH */
+ default:
+ if (!SIZE_ONLY&& isALPHANUMERIC(*p)) {
+ /* Include any { following the alpha to emphasize
+ * that it could be part of an escape at some point
+ * in the future */
+ int len = (isALPHA(*p) && *(p + 1) == '{') ? 2 : 1;
+ ckWARN3reg(p + len, "Unrecognized escape \\%.*s passed through", len, p);
+ }
+ goto normal_default;
+ } /* End of switch on '\' */
+ break;
+ case '{':
+ /* Currently we don't warn when the lbrace is at the start
+ * of a construct. This catches it in the middle of a
+ * literal string, or when its the first thing after
+ * something like "\b" */
+ if (! SIZE_ONLY
+ && (len || (p > RExC_start && isALPHA_A(*(p -1)))))
+ {
+ ckWARNregdep(p + 1, "Unescaped left brace in regex is deprecated, passed through");
+ }
+ /*FALLTHROUGH*/
+ default: /* A literal character */
+ normal_default:
+ if (UTF8_IS_START(*p) && UTF) {
+ STRLEN numlen;
+ ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
+ &numlen, UTF8_ALLOW_DEFAULT);
+ p += numlen;
+ }
+ else
+ ender = (U8) *p++;
+ break;
+ } /* End of switch on the literal */
+
+ /* Here, have looked at the literal character and <ender>
+ * contains its ordinal, <p> points to the character after it
+ */
+
+ if ( RExC_flags & RXf_PMf_EXTENDED)
+ p = regpatws(pRExC_state, p,
+ TRUE); /* means recognize comments */
+
+ /* If the next thing is a quantifier, it applies to this
+ * character only, which means that this character has to be in
+ * its own node and can't just be appended to the string in an
+ * existing node, so if there are already other characters in
+ * the node, close the node with just them, and set up to do
+ * this character again next time through, when it will be the
+ * only thing in its new node */
+ if ((next_is_quantifier = (p < RExC_end && ISMULT2(p))) && len)
+ {
+ p = oldp;
+ goto loopdone;
+ }
+
+ if (! FOLD) { /* The simple case, just append the literal */
+
+ /* In the sizing pass, we need only the size of the
+ * character we are appending, hence we can delay getting
+ * its representation until PASS2. */
+ if (SIZE_ONLY) {
+ if (UTF) {
+ const STRLEN unilen = UNISKIP(ender);
+ s += unilen;
+
+ /* We have to subtract 1 just below (and again in
+ * the corresponding PASS2 code) because the loop
+ * increments <len> each time, as all but this path
+ * (and one other) through it add a single byte to
+ * the EXACTish node. But these paths would change
+ * len to be the correct final value, so cancel out
+ * the increment that follows */
+ len += unilen - 1;
+ }
+ else {
+ s++;
+ }
+ } else { /* PASS2 */
+ not_fold_common:
+ if (UTF) {
+ U8 * new_s = uvchr_to_utf8((U8*)s, ender);
+ len += (char *) new_s - s - 1;
+ s = (char *) new_s;
+ }
+ else {
+ *(s++) = (char) ender;
+ }
+ }
+ }
+ else if (LOC && is_PROBLEMATIC_LOCALE_FOLD_cp(ender)) {
+
+ /* Here are folding under /l, and the code point is
+ * problematic. First, we know we can't simplify things */
+ maybe_exact = FALSE;
+ maybe_exactfu = FALSE;
+
+ /* A problematic code point in this context means that its
+ * fold isn't known until runtime, so we can't fold it now.
+ * (The non-problematic code points are the above-Latin1
+ * ones that fold to also all above-Latin1. Their folds
+ * don't vary no matter what the locale is.) But here we
+ * have characters whose fold depends on the locale.
+ * Unlike the non-folding case above, we have to keep track
+ * of these in the sizing pass, so that we can make sure we
+ * don't split too-long nodes in the middle of a potential
+ * multi-char fold. And unlike the regular fold case
+ * handled in the else clauses below, we don't actually
+ * fold and don't have special cases to consider. What we
+ * do for both passes is the PASS2 code for non-folding */
+ goto not_fold_common;
+ }
+ else /* A regular FOLD code point */
+ if (! ( UTF
+ /* See comments for join_exact() as to why we fold this
+ * non-UTF at compile time */
+ || (node_type == EXACTFU
+ && ender == LATIN_SMALL_LETTER_SHARP_S)))
+ {
+ /* Here, are folding and are not UTF-8 encoded; therefore
+ * the character must be in the range 0-255, and is not /l
+ * (Not /l because we already handled these under /l in
+ * is_PROBLEMATIC_LOCALE_FOLD_cp) */
+ if (IS_IN_SOME_FOLD_L1(ender)) {
+ maybe_exact = FALSE;
+
+ /* See if the character's fold differs between /d and
+ * /u. This includes the multi-char fold SHARP S to
+ * 'ss' */
+ if (maybe_exactfu
+ && (PL_fold[ender] != PL_fold_latin1[ender]
+ || ender == LATIN_SMALL_LETTER_SHARP_S
+ || (len > 0
+ && isALPHA_FOLD_EQ(ender, 's')
+ && isALPHA_FOLD_EQ(*(s-1), 's'))))
+ {
+ maybe_exactfu = FALSE;
+ }
+ }
+
+ /* Even when folding, we store just the input character, as
+ * we have an array that finds its fold quickly */
+ *(s++) = (char) ender;
+ }
+ else { /* FOLD and UTF */
+ /* Unlike the non-fold case, we do actually have to
+ * calculate the results here in pass 1. This is for two
+ * reasons, the folded length may be longer than the
+ * unfolded, and we have to calculate how many EXACTish
+ * nodes it will take; and we may run out of room in a node
+ * in the middle of a potential multi-char fold, and have
+ * to back off accordingly. */
+
+ UV folded;
+ if (isASCII_uni(ender)) {
+ folded = toFOLD(ender);
+ *(s)++ = (U8) folded;
+ }
+ else {
+ STRLEN foldlen;
+
+ folded = _to_uni_fold_flags(
+ ender,
+ (U8 *) s,
+ &foldlen,
+ FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
+ ? FOLD_FLAGS_NOMIX_ASCII
+ : 0));
+ s += foldlen;
+
+ /* The loop increments <len> each time, as all but this
+ * path (and one other) through it add a single byte to
+ * the EXACTish node. But this one has changed len to
+ * be the correct final value, so subtract one to
+ * cancel out the increment that follows */
+ len += foldlen - 1;
+ }
+ /* If this node only contains non-folding code points so
+ * far, see if this new one is also non-folding */
+ if (maybe_exact) {
+ if (folded != ender) {
+ maybe_exact = FALSE;
+ }
+ else {
+ /* Here the fold is the original; we have to check
+ * further to see if anything folds to it */
+ if (_invlist_contains_cp(PL_utf8_foldable,
+ ender))
+ {
+ maybe_exact = FALSE;
+ }
+ }
+ }
+ ender = folded;
+ }
+
+ if (next_is_quantifier) {
+
+ /* Here, the next input is a quantifier, and to get here,
+ * the current character is the only one in the node.
+ * Also, here <len> doesn't include the final byte for this
+ * character */
+ len++;
+ goto loopdone;
+ }
+
+ } /* End of loop through literal characters */
+
+ /* Here we have either exhausted the input or ran out of room in
+ * the node. (If we encountered a character that can't be in the
+ * node, transfer is made directly to <loopdone>, and so we
+ * wouldn't have fallen off the end of the loop.) In the latter
+ * case, we artificially have to split the node into two, because
+ * we just don't have enough space to hold everything. This
+ * creates a problem if the final character participates in a
+ * multi-character fold in the non-final position, as a match that
+ * should have occurred won't, due to the way nodes are matched,
+ * and our artificial boundary. So back off until we find a non-
+ * problematic character -- one that isn't at the beginning or
+ * middle of such a fold. (Either it doesn't participate in any
+ * folds, or appears only in the final position of all the folds it
+ * does participate in.) A better solution with far fewer false
+ * positives, and that would fill the nodes more completely, would
+ * be to actually have available all the multi-character folds to
+ * test against, and to back-off only far enough to be sure that
+ * this node isn't ending with a partial one. <upper_parse> is set
+ * further below (if we need to reparse the node) to include just
+ * up through that final non-problematic character that this code
+ * identifies, so when it is set to less than the full node, we can
+ * skip the rest of this */
+ if (FOLD && p < RExC_end && upper_parse == MAX_NODE_STRING_SIZE) {
+
+ const STRLEN full_len = len;
+
+ assert(len >= MAX_NODE_STRING_SIZE);
+
+ /* Here, <s> points to the final byte of the final character.
+ * Look backwards through the string until find a non-
+ * problematic character */
+
+ if (! UTF) {
+
+ /* This has no multi-char folds to non-UTF characters */
+ if (ASCII_FOLD_RESTRICTED) {
+ goto loopdone;
+ }
+
+ while (--s >= s0 && IS_NON_FINAL_FOLD(*s)) { }
+ len = s - s0 + 1;
+ }
+ else {
+ if (! PL_NonL1NonFinalFold) {
+ PL_NonL1NonFinalFold = _new_invlist_C_array(
+ NonL1_Perl_Non_Final_Folds_invlist);
+ }
+
+ /* Point to the first byte of the final character */
+ s = (char *) utf8_hop((U8 *) s, -1);
+
+ while (s >= s0) { /* Search backwards until find
+ non-problematic char */
+ if (UTF8_IS_INVARIANT(*s)) {
+
+ /* There are no ascii characters that participate
+ * in multi-char folds under /aa. In EBCDIC, the
+ * non-ascii invariants are all control characters,
+ * so don't ever participate in any folds. */
+ if (ASCII_FOLD_RESTRICTED
+ || ! IS_NON_FINAL_FOLD(*s))
+ {
+ break;
+ }
+ }
+ else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
+ if (! IS_NON_FINAL_FOLD(TWO_BYTE_UTF8_TO_NATIVE(
+ *s, *(s+1))))
+ {
+ break;
+ }
+ }
+ else if (! _invlist_contains_cp(
+ PL_NonL1NonFinalFold,
+ valid_utf8_to_uvchr((U8 *) s, NULL)))
+ {
+ break;
+ }
+
+ /* Here, the current character is problematic in that
+ * it does occur in the non-final position of some
+ * fold, so try the character before it, but have to
+ * special case the very first byte in the string, so
+ * we don't read outside the string */
+ s = (s == s0) ? s -1 : (char *) utf8_hop((U8 *) s, -1);
+ } /* End of loop backwards through the string */
+
+ /* If there were only problematic characters in the string,
+ * <s> will point to before s0, in which case the length
+ * should be 0, otherwise include the length of the
+ * non-problematic character just found */
+ len = (s < s0) ? 0 : s - s0 + UTF8SKIP(s);
+ }
+
+ /* Here, have found the final character, if any, that is
+ * non-problematic as far as ending the node without splitting
+ * it across a potential multi-char fold. <len> contains the
+ * number of bytes in the node up-to and including that
+ * character, or is 0 if there is no such character, meaning
+ * the whole node contains only problematic characters. In
+ * this case, give up and just take the node as-is. We can't
+ * do any better */
+ if (len == 0) {
+ len = full_len;
+
+ /* If the node ends in an 's' we make sure it stays EXACTF,
+ * as if it turns into an EXACTFU, it could later get
+ * joined with another 's' that would then wrongly match
+ * the sharp s */
+ if (maybe_exactfu && isALPHA_FOLD_EQ(ender, 's'))
+ {
+ maybe_exactfu = FALSE;
+ }
+ } else {
+
+ /* Here, the node does contain some characters that aren't
+ * problematic. If one such is the final character in the
+ * node, we are done */
+ if (len == full_len) {
+ goto loopdone;
+ }
+ else if (len + ((UTF) ? UTF8SKIP(s) : 1) == full_len) {
+
+ /* If the final character is problematic, but the
+ * penultimate is not, back-off that last character to
+ * later start a new node with it */
+ p = oldp;
+ goto loopdone;
+ }
+
+ /* Here, the final non-problematic character is earlier
+ * in the input than the penultimate character. What we do
+ * is reparse from the beginning, going up only as far as
+ * this final ok one, thus guaranteeing that the node ends
+ * in an acceptable character. The reason we reparse is
+ * that we know how far in the character is, but we don't
+ * know how to correlate its position with the input parse.
+ * An alternate implementation would be to build that
+ * correlation as we go along during the original parse,
+ * but that would entail extra work for every node, whereas
+ * this code gets executed only when the string is too
+ * large for the node, and the final two characters are
+ * problematic, an infrequent occurrence. Yet another
+ * possible strategy would be to save the tail of the
+ * string, and the next time regatom is called, initialize
+ * with that. The problem with this is that unless you
+ * back off one more character, you won't be guaranteed
+ * regatom will get called again, unless regbranch,
+ * regpiece ... are also changed. If you do back off that
+ * extra character, so that there is input guaranteed to
+ * force calling regatom, you can't handle the case where
+ * just the first character in the node is acceptable. I
+ * (khw) decided to try this method which doesn't have that
+ * pitfall; if performance issues are found, we can do a
+ * combination of the current approach plus that one */
+ upper_parse = len;
+ len = 0;
+ s = s0;
+ goto reparse;
+ }
+ } /* End of verifying node ends with an appropriate char */
+
+ loopdone: /* Jumped to when encounters something that shouldn't be
+ in the node */
+
+ /* I (khw) don't know if you can get here with zero length, but the
+ * old code handled this situation by creating a zero-length EXACT
+ * node. Might as well be NOTHING instead */
+ if (len == 0) {
+ OP(ret) = NOTHING;
+ }
+ else {
+ if (FOLD) {
+ /* If 'maybe_exact' is still set here, means there are no
+ * code points in the node that participate in folds;
+ * similarly for 'maybe_exactfu' and code points that match
+ * differently depending on UTF8ness of the target string
+ * (for /u), or depending on locale for /l */
+ if (maybe_exact) {
+ OP(ret) = (LOC)
+ ? EXACTL
+ : EXACT;
+ }
+ else if (maybe_exactfu) {
+ OP(ret) = (LOC)
+ ? EXACTFLU8
+ : EXACTFU;
+ }
+ }
+ alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, len, ender,
+ FALSE /* Don't look to see if could
+ be turned into an EXACT
+ node, as we have already
+ computed that */
+ );
+ }
+
+ RExC_parse = p - 1;
+ Set_Node_Cur_Length(ret, parse_start);
+ nextchar(pRExC_state);
+ {
+ /* len is STRLEN which is unsigned, need to copy to signed */
+ IV iv = len;
+ if (iv < 0)
+ vFAIL("Internal disaster");
+ }
+
+ } /* End of label 'defchar:' */
+ break;
+ } /* End of giant switch on input character */
+
+ return(ret);
+}
+
+STATIC char *
+S_regpatws(RExC_state_t *pRExC_state, char *p , const bool recognize_comment )
+{
+ /* Returns the next non-pattern-white space, non-comment character (the
+ * latter only if 'recognize_comment is true) in the string p, which is
+ * ended by RExC_end. See also reg_skipcomment */
+ const char *e = RExC_end;
+
+ PERL_ARGS_ASSERT_REGPATWS;
+
+ while (p < e) {
+ STRLEN len;
+ if ((len = is_PATWS_safe(p, e, UTF))) {
+ p += len;
+ }
+ else if (recognize_comment && *p == '#') {
+ p = reg_skipcomment(pRExC_state, p);
+ }
+ else
+ break;
+ }
+ return p;
+}
+
+STATIC void
+S_populate_ANYOF_from_invlist(pTHX_ regnode *node, SV** invlist_ptr)
+{
+ /* Uses the inversion list '*invlist_ptr' to populate the ANYOF 'node'. It
+ * sets up the bitmap and any flags, removing those code points from the
+ * inversion list, setting it to NULL should it become completely empty */
+
+ PERL_ARGS_ASSERT_POPULATE_ANYOF_FROM_INVLIST;
+ assert(PL_regkind[OP(node)] == ANYOF);
+
+ ANYOF_BITMAP_ZERO(node);
+ if (*invlist_ptr) {
+
+ /* This gets set if we actually need to modify things */
+ bool change_invlist = FALSE;
+
+ UV start, end;
+
+ /* Start looking through *invlist_ptr */
+ invlist_iterinit(*invlist_ptr);
+ while (invlist_iternext(*invlist_ptr, &start, &end)) {
+ UV high;
+ int i;
+
+ if (end == UV_MAX && start <= NUM_ANYOF_CODE_POINTS) {
+ ANYOF_FLAGS(node) |= ANYOF_MATCHES_ALL_ABOVE_BITMAP;
+ }
+ else if (end >= NUM_ANYOF_CODE_POINTS) {
+ ANYOF_FLAGS(node) |= ANYOF_HAS_UTF8_NONBITMAP_MATCHES;
+ }
+
+ /* Quit if are above what we should change */
+ if (start >= NUM_ANYOF_CODE_POINTS) {
+ break;
+ }
+
+ change_invlist = TRUE;
+
+ /* Set all the bits in the range, up to the max that we are doing */
+ high = (end < NUM_ANYOF_CODE_POINTS - 1)
+ ? end
+ : NUM_ANYOF_CODE_POINTS - 1;
+ for (i = start; i <= (int) high; i++) {
+ if (! ANYOF_BITMAP_TEST(node, i)) {
+ ANYOF_BITMAP_SET(node, i);
+ }
+ }
+ }
+ invlist_iterfinish(*invlist_ptr);
+
+ /* Done with loop; remove any code points that are in the bitmap from
+ * *invlist_ptr; similarly for code points above the bitmap if we have
+ * a flag to match all of them anyways */
+ if (change_invlist) {
+ _invlist_subtract(*invlist_ptr, PL_InBitmap, invlist_ptr);
+ }
+ if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
+ _invlist_intersection(*invlist_ptr, PL_InBitmap, invlist_ptr);
+ }
+
+ /* If have completely emptied it, remove it completely */
+ if (_invlist_len(*invlist_ptr) == 0) {
+ SvREFCNT_dec_NN(*invlist_ptr);
+ *invlist_ptr = NULL;
+ }
+ }
+}
+
+/* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
+ Character classes ([:foo:]) can also be negated ([:^foo:]).
+ Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
+ Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
+ but trigger failures because they are currently unimplemented. */
+
+#define POSIXCC_DONE(c) ((c) == ':')
+#define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
+#define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
+
+PERL_STATIC_INLINE I32
+S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value, const bool strict)
+{
+ I32 namedclass = OOB_NAMEDCLASS;
+
+ PERL_ARGS_ASSERT_REGPPOSIXCC;
+
+ if (value == '[' && RExC_parse + 1 < RExC_end &&
+ /* I smell either [: or [= or [. -- POSIX has been here, right? */
+ POSIXCC(UCHARAT(RExC_parse)))
+ {
+ const char c = UCHARAT(RExC_parse);
+ char* const s = RExC_parse++;
+
+ while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
+ RExC_parse++;
+ if (RExC_parse == RExC_end) {
+ if (strict) {
+
+ /* Try to give a better location for the error (than the end of
+ * the string) by looking for the matching ']' */
+ RExC_parse = s;
+ while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
+ RExC_parse++;
+ }
+ vFAIL2("Unmatched '%c' in POSIX class", c);
+ }
+ /* Grandfather lone [:, [=, [. */
+ RExC_parse = s;
+ }
+ else {
+ const char* const t = RExC_parse++; /* skip over the c */
+ assert(*t == c);
+
+ if (UCHARAT(RExC_parse) == ']') {
+ const char *posixcc = s + 1;
+ RExC_parse++; /* skip over the ending ] */
+
+ if (*s == ':') {
+ const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
+ const I32 skip = t - posixcc;
+
+ /* Initially switch on the length of the name. */
+ switch (skip) {
+ case 4:
+ if (memEQ(posixcc, "word", 4)) /* this is not POSIX,
+ this is the Perl \w
+ */
+ namedclass = ANYOF_WORDCHAR;
+ break;
+ case 5:
+ /* Names all of length 5. */
+ /* alnum alpha ascii blank cntrl digit graph lower
+ print punct space upper */
+ /* Offset 4 gives the best switch position. */
+ switch (posixcc[4]) {
+ case 'a':
+ if (memEQ(posixcc, "alph", 4)) /* alpha */
+ namedclass = ANYOF_ALPHA;
+ break;
+ case 'e':
+ if (memEQ(posixcc, "spac", 4)) /* space */
+ namedclass = ANYOF_SPACE;
+ break;
+ case 'h':
+ if (memEQ(posixcc, "grap", 4)) /* graph */
+ namedclass = ANYOF_GRAPH;
+ break;
+ case 'i':
+ if (memEQ(posixcc, "asci", 4)) /* ascii */
+ namedclass = ANYOF_ASCII;
+ break;
+ case 'k':
+ if (memEQ(posixcc, "blan", 4)) /* blank */
+ namedclass = ANYOF_BLANK;
+ break;
+ case 'l':
+ if (memEQ(posixcc, "cntr", 4)) /* cntrl */
+ namedclass = ANYOF_CNTRL;
+ break;
+ case 'm':
+ if (memEQ(posixcc, "alnu", 4)) /* alnum */
+ namedclass = ANYOF_ALPHANUMERIC;
+ break;
+ case 'r':
+ if (memEQ(posixcc, "lowe", 4)) /* lower */
+ namedclass = (FOLD) ? ANYOF_CASED : ANYOF_LOWER;
+ else if (memEQ(posixcc, "uppe", 4)) /* upper */
+ namedclass = (FOLD) ? ANYOF_CASED : ANYOF_UPPER;
+ break;
+ case 't':
+ if (memEQ(posixcc, "digi", 4)) /* digit */
+ namedclass = ANYOF_DIGIT;
+ else if (memEQ(posixcc, "prin", 4)) /* print */
+ namedclass = ANYOF_PRINT;
+ else if (memEQ(posixcc, "punc", 4)) /* punct */
+ namedclass = ANYOF_PUNCT;
+ break;
+ }
+ break;
+ case 6:
+ if (memEQ(posixcc, "xdigit", 6))
+ namedclass = ANYOF_XDIGIT;
+ break;
+ }
+
+ if (namedclass == OOB_NAMEDCLASS)
+ vFAIL2utf8f(
+ "POSIX class [:%"UTF8f":] unknown",
+ UTF8fARG(UTF, t - s - 1, s + 1));
+
+ /* The #defines are structured so each complement is +1 to
+ * the normal one */
+ if (complement) {
+ namedclass++;
+ }
+ assert (posixcc[skip] == ':');
+ assert (posixcc[skip+1] == ']');
+ } else if (!SIZE_ONLY) {
+ /* [[=foo=]] and [[.foo.]] are still future. */
+
+ /* adjust RExC_parse so the warning shows after
+ the class closes */
+ while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
+ RExC_parse++;
+ vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
+ }
+ } else {
+ /* Maternal grandfather:
+ * "[:" ending in ":" but not in ":]" */
+ if (strict) {
+ vFAIL("Unmatched '[' in POSIX class");
+ }
+
+ /* Grandfather lone [:, [=, [. */
+ RExC_parse = s;
+ }
+ }
+ }
+
+ return namedclass;
+}
+
+STATIC bool
+S_could_it_be_a_POSIX_class(RExC_state_t *pRExC_state)
+{
+ /* This applies some heuristics at the current parse position (which should
+ * be at a '[') to see if what follows might be intended to be a [:posix:]
+ * class. It returns true if it really is a posix class, of course, but it
+ * also can return true if it thinks that what was intended was a posix
+ * class that didn't quite make it.
+ *
+ * It will return true for
+ * [:alphanumerics:
+ * [:alphanumerics] (as long as the ] isn't followed immediately by a
+ * ')' indicating the end of the (?[
+ * [:any garbage including %^&$ punctuation:]
+ *
+ * This is designed to be called only from S_handle_regex_sets; it could be
+ * easily adapted to be called from the spot at the beginning of regclass()
+ * that checks to see in a normal bracketed class if the surrounding []
+ * have been omitted ([:word:] instead of [[:word:]]). But doing so would
+ * change long-standing behavior, so I (khw) didn't do that */
+ char* p = RExC_parse + 1;
+ char first_char = *p;
+
+ PERL_ARGS_ASSERT_COULD_IT_BE_A_POSIX_CLASS;
+
+ assert(*(p - 1) == '[');
+
+ if (! POSIXCC(first_char)) {
+ return FALSE;
+ }
+
+ p++;
+ while (p < RExC_end && isWORDCHAR(*p)) p++;
+
+ if (p >= RExC_end) {
+ return FALSE;
+ }
+
+ if (p - RExC_parse > 2 /* Got at least 1 word character */
+ && (*p == first_char
+ || (*p == ']' && p + 1 < RExC_end && *(p + 1) != ')')))
+ {
+ return TRUE;
+ }
+
+ p = (char *) memchr(RExC_parse, ']', RExC_end - RExC_parse);
+
+ return (p
+ && p - RExC_parse > 2 /* [:] evaluates to colon;
+ [::] is a bad posix class. */
+ && first_char == *(p - 1));
+}
+
+STATIC unsigned int
+S_regex_set_precedence(const U8 my_operator) {
+
+ /* Returns the precedence in the (?[...]) construct of the input operator,
+ * specified by its character representation. The precedence follows
+ * general Perl rules, but it extends this so that ')' and ']' have (low)
+ * precedence even though they aren't really operators */
+
+ switch (my_operator) {
+ case '!':
+ return 5;
+ case '&':
+ return 4;
+ case '^':
+ case '|':
+ case '+':
+ case '-':
+ return 3;
+ case ')':
+ return 2;
+ case ']':
+ return 1;
+ }
+
+ NOT_REACHED; /* NOTREACHED */
+ return 0; /* Silence compiler warning */
+}
+
+STATIC regnode *
+S_handle_regex_sets(pTHX_ RExC_state_t *pRExC_state, SV** return_invlist,
+ I32 *flagp, U32 depth,
+ char * const oregcomp_parse)
+{
+ /* Handle the (?[...]) construct to do set operations */
+
+ U8 curchar; /* Current character being parsed */
+ UV start, end; /* End points of code point ranges */
+ SV* final = NULL; /* The end result inversion list */
+ SV* result_string; /* 'final' stringified */
+ AV* stack; /* stack of operators and operands not yet
+ resolved */
+ AV* fence_stack = NULL; /* A stack containing the positions in
+ 'stack' of where the undealt-with left
+ parens would be if they were actually
+ put there */
+ IV fence = 0; /* Position of where most recent undealt-
+ with left paren in stack is; -1 if none.
+ */
+ STRLEN len; /* Temporary */
+ regnode* node; /* Temporary, and final regnode returned by
+ this function */
+ const bool save_fold = FOLD; /* Temporary */
+ char *save_end, *save_parse; /* Temporaries */
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_HANDLE_REGEX_SETS;
+
+ if (LOC) { /* XXX could make valid in UTF-8 locales */
+ vFAIL("(?[...]) not valid in locale");
+ }
+ RExC_uni_semantics = 1; /* The use of this operator implies /u. This
+ is required so that the compile time values
+ are valid in all runtime cases */
+
+ /* This will return only an ANYOF regnode, or (unlikely) something smaller
+ * (such as EXACT). Thus we can skip most everything if just sizing. We
+ * call regclass to handle '[]' so as to not have to reinvent its parsing
+ * rules here (throwing away the size it computes each time). And, we exit
+ * upon an unescaped ']' that isn't one ending a regclass. To do both
+ * these things, we need to realize that something preceded by a backslash
+ * is escaped, so we have to keep track of backslashes */
+ if (SIZE_ONLY) {
+ UV depth = 0; /* how many nested (?[...]) constructs */
+
+ while (RExC_parse < RExC_end) {
+ SV* current = NULL;
+ RExC_parse = regpatws(pRExC_state, RExC_parse,
+ TRUE); /* means recognize comments */
+ switch (*RExC_parse) {
+ case '?':
+ if (RExC_parse[1] == '[') depth++, RExC_parse++;
+ /* FALLTHROUGH */
+ default:
+ break;
+ case '\\':
+ /* Skip the next byte (which could cause us to end up in
+ * the middle of a UTF-8 character, but since none of those
+ * are confusable with anything we currently handle in this
+ * switch (invariants all), it's safe. We'll just hit the
+ * default: case next time and keep on incrementing until
+ * we find one of the invariants we do handle. */
+ RExC_parse++;
+ break;
+ case '[':
+ {
+ /* If this looks like it is a [:posix:] class, leave the
+ * parse pointer at the '[' to fool regclass() into
+ * thinking it is part of a '[[:posix:]]'. That function
+ * will use strict checking to force a syntax error if it
+ * doesn't work out to a legitimate class */
+ bool is_posix_class
+ = could_it_be_a_POSIX_class(pRExC_state);
+ if (! is_posix_class) {
+ RExC_parse++;
+ }
+
+ /* regclass() can only return RESTART_UTF8 if multi-char
+ folds are allowed. */
+ if (!regclass(pRExC_state, flagp,depth+1,
+ is_posix_class, /* parse the whole char
+ class only if not a
+ posix class */
+ FALSE, /* don't allow multi-char folds */
+ TRUE, /* silence non-portable warnings. */
+ TRUE, /* strict */
+ ¤t
+ ))
+ FAIL2("panic: regclass returned NULL to handle_sets, "
+ "flags=%#"UVxf"", (UV) *flagp);
+
+ /* function call leaves parse pointing to the ']', except
+ * if we faked it */
+ if (is_posix_class) {
+ RExC_parse--;
+ }
+
+ SvREFCNT_dec(current); /* In case it returned something */
+ break;
+ }
+
+ case ']':
+ if (depth--) break;
+ RExC_parse++;
+ if (RExC_parse < RExC_end
+ && *RExC_parse == ')')
+ {
+ node = reganode(pRExC_state, ANYOF, 0);
+ RExC_size += ANYOF_SKIP;
+ nextchar(pRExC_state);
+ Set_Node_Length(node,
+ RExC_parse - oregcomp_parse + 1); /* MJD */
+ return node;
+ }
+ goto no_close;
+ }
+ RExC_parse++;
+ }
+
+ no_close:
+ FAIL("Syntax error in (?[...])");
+ }
+
+ /* Pass 2 only after this. */
+ Perl_ck_warner_d(aTHX_
+ packWARN(WARN_EXPERIMENTAL__REGEX_SETS),
+ "The regex_sets feature is experimental" REPORT_LOCATION,
+ UTF8fARG(UTF, (RExC_parse - RExC_precomp), RExC_precomp),
+ UTF8fARG(UTF,
+ RExC_end - RExC_start - (RExC_parse - RExC_precomp),
+ RExC_precomp + (RExC_parse - RExC_precomp)));
+
+ /* Everything in this construct is a metacharacter. Operands begin with
+ * either a '\' (for an escape sequence), or a '[' for a bracketed
+ * character class. Any other character should be an operator, or
+ * parenthesis for grouping. Both types of operands are handled by calling
+ * regclass() to parse them. It is called with a parameter to indicate to
+ * return the computed inversion list. The parsing here is implemented via
+ * a stack. Each entry on the stack is a single character representing one
+ * of the operators; or else a pointer to an operand inversion list. */
+
+#define IS_OPERAND(a) (! SvIOK(a))
+
+ /* The stack is kept in Łukasiewicz order. (That's pronounced similar
+ * to luke-a-shave-itch (or -itz), but people who didn't want to bother
+ * with prounouncing it called it Reverse Polish instead, but now that YOU
+ * know how to prounounce it you can use the correct term, thus giving due
+ * credit to the person who invented it, and impressing your geek friends.
+ * Wikipedia says that the pronounciation of "Ł" has been changing so that
+ * it is now more like an English initial W (as in wonk) than an L.)
+ *
+ * This means that, for example, 'a | b & c' is stored on the stack as
+ *
+ * c [4]
+ * b [3]
+ * & [2]
+ * a [1]
+ * | [0]
+ *
+ * where the numbers in brackets give the stack [array] element number.
+ * In this implementation, parentheses are not stored on the stack.
+ * Instead a '(' creates a "fence" so that the part of the stack below the
+ * fence is invisible except to the corresponding ')' (this allows us to
+ * replace testing for parens, by using instead subtraction of the fence
+ * position). As new operands are processed they are pushed onto the stack
+ * (except as noted in the next paragraph). New operators of higher
+ * precedence than the current final one are inserted on the stack before
+ * the lhs operand (so that when the rhs is pushed next, everything will be
+ * in the correct positions shown above. When an operator of equal or
+ * lower precedence is encountered in parsing, all the stacked operations
+ * of equal or higher precedence are evaluated, leaving the result as the
+ * top entry on the stack. This makes higher precedence operations
+ * evaluate before lower precedence ones, and causes operations of equal
+ * precedence to left associate.
+ *
+ * The only unary operator '!' is immediately pushed onto the stack when
+ * encountered. When an operand is encountered, if the top of the stack is
+ * a '!", the complement is immediately performed, and the '!' popped. The
+ * resulting value is treated as a new operand, and the logic in the
+ * previous paragraph is executed. Thus in the expression
+ * [a] + ! [b]
+ * the stack looks like
+ *
+ * !
+ * a
+ * +
+ *
+ * as 'b' gets parsed, the latter gets evaluated to '!b', and the stack
+ * becomes
+ *
+ * !b
+ * a
+ * +
+ *
+ * A ')' is treated as an operator with lower precedence than all the
+ * aforementioned ones, which causes all operations on the stack above the
+ * corresponding '(' to be evaluated down to a single resultant operand.
+ * Then the fence for the '(' is removed, and the operand goes through the
+ * algorithm above, without the fence.
+ *
+ * A separate stack is kept of the fence positions, so that the position of
+ * the latest so-far unbalanced '(' is at the top of it.
+ *
+ * The ']' ending the construct is treated as the lowest operator of all,
+ * so that everything gets evaluated down to a single operand, which is the
+ * result */
+
+ sv_2mortal((SV *)(stack = newAV()));
+ sv_2mortal((SV *)(fence_stack = newAV()));
+
+ while (RExC_parse < RExC_end) {
+ I32 top_index; /* Index of top-most element in 'stack' */
+ SV** top_ptr; /* Pointer to top 'stack' element */
+ SV* current = NULL; /* To contain the current inversion list
+ operand */
+ SV* only_to_avoid_leaks;
+
+ /* Skip white space */
+ RExC_parse = regpatws(pRExC_state, RExC_parse,
+ TRUE /* means recognize comments */ );
+ if (RExC_parse >= RExC_end) {
+ Perl_croak(aTHX_ "panic: Read past end of '(?[ ])'");
+ }
+
+ curchar = UCHARAT(RExC_parse);
+
+redo_curchar:
+
+ top_index = av_tindex(stack);
+
+ switch (curchar) {
+ SV** stacked_ptr; /* Ptr to something already on 'stack' */
+ char stacked_operator; /* The topmost operator on the 'stack'. */
+ SV* lhs; /* Operand to the left of the operator */
+ SV* rhs; /* Operand to the right of the operator */
+ SV* fence_ptr; /* Pointer to top element of the fence
+ stack */
+
+ case '(':
+
+ if (RExC_parse < RExC_end && (UCHARAT(RExC_parse + 1) == '?'))
+ {
+ /* If is a '(?', could be an embedded '(?flags:(?[...])'.
+ * This happens when we have some thing like
+ *
+ * my $thai_or_lao = qr/(?[ \p{Thai} + \p{Lao} ])/;
+ * ...
+ * qr/(?[ \p{Digit} & $thai_or_lao ])/;
+ *
+ * Here we would be handling the interpolated
+ * '$thai_or_lao'. We handle this by a recursive call to
+ * ourselves which returns the inversion list the
+ * interpolated expression evaluates to. We use the flags
+ * from the interpolated pattern. */
+ U32 save_flags = RExC_flags;
+ const char * save_parse;
+
+ RExC_parse += 2; /* Skip past the '(?' */
+ save_parse = RExC_parse;
+
+ /* Parse any flags for the '(?' */
+ parse_lparen_question_flags(pRExC_state);
+
+ if (RExC_parse == save_parse /* Makes sure there was at
+ least one flag (or else
+ this embedding wasn't
+ compiled) */
+ || RExC_parse >= RExC_end - 4
+ || UCHARAT(RExC_parse) != ':'
+ || UCHARAT(++RExC_parse) != '('
+ || UCHARAT(++RExC_parse) != '?'
+ || UCHARAT(++RExC_parse) != '[')
+ {
+
+ /* In combination with the above, this moves the
+ * pointer to the point just after the first erroneous
+ * character (or if there are no flags, to where they
+ * should have been) */
+ if (RExC_parse >= RExC_end - 4) {
+ RExC_parse = RExC_end;
+ }
+ else if (RExC_parse != save_parse) {
+ RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+ }
+ vFAIL("Expecting '(?flags:(?[...'");
+ }
+
+ /* Recurse, with the meat of the embedded expression */
+ RExC_parse++;
+ (void) handle_regex_sets(pRExC_state, ¤t, flagp,
+ depth+1, oregcomp_parse);
+
+ /* Here, 'current' contains the embedded expression's
+ * inversion list, and RExC_parse points to the trailing
+ * ']'; the next character should be the ')' */
+ RExC_parse++;
+ assert(RExC_parse < RExC_end && UCHARAT(RExC_parse) == ')');
+
+ /* Then the ')' matching the original '(' handled by this
+ * case: statement */
+ RExC_parse++;
+ assert(RExC_parse < RExC_end && UCHARAT(RExC_parse) == ')');
+
+ RExC_parse++;
+ RExC_flags = save_flags;
+ goto handle_operand;
+ }
+
+ /* A regular '('. Look behind for illegal syntax */
+ if (top_index - fence >= 0) {
+ /* If the top entry on the stack is an operator, it had
+ * better be a '!', otherwise the entry below the top
+ * operand should be an operator */
+ if ( ! (top_ptr = av_fetch(stack, top_index, FALSE))
+ || (! IS_OPERAND(*top_ptr) && SvUV(*top_ptr) != '!')
+ || top_index - fence < 1
+ || ! (stacked_ptr = av_fetch(stack,
+ top_index - 1,
+ FALSE))
+ || IS_OPERAND(*stacked_ptr))
+ {
+ RExC_parse++;
+ vFAIL("Unexpected '(' with no preceding operator");
+ }
+ }
+
+ /* Stack the position of this undealt-with left paren */
+ fence = top_index + 1;
+ av_push(fence_stack, newSViv(fence));
+ break;
+
+ case '\\':
+ /* regclass() can only return RESTART_UTF8 if multi-char
+ folds are allowed. */
+ if (!regclass(pRExC_state, flagp,depth+1,
+ TRUE, /* means parse just the next thing */
+ FALSE, /* don't allow multi-char folds */
+ FALSE, /* don't silence non-portable warnings. */
+ TRUE, /* strict */
+ ¤t))
+ {
+ FAIL2("panic: regclass returned NULL to handle_sets, "
+ "flags=%#"UVxf"", (UV) *flagp);
+ }
+
+ /* regclass() will return with parsing just the \ sequence,
+ * leaving the parse pointer at the next thing to parse */
+ RExC_parse--;
+ goto handle_operand;
+
+ case '[': /* Is a bracketed character class */
+ {
+ bool is_posix_class = could_it_be_a_POSIX_class(pRExC_state);
+
+ if (! is_posix_class) {
+ RExC_parse++;
+ }
+
+ /* regclass() can only return RESTART_UTF8 if multi-char
+ folds are allowed. */
+ if(!regclass(pRExC_state, flagp,depth+1,
+ is_posix_class, /* parse the whole char class
+ only if not a posix class */
+ FALSE, /* don't allow multi-char folds */
+ FALSE, /* don't silence non-portable warnings. */
+ TRUE, /* strict */
+ ¤t
+ ))
+ {
+ FAIL2("panic: regclass returned NULL to handle_sets, "
+ "flags=%#"UVxf"", (UV) *flagp);
+ }
+
+ /* function call leaves parse pointing to the ']', except if we
+ * faked it */
+ if (is_posix_class) {
+ RExC_parse--;
+ }
+
+ goto handle_operand;
+ }
+
+ case ']':
+ if (top_index >= 1) {
+ goto join_operators;
+ }
+
+ /* Only a single operand on the stack: are done */
+ goto done;
+
+ case ')':
+ if (av_tindex(fence_stack) < 0) {
+ RExC_parse++;
+ vFAIL("Unexpected ')'");
+ }
+
+ /* If at least two thing on the stack, treat this as an
+ * operator */
+ if (top_index - fence >= 1) {
+ goto join_operators;
+ }
+
+ /* Here only a single thing on the fenced stack, and there is a
+ * fence. Get rid of it */
+ fence_ptr = av_pop(fence_stack);
+ assert(fence_ptr);
+ fence = SvIV(fence_ptr) - 1;
+ SvREFCNT_dec_NN(fence_ptr);
+ fence_ptr = NULL;
+
+ if (fence < 0) {
+ fence = 0;
+ }
+
+ /* Having gotten rid of the fence, we pop the operand at the
+ * stack top and process it as a newly encountered operand */
+ current = av_pop(stack);
+ assert(IS_OPERAND(current));
+ goto handle_operand;
+
+ case '&':
+ case '|':
+ case '+':
+ case '-':
+ case '^':
+
+ /* These binary operators should have a left operand already
+ * parsed */
+ if ( top_index - fence < 0
+ || top_index - fence == 1
+ || ( ! (top_ptr = av_fetch(stack, top_index, FALSE)))
+ || ! IS_OPERAND(*top_ptr))
+ {
+ goto unexpected_binary;
+ }
+
+ /* If only the one operand is on the part of the stack visible
+ * to us, we just place this operator in the proper position */
+ if (top_index - fence < 2) {
+
+ /* Place the operator before the operand */
+
+ SV* lhs = av_pop(stack);
+ av_push(stack, newSVuv(curchar));
+ av_push(stack, lhs);
+ break;
+ }
+
+ /* But if there is something else on the stack, we need to
+ * process it before this new operator if and only if the
+ * stacked operation has equal or higher precedence than the
+ * new one */
+
+ join_operators:
+
+ /* The operator on the stack is supposed to be below both its
+ * operands */
+ if ( ! (stacked_ptr = av_fetch(stack, top_index - 2, FALSE))
+ || IS_OPERAND(*stacked_ptr))
+ {
+ /* But if not, it's legal and indicates we are completely
+ * done if and only if we're currently processing a ']',
+ * which should be the final thing in the expression */
+ if (curchar == ']') {
+ goto done;
+ }
+
+ unexpected_binary:
+ RExC_parse++;
+ vFAIL2("Unexpected binary operator '%c' with no "
+ "preceding operand", curchar);
+ }
+ stacked_operator = (char) SvUV(*stacked_ptr);
+
+ if (regex_set_precedence(curchar)
+ > regex_set_precedence(stacked_operator))
+ {
+ /* Here, the new operator has higher precedence than the
+ * stacked one. This means we need to add the new one to
+ * the stack to await its rhs operand (and maybe more
+ * stuff). We put it before the lhs operand, leaving
+ * untouched the stacked operator and everything below it
+ * */
+ lhs = av_pop(stack);
+ assert(IS_OPERAND(lhs));
+
+ av_push(stack, newSVuv(curchar));
+ av_push(stack, lhs);
+ break;
+ }
+
+ /* Here, the new operator has equal or lower precedence than
+ * what's already there. This means the operation already
+ * there should be performed now, before the new one. */
+ rhs = av_pop(stack);
+ lhs = av_pop(stack);
+
+ assert(IS_OPERAND(rhs));
+ assert(IS_OPERAND(lhs));
+
+ switch (stacked_operator) {
+ case '&':
+ _invlist_intersection(lhs, rhs, &rhs);
+ break;
+
+ case '|':
+ case '+':
+ _invlist_union(lhs, rhs, &rhs);
+ break;
+
+ case '-':
+ _invlist_subtract(lhs, rhs, &rhs);
+ break;
+
+ case '^': /* The union minus the intersection */
+ {
+ SV* i = NULL;
+ SV* u = NULL;
+ SV* element;
+
+ _invlist_union(lhs, rhs, &u);
+ _invlist_intersection(lhs, rhs, &i);
+ /* _invlist_subtract will overwrite rhs
+ without freeing what it already contains */
+ element = rhs;
+ _invlist_subtract(u, i, &rhs);
+ SvREFCNT_dec_NN(i);
+ SvREFCNT_dec_NN(u);
+ SvREFCNT_dec_NN(element);
+ break;
+ }
+ }
+ SvREFCNT_dec(lhs);
+
+ /* Here, the higher precedence operation has been done, and the
+ * result is in 'rhs'. We overwrite the stacked operator with
+ * the result. Then we redo this code to either push the new
+ * operator onto the stack or perform any higher precedence
+ * stacked operation */
+ only_to_avoid_leaks = av_pop(stack);
+ SvREFCNT_dec(only_to_avoid_leaks);
+ av_push(stack, rhs);
+ goto redo_curchar;
+
+ case '!': /* Highest priority, right associative, so just push
+ onto stack */
+ av_push(stack, newSVuv(curchar));
+ break;
+
+ default:
+ RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+ vFAIL("Unexpected character");
+
+ handle_operand:
+
+ /* Here 'current' is the operand. If something is already on the
+ * stack, we have to check if it is a !. */
+ top_index = av_tindex(stack); /* Code above may have altered the
+ * stack in the time since we
+ * earlier set 'top_index'. */
+ if (top_index - fence >= 0) {
+ /* If the top entry on the stack is an operator, it had better
+ * be a '!', otherwise the entry below the top operand should
+ * be an operator */
+ top_ptr = av_fetch(stack, top_index, FALSE);
+ assert(top_ptr);
+ if (! IS_OPERAND(*top_ptr)) {
+
+ /* The only permissible operator at the top of the stack is
+ * '!', which is applied immediately to this operand. */
+ curchar = (char) SvUV(*top_ptr);
+ if (curchar != '!') {
+ SvREFCNT_dec(current);
+ vFAIL2("Unexpected binary operator '%c' with no "
+ "preceding operand", curchar);
+ }
+
+ _invlist_invert(current);
+
+ only_to_avoid_leaks = av_pop(stack);
+ SvREFCNT_dec(only_to_avoid_leaks);
+ top_index = av_tindex(stack);
+
+ /* And we redo with the inverted operand. This allows
+ * handling multiple ! in a row */
+ goto handle_operand;
+ }
+ /* Single operand is ok only for the non-binary ')'
+ * operator */
+ else if ((top_index - fence == 0 && curchar != ')')
+ || (top_index - fence > 0
+ && (! (stacked_ptr = av_fetch(stack,
+ top_index - 1,
+ FALSE))
+ || IS_OPERAND(*stacked_ptr))))
+ {
+ SvREFCNT_dec(current);
+ vFAIL("Operand with no preceding operator");
+ }
+ }
+
+ /* Here there was nothing on the stack or the top element was
+ * another operand. Just add this new one */
+ av_push(stack, current);
+
+ } /* End of switch on next parse token */
+
+ RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+ } /* End of loop parsing through the construct */
+
+ done:
+ if (av_tindex(fence_stack) >= 0) {
+ vFAIL("Unmatched (");
+ }
+
+ if (av_tindex(stack) < 0 /* Was empty */
+ || ((final = av_pop(stack)) == NULL)
+ || ! IS_OPERAND(final)
+ || av_tindex(stack) >= 0) /* More left on stack */
+ {
+ SvREFCNT_dec(final);
+ vFAIL("Incomplete expression within '(?[ ])'");
+ }
+
+ /* Here, 'final' is the resultant inversion list from evaluating the
+ * expression. Return it if so requested */
+ if (return_invlist) {
+ *return_invlist = final;
+ return END;
+ }
+
+ /* Otherwise generate a resultant node, based on 'final'. regclass() is
+ * expecting a string of ranges and individual code points */
+ invlist_iterinit(final);
+ result_string = newSVpvs("");
+ while (invlist_iternext(final, &start, &end)) {
+ if (start == end) {
+ Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}", start);
+ }
+ else {
+ Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}-\\x{%"UVXf"}",
+ start, end);
+ }
+ }
+
+ /* About to generate an ANYOF (or similar) node from the inversion list we
+ * have calculated */
+ save_parse = RExC_parse;
+ RExC_parse = SvPV(result_string, len);
+ save_end = RExC_end;
+ RExC_end = RExC_parse + len;
+
+ /* We turn off folding around the call, as the class we have constructed
+ * already has all folding taken into consideration, and we don't want
+ * regclass() to add to that */
+ RExC_flags &= ~RXf_PMf_FOLD;
+ /* regclass() can only return RESTART_UTF8 if multi-char folds are allowed.
+ */
+ node = regclass(pRExC_state, flagp,depth+1,
+ FALSE, /* means parse the whole char class */
+ FALSE, /* don't allow multi-char folds */
+ TRUE, /* silence non-portable warnings. The above may very
+ well have generated non-portable code points, but
+ they're valid on this machine */
+ FALSE, /* similarly, no need for strict */
+ NULL
+ );
+ if (!node)
+ FAIL2("panic: regclass returned NULL to handle_sets, flags=%#"UVxf,
+ PTR2UV(flagp));
+ if (save_fold) {
+ RExC_flags |= RXf_PMf_FOLD;
+ }
+ RExC_parse = save_parse + 1;
+ RExC_end = save_end;
+ SvREFCNT_dec_NN(final);
+ SvREFCNT_dec_NN(result_string);
+
+ nextchar(pRExC_state);
+ Set_Node_Length(node, RExC_parse - oregcomp_parse + 1); /* MJD */
+ return node;
+}
+#undef IS_OPERAND
+
+STATIC void
+S_add_above_Latin1_folds(pTHX_ RExC_state_t *pRExC_state, const U8 cp, SV** invlist)
+{
+ /* This hard-codes the Latin1/above-Latin1 folding rules, so that an
+ * innocent-looking character class, like /[ks]/i won't have to go out to
+ * disk to find the possible matches.
+ *
+ * This should be called only for a Latin1-range code points, cp, which is
+ * known to be involved in a simple fold with other code points above
+ * Latin1. It would give false results if /aa has been specified.
+ * Multi-char folds are outside the scope of this, and must be handled
+ * specially.
+ *
+ * XXX It would be better to generate these via regen, in case a new
+ * version of the Unicode standard adds new mappings, though that is not
+ * really likely, and may be caught by the default: case of the switch
+ * below. */
+
+ PERL_ARGS_ASSERT_ADD_ABOVE_LATIN1_FOLDS;
+
+ assert(HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(cp));
+
+ switch (cp) {
+ case 'k':
+ case 'K':
+ *invlist =
+ add_cp_to_invlist(*invlist, KELVIN_SIGN);
+ break;
+ case 's':
+ case 'S':
+ *invlist = add_cp_to_invlist(*invlist, LATIN_SMALL_LETTER_LONG_S);
+ break;
+ case MICRO_SIGN:
+ *invlist = add_cp_to_invlist(*invlist, GREEK_CAPITAL_LETTER_MU);
+ *invlist = add_cp_to_invlist(*invlist, GREEK_SMALL_LETTER_MU);
+ break;
+ case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
+ case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
+ *invlist = add_cp_to_invlist(*invlist, ANGSTROM_SIGN);
+ break;
+ case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
+ *invlist = add_cp_to_invlist(*invlist,
+ LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
+ break;
+ case LATIN_SMALL_LETTER_SHARP_S:
+ *invlist = add_cp_to_invlist(*invlist, LATIN_CAPITAL_LETTER_SHARP_S);
+ break;
+ default:
+ /* Use deprecated warning to increase the chances of this being
+ * output */
+ if (PASS2) {
+ ckWARN2reg_d(RExC_parse, "Perl folding rules are not up-to-date for 0x%02X; please use the perlbug utility to report;", cp);
+ }
+ break;
+ }
+}
+
+STATIC AV *
+S_add_multi_match(pTHX_ AV* multi_char_matches, SV* multi_string, const STRLEN cp_count)
+{
+ /* This adds the string scalar <multi_string> to the array
+ * <multi_char_matches>. <multi_string> is known to have exactly
+ * <cp_count> code points in it. This is used when constructing a
+ * bracketed character class and we find something that needs to match more
+ * than a single character.
+ *
+ * <multi_char_matches> is actually an array of arrays. Each top-level
+ * element is an array that contains all the strings known so far that are
+ * the same length. And that length (in number of code points) is the same
+ * as the index of the top-level array. Hence, the [2] element is an
+ * array, each element thereof is a string containing TWO code points;
+ * while element [3] is for strings of THREE characters, and so on. Since
+ * this is for multi-char strings there can never be a [0] nor [1] element.
+ *
+ * When we rewrite the character class below, we will do so such that the
+ * longest strings are written first, so that it prefers the longest
+ * matching strings first. This is done even if it turns out that any
+ * quantifier is non-greedy, out of this programmer's (khw) laziness. Tom
+ * Christiansen has agreed that this is ok. This makes the test for the
+ * ligature 'ffi' come before the test for 'ff', for example */
+
+ AV* this_array;
+ AV** this_array_ptr;
+
+ PERL_ARGS_ASSERT_ADD_MULTI_MATCH;
+
+ if (! multi_char_matches) {
+ multi_char_matches = newAV();
+ }
+
+ if (av_exists(multi_char_matches, cp_count)) {
+ this_array_ptr = (AV**) av_fetch(multi_char_matches, cp_count, FALSE);
+ this_array = *this_array_ptr;
+ }
+ else {
+ this_array = newAV();
+ av_store(multi_char_matches, cp_count,
+ (SV*) this_array);
+ }
+ av_push(this_array, multi_string);
+
+ return multi_char_matches;
+}
+
+/* The names of properties whose definitions are not known at compile time are
+ * stored in this SV, after a constant heading. So if the length has been
+ * changed since initialization, then there is a run-time definition. */
+#define HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION \
+ (SvCUR(listsv) != initial_listsv_len)
+
+STATIC regnode *
+S_regclass(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth,
+ const bool stop_at_1, /* Just parse the next thing, don't
+ look for a full character class */
+ bool allow_multi_folds,
+ const bool silence_non_portable, /* Don't output warnings
+ about too large
+ characters */
+ const bool strict,
+ SV** ret_invlist /* Return an inversion list, not a node */
+ )
+{
+ /* parse a bracketed class specification. Most of these will produce an
+ * ANYOF node; but something like [a] will produce an EXACT node; [aA], an
+ * EXACTFish node; [[:ascii:]], a POSIXA node; etc. It is more complex
+ * under /i with multi-character folds: it will be rewritten following the
+ * paradigm of this example, where the <multi-fold>s are characters which
+ * fold to multiple character sequences:
+ * /[abc\x{multi-fold1}def\x{multi-fold2}ghi]/i
+ * gets effectively rewritten as:
+ * /(?:\x{multi-fold1}|\x{multi-fold2}|[abcdefghi]/i
+ * reg() gets called (recursively) on the rewritten version, and this
+ * function will return what it constructs. (Actually the <multi-fold>s
+ * aren't physically removed from the [abcdefghi], it's just that they are
+ * ignored in the recursion by means of a flag:
+ * <RExC_in_multi_char_class>.)
+ *
+ * ANYOF nodes contain a bit map for the first NUM_ANYOF_CODE_POINTS
+ * characters, with the corresponding bit set if that character is in the
+ * list. For characters above this, a range list or swash is used. There
+ * are extra bits for \w, etc. in locale ANYOFs, as what these match is not
+ * determinable at compile time
+ *
+ * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs
+ * to be restarted. This can only happen if ret_invlist is non-NULL.
+ */
+
+ UV prevvalue = OOB_UNICODE, save_prevvalue = OOB_UNICODE;
+ IV range = 0;
+ UV value = OOB_UNICODE, save_value = OOB_UNICODE;
+ regnode *ret;
+ STRLEN numlen;
+ IV namedclass = OOB_NAMEDCLASS;
+ char *rangebegin = NULL;
+ bool need_class = 0;
+ SV *listsv = NULL;
+ STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
+ than just initialized. */
+ SV* properties = NULL; /* Code points that match \p{} \P{} */
+ SV* posixes = NULL; /* Code points that match classes like [:word:],
+ extended beyond the Latin1 range. These have to
+ be kept separate from other code points for much
+ of this function because their handling is
+ different under /i, and for most classes under
+ /d as well */
+ SV* nposixes = NULL; /* Similarly for [:^word:]. These are kept
+ separate for a while from the non-complemented
+ versions because of complications with /d
+ matching */
+ SV* simple_posixes = NULL; /* But under some conditions, the classes can be
+ treated more simply than the general case,
+ leading to less compilation and execution
+ work */
+ UV element_count = 0; /* Number of distinct elements in the class.
+ Optimizations may be possible if this is tiny */
+ AV * multi_char_matches = NULL; /* Code points that fold to more than one
+ character; used under /i */
+ UV n;
+ char * stop_ptr = RExC_end; /* where to stop parsing */
+ const bool skip_white = cBOOL(ret_invlist); /* ignore unescaped white
+ space? */
+
+ /* Unicode properties are stored in a swash; this holds the current one
+ * being parsed. If this swash is the only above-latin1 component of the
+ * character class, an optimization is to pass it directly on to the
+ * execution engine. Otherwise, it is set to NULL to indicate that there
+ * are other things in the class that have to be dealt with at execution
+ * time */
+ SV* swash = NULL; /* Code points that match \p{} \P{} */
+
+ /* Set if a component of this character class is user-defined; just passed
+ * on to the engine */
+ bool has_user_defined_property = FALSE;
+
+ /* inversion list of code points this node matches only when the target
+ * string is in UTF-8. (Because is under /d) */
+ SV* depends_list = NULL;
+
+ /* Inversion list of code points this node matches regardless of things
+ * like locale, folding, utf8ness of the target string */
+ SV* cp_list = NULL;
+
+ /* Like cp_list, but code points on this list need to be checked for things
+ * that fold to/from them under /i */
+ SV* cp_foldable_list = NULL;
+
+ /* Like cp_list, but code points on this list are valid only when the
+ * runtime locale is UTF-8 */
+ SV* only_utf8_locale_list = NULL;
+
+ /* In a range, if one of the endpoints is non-character-set portable,
+ * meaning that it hard-codes a code point that may mean a different
+ * charactger in ASCII vs. EBCDIC, as opposed to, say, a literal 'A' or a
+ * mnemonic '\t' which each mean the same character no matter which
+ * character set the platform is on. */
+ unsigned int non_portable_endpoint = 0;
+
+ /* Is the range unicode? which means on a platform that isn't 1-1 native
+ * to Unicode (i.e. non-ASCII), each code point in it should be considered
+ * to be a Unicode value. */
+ bool unicode_range = FALSE;
+ bool invert = FALSE; /* Is this class to be complemented */
+
+ bool warn_super = ALWAYS_WARN_SUPER;
+
+ regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
+ case we need to change the emitted regop to an EXACT. */
+ const char * orig_parse = RExC_parse;
+ const SSize_t orig_size = RExC_size;
+ bool posixl_matches_all = FALSE; /* Does /l class have both e.g. \W,\w ? */
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGCLASS;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ DEBUG_PARSE("clas");
+
+ /* Assume we are going to generate an ANYOF node. */
+ ret = reganode(pRExC_state,
+ (LOC)
+ ? ANYOFL
+ : ANYOF,
+ 0);
+
+ if (SIZE_ONLY) {
+ RExC_size += ANYOF_SKIP;
+ listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
+ }
+ else {
+ ANYOF_FLAGS(ret) = 0;
+
+ RExC_emit += ANYOF_SKIP;
+ listsv = newSVpvs_flags("# comment\n", SVs_TEMP);
+ initial_listsv_len = SvCUR(listsv);
+ SvTEMP_off(listsv); /* Grr, TEMPs and mortals are conflated. */
+ }
+
+ if (skip_white) {
+ RExC_parse = regpatws(pRExC_state, RExC_parse,
+ FALSE /* means don't recognize comments */ );
+ }
+
+ if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
+ RExC_parse++;
+ invert = TRUE;
+ allow_multi_folds = FALSE;
+ MARK_NAUGHTY(1);
+ if (skip_white) {
+ RExC_parse = regpatws(pRExC_state, RExC_parse,
+ FALSE /* means don't recognize comments */ );
+ }
+ }
+
+ /* Check that they didn't say [:posix:] instead of [[:posix:]] */
+ if (!SIZE_ONLY && RExC_parse < RExC_end && POSIXCC(UCHARAT(RExC_parse))) {
+ const char *s = RExC_parse;
+ const char c = *s++;
+
+ if (*s == '^') {
+ s++;
+ }
+ while (isWORDCHAR(*s))
+ s++;
+ if (*s && c == *s && s[1] == ']') {
+ SAVEFREESV(RExC_rx_sv);
+ ckWARN3reg(s+2,
+ "POSIX syntax [%c %c] belongs inside character classes",
+ c, c);
+ (void)ReREFCNT_inc(RExC_rx_sv);
+ }
+ }
+
+ /* If the caller wants us to just parse a single element, accomplish this
+ * by faking the loop ending condition */
+ if (stop_at_1 && RExC_end > RExC_parse) {
+ stop_ptr = RExC_parse + 1;
+ }
+
+ /* allow 1st char to be ']' (allowing it to be '-' is dealt with later) */
+ if (UCHARAT(RExC_parse) == ']')
+ goto charclassloop;
+
+ while (1) {
+ if (RExC_parse >= stop_ptr) {
+ break;
+ }
+
+ if (skip_white) {
+ RExC_parse = regpatws(pRExC_state, RExC_parse,
+ FALSE /* means don't recognize comments */ );
+ }
+
+ if (UCHARAT(RExC_parse) == ']') {
+ break;
+ }
+
+ charclassloop:
+
+ namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
+ save_value = value;
+ save_prevvalue = prevvalue;
+
+ if (!range) {
+ rangebegin = RExC_parse;
+ element_count++;
+ non_portable_endpoint = 0;
+ }
+ if (UTF) {
+ value = utf8n_to_uvchr((U8*)RExC_parse,
+ RExC_end - RExC_parse,
+ &numlen, UTF8_ALLOW_DEFAULT);
+ RExC_parse += numlen;
+ }
+ else
+ value = UCHARAT(RExC_parse++);
+
+ if (value == '['
+ && RExC_parse < RExC_end
+ && POSIXCC(UCHARAT(RExC_parse)))
+ {
+ namedclass = regpposixcc(pRExC_state, value, strict);
+ }
+ else if (value == '\\') {
+ /* Is a backslash; get the code point of the char after it */
+ if (UTF && ! UTF8_IS_INVARIANT(UCHARAT(RExC_parse))) {
+ value = utf8n_to_uvchr((U8*)RExC_parse,
+ RExC_end - RExC_parse,
+ &numlen, UTF8_ALLOW_DEFAULT);
+ RExC_parse += numlen;
+ }
+ else
+ value = UCHARAT(RExC_parse++);
+
+ /* Some compilers cannot handle switching on 64-bit integer
+ * values, therefore value cannot be an UV. Yes, this will
+ * be a problem later if we want switch on Unicode.
+ * A similar issue a little bit later when switching on
+ * namedclass. --jhi */
+
+ /* If the \ is escaping white space when white space is being
+ * skipped, it means that that white space is wanted literally, and
+ * is already in 'value'. Otherwise, need to translate the escape
+ * into what it signifies. */
+ if (! skip_white || ! is_PATWS_cp(value)) switch ((I32)value) {
+
+ case 'w': namedclass = ANYOF_WORDCHAR; break;
+ case 'W': namedclass = ANYOF_NWORDCHAR; break;
+ case 's': namedclass = ANYOF_SPACE; break;
+ case 'S': namedclass = ANYOF_NSPACE; break;
+ case 'd': namedclass = ANYOF_DIGIT; break;
+ case 'D': namedclass = ANYOF_NDIGIT; break;
+ case 'v': namedclass = ANYOF_VERTWS; break;
+ case 'V': namedclass = ANYOF_NVERTWS; break;
+ case 'h': namedclass = ANYOF_HORIZWS; break;
+ case 'H': namedclass = ANYOF_NHORIZWS; break;
+ case 'N': /* Handle \N{NAME} in class */
+ {
+ const char * const backslash_N_beg = RExC_parse - 2;
+ int cp_count;
+
+ if (! grok_bslash_N(pRExC_state,
+ NULL, /* No regnode */
+ &value, /* Yes single value */
+ &cp_count, /* Multiple code pt count */
+ flagp,
+ depth)
+ ) {
+
+ if (*flagp & RESTART_UTF8)
+ FAIL("panic: grok_bslash_N set RESTART_UTF8");
+
+ if (cp_count < 0) {
+ vFAIL("\\N in a character class must be a named character: \\N{...}");
+ }
+ else if (cp_count == 0) {
+ if (strict) {
+ RExC_parse++; /* Position after the "}" */
+ vFAIL("Zero length \\N{}");
+ }
+ else if (PASS2) {
+ ckWARNreg(RExC_parse,
+ "Ignoring zero length \\N{} in character class");
+ }
+ }
+ else { /* cp_count > 1 */
+ if (! RExC_in_multi_char_class) {
+ if (invert || range || *RExC_parse == '-') {
+ if (strict) {
+ RExC_parse--;
+ vFAIL("\\N{} in inverted character class or as a range end-point is restricted to one character");
+ }
+ else if (PASS2) {
+ ckWARNreg(RExC_parse, "Using just the first character returned by \\N{} in character class");
+ }
+ break; /* <value> contains the first code
+ point. Drop out of the switch to
+ process it */
+ }
+ else {
+ SV * multi_char_N = newSVpvn(backslash_N_beg,
+ RExC_parse - backslash_N_beg);
+ multi_char_matches
+ = add_multi_match(multi_char_matches,
+ multi_char_N,
+ cp_count);
+ }
+ }
+ } /* End of cp_count != 1 */
+
+ /* This element should not be processed further in this
+ * class */
+ element_count--;
+ value = save_value;
+ prevvalue = save_prevvalue;
+ continue; /* Back to top of loop to get next char */
+ }
+
+ /* Here, is a single code point, and <value> contains it */
+ unicode_range = TRUE; /* \N{} are Unicode */
+ }
+ break;
+ case 'p':
+ case 'P':
+ {
+ char *e;
+
+ /* We will handle any undefined properties ourselves */
+ U8 swash_init_flags = _CORE_SWASH_INIT_RETURN_IF_UNDEF
+ /* And we actually would prefer to get
+ * the straight inversion list of the
+ * swash, since we will be accessing it
+ * anyway, to save a little time */
+ |_CORE_SWASH_INIT_ACCEPT_INVLIST;
+
+ if (RExC_parse >= RExC_end)
+ vFAIL2("Empty \\%c{}", (U8)value);
+ if (*RExC_parse == '{') {
+ const U8 c = (U8)value;
+ e = strchr(RExC_parse++, '}');
+ if (!e)
+ vFAIL2("Missing right brace on \\%c{}", c);
+ while (isSPACE(*RExC_parse))
+ RExC_parse++;
+ if (e == RExC_parse)
+ vFAIL2("Empty \\%c{}", c);
+ n = e - RExC_parse;
+ while (isSPACE(*(RExC_parse + n - 1)))
+ n--;
+ }
+ else {
+ e = RExC_parse;
+ n = 1;
+ }
+ if (!SIZE_ONLY) {
+ SV* invlist;
+ char* name;
+
+ if (UCHARAT(RExC_parse) == '^') {
+ RExC_parse++;
+ n--;
+ /* toggle. (The rhs xor gets the single bit that
+ * differs between P and p; the other xor inverts just
+ * that bit) */
+ value ^= 'P' ^ 'p';
+
+ while (isSPACE(*RExC_parse)) {
+ RExC_parse++;
+ n--;
+ }
+ }
+ /* Try to get the definition of the property into
+ * <invlist>. If /i is in effect, the effective property
+ * will have its name be <__NAME_i>. The design is
+ * discussed in commit
+ * 2f833f5208e26b208886e51e09e2c072b5eabb46 */
+ name = savepv(Perl_form(aTHX_
+ "%s%.*s%s\n",
+ (FOLD) ? "__" : "",
+ (int)n,
+ RExC_parse,
+ (FOLD) ? "_i" : ""
+ ));
+
+ /* Look up the property name, and get its swash and
+ * inversion list, if the property is found */
+ if (swash) {
+ SvREFCNT_dec_NN(swash);
+ }
+ swash = _core_swash_init("utf8", name, &PL_sv_undef,
+ 1, /* binary */
+ 0, /* not tr/// */
+ NULL, /* No inversion list */
+ &swash_init_flags
+ );
+ if (! swash || ! (invlist = _get_swash_invlist(swash))) {
+ HV* curpkg = (IN_PERL_COMPILETIME)
+ ? PL_curstash
+ : CopSTASH(PL_curcop);
+ if (swash) {
+ SvREFCNT_dec_NN(swash);
+ swash = NULL;
+ }
+
+ /* Here didn't find it. It could be a user-defined
+ * property that will be available at run-time. If we
+ * accept only compile-time properties, is an error;
+ * otherwise add it to the list for run-time look up */
+ if (ret_invlist) {
+ RExC_parse = e + 1;
+ vFAIL2utf8f(
+ "Property '%"UTF8f"' is unknown",
+ UTF8fARG(UTF, n, name));
+ }
+
+ /* If the property name doesn't already have a package
+ * name, add the current one to it so that it can be
+ * referred to outside it. [perl #121777] */
+ if (curpkg && ! instr(name, "::")) {
+ char* pkgname = HvNAME(curpkg);
+ if (strNE(pkgname, "main")) {
+ char* full_name = Perl_form(aTHX_
+ "%s::%s",
+ pkgname,
+ name);
+ n = strlen(full_name);
+ Safefree(name);
+ name = savepvn(full_name, n);
+ }
+ }
+ Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%"UTF8f"\n",
+ (value == 'p' ? '+' : '!'),
+ UTF8fARG(UTF, n, name));
+ has_user_defined_property = TRUE;
+
+ /* We don't know yet, so have to assume that the
+ * property could match something in the Latin1 range,
+ * hence something that isn't utf8. Note that this
+ * would cause things in <depends_list> to match
+ * inappropriately, except that any \p{}, including
+ * this one forces Unicode semantics, which means there
+ * is no <depends_list> */
+ ANYOF_FLAGS(ret)
+ |= ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES;
+ }
+ else {
+
+ /* Here, did get the swash and its inversion list. If
+ * the swash is from a user-defined property, then this
+ * whole character class should be regarded as such */
+ if (swash_init_flags
+ & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY)
+ {
+ has_user_defined_property = TRUE;
+ }
+ else if
+ /* We warn on matching an above-Unicode code point
+ * if the match would return true, except don't
+ * warn for \p{All}, which has exactly one element
+ * = 0 */
+ (_invlist_contains_cp(invlist, 0x110000)
+ && (! (_invlist_len(invlist) == 1
+ && *invlist_array(invlist) == 0)))
+ {
+ warn_super = TRUE;
+ }
+
+
+ /* Invert if asking for the complement */
+ if (value == 'P') {
+ _invlist_union_complement_2nd(properties,
+ invlist,
+ &properties);
+
+ /* The swash can't be used as-is, because we've
+ * inverted things; delay removing it to here after
+ * have copied its invlist above */
+ SvREFCNT_dec_NN(swash);
+ swash = NULL;
+ }
+ else {
+ _invlist_union(properties, invlist, &properties);
+ }
+ }
+ Safefree(name);
+ }
+ RExC_parse = e + 1;
+ namedclass = ANYOF_UNIPROP; /* no official name, but it's
+ named */
+
+ /* \p means they want Unicode semantics */
+ RExC_uni_semantics = 1;
+ }
+ break;
+ case 'n': value = '\n'; break;
+ case 'r': value = '\r'; break;
+ case 't': value = '\t'; break;
+ case 'f': value = '\f'; break;
+ case 'b': value = '\b'; break;
+ case 'e': value = ESC_NATIVE; break;
+ case 'a': value = '\a'; break;
+ case 'o':
+ RExC_parse--; /* function expects to be pointed at the 'o' */
+ {
+ const char* error_msg;
+ bool valid = grok_bslash_o(&RExC_parse,
+ &value,
+ &error_msg,
+ PASS2, /* warnings only in
+ pass 2 */
+ strict,
+ silence_non_portable,
+ UTF);
+ if (! valid) {
+ vFAIL(error_msg);
+ }
+ }
+ non_portable_endpoint++;
+ if (IN_ENCODING && value < 0x100) {
+ goto recode_encoding;
+ }
+ break;
+ case 'x':
+ RExC_parse--; /* function expects to be pointed at the 'x' */
+ {
+ const char* error_msg;
+ bool valid = grok_bslash_x(&RExC_parse,
+ &value,
+ &error_msg,
+ PASS2, /* Output warnings */
+ strict,
+ silence_non_portable,
+ UTF);
+ if (! valid) {
+ vFAIL(error_msg);
+ }
+ }
+ non_portable_endpoint++;
+ if (IN_ENCODING && value < 0x100)
+ goto recode_encoding;
+ break;
+ case 'c':
+ value = grok_bslash_c(*RExC_parse++, PASS2);
+ non_portable_endpoint++;
+ break;
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7':
+ {
+ /* Take 1-3 octal digits */
+ I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
+ numlen = (strict) ? 4 : 3;
+ value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
+ RExC_parse += numlen;
+ if (numlen != 3) {
+ if (strict) {
+ RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
+ vFAIL("Need exactly 3 octal digits");
+ }
+ else if (! SIZE_ONLY /* like \08, \178 */
+ && numlen < 3
+ && RExC_parse < RExC_end
+ && isDIGIT(*RExC_parse)
+ && ckWARN(WARN_REGEXP))
+ {
+ SAVEFREESV(RExC_rx_sv);
+ reg_warn_non_literal_string(
+ RExC_parse + 1,
+ form_short_octal_warning(RExC_parse, numlen));
+ (void)ReREFCNT_inc(RExC_rx_sv);
+ }
+ }
+ non_portable_endpoint++;
+ if (IN_ENCODING && value < 0x100)
+ goto recode_encoding;
+ break;
+ }
+ recode_encoding:
+ if (! RExC_override_recoding) {
+ SV* enc = _get_encoding();
+ value = reg_recode((const char)(U8)value, &enc);
+ if (!enc) {
+ if (strict) {
+ vFAIL("Invalid escape in the specified encoding");
+ }
+ else if (PASS2) {
+ ckWARNreg(RExC_parse,
+ "Invalid escape in the specified encoding");
+ }
+ }
+ break;
+ }
+ default:
+ /* Allow \_ to not give an error */
+ if (!SIZE_ONLY && isWORDCHAR(value) && value != '_') {
+ if (strict) {
+ vFAIL2("Unrecognized escape \\%c in character class",
+ (int)value);
+ }
+ else {
+ SAVEFREESV(RExC_rx_sv);
+ ckWARN2reg(RExC_parse,
+ "Unrecognized escape \\%c in character class passed through",
+ (int)value);
+ (void)ReREFCNT_inc(RExC_rx_sv);
+ }
+ }
+ break;
+ } /* End of switch on char following backslash */
+ } /* end of handling backslash escape sequences */
+
+ /* Here, we have the current token in 'value' */
+
+ if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
+ U8 classnum;
+
+ /* a bad range like a-\d, a-[:digit:]. The '-' is taken as a
+ * literal, as is the character that began the false range, i.e.
+ * the 'a' in the examples */
+ if (range) {
+ if (!SIZE_ONLY) {
+ const int w = (RExC_parse >= rangebegin)
+ ? RExC_parse - rangebegin
+ : 0;
+ if (strict) {
+ vFAIL2utf8f(
+ "False [] range \"%"UTF8f"\"",
+ UTF8fARG(UTF, w, rangebegin));
+ }
+ else {
+ SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
+ ckWARN2reg(RExC_parse,
+ "False [] range \"%"UTF8f"\"",
+ UTF8fARG(UTF, w, rangebegin));
+ (void)ReREFCNT_inc(RExC_rx_sv);
+ cp_list = add_cp_to_invlist(cp_list, '-');
+ cp_foldable_list = add_cp_to_invlist(cp_foldable_list,
+ prevvalue);
+ }
+ }
+
+ range = 0; /* this was not a true range */
+ element_count += 2; /* So counts for three values */
+ }
+
+ classnum = namedclass_to_classnum(namedclass);
+
+ if (LOC && namedclass < ANYOF_POSIXL_MAX
+#ifndef HAS_ISASCII
+ && classnum != _CC_ASCII
+#endif
+ ) {
+ /* What the Posix classes (like \w, [:space:]) match in locale
+ * isn't knowable under locale until actual match time. Room
+ * must be reserved (one time per outer bracketed class) to
+ * store such classes. The space will contain a bit for each
+ * named class that is to be matched against. This isn't
+ * needed for \p{} and pseudo-classes, as they are not affected
+ * by locale, and hence are dealt with separately */
+ if (! need_class) {
+ need_class = 1;
+ if (SIZE_ONLY) {
+ RExC_size += ANYOF_POSIXL_SKIP - ANYOF_SKIP;
+ }
+ else {
+ RExC_emit += ANYOF_POSIXL_SKIP - ANYOF_SKIP;
+ }
+ ANYOF_FLAGS(ret) |= ANYOF_MATCHES_POSIXL;
+ ANYOF_POSIXL_ZERO(ret);
+ }
+
+ /* Coverity thinks it is possible for this to be negative; both
+ * jhi and khw think it's not, but be safer */
+ assert(! (ANYOF_FLAGS(ret) & ANYOF_MATCHES_POSIXL)
+ || (namedclass + ((namedclass % 2) ? -1 : 1)) >= 0);
+
+ /* See if it already matches the complement of this POSIX
+ * class */
+ if ((ANYOF_FLAGS(ret) & ANYOF_MATCHES_POSIXL)
+ && ANYOF_POSIXL_TEST(ret, namedclass + ((namedclass % 2)
+ ? -1
+ : 1)))
+ {
+ posixl_matches_all = TRUE;
+ break; /* No need to continue. Since it matches both
+ e.g., \w and \W, it matches everything, and the
+ bracketed class can be optimized into qr/./s */
+ }
+
+ /* Add this class to those that should be checked at runtime */
+ ANYOF_POSIXL_SET(ret, namedclass);
+
+ /* The above-Latin1 characters are not subject to locale rules.
+ * Just add them, in the second pass, to the
+ * unconditionally-matched list */
+ if (! SIZE_ONLY) {
+ SV* scratch_list = NULL;
+
+ /* Get the list of the above-Latin1 code points this
+ * matches */
+ _invlist_intersection_maybe_complement_2nd(PL_AboveLatin1,
+ PL_XPosix_ptrs[classnum],
+
+ /* Odd numbers are complements, like
+ * NDIGIT, NASCII, ... */
+ namedclass % 2 != 0,
+ &scratch_list);
+ /* Checking if 'cp_list' is NULL first saves an extra
+ * clone. Its reference count will be decremented at the
+ * next union, etc, or if this is the only instance, at the
+ * end of the routine */
+ if (! cp_list) {
+ cp_list = scratch_list;
+ }
+ else {
+ _invlist_union(cp_list, scratch_list, &cp_list);
+ SvREFCNT_dec_NN(scratch_list);
+ }
+ continue; /* Go get next character */
+ }
+ }
+ else if (! SIZE_ONLY) {
+
+ /* Here, not in pass1 (in that pass we skip calculating the
+ * contents of this class), and is /l, or is a POSIX class for
+ * which /l doesn't matter (or is a Unicode property, which is
+ * skipped here). */
+ if (namedclass >= ANYOF_POSIXL_MAX) { /* If a special class */
+ if (namedclass != ANYOF_UNIPROP) { /* UNIPROP = \p and \P */
+
+ /* Here, should be \h, \H, \v, or \V. None of /d, /i
+ * nor /l make a difference in what these match,
+ * therefore we just add what they match to cp_list. */
+ if (classnum != _CC_VERTSPACE) {
+ assert( namedclass == ANYOF_HORIZWS
+ || namedclass == ANYOF_NHORIZWS);
+
+ /* It turns out that \h is just a synonym for
+ * XPosixBlank */
+ classnum = _CC_BLANK;
+ }
+
+ _invlist_union_maybe_complement_2nd(
+ cp_list,
+ PL_XPosix_ptrs[classnum],
+ namedclass % 2 != 0, /* Complement if odd
+ (NHORIZWS, NVERTWS)
+ */
+ &cp_list);
+ }
+ }
+ else if (UNI_SEMANTICS
+ || classnum == _CC_ASCII
+ || (DEPENDS_SEMANTICS && (classnum == _CC_DIGIT
+ || classnum == _CC_XDIGIT)))
+ {
+ /* We usually have to worry about /d and /a affecting what
+ * POSIX classes match, with special code needed for /d
+ * because we won't know until runtime what all matches.
+ * But there is no extra work needed under /u, and
+ * [:ascii:] is unaffected by /a and /d; and :digit: and
+ * :xdigit: don't have runtime differences under /d. So we
+ * can special case these, and avoid some extra work below,
+ * and at runtime. */
+ _invlist_union_maybe_complement_2nd(
+ simple_posixes,
+ PL_XPosix_ptrs[classnum],
+ namedclass % 2 != 0,
+ &simple_posixes);
+ }
+ else { /* Garden variety class. If is NUPPER, NALPHA, ...
+ complement and use nposixes */
+ SV** posixes_ptr = namedclass % 2 == 0
+ ? &posixes
+ : &nposixes;
+ _invlist_union_maybe_complement_2nd(
+ *posixes_ptr,
+ PL_XPosix_ptrs[classnum],
+ namedclass % 2 != 0,
+ posixes_ptr);
+ }
+ }
+ } /* end of namedclass \blah */
+
+ if (skip_white) {
+ RExC_parse = regpatws(pRExC_state, RExC_parse,
+ FALSE /* means don't recognize comments */ );
+ }
+
+ /* If 'range' is set, 'value' is the ending of a range--check its
+ * validity. (If value isn't a single code point in the case of a
+ * range, we should have figured that out above in the code that
+ * catches false ranges). Later, we will handle each individual code
+ * point in the range. If 'range' isn't set, this could be the
+ * beginning of a range, so check for that by looking ahead to see if
+ * the next real character to be processed is the range indicator--the
+ * minus sign */
+
+ if (range) {
+#ifdef EBCDIC
+ /* For unicode ranges, we have to test that the Unicode as opposed
+ * to the native values are not decreasing. (Above 255, there is
+ * no difference between native and Unicode) */
+ if (unicode_range && prevvalue < 255 && value < 255) {
+ if (NATIVE_TO_LATIN1(prevvalue) > NATIVE_TO_LATIN1(value)) {
+ goto backwards_range;
+ }
+ }
+ else
+#endif
+ if (prevvalue > value) /* b-a */ {
+ int w;
+#ifdef EBCDIC
+ backwards_range:
+#endif
+ w = RExC_parse - rangebegin;
+ vFAIL2utf8f(
+ "Invalid [] range \"%"UTF8f"\"",
+ UTF8fARG(UTF, w, rangebegin));
+ NOT_REACHED; /* NOTREACHED */
+ }
+ }
+ else {
+ prevvalue = value; /* save the beginning of the potential range */
+ if (! stop_at_1 /* Can't be a range if parsing just one thing */
+ && *RExC_parse == '-')
+ {
+ char* next_char_ptr = RExC_parse + 1;
+ if (skip_white) { /* Get the next real char after the '-' */
+ next_char_ptr = regpatws(pRExC_state,
+ RExC_parse + 1,
+ FALSE); /* means don't recognize
+ comments */
+ }
+
+ /* If the '-' is at the end of the class (just before the ']',
+ * it is a literal minus; otherwise it is a range */
+ if (next_char_ptr < RExC_end && *next_char_ptr != ']') {
+ RExC_parse = next_char_ptr;
+
+ /* a bad range like \w-, [:word:]- ? */
+ if (namedclass > OOB_NAMEDCLASS) {
+ if (strict || (PASS2 && ckWARN(WARN_REGEXP))) {
+ const int w = RExC_parse >= rangebegin
+ ? RExC_parse - rangebegin
+ : 0;
+ if (strict) {
+ vFAIL4("False [] range \"%*.*s\"",
+ w, w, rangebegin);
+ }
+ else if (PASS2) {
+ vWARN4(RExC_parse,
+ "False [] range \"%*.*s\"",
+ w, w, rangebegin);
+ }
+ }
+ if (!SIZE_ONLY) {
+ cp_list = add_cp_to_invlist(cp_list, '-');
+ }
+ element_count++;
+ } else
+ range = 1; /* yeah, it's a range! */
+ continue; /* but do it the next time */
+ }
+ }
+ }
+
+ if (namedclass > OOB_NAMEDCLASS) {
+ continue;
+ }
+
+ /* Here, we have a single value this time through the loop, and
+ * <prevvalue> is the beginning of the range, if any; or <value> if
+ * not. */
+
+ /* non-Latin1 code point implies unicode semantics. Must be set in
+ * pass1 so is there for the whole of pass 2 */
+ if (value > 255) {
+ RExC_uni_semantics = 1;
+ }
+
+ /* Ready to process either the single value, or the completed range.
+ * For single-valued non-inverted ranges, we consider the possibility
+ * of multi-char folds. (We made a conscious decision to not do this
+ * for the other cases because it can often lead to non-intuitive
+ * results. For example, you have the peculiar case that:
+ * "s s" =~ /^[^\xDF]+$/i => Y
+ * "ss" =~ /^[^\xDF]+$/i => N
+ *
+ * See [perl #89750] */
+ if (FOLD && allow_multi_folds && value == prevvalue) {
+ if (value == LATIN_SMALL_LETTER_SHARP_S
+ || (value > 255 && _invlist_contains_cp(PL_HasMultiCharFold,
+ value)))
+ {
+ /* Here <value> is indeed a multi-char fold. Get what it is */
+
+ U8 foldbuf[UTF8_MAXBYTES_CASE];
+ STRLEN foldlen;
+
+ UV folded = _to_uni_fold_flags(
+ value,
+ foldbuf,
+ &foldlen,
+ FOLD_FLAGS_FULL | (ASCII_FOLD_RESTRICTED
+ ? FOLD_FLAGS_NOMIX_ASCII
+ : 0)
+ );
+
+ /* Here, <folded> should be the first character of the
+ * multi-char fold of <value>, with <foldbuf> containing the
+ * whole thing. But, if this fold is not allowed (because of
+ * the flags), <fold> will be the same as <value>, and should
+ * be processed like any other character, so skip the special
+ * handling */
+ if (folded != value) {
+
+ /* Skip if we are recursed, currently parsing the class
+ * again. Otherwise add this character to the list of
+ * multi-char folds. */
+ if (! RExC_in_multi_char_class) {
+ STRLEN cp_count = utf8_length(foldbuf,
+ foldbuf + foldlen);
+ SV* multi_fold = sv_2mortal(newSVpvs(""));
+
+ Perl_sv_catpvf(aTHX_ multi_fold, "\\x{%"UVXf"}", value);
+
+ multi_char_matches
+ = add_multi_match(multi_char_matches,
+ multi_fold,
+ cp_count);
+
+ }
+
+ /* This element should not be processed further in this
+ * class */
+ element_count--;
+ value = save_value;
+ prevvalue = save_prevvalue;
+ continue;
+ }
+ }
+ }
+
+ if (strict && PASS2 && ckWARN(WARN_REGEXP)) {
+ if (range) {
+
+ /* If the range starts above 255, everything is portable and
+ * likely to be so for any forseeable character set, so don't
+ * warn. */
+ if (unicode_range && non_portable_endpoint && prevvalue < 256) {
+ vWARN(RExC_parse, "Both or neither range ends should be Unicode");
+ }
+ else if (prevvalue != value) {
+
+ /* Under strict, ranges that stop and/or end in an ASCII
+ * printable should have each end point be a portable value
+ * for it (preferably like 'A', but we don't warn if it is
+ * a (portable) Unicode name or code point), and the range
+ * must be be all digits or all letters of the same case.
+ * Otherwise, the range is non-portable and unclear as to
+ * what it contains */
+ if ((isPRINT_A(prevvalue) || isPRINT_A(value))
+ && (non_portable_endpoint
+ || ! ((isDIGIT_A(prevvalue) && isDIGIT_A(value))
+ || (isLOWER_A(prevvalue) && isLOWER_A(value))
+ || (isUPPER_A(prevvalue) && isUPPER_A(value)))))
+ {
+ vWARN(RExC_parse, "Ranges of ASCII printables should be some subset of \"0-9\", \"A-Z\", or \"a-z\"");
+ }
+ else if (prevvalue >= 0x660) { /* ARABIC_INDIC_DIGIT_ZERO */
+
+ /* But the nature of Unicode and languages mean we
+ * can't do the same checks for above-ASCII ranges,
+ * except in the case of digit ones. These should
+ * contain only digits from the same group of 10. The
+ * ASCII case is handled just above. 0x660 is the
+ * first digit character beyond ASCII. Hence here, the
+ * range could be a range of digits. Find out. */
+ IV index_start = _invlist_search(PL_XPosix_ptrs[_CC_DIGIT],
+ prevvalue);
+ IV index_final = _invlist_search(PL_XPosix_ptrs[_CC_DIGIT],
+ value);
+
+ /* If the range start and final points are in the same
+ * inversion list element, it means that either both
+ * are not digits, or both are digits in a consecutive
+ * sequence of digits. (So far, Unicode has kept all
+ * such sequences as distinct groups of 10, but assert
+ * to make sure). If the end points are not in the
+ * same element, neither should be a digit. */
+ if (index_start == index_final) {
+ assert(! ELEMENT_RANGE_MATCHES_INVLIST(index_start)
+ || (invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start+1]
+ - invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
+ == 10)
+ /* But actually Unicode did have one group of 11
+ * 'digits' in 5.2, so in case we are operating
+ * on that version, let that pass */
+ || (invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start+1]
+ - invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
+ == 11
+ && invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
+ == 0x19D0)
+ );
+ }
+ else if ((index_start >= 0
+ && ELEMENT_RANGE_MATCHES_INVLIST(index_start))
+ || (index_final >= 0
+ && ELEMENT_RANGE_MATCHES_INVLIST(index_final)))
+ {
+ vWARN(RExC_parse, "Ranges of digits should be from the same group of 10");
+ }
+ }
+ }
+ }
+ if ((! range || prevvalue == value) && non_portable_endpoint) {
+ if (isPRINT_A(value)) {
+ char literal[3];
+ unsigned d = 0;
+ if (isBACKSLASHED_PUNCT(value)) {
+ literal[d++] = '\\';
+ }
+ literal[d++] = (char) value;
+ literal[d++] = '\0';
+
+ vWARN4(RExC_parse,
+ "\"%.*s\" is more clearly written simply as \"%s\"",
+ (int) (RExC_parse - rangebegin),
+ rangebegin,
+ literal
+ );
+ }
+ else if isMNEMONIC_CNTRL(value) {
+ vWARN4(RExC_parse,
+ "\"%.*s\" is more clearly written simply as \"%s\"",
+ (int) (RExC_parse - rangebegin),
+ rangebegin,
+ cntrl_to_mnemonic((char) value)
+ );
+ }
+ }
+ }
+
+ /* Deal with this element of the class */
+ if (! SIZE_ONLY) {
+
+#ifndef EBCDIC
+ cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
+ prevvalue, value);
+#else
+ /* On non-ASCII platforms, for ranges that span all of 0..255, and
+ * ones that don't require special handling, we can just add the
+ * range like we do for ASCII platforms */
+ if ((UNLIKELY(prevvalue == 0) && value >= 255)
+ || ! (prevvalue < 256
+ && (unicode_range
+ || (! non_portable_endpoint
+ && ((isLOWER_A(prevvalue) && isLOWER_A(value))
+ || (isUPPER_A(prevvalue)
+ && isUPPER_A(value)))))))
+ {
+ cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
+ prevvalue, value);
+ }
+ else {
+ /* Here, requires special handling. This can be because it is
+ * a range whose code points are considered to be Unicode, and
+ * so must be individually translated into native, or because
+ * its a subrange of 'A-Z' or 'a-z' which each aren't
+ * contiguous in EBCDIC, but we have defined them to include
+ * only the "expected" upper or lower case ASCII alphabetics.
+ * Subranges above 255 are the same in native and Unicode, so
+ * can be added as a range */
+ U8 start = NATIVE_TO_LATIN1(prevvalue);
+ unsigned j;
+ U8 end = (value < 256) ? NATIVE_TO_LATIN1(value) : 255;
+ for (j = start; j <= end; j++) {
+ cp_foldable_list = add_cp_to_invlist(cp_foldable_list, LATIN1_TO_NATIVE(j));
+ }
+ if (value > 255) {
+ cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
+ 256, value);
+ }
+ }
+#endif
+ }
+
+ range = 0; /* this range (if it was one) is done now */
+ } /* End of loop through all the text within the brackets */
+
+ /* If anything in the class expands to more than one character, we have to
+ * deal with them by building up a substitute parse string, and recursively
+ * calling reg() on it, instead of proceeding */
+ if (multi_char_matches) {
+ SV * substitute_parse = newSVpvn_flags("?:", 2, SVs_TEMP);
+ I32 cp_count;
+ STRLEN len;
+ char *save_end = RExC_end;
+ char *save_parse = RExC_parse;
+ bool first_time = TRUE; /* First multi-char occurrence doesn't get
+ a "|" */
+ I32 reg_flags;
+
+ assert(! invert);
+#if 0 /* Have decided not to deal with multi-char folds in inverted classes,
+ because too confusing */
+ if (invert) {
+ sv_catpv(substitute_parse, "(?:");
+ }
+#endif
+
+ /* Look at the longest folds first */
+ for (cp_count = av_tindex(multi_char_matches); cp_count > 0; cp_count--) {
+
+ if (av_exists(multi_char_matches, cp_count)) {
+ AV** this_array_ptr;
+ SV* this_sequence;
+
+ this_array_ptr = (AV**) av_fetch(multi_char_matches,
+ cp_count, FALSE);
+ while ((this_sequence = av_pop(*this_array_ptr)) !=
+ &PL_sv_undef)
+ {
+ if (! first_time) {
+ sv_catpv(substitute_parse, "|");
+ }
+ first_time = FALSE;
+
+ sv_catpv(substitute_parse, SvPVX(this_sequence));
+ }
+ }
+ }
+
+ /* If the character class contains anything else besides these
+ * multi-character folds, have to include it in recursive parsing */
+ if (element_count) {
+ sv_catpv(substitute_parse, "|[");
+ sv_catpvn(substitute_parse, orig_parse, RExC_parse - orig_parse);
+ sv_catpv(substitute_parse, "]");
+ }
+
+ sv_catpv(substitute_parse, ")");
+#if 0
+ if (invert) {
+ /* This is a way to get the parse to skip forward a whole named
+ * sequence instead of matching the 2nd character when it fails the
+ * first */
+ sv_catpv(substitute_parse, "(*THEN)(*SKIP)(*FAIL)|.)");
+ }
+#endif
+
+ RExC_parse = SvPV(substitute_parse, len);
+ RExC_end = RExC_parse + len;
+ RExC_in_multi_char_class = 1;
+ RExC_override_recoding = 1;
+ RExC_emit = (regnode *)orig_emit;
+
+ ret = reg(pRExC_state, 1, ®_flags, depth+1);
+
+ *flagp |= reg_flags&(HASWIDTH|SIMPLE|SPSTART|POSTPONED|RESTART_UTF8);
+
+ RExC_parse = save_parse;
+ RExC_end = save_end;
+ RExC_in_multi_char_class = 0;
+ RExC_override_recoding = 0;
+ SvREFCNT_dec_NN(multi_char_matches);
+ return ret;
+ }
+
+ /* Here, we've gone through the entire class and dealt with multi-char
+ * folds. We are now in a position that we can do some checks to see if we
+ * can optimize this ANYOF node into a simpler one, even in Pass 1.
+ * Currently we only do two checks:
+ * 1) is in the unlikely event that the user has specified both, eg. \w and
+ * \W under /l, then the class matches everything. (This optimization
+ * is done only to make the optimizer code run later work.)
+ * 2) if the character class contains only a single element (including a
+ * single range), we see if there is an equivalent node for it.
+ * Other checks are possible */
+ if (! ret_invlist /* Can't optimize if returning the constructed
+ inversion list */
+ && (UNLIKELY(posixl_matches_all) || element_count == 1))
+ {
+ U8 op = END;
+ U8 arg = 0;
+
+ if (UNLIKELY(posixl_matches_all)) {
+ op = SANY;
+ }
+ else if (namedclass > OOB_NAMEDCLASS) { /* this is a named class, like
+ \w or [:digit:] or \p{foo}
+ */
+
+ /* All named classes are mapped into POSIXish nodes, with its FLAG
+ * argument giving which class it is */
+ switch ((I32)namedclass) {
+ case ANYOF_UNIPROP:
+ break;
+
+ /* These don't depend on the charset modifiers. They always
+ * match under /u rules */
+ case ANYOF_NHORIZWS:
+ case ANYOF_HORIZWS:
+ namedclass = ANYOF_BLANK + namedclass - ANYOF_HORIZWS;
+ /* FALLTHROUGH */
+
+ case ANYOF_NVERTWS:
+ case ANYOF_VERTWS:
+ op = POSIXU;
+ goto join_posix;
+
+ /* The actual POSIXish node for all the rest depends on the
+ * charset modifier. The ones in the first set depend only on
+ * ASCII or, if available on this platform, also locale */
+ case ANYOF_ASCII:
+ case ANYOF_NASCII:
+#ifdef HAS_ISASCII
+ op = (LOC) ? POSIXL : POSIXA;
+#else
+ op = POSIXA;
+#endif
+ goto join_posix;
+
+ /* The following don't have any matches in the upper Latin1
+ * range, hence /d is equivalent to /u for them. Making it /u
+ * saves some branches at runtime */
+ case ANYOF_DIGIT:
+ case ANYOF_NDIGIT:
+ case ANYOF_XDIGIT:
+ case ANYOF_NXDIGIT:
+ if (! DEPENDS_SEMANTICS) {
+ goto treat_as_default;
+ }
+
+ op = POSIXU;
+ goto join_posix;
+
+ /* The following change to CASED under /i */
+ case ANYOF_LOWER:
+ case ANYOF_NLOWER:
+ case ANYOF_UPPER:
+ case ANYOF_NUPPER:
+ if (FOLD) {
+ namedclass = ANYOF_CASED + (namedclass % 2);
+ }
+ /* FALLTHROUGH */
+
+ /* The rest have more possibilities depending on the charset.
+ * We take advantage of the enum ordering of the charset
+ * modifiers to get the exact node type, */
+ default:
+ treat_as_default:
+ op = POSIXD + get_regex_charset(RExC_flags);
+ if (op > POSIXA) { /* /aa is same as /a */
+ op = POSIXA;
+ }
+
+ join_posix:
+ /* The odd numbered ones are the complements of the
+ * next-lower even number one */
+ if (namedclass % 2 == 1) {
+ invert = ! invert;
+ namedclass--;
+ }
+ arg = namedclass_to_classnum(namedclass);
+ break;
+ }
+ }
+ else if (value == prevvalue) {
+
+ /* Here, the class consists of just a single code point */
+
+ if (invert) {
+ if (! LOC && value == '\n') {
+ op = REG_ANY; /* Optimize [^\n] */
+ *flagp |= HASWIDTH|SIMPLE;
+ MARK_NAUGHTY(1);
+ }
+ }
+ else if (value < 256 || UTF) {
+
+ /* Optimize a single value into an EXACTish node, but not if it
+ * would require converting the pattern to UTF-8. */
+ op = compute_EXACTish(pRExC_state);
+ }
+ } /* Otherwise is a range */
+ else if (! LOC) { /* locale could vary these */
+ if (prevvalue == '0') {
+ if (value == '9') {
+ arg = _CC_DIGIT;
+ op = POSIXA;
+ }
+ }
+ else if (! FOLD || ASCII_FOLD_RESTRICTED) {
+ /* We can optimize A-Z or a-z, but not if they could match
+ * something like the KELVIN SIGN under /i. */
+ if (prevvalue == 'A') {
+ if (value == 'Z'
+#ifdef EBCDIC
+ && ! non_portable_endpoint
+#endif
+ ) {
+ arg = (FOLD) ? _CC_ALPHA : _CC_UPPER;
+ op = POSIXA;
+ }
+ }
+ else if (prevvalue == 'a') {
+ if (value == 'z'
+#ifdef EBCDIC
+ && ! non_portable_endpoint
+#endif
+ ) {
+ arg = (FOLD) ? _CC_ALPHA : _CC_LOWER;
+ op = POSIXA;
+ }
+ }
+ }
+ }
+
+ /* Here, we have changed <op> away from its initial value iff we found
+ * an optimization */
+ if (op != END) {
+
+ /* Throw away this ANYOF regnode, and emit the calculated one,
+ * which should correspond to the beginning, not current, state of
+ * the parse */
+ const char * cur_parse = RExC_parse;
+ RExC_parse = (char *)orig_parse;
+ if ( SIZE_ONLY) {
+ if (! LOC) {
+
+ /* To get locale nodes to not use the full ANYOF size would
+ * require moving the code above that writes the portions
+ * of it that aren't in other nodes to after this point.
+ * e.g. ANYOF_POSIXL_SET */
+ RExC_size = orig_size;
+ }
+ }
+ else {
+ RExC_emit = (regnode *)orig_emit;
+ if (PL_regkind[op] == POSIXD) {
+ if (op == POSIXL) {
+ RExC_contains_locale = 1;
+ }
+ if (invert) {
+ op += NPOSIXD - POSIXD;
+ }
+ }
+ }
+
+ ret = reg_node(pRExC_state, op);
+
+ if (PL_regkind[op] == POSIXD || PL_regkind[op] == NPOSIXD) {
+ if (! SIZE_ONLY) {
+ FLAGS(ret) = arg;
+ }
+ *flagp |= HASWIDTH|SIMPLE;
+ }
+ else if (PL_regkind[op] == EXACT) {
+ alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value,
+ TRUE /* downgradable to EXACT */
+ );
+ }
+
+ RExC_parse = (char *) cur_parse;
+
+ SvREFCNT_dec(posixes);
+ SvREFCNT_dec(nposixes);
+ SvREFCNT_dec(simple_posixes);
+ SvREFCNT_dec(cp_list);
+ SvREFCNT_dec(cp_foldable_list);
+ return ret;
+ }
+ }
+
+ if (SIZE_ONLY)
+ return ret;
+ /****** !SIZE_ONLY (Pass 2) AFTER HERE *********/
+
+ /* If folding, we calculate all characters that could fold to or from the
+ * ones already on the list */
+ if (cp_foldable_list) {
+ if (FOLD) {
+ UV start, end; /* End points of code point ranges */
+
+ SV* fold_intersection = NULL;
+ SV** use_list;
+
+ /* Our calculated list will be for Unicode rules. For locale
+ * matching, we have to keep a separate list that is consulted at
+ * runtime only when the locale indicates Unicode rules. For
+ * non-locale, we just use to the general list */
+ if (LOC) {
+ use_list = &only_utf8_locale_list;
+ }
+ else {
+ use_list = &cp_list;
+ }
+
+ /* Only the characters in this class that participate in folds need
+ * be checked. Get the intersection of this class and all the
+ * possible characters that are foldable. This can quickly narrow
+ * down a large class */
+ _invlist_intersection(PL_utf8_foldable, cp_foldable_list,
+ &fold_intersection);
+
+ /* The folds for all the Latin1 characters are hard-coded into this
+ * program, but we have to go out to disk to get the others. */
+ if (invlist_highest(cp_foldable_list) >= 256) {
+
+ /* This is a hash that for a particular fold gives all
+ * characters that are involved in it */
+ if (! PL_utf8_foldclosures) {
+ _load_PL_utf8_foldclosures();
+ }
+ }
+
+ /* Now look at the foldable characters in this class individually */
+ invlist_iterinit(fold_intersection);
+ while (invlist_iternext(fold_intersection, &start, &end)) {
+ UV j;
+
+ /* Look at every character in the range */
+ for (j = start; j <= end; j++) {
+ U8 foldbuf[UTF8_MAXBYTES_CASE+1];
+ STRLEN foldlen;
+ SV** listp;
+
+ if (j < 256) {
+
+ if (IS_IN_SOME_FOLD_L1(j)) {
+
+ /* ASCII is always matched; non-ASCII is matched
+ * only under Unicode rules (which could happen
+ * under /l if the locale is a UTF-8 one */
+ if (isASCII(j) || ! DEPENDS_SEMANTICS) {
+ *use_list = add_cp_to_invlist(*use_list,
+ PL_fold_latin1[j]);
+ }
+ else {
+ depends_list =
+ add_cp_to_invlist(depends_list,
+ PL_fold_latin1[j]);
+ }
+ }
+
+ if (HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(j)
+ && (! isASCII(j) || ! ASCII_FOLD_RESTRICTED))
+ {
+ add_above_Latin1_folds(pRExC_state,
+ (U8) j,
+ use_list);
+ }
+ continue;
+ }
+
+ /* Here is an above Latin1 character. We don't have the
+ * rules hard-coded for it. First, get its fold. This is
+ * the simple fold, as the multi-character folds have been
+ * handled earlier and separated out */
+ _to_uni_fold_flags(j, foldbuf, &foldlen,
+ (ASCII_FOLD_RESTRICTED)
+ ? FOLD_FLAGS_NOMIX_ASCII
+ : 0);
+
+ /* Single character fold of above Latin1. Add everything in
+ * its fold closure to the list that this node should match.
+ * The fold closures data structure is a hash with the keys
+ * being the UTF-8 of every character that is folded to, like
+ * 'k', and the values each an array of all code points that
+ * fold to its key. e.g. [ 'k', 'K', KELVIN_SIGN ].
+ * Multi-character folds are not included */
+ if ((listp = hv_fetch(PL_utf8_foldclosures,
+ (char *) foldbuf, foldlen, FALSE)))
+ {
+ AV* list = (AV*) *listp;
+ IV k;
+ for (k = 0; k <= av_tindex(list); k++) {
+ SV** c_p = av_fetch(list, k, FALSE);
+ UV c;
+ assert(c_p);
+
+ c = SvUV(*c_p);
+
+ /* /aa doesn't allow folds between ASCII and non- */
+ if ((ASCII_FOLD_RESTRICTED
+ && (isASCII(c) != isASCII(j))))
+ {
+ continue;
+ }
+
+ /* Folds under /l which cross the 255/256 boundary
+ * are added to a separate list. (These are valid
+ * only when the locale is UTF-8.) */
+ if (c < 256 && LOC) {
+ *use_list = add_cp_to_invlist(*use_list, c);
+ continue;
+ }
+
+ if (isASCII(c) || c > 255 || AT_LEAST_UNI_SEMANTICS)
+ {
+ cp_list = add_cp_to_invlist(cp_list, c);
+ }
+ else {
+ /* Similarly folds involving non-ascii Latin1
+ * characters under /d are added to their list */
+ depends_list = add_cp_to_invlist(depends_list,
+ c);
+ }
+ }
+ }
+ }
+ }
+ SvREFCNT_dec_NN(fold_intersection);
+ }
+
+ /* Now that we have finished adding all the folds, there is no reason
+ * to keep the foldable list separate */
+ _invlist_union(cp_list, cp_foldable_list, &cp_list);
+ SvREFCNT_dec_NN(cp_foldable_list);
+ }
+
+ /* And combine the result (if any) with any inversion list from posix
+ * classes. The lists are kept separate up to now because we don't want to
+ * fold the classes (folding of those is automatically handled by the swash
+ * fetching code) */
+ if (simple_posixes) {
+ _invlist_union(cp_list, simple_posixes, &cp_list);
+ SvREFCNT_dec_NN(simple_posixes);
+ }
+ if (posixes || nposixes) {
+ if (posixes && AT_LEAST_ASCII_RESTRICTED) {
+ /* Under /a and /aa, nothing above ASCII matches these */
+ _invlist_intersection(posixes,
+ PL_XPosix_ptrs[_CC_ASCII],
+ &posixes);
+ }
+ if (nposixes) {
+ if (DEPENDS_SEMANTICS) {
+ /* Under /d, everything in the upper half of the Latin1 range
+ * matches these complements */
+ ANYOF_FLAGS(ret) |= ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII;
+ }
+ else if (AT_LEAST_ASCII_RESTRICTED) {
+ /* Under /a and /aa, everything above ASCII matches these
+ * complements */
+ _invlist_union_complement_2nd(nposixes,
+ PL_XPosix_ptrs[_CC_ASCII],
+ &nposixes);
+ }
+ if (posixes) {
+ _invlist_union(posixes, nposixes, &posixes);
+ SvREFCNT_dec_NN(nposixes);
+ }
+ else {
+ posixes = nposixes;
+ }
+ }
+ if (! DEPENDS_SEMANTICS) {
+ if (cp_list) {
+ _invlist_union(cp_list, posixes, &cp_list);
+ SvREFCNT_dec_NN(posixes);
+ }
+ else {
+ cp_list = posixes;
+ }
+ }
+ else {
+ /* Under /d, we put into a separate list the Latin1 things that
+ * match only when the target string is utf8 */
+ SV* nonascii_but_latin1_properties = NULL;
+ _invlist_intersection(posixes, PL_UpperLatin1,
+ &nonascii_but_latin1_properties);
+ _invlist_subtract(posixes, nonascii_but_latin1_properties,
+ &posixes);
+ if (cp_list) {
+ _invlist_union(cp_list, posixes, &cp_list);
+ SvREFCNT_dec_NN(posixes);
+ }
+ else {
+ cp_list = posixes;
+ }
+
+ if (depends_list) {
+ _invlist_union(depends_list, nonascii_but_latin1_properties,
+ &depends_list);
+ SvREFCNT_dec_NN(nonascii_but_latin1_properties);
+ }
+ else {
+ depends_list = nonascii_but_latin1_properties;
+ }
+ }
+ }
+
+ /* And combine the result (if any) with any inversion list from properties.
+ * The lists are kept separate up to now so that we can distinguish the two
+ * in regards to matching above-Unicode. A run-time warning is generated
+ * if a Unicode property is matched against a non-Unicode code point. But,
+ * we allow user-defined properties to match anything, without any warning,
+ * and we also suppress the warning if there is a portion of the character
+ * class that isn't a Unicode property, and which matches above Unicode, \W
+ * or [\x{110000}] for example.
+ * (Note that in this case, unlike the Posix one above, there is no
+ * <depends_list>, because having a Unicode property forces Unicode
+ * semantics */
+ if (properties) {
+ if (cp_list) {
+
+ /* If it matters to the final outcome, see if a non-property
+ * component of the class matches above Unicode. If so, the
+ * warning gets suppressed. This is true even if just a single
+ * such code point is specified, as though not strictly correct if
+ * another such code point is matched against, the fact that they
+ * are using above-Unicode code points indicates they should know
+ * the issues involved */
+ if (warn_super) {
+ warn_super = ! (invert
+ ^ (invlist_highest(cp_list) > PERL_UNICODE_MAX));
+ }
+
+ _invlist_union(properties, cp_list, &cp_list);
+ SvREFCNT_dec_NN(properties);
+ }
+ else {
+ cp_list = properties;
+ }
+
+ if (warn_super) {
+ ANYOF_FLAGS(ret) |= ANYOF_WARN_SUPER;
+ }
+ }
+
+ /* Here, we have calculated what code points should be in the character
+ * class.
+ *
+ * Now we can see about various optimizations. Fold calculation (which we
+ * did above) needs to take place before inversion. Otherwise /[^k]/i
+ * would invert to include K, which under /i would match k, which it
+ * shouldn't. Therefore we can't invert folded locale now, as it won't be
+ * folded until runtime */
+
+ /* If we didn't do folding, it's because some information isn't available
+ * until runtime; set the run-time fold flag for these. (We don't have to
+ * worry about properties folding, as that is taken care of by the swash
+ * fetching). We know to set the flag if we have a non-NULL list for UTF-8
+ * locales, or the class matches at least one 0-255 range code point */
+ if (LOC && FOLD) {
+ if (only_utf8_locale_list) {
+ ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD;
+ }
+ else if (cp_list) { /* Look to see if there a 0-255 code point is in
+ the list */
+ UV start, end;
+ invlist_iterinit(cp_list);
+ if (invlist_iternext(cp_list, &start, &end) && start < 256) {
+ ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD;
+ }
+ invlist_iterfinish(cp_list);
+ }
+ }
+
+ /* Optimize inverted simple patterns (e.g. [^a-z]) when everything is known
+ * at compile time. Besides not inverting folded locale now, we can't
+ * invert if there are things such as \w, which aren't known until runtime
+ * */
+ if (cp_list
+ && invert
+ && ! (ANYOF_FLAGS(ret) & (ANYOF_LOCALE_FLAGS))
+ && ! depends_list
+ && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
+ {
+ _invlist_invert(cp_list);
+
+ /* Any swash can't be used as-is, because we've inverted things */
+ if (swash) {
+ SvREFCNT_dec_NN(swash);
+ swash = NULL;
+ }
+
+ /* Clear the invert flag since have just done it here */
+ invert = FALSE;
+ }
+
+ if (ret_invlist) {
+ assert(cp_list);
+
+ *ret_invlist = cp_list;
+ SvREFCNT_dec(swash);
+
+ /* Discard the generated node */
+ if (SIZE_ONLY) {
+ RExC_size = orig_size;
+ }
+ else {
+ RExC_emit = orig_emit;
+ }
+ return orig_emit;
+ }
+
+ /* Some character classes are equivalent to other nodes. Such nodes take
+ * up less room and generally fewer operations to execute than ANYOF nodes.
+ * Above, we checked for and optimized into some such equivalents for
+ * certain common classes that are easy to test. Getting to this point in
+ * the code means that the class didn't get optimized there. Since this
+ * code is only executed in Pass 2, it is too late to save space--it has
+ * been allocated in Pass 1, and currently isn't given back. But turning
+ * things into an EXACTish node can allow the optimizer to join it to any
+ * adjacent such nodes. And if the class is equivalent to things like /./,
+ * expensive run-time swashes can be avoided. Now that we have more
+ * complete information, we can find things necessarily missed by the
+ * earlier code. I (khw) am not sure how much to look for here. It would
+ * be easy, but perhaps too slow, to check any candidates against all the
+ * node types they could possibly match using _invlistEQ(). */
+
+ if (cp_list
+ && ! invert
+ && ! depends_list
+ && ! (ANYOF_FLAGS(ret) & (ANYOF_LOCALE_FLAGS))
+ && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
+
+ /* We don't optimize if we are supposed to make sure all non-Unicode
+ * code points raise a warning, as only ANYOF nodes have this check.
+ * */
+ && ! ((ANYOF_FLAGS(ret) & ANYOF_WARN_SUPER) && ALWAYS_WARN_SUPER))
+ {
+ UV start, end;
+ U8 op = END; /* The optimzation node-type */
+ const char * cur_parse= RExC_parse;
+
+ invlist_iterinit(cp_list);
+ if (! invlist_iternext(cp_list, &start, &end)) {
+
+ /* Here, the list is empty. This happens, for example, when a
+ * Unicode property is the only thing in the character class, and
+ * it doesn't match anything. (perluniprops.pod notes such
+ * properties) */
+ op = OPFAIL;
+ *flagp |= HASWIDTH|SIMPLE;
+ }
+ else if (start == end) { /* The range is a single code point */
+ if (! invlist_iternext(cp_list, &start, &end)
+
+ /* Don't do this optimization if it would require changing
+ * the pattern to UTF-8 */
+ && (start < 256 || UTF))
+ {
+ /* Here, the list contains a single code point. Can optimize
+ * into an EXACTish node */
+
+ value = start;
+
+ if (! FOLD) {
+ op = (LOC)
+ ? EXACTL
+ : EXACT;
+ }
+ else if (LOC) {
+
+ /* A locale node under folding with one code point can be
+ * an EXACTFL, as its fold won't be calculated until
+ * runtime */
+ op = EXACTFL;
+ }
+ else {
+
+ /* Here, we are generally folding, but there is only one
+ * code point to match. If we have to, we use an EXACT
+ * node, but it would be better for joining with adjacent
+ * nodes in the optimization pass if we used the same
+ * EXACTFish node that any such are likely to be. We can
+ * do this iff the code point doesn't participate in any
+ * folds. For example, an EXACTF of a colon is the same as
+ * an EXACT one, since nothing folds to or from a colon. */
+ if (value < 256) {
+ if (IS_IN_SOME_FOLD_L1(value)) {
+ op = EXACT;
+ }
+ }
+ else {
+ if (_invlist_contains_cp(PL_utf8_foldable, value)) {
+ op = EXACT;
+ }
+ }
+
+ /* If we haven't found the node type, above, it means we
+ * can use the prevailing one */
+ if (op == END) {
+ op = compute_EXACTish(pRExC_state);
+ }
+ }
+ }
+ }
+ else if (start == 0) {
+ if (end == UV_MAX) {
+ op = SANY;
+ *flagp |= HASWIDTH|SIMPLE;
+ MARK_NAUGHTY(1);
+ }
+ else if (end == '\n' - 1
+ && invlist_iternext(cp_list, &start, &end)
+ && start == '\n' + 1 && end == UV_MAX)
+ {
+ op = REG_ANY;
+ *flagp |= HASWIDTH|SIMPLE;
+ MARK_NAUGHTY(1);
+ }
+ }
+ invlist_iterfinish(cp_list);
+
+ if (op != END) {
+ RExC_parse = (char *)orig_parse;
+ RExC_emit = (regnode *)orig_emit;
+
+ ret = reg_node(pRExC_state, op);
+
+ RExC_parse = (char *)cur_parse;
+
+ if (PL_regkind[op] == EXACT) {
+ alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value,
+ TRUE /* downgradable to EXACT */
+ );
+ }
+
+ SvREFCNT_dec_NN(cp_list);
+ return ret;
+ }
+ }
+
+ /* Here, <cp_list> contains all the code points we can determine at
+ * compile time that match under all conditions. Go through it, and
+ * for things that belong in the bitmap, put them there, and delete from
+ * <cp_list>. While we are at it, see if everything above 255 is in the
+ * list, and if so, set a flag to speed up execution */
+
+ populate_ANYOF_from_invlist(ret, &cp_list);
+
+ if (invert) {
+ ANYOF_FLAGS(ret) |= ANYOF_INVERT;
+ }
+
+ /* Here, the bitmap has been populated with all the Latin1 code points that
+ * always match. Can now add to the overall list those that match only
+ * when the target string is UTF-8 (<depends_list>). */
+ if (depends_list) {
+ if (cp_list) {
+ _invlist_union(cp_list, depends_list, &cp_list);
+ SvREFCNT_dec_NN(depends_list);
+ }
+ else {
+ cp_list = depends_list;
+ }
+ ANYOF_FLAGS(ret) |= ANYOF_HAS_UTF8_NONBITMAP_MATCHES;
+ }
+
+ /* If there is a swash and more than one element, we can't use the swash in
+ * the optimization below. */
+ if (swash && element_count > 1) {
+ SvREFCNT_dec_NN(swash);
+ swash = NULL;
+ }
+
+ /* Note that the optimization of using 'swash' if it is the only thing in
+ * the class doesn't have us change swash at all, so it can include things
+ * that are also in the bitmap; otherwise we have purposely deleted that
+ * duplicate information */
+ set_ANYOF_arg(pRExC_state, ret, cp_list,
+ (HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
+ ? listsv : NULL,
+ only_utf8_locale_list,
+ swash, has_user_defined_property);
+
+ *flagp |= HASWIDTH|SIMPLE;
+
+ if (ANYOF_FLAGS(ret) & ANYOF_LOCALE_FLAGS) {
+ RExC_contains_locale = 1;
+ }
+
+ return ret;
+}
+
+#undef HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
+
+STATIC void
+S_set_ANYOF_arg(pTHX_ RExC_state_t* const pRExC_state,
+ regnode* const node,
+ SV* const cp_list,
+ SV* const runtime_defns,
+ SV* const only_utf8_locale_list,
+ SV* const swash,
+ const bool has_user_defined_property)
+{
+ /* Sets the arg field of an ANYOF-type node 'node', using information about
+ * the node passed-in. If there is nothing outside the node's bitmap, the
+ * arg is set to ANYOF_ONLY_HAS_BITMAP. Otherwise, it sets the argument to
+ * the count returned by add_data(), having allocated and stored an array,
+ * av, that that count references, as follows:
+ * av[0] stores the character class description in its textual form.
+ * This is used later (regexec.c:Perl_regclass_swash()) to
+ * initialize the appropriate swash, and is also useful for dumping
+ * the regnode. This is set to &PL_sv_undef if the textual
+ * description is not needed at run-time (as happens if the other
+ * elements completely define the class)
+ * av[1] if &PL_sv_undef, is a placeholder to later contain the swash
+ * computed from av[0]. But if no further computation need be done,
+ * the swash is stored here now (and av[0] is &PL_sv_undef).
+ * av[2] stores the inversion list of code points that match only if the
+ * current locale is UTF-8
+ * av[3] stores the cp_list inversion list for use in addition or instead
+ * of av[0]; used only if cp_list exists and av[1] is &PL_sv_undef.
+ * (Otherwise everything needed is already in av[0] and av[1])
+ * av[4] is set if any component of the class is from a user-defined
+ * property; used only if av[3] exists */
+
+ UV n;
+
+ PERL_ARGS_ASSERT_SET_ANYOF_ARG;
+
+ if (! cp_list && ! runtime_defns && ! only_utf8_locale_list) {
+ assert(! (ANYOF_FLAGS(node)
+ & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+ |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES)));
+ ARG_SET(node, ANYOF_ONLY_HAS_BITMAP);
+ }
+ else {
+ AV * const av = newAV();
+ SV *rv;
+
+ assert(ANYOF_FLAGS(node)
+ & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+ |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES|ANYOF_LOC_FOLD));
+
+ av_store(av, 0, (runtime_defns)
+ ? SvREFCNT_inc(runtime_defns) : &PL_sv_undef);
+ if (swash) {
+ assert(cp_list);
+ av_store(av, 1, swash);
+ SvREFCNT_dec_NN(cp_list);
+ }
+ else {
+ av_store(av, 1, &PL_sv_undef);
+ if (cp_list) {
+ av_store(av, 3, cp_list);
+ av_store(av, 4, newSVuv(has_user_defined_property));
+ }
+ }
+
+ if (only_utf8_locale_list) {
+ av_store(av, 2, only_utf8_locale_list);
+ }
+ else {
+ av_store(av, 2, &PL_sv_undef);
+ }
+
+ rv = newRV_noinc(MUTABLE_SV(av));
+ n = add_data(pRExC_state, STR_WITH_LEN("s"));
+ RExC_rxi->data->data[n] = (void*)rv;
+ ARG_SET(node, n);
+ }
+}
+
+#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
+SV *
+Perl__get_regclass_nonbitmap_data(pTHX_ const regexp *prog,
+ const regnode* node,
+ bool doinit,
+ SV** listsvp,
+ SV** only_utf8_locale_ptr,
+ SV* exclude_list)
+
+{
+ /* For internal core use only.
+ * Returns the swash for the input 'node' in the regex 'prog'.
+ * If <doinit> is 'true', will attempt to create the swash if not already
+ * done.
+ * If <listsvp> is non-null, will return the printable contents of the
+ * swash. This can be used to get debugging information even before the
+ * swash exists, by calling this function with 'doinit' set to false, in
+ * which case the components that will be used to eventually create the
+ * swash are returned (in a printable form).
+ * If <exclude_list> is not NULL, it is an inversion list of things to
+ * exclude from what's returned in <listsvp>.
+ * Tied intimately to how S_set_ANYOF_arg sets up the data structure. Note
+ * that, in spite of this function's name, the swash it returns may include
+ * the bitmap data as well */
+
+ SV *sw = NULL;
+ SV *si = NULL; /* Input swash initialization string */
+ SV* invlist = NULL;
+
+ RXi_GET_DECL(prog,progi);
+ const struct reg_data * const data = prog ? progi->data : NULL;
+
+ PERL_ARGS_ASSERT__GET_REGCLASS_NONBITMAP_DATA;
+
+ assert(ANYOF_FLAGS(node)
+ & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+ |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES|ANYOF_LOC_FOLD));
+
+ if (data && data->count) {
+ const U32 n = ARG(node);
+
+ if (data->what[n] == 's') {
+ SV * const rv = MUTABLE_SV(data->data[n]);
+ AV * const av = MUTABLE_AV(SvRV(rv));
+ SV **const ary = AvARRAY(av);
+ U8 swash_init_flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+
+ si = *ary; /* ary[0] = the string to initialize the swash with */
+
+ /* Elements 3 and 4 are either both present or both absent. [3] is
+ * any inversion list generated at compile time; [4] indicates if
+ * that inversion list has any user-defined properties in it. */
+ if (av_tindex(av) >= 2) {
+ if (only_utf8_locale_ptr
+ && ary[2]
+ && ary[2] != &PL_sv_undef)
+ {
+ *only_utf8_locale_ptr = ary[2];
+ }
+ else {
+ assert(only_utf8_locale_ptr);
+ *only_utf8_locale_ptr = NULL;
+ }
+
+ if (av_tindex(av) >= 3) {
+ invlist = ary[3];
+ if (SvUV(ary[4])) {
+ swash_init_flags |= _CORE_SWASH_INIT_USER_DEFINED_PROPERTY;
+ }
+ }
+ else {
+ invlist = NULL;
+ }
+ }
+
+ /* Element [1] is reserved for the set-up swash. If already there,
+ * return it; if not, create it and store it there */
+ if (ary[1] && SvROK(ary[1])) {
+ sw = ary[1];
+ }
+ else if (doinit && ((si && si != &PL_sv_undef)
+ || (invlist && invlist != &PL_sv_undef))) {
+ assert(si);
+ sw = _core_swash_init("utf8", /* the utf8 package */
+ "", /* nameless */
+ si,
+ 1, /* binary */
+ 0, /* not from tr/// */
+ invlist,
+ &swash_init_flags);
+ (void)av_store(av, 1, sw);
+ }
+ }
+ }
+
+ /* If requested, return a printable version of what this swash matches */
+ if (listsvp) {
+ SV* matches_string = newSVpvs("");
+
+ /* The swash should be used, if possible, to get the data, as it
+ * contains the resolved data. But this function can be called at
+ * compile-time, before everything gets resolved, in which case we
+ * return the currently best available information, which is the string
+ * that will eventually be used to do that resolving, 'si' */
+ if ((! sw || (invlist = _get_swash_invlist(sw)) == NULL)
+ && (si && si != &PL_sv_undef))
+ {
+ sv_catsv(matches_string, si);
+ }
+
+ /* Add the inversion list to whatever we have. This may have come from
+ * the swash, or from an input parameter */
+ if (invlist) {
+ if (exclude_list) {
+ SV* clone = invlist_clone(invlist);
+ _invlist_subtract(clone, exclude_list, &clone);
+ sv_catsv(matches_string, _invlist_contents(clone));
+ SvREFCNT_dec_NN(clone);
+ }
+ else {
+ sv_catsv(matches_string, _invlist_contents(invlist));
+ }
+ }
+ *listsvp = matches_string;
+ }
+
+ return sw;
+}
+#endif /* !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION) */
+
+/* reg_skipcomment()
+
+ Absorbs an /x style # comment from the input stream,
+ returning a pointer to the first character beyond the comment, or if the
+ comment terminates the pattern without anything following it, this returns
+ one past the final character of the pattern (in other words, RExC_end) and
+ sets the REG_RUN_ON_COMMENT_SEEN flag.
+
+ Note it's the callers responsibility to ensure that we are
+ actually in /x mode
+
+*/
+
+PERL_STATIC_INLINE char*
+S_reg_skipcomment(RExC_state_t *pRExC_state, char* p)
+{
+ PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
+
+ assert(*p == '#');
+
+ while (p < RExC_end) {
+ if (*(++p) == '\n') {
+ return p+1;
+ }
+ }
+
+ /* we ran off the end of the pattern without ending the comment, so we have
+ * to add an \n when wrapping */
+ RExC_seen |= REG_RUN_ON_COMMENT_SEEN;
+ return p;
+}
+
+/* nextchar()
+
+ Advances the parse position, and optionally absorbs
+ "whitespace" from the inputstream.
+
+ Without /x "whitespace" means (?#...) style comments only,
+ with /x this means (?#...) and # comments and whitespace proper.
+
+ Returns the RExC_parse point from BEFORE the scan occurs.
+
+ This is the /x friendly way of saying RExC_parse++.
+*/
+
+STATIC char*
+S_nextchar(pTHX_ RExC_state_t *pRExC_state)
+{
+ char* const retval = RExC_parse++;
+
+ PERL_ARGS_ASSERT_NEXTCHAR;
+
+ for (;;) {
+ if (RExC_end - RExC_parse >= 3
+ && *RExC_parse == '('
+ && RExC_parse[1] == '?'
+ && RExC_parse[2] == '#')
+ {
+ while (*RExC_parse != ')') {
+ if (RExC_parse == RExC_end)
+ FAIL("Sequence (?#... not terminated");
+ RExC_parse++;
+ }
+ RExC_parse++;
+ continue;
+ }
+ if (RExC_flags & RXf_PMf_EXTENDED) {
+ char * p = regpatws(pRExC_state, RExC_parse,
+ TRUE); /* means recognize comments */
+ if (p != RExC_parse) {
+ RExC_parse = p;
+ continue;
+ }
+ }
+ return retval;
+ }
+}
+
+STATIC regnode *
+S_regnode_guts(pTHX_ RExC_state_t *pRExC_state, const U8 op, const STRLEN extra_size, const char* const name)
+{
+ /* Allocate a regnode for 'op' and returns it, with 'extra_size' extra
+ * space. In pass1, it aligns and increments RExC_size; in pass2,
+ * RExC_emit */
+
+ regnode * const ret = RExC_emit;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGNODE_GUTS;
+
+ assert(extra_size >= regarglen[op]);
+
+ if (SIZE_ONLY) {
+ SIZE_ALIGN(RExC_size);
+ RExC_size += 1 + extra_size;
+ return(ret);
+ }
+ if (RExC_emit >= RExC_emit_bound)
+ Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
+ op, (void*)RExC_emit, (void*)RExC_emit_bound);
+
+ NODE_ALIGN_FILL(ret);
+#ifndef RE_TRACK_PATTERN_OFFSETS
+ PERL_UNUSED_ARG(name);
+#else
+ if (RExC_offsets) { /* MJD */
+ MJD_OFFSET_DEBUG(
+ ("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
+ name, __LINE__,
+ PL_reg_name[op],
+ (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
+ ? "Overwriting end of array!\n" : "OK",
+ (UV)(RExC_emit - RExC_emit_start),
+ (UV)(RExC_parse - RExC_start),
+ (UV)RExC_offsets[0]));
+ Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
+ }
+#endif
+ return(ret);
+}
+
+/*
+- reg_node - emit a node
+*/
+STATIC regnode * /* Location. */
+S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
+{
+ regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reg_node");
+
+ PERL_ARGS_ASSERT_REG_NODE;
+
+ assert(regarglen[op] == 0);
+
+ if (PASS2) {
+ regnode *ptr = ret;
+ FILL_ADVANCE_NODE(ptr, op);
+ REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 1);
+ RExC_emit = ptr;
+ }
+ return(ret);
+}
+
+/*
+- reganode - emit a node with an argument
+*/
+STATIC regnode * /* Location. */
+S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
+{
+ regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reganode");
+
+ PERL_ARGS_ASSERT_REGANODE;
+
+ assert(regarglen[op] == 1);
+
+ if (PASS2) {
+ regnode *ptr = ret;
+ FILL_ADVANCE_NODE_ARG(ptr, op, arg);
+ REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 2);
+ RExC_emit = ptr;
+ }
+ return(ret);
+}
+
+STATIC regnode *
+S_reg2Lanode(pTHX_ RExC_state_t *pRExC_state, const U8 op, const U32 arg1, const I32 arg2)
+{
+ /* emit a node with U32 and I32 arguments */
+
+ regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reg2Lanode");
+
+ PERL_ARGS_ASSERT_REG2LANODE;
+
+ assert(regarglen[op] == 2);
+
+ if (PASS2) {
+ regnode *ptr = ret;
+ FILL_ADVANCE_NODE_2L_ARG(ptr, op, arg1, arg2);
+ RExC_emit = ptr;
+ }
+ return(ret);
+}
+
+/*
+- reginsert - insert an operator in front of already-emitted operand
+*
+* Means relocating the operand.
+*/
+STATIC void
+S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
+{
+ regnode *src;
+ regnode *dst;
+ regnode *place;
+ const int offset = regarglen[(U8)op];
+ const int size = NODE_STEP_REGNODE + offset;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGINSERT;
+ PERL_UNUSED_CONTEXT;
+ PERL_UNUSED_ARG(depth);
+/* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
+ DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
+ if (SIZE_ONLY) {
+ RExC_size += size;
+ return;
+ }
+
+ src = RExC_emit;
+ RExC_emit += size;
+ dst = RExC_emit;
+ if (RExC_open_parens) {
+ int paren;
+ /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
+ for ( paren=0 ; paren < RExC_npar ; paren++ ) {
+ if ( RExC_open_parens[paren] >= opnd ) {
+ /*DEBUG_PARSE_FMT("open"," - %d",size);*/
+ RExC_open_parens[paren] += size;
+ } else {
+ /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
+ }
+ if ( RExC_close_parens[paren] >= opnd ) {
+ /*DEBUG_PARSE_FMT("close"," - %d",size);*/
+ RExC_close_parens[paren] += size;
+ } else {
+ /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
+ }
+ }
+ }
+
+ while (src > opnd) {
+ StructCopy(--src, --dst, regnode);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (RExC_offsets) { /* MJD 20010112 */
+ MJD_OFFSET_DEBUG(
+ ("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
+ "reg_insert",
+ __LINE__,
+ PL_reg_name[op],
+ (UV)(dst - RExC_emit_start) > RExC_offsets[0]
+ ? "Overwriting end of array!\n" : "OK",
+ (UV)(src - RExC_emit_start),
+ (UV)(dst - RExC_emit_start),
+ (UV)RExC_offsets[0]));
+ Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
+ Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
+ }
+#endif
+ }
+
+
+ place = opnd; /* Op node, where operand used to be. */
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (RExC_offsets) { /* MJD */
+ MJD_OFFSET_DEBUG(
+ ("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
+ "reginsert",
+ __LINE__,
+ PL_reg_name[op],
+ (UV)(place - RExC_emit_start) > RExC_offsets[0]
+ ? "Overwriting end of array!\n" : "OK",
+ (UV)(place - RExC_emit_start),
+ (UV)(RExC_parse - RExC_start),
+ (UV)RExC_offsets[0]));
+ Set_Node_Offset(place, RExC_parse);
+ Set_Node_Length(place, 1);
+ }
+#endif
+ src = NEXTOPER(place);
+ FILL_ADVANCE_NODE(place, op);
+ REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (place) - 1);
+ Zero(src, offset, regnode);
+}
+
+/*
+- regtail - set the next-pointer at the end of a node chain of p to val.
+- SEE ALSO: regtail_study
+*/
+/* TODO: All three parms should be const */
+STATIC void
+S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p,
+ const regnode *val,U32 depth)
+{
+ regnode *scan;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTAIL;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ if (SIZE_ONLY)
+ return;
+
+ /* Find last node. */
+ scan = p;
+ for (;;) {
+ regnode * const temp = regnext(scan);
+ DEBUG_PARSE_r({
+ DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
+ regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
+ SvPV_nolen_const(RExC_mysv), REG_NODE_NUM(scan),
+ (temp == NULL ? "->" : ""),
+ (temp == NULL ? PL_reg_name[OP(val)] : "")
+ );
+ });
+ if (temp == NULL)
+ break;
+ scan = temp;
+ }
+
+ if (reg_off_by_arg[OP(scan)]) {
+ ARG_SET(scan, val - scan);
+ }
+ else {
+ NEXT_OFF(scan) = val - scan;
+ }
+}
+
+#ifdef DEBUGGING
+/*
+- regtail_study - set the next-pointer at the end of a node chain of p to val.
+- Look for optimizable sequences at the same time.
+- currently only looks for EXACT chains.
+
+This is experimental code. The idea is to use this routine to perform
+in place optimizations on branches and groups as they are constructed,
+with the long term intention of removing optimization from study_chunk so
+that it is purely analytical.
+
+Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
+to control which is which.
+
+*/
+/* TODO: All four parms should be const */
+
+STATIC U8
+S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p,
+ const regnode *val,U32 depth)
+{
+ regnode *scan;
+ U8 exact = PSEUDO;
+#ifdef EXPERIMENTAL_INPLACESCAN
+ I32 min = 0;
+#endif
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTAIL_STUDY;
+
+
+ if (SIZE_ONLY)
+ return exact;
+
+ /* Find last node. */
+
+ scan = p;
+ for (;;) {
+ regnode * const temp = regnext(scan);
+#ifdef EXPERIMENTAL_INPLACESCAN
+ if (PL_regkind[OP(scan)] == EXACT) {
+ bool unfolded_multi_char; /* Unexamined in this routine */
+ if (join_exact(pRExC_state, scan, &min,
+ &unfolded_multi_char, 1, val, depth+1))
+ return EXACT;
+ }
+#endif
+ if ( exact ) {
+ switch (OP(scan)) {
+ case EXACT:
+ case EXACTL:
+ case EXACTF:
+ case EXACTFA_NO_TRIE:
+ case EXACTFA:
+ case EXACTFU:
+ case EXACTFLU8:
+ case EXACTFU_SS:
+ case EXACTFL:
+ if( exact == PSEUDO )
+ exact= OP(scan);
+ else if ( exact != OP(scan) )
+ exact= 0;
+ case NOTHING:
+ break;
+ default:
+ exact= 0;
+ }
+ }
+ DEBUG_PARSE_r({
+ DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
+ regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
+ SvPV_nolen_const(RExC_mysv),
+ REG_NODE_NUM(scan),
+ PL_reg_name[exact]);
+ });
+ if (temp == NULL)
+ break;
+ scan = temp;
+ }
+ DEBUG_PARSE_r({
+ DEBUG_PARSE_MSG("");
+ regprop(RExC_rx, RExC_mysv, val, NULL, pRExC_state);
+ PerlIO_printf(Perl_debug_log,
+ "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
+ SvPV_nolen_const(RExC_mysv),
+ (IV)REG_NODE_NUM(val),
+ (IV)(val - scan)
+ );
+ });
+ if (reg_off_by_arg[OP(scan)]) {
+ ARG_SET(scan, val - scan);
+ }
+ else {
+ NEXT_OFF(scan) = val - scan;
+ }
+
+ return exact;
+}
+#endif
+
+/*
+ - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
+ */
+#ifdef DEBUGGING
+
+static void
+S_regdump_intflags(pTHX_ const char *lead, const U32 flags)
+{
+ int bit;
+ int set=0;
+
+ ASSUME(REG_INTFLAGS_NAME_SIZE <= sizeof(flags)*8);
+
+ for (bit=0; bit<REG_INTFLAGS_NAME_SIZE; bit++) {
+ if (flags & (1<<bit)) {
+ if (!set++ && lead)
+ PerlIO_printf(Perl_debug_log, "%s",lead);
+ PerlIO_printf(Perl_debug_log, "%s ",PL_reg_intflags_name[bit]);
+ }
+ }
+ if (lead) {
+ if (set)
+ PerlIO_printf(Perl_debug_log, "\n");
+ else
+ PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
+ }
+}
+
+static void
+S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
+{
+ int bit;
+ int set=0;
+ regex_charset cs;
+
+ ASSUME(REG_EXTFLAGS_NAME_SIZE <= sizeof(flags)*8);
+
+ for (bit=0; bit<REG_EXTFLAGS_NAME_SIZE; bit++) {
+ if (flags & (1<<bit)) {
+ if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
+ continue;
+ }
+ if (!set++ && lead)
+ PerlIO_printf(Perl_debug_log, "%s",lead);
+ PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
+ }
+ }
+ if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
+ if (!set++ && lead) {
+ PerlIO_printf(Perl_debug_log, "%s",lead);
+ }
+ switch (cs) {
+ case REGEX_UNICODE_CHARSET:
+ PerlIO_printf(Perl_debug_log, "UNICODE");
+ break;
+ case REGEX_LOCALE_CHARSET:
+ PerlIO_printf(Perl_debug_log, "LOCALE");
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
+ break;
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
+ break;
+ default:
+ PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
+ break;
+ }
+ }
+ if (lead) {
+ if (set)
+ PerlIO_printf(Perl_debug_log, "\n");
+ else
+ PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
+ }
+}
+#endif
+
+void
+Perl_regdump(pTHX_ const regexp *r)
+{
+#ifdef DEBUGGING
+ SV * const sv = sv_newmortal();
+ SV *dsv= sv_newmortal();
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGDUMP;
+
+ (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
+
+ /* Header fields of interest. */
+ if (r->anchored_substr) {
+ RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
+ RE_SV_DUMPLEN(r->anchored_substr), 30);
+ PerlIO_printf(Perl_debug_log,
+ "anchored %s%s at %"IVdf" ",
+ s, RE_SV_TAIL(r->anchored_substr),
+ (IV)r->anchored_offset);
+ } else if (r->anchored_utf8) {
+ RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
+ RE_SV_DUMPLEN(r->anchored_utf8), 30);
+ PerlIO_printf(Perl_debug_log,
+ "anchored utf8 %s%s at %"IVdf" ",
+ s, RE_SV_TAIL(r->anchored_utf8),
+ (IV)r->anchored_offset);
+ }
+ if (r->float_substr) {
+ RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
+ RE_SV_DUMPLEN(r->float_substr), 30);
+ PerlIO_printf(Perl_debug_log,
+ "floating %s%s at %"IVdf"..%"UVuf" ",
+ s, RE_SV_TAIL(r->float_substr),
+ (IV)r->float_min_offset, (UV)r->float_max_offset);
+ } else if (r->float_utf8) {
+ RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
+ RE_SV_DUMPLEN(r->float_utf8), 30);
+ PerlIO_printf(Perl_debug_log,
+ "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
+ s, RE_SV_TAIL(r->float_utf8),
+ (IV)r->float_min_offset, (UV)r->float_max_offset);
+ }
+ if (r->check_substr || r->check_utf8)
+ PerlIO_printf(Perl_debug_log,
+ (const char *)
+ (r->check_substr == r->float_substr
+ && r->check_utf8 == r->float_utf8
+ ? "(checking floating" : "(checking anchored"));
+ if (r->intflags & PREGf_NOSCAN)
+ PerlIO_printf(Perl_debug_log, " noscan");
+ if (r->extflags & RXf_CHECK_ALL)
+ PerlIO_printf(Perl_debug_log, " isall");
+ if (r->check_substr || r->check_utf8)
+ PerlIO_printf(Perl_debug_log, ") ");
+
+ if (ri->regstclass) {
+ regprop(r, sv, ri->regstclass, NULL, NULL);
+ PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
+ }
+ if (r->intflags & PREGf_ANCH) {
+ PerlIO_printf(Perl_debug_log, "anchored");
+ if (r->intflags & PREGf_ANCH_MBOL)
+ PerlIO_printf(Perl_debug_log, "(MBOL)");
+ if (r->intflags & PREGf_ANCH_SBOL)
+ PerlIO_printf(Perl_debug_log, "(SBOL)");
+ if (r->intflags & PREGf_ANCH_GPOS)
+ PerlIO_printf(Perl_debug_log, "(GPOS)");
+ (void)PerlIO_putc(Perl_debug_log, ' ');
+ }
+ if (r->intflags & PREGf_GPOS_SEEN)
+ PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
+ if (r->intflags & PREGf_SKIP)
+ PerlIO_printf(Perl_debug_log, "plus ");
+ if (r->intflags & PREGf_IMPLICIT)
+ PerlIO_printf(Perl_debug_log, "implicit ");
+ PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
+ if (r->extflags & RXf_EVAL_SEEN)
+ PerlIO_printf(Perl_debug_log, "with eval ");
+ PerlIO_printf(Perl_debug_log, "\n");
+ DEBUG_FLAGS_r({
+ regdump_extflags("r->extflags: ",r->extflags);
+ regdump_intflags("r->intflags: ",r->intflags);
+ });
+#else
+ PERL_ARGS_ASSERT_REGDUMP;
+ PERL_UNUSED_CONTEXT;
+ PERL_UNUSED_ARG(r);
+#endif /* DEBUGGING */
+}
+
+/*
+- regprop - printable representation of opcode, with run time support
+*/
+
+void
+Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o, const regmatch_info *reginfo, const RExC_state_t *pRExC_state)
+{
+#ifdef DEBUGGING
+ int k;
+
+ /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
+ static const char * const anyofs[] = {
+#if _CC_WORDCHAR != 0 || _CC_DIGIT != 1 || _CC_ALPHA != 2 || _CC_LOWER != 3 \
+ || _CC_UPPER != 4 || _CC_PUNCT != 5 || _CC_PRINT != 6 \
+ || _CC_ALPHANUMERIC != 7 || _CC_GRAPH != 8 || _CC_CASED != 9 \
+ || _CC_SPACE != 10 || _CC_BLANK != 11 || _CC_XDIGIT != 12 \
+ || _CC_CNTRL != 13 || _CC_ASCII != 14 || _CC_VERTSPACE != 15
+ #error Need to adjust order of anyofs[]
+#endif
+ "\\w",
+ "\\W",
+ "\\d",
+ "\\D",
+ "[:alpha:]",
+ "[:^alpha:]",
+ "[:lower:]",
+ "[:^lower:]",
+ "[:upper:]",
+ "[:^upper:]",
+ "[:punct:]",
+ "[:^punct:]",
+ "[:print:]",
+ "[:^print:]",
+ "[:alnum:]",
+ "[:^alnum:]",
+ "[:graph:]",
+ "[:^graph:]",
+ "[:cased:]",
+ "[:^cased:]",
+ "\\s",
+ "\\S",
+ "[:blank:]",
+ "[:^blank:]",
+ "[:xdigit:]",
+ "[:^xdigit:]",
+ "[:cntrl:]",
+ "[:^cntrl:]",
+ "[:ascii:]",
+ "[:^ascii:]",
+ "\\v",
+ "\\V"
+ };
+ RXi_GET_DECL(prog,progi);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGPROP;
+
+ sv_setpvn(sv, "", 0);
+
+ if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */
+ /* It would be nice to FAIL() here, but this may be called from
+ regexec.c, and it would be hard to supply pRExC_state. */
+ Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d",
+ (int)OP(o), (int)REGNODE_MAX);
+ sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
+
+ k = PL_regkind[OP(o)];
+
+ if (k == EXACT) {
+ sv_catpvs(sv, " ");
+ /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
+ * is a crude hack but it may be the best for now since
+ * we have no flag "this EXACTish node was UTF-8"
+ * --jhi */
+ pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
+ PERL_PV_ESCAPE_UNI_DETECT |
+ PERL_PV_ESCAPE_NONASCII |
+ PERL_PV_PRETTY_ELLIPSES |
+ PERL_PV_PRETTY_LTGT |
+ PERL_PV_PRETTY_NOCLEAR
+ );
+ } else if (k == TRIE) {
+ /* print the details of the trie in dumpuntil instead, as
+ * progi->data isn't available here */
+ const char op = OP(o);
+ const U32 n = ARG(o);
+ const reg_ac_data * const ac = IS_TRIE_AC(op) ?
+ (reg_ac_data *)progi->data->data[n] :
+ NULL;
+ const reg_trie_data * const trie
+ = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
+
+ Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
+ DEBUG_TRIE_COMPILE_r(
+ Perl_sv_catpvf(aTHX_ sv,
+ "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
+ (UV)trie->startstate,
+ (IV)trie->statecount-1, /* -1 because of the unused 0 element */
+ (UV)trie->wordcount,
+ (UV)trie->minlen,
+ (UV)trie->maxlen,
+ (UV)TRIE_CHARCOUNT(trie),
+ (UV)trie->uniquecharcount
+ );
+ );
+ if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
+ sv_catpvs(sv, "[");
+ (void) put_charclass_bitmap_innards(sv,
+ (IS_ANYOF_TRIE(op))
+ ? ANYOF_BITMAP(o)
+ : TRIE_BITMAP(trie),
+ NULL);
+ sv_catpvs(sv, "]");
+ }
+
+ } else if (k == CURLY) {
+ if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
+ Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
+ Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
+ }
+ else if (k == WHILEM && o->flags) /* Ordinal/of */
+ Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
+ else if (k == REF || k == OPEN || k == CLOSE
+ || k == GROUPP || OP(o)==ACCEPT)
+ {
+ AV *name_list= NULL;
+ Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
+ if ( RXp_PAREN_NAMES(prog) ) {
+ name_list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
+ } else if ( pRExC_state ) {
+ name_list= RExC_paren_name_list;
+ }
+ if (name_list) {
+ if ( k != REF || (OP(o) < NREF)) {
+ SV **name= av_fetch(name_list, ARG(o), 0 );
+ if (name)
+ Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+ }
+ else {
+ SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
+ I32 *nums=(I32*)SvPVX(sv_dat);
+ SV **name= av_fetch(name_list, nums[0], 0 );
+ I32 n;
+ if (name) {
+ for ( n=0; n<SvIVX(sv_dat); n++ ) {
+ Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
+ (n ? "," : ""), (IV)nums[n]);
+ }
+ Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+ }
+ }
+ }
+ if ( k == REF && reginfo) {
+ U32 n = ARG(o); /* which paren pair */
+ I32 ln = prog->offs[n].start;
+ if (prog->lastparen < n || ln == -1)
+ Perl_sv_catpvf(aTHX_ sv, ": FAIL");
+ else if (ln == prog->offs[n].end)
+ Perl_sv_catpvf(aTHX_ sv, ": ACCEPT - EMPTY STRING");
+ else {
+ const char *s = reginfo->strbeg + ln;
+ Perl_sv_catpvf(aTHX_ sv, ": ");
+ Perl_pv_pretty( aTHX_ sv, s, prog->offs[n].end - prog->offs[n].start, 32, 0, 0,
+ PERL_PV_ESCAPE_UNI_DETECT|PERL_PV_PRETTY_NOCLEAR|PERL_PV_PRETTY_ELLIPSES|PERL_PV_PRETTY_QUOTE );
+ }
+ }
+ } else if (k == GOSUB) {
+ AV *name_list= NULL;
+ if ( RXp_PAREN_NAMES(prog) ) {
+ name_list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
+ } else if ( pRExC_state ) {
+ name_list= RExC_paren_name_list;
+ }
+
+ /* Paren and offset */
+ Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o));
+ if (name_list) {
+ SV **name= av_fetch(name_list, ARG(o), 0 );
+ if (name)
+ Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+ }
+ }
+ else if (k == VERB) {
+ if (!o->flags)
+ Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
+ SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
+ } else if (k == LOGICAL)
+ /* 2: embedded, otherwise 1 */
+ Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags);
+ else if (k == ANYOF) {
+ const U8 flags = ANYOF_FLAGS(o);
+ int do_sep = 0;
+ SV* bitmap_invlist; /* Will hold what the bit map contains */
+
+
+ if (OP(o) == ANYOFL)
+ sv_catpvs(sv, "{loc}");
+ if (flags & ANYOF_LOC_FOLD)
+ sv_catpvs(sv, "{i}");
+ Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
+ if (flags & ANYOF_INVERT)
+ sv_catpvs(sv, "^");
+
+ /* output what the standard cp 0-NUM_ANYOF_CODE_POINTS-1 bitmap matches
+ * */
+ do_sep = put_charclass_bitmap_innards(sv, ANYOF_BITMAP(o),
+ &bitmap_invlist);
+
+ /* output any special charclass tests (used entirely under use
+ * locale) * */
+ if (ANYOF_POSIXL_TEST_ANY_SET(o)) {
+ int i;
+ for (i = 0; i < ANYOF_POSIXL_MAX; i++) {
+ if (ANYOF_POSIXL_TEST(o,i)) {
+ sv_catpv(sv, anyofs[i]);
+ do_sep = 1;
+ }
+ }
+ }
+
+ if ((flags & (ANYOF_MATCHES_ALL_ABOVE_BITMAP
+ |ANYOF_HAS_UTF8_NONBITMAP_MATCHES
+ |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES
+ |ANYOF_LOC_FOLD)))
+ {
+ if (do_sep) {
+ Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]);
+ if (flags & ANYOF_INVERT)
+ /*make sure the invert info is in each */
+ sv_catpvs(sv, "^");
+ }
+
+ if (flags & ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII) {
+ sv_catpvs(sv, "{non-utf8-latin1-all}");
+ }
+
+ if (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP)
+ sv_catpvs(sv, "{above_bitmap_all}");
+
+ if (ARG(o) != ANYOF_ONLY_HAS_BITMAP) {
+ SV *lv; /* Set if there is something outside the bit map. */
+ bool byte_output = FALSE; /* If something has been output */
+ SV *only_utf8_locale;
+
+ /* Get the stuff that wasn't in the bitmap. 'bitmap_invlist'
+ * is used to guarantee that nothing in the bitmap gets
+ * returned */
+ (void) _get_regclass_nonbitmap_data(prog, o, FALSE,
+ &lv, &only_utf8_locale,
+ bitmap_invlist);
+ if (lv && lv != &PL_sv_undef) {
+ char *s = savesvpv(lv);
+ char * const origs = s;
+
+ while (*s && *s != '\n')
+ s++;
+
+ if (*s == '\n') {
+ const char * const t = ++s;
+
+ if (flags & ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES) {
+ sv_catpvs(sv, "{outside bitmap}");
+ }
+ else {
+ sv_catpvs(sv, "{utf8}");
+ }
+
+ if (byte_output) {
+ sv_catpvs(sv, " ");
+ }
+
+ while (*s) {
+ if (*s == '\n') {
+
+ /* Truncate very long output */
+ if (s - origs > 256) {
+ Perl_sv_catpvf(aTHX_ sv,
+ "%.*s...",
+ (int) (s - origs - 1),
+ t);
+ goto out_dump;
+ }
+ *s = ' ';
+ }
+ else if (*s == '\t') {
+ *s = '-';
+ }
+ s++;
+ }
+ if (s[-1] == ' ')
+ s[-1] = 0;
+
+ sv_catpv(sv, t);
+ }
+
+ out_dump:
+
+ Safefree(origs);
+ SvREFCNT_dec_NN(lv);
+ }
+
+ if ((flags & ANYOF_LOC_FOLD)
+ && only_utf8_locale
+ && only_utf8_locale != &PL_sv_undef)
+ {
+ UV start, end;
+ int max_entries = 256;
+
+ sv_catpvs(sv, "{utf8 locale}");
+ invlist_iterinit(only_utf8_locale);
+ while (invlist_iternext(only_utf8_locale,
+ &start, &end)) {
+ put_range(sv, start, end, FALSE);
+ max_entries --;
+ if (max_entries < 0) {
+ sv_catpvs(sv, "...");
+ break;
+ }
+ }
+ invlist_iterfinish(only_utf8_locale);
+ }
+ }
+ }
+ SvREFCNT_dec(bitmap_invlist);
+
+
+ Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
+ }
+ else if (k == POSIXD || k == NPOSIXD) {
+ U8 index = FLAGS(o) * 2;
+ if (index < C_ARRAY_LENGTH(anyofs)) {
+ if (*anyofs[index] != '[') {
+ sv_catpv(sv, "[");
+ }
+ sv_catpv(sv, anyofs[index]);
+ if (*anyofs[index] != '[') {
+ sv_catpv(sv, "]");
+ }
+ }
+ else {
+ Perl_sv_catpvf(aTHX_ sv, "[illegal type=%d])", index);
+ }
+ }
+ else if (k == BOUND || k == NBOUND) {
+ /* Must be synced with order of 'bound_type' in regcomp.h */
+ const char * const bounds[] = {
+ "", /* Traditional */
+ "{gcb}",
+ "{sb}",
+ "{wb}"
+ };
+ sv_catpv(sv, bounds[FLAGS(o)]);
+ }
+ else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
+ Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
+ else if (OP(o) == SBOL)
+ Perl_sv_catpvf(aTHX_ sv, " /%s/", o->flags ? "\\A" : "^");
+#else
+ PERL_UNUSED_CONTEXT;
+ PERL_UNUSED_ARG(sv);
+ PERL_UNUSED_ARG(o);
+ PERL_UNUSED_ARG(prog);
+ PERL_UNUSED_ARG(reginfo);
+ PERL_UNUSED_ARG(pRExC_state);
+#endif /* DEBUGGING */
+}
+
+
+
+SV *
+Perl_re_intuit_string(pTHX_ REGEXP * const r)
+{ /* Assume that RE_INTUIT is set */
+ struct regexp *const prog = ReANY(r);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_INTUIT_STRING;
+ PERL_UNUSED_CONTEXT;
+
+ DEBUG_COMPILE_r(
+ {
+ const char * const s = SvPV_nolen_const(RX_UTF8(r)
+ ? prog->check_utf8 : prog->check_substr);
+
+ if (!PL_colorset) reginitcolors();
+ PerlIO_printf(Perl_debug_log,
+ "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
+ PL_colors[4],
+ RX_UTF8(r) ? "utf8 " : "",
+ PL_colors[5],PL_colors[0],
+ s,
+ PL_colors[1],
+ (strlen(s) > 60 ? "..." : ""));
+ } );
+
+ /* use UTF8 check substring if regexp pattern itself is in UTF8 */
+ return RX_UTF8(r) ? prog->check_utf8 : prog->check_substr;
+}
+
+/*
+ pregfree()
+
+ handles refcounting and freeing the perl core regexp structure. When
+ it is necessary to actually free the structure the first thing it
+ does is call the 'free' method of the regexp_engine associated to
+ the regexp, allowing the handling of the void *pprivate; member
+ first. (This routine is not overridable by extensions, which is why
+ the extensions free is called first.)
+
+ See regdupe and regdupe_internal if you change anything here.
+*/
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_pregfree(pTHX_ REGEXP *r)
+{
+ SvREFCNT_dec(r);
+}
+
+void
+Perl_pregfree2(pTHX_ REGEXP *rx)
+{
+ struct regexp *const r = ReANY(rx);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_PREGFREE2;
+
+ if (r->mother_re) {
+ ReREFCNT_dec(r->mother_re);
+ } else {
+ CALLREGFREE_PVT(rx); /* free the private data */
+ SvREFCNT_dec(RXp_PAREN_NAMES(r));
+ Safefree(r->xpv_len_u.xpvlenu_pv);
+ }
+ if (r->substrs) {
+ SvREFCNT_dec(r->anchored_substr);
+ SvREFCNT_dec(r->anchored_utf8);
+ SvREFCNT_dec(r->float_substr);
+ SvREFCNT_dec(r->float_utf8);
+ Safefree(r->substrs);
+ }
+ RX_MATCH_COPY_FREE(rx);
+#ifdef PERL_ANY_COW
+ SvREFCNT_dec(r->saved_copy);
+#endif
+ Safefree(r->offs);
+ SvREFCNT_dec(r->qr_anoncv);
+ rx->sv_u.svu_rx = 0;
+}
+
+/* reg_temp_copy()
+
+ This is a hacky workaround to the structural issue of match results
+ being stored in the regexp structure which is in turn stored in
+ PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
+ could be PL_curpm in multiple contexts, and could require multiple
+ result sets being associated with the pattern simultaneously, such
+ as when doing a recursive match with (??{$qr})
+
+ The solution is to make a lightweight copy of the regexp structure
+ when a qr// is returned from the code executed by (??{$qr}) this
+ lightweight copy doesn't actually own any of its data except for
+ the starp/end and the actual regexp structure itself.
+
+*/
+
+
+REGEXP *
+Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
+{
+ struct regexp *ret;
+ struct regexp *const r = ReANY(rx);
+ const bool islv = ret_x && SvTYPE(ret_x) == SVt_PVLV;
+
+ PERL_ARGS_ASSERT_REG_TEMP_COPY;
+
+ if (!ret_x)
+ ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
+ else {
+ SvOK_off((SV *)ret_x);
+ if (islv) {
+ /* For PVLVs, SvANY points to the xpvlv body while sv_u points
+ to the regexp. (For SVt_REGEXPs, sv_upgrade has already
+ made both spots point to the same regexp body.) */
+ REGEXP *temp = (REGEXP *)newSV_type(SVt_REGEXP);
+ assert(!SvPVX(ret_x));
+ ret_x->sv_u.svu_rx = temp->sv_any;
+ temp->sv_any = NULL;
+ SvFLAGS(temp) = (SvFLAGS(temp) & ~SVTYPEMASK) | SVt_NULL;
+ SvREFCNT_dec_NN(temp);
+ /* SvCUR still resides in the xpvlv struct, so the regexp copy-
+ ing below will not set it. */
+ SvCUR_set(ret_x, SvCUR(rx));
+ }
+ }
+ /* This ensures that SvTHINKFIRST(sv) is true, and hence that
+ sv_force_normal(sv) is called. */
+ SvFAKE_on(ret_x);
+ ret = ReANY(ret_x);
+
+ SvFLAGS(ret_x) |= SvUTF8(rx);
+ /* We share the same string buffer as the original regexp, on which we
+ hold a reference count, incremented when mother_re is set below.
+ The string pointer is copied here, being part of the regexp struct.
+ */
+ memcpy(&(ret->xpv_cur), &(r->xpv_cur),
+ sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
+ if (r->offs) {
+ const I32 npar = r->nparens+1;
+ Newx(ret->offs, npar, regexp_paren_pair);
+ Copy(r->offs, ret->offs, npar, regexp_paren_pair);
+ }
+ if (r->substrs) {
+ Newx(ret->substrs, 1, struct reg_substr_data);
+ StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
+
+ SvREFCNT_inc_void(ret->anchored_substr);
+ SvREFCNT_inc_void(ret->anchored_utf8);
+ SvREFCNT_inc_void(ret->float_substr);
+ SvREFCNT_inc_void(ret->float_utf8);
+
+ /* check_substr and check_utf8, if non-NULL, point to either their
+ anchored or float namesakes, and don't hold a second reference. */
+ }
+ RX_MATCH_COPIED_off(ret_x);
+#ifdef PERL_ANY_COW
+ ret->saved_copy = NULL;
+#endif
+ ret->mother_re = ReREFCNT_inc(r->mother_re ? r->mother_re : rx);
+ SvREFCNT_inc_void(ret->qr_anoncv);
+
+ return ret_x;
+}
+#endif
+
+/* regfree_internal()
+
+ Free the private data in a regexp. This is overloadable by
+ extensions. Perl takes care of the regexp structure in pregfree(),
+ this covers the *pprivate pointer which technically perl doesn't
+ know about, however of course we have to handle the
+ regexp_internal structure when no extension is in use.
+
+ Note this is called before freeing anything in the regexp
+ structure.
+ */
+
+void
+Perl_regfree_internal(pTHX_ REGEXP * const rx)
+{
+ struct regexp *const r = ReANY(rx);
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGFREE_INTERNAL;
+
+ DEBUG_COMPILE_r({
+ if (!PL_colorset)
+ reginitcolors();
+ {
+ SV *dsv= sv_newmortal();
+ RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
+ dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
+ PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
+ PL_colors[4],PL_colors[5],s);
+ }
+ });
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (ri->u.offsets)
+ Safefree(ri->u.offsets); /* 20010421 MJD */
+#endif
+ if (ri->code_blocks) {
+ int n;
+ for (n = 0; n < ri->num_code_blocks; n++)
+ SvREFCNT_dec(ri->code_blocks[n].src_regex);
+ Safefree(ri->code_blocks);
+ }
+
+ if (ri->data) {
+ int n = ri->data->count;
+
+ while (--n >= 0) {
+ /* If you add a ->what type here, update the comment in regcomp.h */
+ switch (ri->data->what[n]) {
+ case 'a':
+ case 'r':
+ case 's':
+ case 'S':
+ case 'u':
+ SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
+ break;
+ case 'f':
+ Safefree(ri->data->data[n]);
+ break;
+ case 'l':
+ case 'L':
+ break;
+ case 'T':
+ { /* Aho Corasick add-on structure for a trie node.
+ Used in stclass optimization only */
+ U32 refcount;
+ reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
+#ifdef USE_ITHREADS
+ dVAR;
+#endif
+ OP_REFCNT_LOCK;
+ refcount = --aho->refcount;
+ OP_REFCNT_UNLOCK;
+ if ( !refcount ) {
+ PerlMemShared_free(aho->states);
+ PerlMemShared_free(aho->fail);
+ /* do this last!!!! */
+ PerlMemShared_free(ri->data->data[n]);
+ /* we should only ever get called once, so
+ * assert as much, and also guard the free
+ * which /might/ happen twice. At the least
+ * it will make code anlyzers happy and it
+ * doesn't cost much. - Yves */
+ assert(ri->regstclass);
+ if (ri->regstclass) {
+ PerlMemShared_free(ri->regstclass);
+ ri->regstclass = 0;
+ }
+ }
+ }
+ break;
+ case 't':
+ {
+ /* trie structure. */
+ U32 refcount;
+ reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
+#ifdef USE_ITHREADS
+ dVAR;
+#endif
+ OP_REFCNT_LOCK;
+ refcount = --trie->refcount;
+ OP_REFCNT_UNLOCK;
+ if ( !refcount ) {
+ PerlMemShared_free(trie->charmap);
+ PerlMemShared_free(trie->states);
+ PerlMemShared_free(trie->trans);
+ if (trie->bitmap)
+ PerlMemShared_free(trie->bitmap);
+ if (trie->jump)
+ PerlMemShared_free(trie->jump);
+ PerlMemShared_free(trie->wordinfo);
+ /* do this last!!!! */
+ PerlMemShared_free(ri->data->data[n]);
+ }
+ }
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: regfree data code '%c'",
+ ri->data->what[n]);
+ }
+ }
+ Safefree(ri->data->what);
+ Safefree(ri->data);
+ }
+
+ Safefree(ri);
+}
+
+#define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
+#define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
+#define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
+
+/*
+ re_dup - duplicate a regexp.
+
+ This routine is expected to clone a given regexp structure. It is only
+ compiled under USE_ITHREADS.
+
+ After all of the core data stored in struct regexp is duplicated
+ the regexp_engine.dupe method is used to copy any private data
+ stored in the *pprivate pointer. This allows extensions to handle
+ any duplication it needs to do.
+
+ See pregfree() and regfree_internal() if you change anything here.
+*/
+#if defined(USE_ITHREADS)
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
+{
+ dVAR;
+ I32 npar;
+ const struct regexp *r = ReANY(sstr);
+ struct regexp *ret = ReANY(dstr);
+
+ PERL_ARGS_ASSERT_RE_DUP_GUTS;
+
+ npar = r->nparens+1;
+ Newx(ret->offs, npar, regexp_paren_pair);
+ Copy(r->offs, ret->offs, npar, regexp_paren_pair);
+
+ if (ret->substrs) {
+ /* Do it this way to avoid reading from *r after the StructCopy().
+ That way, if any of the sv_dup_inc()s dislodge *r from the L1
+ cache, it doesn't matter. */
+ const bool anchored = r->check_substr
+ ? r->check_substr == r->anchored_substr
+ : r->check_utf8 == r->anchored_utf8;
+ Newx(ret->substrs, 1, struct reg_substr_data);
+ StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
+
+ ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
+ ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
+ ret->float_substr = sv_dup_inc(ret->float_substr, param);
+ ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
+
+ /* check_substr and check_utf8, if non-NULL, point to either their
+ anchored or float namesakes, and don't hold a second reference. */
+
+ if (ret->check_substr) {
+ if (anchored) {
+ assert(r->check_utf8 == r->anchored_utf8);
+ ret->check_substr = ret->anchored_substr;
+ ret->check_utf8 = ret->anchored_utf8;
+ } else {
+ assert(r->check_substr == r->float_substr);
+ assert(r->check_utf8 == r->float_utf8);
+ ret->check_substr = ret->float_substr;
+ ret->check_utf8 = ret->float_utf8;
+ }
+ } else if (ret->check_utf8) {
+ if (anchored) {
+ ret->check_utf8 = ret->anchored_utf8;
+ } else {
+ ret->check_utf8 = ret->float_utf8;
+ }
+ }
+ }
+
+ RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
+ ret->qr_anoncv = MUTABLE_CV(sv_dup_inc((const SV *)ret->qr_anoncv, param));
+
+ if (ret->pprivate)
+ RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
+
+ if (RX_MATCH_COPIED(dstr))
+ ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen);
+ else
+ ret->subbeg = NULL;
+#ifdef PERL_ANY_COW
+ ret->saved_copy = NULL;
+#endif
+
+ /* Whether mother_re be set or no, we need to copy the string. We
+ cannot refrain from copying it when the storage points directly to
+ our mother regexp, because that's
+ 1: a buffer in a different thread
+ 2: something we no longer hold a reference on
+ so we need to copy it locally. */
+ RX_WRAPPED(dstr) = SAVEPVN(RX_WRAPPED(sstr), SvCUR(sstr)+1);
+ ret->mother_re = NULL;
+}
+#endif /* PERL_IN_XSUB_RE */
+
+/*
+ regdupe_internal()
+
+ This is the internal complement to regdupe() which is used to copy
+ the structure pointed to by the *pprivate pointer in the regexp.
+ This is the core version of the extension overridable cloning hook.
+ The regexp structure being duplicated will be copied by perl prior
+ to this and will be provided as the regexp *r argument, however
+ with the /old/ structures pprivate pointer value. Thus this routine
+ may override any copying normally done by perl.
+
+ It returns a pointer to the new regexp_internal structure.
+*/
+
+void *
+Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
+{
+ dVAR;
+ struct regexp *const r = ReANY(rx);
+ regexp_internal *reti;
+ int len;
+ RXi_GET_DECL(r,ri);
+
+ PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
+
+ len = ProgLen(ri);
+
+ Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode),
+ char, regexp_internal);
+ Copy(ri->program, reti->program, len+1, regnode);
+
+ reti->num_code_blocks = ri->num_code_blocks;
+ if (ri->code_blocks) {
+ int n;
+ Newxc(reti->code_blocks, ri->num_code_blocks, struct reg_code_block,
+ struct reg_code_block);
+ Copy(ri->code_blocks, reti->code_blocks, ri->num_code_blocks,
+ struct reg_code_block);
+ for (n = 0; n < ri->num_code_blocks; n++)
+ reti->code_blocks[n].src_regex = (REGEXP*)
+ sv_dup_inc((SV*)(ri->code_blocks[n].src_regex), param);
+ }
+ else
+ reti->code_blocks = NULL;
+
+ reti->regstclass = NULL;
+
+ if (ri->data) {
+ struct reg_data *d;
+ const int count = ri->data->count;
+ int i;
+
+ Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
+ char, struct reg_data);
+ Newx(d->what, count, U8);
+
+ d->count = count;
+ for (i = 0; i < count; i++) {
+ d->what[i] = ri->data->what[i];
+ switch (d->what[i]) {
+ /* see also regcomp.h and regfree_internal() */
+ case 'a': /* actually an AV, but the dup function is identical. */
+ case 'r':
+ case 's':
+ case 'S':
+ case 'u': /* actually an HV, but the dup function is identical. */
+ d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
+ break;
+ case 'f':
+ /* This is cheating. */
+ Newx(d->data[i], 1, regnode_ssc);
+ StructCopy(ri->data->data[i], d->data[i], regnode_ssc);
+ reti->regstclass = (regnode*)d->data[i];
+ break;
+ case 'T':
+ /* Trie stclasses are readonly and can thus be shared
+ * without duplication. We free the stclass in pregfree
+ * when the corresponding reg_ac_data struct is freed.
+ */
+ reti->regstclass= ri->regstclass;
+ /* FALLTHROUGH */
+ case 't':
+ OP_REFCNT_LOCK;
+ ((reg_trie_data*)ri->data->data[i])->refcount++;
+ OP_REFCNT_UNLOCK;
+ /* FALLTHROUGH */
+ case 'l':
+ case 'L':
+ d->data[i] = ri->data->data[i];
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'",
+ ri->data->what[i]);
+ }
+ }
+
+ reti->data = d;
+ }
+ else
+ reti->data = NULL;
+
+ reti->name_list_idx = ri->name_list_idx;
+
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (ri->u.offsets) {
+ Newx(reti->u.offsets, 2*len+1, U32);
+ Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
+ }
+#else
+ SetProgLen(reti,len);
+#endif
+
+ return (void*)reti;
+}
+
+#endif /* USE_ITHREADS */
+
+#ifndef PERL_IN_XSUB_RE
+
+/*
+ - regnext - dig the "next" pointer out of a node
+ */
+regnode *
+Perl_regnext(pTHX_ regnode *p)
+{
+ I32 offset;
+
+ if (!p)
+ return(NULL);
+
+ if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */
+ Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d",
+ (int)OP(p), (int)REGNODE_MAX);
+ }
+
+ offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
+ if (offset == 0)
+ return(NULL);
+
+ return(p+offset);
+}
+#endif
+
+STATIC void
+S_re_croak2(pTHX_ bool utf8, const char* pat1,const char* pat2,...)
+{
+ va_list args;
+ STRLEN l1 = strlen(pat1);
+ STRLEN l2 = strlen(pat2);
+ char buf[512];
+ SV *msv;
+ const char *message;
+
+ PERL_ARGS_ASSERT_RE_CROAK2;
+
+ if (l1 > 510)
+ l1 = 510;
+ if (l1 + l2 > 510)
+ l2 = 510 - l1;
+ Copy(pat1, buf, l1 , char);
+ Copy(pat2, buf + l1, l2 , char);
+ buf[l1 + l2] = '\n';
+ buf[l1 + l2 + 1] = '\0';
+ va_start(args, pat2);
+ msv = vmess(buf, &args);
+ va_end(args);
+ message = SvPV_const(msv,l1);
+ if (l1 > 512)
+ l1 = 512;
+ Copy(message, buf, l1 , char);
+ /* l1-1 to avoid \n */
+ Perl_croak(aTHX_ "%"UTF8f, UTF8fARG(utf8, l1-1, buf));
+}
+
+/* XXX Here's a total kludge. But we need to re-enter for swash routines. */
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_save_re_context(pTHX)
+{
+ I32 nparens = -1;
+ I32 i;
+
+ /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
+
+ if (PL_curpm) {
+ const REGEXP * const rx = PM_GETRE(PL_curpm);
+ if (rx)
+ nparens = RX_NPARENS(rx);
+ }
+
+ /* RT #124109. This is a complete hack; in the SWASHNEW case we know
+ * that PL_curpm will be null, but that utf8.pm and the modules it
+ * loads will only use $1..$3.
+ * The t/porting/re_context.t test file checks this assumption.
+ */
+ if (nparens == -1)
+ nparens = 3;
+
+ for (i = 1; i <= nparens; i++) {
+ char digits[TYPE_CHARS(long)];
+ const STRLEN len = my_snprintf(digits, sizeof(digits),
+ "%lu", (long)i);
+ GV *const *const gvp
+ = (GV**)hv_fetch(PL_defstash, digits, len, 0);
+
+ if (gvp) {
+ GV * const gv = *gvp;
+ if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
+ save_scalar(gv);
+ }
+ }
+}
+#endif
+
+#ifdef DEBUGGING
+
+STATIC void
+S_put_code_point(pTHX_ SV *sv, UV c)
+{
+ PERL_ARGS_ASSERT_PUT_CODE_POINT;
+
+ if (c > 255) {
+ Perl_sv_catpvf(aTHX_ sv, "\\x{%04"UVXf"}", c);
+ }
+ else if (isPRINT(c)) {
+ const char string = (char) c;
+ if (isBACKSLASHED_PUNCT(c))
+ sv_catpvs(sv, "\\");
+ sv_catpvn(sv, &string, 1);
+ }
+ else {
+ const char * const mnemonic = cntrl_to_mnemonic((char) c);
+ if (mnemonic) {
+ Perl_sv_catpvf(aTHX_ sv, "%s", mnemonic);
+ }
+ else {
+ Perl_sv_catpvf(aTHX_ sv, "\\x{%02X}", (U8) c);
+ }
+ }
+}
+
+#define MAX_PRINT_A MAX_PRINT_A_FOR_USE_ONLY_BY_REGCOMP_DOT_C
+
+STATIC void
+S_put_range(pTHX_ SV *sv, UV start, const UV end, const bool allow_literals)
+{
+ /* Appends to 'sv' a displayable version of the range of code points from
+ * 'start' to 'end'. It assumes that only ASCII printables are displayable
+ * as-is (though some of these will be escaped by put_code_point()). */
+
+ const unsigned int min_range_count = 3;
+
+ assert(start <= end);
+
+ PERL_ARGS_ASSERT_PUT_RANGE;
+
+ while (start <= end) {
+ UV this_end;
+ const char * format;
+
+ if (end - start < min_range_count) {
+
+ /* Individual chars in short ranges */
+ for (; start <= end; start++) {
+ put_code_point(sv, start);
+ }
+ break;
+ }
+
+ /* If permitted by the input options, and there is a possibility that
+ * this range contains a printable literal, look to see if there is
+ * one. */
+ if (allow_literals && start <= MAX_PRINT_A) {
+
+ /* If the range begin isn't an ASCII printable, effectively split
+ * the range into two parts:
+ * 1) the portion before the first such printable,
+ * 2) the rest
+ * and output them separately. */
+ if (! isPRINT_A(start)) {
+ UV temp_end = start + 1;
+
+ /* There is no point looking beyond the final possible
+ * printable, in MAX_PRINT_A */
+ UV max = MIN(end, MAX_PRINT_A);
+
+ while (temp_end <= max && ! isPRINT_A(temp_end)) {
+ temp_end++;
+ }
+
+ /* Here, temp_end points to one beyond the first printable if
+ * found, or to one beyond 'max' if not. If none found, make
+ * sure that we use the entire range */
+ if (temp_end > MAX_PRINT_A) {
+ temp_end = end + 1;
+ }
+
+ /* Output the first part of the split range, the part that
+ * doesn't have printables, with no looking for literals
+ * (otherwise we would infinitely recurse) */
+ put_range(sv, start, temp_end - 1, FALSE);
+
+ /* The 2nd part of the range (if any) starts here. */
+ start = temp_end;
+
+ /* We continue instead of dropping down because even if the 2nd
+ * part is non-empty, it could be so short that we want to
+ * output it specially, as tested for at the top of this loop.
+ * */
+ continue;
+ }
+
+ /* Here, 'start' is a printable ASCII. If it is an alphanumeric,
+ * output a sub-range of just the digits or letters, then process
+ * the remaining portion as usual. */
+ if (isALPHANUMERIC_A(start)) {
+ UV mask = (isDIGIT_A(start))
+ ? _CC_DIGIT
+ : isUPPER_A(start)
+ ? _CC_UPPER
+ : _CC_LOWER;
+ UV temp_end = start + 1;
+
+ /* Find the end of the sub-range that includes just the
+ * characters in the same class as the first character in it */
+ while (temp_end <= end && _generic_isCC_A(temp_end, mask)) {
+ temp_end++;
+ }
+ temp_end--;
+
+ /* For short ranges, don't duplicate the code above to output
+ * them; just call recursively */
+ if (temp_end - start < min_range_count) {
+ put_range(sv, start, temp_end, FALSE);
+ }
+ else { /* Output as a range */
+ put_code_point(sv, start);
+ sv_catpvs(sv, "-");
+ put_code_point(sv, temp_end);
+ }
+ start = temp_end + 1;
+ continue;
+ }
+
+ /* We output any other printables as individual characters */
+ if (isPUNCT_A(start) || isSPACE_A(start)) {
+ while (start <= end && (isPUNCT_A(start)
+ || isSPACE_A(start)))
+ {
+ put_code_point(sv, start);
+ start++;
+ }
+ continue;
+ }
+ } /* End of looking for literals */
+
+ /* Here is not to output as a literal. Some control characters have
+ * mnemonic names. Split off any of those at the beginning and end of
+ * the range to print mnemonically. It isn't possible for many of
+ * these to be in a row, so this won't overwhelm with output */
+ while (isMNEMONIC_CNTRL(start) && start <= end) {
+ put_code_point(sv, start);
+ start++;
+ }
+ if (start < end && isMNEMONIC_CNTRL(end)) {
+
+ /* Here, the final character in the range has a mnemonic name.
+ * Work backwards from the end to find the final non-mnemonic */
+ UV temp_end = end - 1;
+ while (isMNEMONIC_CNTRL(temp_end)) {
+ temp_end--;
+ }
+
+ /* And separately output the range that doesn't have mnemonics */
+ put_range(sv, start, temp_end, FALSE);
+
+ /* Then output the mnemonic trailing controls */
+ start = temp_end + 1;
+ while (start <= end) {
+ put_code_point(sv, start);
+ start++;
+ }
+ break;
+ }
+
+ /* As a final resort, output the range or subrange as hex. */
+
+ this_end = (end < NUM_ANYOF_CODE_POINTS)
+ ? end
+ : NUM_ANYOF_CODE_POINTS - 1;
+ format = (this_end < 256)
+ ? "\\x{%02"UVXf"}-\\x{%02"UVXf"}"
+ : "\\x{%04"UVXf"}-\\x{%04"UVXf"}";
+ GCC_DIAG_IGNORE(-Wformat-nonliteral);
+ Perl_sv_catpvf(aTHX_ sv, format, start, this_end);
+ GCC_DIAG_RESTORE;
+ break;
+ }
+}
+
+STATIC bool
+S_put_charclass_bitmap_innards(pTHX_ SV *sv, char *bitmap, SV** bitmap_invlist)
+{
+ /* Appends to 'sv' a displayable version of the innards of the bracketed
+ * character class whose bitmap is 'bitmap'; Returns 'TRUE' if it actually
+ * output anything, and bitmap_invlist, if not NULL, will point to an
+ * inversion list of what is in the bit map */
+
+ int i;
+ UV start, end;
+ unsigned int punct_count = 0;
+ SV* invlist = NULL;
+ SV** invlist_ptr; /* Temporary, in case bitmap_invlist is NULL */
+ bool allow_literals = TRUE;
+
+ PERL_ARGS_ASSERT_PUT_CHARCLASS_BITMAP_INNARDS;
+
+ invlist_ptr = (bitmap_invlist) ? bitmap_invlist : &invlist;
+
+ /* Worst case is exactly every-other code point is in the list */
+ *invlist_ptr = _new_invlist(NUM_ANYOF_CODE_POINTS / 2);
+
+ /* Convert the bit map to an inversion list, keeping track of how many
+ * ASCII puncts are set, including an extra amount for the backslashed
+ * ones. */
+ for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
+ if (BITMAP_TEST(bitmap, i)) {
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr, i);
+ if (isPUNCT_A(i)) {
+ punct_count++;
+ if isBACKSLASHED_PUNCT(i) {
+ punct_count++;
+ }
+ }
+ }
+ }
+
+ /* Nothing to output */
+ if (_invlist_len(*invlist_ptr) == 0) {
+ SvREFCNT_dec(invlist);
+ return FALSE;
+ }
+
+ /* Generally, it is more readable if printable characters are output as
+ * literals, but if a range (nearly) spans all of them, it's best to output
+ * it as a single range. This code will use a single range if all but 2
+ * printables are in it */
+ invlist_iterinit(*invlist_ptr);
+ while (invlist_iternext(*invlist_ptr, &start, &end)) {
+
+ /* If range starts beyond final printable, it doesn't have any in it */
+ if (start > MAX_PRINT_A) {
+ break;
+ }
+
+ /* In both ASCII and EBCDIC, a SPACE is the lowest printable. To span
+ * all but two, the range must start and end no later than 2 from
+ * either end */
+ if (start < ' ' + 2 && end > MAX_PRINT_A - 2) {
+ if (end > MAX_PRINT_A) {
+ end = MAX_PRINT_A;
+ }
+ if (start < ' ') {
+ start = ' ';
+ }
+ if (end - start >= MAX_PRINT_A - ' ' - 2) {
+ allow_literals = FALSE;
+ }
+ break;
+ }
+ }
+ invlist_iterfinish(*invlist_ptr);
+
+ /* The legibility of the output depends mostly on how many punctuation
+ * characters are output. There are 32 possible ASCII ones, and some have
+ * an additional backslash, bringing it to currently 36, so if any more
+ * than 18 are to be output, we can instead output it as its complement,
+ * yielding fewer puncts, and making it more legible. But give some weight
+ * to the fact that outputting it as a complement is less legible than a
+ * straight output, so don't complement unless we are somewhat over the 18
+ * mark */
+ if (allow_literals && punct_count > 22) {
+ sv_catpvs(sv, "^");
+
+ /* Add everything remaining to the list, so when we invert it just
+ * below, it will be excluded */
+ _invlist_union_complement_2nd(*invlist_ptr, PL_InBitmap, invlist_ptr);
+ _invlist_invert(*invlist_ptr);
+ }
+
+ /* Here we have figured things out. Output each range */
+ invlist_iterinit(*invlist_ptr);
+ while (invlist_iternext(*invlist_ptr, &start, &end)) {
+ if (start >= NUM_ANYOF_CODE_POINTS) {
+ break;
+ }
+ put_range(sv, start, end, allow_literals);
+ }
+ invlist_iterfinish(*invlist_ptr);
+
+ return TRUE;
+}
+
+#define CLEAR_OPTSTART \
+ if (optstart) STMT_START { \
+ DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, \
+ " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
+ optstart=NULL; \
+ } STMT_END
+
+#define DUMPUNTIL(b,e) \
+ CLEAR_OPTSTART; \
+ node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
+
+STATIC const regnode *
+S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
+ const regnode *last, const regnode *plast,
+ SV* sv, I32 indent, U32 depth)
+{
+ U8 op = PSEUDO; /* Arbitrary non-END op. */
+ const regnode *next;
+ const regnode *optstart= NULL;
+
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMPUNTIL;
+
+#ifdef DEBUG_DUMPUNTIL
+ PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
+ last ? last-start : 0,plast ? plast-start : 0);
+#endif
+
+ if (plast && plast < last)
+ last= plast;
+
+ while (PL_regkind[op] != END && (!last || node < last)) {
+ assert(node);
+ /* While that wasn't END last time... */
+ NODE_ALIGN(node);
+ op = OP(node);
+ if (op == CLOSE || op == WHILEM)
+ indent--;
+ next = regnext((regnode *)node);
+
+ /* Where, what. */
+ if (OP(node) == OPTIMIZED) {
+ if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
+ optstart = node;
+ else
+ goto after_print;
+ } else
+ CLEAR_OPTSTART;
+
+ regprop(r, sv, node, NULL, NULL);
+ PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
+ (int)(2*indent + 1), "", SvPVX_const(sv));
+
+ if (OP(node) != OPTIMIZED) {
+ if (next == NULL) /* Next ptr. */
+ PerlIO_printf(Perl_debug_log, " (0)");
+ else if (PL_regkind[(U8)op] == BRANCH
+ && PL_regkind[OP(next)] != BRANCH )
+ PerlIO_printf(Perl_debug_log, " (FAIL)");
+ else
+ PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
+ (void)PerlIO_putc(Perl_debug_log, '\n');
+ }
+
+ after_print:
+ if (PL_regkind[(U8)op] == BRANCHJ) {
+ assert(next);
+ {
+ const regnode *nnode = (OP(next) == LONGJMP
+ ? regnext((regnode *)next)
+ : next);
+ if (last && nnode > last)
+ nnode = last;
+ DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
+ }
+ }
+ else if (PL_regkind[(U8)op] == BRANCH) {
+ assert(next);
+ DUMPUNTIL(NEXTOPER(node), next);
+ }
+ else if ( PL_regkind[(U8)op] == TRIE ) {
+ const regnode *this_trie = node;
+ const char op = OP(node);
+ const U32 n = ARG(node);
+ const reg_ac_data * const ac = op>=AHOCORASICK ?
+ (reg_ac_data *)ri->data->data[n] :
+ NULL;
+ const reg_trie_data * const trie =
+ (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
+#ifdef DEBUGGING
+ AV *const trie_words
+ = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
+#endif
+ const regnode *nextbranch= NULL;
+ I32 word_idx;
+ sv_setpvs(sv, "");
+ for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
+ SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
+
+ PerlIO_printf(Perl_debug_log, "%*s%s ",
+ (int)(2*(indent+3)), "",
+ elem_ptr
+ ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr),
+ SvCUR(*elem_ptr), 60,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*elem_ptr)
+ ? PERL_PV_ESCAPE_UNI
+ : 0)
+ | PERL_PV_PRETTY_ELLIPSES
+ | PERL_PV_PRETTY_LTGT
+ )
+ : "???"
+ );
+ if (trie->jump) {
+ U16 dist= trie->jump[word_idx+1];
+ PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
+ (UV)((dist ? this_trie + dist : next) - start));
+ if (dist) {
+ if (!nextbranch)
+ nextbranch= this_trie + trie->jump[0];
+ DUMPUNTIL(this_trie + dist, nextbranch);
+ }
+ if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
+ nextbranch= regnext((regnode *)nextbranch);
+ } else {
+ PerlIO_printf(Perl_debug_log, "\n");
+ }
+ }
+ if (last && next > last)
+ node= last;
+ else
+ node= next;
+ }
+ else if ( op == CURLY ) { /* "next" might be very big: optimizer */
+ DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
+ NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
+ }
+ else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
+ assert(next);
+ DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
+ }
+ else if ( op == PLUS || op == STAR) {
+ DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
+ }
+ else if (PL_regkind[(U8)op] == ANYOF) {
+ /* arglen 1 + class block */
+ node += 1 + ((ANYOF_FLAGS(node) & ANYOF_MATCHES_POSIXL)
+ ? ANYOF_POSIXL_SKIP
+ : ANYOF_SKIP);
+ node = NEXTOPER(node);
+ }
+ else if (PL_regkind[(U8)op] == EXACT) {
+ /* Literal string, where present. */
+ node += NODE_SZ_STR(node) - 1;
+ node = NEXTOPER(node);
+ }
+ else {
+ node = NEXTOPER(node);
+ node += regarglen[(U8)op];
+ }
+ if (op == CURLYX || op == OPEN)
+ indent++;
+ }
+ CLEAR_OPTSTART;
+#ifdef DEBUG_DUMPUNTIL
+ PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
+#endif
+ return node;
+}
+
+#endif /* DEBUGGING */
+
+/*
+ * ex: set ts=8 sts=4 sw=4 et:
+ */
--- /dev/null
+/* regexec.c
+ */
+
+/*
+ * One Ring to rule them all, One Ring to find them
+ *
+ * [p.v of _The Lord of the Rings_, opening poem]
+ * [p.50 of _The Lord of the Rings_, I/iii: "The Shadow of the Past"]
+ * [p.254 of _The Lord of the Rings_, II/ii: "The Council of Elrond"]
+ */
+
+/* This file contains functions for executing a regular expression. See
+ * also regcomp.c which funnily enough, contains functions for compiling
+ * a regular expression.
+ *
+ * This file is also copied at build time to ext/re/re_exec.c, where
+ * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
+ * This causes the main functions to be compiled under new names and with
+ * debugging support added, which makes "use re 'debug'" work.
+ */
+
+/* NOTE: this is derived from Henry Spencer's regexp code, and should not
+ * confused with the original package (see point 3 below). Thanks, Henry!
+ */
+
+/* Additional note: this code is very heavily munged from Henry's version
+ * in places. In some spots I've traded clarity for efficiency, so don't
+ * blame Henry for some of the lack of readability.
+ */
+
+/* The names of the functions have been changed from regcomp and
+ * regexec to pregcomp and pregexec in order to avoid conflicts
+ * with the POSIX routines of the same names.
+*/
+
+#ifdef PERL_EXT_RE_BUILD
+#include "re_top.h"
+#endif
+
+#define B_ON_NON_UTF8_LOCALE_IS_WRONG \
+ "Use of \\b{} or \\B{} for non-UTF-8 locale is wrong. Assuming a UTF-8 locale"
+
+/*
+ * pregcomp and pregexec -- regsub and regerror are not used in perl
+ *
+ * Copyright (c) 1986 by University of Toronto.
+ * Written by Henry Spencer. Not derived from licensed software.
+ *
+ * Permission is granted to anyone to use this software for any
+ * purpose on any computer system, and to redistribute it freely,
+ * subject to the following restrictions:
+ *
+ * 1. The author is not responsible for the consequences of use of
+ * this software, no matter how awful, even if they arise
+ * from defects in it.
+ *
+ * 2. The origin of this software must not be misrepresented, either
+ * by explicit claim or by omission.
+ *
+ * 3. Altered versions must be plainly marked as such, and must not
+ * be misrepresented as being the original software.
+ *
+ **** Alterations to Henry's code are...
+ ****
+ **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ **** by Larry Wall and others
+ ****
+ **** You may distribute under the terms of either the GNU General Public
+ **** License or the Artistic License, as specified in the README file.
+ *
+ * Beware that some of this code is subtly aware of the way operator
+ * precedence is structured in regular expressions. Serious changes in
+ * regular-expression syntax might require a total rethink.
+ */
+#include "EXTERN.h"
+#define PERL_IN_REGEXEC_C
+#undef PERL_IN_XSUB_RE
+#define PERL_IN_XSUB_RE 1
+#include "perl.h"
+#include "re_defs.h"
+#undef PERL_IN_XSUB_RE
+
+#ifdef PERL_IN_XSUB_RE
+# include "re_comp.h"
+#else
+# include "regcomp.h"
+#endif
+
+#include "inline_invlist.c"
+#include "unicode_constants.h"
+
+#ifdef DEBUGGING
+/* At least one required character in the target string is expressible only in
+ * UTF-8. */
+static const char* const non_utf8_target_but_utf8_required
+ = "Can't match, because target string needs to be in UTF-8\n";
+#endif
+
+#define NON_UTF8_TARGET_BUT_UTF8_REQUIRED(target) STMT_START { \
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%s", non_utf8_target_but_utf8_required));\
+ goto target; \
+} STMT_END
+
+#define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
+
+#ifndef STATIC
+#define STATIC static
+#endif
+
+/* Valid only for non-utf8 strings: avoids the reginclass
+ * call if there are no complications: i.e., if everything matchable is
+ * straight forward in the bitmap */
+#define REGINCLASS(prog,p,c) (ANYOF_FLAGS(p) ? reginclass(prog,p,c,c+1,0) \
+ : ANYOF_BITMAP_TEST(p,*(c)))
+
+/*
+ * Forwards.
+ */
+
+#define CHR_SVLEN(sv) (utf8_target ? sv_len_utf8(sv) : SvCUR(sv))
+#define CHR_DIST(a,b) (reginfo->is_utf8_target ? utf8_distance(a,b) : a - b)
+
+#define HOPc(pos,off) \
+ (char *)(reginfo->is_utf8_target \
+ ? reghop3((U8*)pos, off, \
+ (U8*)(off >= 0 ? reginfo->strend : reginfo->strbeg)) \
+ : (U8*)(pos + off))
+
+#define HOPBACKc(pos, off) \
+ (char*)(reginfo->is_utf8_target \
+ ? reghopmaybe3((U8*)pos, -off, (U8*)(reginfo->strbeg)) \
+ : (pos - off >= reginfo->strbeg) \
+ ? (U8*)pos - off \
+ : NULL)
+
+#define HOP3(pos,off,lim) (reginfo->is_utf8_target ? reghop3((U8*)(pos), off, (U8*)(lim)) : (U8*)(pos + off))
+#define HOP3c(pos,off,lim) ((char*)HOP3(pos,off,lim))
+
+/* lim must be +ve. Returns NULL on overshoot */
+#define HOPMAYBE3(pos,off,lim) \
+ (reginfo->is_utf8_target \
+ ? reghopmaybe3((U8*)pos, off, (U8*)(lim)) \
+ : ((U8*)pos + off <= lim) \
+ ? (U8*)pos + off \
+ : NULL)
+
+/* like HOP3, but limits the result to <= lim even for the non-utf8 case.
+ * off must be >=0; args should be vars rather than expressions */
+#define HOP3lim(pos,off,lim) (reginfo->is_utf8_target \
+ ? reghop3((U8*)(pos), off, (U8*)(lim)) \
+ : (U8*)((pos + off) > lim ? lim : (pos + off)))
+
+#define HOP4(pos,off,llim, rlim) (reginfo->is_utf8_target \
+ ? reghop4((U8*)(pos), off, (U8*)(llim), (U8*)(rlim)) \
+ : (U8*)(pos + off))
+#define HOP4c(pos,off,llim, rlim) ((char*)HOP4(pos,off,llim, rlim))
+
+#define NEXTCHR_EOS -10 /* nextchr has fallen off the end */
+#define NEXTCHR_IS_EOS (nextchr < 0)
+
+#define SET_nextchr \
+ nextchr = ((locinput < reginfo->strend) ? UCHARAT(locinput) : NEXTCHR_EOS)
+
+#define SET_locinput(p) \
+ locinput = (p); \
+ SET_nextchr
+
+
+#define LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist) STMT_START { \
+ if (!swash_ptr) { \
+ U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST; \
+ swash_ptr = _core_swash_init("utf8", property_name, &PL_sv_undef, \
+ 1, 0, invlist, &flags); \
+ assert(swash_ptr); \
+ } \
+ } STMT_END
+
+/* If in debug mode, we test that a known character properly matches */
+#ifdef DEBUGGING
+# define LOAD_UTF8_CHARCLASS_DEBUG_TEST(swash_ptr, \
+ property_name, \
+ invlist, \
+ utf8_char_in_property) \
+ LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist); \
+ assert(swash_fetch(swash_ptr, (U8 *) utf8_char_in_property, TRUE));
+#else
+# define LOAD_UTF8_CHARCLASS_DEBUG_TEST(swash_ptr, \
+ property_name, \
+ invlist, \
+ utf8_char_in_property) \
+ LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist)
+#endif
+
+#define LOAD_UTF8_CHARCLASS_ALNUM() LOAD_UTF8_CHARCLASS_DEBUG_TEST( \
+ PL_utf8_swash_ptrs[_CC_WORDCHAR], \
+ "", \
+ PL_XPosix_ptrs[_CC_WORDCHAR], \
+ LATIN_CAPITAL_LETTER_SHARP_S_UTF8);
+
+#define PLACEHOLDER /* Something for the preprocessor to grab onto */
+/* TODO: Combine JUMPABLE and HAS_TEXT to cache OP(rn) */
+
+/* for use after a quantifier and before an EXACT-like node -- japhy */
+/* it would be nice to rework regcomp.sym to generate this stuff. sigh
+ *
+ * NOTE that *nothing* that affects backtracking should be in here, specifically
+ * VERBS must NOT be included. JUMPABLE is used to determine if we can ignore a
+ * node that is in between two EXACT like nodes when ascertaining what the required
+ * "follow" character is. This should probably be moved to regex compile time
+ * although it may be done at run time beause of the REF possibility - more
+ * investigation required. -- demerphq
+*/
+#define JUMPABLE(rn) ( \
+ OP(rn) == OPEN || \
+ (OP(rn) == CLOSE && (!cur_eval || cur_eval->u.eval.close_paren != ARG(rn))) || \
+ OP(rn) == EVAL || \
+ OP(rn) == SUSPEND || OP(rn) == IFMATCH || \
+ OP(rn) == PLUS || OP(rn) == MINMOD || \
+ OP(rn) == KEEPS || \
+ (PL_regkind[OP(rn)] == CURLY && ARG1(rn) > 0) \
+)
+#define IS_EXACT(rn) (PL_regkind[OP(rn)] == EXACT)
+
+#define HAS_TEXT(rn) ( IS_EXACT(rn) || PL_regkind[OP(rn)] == REF )
+
+#if 0
+/* Currently these are only used when PL_regkind[OP(rn)] == EXACT so
+ we don't need this definition. XXX These are now out-of-sync*/
+#define IS_TEXT(rn) ( OP(rn)==EXACT || OP(rn)==REF || OP(rn)==NREF )
+#define IS_TEXTF(rn) ( OP(rn)==EXACTFU || OP(rn)==EXACTFU_SS || OP(rn)==EXACTFA || OP(rn)==EXACTFA_NO_TRIE || OP(rn)==EXACTF || OP(rn)==REFF || OP(rn)==NREFF )
+#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL || OP(rn)==REFFL || OP(rn)==NREFFL )
+
+#else
+/* ... so we use this as its faster. */
+#define IS_TEXT(rn) ( OP(rn)==EXACT || OP(rn)==EXACTL )
+#define IS_TEXTFU(rn) ( OP(rn)==EXACTFU || OP(rn)==EXACTFLU8 || OP(rn)==EXACTFU_SS || OP(rn) == EXACTFA || OP(rn) == EXACTFA_NO_TRIE)
+#define IS_TEXTF(rn) ( OP(rn)==EXACTF )
+#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL )
+
+#endif
+
+/*
+ Search for mandatory following text node; for lookahead, the text must
+ follow but for lookbehind (rn->flags != 0) we skip to the next step.
+*/
+#define FIND_NEXT_IMPT(rn) STMT_START { \
+ while (JUMPABLE(rn)) { \
+ const OPCODE type = OP(rn); \
+ if (type == SUSPEND || PL_regkind[type] == CURLY) \
+ rn = NEXTOPER(NEXTOPER(rn)); \
+ else if (type == PLUS) \
+ rn = NEXTOPER(rn); \
+ else if (type == IFMATCH) \
+ rn = (rn->flags == 0) ? NEXTOPER(NEXTOPER(rn)) : rn + ARG(rn); \
+ else rn += NEXT_OFF(rn); \
+ } \
+} STMT_END
+
+#define SLAB_FIRST(s) (&(s)->states[0])
+#define SLAB_LAST(s) (&(s)->states[PERL_REGMATCH_SLAB_SLOTS-1])
+
+static void S_setup_eval_state(pTHX_ regmatch_info *const reginfo);
+static void S_cleanup_regmatch_info_aux(pTHX_ void *arg);
+static regmatch_state * S_push_slab(pTHX);
+
+#define REGCP_PAREN_ELEMS 3
+#define REGCP_OTHER_ELEMS 3
+#define REGCP_FRAME_ELEMS 1
+/* REGCP_FRAME_ELEMS are not part of the REGCP_OTHER_ELEMS and
+ * are needed for the regexp context stack bookkeeping. */
+
+STATIC CHECKPOINT
+S_regcppush(pTHX_ const regexp *rex, I32 parenfloor, U32 maxopenparen)
+{
+ const int retval = PL_savestack_ix;
+ const int paren_elems_to_push =
+ (maxopenparen - parenfloor) * REGCP_PAREN_ELEMS;
+ const UV total_elems = paren_elems_to_push + REGCP_OTHER_ELEMS;
+ const UV elems_shifted = total_elems << SAVE_TIGHT_SHIFT;
+ I32 p;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGCPPUSH;
+
+ if (paren_elems_to_push < 0)
+ Perl_croak(aTHX_ "panic: paren_elems_to_push, %i < 0, maxopenparen: %i parenfloor: %i REGCP_PAREN_ELEMS: %u",
+ (int)paren_elems_to_push, (int)maxopenparen,
+ (int)parenfloor, (unsigned)REGCP_PAREN_ELEMS);
+
+ if ((elems_shifted >> SAVE_TIGHT_SHIFT) != total_elems)
+ Perl_croak(aTHX_ "panic: paren_elems_to_push offset %"UVuf
+ " out of range (%lu-%ld)",
+ total_elems,
+ (unsigned long)maxopenparen,
+ (long)parenfloor);
+
+ SSGROW(total_elems + REGCP_FRAME_ELEMS);
+
+ DEBUG_BUFFERS_r(
+ if ((int)maxopenparen > (int)parenfloor)
+ PerlIO_printf(Perl_debug_log,
+ "rex=0x%"UVxf" offs=0x%"UVxf": saving capture indices:\n",
+ PTR2UV(rex),
+ PTR2UV(rex->offs)
+ );
+ );
+ for (p = parenfloor+1; p <= (I32)maxopenparen; p++) {
+/* REGCP_PARENS_ELEMS are pushed per pairs of parentheses. */
+ SSPUSHIV(rex->offs[p].end);
+ SSPUSHIV(rex->offs[p].start);
+ SSPUSHINT(rex->offs[p].start_tmp);
+ DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+ " \\%"UVuf": %"IVdf"(%"IVdf")..%"IVdf"\n",
+ (UV)p,
+ (IV)rex->offs[p].start,
+ (IV)rex->offs[p].start_tmp,
+ (IV)rex->offs[p].end
+ ));
+ }
+/* REGCP_OTHER_ELEMS are pushed in any case, parentheses or no. */
+ SSPUSHINT(maxopenparen);
+ SSPUSHINT(rex->lastparen);
+ SSPUSHINT(rex->lastcloseparen);
+ SSPUSHUV(SAVEt_REGCONTEXT | elems_shifted); /* Magic cookie. */
+
+ return retval;
+}
+
+/* These are needed since we do not localize EVAL nodes: */
+#define REGCP_SET(cp) \
+ DEBUG_STATE_r( \
+ PerlIO_printf(Perl_debug_log, \
+ " Setting an EVAL scope, savestack=%"IVdf"\n", \
+ (IV)PL_savestack_ix)); \
+ cp = PL_savestack_ix
+
+#define REGCP_UNWIND(cp) \
+ DEBUG_STATE_r( \
+ if (cp != PL_savestack_ix) \
+ PerlIO_printf(Perl_debug_log, \
+ " Clearing an EVAL scope, savestack=%"IVdf"..%"IVdf"\n", \
+ (IV)(cp), (IV)PL_savestack_ix)); \
+ regcpblow(cp)
+
+#define UNWIND_PAREN(lp, lcp) \
+ for (n = rex->lastparen; n > lp; n--) \
+ rex->offs[n].end = -1; \
+ rex->lastparen = n; \
+ rex->lastcloseparen = lcp;
+
+
+STATIC void
+S_regcppop(pTHX_ regexp *rex, U32 *maxopenparen_p)
+{
+ UV i;
+ U32 paren;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGCPPOP;
+
+ /* Pop REGCP_OTHER_ELEMS before the parentheses loop starts. */
+ i = SSPOPUV;
+ assert((i & SAVE_MASK) == SAVEt_REGCONTEXT); /* Check that the magic cookie is there. */
+ i >>= SAVE_TIGHT_SHIFT; /* Parentheses elements to pop. */
+ rex->lastcloseparen = SSPOPINT;
+ rex->lastparen = SSPOPINT;
+ *maxopenparen_p = SSPOPINT;
+
+ i -= REGCP_OTHER_ELEMS;
+ /* Now restore the parentheses context. */
+ DEBUG_BUFFERS_r(
+ if (i || rex->lastparen + 1 <= rex->nparens)
+ PerlIO_printf(Perl_debug_log,
+ "rex=0x%"UVxf" offs=0x%"UVxf": restoring capture indices to:\n",
+ PTR2UV(rex),
+ PTR2UV(rex->offs)
+ );
+ );
+ paren = *maxopenparen_p;
+ for ( ; i > 0; i -= REGCP_PAREN_ELEMS) {
+ SSize_t tmps;
+ rex->offs[paren].start_tmp = SSPOPINT;
+ rex->offs[paren].start = SSPOPIV;
+ tmps = SSPOPIV;
+ if (paren <= rex->lastparen)
+ rex->offs[paren].end = tmps;
+ DEBUG_BUFFERS_r( PerlIO_printf(Perl_debug_log,
+ " \\%"UVuf": %"IVdf"(%"IVdf")..%"IVdf"%s\n",
+ (UV)paren,
+ (IV)rex->offs[paren].start,
+ (IV)rex->offs[paren].start_tmp,
+ (IV)rex->offs[paren].end,
+ (paren > rex->lastparen ? "(skipped)" : ""));
+ );
+ paren--;
+ }
+#if 1
+ /* It would seem that the similar code in regtry()
+ * already takes care of this, and in fact it is in
+ * a better location to since this code can #if 0-ed out
+ * but the code in regtry() is needed or otherwise tests
+ * requiring null fields (pat.t#187 and split.t#{13,14}
+ * (as of patchlevel 7877) will fail. Then again,
+ * this code seems to be necessary or otherwise
+ * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
+ * --jhi updated by dapm */
+ for (i = rex->lastparen + 1; i <= rex->nparens; i++) {
+ if (i > *maxopenparen_p)
+ rex->offs[i].start = -1;
+ rex->offs[i].end = -1;
+ DEBUG_BUFFERS_r( PerlIO_printf(Perl_debug_log,
+ " \\%"UVuf": %s ..-1 undeffing\n",
+ (UV)i,
+ (i > *maxopenparen_p) ? "-1" : " "
+ ));
+ }
+#endif
+}
+
+/* restore the parens and associated vars at savestack position ix,
+ * but without popping the stack */
+
+STATIC void
+S_regcp_restore(pTHX_ regexp *rex, I32 ix, U32 *maxopenparen_p)
+{
+ I32 tmpix = PL_savestack_ix;
+ PL_savestack_ix = ix;
+ regcppop(rex, maxopenparen_p);
+ PL_savestack_ix = tmpix;
+}
+
+#define regcpblow(cp) LEAVE_SCOPE(cp) /* Ignores regcppush()ed data. */
+
+STATIC bool
+S_isFOO_lc(pTHX_ const U8 classnum, const U8 character)
+{
+ /* Returns a boolean as to whether or not 'character' is a member of the
+ * Posix character class given by 'classnum' that should be equivalent to a
+ * value in the typedef '_char_class_number'.
+ *
+ * Ideally this could be replaced by a just an array of function pointers
+ * to the C library functions that implement the macros this calls.
+ * However, to compile, the precise function signatures are required, and
+ * these may vary from platform to to platform. To avoid having to figure
+ * out what those all are on each platform, I (khw) am using this method,
+ * which adds an extra layer of function call overhead (unless the C
+ * optimizer strips it away). But we don't particularly care about
+ * performance with locales anyway. */
+
+ switch ((_char_class_number) classnum) {
+ case _CC_ENUM_ALPHANUMERIC: return isALPHANUMERIC_LC(character);
+ case _CC_ENUM_ALPHA: return isALPHA_LC(character);
+ case _CC_ENUM_ASCII: return isASCII_LC(character);
+ case _CC_ENUM_BLANK: return isBLANK_LC(character);
+ case _CC_ENUM_CASED: return isLOWER_LC(character)
+ || isUPPER_LC(character);
+ case _CC_ENUM_CNTRL: return isCNTRL_LC(character);
+ case _CC_ENUM_DIGIT: return isDIGIT_LC(character);
+ case _CC_ENUM_GRAPH: return isGRAPH_LC(character);
+ case _CC_ENUM_LOWER: return isLOWER_LC(character);
+ case _CC_ENUM_PRINT: return isPRINT_LC(character);
+ case _CC_ENUM_PUNCT: return isPUNCT_LC(character);
+ case _CC_ENUM_SPACE: return isSPACE_LC(character);
+ case _CC_ENUM_UPPER: return isUPPER_LC(character);
+ case _CC_ENUM_WORDCHAR: return isWORDCHAR_LC(character);
+ case _CC_ENUM_XDIGIT: return isXDIGIT_LC(character);
+ default: /* VERTSPACE should never occur in locales */
+ Perl_croak(aTHX_ "panic: isFOO_lc() has an unexpected character class '%d'", classnum);
+ }
+
+ NOT_REACHED; /* NOTREACHED */
+ return FALSE;
+}
+
+STATIC bool
+S_isFOO_utf8_lc(pTHX_ const U8 classnum, const U8* character)
+{
+ /* Returns a boolean as to whether or not the (well-formed) UTF-8-encoded
+ * 'character' is a member of the Posix character class given by 'classnum'
+ * that should be equivalent to a value in the typedef
+ * '_char_class_number'.
+ *
+ * This just calls isFOO_lc on the code point for the character if it is in
+ * the range 0-255. Outside that range, all characters use Unicode
+ * rules, ignoring any locale. So use the Unicode function if this class
+ * requires a swash, and use the Unicode macro otherwise. */
+
+ PERL_ARGS_ASSERT_ISFOO_UTF8_LC;
+
+ if (UTF8_IS_INVARIANT(*character)) {
+ return isFOO_lc(classnum, *character);
+ }
+ else if (UTF8_IS_DOWNGRADEABLE_START(*character)) {
+ return isFOO_lc(classnum,
+ TWO_BYTE_UTF8_TO_NATIVE(*character, *(character + 1)));
+ }
+
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(character, character + UTF8SKIP(character));
+
+ if (classnum < _FIRST_NON_SWASH_CC) {
+
+ /* Initialize the swash unless done already */
+ if (! PL_utf8_swash_ptrs[classnum]) {
+ U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+ PL_utf8_swash_ptrs[classnum] =
+ _core_swash_init("utf8",
+ "",
+ &PL_sv_undef, 1, 0,
+ PL_XPosix_ptrs[classnum], &flags);
+ }
+
+ return cBOOL(swash_fetch(PL_utf8_swash_ptrs[classnum], (U8 *)
+ character,
+ TRUE /* is UTF */ ));
+ }
+
+ switch ((_char_class_number) classnum) {
+ case _CC_ENUM_SPACE: return is_XPERLSPACE_high(character);
+ case _CC_ENUM_BLANK: return is_HORIZWS_high(character);
+ case _CC_ENUM_XDIGIT: return is_XDIGIT_high(character);
+ case _CC_ENUM_VERTSPACE: return is_VERTWS_high(character);
+ default: break;
+ }
+
+ return FALSE; /* Things like CNTRL are always below 256 */
+}
+
+/*
+ * pregexec and friends
+ */
+
+#ifndef PERL_IN_XSUB_RE
+/*
+ - pregexec - match a regexp against a string
+ */
+I32
+Perl_pregexec(pTHX_ REGEXP * const prog, char* stringarg, char *strend,
+ char *strbeg, SSize_t minend, SV *screamer, U32 nosave)
+/* stringarg: the point in the string at which to begin matching */
+/* strend: pointer to null at end of string */
+/* strbeg: real beginning of string */
+/* minend: end of match must be >= minend bytes after stringarg. */
+/* screamer: SV being matched: only used for utf8 flag, pos() etc; string
+ * itself is accessed via the pointers above */
+/* nosave: For optimizations. */
+{
+ PERL_ARGS_ASSERT_PREGEXEC;
+
+ return
+ regexec_flags(prog, stringarg, strend, strbeg, minend, screamer, NULL,
+ nosave ? 0 : REXEC_COPY_STR);
+}
+#endif
+
+
+
+/* re_intuit_start():
+ *
+ * Based on some optimiser hints, try to find the earliest position in the
+ * string where the regex could match.
+ *
+ * rx: the regex to match against
+ * sv: the SV being matched: only used for utf8 flag; the string
+ * itself is accessed via the pointers below. Note that on
+ * something like an overloaded SV, SvPOK(sv) may be false
+ * and the string pointers may point to something unrelated to
+ * the SV itself.
+ * strbeg: real beginning of string
+ * strpos: the point in the string at which to begin matching
+ * strend: pointer to the byte following the last char of the string
+ * flags currently unused; set to 0
+ * data: currently unused; set to NULL
+ *
+ * The basic idea of re_intuit_start() is to use some known information
+ * about the pattern, namely:
+ *
+ * a) the longest known anchored substring (i.e. one that's at a
+ * constant offset from the beginning of the pattern; but not
+ * necessarily at a fixed offset from the beginning of the
+ * string);
+ * b) the longest floating substring (i.e. one that's not at a constant
+ * offset from the beginning of the pattern);
+ * c) Whether the pattern is anchored to the string; either
+ * an absolute anchor: /^../, or anchored to \n: /^.../m,
+ * or anchored to pos(): /\G/;
+ * d) A start class: a real or synthetic character class which
+ * represents which characters are legal at the start of the pattern;
+ *
+ * to either quickly reject the match, or to find the earliest position
+ * within the string at which the pattern might match, thus avoiding
+ * running the full NFA engine at those earlier locations, only to
+ * eventually fail and retry further along.
+ *
+ * Returns NULL if the pattern can't match, or returns the address within
+ * the string which is the earliest place the match could occur.
+ *
+ * The longest of the anchored and floating substrings is called 'check'
+ * and is checked first. The other is called 'other' and is checked
+ * second. The 'other' substring may not be present. For example,
+ *
+ * /(abc|xyz)ABC\d{0,3}DEFG/
+ *
+ * will have
+ *
+ * check substr (float) = "DEFG", offset 6..9 chars
+ * other substr (anchored) = "ABC", offset 3..3 chars
+ * stclass = [ax]
+ *
+ * Be aware that during the course of this function, sometimes 'anchored'
+ * refers to a substring being anchored relative to the start of the
+ * pattern, and sometimes to the pattern itself being anchored relative to
+ * the string. For example:
+ *
+ * /\dabc/: "abc" is anchored to the pattern;
+ * /^\dabc/: "abc" is anchored to the pattern and the string;
+ * /\d+abc/: "abc" is anchored to neither the pattern nor the string;
+ * /^\d+abc/: "abc" is anchored to neither the pattern nor the string,
+ * but the pattern is anchored to the string.
+ */
+
+char *
+Perl_re_intuit_start(pTHX_
+ REGEXP * const rx,
+ SV *sv,
+ const char * const strbeg,
+ char *strpos,
+ char *strend,
+ const U32 flags,
+ re_scream_pos_data *data)
+{
+ struct regexp *const prog = ReANY(rx);
+ SSize_t start_shift = prog->check_offset_min;
+ /* Should be nonnegative! */
+ SSize_t end_shift = 0;
+ /* current lowest pos in string where the regex can start matching */
+ char *rx_origin = strpos;
+ SV *check;
+ const bool utf8_target = (sv && SvUTF8(sv)) ? 1 : 0; /* if no sv we have to assume bytes */
+ U8 other_ix = 1 - prog->substrs->check_ix;
+ bool ml_anch = 0;
+ char *other_last = strpos;/* latest pos 'other' substr already checked to */
+ char *check_at = NULL; /* check substr found at this pos */
+ const I32 multiline = prog->extflags & RXf_PMf_MULTILINE;
+ RXi_GET_DECL(prog,progi);
+ regmatch_info reginfo_buf; /* create some info to pass to find_byclass */
+ regmatch_info *const reginfo = ®info_buf;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_INTUIT_START;
+ PERL_UNUSED_ARG(flags);
+ PERL_UNUSED_ARG(data);
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "Intuit: trying to determine minimum start position...\n"));
+
+ /* for now, assume that all substr offsets are positive. If at some point
+ * in the future someone wants to do clever things with look-behind and
+ * -ve offsets, they'll need to fix up any code in this function
+ * which uses these offsets. See the thread beginning
+ * <20140113145929.GF27210@iabyn.com>
+ */
+ assert(prog->substrs->data[0].min_offset >= 0);
+ assert(prog->substrs->data[0].max_offset >= 0);
+ assert(prog->substrs->data[1].min_offset >= 0);
+ assert(prog->substrs->data[1].max_offset >= 0);
+ assert(prog->substrs->data[2].min_offset >= 0);
+ assert(prog->substrs->data[2].max_offset >= 0);
+
+ /* for now, assume that if both present, that the floating substring
+ * doesn't start before the anchored substring.
+ * If you break this assumption (e.g. doing better optimisations
+ * with lookahead/behind), then you'll need to audit the code in this
+ * function carefully first
+ */
+ assert(
+ ! ( (prog->anchored_utf8 || prog->anchored_substr)
+ && (prog->float_utf8 || prog->float_substr))
+ || (prog->float_min_offset >= prog->anchored_offset));
+
+ /* byte rather than char calculation for efficiency. It fails
+ * to quickly reject some cases that can't match, but will reject
+ * them later after doing full char arithmetic */
+ if (prog->minlen > strend - strpos) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " String too short...\n"));
+ goto fail;
+ }
+
+ RX_MATCH_UTF8_set(rx,utf8_target);
+ reginfo->is_utf8_target = cBOOL(utf8_target);
+ reginfo->info_aux = NULL;
+ reginfo->strbeg = strbeg;
+ reginfo->strend = strend;
+ reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx));
+ reginfo->intuit = 1;
+ /* not actually used within intuit, but zero for safety anyway */
+ reginfo->poscache_maxiter = 0;
+
+ if (utf8_target) {
+ if (!prog->check_utf8 && prog->check_substr)
+ to_utf8_substr(prog);
+ check = prog->check_utf8;
+ } else {
+ if (!prog->check_substr && prog->check_utf8) {
+ if (! to_byte_substr(prog)) {
+ NON_UTF8_TARGET_BUT_UTF8_REQUIRED(fail);
+ }
+ }
+ check = prog->check_substr;
+ }
+
+ /* dump the various substring data */
+ DEBUG_OPTIMISE_MORE_r({
+ int i;
+ for (i=0; i<=2; i++) {
+ SV *sv = (utf8_target ? prog->substrs->data[i].utf8_substr
+ : prog->substrs->data[i].substr);
+ if (!sv)
+ continue;
+
+ PerlIO_printf(Perl_debug_log,
+ " substrs[%d]: min=%"IVdf" max=%"IVdf" end shift=%"IVdf
+ " useful=%"IVdf" utf8=%d [%s]\n",
+ i,
+ (IV)prog->substrs->data[i].min_offset,
+ (IV)prog->substrs->data[i].max_offset,
+ (IV)prog->substrs->data[i].end_shift,
+ BmUSEFUL(sv),
+ utf8_target ? 1 : 0,
+ SvPEEK(sv));
+ }
+ });
+
+ if (prog->intflags & PREGf_ANCH) { /* Match at \G, beg-of-str or after \n */
+
+ /* ml_anch: check after \n?
+ *
+ * A note about PREGf_IMPLICIT: on an un-anchored pattern beginning
+ * with /.*.../, these flags will have been added by the
+ * compiler:
+ * /.*abc/, /.*abc/m: PREGf_IMPLICIT | PREGf_ANCH_MBOL
+ * /.*abc/s: PREGf_IMPLICIT | PREGf_ANCH_SBOL
+ */
+ ml_anch = (prog->intflags & PREGf_ANCH_MBOL)
+ && !(prog->intflags & PREGf_IMPLICIT);
+
+ if (!ml_anch && !(prog->intflags & PREGf_IMPLICIT)) {
+ /* we are only allowed to match at BOS or \G */
+
+ /* trivially reject if there's a BOS anchor and we're not at BOS.
+ *
+ * Note that we don't try to do a similar quick reject for
+ * \G, since generally the caller will have calculated strpos
+ * based on pos() and gofs, so the string is already correctly
+ * anchored by definition; and handling the exceptions would
+ * be too fiddly (e.g. REXEC_IGNOREPOS).
+ */
+ if ( strpos != strbeg
+ && (prog->intflags & PREGf_ANCH_SBOL))
+ {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Not at start...\n"));
+ goto fail;
+ }
+
+ /* in the presence of an anchor, the anchored (relative to the
+ * start of the regex) substr must also be anchored relative
+ * to strpos. So quickly reject if substr isn't found there.
+ * This works for \G too, because the caller will already have
+ * subtracted gofs from pos, and gofs is the offset from the
+ * \G to the start of the regex. For example, in /.abc\Gdef/,
+ * where substr="abcdef", pos()=3, gofs=4, offset_min=1:
+ * caller will have set strpos=pos()-4; we look for the substr
+ * at position pos()-4+1, which lines up with the "a" */
+
+ if (prog->check_offset_min == prog->check_offset_max) {
+ /* Substring at constant offset from beg-of-str... */
+ SSize_t slen = SvCUR(check);
+ char *s = HOP3c(strpos, prog->check_offset_min, strend);
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Looking for check substr at fixed offset %"IVdf"...\n",
+ (IV)prog->check_offset_min));
+
+ if (SvTAIL(check)) {
+ /* In this case, the regex is anchored at the end too.
+ * Unless it's a multiline match, the lengths must match
+ * exactly, give or take a \n. NB: slen >= 1 since
+ * the last char of check is \n */
+ if (!multiline
+ && ( strend - s > slen
+ || strend - s < slen - 1
+ || (strend - s == slen && strend[-1] != '\n')))
+ {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " String too long...\n"));
+ goto fail_finish;
+ }
+ /* Now should match s[0..slen-2] */
+ slen--;
+ }
+ if (slen && (*SvPVX_const(check) != *s
+ || (slen > 1 && memNE(SvPVX_const(check), s, slen))))
+ {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " String not equal...\n"));
+ goto fail_finish;
+ }
+
+ check_at = s;
+ goto success_at_start;
+ }
+ }
+ }
+
+ end_shift = prog->check_end_shift;
+
+#ifdef DEBUGGING /* 7/99: reports of failure (with the older version) */
+ if (end_shift < 0)
+ Perl_croak(aTHX_ "panic: end_shift: %"IVdf" pattern:\n%s\n ",
+ (IV)end_shift, RX_PRECOMP(prog));
+#endif
+
+ restart:
+
+ /* This is the (re)entry point of the main loop in this function.
+ * The goal of this loop is to:
+ * 1) find the "check" substring in the region rx_origin..strend
+ * (adjusted by start_shift / end_shift). If not found, reject
+ * immediately.
+ * 2) If it exists, look for the "other" substr too if defined; for
+ * example, if the check substr maps to the anchored substr, then
+ * check the floating substr, and vice-versa. If not found, go
+ * back to (1) with rx_origin suitably incremented.
+ * 3) If we find an rx_origin position that doesn't contradict
+ * either of the substrings, then check the possible additional
+ * constraints on rx_origin of /^.../m or a known start class.
+ * If these fail, then depending on which constraints fail, jump
+ * back to here, or to various other re-entry points further along
+ * that skip some of the first steps.
+ * 4) If we pass all those tests, update the BmUSEFUL() count on the
+ * substring. If the start position was determined to be at the
+ * beginning of the string - so, not rejected, but not optimised,
+ * since we have to run regmatch from position 0 - decrement the
+ * BmUSEFUL() count. Otherwise increment it.
+ */
+
+
+ /* first, look for the 'check' substring */
+
+ {
+ U8* start_point;
+ U8* end_point;
+
+ DEBUG_OPTIMISE_MORE_r({
+ PerlIO_printf(Perl_debug_log,
+ " At restart: rx_origin=%"IVdf" Check offset min: %"IVdf
+ " Start shift: %"IVdf" End shift %"IVdf
+ " Real end Shift: %"IVdf"\n",
+ (IV)(rx_origin - strbeg),
+ (IV)prog->check_offset_min,
+ (IV)start_shift,
+ (IV)end_shift,
+ (IV)prog->check_end_shift);
+ });
+
+ end_point = HOP3(strend, -end_shift, strbeg);
+ start_point = HOPMAYBE3(rx_origin, start_shift, end_point);
+ if (!start_point)
+ goto fail_finish;
+
+
+ /* If the regex is absolutely anchored to either the start of the
+ * string (SBOL) or to pos() (ANCH_GPOS), then
+ * check_offset_max represents an upper bound on the string where
+ * the substr could start. For the ANCH_GPOS case, we assume that
+ * the caller of intuit will have already set strpos to
+ * pos()-gofs, so in this case strpos + offset_max will still be
+ * an upper bound on the substr.
+ */
+ if (!ml_anch
+ && prog->intflags & PREGf_ANCH
+ && prog->check_offset_max != SSize_t_MAX)
+ {
+ SSize_t len = SvCUR(check) - !!SvTAIL(check);
+ const char * const anchor =
+ (prog->intflags & PREGf_ANCH_GPOS ? strpos : strbeg);
+
+ /* do a bytes rather than chars comparison. It's conservative;
+ * so it skips doing the HOP if the result can't possibly end
+ * up earlier than the old value of end_point.
+ */
+ if ((char*)end_point - anchor > prog->check_offset_max) {
+ end_point = HOP3lim((U8*)anchor,
+ prog->check_offset_max,
+ end_point -len)
+ + len;
+ }
+ }
+
+ check_at = fbm_instr( start_point, end_point,
+ check, multiline ? FBMrf_MULTILINE : 0);
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " doing 'check' fbm scan, [%"IVdf"..%"IVdf"] gave %"IVdf"\n",
+ (IV)((char*)start_point - strbeg),
+ (IV)((char*)end_point - strbeg),
+ (IV)(check_at ? check_at - strbeg : -1)
+ ));
+
+ /* Update the count-of-usability, remove useless subpatterns,
+ unshift s. */
+
+ DEBUG_EXECUTE_r({
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(check), RE_SV_DUMPLEN(check), 30);
+ PerlIO_printf(Perl_debug_log, " %s %s substr %s%s%s",
+ (check_at ? "Found" : "Did not find"),
+ (check == (utf8_target ? prog->anchored_utf8 : prog->anchored_substr)
+ ? "anchored" : "floating"),
+ quoted,
+ RE_SV_TAIL(check),
+ (check_at ? " at offset " : "...\n") );
+ });
+
+ if (!check_at)
+ goto fail_finish;
+ /* set rx_origin to the minimum position where the regex could start
+ * matching, given the constraint of the just-matched check substring.
+ * But don't set it lower than previously.
+ */
+
+ if (check_at - rx_origin > prog->check_offset_max)
+ rx_origin = HOP3c(check_at, -prog->check_offset_max, rx_origin);
+ /* Finish the diagnostic message */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%ld (rx_origin now %"IVdf")...\n",
+ (long)(check_at - strbeg),
+ (IV)(rx_origin - strbeg)
+ ));
+ }
+
+
+ /* now look for the 'other' substring if defined */
+
+ if (utf8_target ? prog->substrs->data[other_ix].utf8_substr
+ : prog->substrs->data[other_ix].substr)
+ {
+ /* Take into account the "other" substring. */
+ char *last, *last1;
+ char *s;
+ SV* must;
+ struct reg_substr_datum *other;
+
+ do_other_substr:
+ other = &prog->substrs->data[other_ix];
+
+ /* if "other" is anchored:
+ * we've previously found a floating substr starting at check_at.
+ * This means that the regex origin must lie somewhere
+ * between min (rx_origin): HOP3(check_at, -check_offset_max)
+ * and max: HOP3(check_at, -check_offset_min)
+ * (except that min will be >= strpos)
+ * So the fixed substr must lie somewhere between
+ * HOP3(min, anchored_offset)
+ * HOP3(max, anchored_offset) + SvCUR(substr)
+ */
+
+ /* if "other" is floating
+ * Calculate last1, the absolute latest point where the
+ * floating substr could start in the string, ignoring any
+ * constraints from the earlier fixed match. It is calculated
+ * as follows:
+ *
+ * strend - prog->minlen (in chars) is the absolute latest
+ * position within the string where the origin of the regex
+ * could appear. The latest start point for the floating
+ * substr is float_min_offset(*) on from the start of the
+ * regex. last1 simply combines thee two offsets.
+ *
+ * (*) You might think the latest start point should be
+ * float_max_offset from the regex origin, and technically
+ * you'd be correct. However, consider
+ * /a\d{2,4}bcd\w/
+ * Here, float min, max are 3,5 and minlen is 7.
+ * This can match either
+ * /a\d\dbcd\w/
+ * /a\d\d\dbcd\w/
+ * /a\d\d\d\dbcd\w/
+ * In the first case, the regex matches minlen chars; in the
+ * second, minlen+1, in the third, minlen+2.
+ * In the first case, the floating offset is 3 (which equals
+ * float_min), in the second, 4, and in the third, 5 (which
+ * equals float_max). In all cases, the floating string bcd
+ * can never start more than 4 chars from the end of the
+ * string, which equals minlen - float_min. As the substring
+ * starts to match more than float_min from the start of the
+ * regex, it makes the regex match more than minlen chars,
+ * and the two cancel each other out. So we can always use
+ * float_min - minlen, rather than float_max - minlen for the
+ * latest position in the string.
+ *
+ * Note that -minlen + float_min_offset is equivalent (AFAIKT)
+ * to CHR_SVLEN(must) - !!SvTAIL(must) + prog->float_end_shift
+ */
+
+ assert(prog->minlen >= other->min_offset);
+ last1 = HOP3c(strend,
+ other->min_offset - prog->minlen, strbeg);
+
+ if (other_ix) {/* i.e. if (other-is-float) */
+ /* last is the latest point where the floating substr could
+ * start, *given* any constraints from the earlier fixed
+ * match. This constraint is that the floating string starts
+ * <= float_max_offset chars from the regex origin (rx_origin).
+ * If this value is less than last1, use it instead.
+ */
+ assert(rx_origin <= last1);
+ last =
+ /* this condition handles the offset==infinity case, and
+ * is a short-cut otherwise. Although it's comparing a
+ * byte offset to a char length, it does so in a safe way,
+ * since 1 char always occupies 1 or more bytes,
+ * so if a string range is (last1 - rx_origin) bytes,
+ * it will be less than or equal to (last1 - rx_origin)
+ * chars; meaning it errs towards doing the accurate HOP3
+ * rather than just using last1 as a short-cut */
+ (last1 - rx_origin) < other->max_offset
+ ? last1
+ : (char*)HOP3lim(rx_origin, other->max_offset, last1);
+ }
+ else {
+ assert(strpos + start_shift <= check_at);
+ last = HOP4c(check_at, other->min_offset - start_shift,
+ strbeg, strend);
+ }
+
+ s = HOP3c(rx_origin, other->min_offset, strend);
+ if (s < other_last) /* These positions already checked */
+ s = other_last;
+
+ must = utf8_target ? other->utf8_substr : other->substr;
+ assert(SvPOK(must));
+ {
+ char *from = s;
+ char *to = last + SvCUR(must) - (SvTAIL(must)!=0);
+
+ if (from > to) {
+ s = NULL;
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " skipping 'other' fbm scan: %"IVdf" > %"IVdf"\n",
+ (IV)(from - strbeg),
+ (IV)(to - strbeg)
+ ));
+ }
+ else {
+ s = fbm_instr(
+ (unsigned char*)from,
+ (unsigned char*)to,
+ must,
+ multiline ? FBMrf_MULTILINE : 0
+ );
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " doing 'other' fbm scan, [%"IVdf"..%"IVdf"] gave %"IVdf"\n",
+ (IV)(from - strbeg),
+ (IV)(to - strbeg),
+ (IV)(s ? s - strbeg : -1)
+ ));
+ }
+ }
+
+ DEBUG_EXECUTE_r({
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+ PerlIO_printf(Perl_debug_log, " %s %s substr %s%s",
+ s ? "Found" : "Contradicts",
+ other_ix ? "floating" : "anchored",
+ quoted, RE_SV_TAIL(must));
+ });
+
+
+ if (!s) {
+ /* last1 is latest possible substr location. If we didn't
+ * find it before there, we never will */
+ if (last >= last1) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "; giving up...\n"));
+ goto fail_finish;
+ }
+
+ /* try to find the check substr again at a later
+ * position. Maybe next time we'll find the "other" substr
+ * in range too */
+ other_last = HOP3c(last, 1, strend) /* highest failure */;
+ rx_origin =
+ other_ix /* i.e. if other-is-float */
+ ? HOP3c(rx_origin, 1, strend)
+ : HOP4c(last, 1 - other->min_offset, strbeg, strend);
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "; about to retry %s at offset %ld (rx_origin now %"IVdf")...\n",
+ (other_ix ? "floating" : "anchored"),
+ (long)(HOP3c(check_at, 1, strend) - strbeg),
+ (IV)(rx_origin - strbeg)
+ ));
+ goto restart;
+ }
+ else {
+ if (other_ix) { /* if (other-is-float) */
+ /* other_last is set to s, not s+1, since its possible for
+ * a floating substr to fail first time, then succeed
+ * second time at the same floating position; e.g.:
+ * "-AB--AABZ" =~ /\wAB\d*Z/
+ * The first time round, anchored and float match at
+ * "-(AB)--AAB(Z)" then fail on the initial \w character
+ * class. Second time round, they match at "-AB--A(AB)(Z)".
+ */
+ other_last = s;
+ }
+ else {
+ rx_origin = HOP3c(s, -other->min_offset, strbeg);
+ other_last = HOP3c(s, 1, strend);
+ }
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " at offset %ld (rx_origin now %"IVdf")...\n",
+ (long)(s - strbeg),
+ (IV)(rx_origin - strbeg)
+ ));
+
+ }
+ }
+ else {
+ DEBUG_OPTIMISE_MORE_r(
+ PerlIO_printf(Perl_debug_log,
+ " Check-only match: offset min:%"IVdf" max:%"IVdf
+ " check_at:%"IVdf" rx_origin:%"IVdf" rx_origin-check_at:%"IVdf
+ " strend:%"IVdf"\n",
+ (IV)prog->check_offset_min,
+ (IV)prog->check_offset_max,
+ (IV)(check_at-strbeg),
+ (IV)(rx_origin-strbeg),
+ (IV)(rx_origin-check_at),
+ (IV)(strend-strbeg)
+ )
+ );
+ }
+
+ postprocess_substr_matches:
+
+ /* handle the extra constraint of /^.../m if present */
+
+ if (ml_anch && rx_origin != strbeg && rx_origin[-1] != '\n') {
+ char *s;
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " looking for /^/m anchor"));
+
+ /* we have failed the constraint of a \n before rx_origin.
+ * Find the next \n, if any, even if it's beyond the current
+ * anchored and/or floating substrings. Whether we should be
+ * scanning ahead for the next \n or the next substr is debatable.
+ * On the one hand you'd expect rare substrings to appear less
+ * often than \n's. On the other hand, searching for \n means
+ * we're effectively flipping between check_substr and "\n" on each
+ * iteration as the current "rarest" string candidate, which
+ * means for example that we'll quickly reject the whole string if
+ * hasn't got a \n, rather than trying every substr position
+ * first
+ */
+
+ s = HOP3c(strend, - prog->minlen, strpos);
+ if (s <= rx_origin ||
+ ! ( rx_origin = (char *)memchr(rx_origin, '\n', s - rx_origin)))
+ {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Did not find /%s^%s/m...\n",
+ PL_colors[0], PL_colors[1]));
+ goto fail_finish;
+ }
+
+ /* earliest possible origin is 1 char after the \n.
+ * (since *rx_origin == '\n', it's safe to ++ here rather than
+ * HOP(rx_origin, 1)) */
+ rx_origin++;
+
+ if (prog->substrs->check_ix == 0 /* check is anchored */
+ || rx_origin >= HOP3c(check_at, - prog->check_offset_min, strpos))
+ {
+ /* Position contradicts check-string; either because
+ * check was anchored (and thus has no wiggle room),
+ * or check was float and rx_origin is above the float range */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Found /%s^%s/m, about to restart lookup for check-string with rx_origin %ld...\n",
+ PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg)));
+ goto restart;
+ }
+
+ /* if we get here, the check substr must have been float,
+ * is in range, and we may or may not have had an anchored
+ * "other" substr which still contradicts */
+ assert(prog->substrs->check_ix); /* check is float */
+
+ if (utf8_target ? prog->anchored_utf8 : prog->anchored_substr) {
+ /* whoops, the anchored "other" substr exists, so we still
+ * contradict. On the other hand, the float "check" substr
+ * didn't contradict, so just retry the anchored "other"
+ * substr */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Found /%s^%s/m, rescanning for anchored from offset %ld (rx_origin now %"IVdf")...\n",
+ PL_colors[0], PL_colors[1],
+ (long)(rx_origin - strbeg + prog->anchored_offset),
+ (long)(rx_origin - strbeg)
+ ));
+ goto do_other_substr;
+ }
+
+ /* success: we don't contradict the found floating substring
+ * (and there's no anchored substr). */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Found /%s^%s/m with rx_origin %ld...\n",
+ PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg)));
+ }
+ else {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " (multiline anchor test skipped)\n"));
+ }
+
+ success_at_start:
+
+
+ /* if we have a starting character class, then test that extra constraint.
+ * (trie stclasses are too expensive to use here, we are better off to
+ * leave it to regmatch itself) */
+
+ if (progi->regstclass && PL_regkind[OP(progi->regstclass)]!=TRIE) {
+ const U8* const str = (U8*)STRING(progi->regstclass);
+
+ /* XXX this value could be pre-computed */
+ const int cl_l = (PL_regkind[OP(progi->regstclass)] == EXACT
+ ? (reginfo->is_utf8_pat
+ ? utf8_distance(str + STR_LEN(progi->regstclass), str)
+ : STR_LEN(progi->regstclass))
+ : 1);
+ char * endpos;
+ char *s;
+ /* latest pos that a matching float substr constrains rx start to */
+ char *rx_max_float = NULL;
+
+ /* if the current rx_origin is anchored, either by satisfying an
+ * anchored substring constraint, or a /^.../m constraint, then we
+ * can reject the current origin if the start class isn't found
+ * at the current position. If we have a float-only match, then
+ * rx_origin is constrained to a range; so look for the start class
+ * in that range. if neither, then look for the start class in the
+ * whole rest of the string */
+
+ /* XXX DAPM it's not clear what the minlen test is for, and why
+ * it's not used in the floating case. Nothing in the test suite
+ * causes minlen == 0 here. See <20140313134639.GS12844@iabyn.com>.
+ * Here are some old comments, which may or may not be correct:
+ *
+ * minlen == 0 is possible if regstclass is \b or \B,
+ * and the fixed substr is ''$.
+ * Since minlen is already taken into account, rx_origin+1 is
+ * before strend; accidentally, minlen >= 1 guaranties no false
+ * positives at rx_origin + 1 even for \b or \B. But (minlen? 1 :
+ * 0) below assumes that regstclass does not come from lookahead...
+ * If regstclass takes bytelength more than 1: If charlength==1, OK.
+ * This leaves EXACTF-ish only, which are dealt with in
+ * find_byclass().
+ */
+
+ if (prog->anchored_substr || prog->anchored_utf8 || ml_anch)
+ endpos= HOP3c(rx_origin, (prog->minlen ? cl_l : 0), strend);
+ else if (prog->float_substr || prog->float_utf8) {
+ rx_max_float = HOP3c(check_at, -start_shift, strbeg);
+ endpos= HOP3c(rx_max_float, cl_l, strend);
+ }
+ else
+ endpos= strend;
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " looking for class: start_shift: %"IVdf" check_at: %"IVdf
+ " rx_origin: %"IVdf" endpos: %"IVdf"\n",
+ (IV)start_shift, (IV)(check_at - strbeg),
+ (IV)(rx_origin - strbeg), (IV)(endpos - strbeg)));
+
+ s = find_byclass(prog, progi->regstclass, rx_origin, endpos,
+ reginfo);
+ if (!s) {
+ if (endpos == strend) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ " Could not match STCLASS...\n") );
+ goto fail;
+ }
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ " This position contradicts STCLASS...\n") );
+ if ((prog->intflags & PREGf_ANCH) && !ml_anch
+ && !(prog->intflags & PREGf_IMPLICIT))
+ goto fail;
+
+ /* Contradict one of substrings */
+ if (prog->anchored_substr || prog->anchored_utf8) {
+ if (prog->substrs->check_ix == 1) { /* check is float */
+ /* Have both, check_string is floating */
+ assert(rx_origin + start_shift <= check_at);
+ if (rx_origin + start_shift != check_at) {
+ /* not at latest position float substr could match:
+ * Recheck anchored substring, but not floating.
+ * The condition above is in bytes rather than
+ * chars for efficiency. It's conservative, in
+ * that it errs on the side of doing 'goto
+ * do_other_substr'. In this case, at worst,
+ * an extra anchored search may get done, but in
+ * practice the extra fbm_instr() is likely to
+ * get skipped anyway. */
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ " about to retry anchored at offset %ld (rx_origin now %"IVdf")...\n",
+ (long)(other_last - strbeg),
+ (IV)(rx_origin - strbeg)
+ ));
+ goto do_other_substr;
+ }
+ }
+ }
+ else {
+ /* float-only */
+
+ if (ml_anch) {
+ /* In the presence of ml_anch, we might be able to
+ * find another \n without breaking the current float
+ * constraint. */
+
+ /* strictly speaking this should be HOP3c(..., 1, ...),
+ * but since we goto a block of code that's going to
+ * search for the next \n if any, its safe here */
+ rx_origin++;
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ " about to look for /%s^%s/m starting at rx_origin %ld...\n",
+ PL_colors[0], PL_colors[1],
+ (long)(rx_origin - strbeg)) );
+ goto postprocess_substr_matches;
+ }
+
+ /* strictly speaking this can never be true; but might
+ * be if we ever allow intuit without substrings */
+ if (!(utf8_target ? prog->float_utf8 : prog->float_substr))
+ goto fail;
+
+ rx_origin = rx_max_float;
+ }
+
+ /* at this point, any matching substrings have been
+ * contradicted. Start again... */
+
+ rx_origin = HOP3c(rx_origin, 1, strend);
+
+ /* uses bytes rather than char calculations for efficiency.
+ * It's conservative: it errs on the side of doing 'goto restart',
+ * where there is code that does a proper char-based test */
+ if (rx_origin + start_shift + end_shift > strend) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ " Could not match STCLASS...\n") );
+ goto fail;
+ }
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ " about to look for %s substr starting at offset %ld (rx_origin now %"IVdf")...\n",
+ (prog->substrs->check_ix ? "floating" : "anchored"),
+ (long)(rx_origin + start_shift - strbeg),
+ (IV)(rx_origin - strbeg)
+ ));
+ goto restart;
+ }
+
+ /* Success !!! */
+
+ if (rx_origin != s) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " By STCLASS: moving %ld --> %ld\n",
+ (long)(rx_origin - strbeg), (long)(s - strbeg))
+ );
+ }
+ else {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ " Does not contradict STCLASS...\n");
+ );
+ }
+ }
+
+ /* Decide whether using the substrings helped */
+
+ if (rx_origin != strpos) {
+ /* Fixed substring is found far enough so that the match
+ cannot start at strpos. */
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, " try at offset...\n"));
+ ++BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr); /* hooray/5 */
+ }
+ else {
+ /* The found rx_origin position does not prohibit matching at
+ * strpos, so calling intuit didn't gain us anything. Decrement
+ * the BmUSEFUL() count on the check substring, and if we reach
+ * zero, free it. */
+ if (!(prog->intflags & PREGf_NAUGHTY)
+ && (utf8_target ? (
+ prog->check_utf8 /* Could be deleted already */
+ && --BmUSEFUL(prog->check_utf8) < 0
+ && (prog->check_utf8 == prog->float_utf8)
+ ) : (
+ prog->check_substr /* Could be deleted already */
+ && --BmUSEFUL(prog->check_substr) < 0
+ && (prog->check_substr == prog->float_substr)
+ )))
+ {
+ /* If flags & SOMETHING - do not do it many times on the same match */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, " ... Disabling check substring...\n"));
+ /* XXX Does the destruction order has to change with utf8_target? */
+ SvREFCNT_dec(utf8_target ? prog->check_utf8 : prog->check_substr);
+ SvREFCNT_dec(utf8_target ? prog->check_substr : prog->check_utf8);
+ prog->check_substr = prog->check_utf8 = NULL; /* disable */
+ prog->float_substr = prog->float_utf8 = NULL; /* clear */
+ check = NULL; /* abort */
+ /* XXXX This is a remnant of the old implementation. It
+ looks wasteful, since now INTUIT can use many
+ other heuristics. */
+ prog->extflags &= ~RXf_USE_INTUIT;
+ }
+ }
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "Intuit: %sSuccessfully guessed:%s match at offset %ld\n",
+ PL_colors[4], PL_colors[5], (long)(rx_origin - strbeg)) );
+
+ return rx_origin;
+
+ fail_finish: /* Substring not found */
+ if (prog->check_substr || prog->check_utf8) /* could be removed already */
+ BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr) += 5; /* hooray */
+ fail:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch rejected by optimizer%s\n",
+ PL_colors[4], PL_colors[5]));
+ return NULL;
+}
+
+
+#define DECL_TRIE_TYPE(scan) \
+ const enum { trie_plain, trie_utf8, trie_utf8_fold, trie_latin_utf8_fold, \
+ trie_utf8_exactfa_fold, trie_latin_utf8_exactfa_fold, \
+ trie_utf8l, trie_flu8 } \
+ trie_type = ((scan->flags == EXACT) \
+ ? (utf8_target ? trie_utf8 : trie_plain) \
+ : (scan->flags == EXACTL) \
+ ? (utf8_target ? trie_utf8l : trie_plain) \
+ : (scan->flags == EXACTFA) \
+ ? (utf8_target \
+ ? trie_utf8_exactfa_fold \
+ : trie_latin_utf8_exactfa_fold) \
+ : (scan->flags == EXACTFLU8 \
+ ? trie_flu8 \
+ : (utf8_target \
+ ? trie_utf8_fold \
+ : trie_latin_utf8_fold)))
+
+#define REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc, uscan, len, uvc, charid, foldlen, foldbuf, uniflags) \
+STMT_START { \
+ STRLEN skiplen; \
+ U8 flags = FOLD_FLAGS_FULL; \
+ switch (trie_type) { \
+ case trie_flu8: \
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \
+ if (utf8_target && UTF8_IS_ABOVE_LATIN1(*uc)) { \
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(uc, uc + UTF8SKIP(uc)); \
+ } \
+ goto do_trie_utf8_fold; \
+ case trie_utf8_exactfa_fold: \
+ flags |= FOLD_FLAGS_NOMIX_ASCII; \
+ /* FALLTHROUGH */ \
+ case trie_utf8_fold: \
+ do_trie_utf8_fold: \
+ if ( foldlen>0 ) { \
+ uvc = utf8n_to_uvchr( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
+ foldlen -= len; \
+ uscan += len; \
+ len=0; \
+ } else { \
+ uvc = _to_utf8_fold_flags( (const U8*) uc, foldbuf, &foldlen, flags); \
+ len = UTF8SKIP(uc); \
+ skiplen = UNISKIP( uvc ); \
+ foldlen -= skiplen; \
+ uscan = foldbuf + skiplen; \
+ } \
+ break; \
+ case trie_latin_utf8_exactfa_fold: \
+ flags |= FOLD_FLAGS_NOMIX_ASCII; \
+ /* FALLTHROUGH */ \
+ case trie_latin_utf8_fold: \
+ if ( foldlen>0 ) { \
+ uvc = utf8n_to_uvchr( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
+ foldlen -= len; \
+ uscan += len; \
+ len=0; \
+ } else { \
+ len = 1; \
+ uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, flags); \
+ skiplen = UNISKIP( uvc ); \
+ foldlen -= skiplen; \
+ uscan = foldbuf + skiplen; \
+ } \
+ break; \
+ case trie_utf8l: \
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \
+ if (utf8_target && UTF8_IS_ABOVE_LATIN1(*uc)) { \
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(uc, uc + UTF8SKIP(uc)); \
+ } \
+ /* FALLTHROUGH */ \
+ case trie_utf8: \
+ uvc = utf8n_to_uvchr( (const U8*) uc, UTF8_MAXLEN, &len, uniflags ); \
+ break; \
+ case trie_plain: \
+ uvc = (UV)*uc; \
+ len = 1; \
+ } \
+ if (uvc < 256) { \
+ charid = trie->charmap[ uvc ]; \
+ } \
+ else { \
+ charid = 0; \
+ if (widecharmap) { \
+ SV** const svpp = hv_fetch(widecharmap, \
+ (char*)&uvc, sizeof(UV), 0); \
+ if (svpp) \
+ charid = (U16)SvIV(*svpp); \
+ } \
+ } \
+} STMT_END
+
+#define DUMP_EXEC_POS(li,s,doutf8) \
+ dump_exec_pos(li,s,(reginfo->strend),(reginfo->strbeg), \
+ startpos, doutf8)
+
+#define REXEC_FBC_EXACTISH_SCAN(COND) \
+STMT_START { \
+ while (s <= e) { \
+ if ( (COND) \
+ && (ln == 1 || folder(s, pat_string, ln)) \
+ && (reginfo->intuit || regtry(reginfo, &s)) )\
+ goto got_it; \
+ s++; \
+ } \
+} STMT_END
+
+#define REXEC_FBC_UTF8_SCAN(CODE) \
+STMT_START { \
+ while (s < strend) { \
+ CODE \
+ s += UTF8SKIP(s); \
+ } \
+} STMT_END
+
+#define REXEC_FBC_SCAN(CODE) \
+STMT_START { \
+ while (s < strend) { \
+ CODE \
+ s++; \
+ } \
+} STMT_END
+
+#define REXEC_FBC_UTF8_CLASS_SCAN(COND) \
+REXEC_FBC_UTF8_SCAN( /* Loops while (s < strend) */ \
+ if (COND) { \
+ if (tmp && (reginfo->intuit || regtry(reginfo, &s))) \
+ goto got_it; \
+ else \
+ tmp = doevery; \
+ } \
+ else \
+ tmp = 1; \
+)
+
+#define REXEC_FBC_CLASS_SCAN(COND) \
+REXEC_FBC_SCAN( /* Loops while (s < strend) */ \
+ if (COND) { \
+ if (tmp && (reginfo->intuit || regtry(reginfo, &s))) \
+ goto got_it; \
+ else \
+ tmp = doevery; \
+ } \
+ else \
+ tmp = 1; \
+)
+
+#define REXEC_FBC_CSCAN(CONDUTF8,COND) \
+ if (utf8_target) { \
+ REXEC_FBC_UTF8_CLASS_SCAN(CONDUTF8); \
+ } \
+ else { \
+ REXEC_FBC_CLASS_SCAN(COND); \
+ }
+
+/* The three macros below are slightly different versions of the same logic.
+ *
+ * The first is for /a and /aa when the target string is UTF-8. This can only
+ * match ascii, but it must advance based on UTF-8. The other two handle the
+ * non-UTF-8 and the more generic UTF-8 cases. In all three, we are looking
+ * for the boundary (or non-boundary) between a word and non-word character.
+ * The utf8 and non-utf8 cases have the same logic, but the details must be
+ * different. Find the "wordness" of the character just prior to this one, and
+ * compare it with the wordness of this one. If they differ, we have a
+ * boundary. At the beginning of the string, pretend that the previous
+ * character was a new-line.
+ *
+ * All these macros uncleanly have side-effects with each other and outside
+ * variables. So far it's been too much trouble to clean-up
+ *
+ * TEST_NON_UTF8 is the macro or function to call to test if its byte input is
+ * a word character or not.
+ * IF_SUCCESS is code to do if it finds that we are at a boundary between
+ * word/non-word
+ * IF_FAIL is code to do if we aren't at a boundary between word/non-word
+ *
+ * Exactly one of the two IF_FOO parameters is a no-op, depending on whether we
+ * are looking for a boundary or for a non-boundary. If we are looking for a
+ * boundary, we want IF_FAIL to be the no-op, and for IF_SUCCESS to go out and
+ * see if this tentative match actually works, and if so, to quit the loop
+ * here. And vice-versa if we are looking for a non-boundary.
+ *
+ * 'tmp' below in the next three macros in the REXEC_FBC_SCAN and
+ * REXEC_FBC_UTF8_SCAN loops is a loop invariant, a bool giving the return of
+ * TEST_NON_UTF8(s-1). To see this, note that that's what it is defined to be
+ * at entry to the loop, and to get to the IF_FAIL branch, tmp must equal
+ * TEST_NON_UTF8(s), and in the opposite branch, IF_SUCCESS, tmp is that
+ * complement. But in that branch we complement tmp, meaning that at the
+ * bottom of the loop tmp is always going to be equal to TEST_NON_UTF8(s),
+ * which means at the top of the loop in the next iteration, it is
+ * TEST_NON_UTF8(s-1) */
+#define FBC_UTF8_A(TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
+ tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n'; \
+ tmp = TEST_NON_UTF8(tmp); \
+ REXEC_FBC_UTF8_SCAN( /* advances s while s < strend */ \
+ if (tmp == ! TEST_NON_UTF8((U8) *s)) { \
+ tmp = !tmp; \
+ IF_SUCCESS; /* Is a boundary if values for s-1 and s differ */ \
+ } \
+ else { \
+ IF_FAIL; \
+ } \
+ ); \
+
+/* Like FBC_UTF8_A, but TEST_UV is a macro which takes a UV as its input, and
+ * TEST_UTF8 is a macro that for the same input code points returns identically
+ * to TEST_UV, but takes a pointer to a UTF-8 encoded string instead */
+#define FBC_UTF8(TEST_UV, TEST_UTF8, IF_SUCCESS, IF_FAIL) \
+ if (s == reginfo->strbeg) { \
+ tmp = '\n'; \
+ } \
+ else { /* Back-up to the start of the previous character */ \
+ U8 * const r = reghop3((U8*)s, -1, (U8*)reginfo->strbeg); \
+ tmp = utf8n_to_uvchr(r, (U8*) reginfo->strend - r, \
+ 0, UTF8_ALLOW_DEFAULT); \
+ } \
+ tmp = TEST_UV(tmp); \
+ LOAD_UTF8_CHARCLASS_ALNUM(); \
+ REXEC_FBC_UTF8_SCAN( /* advances s while s < strend */ \
+ if (tmp == ! (TEST_UTF8((U8 *) s))) { \
+ tmp = !tmp; \
+ IF_SUCCESS; \
+ } \
+ else { \
+ IF_FAIL; \
+ } \
+ );
+
+/* Like the above two macros. UTF8_CODE is the complete code for handling
+ * UTF-8. Common to the BOUND and NBOUND cases, set-up by the FBC_BOUND, etc
+ * macros below */
+#define FBC_BOUND_COMMON(UTF8_CODE, TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
+ if (utf8_target) { \
+ UTF8_CODE \
+ } \
+ else { /* Not utf8 */ \
+ tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n'; \
+ tmp = TEST_NON_UTF8(tmp); \
+ REXEC_FBC_SCAN( /* advances s while s < strend */ \
+ if (tmp == ! TEST_NON_UTF8((U8) *s)) { \
+ IF_SUCCESS; \
+ tmp = !tmp; \
+ } \
+ else { \
+ IF_FAIL; \
+ } \
+ ); \
+ } \
+ /* Here, things have been set up by the previous code so that tmp is the \
+ * return of TEST_NON_UTF(s-1) or TEST_UTF8(s-1) (depending on the \
+ * utf8ness of the target). We also have to check if this matches against \
+ * the EOS, which we treat as a \n (which is the same value in both UTF-8 \
+ * or non-UTF8, so can use the non-utf8 test condition even for a UTF-8 \
+ * string */ \
+ if (tmp == ! TEST_NON_UTF8('\n')) { \
+ IF_SUCCESS; \
+ } \
+ else { \
+ IF_FAIL; \
+ }
+
+/* This is the macro to use when we want to see if something that looks like it
+ * could match, actually does, and if so exits the loop */
+#define REXEC_FBC_TRYIT \
+ if ((reginfo->intuit || regtry(reginfo, &s))) \
+ goto got_it
+
+/* The only difference between the BOUND and NBOUND cases is that
+ * REXEC_FBC_TRYIT is called when matched in BOUND, and when non-matched in
+ * NBOUND. This is accomplished by passing it as either the if or else clause,
+ * with the other one being empty (PLACEHOLDER is defined as empty).
+ *
+ * The TEST_FOO parameters are for operating on different forms of input, but
+ * all should be ones that return identically for the same underlying code
+ * points */
+#define FBC_BOUND(TEST_NON_UTF8, TEST_UV, TEST_UTF8) \
+ FBC_BOUND_COMMON( \
+ FBC_UTF8(TEST_UV, TEST_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), \
+ TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
+
+#define FBC_BOUND_A(TEST_NON_UTF8) \
+ FBC_BOUND_COMMON( \
+ FBC_UTF8_A(TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), \
+ TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
+
+#define FBC_NBOUND(TEST_NON_UTF8, TEST_UV, TEST_UTF8) \
+ FBC_BOUND_COMMON( \
+ FBC_UTF8(TEST_UV, TEST_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), \
+ TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
+
+#define FBC_NBOUND_A(TEST_NON_UTF8) \
+ FBC_BOUND_COMMON( \
+ FBC_UTF8_A(TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), \
+ TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
+
+/* Takes a pointer to an inversion list, a pointer to its corresponding
+ * inversion map, and a code point, and returns the code point's value
+ * according to the two arrays. It assumes that all code points have a value.
+ * This is used as the base macro for macros for particular properties */
+#define _generic_GET_BREAK_VAL_CP(invlist, invmap, cp) \
+ invmap[_invlist_search(invlist, cp)]
+
+/* Same as above, but takes begin, end ptrs to a UTF-8 encoded string instead
+ * of a code point, returning the value for the first code point in the string.
+ * And it takes the particular macro name that finds the desired value given a
+ * code point. Merely convert the UTF-8 to code point and call the cp macro */
+#define _generic_GET_BREAK_VAL_UTF8(cp_macro, pos, strend) \
+ (__ASSERT_(pos < strend) \
+ /* Note assumes is valid UTF-8 */ \
+ (cp_macro(utf8_to_uvchr_buf((pos), (strend), NULL))))
+
+/* Returns the GCB value for the input code point */
+#define getGCB_VAL_CP(cp) \
+ _generic_GET_BREAK_VAL_CP( \
+ PL_GCB_invlist, \
+ Grapheme_Cluster_Break_invmap, \
+ (cp))
+
+/* Returns the GCB value for the first code point in the UTF-8 encoded string
+ * bounded by pos and strend */
+#define getGCB_VAL_UTF8(pos, strend) \
+ _generic_GET_BREAK_VAL_UTF8(getGCB_VAL_CP, pos, strend)
+
+
+/* Returns the SB value for the input code point */
+#define getSB_VAL_CP(cp) \
+ _generic_GET_BREAK_VAL_CP( \
+ PL_SB_invlist, \
+ Sentence_Break_invmap, \
+ (cp))
+
+/* Returns the SB value for the first code point in the UTF-8 encoded string
+ * bounded by pos and strend */
+#define getSB_VAL_UTF8(pos, strend) \
+ _generic_GET_BREAK_VAL_UTF8(getSB_VAL_CP, pos, strend)
+
+/* Returns the WB value for the input code point */
+#define getWB_VAL_CP(cp) \
+ _generic_GET_BREAK_VAL_CP( \
+ PL_WB_invlist, \
+ Word_Break_invmap, \
+ (cp))
+
+/* Returns the WB value for the first code point in the UTF-8 encoded string
+ * bounded by pos and strend */
+#define getWB_VAL_UTF8(pos, strend) \
+ _generic_GET_BREAK_VAL_UTF8(getWB_VAL_CP, pos, strend)
+
+/* We know what class REx starts with. Try to find this position... */
+/* if reginfo->intuit, its a dryrun */
+/* annoyingly all the vars in this routine have different names from their counterparts
+ in regmatch. /grrr */
+STATIC char *
+S_find_byclass(pTHX_ regexp * prog, const regnode *c, char *s,
+ const char *strend, regmatch_info *reginfo)
+{
+ dVAR;
+ const I32 doevery = (prog->intflags & PREGf_SKIP) == 0;
+ char *pat_string; /* The pattern's exactish string */
+ char *pat_end; /* ptr to end char of pat_string */
+ re_fold_t folder; /* Function for computing non-utf8 folds */
+ const U8 *fold_array; /* array for folding ords < 256 */
+ STRLEN ln;
+ STRLEN lnc;
+ U8 c1;
+ U8 c2;
+ char *e;
+ I32 tmp = 1; /* Scratch variable? */
+ const bool utf8_target = reginfo->is_utf8_target;
+ UV utf8_fold_flags = 0;
+ const bool is_utf8_pat = reginfo->is_utf8_pat;
+ bool to_complement = FALSE; /* Invert the result? Taking the xor of this
+ with a result inverts that result, as 0^1 =
+ 1 and 1^1 = 0 */
+ _char_class_number classnum;
+
+ RXi_GET_DECL(prog,progi);
+
+ PERL_ARGS_ASSERT_FIND_BYCLASS;
+
+ /* We know what class it must start with. */
+ switch (OP(c)) {
+ case ANYOFL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ /* FALLTHROUGH */
+ case ANYOF:
+ if (utf8_target) {
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ reginclass(prog, c, (U8*)s, (U8*) strend, utf8_target));
+ }
+ else {
+ REXEC_FBC_CLASS_SCAN(REGINCLASS(prog, c, (U8*)s));
+ }
+ break;
+
+ case EXACTFA_NO_TRIE: /* This node only generated for non-utf8 patterns */
+ assert(! is_utf8_pat);
+ /* FALLTHROUGH */
+ case EXACTFA:
+ if (is_utf8_pat || utf8_target) {
+ utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_exactf_utf8;
+ }
+ fold_array = PL_fold_latin1; /* Latin1 folds are not affected by */
+ folder = foldEQ_latin1; /* /a, except the sharp s one which */
+ goto do_exactf_non_utf8; /* isn't dealt with by these */
+
+ case EXACTF: /* This node only generated for non-utf8 patterns */
+ assert(! is_utf8_pat);
+ if (utf8_target) {
+ utf8_fold_flags = 0;
+ goto do_exactf_utf8;
+ }
+ fold_array = PL_fold;
+ folder = foldEQ;
+ goto do_exactf_non_utf8;
+
+ case EXACTFL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (is_utf8_pat || utf8_target || IN_UTF8_CTYPE_LOCALE) {
+ utf8_fold_flags = FOLDEQ_LOCALE;
+ goto do_exactf_utf8;
+ }
+ fold_array = PL_fold_locale;
+ folder = foldEQ_locale;
+ goto do_exactf_non_utf8;
+
+ case EXACTFU_SS:
+ if (is_utf8_pat) {
+ utf8_fold_flags = FOLDEQ_S2_ALREADY_FOLDED;
+ }
+ goto do_exactf_utf8;
+
+ case EXACTFLU8:
+ if (! utf8_target) { /* All code points in this node require
+ UTF-8 to express. */
+ break;
+ }
+ utf8_fold_flags = FOLDEQ_LOCALE | FOLDEQ_S2_ALREADY_FOLDED
+ | FOLDEQ_S2_FOLDS_SANE;
+ goto do_exactf_utf8;
+
+ case EXACTFU:
+ if (is_utf8_pat || utf8_target) {
+ utf8_fold_flags = is_utf8_pat ? FOLDEQ_S2_ALREADY_FOLDED : 0;
+ goto do_exactf_utf8;
+ }
+
+ /* Any 'ss' in the pattern should have been replaced by regcomp,
+ * so we don't have to worry here about this single special case
+ * in the Latin1 range */
+ fold_array = PL_fold_latin1;
+ folder = foldEQ_latin1;
+
+ /* FALLTHROUGH */
+
+ do_exactf_non_utf8: /* Neither pattern nor string are UTF8, and there
+ are no glitches with fold-length differences
+ between the target string and pattern */
+
+ /* The idea in the non-utf8 EXACTF* cases is to first find the
+ * first character of the EXACTF* node and then, if necessary,
+ * case-insensitively compare the full text of the node. c1 is the
+ * first character. c2 is its fold. This logic will not work for
+ * Unicode semantics and the german sharp ss, which hence should
+ * not be compiled into a node that gets here. */
+ pat_string = STRING(c);
+ ln = STR_LEN(c); /* length to match in octets/bytes */
+
+ /* We know that we have to match at least 'ln' bytes (which is the
+ * same as characters, since not utf8). If we have to match 3
+ * characters, and there are only 2 availabe, we know without
+ * trying that it will fail; so don't start a match past the
+ * required minimum number from the far end */
+ e = HOP3c(strend, -((SSize_t)ln), s);
+
+ if (reginfo->intuit && e < s) {
+ e = s; /* Due to minlen logic of intuit() */
+ }
+
+ c1 = *pat_string;
+ c2 = fold_array[c1];
+ if (c1 == c2) { /* If char and fold are the same */
+ REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1);
+ }
+ else {
+ REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1 || *(U8*)s == c2);
+ }
+ break;
+
+ do_exactf_utf8:
+ {
+ unsigned expansion;
+
+ /* If one of the operands is in utf8, we can't use the simpler folding
+ * above, due to the fact that many different characters can have the
+ * same fold, or portion of a fold, or different- length fold */
+ pat_string = STRING(c);
+ ln = STR_LEN(c); /* length to match in octets/bytes */
+ pat_end = pat_string + ln;
+ lnc = is_utf8_pat /* length to match in characters */
+ ? utf8_length((U8 *) pat_string, (U8 *) pat_end)
+ : ln;
+
+ /* We have 'lnc' characters to match in the pattern, but because of
+ * multi-character folding, each character in the target can match
+ * up to 3 characters (Unicode guarantees it will never exceed
+ * this) if it is utf8-encoded; and up to 2 if not (based on the
+ * fact that the Latin 1 folds are already determined, and the
+ * only multi-char fold in that range is the sharp-s folding to
+ * 'ss'. Thus, a pattern character can match as little as 1/3 of a
+ * string character. Adjust lnc accordingly, rounding up, so that
+ * if we need to match at least 4+1/3 chars, that really is 5. */
+ expansion = (utf8_target) ? UTF8_MAX_FOLD_CHAR_EXPAND : 2;
+ lnc = (lnc + expansion - 1) / expansion;
+
+ /* As in the non-UTF8 case, if we have to match 3 characters, and
+ * only 2 are left, it's guaranteed to fail, so don't start a
+ * match that would require us to go beyond the end of the string
+ */
+ e = HOP3c(strend, -((SSize_t)lnc), s);
+
+ if (reginfo->intuit && e < s) {
+ e = s; /* Due to minlen logic of intuit() */
+ }
+
+ /* XXX Note that we could recalculate e to stop the loop earlier,
+ * as the worst case expansion above will rarely be met, and as we
+ * go along we would usually find that e moves further to the left.
+ * This would happen only after we reached the point in the loop
+ * where if there were no expansion we should fail. Unclear if
+ * worth the expense */
+
+ while (s <= e) {
+ char *my_strend= (char *)strend;
+ if (foldEQ_utf8_flags(s, &my_strend, 0, utf8_target,
+ pat_string, NULL, ln, is_utf8_pat, utf8_fold_flags)
+ && (reginfo->intuit || regtry(reginfo, &s)) )
+ {
+ goto got_it;
+ }
+ s += (utf8_target) ? UTF8SKIP(s) : 1;
+ }
+ break;
+ }
+
+ case BOUNDL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (FLAGS(c) != TRADITIONAL_BOUND) {
+ if (! IN_UTF8_CTYPE_LOCALE) {
+ Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
+ B_ON_NON_UTF8_LOCALE_IS_WRONG);
+ }
+ goto do_boundu;
+ }
+
+ FBC_BOUND(isWORDCHAR_LC, isWORDCHAR_LC_uvchr, isWORDCHAR_LC_utf8);
+ break;
+
+ case NBOUNDL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (FLAGS(c) != TRADITIONAL_BOUND) {
+ if (! IN_UTF8_CTYPE_LOCALE) {
+ Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
+ B_ON_NON_UTF8_LOCALE_IS_WRONG);
+ }
+ goto do_nboundu;
+ }
+
+ FBC_NBOUND(isWORDCHAR_LC, isWORDCHAR_LC_uvchr, isWORDCHAR_LC_utf8);
+ break;
+
+ case BOUND: /* regcomp.c makes sure that this only has the traditional \b
+ meaning */
+ assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+ FBC_BOUND(isWORDCHAR, isWORDCHAR_uni, isWORDCHAR_utf8);
+ break;
+
+ case BOUNDA: /* regcomp.c makes sure that this only has the traditional \b
+ meaning */
+ assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+ FBC_BOUND_A(isWORDCHAR_A);
+ break;
+
+ case NBOUND: /* regcomp.c makes sure that this only has the traditional \b
+ meaning */
+ assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+ FBC_NBOUND(isWORDCHAR, isWORDCHAR_uni, isWORDCHAR_utf8);
+ break;
+
+ case NBOUNDA: /* regcomp.c makes sure that this only has the traditional \b
+ meaning */
+ assert(FLAGS(c) == TRADITIONAL_BOUND);
+
+ FBC_NBOUND_A(isWORDCHAR_A);
+ break;
+
+ case NBOUNDU:
+ if ((bound_type) FLAGS(c) == TRADITIONAL_BOUND) {
+ FBC_NBOUND(isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8);
+ break;
+ }
+
+ do_nboundu:
+
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case BOUNDU:
+ do_boundu:
+ switch((bound_type) FLAGS(c)) {
+ case TRADITIONAL_BOUND:
+ FBC_BOUND(isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8);
+ break;
+ case GCB_BOUND:
+ if (s == reginfo->strbeg) { /* GCB always matches at begin and
+ end */
+ if (to_complement ^ cBOOL(reginfo->intuit
+ || regtry(reginfo, &s)))
+ {
+ goto got_it;
+ }
+ s += (utf8_target) ? UTF8SKIP(s) : 1;
+ }
+
+ if (utf8_target) {
+ GCB_enum before = getGCB_VAL_UTF8(
+ reghop3((U8*)s, -1,
+ (U8*)(reginfo->strbeg)),
+ (U8*) reginfo->strend);
+ while (s < strend) {
+ GCB_enum after = getGCB_VAL_UTF8((U8*) s,
+ (U8*) reginfo->strend);
+ if (to_complement ^ isGCB(before, after)) {
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ goto got_it;
+ }
+ before = after;
+ }
+ s += UTF8SKIP(s);
+ }
+ }
+ else { /* Not utf8. Everything is a GCB except between CR and
+ LF */
+ while (s < strend) {
+ if (to_complement ^ (UCHARAT(s - 1) != '\r'
+ || UCHARAT(s) != '\n'))
+ {
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ goto got_it;
+ }
+ s++;
+ }
+ }
+ }
+
+ if (to_complement ^ cBOOL(reginfo->intuit || regtry(reginfo, &s))) {
+ goto got_it;
+ }
+ break;
+
+ case SB_BOUND:
+ if (s == reginfo->strbeg) { /* SB always matches at beginning */
+ if (to_complement
+ ^ cBOOL(reginfo->intuit || regtry(reginfo, &s)))
+ {
+ goto got_it;
+ }
+
+ /* Didn't match. Go try at the next position */
+ s += (utf8_target) ? UTF8SKIP(s) : 1;
+ }
+
+ if (utf8_target) {
+ SB_enum before = getSB_VAL_UTF8(reghop3((U8*)s,
+ -1,
+ (U8*)(reginfo->strbeg)),
+ (U8*) reginfo->strend);
+ while (s < strend) {
+ SB_enum after = getSB_VAL_UTF8((U8*) s,
+ (U8*) reginfo->strend);
+ if (to_complement ^ isSB(before,
+ after,
+ (U8*) reginfo->strbeg,
+ (U8*) s,
+ (U8*) reginfo->strend,
+ utf8_target))
+ {
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ goto got_it;
+ }
+ before = after;
+ }
+ s += UTF8SKIP(s);
+ }
+ }
+ else { /* Not utf8. */
+ SB_enum before = getSB_VAL_CP((U8) *(s -1));
+ while (s < strend) {
+ SB_enum after = getSB_VAL_CP((U8) *s);
+ if (to_complement ^ isSB(before,
+ after,
+ (U8*) reginfo->strbeg,
+ (U8*) s,
+ (U8*) reginfo->strend,
+ utf8_target))
+ {
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ goto got_it;
+ }
+ before = after;
+ }
+ s++;
+ }
+ }
+
+ /* Here are at the final position in the target string. The SB
+ * value is always true here, so matches, depending on other
+ * constraints */
+ if (to_complement ^ cBOOL(reginfo->intuit
+ || regtry(reginfo, &s)))
+ {
+ goto got_it;
+ }
+
+ break;
+
+ case WB_BOUND:
+ if (s == reginfo->strbeg) {
+ if (to_complement ^ cBOOL(reginfo->intuit
+ || regtry(reginfo, &s)))
+ {
+ goto got_it;
+ }
+ s += (utf8_target) ? UTF8SKIP(s) : 1;
+ }
+
+ if (utf8_target) {
+ /* We are at a boundary between char_sub_0 and char_sub_1.
+ * We also keep track of the value for char_sub_-1 as we
+ * loop through the line. Context may be needed to make a
+ * determination, and if so, this can save having to
+ * recalculate it */
+ WB_enum previous = WB_UNKNOWN;
+ WB_enum before = getWB_VAL_UTF8(
+ reghop3((U8*)s,
+ -1,
+ (U8*)(reginfo->strbeg)),
+ (U8*) reginfo->strend);
+ while (s < strend) {
+ WB_enum after = getWB_VAL_UTF8((U8*) s,
+ (U8*) reginfo->strend);
+ if (to_complement ^ isWB(previous,
+ before,
+ after,
+ (U8*) reginfo->strbeg,
+ (U8*) s,
+ (U8*) reginfo->strend,
+ utf8_target))
+ {
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ goto got_it;
+ }
+ previous = before;
+ before = after;
+ }
+ s += UTF8SKIP(s);
+ }
+ }
+ else { /* Not utf8. */
+ WB_enum previous = WB_UNKNOWN;
+ WB_enum before = getWB_VAL_CP((U8) *(s -1));
+ while (s < strend) {
+ WB_enum after = getWB_VAL_CP((U8) *s);
+ if (to_complement ^ isWB(previous,
+ before,
+ after,
+ (U8*) reginfo->strbeg,
+ (U8*) s,
+ (U8*) reginfo->strend,
+ utf8_target))
+ {
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ goto got_it;
+ }
+ previous = before;
+ before = after;
+ }
+ s++;
+ }
+ }
+
+ if (to_complement ^ cBOOL(reginfo->intuit
+ || regtry(reginfo, &s)))
+ {
+ goto got_it;
+ }
+
+ break;
+ }
+ break;
+
+ case LNBREAK:
+ REXEC_FBC_CSCAN(is_LNBREAK_utf8_safe(s, strend),
+ is_LNBREAK_latin1_safe(s, strend)
+ );
+ break;
+
+ /* The argument to all the POSIX node types is the class number to pass to
+ * _generic_isCC() to build a mask for searching in PL_charclass[] */
+
+ case NPOSIXL:
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ REXEC_FBC_CSCAN(to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(c), (U8 *) s)),
+ to_complement ^ cBOOL(isFOO_lc(FLAGS(c), *s)));
+ break;
+
+ case NPOSIXD:
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXD:
+ if (utf8_target) {
+ goto posix_utf8;
+ }
+ goto posixa;
+
+ case NPOSIXA:
+ if (utf8_target) {
+ /* The complement of something that matches only ASCII matches all
+ * non-ASCII, plus everything in ASCII that isn't in the class. */
+ REXEC_FBC_UTF8_CLASS_SCAN(! isASCII_utf8(s)
+ || ! _generic_isCC_A(*s, FLAGS(c)));
+ break;
+ }
+
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXA:
+ posixa:
+ /* Don't need to worry about utf8, as it can match only a single
+ * byte invariant character. */
+ REXEC_FBC_CLASS_SCAN(
+ to_complement ^ cBOOL(_generic_isCC_A(*s, FLAGS(c))));
+ break;
+
+ case NPOSIXU:
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXU:
+ if (! utf8_target) {
+ REXEC_FBC_CLASS_SCAN(to_complement ^ cBOOL(_generic_isCC(*s,
+ FLAGS(c))));
+ }
+ else {
+
+ posix_utf8:
+ classnum = (_char_class_number) FLAGS(c);
+ if (classnum < _FIRST_NON_SWASH_CC) {
+ while (s < strend) {
+
+ /* We avoid loading in the swash as long as possible, but
+ * should we have to, we jump to a separate loop. This
+ * extra 'if' statement is what keeps this code from being
+ * just a call to REXEC_FBC_UTF8_CLASS_SCAN() */
+ if (UTF8_IS_ABOVE_LATIN1(*s)) {
+ goto found_above_latin1;
+ }
+ if ((UTF8_IS_INVARIANT(*s)
+ && to_complement ^ cBOOL(_generic_isCC((U8) *s,
+ classnum)))
+ || (UTF8_IS_DOWNGRADEABLE_START(*s)
+ && to_complement ^ cBOOL(
+ _generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(*s,
+ *(s + 1)),
+ classnum))))
+ {
+ if (tmp && (reginfo->intuit || regtry(reginfo, &s)))
+ goto got_it;
+ else {
+ tmp = doevery;
+ }
+ }
+ else {
+ tmp = 1;
+ }
+ s += UTF8SKIP(s);
+ }
+ }
+ else switch (classnum) { /* These classes are implemented as
+ macros */
+ case _CC_ENUM_SPACE:
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ to_complement ^ cBOOL(isSPACE_utf8(s)));
+ break;
+
+ case _CC_ENUM_BLANK:
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ to_complement ^ cBOOL(isBLANK_utf8(s)));
+ break;
+
+ case _CC_ENUM_XDIGIT:
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ to_complement ^ cBOOL(isXDIGIT_utf8(s)));
+ break;
+
+ case _CC_ENUM_VERTSPACE:
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ to_complement ^ cBOOL(isVERTWS_utf8(s)));
+ break;
+
+ case _CC_ENUM_CNTRL:
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ to_complement ^ cBOOL(isCNTRL_utf8(s)));
+ break;
+
+ default:
+ Perl_croak(aTHX_ "panic: find_byclass() node %d='%s' has an unexpected character class '%d'", OP(c), PL_reg_name[OP(c)], classnum);
+ NOT_REACHED; /* NOTREACHED */
+ }
+ }
+ break;
+
+ found_above_latin1: /* Here we have to load a swash to get the result
+ for the current code point */
+ if (! PL_utf8_swash_ptrs[classnum]) {
+ U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+ PL_utf8_swash_ptrs[classnum] =
+ _core_swash_init("utf8",
+ "",
+ &PL_sv_undef, 1, 0,
+ PL_XPosix_ptrs[classnum], &flags);
+ }
+
+ /* This is a copy of the loop above for swash classes, though using the
+ * FBC macro instead of being expanded out. Since we've loaded the
+ * swash, we don't have to check for that each time through the loop */
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ to_complement ^ cBOOL(_generic_utf8(
+ classnum,
+ s,
+ swash_fetch(PL_utf8_swash_ptrs[classnum],
+ (U8 *) s, TRUE))));
+ break;
+
+ case AHOCORASICKC:
+ case AHOCORASICK:
+ {
+ DECL_TRIE_TYPE(c);
+ /* what trie are we using right now */
+ reg_ac_data *aho = (reg_ac_data*)progi->data->data[ ARG( c ) ];
+ reg_trie_data *trie = (reg_trie_data*)progi->data->data[ aho->trie ];
+ HV *widecharmap = MUTABLE_HV(progi->data->data[ aho->trie + 1 ]);
+
+ const char *last_start = strend - trie->minlen;
+#ifdef DEBUGGING
+ const char *real_start = s;
+#endif
+ STRLEN maxlen = trie->maxlen;
+ SV *sv_points;
+ U8 **points; /* map of where we were in the input string
+ when reading a given char. For ASCII this
+ is unnecessary overhead as the relationship
+ is always 1:1, but for Unicode, especially
+ case folded Unicode this is not true. */
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+ U8 *bitmap=NULL;
+
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ /* We can't just allocate points here. We need to wrap it in
+ * an SV so it gets freed properly if there is a croak while
+ * running the match */
+ ENTER;
+ SAVETMPS;
+ sv_points=newSV(maxlen * sizeof(U8 *));
+ SvCUR_set(sv_points,
+ maxlen * sizeof(U8 *));
+ SvPOK_on(sv_points);
+ sv_2mortal(sv_points);
+ points=(U8**)SvPV_nolen(sv_points );
+ if ( trie_type != trie_utf8_fold
+ && (trie->bitmap || OP(c)==AHOCORASICKC) )
+ {
+ if (trie->bitmap)
+ bitmap=(U8*)trie->bitmap;
+ else
+ bitmap=(U8*)ANYOF_BITMAP(c);
+ }
+ /* this is the Aho-Corasick algorithm modified a touch
+ to include special handling for long "unknown char" sequences.
+ The basic idea being that we use AC as long as we are dealing
+ with a possible matching char, when we encounter an unknown char
+ (and we have not encountered an accepting state) we scan forward
+ until we find a legal starting char.
+ AC matching is basically that of trie matching, except that when
+ we encounter a failing transition, we fall back to the current
+ states "fail state", and try the current char again, a process
+ we repeat until we reach the root state, state 1, or a legal
+ transition. If we fail on the root state then we can either
+ terminate if we have reached an accepting state previously, or
+ restart the entire process from the beginning if we have not.
+
+ */
+ while (s <= last_start) {
+ const U32 uniflags = UTF8_ALLOW_DEFAULT;
+ U8 *uc = (U8*)s;
+ U16 charid = 0;
+ U32 base = 1;
+ U32 state = 1;
+ UV uvc = 0;
+ STRLEN len = 0;
+ STRLEN foldlen = 0;
+ U8 *uscan = (U8*)NULL;
+ U8 *leftmost = NULL;
+#ifdef DEBUGGING
+ U32 accepted_word= 0;
+#endif
+ U32 pointpos = 0;
+
+ while ( state && uc <= (U8*)strend ) {
+ int failed=0;
+ U32 word = aho->states[ state ].wordnum;
+
+ if( state==1 ) {
+ if ( bitmap ) {
+ DEBUG_TRIE_EXECUTE_r(
+ if ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+ dump_exec_pos( (char *)uc, c, strend, real_start,
+ (char *)uc, utf8_target );
+ PerlIO_printf( Perl_debug_log,
+ " Scanning for legal start char...\n");
+ }
+ );
+ if (utf8_target) {
+ while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+ uc += UTF8SKIP(uc);
+ }
+ } else {
+ while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+ uc++;
+ }
+ }
+ s= (char *)uc;
+ }
+ if (uc >(U8*)last_start) break;
+ }
+
+ if ( word ) {
+ U8 *lpos= points[ (pointpos - trie->wordinfo[word].len) % maxlen ];
+ if (!leftmost || lpos < leftmost) {
+ DEBUG_r(accepted_word=word);
+ leftmost= lpos;
+ }
+ if (base==0) break;
+
+ }
+ points[pointpos++ % maxlen]= uc;
+ if (foldlen || uc < (U8*)strend) {
+ REXEC_TRIE_READ_CHAR(trie_type, trie,
+ widecharmap, uc,
+ uscan, len, uvc, charid, foldlen,
+ foldbuf, uniflags);
+ DEBUG_TRIE_EXECUTE_r({
+ dump_exec_pos( (char *)uc, c, strend,
+ real_start, s, utf8_target);
+ PerlIO_printf(Perl_debug_log,
+ " Charid:%3u CP:%4"UVxf" ",
+ charid, uvc);
+ });
+ }
+ else {
+ len = 0;
+ charid = 0;
+ }
+
+
+ do {
+#ifdef DEBUGGING
+ word = aho->states[ state ].wordnum;
+#endif
+ base = aho->states[ state ].trans.base;
+
+ DEBUG_TRIE_EXECUTE_r({
+ if (failed)
+ dump_exec_pos( (char *)uc, c, strend, real_start,
+ s, utf8_target );
+ PerlIO_printf( Perl_debug_log,
+ "%sState: %4"UVxf", word=%"UVxf,
+ failed ? " Fail transition to " : "",
+ (UV)state, (UV)word);
+ });
+ if ( base ) {
+ U32 tmp;
+ I32 offset;
+ if (charid &&
+ ( ((offset = base + charid
+ - 1 - trie->uniquecharcount)) >= 0)
+ && ((U32)offset < trie->lasttrans)
+ && trie->trans[offset].check == state
+ && (tmp=trie->trans[offset].next))
+ {
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log," - legal\n"));
+ state = tmp;
+ break;
+ }
+ else {
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log," - fail\n"));
+ failed = 1;
+ state = aho->fail[state];
+ }
+ }
+ else {
+ /* we must be accepting here */
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log," - accepting\n"));
+ failed = 1;
+ break;
+ }
+ } while(state);
+ uc += len;
+ if (failed) {
+ if (leftmost)
+ break;
+ if (!state) state = 1;
+ }
+ }
+ if ( aho->states[ state ].wordnum ) {
+ U8 *lpos = points[ (pointpos - trie->wordinfo[aho->states[ state ].wordnum].len) % maxlen ];
+ if (!leftmost || lpos < leftmost) {
+ DEBUG_r(accepted_word=aho->states[ state ].wordnum);
+ leftmost = lpos;
+ }
+ }
+ if (leftmost) {
+ s = (char*)leftmost;
+ DEBUG_TRIE_EXECUTE_r({
+ PerlIO_printf(
+ Perl_debug_log,"Matches word #%"UVxf" at position %"IVdf". Trying full pattern...\n",
+ (UV)accepted_word, (IV)(s - real_start)
+ );
+ });
+ if (reginfo->intuit || regtry(reginfo, &s)) {
+ FREETMPS;
+ LEAVE;
+ goto got_it;
+ }
+ s = HOPc(s,1);
+ DEBUG_TRIE_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,"Pattern failed. Looking for new start point...\n");
+ });
+ } else {
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log,"No match.\n"));
+ break;
+ }
+ }
+ FREETMPS;
+ LEAVE;
+ }
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: unknown regstclass %d", (int)OP(c));
+ }
+ return 0;
+ got_it:
+ return s;
+}
+
+/* set RX_SAVED_COPY, RX_SUBBEG etc.
+ * flags have same meanings as with regexec_flags() */
+
+static void
+S_reg_set_capture_string(pTHX_ REGEXP * const rx,
+ char *strbeg,
+ char *strend,
+ SV *sv,
+ U32 flags,
+ bool utf8_target)
+{
+ struct regexp *const prog = ReANY(rx);
+
+ if (flags & REXEC_COPY_STR) {
+#ifdef PERL_ANY_COW
+ if (SvCANCOW(sv)) {
+ if (DEBUG_C_TEST) {
+ PerlIO_printf(Perl_debug_log,
+ "Copy on write: regexp capture, type %d\n",
+ (int) SvTYPE(sv));
+ }
+ /* Create a new COW SV to share the match string and store
+ * in saved_copy, unless the current COW SV in saved_copy
+ * is valid and suitable for our purpose */
+ if (( prog->saved_copy
+ && SvIsCOW(prog->saved_copy)
+ && SvPOKp(prog->saved_copy)
+ && SvIsCOW(sv)
+ && SvPOKp(sv)
+ && SvPVX(sv) == SvPVX(prog->saved_copy)))
+ {
+ /* just reuse saved_copy SV */
+ if (RXp_MATCH_COPIED(prog)) {
+ Safefree(prog->subbeg);
+ RXp_MATCH_COPIED_off(prog);
+ }
+ }
+ else {
+ /* create new COW SV to share string */
+ RX_MATCH_COPY_FREE(rx);
+ prog->saved_copy = sv_setsv_cow(prog->saved_copy, sv);
+ }
+ prog->subbeg = (char *)SvPVX_const(prog->saved_copy);
+ assert (SvPOKp(prog->saved_copy));
+ prog->sublen = strend - strbeg;
+ prog->suboffset = 0;
+ prog->subcoffset = 0;
+ } else
+#endif
+ {
+ SSize_t min = 0;
+ SSize_t max = strend - strbeg;
+ SSize_t sublen;
+
+ if ( (flags & REXEC_COPY_SKIP_POST)
+ && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */
+ && !(PL_sawampersand & SAWAMPERSAND_RIGHT)
+ ) { /* don't copy $' part of string */
+ U32 n = 0;
+ max = -1;
+ /* calculate the right-most part of the string covered
+ * by a capture. Due to look-ahead, this may be to
+ * the right of $&, so we have to scan all captures */
+ while (n <= prog->lastparen) {
+ if (prog->offs[n].end > max)
+ max = prog->offs[n].end;
+ n++;
+ }
+ if (max == -1)
+ max = (PL_sawampersand & SAWAMPERSAND_LEFT)
+ ? prog->offs[0].start
+ : 0;
+ assert(max >= 0 && max <= strend - strbeg);
+ }
+
+ if ( (flags & REXEC_COPY_SKIP_PRE)
+ && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */
+ && !(PL_sawampersand & SAWAMPERSAND_LEFT)
+ ) { /* don't copy $` part of string */
+ U32 n = 0;
+ min = max;
+ /* calculate the left-most part of the string covered
+ * by a capture. Due to look-behind, this may be to
+ * the left of $&, so we have to scan all captures */
+ while (min && n <= prog->lastparen) {
+ if ( prog->offs[n].start != -1
+ && prog->offs[n].start < min)
+ {
+ min = prog->offs[n].start;
+ }
+ n++;
+ }
+ if ((PL_sawampersand & SAWAMPERSAND_RIGHT)
+ && min > prog->offs[0].end
+ )
+ min = prog->offs[0].end;
+
+ }
+
+ assert(min >= 0 && min <= max && min <= strend - strbeg);
+ sublen = max - min;
+
+ if (RX_MATCH_COPIED(rx)) {
+ if (sublen > prog->sublen)
+ prog->subbeg =
+ (char*)saferealloc(prog->subbeg, sublen+1);
+ }
+ else
+ prog->subbeg = (char*)safemalloc(sublen+1);
+ Copy(strbeg + min, prog->subbeg, sublen, char);
+ prog->subbeg[sublen] = '\0';
+ prog->suboffset = min;
+ prog->sublen = sublen;
+ RX_MATCH_COPIED_on(rx);
+ }
+ prog->subcoffset = prog->suboffset;
+ if (prog->suboffset && utf8_target) {
+ /* Convert byte offset to chars.
+ * XXX ideally should only compute this if @-/@+
+ * has been seen, a la PL_sawampersand ??? */
+
+ /* If there's a direct correspondence between the
+ * string which we're matching and the original SV,
+ * then we can use the utf8 len cache associated with
+ * the SV. In particular, it means that under //g,
+ * sv_pos_b2u() will use the previously cached
+ * position to speed up working out the new length of
+ * subcoffset, rather than counting from the start of
+ * the string each time. This stops
+ * $x = "\x{100}" x 1E6; 1 while $x =~ /(.)/g;
+ * from going quadratic */
+ if (SvPOKp(sv) && SvPVX(sv) == strbeg)
+ prog->subcoffset = sv_pos_b2u_flags(sv, prog->subcoffset,
+ SV_GMAGIC|SV_CONST_RETURN);
+ else
+ prog->subcoffset = utf8_length((U8*)strbeg,
+ (U8*)(strbeg+prog->suboffset));
+ }
+ }
+ else {
+ RX_MATCH_COPY_FREE(rx);
+ prog->subbeg = strbeg;
+ prog->suboffset = 0;
+ prog->subcoffset = 0;
+ prog->sublen = strend - strbeg;
+ }
+}
+
+
+
+
+/*
+ - regexec_flags - match a regexp against a string
+ */
+I32
+Perl_regexec_flags(pTHX_ REGEXP * const rx, char *stringarg, char *strend,
+ char *strbeg, SSize_t minend, SV *sv, void *data, U32 flags)
+/* stringarg: the point in the string at which to begin matching */
+/* strend: pointer to null at end of string */
+/* strbeg: real beginning of string */
+/* minend: end of match must be >= minend bytes after stringarg. */
+/* sv: SV being matched: only used for utf8 flag, pos() etc; string
+ * itself is accessed via the pointers above */
+/* data: May be used for some additional optimizations.
+ Currently unused. */
+/* flags: For optimizations. See REXEC_* in regexp.h */
+
+{
+ struct regexp *const prog = ReANY(rx);
+ char *s;
+ regnode *c;
+ char *startpos;
+ SSize_t minlen; /* must match at least this many chars */
+ SSize_t dontbother = 0; /* how many characters not to try at end */
+ const bool utf8_target = cBOOL(DO_UTF8(sv));
+ I32 multiline;
+ RXi_GET_DECL(prog,progi);
+ regmatch_info reginfo_buf; /* create some info to pass to regtry etc */
+ regmatch_info *const reginfo = ®info_buf;
+ regexp_paren_pair *swap = NULL;
+ I32 oldsave;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGEXEC_FLAGS;
+ PERL_UNUSED_ARG(data);
+
+ /* Be paranoid... */
+ if (prog == NULL) {
+ Perl_croak(aTHX_ "NULL regexp parameter");
+ }
+
+ DEBUG_EXECUTE_r(
+ debug_start_match(rx, utf8_target, stringarg, strend,
+ "Matching");
+ );
+
+ startpos = stringarg;
+
+ if (prog->intflags & PREGf_GPOS_SEEN) {
+ MAGIC *mg;
+
+ /* set reginfo->ganch, the position where \G can match */
+
+ reginfo->ganch =
+ (flags & REXEC_IGNOREPOS)
+ ? stringarg /* use start pos rather than pos() */
+ : ((mg = mg_find_mglob(sv)) && mg->mg_len >= 0)
+ /* Defined pos(): */
+ ? strbeg + MgBYTEPOS(mg, sv, strbeg, strend-strbeg)
+ : strbeg; /* pos() not defined; use start of string */
+
+ DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+ "GPOS ganch set to strbeg[%"IVdf"]\n", (IV)(reginfo->ganch - strbeg)));
+
+ /* in the presence of \G, we may need to start looking earlier in
+ * the string than the suggested start point of stringarg:
+ * if prog->gofs is set, then that's a known, fixed minimum
+ * offset, such as
+ * /..\G/: gofs = 2
+ * /ab|c\G/: gofs = 1
+ * or if the minimum offset isn't known, then we have to go back
+ * to the start of the string, e.g. /w+\G/
+ */
+
+ if (prog->intflags & PREGf_ANCH_GPOS) {
+ startpos = reginfo->ganch - prog->gofs;
+ if (startpos <
+ ((flags & REXEC_FAIL_ON_UNDERFLOW) ? stringarg : strbeg))
+ {
+ DEBUG_r(PerlIO_printf(Perl_debug_log,
+ "fail: ganch-gofs before earliest possible start\n"));
+ return 0;
+ }
+ }
+ else if (prog->gofs) {
+ if (startpos - prog->gofs < strbeg)
+ startpos = strbeg;
+ else
+ startpos -= prog->gofs;
+ }
+ else if (prog->intflags & PREGf_GPOS_FLOAT)
+ startpos = strbeg;
+ }
+
+ minlen = prog->minlen;
+ if ((startpos + minlen) > strend || startpos < strbeg) {
+ DEBUG_r(PerlIO_printf(Perl_debug_log,
+ "Regex match can't succeed, so not even tried\n"));
+ return 0;
+ }
+
+ /* at the end of this function, we'll do a LEAVE_SCOPE(oldsave),
+ * which will call destuctors to reset PL_regmatch_state, free higher
+ * PL_regmatch_slabs, and clean up regmatch_info_aux and
+ * regmatch_info_aux_eval */
+
+ oldsave = PL_savestack_ix;
+
+ s = startpos;
+
+ if ((prog->extflags & RXf_USE_INTUIT)
+ && !(flags & REXEC_CHECKED))
+ {
+ s = re_intuit_start(rx, sv, strbeg, startpos, strend,
+ flags, NULL);
+ if (!s)
+ return 0;
+
+ if (prog->extflags & RXf_CHECK_ALL) {
+ /* we can match based purely on the result of INTUIT.
+ * Set up captures etc just for $& and $-[0]
+ * (an intuit-only match wont have $1,$2,..) */
+ assert(!prog->nparens);
+
+ /* s/// doesn't like it if $& is earlier than where we asked it to
+ * start searching (which can happen on something like /.\G/) */
+ if ( (flags & REXEC_FAIL_ON_UNDERFLOW)
+ && (s < stringarg))
+ {
+ /* this should only be possible under \G */
+ assert(prog->intflags & PREGf_GPOS_SEEN);
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n"));
+ goto phooey;
+ }
+
+ /* match via INTUIT shouldn't have any captures.
+ * Let @-, @+, $^N know */
+ prog->lastparen = prog->lastcloseparen = 0;
+ RX_MATCH_UTF8_set(rx, utf8_target);
+ prog->offs[0].start = s - strbeg;
+ prog->offs[0].end = utf8_target
+ ? (char*)utf8_hop((U8*)s, prog->minlenret) - strbeg
+ : s - strbeg + prog->minlenret;
+ if ( !(flags & REXEC_NOT_FIRST) )
+ S_reg_set_capture_string(aTHX_ rx,
+ strbeg, strend,
+ sv, flags, utf8_target);
+
+ return 1;
+ }
+ }
+
+ multiline = prog->extflags & RXf_PMf_MULTILINE;
+
+ if (strend - s < (minlen+(prog->check_offset_min<0?prog->check_offset_min:0))) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "String too short [regexec_flags]...\n"));
+ goto phooey;
+ }
+
+ /* Check validity of program. */
+ if (UCHARAT(progi->program) != REG_MAGIC) {
+ Perl_croak(aTHX_ "corrupted regexp program");
+ }
+
+ RX_MATCH_TAINTED_off(rx);
+ RX_MATCH_UTF8_set(rx, utf8_target);
+
+ reginfo->prog = rx; /* Yes, sorry that this is confusing. */
+ reginfo->intuit = 0;
+ reginfo->is_utf8_target = cBOOL(utf8_target);
+ reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx));
+ reginfo->warned = FALSE;
+ reginfo->strbeg = strbeg;
+ reginfo->sv = sv;
+ reginfo->poscache_maxiter = 0; /* not yet started a countdown */
+ reginfo->strend = strend;
+ /* see how far we have to get to not match where we matched before */
+ reginfo->till = stringarg + minend;
+
+ if (prog->extflags & RXf_EVAL_SEEN && SvPADTMP(sv)) {
+ /* SAVEFREESV, not sv_mortalcopy, as this SV must last until after
+ S_cleanup_regmatch_info_aux has executed (registered by
+ SAVEDESTRUCTOR_X below). S_cleanup_regmatch_info_aux modifies
+ magic belonging to this SV.
+ Not newSVsv, either, as it does not COW.
+ */
+ reginfo->sv = newSV(0);
+ SvSetSV_nosteal(reginfo->sv, sv);
+ SAVEFREESV(reginfo->sv);
+ }
+
+ /* reserve next 2 or 3 slots in PL_regmatch_state:
+ * slot N+0: may currently be in use: skip it
+ * slot N+1: use for regmatch_info_aux struct
+ * slot N+2: use for regmatch_info_aux_eval struct if we have (?{})'s
+ * slot N+3: ready for use by regmatch()
+ */
+
+ {
+ regmatch_state *old_regmatch_state;
+ regmatch_slab *old_regmatch_slab;
+ int i, max = (prog->extflags & RXf_EVAL_SEEN) ? 2 : 1;
+
+ /* on first ever match, allocate first slab */
+ if (!PL_regmatch_slab) {
+ Newx(PL_regmatch_slab, 1, regmatch_slab);
+ PL_regmatch_slab->prev = NULL;
+ PL_regmatch_slab->next = NULL;
+ PL_regmatch_state = SLAB_FIRST(PL_regmatch_slab);
+ }
+
+ old_regmatch_state = PL_regmatch_state;
+ old_regmatch_slab = PL_regmatch_slab;
+
+ for (i=0; i <= max; i++) {
+ if (i == 1)
+ reginfo->info_aux = &(PL_regmatch_state->u.info_aux);
+ else if (i ==2)
+ reginfo->info_aux_eval =
+ reginfo->info_aux->info_aux_eval =
+ &(PL_regmatch_state->u.info_aux_eval);
+
+ if (++PL_regmatch_state > SLAB_LAST(PL_regmatch_slab))
+ PL_regmatch_state = S_push_slab(aTHX);
+ }
+
+ /* note initial PL_regmatch_state position; at end of match we'll
+ * pop back to there and free any higher slabs */
+
+ reginfo->info_aux->old_regmatch_state = old_regmatch_state;
+ reginfo->info_aux->old_regmatch_slab = old_regmatch_slab;
+ reginfo->info_aux->poscache = NULL;
+
+ SAVEDESTRUCTOR_X(S_cleanup_regmatch_info_aux, reginfo->info_aux);
+
+ if ((prog->extflags & RXf_EVAL_SEEN))
+ S_setup_eval_state(aTHX_ reginfo);
+ else
+ reginfo->info_aux_eval = reginfo->info_aux->info_aux_eval = NULL;
+ }
+
+ /* If there is a "must appear" string, look for it. */
+
+ if (PL_curpm && (PM_GETRE(PL_curpm) == rx)) {
+ /* We have to be careful. If the previous successful match
+ was from this regex we don't want a subsequent partially
+ successful match to clobber the old results.
+ So when we detect this possibility we add a swap buffer
+ to the re, and switch the buffer each match. If we fail,
+ we switch it back; otherwise we leave it swapped.
+ */
+ swap = prog->offs;
+ /* do we need a save destructor here for eval dies? */
+ Newxz(prog->offs, (prog->nparens + 1), regexp_paren_pair);
+ DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+ "rex=0x%"UVxf" saving offs: orig=0x%"UVxf" new=0x%"UVxf"\n",
+ PTR2UV(prog),
+ PTR2UV(swap),
+ PTR2UV(prog->offs)
+ ));
+ }
+
+ /* Simplest case: anchored match need be tried only once, or with
+ * MBOL, only at the beginning of each line.
+ *
+ * Note that /.*.../ sets PREGf_IMPLICIT|MBOL, while /.*.../s sets
+ * PREGf_IMPLICIT|SBOL. The idea is that with /.*.../s, if it doesn't
+ * match at the start of the string then it won't match anywhere else
+ * either; while with /.*.../, if it doesn't match at the beginning,
+ * the earliest it could match is at the start of the next line */
+
+ if (prog->intflags & (PREGf_ANCH & ~PREGf_ANCH_GPOS)) {
+ char *end;
+
+ if (regtry(reginfo, &s))
+ goto got_it;
+
+ if (!(prog->intflags & PREGf_ANCH_MBOL))
+ goto phooey;
+
+ /* didn't match at start, try at other newline positions */
+
+ if (minlen)
+ dontbother = minlen - 1;
+ end = HOP3c(strend, -dontbother, strbeg) - 1;
+
+ /* skip to next newline */
+
+ while (s <= end) { /* note it could be possible to match at the end of the string */
+ /* NB: newlines are the same in unicode as they are in latin */
+ if (*s++ != '\n')
+ continue;
+ if (prog->check_substr || prog->check_utf8) {
+ /* note that with PREGf_IMPLICIT, intuit can only fail
+ * or return the start position, so it's of limited utility.
+ * Nevertheless, I made the decision that the potential for
+ * quick fail was still worth it - DAPM */
+ s = re_intuit_start(rx, sv, strbeg, s, strend, flags, NULL);
+ if (!s)
+ goto phooey;
+ }
+ if (regtry(reginfo, &s))
+ goto got_it;
+ }
+ goto phooey;
+ } /* end anchored search */
+
+ if (prog->intflags & PREGf_ANCH_GPOS)
+ {
+ /* PREGf_ANCH_GPOS should never be true if PREGf_GPOS_SEEN is not true */
+ assert(prog->intflags & PREGf_GPOS_SEEN);
+ /* For anchored \G, the only position it can match from is
+ * (ganch-gofs); we already set startpos to this above; if intuit
+ * moved us on from there, we can't possibly succeed */
+ assert(startpos == reginfo->ganch - prog->gofs);
+ if (s == startpos && regtry(reginfo, &s))
+ goto got_it;
+ goto phooey;
+ }
+
+ /* Messy cases: unanchored match. */
+ if ((prog->anchored_substr || prog->anchored_utf8) && prog->intflags & PREGf_SKIP) {
+ /* we have /x+whatever/ */
+ /* it must be a one character string (XXXX Except is_utf8_pat?) */
+ char ch;
+#ifdef DEBUGGING
+ int did_match = 0;
+#endif
+ if (utf8_target) {
+ if (! prog->anchored_utf8) {
+ to_utf8_substr(prog);
+ }
+ ch = SvPVX_const(prog->anchored_utf8)[0];
+ REXEC_FBC_SCAN(
+ if (*s == ch) {
+ DEBUG_EXECUTE_r( did_match = 1 );
+ if (regtry(reginfo, &s)) goto got_it;
+ s += UTF8SKIP(s);
+ while (s < strend && *s == ch)
+ s += UTF8SKIP(s);
+ }
+ );
+
+ }
+ else {
+ if (! prog->anchored_substr) {
+ if (! to_byte_substr(prog)) {
+ NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+ }
+ }
+ ch = SvPVX_const(prog->anchored_substr)[0];
+ REXEC_FBC_SCAN(
+ if (*s == ch) {
+ DEBUG_EXECUTE_r( did_match = 1 );
+ if (regtry(reginfo, &s)) goto got_it;
+ s++;
+ while (s < strend && *s == ch)
+ s++;
+ }
+ );
+ }
+ DEBUG_EXECUTE_r(if (!did_match)
+ PerlIO_printf(Perl_debug_log,
+ "Did not find anchored character...\n")
+ );
+ }
+ else if (prog->anchored_substr != NULL
+ || prog->anchored_utf8 != NULL
+ || ((prog->float_substr != NULL || prog->float_utf8 != NULL)
+ && prog->float_max_offset < strend - s)) {
+ SV *must;
+ SSize_t back_max;
+ SSize_t back_min;
+ char *last;
+ char *last1; /* Last position checked before */
+#ifdef DEBUGGING
+ int did_match = 0;
+#endif
+ if (prog->anchored_substr || prog->anchored_utf8) {
+ if (utf8_target) {
+ if (! prog->anchored_utf8) {
+ to_utf8_substr(prog);
+ }
+ must = prog->anchored_utf8;
+ }
+ else {
+ if (! prog->anchored_substr) {
+ if (! to_byte_substr(prog)) {
+ NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+ }
+ }
+ must = prog->anchored_substr;
+ }
+ back_max = back_min = prog->anchored_offset;
+ } else {
+ if (utf8_target) {
+ if (! prog->float_utf8) {
+ to_utf8_substr(prog);
+ }
+ must = prog->float_utf8;
+ }
+ else {
+ if (! prog->float_substr) {
+ if (! to_byte_substr(prog)) {
+ NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+ }
+ }
+ must = prog->float_substr;
+ }
+ back_max = prog->float_max_offset;
+ back_min = prog->float_min_offset;
+ }
+
+ if (back_min<0) {
+ last = strend;
+ } else {
+ last = HOP3c(strend, /* Cannot start after this */
+ -(SSize_t)(CHR_SVLEN(must)
+ - (SvTAIL(must) != 0) + back_min), strbeg);
+ }
+ if (s > reginfo->strbeg)
+ last1 = HOPc(s, -1);
+ else
+ last1 = s - 1; /* bogus */
+
+ /* XXXX check_substr already used to find "s", can optimize if
+ check_substr==must. */
+ dontbother = 0;
+ strend = HOPc(strend, -dontbother);
+ while ( (s <= last) &&
+ (s = fbm_instr((unsigned char*)HOP4c(s, back_min, strbeg, strend),
+ (unsigned char*)strend, must,
+ multiline ? FBMrf_MULTILINE : 0)) ) {
+ DEBUG_EXECUTE_r( did_match = 1 );
+ if (HOPc(s, -back_max) > last1) {
+ last1 = HOPc(s, -back_min);
+ s = HOPc(s, -back_max);
+ }
+ else {
+ char * const t = (last1 >= reginfo->strbeg)
+ ? HOPc(last1, 1) : last1 + 1;
+
+ last1 = HOPc(s, -back_min);
+ s = t;
+ }
+ if (utf8_target) {
+ while (s <= last1) {
+ if (regtry(reginfo, &s))
+ goto got_it;
+ if (s >= last1) {
+ s++; /* to break out of outer loop */
+ break;
+ }
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ while (s <= last1) {
+ if (regtry(reginfo, &s))
+ goto got_it;
+ s++;
+ }
+ }
+ }
+ DEBUG_EXECUTE_r(if (!did_match) {
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+ PerlIO_printf(Perl_debug_log, "Did not find %s substr %s%s...\n",
+ ((must == prog->anchored_substr || must == prog->anchored_utf8)
+ ? "anchored" : "floating"),
+ quoted, RE_SV_TAIL(must));
+ });
+ goto phooey;
+ }
+ else if ( (c = progi->regstclass) ) {
+ if (minlen) {
+ const OPCODE op = OP(progi->regstclass);
+ /* don't bother with what can't match */
+ if (PL_regkind[op] != EXACT && PL_regkind[op] != TRIE)
+ strend = HOPc(strend, -(minlen - 1));
+ }
+ DEBUG_EXECUTE_r({
+ SV * const prop = sv_newmortal();
+ regprop(prog, prop, c, reginfo, NULL);
+ {
+ RE_PV_QUOTED_DECL(quoted,utf8_target,PERL_DEBUG_PAD_ZERO(1),
+ s,strend-s,60);
+ PerlIO_printf(Perl_debug_log,
+ "Matching stclass %.*s against %s (%d bytes)\n",
+ (int)SvCUR(prop), SvPVX_const(prop),
+ quoted, (int)(strend - s));
+ }
+ });
+ if (find_byclass(prog, c, s, strend, reginfo))
+ goto got_it;
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Contradicts stclass... [regexec_flags]\n"));
+ }
+ else {
+ dontbother = 0;
+ if (prog->float_substr != NULL || prog->float_utf8 != NULL) {
+ /* Trim the end. */
+ char *last= NULL;
+ SV* float_real;
+ STRLEN len;
+ const char *little;
+
+ if (utf8_target) {
+ if (! prog->float_utf8) {
+ to_utf8_substr(prog);
+ }
+ float_real = prog->float_utf8;
+ }
+ else {
+ if (! prog->float_substr) {
+ if (! to_byte_substr(prog)) {
+ NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
+ }
+ }
+ float_real = prog->float_substr;
+ }
+
+ little = SvPV_const(float_real, len);
+ if (SvTAIL(float_real)) {
+ /* This means that float_real contains an artificial \n on
+ * the end due to the presence of something like this:
+ * /foo$/ where we can match both "foo" and "foo\n" at the
+ * end of the string. So we have to compare the end of the
+ * string first against the float_real without the \n and
+ * then against the full float_real with the string. We
+ * have to watch out for cases where the string might be
+ * smaller than the float_real or the float_real without
+ * the \n. */
+ char *checkpos= strend - len;
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sChecking for float_real.%s\n",
+ PL_colors[4], PL_colors[5]));
+ if (checkpos + 1 < strbeg) {
+ /* can't match, even if we remove the trailing \n
+ * string is too short to match */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString shorter than required trailing substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]));
+ goto phooey;
+ } else if (memEQ(checkpos + 1, little, len - 1)) {
+ /* can match, the end of the string matches without the
+ * "\n" */
+ last = checkpos + 1;
+ } else if (checkpos < strbeg) {
+ /* cant match, string is too short when the "\n" is
+ * included */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString does not contain required trailing substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]));
+ goto phooey;
+ } else if (!multiline) {
+ /* non multiline match, so compare with the "\n" at the
+ * end of the string */
+ if (memEQ(checkpos, little, len)) {
+ last= checkpos;
+ } else {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString does not contain required trailing substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]));
+ goto phooey;
+ }
+ } else {
+ /* multiline match, so we have to search for a place
+ * where the full string is located */
+ goto find_last;
+ }
+ } else {
+ find_last:
+ if (len)
+ last = rninstr(s, strend, little, little + len);
+ else
+ last = strend; /* matching "$" */
+ }
+ if (!last) {
+ /* at one point this block contained a comment which was
+ * probably incorrect, which said that this was a "should not
+ * happen" case. Even if it was true when it was written I am
+ * pretty sure it is not anymore, so I have removed the comment
+ * and replaced it with this one. Yves */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString does not contain required substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]
+ ));
+ goto phooey;
+ }
+ dontbother = strend - last + prog->float_min_offset;
+ }
+ if (minlen && (dontbother < minlen))
+ dontbother = minlen - 1;
+ strend -= dontbother; /* this one's always in bytes! */
+ /* We don't know much -- general case. */
+ if (utf8_target) {
+ for (;;) {
+ if (regtry(reginfo, &s))
+ goto got_it;
+ if (s >= strend)
+ break;
+ s += UTF8SKIP(s);
+ };
+ }
+ else {
+ do {
+ if (regtry(reginfo, &s))
+ goto got_it;
+ } while (s++ < strend);
+ }
+ }
+
+ /* Failure. */
+ goto phooey;
+
+ got_it:
+ /* s/// doesn't like it if $& is earlier than where we asked it to
+ * start searching (which can happen on something like /.\G/) */
+ if ( (flags & REXEC_FAIL_ON_UNDERFLOW)
+ && (prog->offs[0].start < stringarg - strbeg))
+ {
+ /* this should only be possible under \G */
+ assert(prog->intflags & PREGf_GPOS_SEEN);
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n"));
+ goto phooey;
+ }
+
+ DEBUG_BUFFERS_r(
+ if (swap)
+ PerlIO_printf(Perl_debug_log,
+ "rex=0x%"UVxf" freeing offs: 0x%"UVxf"\n",
+ PTR2UV(prog),
+ PTR2UV(swap)
+ );
+ );
+ Safefree(swap);
+
+ /* clean up; this will trigger destructors that will free all slabs
+ * above the current one, and cleanup the regmatch_info_aux
+ * and regmatch_info_aux_eval sructs */
+
+ LEAVE_SCOPE(oldsave);
+
+ if (RXp_PAREN_NAMES(prog))
+ (void)hv_iterinit(RXp_PAREN_NAMES(prog));
+
+ /* make sure $`, $&, $', and $digit will work later */
+ if ( !(flags & REXEC_NOT_FIRST) )
+ S_reg_set_capture_string(aTHX_ rx,
+ strbeg, reginfo->strend,
+ sv, flags, utf8_target);
+
+ return 1;
+
+ phooey:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch failed%s\n",
+ PL_colors[4], PL_colors[5]));
+
+ /* clean up; this will trigger destructors that will free all slabs
+ * above the current one, and cleanup the regmatch_info_aux
+ * and regmatch_info_aux_eval sructs */
+
+ LEAVE_SCOPE(oldsave);
+
+ if (swap) {
+ /* we failed :-( roll it back */
+ DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+ "rex=0x%"UVxf" rolling back offs: freeing=0x%"UVxf" restoring=0x%"UVxf"\n",
+ PTR2UV(prog),
+ PTR2UV(prog->offs),
+ PTR2UV(swap)
+ ));
+ Safefree(prog->offs);
+ prog->offs = swap;
+ }
+ return 0;
+}
+
+
+/* Set which rex is pointed to by PL_reg_curpm, handling ref counting.
+ * Do inc before dec, in case old and new rex are the same */
+#define SET_reg_curpm(Re2) \
+ if (reginfo->info_aux_eval) { \
+ (void)ReREFCNT_inc(Re2); \
+ ReREFCNT_dec(PM_GETRE(PL_reg_curpm)); \
+ PM_SETRE((PL_reg_curpm), (Re2)); \
+ }
+
+
+/*
+ - regtry - try match at specific point
+ */
+STATIC I32 /* 0 failure, 1 success */
+S_regtry(pTHX_ regmatch_info *reginfo, char **startposp)
+{
+ CHECKPOINT lastcp;
+ REGEXP *const rx = reginfo->prog;
+ regexp *const prog = ReANY(rx);
+ SSize_t result;
+ RXi_GET_DECL(prog,progi);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTRY;
+
+ reginfo->cutpoint=NULL;
+
+ prog->offs[0].start = *startposp - reginfo->strbeg;
+ prog->lastparen = 0;
+ prog->lastcloseparen = 0;
+
+ /* XXXX What this code is doing here?!!! There should be no need
+ to do this again and again, prog->lastparen should take care of
+ this! --ilya*/
+
+ /* Tests pat.t#187 and split.t#{13,14} seem to depend on this code.
+ * Actually, the code in regcppop() (which Ilya may be meaning by
+ * prog->lastparen), is not needed at all by the test suite
+ * (op/regexp, op/pat, op/split), but that code is needed otherwise
+ * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
+ * Meanwhile, this code *is* needed for the
+ * above-mentioned test suite tests to succeed. The common theme
+ * on those tests seems to be returning null fields from matches.
+ * --jhi updated by dapm */
+#if 1
+ if (prog->nparens) {
+ regexp_paren_pair *pp = prog->offs;
+ I32 i;
+ for (i = prog->nparens; i > (I32)prog->lastparen; i--) {
+ ++pp;
+ pp->start = -1;
+ pp->end = -1;
+ }
+ }
+#endif
+ REGCP_SET(lastcp);
+ result = regmatch(reginfo, *startposp, progi->program + 1);
+ if (result != -1) {
+ prog->offs[0].end = result;
+ return 1;
+ }
+ if (reginfo->cutpoint)
+ *startposp= reginfo->cutpoint;
+ REGCP_UNWIND(lastcp);
+ return 0;
+}
+
+
+#define sayYES goto yes
+#define sayNO goto no
+#define sayNO_SILENT goto no_silent
+
+/* we dont use STMT_START/END here because it leads to
+ "unreachable code" warnings, which are bogus, but distracting. */
+#define CACHEsayNO \
+ if (ST.cache_mask) \
+ reginfo->info_aux->poscache[ST.cache_offset] |= ST.cache_mask; \
+ sayNO
+
+/* this is used to determine how far from the left messages like
+ 'failed...' are printed. It should be set such that messages
+ are inline with the regop output that created them.
+*/
+#define REPORT_CODE_OFF 32
+
+
+#define CHRTEST_UNINIT -1001 /* c1/c2 haven't been calculated yet */
+#define CHRTEST_VOID -1000 /* the c1/c2 "next char" test should be skipped */
+#define CHRTEST_NOT_A_CP_1 -999
+#define CHRTEST_NOT_A_CP_2 -998
+
+/* grab a new slab and return the first slot in it */
+
+STATIC regmatch_state *
+S_push_slab(pTHX)
+{
+#if PERL_VERSION < 9 && !defined(PERL_CORE)
+ dMY_CXT;
+#endif
+ regmatch_slab *s = PL_regmatch_slab->next;
+ if (!s) {
+ Newx(s, 1, regmatch_slab);
+ s->prev = PL_regmatch_slab;
+ s->next = NULL;
+ PL_regmatch_slab->next = s;
+ }
+ PL_regmatch_slab = s;
+ return SLAB_FIRST(s);
+}
+
+
+/* push a new state then goto it */
+
+#define PUSH_STATE_GOTO(state, node, input) \
+ pushinput = input; \
+ scan = node; \
+ st->resume_state = state; \
+ goto push_state;
+
+/* push a new state with success backtracking, then goto it */
+
+#define PUSH_YES_STATE_GOTO(state, node, input) \
+ pushinput = input; \
+ scan = node; \
+ st->resume_state = state; \
+ goto push_yes_state;
+
+
+
+
+/*
+
+regmatch() - main matching routine
+
+This is basically one big switch statement in a loop. We execute an op,
+set 'next' to point the next op, and continue. If we come to a point which
+we may need to backtrack to on failure such as (A|B|C), we push a
+backtrack state onto the backtrack stack. On failure, we pop the top
+state, and re-enter the loop at the state indicated. If there are no more
+states to pop, we return failure.
+
+Sometimes we also need to backtrack on success; for example /A+/, where
+after successfully matching one A, we need to go back and try to
+match another one; similarly for lookahead assertions: if the assertion
+completes successfully, we backtrack to the state just before the assertion
+and then carry on. In these cases, the pushed state is marked as
+'backtrack on success too'. This marking is in fact done by a chain of
+pointers, each pointing to the previous 'yes' state. On success, we pop to
+the nearest yes state, discarding any intermediate failure-only states.
+Sometimes a yes state is pushed just to force some cleanup code to be
+called at the end of a successful match or submatch; e.g. (??{$re}) uses
+it to free the inner regex.
+
+Note that failure backtracking rewinds the cursor position, while
+success backtracking leaves it alone.
+
+A pattern is complete when the END op is executed, while a subpattern
+such as (?=foo) is complete when the SUCCESS op is executed. Both of these
+ops trigger the "pop to last yes state if any, otherwise return true"
+behaviour.
+
+A common convention in this function is to use A and B to refer to the two
+subpatterns (or to the first nodes thereof) in patterns like /A*B/: so A is
+the subpattern to be matched possibly multiple times, while B is the entire
+rest of the pattern. Variable and state names reflect this convention.
+
+The states in the main switch are the union of ops and failure/success of
+substates associated with with that op. For example, IFMATCH is the op
+that does lookahead assertions /(?=A)B/ and so the IFMATCH state means
+'execute IFMATCH'; while IFMATCH_A is a state saying that we have just
+successfully matched A and IFMATCH_A_fail is a state saying that we have
+just failed to match A. Resume states always come in pairs. The backtrack
+state we push is marked as 'IFMATCH_A', but when that is popped, we resume
+at IFMATCH_A or IFMATCH_A_fail, depending on whether we are backtracking
+on success or failure.
+
+The struct that holds a backtracking state is actually a big union, with
+one variant for each major type of op. The variable st points to the
+top-most backtrack struct. To make the code clearer, within each
+block of code we #define ST to alias the relevant union.
+
+Here's a concrete example of a (vastly oversimplified) IFMATCH
+implementation:
+
+ switch (state) {
+ ....
+
+#define ST st->u.ifmatch
+
+ case IFMATCH: // we are executing the IFMATCH op, (?=A)B
+ ST.foo = ...; // some state we wish to save
+ ...
+ // push a yes backtrack state with a resume value of
+ // IFMATCH_A/IFMATCH_A_fail, then continue execution at the
+ // first node of A:
+ PUSH_YES_STATE_GOTO(IFMATCH_A, A, newinput);
+ // NOTREACHED
+
+ case IFMATCH_A: // we have successfully executed A; now continue with B
+ next = B;
+ bar = ST.foo; // do something with the preserved value
+ break;
+
+ case IFMATCH_A_fail: // A failed, so the assertion failed
+ ...; // do some housekeeping, then ...
+ sayNO; // propagate the failure
+
+#undef ST
+
+ ...
+ }
+
+For any old-timers reading this who are familiar with the old recursive
+approach, the code above is equivalent to:
+
+ case IFMATCH: // we are executing the IFMATCH op, (?=A)B
+ {
+ int foo = ...
+ ...
+ if (regmatch(A)) {
+ next = B;
+ bar = foo;
+ break;
+ }
+ ...; // do some housekeeping, then ...
+ sayNO; // propagate the failure
+ }
+
+The topmost backtrack state, pointed to by st, is usually free. If you
+want to claim it, populate any ST.foo fields in it with values you wish to
+save, then do one of
+
+ PUSH_STATE_GOTO(resume_state, node, newinput);
+ PUSH_YES_STATE_GOTO(resume_state, node, newinput);
+
+which sets that backtrack state's resume value to 'resume_state', pushes a
+new free entry to the top of the backtrack stack, then goes to 'node'.
+On backtracking, the free slot is popped, and the saved state becomes the
+new free state. An ST.foo field in this new top state can be temporarily
+accessed to retrieve values, but once the main loop is re-entered, it
+becomes available for reuse.
+
+Note that the depth of the backtrack stack constantly increases during the
+left-to-right execution of the pattern, rather than going up and down with
+the pattern nesting. For example the stack is at its maximum at Z at the
+end of the pattern, rather than at X in the following:
+
+ /(((X)+)+)+....(Y)+....Z/
+
+The only exceptions to this are lookahead/behind assertions and the cut,
+(?>A), which pop all the backtrack states associated with A before
+continuing.
+
+Backtrack state structs are allocated in slabs of about 4K in size.
+PL_regmatch_state and st always point to the currently active state,
+and PL_regmatch_slab points to the slab currently containing
+PL_regmatch_state. The first time regmatch() is called, the first slab is
+allocated, and is never freed until interpreter destruction. When the slab
+is full, a new one is allocated and chained to the end. At exit from
+regmatch(), slabs allocated since entry are freed.
+
+*/
+
+
+#define DEBUG_STATE_pp(pp) \
+ DEBUG_STATE_r({ \
+ DUMP_EXEC_POS(locinput, scan, utf8_target); \
+ PerlIO_printf(Perl_debug_log, \
+ " %*s"pp" %s%s%s%s%s\n", \
+ depth*2, "", \
+ PL_reg_name[st->resume_state], \
+ ((st==yes_state||st==mark_state) ? "[" : ""), \
+ ((st==yes_state) ? "Y" : ""), \
+ ((st==mark_state) ? "M" : ""), \
+ ((st==yes_state||st==mark_state) ? "]" : "") \
+ ); \
+ });
+
+
+#define REG_NODE_NUM(x) ((x) ? (int)((x)-prog) : -1)
+
+#ifdef DEBUGGING
+
+STATIC void
+S_debug_start_match(pTHX_ const REGEXP *prog, const bool utf8_target,
+ const char *start, const char *end, const char *blurb)
+{
+ const bool utf8_pat = RX_UTF8(prog) ? 1 : 0;
+
+ PERL_ARGS_ASSERT_DEBUG_START_MATCH;
+
+ if (!PL_colorset)
+ reginitcolors();
+ {
+ RE_PV_QUOTED_DECL(s0, utf8_pat, PERL_DEBUG_PAD_ZERO(0),
+ RX_PRECOMP_const(prog), RX_PRELEN(prog), 60);
+
+ RE_PV_QUOTED_DECL(s1, utf8_target, PERL_DEBUG_PAD_ZERO(1),
+ start, end - start, 60);
+
+ PerlIO_printf(Perl_debug_log,
+ "%s%s REx%s %s against %s\n",
+ PL_colors[4], blurb, PL_colors[5], s0, s1);
+
+ if (utf8_target||utf8_pat)
+ PerlIO_printf(Perl_debug_log, "UTF-8 %s%s%s...\n",
+ utf8_pat ? "pattern" : "",
+ utf8_pat && utf8_target ? " and " : "",
+ utf8_target ? "string" : ""
+ );
+ }
+}
+
+STATIC void
+S_dump_exec_pos(pTHX_ const char *locinput,
+ const regnode *scan,
+ const char *loc_regeol,
+ const char *loc_bostr,
+ const char *loc_reg_starttry,
+ const bool utf8_target)
+{
+ const int docolor = *PL_colors[0] || *PL_colors[2] || *PL_colors[4];
+ const int taill = (docolor ? 10 : 7); /* 3 chars for "> <" */
+ int l = (loc_regeol - locinput) > taill ? taill : (loc_regeol - locinput);
+ /* The part of the string before starttry has one color
+ (pref0_len chars), between starttry and current
+ position another one (pref_len - pref0_len chars),
+ after the current position the third one.
+ We assume that pref0_len <= pref_len, otherwise we
+ decrease pref0_len. */
+ int pref_len = (locinput - loc_bostr) > (5 + taill) - l
+ ? (5 + taill) - l : locinput - loc_bostr;
+ int pref0_len;
+
+ PERL_ARGS_ASSERT_DUMP_EXEC_POS;
+
+ while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput - pref_len)))
+ pref_len++;
+ pref0_len = pref_len - (locinput - loc_reg_starttry);
+ if (l + pref_len < (5 + taill) && l < loc_regeol - locinput)
+ l = ( loc_regeol - locinput > (5 + taill) - pref_len
+ ? (5 + taill) - pref_len : loc_regeol - locinput);
+ while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput + l)))
+ l--;
+ if (pref0_len < 0)
+ pref0_len = 0;
+ if (pref0_len > pref_len)
+ pref0_len = pref_len;
+ {
+ const int is_uni = utf8_target ? 1 : 0;
+
+ RE_PV_COLOR_DECL(s0,len0,is_uni,PERL_DEBUG_PAD(0),
+ (locinput - pref_len),pref0_len, 60, 4, 5);
+
+ RE_PV_COLOR_DECL(s1,len1,is_uni,PERL_DEBUG_PAD(1),
+ (locinput - pref_len + pref0_len),
+ pref_len - pref0_len, 60, 2, 3);
+
+ RE_PV_COLOR_DECL(s2,len2,is_uni,PERL_DEBUG_PAD(2),
+ locinput, loc_regeol - locinput, 10, 0, 1);
+
+ const STRLEN tlen=len0+len1+len2;
+ PerlIO_printf(Perl_debug_log,
+ "%4"IVdf" <%.*s%.*s%s%.*s>%*s|",
+ (IV)(locinput - loc_bostr),
+ len0, s0,
+ len1, s1,
+ (docolor ? "" : "> <"),
+ len2, s2,
+ (int)(tlen > 19 ? 0 : 19 - tlen),
+ "");
+ }
+}
+
+#endif
+
+/* reg_check_named_buff_matched()
+ * Checks to see if a named buffer has matched. The data array of
+ * buffer numbers corresponding to the buffer is expected to reside
+ * in the regexp->data->data array in the slot stored in the ARG() of
+ * node involved. Note that this routine doesn't actually care about the
+ * name, that information is not preserved from compilation to execution.
+ * Returns the index of the leftmost defined buffer with the given name
+ * or 0 if non of the buffers matched.
+ */
+STATIC I32
+S_reg_check_named_buff_matched(const regexp *rex, const regnode *scan)
+{
+ I32 n;
+ RXi_GET_DECL(rex,rexi);
+ SV *sv_dat= MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ I32 *nums=(I32*)SvPVX(sv_dat);
+
+ PERL_ARGS_ASSERT_REG_CHECK_NAMED_BUFF_MATCHED;
+
+ for ( n=0; n<SvIVX(sv_dat); n++ ) {
+ if ((I32)rex->lastparen >= nums[n] &&
+ rex->offs[nums[n]].end != -1)
+ {
+ return nums[n];
+ }
+ }
+ return 0;
+}
+
+
+static bool
+S_setup_EXACTISH_ST_c1_c2(pTHX_ const regnode * const text_node, int *c1p,
+ U8* c1_utf8, int *c2p, U8* c2_utf8, regmatch_info *reginfo)
+{
+ /* This function determines if there are one or two characters that match
+ * the first character of the passed-in EXACTish node <text_node>, and if
+ * so, returns them in the passed-in pointers.
+ *
+ * If it determines that no possible character in the target string can
+ * match, it returns FALSE; otherwise TRUE. (The FALSE situation occurs if
+ * the first character in <text_node> requires UTF-8 to represent, and the
+ * target string isn't in UTF-8.)
+ *
+ * If there are more than two characters that could match the beginning of
+ * <text_node>, or if more context is required to determine a match or not,
+ * it sets both *<c1p> and *<c2p> to CHRTEST_VOID.
+ *
+ * The motiviation behind this function is to allow the caller to set up
+ * tight loops for matching. If <text_node> is of type EXACT, there is
+ * only one possible character that can match its first character, and so
+ * the situation is quite simple. But things get much more complicated if
+ * folding is involved. It may be that the first character of an EXACTFish
+ * node doesn't participate in any possible fold, e.g., punctuation, so it
+ * can be matched only by itself. The vast majority of characters that are
+ * in folds match just two things, their lower and upper-case equivalents.
+ * But not all are like that; some have multiple possible matches, or match
+ * sequences of more than one character. This function sorts all that out.
+ *
+ * Consider the patterns A*B or A*?B where A and B are arbitrary. In a
+ * loop of trying to match A*, we know we can't exit where the thing
+ * following it isn't a B. And something can't be a B unless it is the
+ * beginning of B. By putting a quick test for that beginning in a tight
+ * loop, we can rule out things that can't possibly be B without having to
+ * break out of the loop, thus avoiding work. Similarly, if A is a single
+ * character, we can make a tight loop matching A*, using the outputs of
+ * this function.
+ *
+ * If the target string to match isn't in UTF-8, and there aren't
+ * complications which require CHRTEST_VOID, *<c1p> and *<c2p> are set to
+ * the one or two possible octets (which are characters in this situation)
+ * that can match. In all cases, if there is only one character that can
+ * match, *<c1p> and *<c2p> will be identical.
+ *
+ * If the target string is in UTF-8, the buffers pointed to by <c1_utf8>
+ * and <c2_utf8> will contain the one or two UTF-8 sequences of bytes that
+ * can match the beginning of <text_node>. They should be declared with at
+ * least length UTF8_MAXBYTES+1. (If the target string isn't in UTF-8, it is
+ * undefined what these contain.) If one or both of the buffers are
+ * invariant under UTF-8, *<c1p>, and *<c2p> will also be set to the
+ * corresponding invariant. If variant, the corresponding *<c1p> and/or
+ * *<c2p> will be set to a negative number(s) that shouldn't match any code
+ * point (unless inappropriately coerced to unsigned). *<c1p> will equal
+ * *<c2p> if and only if <c1_utf8> and <c2_utf8> are the same. */
+
+ const bool utf8_target = reginfo->is_utf8_target;
+
+ UV c1 = (UV)CHRTEST_NOT_A_CP_1;
+ UV c2 = (UV)CHRTEST_NOT_A_CP_2;
+ bool use_chrtest_void = FALSE;
+ const bool is_utf8_pat = reginfo->is_utf8_pat;
+
+ /* Used when we have both utf8 input and utf8 output, to avoid converting
+ * to/from code points */
+ bool utf8_has_been_setup = FALSE;
+
+ dVAR;
+
+ U8 *pat = (U8*)STRING(text_node);
+ U8 folded[UTF8_MAX_FOLD_CHAR_EXPAND * UTF8_MAXBYTES_CASE + 1] = { '\0' };
+
+ if (OP(text_node) == EXACT || OP(text_node) == EXACTL) {
+
+ /* In an exact node, only one thing can be matched, that first
+ * character. If both the pat and the target are UTF-8, we can just
+ * copy the input to the output, avoiding finding the code point of
+ * that character */
+ if (!is_utf8_pat) {
+ c2 = c1 = *pat;
+ }
+ else if (utf8_target) {
+ Copy(pat, c1_utf8, UTF8SKIP(pat), U8);
+ Copy(pat, c2_utf8, UTF8SKIP(pat), U8);
+ utf8_has_been_setup = TRUE;
+ }
+ else {
+ c2 = c1 = valid_utf8_to_uvchr(pat, NULL);
+ }
+ }
+ else { /* an EXACTFish node */
+ U8 *pat_end = pat + STR_LEN(text_node);
+
+ /* An EXACTFL node has at least some characters unfolded, because what
+ * they match is not known until now. So, now is the time to fold
+ * the first few of them, as many as are needed to determine 'c1' and
+ * 'c2' later in the routine. If the pattern isn't UTF-8, we only need
+ * to fold if in a UTF-8 locale, and then only the Sharp S; everything
+ * else is 1-1 and isn't assumed to be folded. In a UTF-8 pattern, we
+ * need to fold as many characters as a single character can fold to,
+ * so that later we can check if the first ones are such a multi-char
+ * fold. But, in such a pattern only locale-problematic characters
+ * aren't folded, so we can skip this completely if the first character
+ * in the node isn't one of the tricky ones */
+ if (OP(text_node) == EXACTFL) {
+
+ if (! is_utf8_pat) {
+ if (IN_UTF8_CTYPE_LOCALE && *pat == LATIN_SMALL_LETTER_SHARP_S)
+ {
+ folded[0] = folded[1] = 's';
+ pat = folded;
+ pat_end = folded + 2;
+ }
+ }
+ else if (is_PROBLEMATIC_LOCALE_FOLDEDS_START_utf8(pat)) {
+ U8 *s = pat;
+ U8 *d = folded;
+ int i;
+
+ for (i = 0; i < UTF8_MAX_FOLD_CHAR_EXPAND && s < pat_end; i++) {
+ if (isASCII(*s)) {
+ *(d++) = (U8) toFOLD_LC(*s);
+ s++;
+ }
+ else {
+ STRLEN len;
+ _to_utf8_fold_flags(s,
+ d,
+ &len,
+ FOLD_FLAGS_FULL | FOLD_FLAGS_LOCALE);
+ d += len;
+ s += UTF8SKIP(s);
+ }
+ }
+
+ pat = folded;
+ pat_end = d;
+ }
+ }
+
+ if ((is_utf8_pat && is_MULTI_CHAR_FOLD_utf8_safe(pat, pat_end))
+ || (!is_utf8_pat && is_MULTI_CHAR_FOLD_latin1_safe(pat, pat_end)))
+ {
+ /* Multi-character folds require more context to sort out. Also
+ * PL_utf8_foldclosures used below doesn't handle them, so have to
+ * be handled outside this routine */
+ use_chrtest_void = TRUE;
+ }
+ else { /* an EXACTFish node which doesn't begin with a multi-char fold */
+ c1 = is_utf8_pat ? valid_utf8_to_uvchr(pat, NULL) : *pat;
+ if (c1 > 255) {
+ /* Load the folds hash, if not already done */
+ SV** listp;
+ if (! PL_utf8_foldclosures) {
+ _load_PL_utf8_foldclosures();
+ }
+
+ /* The fold closures data structure is a hash with the keys
+ * being the UTF-8 of every character that is folded to, like
+ * 'k', and the values each an array of all code points that
+ * fold to its key. e.g. [ 'k', 'K', KELVIN_SIGN ].
+ * Multi-character folds are not included */
+ if ((! (listp = hv_fetch(PL_utf8_foldclosures,
+ (char *) pat,
+ UTF8SKIP(pat),
+ FALSE))))
+ {
+ /* Not found in the hash, therefore there are no folds
+ * containing it, so there is only a single character that
+ * could match */
+ c2 = c1;
+ }
+ else { /* Does participate in folds */
+ AV* list = (AV*) *listp;
+ if (av_tindex(list) != 1) {
+
+ /* If there aren't exactly two folds to this, it is
+ * outside the scope of this function */
+ use_chrtest_void = TRUE;
+ }
+ else { /* There are two. Get them */
+ SV** c_p = av_fetch(list, 0, FALSE);
+ if (c_p == NULL) {
+ Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
+ }
+ c1 = SvUV(*c_p);
+
+ c_p = av_fetch(list, 1, FALSE);
+ if (c_p == NULL) {
+ Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
+ }
+ c2 = SvUV(*c_p);
+
+ /* Folds that cross the 255/256 boundary are forbidden
+ * if EXACTFL (and isnt a UTF8 locale), or EXACTFA and
+ * one is ASCIII. Since the pattern character is above
+ * 255, and its only other match is below 256, the only
+ * legal match will be to itself. We have thrown away
+ * the original, so have to compute which is the one
+ * above 255. */
+ if ((c1 < 256) != (c2 < 256)) {
+ if ((OP(text_node) == EXACTFL
+ && ! IN_UTF8_CTYPE_LOCALE)
+ || ((OP(text_node) == EXACTFA
+ || OP(text_node) == EXACTFA_NO_TRIE)
+ && (isASCII(c1) || isASCII(c2))))
+ {
+ if (c1 < 256) {
+ c1 = c2;
+ }
+ else {
+ c2 = c1;
+ }
+ }
+ }
+ }
+ }
+ }
+ else /* Here, c1 is <= 255 */
+ if (utf8_target
+ && HAS_NONLATIN1_FOLD_CLOSURE(c1)
+ && ( ! (OP(text_node) == EXACTFL && ! IN_UTF8_CTYPE_LOCALE))
+ && ((OP(text_node) != EXACTFA
+ && OP(text_node) != EXACTFA_NO_TRIE)
+ || ! isASCII(c1)))
+ {
+ /* Here, there could be something above Latin1 in the target
+ * which folds to this character in the pattern. All such
+ * cases except LATIN SMALL LETTER Y WITH DIAERESIS have more
+ * than two characters involved in their folds, so are outside
+ * the scope of this function */
+ if (UNLIKELY(c1 == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) {
+ c2 = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS;
+ }
+ else {
+ use_chrtest_void = TRUE;
+ }
+ }
+ else { /* Here nothing above Latin1 can fold to the pattern
+ character */
+ switch (OP(text_node)) {
+
+ case EXACTFL: /* /l rules */
+ c2 = PL_fold_locale[c1];
+ break;
+
+ case EXACTF: /* This node only generated for non-utf8
+ patterns */
+ assert(! is_utf8_pat);
+ if (! utf8_target) { /* /d rules */
+ c2 = PL_fold[c1];
+ break;
+ }
+ /* FALLTHROUGH */
+ /* /u rules for all these. This happens to work for
+ * EXACTFA as nothing in Latin1 folds to ASCII */
+ case EXACTFA_NO_TRIE: /* This node only generated for
+ non-utf8 patterns */
+ assert(! is_utf8_pat);
+ /* FALLTHROUGH */
+ case EXACTFA:
+ case EXACTFU_SS:
+ case EXACTFU:
+ c2 = PL_fold_latin1[c1];
+ break;
+
+ default:
+ Perl_croak(aTHX_ "panic: Unexpected op %u", OP(text_node));
+ NOT_REACHED; /* NOTREACHED */
+ }
+ }
+ }
+ }
+
+ /* Here have figured things out. Set up the returns */
+ if (use_chrtest_void) {
+ *c2p = *c1p = CHRTEST_VOID;
+ }
+ else if (utf8_target) {
+ if (! utf8_has_been_setup) { /* Don't have the utf8; must get it */
+ uvchr_to_utf8(c1_utf8, c1);
+ uvchr_to_utf8(c2_utf8, c2);
+ }
+
+ /* Invariants are stored in both the utf8 and byte outputs; Use
+ * negative numbers otherwise for the byte ones. Make sure that the
+ * byte ones are the same iff the utf8 ones are the same */
+ *c1p = (UTF8_IS_INVARIANT(*c1_utf8)) ? *c1_utf8 : CHRTEST_NOT_A_CP_1;
+ *c2p = (UTF8_IS_INVARIANT(*c2_utf8))
+ ? *c2_utf8
+ : (c1 == c2)
+ ? CHRTEST_NOT_A_CP_1
+ : CHRTEST_NOT_A_CP_2;
+ }
+ else if (c1 > 255) {
+ if (c2 > 255) { /* both possibilities are above what a non-utf8 string
+ can represent */
+ return FALSE;
+ }
+
+ *c1p = *c2p = c2; /* c2 is the only representable value */
+ }
+ else { /* c1 is representable; see about c2 */
+ *c1p = c1;
+ *c2p = (c2 < 256) ? c2 : c1;
+ }
+
+ return TRUE;
+}
+
+/* This creates a single number by combining two, with 'before' being like the
+ * 10's digit, but this isn't necessarily base 10; it is base however many
+ * elements of the enum there are */
+#define GCBcase(before, after) ((GCB_ENUM_COUNT * before) + after)
+
+STATIC bool
+S_isGCB(const GCB_enum before, const GCB_enum after)
+{
+ /* returns a boolean indicating if there is a Grapheme Cluster Boundary
+ * between the inputs. See http://www.unicode.org/reports/tr29/ */
+
+ switch (GCBcase(before, after)) {
+
+ /* Break at the start and end of text.
+ GB1. sot ÷
+ GB2. ÷ eot
+
+ Break before and after controls except between CR and LF
+ GB4. ( Control | CR | LF ) ÷
+ GB5. ÷ ( Control | CR | LF )
+
+ Otherwise, break everywhere.
+ GB10. Any ÷ Any */
+ default:
+ return TRUE;
+
+ /* Do not break between a CR and LF.
+ GB3. CR × LF */
+ case GCBcase(GCB_CR, GCB_LF):
+ return FALSE;
+
+ /* Do not break Hangul syllable sequences.
+ GB6. L × ( L | V | LV | LVT ) */
+ case GCBcase(GCB_L, GCB_L):
+ case GCBcase(GCB_L, GCB_V):
+ case GCBcase(GCB_L, GCB_LV):
+ case GCBcase(GCB_L, GCB_LVT):
+ return FALSE;
+
+ /* GB7. ( LV | V ) × ( V | T ) */
+ case GCBcase(GCB_LV, GCB_V):
+ case GCBcase(GCB_LV, GCB_T):
+ case GCBcase(GCB_V, GCB_V):
+ case GCBcase(GCB_V, GCB_T):
+ return FALSE;
+
+ /* GB8. ( LVT | T) × T */
+ case GCBcase(GCB_LVT, GCB_T):
+ case GCBcase(GCB_T, GCB_T):
+ return FALSE;
+
+ /* Do not break between regional indicator symbols.
+ GB8a. Regional_Indicator × Regional_Indicator */
+ case GCBcase(GCB_Regional_Indicator, GCB_Regional_Indicator):
+ return FALSE;
+
+ /* Do not break before extending characters.
+ GB9. × Extend */
+ case GCBcase(GCB_Other, GCB_Extend):
+ case GCBcase(GCB_Extend, GCB_Extend):
+ case GCBcase(GCB_L, GCB_Extend):
+ case GCBcase(GCB_LV, GCB_Extend):
+ case GCBcase(GCB_LVT, GCB_Extend):
+ case GCBcase(GCB_Prepend, GCB_Extend):
+ case GCBcase(GCB_Regional_Indicator, GCB_Extend):
+ case GCBcase(GCB_SpacingMark, GCB_Extend):
+ case GCBcase(GCB_T, GCB_Extend):
+ case GCBcase(GCB_V, GCB_Extend):
+ return FALSE;
+
+ /* Do not break before SpacingMarks, or after Prepend characters.
+ GB9a. × SpacingMark */
+ case GCBcase(GCB_Other, GCB_SpacingMark):
+ case GCBcase(GCB_Extend, GCB_SpacingMark):
+ case GCBcase(GCB_L, GCB_SpacingMark):
+ case GCBcase(GCB_LV, GCB_SpacingMark):
+ case GCBcase(GCB_LVT, GCB_SpacingMark):
+ case GCBcase(GCB_Prepend, GCB_SpacingMark):
+ case GCBcase(GCB_Regional_Indicator, GCB_SpacingMark):
+ case GCBcase(GCB_SpacingMark, GCB_SpacingMark):
+ case GCBcase(GCB_T, GCB_SpacingMark):
+ case GCBcase(GCB_V, GCB_SpacingMark):
+ return FALSE;
+
+ /* GB9b. Prepend × */
+ case GCBcase(GCB_Prepend, GCB_Other):
+ case GCBcase(GCB_Prepend, GCB_L):
+ case GCBcase(GCB_Prepend, GCB_LV):
+ case GCBcase(GCB_Prepend, GCB_LVT):
+ case GCBcase(GCB_Prepend, GCB_Prepend):
+ case GCBcase(GCB_Prepend, GCB_Regional_Indicator):
+ case GCBcase(GCB_Prepend, GCB_T):
+ case GCBcase(GCB_Prepend, GCB_V):
+ return FALSE;
+ }
+
+ NOT_REACHED; /* NOTREACHED */
+}
+
+#define SBcase(before, after) ((SB_ENUM_COUNT * before) + after)
+
+STATIC bool
+S_isSB(pTHX_ SB_enum before,
+ SB_enum after,
+ const U8 * const strbeg,
+ const U8 * const curpos,
+ const U8 * const strend,
+ const bool utf8_target)
+{
+ /* returns a boolean indicating if there is a Sentence Boundary Break
+ * between the inputs. See http://www.unicode.org/reports/tr29/ */
+
+ U8 * lpos = (U8 *) curpos;
+ U8 * temp_pos;
+ SB_enum backup;
+
+ PERL_ARGS_ASSERT_ISSB;
+
+ /* Break at the start and end of text.
+ SB1. sot ÷
+ SB2. ÷ eot */
+ if (before == SB_EDGE || after == SB_EDGE) {
+ return TRUE;
+ }
+
+ /* SB 3: Do not break within CRLF. */
+ if (before == SB_CR && after == SB_LF) {
+ return FALSE;
+ }
+
+ /* Break after paragraph separators. (though why CR and LF are considered
+ * so is beyond me (khw)
+ SB4. Sep | CR | LF ÷ */
+ if (before == SB_Sep || before == SB_CR || before == SB_LF) {
+ return TRUE;
+ }
+
+ /* Ignore Format and Extend characters, except after sot, Sep, CR, or LF.
+ * (See Section 6.2, Replacing Ignore Rules.)
+ SB5. X (Extend | Format)* → X */
+ if (after == SB_Extend || after == SB_Format) {
+ return FALSE;
+ }
+
+ if (before == SB_Extend || before == SB_Format) {
+ before = backup_one_SB(strbeg, &lpos, utf8_target);
+ }
+
+ /* Do not break after ambiguous terminators like period, if they are
+ * immediately followed by a number or lowercase letter, if they are
+ * between uppercase letters, if the first following letter (optionally
+ * after certain punctuation) is lowercase, or if they are followed by
+ * "continuation" punctuation such as comma, colon, or semicolon. For
+ * example, a period may be an abbreviation or numeric period, and thus may
+ * not mark the end of a sentence.
+
+ * SB6. ATerm × Numeric */
+ if (before == SB_ATerm && after == SB_Numeric) {
+ return FALSE;
+ }
+
+ /* SB7. (Upper | Lower) ATerm × Upper */
+ if (before == SB_ATerm && after == SB_Upper) {
+ temp_pos = lpos;
+ backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ if (backup == SB_Upper || backup == SB_Lower) {
+ return FALSE;
+ }
+ }
+
+ /* SB8a. (STerm | ATerm) Close* Sp* × (SContinue | STerm | ATerm)
+ * SB10. (STerm | ATerm) Close* Sp* × ( Sp | Sep | CR | LF ) */
+ backup = before;
+ temp_pos = lpos;
+ while (backup == SB_Sp) {
+ backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ }
+ while (backup == SB_Close) {
+ backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ }
+ if ((backup == SB_STerm || backup == SB_ATerm)
+ && ( after == SB_SContinue
+ || after == SB_STerm
+ || after == SB_ATerm
+ || after == SB_Sp
+ || after == SB_Sep
+ || after == SB_CR
+ || after == SB_LF))
+ {
+ return FALSE;
+ }
+
+ /* SB8. ATerm Close* Sp* × ( ¬(OLetter | Upper | Lower | Sep | CR | LF |
+ * STerm | ATerm) )* Lower */
+ if (backup == SB_ATerm) {
+ U8 * rpos = (U8 *) curpos;
+ SB_enum later = after;
+
+ while ( later != SB_OLetter
+ && later != SB_Upper
+ && later != SB_Lower
+ && later != SB_Sep
+ && later != SB_CR
+ && later != SB_LF
+ && later != SB_STerm
+ && later != SB_ATerm
+ && later != SB_EDGE)
+ {
+ later = advance_one_SB(&rpos, strend, utf8_target);
+ }
+ if (later == SB_Lower) {
+ return FALSE;
+ }
+ }
+
+ /* Break after sentence terminators, but include closing punctuation,
+ * trailing spaces, and a paragraph separator (if present). [See note
+ * below.]
+ * SB9. ( STerm | ATerm ) Close* × ( Close | Sp | Sep | CR | LF ) */
+ backup = before;
+ temp_pos = lpos;
+ while (backup == SB_Close) {
+ backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ }
+ if ((backup == SB_STerm || backup == SB_ATerm)
+ && ( after == SB_Close
+ || after == SB_Sp
+ || after == SB_Sep
+ || after == SB_CR
+ || after == SB_LF))
+ {
+ return FALSE;
+ }
+
+
+ /* SB11. ( STerm | ATerm ) Close* Sp* ( Sep | CR | LF )? ÷ */
+ temp_pos = lpos;
+ backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
+ if ( backup == SB_Sep
+ || backup == SB_CR
+ || backup == SB_LF)
+ {
+ lpos = temp_pos;
+ }
+ else {
+ backup = before;
+ }
+ while (backup == SB_Sp) {
+ backup = backup_one_SB(strbeg, &lpos, utf8_target);
+ }
+ while (backup == SB_Close) {
+ backup = backup_one_SB(strbeg, &lpos, utf8_target);
+ }
+ if (backup == SB_STerm || backup == SB_ATerm) {
+ return TRUE;
+ }
+
+ /* Otherwise, do not break.
+ SB12. Any × Any */
+
+ return FALSE;
+}
+
+STATIC SB_enum
+S_advance_one_SB(pTHX_ U8 ** curpos, const U8 * const strend, const bool utf8_target)
+{
+ SB_enum sb;
+
+ PERL_ARGS_ASSERT_ADVANCE_ONE_SB;
+
+ if (*curpos >= strend) {
+ return SB_EDGE;
+ }
+
+ if (utf8_target) {
+ do {
+ *curpos += UTF8SKIP(*curpos);
+ if (*curpos >= strend) {
+ return SB_EDGE;
+ }
+ sb = getSB_VAL_UTF8(*curpos, strend);
+ } while (sb == SB_Extend || sb == SB_Format);
+ }
+ else {
+ do {
+ (*curpos)++;
+ if (*curpos >= strend) {
+ return SB_EDGE;
+ }
+ sb = getSB_VAL_CP(**curpos);
+ } while (sb == SB_Extend || sb == SB_Format);
+ }
+
+ return sb;
+}
+
+STATIC SB_enum
+S_backup_one_SB(pTHX_ const U8 * const strbeg, U8 ** curpos, const bool utf8_target)
+{
+ SB_enum sb;
+
+ PERL_ARGS_ASSERT_BACKUP_ONE_SB;
+
+ if (*curpos < strbeg) {
+ return SB_EDGE;
+ }
+
+ if (utf8_target) {
+ U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg);
+ if (! prev_char_pos) {
+ return SB_EDGE;
+ }
+
+ /* Back up over Extend and Format. curpos is always just to the right
+ * of the characater whose value we are getting */
+ do {
+ U8 * prev_prev_char_pos;
+ if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos, -1,
+ strbeg)))
+ {
+ sb = getSB_VAL_UTF8(prev_prev_char_pos, prev_char_pos);
+ *curpos = prev_char_pos;
+ prev_char_pos = prev_prev_char_pos;
+ }
+ else {
+ *curpos = (U8 *) strbeg;
+ return SB_EDGE;
+ }
+ } while (sb == SB_Extend || sb == SB_Format);
+ }
+ else {
+ do {
+ if (*curpos - 2 < strbeg) {
+ *curpos = (U8 *) strbeg;
+ return SB_EDGE;
+ }
+ (*curpos)--;
+ sb = getSB_VAL_CP(*(*curpos - 1));
+ } while (sb == SB_Extend || sb == SB_Format);
+ }
+
+ return sb;
+}
+
+#define WBcase(before, after) ((WB_ENUM_COUNT * before) + after)
+
+STATIC bool
+S_isWB(pTHX_ WB_enum previous,
+ WB_enum before,
+ WB_enum after,
+ const U8 * const strbeg,
+ const U8 * const curpos,
+ const U8 * const strend,
+ const bool utf8_target)
+{
+ /* Return a boolean as to if the boundary between 'before' and 'after' is
+ * a Unicode word break, using their published algorithm. Context may be
+ * needed to make this determination. If the value for the character
+ * before 'before' is known, it is passed as 'previous'; otherwise that
+ * should be set to WB_UNKNOWN. The other input parameters give the
+ * boundaries and current position in the matching of the string. That
+ * is, 'curpos' marks the position where the character whose wb value is
+ * 'after' begins. See http://www.unicode.org/reports/tr29/ */
+
+ U8 * before_pos = (U8 *) curpos;
+ U8 * after_pos = (U8 *) curpos;
+
+ PERL_ARGS_ASSERT_ISWB;
+
+ /* WB1 and WB2: Break at the start and end of text. */
+ if (before == WB_EDGE || after == WB_EDGE) {
+ return TRUE;
+ }
+
+ /* WB 3: Do not break within CRLF. */
+ if (before == WB_CR && after == WB_LF) {
+ return FALSE;
+ }
+
+ /* WB 3a and WB 3b: Otherwise break before and after Newlines (including CR
+ * and LF) */
+ if ( before == WB_CR || before == WB_LF || before == WB_Newline
+ || after == WB_CR || after == WB_LF || after == WB_Newline)
+ {
+ return TRUE;
+ }
+
+ /* Ignore Format and Extend characters, except when they appear at the
+ * beginning of a region of text.
+ * WB4. X (Extend | Format)* → X. */
+
+ if (after == WB_Extend || after == WB_Format) {
+ return FALSE;
+ }
+
+ if (before == WB_Extend || before == WB_Format) {
+ before = backup_one_WB(&previous, strbeg, &before_pos, utf8_target);
+ }
+
+ switch (WBcase(before, after)) {
+ /* Otherwise, break everywhere (including around ideographs).
+ WB14. Any ÷ Any */
+ default:
+ return TRUE;
+
+ /* Do not break between most letters.
+ WB5. (ALetter | Hebrew_Letter) × (ALetter | Hebrew_Letter) */
+ case WBcase(WB_ALetter, WB_ALetter):
+ case WBcase(WB_ALetter, WB_Hebrew_Letter):
+ case WBcase(WB_Hebrew_Letter, WB_ALetter):
+ case WBcase(WB_Hebrew_Letter, WB_Hebrew_Letter):
+ return FALSE;
+
+ /* Do not break letters across certain punctuation.
+ WB6. (ALetter | Hebrew_Letter)
+ × (MidLetter | MidNumLet | Single_Quote) (ALetter
+ | Hebrew_Letter) */
+ case WBcase(WB_ALetter, WB_MidLetter):
+ case WBcase(WB_ALetter, WB_MidNumLet):
+ case WBcase(WB_ALetter, WB_Single_Quote):
+ case WBcase(WB_Hebrew_Letter, WB_MidLetter):
+ case WBcase(WB_Hebrew_Letter, WB_MidNumLet):
+ /*case WBcase(WB_Hebrew_Letter, WB_Single_Quote):*/
+ after = advance_one_WB(&after_pos, strend, utf8_target);
+ return after != WB_ALetter && after != WB_Hebrew_Letter;
+
+ /* WB7. (ALetter | Hebrew_Letter) (MidLetter | MidNumLet |
+ * Single_Quote) × (ALetter | Hebrew_Letter) */
+ case WBcase(WB_MidLetter, WB_ALetter):
+ case WBcase(WB_MidLetter, WB_Hebrew_Letter):
+ case WBcase(WB_MidNumLet, WB_ALetter):
+ case WBcase(WB_MidNumLet, WB_Hebrew_Letter):
+ case WBcase(WB_Single_Quote, WB_ALetter):
+ case WBcase(WB_Single_Quote, WB_Hebrew_Letter):
+ before
+ = backup_one_WB(&previous, strbeg, &before_pos, utf8_target);
+ return before != WB_ALetter && before != WB_Hebrew_Letter;
+
+ /* WB7a. Hebrew_Letter × Single_Quote */
+ case WBcase(WB_Hebrew_Letter, WB_Single_Quote):
+ return FALSE;
+
+ /* WB7b. Hebrew_Letter × Double_Quote Hebrew_Letter */
+ case WBcase(WB_Hebrew_Letter, WB_Double_Quote):
+ return advance_one_WB(&after_pos, strend, utf8_target)
+ != WB_Hebrew_Letter;
+
+ /* WB7c. Hebrew_Letter Double_Quote × Hebrew_Letter */
+ case WBcase(WB_Double_Quote, WB_Hebrew_Letter):
+ return backup_one_WB(&previous, strbeg, &before_pos, utf8_target)
+ != WB_Hebrew_Letter;
+
+ /* Do not break within sequences of digits, or digits adjacent to
+ * letters (“3a”, or “A3”).
+ WB8. Numeric × Numeric */
+ case WBcase(WB_Numeric, WB_Numeric):
+ return FALSE;
+
+ /* WB9. (ALetter | Hebrew_Letter) × Numeric */
+ case WBcase(WB_ALetter, WB_Numeric):
+ case WBcase(WB_Hebrew_Letter, WB_Numeric):
+ return FALSE;
+
+ /* WB10. Numeric × (ALetter | Hebrew_Letter) */
+ case WBcase(WB_Numeric, WB_ALetter):
+ case WBcase(WB_Numeric, WB_Hebrew_Letter):
+ return FALSE;
+
+ /* Do not break within sequences, such as “3.2” or “3,456.789”.
+ WB11. Numeric (MidNum | MidNumLet | Single_Quote) × Numeric
+ */
+ case WBcase(WB_MidNum, WB_Numeric):
+ case WBcase(WB_MidNumLet, WB_Numeric):
+ case WBcase(WB_Single_Quote, WB_Numeric):
+ return backup_one_WB(&previous, strbeg, &before_pos, utf8_target)
+ != WB_Numeric;
+
+ /* WB12. Numeric × (MidNum | MidNumLet | Single_Quote) Numeric
+ * */
+ case WBcase(WB_Numeric, WB_MidNum):
+ case WBcase(WB_Numeric, WB_MidNumLet):
+ case WBcase(WB_Numeric, WB_Single_Quote):
+ return advance_one_WB(&after_pos, strend, utf8_target)
+ != WB_Numeric;
+
+ /* Do not break between Katakana.
+ WB13. Katakana × Katakana */
+ case WBcase(WB_Katakana, WB_Katakana):
+ return FALSE;
+
+ /* Do not break from extenders.
+ WB13a. (ALetter | Hebrew_Letter | Numeric | Katakana |
+ ExtendNumLet) × ExtendNumLet */
+ case WBcase(WB_ALetter, WB_ExtendNumLet):
+ case WBcase(WB_Hebrew_Letter, WB_ExtendNumLet):
+ case WBcase(WB_Numeric, WB_ExtendNumLet):
+ case WBcase(WB_Katakana, WB_ExtendNumLet):
+ case WBcase(WB_ExtendNumLet, WB_ExtendNumLet):
+ return FALSE;
+
+ /* WB13b. ExtendNumLet × (ALetter | Hebrew_Letter | Numeric
+ * | Katakana) */
+ case WBcase(WB_ExtendNumLet, WB_ALetter):
+ case WBcase(WB_ExtendNumLet, WB_Hebrew_Letter):
+ case WBcase(WB_ExtendNumLet, WB_Numeric):
+ case WBcase(WB_ExtendNumLet, WB_Katakana):
+ return FALSE;
+
+ /* Do not break between regional indicator symbols.
+ WB13c. Regional_Indicator × Regional_Indicator */
+ case WBcase(WB_Regional_Indicator, WB_Regional_Indicator):
+ return FALSE;
+
+ }
+
+ NOT_REACHED; /* NOTREACHED */
+}
+
+STATIC WB_enum
+S_advance_one_WB(pTHX_ U8 ** curpos, const U8 * const strend, const bool utf8_target)
+{
+ WB_enum wb;
+
+ PERL_ARGS_ASSERT_ADVANCE_ONE_WB;
+
+ if (*curpos >= strend) {
+ return WB_EDGE;
+ }
+
+ if (utf8_target) {
+
+ /* Advance over Extend and Format */
+ do {
+ *curpos += UTF8SKIP(*curpos);
+ if (*curpos >= strend) {
+ return WB_EDGE;
+ }
+ wb = getWB_VAL_UTF8(*curpos, strend);
+ } while (wb == WB_Extend || wb == WB_Format);
+ }
+ else {
+ do {
+ (*curpos)++;
+ if (*curpos >= strend) {
+ return WB_EDGE;
+ }
+ wb = getWB_VAL_CP(**curpos);
+ } while (wb == WB_Extend || wb == WB_Format);
+ }
+
+ return wb;
+}
+
+STATIC WB_enum
+S_backup_one_WB(pTHX_ WB_enum * previous, const U8 * const strbeg, U8 ** curpos, const bool utf8_target)
+{
+ WB_enum wb;
+
+ PERL_ARGS_ASSERT_BACKUP_ONE_WB;
+
+ /* If we know what the previous character's break value is, don't have
+ * to look it up */
+ if (*previous != WB_UNKNOWN) {
+ wb = *previous;
+ *previous = WB_UNKNOWN;
+ /* XXX Note that doesn't change curpos, and maybe should */
+
+ /* But we always back up over these two types */
+ if (wb != WB_Extend && wb != WB_Format) {
+ return wb;
+ }
+ }
+
+ if (*curpos < strbeg) {
+ return WB_EDGE;
+ }
+
+ if (utf8_target) {
+ U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg);
+ if (! prev_char_pos) {
+ return WB_EDGE;
+ }
+
+ /* Back up over Extend and Format. curpos is always just to the right
+ * of the characater whose value we are getting */
+ do {
+ U8 * prev_prev_char_pos;
+ if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos,
+ -1,
+ strbeg)))
+ {
+ wb = getWB_VAL_UTF8(prev_prev_char_pos, prev_char_pos);
+ *curpos = prev_char_pos;
+ prev_char_pos = prev_prev_char_pos;
+ }
+ else {
+ *curpos = (U8 *) strbeg;
+ return WB_EDGE;
+ }
+ } while (wb == WB_Extend || wb == WB_Format);
+ }
+ else {
+ do {
+ if (*curpos - 2 < strbeg) {
+ *curpos = (U8 *) strbeg;
+ return WB_EDGE;
+ }
+ (*curpos)--;
+ wb = getWB_VAL_CP(*(*curpos - 1));
+ } while (wb == WB_Extend || wb == WB_Format);
+ }
+
+ return wb;
+}
+
+/* returns -1 on failure, $+[0] on success */
+STATIC SSize_t
+S_regmatch(pTHX_ regmatch_info *reginfo, char *startpos, regnode *prog)
+{
+#if PERL_VERSION < 9 && !defined(PERL_CORE)
+ dMY_CXT;
+#endif
+ dVAR;
+ const bool utf8_target = reginfo->is_utf8_target;
+ const U32 uniflags = UTF8_ALLOW_DEFAULT;
+ REGEXP *rex_sv = reginfo->prog;
+ regexp *rex = ReANY(rex_sv);
+ RXi_GET_DECL(rex,rexi);
+ /* the current state. This is a cached copy of PL_regmatch_state */
+ regmatch_state *st;
+ /* cache heavy used fields of st in registers */
+ regnode *scan;
+ regnode *next;
+ U32 n = 0; /* general value; init to avoid compiler warning */
+ SSize_t ln = 0; /* len or last; init to avoid compiler warning */
+ char *locinput = startpos;
+ char *pushinput; /* where to continue after a PUSH */
+ I32 nextchr; /* is always set to UCHARAT(locinput) */
+
+ bool result = 0; /* return value of S_regmatch */
+ int depth = 0; /* depth of backtrack stack */
+ U32 nochange_depth = 0; /* depth of GOSUB recursion with nochange */
+ const U32 max_nochange_depth =
+ (3 * rex->nparens > MAX_RECURSE_EVAL_NOCHANGE_DEPTH) ?
+ 3 * rex->nparens : MAX_RECURSE_EVAL_NOCHANGE_DEPTH;
+ regmatch_state *yes_state = NULL; /* state to pop to on success of
+ subpattern */
+ /* mark_state piggy backs on the yes_state logic so that when we unwind
+ the stack on success we can update the mark_state as we go */
+ regmatch_state *mark_state = NULL; /* last mark state we have seen */
+ regmatch_state *cur_eval = NULL; /* most recent EVAL_AB state */
+ struct regmatch_state *cur_curlyx = NULL; /* most recent curlyx */
+ U32 state_num;
+ bool no_final = 0; /* prevent failure from backtracking? */
+ bool do_cutgroup = 0; /* no_final only until next branch/trie entry */
+ char *startpoint = locinput;
+ SV *popmark = NULL; /* are we looking for a mark? */
+ SV *sv_commit = NULL; /* last mark name seen in failure */
+ SV *sv_yes_mark = NULL; /* last mark name we have seen
+ during a successful match */
+ U32 lastopen = 0; /* last open we saw */
+ bool has_cutgroup = RX_HAS_CUTGROUP(rex) ? 1 : 0;
+ SV* const oreplsv = GvSVn(PL_replgv);
+ /* these three flags are set by various ops to signal information to
+ * the very next op. They have a useful lifetime of exactly one loop
+ * iteration, and are not preserved or restored by state pushes/pops
+ */
+ bool sw = 0; /* the condition value in (?(cond)a|b) */
+ bool minmod = 0; /* the next "{n,m}" is a "{n,m}?" */
+ int logical = 0; /* the following EVAL is:
+ 0: (?{...})
+ 1: (?(?{...})X|Y)
+ 2: (??{...})
+ or the following IFMATCH/UNLESSM is:
+ false: plain (?=foo)
+ true: used as a condition: (?(?=foo))
+ */
+ PAD* last_pad = NULL;
+ dMULTICALL;
+ I32 gimme = G_SCALAR;
+ CV *caller_cv = NULL; /* who called us */
+ CV *last_pushed_cv = NULL; /* most recently called (?{}) CV */
+ CHECKPOINT runops_cp; /* savestack position before executing EVAL */
+ U32 maxopenparen = 0; /* max '(' index seen so far */
+ int to_complement; /* Invert the result? */
+ _char_class_number classnum;
+ bool is_utf8_pat = reginfo->is_utf8_pat;
+ bool match = FALSE;
+
+
+#ifdef DEBUGGING
+ GET_RE_DEBUG_FLAGS_DECL;
+#endif
+
+ /* protect against undef(*^R) */
+ SAVEFREESV(SvREFCNT_inc_simple_NN(oreplsv));
+
+ /* shut up 'may be used uninitialized' compiler warnings for dMULTICALL */
+ multicall_oldcatch = 0;
+ multicall_cv = NULL;
+ cx = NULL;
+ PERL_UNUSED_VAR(multicall_cop);
+ PERL_UNUSED_VAR(newsp);
+
+
+ PERL_ARGS_ASSERT_REGMATCH;
+
+ DEBUG_OPTIMISE_r( DEBUG_EXECUTE_r({
+ PerlIO_printf(Perl_debug_log,"regmatch start\n");
+ }));
+
+ st = PL_regmatch_state;
+
+ /* Note that nextchr is a byte even in UTF */
+ SET_nextchr;
+ scan = prog;
+ while (scan != NULL) {
+
+ DEBUG_EXECUTE_r( {
+ SV * const prop = sv_newmortal();
+ regnode *rnext=regnext(scan);
+ DUMP_EXEC_POS( locinput, scan, utf8_target );
+ regprop(rex, prop, scan, reginfo, NULL);
+
+ PerlIO_printf(Perl_debug_log,
+ "%3"IVdf":%*s%s(%"IVdf")\n",
+ (IV)(scan - rexi->program), depth*2, "",
+ SvPVX_const(prop),
+ (PL_regkind[OP(scan)] == END || !rnext) ?
+ 0 : (IV)(rnext - rexi->program));
+ });
+
+ next = scan + NEXT_OFF(scan);
+ if (next == scan)
+ next = NULL;
+ state_num = OP(scan);
+
+ REH_CALL_EXEC_NODE_HOOK(rex, scan, reginfo, st);
+ reenter_switch:
+ to_complement = 0;
+
+ SET_nextchr;
+ assert(nextchr < 256 && (nextchr >= 0 || nextchr == NEXTCHR_EOS));
+
+ switch (state_num) {
+ case SBOL: /* /^../ and /\A../ */
+ if (locinput == reginfo->strbeg)
+ break;
+ sayNO;
+
+ case MBOL: /* /^../m */
+ if (locinput == reginfo->strbeg ||
+ (!NEXTCHR_IS_EOS && locinput[-1] == '\n'))
+ {
+ break;
+ }
+ sayNO;
+
+ case GPOS: /* \G */
+ if (locinput == reginfo->ganch)
+ break;
+ sayNO;
+
+ case KEEPS: /* \K */
+ /* update the startpoint */
+ st->u.keeper.val = rex->offs[0].start;
+ rex->offs[0].start = locinput - reginfo->strbeg;
+ PUSH_STATE_GOTO(KEEPS_next, next, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case KEEPS_next_fail:
+ /* rollback the start point change */
+ rex->offs[0].start = st->u.keeper.val;
+ sayNO_SILENT;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case MEOL: /* /..$/m */
+ if (!NEXTCHR_IS_EOS && nextchr != '\n')
+ sayNO;
+ break;
+
+ case SEOL: /* /..$/ */
+ if (!NEXTCHR_IS_EOS && nextchr != '\n')
+ sayNO;
+ if (reginfo->strend - locinput > 1)
+ sayNO;
+ break;
+
+ case EOS: /* \z */
+ if (!NEXTCHR_IS_EOS)
+ sayNO;
+ break;
+
+ case SANY: /* /./s */
+ if (NEXTCHR_IS_EOS)
+ sayNO;
+ goto increment_locinput;
+
+ case REG_ANY: /* /./ */
+ if ((NEXTCHR_IS_EOS) || nextchr == '\n')
+ sayNO;
+ goto increment_locinput;
+
+
+#undef ST
+#define ST st->u.trie
+ case TRIEC: /* (ab|cd) with known charclass */
+ /* In this case the charclass data is available inline so
+ we can fail fast without a lot of extra overhead.
+ */
+ if(!NEXTCHR_IS_EOS && !ANYOF_BITMAP_TEST(scan, nextchr)) {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %sfailed to match trie start class...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+ );
+ sayNO_SILENT;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+ /* FALLTHROUGH */
+ case TRIE: /* (ab|cd) */
+ /* the basic plan of execution of the trie is:
+ * At the beginning, run though all the states, and
+ * find the longest-matching word. Also remember the position
+ * of the shortest matching word. For example, this pattern:
+ * 1 2 3 4 5
+ * ab|a|x|abcd|abc
+ * when matched against the string "abcde", will generate
+ * accept states for all words except 3, with the longest
+ * matching word being 4, and the shortest being 2 (with
+ * the position being after char 1 of the string).
+ *
+ * Then for each matching word, in word order (i.e. 1,2,4,5),
+ * we run the remainder of the pattern; on each try setting
+ * the current position to the character following the word,
+ * returning to try the next word on failure.
+ *
+ * We avoid having to build a list of words at runtime by
+ * using a compile-time structure, wordinfo[].prev, which
+ * gives, for each word, the previous accepting word (if any).
+ * In the case above it would contain the mappings 1->2, 2->0,
+ * 3->0, 4->5, 5->1. We can use this table to generate, from
+ * the longest word (4 above), a list of all words, by
+ * following the list of prev pointers; this gives us the
+ * unordered list 4,5,1,2. Then given the current word we have
+ * just tried, we can go through the list and find the
+ * next-biggest word to try (so if we just failed on word 2,
+ * the next in the list is 4).
+ *
+ * Since at runtime we don't record the matching position in
+ * the string for each word, we have to work that out for
+ * each word we're about to process. The wordinfo table holds
+ * the character length of each word; given that we recorded
+ * at the start: the position of the shortest word and its
+ * length in chars, we just need to move the pointer the
+ * difference between the two char lengths. Depending on
+ * Unicode status and folding, that's cheap or expensive.
+ *
+ * This algorithm is optimised for the case where are only a
+ * small number of accept states, i.e. 0,1, or maybe 2.
+ * With lots of accepts states, and having to try all of them,
+ * it becomes quadratic on number of accept states to find all
+ * the next words.
+ */
+
+ {
+ /* what type of TRIE am I? (utf8 makes this contextual) */
+ DECL_TRIE_TYPE(scan);
+
+ /* what trie are we using right now */
+ reg_trie_data * const trie
+ = (reg_trie_data*)rexi->data->data[ ARG( scan ) ];
+ HV * widecharmap = MUTABLE_HV(rexi->data->data[ ARG( scan ) + 1 ]);
+ U32 state = trie->startstate;
+
+ if (scan->flags == EXACTL || scan->flags == EXACTFLU8) {
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (utf8_target
+ && UTF8_IS_ABOVE_LATIN1(nextchr)
+ && scan->flags == EXACTL)
+ {
+ /* We only output for EXACTL, as we let the folder
+ * output this message for EXACTFLU8 to avoid
+ * duplication */
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput,
+ reginfo->strend);
+ }
+ }
+ if ( trie->bitmap
+ && (NEXTCHR_IS_EOS || !TRIE_BITMAP_TEST(trie, nextchr)))
+ {
+ if (trie->states[ state ].wordnum) {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %smatched empty string...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+ );
+ if (!trie->jump)
+ break;
+ } else {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %sfailed to match trie start class...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+ );
+ sayNO_SILENT;
+ }
+ }
+
+ {
+ U8 *uc = ( U8* )locinput;
+
+ STRLEN len = 0;
+ STRLEN foldlen = 0;
+ U8 *uscan = (U8*)NULL;
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+ U32 charcount = 0; /* how many input chars we have matched */
+ U32 accepted = 0; /* have we seen any accepting states? */
+
+ ST.jump = trie->jump;
+ ST.me = scan;
+ ST.firstpos = NULL;
+ ST.longfold = FALSE; /* char longer if folded => it's harder */
+ ST.nextword = 0;
+
+ /* fully traverse the TRIE; note the position of the
+ shortest accept state and the wordnum of the longest
+ accept state */
+
+ while ( state && uc <= (U8*)(reginfo->strend) ) {
+ U32 base = trie->states[ state ].trans.base;
+ UV uvc = 0;
+ U16 charid = 0;
+ U16 wordnum;
+ wordnum = trie->states[ state ].wordnum;
+
+ if (wordnum) { /* it's an accept state */
+ if (!accepted) {
+ accepted = 1;
+ /* record first match position */
+ if (ST.longfold) {
+ ST.firstpos = (U8*)locinput;
+ ST.firstchars = 0;
+ }
+ else {
+ ST.firstpos = uc;
+ ST.firstchars = charcount;
+ }
+ }
+ if (!ST.nextword || wordnum < ST.nextword)
+ ST.nextword = wordnum;
+ ST.topword = wordnum;
+ }
+
+ DEBUG_TRIE_EXECUTE_r({
+ DUMP_EXEC_POS( (char *)uc, scan, utf8_target );
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sState: %4"UVxf" Accepted: %c ",
+ 2+depth * 2, "", PL_colors[4],
+ (UV)state, (accepted ? 'Y' : 'N'));
+ });
+
+ /* read a char and goto next state */
+ if ( base && (foldlen || uc < (U8*)(reginfo->strend))) {
+ I32 offset;
+ REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc,
+ uscan, len, uvc, charid, foldlen,
+ foldbuf, uniflags);
+ charcount++;
+ if (foldlen>0)
+ ST.longfold = TRUE;
+ if (charid &&
+ ( ((offset =
+ base + charid - 1 - trie->uniquecharcount)) >= 0)
+
+ && ((U32)offset < trie->lasttrans)
+ && trie->trans[offset].check == state)
+ {
+ state = trie->trans[offset].next;
+ }
+ else {
+ state = 0;
+ }
+ uc += len;
+
+ }
+ else {
+ state = 0;
+ }
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log,
+ "Charid:%3x CP:%4"UVxf" After State: %4"UVxf"%s\n",
+ charid, uvc, (UV)state, PL_colors[5] );
+ );
+ }
+ if (!accepted)
+ sayNO;
+
+ /* calculate total number of accept states */
+ {
+ U16 w = ST.topword;
+ accepted = 0;
+ while (w) {
+ w = trie->wordinfo[w].prev;
+ accepted++;
+ }
+ ST.accepted = accepted;
+ }
+
+ DEBUG_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sgot %"IVdf" possible matches%s\n",
+ REPORT_CODE_OFF + depth * 2, "",
+ PL_colors[4], (IV)ST.accepted, PL_colors[5] );
+ );
+ goto trie_first_try; /* jump into the fail handler */
+ }}
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case TRIE_next_fail: /* we failed - try next alternative */
+ {
+ U8 *uc;
+ if ( ST.jump) {
+ REGCP_UNWIND(ST.cp);
+ UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+ }
+ if (!--ST.accepted) {
+ DEBUG_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sTRIE failed...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4],
+ PL_colors[5] );
+ });
+ sayNO_SILENT;
+ }
+ {
+ /* Find next-highest word to process. Note that this code
+ * is O(N^2) per trie run (O(N) per branch), so keep tight */
+ U16 min = 0;
+ U16 word;
+ U16 const nextword = ST.nextword;
+ reg_trie_wordinfo * const wordinfo
+ = ((reg_trie_data*)rexi->data->data[ARG(ST.me)])->wordinfo;
+ for (word=ST.topword; word; word=wordinfo[word].prev) {
+ if (word > nextword && (!min || word < min))
+ min = word;
+ }
+ ST.nextword = min;
+ }
+
+ trie_first_try:
+ if (do_cutgroup) {
+ do_cutgroup = 0;
+ no_final = 0;
+ }
+
+ if ( ST.jump) {
+ ST.lastparen = rex->lastparen;
+ ST.lastcloseparen = rex->lastcloseparen;
+ REGCP_SET(ST.cp);
+ }
+
+ /* find start char of end of current word */
+ {
+ U32 chars; /* how many chars to skip */
+ reg_trie_data * const trie
+ = (reg_trie_data*)rexi->data->data[ARG(ST.me)];
+
+ assert((trie->wordinfo[ST.nextword].len - trie->prefixlen)
+ >= ST.firstchars);
+ chars = (trie->wordinfo[ST.nextword].len - trie->prefixlen)
+ - ST.firstchars;
+ uc = ST.firstpos;
+
+ if (ST.longfold) {
+ /* the hard option - fold each char in turn and find
+ * its folded length (which may be different */
+ U8 foldbuf[UTF8_MAXBYTES_CASE + 1];
+ STRLEN foldlen;
+ STRLEN len;
+ UV uvc;
+ U8 *uscan;
+
+ while (chars) {
+ if (utf8_target) {
+ uvc = utf8n_to_uvchr((U8*)uc, UTF8_MAXLEN, &len,
+ uniflags);
+ uc += len;
+ }
+ else {
+ uvc = *uc;
+ uc++;
+ }
+ uvc = to_uni_fold(uvc, foldbuf, &foldlen);
+ uscan = foldbuf;
+ while (foldlen) {
+ if (!--chars)
+ break;
+ uvc = utf8n_to_uvchr(uscan, UTF8_MAXLEN, &len,
+ uniflags);
+ uscan += len;
+ foldlen -= len;
+ }
+ }
+ }
+ else {
+ if (utf8_target)
+ while (chars--)
+ uc += UTF8SKIP(uc);
+ else
+ uc += chars;
+ }
+ }
+
+ scan = ST.me + ((ST.jump && ST.jump[ST.nextword])
+ ? ST.jump[ST.nextword]
+ : NEXT_OFF(ST.me));
+
+ DEBUG_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sTRIE matched word #%d, continuing%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4],
+ ST.nextword,
+ PL_colors[5]
+ );
+ });
+
+ if (ST.accepted > 1 || has_cutgroup) {
+ PUSH_STATE_GOTO(TRIE_next, scan, (char*)uc);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+ /* only one choice left - just continue */
+ DEBUG_EXECUTE_r({
+ AV *const trie_words
+ = MUTABLE_AV(rexi->data->data[ARG(ST.me)+TRIE_WORDS_OFFSET]);
+ SV ** const tmp = trie_words
+ ? av_fetch(trie_words, ST.nextword - 1, 0) : NULL;
+ SV *sv= tmp ? sv_newmortal() : NULL;
+
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sonly one match left, short-circuiting: #%d <%s>%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4],
+ ST.nextword,
+ tmp ? pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 0,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)|PERL_PV_ESCAPE_NONASCII
+ )
+ : "not compiled under -Dr",
+ PL_colors[5] );
+ });
+
+ locinput = (char*)uc;
+ continue; /* execute rest of RE */
+ /* NOTREACHED */
+ }
+#undef ST
+
+ case EXACTL: /* /abc/l */
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+
+ /* Complete checking would involve going through every character
+ * matched by the string to see if any is above latin1. But the
+ * comparision otherwise might very well be a fast assembly
+ * language routine, and I (khw) don't think slowing things down
+ * just to check for this warning is worth it. So this just checks
+ * the first character */
+ if (utf8_target && UTF8_IS_ABOVE_LATIN1(*locinput)) {
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput, reginfo->strend);
+ }
+ /* FALLTHROUGH */
+ case EXACT: { /* /abc/ */
+ char *s = STRING(scan);
+ ln = STR_LEN(scan);
+ if (utf8_target != is_utf8_pat) {
+ /* The target and the pattern have differing utf8ness. */
+ char *l = locinput;
+ const char * const e = s + ln;
+
+ if (utf8_target) {
+ /* The target is utf8, the pattern is not utf8.
+ * Above-Latin1 code points can't match the pattern;
+ * invariants match exactly, and the other Latin1 ones need
+ * to be downgraded to a single byte in order to do the
+ * comparison. (If we could be confident that the target
+ * is not malformed, this could be refactored to have fewer
+ * tests by just assuming that if the first bytes match, it
+ * is an invariant, but there are tests in the test suite
+ * dealing with (??{...}) which violate this) */
+ while (s < e) {
+ if (l >= reginfo->strend
+ || UTF8_IS_ABOVE_LATIN1(* (U8*) l))
+ {
+ sayNO;
+ }
+ if (UTF8_IS_INVARIANT(*(U8*)l)) {
+ if (*l != *s) {
+ sayNO;
+ }
+ l++;
+ }
+ else {
+ if (TWO_BYTE_UTF8_TO_NATIVE(*l, *(l+1)) != * (U8*) s)
+ {
+ sayNO;
+ }
+ l += 2;
+ }
+ s++;
+ }
+ }
+ else {
+ /* The target is not utf8, the pattern is utf8. */
+ while (s < e) {
+ if (l >= reginfo->strend
+ || UTF8_IS_ABOVE_LATIN1(* (U8*) s))
+ {
+ sayNO;
+ }
+ if (UTF8_IS_INVARIANT(*(U8*)s)) {
+ if (*s != *l) {
+ sayNO;
+ }
+ s++;
+ }
+ else {
+ if (TWO_BYTE_UTF8_TO_NATIVE(*s, *(s+1)) != * (U8*) l)
+ {
+ sayNO;
+ }
+ s += 2;
+ }
+ l++;
+ }
+ }
+ locinput = l;
+ }
+ else {
+ /* The target and the pattern have the same utf8ness. */
+ /* Inline the first character, for speed. */
+ if (reginfo->strend - locinput < ln
+ || UCHARAT(s) != nextchr
+ || (ln > 1 && memNE(s, locinput, ln)))
+ {
+ sayNO;
+ }
+ locinput += ln;
+ }
+ break;
+ }
+
+ case EXACTFL: { /* /abc/il */
+ re_fold_t folder;
+ const U8 * fold_array;
+ const char * s;
+ U32 fold_utf8_flags;
+
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ folder = foldEQ_locale;
+ fold_array = PL_fold_locale;
+ fold_utf8_flags = FOLDEQ_LOCALE;
+ goto do_exactf;
+
+ case EXACTFLU8: /* /abc/il; but all 'abc' are above 255, so
+ is effectively /u; hence to match, target
+ must be UTF-8. */
+ if (! utf8_target) {
+ sayNO;
+ }
+ fold_utf8_flags = FOLDEQ_LOCALE | FOLDEQ_S1_ALREADY_FOLDED
+ | FOLDEQ_S1_FOLDS_SANE;
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ goto do_exactf;
+
+ case EXACTFU_SS: /* /\x{df}/iu */
+ case EXACTFU: /* /abc/iu */
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ fold_utf8_flags = is_utf8_pat ? FOLDEQ_S1_ALREADY_FOLDED : 0;
+ goto do_exactf;
+
+ case EXACTFA_NO_TRIE: /* This node only generated for non-utf8
+ patterns */
+ assert(! is_utf8_pat);
+ /* FALLTHROUGH */
+ case EXACTFA: /* /abc/iaa */
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ fold_utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_exactf;
+
+ case EXACTF: /* /abc/i This node only generated for
+ non-utf8 patterns */
+ assert(! is_utf8_pat);
+ folder = foldEQ;
+ fold_array = PL_fold;
+ fold_utf8_flags = 0;
+
+ do_exactf:
+ s = STRING(scan);
+ ln = STR_LEN(scan);
+
+ if (utf8_target
+ || is_utf8_pat
+ || state_num == EXACTFU_SS
+ || (state_num == EXACTFL && IN_UTF8_CTYPE_LOCALE))
+ {
+ /* Either target or the pattern are utf8, or has the issue where
+ * the fold lengths may differ. */
+ const char * const l = locinput;
+ char *e = reginfo->strend;
+
+ if (! foldEQ_utf8_flags(s, 0, ln, is_utf8_pat,
+ l, &e, 0, utf8_target, fold_utf8_flags))
+ {
+ sayNO;
+ }
+ locinput = e;
+ break;
+ }
+
+ /* Neither the target nor the pattern are utf8 */
+ if (UCHARAT(s) != nextchr
+ && !NEXTCHR_IS_EOS
+ && UCHARAT(s) != fold_array[nextchr])
+ {
+ sayNO;
+ }
+ if (reginfo->strend - locinput < ln)
+ sayNO;
+ if (ln > 1 && ! folder(s, locinput, ln))
+ sayNO;
+ locinput += ln;
+ break;
+ }
+
+ case NBOUNDL: /* /\B/l */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case BOUNDL: /* /\b/l */
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+
+ if (FLAGS(scan) != TRADITIONAL_BOUND) {
+ if (! IN_UTF8_CTYPE_LOCALE) {
+ Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
+ B_ON_NON_UTF8_LOCALE_IS_WRONG);
+ }
+ goto boundu;
+ }
+
+ if (utf8_target) {
+ if (locinput == reginfo->strbeg)
+ ln = isWORDCHAR_LC('\n');
+ else {
+ ln = isWORDCHAR_LC_utf8(reghop3((U8*)locinput, -1,
+ (U8*)(reginfo->strbeg)));
+ }
+ n = (NEXTCHR_IS_EOS)
+ ? isWORDCHAR_LC('\n')
+ : isWORDCHAR_LC_utf8((U8*)locinput);
+ }
+ else { /* Here the string isn't utf8 */
+ ln = (locinput == reginfo->strbeg)
+ ? isWORDCHAR_LC('\n')
+ : isWORDCHAR_LC(UCHARAT(locinput - 1));
+ n = (NEXTCHR_IS_EOS)
+ ? isWORDCHAR_LC('\n')
+ : isWORDCHAR_LC(nextchr);
+ }
+ if (to_complement ^ (ln == n)) {
+ sayNO;
+ }
+ break;
+
+ case NBOUND: /* /\B/ */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case BOUND: /* /\b/ */
+ if (utf8_target) {
+ goto bound_utf8;
+ }
+ goto bound_ascii_match_only;
+
+ case NBOUNDA: /* /\B/a */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case BOUNDA: /* /\b/a */
+
+ bound_ascii_match_only:
+ /* Here the string isn't utf8, or is utf8 and only ascii characters
+ * are to match \w. In the latter case looking at the byte just
+ * prior to the current one may be just the final byte of a
+ * multi-byte character. This is ok. There are two cases:
+ * 1) it is a single byte character, and then the test is doing
+ * just what it's supposed to.
+ * 2) it is a multi-byte character, in which case the final byte is
+ * never mistakable for ASCII, and so the test will say it is
+ * not a word character, which is the correct answer. */
+ ln = (locinput == reginfo->strbeg)
+ ? isWORDCHAR_A('\n')
+ : isWORDCHAR_A(UCHARAT(locinput - 1));
+ n = (NEXTCHR_IS_EOS)
+ ? isWORDCHAR_A('\n')
+ : isWORDCHAR_A(nextchr);
+ if (to_complement ^ (ln == n)) {
+ sayNO;
+ }
+ break;
+
+ case NBOUNDU: /* /\B/u */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case BOUNDU: /* /\b/u */
+
+ boundu:
+ if (utf8_target) {
+
+ bound_utf8:
+ switch((bound_type) FLAGS(scan)) {
+ case TRADITIONAL_BOUND:
+ ln = (locinput == reginfo->strbeg)
+ ? 0 /* isWORDCHAR_L1('\n') */
+ : isWORDCHAR_utf8(reghop3((U8*)locinput, -1,
+ (U8*)(reginfo->strbeg)));
+ n = (NEXTCHR_IS_EOS)
+ ? 0 /* isWORDCHAR_L1('\n') */
+ : isWORDCHAR_utf8((U8*)locinput);
+ match = cBOOL(ln != n);
+ break;
+ case GCB_BOUND:
+ if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+ match = TRUE; /* GCB always matches at begin and
+ end */
+ }
+ else {
+ /* Find the gcb values of previous and current
+ * chars, then see if is a break point */
+ match = isGCB(getGCB_VAL_UTF8(
+ reghop3((U8*)locinput,
+ -1,
+ (U8*)(reginfo->strbeg)),
+ (U8*) reginfo->strend),
+ getGCB_VAL_UTF8((U8*) locinput,
+ (U8*) reginfo->strend));
+ }
+ break;
+
+ case SB_BOUND: /* Always matches at begin and end */
+ if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+ match = TRUE;
+ }
+ else {
+ match = isSB(getSB_VAL_UTF8(
+ reghop3((U8*)locinput,
+ -1,
+ (U8*)(reginfo->strbeg)),
+ (U8*) reginfo->strend),
+ getSB_VAL_UTF8((U8*) locinput,
+ (U8*) reginfo->strend),
+ (U8*) reginfo->strbeg,
+ (U8*) locinput,
+ (U8*) reginfo->strend,
+ utf8_target);
+ }
+ break;
+
+ case WB_BOUND:
+ if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+ match = TRUE;
+ }
+ else {
+ match = isWB(WB_UNKNOWN,
+ getWB_VAL_UTF8(
+ reghop3((U8*)locinput,
+ -1,
+ (U8*)(reginfo->strbeg)),
+ (U8*) reginfo->strend),
+ getWB_VAL_UTF8((U8*) locinput,
+ (U8*) reginfo->strend),
+ (U8*) reginfo->strbeg,
+ (U8*) locinput,
+ (U8*) reginfo->strend,
+ utf8_target);
+ }
+ break;
+ }
+ }
+ else { /* Not utf8 target */
+ switch((bound_type) FLAGS(scan)) {
+ case TRADITIONAL_BOUND:
+ ln = (locinput == reginfo->strbeg)
+ ? 0 /* isWORDCHAR_L1('\n') */
+ : isWORDCHAR_L1(UCHARAT(locinput - 1));
+ n = (NEXTCHR_IS_EOS)
+ ? 0 /* isWORDCHAR_L1('\n') */
+ : isWORDCHAR_L1(nextchr);
+ match = cBOOL(ln != n);
+ break;
+
+ case GCB_BOUND:
+ if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+ match = TRUE; /* GCB always matches at begin and
+ end */
+ }
+ else { /* Only CR-LF combo isn't a GCB in 0-255
+ range */
+ match = UCHARAT(locinput - 1) != '\r'
+ || UCHARAT(locinput) != '\n';
+ }
+ break;
+
+ case SB_BOUND: /* Always matches at begin and end */
+ if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+ match = TRUE;
+ }
+ else {
+ match = isSB(getSB_VAL_CP(UCHARAT(locinput -1)),
+ getSB_VAL_CP(UCHARAT(locinput)),
+ (U8*) reginfo->strbeg,
+ (U8*) locinput,
+ (U8*) reginfo->strend,
+ utf8_target);
+ }
+ break;
+
+ case WB_BOUND:
+ if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
+ match = TRUE;
+ }
+ else {
+ match = isWB(WB_UNKNOWN,
+ getWB_VAL_CP(UCHARAT(locinput -1)),
+ getWB_VAL_CP(UCHARAT(locinput)),
+ (U8*) reginfo->strbeg,
+ (U8*) locinput,
+ (U8*) reginfo->strend,
+ utf8_target);
+ }
+ break;
+ }
+ }
+
+ if (to_complement ^ ! match) {
+ sayNO;
+ }
+ break;
+
+ case ANYOFL: /* /[abc]/l */
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ /* FALLTHROUGH */
+ case ANYOF: /* /[abc]/ */
+ if (NEXTCHR_IS_EOS)
+ sayNO;
+ if (utf8_target) {
+ if (!reginclass(rex, scan, (U8*)locinput, (U8*)reginfo->strend,
+ utf8_target))
+ sayNO;
+ locinput += UTF8SKIP(locinput);
+ }
+ else {
+ if (!REGINCLASS(rex, scan, (U8*)locinput))
+ sayNO;
+ locinput++;
+ }
+ break;
+
+ /* The argument (FLAGS) to all the POSIX node types is the class number
+ * */
+
+ case NPOSIXL: /* \W or [:^punct:] etc. under /l */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXL: /* \w or [:punct:] etc. under /l */
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (NEXTCHR_IS_EOS)
+ sayNO;
+
+ /* Use isFOO_lc() for characters within Latin1. (Note that
+ * UTF8_IS_INVARIANT works even on non-UTF-8 strings, or else
+ * wouldn't be invariant) */
+ if (UTF8_IS_INVARIANT(nextchr) || ! utf8_target) {
+ if (! (to_complement ^ cBOOL(isFOO_lc(FLAGS(scan), (U8) nextchr)))) {
+ sayNO;
+ }
+ }
+ else if (UTF8_IS_DOWNGRADEABLE_START(nextchr)) {
+ if (! (to_complement ^ cBOOL(isFOO_lc(FLAGS(scan),
+ (U8) TWO_BYTE_UTF8_TO_NATIVE(nextchr,
+ *(locinput + 1))))))
+ {
+ sayNO;
+ }
+ }
+ else { /* Here, must be an above Latin-1 code point */
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(locinput, reginfo->strend);
+ goto utf8_posix_above_latin1;
+ }
+
+ /* Here, must be utf8 */
+ locinput += UTF8SKIP(locinput);
+ break;
+
+ case NPOSIXD: /* \W or [:^punct:] etc. under /d */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXD: /* \w or [:punct:] etc. under /d */
+ if (utf8_target) {
+ goto utf8_posix;
+ }
+ goto posixa;
+
+ case NPOSIXA: /* \W or [:^punct:] etc. under /a */
+
+ if (NEXTCHR_IS_EOS) {
+ sayNO;
+ }
+
+ /* All UTF-8 variants match */
+ if (! UTF8_IS_INVARIANT(nextchr)) {
+ goto increment_locinput;
+ }
+
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXA: /* \w or [:punct:] etc. under /a */
+
+ posixa:
+ /* We get here through POSIXD, NPOSIXD, and NPOSIXA when not in
+ * UTF-8, and also from NPOSIXA even in UTF-8 when the current
+ * character is a single byte */
+
+ if (NEXTCHR_IS_EOS
+ || ! (to_complement ^ cBOOL(_generic_isCC_A(nextchr,
+ FLAGS(scan)))))
+ {
+ sayNO;
+ }
+
+ /* Here we are either not in utf8, or we matched a utf8-invariant,
+ * so the next char is the next byte */
+ locinput++;
+ break;
+
+ case NPOSIXU: /* \W or [:^punct:] etc. under /u */
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXU: /* \w or [:punct:] etc. under /u */
+ utf8_posix:
+ if (NEXTCHR_IS_EOS) {
+ sayNO;
+ }
+
+ /* Use _generic_isCC() for characters within Latin1. (Note that
+ * UTF8_IS_INVARIANT works even on non-UTF-8 strings, or else
+ * wouldn't be invariant) */
+ if (UTF8_IS_INVARIANT(nextchr) || ! utf8_target) {
+ if (! (to_complement ^ cBOOL(_generic_isCC(nextchr,
+ FLAGS(scan)))))
+ {
+ sayNO;
+ }
+ locinput++;
+ }
+ else if (UTF8_IS_DOWNGRADEABLE_START(nextchr)) {
+ if (! (to_complement
+ ^ cBOOL(_generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(nextchr,
+ *(locinput + 1)),
+ FLAGS(scan)))))
+ {
+ sayNO;
+ }
+ locinput += 2;
+ }
+ else { /* Handle above Latin-1 code points */
+ utf8_posix_above_latin1:
+ classnum = (_char_class_number) FLAGS(scan);
+ if (classnum < _FIRST_NON_SWASH_CC) {
+
+ /* Here, uses a swash to find such code points. Load if if
+ * not done already */
+ if (! PL_utf8_swash_ptrs[classnum]) {
+ U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+ PL_utf8_swash_ptrs[classnum]
+ = _core_swash_init("utf8",
+ "",
+ &PL_sv_undef, 1, 0,
+ PL_XPosix_ptrs[classnum], &flags);
+ }
+ if (! (to_complement
+ ^ cBOOL(swash_fetch(PL_utf8_swash_ptrs[classnum],
+ (U8 *) locinput, TRUE))))
+ {
+ sayNO;
+ }
+ }
+ else { /* Here, uses macros to find above Latin-1 code points */
+ switch (classnum) {
+ case _CC_ENUM_SPACE:
+ if (! (to_complement
+ ^ cBOOL(is_XPERLSPACE_high(locinput))))
+ {
+ sayNO;
+ }
+ break;
+ case _CC_ENUM_BLANK:
+ if (! (to_complement
+ ^ cBOOL(is_HORIZWS_high(locinput))))
+ {
+ sayNO;
+ }
+ break;
+ case _CC_ENUM_XDIGIT:
+ if (! (to_complement
+ ^ cBOOL(is_XDIGIT_high(locinput))))
+ {
+ sayNO;
+ }
+ break;
+ case _CC_ENUM_VERTSPACE:
+ if (! (to_complement
+ ^ cBOOL(is_VERTWS_high(locinput))))
+ {
+ sayNO;
+ }
+ break;
+ default: /* The rest, e.g. [:cntrl:], can't match
+ above Latin1 */
+ if (! to_complement) {
+ sayNO;
+ }
+ break;
+ }
+ }
+ locinput += UTF8SKIP(locinput);
+ }
+ break;
+
+ case CLUMP: /* Match \X: logical Unicode character. This is defined as
+ a Unicode extended Grapheme Cluster */
+ if (NEXTCHR_IS_EOS)
+ sayNO;
+ if (! utf8_target) {
+
+ /* Match either CR LF or '.', as all the other possibilities
+ * require utf8 */
+ locinput++; /* Match the . or CR */
+ if (nextchr == '\r' /* And if it was CR, and the next is LF,
+ match the LF */
+ && locinput < reginfo->strend
+ && UCHARAT(locinput) == '\n')
+ {
+ locinput++;
+ }
+ }
+ else {
+
+ /* Get the gcb type for the current character */
+ GCB_enum prev_gcb = getGCB_VAL_UTF8((U8*) locinput,
+ (U8*) reginfo->strend);
+
+ /* Then scan through the input until we get to the first
+ * character whose type is supposed to be a gcb with the
+ * current character. (There is always a break at the
+ * end-of-input) */
+ locinput += UTF8SKIP(locinput);
+ while (locinput < reginfo->strend) {
+ GCB_enum cur_gcb = getGCB_VAL_UTF8((U8*) locinput,
+ (U8*) reginfo->strend);
+ if (isGCB(prev_gcb, cur_gcb)) {
+ break;
+ }
+
+ prev_gcb = cur_gcb;
+ locinput += UTF8SKIP(locinput);
+ }
+
+
+ }
+ break;
+
+ case NREFFL: /* /\g{name}/il */
+ { /* The capture buffer cases. The ones beginning with N for the
+ named buffers just convert to the equivalent numbered and
+ pretend they were called as the corresponding numbered buffer
+ op. */
+ /* don't initialize these in the declaration, it makes C++
+ unhappy */
+ const char *s;
+ char type;
+ re_fold_t folder;
+ const U8 *fold_array;
+ UV utf8_fold_flags;
+
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ folder = foldEQ_locale;
+ fold_array = PL_fold_locale;
+ type = REFFL;
+ utf8_fold_flags = FOLDEQ_LOCALE;
+ goto do_nref;
+
+ case NREFFA: /* /\g{name}/iaa */
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ type = REFFA;
+ utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_nref;
+
+ case NREFFU: /* /\g{name}/iu */
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ type = REFFU;
+ utf8_fold_flags = 0;
+ goto do_nref;
+
+ case NREFF: /* /\g{name}/i */
+ folder = foldEQ;
+ fold_array = PL_fold;
+ type = REFF;
+ utf8_fold_flags = 0;
+ goto do_nref;
+
+ case NREF: /* /\g{name}/ */
+ type = REF;
+ folder = NULL;
+ fold_array = NULL;
+ utf8_fold_flags = 0;
+ do_nref:
+
+ /* For the named back references, find the corresponding buffer
+ * number */
+ n = reg_check_named_buff_matched(rex,scan);
+
+ if ( ! n ) {
+ sayNO;
+ }
+ goto do_nref_ref_common;
+
+ case REFFL: /* /\1/il */
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ folder = foldEQ_locale;
+ fold_array = PL_fold_locale;
+ utf8_fold_flags = FOLDEQ_LOCALE;
+ goto do_ref;
+
+ case REFFA: /* /\1/iaa */
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_ref;
+
+ case REFFU: /* /\1/iu */
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ utf8_fold_flags = 0;
+ goto do_ref;
+
+ case REFF: /* /\1/i */
+ folder = foldEQ;
+ fold_array = PL_fold;
+ utf8_fold_flags = 0;
+ goto do_ref;
+
+ case REF: /* /\1/ */
+ folder = NULL;
+ fold_array = NULL;
+ utf8_fold_flags = 0;
+
+ do_ref:
+ type = OP(scan);
+ n = ARG(scan); /* which paren pair */
+
+ do_nref_ref_common:
+ ln = rex->offs[n].start;
+ reginfo->poscache_iter = reginfo->poscache_maxiter; /* Void cache */
+ if (rex->lastparen < n || ln == -1)
+ sayNO; /* Do not match unless seen CLOSEn. */
+ if (ln == rex->offs[n].end)
+ break;
+
+ s = reginfo->strbeg + ln;
+ if (type != REF /* REF can do byte comparison */
+ && (utf8_target || type == REFFU || type == REFFL))
+ {
+ char * limit = reginfo->strend;
+
+ /* This call case insensitively compares the entire buffer
+ * at s, with the current input starting at locinput, but
+ * not going off the end given by reginfo->strend, and
+ * returns in <limit> upon success, how much of the
+ * current input was matched */
+ if (! foldEQ_utf8_flags(s, NULL, rex->offs[n].end - ln, utf8_target,
+ locinput, &limit, 0, utf8_target, utf8_fold_flags))
+ {
+ sayNO;
+ }
+ locinput = limit;
+ break;
+ }
+
+ /* Not utf8: Inline the first character, for speed. */
+ if (!NEXTCHR_IS_EOS &&
+ UCHARAT(s) != nextchr &&
+ (type == REF ||
+ UCHARAT(s) != fold_array[nextchr]))
+ sayNO;
+ ln = rex->offs[n].end - ln;
+ if (locinput + ln > reginfo->strend)
+ sayNO;
+ if (ln > 1 && (type == REF
+ ? memNE(s, locinput, ln)
+ : ! folder(s, locinput, ln)))
+ sayNO;
+ locinput += ln;
+ break;
+ }
+
+ case NOTHING: /* null op; e.g. the 'nothing' following
+ * the '*' in m{(a+|b)*}' */
+ break;
+ case TAIL: /* placeholder while compiling (A|B|C) */
+ break;
+
+#undef ST
+#define ST st->u.eval
+ {
+ SV *ret;
+ REGEXP *re_sv;
+ regexp *re;
+ regexp_internal *rei;
+ regnode *startpoint;
+
+ case GOSTART: /* (?R) */
+ case GOSUB: /* /(...(?1))/ /(...(?&foo))/ */
+ if (cur_eval && cur_eval->locinput==locinput) {
+ if (cur_eval->u.eval.close_paren == (U32)ARG(scan))
+ Perl_croak(aTHX_ "Infinite recursion in regex");
+ if ( ++nochange_depth > max_nochange_depth )
+ Perl_croak(aTHX_
+ "Pattern subroutine nesting without pos change"
+ " exceeded limit in regex");
+ } else {
+ nochange_depth = 0;
+ }
+ re_sv = rex_sv;
+ re = rex;
+ rei = rexi;
+ if (OP(scan)==GOSUB) {
+ startpoint = scan + ARG2L(scan);
+ ST.close_paren = ARG(scan);
+ } else {
+ startpoint = rei->program+1;
+ ST.close_paren = 0;
+ }
+
+ /* Save all the positions seen so far. */
+ ST.cp = regcppush(rex, 0, maxopenparen);
+ REGCP_SET(ST.lastcp);
+
+ /* and then jump to the code we share with EVAL */
+ goto eval_recurse_doit;
+ /* NOTREACHED */
+
+ case EVAL: /* /(?{A})B/ /(??{A})B/ and /(?(?{A})X|Y)B/ */
+ if (cur_eval && cur_eval->locinput==locinput) {
+ if ( ++nochange_depth > max_nochange_depth )
+ Perl_croak(aTHX_ "EVAL without pos change exceeded limit in regex");
+ } else {
+ nochange_depth = 0;
+ }
+ {
+ /* execute the code in the {...} */
+
+ dSP;
+ IV before;
+ OP * const oop = PL_op;
+ COP * const ocurcop = PL_curcop;
+ OP *nop;
+ CV *newcv;
+
+ /* save *all* paren positions */
+ regcppush(rex, 0, maxopenparen);
+ REGCP_SET(runops_cp);
+
+ if (!caller_cv)
+ caller_cv = find_runcv(NULL);
+
+ n = ARG(scan);
+
+ if (rexi->data->what[n] == 'r') { /* code from an external qr */
+ newcv = (ReANY(
+ (REGEXP*)(rexi->data->data[n])
+ ))->qr_anoncv
+ ;
+ nop = (OP*)rexi->data->data[n+1];
+ }
+ else if (rexi->data->what[n] == 'l') { /* literal code */
+ newcv = caller_cv;
+ nop = (OP*)rexi->data->data[n];
+ assert(CvDEPTH(newcv));
+ }
+ else {
+ /* literal with own CV */
+ assert(rexi->data->what[n] == 'L');
+ newcv = rex->qr_anoncv;
+ nop = (OP*)rexi->data->data[n];
+ }
+
+ /* normally if we're about to execute code from the same
+ * CV that we used previously, we just use the existing
+ * CX stack entry. However, its possible that in the
+ * meantime we may have backtracked, popped from the save
+ * stack, and undone the SAVECOMPPAD(s) associated with
+ * PUSH_MULTICALL; in which case PL_comppad no longer
+ * points to newcv's pad. */
+ if (newcv != last_pushed_cv || PL_comppad != last_pad)
+ {
+ U8 flags = (CXp_SUB_RE |
+ ((newcv == caller_cv) ? CXp_SUB_RE_FAKE : 0));
+ if (last_pushed_cv) {
+ CHANGE_MULTICALL_FLAGS(newcv, flags);
+ }
+ else {
+ PUSH_MULTICALL_FLAGS(newcv, flags);
+ }
+ last_pushed_cv = newcv;
+ }
+ else {
+ /* these assignments are just to silence compiler
+ * warnings */
+ multicall_cop = NULL;
+ newsp = NULL;
+ }
+ last_pad = PL_comppad;
+
+ /* the initial nextstate you would normally execute
+ * at the start of an eval (which would cause error
+ * messages to come from the eval), may be optimised
+ * away from the execution path in the regex code blocks;
+ * so manually set PL_curcop to it initially */
+ {
+ OP *o = cUNOPx(nop)->op_first;
+ assert(o->op_type == OP_NULL);
+ if (o->op_targ == OP_SCOPE) {
+ o = cUNOPo->op_first;
+ }
+ else {
+ assert(o->op_targ == OP_LEAVE);
+ o = cUNOPo->op_first;
+ assert(o->op_type == OP_ENTER);
+ o = OpSIBLING(o);
+ }
+
+ if (o->op_type != OP_STUB) {
+ assert( o->op_type == OP_NEXTSTATE
+ || o->op_type == OP_DBSTATE
+ || (o->op_type == OP_NULL
+ && ( o->op_targ == OP_NEXTSTATE
+ || o->op_targ == OP_DBSTATE
+ )
+ )
+ );
+ PL_curcop = (COP*)o;
+ }
+ }
+ nop = nop->op_next;
+
+ DEBUG_STATE_r( PerlIO_printf(Perl_debug_log,
+ " re EVAL PL_op=0x%"UVxf"\n", PTR2UV(nop)) );
+
+ rex->offs[0].end = locinput - reginfo->strbeg;
+ if (reginfo->info_aux_eval->pos_magic)
+ MgBYTEPOS_set(reginfo->info_aux_eval->pos_magic,
+ reginfo->sv, reginfo->strbeg,
+ locinput - reginfo->strbeg);
+
+ if (sv_yes_mark) {
+ SV *sv_mrk = get_sv("REGMARK", 1);
+ sv_setsv(sv_mrk, sv_yes_mark);
+ }
+
+ /* we don't use MULTICALL here as we want to call the
+ * first op of the block of interest, rather than the
+ * first op of the sub */
+ before = (IV)(SP-PL_stack_base);
+ PL_op = nop;
+ CALLRUNOPS(aTHX); /* Scalar context. */
+ SPAGAIN;
+ if ((IV)(SP-PL_stack_base) == before)
+ ret = &PL_sv_undef; /* protect against empty (?{}) blocks. */
+ else {
+ ret = POPs;
+ PUTBACK;
+ }
+
+ /* before restoring everything, evaluate the returned
+ * value, so that 'uninit' warnings don't use the wrong
+ * PL_op or pad. Also need to process any magic vars
+ * (e.g. $1) *before* parentheses are restored */
+
+ PL_op = NULL;
+
+ re_sv = NULL;
+ if (logical == 0) /* (?{})/ */
+ sv_setsv(save_scalar(PL_replgv), ret); /* $^R */
+ else if (logical == 1) { /* /(?(?{...})X|Y)/ */
+ sw = cBOOL(SvTRUE(ret));
+ logical = 0;
+ }
+ else { /* /(??{}) */
+ /* if its overloaded, let the regex compiler handle
+ * it; otherwise extract regex, or stringify */
+ if (SvGMAGICAL(ret))
+ ret = sv_mortalcopy(ret);
+ if (!SvAMAGIC(ret)) {
+ SV *sv = ret;
+ if (SvROK(sv))
+ sv = SvRV(sv);
+ if (SvTYPE(sv) == SVt_REGEXP)
+ re_sv = (REGEXP*) sv;
+ else if (SvSMAGICAL(ret)) {
+ MAGIC *mg = mg_find(ret, PERL_MAGIC_qr);
+ if (mg)
+ re_sv = (REGEXP *) mg->mg_obj;
+ }
+
+ /* force any undef warnings here */
+ if (!re_sv && !SvPOK(ret) && !SvNIOK(ret)) {
+ ret = sv_mortalcopy(ret);
+ (void) SvPV_force_nolen(ret);
+ }
+ }
+
+ }
+
+ /* *** Note that at this point we don't restore
+ * PL_comppad, (or pop the CxSUB) on the assumption it may
+ * be used again soon. This is safe as long as nothing
+ * in the regexp code uses the pad ! */
+ PL_op = oop;
+ PL_curcop = ocurcop;
+ S_regcp_restore(aTHX_ rex, runops_cp, &maxopenparen);
+ PL_curpm = PL_reg_curpm;
+
+ if (logical != 2)
+ break;
+ }
+
+ /* only /(??{})/ from now on */
+ logical = 0;
+ {
+ /* extract RE object from returned value; compiling if
+ * necessary */
+
+ if (re_sv) {
+ re_sv = reg_temp_copy(NULL, re_sv);
+ }
+ else {
+ U32 pm_flags = 0;
+
+ if (SvUTF8(ret) && IN_BYTES) {
+ /* In use 'bytes': make a copy of the octet
+ * sequence, but without the flag on */
+ STRLEN len;
+ const char *const p = SvPV(ret, len);
+ ret = newSVpvn_flags(p, len, SVs_TEMP);
+ }
+ if (rex->intflags & PREGf_USE_RE_EVAL)
+ pm_flags |= PMf_USE_RE_EVAL;
+
+ /* if we got here, it should be an engine which
+ * supports compiling code blocks and stuff */
+ assert(rex->engine && rex->engine->op_comp);
+ assert(!(scan->flags & ~RXf_PMf_COMPILETIME));
+ re_sv = rex->engine->op_comp(aTHX_ &ret, 1, NULL,
+ rex->engine, NULL, NULL,
+ /* copy /msixn etc to inner pattern */
+ ARG2L(scan),
+ pm_flags);
+
+ if (!(SvFLAGS(ret)
+ & (SVs_TEMP | SVs_GMG | SVf_ROK))
+ && (!SvPADTMP(ret) || SvREADONLY(ret))) {
+ /* This isn't a first class regexp. Instead, it's
+ caching a regexp onto an existing, Perl visible
+ scalar. */
+ sv_magic(ret, MUTABLE_SV(re_sv), PERL_MAGIC_qr, 0, 0);
+ }
+ }
+ SAVEFREESV(re_sv);
+ re = ReANY(re_sv);
+ }
+ RXp_MATCH_COPIED_off(re);
+ re->subbeg = rex->subbeg;
+ re->sublen = rex->sublen;
+ re->suboffset = rex->suboffset;
+ re->subcoffset = rex->subcoffset;
+ re->lastparen = 0;
+ re->lastcloseparen = 0;
+ rei = RXi_GET(re);
+ DEBUG_EXECUTE_r(
+ debug_start_match(re_sv, utf8_target, locinput,
+ reginfo->strend, "Matching embedded");
+ );
+ startpoint = rei->program + 1;
+ ST.close_paren = 0; /* only used for GOSUB */
+ /* Save all the seen positions so far. */
+ ST.cp = regcppush(rex, 0, maxopenparen);
+ REGCP_SET(ST.lastcp);
+ /* and set maxopenparen to 0, since we are starting a "fresh" match */
+ maxopenparen = 0;
+ /* run the pattern returned from (??{...}) */
+
+ eval_recurse_doit: /* Share code with GOSUB below this line
+ * At this point we expect the stack context to be
+ * set up correctly */
+
+ /* invalidate the S-L poscache. We're now executing a
+ * different set of WHILEM ops (and their associated
+ * indexes) against the same string, so the bits in the
+ * cache are meaningless. Setting maxiter to zero forces
+ * the cache to be invalidated and zeroed before reuse.
+ * XXX This is too dramatic a measure. Ideally we should
+ * save the old cache and restore when running the outer
+ * pattern again */
+ reginfo->poscache_maxiter = 0;
+
+ /* the new regexp might have a different is_utf8_pat than we do */
+ is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(re_sv));
+
+ ST.prev_rex = rex_sv;
+ ST.prev_curlyx = cur_curlyx;
+ rex_sv = re_sv;
+ SET_reg_curpm(rex_sv);
+ rex = re;
+ rexi = rei;
+ cur_curlyx = NULL;
+ ST.B = next;
+ ST.prev_eval = cur_eval;
+ cur_eval = st;
+ /* now continue from first node in postoned RE */
+ PUSH_YES_STATE_GOTO(EVAL_AB, startpoint, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+
+ case EVAL_AB: /* cleanup after a successful (??{A})B */
+ /* note: this is called twice; first after popping B, then A */
+ rex_sv = ST.prev_rex;
+ is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
+ SET_reg_curpm(rex_sv);
+ rex = ReANY(rex_sv);
+ rexi = RXi_GET(rex);
+ {
+ /* preserve $^R across LEAVE's. See Bug 121070. */
+ SV *save_sv= GvSV(PL_replgv);
+ SvREFCNT_inc(save_sv);
+ regcpblow(ST.cp); /* LEAVE in disguise */
+ sv_setsv(GvSV(PL_replgv), save_sv);
+ SvREFCNT_dec(save_sv);
+ }
+ cur_eval = ST.prev_eval;
+ cur_curlyx = ST.prev_curlyx;
+
+ /* Invalidate cache. See "invalidate" comment above. */
+ reginfo->poscache_maxiter = 0;
+ if ( nochange_depth )
+ nochange_depth--;
+ sayYES;
+
+
+ case EVAL_AB_fail: /* unsuccessfully ran A or B in (??{A})B */
+ /* note: this is called twice; first after popping B, then A */
+ rex_sv = ST.prev_rex;
+ is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
+ SET_reg_curpm(rex_sv);
+ rex = ReANY(rex_sv);
+ rexi = RXi_GET(rex);
+
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex, &maxopenparen);
+ cur_eval = ST.prev_eval;
+ cur_curlyx = ST.prev_curlyx;
+ /* Invalidate cache. See "invalidate" comment above. */
+ reginfo->poscache_maxiter = 0;
+ if ( nochange_depth )
+ nochange_depth--;
+ sayNO_SILENT;
+#undef ST
+
+ case OPEN: /* ( */
+ n = ARG(scan); /* which paren pair */
+ rex->offs[n].start_tmp = locinput - reginfo->strbeg;
+ if (n > maxopenparen)
+ maxopenparen = n;
+ DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+ "rex=0x%"UVxf" offs=0x%"UVxf": \\%"UVuf": set %"IVdf" tmp; maxopenparen=%"UVuf"\n",
+ PTR2UV(rex),
+ PTR2UV(rex->offs),
+ (UV)n,
+ (IV)rex->offs[n].start_tmp,
+ (UV)maxopenparen
+ ));
+ lastopen = n;
+ break;
+
+/* XXX really need to log other places start/end are set too */
+#define CLOSE_CAPTURE \
+ rex->offs[n].start = rex->offs[n].start_tmp; \
+ rex->offs[n].end = locinput - reginfo->strbeg; \
+ DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log, \
+ "rex=0x%"UVxf" offs=0x%"UVxf": \\%"UVuf": set %"IVdf"..%"IVdf"\n", \
+ PTR2UV(rex), \
+ PTR2UV(rex->offs), \
+ (UV)n, \
+ (IV)rex->offs[n].start, \
+ (IV)rex->offs[n].end \
+ ))
+
+ case CLOSE: /* ) */
+ n = ARG(scan); /* which paren pair */
+ CLOSE_CAPTURE;
+ if (n > rex->lastparen)
+ rex->lastparen = n;
+ rex->lastcloseparen = n;
+ if (cur_eval && cur_eval->u.eval.close_paren == n) {
+ goto fake_end;
+ }
+ break;
+
+ case ACCEPT: /* (*ACCEPT) */
+ if (ARG(scan)){
+ regnode *cursor;
+ for (cursor=scan;
+ cursor && OP(cursor)!=END;
+ cursor=regnext(cursor))
+ {
+ if ( OP(cursor)==CLOSE ){
+ n = ARG(cursor);
+ if ( n <= lastopen ) {
+ CLOSE_CAPTURE;
+ if (n > rex->lastparen)
+ rex->lastparen = n;
+ rex->lastcloseparen = n;
+ if ( n == ARG(scan) || (cur_eval &&
+ cur_eval->u.eval.close_paren == n))
+ break;
+ }
+ }
+ }
+ }
+ goto fake_end;
+ /* NOTREACHED */
+
+ case GROUPP: /* (?(1)) */
+ n = ARG(scan); /* which paren pair */
+ sw = cBOOL(rex->lastparen >= n && rex->offs[n].end != -1);
+ break;
+
+ case NGROUPP: /* (?(<name>)) */
+ /* reg_check_named_buff_matched returns 0 for no match */
+ sw = cBOOL(0 < reg_check_named_buff_matched(rex,scan));
+ break;
+
+ case INSUBP: /* (?(R)) */
+ n = ARG(scan);
+ sw = (cur_eval && (!n || cur_eval->u.eval.close_paren == n));
+ break;
+
+ case DEFINEP: /* (?(DEFINE)) */
+ sw = 0;
+ break;
+
+ case IFTHEN: /* (?(cond)A|B) */
+ reginfo->poscache_iter = reginfo->poscache_maxiter; /* Void cache */
+ if (sw)
+ next = NEXTOPER(NEXTOPER(scan));
+ else {
+ next = scan + ARG(scan);
+ if (OP(next) == IFTHEN) /* Fake one. */
+ next = NEXTOPER(NEXTOPER(next));
+ }
+ break;
+
+ case LOGICAL: /* modifier for EVAL and IFMATCH */
+ logical = scan->flags;
+ break;
+
+/*******************************************************************
+
+The CURLYX/WHILEM pair of ops handle the most generic case of the /A*B/
+pattern, where A and B are subpatterns. (For simple A, CURLYM or
+STAR/PLUS/CURLY/CURLYN are used instead.)
+
+A*B is compiled as <CURLYX><A><WHILEM><B>
+
+On entry to the subpattern, CURLYX is called. This pushes a CURLYX
+state, which contains the current count, initialised to -1. It also sets
+cur_curlyx to point to this state, with any previous value saved in the
+state block.
+
+CURLYX then jumps straight to the WHILEM op, rather than executing A,
+since the pattern may possibly match zero times (i.e. it's a while {} loop
+rather than a do {} while loop).
+
+Each entry to WHILEM represents a successful match of A. The count in the
+CURLYX block is incremented, another WHILEM state is pushed, and execution
+passes to A or B depending on greediness and the current count.
+
+For example, if matching against the string a1a2a3b (where the aN are
+substrings that match /A/), then the match progresses as follows: (the
+pushed states are interspersed with the bits of strings matched so far):
+
+ <CURLYX cnt=-1>
+ <CURLYX cnt=0><WHILEM>
+ <CURLYX cnt=1><WHILEM> a1 <WHILEM>
+ <CURLYX cnt=2><WHILEM> a1 <WHILEM> a2 <WHILEM>
+ <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM>
+ <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM> b
+
+(Contrast this with something like CURLYM, which maintains only a single
+backtrack state:
+
+ <CURLYM cnt=0> a1
+ a1 <CURLYM cnt=1> a2
+ a1 a2 <CURLYM cnt=2> a3
+ a1 a2 a3 <CURLYM cnt=3> b
+)
+
+Each WHILEM state block marks a point to backtrack to upon partial failure
+of A or B, and also contains some minor state data related to that
+iteration. The CURLYX block, pointed to by cur_curlyx, contains the
+overall state, such as the count, and pointers to the A and B ops.
+
+This is complicated slightly by nested CURLYX/WHILEM's. Since cur_curlyx
+must always point to the *current* CURLYX block, the rules are:
+
+When executing CURLYX, save the old cur_curlyx in the CURLYX state block,
+and set cur_curlyx to point the new block.
+
+When popping the CURLYX block after a successful or unsuccessful match,
+restore the previous cur_curlyx.
+
+When WHILEM is about to execute B, save the current cur_curlyx, and set it
+to the outer one saved in the CURLYX block.
+
+When popping the WHILEM block after a successful or unsuccessful B match,
+restore the previous cur_curlyx.
+
+Here's an example for the pattern (AI* BI)*BO
+I and O refer to inner and outer, C and W refer to CURLYX and WHILEM:
+
+cur_
+curlyx backtrack stack
+------ ---------------
+NULL
+CO <CO prev=NULL> <WO>
+CI <CO prev=NULL> <WO> <CI prev=CO> <WI> ai
+CO <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi
+NULL <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi <WO prev=CO> bo
+
+At this point the pattern succeeds, and we work back down the stack to
+clean up, restoring as we go:
+
+CO <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi
+CI <CO prev=NULL> <WO> <CI prev=CO> <WI> ai
+CO <CO prev=NULL> <WO>
+NULL
+
+*******************************************************************/
+
+#define ST st->u.curlyx
+
+ case CURLYX: /* start of /A*B/ (for complex A) */
+ {
+ /* No need to save/restore up to this paren */
+ I32 parenfloor = scan->flags;
+
+ assert(next); /* keep Coverity happy */
+ if (OP(PREVOPER(next)) == NOTHING) /* LONGJMP */
+ next += ARG(next);
+
+ /* XXXX Probably it is better to teach regpush to support
+ parenfloor > maxopenparen ... */
+ if (parenfloor > (I32)rex->lastparen)
+ parenfloor = rex->lastparen; /* Pessimization... */
+
+ ST.prev_curlyx= cur_curlyx;
+ cur_curlyx = st;
+ ST.cp = PL_savestack_ix;
+
+ /* these fields contain the state of the current curly.
+ * they are accessed by subsequent WHILEMs */
+ ST.parenfloor = parenfloor;
+ ST.me = scan;
+ ST.B = next;
+ ST.minmod = minmod;
+ minmod = 0;
+ ST.count = -1; /* this will be updated by WHILEM */
+ ST.lastloc = NULL; /* this will be updated by WHILEM */
+
+ PUSH_YES_STATE_GOTO(CURLYX_end, PREVOPER(next), locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+
+ case CURLYX_end: /* just finished matching all of A*B */
+ cur_curlyx = ST.prev_curlyx;
+ sayYES;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CURLYX_end_fail: /* just failed to match all of A*B */
+ regcpblow(ST.cp);
+ cur_curlyx = ST.prev_curlyx;
+ sayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+
+#undef ST
+#define ST st->u.whilem
+
+ case WHILEM: /* just matched an A in /A*B/ (for complex A) */
+ {
+ /* see the discussion above about CURLYX/WHILEM */
+ I32 n;
+ int min, max;
+ regnode *A;
+
+ assert(cur_curlyx); /* keep Coverity happy */
+
+ min = ARG1(cur_curlyx->u.curlyx.me);
+ max = ARG2(cur_curlyx->u.curlyx.me);
+ A = NEXTOPER(cur_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS;
+ n = ++cur_curlyx->u.curlyx.count; /* how many A's matched */
+ ST.save_lastloc = cur_curlyx->u.curlyx.lastloc;
+ ST.cache_offset = 0;
+ ST.cache_mask = 0;
+
+
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%*s whilem: matched %ld out of %d..%d\n",
+ REPORT_CODE_OFF+depth*2, "", (long)n, min, max)
+ );
+
+ /* First just match a string of min A's. */
+
+ if (n < min) {
+ ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
+ maxopenparen);
+ cur_curlyx->u.curlyx.lastloc = locinput;
+ REGCP_SET(ST.lastcp);
+
+ PUSH_STATE_GOTO(WHILEM_A_pre, A, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+
+ /* If degenerate A matches "", assume A done. */
+
+ if (locinput == cur_curlyx->u.curlyx.lastloc) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%*s whilem: empty match detected, trying continuation...\n",
+ REPORT_CODE_OFF+depth*2, "")
+ );
+ goto do_whilem_B_max;
+ }
+
+ /* super-linear cache processing.
+ *
+ * The idea here is that for certain types of CURLYX/WHILEM -
+ * principally those whose upper bound is infinity (and
+ * excluding regexes that have things like \1 and other very
+ * non-regular expresssiony things), then if a pattern like
+ * /....A*.../ fails and we backtrack to the WHILEM, then we
+ * make a note that this particular WHILEM op was at string
+ * position 47 (say) when the rest of pattern failed. Then, if
+ * we ever find ourselves back at that WHILEM, and at string
+ * position 47 again, we can just fail immediately rather than
+ * running the rest of the pattern again.
+ *
+ * This is very handy when patterns start to go
+ * 'super-linear', like in (a+)*(a+)*(a+)*, where you end up
+ * with a combinatorial explosion of backtracking.
+ *
+ * The cache is implemented as a bit array, with one bit per
+ * string byte position per WHILEM op (up to 16) - so its
+ * between 0.25 and 2x the string size.
+ *
+ * To avoid allocating a poscache buffer every time, we do an
+ * initially countdown; only after we have executed a WHILEM
+ * op (string-length x #WHILEMs) times do we allocate the
+ * cache.
+ *
+ * The top 4 bits of scan->flags byte say how many different
+ * relevant CURLLYX/WHILEM op pairs there are, while the
+ * bottom 4-bits is the identifying index number of this
+ * WHILEM.
+ */
+
+ if (scan->flags) {
+
+ if (!reginfo->poscache_maxiter) {
+ /* start the countdown: Postpone detection until we
+ * know the match is not *that* much linear. */
+ reginfo->poscache_maxiter
+ = (reginfo->strend - reginfo->strbeg + 1)
+ * (scan->flags>>4);
+ /* possible overflow for long strings and many CURLYX's */
+ if (reginfo->poscache_maxiter < 0)
+ reginfo->poscache_maxiter = I32_MAX;
+ reginfo->poscache_iter = reginfo->poscache_maxiter;
+ }
+
+ if (reginfo->poscache_iter-- == 0) {
+ /* initialise cache */
+ const SSize_t size = (reginfo->poscache_maxiter + 7)/8;
+ regmatch_info_aux *const aux = reginfo->info_aux;
+ if (aux->poscache) {
+ if ((SSize_t)reginfo->poscache_size < size) {
+ Renew(aux->poscache, size, char);
+ reginfo->poscache_size = size;
+ }
+ Zero(aux->poscache, size, char);
+ }
+ else {
+ reginfo->poscache_size = size;
+ Newxz(aux->poscache, size, char);
+ }
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%swhilem: Detected a super-linear match, switching on caching%s...\n",
+ PL_colors[4], PL_colors[5])
+ );
+ }
+
+ if (reginfo->poscache_iter < 0) {
+ /* have we already failed at this position? */
+ SSize_t offset, mask;
+
+ reginfo->poscache_iter = -1; /* stop eventual underflow */
+ offset = (scan->flags & 0xf) - 1
+ + (locinput - reginfo->strbeg)
+ * (scan->flags>>4);
+ mask = 1 << (offset % 8);
+ offset /= 8;
+ if (reginfo->info_aux->poscache[offset] & mask) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%*s whilem: (cache) already tried at this position...\n",
+ REPORT_CODE_OFF+depth*2, "")
+ );
+ sayNO; /* cache records failure */
+ }
+ ST.cache_offset = offset;
+ ST.cache_mask = mask;
+ }
+ }
+
+ /* Prefer B over A for minimal matching. */
+
+ if (cur_curlyx->u.curlyx.minmod) {
+ ST.save_curlyx = cur_curlyx;
+ cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
+ ST.cp = regcppush(rex, ST.save_curlyx->u.curlyx.parenfloor,
+ maxopenparen);
+ REGCP_SET(ST.lastcp);
+ PUSH_YES_STATE_GOTO(WHILEM_B_min, ST.save_curlyx->u.curlyx.B,
+ locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+
+ /* Prefer A over B for maximal matching. */
+
+ if (n < max) { /* More greed allowed? */
+ ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
+ maxopenparen);
+ cur_curlyx->u.curlyx.lastloc = locinput;
+ REGCP_SET(ST.lastcp);
+ PUSH_STATE_GOTO(WHILEM_A_max, A, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+ goto do_whilem_B_max;
+ }
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case WHILEM_B_min: /* just matched B in a minimal match */
+ case WHILEM_B_max: /* just matched B in a maximal match */
+ cur_curlyx = ST.save_curlyx;
+ sayYES;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case WHILEM_B_max_fail: /* just failed to match B in a maximal match */
+ cur_curlyx = ST.save_curlyx;
+ cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
+ cur_curlyx->u.curlyx.count--;
+ CACHEsayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case WHILEM_A_min_fail: /* just failed to match A in a minimal match */
+ /* FALLTHROUGH */
+ case WHILEM_A_pre_fail: /* just failed to match even minimal A */
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex, &maxopenparen);
+ cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
+ cur_curlyx->u.curlyx.count--;
+ CACHEsayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case WHILEM_A_max_fail: /* just failed to match A in a maximal match */
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex, &maxopenparen); /* Restore some previous $<digit>s? */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%*s whilem: failed, trying continuation...\n",
+ REPORT_CODE_OFF+depth*2, "")
+ );
+ do_whilem_B_max:
+ if (cur_curlyx->u.curlyx.count >= REG_INFTY
+ && ckWARN(WARN_REGEXP)
+ && !reginfo->warned)
+ {
+ reginfo->warned = TRUE;
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP),
+ "Complex regular subexpression recursion limit (%d) "
+ "exceeded",
+ REG_INFTY - 1);
+ }
+
+ /* now try B */
+ ST.save_curlyx = cur_curlyx;
+ cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
+ PUSH_YES_STATE_GOTO(WHILEM_B_max, ST.save_curlyx->u.curlyx.B,
+ locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case WHILEM_B_min_fail: /* just failed to match B in a minimal match */
+ cur_curlyx = ST.save_curlyx;
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex, &maxopenparen);
+
+ if (cur_curlyx->u.curlyx.count >= /*max*/ARG2(cur_curlyx->u.curlyx.me)) {
+ /* Maximum greed exceeded */
+ if (cur_curlyx->u.curlyx.count >= REG_INFTY
+ && ckWARN(WARN_REGEXP)
+ && !reginfo->warned)
+ {
+ reginfo->warned = TRUE;
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP),
+ "Complex regular subexpression recursion "
+ "limit (%d) exceeded",
+ REG_INFTY - 1);
+ }
+ cur_curlyx->u.curlyx.count--;
+ CACHEsayNO;
+ }
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%*s trying longer...\n", REPORT_CODE_OFF+depth*2, "")
+ );
+ /* Try grabbing another A and see if it helps. */
+ cur_curlyx->u.curlyx.lastloc = locinput;
+ ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
+ maxopenparen);
+ REGCP_SET(ST.lastcp);
+ PUSH_STATE_GOTO(WHILEM_A_min,
+ /*A*/ NEXTOPER(ST.save_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS,
+ locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+#undef ST
+#define ST st->u.branch
+
+ case BRANCHJ: /* /(...|A|...)/ with long next pointer */
+ next = scan + ARG(scan);
+ if (next == scan)
+ next = NULL;
+ scan = NEXTOPER(scan);
+ /* FALLTHROUGH */
+
+ case BRANCH: /* /(...|A|...)/ */
+ scan = NEXTOPER(scan); /* scan now points to inner node */
+ ST.lastparen = rex->lastparen;
+ ST.lastcloseparen = rex->lastcloseparen;
+ ST.next_branch = next;
+ REGCP_SET(ST.cp);
+
+ /* Now go into the branch */
+ if (has_cutgroup) {
+ PUSH_YES_STATE_GOTO(BRANCH_next, scan, locinput);
+ } else {
+ PUSH_STATE_GOTO(BRANCH_next, scan, locinput);
+ }
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CUTGROUP: /* /(*THEN)/ */
+ sv_yes_mark = st->u.mark.mark_name = scan->flags ? NULL :
+ MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ PUSH_STATE_GOTO(CUTGROUP_next, next, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CUTGROUP_next_fail:
+ do_cutgroup = 1;
+ no_final = 1;
+ if (st->u.mark.mark_name)
+ sv_commit = st->u.mark.mark_name;
+ sayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case BRANCH_next:
+ sayYES;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case BRANCH_next_fail: /* that branch failed; try the next, if any */
+ if (do_cutgroup) {
+ do_cutgroup = 0;
+ no_final = 0;
+ }
+ REGCP_UNWIND(ST.cp);
+ UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+ scan = ST.next_branch;
+ /* no more branches? */
+ if (!scan || (OP(scan) != BRANCH && OP(scan) != BRANCHJ)) {
+ DEBUG_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sBRANCH failed...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4],
+ PL_colors[5] );
+ });
+ sayNO_SILENT;
+ }
+ continue; /* execute next BRANCH[J] op */
+ /* NOTREACHED */
+
+ case MINMOD: /* next op will be non-greedy, e.g. A*? */
+ minmod = 1;
+ break;
+
+#undef ST
+#define ST st->u.curlym
+
+ case CURLYM: /* /A{m,n}B/ where A is fixed-length */
+
+ /* This is an optimisation of CURLYX that enables us to push
+ * only a single backtracking state, no matter how many matches
+ * there are in {m,n}. It relies on the pattern being constant
+ * length, with no parens to influence future backrefs
+ */
+
+ ST.me = scan;
+ scan = NEXTOPER(scan) + NODE_STEP_REGNODE;
+
+ ST.lastparen = rex->lastparen;
+ ST.lastcloseparen = rex->lastcloseparen;
+
+ /* if paren positive, emulate an OPEN/CLOSE around A */
+ if (ST.me->flags) {
+ U32 paren = ST.me->flags;
+ if (paren > maxopenparen)
+ maxopenparen = paren;
+ scan += NEXT_OFF(scan); /* Skip former OPEN. */
+ }
+ ST.A = scan;
+ ST.B = next;
+ ST.alen = 0;
+ ST.count = 0;
+ ST.minmod = minmod;
+ minmod = 0;
+ ST.c1 = CHRTEST_UNINIT;
+ REGCP_SET(ST.cp);
+
+ if (!(ST.minmod ? ARG1(ST.me) : ARG2(ST.me))) /* min/max */
+ goto curlym_do_B;
+
+ curlym_do_A: /* execute the A in /A{m,n}B/ */
+ PUSH_YES_STATE_GOTO(CURLYM_A, ST.A, locinput); /* match A */
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CURLYM_A: /* we've just matched an A */
+ ST.count++;
+ /* after first match, determine A's length: u.curlym.alen */
+ if (ST.count == 1) {
+ if (reginfo->is_utf8_target) {
+ char *s = st->locinput;
+ while (s < locinput) {
+ ST.alen++;
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ ST.alen = locinput - st->locinput;
+ }
+ if (ST.alen == 0)
+ ST.count = ST.minmod ? ARG1(ST.me) : ARG2(ST.me);
+ }
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM now matched %"IVdf" times, len=%"IVdf"...\n",
+ (int)(REPORT_CODE_OFF+(depth*2)), "",
+ (IV) ST.count, (IV)ST.alen)
+ );
+
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.me->flags)
+ goto fake_end;
+
+ {
+ I32 max = (ST.minmod ? ARG1(ST.me) : ARG2(ST.me));
+ if ( max == REG_INFTY || ST.count < max )
+ goto curlym_do_A; /* try to match another A */
+ }
+ goto curlym_do_B; /* try to match B */
+
+ case CURLYM_A_fail: /* just failed to match an A */
+ REGCP_UNWIND(ST.cp);
+
+ if (ST.minmod || ST.count < ARG1(ST.me) /* min*/
+ || (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.me->flags))
+ sayNO;
+
+ curlym_do_B: /* execute the B in /A{m,n}B/ */
+ if (ST.c1 == CHRTEST_UNINIT) {
+ /* calculate c1 and c2 for possible match of 1st char
+ * following curly */
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ assert(ST.B);
+ if (HAS_TEXT(ST.B) || JUMPABLE(ST.B)) {
+ regnode *text_node = ST.B;
+ if (! HAS_TEXT(text_node))
+ FIND_NEXT_IMPT(text_node);
+ /* this used to be
+
+ (HAS_TEXT(text_node) && PL_regkind[OP(text_node)] == EXACT)
+
+ But the former is redundant in light of the latter.
+
+ if this changes back then the macro for
+ IS_TEXT and friends need to change.
+ */
+ if (PL_regkind[OP(text_node)] == EXACT) {
+ if (! S_setup_EXACTISH_ST_c1_c2(aTHX_
+ text_node, &ST.c1, ST.c1_utf8, &ST.c2, ST.c2_utf8,
+ reginfo))
+ {
+ sayNO;
+ }
+ }
+ }
+ }
+
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM trying tail with matches=%"IVdf"...\n",
+ (int)(REPORT_CODE_OFF+(depth*2)),
+ "", (IV)ST.count)
+ );
+ if (! NEXTCHR_IS_EOS && ST.c1 != CHRTEST_VOID) {
+ if (! UTF8_IS_INVARIANT(nextchr) && utf8_target) {
+ if (memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput))
+ && memNE(locinput, ST.c2_utf8, UTF8SKIP(locinput)))
+ {
+ /* simulate B failing */
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM Fast bail next target=0x%"UVXf" c1=0x%"UVXf" c2=0x%"UVXf"\n",
+ (int)(REPORT_CODE_OFF+(depth*2)),"",
+ valid_utf8_to_uvchr((U8 *) locinput, NULL),
+ valid_utf8_to_uvchr(ST.c1_utf8, NULL),
+ valid_utf8_to_uvchr(ST.c2_utf8, NULL))
+ );
+ state_num = CURLYM_B_fail;
+ goto reenter_switch;
+ }
+ }
+ else if (nextchr != ST.c1 && nextchr != ST.c2) {
+ /* simulate B failing */
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM Fast bail next target=0x%X c1=0x%X c2=0x%X\n",
+ (int)(REPORT_CODE_OFF+(depth*2)),"",
+ (int) nextchr, ST.c1, ST.c2)
+ );
+ state_num = CURLYM_B_fail;
+ goto reenter_switch;
+ }
+ }
+
+ if (ST.me->flags) {
+ /* emulate CLOSE: mark current A as captured */
+ I32 paren = ST.me->flags;
+ if (ST.count) {
+ rex->offs[paren].start
+ = HOPc(locinput, -ST.alen) - reginfo->strbeg;
+ rex->offs[paren].end = locinput - reginfo->strbeg;
+ if ((U32)paren > rex->lastparen)
+ rex->lastparen = paren;
+ rex->lastcloseparen = paren;
+ }
+ else
+ rex->offs[paren].end = -1;
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.me->flags)
+ {
+ if (ST.count)
+ goto fake_end;
+ else
+ sayNO;
+ }
+ }
+
+ PUSH_STATE_GOTO(CURLYM_B, ST.B, locinput); /* match B */
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CURLYM_B_fail: /* just failed to match a B */
+ REGCP_UNWIND(ST.cp);
+ UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+ if (ST.minmod) {
+ I32 max = ARG2(ST.me);
+ if (max != REG_INFTY && ST.count == max)
+ sayNO;
+ goto curlym_do_A; /* try to match a further A */
+ }
+ /* backtrack one A */
+ if (ST.count == ARG1(ST.me) /* min */)
+ sayNO;
+ ST.count--;
+ SET_locinput(HOPc(locinput, -ST.alen));
+ goto curlym_do_B; /* try to match B */
+
+#undef ST
+#define ST st->u.curly
+
+#define CURLY_SETPAREN(paren, success) \
+ if (paren) { \
+ if (success) { \
+ rex->offs[paren].start = HOPc(locinput, -1) - reginfo->strbeg; \
+ rex->offs[paren].end = locinput - reginfo->strbeg; \
+ if (paren > rex->lastparen) \
+ rex->lastparen = paren; \
+ rex->lastcloseparen = paren; \
+ } \
+ else { \
+ rex->offs[paren].end = -1; \
+ rex->lastparen = ST.lastparen; \
+ rex->lastcloseparen = ST.lastcloseparen; \
+ } \
+ }
+
+ case STAR: /* /A*B/ where A is width 1 char */
+ ST.paren = 0;
+ ST.min = 0;
+ ST.max = REG_INFTY;
+ scan = NEXTOPER(scan);
+ goto repeat;
+
+ case PLUS: /* /A+B/ where A is width 1 char */
+ ST.paren = 0;
+ ST.min = 1;
+ ST.max = REG_INFTY;
+ scan = NEXTOPER(scan);
+ goto repeat;
+
+ case CURLYN: /* /(A){m,n}B/ where A is width 1 char */
+ ST.paren = scan->flags; /* Which paren to set */
+ ST.lastparen = rex->lastparen;
+ ST.lastcloseparen = rex->lastcloseparen;
+ if (ST.paren > maxopenparen)
+ maxopenparen = ST.paren;
+ ST.min = ARG1(scan); /* min to match */
+ ST.max = ARG2(scan); /* max to match */
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ ST.min=1;
+ ST.max=1;
+ }
+ scan = regnext(NEXTOPER(scan) + NODE_STEP_REGNODE);
+ goto repeat;
+
+ case CURLY: /* /A{m,n}B/ where A is width 1 char */
+ ST.paren = 0;
+ ST.min = ARG1(scan); /* min to match */
+ ST.max = ARG2(scan); /* max to match */
+ scan = NEXTOPER(scan) + NODE_STEP_REGNODE;
+ repeat:
+ /*
+ * Lookahead to avoid useless match attempts
+ * when we know what character comes next.
+ *
+ * Used to only do .*x and .*?x, but now it allows
+ * for )'s, ('s and (?{ ... })'s to be in the way
+ * of the quantifier and the EXACT-like node. -- japhy
+ */
+
+ assert(ST.min <= ST.max);
+ if (! HAS_TEXT(next) && ! JUMPABLE(next)) {
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ }
+ else {
+ regnode *text_node = next;
+
+ if (! HAS_TEXT(text_node))
+ FIND_NEXT_IMPT(text_node);
+
+ if (! HAS_TEXT(text_node))
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ else {
+ if ( PL_regkind[OP(text_node)] != EXACT ) {
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ }
+ else {
+
+ /* Currently we only get here when
+
+ PL_rekind[OP(text_node)] == EXACT
+
+ if this changes back then the macro for IS_TEXT and
+ friends need to change. */
+ if (! S_setup_EXACTISH_ST_c1_c2(aTHX_
+ text_node, &ST.c1, ST.c1_utf8, &ST.c2, ST.c2_utf8,
+ reginfo))
+ {
+ sayNO;
+ }
+ }
+ }
+ }
+
+ ST.A = scan;
+ ST.B = next;
+ if (minmod) {
+ char *li = locinput;
+ minmod = 0;
+ if (ST.min &&
+ regrepeat(rex, &li, ST.A, reginfo, ST.min, depth)
+ < ST.min)
+ sayNO;
+ SET_locinput(li);
+ ST.count = ST.min;
+ REGCP_SET(ST.cp);
+ if (ST.c1 == CHRTEST_VOID)
+ goto curly_try_B_min;
+
+ ST.oldloc = locinput;
+
+ /* set ST.maxpos to the furthest point along the
+ * string that could possibly match */
+ if (ST.max == REG_INFTY) {
+ ST.maxpos = reginfo->strend - 1;
+ if (utf8_target)
+ while (UTF8_IS_CONTINUATION(*(U8*)ST.maxpos))
+ ST.maxpos--;
+ }
+ else if (utf8_target) {
+ int m = ST.max - ST.min;
+ for (ST.maxpos = locinput;
+ m >0 && ST.maxpos < reginfo->strend; m--)
+ ST.maxpos += UTF8SKIP(ST.maxpos);
+ }
+ else {
+ ST.maxpos = locinput + ST.max - ST.min;
+ if (ST.maxpos >= reginfo->strend)
+ ST.maxpos = reginfo->strend - 1;
+ }
+ goto curly_try_B_min_known;
+
+ }
+ else {
+ /* avoid taking address of locinput, so it can remain
+ * a register var */
+ char *li = locinput;
+ ST.count = regrepeat(rex, &li, ST.A, reginfo, ST.max, depth);
+ if (ST.count < ST.min)
+ sayNO;
+ SET_locinput(li);
+ if ((ST.count > ST.min)
+ && (PL_regkind[OP(ST.B)] == EOL) && (OP(ST.B) != MEOL))
+ {
+ /* A{m,n} must come at the end of the string, there's
+ * no point in backing off ... */
+ ST.min = ST.count;
+ /* ...except that $ and \Z can match before *and* after
+ newline at the end. Consider "\n\n" =~ /\n+\Z\n/.
+ We may back off by one in this case. */
+ if (UCHARAT(locinput - 1) == '\n' && OP(ST.B) != EOS)
+ ST.min--;
+ }
+ REGCP_SET(ST.cp);
+ goto curly_try_B_max;
+ }
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CURLY_B_min_known_fail:
+ /* failed to find B in a non-greedy match where c1,c2 valid */
+
+ REGCP_UNWIND(ST.cp);
+ if (ST.paren) {
+ UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+ }
+ /* Couldn't or didn't -- move forward. */
+ ST.oldloc = locinput;
+ if (utf8_target)
+ locinput += UTF8SKIP(locinput);
+ else
+ locinput++;
+ ST.count++;
+ curly_try_B_min_known:
+ /* find the next place where 'B' could work, then call B */
+ {
+ int n;
+ if (utf8_target) {
+ n = (ST.oldloc == locinput) ? 0 : 1;
+ if (ST.c1 == ST.c2) {
+ /* set n to utf8_distance(oldloc, locinput) */
+ while (locinput <= ST.maxpos
+ && memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput)))
+ {
+ locinput += UTF8SKIP(locinput);
+ n++;
+ }
+ }
+ else {
+ /* set n to utf8_distance(oldloc, locinput) */
+ while (locinput <= ST.maxpos
+ && memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput))
+ && memNE(locinput, ST.c2_utf8, UTF8SKIP(locinput)))
+ {
+ locinput += UTF8SKIP(locinput);
+ n++;
+ }
+ }
+ }
+ else { /* Not utf8_target */
+ if (ST.c1 == ST.c2) {
+ while (locinput <= ST.maxpos &&
+ UCHARAT(locinput) != ST.c1)
+ locinput++;
+ }
+ else {
+ while (locinput <= ST.maxpos
+ && UCHARAT(locinput) != ST.c1
+ && UCHARAT(locinput) != ST.c2)
+ locinput++;
+ }
+ n = locinput - ST.oldloc;
+ }
+ if (locinput > ST.maxpos)
+ sayNO;
+ if (n) {
+ /* In /a{m,n}b/, ST.oldloc is at "a" x m, locinput is
+ * at b; check that everything between oldloc and
+ * locinput matches */
+ char *li = ST.oldloc;
+ ST.count += n;
+ if (regrepeat(rex, &li, ST.A, reginfo, n, depth) < n)
+ sayNO;
+ assert(n == REG_INFTY || locinput == li);
+ }
+ CURLY_SETPAREN(ST.paren, ST.count);
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ goto fake_end;
+ }
+ PUSH_STATE_GOTO(CURLY_B_min_known, ST.B, locinput);
+ }
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case CURLY_B_min_fail:
+ /* failed to find B in a non-greedy match where c1,c2 invalid */
+
+ REGCP_UNWIND(ST.cp);
+ if (ST.paren) {
+ UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+ }
+ /* failed -- move forward one */
+ {
+ char *li = locinput;
+ if (!regrepeat(rex, &li, ST.A, reginfo, 1, depth)) {
+ sayNO;
+ }
+ locinput = li;
+ }
+ {
+ ST.count++;
+ if (ST.count <= ST.max || (ST.max == REG_INFTY &&
+ ST.count > 0)) /* count overflow ? */
+ {
+ curly_try_B_min:
+ CURLY_SETPAREN(ST.paren, ST.count);
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ goto fake_end;
+ }
+ PUSH_STATE_GOTO(CURLY_B_min, ST.B, locinput);
+ }
+ }
+ sayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ curly_try_B_max:
+ /* a successful greedy match: now try to match B */
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ goto fake_end;
+ }
+ {
+ bool could_match = locinput < reginfo->strend;
+
+ /* If it could work, try it. */
+ if (ST.c1 != CHRTEST_VOID && could_match) {
+ if (! UTF8_IS_INVARIANT(UCHARAT(locinput)) && utf8_target)
+ {
+ could_match = memEQ(locinput,
+ ST.c1_utf8,
+ UTF8SKIP(locinput))
+ || memEQ(locinput,
+ ST.c2_utf8,
+ UTF8SKIP(locinput));
+ }
+ else {
+ could_match = UCHARAT(locinput) == ST.c1
+ || UCHARAT(locinput) == ST.c2;
+ }
+ }
+ if (ST.c1 == CHRTEST_VOID || could_match) {
+ CURLY_SETPAREN(ST.paren, ST.count);
+ PUSH_STATE_GOTO(CURLY_B_max, ST.B, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+ }
+ /* FALLTHROUGH */
+
+ case CURLY_B_max_fail:
+ /* failed to find B in a greedy match */
+
+ REGCP_UNWIND(ST.cp);
+ if (ST.paren) {
+ UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
+ }
+ /* back up. */
+ if (--ST.count < ST.min)
+ sayNO;
+ locinput = HOPc(locinput, -1);
+ goto curly_try_B_max;
+
+#undef ST
+
+ case END: /* last op of main pattern */
+ fake_end:
+ if (cur_eval) {
+ /* we've just finished A in /(??{A})B/; now continue with B */
+
+ st->u.eval.prev_rex = rex_sv; /* inner */
+
+ /* Save *all* the positions. */
+ st->u.eval.cp = regcppush(rex, 0, maxopenparen);
+ rex_sv = cur_eval->u.eval.prev_rex;
+ is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
+ SET_reg_curpm(rex_sv);
+ rex = ReANY(rex_sv);
+ rexi = RXi_GET(rex);
+ cur_curlyx = cur_eval->u.eval.prev_curlyx;
+
+ REGCP_SET(st->u.eval.lastcp);
+
+ /* Restore parens of the outer rex without popping the
+ * savestack */
+ S_regcp_restore(aTHX_ rex, cur_eval->u.eval.lastcp,
+ &maxopenparen);
+
+ st->u.eval.prev_eval = cur_eval;
+ cur_eval = cur_eval->u.eval.prev_eval;
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log, "%*s EVAL trying tail ... %"UVxf"\n",
+ REPORT_CODE_OFF+depth*2, "",PTR2UV(cur_eval)););
+ if ( nochange_depth )
+ nochange_depth--;
+
+ PUSH_YES_STATE_GOTO(EVAL_AB, st->u.eval.prev_eval->u.eval.B,
+ locinput); /* match B */
+ }
+
+ if (locinput < reginfo->till) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%sMatch possible, but length=%ld is smaller than requested=%ld, failing!%s\n",
+ PL_colors[4],
+ (long)(locinput - startpos),
+ (long)(reginfo->till - startpos),
+ PL_colors[5]));
+
+ sayNO_SILENT; /* Cannot match: too short. */
+ }
+ sayYES; /* Success! */
+
+ case SUCCEED: /* successful SUSPEND/UNLESSM/IFMATCH/CURLYM */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %ssubpattern success...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5]));
+ sayYES; /* Success! */
+
+#undef ST
+#define ST st->u.ifmatch
+
+ {
+ char *newstart;
+
+ case SUSPEND: /* (?>A) */
+ ST.wanted = 1;
+ newstart = locinput;
+ goto do_ifmatch;
+
+ case UNLESSM: /* -ve lookaround: (?!A), or with flags, (?<!A) */
+ ST.wanted = 0;
+ goto ifmatch_trivial_fail_test;
+
+ case IFMATCH: /* +ve lookaround: (?=A), or with flags, (?<=A) */
+ ST.wanted = 1;
+ ifmatch_trivial_fail_test:
+ if (scan->flags) {
+ char * const s = HOPBACKc(locinput, scan->flags);
+ if (!s) {
+ /* trivial fail */
+ if (logical) {
+ logical = 0;
+ sw = 1 - cBOOL(ST.wanted);
+ }
+ else if (ST.wanted)
+ sayNO;
+ next = scan + ARG(scan);
+ if (next == scan)
+ next = NULL;
+ break;
+ }
+ newstart = s;
+ }
+ else
+ newstart = locinput;
+
+ do_ifmatch:
+ ST.me = scan;
+ ST.logical = logical;
+ logical = 0; /* XXX: reset state of logical once it has been saved into ST */
+
+ /* execute body of (?...A) */
+ PUSH_YES_STATE_GOTO(IFMATCH_A, NEXTOPER(NEXTOPER(scan)), newstart);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+ }
+
+ case IFMATCH_A_fail: /* body of (?...A) failed */
+ ST.wanted = !ST.wanted;
+ /* FALLTHROUGH */
+
+ case IFMATCH_A: /* body of (?...A) succeeded */
+ if (ST.logical) {
+ sw = cBOOL(ST.wanted);
+ }
+ else if (!ST.wanted)
+ sayNO;
+
+ if (OP(ST.me) != SUSPEND) {
+ /* restore old position except for (?>...) */
+ locinput = st->locinput;
+ }
+ scan = ST.me + ARG(ST.me);
+ if (scan == ST.me)
+ scan = NULL;
+ continue; /* execute B */
+
+#undef ST
+
+ case LONGJMP: /* alternative with many branches compiles to
+ * (BRANCHJ; EXACT ...; LONGJMP ) x N */
+ next = scan + ARG(scan);
+ if (next == scan)
+ next = NULL;
+ break;
+
+ case COMMIT: /* (*COMMIT) */
+ reginfo->cutpoint = reginfo->strend;
+ /* FALLTHROUGH */
+
+ case PRUNE: /* (*PRUNE) */
+ if (!scan->flags)
+ sv_yes_mark = sv_commit = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ PUSH_STATE_GOTO(COMMIT_next, next, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case COMMIT_next_fail:
+ no_final = 1;
+ /* FALLTHROUGH */
+
+ case OPFAIL: /* (*FAIL) */
+ sayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+#define ST st->u.mark
+ case MARKPOINT: /* (*MARK:foo) */
+ ST.prev_mark = mark_state;
+ ST.mark_name = sv_commit = sv_yes_mark
+ = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ mark_state = st;
+ ST.mark_loc = locinput;
+ PUSH_YES_STATE_GOTO(MARKPOINT_next, next, locinput);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case MARKPOINT_next:
+ mark_state = ST.prev_mark;
+ sayYES;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case MARKPOINT_next_fail:
+ if (popmark && sv_eq(ST.mark_name,popmark))
+ {
+ if (ST.mark_loc > startpoint)
+ reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
+ popmark = NULL; /* we found our mark */
+ sv_commit = ST.mark_name;
+
+ DEBUG_EXECUTE_r({
+ PerlIO_printf(Perl_debug_log,
+ "%*s %ssetting cutpoint to mark:%"SVf"...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4], SVfARG(sv_commit), PL_colors[5]);
+ });
+ }
+ mark_state = ST.prev_mark;
+ sv_yes_mark = mark_state ?
+ mark_state->u.mark.mark_name : NULL;
+ sayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ case SKIP: /* (*SKIP) */
+ if (scan->flags) {
+ /* (*SKIP) : if we fail we cut here*/
+ ST.mark_name = NULL;
+ ST.mark_loc = locinput;
+ PUSH_STATE_GOTO(SKIP_next,next, locinput);
+ } else {
+ /* (*SKIP:NAME) : if there is a (*MARK:NAME) fail where it was,
+ otherwise do nothing. Meaning we need to scan
+ */
+ regmatch_state *cur = mark_state;
+ SV *find = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+
+ while (cur) {
+ if ( sv_eq( cur->u.mark.mark_name,
+ find ) )
+ {
+ ST.mark_name = find;
+ PUSH_STATE_GOTO( SKIP_next, next, locinput);
+ }
+ cur = cur->u.mark.prev_mark;
+ }
+ }
+ /* Didn't find our (*MARK:NAME) so ignore this (*SKIP:NAME) */
+ break;
+
+ case SKIP_next_fail:
+ if (ST.mark_name) {
+ /* (*CUT:NAME) - Set up to search for the name as we
+ collapse the stack*/
+ popmark = ST.mark_name;
+ } else {
+ /* (*CUT) - No name, we cut here.*/
+ if (ST.mark_loc > startpoint)
+ reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
+ /* but we set sv_commit to latest mark_name if there
+ is one so they can test to see how things lead to this
+ cut */
+ if (mark_state)
+ sv_commit=mark_state->u.mark.mark_name;
+ }
+ no_final = 1;
+ sayNO;
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+#undef ST
+
+ case LNBREAK: /* \R */
+ if ((n=is_LNBREAK_safe(locinput, reginfo->strend, utf8_target))) {
+ locinput += n;
+ } else
+ sayNO;
+ break;
+
+ default:
+ PerlIO_printf(Perl_error_log, "%"UVxf" %d\n",
+ PTR2UV(scan), OP(scan));
+ Perl_croak(aTHX_ "regexp memory corruption");
+
+ /* this is a point to jump to in order to increment
+ * locinput by one character */
+ increment_locinput:
+ assert(!NEXTCHR_IS_EOS);
+ if (utf8_target) {
+ locinput += PL_utf8skip[nextchr];
+ /* locinput is allowed to go 1 char off the end, but not 2+ */
+ if (locinput > reginfo->strend)
+ sayNO;
+ }
+ else
+ locinput++;
+ break;
+
+ } /* end switch */
+
+ /* switch break jumps here */
+ scan = next; /* prepare to execute the next op and ... */
+ continue; /* ... jump back to the top, reusing st */
+ /* NOTREACHED */
+
+ push_yes_state:
+ /* push a state that backtracks on success */
+ st->u.yes.prev_yes_state = yes_state;
+ yes_state = st;
+ /* FALLTHROUGH */
+ push_state:
+ /* push a new regex state, then continue at scan */
+ {
+ regmatch_state *newst;
+
+ DEBUG_STACK_r({
+ regmatch_state *cur = st;
+ regmatch_state *curyes = yes_state;
+ int curd = depth;
+ regmatch_slab *slab = PL_regmatch_slab;
+ for (;curd > -1;cur--,curd--) {
+ if (cur < SLAB_FIRST(slab)) {
+ slab = slab->prev;
+ cur = SLAB_LAST(slab);
+ }
+ PerlIO_printf(Perl_error_log, "%*s#%-3d %-10s %s\n",
+ REPORT_CODE_OFF + 2 + depth * 2,"",
+ curd, PL_reg_name[cur->resume_state],
+ (curyes == cur) ? "yes" : ""
+ );
+ if (curyes == cur)
+ curyes = cur->u.yes.prev_yes_state;
+ }
+ } else
+ DEBUG_STATE_pp("push")
+ );
+ depth++;
+ st->locinput = locinput;
+ newst = st+1;
+ if (newst > SLAB_LAST(PL_regmatch_slab))
+ newst = S_push_slab(aTHX);
+ PL_regmatch_state = newst;
+
+ locinput = pushinput;
+ st = newst;
+ continue;
+ /* NOTREACHED */
+ }
+ }
+
+ /*
+ * We get here only if there's trouble -- normally "case END" is
+ * the terminating point.
+ */
+ Perl_croak(aTHX_ "corrupted regexp pointers");
+ /* NOTREACHED */
+ sayNO;
+ NOT_REACHED; /* NOTREACHED */
+
+ yes:
+ if (yes_state) {
+ /* we have successfully completed a subexpression, but we must now
+ * pop to the state marked by yes_state and continue from there */
+ assert(st != yes_state);
+#ifdef DEBUGGING
+ while (st != yes_state) {
+ st--;
+ if (st < SLAB_FIRST(PL_regmatch_slab)) {
+ PL_regmatch_slab = PL_regmatch_slab->prev;
+ st = SLAB_LAST(PL_regmatch_slab);
+ }
+ DEBUG_STATE_r({
+ if (no_final) {
+ DEBUG_STATE_pp("pop (no final)");
+ } else {
+ DEBUG_STATE_pp("pop (yes)");
+ }
+ });
+ depth--;
+ }
+#else
+ while (yes_state < SLAB_FIRST(PL_regmatch_slab)
+ || yes_state > SLAB_LAST(PL_regmatch_slab))
+ {
+ /* not in this slab, pop slab */
+ depth -= (st - SLAB_FIRST(PL_regmatch_slab) + 1);
+ PL_regmatch_slab = PL_regmatch_slab->prev;
+ st = SLAB_LAST(PL_regmatch_slab);
+ }
+ depth -= (st - yes_state);
+#endif
+ st = yes_state;
+ yes_state = st->u.yes.prev_yes_state;
+ PL_regmatch_state = st;
+
+ if (no_final)
+ locinput= st->locinput;
+ state_num = st->resume_state + no_final;
+ goto reenter_switch;
+ }
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch successful!%s\n",
+ PL_colors[4], PL_colors[5]));
+
+ if (reginfo->info_aux_eval) {
+ /* each successfully executed (?{...}) block does the equivalent of
+ * local $^R = do {...}
+ * When popping the save stack, all these locals would be undone;
+ * bypass this by setting the outermost saved $^R to the latest
+ * value */
+ /* I dont know if this is needed or works properly now.
+ * see code related to PL_replgv elsewhere in this file.
+ * Yves
+ */
+ if (oreplsv != GvSV(PL_replgv))
+ sv_setsv(oreplsv, GvSV(PL_replgv));
+ }
+ result = 1;
+ goto final_exit;
+
+ no:
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %sfailed...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4], PL_colors[5])
+ );
+
+ no_silent:
+ if (no_final) {
+ if (yes_state) {
+ goto yes;
+ } else {
+ goto final_exit;
+ }
+ }
+ if (depth) {
+ /* there's a previous state to backtrack to */
+ st--;
+ if (st < SLAB_FIRST(PL_regmatch_slab)) {
+ PL_regmatch_slab = PL_regmatch_slab->prev;
+ st = SLAB_LAST(PL_regmatch_slab);
+ }
+ PL_regmatch_state = st;
+ locinput= st->locinput;
+
+ DEBUG_STATE_pp("pop");
+ depth--;
+ if (yes_state == st)
+ yes_state = st->u.yes.prev_yes_state;
+
+ state_num = st->resume_state + 1; /* failure = success + 1 */
+ goto reenter_switch;
+ }
+ result = 0;
+
+ final_exit:
+ if (rex->intflags & PREGf_VERBARG_SEEN) {
+ SV *sv_err = get_sv("REGERROR", 1);
+ SV *sv_mrk = get_sv("REGMARK", 1);
+ if (result) {
+ sv_commit = &PL_sv_no;
+ if (!sv_yes_mark)
+ sv_yes_mark = &PL_sv_yes;
+ } else {
+ if (!sv_commit)
+ sv_commit = &PL_sv_yes;
+ sv_yes_mark = &PL_sv_no;
+ }
+ assert(sv_err);
+ assert(sv_mrk);
+ sv_setsv(sv_err, sv_commit);
+ sv_setsv(sv_mrk, sv_yes_mark);
+ }
+
+
+ if (last_pushed_cv) {
+ dSP;
+ POP_MULTICALL;
+ PERL_UNUSED_VAR(SP);
+ }
+
+ assert(!result || locinput - reginfo->strbeg >= 0);
+ return result ? locinput - reginfo->strbeg : -1;
+}
+
+/*
+ - regrepeat - repeatedly match something simple, report how many
+ *
+ * What 'simple' means is a node which can be the operand of a quantifier like
+ * '+', or {1,3}
+ *
+ * startposp - pointer a pointer to the start position. This is updated
+ * to point to the byte following the highest successful
+ * match.
+ * p - the regnode to be repeatedly matched against.
+ * reginfo - struct holding match state, such as strend
+ * max - maximum number of things to match.
+ * depth - (for debugging) backtracking depth.
+ */
+STATIC I32
+S_regrepeat(pTHX_ regexp *prog, char **startposp, const regnode *p,
+ regmatch_info *const reginfo, I32 max, int depth)
+{
+ char *scan; /* Pointer to current position in target string */
+ I32 c;
+ char *loceol = reginfo->strend; /* local version */
+ I32 hardcount = 0; /* How many matches so far */
+ bool utf8_target = reginfo->is_utf8_target;
+ unsigned int to_complement = 0; /* Invert the result? */
+ UV utf8_flags;
+ _char_class_number classnum;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ PERL_ARGS_ASSERT_REGREPEAT;
+
+ scan = *startposp;
+ if (max == REG_INFTY)
+ max = I32_MAX;
+ else if (! utf8_target && loceol - scan > max)
+ loceol = scan + max;
+
+ /* Here, for the case of a non-UTF-8 target we have adjusted <loceol> down
+ * to the maximum of how far we should go in it (leaving it set to the real
+ * end, if the maximum permissible would take us beyond that). This allows
+ * us to make the loop exit condition that we haven't gone past <loceol> to
+ * also mean that we haven't exceeded the max permissible count, saving a
+ * test each time through the loop. But it assumes that the OP matches a
+ * single byte, which is true for most of the OPs below when applied to a
+ * non-UTF-8 target. Those relatively few OPs that don't have this
+ * characteristic will have to compensate.
+ *
+ * There is no adjustment for UTF-8 targets, as the number of bytes per
+ * character varies. OPs will have to test both that the count is less
+ * than the max permissible (using <hardcount> to keep track), and that we
+ * are still within the bounds of the string (using <loceol>. A few OPs
+ * match a single byte no matter what the encoding. They can omit the max
+ * test if, for the UTF-8 case, they do the adjustment that was skipped
+ * above.
+ *
+ * Thus, the code above sets things up for the common case; and exceptional
+ * cases need extra work; the common case is to make sure <scan> doesn't
+ * go past <loceol>, and for UTF-8 to also use <hardcount> to make sure the
+ * count doesn't exceed the maximum permissible */
+
+ switch (OP(p)) {
+ case REG_ANY:
+ if (utf8_target) {
+ while (scan < loceol && hardcount < max && *scan != '\n') {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && *scan != '\n')
+ scan++;
+ }
+ break;
+ case SANY:
+ if (utf8_target) {
+ while (scan < loceol && hardcount < max) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ }
+ else
+ scan = loceol;
+ break;
+ case EXACTL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (utf8_target && UTF8_IS_ABOVE_LATIN1(*scan)) {
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(scan, loceol);
+ }
+ /* FALLTHROUGH */
+ case EXACT:
+ assert(STR_LEN(p) == reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1);
+
+ c = (U8)*STRING(p);
+
+ /* Can use a simple loop if the pattern char to match on is invariant
+ * under UTF-8, or both target and pattern aren't UTF-8. Note that we
+ * can use UTF8_IS_INVARIANT() even if the pattern isn't UTF-8, as it's
+ * true iff it doesn't matter if the argument is in UTF-8 or not */
+ if (UTF8_IS_INVARIANT(c) || (! utf8_target && ! reginfo->is_utf8_pat)) {
+ if (utf8_target && loceol - scan > max) {
+ /* We didn't adjust <loceol> because is UTF-8, but ok to do so,
+ * since here, to match at all, 1 char == 1 byte */
+ loceol = scan + max;
+ }
+ while (scan < loceol && UCHARAT(scan) == c) {
+ scan++;
+ }
+ }
+ else if (reginfo->is_utf8_pat) {
+ if (utf8_target) {
+ STRLEN scan_char_len;
+
+ /* When both target and pattern are UTF-8, we have to do
+ * string EQ */
+ while (hardcount < max
+ && scan < loceol
+ && (scan_char_len = UTF8SKIP(scan)) <= STR_LEN(p)
+ && memEQ(scan, STRING(p), scan_char_len))
+ {
+ scan += scan_char_len;
+ hardcount++;
+ }
+ }
+ else if (! UTF8_IS_ABOVE_LATIN1(c)) {
+
+ /* Target isn't utf8; convert the character in the UTF-8
+ * pattern to non-UTF8, and do a simple loop */
+ c = TWO_BYTE_UTF8_TO_NATIVE(c, *(STRING(p) + 1));
+ while (scan < loceol && UCHARAT(scan) == c) {
+ scan++;
+ }
+ } /* else pattern char is above Latin1, can't possibly match the
+ non-UTF-8 target */
+ }
+ else {
+
+ /* Here, the string must be utf8; pattern isn't, and <c> is
+ * different in utf8 than not, so can't compare them directly.
+ * Outside the loop, find the two utf8 bytes that represent c, and
+ * then look for those in sequence in the utf8 string */
+ U8 high = UTF8_TWO_BYTE_HI(c);
+ U8 low = UTF8_TWO_BYTE_LO(c);
+
+ while (hardcount < max
+ && scan + 1 < loceol
+ && UCHARAT(scan) == high
+ && UCHARAT(scan + 1) == low)
+ {
+ scan += 2;
+ hardcount++;
+ }
+ }
+ break;
+
+ case EXACTFA_NO_TRIE: /* This node only generated for non-utf8 patterns */
+ assert(! reginfo->is_utf8_pat);
+ /* FALLTHROUGH */
+ case EXACTFA:
+ utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_exactf;
+
+ case EXACTFL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ utf8_flags = FOLDEQ_LOCALE;
+ goto do_exactf;
+
+ case EXACTF: /* This node only generated for non-utf8 patterns */
+ assert(! reginfo->is_utf8_pat);
+ utf8_flags = 0;
+ goto do_exactf;
+
+ case EXACTFLU8:
+ if (! utf8_target) {
+ break;
+ }
+ utf8_flags = FOLDEQ_LOCALE | FOLDEQ_S2_ALREADY_FOLDED
+ | FOLDEQ_S2_FOLDS_SANE;
+ goto do_exactf;
+
+ case EXACTFU_SS:
+ case EXACTFU:
+ utf8_flags = reginfo->is_utf8_pat ? FOLDEQ_S2_ALREADY_FOLDED : 0;
+
+ do_exactf: {
+ int c1, c2;
+ U8 c1_utf8[UTF8_MAXBYTES+1], c2_utf8[UTF8_MAXBYTES+1];
+
+ assert(STR_LEN(p) == reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1);
+
+ if (S_setup_EXACTISH_ST_c1_c2(aTHX_ p, &c1, c1_utf8, &c2, c2_utf8,
+ reginfo))
+ {
+ if (c1 == CHRTEST_VOID) {
+ /* Use full Unicode fold matching */
+ char *tmpeol = reginfo->strend;
+ STRLEN pat_len = reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1;
+ while (hardcount < max
+ && foldEQ_utf8_flags(scan, &tmpeol, 0, utf8_target,
+ STRING(p), NULL, pat_len,
+ reginfo->is_utf8_pat, utf8_flags))
+ {
+ scan = tmpeol;
+ tmpeol = reginfo->strend;
+ hardcount++;
+ }
+ }
+ else if (utf8_target) {
+ if (c1 == c2) {
+ while (scan < loceol
+ && hardcount < max
+ && memEQ(scan, c1_utf8, UTF8SKIP(scan)))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ }
+ else {
+ while (scan < loceol
+ && hardcount < max
+ && (memEQ(scan, c1_utf8, UTF8SKIP(scan))
+ || memEQ(scan, c2_utf8, UTF8SKIP(scan))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ }
+ }
+ else if (c1 == c2) {
+ while (scan < loceol && UCHARAT(scan) == c1) {
+ scan++;
+ }
+ }
+ else {
+ while (scan < loceol &&
+ (UCHARAT(scan) == c1 || UCHARAT(scan) == c2))
+ {
+ scan++;
+ }
+ }
+ }
+ break;
+ }
+ case ANYOFL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ /* FALLTHROUGH */
+ case ANYOF:
+ if (utf8_target) {
+ while (hardcount < max
+ && scan < loceol
+ && reginclass(prog, p, (U8*)scan, (U8*) loceol, utf8_target))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && REGINCLASS(prog, p, (U8*)scan))
+ scan++;
+ }
+ break;
+
+ /* The argument (FLAGS) to all the POSIX node types is the class number */
+
+ case NPOSIXL:
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ if (! utf8_target) {
+ while (scan < loceol && to_complement ^ cBOOL(isFOO_lc(FLAGS(p),
+ *scan)))
+ {
+ scan++;
+ }
+ } else {
+ while (hardcount < max && scan < loceol
+ && to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(p),
+ (U8 *) scan)))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ }
+ break;
+
+ case POSIXD:
+ if (utf8_target) {
+ goto utf8_posix;
+ }
+ /* FALLTHROUGH */
+
+ case POSIXA:
+ if (utf8_target && loceol - scan > max) {
+
+ /* We didn't adjust <loceol> at the beginning of this routine
+ * because is UTF-8, but it is actually ok to do so, since here, to
+ * match, 1 char == 1 byte. */
+ loceol = scan + max;
+ }
+ while (scan < loceol && _generic_isCC_A((U8) *scan, FLAGS(p))) {
+ scan++;
+ }
+ break;
+
+ case NPOSIXD:
+ if (utf8_target) {
+ to_complement = 1;
+ goto utf8_posix;
+ }
+ /* FALLTHROUGH */
+
+ case NPOSIXA:
+ if (! utf8_target) {
+ while (scan < loceol && ! _generic_isCC_A((U8) *scan, FLAGS(p))) {
+ scan++;
+ }
+ }
+ else {
+
+ /* The complement of something that matches only ASCII matches all
+ * non-ASCII, plus everything in ASCII that isn't in the class. */
+ while (hardcount < max && scan < loceol
+ && (! isASCII_utf8(scan)
+ || ! _generic_isCC_A((U8) *scan, FLAGS(p))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ }
+ break;
+
+ case NPOSIXU:
+ to_complement = 1;
+ /* FALLTHROUGH */
+
+ case POSIXU:
+ if (! utf8_target) {
+ while (scan < loceol && to_complement
+ ^ cBOOL(_generic_isCC((U8) *scan, FLAGS(p))))
+ {
+ scan++;
+ }
+ }
+ else {
+ utf8_posix:
+ classnum = (_char_class_number) FLAGS(p);
+ if (classnum < _FIRST_NON_SWASH_CC) {
+
+ /* Here, a swash is needed for above-Latin1 code points.
+ * Process as many Latin1 code points using the built-in rules.
+ * Go to another loop to finish processing upon encountering
+ * the first Latin1 code point. We could do that in this loop
+ * as well, but the other way saves having to test if the swash
+ * has been loaded every time through the loop: extra space to
+ * save a test. */
+ while (hardcount < max && scan < loceol) {
+ if (UTF8_IS_INVARIANT(*scan)) {
+ if (! (to_complement ^ cBOOL(_generic_isCC((U8) *scan,
+ classnum))))
+ {
+ break;
+ }
+ scan++;
+ }
+ else if (UTF8_IS_DOWNGRADEABLE_START(*scan)) {
+ if (! (to_complement
+ ^ cBOOL(_generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(*scan,
+ *(scan + 1)),
+ classnum))))
+ {
+ break;
+ }
+ scan += 2;
+ }
+ else {
+ goto found_above_latin1;
+ }
+
+ hardcount++;
+ }
+ }
+ else {
+ /* For these character classes, the knowledge of how to handle
+ * every code point is compiled in to Perl via a macro. This
+ * code is written for making the loops as tight as possible.
+ * It could be refactored to save space instead */
+ switch (classnum) {
+ case _CC_ENUM_SPACE:
+ while (hardcount < max
+ && scan < loceol
+ && (to_complement ^ cBOOL(isSPACE_utf8(scan))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ case _CC_ENUM_BLANK:
+ while (hardcount < max
+ && scan < loceol
+ && (to_complement ^ cBOOL(isBLANK_utf8(scan))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ case _CC_ENUM_XDIGIT:
+ while (hardcount < max
+ && scan < loceol
+ && (to_complement ^ cBOOL(isXDIGIT_utf8(scan))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ case _CC_ENUM_VERTSPACE:
+ while (hardcount < max
+ && scan < loceol
+ && (to_complement ^ cBOOL(isVERTWS_utf8(scan))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ case _CC_ENUM_CNTRL:
+ while (hardcount < max
+ && scan < loceol
+ && (to_complement ^ cBOOL(isCNTRL_utf8(scan))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: regrepeat() node %d='%s' has an unexpected character class '%d'", OP(p), PL_reg_name[OP(p)], classnum);
+ }
+ }
+ }
+ break;
+
+ found_above_latin1: /* Continuation of POSIXU and NPOSIXU */
+
+ /* Load the swash if not already present */
+ if (! PL_utf8_swash_ptrs[classnum]) {
+ U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
+ PL_utf8_swash_ptrs[classnum] = _core_swash_init(
+ "utf8",
+ "",
+ &PL_sv_undef, 1, 0,
+ PL_XPosix_ptrs[classnum], &flags);
+ }
+
+ while (hardcount < max && scan < loceol
+ && to_complement ^ cBOOL(_generic_utf8(
+ classnum,
+ scan,
+ swash_fetch(PL_utf8_swash_ptrs[classnum],
+ (U8 *) scan,
+ TRUE))))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+
+ case LNBREAK:
+ if (utf8_target) {
+ while (hardcount < max && scan < loceol &&
+ (c=is_LNBREAK_utf8_safe(scan, loceol))) {
+ scan += c;
+ hardcount++;
+ }
+ } else {
+ /* LNBREAK can match one or two latin chars, which is ok, but we
+ * have to use hardcount in this situation, and throw away the
+ * adjustment to <loceol> done before the switch statement */
+ loceol = reginfo->strend;
+ while (scan < loceol && (c=is_LNBREAK_latin1_safe(scan, loceol))) {
+ scan+=c;
+ hardcount++;
+ }
+ }
+ break;
+
+ case BOUNDL:
+ case NBOUNDL:
+ _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
+ /* FALLTHROUGH */
+ case BOUND:
+ case BOUNDA:
+ case BOUNDU:
+ case EOS:
+ case GPOS:
+ case KEEPS:
+ case NBOUND:
+ case NBOUNDA:
+ case NBOUNDU:
+ case OPFAIL:
+ case SBOL:
+ case SEOL:
+ /* These are all 0 width, so match right here or not at all. */
+ break;
+
+ default:
+ Perl_croak(aTHX_ "panic: regrepeat() called with unrecognized node type %d='%s'", OP(p), PL_reg_name[OP(p)]);
+ /* NOTREACHED */
+ NOT_REACHED; /* NOTREACHED */
+
+ }
+
+ if (hardcount)
+ c = hardcount;
+ else
+ c = scan - *startposp;
+ *startposp = scan;
+
+ DEBUG_r({
+ GET_RE_DEBUG_FLAGS_DECL;
+ DEBUG_EXECUTE_r({
+ SV * const prop = sv_newmortal();
+ regprop(prog, prop, p, reginfo, NULL);
+ PerlIO_printf(Perl_debug_log,
+ "%*s %s can match %"IVdf" times out of %"IVdf"...\n",
+ REPORT_CODE_OFF + depth*2, "", SvPVX_const(prop),(IV)c,(IV)max);
+ });
+ });
+
+ return(c);
+}
+
+
+#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
+/*
+- regclass_swash - prepare the utf8 swash. Wraps the shared core version to
+create a copy so that changes the caller makes won't change the shared one.
+If <altsvp> is non-null, will return NULL in it, for back-compat.
+ */
+SV *
+Perl_regclass_swash(pTHX_ const regexp *prog, const regnode* node, bool doinit, SV** listsvp, SV **altsvp)
+{
+ PERL_ARGS_ASSERT_REGCLASS_SWASH;
+
+ if (altsvp) {
+ *altsvp = NULL;
+ }
+
+ return newSVsv(_get_regclass_nonbitmap_data(prog, node, doinit, listsvp, NULL, NULL));
+}
+
+#endif /* !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION) */
+
+/*
+ - reginclass - determine if a character falls into a character class
+
+ n is the ANYOF-type regnode
+ p is the target string
+ p_end points to one byte beyond the end of the target string
+ utf8_target tells whether p is in UTF-8.
+
+ Returns true if matched; false otherwise.
+
+ Note that this can be a synthetic start class, a combination of various
+ nodes, so things you think might be mutually exclusive, such as locale,
+ aren't. It can match both locale and non-locale
+
+ */
+
+STATIC bool
+S_reginclass(pTHX_ regexp * const prog, const regnode * const n, const U8* const p, const U8* const p_end, const bool utf8_target)
+{
+ dVAR;
+ const char flags = ANYOF_FLAGS(n);
+ bool match = FALSE;
+ UV c = *p;
+
+ PERL_ARGS_ASSERT_REGINCLASS;
+
+ /* If c is not already the code point, get it. Note that
+ * UTF8_IS_INVARIANT() works even if not in UTF-8 */
+ if (! UTF8_IS_INVARIANT(c) && utf8_target) {
+ STRLEN c_len = 0;
+ c = utf8n_to_uvchr(p, p_end - p, &c_len,
+ (UTF8_ALLOW_DEFAULT & UTF8_ALLOW_ANYUV)
+ | UTF8_ALLOW_FFFF | UTF8_CHECK_ONLY);
+ /* see [perl #37836] for UTF8_ALLOW_ANYUV; [perl #38293] for
+ * UTF8_ALLOW_FFFF */
+ if (c_len == (STRLEN)-1)
+ Perl_croak(aTHX_ "Malformed UTF-8 character (fatal)");
+ if (c > 255 && OP(n) == ANYOFL && ! is_ANYOF_SYNTHETIC(n)) {
+ _CHECK_AND_OUTPUT_WIDE_LOCALE_CP_MSG(c);
+ }
+ }
+
+ /* If this character is potentially in the bitmap, check it */
+ if (c < NUM_ANYOF_CODE_POINTS) {
+ if (ANYOF_BITMAP_TEST(n, c))
+ match = TRUE;
+ else if ((flags & ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII)
+ && ! utf8_target
+ && ! isASCII(c))
+ {
+ match = TRUE;
+ }
+ else if (flags & ANYOF_LOCALE_FLAGS) {
+ if ((flags & ANYOF_LOC_FOLD)
+ && c < 256
+ && ANYOF_BITMAP_TEST(n, PL_fold_locale[c]))
+ {
+ match = TRUE;
+ }
+ else if (ANYOF_POSIXL_TEST_ANY_SET(n)
+ && c < 256
+ ) {
+
+ /* The data structure is arranged so bits 0, 2, 4, ... are set
+ * if the class includes the Posix character class given by
+ * bit/2; and 1, 3, 5, ... are set if the class includes the
+ * complemented Posix class given by int(bit/2). So we loop
+ * through the bits, each time changing whether we complement
+ * the result or not. Suppose for the sake of illustration
+ * that bits 0-3 mean respectively, \w, \W, \s, \S. If bit 0
+ * is set, it means there is a match for this ANYOF node if the
+ * character is in the class given by the expression (0 / 2 = 0
+ * = \w). If it is in that class, isFOO_lc() will return 1,
+ * and since 'to_complement' is 0, the result will stay TRUE,
+ * and we exit the loop. Suppose instead that bit 0 is 0, but
+ * bit 1 is 1. That means there is a match if the character
+ * matches \W. We won't bother to call isFOO_lc() on bit 0,
+ * but will on bit 1. On the second iteration 'to_complement'
+ * will be 1, so the exclusive or will reverse things, so we
+ * are testing for \W. On the third iteration, 'to_complement'
+ * will be 0, and we would be testing for \s; the fourth
+ * iteration would test for \S, etc.
+ *
+ * Note that this code assumes that all the classes are closed
+ * under folding. For example, if a character matches \w, then
+ * its fold does too; and vice versa. This should be true for
+ * any well-behaved locale for all the currently defined Posix
+ * classes, except for :lower: and :upper:, which are handled
+ * by the pseudo-class :cased: which matches if either of the
+ * other two does. To get rid of this assumption, an outer
+ * loop could be used below to iterate over both the source
+ * character, and its fold (if different) */
+
+ int count = 0;
+ int to_complement = 0;
+
+ while (count < ANYOF_MAX) {
+ if (ANYOF_POSIXL_TEST(n, count)
+ && to_complement ^ cBOOL(isFOO_lc(count/2, (U8) c)))
+ {
+ match = TRUE;
+ break;
+ }
+ count++;
+ to_complement ^= 1;
+ }
+ }
+ }
+ }
+
+
+ /* If the bitmap didn't (or couldn't) match, and something outside the
+ * bitmap could match, try that. */
+ if (!match) {
+ if (c >= NUM_ANYOF_CODE_POINTS
+ && (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP))
+ {
+ match = TRUE; /* Everything above the bitmap matches */
+ }
+ else if ((flags & ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES)
+ || (utf8_target && (flags & ANYOF_HAS_UTF8_NONBITMAP_MATCHES))
+ || ((flags & ANYOF_LOC_FOLD)
+ && IN_UTF8_CTYPE_LOCALE
+ && ARG(n) != ANYOF_ONLY_HAS_BITMAP))
+ {
+ SV* only_utf8_locale = NULL;
+ SV * const sw = _get_regclass_nonbitmap_data(prog, n, TRUE, 0,
+ &only_utf8_locale, NULL);
+ if (sw) {
+ U8 utf8_buffer[2];
+ U8 * utf8_p;
+ if (utf8_target) {
+ utf8_p = (U8 *) p;
+ } else { /* Convert to utf8 */
+ utf8_p = utf8_buffer;
+ append_utf8_from_native_byte(*p, &utf8_p);
+ utf8_p = utf8_buffer;
+ }
+
+ if (swash_fetch(sw, utf8_p, TRUE)) {
+ match = TRUE;
+ }
+ }
+ if (! match && only_utf8_locale && IN_UTF8_CTYPE_LOCALE) {
+ match = _invlist_contains_cp(only_utf8_locale, c);
+ }
+ }
+
+ if (UNICODE_IS_SUPER(c)
+ && (flags & ANYOF_WARN_SUPER)
+ && ckWARN_d(WARN_NON_UNICODE))
+ {
+ Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
+ "Matched non-Unicode code point 0x%04"UVXf" against Unicode property; may not be portable", c);
+ }
+ }
+
+#if ANYOF_INVERT != 1
+ /* Depending on compiler optimization cBOOL takes time, so if don't have to
+ * use it, don't */
+# error ANYOF_INVERT needs to be set to 1, or guarded with cBOOL below,
+#endif
+
+ /* The xor complements the return if to invert: 1^1 = 0, 1^0 = 1 */
+ return (flags & ANYOF_INVERT) ^ match;
+}
+
+STATIC U8 *
+S_reghop3(U8 *s, SSize_t off, const U8* lim)
+{
+ /* return the position 'off' UTF-8 characters away from 's', forward if
+ * 'off' >= 0, backwards if negative. But don't go outside of position
+ * 'lim', which better be < s if off < 0 */
+
+ PERL_ARGS_ASSERT_REGHOP3;
+
+ if (off >= 0) {
+ while (off-- && s < lim) {
+ /* XXX could check well-formedness here */
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ while (off++ && s > lim) {
+ s--;
+ if (UTF8_IS_CONTINUED(*s)) {
+ while (s > lim && UTF8_IS_CONTINUATION(*s))
+ s--;
+ }
+ /* XXX could check well-formedness here */
+ }
+ }
+ return s;
+}
+
+STATIC U8 *
+S_reghop4(U8 *s, SSize_t off, const U8* llim, const U8* rlim)
+{
+ PERL_ARGS_ASSERT_REGHOP4;
+
+ if (off >= 0) {
+ while (off-- && s < rlim) {
+ /* XXX could check well-formedness here */
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ while (off++ && s > llim) {
+ s--;
+ if (UTF8_IS_CONTINUED(*s)) {
+ while (s > llim && UTF8_IS_CONTINUATION(*s))
+ s--;
+ }
+ /* XXX could check well-formedness here */
+ }
+ }
+ return s;
+}
+
+/* like reghop3, but returns NULL on overrun, rather than returning last
+ * char pos */
+
+STATIC U8 *
+S_reghopmaybe3(U8* s, SSize_t off, const U8* lim)
+{
+ PERL_ARGS_ASSERT_REGHOPMAYBE3;
+
+ if (off >= 0) {
+ while (off-- && s < lim) {
+ /* XXX could check well-formedness here */
+ s += UTF8SKIP(s);
+ }
+ if (off >= 0)
+ return NULL;
+ }
+ else {
+ while (off++ && s > lim) {
+ s--;
+ if (UTF8_IS_CONTINUED(*s)) {
+ while (s > lim && UTF8_IS_CONTINUATION(*s))
+ s--;
+ }
+ /* XXX could check well-formedness here */
+ }
+ if (off <= 0)
+ return NULL;
+ }
+ return s;
+}
+
+
+/* when executing a regex that may have (?{}), extra stuff needs setting
+ up that will be visible to the called code, even before the current
+ match has finished. In particular:
+
+ * $_ is localised to the SV currently being matched;
+ * pos($_) is created if necessary, ready to be updated on each call-out
+ to code;
+ * a fake PMOP is created that can be set to PL_curpm (normally PL_curpm
+ isn't set until the current pattern is successfully finished), so that
+ $1 etc of the match-so-far can be seen;
+ * save the old values of subbeg etc of the current regex, and set then
+ to the current string (again, this is normally only done at the end
+ of execution)
+*/
+
+static void
+S_setup_eval_state(pTHX_ regmatch_info *const reginfo)
+{
+ MAGIC *mg;
+ regexp *const rex = ReANY(reginfo->prog);
+ regmatch_info_aux_eval *eval_state = reginfo->info_aux_eval;
+
+ eval_state->rex = rex;
+
+ if (reginfo->sv) {
+ /* Make $_ available to executed code. */
+ if (reginfo->sv != DEFSV) {
+ SAVE_DEFSV;
+ DEFSV_set(reginfo->sv);
+ }
+
+ if (!(mg = mg_find_mglob(reginfo->sv))) {
+ /* prepare for quick setting of pos */
+ mg = sv_magicext_mglob(reginfo->sv);
+ mg->mg_len = -1;
+ }
+ eval_state->pos_magic = mg;
+ eval_state->pos = mg->mg_len;
+ eval_state->pos_flags = mg->mg_flags;
+ }
+ else
+ eval_state->pos_magic = NULL;
+
+ if (!PL_reg_curpm) {
+ /* PL_reg_curpm is a fake PMOP that we can attach the current
+ * regex to and point PL_curpm at, so that $1 et al are visible
+ * within a /(?{})/. It's just allocated once per interpreter the
+ * first time its needed */
+ Newxz(PL_reg_curpm, 1, PMOP);
+#ifdef USE_ITHREADS
+ {
+ SV* const repointer = &PL_sv_undef;
+ /* this regexp is also owned by the new PL_reg_curpm, which
+ will try to free it. */
+ av_push(PL_regex_padav, repointer);
+ PL_reg_curpm->op_pmoffset = av_tindex(PL_regex_padav);
+ PL_regex_pad = AvARRAY(PL_regex_padav);
+ }
+#endif
+ }
+ SET_reg_curpm(reginfo->prog);
+ eval_state->curpm = PL_curpm;
+ PL_curpm = PL_reg_curpm;
+ if (RXp_MATCH_COPIED(rex)) {
+ /* Here is a serious problem: we cannot rewrite subbeg,
+ since it may be needed if this match fails. Thus
+ $` inside (?{}) could fail... */
+ eval_state->subbeg = rex->subbeg;
+ eval_state->sublen = rex->sublen;
+ eval_state->suboffset = rex->suboffset;
+ eval_state->subcoffset = rex->subcoffset;
+#ifdef PERL_ANY_COW
+ eval_state->saved_copy = rex->saved_copy;
+#endif
+ RXp_MATCH_COPIED_off(rex);
+ }
+ else
+ eval_state->subbeg = NULL;
+ rex->subbeg = (char *)reginfo->strbeg;
+ rex->suboffset = 0;
+ rex->subcoffset = 0;
+ rex->sublen = reginfo->strend - reginfo->strbeg;
+}
+
+
+/* destructor to clear up regmatch_info_aux and regmatch_info_aux_eval */
+
+static void
+S_cleanup_regmatch_info_aux(pTHX_ void *arg)
+{
+ regmatch_info_aux *aux = (regmatch_info_aux *) arg;
+ regmatch_info_aux_eval *eval_state = aux->info_aux_eval;
+ regmatch_slab *s;
+
+ Safefree(aux->poscache);
+
+ if (eval_state) {
+
+ /* undo the effects of S_setup_eval_state() */
+
+ if (eval_state->subbeg) {
+ regexp * const rex = eval_state->rex;
+ rex->subbeg = eval_state->subbeg;
+ rex->sublen = eval_state->sublen;
+ rex->suboffset = eval_state->suboffset;
+ rex->subcoffset = eval_state->subcoffset;
+#ifdef PERL_ANY_COW
+ rex->saved_copy = eval_state->saved_copy;
+#endif
+ RXp_MATCH_COPIED_on(rex);
+ }
+ if (eval_state->pos_magic)
+ {
+ eval_state->pos_magic->mg_len = eval_state->pos;
+ eval_state->pos_magic->mg_flags =
+ (eval_state->pos_magic->mg_flags & ~MGf_BYTES)
+ | (eval_state->pos_flags & MGf_BYTES);
+ }
+
+ PL_curpm = eval_state->curpm;
+ }
+
+ PL_regmatch_state = aux->old_regmatch_state;
+ PL_regmatch_slab = aux->old_regmatch_slab;
+
+ /* free all slabs above current one - this must be the last action
+ * of this function, as aux and eval_state are allocated within
+ * slabs and may be freed here */
+
+ s = PL_regmatch_slab->next;
+ if (s) {
+ PL_regmatch_slab->next = NULL;
+ while (s) {
+ regmatch_slab * const osl = s;
+ s = s->next;
+ Safefree(osl);
+ }
+ }
+}
+
+
+STATIC void
+S_to_utf8_substr(pTHX_ regexp *prog)
+{
+ /* Converts substr fields in prog from bytes to UTF-8, calling fbm_compile
+ * on the converted value */
+
+ int i = 1;
+
+ PERL_ARGS_ASSERT_TO_UTF8_SUBSTR;
+
+ do {
+ if (prog->substrs->data[i].substr
+ && !prog->substrs->data[i].utf8_substr) {
+ SV* const sv = newSVsv(prog->substrs->data[i].substr);
+ prog->substrs->data[i].utf8_substr = sv;
+ sv_utf8_upgrade(sv);
+ if (SvVALID(prog->substrs->data[i].substr)) {
+ if (SvTAIL(prog->substrs->data[i].substr)) {
+ /* Trim the trailing \n that fbm_compile added last
+ time. */
+ SvCUR_set(sv, SvCUR(sv) - 1);
+ /* Whilst this makes the SV technically "invalid" (as its
+ buffer is no longer followed by "\0") when fbm_compile()
+ adds the "\n" back, a "\0" is restored. */
+ fbm_compile(sv, FBMcf_TAIL);
+ } else
+ fbm_compile(sv, 0);
+ }
+ if (prog->substrs->data[i].substr == prog->check_substr)
+ prog->check_utf8 = sv;
+ }
+ } while (i--);
+}
+
+STATIC bool
+S_to_byte_substr(pTHX_ regexp *prog)
+{
+ /* Converts substr fields in prog from UTF-8 to bytes, calling fbm_compile
+ * on the converted value; returns FALSE if can't be converted. */
+
+ int i = 1;
+
+ PERL_ARGS_ASSERT_TO_BYTE_SUBSTR;
+
+ do {
+ if (prog->substrs->data[i].utf8_substr
+ && !prog->substrs->data[i].substr) {
+ SV* sv = newSVsv(prog->substrs->data[i].utf8_substr);
+ if (! sv_utf8_downgrade(sv, TRUE)) {
+ return FALSE;
+ }
+ if (SvVALID(prog->substrs->data[i].utf8_substr)) {
+ if (SvTAIL(prog->substrs->data[i].utf8_substr)) {
+ /* Trim the trailing \n that fbm_compile added last
+ time. */
+ SvCUR_set(sv, SvCUR(sv) - 1);
+ fbm_compile(sv, FBMcf_TAIL);
+ } else
+ fbm_compile(sv, 0);
+ }
+ prog->substrs->data[i].substr = sv;
+ if (prog->substrs->data[i].utf8_substr == prog->check_utf8)
+ prog->check_substr = sv;
+ }
+ } while (i--);
+
+ return TRUE;
+}
+
+/*
+ * ex: set ts=8 sts=4 sw=4 et:
+ */