5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
88 #include "dquote_static.c"
95 # if defined(BUGGY_MSC6)
96 /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
97 # pragma optimize("a",off)
98 /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
99 # pragma optimize("w",on )
100 # endif /* BUGGY_MSC6 */
104 #define STATIC static
107 typedef struct RExC_state_t {
108 U32 flags; /* are we folding, multilining? */
109 char *precomp; /* uncompiled string. */
110 REGEXP *rx_sv; /* The SV that is the regexp. */
111 regexp *rx; /* perl core regexp structure */
112 regexp_internal *rxi; /* internal data for regexp object pprivate field */
113 char *start; /* Start of input for compile */
114 char *end; /* End of input for compile */
115 char *parse; /* Input-scan pointer. */
116 I32 whilem_seen; /* number of WHILEM in this expr */
117 regnode *emit_start; /* Start of emitted-code area */
118 regnode *emit_bound; /* First regnode outside of the allocated space */
119 regnode *emit; /* Code-emit pointer; ®dummy = don't = compiling */
120 I32 naughty; /* How bad is this pattern? */
121 I32 sawback; /* Did we see \1, ...? */
123 I32 size; /* Code size. */
124 I32 npar; /* Capture buffer count, (OPEN). */
125 I32 cpar; /* Capture buffer count, (CLOSE). */
126 I32 nestroot; /* root parens we are in - used by accept */
130 regnode **open_parens; /* pointers to open parens */
131 regnode **close_parens; /* pointers to close parens */
132 regnode *opend; /* END node in program */
133 I32 utf8; /* whether the pattern is utf8 or not */
134 I32 orig_utf8; /* whether the pattern was originally in utf8 */
135 /* XXX use this for future optimisation of case
136 * where pattern must be upgraded to utf8. */
137 I32 uni_semantics; /* If a d charset modifier should use unicode
138 rules, even if the pattern is not in
140 HV *paren_names; /* Paren names */
142 regnode **recurse; /* Recurse regops */
143 I32 recurse_count; /* Number of recurse regops */
146 I32 override_recoding;
148 char *starttry; /* -Dr: where regtry was called. */
149 #define RExC_starttry (pRExC_state->starttry)
152 const char *lastparse;
154 AV *paren_name_list; /* idx -> name */
155 #define RExC_lastparse (pRExC_state->lastparse)
156 #define RExC_lastnum (pRExC_state->lastnum)
157 #define RExC_paren_name_list (pRExC_state->paren_name_list)
161 #define RExC_flags (pRExC_state->flags)
162 #define RExC_precomp (pRExC_state->precomp)
163 #define RExC_rx_sv (pRExC_state->rx_sv)
164 #define RExC_rx (pRExC_state->rx)
165 #define RExC_rxi (pRExC_state->rxi)
166 #define RExC_start (pRExC_state->start)
167 #define RExC_end (pRExC_state->end)
168 #define RExC_parse (pRExC_state->parse)
169 #define RExC_whilem_seen (pRExC_state->whilem_seen)
170 #ifdef RE_TRACK_PATTERN_OFFSETS
171 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */
173 #define RExC_emit (pRExC_state->emit)
174 #define RExC_emit_start (pRExC_state->emit_start)
175 #define RExC_emit_bound (pRExC_state->emit_bound)
176 #define RExC_naughty (pRExC_state->naughty)
177 #define RExC_sawback (pRExC_state->sawback)
178 #define RExC_seen (pRExC_state->seen)
179 #define RExC_size (pRExC_state->size)
180 #define RExC_npar (pRExC_state->npar)
181 #define RExC_nestroot (pRExC_state->nestroot)
182 #define RExC_extralen (pRExC_state->extralen)
183 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
184 #define RExC_seen_evals (pRExC_state->seen_evals)
185 #define RExC_utf8 (pRExC_state->utf8)
186 #define RExC_uni_semantics (pRExC_state->uni_semantics)
187 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
188 #define RExC_open_parens (pRExC_state->open_parens)
189 #define RExC_close_parens (pRExC_state->close_parens)
190 #define RExC_opend (pRExC_state->opend)
191 #define RExC_paren_names (pRExC_state->paren_names)
192 #define RExC_recurse (pRExC_state->recurse)
193 #define RExC_recurse_count (pRExC_state->recurse_count)
194 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
195 #define RExC_contains_locale (pRExC_state->contains_locale)
196 #define RExC_override_recoding (pRExC_state->override_recoding)
199 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
200 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
201 ((*s) == '{' && regcurly(s)))
204 #undef SPSTART /* dratted cpp namespace... */
207 * Flags to be passed up and down.
209 #define WORST 0 /* Worst case. */
210 #define HASWIDTH 0x01 /* Known to match non-null strings. */
212 /* Simple enough to be STAR/PLUS operand, in an EXACT node must be a single
213 * character, and if utf8, must be invariant. Note that this is not the same thing as REGNODE_SIMPLE */
215 #define SPSTART 0x04 /* Starts with * or +. */
216 #define TRYAGAIN 0x08 /* Weeded out a declaration. */
217 #define POSTPONED 0x10 /* (?1),(?&name), (??{...}) or similar */
219 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
221 /* whether trie related optimizations are enabled */
222 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
223 #define TRIE_STUDY_OPT
224 #define FULL_TRIE_STUDY
230 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
231 #define PBITVAL(paren) (1 << ((paren) & 7))
232 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
233 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
234 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
236 /* If not already in utf8, do a longjmp back to the beginning */
237 #define UTF8_LONGJMP 42 /* Choose a value not likely to ever conflict */
238 #define REQUIRE_UTF8 STMT_START { \
239 if (! UTF) JMPENV_JUMP(UTF8_LONGJMP); \
242 /* About scan_data_t.
244 During optimisation we recurse through the regexp program performing
245 various inplace (keyhole style) optimisations. In addition study_chunk
246 and scan_commit populate this data structure with information about
247 what strings MUST appear in the pattern. We look for the longest
248 string that must appear at a fixed location, and we look for the
249 longest string that may appear at a floating location. So for instance
254 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
255 strings (because they follow a .* construct). study_chunk will identify
256 both FOO and BAR as being the longest fixed and floating strings respectively.
258 The strings can be composites, for instance
262 will result in a composite fixed substring 'foo'.
264 For each string some basic information is maintained:
266 - offset or min_offset
267 This is the position the string must appear at, or not before.
268 It also implicitly (when combined with minlenp) tells us how many
269 characters must match before the string we are searching for.
270 Likewise when combined with minlenp and the length of the string it
271 tells us how many characters must appear after the string we have
275 Only used for floating strings. This is the rightmost point that
276 the string can appear at. If set to I32 max it indicates that the
277 string can occur infinitely far to the right.
280 A pointer to the minimum length of the pattern that the string
281 was found inside. This is important as in the case of positive
282 lookahead or positive lookbehind we can have multiple patterns
287 The minimum length of the pattern overall is 3, the minimum length
288 of the lookahead part is 3, but the minimum length of the part that
289 will actually match is 1. So 'FOO's minimum length is 3, but the
290 minimum length for the F is 1. This is important as the minimum length
291 is used to determine offsets in front of and behind the string being
292 looked for. Since strings can be composites this is the length of the
293 pattern at the time it was committed with a scan_commit. Note that
294 the length is calculated by study_chunk, so that the minimum lengths
295 are not known until the full pattern has been compiled, thus the
296 pointer to the value.
300 In the case of lookbehind the string being searched for can be
301 offset past the start point of the final matching string.
302 If this value was just blithely removed from the min_offset it would
303 invalidate some of the calculations for how many chars must match
304 before or after (as they are derived from min_offset and minlen and
305 the length of the string being searched for).
306 When the final pattern is compiled and the data is moved from the
307 scan_data_t structure into the regexp structure the information
308 about lookbehind is factored in, with the information that would
309 have been lost precalculated in the end_shift field for the
312 The fields pos_min and pos_delta are used to store the minimum offset
313 and the delta to the maximum offset at the current point in the pattern.
317 typedef struct scan_data_t {
318 /*I32 len_min; unused */
319 /*I32 len_delta; unused */
323 I32 last_end; /* min value, <0 unless valid. */
326 SV **longest; /* Either &l_fixed, or &l_float. */
327 SV *longest_fixed; /* longest fixed string found in pattern */
328 I32 offset_fixed; /* offset where it starts */
329 I32 *minlen_fixed; /* pointer to the minlen relevant to the string */
330 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
331 SV *longest_float; /* longest floating string found in pattern */
332 I32 offset_float_min; /* earliest point in string it can appear */
333 I32 offset_float_max; /* latest point in string it can appear */
334 I32 *minlen_float; /* pointer to the minlen relevant to the string */
335 I32 lookbehind_float; /* is the position of the string modified by LB */
339 struct regnode_charclass_class *start_class;
343 * Forward declarations for pregcomp()'s friends.
346 static const scan_data_t zero_scan_data =
347 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
349 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
350 #define SF_BEFORE_SEOL 0x0001
351 #define SF_BEFORE_MEOL 0x0002
352 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
353 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
356 # define SF_FIX_SHIFT_EOL (0+2)
357 # define SF_FL_SHIFT_EOL (0+4)
359 # define SF_FIX_SHIFT_EOL (+2)
360 # define SF_FL_SHIFT_EOL (+4)
363 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
364 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
366 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
367 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
368 #define SF_IS_INF 0x0040
369 #define SF_HAS_PAR 0x0080
370 #define SF_IN_PAR 0x0100
371 #define SF_HAS_EVAL 0x0200
372 #define SCF_DO_SUBSTR 0x0400
373 #define SCF_DO_STCLASS_AND 0x0800
374 #define SCF_DO_STCLASS_OR 0x1000
375 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
376 #define SCF_WHILEM_VISITED_POS 0x2000
378 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
379 #define SCF_SEEN_ACCEPT 0x8000
381 #define UTF cBOOL(RExC_utf8)
382 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
383 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
384 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_DEPENDS_CHARSET)
385 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) >= REGEX_UNICODE_CHARSET)
386 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_RESTRICTED_CHARSET)
387 #define MORE_ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
388 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) >= REGEX_ASCII_RESTRICTED_CHARSET)
390 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
392 #define OOB_UNICODE 12345678
393 #define OOB_NAMEDCLASS -1
395 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
396 #define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
399 /* length of regex to show in messages that don't mark a position within */
400 #define RegexLengthToShowInErrorMessages 127
403 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
404 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
405 * op/pragma/warn/regcomp.
407 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
408 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
410 #define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
413 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
414 * arg. Show regex, up to a maximum length. If it's too long, chop and add
417 #define _FAIL(code) STMT_START { \
418 const char *ellipses = ""; \
419 IV len = RExC_end - RExC_precomp; \
422 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
423 if (len > RegexLengthToShowInErrorMessages) { \
424 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
425 len = RegexLengthToShowInErrorMessages - 10; \
431 #define FAIL(msg) _FAIL( \
432 Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \
433 msg, (int)len, RExC_precomp, ellipses))
435 #define FAIL2(msg,arg) _FAIL( \
436 Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \
437 arg, (int)len, RExC_precomp, ellipses))
440 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
442 #define Simple_vFAIL(m) STMT_START { \
443 const IV offset = RExC_parse - RExC_precomp; \
444 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
445 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
449 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
451 #define vFAIL(m) STMT_START { \
453 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
458 * Like Simple_vFAIL(), but accepts two arguments.
460 #define Simple_vFAIL2(m,a1) STMT_START { \
461 const IV offset = RExC_parse - RExC_precomp; \
462 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \
463 (int)offset, RExC_precomp, RExC_precomp + offset); \
467 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
469 #define vFAIL2(m,a1) STMT_START { \
471 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
472 Simple_vFAIL2(m, a1); \
477 * Like Simple_vFAIL(), but accepts three arguments.
479 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
480 const IV offset = RExC_parse - RExC_precomp; \
481 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \
482 (int)offset, RExC_precomp, RExC_precomp + offset); \
486 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
488 #define vFAIL3(m,a1,a2) STMT_START { \
490 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
491 Simple_vFAIL3(m, a1, a2); \
495 * Like Simple_vFAIL(), but accepts four arguments.
497 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
498 const IV offset = RExC_parse - RExC_precomp; \
499 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \
500 (int)offset, RExC_precomp, RExC_precomp + offset); \
503 #define ckWARNreg(loc,m) STMT_START { \
504 const IV offset = loc - RExC_precomp; \
505 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
506 (int)offset, RExC_precomp, RExC_precomp + offset); \
509 #define ckWARNregdep(loc,m) STMT_START { \
510 const IV offset = loc - RExC_precomp; \
511 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
513 (int)offset, RExC_precomp, RExC_precomp + offset); \
516 #define ckWARN2regdep(loc,m, a1) STMT_START { \
517 const IV offset = loc - RExC_precomp; \
518 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
520 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
523 #define ckWARN2reg(loc, m, a1) STMT_START { \
524 const IV offset = loc - RExC_precomp; \
525 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
526 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
529 #define vWARN3(loc, m, a1, a2) STMT_START { \
530 const IV offset = loc - RExC_precomp; \
531 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
532 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
535 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
536 const IV offset = loc - RExC_precomp; \
537 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
538 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
541 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
542 const IV offset = loc - RExC_precomp; \
543 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
544 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
547 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
548 const IV offset = loc - RExC_precomp; \
549 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
550 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
553 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
554 const IV offset = loc - RExC_precomp; \
555 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
556 a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
560 /* Allow for side effects in s */
561 #define REGC(c,s) STMT_START { \
562 if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
565 /* Macros for recording node offsets. 20001227 mjd@plover.com
566 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
567 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
568 * Element 0 holds the number n.
569 * Position is 1 indexed.
571 #ifndef RE_TRACK_PATTERN_OFFSETS
572 #define Set_Node_Offset_To_R(node,byte)
573 #define Set_Node_Offset(node,byte)
574 #define Set_Cur_Node_Offset
575 #define Set_Node_Length_To_R(node,len)
576 #define Set_Node_Length(node,len)
577 #define Set_Node_Cur_Length(node)
578 #define Node_Offset(n)
579 #define Node_Length(n)
580 #define Set_Node_Offset_Length(node,offset,len)
581 #define ProgLen(ri) ri->u.proglen
582 #define SetProgLen(ri,x) ri->u.proglen = x
584 #define ProgLen(ri) ri->u.offsets[0]
585 #define SetProgLen(ri,x) ri->u.offsets[0] = x
586 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
588 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
589 __LINE__, (int)(node), (int)(byte))); \
591 Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
593 RExC_offsets[2*(node)-1] = (byte); \
598 #define Set_Node_Offset(node,byte) \
599 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
600 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
602 #define Set_Node_Length_To_R(node,len) STMT_START { \
604 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
605 __LINE__, (int)(node), (int)(len))); \
607 Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
609 RExC_offsets[2*(node)] = (len); \
614 #define Set_Node_Length(node,len) \
615 Set_Node_Length_To_R((node)-RExC_emit_start, len)
616 #define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len)
617 #define Set_Node_Cur_Length(node) \
618 Set_Node_Length(node, RExC_parse - parse_start)
620 /* Get offsets and lengths */
621 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
622 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
624 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
625 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
626 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
630 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
631 #define EXPERIMENTAL_INPLACESCAN
632 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
634 #define DEBUG_STUDYDATA(str,data,depth) \
635 DEBUG_OPTIMISE_MORE_r(if(data){ \
636 PerlIO_printf(Perl_debug_log, \
637 "%*s" str "Pos:%"IVdf"/%"IVdf \
638 " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
639 (int)(depth)*2, "", \
640 (IV)((data)->pos_min), \
641 (IV)((data)->pos_delta), \
642 (UV)((data)->flags), \
643 (IV)((data)->whilem_c), \
644 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
645 is_inf ? "INF " : "" \
647 if ((data)->last_found) \
648 PerlIO_printf(Perl_debug_log, \
649 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
650 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
651 SvPVX_const((data)->last_found), \
652 (IV)((data)->last_end), \
653 (IV)((data)->last_start_min), \
654 (IV)((data)->last_start_max), \
655 ((data)->longest && \
656 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
657 SvPVX_const((data)->longest_fixed), \
658 (IV)((data)->offset_fixed), \
659 ((data)->longest && \
660 (data)->longest==&((data)->longest_float)) ? "*" : "", \
661 SvPVX_const((data)->longest_float), \
662 (IV)((data)->offset_float_min), \
663 (IV)((data)->offset_float_max) \
665 PerlIO_printf(Perl_debug_log,"\n"); \
668 static void clear_re(pTHX_ void *r);
670 /* Mark that we cannot extend a found fixed substring at this point.
671 Update the longest found anchored substring and the longest found
672 floating substrings if needed. */
675 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf)
677 const STRLEN l = CHR_SVLEN(data->last_found);
678 const STRLEN old_l = CHR_SVLEN(*data->longest);
679 GET_RE_DEBUG_FLAGS_DECL;
681 PERL_ARGS_ASSERT_SCAN_COMMIT;
683 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
684 SvSetMagicSV(*data->longest, data->last_found);
685 if (*data->longest == data->longest_fixed) {
686 data->offset_fixed = l ? data->last_start_min : data->pos_min;
687 if (data->flags & SF_BEFORE_EOL)
689 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
691 data->flags &= ~SF_FIX_BEFORE_EOL;
692 data->minlen_fixed=minlenp;
693 data->lookbehind_fixed=0;
695 else { /* *data->longest == data->longest_float */
696 data->offset_float_min = l ? data->last_start_min : data->pos_min;
697 data->offset_float_max = (l
698 ? data->last_start_max
699 : data->pos_min + data->pos_delta);
700 if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX)
701 data->offset_float_max = I32_MAX;
702 if (data->flags & SF_BEFORE_EOL)
704 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
706 data->flags &= ~SF_FL_BEFORE_EOL;
707 data->minlen_float=minlenp;
708 data->lookbehind_float=0;
711 SvCUR_set(data->last_found, 0);
713 SV * const sv = data->last_found;
714 if (SvUTF8(sv) && SvMAGICAL(sv)) {
715 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
721 data->flags &= ~SF_BEFORE_EOL;
722 DEBUG_STUDYDATA("commit: ",data,0);
725 /* Can match anything (initialization) */
727 S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
729 PERL_ARGS_ASSERT_CL_ANYTHING;
731 ANYOF_BITMAP_SETALL(cl);
732 cl->flags = ANYOF_CLASS|ANYOF_EOS|ANYOF_UNICODE_ALL
733 |ANYOF_LOC_NONBITMAP_FOLD|ANYOF_NON_UTF8_LATIN1_ALL;
735 /* If any portion of the regex is to operate under locale rules,
736 * initialization includes it. The reason this isn't done for all regexes
737 * is that the optimizer was written under the assumption that locale was
738 * all-or-nothing. Given the complexity and lack of documentation in the
739 * optimizer, and that there are inadequate test cases for locale, so many
740 * parts of it may not work properly, it is safest to avoid locale unless
742 if (RExC_contains_locale) {
743 ANYOF_CLASS_SETALL(cl); /* /l uses class */
744 cl->flags |= ANYOF_LOCALE;
747 ANYOF_CLASS_ZERO(cl); /* Only /l uses class now */
751 /* Can match anything (initialization) */
753 S_cl_is_anything(const struct regnode_charclass_class *cl)
757 PERL_ARGS_ASSERT_CL_IS_ANYTHING;
759 for (value = 0; value <= ANYOF_MAX; value += 2)
760 if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
762 if (!(cl->flags & ANYOF_UNICODE_ALL))
764 if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
769 /* Can match anything (initialization) */
771 S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
773 PERL_ARGS_ASSERT_CL_INIT;
775 Zero(cl, 1, struct regnode_charclass_class);
777 cl_anything(pRExC_state, cl);
778 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
781 /* These two functions currently do the exact same thing */
782 #define cl_init_zero S_cl_init
784 /* 'AND' a given class with another one. Can create false positives. 'cl'
785 * should not be inverted. 'and_with->flags & ANYOF_CLASS' should be 0 if
786 * 'and_with' is a regnode_charclass instead of a regnode_charclass_class. */
788 S_cl_and(struct regnode_charclass_class *cl,
789 const struct regnode_charclass_class *and_with)
791 PERL_ARGS_ASSERT_CL_AND;
793 assert(and_with->type == ANYOF);
795 /* I (khw) am not sure all these restrictions are necessary XXX */
796 if (!(ANYOF_CLASS_TEST_ANY_SET(and_with))
797 && !(ANYOF_CLASS_TEST_ANY_SET(cl))
798 && (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
799 && !(and_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
800 && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) {
803 if (and_with->flags & ANYOF_INVERT)
804 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
805 cl->bitmap[i] &= ~and_with->bitmap[i];
807 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
808 cl->bitmap[i] &= and_with->bitmap[i];
809 } /* XXXX: logic is complicated otherwise, leave it along for a moment. */
811 if (and_with->flags & ANYOF_INVERT) {
813 /* Here, the and'ed node is inverted. Get the AND of the flags that
814 * aren't affected by the inversion. Those that are affected are
815 * handled individually below */
816 U8 affected_flags = cl->flags & ~INVERSION_UNAFFECTED_FLAGS;
817 cl->flags &= (and_with->flags & INVERSION_UNAFFECTED_FLAGS);
818 cl->flags |= affected_flags;
820 /* We currently don't know how to deal with things that aren't in the
821 * bitmap, but we know that the intersection is no greater than what
822 * is already in cl, so let there be false positives that get sorted
823 * out after the synthetic start class succeeds, and the node is
824 * matched for real. */
826 /* The inversion of these two flags indicate that the resulting
827 * intersection doesn't have them */
828 if (and_with->flags & ANYOF_UNICODE_ALL) {
829 cl->flags &= ~ANYOF_UNICODE_ALL;
831 if (and_with->flags & ANYOF_NON_UTF8_LATIN1_ALL) {
832 cl->flags &= ~ANYOF_NON_UTF8_LATIN1_ALL;
835 else { /* and'd node is not inverted */
836 U8 outside_bitmap_but_not_utf8; /* Temp variable */
838 if (! ANYOF_NONBITMAP(and_with)) {
840 /* Here 'and_with' doesn't match anything outside the bitmap
841 * (except possibly ANYOF_UNICODE_ALL), which means the
842 * intersection can't either, except for ANYOF_UNICODE_ALL, in
843 * which case we don't know what the intersection is, but it's no
844 * greater than what cl already has, so can just leave it alone,
845 * with possible false positives */
846 if (! (and_with->flags & ANYOF_UNICODE_ALL)) {
847 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
848 cl->flags &= ~ANYOF_NONBITMAP_NON_UTF8;
851 else if (! ANYOF_NONBITMAP(cl)) {
853 /* Here, 'and_with' does match something outside the bitmap, and cl
854 * doesn't have a list of things to match outside the bitmap. If
855 * cl can match all code points above 255, the intersection will
856 * be those above-255 code points that 'and_with' matches. If cl
857 * can't match all Unicode code points, it means that it can't
858 * match anything outside the bitmap (since the 'if' that got us
859 * into this block tested for that), so we leave the bitmap empty.
861 if (cl->flags & ANYOF_UNICODE_ALL) {
862 ARG_SET(cl, ARG(and_with));
864 /* and_with's ARG may match things that don't require UTF8.
865 * And now cl's will too, in spite of this being an 'and'. See
866 * the comments below about the kludge */
867 cl->flags |= and_with->flags & ANYOF_NONBITMAP_NON_UTF8;
871 /* Here, both 'and_with' and cl match something outside the
872 * bitmap. Currently we do not do the intersection, so just match
873 * whatever cl had at the beginning. */
877 /* Take the intersection of the two sets of flags. However, the
878 * ANYOF_NONBITMAP_NON_UTF8 flag is treated as an 'or'. This is a
879 * kludge around the fact that this flag is not treated like the others
880 * which are initialized in cl_anything(). The way the optimizer works
881 * is that the synthetic start class (SSC) is initialized to match
882 * anything, and then the first time a real node is encountered, its
883 * values are AND'd with the SSC's with the result being the values of
884 * the real node. However, there are paths through the optimizer where
885 * the AND never gets called, so those initialized bits are set
886 * inappropriately, which is not usually a big deal, as they just cause
887 * false positives in the SSC, which will just mean a probably
888 * imperceptible slow down in execution. However this bit has a
889 * higher false positive consequence in that it can cause utf8.pm,
890 * utf8_heavy.pl ... to be loaded when not necessary, which is a much
891 * bigger slowdown and also causes significant extra memory to be used.
892 * In order to prevent this, the code now takes a different tack. The
893 * bit isn't set unless some part of the regular expression needs it,
894 * but once set it won't get cleared. This means that these extra
895 * modules won't get loaded unless there was some path through the
896 * pattern that would have required them anyway, and so any false
897 * positives that occur by not ANDing them out when they could be
898 * aren't as severe as they would be if we treated this bit like all
900 outside_bitmap_but_not_utf8 = (cl->flags | and_with->flags)
901 & ANYOF_NONBITMAP_NON_UTF8;
902 cl->flags &= and_with->flags;
903 cl->flags |= outside_bitmap_but_not_utf8;
907 /* 'OR' a given class with another one. Can create false positives. 'cl'
908 * should not be inverted. 'or_with->flags & ANYOF_CLASS' should be 0 if
909 * 'or_with' is a regnode_charclass instead of a regnode_charclass_class. */
911 S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
913 PERL_ARGS_ASSERT_CL_OR;
915 if (or_with->flags & ANYOF_INVERT) {
917 /* Here, the or'd node is to be inverted. This means we take the
918 * complement of everything not in the bitmap, but currently we don't
919 * know what that is, so give up and match anything */
920 if (ANYOF_NONBITMAP(or_with)) {
921 cl_anything(pRExC_state, cl);
924 * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
925 * <= (B1 | !B2) | (CL1 | !CL2)
926 * which is wasteful if CL2 is small, but we ignore CL2:
927 * (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
928 * XXXX Can we handle case-fold? Unclear:
929 * (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
930 * (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
932 else if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
933 && !(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
934 && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD) ) {
937 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
938 cl->bitmap[i] |= ~or_with->bitmap[i];
939 } /* XXXX: logic is complicated otherwise */
941 cl_anything(pRExC_state, cl);
944 /* And, we can just take the union of the flags that aren't affected
945 * by the inversion */
946 cl->flags |= or_with->flags & INVERSION_UNAFFECTED_FLAGS;
948 /* For the remaining flags:
949 ANYOF_UNICODE_ALL and inverted means to not match anything above
950 255, which means that the union with cl should just be
951 what cl has in it, so can ignore this flag
952 ANYOF_NON_UTF8_LATIN1_ALL and inverted means if not utf8 and ord
953 is 127-255 to match them, but then invert that, so the
954 union with cl should just be what cl has in it, so can
957 } else { /* 'or_with' is not inverted */
958 /* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
959 if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
960 && (!(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
961 || (cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) ) {
964 /* OR char bitmap and class bitmap separately */
965 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
966 cl->bitmap[i] |= or_with->bitmap[i];
967 if (ANYOF_CLASS_TEST_ANY_SET(or_with)) {
968 for (i = 0; i < ANYOF_CLASSBITMAP_SIZE; i++)
969 cl->classflags[i] |= or_with->classflags[i];
970 cl->flags |= ANYOF_CLASS;
973 else { /* XXXX: logic is complicated, leave it along for a moment. */
974 cl_anything(pRExC_state, cl);
977 if (ANYOF_NONBITMAP(or_with)) {
979 /* Use the added node's outside-the-bit-map match if there isn't a
980 * conflict. If there is a conflict (both nodes match something
981 * outside the bitmap, but what they match outside is not the same
982 * pointer, and hence not easily compared until XXX we extend
983 * inversion lists this far), give up and allow the start class to
984 * match everything outside the bitmap. If that stuff is all above
985 * 255, can just set UNICODE_ALL, otherwise caould be anything. */
986 if (! ANYOF_NONBITMAP(cl)) {
987 ARG_SET(cl, ARG(or_with));
989 else if (ARG(cl) != ARG(or_with)) {
991 if ((or_with->flags & ANYOF_NONBITMAP_NON_UTF8)) {
992 cl_anything(pRExC_state, cl);
995 cl->flags |= ANYOF_UNICODE_ALL;
1000 /* Take the union */
1001 cl->flags |= or_with->flags;
1005 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1006 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1007 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1008 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
1013 dump_trie(trie,widecharmap,revcharmap)
1014 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1015 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1017 These routines dump out a trie in a somewhat readable format.
1018 The _interim_ variants are used for debugging the interim
1019 tables that are used to generate the final compressed
1020 representation which is what dump_trie expects.
1022 Part of the reason for their existence is to provide a form
1023 of documentation as to how the different representations function.
1028 Dumps the final compressed table form of the trie to Perl_debug_log.
1029 Used for debugging make_trie().
1033 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1034 AV *revcharmap, U32 depth)
1037 SV *sv=sv_newmortal();
1038 int colwidth= widecharmap ? 6 : 4;
1040 GET_RE_DEBUG_FLAGS_DECL;
1042 PERL_ARGS_ASSERT_DUMP_TRIE;
1044 PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
1045 (int)depth * 2 + 2,"",
1046 "Match","Base","Ofs" );
1048 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1049 SV ** const tmp = av_fetch( revcharmap, state, 0);
1051 PerlIO_printf( Perl_debug_log, "%*s",
1053 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1054 PL_colors[0], PL_colors[1],
1055 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1056 PERL_PV_ESCAPE_FIRSTCHAR
1061 PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
1062 (int)depth * 2 + 2,"");
1064 for( state = 0 ; state < trie->uniquecharcount ; state++ )
1065 PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
1066 PerlIO_printf( Perl_debug_log, "\n");
1068 for( state = 1 ; state < trie->statecount ; state++ ) {
1069 const U32 base = trie->states[ state ].trans.base;
1071 PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
1073 if ( trie->states[ state ].wordnum ) {
1074 PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
1076 PerlIO_printf( Perl_debug_log, "%6s", "" );
1079 PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
1084 while( ( base + ofs < trie->uniquecharcount ) ||
1085 ( base + ofs - trie->uniquecharcount < trie->lasttrans
1086 && trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
1089 PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
1091 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
1092 if ( ( base + ofs >= trie->uniquecharcount ) &&
1093 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
1094 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
1096 PerlIO_printf( Perl_debug_log, "%*"UVXf,
1098 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
1100 PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
1104 PerlIO_printf( Perl_debug_log, "]");
1107 PerlIO_printf( Perl_debug_log, "\n" );
1109 PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=", (int)depth*2, "");
1110 for (word=1; word <= trie->wordcount; word++) {
1111 PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
1112 (int)word, (int)(trie->wordinfo[word].prev),
1113 (int)(trie->wordinfo[word].len));
1115 PerlIO_printf(Perl_debug_log, "\n" );
1118 Dumps a fully constructed but uncompressed trie in list form.
1119 List tries normally only are used for construction when the number of
1120 possible chars (trie->uniquecharcount) is very high.
1121 Used for debugging make_trie().
1124 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
1125 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1129 SV *sv=sv_newmortal();
1130 int colwidth= widecharmap ? 6 : 4;
1131 GET_RE_DEBUG_FLAGS_DECL;
1133 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
1135 /* print out the table precompression. */
1136 PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
1137 (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
1138 "------:-----+-----------------\n" );
1140 for( state=1 ; state < next_alloc ; state ++ ) {
1143 PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
1144 (int)depth * 2 + 2,"", (UV)state );
1145 if ( ! trie->states[ state ].wordnum ) {
1146 PerlIO_printf( Perl_debug_log, "%5s| ","");
1148 PerlIO_printf( Perl_debug_log, "W%4x| ",
1149 trie->states[ state ].wordnum
1152 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
1153 SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
1155 PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
1157 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1158 PL_colors[0], PL_colors[1],
1159 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1160 PERL_PV_ESCAPE_FIRSTCHAR
1162 TRIE_LIST_ITEM(state,charid).forid,
1163 (UV)TRIE_LIST_ITEM(state,charid).newstate
1166 PerlIO_printf(Perl_debug_log, "\n%*s| ",
1167 (int)((depth * 2) + 14), "");
1170 PerlIO_printf( Perl_debug_log, "\n");
1175 Dumps a fully constructed but uncompressed trie in table form.
1176 This is the normal DFA style state transition table, with a few
1177 twists to facilitate compression later.
1178 Used for debugging make_trie().
1181 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
1182 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1187 SV *sv=sv_newmortal();
1188 int colwidth= widecharmap ? 6 : 4;
1189 GET_RE_DEBUG_FLAGS_DECL;
1191 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
1194 print out the table precompression so that we can do a visual check
1195 that they are identical.
1198 PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
1200 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1201 SV ** const tmp = av_fetch( revcharmap, charid, 0);
1203 PerlIO_printf( Perl_debug_log, "%*s",
1205 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1206 PL_colors[0], PL_colors[1],
1207 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1208 PERL_PV_ESCAPE_FIRSTCHAR
1214 PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
1216 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
1217 PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
1220 PerlIO_printf( Perl_debug_log, "\n" );
1222 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
1224 PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
1225 (int)depth * 2 + 2,"",
1226 (UV)TRIE_NODENUM( state ) );
1228 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1229 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
1231 PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
1233 PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
1235 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
1236 PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
1238 PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
1239 trie->states[ TRIE_NODENUM( state ) ].wordnum );
1247 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
1248 startbranch: the first branch in the whole branch sequence
1249 first : start branch of sequence of branch-exact nodes.
1250 May be the same as startbranch
1251 last : Thing following the last branch.
1252 May be the same as tail.
1253 tail : item following the branch sequence
1254 count : words in the sequence
1255 flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
1256 depth : indent depth
1258 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
1260 A trie is an N'ary tree where the branches are determined by digital
1261 decomposition of the key. IE, at the root node you look up the 1st character and
1262 follow that branch repeat until you find the end of the branches. Nodes can be
1263 marked as "accepting" meaning they represent a complete word. Eg:
1267 would convert into the following structure. Numbers represent states, letters
1268 following numbers represent valid transitions on the letter from that state, if
1269 the number is in square brackets it represents an accepting state, otherwise it
1270 will be in parenthesis.
1272 +-h->+-e->[3]-+-r->(8)-+-s->[9]
1276 (1) +-i->(6)-+-s->[7]
1278 +-s->(3)-+-h->(4)-+-e->[5]
1280 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
1282 This shows that when matching against the string 'hers' we will begin at state 1
1283 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
1284 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
1285 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
1286 single traverse. We store a mapping from accepting to state to which word was
1287 matched, and then when we have multiple possibilities we try to complete the
1288 rest of the regex in the order in which they occured in the alternation.
1290 The only prior NFA like behaviour that would be changed by the TRIE support is
1291 the silent ignoring of duplicate alternations which are of the form:
1293 / (DUPE|DUPE) X? (?{ ... }) Y /x
1295 Thus EVAL blocks following a trie may be called a different number of times with
1296 and without the optimisation. With the optimisations dupes will be silently
1297 ignored. This inconsistent behaviour of EVAL type nodes is well established as
1298 the following demonstrates:
1300 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
1302 which prints out 'word' three times, but
1304 'words'=~/(word|word|word)(?{ print $1 })S/
1306 which doesnt print it out at all. This is due to other optimisations kicking in.
1308 Example of what happens on a structural level:
1310 The regexp /(ac|ad|ab)+/ will produce the following debug output:
1312 1: CURLYM[1] {1,32767}(18)
1323 This would be optimizable with startbranch=5, first=5, last=16, tail=16
1324 and should turn into:
1326 1: CURLYM[1] {1,32767}(18)
1328 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
1336 Cases where tail != last would be like /(?foo|bar)baz/:
1346 which would be optimizable with startbranch=1, first=1, last=7, tail=8
1347 and would end up looking like:
1350 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
1357 d = uvuni_to_utf8_flags(d, uv, 0);
1359 is the recommended Unicode-aware way of saying
1364 #define TRIE_STORE_REVCHAR \
1367 SV *zlopp = newSV(2); \
1368 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
1369 unsigned const char *const kapow = uvuni_to_utf8(flrbbbbb, uvc & 0xFF); \
1370 SvCUR_set(zlopp, kapow - flrbbbbb); \
1373 av_push(revcharmap, zlopp); \
1375 char ooooff = (char)uvc; \
1376 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
1380 #define TRIE_READ_CHAR STMT_START { \
1384 if ( foldlen > 0 ) { \
1385 uvc = utf8n_to_uvuni( scan, UTF8_MAXLEN, &len, uniflags ); \
1390 len = UTF8SKIP(uc);\
1391 uvc = to_utf8_fold( uc, foldbuf, &foldlen); \
1392 foldlen -= UNISKIP( uvc ); \
1393 scan = foldbuf + UNISKIP( uvc ); \
1396 uvc = utf8n_to_uvuni( (const U8*)uc, UTF8_MAXLEN, &len, uniflags);\
1406 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
1407 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
1408 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
1409 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
1411 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
1412 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
1413 TRIE_LIST_CUR( state )++; \
1416 #define TRIE_LIST_NEW(state) STMT_START { \
1417 Newxz( trie->states[ state ].trans.list, \
1418 4, reg_trie_trans_le ); \
1419 TRIE_LIST_CUR( state ) = 1; \
1420 TRIE_LIST_LEN( state ) = 4; \
1423 #define TRIE_HANDLE_WORD(state) STMT_START { \
1424 U16 dupe= trie->states[ state ].wordnum; \
1425 regnode * const noper_next = regnext( noper ); \
1428 /* store the word for dumping */ \
1430 if (OP(noper) != NOTHING) \
1431 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
1433 tmp = newSVpvn_utf8( "", 0, UTF ); \
1434 av_push( trie_words, tmp ); \
1438 trie->wordinfo[curword].prev = 0; \
1439 trie->wordinfo[curword].len = wordlen; \
1440 trie->wordinfo[curword].accept = state; \
1442 if ( noper_next < tail ) { \
1444 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \
1445 trie->jump[curword] = (U16)(noper_next - convert); \
1447 jumper = noper_next; \
1449 nextbranch= regnext(cur); \
1453 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
1454 /* chain, so that when the bits of chain are later */\
1455 /* linked together, the dups appear in the chain */\
1456 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
1457 trie->wordinfo[dupe].prev = curword; \
1459 /* we haven't inserted this word yet. */ \
1460 trie->states[ state ].wordnum = curword; \
1465 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
1466 ( ( base + charid >= ucharcount \
1467 && base + charid < ubound \
1468 && state == trie->trans[ base - ucharcount + charid ].check \
1469 && trie->trans[ base - ucharcount + charid ].next ) \
1470 ? trie->trans[ base - ucharcount + charid ].next \
1471 : ( state==1 ? special : 0 ) \
1475 #define MADE_JUMP_TRIE 2
1476 #define MADE_EXACT_TRIE 4
1479 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
1482 /* first pass, loop through and scan words */
1483 reg_trie_data *trie;
1484 HV *widecharmap = NULL;
1485 AV *revcharmap = newAV();
1487 const U32 uniflags = UTF8_ALLOW_DEFAULT;
1492 regnode *jumper = NULL;
1493 regnode *nextbranch = NULL;
1494 regnode *convert = NULL;
1495 U32 *prev_states; /* temp array mapping each state to previous one */
1496 /* we just use folder as a flag in utf8 */
1497 const U8 * folder = NULL;
1500 const U32 data_slot = add_data( pRExC_state, 4, "tuuu" );
1501 AV *trie_words = NULL;
1502 /* along with revcharmap, this only used during construction but both are
1503 * useful during debugging so we store them in the struct when debugging.
1506 const U32 data_slot = add_data( pRExC_state, 2, "tu" );
1507 STRLEN trie_charcount=0;
1509 SV *re_trie_maxbuff;
1510 GET_RE_DEBUG_FLAGS_DECL;
1512 PERL_ARGS_ASSERT_MAKE_TRIE;
1514 PERL_UNUSED_ARG(depth);
1519 case EXACTFU: folder = PL_fold_latin1; break;
1520 case EXACTF: folder = PL_fold; break;
1521 case EXACTFL: folder = PL_fold_locale; break;
1524 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
1526 trie->startstate = 1;
1527 trie->wordcount = word_count;
1528 RExC_rxi->data->data[ data_slot ] = (void*)trie;
1529 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
1530 if (!(UTF && folder))
1531 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
1532 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
1533 trie->wordcount+1, sizeof(reg_trie_wordinfo));
1536 trie_words = newAV();
1539 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
1540 if (!SvIOK(re_trie_maxbuff)) {
1541 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
1544 PerlIO_printf( Perl_debug_log,
1545 "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
1546 (int)depth * 2 + 2, "",
1547 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
1548 REG_NODE_NUM(last), REG_NODE_NUM(tail),
1552 /* Find the node we are going to overwrite */
1553 if ( first == startbranch && OP( last ) != BRANCH ) {
1554 /* whole branch chain */
1557 /* branch sub-chain */
1558 convert = NEXTOPER( first );
1561 /* -- First loop and Setup --
1563 We first traverse the branches and scan each word to determine if it
1564 contains widechars, and how many unique chars there are, this is
1565 important as we have to build a table with at least as many columns as we
1568 We use an array of integers to represent the character codes 0..255
1569 (trie->charmap) and we use a an HV* to store Unicode characters. We use the
1570 native representation of the character value as the key and IV's for the
1573 *TODO* If we keep track of how many times each character is used we can
1574 remap the columns so that the table compression later on is more
1575 efficient in terms of memory by ensuring the most common value is in the
1576 middle and the least common are on the outside. IMO this would be better
1577 than a most to least common mapping as theres a decent chance the most
1578 common letter will share a node with the least common, meaning the node
1579 will not be compressible. With a middle is most common approach the worst
1580 case is when we have the least common nodes twice.
1584 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1585 regnode * const noper = NEXTOPER( cur );
1586 const U8 *uc = (U8*)STRING( noper );
1587 const U8 * const e = uc + STR_LEN( noper );
1589 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1590 const U8 *scan = (U8*)NULL;
1591 U32 wordlen = 0; /* required init */
1593 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/
1595 if (OP(noper) == NOTHING) {
1599 if ( set_bit ) /* bitmap only alloced when !(UTF&&Folding) */
1600 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
1601 regardless of encoding */
1603 for ( ; uc < e ; uc += len ) {
1604 TRIE_CHARCOUNT(trie)++;
1608 if ( !trie->charmap[ uvc ] ) {
1609 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
1611 trie->charmap[ folder[ uvc ] ] = trie->charmap[ uvc ];
1615 /* store the codepoint in the bitmap, and its folded
1617 TRIE_BITMAP_SET(trie,uvc);
1619 /* store the folded codepoint */
1620 if ( folder ) TRIE_BITMAP_SET(trie,folder[ uvc ]);
1623 /* store first byte of utf8 representation of
1624 variant codepoints */
1625 if (! UNI_IS_INVARIANT(uvc)) {
1626 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
1629 set_bit = 0; /* We've done our bit :-) */
1634 widecharmap = newHV();
1636 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
1639 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
1641 if ( !SvTRUE( *svpp ) ) {
1642 sv_setiv( *svpp, ++trie->uniquecharcount );
1647 if( cur == first ) {
1650 } else if (chars < trie->minlen) {
1652 } else if (chars > trie->maxlen) {
1656 } /* end first pass */
1657 DEBUG_TRIE_COMPILE_r(
1658 PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
1659 (int)depth * 2 + 2,"",
1660 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
1661 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
1662 (int)trie->minlen, (int)trie->maxlen )
1666 We now know what we are dealing with in terms of unique chars and
1667 string sizes so we can calculate how much memory a naive
1668 representation using a flat table will take. If it's over a reasonable
1669 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
1670 conservative but potentially much slower representation using an array
1673 At the end we convert both representations into the same compressed
1674 form that will be used in regexec.c for matching with. The latter
1675 is a form that cannot be used to construct with but has memory
1676 properties similar to the list form and access properties similar
1677 to the table form making it both suitable for fast searches and
1678 small enough that its feasable to store for the duration of a program.
1680 See the comment in the code where the compressed table is produced
1681 inplace from the flat tabe representation for an explanation of how
1682 the compression works.
1687 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
1690 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
1692 Second Pass -- Array Of Lists Representation
1694 Each state will be represented by a list of charid:state records
1695 (reg_trie_trans_le) the first such element holds the CUR and LEN
1696 points of the allocated array. (See defines above).
1698 We build the initial structure using the lists, and then convert
1699 it into the compressed table form which allows faster lookups
1700 (but cant be modified once converted).
1703 STRLEN transcount = 1;
1705 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1706 "%*sCompiling trie using list compiler\n",
1707 (int)depth * 2 + 2, ""));
1709 trie->states = (reg_trie_state *)
1710 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1711 sizeof(reg_trie_state) );
1715 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1717 regnode * const noper = NEXTOPER( cur );
1718 U8 *uc = (U8*)STRING( noper );
1719 const U8 * const e = uc + STR_LEN( noper );
1720 U32 state = 1; /* required init */
1721 U16 charid = 0; /* sanity init */
1722 U8 *scan = (U8*)NULL; /* sanity init */
1723 STRLEN foldlen = 0; /* required init */
1724 U32 wordlen = 0; /* required init */
1725 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1727 if (OP(noper) != NOTHING) {
1728 for ( ; uc < e ; uc += len ) {
1733 charid = trie->charmap[ uvc ];
1735 SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1739 charid=(U16)SvIV( *svpp );
1742 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1749 if ( !trie->states[ state ].trans.list ) {
1750 TRIE_LIST_NEW( state );
1752 for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
1753 if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
1754 newstate = TRIE_LIST_ITEM( state, check ).newstate;
1759 newstate = next_alloc++;
1760 prev_states[newstate] = state;
1761 TRIE_LIST_PUSH( state, charid, newstate );
1766 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1770 TRIE_HANDLE_WORD(state);
1772 } /* end second pass */
1774 /* next alloc is the NEXT state to be allocated */
1775 trie->statecount = next_alloc;
1776 trie->states = (reg_trie_state *)
1777 PerlMemShared_realloc( trie->states,
1779 * sizeof(reg_trie_state) );
1781 /* and now dump it out before we compress it */
1782 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
1783 revcharmap, next_alloc,
1787 trie->trans = (reg_trie_trans *)
1788 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
1795 for( state=1 ; state < next_alloc ; state ++ ) {
1799 DEBUG_TRIE_COMPILE_MORE_r(
1800 PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
1804 if (trie->states[state].trans.list) {
1805 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
1809 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1810 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
1811 if ( forid < minid ) {
1813 } else if ( forid > maxid ) {
1817 if ( transcount < tp + maxid - minid + 1) {
1819 trie->trans = (reg_trie_trans *)
1820 PerlMemShared_realloc( trie->trans,
1822 * sizeof(reg_trie_trans) );
1823 Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
1825 base = trie->uniquecharcount + tp - minid;
1826 if ( maxid == minid ) {
1828 for ( ; zp < tp ; zp++ ) {
1829 if ( ! trie->trans[ zp ].next ) {
1830 base = trie->uniquecharcount + zp - minid;
1831 trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1832 trie->trans[ zp ].check = state;
1838 trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1839 trie->trans[ tp ].check = state;
1844 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1845 const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
1846 trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
1847 trie->trans[ tid ].check = state;
1849 tp += ( maxid - minid + 1 );
1851 Safefree(trie->states[ state ].trans.list);
1854 DEBUG_TRIE_COMPILE_MORE_r(
1855 PerlIO_printf( Perl_debug_log, " base: %d\n",base);
1858 trie->states[ state ].trans.base=base;
1860 trie->lasttrans = tp + 1;
1864 Second Pass -- Flat Table Representation.
1866 we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
1867 We know that we will need Charcount+1 trans at most to store the data
1868 (one row per char at worst case) So we preallocate both structures
1869 assuming worst case.
1871 We then construct the trie using only the .next slots of the entry
1874 We use the .check field of the first entry of the node temporarily to
1875 make compression both faster and easier by keeping track of how many non
1876 zero fields are in the node.
1878 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
1881 There are two terms at use here: state as a TRIE_NODEIDX() which is a
1882 number representing the first entry of the node, and state as a
1883 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
1884 TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
1885 are 2 entrys per node. eg:
1893 The table is internally in the right hand, idx form. However as we also
1894 have to deal with the states array which is indexed by nodenum we have to
1895 use TRIE_NODENUM() to convert.
1898 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1899 "%*sCompiling trie using table compiler\n",
1900 (int)depth * 2 + 2, ""));
1902 trie->trans = (reg_trie_trans *)
1903 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
1904 * trie->uniquecharcount + 1,
1905 sizeof(reg_trie_trans) );
1906 trie->states = (reg_trie_state *)
1907 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1908 sizeof(reg_trie_state) );
1909 next_alloc = trie->uniquecharcount + 1;
1912 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1914 regnode * const noper = NEXTOPER( cur );
1915 const U8 *uc = (U8*)STRING( noper );
1916 const U8 * const e = uc + STR_LEN( noper );
1918 U32 state = 1; /* required init */
1920 U16 charid = 0; /* sanity init */
1921 U32 accept_state = 0; /* sanity init */
1922 U8 *scan = (U8*)NULL; /* sanity init */
1924 STRLEN foldlen = 0; /* required init */
1925 U32 wordlen = 0; /* required init */
1926 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1928 if ( OP(noper) != NOTHING ) {
1929 for ( ; uc < e ; uc += len ) {
1934 charid = trie->charmap[ uvc ];
1936 SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1937 charid = svpp ? (U16)SvIV(*svpp) : 0;
1941 if ( !trie->trans[ state + charid ].next ) {
1942 trie->trans[ state + charid ].next = next_alloc;
1943 trie->trans[ state ].check++;
1944 prev_states[TRIE_NODENUM(next_alloc)]
1945 = TRIE_NODENUM(state);
1946 next_alloc += trie->uniquecharcount;
1948 state = trie->trans[ state + charid ].next;
1950 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1952 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1955 accept_state = TRIE_NODENUM( state );
1956 TRIE_HANDLE_WORD(accept_state);
1958 } /* end second pass */
1960 /* and now dump it out before we compress it */
1961 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
1963 next_alloc, depth+1));
1967 * Inplace compress the table.*
1969 For sparse data sets the table constructed by the trie algorithm will
1970 be mostly 0/FAIL transitions or to put it another way mostly empty.
1971 (Note that leaf nodes will not contain any transitions.)
1973 This algorithm compresses the tables by eliminating most such
1974 transitions, at the cost of a modest bit of extra work during lookup:
1976 - Each states[] entry contains a .base field which indicates the
1977 index in the state[] array wheres its transition data is stored.
1979 - If .base is 0 there are no valid transitions from that node.
1981 - If .base is nonzero then charid is added to it to find an entry in
1984 -If trans[states[state].base+charid].check!=state then the
1985 transition is taken to be a 0/Fail transition. Thus if there are fail
1986 transitions at the front of the node then the .base offset will point
1987 somewhere inside the previous nodes data (or maybe even into a node
1988 even earlier), but the .check field determines if the transition is
1992 The following process inplace converts the table to the compressed
1993 table: We first do not compress the root node 1,and mark all its
1994 .check pointers as 1 and set its .base pointer as 1 as well. This
1995 allows us to do a DFA construction from the compressed table later,
1996 and ensures that any .base pointers we calculate later are greater
1999 - We set 'pos' to indicate the first entry of the second node.
2001 - We then iterate over the columns of the node, finding the first and
2002 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
2003 and set the .check pointers accordingly, and advance pos
2004 appropriately and repreat for the next node. Note that when we copy
2005 the next pointers we have to convert them from the original
2006 NODEIDX form to NODENUM form as the former is not valid post
2009 - If a node has no transitions used we mark its base as 0 and do not
2010 advance the pos pointer.
2012 - If a node only has one transition we use a second pointer into the
2013 structure to fill in allocated fail transitions from other states.
2014 This pointer is independent of the main pointer and scans forward
2015 looking for null transitions that are allocated to a state. When it
2016 finds one it writes the single transition into the "hole". If the
2017 pointer doesnt find one the single transition is appended as normal.
2019 - Once compressed we can Renew/realloc the structures to release the
2022 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
2023 specifically Fig 3.47 and the associated pseudocode.
2027 const U32 laststate = TRIE_NODENUM( next_alloc );
2030 trie->statecount = laststate;
2032 for ( state = 1 ; state < laststate ; state++ ) {
2034 const U32 stateidx = TRIE_NODEIDX( state );
2035 const U32 o_used = trie->trans[ stateidx ].check;
2036 U32 used = trie->trans[ stateidx ].check;
2037 trie->trans[ stateidx ].check = 0;
2039 for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
2040 if ( flag || trie->trans[ stateidx + charid ].next ) {
2041 if ( trie->trans[ stateidx + charid ].next ) {
2043 for ( ; zp < pos ; zp++ ) {
2044 if ( ! trie->trans[ zp ].next ) {
2048 trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
2049 trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2050 trie->trans[ zp ].check = state;
2051 if ( ++zp > pos ) pos = zp;
2058 trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
2060 trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2061 trie->trans[ pos ].check = state;
2066 trie->lasttrans = pos + 1;
2067 trie->states = (reg_trie_state *)
2068 PerlMemShared_realloc( trie->states, laststate
2069 * sizeof(reg_trie_state) );
2070 DEBUG_TRIE_COMPILE_MORE_r(
2071 PerlIO_printf( Perl_debug_log,
2072 "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
2073 (int)depth * 2 + 2,"",
2074 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
2077 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
2080 } /* end table compress */
2082 DEBUG_TRIE_COMPILE_MORE_r(
2083 PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
2084 (int)depth * 2 + 2, "",
2085 (UV)trie->statecount,
2086 (UV)trie->lasttrans)
2088 /* resize the trans array to remove unused space */
2089 trie->trans = (reg_trie_trans *)
2090 PerlMemShared_realloc( trie->trans, trie->lasttrans
2091 * sizeof(reg_trie_trans) );
2093 { /* Modify the program and insert the new TRIE node */
2094 U8 nodetype =(U8)(flags & 0xFF);
2098 regnode *optimize = NULL;
2099 #ifdef RE_TRACK_PATTERN_OFFSETS
2102 U32 mjd_nodelen = 0;
2103 #endif /* RE_TRACK_PATTERN_OFFSETS */
2104 #endif /* DEBUGGING */
2106 This means we convert either the first branch or the first Exact,
2107 depending on whether the thing following (in 'last') is a branch
2108 or not and whther first is the startbranch (ie is it a sub part of
2109 the alternation or is it the whole thing.)
2110 Assuming its a sub part we convert the EXACT otherwise we convert
2111 the whole branch sequence, including the first.
2113 /* Find the node we are going to overwrite */
2114 if ( first != startbranch || OP( last ) == BRANCH ) {
2115 /* branch sub-chain */
2116 NEXT_OFF( first ) = (U16)(last - first);
2117 #ifdef RE_TRACK_PATTERN_OFFSETS
2119 mjd_offset= Node_Offset((convert));
2120 mjd_nodelen= Node_Length((convert));
2123 /* whole branch chain */
2125 #ifdef RE_TRACK_PATTERN_OFFSETS
2128 const regnode *nop = NEXTOPER( convert );
2129 mjd_offset= Node_Offset((nop));
2130 mjd_nodelen= Node_Length((nop));
2134 PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
2135 (int)depth * 2 + 2, "",
2136 (UV)mjd_offset, (UV)mjd_nodelen)
2139 /* But first we check to see if there is a common prefix we can
2140 split out as an EXACT and put in front of the TRIE node. */
2141 trie->startstate= 1;
2142 if ( trie->bitmap && !widecharmap && !trie->jump ) {
2144 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
2148 const U32 base = trie->states[ state ].trans.base;
2150 if ( trie->states[state].wordnum )
2153 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2154 if ( ( base + ofs >= trie->uniquecharcount ) &&
2155 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
2156 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
2158 if ( ++count > 1 ) {
2159 SV **tmp = av_fetch( revcharmap, ofs, 0);
2160 const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
2161 if ( state == 1 ) break;
2163 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
2165 PerlIO_printf(Perl_debug_log,
2166 "%*sNew Start State=%"UVuf" Class: [",
2167 (int)depth * 2 + 2, "",
2170 SV ** const tmp = av_fetch( revcharmap, idx, 0);
2171 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
2173 TRIE_BITMAP_SET(trie,*ch);
2175 TRIE_BITMAP_SET(trie, folder[ *ch ]);
2177 PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
2181 TRIE_BITMAP_SET(trie,*ch);
2183 TRIE_BITMAP_SET(trie,folder[ *ch ]);
2184 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
2190 SV **tmp = av_fetch( revcharmap, idx, 0);
2192 char *ch = SvPV( *tmp, len );
2194 SV *sv=sv_newmortal();
2195 PerlIO_printf( Perl_debug_log,
2196 "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
2197 (int)depth * 2 + 2, "",
2199 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
2200 PL_colors[0], PL_colors[1],
2201 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2202 PERL_PV_ESCAPE_FIRSTCHAR
2207 OP( convert ) = nodetype;
2208 str=STRING(convert);
2211 STR_LEN(convert) += len;
2217 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
2222 trie->prefixlen = (state-1);
2224 regnode *n = convert+NODE_SZ_STR(convert);
2225 NEXT_OFF(convert) = NODE_SZ_STR(convert);
2226 trie->startstate = state;
2227 trie->minlen -= (state - 1);
2228 trie->maxlen -= (state - 1);
2230 /* At least the UNICOS C compiler choked on this
2231 * being argument to DEBUG_r(), so let's just have
2234 #ifdef PERL_EXT_RE_BUILD
2240 regnode *fix = convert;
2241 U32 word = trie->wordcount;
2243 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
2244 while( ++fix < n ) {
2245 Set_Node_Offset_Length(fix, 0, 0);
2248 SV ** const tmp = av_fetch( trie_words, word, 0 );
2250 if ( STR_LEN(convert) <= SvCUR(*tmp) )
2251 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
2253 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
2261 NEXT_OFF(convert) = (U16)(tail - convert);
2262 DEBUG_r(optimize= n);
2268 if ( trie->maxlen ) {
2269 NEXT_OFF( convert ) = (U16)(tail - convert);
2270 ARG_SET( convert, data_slot );
2271 /* Store the offset to the first unabsorbed branch in
2272 jump[0], which is otherwise unused by the jump logic.
2273 We use this when dumping a trie and during optimisation. */
2275 trie->jump[0] = (U16)(nextbranch - convert);
2277 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
2278 * and there is a bitmap
2279 * and the first "jump target" node we found leaves enough room
2280 * then convert the TRIE node into a TRIEC node, with the bitmap
2281 * embedded inline in the opcode - this is hypothetically faster.
2283 if ( !trie->states[trie->startstate].wordnum
2285 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
2287 OP( convert ) = TRIEC;
2288 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
2289 PerlMemShared_free(trie->bitmap);
2292 OP( convert ) = TRIE;
2294 /* store the type in the flags */
2295 convert->flags = nodetype;
2299 + regarglen[ OP( convert ) ];
2301 /* XXX We really should free up the resource in trie now,
2302 as we won't use them - (which resources?) dmq */
2304 /* needed for dumping*/
2305 DEBUG_r(if (optimize) {
2306 regnode *opt = convert;
2308 while ( ++opt < optimize) {
2309 Set_Node_Offset_Length(opt,0,0);
2312 Try to clean up some of the debris left after the
2315 while( optimize < jumper ) {
2316 mjd_nodelen += Node_Length((optimize));
2317 OP( optimize ) = OPTIMIZED;
2318 Set_Node_Offset_Length(optimize,0,0);
2321 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
2323 } /* end node insert */
2325 /* Finish populating the prev field of the wordinfo array. Walk back
2326 * from each accept state until we find another accept state, and if
2327 * so, point the first word's .prev field at the second word. If the
2328 * second already has a .prev field set, stop now. This will be the
2329 * case either if we've already processed that word's accept state,
2330 * or that state had multiple words, and the overspill words were
2331 * already linked up earlier.
2338 for (word=1; word <= trie->wordcount; word++) {
2340 if (trie->wordinfo[word].prev)
2342 state = trie->wordinfo[word].accept;
2344 state = prev_states[state];
2347 prev = trie->states[state].wordnum;
2351 trie->wordinfo[word].prev = prev;
2353 Safefree(prev_states);
2357 /* and now dump out the compressed format */
2358 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
2360 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
2362 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
2363 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
2365 SvREFCNT_dec(revcharmap);
2369 : trie->startstate>1
2375 S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
2377 /* The Trie is constructed and compressed now so we can build a fail array if it's needed
2379 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
2380 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
2383 We find the fail state for each state in the trie, this state is the longest proper
2384 suffix of the current state's 'word' that is also a proper prefix of another word in our
2385 trie. State 1 represents the word '' and is thus the default fail state. This allows
2386 the DFA not to have to restart after its tried and failed a word at a given point, it
2387 simply continues as though it had been matching the other word in the first place.
2389 'abcdgu'=~/abcdefg|cdgu/
2390 When we get to 'd' we are still matching the first word, we would encounter 'g' which would
2391 fail, which would bring us to the state representing 'd' in the second word where we would
2392 try 'g' and succeed, proceeding to match 'cdgu'.
2394 /* add a fail transition */
2395 const U32 trie_offset = ARG(source);
2396 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
2398 const U32 ucharcount = trie->uniquecharcount;
2399 const U32 numstates = trie->statecount;
2400 const U32 ubound = trie->lasttrans + ucharcount;
2404 U32 base = trie->states[ 1 ].trans.base;
2407 const U32 data_slot = add_data( pRExC_state, 1, "T" );
2408 GET_RE_DEBUG_FLAGS_DECL;
2410 PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE;
2412 PERL_UNUSED_ARG(depth);
2416 ARG_SET( stclass, data_slot );
2417 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
2418 RExC_rxi->data->data[ data_slot ] = (void*)aho;
2419 aho->trie=trie_offset;
2420 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
2421 Copy( trie->states, aho->states, numstates, reg_trie_state );
2422 Newxz( q, numstates, U32);
2423 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
2426 /* initialize fail[0..1] to be 1 so that we always have
2427 a valid final fail state */
2428 fail[ 0 ] = fail[ 1 ] = 1;
2430 for ( charid = 0; charid < ucharcount ; charid++ ) {
2431 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
2433 q[ q_write ] = newstate;
2434 /* set to point at the root */
2435 fail[ q[ q_write++ ] ]=1;
2438 while ( q_read < q_write) {
2439 const U32 cur = q[ q_read++ % numstates ];
2440 base = trie->states[ cur ].trans.base;
2442 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
2443 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
2445 U32 fail_state = cur;
2448 fail_state = fail[ fail_state ];
2449 fail_base = aho->states[ fail_state ].trans.base;
2450 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
2452 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
2453 fail[ ch_state ] = fail_state;
2454 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
2456 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
2458 q[ q_write++ % numstates] = ch_state;
2462 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
2463 when we fail in state 1, this allows us to use the
2464 charclass scan to find a valid start char. This is based on the principle
2465 that theres a good chance the string being searched contains lots of stuff
2466 that cant be a start char.
2468 fail[ 0 ] = fail[ 1 ] = 0;
2469 DEBUG_TRIE_COMPILE_r({
2470 PerlIO_printf(Perl_debug_log,
2471 "%*sStclass Failtable (%"UVuf" states): 0",
2472 (int)(depth * 2), "", (UV)numstates
2474 for( q_read=1; q_read<numstates; q_read++ ) {
2475 PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
2477 PerlIO_printf(Perl_debug_log, "\n");
2480 /*RExC_seen |= REG_SEEN_TRIEDFA;*/
2485 * There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
2486 * These need to be revisited when a newer toolchain becomes available.
2488 #if defined(__sparc64__) && defined(__GNUC__)
2489 # if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
2490 # undef SPARC64_GCC_WORKAROUND
2491 # define SPARC64_GCC_WORKAROUND 1
2495 #define DEBUG_PEEP(str,scan,depth) \
2496 DEBUG_OPTIMISE_r({if (scan){ \
2497 SV * const mysv=sv_newmortal(); \
2498 regnode *Next = regnext(scan); \
2499 regprop(RExC_rx, mysv, scan); \
2500 PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
2501 (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
2502 Next ? (REG_NODE_NUM(Next)) : 0 ); \
2509 #define JOIN_EXACT(scan,min,flags) \
2510 if (PL_regkind[OP(scan)] == EXACT) \
2511 join_exact(pRExC_state,(scan),(min),(flags),NULL,depth+1)
2514 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, I32 *min, U32 flags,regnode *val, U32 depth) {
2515 /* Merge several consecutive EXACTish nodes into one. */
2516 regnode *n = regnext(scan);
2518 regnode *next = scan + NODE_SZ_STR(scan);
2522 regnode *stop = scan;
2523 GET_RE_DEBUG_FLAGS_DECL;
2525 PERL_UNUSED_ARG(depth);
2528 PERL_ARGS_ASSERT_JOIN_EXACT;
2529 #ifndef EXPERIMENTAL_INPLACESCAN
2530 PERL_UNUSED_ARG(flags);
2531 PERL_UNUSED_ARG(val);
2533 DEBUG_PEEP("join",scan,depth);
2535 /* Skip NOTHING, merge EXACT*. */
2537 ( PL_regkind[OP(n)] == NOTHING ||
2538 (stringok && (OP(n) == OP(scan))))
2540 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX) {
2542 if (OP(n) == TAIL || n > next)
2544 if (PL_regkind[OP(n)] == NOTHING) {
2545 DEBUG_PEEP("skip:",n,depth);
2546 NEXT_OFF(scan) += NEXT_OFF(n);
2547 next = n + NODE_STEP_REGNODE;
2554 else if (stringok) {
2555 const unsigned int oldl = STR_LEN(scan);
2556 regnode * const nnext = regnext(n);
2558 DEBUG_PEEP("merg",n,depth);
2561 if (oldl + STR_LEN(n) > U8_MAX)
2563 NEXT_OFF(scan) += NEXT_OFF(n);
2564 STR_LEN(scan) += STR_LEN(n);
2565 next = n + NODE_SZ_STR(n);
2566 /* Now we can overwrite *n : */
2567 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
2575 #ifdef EXPERIMENTAL_INPLACESCAN
2576 if (flags && !NEXT_OFF(n)) {
2577 DEBUG_PEEP("atch", val, depth);
2578 if (reg_off_by_arg[OP(n)]) {
2579 ARG_SET(n, val - n);
2582 NEXT_OFF(n) = val - n;
2588 #define GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS 0x0390
2589 #define IOTA_D_T GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS
2590 #define GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS 0x03B0
2591 #define UPSILON_D_T GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS
2594 && ( OP(scan) == EXACTF || OP(scan) == EXACTFU || OP(scan) == EXACTFA)
2595 && ( STR_LEN(scan) >= 6 ) )
2598 Two problematic code points in Unicode casefolding of EXACT nodes:
2600 U+0390 - GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
2601 U+03B0 - GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
2607 U+03B9 U+0308 U+0301 0xCE 0xB9 0xCC 0x88 0xCC 0x81
2608 U+03C5 U+0308 U+0301 0xCF 0x85 0xCC 0x88 0xCC 0x81
2610 This means that in case-insensitive matching (or "loose matching",
2611 as Unicode calls it), an EXACTF of length six (the UTF-8 encoded byte
2612 length of the above casefolded versions) can match a target string
2613 of length two (the byte length of UTF-8 encoded U+0390 or U+03B0).
2614 This would rather mess up the minimum length computation.
2616 What we'll do is to look for the tail four bytes, and then peek
2617 at the preceding two bytes to see whether we need to decrease
2618 the minimum length by four (six minus two).
2620 Thanks to the design of UTF-8, there cannot be false matches:
2621 A sequence of valid UTF-8 bytes cannot be a subsequence of
2622 another valid sequence of UTF-8 bytes.
2625 char * const s0 = STRING(scan), *s, *t;
2626 char * const s1 = s0 + STR_LEN(scan) - 1;
2627 char * const s2 = s1 - 4;
2628 #ifdef EBCDIC /* RD tunifold greek 0390 and 03B0 */
2629 const char t0[] = "\xaf\x49\xaf\x42";
2631 const char t0[] = "\xcc\x88\xcc\x81";
2633 const char * const t1 = t0 + 3;
2636 s < s2 && (t = ninstr(s, s1, t0, t1));
2639 if (((U8)t[-1] == 0x68 && (U8)t[-2] == 0xB4) ||
2640 ((U8)t[-1] == 0x46 && (U8)t[-2] == 0xB5))
2642 if (((U8)t[-1] == 0xB9 && (U8)t[-2] == 0xCE) ||
2643 ((U8)t[-1] == 0x85 && (U8)t[-2] == 0xCF))
2650 /* Allow dumping but overwriting the collection of skipped
2651 * ops and/or strings with fake optimized ops */
2652 n = scan + NODE_SZ_STR(scan);
2660 DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
2664 /* REx optimizer. Converts nodes into quicker variants "in place".
2665 Finds fixed substrings. */
2667 /* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
2668 to the position after last scanned or to NULL. */
2670 #define INIT_AND_WITHP \
2671 assert(!and_withp); \
2672 Newx(and_withp,1,struct regnode_charclass_class); \
2673 SAVEFREEPV(and_withp)
2675 /* this is a chain of data about sub patterns we are processing that
2676 need to be handled separately/specially in study_chunk. Its so
2677 we can simulate recursion without losing state. */
2679 typedef struct scan_frame {
2680 regnode *last; /* last node to process in this frame */
2681 regnode *next; /* next node to process when last is reached */
2682 struct scan_frame *prev; /*previous frame*/
2683 I32 stop; /* what stopparen do we use */
2687 #define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf)
2689 #define CASE_SYNST_FNC(nAmE) \
2691 if (flags & SCF_DO_STCLASS_AND) { \
2692 for (value = 0; value < 256; value++) \
2693 if (!is_ ## nAmE ## _cp(value)) \
2694 ANYOF_BITMAP_CLEAR(data->start_class, value); \
2697 for (value = 0; value < 256; value++) \
2698 if (is_ ## nAmE ## _cp(value)) \
2699 ANYOF_BITMAP_SET(data->start_class, value); \
2703 if (flags & SCF_DO_STCLASS_AND) { \
2704 for (value = 0; value < 256; value++) \
2705 if (is_ ## nAmE ## _cp(value)) \
2706 ANYOF_BITMAP_CLEAR(data->start_class, value); \
2709 for (value = 0; value < 256; value++) \
2710 if (!is_ ## nAmE ## _cp(value)) \
2711 ANYOF_BITMAP_SET(data->start_class, value); \
2718 S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
2719 I32 *minlenp, I32 *deltap,
2724 struct regnode_charclass_class *and_withp,
2725 U32 flags, U32 depth)
2726 /* scanp: Start here (read-write). */
2727 /* deltap: Write maxlen-minlen here. */
2728 /* last: Stop before this one. */
2729 /* data: string data about the pattern */
2730 /* stopparen: treat close N as END */
2731 /* recursed: which subroutines have we recursed into */
2732 /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
2735 I32 min = 0, pars = 0, code;
2736 regnode *scan = *scanp, *next;
2738 int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
2739 int is_inf_internal = 0; /* The studied chunk is infinite */
2740 I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
2741 scan_data_t data_fake;
2742 SV *re_trie_maxbuff = NULL;
2743 regnode *first_non_open = scan;
2744 I32 stopmin = I32_MAX;
2745 scan_frame *frame = NULL;
2746 GET_RE_DEBUG_FLAGS_DECL;
2748 PERL_ARGS_ASSERT_STUDY_CHUNK;
2751 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
2755 while (first_non_open && OP(first_non_open) == OPEN)
2756 first_non_open=regnext(first_non_open);
2761 while ( scan && OP(scan) != END && scan < last ){
2762 /* Peephole optimizer: */
2763 DEBUG_STUDYDATA("Peep:", data,depth);
2764 DEBUG_PEEP("Peep",scan,depth);
2765 JOIN_EXACT(scan,&min,0);
2767 /* Follow the next-chain of the current node and optimize
2768 away all the NOTHINGs from it. */
2769 if (OP(scan) != CURLYX) {
2770 const int max = (reg_off_by_arg[OP(scan)]
2772 /* I32 may be smaller than U16 on CRAYs! */
2773 : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
2774 int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
2778 /* Skip NOTHING and LONGJMP. */
2779 while ((n = regnext(n))
2780 && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
2781 || ((OP(n) == LONGJMP) && (noff = ARG(n))))
2782 && off + noff < max)
2784 if (reg_off_by_arg[OP(scan)])
2787 NEXT_OFF(scan) = off;
2792 /* The principal pseudo-switch. Cannot be a switch, since we
2793 look into several different things. */
2794 if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
2795 || OP(scan) == IFTHEN) {
2796 next = regnext(scan);
2798 /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
2800 if (OP(next) == code || code == IFTHEN) {
2801 /* NOTE - There is similar code to this block below for handling
2802 TRIE nodes on a re-study. If you change stuff here check there
2804 I32 max1 = 0, min1 = I32_MAX, num = 0;
2805 struct regnode_charclass_class accum;
2806 regnode * const startbranch=scan;
2808 if (flags & SCF_DO_SUBSTR)
2809 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
2810 if (flags & SCF_DO_STCLASS)
2811 cl_init_zero(pRExC_state, &accum);
2813 while (OP(scan) == code) {
2814 I32 deltanext, minnext, f = 0, fake;
2815 struct regnode_charclass_class this_class;
2818 data_fake.flags = 0;
2820 data_fake.whilem_c = data->whilem_c;
2821 data_fake.last_closep = data->last_closep;
2824 data_fake.last_closep = &fake;
2826 data_fake.pos_delta = delta;
2827 next = regnext(scan);
2828 scan = NEXTOPER(scan);
2830 scan = NEXTOPER(scan);
2831 if (flags & SCF_DO_STCLASS) {
2832 cl_init(pRExC_state, &this_class);
2833 data_fake.start_class = &this_class;
2834 f = SCF_DO_STCLASS_AND;
2836 if (flags & SCF_WHILEM_VISITED_POS)
2837 f |= SCF_WHILEM_VISITED_POS;
2839 /* we suppose the run is continuous, last=next...*/
2840 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
2842 stopparen, recursed, NULL, f,depth+1);
2845 if (max1 < minnext + deltanext)
2846 max1 = minnext + deltanext;
2847 if (deltanext == I32_MAX)
2848 is_inf = is_inf_internal = 1;
2850 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
2852 if (data_fake.flags & SCF_SEEN_ACCEPT) {
2853 if ( stopmin > minnext)
2854 stopmin = min + min1;
2855 flags &= ~SCF_DO_SUBSTR;
2857 data->flags |= SCF_SEEN_ACCEPT;
2860 if (data_fake.flags & SF_HAS_EVAL)
2861 data->flags |= SF_HAS_EVAL;
2862 data->whilem_c = data_fake.whilem_c;
2864 if (flags & SCF_DO_STCLASS)
2865 cl_or(pRExC_state, &accum, &this_class);
2867 if (code == IFTHEN && num < 2) /* Empty ELSE branch */
2869 if (flags & SCF_DO_SUBSTR) {
2870 data->pos_min += min1;
2871 data->pos_delta += max1 - min1;
2872 if (max1 != min1 || is_inf)
2873 data->longest = &(data->longest_float);
2876 delta += max1 - min1;
2877 if (flags & SCF_DO_STCLASS_OR) {
2878 cl_or(pRExC_state, data->start_class, &accum);
2880 cl_and(data->start_class, and_withp);
2881 flags &= ~SCF_DO_STCLASS;
2884 else if (flags & SCF_DO_STCLASS_AND) {
2886 cl_and(data->start_class, &accum);
2887 flags &= ~SCF_DO_STCLASS;
2890 /* Switch to OR mode: cache the old value of
2891 * data->start_class */
2893 StructCopy(data->start_class, and_withp,
2894 struct regnode_charclass_class);
2895 flags &= ~SCF_DO_STCLASS_AND;
2896 StructCopy(&accum, data->start_class,
2897 struct regnode_charclass_class);
2898 flags |= SCF_DO_STCLASS_OR;
2899 data->start_class->flags |= ANYOF_EOS;
2903 if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
2906 Assuming this was/is a branch we are dealing with: 'scan' now
2907 points at the item that follows the branch sequence, whatever
2908 it is. We now start at the beginning of the sequence and look
2915 which would be constructed from a pattern like /A|LIST|OF|WORDS/
2917 If we can find such a subsequence we need to turn the first
2918 element into a trie and then add the subsequent branch exact
2919 strings to the trie.
2923 1. patterns where the whole set of branches can be converted.
2925 2. patterns where only a subset can be converted.
2927 In case 1 we can replace the whole set with a single regop
2928 for the trie. In case 2 we need to keep the start and end
2931 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
2932 becomes BRANCH TRIE; BRANCH X;
2934 There is an additional case, that being where there is a
2935 common prefix, which gets split out into an EXACT like node
2936 preceding the TRIE node.
2938 If x(1..n)==tail then we can do a simple trie, if not we make
2939 a "jump" trie, such that when we match the appropriate word
2940 we "jump" to the appropriate tail node. Essentially we turn
2941 a nested if into a case structure of sorts.
2946 if (!re_trie_maxbuff) {
2947 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
2948 if (!SvIOK(re_trie_maxbuff))
2949 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2951 if ( SvIV(re_trie_maxbuff)>=0 ) {
2953 regnode *first = (regnode *)NULL;
2954 regnode *last = (regnode *)NULL;
2955 regnode *tail = scan;
2960 SV * const mysv = sv_newmortal(); /* for dumping */
2962 /* var tail is used because there may be a TAIL
2963 regop in the way. Ie, the exacts will point to the
2964 thing following the TAIL, but the last branch will
2965 point at the TAIL. So we advance tail. If we
2966 have nested (?:) we may have to move through several
2970 while ( OP( tail ) == TAIL ) {
2971 /* this is the TAIL generated by (?:) */
2972 tail = regnext( tail );
2977 regprop(RExC_rx, mysv, tail );
2978 PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
2979 (int)depth * 2 + 2, "",
2980 "Looking for TRIE'able sequences. Tail node is: ",
2981 SvPV_nolen_const( mysv )
2987 step through the branches, cur represents each
2988 branch, noper is the first thing to be matched
2989 as part of that branch and noper_next is the
2990 regnext() of that node. if noper is an EXACT
2991 and noper_next is the same as scan (our current
2992 position in the regex) then the EXACT branch is
2993 a possible optimization target. Once we have
2994 two or more consecutive such branches we can
2995 create a trie of the EXACT's contents and stich
2996 it in place. If the sequence represents all of
2997 the branches we eliminate the whole thing and
2998 replace it with a single TRIE. If it is a
2999 subsequence then we need to stitch it in. This
3000 means the first branch has to remain, and needs
3001 to be repointed at the item on the branch chain
3002 following the last branch optimized. This could
3003 be either a BRANCH, in which case the
3004 subsequence is internal, or it could be the
3005 item following the branch sequence in which
3006 case the subsequence is at the end.
3010 /* dont use tail as the end marker for this traverse */
3011 for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
3012 regnode * const noper = NEXTOPER( cur );
3013 #if defined(DEBUGGING) || defined(NOJUMPTRIE)
3014 regnode * const noper_next = regnext( noper );
3018 regprop(RExC_rx, mysv, cur);
3019 PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
3020 (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
3022 regprop(RExC_rx, mysv, noper);
3023 PerlIO_printf( Perl_debug_log, " -> %s",
3024 SvPV_nolen_const(mysv));
3027 regprop(RExC_rx, mysv, noper_next );
3028 PerlIO_printf( Perl_debug_log,"\t=> %s\t",
3029 SvPV_nolen_const(mysv));
3031 PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d)\n",
3032 REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur) );
3034 if ( (((first && optype!=NOTHING) ? OP( noper ) == optype
3035 : PL_regkind[ OP( noper ) ] == EXACT )
3036 || OP(noper) == NOTHING )
3038 && noper_next == tail
3043 if ( !first || optype == NOTHING ) {
3044 if (!first) first = cur;
3045 optype = OP( noper );
3051 Currently the trie logic handles case insensitive matching properly only
3052 when the pattern is UTF-8 and the node is EXACTFU (thus forcing unicode
3055 If/when this is fixed the following define can be swapped
3056 in below to fully enable trie logic.
3058 #define TRIE_TYPE_IS_SAFE 1
3061 #define TRIE_TYPE_IS_SAFE ((UTF && optype == EXACTFU) || optype==EXACT)
3063 if ( last && TRIE_TYPE_IS_SAFE ) {
3064 make_trie( pRExC_state,
3065 startbranch, first, cur, tail, count,
3068 if ( PL_regkind[ OP( noper ) ] == EXACT
3070 && noper_next == tail
3075 optype = OP( noper );
3085 regprop(RExC_rx, mysv, cur);
3086 PerlIO_printf( Perl_debug_log,
3087 "%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
3088 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3092 if ( last && TRIE_TYPE_IS_SAFE ) {
3093 made= make_trie( pRExC_state, startbranch, first, scan, tail, count, optype, depth+1 );
3094 #ifdef TRIE_STUDY_OPT
3095 if ( ((made == MADE_EXACT_TRIE &&
3096 startbranch == first)
3097 || ( first_non_open == first )) &&
3099 flags |= SCF_TRIE_RESTUDY;
3100 if ( startbranch == first
3103 RExC_seen &=~REG_TOP_LEVEL_BRANCHES;
3113 else if ( code == BRANCHJ ) { /* single branch is optimized. */
3114 scan = NEXTOPER(NEXTOPER(scan));
3115 } else /* single branch is optimized. */
3116 scan = NEXTOPER(scan);
3118 } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
3119 scan_frame *newframe = NULL;
3124 if (OP(scan) != SUSPEND) {
3125 /* set the pointer */
3126 if (OP(scan) == GOSUB) {
3128 RExC_recurse[ARG2L(scan)] = scan;
3129 start = RExC_open_parens[paren-1];
3130 end = RExC_close_parens[paren-1];
3133 start = RExC_rxi->program + 1;
3137 Newxz(recursed, (((RExC_npar)>>3) +1), U8);
3138 SAVEFREEPV(recursed);
3140 if (!PAREN_TEST(recursed,paren+1)) {
3141 PAREN_SET(recursed,paren+1);
3142 Newx(newframe,1,scan_frame);
3144 if (flags & SCF_DO_SUBSTR) {
3145 SCAN_COMMIT(pRExC_state,data,minlenp);
3146 data->longest = &(data->longest_float);
3148 is_inf = is_inf_internal = 1;
3149 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3150 cl_anything(pRExC_state, data->start_class);
3151 flags &= ~SCF_DO_STCLASS;
3154 Newx(newframe,1,scan_frame);
3157 end = regnext(scan);
3162 SAVEFREEPV(newframe);
3163 newframe->next = regnext(scan);
3164 newframe->last = last;
3165 newframe->stop = stopparen;
3166 newframe->prev = frame;
3176 else if (OP(scan) == EXACT) {
3177 I32 l = STR_LEN(scan);
3180 const U8 * const s = (U8*)STRING(scan);
3181 l = utf8_length(s, s + l);
3182 uc = utf8_to_uvchr(s, NULL);
3184 uc = *((U8*)STRING(scan));
3187 if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
3188 /* The code below prefers earlier match for fixed
3189 offset, later match for variable offset. */
3190 if (data->last_end == -1) { /* Update the start info. */
3191 data->last_start_min = data->pos_min;
3192 data->last_start_max = is_inf
3193 ? I32_MAX : data->pos_min + data->pos_delta;
3195 sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
3197 SvUTF8_on(data->last_found);
3199 SV * const sv = data->last_found;
3200 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3201 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3202 if (mg && mg->mg_len >= 0)
3203 mg->mg_len += utf8_length((U8*)STRING(scan),
3204 (U8*)STRING(scan)+STR_LEN(scan));
3206 data->last_end = data->pos_min + l;
3207 data->pos_min += l; /* As in the first entry. */
3208 data->flags &= ~SF_BEFORE_EOL;
3210 if (flags & SCF_DO_STCLASS_AND) {
3211 /* Check whether it is compatible with what we know already! */
3215 /* If compatible, we or it in below. It is compatible if is
3216 * in the bitmp and either 1) its bit or its fold is set, or 2)
3217 * it's for a locale. Even if there isn't unicode semantics
3218 * here, at runtime there may be because of matching against a
3219 * utf8 string, so accept a possible false positive for
3220 * latin1-range folds */
3222 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
3223 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3224 && (!(data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD)
3225 || !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3230 ANYOF_CLASS_ZERO(data->start_class);
3231 ANYOF_BITMAP_ZERO(data->start_class);
3233 ANYOF_BITMAP_SET(data->start_class, uc);
3234 else if (uc >= 0x100) {
3237 /* Some Unicode code points fold to the Latin1 range; as
3238 * XXX temporary code, instead of figuring out if this is
3239 * one, just assume it is and set all the start class bits
3240 * that could be some such above 255 code point's fold
3241 * which will generate fals positives. As the code
3242 * elsewhere that does compute the fold settles down, it
3243 * can be extracted out and re-used here */
3244 for (i = 0; i < 256; i++){
3245 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3246 ANYOF_BITMAP_SET(data->start_class, i);
3250 data->start_class->flags &= ~ANYOF_EOS;
3252 data->start_class->flags &= ~ANYOF_UNICODE_ALL;
3254 else if (flags & SCF_DO_STCLASS_OR) {
3255 /* false positive possible if the class is case-folded */
3257 ANYOF_BITMAP_SET(data->start_class, uc);
3259 data->start_class->flags |= ANYOF_UNICODE_ALL;
3260 data->start_class->flags &= ~ANYOF_EOS;
3261 cl_and(data->start_class, and_withp);
3263 flags &= ~SCF_DO_STCLASS;
3265 else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
3266 I32 l = STR_LEN(scan);
3267 UV uc = *((U8*)STRING(scan));
3269 /* Search for fixed substrings supports EXACT only. */
3270 if (flags & SCF_DO_SUBSTR) {
3272 SCAN_COMMIT(pRExC_state, data, minlenp);
3275 const U8 * const s = (U8 *)STRING(scan);
3276 l = utf8_length(s, s + l);
3277 uc = utf8_to_uvchr(s, NULL);
3280 if (flags & SCF_DO_SUBSTR)
3282 if (flags & SCF_DO_STCLASS_AND) {
3283 /* Check whether it is compatible with what we know already! */
3286 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
3287 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3288 && !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3292 ANYOF_CLASS_ZERO(data->start_class);
3293 ANYOF_BITMAP_ZERO(data->start_class);
3295 ANYOF_BITMAP_SET(data->start_class, uc);
3296 data->start_class->flags &= ~ANYOF_EOS;
3297 data->start_class->flags |= ANYOF_LOC_NONBITMAP_FOLD;
3298 if (OP(scan) == EXACTFL) {
3299 /* XXX This set is probably no longer necessary, and
3300 * probably wrong as LOCALE now is on in the initial
3302 data->start_class->flags |= ANYOF_LOCALE;
3306 /* Also set the other member of the fold pair. In case
3307 * that unicode semantics is called for at runtime, use
3308 * the full latin1 fold. (Can't do this for locale,
3309 * because not known until runtime */
3310 ANYOF_BITMAP_SET(data->start_class, PL_fold_latin1[uc]);
3313 else if (uc >= 0x100) {
3315 for (i = 0; i < 256; i++){
3316 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3317 ANYOF_BITMAP_SET(data->start_class, i);
3322 else if (flags & SCF_DO_STCLASS_OR) {
3323 if (data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD) {
3324 /* false positive possible if the class is case-folded.
3325 Assume that the locale settings are the same... */
3327 ANYOF_BITMAP_SET(data->start_class, uc);
3328 if (OP(scan) != EXACTFL) {
3330 /* And set the other member of the fold pair, but
3331 * can't do that in locale because not known until
3333 ANYOF_BITMAP_SET(data->start_class,
3334 PL_fold_latin1[uc]);
3337 data->start_class->flags &= ~ANYOF_EOS;
3339 cl_and(data->start_class, and_withp);
3341 flags &= ~SCF_DO_STCLASS;
3343 else if (REGNODE_VARIES(OP(scan))) {
3344 I32 mincount, maxcount, minnext, deltanext, fl = 0;
3345 I32 f = flags, pos_before = 0;
3346 regnode * const oscan = scan;
3347 struct regnode_charclass_class this_class;
3348 struct regnode_charclass_class *oclass = NULL;
3349 I32 next_is_eval = 0;
3351 switch (PL_regkind[OP(scan)]) {
3352 case WHILEM: /* End of (?:...)* . */
3353 scan = NEXTOPER(scan);
3356 if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
3357 next = NEXTOPER(scan);
3358 if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
3360 maxcount = REG_INFTY;
3361 next = regnext(scan);
3362 scan = NEXTOPER(scan);
3366 if (flags & SCF_DO_SUBSTR)
3371 if (flags & SCF_DO_STCLASS) {
3373 maxcount = REG_INFTY;
3374 next = regnext(scan);
3375 scan = NEXTOPER(scan);
3378 is_inf = is_inf_internal = 1;
3379 scan = regnext(scan);
3380 if (flags & SCF_DO_SUBSTR) {
3381 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */
3382 data->longest = &(data->longest_float);
3384 goto optimize_curly_tail;
3386 if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
3387 && (scan->flags == stopparen))
3392 mincount = ARG1(scan);
3393 maxcount = ARG2(scan);
3395 next = regnext(scan);
3396 if (OP(scan) == CURLYX) {
3397 I32 lp = (data ? *(data->last_closep) : 0);
3398 scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
3400 scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
3401 next_is_eval = (OP(scan) == EVAL);
3403 if (flags & SCF_DO_SUBSTR) {
3404 if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */
3405 pos_before = data->pos_min;
3409 data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
3411 data->flags |= SF_IS_INF;
3413 if (flags & SCF_DO_STCLASS) {
3414 cl_init(pRExC_state, &this_class);
3415 oclass = data->start_class;
3416 data->start_class = &this_class;
3417 f |= SCF_DO_STCLASS_AND;
3418 f &= ~SCF_DO_STCLASS_OR;
3420 /* Exclude from super-linear cache processing any {n,m}
3421 regops for which the combination of input pos and regex
3422 pos is not enough information to determine if a match
3425 For example, in the regex /foo(bar\s*){4,8}baz/ with the
3426 regex pos at the \s*, the prospects for a match depend not
3427 only on the input position but also on how many (bar\s*)
3428 repeats into the {4,8} we are. */
3429 if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
3430 f &= ~SCF_WHILEM_VISITED_POS;
3432 /* This will finish on WHILEM, setting scan, or on NULL: */
3433 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3434 last, data, stopparen, recursed, NULL,
3436 ? (f & ~SCF_DO_SUBSTR) : f),depth+1);
3438 if (flags & SCF_DO_STCLASS)
3439 data->start_class = oclass;
3440 if (mincount == 0 || minnext == 0) {
3441 if (flags & SCF_DO_STCLASS_OR) {
3442 cl_or(pRExC_state, data->start_class, &this_class);
3444 else if (flags & SCF_DO_STCLASS_AND) {
3445 /* Switch to OR mode: cache the old value of
3446 * data->start_class */
3448 StructCopy(data->start_class, and_withp,
3449 struct regnode_charclass_class);
3450 flags &= ~SCF_DO_STCLASS_AND;
3451 StructCopy(&this_class, data->start_class,
3452 struct regnode_charclass_class);
3453 flags |= SCF_DO_STCLASS_OR;
3454 data->start_class->flags |= ANYOF_EOS;
3456 } else { /* Non-zero len */
3457 if (flags & SCF_DO_STCLASS_OR) {
3458 cl_or(pRExC_state, data->start_class, &this_class);
3459 cl_and(data->start_class, and_withp);
3461 else if (flags & SCF_DO_STCLASS_AND)
3462 cl_and(data->start_class, &this_class);
3463 flags &= ~SCF_DO_STCLASS;
3465 if (!scan) /* It was not CURLYX, but CURLY. */
3467 if ( /* ? quantifier ok, except for (?{ ... }) */
3468 (next_is_eval || !(mincount == 0 && maxcount == 1))
3469 && (minnext == 0) && (deltanext == 0)
3470 && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
3471 && maxcount <= REG_INFTY/3) /* Complement check for big count */
3473 ckWARNreg(RExC_parse,
3474 "Quantifier unexpected on zero-length expression");
3477 min += minnext * mincount;
3478 is_inf_internal |= ((maxcount == REG_INFTY
3479 && (minnext + deltanext) > 0)
3480 || deltanext == I32_MAX);
3481 is_inf |= is_inf_internal;
3482 delta += (minnext + deltanext) * maxcount - minnext * mincount;
3484 /* Try powerful optimization CURLYX => CURLYN. */
3485 if ( OP(oscan) == CURLYX && data
3486 && data->flags & SF_IN_PAR
3487 && !(data->flags & SF_HAS_EVAL)
3488 && !deltanext && minnext == 1 ) {
3489 /* Try to optimize to CURLYN. */
3490 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
3491 regnode * const nxt1 = nxt;
3498 if (!REGNODE_SIMPLE(OP(nxt))
3499 && !(PL_regkind[OP(nxt)] == EXACT
3500 && STR_LEN(nxt) == 1))
3506 if (OP(nxt) != CLOSE)
3508 if (RExC_open_parens) {
3509 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3510 RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
3512 /* Now we know that nxt2 is the only contents: */
3513 oscan->flags = (U8)ARG(nxt);
3515 OP(nxt1) = NOTHING; /* was OPEN. */
3518 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3519 NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
3520 NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
3521 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3522 OP(nxt + 1) = OPTIMIZED; /* was count. */
3523 NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
3528 /* Try optimization CURLYX => CURLYM. */
3529 if ( OP(oscan) == CURLYX && data
3530 && !(data->flags & SF_HAS_PAR)
3531 && !(data->flags & SF_HAS_EVAL)
3532 && !deltanext /* atom is fixed width */
3533 && minnext != 0 /* CURLYM can't handle zero width */
3535 /* XXXX How to optimize if data == 0? */
3536 /* Optimize to a simpler form. */
3537 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
3541 while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
3542 && (OP(nxt2) != WHILEM))
3544 OP(nxt2) = SUCCEED; /* Whas WHILEM */
3545 /* Need to optimize away parenths. */
3546 if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
3547 /* Set the parenth number. */
3548 regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
3550 oscan->flags = (U8)ARG(nxt);
3551 if (RExC_open_parens) {
3552 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3553 RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
3555 OP(nxt1) = OPTIMIZED; /* was OPEN. */
3556 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3559 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3560 OP(nxt + 1) = OPTIMIZED; /* was count. */
3561 NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
3562 NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
3565 while ( nxt1 && (OP(nxt1) != WHILEM)) {
3566 regnode *nnxt = regnext(nxt1);
3568 if (reg_off_by_arg[OP(nxt1)])
3569 ARG_SET(nxt1, nxt2 - nxt1);
3570 else if (nxt2 - nxt1 < U16_MAX)
3571 NEXT_OFF(nxt1) = nxt2 - nxt1;
3573 OP(nxt) = NOTHING; /* Cannot beautify */
3578 /* Optimize again: */
3579 study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
3580 NULL, stopparen, recursed, NULL, 0,depth+1);
3585 else if ((OP(oscan) == CURLYX)
3586 && (flags & SCF_WHILEM_VISITED_POS)
3587 /* See the comment on a similar expression above.
3588 However, this time it's not a subexpression
3589 we care about, but the expression itself. */
3590 && (maxcount == REG_INFTY)
3591 && data && ++data->whilem_c < 16) {
3592 /* This stays as CURLYX, we can put the count/of pair. */
3593 /* Find WHILEM (as in regexec.c) */
3594 regnode *nxt = oscan + NEXT_OFF(oscan);
3596 if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
3598 PREVOPER(nxt)->flags = (U8)(data->whilem_c
3599 | (RExC_whilem_seen << 4)); /* On WHILEM */
3601 if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
3603 if (flags & SCF_DO_SUBSTR) {
3604 SV *last_str = NULL;
3605 int counted = mincount != 0;
3607 if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */
3608 #if defined(SPARC64_GCC_WORKAROUND)
3611 const char *s = NULL;
3614 if (pos_before >= data->last_start_min)
3617 b = data->last_start_min;
3620 s = SvPV_const(data->last_found, l);
3621 old = b - data->last_start_min;
3624 I32 b = pos_before >= data->last_start_min
3625 ? pos_before : data->last_start_min;
3627 const char * const s = SvPV_const(data->last_found, l);
3628 I32 old = b - data->last_start_min;
3632 old = utf8_hop((U8*)s, old) - (U8*)s;
3634 /* Get the added string: */
3635 last_str = newSVpvn_utf8(s + old, l, UTF);
3636 if (deltanext == 0 && pos_before == b) {
3637 /* What was added is a constant string */
3639 SvGROW(last_str, (mincount * l) + 1);
3640 repeatcpy(SvPVX(last_str) + l,
3641 SvPVX_const(last_str), l, mincount - 1);
3642 SvCUR_set(last_str, SvCUR(last_str) * mincount);
3643 /* Add additional parts. */
3644 SvCUR_set(data->last_found,
3645 SvCUR(data->last_found) - l);
3646 sv_catsv(data->last_found, last_str);
3648 SV * sv = data->last_found;
3650 SvUTF8(sv) && SvMAGICAL(sv) ?
3651 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3652 if (mg && mg->mg_len >= 0)
3653 mg->mg_len += CHR_SVLEN(last_str) - l;
3655 data->last_end += l * (mincount - 1);
3658 /* start offset must point into the last copy */
3659 data->last_start_min += minnext * (mincount - 1);
3660 data->last_start_max += is_inf ? I32_MAX
3661 : (maxcount - 1) * (minnext + data->pos_delta);
3664 /* It is counted once already... */
3665 data->pos_min += minnext * (mincount - counted);
3666 data->pos_delta += - counted * deltanext +
3667 (minnext + deltanext) * maxcount - minnext * mincount;
3668 if (mincount != maxcount) {
3669 /* Cannot extend fixed substrings found inside
3671 SCAN_COMMIT(pRExC_state,data,minlenp);
3672 if (mincount && last_str) {
3673 SV * const sv = data->last_found;
3674 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3675 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3679 sv_setsv(sv, last_str);
3680 data->last_end = data->pos_min;
3681 data->last_start_min =
3682 data->pos_min - CHR_SVLEN(last_str);
3683 data->last_start_max = is_inf
3685 : data->pos_min + data->pos_delta
3686 - CHR_SVLEN(last_str);
3688 data->longest = &(data->longest_float);
3690 SvREFCNT_dec(last_str);
3692 if (data && (fl & SF_HAS_EVAL))
3693 data->flags |= SF_HAS_EVAL;
3694 optimize_curly_tail:
3695 if (OP(oscan) != CURLYX) {
3696 while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
3698 NEXT_OFF(oscan) += NEXT_OFF(next);
3701 default: /* REF, ANYOFV, and CLUMP only? */
3702 if (flags & SCF_DO_SUBSTR) {
3703 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3704 data->longest = &(data->longest_float);
3706 is_inf = is_inf_internal = 1;
3707 if (flags & SCF_DO_STCLASS_OR)
3708 cl_anything(pRExC_state, data->start_class);
3709 flags &= ~SCF_DO_STCLASS;
3713 else if (OP(scan) == LNBREAK) {
3714 if (flags & SCF_DO_STCLASS) {
3716 data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
3717 if (flags & SCF_DO_STCLASS_AND) {
3718 for (value = 0; value < 256; value++)
3719 if (!is_VERTWS_cp(value))
3720 ANYOF_BITMAP_CLEAR(data->start_class, value);
3723 for (value = 0; value < 256; value++)
3724 if (is_VERTWS_cp(value))
3725 ANYOF_BITMAP_SET(data->start_class, value);
3727 if (flags & SCF_DO_STCLASS_OR)
3728 cl_and(data->start_class, and_withp);
3729 flags &= ~SCF_DO_STCLASS;
3733 if (flags & SCF_DO_SUBSTR) {
3734 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3736 data->pos_delta += 1;
3737 data->longest = &(data->longest_float);
3740 else if (OP(scan) == FOLDCHAR) {
3741 int d = ARG(scan) == LATIN_SMALL_LETTER_SHARP_S ? 1 : 2;
3742 flags &= ~SCF_DO_STCLASS;
3745 if (flags & SCF_DO_SUBSTR) {
3746 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3748 data->pos_delta += d;
3749 data->longest = &(data->longest_float);
3752 else if (REGNODE_SIMPLE(OP(scan))) {
3755 if (flags & SCF_DO_SUBSTR) {
3756 SCAN_COMMIT(pRExC_state,data,minlenp);
3760 if (flags & SCF_DO_STCLASS) {
3761 data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
3763 /* Some of the logic below assumes that switching
3764 locale on will only add false positives. */
3765 switch (PL_regkind[OP(scan)]) {
3769 /* Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan)); */
3770 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3771 cl_anything(pRExC_state, data->start_class);
3774 if (OP(scan) == SANY)
3776 if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */
3777 value = (ANYOF_BITMAP_TEST(data->start_class,'\n')
3778 || ANYOF_CLASS_TEST_ANY_SET(data->start_class));
3779 cl_anything(pRExC_state, data->start_class);
3781 if (flags & SCF_DO_STCLASS_AND || !value)
3782 ANYOF_BITMAP_CLEAR(data->start_class,'\n');
3785 if (flags & SCF_DO_STCLASS_AND)
3786 cl_and(data->start_class,
3787 (struct regnode_charclass_class*)scan);
3789 cl_or(pRExC_state, data->start_class,
3790 (struct regnode_charclass_class*)scan);
3793 if (flags & SCF_DO_STCLASS_AND) {
3794 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3795 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NALNUM);
3796 if (OP(scan) == ALNUMU) {
3797 for (value = 0; value < 256; value++) {
3798 if (!isWORDCHAR_L1(value)) {
3799 ANYOF_BITMAP_CLEAR(data->start_class, value);
3803 for (value = 0; value < 256; value++) {
3804 if (!isALNUM(value)) {
3805 ANYOF_BITMAP_CLEAR(data->start_class, value);
3812 if (data->start_class->flags & ANYOF_LOCALE)
3813 ANYOF_CLASS_SET(data->start_class,ANYOF_ALNUM);
3815 /* Even if under locale, set the bits for non-locale
3816 * in case it isn't a true locale-node. This will
3817 * create false positives if it truly is locale */
3818 if (OP(scan) == ALNUMU) {
3819 for (value = 0; value < 256; value++) {
3820 if (isWORDCHAR_L1(value)) {
3821 ANYOF_BITMAP_SET(data->start_class, value);
3825 for (value = 0; value < 256; value++) {
3826 if (isALNUM(value)) {
3827 ANYOF_BITMAP_SET(data->start_class, value);
3834 if (flags & SCF_DO_STCLASS_AND) {
3835 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3836 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_ALNUM);
3837 if (OP(scan) == NALNUMU) {
3838 for (value = 0; value < 256; value++) {
3839 if (isWORDCHAR_L1(value)) {
3840 ANYOF_BITMAP_CLEAR(data->start_class, value);
3844 for (value = 0; value < 256; value++) {
3845 if (isALNUM(value)) {
3846 ANYOF_BITMAP_CLEAR(data->start_class, value);
3853 if (data->start_class->flags & ANYOF_LOCALE)
3854 ANYOF_CLASS_SET(data->start_class,ANYOF_NALNUM);
3856 /* Even if under locale, set the bits for non-locale in
3857 * case it isn't a true locale-node. This will create
3858 * false positives if it truly is locale */
3859 if (OP(scan) == NALNUMU) {
3860 for (value = 0; value < 256; value++) {
3861 if (! isWORDCHAR_L1(value)) {
3862 ANYOF_BITMAP_SET(data->start_class, value);
3866 for (value = 0; value < 256; value++) {
3867 if (! isALNUM(value)) {
3868 ANYOF_BITMAP_SET(data->start_class, value);
3875 if (flags & SCF_DO_STCLASS_AND) {
3876 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3877 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NSPACE);
3878 if (OP(scan) == SPACEU) {
3879 for (value = 0; value < 256; value++) {
3880 if (!isSPACE_L1(value)) {
3881 ANYOF_BITMAP_CLEAR(data->start_class, value);
3885 for (value = 0; value < 256; value++) {
3886 if (!isSPACE(value)) {
3887 ANYOF_BITMAP_CLEAR(data->start_class, value);
3894 if (data->start_class->flags & ANYOF_LOCALE) {
3895 ANYOF_CLASS_SET(data->start_class,ANYOF_SPACE);
3897 if (OP(scan) == SPACEU) {
3898 for (value = 0; value < 256; value++) {
3899 if (isSPACE_L1(value)) {
3900 ANYOF_BITMAP_SET(data->start_class, value);
3904 for (value = 0; value < 256; value++) {
3905 if (isSPACE(value)) {
3906 ANYOF_BITMAP_SET(data->start_class, value);
3913 if (flags & SCF_DO_STCLASS_AND) {
3914 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3915 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_SPACE);
3916 if (OP(scan) == NSPACEU) {
3917 for (value = 0; value < 256; value++) {
3918 if (isSPACE_L1(value)) {
3919 ANYOF_BITMAP_CLEAR(data->start_class, value);
3923 for (value = 0; value < 256; value++) {
3924 if (isSPACE(value)) {
3925 ANYOF_BITMAP_CLEAR(data->start_class, value);
3932 if (data->start_class->flags & ANYOF_LOCALE)
3933 ANYOF_CLASS_SET(data->start_class,ANYOF_NSPACE);
3934 if (OP(scan) == NSPACEU) {
3935 for (value = 0; value < 256; value++) {
3936 if (!isSPACE_L1(value)) {
3937 ANYOF_BITMAP_SET(data->start_class, value);
3942 for (value = 0; value < 256; value++) {
3943 if (!isSPACE(value)) {
3944 ANYOF_BITMAP_SET(data->start_class, value);
3951 if (flags & SCF_DO_STCLASS_AND) {
3952 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3953 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NDIGIT);
3954 for (value = 0; value < 256; value++)
3955 if (!isDIGIT(value))
3956 ANYOF_BITMAP_CLEAR(data->start_class, value);
3960 if (data->start_class->flags & ANYOF_LOCALE)
3961 ANYOF_CLASS_SET(data->start_class,ANYOF_DIGIT);
3962 for (value = 0; value < 256; value++)
3964 ANYOF_BITMAP_SET(data->start_class, value);
3968 if (flags & SCF_DO_STCLASS_AND) {
3969 if (!(data->start_class->flags & ANYOF_LOCALE))
3970 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_DIGIT);
3971 for (value = 0; value < 256; value++)
3973 ANYOF_BITMAP_CLEAR(data->start_class, value);
3976 if (data->start_class->flags & ANYOF_LOCALE)
3977 ANYOF_CLASS_SET(data->start_class,ANYOF_NDIGIT);
3978 for (value = 0; value < 256; value++)
3979 if (!isDIGIT(value))
3980 ANYOF_BITMAP_SET(data->start_class, value);
3983 CASE_SYNST_FNC(VERTWS);
3984 CASE_SYNST_FNC(HORIZWS);
3987 if (flags & SCF_DO_STCLASS_OR)
3988 cl_and(data->start_class, and_withp);
3989 flags &= ~SCF_DO_STCLASS;
3992 else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
3993 data->flags |= (OP(scan) == MEOL
3997 else if ( PL_regkind[OP(scan)] == BRANCHJ
3998 /* Lookbehind, or need to calculate parens/evals/stclass: */
3999 && (scan->flags || data || (flags & SCF_DO_STCLASS))
4000 && (OP(scan) == IFMATCH || OP(scan) == UNLESSM)) {
4001 if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4002 || OP(scan) == UNLESSM )
4004 /* Negative Lookahead/lookbehind
4005 In this case we can't do fixed string optimisation.
4008 I32 deltanext, minnext, fake = 0;
4010 struct regnode_charclass_class intrnl;
4013 data_fake.flags = 0;
4015 data_fake.whilem_c = data->whilem_c;
4016 data_fake.last_closep = data->last_closep;
4019 data_fake.last_closep = &fake;
4020 data_fake.pos_delta = delta;
4021 if ( flags & SCF_DO_STCLASS && !scan->flags
4022 && OP(scan) == IFMATCH ) { /* Lookahead */
4023 cl_init(pRExC_state, &intrnl);
4024 data_fake.start_class = &intrnl;
4025 f |= SCF_DO_STCLASS_AND;
4027 if (flags & SCF_WHILEM_VISITED_POS)
4028 f |= SCF_WHILEM_VISITED_POS;
4029 next = regnext(scan);
4030 nscan = NEXTOPER(NEXTOPER(scan));
4031 minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
4032 last, &data_fake, stopparen, recursed, NULL, f, depth+1);
4035 FAIL("Variable length lookbehind not implemented");
4037 else if (minnext > (I32)U8_MAX) {
4038 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4040 scan->flags = (U8)minnext;
4043 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4045 if (data_fake.flags & SF_HAS_EVAL)
4046 data->flags |= SF_HAS_EVAL;
4047 data->whilem_c = data_fake.whilem_c;
4049 if (f & SCF_DO_STCLASS_AND) {
4050 if (flags & SCF_DO_STCLASS_OR) {
4051 /* OR before, AND after: ideally we would recurse with
4052 * data_fake to get the AND applied by study of the
4053 * remainder of the pattern, and then derecurse;
4054 * *** HACK *** for now just treat as "no information".
4055 * See [perl #56690].
4057 cl_init(pRExC_state, data->start_class);
4059 /* AND before and after: combine and continue */
4060 const int was = (data->start_class->flags & ANYOF_EOS);
4062 cl_and(data->start_class, &intrnl);
4064 data->start_class->flags |= ANYOF_EOS;
4068 #if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4070 /* Positive Lookahead/lookbehind
4071 In this case we can do fixed string optimisation,
4072 but we must be careful about it. Note in the case of
4073 lookbehind the positions will be offset by the minimum
4074 length of the pattern, something we won't know about
4075 until after the recurse.
4077 I32 deltanext, fake = 0;
4079 struct regnode_charclass_class intrnl;
4081 /* We use SAVEFREEPV so that when the full compile
4082 is finished perl will clean up the allocated
4083 minlens when it's all done. This way we don't
4084 have to worry about freeing them when we know
4085 they wont be used, which would be a pain.
4088 Newx( minnextp, 1, I32 );
4089 SAVEFREEPV(minnextp);
4092 StructCopy(data, &data_fake, scan_data_t);
4093 if ((flags & SCF_DO_SUBSTR) && data->last_found) {
4096 SCAN_COMMIT(pRExC_state, &data_fake,minlenp);
4097 data_fake.last_found=newSVsv(data->last_found);
4101 data_fake.last_closep = &fake;
4102 data_fake.flags = 0;
4103 data_fake.pos_delta = delta;
4105 data_fake.flags |= SF_IS_INF;
4106 if ( flags & SCF_DO_STCLASS && !scan->flags
4107 && OP(scan) == IFMATCH ) { /* Lookahead */
4108 cl_init(pRExC_state, &intrnl);
4109 data_fake.start_class = &intrnl;
4110 f |= SCF_DO_STCLASS_AND;
4112 if (flags & SCF_WHILEM_VISITED_POS)
4113 f |= SCF_WHILEM_VISITED_POS;
4114 next = regnext(scan);
4115 nscan = NEXTOPER(NEXTOPER(scan));
4117 *minnextp = study_chunk(pRExC_state, &nscan, minnextp, &deltanext,
4118 last, &data_fake, stopparen, recursed, NULL, f,depth+1);
4121 FAIL("Variable length lookbehind not implemented");
4123 else if (*minnextp > (I32)U8_MAX) {
4124 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4126 scan->flags = (U8)*minnextp;
4131 if (f & SCF_DO_STCLASS_AND) {
4132 const int was = (data->start_class->flags & ANYOF_EOS);
4134 cl_and(data->start_class, &intrnl);
4136 data->start_class->flags |= ANYOF_EOS;
4139 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4141 if (data_fake.flags & SF_HAS_EVAL)
4142 data->flags |= SF_HAS_EVAL;
4143 data->whilem_c = data_fake.whilem_c;
4144 if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
4145 if (RExC_rx->minlen<*minnextp)
4146 RExC_rx->minlen=*minnextp;
4147 SCAN_COMMIT(pRExC_state, &data_fake, minnextp);
4148 SvREFCNT_dec(data_fake.last_found);
4150 if ( data_fake.minlen_fixed != minlenp )
4152 data->offset_fixed= data_fake.offset_fixed;
4153 data->minlen_fixed= data_fake.minlen_fixed;
4154 data->lookbehind_fixed+= scan->flags;
4156 if ( data_fake.minlen_float != minlenp )
4158 data->minlen_float= data_fake.minlen_float;
4159 data->offset_float_min=data_fake.offset_float_min;
4160 data->offset_float_max=data_fake.offset_float_max;
4161 data->lookbehind_float+= scan->flags;
4170 else if (OP(scan) == OPEN) {
4171 if (stopparen != (I32)ARG(scan))
4174 else if (OP(scan) == CLOSE) {
4175 if (stopparen == (I32)ARG(scan)) {
4178 if ((I32)ARG(scan) == is_par) {
4179 next = regnext(scan);
4181 if ( next && (OP(next) != WHILEM) && next < last)
4182 is_par = 0; /* Disable optimization */
4185 *(data->last_closep) = ARG(scan);
4187 else if (OP(scan) == EVAL) {
4189 data->flags |= SF_HAS_EVAL;
4191 else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
4192 if (flags & SCF_DO_SUBSTR) {
4193 SCAN_COMMIT(pRExC_state,data,minlenp);
4194 flags &= ~SCF_DO_SUBSTR;
4196 if (data && OP(scan)==ACCEPT) {
4197 data->flags |= SCF_SEEN_ACCEPT;
4202 else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
4204 if (flags & SCF_DO_SUBSTR) {
4205 SCAN_COMMIT(pRExC_state,data,minlenp);
4206 data->longest = &(data->longest_float);
4208 is_inf = is_inf_internal = 1;
4209 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
4210 cl_anything(pRExC_state, data->start_class);
4211 flags &= ~SCF_DO_STCLASS;
4213 else if (OP(scan) == GPOS) {
4214 if (!(RExC_rx->extflags & RXf_GPOS_FLOAT) &&
4215 !(delta || is_inf || (data && data->pos_delta)))
4217 if (!(RExC_rx->extflags & RXf_ANCH) && (flags & SCF_DO_SUBSTR))
4218 RExC_rx->extflags |= RXf_ANCH_GPOS;
4219 if (RExC_rx->gofs < (U32)min)
4220 RExC_rx->gofs = min;
4222 RExC_rx->extflags |= RXf_GPOS_FLOAT;
4226 #ifdef TRIE_STUDY_OPT
4227 #ifdef FULL_TRIE_STUDY
4228 else if (PL_regkind[OP(scan)] == TRIE) {
4229 /* NOTE - There is similar code to this block above for handling
4230 BRANCH nodes on the initial study. If you change stuff here
4232 regnode *trie_node= scan;
4233 regnode *tail= regnext(scan);
4234 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4235 I32 max1 = 0, min1 = I32_MAX;
4236 struct regnode_charclass_class accum;
4238 if (flags & SCF_DO_SUBSTR) /* XXXX Add !SUSPEND? */
4239 SCAN_COMMIT(pRExC_state, data,minlenp); /* Cannot merge strings after this. */
4240 if (flags & SCF_DO_STCLASS)
4241 cl_init_zero(pRExC_state, &accum);
4247 const regnode *nextbranch= NULL;
4250 for ( word=1 ; word <= trie->wordcount ; word++)
4252 I32 deltanext=0, minnext=0, f = 0, fake;
4253 struct regnode_charclass_class this_class;
4255 data_fake.flags = 0;
4257 data_fake.whilem_c = data->whilem_c;
4258 data_fake.last_closep = data->last_closep;
4261 data_fake.last_closep = &fake;
4262 data_fake.pos_delta = delta;
4263 if (flags & SCF_DO_STCLASS) {
4264 cl_init(pRExC_state, &this_class);
4265 data_fake.start_class = &this_class;
4266 f = SCF_DO_STCLASS_AND;
4268 if (flags & SCF_WHILEM_VISITED_POS)
4269 f |= SCF_WHILEM_VISITED_POS;
4271 if (trie->jump[word]) {
4273 nextbranch = trie_node + trie->jump[0];
4274 scan= trie_node + trie->jump[word];
4275 /* We go from the jump point to the branch that follows
4276 it. Note this means we need the vestigal unused branches
4277 even though they arent otherwise used.
4279 minnext = study_chunk(pRExC_state, &scan, minlenp,
4280 &deltanext, (regnode *)nextbranch, &data_fake,
4281 stopparen, recursed, NULL, f,depth+1);
4283 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
4284 nextbranch= regnext((regnode*)nextbranch);
4286 if (min1 > (I32)(minnext + trie->minlen))
4287 min1 = minnext + trie->minlen;
4288 if (max1 < (I32)(minnext + deltanext + trie->maxlen))
4289 max1 = minnext + deltanext + trie->maxlen;
4290 if (deltanext == I32_MAX)
4291 is_inf = is_inf_internal = 1;
4293 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4295 if (data_fake.flags & SCF_SEEN_ACCEPT) {
4296 if ( stopmin > min + min1)
4297 stopmin = min + min1;
4298 flags &= ~SCF_DO_SUBSTR;
4300 data->flags |= SCF_SEEN_ACCEPT;
4303 if (data_fake.flags & SF_HAS_EVAL)
4304 data->flags |= SF_HAS_EVAL;
4305 data->whilem_c = data_fake.whilem_c;
4307 if (flags & SCF_DO_STCLASS)
4308 cl_or(pRExC_state, &accum, &this_class);
4311 if (flags & SCF_DO_SUBSTR) {
4312 data->pos_min += min1;
4313 data->pos_delta += max1 - min1;
4314 if (max1 != min1 || is_inf)
4315 data->longest = &(data->longest_float);
4318 delta += max1 - min1;
4319 if (flags & SCF_DO_STCLASS_OR) {
4320 cl_or(pRExC_state, data->start_class, &accum);
4322 cl_and(data->start_class, and_withp);
4323 flags &= ~SCF_DO_STCLASS;
4326 else if (flags & SCF_DO_STCLASS_AND) {
4328 cl_and(data->start_class, &accum);
4329 flags &= ~SCF_DO_STCLASS;
4332 /* Switch to OR mode: cache the old value of
4333 * data->start_class */
4335 StructCopy(data->start_class, and_withp,
4336 struct regnode_charclass_class);
4337 flags &= ~SCF_DO_STCLASS_AND;
4338 StructCopy(&accum, data->start_class,
4339 struct regnode_charclass_class);
4340 flags |= SCF_DO_STCLASS_OR;
4341 data->start_class->flags |= ANYOF_EOS;
4348 else if (PL_regkind[OP(scan)] == TRIE) {
4349 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4352 min += trie->minlen;
4353 delta += (trie->maxlen - trie->minlen);
4354 flags &= ~SCF_DO_STCLASS; /* xxx */
4355 if (flags & SCF_DO_SUBSTR) {
4356 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
4357 data->pos_min += trie->minlen;
4358 data->pos_delta += (trie->maxlen - trie->minlen);
4359 if (trie->maxlen != trie->minlen)
4360 data->longest = &(data->longest_float);
4362 if (trie->jump) /* no more substrings -- for now /grr*/
4363 flags &= ~SCF_DO_SUBSTR;
4365 #endif /* old or new */
4366 #endif /* TRIE_STUDY_OPT */
4368 /* Else: zero-length, ignore. */
4369 scan = regnext(scan);
4374 stopparen = frame->stop;
4375 frame = frame->prev;
4376 goto fake_study_recurse;
4381 DEBUG_STUDYDATA("pre-fin:",data,depth);
4384 *deltap = is_inf_internal ? I32_MAX : delta;
4385 if (flags & SCF_DO_SUBSTR && is_inf)
4386 data->pos_delta = I32_MAX - data->pos_min;
4387 if (is_par > (I32)U8_MAX)
4389 if (is_par && pars==1 && data) {
4390 data->flags |= SF_IN_PAR;
4391 data->flags &= ~SF_HAS_PAR;
4393 else if (pars && data) {
4394 data->flags |= SF_HAS_PAR;
4395 data->flags &= ~SF_IN_PAR;
4397 if (flags & SCF_DO_STCLASS_OR)
4398 cl_and(data->start_class, and_withp);
4399 if (flags & SCF_TRIE_RESTUDY)
4400 data->flags |= SCF_TRIE_RESTUDY;
4402 DEBUG_STUDYDATA("post-fin:",data,depth);
4404 return min < stopmin ? min : stopmin;
4408 S_add_data(RExC_state_t *pRExC_state, U32 n, const char *s)
4410 U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
4412 PERL_ARGS_ASSERT_ADD_DATA;
4414 Renewc(RExC_rxi->data,
4415 sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
4416 char, struct reg_data);
4418 Renew(RExC_rxi->data->what, count + n, U8);
4420 Newx(RExC_rxi->data->what, n, U8);
4421 RExC_rxi->data->count = count + n;
4422 Copy(s, RExC_rxi->data->what + count, n, U8);
4426 /*XXX: todo make this not included in a non debugging perl */
4427 #ifndef PERL_IN_XSUB_RE
4429 Perl_reginitcolors(pTHX)
4432 const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
4434 char *t = savepv(s);
4438 t = strchr(t, '\t');
4444 PL_colors[i] = t = (char *)"";
4449 PL_colors[i++] = (char *)"";
4456 #ifdef TRIE_STUDY_OPT
4457 #define CHECK_RESTUDY_GOTO \
4459 (data.flags & SCF_TRIE_RESTUDY) \
4463 #define CHECK_RESTUDY_GOTO
4467 - pregcomp - compile a regular expression into internal code
4469 * We can't allocate space until we know how big the compiled form will be,
4470 * but we can't compile it (and thus know how big it is) until we've got a
4471 * place to put the code. So we cheat: we compile it twice, once with code
4472 * generation turned off and size counting turned on, and once "for real".
4473 * This also means that we don't allocate space until we are sure that the
4474 * thing really will compile successfully, and we never have to move the
4475 * code and thus invalidate pointers into it. (Note that it has to be in
4476 * one piece because free() must be able to free it all.) [NB: not true in perl]
4478 * Beware that the optimization-preparation code in here knows about some
4479 * of the structure of the compiled regexp. [I'll say.]
4484 #ifndef PERL_IN_XSUB_RE
4485 #define RE_ENGINE_PTR &PL_core_reg_engine
4487 extern const struct regexp_engine my_reg_engine;
4488 #define RE_ENGINE_PTR &my_reg_engine
4491 #ifndef PERL_IN_XSUB_RE
4493 Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
4496 HV * const table = GvHV(PL_hintgv);
4498 PERL_ARGS_ASSERT_PREGCOMP;
4500 /* Dispatch a request to compile a regexp to correct
4503 SV **ptr= hv_fetchs(table, "regcomp", FALSE);
4504 GET_RE_DEBUG_FLAGS_DECL;
4505 if (ptr && SvIOK(*ptr) && SvIV(*ptr)) {
4506 const regexp_engine *eng=INT2PTR(regexp_engine*,SvIV(*ptr));
4508 PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
4511 return CALLREGCOMP_ENG(eng, pattern, flags);
4514 return Perl_re_compile(aTHX_ pattern, flags);
4519 Perl_re_compile(pTHX_ SV * const pattern, U32 orig_pm_flags)
4524 register regexp_internal *ri;
4533 /* these are all flags - maybe they should be turned
4534 * into a single int with different bit masks */
4535 I32 sawlookahead = 0;
4538 bool used_setjump = FALSE;
4539 regex_charset initial_charset = get_regex_charset(orig_pm_flags);
4544 RExC_state_t RExC_state;
4545 RExC_state_t * const pRExC_state = &RExC_state;
4546 #ifdef TRIE_STUDY_OPT
4548 RExC_state_t copyRExC_state;
4550 GET_RE_DEBUG_FLAGS_DECL;
4552 PERL_ARGS_ASSERT_RE_COMPILE;
4554 DEBUG_r(if (!PL_colorset) reginitcolors());
4556 exp = SvPV(pattern, plen);
4558 if (plen == 0) { /* ignore the utf8ness if the pattern is 0 length */
4559 RExC_utf8 = RExC_orig_utf8 = 0;
4562 RExC_utf8 = RExC_orig_utf8 = SvUTF8(pattern);
4564 RExC_uni_semantics = 0;
4565 RExC_contains_locale = 0;
4567 /****************** LONG JUMP TARGET HERE***********************/
4568 /* Longjmp back to here if have to switch in midstream to utf8 */
4569 if (! RExC_orig_utf8) {
4570 JMPENV_PUSH(jump_ret);
4571 used_setjump = TRUE;
4574 if (jump_ret == 0) { /* First time through */
4578 SV *dsv= sv_newmortal();
4579 RE_PV_QUOTED_DECL(s, RExC_utf8,
4580 dsv, exp, plen, 60);
4581 PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
4582 PL_colors[4],PL_colors[5],s);
4585 else { /* longjumped back */
4588 /* If the cause for the longjmp was other than changing to utf8, pop
4589 * our own setjmp, and longjmp to the correct handler */
4590 if (jump_ret != UTF8_LONGJMP) {
4592 JMPENV_JUMP(jump_ret);
4597 /* It's possible to write a regexp in ascii that represents Unicode
4598 codepoints outside of the byte range, such as via \x{100}. If we
4599 detect such a sequence we have to convert the entire pattern to utf8
4600 and then recompile, as our sizing calculation will have been based
4601 on 1 byte == 1 character, but we will need to use utf8 to encode
4602 at least some part of the pattern, and therefore must convert the whole
4605 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
4606 "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
4607 exp = (char*)Perl_bytes_to_utf8(aTHX_
4608 (U8*)SvPV_nomg(pattern, plen),
4611 RExC_orig_utf8 = RExC_utf8 = 1;
4615 #ifdef TRIE_STUDY_OPT
4619 pm_flags = orig_pm_flags;
4621 if (initial_charset == REGEX_LOCALE_CHARSET) {
4622 RExC_contains_locale = 1;
4624 else if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
4626 /* Set to use unicode semantics if the pattern is in utf8 and has the
4627 * 'depends' charset specified, as it means unicode when utf8 */
4628 set_regex_charset(&pm_flags, REGEX_UNICODE_CHARSET);
4632 RExC_flags = pm_flags;
4636 RExC_in_lookbehind = 0;
4637 RExC_seen_zerolen = *exp == '^' ? -1 : 0;
4638 RExC_seen_evals = 0;
4640 RExC_override_recoding = 0;
4642 /* First pass: determine size, legality. */
4650 RExC_emit = &PL_regdummy;
4651 RExC_whilem_seen = 0;
4652 RExC_open_parens = NULL;
4653 RExC_close_parens = NULL;
4655 RExC_paren_names = NULL;
4657 RExC_paren_name_list = NULL;
4659 RExC_recurse = NULL;
4660 RExC_recurse_count = 0;
4662 #if 0 /* REGC() is (currently) a NOP at the first pass.
4663 * Clever compilers notice this and complain. --jhi */
4664 REGC((U8)REG_MAGIC, (char*)RExC_emit);
4666 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n"));
4667 if (reg(pRExC_state, 0, &flags,1) == NULL) {
4668 RExC_precomp = NULL;
4672 /* Here, finished first pass. Get rid of any added setjmp */
4678 PerlIO_printf(Perl_debug_log,
4679 "Required size %"IVdf" nodes\n"
4680 "Starting second pass (creation)\n",
4683 RExC_lastparse=NULL;
4686 /* The first pass could have found things that force Unicode semantics */
4687 if ((RExC_utf8 || RExC_uni_semantics)
4688 && get_regex_charset(pm_flags) == REGEX_DEPENDS_CHARSET)
4690 set_regex_charset(&pm_flags, REGEX_UNICODE_CHARSET);
4693 /* Small enough for pointer-storage convention?
4694 If extralen==0, this means that we will not need long jumps. */
4695 if (RExC_size >= 0x10000L && RExC_extralen)
4696 RExC_size += RExC_extralen;
4699 if (RExC_whilem_seen > 15)
4700 RExC_whilem_seen = 15;
4702 /* Allocate space and zero-initialize. Note, the two step process
4703 of zeroing when in debug mode, thus anything assigned has to
4704 happen after that */
4705 rx = (REGEXP*) newSV_type(SVt_REGEXP);
4706 r = (struct regexp*)SvANY(rx);
4707 Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
4708 char, regexp_internal);
4709 if ( r == NULL || ri == NULL )
4710 FAIL("Regexp out of space");
4712 /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
4713 Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode), char);
4715 /* bulk initialize base fields with 0. */
4716 Zero(ri, sizeof(regexp_internal), char);
4719 /* non-zero initialization begins here */
4721 r->engine= RE_ENGINE_PTR;
4722 r->extflags = pm_flags;
4724 bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
4725 bool has_charset = (get_regex_charset(r->extflags) != REGEX_DEPENDS_CHARSET);
4727 /* The caret is output if there are any defaults: if not all the STD
4728 * flags are set, or if no character set specifier is needed */
4730 (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
4732 bool has_runon = ((RExC_seen & REG_SEEN_RUN_ON_COMMENT)==REG_SEEN_RUN_ON_COMMENT);
4733 U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
4734 >> RXf_PMf_STD_PMMOD_SHIFT);
4735 const char *fptr = STD_PAT_MODS; /*"msix"*/
4737 /* Allocate for the worst case, which is all the std flags are turned
4738 * on. If more precision is desired, we could do a population count of
4739 * the flags set. This could be done with a small lookup table, or by
4740 * shifting, masking and adding, or even, when available, assembly
4741 * language for a machine-language population count.
4742 * We never output a minus, as all those are defaults, so are
4743 * covered by the caret */
4744 const STRLEN wraplen = plen + has_p + has_runon
4745 + has_default /* If needs a caret */
4747 /* If needs a character set specifier */
4748 + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
4749 + (sizeof(STD_PAT_MODS) - 1)
4750 + (sizeof("(?:)") - 1);
4752 p = sv_grow(MUTABLE_SV(rx), wraplen + 1); /* +1 for the ending NUL */
4754 SvFLAGS(rx) |= SvUTF8(pattern);
4757 /* If a default, cover it using the caret */
4759 *p++= DEFAULT_PAT_MOD;
4763 const char* const name = get_regex_charset_name(r->extflags, &len);
4764 Copy(name, p, len, char);
4768 *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
4771 while((ch = *fptr++)) {
4779 Copy(RExC_precomp, p, plen, char);
4780 assert ((RX_WRAPPED(rx) - p) < 16);
4781 r->pre_prefix = p - RX_WRAPPED(rx);
4787 SvCUR_set(rx, p - SvPVX_const(rx));
4791 r->nparens = RExC_npar - 1; /* set early to validate backrefs */
4793 if (RExC_seen & REG_SEEN_RECURSE) {
4794 Newxz(RExC_open_parens, RExC_npar,regnode *);
4795 SAVEFREEPV(RExC_open_parens);
4796 Newxz(RExC_close_parens,RExC_npar,regnode *);
4797 SAVEFREEPV(RExC_close_parens);
4800 /* Useful during FAIL. */
4801 #ifdef RE_TRACK_PATTERN_OFFSETS
4802 Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
4803 DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
4804 "%s %"UVuf" bytes for offset annotations.\n",
4805 ri->u.offsets ? "Got" : "Couldn't get",
4806 (UV)((2*RExC_size+1) * sizeof(U32))));
4808 SetProgLen(ri,RExC_size);
4812 REH_CALL_COMP_BEGIN_HOOK(pRExC_state->rx);
4814 /* Second pass: emit code. */
4815 RExC_flags = pm_flags; /* don't let top level (?i) bleed */
4820 RExC_emit_start = ri->program;
4821 RExC_emit = ri->program;
4822 RExC_emit_bound = ri->program + RExC_size + 1;
4824 /* Store the count of eval-groups for security checks: */
4825 RExC_rx->seen_evals = RExC_seen_evals;
4826 REGC((U8)REG_MAGIC, (char*) RExC_emit++);
4827 if (reg(pRExC_state, 0, &flags,1) == NULL) {
4831 /* XXXX To minimize changes to RE engine we always allocate
4832 3-units-long substrs field. */
4833 Newx(r->substrs, 1, struct reg_substr_data);
4834 if (RExC_recurse_count) {
4835 Newxz(RExC_recurse,RExC_recurse_count,regnode *);
4836 SAVEFREEPV(RExC_recurse);
4840 r->minlen = minlen = sawlookahead = sawplus = sawopen = 0;
4841 Zero(r->substrs, 1, struct reg_substr_data);
4843 #ifdef TRIE_STUDY_OPT
4845 StructCopy(&zero_scan_data, &data, scan_data_t);
4846 copyRExC_state = RExC_state;
4849 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
4851 RExC_state = copyRExC_state;
4852 if (seen & REG_TOP_LEVEL_BRANCHES)
4853 RExC_seen |= REG_TOP_LEVEL_BRANCHES;
4855 RExC_seen &= ~REG_TOP_LEVEL_BRANCHES;
4856 if (data.last_found) {
4857 SvREFCNT_dec(data.longest_fixed);
4858 SvREFCNT_dec(data.longest_float);
4859 SvREFCNT_dec(data.last_found);
4861 StructCopy(&zero_scan_data, &data, scan_data_t);
4864 StructCopy(&zero_scan_data, &data, scan_data_t);
4867 /* Dig out information for optimizations. */
4868 r->extflags = RExC_flags; /* was pm_op */
4869 /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
4872 SvUTF8_on(rx); /* Unicode in it? */
4873 ri->regstclass = NULL;
4874 if (RExC_naughty >= 10) /* Probably an expensive pattern. */
4875 r->intflags |= PREGf_NAUGHTY;
4876 scan = ri->program + 1; /* First BRANCH. */
4878 /* testing for BRANCH here tells us whether there is "must appear"
4879 data in the pattern. If there is then we can use it for optimisations */
4880 if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES)) { /* Only one top-level choice. */
4882 STRLEN longest_float_length, longest_fixed_length;
4883 struct regnode_charclass_class ch_class; /* pointed to by data */
4885 I32 last_close = 0; /* pointed to by data */
4886 regnode *first= scan;
4887 regnode *first_next= regnext(first);
4889 * Skip introductions and multiplicators >= 1
4890 * so that we can extract the 'meat' of the pattern that must
4891 * match in the large if() sequence following.
4892 * NOTE that EXACT is NOT covered here, as it is normally
4893 * picked up by the optimiser separately.
4895 * This is unfortunate as the optimiser isnt handling lookahead
4896 * properly currently.
4899 while ((OP(first) == OPEN && (sawopen = 1)) ||
4900 /* An OR of *one* alternative - should not happen now. */
4901 (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
4902 /* for now we can't handle lookbehind IFMATCH*/
4903 (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
4904 (OP(first) == PLUS) ||
4905 (OP(first) == MINMOD) ||
4906 /* An {n,m} with n>0 */
4907 (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
4908 (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
4911 * the only op that could be a regnode is PLUS, all the rest
4912 * will be regnode_1 or regnode_2.
4915 if (OP(first) == PLUS)
4918 first += regarglen[OP(first)];
4920 first = NEXTOPER(first);
4921 first_next= regnext(first);
4924 /* Starting-point info. */
4926 DEBUG_PEEP("first:",first,0);
4927 /* Ignore EXACT as we deal with it later. */
4928 if (PL_regkind[OP(first)] == EXACT) {
4929 if (OP(first) == EXACT)
4930 NOOP; /* Empty, get anchored substr later. */
4932 ri->regstclass = first;
4935 else if (PL_regkind[OP(first)] == TRIE &&
4936 ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
4939 /* this can happen only on restudy */
4940 if ( OP(first) == TRIE ) {
4941 struct regnode_1 *trieop = (struct regnode_1 *)
4942 PerlMemShared_calloc(1, sizeof(struct regnode_1));
4943 StructCopy(first,trieop,struct regnode_1);
4944 trie_op=(regnode *)trieop;
4946 struct regnode_charclass *trieop = (struct regnode_charclass *)
4947 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
4948 StructCopy(first,trieop,struct regnode_charclass);
4949 trie_op=(regnode *)trieop;
4952 make_trie_failtable(pRExC_state, (regnode *)first, trie_op, 0);
4953 ri->regstclass = trie_op;
4956 else if (REGNODE_SIMPLE(OP(first)))
4957 ri->regstclass = first;
4958 else if (PL_regkind[OP(first)] == BOUND ||
4959 PL_regkind[OP(first)] == NBOUND)
4960 ri->regstclass = first;
4961 else if (PL_regkind[OP(first)] == BOL) {
4962 r->extflags |= (OP(first) == MBOL
4964 : (OP(first) == SBOL
4967 first = NEXTOPER(first);
4970 else if (OP(first) == GPOS) {
4971 r->extflags |= RXf_ANCH_GPOS;
4972 first = NEXTOPER(first);
4975 else if ((!sawopen || !RExC_sawback) &&
4976 (OP(first) == STAR &&
4977 PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
4978 !(r->extflags & RXf_ANCH) && !(RExC_seen & REG_SEEN_EVAL))
4980 /* turn .* into ^.* with an implied $*=1 */
4982 (OP(NEXTOPER(first)) == REG_ANY)
4985 r->extflags |= type;
4986 r->intflags |= PREGf_IMPLICIT;
4987 first = NEXTOPER(first);
4990 if (sawplus && !sawlookahead && (!sawopen || !RExC_sawback)
4991 && !(RExC_seen & REG_SEEN_EVAL)) /* May examine pos and $& */
4992 /* x+ must match at the 1st pos of run of x's */
4993 r->intflags |= PREGf_SKIP;
4995 /* Scan is after the zeroth branch, first is atomic matcher. */
4996 #ifdef TRIE_STUDY_OPT
4999 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
5000 (IV)(first - scan + 1))
5004 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
5005 (IV)(first - scan + 1))
5011 * If there's something expensive in the r.e., find the
5012 * longest literal string that must appear and make it the
5013 * regmust. Resolve ties in favor of later strings, since
5014 * the regstart check works with the beginning of the r.e.
5015 * and avoiding duplication strengthens checking. Not a
5016 * strong reason, but sufficient in the absence of others.
5017 * [Now we resolve ties in favor of the earlier string if
5018 * it happens that c_offset_min has been invalidated, since the
5019 * earlier string may buy us something the later one won't.]
5022 data.longest_fixed = newSVpvs("");
5023 data.longest_float = newSVpvs("");
5024 data.last_found = newSVpvs("");
5025 data.longest = &(data.longest_fixed);
5027 if (!ri->regstclass) {
5028 cl_init(pRExC_state, &ch_class);
5029 data.start_class = &ch_class;
5030 stclass_flag = SCF_DO_STCLASS_AND;
5031 } else /* XXXX Check for BOUND? */
5033 data.last_closep = &last_close;
5035 minlen = study_chunk(pRExC_state, &first, &minlen, &fake, scan + RExC_size, /* Up to end */
5036 &data, -1, NULL, NULL,
5037 SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag,0);
5043 if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
5044 && data.last_start_min == 0 && data.last_end > 0
5045 && !RExC_seen_zerolen
5046 && !(RExC_seen & REG_SEEN_VERBARG)
5047 && (!(RExC_seen & REG_SEEN_GPOS) || (r->extflags & RXf_ANCH_GPOS)))
5048 r->extflags |= RXf_CHECK_ALL;
5049 scan_commit(pRExC_state, &data,&minlen,0);
5050 SvREFCNT_dec(data.last_found);
5052 /* Note that code very similar to this but for anchored string
5053 follows immediately below, changes may need to be made to both.
5056 longest_float_length = CHR_SVLEN(data.longest_float);
5057 if (longest_float_length
5058 || (data.flags & SF_FL_BEFORE_EOL
5059 && (!(data.flags & SF_FL_BEFORE_MEOL)
5060 || (RExC_flags & RXf_PMf_MULTILINE))))
5064 if (SvCUR(data.longest_fixed) /* ok to leave SvCUR */
5065 && data.offset_fixed == data.offset_float_min
5066 && SvCUR(data.longest_fixed) == SvCUR(data.longest_float))
5067 goto remove_float; /* As in (a)+. */
5069 /* copy the information about the longest float from the reg_scan_data
5070 over to the program. */
5071 if (SvUTF8(data.longest_float)) {
5072 r->float_utf8 = data.longest_float;
5073 r->float_substr = NULL;
5075 r->float_substr = data.longest_float;
5076 r->float_utf8 = NULL;
5078 /* float_end_shift is how many chars that must be matched that
5079 follow this item. We calculate it ahead of time as once the
5080 lookbehind offset is added in we lose the ability to correctly
5082 ml = data.minlen_float ? *(data.minlen_float)
5083 : (I32)longest_float_length;
5084 r->float_end_shift = ml - data.offset_float_min
5085 - longest_float_length + (SvTAIL(data.longest_float) != 0)
5086 + data.lookbehind_float;
5087 r->float_min_offset = data.offset_float_min - data.lookbehind_float;
5088 r->float_max_offset = data.offset_float_max;
5089 if (data.offset_float_max < I32_MAX) /* Don't offset infinity */
5090 r->float_max_offset -= data.lookbehind_float;
5092 t = (data.flags & SF_FL_BEFORE_EOL /* Can't have SEOL and MULTI */
5093 && (!(data.flags & SF_FL_BEFORE_MEOL)
5094 || (RExC_flags & RXf_PMf_MULTILINE)));
5095 fbm_compile(data.longest_float, t ? FBMcf_TAIL : 0);
5099 r->float_substr = r->float_utf8 = NULL;
5100 SvREFCNT_dec(data.longest_float);
5101 longest_float_length = 0;
5104 /* Note that code very similar to this but for floating string
5105 is immediately above, changes may need to be made to both.
5108 longest_fixed_length = CHR_SVLEN(data.longest_fixed);
5109 if (longest_fixed_length
5110 || (data.flags & SF_FIX_BEFORE_EOL /* Cannot have SEOL and MULTI */
5111 && (!(data.flags & SF_FIX_BEFORE_MEOL)
5112 || (RExC_flags & RXf_PMf_MULTILINE))))
5116 /* copy the information about the longest fixed
5117 from the reg_scan_data over to the program. */
5118 if (SvUTF8(data.longest_fixed)) {
5119 r->anchored_utf8 = data.longest_fixed;
5120 r->anchored_substr = NULL;
5122 r->anchored_substr = data.longest_fixed;
5123 r->anchored_utf8 = NULL;
5125 /* fixed_end_shift is how many chars that must be matched that
5126 follow this item. We calculate it ahead of time as once the
5127 lookbehind offset is added in we lose the ability to correctly
5129 ml = data.minlen_fixed ? *(data.minlen_fixed)
5130 : (I32)longest_fixed_length;
5131 r->anchored_end_shift = ml - data.offset_fixed
5132 - longest_fixed_length + (SvTAIL(data.longest_fixed) != 0)
5133 + data.lookbehind_fixed;
5134 r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
5136 t = (data.flags & SF_FIX_BEFORE_EOL /* Can't have SEOL and MULTI */
5137 && (!(data.flags & SF_FIX_BEFORE_MEOL)
5138 || (RExC_flags & RXf_PMf_MULTILINE)));
5139 fbm_compile(data.longest_fixed, t ? FBMcf_TAIL : 0);
5142 r->anchored_substr = r->anchored_utf8 = NULL;
5143 SvREFCNT_dec(data.longest_fixed);
5144 longest_fixed_length = 0;
5147 && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
5148 ri->regstclass = NULL;
5150 if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
5152 && !(data.start_class->flags & ANYOF_EOS)
5153 && !cl_is_anything(data.start_class))
5155 const U32 n = add_data(pRExC_state, 1, "f");
5156 data.start_class->flags |= ANYOF_IS_SYNTHETIC;
5158 Newx(RExC_rxi->data->data[n], 1,
5159 struct regnode_charclass_class);
5160 StructCopy(data.start_class,
5161 (struct regnode_charclass_class*)RExC_rxi->data->data[n],
5162 struct regnode_charclass_class);
5163 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
5164 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
5165 DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
5166 regprop(r, sv, (regnode*)data.start_class);
5167 PerlIO_printf(Perl_debug_log,
5168 "synthetic stclass \"%s\".\n",
5169 SvPVX_const(sv));});
5172 /* A temporary algorithm prefers floated substr to fixed one to dig more info. */
5173 if (longest_fixed_length > longest_float_length) {
5174 r->check_end_shift = r->anchored_end_shift;
5175 r->check_substr = r->anchored_substr;
5176 r->check_utf8 = r->anchored_utf8;
5177 r->check_offset_min = r->check_offset_max = r->anchored_offset;
5178 if (r->extflags & RXf_ANCH_SINGLE)
5179 r->extflags |= RXf_NOSCAN;
5182 r->check_end_shift = r->float_end_shift;
5183 r->check_substr = r->float_substr;
5184 r->check_utf8 = r->float_utf8;
5185 r->check_offset_min = r->float_min_offset;
5186 r->check_offset_max = r->float_max_offset;
5188 /* XXXX Currently intuiting is not compatible with ANCH_GPOS.
5189 This should be changed ASAP! */
5190 if ((r->check_substr || r->check_utf8) && !(r->extflags & RXf_ANCH_GPOS)) {
5191 r->extflags |= RXf_USE_INTUIT;
5192 if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
5193 r->extflags |= RXf_INTUIT_TAIL;
5195 /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
5196 if ( (STRLEN)minlen < longest_float_length )
5197 minlen= longest_float_length;
5198 if ( (STRLEN)minlen < longest_fixed_length )
5199 minlen= longest_fixed_length;
5203 /* Several toplevels. Best we can is to set minlen. */
5205 struct regnode_charclass_class ch_class;
5208 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
5210 scan = ri->program + 1;
5211 cl_init(pRExC_state, &ch_class);
5212 data.start_class = &ch_class;
5213 data.last_closep = &last_close;
5216 minlen = study_chunk(pRExC_state, &scan, &minlen, &fake, scan + RExC_size,
5217 &data, -1, NULL, NULL, SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS,0);
5221 r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
5222 = r->float_substr = r->float_utf8 = NULL;
5224 if (!(data.start_class->flags & ANYOF_EOS)
5225 && !cl_is_anything(data.start_class))
5227 const U32 n = add_data(pRExC_state, 1, "f");
5228 data.start_class->flags |= ANYOF_IS_SYNTHETIC;
5230 Newx(RExC_rxi->data->data[n], 1,
5231 struct regnode_charclass_class);
5232 StructCopy(data.start_class,
5233 (struct regnode_charclass_class*)RExC_rxi->data->data[n],
5234 struct regnode_charclass_class);
5235 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
5236 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
5237 DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
5238 regprop(r, sv, (regnode*)data.start_class);
5239 PerlIO_printf(Perl_debug_log,
5240 "synthetic stclass \"%s\".\n",
5241 SvPVX_const(sv));});
5245 /* Guard against an embedded (?=) or (?<=) with a longer minlen than
5246 the "real" pattern. */
5248 PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf"\n",
5249 (IV)minlen, (IV)r->minlen);
5251 r->minlenret = minlen;
5252 if (r->minlen < minlen)
5255 if (RExC_seen & REG_SEEN_GPOS)
5256 r->extflags |= RXf_GPOS_SEEN;
5257 if (RExC_seen & REG_SEEN_LOOKBEHIND)
5258 r->extflags |= RXf_LOOKBEHIND_SEEN;
5259 if (RExC_seen & REG_SEEN_EVAL)
5260 r->extflags |= RXf_EVAL_SEEN;
5261 if (RExC_seen & REG_SEEN_CANY)
5262 r->extflags |= RXf_CANY_SEEN;
5263 if (RExC_seen & REG_SEEN_VERBARG)
5264 r->intflags |= PREGf_VERBARG_SEEN;
5265 if (RExC_seen & REG_SEEN_CUTGROUP)
5266 r->intflags |= PREGf_CUTGROUP_SEEN;
5267 if (RExC_paren_names)
5268 RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
5270 RXp_PAREN_NAMES(r) = NULL;
5272 #ifdef STUPID_PATTERN_CHECKS
5273 if (RX_PRELEN(rx) == 0)
5274 r->extflags |= RXf_NULL;
5275 if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
5276 /* XXX: this should happen BEFORE we compile */
5277 r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
5278 else if (RX_PRELEN(rx) == 3 && memEQ("\\s+", RX_PRECOMP(rx), 3))
5279 r->extflags |= RXf_WHITE;
5280 else if (RX_PRELEN(rx) == 1 && RXp_PRECOMP(rx)[0] == '^')
5281 r->extflags |= RXf_START_ONLY;
5283 if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
5284 /* XXX: this should happen BEFORE we compile */
5285 r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
5287 regnode *first = ri->program + 1;
5290 if (PL_regkind[fop] == NOTHING && OP(NEXTOPER(first)) == END)
5291 r->extflags |= RXf_NULL;
5292 else if (PL_regkind[fop] == BOL && OP(NEXTOPER(first)) == END)
5293 r->extflags |= RXf_START_ONLY;
5294 else if (fop == PLUS && OP(NEXTOPER(first)) == SPACE
5295 && OP(regnext(first)) == END)
5296 r->extflags |= RXf_WHITE;
5300 if (RExC_paren_names) {
5301 ri->name_list_idx = add_data( pRExC_state, 1, "a" );
5302 ri->data->data[ri->name_list_idx] = (void*)SvREFCNT_inc(RExC_paren_name_list);
5305 ri->name_list_idx = 0;
5307 if (RExC_recurse_count) {
5308 for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
5309 const regnode *scan = RExC_recurse[RExC_recurse_count-1];
5310 ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
5313 Newxz(r->offs, RExC_npar, regexp_paren_pair);
5314 /* assume we don't need to swap parens around before we match */
5317 PerlIO_printf(Perl_debug_log,"Final program:\n");
5320 #ifdef RE_TRACK_PATTERN_OFFSETS
5321 DEBUG_OFFSETS_r(if (ri->u.offsets) {
5322 const U32 len = ri->u.offsets[0];
5324 GET_RE_DEBUG_FLAGS_DECL;
5325 PerlIO_printf(Perl_debug_log, "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
5326 for (i = 1; i <= len; i++) {
5327 if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
5328 PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
5329 (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
5331 PerlIO_printf(Perl_debug_log, "\n");
5337 #undef RE_ENGINE_PTR
5341 Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
5344 PERL_ARGS_ASSERT_REG_NAMED_BUFF;
5346 PERL_UNUSED_ARG(value);
5348 if (flags & RXapif_FETCH) {
5349 return reg_named_buff_fetch(rx, key, flags);
5350 } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
5351 Perl_croak_no_modify(aTHX);
5353 } else if (flags & RXapif_EXISTS) {
5354 return reg_named_buff_exists(rx, key, flags)
5357 } else if (flags & RXapif_REGNAMES) {
5358 return reg_named_buff_all(rx, flags);
5359 } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
5360 return reg_named_buff_scalar(rx, flags);
5362 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
5368 Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
5371 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
5372 PERL_UNUSED_ARG(lastkey);
5374 if (flags & RXapif_FIRSTKEY)
5375 return reg_named_buff_firstkey(rx, flags);
5376 else if (flags & RXapif_NEXTKEY)
5377 return reg_named_buff_nextkey(rx, flags);
5379 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter", (int)flags);
5385 Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
5388 AV *retarray = NULL;
5390 struct regexp *const rx = (struct regexp *)SvANY(r);
5392 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
5394 if (flags & RXapif_ALL)
5397 if (rx && RXp_PAREN_NAMES(rx)) {
5398 HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
5401 SV* sv_dat=HeVAL(he_str);
5402 I32 *nums=(I32*)SvPVX(sv_dat);
5403 for ( i=0; i<SvIVX(sv_dat); i++ ) {
5404 if ((I32)(rx->nparens) >= nums[i]
5405 && rx->offs[nums[i]].start != -1
5406 && rx->offs[nums[i]].end != -1)
5409 CALLREG_NUMBUF_FETCH(r,nums[i],ret);
5413 ret = newSVsv(&PL_sv_undef);
5416 av_push(retarray, ret);
5419 return newRV_noinc(MUTABLE_SV(retarray));
5426 Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
5429 struct regexp *const rx = (struct regexp *)SvANY(r);
5431 PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
5433 if (rx && RXp_PAREN_NAMES(rx)) {
5434 if (flags & RXapif_ALL) {
5435 return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
5437 SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
5451 Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
5453 struct regexp *const rx = (struct regexp *)SvANY(r);
5455 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
5457 if ( rx && RXp_PAREN_NAMES(rx) ) {
5458 (void)hv_iterinit(RXp_PAREN_NAMES(rx));
5460 return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
5467 Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
5469 struct regexp *const rx = (struct regexp *)SvANY(r);
5470 GET_RE_DEBUG_FLAGS_DECL;
5472 PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
5474 if (rx && RXp_PAREN_NAMES(rx)) {
5475 HV *hv = RXp_PAREN_NAMES(rx);
5477 while ( (temphe = hv_iternext_flags(hv,0)) ) {
5480 SV* sv_dat = HeVAL(temphe);
5481 I32 *nums = (I32*)SvPVX(sv_dat);
5482 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
5483 if ((I32)(rx->lastparen) >= nums[i] &&
5484 rx->offs[nums[i]].start != -1 &&
5485 rx->offs[nums[i]].end != -1)
5491 if (parno || flags & RXapif_ALL) {
5492 return newSVhek(HeKEY_hek(temphe));
5500 Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
5505 struct regexp *const rx = (struct regexp *)SvANY(r);
5507 PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
5509 if (rx && RXp_PAREN_NAMES(rx)) {
5510 if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
5511 return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
5512 } else if (flags & RXapif_ONE) {
5513 ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
5514 av = MUTABLE_AV(SvRV(ret));
5515 length = av_len(av);
5517 return newSViv(length + 1);
5519 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar", (int)flags);
5523 return &PL_sv_undef;
5527 Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
5529 struct regexp *const rx = (struct regexp *)SvANY(r);
5532 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
5534 if (rx && RXp_PAREN_NAMES(rx)) {
5535 HV *hv= RXp_PAREN_NAMES(rx);
5537 (void)hv_iterinit(hv);
5538 while ( (temphe = hv_iternext_flags(hv,0)) ) {
5541 SV* sv_dat = HeVAL(temphe);
5542 I32 *nums = (I32*)SvPVX(sv_dat);
5543 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
5544 if ((I32)(rx->lastparen) >= nums[i] &&
5545 rx->offs[nums[i]].start != -1 &&
5546 rx->offs[nums[i]].end != -1)
5552 if (parno || flags & RXapif_ALL) {
5553 av_push(av, newSVhek(HeKEY_hek(temphe)));
5558 return newRV_noinc(MUTABLE_SV(av));
5562 Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
5565 struct regexp *const rx = (struct regexp *)SvANY(r);
5570 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
5573 sv_setsv(sv,&PL_sv_undef);
5577 if (paren == RX_BUFF_IDX_PREMATCH && rx->offs[0].start != -1) {
5579 i = rx->offs[0].start;
5583 if (paren == RX_BUFF_IDX_POSTMATCH && rx->offs[0].end != -1) {
5585 s = rx->subbeg + rx->offs[0].end;
5586 i = rx->sublen - rx->offs[0].end;
5589 if ( 0 <= paren && paren <= (I32)rx->nparens &&
5590 (s1 = rx->offs[paren].start) != -1 &&
5591 (t1 = rx->offs[paren].end) != -1)
5595 s = rx->subbeg + s1;
5597 sv_setsv(sv,&PL_sv_undef);
5600 assert(rx->sublen >= (s - rx->subbeg) + i );
5602 const int oldtainted = PL_tainted;
5604 sv_setpvn(sv, s, i);
5605 PL_tainted = oldtainted;
5606 if ( (rx->extflags & RXf_CANY_SEEN)
5607 ? (RXp_MATCH_UTF8(rx)
5608 && (!i || is_utf8_string((U8*)s, i)))
5609 : (RXp_MATCH_UTF8(rx)) )
5616 if (RXp_MATCH_TAINTED(rx)) {
5617 if (SvTYPE(sv) >= SVt_PVMG) {
5618 MAGIC* const mg = SvMAGIC(sv);
5621 SvMAGIC_set(sv, mg->mg_moremagic);
5623 if ((mgt = SvMAGIC(sv))) {
5624 mg->mg_moremagic = mgt;
5625 SvMAGIC_set(sv, mg);
5635 sv_setsv(sv,&PL_sv_undef);
5641 Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
5642 SV const * const value)
5644 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
5646 PERL_UNUSED_ARG(rx);
5647 PERL_UNUSED_ARG(paren);
5648 PERL_UNUSED_ARG(value);
5651 Perl_croak_no_modify(aTHX);
5655 Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
5658 struct regexp *const rx = (struct regexp *)SvANY(r);
5662 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
5664 /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
5666 /* $` / ${^PREMATCH} */
5667 case RX_BUFF_IDX_PREMATCH:
5668 if (rx->offs[0].start != -1) {
5669 i = rx->offs[0].start;
5677 /* $' / ${^POSTMATCH} */
5678 case RX_BUFF_IDX_POSTMATCH:
5679 if (rx->offs[0].end != -1) {
5680 i = rx->sublen - rx->offs[0].end;
5682 s1 = rx->offs[0].end;
5688 /* $& / ${^MATCH}, $1, $2, ... */
5690 if (paren <= (I32)rx->nparens &&
5691 (s1 = rx->offs[paren].start) != -1 &&
5692 (t1 = rx->offs[paren].end) != -1)
5697 if (ckWARN(WARN_UNINITIALIZED))
5698 report_uninit((const SV *)sv);
5703 if (i > 0 && RXp_MATCH_UTF8(rx)) {
5704 const char * const s = rx->subbeg + s1;
5709 if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
5716 Perl_reg_qr_package(pTHX_ REGEXP * const rx)
5718 PERL_ARGS_ASSERT_REG_QR_PACKAGE;
5719 PERL_UNUSED_ARG(rx);
5723 return newSVpvs("Regexp");
5726 /* Scans the name of a named buffer from the pattern.
5727 * If flags is REG_RSN_RETURN_NULL returns null.
5728 * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
5729 * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
5730 * to the parsed name as looked up in the RExC_paren_names hash.
5731 * If there is an error throws a vFAIL().. type exception.
5734 #define REG_RSN_RETURN_NULL 0
5735 #define REG_RSN_RETURN_NAME 1
5736 #define REG_RSN_RETURN_DATA 2
5739 S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
5741 char *name_start = RExC_parse;
5743 PERL_ARGS_ASSERT_REG_SCAN_NAME;
5745 if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
5746 /* skip IDFIRST by using do...while */
5749 RExC_parse += UTF8SKIP(RExC_parse);
5750 } while (isALNUM_utf8((U8*)RExC_parse));
5754 } while (isALNUM(*RExC_parse));
5759 = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
5760 SVs_TEMP | (UTF ? SVf_UTF8 : 0));
5761 if ( flags == REG_RSN_RETURN_NAME)
5763 else if (flags==REG_RSN_RETURN_DATA) {
5766 if ( ! sv_name ) /* should not happen*/
5767 Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
5768 if (RExC_paren_names)
5769 he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
5771 sv_dat = HeVAL(he_str);
5773 vFAIL("Reference to nonexistent named group");
5777 Perl_croak(aTHX_ "panic: bad flag in reg_scan_name");
5784 #define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \
5785 int rem=(int)(RExC_end - RExC_parse); \
5794 if (RExC_lastparse!=RExC_parse) \
5795 PerlIO_printf(Perl_debug_log," >%.*s%-*s", \
5798 iscut ? "..." : "<" \
5801 PerlIO_printf(Perl_debug_log,"%16s",""); \
5804 num = RExC_size + 1; \
5806 num=REG_NODE_NUM(RExC_emit); \
5807 if (RExC_lastnum!=num) \
5808 PerlIO_printf(Perl_debug_log,"|%4d",num); \
5810 PerlIO_printf(Perl_debug_log,"|%4s",""); \
5811 PerlIO_printf(Perl_debug_log,"|%*s%-4s", \
5812 (int)((depth*2)), "", \
5816 RExC_lastparse=RExC_parse; \
5821 #define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \
5822 DEBUG_PARSE_MSG((funcname)); \
5823 PerlIO_printf(Perl_debug_log,"%4s","\n"); \
5825 #define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \
5826 DEBUG_PARSE_MSG((funcname)); \
5827 PerlIO_printf(Perl_debug_log,fmt "\n",args); \
5830 /* This section of code defines the inversion list object and its methods. The
5831 * interfaces are highly subject to change, so as much as possible is static to
5832 * this file. An inversion list is here implemented as a malloc'd C UV array
5833 * with some added info that is placed as UVs at the beginning in a header
5834 * portion. An inversion list for Unicode is an array of code points, sorted
5835 * by ordinal number. The zeroth element is the first code point in the list.
5836 * The 1th element is the first element beyond that not in the list. In other
5837 * words, the first range is
5838 * invlist[0]..(invlist[1]-1)
5839 * The other ranges follow. Thus every element that is divisible by two marks
5840 * the beginning of a range that is in the list, and every element not
5841 * divisible by two marks the beginning of a range not in the list. A single
5842 * element inversion list that contains the single code point N generally
5843 * consists of two elements
5846 * (The exception is when N is the highest representable value on the
5847 * machine, in which case the list containing just it would be a single
5848 * element, itself. By extension, if the last range in the list extends to
5849 * infinity, then the first element of that range will be in the inversion list
5850 * at a position that is divisible by two, and is the final element in the
5852 * Taking the complement (inverting) an inversion list is quite simple, if the
5853 * first element is 0, remove it; otherwise add a 0 element at the beginning.
5854 * This implementation reserves an element at the beginning of each inversion list
5855 * to contain 0 when the list contains 0, and contains 1 otherwise. The actual
5856 * beginning of the list is either that element if 0, or the next one if 1.
5858 * More about inversion lists can be found in "Unicode Demystified"
5859 * Chapter 13 by Richard Gillam, published by Addison-Wesley.
5860 * More will be coming when functionality is added later.
5862 * The inversion list data structure is currently implemented as an SV pointing
5863 * to an array of UVs that the SV thinks are bytes. This allows us to have an
5864 * array of UV whose memory management is automatically handled by the existing
5865 * facilities for SV's.
5867 * Some of the methods should always be private to the implementation, and some
5868 * should eventually be made public */
5870 #define INVLIST_LEN_OFFSET 0 /* Number of elements in the inversion list */
5871 #define INVLIST_ITER_OFFSET 1 /* Current iteration position */
5873 #define INVLIST_ZERO_OFFSET 2 /* 0 or 1; must be last element in header */
5874 /* The UV at position ZERO contains either 0 or 1. If 0, the inversion list
5875 * contains the code point U+00000, and begins here. If 1, the inversion list
5876 * doesn't contain U+0000, and it begins at the next UV in the array.
5877 * Inverting an inversion list consists of adding or removing the 0 at the
5878 * beginning of it. By reserving a space for that 0, inversion can be made
5881 #define HEADER_LENGTH (INVLIST_ZERO_OFFSET + 1)
5883 /* Internally things are UVs */
5884 #define TO_INTERNAL_SIZE(x) ((x + HEADER_LENGTH) * sizeof(UV))
5885 #define FROM_INTERNAL_SIZE(x) ((x / sizeof(UV)) - HEADER_LENGTH)
5887 #define INVLIST_INITIAL_LEN 10
5889 PERL_STATIC_INLINE UV*
5890 S__invlist_array_init(pTHX_ SV* const invlist, const bool will_have_0)
5892 /* Returns a pointer to the first element in the inversion list's array.
5893 * This is called upon initialization of an inversion list. Where the
5894 * array begins depends on whether the list has the code point U+0000
5895 * in it or not. The other parameter tells it whether the code that
5896 * follows this call is about to put a 0 in the inversion list or not.
5897 * The first element is either the element with 0, if 0, or the next one,
5900 UV* zero = get_invlist_zero_addr(invlist);
5902 PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
5905 assert(! *get_invlist_len_addr(invlist));
5907 /* 1^1 = 0; 1^0 = 1 */
5908 *zero = 1 ^ will_have_0;
5909 return zero + *zero;
5912 PERL_STATIC_INLINE UV*
5913 S_invlist_array(pTHX_ SV* const invlist)
5915 /* Returns the pointer to the inversion list's array. Every time the
5916 * length changes, this needs to be called in case malloc or realloc moved
5919 PERL_ARGS_ASSERT_INVLIST_ARRAY;
5921 /* Must not be empty */
5922 assert(*get_invlist_len_addr(invlist));
5923 assert(*get_invlist_zero_addr(invlist) == 0
5924 || *get_invlist_zero_addr(invlist) == 1);
5926 /* The array begins either at the element reserved for zero if the
5927 * list contains 0 (that element will be set to 0), or otherwise the next
5928 * element (in which case the reserved element will be set to 1). */
5929 return (UV *) (get_invlist_zero_addr(invlist)
5930 + *get_invlist_zero_addr(invlist));
5933 PERL_STATIC_INLINE UV*
5934 S_get_invlist_len_addr(pTHX_ SV* invlist)
5936 /* Return the address of the UV that contains the current number
5937 * of used elements in the inversion list */
5939 PERL_ARGS_ASSERT_GET_INVLIST_LEN_ADDR;
5941 return (UV *) (SvPVX(invlist) + (INVLIST_LEN_OFFSET * sizeof (UV)));
5944 PERL_STATIC_INLINE UV
5945 S_invlist_len(pTHX_ SV* const invlist)
5947 /* Returns the current number of elements in the inversion list's array */
5949 PERL_ARGS_ASSERT_INVLIST_LEN;
5951 return *get_invlist_len_addr(invlist);
5954 PERL_STATIC_INLINE void
5955 S_invlist_set_len(pTHX_ SV* const invlist, const UV len)
5957 /* Sets the current number of elements stored in the inversion list */
5959 PERL_ARGS_ASSERT_INVLIST_SET_LEN;
5961 *get_invlist_len_addr(invlist) = len;
5963 assert(len <= SvLEN(invlist));
5965 SvCUR_set(invlist, TO_INTERNAL_SIZE(len));
5966 /* If the list contains U+0000, that element is part of the header,
5967 * and should not be counted as part of the array. It will contain
5968 * 0 in that case, and 1 otherwise. So we could flop 0=>1, 1=>0 and
5970 * SvCUR_set(invlist,
5971 * TO_INTERNAL_SIZE(len
5972 * - (*get_invlist_zero_addr(inv_list) ^ 1)));
5973 * But, this is only valid if len is not 0. The consequences of not doing
5974 * this is that the memory allocation code may think that 1 more UV is
5975 * being used than actually is, and so might do an unnecessary grow. That
5976 * seems worth not bothering to make this the precise amount.
5978 * Note that when inverting, SvCUR shouldn't change */
5981 PERL_STATIC_INLINE UV
5982 S_invlist_max(pTHX_ SV* const invlist)
5984 /* Returns the maximum number of elements storable in the inversion list's
5985 * array, without having to realloc() */
5987 PERL_ARGS_ASSERT_INVLIST_MAX;
5989 return FROM_INTERNAL_SIZE(SvLEN(invlist));
5992 PERL_STATIC_INLINE UV*
5993 S_get_invlist_zero_addr(pTHX_ SV* invlist)
5995 /* Return the address of the UV that is reserved to hold 0 if the inversion
5996 * list contains 0. This has to be the last element of the heading, as the
5997 * list proper starts with either it if 0, or the next element if not.
5998 * (But we force it to contain either 0 or 1) */
6000 PERL_ARGS_ASSERT_GET_INVLIST_ZERO_ADDR;
6002 return (UV *) (SvPVX(invlist) + (INVLIST_ZERO_OFFSET * sizeof (UV)));
6005 #ifndef PERL_IN_XSUB_RE
6007 Perl__new_invlist(pTHX_ IV initial_size)
6010 /* Return a pointer to a newly constructed inversion list, with enough
6011 * space to store 'initial_size' elements. If that number is negative, a
6012 * system default is used instead */
6016 if (initial_size < 0) {
6017 initial_size = INVLIST_INITIAL_LEN;
6020 /* Allocate the initial space */
6021 new_list = newSV(TO_INTERNAL_SIZE(initial_size));
6022 invlist_set_len(new_list, 0);
6024 /* Force iterinit() to be used to get iteration to work */
6025 *get_invlist_iter_addr(new_list) = UV_MAX;
6027 /* This should force a segfault if a method doesn't initialize this
6029 *get_invlist_zero_addr(new_list) = UV_MAX;
6036 S_invlist_extend(pTHX_ SV* const invlist, const UV new_max)
6038 /* Grow the maximum size of an inversion list */
6040 PERL_ARGS_ASSERT_INVLIST_EXTEND;
6042 SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max));
6045 PERL_STATIC_INLINE void
6046 S_invlist_trim(pTHX_ SV* const invlist)
6048 PERL_ARGS_ASSERT_INVLIST_TRIM;
6050 /* Change the length of the inversion list to how many entries it currently
6053 SvPV_shrink_to_cur((SV *) invlist);
6056 /* An element is in an inversion list iff its index is even numbered: 0, 2, 4,
6059 #define ELEMENT_IN_INVLIST_SET(i) (! ((i) & 1))
6060 #define PREV_ELEMENT_IN_INVLIST_SET(i) (! ELEMENT_IN_INVLIST_SET(i))
6062 #ifndef PERL_IN_XSUB_RE
6064 Perl__append_range_to_invlist(pTHX_ SV* const invlist, const UV start, const UV end)
6066 /* Subject to change or removal. Append the range from 'start' to 'end' at
6067 * the end of the inversion list. The range must be above any existing
6071 UV max = invlist_max(invlist);
6072 UV len = invlist_len(invlist);
6074 PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
6076 if (len == 0) { /* Empty lists must be initialized */
6077 array = _invlist_array_init(invlist, start == 0);
6080 /* Here, the existing list is non-empty. The current max entry in the
6081 * list is generally the first value not in the set, except when the
6082 * set extends to the end of permissible values, in which case it is
6083 * the first entry in that final set, and so this call is an attempt to
6084 * append out-of-order */
6086 UV final_element = len - 1;
6087 array = invlist_array(invlist);
6088 if (array[final_element] > start
6089 || ELEMENT_IN_INVLIST_SET(final_element))
6091 Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list");
6094 /* Here, it is a legal append. If the new range begins with the first
6095 * value not in the set, it is extending the set, so the new first
6096 * value not in the set is one greater than the newly extended range.
6098 if (array[final_element] == start) {
6099 if (end != UV_MAX) {
6100 array[final_element] = end + 1;
6103 /* But if the end is the maximum representable on the machine,
6104 * just let the range that this would extend have no end */
6105 invlist_set_len(invlist, len - 1);
6111 /* Here the new range doesn't extend any existing set. Add it */
6113 len += 2; /* Includes an element each for the start and end of range */
6115 /* If overflows the existing space, extend, which may cause the array to be
6118 invlist_extend(invlist, len);
6119 invlist_set_len(invlist, len); /* Have to set len here to avoid assert
6120 failure in invlist_array() */
6121 array = invlist_array(invlist);
6124 invlist_set_len(invlist, len);
6127 /* The next item on the list starts the range, the one after that is
6128 * one past the new range. */
6129 array[len - 2] = start;
6130 if (end != UV_MAX) {
6131 array[len - 1] = end + 1;
6134 /* But if the end is the maximum representable on the machine, just let
6135 * the range have no end */
6136 invlist_set_len(invlist, len - 1);
6141 Perl__invlist_union(pTHX_ SV* const a, SV* const b, SV** output)
6143 /* Take the union of two inversion lists and point 'result' to it. If
6144 * 'result' on input points to one of the two lists, the reference count to
6145 * that list will be decremented.
6146 * The basis for this comes from "Unicode Demystified" Chapter 13 by
6147 * Richard Gillam, published by Addison-Wesley, and explained at some
6148 * length there. The preface says to incorporate its examples into your
6149 * code at your own risk.
6151 * The algorithm is like a merge sort.
6153 * XXX A potential performance improvement is to keep track as we go along
6154 * if only one of the inputs contributes to the result, meaning the other
6155 * is a subset of that one. In that case, we can skip the final copy and
6156 * return the larger of the input lists, but then outside code might need
6157 * to keep track of whether to free the input list or not */
6159 UV* array_a; /* a's array */
6161 UV len_a; /* length of a's array */
6164 SV* u; /* the resulting union */
6168 UV i_a = 0; /* current index into a's array */
6172 /* running count, as explained in the algorithm source book; items are
6173 * stopped accumulating and are output when the count changes to/from 0.
6174 * The count is incremented when we start a range that's in the set, and
6175 * decremented when we start a range that's not in the set. So its range
6176 * is 0 to 2. Only when the count is zero is something not in the set.
6180 PERL_ARGS_ASSERT__INVLIST_UNION;
6182 /* If either one is empty, the union is the other one */
6183 len_a = invlist_len(a);
6188 else if (output != &b) {
6189 *output = invlist_clone(b);
6191 /* else *output already = b; */
6194 else if ((len_b = invlist_len(b)) == 0) {
6198 else if (output != &a) {
6199 *output = invlist_clone(a);
6201 /* else *output already = a; */
6205 /* Here both lists exist and are non-empty */
6206 array_a = invlist_array(a);
6207 array_b = invlist_array(b);
6209 /* Size the union for the worst case: that the sets are completely
6211 u = _new_invlist(len_a + len_b);
6213 /* Will contain U+0000 if either component does */
6214 array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0)
6215 || (len_b > 0 && array_b[0] == 0));
6217 /* Go through each list item by item, stopping when exhausted one of
6219 while (i_a < len_a && i_b < len_b) {
6220 UV cp; /* The element to potentially add to the union's array */
6221 bool cp_in_set; /* is it in the the input list's set or not */
6223 /* We need to take one or the other of the two inputs for the union.
6224 * Since we are merging two sorted lists, we take the smaller of the
6225 * next items. In case of a tie, we take the one that is in its set
6226 * first. If we took one not in the set first, it would decrement the
6227 * count, possibly to 0 which would cause it to be output as ending the
6228 * range, and the next time through we would take the same number, and
6229 * output it again as beginning the next range. By doing it the
6230 * opposite way, there is no possibility that the count will be
6231 * momentarily decremented to 0, and thus the two adjoining ranges will
6232 * be seamlessly merged. (In a tie and both are in the set or both not
6233 * in the set, it doesn't matter which we take first.) */
6234 if (array_a[i_a] < array_b[i_b]
6235 || (array_a[i_a] == array_b[i_b] && ELEMENT_IN_INVLIST_SET(i_a)))
6237 cp_in_set = ELEMENT_IN_INVLIST_SET(i_a);
6241 cp_in_set = ELEMENT_IN_INVLIST_SET(i_b);
6245 /* Here, have chosen which of the two inputs to look at. Only output
6246 * if the running count changes to/from 0, which marks the
6247 * beginning/end of a range in that's in the set */
6250 array_u[i_u++] = cp;
6257 array_u[i_u++] = cp;
6262 /* Here, we are finished going through at least one of the lists, which
6263 * means there is something remaining in at most one. We check if the list
6264 * that hasn't been exhausted is positioned such that we are in the middle
6265 * of a range in its set or not. (i_a and i_b point to the element beyond
6266 * the one we care about.) If in the set, we decrement 'count'; if 0, there
6267 * is potentially more to output.
6268 * There are four cases:
6269 * 1) Both weren't in their sets, count is 0, and remains 0. What's left
6270 * in the union is entirely from the non-exhausted set.
6271 * 2) Both were in their sets, count is 2. Nothing further should
6272 * be output, as everything that remains will be in the exhausted
6273 * list's set, hence in the union; decrementing to 1 but not 0 insures
6275 * 3) the exhausted was in its set, non-exhausted isn't, count is 1.
6276 * Nothing further should be output because the union includes
6277 * everything from the exhausted set. Not decrementing ensures that.
6278 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
6279 * decrementing to 0 insures that we look at the remainder of the
6280 * non-exhausted set */
6281 if ((i_a != len_a && PREV_ELEMENT_IN_INVLIST_SET(i_a))
6282 || (i_b != len_b && PREV_ELEMENT_IN_INVLIST_SET(i_b)))
6287 /* The final length is what we've output so far, plus what else is about to
6288 * be output. (If 'count' is non-zero, then the input list we exhausted
6289 * has everything remaining up to the machine's limit in its set, and hence
6290 * in the union, so there will be no further output. */
6293 /* At most one of the subexpressions will be non-zero */
6294 len_u += (len_a - i_a) + (len_b - i_b);
6297 /* Set result to final length, which can change the pointer to array_u, so
6299 if (len_u != invlist_len(u)) {
6300 invlist_set_len(u, len_u);
6302 array_u = invlist_array(u);
6305 /* When 'count' is 0, the list that was exhausted (if one was shorter than
6306 * the other) ended with everything above it not in its set. That means
6307 * that the remaining part of the union is precisely the same as the
6308 * non-exhausted list, so can just copy it unchanged. (If both list were
6309 * exhausted at the same time, then the operations below will be both 0.)
6312 IV copy_count; /* At most one will have a non-zero copy count */
6313 if ((copy_count = len_a - i_a) > 0) {
6314 Copy(array_a + i_a, array_u + i_u, copy_count, UV);
6316 else if ((copy_count = len_b - i_b) > 0) {
6317 Copy(array_b + i_b, array_u + i_u, copy_count, UV);
6321 /* We may be removing a reference to one of the inputs */
6322 if (&a == output || &b == output) {
6323 SvREFCNT_dec(*output);
6331 Perl__invlist_intersection(pTHX_ SV* const a, SV* const b, SV** i)
6333 /* Take the intersection of two inversion lists and point 'i' to it. If
6334 * 'i' on input points to one of the two lists, the reference count to that
6335 * list will be decremented.
6336 * The basis for this comes from "Unicode Demystified" Chapter 13 by
6337 * Richard Gillam, published by Addison-Wesley, and explained at some
6338 * length there. The preface says to incorporate its examples into your
6339 * code at your own risk. In fact, it had bugs
6341 * The algorithm is like a merge sort, and is essentially the same as the
6345 UV* array_a; /* a's array */
6347 UV len_a; /* length of a's array */
6350 SV* r; /* the resulting intersection */
6354 UV i_a = 0; /* current index into a's array */
6358 /* running count, as explained in the algorithm source book; items are
6359 * stopped accumulating and are output when the count changes to/from 2.
6360 * The count is incremented when we start a range that's in the set, and
6361 * decremented when we start a range that's not in the set. So its range
6362 * is 0 to 2. Only when the count is 2 is something in the intersection.
6366 PERL_ARGS_ASSERT__INVLIST_INTERSECTION;
6368 /* If either one is empty, the intersection is null */
6369 len_a = invlist_len(a);
6370 if ((len_a == 0) || ((len_b = invlist_len(b)) == 0)) {
6371 *i = _new_invlist(0);
6373 /* If the result is the same as one of the inputs, the input is being
6384 /* Here both lists exist and are non-empty */
6385 array_a = invlist_array(a);
6386 array_b = invlist_array(b);
6388 /* Size the intersection for the worst case: that the intersection ends up
6389 * fragmenting everything to be completely disjoint */
6390 r= _new_invlist(len_a + len_b);
6392 /* Will contain U+0000 iff both components do */
6393 array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0
6394 && len_b > 0 && array_b[0] == 0);
6396 /* Go through each list item by item, stopping when exhausted one of
6398 while (i_a < len_a && i_b < len_b) {
6399 UV cp; /* The element to potentially add to the intersection's
6401 bool cp_in_set; /* Is it in the input list's set or not */
6403 /* We need to take one or the other of the two inputs for the
6404 * intersection. Since we are merging two sorted lists, we take the
6405 * smaller of the next items. In case of a tie, we take the one that
6406 * is not in its set first (a difference from the union algorithm). If
6407 * we took one in the set first, it would increment the count, possibly
6408 * to 2 which would cause it to be output as starting a range in the
6409 * intersection, and the next time through we would take that same
6410 * number, and output it again as ending the set. By doing it the
6411 * opposite of this, there is no possibility that the count will be
6412 * momentarily incremented to 2. (In a tie and both are in the set or
6413 * both not in the set, it doesn't matter which we take first.) */
6414 if (array_a[i_a] < array_b[i_b]
6415 || (array_a[i_a] == array_b[i_b] && ! ELEMENT_IN_INVLIST_SET(i_a)))
6417 cp_in_set = ELEMENT_IN_INVLIST_SET(i_a);
6421 cp_in_set = ELEMENT_IN_INVLIST_SET(i_b);
6425 /* Here, have chosen which of the two inputs to look at. Only output
6426 * if the running count changes to/from 2, which marks the
6427 * beginning/end of a range that's in the intersection */
6431 array_r[i_r++] = cp;
6436 array_r[i_r++] = cp;
6442 /* Here, we are finished going through at least one of the lists, which
6443 * means there is something remaining in at most one. We check if the list
6444 * that has been exhausted is positioned such that we are in the middle
6445 * of a range in its set or not. (i_a and i_b point to elements 1 beyond
6446 * the ones we care about.) There are four cases:
6447 * 1) Both weren't in their sets, count is 0, and remains 0. There's
6448 * nothing left in the intersection.
6449 * 2) Both were in their sets, count is 2 and perhaps is incremented to
6450 * above 2. What should be output is exactly that which is in the
6451 * non-exhausted set, as everything it has is also in the intersection
6452 * set, and everything it doesn't have can't be in the intersection
6453 * 3) The exhausted was in its set, non-exhausted isn't, count is 1, and
6454 * gets incremented to 2. Like the previous case, the intersection is
6455 * everything that remains in the non-exhausted set.
6456 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
6457 * remains 1. And the intersection has nothing more. */
6458 if ((i_a == len_a && PREV_ELEMENT_IN_INVLIST_SET(i_a))
6459 || (i_b == len_b && PREV_ELEMENT_IN_INVLIST_SET(i_b)))
6464 /* The final length is what we've output so far plus what else is in the
6465 * intersection. At most one of the subexpressions below will be non-zero */
6468 len_r += (len_a - i_a) + (len_b - i_b);
6471 /* Set result to final length, which can change the pointer to array_r, so
6473 if (len_r != invlist_len(r)) {
6474 invlist_set_len(r, len_r);
6476 array_r = invlist_array(r);
6479 /* Finish outputting any remaining */
6480 if (count >= 2) { /* At most one will have a non-zero copy count */
6482 if ((copy_count = len_a - i_a) > 0) {
6483 Copy(array_a + i_a, array_r + i_r, copy_count, UV);
6485 else if ((copy_count = len_b - i_b) > 0) {
6486 Copy(array_b + i_b, array_r + i_r, copy_count, UV);
6490 /* We may be removing a reference to one of the inputs */
6491 if (&a == i || &b == i) {
6502 S_add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end)
6504 /* Add the range from 'start' to 'end' inclusive to the inversion list's
6505 * set. A pointer to the inversion list is returned. This may actually be
6506 * a new list, in which case the passed in one has been destroyed. The
6507 * passed in inversion list can be NULL, in which case a new one is created
6508 * with just the one range in it */
6513 if (invlist == NULL) {
6514 invlist = _new_invlist(2);
6518 len = invlist_len(invlist);
6521 /* If comes after the final entry, can just append it to the end */
6523 || start >= invlist_array(invlist)
6524 [invlist_len(invlist) - 1])
6526 _append_range_to_invlist(invlist, start, end);
6530 /* Here, can't just append things, create and return a new inversion list
6531 * which is the union of this range and the existing inversion list */
6532 range_invlist = _new_invlist(2);
6533 _append_range_to_invlist(range_invlist, start, end);
6535 _invlist_union(invlist, range_invlist, &invlist);
6537 /* The temporary can be freed */
6538 SvREFCNT_dec(range_invlist);
6543 PERL_STATIC_INLINE SV*
6544 S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) {
6545 return add_range_to_invlist(invlist, cp, cp);
6548 #ifndef PERL_IN_XSUB_RE
6550 Perl__invlist_invert(pTHX_ SV* const invlist)
6552 /* Complement the input inversion list. This adds a 0 if the list didn't
6553 * have a zero; removes it otherwise. As described above, the data
6554 * structure is set up so that this is very efficient */
6556 UV* len_pos = get_invlist_len_addr(invlist);
6558 PERL_ARGS_ASSERT__INVLIST_INVERT;
6560 /* The inverse of matching nothing is matching everything */
6561 if (*len_pos == 0) {
6562 _append_range_to_invlist(invlist, 0, UV_MAX);
6566 /* The exclusive or complents 0 to 1; and 1 to 0. If the result is 1, the
6567 * zero element was a 0, so it is being removed, so the length decrements
6568 * by 1; and vice-versa. SvCUR is unaffected */
6569 if (*get_invlist_zero_addr(invlist) ^= 1) {
6578 Perl__invlist_invert_prop(pTHX_ SV* const invlist)
6580 /* Complement the input inversion list (which must be a Unicode property,
6581 * all of which don't match above the Unicode maximum code point.) And
6582 * Perl has chosen to not have the inversion match above that either. This
6583 * adds a 0x110000 if the list didn't end with it, and removes it if it did
6589 PERL_ARGS_ASSERT__INVLIST_INVERT_PROP;
6591 _invlist_invert(invlist);
6593 len = invlist_len(invlist);
6595 if (len != 0) { /* If empty do nothing */
6596 array = invlist_array(invlist);
6597 if (array[len - 1] != PERL_UNICODE_MAX + 1) {
6598 /* Add 0x110000. First, grow if necessary */
6600 if (invlist_max(invlist) < len) {
6601 invlist_extend(invlist, len);
6602 array = invlist_array(invlist);
6604 invlist_set_len(invlist, len);
6605 array[len - 1] = PERL_UNICODE_MAX + 1;
6607 else { /* Remove the 0x110000 */
6608 invlist_set_len(invlist, len - 1);
6616 PERL_STATIC_INLINE SV*
6617 S_invlist_clone(pTHX_ SV* const invlist)
6620 /* Return a new inversion list that is a copy of the input one, which is
6623 SV* new_invlist = _new_invlist(SvCUR(invlist));
6625 PERL_ARGS_ASSERT_INVLIST_CLONE;
6627 Copy(SvPVX(invlist), SvPVX(new_invlist), SvCUR(invlist), char);
6631 #ifndef PERL_IN_XSUB_RE
6633 Perl__invlist_subtract(pTHX_ SV* const a, SV* const b, SV** result)
6635 /* Point result to an inversion list which consists of all elements in 'a'
6636 * that aren't also in 'b' */
6638 PERL_ARGS_ASSERT__INVLIST_SUBTRACT;
6640 /* Subtracting nothing retains the original */
6641 if (invlist_len(b) == 0) {
6643 /* If the result is not to be the same variable as the original, create
6646 *result = invlist_clone(a);
6649 SV *b_copy = invlist_clone(b);
6650 _invlist_invert(b_copy); /* Everything not in 'b' */
6651 _invlist_intersection(a, b_copy, result); /* Everything in 'a' not in
6653 SvREFCNT_dec(b_copy);
6664 PERL_STATIC_INLINE UV*
6665 S_get_invlist_iter_addr(pTHX_ SV* invlist)
6667 /* Return the address of the UV that contains the current iteration
6670 PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR;
6672 return (UV *) (SvPVX(invlist) + (INVLIST_ITER_OFFSET * sizeof (UV)));
6675 PERL_STATIC_INLINE void
6676 S_invlist_iterinit(pTHX_ SV* invlist) /* Initialize iterator for invlist */
6678 PERL_ARGS_ASSERT_INVLIST_ITERINIT;
6680 *get_invlist_iter_addr(invlist) = 0;
6684 S_invlist_iternext(pTHX_ SV* invlist, UV* start, UV* end)
6686 UV* pos = get_invlist_iter_addr(invlist);
6687 UV len = invlist_len(invlist);
6690 PERL_ARGS_ASSERT_INVLIST_ITERNEXT;
6693 *pos = UV_MAX; /* Force iternit() to be required next time */
6697 array = invlist_array(invlist);
6699 *start = array[(*pos)++];
6705 *end = array[(*pos)++] - 1;
6713 S_invlist_dump(pTHX_ SV* const invlist, const char * const header)
6715 /* Dumps out the ranges in an inversion list. The string 'header'
6716 * if present is output on a line before the first range */
6720 if (header && strlen(header)) {
6721 PerlIO_printf(Perl_debug_log, "%s\n", header);
6723 invlist_iterinit(invlist);
6724 while (invlist_iternext(invlist, &start, &end)) {
6725 if (end == UV_MAX) {
6726 PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. INFINITY\n", start);
6729 PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. 0x%04"UVXf"\n", start, end);
6735 #undef HEADER_LENGTH
6736 #undef INVLIST_INITIAL_LENGTH
6737 #undef TO_INTERNAL_SIZE
6738 #undef FROM_INTERNAL_SIZE
6739 #undef INVLIST_LEN_OFFSET
6740 #undef INVLIST_ZERO_OFFSET
6741 #undef INVLIST_ITER_OFFSET
6743 /* End of inversion list object */
6746 - reg - regular expression, i.e. main body or parenthesized thing
6748 * Caller must absorb opening parenthesis.
6750 * Combining parenthesis handling with the base level of regular expression
6751 * is a trifle forced, but the need to tie the tails of the branches to what
6752 * follows makes it hard to avoid.
6754 #define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
6756 #define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
6758 #define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
6762 S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
6763 /* paren: Parenthesized? 0=top, 1=(, inside: changed to letter. */
6766 register regnode *ret; /* Will be the head of the group. */
6767 register regnode *br;
6768 register regnode *lastbr;
6769 register regnode *ender = NULL;
6770 register I32 parno = 0;
6772 U32 oregflags = RExC_flags;
6773 bool have_branch = 0;
6775 I32 freeze_paren = 0;
6776 I32 after_freeze = 0;
6778 /* for (?g), (?gc), and (?o) warnings; warning
6779 about (?c) will warn about (?g) -- japhy */
6781 #define WASTED_O 0x01
6782 #define WASTED_G 0x02
6783 #define WASTED_C 0x04
6784 #define WASTED_GC (0x02|0x04)
6785 I32 wastedflags = 0x00;
6787 char * parse_start = RExC_parse; /* MJD */
6788 char * const oregcomp_parse = RExC_parse;
6790 GET_RE_DEBUG_FLAGS_DECL;
6792 PERL_ARGS_ASSERT_REG;
6793 DEBUG_PARSE("reg ");
6795 *flagp = 0; /* Tentatively. */
6798 /* Make an OPEN node, if parenthesized. */
6800 if ( *RExC_parse == '*') { /* (*VERB:ARG) */
6801 char *start_verb = RExC_parse;
6802 STRLEN verb_len = 0;
6803 char *start_arg = NULL;
6804 unsigned char op = 0;
6806 int internal_argval = 0; /* internal_argval is only useful if !argok */
6807 while ( *RExC_parse && *RExC_parse != ')' ) {
6808 if ( *RExC_parse == ':' ) {
6809 start_arg = RExC_parse + 1;
6815 verb_len = RExC_parse - start_verb;
6818 while ( *RExC_parse && *RExC_parse != ')' )
6820 if ( *RExC_parse != ')' )
6821 vFAIL("Unterminated verb pattern argument");
6822 if ( RExC_parse == start_arg )
6825 if ( *RExC_parse != ')' )
6826 vFAIL("Unterminated verb pattern");
6829 switch ( *start_verb ) {
6830 case 'A': /* (*ACCEPT) */
6831 if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
6833 internal_argval = RExC_nestroot;
6836 case 'C': /* (*COMMIT) */
6837 if ( memEQs(start_verb,verb_len,"COMMIT") )
6840 case 'F': /* (*FAIL) */
6841 if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
6846 case ':': /* (*:NAME) */
6847 case 'M': /* (*MARK:NAME) */
6848 if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
6853 case 'P': /* (*PRUNE) */
6854 if ( memEQs(start_verb,verb_len,"PRUNE") )
6857 case 'S': /* (*SKIP) */
6858 if ( memEQs(start_verb,verb_len,"SKIP") )
6861 case 'T': /* (*THEN) */
6862 /* [19:06] <TimToady> :: is then */
6863 if ( memEQs(start_verb,verb_len,"THEN") ) {
6865 RExC_seen |= REG_SEEN_CUTGROUP;
6871 vFAIL3("Unknown verb pattern '%.*s'",
6872 verb_len, start_verb);
6875 if ( start_arg && internal_argval ) {
6876 vFAIL3("Verb pattern '%.*s' may not have an argument",
6877 verb_len, start_verb);
6878 } else if ( argok < 0 && !start_arg ) {
6879 vFAIL3("Verb pattern '%.*s' has a mandatory argument",
6880 verb_len, start_verb);
6882 ret = reganode(pRExC_state, op, internal_argval);
6883 if ( ! internal_argval && ! SIZE_ONLY ) {
6885 SV *sv = newSVpvn( start_arg, RExC_parse - start_arg);
6886 ARG(ret) = add_data( pRExC_state, 1, "S" );
6887 RExC_rxi->data->data[ARG(ret)]=(void*)sv;
6894 if (!internal_argval)
6895 RExC_seen |= REG_SEEN_VERBARG;
6896 } else if ( start_arg ) {
6897 vFAIL3("Verb pattern '%.*s' may not have an argument",
6898 verb_len, start_verb);
6900 ret = reg_node(pRExC_state, op);
6902 nextchar(pRExC_state);
6905 if (*RExC_parse == '?') { /* (?...) */
6906 bool is_logical = 0;
6907 const char * const seqstart = RExC_parse;
6908 bool has_use_defaults = FALSE;
6911 paren = *RExC_parse++;
6912 ret = NULL; /* For look-ahead/behind. */
6915 case 'P': /* (?P...) variants for those used to PCRE/Python */
6916 paren = *RExC_parse++;
6917 if ( paren == '<') /* (?P<...>) named capture */
6919 else if (paren == '>') { /* (?P>name) named recursion */
6920 goto named_recursion;
6922 else if (paren == '=') { /* (?P=...) named backref */
6923 /* this pretty much dupes the code for \k<NAME> in regatom(), if
6924 you change this make sure you change that */
6925 char* name_start = RExC_parse;
6927 SV *sv_dat = reg_scan_name(pRExC_state,
6928 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
6929 if (RExC_parse == name_start || *RExC_parse != ')')
6930 vFAIL2("Sequence %.3s... not terminated",parse_start);
6933 num = add_data( pRExC_state, 1, "S" );
6934 RExC_rxi->data->data[num]=(void*)sv_dat;
6935 SvREFCNT_inc_simple_void(sv_dat);
6938 ret = reganode(pRExC_state,
6941 : (MORE_ASCII_RESTRICTED)
6943 : (AT_LEAST_UNI_SEMANTICS)
6951 Set_Node_Offset(ret, parse_start+1);
6952 Set_Node_Cur_Length(ret); /* MJD */
6954 nextchar(pRExC_state);
6958 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
6960 case '<': /* (?<...) */
6961 if (*RExC_parse == '!')
6963 else if (*RExC_parse != '=')
6969 case '\'': /* (?'...') */
6970 name_start= RExC_parse;
6971 svname = reg_scan_name(pRExC_state,
6972 SIZE_ONLY ? /* reverse test from the others */
6973 REG_RSN_RETURN_NAME :
6974 REG_RSN_RETURN_NULL);
6975 if (RExC_parse == name_start) {
6977 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
6980 if (*RExC_parse != paren)
6981 vFAIL2("Sequence (?%c... not terminated",
6982 paren=='>' ? '<' : paren);
6986 if (!svname) /* shouldn't happen */
6988 "panic: reg_scan_name returned NULL");
6989 if (!RExC_paren_names) {
6990 RExC_paren_names= newHV();
6991 sv_2mortal(MUTABLE_SV(RExC_paren_names));
6993 RExC_paren_name_list= newAV();
6994 sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
6997 he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
6999 sv_dat = HeVAL(he_str);
7001 /* croak baby croak */
7003 "panic: paren_name hash element allocation failed");
7004 } else if ( SvPOK(sv_dat) ) {
7005 /* (?|...) can mean we have dupes so scan to check
7006 its already been stored. Maybe a flag indicating
7007 we are inside such a construct would be useful,
7008 but the arrays are likely to be quite small, so
7009 for now we punt -- dmq */
7010 IV count = SvIV(sv_dat);
7011 I32 *pv = (I32*)SvPVX(sv_dat);
7013 for ( i = 0 ; i < count ; i++ ) {
7014 if ( pv[i] == RExC_npar ) {
7020 pv = (I32*)SvGROW(sv_dat, SvCUR(sv_dat) + sizeof(I32)+1);
7021 SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
7022 pv[count] = RExC_npar;
7023 SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
7026 (void)SvUPGRADE(sv_dat,SVt_PVNV);
7027 sv_setpvn(sv_dat, (char *)&(RExC_npar), sizeof(I32));
7029 SvIV_set(sv_dat, 1);
7032 /* Yes this does cause a memory leak in debugging Perls */
7033 if (!av_store(RExC_paren_name_list, RExC_npar, SvREFCNT_inc(svname)))
7034 SvREFCNT_dec(svname);
7037 /*sv_dump(sv_dat);*/
7039 nextchar(pRExC_state);
7041 goto capturing_parens;
7043 RExC_seen |= REG_SEEN_LOOKBEHIND;
7044 RExC_in_lookbehind++;
7046 case '=': /* (?=...) */
7047 RExC_seen_zerolen++;
7049 case '!': /* (?!...) */
7050 RExC_seen_zerolen++;
7051 if (*RExC_parse == ')') {
7052 ret=reg_node(pRExC_state, OPFAIL);
7053 nextchar(pRExC_state);
7057 case '|': /* (?|...) */
7058 /* branch reset, behave like a (?:...) except that
7059 buffers in alternations share the same numbers */
7061 after_freeze = freeze_paren = RExC_npar;
7063 case ':': /* (?:...) */
7064 case '>': /* (?>...) */
7066 case '$': /* (?$...) */
7067 case '@': /* (?@...) */
7068 vFAIL2("Sequence (?%c...) not implemented", (int)paren);
7070 case '#': /* (?#...) */
7071 while (*RExC_parse && *RExC_parse != ')')
7073 if (*RExC_parse != ')')
7074 FAIL("Sequence (?#... not terminated");
7075 nextchar(pRExC_state);
7078 case '0' : /* (?0) */
7079 case 'R' : /* (?R) */
7080 if (*RExC_parse != ')')
7081 FAIL("Sequence (?R) not terminated");
7082 ret = reg_node(pRExC_state, GOSTART);
7083 *flagp |= POSTPONED;
7084 nextchar(pRExC_state);
7087 { /* named and numeric backreferences */
7089 case '&': /* (?&NAME) */
7090 parse_start = RExC_parse - 1;
7093 SV *sv_dat = reg_scan_name(pRExC_state,
7094 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
7095 num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
7097 goto gen_recurse_regop;
7100 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
7102 vFAIL("Illegal pattern");
7104 goto parse_recursion;
7106 case '-': /* (?-1) */
7107 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
7108 RExC_parse--; /* rewind to let it be handled later */
7112 case '1': case '2': case '3': case '4': /* (?1) */
7113 case '5': case '6': case '7': case '8': case '9':
7116 num = atoi(RExC_parse);
7117 parse_start = RExC_parse - 1; /* MJD */
7118 if (*RExC_parse == '-')
7120 while (isDIGIT(*RExC_parse))
7122 if (*RExC_parse!=')')
7123 vFAIL("Expecting close bracket");
7126 if ( paren == '-' ) {
7128 Diagram of capture buffer numbering.
7129 Top line is the normal capture buffer numbers
7130 Bottom line is the negative indexing as from
7134 /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
7138 num = RExC_npar + num;
7141 vFAIL("Reference to nonexistent group");
7143 } else if ( paren == '+' ) {
7144 num = RExC_npar + num - 1;
7147 ret = reganode(pRExC_state, GOSUB, num);
7149 if (num > (I32)RExC_rx->nparens) {
7151 vFAIL("Reference to nonexistent group");
7153 ARG2L_SET( ret, RExC_recurse_count++);
7155 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
7156 "Recurse #%"UVuf" to %"IVdf"\n", (UV)ARG(ret), (IV)ARG2L(ret)));
7160 RExC_seen |= REG_SEEN_RECURSE;
7161 Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
7162 Set_Node_Offset(ret, parse_start); /* MJD */
7164 *flagp |= POSTPONED;
7165 nextchar(pRExC_state);
7167 } /* named and numeric backreferences */
7170 case '?': /* (??...) */
7172 if (*RExC_parse != '{') {
7174 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
7177 *flagp |= POSTPONED;
7178 paren = *RExC_parse++;
7180 case '{': /* (?{...}) */
7185 char *s = RExC_parse;
7187 RExC_seen_zerolen++;
7188 RExC_seen |= REG_SEEN_EVAL;
7189 while (count && (c = *RExC_parse)) {
7200 if (*RExC_parse != ')') {
7202 vFAIL("Sequence (?{...}) not terminated or not {}-balanced");
7206 OP_4tree *sop, *rop;
7207 SV * const sv = newSVpvn(s, RExC_parse - 1 - s);
7210 Perl_save_re_context(aTHX);
7211 rop = Perl_sv_compile_2op_is_broken(aTHX_ sv, &sop, "re", &pad);
7212 sop->op_private |= OPpREFCOUNTED;
7213 /* re_dup will OpREFCNT_inc */
7214 OpREFCNT_set(sop, 1);
7217 n = add_data(pRExC_state, 3, "nop");
7218 RExC_rxi->data->data[n] = (void*)rop;
7219 RExC_rxi->data->data[n+1] = (void*)sop;
7220 RExC_rxi->data->data[n+2] = (void*)pad;
7223 else { /* First pass */
7224 if (PL_reginterp_cnt < ++RExC_seen_evals
7226 /* No compiled RE interpolated, has runtime
7227 components ===> unsafe. */
7228 FAIL("Eval-group not allowed at runtime, use re 'eval'");
7229 if (PL_tainting && PL_tainted)
7230 FAIL("Eval-group in insecure regular expression");
7231 #if PERL_VERSION > 8
7232 if (IN_PERL_COMPILETIME)
7237 nextchar(pRExC_state);
7239 ret = reg_node(pRExC_state, LOGICAL);
7242 REGTAIL(pRExC_state, ret, reganode(pRExC_state, EVAL, n));
7243 /* deal with the length of this later - MJD */
7246 ret = reganode(pRExC_state, EVAL, n);
7247 Set_Node_Length(ret, RExC_parse - parse_start + 1);
7248 Set_Node_Offset(ret, parse_start);
7251 case '(': /* (?(?{...})...) and (?(?=...)...) */
7254 if (RExC_parse[0] == '?') { /* (?(?...)) */
7255 if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
7256 || RExC_parse[1] == '<'
7257 || RExC_parse[1] == '{') { /* Lookahead or eval. */
7260 ret = reg_node(pRExC_state, LOGICAL);
7263 REGTAIL(pRExC_state, ret, reg(pRExC_state, 1, &flag,depth+1));
7267 else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */
7268 || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
7270 char ch = RExC_parse[0] == '<' ? '>' : '\'';
7271 char *name_start= RExC_parse++;
7273 SV *sv_dat=reg_scan_name(pRExC_state,
7274 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
7275 if (RExC_parse == name_start || *RExC_parse != ch)
7276 vFAIL2("Sequence (?(%c... not terminated",
7277 (ch == '>' ? '<' : ch));
7280 num = add_data( pRExC_state, 1, "S" );
7281 RExC_rxi->data->data[num]=(void*)sv_dat;
7282 SvREFCNT_inc_simple_void(sv_dat);
7284 ret = reganode(pRExC_state,NGROUPP,num);
7285 goto insert_if_check_paren;
7287 else if (RExC_parse[0] == 'D' &&
7288 RExC_parse[1] == 'E' &&
7289 RExC_parse[2] == 'F' &&
7290 RExC_parse[3] == 'I' &&
7291 RExC_parse[4] == 'N' &&
7292 RExC_parse[5] == 'E')
7294 ret = reganode(pRExC_state,DEFINEP,0);
7297 goto insert_if_check_paren;
7299 else if (RExC_parse[0] == 'R') {
7302 if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
7303 parno = atoi(RExC_parse++);
7304 while (isDIGIT(*RExC_parse))
7306 } else if (RExC_parse[0] == '&') {
7309 sv_dat = reg_scan_name(pRExC_state,
7310 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
7311 parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
7313 ret = reganode(pRExC_state,INSUBP,parno);
7314 goto insert_if_check_paren;
7316 else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
7319 parno = atoi(RExC_parse++);
7321 while (isDIGIT(*RExC_parse))
7323 ret = reganode(pRExC_state, GROUPP, parno);
7325 insert_if_check_paren:
7326 if ((c = *nextchar(pRExC_state)) != ')')
7327 vFAIL("Switch condition not recognized");
7329 REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
7330 br = regbranch(pRExC_state, &flags, 1,depth+1);
7332 br = reganode(pRExC_state, LONGJMP, 0);
7334 REGTAIL(pRExC_state, br, reganode(pRExC_state, LONGJMP, 0));
7335 c = *nextchar(pRExC_state);
7340 vFAIL("(?(DEFINE)....) does not allow branches");
7341 lastbr = reganode(pRExC_state, IFTHEN, 0); /* Fake one for optimizer. */
7342 regbranch(pRExC_state, &flags, 1,depth+1);
7343 REGTAIL(pRExC_state, ret, lastbr);
7346 c = *nextchar(pRExC_state);
7351 vFAIL("Switch (?(condition)... contains too many branches");
7352 ender = reg_node(pRExC_state, TAIL);
7353 REGTAIL(pRExC_state, br, ender);
7355 REGTAIL(pRExC_state, lastbr, ender);
7356 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
7359 REGTAIL(pRExC_state, ret, ender);
7360 RExC_size++; /* XXX WHY do we need this?!!
7361 For large programs it seems to be required
7362 but I can't figure out why. -- dmq*/
7366 vFAIL2("Unknown switch condition (?(%.2s", RExC_parse);
7370 RExC_parse--; /* for vFAIL to print correctly */
7371 vFAIL("Sequence (? incomplete");
7373 case DEFAULT_PAT_MOD: /* Use default flags with the exceptions
7375 has_use_defaults = TRUE;
7376 STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
7377 set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
7378 ? REGEX_UNICODE_CHARSET
7379 : REGEX_DEPENDS_CHARSET);
7383 parse_flags: /* (?i) */
7385 U32 posflags = 0, negflags = 0;
7386 U32 *flagsp = &posflags;
7387 char has_charset_modifier = '\0';
7388 regex_charset cs = (RExC_utf8 || RExC_uni_semantics)
7389 ? REGEX_UNICODE_CHARSET
7390 : REGEX_DEPENDS_CHARSET;
7392 while (*RExC_parse) {
7393 /* && strchr("iogcmsx", *RExC_parse) */
7394 /* (?g), (?gc) and (?o) are useless here
7395 and must be globally applied -- japhy */
7396 switch (*RExC_parse) {
7397 CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp);
7398 case LOCALE_PAT_MOD:
7399 if (has_charset_modifier) {
7400 goto excess_modifier;
7402 else if (flagsp == &negflags) {
7405 cs = REGEX_LOCALE_CHARSET;
7406 has_charset_modifier = LOCALE_PAT_MOD;
7407 RExC_contains_locale = 1;
7409 case UNICODE_PAT_MOD:
7410 if (has_charset_modifier) {
7411 goto excess_modifier;
7413 else if (flagsp == &negflags) {
7416 cs = REGEX_UNICODE_CHARSET;
7417 has_charset_modifier = UNICODE_PAT_MOD;
7419 case ASCII_RESTRICT_PAT_MOD:
7420 if (flagsp == &negflags) {
7423 if (has_charset_modifier) {
7424 if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
7425 goto excess_modifier;
7427 /* Doubled modifier implies more restricted */
7428 cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
7431 cs = REGEX_ASCII_RESTRICTED_CHARSET;
7433 has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
7435 case DEPENDS_PAT_MOD:
7436 if (has_use_defaults) {
7437 goto fail_modifiers;
7439 else if (flagsp == &negflags) {
7442 else if (has_charset_modifier) {
7443 goto excess_modifier;
7446 /* The dual charset means unicode semantics if the
7447 * pattern (or target, not known until runtime) are
7448 * utf8, or something in the pattern indicates unicode
7450 cs = (RExC_utf8 || RExC_uni_semantics)
7451 ? REGEX_UNICODE_CHARSET
7452 : REGEX_DEPENDS_CHARSET;
7453 has_charset_modifier = DEPENDS_PAT_MOD;
7457 if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
7458 vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
7460 else if (has_charset_modifier == *(RExC_parse - 1)) {
7461 vFAIL2("Regexp modifier \"%c\" may not appear twice", *(RExC_parse - 1));
7464 vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
7469 vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"", *(RExC_parse - 1));
7471 case ONCE_PAT_MOD: /* 'o' */
7472 case GLOBAL_PAT_MOD: /* 'g' */
7473 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
7474 const I32 wflagbit = *RExC_parse == 'o' ? WASTED_O : WASTED_G;
7475 if (! (wastedflags & wflagbit) ) {
7476 wastedflags |= wflagbit;
7479 "Useless (%s%c) - %suse /%c modifier",
7480 flagsp == &negflags ? "?-" : "?",
7482 flagsp == &negflags ? "don't " : "",
7489 case CONTINUE_PAT_MOD: /* 'c' */
7490 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
7491 if (! (wastedflags & WASTED_C) ) {
7492 wastedflags |= WASTED_GC;
7495 "Useless (%sc) - %suse /gc modifier",
7496 flagsp == &negflags ? "?-" : "?",
7497 flagsp == &negflags ? "don't " : ""
7502 case KEEPCOPY_PAT_MOD: /* 'p' */
7503 if (flagsp == &negflags) {
7505 ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
7507 *flagsp |= RXf_PMf_KEEPCOPY;
7511 /* A flag is a default iff it is following a minus, so
7512 * if there is a minus, it means will be trying to
7513 * re-specify a default which is an error */
7514 if (has_use_defaults || flagsp == &negflags) {
7517 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
7521 wastedflags = 0; /* reset so (?g-c) warns twice */
7527 RExC_flags |= posflags;
7528 RExC_flags &= ~negflags;
7529 set_regex_charset(&RExC_flags, cs);
7531 oregflags |= posflags;
7532 oregflags &= ~negflags;
7533 set_regex_charset(&oregflags, cs);
7535 nextchar(pRExC_state);
7546 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
7551 }} /* one for the default block, one for the switch */
7558 ret = reganode(pRExC_state, OPEN, parno);
7561 RExC_nestroot = parno;
7562 if (RExC_seen & REG_SEEN_RECURSE
7563 && !RExC_open_parens[parno-1])
7565 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
7566 "Setting open paren #%"IVdf" to %d\n",
7567 (IV)parno, REG_NODE_NUM(ret)));
7568 RExC_open_parens[parno-1]= ret;
7571 Set_Node_Length(ret, 1); /* MJD */
7572 Set_Node_Offset(ret, RExC_parse); /* MJD */
7580 /* Pick up the branches, linking them together. */
7581 parse_start = RExC_parse; /* MJD */
7582 br = regbranch(pRExC_state, &flags, 1,depth+1);
7584 /* branch_len = (paren != 0); */
7588 if (*RExC_parse == '|') {
7589 if (!SIZE_ONLY && RExC_extralen) {
7590 reginsert(pRExC_state, BRANCHJ, br, depth+1);
7593 reginsert(pRExC_state, BRANCH, br, depth+1);
7594 Set_Node_Length(br, paren != 0);
7595 Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
7599 RExC_extralen += 1; /* For BRANCHJ-BRANCH. */
7601 else if (paren == ':') {
7602 *flagp |= flags&SIMPLE;
7604 if (is_open) { /* Starts with OPEN. */
7605 REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */
7607 else if (paren != '?') /* Not Conditional */
7609 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
7611 while (*RExC_parse == '|') {
7612 if (!SIZE_ONLY && RExC_extralen) {
7613 ender = reganode(pRExC_state, LONGJMP,0);
7614 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender); /* Append to the previous. */
7617 RExC_extralen += 2; /* Account for LONGJMP. */
7618 nextchar(pRExC_state);
7620 if (RExC_npar > after_freeze)
7621 after_freeze = RExC_npar;
7622 RExC_npar = freeze_paren;
7624 br = regbranch(pRExC_state, &flags, 0, depth+1);
7628 REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */
7630 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
7633 if (have_branch || paren != ':') {
7634 /* Make a closing node, and hook it on the end. */
7637 ender = reg_node(pRExC_state, TAIL);
7640 ender = reganode(pRExC_state, CLOSE, parno);
7641 if (!SIZE_ONLY && RExC_seen & REG_SEEN_RECURSE) {
7642 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
7643 "Setting close paren #%"IVdf" to %d\n",
7644 (IV)parno, REG_NODE_NUM(ender)));
7645 RExC_close_parens[parno-1]= ender;
7646 if (RExC_nestroot == parno)
7649 Set_Node_Offset(ender,RExC_parse+1); /* MJD */
7650 Set_Node_Length(ender,1); /* MJD */
7656 *flagp &= ~HASWIDTH;
7659 ender = reg_node(pRExC_state, SUCCEED);
7662 ender = reg_node(pRExC_state, END);
7664 assert(!RExC_opend); /* there can only be one! */
7669 REGTAIL(pRExC_state, lastbr, ender);
7671 if (have_branch && !SIZE_ONLY) {
7673 RExC_seen |= REG_TOP_LEVEL_BRANCHES;
7675 /* Hook the tails of the branches to the closing node. */
7676 for (br = ret; br; br = regnext(br)) {
7677 const U8 op = PL_regkind[OP(br)];
7679 REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
7681 else if (op == BRANCHJ) {
7682 REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
7690 static const char parens[] = "=!<,>";
7692 if (paren && (p = strchr(parens, paren))) {
7693 U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
7694 int flag = (p - parens) > 1;
7697 node = SUSPEND, flag = 0;
7698 reginsert(pRExC_state, node,ret, depth+1);
7699 Set_Node_Cur_Length(ret);
7700 Set_Node_Offset(ret, parse_start + 1);
7702 REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
7706 /* Check for proper termination. */
7708 RExC_flags = oregflags;
7709 if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
7710 RExC_parse = oregcomp_parse;
7711 vFAIL("Unmatched (");
7714 else if (!paren && RExC_parse < RExC_end) {
7715 if (*RExC_parse == ')') {
7717 vFAIL("Unmatched )");
7720 FAIL("Junk on end of regexp"); /* "Can't happen". */
7724 if (RExC_in_lookbehind) {
7725 RExC_in_lookbehind--;
7727 if (after_freeze > RExC_npar)
7728 RExC_npar = after_freeze;
7733 - regbranch - one alternative of an | operator
7735 * Implements the concatenation operator.
7738 S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
7741 register regnode *ret;
7742 register regnode *chain = NULL;
7743 register regnode *latest;
7744 I32 flags = 0, c = 0;
7745 GET_RE_DEBUG_FLAGS_DECL;
7747 PERL_ARGS_ASSERT_REGBRANCH;
7749 DEBUG_PARSE("brnc");
7754 if (!SIZE_ONLY && RExC_extralen)
7755 ret = reganode(pRExC_state, BRANCHJ,0);
7757 ret = reg_node(pRExC_state, BRANCH);
7758 Set_Node_Length(ret, 1);
7762 if (!first && SIZE_ONLY)
7763 RExC_extralen += 1; /* BRANCHJ */
7765 *flagp = WORST; /* Tentatively. */
7768 nextchar(pRExC_state);
7769 while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
7771 latest = regpiece(pRExC_state, &flags,depth+1);
7772 if (latest == NULL) {
7773 if (flags & TRYAGAIN)
7777 else if (ret == NULL)
7779 *flagp |= flags&(HASWIDTH|POSTPONED);
7780 if (chain == NULL) /* First piece. */
7781 *flagp |= flags&SPSTART;
7784 REGTAIL(pRExC_state, chain, latest);
7789 if (chain == NULL) { /* Loop ran zero times. */
7790 chain = reg_node(pRExC_state, NOTHING);
7795 *flagp |= flags&SIMPLE;
7802 - regpiece - something followed by possible [*+?]
7804 * Note that the branching code sequences used for ? and the general cases
7805 * of * and + are somewhat optimized: they use the same NOTHING node as
7806 * both the endmarker for their branch list and the body of the last branch.
7807 * It might seem that this node could be dispensed with entirely, but the
7808 * endmarker role is not redundant.
7811 S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
7814 register regnode *ret;
7816 register char *next;
7818 const char * const origparse = RExC_parse;
7820 I32 max = REG_INFTY;
7821 #ifdef RE_TRACK_PATTERN_OFFSETS
7824 const char *maxpos = NULL;
7825 GET_RE_DEBUG_FLAGS_DECL;
7827 PERL_ARGS_ASSERT_REGPIECE;
7829 DEBUG_PARSE("piec");
7831 ret = regatom(pRExC_state, &flags,depth+1);
7833 if (flags & TRYAGAIN)
7840 if (op == '{' && regcurly(RExC_parse)) {
7842 #ifdef RE_TRACK_PATTERN_OFFSETS
7843 parse_start = RExC_parse; /* MJD */
7845 next = RExC_parse + 1;
7846 while (isDIGIT(*next) || *next == ',') {
7855 if (*next == '}') { /* got one */
7859 min = atoi(RExC_parse);
7863 maxpos = RExC_parse;
7865 if (!max && *maxpos != '0')
7866 max = REG_INFTY; /* meaning "infinity" */
7867 else if (max >= REG_INFTY)
7868 vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
7870 nextchar(pRExC_state);
7873 if ((flags&SIMPLE)) {
7874 RExC_naughty += 2 + RExC_naughty / 2;
7875 reginsert(pRExC_state, CURLY, ret, depth+1);
7876 Set_Node_Offset(ret, parse_start+1); /* MJD */
7877 Set_Node_Cur_Length(ret);
7880 regnode * const w = reg_node(pRExC_state, WHILEM);
7883 REGTAIL(pRExC_state, ret, w);
7884 if (!SIZE_ONLY && RExC_extralen) {
7885 reginsert(pRExC_state, LONGJMP,ret, depth+1);
7886 reginsert(pRExC_state, NOTHING,ret, depth+1);
7887 NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
7889 reginsert(pRExC_state, CURLYX,ret, depth+1);
7891 Set_Node_Offset(ret, parse_start+1);
7892 Set_Node_Length(ret,
7893 op == '{' ? (RExC_parse - parse_start) : 1);
7895 if (!SIZE_ONLY && RExC_extralen)
7896 NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
7897 REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
7899 RExC_whilem_seen++, RExC_extralen += 3;
7900 RExC_naughty += 4 + RExC_naughty; /* compound interest */
7909 vFAIL("Can't do {n,m} with n > m");
7911 ARG1_SET(ret, (U16)min);
7912 ARG2_SET(ret, (U16)max);
7924 #if 0 /* Now runtime fix should be reliable. */
7926 /* if this is reinstated, don't forget to put this back into perldiag:
7928 =item Regexp *+ operand could be empty at {#} in regex m/%s/
7930 (F) The part of the regexp subject to either the * or + quantifier
7931 could match an empty string. The {#} shows in the regular
7932 expression about where the problem was discovered.
7936 if (!(flags&HASWIDTH) && op != '?')
7937 vFAIL("Regexp *+ operand could be empty");
7940 #ifdef RE_TRACK_PATTERN_OFFSETS
7941 parse_start = RExC_parse;
7943 nextchar(pRExC_state);
7945 *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
7947 if (op == '*' && (flags&SIMPLE)) {
7948 reginsert(pRExC_state, STAR, ret, depth+1);
7952 else if (op == '*') {
7956 else if (op == '+' && (flags&SIMPLE)) {
7957 reginsert(pRExC_state, PLUS, ret, depth+1);
7961 else if (op == '+') {
7965 else if (op == '?') {
7970 if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
7971 ckWARN3reg(RExC_parse,
7972 "%.*s matches null string many times",
7973 (int)(RExC_parse >= origparse ? RExC_parse - origparse : 0),
7977 if (RExC_parse < RExC_end && *RExC_parse == '?') {
7978 nextchar(pRExC_state);
7979 reginsert(pRExC_state, MINMOD, ret, depth+1);
7980 REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
7982 #ifndef REG_ALLOW_MINMOD_SUSPEND
7985 if (RExC_parse < RExC_end && *RExC_parse == '+') {
7987 nextchar(pRExC_state);
7988 ender = reg_node(pRExC_state, SUCCEED);
7989 REGTAIL(pRExC_state, ret, ender);
7990 reginsert(pRExC_state, SUSPEND, ret, depth+1);
7992 ender = reg_node(pRExC_state, TAIL);
7993 REGTAIL(pRExC_state, ret, ender);
7997 if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
7999 vFAIL("Nested quantifiers");
8006 /* reg_namedseq(pRExC_state,UVp, UV depth)
8008 This is expected to be called by a parser routine that has
8009 recognized '\N' and needs to handle the rest. RExC_parse is
8010 expected to point at the first char following the N at the time
8013 The \N may be inside (indicated by valuep not being NULL) or outside a
8016 \N may begin either a named sequence, or if outside a character class, mean
8017 to match a non-newline. For non single-quoted regexes, the tokenizer has
8018 attempted to decide which, and in the case of a named sequence converted it
8019 into one of the forms: \N{} (if the sequence is null), or \N{U+c1.c2...},
8020 where c1... are the characters in the sequence. For single-quoted regexes,
8021 the tokenizer passes the \N sequence through unchanged; this code will not
8022 attempt to determine this nor expand those. The net effect is that if the
8023 beginning of the passed-in pattern isn't '{U+' or there is no '}', it
8024 signals that this \N occurrence means to match a non-newline.
8026 Only the \N{U+...} form should occur in a character class, for the same
8027 reason that '.' inside a character class means to just match a period: it
8028 just doesn't make sense.
8030 If valuep is non-null then it is assumed that we are parsing inside
8031 of a charclass definition and the first codepoint in the resolved
8032 string is returned via *valuep and the routine will return NULL.
8033 In this mode if a multichar string is returned from the charnames
8034 handler, a warning will be issued, and only the first char in the
8035 sequence will be examined. If the string returned is zero length
8036 then the value of *valuep is undefined and NON-NULL will
8037 be returned to indicate failure. (This will NOT be a valid pointer
8040 If valuep is null then it is assumed that we are parsing normal text and a
8041 new EXACT node is inserted into the program containing the resolved string,
8042 and a pointer to the new node is returned. But if the string is zero length
8043 a NOTHING node is emitted instead.
8045 On success RExC_parse is set to the char following the endbrace.
8046 Parsing failures will generate a fatal error via vFAIL(...)
8049 S_reg_namedseq(pTHX_ RExC_state_t *pRExC_state, UV *valuep, I32 *flagp, U32 depth)
8051 char * endbrace; /* '}' following the name */
8052 regnode *ret = NULL;
8055 GET_RE_DEBUG_FLAGS_DECL;
8057 PERL_ARGS_ASSERT_REG_NAMEDSEQ;
8061 /* The [^\n] meaning of \N ignores spaces and comments under the /x
8062 * modifier. The other meaning does not */
8063 p = (RExC_flags & RXf_PMf_EXTENDED)
8064 ? regwhite( pRExC_state, RExC_parse )
8067 /* Disambiguate between \N meaning a named character versus \N meaning
8068 * [^\n]. The former is assumed when it can't be the latter. */
8069 if (*p != '{' || regcurly(p)) {
8072 /* no bare \N in a charclass */
8073 vFAIL("\\N in a character class must be a named character: \\N{...}");
8075 nextchar(pRExC_state);
8076 ret = reg_node(pRExC_state, REG_ANY);
8077 *flagp |= HASWIDTH|SIMPLE;
8080 Set_Node_Length(ret, 1); /* MJD */
8084 /* Here, we have decided it should be a named sequence */
8086 /* The test above made sure that the next real character is a '{', but
8087 * under the /x modifier, it could be separated by space (or a comment and
8088 * \n) and this is not allowed (for consistency with \x{...} and the
8089 * tokenizer handling of \N{NAME}). */
8090 if (*RExC_parse != '{') {
8091 vFAIL("Missing braces on \\N{}");
8094 RExC_parse++; /* Skip past the '{' */
8096 if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */
8097 || ! (endbrace == RExC_parse /* nothing between the {} */
8098 || (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked below */
8099 && strnEQ(RExC_parse, "U+", 2)))) /* for a better error msg) */
8101 if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
8102 vFAIL("\\N{NAME} must be resolved by the lexer");
8105 if (endbrace == RExC_parse) { /* empty: \N{} */
8107 RExC_parse = endbrace + 1;
8108 return reg_node(pRExC_state,NOTHING);
8112 ckWARNreg(RExC_parse,
8113 "Ignoring zero length \\N{} in character class"
8115 RExC_parse = endbrace + 1;
8118 return (regnode *) &RExC_parse; /* Invalid regnode pointer */
8121 REQUIRE_UTF8; /* named sequences imply Unicode semantics */
8122 RExC_parse += 2; /* Skip past the 'U+' */
8124 if (valuep) { /* In a bracketed char class */
8125 /* We only pay attention to the first char of
8126 multichar strings being returned. I kinda wonder
8127 if this makes sense as it does change the behaviour
8128 from earlier versions, OTOH that behaviour was broken
8129 as well. XXX Solution is to recharacterize as
8130 [rest-of-class]|multi1|multi2... */
8132 STRLEN length_of_hex;
8133 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
8134 | PERL_SCAN_DISALLOW_PREFIX
8135 | (SIZE_ONLY ? PERL_SCAN_SILENT_ILLDIGIT : 0);
8137 char * endchar = RExC_parse + strcspn(RExC_parse, ".}");
8138 if (endchar < endbrace) {
8139 ckWARNreg(endchar, "Using just the first character returned by \\N{} in character class");
8142 length_of_hex = (STRLEN)(endchar - RExC_parse);
8143 *valuep = grok_hex(RExC_parse, &length_of_hex, &flags, NULL);
8145 /* The tokenizer should have guaranteed validity, but it's possible to
8146 * bypass it by using single quoting, so check */
8147 if (length_of_hex == 0
8148 || length_of_hex != (STRLEN)(endchar - RExC_parse) )
8150 RExC_parse += length_of_hex; /* Includes all the valid */
8151 RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
8152 ? UTF8SKIP(RExC_parse)
8154 /* Guard against malformed utf8 */
8155 if (RExC_parse >= endchar) RExC_parse = endchar;
8156 vFAIL("Invalid hexadecimal number in \\N{U+...}");
8159 RExC_parse = endbrace + 1;
8160 if (endchar == endbrace) return NULL;
8162 ret = (regnode *) &RExC_parse; /* Invalid regnode pointer */
8164 else { /* Not a char class */
8166 /* What is done here is to convert this to a sub-pattern of the form
8167 * (?:\x{char1}\x{char2}...)
8168 * and then call reg recursively. That way, it retains its atomicness,
8169 * while not having to worry about special handling that some code
8170 * points may have. toke.c has converted the original Unicode values
8171 * to native, so that we can just pass on the hex values unchanged. We
8172 * do have to set a flag to keep recoding from happening in the
8175 SV * substitute_parse = newSVpvn_flags("?:", 2, SVf_UTF8|SVs_TEMP);
8177 char *endchar; /* Points to '.' or '}' ending cur char in the input
8179 char *orig_end = RExC_end;
8181 while (RExC_parse < endbrace) {
8183 /* Code points are separated by dots. If none, there is only one
8184 * code point, and is terminated by the brace */
8185 endchar = RExC_parse + strcspn(RExC_parse, ".}");
8187 /* Convert to notation the rest of the code understands */
8188 sv_catpv(substitute_parse, "\\x{");
8189 sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
8190 sv_catpv(substitute_parse, "}");
8192 /* Point to the beginning of the next character in the sequence. */
8193 RExC_parse = endchar + 1;
8195 sv_catpv(substitute_parse, ")");
8197 RExC_parse = SvPV(substitute_parse, len);
8199 /* Don't allow empty number */
8201 vFAIL("Invalid hexadecimal number in \\N{U+...}");
8203 RExC_end = RExC_parse + len;
8205 /* The values are Unicode, and therefore not subject to recoding */
8206 RExC_override_recoding = 1;
8208 ret = reg(pRExC_state, 1, flagp, depth+1);
8210 RExC_parse = endbrace;
8211 RExC_end = orig_end;
8212 RExC_override_recoding = 0;
8214 nextchar(pRExC_state);
8224 * It returns the code point in utf8 for the value in *encp.
8225 * value: a code value in the source encoding
8226 * encp: a pointer to an Encode object
8228 * If the result from Encode is not a single character,
8229 * it returns U+FFFD (Replacement character) and sets *encp to NULL.
8232 S_reg_recode(pTHX_ const char value, SV **encp)
8235 SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
8236 const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
8237 const STRLEN newlen = SvCUR(sv);
8238 UV uv = UNICODE_REPLACEMENT;
8240 PERL_ARGS_ASSERT_REG_RECODE;
8244 ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
8247 if (!newlen || numlen != newlen) {
8248 uv = UNICODE_REPLACEMENT;
8256 - regatom - the lowest level
8258 Try to identify anything special at the start of the pattern. If there
8259 is, then handle it as required. This may involve generating a single regop,
8260 such as for an assertion; or it may involve recursing, such as to
8261 handle a () structure.
8263 If the string doesn't start with something special then we gobble up
8264 as much literal text as we can.
8266 Once we have been able to handle whatever type of thing started the
8267 sequence, we return.
8269 Note: we have to be careful with escapes, as they can be both literal
8270 and special, and in the case of \10 and friends can either, depending
8271 on context. Specifically there are two separate switches for handling
8272 escape sequences, with the one for handling literal escapes requiring
8273 a dummy entry for all of the special escapes that are actually handled
8278 S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
8281 register regnode *ret = NULL;
8283 char *parse_start = RExC_parse;
8285 GET_RE_DEBUG_FLAGS_DECL;
8286 DEBUG_PARSE("atom");
8287 *flagp = WORST; /* Tentatively. */
8289 PERL_ARGS_ASSERT_REGATOM;
8292 switch ((U8)*RExC_parse) {
8294 RExC_seen_zerolen++;
8295 nextchar(pRExC_state);
8296 if (RExC_flags & RXf_PMf_MULTILINE)
8297 ret = reg_node(pRExC_state, MBOL);
8298 else if (RExC_flags & RXf_PMf_SINGLELINE)
8299 ret = reg_node(pRExC_state, SBOL);
8301 ret = reg_node(pRExC_state, BOL);
8302 Set_Node_Length(ret, 1); /* MJD */
8305 nextchar(pRExC_state);
8307 RExC_seen_zerolen++;
8308 if (RExC_flags & RXf_PMf_MULTILINE)
8309 ret = reg_node(pRExC_state, MEOL);
8310 else if (RExC_flags & RXf_PMf_SINGLELINE)
8311 ret = reg_node(pRExC_state, SEOL);
8313 ret = reg_node(pRExC_state, EOL);
8314 Set_Node_Length(ret, 1); /* MJD */
8317 nextchar(pRExC_state);
8318 if (RExC_flags & RXf_PMf_SINGLELINE)
8319 ret = reg_node(pRExC_state, SANY);
8321 ret = reg_node(pRExC_state, REG_ANY);
8322 *flagp |= HASWIDTH|SIMPLE;
8324 Set_Node_Length(ret, 1); /* MJD */
8328 char * const oregcomp_parse = ++RExC_parse;
8329 ret = regclass(pRExC_state,depth+1);
8330 if (*RExC_parse != ']') {
8331 RExC_parse = oregcomp_parse;
8332 vFAIL("Unmatched [");
8334 nextchar(pRExC_state);
8335 *flagp |= HASWIDTH|SIMPLE;
8336 Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
8340 nextchar(pRExC_state);
8341 ret = reg(pRExC_state, 1, &flags,depth+1);
8343 if (flags & TRYAGAIN) {
8344 if (RExC_parse == RExC_end) {
8345 /* Make parent create an empty node if needed. */
8353 *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
8357 if (flags & TRYAGAIN) {
8361 vFAIL("Internal urp");
8362 /* Supposed to be caught earlier. */
8365 if (!regcurly(RExC_parse)) {
8374 vFAIL("Quantifier follows nothing");
8379 This switch handles escape sequences that resolve to some kind
8380 of special regop and not to literal text. Escape sequnces that
8381 resolve to literal text are handled below in the switch marked
8384 Every entry in this switch *must* have a corresponding entry
8385 in the literal escape switch. However, the opposite is not
8386 required, as the default for this switch is to jump to the
8387 literal text handling code.
8389 switch ((U8)*++RExC_parse) {
8390 /* Special Escapes */
8392 RExC_seen_zerolen++;
8393 ret = reg_node(pRExC_state, SBOL);
8395 goto finish_meta_pat;
8397 ret = reg_node(pRExC_state, GPOS);
8398 RExC_seen |= REG_SEEN_GPOS;
8400 goto finish_meta_pat;
8402 RExC_seen_zerolen++;
8403 ret = reg_node(pRExC_state, KEEPS);
8405 /* XXX:dmq : disabling in-place substitution seems to
8406 * be necessary here to avoid cases of memory corruption, as
8407 * with: C<$_="x" x 80; s/x\K/y/> -- rgs
8409 RExC_seen |= REG_SEEN_LOOKBEHIND;
8410 goto finish_meta_pat;
8412 ret = reg_node(pRExC_state, SEOL);
8414 RExC_seen_zerolen++; /* Do not optimize RE away */
8415 goto finish_meta_pat;
8417 ret = reg_node(pRExC_state, EOS);
8419 RExC_seen_zerolen++; /* Do not optimize RE away */
8420 goto finish_meta_pat;
8422 ret = reg_node(pRExC_state, CANY);
8423 RExC_seen |= REG_SEEN_CANY;
8424 *flagp |= HASWIDTH|SIMPLE;
8425 goto finish_meta_pat;
8427 ret = reg_node(pRExC_state, CLUMP);
8429 goto finish_meta_pat;
8431 switch (get_regex_charset(RExC_flags)) {
8432 case REGEX_LOCALE_CHARSET:
8435 case REGEX_UNICODE_CHARSET:
8438 case REGEX_ASCII_RESTRICTED_CHARSET:
8439 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8442 case REGEX_DEPENDS_CHARSET:
8448 ret = reg_node(pRExC_state, op);
8449 *flagp |= HASWIDTH|SIMPLE;
8450 goto finish_meta_pat;
8452 switch (get_regex_charset(RExC_flags)) {
8453 case REGEX_LOCALE_CHARSET:
8456 case REGEX_UNICODE_CHARSET:
8459 case REGEX_ASCII_RESTRICTED_CHARSET:
8460 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8463 case REGEX_DEPENDS_CHARSET:
8469 ret = reg_node(pRExC_state, op);
8470 *flagp |= HASWIDTH|SIMPLE;
8471 goto finish_meta_pat;
8473 RExC_seen_zerolen++;
8474 RExC_seen |= REG_SEEN_LOOKBEHIND;
8475 switch (get_regex_charset(RExC_flags)) {
8476 case REGEX_LOCALE_CHARSET:
8479 case REGEX_UNICODE_CHARSET:
8482 case REGEX_ASCII_RESTRICTED_CHARSET:
8483 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8486 case REGEX_DEPENDS_CHARSET:
8492 ret = reg_node(pRExC_state, op);
8493 FLAGS(ret) = get_regex_charset(RExC_flags);
8495 if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
8496 ckWARNregdep(RExC_parse, "\"\\b{\" is deprecated; use \"\\b\\{\" instead");
8498 goto finish_meta_pat;
8500 RExC_seen_zerolen++;
8501 RExC_seen |= REG_SEEN_LOOKBEHIND;
8502 switch (get_regex_charset(RExC_flags)) {
8503 case REGEX_LOCALE_CHARSET:
8506 case REGEX_UNICODE_CHARSET:
8509 case REGEX_ASCII_RESTRICTED_CHARSET:
8510 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8513 case REGEX_DEPENDS_CHARSET:
8519 ret = reg_node(pRExC_state, op);
8520 FLAGS(ret) = get_regex_charset(RExC_flags);
8522 if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
8523 ckWARNregdep(RExC_parse, "\"\\B{\" is deprecated; use \"\\B\\{\" instead");
8525 goto finish_meta_pat;
8527 switch (get_regex_charset(RExC_flags)) {
8528 case REGEX_LOCALE_CHARSET:
8531 case REGEX_UNICODE_CHARSET:
8534 case REGEX_ASCII_RESTRICTED_CHARSET:
8535 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8538 case REGEX_DEPENDS_CHARSET:
8544 ret = reg_node(pRExC_state, op);
8545 *flagp |= HASWIDTH|SIMPLE;
8546 goto finish_meta_pat;
8548 switch (get_regex_charset(RExC_flags)) {
8549 case REGEX_LOCALE_CHARSET:
8552 case REGEX_UNICODE_CHARSET:
8555 case REGEX_ASCII_RESTRICTED_CHARSET:
8556 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8559 case REGEX_DEPENDS_CHARSET:
8565 ret = reg_node(pRExC_state, op);
8566 *flagp |= HASWIDTH|SIMPLE;
8567 goto finish_meta_pat;
8569 switch (get_regex_charset(RExC_flags)) {
8570 case REGEX_LOCALE_CHARSET:
8573 case REGEX_ASCII_RESTRICTED_CHARSET:
8574 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8577 case REGEX_DEPENDS_CHARSET: /* No difference between these */
8578 case REGEX_UNICODE_CHARSET:
8584 ret = reg_node(pRExC_state, op);
8585 *flagp |= HASWIDTH|SIMPLE;
8586 goto finish_meta_pat;
8588 switch (get_regex_charset(RExC_flags)) {
8589 case REGEX_LOCALE_CHARSET:
8592 case REGEX_ASCII_RESTRICTED_CHARSET:
8593 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8596 case REGEX_DEPENDS_CHARSET: /* No difference between these */
8597 case REGEX_UNICODE_CHARSET:
8603 ret = reg_node(pRExC_state, op);
8604 *flagp |= HASWIDTH|SIMPLE;
8605 goto finish_meta_pat;
8607 ret = reg_node(pRExC_state, LNBREAK);
8608 *flagp |= HASWIDTH|SIMPLE;
8609 goto finish_meta_pat;
8611 ret = reg_node(pRExC_state, HORIZWS);
8612 *flagp |= HASWIDTH|SIMPLE;
8613 goto finish_meta_pat;
8615 ret = reg_node(pRExC_state, NHORIZWS);
8616 *flagp |= HASWIDTH|SIMPLE;
8617 goto finish_meta_pat;
8619 ret = reg_node(pRExC_state, VERTWS);
8620 *flagp |= HASWIDTH|SIMPLE;
8621 goto finish_meta_pat;
8623 ret = reg_node(pRExC_state, NVERTWS);
8624 *flagp |= HASWIDTH|SIMPLE;
8626 nextchar(pRExC_state);
8627 Set_Node_Length(ret, 2); /* MJD */
8632 char* const oldregxend = RExC_end;
8634 char* parse_start = RExC_parse - 2;
8637 if (RExC_parse[1] == '{') {
8638 /* a lovely hack--pretend we saw [\pX] instead */
8639 RExC_end = strchr(RExC_parse, '}');
8641 const U8 c = (U8)*RExC_parse;
8643 RExC_end = oldregxend;
8644 vFAIL2("Missing right brace on \\%c{}", c);
8649 RExC_end = RExC_parse + 2;
8650 if (RExC_end > oldregxend)
8651 RExC_end = oldregxend;
8655 ret = regclass(pRExC_state,depth+1);
8657 RExC_end = oldregxend;
8660 Set_Node_Offset(ret, parse_start + 2);
8661 Set_Node_Cur_Length(ret);
8662 nextchar(pRExC_state);
8663 *flagp |= HASWIDTH|SIMPLE;
8667 /* Handle \N and \N{NAME} here and not below because it can be
8668 multicharacter. join_exact() will join them up later on.
8669 Also this makes sure that things like /\N{BLAH}+/ and
8670 \N{BLAH} being multi char Just Happen. dmq*/
8672 ret= reg_namedseq(pRExC_state, NULL, flagp, depth);
8674 case 'k': /* Handle \k<NAME> and \k'NAME' */
8677 char ch= RExC_parse[1];
8678 if (ch != '<' && ch != '\'' && ch != '{') {
8680 vFAIL2("Sequence %.2s... not terminated",parse_start);
8682 /* this pretty much dupes the code for (?P=...) in reg(), if
8683 you change this make sure you change that */
8684 char* name_start = (RExC_parse += 2);
8686 SV *sv_dat = reg_scan_name(pRExC_state,
8687 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
8688 ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
8689 if (RExC_parse == name_start || *RExC_parse != ch)
8690 vFAIL2("Sequence %.3s... not terminated",parse_start);
8693 num = add_data( pRExC_state, 1, "S" );
8694 RExC_rxi->data->data[num]=(void*)sv_dat;
8695 SvREFCNT_inc_simple_void(sv_dat);
8699 ret = reganode(pRExC_state,
8702 : (MORE_ASCII_RESTRICTED)
8704 : (AT_LEAST_UNI_SEMANTICS)
8712 /* override incorrect value set in reganode MJD */
8713 Set_Node_Offset(ret, parse_start+1);
8714 Set_Node_Cur_Length(ret); /* MJD */
8715 nextchar(pRExC_state);
8721 case '1': case '2': case '3': case '4':
8722 case '5': case '6': case '7': case '8': case '9':
8725 bool isg = *RExC_parse == 'g';
8730 if (*RExC_parse == '{') {
8734 if (*RExC_parse == '-') {
8738 if (hasbrace && !isDIGIT(*RExC_parse)) {
8739 if (isrel) RExC_parse--;
8741 goto parse_named_seq;
8743 num = atoi(RExC_parse);
8744 if (isg && num == 0)
8745 vFAIL("Reference to invalid group 0");
8747 num = RExC_npar - num;
8749 vFAIL("Reference to nonexistent or unclosed group");
8751 if (!isg && num > 9 && num >= RExC_npar)
8754 char * const parse_start = RExC_parse - 1; /* MJD */
8755 while (isDIGIT(*RExC_parse))
8757 if (parse_start == RExC_parse - 1)
8758 vFAIL("Unterminated \\g... pattern");
8760 if (*RExC_parse != '}')
8761 vFAIL("Unterminated \\g{...} pattern");
8765 if (num > (I32)RExC_rx->nparens)
8766 vFAIL("Reference to nonexistent group");
8769 ret = reganode(pRExC_state,
8772 : (MORE_ASCII_RESTRICTED)
8774 : (AT_LEAST_UNI_SEMANTICS)
8782 /* override incorrect value set in reganode MJD */
8783 Set_Node_Offset(ret, parse_start+1);
8784 Set_Node_Cur_Length(ret); /* MJD */
8786 nextchar(pRExC_state);
8791 if (RExC_parse >= RExC_end)
8792 FAIL("Trailing \\");
8795 /* Do not generate "unrecognized" warnings here, we fall
8796 back into the quick-grab loop below */
8803 if (RExC_flags & RXf_PMf_EXTENDED) {
8804 if ( reg_skipcomment( pRExC_state ) )
8811 parse_start = RExC_parse - 1;
8824 char_state latest_char_state = generic_char;
8825 register STRLEN len;
8830 U8 tmpbuf[UTF8_MAXBYTES_CASE+1], *foldbuf;
8831 regnode * orig_emit;
8834 orig_emit = RExC_emit; /* Save the original output node position in
8835 case we need to output a different node
8837 ret = reg_node(pRExC_state,
8838 (U8) ((! FOLD) ? EXACT
8841 : (MORE_ASCII_RESTRICTED)
8843 : (AT_LEAST_UNI_SEMANTICS)
8848 for (len = 0, p = RExC_parse - 1;
8849 len < 127 && p < RExC_end;
8852 char * const oldp = p;
8854 if (RExC_flags & RXf_PMf_EXTENDED)
8855 p = regwhite( pRExC_state, p );
8866 /* Literal Escapes Switch
8868 This switch is meant to handle escape sequences that
8869 resolve to a literal character.
8871 Every escape sequence that represents something
8872 else, like an assertion or a char class, is handled
8873 in the switch marked 'Special Escapes' above in this
8874 routine, but also has an entry here as anything that
8875 isn't explicitly mentioned here will be treated as
8876 an unescaped equivalent literal.
8880 /* These are all the special escapes. */
8881 case 'A': /* Start assertion */
8882 case 'b': case 'B': /* Word-boundary assertion*/
8883 case 'C': /* Single char !DANGEROUS! */
8884 case 'd': case 'D': /* digit class */
8885 case 'g': case 'G': /* generic-backref, pos assertion */
8886 case 'h': case 'H': /* HORIZWS */
8887 case 'k': case 'K': /* named backref, keep marker */
8888 case 'N': /* named char sequence */
8889 case 'p': case 'P': /* Unicode property */
8890 case 'R': /* LNBREAK */
8891 case 's': case 'S': /* space class */
8892 case 'v': case 'V': /* VERTWS */
8893 case 'w': case 'W': /* word class */
8894 case 'X': /* eXtended Unicode "combining character sequence" */
8895 case 'z': case 'Z': /* End of line/string assertion */
8899 /* Anything after here is an escape that resolves to a
8900 literal. (Except digits, which may or may not)
8919 ender = ASCII_TO_NATIVE('\033');
8923 ender = ASCII_TO_NATIVE('\007');
8928 STRLEN brace_len = len;
8930 const char* error_msg;
8932 bool valid = grok_bslash_o(p,
8939 RExC_parse = p; /* going to die anyway; point
8940 to exact spot of failure */
8947 if (PL_encoding && ender < 0x100) {
8948 goto recode_encoding;
8957 char* const e = strchr(p, '}');
8961 vFAIL("Missing right brace on \\x{}");
8964 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
8965 | PERL_SCAN_DISALLOW_PREFIX;
8966 STRLEN numlen = e - p - 1;
8967 ender = grok_hex(p + 1, &numlen, &flags, NULL);
8974 I32 flags = PERL_SCAN_DISALLOW_PREFIX;
8976 ender = grok_hex(p, &numlen, &flags, NULL);
8979 if (PL_encoding && ender < 0x100)
8980 goto recode_encoding;
8984 ender = grok_bslash_c(*p++, UTF, SIZE_ONLY);
8986 case '0': case '1': case '2': case '3':case '4':
8987 case '5': case '6': case '7': case '8':case '9':
8989 (isDIGIT(p[1]) && atoi(p) >= RExC_npar))
8991 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
8993 ender = grok_oct(p, &numlen, &flags, NULL);
9003 if (PL_encoding && ender < 0x100)
9004 goto recode_encoding;
9007 if (! RExC_override_recoding) {
9008 SV* enc = PL_encoding;
9009 ender = reg_recode((const char)(U8)ender, &enc);
9010 if (!enc && SIZE_ONLY)
9011 ckWARNreg(p, "Invalid escape in the specified encoding");
9017 FAIL("Trailing \\");
9020 if (!SIZE_ONLY&& isALPHA(*p)) {
9021 /* Include any { following the alpha to emphasize
9022 * that it could be part of an escape at some point
9024 int len = (*(p + 1) == '{') ? 2 : 1;
9025 ckWARN3reg(p + len, "Unrecognized escape \\%.*s passed through", len, p);
9027 goto normal_default;
9032 if (UTF8_IS_START(*p) && UTF) {
9034 ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
9035 &numlen, UTF8_ALLOW_DEFAULT);
9041 } /* End of switch on the literal */
9043 /* Certain characters are problematic because their folded
9044 * length is so different from their original length that it
9045 * isn't handleable by the optimizer. They are therefore not
9046 * placed in an EXACTish node; and are here handled specially.
9047 * (Even if the optimizer handled LATIN_SMALL_LETTER_SHARP_S,
9048 * putting it in a special node keeps regexec from having to
9049 * deal with a non-utf8 multi-char fold */
9051 && (ender > 255 || (! MORE_ASCII_RESTRICTED && ! LOC)))
9053 /* We look for either side of the fold. For example \xDF
9054 * folds to 'ss'. We look for both the single character
9055 * \xDF and the sequence 'ss'. When we find something that
9056 * could be one of those, we stop and flush whatever we
9057 * have output so far into the EXACTish node that was being
9058 * built. Then restore the input pointer to what it was.
9059 * regatom will return that EXACT node, and will be called
9060 * again, positioned so the first character is the one in
9061 * question, which we return in a different node type.
9062 * The multi-char folds are a sequence, so the occurrence
9063 * of the first character in that sequence doesn't
9064 * necessarily mean that what follows is the rest of the
9065 * sequence. We keep track of that with a state machine,
9066 * with the state being set to the latest character
9067 * processed before the current one. Most characters will
9068 * set the state to 0, but if one occurs that is part of a
9069 * potential tricky fold sequence, the state is set to that
9070 * character, and the next loop iteration sees if the state
9071 * should progress towards the final folded-from character,
9072 * or if it was a false alarm. If it turns out to be a
9073 * false alarm, the character(s) will be output in a new
9074 * EXACTish node, and join_exact() will later combine them.
9075 * In the case of the 'ss' sequence, which is more common
9076 * and more easily checked, some look-ahead is done to
9077 * save time by ruling-out some false alarms */
9080 latest_char_state = generic_char;
9084 case 0x17F: /* LATIN SMALL LETTER LONG S */
9085 if (AT_LEAST_UNI_SEMANTICS) {
9086 if (latest_char_state == char_s) { /* 'ss' */
9087 ender = LATIN_SMALL_LETTER_SHARP_S;
9090 else if (p < RExC_end) {
9092 /* Look-ahead at the next character. If it
9093 * is also an s, we handle as a sharp s
9094 * tricky regnode. */
9095 if (*p == 's' || *p == 'S') {
9097 /* But first flush anything in the
9098 * EXACTish buffer */
9103 p++; /* Account for swallowing this
9105 ender = LATIN_SMALL_LETTER_SHARP_S;
9108 /* Here, the next character is not a
9109 * literal 's', but still could
9110 * evaluate to one if part of a \o{},
9111 * \x or \OCTAL-DIGIT. The minimum
9112 * length required for that is 4, eg
9116 && (isDIGIT(*(p + 1))
9118 || *(p + 1) == 'o' ))
9121 /* Here, it could be an 's', too much
9122 * bother to figure it out here. Flush
9123 * the buffer if any; when come back
9124 * here, set the state so know that the
9125 * previous char was an 's' */
9127 latest_char_state = generic_char;
9131 latest_char_state = char_s;
9137 /* Here, can't be an 'ss' sequence, or at least not
9138 * one that could fold to/from the sharp ss */
9139 latest_char_state = generic_char;
9141 case 0x03C5: /* First char in upsilon series */
9142 case 0x03A5: /* Also capital UPSILON, which folds to
9143 03C5, and hence exhibits the same
9145 if (p < RExC_end - 4) { /* Need >= 4 bytes left */
9146 latest_char_state = upsilon_1;
9153 latest_char_state = generic_char;
9156 case 0x03B9: /* First char in iota series */
9157 case 0x0399: /* Also capital IOTA */
9158 case 0x1FBE: /* GREEK PROSGEGRAMMENI folds to 3B9 */
9159 case 0x0345: /* COMBINING GREEK YPOGEGRAMMENI folds
9161 if (p < RExC_end - 4) {
9162 latest_char_state = iota_1;
9169 latest_char_state = generic_char;
9173 if (latest_char_state == upsilon_1) {
9174 latest_char_state = upsilon_2;
9176 else if (latest_char_state == iota_1) {
9177 latest_char_state = iota_2;
9180 latest_char_state = generic_char;
9184 if (latest_char_state == upsilon_2) {
9185 ender = GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS;
9188 else if (latest_char_state == iota_2) {
9189 ender = GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS;
9192 latest_char_state = generic_char;
9195 /* These are the tricky fold characters. Flush any
9196 * buffer first. (When adding to this list, also should
9197 * add them to fold_grind.t to make sure get tested) */
9198 case GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS:
9199 case GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS:
9200 case LATIN_SMALL_LETTER_SHARP_S:
9201 case LATIN_CAPITAL_LETTER_SHARP_S:
9202 case 0x1FD3: /* GREEK SMALL LETTER IOTA WITH DIALYTIKA AND OXIA */
9203 case 0x1FE3: /* GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND OXIA */
9210 char* const oldregxend = RExC_end;
9211 U8 tmpbuf[UTF8_MAXBYTES+1];
9213 /* Here, we know we need to generate a special
9214 * regnode, and 'ender' contains the tricky
9215 * character. What's done is to pretend it's in a
9216 * [bracketed] class, and let the code that deals
9217 * with those handle it, as that code has all the
9218 * intelligence necessary. First save the current
9219 * parse state, get rid of the already allocated
9220 * but empty EXACT node that the ANYOFV node will
9221 * replace, and point the parse to a buffer which
9222 * we fill with the character we want the regclass
9223 * code to think is being parsed */
9224 RExC_emit = orig_emit;
9225 RExC_parse = (char *) tmpbuf;
9227 U8 *d = uvchr_to_utf8(tmpbuf, ender);
9229 RExC_end = (char *) d;
9231 else { /* ender above 255 already excluded */
9232 tmpbuf[0] = (U8) ender;
9234 RExC_end = RExC_parse + 1;
9237 ret = regclass(pRExC_state,depth+1);
9239 /* Here, have parsed the buffer. Reset the parse to
9240 * the actual input, and return */
9241 RExC_end = oldregxend;
9244 Set_Node_Offset(ret, RExC_parse);
9245 Set_Node_Cur_Length(ret);
9246 nextchar(pRExC_state);
9247 *flagp |= HASWIDTH|SIMPLE;
9253 if ( RExC_flags & RXf_PMf_EXTENDED)
9254 p = regwhite( pRExC_state, p );
9256 /* Prime the casefolded buffer. Locale rules, which apply
9257 * only to code points < 256, aren't known until execution,
9258 * so for them, just output the original character using
9260 if (LOC && ender < 256) {
9261 if (UNI_IS_INVARIANT(ender)) {
9262 *tmpbuf = (U8) ender;
9265 *tmpbuf = UTF8_TWO_BYTE_HI(ender);
9266 *(tmpbuf + 1) = UTF8_TWO_BYTE_LO(ender);
9270 else if (isASCII(ender)) { /* Note: Here can't also be LOC
9272 ender = toLOWER(ender);
9273 *tmpbuf = (U8) ender;
9276 else if (! MORE_ASCII_RESTRICTED && ! LOC) {
9278 /* Locale and /aa require more selectivity about the
9279 * fold, so are handled below. Otherwise, here, just
9281 ender = toFOLD_uni(ender, tmpbuf, &foldlen);
9284 /* Under locale rules or /aa we are not to mix,
9285 * respectively, ords < 256 or ASCII with non-. So
9286 * reject folds that mix them, using only the
9287 * non-folded code point. So do the fold to a
9288 * temporary, and inspect each character in it. */
9289 U8 trialbuf[UTF8_MAXBYTES_CASE+1];
9291 UV tmpender = toFOLD_uni(ender, trialbuf, &foldlen);
9292 U8* e = s + foldlen;
9293 bool fold_ok = TRUE;
9297 || (LOC && (UTF8_IS_INVARIANT(*s)
9298 || UTF8_IS_DOWNGRADEABLE_START(*s))))
9306 Copy(trialbuf, tmpbuf, foldlen, U8);
9310 uvuni_to_utf8(tmpbuf, ender);
9311 foldlen = UNISKIP(ender);
9315 if (p < RExC_end && ISMULT2(p)) { /* Back off on ?+*. */
9320 /* Emit all the Unicode characters. */
9322 for (foldbuf = tmpbuf;
9324 foldlen -= numlen) {
9325 ender = utf8_to_uvchr(foldbuf, &numlen);
9327 const STRLEN unilen = reguni(pRExC_state, ender, s);
9330 /* In EBCDIC the numlen
9331 * and unilen can differ. */
9333 if (numlen >= foldlen)
9337 break; /* "Can't happen." */
9341 const STRLEN unilen = reguni(pRExC_state, ender, s);
9350 REGC((char)ender, s++);
9356 /* Emit all the Unicode characters. */
9358 for (foldbuf = tmpbuf;
9360 foldlen -= numlen) {
9361 ender = utf8_to_uvchr(foldbuf, &numlen);
9363 const STRLEN unilen = reguni(pRExC_state, ender, s);
9366 /* In EBCDIC the numlen
9367 * and unilen can differ. */
9369 if (numlen >= foldlen)
9377 const STRLEN unilen = reguni(pRExC_state, ender, s);
9386 REGC((char)ender, s++);
9389 loopdone: /* Jumped to when encounters something that shouldn't be in
9392 Set_Node_Cur_Length(ret); /* MJD */
9393 nextchar(pRExC_state);
9395 /* len is STRLEN which is unsigned, need to copy to signed */
9398 vFAIL("Internal disaster");
9402 if (len == 1 && UNI_IS_INVARIANT(ender))
9406 RExC_size += STR_SZ(len);
9409 RExC_emit += STR_SZ(len);
9417 /* Jumped to when an unrecognized character set is encountered */
9419 Perl_croak(aTHX_ "panic: Unknown regex character set encoding: %u", get_regex_charset(RExC_flags));
9424 S_regwhite( RExC_state_t *pRExC_state, char *p )
9426 const char *e = RExC_end;
9428 PERL_ARGS_ASSERT_REGWHITE;
9433 else if (*p == '#') {
9442 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
9450 /* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
9451 Character classes ([:foo:]) can also be negated ([:^foo:]).
9452 Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
9453 Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
9454 but trigger failures because they are currently unimplemented. */
9456 #define POSIXCC_DONE(c) ((c) == ':')
9457 #define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
9458 #define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
9461 S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value)
9464 I32 namedclass = OOB_NAMEDCLASS;
9466 PERL_ARGS_ASSERT_REGPPOSIXCC;
9468 if (value == '[' && RExC_parse + 1 < RExC_end &&
9469 /* I smell either [: or [= or [. -- POSIX has been here, right? */
9470 POSIXCC(UCHARAT(RExC_parse))) {
9471 const char c = UCHARAT(RExC_parse);
9472 char* const s = RExC_parse++;
9474 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
9476 if (RExC_parse == RExC_end)
9477 /* Grandfather lone [:, [=, [. */
9480 const char* const t = RExC_parse++; /* skip over the c */
9483 if (UCHARAT(RExC_parse) == ']') {
9484 const char *posixcc = s + 1;
9485 RExC_parse++; /* skip over the ending ] */
9488 const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
9489 const I32 skip = t - posixcc;
9491 /* Initially switch on the length of the name. */
9494 if (memEQ(posixcc, "word", 4)) /* this is not POSIX, this is the Perl \w */
9495 namedclass = complement ? ANYOF_NALNUM : ANYOF_ALNUM;
9498 /* Names all of length 5. */
9499 /* alnum alpha ascii blank cntrl digit graph lower
9500 print punct space upper */
9501 /* Offset 4 gives the best switch position. */
9502 switch (posixcc[4]) {
9504 if (memEQ(posixcc, "alph", 4)) /* alpha */
9505 namedclass = complement ? ANYOF_NALPHA : ANYOF_ALPHA;
9508 if (memEQ(posixcc, "spac", 4)) /* space */
9509 namedclass = complement ? ANYOF_NPSXSPC : ANYOF_PSXSPC;
9512 if (memEQ(posixcc, "grap", 4)) /* graph */
9513 namedclass = complement ? ANYOF_NGRAPH : ANYOF_GRAPH;
9516 if (memEQ(posixcc, "asci", 4)) /* ascii */
9517 namedclass = complement ? ANYOF_NASCII : ANYOF_ASCII;
9520 if (memEQ(posixcc, "blan", 4)) /* blank */
9521 namedclass = complement ? ANYOF_NBLANK : ANYOF_BLANK;
9524 if (memEQ(posixcc, "cntr", 4)) /* cntrl */
9525 namedclass = complement ? ANYOF_NCNTRL : ANYOF_CNTRL;
9528 if (memEQ(posixcc, "alnu", 4)) /* alnum */
9529 namedclass = complement ? ANYOF_NALNUMC : ANYOF_ALNUMC;
9532 if (memEQ(posixcc, "lowe", 4)) /* lower */
9533 namedclass = complement ? ANYOF_NLOWER : ANYOF_LOWER;
9534 else if (memEQ(posixcc, "uppe", 4)) /* upper */
9535 namedclass = complement ? ANYOF_NUPPER : ANYOF_UPPER;
9538 if (memEQ(posixcc, "digi", 4)) /* digit */
9539 namedclass = complement ? ANYOF_NDIGIT : ANYOF_DIGIT;
9540 else if (memEQ(posixcc, "prin", 4)) /* print */
9541 namedclass = complement ? ANYOF_NPRINT : ANYOF_PRINT;
9542 else if (memEQ(posixcc, "punc", 4)) /* punct */
9543 namedclass = complement ? ANYOF_NPUNCT : ANYOF_PUNCT;
9548 if (memEQ(posixcc, "xdigit", 6))
9549 namedclass = complement ? ANYOF_NXDIGIT : ANYOF_XDIGIT;
9553 if (namedclass == OOB_NAMEDCLASS)
9554 Simple_vFAIL3("POSIX class [:%.*s:] unknown",
9556 assert (posixcc[skip] == ':');
9557 assert (posixcc[skip+1] == ']');
9558 } else if (!SIZE_ONLY) {
9559 /* [[=foo=]] and [[.foo.]] are still future. */
9561 /* adjust RExC_parse so the warning shows after
9563 while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
9565 Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
9568 /* Maternal grandfather:
9569 * "[:" ending in ":" but not in ":]" */
9579 S_checkposixcc(pTHX_ RExC_state_t *pRExC_state)
9583 PERL_ARGS_ASSERT_CHECKPOSIXCC;
9585 if (POSIXCC(UCHARAT(RExC_parse))) {
9586 const char *s = RExC_parse;
9587 const char c = *s++;
9591 if (*s && c == *s && s[1] == ']') {
9593 "POSIX syntax [%c %c] belongs inside character classes",
9596 /* [[=foo=]] and [[.foo.]] are still future. */
9597 if (POSIXCC_NOTYET(c)) {
9598 /* adjust RExC_parse so the error shows after
9600 while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse++) != ']')
9602 Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
9608 /* No locale test, and always Unicode semantics, no ignore-case differences */
9609 #define _C_C_T_NOLOC_(NAME,TEST,WORD) \
9611 for (value = 0; value < 256; value++) \
9613 stored += set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9617 case ANYOF_N##NAME: \
9618 for (value = 0; value < 256; value++) \
9620 stored += set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9625 /* Like the above, but there are differences if we are in uni-8-bit or not, so
9626 * there are two tests passed in, to use depending on that. There aren't any
9627 * cases where the label is different from the name, so no need for that
9629 * Sets 'what' to WORD which is the property name for non-bitmap code points;
9630 * But, uses FOLD_WORD instead if /i has been selected, to allow a different
9632 #define _C_C_T_(NAME, TEST_8, TEST_7, WORD, FOLD_WORD) \
9634 if (LOC) ANYOF_CLASS_SET(ret, ANYOF_##NAME); \
9635 else if (UNI_SEMANTICS) { \
9636 for (value = 0; value < 256; value++) { \
9637 if (TEST_8(value)) stored += \
9638 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9642 for (value = 0; value < 128; value++) { \
9643 if (TEST_7(UNI_TO_NATIVE(value))) stored += \
9644 set_regclass_bit(pRExC_state, ret, \
9645 (U8) UNI_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate); \
9656 case ANYOF_N##NAME: \
9657 if (LOC) ANYOF_CLASS_SET(ret, ANYOF_N##NAME); \
9658 else if (UNI_SEMANTICS) { \
9659 for (value = 0; value < 256; value++) { \
9660 if (! TEST_8(value)) stored += \
9661 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9665 for (value = 0; value < 128; value++) { \
9666 if (! TEST_7(UNI_TO_NATIVE(value))) stored += set_regclass_bit( \
9667 pRExC_state, ret, (U8) UNI_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate); \
9669 if (AT_LEAST_ASCII_RESTRICTED) { \
9670 for (value = 128; value < 256; value++) { \
9671 stored += set_regclass_bit( \
9672 pRExC_state, ret, (U8) UNI_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate); \
9674 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL; \
9677 /* For a non-ut8 target string with DEPENDS semantics, all above \
9678 * ASCII Latin1 code points match the complement of any of the \
9679 * classes. But in utf8, they have their Unicode semantics, so \
9680 * can't just set them in the bitmap, or else regexec.c will think \
9681 * they matched when they shouldn't. */ \
9682 ANYOF_FLAGS(ret) |= ANYOF_NON_UTF8_LATIN1_ALL; \
9695 S_set_regclass_bit_fold(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, SV** invlist_ptr, AV** alternate_ptr)
9698 /* Handle the setting of folds in the bitmap for non-locale ANYOF nodes.
9699 * Locale folding is done at run-time, so this function should not be
9700 * called for nodes that are for locales.
9702 * This function sets the bit corresponding to the fold of the input
9703 * 'value', if not already set. The fold of 'f' is 'F', and the fold of
9706 * It also knows about the characters that are in the bitmap that have
9707 * folds that are matchable only outside it, and sets the appropriate lists
9710 * It returns the number of bits that actually changed from 0 to 1 */
9715 PERL_ARGS_ASSERT_SET_REGCLASS_BIT_FOLD;
9717 fold = (AT_LEAST_UNI_SEMANTICS) ? PL_fold_latin1[value]
9720 /* It assumes the bit for 'value' has already been set */
9721 if (fold != value && ! ANYOF_BITMAP_TEST(node, fold)) {
9722 ANYOF_BITMAP_SET(node, fold);
9725 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value) && (! isASCII(value) || ! MORE_ASCII_RESTRICTED)) {
9726 /* Certain Latin1 characters have matches outside the bitmap. To get
9727 * here, 'value' is one of those characters. None of these matches is
9728 * valid for ASCII characters under /aa, which have been excluded by
9729 * the 'if' above. The matches fall into three categories:
9730 * 1) They are singly folded-to or -from an above 255 character, as
9731 * LATIN SMALL LETTER Y WITH DIAERESIS and LATIN CAPITAL LETTER Y
9733 * 2) They are part of a multi-char fold with another character in the
9734 * bitmap, only LATIN SMALL LETTER SHARP S => "ss" fits that bill;
9735 * 3) They are part of a multi-char fold with a character not in the
9736 * bitmap, such as various ligatures.
9737 * We aren't dealing fully with multi-char folds, except we do deal
9738 * with the pattern containing a character that has a multi-char fold
9739 * (not so much the inverse).
9740 * For types 1) and 3), the matches only happen when the target string
9741 * is utf8; that's not true for 2), and we set a flag for it.
9743 * The code below adds to the passed in inversion list the single fold
9744 * closures for 'value'. The values are hard-coded here so that an
9745 * innocent-looking character class, like /[ks]/i won't have to go out
9746 * to disk to find the possible matches. XXX It would be better to
9747 * generate these via regen, in case a new version of the Unicode
9748 * standard adds new mappings, though that is not really likely. */
9753 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212A);
9757 /* LATIN SMALL LETTER LONG S */
9758 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x017F);
9761 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9762 GREEK_SMALL_LETTER_MU);
9763 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9764 GREEK_CAPITAL_LETTER_MU);
9766 case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
9767 case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
9769 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212B);
9770 if (DEPENDS_SEMANTICS) { /* See DEPENDS comment below */
9771 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9772 PL_fold_latin1[value]);
9775 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
9776 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9777 LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
9779 case LATIN_SMALL_LETTER_SHARP_S:
9780 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9781 LATIN_CAPITAL_LETTER_SHARP_S);
9783 /* Under /a, /d, and /u, this can match the two chars "ss" */
9784 if (! MORE_ASCII_RESTRICTED) {
9785 add_alternate(alternate_ptr, (U8 *) "ss", 2);
9787 /* And under /u or /a, it can match even if the target is
9789 if (AT_LEAST_UNI_SEMANTICS) {
9790 ANYOF_FLAGS(node) |= ANYOF_NONBITMAP_NON_UTF8;
9804 /* These all are targets of multi-character folds from code
9805 * points that require UTF8 to express, so they can't match
9806 * unless the target string is in UTF-8, so no action here is
9807 * necessary, as regexec.c properly handles the general case
9808 * for UTF-8 matching */
9811 /* Use deprecated warning to increase the chances of this
9813 ckWARN2regdep(RExC_parse, "Perl folding rules are not up-to-date for 0x%x; please use the perlbug utility to report;", value);
9817 else if (DEPENDS_SEMANTICS
9819 && PL_fold_latin1[value] != value)
9821 /* Under DEPENDS rules, non-ASCII Latin1 characters match their
9822 * folds only when the target string is in UTF-8. We add the fold
9823 * here to the list of things to match outside the bitmap, which
9824 * won't be looked at unless it is UTF8 (or else if something else
9825 * says to look even if not utf8, but those things better not happen
9826 * under DEPENDS semantics. */
9827 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, PL_fold_latin1[value]);
9834 PERL_STATIC_INLINE U8
9835 S_set_regclass_bit(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, SV** invlist_ptr, AV** alternate_ptr)
9837 /* This inline function sets a bit in the bitmap if not already set, and if
9838 * appropriate, its fold, returning the number of bits that actually
9839 * changed from 0 to 1 */
9843 PERL_ARGS_ASSERT_SET_REGCLASS_BIT;
9845 if (ANYOF_BITMAP_TEST(node, value)) { /* Already set */
9849 ANYOF_BITMAP_SET(node, value);
9852 if (FOLD && ! LOC) { /* Locale folds aren't known until runtime */
9853 stored += set_regclass_bit_fold(pRExC_state, node, value, invlist_ptr, alternate_ptr);
9860 S_add_alternate(pTHX_ AV** alternate_ptr, U8* string, STRLEN len)
9862 /* Adds input 'string' with length 'len' to the ANYOF node's unicode
9863 * alternate list, pointed to by 'alternate_ptr'. This is an array of
9864 * the multi-character folds of characters in the node */
9867 PERL_ARGS_ASSERT_ADD_ALTERNATE;
9869 if (! *alternate_ptr) {
9870 *alternate_ptr = newAV();
9872 sv = newSVpvn_utf8((char*)string, len, TRUE);
9873 av_push(*alternate_ptr, sv);
9878 parse a class specification and produce either an ANYOF node that
9879 matches the pattern or perhaps will be optimized into an EXACTish node
9880 instead. The node contains a bit map for the first 256 characters, with the
9881 corresponding bit set if that character is in the list. For characters
9882 above 255, a range list is used */
9885 S_regclass(pTHX_ RExC_state_t *pRExC_state, U32 depth)
9888 register UV nextvalue;
9889 register IV prevvalue = OOB_UNICODE;
9890 register IV range = 0;
9891 UV value = 0; /* XXX:dmq: needs to be referenceable (unfortunately) */
9892 register regnode *ret;
9895 char *rangebegin = NULL;
9896 bool need_class = 0;
9897 bool allow_full_fold = TRUE; /* Assume wants multi-char folding */
9899 STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
9900 than just initialized. */
9903 /* code points this node matches that can't be stored in the bitmap */
9904 SV* nonbitmap = NULL;
9906 /* The items that are to match that aren't stored in the bitmap, but are a
9907 * result of things that are stored there. This is the fold closure of
9908 * such a character, either because it has DEPENDS semantics and shouldn't
9909 * be matched unless the target string is utf8, or is a code point that is
9910 * too large for the bit map, as for example, the fold of the MICRO SIGN is
9911 * above 255. This all is solely for performance reasons. By having this
9912 * code know the outside-the-bitmap folds that the bitmapped characters are
9913 * involved with, we don't have to go out to disk to find the list of
9914 * matches, unless the character class includes code points that aren't
9915 * storable in the bit map. That means that a character class with an 's'
9916 * in it, for example, doesn't need to go out to disk to find everything
9917 * that matches. A 2nd list is used so that the 'nonbitmap' list is kept
9918 * empty unless there is something whose fold we don't know about, and will
9919 * have to go out to the disk to find. */
9920 SV* l1_fold_invlist = NULL;
9922 /* List of multi-character folds that are matched by this node */
9923 AV* unicode_alternate = NULL;
9925 UV literal_endpoint = 0;
9927 UV stored = 0; /* how many chars stored in the bitmap */
9929 regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
9930 case we need to change the emitted regop to an EXACT. */
9931 const char * orig_parse = RExC_parse;
9932 GET_RE_DEBUG_FLAGS_DECL;
9934 PERL_ARGS_ASSERT_REGCLASS;
9936 PERL_UNUSED_ARG(depth);
9939 DEBUG_PARSE("clas");
9941 /* Assume we are going to generate an ANYOF node. */
9942 ret = reganode(pRExC_state, ANYOF, 0);
9946 ANYOF_FLAGS(ret) = 0;
9949 if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
9953 ANYOF_FLAGS(ret) |= ANYOF_INVERT;
9955 /* We have decided to not allow multi-char folds in inverted character
9956 * classes, due to the confusion that can happen, especially with
9957 * classes that are designed for a non-Unicode world: You have the
9958 * peculiar case that:
9959 "s s" =~ /^[^\xDF]+$/i => Y
9960 "ss" =~ /^[^\xDF]+$/i => N
9962 * See [perl #89750] */
9963 allow_full_fold = FALSE;
9967 RExC_size += ANYOF_SKIP;
9968 listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
9971 RExC_emit += ANYOF_SKIP;
9973 ANYOF_FLAGS(ret) |= ANYOF_LOCALE;
9975 ANYOF_BITMAP_ZERO(ret);
9976 listsv = newSVpvs("# comment\n");
9977 initial_listsv_len = SvCUR(listsv);
9980 nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
9982 if (!SIZE_ONLY && POSIXCC(nextvalue))
9983 checkposixcc(pRExC_state);
9985 /* allow 1st char to be ] (allowing it to be - is dealt with later) */
9986 if (UCHARAT(RExC_parse) == ']')
9990 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
9994 namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
9997 rangebegin = RExC_parse;
9999 value = utf8n_to_uvchr((U8*)RExC_parse,
10000 RExC_end - RExC_parse,
10001 &numlen, UTF8_ALLOW_DEFAULT);
10002 RExC_parse += numlen;
10005 value = UCHARAT(RExC_parse++);
10007 nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
10008 if (value == '[' && POSIXCC(nextvalue))
10009 namedclass = regpposixcc(pRExC_state, value);
10010 else if (value == '\\') {
10012 value = utf8n_to_uvchr((U8*)RExC_parse,
10013 RExC_end - RExC_parse,
10014 &numlen, UTF8_ALLOW_DEFAULT);
10015 RExC_parse += numlen;
10018 value = UCHARAT(RExC_parse++);
10019 /* Some compilers cannot handle switching on 64-bit integer
10020 * values, therefore value cannot be an UV. Yes, this will
10021 * be a problem later if we want switch on Unicode.
10022 * A similar issue a little bit later when switching on
10023 * namedclass. --jhi */
10024 switch ((I32)value) {
10025 case 'w': namedclass = ANYOF_ALNUM; break;
10026 case 'W': namedclass = ANYOF_NALNUM; break;
10027 case 's': namedclass = ANYOF_SPACE; break;
10028 case 'S': namedclass = ANYOF_NSPACE; break;
10029 case 'd': namedclass = ANYOF_DIGIT; break;
10030 case 'D': namedclass = ANYOF_NDIGIT; break;
10031 case 'v': namedclass = ANYOF_VERTWS; break;
10032 case 'V': namedclass = ANYOF_NVERTWS; break;
10033 case 'h': namedclass = ANYOF_HORIZWS; break;
10034 case 'H': namedclass = ANYOF_NHORIZWS; break;
10035 case 'N': /* Handle \N{NAME} in class */
10037 /* We only pay attention to the first char of
10038 multichar strings being returned. I kinda wonder
10039 if this makes sense as it does change the behaviour
10040 from earlier versions, OTOH that behaviour was broken
10042 UV v; /* value is register so we cant & it /grrr */
10043 if (reg_namedseq(pRExC_state, &v, NULL, depth)) {
10053 if (RExC_parse >= RExC_end)
10054 vFAIL2("Empty \\%c{}", (U8)value);
10055 if (*RExC_parse == '{') {
10056 const U8 c = (U8)value;
10057 e = strchr(RExC_parse++, '}');
10059 vFAIL2("Missing right brace on \\%c{}", c);
10060 while (isSPACE(UCHARAT(RExC_parse)))
10062 if (e == RExC_parse)
10063 vFAIL2("Empty \\%c{}", c);
10064 n = e - RExC_parse;
10065 while (isSPACE(UCHARAT(RExC_parse + n - 1)))
10073 if (UCHARAT(RExC_parse) == '^') {
10076 value = value == 'p' ? 'P' : 'p'; /* toggle */
10077 while (isSPACE(UCHARAT(RExC_parse))) {
10083 /* Add the property name to the list. If /i matching, give
10084 * a different name which consists of the normal name
10085 * sandwiched between two underscores and '_i'. The design
10086 * is discussed in the commit message for this. */
10087 Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%s%.*s%s\n",
10088 (value=='p' ? '+' : '!'),
10089 (FOLD) ? "__" : "",
10095 RExC_parse = e + 1;
10097 /* The \p could match something in the Latin1 range, hence
10098 * something that isn't utf8 */
10099 ANYOF_FLAGS(ret) |= ANYOF_NONBITMAP_NON_UTF8;
10100 namedclass = ANYOF_MAX; /* no official name, but it's named */
10102 /* \p means they want Unicode semantics */
10103 RExC_uni_semantics = 1;
10106 case 'n': value = '\n'; break;
10107 case 'r': value = '\r'; break;
10108 case 't': value = '\t'; break;
10109 case 'f': value = '\f'; break;
10110 case 'b': value = '\b'; break;
10111 case 'e': value = ASCII_TO_NATIVE('\033');break;
10112 case 'a': value = ASCII_TO_NATIVE('\007');break;
10114 RExC_parse--; /* function expects to be pointed at the 'o' */
10116 const char* error_msg;
10117 bool valid = grok_bslash_o(RExC_parse,
10122 RExC_parse += numlen;
10127 if (PL_encoding && value < 0x100) {
10128 goto recode_encoding;
10132 if (*RExC_parse == '{') {
10133 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
10134 | PERL_SCAN_DISALLOW_PREFIX;
10135 char * const e = strchr(RExC_parse++, '}');
10137 vFAIL("Missing right brace on \\x{}");
10139 numlen = e - RExC_parse;
10140 value = grok_hex(RExC_parse, &numlen, &flags, NULL);
10141 RExC_parse = e + 1;
10144 I32 flags = PERL_SCAN_DISALLOW_PREFIX;
10146 value = grok_hex(RExC_parse, &numlen, &flags, NULL);
10147 RExC_parse += numlen;
10149 if (PL_encoding && value < 0x100)
10150 goto recode_encoding;
10153 value = grok_bslash_c(*RExC_parse++, UTF, SIZE_ONLY);
10155 case '0': case '1': case '2': case '3': case '4':
10156 case '5': case '6': case '7':
10158 /* Take 1-3 octal digits */
10159 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
10161 value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
10162 RExC_parse += numlen;
10163 if (PL_encoding && value < 0x100)
10164 goto recode_encoding;
10168 if (! RExC_override_recoding) {
10169 SV* enc = PL_encoding;
10170 value = reg_recode((const char)(U8)value, &enc);
10171 if (!enc && SIZE_ONLY)
10172 ckWARNreg(RExC_parse,
10173 "Invalid escape in the specified encoding");
10177 /* Allow \_ to not give an error */
10178 if (!SIZE_ONLY && isALNUM(value) && value != '_') {
10179 ckWARN2reg(RExC_parse,
10180 "Unrecognized escape \\%c in character class passed through",
10185 } /* end of \blah */
10188 literal_endpoint++;
10191 if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
10193 /* What matches in a locale is not known until runtime, so need to
10194 * (one time per class) allocate extra space to pass to regexec.
10195 * The space will contain a bit for each named class that is to be
10196 * matched against. This isn't needed for \p{} and pseudo-classes,
10197 * as they are not affected by locale, and hence are dealt with
10199 if (LOC && namedclass < ANYOF_MAX && ! need_class) {
10202 RExC_size += ANYOF_CLASS_SKIP - ANYOF_SKIP;
10205 RExC_emit += ANYOF_CLASS_SKIP - ANYOF_SKIP;
10206 ANYOF_CLASS_ZERO(ret);
10208 ANYOF_FLAGS(ret) |= ANYOF_CLASS;
10211 /* a bad range like a-\d, a-[:digit:]. The '-' is taken as a
10212 * literal, as is the character that began the false range, i.e.
10213 * the 'a' in the examples */
10217 RExC_parse >= rangebegin ?
10218 RExC_parse - rangebegin : 0;
10219 ckWARN4reg(RExC_parse,
10220 "False [] range \"%*.*s\"",
10224 set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
10225 if (prevvalue < 256) {
10227 set_regclass_bit(pRExC_state, ret, (U8) prevvalue, &l1_fold_invlist, &unicode_alternate);
10230 nonbitmap = add_cp_to_invlist(nonbitmap, prevvalue);
10234 range = 0; /* this was not a true range */
10240 const char *what = NULL;
10243 /* Possible truncation here but in some 64-bit environments
10244 * the compiler gets heartburn about switch on 64-bit values.
10245 * A similar issue a little earlier when switching on value.
10247 switch ((I32)namedclass) {
10249 case _C_C_T_(ALNUMC, isALNUMC_L1, isALNUMC, "XPosixAlnum", "XPosixAlnum");
10250 case _C_C_T_(ALPHA, isALPHA_L1, isALPHA, "XPosixAlpha", "XPosixAlpha");
10251 case _C_C_T_(BLANK, isBLANK_L1, isBLANK, "XPosixBlank", "XPosixBlank");
10252 case _C_C_T_(CNTRL, isCNTRL_L1, isCNTRL, "XPosixCntrl", "XPosixCntrl");
10253 case _C_C_T_(GRAPH, isGRAPH_L1, isGRAPH, "XPosixGraph", "XPosixGraph");
10254 case _C_C_T_(LOWER, isLOWER_L1, isLOWER, "XPosixLower", "__XPosixLower_i");
10255 case _C_C_T_(PRINT, isPRINT_L1, isPRINT, "XPosixPrint", "XPosixPrint");
10256 case _C_C_T_(PSXSPC, isPSXSPC_L1, isPSXSPC, "XPosixSpace", "XPosixSpace");
10257 case _C_C_T_(PUNCT, isPUNCT_L1, isPUNCT, "XPosixPunct", "XPosixPunct");
10258 case _C_C_T_(UPPER, isUPPER_L1, isUPPER, "XPosixUpper", "__XPosixUpper_i");
10259 /* \s, \w match all unicode if utf8. */
10260 case _C_C_T_(SPACE, isSPACE_L1, isSPACE, "SpacePerl", "SpacePerl");
10261 case _C_C_T_(ALNUM, isWORDCHAR_L1, isALNUM, "Word", "Word");
10262 case _C_C_T_(XDIGIT, isXDIGIT_L1, isXDIGIT, "XPosixXDigit", "XPosixXDigit");
10263 case _C_C_T_NOLOC_(VERTWS, is_VERTWS_latin1(&value), "VertSpace");
10264 case _C_C_T_NOLOC_(HORIZWS, is_HORIZWS_latin1(&value), "HorizSpace");
10267 ANYOF_CLASS_SET(ret, ANYOF_ASCII);
10269 for (value = 0; value < 128; value++)
10271 set_regclass_bit(pRExC_state, ret, (U8) ASCII_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate);
10274 what = NULL; /* Doesn't match outside ascii, so
10275 don't want to add +utf8:: */
10279 ANYOF_CLASS_SET(ret, ANYOF_NASCII);
10281 for (value = 128; value < 256; value++)
10283 set_regclass_bit(pRExC_state, ret, (U8) ASCII_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate);
10285 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
10291 ANYOF_CLASS_SET(ret, ANYOF_DIGIT);
10293 /* consecutive digits assumed */
10294 for (value = '0'; value <= '9'; value++)
10296 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate);
10303 ANYOF_CLASS_SET(ret, ANYOF_NDIGIT);
10305 /* consecutive digits assumed */
10306 for (value = 0; value < '0'; value++)
10308 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate);
10309 for (value = '9' + 1; value < 256; value++)
10311 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate);
10315 if (AT_LEAST_ASCII_RESTRICTED ) {
10316 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
10320 /* this is to handle \p and \P */
10323 vFAIL("Invalid [::] class");
10326 if (what && ! (AT_LEAST_ASCII_RESTRICTED)) {
10327 /* Strings such as "+utf8::isWord\n" */
10328 Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%s\n", yesno, what);
10333 } /* end of namedclass \blah */
10336 if (prevvalue > (IV)value) /* b-a */ {
10337 const int w = RExC_parse - rangebegin;
10338 Simple_vFAIL4("Invalid [] range \"%*.*s\"", w, w, rangebegin);
10339 range = 0; /* not a valid range */
10343 prevvalue = value; /* save the beginning of the range */
10344 if (RExC_parse+1 < RExC_end
10345 && *RExC_parse == '-'
10346 && RExC_parse[1] != ']')
10350 /* a bad range like \w-, [:word:]- ? */
10351 if (namedclass > OOB_NAMEDCLASS) {
10352 if (ckWARN(WARN_REGEXP)) {
10354 RExC_parse >= rangebegin ?
10355 RExC_parse - rangebegin : 0;
10357 "False [] range \"%*.*s\"",
10362 set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
10364 range = 1; /* yeah, it's a range! */
10365 continue; /* but do it the next time */
10369 /* non-Latin1 code point implies unicode semantics. Must be set in
10370 * pass1 so is there for the whole of pass 2 */
10372 RExC_uni_semantics = 1;
10375 /* now is the next time */
10377 if (prevvalue < 256) {
10378 const IV ceilvalue = value < 256 ? value : 255;
10381 /* In EBCDIC [\x89-\x91] should include
10382 * the \x8e but [i-j] should not. */
10383 if (literal_endpoint == 2 &&
10384 ((isLOWER(prevvalue) && isLOWER(ceilvalue)) ||
10385 (isUPPER(prevvalue) && isUPPER(ceilvalue))))
10387 if (isLOWER(prevvalue)) {
10388 for (i = prevvalue; i <= ceilvalue; i++)
10389 if (isLOWER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
10391 set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
10394 for (i = prevvalue; i <= ceilvalue; i++)
10395 if (isUPPER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
10397 set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
10403 for (i = prevvalue; i <= ceilvalue; i++) {
10404 stored += set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
10408 const UV prevnatvalue = NATIVE_TO_UNI(prevvalue);
10409 const UV natvalue = NATIVE_TO_UNI(value);
10410 nonbitmap = add_range_to_invlist(nonbitmap, prevnatvalue, natvalue);
10413 literal_endpoint = 0;
10417 range = 0; /* this range (if it was one) is done now */
10424 /****** !SIZE_ONLY AFTER HERE *********/
10426 /* If folding and there are code points above 255, we calculate all
10427 * characters that could fold to or from the ones already on the list */
10428 if (FOLD && nonbitmap) {
10429 UV start, end; /* End points of code point ranges */
10431 SV* fold_intersection;
10433 /* This is a list of all the characters that participate in folds
10434 * (except marks, etc in multi-char folds */
10435 if (! PL_utf8_foldable) {
10436 SV* swash = swash_init("utf8", "Cased", &PL_sv_undef, 1, 0);
10437 PL_utf8_foldable = _swash_to_invlist(swash);
10440 /* This is a hash that for a particular fold gives all characters
10441 * that are involved in it */
10442 if (! PL_utf8_foldclosures) {
10444 /* If we were unable to find any folds, then we likely won't be
10445 * able to find the closures. So just create an empty list.
10446 * Folding will effectively be restricted to the non-Unicode rules
10447 * hard-coded into Perl. (This case happens legitimately during
10448 * compilation of Perl itself before the Unicode tables are
10450 if (invlist_len(PL_utf8_foldable) == 0) {
10451 PL_utf8_foldclosures = newHV();
10453 /* If the folds haven't been read in, call a fold function
10455 if (! PL_utf8_tofold) {
10456 U8 dummy[UTF8_MAXBYTES+1];
10459 /* This particular string is above \xff in both UTF-8 and
10461 to_utf8_fold((U8*) "\xC8\x80", dummy, &dummy_len);
10462 assert(PL_utf8_tofold); /* Verify that worked */
10464 PL_utf8_foldclosures = _swash_inversion_hash(PL_utf8_tofold);
10468 /* Only the characters in this class that participate in folds need
10469 * be checked. Get the intersection of this class and all the
10470 * possible characters that are foldable. This can quickly narrow
10471 * down a large class */
10472 _invlist_intersection(PL_utf8_foldable, nonbitmap, &fold_intersection);
10474 /* Now look at the foldable characters in this class individually */
10475 invlist_iterinit(fold_intersection);
10476 while (invlist_iternext(fold_intersection, &start, &end)) {
10479 /* Look at every character in the range */
10480 for (j = start; j <= end; j++) {
10483 U8 foldbuf[UTF8_MAXBYTES_CASE+1];
10486 _to_uni_fold_flags(j, foldbuf, &foldlen, allow_full_fold);
10488 if (foldlen > (STRLEN)UNISKIP(f)) {
10490 /* Any multicharacter foldings (disallowed in
10491 * lookbehind patterns) require the following
10492 * transform: [ABCDEF] -> (?:[ABCabcDEFd]|pq|rst) where
10493 * E folds into "pq" and F folds into "rst", all other
10494 * characters fold to single characters. We save away
10495 * these multicharacter foldings, to be later saved as
10496 * part of the additional "s" data. */
10497 if (! RExC_in_lookbehind) {
10499 U8* e = foldbuf + foldlen;
10501 /* If any of the folded characters of this are in
10502 * the Latin1 range, tell the regex engine that
10503 * this can match a non-utf8 target string. The
10504 * only multi-byte fold whose source is in the
10505 * Latin1 range (U+00DF) applies only when the
10506 * target string is utf8, or under unicode rules */
10507 if (j > 255 || AT_LEAST_UNI_SEMANTICS) {
10510 /* Can't mix ascii with non- under /aa */
10511 if (MORE_ASCII_RESTRICTED
10512 && (isASCII(*loc) != isASCII(j)))
10514 goto end_multi_fold;
10516 if (UTF8_IS_INVARIANT(*loc)
10517 || UTF8_IS_DOWNGRADEABLE_START(*loc))
10519 /* Can't mix above and below 256 under
10522 goto end_multi_fold;
10525 |= ANYOF_NONBITMAP_NON_UTF8;
10528 loc += UTF8SKIP(loc);
10532 add_alternate(&unicode_alternate, foldbuf, foldlen);
10536 /* This is special-cased, as it is the only letter which
10537 * has both a multi-fold and single-fold in Latin1. All
10538 * the other chars that have single and multi-folds are
10539 * always in utf8, and the utf8 folding algorithm catches
10541 if (! LOC && j == LATIN_CAPITAL_LETTER_SHARP_S) {
10542 stored += set_regclass_bit(pRExC_state,
10544 LATIN_SMALL_LETTER_SHARP_S,
10545 &l1_fold_invlist, &unicode_alternate);
10549 /* Single character fold. Add everything in its fold
10550 * closure to the list that this node should match */
10553 /* The fold closures data structure is a hash with the
10554 * keys being every character that is folded to, like
10555 * 'k', and the values each an array of everything that
10556 * folds to its key. e.g. [ 'k', 'K', KELVIN_SIGN ] */
10557 if ((listp = hv_fetch(PL_utf8_foldclosures,
10558 (char *) foldbuf, foldlen, FALSE)))
10560 AV* list = (AV*) *listp;
10562 for (k = 0; k <= av_len(list); k++) {
10563 SV** c_p = av_fetch(list, k, FALSE);
10566 Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
10570 /* /aa doesn't allow folds between ASCII and
10571 * non-; /l doesn't allow them between above
10573 if ((MORE_ASCII_RESTRICTED
10574 && (isASCII(c) != isASCII(j)))
10575 || (LOC && ((c < 256) != (j < 256))))
10580 if (c < 256 && AT_LEAST_UNI_SEMANTICS) {
10581 stored += set_regclass_bit(pRExC_state,
10584 &l1_fold_invlist, &unicode_alternate);
10586 /* It may be that the code point is already
10587 * in this range or already in the bitmap,
10588 * in which case we need do nothing */
10589 else if ((c < start || c > end)
10591 || ! ANYOF_BITMAP_TEST(ret, c)))
10593 nonbitmap = add_cp_to_invlist(nonbitmap, c);
10600 SvREFCNT_dec(fold_intersection);
10603 /* Combine the two lists into one. */
10604 if (l1_fold_invlist) {
10606 _invlist_union(nonbitmap, l1_fold_invlist, &nonbitmap);
10607 SvREFCNT_dec(l1_fold_invlist);
10610 nonbitmap = l1_fold_invlist;
10614 /* Here, we have calculated what code points should be in the character
10615 * class. Now we can see about various optimizations. Fold calculation
10616 * needs to take place before inversion. Otherwise /[^k]/i would invert to
10617 * include K, which under /i would match k. */
10619 /* Optimize inverted simple patterns (e.g. [^a-z]). Note that we haven't
10620 * set the FOLD flag yet, so this this does optimize those. It doesn't
10621 * optimize locale. Doing so perhaps could be done as long as there is
10622 * nothing like \w in it; some thought also would have to be given to the
10623 * interaction with above 0x100 chars */
10625 && (ANYOF_FLAGS(ret) & ANYOF_INVERT)
10626 && ! unicode_alternate
10627 /* In case of /d, there are some things that should match only when in
10628 * not in the bitmap, i.e., they require UTF8 to match. These are
10629 * listed in nonbitmap. */
10631 || ! DEPENDS_SEMANTICS
10632 || (ANYOF_FLAGS(ret) & ANYOF_NONBITMAP_NON_UTF8))
10633 && SvCUR(listsv) == initial_listsv_len)
10636 for (value = 0; value < ANYOF_BITMAP_SIZE; ++value)
10637 ANYOF_BITMAP(ret)[value] ^= 0xFF;
10638 /* The inversion means that everything above 255 is matched */
10639 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
10642 /* Here, also has things outside the bitmap. Go through each bit
10643 * individually and add it to the list to get rid of from those
10644 * things not in the bitmap */
10645 SV *remove_list = _new_invlist(2);
10646 _invlist_invert(nonbitmap);
10647 for (value = 0; value < 256; ++value) {
10648 if (ANYOF_BITMAP_TEST(ret, value)) {
10649 ANYOF_BITMAP_CLEAR(ret, value);
10650 remove_list = add_cp_to_invlist(remove_list, value);
10653 ANYOF_BITMAP_SET(ret, value);
10656 _invlist_subtract(nonbitmap, remove_list, &nonbitmap);
10657 SvREFCNT_dec(remove_list);
10660 stored = 256 - stored;
10662 /* Clear the invert flag since have just done it here */
10663 ANYOF_FLAGS(ret) &= ~ANYOF_INVERT;
10666 /* Folding in the bitmap is taken care of above, but not for locale (for
10667 * which we have to wait to see what folding is in effect at runtime), and
10668 * for things not in the bitmap. Set run-time fold flag for these */
10669 if (FOLD && (LOC || nonbitmap || unicode_alternate)) {
10670 ANYOF_FLAGS(ret) |= ANYOF_LOC_NONBITMAP_FOLD;
10673 /* A single character class can be "optimized" into an EXACTish node.
10674 * Note that since we don't currently count how many characters there are
10675 * outside the bitmap, we are XXX missing optimization possibilities for
10676 * them. This optimization can't happen unless this is a truly single
10677 * character class, which means that it can't be an inversion into a
10678 * many-character class, and there must be no possibility of there being
10679 * things outside the bitmap. 'stored' (only) for locales doesn't include
10680 * \w, etc, so have to make a special test that they aren't present
10682 * Similarly A 2-character class of the very special form like [bB] can be
10683 * optimized into an EXACTFish node, but only for non-locales, and for
10684 * characters which only have the two folds; so things like 'fF' and 'Ii'
10685 * wouldn't work because they are part of the fold of 'LATIN SMALL LIGATURE
10688 && ! unicode_alternate
10689 && SvCUR(listsv) == initial_listsv_len
10690 && ! (ANYOF_FLAGS(ret) & (ANYOF_INVERT|ANYOF_UNICODE_ALL))
10691 && (((stored == 1 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
10692 || (! ANYOF_CLASS_TEST_ANY_SET(ret)))))
10693 || (stored == 2 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
10694 && (! _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value))
10695 /* If the latest code point has a fold whose
10696 * bit is set, it must be the only other one */
10697 && ((prevvalue = PL_fold_latin1[value]) != (IV)value)
10698 && ANYOF_BITMAP_TEST(ret, prevvalue)))))
10700 /* Note that the information needed to decide to do this optimization
10701 * is not currently available until the 2nd pass, and that the actually
10702 * used EXACTish node takes less space than the calculated ANYOF node,
10703 * and hence the amount of space calculated in the first pass is larger
10704 * than actually used, so this optimization doesn't gain us any space.
10705 * But an EXACT node is faster than an ANYOF node, and can be combined
10706 * with any adjacent EXACT nodes later by the optimizer for further
10707 * gains. The speed of executing an EXACTF is similar to an ANYOF
10708 * node, so the optimization advantage comes from the ability to join
10709 * it to adjacent EXACT nodes */
10711 const char * cur_parse= RExC_parse;
10713 RExC_emit = (regnode *)orig_emit;
10714 RExC_parse = (char *)orig_parse;
10718 /* A locale node with one point can be folded; all the other cases
10719 * with folding will have two points, since we calculate them above
10721 if (ANYOF_FLAGS(ret) & ANYOF_LOC_NONBITMAP_FOLD) {
10728 else { /* else 2 chars in the bit map: the folds of each other */
10730 /* Use the folded value, which for the cases where we get here,
10731 * is just the lower case of the current one (which may resolve to
10732 * itself, or to the other one */
10733 value = toLOWER_LATIN1(value);
10734 if (AT_LEAST_UNI_SEMANTICS || !isASCII(value)) {
10736 /* To join adjacent nodes, they must be the exact EXACTish
10737 * type. Try to use the most likely type, by using EXACTFU if
10738 * the regex calls for them, or is required because the
10739 * character is non-ASCII */
10742 else { /* Otherwise, more likely to be EXACTF type */
10747 ret = reg_node(pRExC_state, op);
10748 RExC_parse = (char *)cur_parse;
10749 if (UTF && ! NATIVE_IS_INVARIANT(value)) {
10750 *STRING(ret)= UTF8_EIGHT_BIT_HI((U8) value);
10751 *(STRING(ret) + 1)= UTF8_EIGHT_BIT_LO((U8) value);
10753 RExC_emit += STR_SZ(2);
10756 *STRING(ret)= (char)value;
10758 RExC_emit += STR_SZ(1);
10760 SvREFCNT_dec(listsv);
10766 invlist_iterinit(nonbitmap);
10767 while (invlist_iternext(nonbitmap, &start, &end)) {
10768 if (start == end) {
10769 Perl_sv_catpvf(aTHX_ listsv, "%04"UVxf"\n", start);
10772 /* The \t sets the whole range */
10773 Perl_sv_catpvf(aTHX_ listsv, "%04"UVxf"\t%04"UVxf"\n",
10778 SvREFCNT_dec(nonbitmap);
10781 if (SvCUR(listsv) == initial_listsv_len && ! unicode_alternate) {
10782 ARG_SET(ret, ANYOF_NONBITMAP_EMPTY);
10783 SvREFCNT_dec(listsv);
10784 SvREFCNT_dec(unicode_alternate);
10788 AV * const av = newAV();
10790 /* The 0th element stores the character class description
10791 * in its textual form: used later (regexec.c:Perl_regclass_swash())
10792 * to initialize the appropriate swash (which gets stored in
10793 * the 1st element), and also useful for dumping the regnode.
10794 * The 2nd element stores the multicharacter foldings,
10795 * used later (regexec.c:S_reginclass()). */
10796 av_store(av, 0, listsv);
10797 av_store(av, 1, NULL);
10799 /* Store any computed multi-char folds only if we are allowing
10801 if (allow_full_fold) {
10802 av_store(av, 2, MUTABLE_SV(unicode_alternate));
10803 if (unicode_alternate) { /* This node is variable length */
10808 av_store(av, 2, NULL);
10810 rv = newRV_noinc(MUTABLE_SV(av));
10811 n = add_data(pRExC_state, 1, "s");
10812 RExC_rxi->data->data[n] = (void*)rv;
10820 /* reg_skipcomment()
10822 Absorbs an /x style # comments from the input stream.
10823 Returns true if there is more text remaining in the stream.
10824 Will set the REG_SEEN_RUN_ON_COMMENT flag if the comment
10825 terminates the pattern without including a newline.
10827 Note its the callers responsibility to ensure that we are
10828 actually in /x mode
10833 S_reg_skipcomment(pTHX_ RExC_state_t *pRExC_state)
10837 PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
10839 while (RExC_parse < RExC_end)
10840 if (*RExC_parse++ == '\n') {
10845 /* we ran off the end of the pattern without ending
10846 the comment, so we have to add an \n when wrapping */
10847 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
10855 Advances the parse position, and optionally absorbs
10856 "whitespace" from the inputstream.
10858 Without /x "whitespace" means (?#...) style comments only,
10859 with /x this means (?#...) and # comments and whitespace proper.
10861 Returns the RExC_parse point from BEFORE the scan occurs.
10863 This is the /x friendly way of saying RExC_parse++.
10867 S_nextchar(pTHX_ RExC_state_t *pRExC_state)
10869 char* const retval = RExC_parse++;
10871 PERL_ARGS_ASSERT_NEXTCHAR;
10874 if (*RExC_parse == '(' && RExC_parse[1] == '?' &&
10875 RExC_parse[2] == '#') {
10876 while (*RExC_parse != ')') {
10877 if (RExC_parse == RExC_end)
10878 FAIL("Sequence (?#... not terminated");
10884 if (RExC_flags & RXf_PMf_EXTENDED) {
10885 if (isSPACE(*RExC_parse)) {
10889 else if (*RExC_parse == '#') {
10890 if ( reg_skipcomment( pRExC_state ) )
10899 - reg_node - emit a node
10901 STATIC regnode * /* Location. */
10902 S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
10905 register regnode *ptr;
10906 regnode * const ret = RExC_emit;
10907 GET_RE_DEBUG_FLAGS_DECL;
10909 PERL_ARGS_ASSERT_REG_NODE;
10912 SIZE_ALIGN(RExC_size);
10916 if (RExC_emit >= RExC_emit_bound)
10917 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d", op);
10919 NODE_ALIGN_FILL(ret);
10921 FILL_ADVANCE_NODE(ptr, op);
10922 REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 1);
10923 #ifdef RE_TRACK_PATTERN_OFFSETS
10924 if (RExC_offsets) { /* MJD */
10925 MJD_OFFSET_DEBUG(("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
10926 "reg_node", __LINE__,
10928 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
10929 ? "Overwriting end of array!\n" : "OK",
10930 (UV)(RExC_emit - RExC_emit_start),
10931 (UV)(RExC_parse - RExC_start),
10932 (UV)RExC_offsets[0]));
10933 Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
10941 - reganode - emit a node with an argument
10943 STATIC regnode * /* Location. */
10944 S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
10947 register regnode *ptr;
10948 regnode * const ret = RExC_emit;
10949 GET_RE_DEBUG_FLAGS_DECL;
10951 PERL_ARGS_ASSERT_REGANODE;
10954 SIZE_ALIGN(RExC_size);
10959 assert(2==regarglen[op]+1);
10961 Anything larger than this has to allocate the extra amount.
10962 If we changed this to be:
10964 RExC_size += (1 + regarglen[op]);
10966 then it wouldn't matter. Its not clear what side effect
10967 might come from that so its not done so far.
10972 if (RExC_emit >= RExC_emit_bound)
10973 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d", op);
10975 NODE_ALIGN_FILL(ret);
10977 FILL_ADVANCE_NODE_ARG(ptr, op, arg);
10978 REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 2);
10979 #ifdef RE_TRACK_PATTERN_OFFSETS
10980 if (RExC_offsets) { /* MJD */
10981 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
10985 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0] ?
10986 "Overwriting end of array!\n" : "OK",
10987 (UV)(RExC_emit - RExC_emit_start),
10988 (UV)(RExC_parse - RExC_start),
10989 (UV)RExC_offsets[0]));
10990 Set_Cur_Node_Offset;
10998 - reguni - emit (if appropriate) a Unicode character
11001 S_reguni(pTHX_ const RExC_state_t *pRExC_state, UV uv, char* s)
11005 PERL_ARGS_ASSERT_REGUNI;
11007 return SIZE_ONLY ? UNISKIP(uv) : (uvchr_to_utf8((U8*)s, uv) - (U8*)s);
11011 - reginsert - insert an operator in front of already-emitted operand
11013 * Means relocating the operand.
11016 S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
11019 register regnode *src;
11020 register regnode *dst;
11021 register regnode *place;
11022 const int offset = regarglen[(U8)op];
11023 const int size = NODE_STEP_REGNODE + offset;
11024 GET_RE_DEBUG_FLAGS_DECL;
11026 PERL_ARGS_ASSERT_REGINSERT;
11027 PERL_UNUSED_ARG(depth);
11028 /* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
11029 DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
11038 if (RExC_open_parens) {
11040 /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
11041 for ( paren=0 ; paren < RExC_npar ; paren++ ) {
11042 if ( RExC_open_parens[paren] >= opnd ) {
11043 /*DEBUG_PARSE_FMT("open"," - %d",size);*/
11044 RExC_open_parens[paren] += size;
11046 /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
11048 if ( RExC_close_parens[paren] >= opnd ) {
11049 /*DEBUG_PARSE_FMT("close"," - %d",size);*/
11050 RExC_close_parens[paren] += size;
11052 /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
11057 while (src > opnd) {
11058 StructCopy(--src, --dst, regnode);
11059 #ifdef RE_TRACK_PATTERN_OFFSETS
11060 if (RExC_offsets) { /* MJD 20010112 */
11061 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
11065 (UV)(dst - RExC_emit_start) > RExC_offsets[0]
11066 ? "Overwriting end of array!\n" : "OK",
11067 (UV)(src - RExC_emit_start),
11068 (UV)(dst - RExC_emit_start),
11069 (UV)RExC_offsets[0]));
11070 Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
11071 Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
11077 place = opnd; /* Op node, where operand used to be. */
11078 #ifdef RE_TRACK_PATTERN_OFFSETS
11079 if (RExC_offsets) { /* MJD */
11080 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
11084 (UV)(place - RExC_emit_start) > RExC_offsets[0]
11085 ? "Overwriting end of array!\n" : "OK",
11086 (UV)(place - RExC_emit_start),
11087 (UV)(RExC_parse - RExC_start),
11088 (UV)RExC_offsets[0]));
11089 Set_Node_Offset(place, RExC_parse);
11090 Set_Node_Length(place, 1);
11093 src = NEXTOPER(place);
11094 FILL_ADVANCE_NODE(place, op);
11095 REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (place) - 1);
11096 Zero(src, offset, regnode);
11100 - regtail - set the next-pointer at the end of a node chain of p to val.
11101 - SEE ALSO: regtail_study
11103 /* TODO: All three parms should be const */
11105 S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
11108 register regnode *scan;
11109 GET_RE_DEBUG_FLAGS_DECL;
11111 PERL_ARGS_ASSERT_REGTAIL;
11113 PERL_UNUSED_ARG(depth);
11119 /* Find last node. */
11122 regnode * const temp = regnext(scan);
11124 SV * const mysv=sv_newmortal();
11125 DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
11126 regprop(RExC_rx, mysv, scan);
11127 PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
11128 SvPV_nolen_const(mysv), REG_NODE_NUM(scan),
11129 (temp == NULL ? "->" : ""),
11130 (temp == NULL ? PL_reg_name[OP(val)] : "")
11138 if (reg_off_by_arg[OP(scan)]) {
11139 ARG_SET(scan, val - scan);
11142 NEXT_OFF(scan) = val - scan;
11148 - regtail_study - set the next-pointer at the end of a node chain of p to val.
11149 - Look for optimizable sequences at the same time.
11150 - currently only looks for EXACT chains.
11152 This is experimental code. The idea is to use this routine to perform
11153 in place optimizations on branches and groups as they are constructed,
11154 with the long term intention of removing optimization from study_chunk so
11155 that it is purely analytical.
11157 Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
11158 to control which is which.
11161 /* TODO: All four parms should be const */
11164 S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
11167 register regnode *scan;
11169 #ifdef EXPERIMENTAL_INPLACESCAN
11172 GET_RE_DEBUG_FLAGS_DECL;
11174 PERL_ARGS_ASSERT_REGTAIL_STUDY;
11180 /* Find last node. */
11184 regnode * const temp = regnext(scan);
11185 #ifdef EXPERIMENTAL_INPLACESCAN
11186 if (PL_regkind[OP(scan)] == EXACT)
11187 if (join_exact(pRExC_state,scan,&min,1,val,depth+1))
11191 switch (OP(scan)) {
11197 if( exact == PSEUDO )
11199 else if ( exact != OP(scan) )
11208 SV * const mysv=sv_newmortal();
11209 DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
11210 regprop(RExC_rx, mysv, scan);
11211 PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
11212 SvPV_nolen_const(mysv),
11213 REG_NODE_NUM(scan),
11214 PL_reg_name[exact]);
11221 SV * const mysv_val=sv_newmortal();
11222 DEBUG_PARSE_MSG("");
11223 regprop(RExC_rx, mysv_val, val);
11224 PerlIO_printf(Perl_debug_log, "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
11225 SvPV_nolen_const(mysv_val),
11226 (IV)REG_NODE_NUM(val),
11230 if (reg_off_by_arg[OP(scan)]) {
11231 ARG_SET(scan, val - scan);
11234 NEXT_OFF(scan) = val - scan;
11242 - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
11246 S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
11252 for (bit=0; bit<32; bit++) {
11253 if (flags & (1<<bit)) {
11254 if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
11257 if (!set++ && lead)
11258 PerlIO_printf(Perl_debug_log, "%s",lead);
11259 PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
11262 if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
11263 if (!set++ && lead) {
11264 PerlIO_printf(Perl_debug_log, "%s",lead);
11267 case REGEX_UNICODE_CHARSET:
11268 PerlIO_printf(Perl_debug_log, "UNICODE");
11270 case REGEX_LOCALE_CHARSET:
11271 PerlIO_printf(Perl_debug_log, "LOCALE");
11273 case REGEX_ASCII_RESTRICTED_CHARSET:
11274 PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
11276 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
11277 PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
11280 PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
11286 PerlIO_printf(Perl_debug_log, "\n");
11288 PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
11294 Perl_regdump(pTHX_ const regexp *r)
11298 SV * const sv = sv_newmortal();
11299 SV *dsv= sv_newmortal();
11300 RXi_GET_DECL(r,ri);
11301 GET_RE_DEBUG_FLAGS_DECL;
11303 PERL_ARGS_ASSERT_REGDUMP;
11305 (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
11307 /* Header fields of interest. */
11308 if (r->anchored_substr) {
11309 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
11310 RE_SV_DUMPLEN(r->anchored_substr), 30);
11311 PerlIO_printf(Perl_debug_log,
11312 "anchored %s%s at %"IVdf" ",
11313 s, RE_SV_TAIL(r->anchored_substr),
11314 (IV)r->anchored_offset);
11315 } else if (r->anchored_utf8) {
11316 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
11317 RE_SV_DUMPLEN(r->anchored_utf8), 30);
11318 PerlIO_printf(Perl_debug_log,
11319 "anchored utf8 %s%s at %"IVdf" ",
11320 s, RE_SV_TAIL(r->anchored_utf8),
11321 (IV)r->anchored_offset);
11323 if (r->float_substr) {
11324 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
11325 RE_SV_DUMPLEN(r->float_substr), 30);
11326 PerlIO_printf(Perl_debug_log,
11327 "floating %s%s at %"IVdf"..%"UVuf" ",
11328 s, RE_SV_TAIL(r->float_substr),
11329 (IV)r->float_min_offset, (UV)r->float_max_offset);
11330 } else if (r->float_utf8) {
11331 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
11332 RE_SV_DUMPLEN(r->float_utf8), 30);
11333 PerlIO_printf(Perl_debug_log,
11334 "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
11335 s, RE_SV_TAIL(r->float_utf8),
11336 (IV)r->float_min_offset, (UV)r->float_max_offset);
11338 if (r->check_substr || r->check_utf8)
11339 PerlIO_printf(Perl_debug_log,
11341 (r->check_substr == r->float_substr
11342 && r->check_utf8 == r->float_utf8
11343 ? "(checking floating" : "(checking anchored"));
11344 if (r->extflags & RXf_NOSCAN)
11345 PerlIO_printf(Perl_debug_log, " noscan");
11346 if (r->extflags & RXf_CHECK_ALL)
11347 PerlIO_printf(Perl_debug_log, " isall");
11348 if (r->check_substr || r->check_utf8)
11349 PerlIO_printf(Perl_debug_log, ") ");
11351 if (ri->regstclass) {
11352 regprop(r, sv, ri->regstclass);
11353 PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
11355 if (r->extflags & RXf_ANCH) {
11356 PerlIO_printf(Perl_debug_log, "anchored");
11357 if (r->extflags & RXf_ANCH_BOL)
11358 PerlIO_printf(Perl_debug_log, "(BOL)");
11359 if (r->extflags & RXf_ANCH_MBOL)
11360 PerlIO_printf(Perl_debug_log, "(MBOL)");
11361 if (r->extflags & RXf_ANCH_SBOL)
11362 PerlIO_printf(Perl_debug_log, "(SBOL)");
11363 if (r->extflags & RXf_ANCH_GPOS)
11364 PerlIO_printf(Perl_debug_log, "(GPOS)");
11365 PerlIO_putc(Perl_debug_log, ' ');
11367 if (r->extflags & RXf_GPOS_SEEN)
11368 PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
11369 if (r->intflags & PREGf_SKIP)
11370 PerlIO_printf(Perl_debug_log, "plus ");
11371 if (r->intflags & PREGf_IMPLICIT)
11372 PerlIO_printf(Perl_debug_log, "implicit ");
11373 PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
11374 if (r->extflags & RXf_EVAL_SEEN)
11375 PerlIO_printf(Perl_debug_log, "with eval ");
11376 PerlIO_printf(Perl_debug_log, "\n");
11377 DEBUG_FLAGS_r(regdump_extflags("r->extflags: ",r->extflags));
11379 PERL_ARGS_ASSERT_REGDUMP;
11380 PERL_UNUSED_CONTEXT;
11381 PERL_UNUSED_ARG(r);
11382 #endif /* DEBUGGING */
11386 - regprop - printable representation of opcode
11388 #define EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags) \
11391 Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]); \
11392 if (flags & ANYOF_INVERT) \
11393 /*make sure the invert info is in each */ \
11394 sv_catpvs(sv, "^"); \
11400 Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o)
11405 RXi_GET_DECL(prog,progi);
11406 GET_RE_DEBUG_FLAGS_DECL;
11408 PERL_ARGS_ASSERT_REGPROP;
11412 if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */
11413 /* It would be nice to FAIL() here, but this may be called from
11414 regexec.c, and it would be hard to supply pRExC_state. */
11415 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(o), (int)REGNODE_MAX);
11416 sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
11418 k = PL_regkind[OP(o)];
11421 sv_catpvs(sv, " ");
11422 /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
11423 * is a crude hack but it may be the best for now since
11424 * we have no flag "this EXACTish node was UTF-8"
11426 pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
11427 PERL_PV_ESCAPE_UNI_DETECT |
11428 PERL_PV_ESCAPE_NONASCII |
11429 PERL_PV_PRETTY_ELLIPSES |
11430 PERL_PV_PRETTY_LTGT |
11431 PERL_PV_PRETTY_NOCLEAR
11433 } else if (k == TRIE) {
11434 /* print the details of the trie in dumpuntil instead, as
11435 * progi->data isn't available here */
11436 const char op = OP(o);
11437 const U32 n = ARG(o);
11438 const reg_ac_data * const ac = IS_TRIE_AC(op) ?
11439 (reg_ac_data *)progi->data->data[n] :
11441 const reg_trie_data * const trie
11442 = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
11444 Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
11445 DEBUG_TRIE_COMPILE_r(
11446 Perl_sv_catpvf(aTHX_ sv,
11447 "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
11448 (UV)trie->startstate,
11449 (IV)trie->statecount-1, /* -1 because of the unused 0 element */
11450 (UV)trie->wordcount,
11453 (UV)TRIE_CHARCOUNT(trie),
11454 (UV)trie->uniquecharcount
11457 if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
11459 int rangestart = -1;
11460 U8* bitmap = IS_ANYOF_TRIE(op) ? (U8*)ANYOF_BITMAP(o) : (U8*)TRIE_BITMAP(trie);
11461 sv_catpvs(sv, "[");
11462 for (i = 0; i <= 256; i++) {
11463 if (i < 256 && BITMAP_TEST(bitmap,i)) {
11464 if (rangestart == -1)
11466 } else if (rangestart != -1) {
11467 if (i <= rangestart + 3)
11468 for (; rangestart < i; rangestart++)
11469 put_byte(sv, rangestart);
11471 put_byte(sv, rangestart);
11472 sv_catpvs(sv, "-");
11473 put_byte(sv, i - 1);
11478 sv_catpvs(sv, "]");
11481 } else if (k == CURLY) {
11482 if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
11483 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
11484 Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
11486 else if (k == WHILEM && o->flags) /* Ordinal/of */
11487 Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
11488 else if (k == REF || k == OPEN || k == CLOSE || k == GROUPP || OP(o)==ACCEPT) {
11489 Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
11490 if ( RXp_PAREN_NAMES(prog) ) {
11491 if ( k != REF || (OP(o) < NREF)) {
11492 AV *list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
11493 SV **name= av_fetch(list, ARG(o), 0 );
11495 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
11498 AV *list= MUTABLE_AV(progi->data->data[ progi->name_list_idx ]);
11499 SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
11500 I32 *nums=(I32*)SvPVX(sv_dat);
11501 SV **name= av_fetch(list, nums[0], 0 );
11504 for ( n=0; n<SvIVX(sv_dat); n++ ) {
11505 Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
11506 (n ? "," : ""), (IV)nums[n]);
11508 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
11512 } else if (k == GOSUB)
11513 Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o)); /* Paren and offset */
11514 else if (k == VERB) {
11516 Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
11517 SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
11518 } else if (k == LOGICAL)
11519 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* 2: embedded, otherwise 1 */
11520 else if (k == FOLDCHAR)
11521 Perl_sv_catpvf(aTHX_ sv, "[0x%"UVXf"]", PTR2UV(ARG(o)) );
11522 else if (k == ANYOF) {
11523 int i, rangestart = -1;
11524 const U8 flags = ANYOF_FLAGS(o);
11527 /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
11528 static const char * const anyofs[] = {
11561 if (flags & ANYOF_LOCALE)
11562 sv_catpvs(sv, "{loc}");
11563 if (flags & ANYOF_LOC_NONBITMAP_FOLD)
11564 sv_catpvs(sv, "{i}");
11565 Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
11566 if (flags & ANYOF_INVERT)
11567 sv_catpvs(sv, "^");
11569 /* output what the standard cp 0-255 bitmap matches */
11570 for (i = 0; i <= 256; i++) {
11571 if (i < 256 && ANYOF_BITMAP_TEST(o,i)) {
11572 if (rangestart == -1)
11574 } else if (rangestart != -1) {
11575 if (i <= rangestart + 3)
11576 for (; rangestart < i; rangestart++)
11577 put_byte(sv, rangestart);
11579 put_byte(sv, rangestart);
11580 sv_catpvs(sv, "-");
11581 put_byte(sv, i - 1);
11588 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
11589 /* output any special charclass tests (used entirely under use locale) */
11590 if (ANYOF_CLASS_TEST_ANY_SET(o))
11591 for (i = 0; i < (int)(sizeof(anyofs)/sizeof(char*)); i++)
11592 if (ANYOF_CLASS_TEST(o,i)) {
11593 sv_catpv(sv, anyofs[i]);
11597 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
11599 if (flags & ANYOF_NON_UTF8_LATIN1_ALL) {
11600 sv_catpvs(sv, "{non-utf8-latin1-all}");
11603 /* output information about the unicode matching */
11604 if (flags & ANYOF_UNICODE_ALL)
11605 sv_catpvs(sv, "{unicode_all}");
11606 else if (ANYOF_NONBITMAP(o))
11607 sv_catpvs(sv, "{unicode}");
11608 if (flags & ANYOF_NONBITMAP_NON_UTF8)
11609 sv_catpvs(sv, "{outside bitmap}");
11611 if (ANYOF_NONBITMAP(o)) {
11613 SV * const sw = regclass_swash(prog, o, FALSE, &lv, 0);
11617 U8 s[UTF8_MAXBYTES_CASE+1];
11619 for (i = 0; i <= 256; i++) { /* just the first 256 */
11620 uvchr_to_utf8(s, i);
11622 if (i < 256 && swash_fetch(sw, s, TRUE)) {
11623 if (rangestart == -1)
11625 } else if (rangestart != -1) {
11626 if (i <= rangestart + 3)
11627 for (; rangestart < i; rangestart++) {
11628 const U8 * const e = uvchr_to_utf8(s,rangestart);
11630 for(p = s; p < e; p++)
11634 const U8 *e = uvchr_to_utf8(s,rangestart);
11636 for (p = s; p < e; p++)
11638 sv_catpvs(sv, "-");
11639 e = uvchr_to_utf8(s, i-1);
11640 for (p = s; p < e; p++)
11647 sv_catpvs(sv, "..."); /* et cetera */
11651 char *s = savesvpv(lv);
11652 char * const origs = s;
11654 while (*s && *s != '\n')
11658 const char * const t = ++s;
11676 Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
11678 else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
11679 Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
11681 PERL_UNUSED_CONTEXT;
11682 PERL_UNUSED_ARG(sv);
11683 PERL_UNUSED_ARG(o);
11684 PERL_UNUSED_ARG(prog);
11685 #endif /* DEBUGGING */
11689 Perl_re_intuit_string(pTHX_ REGEXP * const r)
11690 { /* Assume that RE_INTUIT is set */
11692 struct regexp *const prog = (struct regexp *)SvANY(r);
11693 GET_RE_DEBUG_FLAGS_DECL;
11695 PERL_ARGS_ASSERT_RE_INTUIT_STRING;
11696 PERL_UNUSED_CONTEXT;
11700 const char * const s = SvPV_nolen_const(prog->check_substr
11701 ? prog->check_substr : prog->check_utf8);
11703 if (!PL_colorset) reginitcolors();
11704 PerlIO_printf(Perl_debug_log,
11705 "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
11707 prog->check_substr ? "" : "utf8 ",
11708 PL_colors[5],PL_colors[0],
11711 (strlen(s) > 60 ? "..." : ""));
11714 return prog->check_substr ? prog->check_substr : prog->check_utf8;
11720 handles refcounting and freeing the perl core regexp structure. When
11721 it is necessary to actually free the structure the first thing it
11722 does is call the 'free' method of the regexp_engine associated to
11723 the regexp, allowing the handling of the void *pprivate; member
11724 first. (This routine is not overridable by extensions, which is why
11725 the extensions free is called first.)
11727 See regdupe and regdupe_internal if you change anything here.
11729 #ifndef PERL_IN_XSUB_RE
11731 Perl_pregfree(pTHX_ REGEXP *r)
11737 Perl_pregfree2(pTHX_ REGEXP *rx)
11740 struct regexp *const r = (struct regexp *)SvANY(rx);
11741 GET_RE_DEBUG_FLAGS_DECL;
11743 PERL_ARGS_ASSERT_PREGFREE2;
11745 if (r->mother_re) {
11746 ReREFCNT_dec(r->mother_re);
11748 CALLREGFREE_PVT(rx); /* free the private data */
11749 SvREFCNT_dec(RXp_PAREN_NAMES(r));
11752 SvREFCNT_dec(r->anchored_substr);
11753 SvREFCNT_dec(r->anchored_utf8);
11754 SvREFCNT_dec(r->float_substr);
11755 SvREFCNT_dec(r->float_utf8);
11756 Safefree(r->substrs);
11758 RX_MATCH_COPY_FREE(rx);
11759 #ifdef PERL_OLD_COPY_ON_WRITE
11760 SvREFCNT_dec(r->saved_copy);
11767 This is a hacky workaround to the structural issue of match results
11768 being stored in the regexp structure which is in turn stored in
11769 PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
11770 could be PL_curpm in multiple contexts, and could require multiple
11771 result sets being associated with the pattern simultaneously, such
11772 as when doing a recursive match with (??{$qr})
11774 The solution is to make a lightweight copy of the regexp structure
11775 when a qr// is returned from the code executed by (??{$qr}) this
11776 lightweight copy doesn't actually own any of its data except for
11777 the starp/end and the actual regexp structure itself.
11783 Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
11785 struct regexp *ret;
11786 struct regexp *const r = (struct regexp *)SvANY(rx);
11787 register const I32 npar = r->nparens+1;
11789 PERL_ARGS_ASSERT_REG_TEMP_COPY;
11792 ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
11793 ret = (struct regexp *)SvANY(ret_x);
11795 (void)ReREFCNT_inc(rx);
11796 /* We can take advantage of the existing "copied buffer" mechanism in SVs
11797 by pointing directly at the buffer, but flagging that the allocated
11798 space in the copy is zero. As we've just done a struct copy, it's now
11799 a case of zero-ing that, rather than copying the current length. */
11800 SvPV_set(ret_x, RX_WRAPPED(rx));
11801 SvFLAGS(ret_x) |= SvFLAGS(rx) & (SVf_POK|SVp_POK|SVf_UTF8);
11802 memcpy(&(ret->xpv_cur), &(r->xpv_cur),
11803 sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
11804 SvLEN_set(ret_x, 0);
11805 SvSTASH_set(ret_x, NULL);
11806 SvMAGIC_set(ret_x, NULL);
11807 Newx(ret->offs, npar, regexp_paren_pair);
11808 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
11810 Newx(ret->substrs, 1, struct reg_substr_data);
11811 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
11813 SvREFCNT_inc_void(ret->anchored_substr);
11814 SvREFCNT_inc_void(ret->anchored_utf8);
11815 SvREFCNT_inc_void(ret->float_substr);
11816 SvREFCNT_inc_void(ret->float_utf8);
11818 /* check_substr and check_utf8, if non-NULL, point to either their
11819 anchored or float namesakes, and don't hold a second reference. */
11821 RX_MATCH_COPIED_off(ret_x);
11822 #ifdef PERL_OLD_COPY_ON_WRITE
11823 ret->saved_copy = NULL;
11825 ret->mother_re = rx;
11831 /* regfree_internal()
11833 Free the private data in a regexp. This is overloadable by
11834 extensions. Perl takes care of the regexp structure in pregfree(),
11835 this covers the *pprivate pointer which technically perl doesn't
11836 know about, however of course we have to handle the
11837 regexp_internal structure when no extension is in use.
11839 Note this is called before freeing anything in the regexp
11844 Perl_regfree_internal(pTHX_ REGEXP * const rx)
11847 struct regexp *const r = (struct regexp *)SvANY(rx);
11848 RXi_GET_DECL(r,ri);
11849 GET_RE_DEBUG_FLAGS_DECL;
11851 PERL_ARGS_ASSERT_REGFREE_INTERNAL;
11857 SV *dsv= sv_newmortal();
11858 RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
11859 dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
11860 PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
11861 PL_colors[4],PL_colors[5],s);
11864 #ifdef RE_TRACK_PATTERN_OFFSETS
11866 Safefree(ri->u.offsets); /* 20010421 MJD */
11869 int n = ri->data->count;
11870 PAD* new_comppad = NULL;
11875 /* If you add a ->what type here, update the comment in regcomp.h */
11876 switch (ri->data->what[n]) {
11881 SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
11884 Safefree(ri->data->data[n]);
11887 new_comppad = MUTABLE_AV(ri->data->data[n]);
11890 if (new_comppad == NULL)
11891 Perl_croak(aTHX_ "panic: pregfree comppad");
11892 PAD_SAVE_LOCAL(old_comppad,
11893 /* Watch out for global destruction's random ordering. */
11894 (SvTYPE(new_comppad) == SVt_PVAV) ? new_comppad : NULL
11897 refcnt = OpREFCNT_dec((OP_4tree*)ri->data->data[n]);
11900 op_free((OP_4tree*)ri->data->data[n]);
11902 PAD_RESTORE_LOCAL(old_comppad);
11903 SvREFCNT_dec(MUTABLE_SV(new_comppad));
11904 new_comppad = NULL;
11909 { /* Aho Corasick add-on structure for a trie node.
11910 Used in stclass optimization only */
11912 reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
11914 refcount = --aho->refcount;
11917 PerlMemShared_free(aho->states);
11918 PerlMemShared_free(aho->fail);
11919 /* do this last!!!! */
11920 PerlMemShared_free(ri->data->data[n]);
11921 PerlMemShared_free(ri->regstclass);
11927 /* trie structure. */
11929 reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
11931 refcount = --trie->refcount;
11934 PerlMemShared_free(trie->charmap);
11935 PerlMemShared_free(trie->states);
11936 PerlMemShared_free(trie->trans);
11938 PerlMemShared_free(trie->bitmap);
11940 PerlMemShared_free(trie->jump);
11941 PerlMemShared_free(trie->wordinfo);
11942 /* do this last!!!! */
11943 PerlMemShared_free(ri->data->data[n]);
11948 Perl_croak(aTHX_ "panic: regfree data code '%c'", ri->data->what[n]);
11951 Safefree(ri->data->what);
11952 Safefree(ri->data);
11958 #define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
11959 #define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
11960 #define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
11963 re_dup - duplicate a regexp.
11965 This routine is expected to clone a given regexp structure. It is only
11966 compiled under USE_ITHREADS.
11968 After all of the core data stored in struct regexp is duplicated
11969 the regexp_engine.dupe method is used to copy any private data
11970 stored in the *pprivate pointer. This allows extensions to handle
11971 any duplication it needs to do.
11973 See pregfree() and regfree_internal() if you change anything here.
11975 #if defined(USE_ITHREADS)
11976 #ifndef PERL_IN_XSUB_RE
11978 Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
11982 const struct regexp *r = (const struct regexp *)SvANY(sstr);
11983 struct regexp *ret = (struct regexp *)SvANY(dstr);
11985 PERL_ARGS_ASSERT_RE_DUP_GUTS;
11987 npar = r->nparens+1;
11988 Newx(ret->offs, npar, regexp_paren_pair);
11989 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
11991 /* no need to copy these */
11992 Newx(ret->swap, npar, regexp_paren_pair);
11995 if (ret->substrs) {
11996 /* Do it this way to avoid reading from *r after the StructCopy().
11997 That way, if any of the sv_dup_inc()s dislodge *r from the L1
11998 cache, it doesn't matter. */
11999 const bool anchored = r->check_substr
12000 ? r->check_substr == r->anchored_substr
12001 : r->check_utf8 == r->anchored_utf8;
12002 Newx(ret->substrs, 1, struct reg_substr_data);
12003 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
12005 ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
12006 ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
12007 ret->float_substr = sv_dup_inc(ret->float_substr, param);
12008 ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
12010 /* check_substr and check_utf8, if non-NULL, point to either their
12011 anchored or float namesakes, and don't hold a second reference. */
12013 if (ret->check_substr) {
12015 assert(r->check_utf8 == r->anchored_utf8);
12016 ret->check_substr = ret->anchored_substr;
12017 ret->check_utf8 = ret->anchored_utf8;
12019 assert(r->check_substr == r->float_substr);
12020 assert(r->check_utf8 == r->float_utf8);
12021 ret->check_substr = ret->float_substr;
12022 ret->check_utf8 = ret->float_utf8;
12024 } else if (ret->check_utf8) {
12026 ret->check_utf8 = ret->anchored_utf8;
12028 ret->check_utf8 = ret->float_utf8;
12033 RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
12036 RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
12038 if (RX_MATCH_COPIED(dstr))
12039 ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen);
12041 ret->subbeg = NULL;
12042 #ifdef PERL_OLD_COPY_ON_WRITE
12043 ret->saved_copy = NULL;
12046 if (ret->mother_re) {
12047 if (SvPVX_const(dstr) == SvPVX_const(ret->mother_re)) {
12048 /* Our storage points directly to our mother regexp, but that's
12049 1: a buffer in a different thread
12050 2: something we no longer hold a reference on
12051 so we need to copy it locally. */
12052 /* Note we need to sue SvCUR() on our mother_re, because it, in
12053 turn, may well be pointing to its own mother_re. */
12054 SvPV_set(dstr, SAVEPVN(SvPVX_const(ret->mother_re),
12055 SvCUR(ret->mother_re)+1));
12056 SvLEN_set(dstr, SvCUR(ret->mother_re)+1);
12058 ret->mother_re = NULL;
12062 #endif /* PERL_IN_XSUB_RE */
12067 This is the internal complement to regdupe() which is used to copy
12068 the structure pointed to by the *pprivate pointer in the regexp.
12069 This is the core version of the extension overridable cloning hook.
12070 The regexp structure being duplicated will be copied by perl prior
12071 to this and will be provided as the regexp *r argument, however
12072 with the /old/ structures pprivate pointer value. Thus this routine
12073 may override any copying normally done by perl.
12075 It returns a pointer to the new regexp_internal structure.
12079 Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
12082 struct regexp *const r = (struct regexp *)SvANY(rx);
12083 regexp_internal *reti;
12085 RXi_GET_DECL(r,ri);
12087 PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
12091 Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode), char, regexp_internal);
12092 Copy(ri->program, reti->program, len+1, regnode);
12095 reti->regstclass = NULL;
12098 struct reg_data *d;
12099 const int count = ri->data->count;
12102 Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
12103 char, struct reg_data);
12104 Newx(d->what, count, U8);
12107 for (i = 0; i < count; i++) {
12108 d->what[i] = ri->data->what[i];
12109 switch (d->what[i]) {
12110 /* legal options are one of: sSfpontTua
12111 see also regcomp.h and pregfree() */
12112 case 'a': /* actually an AV, but the dup function is identical. */
12115 case 'p': /* actually an AV, but the dup function is identical. */
12116 case 'u': /* actually an HV, but the dup function is identical. */
12117 d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
12120 /* This is cheating. */
12121 Newx(d->data[i], 1, struct regnode_charclass_class);
12122 StructCopy(ri->data->data[i], d->data[i],
12123 struct regnode_charclass_class);
12124 reti->regstclass = (regnode*)d->data[i];
12127 /* Compiled op trees are readonly and in shared memory,
12128 and can thus be shared without duplication. */
12130 d->data[i] = (void*)OpREFCNT_inc((OP*)ri->data->data[i]);
12134 /* Trie stclasses are readonly and can thus be shared
12135 * without duplication. We free the stclass in pregfree
12136 * when the corresponding reg_ac_data struct is freed.
12138 reti->regstclass= ri->regstclass;
12142 ((reg_trie_data*)ri->data->data[i])->refcount++;
12146 d->data[i] = ri->data->data[i];
12149 Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'", ri->data->what[i]);
12158 reti->name_list_idx = ri->name_list_idx;
12160 #ifdef RE_TRACK_PATTERN_OFFSETS
12161 if (ri->u.offsets) {
12162 Newx(reti->u.offsets, 2*len+1, U32);
12163 Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
12166 SetProgLen(reti,len);
12169 return (void*)reti;
12172 #endif /* USE_ITHREADS */
12174 #ifndef PERL_IN_XSUB_RE
12177 - regnext - dig the "next" pointer out of a node
12180 Perl_regnext(pTHX_ register regnode *p)
12183 register I32 offset;
12188 if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */
12189 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(p), (int)REGNODE_MAX);
12192 offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
12201 S_re_croak2(pTHX_ const char* pat1,const char* pat2,...)
12204 STRLEN l1 = strlen(pat1);
12205 STRLEN l2 = strlen(pat2);
12208 const char *message;
12210 PERL_ARGS_ASSERT_RE_CROAK2;
12216 Copy(pat1, buf, l1 , char);
12217 Copy(pat2, buf + l1, l2 , char);
12218 buf[l1 + l2] = '\n';
12219 buf[l1 + l2 + 1] = '\0';
12221 /* ANSI variant takes additional second argument */
12222 va_start(args, pat2);
12226 msv = vmess(buf, &args);
12228 message = SvPV_const(msv,l1);
12231 Copy(message, buf, l1 , char);
12232 buf[l1-1] = '\0'; /* Overwrite \n */
12233 Perl_croak(aTHX_ "%s", buf);
12236 /* XXX Here's a total kludge. But we need to re-enter for swash routines. */
12238 #ifndef PERL_IN_XSUB_RE
12240 Perl_save_re_context(pTHX)
12244 struct re_save_state *state;
12246 SAVEVPTR(PL_curcop);
12247 SSGROW(SAVESTACK_ALLOC_FOR_RE_SAVE_STATE + 1);
12249 state = (struct re_save_state *)(PL_savestack + PL_savestack_ix);
12250 PL_savestack_ix += SAVESTACK_ALLOC_FOR_RE_SAVE_STATE;
12251 SSPUSHUV(SAVEt_RE_STATE);
12253 Copy(&PL_reg_state, state, 1, struct re_save_state);
12255 PL_reg_start_tmp = 0;
12256 PL_reg_start_tmpl = 0;
12257 PL_reg_oldsaved = NULL;
12258 PL_reg_oldsavedlen = 0;
12259 PL_reg_maxiter = 0;
12260 PL_reg_leftiter = 0;
12261 PL_reg_poscache = NULL;
12262 PL_reg_poscache_size = 0;
12263 #ifdef PERL_OLD_COPY_ON_WRITE
12267 /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
12269 const REGEXP * const rx = PM_GETRE(PL_curpm);
12272 for (i = 1; i <= RX_NPARENS(rx); i++) {
12273 char digits[TYPE_CHARS(long)];
12274 const STRLEN len = my_snprintf(digits, sizeof(digits), "%lu", (long)i);
12275 GV *const *const gvp
12276 = (GV**)hv_fetch(PL_defstash, digits, len, 0);
12279 GV * const gv = *gvp;
12280 if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
12290 clear_re(pTHX_ void *r)
12293 ReREFCNT_dec((REGEXP *)r);
12299 S_put_byte(pTHX_ SV *sv, int c)
12301 PERL_ARGS_ASSERT_PUT_BYTE;
12303 /* Our definition of isPRINT() ignores locales, so only bytes that are
12304 not part of UTF-8 are considered printable. I assume that the same
12305 holds for UTF-EBCDIC.
12306 Also, code point 255 is not printable in either (it's E0 in EBCDIC,
12307 which Wikipedia says:
12309 EO, or Eight Ones, is an 8-bit EBCDIC character code represented as all
12310 ones (binary 1111 1111, hexadecimal FF). It is similar, but not
12311 identical, to the ASCII delete (DEL) or rubout control character.
12312 ) So the old condition can be simplified to !isPRINT(c) */
12315 Perl_sv_catpvf(aTHX_ sv, "\\x%02x", c);
12318 Perl_sv_catpvf(aTHX_ sv, "\\x{%x}", c);
12322 const char string = c;
12323 if (c == '-' || c == ']' || c == '\\' || c == '^')
12324 sv_catpvs(sv, "\\");
12325 sv_catpvn(sv, &string, 1);
12330 #define CLEAR_OPTSTART \
12331 if (optstart) STMT_START { \
12332 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
12336 #define DUMPUNTIL(b,e) CLEAR_OPTSTART; node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
12338 STATIC const regnode *
12339 S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
12340 const regnode *last, const regnode *plast,
12341 SV* sv, I32 indent, U32 depth)
12344 register U8 op = PSEUDO; /* Arbitrary non-END op. */
12345 register const regnode *next;
12346 const regnode *optstart= NULL;
12348 RXi_GET_DECL(r,ri);
12349 GET_RE_DEBUG_FLAGS_DECL;
12351 PERL_ARGS_ASSERT_DUMPUNTIL;
12353 #ifdef DEBUG_DUMPUNTIL
12354 PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
12355 last ? last-start : 0,plast ? plast-start : 0);
12358 if (plast && plast < last)
12361 while (PL_regkind[op] != END && (!last || node < last)) {
12362 /* While that wasn't END last time... */
12365 if (op == CLOSE || op == WHILEM)
12367 next = regnext((regnode *)node);
12370 if (OP(node) == OPTIMIZED) {
12371 if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
12378 regprop(r, sv, node);
12379 PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
12380 (int)(2*indent + 1), "", SvPVX_const(sv));
12382 if (OP(node) != OPTIMIZED) {
12383 if (next == NULL) /* Next ptr. */
12384 PerlIO_printf(Perl_debug_log, " (0)");
12385 else if (PL_regkind[(U8)op] == BRANCH && PL_regkind[OP(next)] != BRANCH )
12386 PerlIO_printf(Perl_debug_log, " (FAIL)");
12388 PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
12389 (void)PerlIO_putc(Perl_debug_log, '\n');
12393 if (PL_regkind[(U8)op] == BRANCHJ) {
12396 register const regnode *nnode = (OP(next) == LONGJMP
12397 ? regnext((regnode *)next)
12399 if (last && nnode > last)
12401 DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
12404 else if (PL_regkind[(U8)op] == BRANCH) {
12406 DUMPUNTIL(NEXTOPER(node), next);
12408 else if ( PL_regkind[(U8)op] == TRIE ) {
12409 const regnode *this_trie = node;
12410 const char op = OP(node);
12411 const U32 n = ARG(node);
12412 const reg_ac_data * const ac = op>=AHOCORASICK ?
12413 (reg_ac_data *)ri->data->data[n] :
12415 const reg_trie_data * const trie =
12416 (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
12418 AV *const trie_words = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
12420 const regnode *nextbranch= NULL;
12423 for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
12424 SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
12426 PerlIO_printf(Perl_debug_log, "%*s%s ",
12427 (int)(2*(indent+3)), "",
12428 elem_ptr ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr), SvCUR(*elem_ptr), 60,
12429 PL_colors[0], PL_colors[1],
12430 (SvUTF8(*elem_ptr) ? PERL_PV_ESCAPE_UNI : 0) |
12431 PERL_PV_PRETTY_ELLIPSES |
12432 PERL_PV_PRETTY_LTGT
12437 U16 dist= trie->jump[word_idx+1];
12438 PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
12439 (UV)((dist ? this_trie + dist : next) - start));
12442 nextbranch= this_trie + trie->jump[0];
12443 DUMPUNTIL(this_trie + dist, nextbranch);
12445 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
12446 nextbranch= regnext((regnode *)nextbranch);
12448 PerlIO_printf(Perl_debug_log, "\n");
12451 if (last && next > last)
12456 else if ( op == CURLY ) { /* "next" might be very big: optimizer */
12457 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
12458 NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
12460 else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
12462 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
12464 else if ( op == PLUS || op == STAR) {
12465 DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
12467 else if (PL_regkind[(U8)op] == ANYOF) {
12468 /* arglen 1 + class block */
12469 node += 1 + ((ANYOF_FLAGS(node) & ANYOF_CLASS)
12470 ? ANYOF_CLASS_SKIP : ANYOF_SKIP);
12471 node = NEXTOPER(node);
12473 else if (PL_regkind[(U8)op] == EXACT) {
12474 /* Literal string, where present. */
12475 node += NODE_SZ_STR(node) - 1;
12476 node = NEXTOPER(node);
12479 node = NEXTOPER(node);
12480 node += regarglen[(U8)op];
12482 if (op == CURLYX || op == OPEN)
12486 #ifdef DEBUG_DUMPUNTIL
12487 PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
12492 #endif /* DEBUGGING */
12496 * c-indentation-style: bsd
12497 * c-basic-offset: 4
12498 * indent-tabs-mode: t
12501 * ex: set ts=8 sts=4 sw=4 noet: