5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
84 extern const struct regexp_engine my_reg_engine;
89 #include "dquote_static.c"
90 #include "charclass_invlists.h"
91 #include "inline_invlist.c"
92 #include "unicode_constants.h"
94 #define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
95 #define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
96 #define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
103 # if defined(BUGGY_MSC6)
104 /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
105 # pragma optimize("a",off)
106 /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
107 # pragma optimize("w",on )
108 # endif /* BUGGY_MSC6 */
112 #define STATIC static
116 typedef struct RExC_state_t {
117 U32 flags; /* RXf_* are we folding, multilining? */
118 U32 pm_flags; /* PMf_* stuff from the calling PMOP */
119 char *precomp; /* uncompiled string. */
120 REGEXP *rx_sv; /* The SV that is the regexp. */
121 regexp *rx; /* perl core regexp structure */
122 regexp_internal *rxi; /* internal data for regexp object pprivate field */
123 char *start; /* Start of input for compile */
124 char *end; /* End of input for compile */
125 char *parse; /* Input-scan pointer. */
126 I32 whilem_seen; /* number of WHILEM in this expr */
127 regnode *emit_start; /* Start of emitted-code area */
128 regnode *emit_bound; /* First regnode outside of the allocated space */
129 regnode *emit; /* Code-emit pointer; ®dummy = don't = compiling */
130 I32 naughty; /* How bad is this pattern? */
131 I32 sawback; /* Did we see \1, ...? */
133 I32 size; /* Code size. */
134 I32 npar; /* Capture buffer count, (OPEN). */
135 I32 cpar; /* Capture buffer count, (CLOSE). */
136 I32 nestroot; /* root parens we are in - used by accept */
139 regnode **open_parens; /* pointers to open parens */
140 regnode **close_parens; /* pointers to close parens */
141 regnode *opend; /* END node in program */
142 I32 utf8; /* whether the pattern is utf8 or not */
143 I32 orig_utf8; /* whether the pattern was originally in utf8 */
144 /* XXX use this for future optimisation of case
145 * where pattern must be upgraded to utf8. */
146 I32 uni_semantics; /* If a d charset modifier should use unicode
147 rules, even if the pattern is not in
149 HV *paren_names; /* Paren names */
151 regnode **recurse; /* Recurse regops */
152 I32 recurse_count; /* Number of recurse regops */
155 I32 override_recoding;
156 I32 in_multi_char_class;
157 struct reg_code_block *code_blocks; /* positions of literal (?{})
159 int num_code_blocks; /* size of code_blocks[] */
160 int code_index; /* next code_blocks[] slot */
162 char *starttry; /* -Dr: where regtry was called. */
163 #define RExC_starttry (pRExC_state->starttry)
165 SV *runtime_code_qr; /* qr with the runtime code blocks */
167 const char *lastparse;
169 AV *paren_name_list; /* idx -> name */
170 #define RExC_lastparse (pRExC_state->lastparse)
171 #define RExC_lastnum (pRExC_state->lastnum)
172 #define RExC_paren_name_list (pRExC_state->paren_name_list)
176 #define RExC_flags (pRExC_state->flags)
177 #define RExC_pm_flags (pRExC_state->pm_flags)
178 #define RExC_precomp (pRExC_state->precomp)
179 #define RExC_rx_sv (pRExC_state->rx_sv)
180 #define RExC_rx (pRExC_state->rx)
181 #define RExC_rxi (pRExC_state->rxi)
182 #define RExC_start (pRExC_state->start)
183 #define RExC_end (pRExC_state->end)
184 #define RExC_parse (pRExC_state->parse)
185 #define RExC_whilem_seen (pRExC_state->whilem_seen)
186 #ifdef RE_TRACK_PATTERN_OFFSETS
187 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */
189 #define RExC_emit (pRExC_state->emit)
190 #define RExC_emit_start (pRExC_state->emit_start)
191 #define RExC_emit_bound (pRExC_state->emit_bound)
192 #define RExC_naughty (pRExC_state->naughty)
193 #define RExC_sawback (pRExC_state->sawback)
194 #define RExC_seen (pRExC_state->seen)
195 #define RExC_size (pRExC_state->size)
196 #define RExC_npar (pRExC_state->npar)
197 #define RExC_nestroot (pRExC_state->nestroot)
198 #define RExC_extralen (pRExC_state->extralen)
199 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
200 #define RExC_utf8 (pRExC_state->utf8)
201 #define RExC_uni_semantics (pRExC_state->uni_semantics)
202 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
203 #define RExC_open_parens (pRExC_state->open_parens)
204 #define RExC_close_parens (pRExC_state->close_parens)
205 #define RExC_opend (pRExC_state->opend)
206 #define RExC_paren_names (pRExC_state->paren_names)
207 #define RExC_recurse (pRExC_state->recurse)
208 #define RExC_recurse_count (pRExC_state->recurse_count)
209 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
210 #define RExC_contains_locale (pRExC_state->contains_locale)
211 #define RExC_override_recoding (pRExC_state->override_recoding)
212 #define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
215 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
216 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
217 ((*s) == '{' && regcurly(s, FALSE)))
220 #undef SPSTART /* dratted cpp namespace... */
223 * Flags to be passed up and down.
225 #define WORST 0 /* Worst case. */
226 #define HASWIDTH 0x01 /* Known to match non-null strings. */
228 /* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
229 * character. (There needs to be a case: in the switch statement in regexec.c
230 * for any node marked SIMPLE.) Note that this is not the same thing as
233 #define SPSTART 0x04 /* Starts with * or + */
234 #define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
235 #define TRYAGAIN 0x10 /* Weeded out a declaration. */
236 #define RESTART_UTF8 0x20 /* Restart, need to calcuate sizes as UTF-8 */
238 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
240 /* whether trie related optimizations are enabled */
241 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
242 #define TRIE_STUDY_OPT
243 #define FULL_TRIE_STUDY
249 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
250 #define PBITVAL(paren) (1 << ((paren) & 7))
251 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
252 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
253 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
255 #define REQUIRE_UTF8 STMT_START { \
257 *flagp = RESTART_UTF8; \
262 /* This converts the named class defined in regcomp.h to its equivalent class
263 * number defined in handy.h. */
264 #define namedclass_to_classnum(class) ((int) ((class) / 2))
265 #define classnum_to_namedclass(classnum) ((classnum) * 2)
267 /* About scan_data_t.
269 During optimisation we recurse through the regexp program performing
270 various inplace (keyhole style) optimisations. In addition study_chunk
271 and scan_commit populate this data structure with information about
272 what strings MUST appear in the pattern. We look for the longest
273 string that must appear at a fixed location, and we look for the
274 longest string that may appear at a floating location. So for instance
279 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
280 strings (because they follow a .* construct). study_chunk will identify
281 both FOO and BAR as being the longest fixed and floating strings respectively.
283 The strings can be composites, for instance
287 will result in a composite fixed substring 'foo'.
289 For each string some basic information is maintained:
291 - offset or min_offset
292 This is the position the string must appear at, or not before.
293 It also implicitly (when combined with minlenp) tells us how many
294 characters must match before the string we are searching for.
295 Likewise when combined with minlenp and the length of the string it
296 tells us how many characters must appear after the string we have
300 Only used for floating strings. This is the rightmost point that
301 the string can appear at. If set to I32 max it indicates that the
302 string can occur infinitely far to the right.
305 A pointer to the minimum number of characters of the pattern that the
306 string was found inside. This is important as in the case of positive
307 lookahead or positive lookbehind we can have multiple patterns
312 The minimum length of the pattern overall is 3, the minimum length
313 of the lookahead part is 3, but the minimum length of the part that
314 will actually match is 1. So 'FOO's minimum length is 3, but the
315 minimum length for the F is 1. This is important as the minimum length
316 is used to determine offsets in front of and behind the string being
317 looked for. Since strings can be composites this is the length of the
318 pattern at the time it was committed with a scan_commit. Note that
319 the length is calculated by study_chunk, so that the minimum lengths
320 are not known until the full pattern has been compiled, thus the
321 pointer to the value.
325 In the case of lookbehind the string being searched for can be
326 offset past the start point of the final matching string.
327 If this value was just blithely removed from the min_offset it would
328 invalidate some of the calculations for how many chars must match
329 before or after (as they are derived from min_offset and minlen and
330 the length of the string being searched for).
331 When the final pattern is compiled and the data is moved from the
332 scan_data_t structure into the regexp structure the information
333 about lookbehind is factored in, with the information that would
334 have been lost precalculated in the end_shift field for the
337 The fields pos_min and pos_delta are used to store the minimum offset
338 and the delta to the maximum offset at the current point in the pattern.
342 typedef struct scan_data_t {
343 /*I32 len_min; unused */
344 /*I32 len_delta; unused */
348 I32 last_end; /* min value, <0 unless valid. */
351 SV **longest; /* Either &l_fixed, or &l_float. */
352 SV *longest_fixed; /* longest fixed string found in pattern */
353 I32 offset_fixed; /* offset where it starts */
354 I32 *minlen_fixed; /* pointer to the minlen relevant to the string */
355 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
356 SV *longest_float; /* longest floating string found in pattern */
357 I32 offset_float_min; /* earliest point in string it can appear */
358 I32 offset_float_max; /* latest point in string it can appear */
359 I32 *minlen_float; /* pointer to the minlen relevant to the string */
360 I32 lookbehind_float; /* is the position of the string modified by LB */
364 struct regnode_charclass_class *start_class;
368 * Forward declarations for pregcomp()'s friends.
371 static const scan_data_t zero_scan_data =
372 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
374 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
375 #define SF_BEFORE_SEOL 0x0001
376 #define SF_BEFORE_MEOL 0x0002
377 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
378 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
381 # define SF_FIX_SHIFT_EOL (0+2)
382 # define SF_FL_SHIFT_EOL (0+4)
384 # define SF_FIX_SHIFT_EOL (+2)
385 # define SF_FL_SHIFT_EOL (+4)
388 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
389 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
391 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
392 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
393 #define SF_IS_INF 0x0040
394 #define SF_HAS_PAR 0x0080
395 #define SF_IN_PAR 0x0100
396 #define SF_HAS_EVAL 0x0200
397 #define SCF_DO_SUBSTR 0x0400
398 #define SCF_DO_STCLASS_AND 0x0800
399 #define SCF_DO_STCLASS_OR 0x1000
400 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
401 #define SCF_WHILEM_VISITED_POS 0x2000
403 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
404 #define SCF_SEEN_ACCEPT 0x8000
406 #define UTF cBOOL(RExC_utf8)
408 /* The enums for all these are ordered so things work out correctly */
409 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
410 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_DEPENDS_CHARSET)
411 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
412 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) >= REGEX_UNICODE_CHARSET)
413 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_RESTRICTED_CHARSET)
414 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) >= REGEX_ASCII_RESTRICTED_CHARSET)
415 #define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
417 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
419 #define OOB_NAMEDCLASS -1
421 /* There is no code point that is out-of-bounds, so this is problematic. But
422 * its only current use is to initialize a variable that is always set before
424 #define OOB_UNICODE 0xDEADBEEF
426 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
427 #define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
430 /* length of regex to show in messages that don't mark a position within */
431 #define RegexLengthToShowInErrorMessages 127
434 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
435 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
436 * op/pragma/warn/regcomp.
438 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
439 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
441 #define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
444 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
445 * arg. Show regex, up to a maximum length. If it's too long, chop and add
448 #define _FAIL(code) STMT_START { \
449 const char *ellipses = ""; \
450 IV len = RExC_end - RExC_precomp; \
453 SAVEFREESV(RExC_rx_sv); \
454 if (len > RegexLengthToShowInErrorMessages) { \
455 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
456 len = RegexLengthToShowInErrorMessages - 10; \
462 #define FAIL(msg) _FAIL( \
463 Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \
464 msg, (int)len, RExC_precomp, ellipses))
466 #define FAIL2(msg,arg) _FAIL( \
467 Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \
468 arg, (int)len, RExC_precomp, ellipses))
471 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
473 #define Simple_vFAIL(m) STMT_START { \
474 const IV offset = RExC_parse - RExC_precomp; \
475 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
476 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
480 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
482 #define vFAIL(m) STMT_START { \
484 SAVEFREESV(RExC_rx_sv); \
489 * Like Simple_vFAIL(), but accepts two arguments.
491 #define Simple_vFAIL2(m,a1) STMT_START { \
492 const IV offset = RExC_parse - RExC_precomp; \
493 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \
494 (int)offset, RExC_precomp, RExC_precomp + offset); \
498 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
500 #define vFAIL2(m,a1) STMT_START { \
502 SAVEFREESV(RExC_rx_sv); \
503 Simple_vFAIL2(m, a1); \
508 * Like Simple_vFAIL(), but accepts three arguments.
510 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
511 const IV offset = RExC_parse - RExC_precomp; \
512 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \
513 (int)offset, RExC_precomp, RExC_precomp + offset); \
517 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
519 #define vFAIL3(m,a1,a2) STMT_START { \
521 SAVEFREESV(RExC_rx_sv); \
522 Simple_vFAIL3(m, a1, a2); \
526 * Like Simple_vFAIL(), but accepts four arguments.
528 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
529 const IV offset = RExC_parse - RExC_precomp; \
530 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \
531 (int)offset, RExC_precomp, RExC_precomp + offset); \
534 #define vFAIL4(m,a1,a2,a3) STMT_START { \
536 SAVEFREESV(RExC_rx_sv); \
537 Simple_vFAIL4(m, a1, a2, a3); \
540 /* m is not necessarily a "literal string", in this macro */
541 #define reg_warn_non_literal_string(loc, m) STMT_START { \
542 const IV offset = loc - RExC_precomp; \
543 Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s" REPORT_LOCATION, \
544 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
547 #define ckWARNreg(loc,m) STMT_START { \
548 const IV offset = loc - RExC_precomp; \
549 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
550 (int)offset, RExC_precomp, RExC_precomp + offset); \
553 #define vWARN_dep(loc, m) STMT_START { \
554 const IV offset = loc - RExC_precomp; \
555 Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), m REPORT_LOCATION, \
556 (int)offset, RExC_precomp, RExC_precomp + offset); \
559 #define ckWARNdep(loc,m) STMT_START { \
560 const IV offset = loc - RExC_precomp; \
561 Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
563 (int)offset, RExC_precomp, RExC_precomp + offset); \
566 #define ckWARNregdep(loc,m) STMT_START { \
567 const IV offset = loc - RExC_precomp; \
568 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
570 (int)offset, RExC_precomp, RExC_precomp + offset); \
573 #define ckWARN2regdep(loc,m, a1) STMT_START { \
574 const IV offset = loc - RExC_precomp; \
575 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
577 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
580 #define ckWARN2reg(loc, m, a1) STMT_START { \
581 const IV offset = loc - RExC_precomp; \
582 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
583 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
586 #define vWARN3(loc, m, a1, a2) STMT_START { \
587 const IV offset = loc - RExC_precomp; \
588 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
589 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
592 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
593 const IV offset = loc - RExC_precomp; \
594 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
595 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
598 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
599 const IV offset = loc - RExC_precomp; \
600 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
601 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
604 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
605 const IV offset = loc - RExC_precomp; \
606 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
607 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
610 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
611 const IV offset = loc - RExC_precomp; \
612 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
613 a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
617 /* Allow for side effects in s */
618 #define REGC(c,s) STMT_START { \
619 if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
622 /* Macros for recording node offsets. 20001227 mjd@plover.com
623 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
624 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
625 * Element 0 holds the number n.
626 * Position is 1 indexed.
628 #ifndef RE_TRACK_PATTERN_OFFSETS
629 #define Set_Node_Offset_To_R(node,byte)
630 #define Set_Node_Offset(node,byte)
631 #define Set_Cur_Node_Offset
632 #define Set_Node_Length_To_R(node,len)
633 #define Set_Node_Length(node,len)
634 #define Set_Node_Cur_Length(node)
635 #define Node_Offset(n)
636 #define Node_Length(n)
637 #define Set_Node_Offset_Length(node,offset,len)
638 #define ProgLen(ri) ri->u.proglen
639 #define SetProgLen(ri,x) ri->u.proglen = x
641 #define ProgLen(ri) ri->u.offsets[0]
642 #define SetProgLen(ri,x) ri->u.offsets[0] = x
643 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
645 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
646 __LINE__, (int)(node), (int)(byte))); \
648 Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
650 RExC_offsets[2*(node)-1] = (byte); \
655 #define Set_Node_Offset(node,byte) \
656 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
657 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
659 #define Set_Node_Length_To_R(node,len) STMT_START { \
661 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
662 __LINE__, (int)(node), (int)(len))); \
664 Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
666 RExC_offsets[2*(node)] = (len); \
671 #define Set_Node_Length(node,len) \
672 Set_Node_Length_To_R((node)-RExC_emit_start, len)
673 #define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len)
674 #define Set_Node_Cur_Length(node) \
675 Set_Node_Length(node, RExC_parse - parse_start)
677 /* Get offsets and lengths */
678 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
679 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
681 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
682 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
683 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
687 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
688 #define EXPERIMENTAL_INPLACESCAN
689 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
691 #define DEBUG_STUDYDATA(str,data,depth) \
692 DEBUG_OPTIMISE_MORE_r(if(data){ \
693 PerlIO_printf(Perl_debug_log, \
694 "%*s" str "Pos:%"IVdf"/%"IVdf \
695 " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
696 (int)(depth)*2, "", \
697 (IV)((data)->pos_min), \
698 (IV)((data)->pos_delta), \
699 (UV)((data)->flags), \
700 (IV)((data)->whilem_c), \
701 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
702 is_inf ? "INF " : "" \
704 if ((data)->last_found) \
705 PerlIO_printf(Perl_debug_log, \
706 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
707 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
708 SvPVX_const((data)->last_found), \
709 (IV)((data)->last_end), \
710 (IV)((data)->last_start_min), \
711 (IV)((data)->last_start_max), \
712 ((data)->longest && \
713 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
714 SvPVX_const((data)->longest_fixed), \
715 (IV)((data)->offset_fixed), \
716 ((data)->longest && \
717 (data)->longest==&((data)->longest_float)) ? "*" : "", \
718 SvPVX_const((data)->longest_float), \
719 (IV)((data)->offset_float_min), \
720 (IV)((data)->offset_float_max) \
722 PerlIO_printf(Perl_debug_log,"\n"); \
725 /* Mark that we cannot extend a found fixed substring at this point.
726 Update the longest found anchored substring and the longest found
727 floating substrings if needed. */
730 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf)
732 const STRLEN l = CHR_SVLEN(data->last_found);
733 const STRLEN old_l = CHR_SVLEN(*data->longest);
734 GET_RE_DEBUG_FLAGS_DECL;
736 PERL_ARGS_ASSERT_SCAN_COMMIT;
738 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
739 SvSetMagicSV(*data->longest, data->last_found);
740 if (*data->longest == data->longest_fixed) {
741 data->offset_fixed = l ? data->last_start_min : data->pos_min;
742 if (data->flags & SF_BEFORE_EOL)
744 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
746 data->flags &= ~SF_FIX_BEFORE_EOL;
747 data->minlen_fixed=minlenp;
748 data->lookbehind_fixed=0;
750 else { /* *data->longest == data->longest_float */
751 data->offset_float_min = l ? data->last_start_min : data->pos_min;
752 data->offset_float_max = (l
753 ? data->last_start_max
754 : (data->pos_delta == I32_MAX ? I32_MAX : data->pos_min + data->pos_delta));
755 if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX)
756 data->offset_float_max = I32_MAX;
757 if (data->flags & SF_BEFORE_EOL)
759 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
761 data->flags &= ~SF_FL_BEFORE_EOL;
762 data->minlen_float=minlenp;
763 data->lookbehind_float=0;
766 SvCUR_set(data->last_found, 0);
768 SV * const sv = data->last_found;
769 if (SvUTF8(sv) && SvMAGICAL(sv)) {
770 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
776 data->flags &= ~SF_BEFORE_EOL;
777 DEBUG_STUDYDATA("commit: ",data,0);
780 /* These macros set, clear and test whether the synthetic start class ('ssc',
781 * given by the parameter) matches an empty string (EOS). This uses the
782 * 'next_off' field in the node, to save a bit in the flags field. The ssc
783 * stands alone, so there is never a next_off, so this field is otherwise
784 * unused. The EOS information is used only for compilation, but theoretically
785 * it could be passed on to the execution code. This could be used to store
786 * more than one bit of information, but only this one is currently used. */
787 #define SET_SSC_EOS(node) STMT_START { (node)->next_off = TRUE; } STMT_END
788 #define CLEAR_SSC_EOS(node) STMT_START { (node)->next_off = FALSE; } STMT_END
789 #define TEST_SSC_EOS(node) cBOOL((node)->next_off)
791 /* Can match anything (initialization) */
793 S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
795 PERL_ARGS_ASSERT_CL_ANYTHING;
797 ANYOF_BITMAP_SETALL(cl);
798 cl->flags = ANYOF_UNICODE_ALL;
801 /* If any portion of the regex is to operate under locale rules,
802 * initialization includes it. The reason this isn't done for all regexes
803 * is that the optimizer was written under the assumption that locale was
804 * all-or-nothing. Given the complexity and lack of documentation in the
805 * optimizer, and that there are inadequate test cases for locale, so many
806 * parts of it may not work properly, it is safest to avoid locale unless
808 if (RExC_contains_locale) {
809 ANYOF_CLASS_SETALL(cl); /* /l uses class */
810 cl->flags |= ANYOF_LOCALE|ANYOF_CLASS|ANYOF_LOC_FOLD;
813 ANYOF_CLASS_ZERO(cl); /* Only /l uses class now */
817 /* Can match anything (initialization) */
819 S_cl_is_anything(const struct regnode_charclass_class *cl)
823 PERL_ARGS_ASSERT_CL_IS_ANYTHING;
825 for (value = 0; value < ANYOF_MAX; value += 2)
826 if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
828 if (!(cl->flags & ANYOF_UNICODE_ALL))
830 if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
835 /* Can match anything (initialization) */
837 S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
839 PERL_ARGS_ASSERT_CL_INIT;
841 Zero(cl, 1, struct regnode_charclass_class);
843 cl_anything(pRExC_state, cl);
844 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
847 /* These two functions currently do the exact same thing */
848 #define cl_init_zero S_cl_init
850 /* 'AND' a given class with another one. Can create false positives. 'cl'
851 * should not be inverted. 'and_with->flags & ANYOF_CLASS' should be 0 if
852 * 'and_with' is a regnode_charclass instead of a regnode_charclass_class. */
854 S_cl_and(struct regnode_charclass_class *cl,
855 const struct regnode_charclass_class *and_with)
857 PERL_ARGS_ASSERT_CL_AND;
859 assert(PL_regkind[and_with->type] == ANYOF);
861 /* I (khw) am not sure all these restrictions are necessary XXX */
862 if (!(ANYOF_CLASS_TEST_ANY_SET(and_with))
863 && !(ANYOF_CLASS_TEST_ANY_SET(cl))
864 && (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
865 && !(and_with->flags & ANYOF_LOC_FOLD)
866 && !(cl->flags & ANYOF_LOC_FOLD)) {
869 if (and_with->flags & ANYOF_INVERT)
870 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
871 cl->bitmap[i] &= ~and_with->bitmap[i];
873 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
874 cl->bitmap[i] &= and_with->bitmap[i];
875 } /* XXXX: logic is complicated otherwise, leave it along for a moment. */
877 if (and_with->flags & ANYOF_INVERT) {
879 /* Here, the and'ed node is inverted. Get the AND of the flags that
880 * aren't affected by the inversion. Those that are affected are
881 * handled individually below */
882 U8 affected_flags = cl->flags & ~INVERSION_UNAFFECTED_FLAGS;
883 cl->flags &= (and_with->flags & INVERSION_UNAFFECTED_FLAGS);
884 cl->flags |= affected_flags;
886 /* We currently don't know how to deal with things that aren't in the
887 * bitmap, but we know that the intersection is no greater than what
888 * is already in cl, so let there be false positives that get sorted
889 * out after the synthetic start class succeeds, and the node is
890 * matched for real. */
892 /* The inversion of these two flags indicate that the resulting
893 * intersection doesn't have them */
894 if (and_with->flags & ANYOF_UNICODE_ALL) {
895 cl->flags &= ~ANYOF_UNICODE_ALL;
897 if (and_with->flags & ANYOF_NON_UTF8_LATIN1_ALL) {
898 cl->flags &= ~ANYOF_NON_UTF8_LATIN1_ALL;
901 else { /* and'd node is not inverted */
902 U8 outside_bitmap_but_not_utf8; /* Temp variable */
904 if (! ANYOF_NONBITMAP(and_with)) {
906 /* Here 'and_with' doesn't match anything outside the bitmap
907 * (except possibly ANYOF_UNICODE_ALL), which means the
908 * intersection can't either, except for ANYOF_UNICODE_ALL, in
909 * which case we don't know what the intersection is, but it's no
910 * greater than what cl already has, so can just leave it alone,
911 * with possible false positives */
912 if (! (and_with->flags & ANYOF_UNICODE_ALL)) {
913 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
914 cl->flags &= ~ANYOF_NONBITMAP_NON_UTF8;
917 else if (! ANYOF_NONBITMAP(cl)) {
919 /* Here, 'and_with' does match something outside the bitmap, and cl
920 * doesn't have a list of things to match outside the bitmap. If
921 * cl can match all code points above 255, the intersection will
922 * be those above-255 code points that 'and_with' matches. If cl
923 * can't match all Unicode code points, it means that it can't
924 * match anything outside the bitmap (since the 'if' that got us
925 * into this block tested for that), so we leave the bitmap empty.
927 if (cl->flags & ANYOF_UNICODE_ALL) {
928 ARG_SET(cl, ARG(and_with));
930 /* and_with's ARG may match things that don't require UTF8.
931 * And now cl's will too, in spite of this being an 'and'. See
932 * the comments below about the kludge */
933 cl->flags |= and_with->flags & ANYOF_NONBITMAP_NON_UTF8;
937 /* Here, both 'and_with' and cl match something outside the
938 * bitmap. Currently we do not do the intersection, so just match
939 * whatever cl had at the beginning. */
943 /* Take the intersection of the two sets of flags. However, the
944 * ANYOF_NONBITMAP_NON_UTF8 flag is treated as an 'or'. This is a
945 * kludge around the fact that this flag is not treated like the others
946 * which are initialized in cl_anything(). The way the optimizer works
947 * is that the synthetic start class (SSC) is initialized to match
948 * anything, and then the first time a real node is encountered, its
949 * values are AND'd with the SSC's with the result being the values of
950 * the real node. However, there are paths through the optimizer where
951 * the AND never gets called, so those initialized bits are set
952 * inappropriately, which is not usually a big deal, as they just cause
953 * false positives in the SSC, which will just mean a probably
954 * imperceptible slow down in execution. However this bit has a
955 * higher false positive consequence in that it can cause utf8.pm,
956 * utf8_heavy.pl ... to be loaded when not necessary, which is a much
957 * bigger slowdown and also causes significant extra memory to be used.
958 * In order to prevent this, the code now takes a different tack. The
959 * bit isn't set unless some part of the regular expression needs it,
960 * but once set it won't get cleared. This means that these extra
961 * modules won't get loaded unless there was some path through the
962 * pattern that would have required them anyway, and so any false
963 * positives that occur by not ANDing them out when they could be
964 * aren't as severe as they would be if we treated this bit like all
966 outside_bitmap_but_not_utf8 = (cl->flags | and_with->flags)
967 & ANYOF_NONBITMAP_NON_UTF8;
968 cl->flags &= and_with->flags;
969 cl->flags |= outside_bitmap_but_not_utf8;
973 /* 'OR' a given class with another one. Can create false positives. 'cl'
974 * should not be inverted. 'or_with->flags & ANYOF_CLASS' should be 0 if
975 * 'or_with' is a regnode_charclass instead of a regnode_charclass_class. */
977 S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
979 PERL_ARGS_ASSERT_CL_OR;
981 if (or_with->flags & ANYOF_INVERT) {
983 /* Here, the or'd node is to be inverted. This means we take the
984 * complement of everything not in the bitmap, but currently we don't
985 * know what that is, so give up and match anything */
986 if (ANYOF_NONBITMAP(or_with)) {
987 cl_anything(pRExC_state, cl);
990 * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
991 * <= (B1 | !B2) | (CL1 | !CL2)
992 * which is wasteful if CL2 is small, but we ignore CL2:
993 * (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
994 * XXXX Can we handle case-fold? Unclear:
995 * (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
996 * (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
998 else if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
999 && !(or_with->flags & ANYOF_LOC_FOLD)
1000 && !(cl->flags & ANYOF_LOC_FOLD) ) {
1003 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
1004 cl->bitmap[i] |= ~or_with->bitmap[i];
1005 } /* XXXX: logic is complicated otherwise */
1007 cl_anything(pRExC_state, cl);
1010 /* And, we can just take the union of the flags that aren't affected
1011 * by the inversion */
1012 cl->flags |= or_with->flags & INVERSION_UNAFFECTED_FLAGS;
1014 /* For the remaining flags:
1015 ANYOF_UNICODE_ALL and inverted means to not match anything above
1016 255, which means that the union with cl should just be
1017 what cl has in it, so can ignore this flag
1018 ANYOF_NON_UTF8_LATIN1_ALL and inverted means if not utf8 and ord
1019 is 127-255 to match them, but then invert that, so the
1020 union with cl should just be what cl has in it, so can
1023 } else { /* 'or_with' is not inverted */
1024 /* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
1025 if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
1026 && (!(or_with->flags & ANYOF_LOC_FOLD)
1027 || (cl->flags & ANYOF_LOC_FOLD)) ) {
1030 /* OR char bitmap and class bitmap separately */
1031 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
1032 cl->bitmap[i] |= or_with->bitmap[i];
1033 if (or_with->flags & ANYOF_CLASS) {
1034 ANYOF_CLASS_OR(or_with, cl);
1037 else { /* XXXX: logic is complicated, leave it along for a moment. */
1038 cl_anything(pRExC_state, cl);
1041 if (ANYOF_NONBITMAP(or_with)) {
1043 /* Use the added node's outside-the-bit-map match if there isn't a
1044 * conflict. If there is a conflict (both nodes match something
1045 * outside the bitmap, but what they match outside is not the same
1046 * pointer, and hence not easily compared until XXX we extend
1047 * inversion lists this far), give up and allow the start class to
1048 * match everything outside the bitmap. If that stuff is all above
1049 * 255, can just set UNICODE_ALL, otherwise caould be anything. */
1050 if (! ANYOF_NONBITMAP(cl)) {
1051 ARG_SET(cl, ARG(or_with));
1053 else if (ARG(cl) != ARG(or_with)) {
1055 if ((or_with->flags & ANYOF_NONBITMAP_NON_UTF8)) {
1056 cl_anything(pRExC_state, cl);
1059 cl->flags |= ANYOF_UNICODE_ALL;
1064 /* Take the union */
1065 cl->flags |= or_with->flags;
1069 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1070 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1071 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1072 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
1077 dump_trie(trie,widecharmap,revcharmap)
1078 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1079 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1081 These routines dump out a trie in a somewhat readable format.
1082 The _interim_ variants are used for debugging the interim
1083 tables that are used to generate the final compressed
1084 representation which is what dump_trie expects.
1086 Part of the reason for their existence is to provide a form
1087 of documentation as to how the different representations function.
1092 Dumps the final compressed table form of the trie to Perl_debug_log.
1093 Used for debugging make_trie().
1097 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1098 AV *revcharmap, U32 depth)
1101 SV *sv=sv_newmortal();
1102 int colwidth= widecharmap ? 6 : 4;
1104 GET_RE_DEBUG_FLAGS_DECL;
1106 PERL_ARGS_ASSERT_DUMP_TRIE;
1108 PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
1109 (int)depth * 2 + 2,"",
1110 "Match","Base","Ofs" );
1112 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1113 SV ** const tmp = av_fetch( revcharmap, state, 0);
1115 PerlIO_printf( Perl_debug_log, "%*s",
1117 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1118 PL_colors[0], PL_colors[1],
1119 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1120 PERL_PV_ESCAPE_FIRSTCHAR
1125 PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
1126 (int)depth * 2 + 2,"");
1128 for( state = 0 ; state < trie->uniquecharcount ; state++ )
1129 PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
1130 PerlIO_printf( Perl_debug_log, "\n");
1132 for( state = 1 ; state < trie->statecount ; state++ ) {
1133 const U32 base = trie->states[ state ].trans.base;
1135 PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
1137 if ( trie->states[ state ].wordnum ) {
1138 PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
1140 PerlIO_printf( Perl_debug_log, "%6s", "" );
1143 PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
1148 while( ( base + ofs < trie->uniquecharcount ) ||
1149 ( base + ofs - trie->uniquecharcount < trie->lasttrans
1150 && trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
1153 PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
1155 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
1156 if ( ( base + ofs >= trie->uniquecharcount ) &&
1157 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
1158 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
1160 PerlIO_printf( Perl_debug_log, "%*"UVXf,
1162 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
1164 PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
1168 PerlIO_printf( Perl_debug_log, "]");
1171 PerlIO_printf( Perl_debug_log, "\n" );
1173 PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=", (int)depth*2, "");
1174 for (word=1; word <= trie->wordcount; word++) {
1175 PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
1176 (int)word, (int)(trie->wordinfo[word].prev),
1177 (int)(trie->wordinfo[word].len));
1179 PerlIO_printf(Perl_debug_log, "\n" );
1182 Dumps a fully constructed but uncompressed trie in list form.
1183 List tries normally only are used for construction when the number of
1184 possible chars (trie->uniquecharcount) is very high.
1185 Used for debugging make_trie().
1188 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
1189 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1193 SV *sv=sv_newmortal();
1194 int colwidth= widecharmap ? 6 : 4;
1195 GET_RE_DEBUG_FLAGS_DECL;
1197 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
1199 /* print out the table precompression. */
1200 PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
1201 (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
1202 "------:-----+-----------------\n" );
1204 for( state=1 ; state < next_alloc ; state ++ ) {
1207 PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
1208 (int)depth * 2 + 2,"", (UV)state );
1209 if ( ! trie->states[ state ].wordnum ) {
1210 PerlIO_printf( Perl_debug_log, "%5s| ","");
1212 PerlIO_printf( Perl_debug_log, "W%4x| ",
1213 trie->states[ state ].wordnum
1216 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
1217 SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
1219 PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
1221 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1222 PL_colors[0], PL_colors[1],
1223 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1224 PERL_PV_ESCAPE_FIRSTCHAR
1226 TRIE_LIST_ITEM(state,charid).forid,
1227 (UV)TRIE_LIST_ITEM(state,charid).newstate
1230 PerlIO_printf(Perl_debug_log, "\n%*s| ",
1231 (int)((depth * 2) + 14), "");
1234 PerlIO_printf( Perl_debug_log, "\n");
1239 Dumps a fully constructed but uncompressed trie in table form.
1240 This is the normal DFA style state transition table, with a few
1241 twists to facilitate compression later.
1242 Used for debugging make_trie().
1245 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
1246 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1251 SV *sv=sv_newmortal();
1252 int colwidth= widecharmap ? 6 : 4;
1253 GET_RE_DEBUG_FLAGS_DECL;
1255 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
1258 print out the table precompression so that we can do a visual check
1259 that they are identical.
1262 PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
1264 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1265 SV ** const tmp = av_fetch( revcharmap, charid, 0);
1267 PerlIO_printf( Perl_debug_log, "%*s",
1269 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1270 PL_colors[0], PL_colors[1],
1271 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1272 PERL_PV_ESCAPE_FIRSTCHAR
1278 PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
1280 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
1281 PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
1284 PerlIO_printf( Perl_debug_log, "\n" );
1286 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
1288 PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
1289 (int)depth * 2 + 2,"",
1290 (UV)TRIE_NODENUM( state ) );
1292 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1293 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
1295 PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
1297 PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
1299 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
1300 PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
1302 PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
1303 trie->states[ TRIE_NODENUM( state ) ].wordnum );
1311 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
1312 startbranch: the first branch in the whole branch sequence
1313 first : start branch of sequence of branch-exact nodes.
1314 May be the same as startbranch
1315 last : Thing following the last branch.
1316 May be the same as tail.
1317 tail : item following the branch sequence
1318 count : words in the sequence
1319 flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
1320 depth : indent depth
1322 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
1324 A trie is an N'ary tree where the branches are determined by digital
1325 decomposition of the key. IE, at the root node you look up the 1st character and
1326 follow that branch repeat until you find the end of the branches. Nodes can be
1327 marked as "accepting" meaning they represent a complete word. Eg:
1331 would convert into the following structure. Numbers represent states, letters
1332 following numbers represent valid transitions on the letter from that state, if
1333 the number is in square brackets it represents an accepting state, otherwise it
1334 will be in parenthesis.
1336 +-h->+-e->[3]-+-r->(8)-+-s->[9]
1340 (1) +-i->(6)-+-s->[7]
1342 +-s->(3)-+-h->(4)-+-e->[5]
1344 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
1346 This shows that when matching against the string 'hers' we will begin at state 1
1347 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
1348 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
1349 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
1350 single traverse. We store a mapping from accepting to state to which word was
1351 matched, and then when we have multiple possibilities we try to complete the
1352 rest of the regex in the order in which they occured in the alternation.
1354 The only prior NFA like behaviour that would be changed by the TRIE support is
1355 the silent ignoring of duplicate alternations which are of the form:
1357 / (DUPE|DUPE) X? (?{ ... }) Y /x
1359 Thus EVAL blocks following a trie may be called a different number of times with
1360 and without the optimisation. With the optimisations dupes will be silently
1361 ignored. This inconsistent behaviour of EVAL type nodes is well established as
1362 the following demonstrates:
1364 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
1366 which prints out 'word' three times, but
1368 'words'=~/(word|word|word)(?{ print $1 })S/
1370 which doesnt print it out at all. This is due to other optimisations kicking in.
1372 Example of what happens on a structural level:
1374 The regexp /(ac|ad|ab)+/ will produce the following debug output:
1376 1: CURLYM[1] {1,32767}(18)
1387 This would be optimizable with startbranch=5, first=5, last=16, tail=16
1388 and should turn into:
1390 1: CURLYM[1] {1,32767}(18)
1392 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
1400 Cases where tail != last would be like /(?foo|bar)baz/:
1410 which would be optimizable with startbranch=1, first=1, last=7, tail=8
1411 and would end up looking like:
1414 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
1421 d = uvuni_to_utf8_flags(d, uv, 0);
1423 is the recommended Unicode-aware way of saying
1428 #define TRIE_STORE_REVCHAR(val) \
1431 SV *zlopp = newSV(7); /* XXX: optimize me */ \
1432 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
1433 unsigned const char *const kapow = uvuni_to_utf8(flrbbbbb, val); \
1434 SvCUR_set(zlopp, kapow - flrbbbbb); \
1437 av_push(revcharmap, zlopp); \
1439 char ooooff = (char)val; \
1440 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
1444 #define TRIE_READ_CHAR STMT_START { \
1447 /* if it is UTF then it is either already folded, or does not need folding */ \
1448 uvc = utf8n_to_uvuni( (const U8*) uc, UTF8_MAXLEN, &len, uniflags); \
1450 else if (folder == PL_fold_latin1) { \
1451 /* if we use this folder we have to obey unicode rules on latin-1 data */ \
1452 if ( foldlen > 0 ) { \
1453 uvc = utf8n_to_uvuni( (const U8*) scan, UTF8_MAXLEN, &len, uniflags ); \
1459 uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, 1); \
1460 skiplen = UNISKIP(uvc); \
1461 foldlen -= skiplen; \
1462 scan = foldbuf + skiplen; \
1465 /* raw data, will be folded later if needed */ \
1473 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
1474 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
1475 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
1476 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
1478 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
1479 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
1480 TRIE_LIST_CUR( state )++; \
1483 #define TRIE_LIST_NEW(state) STMT_START { \
1484 Newxz( trie->states[ state ].trans.list, \
1485 4, reg_trie_trans_le ); \
1486 TRIE_LIST_CUR( state ) = 1; \
1487 TRIE_LIST_LEN( state ) = 4; \
1490 #define TRIE_HANDLE_WORD(state) STMT_START { \
1491 U16 dupe= trie->states[ state ].wordnum; \
1492 regnode * const noper_next = regnext( noper ); \
1495 /* store the word for dumping */ \
1497 if (OP(noper) != NOTHING) \
1498 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
1500 tmp = newSVpvn_utf8( "", 0, UTF ); \
1501 av_push( trie_words, tmp ); \
1505 trie->wordinfo[curword].prev = 0; \
1506 trie->wordinfo[curword].len = wordlen; \
1507 trie->wordinfo[curword].accept = state; \
1509 if ( noper_next < tail ) { \
1511 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \
1512 trie->jump[curword] = (U16)(noper_next - convert); \
1514 jumper = noper_next; \
1516 nextbranch= regnext(cur); \
1520 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
1521 /* chain, so that when the bits of chain are later */\
1522 /* linked together, the dups appear in the chain */\
1523 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
1524 trie->wordinfo[dupe].prev = curword; \
1526 /* we haven't inserted this word yet. */ \
1527 trie->states[ state ].wordnum = curword; \
1532 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
1533 ( ( base + charid >= ucharcount \
1534 && base + charid < ubound \
1535 && state == trie->trans[ base - ucharcount + charid ].check \
1536 && trie->trans[ base - ucharcount + charid ].next ) \
1537 ? trie->trans[ base - ucharcount + charid ].next \
1538 : ( state==1 ? special : 0 ) \
1542 #define MADE_JUMP_TRIE 2
1543 #define MADE_EXACT_TRIE 4
1546 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
1549 /* first pass, loop through and scan words */
1550 reg_trie_data *trie;
1551 HV *widecharmap = NULL;
1552 AV *revcharmap = newAV();
1554 const U32 uniflags = UTF8_ALLOW_DEFAULT;
1559 regnode *jumper = NULL;
1560 regnode *nextbranch = NULL;
1561 regnode *convert = NULL;
1562 U32 *prev_states; /* temp array mapping each state to previous one */
1563 /* we just use folder as a flag in utf8 */
1564 const U8 * folder = NULL;
1567 const U32 data_slot = add_data( pRExC_state, 4, "tuuu" );
1568 AV *trie_words = NULL;
1569 /* along with revcharmap, this only used during construction but both are
1570 * useful during debugging so we store them in the struct when debugging.
1573 const U32 data_slot = add_data( pRExC_state, 2, "tu" );
1574 STRLEN trie_charcount=0;
1576 SV *re_trie_maxbuff;
1577 GET_RE_DEBUG_FLAGS_DECL;
1579 PERL_ARGS_ASSERT_MAKE_TRIE;
1581 PERL_UNUSED_ARG(depth);
1588 case EXACTFU_TRICKYFOLD:
1589 case EXACTFU: folder = PL_fold_latin1; break;
1590 case EXACTF: folder = PL_fold; break;
1591 case EXACTFL: folder = PL_fold_locale; break;
1592 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
1595 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
1597 trie->startstate = 1;
1598 trie->wordcount = word_count;
1599 RExC_rxi->data->data[ data_slot ] = (void*)trie;
1600 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
1602 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
1603 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
1604 trie->wordcount+1, sizeof(reg_trie_wordinfo));
1607 trie_words = newAV();
1610 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
1611 if (!SvIOK(re_trie_maxbuff)) {
1612 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
1614 DEBUG_TRIE_COMPILE_r({
1615 PerlIO_printf( Perl_debug_log,
1616 "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
1617 (int)depth * 2 + 2, "",
1618 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
1619 REG_NODE_NUM(last), REG_NODE_NUM(tail),
1623 /* Find the node we are going to overwrite */
1624 if ( first == startbranch && OP( last ) != BRANCH ) {
1625 /* whole branch chain */
1628 /* branch sub-chain */
1629 convert = NEXTOPER( first );
1632 /* -- First loop and Setup --
1634 We first traverse the branches and scan each word to determine if it
1635 contains widechars, and how many unique chars there are, this is
1636 important as we have to build a table with at least as many columns as we
1639 We use an array of integers to represent the character codes 0..255
1640 (trie->charmap) and we use a an HV* to store Unicode characters. We use the
1641 native representation of the character value as the key and IV's for the
1644 *TODO* If we keep track of how many times each character is used we can
1645 remap the columns so that the table compression later on is more
1646 efficient in terms of memory by ensuring the most common value is in the
1647 middle and the least common are on the outside. IMO this would be better
1648 than a most to least common mapping as theres a decent chance the most
1649 common letter will share a node with the least common, meaning the node
1650 will not be compressible. With a middle is most common approach the worst
1651 case is when we have the least common nodes twice.
1655 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1656 regnode *noper = NEXTOPER( cur );
1657 const U8 *uc = (U8*)STRING( noper );
1658 const U8 *e = uc + STR_LEN( noper );
1660 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1662 const U8 *scan = (U8*)NULL;
1663 U32 wordlen = 0; /* required init */
1665 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/
1667 if (OP(noper) == NOTHING) {
1668 regnode *noper_next= regnext(noper);
1669 if (noper_next != tail && OP(noper_next) == flags) {
1671 uc= (U8*)STRING(noper);
1672 e= uc + STR_LEN(noper);
1673 trie->minlen= STR_LEN(noper);
1680 if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
1681 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
1682 regardless of encoding */
1683 if (OP( noper ) == EXACTFU_SS) {
1684 /* false positives are ok, so just set this */
1685 TRIE_BITMAP_SET(trie,0xDF);
1688 for ( ; uc < e ; uc += len ) {
1689 TRIE_CHARCOUNT(trie)++;
1694 U8 folded= folder[ (U8) uvc ];
1695 if ( !trie->charmap[ folded ] ) {
1696 trie->charmap[ folded ]=( ++trie->uniquecharcount );
1697 TRIE_STORE_REVCHAR( folded );
1700 if ( !trie->charmap[ uvc ] ) {
1701 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
1702 TRIE_STORE_REVCHAR( uvc );
1705 /* store the codepoint in the bitmap, and its folded
1707 TRIE_BITMAP_SET(trie, uvc);
1709 /* store the folded codepoint */
1710 if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
1713 /* store first byte of utf8 representation of
1714 variant codepoints */
1715 if (! UNI_IS_INVARIANT(uvc)) {
1716 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
1719 set_bit = 0; /* We've done our bit :-) */
1724 widecharmap = newHV();
1726 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
1729 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
1731 if ( !SvTRUE( *svpp ) ) {
1732 sv_setiv( *svpp, ++trie->uniquecharcount );
1733 TRIE_STORE_REVCHAR(uvc);
1737 if( cur == first ) {
1738 trie->minlen = chars;
1739 trie->maxlen = chars;
1740 } else if (chars < trie->minlen) {
1741 trie->minlen = chars;
1742 } else if (chars > trie->maxlen) {
1743 trie->maxlen = chars;
1745 if (OP( noper ) == EXACTFU_SS) {
1746 /* XXX: workaround - 'ss' could match "\x{DF}" so minlen could be 1 and not 2*/
1747 if (trie->minlen > 1)
1750 if (OP( noper ) == EXACTFU_TRICKYFOLD) {
1751 /* XXX: workround - things like "\x{1FBE}\x{0308}\x{0301}" can match "\x{0390}"
1752 * - We assume that any such sequence might match a 2 byte string */
1753 if (trie->minlen > 2 )
1757 } /* end first pass */
1758 DEBUG_TRIE_COMPILE_r(
1759 PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
1760 (int)depth * 2 + 2,"",
1761 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
1762 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
1763 (int)trie->minlen, (int)trie->maxlen )
1767 We now know what we are dealing with in terms of unique chars and
1768 string sizes so we can calculate how much memory a naive
1769 representation using a flat table will take. If it's over a reasonable
1770 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
1771 conservative but potentially much slower representation using an array
1774 At the end we convert both representations into the same compressed
1775 form that will be used in regexec.c for matching with. The latter
1776 is a form that cannot be used to construct with but has memory
1777 properties similar to the list form and access properties similar
1778 to the table form making it both suitable for fast searches and
1779 small enough that its feasable to store for the duration of a program.
1781 See the comment in the code where the compressed table is produced
1782 inplace from the flat tabe representation for an explanation of how
1783 the compression works.
1788 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
1791 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
1793 Second Pass -- Array Of Lists Representation
1795 Each state will be represented by a list of charid:state records
1796 (reg_trie_trans_le) the first such element holds the CUR and LEN
1797 points of the allocated array. (See defines above).
1799 We build the initial structure using the lists, and then convert
1800 it into the compressed table form which allows faster lookups
1801 (but cant be modified once converted).
1804 STRLEN transcount = 1;
1806 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1807 "%*sCompiling trie using list compiler\n",
1808 (int)depth * 2 + 2, ""));
1810 trie->states = (reg_trie_state *)
1811 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1812 sizeof(reg_trie_state) );
1816 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1818 regnode *noper = NEXTOPER( cur );
1819 U8 *uc = (U8*)STRING( noper );
1820 const U8 *e = uc + STR_LEN( noper );
1821 U32 state = 1; /* required init */
1822 U16 charid = 0; /* sanity init */
1823 U8 *scan = (U8*)NULL; /* sanity init */
1824 STRLEN foldlen = 0; /* required init */
1825 U32 wordlen = 0; /* required init */
1826 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1829 if (OP(noper) == NOTHING) {
1830 regnode *noper_next= regnext(noper);
1831 if (noper_next != tail && OP(noper_next) == flags) {
1833 uc= (U8*)STRING(noper);
1834 e= uc + STR_LEN(noper);
1838 if (OP(noper) != NOTHING) {
1839 for ( ; uc < e ; uc += len ) {
1844 charid = trie->charmap[ uvc ];
1846 SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1850 charid=(U16)SvIV( *svpp );
1853 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1860 if ( !trie->states[ state ].trans.list ) {
1861 TRIE_LIST_NEW( state );
1863 for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
1864 if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
1865 newstate = TRIE_LIST_ITEM( state, check ).newstate;
1870 newstate = next_alloc++;
1871 prev_states[newstate] = state;
1872 TRIE_LIST_PUSH( state, charid, newstate );
1877 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1881 TRIE_HANDLE_WORD(state);
1883 } /* end second pass */
1885 /* next alloc is the NEXT state to be allocated */
1886 trie->statecount = next_alloc;
1887 trie->states = (reg_trie_state *)
1888 PerlMemShared_realloc( trie->states,
1890 * sizeof(reg_trie_state) );
1892 /* and now dump it out before we compress it */
1893 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
1894 revcharmap, next_alloc,
1898 trie->trans = (reg_trie_trans *)
1899 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
1906 for( state=1 ; state < next_alloc ; state ++ ) {
1910 DEBUG_TRIE_COMPILE_MORE_r(
1911 PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
1915 if (trie->states[state].trans.list) {
1916 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
1920 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1921 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
1922 if ( forid < minid ) {
1924 } else if ( forid > maxid ) {
1928 if ( transcount < tp + maxid - minid + 1) {
1930 trie->trans = (reg_trie_trans *)
1931 PerlMemShared_realloc( trie->trans,
1933 * sizeof(reg_trie_trans) );
1934 Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
1936 base = trie->uniquecharcount + tp - minid;
1937 if ( maxid == minid ) {
1939 for ( ; zp < tp ; zp++ ) {
1940 if ( ! trie->trans[ zp ].next ) {
1941 base = trie->uniquecharcount + zp - minid;
1942 trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1943 trie->trans[ zp ].check = state;
1949 trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1950 trie->trans[ tp ].check = state;
1955 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1956 const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
1957 trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
1958 trie->trans[ tid ].check = state;
1960 tp += ( maxid - minid + 1 );
1962 Safefree(trie->states[ state ].trans.list);
1965 DEBUG_TRIE_COMPILE_MORE_r(
1966 PerlIO_printf( Perl_debug_log, " base: %d\n",base);
1969 trie->states[ state ].trans.base=base;
1971 trie->lasttrans = tp + 1;
1975 Second Pass -- Flat Table Representation.
1977 we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
1978 We know that we will need Charcount+1 trans at most to store the data
1979 (one row per char at worst case) So we preallocate both structures
1980 assuming worst case.
1982 We then construct the trie using only the .next slots of the entry
1985 We use the .check field of the first entry of the node temporarily to
1986 make compression both faster and easier by keeping track of how many non
1987 zero fields are in the node.
1989 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
1992 There are two terms at use here: state as a TRIE_NODEIDX() which is a
1993 number representing the first entry of the node, and state as a
1994 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
1995 TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
1996 are 2 entrys per node. eg:
2004 The table is internally in the right hand, idx form. However as we also
2005 have to deal with the states array which is indexed by nodenum we have to
2006 use TRIE_NODENUM() to convert.
2009 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
2010 "%*sCompiling trie using table compiler\n",
2011 (int)depth * 2 + 2, ""));
2013 trie->trans = (reg_trie_trans *)
2014 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
2015 * trie->uniquecharcount + 1,
2016 sizeof(reg_trie_trans) );
2017 trie->states = (reg_trie_state *)
2018 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2019 sizeof(reg_trie_state) );
2020 next_alloc = trie->uniquecharcount + 1;
2023 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2025 regnode *noper = NEXTOPER( cur );
2026 const U8 *uc = (U8*)STRING( noper );
2027 const U8 *e = uc + STR_LEN( noper );
2029 U32 state = 1; /* required init */
2031 U16 charid = 0; /* sanity init */
2032 U32 accept_state = 0; /* sanity init */
2033 U8 *scan = (U8*)NULL; /* sanity init */
2035 STRLEN foldlen = 0; /* required init */
2036 U32 wordlen = 0; /* required init */
2038 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
2040 if (OP(noper) == NOTHING) {
2041 regnode *noper_next= regnext(noper);
2042 if (noper_next != tail && OP(noper_next) == flags) {
2044 uc= (U8*)STRING(noper);
2045 e= uc + STR_LEN(noper);
2049 if ( OP(noper) != NOTHING ) {
2050 for ( ; uc < e ; uc += len ) {
2055 charid = trie->charmap[ uvc ];
2057 SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
2058 charid = svpp ? (U16)SvIV(*svpp) : 0;
2062 if ( !trie->trans[ state + charid ].next ) {
2063 trie->trans[ state + charid ].next = next_alloc;
2064 trie->trans[ state ].check++;
2065 prev_states[TRIE_NODENUM(next_alloc)]
2066 = TRIE_NODENUM(state);
2067 next_alloc += trie->uniquecharcount;
2069 state = trie->trans[ state + charid ].next;
2071 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
2073 /* charid is now 0 if we dont know the char read, or nonzero if we do */
2076 accept_state = TRIE_NODENUM( state );
2077 TRIE_HANDLE_WORD(accept_state);
2079 } /* end second pass */
2081 /* and now dump it out before we compress it */
2082 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
2084 next_alloc, depth+1));
2088 * Inplace compress the table.*
2090 For sparse data sets the table constructed by the trie algorithm will
2091 be mostly 0/FAIL transitions or to put it another way mostly empty.
2092 (Note that leaf nodes will not contain any transitions.)
2094 This algorithm compresses the tables by eliminating most such
2095 transitions, at the cost of a modest bit of extra work during lookup:
2097 - Each states[] entry contains a .base field which indicates the
2098 index in the state[] array wheres its transition data is stored.
2100 - If .base is 0 there are no valid transitions from that node.
2102 - If .base is nonzero then charid is added to it to find an entry in
2105 -If trans[states[state].base+charid].check!=state then the
2106 transition is taken to be a 0/Fail transition. Thus if there are fail
2107 transitions at the front of the node then the .base offset will point
2108 somewhere inside the previous nodes data (or maybe even into a node
2109 even earlier), but the .check field determines if the transition is
2113 The following process inplace converts the table to the compressed
2114 table: We first do not compress the root node 1,and mark all its
2115 .check pointers as 1 and set its .base pointer as 1 as well. This
2116 allows us to do a DFA construction from the compressed table later,
2117 and ensures that any .base pointers we calculate later are greater
2120 - We set 'pos' to indicate the first entry of the second node.
2122 - We then iterate over the columns of the node, finding the first and
2123 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
2124 and set the .check pointers accordingly, and advance pos
2125 appropriately and repreat for the next node. Note that when we copy
2126 the next pointers we have to convert them from the original
2127 NODEIDX form to NODENUM form as the former is not valid post
2130 - If a node has no transitions used we mark its base as 0 and do not
2131 advance the pos pointer.
2133 - If a node only has one transition we use a second pointer into the
2134 structure to fill in allocated fail transitions from other states.
2135 This pointer is independent of the main pointer and scans forward
2136 looking for null transitions that are allocated to a state. When it
2137 finds one it writes the single transition into the "hole". If the
2138 pointer doesnt find one the single transition is appended as normal.
2140 - Once compressed we can Renew/realloc the structures to release the
2143 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
2144 specifically Fig 3.47 and the associated pseudocode.
2148 const U32 laststate = TRIE_NODENUM( next_alloc );
2151 trie->statecount = laststate;
2153 for ( state = 1 ; state < laststate ; state++ ) {
2155 const U32 stateidx = TRIE_NODEIDX( state );
2156 const U32 o_used = trie->trans[ stateidx ].check;
2157 U32 used = trie->trans[ stateidx ].check;
2158 trie->trans[ stateidx ].check = 0;
2160 for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
2161 if ( flag || trie->trans[ stateidx + charid ].next ) {
2162 if ( trie->trans[ stateidx + charid ].next ) {
2164 for ( ; zp < pos ; zp++ ) {
2165 if ( ! trie->trans[ zp ].next ) {
2169 trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
2170 trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2171 trie->trans[ zp ].check = state;
2172 if ( ++zp > pos ) pos = zp;
2179 trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
2181 trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2182 trie->trans[ pos ].check = state;
2187 trie->lasttrans = pos + 1;
2188 trie->states = (reg_trie_state *)
2189 PerlMemShared_realloc( trie->states, laststate
2190 * sizeof(reg_trie_state) );
2191 DEBUG_TRIE_COMPILE_MORE_r(
2192 PerlIO_printf( Perl_debug_log,
2193 "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
2194 (int)depth * 2 + 2,"",
2195 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
2198 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
2201 } /* end table compress */
2203 DEBUG_TRIE_COMPILE_MORE_r(
2204 PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
2205 (int)depth * 2 + 2, "",
2206 (UV)trie->statecount,
2207 (UV)trie->lasttrans)
2209 /* resize the trans array to remove unused space */
2210 trie->trans = (reg_trie_trans *)
2211 PerlMemShared_realloc( trie->trans, trie->lasttrans
2212 * sizeof(reg_trie_trans) );
2214 { /* Modify the program and insert the new TRIE node */
2215 U8 nodetype =(U8)(flags & 0xFF);
2219 regnode *optimize = NULL;
2220 #ifdef RE_TRACK_PATTERN_OFFSETS
2223 U32 mjd_nodelen = 0;
2224 #endif /* RE_TRACK_PATTERN_OFFSETS */
2225 #endif /* DEBUGGING */
2227 This means we convert either the first branch or the first Exact,
2228 depending on whether the thing following (in 'last') is a branch
2229 or not and whther first is the startbranch (ie is it a sub part of
2230 the alternation or is it the whole thing.)
2231 Assuming its a sub part we convert the EXACT otherwise we convert
2232 the whole branch sequence, including the first.
2234 /* Find the node we are going to overwrite */
2235 if ( first != startbranch || OP( last ) == BRANCH ) {
2236 /* branch sub-chain */
2237 NEXT_OFF( first ) = (U16)(last - first);
2238 #ifdef RE_TRACK_PATTERN_OFFSETS
2240 mjd_offset= Node_Offset((convert));
2241 mjd_nodelen= Node_Length((convert));
2244 /* whole branch chain */
2246 #ifdef RE_TRACK_PATTERN_OFFSETS
2249 const regnode *nop = NEXTOPER( convert );
2250 mjd_offset= Node_Offset((nop));
2251 mjd_nodelen= Node_Length((nop));
2255 PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
2256 (int)depth * 2 + 2, "",
2257 (UV)mjd_offset, (UV)mjd_nodelen)
2260 /* But first we check to see if there is a common prefix we can
2261 split out as an EXACT and put in front of the TRIE node. */
2262 trie->startstate= 1;
2263 if ( trie->bitmap && !widecharmap && !trie->jump ) {
2265 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
2269 const U32 base = trie->states[ state ].trans.base;
2271 if ( trie->states[state].wordnum )
2274 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2275 if ( ( base + ofs >= trie->uniquecharcount ) &&
2276 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
2277 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
2279 if ( ++count > 1 ) {
2280 SV **tmp = av_fetch( revcharmap, ofs, 0);
2281 const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
2282 if ( state == 1 ) break;
2284 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
2286 PerlIO_printf(Perl_debug_log,
2287 "%*sNew Start State=%"UVuf" Class: [",
2288 (int)depth * 2 + 2, "",
2291 SV ** const tmp = av_fetch( revcharmap, idx, 0);
2292 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
2294 TRIE_BITMAP_SET(trie,*ch);
2296 TRIE_BITMAP_SET(trie, folder[ *ch ]);
2298 PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
2302 TRIE_BITMAP_SET(trie,*ch);
2304 TRIE_BITMAP_SET(trie,folder[ *ch ]);
2305 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
2311 SV **tmp = av_fetch( revcharmap, idx, 0);
2313 char *ch = SvPV( *tmp, len );
2315 SV *sv=sv_newmortal();
2316 PerlIO_printf( Perl_debug_log,
2317 "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
2318 (int)depth * 2 + 2, "",
2320 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
2321 PL_colors[0], PL_colors[1],
2322 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2323 PERL_PV_ESCAPE_FIRSTCHAR
2328 OP( convert ) = nodetype;
2329 str=STRING(convert);
2332 STR_LEN(convert) += len;
2338 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
2343 trie->prefixlen = (state-1);
2345 regnode *n = convert+NODE_SZ_STR(convert);
2346 NEXT_OFF(convert) = NODE_SZ_STR(convert);
2347 trie->startstate = state;
2348 trie->minlen -= (state - 1);
2349 trie->maxlen -= (state - 1);
2351 /* At least the UNICOS C compiler choked on this
2352 * being argument to DEBUG_r(), so let's just have
2355 #ifdef PERL_EXT_RE_BUILD
2361 regnode *fix = convert;
2362 U32 word = trie->wordcount;
2364 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
2365 while( ++fix < n ) {
2366 Set_Node_Offset_Length(fix, 0, 0);
2369 SV ** const tmp = av_fetch( trie_words, word, 0 );
2371 if ( STR_LEN(convert) <= SvCUR(*tmp) )
2372 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
2374 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
2382 NEXT_OFF(convert) = (U16)(tail - convert);
2383 DEBUG_r(optimize= n);
2389 if ( trie->maxlen ) {
2390 NEXT_OFF( convert ) = (U16)(tail - convert);
2391 ARG_SET( convert, data_slot );
2392 /* Store the offset to the first unabsorbed branch in
2393 jump[0], which is otherwise unused by the jump logic.
2394 We use this when dumping a trie and during optimisation. */
2396 trie->jump[0] = (U16)(nextbranch - convert);
2398 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
2399 * and there is a bitmap
2400 * and the first "jump target" node we found leaves enough room
2401 * then convert the TRIE node into a TRIEC node, with the bitmap
2402 * embedded inline in the opcode - this is hypothetically faster.
2404 if ( !trie->states[trie->startstate].wordnum
2406 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
2408 OP( convert ) = TRIEC;
2409 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
2410 PerlMemShared_free(trie->bitmap);
2413 OP( convert ) = TRIE;
2415 /* store the type in the flags */
2416 convert->flags = nodetype;
2420 + regarglen[ OP( convert ) ];
2422 /* XXX We really should free up the resource in trie now,
2423 as we won't use them - (which resources?) dmq */
2425 /* needed for dumping*/
2426 DEBUG_r(if (optimize) {
2427 regnode *opt = convert;
2429 while ( ++opt < optimize) {
2430 Set_Node_Offset_Length(opt,0,0);
2433 Try to clean up some of the debris left after the
2436 while( optimize < jumper ) {
2437 mjd_nodelen += Node_Length((optimize));
2438 OP( optimize ) = OPTIMIZED;
2439 Set_Node_Offset_Length(optimize,0,0);
2442 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
2444 } /* end node insert */
2445 REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, convert);
2447 /* Finish populating the prev field of the wordinfo array. Walk back
2448 * from each accept state until we find another accept state, and if
2449 * so, point the first word's .prev field at the second word. If the
2450 * second already has a .prev field set, stop now. This will be the
2451 * case either if we've already processed that word's accept state,
2452 * or that state had multiple words, and the overspill words were
2453 * already linked up earlier.
2460 for (word=1; word <= trie->wordcount; word++) {
2462 if (trie->wordinfo[word].prev)
2464 state = trie->wordinfo[word].accept;
2466 state = prev_states[state];
2469 prev = trie->states[state].wordnum;
2473 trie->wordinfo[word].prev = prev;
2475 Safefree(prev_states);
2479 /* and now dump out the compressed format */
2480 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
2482 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
2484 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
2485 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
2487 SvREFCNT_dec_NN(revcharmap);
2491 : trie->startstate>1
2497 S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
2499 /* The Trie is constructed and compressed now so we can build a fail array if it's needed
2501 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
2502 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
2505 We find the fail state for each state in the trie, this state is the longest proper
2506 suffix of the current state's 'word' that is also a proper prefix of another word in our
2507 trie. State 1 represents the word '' and is thus the default fail state. This allows
2508 the DFA not to have to restart after its tried and failed a word at a given point, it
2509 simply continues as though it had been matching the other word in the first place.
2511 'abcdgu'=~/abcdefg|cdgu/
2512 When we get to 'd' we are still matching the first word, we would encounter 'g' which would
2513 fail, which would bring us to the state representing 'd' in the second word where we would
2514 try 'g' and succeed, proceeding to match 'cdgu'.
2516 /* add a fail transition */
2517 const U32 trie_offset = ARG(source);
2518 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
2520 const U32 ucharcount = trie->uniquecharcount;
2521 const U32 numstates = trie->statecount;
2522 const U32 ubound = trie->lasttrans + ucharcount;
2526 U32 base = trie->states[ 1 ].trans.base;
2529 const U32 data_slot = add_data( pRExC_state, 1, "T" );
2530 GET_RE_DEBUG_FLAGS_DECL;
2532 PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE;
2534 PERL_UNUSED_ARG(depth);
2538 ARG_SET( stclass, data_slot );
2539 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
2540 RExC_rxi->data->data[ data_slot ] = (void*)aho;
2541 aho->trie=trie_offset;
2542 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
2543 Copy( trie->states, aho->states, numstates, reg_trie_state );
2544 Newxz( q, numstates, U32);
2545 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
2548 /* initialize fail[0..1] to be 1 so that we always have
2549 a valid final fail state */
2550 fail[ 0 ] = fail[ 1 ] = 1;
2552 for ( charid = 0; charid < ucharcount ; charid++ ) {
2553 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
2555 q[ q_write ] = newstate;
2556 /* set to point at the root */
2557 fail[ q[ q_write++ ] ]=1;
2560 while ( q_read < q_write) {
2561 const U32 cur = q[ q_read++ % numstates ];
2562 base = trie->states[ cur ].trans.base;
2564 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
2565 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
2567 U32 fail_state = cur;
2570 fail_state = fail[ fail_state ];
2571 fail_base = aho->states[ fail_state ].trans.base;
2572 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
2574 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
2575 fail[ ch_state ] = fail_state;
2576 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
2578 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
2580 q[ q_write++ % numstates] = ch_state;
2584 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
2585 when we fail in state 1, this allows us to use the
2586 charclass scan to find a valid start char. This is based on the principle
2587 that theres a good chance the string being searched contains lots of stuff
2588 that cant be a start char.
2590 fail[ 0 ] = fail[ 1 ] = 0;
2591 DEBUG_TRIE_COMPILE_r({
2592 PerlIO_printf(Perl_debug_log,
2593 "%*sStclass Failtable (%"UVuf" states): 0",
2594 (int)(depth * 2), "", (UV)numstates
2596 for( q_read=1; q_read<numstates; q_read++ ) {
2597 PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
2599 PerlIO_printf(Perl_debug_log, "\n");
2602 /*RExC_seen |= REG_SEEN_TRIEDFA;*/
2607 * There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
2608 * These need to be revisited when a newer toolchain becomes available.
2610 #if defined(__sparc64__) && defined(__GNUC__)
2611 # if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
2612 # undef SPARC64_GCC_WORKAROUND
2613 # define SPARC64_GCC_WORKAROUND 1
2617 #define DEBUG_PEEP(str,scan,depth) \
2618 DEBUG_OPTIMISE_r({if (scan){ \
2619 SV * const mysv=sv_newmortal(); \
2620 regnode *Next = regnext(scan); \
2621 regprop(RExC_rx, mysv, scan); \
2622 PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
2623 (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
2624 Next ? (REG_NODE_NUM(Next)) : 0 ); \
2628 /* The below joins as many adjacent EXACTish nodes as possible into a single
2629 * one. The regop may be changed if the node(s) contain certain sequences that
2630 * require special handling. The joining is only done if:
2631 * 1) there is room in the current conglomerated node to entirely contain the
2633 * 2) they are the exact same node type
2635 * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
2636 * these get optimized out
2638 * If a node is to match under /i (folded), the number of characters it matches
2639 * can be different than its character length if it contains a multi-character
2640 * fold. *min_subtract is set to the total delta of the input nodes.
2642 * And *has_exactf_sharp_s is set to indicate whether or not the node is EXACTF
2643 * and contains LATIN SMALL LETTER SHARP S
2645 * This is as good a place as any to discuss the design of handling these
2646 * multi-character fold sequences. It's been wrong in Perl for a very long
2647 * time. There are three code points in Unicode whose multi-character folds
2648 * were long ago discovered to mess things up. The previous designs for
2649 * dealing with these involved assigning a special node for them. This
2650 * approach doesn't work, as evidenced by this example:
2651 * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
2652 * Both these fold to "sss", but if the pattern is parsed to create a node that
2653 * would match just the \xDF, it won't be able to handle the case where a
2654 * successful match would have to cross the node's boundary. The new approach
2655 * that hopefully generally solves the problem generates an EXACTFU_SS node
2658 * It turns out that there are problems with all multi-character folds, and not
2659 * just these three. Now the code is general, for all such cases, but the
2660 * three still have some special handling. The approach taken is:
2661 * 1) This routine examines each EXACTFish node that could contain multi-
2662 * character fold sequences. It returns in *min_subtract how much to
2663 * subtract from the the actual length of the string to get a real minimum
2664 * match length; it is 0 if there are no multi-char folds. This delta is
2665 * used by the caller to adjust the min length of the match, and the delta
2666 * between min and max, so that the optimizer doesn't reject these
2667 * possibilities based on size constraints.
2668 * 2) Certain of these sequences require special handling by the trie code,
2669 * so, if found, this code changes the joined node type to special ops:
2670 * EXACTFU_TRICKYFOLD and EXACTFU_SS.
2671 * 3) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
2672 * is used for an EXACTFU node that contains at least one "ss" sequence in
2673 * it. For non-UTF-8 patterns and strings, this is the only case where
2674 * there is a possible fold length change. That means that a regular
2675 * EXACTFU node without UTF-8 involvement doesn't have to concern itself
2676 * with length changes, and so can be processed faster. regexec.c takes
2677 * advantage of this. Generally, an EXACTFish node that is in UTF-8 is
2678 * pre-folded by regcomp.c. This saves effort in regex matching.
2679 * However, the pre-folding isn't done for non-UTF8 patterns because the
2680 * fold of the MICRO SIGN requires UTF-8, and we don't want to slow things
2681 * down by forcing the pattern into UTF8 unless necessary. Also what
2682 * EXACTF and EXACTFL nodes fold to isn't known until runtime. The fold
2683 * possibilities for the non-UTF8 patterns are quite simple, except for
2684 * the sharp s. All the ones that don't involve a UTF-8 target string are
2685 * members of a fold-pair, and arrays are set up for all of them so that
2686 * the other member of the pair can be found quickly. Code elsewhere in
2687 * this file makes sure that in EXACTFU nodes, the sharp s gets folded to
2688 * 'ss', even if the pattern isn't UTF-8. This avoids the issues
2689 * described in the next item.
2690 * 4) A problem remains for the sharp s in EXACTF nodes. Whether it matches
2691 * 'ss' or not is not knowable at compile time. It will match iff the
2692 * target string is in UTF-8, unlike the EXACTFU nodes, where it always
2693 * matches; and the EXACTFL and EXACTFA nodes where it never does. Thus
2694 * it can't be folded to "ss" at compile time, unlike EXACTFU does (as
2695 * described in item 3). An assumption that the optimizer part of
2696 * regexec.c (probably unwittingly) makes is that a character in the
2697 * pattern corresponds to at most a single character in the target string.
2698 * (And I do mean character, and not byte here, unlike other parts of the
2699 * documentation that have never been updated to account for multibyte
2700 * Unicode.) This assumption is wrong only in this case, as all other
2701 * cases are either 1-1 folds when no UTF-8 is involved; or is true by
2702 * virtue of having this file pre-fold UTF-8 patterns. I'm
2703 * reluctant to try to change this assumption, so instead the code punts.
2704 * This routine examines EXACTF nodes for the sharp s, and returns a
2705 * boolean indicating whether or not the node is an EXACTF node that
2706 * contains a sharp s. When it is true, the caller sets a flag that later
2707 * causes the optimizer in this file to not set values for the floating
2708 * and fixed string lengths, and thus avoids the optimizer code in
2709 * regexec.c that makes the invalid assumption. Thus, there is no
2710 * optimization based on string lengths for EXACTF nodes that contain the
2711 * sharp s. This only happens for /id rules (which means the pattern
2715 #define JOIN_EXACT(scan,min_subtract,has_exactf_sharp_s, flags) \
2716 if (PL_regkind[OP(scan)] == EXACT) \
2717 join_exact(pRExC_state,(scan),(min_subtract),has_exactf_sharp_s, (flags),NULL,depth+1)
2720 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, UV *min_subtract, bool *has_exactf_sharp_s, U32 flags,regnode *val, U32 depth) {
2721 /* Merge several consecutive EXACTish nodes into one. */
2722 regnode *n = regnext(scan);
2724 regnode *next = scan + NODE_SZ_STR(scan);
2728 regnode *stop = scan;
2729 GET_RE_DEBUG_FLAGS_DECL;
2731 PERL_UNUSED_ARG(depth);
2734 PERL_ARGS_ASSERT_JOIN_EXACT;
2735 #ifndef EXPERIMENTAL_INPLACESCAN
2736 PERL_UNUSED_ARG(flags);
2737 PERL_UNUSED_ARG(val);
2739 DEBUG_PEEP("join",scan,depth);
2741 /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
2742 * EXACT ones that are mergeable to the current one. */
2744 && (PL_regkind[OP(n)] == NOTHING
2745 || (stringok && OP(n) == OP(scan)))
2747 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
2750 if (OP(n) == TAIL || n > next)
2752 if (PL_regkind[OP(n)] == NOTHING) {
2753 DEBUG_PEEP("skip:",n,depth);
2754 NEXT_OFF(scan) += NEXT_OFF(n);
2755 next = n + NODE_STEP_REGNODE;
2762 else if (stringok) {
2763 const unsigned int oldl = STR_LEN(scan);
2764 regnode * const nnext = regnext(n);
2766 /* XXX I (khw) kind of doubt that this works on platforms where
2767 * U8_MAX is above 255 because of lots of other assumptions */
2768 /* Don't join if the sum can't fit into a single node */
2769 if (oldl + STR_LEN(n) > U8_MAX)
2772 DEBUG_PEEP("merg",n,depth);
2775 NEXT_OFF(scan) += NEXT_OFF(n);
2776 STR_LEN(scan) += STR_LEN(n);
2777 next = n + NODE_SZ_STR(n);
2778 /* Now we can overwrite *n : */
2779 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
2787 #ifdef EXPERIMENTAL_INPLACESCAN
2788 if (flags && !NEXT_OFF(n)) {
2789 DEBUG_PEEP("atch", val, depth);
2790 if (reg_off_by_arg[OP(n)]) {
2791 ARG_SET(n, val - n);
2794 NEXT_OFF(n) = val - n;
2802 *has_exactf_sharp_s = FALSE;
2804 /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
2805 * can now analyze for sequences of problematic code points. (Prior to
2806 * this final joining, sequences could have been split over boundaries, and
2807 * hence missed). The sequences only happen in folding, hence for any
2808 * non-EXACT EXACTish node */
2809 if (OP(scan) != EXACT) {
2810 const U8 * const s0 = (U8*) STRING(scan);
2812 const U8 * const s_end = s0 + STR_LEN(scan);
2814 /* One pass is made over the node's string looking for all the
2815 * possibilities. to avoid some tests in the loop, there are two main
2816 * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
2820 /* Examine the string for a multi-character fold sequence. UTF-8
2821 * patterns have all characters pre-folded by the time this code is
2823 while (s < s_end - 1) /* Can stop 1 before the end, as minimum
2824 length sequence we are looking for is 2 */
2827 int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
2828 if (! len) { /* Not a multi-char fold: get next char */
2833 /* Nodes with 'ss' require special handling, except for EXACTFL
2834 * and EXACTFA for which there is no multi-char fold to this */
2835 if (len == 2 && *s == 's' && *(s+1) == 's'
2836 && OP(scan) != EXACTFL && OP(scan) != EXACTFA)
2839 OP(scan) = EXACTFU_SS;
2842 else if (len == 6 /* len is the same in both ASCII and EBCDIC for these */
2843 && (memEQ(s, GREEK_SMALL_LETTER_IOTA_UTF8
2844 COMBINING_DIAERESIS_UTF8
2845 COMBINING_ACUTE_ACCENT_UTF8,
2847 || memEQ(s, GREEK_SMALL_LETTER_UPSILON_UTF8
2848 COMBINING_DIAERESIS_UTF8
2849 COMBINING_ACUTE_ACCENT_UTF8,
2854 /* These two folds require special handling by trie's, so
2855 * change the node type to indicate this. If EXACTFA and
2856 * EXACTFL were ever to be handled by trie's, this would
2857 * have to be changed. If this node has already been
2858 * changed to EXACTFU_SS in this loop, leave it as is. (I
2859 * (khw) think it doesn't matter in regexec.c for UTF
2860 * patterns, but no need to change it */
2861 if (OP(scan) == EXACTFU) {
2862 OP(scan) = EXACTFU_TRICKYFOLD;
2866 else { /* Here is a generic multi-char fold. */
2867 const U8* multi_end = s + len;
2869 /* Count how many characters in it. In the case of /l and
2870 * /aa, no folds which contain ASCII code points are
2871 * allowed, so check for those, and skip if found. (In
2872 * EXACTFL, no folds are allowed to any Latin1 code point,
2873 * not just ASCII. But there aren't any of these
2874 * currently, nor ever likely, so don't take the time to
2875 * test for them. The code that generates the
2876 * is_MULTI_foo() macros croaks should one actually get put
2877 * into Unicode .) */
2878 if (OP(scan) != EXACTFL && OP(scan) != EXACTFA) {
2879 count = utf8_length(s, multi_end);
2883 while (s < multi_end) {
2886 goto next_iteration;
2896 /* The delta is how long the sequence is minus 1 (1 is how long
2897 * the character that folds to the sequence is) */
2898 *min_subtract += count - 1;
2902 else if (OP(scan) != EXACTFL && OP(scan) != EXACTFA) {
2904 /* Here, the pattern is not UTF-8. Look for the multi-char folds
2905 * that are all ASCII. As in the above case, EXACTFL and EXACTFA
2906 * nodes can't have multi-char folds to this range (and there are
2907 * no existing ones in the upper latin1 range). In the EXACTF
2908 * case we look also for the sharp s, which can be in the final
2909 * position. Otherwise we can stop looking 1 byte earlier because
2910 * have to find at least two characters for a multi-fold */
2911 const U8* upper = (OP(scan) == EXACTF) ? s_end : s_end -1;
2913 /* The below is perhaps overboard, but this allows us to save a
2914 * test each time through the loop at the expense of a mask. This
2915 * is because on both EBCDIC and ASCII machines, 'S' and 's' differ
2916 * by a single bit. On ASCII they are 32 apart; on EBCDIC, they
2917 * are 64. This uses an exclusive 'or' to find that bit and then
2918 * inverts it to form a mask, with just a single 0, in the bit
2919 * position where 'S' and 's' differ. */
2920 const U8 S_or_s_mask = (U8) ~ ('S' ^ 's');
2921 const U8 s_masked = 's' & S_or_s_mask;
2924 int len = is_MULTI_CHAR_FOLD_latin1_safe(s, s_end);
2925 if (! len) { /* Not a multi-char fold. */
2926 if (*s == LATIN_SMALL_LETTER_SHARP_S && OP(scan) == EXACTF)
2928 *has_exactf_sharp_s = TRUE;
2935 && ((*s & S_or_s_mask) == s_masked)
2936 && ((*(s+1) & S_or_s_mask) == s_masked))
2939 /* EXACTF nodes need to know that the minimum length
2940 * changed so that a sharp s in the string can match this
2941 * ss in the pattern, but they remain EXACTF nodes, as they
2942 * won't match this unless the target string is is UTF-8,
2943 * which we don't know until runtime */
2944 if (OP(scan) != EXACTF) {
2945 OP(scan) = EXACTFU_SS;
2949 *min_subtract += len - 1;
2956 /* Allow dumping but overwriting the collection of skipped
2957 * ops and/or strings with fake optimized ops */
2958 n = scan + NODE_SZ_STR(scan);
2966 DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
2970 /* REx optimizer. Converts nodes into quicker variants "in place".
2971 Finds fixed substrings. */
2973 /* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
2974 to the position after last scanned or to NULL. */
2976 #define INIT_AND_WITHP \
2977 assert(!and_withp); \
2978 Newx(and_withp,1,struct regnode_charclass_class); \
2979 SAVEFREEPV(and_withp)
2981 /* this is a chain of data about sub patterns we are processing that
2982 need to be handled separately/specially in study_chunk. Its so
2983 we can simulate recursion without losing state. */
2985 typedef struct scan_frame {
2986 regnode *last; /* last node to process in this frame */
2987 regnode *next; /* next node to process when last is reached */
2988 struct scan_frame *prev; /*previous frame*/
2989 I32 stop; /* what stopparen do we use */
2993 #define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf)
2996 S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
2997 I32 *minlenp, I32 *deltap,
3002 struct regnode_charclass_class *and_withp,
3003 U32 flags, U32 depth)
3004 /* scanp: Start here (read-write). */
3005 /* deltap: Write maxlen-minlen here. */
3006 /* last: Stop before this one. */
3007 /* data: string data about the pattern */
3008 /* stopparen: treat close N as END */
3009 /* recursed: which subroutines have we recursed into */
3010 /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
3013 I32 min = 0; /* There must be at least this number of characters to match */
3015 regnode *scan = *scanp, *next;
3017 int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
3018 int is_inf_internal = 0; /* The studied chunk is infinite */
3019 I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
3020 scan_data_t data_fake;
3021 SV *re_trie_maxbuff = NULL;
3022 regnode *first_non_open = scan;
3023 I32 stopmin = I32_MAX;
3024 scan_frame *frame = NULL;
3025 GET_RE_DEBUG_FLAGS_DECL;
3027 PERL_ARGS_ASSERT_STUDY_CHUNK;
3030 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
3034 while (first_non_open && OP(first_non_open) == OPEN)
3035 first_non_open=regnext(first_non_open);
3040 while ( scan && OP(scan) != END && scan < last ){
3041 UV min_subtract = 0; /* How mmany chars to subtract from the minimum
3042 node length to get a real minimum (because
3043 the folded version may be shorter) */
3044 bool has_exactf_sharp_s = FALSE;
3045 /* Peephole optimizer: */
3046 DEBUG_STUDYDATA("Peep:", data,depth);
3047 DEBUG_PEEP("Peep",scan,depth);
3049 /* Its not clear to khw or hv why this is done here, and not in the
3050 * clauses that deal with EXACT nodes. khw's guess is that it's
3051 * because of a previous design */
3052 JOIN_EXACT(scan,&min_subtract, &has_exactf_sharp_s, 0);
3054 /* Follow the next-chain of the current node and optimize
3055 away all the NOTHINGs from it. */
3056 if (OP(scan) != CURLYX) {
3057 const int max = (reg_off_by_arg[OP(scan)]
3059 /* I32 may be smaller than U16 on CRAYs! */
3060 : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
3061 int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
3065 /* Skip NOTHING and LONGJMP. */
3066 while ((n = regnext(n))
3067 && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
3068 || ((OP(n) == LONGJMP) && (noff = ARG(n))))
3069 && off + noff < max)
3071 if (reg_off_by_arg[OP(scan)])
3074 NEXT_OFF(scan) = off;
3079 /* The principal pseudo-switch. Cannot be a switch, since we
3080 look into several different things. */
3081 if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
3082 || OP(scan) == IFTHEN) {
3083 next = regnext(scan);
3085 /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
3087 if (OP(next) == code || code == IFTHEN) {
3088 /* NOTE - There is similar code to this block below for handling
3089 TRIE nodes on a re-study. If you change stuff here check there
3091 I32 max1 = 0, min1 = I32_MAX, num = 0;
3092 struct regnode_charclass_class accum;
3093 regnode * const startbranch=scan;
3095 if (flags & SCF_DO_SUBSTR)
3096 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
3097 if (flags & SCF_DO_STCLASS)
3098 cl_init_zero(pRExC_state, &accum);
3100 while (OP(scan) == code) {
3101 I32 deltanext, minnext, f = 0, fake;
3102 struct regnode_charclass_class this_class;
3105 data_fake.flags = 0;
3107 data_fake.whilem_c = data->whilem_c;
3108 data_fake.last_closep = data->last_closep;
3111 data_fake.last_closep = &fake;
3113 data_fake.pos_delta = delta;
3114 next = regnext(scan);
3115 scan = NEXTOPER(scan);
3117 scan = NEXTOPER(scan);
3118 if (flags & SCF_DO_STCLASS) {
3119 cl_init(pRExC_state, &this_class);
3120 data_fake.start_class = &this_class;
3121 f = SCF_DO_STCLASS_AND;
3123 if (flags & SCF_WHILEM_VISITED_POS)
3124 f |= SCF_WHILEM_VISITED_POS;
3126 /* we suppose the run is continuous, last=next...*/
3127 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3129 stopparen, recursed, NULL, f,depth+1);
3132 if (deltanext == I32_MAX) {
3133 is_inf = is_inf_internal = 1;
3135 } else if (max1 < minnext + deltanext)
3136 max1 = minnext + deltanext;
3138 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
3140 if (data_fake.flags & SCF_SEEN_ACCEPT) {
3141 if ( stopmin > minnext)
3142 stopmin = min + min1;
3143 flags &= ~SCF_DO_SUBSTR;
3145 data->flags |= SCF_SEEN_ACCEPT;
3148 if (data_fake.flags & SF_HAS_EVAL)
3149 data->flags |= SF_HAS_EVAL;
3150 data->whilem_c = data_fake.whilem_c;
3152 if (flags & SCF_DO_STCLASS)
3153 cl_or(pRExC_state, &accum, &this_class);
3155 if (code == IFTHEN && num < 2) /* Empty ELSE branch */
3157 if (flags & SCF_DO_SUBSTR) {
3158 data->pos_min += min1;
3159 if (data->pos_delta >= I32_MAX - (max1 - min1))
3160 data->pos_delta = I32_MAX;
3162 data->pos_delta += max1 - min1;
3163 if (max1 != min1 || is_inf)
3164 data->longest = &(data->longest_float);
3167 if (delta == I32_MAX || I32_MAX - delta - (max1 - min1) < 0)
3170 delta += max1 - min1;
3171 if (flags & SCF_DO_STCLASS_OR) {
3172 cl_or(pRExC_state, data->start_class, &accum);
3174 cl_and(data->start_class, and_withp);
3175 flags &= ~SCF_DO_STCLASS;
3178 else if (flags & SCF_DO_STCLASS_AND) {
3180 cl_and(data->start_class, &accum);
3181 flags &= ~SCF_DO_STCLASS;
3184 /* Switch to OR mode: cache the old value of
3185 * data->start_class */
3187 StructCopy(data->start_class, and_withp,
3188 struct regnode_charclass_class);
3189 flags &= ~SCF_DO_STCLASS_AND;
3190 StructCopy(&accum, data->start_class,
3191 struct regnode_charclass_class);
3192 flags |= SCF_DO_STCLASS_OR;
3193 SET_SSC_EOS(data->start_class);
3197 if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
3200 Assuming this was/is a branch we are dealing with: 'scan' now
3201 points at the item that follows the branch sequence, whatever
3202 it is. We now start at the beginning of the sequence and look
3209 which would be constructed from a pattern like /A|LIST|OF|WORDS/
3211 If we can find such a subsequence we need to turn the first
3212 element into a trie and then add the subsequent branch exact
3213 strings to the trie.
3217 1. patterns where the whole set of branches can be converted.
3219 2. patterns where only a subset can be converted.
3221 In case 1 we can replace the whole set with a single regop
3222 for the trie. In case 2 we need to keep the start and end
3225 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
3226 becomes BRANCH TRIE; BRANCH X;
3228 There is an additional case, that being where there is a
3229 common prefix, which gets split out into an EXACT like node
3230 preceding the TRIE node.
3232 If x(1..n)==tail then we can do a simple trie, if not we make
3233 a "jump" trie, such that when we match the appropriate word
3234 we "jump" to the appropriate tail node. Essentially we turn
3235 a nested if into a case structure of sorts.
3240 if (!re_trie_maxbuff) {
3241 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
3242 if (!SvIOK(re_trie_maxbuff))
3243 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
3245 if ( SvIV(re_trie_maxbuff)>=0 ) {
3247 regnode *first = (regnode *)NULL;
3248 regnode *last = (regnode *)NULL;
3249 regnode *tail = scan;
3254 SV * const mysv = sv_newmortal(); /* for dumping */
3256 /* var tail is used because there may be a TAIL
3257 regop in the way. Ie, the exacts will point to the
3258 thing following the TAIL, but the last branch will
3259 point at the TAIL. So we advance tail. If we
3260 have nested (?:) we may have to move through several
3264 while ( OP( tail ) == TAIL ) {
3265 /* this is the TAIL generated by (?:) */
3266 tail = regnext( tail );
3270 DEBUG_TRIE_COMPILE_r({
3271 regprop(RExC_rx, mysv, tail );
3272 PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
3273 (int)depth * 2 + 2, "",
3274 "Looking for TRIE'able sequences. Tail node is: ",
3275 SvPV_nolen_const( mysv )
3281 Step through the branches
3282 cur represents each branch,
3283 noper is the first thing to be matched as part of that branch
3284 noper_next is the regnext() of that node.
3286 We normally handle a case like this /FOO[xyz]|BAR[pqr]/
3287 via a "jump trie" but we also support building with NOJUMPTRIE,
3288 which restricts the trie logic to structures like /FOO|BAR/.
3290 If noper is a trieable nodetype then the branch is a possible optimization
3291 target. If we are building under NOJUMPTRIE then we require that noper_next
3292 is the same as scan (our current position in the regex program).
3294 Once we have two or more consecutive such branches we can create a
3295 trie of the EXACT's contents and stitch it in place into the program.
3297 If the sequence represents all of the branches in the alternation we
3298 replace the entire thing with a single TRIE node.
3300 Otherwise when it is a subsequence we need to stitch it in place and
3301 replace only the relevant branches. This means the first branch has
3302 to remain as it is used by the alternation logic, and its next pointer,
3303 and needs to be repointed at the item on the branch chain following
3304 the last branch we have optimized away.
3306 This could be either a BRANCH, in which case the subsequence is internal,
3307 or it could be the item following the branch sequence in which case the
3308 subsequence is at the end (which does not necessarily mean the first node
3309 is the start of the alternation).
3311 TRIE_TYPE(X) is a define which maps the optype to a trietype.
3314 ----------------+-----------
3318 EXACTFU_SS | EXACTFU
3319 EXACTFU_TRICKYFOLD | EXACTFU
3324 #define TRIE_TYPE(X) ( ( NOTHING == (X) ) ? NOTHING : \
3325 ( EXACT == (X) ) ? EXACT : \
3326 ( EXACTFU == (X) || EXACTFU_SS == (X) || EXACTFU_TRICKYFOLD == (X) ) ? EXACTFU : \
3329 /* dont use tail as the end marker for this traverse */
3330 for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
3331 regnode * const noper = NEXTOPER( cur );
3332 U8 noper_type = OP( noper );
3333 U8 noper_trietype = TRIE_TYPE( noper_type );
3334 #if defined(DEBUGGING) || defined(NOJUMPTRIE)
3335 regnode * const noper_next = regnext( noper );
3336 U8 noper_next_type = (noper_next && noper_next != tail) ? OP(noper_next) : 0;
3337 U8 noper_next_trietype = (noper_next && noper_next != tail) ? TRIE_TYPE( noper_next_type ) :0;
3340 DEBUG_TRIE_COMPILE_r({
3341 regprop(RExC_rx, mysv, cur);
3342 PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
3343 (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
3345 regprop(RExC_rx, mysv, noper);
3346 PerlIO_printf( Perl_debug_log, " -> %s",
3347 SvPV_nolen_const(mysv));
3350 regprop(RExC_rx, mysv, noper_next );
3351 PerlIO_printf( Perl_debug_log,"\t=> %s\t",
3352 SvPV_nolen_const(mysv));
3354 PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d,tt==%s,nt==%s,nnt==%s)\n",
3355 REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur),
3356 PL_reg_name[trietype], PL_reg_name[noper_trietype], PL_reg_name[noper_next_trietype]
3360 /* Is noper a trieable nodetype that can be merged with the
3361 * current trie (if there is one)? */
3365 ( noper_trietype == NOTHING)
3366 || ( trietype == NOTHING )
3367 || ( trietype == noper_trietype )
3370 && noper_next == tail
3374 /* Handle mergable triable node
3375 * Either we are the first node in a new trieable sequence,
3376 * in which case we do some bookkeeping, otherwise we update
3377 * the end pointer. */
3380 if ( noper_trietype == NOTHING ) {
3381 #if !defined(DEBUGGING) && !defined(NOJUMPTRIE)
3382 regnode * const noper_next = regnext( noper );
3383 U8 noper_next_type = (noper_next && noper_next!=tail) ? OP(noper_next) : 0;
3384 U8 noper_next_trietype = noper_next_type ? TRIE_TYPE( noper_next_type ) :0;
3387 if ( noper_next_trietype ) {
3388 trietype = noper_next_trietype;
3389 } else if (noper_next_type) {
3390 /* a NOTHING regop is 1 regop wide. We need at least two
3391 * for a trie so we can't merge this in */
3395 trietype = noper_trietype;
3398 if ( trietype == NOTHING )
3399 trietype = noper_trietype;
3404 } /* end handle mergable triable node */
3406 /* handle unmergable node -
3407 * noper may either be a triable node which can not be tried
3408 * together with the current trie, or a non triable node */
3410 /* If last is set and trietype is not NOTHING then we have found
3411 * at least two triable branch sequences in a row of a similar
3412 * trietype so we can turn them into a trie. If/when we
3413 * allow NOTHING to start a trie sequence this condition will be
3414 * required, and it isn't expensive so we leave it in for now. */
3415 if ( trietype && trietype != NOTHING )
3416 make_trie( pRExC_state,
3417 startbranch, first, cur, tail, count,
3418 trietype, depth+1 );
3419 last = NULL; /* note: we clear/update first, trietype etc below, so we dont do it here */
3423 && noper_next == tail
3426 /* noper is triable, so we can start a new trie sequence */
3429 trietype = noper_trietype;
3431 /* if we already saw a first but the current node is not triable then we have
3432 * to reset the first information. */
3437 } /* end handle unmergable node */
3438 } /* loop over branches */
3439 DEBUG_TRIE_COMPILE_r({
3440 regprop(RExC_rx, mysv, cur);
3441 PerlIO_printf( Perl_debug_log,
3442 "%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
3443 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3446 if ( last && trietype ) {
3447 if ( trietype != NOTHING ) {
3448 /* the last branch of the sequence was part of a trie,
3449 * so we have to construct it here outside of the loop
3451 made= make_trie( pRExC_state, startbranch, first, scan, tail, count, trietype, depth+1 );
3452 #ifdef TRIE_STUDY_OPT
3453 if ( ((made == MADE_EXACT_TRIE &&
3454 startbranch == first)
3455 || ( first_non_open == first )) &&
3457 flags |= SCF_TRIE_RESTUDY;
3458 if ( startbranch == first
3461 RExC_seen &=~REG_TOP_LEVEL_BRANCHES;
3466 /* at this point we know whatever we have is a NOTHING sequence/branch
3467 * AND if 'startbranch' is 'first' then we can turn the whole thing into a NOTHING
3469 if ( startbranch == first ) {
3471 /* the entire thing is a NOTHING sequence, something like this:
3472 * (?:|) So we can turn it into a plain NOTHING op. */
3473 DEBUG_TRIE_COMPILE_r({
3474 regprop(RExC_rx, mysv, cur);
3475 PerlIO_printf( Perl_debug_log,
3476 "%*s- %s (%d) <NOTHING BRANCH SEQUENCE>\n", (int)depth * 2 + 2,
3477 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3480 OP(startbranch)= NOTHING;
3481 NEXT_OFF(startbranch)= tail - startbranch;
3482 for ( opt= startbranch + 1; opt < tail ; opt++ )
3486 } /* end if ( last) */
3487 } /* TRIE_MAXBUF is non zero */
3492 else if ( code == BRANCHJ ) { /* single branch is optimized. */
3493 scan = NEXTOPER(NEXTOPER(scan));
3494 } else /* single branch is optimized. */
3495 scan = NEXTOPER(scan);
3497 } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
3498 scan_frame *newframe = NULL;
3503 if (OP(scan) != SUSPEND) {
3504 /* set the pointer */
3505 if (OP(scan) == GOSUB) {
3507 RExC_recurse[ARG2L(scan)] = scan;
3508 start = RExC_open_parens[paren-1];
3509 end = RExC_close_parens[paren-1];
3512 start = RExC_rxi->program + 1;
3516 Newxz(recursed, (((RExC_npar)>>3) +1), U8);
3517 SAVEFREEPV(recursed);
3519 if (!PAREN_TEST(recursed,paren+1)) {
3520 PAREN_SET(recursed,paren+1);
3521 Newx(newframe,1,scan_frame);
3523 if (flags & SCF_DO_SUBSTR) {
3524 SCAN_COMMIT(pRExC_state,data,minlenp);
3525 data->longest = &(data->longest_float);
3527 is_inf = is_inf_internal = 1;
3528 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3529 cl_anything(pRExC_state, data->start_class);
3530 flags &= ~SCF_DO_STCLASS;
3533 Newx(newframe,1,scan_frame);
3536 end = regnext(scan);
3541 SAVEFREEPV(newframe);
3542 newframe->next = regnext(scan);
3543 newframe->last = last;
3544 newframe->stop = stopparen;
3545 newframe->prev = frame;
3555 else if (OP(scan) == EXACT) {
3556 I32 l = STR_LEN(scan);
3559 const U8 * const s = (U8*)STRING(scan);
3560 uc = utf8_to_uvchr_buf(s, s + l, NULL);
3561 l = utf8_length(s, s + l);
3563 uc = *((U8*)STRING(scan));
3566 if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
3567 /* The code below prefers earlier match for fixed
3568 offset, later match for variable offset. */
3569 if (data->last_end == -1) { /* Update the start info. */
3570 data->last_start_min = data->pos_min;
3571 data->last_start_max = is_inf
3572 ? I32_MAX : data->pos_min + data->pos_delta;
3574 sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
3576 SvUTF8_on(data->last_found);
3578 SV * const sv = data->last_found;
3579 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3580 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3581 if (mg && mg->mg_len >= 0)
3582 mg->mg_len += utf8_length((U8*)STRING(scan),
3583 (U8*)STRING(scan)+STR_LEN(scan));
3585 data->last_end = data->pos_min + l;
3586 data->pos_min += l; /* As in the first entry. */
3587 data->flags &= ~SF_BEFORE_EOL;
3589 if (flags & SCF_DO_STCLASS_AND) {
3590 /* Check whether it is compatible with what we know already! */
3594 /* If compatible, we or it in below. It is compatible if is
3595 * in the bitmp and either 1) its bit or its fold is set, or 2)
3596 * it's for a locale. Even if there isn't unicode semantics
3597 * here, at runtime there may be because of matching against a
3598 * utf8 string, so accept a possible false positive for
3599 * latin1-range folds */
3601 (!(data->start_class->flags & ANYOF_LOCALE)
3602 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3603 && (!(data->start_class->flags & ANYOF_LOC_FOLD)
3604 || !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3609 ANYOF_CLASS_ZERO(data->start_class);
3610 ANYOF_BITMAP_ZERO(data->start_class);
3612 ANYOF_BITMAP_SET(data->start_class, uc);
3613 else if (uc >= 0x100) {
3616 /* Some Unicode code points fold to the Latin1 range; as
3617 * XXX temporary code, instead of figuring out if this is
3618 * one, just assume it is and set all the start class bits
3619 * that could be some such above 255 code point's fold
3620 * which will generate fals positives. As the code
3621 * elsewhere that does compute the fold settles down, it
3622 * can be extracted out and re-used here */
3623 for (i = 0; i < 256; i++){
3624 if (HAS_NONLATIN1_FOLD_CLOSURE(i)) {
3625 ANYOF_BITMAP_SET(data->start_class, i);
3629 CLEAR_SSC_EOS(data->start_class);
3631 data->start_class->flags &= ~ANYOF_UNICODE_ALL;
3633 else if (flags & SCF_DO_STCLASS_OR) {
3634 /* false positive possible if the class is case-folded */
3636 ANYOF_BITMAP_SET(data->start_class, uc);
3638 data->start_class->flags |= ANYOF_UNICODE_ALL;
3639 CLEAR_SSC_EOS(data->start_class);
3640 cl_and(data->start_class, and_withp);
3642 flags &= ~SCF_DO_STCLASS;
3644 else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
3645 I32 l = STR_LEN(scan);
3646 UV uc = *((U8*)STRING(scan));
3648 /* Search for fixed substrings supports EXACT only. */
3649 if (flags & SCF_DO_SUBSTR) {
3651 SCAN_COMMIT(pRExC_state, data, minlenp);
3654 const U8 * const s = (U8 *)STRING(scan);
3655 uc = utf8_to_uvchr_buf(s, s + l, NULL);
3656 l = utf8_length(s, s + l);
3658 if (has_exactf_sharp_s) {
3659 RExC_seen |= REG_SEEN_EXACTF_SHARP_S;
3661 min += l - min_subtract;
3663 delta += min_subtract;
3664 if (flags & SCF_DO_SUBSTR) {
3665 data->pos_min += l - min_subtract;
3666 if (data->pos_min < 0) {
3669 data->pos_delta += min_subtract;
3671 data->longest = &(data->longest_float);
3674 if (flags & SCF_DO_STCLASS_AND) {
3675 /* Check whether it is compatible with what we know already! */
3678 (!(data->start_class->flags & ANYOF_LOCALE)
3679 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3680 && !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3684 ANYOF_CLASS_ZERO(data->start_class);
3685 ANYOF_BITMAP_ZERO(data->start_class);
3687 ANYOF_BITMAP_SET(data->start_class, uc);
3688 CLEAR_SSC_EOS(data->start_class);
3689 if (OP(scan) == EXACTFL) {
3690 /* XXX This set is probably no longer necessary, and
3691 * probably wrong as LOCALE now is on in the initial
3693 data->start_class->flags |= ANYOF_LOCALE|ANYOF_LOC_FOLD;
3697 /* Also set the other member of the fold pair. In case
3698 * that unicode semantics is called for at runtime, use
3699 * the full latin1 fold. (Can't do this for locale,
3700 * because not known until runtime) */
3701 ANYOF_BITMAP_SET(data->start_class, PL_fold_latin1[uc]);
3703 /* All other (EXACTFL handled above) folds except under
3704 * /iaa that include s, S, and sharp_s also may include
3706 if (OP(scan) != EXACTFA) {
3707 if (uc == 's' || uc == 'S') {
3708 ANYOF_BITMAP_SET(data->start_class,
3709 LATIN_SMALL_LETTER_SHARP_S);
3711 else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
3712 ANYOF_BITMAP_SET(data->start_class, 's');
3713 ANYOF_BITMAP_SET(data->start_class, 'S');
3718 else if (uc >= 0x100) {
3720 for (i = 0; i < 256; i++){
3721 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3722 ANYOF_BITMAP_SET(data->start_class, i);
3727 else if (flags & SCF_DO_STCLASS_OR) {
3728 if (data->start_class->flags & ANYOF_LOC_FOLD) {
3729 /* false positive possible if the class is case-folded.
3730 Assume that the locale settings are the same... */
3732 ANYOF_BITMAP_SET(data->start_class, uc);
3733 if (OP(scan) != EXACTFL) {
3735 /* And set the other member of the fold pair, but
3736 * can't do that in locale because not known until
3738 ANYOF_BITMAP_SET(data->start_class,
3739 PL_fold_latin1[uc]);
3741 /* All folds except under /iaa that include s, S,
3742 * and sharp_s also may include the others */
3743 if (OP(scan) != EXACTFA) {
3744 if (uc == 's' || uc == 'S') {
3745 ANYOF_BITMAP_SET(data->start_class,
3746 LATIN_SMALL_LETTER_SHARP_S);
3748 else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
3749 ANYOF_BITMAP_SET(data->start_class, 's');
3750 ANYOF_BITMAP_SET(data->start_class, 'S');
3755 CLEAR_SSC_EOS(data->start_class);
3757 cl_and(data->start_class, and_withp);
3759 flags &= ~SCF_DO_STCLASS;
3761 else if (REGNODE_VARIES(OP(scan))) {
3762 I32 mincount, maxcount, minnext, deltanext, fl = 0;
3763 I32 f = flags, pos_before = 0;
3764 regnode * const oscan = scan;
3765 struct regnode_charclass_class this_class;
3766 struct regnode_charclass_class *oclass = NULL;
3767 I32 next_is_eval = 0;
3769 switch (PL_regkind[OP(scan)]) {
3770 case WHILEM: /* End of (?:...)* . */
3771 scan = NEXTOPER(scan);
3774 if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
3775 next = NEXTOPER(scan);
3776 if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
3778 maxcount = REG_INFTY;
3779 next = regnext(scan);
3780 scan = NEXTOPER(scan);
3784 if (flags & SCF_DO_SUBSTR)
3789 if (flags & SCF_DO_STCLASS) {
3791 maxcount = REG_INFTY;
3792 next = regnext(scan);
3793 scan = NEXTOPER(scan);
3796 is_inf = is_inf_internal = 1;
3797 scan = regnext(scan);
3798 if (flags & SCF_DO_SUBSTR) {
3799 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */
3800 data->longest = &(data->longest_float);
3802 goto optimize_curly_tail;
3804 if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
3805 && (scan->flags == stopparen))
3810 mincount = ARG1(scan);
3811 maxcount = ARG2(scan);
3813 next = regnext(scan);
3814 if (OP(scan) == CURLYX) {
3815 I32 lp = (data ? *(data->last_closep) : 0);
3816 scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
3818 scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
3819 next_is_eval = (OP(scan) == EVAL);
3821 if (flags & SCF_DO_SUBSTR) {
3822 if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */
3823 pos_before = data->pos_min;
3827 data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
3829 data->flags |= SF_IS_INF;
3831 if (flags & SCF_DO_STCLASS) {
3832 cl_init(pRExC_state, &this_class);
3833 oclass = data->start_class;
3834 data->start_class = &this_class;
3835 f |= SCF_DO_STCLASS_AND;
3836 f &= ~SCF_DO_STCLASS_OR;
3838 /* Exclude from super-linear cache processing any {n,m}
3839 regops for which the combination of input pos and regex
3840 pos is not enough information to determine if a match
3843 For example, in the regex /foo(bar\s*){4,8}baz/ with the
3844 regex pos at the \s*, the prospects for a match depend not
3845 only on the input position but also on how many (bar\s*)
3846 repeats into the {4,8} we are. */
3847 if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
3848 f &= ~SCF_WHILEM_VISITED_POS;
3850 /* This will finish on WHILEM, setting scan, or on NULL: */
3851 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3852 last, data, stopparen, recursed, NULL,
3854 ? (f & ~SCF_DO_SUBSTR) : f),depth+1);
3856 if (flags & SCF_DO_STCLASS)
3857 data->start_class = oclass;
3858 if (mincount == 0 || minnext == 0) {
3859 if (flags & SCF_DO_STCLASS_OR) {
3860 cl_or(pRExC_state, data->start_class, &this_class);
3862 else if (flags & SCF_DO_STCLASS_AND) {
3863 /* Switch to OR mode: cache the old value of
3864 * data->start_class */
3866 StructCopy(data->start_class, and_withp,
3867 struct regnode_charclass_class);
3868 flags &= ~SCF_DO_STCLASS_AND;
3869 StructCopy(&this_class, data->start_class,
3870 struct regnode_charclass_class);
3871 flags |= SCF_DO_STCLASS_OR;
3872 SET_SSC_EOS(data->start_class);
3874 } else { /* Non-zero len */
3875 if (flags & SCF_DO_STCLASS_OR) {
3876 cl_or(pRExC_state, data->start_class, &this_class);
3877 cl_and(data->start_class, and_withp);
3879 else if (flags & SCF_DO_STCLASS_AND)
3880 cl_and(data->start_class, &this_class);
3881 flags &= ~SCF_DO_STCLASS;
3883 if (!scan) /* It was not CURLYX, but CURLY. */
3885 if ( /* ? quantifier ok, except for (?{ ... }) */
3886 (next_is_eval || !(mincount == 0 && maxcount == 1))
3887 && (minnext == 0) && (deltanext == 0)
3888 && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
3889 && maxcount <= REG_INFTY/3) /* Complement check for big count */
3891 /* Fatal warnings may leak the regexp without this: */
3892 SAVEFREESV(RExC_rx_sv);
3893 ckWARNreg(RExC_parse,
3894 "Quantifier unexpected on zero-length expression");
3895 (void)ReREFCNT_inc(RExC_rx_sv);
3898 min += minnext * mincount;
3899 is_inf_internal |= deltanext == I32_MAX
3900 || (maxcount == REG_INFTY && minnext + deltanext > 0);
3901 is_inf |= is_inf_internal;
3905 delta += (minnext + deltanext) * maxcount - minnext * mincount;
3907 /* Try powerful optimization CURLYX => CURLYN. */
3908 if ( OP(oscan) == CURLYX && data
3909 && data->flags & SF_IN_PAR
3910 && !(data->flags & SF_HAS_EVAL)
3911 && !deltanext && minnext == 1 ) {
3912 /* Try to optimize to CURLYN. */
3913 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
3914 regnode * const nxt1 = nxt;
3921 if (!REGNODE_SIMPLE(OP(nxt))
3922 && !(PL_regkind[OP(nxt)] == EXACT
3923 && STR_LEN(nxt) == 1))
3929 if (OP(nxt) != CLOSE)
3931 if (RExC_open_parens) {
3932 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3933 RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
3935 /* Now we know that nxt2 is the only contents: */
3936 oscan->flags = (U8)ARG(nxt);
3938 OP(nxt1) = NOTHING; /* was OPEN. */
3941 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3942 NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
3943 NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
3944 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3945 OP(nxt + 1) = OPTIMIZED; /* was count. */
3946 NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
3951 /* Try optimization CURLYX => CURLYM. */
3952 if ( OP(oscan) == CURLYX && data
3953 && !(data->flags & SF_HAS_PAR)
3954 && !(data->flags & SF_HAS_EVAL)
3955 && !deltanext /* atom is fixed width */
3956 && minnext != 0 /* CURLYM can't handle zero width */
3957 && ! (RExC_seen & REG_SEEN_EXACTF_SHARP_S) /* Nor \xDF */
3959 /* XXXX How to optimize if data == 0? */
3960 /* Optimize to a simpler form. */
3961 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
3965 while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
3966 && (OP(nxt2) != WHILEM))
3968 OP(nxt2) = SUCCEED; /* Whas WHILEM */
3969 /* Need to optimize away parenths. */
3970 if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
3971 /* Set the parenth number. */
3972 regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
3974 oscan->flags = (U8)ARG(nxt);
3975 if (RExC_open_parens) {
3976 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3977 RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
3979 OP(nxt1) = OPTIMIZED; /* was OPEN. */
3980 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3983 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3984 OP(nxt + 1) = OPTIMIZED; /* was count. */
3985 NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
3986 NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
3989 while ( nxt1 && (OP(nxt1) != WHILEM)) {
3990 regnode *nnxt = regnext(nxt1);
3992 if (reg_off_by_arg[OP(nxt1)])
3993 ARG_SET(nxt1, nxt2 - nxt1);
3994 else if (nxt2 - nxt1 < U16_MAX)
3995 NEXT_OFF(nxt1) = nxt2 - nxt1;
3997 OP(nxt) = NOTHING; /* Cannot beautify */
4002 /* Optimize again: */
4003 study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
4004 NULL, stopparen, recursed, NULL, 0,depth+1);
4009 else if ((OP(oscan) == CURLYX)
4010 && (flags & SCF_WHILEM_VISITED_POS)
4011 /* See the comment on a similar expression above.
4012 However, this time it's not a subexpression
4013 we care about, but the expression itself. */
4014 && (maxcount == REG_INFTY)
4015 && data && ++data->whilem_c < 16) {
4016 /* This stays as CURLYX, we can put the count/of pair. */
4017 /* Find WHILEM (as in regexec.c) */
4018 regnode *nxt = oscan + NEXT_OFF(oscan);
4020 if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
4022 PREVOPER(nxt)->flags = (U8)(data->whilem_c
4023 | (RExC_whilem_seen << 4)); /* On WHILEM */
4025 if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
4027 if (flags & SCF_DO_SUBSTR) {
4028 SV *last_str = NULL;
4029 int counted = mincount != 0;
4031 if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */
4032 #if defined(SPARC64_GCC_WORKAROUND)
4035 const char *s = NULL;
4038 if (pos_before >= data->last_start_min)
4041 b = data->last_start_min;
4044 s = SvPV_const(data->last_found, l);
4045 old = b - data->last_start_min;
4048 I32 b = pos_before >= data->last_start_min
4049 ? pos_before : data->last_start_min;
4051 const char * const s = SvPV_const(data->last_found, l);
4052 I32 old = b - data->last_start_min;
4056 old = utf8_hop((U8*)s, old) - (U8*)s;
4058 /* Get the added string: */
4059 last_str = newSVpvn_utf8(s + old, l, UTF);
4060 if (deltanext == 0 && pos_before == b) {
4061 /* What was added is a constant string */
4063 SvGROW(last_str, (mincount * l) + 1);
4064 repeatcpy(SvPVX(last_str) + l,
4065 SvPVX_const(last_str), l, mincount - 1);
4066 SvCUR_set(last_str, SvCUR(last_str) * mincount);
4067 /* Add additional parts. */
4068 SvCUR_set(data->last_found,
4069 SvCUR(data->last_found) - l);
4070 sv_catsv(data->last_found, last_str);
4072 SV * sv = data->last_found;
4074 SvUTF8(sv) && SvMAGICAL(sv) ?
4075 mg_find(sv, PERL_MAGIC_utf8) : NULL;
4076 if (mg && mg->mg_len >= 0)
4077 mg->mg_len += CHR_SVLEN(last_str) - l;
4079 data->last_end += l * (mincount - 1);
4082 /* start offset must point into the last copy */
4083 data->last_start_min += minnext * (mincount - 1);
4084 data->last_start_max += is_inf ? I32_MAX
4085 : (maxcount - 1) * (minnext + data->pos_delta);
4088 /* It is counted once already... */
4089 data->pos_min += minnext * (mincount - counted);
4091 PerlIO_printf(Perl_debug_log, "counted=%d deltanext=%d I32_MAX=%d minnext=%d maxcount=%d mincount=%d\n",
4092 counted, deltanext, I32_MAX, minnext, maxcount, mincount);
4093 if (deltanext != I32_MAX)
4094 PerlIO_printf(Perl_debug_log, "LHS=%d RHS=%d\n", -counted * deltanext + (minnext + deltanext) * maxcount - minnext * mincount, I32_MAX - data->pos_delta);
4096 if (deltanext == I32_MAX || -counted * deltanext + (minnext + deltanext) * maxcount - minnext * mincount >= I32_MAX - data->pos_delta)
4097 data->pos_delta = I32_MAX;
4099 data->pos_delta += - counted * deltanext +
4100 (minnext + deltanext) * maxcount - minnext * mincount;
4101 if (mincount != maxcount) {
4102 /* Cannot extend fixed substrings found inside
4104 SCAN_COMMIT(pRExC_state,data,minlenp);
4105 if (mincount && last_str) {
4106 SV * const sv = data->last_found;
4107 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
4108 mg_find(sv, PERL_MAGIC_utf8) : NULL;
4112 sv_setsv(sv, last_str);
4113 data->last_end = data->pos_min;
4114 data->last_start_min =
4115 data->pos_min - CHR_SVLEN(last_str);
4116 data->last_start_max = is_inf
4118 : data->pos_min + data->pos_delta
4119 - CHR_SVLEN(last_str);
4121 data->longest = &(data->longest_float);
4123 SvREFCNT_dec(last_str);
4125 if (data && (fl & SF_HAS_EVAL))
4126 data->flags |= SF_HAS_EVAL;
4127 optimize_curly_tail:
4128 if (OP(oscan) != CURLYX) {
4129 while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
4131 NEXT_OFF(oscan) += NEXT_OFF(next);
4134 default: /* REF, and CLUMP only? */
4135 if (flags & SCF_DO_SUBSTR) {
4136 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
4137 data->longest = &(data->longest_float);
4139 is_inf = is_inf_internal = 1;
4140 if (flags & SCF_DO_STCLASS_OR)
4141 cl_anything(pRExC_state, data->start_class);
4142 flags &= ~SCF_DO_STCLASS;
4146 else if (OP(scan) == LNBREAK) {
4147 if (flags & SCF_DO_STCLASS) {
4149 CLEAR_SSC_EOS(data->start_class); /* No match on empty */
4150 if (flags & SCF_DO_STCLASS_AND) {
4151 for (value = 0; value < 256; value++)
4152 if (!is_VERTWS_cp(value))
4153 ANYOF_BITMAP_CLEAR(data->start_class, value);
4156 for (value = 0; value < 256; value++)
4157 if (is_VERTWS_cp(value))
4158 ANYOF_BITMAP_SET(data->start_class, value);
4160 if (flags & SCF_DO_STCLASS_OR)
4161 cl_and(data->start_class, and_withp);
4162 flags &= ~SCF_DO_STCLASS;
4165 delta++; /* Because of the 2 char string cr-lf */
4166 if (flags & SCF_DO_SUBSTR) {
4167 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
4169 data->pos_delta += 1;
4170 data->longest = &(data->longest_float);
4173 else if (REGNODE_SIMPLE(OP(scan))) {
4176 if (flags & SCF_DO_SUBSTR) {
4177 SCAN_COMMIT(pRExC_state,data,minlenp);
4181 if (flags & SCF_DO_STCLASS) {
4183 CLEAR_SSC_EOS(data->start_class); /* No match on empty */
4185 /* Some of the logic below assumes that switching
4186 locale on will only add false positives. */
4187 switch (PL_regkind[OP(scan)]) {
4193 Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan));
4196 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
4197 cl_anything(pRExC_state, data->start_class);
4200 if (OP(scan) == SANY)
4202 if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */
4203 value = (ANYOF_BITMAP_TEST(data->start_class,'\n')
4204 || ANYOF_CLASS_TEST_ANY_SET(data->start_class));
4205 cl_anything(pRExC_state, data->start_class);
4207 if (flags & SCF_DO_STCLASS_AND || !value)
4208 ANYOF_BITMAP_CLEAR(data->start_class,'\n');
4211 if (flags & SCF_DO_STCLASS_AND)
4212 cl_and(data->start_class,
4213 (struct regnode_charclass_class*)scan);
4215 cl_or(pRExC_state, data->start_class,
4216 (struct regnode_charclass_class*)scan);
4224 classnum = FLAGS(scan);
4225 if (flags & SCF_DO_STCLASS_AND) {
4226 if (!(data->start_class->flags & ANYOF_LOCALE)) {
4227 ANYOF_CLASS_CLEAR(data->start_class, classnum_to_namedclass(classnum) + 1);
4228 for (value = 0; value < loop_max; value++) {
4229 if (! _generic_isCC(UNI_TO_NATIVE(value), classnum)) {
4230 ANYOF_BITMAP_CLEAR(data->start_class, UNI_TO_NATIVE(value));
4236 if (data->start_class->flags & ANYOF_LOCALE) {
4237 ANYOF_CLASS_SET(data->start_class, classnum_to_namedclass(classnum));
4241 /* Even if under locale, set the bits for non-locale
4242 * in case it isn't a true locale-node. This will
4243 * create false positives if it truly is locale */
4244 for (value = 0; value < loop_max; value++) {
4245 if (_generic_isCC(UNI_TO_NATIVE(value), classnum)) {
4246 ANYOF_BITMAP_SET(data->start_class, UNI_TO_NATIVE(value));
4258 classnum = FLAGS(scan);
4259 if (flags & SCF_DO_STCLASS_AND) {
4260 if (!(data->start_class->flags & ANYOF_LOCALE)) {
4261 ANYOF_CLASS_CLEAR(data->start_class, classnum_to_namedclass(classnum));
4262 for (value = 0; value < loop_max; value++) {
4263 if (_generic_isCC(UNI_TO_NATIVE(value), classnum)) {
4264 ANYOF_BITMAP_CLEAR(data->start_class, UNI_TO_NATIVE(value));
4270 if (data->start_class->flags & ANYOF_LOCALE) {
4271 ANYOF_CLASS_SET(data->start_class, classnum_to_namedclass(classnum) + 1);
4275 /* Even if under locale, set the bits for non-locale in
4276 * case it isn't a true locale-node. This will create
4277 * false positives if it truly is locale */
4278 for (value = 0; value < loop_max; value++) {
4279 if (! _generic_isCC(UNI_TO_NATIVE(value), classnum)) {
4280 ANYOF_BITMAP_SET(data->start_class, UNI_TO_NATIVE(value));
4283 if (PL_regkind[OP(scan)] == NPOSIXD) {
4284 data->start_class->flags |= ANYOF_NON_UTF8_LATIN1_ALL;
4290 if (flags & SCF_DO_STCLASS_OR)
4291 cl_and(data->start_class, and_withp);
4292 flags &= ~SCF_DO_STCLASS;
4295 else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
4296 data->flags |= (OP(scan) == MEOL
4299 SCAN_COMMIT(pRExC_state, data, minlenp);
4302 else if ( PL_regkind[OP(scan)] == BRANCHJ
4303 /* Lookbehind, or need to calculate parens/evals/stclass: */
4304 && (scan->flags || data || (flags & SCF_DO_STCLASS))
4305 && (OP(scan) == IFMATCH || OP(scan) == UNLESSM)) {
4306 if ( OP(scan) == UNLESSM &&
4308 OP(NEXTOPER(NEXTOPER(scan))) == NOTHING &&
4309 OP(regnext(NEXTOPER(NEXTOPER(scan)))) == SUCCEED
4312 regnode *upto= regnext(scan);
4314 SV * const mysv_val=sv_newmortal();
4315 DEBUG_STUDYDATA("OPFAIL",data,depth);
4317 /*DEBUG_PARSE_MSG("opfail");*/
4318 regprop(RExC_rx, mysv_val, upto);
4319 PerlIO_printf(Perl_debug_log, "~ replace with OPFAIL pointed at %s (%"IVdf") offset %"IVdf"\n",
4320 SvPV_nolen_const(mysv_val),
4321 (IV)REG_NODE_NUM(upto),
4326 NEXT_OFF(scan) = upto - scan;
4327 for (opt= scan + 1; opt < upto ; opt++)
4328 OP(opt) = OPTIMIZED;
4332 if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4333 || OP(scan) == UNLESSM )
4335 /* Negative Lookahead/lookbehind
4336 In this case we can't do fixed string optimisation.
4339 I32 deltanext, minnext, fake = 0;
4341 struct regnode_charclass_class intrnl;
4344 data_fake.flags = 0;
4346 data_fake.whilem_c = data->whilem_c;
4347 data_fake.last_closep = data->last_closep;
4350 data_fake.last_closep = &fake;
4351 data_fake.pos_delta = delta;
4352 if ( flags & SCF_DO_STCLASS && !scan->flags
4353 && OP(scan) == IFMATCH ) { /* Lookahead */
4354 cl_init(pRExC_state, &intrnl);
4355 data_fake.start_class = &intrnl;
4356 f |= SCF_DO_STCLASS_AND;
4358 if (flags & SCF_WHILEM_VISITED_POS)
4359 f |= SCF_WHILEM_VISITED_POS;
4360 next = regnext(scan);
4361 nscan = NEXTOPER(NEXTOPER(scan));
4362 minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
4363 last, &data_fake, stopparen, recursed, NULL, f, depth+1);
4366 FAIL("Variable length lookbehind not implemented");
4368 else if (minnext > (I32)U8_MAX) {
4369 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4371 scan->flags = (U8)minnext;
4374 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4376 if (data_fake.flags & SF_HAS_EVAL)
4377 data->flags |= SF_HAS_EVAL;
4378 data->whilem_c = data_fake.whilem_c;
4380 if (f & SCF_DO_STCLASS_AND) {
4381 if (flags & SCF_DO_STCLASS_OR) {
4382 /* OR before, AND after: ideally we would recurse with
4383 * data_fake to get the AND applied by study of the
4384 * remainder of the pattern, and then derecurse;
4385 * *** HACK *** for now just treat as "no information".
4386 * See [perl #56690].
4388 cl_init(pRExC_state, data->start_class);
4390 /* AND before and after: combine and continue */
4391 const int was = TEST_SSC_EOS(data->start_class);
4393 cl_and(data->start_class, &intrnl);
4395 SET_SSC_EOS(data->start_class);
4399 #if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4401 /* Positive Lookahead/lookbehind
4402 In this case we can do fixed string optimisation,
4403 but we must be careful about it. Note in the case of
4404 lookbehind the positions will be offset by the minimum
4405 length of the pattern, something we won't know about
4406 until after the recurse.
4408 I32 deltanext, fake = 0;
4410 struct regnode_charclass_class intrnl;
4412 /* We use SAVEFREEPV so that when the full compile
4413 is finished perl will clean up the allocated
4414 minlens when it's all done. This way we don't
4415 have to worry about freeing them when we know
4416 they wont be used, which would be a pain.
4419 Newx( minnextp, 1, I32 );
4420 SAVEFREEPV(minnextp);
4423 StructCopy(data, &data_fake, scan_data_t);
4424 if ((flags & SCF_DO_SUBSTR) && data->last_found) {
4427 SCAN_COMMIT(pRExC_state, &data_fake,minlenp);
4428 data_fake.last_found=newSVsv(data->last_found);
4432 data_fake.last_closep = &fake;
4433 data_fake.flags = 0;
4434 data_fake.pos_delta = delta;
4436 data_fake.flags |= SF_IS_INF;
4437 if ( flags & SCF_DO_STCLASS && !scan->flags
4438 && OP(scan) == IFMATCH ) { /* Lookahead */
4439 cl_init(pRExC_state, &intrnl);
4440 data_fake.start_class = &intrnl;
4441 f |= SCF_DO_STCLASS_AND;
4443 if (flags & SCF_WHILEM_VISITED_POS)
4444 f |= SCF_WHILEM_VISITED_POS;
4445 next = regnext(scan);
4446 nscan = NEXTOPER(NEXTOPER(scan));
4448 *minnextp = study_chunk(pRExC_state, &nscan, minnextp, &deltanext,
4449 last, &data_fake, stopparen, recursed, NULL, f,depth+1);
4452 FAIL("Variable length lookbehind not implemented");
4454 else if (*minnextp > (I32)U8_MAX) {
4455 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4457 scan->flags = (U8)*minnextp;
4462 if (f & SCF_DO_STCLASS_AND) {
4463 const int was = TEST_SSC_EOS(data.start_class);
4465 cl_and(data->start_class, &intrnl);
4467 SET_SSC_EOS(data->start_class);
4470 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4472 if (data_fake.flags & SF_HAS_EVAL)
4473 data->flags |= SF_HAS_EVAL;
4474 data->whilem_c = data_fake.whilem_c;
4475 if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
4476 if (RExC_rx->minlen<*minnextp)
4477 RExC_rx->minlen=*minnextp;
4478 SCAN_COMMIT(pRExC_state, &data_fake, minnextp);
4479 SvREFCNT_dec_NN(data_fake.last_found);
4481 if ( data_fake.minlen_fixed != minlenp )
4483 data->offset_fixed= data_fake.offset_fixed;
4484 data->minlen_fixed= data_fake.minlen_fixed;
4485 data->lookbehind_fixed+= scan->flags;
4487 if ( data_fake.minlen_float != minlenp )
4489 data->minlen_float= data_fake.minlen_float;
4490 data->offset_float_min=data_fake.offset_float_min;
4491 data->offset_float_max=data_fake.offset_float_max;
4492 data->lookbehind_float+= scan->flags;
4499 else if (OP(scan) == OPEN) {
4500 if (stopparen != (I32)ARG(scan))
4503 else if (OP(scan) == CLOSE) {
4504 if (stopparen == (I32)ARG(scan)) {
4507 if ((I32)ARG(scan) == is_par) {
4508 next = regnext(scan);
4510 if ( next && (OP(next) != WHILEM) && next < last)
4511 is_par = 0; /* Disable optimization */
4514 *(data->last_closep) = ARG(scan);
4516 else if (OP(scan) == EVAL) {
4518 data->flags |= SF_HAS_EVAL;
4520 else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
4521 if (flags & SCF_DO_SUBSTR) {
4522 SCAN_COMMIT(pRExC_state,data,minlenp);
4523 flags &= ~SCF_DO_SUBSTR;
4525 if (data && OP(scan)==ACCEPT) {
4526 data->flags |= SCF_SEEN_ACCEPT;
4531 else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
4533 if (flags & SCF_DO_SUBSTR) {
4534 SCAN_COMMIT(pRExC_state,data,minlenp);
4535 data->longest = &(data->longest_float);
4537 is_inf = is_inf_internal = 1;
4538 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
4539 cl_anything(pRExC_state, data->start_class);
4540 flags &= ~SCF_DO_STCLASS;
4542 else if (OP(scan) == GPOS) {
4543 if (!(RExC_rx->extflags & RXf_GPOS_FLOAT) &&
4544 !(delta || is_inf || (data && data->pos_delta)))
4546 if (!(RExC_rx->extflags & RXf_ANCH) && (flags & SCF_DO_SUBSTR))
4547 RExC_rx->extflags |= RXf_ANCH_GPOS;
4548 if (RExC_rx->gofs < (U32)min)
4549 RExC_rx->gofs = min;
4551 RExC_rx->extflags |= RXf_GPOS_FLOAT;
4555 #ifdef TRIE_STUDY_OPT
4556 #ifdef FULL_TRIE_STUDY
4557 else if (PL_regkind[OP(scan)] == TRIE) {
4558 /* NOTE - There is similar code to this block above for handling
4559 BRANCH nodes on the initial study. If you change stuff here
4561 regnode *trie_node= scan;
4562 regnode *tail= regnext(scan);
4563 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4564 I32 max1 = 0, min1 = I32_MAX;
4565 struct regnode_charclass_class accum;
4567 if (flags & SCF_DO_SUBSTR) /* XXXX Add !SUSPEND? */
4568 SCAN_COMMIT(pRExC_state, data,minlenp); /* Cannot merge strings after this. */
4569 if (flags & SCF_DO_STCLASS)
4570 cl_init_zero(pRExC_state, &accum);
4576 const regnode *nextbranch= NULL;
4579 for ( word=1 ; word <= trie->wordcount ; word++)
4581 I32 deltanext=0, minnext=0, f = 0, fake;
4582 struct regnode_charclass_class this_class;
4584 data_fake.flags = 0;
4586 data_fake.whilem_c = data->whilem_c;
4587 data_fake.last_closep = data->last_closep;
4590 data_fake.last_closep = &fake;
4591 data_fake.pos_delta = delta;
4592 if (flags & SCF_DO_STCLASS) {
4593 cl_init(pRExC_state, &this_class);
4594 data_fake.start_class = &this_class;
4595 f = SCF_DO_STCLASS_AND;
4597 if (flags & SCF_WHILEM_VISITED_POS)
4598 f |= SCF_WHILEM_VISITED_POS;
4600 if (trie->jump[word]) {
4602 nextbranch = trie_node + trie->jump[0];
4603 scan= trie_node + trie->jump[word];
4604 /* We go from the jump point to the branch that follows
4605 it. Note this means we need the vestigal unused branches
4606 even though they arent otherwise used.
4608 minnext = study_chunk(pRExC_state, &scan, minlenp,
4609 &deltanext, (regnode *)nextbranch, &data_fake,
4610 stopparen, recursed, NULL, f,depth+1);
4612 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
4613 nextbranch= regnext((regnode*)nextbranch);
4615 if (min1 > (I32)(minnext + trie->minlen))
4616 min1 = minnext + trie->minlen;
4617 if (deltanext == I32_MAX) {
4618 is_inf = is_inf_internal = 1;
4620 } else if (max1 < (I32)(minnext + deltanext + trie->maxlen))
4621 max1 = minnext + deltanext + trie->maxlen;
4623 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4625 if (data_fake.flags & SCF_SEEN_ACCEPT) {
4626 if ( stopmin > min + min1)
4627 stopmin = min + min1;
4628 flags &= ~SCF_DO_SUBSTR;
4630 data->flags |= SCF_SEEN_ACCEPT;
4633 if (data_fake.flags & SF_HAS_EVAL)
4634 data->flags |= SF_HAS_EVAL;
4635 data->whilem_c = data_fake.whilem_c;
4637 if (flags & SCF_DO_STCLASS)
4638 cl_or(pRExC_state, &accum, &this_class);
4641 if (flags & SCF_DO_SUBSTR) {
4642 data->pos_min += min1;
4643 data->pos_delta += max1 - min1;
4644 if (max1 != min1 || is_inf)
4645 data->longest = &(data->longest_float);
4648 delta += max1 - min1;
4649 if (flags & SCF_DO_STCLASS_OR) {
4650 cl_or(pRExC_state, data->start_class, &accum);
4652 cl_and(data->start_class, and_withp);
4653 flags &= ~SCF_DO_STCLASS;
4656 else if (flags & SCF_DO_STCLASS_AND) {
4658 cl_and(data->start_class, &accum);
4659 flags &= ~SCF_DO_STCLASS;
4662 /* Switch to OR mode: cache the old value of
4663 * data->start_class */
4665 StructCopy(data->start_class, and_withp,
4666 struct regnode_charclass_class);
4667 flags &= ~SCF_DO_STCLASS_AND;
4668 StructCopy(&accum, data->start_class,
4669 struct regnode_charclass_class);
4670 flags |= SCF_DO_STCLASS_OR;
4671 SET_SSC_EOS(data->start_class);
4678 else if (PL_regkind[OP(scan)] == TRIE) {
4679 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4682 min += trie->minlen;
4683 delta += (trie->maxlen - trie->minlen);
4684 flags &= ~SCF_DO_STCLASS; /* xxx */
4685 if (flags & SCF_DO_SUBSTR) {
4686 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
4687 data->pos_min += trie->minlen;
4688 data->pos_delta += (trie->maxlen - trie->minlen);
4689 if (trie->maxlen != trie->minlen)
4690 data->longest = &(data->longest_float);
4692 if (trie->jump) /* no more substrings -- for now /grr*/
4693 flags &= ~SCF_DO_SUBSTR;
4695 #endif /* old or new */
4696 #endif /* TRIE_STUDY_OPT */
4698 /* Else: zero-length, ignore. */
4699 scan = regnext(scan);
4704 stopparen = frame->stop;
4705 frame = frame->prev;
4706 goto fake_study_recurse;
4711 DEBUG_STUDYDATA("pre-fin:",data,depth);
4714 *deltap = is_inf_internal ? I32_MAX : delta;
4715 if (flags & SCF_DO_SUBSTR && is_inf)
4716 data->pos_delta = I32_MAX - data->pos_min;
4717 if (is_par > (I32)U8_MAX)
4719 if (is_par && pars==1 && data) {
4720 data->flags |= SF_IN_PAR;
4721 data->flags &= ~SF_HAS_PAR;
4723 else if (pars && data) {
4724 data->flags |= SF_HAS_PAR;
4725 data->flags &= ~SF_IN_PAR;
4727 if (flags & SCF_DO_STCLASS_OR)
4728 cl_and(data->start_class, and_withp);
4729 if (flags & SCF_TRIE_RESTUDY)
4730 data->flags |= SCF_TRIE_RESTUDY;
4732 DEBUG_STUDYDATA("post-fin:",data,depth);
4734 return min < stopmin ? min : stopmin;
4738 S_add_data(RExC_state_t *pRExC_state, U32 n, const char *s)
4740 U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
4742 PERL_ARGS_ASSERT_ADD_DATA;
4744 Renewc(RExC_rxi->data,
4745 sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
4746 char, struct reg_data);
4748 Renew(RExC_rxi->data->what, count + n, U8);
4750 Newx(RExC_rxi->data->what, n, U8);
4751 RExC_rxi->data->count = count + n;
4752 Copy(s, RExC_rxi->data->what + count, n, U8);
4756 /*XXX: todo make this not included in a non debugging perl */
4757 #ifndef PERL_IN_XSUB_RE
4759 Perl_reginitcolors(pTHX)
4762 const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
4764 char *t = savepv(s);
4768 t = strchr(t, '\t');
4774 PL_colors[i] = t = (char *)"";
4779 PL_colors[i++] = (char *)"";
4786 #ifdef TRIE_STUDY_OPT
4787 #define CHECK_RESTUDY_GOTO_butfirst(dOsomething) \
4790 (data.flags & SCF_TRIE_RESTUDY) \
4798 #define CHECK_RESTUDY_GOTO_butfirst
4802 * pregcomp - compile a regular expression into internal code
4804 * Decides which engine's compiler to call based on the hint currently in
4808 #ifndef PERL_IN_XSUB_RE
4810 /* return the currently in-scope regex engine (or the default if none) */
4812 regexp_engine const *
4813 Perl_current_re_engine(pTHX)
4817 if (IN_PERL_COMPILETIME) {
4818 HV * const table = GvHV(PL_hintgv);
4822 return &reh_regexp_engine;
4823 ptr = hv_fetchs(table, "regcomp", FALSE);
4824 if ( !(ptr && SvIOK(*ptr) && SvIV(*ptr)))
4825 return &reh_regexp_engine;
4826 return INT2PTR(regexp_engine*,SvIV(*ptr));
4830 if (!PL_curcop->cop_hints_hash)
4831 return &reh_regexp_engine;
4832 ptr = cop_hints_fetch_pvs(PL_curcop, "regcomp", 0);
4833 if ( !(ptr && SvIOK(ptr) && SvIV(ptr)))
4834 return &reh_regexp_engine;
4835 return INT2PTR(regexp_engine*,SvIV(ptr));
4841 Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
4844 regexp_engine const *eng = current_re_engine();
4845 GET_RE_DEBUG_FLAGS_DECL;
4847 PERL_ARGS_ASSERT_PREGCOMP;
4849 /* Dispatch a request to compile a regexp to correct regexp engine. */
4851 PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
4854 return CALLREGCOMP_ENG(eng, pattern, flags);
4858 /* public(ish) entry point for the perl core's own regex compiling code.
4859 * It's actually a wrapper for Perl_re_op_compile that only takes an SV
4860 * pattern rather than a list of OPs, and uses the internal engine rather
4861 * than the current one */
4864 Perl_re_compile(pTHX_ SV * const pattern, U32 rx_flags)
4866 SV *pat = pattern; /* defeat constness! */
4867 PERL_ARGS_ASSERT_RE_COMPILE;
4868 return Perl_re_op_compile(aTHX_ &pat, 1, NULL,
4869 #ifdef PERL_IN_XSUB_RE
4874 NULL, NULL, rx_flags, 0);
4878 /* upgrade pattern pat_p of length plen_p to UTF8, and if there are code
4879 * blocks, recalculate the indices. Update pat_p and plen_p in-place to
4880 * point to the realloced string and length.
4882 * This is essentially a copy of Perl_bytes_to_utf8() with the code index
4886 S_pat_upgrade_to_utf8(pTHX_ RExC_state_t * const pRExC_state,
4887 char **pat_p, STRLEN *plen_p, int num_code_blocks)
4889 U8 *const src = (U8*)*pat_p;
4892 STRLEN s = 0, d = 0;
4894 GET_RE_DEBUG_FLAGS_DECL;
4896 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
4897 "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
4899 Newx(dst, *plen_p * 2 + 1, U8);
4901 while (s < *plen_p) {
4902 const UV uv = NATIVE_TO_ASCII(src[s]);
4903 if (UNI_IS_INVARIANT(uv))
4904 dst[d] = (U8)UTF_TO_NATIVE(uv);
4906 dst[d++] = (U8)UTF8_EIGHT_BIT_HI(uv);
4907 dst[d] = (U8)UTF8_EIGHT_BIT_LO(uv);
4909 if (n < num_code_blocks) {
4910 if (!do_end && pRExC_state->code_blocks[n].start == s) {
4911 pRExC_state->code_blocks[n].start = d;
4912 assert(dst[d] == '(');
4915 else if (do_end && pRExC_state->code_blocks[n].end == s) {
4916 pRExC_state->code_blocks[n].end = d;
4917 assert(dst[d] == ')');
4927 *pat_p = (char*) dst;
4929 RExC_orig_utf8 = RExC_utf8 = 1;
4934 /* S_concat_pat(): concatenate a list of args to the pattern string pat,
4935 * while recording any code block indices, and handling overloading,
4936 * nested qr// objects etc. If pat is null, it will allocate a new
4937 * string, or just return the first arg, if there's only one.
4939 * Returns the malloced/updated pat.
4940 * patternp and pat_count is the array of SVs to be concatted;
4941 * oplist is the optional list of ops that generated the SVs;
4942 * recompile_p is a pointer to a boolean that will be set if
4943 * the regex will need to be recompiled.
4944 * delim, if non-null is an SV that will be inserted between each element
4948 S_concat_pat(pTHX_ RExC_state_t * const pRExC_state,
4949 SV *pat, SV ** const patternp, int pat_count,
4950 OP *oplist, bool *recompile_p, SV *delim)
4954 bool use_delim = FALSE;
4955 bool alloced = FALSE;
4957 /* if we know we have at least two args, create an empty string,
4958 * then concatenate args to that. For no args, return an empty string */
4959 if (!pat && pat_count != 1) {
4960 pat = newSVpvn("", 0);
4965 for (svp = patternp; svp < patternp + pat_count; svp++) {
4968 STRLEN orig_patlen = 0;
4970 SV *msv = use_delim ? delim : *svp;
4972 /* if we've got a delimiter, we go round the loop twice for each
4973 * svp slot (except the last), using the delimiter the second
4982 if (SvTYPE(msv) == SVt_PVAV) {
4983 /* we've encountered an interpolated array within
4984 * the pattern, e.g. /...@a..../. Expand the list of elements,
4985 * then recursively append elements.
4986 * The code in this block is based on S_pushav() */
4988 AV *const av = (AV*)msv;
4989 const I32 maxarg = AvFILL(av) + 1;
4993 assert(oplist->op_type == OP_PADAV
4994 || oplist->op_type == OP_RV2AV);
4995 oplist = oplist->op_sibling;;
4998 if (SvRMAGICAL(av)) {
5001 Newx(array, maxarg, SV*);
5003 for (i=0; i < (U32)maxarg; i++) {
5004 SV ** const svp = av_fetch(av, i, FALSE);
5005 array[i] = svp ? *svp : &PL_sv_undef;
5009 array = AvARRAY(av);
5011 pat = S_concat_pat(aTHX_ pRExC_state, pat,
5012 array, maxarg, NULL, recompile_p,
5014 GvSV((gv_fetchpvs("\"", GV_ADDMULTI, SVt_PV))));
5020 /* we make the assumption here that each op in the list of
5021 * op_siblings maps to one SV pushed onto the stack,
5022 * except for code blocks, with have both an OP_NULL and
5024 * This allows us to match up the list of SVs against the
5025 * list of OPs to find the next code block.
5027 * Note that PUSHMARK PADSV PADSV ..
5029 * PADRANGE PADSV PADSV ..
5030 * so the alignment still works. */
5033 if (oplist->op_type == OP_NULL
5034 && (oplist->op_flags & OPf_SPECIAL))
5036 assert(n < pRExC_state->num_code_blocks);
5037 pRExC_state->code_blocks[n].start = pat ? SvCUR(pat) : 0;
5038 pRExC_state->code_blocks[n].block = oplist;
5039 pRExC_state->code_blocks[n].src_regex = NULL;
5042 oplist = oplist->op_sibling; /* skip CONST */
5045 oplist = oplist->op_sibling;;
5048 /* apply magic and QR overloading to arg */
5051 if (SvROK(msv) && SvAMAGIC(msv)) {
5052 SV *sv = AMG_CALLunary(msv, regexp_amg);
5056 if (SvTYPE(sv) != SVt_REGEXP)
5057 Perl_croak(aTHX_ "Overloaded qr did not return a REGEXP");
5062 /* try concatenation overload ... */
5063 if (pat && (SvAMAGIC(pat) || SvAMAGIC(msv)) &&
5064 (sv = amagic_call(pat, msv, concat_amg, AMGf_assign)))
5067 /* overloading involved: all bets are off over literal
5068 * code. Pretend we haven't seen it */
5069 pRExC_state->num_code_blocks -= n;
5073 /* ... or failing that, try "" overload */
5074 while (SvAMAGIC(msv)
5075 && (sv = AMG_CALLunary(msv, string_amg))
5079 && SvRV(msv) == SvRV(sv))
5084 if (SvROK(msv) && SvTYPE(SvRV(msv)) == SVt_REGEXP)
5088 /* this is a partially unrolled
5089 * sv_catsv_nomg(pat, msv);
5090 * that allows us to adjust code block indices if
5093 char *dst = SvPV_force_nomg(pat, dlen);
5094 const char *src = SvPV_flags_const(msv, slen, 0);
5096 if (SvUTF8(msv) && !SvUTF8(pat)) {
5097 S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &dst, &dlen, n);
5098 sv_setpvn(pat, dst, dlen);
5101 sv_catpvn_nomg(pat, src, slen);
5108 pRExC_state->code_blocks[n-1].end = SvCUR(pat)-1;
5111 /* extract any code blocks within any embedded qr//'s */
5112 if (rx && SvTYPE(rx) == SVt_REGEXP
5113 && RX_ENGINE((REGEXP*)rx)->op_comp)
5116 RXi_GET_DECL(ReANY((REGEXP *)rx), ri);
5117 if (ri->num_code_blocks) {
5119 /* the presence of an embedded qr// with code means
5120 * we should always recompile: the text of the
5121 * qr// may not have changed, but it may be a
5122 * different closure than last time */
5124 Renew(pRExC_state->code_blocks,
5125 pRExC_state->num_code_blocks + ri->num_code_blocks,
5126 struct reg_code_block);
5127 pRExC_state->num_code_blocks += ri->num_code_blocks;
5129 for (i=0; i < ri->num_code_blocks; i++) {
5130 struct reg_code_block *src, *dst;
5131 STRLEN offset = orig_patlen
5132 + ReANY((REGEXP *)rx)->pre_prefix;
5133 assert(n < pRExC_state->num_code_blocks);
5134 src = &ri->code_blocks[i];
5135 dst = &pRExC_state->code_blocks[n];
5136 dst->start = src->start + offset;
5137 dst->end = src->end + offset;
5138 dst->block = src->block;
5139 dst->src_regex = (REGEXP*) SvREFCNT_inc( (SV*)
5148 /* avoid calling magic multiple times on a single element e.g. =~ $qr */
5157 /* see if there are any run-time code blocks in the pattern.
5158 * False positives are allowed */
5161 S_has_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
5162 char *pat, STRLEN plen)
5167 for (s = 0; s < plen; s++) {
5168 if (n < pRExC_state->num_code_blocks
5169 && s == pRExC_state->code_blocks[n].start)
5171 s = pRExC_state->code_blocks[n].end;
5175 /* TODO ideally should handle [..], (#..), /#.../x to reduce false
5177 if (pat[s] == '(' && s+2 <= plen && pat[s+1] == '?' &&
5179 || (s + 2 <= plen && pat[s+2] == '?' && pat[s+3] == '{'))
5186 /* Handle run-time code blocks. We will already have compiled any direct
5187 * or indirect literal code blocks. Now, take the pattern 'pat' and make a
5188 * copy of it, but with any literal code blocks blanked out and
5189 * appropriate chars escaped; then feed it into
5191 * eval "qr'modified_pattern'"
5195 * a\bc(?{"this was literal"})def'ghi\\jkl(?{"this is runtime"})mno
5199 * qr'a\\bc_______________________def\'ghi\\\\jkl(?{"this is runtime"})mno'
5201 * After eval_sv()-ing that, grab any new code blocks from the returned qr
5202 * and merge them with any code blocks of the original regexp.
5204 * If the pat is non-UTF8, while the evalled qr is UTF8, don't merge;
5205 * instead, just save the qr and return FALSE; this tells our caller that
5206 * the original pattern needs upgrading to utf8.
5210 S_compile_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
5211 char *pat, STRLEN plen)
5215 GET_RE_DEBUG_FLAGS_DECL;
5217 if (pRExC_state->runtime_code_qr) {
5218 /* this is the second time we've been called; this should
5219 * only happen if the main pattern got upgraded to utf8
5220 * during compilation; re-use the qr we compiled first time
5221 * round (which should be utf8 too)
5223 qr = pRExC_state->runtime_code_qr;
5224 pRExC_state->runtime_code_qr = NULL;
5225 assert(RExC_utf8 && SvUTF8(qr));
5231 int newlen = plen + 6; /* allow for "qr''x\0" extra chars */
5235 /* determine how many extra chars we need for ' and \ escaping */
5236 for (s = 0; s < plen; s++) {
5237 if (pat[s] == '\'' || pat[s] == '\\')
5241 Newx(newpat, newlen, char);
5243 *p++ = 'q'; *p++ = 'r'; *p++ = '\'';
5245 for (s = 0; s < plen; s++) {
5246 if (n < pRExC_state->num_code_blocks
5247 && s == pRExC_state->code_blocks[n].start)
5249 /* blank out literal code block */
5250 assert(pat[s] == '(');
5251 while (s <= pRExC_state->code_blocks[n].end) {
5259 if (pat[s] == '\'' || pat[s] == '\\')
5264 if (pRExC_state->pm_flags & RXf_PMf_EXTENDED)
5268 PerlIO_printf(Perl_debug_log,
5269 "%sre-parsing pattern for runtime code:%s %s\n",
5270 PL_colors[4],PL_colors[5],newpat);
5273 sv = newSVpvn_flags(newpat, p-newpat-1, RExC_utf8 ? SVf_UTF8 : 0);
5279 PUSHSTACKi(PERLSI_REQUIRE);
5280 /* G_RE_REPARSING causes the toker to collapse \\ into \ when
5281 * parsing qr''; normally only q'' does this. It also alters
5283 eval_sv(sv, G_SCALAR|G_RE_REPARSING);
5284 SvREFCNT_dec_NN(sv);
5289 SV * const errsv = ERRSV;
5290 if (SvTRUE_NN(errsv))
5292 Safefree(pRExC_state->code_blocks);
5293 /* use croak_sv ? */
5294 Perl_croak_nocontext("%s", SvPV_nolen_const(errsv));
5297 assert(SvROK(qr_ref));
5299 assert(SvTYPE(qr) == SVt_REGEXP && RX_ENGINE((REGEXP*)qr)->op_comp);
5300 /* the leaving below frees the tmp qr_ref.
5301 * Give qr a life of its own */
5309 if (!RExC_utf8 && SvUTF8(qr)) {
5310 /* first time through; the pattern got upgraded; save the
5311 * qr for the next time through */
5312 assert(!pRExC_state->runtime_code_qr);
5313 pRExC_state->runtime_code_qr = qr;
5318 /* extract any code blocks within the returned qr// */
5321 /* merge the main (r1) and run-time (r2) code blocks into one */
5323 RXi_GET_DECL(ReANY((REGEXP *)qr), r2);
5324 struct reg_code_block *new_block, *dst;
5325 RExC_state_t * const r1 = pRExC_state; /* convenient alias */
5328 if (!r2->num_code_blocks) /* we guessed wrong */
5330 SvREFCNT_dec_NN(qr);
5335 r1->num_code_blocks + r2->num_code_blocks,
5336 struct reg_code_block);
5339 while ( i1 < r1->num_code_blocks
5340 || i2 < r2->num_code_blocks)
5342 struct reg_code_block *src;
5345 if (i1 == r1->num_code_blocks) {
5346 src = &r2->code_blocks[i2++];
5349 else if (i2 == r2->num_code_blocks)
5350 src = &r1->code_blocks[i1++];
5351 else if ( r1->code_blocks[i1].start
5352 < r2->code_blocks[i2].start)
5354 src = &r1->code_blocks[i1++];
5355 assert(src->end < r2->code_blocks[i2].start);
5358 assert( r1->code_blocks[i1].start
5359 > r2->code_blocks[i2].start);
5360 src = &r2->code_blocks[i2++];
5362 assert(src->end < r1->code_blocks[i1].start);
5365 assert(pat[src->start] == '(');
5366 assert(pat[src->end] == ')');
5367 dst->start = src->start;
5368 dst->end = src->end;
5369 dst->block = src->block;
5370 dst->src_regex = is_qr ? (REGEXP*) SvREFCNT_inc( (SV*) qr)
5374 r1->num_code_blocks += r2->num_code_blocks;
5375 Safefree(r1->code_blocks);
5376 r1->code_blocks = new_block;
5379 SvREFCNT_dec_NN(qr);
5385 S_setup_longest(pTHX_ RExC_state_t *pRExC_state, SV* sv_longest, SV** rx_utf8, SV** rx_substr, I32* rx_end_shift, I32 lookbehind, I32 offset, I32 *minlen, STRLEN longest_length, bool eol, bool meol)
5387 /* This is the common code for setting up the floating and fixed length
5388 * string data extracted from Perl_re_op_compile() below. Returns a boolean
5389 * as to whether succeeded or not */
5393 if (! (longest_length
5394 || (eol /* Can't have SEOL and MULTI */
5395 && (! meol || (RExC_flags & RXf_PMf_MULTILINE)))
5397 /* See comments for join_exact for why REG_SEEN_EXACTF_SHARP_S */
5398 || (RExC_seen & REG_SEEN_EXACTF_SHARP_S))
5403 /* copy the information about the longest from the reg_scan_data
5404 over to the program. */
5405 if (SvUTF8(sv_longest)) {
5406 *rx_utf8 = sv_longest;
5409 *rx_substr = sv_longest;
5412 /* end_shift is how many chars that must be matched that
5413 follow this item. We calculate it ahead of time as once the
5414 lookbehind offset is added in we lose the ability to correctly
5416 ml = minlen ? *(minlen) : (I32)longest_length;
5417 *rx_end_shift = ml - offset
5418 - longest_length + (SvTAIL(sv_longest) != 0)
5421 t = (eol/* Can't have SEOL and MULTI */
5422 && (! meol || (RExC_flags & RXf_PMf_MULTILINE)));
5423 fbm_compile(sv_longest, t ? FBMcf_TAIL : 0);
5429 * Perl_re_op_compile - the perl internal RE engine's function to compile a
5430 * regular expression into internal code.
5431 * The pattern may be passed either as:
5432 * a list of SVs (patternp plus pat_count)
5433 * a list of OPs (expr)
5434 * If both are passed, the SV list is used, but the OP list indicates
5435 * which SVs are actually pre-compiled code blocks
5437 * The SVs in the list have magic and qr overloading applied to them (and
5438 * the list may be modified in-place with replacement SVs in the latter
5441 * If the pattern hasn't changed from old_re, then old_re will be
5444 * eng is the current engine. If that engine has an op_comp method, then
5445 * handle directly (i.e. we assume that op_comp was us); otherwise, just
5446 * do the initial concatenation of arguments and pass on to the external
5449 * If is_bare_re is not null, set it to a boolean indicating whether the
5450 * arg list reduced (after overloading) to a single bare regex which has
5451 * been returned (i.e. /$qr/).
5453 * orig_rx_flags contains RXf_* flags. See perlreapi.pod for more details.
5455 * pm_flags contains the PMf_* flags, typically based on those from the
5456 * pm_flags field of the related PMOP. Currently we're only interested in
5457 * PMf_HAS_CV, PMf_IS_QR, PMf_USE_RE_EVAL.
5459 * We can't allocate space until we know how big the compiled form will be,
5460 * but we can't compile it (and thus know how big it is) until we've got a
5461 * place to put the code. So we cheat: we compile it twice, once with code
5462 * generation turned off and size counting turned on, and once "for real".
5463 * This also means that we don't allocate space until we are sure that the
5464 * thing really will compile successfully, and we never have to move the
5465 * code and thus invalidate pointers into it. (Note that it has to be in
5466 * one piece because free() must be able to free it all.) [NB: not true in perl]
5468 * Beware that the optimization-preparation code in here knows about some
5469 * of the structure of the compiled regexp. [I'll say.]
5473 Perl_re_op_compile(pTHX_ SV ** const patternp, int pat_count,
5474 OP *expr, const regexp_engine* eng, REGEXP *old_re,
5475 bool *is_bare_re, U32 orig_rx_flags, U32 pm_flags)
5480 regexp_internal *ri;
5488 SV *code_blocksv = NULL;
5489 SV** new_patternp = patternp;
5491 /* these are all flags - maybe they should be turned
5492 * into a single int with different bit masks */
5493 I32 sawlookahead = 0;
5496 regex_charset initial_charset = get_regex_charset(orig_rx_flags);
5498 bool runtime_code = 0;
5500 RExC_state_t RExC_state;
5501 RExC_state_t * const pRExC_state = &RExC_state;
5502 #ifdef TRIE_STUDY_OPT
5504 RExC_state_t copyRExC_state;
5506 GET_RE_DEBUG_FLAGS_DECL;
5508 PERL_ARGS_ASSERT_RE_OP_COMPILE;
5510 DEBUG_r(if (!PL_colorset) reginitcolors());
5512 #ifndef PERL_IN_XSUB_RE
5513 /* Initialize these here instead of as-needed, as is quick and avoids
5514 * having to test them each time otherwise */
5515 if (! PL_AboveLatin1) {
5516 PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist);
5517 PL_ASCII = _new_invlist_C_array(ASCII_invlist);
5518 PL_Latin1 = _new_invlist_C_array(Latin1_invlist);
5520 PL_L1Posix_ptrs[_CC_ALPHANUMERIC]
5521 = _new_invlist_C_array(L1PosixAlnum_invlist);
5522 PL_Posix_ptrs[_CC_ALPHANUMERIC]
5523 = _new_invlist_C_array(PosixAlnum_invlist);
5525 PL_L1Posix_ptrs[_CC_ALPHA]
5526 = _new_invlist_C_array(L1PosixAlpha_invlist);
5527 PL_Posix_ptrs[_CC_ALPHA] = _new_invlist_C_array(PosixAlpha_invlist);
5529 PL_Posix_ptrs[_CC_BLANK] = _new_invlist_C_array(PosixBlank_invlist);
5530 PL_XPosix_ptrs[_CC_BLANK] = _new_invlist_C_array(XPosixBlank_invlist);
5532 /* Cased is the same as Alpha in the ASCII range */
5533 PL_L1Posix_ptrs[_CC_CASED] = _new_invlist_C_array(L1Cased_invlist);
5534 PL_Posix_ptrs[_CC_CASED] = _new_invlist_C_array(PosixAlpha_invlist);
5536 PL_Posix_ptrs[_CC_CNTRL] = _new_invlist_C_array(PosixCntrl_invlist);
5537 PL_XPosix_ptrs[_CC_CNTRL] = _new_invlist_C_array(XPosixCntrl_invlist);
5539 PL_Posix_ptrs[_CC_DIGIT] = _new_invlist_C_array(PosixDigit_invlist);
5540 PL_L1Posix_ptrs[_CC_DIGIT] = _new_invlist_C_array(PosixDigit_invlist);
5542 PL_L1Posix_ptrs[_CC_GRAPH] = _new_invlist_C_array(L1PosixGraph_invlist);
5543 PL_Posix_ptrs[_CC_GRAPH] = _new_invlist_C_array(PosixGraph_invlist);
5545 PL_L1Posix_ptrs[_CC_LOWER] = _new_invlist_C_array(L1PosixLower_invlist);
5546 PL_Posix_ptrs[_CC_LOWER] = _new_invlist_C_array(PosixLower_invlist);
5548 PL_L1Posix_ptrs[_CC_PRINT] = _new_invlist_C_array(L1PosixPrint_invlist);
5549 PL_Posix_ptrs[_CC_PRINT] = _new_invlist_C_array(PosixPrint_invlist);
5551 PL_L1Posix_ptrs[_CC_PUNCT] = _new_invlist_C_array(L1PosixPunct_invlist);
5552 PL_Posix_ptrs[_CC_PUNCT] = _new_invlist_C_array(PosixPunct_invlist);
5554 PL_Posix_ptrs[_CC_SPACE] = _new_invlist_C_array(PerlSpace_invlist);
5555 PL_XPosix_ptrs[_CC_SPACE] = _new_invlist_C_array(XPerlSpace_invlist);
5556 PL_Posix_ptrs[_CC_PSXSPC] = _new_invlist_C_array(PosixSpace_invlist);
5557 PL_XPosix_ptrs[_CC_PSXSPC] = _new_invlist_C_array(XPosixSpace_invlist);
5559 PL_L1Posix_ptrs[_CC_UPPER] = _new_invlist_C_array(L1PosixUpper_invlist);
5560 PL_Posix_ptrs[_CC_UPPER] = _new_invlist_C_array(PosixUpper_invlist);
5562 PL_XPosix_ptrs[_CC_VERTSPACE] = _new_invlist_C_array(VertSpace_invlist);
5564 PL_Posix_ptrs[_CC_WORDCHAR] = _new_invlist_C_array(PosixWord_invlist);
5565 PL_L1Posix_ptrs[_CC_WORDCHAR]
5566 = _new_invlist_C_array(L1PosixWord_invlist);
5568 PL_Posix_ptrs[_CC_XDIGIT] = _new_invlist_C_array(PosixXDigit_invlist);
5569 PL_XPosix_ptrs[_CC_XDIGIT] = _new_invlist_C_array(XPosixXDigit_invlist);
5571 PL_HasMultiCharFold = _new_invlist_C_array(_Perl_Multi_Char_Folds_invlist);
5575 pRExC_state->code_blocks = NULL;
5576 pRExC_state->num_code_blocks = 0;
5579 *is_bare_re = FALSE;
5581 if (expr && (expr->op_type == OP_LIST ||
5582 (expr->op_type == OP_NULL && expr->op_targ == OP_LIST))) {
5583 /* allocate code_blocks if needed */
5587 for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling)
5588 if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL))
5589 ncode++; /* count of DO blocks */
5591 pRExC_state->num_code_blocks = ncode;
5592 Newx(pRExC_state->code_blocks, ncode, struct reg_code_block);
5597 /* compile-time pattern with just OP_CONSTs and DO blocks */
5602 /* find how many CONSTs there are */
5605 if (expr->op_type == OP_CONST)
5608 for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling) {
5609 if (o->op_type == OP_CONST)
5613 /* fake up an SV array */
5615 assert(!new_patternp);
5616 Newx(new_patternp, n, SV*);
5617 SAVEFREEPV(new_patternp);
5621 if (expr->op_type == OP_CONST)
5622 new_patternp[n] = cSVOPx_sv(expr);
5624 for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling) {
5625 if (o->op_type == OP_CONST)
5626 new_patternp[n++] = cSVOPo_sv;
5631 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
5632 "Assembling pattern from %d elements%s\n", pat_count,
5633 orig_rx_flags & RXf_SPLIT ? " for split" : ""));
5635 /* set expr to the first arg op */
5637 if (pRExC_state->num_code_blocks
5638 && expr->op_type != OP_CONST)
5640 expr = cLISTOPx(expr)->op_first;
5641 assert( expr->op_type == OP_PUSHMARK
5642 || (expr->op_type == OP_NULL && expr->op_targ == OP_PUSHMARK)
5643 || expr->op_type == OP_PADRANGE);
5644 expr = expr->op_sibling;
5647 pat = S_concat_pat(aTHX_ pRExC_state, NULL, new_patternp, pat_count,
5648 expr, &recompile, NULL);
5650 /* handle bare (possibly after overloading) regex: foo =~ $re */
5655 if (SvTYPE(re) == SVt_REGEXP) {
5659 Safefree(pRExC_state->code_blocks);
5660 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
5661 "Precompiled pattern%s\n",
5662 orig_rx_flags & RXf_SPLIT ? " for split" : ""));
5668 exp = SvPV_nomg(pat, plen);
5670 if (!eng->op_comp) {
5671 if ((SvUTF8(pat) && IN_BYTES)
5672 || SvGMAGICAL(pat) || SvAMAGIC(pat))
5674 /* make a temporary copy; either to convert to bytes,
5675 * or to avoid repeating get-magic / overloaded stringify */
5676 pat = newSVpvn_flags(exp, plen, SVs_TEMP |
5677 (IN_BYTES ? 0 : SvUTF8(pat)));
5679 Safefree(pRExC_state->code_blocks);
5680 return CALLREGCOMP_ENG(eng, pat, orig_rx_flags);
5683 /* ignore the utf8ness if the pattern is 0 length */
5684 RExC_utf8 = RExC_orig_utf8 = (plen == 0 || IN_BYTES) ? 0 : SvUTF8(pat);
5685 RExC_uni_semantics = 0;
5686 RExC_contains_locale = 0;
5687 pRExC_state->runtime_code_qr = NULL;
5690 SV *dsv= sv_newmortal();
5691 RE_PV_QUOTED_DECL(s, RExC_utf8, dsv, exp, plen, 60);
5692 PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
5693 PL_colors[4],PL_colors[5],s);
5697 /* we jump here if we upgrade the pattern to utf8 and have to
5700 if ((pm_flags & PMf_USE_RE_EVAL)
5701 /* this second condition covers the non-regex literal case,
5702 * i.e. $foo =~ '(?{})'. */
5703 || (IN_PERL_COMPILETIME && (PL_hints & HINT_RE_EVAL))
5705 runtime_code = S_has_runtime_code(aTHX_ pRExC_state, exp, plen);
5707 /* return old regex if pattern hasn't changed */
5708 /* XXX: note in the below we have to check the flags as well as the pattern.
5710 * Things get a touch tricky as we have to compare the utf8 flag independently
5711 * from the compile flags.
5716 && !!RX_UTF8(old_re) == !!RExC_utf8
5717 && ( RX_COMPFLAGS(old_re) == ( orig_rx_flags & RXf_PMf_FLAGCOPYMASK ) )
5718 && RX_PRECOMP(old_re)
5719 && RX_PRELEN(old_re) == plen
5720 && memEQ(RX_PRECOMP(old_re), exp, plen)
5721 && !runtime_code /* with runtime code, always recompile */ )
5723 Safefree(pRExC_state->code_blocks);
5727 rx_flags = orig_rx_flags;
5729 if (initial_charset == REGEX_LOCALE_CHARSET) {
5730 RExC_contains_locale = 1;
5732 else if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
5734 /* Set to use unicode semantics if the pattern is in utf8 and has the
5735 * 'depends' charset specified, as it means unicode when utf8 */
5736 set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
5740 RExC_flags = rx_flags;
5741 RExC_pm_flags = pm_flags;
5744 if (TAINTING_get && TAINT_get)
5745 Perl_croak(aTHX_ "Eval-group in insecure regular expression");
5747 if (!S_compile_runtime_code(aTHX_ pRExC_state, exp, plen)) {
5748 /* whoops, we have a non-utf8 pattern, whilst run-time code
5749 * got compiled as utf8. Try again with a utf8 pattern */
5750 S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
5751 pRExC_state->num_code_blocks);
5752 goto redo_first_pass;
5755 assert(!pRExC_state->runtime_code_qr);
5760 RExC_in_lookbehind = 0;
5761 RExC_seen_zerolen = *exp == '^' ? -1 : 0;
5763 RExC_override_recoding = 0;
5764 RExC_in_multi_char_class = 0;
5766 /* First pass: determine size, legality. */
5769 RExC_end = exp + plen;
5774 RExC_emit = &PL_regdummy;
5775 RExC_whilem_seen = 0;
5776 RExC_open_parens = NULL;
5777 RExC_close_parens = NULL;
5779 RExC_paren_names = NULL;
5781 RExC_paren_name_list = NULL;
5783 RExC_recurse = NULL;
5784 RExC_recurse_count = 0;
5785 pRExC_state->code_index = 0;
5787 #if 0 /* REGC() is (currently) a NOP at the first pass.
5788 * Clever compilers notice this and complain. --jhi */
5789 REGC((U8)REG_MAGIC, (char*)RExC_emit);
5792 PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n");
5794 RExC_lastparse=NULL;
5796 /* reg may croak on us, not giving us a chance to free
5797 pRExC_state->code_blocks. We cannot SAVEFREEPV it now, as we may
5798 need it to survive as long as the regexp (qr/(?{})/).
5799 We must check that code_blocksv is not already set, because we may
5800 have jumped back to restart the sizing pass. */
5801 if (pRExC_state->code_blocks && !code_blocksv) {
5802 code_blocksv = newSV_type(SVt_PV);
5803 SAVEFREESV(code_blocksv);
5804 SvPV_set(code_blocksv, (char *)pRExC_state->code_blocks);
5805 SvLEN_set(code_blocksv, 1); /*sufficient to make sv_clear free it*/
5807 if (reg(pRExC_state, 0, &flags,1) == NULL) {
5808 /* It's possible to write a regexp in ascii that represents Unicode
5809 codepoints outside of the byte range, such as via \x{100}. If we
5810 detect such a sequence we have to convert the entire pattern to utf8
5811 and then recompile, as our sizing calculation will have been based
5812 on 1 byte == 1 character, but we will need to use utf8 to encode
5813 at least some part of the pattern, and therefore must convert the whole
5816 if (flags & RESTART_UTF8) {
5817 S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
5818 pRExC_state->num_code_blocks);
5819 goto redo_first_pass;
5821 Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for sizing pass, flags=%#X", flags);
5824 SvLEN_set(code_blocksv,0); /* no you can't have it, sv_clear */
5827 PerlIO_printf(Perl_debug_log,
5828 "Required size %"IVdf" nodes\n"
5829 "Starting second pass (creation)\n",
5832 RExC_lastparse=NULL;
5835 /* The first pass could have found things that force Unicode semantics */
5836 if ((RExC_utf8 || RExC_uni_semantics)
5837 && get_regex_charset(rx_flags) == REGEX_DEPENDS_CHARSET)
5839 set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
5842 /* Small enough for pointer-storage convention?
5843 If extralen==0, this means that we will not need long jumps. */
5844 if (RExC_size >= 0x10000L && RExC_extralen)
5845 RExC_size += RExC_extralen;
5848 if (RExC_whilem_seen > 15)
5849 RExC_whilem_seen = 15;
5851 /* Allocate space and zero-initialize. Note, the two step process
5852 of zeroing when in debug mode, thus anything assigned has to
5853 happen after that */
5854 rx = (REGEXP*) newSV_type(SVt_REGEXP);
5856 Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
5857 char, regexp_internal);
5858 if ( r == NULL || ri == NULL )
5859 FAIL("Regexp out of space");
5861 /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
5862 Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode), char);
5864 /* bulk initialize base fields with 0. */
5865 Zero(ri, sizeof(regexp_internal), char);
5868 /* non-zero initialization begins here */
5871 r->extflags = rx_flags;
5872 RXp_COMPFLAGS(r) = orig_rx_flags & RXf_PMf_FLAGCOPYMASK;
5874 if (pm_flags & PMf_IS_QR) {
5875 ri->code_blocks = pRExC_state->code_blocks;
5876 ri->num_code_blocks = pRExC_state->num_code_blocks;
5881 for (n = 0; n < pRExC_state->num_code_blocks; n++)
5882 if (pRExC_state->code_blocks[n].src_regex)
5883 SAVEFREESV(pRExC_state->code_blocks[n].src_regex);
5884 SAVEFREEPV(pRExC_state->code_blocks);
5888 bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
5889 bool has_charset = (get_regex_charset(r->extflags) != REGEX_DEPENDS_CHARSET);
5891 /* The caret is output if there are any defaults: if not all the STD
5892 * flags are set, or if no character set specifier is needed */
5894 (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
5896 bool has_runon = ((RExC_seen & REG_SEEN_RUN_ON_COMMENT)==REG_SEEN_RUN_ON_COMMENT);
5897 U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
5898 >> RXf_PMf_STD_PMMOD_SHIFT);
5899 const char *fptr = STD_PAT_MODS; /*"msix"*/
5901 /* Allocate for the worst case, which is all the std flags are turned
5902 * on. If more precision is desired, we could do a population count of
5903 * the flags set. This could be done with a small lookup table, or by
5904 * shifting, masking and adding, or even, when available, assembly
5905 * language for a machine-language population count.
5906 * We never output a minus, as all those are defaults, so are
5907 * covered by the caret */
5908 const STRLEN wraplen = plen + has_p + has_runon
5909 + has_default /* If needs a caret */
5911 /* If needs a character set specifier */
5912 + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
5913 + (sizeof(STD_PAT_MODS) - 1)
5914 + (sizeof("(?:)") - 1);
5916 Newx(p, wraplen + 1, char); /* +1 for the ending NUL */
5917 r->xpv_len_u.xpvlenu_pv = p;
5919 SvFLAGS(rx) |= SVf_UTF8;
5922 /* If a default, cover it using the caret */
5924 *p++= DEFAULT_PAT_MOD;
5928 const char* const name = get_regex_charset_name(r->extflags, &len);
5929 Copy(name, p, len, char);
5933 *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
5936 while((ch = *fptr++)) {
5944 Copy(RExC_precomp, p, plen, char);
5945 assert ((RX_WRAPPED(rx) - p) < 16);
5946 r->pre_prefix = p - RX_WRAPPED(rx);
5952 SvCUR_set(rx, p - RX_WRAPPED(rx));
5956 r->nparens = RExC_npar - 1; /* set early to validate backrefs */
5958 if (RExC_seen & REG_SEEN_RECURSE) {
5959 Newxz(RExC_open_parens, RExC_npar,regnode *);
5960 SAVEFREEPV(RExC_open_parens);
5961 Newxz(RExC_close_parens,RExC_npar,regnode *);
5962 SAVEFREEPV(RExC_close_parens);
5965 /* Useful during FAIL. */
5966 #ifdef RE_TRACK_PATTERN_OFFSETS
5967 Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
5968 DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
5969 "%s %"UVuf" bytes for offset annotations.\n",
5970 ri->u.offsets ? "Got" : "Couldn't get",
5971 (UV)((2*RExC_size+1) * sizeof(U32))));
5973 SetProgLen(ri,RExC_size);
5977 REH_CALL_COMP_BEGIN_HOOK(pRExC_state->rx);
5979 /* Second pass: emit code. */
5980 RExC_flags = rx_flags; /* don't let top level (?i) bleed */
5981 RExC_pm_flags = pm_flags;
5983 RExC_end = exp + plen;
5986 RExC_emit_start = ri->program;
5987 RExC_emit = ri->program;
5988 RExC_emit_bound = ri->program + RExC_size + 1;
5989 pRExC_state->code_index = 0;
5991 REGC((U8)REG_MAGIC, (char*) RExC_emit++);
5992 if (reg(pRExC_state, 0, &flags,1) == NULL) {
5994 Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for generation pass, flags=%#X", flags);
5996 /* XXXX To minimize changes to RE engine we always allocate
5997 3-units-long substrs field. */
5998 Newx(r->substrs, 1, struct reg_substr_data);
5999 if (RExC_recurse_count) {
6000 Newxz(RExC_recurse,RExC_recurse_count,regnode *);
6001 SAVEFREEPV(RExC_recurse);
6005 r->minlen = minlen = sawlookahead = sawplus = sawopen = 0;
6006 Zero(r->substrs, 1, struct reg_substr_data);
6008 #ifdef TRIE_STUDY_OPT
6010 StructCopy(&zero_scan_data, &data, scan_data_t);
6011 copyRExC_state = RExC_state;
6014 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
6016 RExC_state = copyRExC_state;
6017 if (seen & REG_TOP_LEVEL_BRANCHES)
6018 RExC_seen |= REG_TOP_LEVEL_BRANCHES;
6020 RExC_seen &= ~REG_TOP_LEVEL_BRANCHES;
6021 StructCopy(&zero_scan_data, &data, scan_data_t);
6024 StructCopy(&zero_scan_data, &data, scan_data_t);
6027 /* Dig out information for optimizations. */
6028 r->extflags = RExC_flags; /* was pm_op */
6029 /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
6032 SvUTF8_on(rx); /* Unicode in it? */
6033 ri->regstclass = NULL;
6034 if (RExC_naughty >= 10) /* Probably an expensive pattern. */
6035 r->intflags |= PREGf_NAUGHTY;
6036 scan = ri->program + 1; /* First BRANCH. */
6038 /* testing for BRANCH here tells us whether there is "must appear"
6039 data in the pattern. If there is then we can use it for optimisations */
6040 if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES)) { /* Only one top-level choice. */
6042 STRLEN longest_float_length, longest_fixed_length;
6043 struct regnode_charclass_class ch_class; /* pointed to by data */
6045 I32 last_close = 0; /* pointed to by data */
6046 regnode *first= scan;
6047 regnode *first_next= regnext(first);
6049 * Skip introductions and multiplicators >= 1
6050 * so that we can extract the 'meat' of the pattern that must
6051 * match in the large if() sequence following.
6052 * NOTE that EXACT is NOT covered here, as it is normally
6053 * picked up by the optimiser separately.
6055 * This is unfortunate as the optimiser isnt handling lookahead
6056 * properly currently.
6059 while ((OP(first) == OPEN && (sawopen = 1)) ||
6060 /* An OR of *one* alternative - should not happen now. */
6061 (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
6062 /* for now we can't handle lookbehind IFMATCH*/
6063 (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
6064 (OP(first) == PLUS) ||
6065 (OP(first) == MINMOD) ||
6066 /* An {n,m} with n>0 */
6067 (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
6068 (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
6071 * the only op that could be a regnode is PLUS, all the rest
6072 * will be regnode_1 or regnode_2.
6075 if (OP(first) == PLUS)
6078 first += regarglen[OP(first)];
6080 first = NEXTOPER(first);
6081 first_next= regnext(first);
6084 /* Starting-point info. */
6086 DEBUG_PEEP("first:",first,0);
6087 /* Ignore EXACT as we deal with it later. */
6088 if (PL_regkind[OP(first)] == EXACT) {
6089 if (OP(first) == EXACT)
6090 NOOP; /* Empty, get anchored substr later. */
6092 ri->regstclass = first;
6095 else if (PL_regkind[OP(first)] == TRIE &&
6096 ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
6099 /* this can happen only on restudy */
6100 if ( OP(first) == TRIE ) {
6101 struct regnode_1 *trieop = (struct regnode_1 *)
6102 PerlMemShared_calloc(1, sizeof(struct regnode_1));
6103 StructCopy(first,trieop,struct regnode_1);
6104 trie_op=(regnode *)trieop;
6106 struct regnode_charclass *trieop = (struct regnode_charclass *)
6107 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
6108 StructCopy(first,trieop,struct regnode_charclass);
6109 trie_op=(regnode *)trieop;
6112 make_trie_failtable(pRExC_state, (regnode *)first, trie_op, 0);
6113 ri->regstclass = trie_op;
6116 else if (REGNODE_SIMPLE(OP(first)))
6117 ri->regstclass = first;
6118 else if (PL_regkind[OP(first)] == BOUND ||
6119 PL_regkind[OP(first)] == NBOUND)
6120 ri->regstclass = first;
6121 else if (PL_regkind[OP(first)] == BOL) {
6122 r->extflags |= (OP(first) == MBOL
6124 : (OP(first) == SBOL
6127 first = NEXTOPER(first);
6130 else if (OP(first) == GPOS) {
6131 r->extflags |= RXf_ANCH_GPOS;
6132 first = NEXTOPER(first);
6135 else if ((!sawopen || !RExC_sawback) &&
6136 (OP(first) == STAR &&
6137 PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
6138 !(r->extflags & RXf_ANCH) && !pRExC_state->num_code_blocks)
6140 /* turn .* into ^.* with an implied $*=1 */
6142 (OP(NEXTOPER(first)) == REG_ANY)
6145 r->extflags |= type;
6146 r->intflags |= PREGf_IMPLICIT;
6147 first = NEXTOPER(first);
6150 if (sawplus && !sawlookahead && (!sawopen || !RExC_sawback)
6151 && !pRExC_state->num_code_blocks) /* May examine pos and $& */
6152 /* x+ must match at the 1st pos of run of x's */
6153 r->intflags |= PREGf_SKIP;
6155 /* Scan is after the zeroth branch, first is atomic matcher. */
6156 #ifdef TRIE_STUDY_OPT
6159 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
6160 (IV)(first - scan + 1))
6164 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
6165 (IV)(first - scan + 1))
6171 * If there's something expensive in the r.e., find the
6172 * longest literal string that must appear and make it the
6173 * regmust. Resolve ties in favor of later strings, since
6174 * the regstart check works with the beginning of the r.e.
6175 * and avoiding duplication strengthens checking. Not a
6176 * strong reason, but sufficient in the absence of others.
6177 * [Now we resolve ties in favor of the earlier string if
6178 * it happens that c_offset_min has been invalidated, since the
6179 * earlier string may buy us something the later one won't.]
6182 data.longest_fixed = newSVpvs("");
6183 data.longest_float = newSVpvs("");
6184 data.last_found = newSVpvs("");
6185 data.longest = &(data.longest_fixed);
6186 ENTER_with_name("study_chunk");
6187 SAVEFREESV(data.longest_fixed);
6188 SAVEFREESV(data.longest_float);
6189 SAVEFREESV(data.last_found);
6191 if (!ri->regstclass) {
6192 cl_init(pRExC_state, &ch_class);
6193 data.start_class = &ch_class;
6194 stclass_flag = SCF_DO_STCLASS_AND;
6195 } else /* XXXX Check for BOUND? */
6197 data.last_closep = &last_close;
6199 minlen = study_chunk(pRExC_state, &first, &minlen, &fake, scan + RExC_size, /* Up to end */
6200 &data, -1, NULL, NULL,
6201 SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag,0);
6204 CHECK_RESTUDY_GOTO_butfirst(LEAVE_with_name("study_chunk"));
6207 if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
6208 && data.last_start_min == 0 && data.last_end > 0
6209 && !RExC_seen_zerolen
6210 && !(RExC_seen & REG_SEEN_VERBARG)
6211 && (!(RExC_seen & REG_SEEN_GPOS) || (r->extflags & RXf_ANCH_GPOS)))
6212 r->extflags |= RXf_CHECK_ALL;
6213 scan_commit(pRExC_state, &data,&minlen,0);
6215 longest_float_length = CHR_SVLEN(data.longest_float);
6217 if (! ((SvCUR(data.longest_fixed) /* ok to leave SvCUR */
6218 && data.offset_fixed == data.offset_float_min
6219 && SvCUR(data.longest_fixed) == SvCUR(data.longest_float)))
6220 && S_setup_longest (aTHX_ pRExC_state,
6224 &(r->float_end_shift),
6225 data.lookbehind_float,
6226 data.offset_float_min,
6228 longest_float_length,
6229 cBOOL(data.flags & SF_FL_BEFORE_EOL),
6230 cBOOL(data.flags & SF_FL_BEFORE_MEOL)))
6232 r->float_min_offset = data.offset_float_min - data.lookbehind_float;
6233 r->float_max_offset = data.offset_float_max;
6234 if (data.offset_float_max < I32_MAX) /* Don't offset infinity */
6235 r->float_max_offset -= data.lookbehind_float;
6236 SvREFCNT_inc_simple_void_NN(data.longest_float);
6239 r->float_substr = r->float_utf8 = NULL;
6240 longest_float_length = 0;
6243 longest_fixed_length = CHR_SVLEN(data.longest_fixed);
6245 if (S_setup_longest (aTHX_ pRExC_state,
6247 &(r->anchored_utf8),
6248 &(r->anchored_substr),
6249 &(r->anchored_end_shift),
6250 data.lookbehind_fixed,
6253 longest_fixed_length,
6254 cBOOL(data.flags & SF_FIX_BEFORE_EOL),
6255 cBOOL(data.flags & SF_FIX_BEFORE_MEOL)))
6257 r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
6258 SvREFCNT_inc_simple_void_NN(data.longest_fixed);
6261 r->anchored_substr = r->anchored_utf8 = NULL;
6262 longest_fixed_length = 0;
6264 LEAVE_with_name("study_chunk");
6267 && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
6268 ri->regstclass = NULL;
6270 if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
6272 && ! TEST_SSC_EOS(data.start_class)
6273 && !cl_is_anything(data.start_class))
6275 const U32 n = add_data(pRExC_state, 1, "f");
6276 OP(data.start_class) = ANYOF_SYNTHETIC;
6278 Newx(RExC_rxi->data->data[n], 1,
6279 struct regnode_charclass_class);
6280 StructCopy(data.start_class,
6281 (struct regnode_charclass_class*)RExC_rxi->data->data[n],
6282 struct regnode_charclass_class);
6283 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
6284 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
6285 DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
6286 regprop(r, sv, (regnode*)data.start_class);
6287 PerlIO_printf(Perl_debug_log,
6288 "synthetic stclass \"%s\".\n",
6289 SvPVX_const(sv));});
6292 /* A temporary algorithm prefers floated substr to fixed one to dig more info. */
6293 if (longest_fixed_length > longest_float_length) {
6294 r->check_end_shift = r->anchored_end_shift;
6295 r->check_substr = r->anchored_substr;
6296 r->check_utf8 = r->anchored_utf8;
6297 r->check_offset_min = r->check_offset_max = r->anchored_offset;
6298 if (r->extflags & RXf_ANCH_SINGLE)
6299 r->extflags |= RXf_NOSCAN;
6302 r->check_end_shift = r->float_end_shift;
6303 r->check_substr = r->float_substr;
6304 r->check_utf8 = r->float_utf8;
6305 r->check_offset_min = r->float_min_offset;
6306 r->check_offset_max = r->float_max_offset;
6308 /* XXXX Currently intuiting is not compatible with ANCH_GPOS.
6309 This should be changed ASAP! */
6310 if ((r->check_substr || r->check_utf8) && !(r->extflags & RXf_ANCH_GPOS)) {
6311 r->extflags |= RXf_USE_INTUIT;
6312 if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
6313 r->extflags |= RXf_INTUIT_TAIL;
6315 /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
6316 if ( (STRLEN)minlen < longest_float_length )
6317 minlen= longest_float_length;
6318 if ( (STRLEN)minlen < longest_fixed_length )
6319 minlen= longest_fixed_length;
6323 /* Several toplevels. Best we can is to set minlen. */
6325 struct regnode_charclass_class ch_class;
6328 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
6330 scan = ri->program + 1;
6331 cl_init(pRExC_state, &ch_class);
6332 data.start_class = &ch_class;
6333 data.last_closep = &last_close;
6336 minlen = study_chunk(pRExC_state, &scan, &minlen, &fake, scan + RExC_size,
6337 &data, -1, NULL, NULL, SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS,0);
6339 CHECK_RESTUDY_GOTO_butfirst(NOOP);
6341 r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
6342 = r->float_substr = r->float_utf8 = NULL;
6344 if (! TEST_SSC_EOS(data.start_class)
6345 && !cl_is_anything(data.start_class))
6347 const U32 n = add_data(pRExC_state, 1, "f");
6348 OP(data.start_class) = ANYOF_SYNTHETIC;
6350 Newx(RExC_rxi->data->data[n], 1,
6351 struct regnode_charclass_class);
6352 StructCopy(data.start_class,
6353 (struct regnode_charclass_class*)RExC_rxi->data->data[n],
6354 struct regnode_charclass_class);
6355 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
6356 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
6357 DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
6358 regprop(r, sv, (regnode*)data.start_class);
6359 PerlIO_printf(Perl_debug_log,
6360 "synthetic stclass \"%s\".\n",
6361 SvPVX_const(sv));});
6365 /* Guard against an embedded (?=) or (?<=) with a longer minlen than
6366 the "real" pattern. */
6368 PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf"\n",
6369 (IV)minlen, (IV)r->minlen);
6371 r->minlenret = minlen;
6372 if (r->minlen < minlen)
6375 if (RExC_seen & REG_SEEN_GPOS)
6376 r->extflags |= RXf_GPOS_SEEN;
6377 if (RExC_seen & REG_SEEN_LOOKBEHIND)
6378 r->extflags |= RXf_NO_INPLACE_SUBST; /* inplace might break the lookbehind */
6379 if (pRExC_state->num_code_blocks)
6380 r->extflags |= RXf_EVAL_SEEN;
6381 if (RExC_seen & REG_SEEN_CANY)
6382 r->extflags |= RXf_CANY_SEEN;
6383 if (RExC_seen & REG_SEEN_VERBARG)
6385 r->intflags |= PREGf_VERBARG_SEEN;
6386 r->extflags |= RXf_NO_INPLACE_SUBST; /* don't understand this! Yves */
6388 if (RExC_seen & REG_SEEN_CUTGROUP)
6389 r->intflags |= PREGf_CUTGROUP_SEEN;
6390 if (pm_flags & PMf_USE_RE_EVAL)
6391 r->intflags |= PREGf_USE_RE_EVAL;
6392 if (RExC_paren_names)
6393 RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
6395 RXp_PAREN_NAMES(r) = NULL;
6398 regnode *first = ri->program + 1;
6400 regnode *next = NEXTOPER(first);
6403 if (PL_regkind[fop] == NOTHING && nop == END)
6404 r->extflags |= RXf_NULL;
6405 else if (PL_regkind[fop] == BOL && nop == END)
6406 r->extflags |= RXf_START_ONLY;
6407 else if (fop == PLUS && PL_regkind[nop] == POSIXD && FLAGS(next) == _CC_SPACE && OP(regnext(first)) == END)
6408 r->extflags |= RXf_WHITE;
6409 else if ( r->extflags & RXf_SPLIT && fop == EXACT && STR_LEN(first) == 1 && *(STRING(first)) == ' ' && OP(regnext(first)) == END )
6410 r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
6414 if (RExC_paren_names) {
6415 ri->name_list_idx = add_data( pRExC_state, 1, "a" );
6416 ri->data->data[ri->name_list_idx] = (void*)SvREFCNT_inc(RExC_paren_name_list);
6419 ri->name_list_idx = 0;
6421 if (RExC_recurse_count) {
6422 for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
6423 const regnode *scan = RExC_recurse[RExC_recurse_count-1];
6424 ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
6427 Newxz(r->offs, RExC_npar, regexp_paren_pair);
6428 /* assume we don't need to swap parens around before we match */
6431 PerlIO_printf(Perl_debug_log,"Final program:\n");
6434 #ifdef RE_TRACK_PATTERN_OFFSETS
6435 DEBUG_OFFSETS_r(if (ri->u.offsets) {
6436 const U32 len = ri->u.offsets[0];
6438 GET_RE_DEBUG_FLAGS_DECL;
6439 PerlIO_printf(Perl_debug_log, "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
6440 for (i = 1; i <= len; i++) {
6441 if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
6442 PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
6443 (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
6445 PerlIO_printf(Perl_debug_log, "\n");
6450 /* under ithreads the ?pat? PMf_USED flag on the pmop is simulated
6451 * by setting the regexp SV to readonly-only instead. If the
6452 * pattern's been recompiled, the USEDness should remain. */
6453 if (old_re && SvREADONLY(old_re))
6461 Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
6464 PERL_ARGS_ASSERT_REG_NAMED_BUFF;
6466 PERL_UNUSED_ARG(value);
6468 if (flags & RXapif_FETCH) {
6469 return reg_named_buff_fetch(rx, key, flags);
6470 } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
6471 Perl_croak_no_modify();
6473 } else if (flags & RXapif_EXISTS) {
6474 return reg_named_buff_exists(rx, key, flags)
6477 } else if (flags & RXapif_REGNAMES) {
6478 return reg_named_buff_all(rx, flags);
6479 } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
6480 return reg_named_buff_scalar(rx, flags);
6482 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
6488 Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
6491 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
6492 PERL_UNUSED_ARG(lastkey);
6494 if (flags & RXapif_FIRSTKEY)
6495 return reg_named_buff_firstkey(rx, flags);
6496 else if (flags & RXapif_NEXTKEY)
6497 return reg_named_buff_nextkey(rx, flags);
6499 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter", (int)flags);
6505 Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
6508 AV *retarray = NULL;
6510 struct regexp *const rx = ReANY(r);
6512 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
6514 if (flags & RXapif_ALL)
6517 if (rx && RXp_PAREN_NAMES(rx)) {
6518 HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
6521 SV* sv_dat=HeVAL(he_str);
6522 I32 *nums=(I32*)SvPVX(sv_dat);
6523 for ( i=0; i<SvIVX(sv_dat); i++ ) {
6524 if ((I32)(rx->nparens) >= nums[i]
6525 && rx->offs[nums[i]].start != -1
6526 && rx->offs[nums[i]].end != -1)
6529 CALLREG_NUMBUF_FETCH(r,nums[i],ret);
6534 ret = newSVsv(&PL_sv_undef);
6537 av_push(retarray, ret);
6540 return newRV_noinc(MUTABLE_SV(retarray));
6547 Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
6550 struct regexp *const rx = ReANY(r);
6552 PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
6554 if (rx && RXp_PAREN_NAMES(rx)) {
6555 if (flags & RXapif_ALL) {
6556 return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
6558 SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
6560 SvREFCNT_dec_NN(sv);
6572 Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
6574 struct regexp *const rx = ReANY(r);
6576 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
6578 if ( rx && RXp_PAREN_NAMES(rx) ) {
6579 (void)hv_iterinit(RXp_PAREN_NAMES(rx));
6581 return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
6588 Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
6590 struct regexp *const rx = ReANY(r);
6591 GET_RE_DEBUG_FLAGS_DECL;
6593 PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
6595 if (rx && RXp_PAREN_NAMES(rx)) {
6596 HV *hv = RXp_PAREN_NAMES(rx);
6598 while ( (temphe = hv_iternext_flags(hv,0)) ) {
6601 SV* sv_dat = HeVAL(temphe);
6602 I32 *nums = (I32*)SvPVX(sv_dat);
6603 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
6604 if ((I32)(rx->lastparen) >= nums[i] &&
6605 rx->offs[nums[i]].start != -1 &&
6606 rx->offs[nums[i]].end != -1)
6612 if (parno || flags & RXapif_ALL) {
6613 return newSVhek(HeKEY_hek(temphe));
6621 Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
6626 struct regexp *const rx = ReANY(r);
6628 PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
6630 if (rx && RXp_PAREN_NAMES(rx)) {
6631 if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
6632 return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
6633 } else if (flags & RXapif_ONE) {
6634 ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
6635 av = MUTABLE_AV(SvRV(ret));
6636 length = av_len(av);
6637 SvREFCNT_dec_NN(ret);
6638 return newSViv(length + 1);
6640 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar", (int)flags);
6644 return &PL_sv_undef;
6648 Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
6650 struct regexp *const rx = ReANY(r);
6653 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
6655 if (rx && RXp_PAREN_NAMES(rx)) {
6656 HV *hv= RXp_PAREN_NAMES(rx);
6658 (void)hv_iterinit(hv);
6659 while ( (temphe = hv_iternext_flags(hv,0)) ) {
6662 SV* sv_dat = HeVAL(temphe);
6663 I32 *nums = (I32*)SvPVX(sv_dat);
6664 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
6665 if ((I32)(rx->lastparen) >= nums[i] &&
6666 rx->offs[nums[i]].start != -1 &&
6667 rx->offs[nums[i]].end != -1)
6673 if (parno || flags & RXapif_ALL) {
6674 av_push(av, newSVhek(HeKEY_hek(temphe)));
6679 return newRV_noinc(MUTABLE_SV(av));
6683 Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
6686 struct regexp *const rx = ReANY(r);
6692 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
6694 if ( ( n == RX_BUFF_IDX_CARET_PREMATCH
6695 || n == RX_BUFF_IDX_CARET_FULLMATCH
6696 || n == RX_BUFF_IDX_CARET_POSTMATCH
6698 && !(rx->extflags & RXf_PMf_KEEPCOPY)
6705 if (n == RX_BUFF_IDX_CARET_FULLMATCH)
6706 /* no need to distinguish between them any more */
6707 n = RX_BUFF_IDX_FULLMATCH;
6709 if ((n == RX_BUFF_IDX_PREMATCH || n == RX_BUFF_IDX_CARET_PREMATCH)
6710 && rx->offs[0].start != -1)
6712 /* $`, ${^PREMATCH} */
6713 i = rx->offs[0].start;
6717 if ((n == RX_BUFF_IDX_POSTMATCH || n == RX_BUFF_IDX_CARET_POSTMATCH)
6718 && rx->offs[0].end != -1)
6720 /* $', ${^POSTMATCH} */
6721 s = rx->subbeg - rx->suboffset + rx->offs[0].end;
6722 i = rx->sublen + rx->suboffset - rx->offs[0].end;
6725 if ( 0 <= n && n <= (I32)rx->nparens &&
6726 (s1 = rx->offs[n].start) != -1 &&
6727 (t1 = rx->offs[n].end) != -1)
6729 /* $&, ${^MATCH}, $1 ... */
6731 s = rx->subbeg + s1 - rx->suboffset;
6736 assert(s >= rx->subbeg);
6737 assert(rx->sublen >= (s - rx->subbeg) + i );
6739 #if NO_TAINT_SUPPORT
6740 sv_setpvn(sv, s, i);
6742 const int oldtainted = TAINT_get;
6744 sv_setpvn(sv, s, i);
6745 TAINT_set(oldtainted);
6747 if ( (rx->extflags & RXf_CANY_SEEN)
6748 ? (RXp_MATCH_UTF8(rx)
6749 && (!i || is_utf8_string((U8*)s, i)))
6750 : (RXp_MATCH_UTF8(rx)) )
6757 if (RXp_MATCH_TAINTED(rx)) {
6758 if (SvTYPE(sv) >= SVt_PVMG) {
6759 MAGIC* const mg = SvMAGIC(sv);
6762 SvMAGIC_set(sv, mg->mg_moremagic);
6764 if ((mgt = SvMAGIC(sv))) {
6765 mg->mg_moremagic = mgt;
6766 SvMAGIC_set(sv, mg);
6777 sv_setsv(sv,&PL_sv_undef);
6783 Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
6784 SV const * const value)
6786 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
6788 PERL_UNUSED_ARG(rx);
6789 PERL_UNUSED_ARG(paren);
6790 PERL_UNUSED_ARG(value);
6793 Perl_croak_no_modify();
6797 Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
6800 struct regexp *const rx = ReANY(r);
6804 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
6806 /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
6808 case RX_BUFF_IDX_CARET_PREMATCH: /* ${^PREMATCH} */
6809 if (!(rx->extflags & RXf_PMf_KEEPCOPY))
6813 case RX_BUFF_IDX_PREMATCH: /* $` */
6814 if (rx->offs[0].start != -1) {
6815 i = rx->offs[0].start;
6824 case RX_BUFF_IDX_CARET_POSTMATCH: /* ${^POSTMATCH} */
6825 if (!(rx->extflags & RXf_PMf_KEEPCOPY))
6827 case RX_BUFF_IDX_POSTMATCH: /* $' */
6828 if (rx->offs[0].end != -1) {
6829 i = rx->sublen - rx->offs[0].end;
6831 s1 = rx->offs[0].end;
6838 case RX_BUFF_IDX_CARET_FULLMATCH: /* ${^MATCH} */
6839 if (!(rx->extflags & RXf_PMf_KEEPCOPY))
6843 /* $& / ${^MATCH}, $1, $2, ... */
6845 if (paren <= (I32)rx->nparens &&
6846 (s1 = rx->offs[paren].start) != -1 &&
6847 (t1 = rx->offs[paren].end) != -1)
6853 if (ckWARN(WARN_UNINITIALIZED))
6854 report_uninit((const SV *)sv);
6859 if (i > 0 && RXp_MATCH_UTF8(rx)) {
6860 const char * const s = rx->subbeg - rx->suboffset + s1;
6865 if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
6872 Perl_reg_qr_package(pTHX_ REGEXP * const rx)
6874 PERL_ARGS_ASSERT_REG_QR_PACKAGE;
6875 PERL_UNUSED_ARG(rx);
6879 return newSVpvs("Regexp");
6882 /* Scans the name of a named buffer from the pattern.
6883 * If flags is REG_RSN_RETURN_NULL returns null.
6884 * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
6885 * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
6886 * to the parsed name as looked up in the RExC_paren_names hash.
6887 * If there is an error throws a vFAIL().. type exception.
6890 #define REG_RSN_RETURN_NULL 0
6891 #define REG_RSN_RETURN_NAME 1
6892 #define REG_RSN_RETURN_DATA 2
6895 S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
6897 char *name_start = RExC_parse;
6899 PERL_ARGS_ASSERT_REG_SCAN_NAME;
6901 if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
6902 /* skip IDFIRST by using do...while */
6905 RExC_parse += UTF8SKIP(RExC_parse);
6906 } while (isWORDCHAR_utf8((U8*)RExC_parse));
6910 } while (isWORDCHAR(*RExC_parse));
6912 RExC_parse++; /* so the <- from the vFAIL is after the offending character */
6913 vFAIL("Group name must start with a non-digit word character");
6917 = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
6918 SVs_TEMP | (UTF ? SVf_UTF8 : 0));
6919 if ( flags == REG_RSN_RETURN_NAME)
6921 else if (flags==REG_RSN_RETURN_DATA) {
6924 if ( ! sv_name ) /* should not happen*/
6925 Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
6926 if (RExC_paren_names)
6927 he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
6929 sv_dat = HeVAL(he_str);
6931 vFAIL("Reference to nonexistent named group");
6935 Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name",
6936 (unsigned long) flags);
6938 assert(0); /* NOT REACHED */
6943 #define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \
6944 int rem=(int)(RExC_end - RExC_parse); \
6953 if (RExC_lastparse!=RExC_parse) \
6954 PerlIO_printf(Perl_debug_log," >%.*s%-*s", \
6957 iscut ? "..." : "<" \
6960 PerlIO_printf(Perl_debug_log,"%16s",""); \
6963 num = RExC_size + 1; \
6965 num=REG_NODE_NUM(RExC_emit); \
6966 if (RExC_lastnum!=num) \
6967 PerlIO_printf(Perl_debug_log,"|%4d",num); \
6969 PerlIO_printf(Perl_debug_log,"|%4s",""); \
6970 PerlIO_printf(Perl_debug_log,"|%*s%-4s", \
6971 (int)((depth*2)), "", \
6975 RExC_lastparse=RExC_parse; \
6980 #define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \
6981 DEBUG_PARSE_MSG((funcname)); \
6982 PerlIO_printf(Perl_debug_log,"%4s","\n"); \
6984 #define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \
6985 DEBUG_PARSE_MSG((funcname)); \
6986 PerlIO_printf(Perl_debug_log,fmt "\n",args); \
6989 /* This section of code defines the inversion list object and its methods. The
6990 * interfaces are highly subject to change, so as much as possible is static to
6991 * this file. An inversion list is here implemented as a malloc'd C UV array
6992 * with some added info that is placed as UVs at the beginning in a header
6993 * portion. An inversion list for Unicode is an array of code points, sorted
6994 * by ordinal number. The zeroth element is the first code point in the list.
6995 * The 1th element is the first element beyond that not in the list. In other
6996 * words, the first range is
6997 * invlist[0]..(invlist[1]-1)
6998 * The other ranges follow. Thus every element whose index is divisible by two
6999 * marks the beginning of a range that is in the list, and every element not
7000 * divisible by two marks the beginning of a range not in the list. A single
7001 * element inversion list that contains the single code point N generally
7002 * consists of two elements
7005 * (The exception is when N is the highest representable value on the
7006 * machine, in which case the list containing just it would be a single
7007 * element, itself. By extension, if the last range in the list extends to
7008 * infinity, then the first element of that range will be in the inversion list
7009 * at a position that is divisible by two, and is the final element in the
7011 * Taking the complement (inverting) an inversion list is quite simple, if the
7012 * first element is 0, remove it; otherwise add a 0 element at the beginning.
7013 * This implementation reserves an element at the beginning of each inversion
7014 * list to contain 0 when the list contains 0, and contains 1 otherwise. The
7015 * actual beginning of the list is either that element if 0, or the next one if
7018 * More about inversion lists can be found in "Unicode Demystified"
7019 * Chapter 13 by Richard Gillam, published by Addison-Wesley.
7020 * More will be coming when functionality is added later.
7022 * The inversion list data structure is currently implemented as an SV pointing
7023 * to an array of UVs that the SV thinks are bytes. This allows us to have an
7024 * array of UV whose memory management is automatically handled by the existing
7025 * facilities for SV's.
7027 * Some of the methods should always be private to the implementation, and some
7028 * should eventually be made public */
7030 /* The header definitions are in F<inline_invlist.c> */
7031 #define TO_INTERNAL_SIZE(x) (((x) + HEADER_LENGTH) * sizeof(UV))
7032 #define FROM_INTERNAL_SIZE(x) (((x)/ sizeof(UV)) - HEADER_LENGTH)
7034 #define INVLIST_INITIAL_LEN 10
7036 PERL_STATIC_INLINE UV*
7037 S__invlist_array_init(pTHX_ SV* const invlist, const bool will_have_0)
7039 /* Returns a pointer to the first element in the inversion list's array.
7040 * This is called upon initialization of an inversion list. Where the
7041 * array begins depends on whether the list has the code point U+0000
7042 * in it or not. The other parameter tells it whether the code that
7043 * follows this call is about to put a 0 in the inversion list or not.
7044 * The first element is either the element with 0, if 0, or the next one,
7047 UV* zero = get_invlist_zero_addr(invlist);
7049 PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
7052 assert(! *_get_invlist_len_addr(invlist));
7054 /* 1^1 = 0; 1^0 = 1 */
7055 *zero = 1 ^ will_have_0;
7056 return zero + *zero;
7059 PERL_STATIC_INLINE UV*
7060 S_invlist_array(pTHX_ SV* const invlist)
7062 /* Returns the pointer to the inversion list's array. Every time the
7063 * length changes, this needs to be called in case malloc or realloc moved
7066 PERL_ARGS_ASSERT_INVLIST_ARRAY;
7068 /* Must not be empty. If these fail, you probably didn't check for <len>
7069 * being non-zero before trying to get the array */
7070 assert(*_get_invlist_len_addr(invlist));
7071 assert(*get_invlist_zero_addr(invlist) == 0
7072 || *get_invlist_zero_addr(invlist) == 1);
7074 /* The array begins either at the element reserved for zero if the
7075 * list contains 0 (that element will be set to 0), or otherwise the next
7076 * element (in which case the reserved element will be set to 1). */
7077 return (UV *) (get_invlist_zero_addr(invlist)
7078 + *get_invlist_zero_addr(invlist));
7081 PERL_STATIC_INLINE void
7082 S_invlist_set_len(pTHX_ SV* const invlist, const UV len)
7084 /* Sets the current number of elements stored in the inversion list */
7086 PERL_ARGS_ASSERT_INVLIST_SET_LEN;
7088 *_get_invlist_len_addr(invlist) = len;
7090 assert(len <= SvLEN(invlist));
7092 SvCUR_set(invlist, TO_INTERNAL_SIZE(len));
7093 /* If the list contains U+0000, that element is part of the header,
7094 * and should not be counted as part of the array. It will contain
7095 * 0 in that case, and 1 otherwise. So we could flop 0=>1, 1=>0 and
7097 * SvCUR_set(invlist,
7098 * TO_INTERNAL_SIZE(len
7099 * - (*get_invlist_zero_addr(inv_list) ^ 1)));
7100 * But, this is only valid if len is not 0. The consequences of not doing
7101 * this is that the memory allocation code may think that 1 more UV is
7102 * being used than actually is, and so might do an unnecessary grow. That
7103 * seems worth not bothering to make this the precise amount.
7105 * Note that when inverting, SvCUR shouldn't change */
7108 PERL_STATIC_INLINE IV*
7109 S_get_invlist_previous_index_addr(pTHX_ SV* invlist)
7111 /* Return the address of the UV that is reserved to hold the cached index
7114 PERL_ARGS_ASSERT_GET_INVLIST_PREVIOUS_INDEX_ADDR;
7116 return (IV *) (SvPVX(invlist) + (INVLIST_PREVIOUS_INDEX_OFFSET * sizeof (UV)));
7119 PERL_STATIC_INLINE IV
7120 S_invlist_previous_index(pTHX_ SV* const invlist)
7122 /* Returns cached index of previous search */
7124 PERL_ARGS_ASSERT_INVLIST_PREVIOUS_INDEX;
7126 return *get_invlist_previous_index_addr(invlist);
7129 PERL_STATIC_INLINE void
7130 S_invlist_set_previous_index(pTHX_ SV* const invlist, const IV index)
7132 /* Caches <index> for later retrieval */
7134 PERL_ARGS_ASSERT_INVLIST_SET_PREVIOUS_INDEX;
7136 assert(index == 0 || index < (int) _invlist_len(invlist));
7138 *get_invlist_previous_index_addr(invlist) = index;
7141 PERL_STATIC_INLINE UV
7142 S_invlist_max(pTHX_ SV* const invlist)
7144 /* Returns the maximum number of elements storable in the inversion list's
7145 * array, without having to realloc() */
7147 PERL_ARGS_ASSERT_INVLIST_MAX;
7149 return SvLEN(invlist) == 0 /* This happens under _new_invlist_C_array */
7150 ? _invlist_len(invlist)
7151 : FROM_INTERNAL_SIZE(SvLEN(invlist));
7154 PERL_STATIC_INLINE UV*
7155 S_get_invlist_zero_addr(pTHX_ SV* invlist)
7157 /* Return the address of the UV that is reserved to hold 0 if the inversion
7158 * list contains 0. This has to be the last element of the heading, as the
7159 * list proper starts with either it if 0, or the next element if not.
7160 * (But we force it to contain either 0 or 1) */
7162 PERL_ARGS_ASSERT_GET_INVLIST_ZERO_ADDR;
7164 return (UV *) (SvPVX(invlist) + (INVLIST_ZERO_OFFSET * sizeof (UV)));
7167 #ifndef PERL_IN_XSUB_RE
7169 Perl__new_invlist(pTHX_ IV initial_size)
7172 /* Return a pointer to a newly constructed inversion list, with enough
7173 * space to store 'initial_size' elements. If that number is negative, a
7174 * system default is used instead */
7178 if (initial_size < 0) {
7179 initial_size = INVLIST_INITIAL_LEN;
7182 /* Allocate the initial space */
7183 new_list = newSV(TO_INTERNAL_SIZE(initial_size));
7184 invlist_set_len(new_list, 0);
7186 /* Force iterinit() to be used to get iteration to work */
7187 *get_invlist_iter_addr(new_list) = UV_MAX;
7189 /* This should force a segfault if a method doesn't initialize this
7191 *get_invlist_zero_addr(new_list) = UV_MAX;
7193 *get_invlist_previous_index_addr(new_list) = 0;
7194 *get_invlist_version_id_addr(new_list) = INVLIST_VERSION_ID;
7195 #if HEADER_LENGTH != 5
7196 # error Need to regenerate INVLIST_VERSION_ID by running perl -E 'say int(rand 2**31-1)', and then changing the #if to the new length
7204 S__new_invlist_C_array(pTHX_ UV* list)
7206 /* Return a pointer to a newly constructed inversion list, initialized to
7207 * point to <list>, which has to be in the exact correct inversion list
7208 * form, including internal fields. Thus this is a dangerous routine that
7209 * should not be used in the wrong hands */
7211 SV* invlist = newSV_type(SVt_PV);
7213 PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY;
7215 SvPV_set(invlist, (char *) list);
7216 SvLEN_set(invlist, 0); /* Means we own the contents, and the system
7217 shouldn't touch it */
7218 SvCUR_set(invlist, TO_INTERNAL_SIZE(_invlist_len(invlist)));
7220 if (*get_invlist_version_id_addr(invlist) != INVLIST_VERSION_ID) {
7221 Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list");
7224 /* Initialize the iteration pointer.
7225 * XXX This could be done at compile time in charclass_invlists.h, but I
7226 * (khw) am not confident that the suffixes for specifying the C constant
7227 * UV_MAX are portable, e.g. 'ull' on a 32 bit machine that is configured
7228 * to use 64 bits; might need a Configure probe */
7229 invlist_iterfinish(invlist);
7235 S_invlist_extend(pTHX_ SV* const invlist, const UV new_max)
7237 /* Grow the maximum size of an inversion list */
7239 PERL_ARGS_ASSERT_INVLIST_EXTEND;
7241 SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max));
7244 PERL_STATIC_INLINE void
7245 S_invlist_trim(pTHX_ SV* const invlist)
7247 PERL_ARGS_ASSERT_INVLIST_TRIM;
7249 /* Change the length of the inversion list to how many entries it currently
7252 SvPV_shrink_to_cur((SV *) invlist);
7255 #define _invlist_union_complement_2nd(a, b, output) _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
7258 S__append_range_to_invlist(pTHX_ SV* const invlist, const UV start, const UV end)
7260 /* Subject to change or removal. Append the range from 'start' to 'end' at
7261 * the end of the inversion list. The range must be above any existing
7265 UV max = invlist_max(invlist);
7266 UV len = _invlist_len(invlist);
7268 PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
7270 if (len == 0) { /* Empty lists must be initialized */
7271 array = _invlist_array_init(invlist, start == 0);
7274 /* Here, the existing list is non-empty. The current max entry in the
7275 * list is generally the first value not in the set, except when the
7276 * set extends to the end of permissible values, in which case it is
7277 * the first entry in that final set, and so this call is an attempt to
7278 * append out-of-order */
7280 UV final_element = len - 1;
7281 array = invlist_array(invlist);
7282 if (array[final_element] > start
7283 || ELEMENT_RANGE_MATCHES_INVLIST(final_element))
7285 Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%"UVuf", start=%"UVuf", match=%c",
7286 array[final_element], start,
7287 ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f');
7290 /* Here, it is a legal append. If the new range begins with the first
7291 * value not in the set, it is extending the set, so the new first
7292 * value not in the set is one greater than the newly extended range.
7294 if (array[final_element] == start) {
7295 if (end != UV_MAX) {
7296 array[final_element] = end + 1;
7299 /* But if the end is the maximum representable on the machine,
7300 * just let the range that this would extend to have no end */
7301 invlist_set_len(invlist, len - 1);
7307 /* Here the new range doesn't extend any existing set. Add it */
7309 len += 2; /* Includes an element each for the start and end of range */
7311 /* If overflows the existing space, extend, which may cause the array to be
7314 invlist_extend(invlist, len);
7315 invlist_set_len(invlist, len); /* Have to set len here to avoid assert
7316 failure in invlist_array() */
7317 array = invlist_array(invlist);
7320 invlist_set_len(invlist, len);
7323 /* The next item on the list starts the range, the one after that is
7324 * one past the new range. */
7325 array[len - 2] = start;
7326 if (end != UV_MAX) {
7327 array[len - 1] = end + 1;
7330 /* But if the end is the maximum representable on the machine, just let
7331 * the range have no end */
7332 invlist_set_len(invlist, len - 1);
7336 #ifndef PERL_IN_XSUB_RE
7339 Perl__invlist_search(pTHX_ SV* const invlist, const UV cp)
7341 /* Searches the inversion list for the entry that contains the input code
7342 * point <cp>. If <cp> is not in the list, -1 is returned. Otherwise, the
7343 * return value is the index into the list's array of the range that
7348 IV high = _invlist_len(invlist);
7349 const IV highest_element = high - 1;
7352 PERL_ARGS_ASSERT__INVLIST_SEARCH;
7354 /* If list is empty, return failure. */
7359 /* (We can't get the array unless we know the list is non-empty) */
7360 array = invlist_array(invlist);
7362 mid = invlist_previous_index(invlist);
7363 assert(mid >=0 && mid <= highest_element);
7365 /* <mid> contains the cache of the result of the previous call to this
7366 * function (0 the first time). See if this call is for the same result,
7367 * or if it is for mid-1. This is under the theory that calls to this
7368 * function will often be for related code points that are near each other.
7369 * And benchmarks show that caching gives better results. We also test
7370 * here if the code point is within the bounds of the list. These tests
7371 * replace others that would have had to be made anyway to make sure that
7372 * the array bounds were not exceeded, and these give us extra information
7373 * at the same time */
7374 if (cp >= array[mid]) {
7375 if (cp >= array[highest_element]) {
7376 return highest_element;
7379 /* Here, array[mid] <= cp < array[highest_element]. This means that
7380 * the final element is not the answer, so can exclude it; it also
7381 * means that <mid> is not the final element, so can refer to 'mid + 1'
7383 if (cp < array[mid + 1]) {
7389 else { /* cp < aray[mid] */
7390 if (cp < array[0]) { /* Fail if outside the array */
7394 if (cp >= array[mid - 1]) {
7399 /* Binary search. What we are looking for is <i> such that
7400 * array[i] <= cp < array[i+1]
7401 * The loop below converges on the i+1. Note that there may not be an
7402 * (i+1)th element in the array, and things work nonetheless */
7403 while (low < high) {
7404 mid = (low + high) / 2;
7405 assert(mid <= highest_element);
7406 if (array[mid] <= cp) { /* cp >= array[mid] */
7409 /* We could do this extra test to exit the loop early.
7410 if (cp < array[low]) {
7415 else { /* cp < array[mid] */
7422 invlist_set_previous_index(invlist, high);
7427 Perl__invlist_populate_swatch(pTHX_ SV* const invlist, const UV start, const UV end, U8* swatch)
7429 /* populates a swatch of a swash the same way swatch_get() does in utf8.c,
7430 * but is used when the swash has an inversion list. This makes this much
7431 * faster, as it uses a binary search instead of a linear one. This is
7432 * intimately tied to that function, and perhaps should be in utf8.c,
7433 * except it is intimately tied to inversion lists as well. It assumes
7434 * that <swatch> is all 0's on input */
7437 const IV len = _invlist_len(invlist);
7441 PERL_ARGS_ASSERT__INVLIST_POPULATE_SWATCH;
7443 if (len == 0) { /* Empty inversion list */
7447 array = invlist_array(invlist);
7449 /* Find which element it is */
7450 i = _invlist_search(invlist, start);
7452 /* We populate from <start> to <end> */
7453 while (current < end) {
7456 /* The inversion list gives the results for every possible code point
7457 * after the first one in the list. Only those ranges whose index is
7458 * even are ones that the inversion list matches. For the odd ones,
7459 * and if the initial code point is not in the list, we have to skip
7460 * forward to the next element */
7461 if (i == -1 || ! ELEMENT_RANGE_MATCHES_INVLIST(i)) {
7463 if (i >= len) { /* Finished if beyond the end of the array */
7467 if (current >= end) { /* Finished if beyond the end of what we
7469 if (LIKELY(end < UV_MAX)) {
7473 /* We get here when the upper bound is the maximum
7474 * representable on the machine, and we are looking for just
7475 * that code point. Have to special case it */
7477 goto join_end_of_list;
7480 assert(current >= start);
7482 /* The current range ends one below the next one, except don't go past
7485 upper = (i < len && array[i] < end) ? array[i] : end;
7487 /* Here we are in a range that matches. Populate a bit in the 3-bit U8
7488 * for each code point in it */
7489 for (; current < upper; current++) {
7490 const STRLEN offset = (STRLEN)(current - start);
7491 swatch[offset >> 3] |= 1 << (offset & 7);
7496 /* Quit if at the end of the list */
7499 /* But first, have to deal with the highest possible code point on
7500 * the platform. The previous code assumes that <end> is one
7501 * beyond where we want to populate, but that is impossible at the
7502 * platform's infinity, so have to handle it specially */
7503 if (UNLIKELY(end == UV_MAX && ELEMENT_RANGE_MATCHES_INVLIST(len-1)))
7505 const STRLEN offset = (STRLEN)(end - start);
7506 swatch[offset >> 3] |= 1 << (offset & 7);
7511 /* Advance to the next range, which will be for code points not in the
7520 Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** output)
7522 /* Take the union of two inversion lists and point <output> to it. *output
7523 * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
7524 * the reference count to that list will be decremented. The first list,
7525 * <a>, may be NULL, in which case a copy of the second list is returned.
7526 * If <complement_b> is TRUE, the union is taken of the complement
7527 * (inversion) of <b> instead of b itself.
7529 * The basis for this comes from "Unicode Demystified" Chapter 13 by
7530 * Richard Gillam, published by Addison-Wesley, and explained at some
7531 * length there. The preface says to incorporate its examples into your
7532 * code at your own risk.
7534 * The algorithm is like a merge sort.
7536 * XXX A potential performance improvement is to keep track as we go along
7537 * if only one of the inputs contributes to the result, meaning the other
7538 * is a subset of that one. In that case, we can skip the final copy and
7539 * return the larger of the input lists, but then outside code might need
7540 * to keep track of whether to free the input list or not */
7542 UV* array_a; /* a's array */
7544 UV len_a; /* length of a's array */
7547 SV* u; /* the resulting union */
7551 UV i_a = 0; /* current index into a's array */
7555 /* running count, as explained in the algorithm source book; items are
7556 * stopped accumulating and are output when the count changes to/from 0.
7557 * The count is incremented when we start a range that's in the set, and
7558 * decremented when we start a range that's not in the set. So its range
7559 * is 0 to 2. Only when the count is zero is something not in the set.
7563 PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND;
7566 /* If either one is empty, the union is the other one */
7567 if (a == NULL || ((len_a = _invlist_len(a)) == 0)) {
7574 *output = invlist_clone(b);
7576 _invlist_invert(*output);
7578 } /* else *output already = b; */
7581 else if ((len_b = _invlist_len(b)) == 0) {
7586 /* The complement of an empty list is a list that has everything in it,
7587 * so the union with <a> includes everything too */
7592 *output = _new_invlist(1);
7593 _append_range_to_invlist(*output, 0, UV_MAX);
7595 else if (*output != a) {
7596 *output = invlist_clone(a);
7598 /* else *output already = a; */
7602 /* Here both lists exist and are non-empty */
7603 array_a = invlist_array(a);
7604 array_b = invlist_array(b);
7606 /* If are to take the union of 'a' with the complement of b, set it
7607 * up so are looking at b's complement. */
7610 /* To complement, we invert: if the first element is 0, remove it. To
7611 * do this, we just pretend the array starts one later, and clear the
7612 * flag as we don't have to do anything else later */
7613 if (array_b[0] == 0) {
7616 complement_b = FALSE;
7620 /* But if the first element is not zero, we unshift a 0 before the
7621 * array. The data structure reserves a space for that 0 (which
7622 * should be a '1' right now), so physical shifting is unneeded,
7623 * but temporarily change that element to 0. Before exiting the
7624 * routine, we must restore the element to '1' */
7631 /* Size the union for the worst case: that the sets are completely
7633 u = _new_invlist(len_a + len_b);
7635 /* Will contain U+0000 if either component does */
7636 array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0)
7637 || (len_b > 0 && array_b[0] == 0));
7639 /* Go through each list item by item, stopping when exhausted one of
7641 while (i_a < len_a && i_b < len_b) {
7642 UV cp; /* The element to potentially add to the union's array */
7643 bool cp_in_set; /* is it in the the input list's set or not */
7645 /* We need to take one or the other of the two inputs for the union.
7646 * Since we are merging two sorted lists, we take the smaller of the
7647 * next items. In case of a tie, we take the one that is in its set
7648 * first. If we took one not in the set first, it would decrement the
7649 * count, possibly to 0 which would cause it to be output as ending the
7650 * range, and the next time through we would take the same number, and
7651 * output it again as beginning the next range. By doing it the
7652 * opposite way, there is no possibility that the count will be
7653 * momentarily decremented to 0, and thus the two adjoining ranges will
7654 * be seamlessly merged. (In a tie and both are in the set or both not
7655 * in the set, it doesn't matter which we take first.) */
7656 if (array_a[i_a] < array_b[i_b]
7657 || (array_a[i_a] == array_b[i_b]
7658 && ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
7660 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
7664 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
7665 cp = array_b[i_b++];
7668 /* Here, have chosen which of the two inputs to look at. Only output
7669 * if the running count changes to/from 0, which marks the
7670 * beginning/end of a range in that's in the set */
7673 array_u[i_u++] = cp;
7680 array_u[i_u++] = cp;
7685 /* Here, we are finished going through at least one of the lists, which
7686 * means there is something remaining in at most one. We check if the list
7687 * that hasn't been exhausted is positioned such that we are in the middle
7688 * of a range in its set or not. (i_a and i_b point to the element beyond
7689 * the one we care about.) If in the set, we decrement 'count'; if 0, there
7690 * is potentially more to output.
7691 * There are four cases:
7692 * 1) Both weren't in their sets, count is 0, and remains 0. What's left
7693 * in the union is entirely from the non-exhausted set.
7694 * 2) Both were in their sets, count is 2. Nothing further should
7695 * be output, as everything that remains will be in the exhausted
7696 * list's set, hence in the union; decrementing to 1 but not 0 insures
7698 * 3) the exhausted was in its set, non-exhausted isn't, count is 1.
7699 * Nothing further should be output because the union includes
7700 * everything from the exhausted set. Not decrementing ensures that.
7701 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
7702 * decrementing to 0 insures that we look at the remainder of the
7703 * non-exhausted set */
7704 if ((i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
7705 || (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
7710 /* The final length is what we've output so far, plus what else is about to
7711 * be output. (If 'count' is non-zero, then the input list we exhausted
7712 * has everything remaining up to the machine's limit in its set, and hence
7713 * in the union, so there will be no further output. */
7716 /* At most one of the subexpressions will be non-zero */
7717 len_u += (len_a - i_a) + (len_b - i_b);
7720 /* Set result to final length, which can change the pointer to array_u, so
7722 if (len_u != _invlist_len(u)) {
7723 invlist_set_len(u, len_u);
7725 array_u = invlist_array(u);
7728 /* When 'count' is 0, the list that was exhausted (if one was shorter than
7729 * the other) ended with everything above it not in its set. That means
7730 * that the remaining part of the union is precisely the same as the
7731 * non-exhausted list, so can just copy it unchanged. (If both list were
7732 * exhausted at the same time, then the operations below will be both 0.)
7735 IV copy_count; /* At most one will have a non-zero copy count */
7736 if ((copy_count = len_a - i_a) > 0) {
7737 Copy(array_a + i_a, array_u + i_u, copy_count, UV);
7739 else if ((copy_count = len_b - i_b) > 0) {
7740 Copy(array_b + i_b, array_u + i_u, copy_count, UV);
7744 /* If we've changed b, restore it */
7749 /* We may be removing a reference to one of the inputs */
7750 if (a == *output || b == *output) {
7751 assert(! invlist_is_iterating(*output));
7752 SvREFCNT_dec_NN(*output);
7760 Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** i)
7762 /* Take the intersection of two inversion lists and point <i> to it. *i
7763 * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
7764 * the reference count to that list will be decremented.
7765 * If <complement_b> is TRUE, the result will be the intersection of <a>
7766 * and the complement (or inversion) of <b> instead of <b> directly.
7768 * The basis for this comes from "Unicode Demystified" Chapter 13 by
7769 * Richard Gillam, published by Addison-Wesley, and explained at some
7770 * length there. The preface says to incorporate its examples into your
7771 * code at your own risk. In fact, it had bugs
7773 * The algorithm is like a merge sort, and is essentially the same as the
7777 UV* array_a; /* a's array */
7779 UV len_a; /* length of a's array */
7782 SV* r; /* the resulting intersection */
7786 UV i_a = 0; /* current index into a's array */
7790 /* running count, as explained in the algorithm source book; items are
7791 * stopped accumulating and are output when the count changes to/from 2.
7792 * The count is incremented when we start a range that's in the set, and
7793 * decremented when we start a range that's not in the set. So its range
7794 * is 0 to 2. Only when the count is 2 is something in the intersection.
7798 PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND;
7801 /* Special case if either one is empty */
7802 len_a = _invlist_len(a);
7803 if ((len_a == 0) || ((len_b = _invlist_len(b)) == 0)) {
7805 if (len_a != 0 && complement_b) {
7807 /* Here, 'a' is not empty, therefore from the above 'if', 'b' must
7808 * be empty. Here, also we are using 'b's complement, which hence
7809 * must be every possible code point. Thus the intersection is
7812 *i = invlist_clone(a);
7818 /* else *i is already 'a' */
7822 /* Here, 'a' or 'b' is empty and not using the complement of 'b'. The
7823 * intersection must be empty */
7830 *i = _new_invlist(0);
7834 /* Here both lists exist and are non-empty */
7835 array_a = invlist_array(a);
7836 array_b = invlist_array(b);
7838 /* If are to take the intersection of 'a' with the complement of b, set it
7839 * up so are looking at b's complement. */
7842 /* To complement, we invert: if the first element is 0, remove it. To
7843 * do this, we just pretend the array starts one later, and clear the
7844 * flag as we don't have to do anything else later */
7845 if (array_b[0] == 0) {
7848 complement_b = FALSE;
7852 /* But if the first element is not zero, we unshift a 0 before the
7853 * array. The data structure reserves a space for that 0 (which
7854 * should be a '1' right now), so physical shifting is unneeded,
7855 * but temporarily change that element to 0. Before exiting the
7856 * routine, we must restore the element to '1' */
7863 /* Size the intersection for the worst case: that the intersection ends up
7864 * fragmenting everything to be completely disjoint */
7865 r= _new_invlist(len_a + len_b);
7867 /* Will contain U+0000 iff both components do */
7868 array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0
7869 && len_b > 0 && array_b[0] == 0);
7871 /* Go through each list item by item, stopping when exhausted one of
7873 while (i_a < len_a && i_b < len_b) {
7874 UV cp; /* The element to potentially add to the intersection's
7876 bool cp_in_set; /* Is it in the input list's set or not */
7878 /* We need to take one or the other of the two inputs for the
7879 * intersection. Since we are merging two sorted lists, we take the
7880 * smaller of the next items. In case of a tie, we take the one that
7881 * is not in its set first (a difference from the union algorithm). If
7882 * we took one in the set first, it would increment the count, possibly
7883 * to 2 which would cause it to be output as starting a range in the
7884 * intersection, and the next time through we would take that same
7885 * number, and output it again as ending the set. By doing it the
7886 * opposite of this, there is no possibility that the count will be
7887 * momentarily incremented to 2. (In a tie and both are in the set or
7888 * both not in the set, it doesn't matter which we take first.) */
7889 if (array_a[i_a] < array_b[i_b]
7890 || (array_a[i_a] == array_b[i_b]
7891 && ! ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
7893 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
7897 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
7901 /* Here, have chosen which of the two inputs to look at. Only output
7902 * if the running count changes to/from 2, which marks the
7903 * beginning/end of a range that's in the intersection */
7907 array_r[i_r++] = cp;
7912 array_r[i_r++] = cp;
7918 /* Here, we are finished going through at least one of the lists, which
7919 * means there is something remaining in at most one. We check if the list
7920 * that has been exhausted is positioned such that we are in the middle
7921 * of a range in its set or not. (i_a and i_b point to elements 1 beyond
7922 * the ones we care about.) There are four cases:
7923 * 1) Both weren't in their sets, count is 0, and remains 0. There's
7924 * nothing left in the intersection.
7925 * 2) Both were in their sets, count is 2 and perhaps is incremented to
7926 * above 2. What should be output is exactly that which is in the
7927 * non-exhausted set, as everything it has is also in the intersection
7928 * set, and everything it doesn't have can't be in the intersection
7929 * 3) The exhausted was in its set, non-exhausted isn't, count is 1, and
7930 * gets incremented to 2. Like the previous case, the intersection is
7931 * everything that remains in the non-exhausted set.
7932 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
7933 * remains 1. And the intersection has nothing more. */
7934 if ((i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
7935 || (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
7940 /* The final length is what we've output so far plus what else is in the
7941 * intersection. At most one of the subexpressions below will be non-zero */
7944 len_r += (len_a - i_a) + (len_b - i_b);
7947 /* Set result to final length, which can change the pointer to array_r, so
7949 if (len_r != _invlist_len(r)) {
7950 invlist_set_len(r, len_r);
7952 array_r = invlist_array(r);
7955 /* Finish outputting any remaining */
7956 if (count >= 2) { /* At most one will have a non-zero copy count */
7958 if ((copy_count = len_a - i_a) > 0) {
7959 Copy(array_a + i_a, array_r + i_r, copy_count, UV);
7961 else if ((copy_count = len_b - i_b) > 0) {
7962 Copy(array_b + i_b, array_r + i_r, copy_count, UV);
7966 /* If we've changed b, restore it */
7971 /* We may be removing a reference to one of the inputs */
7972 if (a == *i || b == *i) {
7973 assert(! invlist_is_iterating(*i));
7974 SvREFCNT_dec_NN(*i);
7982 Perl__add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end)
7984 /* Add the range from 'start' to 'end' inclusive to the inversion list's
7985 * set. A pointer to the inversion list is returned. This may actually be
7986 * a new list, in which case the passed in one has been destroyed. The
7987 * passed in inversion list can be NULL, in which case a new one is created
7988 * with just the one range in it */
7993 if (invlist == NULL) {
7994 invlist = _new_invlist(2);
7998 len = _invlist_len(invlist);
8001 /* If comes after the final entry actually in the list, can just append it
8004 || (! ELEMENT_RANGE_MATCHES_INVLIST(len - 1)
8005 && start >= invlist_array(invlist)[len - 1]))
8007 _append_range_to_invlist(invlist, start, end);
8011 /* Here, can't just append things, create and return a new inversion list
8012 * which is the union of this range and the existing inversion list */
8013 range_invlist = _new_invlist(2);
8014 _append_range_to_invlist(range_invlist, start, end);
8016 _invlist_union(invlist, range_invlist, &invlist);
8018 /* The temporary can be freed */
8019 SvREFCNT_dec_NN(range_invlist);
8026 PERL_STATIC_INLINE SV*
8027 S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) {
8028 return _add_range_to_invlist(invlist, cp, cp);
8031 #ifndef PERL_IN_XSUB_RE
8033 Perl__invlist_invert(pTHX_ SV* const invlist)
8035 /* Complement the input inversion list. This adds a 0 if the list didn't
8036 * have a zero; removes it otherwise. As described above, the data
8037 * structure is set up so that this is very efficient */
8039 UV* len_pos = _get_invlist_len_addr(invlist);
8041 PERL_ARGS_ASSERT__INVLIST_INVERT;
8043 assert(! invlist_is_iterating(invlist));
8045 /* The inverse of matching nothing is matching everything */
8046 if (*len_pos == 0) {
8047 _append_range_to_invlist(invlist, 0, UV_MAX);
8051 /* The exclusive or complents 0 to 1; and 1 to 0. If the result is 1, the
8052 * zero element was a 0, so it is being removed, so the length decrements
8053 * by 1; and vice-versa. SvCUR is unaffected */
8054 if (*get_invlist_zero_addr(invlist) ^= 1) {
8063 Perl__invlist_invert_prop(pTHX_ SV* const invlist)
8065 /* Complement the input inversion list (which must be a Unicode property,
8066 * all of which don't match above the Unicode maximum code point.) And
8067 * Perl has chosen to not have the inversion match above that either. This
8068 * adds a 0x110000 if the list didn't end with it, and removes it if it did
8074 PERL_ARGS_ASSERT__INVLIST_INVERT_PROP;
8076 _invlist_invert(invlist);
8078 len = _invlist_len(invlist);
8080 if (len != 0) { /* If empty do nothing */
8081 array = invlist_array(invlist);
8082 if (array[len - 1] != PERL_UNICODE_MAX + 1) {
8083 /* Add 0x110000. First, grow if necessary */
8085 if (invlist_max(invlist) < len) {
8086 invlist_extend(invlist, len);
8087 array = invlist_array(invlist);
8089 invlist_set_len(invlist, len);
8090 array[len - 1] = PERL_UNICODE_MAX + 1;
8092 else { /* Remove the 0x110000 */
8093 invlist_set_len(invlist, len - 1);
8101 PERL_STATIC_INLINE SV*
8102 S_invlist_clone(pTHX_ SV* const invlist)
8105 /* Return a new inversion list that is a copy of the input one, which is
8108 /* Need to allocate extra space to accommodate Perl's addition of a
8109 * trailing NUL to SvPV's, since it thinks they are always strings */
8110 SV* new_invlist = _new_invlist(_invlist_len(invlist) + 1);
8111 STRLEN length = SvCUR(invlist);
8113 PERL_ARGS_ASSERT_INVLIST_CLONE;
8115 SvCUR_set(new_invlist, length); /* This isn't done automatically */
8116 Copy(SvPVX(invlist), SvPVX(new_invlist), length, char);
8121 PERL_STATIC_INLINE UV*
8122 S_get_invlist_iter_addr(pTHX_ SV* invlist)
8124 /* Return the address of the UV that contains the current iteration
8127 PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR;
8129 return (UV *) (SvPVX(invlist) + (INVLIST_ITER_OFFSET * sizeof (UV)));
8132 PERL_STATIC_INLINE UV*
8133 S_get_invlist_version_id_addr(pTHX_ SV* invlist)
8135 /* Return the address of the UV that contains the version id. */
8137 PERL_ARGS_ASSERT_GET_INVLIST_VERSION_ID_ADDR;
8139 return (UV *) (SvPVX(invlist) + (INVLIST_VERSION_ID_OFFSET * sizeof (UV)));
8142 PERL_STATIC_INLINE void
8143 S_invlist_iterinit(pTHX_ SV* invlist) /* Initialize iterator for invlist */
8145 PERL_ARGS_ASSERT_INVLIST_ITERINIT;
8147 *get_invlist_iter_addr(invlist) = 0;
8150 PERL_STATIC_INLINE void
8151 S_invlist_iterfinish(pTHX_ SV* invlist)
8153 /* Terminate iterator for invlist. This is to catch development errors.
8154 * Any iteration that is interrupted before completed should call this
8155 * function. Functions that add code points anywhere else but to the end
8156 * of an inversion list assert that they are not in the middle of an
8157 * iteration. If they were, the addition would make the iteration
8158 * problematical: if the iteration hadn't reached the place where things
8159 * were being added, it would be ok */
8161 PERL_ARGS_ASSERT_INVLIST_ITERFINISH;
8163 *get_invlist_iter_addr(invlist) = UV_MAX;
8167 S_invlist_iternext(pTHX_ SV* invlist, UV* start, UV* end)
8169 /* An C<invlist_iterinit> call on <invlist> must be used to set this up.
8170 * This call sets in <*start> and <*end>, the next range in <invlist>.
8171 * Returns <TRUE> if successful and the next call will return the next
8172 * range; <FALSE> if was already at the end of the list. If the latter,
8173 * <*start> and <*end> are unchanged, and the next call to this function
8174 * will start over at the beginning of the list */
8176 UV* pos = get_invlist_iter_addr(invlist);
8177 UV len = _invlist_len(invlist);
8180 PERL_ARGS_ASSERT_INVLIST_ITERNEXT;
8183 *pos = UV_MAX; /* Force iterinit() to be required next time */
8187 array = invlist_array(invlist);
8189 *start = array[(*pos)++];
8195 *end = array[(*pos)++] - 1;
8201 PERL_STATIC_INLINE bool
8202 S_invlist_is_iterating(pTHX_ SV* const invlist)
8204 PERL_ARGS_ASSERT_INVLIST_IS_ITERATING;
8206 return *(get_invlist_iter_addr(invlist)) < UV_MAX;
8209 PERL_STATIC_INLINE UV
8210 S_invlist_highest(pTHX_ SV* const invlist)
8212 /* Returns the highest code point that matches an inversion list. This API
8213 * has an ambiguity, as it returns 0 under either the highest is actually
8214 * 0, or if the list is empty. If this distinction matters to you, check
8215 * for emptiness before calling this function */
8217 UV len = _invlist_len(invlist);
8220 PERL_ARGS_ASSERT_INVLIST_HIGHEST;
8226 array = invlist_array(invlist);
8228 /* The last element in the array in the inversion list always starts a
8229 * range that goes to infinity. That range may be for code points that are
8230 * matched in the inversion list, or it may be for ones that aren't
8231 * matched. In the latter case, the highest code point in the set is one
8232 * less than the beginning of this range; otherwise it is the final element
8233 * of this range: infinity */
8234 return (ELEMENT_RANGE_MATCHES_INVLIST(len - 1))
8236 : array[len - 1] - 1;
8239 #ifndef PERL_IN_XSUB_RE
8241 Perl__invlist_contents(pTHX_ SV* const invlist)
8243 /* Get the contents of an inversion list into a string SV so that they can
8244 * be printed out. It uses the format traditionally done for debug tracing
8248 SV* output = newSVpvs("\n");
8250 PERL_ARGS_ASSERT__INVLIST_CONTENTS;
8252 assert(! invlist_is_iterating(invlist));
8254 invlist_iterinit(invlist);
8255 while (invlist_iternext(invlist, &start, &end)) {
8256 if (end == UV_MAX) {
8257 Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\tINFINITY\n", start);
8259 else if (end != start) {
8260 Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\t%04"UVXf"\n",
8264 Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\n", start);
8272 #ifdef PERL_ARGS_ASSERT__INVLIST_DUMP
8274 Perl__invlist_dump(pTHX_ SV* const invlist, const char * const header)
8276 /* Dumps out the ranges in an inversion list. The string 'header'
8277 * if present is output on a line before the first range */
8281 PERL_ARGS_ASSERT__INVLIST_DUMP;
8283 if (header && strlen(header)) {
8284 PerlIO_printf(Perl_debug_log, "%s\n", header);
8286 if (invlist_is_iterating(invlist)) {
8287 PerlIO_printf(Perl_debug_log, "Can't dump because is in middle of iterating\n");
8291 invlist_iterinit(invlist);
8292 while (invlist_iternext(invlist, &start, &end)) {
8293 if (end == UV_MAX) {
8294 PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. INFINITY\n", start);
8296 else if (end != start) {
8297 PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. 0x%04"UVXf"\n",
8301 PerlIO_printf(Perl_debug_log, "0x%04"UVXf"\n", start);
8309 S__invlistEQ(pTHX_ SV* const a, SV* const b, bool complement_b)
8311 /* Return a boolean as to if the two passed in inversion lists are
8312 * identical. The final argument, if TRUE, says to take the complement of
8313 * the second inversion list before doing the comparison */
8315 UV* array_a = invlist_array(a);
8316 UV* array_b = invlist_array(b);
8317 UV len_a = _invlist_len(a);
8318 UV len_b = _invlist_len(b);
8320 UV i = 0; /* current index into the arrays */
8321 bool retval = TRUE; /* Assume are identical until proven otherwise */
8323 PERL_ARGS_ASSERT__INVLISTEQ;
8325 /* If are to compare 'a' with the complement of b, set it
8326 * up so are looking at b's complement. */
8329 /* The complement of nothing is everything, so <a> would have to have
8330 * just one element, starting at zero (ending at infinity) */
8332 return (len_a == 1 && array_a[0] == 0);
8334 else if (array_b[0] == 0) {
8336 /* Otherwise, to complement, we invert. Here, the first element is
8337 * 0, just remove it. To do this, we just pretend the array starts
8338 * one later, and clear the flag as we don't have to do anything
8343 complement_b = FALSE;
8347 /* But if the first element is not zero, we unshift a 0 before the
8348 * array. The data structure reserves a space for that 0 (which
8349 * should be a '1' right now), so physical shifting is unneeded,
8350 * but temporarily change that element to 0. Before exiting the
8351 * routine, we must restore the element to '1' */
8358 /* Make sure that the lengths are the same, as well as the final element
8359 * before looping through the remainder. (Thus we test the length, final,
8360 * and first elements right off the bat) */
8361 if (len_a != len_b || array_a[len_a-1] != array_b[len_a-1]) {
8364 else for (i = 0; i < len_a - 1; i++) {
8365 if (array_a[i] != array_b[i]) {
8378 #undef HEADER_LENGTH
8379 #undef INVLIST_INITIAL_LENGTH
8380 #undef TO_INTERNAL_SIZE
8381 #undef FROM_INTERNAL_SIZE
8382 #undef INVLIST_LEN_OFFSET
8383 #undef INVLIST_ZERO_OFFSET
8384 #undef INVLIST_ITER_OFFSET
8385 #undef INVLIST_VERSION_ID
8386 #undef INVLIST_PREVIOUS_INDEX_OFFSET
8388 /* End of inversion list object */
8391 S_parse_lparen_question_flags(pTHX_ struct RExC_state_t *pRExC_state)
8393 /* This parses the flags that are in either the '(?foo)' or '(?foo:bar)'
8394 * constructs, and updates RExC_flags with them. On input, RExC_parse
8395 * should point to the first flag; it is updated on output to point to the
8396 * final ')' or ':'. There needs to be at least one flag, or this will
8399 /* for (?g), (?gc), and (?o) warnings; warning
8400 about (?c) will warn about (?g) -- japhy */
8402 #define WASTED_O 0x01
8403 #define WASTED_G 0x02
8404 #define WASTED_C 0x04
8405 #define WASTED_GC (0x02|0x04)
8406 I32 wastedflags = 0x00;
8407 U32 posflags = 0, negflags = 0;
8408 U32 *flagsp = &posflags;
8409 char has_charset_modifier = '\0';
8411 bool has_use_defaults = FALSE;
8412 const char* const seqstart = RExC_parse - 1; /* Point to the '?' */
8414 PERL_ARGS_ASSERT_PARSE_LPAREN_QUESTION_FLAGS;
8416 /* '^' as an initial flag sets certain defaults */
8417 if (UCHARAT(RExC_parse) == '^') {
8419 has_use_defaults = TRUE;
8420 STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
8421 set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
8422 ? REGEX_UNICODE_CHARSET
8423 : REGEX_DEPENDS_CHARSET);
8426 cs = get_regex_charset(RExC_flags);
8427 if (cs == REGEX_DEPENDS_CHARSET
8428 && (RExC_utf8 || RExC_uni_semantics))
8430 cs = REGEX_UNICODE_CHARSET;
8433 while (*RExC_parse) {
8434 /* && strchr("iogcmsx", *RExC_parse) */
8435 /* (?g), (?gc) and (?o) are useless here
8436 and must be globally applied -- japhy */
8437 switch (*RExC_parse) {
8439 /* Code for the imsx flags */
8440 CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp);
8442 case LOCALE_PAT_MOD:
8443 if (has_charset_modifier) {
8444 goto excess_modifier;
8446 else if (flagsp == &negflags) {
8449 cs = REGEX_LOCALE_CHARSET;
8450 has_charset_modifier = LOCALE_PAT_MOD;
8451 RExC_contains_locale = 1;
8453 case UNICODE_PAT_MOD:
8454 if (has_charset_modifier) {
8455 goto excess_modifier;
8457 else if (flagsp == &negflags) {
8460 cs = REGEX_UNICODE_CHARSET;
8461 has_charset_modifier = UNICODE_PAT_MOD;
8463 case ASCII_RESTRICT_PAT_MOD:
8464 if (flagsp == &negflags) {
8467 if (has_charset_modifier) {
8468 if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
8469 goto excess_modifier;
8471 /* Doubled modifier implies more restricted */
8472 cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
8475 cs = REGEX_ASCII_RESTRICTED_CHARSET;
8477 has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
8479 case DEPENDS_PAT_MOD:
8480 if (has_use_defaults) {
8481 goto fail_modifiers;
8483 else if (flagsp == &negflags) {
8486 else if (has_charset_modifier) {
8487 goto excess_modifier;
8490 /* The dual charset means unicode semantics if the
8491 * pattern (or target, not known until runtime) are
8492 * utf8, or something in the pattern indicates unicode
8494 cs = (RExC_utf8 || RExC_uni_semantics)
8495 ? REGEX_UNICODE_CHARSET
8496 : REGEX_DEPENDS_CHARSET;
8497 has_charset_modifier = DEPENDS_PAT_MOD;
8501 if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
8502 vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
8504 else if (has_charset_modifier == *(RExC_parse - 1)) {
8505 vFAIL2("Regexp modifier \"%c\" may not appear twice", *(RExC_parse - 1));
8508 vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
8513 vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"", *(RExC_parse - 1));
8515 case ONCE_PAT_MOD: /* 'o' */
8516 case GLOBAL_PAT_MOD: /* 'g' */
8517 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
8518 const I32 wflagbit = *RExC_parse == 'o' ? WASTED_O : WASTED_G;
8519 if (! (wastedflags & wflagbit) ) {
8520 wastedflags |= wflagbit;
8523 "Useless (%s%c) - %suse /%c modifier",
8524 flagsp == &negflags ? "?-" : "?",
8526 flagsp == &negflags ? "don't " : "",
8533 case CONTINUE_PAT_MOD: /* 'c' */
8534 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
8535 if (! (wastedflags & WASTED_C) ) {
8536 wastedflags |= WASTED_GC;
8539 "Useless (%sc) - %suse /gc modifier",
8540 flagsp == &negflags ? "?-" : "?",
8541 flagsp == &negflags ? "don't " : ""
8546 case KEEPCOPY_PAT_MOD: /* 'p' */
8547 if (flagsp == &negflags) {
8549 ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
8551 *flagsp |= RXf_PMf_KEEPCOPY;
8555 /* A flag is a default iff it is following a minus, so
8556 * if there is a minus, it means will be trying to
8557 * re-specify a default which is an error */
8558 if (has_use_defaults || flagsp == &negflags) {
8559 goto fail_modifiers;
8562 wastedflags = 0; /* reset so (?g-c) warns twice */
8566 RExC_flags |= posflags;
8567 RExC_flags &= ~negflags;
8568 set_regex_charset(&RExC_flags, cs);
8574 vFAIL3("Sequence (%.*s...) not recognized",
8575 RExC_parse-seqstart, seqstart);
8584 - reg - regular expression, i.e. main body or parenthesized thing
8586 * Caller must absorb opening parenthesis.
8588 * Combining parenthesis handling with the base level of regular expression
8589 * is a trifle forced, but the need to tie the tails of the branches to what
8590 * follows makes it hard to avoid.
8592 #define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
8594 #define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
8596 #define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
8599 /* Returns NULL, setting *flagp to TRYAGAIN at the end of (?) that only sets
8600 flags. Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan
8601 needs to be restarted.
8602 Otherwise would only return NULL if regbranch() returns NULL, which
8605 S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
8606 /* paren: Parenthesized? 0=top; 1,2=inside '(': changed to letter.
8607 * 2 is like 1, but indicates that nextchar() has been called to advance
8608 * RExC_parse beyond the '('. Things like '(?' are indivisible tokens, and
8609 * this flag alerts us to the need to check for that */
8612 regnode *ret; /* Will be the head of the group. */
8615 regnode *ender = NULL;
8618 U32 oregflags = RExC_flags;
8619 bool have_branch = 0;
8621 I32 freeze_paren = 0;
8622 I32 after_freeze = 0;
8624 char * parse_start = RExC_parse; /* MJD */
8625 char * const oregcomp_parse = RExC_parse;
8627 GET_RE_DEBUG_FLAGS_DECL;
8629 PERL_ARGS_ASSERT_REG;
8630 DEBUG_PARSE("reg ");
8632 *flagp = 0; /* Tentatively. */
8635 /* Make an OPEN node, if parenthesized. */
8638 /* Under /x, space and comments can be gobbled up between the '(' and
8639 * here (if paren ==2). The forms '(*VERB' and '(?...' disallow such
8640 * intervening space, as the sequence is a token, and a token should be
8642 bool has_intervening_patws = paren == 2 && *(RExC_parse - 1) != '(';
8644 if ( *RExC_parse == '*') { /* (*VERB:ARG) */
8645 char *start_verb = RExC_parse;
8646 STRLEN verb_len = 0;
8647 char *start_arg = NULL;
8648 unsigned char op = 0;
8650 int internal_argval = 0; /* internal_argval is only useful if !argok */
8652 if (has_intervening_patws && SIZE_ONLY) {
8653 ckWARNregdep(RExC_parse + 1, "In '(*VERB...)', splitting the initial '(*' is deprecated");
8655 while ( *RExC_parse && *RExC_parse != ')' ) {
8656 if ( *RExC_parse == ':' ) {
8657 start_arg = RExC_parse + 1;
8663 verb_len = RExC_parse - start_verb;
8666 while ( *RExC_parse && *RExC_parse != ')' )
8668 if ( *RExC_parse != ')' )
8669 vFAIL("Unterminated verb pattern argument");
8670 if ( RExC_parse == start_arg )
8673 if ( *RExC_parse != ')' )
8674 vFAIL("Unterminated verb pattern");
8677 switch ( *start_verb ) {
8678 case 'A': /* (*ACCEPT) */
8679 if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
8681 internal_argval = RExC_nestroot;
8684 case 'C': /* (*COMMIT) */
8685 if ( memEQs(start_verb,verb_len,"COMMIT") )
8688 case 'F': /* (*FAIL) */
8689 if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
8694 case ':': /* (*:NAME) */
8695 case 'M': /* (*MARK:NAME) */
8696 if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
8701 case 'P': /* (*PRUNE) */
8702 if ( memEQs(start_verb,verb_len,"PRUNE") )
8705 case 'S': /* (*SKIP) */
8706 if ( memEQs(start_verb,verb_len,"SKIP") )
8709 case 'T': /* (*THEN) */
8710 /* [19:06] <TimToady> :: is then */
8711 if ( memEQs(start_verb,verb_len,"THEN") ) {
8713 RExC_seen |= REG_SEEN_CUTGROUP;
8719 vFAIL3("Unknown verb pattern '%.*s'",
8720 verb_len, start_verb);
8723 if ( start_arg && internal_argval ) {
8724 vFAIL3("Verb pattern '%.*s' may not have an argument",
8725 verb_len, start_verb);
8726 } else if ( argok < 0 && !start_arg ) {
8727 vFAIL3("Verb pattern '%.*s' has a mandatory argument",
8728 verb_len, start_verb);
8730 ret = reganode(pRExC_state, op, internal_argval);
8731 if ( ! internal_argval && ! SIZE_ONLY ) {
8733 SV *sv = newSVpvn( start_arg, RExC_parse - start_arg);
8734 ARG(ret) = add_data( pRExC_state, 1, "S" );
8735 RExC_rxi->data->data[ARG(ret)]=(void*)sv;
8742 if (!internal_argval)
8743 RExC_seen |= REG_SEEN_VERBARG;
8744 } else if ( start_arg ) {
8745 vFAIL3("Verb pattern '%.*s' may not have an argument",
8746 verb_len, start_verb);
8748 ret = reg_node(pRExC_state, op);
8750 nextchar(pRExC_state);
8753 if (*RExC_parse == '?') { /* (?...) */
8754 bool is_logical = 0;
8755 const char * const seqstart = RExC_parse;
8756 if (has_intervening_patws && SIZE_ONLY) {
8757 ckWARNregdep(RExC_parse + 1, "In '(?...)', splitting the initial '(?' is deprecated");
8761 paren = *RExC_parse++;
8762 ret = NULL; /* For look-ahead/behind. */
8765 case 'P': /* (?P...) variants for those used to PCRE/Python */
8766 paren = *RExC_parse++;
8767 if ( paren == '<') /* (?P<...>) named capture */
8769 else if (paren == '>') { /* (?P>name) named recursion */
8770 goto named_recursion;
8772 else if (paren == '=') { /* (?P=...) named backref */
8773 /* this pretty much dupes the code for \k<NAME> in regatom(), if
8774 you change this make sure you change that */
8775 char* name_start = RExC_parse;
8777 SV *sv_dat = reg_scan_name(pRExC_state,
8778 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
8779 if (RExC_parse == name_start || *RExC_parse != ')')
8780 vFAIL2("Sequence %.3s... not terminated",parse_start);
8783 num = add_data( pRExC_state, 1, "S" );
8784 RExC_rxi->data->data[num]=(void*)sv_dat;
8785 SvREFCNT_inc_simple_void(sv_dat);
8788 ret = reganode(pRExC_state,
8791 : (ASCII_FOLD_RESTRICTED)
8793 : (AT_LEAST_UNI_SEMANTICS)
8801 Set_Node_Offset(ret, parse_start+1);
8802 Set_Node_Cur_Length(ret); /* MJD */
8804 nextchar(pRExC_state);
8808 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
8810 case '<': /* (?<...) */
8811 if (*RExC_parse == '!')
8813 else if (*RExC_parse != '=')
8819 case '\'': /* (?'...') */
8820 name_start= RExC_parse;
8821 svname = reg_scan_name(pRExC_state,
8822 SIZE_ONLY ? /* reverse test from the others */
8823 REG_RSN_RETURN_NAME :
8824 REG_RSN_RETURN_NULL);
8825 if (RExC_parse == name_start) {
8827 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
8830 if (*RExC_parse != paren)
8831 vFAIL2("Sequence (?%c... not terminated",
8832 paren=='>' ? '<' : paren);
8836 if (!svname) /* shouldn't happen */
8838 "panic: reg_scan_name returned NULL");
8839 if (!RExC_paren_names) {
8840 RExC_paren_names= newHV();
8841 sv_2mortal(MUTABLE_SV(RExC_paren_names));
8843 RExC_paren_name_list= newAV();
8844 sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
8847 he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
8849 sv_dat = HeVAL(he_str);
8851 /* croak baby croak */
8853 "panic: paren_name hash element allocation failed");
8854 } else if ( SvPOK(sv_dat) ) {
8855 /* (?|...) can mean we have dupes so scan to check
8856 its already been stored. Maybe a flag indicating
8857 we are inside such a construct would be useful,
8858 but the arrays are likely to be quite small, so
8859 for now we punt -- dmq */
8860 IV count = SvIV(sv_dat);
8861 I32 *pv = (I32*)SvPVX(sv_dat);
8863 for ( i = 0 ; i < count ; i++ ) {
8864 if ( pv[i] == RExC_npar ) {
8870 pv = (I32*)SvGROW(sv_dat, SvCUR(sv_dat) + sizeof(I32)+1);
8871 SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
8872 pv[count] = RExC_npar;
8873 SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
8876 (void)SvUPGRADE(sv_dat,SVt_PVNV);
8877 sv_setpvn(sv_dat, (char *)&(RExC_npar), sizeof(I32));
8879 SvIV_set(sv_dat, 1);
8882 /* Yes this does cause a memory leak in debugging Perls */
8883 if (!av_store(RExC_paren_name_list, RExC_npar, SvREFCNT_inc(svname)))
8884 SvREFCNT_dec_NN(svname);
8887 /*sv_dump(sv_dat);*/
8889 nextchar(pRExC_state);
8891 goto capturing_parens;
8893 RExC_seen |= REG_SEEN_LOOKBEHIND;
8894 RExC_in_lookbehind++;
8896 case '=': /* (?=...) */
8897 RExC_seen_zerolen++;
8899 case '!': /* (?!...) */
8900 RExC_seen_zerolen++;
8901 if (*RExC_parse == ')') {
8902 ret=reg_node(pRExC_state, OPFAIL);
8903 nextchar(pRExC_state);
8907 case '|': /* (?|...) */
8908 /* branch reset, behave like a (?:...) except that
8909 buffers in alternations share the same numbers */
8911 after_freeze = freeze_paren = RExC_npar;
8913 case ':': /* (?:...) */
8914 case '>': /* (?>...) */
8916 case '$': /* (?$...) */
8917 case '@': /* (?@...) */
8918 vFAIL2("Sequence (?%c...) not implemented", (int)paren);
8920 case '#': /* (?#...) */
8921 /* XXX As soon as we disallow separating the '?' and '*' (by
8922 * spaces or (?#...) comment), it is believed that this case
8923 * will be unreachable and can be removed. See
8925 while (*RExC_parse && *RExC_parse != ')')
8927 if (*RExC_parse != ')')
8928 FAIL("Sequence (?#... not terminated");
8929 nextchar(pRExC_state);
8932 case '0' : /* (?0) */
8933 case 'R' : /* (?R) */
8934 if (*RExC_parse != ')')
8935 FAIL("Sequence (?R) not terminated");
8936 ret = reg_node(pRExC_state, GOSTART);
8937 *flagp |= POSTPONED;
8938 nextchar(pRExC_state);
8941 { /* named and numeric backreferences */
8943 case '&': /* (?&NAME) */
8944 parse_start = RExC_parse - 1;
8947 SV *sv_dat = reg_scan_name(pRExC_state,
8948 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
8949 num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
8951 goto gen_recurse_regop;
8952 assert(0); /* NOT REACHED */
8954 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
8956 vFAIL("Illegal pattern");
8958 goto parse_recursion;
8960 case '-': /* (?-1) */
8961 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
8962 RExC_parse--; /* rewind to let it be handled later */
8966 case '1': case '2': case '3': case '4': /* (?1) */
8967 case '5': case '6': case '7': case '8': case '9':
8970 num = atoi(RExC_parse);
8971 parse_start = RExC_parse - 1; /* MJD */
8972 if (*RExC_parse == '-')
8974 while (isDIGIT(*RExC_parse))
8976 if (*RExC_parse!=')')
8977 vFAIL("Expecting close bracket");
8980 if ( paren == '-' ) {
8982 Diagram of capture buffer numbering.
8983 Top line is the normal capture buffer numbers
8984 Bottom line is the negative indexing as from
8988 /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
8992 num = RExC_npar + num;
8995 vFAIL("Reference to nonexistent group");
8997 } else if ( paren == '+' ) {
8998 num = RExC_npar + num - 1;
9001 ret = reganode(pRExC_state, GOSUB, num);
9003 if (num > (I32)RExC_rx->nparens) {
9005 vFAIL("Reference to nonexistent group");
9007 ARG2L_SET( ret, RExC_recurse_count++);
9009 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
9010 "Recurse #%"UVuf" to %"IVdf"\n", (UV)ARG(ret), (IV)ARG2L(ret)));
9014 RExC_seen |= REG_SEEN_RECURSE;
9015 Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
9016 Set_Node_Offset(ret, parse_start); /* MJD */
9018 *flagp |= POSTPONED;
9019 nextchar(pRExC_state);
9021 } /* named and numeric backreferences */
9022 assert(0); /* NOT REACHED */
9024 case '?': /* (??...) */
9026 if (*RExC_parse != '{') {
9028 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
9031 *flagp |= POSTPONED;
9032 paren = *RExC_parse++;
9034 case '{': /* (?{...}) */
9037 struct reg_code_block *cb;
9039 RExC_seen_zerolen++;
9041 if ( !pRExC_state->num_code_blocks
9042 || pRExC_state->code_index >= pRExC_state->num_code_blocks
9043 || pRExC_state->code_blocks[pRExC_state->code_index].start
9044 != (STRLEN)((RExC_parse -3 - (is_logical ? 1 : 0))
9047 if (RExC_pm_flags & PMf_USE_RE_EVAL)
9048 FAIL("panic: Sequence (?{...}): no code block found\n");
9049 FAIL("Eval-group not allowed at runtime, use re 'eval'");
9051 /* this is a pre-compiled code block (?{...}) */
9052 cb = &pRExC_state->code_blocks[pRExC_state->code_index];
9053 RExC_parse = RExC_start + cb->end;
9056 if (cb->src_regex) {
9057 n = add_data(pRExC_state, 2, "rl");
9058 RExC_rxi->data->data[n] =
9059 (void*)SvREFCNT_inc((SV*)cb->src_regex);
9060 RExC_rxi->data->data[n+1] = (void*)o;
9063 n = add_data(pRExC_state, 1,
9064 (RExC_pm_flags & PMf_HAS_CV) ? "L" : "l");
9065 RExC_rxi->data->data[n] = (void*)o;
9068 pRExC_state->code_index++;
9069 nextchar(pRExC_state);
9073 ret = reg_node(pRExC_state, LOGICAL);
9074 eval = reganode(pRExC_state, EVAL, n);
9077 /* for later propagation into (??{}) return value */
9078 eval->flags = (U8) (RExC_flags & RXf_PMf_COMPILETIME);
9080 REGTAIL(pRExC_state, ret, eval);
9081 /* deal with the length of this later - MJD */
9084 ret = reganode(pRExC_state, EVAL, n);
9085 Set_Node_Length(ret, RExC_parse - parse_start + 1);
9086 Set_Node_Offset(ret, parse_start);
9089 case '(': /* (?(?{...})...) and (?(?=...)...) */
9092 if (RExC_parse[0] == '?') { /* (?(?...)) */
9093 if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
9094 || RExC_parse[1] == '<'
9095 || RExC_parse[1] == '{') { /* Lookahead or eval. */
9099 ret = reg_node(pRExC_state, LOGICAL);
9103 tail = reg(pRExC_state, 1, &flag, depth+1);
9104 if (flag & RESTART_UTF8) {
9105 *flagp = RESTART_UTF8;
9108 REGTAIL(pRExC_state, ret, tail);
9112 else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */
9113 || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
9115 char ch = RExC_parse[0] == '<' ? '>' : '\'';
9116 char *name_start= RExC_parse++;
9118 SV *sv_dat=reg_scan_name(pRExC_state,
9119 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
9120 if (RExC_parse == name_start || *RExC_parse != ch)
9121 vFAIL2("Sequence (?(%c... not terminated",
9122 (ch == '>' ? '<' : ch));
9125 num = add_data( pRExC_state, 1, "S" );
9126 RExC_rxi->data->data[num]=(void*)sv_dat;
9127 SvREFCNT_inc_simple_void(sv_dat);
9129 ret = reganode(pRExC_state,NGROUPP,num);
9130 goto insert_if_check_paren;
9132 else if (RExC_parse[0] == 'D' &&
9133 RExC_parse[1] == 'E' &&
9134 RExC_parse[2] == 'F' &&
9135 RExC_parse[3] == 'I' &&
9136 RExC_parse[4] == 'N' &&
9137 RExC_parse[5] == 'E')
9139 ret = reganode(pRExC_state,DEFINEP,0);
9142 goto insert_if_check_paren;
9144 else if (RExC_parse[0] == 'R') {
9147 if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
9148 parno = atoi(RExC_parse++);
9149 while (isDIGIT(*RExC_parse))
9151 } else if (RExC_parse[0] == '&') {
9154 sv_dat = reg_scan_name(pRExC_state,
9155 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
9156 parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
9158 ret = reganode(pRExC_state,INSUBP,parno);
9159 goto insert_if_check_paren;
9161 else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
9164 parno = atoi(RExC_parse++);
9166 while (isDIGIT(*RExC_parse))
9168 ret = reganode(pRExC_state, GROUPP, parno);
9170 insert_if_check_paren:
9171 if ((c = *nextchar(pRExC_state)) != ')')
9172 vFAIL("Switch condition not recognized");
9174 REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
9175 br = regbranch(pRExC_state, &flags, 1,depth+1);
9177 if (flags & RESTART_UTF8) {
9178 *flagp = RESTART_UTF8;
9181 FAIL2("panic: regbranch returned NULL, flags=%#X",
9184 REGTAIL(pRExC_state, br, reganode(pRExC_state, LONGJMP, 0));
9185 c = *nextchar(pRExC_state);
9190 vFAIL("(?(DEFINE)....) does not allow branches");
9191 lastbr = reganode(pRExC_state, IFTHEN, 0); /* Fake one for optimizer. */
9192 if (!regbranch(pRExC_state, &flags, 1,depth+1)) {
9193 if (flags & RESTART_UTF8) {
9194 *flagp = RESTART_UTF8;
9197 FAIL2("panic: regbranch returned NULL, flags=%#X",
9200 REGTAIL(pRExC_state, ret, lastbr);
9203 c = *nextchar(pRExC_state);
9208 vFAIL("Switch (?(condition)... contains too many branches");
9209 ender = reg_node(pRExC_state, TAIL);
9210 REGTAIL(pRExC_state, br, ender);
9212 REGTAIL(pRExC_state, lastbr, ender);
9213 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
9216 REGTAIL(pRExC_state, ret, ender);
9217 RExC_size++; /* XXX WHY do we need this?!!
9218 For large programs it seems to be required
9219 but I can't figure out why. -- dmq*/
9223 vFAIL2("Unknown switch condition (?(%.2s", RExC_parse);
9226 case '[': /* (?[ ... ]) */
9227 return handle_regex_sets(pRExC_state, NULL, flagp, depth,
9230 RExC_parse--; /* for vFAIL to print correctly */
9231 vFAIL("Sequence (? incomplete");
9233 default: /* e.g., (?i) */
9236 parse_lparen_question_flags(pRExC_state);
9237 if (UCHARAT(RExC_parse) != ':') {
9238 nextchar(pRExC_state);
9243 nextchar(pRExC_state);
9253 ret = reganode(pRExC_state, OPEN, parno);
9256 RExC_nestroot = parno;
9257 if (RExC_seen & REG_SEEN_RECURSE
9258 && !RExC_open_parens[parno-1])
9260 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
9261 "Setting open paren #%"IVdf" to %d\n",
9262 (IV)parno, REG_NODE_NUM(ret)));
9263 RExC_open_parens[parno-1]= ret;
9266 Set_Node_Length(ret, 1); /* MJD */
9267 Set_Node_Offset(ret, RExC_parse); /* MJD */
9275 /* Pick up the branches, linking them together. */
9276 parse_start = RExC_parse; /* MJD */
9277 br = regbranch(pRExC_state, &flags, 1,depth+1);
9279 /* branch_len = (paren != 0); */
9282 if (flags & RESTART_UTF8) {
9283 *flagp = RESTART_UTF8;
9286 FAIL2("panic: regbranch returned NULL, flags=%#X", flags);
9288 if (*RExC_parse == '|') {
9289 if (!SIZE_ONLY && RExC_extralen) {
9290 reginsert(pRExC_state, BRANCHJ, br, depth+1);
9293 reginsert(pRExC_state, BRANCH, br, depth+1);
9294 Set_Node_Length(br, paren != 0);
9295 Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
9299 RExC_extralen += 1; /* For BRANCHJ-BRANCH. */
9301 else if (paren == ':') {
9302 *flagp |= flags&SIMPLE;
9304 if (is_open) { /* Starts with OPEN. */
9305 REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */
9307 else if (paren != '?') /* Not Conditional */
9309 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
9311 while (*RExC_parse == '|') {
9312 if (!SIZE_ONLY && RExC_extralen) {
9313 ender = reganode(pRExC_state, LONGJMP,0);
9314 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender); /* Append to the previous. */
9317 RExC_extralen += 2; /* Account for LONGJMP. */
9318 nextchar(pRExC_state);
9320 if (RExC_npar > after_freeze)
9321 after_freeze = RExC_npar;
9322 RExC_npar = freeze_paren;
9324 br = regbranch(pRExC_state, &flags, 0, depth+1);
9327 if (flags & RESTART_UTF8) {
9328 *flagp = RESTART_UTF8;
9331 FAIL2("panic: regbranch returned NULL, flags=%#X", flags);
9333 REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */
9335 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
9338 if (have_branch || paren != ':') {
9339 /* Make a closing node, and hook it on the end. */
9342 ender = reg_node(pRExC_state, TAIL);
9345 ender = reganode(pRExC_state, CLOSE, parno);
9346 if (!SIZE_ONLY && RExC_seen & REG_SEEN_RECURSE) {
9347 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
9348 "Setting close paren #%"IVdf" to %d\n",
9349 (IV)parno, REG_NODE_NUM(ender)));
9350 RExC_close_parens[parno-1]= ender;
9351 if (RExC_nestroot == parno)
9354 Set_Node_Offset(ender,RExC_parse+1); /* MJD */
9355 Set_Node_Length(ender,1); /* MJD */
9361 *flagp &= ~HASWIDTH;
9364 ender = reg_node(pRExC_state, SUCCEED);
9367 ender = reg_node(pRExC_state, END);
9369 assert(!RExC_opend); /* there can only be one! */
9374 DEBUG_PARSE_r(if (!SIZE_ONLY) {
9375 SV * const mysv_val1=sv_newmortal();
9376 SV * const mysv_val2=sv_newmortal();
9377 DEBUG_PARSE_MSG("lsbr");
9378 regprop(RExC_rx, mysv_val1, lastbr);
9379 regprop(RExC_rx, mysv_val2, ender);
9380 PerlIO_printf(Perl_debug_log, "~ tying lastbr %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
9381 SvPV_nolen_const(mysv_val1),
9382 (IV)REG_NODE_NUM(lastbr),
9383 SvPV_nolen_const(mysv_val2),
9384 (IV)REG_NODE_NUM(ender),
9385 (IV)(ender - lastbr)
9388 REGTAIL(pRExC_state, lastbr, ender);
9390 if (have_branch && !SIZE_ONLY) {
9393 RExC_seen |= REG_TOP_LEVEL_BRANCHES;
9395 /* Hook the tails of the branches to the closing node. */
9396 for (br = ret; br; br = regnext(br)) {
9397 const U8 op = PL_regkind[OP(br)];
9399 REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
9400 if (OP(NEXTOPER(br)) != NOTHING || regnext(NEXTOPER(br)) != ender)
9403 else if (op == BRANCHJ) {
9404 REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
9405 /* for now we always disable this optimisation * /
9406 if (OP(NEXTOPER(NEXTOPER(br))) != NOTHING || regnext(NEXTOPER(NEXTOPER(br))) != ender)
9412 br= PL_regkind[OP(ret)] != BRANCH ? regnext(ret) : ret;
9413 DEBUG_PARSE_r(if (!SIZE_ONLY) {
9414 SV * const mysv_val1=sv_newmortal();
9415 SV * const mysv_val2=sv_newmortal();
9416 DEBUG_PARSE_MSG("NADA");
9417 regprop(RExC_rx, mysv_val1, ret);
9418 regprop(RExC_rx, mysv_val2, ender);
9419 PerlIO_printf(Perl_debug_log, "~ converting ret %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
9420 SvPV_nolen_const(mysv_val1),
9421 (IV)REG_NODE_NUM(ret),
9422 SvPV_nolen_const(mysv_val2),
9423 (IV)REG_NODE_NUM(ender),
9428 if (OP(ender) == TAIL) {
9433 for ( opt= br + 1; opt < ender ; opt++ )
9435 NEXT_OFF(br)= ender - br;
9443 static const char parens[] = "=!<,>";
9445 if (paren && (p = strchr(parens, paren))) {
9446 U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
9447 int flag = (p - parens) > 1;
9450 node = SUSPEND, flag = 0;
9451 reginsert(pRExC_state, node,ret, depth+1);
9452 Set_Node_Cur_Length(ret);
9453 Set_Node_Offset(ret, parse_start + 1);
9455 REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
9459 /* Check for proper termination. */
9461 /* restore original flags, but keep (?p) */
9462 RExC_flags = oregflags | (RExC_flags & RXf_PMf_KEEPCOPY);
9463 if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
9464 RExC_parse = oregcomp_parse;
9465 vFAIL("Unmatched (");
9468 else if (!paren && RExC_parse < RExC_end) {
9469 if (*RExC_parse == ')') {
9471 vFAIL("Unmatched )");
9474 FAIL("Junk on end of regexp"); /* "Can't happen". */
9475 assert(0); /* NOTREACHED */
9478 if (RExC_in_lookbehind) {
9479 RExC_in_lookbehind--;
9481 if (after_freeze > RExC_npar)
9482 RExC_npar = after_freeze;
9487 - regbranch - one alternative of an | operator
9489 * Implements the concatenation operator.
9491 * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
9495 S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
9499 regnode *chain = NULL;
9501 I32 flags = 0, c = 0;
9502 GET_RE_DEBUG_FLAGS_DECL;
9504 PERL_ARGS_ASSERT_REGBRANCH;
9506 DEBUG_PARSE("brnc");
9511 if (!SIZE_ONLY && RExC_extralen)
9512 ret = reganode(pRExC_state, BRANCHJ,0);
9514 ret = reg_node(pRExC_state, BRANCH);
9515 Set_Node_Length(ret, 1);
9519 if (!first && SIZE_ONLY)
9520 RExC_extralen += 1; /* BRANCHJ */
9522 *flagp = WORST; /* Tentatively. */
9525 nextchar(pRExC_state);
9526 while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
9528 latest = regpiece(pRExC_state, &flags,depth+1);
9529 if (latest == NULL) {
9530 if (flags & TRYAGAIN)
9532 if (flags & RESTART_UTF8) {
9533 *flagp = RESTART_UTF8;
9536 FAIL2("panic: regpiece returned NULL, flags=%#X", flags);
9538 else if (ret == NULL)
9540 *flagp |= flags&(HASWIDTH|POSTPONED);
9541 if (chain == NULL) /* First piece. */
9542 *flagp |= flags&SPSTART;
9545 REGTAIL(pRExC_state, chain, latest);
9550 if (chain == NULL) { /* Loop ran zero times. */
9551 chain = reg_node(pRExC_state, NOTHING);
9556 *flagp |= flags&SIMPLE;
9563 - regpiece - something followed by possible [*+?]
9565 * Note that the branching code sequences used for ? and the general cases
9566 * of * and + are somewhat optimized: they use the same NOTHING node as
9567 * both the endmarker for their branch list and the body of the last branch.
9568 * It might seem that this node could be dispensed with entirely, but the
9569 * endmarker role is not redundant.
9571 * Returns NULL, setting *flagp to TRYAGAIN if regatom() returns NULL with
9573 * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
9577 S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
9584 const char * const origparse = RExC_parse;
9586 I32 max = REG_INFTY;
9587 #ifdef RE_TRACK_PATTERN_OFFSETS
9590 const char *maxpos = NULL;
9592 /* Save the original in case we change the emitted regop to a FAIL. */
9593 regnode * const orig_emit = RExC_emit;
9595 GET_RE_DEBUG_FLAGS_DECL;
9597 PERL_ARGS_ASSERT_REGPIECE;
9599 DEBUG_PARSE("piec");
9601 ret = regatom(pRExC_state, &flags,depth+1);
9603 if (flags & (TRYAGAIN|RESTART_UTF8))
9604 *flagp |= flags & (TRYAGAIN|RESTART_UTF8);
9606 FAIL2("panic: regatom returned NULL, flags=%#X", flags);
9612 if (op == '{' && regcurly(RExC_parse, FALSE)) {
9614 #ifdef RE_TRACK_PATTERN_OFFSETS
9615 parse_start = RExC_parse; /* MJD */
9617 next = RExC_parse + 1;
9618 while (isDIGIT(*next) || *next == ',') {
9627 if (*next == '}') { /* got one */
9631 min = atoi(RExC_parse);
9635 maxpos = RExC_parse;
9637 if (!max && *maxpos != '0')
9638 max = REG_INFTY; /* meaning "infinity" */
9639 else if (max >= REG_INFTY)
9640 vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
9642 nextchar(pRExC_state);
9643 if (max < min) { /* If can't match, warn and optimize to fail
9646 ckWARNreg(RExC_parse, "Quantifier {n,m} with n > m can't match");
9648 /* We can't back off the size because we have to reserve
9649 * enough space for all the things we are about to throw
9650 * away, but we can shrink it by the ammount we are about
9652 RExC_size = PREVOPER(RExC_size) - regarglen[(U8)OPFAIL];
9655 RExC_emit = orig_emit;
9657 ret = reg_node(pRExC_state, OPFAIL);
9660 else if (max == 0) { /* replace {0} with a nothing node */
9662 RExC_size = PREVOPER(RExC_size) - regarglen[(U8)NOTHING];
9665 RExC_emit = orig_emit;
9667 ret = reg_node(pRExC_state, NOTHING);
9672 if ((flags&SIMPLE)) {
9673 RExC_naughty += 2 + RExC_naughty / 2;
9674 reginsert(pRExC_state, CURLY, ret, depth+1);
9675 Set_Node_Offset(ret, parse_start+1); /* MJD */
9676 Set_Node_Cur_Length(ret);
9679 regnode * const w = reg_node(pRExC_state, WHILEM);
9682 REGTAIL(pRExC_state, ret, w);
9683 if (!SIZE_ONLY && RExC_extralen) {
9684 reginsert(pRExC_state, LONGJMP,ret, depth+1);
9685 reginsert(pRExC_state, NOTHING,ret, depth+1);
9686 NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
9688 reginsert(pRExC_state, CURLYX,ret, depth+1);
9690 Set_Node_Offset(ret, parse_start+1);
9691 Set_Node_Length(ret,
9692 op == '{' ? (RExC_parse - parse_start) : 1);
9694 if (!SIZE_ONLY && RExC_extralen)
9695 NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
9696 REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
9698 RExC_whilem_seen++, RExC_extralen += 3;
9699 RExC_naughty += 4 + RExC_naughty; /* compound interest */
9708 ARG1_SET(ret, (U16)min);
9709 ARG2_SET(ret, (U16)max);
9721 #if 0 /* Now runtime fix should be reliable. */
9723 /* if this is reinstated, don't forget to put this back into perldiag:
9725 =item Regexp *+ operand could be empty at {#} in regex m/%s/
9727 (F) The part of the regexp subject to either the * or + quantifier
9728 could match an empty string. The {#} shows in the regular
9729 expression about where the problem was discovered.
9733 if (!(flags&HASWIDTH) && op != '?')
9734 vFAIL("Regexp *+ operand could be empty");
9737 #ifdef RE_TRACK_PATTERN_OFFSETS
9738 parse_start = RExC_parse;
9740 nextchar(pRExC_state);
9742 *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
9744 if (op == '*' && (flags&SIMPLE)) {
9745 reginsert(pRExC_state, STAR, ret, depth+1);
9749 else if (op == '*') {
9753 else if (op == '+' && (flags&SIMPLE)) {
9754 reginsert(pRExC_state, PLUS, ret, depth+1);
9758 else if (op == '+') {
9762 else if (op == '?') {
9767 if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
9768 SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
9769 ckWARN3reg(RExC_parse,
9770 "%.*s matches null string many times",
9771 (int)(RExC_parse >= origparse ? RExC_parse - origparse : 0),
9773 (void)ReREFCNT_inc(RExC_rx_sv);
9776 if (RExC_parse < RExC_end && *RExC_parse == '?') {
9777 nextchar(pRExC_state);
9778 reginsert(pRExC_state, MINMOD, ret, depth+1);
9779 REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
9781 #ifndef REG_ALLOW_MINMOD_SUSPEND
9784 if (RExC_parse < RExC_end && *RExC_parse == '+') {
9786 nextchar(pRExC_state);
9787 ender = reg_node(pRExC_state, SUCCEED);
9788 REGTAIL(pRExC_state, ret, ender);
9789 reginsert(pRExC_state, SUSPEND, ret, depth+1);
9791 ender = reg_node(pRExC_state, TAIL);
9792 REGTAIL(pRExC_state, ret, ender);
9796 if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
9798 vFAIL("Nested quantifiers");
9805 S_grok_bslash_N(pTHX_ RExC_state_t *pRExC_state, regnode** node_p, UV *valuep, I32 *flagp, U32 depth, bool in_char_class,
9806 const bool strict /* Apply stricter parsing rules? */
9810 /* This is expected to be called by a parser routine that has recognized '\N'
9811 and needs to handle the rest. RExC_parse is expected to point at the first
9812 char following the N at the time of the call. On successful return,
9813 RExC_parse has been updated to point to just after the sequence identified
9814 by this routine, and <*flagp> has been updated.
9816 The \N may be inside (indicated by the boolean <in_char_class>) or outside a
9819 \N may begin either a named sequence, or if outside a character class, mean
9820 to match a non-newline. For non single-quoted regexes, the tokenizer has
9821 attempted to decide which, and in the case of a named sequence, converted it
9822 into one of the forms: \N{} (if the sequence is null), or \N{U+c1.c2...},
9823 where c1... are the characters in the sequence. For single-quoted regexes,
9824 the tokenizer passes the \N sequence through unchanged; this code will not
9825 attempt to determine this nor expand those, instead raising a syntax error.
9826 The net effect is that if the beginning of the passed-in pattern isn't '{U+'
9827 or there is no '}', it signals that this \N occurrence means to match a
9830 Only the \N{U+...} form should occur in a character class, for the same
9831 reason that '.' inside a character class means to just match a period: it
9832 just doesn't make sense.
9834 The function raises an error (via vFAIL), and doesn't return for various
9835 syntax errors. Otherwise it returns TRUE and sets <node_p> or <valuep> on
9836 success; it returns FALSE otherwise. Returns FALSE, setting *flagp to
9837 RESTART_UTF8 if the sizing scan needs to be restarted. Such a restart is
9838 only possible if node_p is non-NULL.
9841 If <valuep> is non-null, it means the caller can accept an input sequence
9842 consisting of a just a single code point; <*valuep> is set to that value
9843 if the input is such.
9845 If <node_p> is non-null it signifies that the caller can accept any other
9846 legal sequence (i.e., one that isn't just a single code point). <*node_p>
9848 1) \N means not-a-NL: points to a newly created REG_ANY node;
9849 2) \N{}: points to a new NOTHING node;
9850 3) otherwise: points to a new EXACT node containing the resolved
9852 Note that FALSE is returned for single code point sequences if <valuep> is
9856 char * endbrace; /* '}' following the name */
9858 char *endchar; /* Points to '.' or '}' ending cur char in the input
9860 bool has_multiple_chars; /* true if the input stream contains a sequence of
9861 more than one character */
9863 GET_RE_DEBUG_FLAGS_DECL;
9865 PERL_ARGS_ASSERT_GROK_BSLASH_N;
9869 assert(cBOOL(node_p) ^ cBOOL(valuep)); /* Exactly one should be set */
9871 /* The [^\n] meaning of \N ignores spaces and comments under the /x
9872 * modifier. The other meaning does not */
9873 p = (RExC_flags & RXf_PMf_EXTENDED)
9874 ? regwhite( pRExC_state, RExC_parse )
9877 /* Disambiguate between \N meaning a named character versus \N meaning
9878 * [^\n]. The former is assumed when it can't be the latter. */
9879 if (*p != '{' || regcurly(p, FALSE)) {
9882 /* no bare \N in a charclass */
9883 if (in_char_class) {
9884 vFAIL("\\N in a character class must be a named character: \\N{...}");
9888 nextchar(pRExC_state);
9889 *node_p = reg_node(pRExC_state, REG_ANY);
9890 *flagp |= HASWIDTH|SIMPLE;
9893 Set_Node_Length(*node_p, 1); /* MJD */
9897 /* Here, we have decided it should be a named character or sequence */
9899 /* The test above made sure that the next real character is a '{', but
9900 * under the /x modifier, it could be separated by space (or a comment and
9901 * \n) and this is not allowed (for consistency with \x{...} and the
9902 * tokenizer handling of \N{NAME}). */
9903 if (*RExC_parse != '{') {
9904 vFAIL("Missing braces on \\N{}");
9907 RExC_parse++; /* Skip past the '{' */
9909 if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */
9910 || ! (endbrace == RExC_parse /* nothing between the {} */
9911 || (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked below */
9912 && strnEQ(RExC_parse, "U+", 2)))) /* for a better error msg) */
9914 if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
9915 vFAIL("\\N{NAME} must be resolved by the lexer");
9918 if (endbrace == RExC_parse) { /* empty: \N{} */
9921 *node_p = reg_node(pRExC_state,NOTHING);
9923 else if (in_char_class) {
9924 if (SIZE_ONLY && in_char_class) {
9926 RExC_parse++; /* Position after the "}" */
9927 vFAIL("Zero length \\N{}");
9930 ckWARNreg(RExC_parse,
9931 "Ignoring zero length \\N{} in character class");
9939 nextchar(pRExC_state);
9943 RExC_uni_semantics = 1; /* Unicode named chars imply Unicode semantics */
9944 RExC_parse += 2; /* Skip past the 'U+' */
9946 endchar = RExC_parse + strcspn(RExC_parse, ".}");
9948 /* Code points are separated by dots. If none, there is only one code
9949 * point, and is terminated by the brace */
9950 has_multiple_chars = (endchar < endbrace);
9952 if (valuep && (! has_multiple_chars || in_char_class)) {
9953 /* We only pay attention to the first char of
9954 multichar strings being returned in char classes. I kinda wonder
9955 if this makes sense as it does change the behaviour
9956 from earlier versions, OTOH that behaviour was broken
9957 as well. XXX Solution is to recharacterize as
9958 [rest-of-class]|multi1|multi2... */
9960 STRLEN length_of_hex = (STRLEN)(endchar - RExC_parse);
9961 I32 grok_hex_flags = PERL_SCAN_ALLOW_UNDERSCORES
9962 | PERL_SCAN_DISALLOW_PREFIX
9963 | (SIZE_ONLY ? PERL_SCAN_SILENT_ILLDIGIT : 0);
9965 *valuep = grok_hex(RExC_parse, &length_of_hex, &grok_hex_flags, NULL);
9967 /* The tokenizer should have guaranteed validity, but it's possible to
9968 * bypass it by using single quoting, so check */
9969 if (length_of_hex == 0
9970 || length_of_hex != (STRLEN)(endchar - RExC_parse) )
9972 RExC_parse += length_of_hex; /* Includes all the valid */
9973 RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
9974 ? UTF8SKIP(RExC_parse)
9976 /* Guard against malformed utf8 */
9977 if (RExC_parse >= endchar) {
9978 RExC_parse = endchar;
9980 vFAIL("Invalid hexadecimal number in \\N{U+...}");
9983 if (in_char_class && has_multiple_chars) {
9985 RExC_parse = endbrace;
9986 vFAIL("\\N{} in character class restricted to one character");
9989 ckWARNreg(endchar, "Using just the first character returned by \\N{} in character class");
9993 RExC_parse = endbrace + 1;
9995 else if (! node_p || ! has_multiple_chars) {
9997 /* Here, the input is legal, but not according to the caller's
9998 * options. We fail without advancing the parse, so that the
9999 * caller can try again */
10005 /* What is done here is to convert this to a sub-pattern of the form
10006 * (?:\x{char1}\x{char2}...)
10007 * and then call reg recursively. That way, it retains its atomicness,
10008 * while not having to worry about special handling that some code
10009 * points may have. toke.c has converted the original Unicode values
10010 * to native, so that we can just pass on the hex values unchanged. We
10011 * do have to set a flag to keep recoding from happening in the
10014 SV * substitute_parse = newSVpvn_flags("?:", 2, SVf_UTF8|SVs_TEMP);
10016 char *orig_end = RExC_end;
10019 while (RExC_parse < endbrace) {
10021 /* Convert to notation the rest of the code understands */
10022 sv_catpv(substitute_parse, "\\x{");
10023 sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
10024 sv_catpv(substitute_parse, "}");
10026 /* Point to the beginning of the next character in the sequence. */
10027 RExC_parse = endchar + 1;
10028 endchar = RExC_parse + strcspn(RExC_parse, ".}");
10030 sv_catpv(substitute_parse, ")");
10032 RExC_parse = SvPV(substitute_parse, len);
10034 /* Don't allow empty number */
10036 vFAIL("Invalid hexadecimal number in \\N{U+...}");
10038 RExC_end = RExC_parse + len;
10040 /* The values are Unicode, and therefore not subject to recoding */
10041 RExC_override_recoding = 1;
10043 if (!(*node_p = reg(pRExC_state, 1, &flags, depth+1))) {
10044 if (flags & RESTART_UTF8) {
10045 *flagp = RESTART_UTF8;
10048 FAIL2("panic: reg returned NULL to grok_bslash_N, flags=%#X",
10051 *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
10053 RExC_parse = endbrace;
10054 RExC_end = orig_end;
10055 RExC_override_recoding = 0;
10057 nextchar(pRExC_state);
10067 * It returns the code point in utf8 for the value in *encp.
10068 * value: a code value in the source encoding
10069 * encp: a pointer to an Encode object
10071 * If the result from Encode is not a single character,
10072 * it returns U+FFFD (Replacement character) and sets *encp to NULL.
10075 S_reg_recode(pTHX_ const char value, SV **encp)
10078 SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
10079 const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
10080 const STRLEN newlen = SvCUR(sv);
10081 UV uv = UNICODE_REPLACEMENT;
10083 PERL_ARGS_ASSERT_REG_RECODE;
10087 ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
10090 if (!newlen || numlen != newlen) {
10091 uv = UNICODE_REPLACEMENT;
10097 PERL_STATIC_INLINE U8
10098 S_compute_EXACTish(pTHX_ RExC_state_t *pRExC_state)
10102 PERL_ARGS_ASSERT_COMPUTE_EXACTISH;
10108 op = get_regex_charset(RExC_flags);
10109 if (op >= REGEX_ASCII_RESTRICTED_CHARSET) {
10110 op--; /* /a is same as /u, and map /aa's offset to what /a's would have
10111 been, so there is no hole */
10114 return op + EXACTF;
10117 PERL_STATIC_INLINE void
10118 S_alloc_maybe_populate_EXACT(pTHX_ RExC_state_t *pRExC_state, regnode *node, I32* flagp, STRLEN len, UV code_point)
10120 /* This knows the details about sizing an EXACTish node, setting flags for
10121 * it (by setting <*flagp>, and potentially populating it with a single
10124 * If <len> (the length in bytes) is non-zero, this function assumes that
10125 * the node has already been populated, and just does the sizing. In this
10126 * case <code_point> should be the final code point that has already been
10127 * placed into the node. This value will be ignored except that under some
10128 * circumstances <*flagp> is set based on it.
10130 * If <len> is zero, the function assumes that the node is to contain only
10131 * the single character given by <code_point> and calculates what <len>
10132 * should be. In pass 1, it sizes the node appropriately. In pass 2, it
10133 * additionally will populate the node's STRING with <code_point>, if <len>
10134 * is 0. In both cases <*flagp> is appropriately set
10136 * It knows that under FOLD, the Latin Sharp S and UTF characters above
10137 * 255, must be folded (the former only when the rules indicate it can
10140 bool len_passed_in = cBOOL(len != 0);
10141 U8 character[UTF8_MAXBYTES_CASE+1];
10143 PERL_ARGS_ASSERT_ALLOC_MAYBE_POPULATE_EXACT;
10145 if (! len_passed_in) {
10147 if (FOLD && (! LOC || code_point > 255)) {
10148 _to_uni_fold_flags(NATIVE_TO_UNI(code_point),
10151 FOLD_FLAGS_FULL | ((LOC)
10152 ? FOLD_FLAGS_LOCALE
10153 : (ASCII_FOLD_RESTRICTED)
10154 ? FOLD_FLAGS_NOMIX_ASCII
10158 uvchr_to_utf8( character, code_point);
10159 len = UTF8SKIP(character);
10163 || code_point != LATIN_SMALL_LETTER_SHARP_S
10164 || ASCII_FOLD_RESTRICTED
10165 || ! AT_LEAST_UNI_SEMANTICS)
10167 *character = (U8) code_point;
10172 *(character + 1) = 's';
10178 RExC_size += STR_SZ(len);
10181 RExC_emit += STR_SZ(len);
10182 STR_LEN(node) = len;
10183 if (! len_passed_in) {
10184 Copy((char *) character, STRING(node), len, char);
10188 *flagp |= HASWIDTH;
10190 /* A single character node is SIMPLE, except for the special-cased SHARP S
10192 if ((len == 1 || (UTF && len == UNISKIP(code_point)))
10193 && (code_point != LATIN_SMALL_LETTER_SHARP_S
10194 || ! FOLD || ! DEPENDS_SEMANTICS))
10201 - regatom - the lowest level
10203 Try to identify anything special at the start of the pattern. If there
10204 is, then handle it as required. This may involve generating a single regop,
10205 such as for an assertion; or it may involve recursing, such as to
10206 handle a () structure.
10208 If the string doesn't start with something special then we gobble up
10209 as much literal text as we can.
10211 Once we have been able to handle whatever type of thing started the
10212 sequence, we return.
10214 Note: we have to be careful with escapes, as they can be both literal
10215 and special, and in the case of \10 and friends, context determines which.
10217 A summary of the code structure is:
10219 switch (first_byte) {
10220 cases for each special:
10221 handle this special;
10224 switch (2nd byte) {
10225 cases for each unambiguous special:
10226 handle this special;
10228 cases for each ambigous special/literal:
10230 if (special) handle here
10232 default: // unambiguously literal:
10235 default: // is a literal char
10238 create EXACTish node for literal;
10239 while (more input and node isn't full) {
10240 switch (input_byte) {
10241 cases for each special;
10242 make sure parse pointer is set so that the next call to
10243 regatom will see this special first
10244 goto loopdone; // EXACTish node terminated by prev. char
10246 append char to EXACTISH node;
10248 get next input byte;
10252 return the generated node;
10254 Specifically there are two separate switches for handling
10255 escape sequences, with the one for handling literal escapes requiring
10256 a dummy entry for all of the special escapes that are actually handled
10259 Returns NULL, setting *flagp to TRYAGAIN if reg() returns NULL with
10261 Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
10263 Otherwise does not return NULL.
10267 S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
10270 regnode *ret = NULL;
10272 char *parse_start = RExC_parse;
10276 GET_RE_DEBUG_FLAGS_DECL;
10278 *flagp = WORST; /* Tentatively. */
10280 DEBUG_PARSE("atom");
10282 PERL_ARGS_ASSERT_REGATOM;
10285 switch ((U8)*RExC_parse) {
10287 RExC_seen_zerolen++;
10288 nextchar(pRExC_state);
10289 if (RExC_flags & RXf_PMf_MULTILINE)
10290 ret = reg_node(pRExC_state, MBOL);
10291 else if (RExC_flags & RXf_PMf_SINGLELINE)
10292 ret = reg_node(pRExC_state, SBOL);
10294 ret = reg_node(pRExC_state, BOL);
10295 Set_Node_Length(ret, 1); /* MJD */
10298 nextchar(pRExC_state);
10300 RExC_seen_zerolen++;
10301 if (RExC_flags & RXf_PMf_MULTILINE)
10302 ret = reg_node(pRExC_state, MEOL);
10303 else if (RExC_flags & RXf_PMf_SINGLELINE)
10304 ret = reg_node(pRExC_state, SEOL);
10306 ret = reg_node(pRExC_state, EOL);
10307 Set_Node_Length(ret, 1); /* MJD */
10310 nextchar(pRExC_state);
10311 if (RExC_flags & RXf_PMf_SINGLELINE)
10312 ret = reg_node(pRExC_state, SANY);
10314 ret = reg_node(pRExC_state, REG_ANY);
10315 *flagp |= HASWIDTH|SIMPLE;
10317 Set_Node_Length(ret, 1); /* MJD */
10321 char * const oregcomp_parse = ++RExC_parse;
10322 ret = regclass(pRExC_state, flagp,depth+1,
10323 FALSE, /* means parse the whole char class */
10324 TRUE, /* allow multi-char folds */
10325 FALSE, /* don't silence non-portable warnings. */
10327 if (*RExC_parse != ']') {
10328 RExC_parse = oregcomp_parse;
10329 vFAIL("Unmatched [");
10332 if (*flagp & RESTART_UTF8)
10334 FAIL2("panic: regclass returned NULL to regatom, flags=%#X",
10337 nextchar(pRExC_state);
10338 Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
10342 nextchar(pRExC_state);
10343 ret = reg(pRExC_state, 2, &flags,depth+1);
10345 if (flags & TRYAGAIN) {
10346 if (RExC_parse == RExC_end) {
10347 /* Make parent create an empty node if needed. */
10348 *flagp |= TRYAGAIN;
10353 if (flags & RESTART_UTF8) {
10354 *flagp = RESTART_UTF8;
10357 FAIL2("panic: reg returned NULL to regatom, flags=%#X", flags);
10359 *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
10363 if (flags & TRYAGAIN) {
10364 *flagp |= TRYAGAIN;
10367 vFAIL("Internal urp");
10368 /* Supposed to be caught earlier. */
10371 if (!regcurly(RExC_parse, FALSE)) {
10380 vFAIL("Quantifier follows nothing");
10385 This switch handles escape sequences that resolve to some kind
10386 of special regop and not to literal text. Escape sequnces that
10387 resolve to literal text are handled below in the switch marked
10390 Every entry in this switch *must* have a corresponding entry
10391 in the literal escape switch. However, the opposite is not
10392 required, as the default for this switch is to jump to the
10393 literal text handling code.
10395 switch ((U8)*++RExC_parse) {
10397 /* Special Escapes */
10399 RExC_seen_zerolen++;
10400 ret = reg_node(pRExC_state, SBOL);
10402 goto finish_meta_pat;
10404 ret = reg_node(pRExC_state, GPOS);
10405 RExC_seen |= REG_SEEN_GPOS;
10407 goto finish_meta_pat;
10409 RExC_seen_zerolen++;
10410 ret = reg_node(pRExC_state, KEEPS);
10412 /* XXX:dmq : disabling in-place substitution seems to
10413 * be necessary here to avoid cases of memory corruption, as
10414 * with: C<$_="x" x 80; s/x\K/y/> -- rgs
10416 RExC_seen |= REG_SEEN_LOOKBEHIND;
10417 goto finish_meta_pat;
10419 ret = reg_node(pRExC_state, SEOL);
10421 RExC_seen_zerolen++; /* Do not optimize RE away */
10422 goto finish_meta_pat;
10424 ret = reg_node(pRExC_state, EOS);
10426 RExC_seen_zerolen++; /* Do not optimize RE away */
10427 goto finish_meta_pat;
10429 ret = reg_node(pRExC_state, CANY);
10430 RExC_seen |= REG_SEEN_CANY;
10431 *flagp |= HASWIDTH|SIMPLE;
10432 goto finish_meta_pat;
10434 ret = reg_node(pRExC_state, CLUMP);
10435 *flagp |= HASWIDTH;
10436 goto finish_meta_pat;
10442 arg = ANYOF_WORDCHAR;
10446 RExC_seen_zerolen++;
10447 RExC_seen |= REG_SEEN_LOOKBEHIND;
10448 op = BOUND + get_regex_charset(RExC_flags);
10449 if (op > BOUNDA) { /* /aa is same as /a */
10452 ret = reg_node(pRExC_state, op);
10453 FLAGS(ret) = get_regex_charset(RExC_flags);
10455 if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
10456 ckWARNdep(RExC_parse, "\"\\b{\" is deprecated; use \"\\b\\{\" or \"\\b[{]\" instead");
10458 goto finish_meta_pat;
10460 RExC_seen_zerolen++;
10461 RExC_seen |= REG_SEEN_LOOKBEHIND;
10462 op = NBOUND + get_regex_charset(RExC_flags);
10463 if (op > NBOUNDA) { /* /aa is same as /a */
10466 ret = reg_node(pRExC_state, op);
10467 FLAGS(ret) = get_regex_charset(RExC_flags);
10469 if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
10470 ckWARNdep(RExC_parse, "\"\\B{\" is deprecated; use \"\\B\\{\" or \"\\B[{]\" instead");
10472 goto finish_meta_pat;
10482 ret = reg_node(pRExC_state, LNBREAK);
10483 *flagp |= HASWIDTH|SIMPLE;
10484 goto finish_meta_pat;
10492 goto join_posix_op_known;
10498 arg = ANYOF_VERTWS;
10500 goto join_posix_op_known;
10510 op = POSIXD + get_regex_charset(RExC_flags);
10511 if (op > POSIXA) { /* /aa is same as /a */
10515 join_posix_op_known:
10518 op += NPOSIXD - POSIXD;
10521 ret = reg_node(pRExC_state, op);
10523 FLAGS(ret) = namedclass_to_classnum(arg);
10526 *flagp |= HASWIDTH|SIMPLE;
10530 nextchar(pRExC_state);
10531 Set_Node_Length(ret, 2); /* MJD */
10537 char* parse_start = RExC_parse - 2;
10542 ret = regclass(pRExC_state, flagp,depth+1,
10543 TRUE, /* means just parse this element */
10544 FALSE, /* don't allow multi-char folds */
10545 FALSE, /* don't silence non-portable warnings.
10546 It would be a bug if these returned
10549 /* regclass() can only return RESTART_UTF8 if multi-char folds
10552 FAIL2("panic: regclass returned NULL to regatom, flags=%#X",
10557 Set_Node_Offset(ret, parse_start + 2);
10558 Set_Node_Cur_Length(ret);
10559 nextchar(pRExC_state);
10563 /* Handle \N and \N{NAME} with multiple code points here and not
10564 * below because it can be multicharacter. join_exact() will join
10565 * them up later on. Also this makes sure that things like
10566 * /\N{BLAH}+/ and \N{BLAH} being multi char Just Happen. dmq.
10567 * The options to the grok function call causes it to fail if the
10568 * sequence is just a single code point. We then go treat it as
10569 * just another character in the current EXACT node, and hence it
10570 * gets uniform treatment with all the other characters. The
10571 * special treatment for quantifiers is not needed for such single
10572 * character sequences */
10574 if (! grok_bslash_N(pRExC_state, &ret, NULL, flagp, depth, FALSE,
10575 FALSE /* not strict */ )) {
10576 if (*flagp & RESTART_UTF8)
10582 case 'k': /* Handle \k<NAME> and \k'NAME' */
10585 char ch= RExC_parse[1];
10586 if (ch != '<' && ch != '\'' && ch != '{') {
10588 vFAIL2("Sequence %.2s... not terminated",parse_start);
10590 /* this pretty much dupes the code for (?P=...) in reg(), if
10591 you change this make sure you change that */
10592 char* name_start = (RExC_parse += 2);
10594 SV *sv_dat = reg_scan_name(pRExC_state,
10595 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
10596 ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
10597 if (RExC_parse == name_start || *RExC_parse != ch)
10598 vFAIL2("Sequence %.3s... not terminated",parse_start);
10601 num = add_data( pRExC_state, 1, "S" );
10602 RExC_rxi->data->data[num]=(void*)sv_dat;
10603 SvREFCNT_inc_simple_void(sv_dat);
10607 ret = reganode(pRExC_state,
10610 : (ASCII_FOLD_RESTRICTED)
10612 : (AT_LEAST_UNI_SEMANTICS)
10618 *flagp |= HASWIDTH;
10620 /* override incorrect value set in reganode MJD */
10621 Set_Node_Offset(ret, parse_start+1);
10622 Set_Node_Cur_Length(ret); /* MJD */
10623 nextchar(pRExC_state);
10629 case '1': case '2': case '3': case '4':
10630 case '5': case '6': case '7': case '8': case '9':
10633 bool isg = *RExC_parse == 'g';
10638 if (*RExC_parse == '{') {
10642 if (*RExC_parse == '-') {
10646 if (hasbrace && !isDIGIT(*RExC_parse)) {
10647 if (isrel) RExC_parse--;
10649 goto parse_named_seq;
10651 num = atoi(RExC_parse);
10652 if (isg && num == 0)
10653 vFAIL("Reference to invalid group 0");
10655 num = RExC_npar - num;
10657 vFAIL("Reference to nonexistent or unclosed group");
10659 if (!isg && num > 9 && num >= RExC_npar)
10660 /* Probably a character specified in octal, e.g. \35 */
10663 char * const parse_start = RExC_parse - 1; /* MJD */
10664 while (isDIGIT(*RExC_parse))
10666 if (parse_start == RExC_parse - 1)
10667 vFAIL("Unterminated \\g... pattern");
10669 if (*RExC_parse != '}')
10670 vFAIL("Unterminated \\g{...} pattern");
10674 if (num > (I32)RExC_rx->nparens)
10675 vFAIL("Reference to nonexistent group");
10678 ret = reganode(pRExC_state,
10681 : (ASCII_FOLD_RESTRICTED)
10683 : (AT_LEAST_UNI_SEMANTICS)
10689 *flagp |= HASWIDTH;
10691 /* override incorrect value set in reganode MJD */
10692 Set_Node_Offset(ret, parse_start+1);
10693 Set_Node_Cur_Length(ret); /* MJD */
10695 nextchar(pRExC_state);
10700 if (RExC_parse >= RExC_end)
10701 FAIL("Trailing \\");
10704 /* Do not generate "unrecognized" warnings here, we fall
10705 back into the quick-grab loop below */
10712 if (RExC_flags & RXf_PMf_EXTENDED) {
10713 if ( reg_skipcomment( pRExC_state ) )
10720 parse_start = RExC_parse - 1;
10729 #define MAX_NODE_STRING_SIZE 127
10730 char foldbuf[MAX_NODE_STRING_SIZE+UTF8_MAXBYTES_CASE];
10732 U8 upper_parse = MAX_NODE_STRING_SIZE;
10735 bool next_is_quantifier;
10736 char * oldp = NULL;
10738 /* If a folding node contains only code points that don't
10739 * participate in folds, it can be changed into an EXACT node,
10740 * which allows the optimizer more things to look for */
10744 node_type = compute_EXACTish(pRExC_state);
10745 ret = reg_node(pRExC_state, node_type);
10747 /* In pass1, folded, we use a temporary buffer instead of the
10748 * actual node, as the node doesn't exist yet */
10749 s = (SIZE_ONLY && FOLD) ? foldbuf : STRING(ret);
10755 /* We do the EXACTFish to EXACT node only if folding, and not if in
10756 * locale, as whether a character folds or not isn't known until
10758 maybe_exact = FOLD && ! LOC;
10760 /* XXX The node can hold up to 255 bytes, yet this only goes to
10761 * 127. I (khw) do not know why. Keeping it somewhat less than
10762 * 255 allows us to not have to worry about overflow due to
10763 * converting to utf8 and fold expansion, but that value is
10764 * 255-UTF8_MAXBYTES_CASE. join_exact() may join adjacent nodes
10765 * split up by this limit into a single one using the real max of
10766 * 255. Even at 127, this breaks under rare circumstances. If
10767 * folding, we do not want to split a node at a character that is a
10768 * non-final in a multi-char fold, as an input string could just
10769 * happen to want to match across the node boundary. The join
10770 * would solve that problem if the join actually happens. But a
10771 * series of more than two nodes in a row each of 127 would cause
10772 * the first join to succeed to get to 254, but then there wouldn't
10773 * be room for the next one, which could at be one of those split
10774 * multi-char folds. I don't know of any fool-proof solution. One
10775 * could back off to end with only a code point that isn't such a
10776 * non-final, but it is possible for there not to be any in the
10778 for (p = RExC_parse - 1;
10779 len < upper_parse && p < RExC_end;
10784 if (RExC_flags & RXf_PMf_EXTENDED)
10785 p = regwhite( pRExC_state, p );
10796 /* Literal Escapes Switch
10798 This switch is meant to handle escape sequences that
10799 resolve to a literal character.
10801 Every escape sequence that represents something
10802 else, like an assertion or a char class, is handled
10803 in the switch marked 'Special Escapes' above in this
10804 routine, but also has an entry here as anything that
10805 isn't explicitly mentioned here will be treated as
10806 an unescaped equivalent literal.
10809 switch ((U8)*++p) {
10810 /* These are all the special escapes. */
10811 case 'A': /* Start assertion */
10812 case 'b': case 'B': /* Word-boundary assertion*/
10813 case 'C': /* Single char !DANGEROUS! */
10814 case 'd': case 'D': /* digit class */
10815 case 'g': case 'G': /* generic-backref, pos assertion */
10816 case 'h': case 'H': /* HORIZWS */
10817 case 'k': case 'K': /* named backref, keep marker */
10818 case 'p': case 'P': /* Unicode property */
10819 case 'R': /* LNBREAK */
10820 case 's': case 'S': /* space class */
10821 case 'v': case 'V': /* VERTWS */
10822 case 'w': case 'W': /* word class */
10823 case 'X': /* eXtended Unicode "combining character sequence" */
10824 case 'z': case 'Z': /* End of line/string assertion */
10828 /* Anything after here is an escape that resolves to a
10829 literal. (Except digits, which may or may not)
10835 case 'N': /* Handle a single-code point named character. */
10836 /* The options cause it to fail if a multiple code
10837 * point sequence. Handle those in the switch() above
10839 RExC_parse = p + 1;
10840 if (! grok_bslash_N(pRExC_state, NULL, &ender,
10841 flagp, depth, FALSE,
10842 FALSE /* not strict */ ))
10844 if (*flagp & RESTART_UTF8)
10845 FAIL("panic: grok_bslash_N set RESTART_UTF8");
10846 RExC_parse = p = oldp;
10850 if (ender > 0xff) {
10867 ender = ASCII_TO_NATIVE('\033');
10871 ender = ASCII_TO_NATIVE('\007');
10877 const char* error_msg;
10879 bool valid = grok_bslash_o(&p,
10882 TRUE, /* out warnings */
10883 FALSE, /* not strict */
10884 TRUE, /* Output warnings
10889 RExC_parse = p; /* going to die anyway; point
10890 to exact spot of failure */
10894 if (PL_encoding && ender < 0x100) {
10895 goto recode_encoding;
10897 if (ender > 0xff) {
10904 UV result = UV_MAX; /* initialize to erroneous
10906 const char* error_msg;
10908 bool valid = grok_bslash_x(&p,
10911 TRUE, /* out warnings */
10912 FALSE, /* not strict */
10913 TRUE, /* Output warnings
10918 RExC_parse = p; /* going to die anyway; point
10919 to exact spot of failure */
10924 if (PL_encoding && ender < 0x100) {
10925 goto recode_encoding;
10927 if (ender > 0xff) {
10934 ender = grok_bslash_c(*p++, UTF, SIZE_ONLY);
10936 case '0': case '1': case '2': case '3':case '4':
10937 case '5': case '6': case '7':
10939 (isDIGIT(p[1]) && atoi(p) >= RExC_npar))
10941 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
10943 ender = grok_oct(p, &numlen, &flags, NULL);
10944 if (ender > 0xff) {
10948 if (SIZE_ONLY /* like \08, \178 */
10951 && isDIGIT(*p) && ckWARN(WARN_REGEXP))
10953 reg_warn_non_literal_string(
10955 form_short_octal_warning(p, numlen));
10958 else { /* Not to be treated as an octal constant, go
10963 if (PL_encoding && ender < 0x100)
10964 goto recode_encoding;
10967 if (! RExC_override_recoding) {
10968 SV* enc = PL_encoding;
10969 ender = reg_recode((const char)(U8)ender, &enc);
10970 if (!enc && SIZE_ONLY)
10971 ckWARNreg(p, "Invalid escape in the specified encoding");
10977 FAIL("Trailing \\");
10980 if (!SIZE_ONLY&& isALPHANUMERIC(*p)) {
10981 /* Include any { following the alpha to emphasize
10982 * that it could be part of an escape at some point
10984 int len = (isALPHA(*p) && *(p + 1) == '{') ? 2 : 1;
10985 ckWARN3reg(p + len, "Unrecognized escape \\%.*s passed through", len, p);
10987 goto normal_default;
10988 } /* End of switch on '\' */
10990 default: /* A literal character */
10993 && RExC_flags & RXf_PMf_EXTENDED
10994 && ckWARN(WARN_DEPRECATED)
10995 && is_PATWS_non_low(p, UTF))
10997 vWARN_dep(p + ((UTF) ? UTF8SKIP(p) : 1),
10998 "Escape literal pattern white space under /x");
11002 if (UTF8_IS_START(*p) && UTF) {
11004 ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
11005 &numlen, UTF8_ALLOW_DEFAULT);
11011 } /* End of switch on the literal */
11013 /* Here, have looked at the literal character and <ender>
11014 * contains its ordinal, <p> points to the character after it
11017 if ( RExC_flags & RXf_PMf_EXTENDED)
11018 p = regwhite( pRExC_state, p );
11020 /* If the next thing is a quantifier, it applies to this
11021 * character only, which means that this character has to be in
11022 * its own node and can't just be appended to the string in an
11023 * existing node, so if there are already other characters in
11024 * the node, close the node with just them, and set up to do
11025 * this character again next time through, when it will be the
11026 * only thing in its new node */
11027 if ((next_is_quantifier = (p < RExC_end && ISMULT2(p))) && len)
11035 /* See comments for join_exact() as to why we fold
11036 * this non-UTF at compile time */
11037 || (node_type == EXACTFU
11038 && ender == LATIN_SMALL_LETTER_SHARP_S))
11042 /* Prime the casefolded buffer. Locale rules, which
11043 * apply only to code points < 256, aren't known until
11044 * execution, so for them, just output the original
11045 * character using utf8. If we start to fold non-UTF
11046 * patterns, be sure to update join_exact() */
11047 if (LOC && ender < 256) {
11048 if (UNI_IS_INVARIANT(ender)) {
11052 *s = UTF8_TWO_BYTE_HI(ender);
11053 *(s + 1) = UTF8_TWO_BYTE_LO(ender);
11058 UV folded = _to_uni_fold_flags(
11063 | ((LOC) ? FOLD_FLAGS_LOCALE
11064 : (ASCII_FOLD_RESTRICTED)
11065 ? FOLD_FLAGS_NOMIX_ASCII
11069 /* If this node only contains non-folding code
11070 * points so far, see if this new one is also
11073 if (folded != ender) {
11074 maybe_exact = FALSE;
11077 /* Here the fold is the original; we have
11078 * to check further to see if anything
11080 if (! PL_utf8_foldable) {
11081 SV* swash = swash_init("utf8",
11083 &PL_sv_undef, 1, 0);
11085 _get_swash_invlist(swash);
11086 SvREFCNT_dec_NN(swash);
11088 if (_invlist_contains_cp(PL_utf8_foldable,
11091 maybe_exact = FALSE;
11099 /* The loop increments <len> each time, as all but this
11100 * path (and the one just below for UTF) through it add
11101 * a single byte to the EXACTish node. But this one
11102 * has changed len to be the correct final value, so
11103 * subtract one to cancel out the increment that
11105 len += foldlen - 1;
11108 *(s++) = (char) ender;
11109 maybe_exact &= ! IS_IN_SOME_FOLD_L1(ender);
11113 const STRLEN unilen = reguni(pRExC_state, ender, s);
11119 /* See comment just above for - 1 */
11123 REGC((char)ender, s++);
11126 if (next_is_quantifier) {
11128 /* Here, the next input is a quantifier, and to get here,
11129 * the current character is the only one in the node.
11130 * Also, here <len> doesn't include the final byte for this
11136 } /* End of loop through literal characters */
11138 /* Here we have either exhausted the input or ran out of room in
11139 * the node. (If we encountered a character that can't be in the
11140 * node, transfer is made directly to <loopdone>, and so we
11141 * wouldn't have fallen off the end of the loop.) In the latter
11142 * case, we artificially have to split the node into two, because
11143 * we just don't have enough space to hold everything. This
11144 * creates a problem if the final character participates in a
11145 * multi-character fold in the non-final position, as a match that
11146 * should have occurred won't, due to the way nodes are matched,
11147 * and our artificial boundary. So back off until we find a non-
11148 * problematic character -- one that isn't at the beginning or
11149 * middle of such a fold. (Either it doesn't participate in any
11150 * folds, or appears only in the final position of all the folds it
11151 * does participate in.) A better solution with far fewer false
11152 * positives, and that would fill the nodes more completely, would
11153 * be to actually have available all the multi-character folds to
11154 * test against, and to back-off only far enough to be sure that
11155 * this node isn't ending with a partial one. <upper_parse> is set
11156 * further below (if we need to reparse the node) to include just
11157 * up through that final non-problematic character that this code
11158 * identifies, so when it is set to less than the full node, we can
11159 * skip the rest of this */
11160 if (FOLD && p < RExC_end && upper_parse == MAX_NODE_STRING_SIZE) {
11162 const STRLEN full_len = len;
11164 assert(len >= MAX_NODE_STRING_SIZE);
11166 /* Here, <s> points to the final byte of the final character.
11167 * Look backwards through the string until find a non-
11168 * problematic character */
11172 /* These two have no multi-char folds to non-UTF characters
11174 if (ASCII_FOLD_RESTRICTED || LOC) {
11178 while (--s >= s0 && IS_NON_FINAL_FOLD(*s)) { }
11182 if (! PL_NonL1NonFinalFold) {
11183 PL_NonL1NonFinalFold = _new_invlist_C_array(
11184 NonL1_Perl_Non_Final_Folds_invlist);
11187 /* Point to the first byte of the final character */
11188 s = (char *) utf8_hop((U8 *) s, -1);
11190 while (s >= s0) { /* Search backwards until find
11191 non-problematic char */
11192 if (UTF8_IS_INVARIANT(*s)) {
11194 /* There are no ascii characters that participate
11195 * in multi-char folds under /aa. In EBCDIC, the
11196 * non-ascii invariants are all control characters,
11197 * so don't ever participate in any folds. */
11198 if (ASCII_FOLD_RESTRICTED
11199 || ! IS_NON_FINAL_FOLD(*s))
11204 else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
11206 /* No Latin1 characters participate in multi-char
11207 * folds under /l */
11209 || ! IS_NON_FINAL_FOLD(TWO_BYTE_UTF8_TO_UNI(
11215 else if (! _invlist_contains_cp(
11216 PL_NonL1NonFinalFold,
11217 valid_utf8_to_uvchr((U8 *) s, NULL)))
11222 /* Here, the current character is problematic in that
11223 * it does occur in the non-final position of some
11224 * fold, so try the character before it, but have to
11225 * special case the very first byte in the string, so
11226 * we don't read outside the string */
11227 s = (s == s0) ? s -1 : (char *) utf8_hop((U8 *) s, -1);
11228 } /* End of loop backwards through the string */
11230 /* If there were only problematic characters in the string,
11231 * <s> will point to before s0, in which case the length
11232 * should be 0, otherwise include the length of the
11233 * non-problematic character just found */
11234 len = (s < s0) ? 0 : s - s0 + UTF8SKIP(s);
11237 /* Here, have found the final character, if any, that is
11238 * non-problematic as far as ending the node without splitting
11239 * it across a potential multi-char fold. <len> contains the
11240 * number of bytes in the node up-to and including that
11241 * character, or is 0 if there is no such character, meaning
11242 * the whole node contains only problematic characters. In
11243 * this case, give up and just take the node as-is. We can't
11249 /* Here, the node does contain some characters that aren't
11250 * problematic. If one such is the final character in the
11251 * node, we are done */
11252 if (len == full_len) {
11255 else if (len + ((UTF) ? UTF8SKIP(s) : 1) == full_len) {
11257 /* If the final character is problematic, but the
11258 * penultimate is not, back-off that last character to
11259 * later start a new node with it */
11264 /* Here, the final non-problematic character is earlier
11265 * in the input than the penultimate character. What we do
11266 * is reparse from the beginning, going up only as far as
11267 * this final ok one, thus guaranteeing that the node ends
11268 * in an acceptable character. The reason we reparse is
11269 * that we know how far in the character is, but we don't
11270 * know how to correlate its position with the input parse.
11271 * An alternate implementation would be to build that
11272 * correlation as we go along during the original parse,
11273 * but that would entail extra work for every node, whereas
11274 * this code gets executed only when the string is too
11275 * large for the node, and the final two characters are
11276 * problematic, an infrequent occurrence. Yet another
11277 * possible strategy would be to save the tail of the
11278 * string, and the next time regatom is called, initialize
11279 * with that. The problem with this is that unless you
11280 * back off one more character, you won't be guaranteed
11281 * regatom will get called again, unless regbranch,
11282 * regpiece ... are also changed. If you do back off that
11283 * extra character, so that there is input guaranteed to
11284 * force calling regatom, you can't handle the case where
11285 * just the first character in the node is acceptable. I
11286 * (khw) decided to try this method which doesn't have that
11287 * pitfall; if performance issues are found, we can do a
11288 * combination of the current approach plus that one */
11294 } /* End of verifying node ends with an appropriate char */
11296 loopdone: /* Jumped to when encounters something that shouldn't be in
11299 /* If 'maybe_exact' is still set here, means there are no
11300 * code points in the node that participate in folds */
11301 if (FOLD && maybe_exact) {
11305 /* I (khw) don't know if you can get here with zero length, but the
11306 * old code handled this situation by creating a zero-length EXACT
11307 * node. Might as well be NOTHING instead */
11312 alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, len, ender);
11315 RExC_parse = p - 1;
11316 Set_Node_Cur_Length(ret); /* MJD */
11317 nextchar(pRExC_state);
11319 /* len is STRLEN which is unsigned, need to copy to signed */
11322 vFAIL("Internal disaster");
11325 } /* End of label 'defchar:' */
11327 } /* End of giant switch on input character */
11333 S_regwhite( RExC_state_t *pRExC_state, char *p )
11335 const char *e = RExC_end;
11337 PERL_ARGS_ASSERT_REGWHITE;
11342 else if (*p == '#') {
11345 if (*p++ == '\n') {
11351 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
11360 S_regpatws( RExC_state_t *pRExC_state, char *p , const bool recognize_comment )
11362 /* Returns the next non-pattern-white space, non-comment character (the
11363 * latter only if 'recognize_comment is true) in the string p, which is
11364 * ended by RExC_end. If there is no line break ending a comment,
11365 * RExC_seen has added the REG_SEEN_RUN_ON_COMMENT flag; */
11366 const char *e = RExC_end;
11368 PERL_ARGS_ASSERT_REGPATWS;
11372 if ((len = is_PATWS_safe(p, e, UTF))) {
11375 else if (recognize_comment && *p == '#') {
11379 if (is_LNBREAK_safe(p, e, UTF)) {
11385 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
11393 /* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
11394 Character classes ([:foo:]) can also be negated ([:^foo:]).
11395 Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
11396 Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
11397 but trigger failures because they are currently unimplemented. */
11399 #define POSIXCC_DONE(c) ((c) == ':')
11400 #define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
11401 #define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
11403 PERL_STATIC_INLINE I32
11404 S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value, const bool strict)
11407 I32 namedclass = OOB_NAMEDCLASS;
11409 PERL_ARGS_ASSERT_REGPPOSIXCC;
11411 if (value == '[' && RExC_parse + 1 < RExC_end &&
11412 /* I smell either [: or [= or [. -- POSIX has been here, right? */
11413 POSIXCC(UCHARAT(RExC_parse)))
11415 const char c = UCHARAT(RExC_parse);
11416 char* const s = RExC_parse++;
11418 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
11420 if (RExC_parse == RExC_end) {
11423 /* Try to give a better location for the error (than the end of
11424 * the string) by looking for the matching ']' */
11426 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
11429 vFAIL2("Unmatched '%c' in POSIX class", c);
11431 /* Grandfather lone [:, [=, [. */
11435 const char* const t = RExC_parse++; /* skip over the c */
11438 if (UCHARAT(RExC_parse) == ']') {
11439 const char *posixcc = s + 1;
11440 RExC_parse++; /* skip over the ending ] */
11443 const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
11444 const I32 skip = t - posixcc;
11446 /* Initially switch on the length of the name. */
11449 if (memEQ(posixcc, "word", 4)) /* this is not POSIX,
11450 this is the Perl \w
11452 namedclass = ANYOF_WORDCHAR;
11455 /* Names all of length 5. */
11456 /* alnum alpha ascii blank cntrl digit graph lower
11457 print punct space upper */
11458 /* Offset 4 gives the best switch position. */
11459 switch (posixcc[4]) {
11461 if (memEQ(posixcc, "alph", 4)) /* alpha */
11462 namedclass = ANYOF_ALPHA;
11465 if (memEQ(posixcc, "spac", 4)) /* space */
11466 namedclass = ANYOF_PSXSPC;
11469 if (memEQ(posixcc, "grap", 4)) /* graph */
11470 namedclass = ANYOF_GRAPH;
11473 if (memEQ(posixcc, "asci", 4)) /* ascii */
11474 namedclass = ANYOF_ASCII;
11477 if (memEQ(posixcc, "blan", 4)) /* blank */
11478 namedclass = ANYOF_BLANK;
11481 if (memEQ(posixcc, "cntr", 4)) /* cntrl */
11482 namedclass = ANYOF_CNTRL;
11485 if (memEQ(posixcc, "alnu", 4)) /* alnum */
11486 namedclass = ANYOF_ALPHANUMERIC;
11489 if (memEQ(posixcc, "lowe", 4)) /* lower */
11490 namedclass = (FOLD) ? ANYOF_CASED : ANYOF_LOWER;
11491 else if (memEQ(posixcc, "uppe", 4)) /* upper */
11492 namedclass = (FOLD) ? ANYOF_CASED : ANYOF_UPPER;
11495 if (memEQ(posixcc, "digi", 4)) /* digit */
11496 namedclass = ANYOF_DIGIT;
11497 else if (memEQ(posixcc, "prin", 4)) /* print */
11498 namedclass = ANYOF_PRINT;
11499 else if (memEQ(posixcc, "punc", 4)) /* punct */
11500 namedclass = ANYOF_PUNCT;
11505 if (memEQ(posixcc, "xdigit", 6))
11506 namedclass = ANYOF_XDIGIT;
11510 if (namedclass == OOB_NAMEDCLASS)
11511 Simple_vFAIL3("POSIX class [:%.*s:] unknown",
11514 /* The #defines are structured so each complement is +1 to
11515 * the normal one */
11519 assert (posixcc[skip] == ':');
11520 assert (posixcc[skip+1] == ']');
11521 } else if (!SIZE_ONLY) {
11522 /* [[=foo=]] and [[.foo.]] are still future. */
11524 /* adjust RExC_parse so the warning shows after
11525 the class closes */
11526 while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
11528 vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
11531 /* Maternal grandfather:
11532 * "[:" ending in ":" but not in ":]" */
11534 vFAIL("Unmatched '[' in POSIX class");
11537 /* Grandfather lone [:, [=, [. */
11547 S_could_it_be_a_POSIX_class(pTHX_ RExC_state_t *pRExC_state)
11549 /* This applies some heuristics at the current parse position (which should
11550 * be at a '[') to see if what follows might be intended to be a [:posix:]
11551 * class. It returns true if it really is a posix class, of course, but it
11552 * also can return true if it thinks that what was intended was a posix
11553 * class that didn't quite make it.
11555 * It will return true for
11557 * [:alphanumerics] (as long as the ] isn't followed immediately by a
11558 * ')' indicating the end of the (?[
11559 * [:any garbage including %^&$ punctuation:]
11561 * This is designed to be called only from S_handle_regex_sets; it could be
11562 * easily adapted to be called from the spot at the beginning of regclass()
11563 * that checks to see in a normal bracketed class if the surrounding []
11564 * have been omitted ([:word:] instead of [[:word:]]). But doing so would
11565 * change long-standing behavior, so I (khw) didn't do that */
11566 char* p = RExC_parse + 1;
11567 char first_char = *p;
11569 PERL_ARGS_ASSERT_COULD_IT_BE_A_POSIX_CLASS;
11571 assert(*(p - 1) == '[');
11573 if (! POSIXCC(first_char)) {
11578 while (p < RExC_end && isWORDCHAR(*p)) p++;
11580 if (p >= RExC_end) {
11584 if (p - RExC_parse > 2 /* Got at least 1 word character */
11585 && (*p == first_char
11586 || (*p == ']' && p + 1 < RExC_end && *(p + 1) != ')')))
11591 p = (char *) memchr(RExC_parse, ']', RExC_end - RExC_parse);
11594 && p - RExC_parse > 2 /* [:] evaluates to colon;
11595 [::] is a bad posix class. */
11596 && first_char == *(p - 1));
11600 S_handle_regex_sets(pTHX_ RExC_state_t *pRExC_state, SV** return_invlist, I32 *flagp, U32 depth,
11601 char * const oregcomp_parse)
11603 /* Handle the (?[...]) construct to do set operations */
11606 UV start, end; /* End points of code point ranges */
11608 char *save_end, *save_parse;
11613 const bool save_fold = FOLD;
11615 GET_RE_DEBUG_FLAGS_DECL;
11617 PERL_ARGS_ASSERT_HANDLE_REGEX_SETS;
11620 vFAIL("(?[...]) not valid in locale");
11622 RExC_uni_semantics = 1;
11624 /* This will return only an ANYOF regnode, or (unlikely) something smaller
11625 * (such as EXACT). Thus we can skip most everything if just sizing. We
11626 * call regclass to handle '[]' so as to not have to reinvent its parsing
11627 * rules here (throwing away the size it computes each time). And, we exit
11628 * upon an unescaped ']' that isn't one ending a regclass. To do both
11629 * these things, we need to realize that something preceded by a backslash
11630 * is escaped, so we have to keep track of backslashes */
11633 Perl_ck_warner_d(aTHX_
11634 packWARN(WARN_EXPERIMENTAL__REGEX_SETS),
11635 "The regex_sets feature is experimental" REPORT_LOCATION,
11636 (int) (RExC_parse - RExC_precomp) , RExC_precomp, RExC_parse);
11638 while (RExC_parse < RExC_end) {
11639 SV* current = NULL;
11640 RExC_parse = regpatws(pRExC_state, RExC_parse,
11641 TRUE); /* means recognize comments */
11642 switch (*RExC_parse) {
11646 /* Skip the next byte (which could cause us to end up in
11647 * the middle of a UTF-8 character, but since none of those
11648 * are confusable with anything we currently handle in this
11649 * switch (invariants all), it's safe. We'll just hit the
11650 * default: case next time and keep on incrementing until
11651 * we find one of the invariants we do handle. */
11656 /* If this looks like it is a [:posix:] class, leave the
11657 * parse pointer at the '[' to fool regclass() into
11658 * thinking it is part of a '[[:posix:]]'. That function
11659 * will use strict checking to force a syntax error if it
11660 * doesn't work out to a legitimate class */
11661 bool is_posix_class
11662 = could_it_be_a_POSIX_class(pRExC_state);
11663 if (! is_posix_class) {
11667 /* regclass() can only return RESTART_UTF8 if multi-char
11668 folds are allowed. */
11669 if (!regclass(pRExC_state, flagp,depth+1,
11670 is_posix_class, /* parse the whole char
11671 class only if not a
11673 FALSE, /* don't allow multi-char folds */
11674 TRUE, /* silence non-portable warnings. */
11676 FAIL2("panic: regclass returned NULL to handle_sets, flags=%#X",
11679 /* function call leaves parse pointing to the ']', except
11680 * if we faked it */
11681 if (is_posix_class) {
11685 SvREFCNT_dec(current); /* In case it returned something */
11691 if (RExC_parse < RExC_end
11692 && *RExC_parse == ')')
11694 node = reganode(pRExC_state, ANYOF, 0);
11695 RExC_size += ANYOF_SKIP;
11696 nextchar(pRExC_state);
11697 Set_Node_Length(node,
11698 RExC_parse - oregcomp_parse + 1); /* MJD */
11707 FAIL("Syntax error in (?[...])");
11710 /* Pass 2 only after this. Everything in this construct is a
11711 * metacharacter. Operands begin with either a '\' (for an escape
11712 * sequence), or a '[' for a bracketed character class. Any other
11713 * character should be an operator, or parenthesis for grouping. Both
11714 * types of operands are handled by calling regclass() to parse them. It
11715 * is called with a parameter to indicate to return the computed inversion
11716 * list. The parsing here is implemented via a stack. Each entry on the
11717 * stack is a single character representing one of the operators, or the
11718 * '('; or else a pointer to an operand inversion list. */
11720 #define IS_OPERAND(a) (! SvIOK(a))
11722 /* The stack starts empty. It is a syntax error if the first thing parsed
11723 * is a binary operator; everything else is pushed on the stack. When an
11724 * operand is parsed, the top of the stack is examined. If it is a binary
11725 * operator, the item before it should be an operand, and both are replaced
11726 * by the result of doing that operation on the new operand and the one on
11727 * the stack. Thus a sequence of binary operands is reduced to a single
11728 * one before the next one is parsed.
11730 * A unary operator may immediately follow a binary in the input, for
11733 * When an operand is parsed and the top of the stack is a unary operator,
11734 * the operation is performed, and then the stack is rechecked to see if
11735 * this new operand is part of a binary operation; if so, it is handled as
11738 * A '(' is simply pushed on the stack; it is valid only if the stack is
11739 * empty, or the top element of the stack is an operator or another '('
11740 * (for which the parenthesized expression will become an operand). By the
11741 * time the corresponding ')' is parsed everything in between should have
11742 * been parsed and evaluated to a single operand (or else is a syntax
11743 * error), and is handled as a regular operand */
11747 while (RExC_parse < RExC_end) {
11748 I32 top_index = av_tindex(stack);
11750 SV* current = NULL;
11752 /* Skip white space */
11753 RExC_parse = regpatws(pRExC_state, RExC_parse,
11754 TRUE); /* means recognize comments */
11755 if (RExC_parse >= RExC_end) {
11756 Perl_croak(aTHX_ "panic: Read past end of '(?[ ])'");
11758 if ((curchar = UCHARAT(RExC_parse)) == ']') {
11765 if (av_tindex(stack) >= 0 /* This makes sure that we can
11766 safely subtract 1 from
11767 RExC_parse in the next clause.
11768 If we have something on the
11769 stack, we have parsed something
11771 && UCHARAT(RExC_parse - 1) == '('
11772 && RExC_parse < RExC_end)
11774 /* If is a '(?', could be an embedded '(?flags:(?[...])'.
11775 * This happens when we have some thing like
11777 * my $thai_or_lao = qr/(?[ \p{Thai} + \p{Lao} ])/;
11779 * qr/(?[ \p{Digit} & $thai_or_lao ])/;
11781 * Here we would be handling the interpolated
11782 * '$thai_or_lao'. We handle this by a recursive call to
11783 * ourselves which returns the inversion list the
11784 * interpolated expression evaluates to. We use the flags
11785 * from the interpolated pattern. */
11786 U32 save_flags = RExC_flags;
11787 const char * const save_parse = ++RExC_parse;
11789 parse_lparen_question_flags(pRExC_state);
11791 if (RExC_parse == save_parse /* Makes sure there was at
11792 least one flag (or this
11793 embedding wasn't compiled)
11795 || RExC_parse >= RExC_end - 4
11796 || UCHARAT(RExC_parse) != ':'
11797 || UCHARAT(++RExC_parse) != '('
11798 || UCHARAT(++RExC_parse) != '?'
11799 || UCHARAT(++RExC_parse) != '[')
11802 /* In combination with the above, this moves the
11803 * pointer to the point just after the first erroneous
11804 * character (or if there are no flags, to where they
11805 * should have been) */
11806 if (RExC_parse >= RExC_end - 4) {
11807 RExC_parse = RExC_end;
11809 else if (RExC_parse != save_parse) {
11810 RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
11812 vFAIL("Expecting '(?flags:(?[...'");
11815 (void) handle_regex_sets(pRExC_state, ¤t, flagp,
11816 depth+1, oregcomp_parse);
11818 /* Here, 'current' contains the embedded expression's
11819 * inversion list, and RExC_parse points to the trailing
11820 * ']'; the next character should be the ')' which will be
11821 * paired with the '(' that has been put on the stack, so
11822 * the whole embedded expression reduces to '(operand)' */
11825 RExC_flags = save_flags;
11826 goto handle_operand;
11831 RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
11832 vFAIL("Unexpected character");
11835 /* regclass() can only return RESTART_UTF8 if multi-char
11836 folds are allowed. */
11837 if (!regclass(pRExC_state, flagp,depth+1,
11838 TRUE, /* means parse just the next thing */
11839 FALSE, /* don't allow multi-char folds */
11840 FALSE, /* don't silence non-portable warnings. */
11842 FAIL2("panic: regclass returned NULL to handle_sets, flags=%#X",
11844 /* regclass() will return with parsing just the \ sequence,
11845 * leaving the parse pointer at the next thing to parse */
11847 goto handle_operand;
11849 case '[': /* Is a bracketed character class */
11851 bool is_posix_class = could_it_be_a_POSIX_class(pRExC_state);
11853 if (! is_posix_class) {
11857 /* regclass() can only return RESTART_UTF8 if multi-char
11858 folds are allowed. */
11859 if(!regclass(pRExC_state, flagp,depth+1,
11860 is_posix_class, /* parse the whole char class
11861 only if not a posix class */
11862 FALSE, /* don't allow multi-char folds */
11863 FALSE, /* don't silence non-portable warnings. */
11865 FAIL2("panic: regclass returned NULL to handle_sets, flags=%#X",
11867 /* function call leaves parse pointing to the ']', except if we
11869 if (is_posix_class) {
11873 goto handle_operand;
11882 || ( ! (top_ptr = av_fetch(stack, top_index, FALSE)))
11883 || ! IS_OPERAND(*top_ptr))
11886 vFAIL2("Unexpected binary operator '%c' with no preceding operand", curchar);
11888 av_push(stack, newSVuv(curchar));
11892 av_push(stack, newSVuv(curchar));
11896 if (top_index >= 0) {
11897 top_ptr = av_fetch(stack, top_index, FALSE);
11899 if (IS_OPERAND(*top_ptr)) {
11901 vFAIL("Unexpected '(' with no preceding operator");
11904 av_push(stack, newSVuv(curchar));
11911 || ! (current = av_pop(stack))
11912 || ! IS_OPERAND(current)
11913 || ! (lparen = av_pop(stack))
11914 || IS_OPERAND(lparen)
11915 || SvUV(lparen) != '(')
11918 vFAIL("Unexpected ')'");
11921 SvREFCNT_dec_NN(lparen);
11928 /* Here, we have an operand to process, in 'current' */
11930 if (top_index < 0) { /* Just push if stack is empty */
11931 av_push(stack, current);
11934 SV* top = av_pop(stack);
11935 char current_operator;
11937 if (IS_OPERAND(top)) {
11938 vFAIL("Operand with no preceding operator");
11940 current_operator = (char) SvUV(top);
11941 switch (current_operator) {
11942 case '(': /* Push the '(' back on followed by the new
11944 av_push(stack, top);
11945 av_push(stack, current);
11946 SvREFCNT_inc(top); /* Counters the '_dec' done
11947 just after the 'break', so
11948 it doesn't get wrongly freed
11953 _invlist_invert(current);
11955 /* Unlike binary operators, the top of the stack,
11956 * now that this unary one has been popped off, may
11957 * legally be an operator, and we now have operand
11960 SvREFCNT_dec_NN(top);
11961 goto handle_operand;
11964 _invlist_intersection(av_pop(stack),
11967 av_push(stack, current);
11972 _invlist_union(av_pop(stack), current, ¤t);
11973 av_push(stack, current);
11977 _invlist_subtract(av_pop(stack), current, ¤t);
11978 av_push(stack, current);
11981 case '^': /* The union minus the intersection */
11987 element = av_pop(stack);
11988 _invlist_union(element, current, &u);
11989 _invlist_intersection(element, current, &i);
11990 _invlist_subtract(u, i, ¤t);
11991 av_push(stack, current);
11992 SvREFCNT_dec_NN(i);
11993 SvREFCNT_dec_NN(u);
11994 SvREFCNT_dec_NN(element);
11999 Perl_croak(aTHX_ "panic: Unexpected item on '(?[ ])' stack");
12001 SvREFCNT_dec_NN(top);
12005 RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
12008 if (av_tindex(stack) < 0 /* Was empty */
12009 || ((final = av_pop(stack)) == NULL)
12010 || ! IS_OPERAND(final)
12011 || av_tindex(stack) >= 0) /* More left on stack */
12013 vFAIL("Incomplete expression within '(?[ ])'");
12016 /* Here, 'final' is the resultant inversion list from evaluating the
12017 * expression. Return it if so requested */
12018 if (return_invlist) {
12019 *return_invlist = final;
12023 /* Otherwise generate a resultant node, based on 'final'. regclass() is
12024 * expecting a string of ranges and individual code points */
12025 invlist_iterinit(final);
12026 result_string = newSVpvs("");
12027 while (invlist_iternext(final, &start, &end)) {
12028 if (start == end) {
12029 Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}", start);
12032 Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}-\\x{%"UVXf"}",
12037 save_parse = RExC_parse;
12038 RExC_parse = SvPV(result_string, len);
12039 save_end = RExC_end;
12040 RExC_end = RExC_parse + len;
12042 /* We turn off folding around the call, as the class we have constructed
12043 * already has all folding taken into consideration, and we don't want
12044 * regclass() to add to that */
12045 RExC_flags &= ~RXf_PMf_FOLD;
12046 /* regclass() can only return RESTART_UTF8 if multi-char folds are allowed.
12048 node = regclass(pRExC_state, flagp,depth+1,
12049 FALSE, /* means parse the whole char class */
12050 FALSE, /* don't allow multi-char folds */
12051 TRUE, /* silence non-portable warnings. The above may very
12052 well have generated non-portable code points, but
12053 they're valid on this machine */
12056 FAIL2("panic: regclass returned NULL to handle_sets, flags=%#"UVxf,
12059 RExC_flags |= RXf_PMf_FOLD;
12061 RExC_parse = save_parse + 1;
12062 RExC_end = save_end;
12063 SvREFCNT_dec_NN(final);
12064 SvREFCNT_dec_NN(result_string);
12065 SvREFCNT_dec_NN(stack);
12067 nextchar(pRExC_state);
12068 Set_Node_Length(node, RExC_parse - oregcomp_parse + 1); /* MJD */
12073 /* The names of properties whose definitions are not known at compile time are
12074 * stored in this SV, after a constant heading. So if the length has been
12075 * changed since initialization, then there is a run-time definition. */
12076 #define HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION (SvCUR(listsv) != initial_listsv_len)
12079 S_regclass(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth,
12080 const bool stop_at_1, /* Just parse the next thing, don't
12081 look for a full character class */
12082 bool allow_multi_folds,
12083 const bool silence_non_portable, /* Don't output warnings
12086 SV** ret_invlist) /* Return an inversion list, not a node */
12088 /* parse a bracketed class specification. Most of these will produce an
12089 * ANYOF node; but something like [a] will produce an EXACT node; [aA], an
12090 * EXACTFish node; [[:ascii:]], a POSIXA node; etc. It is more complex
12091 * under /i with multi-character folds: it will be rewritten following the
12092 * paradigm of this example, where the <multi-fold>s are characters which
12093 * fold to multiple character sequences:
12094 * /[abc\x{multi-fold1}def\x{multi-fold2}ghi]/i
12095 * gets effectively rewritten as:
12096 * /(?:\x{multi-fold1}|\x{multi-fold2}|[abcdefghi]/i
12097 * reg() gets called (recursively) on the rewritten version, and this
12098 * function will return what it constructs. (Actually the <multi-fold>s
12099 * aren't physically removed from the [abcdefghi], it's just that they are
12100 * ignored in the recursion by means of a flag:
12101 * <RExC_in_multi_char_class>.)
12103 * ANYOF nodes contain a bit map for the first 256 characters, with the
12104 * corresponding bit set if that character is in the list. For characters
12105 * above 255, a range list or swash is used. There are extra bits for \w,
12106 * etc. in locale ANYOFs, as what these match is not determinable at
12109 * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs
12110 * to be restarted. This can only happen if ret_invlist is non-NULL.
12114 UV prevvalue = OOB_UNICODE, save_prevvalue = OOB_UNICODE;
12116 UV value = OOB_UNICODE, save_value = OOB_UNICODE;
12119 IV namedclass = OOB_NAMEDCLASS;
12120 char *rangebegin = NULL;
12121 bool need_class = 0;
12123 STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
12124 than just initialized. */
12125 SV* properties = NULL; /* Code points that match \p{} \P{} */
12126 SV* posixes = NULL; /* Code points that match classes like, [:word:],
12127 extended beyond the Latin1 range */
12128 UV element_count = 0; /* Number of distinct elements in the class.
12129 Optimizations may be possible if this is tiny */
12130 AV * multi_char_matches = NULL; /* Code points that fold to more than one
12131 character; used under /i */
12133 char * stop_ptr = RExC_end; /* where to stop parsing */
12134 const bool skip_white = cBOOL(ret_invlist); /* ignore unescaped white
12136 const bool strict = cBOOL(ret_invlist); /* Apply strict parsing rules? */
12138 /* Unicode properties are stored in a swash; this holds the current one
12139 * being parsed. If this swash is the only above-latin1 component of the
12140 * character class, an optimization is to pass it directly on to the
12141 * execution engine. Otherwise, it is set to NULL to indicate that there
12142 * are other things in the class that have to be dealt with at execution
12144 SV* swash = NULL; /* Code points that match \p{} \P{} */
12146 /* Set if a component of this character class is user-defined; just passed
12147 * on to the engine */
12148 bool has_user_defined_property = FALSE;
12150 /* inversion list of code points this node matches only when the target
12151 * string is in UTF-8. (Because is under /d) */
12152 SV* depends_list = NULL;
12154 /* inversion list of code points this node matches. For much of the
12155 * function, it includes only those that match regardless of the utf8ness
12156 * of the target string */
12157 SV* cp_list = NULL;
12160 /* In a range, counts how many 0-2 of the ends of it came from literals,
12161 * not escapes. Thus we can tell if 'A' was input vs \x{C1} */
12162 UV literal_endpoint = 0;
12164 bool invert = FALSE; /* Is this class to be complemented */
12166 /* Is there any thing like \W or [:^digit:] that matches above the legal
12167 * Unicode range? */
12168 bool runtime_posix_matches_above_Unicode = FALSE;
12170 regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
12171 case we need to change the emitted regop to an EXACT. */
12172 const char * orig_parse = RExC_parse;
12173 const I32 orig_size = RExC_size;
12174 GET_RE_DEBUG_FLAGS_DECL;
12176 PERL_ARGS_ASSERT_REGCLASS;
12178 PERL_UNUSED_ARG(depth);
12181 DEBUG_PARSE("clas");
12183 /* Assume we are going to generate an ANYOF node. */
12184 ret = reganode(pRExC_state, ANYOF, 0);
12187 RExC_size += ANYOF_SKIP;
12188 listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
12191 ANYOF_FLAGS(ret) = 0;
12193 RExC_emit += ANYOF_SKIP;
12195 ANYOF_FLAGS(ret) |= ANYOF_LOCALE;
12197 listsv = newSVpvs_flags("# comment\n", SVs_TEMP);
12198 initial_listsv_len = SvCUR(listsv);
12199 SvTEMP_off(listsv); /* Grr, TEMPs and mortals are conflated. */
12203 RExC_parse = regpatws(pRExC_state, RExC_parse,
12204 FALSE /* means don't recognize comments */);
12207 if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
12210 allow_multi_folds = FALSE;
12213 RExC_parse = regpatws(pRExC_state, RExC_parse,
12214 FALSE /* means don't recognize comments */);
12218 /* Check that they didn't say [:posix:] instead of [[:posix:]] */
12219 if (!SIZE_ONLY && RExC_parse < RExC_end && POSIXCC(UCHARAT(RExC_parse))) {
12220 const char *s = RExC_parse;
12221 const char c = *s++;
12223 while (isWORDCHAR(*s))
12225 if (*s && c == *s && s[1] == ']') {
12226 SAVEFREESV(RExC_rx_sv);
12228 "POSIX syntax [%c %c] belongs inside character classes",
12230 (void)ReREFCNT_inc(RExC_rx_sv);
12234 /* If the caller wants us to just parse a single element, accomplish this
12235 * by faking the loop ending condition */
12236 if (stop_at_1 && RExC_end > RExC_parse) {
12237 stop_ptr = RExC_parse + 1;
12240 /* allow 1st char to be ']' (allowing it to be '-' is dealt with later) */
12241 if (UCHARAT(RExC_parse) == ']')
12242 goto charclassloop;
12246 if (RExC_parse >= stop_ptr) {
12251 RExC_parse = regpatws(pRExC_state, RExC_parse,
12252 FALSE /* means don't recognize comments */);
12255 if (UCHARAT(RExC_parse) == ']') {
12261 namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
12262 save_value = value;
12263 save_prevvalue = prevvalue;
12266 rangebegin = RExC_parse;
12270 value = utf8n_to_uvchr((U8*)RExC_parse,
12271 RExC_end - RExC_parse,
12272 &numlen, UTF8_ALLOW_DEFAULT);
12273 RExC_parse += numlen;
12276 value = UCHARAT(RExC_parse++);
12279 && RExC_parse < RExC_end
12280 && POSIXCC(UCHARAT(RExC_parse)))
12282 namedclass = regpposixcc(pRExC_state, value, strict);
12284 else if (value == '\\') {
12286 value = utf8n_to_uvchr((U8*)RExC_parse,
12287 RExC_end - RExC_parse,
12288 &numlen, UTF8_ALLOW_DEFAULT);
12289 RExC_parse += numlen;
12292 value = UCHARAT(RExC_parse++);
12294 /* Some compilers cannot handle switching on 64-bit integer
12295 * values, therefore value cannot be an UV. Yes, this will
12296 * be a problem later if we want switch on Unicode.
12297 * A similar issue a little bit later when switching on
12298 * namedclass. --jhi */
12300 /* If the \ is escaping white space when white space is being
12301 * skipped, it means that that white space is wanted literally, and
12302 * is already in 'value'. Otherwise, need to translate the escape
12303 * into what it signifies. */
12304 if (! skip_white || ! is_PATWS_cp(value)) switch ((I32)value) {
12306 case 'w': namedclass = ANYOF_WORDCHAR; break;
12307 case 'W': namedclass = ANYOF_NWORDCHAR; break;
12308 case 's': namedclass = ANYOF_SPACE; break;
12309 case 'S': namedclass = ANYOF_NSPACE; break;
12310 case 'd': namedclass = ANYOF_DIGIT; break;
12311 case 'D': namedclass = ANYOF_NDIGIT; break;
12312 case 'v': namedclass = ANYOF_VERTWS; break;
12313 case 'V': namedclass = ANYOF_NVERTWS; break;
12314 case 'h': namedclass = ANYOF_HORIZWS; break;
12315 case 'H': namedclass = ANYOF_NHORIZWS; break;
12316 case 'N': /* Handle \N{NAME} in class */
12318 /* We only pay attention to the first char of
12319 multichar strings being returned. I kinda wonder
12320 if this makes sense as it does change the behaviour
12321 from earlier versions, OTOH that behaviour was broken
12323 if (! grok_bslash_N(pRExC_state, NULL, &value, flagp, depth,
12324 TRUE, /* => charclass */
12327 if (*flagp & RESTART_UTF8)
12328 FAIL("panic: grok_bslash_N set RESTART_UTF8");
12338 /* We will handle any undefined properties ourselves */
12339 U8 swash_init_flags = _CORE_SWASH_INIT_RETURN_IF_UNDEF;
12341 if (RExC_parse >= RExC_end)
12342 vFAIL2("Empty \\%c{}", (U8)value);
12343 if (*RExC_parse == '{') {
12344 const U8 c = (U8)value;
12345 e = strchr(RExC_parse++, '}');
12347 vFAIL2("Missing right brace on \\%c{}", c);
12348 while (isSPACE(UCHARAT(RExC_parse)))
12350 if (e == RExC_parse)
12351 vFAIL2("Empty \\%c{}", c);
12352 n = e - RExC_parse;
12353 while (isSPACE(UCHARAT(RExC_parse + n - 1)))
12364 if (UCHARAT(RExC_parse) == '^') {
12367 /* toggle. (The rhs xor gets the single bit that
12368 * differs between P and p; the other xor inverts just
12370 value ^= 'P' ^ 'p';
12372 while (isSPACE(UCHARAT(RExC_parse))) {
12377 /* Try to get the definition of the property into
12378 * <invlist>. If /i is in effect, the effective property
12379 * will have its name be <__NAME_i>. The design is
12380 * discussed in commit
12381 * 2f833f5208e26b208886e51e09e2c072b5eabb46 */
12382 Newx(name, n + sizeof("_i__\n"), char);
12384 sprintf(name, "%s%.*s%s\n",
12385 (FOLD) ? "__" : "",
12391 /* Look up the property name, and get its swash and
12392 * inversion list, if the property is found */
12394 SvREFCNT_dec_NN(swash);
12396 swash = _core_swash_init("utf8", name, &PL_sv_undef,
12399 NULL, /* No inversion list */
12402 if (! swash || ! (invlist = _get_swash_invlist(swash))) {
12404 SvREFCNT_dec_NN(swash);
12408 /* Here didn't find it. It could be a user-defined
12409 * property that will be available at run-time. If we
12410 * accept only compile-time properties, is an error;
12411 * otherwise add it to the list for run-time look up */
12413 RExC_parse = e + 1;
12414 vFAIL3("Property '%.*s' is unknown", (int) n, name);
12416 Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%s\n",
12417 (value == 'p' ? '+' : '!'),
12419 has_user_defined_property = TRUE;
12421 /* We don't know yet, so have to assume that the
12422 * property could match something in the Latin1 range,
12423 * hence something that isn't utf8. Note that this
12424 * would cause things in <depends_list> to match
12425 * inappropriately, except that any \p{}, including
12426 * this one forces Unicode semantics, which means there
12427 * is <no depends_list> */
12428 ANYOF_FLAGS(ret) |= ANYOF_NONBITMAP_NON_UTF8;
12432 /* Here, did get the swash and its inversion list. If
12433 * the swash is from a user-defined property, then this
12434 * whole character class should be regarded as such */
12435 has_user_defined_property =
12437 & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY);
12439 /* Invert if asking for the complement */
12440 if (value == 'P') {
12441 _invlist_union_complement_2nd(properties,
12445 /* The swash can't be used as-is, because we've
12446 * inverted things; delay removing it to here after
12447 * have copied its invlist above */
12448 SvREFCNT_dec_NN(swash);
12452 _invlist_union(properties, invlist, &properties);
12457 RExC_parse = e + 1;
12458 namedclass = ANYOF_UNIPROP; /* no official name, but it's
12461 /* \p means they want Unicode semantics */
12462 RExC_uni_semantics = 1;
12465 case 'n': value = '\n'; break;
12466 case 'r': value = '\r'; break;
12467 case 't': value = '\t'; break;
12468 case 'f': value = '\f'; break;
12469 case 'b': value = '\b'; break;
12470 case 'e': value = ASCII_TO_NATIVE('\033');break;
12471 case 'a': value = ASCII_TO_NATIVE('\007');break;
12473 RExC_parse--; /* function expects to be pointed at the 'o' */
12475 const char* error_msg;
12476 bool valid = grok_bslash_o(&RExC_parse,
12479 SIZE_ONLY, /* warnings in pass
12482 silence_non_portable,
12488 if (PL_encoding && value < 0x100) {
12489 goto recode_encoding;
12493 RExC_parse--; /* function expects to be pointed at the 'x' */
12495 const char* error_msg;
12496 bool valid = grok_bslash_x(&RExC_parse,
12499 TRUE, /* Output warnings */
12501 silence_non_portable,
12507 if (PL_encoding && value < 0x100)
12508 goto recode_encoding;
12511 value = grok_bslash_c(*RExC_parse++, UTF, SIZE_ONLY);
12513 case '0': case '1': case '2': case '3': case '4':
12514 case '5': case '6': case '7':
12516 /* Take 1-3 octal digits */
12517 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
12518 numlen = (strict) ? 4 : 3;
12519 value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
12520 RExC_parse += numlen;
12523 RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
12524 vFAIL("Need exactly 3 octal digits");
12526 else if (! SIZE_ONLY /* like \08, \178 */
12528 && RExC_parse < RExC_end
12529 && isDIGIT(*RExC_parse)
12530 && ckWARN(WARN_REGEXP))
12532 SAVEFREESV(RExC_rx_sv);
12533 reg_warn_non_literal_string(
12535 form_short_octal_warning(RExC_parse, numlen));
12536 (void)ReREFCNT_inc(RExC_rx_sv);
12539 if (PL_encoding && value < 0x100)
12540 goto recode_encoding;
12544 if (! RExC_override_recoding) {
12545 SV* enc = PL_encoding;
12546 value = reg_recode((const char)(U8)value, &enc);
12549 vFAIL("Invalid escape in the specified encoding");
12551 else if (SIZE_ONLY) {
12552 ckWARNreg(RExC_parse,
12553 "Invalid escape in the specified encoding");
12559 /* Allow \_ to not give an error */
12560 if (!SIZE_ONLY && isWORDCHAR(value) && value != '_') {
12562 vFAIL2("Unrecognized escape \\%c in character class",
12566 SAVEFREESV(RExC_rx_sv);
12567 ckWARN2reg(RExC_parse,
12568 "Unrecognized escape \\%c in character class passed through",
12570 (void)ReREFCNT_inc(RExC_rx_sv);
12574 } /* End of switch on char following backslash */
12575 } /* end of handling backslash escape sequences */
12578 literal_endpoint++;
12581 /* Here, we have the current token in 'value' */
12583 /* What matches in a locale is not known until runtime. This includes
12584 * what the Posix classes (like \w, [:space:]) match. Room must be
12585 * reserved (one time per class) to store such classes, either if Perl
12586 * is compiled so that locale nodes always should have this space, or
12587 * if there is such class info to be stored. The space will contain a
12588 * bit for each named class that is to be matched against. This isn't
12589 * needed for \p{} and pseudo-classes, as they are not affected by
12590 * locale, and hence are dealt with separately */
12593 && (ANYOF_LOCALE == ANYOF_CLASS
12594 || (namedclass > OOB_NAMEDCLASS && namedclass < ANYOF_MAX)))
12598 RExC_size += ANYOF_CLASS_SKIP - ANYOF_SKIP;
12601 RExC_emit += ANYOF_CLASS_SKIP - ANYOF_SKIP;
12602 ANYOF_CLASS_ZERO(ret);
12604 ANYOF_FLAGS(ret) |= ANYOF_CLASS;
12607 if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
12609 /* a bad range like a-\d, a-[:digit:]. The '-' is taken as a
12610 * literal, as is the character that began the false range, i.e.
12611 * the 'a' in the examples */
12614 const int w = (RExC_parse >= rangebegin)
12615 ? RExC_parse - rangebegin
12618 vFAIL4("False [] range \"%*.*s\"", w, w, rangebegin);
12621 SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
12622 ckWARN4reg(RExC_parse,
12623 "False [] range \"%*.*s\"",
12625 (void)ReREFCNT_inc(RExC_rx_sv);
12626 cp_list = add_cp_to_invlist(cp_list, '-');
12627 cp_list = add_cp_to_invlist(cp_list, prevvalue);
12631 range = 0; /* this was not a true range */
12632 element_count += 2; /* So counts for three values */
12636 U8 classnum = namedclass_to_classnum(namedclass);
12637 if (namedclass >= ANYOF_MAX) { /* If a special class */
12638 if (namedclass != ANYOF_UNIPROP) { /* UNIPROP = \p and \P */
12640 /* Here, should be \h, \H, \v, or \V. Neither /d nor
12641 * /l make a difference in what these match. There
12642 * would be problems if these characters had folds
12643 * other than themselves, as cp_list is subject to
12645 if (classnum != _CC_VERTSPACE) {
12646 assert( namedclass == ANYOF_HORIZWS
12647 || namedclass == ANYOF_NHORIZWS);
12649 /* It turns out that \h is just a synonym for
12651 classnum = _CC_BLANK;
12654 _invlist_union_maybe_complement_2nd(
12656 PL_XPosix_ptrs[classnum],
12657 cBOOL(namedclass % 2), /* Complement if odd
12658 (NHORIZWS, NVERTWS)
12663 else if (classnum == _CC_ASCII) {
12666 ANYOF_CLASS_SET(ret, namedclass);
12669 #endif /* Not isascii(); just use the hard-coded definition for it */
12670 _invlist_union_maybe_complement_2nd(
12673 cBOOL(namedclass % 2), /* Complement if odd
12677 else { /* Garden variety class */
12679 /* The ascii range inversion list */
12680 SV* ascii_source = PL_Posix_ptrs[classnum];
12682 /* The full Latin1 range inversion list */
12683 SV* l1_source = PL_L1Posix_ptrs[classnum];
12685 /* This code is structured into two major clauses. The
12686 * first is for classes whose complete definitions may not
12687 * already be known. It not, the Latin1 definition
12688 * (guaranteed to already known) is used plus code is
12689 * generated to load the rest at run-time (only if needed).
12690 * If the complete definition is known, it drops down to
12691 * the second clause, where the complete definition is
12694 if (classnum < _FIRST_NON_SWASH_CC) {
12696 /* Here, the class has a swash, which may or not
12697 * already be loaded */
12699 /* The name of the property to use to match the full
12700 * eXtended Unicode range swash for this character
12702 const char *Xname = swash_property_names[classnum];
12704 /* If returning the inversion list, we can't defer
12705 * getting this until runtime */
12706 if (ret_invlist && ! PL_utf8_swash_ptrs[classnum]) {
12707 PL_utf8_swash_ptrs[classnum] =
12708 _core_swash_init("utf8", Xname, &PL_sv_undef,
12711 NULL, /* No inversion list */
12712 NULL /* No flags */
12714 assert(PL_utf8_swash_ptrs[classnum]);
12716 if ( ! PL_utf8_swash_ptrs[classnum]) {
12717 if (namedclass % 2 == 0) { /* A non-complemented
12719 /* If not /a matching, there are code points we
12720 * don't know at compile time. Arrange for the
12721 * unknown matches to be loaded at run-time, if
12723 if (! AT_LEAST_ASCII_RESTRICTED) {
12724 Perl_sv_catpvf(aTHX_ listsv, "+utf8::%s\n",
12727 if (LOC) { /* Under locale, set run-time
12729 ANYOF_CLASS_SET(ret, namedclass);
12732 /* Add the current class's code points to
12733 * the running total */
12734 _invlist_union(posixes,
12735 (AT_LEAST_ASCII_RESTRICTED)
12741 else { /* A complemented class */
12742 if (AT_LEAST_ASCII_RESTRICTED) {
12743 /* Under /a should match everything above
12744 * ASCII, plus the complement of the set's
12746 _invlist_union_complement_2nd(posixes,
12751 /* Arrange for the unknown matches to be
12752 * loaded at run-time, if needed */
12753 Perl_sv_catpvf(aTHX_ listsv, "!utf8::%s\n",
12755 runtime_posix_matches_above_Unicode = TRUE;
12757 ANYOF_CLASS_SET(ret, namedclass);
12761 /* We want to match everything in
12762 * Latin1, except those things that
12763 * l1_source matches */
12764 SV* scratch_list = NULL;
12765 _invlist_subtract(PL_Latin1, l1_source,
12768 /* Add the list from this class to the
12771 posixes = scratch_list;
12774 _invlist_union(posixes,
12777 SvREFCNT_dec_NN(scratch_list);
12779 if (DEPENDS_SEMANTICS) {
12781 |= ANYOF_NON_UTF8_LATIN1_ALL;
12786 goto namedclass_done;
12789 /* Here, there is a swash loaded for the class. If no
12790 * inversion list for it yet, get it */
12791 if (! PL_XPosix_ptrs[classnum]) {
12792 PL_XPosix_ptrs[classnum]
12793 = _swash_to_invlist(PL_utf8_swash_ptrs[classnum]);
12797 /* Here there is an inversion list already loaded for the
12800 if (namedclass % 2 == 0) { /* A non-complemented class,
12801 like ANYOF_PUNCT */
12803 /* For non-locale, just add it to any existing list
12805 _invlist_union(posixes,
12806 (AT_LEAST_ASCII_RESTRICTED)
12808 : PL_XPosix_ptrs[classnum],
12811 else { /* Locale */
12812 SV* scratch_list = NULL;
12814 /* For above Latin1 code points, we use the full
12816 _invlist_intersection(PL_AboveLatin1,
12817 PL_XPosix_ptrs[classnum],
12819 /* And set the output to it, adding instead if
12820 * there already is an output. Checking if
12821 * 'posixes' is NULL first saves an extra clone.
12822 * Its reference count will be decremented at the
12823 * next union, etc, or if this is the only
12824 * instance, at the end of the routine */
12826 posixes = scratch_list;
12829 _invlist_union(posixes, scratch_list, &posixes);
12830 SvREFCNT_dec_NN(scratch_list);
12833 #ifndef HAS_ISBLANK
12834 if (namedclass != ANYOF_BLANK) {
12836 /* Set this class in the node for runtime
12838 ANYOF_CLASS_SET(ret, namedclass);
12839 #ifndef HAS_ISBLANK
12842 /* No isblank(), use the hard-coded ASCII-range
12843 * blanks, adding them to the running total. */
12845 _invlist_union(posixes, ascii_source, &posixes);
12850 else { /* A complemented class, like ANYOF_NPUNCT */
12852 _invlist_union_complement_2nd(
12854 (AT_LEAST_ASCII_RESTRICTED)
12856 : PL_XPosix_ptrs[classnum],
12858 /* Under /d, everything in the upper half of the
12859 * Latin1 range matches this complement */
12860 if (DEPENDS_SEMANTICS) {
12861 ANYOF_FLAGS(ret) |= ANYOF_NON_UTF8_LATIN1_ALL;
12864 else { /* Locale */
12865 SV* scratch_list = NULL;
12866 _invlist_subtract(PL_AboveLatin1,
12867 PL_XPosix_ptrs[classnum],
12870 posixes = scratch_list;
12873 _invlist_union(posixes, scratch_list, &posixes);
12874 SvREFCNT_dec_NN(scratch_list);
12876 #ifndef HAS_ISBLANK
12877 if (namedclass != ANYOF_NBLANK) {
12879 ANYOF_CLASS_SET(ret, namedclass);
12880 #ifndef HAS_ISBLANK
12883 /* Get the list of all code points in Latin1
12884 * that are not ASCII blanks, and add them to
12885 * the running total */
12886 _invlist_subtract(PL_Latin1, ascii_source,
12888 _invlist_union(posixes, scratch_list, &posixes);
12889 SvREFCNT_dec_NN(scratch_list);
12896 continue; /* Go get next character */
12898 } /* end of namedclass \blah */
12900 /* Here, we have a single value. If 'range' is set, it is the ending
12901 * of a range--check its validity. Later, we will handle each
12902 * individual code point in the range. If 'range' isn't set, this
12903 * could be the beginning of a range, so check for that by looking
12904 * ahead to see if the next real character to be processed is the range
12905 * indicator--the minus sign */
12908 RExC_parse = regpatws(pRExC_state, RExC_parse,
12909 FALSE /* means don't recognize comments */);
12913 if (prevvalue > value) /* b-a */ {
12914 const int w = RExC_parse - rangebegin;
12915 Simple_vFAIL4("Invalid [] range \"%*.*s\"", w, w, rangebegin);
12916 range = 0; /* not a valid range */
12920 prevvalue = value; /* save the beginning of the potential range */
12921 if (! stop_at_1 /* Can't be a range if parsing just one thing */
12922 && *RExC_parse == '-')
12924 char* next_char_ptr = RExC_parse + 1;
12925 if (skip_white) { /* Get the next real char after the '-' */
12926 next_char_ptr = regpatws(pRExC_state,
12928 FALSE); /* means don't recognize
12932 /* If the '-' is at the end of the class (just before the ']',
12933 * it is a literal minus; otherwise it is a range */
12934 if (next_char_ptr < RExC_end && *next_char_ptr != ']') {
12935 RExC_parse = next_char_ptr;
12937 /* a bad range like \w-, [:word:]- ? */
12938 if (namedclass > OOB_NAMEDCLASS) {
12939 if (strict || ckWARN(WARN_REGEXP)) {
12941 RExC_parse >= rangebegin ?
12942 RExC_parse - rangebegin : 0;
12944 vFAIL4("False [] range \"%*.*s\"",
12949 "False [] range \"%*.*s\"",
12954 cp_list = add_cp_to_invlist(cp_list, '-');
12958 range = 1; /* yeah, it's a range! */
12959 continue; /* but do it the next time */
12964 /* Here, <prevvalue> is the beginning of the range, if any; or <value>
12967 /* non-Latin1 code point implies unicode semantics. Must be set in
12968 * pass1 so is there for the whole of pass 2 */
12970 RExC_uni_semantics = 1;
12973 /* Ready to process either the single value, or the completed range.
12974 * For single-valued non-inverted ranges, we consider the possibility
12975 * of multi-char folds. (We made a conscious decision to not do this
12976 * for the other cases because it can often lead to non-intuitive
12977 * results. For example, you have the peculiar case that:
12978 * "s s" =~ /^[^\xDF]+$/i => Y
12979 * "ss" =~ /^[^\xDF]+$/i => N
12981 * See [perl #89750] */
12982 if (FOLD && allow_multi_folds && value == prevvalue) {
12983 if (value == LATIN_SMALL_LETTER_SHARP_S
12984 || (value > 255 && _invlist_contains_cp(PL_HasMultiCharFold,
12987 /* Here <value> is indeed a multi-char fold. Get what it is */
12989 U8 foldbuf[UTF8_MAXBYTES_CASE];
12992 UV folded = _to_uni_fold_flags(
12997 | ((LOC) ? FOLD_FLAGS_LOCALE
12998 : (ASCII_FOLD_RESTRICTED)
12999 ? FOLD_FLAGS_NOMIX_ASCII
13003 /* Here, <folded> should be the first character of the
13004 * multi-char fold of <value>, with <foldbuf> containing the
13005 * whole thing. But, if this fold is not allowed (because of
13006 * the flags), <fold> will be the same as <value>, and should
13007 * be processed like any other character, so skip the special
13009 if (folded != value) {
13011 /* Skip if we are recursed, currently parsing the class
13012 * again. Otherwise add this character to the list of
13013 * multi-char folds. */
13014 if (! RExC_in_multi_char_class) {
13015 AV** this_array_ptr;
13017 STRLEN cp_count = utf8_length(foldbuf,
13018 foldbuf + foldlen);
13019 SV* multi_fold = sv_2mortal(newSVpvn("", 0));
13021 Perl_sv_catpvf(aTHX_ multi_fold, "\\x{%"UVXf"}", value);
13024 if (! multi_char_matches) {
13025 multi_char_matches = newAV();
13028 /* <multi_char_matches> is actually an array of arrays.
13029 * There will be one or two top-level elements: [2],
13030 * and/or [3]. The [2] element is an array, each
13031 * element thereof is a character which folds to two
13032 * characters; likewise for [3]. (Unicode guarantees a
13033 * maximum of 3 characters in any fold.) When we
13034 * rewrite the character class below, we will do so
13035 * such that the longest folds are written first, so
13036 * that it prefers the longest matching strings first.
13037 * This is done even if it turns out that any
13038 * quantifier is non-greedy, out of programmer
13039 * laziness. Tom Christiansen has agreed that this is
13040 * ok. This makes the test for the ligature 'ffi' come
13041 * before the test for 'ff' */
13042 if (av_exists(multi_char_matches, cp_count)) {
13043 this_array_ptr = (AV**) av_fetch(multi_char_matches,
13045 this_array = *this_array_ptr;
13048 this_array = newAV();
13049 av_store(multi_char_matches, cp_count,
13052 av_push(this_array, multi_fold);
13055 /* This element should not be processed further in this
13058 value = save_value;
13059 prevvalue = save_prevvalue;
13065 /* Deal with this element of the class */
13068 cp_list = _add_range_to_invlist(cp_list, prevvalue, value);
13070 SV* this_range = _new_invlist(1);
13071 _append_range_to_invlist(this_range, prevvalue, value);
13073 /* In EBCDIC, the ranges 'A-Z' and 'a-z' are each not contiguous.
13074 * If this range was specified using something like 'i-j', we want
13075 * to include only the 'i' and the 'j', and not anything in
13076 * between, so exclude non-ASCII, non-alphabetics from it.
13077 * However, if the range was specified with something like
13078 * [\x89-\x91] or [\x89-j], all code points within it should be
13079 * included. literal_endpoint==2 means both ends of the range used
13080 * a literal character, not \x{foo} */
13081 if (literal_endpoint == 2
13082 && (prevvalue >= 'a' && value <= 'z')
13083 || (prevvalue >= 'A' && value <= 'Z'))
13085 _invlist_intersection(this_range, PL_Posix_ptrs[_CC_ALPHA],
13088 _invlist_union(cp_list, this_range, &cp_list);
13089 literal_endpoint = 0;
13093 range = 0; /* this range (if it was one) is done now */
13094 } /* End of loop through all the text within the brackets */
13096 /* If anything in the class expands to more than one character, we have to
13097 * deal with them by building up a substitute parse string, and recursively
13098 * calling reg() on it, instead of proceeding */
13099 if (multi_char_matches) {
13100 SV * substitute_parse = newSVpvn_flags("?:", 2, SVs_TEMP);
13103 char *save_end = RExC_end;
13104 char *save_parse = RExC_parse;
13105 bool first_time = TRUE; /* First multi-char occurrence doesn't get
13110 #if 0 /* Have decided not to deal with multi-char folds in inverted classes,
13111 because too confusing */
13113 sv_catpv(substitute_parse, "(?:");
13117 /* Look at the longest folds first */
13118 for (cp_count = av_len(multi_char_matches); cp_count > 0; cp_count--) {
13120 if (av_exists(multi_char_matches, cp_count)) {
13121 AV** this_array_ptr;
13124 this_array_ptr = (AV**) av_fetch(multi_char_matches,
13126 while ((this_sequence = av_pop(*this_array_ptr)) !=
13129 if (! first_time) {
13130 sv_catpv(substitute_parse, "|");
13132 first_time = FALSE;
13134 sv_catpv(substitute_parse, SvPVX(this_sequence));
13139 /* If the character class contains anything else besides these
13140 * multi-character folds, have to include it in recursive parsing */
13141 if (element_count) {
13142 sv_catpv(substitute_parse, "|[");
13143 sv_catpvn(substitute_parse, orig_parse, RExC_parse - orig_parse);
13144 sv_catpv(substitute_parse, "]");
13147 sv_catpv(substitute_parse, ")");
13150 /* This is a way to get the parse to skip forward a whole named
13151 * sequence instead of matching the 2nd character when it fails the
13153 sv_catpv(substitute_parse, "(*THEN)(*SKIP)(*FAIL)|.)");
13157 RExC_parse = SvPV(substitute_parse, len);
13158 RExC_end = RExC_parse + len;
13159 RExC_in_multi_char_class = 1;
13160 RExC_emit = (regnode *)orig_emit;
13162 ret = reg(pRExC_state, 1, ®_flags, depth+1);
13164 *flagp |= reg_flags&(HASWIDTH|SIMPLE|SPSTART|POSTPONED|RESTART_UTF8);
13166 RExC_parse = save_parse;
13167 RExC_end = save_end;
13168 RExC_in_multi_char_class = 0;
13169 SvREFCNT_dec_NN(multi_char_matches);
13173 /* If the character class contains only a single element, it may be
13174 * optimizable into another node type which is smaller and runs faster.
13175 * Check if this is the case for this class */
13176 if (element_count == 1 && ! ret_invlist) {
13180 if (namedclass > OOB_NAMEDCLASS) { /* this is a named class, like \w or
13181 [:digit:] or \p{foo} */
13183 /* All named classes are mapped into POSIXish nodes, with its FLAG
13184 * argument giving which class it is */
13185 switch ((I32)namedclass) {
13186 case ANYOF_UNIPROP:
13189 /* These don't depend on the charset modifiers. They always
13190 * match under /u rules */
13191 case ANYOF_NHORIZWS:
13192 case ANYOF_HORIZWS:
13193 namedclass = ANYOF_BLANK + namedclass - ANYOF_HORIZWS;
13196 case ANYOF_NVERTWS:
13201 /* The actual POSIXish node for all the rest depends on the
13202 * charset modifier. The ones in the first set depend only on
13203 * ASCII or, if available on this platform, locale */
13207 op = (LOC) ? POSIXL : POSIXA;
13218 /* under /a could be alpha */
13220 if (ASCII_RESTRICTED) {
13221 namedclass = ANYOF_ALPHA + (namedclass % 2);
13229 /* The rest have more possibilities depending on the charset.
13230 * We take advantage of the enum ordering of the charset
13231 * modifiers to get the exact node type, */
13233 op = POSIXD + get_regex_charset(RExC_flags);
13234 if (op > POSIXA) { /* /aa is same as /a */
13237 #ifndef HAS_ISBLANK
13239 && (namedclass == ANYOF_BLANK
13240 || namedclass == ANYOF_NBLANK))
13247 /* The odd numbered ones are the complements of the
13248 * next-lower even number one */
13249 if (namedclass % 2 == 1) {
13253 arg = namedclass_to_classnum(namedclass);
13257 else if (value == prevvalue) {
13259 /* Here, the class consists of just a single code point */
13262 if (! LOC && value == '\n') {
13263 op = REG_ANY; /* Optimize [^\n] */
13264 *flagp |= HASWIDTH|SIMPLE;
13268 else if (value < 256 || UTF) {
13270 /* Optimize a single value into an EXACTish node, but not if it
13271 * would require converting the pattern to UTF-8. */
13272 op = compute_EXACTish(pRExC_state);
13274 } /* Otherwise is a range */
13275 else if (! LOC) { /* locale could vary these */
13276 if (prevvalue == '0') {
13277 if (value == '9') {
13284 /* Here, we have changed <op> away from its initial value iff we found
13285 * an optimization */
13288 /* Throw away this ANYOF regnode, and emit the calculated one,
13289 * which should correspond to the beginning, not current, state of
13291 const char * cur_parse = RExC_parse;
13292 RExC_parse = (char *)orig_parse;
13296 /* To get locale nodes to not use the full ANYOF size would
13297 * require moving the code above that writes the portions
13298 * of it that aren't in other nodes to after this point.
13299 * e.g. ANYOF_CLASS_SET */
13300 RExC_size = orig_size;
13304 RExC_emit = (regnode *)orig_emit;
13305 if (PL_regkind[op] == POSIXD) {
13307 op += NPOSIXD - POSIXD;
13312 ret = reg_node(pRExC_state, op);
13314 if (PL_regkind[op] == POSIXD || PL_regkind[op] == NPOSIXD) {
13318 *flagp |= HASWIDTH|SIMPLE;
13320 else if (PL_regkind[op] == EXACT) {
13321 alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value);
13324 RExC_parse = (char *) cur_parse;
13326 SvREFCNT_dec(posixes);
13327 SvREFCNT_dec(cp_list);
13334 /****** !SIZE_ONLY (Pass 2) AFTER HERE *********/
13336 /* If folding, we calculate all characters that could fold to or from the
13337 * ones already on the list */
13338 if (FOLD && cp_list) {
13339 UV start, end; /* End points of code point ranges */
13341 SV* fold_intersection = NULL;
13343 /* If the highest code point is within Latin1, we can use the
13344 * compiled-in Alphas list, and not have to go out to disk. This
13345 * yields two false positives, the masculine and feminine ordinal
13346 * indicators, which are weeded out below using the
13347 * IS_IN_SOME_FOLD_L1() macro */
13348 if (invlist_highest(cp_list) < 256) {
13349 _invlist_intersection(PL_L1Posix_ptrs[_CC_ALPHA], cp_list,
13350 &fold_intersection);
13354 /* Here, there are non-Latin1 code points, so we will have to go
13355 * fetch the list of all the characters that participate in folds
13357 if (! PL_utf8_foldable) {
13358 SV* swash = swash_init("utf8", "_Perl_Any_Folds",
13359 &PL_sv_undef, 1, 0);
13360 PL_utf8_foldable = _get_swash_invlist(swash);
13361 SvREFCNT_dec_NN(swash);
13364 /* This is a hash that for a particular fold gives all characters
13365 * that are involved in it */
13366 if (! PL_utf8_foldclosures) {
13368 /* If we were unable to find any folds, then we likely won't be
13369 * able to find the closures. So just create an empty list.
13370 * Folding will effectively be restricted to the non-Unicode
13371 * rules hard-coded into Perl. (This case happens legitimately
13372 * during compilation of Perl itself before the Unicode tables
13373 * are generated) */
13374 if (_invlist_len(PL_utf8_foldable) == 0) {
13375 PL_utf8_foldclosures = newHV();
13378 /* If the folds haven't been read in, call a fold function
13380 if (! PL_utf8_tofold) {
13381 U8 dummy[UTF8_MAXBYTES+1];
13383 /* This string is just a short named one above \xff */
13384 to_utf8_fold((U8*) HYPHEN_UTF8, dummy, NULL);
13385 assert(PL_utf8_tofold); /* Verify that worked */
13387 PL_utf8_foldclosures =
13388 _swash_inversion_hash(PL_utf8_tofold);
13392 /* Only the characters in this class that participate in folds need
13393 * be checked. Get the intersection of this class and all the
13394 * possible characters that are foldable. This can quickly narrow
13395 * down a large class */
13396 _invlist_intersection(PL_utf8_foldable, cp_list,
13397 &fold_intersection);
13400 /* Now look at the foldable characters in this class individually */
13401 invlist_iterinit(fold_intersection);
13402 while (invlist_iternext(fold_intersection, &start, &end)) {
13405 /* Locale folding for Latin1 characters is deferred until runtime */
13406 if (LOC && start < 256) {
13410 /* Look at every character in the range */
13411 for (j = start; j <= end; j++) {
13413 U8 foldbuf[UTF8_MAXBYTES_CASE+1];
13419 /* We have the latin1 folding rules hard-coded here so that
13420 * an innocent-looking character class, like /[ks]/i won't
13421 * have to go out to disk to find the possible matches.
13422 * XXX It would be better to generate these via regen, in
13423 * case a new version of the Unicode standard adds new
13424 * mappings, though that is not really likely, and may be
13425 * caught by the default: case of the switch below. */
13427 if (IS_IN_SOME_FOLD_L1(j)) {
13429 /* ASCII is always matched; non-ASCII is matched only
13430 * under Unicode rules */
13431 if (isASCII(j) || AT_LEAST_UNI_SEMANTICS) {
13433 add_cp_to_invlist(cp_list, PL_fold_latin1[j]);
13437 add_cp_to_invlist(depends_list, PL_fold_latin1[j]);
13441 if (HAS_NONLATIN1_FOLD_CLOSURE(j)
13442 && (! isASCII(j) || ! ASCII_FOLD_RESTRICTED))
13444 /* Certain Latin1 characters have matches outside
13445 * Latin1. To get here, <j> is one of those
13446 * characters. None of these matches is valid for
13447 * ASCII characters under /aa, which is why the 'if'
13448 * just above excludes those. These matches only
13449 * happen when the target string is utf8. The code
13450 * below adds the single fold closures for <j> to the
13451 * inversion list. */
13456 add_cp_to_invlist(cp_list, KELVIN_SIGN);
13460 cp_list = add_cp_to_invlist(cp_list,
13461 LATIN_SMALL_LETTER_LONG_S);
13464 cp_list = add_cp_to_invlist(cp_list,
13465 GREEK_CAPITAL_LETTER_MU);
13466 cp_list = add_cp_to_invlist(cp_list,
13467 GREEK_SMALL_LETTER_MU);
13469 case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
13470 case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
13472 add_cp_to_invlist(cp_list, ANGSTROM_SIGN);
13474 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
13475 cp_list = add_cp_to_invlist(cp_list,
13476 LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
13478 case LATIN_SMALL_LETTER_SHARP_S:
13479 cp_list = add_cp_to_invlist(cp_list,
13480 LATIN_CAPITAL_LETTER_SHARP_S);
13482 case 'F': case 'f':
13483 case 'I': case 'i':
13484 case 'L': case 'l':
13485 case 'T': case 't':
13486 case 'A': case 'a':
13487 case 'H': case 'h':
13488 case 'J': case 'j':
13489 case 'N': case 'n':
13490 case 'W': case 'w':
13491 case 'Y': case 'y':
13492 /* These all are targets of multi-character
13493 * folds from code points that require UTF8 to
13494 * express, so they can't match unless the
13495 * target string is in UTF-8, so no action here
13496 * is necessary, as regexec.c properly handles
13497 * the general case for UTF-8 matching and
13498 * multi-char folds */
13501 /* Use deprecated warning to increase the
13502 * chances of this being output */
13503 ckWARN2regdep(RExC_parse, "Perl folding rules are not up-to-date for 0x%"UVXf"; please use the perlbug utility to report;", j);
13510 /* Here is an above Latin1 character. We don't have the rules
13511 * hard-coded for it. First, get its fold. This is the simple
13512 * fold, as the multi-character folds have been handled earlier
13513 * and separated out */
13514 _to_uni_fold_flags(j, foldbuf, &foldlen,
13516 ? FOLD_FLAGS_LOCALE
13517 : (ASCII_FOLD_RESTRICTED)
13518 ? FOLD_FLAGS_NOMIX_ASCII
13521 /* Single character fold of above Latin1. Add everything in
13522 * its fold closure to the list that this node should match.
13523 * The fold closures data structure is a hash with the keys
13524 * being the UTF-8 of every character that is folded to, like
13525 * 'k', and the values each an array of all code points that
13526 * fold to its key. e.g. [ 'k', 'K', KELVIN_SIGN ].
13527 * Multi-character folds are not included */
13528 if ((listp = hv_fetch(PL_utf8_foldclosures,
13529 (char *) foldbuf, foldlen, FALSE)))
13531 AV* list = (AV*) *listp;
13533 for (k = 0; k <= av_len(list); k++) {
13534 SV** c_p = av_fetch(list, k, FALSE);
13537 Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
13541 /* /aa doesn't allow folds between ASCII and non-; /l
13542 * doesn't allow them between above and below 256 */
13543 if ((ASCII_FOLD_RESTRICTED
13544 && (isASCII(c) != isASCII(j)))
13545 || (LOC && ((c < 256) != (j < 256))))
13550 /* Folds involving non-ascii Latin1 characters
13551 * under /d are added to a separate list */
13552 if (isASCII(c) || c > 255 || AT_LEAST_UNI_SEMANTICS)
13554 cp_list = add_cp_to_invlist(cp_list, c);
13557 depends_list = add_cp_to_invlist(depends_list, c);
13563 SvREFCNT_dec_NN(fold_intersection);
13566 /* And combine the result (if any) with any inversion list from posix
13567 * classes. The lists are kept separate up to now because we don't want to
13568 * fold the classes (folding of those is automatically handled by the swash
13569 * fetching code) */
13571 if (! DEPENDS_SEMANTICS) {
13573 _invlist_union(cp_list, posixes, &cp_list);
13574 SvREFCNT_dec_NN(posixes);
13581 /* Under /d, we put into a separate list the Latin1 things that
13582 * match only when the target string is utf8 */
13583 SV* nonascii_but_latin1_properties = NULL;
13584 _invlist_intersection(posixes, PL_Latin1,
13585 &nonascii_but_latin1_properties);
13586 _invlist_subtract(nonascii_but_latin1_properties, PL_ASCII,
13587 &nonascii_but_latin1_properties);
13588 _invlist_subtract(posixes, nonascii_but_latin1_properties,
13591 _invlist_union(cp_list, posixes, &cp_list);
13592 SvREFCNT_dec_NN(posixes);
13598 if (depends_list) {
13599 _invlist_union(depends_list, nonascii_but_latin1_properties,
13601 SvREFCNT_dec_NN(nonascii_but_latin1_properties);
13604 depends_list = nonascii_but_latin1_properties;
13609 /* And combine the result (if any) with any inversion list from properties.
13610 * The lists are kept separate up to now so that we can distinguish the two
13611 * in regards to matching above-Unicode. A run-time warning is generated
13612 * if a Unicode property is matched against a non-Unicode code point. But,
13613 * we allow user-defined properties to match anything, without any warning,
13614 * and we also suppress the warning if there is a portion of the character
13615 * class that isn't a Unicode property, and which matches above Unicode, \W
13616 * or [\x{110000}] for example.
13617 * (Note that in this case, unlike the Posix one above, there is no
13618 * <depends_list>, because having a Unicode property forces Unicode
13621 bool warn_super = ! has_user_defined_property;
13624 /* If it matters to the final outcome, see if a non-property
13625 * component of the class matches above Unicode. If so, the
13626 * warning gets suppressed. This is true even if just a single
13627 * such code point is specified, as though not strictly correct if
13628 * another such code point is matched against, the fact that they
13629 * are using above-Unicode code points indicates they should know
13630 * the issues involved */
13632 bool non_prop_matches_above_Unicode =
13633 runtime_posix_matches_above_Unicode
13634 | (invlist_highest(cp_list) > PERL_UNICODE_MAX);
13636 non_prop_matches_above_Unicode =
13637 ! non_prop_matches_above_Unicode;
13639 warn_super = ! non_prop_matches_above_Unicode;
13642 _invlist_union(properties, cp_list, &cp_list);
13643 SvREFCNT_dec_NN(properties);
13646 cp_list = properties;
13650 OP(ret) = ANYOF_WARN_SUPER;
13654 /* Here, we have calculated what code points should be in the character
13657 * Now we can see about various optimizations. Fold calculation (which we
13658 * did above) needs to take place before inversion. Otherwise /[^k]/i
13659 * would invert to include K, which under /i would match k, which it
13660 * shouldn't. Therefore we can't invert folded locale now, as it won't be
13661 * folded until runtime */
13663 /* Optimize inverted simple patterns (e.g. [^a-z]) when everything is known
13664 * at compile time. Besides not inverting folded locale now, we can't
13665 * invert if there are things such as \w, which aren't known until runtime
13668 && ! (LOC && (FOLD || (ANYOF_FLAGS(ret) & ANYOF_CLASS)))
13670 && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
13672 _invlist_invert(cp_list);
13674 /* Any swash can't be used as-is, because we've inverted things */
13676 SvREFCNT_dec_NN(swash);
13680 /* Clear the invert flag since have just done it here */
13685 *ret_invlist = cp_list;
13687 /* Discard the generated node */
13689 RExC_size = orig_size;
13692 RExC_emit = orig_emit;
13697 /* If we didn't do folding, it's because some information isn't available
13698 * until runtime; set the run-time fold flag for these. (We don't have to
13699 * worry about properties folding, as that is taken care of by the swash
13703 ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD;
13706 /* Some character classes are equivalent to other nodes. Such nodes take
13707 * up less room and generally fewer operations to execute than ANYOF nodes.
13708 * Above, we checked for and optimized into some such equivalents for
13709 * certain common classes that are easy to test. Getting to this point in
13710 * the code means that the class didn't get optimized there. Since this
13711 * code is only executed in Pass 2, it is too late to save space--it has
13712 * been allocated in Pass 1, and currently isn't given back. But turning
13713 * things into an EXACTish node can allow the optimizer to join it to any
13714 * adjacent such nodes. And if the class is equivalent to things like /./,
13715 * expensive run-time swashes can be avoided. Now that we have more
13716 * complete information, we can find things necessarily missed by the
13717 * earlier code. I (khw) am not sure how much to look for here. It would
13718 * be easy, but perhaps too slow, to check any candidates against all the
13719 * node types they could possibly match using _invlistEQ(). */
13724 && ! (ANYOF_FLAGS(ret) & ANYOF_CLASS)
13725 && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
13728 U8 op = END; /* The optimzation node-type */
13729 const char * cur_parse= RExC_parse;
13731 invlist_iterinit(cp_list);
13732 if (! invlist_iternext(cp_list, &start, &end)) {
13734 /* Here, the list is empty. This happens, for example, when a
13735 * Unicode property is the only thing in the character class, and
13736 * it doesn't match anything. (perluniprops.pod notes such
13739 *flagp |= HASWIDTH|SIMPLE;
13741 else if (start == end) { /* The range is a single code point */
13742 if (! invlist_iternext(cp_list, &start, &end)
13744 /* Don't do this optimization if it would require changing
13745 * the pattern to UTF-8 */
13746 && (start < 256 || UTF))
13748 /* Here, the list contains a single code point. Can optimize
13749 * into an EXACT node */
13758 /* A locale node under folding with one code point can be
13759 * an EXACTFL, as its fold won't be calculated until
13765 /* Here, we are generally folding, but there is only one
13766 * code point to match. If we have to, we use an EXACT
13767 * node, but it would be better for joining with adjacent
13768 * nodes in the optimization pass if we used the same
13769 * EXACTFish node that any such are likely to be. We can
13770 * do this iff the code point doesn't participate in any
13771 * folds. For example, an EXACTF of a colon is the same as
13772 * an EXACT one, since nothing folds to or from a colon. */
13774 if (IS_IN_SOME_FOLD_L1(value)) {
13779 if (! PL_utf8_foldable) {
13780 SV* swash = swash_init("utf8", "_Perl_Any_Folds",
13781 &PL_sv_undef, 1, 0);
13782 PL_utf8_foldable = _get_swash_invlist(swash);
13783 SvREFCNT_dec_NN(swash);
13785 if (_invlist_contains_cp(PL_utf8_foldable, value)) {
13790 /* If we haven't found the node type, above, it means we
13791 * can use the prevailing one */
13793 op = compute_EXACTish(pRExC_state);
13798 else if (start == 0) {
13799 if (end == UV_MAX) {
13801 *flagp |= HASWIDTH|SIMPLE;
13804 else if (end == '\n' - 1
13805 && invlist_iternext(cp_list, &start, &end)
13806 && start == '\n' + 1 && end == UV_MAX)
13809 *flagp |= HASWIDTH|SIMPLE;
13813 invlist_iterfinish(cp_list);
13816 RExC_parse = (char *)orig_parse;
13817 RExC_emit = (regnode *)orig_emit;
13819 ret = reg_node(pRExC_state, op);
13821 RExC_parse = (char *)cur_parse;
13823 if (PL_regkind[op] == EXACT) {
13824 alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value);
13827 SvREFCNT_dec_NN(cp_list);
13832 /* Here, <cp_list> contains all the code points we can determine at
13833 * compile time that match under all conditions. Go through it, and
13834 * for things that belong in the bitmap, put them there, and delete from
13835 * <cp_list>. While we are at it, see if everything above 255 is in the
13836 * list, and if so, set a flag to speed up execution */
13837 ANYOF_BITMAP_ZERO(ret);
13840 /* This gets set if we actually need to modify things */
13841 bool change_invlist = FALSE;
13845 /* Start looking through <cp_list> */
13846 invlist_iterinit(cp_list);
13847 while (invlist_iternext(cp_list, &start, &end)) {
13851 if (end == UV_MAX && start <= 256) {
13852 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
13855 /* Quit if are above what we should change */
13860 change_invlist = TRUE;
13862 /* Set all the bits in the range, up to the max that we are doing */
13863 high = (end < 255) ? end : 255;
13864 for (i = start; i <= (int) high; i++) {
13865 if (! ANYOF_BITMAP_TEST(ret, i)) {
13866 ANYOF_BITMAP_SET(ret, i);
13872 invlist_iterfinish(cp_list);
13874 /* Done with loop; remove any code points that are in the bitmap from
13876 if (change_invlist) {
13877 _invlist_subtract(cp_list, PL_Latin1, &cp_list);
13880 /* If have completely emptied it, remove it completely */
13881 if (_invlist_len(cp_list) == 0) {
13882 SvREFCNT_dec_NN(cp_list);
13888 ANYOF_FLAGS(ret) |= ANYOF_INVERT;
13891 /* Here, the bitmap has been populated with all the Latin1 code points that
13892 * always match. Can now add to the overall list those that match only
13893 * when the target string is UTF-8 (<depends_list>). */
13894 if (depends_list) {
13896 _invlist_union(cp_list, depends_list, &cp_list);
13897 SvREFCNT_dec_NN(depends_list);
13900 cp_list = depends_list;
13904 /* If there is a swash and more than one element, we can't use the swash in
13905 * the optimization below. */
13906 if (swash && element_count > 1) {
13907 SvREFCNT_dec_NN(swash);
13912 && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
13914 ARG_SET(ret, ANYOF_NONBITMAP_EMPTY);
13917 /* av[0] stores the character class description in its textual form:
13918 * used later (regexec.c:Perl_regclass_swash()) to initialize the
13919 * appropriate swash, and is also useful for dumping the regnode.
13920 * av[1] if NULL, is a placeholder to later contain the swash computed
13921 * from av[0]. But if no further computation need be done, the
13922 * swash is stored there now.
13923 * av[2] stores the cp_list inversion list for use in addition or
13924 * instead of av[0]; used only if av[1] is NULL
13925 * av[3] is set if any component of the class is from a user-defined
13926 * property; used only if av[1] is NULL */
13927 AV * const av = newAV();
13930 av_store(av, 0, (HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
13931 ? SvREFCNT_inc(listsv) : &PL_sv_undef);
13933 av_store(av, 1, swash);
13934 SvREFCNT_dec_NN(cp_list);
13937 av_store(av, 1, NULL);
13939 av_store(av, 2, cp_list);
13940 av_store(av, 3, newSVuv(has_user_defined_property));
13944 rv = newRV_noinc(MUTABLE_SV(av));
13945 n = add_data(pRExC_state, 1, "s");
13946 RExC_rxi->data->data[n] = (void*)rv;
13950 *flagp |= HASWIDTH|SIMPLE;
13953 #undef HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
13956 /* reg_skipcomment()
13958 Absorbs an /x style # comments from the input stream.
13959 Returns true if there is more text remaining in the stream.
13960 Will set the REG_SEEN_RUN_ON_COMMENT flag if the comment
13961 terminates the pattern without including a newline.
13963 Note its the callers responsibility to ensure that we are
13964 actually in /x mode
13969 S_reg_skipcomment(pTHX_ RExC_state_t *pRExC_state)
13973 PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
13975 while (RExC_parse < RExC_end)
13976 if (*RExC_parse++ == '\n') {
13981 /* we ran off the end of the pattern without ending
13982 the comment, so we have to add an \n when wrapping */
13983 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
13991 Advances the parse position, and optionally absorbs
13992 "whitespace" from the inputstream.
13994 Without /x "whitespace" means (?#...) style comments only,
13995 with /x this means (?#...) and # comments and whitespace proper.
13997 Returns the RExC_parse point from BEFORE the scan occurs.
13999 This is the /x friendly way of saying RExC_parse++.
14003 S_nextchar(pTHX_ RExC_state_t *pRExC_state)
14005 char* const retval = RExC_parse++;
14007 PERL_ARGS_ASSERT_NEXTCHAR;
14010 if (RExC_end - RExC_parse >= 3
14011 && *RExC_parse == '('
14012 && RExC_parse[1] == '?'
14013 && RExC_parse[2] == '#')
14015 while (*RExC_parse != ')') {
14016 if (RExC_parse == RExC_end)
14017 FAIL("Sequence (?#... not terminated");
14023 if (RExC_flags & RXf_PMf_EXTENDED) {
14024 if (isSPACE(*RExC_parse)) {
14028 else if (*RExC_parse == '#') {
14029 if ( reg_skipcomment( pRExC_state ) )
14038 - reg_node - emit a node
14040 STATIC regnode * /* Location. */
14041 S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
14045 regnode * const ret = RExC_emit;
14046 GET_RE_DEBUG_FLAGS_DECL;
14048 PERL_ARGS_ASSERT_REG_NODE;
14051 SIZE_ALIGN(RExC_size);
14055 if (RExC_emit >= RExC_emit_bound)
14056 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
14057 op, RExC_emit, RExC_emit_bound);
14059 NODE_ALIGN_FILL(ret);
14061 FILL_ADVANCE_NODE(ptr, op);
14062 REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 1);
14063 #ifdef RE_TRACK_PATTERN_OFFSETS
14064 if (RExC_offsets) { /* MJD */
14065 MJD_OFFSET_DEBUG(("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
14066 "reg_node", __LINE__,
14068 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
14069 ? "Overwriting end of array!\n" : "OK",
14070 (UV)(RExC_emit - RExC_emit_start),
14071 (UV)(RExC_parse - RExC_start),
14072 (UV)RExC_offsets[0]));
14073 Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
14081 - reganode - emit a node with an argument
14083 STATIC regnode * /* Location. */
14084 S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
14088 regnode * const ret = RExC_emit;
14089 GET_RE_DEBUG_FLAGS_DECL;
14091 PERL_ARGS_ASSERT_REGANODE;
14094 SIZE_ALIGN(RExC_size);
14099 assert(2==regarglen[op]+1);
14101 Anything larger than this has to allocate the extra amount.
14102 If we changed this to be:
14104 RExC_size += (1 + regarglen[op]);
14106 then it wouldn't matter. Its not clear what side effect
14107 might come from that so its not done so far.
14112 if (RExC_emit >= RExC_emit_bound)
14113 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
14114 op, RExC_emit, RExC_emit_bound);
14116 NODE_ALIGN_FILL(ret);
14118 FILL_ADVANCE_NODE_ARG(ptr, op, arg);
14119 REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 2);
14120 #ifdef RE_TRACK_PATTERN_OFFSETS
14121 if (RExC_offsets) { /* MJD */
14122 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
14126 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0] ?
14127 "Overwriting end of array!\n" : "OK",
14128 (UV)(RExC_emit - RExC_emit_start),
14129 (UV)(RExC_parse - RExC_start),
14130 (UV)RExC_offsets[0]));
14131 Set_Cur_Node_Offset;
14139 - reguni - emit (if appropriate) a Unicode character
14142 S_reguni(pTHX_ const RExC_state_t *pRExC_state, UV uv, char* s)
14146 PERL_ARGS_ASSERT_REGUNI;
14148 return SIZE_ONLY ? UNISKIP(uv) : (uvchr_to_utf8((U8*)s, uv) - (U8*)s);
14152 - reginsert - insert an operator in front of already-emitted operand
14154 * Means relocating the operand.
14157 S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
14163 const int offset = regarglen[(U8)op];
14164 const int size = NODE_STEP_REGNODE + offset;
14165 GET_RE_DEBUG_FLAGS_DECL;
14167 PERL_ARGS_ASSERT_REGINSERT;
14168 PERL_UNUSED_ARG(depth);
14169 /* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
14170 DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
14179 if (RExC_open_parens) {
14181 /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
14182 for ( paren=0 ; paren < RExC_npar ; paren++ ) {
14183 if ( RExC_open_parens[paren] >= opnd ) {
14184 /*DEBUG_PARSE_FMT("open"," - %d",size);*/
14185 RExC_open_parens[paren] += size;
14187 /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
14189 if ( RExC_close_parens[paren] >= opnd ) {
14190 /*DEBUG_PARSE_FMT("close"," - %d",size);*/
14191 RExC_close_parens[paren] += size;
14193 /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
14198 while (src > opnd) {
14199 StructCopy(--src, --dst, regnode);
14200 #ifdef RE_TRACK_PATTERN_OFFSETS
14201 if (RExC_offsets) { /* MJD 20010112 */
14202 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
14206 (UV)(dst - RExC_emit_start) > RExC_offsets[0]
14207 ? "Overwriting end of array!\n" : "OK",
14208 (UV)(src - RExC_emit_start),
14209 (UV)(dst - RExC_emit_start),
14210 (UV)RExC_offsets[0]));
14211 Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
14212 Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
14218 place = opnd; /* Op node, where operand used to be. */
14219 #ifdef RE_TRACK_PATTERN_OFFSETS
14220 if (RExC_offsets) { /* MJD */
14221 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
14225 (UV)(place - RExC_emit_start) > RExC_offsets[0]
14226 ? "Overwriting end of array!\n" : "OK",
14227 (UV)(place - RExC_emit_start),
14228 (UV)(RExC_parse - RExC_start),
14229 (UV)RExC_offsets[0]));
14230 Set_Node_Offset(place, RExC_parse);
14231 Set_Node_Length(place, 1);
14234 src = NEXTOPER(place);
14235 FILL_ADVANCE_NODE(place, op);
14236 REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (place) - 1);
14237 Zero(src, offset, regnode);
14241 - regtail - set the next-pointer at the end of a node chain of p to val.
14242 - SEE ALSO: regtail_study
14244 /* TODO: All three parms should be const */
14246 S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
14250 GET_RE_DEBUG_FLAGS_DECL;
14252 PERL_ARGS_ASSERT_REGTAIL;
14254 PERL_UNUSED_ARG(depth);
14260 /* Find last node. */
14263 regnode * const temp = regnext(scan);
14265 SV * const mysv=sv_newmortal();
14266 DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
14267 regprop(RExC_rx, mysv, scan);
14268 PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
14269 SvPV_nolen_const(mysv), REG_NODE_NUM(scan),
14270 (temp == NULL ? "->" : ""),
14271 (temp == NULL ? PL_reg_name[OP(val)] : "")
14279 if (reg_off_by_arg[OP(scan)]) {
14280 ARG_SET(scan, val - scan);
14283 NEXT_OFF(scan) = val - scan;
14289 - regtail_study - set the next-pointer at the end of a node chain of p to val.
14290 - Look for optimizable sequences at the same time.
14291 - currently only looks for EXACT chains.
14293 This is experimental code. The idea is to use this routine to perform
14294 in place optimizations on branches and groups as they are constructed,
14295 with the long term intention of removing optimization from study_chunk so
14296 that it is purely analytical.
14298 Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
14299 to control which is which.
14302 /* TODO: All four parms should be const */
14305 S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
14310 #ifdef EXPERIMENTAL_INPLACESCAN
14313 GET_RE_DEBUG_FLAGS_DECL;
14315 PERL_ARGS_ASSERT_REGTAIL_STUDY;
14321 /* Find last node. */
14325 regnode * const temp = regnext(scan);
14326 #ifdef EXPERIMENTAL_INPLACESCAN
14327 if (PL_regkind[OP(scan)] == EXACT) {
14328 bool has_exactf_sharp_s; /* Unexamined in this routine */
14329 if (join_exact(pRExC_state,scan,&min, &has_exactf_sharp_s, 1,val,depth+1))
14334 switch (OP(scan)) {
14340 case EXACTFU_TRICKYFOLD:
14342 if( exact == PSEUDO )
14344 else if ( exact != OP(scan) )
14353 SV * const mysv=sv_newmortal();
14354 DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
14355 regprop(RExC_rx, mysv, scan);
14356 PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
14357 SvPV_nolen_const(mysv),
14358 REG_NODE_NUM(scan),
14359 PL_reg_name[exact]);
14366 SV * const mysv_val=sv_newmortal();
14367 DEBUG_PARSE_MSG("");
14368 regprop(RExC_rx, mysv_val, val);
14369 PerlIO_printf(Perl_debug_log, "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
14370 SvPV_nolen_const(mysv_val),
14371 (IV)REG_NODE_NUM(val),
14375 if (reg_off_by_arg[OP(scan)]) {
14376 ARG_SET(scan, val - scan);
14379 NEXT_OFF(scan) = val - scan;
14387 - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
14391 S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
14397 for (bit=0; bit<32; bit++) {
14398 if (flags & (1<<bit)) {
14399 if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
14402 if (!set++ && lead)
14403 PerlIO_printf(Perl_debug_log, "%s",lead);
14404 PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
14407 if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
14408 if (!set++ && lead) {
14409 PerlIO_printf(Perl_debug_log, "%s",lead);
14412 case REGEX_UNICODE_CHARSET:
14413 PerlIO_printf(Perl_debug_log, "UNICODE");
14415 case REGEX_LOCALE_CHARSET:
14416 PerlIO_printf(Perl_debug_log, "LOCALE");
14418 case REGEX_ASCII_RESTRICTED_CHARSET:
14419 PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
14421 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
14422 PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
14425 PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
14431 PerlIO_printf(Perl_debug_log, "\n");
14433 PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
14439 Perl_regdump(pTHX_ const regexp *r)
14443 SV * const sv = sv_newmortal();
14444 SV *dsv= sv_newmortal();
14445 RXi_GET_DECL(r,ri);
14446 GET_RE_DEBUG_FLAGS_DECL;
14448 PERL_ARGS_ASSERT_REGDUMP;
14450 (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
14452 /* Header fields of interest. */
14453 if (r->anchored_substr) {
14454 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
14455 RE_SV_DUMPLEN(r->anchored_substr), 30);
14456 PerlIO_printf(Perl_debug_log,
14457 "anchored %s%s at %"IVdf" ",
14458 s, RE_SV_TAIL(r->anchored_substr),
14459 (IV)r->anchored_offset);
14460 } else if (r->anchored_utf8) {
14461 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
14462 RE_SV_DUMPLEN(r->anchored_utf8), 30);
14463 PerlIO_printf(Perl_debug_log,
14464 "anchored utf8 %s%s at %"IVdf" ",
14465 s, RE_SV_TAIL(r->anchored_utf8),
14466 (IV)r->anchored_offset);
14468 if (r->float_substr) {
14469 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
14470 RE_SV_DUMPLEN(r->float_substr), 30);
14471 PerlIO_printf(Perl_debug_log,
14472 "floating %s%s at %"IVdf"..%"UVuf" ",
14473 s, RE_SV_TAIL(r->float_substr),
14474 (IV)r->float_min_offset, (UV)r->float_max_offset);
14475 } else if (r->float_utf8) {
14476 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
14477 RE_SV_DUMPLEN(r->float_utf8), 30);
14478 PerlIO_printf(Perl_debug_log,
14479 "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
14480 s, RE_SV_TAIL(r->float_utf8),
14481 (IV)r->float_min_offset, (UV)r->float_max_offset);
14483 if (r->check_substr || r->check_utf8)
14484 PerlIO_printf(Perl_debug_log,
14486 (r->check_substr == r->float_substr
14487 && r->check_utf8 == r->float_utf8
14488 ? "(checking floating" : "(checking anchored"));
14489 if (r->extflags & RXf_NOSCAN)
14490 PerlIO_printf(Perl_debug_log, " noscan");
14491 if (r->extflags & RXf_CHECK_ALL)
14492 PerlIO_printf(Perl_debug_log, " isall");
14493 if (r->check_substr || r->check_utf8)
14494 PerlIO_printf(Perl_debug_log, ") ");
14496 if (ri->regstclass) {
14497 regprop(r, sv, ri->regstclass);
14498 PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
14500 if (r->extflags & RXf_ANCH) {
14501 PerlIO_printf(Perl_debug_log, "anchored");
14502 if (r->extflags & RXf_ANCH_BOL)
14503 PerlIO_printf(Perl_debug_log, "(BOL)");
14504 if (r->extflags & RXf_ANCH_MBOL)
14505 PerlIO_printf(Perl_debug_log, "(MBOL)");
14506 if (r->extflags & RXf_ANCH_SBOL)
14507 PerlIO_printf(Perl_debug_log, "(SBOL)");
14508 if (r->extflags & RXf_ANCH_GPOS)
14509 PerlIO_printf(Perl_debug_log, "(GPOS)");
14510 PerlIO_putc(Perl_debug_log, ' ');
14512 if (r->extflags & RXf_GPOS_SEEN)
14513 PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
14514 if (r->intflags & PREGf_SKIP)
14515 PerlIO_printf(Perl_debug_log, "plus ");
14516 if (r->intflags & PREGf_IMPLICIT)
14517 PerlIO_printf(Perl_debug_log, "implicit ");
14518 PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
14519 if (r->extflags & RXf_EVAL_SEEN)
14520 PerlIO_printf(Perl_debug_log, "with eval ");
14521 PerlIO_printf(Perl_debug_log, "\n");
14522 DEBUG_FLAGS_r(regdump_extflags("r->extflags: ",r->extflags));
14524 PERL_ARGS_ASSERT_REGDUMP;
14525 PERL_UNUSED_CONTEXT;
14526 PERL_UNUSED_ARG(r);
14527 #endif /* DEBUGGING */
14531 - regprop - printable representation of opcode
14533 #define EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags) \
14536 Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]); \
14537 if (flags & ANYOF_INVERT) \
14538 /*make sure the invert info is in each */ \
14539 sv_catpvs(sv, "^"); \
14545 Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o)
14551 /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
14552 static const char * const anyofs[] = {
14553 #if _CC_WORDCHAR != 0 || _CC_DIGIT != 1 || _CC_ALPHA != 2 || _CC_LOWER != 3 \
14554 || _CC_UPPER != 4 || _CC_PUNCT != 5 || _CC_PRINT != 6 \
14555 || _CC_ALPHANUMERIC != 7 || _CC_GRAPH != 8 || _CC_CASED != 9 \
14556 || _CC_SPACE != 10 || _CC_BLANK != 11 || _CC_XDIGIT != 12 \
14557 || _CC_PSXSPC != 13 || _CC_CNTRL != 14 || _CC_ASCII != 15 \
14558 || _CC_VERTSPACE != 16
14559 #error Need to adjust order of anyofs[]
14596 RXi_GET_DECL(prog,progi);
14597 GET_RE_DEBUG_FLAGS_DECL;
14599 PERL_ARGS_ASSERT_REGPROP;
14603 if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */
14604 /* It would be nice to FAIL() here, but this may be called from
14605 regexec.c, and it would be hard to supply pRExC_state. */
14606 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(o), (int)REGNODE_MAX);
14607 sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
14609 k = PL_regkind[OP(o)];
14612 sv_catpvs(sv, " ");
14613 /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
14614 * is a crude hack but it may be the best for now since
14615 * we have no flag "this EXACTish node was UTF-8"
14617 pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
14618 PERL_PV_ESCAPE_UNI_DETECT |
14619 PERL_PV_ESCAPE_NONASCII |
14620 PERL_PV_PRETTY_ELLIPSES |
14621 PERL_PV_PRETTY_LTGT |
14622 PERL_PV_PRETTY_NOCLEAR
14624 } else if (k == TRIE) {
14625 /* print the details of the trie in dumpuntil instead, as
14626 * progi->data isn't available here */
14627 const char op = OP(o);
14628 const U32 n = ARG(o);
14629 const reg_ac_data * const ac = IS_TRIE_AC(op) ?
14630 (reg_ac_data *)progi->data->data[n] :
14632 const reg_trie_data * const trie
14633 = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
14635 Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
14636 DEBUG_TRIE_COMPILE_r(
14637 Perl_sv_catpvf(aTHX_ sv,
14638 "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
14639 (UV)trie->startstate,
14640 (IV)trie->statecount-1, /* -1 because of the unused 0 element */
14641 (UV)trie->wordcount,
14644 (UV)TRIE_CHARCOUNT(trie),
14645 (UV)trie->uniquecharcount
14648 if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
14650 int rangestart = -1;
14651 U8* bitmap = IS_ANYOF_TRIE(op) ? (U8*)ANYOF_BITMAP(o) : (U8*)TRIE_BITMAP(trie);
14652 sv_catpvs(sv, "[");
14653 for (i = 0; i <= 256; i++) {
14654 if (i < 256 && BITMAP_TEST(bitmap,i)) {
14655 if (rangestart == -1)
14657 } else if (rangestart != -1) {
14658 if (i <= rangestart + 3)
14659 for (; rangestart < i; rangestart++)
14660 put_byte(sv, rangestart);
14662 put_byte(sv, rangestart);
14663 sv_catpvs(sv, "-");
14664 put_byte(sv, i - 1);
14669 sv_catpvs(sv, "]");
14672 } else if (k == CURLY) {
14673 if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
14674 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
14675 Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
14677 else if (k == WHILEM && o->flags) /* Ordinal/of */
14678 Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
14679 else if (k == REF || k == OPEN || k == CLOSE || k == GROUPP || OP(o)==ACCEPT) {
14680 Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
14681 if ( RXp_PAREN_NAMES(prog) ) {
14682 if ( k != REF || (OP(o) < NREF)) {
14683 AV *list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
14684 SV **name= av_fetch(list, ARG(o), 0 );
14686 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
14689 AV *list= MUTABLE_AV(progi->data->data[ progi->name_list_idx ]);
14690 SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
14691 I32 *nums=(I32*)SvPVX(sv_dat);
14692 SV **name= av_fetch(list, nums[0], 0 );
14695 for ( n=0; n<SvIVX(sv_dat); n++ ) {
14696 Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
14697 (n ? "," : ""), (IV)nums[n]);
14699 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
14703 } else if (k == GOSUB)
14704 Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o)); /* Paren and offset */
14705 else if (k == VERB) {
14707 Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
14708 SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
14709 } else if (k == LOGICAL)
14710 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* 2: embedded, otherwise 1 */
14711 else if (k == ANYOF) {
14712 int i, rangestart = -1;
14713 const U8 flags = ANYOF_FLAGS(o);
14717 if (flags & ANYOF_LOCALE)
14718 sv_catpvs(sv, "{loc}");
14719 if (flags & ANYOF_LOC_FOLD)
14720 sv_catpvs(sv, "{i}");
14721 Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
14722 if (flags & ANYOF_INVERT)
14723 sv_catpvs(sv, "^");
14725 /* output what the standard cp 0-255 bitmap matches */
14726 for (i = 0; i <= 256; i++) {
14727 if (i < 256 && ANYOF_BITMAP_TEST(o,i)) {
14728 if (rangestart == -1)
14730 } else if (rangestart != -1) {
14731 if (i <= rangestart + 3)
14732 for (; rangestart < i; rangestart++)
14733 put_byte(sv, rangestart);
14735 put_byte(sv, rangestart);
14736 sv_catpvs(sv, "-");
14737 put_byte(sv, i - 1);
14744 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
14745 /* output any special charclass tests (used entirely under use locale) */
14746 if (ANYOF_CLASS_TEST_ANY_SET(o))
14747 for (i = 0; i < (int)(sizeof(anyofs)/sizeof(char*)); i++)
14748 if (ANYOF_CLASS_TEST(o,i)) {
14749 sv_catpv(sv, anyofs[i]);
14753 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
14755 if (flags & ANYOF_NON_UTF8_LATIN1_ALL) {
14756 sv_catpvs(sv, "{non-utf8-latin1-all}");
14759 /* output information about the unicode matching */
14760 if (flags & ANYOF_UNICODE_ALL)
14761 sv_catpvs(sv, "{unicode_all}");
14762 else if (ANYOF_NONBITMAP(o))
14763 sv_catpvs(sv, "{unicode}");
14764 if (flags & ANYOF_NONBITMAP_NON_UTF8)
14765 sv_catpvs(sv, "{outside bitmap}");
14767 if (ANYOF_NONBITMAP(o)) {
14768 SV *lv; /* Set if there is something outside the bit map */
14769 SV * const sw = regclass_swash(prog, o, FALSE, &lv, NULL);
14770 bool byte_output = FALSE; /* If something in the bitmap has been
14773 if (lv && lv != &PL_sv_undef) {
14775 U8 s[UTF8_MAXBYTES_CASE+1];
14777 for (i = 0; i <= 256; i++) { /* Look at chars in bitmap */
14778 uvchr_to_utf8(s, i);
14781 && ! ANYOF_BITMAP_TEST(o, i) /* Don't duplicate
14785 && swash_fetch(sw, s, TRUE))
14787 if (rangestart == -1)
14789 } else if (rangestart != -1) {
14790 byte_output = TRUE;
14791 if (i <= rangestart + 3)
14792 for (; rangestart < i; rangestart++) {
14793 put_byte(sv, rangestart);
14796 put_byte(sv, rangestart);
14797 sv_catpvs(sv, "-");
14806 char *s = savesvpv(lv);
14807 char * const origs = s;
14809 while (*s && *s != '\n')
14813 const char * const t = ++s;
14816 sv_catpvs(sv, " ");
14822 /* Truncate very long output */
14823 if (s - origs > 256) {
14824 Perl_sv_catpvf(aTHX_ sv,
14826 (int) (s - origs - 1),
14832 else if (*s == '\t') {
14847 SvREFCNT_dec_NN(lv);
14851 Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
14853 else if (k == POSIXD || k == NPOSIXD) {
14854 U8 index = FLAGS(o) * 2;
14855 if (index > (sizeof(anyofs) / sizeof(anyofs[0]))) {
14856 Perl_sv_catpvf(aTHX_ sv, "[illegal type=%d])", index);
14859 sv_catpv(sv, anyofs[index]);
14862 else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
14863 Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
14865 PERL_UNUSED_CONTEXT;
14866 PERL_UNUSED_ARG(sv);
14867 PERL_UNUSED_ARG(o);
14868 PERL_UNUSED_ARG(prog);
14869 #endif /* DEBUGGING */
14873 Perl_re_intuit_string(pTHX_ REGEXP * const r)
14874 { /* Assume that RE_INTUIT is set */
14876 struct regexp *const prog = ReANY(r);
14877 GET_RE_DEBUG_FLAGS_DECL;
14879 PERL_ARGS_ASSERT_RE_INTUIT_STRING;
14880 PERL_UNUSED_CONTEXT;
14884 const char * const s = SvPV_nolen_const(prog->check_substr
14885 ? prog->check_substr : prog->check_utf8);
14887 if (!PL_colorset) reginitcolors();
14888 PerlIO_printf(Perl_debug_log,
14889 "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
14891 prog->check_substr ? "" : "utf8 ",
14892 PL_colors[5],PL_colors[0],
14895 (strlen(s) > 60 ? "..." : ""));
14898 return prog->check_substr ? prog->check_substr : prog->check_utf8;
14904 handles refcounting and freeing the perl core regexp structure. When
14905 it is necessary to actually free the structure the first thing it
14906 does is call the 'free' method of the regexp_engine associated to
14907 the regexp, allowing the handling of the void *pprivate; member
14908 first. (This routine is not overridable by extensions, which is why
14909 the extensions free is called first.)
14911 See regdupe and regdupe_internal if you change anything here.
14913 #ifndef PERL_IN_XSUB_RE
14915 Perl_pregfree(pTHX_ REGEXP *r)
14921 Perl_pregfree2(pTHX_ REGEXP *rx)
14924 struct regexp *const r = ReANY(rx);
14925 GET_RE_DEBUG_FLAGS_DECL;
14927 PERL_ARGS_ASSERT_PREGFREE2;
14929 if (r->mother_re) {
14930 ReREFCNT_dec(r->mother_re);
14932 CALLREGFREE_PVT(rx); /* free the private data */
14933 SvREFCNT_dec(RXp_PAREN_NAMES(r));
14934 Safefree(r->xpv_len_u.xpvlenu_pv);
14937 SvREFCNT_dec(r->anchored_substr);
14938 SvREFCNT_dec(r->anchored_utf8);
14939 SvREFCNT_dec(r->float_substr);
14940 SvREFCNT_dec(r->float_utf8);
14941 Safefree(r->substrs);
14943 RX_MATCH_COPY_FREE(rx);
14944 #ifdef PERL_ANY_COW
14945 SvREFCNT_dec(r->saved_copy);
14948 SvREFCNT_dec(r->qr_anoncv);
14949 rx->sv_u.svu_rx = 0;
14954 This is a hacky workaround to the structural issue of match results
14955 being stored in the regexp structure which is in turn stored in
14956 PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
14957 could be PL_curpm in multiple contexts, and could require multiple
14958 result sets being associated with the pattern simultaneously, such
14959 as when doing a recursive match with (??{$qr})
14961 The solution is to make a lightweight copy of the regexp structure
14962 when a qr// is returned from the code executed by (??{$qr}) this
14963 lightweight copy doesn't actually own any of its data except for
14964 the starp/end and the actual regexp structure itself.
14970 Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
14972 struct regexp *ret;
14973 struct regexp *const r = ReANY(rx);
14974 const bool islv = ret_x && SvTYPE(ret_x) == SVt_PVLV;
14976 PERL_ARGS_ASSERT_REG_TEMP_COPY;
14979 ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
14981 SvOK_off((SV *)ret_x);
14983 /* For PVLVs, SvANY points to the xpvlv body while sv_u points
14984 to the regexp. (For SVt_REGEXPs, sv_upgrade has already
14985 made both spots point to the same regexp body.) */
14986 REGEXP *temp = (REGEXP *)newSV_type(SVt_REGEXP);
14987 assert(!SvPVX(ret_x));
14988 ret_x->sv_u.svu_rx = temp->sv_any;
14989 temp->sv_any = NULL;
14990 SvFLAGS(temp) = (SvFLAGS(temp) & ~SVTYPEMASK) | SVt_NULL;
14991 SvREFCNT_dec_NN(temp);
14992 /* SvCUR still resides in the xpvlv struct, so the regexp copy-
14993 ing below will not set it. */
14994 SvCUR_set(ret_x, SvCUR(rx));
14997 /* This ensures that SvTHINKFIRST(sv) is true, and hence that
14998 sv_force_normal(sv) is called. */
15000 ret = ReANY(ret_x);
15002 SvFLAGS(ret_x) |= SvUTF8(rx);
15003 /* We share the same string buffer as the original regexp, on which we
15004 hold a reference count, incremented when mother_re is set below.
15005 The string pointer is copied here, being part of the regexp struct.
15007 memcpy(&(ret->xpv_cur), &(r->xpv_cur),
15008 sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
15010 const I32 npar = r->nparens+1;
15011 Newx(ret->offs, npar, regexp_paren_pair);
15012 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
15015 Newx(ret->substrs, 1, struct reg_substr_data);
15016 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
15018 SvREFCNT_inc_void(ret->anchored_substr);
15019 SvREFCNT_inc_void(ret->anchored_utf8);
15020 SvREFCNT_inc_void(ret->float_substr);
15021 SvREFCNT_inc_void(ret->float_utf8);
15023 /* check_substr and check_utf8, if non-NULL, point to either their
15024 anchored or float namesakes, and don't hold a second reference. */
15026 RX_MATCH_COPIED_off(ret_x);
15027 #ifdef PERL_ANY_COW
15028 ret->saved_copy = NULL;
15030 ret->mother_re = ReREFCNT_inc(r->mother_re ? r->mother_re : rx);
15031 SvREFCNT_inc_void(ret->qr_anoncv);
15037 /* regfree_internal()
15039 Free the private data in a regexp. This is overloadable by
15040 extensions. Perl takes care of the regexp structure in pregfree(),
15041 this covers the *pprivate pointer which technically perl doesn't
15042 know about, however of course we have to handle the
15043 regexp_internal structure when no extension is in use.
15045 Note this is called before freeing anything in the regexp
15050 Perl_regfree_internal(pTHX_ REGEXP * const rx)
15053 struct regexp *const r = ReANY(rx);
15054 RXi_GET_DECL(r,ri);
15055 GET_RE_DEBUG_FLAGS_DECL;
15057 PERL_ARGS_ASSERT_REGFREE_INTERNAL;
15063 SV *dsv= sv_newmortal();
15064 RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
15065 dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
15066 PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
15067 PL_colors[4],PL_colors[5],s);
15070 #ifdef RE_TRACK_PATTERN_OFFSETS
15072 Safefree(ri->u.offsets); /* 20010421 MJD */
15074 if (ri->code_blocks) {
15076 for (n = 0; n < ri->num_code_blocks; n++)
15077 SvREFCNT_dec(ri->code_blocks[n].src_regex);
15078 Safefree(ri->code_blocks);
15082 int n = ri->data->count;
15085 /* If you add a ->what type here, update the comment in regcomp.h */
15086 switch (ri->data->what[n]) {
15092 SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
15095 Safefree(ri->data->data[n]);
15101 { /* Aho Corasick add-on structure for a trie node.
15102 Used in stclass optimization only */
15104 reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
15106 refcount = --aho->refcount;
15109 PerlMemShared_free(aho->states);
15110 PerlMemShared_free(aho->fail);
15111 /* do this last!!!! */
15112 PerlMemShared_free(ri->data->data[n]);
15113 PerlMemShared_free(ri->regstclass);
15119 /* trie structure. */
15121 reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
15123 refcount = --trie->refcount;
15126 PerlMemShared_free(trie->charmap);
15127 PerlMemShared_free(trie->states);
15128 PerlMemShared_free(trie->trans);
15130 PerlMemShared_free(trie->bitmap);
15132 PerlMemShared_free(trie->jump);
15133 PerlMemShared_free(trie->wordinfo);
15134 /* do this last!!!! */
15135 PerlMemShared_free(ri->data->data[n]);
15140 Perl_croak(aTHX_ "panic: regfree data code '%c'", ri->data->what[n]);
15143 Safefree(ri->data->what);
15144 Safefree(ri->data);
15150 #define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
15151 #define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
15152 #define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
15155 re_dup - duplicate a regexp.
15157 This routine is expected to clone a given regexp structure. It is only
15158 compiled under USE_ITHREADS.
15160 After all of the core data stored in struct regexp is duplicated
15161 the regexp_engine.dupe method is used to copy any private data
15162 stored in the *pprivate pointer. This allows extensions to handle
15163 any duplication it needs to do.
15165 See pregfree() and regfree_internal() if you change anything here.
15167 #if defined(USE_ITHREADS)
15168 #ifndef PERL_IN_XSUB_RE
15170 Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
15174 const struct regexp *r = ReANY(sstr);
15175 struct regexp *ret = ReANY(dstr);
15177 PERL_ARGS_ASSERT_RE_DUP_GUTS;
15179 npar = r->nparens+1;
15180 Newx(ret->offs, npar, regexp_paren_pair);
15181 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
15183 if (ret->substrs) {
15184 /* Do it this way to avoid reading from *r after the StructCopy().
15185 That way, if any of the sv_dup_inc()s dislodge *r from the L1
15186 cache, it doesn't matter. */
15187 const bool anchored = r->check_substr
15188 ? r->check_substr == r->anchored_substr
15189 : r->check_utf8 == r->anchored_utf8;
15190 Newx(ret->substrs, 1, struct reg_substr_data);
15191 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
15193 ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
15194 ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
15195 ret->float_substr = sv_dup_inc(ret->float_substr, param);
15196 ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
15198 /* check_substr and check_utf8, if non-NULL, point to either their
15199 anchored or float namesakes, and don't hold a second reference. */
15201 if (ret->check_substr) {
15203 assert(r->check_utf8 == r->anchored_utf8);
15204 ret->check_substr = ret->anchored_substr;
15205 ret->check_utf8 = ret->anchored_utf8;
15207 assert(r->check_substr == r->float_substr);
15208 assert(r->check_utf8 == r->float_utf8);
15209 ret->check_substr = ret->float_substr;
15210 ret->check_utf8 = ret->float_utf8;
15212 } else if (ret->check_utf8) {
15214 ret->check_utf8 = ret->anchored_utf8;
15216 ret->check_utf8 = ret->float_utf8;
15221 RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
15222 ret->qr_anoncv = MUTABLE_CV(sv_dup_inc((const SV *)ret->qr_anoncv, param));
15225 RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
15227 if (RX_MATCH_COPIED(dstr))
15228 ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen);
15230 ret->subbeg = NULL;
15231 #ifdef PERL_ANY_COW
15232 ret->saved_copy = NULL;
15235 /* Whether mother_re be set or no, we need to copy the string. We
15236 cannot refrain from copying it when the storage points directly to
15237 our mother regexp, because that's
15238 1: a buffer in a different thread
15239 2: something we no longer hold a reference on
15240 so we need to copy it locally. */
15241 RX_WRAPPED(dstr) = SAVEPVN(RX_WRAPPED(sstr), SvCUR(sstr)+1);
15242 ret->mother_re = NULL;
15245 #endif /* PERL_IN_XSUB_RE */
15250 This is the internal complement to regdupe() which is used to copy
15251 the structure pointed to by the *pprivate pointer in the regexp.
15252 This is the core version of the extension overridable cloning hook.
15253 The regexp structure being duplicated will be copied by perl prior
15254 to this and will be provided as the regexp *r argument, however
15255 with the /old/ structures pprivate pointer value. Thus this routine
15256 may override any copying normally done by perl.
15258 It returns a pointer to the new regexp_internal structure.
15262 Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
15265 struct regexp *const r = ReANY(rx);
15266 regexp_internal *reti;
15268 RXi_GET_DECL(r,ri);
15270 PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
15274 Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode), char, regexp_internal);
15275 Copy(ri->program, reti->program, len+1, regnode);
15277 reti->num_code_blocks = ri->num_code_blocks;
15278 if (ri->code_blocks) {
15280 Newxc(reti->code_blocks, ri->num_code_blocks, struct reg_code_block,
15281 struct reg_code_block);
15282 Copy(ri->code_blocks, reti->code_blocks, ri->num_code_blocks,
15283 struct reg_code_block);
15284 for (n = 0; n < ri->num_code_blocks; n++)
15285 reti->code_blocks[n].src_regex = (REGEXP*)
15286 sv_dup_inc((SV*)(ri->code_blocks[n].src_regex), param);
15289 reti->code_blocks = NULL;
15291 reti->regstclass = NULL;
15294 struct reg_data *d;
15295 const int count = ri->data->count;
15298 Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
15299 char, struct reg_data);
15300 Newx(d->what, count, U8);
15303 for (i = 0; i < count; i++) {
15304 d->what[i] = ri->data->what[i];
15305 switch (d->what[i]) {
15306 /* see also regcomp.h and regfree_internal() */
15307 case 'a': /* actually an AV, but the dup function is identical. */
15311 case 'u': /* actually an HV, but the dup function is identical. */
15312 d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
15315 /* This is cheating. */
15316 Newx(d->data[i], 1, struct regnode_charclass_class);
15317 StructCopy(ri->data->data[i], d->data[i],
15318 struct regnode_charclass_class);
15319 reti->regstclass = (regnode*)d->data[i];
15322 /* Trie stclasses are readonly and can thus be shared
15323 * without duplication. We free the stclass in pregfree
15324 * when the corresponding reg_ac_data struct is freed.
15326 reti->regstclass= ri->regstclass;
15330 ((reg_trie_data*)ri->data->data[i])->refcount++;
15335 d->data[i] = ri->data->data[i];
15338 Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'", ri->data->what[i]);
15347 reti->name_list_idx = ri->name_list_idx;
15349 #ifdef RE_TRACK_PATTERN_OFFSETS
15350 if (ri->u.offsets) {
15351 Newx(reti->u.offsets, 2*len+1, U32);
15352 Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
15355 SetProgLen(reti,len);
15358 return (void*)reti;
15361 #endif /* USE_ITHREADS */
15363 #ifndef PERL_IN_XSUB_RE
15366 - regnext - dig the "next" pointer out of a node
15369 Perl_regnext(pTHX_ regnode *p)
15377 if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */
15378 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(p), (int)REGNODE_MAX);
15381 offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
15390 S_re_croak2(pTHX_ const char* pat1,const char* pat2,...)
15393 STRLEN l1 = strlen(pat1);
15394 STRLEN l2 = strlen(pat2);
15397 const char *message;
15399 PERL_ARGS_ASSERT_RE_CROAK2;
15405 Copy(pat1, buf, l1 , char);
15406 Copy(pat2, buf + l1, l2 , char);
15407 buf[l1 + l2] = '\n';
15408 buf[l1 + l2 + 1] = '\0';
15410 /* ANSI variant takes additional second argument */
15411 va_start(args, pat2);
15415 msv = vmess(buf, &args);
15417 message = SvPV_const(msv,l1);
15420 Copy(message, buf, l1 , char);
15421 buf[l1-1] = '\0'; /* Overwrite \n */
15422 Perl_croak(aTHX_ "%s", buf);
15425 /* XXX Here's a total kludge. But we need to re-enter for swash routines. */
15427 #ifndef PERL_IN_XSUB_RE
15429 Perl_save_re_context(pTHX)
15433 struct re_save_state *state;
15435 SAVEVPTR(PL_curcop);
15436 SSGROW(SAVESTACK_ALLOC_FOR_RE_SAVE_STATE + 1);
15438 state = (struct re_save_state *)(PL_savestack + PL_savestack_ix);
15439 PL_savestack_ix += SAVESTACK_ALLOC_FOR_RE_SAVE_STATE;
15440 SSPUSHUV(SAVEt_RE_STATE);
15442 Copy(&PL_reg_state, state, 1, struct re_save_state);
15444 PL_reg_oldsaved = NULL;
15445 PL_reg_oldsavedlen = 0;
15446 PL_reg_oldsavedoffset = 0;
15447 PL_reg_oldsavedcoffset = 0;
15448 PL_reg_maxiter = 0;
15449 PL_reg_leftiter = 0;
15450 PL_reg_poscache = NULL;
15451 PL_reg_poscache_size = 0;
15452 #ifdef PERL_ANY_COW
15456 /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
15458 const REGEXP * const rx = PM_GETRE(PL_curpm);
15461 for (i = 1; i <= RX_NPARENS(rx); i++) {
15462 char digits[TYPE_CHARS(long)];
15463 const STRLEN len = my_snprintf(digits, sizeof(digits), "%lu", (long)i);
15464 GV *const *const gvp
15465 = (GV**)hv_fetch(PL_defstash, digits, len, 0);
15468 GV * const gv = *gvp;
15469 if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
15481 S_put_byte(pTHX_ SV *sv, int c)
15483 PERL_ARGS_ASSERT_PUT_BYTE;
15485 /* Our definition of isPRINT() ignores locales, so only bytes that are
15486 not part of UTF-8 are considered printable. I assume that the same
15487 holds for UTF-EBCDIC.
15488 Also, code point 255 is not printable in either (it's E0 in EBCDIC,
15489 which Wikipedia says:
15491 EO, or Eight Ones, is an 8-bit EBCDIC character code represented as all
15492 ones (binary 1111 1111, hexadecimal FF). It is similar, but not
15493 identical, to the ASCII delete (DEL) or rubout control character. ...
15494 it is typically mapped to hexadecimal code 9F, in order to provide a
15495 unique character mapping in both directions)
15497 So the old condition can be simplified to !isPRINT(c) */
15500 Perl_sv_catpvf(aTHX_ sv, "\\x%02x", c);
15503 Perl_sv_catpvf(aTHX_ sv, "\\x{%x}", c);
15507 const char string = c;
15508 if (c == '-' || c == ']' || c == '\\' || c == '^')
15509 sv_catpvs(sv, "\\");
15510 sv_catpvn(sv, &string, 1);
15515 #define CLEAR_OPTSTART \
15516 if (optstart) STMT_START { \
15517 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
15521 #define DUMPUNTIL(b,e) CLEAR_OPTSTART; node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
15523 STATIC const regnode *
15524 S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
15525 const regnode *last, const regnode *plast,
15526 SV* sv, I32 indent, U32 depth)
15529 U8 op = PSEUDO; /* Arbitrary non-END op. */
15530 const regnode *next;
15531 const regnode *optstart= NULL;
15533 RXi_GET_DECL(r,ri);
15534 GET_RE_DEBUG_FLAGS_DECL;
15536 PERL_ARGS_ASSERT_DUMPUNTIL;
15538 #ifdef DEBUG_DUMPUNTIL
15539 PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
15540 last ? last-start : 0,plast ? plast-start : 0);
15543 if (plast && plast < last)
15546 while (PL_regkind[op] != END && (!last || node < last)) {
15547 /* While that wasn't END last time... */
15550 if (op == CLOSE || op == WHILEM)
15552 next = regnext((regnode *)node);
15555 if (OP(node) == OPTIMIZED) {
15556 if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
15563 regprop(r, sv, node);
15564 PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
15565 (int)(2*indent + 1), "", SvPVX_const(sv));
15567 if (OP(node) != OPTIMIZED) {
15568 if (next == NULL) /* Next ptr. */
15569 PerlIO_printf(Perl_debug_log, " (0)");
15570 else if (PL_regkind[(U8)op] == BRANCH && PL_regkind[OP(next)] != BRANCH )
15571 PerlIO_printf(Perl_debug_log, " (FAIL)");
15573 PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
15574 (void)PerlIO_putc(Perl_debug_log, '\n');
15578 if (PL_regkind[(U8)op] == BRANCHJ) {
15581 const regnode *nnode = (OP(next) == LONGJMP
15582 ? regnext((regnode *)next)
15584 if (last && nnode > last)
15586 DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
15589 else if (PL_regkind[(U8)op] == BRANCH) {
15591 DUMPUNTIL(NEXTOPER(node), next);
15593 else if ( PL_regkind[(U8)op] == TRIE ) {
15594 const regnode *this_trie = node;
15595 const char op = OP(node);
15596 const U32 n = ARG(node);
15597 const reg_ac_data * const ac = op>=AHOCORASICK ?
15598 (reg_ac_data *)ri->data->data[n] :
15600 const reg_trie_data * const trie =
15601 (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
15603 AV *const trie_words = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
15605 const regnode *nextbranch= NULL;
15608 for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
15609 SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
15611 PerlIO_printf(Perl_debug_log, "%*s%s ",
15612 (int)(2*(indent+3)), "",
15613 elem_ptr ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr), SvCUR(*elem_ptr), 60,
15614 PL_colors[0], PL_colors[1],
15615 (SvUTF8(*elem_ptr) ? PERL_PV_ESCAPE_UNI : 0) |
15616 PERL_PV_PRETTY_ELLIPSES |
15617 PERL_PV_PRETTY_LTGT
15622 U16 dist= trie->jump[word_idx+1];
15623 PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
15624 (UV)((dist ? this_trie + dist : next) - start));
15627 nextbranch= this_trie + trie->jump[0];
15628 DUMPUNTIL(this_trie + dist, nextbranch);
15630 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
15631 nextbranch= regnext((regnode *)nextbranch);
15633 PerlIO_printf(Perl_debug_log, "\n");
15636 if (last && next > last)
15641 else if ( op == CURLY ) { /* "next" might be very big: optimizer */
15642 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
15643 NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
15645 else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
15647 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
15649 else if ( op == PLUS || op == STAR) {
15650 DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
15652 else if (PL_regkind[(U8)op] == ANYOF) {
15653 /* arglen 1 + class block */
15654 node += 1 + ((ANYOF_FLAGS(node) & ANYOF_CLASS)
15655 ? ANYOF_CLASS_SKIP : ANYOF_SKIP);
15656 node = NEXTOPER(node);
15658 else if (PL_regkind[(U8)op] == EXACT) {
15659 /* Literal string, where present. */
15660 node += NODE_SZ_STR(node) - 1;
15661 node = NEXTOPER(node);
15664 node = NEXTOPER(node);
15665 node += regarglen[(U8)op];
15667 if (op == CURLYX || op == OPEN)
15671 #ifdef DEBUG_DUMPUNTIL
15672 PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
15677 #endif /* DEBUGGING */
15681 * c-indentation-style: bsd
15682 * c-basic-offset: 4
15683 * indent-tabs-mode: nil
15686 * ex: set ts=8 sts=4 sw=4 et: