5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
88 #include "dquote_static.c"
95 # if defined(BUGGY_MSC6)
96 /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
97 # pragma optimize("a",off)
98 /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
99 # pragma optimize("w",on )
100 # endif /* BUGGY_MSC6 */
104 #define STATIC static
107 typedef struct RExC_state_t {
108 U32 flags; /* are we folding, multilining? */
109 char *precomp; /* uncompiled string. */
110 REGEXP *rx_sv; /* The SV that is the regexp. */
111 regexp *rx; /* perl core regexp structure */
112 regexp_internal *rxi; /* internal data for regexp object pprivate field */
113 char *start; /* Start of input for compile */
114 char *end; /* End of input for compile */
115 char *parse; /* Input-scan pointer. */
116 I32 whilem_seen; /* number of WHILEM in this expr */
117 regnode *emit_start; /* Start of emitted-code area */
118 regnode *emit_bound; /* First regnode outside of the allocated space */
119 regnode *emit; /* Code-emit pointer; ®dummy = don't = compiling */
120 I32 naughty; /* How bad is this pattern? */
121 I32 sawback; /* Did we see \1, ...? */
123 I32 size; /* Code size. */
124 I32 npar; /* Capture buffer count, (OPEN). */
125 I32 cpar; /* Capture buffer count, (CLOSE). */
126 I32 nestroot; /* root parens we are in - used by accept */
130 regnode **open_parens; /* pointers to open parens */
131 regnode **close_parens; /* pointers to close parens */
132 regnode *opend; /* END node in program */
133 I32 utf8; /* whether the pattern is utf8 or not */
134 I32 orig_utf8; /* whether the pattern was originally in utf8 */
135 /* XXX use this for future optimisation of case
136 * where pattern must be upgraded to utf8. */
137 I32 uni_semantics; /* If a d charset modifier should use unicode
138 rules, even if the pattern is not in
140 HV *paren_names; /* Paren names */
142 regnode **recurse; /* Recurse regops */
143 I32 recurse_count; /* Number of recurse regops */
146 I32 override_recoding;
148 char *starttry; /* -Dr: where regtry was called. */
149 #define RExC_starttry (pRExC_state->starttry)
152 const char *lastparse;
154 AV *paren_name_list; /* idx -> name */
155 #define RExC_lastparse (pRExC_state->lastparse)
156 #define RExC_lastnum (pRExC_state->lastnum)
157 #define RExC_paren_name_list (pRExC_state->paren_name_list)
161 #define RExC_flags (pRExC_state->flags)
162 #define RExC_precomp (pRExC_state->precomp)
163 #define RExC_rx_sv (pRExC_state->rx_sv)
164 #define RExC_rx (pRExC_state->rx)
165 #define RExC_rxi (pRExC_state->rxi)
166 #define RExC_start (pRExC_state->start)
167 #define RExC_end (pRExC_state->end)
168 #define RExC_parse (pRExC_state->parse)
169 #define RExC_whilem_seen (pRExC_state->whilem_seen)
170 #ifdef RE_TRACK_PATTERN_OFFSETS
171 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */
173 #define RExC_emit (pRExC_state->emit)
174 #define RExC_emit_start (pRExC_state->emit_start)
175 #define RExC_emit_bound (pRExC_state->emit_bound)
176 #define RExC_naughty (pRExC_state->naughty)
177 #define RExC_sawback (pRExC_state->sawback)
178 #define RExC_seen (pRExC_state->seen)
179 #define RExC_size (pRExC_state->size)
180 #define RExC_npar (pRExC_state->npar)
181 #define RExC_nestroot (pRExC_state->nestroot)
182 #define RExC_extralen (pRExC_state->extralen)
183 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
184 #define RExC_seen_evals (pRExC_state->seen_evals)
185 #define RExC_utf8 (pRExC_state->utf8)
186 #define RExC_uni_semantics (pRExC_state->uni_semantics)
187 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
188 #define RExC_open_parens (pRExC_state->open_parens)
189 #define RExC_close_parens (pRExC_state->close_parens)
190 #define RExC_opend (pRExC_state->opend)
191 #define RExC_paren_names (pRExC_state->paren_names)
192 #define RExC_recurse (pRExC_state->recurse)
193 #define RExC_recurse_count (pRExC_state->recurse_count)
194 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
195 #define RExC_contains_locale (pRExC_state->contains_locale)
196 #define RExC_override_recoding (pRExC_state->override_recoding)
199 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
200 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
201 ((*s) == '{' && regcurly(s)))
204 #undef SPSTART /* dratted cpp namespace... */
207 * Flags to be passed up and down.
209 #define WORST 0 /* Worst case. */
210 #define HASWIDTH 0x01 /* Known to match non-null strings. */
212 /* Simple enough to be STAR/PLUS operand, in an EXACT node must be a single
213 * character, and if utf8, must be invariant. Note that this is not the same thing as REGNODE_SIMPLE */
215 #define SPSTART 0x04 /* Starts with * or +. */
216 #define TRYAGAIN 0x08 /* Weeded out a declaration. */
217 #define POSTPONED 0x10 /* (?1),(?&name), (??{...}) or similar */
219 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
221 /* whether trie related optimizations are enabled */
222 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
223 #define TRIE_STUDY_OPT
224 #define FULL_TRIE_STUDY
230 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
231 #define PBITVAL(paren) (1 << ((paren) & 7))
232 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
233 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
234 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
236 /* If not already in utf8, do a longjmp back to the beginning */
237 #define UTF8_LONGJMP 42 /* Choose a value not likely to ever conflict */
238 #define REQUIRE_UTF8 STMT_START { \
239 if (! UTF) JMPENV_JUMP(UTF8_LONGJMP); \
242 /* About scan_data_t.
244 During optimisation we recurse through the regexp program performing
245 various inplace (keyhole style) optimisations. In addition study_chunk
246 and scan_commit populate this data structure with information about
247 what strings MUST appear in the pattern. We look for the longest
248 string that must appear at a fixed location, and we look for the
249 longest string that may appear at a floating location. So for instance
254 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
255 strings (because they follow a .* construct). study_chunk will identify
256 both FOO and BAR as being the longest fixed and floating strings respectively.
258 The strings can be composites, for instance
262 will result in a composite fixed substring 'foo'.
264 For each string some basic information is maintained:
266 - offset or min_offset
267 This is the position the string must appear at, or not before.
268 It also implicitly (when combined with minlenp) tells us how many
269 characters must match before the string we are searching for.
270 Likewise when combined with minlenp and the length of the string it
271 tells us how many characters must appear after the string we have
275 Only used for floating strings. This is the rightmost point that
276 the string can appear at. If set to I32 max it indicates that the
277 string can occur infinitely far to the right.
280 A pointer to the minimum length of the pattern that the string
281 was found inside. This is important as in the case of positive
282 lookahead or positive lookbehind we can have multiple patterns
287 The minimum length of the pattern overall is 3, the minimum length
288 of the lookahead part is 3, but the minimum length of the part that
289 will actually match is 1. So 'FOO's minimum length is 3, but the
290 minimum length for the F is 1. This is important as the minimum length
291 is used to determine offsets in front of and behind the string being
292 looked for. Since strings can be composites this is the length of the
293 pattern at the time it was committed with a scan_commit. Note that
294 the length is calculated by study_chunk, so that the minimum lengths
295 are not known until the full pattern has been compiled, thus the
296 pointer to the value.
300 In the case of lookbehind the string being searched for can be
301 offset past the start point of the final matching string.
302 If this value was just blithely removed from the min_offset it would
303 invalidate some of the calculations for how many chars must match
304 before or after (as they are derived from min_offset and minlen and
305 the length of the string being searched for).
306 When the final pattern is compiled and the data is moved from the
307 scan_data_t structure into the regexp structure the information
308 about lookbehind is factored in, with the information that would
309 have been lost precalculated in the end_shift field for the
312 The fields pos_min and pos_delta are used to store the minimum offset
313 and the delta to the maximum offset at the current point in the pattern.
317 typedef struct scan_data_t {
318 /*I32 len_min; unused */
319 /*I32 len_delta; unused */
323 I32 last_end; /* min value, <0 unless valid. */
326 SV **longest; /* Either &l_fixed, or &l_float. */
327 SV *longest_fixed; /* longest fixed string found in pattern */
328 I32 offset_fixed; /* offset where it starts */
329 I32 *minlen_fixed; /* pointer to the minlen relevant to the string */
330 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
331 SV *longest_float; /* longest floating string found in pattern */
332 I32 offset_float_min; /* earliest point in string it can appear */
333 I32 offset_float_max; /* latest point in string it can appear */
334 I32 *minlen_float; /* pointer to the minlen relevant to the string */
335 I32 lookbehind_float; /* is the position of the string modified by LB */
339 struct regnode_charclass_class *start_class;
343 * Forward declarations for pregcomp()'s friends.
346 static const scan_data_t zero_scan_data =
347 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
349 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
350 #define SF_BEFORE_SEOL 0x0001
351 #define SF_BEFORE_MEOL 0x0002
352 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
353 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
356 # define SF_FIX_SHIFT_EOL (0+2)
357 # define SF_FL_SHIFT_EOL (0+4)
359 # define SF_FIX_SHIFT_EOL (+2)
360 # define SF_FL_SHIFT_EOL (+4)
363 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
364 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
366 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
367 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
368 #define SF_IS_INF 0x0040
369 #define SF_HAS_PAR 0x0080
370 #define SF_IN_PAR 0x0100
371 #define SF_HAS_EVAL 0x0200
372 #define SCF_DO_SUBSTR 0x0400
373 #define SCF_DO_STCLASS_AND 0x0800
374 #define SCF_DO_STCLASS_OR 0x1000
375 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
376 #define SCF_WHILEM_VISITED_POS 0x2000
378 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
379 #define SCF_SEEN_ACCEPT 0x8000
381 #define UTF cBOOL(RExC_utf8)
382 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
383 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
384 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_DEPENDS_CHARSET)
385 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) >= REGEX_UNICODE_CHARSET)
386 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_RESTRICTED_CHARSET)
387 #define MORE_ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
388 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) >= REGEX_ASCII_RESTRICTED_CHARSET)
390 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
392 #define OOB_UNICODE 12345678
393 #define OOB_NAMEDCLASS -1
395 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
396 #define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
399 /* length of regex to show in messages that don't mark a position within */
400 #define RegexLengthToShowInErrorMessages 127
403 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
404 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
405 * op/pragma/warn/regcomp.
407 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
408 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
410 #define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
413 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
414 * arg. Show regex, up to a maximum length. If it's too long, chop and add
417 #define _FAIL(code) STMT_START { \
418 const char *ellipses = ""; \
419 IV len = RExC_end - RExC_precomp; \
422 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
423 if (len > RegexLengthToShowInErrorMessages) { \
424 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
425 len = RegexLengthToShowInErrorMessages - 10; \
431 #define FAIL(msg) _FAIL( \
432 Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \
433 msg, (int)len, RExC_precomp, ellipses))
435 #define FAIL2(msg,arg) _FAIL( \
436 Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \
437 arg, (int)len, RExC_precomp, ellipses))
440 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
442 #define Simple_vFAIL(m) STMT_START { \
443 const IV offset = RExC_parse - RExC_precomp; \
444 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
445 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
449 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
451 #define vFAIL(m) STMT_START { \
453 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
458 * Like Simple_vFAIL(), but accepts two arguments.
460 #define Simple_vFAIL2(m,a1) STMT_START { \
461 const IV offset = RExC_parse - RExC_precomp; \
462 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \
463 (int)offset, RExC_precomp, RExC_precomp + offset); \
467 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
469 #define vFAIL2(m,a1) STMT_START { \
471 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
472 Simple_vFAIL2(m, a1); \
477 * Like Simple_vFAIL(), but accepts three arguments.
479 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
480 const IV offset = RExC_parse - RExC_precomp; \
481 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \
482 (int)offset, RExC_precomp, RExC_precomp + offset); \
486 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
488 #define vFAIL3(m,a1,a2) STMT_START { \
490 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
491 Simple_vFAIL3(m, a1, a2); \
495 * Like Simple_vFAIL(), but accepts four arguments.
497 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
498 const IV offset = RExC_parse - RExC_precomp; \
499 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \
500 (int)offset, RExC_precomp, RExC_precomp + offset); \
503 #define ckWARNreg(loc,m) STMT_START { \
504 const IV offset = loc - RExC_precomp; \
505 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
506 (int)offset, RExC_precomp, RExC_precomp + offset); \
509 #define ckWARNregdep(loc,m) STMT_START { \
510 const IV offset = loc - RExC_precomp; \
511 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
513 (int)offset, RExC_precomp, RExC_precomp + offset); \
516 #define ckWARN2regdep(loc,m, a1) STMT_START { \
517 const IV offset = loc - RExC_precomp; \
518 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
520 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
523 #define ckWARN2reg(loc, m, a1) STMT_START { \
524 const IV offset = loc - RExC_precomp; \
525 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
526 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
529 #define vWARN3(loc, m, a1, a2) STMT_START { \
530 const IV offset = loc - RExC_precomp; \
531 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
532 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
535 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
536 const IV offset = loc - RExC_precomp; \
537 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
538 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
541 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
542 const IV offset = loc - RExC_precomp; \
543 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
544 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
547 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
548 const IV offset = loc - RExC_precomp; \
549 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
550 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
553 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
554 const IV offset = loc - RExC_precomp; \
555 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
556 a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
560 /* Allow for side effects in s */
561 #define REGC(c,s) STMT_START { \
562 if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
565 /* Macros for recording node offsets. 20001227 mjd@plover.com
566 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
567 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
568 * Element 0 holds the number n.
569 * Position is 1 indexed.
571 #ifndef RE_TRACK_PATTERN_OFFSETS
572 #define Set_Node_Offset_To_R(node,byte)
573 #define Set_Node_Offset(node,byte)
574 #define Set_Cur_Node_Offset
575 #define Set_Node_Length_To_R(node,len)
576 #define Set_Node_Length(node,len)
577 #define Set_Node_Cur_Length(node)
578 #define Node_Offset(n)
579 #define Node_Length(n)
580 #define Set_Node_Offset_Length(node,offset,len)
581 #define ProgLen(ri) ri->u.proglen
582 #define SetProgLen(ri,x) ri->u.proglen = x
584 #define ProgLen(ri) ri->u.offsets[0]
585 #define SetProgLen(ri,x) ri->u.offsets[0] = x
586 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
588 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
589 __LINE__, (int)(node), (int)(byte))); \
591 Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
593 RExC_offsets[2*(node)-1] = (byte); \
598 #define Set_Node_Offset(node,byte) \
599 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
600 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
602 #define Set_Node_Length_To_R(node,len) STMT_START { \
604 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
605 __LINE__, (int)(node), (int)(len))); \
607 Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
609 RExC_offsets[2*(node)] = (len); \
614 #define Set_Node_Length(node,len) \
615 Set_Node_Length_To_R((node)-RExC_emit_start, len)
616 #define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len)
617 #define Set_Node_Cur_Length(node) \
618 Set_Node_Length(node, RExC_parse - parse_start)
620 /* Get offsets and lengths */
621 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
622 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
624 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
625 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
626 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
630 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
631 #define EXPERIMENTAL_INPLACESCAN
632 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
634 #define DEBUG_STUDYDATA(str,data,depth) \
635 DEBUG_OPTIMISE_MORE_r(if(data){ \
636 PerlIO_printf(Perl_debug_log, \
637 "%*s" str "Pos:%"IVdf"/%"IVdf \
638 " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
639 (int)(depth)*2, "", \
640 (IV)((data)->pos_min), \
641 (IV)((data)->pos_delta), \
642 (UV)((data)->flags), \
643 (IV)((data)->whilem_c), \
644 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
645 is_inf ? "INF " : "" \
647 if ((data)->last_found) \
648 PerlIO_printf(Perl_debug_log, \
649 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
650 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
651 SvPVX_const((data)->last_found), \
652 (IV)((data)->last_end), \
653 (IV)((data)->last_start_min), \
654 (IV)((data)->last_start_max), \
655 ((data)->longest && \
656 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
657 SvPVX_const((data)->longest_fixed), \
658 (IV)((data)->offset_fixed), \
659 ((data)->longest && \
660 (data)->longest==&((data)->longest_float)) ? "*" : "", \
661 SvPVX_const((data)->longest_float), \
662 (IV)((data)->offset_float_min), \
663 (IV)((data)->offset_float_max) \
665 PerlIO_printf(Perl_debug_log,"\n"); \
668 static void clear_re(pTHX_ void *r);
670 /* Mark that we cannot extend a found fixed substring at this point.
671 Update the longest found anchored substring and the longest found
672 floating substrings if needed. */
675 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf)
677 const STRLEN l = CHR_SVLEN(data->last_found);
678 const STRLEN old_l = CHR_SVLEN(*data->longest);
679 GET_RE_DEBUG_FLAGS_DECL;
681 PERL_ARGS_ASSERT_SCAN_COMMIT;
683 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
684 SvSetMagicSV(*data->longest, data->last_found);
685 if (*data->longest == data->longest_fixed) {
686 data->offset_fixed = l ? data->last_start_min : data->pos_min;
687 if (data->flags & SF_BEFORE_EOL)
689 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
691 data->flags &= ~SF_FIX_BEFORE_EOL;
692 data->minlen_fixed=minlenp;
693 data->lookbehind_fixed=0;
695 else { /* *data->longest == data->longest_float */
696 data->offset_float_min = l ? data->last_start_min : data->pos_min;
697 data->offset_float_max = (l
698 ? data->last_start_max
699 : data->pos_min + data->pos_delta);
700 if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX)
701 data->offset_float_max = I32_MAX;
702 if (data->flags & SF_BEFORE_EOL)
704 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
706 data->flags &= ~SF_FL_BEFORE_EOL;
707 data->minlen_float=minlenp;
708 data->lookbehind_float=0;
711 SvCUR_set(data->last_found, 0);
713 SV * const sv = data->last_found;
714 if (SvUTF8(sv) && SvMAGICAL(sv)) {
715 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
721 data->flags &= ~SF_BEFORE_EOL;
722 DEBUG_STUDYDATA("commit: ",data,0);
725 /* Can match anything (initialization) */
727 S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
729 PERL_ARGS_ASSERT_CL_ANYTHING;
731 ANYOF_BITMAP_SETALL(cl);
732 cl->flags = ANYOF_CLASS|ANYOF_EOS|ANYOF_UNICODE_ALL
733 |ANYOF_LOC_NONBITMAP_FOLD|ANYOF_NON_UTF8_LATIN1_ALL;
735 /* If any portion of the regex is to operate under locale rules,
736 * initialization includes it. The reason this isn't done for all regexes
737 * is that the optimizer was written under the assumption that locale was
738 * all-or-nothing. Given the complexity and lack of documentation in the
739 * optimizer, and that there are inadequate test cases for locale, so many
740 * parts of it may not work properly, it is safest to avoid locale unless
742 if (RExC_contains_locale) {
743 ANYOF_CLASS_SETALL(cl); /* /l uses class */
744 cl->flags |= ANYOF_LOCALE;
747 ANYOF_CLASS_ZERO(cl); /* Only /l uses class now */
751 /* Can match anything (initialization) */
753 S_cl_is_anything(const struct regnode_charclass_class *cl)
757 PERL_ARGS_ASSERT_CL_IS_ANYTHING;
759 for (value = 0; value <= ANYOF_MAX; value += 2)
760 if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
762 if (!(cl->flags & ANYOF_UNICODE_ALL))
764 if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
769 /* Can match anything (initialization) */
771 S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
773 PERL_ARGS_ASSERT_CL_INIT;
775 Zero(cl, 1, struct regnode_charclass_class);
777 cl_anything(pRExC_state, cl);
778 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
781 /* These two functions currently do the exact same thing */
782 #define cl_init_zero S_cl_init
784 /* 'AND' a given class with another one. Can create false positives. 'cl'
785 * should not be inverted. 'and_with->flags & ANYOF_CLASS' should be 0 if
786 * 'and_with' is a regnode_charclass instead of a regnode_charclass_class. */
788 S_cl_and(struct regnode_charclass_class *cl,
789 const struct regnode_charclass_class *and_with)
791 PERL_ARGS_ASSERT_CL_AND;
793 assert(and_with->type == ANYOF);
795 /* I (khw) am not sure all these restrictions are necessary XXX */
796 if (!(ANYOF_CLASS_TEST_ANY_SET(and_with))
797 && !(ANYOF_CLASS_TEST_ANY_SET(cl))
798 && (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
799 && !(and_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
800 && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) {
803 if (and_with->flags & ANYOF_INVERT)
804 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
805 cl->bitmap[i] &= ~and_with->bitmap[i];
807 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
808 cl->bitmap[i] &= and_with->bitmap[i];
809 } /* XXXX: logic is complicated otherwise, leave it along for a moment. */
811 if (and_with->flags & ANYOF_INVERT) {
813 /* Here, the and'ed node is inverted. Get the AND of the flags that
814 * aren't affected by the inversion. Those that are affected are
815 * handled individually below */
816 U8 affected_flags = cl->flags & ~INVERSION_UNAFFECTED_FLAGS;
817 cl->flags &= (and_with->flags & INVERSION_UNAFFECTED_FLAGS);
818 cl->flags |= affected_flags;
820 /* We currently don't know how to deal with things that aren't in the
821 * bitmap, but we know that the intersection is no greater than what
822 * is already in cl, so let there be false positives that get sorted
823 * out after the synthetic start class succeeds, and the node is
824 * matched for real. */
826 /* The inversion of these two flags indicate that the resulting
827 * intersection doesn't have them */
828 if (and_with->flags & ANYOF_UNICODE_ALL) {
829 cl->flags &= ~ANYOF_UNICODE_ALL;
831 if (and_with->flags & ANYOF_NON_UTF8_LATIN1_ALL) {
832 cl->flags &= ~ANYOF_NON_UTF8_LATIN1_ALL;
835 else { /* and'd node is not inverted */
836 U8 outside_bitmap_but_not_utf8; /* Temp variable */
838 if (! ANYOF_NONBITMAP(and_with)) {
840 /* Here 'and_with' doesn't match anything outside the bitmap
841 * (except possibly ANYOF_UNICODE_ALL), which means the
842 * intersection can't either, except for ANYOF_UNICODE_ALL, in
843 * which case we don't know what the intersection is, but it's no
844 * greater than what cl already has, so can just leave it alone,
845 * with possible false positives */
846 if (! (and_with->flags & ANYOF_UNICODE_ALL)) {
847 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
848 cl->flags &= ~ANYOF_NONBITMAP_NON_UTF8;
851 else if (! ANYOF_NONBITMAP(cl)) {
853 /* Here, 'and_with' does match something outside the bitmap, and cl
854 * doesn't have a list of things to match outside the bitmap. If
855 * cl can match all code points above 255, the intersection will
856 * be those above-255 code points that 'and_with' matches. If cl
857 * can't match all Unicode code points, it means that it can't
858 * match anything outside the bitmap (since the 'if' that got us
859 * into this block tested for that), so we leave the bitmap empty.
861 if (cl->flags & ANYOF_UNICODE_ALL) {
862 ARG_SET(cl, ARG(and_with));
864 /* and_with's ARG may match things that don't require UTF8.
865 * And now cl's will too, in spite of this being an 'and'. See
866 * the comments below about the kludge */
867 cl->flags |= and_with->flags & ANYOF_NONBITMAP_NON_UTF8;
871 /* Here, both 'and_with' and cl match something outside the
872 * bitmap. Currently we do not do the intersection, so just match
873 * whatever cl had at the beginning. */
877 /* Take the intersection of the two sets of flags. However, the
878 * ANYOF_NONBITMAP_NON_UTF8 flag is treated as an 'or'. This is a
879 * kludge around the fact that this flag is not treated like the others
880 * which are initialized in cl_anything(). The way the optimizer works
881 * is that the synthetic start class (SSC) is initialized to match
882 * anything, and then the first time a real node is encountered, its
883 * values are AND'd with the SSC's with the result being the values of
884 * the real node. However, there are paths through the optimizer where
885 * the AND never gets called, so those initialized bits are set
886 * inappropriately, which is not usually a big deal, as they just cause
887 * false positives in the SSC, which will just mean a probably
888 * imperceptible slow down in execution. However this bit has a
889 * higher false positive consequence in that it can cause utf8.pm,
890 * utf8_heavy.pl ... to be loaded when not necessary, which is a much
891 * bigger slowdown and also causes significant extra memory to be used.
892 * In order to prevent this, the code now takes a different tack. The
893 * bit isn't set unless some part of the regular expression needs it,
894 * but once set it won't get cleared. This means that these extra
895 * modules won't get loaded unless there was some path through the
896 * pattern that would have required them anyway, and so any false
897 * positives that occur by not ANDing them out when they could be
898 * aren't as severe as they would be if we treated this bit like all
900 outside_bitmap_but_not_utf8 = (cl->flags | and_with->flags)
901 & ANYOF_NONBITMAP_NON_UTF8;
902 cl->flags &= and_with->flags;
903 cl->flags |= outside_bitmap_but_not_utf8;
907 /* 'OR' a given class with another one. Can create false positives. 'cl'
908 * should not be inverted. 'or_with->flags & ANYOF_CLASS' should be 0 if
909 * 'or_with' is a regnode_charclass instead of a regnode_charclass_class. */
911 S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
913 PERL_ARGS_ASSERT_CL_OR;
915 if (or_with->flags & ANYOF_INVERT) {
917 /* Here, the or'd node is to be inverted. This means we take the
918 * complement of everything not in the bitmap, but currently we don't
919 * know what that is, so give up and match anything */
920 if (ANYOF_NONBITMAP(or_with)) {
921 cl_anything(pRExC_state, cl);
924 * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
925 * <= (B1 | !B2) | (CL1 | !CL2)
926 * which is wasteful if CL2 is small, but we ignore CL2:
927 * (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
928 * XXXX Can we handle case-fold? Unclear:
929 * (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
930 * (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
932 else if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
933 && !(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
934 && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD) ) {
937 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
938 cl->bitmap[i] |= ~or_with->bitmap[i];
939 } /* XXXX: logic is complicated otherwise */
941 cl_anything(pRExC_state, cl);
944 /* And, we can just take the union of the flags that aren't affected
945 * by the inversion */
946 cl->flags |= or_with->flags & INVERSION_UNAFFECTED_FLAGS;
948 /* For the remaining flags:
949 ANYOF_UNICODE_ALL and inverted means to not match anything above
950 255, which means that the union with cl should just be
951 what cl has in it, so can ignore this flag
952 ANYOF_NON_UTF8_LATIN1_ALL and inverted means if not utf8 and ord
953 is 127-255 to match them, but then invert that, so the
954 union with cl should just be what cl has in it, so can
957 } else { /* 'or_with' is not inverted */
958 /* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
959 if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
960 && (!(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
961 || (cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) ) {
964 /* OR char bitmap and class bitmap separately */
965 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
966 cl->bitmap[i] |= or_with->bitmap[i];
967 if (ANYOF_CLASS_TEST_ANY_SET(or_with)) {
968 for (i = 0; i < ANYOF_CLASSBITMAP_SIZE; i++)
969 cl->classflags[i] |= or_with->classflags[i];
970 cl->flags |= ANYOF_CLASS;
973 else { /* XXXX: logic is complicated, leave it along for a moment. */
974 cl_anything(pRExC_state, cl);
977 if (ANYOF_NONBITMAP(or_with)) {
979 /* Use the added node's outside-the-bit-map match if there isn't a
980 * conflict. If there is a conflict (both nodes match something
981 * outside the bitmap, but what they match outside is not the same
982 * pointer, and hence not easily compared until XXX we extend
983 * inversion lists this far), give up and allow the start class to
984 * match everything outside the bitmap. If that stuff is all above
985 * 255, can just set UNICODE_ALL, otherwise caould be anything. */
986 if (! ANYOF_NONBITMAP(cl)) {
987 ARG_SET(cl, ARG(or_with));
989 else if (ARG(cl) != ARG(or_with)) {
991 if ((or_with->flags & ANYOF_NONBITMAP_NON_UTF8)) {
992 cl_anything(pRExC_state, cl);
995 cl->flags |= ANYOF_UNICODE_ALL;
1000 /* Take the union */
1001 cl->flags |= or_with->flags;
1005 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1006 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1007 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1008 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
1013 dump_trie(trie,widecharmap,revcharmap)
1014 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1015 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1017 These routines dump out a trie in a somewhat readable format.
1018 The _interim_ variants are used for debugging the interim
1019 tables that are used to generate the final compressed
1020 representation which is what dump_trie expects.
1022 Part of the reason for their existence is to provide a form
1023 of documentation as to how the different representations function.
1028 Dumps the final compressed table form of the trie to Perl_debug_log.
1029 Used for debugging make_trie().
1033 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1034 AV *revcharmap, U32 depth)
1037 SV *sv=sv_newmortal();
1038 int colwidth= widecharmap ? 6 : 4;
1040 GET_RE_DEBUG_FLAGS_DECL;
1042 PERL_ARGS_ASSERT_DUMP_TRIE;
1044 PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
1045 (int)depth * 2 + 2,"",
1046 "Match","Base","Ofs" );
1048 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1049 SV ** const tmp = av_fetch( revcharmap, state, 0);
1051 PerlIO_printf( Perl_debug_log, "%*s",
1053 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1054 PL_colors[0], PL_colors[1],
1055 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1056 PERL_PV_ESCAPE_FIRSTCHAR
1061 PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
1062 (int)depth * 2 + 2,"");
1064 for( state = 0 ; state < trie->uniquecharcount ; state++ )
1065 PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
1066 PerlIO_printf( Perl_debug_log, "\n");
1068 for( state = 1 ; state < trie->statecount ; state++ ) {
1069 const U32 base = trie->states[ state ].trans.base;
1071 PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
1073 if ( trie->states[ state ].wordnum ) {
1074 PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
1076 PerlIO_printf( Perl_debug_log, "%6s", "" );
1079 PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
1084 while( ( base + ofs < trie->uniquecharcount ) ||
1085 ( base + ofs - trie->uniquecharcount < trie->lasttrans
1086 && trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
1089 PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
1091 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
1092 if ( ( base + ofs >= trie->uniquecharcount ) &&
1093 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
1094 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
1096 PerlIO_printf( Perl_debug_log, "%*"UVXf,
1098 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
1100 PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
1104 PerlIO_printf( Perl_debug_log, "]");
1107 PerlIO_printf( Perl_debug_log, "\n" );
1109 PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=", (int)depth*2, "");
1110 for (word=1; word <= trie->wordcount; word++) {
1111 PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
1112 (int)word, (int)(trie->wordinfo[word].prev),
1113 (int)(trie->wordinfo[word].len));
1115 PerlIO_printf(Perl_debug_log, "\n" );
1118 Dumps a fully constructed but uncompressed trie in list form.
1119 List tries normally only are used for construction when the number of
1120 possible chars (trie->uniquecharcount) is very high.
1121 Used for debugging make_trie().
1124 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
1125 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1129 SV *sv=sv_newmortal();
1130 int colwidth= widecharmap ? 6 : 4;
1131 GET_RE_DEBUG_FLAGS_DECL;
1133 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
1135 /* print out the table precompression. */
1136 PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
1137 (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
1138 "------:-----+-----------------\n" );
1140 for( state=1 ; state < next_alloc ; state ++ ) {
1143 PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
1144 (int)depth * 2 + 2,"", (UV)state );
1145 if ( ! trie->states[ state ].wordnum ) {
1146 PerlIO_printf( Perl_debug_log, "%5s| ","");
1148 PerlIO_printf( Perl_debug_log, "W%4x| ",
1149 trie->states[ state ].wordnum
1152 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
1153 SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
1155 PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
1157 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1158 PL_colors[0], PL_colors[1],
1159 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1160 PERL_PV_ESCAPE_FIRSTCHAR
1162 TRIE_LIST_ITEM(state,charid).forid,
1163 (UV)TRIE_LIST_ITEM(state,charid).newstate
1166 PerlIO_printf(Perl_debug_log, "\n%*s| ",
1167 (int)((depth * 2) + 14), "");
1170 PerlIO_printf( Perl_debug_log, "\n");
1175 Dumps a fully constructed but uncompressed trie in table form.
1176 This is the normal DFA style state transition table, with a few
1177 twists to facilitate compression later.
1178 Used for debugging make_trie().
1181 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
1182 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1187 SV *sv=sv_newmortal();
1188 int colwidth= widecharmap ? 6 : 4;
1189 GET_RE_DEBUG_FLAGS_DECL;
1191 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
1194 print out the table precompression so that we can do a visual check
1195 that they are identical.
1198 PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
1200 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1201 SV ** const tmp = av_fetch( revcharmap, charid, 0);
1203 PerlIO_printf( Perl_debug_log, "%*s",
1205 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1206 PL_colors[0], PL_colors[1],
1207 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1208 PERL_PV_ESCAPE_FIRSTCHAR
1214 PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
1216 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
1217 PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
1220 PerlIO_printf( Perl_debug_log, "\n" );
1222 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
1224 PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
1225 (int)depth * 2 + 2,"",
1226 (UV)TRIE_NODENUM( state ) );
1228 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1229 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
1231 PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
1233 PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
1235 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
1236 PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
1238 PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
1239 trie->states[ TRIE_NODENUM( state ) ].wordnum );
1247 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
1248 startbranch: the first branch in the whole branch sequence
1249 first : start branch of sequence of branch-exact nodes.
1250 May be the same as startbranch
1251 last : Thing following the last branch.
1252 May be the same as tail.
1253 tail : item following the branch sequence
1254 count : words in the sequence
1255 flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
1256 depth : indent depth
1258 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
1260 A trie is an N'ary tree where the branches are determined by digital
1261 decomposition of the key. IE, at the root node you look up the 1st character and
1262 follow that branch repeat until you find the end of the branches. Nodes can be
1263 marked as "accepting" meaning they represent a complete word. Eg:
1267 would convert into the following structure. Numbers represent states, letters
1268 following numbers represent valid transitions on the letter from that state, if
1269 the number is in square brackets it represents an accepting state, otherwise it
1270 will be in parenthesis.
1272 +-h->+-e->[3]-+-r->(8)-+-s->[9]
1276 (1) +-i->(6)-+-s->[7]
1278 +-s->(3)-+-h->(4)-+-e->[5]
1280 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
1282 This shows that when matching against the string 'hers' we will begin at state 1
1283 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
1284 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
1285 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
1286 single traverse. We store a mapping from accepting to state to which word was
1287 matched, and then when we have multiple possibilities we try to complete the
1288 rest of the regex in the order in which they occured in the alternation.
1290 The only prior NFA like behaviour that would be changed by the TRIE support is
1291 the silent ignoring of duplicate alternations which are of the form:
1293 / (DUPE|DUPE) X? (?{ ... }) Y /x
1295 Thus EVAL blocks following a trie may be called a different number of times with
1296 and without the optimisation. With the optimisations dupes will be silently
1297 ignored. This inconsistent behaviour of EVAL type nodes is well established as
1298 the following demonstrates:
1300 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
1302 which prints out 'word' three times, but
1304 'words'=~/(word|word|word)(?{ print $1 })S/
1306 which doesnt print it out at all. This is due to other optimisations kicking in.
1308 Example of what happens on a structural level:
1310 The regexp /(ac|ad|ab)+/ will produce the following debug output:
1312 1: CURLYM[1] {1,32767}(18)
1323 This would be optimizable with startbranch=5, first=5, last=16, tail=16
1324 and should turn into:
1326 1: CURLYM[1] {1,32767}(18)
1328 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
1336 Cases where tail != last would be like /(?foo|bar)baz/:
1346 which would be optimizable with startbranch=1, first=1, last=7, tail=8
1347 and would end up looking like:
1350 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
1357 d = uvuni_to_utf8_flags(d, uv, 0);
1359 is the recommended Unicode-aware way of saying
1364 #define TRIE_STORE_REVCHAR \
1367 SV *zlopp = newSV(2); \
1368 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
1369 unsigned const char *const kapow = uvuni_to_utf8(flrbbbbb, uvc & 0xFF); \
1370 SvCUR_set(zlopp, kapow - flrbbbbb); \
1373 av_push(revcharmap, zlopp); \
1375 char ooooff = (char)uvc; \
1376 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
1380 #define TRIE_READ_CHAR STMT_START { \
1384 if ( foldlen > 0 ) { \
1385 uvc = utf8n_to_uvuni( scan, UTF8_MAXLEN, &len, uniflags ); \
1390 len = UTF8SKIP(uc);\
1391 uvc = to_utf8_fold( uc, foldbuf, &foldlen); \
1392 foldlen -= UNISKIP( uvc ); \
1393 scan = foldbuf + UNISKIP( uvc ); \
1396 uvc = utf8n_to_uvuni( (const U8*)uc, UTF8_MAXLEN, &len, uniflags);\
1406 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
1407 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
1408 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
1409 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
1411 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
1412 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
1413 TRIE_LIST_CUR( state )++; \
1416 #define TRIE_LIST_NEW(state) STMT_START { \
1417 Newxz( trie->states[ state ].trans.list, \
1418 4, reg_trie_trans_le ); \
1419 TRIE_LIST_CUR( state ) = 1; \
1420 TRIE_LIST_LEN( state ) = 4; \
1423 #define TRIE_HANDLE_WORD(state) STMT_START { \
1424 U16 dupe= trie->states[ state ].wordnum; \
1425 regnode * const noper_next = regnext( noper ); \
1428 /* store the word for dumping */ \
1430 if (OP(noper) != NOTHING) \
1431 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
1433 tmp = newSVpvn_utf8( "", 0, UTF ); \
1434 av_push( trie_words, tmp ); \
1438 trie->wordinfo[curword].prev = 0; \
1439 trie->wordinfo[curword].len = wordlen; \
1440 trie->wordinfo[curword].accept = state; \
1442 if ( noper_next < tail ) { \
1444 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \
1445 trie->jump[curword] = (U16)(noper_next - convert); \
1447 jumper = noper_next; \
1449 nextbranch= regnext(cur); \
1453 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
1454 /* chain, so that when the bits of chain are later */\
1455 /* linked together, the dups appear in the chain */\
1456 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
1457 trie->wordinfo[dupe].prev = curword; \
1459 /* we haven't inserted this word yet. */ \
1460 trie->states[ state ].wordnum = curword; \
1465 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
1466 ( ( base + charid >= ucharcount \
1467 && base + charid < ubound \
1468 && state == trie->trans[ base - ucharcount + charid ].check \
1469 && trie->trans[ base - ucharcount + charid ].next ) \
1470 ? trie->trans[ base - ucharcount + charid ].next \
1471 : ( state==1 ? special : 0 ) \
1475 #define MADE_JUMP_TRIE 2
1476 #define MADE_EXACT_TRIE 4
1479 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
1482 /* first pass, loop through and scan words */
1483 reg_trie_data *trie;
1484 HV *widecharmap = NULL;
1485 AV *revcharmap = newAV();
1487 const U32 uniflags = UTF8_ALLOW_DEFAULT;
1492 regnode *jumper = NULL;
1493 regnode *nextbranch = NULL;
1494 regnode *convert = NULL;
1495 U32 *prev_states; /* temp array mapping each state to previous one */
1496 /* we just use folder as a flag in utf8 */
1497 const U8 * folder = NULL;
1500 const U32 data_slot = add_data( pRExC_state, 4, "tuuu" );
1501 AV *trie_words = NULL;
1502 /* along with revcharmap, this only used during construction but both are
1503 * useful during debugging so we store them in the struct when debugging.
1506 const U32 data_slot = add_data( pRExC_state, 2, "tu" );
1507 STRLEN trie_charcount=0;
1509 SV *re_trie_maxbuff;
1510 GET_RE_DEBUG_FLAGS_DECL;
1512 PERL_ARGS_ASSERT_MAKE_TRIE;
1514 PERL_UNUSED_ARG(depth);
1519 case EXACTFU: folder = PL_fold_latin1; break;
1520 case EXACTF: folder = PL_fold; break;
1521 case EXACTFL: folder = PL_fold_locale; break;
1524 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
1526 trie->startstate = 1;
1527 trie->wordcount = word_count;
1528 RExC_rxi->data->data[ data_slot ] = (void*)trie;
1529 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
1530 if (!(UTF && folder))
1531 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
1532 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
1533 trie->wordcount+1, sizeof(reg_trie_wordinfo));
1536 trie_words = newAV();
1539 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
1540 if (!SvIOK(re_trie_maxbuff)) {
1541 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
1544 PerlIO_printf( Perl_debug_log,
1545 "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
1546 (int)depth * 2 + 2, "",
1547 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
1548 REG_NODE_NUM(last), REG_NODE_NUM(tail),
1552 /* Find the node we are going to overwrite */
1553 if ( first == startbranch && OP( last ) != BRANCH ) {
1554 /* whole branch chain */
1557 /* branch sub-chain */
1558 convert = NEXTOPER( first );
1561 /* -- First loop and Setup --
1563 We first traverse the branches and scan each word to determine if it
1564 contains widechars, and how many unique chars there are, this is
1565 important as we have to build a table with at least as many columns as we
1568 We use an array of integers to represent the character codes 0..255
1569 (trie->charmap) and we use a an HV* to store Unicode characters. We use the
1570 native representation of the character value as the key and IV's for the
1573 *TODO* If we keep track of how many times each character is used we can
1574 remap the columns so that the table compression later on is more
1575 efficient in terms of memory by ensuring the most common value is in the
1576 middle and the least common are on the outside. IMO this would be better
1577 than a most to least common mapping as theres a decent chance the most
1578 common letter will share a node with the least common, meaning the node
1579 will not be compressible. With a middle is most common approach the worst
1580 case is when we have the least common nodes twice.
1584 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1585 regnode * const noper = NEXTOPER( cur );
1586 const U8 *uc = (U8*)STRING( noper );
1587 const U8 * const e = uc + STR_LEN( noper );
1589 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1590 const U8 *scan = (U8*)NULL;
1591 U32 wordlen = 0; /* required init */
1593 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/
1595 if (OP(noper) == NOTHING) {
1599 if ( set_bit ) /* bitmap only alloced when !(UTF&&Folding) */
1600 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
1601 regardless of encoding */
1603 for ( ; uc < e ; uc += len ) {
1604 TRIE_CHARCOUNT(trie)++;
1608 if ( !trie->charmap[ uvc ] ) {
1609 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
1611 trie->charmap[ folder[ uvc ] ] = trie->charmap[ uvc ];
1615 /* store the codepoint in the bitmap, and its folded
1617 TRIE_BITMAP_SET(trie,uvc);
1619 /* store the folded codepoint */
1620 if ( folder ) TRIE_BITMAP_SET(trie,folder[ uvc ]);
1623 /* store first byte of utf8 representation of
1624 variant codepoints */
1625 if (! UNI_IS_INVARIANT(uvc)) {
1626 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
1629 set_bit = 0; /* We've done our bit :-) */
1634 widecharmap = newHV();
1636 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
1639 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
1641 if ( !SvTRUE( *svpp ) ) {
1642 sv_setiv( *svpp, ++trie->uniquecharcount );
1647 if( cur == first ) {
1650 } else if (chars < trie->minlen) {
1652 } else if (chars > trie->maxlen) {
1656 } /* end first pass */
1657 DEBUG_TRIE_COMPILE_r(
1658 PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
1659 (int)depth * 2 + 2,"",
1660 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
1661 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
1662 (int)trie->minlen, (int)trie->maxlen )
1666 We now know what we are dealing with in terms of unique chars and
1667 string sizes so we can calculate how much memory a naive
1668 representation using a flat table will take. If it's over a reasonable
1669 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
1670 conservative but potentially much slower representation using an array
1673 At the end we convert both representations into the same compressed
1674 form that will be used in regexec.c for matching with. The latter
1675 is a form that cannot be used to construct with but has memory
1676 properties similar to the list form and access properties similar
1677 to the table form making it both suitable for fast searches and
1678 small enough that its feasable to store for the duration of a program.
1680 See the comment in the code where the compressed table is produced
1681 inplace from the flat tabe representation for an explanation of how
1682 the compression works.
1687 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
1690 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
1692 Second Pass -- Array Of Lists Representation
1694 Each state will be represented by a list of charid:state records
1695 (reg_trie_trans_le) the first such element holds the CUR and LEN
1696 points of the allocated array. (See defines above).
1698 We build the initial structure using the lists, and then convert
1699 it into the compressed table form which allows faster lookups
1700 (but cant be modified once converted).
1703 STRLEN transcount = 1;
1705 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1706 "%*sCompiling trie using list compiler\n",
1707 (int)depth * 2 + 2, ""));
1709 trie->states = (reg_trie_state *)
1710 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1711 sizeof(reg_trie_state) );
1715 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1717 regnode * const noper = NEXTOPER( cur );
1718 U8 *uc = (U8*)STRING( noper );
1719 const U8 * const e = uc + STR_LEN( noper );
1720 U32 state = 1; /* required init */
1721 U16 charid = 0; /* sanity init */
1722 U8 *scan = (U8*)NULL; /* sanity init */
1723 STRLEN foldlen = 0; /* required init */
1724 U32 wordlen = 0; /* required init */
1725 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1727 if (OP(noper) != NOTHING) {
1728 for ( ; uc < e ; uc += len ) {
1733 charid = trie->charmap[ uvc ];
1735 SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1739 charid=(U16)SvIV( *svpp );
1742 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1749 if ( !trie->states[ state ].trans.list ) {
1750 TRIE_LIST_NEW( state );
1752 for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
1753 if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
1754 newstate = TRIE_LIST_ITEM( state, check ).newstate;
1759 newstate = next_alloc++;
1760 prev_states[newstate] = state;
1761 TRIE_LIST_PUSH( state, charid, newstate );
1766 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1770 TRIE_HANDLE_WORD(state);
1772 } /* end second pass */
1774 /* next alloc is the NEXT state to be allocated */
1775 trie->statecount = next_alloc;
1776 trie->states = (reg_trie_state *)
1777 PerlMemShared_realloc( trie->states,
1779 * sizeof(reg_trie_state) );
1781 /* and now dump it out before we compress it */
1782 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
1783 revcharmap, next_alloc,
1787 trie->trans = (reg_trie_trans *)
1788 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
1795 for( state=1 ; state < next_alloc ; state ++ ) {
1799 DEBUG_TRIE_COMPILE_MORE_r(
1800 PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
1804 if (trie->states[state].trans.list) {
1805 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
1809 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1810 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
1811 if ( forid < minid ) {
1813 } else if ( forid > maxid ) {
1817 if ( transcount < tp + maxid - minid + 1) {
1819 trie->trans = (reg_trie_trans *)
1820 PerlMemShared_realloc( trie->trans,
1822 * sizeof(reg_trie_trans) );
1823 Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
1825 base = trie->uniquecharcount + tp - minid;
1826 if ( maxid == minid ) {
1828 for ( ; zp < tp ; zp++ ) {
1829 if ( ! trie->trans[ zp ].next ) {
1830 base = trie->uniquecharcount + zp - minid;
1831 trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1832 trie->trans[ zp ].check = state;
1838 trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1839 trie->trans[ tp ].check = state;
1844 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1845 const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
1846 trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
1847 trie->trans[ tid ].check = state;
1849 tp += ( maxid - minid + 1 );
1851 Safefree(trie->states[ state ].trans.list);
1854 DEBUG_TRIE_COMPILE_MORE_r(
1855 PerlIO_printf( Perl_debug_log, " base: %d\n",base);
1858 trie->states[ state ].trans.base=base;
1860 trie->lasttrans = tp + 1;
1864 Second Pass -- Flat Table Representation.
1866 we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
1867 We know that we will need Charcount+1 trans at most to store the data
1868 (one row per char at worst case) So we preallocate both structures
1869 assuming worst case.
1871 We then construct the trie using only the .next slots of the entry
1874 We use the .check field of the first entry of the node temporarily to
1875 make compression both faster and easier by keeping track of how many non
1876 zero fields are in the node.
1878 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
1881 There are two terms at use here: state as a TRIE_NODEIDX() which is a
1882 number representing the first entry of the node, and state as a
1883 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
1884 TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
1885 are 2 entrys per node. eg:
1893 The table is internally in the right hand, idx form. However as we also
1894 have to deal with the states array which is indexed by nodenum we have to
1895 use TRIE_NODENUM() to convert.
1898 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1899 "%*sCompiling trie using table compiler\n",
1900 (int)depth * 2 + 2, ""));
1902 trie->trans = (reg_trie_trans *)
1903 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
1904 * trie->uniquecharcount + 1,
1905 sizeof(reg_trie_trans) );
1906 trie->states = (reg_trie_state *)
1907 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1908 sizeof(reg_trie_state) );
1909 next_alloc = trie->uniquecharcount + 1;
1912 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1914 regnode * const noper = NEXTOPER( cur );
1915 const U8 *uc = (U8*)STRING( noper );
1916 const U8 * const e = uc + STR_LEN( noper );
1918 U32 state = 1; /* required init */
1920 U16 charid = 0; /* sanity init */
1921 U32 accept_state = 0; /* sanity init */
1922 U8 *scan = (U8*)NULL; /* sanity init */
1924 STRLEN foldlen = 0; /* required init */
1925 U32 wordlen = 0; /* required init */
1926 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1928 if ( OP(noper) != NOTHING ) {
1929 for ( ; uc < e ; uc += len ) {
1934 charid = trie->charmap[ uvc ];
1936 SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1937 charid = svpp ? (U16)SvIV(*svpp) : 0;
1941 if ( !trie->trans[ state + charid ].next ) {
1942 trie->trans[ state + charid ].next = next_alloc;
1943 trie->trans[ state ].check++;
1944 prev_states[TRIE_NODENUM(next_alloc)]
1945 = TRIE_NODENUM(state);
1946 next_alloc += trie->uniquecharcount;
1948 state = trie->trans[ state + charid ].next;
1950 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1952 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1955 accept_state = TRIE_NODENUM( state );
1956 TRIE_HANDLE_WORD(accept_state);
1958 } /* end second pass */
1960 /* and now dump it out before we compress it */
1961 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
1963 next_alloc, depth+1));
1967 * Inplace compress the table.*
1969 For sparse data sets the table constructed by the trie algorithm will
1970 be mostly 0/FAIL transitions or to put it another way mostly empty.
1971 (Note that leaf nodes will not contain any transitions.)
1973 This algorithm compresses the tables by eliminating most such
1974 transitions, at the cost of a modest bit of extra work during lookup:
1976 - Each states[] entry contains a .base field which indicates the
1977 index in the state[] array wheres its transition data is stored.
1979 - If .base is 0 there are no valid transitions from that node.
1981 - If .base is nonzero then charid is added to it to find an entry in
1984 -If trans[states[state].base+charid].check!=state then the
1985 transition is taken to be a 0/Fail transition. Thus if there are fail
1986 transitions at the front of the node then the .base offset will point
1987 somewhere inside the previous nodes data (or maybe even into a node
1988 even earlier), but the .check field determines if the transition is
1992 The following process inplace converts the table to the compressed
1993 table: We first do not compress the root node 1,and mark all its
1994 .check pointers as 1 and set its .base pointer as 1 as well. This
1995 allows us to do a DFA construction from the compressed table later,
1996 and ensures that any .base pointers we calculate later are greater
1999 - We set 'pos' to indicate the first entry of the second node.
2001 - We then iterate over the columns of the node, finding the first and
2002 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
2003 and set the .check pointers accordingly, and advance pos
2004 appropriately and repreat for the next node. Note that when we copy
2005 the next pointers we have to convert them from the original
2006 NODEIDX form to NODENUM form as the former is not valid post
2009 - If a node has no transitions used we mark its base as 0 and do not
2010 advance the pos pointer.
2012 - If a node only has one transition we use a second pointer into the
2013 structure to fill in allocated fail transitions from other states.
2014 This pointer is independent of the main pointer and scans forward
2015 looking for null transitions that are allocated to a state. When it
2016 finds one it writes the single transition into the "hole". If the
2017 pointer doesnt find one the single transition is appended as normal.
2019 - Once compressed we can Renew/realloc the structures to release the
2022 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
2023 specifically Fig 3.47 and the associated pseudocode.
2027 const U32 laststate = TRIE_NODENUM( next_alloc );
2030 trie->statecount = laststate;
2032 for ( state = 1 ; state < laststate ; state++ ) {
2034 const U32 stateidx = TRIE_NODEIDX( state );
2035 const U32 o_used = trie->trans[ stateidx ].check;
2036 U32 used = trie->trans[ stateidx ].check;
2037 trie->trans[ stateidx ].check = 0;
2039 for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
2040 if ( flag || trie->trans[ stateidx + charid ].next ) {
2041 if ( trie->trans[ stateidx + charid ].next ) {
2043 for ( ; zp < pos ; zp++ ) {
2044 if ( ! trie->trans[ zp ].next ) {
2048 trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
2049 trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2050 trie->trans[ zp ].check = state;
2051 if ( ++zp > pos ) pos = zp;
2058 trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
2060 trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2061 trie->trans[ pos ].check = state;
2066 trie->lasttrans = pos + 1;
2067 trie->states = (reg_trie_state *)
2068 PerlMemShared_realloc( trie->states, laststate
2069 * sizeof(reg_trie_state) );
2070 DEBUG_TRIE_COMPILE_MORE_r(
2071 PerlIO_printf( Perl_debug_log,
2072 "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
2073 (int)depth * 2 + 2,"",
2074 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
2077 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
2080 } /* end table compress */
2082 DEBUG_TRIE_COMPILE_MORE_r(
2083 PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
2084 (int)depth * 2 + 2, "",
2085 (UV)trie->statecount,
2086 (UV)trie->lasttrans)
2088 /* resize the trans array to remove unused space */
2089 trie->trans = (reg_trie_trans *)
2090 PerlMemShared_realloc( trie->trans, trie->lasttrans
2091 * sizeof(reg_trie_trans) );
2093 { /* Modify the program and insert the new TRIE node */
2094 U8 nodetype =(U8)(flags & 0xFF);
2098 regnode *optimize = NULL;
2099 #ifdef RE_TRACK_PATTERN_OFFSETS
2102 U32 mjd_nodelen = 0;
2103 #endif /* RE_TRACK_PATTERN_OFFSETS */
2104 #endif /* DEBUGGING */
2106 This means we convert either the first branch or the first Exact,
2107 depending on whether the thing following (in 'last') is a branch
2108 or not and whther first is the startbranch (ie is it a sub part of
2109 the alternation or is it the whole thing.)
2110 Assuming its a sub part we convert the EXACT otherwise we convert
2111 the whole branch sequence, including the first.
2113 /* Find the node we are going to overwrite */
2114 if ( first != startbranch || OP( last ) == BRANCH ) {
2115 /* branch sub-chain */
2116 NEXT_OFF( first ) = (U16)(last - first);
2117 #ifdef RE_TRACK_PATTERN_OFFSETS
2119 mjd_offset= Node_Offset((convert));
2120 mjd_nodelen= Node_Length((convert));
2123 /* whole branch chain */
2125 #ifdef RE_TRACK_PATTERN_OFFSETS
2128 const regnode *nop = NEXTOPER( convert );
2129 mjd_offset= Node_Offset((nop));
2130 mjd_nodelen= Node_Length((nop));
2134 PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
2135 (int)depth * 2 + 2, "",
2136 (UV)mjd_offset, (UV)mjd_nodelen)
2139 /* But first we check to see if there is a common prefix we can
2140 split out as an EXACT and put in front of the TRIE node. */
2141 trie->startstate= 1;
2142 if ( trie->bitmap && !widecharmap && !trie->jump ) {
2144 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
2148 const U32 base = trie->states[ state ].trans.base;
2150 if ( trie->states[state].wordnum )
2153 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2154 if ( ( base + ofs >= trie->uniquecharcount ) &&
2155 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
2156 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
2158 if ( ++count > 1 ) {
2159 SV **tmp = av_fetch( revcharmap, ofs, 0);
2160 const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
2161 if ( state == 1 ) break;
2163 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
2165 PerlIO_printf(Perl_debug_log,
2166 "%*sNew Start State=%"UVuf" Class: [",
2167 (int)depth * 2 + 2, "",
2170 SV ** const tmp = av_fetch( revcharmap, idx, 0);
2171 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
2173 TRIE_BITMAP_SET(trie,*ch);
2175 TRIE_BITMAP_SET(trie, folder[ *ch ]);
2177 PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
2181 TRIE_BITMAP_SET(trie,*ch);
2183 TRIE_BITMAP_SET(trie,folder[ *ch ]);
2184 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
2190 SV **tmp = av_fetch( revcharmap, idx, 0);
2192 char *ch = SvPV( *tmp, len );
2194 SV *sv=sv_newmortal();
2195 PerlIO_printf( Perl_debug_log,
2196 "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
2197 (int)depth * 2 + 2, "",
2199 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
2200 PL_colors[0], PL_colors[1],
2201 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2202 PERL_PV_ESCAPE_FIRSTCHAR
2207 OP( convert ) = nodetype;
2208 str=STRING(convert);
2211 STR_LEN(convert) += len;
2217 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
2222 trie->prefixlen = (state-1);
2224 regnode *n = convert+NODE_SZ_STR(convert);
2225 NEXT_OFF(convert) = NODE_SZ_STR(convert);
2226 trie->startstate = state;
2227 trie->minlen -= (state - 1);
2228 trie->maxlen -= (state - 1);
2230 /* At least the UNICOS C compiler choked on this
2231 * being argument to DEBUG_r(), so let's just have
2234 #ifdef PERL_EXT_RE_BUILD
2240 regnode *fix = convert;
2241 U32 word = trie->wordcount;
2243 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
2244 while( ++fix < n ) {
2245 Set_Node_Offset_Length(fix, 0, 0);
2248 SV ** const tmp = av_fetch( trie_words, word, 0 );
2250 if ( STR_LEN(convert) <= SvCUR(*tmp) )
2251 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
2253 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
2261 NEXT_OFF(convert) = (U16)(tail - convert);
2262 DEBUG_r(optimize= n);
2268 if ( trie->maxlen ) {
2269 NEXT_OFF( convert ) = (U16)(tail - convert);
2270 ARG_SET( convert, data_slot );
2271 /* Store the offset to the first unabsorbed branch in
2272 jump[0], which is otherwise unused by the jump logic.
2273 We use this when dumping a trie and during optimisation. */
2275 trie->jump[0] = (U16)(nextbranch - convert);
2277 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
2278 * and there is a bitmap
2279 * and the first "jump target" node we found leaves enough room
2280 * then convert the TRIE node into a TRIEC node, with the bitmap
2281 * embedded inline in the opcode - this is hypothetically faster.
2283 if ( !trie->states[trie->startstate].wordnum
2285 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
2287 OP( convert ) = TRIEC;
2288 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
2289 PerlMemShared_free(trie->bitmap);
2292 OP( convert ) = TRIE;
2294 /* store the type in the flags */
2295 convert->flags = nodetype;
2299 + regarglen[ OP( convert ) ];
2301 /* XXX We really should free up the resource in trie now,
2302 as we won't use them - (which resources?) dmq */
2304 /* needed for dumping*/
2305 DEBUG_r(if (optimize) {
2306 regnode *opt = convert;
2308 while ( ++opt < optimize) {
2309 Set_Node_Offset_Length(opt,0,0);
2312 Try to clean up some of the debris left after the
2315 while( optimize < jumper ) {
2316 mjd_nodelen += Node_Length((optimize));
2317 OP( optimize ) = OPTIMIZED;
2318 Set_Node_Offset_Length(optimize,0,0);
2321 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
2323 } /* end node insert */
2324 REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, convert);
2326 /* Finish populating the prev field of the wordinfo array. Walk back
2327 * from each accept state until we find another accept state, and if
2328 * so, point the first word's .prev field at the second word. If the
2329 * second already has a .prev field set, stop now. This will be the
2330 * case either if we've already processed that word's accept state,
2331 * or that state had multiple words, and the overspill words were
2332 * already linked up earlier.
2339 for (word=1; word <= trie->wordcount; word++) {
2341 if (trie->wordinfo[word].prev)
2343 state = trie->wordinfo[word].accept;
2345 state = prev_states[state];
2348 prev = trie->states[state].wordnum;
2352 trie->wordinfo[word].prev = prev;
2354 Safefree(prev_states);
2358 /* and now dump out the compressed format */
2359 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
2361 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
2363 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
2364 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
2366 SvREFCNT_dec(revcharmap);
2370 : trie->startstate>1
2376 S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
2378 /* The Trie is constructed and compressed now so we can build a fail array if it's needed
2380 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
2381 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
2384 We find the fail state for each state in the trie, this state is the longest proper
2385 suffix of the current state's 'word' that is also a proper prefix of another word in our
2386 trie. State 1 represents the word '' and is thus the default fail state. This allows
2387 the DFA not to have to restart after its tried and failed a word at a given point, it
2388 simply continues as though it had been matching the other word in the first place.
2390 'abcdgu'=~/abcdefg|cdgu/
2391 When we get to 'd' we are still matching the first word, we would encounter 'g' which would
2392 fail, which would bring us to the state representing 'd' in the second word where we would
2393 try 'g' and succeed, proceeding to match 'cdgu'.
2395 /* add a fail transition */
2396 const U32 trie_offset = ARG(source);
2397 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
2399 const U32 ucharcount = trie->uniquecharcount;
2400 const U32 numstates = trie->statecount;
2401 const U32 ubound = trie->lasttrans + ucharcount;
2405 U32 base = trie->states[ 1 ].trans.base;
2408 const U32 data_slot = add_data( pRExC_state, 1, "T" );
2409 GET_RE_DEBUG_FLAGS_DECL;
2411 PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE;
2413 PERL_UNUSED_ARG(depth);
2417 ARG_SET( stclass, data_slot );
2418 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
2419 RExC_rxi->data->data[ data_slot ] = (void*)aho;
2420 aho->trie=trie_offset;
2421 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
2422 Copy( trie->states, aho->states, numstates, reg_trie_state );
2423 Newxz( q, numstates, U32);
2424 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
2427 /* initialize fail[0..1] to be 1 so that we always have
2428 a valid final fail state */
2429 fail[ 0 ] = fail[ 1 ] = 1;
2431 for ( charid = 0; charid < ucharcount ; charid++ ) {
2432 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
2434 q[ q_write ] = newstate;
2435 /* set to point at the root */
2436 fail[ q[ q_write++ ] ]=1;
2439 while ( q_read < q_write) {
2440 const U32 cur = q[ q_read++ % numstates ];
2441 base = trie->states[ cur ].trans.base;
2443 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
2444 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
2446 U32 fail_state = cur;
2449 fail_state = fail[ fail_state ];
2450 fail_base = aho->states[ fail_state ].trans.base;
2451 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
2453 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
2454 fail[ ch_state ] = fail_state;
2455 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
2457 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
2459 q[ q_write++ % numstates] = ch_state;
2463 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
2464 when we fail in state 1, this allows us to use the
2465 charclass scan to find a valid start char. This is based on the principle
2466 that theres a good chance the string being searched contains lots of stuff
2467 that cant be a start char.
2469 fail[ 0 ] = fail[ 1 ] = 0;
2470 DEBUG_TRIE_COMPILE_r({
2471 PerlIO_printf(Perl_debug_log,
2472 "%*sStclass Failtable (%"UVuf" states): 0",
2473 (int)(depth * 2), "", (UV)numstates
2475 for( q_read=1; q_read<numstates; q_read++ ) {
2476 PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
2478 PerlIO_printf(Perl_debug_log, "\n");
2481 /*RExC_seen |= REG_SEEN_TRIEDFA;*/
2486 * There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
2487 * These need to be revisited when a newer toolchain becomes available.
2489 #if defined(__sparc64__) && defined(__GNUC__)
2490 # if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
2491 # undef SPARC64_GCC_WORKAROUND
2492 # define SPARC64_GCC_WORKAROUND 1
2496 #define DEBUG_PEEP(str,scan,depth) \
2497 DEBUG_OPTIMISE_r({if (scan){ \
2498 SV * const mysv=sv_newmortal(); \
2499 regnode *Next = regnext(scan); \
2500 regprop(RExC_rx, mysv, scan); \
2501 PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
2502 (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
2503 Next ? (REG_NODE_NUM(Next)) : 0 ); \
2510 #define JOIN_EXACT(scan,min,flags) \
2511 if (PL_regkind[OP(scan)] == EXACT) \
2512 join_exact(pRExC_state,(scan),(min),(flags),NULL,depth+1)
2515 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, I32 *min, U32 flags,regnode *val, U32 depth) {
2516 /* Merge several consecutive EXACTish nodes into one. */
2517 regnode *n = regnext(scan);
2519 regnode *next = scan + NODE_SZ_STR(scan);
2523 regnode *stop = scan;
2524 GET_RE_DEBUG_FLAGS_DECL;
2526 PERL_UNUSED_ARG(depth);
2529 PERL_ARGS_ASSERT_JOIN_EXACT;
2530 #ifndef EXPERIMENTAL_INPLACESCAN
2531 PERL_UNUSED_ARG(flags);
2532 PERL_UNUSED_ARG(val);
2534 DEBUG_PEEP("join",scan,depth);
2536 /* Skip NOTHING, merge EXACT*. */
2538 ( PL_regkind[OP(n)] == NOTHING ||
2539 (stringok && (OP(n) == OP(scan))))
2541 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX) {
2543 if (OP(n) == TAIL || n > next)
2545 if (PL_regkind[OP(n)] == NOTHING) {
2546 DEBUG_PEEP("skip:",n,depth);
2547 NEXT_OFF(scan) += NEXT_OFF(n);
2548 next = n + NODE_STEP_REGNODE;
2555 else if (stringok) {
2556 const unsigned int oldl = STR_LEN(scan);
2557 regnode * const nnext = regnext(n);
2559 DEBUG_PEEP("merg",n,depth);
2562 if (oldl + STR_LEN(n) > U8_MAX)
2564 NEXT_OFF(scan) += NEXT_OFF(n);
2565 STR_LEN(scan) += STR_LEN(n);
2566 next = n + NODE_SZ_STR(n);
2567 /* Now we can overwrite *n : */
2568 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
2576 #ifdef EXPERIMENTAL_INPLACESCAN
2577 if (flags && !NEXT_OFF(n)) {
2578 DEBUG_PEEP("atch", val, depth);
2579 if (reg_off_by_arg[OP(n)]) {
2580 ARG_SET(n, val - n);
2583 NEXT_OFF(n) = val - n;
2589 #define GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS 0x0390
2590 #define IOTA_D_T GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS
2591 #define GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS 0x03B0
2592 #define UPSILON_D_T GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS
2595 && ( OP(scan) == EXACTF || OP(scan) == EXACTFU || OP(scan) == EXACTFA)
2596 && ( STR_LEN(scan) >= 6 ) )
2599 Two problematic code points in Unicode casefolding of EXACT nodes:
2601 U+0390 - GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
2602 U+03B0 - GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
2608 U+03B9 U+0308 U+0301 0xCE 0xB9 0xCC 0x88 0xCC 0x81
2609 U+03C5 U+0308 U+0301 0xCF 0x85 0xCC 0x88 0xCC 0x81
2611 This means that in case-insensitive matching (or "loose matching",
2612 as Unicode calls it), an EXACTF of length six (the UTF-8 encoded byte
2613 length of the above casefolded versions) can match a target string
2614 of length two (the byte length of UTF-8 encoded U+0390 or U+03B0).
2615 This would rather mess up the minimum length computation.
2617 What we'll do is to look for the tail four bytes, and then peek
2618 at the preceding two bytes to see whether we need to decrease
2619 the minimum length by four (six minus two).
2621 Thanks to the design of UTF-8, there cannot be false matches:
2622 A sequence of valid UTF-8 bytes cannot be a subsequence of
2623 another valid sequence of UTF-8 bytes.
2626 char * const s0 = STRING(scan), *s, *t;
2627 char * const s1 = s0 + STR_LEN(scan) - 1;
2628 char * const s2 = s1 - 4;
2629 #ifdef EBCDIC /* RD tunifold greek 0390 and 03B0 */
2630 const char t0[] = "\xaf\x49\xaf\x42";
2632 const char t0[] = "\xcc\x88\xcc\x81";
2634 const char * const t1 = t0 + 3;
2637 s < s2 && (t = ninstr(s, s1, t0, t1));
2640 if (((U8)t[-1] == 0x68 && (U8)t[-2] == 0xB4) ||
2641 ((U8)t[-1] == 0x46 && (U8)t[-2] == 0xB5))
2643 if (((U8)t[-1] == 0xB9 && (U8)t[-2] == 0xCE) ||
2644 ((U8)t[-1] == 0x85 && (U8)t[-2] == 0xCF))
2651 /* Allow dumping but overwriting the collection of skipped
2652 * ops and/or strings with fake optimized ops */
2653 n = scan + NODE_SZ_STR(scan);
2661 DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
2665 /* REx optimizer. Converts nodes into quicker variants "in place".
2666 Finds fixed substrings. */
2668 /* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
2669 to the position after last scanned or to NULL. */
2671 #define INIT_AND_WITHP \
2672 assert(!and_withp); \
2673 Newx(and_withp,1,struct regnode_charclass_class); \
2674 SAVEFREEPV(and_withp)
2676 /* this is a chain of data about sub patterns we are processing that
2677 need to be handled separately/specially in study_chunk. Its so
2678 we can simulate recursion without losing state. */
2680 typedef struct scan_frame {
2681 regnode *last; /* last node to process in this frame */
2682 regnode *next; /* next node to process when last is reached */
2683 struct scan_frame *prev; /*previous frame*/
2684 I32 stop; /* what stopparen do we use */
2688 #define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf)
2690 #define CASE_SYNST_FNC(nAmE) \
2692 if (flags & SCF_DO_STCLASS_AND) { \
2693 for (value = 0; value < 256; value++) \
2694 if (!is_ ## nAmE ## _cp(value)) \
2695 ANYOF_BITMAP_CLEAR(data->start_class, value); \
2698 for (value = 0; value < 256; value++) \
2699 if (is_ ## nAmE ## _cp(value)) \
2700 ANYOF_BITMAP_SET(data->start_class, value); \
2704 if (flags & SCF_DO_STCLASS_AND) { \
2705 for (value = 0; value < 256; value++) \
2706 if (is_ ## nAmE ## _cp(value)) \
2707 ANYOF_BITMAP_CLEAR(data->start_class, value); \
2710 for (value = 0; value < 256; value++) \
2711 if (!is_ ## nAmE ## _cp(value)) \
2712 ANYOF_BITMAP_SET(data->start_class, value); \
2719 S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
2720 I32 *minlenp, I32 *deltap,
2725 struct regnode_charclass_class *and_withp,
2726 U32 flags, U32 depth)
2727 /* scanp: Start here (read-write). */
2728 /* deltap: Write maxlen-minlen here. */
2729 /* last: Stop before this one. */
2730 /* data: string data about the pattern */
2731 /* stopparen: treat close N as END */
2732 /* recursed: which subroutines have we recursed into */
2733 /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
2736 I32 min = 0, pars = 0, code;
2737 regnode *scan = *scanp, *next;
2739 int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
2740 int is_inf_internal = 0; /* The studied chunk is infinite */
2741 I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
2742 scan_data_t data_fake;
2743 SV *re_trie_maxbuff = NULL;
2744 regnode *first_non_open = scan;
2745 I32 stopmin = I32_MAX;
2746 scan_frame *frame = NULL;
2747 GET_RE_DEBUG_FLAGS_DECL;
2749 PERL_ARGS_ASSERT_STUDY_CHUNK;
2752 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
2756 while (first_non_open && OP(first_non_open) == OPEN)
2757 first_non_open=regnext(first_non_open);
2762 while ( scan && OP(scan) != END && scan < last ){
2763 /* Peephole optimizer: */
2764 DEBUG_STUDYDATA("Peep:", data,depth);
2765 DEBUG_PEEP("Peep",scan,depth);
2766 JOIN_EXACT(scan,&min,0);
2768 /* Follow the next-chain of the current node and optimize
2769 away all the NOTHINGs from it. */
2770 if (OP(scan) != CURLYX) {
2771 const int max = (reg_off_by_arg[OP(scan)]
2773 /* I32 may be smaller than U16 on CRAYs! */
2774 : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
2775 int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
2779 /* Skip NOTHING and LONGJMP. */
2780 while ((n = regnext(n))
2781 && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
2782 || ((OP(n) == LONGJMP) && (noff = ARG(n))))
2783 && off + noff < max)
2785 if (reg_off_by_arg[OP(scan)])
2788 NEXT_OFF(scan) = off;
2793 /* The principal pseudo-switch. Cannot be a switch, since we
2794 look into several different things. */
2795 if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
2796 || OP(scan) == IFTHEN) {
2797 next = regnext(scan);
2799 /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
2801 if (OP(next) == code || code == IFTHEN) {
2802 /* NOTE - There is similar code to this block below for handling
2803 TRIE nodes on a re-study. If you change stuff here check there
2805 I32 max1 = 0, min1 = I32_MAX, num = 0;
2806 struct regnode_charclass_class accum;
2807 regnode * const startbranch=scan;
2809 if (flags & SCF_DO_SUBSTR)
2810 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
2811 if (flags & SCF_DO_STCLASS)
2812 cl_init_zero(pRExC_state, &accum);
2814 while (OP(scan) == code) {
2815 I32 deltanext, minnext, f = 0, fake;
2816 struct regnode_charclass_class this_class;
2819 data_fake.flags = 0;
2821 data_fake.whilem_c = data->whilem_c;
2822 data_fake.last_closep = data->last_closep;
2825 data_fake.last_closep = &fake;
2827 data_fake.pos_delta = delta;
2828 next = regnext(scan);
2829 scan = NEXTOPER(scan);
2831 scan = NEXTOPER(scan);
2832 if (flags & SCF_DO_STCLASS) {
2833 cl_init(pRExC_state, &this_class);
2834 data_fake.start_class = &this_class;
2835 f = SCF_DO_STCLASS_AND;
2837 if (flags & SCF_WHILEM_VISITED_POS)
2838 f |= SCF_WHILEM_VISITED_POS;
2840 /* we suppose the run is continuous, last=next...*/
2841 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
2843 stopparen, recursed, NULL, f,depth+1);
2846 if (max1 < minnext + deltanext)
2847 max1 = minnext + deltanext;
2848 if (deltanext == I32_MAX)
2849 is_inf = is_inf_internal = 1;
2851 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
2853 if (data_fake.flags & SCF_SEEN_ACCEPT) {
2854 if ( stopmin > minnext)
2855 stopmin = min + min1;
2856 flags &= ~SCF_DO_SUBSTR;
2858 data->flags |= SCF_SEEN_ACCEPT;
2861 if (data_fake.flags & SF_HAS_EVAL)
2862 data->flags |= SF_HAS_EVAL;
2863 data->whilem_c = data_fake.whilem_c;
2865 if (flags & SCF_DO_STCLASS)
2866 cl_or(pRExC_state, &accum, &this_class);
2868 if (code == IFTHEN && num < 2) /* Empty ELSE branch */
2870 if (flags & SCF_DO_SUBSTR) {
2871 data->pos_min += min1;
2872 data->pos_delta += max1 - min1;
2873 if (max1 != min1 || is_inf)
2874 data->longest = &(data->longest_float);
2877 delta += max1 - min1;
2878 if (flags & SCF_DO_STCLASS_OR) {
2879 cl_or(pRExC_state, data->start_class, &accum);
2881 cl_and(data->start_class, and_withp);
2882 flags &= ~SCF_DO_STCLASS;
2885 else if (flags & SCF_DO_STCLASS_AND) {
2887 cl_and(data->start_class, &accum);
2888 flags &= ~SCF_DO_STCLASS;
2891 /* Switch to OR mode: cache the old value of
2892 * data->start_class */
2894 StructCopy(data->start_class, and_withp,
2895 struct regnode_charclass_class);
2896 flags &= ~SCF_DO_STCLASS_AND;
2897 StructCopy(&accum, data->start_class,
2898 struct regnode_charclass_class);
2899 flags |= SCF_DO_STCLASS_OR;
2900 data->start_class->flags |= ANYOF_EOS;
2904 if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
2907 Assuming this was/is a branch we are dealing with: 'scan' now
2908 points at the item that follows the branch sequence, whatever
2909 it is. We now start at the beginning of the sequence and look
2916 which would be constructed from a pattern like /A|LIST|OF|WORDS/
2918 If we can find such a subsequence we need to turn the first
2919 element into a trie and then add the subsequent branch exact
2920 strings to the trie.
2924 1. patterns where the whole set of branches can be converted.
2926 2. patterns where only a subset can be converted.
2928 In case 1 we can replace the whole set with a single regop
2929 for the trie. In case 2 we need to keep the start and end
2932 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
2933 becomes BRANCH TRIE; BRANCH X;
2935 There is an additional case, that being where there is a
2936 common prefix, which gets split out into an EXACT like node
2937 preceding the TRIE node.
2939 If x(1..n)==tail then we can do a simple trie, if not we make
2940 a "jump" trie, such that when we match the appropriate word
2941 we "jump" to the appropriate tail node. Essentially we turn
2942 a nested if into a case structure of sorts.
2947 if (!re_trie_maxbuff) {
2948 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
2949 if (!SvIOK(re_trie_maxbuff))
2950 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2952 if ( SvIV(re_trie_maxbuff)>=0 ) {
2954 regnode *first = (regnode *)NULL;
2955 regnode *last = (regnode *)NULL;
2956 regnode *tail = scan;
2961 SV * const mysv = sv_newmortal(); /* for dumping */
2963 /* var tail is used because there may be a TAIL
2964 regop in the way. Ie, the exacts will point to the
2965 thing following the TAIL, but the last branch will
2966 point at the TAIL. So we advance tail. If we
2967 have nested (?:) we may have to move through several
2971 while ( OP( tail ) == TAIL ) {
2972 /* this is the TAIL generated by (?:) */
2973 tail = regnext( tail );
2978 regprop(RExC_rx, mysv, tail );
2979 PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
2980 (int)depth * 2 + 2, "",
2981 "Looking for TRIE'able sequences. Tail node is: ",
2982 SvPV_nolen_const( mysv )
2988 step through the branches, cur represents each
2989 branch, noper is the first thing to be matched
2990 as part of that branch and noper_next is the
2991 regnext() of that node. if noper is an EXACT
2992 and noper_next is the same as scan (our current
2993 position in the regex) then the EXACT branch is
2994 a possible optimization target. Once we have
2995 two or more consecutive such branches we can
2996 create a trie of the EXACT's contents and stich
2997 it in place. If the sequence represents all of
2998 the branches we eliminate the whole thing and
2999 replace it with a single TRIE. If it is a
3000 subsequence then we need to stitch it in. This
3001 means the first branch has to remain, and needs
3002 to be repointed at the item on the branch chain
3003 following the last branch optimized. This could
3004 be either a BRANCH, in which case the
3005 subsequence is internal, or it could be the
3006 item following the branch sequence in which
3007 case the subsequence is at the end.
3011 /* dont use tail as the end marker for this traverse */
3012 for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
3013 regnode * const noper = NEXTOPER( cur );
3014 #if defined(DEBUGGING) || defined(NOJUMPTRIE)
3015 regnode * const noper_next = regnext( noper );
3019 regprop(RExC_rx, mysv, cur);
3020 PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
3021 (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
3023 regprop(RExC_rx, mysv, noper);
3024 PerlIO_printf( Perl_debug_log, " -> %s",
3025 SvPV_nolen_const(mysv));
3028 regprop(RExC_rx, mysv, noper_next );
3029 PerlIO_printf( Perl_debug_log,"\t=> %s\t",
3030 SvPV_nolen_const(mysv));
3032 PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d)\n",
3033 REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur) );
3035 if ( (((first && optype!=NOTHING) ? OP( noper ) == optype
3036 : PL_regkind[ OP( noper ) ] == EXACT )
3037 || OP(noper) == NOTHING )
3039 && noper_next == tail
3044 if ( !first || optype == NOTHING ) {
3045 if (!first) first = cur;
3046 optype = OP( noper );
3052 Currently the trie logic handles case insensitive matching properly only
3053 when the pattern is UTF-8 and the node is EXACTFU (thus forcing unicode
3056 If/when this is fixed the following define can be swapped
3057 in below to fully enable trie logic.
3059 #define TRIE_TYPE_IS_SAFE 1
3062 #define TRIE_TYPE_IS_SAFE ((UTF && optype == EXACTFU) || optype==EXACT)
3064 if ( last && TRIE_TYPE_IS_SAFE ) {
3065 make_trie( pRExC_state,
3066 startbranch, first, cur, tail, count,
3069 if ( PL_regkind[ OP( noper ) ] == EXACT
3071 && noper_next == tail
3076 optype = OP( noper );
3086 regprop(RExC_rx, mysv, cur);
3087 PerlIO_printf( Perl_debug_log,
3088 "%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
3089 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3093 if ( last && TRIE_TYPE_IS_SAFE ) {
3094 made= make_trie( pRExC_state, startbranch, first, scan, tail, count, optype, depth+1 );
3095 #ifdef TRIE_STUDY_OPT
3096 if ( ((made == MADE_EXACT_TRIE &&
3097 startbranch == first)
3098 || ( first_non_open == first )) &&
3100 flags |= SCF_TRIE_RESTUDY;
3101 if ( startbranch == first
3104 RExC_seen &=~REG_TOP_LEVEL_BRANCHES;
3114 else if ( code == BRANCHJ ) { /* single branch is optimized. */
3115 scan = NEXTOPER(NEXTOPER(scan));
3116 } else /* single branch is optimized. */
3117 scan = NEXTOPER(scan);
3119 } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
3120 scan_frame *newframe = NULL;
3125 if (OP(scan) != SUSPEND) {
3126 /* set the pointer */
3127 if (OP(scan) == GOSUB) {
3129 RExC_recurse[ARG2L(scan)] = scan;
3130 start = RExC_open_parens[paren-1];
3131 end = RExC_close_parens[paren-1];
3134 start = RExC_rxi->program + 1;
3138 Newxz(recursed, (((RExC_npar)>>3) +1), U8);
3139 SAVEFREEPV(recursed);
3141 if (!PAREN_TEST(recursed,paren+1)) {
3142 PAREN_SET(recursed,paren+1);
3143 Newx(newframe,1,scan_frame);
3145 if (flags & SCF_DO_SUBSTR) {
3146 SCAN_COMMIT(pRExC_state,data,minlenp);
3147 data->longest = &(data->longest_float);
3149 is_inf = is_inf_internal = 1;
3150 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3151 cl_anything(pRExC_state, data->start_class);
3152 flags &= ~SCF_DO_STCLASS;
3155 Newx(newframe,1,scan_frame);
3158 end = regnext(scan);
3163 SAVEFREEPV(newframe);
3164 newframe->next = regnext(scan);
3165 newframe->last = last;
3166 newframe->stop = stopparen;
3167 newframe->prev = frame;
3177 else if (OP(scan) == EXACT) {
3178 I32 l = STR_LEN(scan);
3181 const U8 * const s = (U8*)STRING(scan);
3182 l = utf8_length(s, s + l);
3183 uc = utf8_to_uvchr(s, NULL);
3185 uc = *((U8*)STRING(scan));
3188 if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
3189 /* The code below prefers earlier match for fixed
3190 offset, later match for variable offset. */
3191 if (data->last_end == -1) { /* Update the start info. */
3192 data->last_start_min = data->pos_min;
3193 data->last_start_max = is_inf
3194 ? I32_MAX : data->pos_min + data->pos_delta;
3196 sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
3198 SvUTF8_on(data->last_found);
3200 SV * const sv = data->last_found;
3201 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3202 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3203 if (mg && mg->mg_len >= 0)
3204 mg->mg_len += utf8_length((U8*)STRING(scan),
3205 (U8*)STRING(scan)+STR_LEN(scan));
3207 data->last_end = data->pos_min + l;
3208 data->pos_min += l; /* As in the first entry. */
3209 data->flags &= ~SF_BEFORE_EOL;
3211 if (flags & SCF_DO_STCLASS_AND) {
3212 /* Check whether it is compatible with what we know already! */
3216 /* If compatible, we or it in below. It is compatible if is
3217 * in the bitmp and either 1) its bit or its fold is set, or 2)
3218 * it's for a locale. Even if there isn't unicode semantics
3219 * here, at runtime there may be because of matching against a
3220 * utf8 string, so accept a possible false positive for
3221 * latin1-range folds */
3223 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
3224 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3225 && (!(data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD)
3226 || !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3231 ANYOF_CLASS_ZERO(data->start_class);
3232 ANYOF_BITMAP_ZERO(data->start_class);
3234 ANYOF_BITMAP_SET(data->start_class, uc);
3235 else if (uc >= 0x100) {
3238 /* Some Unicode code points fold to the Latin1 range; as
3239 * XXX temporary code, instead of figuring out if this is
3240 * one, just assume it is and set all the start class bits
3241 * that could be some such above 255 code point's fold
3242 * which will generate fals positives. As the code
3243 * elsewhere that does compute the fold settles down, it
3244 * can be extracted out and re-used here */
3245 for (i = 0; i < 256; i++){
3246 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3247 ANYOF_BITMAP_SET(data->start_class, i);
3251 data->start_class->flags &= ~ANYOF_EOS;
3253 data->start_class->flags &= ~ANYOF_UNICODE_ALL;
3255 else if (flags & SCF_DO_STCLASS_OR) {
3256 /* false positive possible if the class is case-folded */
3258 ANYOF_BITMAP_SET(data->start_class, uc);
3260 data->start_class->flags |= ANYOF_UNICODE_ALL;
3261 data->start_class->flags &= ~ANYOF_EOS;
3262 cl_and(data->start_class, and_withp);
3264 flags &= ~SCF_DO_STCLASS;
3266 else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
3267 I32 l = STR_LEN(scan);
3268 UV uc = *((U8*)STRING(scan));
3270 /* Search for fixed substrings supports EXACT only. */
3271 if (flags & SCF_DO_SUBSTR) {
3273 SCAN_COMMIT(pRExC_state, data, minlenp);
3276 const U8 * const s = (U8 *)STRING(scan);
3277 l = utf8_length(s, s + l);
3278 uc = utf8_to_uvchr(s, NULL);
3281 if (flags & SCF_DO_SUBSTR)
3283 if (flags & SCF_DO_STCLASS_AND) {
3284 /* Check whether it is compatible with what we know already! */
3287 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
3288 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3289 && !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3293 ANYOF_CLASS_ZERO(data->start_class);
3294 ANYOF_BITMAP_ZERO(data->start_class);
3296 ANYOF_BITMAP_SET(data->start_class, uc);
3297 data->start_class->flags &= ~ANYOF_EOS;
3298 data->start_class->flags |= ANYOF_LOC_NONBITMAP_FOLD;
3299 if (OP(scan) == EXACTFL) {
3300 /* XXX This set is probably no longer necessary, and
3301 * probably wrong as LOCALE now is on in the initial
3303 data->start_class->flags |= ANYOF_LOCALE;
3307 /* Also set the other member of the fold pair. In case
3308 * that unicode semantics is called for at runtime, use
3309 * the full latin1 fold. (Can't do this for locale,
3310 * because not known until runtime */
3311 ANYOF_BITMAP_SET(data->start_class, PL_fold_latin1[uc]);
3314 else if (uc >= 0x100) {
3316 for (i = 0; i < 256; i++){
3317 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3318 ANYOF_BITMAP_SET(data->start_class, i);
3323 else if (flags & SCF_DO_STCLASS_OR) {
3324 if (data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD) {
3325 /* false positive possible if the class is case-folded.
3326 Assume that the locale settings are the same... */
3328 ANYOF_BITMAP_SET(data->start_class, uc);
3329 if (OP(scan) != EXACTFL) {
3331 /* And set the other member of the fold pair, but
3332 * can't do that in locale because not known until
3334 ANYOF_BITMAP_SET(data->start_class,
3335 PL_fold_latin1[uc]);
3338 data->start_class->flags &= ~ANYOF_EOS;
3340 cl_and(data->start_class, and_withp);
3342 flags &= ~SCF_DO_STCLASS;
3344 else if (REGNODE_VARIES(OP(scan))) {
3345 I32 mincount, maxcount, minnext, deltanext, fl = 0;
3346 I32 f = flags, pos_before = 0;
3347 regnode * const oscan = scan;
3348 struct regnode_charclass_class this_class;
3349 struct regnode_charclass_class *oclass = NULL;
3350 I32 next_is_eval = 0;
3352 switch (PL_regkind[OP(scan)]) {
3353 case WHILEM: /* End of (?:...)* . */
3354 scan = NEXTOPER(scan);
3357 if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
3358 next = NEXTOPER(scan);
3359 if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
3361 maxcount = REG_INFTY;
3362 next = regnext(scan);
3363 scan = NEXTOPER(scan);
3367 if (flags & SCF_DO_SUBSTR)
3372 if (flags & SCF_DO_STCLASS) {
3374 maxcount = REG_INFTY;
3375 next = regnext(scan);
3376 scan = NEXTOPER(scan);
3379 is_inf = is_inf_internal = 1;
3380 scan = regnext(scan);
3381 if (flags & SCF_DO_SUBSTR) {
3382 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */
3383 data->longest = &(data->longest_float);
3385 goto optimize_curly_tail;
3387 if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
3388 && (scan->flags == stopparen))
3393 mincount = ARG1(scan);
3394 maxcount = ARG2(scan);
3396 next = regnext(scan);
3397 if (OP(scan) == CURLYX) {
3398 I32 lp = (data ? *(data->last_closep) : 0);
3399 scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
3401 scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
3402 next_is_eval = (OP(scan) == EVAL);
3404 if (flags & SCF_DO_SUBSTR) {
3405 if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */
3406 pos_before = data->pos_min;
3410 data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
3412 data->flags |= SF_IS_INF;
3414 if (flags & SCF_DO_STCLASS) {
3415 cl_init(pRExC_state, &this_class);
3416 oclass = data->start_class;
3417 data->start_class = &this_class;
3418 f |= SCF_DO_STCLASS_AND;
3419 f &= ~SCF_DO_STCLASS_OR;
3421 /* Exclude from super-linear cache processing any {n,m}
3422 regops for which the combination of input pos and regex
3423 pos is not enough information to determine if a match
3426 For example, in the regex /foo(bar\s*){4,8}baz/ with the
3427 regex pos at the \s*, the prospects for a match depend not
3428 only on the input position but also on how many (bar\s*)
3429 repeats into the {4,8} we are. */
3430 if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
3431 f &= ~SCF_WHILEM_VISITED_POS;
3433 /* This will finish on WHILEM, setting scan, or on NULL: */
3434 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3435 last, data, stopparen, recursed, NULL,
3437 ? (f & ~SCF_DO_SUBSTR) : f),depth+1);
3439 if (flags & SCF_DO_STCLASS)
3440 data->start_class = oclass;
3441 if (mincount == 0 || minnext == 0) {
3442 if (flags & SCF_DO_STCLASS_OR) {
3443 cl_or(pRExC_state, data->start_class, &this_class);
3445 else if (flags & SCF_DO_STCLASS_AND) {
3446 /* Switch to OR mode: cache the old value of
3447 * data->start_class */
3449 StructCopy(data->start_class, and_withp,
3450 struct regnode_charclass_class);
3451 flags &= ~SCF_DO_STCLASS_AND;
3452 StructCopy(&this_class, data->start_class,
3453 struct regnode_charclass_class);
3454 flags |= SCF_DO_STCLASS_OR;
3455 data->start_class->flags |= ANYOF_EOS;
3457 } else { /* Non-zero len */
3458 if (flags & SCF_DO_STCLASS_OR) {
3459 cl_or(pRExC_state, data->start_class, &this_class);
3460 cl_and(data->start_class, and_withp);
3462 else if (flags & SCF_DO_STCLASS_AND)
3463 cl_and(data->start_class, &this_class);
3464 flags &= ~SCF_DO_STCLASS;
3466 if (!scan) /* It was not CURLYX, but CURLY. */
3468 if ( /* ? quantifier ok, except for (?{ ... }) */
3469 (next_is_eval || !(mincount == 0 && maxcount == 1))
3470 && (minnext == 0) && (deltanext == 0)
3471 && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
3472 && maxcount <= REG_INFTY/3) /* Complement check for big count */
3474 ckWARNreg(RExC_parse,
3475 "Quantifier unexpected on zero-length expression");
3478 min += minnext * mincount;
3479 is_inf_internal |= ((maxcount == REG_INFTY
3480 && (minnext + deltanext) > 0)
3481 || deltanext == I32_MAX);
3482 is_inf |= is_inf_internal;
3483 delta += (minnext + deltanext) * maxcount - minnext * mincount;
3485 /* Try powerful optimization CURLYX => CURLYN. */
3486 if ( OP(oscan) == CURLYX && data
3487 && data->flags & SF_IN_PAR
3488 && !(data->flags & SF_HAS_EVAL)
3489 && !deltanext && minnext == 1 ) {
3490 /* Try to optimize to CURLYN. */
3491 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
3492 regnode * const nxt1 = nxt;
3499 if (!REGNODE_SIMPLE(OP(nxt))
3500 && !(PL_regkind[OP(nxt)] == EXACT
3501 && STR_LEN(nxt) == 1))
3507 if (OP(nxt) != CLOSE)
3509 if (RExC_open_parens) {
3510 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3511 RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
3513 /* Now we know that nxt2 is the only contents: */
3514 oscan->flags = (U8)ARG(nxt);
3516 OP(nxt1) = NOTHING; /* was OPEN. */
3519 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3520 NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
3521 NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
3522 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3523 OP(nxt + 1) = OPTIMIZED; /* was count. */
3524 NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
3529 /* Try optimization CURLYX => CURLYM. */
3530 if ( OP(oscan) == CURLYX && data
3531 && !(data->flags & SF_HAS_PAR)
3532 && !(data->flags & SF_HAS_EVAL)
3533 && !deltanext /* atom is fixed width */
3534 && minnext != 0 /* CURLYM can't handle zero width */
3536 /* XXXX How to optimize if data == 0? */
3537 /* Optimize to a simpler form. */
3538 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
3542 while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
3543 && (OP(nxt2) != WHILEM))
3545 OP(nxt2) = SUCCEED; /* Whas WHILEM */
3546 /* Need to optimize away parenths. */
3547 if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
3548 /* Set the parenth number. */
3549 regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
3551 oscan->flags = (U8)ARG(nxt);
3552 if (RExC_open_parens) {
3553 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3554 RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
3556 OP(nxt1) = OPTIMIZED; /* was OPEN. */
3557 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3560 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3561 OP(nxt + 1) = OPTIMIZED; /* was count. */
3562 NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
3563 NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
3566 while ( nxt1 && (OP(nxt1) != WHILEM)) {
3567 regnode *nnxt = regnext(nxt1);
3569 if (reg_off_by_arg[OP(nxt1)])
3570 ARG_SET(nxt1, nxt2 - nxt1);
3571 else if (nxt2 - nxt1 < U16_MAX)
3572 NEXT_OFF(nxt1) = nxt2 - nxt1;
3574 OP(nxt) = NOTHING; /* Cannot beautify */
3579 /* Optimize again: */
3580 study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
3581 NULL, stopparen, recursed, NULL, 0,depth+1);
3586 else if ((OP(oscan) == CURLYX)
3587 && (flags & SCF_WHILEM_VISITED_POS)
3588 /* See the comment on a similar expression above.
3589 However, this time it's not a subexpression
3590 we care about, but the expression itself. */
3591 && (maxcount == REG_INFTY)
3592 && data && ++data->whilem_c < 16) {
3593 /* This stays as CURLYX, we can put the count/of pair. */
3594 /* Find WHILEM (as in regexec.c) */
3595 regnode *nxt = oscan + NEXT_OFF(oscan);
3597 if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
3599 PREVOPER(nxt)->flags = (U8)(data->whilem_c
3600 | (RExC_whilem_seen << 4)); /* On WHILEM */
3602 if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
3604 if (flags & SCF_DO_SUBSTR) {
3605 SV *last_str = NULL;
3606 int counted = mincount != 0;
3608 if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */
3609 #if defined(SPARC64_GCC_WORKAROUND)
3612 const char *s = NULL;
3615 if (pos_before >= data->last_start_min)
3618 b = data->last_start_min;
3621 s = SvPV_const(data->last_found, l);
3622 old = b - data->last_start_min;
3625 I32 b = pos_before >= data->last_start_min
3626 ? pos_before : data->last_start_min;
3628 const char * const s = SvPV_const(data->last_found, l);
3629 I32 old = b - data->last_start_min;
3633 old = utf8_hop((U8*)s, old) - (U8*)s;
3635 /* Get the added string: */
3636 last_str = newSVpvn_utf8(s + old, l, UTF);
3637 if (deltanext == 0 && pos_before == b) {
3638 /* What was added is a constant string */
3640 SvGROW(last_str, (mincount * l) + 1);
3641 repeatcpy(SvPVX(last_str) + l,
3642 SvPVX_const(last_str), l, mincount - 1);
3643 SvCUR_set(last_str, SvCUR(last_str) * mincount);
3644 /* Add additional parts. */
3645 SvCUR_set(data->last_found,
3646 SvCUR(data->last_found) - l);
3647 sv_catsv(data->last_found, last_str);
3649 SV * sv = data->last_found;
3651 SvUTF8(sv) && SvMAGICAL(sv) ?
3652 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3653 if (mg && mg->mg_len >= 0)
3654 mg->mg_len += CHR_SVLEN(last_str) - l;
3656 data->last_end += l * (mincount - 1);
3659 /* start offset must point into the last copy */
3660 data->last_start_min += minnext * (mincount - 1);
3661 data->last_start_max += is_inf ? I32_MAX
3662 : (maxcount - 1) * (minnext + data->pos_delta);
3665 /* It is counted once already... */
3666 data->pos_min += minnext * (mincount - counted);
3667 data->pos_delta += - counted * deltanext +
3668 (minnext + deltanext) * maxcount - minnext * mincount;
3669 if (mincount != maxcount) {
3670 /* Cannot extend fixed substrings found inside
3672 SCAN_COMMIT(pRExC_state,data,minlenp);
3673 if (mincount && last_str) {
3674 SV * const sv = data->last_found;
3675 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3676 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3680 sv_setsv(sv, last_str);
3681 data->last_end = data->pos_min;
3682 data->last_start_min =
3683 data->pos_min - CHR_SVLEN(last_str);
3684 data->last_start_max = is_inf
3686 : data->pos_min + data->pos_delta
3687 - CHR_SVLEN(last_str);
3689 data->longest = &(data->longest_float);
3691 SvREFCNT_dec(last_str);
3693 if (data && (fl & SF_HAS_EVAL))
3694 data->flags |= SF_HAS_EVAL;
3695 optimize_curly_tail:
3696 if (OP(oscan) != CURLYX) {
3697 while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
3699 NEXT_OFF(oscan) += NEXT_OFF(next);
3702 default: /* REF, ANYOFV, and CLUMP only? */
3703 if (flags & SCF_DO_SUBSTR) {
3704 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3705 data->longest = &(data->longest_float);
3707 is_inf = is_inf_internal = 1;
3708 if (flags & SCF_DO_STCLASS_OR)
3709 cl_anything(pRExC_state, data->start_class);
3710 flags &= ~SCF_DO_STCLASS;
3714 else if (OP(scan) == LNBREAK) {
3715 if (flags & SCF_DO_STCLASS) {
3717 data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
3718 if (flags & SCF_DO_STCLASS_AND) {
3719 for (value = 0; value < 256; value++)
3720 if (!is_VERTWS_cp(value))
3721 ANYOF_BITMAP_CLEAR(data->start_class, value);
3724 for (value = 0; value < 256; value++)
3725 if (is_VERTWS_cp(value))
3726 ANYOF_BITMAP_SET(data->start_class, value);
3728 if (flags & SCF_DO_STCLASS_OR)
3729 cl_and(data->start_class, and_withp);
3730 flags &= ~SCF_DO_STCLASS;
3734 if (flags & SCF_DO_SUBSTR) {
3735 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3737 data->pos_delta += 1;
3738 data->longest = &(data->longest_float);
3741 else if (OP(scan) == FOLDCHAR) {
3742 int d = ARG(scan) == LATIN_SMALL_LETTER_SHARP_S ? 1 : 2;
3743 flags &= ~SCF_DO_STCLASS;
3746 if (flags & SCF_DO_SUBSTR) {
3747 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3749 data->pos_delta += d;
3750 data->longest = &(data->longest_float);
3753 else if (REGNODE_SIMPLE(OP(scan))) {
3756 if (flags & SCF_DO_SUBSTR) {
3757 SCAN_COMMIT(pRExC_state,data,minlenp);
3761 if (flags & SCF_DO_STCLASS) {
3762 data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
3764 /* Some of the logic below assumes that switching
3765 locale on will only add false positives. */
3766 switch (PL_regkind[OP(scan)]) {
3770 /* Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan)); */
3771 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3772 cl_anything(pRExC_state, data->start_class);
3775 if (OP(scan) == SANY)
3777 if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */
3778 value = (ANYOF_BITMAP_TEST(data->start_class,'\n')
3779 || ANYOF_CLASS_TEST_ANY_SET(data->start_class));
3780 cl_anything(pRExC_state, data->start_class);
3782 if (flags & SCF_DO_STCLASS_AND || !value)
3783 ANYOF_BITMAP_CLEAR(data->start_class,'\n');
3786 if (flags & SCF_DO_STCLASS_AND)
3787 cl_and(data->start_class,
3788 (struct regnode_charclass_class*)scan);
3790 cl_or(pRExC_state, data->start_class,
3791 (struct regnode_charclass_class*)scan);
3794 if (flags & SCF_DO_STCLASS_AND) {
3795 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3796 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NALNUM);
3797 if (OP(scan) == ALNUMU) {
3798 for (value = 0; value < 256; value++) {
3799 if (!isWORDCHAR_L1(value)) {
3800 ANYOF_BITMAP_CLEAR(data->start_class, value);
3804 for (value = 0; value < 256; value++) {
3805 if (!isALNUM(value)) {
3806 ANYOF_BITMAP_CLEAR(data->start_class, value);
3813 if (data->start_class->flags & ANYOF_LOCALE)
3814 ANYOF_CLASS_SET(data->start_class,ANYOF_ALNUM);
3816 /* Even if under locale, set the bits for non-locale
3817 * in case it isn't a true locale-node. This will
3818 * create false positives if it truly is locale */
3819 if (OP(scan) == ALNUMU) {
3820 for (value = 0; value < 256; value++) {
3821 if (isWORDCHAR_L1(value)) {
3822 ANYOF_BITMAP_SET(data->start_class, value);
3826 for (value = 0; value < 256; value++) {
3827 if (isALNUM(value)) {
3828 ANYOF_BITMAP_SET(data->start_class, value);
3835 if (flags & SCF_DO_STCLASS_AND) {
3836 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3837 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_ALNUM);
3838 if (OP(scan) == NALNUMU) {
3839 for (value = 0; value < 256; value++) {
3840 if (isWORDCHAR_L1(value)) {
3841 ANYOF_BITMAP_CLEAR(data->start_class, value);
3845 for (value = 0; value < 256; value++) {
3846 if (isALNUM(value)) {
3847 ANYOF_BITMAP_CLEAR(data->start_class, value);
3854 if (data->start_class->flags & ANYOF_LOCALE)
3855 ANYOF_CLASS_SET(data->start_class,ANYOF_NALNUM);
3857 /* Even if under locale, set the bits for non-locale in
3858 * case it isn't a true locale-node. This will create
3859 * false positives if it truly is locale */
3860 if (OP(scan) == NALNUMU) {
3861 for (value = 0; value < 256; value++) {
3862 if (! isWORDCHAR_L1(value)) {
3863 ANYOF_BITMAP_SET(data->start_class, value);
3867 for (value = 0; value < 256; value++) {
3868 if (! isALNUM(value)) {
3869 ANYOF_BITMAP_SET(data->start_class, value);
3876 if (flags & SCF_DO_STCLASS_AND) {
3877 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3878 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NSPACE);
3879 if (OP(scan) == SPACEU) {
3880 for (value = 0; value < 256; value++) {
3881 if (!isSPACE_L1(value)) {
3882 ANYOF_BITMAP_CLEAR(data->start_class, value);
3886 for (value = 0; value < 256; value++) {
3887 if (!isSPACE(value)) {
3888 ANYOF_BITMAP_CLEAR(data->start_class, value);
3895 if (data->start_class->flags & ANYOF_LOCALE) {
3896 ANYOF_CLASS_SET(data->start_class,ANYOF_SPACE);
3898 if (OP(scan) == SPACEU) {
3899 for (value = 0; value < 256; value++) {
3900 if (isSPACE_L1(value)) {
3901 ANYOF_BITMAP_SET(data->start_class, value);
3905 for (value = 0; value < 256; value++) {
3906 if (isSPACE(value)) {
3907 ANYOF_BITMAP_SET(data->start_class, value);
3914 if (flags & SCF_DO_STCLASS_AND) {
3915 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3916 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_SPACE);
3917 if (OP(scan) == NSPACEU) {
3918 for (value = 0; value < 256; value++) {
3919 if (isSPACE_L1(value)) {
3920 ANYOF_BITMAP_CLEAR(data->start_class, value);
3924 for (value = 0; value < 256; value++) {
3925 if (isSPACE(value)) {
3926 ANYOF_BITMAP_CLEAR(data->start_class, value);
3933 if (data->start_class->flags & ANYOF_LOCALE)
3934 ANYOF_CLASS_SET(data->start_class,ANYOF_NSPACE);
3935 if (OP(scan) == NSPACEU) {
3936 for (value = 0; value < 256; value++) {
3937 if (!isSPACE_L1(value)) {
3938 ANYOF_BITMAP_SET(data->start_class, value);
3943 for (value = 0; value < 256; value++) {
3944 if (!isSPACE(value)) {
3945 ANYOF_BITMAP_SET(data->start_class, value);
3952 if (flags & SCF_DO_STCLASS_AND) {
3953 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3954 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NDIGIT);
3955 for (value = 0; value < 256; value++)
3956 if (!isDIGIT(value))
3957 ANYOF_BITMAP_CLEAR(data->start_class, value);
3961 if (data->start_class->flags & ANYOF_LOCALE)
3962 ANYOF_CLASS_SET(data->start_class,ANYOF_DIGIT);
3963 for (value = 0; value < 256; value++)
3965 ANYOF_BITMAP_SET(data->start_class, value);
3969 if (flags & SCF_DO_STCLASS_AND) {
3970 if (!(data->start_class->flags & ANYOF_LOCALE))
3971 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_DIGIT);
3972 for (value = 0; value < 256; value++)
3974 ANYOF_BITMAP_CLEAR(data->start_class, value);
3977 if (data->start_class->flags & ANYOF_LOCALE)
3978 ANYOF_CLASS_SET(data->start_class,ANYOF_NDIGIT);
3979 for (value = 0; value < 256; value++)
3980 if (!isDIGIT(value))
3981 ANYOF_BITMAP_SET(data->start_class, value);
3984 CASE_SYNST_FNC(VERTWS);
3985 CASE_SYNST_FNC(HORIZWS);
3988 if (flags & SCF_DO_STCLASS_OR)
3989 cl_and(data->start_class, and_withp);
3990 flags &= ~SCF_DO_STCLASS;
3993 else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
3994 data->flags |= (OP(scan) == MEOL
3998 else if ( PL_regkind[OP(scan)] == BRANCHJ
3999 /* Lookbehind, or need to calculate parens/evals/stclass: */
4000 && (scan->flags || data || (flags & SCF_DO_STCLASS))
4001 && (OP(scan) == IFMATCH || OP(scan) == UNLESSM)) {
4002 if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4003 || OP(scan) == UNLESSM )
4005 /* Negative Lookahead/lookbehind
4006 In this case we can't do fixed string optimisation.
4009 I32 deltanext, minnext, fake = 0;
4011 struct regnode_charclass_class intrnl;
4014 data_fake.flags = 0;
4016 data_fake.whilem_c = data->whilem_c;
4017 data_fake.last_closep = data->last_closep;
4020 data_fake.last_closep = &fake;
4021 data_fake.pos_delta = delta;
4022 if ( flags & SCF_DO_STCLASS && !scan->flags
4023 && OP(scan) == IFMATCH ) { /* Lookahead */
4024 cl_init(pRExC_state, &intrnl);
4025 data_fake.start_class = &intrnl;
4026 f |= SCF_DO_STCLASS_AND;
4028 if (flags & SCF_WHILEM_VISITED_POS)
4029 f |= SCF_WHILEM_VISITED_POS;
4030 next = regnext(scan);
4031 nscan = NEXTOPER(NEXTOPER(scan));
4032 minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
4033 last, &data_fake, stopparen, recursed, NULL, f, depth+1);
4036 FAIL("Variable length lookbehind not implemented");
4038 else if (minnext > (I32)U8_MAX) {
4039 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4041 scan->flags = (U8)minnext;
4044 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4046 if (data_fake.flags & SF_HAS_EVAL)
4047 data->flags |= SF_HAS_EVAL;
4048 data->whilem_c = data_fake.whilem_c;
4050 if (f & SCF_DO_STCLASS_AND) {
4051 if (flags & SCF_DO_STCLASS_OR) {
4052 /* OR before, AND after: ideally we would recurse with
4053 * data_fake to get the AND applied by study of the
4054 * remainder of the pattern, and then derecurse;
4055 * *** HACK *** for now just treat as "no information".
4056 * See [perl #56690].
4058 cl_init(pRExC_state, data->start_class);
4060 /* AND before and after: combine and continue */
4061 const int was = (data->start_class->flags & ANYOF_EOS);
4063 cl_and(data->start_class, &intrnl);
4065 data->start_class->flags |= ANYOF_EOS;
4069 #if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4071 /* Positive Lookahead/lookbehind
4072 In this case we can do fixed string optimisation,
4073 but we must be careful about it. Note in the case of
4074 lookbehind the positions will be offset by the minimum
4075 length of the pattern, something we won't know about
4076 until after the recurse.
4078 I32 deltanext, fake = 0;
4080 struct regnode_charclass_class intrnl;
4082 /* We use SAVEFREEPV so that when the full compile
4083 is finished perl will clean up the allocated
4084 minlens when it's all done. This way we don't
4085 have to worry about freeing them when we know
4086 they wont be used, which would be a pain.
4089 Newx( minnextp, 1, I32 );
4090 SAVEFREEPV(minnextp);
4093 StructCopy(data, &data_fake, scan_data_t);
4094 if ((flags & SCF_DO_SUBSTR) && data->last_found) {
4097 SCAN_COMMIT(pRExC_state, &data_fake,minlenp);
4098 data_fake.last_found=newSVsv(data->last_found);
4102 data_fake.last_closep = &fake;
4103 data_fake.flags = 0;
4104 data_fake.pos_delta = delta;
4106 data_fake.flags |= SF_IS_INF;
4107 if ( flags & SCF_DO_STCLASS && !scan->flags
4108 && OP(scan) == IFMATCH ) { /* Lookahead */
4109 cl_init(pRExC_state, &intrnl);
4110 data_fake.start_class = &intrnl;
4111 f |= SCF_DO_STCLASS_AND;
4113 if (flags & SCF_WHILEM_VISITED_POS)
4114 f |= SCF_WHILEM_VISITED_POS;
4115 next = regnext(scan);
4116 nscan = NEXTOPER(NEXTOPER(scan));
4118 *minnextp = study_chunk(pRExC_state, &nscan, minnextp, &deltanext,
4119 last, &data_fake, stopparen, recursed, NULL, f,depth+1);
4122 FAIL("Variable length lookbehind not implemented");
4124 else if (*minnextp > (I32)U8_MAX) {
4125 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4127 scan->flags = (U8)*minnextp;
4132 if (f & SCF_DO_STCLASS_AND) {
4133 const int was = (data->start_class->flags & ANYOF_EOS);
4135 cl_and(data->start_class, &intrnl);
4137 data->start_class->flags |= ANYOF_EOS;
4140 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4142 if (data_fake.flags & SF_HAS_EVAL)
4143 data->flags |= SF_HAS_EVAL;
4144 data->whilem_c = data_fake.whilem_c;
4145 if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
4146 if (RExC_rx->minlen<*minnextp)
4147 RExC_rx->minlen=*minnextp;
4148 SCAN_COMMIT(pRExC_state, &data_fake, minnextp);
4149 SvREFCNT_dec(data_fake.last_found);
4151 if ( data_fake.minlen_fixed != minlenp )
4153 data->offset_fixed= data_fake.offset_fixed;
4154 data->minlen_fixed= data_fake.minlen_fixed;
4155 data->lookbehind_fixed+= scan->flags;
4157 if ( data_fake.minlen_float != minlenp )
4159 data->minlen_float= data_fake.minlen_float;
4160 data->offset_float_min=data_fake.offset_float_min;
4161 data->offset_float_max=data_fake.offset_float_max;
4162 data->lookbehind_float+= scan->flags;
4171 else if (OP(scan) == OPEN) {
4172 if (stopparen != (I32)ARG(scan))
4175 else if (OP(scan) == CLOSE) {
4176 if (stopparen == (I32)ARG(scan)) {
4179 if ((I32)ARG(scan) == is_par) {
4180 next = regnext(scan);
4182 if ( next && (OP(next) != WHILEM) && next < last)
4183 is_par = 0; /* Disable optimization */
4186 *(data->last_closep) = ARG(scan);
4188 else if (OP(scan) == EVAL) {
4190 data->flags |= SF_HAS_EVAL;
4192 else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
4193 if (flags & SCF_DO_SUBSTR) {
4194 SCAN_COMMIT(pRExC_state,data,minlenp);
4195 flags &= ~SCF_DO_SUBSTR;
4197 if (data && OP(scan)==ACCEPT) {
4198 data->flags |= SCF_SEEN_ACCEPT;
4203 else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
4205 if (flags & SCF_DO_SUBSTR) {
4206 SCAN_COMMIT(pRExC_state,data,minlenp);
4207 data->longest = &(data->longest_float);
4209 is_inf = is_inf_internal = 1;
4210 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
4211 cl_anything(pRExC_state, data->start_class);
4212 flags &= ~SCF_DO_STCLASS;
4214 else if (OP(scan) == GPOS) {
4215 if (!(RExC_rx->extflags & RXf_GPOS_FLOAT) &&
4216 !(delta || is_inf || (data && data->pos_delta)))
4218 if (!(RExC_rx->extflags & RXf_ANCH) && (flags & SCF_DO_SUBSTR))
4219 RExC_rx->extflags |= RXf_ANCH_GPOS;
4220 if (RExC_rx->gofs < (U32)min)
4221 RExC_rx->gofs = min;
4223 RExC_rx->extflags |= RXf_GPOS_FLOAT;
4227 #ifdef TRIE_STUDY_OPT
4228 #ifdef FULL_TRIE_STUDY
4229 else if (PL_regkind[OP(scan)] == TRIE) {
4230 /* NOTE - There is similar code to this block above for handling
4231 BRANCH nodes on the initial study. If you change stuff here
4233 regnode *trie_node= scan;
4234 regnode *tail= regnext(scan);
4235 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4236 I32 max1 = 0, min1 = I32_MAX;
4237 struct regnode_charclass_class accum;
4239 if (flags & SCF_DO_SUBSTR) /* XXXX Add !SUSPEND? */
4240 SCAN_COMMIT(pRExC_state, data,minlenp); /* Cannot merge strings after this. */
4241 if (flags & SCF_DO_STCLASS)
4242 cl_init_zero(pRExC_state, &accum);
4248 const regnode *nextbranch= NULL;
4251 for ( word=1 ; word <= trie->wordcount ; word++)
4253 I32 deltanext=0, minnext=0, f = 0, fake;
4254 struct regnode_charclass_class this_class;
4256 data_fake.flags = 0;
4258 data_fake.whilem_c = data->whilem_c;
4259 data_fake.last_closep = data->last_closep;
4262 data_fake.last_closep = &fake;
4263 data_fake.pos_delta = delta;
4264 if (flags & SCF_DO_STCLASS) {
4265 cl_init(pRExC_state, &this_class);
4266 data_fake.start_class = &this_class;
4267 f = SCF_DO_STCLASS_AND;
4269 if (flags & SCF_WHILEM_VISITED_POS)
4270 f |= SCF_WHILEM_VISITED_POS;
4272 if (trie->jump[word]) {
4274 nextbranch = trie_node + trie->jump[0];
4275 scan= trie_node + trie->jump[word];
4276 /* We go from the jump point to the branch that follows
4277 it. Note this means we need the vestigal unused branches
4278 even though they arent otherwise used.
4280 minnext = study_chunk(pRExC_state, &scan, minlenp,
4281 &deltanext, (regnode *)nextbranch, &data_fake,
4282 stopparen, recursed, NULL, f,depth+1);
4284 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
4285 nextbranch= regnext((regnode*)nextbranch);
4287 if (min1 > (I32)(minnext + trie->minlen))
4288 min1 = minnext + trie->minlen;
4289 if (max1 < (I32)(minnext + deltanext + trie->maxlen))
4290 max1 = minnext + deltanext + trie->maxlen;
4291 if (deltanext == I32_MAX)
4292 is_inf = is_inf_internal = 1;
4294 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4296 if (data_fake.flags & SCF_SEEN_ACCEPT) {
4297 if ( stopmin > min + min1)
4298 stopmin = min + min1;
4299 flags &= ~SCF_DO_SUBSTR;
4301 data->flags |= SCF_SEEN_ACCEPT;
4304 if (data_fake.flags & SF_HAS_EVAL)
4305 data->flags |= SF_HAS_EVAL;
4306 data->whilem_c = data_fake.whilem_c;
4308 if (flags & SCF_DO_STCLASS)
4309 cl_or(pRExC_state, &accum, &this_class);
4312 if (flags & SCF_DO_SUBSTR) {
4313 data->pos_min += min1;
4314 data->pos_delta += max1 - min1;
4315 if (max1 != min1 || is_inf)
4316 data->longest = &(data->longest_float);
4319 delta += max1 - min1;
4320 if (flags & SCF_DO_STCLASS_OR) {
4321 cl_or(pRExC_state, data->start_class, &accum);
4323 cl_and(data->start_class, and_withp);
4324 flags &= ~SCF_DO_STCLASS;
4327 else if (flags & SCF_DO_STCLASS_AND) {
4329 cl_and(data->start_class, &accum);
4330 flags &= ~SCF_DO_STCLASS;
4333 /* Switch to OR mode: cache the old value of
4334 * data->start_class */
4336 StructCopy(data->start_class, and_withp,
4337 struct regnode_charclass_class);
4338 flags &= ~SCF_DO_STCLASS_AND;
4339 StructCopy(&accum, data->start_class,
4340 struct regnode_charclass_class);
4341 flags |= SCF_DO_STCLASS_OR;
4342 data->start_class->flags |= ANYOF_EOS;
4349 else if (PL_regkind[OP(scan)] == TRIE) {
4350 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4353 min += trie->minlen;
4354 delta += (trie->maxlen - trie->minlen);
4355 flags &= ~SCF_DO_STCLASS; /* xxx */
4356 if (flags & SCF_DO_SUBSTR) {
4357 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
4358 data->pos_min += trie->minlen;
4359 data->pos_delta += (trie->maxlen - trie->minlen);
4360 if (trie->maxlen != trie->minlen)
4361 data->longest = &(data->longest_float);
4363 if (trie->jump) /* no more substrings -- for now /grr*/
4364 flags &= ~SCF_DO_SUBSTR;
4366 #endif /* old or new */
4367 #endif /* TRIE_STUDY_OPT */
4369 /* Else: zero-length, ignore. */
4370 scan = regnext(scan);
4375 stopparen = frame->stop;
4376 frame = frame->prev;
4377 goto fake_study_recurse;
4382 DEBUG_STUDYDATA("pre-fin:",data,depth);
4385 *deltap = is_inf_internal ? I32_MAX : delta;
4386 if (flags & SCF_DO_SUBSTR && is_inf)
4387 data->pos_delta = I32_MAX - data->pos_min;
4388 if (is_par > (I32)U8_MAX)
4390 if (is_par && pars==1 && data) {
4391 data->flags |= SF_IN_PAR;
4392 data->flags &= ~SF_HAS_PAR;
4394 else if (pars && data) {
4395 data->flags |= SF_HAS_PAR;
4396 data->flags &= ~SF_IN_PAR;
4398 if (flags & SCF_DO_STCLASS_OR)
4399 cl_and(data->start_class, and_withp);
4400 if (flags & SCF_TRIE_RESTUDY)
4401 data->flags |= SCF_TRIE_RESTUDY;
4403 DEBUG_STUDYDATA("post-fin:",data,depth);
4405 return min < stopmin ? min : stopmin;
4409 S_add_data(RExC_state_t *pRExC_state, U32 n, const char *s)
4411 U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
4413 PERL_ARGS_ASSERT_ADD_DATA;
4415 Renewc(RExC_rxi->data,
4416 sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
4417 char, struct reg_data);
4419 Renew(RExC_rxi->data->what, count + n, U8);
4421 Newx(RExC_rxi->data->what, n, U8);
4422 RExC_rxi->data->count = count + n;
4423 Copy(s, RExC_rxi->data->what + count, n, U8);
4427 /*XXX: todo make this not included in a non debugging perl */
4428 #ifndef PERL_IN_XSUB_RE
4430 Perl_reginitcolors(pTHX)
4433 const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
4435 char *t = savepv(s);
4439 t = strchr(t, '\t');
4445 PL_colors[i] = t = (char *)"";
4450 PL_colors[i++] = (char *)"";
4457 #ifdef TRIE_STUDY_OPT
4458 #define CHECK_RESTUDY_GOTO \
4460 (data.flags & SCF_TRIE_RESTUDY) \
4464 #define CHECK_RESTUDY_GOTO
4468 - pregcomp - compile a regular expression into internal code
4470 * We can't allocate space until we know how big the compiled form will be,
4471 * but we can't compile it (and thus know how big it is) until we've got a
4472 * place to put the code. So we cheat: we compile it twice, once with code
4473 * generation turned off and size counting turned on, and once "for real".
4474 * This also means that we don't allocate space until we are sure that the
4475 * thing really will compile successfully, and we never have to move the
4476 * code and thus invalidate pointers into it. (Note that it has to be in
4477 * one piece because free() must be able to free it all.) [NB: not true in perl]
4479 * Beware that the optimization-preparation code in here knows about some
4480 * of the structure of the compiled regexp. [I'll say.]
4485 #ifndef PERL_IN_XSUB_RE
4486 #define RE_ENGINE_PTR &PL_core_reg_engine
4488 extern const struct regexp_engine my_reg_engine;
4489 #define RE_ENGINE_PTR &my_reg_engine
4492 #ifndef PERL_IN_XSUB_RE
4494 Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
4497 HV * const table = GvHV(PL_hintgv);
4499 PERL_ARGS_ASSERT_PREGCOMP;
4501 /* Dispatch a request to compile a regexp to correct
4504 SV **ptr= hv_fetchs(table, "regcomp", FALSE);
4505 GET_RE_DEBUG_FLAGS_DECL;
4506 if (ptr && SvIOK(*ptr) && SvIV(*ptr)) {
4507 const regexp_engine *eng=INT2PTR(regexp_engine*,SvIV(*ptr));
4509 PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
4512 return CALLREGCOMP_ENG(eng, pattern, flags);
4515 return Perl_re_compile(aTHX_ pattern, flags);
4520 Perl_re_compile(pTHX_ SV * const pattern, U32 orig_pm_flags)
4525 register regexp_internal *ri;
4534 /* these are all flags - maybe they should be turned
4535 * into a single int with different bit masks */
4536 I32 sawlookahead = 0;
4539 bool used_setjump = FALSE;
4540 regex_charset initial_charset = get_regex_charset(orig_pm_flags);
4545 RExC_state_t RExC_state;
4546 RExC_state_t * const pRExC_state = &RExC_state;
4547 #ifdef TRIE_STUDY_OPT
4549 RExC_state_t copyRExC_state;
4551 GET_RE_DEBUG_FLAGS_DECL;
4553 PERL_ARGS_ASSERT_RE_COMPILE;
4555 DEBUG_r(if (!PL_colorset) reginitcolors());
4557 exp = SvPV(pattern, plen);
4559 if (plen == 0) { /* ignore the utf8ness if the pattern is 0 length */
4560 RExC_utf8 = RExC_orig_utf8 = 0;
4563 RExC_utf8 = RExC_orig_utf8 = SvUTF8(pattern);
4565 RExC_uni_semantics = 0;
4566 RExC_contains_locale = 0;
4568 /****************** LONG JUMP TARGET HERE***********************/
4569 /* Longjmp back to here if have to switch in midstream to utf8 */
4570 if (! RExC_orig_utf8) {
4571 JMPENV_PUSH(jump_ret);
4572 used_setjump = TRUE;
4575 if (jump_ret == 0) { /* First time through */
4579 SV *dsv= sv_newmortal();
4580 RE_PV_QUOTED_DECL(s, RExC_utf8,
4581 dsv, exp, plen, 60);
4582 PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
4583 PL_colors[4],PL_colors[5],s);
4586 else { /* longjumped back */
4589 /* If the cause for the longjmp was other than changing to utf8, pop
4590 * our own setjmp, and longjmp to the correct handler */
4591 if (jump_ret != UTF8_LONGJMP) {
4593 JMPENV_JUMP(jump_ret);
4598 /* It's possible to write a regexp in ascii that represents Unicode
4599 codepoints outside of the byte range, such as via \x{100}. If we
4600 detect such a sequence we have to convert the entire pattern to utf8
4601 and then recompile, as our sizing calculation will have been based
4602 on 1 byte == 1 character, but we will need to use utf8 to encode
4603 at least some part of the pattern, and therefore must convert the whole
4606 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
4607 "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
4608 exp = (char*)Perl_bytes_to_utf8(aTHX_
4609 (U8*)SvPV_nomg(pattern, plen),
4612 RExC_orig_utf8 = RExC_utf8 = 1;
4616 #ifdef TRIE_STUDY_OPT
4620 pm_flags = orig_pm_flags;
4622 if (initial_charset == REGEX_LOCALE_CHARSET) {
4623 RExC_contains_locale = 1;
4625 else if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
4627 /* Set to use unicode semantics if the pattern is in utf8 and has the
4628 * 'depends' charset specified, as it means unicode when utf8 */
4629 set_regex_charset(&pm_flags, REGEX_UNICODE_CHARSET);
4633 RExC_flags = pm_flags;
4637 RExC_in_lookbehind = 0;
4638 RExC_seen_zerolen = *exp == '^' ? -1 : 0;
4639 RExC_seen_evals = 0;
4641 RExC_override_recoding = 0;
4643 /* First pass: determine size, legality. */
4651 RExC_emit = &PL_regdummy;
4652 RExC_whilem_seen = 0;
4653 RExC_open_parens = NULL;
4654 RExC_close_parens = NULL;
4656 RExC_paren_names = NULL;
4658 RExC_paren_name_list = NULL;
4660 RExC_recurse = NULL;
4661 RExC_recurse_count = 0;
4663 #if 0 /* REGC() is (currently) a NOP at the first pass.
4664 * Clever compilers notice this and complain. --jhi */
4665 REGC((U8)REG_MAGIC, (char*)RExC_emit);
4667 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n"));
4668 if (reg(pRExC_state, 0, &flags,1) == NULL) {
4669 RExC_precomp = NULL;
4673 /* Here, finished first pass. Get rid of any added setjmp */
4679 PerlIO_printf(Perl_debug_log,
4680 "Required size %"IVdf" nodes\n"
4681 "Starting second pass (creation)\n",
4684 RExC_lastparse=NULL;
4687 /* The first pass could have found things that force Unicode semantics */
4688 if ((RExC_utf8 || RExC_uni_semantics)
4689 && get_regex_charset(pm_flags) == REGEX_DEPENDS_CHARSET)
4691 set_regex_charset(&pm_flags, REGEX_UNICODE_CHARSET);
4694 /* Small enough for pointer-storage convention?
4695 If extralen==0, this means that we will not need long jumps. */
4696 if (RExC_size >= 0x10000L && RExC_extralen)
4697 RExC_size += RExC_extralen;
4700 if (RExC_whilem_seen > 15)
4701 RExC_whilem_seen = 15;
4703 /* Allocate space and zero-initialize. Note, the two step process
4704 of zeroing when in debug mode, thus anything assigned has to
4705 happen after that */
4706 rx = (REGEXP*) newSV_type(SVt_REGEXP);
4707 r = (struct regexp*)SvANY(rx);
4708 Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
4709 char, regexp_internal);
4710 if ( r == NULL || ri == NULL )
4711 FAIL("Regexp out of space");
4713 /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
4714 Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode), char);
4716 /* bulk initialize base fields with 0. */
4717 Zero(ri, sizeof(regexp_internal), char);
4720 /* non-zero initialization begins here */
4722 r->engine= RE_ENGINE_PTR;
4723 r->extflags = pm_flags;
4725 bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
4726 bool has_charset = (get_regex_charset(r->extflags) != REGEX_DEPENDS_CHARSET);
4728 /* The caret is output if there are any defaults: if not all the STD
4729 * flags are set, or if no character set specifier is needed */
4731 (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
4733 bool has_runon = ((RExC_seen & REG_SEEN_RUN_ON_COMMENT)==REG_SEEN_RUN_ON_COMMENT);
4734 U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
4735 >> RXf_PMf_STD_PMMOD_SHIFT);
4736 const char *fptr = STD_PAT_MODS; /*"msix"*/
4738 /* Allocate for the worst case, which is all the std flags are turned
4739 * on. If more precision is desired, we could do a population count of
4740 * the flags set. This could be done with a small lookup table, or by
4741 * shifting, masking and adding, or even, when available, assembly
4742 * language for a machine-language population count.
4743 * We never output a minus, as all those are defaults, so are
4744 * covered by the caret */
4745 const STRLEN wraplen = plen + has_p + has_runon
4746 + has_default /* If needs a caret */
4748 /* If needs a character set specifier */
4749 + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
4750 + (sizeof(STD_PAT_MODS) - 1)
4751 + (sizeof("(?:)") - 1);
4753 p = sv_grow(MUTABLE_SV(rx), wraplen + 1); /* +1 for the ending NUL */
4755 SvFLAGS(rx) |= SvUTF8(pattern);
4758 /* If a default, cover it using the caret */
4760 *p++= DEFAULT_PAT_MOD;
4764 const char* const name = get_regex_charset_name(r->extflags, &len);
4765 Copy(name, p, len, char);
4769 *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
4772 while((ch = *fptr++)) {
4780 Copy(RExC_precomp, p, plen, char);
4781 assert ((RX_WRAPPED(rx) - p) < 16);
4782 r->pre_prefix = p - RX_WRAPPED(rx);
4788 SvCUR_set(rx, p - SvPVX_const(rx));
4792 r->nparens = RExC_npar - 1; /* set early to validate backrefs */
4794 if (RExC_seen & REG_SEEN_RECURSE) {
4795 Newxz(RExC_open_parens, RExC_npar,regnode *);
4796 SAVEFREEPV(RExC_open_parens);
4797 Newxz(RExC_close_parens,RExC_npar,regnode *);
4798 SAVEFREEPV(RExC_close_parens);
4801 /* Useful during FAIL. */
4802 #ifdef RE_TRACK_PATTERN_OFFSETS
4803 Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
4804 DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
4805 "%s %"UVuf" bytes for offset annotations.\n",
4806 ri->u.offsets ? "Got" : "Couldn't get",
4807 (UV)((2*RExC_size+1) * sizeof(U32))));
4809 SetProgLen(ri,RExC_size);
4813 REH_CALL_COMP_BEGIN_HOOK(pRExC_state->rx);
4815 /* Second pass: emit code. */
4816 RExC_flags = pm_flags; /* don't let top level (?i) bleed */
4821 RExC_emit_start = ri->program;
4822 RExC_emit = ri->program;
4823 RExC_emit_bound = ri->program + RExC_size + 1;
4825 /* Store the count of eval-groups for security checks: */
4826 RExC_rx->seen_evals = RExC_seen_evals;
4827 REGC((U8)REG_MAGIC, (char*) RExC_emit++);
4828 if (reg(pRExC_state, 0, &flags,1) == NULL) {
4832 /* XXXX To minimize changes to RE engine we always allocate
4833 3-units-long substrs field. */
4834 Newx(r->substrs, 1, struct reg_substr_data);
4835 if (RExC_recurse_count) {
4836 Newxz(RExC_recurse,RExC_recurse_count,regnode *);
4837 SAVEFREEPV(RExC_recurse);
4841 r->minlen = minlen = sawlookahead = sawplus = sawopen = 0;
4842 Zero(r->substrs, 1, struct reg_substr_data);
4844 #ifdef TRIE_STUDY_OPT
4846 StructCopy(&zero_scan_data, &data, scan_data_t);
4847 copyRExC_state = RExC_state;
4850 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
4852 RExC_state = copyRExC_state;
4853 if (seen & REG_TOP_LEVEL_BRANCHES)
4854 RExC_seen |= REG_TOP_LEVEL_BRANCHES;
4856 RExC_seen &= ~REG_TOP_LEVEL_BRANCHES;
4857 if (data.last_found) {
4858 SvREFCNT_dec(data.longest_fixed);
4859 SvREFCNT_dec(data.longest_float);
4860 SvREFCNT_dec(data.last_found);
4862 StructCopy(&zero_scan_data, &data, scan_data_t);
4865 StructCopy(&zero_scan_data, &data, scan_data_t);
4868 /* Dig out information for optimizations. */
4869 r->extflags = RExC_flags; /* was pm_op */
4870 /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
4873 SvUTF8_on(rx); /* Unicode in it? */
4874 ri->regstclass = NULL;
4875 if (RExC_naughty >= 10) /* Probably an expensive pattern. */
4876 r->intflags |= PREGf_NAUGHTY;
4877 scan = ri->program + 1; /* First BRANCH. */
4879 /* testing for BRANCH here tells us whether there is "must appear"
4880 data in the pattern. If there is then we can use it for optimisations */
4881 if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES)) { /* Only one top-level choice. */
4883 STRLEN longest_float_length, longest_fixed_length;
4884 struct regnode_charclass_class ch_class; /* pointed to by data */
4886 I32 last_close = 0; /* pointed to by data */
4887 regnode *first= scan;
4888 regnode *first_next= regnext(first);
4890 * Skip introductions and multiplicators >= 1
4891 * so that we can extract the 'meat' of the pattern that must
4892 * match in the large if() sequence following.
4893 * NOTE that EXACT is NOT covered here, as it is normally
4894 * picked up by the optimiser separately.
4896 * This is unfortunate as the optimiser isnt handling lookahead
4897 * properly currently.
4900 while ((OP(first) == OPEN && (sawopen = 1)) ||
4901 /* An OR of *one* alternative - should not happen now. */
4902 (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
4903 /* for now we can't handle lookbehind IFMATCH*/
4904 (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
4905 (OP(first) == PLUS) ||
4906 (OP(first) == MINMOD) ||
4907 /* An {n,m} with n>0 */
4908 (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
4909 (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
4912 * the only op that could be a regnode is PLUS, all the rest
4913 * will be regnode_1 or regnode_2.
4916 if (OP(first) == PLUS)
4919 first += regarglen[OP(first)];
4921 first = NEXTOPER(first);
4922 first_next= regnext(first);
4925 /* Starting-point info. */
4927 DEBUG_PEEP("first:",first,0);
4928 /* Ignore EXACT as we deal with it later. */
4929 if (PL_regkind[OP(first)] == EXACT) {
4930 if (OP(first) == EXACT)
4931 NOOP; /* Empty, get anchored substr later. */
4933 ri->regstclass = first;
4936 else if (PL_regkind[OP(first)] == TRIE &&
4937 ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
4940 /* this can happen only on restudy */
4941 if ( OP(first) == TRIE ) {
4942 struct regnode_1 *trieop = (struct regnode_1 *)
4943 PerlMemShared_calloc(1, sizeof(struct regnode_1));
4944 StructCopy(first,trieop,struct regnode_1);
4945 trie_op=(regnode *)trieop;
4947 struct regnode_charclass *trieop = (struct regnode_charclass *)
4948 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
4949 StructCopy(first,trieop,struct regnode_charclass);
4950 trie_op=(regnode *)trieop;
4953 make_trie_failtable(pRExC_state, (regnode *)first, trie_op, 0);
4954 ri->regstclass = trie_op;
4957 else if (REGNODE_SIMPLE(OP(first)))
4958 ri->regstclass = first;
4959 else if (PL_regkind[OP(first)] == BOUND ||
4960 PL_regkind[OP(first)] == NBOUND)
4961 ri->regstclass = first;
4962 else if (PL_regkind[OP(first)] == BOL) {
4963 r->extflags |= (OP(first) == MBOL
4965 : (OP(first) == SBOL
4968 first = NEXTOPER(first);
4971 else if (OP(first) == GPOS) {
4972 r->extflags |= RXf_ANCH_GPOS;
4973 first = NEXTOPER(first);
4976 else if ((!sawopen || !RExC_sawback) &&
4977 (OP(first) == STAR &&
4978 PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
4979 !(r->extflags & RXf_ANCH) && !(RExC_seen & REG_SEEN_EVAL))
4981 /* turn .* into ^.* with an implied $*=1 */
4983 (OP(NEXTOPER(first)) == REG_ANY)
4986 r->extflags |= type;
4987 r->intflags |= PREGf_IMPLICIT;
4988 first = NEXTOPER(first);
4991 if (sawplus && !sawlookahead && (!sawopen || !RExC_sawback)
4992 && !(RExC_seen & REG_SEEN_EVAL)) /* May examine pos and $& */
4993 /* x+ must match at the 1st pos of run of x's */
4994 r->intflags |= PREGf_SKIP;
4996 /* Scan is after the zeroth branch, first is atomic matcher. */
4997 #ifdef TRIE_STUDY_OPT
5000 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
5001 (IV)(first - scan + 1))
5005 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
5006 (IV)(first - scan + 1))
5012 * If there's something expensive in the r.e., find the
5013 * longest literal string that must appear and make it the
5014 * regmust. Resolve ties in favor of later strings, since
5015 * the regstart check works with the beginning of the r.e.
5016 * and avoiding duplication strengthens checking. Not a
5017 * strong reason, but sufficient in the absence of others.
5018 * [Now we resolve ties in favor of the earlier string if
5019 * it happens that c_offset_min has been invalidated, since the
5020 * earlier string may buy us something the later one won't.]
5023 data.longest_fixed = newSVpvs("");
5024 data.longest_float = newSVpvs("");
5025 data.last_found = newSVpvs("");
5026 data.longest = &(data.longest_fixed);
5028 if (!ri->regstclass) {
5029 cl_init(pRExC_state, &ch_class);
5030 data.start_class = &ch_class;
5031 stclass_flag = SCF_DO_STCLASS_AND;
5032 } else /* XXXX Check for BOUND? */
5034 data.last_closep = &last_close;
5036 minlen = study_chunk(pRExC_state, &first, &minlen, &fake, scan + RExC_size, /* Up to end */
5037 &data, -1, NULL, NULL,
5038 SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag,0);
5044 if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
5045 && data.last_start_min == 0 && data.last_end > 0
5046 && !RExC_seen_zerolen
5047 && !(RExC_seen & REG_SEEN_VERBARG)
5048 && (!(RExC_seen & REG_SEEN_GPOS) || (r->extflags & RXf_ANCH_GPOS)))
5049 r->extflags |= RXf_CHECK_ALL;
5050 scan_commit(pRExC_state, &data,&minlen,0);
5051 SvREFCNT_dec(data.last_found);
5053 /* Note that code very similar to this but for anchored string
5054 follows immediately below, changes may need to be made to both.
5057 longest_float_length = CHR_SVLEN(data.longest_float);
5058 if (longest_float_length
5059 || (data.flags & SF_FL_BEFORE_EOL
5060 && (!(data.flags & SF_FL_BEFORE_MEOL)
5061 || (RExC_flags & RXf_PMf_MULTILINE))))
5065 if (SvCUR(data.longest_fixed) /* ok to leave SvCUR */
5066 && data.offset_fixed == data.offset_float_min
5067 && SvCUR(data.longest_fixed) == SvCUR(data.longest_float))
5068 goto remove_float; /* As in (a)+. */
5070 /* copy the information about the longest float from the reg_scan_data
5071 over to the program. */
5072 if (SvUTF8(data.longest_float)) {
5073 r->float_utf8 = data.longest_float;
5074 r->float_substr = NULL;
5076 r->float_substr = data.longest_float;
5077 r->float_utf8 = NULL;
5079 /* float_end_shift is how many chars that must be matched that
5080 follow this item. We calculate it ahead of time as once the
5081 lookbehind offset is added in we lose the ability to correctly
5083 ml = data.minlen_float ? *(data.minlen_float)
5084 : (I32)longest_float_length;
5085 r->float_end_shift = ml - data.offset_float_min
5086 - longest_float_length + (SvTAIL(data.longest_float) != 0)
5087 + data.lookbehind_float;
5088 r->float_min_offset = data.offset_float_min - data.lookbehind_float;
5089 r->float_max_offset = data.offset_float_max;
5090 if (data.offset_float_max < I32_MAX) /* Don't offset infinity */
5091 r->float_max_offset -= data.lookbehind_float;
5093 t = (data.flags & SF_FL_BEFORE_EOL /* Can't have SEOL and MULTI */
5094 && (!(data.flags & SF_FL_BEFORE_MEOL)
5095 || (RExC_flags & RXf_PMf_MULTILINE)));
5096 fbm_compile(data.longest_float, t ? FBMcf_TAIL : 0);
5100 r->float_substr = r->float_utf8 = NULL;
5101 SvREFCNT_dec(data.longest_float);
5102 longest_float_length = 0;
5105 /* Note that code very similar to this but for floating string
5106 is immediately above, changes may need to be made to both.
5109 longest_fixed_length = CHR_SVLEN(data.longest_fixed);
5110 if (longest_fixed_length
5111 || (data.flags & SF_FIX_BEFORE_EOL /* Cannot have SEOL and MULTI */
5112 && (!(data.flags & SF_FIX_BEFORE_MEOL)
5113 || (RExC_flags & RXf_PMf_MULTILINE))))
5117 /* copy the information about the longest fixed
5118 from the reg_scan_data over to the program. */
5119 if (SvUTF8(data.longest_fixed)) {
5120 r->anchored_utf8 = data.longest_fixed;
5121 r->anchored_substr = NULL;
5123 r->anchored_substr = data.longest_fixed;
5124 r->anchored_utf8 = NULL;
5126 /* fixed_end_shift is how many chars that must be matched that
5127 follow this item. We calculate it ahead of time as once the
5128 lookbehind offset is added in we lose the ability to correctly
5130 ml = data.minlen_fixed ? *(data.minlen_fixed)
5131 : (I32)longest_fixed_length;
5132 r->anchored_end_shift = ml - data.offset_fixed
5133 - longest_fixed_length + (SvTAIL(data.longest_fixed) != 0)
5134 + data.lookbehind_fixed;
5135 r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
5137 t = (data.flags & SF_FIX_BEFORE_EOL /* Can't have SEOL and MULTI */
5138 && (!(data.flags & SF_FIX_BEFORE_MEOL)
5139 || (RExC_flags & RXf_PMf_MULTILINE)));
5140 fbm_compile(data.longest_fixed, t ? FBMcf_TAIL : 0);
5143 r->anchored_substr = r->anchored_utf8 = NULL;
5144 SvREFCNT_dec(data.longest_fixed);
5145 longest_fixed_length = 0;
5148 && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
5149 ri->regstclass = NULL;
5151 if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
5153 && !(data.start_class->flags & ANYOF_EOS)
5154 && !cl_is_anything(data.start_class))
5156 const U32 n = add_data(pRExC_state, 1, "f");
5157 data.start_class->flags |= ANYOF_IS_SYNTHETIC;
5159 Newx(RExC_rxi->data->data[n], 1,
5160 struct regnode_charclass_class);
5161 StructCopy(data.start_class,
5162 (struct regnode_charclass_class*)RExC_rxi->data->data[n],
5163 struct regnode_charclass_class);
5164 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
5165 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
5166 DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
5167 regprop(r, sv, (regnode*)data.start_class);
5168 PerlIO_printf(Perl_debug_log,
5169 "synthetic stclass \"%s\".\n",
5170 SvPVX_const(sv));});
5173 /* A temporary algorithm prefers floated substr to fixed one to dig more info. */
5174 if (longest_fixed_length > longest_float_length) {
5175 r->check_end_shift = r->anchored_end_shift;
5176 r->check_substr = r->anchored_substr;
5177 r->check_utf8 = r->anchored_utf8;
5178 r->check_offset_min = r->check_offset_max = r->anchored_offset;
5179 if (r->extflags & RXf_ANCH_SINGLE)
5180 r->extflags |= RXf_NOSCAN;
5183 r->check_end_shift = r->float_end_shift;
5184 r->check_substr = r->float_substr;
5185 r->check_utf8 = r->float_utf8;
5186 r->check_offset_min = r->float_min_offset;
5187 r->check_offset_max = r->float_max_offset;
5189 /* XXXX Currently intuiting is not compatible with ANCH_GPOS.
5190 This should be changed ASAP! */
5191 if ((r->check_substr || r->check_utf8) && !(r->extflags & RXf_ANCH_GPOS)) {
5192 r->extflags |= RXf_USE_INTUIT;
5193 if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
5194 r->extflags |= RXf_INTUIT_TAIL;
5196 /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
5197 if ( (STRLEN)minlen < longest_float_length )
5198 minlen= longest_float_length;
5199 if ( (STRLEN)minlen < longest_fixed_length )
5200 minlen= longest_fixed_length;
5204 /* Several toplevels. Best we can is to set minlen. */
5206 struct regnode_charclass_class ch_class;
5209 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
5211 scan = ri->program + 1;
5212 cl_init(pRExC_state, &ch_class);
5213 data.start_class = &ch_class;
5214 data.last_closep = &last_close;
5217 minlen = study_chunk(pRExC_state, &scan, &minlen, &fake, scan + RExC_size,
5218 &data, -1, NULL, NULL, SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS,0);
5222 r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
5223 = r->float_substr = r->float_utf8 = NULL;
5225 if (!(data.start_class->flags & ANYOF_EOS)
5226 && !cl_is_anything(data.start_class))
5228 const U32 n = add_data(pRExC_state, 1, "f");
5229 data.start_class->flags |= ANYOF_IS_SYNTHETIC;
5231 Newx(RExC_rxi->data->data[n], 1,
5232 struct regnode_charclass_class);
5233 StructCopy(data.start_class,
5234 (struct regnode_charclass_class*)RExC_rxi->data->data[n],
5235 struct regnode_charclass_class);
5236 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
5237 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
5238 DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
5239 regprop(r, sv, (regnode*)data.start_class);
5240 PerlIO_printf(Perl_debug_log,
5241 "synthetic stclass \"%s\".\n",
5242 SvPVX_const(sv));});
5246 /* Guard against an embedded (?=) or (?<=) with a longer minlen than
5247 the "real" pattern. */
5249 PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf"\n",
5250 (IV)minlen, (IV)r->minlen);
5252 r->minlenret = minlen;
5253 if (r->minlen < minlen)
5256 if (RExC_seen & REG_SEEN_GPOS)
5257 r->extflags |= RXf_GPOS_SEEN;
5258 if (RExC_seen & REG_SEEN_LOOKBEHIND)
5259 r->extflags |= RXf_LOOKBEHIND_SEEN;
5260 if (RExC_seen & REG_SEEN_EVAL)
5261 r->extflags |= RXf_EVAL_SEEN;
5262 if (RExC_seen & REG_SEEN_CANY)
5263 r->extflags |= RXf_CANY_SEEN;
5264 if (RExC_seen & REG_SEEN_VERBARG)
5265 r->intflags |= PREGf_VERBARG_SEEN;
5266 if (RExC_seen & REG_SEEN_CUTGROUP)
5267 r->intflags |= PREGf_CUTGROUP_SEEN;
5268 if (RExC_paren_names)
5269 RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
5271 RXp_PAREN_NAMES(r) = NULL;
5273 #ifdef STUPID_PATTERN_CHECKS
5274 if (RX_PRELEN(rx) == 0)
5275 r->extflags |= RXf_NULL;
5276 if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
5277 /* XXX: this should happen BEFORE we compile */
5278 r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
5279 else if (RX_PRELEN(rx) == 3 && memEQ("\\s+", RX_PRECOMP(rx), 3))
5280 r->extflags |= RXf_WHITE;
5281 else if (RX_PRELEN(rx) == 1 && RXp_PRECOMP(rx)[0] == '^')
5282 r->extflags |= RXf_START_ONLY;
5284 if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
5285 /* XXX: this should happen BEFORE we compile */
5286 r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
5288 regnode *first = ri->program + 1;
5291 if (PL_regkind[fop] == NOTHING && OP(NEXTOPER(first)) == END)
5292 r->extflags |= RXf_NULL;
5293 else if (PL_regkind[fop] == BOL && OP(NEXTOPER(first)) == END)
5294 r->extflags |= RXf_START_ONLY;
5295 else if (fop == PLUS && OP(NEXTOPER(first)) == SPACE
5296 && OP(regnext(first)) == END)
5297 r->extflags |= RXf_WHITE;
5301 if (RExC_paren_names) {
5302 ri->name_list_idx = add_data( pRExC_state, 1, "a" );
5303 ri->data->data[ri->name_list_idx] = (void*)SvREFCNT_inc(RExC_paren_name_list);
5306 ri->name_list_idx = 0;
5308 if (RExC_recurse_count) {
5309 for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
5310 const regnode *scan = RExC_recurse[RExC_recurse_count-1];
5311 ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
5314 Newxz(r->offs, RExC_npar, regexp_paren_pair);
5315 /* assume we don't need to swap parens around before we match */
5318 PerlIO_printf(Perl_debug_log,"Final program:\n");
5321 #ifdef RE_TRACK_PATTERN_OFFSETS
5322 DEBUG_OFFSETS_r(if (ri->u.offsets) {
5323 const U32 len = ri->u.offsets[0];
5325 GET_RE_DEBUG_FLAGS_DECL;
5326 PerlIO_printf(Perl_debug_log, "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
5327 for (i = 1; i <= len; i++) {
5328 if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
5329 PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
5330 (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
5332 PerlIO_printf(Perl_debug_log, "\n");
5338 #undef RE_ENGINE_PTR
5342 Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
5345 PERL_ARGS_ASSERT_REG_NAMED_BUFF;
5347 PERL_UNUSED_ARG(value);
5349 if (flags & RXapif_FETCH) {
5350 return reg_named_buff_fetch(rx, key, flags);
5351 } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
5352 Perl_croak_no_modify(aTHX);
5354 } else if (flags & RXapif_EXISTS) {
5355 return reg_named_buff_exists(rx, key, flags)
5358 } else if (flags & RXapif_REGNAMES) {
5359 return reg_named_buff_all(rx, flags);
5360 } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
5361 return reg_named_buff_scalar(rx, flags);
5363 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
5369 Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
5372 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
5373 PERL_UNUSED_ARG(lastkey);
5375 if (flags & RXapif_FIRSTKEY)
5376 return reg_named_buff_firstkey(rx, flags);
5377 else if (flags & RXapif_NEXTKEY)
5378 return reg_named_buff_nextkey(rx, flags);
5380 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter", (int)flags);
5386 Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
5389 AV *retarray = NULL;
5391 struct regexp *const rx = (struct regexp *)SvANY(r);
5393 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
5395 if (flags & RXapif_ALL)
5398 if (rx && RXp_PAREN_NAMES(rx)) {
5399 HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
5402 SV* sv_dat=HeVAL(he_str);
5403 I32 *nums=(I32*)SvPVX(sv_dat);
5404 for ( i=0; i<SvIVX(sv_dat); i++ ) {
5405 if ((I32)(rx->nparens) >= nums[i]
5406 && rx->offs[nums[i]].start != -1
5407 && rx->offs[nums[i]].end != -1)
5410 CALLREG_NUMBUF_FETCH(r,nums[i],ret);
5414 ret = newSVsv(&PL_sv_undef);
5417 av_push(retarray, ret);
5420 return newRV_noinc(MUTABLE_SV(retarray));
5427 Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
5430 struct regexp *const rx = (struct regexp *)SvANY(r);
5432 PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
5434 if (rx && RXp_PAREN_NAMES(rx)) {
5435 if (flags & RXapif_ALL) {
5436 return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
5438 SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
5452 Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
5454 struct regexp *const rx = (struct regexp *)SvANY(r);
5456 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
5458 if ( rx && RXp_PAREN_NAMES(rx) ) {
5459 (void)hv_iterinit(RXp_PAREN_NAMES(rx));
5461 return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
5468 Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
5470 struct regexp *const rx = (struct regexp *)SvANY(r);
5471 GET_RE_DEBUG_FLAGS_DECL;
5473 PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
5475 if (rx && RXp_PAREN_NAMES(rx)) {
5476 HV *hv = RXp_PAREN_NAMES(rx);
5478 while ( (temphe = hv_iternext_flags(hv,0)) ) {
5481 SV* sv_dat = HeVAL(temphe);
5482 I32 *nums = (I32*)SvPVX(sv_dat);
5483 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
5484 if ((I32)(rx->lastparen) >= nums[i] &&
5485 rx->offs[nums[i]].start != -1 &&
5486 rx->offs[nums[i]].end != -1)
5492 if (parno || flags & RXapif_ALL) {
5493 return newSVhek(HeKEY_hek(temphe));
5501 Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
5506 struct regexp *const rx = (struct regexp *)SvANY(r);
5508 PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
5510 if (rx && RXp_PAREN_NAMES(rx)) {
5511 if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
5512 return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
5513 } else if (flags & RXapif_ONE) {
5514 ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
5515 av = MUTABLE_AV(SvRV(ret));
5516 length = av_len(av);
5518 return newSViv(length + 1);
5520 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar", (int)flags);
5524 return &PL_sv_undef;
5528 Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
5530 struct regexp *const rx = (struct regexp *)SvANY(r);
5533 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
5535 if (rx && RXp_PAREN_NAMES(rx)) {
5536 HV *hv= RXp_PAREN_NAMES(rx);
5538 (void)hv_iterinit(hv);
5539 while ( (temphe = hv_iternext_flags(hv,0)) ) {
5542 SV* sv_dat = HeVAL(temphe);
5543 I32 *nums = (I32*)SvPVX(sv_dat);
5544 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
5545 if ((I32)(rx->lastparen) >= nums[i] &&
5546 rx->offs[nums[i]].start != -1 &&
5547 rx->offs[nums[i]].end != -1)
5553 if (parno || flags & RXapif_ALL) {
5554 av_push(av, newSVhek(HeKEY_hek(temphe)));
5559 return newRV_noinc(MUTABLE_SV(av));
5563 Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
5566 struct regexp *const rx = (struct regexp *)SvANY(r);
5571 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
5574 sv_setsv(sv,&PL_sv_undef);
5578 if (paren == RX_BUFF_IDX_PREMATCH && rx->offs[0].start != -1) {
5580 i = rx->offs[0].start;
5584 if (paren == RX_BUFF_IDX_POSTMATCH && rx->offs[0].end != -1) {
5586 s = rx->subbeg + rx->offs[0].end;
5587 i = rx->sublen - rx->offs[0].end;
5590 if ( 0 <= paren && paren <= (I32)rx->nparens &&
5591 (s1 = rx->offs[paren].start) != -1 &&
5592 (t1 = rx->offs[paren].end) != -1)
5596 s = rx->subbeg + s1;
5598 sv_setsv(sv,&PL_sv_undef);
5601 assert(rx->sublen >= (s - rx->subbeg) + i );
5603 const int oldtainted = PL_tainted;
5605 sv_setpvn(sv, s, i);
5606 PL_tainted = oldtainted;
5607 if ( (rx->extflags & RXf_CANY_SEEN)
5608 ? (RXp_MATCH_UTF8(rx)
5609 && (!i || is_utf8_string((U8*)s, i)))
5610 : (RXp_MATCH_UTF8(rx)) )
5617 if (RXp_MATCH_TAINTED(rx)) {
5618 if (SvTYPE(sv) >= SVt_PVMG) {
5619 MAGIC* const mg = SvMAGIC(sv);
5622 SvMAGIC_set(sv, mg->mg_moremagic);
5624 if ((mgt = SvMAGIC(sv))) {
5625 mg->mg_moremagic = mgt;
5626 SvMAGIC_set(sv, mg);
5636 sv_setsv(sv,&PL_sv_undef);
5642 Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
5643 SV const * const value)
5645 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
5647 PERL_UNUSED_ARG(rx);
5648 PERL_UNUSED_ARG(paren);
5649 PERL_UNUSED_ARG(value);
5652 Perl_croak_no_modify(aTHX);
5656 Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
5659 struct regexp *const rx = (struct regexp *)SvANY(r);
5663 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
5665 /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
5667 /* $` / ${^PREMATCH} */
5668 case RX_BUFF_IDX_PREMATCH:
5669 if (rx->offs[0].start != -1) {
5670 i = rx->offs[0].start;
5678 /* $' / ${^POSTMATCH} */
5679 case RX_BUFF_IDX_POSTMATCH:
5680 if (rx->offs[0].end != -1) {
5681 i = rx->sublen - rx->offs[0].end;
5683 s1 = rx->offs[0].end;
5689 /* $& / ${^MATCH}, $1, $2, ... */
5691 if (paren <= (I32)rx->nparens &&
5692 (s1 = rx->offs[paren].start) != -1 &&
5693 (t1 = rx->offs[paren].end) != -1)
5698 if (ckWARN(WARN_UNINITIALIZED))
5699 report_uninit((const SV *)sv);
5704 if (i > 0 && RXp_MATCH_UTF8(rx)) {
5705 const char * const s = rx->subbeg + s1;
5710 if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
5717 Perl_reg_qr_package(pTHX_ REGEXP * const rx)
5719 PERL_ARGS_ASSERT_REG_QR_PACKAGE;
5720 PERL_UNUSED_ARG(rx);
5724 return newSVpvs("Regexp");
5727 /* Scans the name of a named buffer from the pattern.
5728 * If flags is REG_RSN_RETURN_NULL returns null.
5729 * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
5730 * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
5731 * to the parsed name as looked up in the RExC_paren_names hash.
5732 * If there is an error throws a vFAIL().. type exception.
5735 #define REG_RSN_RETURN_NULL 0
5736 #define REG_RSN_RETURN_NAME 1
5737 #define REG_RSN_RETURN_DATA 2
5740 S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
5742 char *name_start = RExC_parse;
5744 PERL_ARGS_ASSERT_REG_SCAN_NAME;
5746 if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
5747 /* skip IDFIRST by using do...while */
5750 RExC_parse += UTF8SKIP(RExC_parse);
5751 } while (isALNUM_utf8((U8*)RExC_parse));
5755 } while (isALNUM(*RExC_parse));
5760 = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
5761 SVs_TEMP | (UTF ? SVf_UTF8 : 0));
5762 if ( flags == REG_RSN_RETURN_NAME)
5764 else if (flags==REG_RSN_RETURN_DATA) {
5767 if ( ! sv_name ) /* should not happen*/
5768 Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
5769 if (RExC_paren_names)
5770 he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
5772 sv_dat = HeVAL(he_str);
5774 vFAIL("Reference to nonexistent named group");
5778 Perl_croak(aTHX_ "panic: bad flag in reg_scan_name");
5785 #define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \
5786 int rem=(int)(RExC_end - RExC_parse); \
5795 if (RExC_lastparse!=RExC_parse) \
5796 PerlIO_printf(Perl_debug_log," >%.*s%-*s", \
5799 iscut ? "..." : "<" \
5802 PerlIO_printf(Perl_debug_log,"%16s",""); \
5805 num = RExC_size + 1; \
5807 num=REG_NODE_NUM(RExC_emit); \
5808 if (RExC_lastnum!=num) \
5809 PerlIO_printf(Perl_debug_log,"|%4d",num); \
5811 PerlIO_printf(Perl_debug_log,"|%4s",""); \
5812 PerlIO_printf(Perl_debug_log,"|%*s%-4s", \
5813 (int)((depth*2)), "", \
5817 RExC_lastparse=RExC_parse; \
5822 #define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \
5823 DEBUG_PARSE_MSG((funcname)); \
5824 PerlIO_printf(Perl_debug_log,"%4s","\n"); \
5826 #define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \
5827 DEBUG_PARSE_MSG((funcname)); \
5828 PerlIO_printf(Perl_debug_log,fmt "\n",args); \
5831 /* This section of code defines the inversion list object and its methods. The
5832 * interfaces are highly subject to change, so as much as possible is static to
5833 * this file. An inversion list is here implemented as a malloc'd C UV array
5834 * with some added info that is placed as UVs at the beginning in a header
5835 * portion. An inversion list for Unicode is an array of code points, sorted
5836 * by ordinal number. The zeroth element is the first code point in the list.
5837 * The 1th element is the first element beyond that not in the list. In other
5838 * words, the first range is
5839 * invlist[0]..(invlist[1]-1)
5840 * The other ranges follow. Thus every element that is divisible by two marks
5841 * the beginning of a range that is in the list, and every element not
5842 * divisible by two marks the beginning of a range not in the list. A single
5843 * element inversion list that contains the single code point N generally
5844 * consists of two elements
5847 * (The exception is when N is the highest representable value on the
5848 * machine, in which case the list containing just it would be a single
5849 * element, itself. By extension, if the last range in the list extends to
5850 * infinity, then the first element of that range will be in the inversion list
5851 * at a position that is divisible by two, and is the final element in the
5853 * Taking the complement (inverting) an inversion list is quite simple, if the
5854 * first element is 0, remove it; otherwise add a 0 element at the beginning.
5855 * This implementation reserves an element at the beginning of each inversion list
5856 * to contain 0 when the list contains 0, and contains 1 otherwise. The actual
5857 * beginning of the list is either that element if 0, or the next one if 1.
5859 * More about inversion lists can be found in "Unicode Demystified"
5860 * Chapter 13 by Richard Gillam, published by Addison-Wesley.
5861 * More will be coming when functionality is added later.
5863 * The inversion list data structure is currently implemented as an SV pointing
5864 * to an array of UVs that the SV thinks are bytes. This allows us to have an
5865 * array of UV whose memory management is automatically handled by the existing
5866 * facilities for SV's.
5868 * Some of the methods should always be private to the implementation, and some
5869 * should eventually be made public */
5871 #define INVLIST_LEN_OFFSET 0 /* Number of elements in the inversion list */
5872 #define INVLIST_ITER_OFFSET 1 /* Current iteration position */
5874 #define INVLIST_ZERO_OFFSET 2 /* 0 or 1; must be last element in header */
5875 /* The UV at position ZERO contains either 0 or 1. If 0, the inversion list
5876 * contains the code point U+00000, and begins here. If 1, the inversion list
5877 * doesn't contain U+0000, and it begins at the next UV in the array.
5878 * Inverting an inversion list consists of adding or removing the 0 at the
5879 * beginning of it. By reserving a space for that 0, inversion can be made
5882 #define HEADER_LENGTH (INVLIST_ZERO_OFFSET + 1)
5884 /* Internally things are UVs */
5885 #define TO_INTERNAL_SIZE(x) ((x + HEADER_LENGTH) * sizeof(UV))
5886 #define FROM_INTERNAL_SIZE(x) ((x / sizeof(UV)) - HEADER_LENGTH)
5888 #define INVLIST_INITIAL_LEN 10
5890 PERL_STATIC_INLINE UV*
5891 S__invlist_array_init(pTHX_ SV* const invlist, const bool will_have_0)
5893 /* Returns a pointer to the first element in the inversion list's array.
5894 * This is called upon initialization of an inversion list. Where the
5895 * array begins depends on whether the list has the code point U+0000
5896 * in it or not. The other parameter tells it whether the code that
5897 * follows this call is about to put a 0 in the inversion list or not.
5898 * The first element is either the element with 0, if 0, or the next one,
5901 UV* zero = get_invlist_zero_addr(invlist);
5903 PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
5906 assert(! *get_invlist_len_addr(invlist));
5908 /* 1^1 = 0; 1^0 = 1 */
5909 *zero = 1 ^ will_have_0;
5910 return zero + *zero;
5913 PERL_STATIC_INLINE UV*
5914 S_invlist_array(pTHX_ SV* const invlist)
5916 /* Returns the pointer to the inversion list's array. Every time the
5917 * length changes, this needs to be called in case malloc or realloc moved
5920 PERL_ARGS_ASSERT_INVLIST_ARRAY;
5922 /* Must not be empty */
5923 assert(*get_invlist_len_addr(invlist));
5924 assert(*get_invlist_zero_addr(invlist) == 0
5925 || *get_invlist_zero_addr(invlist) == 1);
5927 /* The array begins either at the element reserved for zero if the
5928 * list contains 0 (that element will be set to 0), or otherwise the next
5929 * element (in which case the reserved element will be set to 1). */
5930 return (UV *) (get_invlist_zero_addr(invlist)
5931 + *get_invlist_zero_addr(invlist));
5934 PERL_STATIC_INLINE UV*
5935 S_get_invlist_len_addr(pTHX_ SV* invlist)
5937 /* Return the address of the UV that contains the current number
5938 * of used elements in the inversion list */
5940 PERL_ARGS_ASSERT_GET_INVLIST_LEN_ADDR;
5942 return (UV *) (SvPVX(invlist) + (INVLIST_LEN_OFFSET * sizeof (UV)));
5945 PERL_STATIC_INLINE UV
5946 S_invlist_len(pTHX_ SV* const invlist)
5948 /* Returns the current number of elements in the inversion list's array */
5950 PERL_ARGS_ASSERT_INVLIST_LEN;
5952 return *get_invlist_len_addr(invlist);
5955 PERL_STATIC_INLINE void
5956 S_invlist_set_len(pTHX_ SV* const invlist, const UV len)
5958 /* Sets the current number of elements stored in the inversion list */
5960 PERL_ARGS_ASSERT_INVLIST_SET_LEN;
5962 *get_invlist_len_addr(invlist) = len;
5964 assert(len <= SvLEN(invlist));
5966 SvCUR_set(invlist, TO_INTERNAL_SIZE(len));
5967 /* If the list contains U+0000, that element is part of the header,
5968 * and should not be counted as part of the array. It will contain
5969 * 0 in that case, and 1 otherwise. So we could flop 0=>1, 1=>0 and
5971 * SvCUR_set(invlist,
5972 * TO_INTERNAL_SIZE(len
5973 * - (*get_invlist_zero_addr(inv_list) ^ 1)));
5974 * But, this is only valid if len is not 0. The consequences of not doing
5975 * this is that the memory allocation code may think that 1 more UV is
5976 * being used than actually is, and so might do an unnecessary grow. That
5977 * seems worth not bothering to make this the precise amount.
5979 * Note that when inverting, SvCUR shouldn't change */
5982 PERL_STATIC_INLINE UV
5983 S_invlist_max(pTHX_ SV* const invlist)
5985 /* Returns the maximum number of elements storable in the inversion list's
5986 * array, without having to realloc() */
5988 PERL_ARGS_ASSERT_INVLIST_MAX;
5990 return FROM_INTERNAL_SIZE(SvLEN(invlist));
5993 PERL_STATIC_INLINE UV*
5994 S_get_invlist_zero_addr(pTHX_ SV* invlist)
5996 /* Return the address of the UV that is reserved to hold 0 if the inversion
5997 * list contains 0. This has to be the last element of the heading, as the
5998 * list proper starts with either it if 0, or the next element if not.
5999 * (But we force it to contain either 0 or 1) */
6001 PERL_ARGS_ASSERT_GET_INVLIST_ZERO_ADDR;
6003 return (UV *) (SvPVX(invlist) + (INVLIST_ZERO_OFFSET * sizeof (UV)));
6006 #ifndef PERL_IN_XSUB_RE
6008 Perl__new_invlist(pTHX_ IV initial_size)
6011 /* Return a pointer to a newly constructed inversion list, with enough
6012 * space to store 'initial_size' elements. If that number is negative, a
6013 * system default is used instead */
6017 if (initial_size < 0) {
6018 initial_size = INVLIST_INITIAL_LEN;
6021 /* Allocate the initial space */
6022 new_list = newSV(TO_INTERNAL_SIZE(initial_size));
6023 invlist_set_len(new_list, 0);
6025 /* Force iterinit() to be used to get iteration to work */
6026 *get_invlist_iter_addr(new_list) = UV_MAX;
6028 /* This should force a segfault if a method doesn't initialize this
6030 *get_invlist_zero_addr(new_list) = UV_MAX;
6037 S_invlist_extend(pTHX_ SV* const invlist, const UV new_max)
6039 /* Grow the maximum size of an inversion list */
6041 PERL_ARGS_ASSERT_INVLIST_EXTEND;
6043 SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max));
6046 PERL_STATIC_INLINE void
6047 S_invlist_trim(pTHX_ SV* const invlist)
6049 PERL_ARGS_ASSERT_INVLIST_TRIM;
6051 /* Change the length of the inversion list to how many entries it currently
6054 SvPV_shrink_to_cur((SV *) invlist);
6057 /* An element is in an inversion list iff its index is even numbered: 0, 2, 4,
6060 #define ELEMENT_IN_INVLIST_SET(i) (! ((i) & 1))
6061 #define PREV_ELEMENT_IN_INVLIST_SET(i) (! ELEMENT_IN_INVLIST_SET(i))
6063 #ifndef PERL_IN_XSUB_RE
6065 Perl__append_range_to_invlist(pTHX_ SV* const invlist, const UV start, const UV end)
6067 /* Subject to change or removal. Append the range from 'start' to 'end' at
6068 * the end of the inversion list. The range must be above any existing
6072 UV max = invlist_max(invlist);
6073 UV len = invlist_len(invlist);
6075 PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
6077 if (len == 0) { /* Empty lists must be initialized */
6078 array = _invlist_array_init(invlist, start == 0);
6081 /* Here, the existing list is non-empty. The current max entry in the
6082 * list is generally the first value not in the set, except when the
6083 * set extends to the end of permissible values, in which case it is
6084 * the first entry in that final set, and so this call is an attempt to
6085 * append out-of-order */
6087 UV final_element = len - 1;
6088 array = invlist_array(invlist);
6089 if (array[final_element] > start
6090 || ELEMENT_IN_INVLIST_SET(final_element))
6092 Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list");
6095 /* Here, it is a legal append. If the new range begins with the first
6096 * value not in the set, it is extending the set, so the new first
6097 * value not in the set is one greater than the newly extended range.
6099 if (array[final_element] == start) {
6100 if (end != UV_MAX) {
6101 array[final_element] = end + 1;
6104 /* But if the end is the maximum representable on the machine,
6105 * just let the range that this would extend have no end */
6106 invlist_set_len(invlist, len - 1);
6112 /* Here the new range doesn't extend any existing set. Add it */
6114 len += 2; /* Includes an element each for the start and end of range */
6116 /* If overflows the existing space, extend, which may cause the array to be
6119 invlist_extend(invlist, len);
6120 invlist_set_len(invlist, len); /* Have to set len here to avoid assert
6121 failure in invlist_array() */
6122 array = invlist_array(invlist);
6125 invlist_set_len(invlist, len);
6128 /* The next item on the list starts the range, the one after that is
6129 * one past the new range. */
6130 array[len - 2] = start;
6131 if (end != UV_MAX) {
6132 array[len - 1] = end + 1;
6135 /* But if the end is the maximum representable on the machine, just let
6136 * the range have no end */
6137 invlist_set_len(invlist, len - 1);
6142 Perl__invlist_union(pTHX_ SV* const a, SV* const b, SV** output)
6144 /* Take the union of two inversion lists and point 'result' to it. If
6145 * 'result' on input points to one of the two lists, the reference count to
6146 * that list will be decremented.
6147 * The basis for this comes from "Unicode Demystified" Chapter 13 by
6148 * Richard Gillam, published by Addison-Wesley, and explained at some
6149 * length there. The preface says to incorporate its examples into your
6150 * code at your own risk.
6152 * The algorithm is like a merge sort.
6154 * XXX A potential performance improvement is to keep track as we go along
6155 * if only one of the inputs contributes to the result, meaning the other
6156 * is a subset of that one. In that case, we can skip the final copy and
6157 * return the larger of the input lists, but then outside code might need
6158 * to keep track of whether to free the input list or not */
6160 UV* array_a; /* a's array */
6162 UV len_a; /* length of a's array */
6165 SV* u; /* the resulting union */
6169 UV i_a = 0; /* current index into a's array */
6173 /* running count, as explained in the algorithm source book; items are
6174 * stopped accumulating and are output when the count changes to/from 0.
6175 * The count is incremented when we start a range that's in the set, and
6176 * decremented when we start a range that's not in the set. So its range
6177 * is 0 to 2. Only when the count is zero is something not in the set.
6181 PERL_ARGS_ASSERT__INVLIST_UNION;
6183 /* If either one is empty, the union is the other one */
6184 len_a = invlist_len(a);
6189 else if (output != &b) {
6190 *output = invlist_clone(b);
6192 /* else *output already = b; */
6195 else if ((len_b = invlist_len(b)) == 0) {
6199 else if (output != &a) {
6200 *output = invlist_clone(a);
6202 /* else *output already = a; */
6206 /* Here both lists exist and are non-empty */
6207 array_a = invlist_array(a);
6208 array_b = invlist_array(b);
6210 /* Size the union for the worst case: that the sets are completely
6212 u = _new_invlist(len_a + len_b);
6214 /* Will contain U+0000 if either component does */
6215 array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0)
6216 || (len_b > 0 && array_b[0] == 0));
6218 /* Go through each list item by item, stopping when exhausted one of
6220 while (i_a < len_a && i_b < len_b) {
6221 UV cp; /* The element to potentially add to the union's array */
6222 bool cp_in_set; /* is it in the the input list's set or not */
6224 /* We need to take one or the other of the two inputs for the union.
6225 * Since we are merging two sorted lists, we take the smaller of the
6226 * next items. In case of a tie, we take the one that is in its set
6227 * first. If we took one not in the set first, it would decrement the
6228 * count, possibly to 0 which would cause it to be output as ending the
6229 * range, and the next time through we would take the same number, and
6230 * output it again as beginning the next range. By doing it the
6231 * opposite way, there is no possibility that the count will be
6232 * momentarily decremented to 0, and thus the two adjoining ranges will
6233 * be seamlessly merged. (In a tie and both are in the set or both not
6234 * in the set, it doesn't matter which we take first.) */
6235 if (array_a[i_a] < array_b[i_b]
6236 || (array_a[i_a] == array_b[i_b] && ELEMENT_IN_INVLIST_SET(i_a)))
6238 cp_in_set = ELEMENT_IN_INVLIST_SET(i_a);
6242 cp_in_set = ELEMENT_IN_INVLIST_SET(i_b);
6246 /* Here, have chosen which of the two inputs to look at. Only output
6247 * if the running count changes to/from 0, which marks the
6248 * beginning/end of a range in that's in the set */
6251 array_u[i_u++] = cp;
6258 array_u[i_u++] = cp;
6263 /* Here, we are finished going through at least one of the lists, which
6264 * means there is something remaining in at most one. We check if the list
6265 * that hasn't been exhausted is positioned such that we are in the middle
6266 * of a range in its set or not. (i_a and i_b point to the element beyond
6267 * the one we care about.) If in the set, we decrement 'count'; if 0, there
6268 * is potentially more to output.
6269 * There are four cases:
6270 * 1) Both weren't in their sets, count is 0, and remains 0. What's left
6271 * in the union is entirely from the non-exhausted set.
6272 * 2) Both were in their sets, count is 2. Nothing further should
6273 * be output, as everything that remains will be in the exhausted
6274 * list's set, hence in the union; decrementing to 1 but not 0 insures
6276 * 3) the exhausted was in its set, non-exhausted isn't, count is 1.
6277 * Nothing further should be output because the union includes
6278 * everything from the exhausted set. Not decrementing ensures that.
6279 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
6280 * decrementing to 0 insures that we look at the remainder of the
6281 * non-exhausted set */
6282 if ((i_a != len_a && PREV_ELEMENT_IN_INVLIST_SET(i_a))
6283 || (i_b != len_b && PREV_ELEMENT_IN_INVLIST_SET(i_b)))
6288 /* The final length is what we've output so far, plus what else is about to
6289 * be output. (If 'count' is non-zero, then the input list we exhausted
6290 * has everything remaining up to the machine's limit in its set, and hence
6291 * in the union, so there will be no further output. */
6294 /* At most one of the subexpressions will be non-zero */
6295 len_u += (len_a - i_a) + (len_b - i_b);
6298 /* Set result to final length, which can change the pointer to array_u, so
6300 if (len_u != invlist_len(u)) {
6301 invlist_set_len(u, len_u);
6303 array_u = invlist_array(u);
6306 /* When 'count' is 0, the list that was exhausted (if one was shorter than
6307 * the other) ended with everything above it not in its set. That means
6308 * that the remaining part of the union is precisely the same as the
6309 * non-exhausted list, so can just copy it unchanged. (If both list were
6310 * exhausted at the same time, then the operations below will be both 0.)
6313 IV copy_count; /* At most one will have a non-zero copy count */
6314 if ((copy_count = len_a - i_a) > 0) {
6315 Copy(array_a + i_a, array_u + i_u, copy_count, UV);
6317 else if ((copy_count = len_b - i_b) > 0) {
6318 Copy(array_b + i_b, array_u + i_u, copy_count, UV);
6322 /* We may be removing a reference to one of the inputs */
6323 if (&a == output || &b == output) {
6324 SvREFCNT_dec(*output);
6332 Perl__invlist_intersection(pTHX_ SV* const a, SV* const b, SV** i)
6334 /* Take the intersection of two inversion lists and point 'i' to it. If
6335 * 'i' on input points to one of the two lists, the reference count to that
6336 * list will be decremented.
6337 * The basis for this comes from "Unicode Demystified" Chapter 13 by
6338 * Richard Gillam, published by Addison-Wesley, and explained at some
6339 * length there. The preface says to incorporate its examples into your
6340 * code at your own risk. In fact, it had bugs
6342 * The algorithm is like a merge sort, and is essentially the same as the
6346 UV* array_a; /* a's array */
6348 UV len_a; /* length of a's array */
6351 SV* r; /* the resulting intersection */
6355 UV i_a = 0; /* current index into a's array */
6359 /* running count, as explained in the algorithm source book; items are
6360 * stopped accumulating and are output when the count changes to/from 2.
6361 * The count is incremented when we start a range that's in the set, and
6362 * decremented when we start a range that's not in the set. So its range
6363 * is 0 to 2. Only when the count is 2 is something in the intersection.
6367 PERL_ARGS_ASSERT__INVLIST_INTERSECTION;
6369 /* If either one is empty, the intersection is null */
6370 len_a = invlist_len(a);
6371 if ((len_a == 0) || ((len_b = invlist_len(b)) == 0)) {
6372 *i = _new_invlist(0);
6374 /* If the result is the same as one of the inputs, the input is being
6385 /* Here both lists exist and are non-empty */
6386 array_a = invlist_array(a);
6387 array_b = invlist_array(b);
6389 /* Size the intersection for the worst case: that the intersection ends up
6390 * fragmenting everything to be completely disjoint */
6391 r= _new_invlist(len_a + len_b);
6393 /* Will contain U+0000 iff both components do */
6394 array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0
6395 && len_b > 0 && array_b[0] == 0);
6397 /* Go through each list item by item, stopping when exhausted one of
6399 while (i_a < len_a && i_b < len_b) {
6400 UV cp; /* The element to potentially add to the intersection's
6402 bool cp_in_set; /* Is it in the input list's set or not */
6404 /* We need to take one or the other of the two inputs for the
6405 * intersection. Since we are merging two sorted lists, we take the
6406 * smaller of the next items. In case of a tie, we take the one that
6407 * is not in its set first (a difference from the union algorithm). If
6408 * we took one in the set first, it would increment the count, possibly
6409 * to 2 which would cause it to be output as starting a range in the
6410 * intersection, and the next time through we would take that same
6411 * number, and output it again as ending the set. By doing it the
6412 * opposite of this, there is no possibility that the count will be
6413 * momentarily incremented to 2. (In a tie and both are in the set or
6414 * both not in the set, it doesn't matter which we take first.) */
6415 if (array_a[i_a] < array_b[i_b]
6416 || (array_a[i_a] == array_b[i_b] && ! ELEMENT_IN_INVLIST_SET(i_a)))
6418 cp_in_set = ELEMENT_IN_INVLIST_SET(i_a);
6422 cp_in_set = ELEMENT_IN_INVLIST_SET(i_b);
6426 /* Here, have chosen which of the two inputs to look at. Only output
6427 * if the running count changes to/from 2, which marks the
6428 * beginning/end of a range that's in the intersection */
6432 array_r[i_r++] = cp;
6437 array_r[i_r++] = cp;
6443 /* Here, we are finished going through at least one of the lists, which
6444 * means there is something remaining in at most one. We check if the list
6445 * that has been exhausted is positioned such that we are in the middle
6446 * of a range in its set or not. (i_a and i_b point to elements 1 beyond
6447 * the ones we care about.) There are four cases:
6448 * 1) Both weren't in their sets, count is 0, and remains 0. There's
6449 * nothing left in the intersection.
6450 * 2) Both were in their sets, count is 2 and perhaps is incremented to
6451 * above 2. What should be output is exactly that which is in the
6452 * non-exhausted set, as everything it has is also in the intersection
6453 * set, and everything it doesn't have can't be in the intersection
6454 * 3) The exhausted was in its set, non-exhausted isn't, count is 1, and
6455 * gets incremented to 2. Like the previous case, the intersection is
6456 * everything that remains in the non-exhausted set.
6457 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
6458 * remains 1. And the intersection has nothing more. */
6459 if ((i_a == len_a && PREV_ELEMENT_IN_INVLIST_SET(i_a))
6460 || (i_b == len_b && PREV_ELEMENT_IN_INVLIST_SET(i_b)))
6465 /* The final length is what we've output so far plus what else is in the
6466 * intersection. At most one of the subexpressions below will be non-zero */
6469 len_r += (len_a - i_a) + (len_b - i_b);
6472 /* Set result to final length, which can change the pointer to array_r, so
6474 if (len_r != invlist_len(r)) {
6475 invlist_set_len(r, len_r);
6477 array_r = invlist_array(r);
6480 /* Finish outputting any remaining */
6481 if (count >= 2) { /* At most one will have a non-zero copy count */
6483 if ((copy_count = len_a - i_a) > 0) {
6484 Copy(array_a + i_a, array_r + i_r, copy_count, UV);
6486 else if ((copy_count = len_b - i_b) > 0) {
6487 Copy(array_b + i_b, array_r + i_r, copy_count, UV);
6491 /* We may be removing a reference to one of the inputs */
6492 if (&a == i || &b == i) {
6503 S_add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end)
6505 /* Add the range from 'start' to 'end' inclusive to the inversion list's
6506 * set. A pointer to the inversion list is returned. This may actually be
6507 * a new list, in which case the passed in one has been destroyed. The
6508 * passed in inversion list can be NULL, in which case a new one is created
6509 * with just the one range in it */
6514 if (invlist == NULL) {
6515 invlist = _new_invlist(2);
6519 len = invlist_len(invlist);
6522 /* If comes after the final entry, can just append it to the end */
6524 || start >= invlist_array(invlist)
6525 [invlist_len(invlist) - 1])
6527 _append_range_to_invlist(invlist, start, end);
6531 /* Here, can't just append things, create and return a new inversion list
6532 * which is the union of this range and the existing inversion list */
6533 range_invlist = _new_invlist(2);
6534 _append_range_to_invlist(range_invlist, start, end);
6536 _invlist_union(invlist, range_invlist, &invlist);
6538 /* The temporary can be freed */
6539 SvREFCNT_dec(range_invlist);
6544 PERL_STATIC_INLINE SV*
6545 S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) {
6546 return add_range_to_invlist(invlist, cp, cp);
6549 #ifndef PERL_IN_XSUB_RE
6551 Perl__invlist_invert(pTHX_ SV* const invlist)
6553 /* Complement the input inversion list. This adds a 0 if the list didn't
6554 * have a zero; removes it otherwise. As described above, the data
6555 * structure is set up so that this is very efficient */
6557 UV* len_pos = get_invlist_len_addr(invlist);
6559 PERL_ARGS_ASSERT__INVLIST_INVERT;
6561 /* The inverse of matching nothing is matching everything */
6562 if (*len_pos == 0) {
6563 _append_range_to_invlist(invlist, 0, UV_MAX);
6567 /* The exclusive or complents 0 to 1; and 1 to 0. If the result is 1, the
6568 * zero element was a 0, so it is being removed, so the length decrements
6569 * by 1; and vice-versa. SvCUR is unaffected */
6570 if (*get_invlist_zero_addr(invlist) ^= 1) {
6579 Perl__invlist_invert_prop(pTHX_ SV* const invlist)
6581 /* Complement the input inversion list (which must be a Unicode property,
6582 * all of which don't match above the Unicode maximum code point.) And
6583 * Perl has chosen to not have the inversion match above that either. This
6584 * adds a 0x110000 if the list didn't end with it, and removes it if it did
6590 PERL_ARGS_ASSERT__INVLIST_INVERT_PROP;
6592 _invlist_invert(invlist);
6594 len = invlist_len(invlist);
6596 if (len != 0) { /* If empty do nothing */
6597 array = invlist_array(invlist);
6598 if (array[len - 1] != PERL_UNICODE_MAX + 1) {
6599 /* Add 0x110000. First, grow if necessary */
6601 if (invlist_max(invlist) < len) {
6602 invlist_extend(invlist, len);
6603 array = invlist_array(invlist);
6605 invlist_set_len(invlist, len);
6606 array[len - 1] = PERL_UNICODE_MAX + 1;
6608 else { /* Remove the 0x110000 */
6609 invlist_set_len(invlist, len - 1);
6617 PERL_STATIC_INLINE SV*
6618 S_invlist_clone(pTHX_ SV* const invlist)
6621 /* Return a new inversion list that is a copy of the input one, which is
6624 SV* new_invlist = _new_invlist(SvCUR(invlist));
6626 PERL_ARGS_ASSERT_INVLIST_CLONE;
6628 Copy(SvPVX(invlist), SvPVX(new_invlist), SvCUR(invlist), char);
6632 #ifndef PERL_IN_XSUB_RE
6634 Perl__invlist_subtract(pTHX_ SV* const a, SV* const b, SV** result)
6636 /* Point result to an inversion list which consists of all elements in 'a'
6637 * that aren't also in 'b' */
6639 PERL_ARGS_ASSERT__INVLIST_SUBTRACT;
6641 /* Subtracting nothing retains the original */
6642 if (invlist_len(b) == 0) {
6644 /* If the result is not to be the same variable as the original, create
6647 *result = invlist_clone(a);
6650 SV *b_copy = invlist_clone(b);
6651 _invlist_invert(b_copy); /* Everything not in 'b' */
6652 _invlist_intersection(a, b_copy, result); /* Everything in 'a' not in
6654 SvREFCNT_dec(b_copy);
6665 PERL_STATIC_INLINE UV*
6666 S_get_invlist_iter_addr(pTHX_ SV* invlist)
6668 /* Return the address of the UV that contains the current iteration
6671 PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR;
6673 return (UV *) (SvPVX(invlist) + (INVLIST_ITER_OFFSET * sizeof (UV)));
6676 PERL_STATIC_INLINE void
6677 S_invlist_iterinit(pTHX_ SV* invlist) /* Initialize iterator for invlist */
6679 PERL_ARGS_ASSERT_INVLIST_ITERINIT;
6681 *get_invlist_iter_addr(invlist) = 0;
6685 S_invlist_iternext(pTHX_ SV* invlist, UV* start, UV* end)
6687 UV* pos = get_invlist_iter_addr(invlist);
6688 UV len = invlist_len(invlist);
6691 PERL_ARGS_ASSERT_INVLIST_ITERNEXT;
6694 *pos = UV_MAX; /* Force iternit() to be required next time */
6698 array = invlist_array(invlist);
6700 *start = array[(*pos)++];
6706 *end = array[(*pos)++] - 1;
6714 S_invlist_dump(pTHX_ SV* const invlist, const char * const header)
6716 /* Dumps out the ranges in an inversion list. The string 'header'
6717 * if present is output on a line before the first range */
6721 if (header && strlen(header)) {
6722 PerlIO_printf(Perl_debug_log, "%s\n", header);
6724 invlist_iterinit(invlist);
6725 while (invlist_iternext(invlist, &start, &end)) {
6726 if (end == UV_MAX) {
6727 PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. INFINITY\n", start);
6730 PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. 0x%04"UVXf"\n", start, end);
6736 #undef HEADER_LENGTH
6737 #undef INVLIST_INITIAL_LENGTH
6738 #undef TO_INTERNAL_SIZE
6739 #undef FROM_INTERNAL_SIZE
6740 #undef INVLIST_LEN_OFFSET
6741 #undef INVLIST_ZERO_OFFSET
6742 #undef INVLIST_ITER_OFFSET
6744 /* End of inversion list object */
6747 - reg - regular expression, i.e. main body or parenthesized thing
6749 * Caller must absorb opening parenthesis.
6751 * Combining parenthesis handling with the base level of regular expression
6752 * is a trifle forced, but the need to tie the tails of the branches to what
6753 * follows makes it hard to avoid.
6755 #define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
6757 #define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
6759 #define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
6763 S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
6764 /* paren: Parenthesized? 0=top, 1=(, inside: changed to letter. */
6767 register regnode *ret; /* Will be the head of the group. */
6768 register regnode *br;
6769 register regnode *lastbr;
6770 register regnode *ender = NULL;
6771 register I32 parno = 0;
6773 U32 oregflags = RExC_flags;
6774 bool have_branch = 0;
6776 I32 freeze_paren = 0;
6777 I32 after_freeze = 0;
6779 /* for (?g), (?gc), and (?o) warnings; warning
6780 about (?c) will warn about (?g) -- japhy */
6782 #define WASTED_O 0x01
6783 #define WASTED_G 0x02
6784 #define WASTED_C 0x04
6785 #define WASTED_GC (0x02|0x04)
6786 I32 wastedflags = 0x00;
6788 char * parse_start = RExC_parse; /* MJD */
6789 char * const oregcomp_parse = RExC_parse;
6791 GET_RE_DEBUG_FLAGS_DECL;
6793 PERL_ARGS_ASSERT_REG;
6794 DEBUG_PARSE("reg ");
6796 *flagp = 0; /* Tentatively. */
6799 /* Make an OPEN node, if parenthesized. */
6801 if ( *RExC_parse == '*') { /* (*VERB:ARG) */
6802 char *start_verb = RExC_parse;
6803 STRLEN verb_len = 0;
6804 char *start_arg = NULL;
6805 unsigned char op = 0;
6807 int internal_argval = 0; /* internal_argval is only useful if !argok */
6808 while ( *RExC_parse && *RExC_parse != ')' ) {
6809 if ( *RExC_parse == ':' ) {
6810 start_arg = RExC_parse + 1;
6816 verb_len = RExC_parse - start_verb;
6819 while ( *RExC_parse && *RExC_parse != ')' )
6821 if ( *RExC_parse != ')' )
6822 vFAIL("Unterminated verb pattern argument");
6823 if ( RExC_parse == start_arg )
6826 if ( *RExC_parse != ')' )
6827 vFAIL("Unterminated verb pattern");
6830 switch ( *start_verb ) {
6831 case 'A': /* (*ACCEPT) */
6832 if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
6834 internal_argval = RExC_nestroot;
6837 case 'C': /* (*COMMIT) */
6838 if ( memEQs(start_verb,verb_len,"COMMIT") )
6841 case 'F': /* (*FAIL) */
6842 if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
6847 case ':': /* (*:NAME) */
6848 case 'M': /* (*MARK:NAME) */
6849 if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
6854 case 'P': /* (*PRUNE) */
6855 if ( memEQs(start_verb,verb_len,"PRUNE") )
6858 case 'S': /* (*SKIP) */
6859 if ( memEQs(start_verb,verb_len,"SKIP") )
6862 case 'T': /* (*THEN) */
6863 /* [19:06] <TimToady> :: is then */
6864 if ( memEQs(start_verb,verb_len,"THEN") ) {
6866 RExC_seen |= REG_SEEN_CUTGROUP;
6872 vFAIL3("Unknown verb pattern '%.*s'",
6873 verb_len, start_verb);
6876 if ( start_arg && internal_argval ) {
6877 vFAIL3("Verb pattern '%.*s' may not have an argument",
6878 verb_len, start_verb);
6879 } else if ( argok < 0 && !start_arg ) {
6880 vFAIL3("Verb pattern '%.*s' has a mandatory argument",
6881 verb_len, start_verb);
6883 ret = reganode(pRExC_state, op, internal_argval);
6884 if ( ! internal_argval && ! SIZE_ONLY ) {
6886 SV *sv = newSVpvn( start_arg, RExC_parse - start_arg);
6887 ARG(ret) = add_data( pRExC_state, 1, "S" );
6888 RExC_rxi->data->data[ARG(ret)]=(void*)sv;
6895 if (!internal_argval)
6896 RExC_seen |= REG_SEEN_VERBARG;
6897 } else if ( start_arg ) {
6898 vFAIL3("Verb pattern '%.*s' may not have an argument",
6899 verb_len, start_verb);
6901 ret = reg_node(pRExC_state, op);
6903 nextchar(pRExC_state);
6906 if (*RExC_parse == '?') { /* (?...) */
6907 bool is_logical = 0;
6908 const char * const seqstart = RExC_parse;
6909 bool has_use_defaults = FALSE;
6912 paren = *RExC_parse++;
6913 ret = NULL; /* For look-ahead/behind. */
6916 case 'P': /* (?P...) variants for those used to PCRE/Python */
6917 paren = *RExC_parse++;
6918 if ( paren == '<') /* (?P<...>) named capture */
6920 else if (paren == '>') { /* (?P>name) named recursion */
6921 goto named_recursion;
6923 else if (paren == '=') { /* (?P=...) named backref */
6924 /* this pretty much dupes the code for \k<NAME> in regatom(), if
6925 you change this make sure you change that */
6926 char* name_start = RExC_parse;
6928 SV *sv_dat = reg_scan_name(pRExC_state,
6929 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
6930 if (RExC_parse == name_start || *RExC_parse != ')')
6931 vFAIL2("Sequence %.3s... not terminated",parse_start);
6934 num = add_data( pRExC_state, 1, "S" );
6935 RExC_rxi->data->data[num]=(void*)sv_dat;
6936 SvREFCNT_inc_simple_void(sv_dat);
6939 ret = reganode(pRExC_state,
6942 : (MORE_ASCII_RESTRICTED)
6944 : (AT_LEAST_UNI_SEMANTICS)
6952 Set_Node_Offset(ret, parse_start+1);
6953 Set_Node_Cur_Length(ret); /* MJD */
6955 nextchar(pRExC_state);
6959 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
6961 case '<': /* (?<...) */
6962 if (*RExC_parse == '!')
6964 else if (*RExC_parse != '=')
6970 case '\'': /* (?'...') */
6971 name_start= RExC_parse;
6972 svname = reg_scan_name(pRExC_state,
6973 SIZE_ONLY ? /* reverse test from the others */
6974 REG_RSN_RETURN_NAME :
6975 REG_RSN_RETURN_NULL);
6976 if (RExC_parse == name_start) {
6978 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
6981 if (*RExC_parse != paren)
6982 vFAIL2("Sequence (?%c... not terminated",
6983 paren=='>' ? '<' : paren);
6987 if (!svname) /* shouldn't happen */
6989 "panic: reg_scan_name returned NULL");
6990 if (!RExC_paren_names) {
6991 RExC_paren_names= newHV();
6992 sv_2mortal(MUTABLE_SV(RExC_paren_names));
6994 RExC_paren_name_list= newAV();
6995 sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
6998 he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
7000 sv_dat = HeVAL(he_str);
7002 /* croak baby croak */
7004 "panic: paren_name hash element allocation failed");
7005 } else if ( SvPOK(sv_dat) ) {
7006 /* (?|...) can mean we have dupes so scan to check
7007 its already been stored. Maybe a flag indicating
7008 we are inside such a construct would be useful,
7009 but the arrays are likely to be quite small, so
7010 for now we punt -- dmq */
7011 IV count = SvIV(sv_dat);
7012 I32 *pv = (I32*)SvPVX(sv_dat);
7014 for ( i = 0 ; i < count ; i++ ) {
7015 if ( pv[i] == RExC_npar ) {
7021 pv = (I32*)SvGROW(sv_dat, SvCUR(sv_dat) + sizeof(I32)+1);
7022 SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
7023 pv[count] = RExC_npar;
7024 SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
7027 (void)SvUPGRADE(sv_dat,SVt_PVNV);
7028 sv_setpvn(sv_dat, (char *)&(RExC_npar), sizeof(I32));
7030 SvIV_set(sv_dat, 1);
7033 /* Yes this does cause a memory leak in debugging Perls */
7034 if (!av_store(RExC_paren_name_list, RExC_npar, SvREFCNT_inc(svname)))
7035 SvREFCNT_dec(svname);
7038 /*sv_dump(sv_dat);*/
7040 nextchar(pRExC_state);
7042 goto capturing_parens;
7044 RExC_seen |= REG_SEEN_LOOKBEHIND;
7045 RExC_in_lookbehind++;
7047 case '=': /* (?=...) */
7048 RExC_seen_zerolen++;
7050 case '!': /* (?!...) */
7051 RExC_seen_zerolen++;
7052 if (*RExC_parse == ')') {
7053 ret=reg_node(pRExC_state, OPFAIL);
7054 nextchar(pRExC_state);
7058 case '|': /* (?|...) */
7059 /* branch reset, behave like a (?:...) except that
7060 buffers in alternations share the same numbers */
7062 after_freeze = freeze_paren = RExC_npar;
7064 case ':': /* (?:...) */
7065 case '>': /* (?>...) */
7067 case '$': /* (?$...) */
7068 case '@': /* (?@...) */
7069 vFAIL2("Sequence (?%c...) not implemented", (int)paren);
7071 case '#': /* (?#...) */
7072 while (*RExC_parse && *RExC_parse != ')')
7074 if (*RExC_parse != ')')
7075 FAIL("Sequence (?#... not terminated");
7076 nextchar(pRExC_state);
7079 case '0' : /* (?0) */
7080 case 'R' : /* (?R) */
7081 if (*RExC_parse != ')')
7082 FAIL("Sequence (?R) not terminated");
7083 ret = reg_node(pRExC_state, GOSTART);
7084 *flagp |= POSTPONED;
7085 nextchar(pRExC_state);
7088 { /* named and numeric backreferences */
7090 case '&': /* (?&NAME) */
7091 parse_start = RExC_parse - 1;
7094 SV *sv_dat = reg_scan_name(pRExC_state,
7095 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
7096 num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
7098 goto gen_recurse_regop;
7101 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
7103 vFAIL("Illegal pattern");
7105 goto parse_recursion;
7107 case '-': /* (?-1) */
7108 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
7109 RExC_parse--; /* rewind to let it be handled later */
7113 case '1': case '2': case '3': case '4': /* (?1) */
7114 case '5': case '6': case '7': case '8': case '9':
7117 num = atoi(RExC_parse);
7118 parse_start = RExC_parse - 1; /* MJD */
7119 if (*RExC_parse == '-')
7121 while (isDIGIT(*RExC_parse))
7123 if (*RExC_parse!=')')
7124 vFAIL("Expecting close bracket");
7127 if ( paren == '-' ) {
7129 Diagram of capture buffer numbering.
7130 Top line is the normal capture buffer numbers
7131 Bottom line is the negative indexing as from
7135 /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
7139 num = RExC_npar + num;
7142 vFAIL("Reference to nonexistent group");
7144 } else if ( paren == '+' ) {
7145 num = RExC_npar + num - 1;
7148 ret = reganode(pRExC_state, GOSUB, num);
7150 if (num > (I32)RExC_rx->nparens) {
7152 vFAIL("Reference to nonexistent group");
7154 ARG2L_SET( ret, RExC_recurse_count++);
7156 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
7157 "Recurse #%"UVuf" to %"IVdf"\n", (UV)ARG(ret), (IV)ARG2L(ret)));
7161 RExC_seen |= REG_SEEN_RECURSE;
7162 Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
7163 Set_Node_Offset(ret, parse_start); /* MJD */
7165 *flagp |= POSTPONED;
7166 nextchar(pRExC_state);
7168 } /* named and numeric backreferences */
7171 case '?': /* (??...) */
7173 if (*RExC_parse != '{') {
7175 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
7178 *flagp |= POSTPONED;
7179 paren = *RExC_parse++;
7181 case '{': /* (?{...}) */
7186 char *s = RExC_parse;
7188 RExC_seen_zerolen++;
7189 RExC_seen |= REG_SEEN_EVAL;
7190 while (count && (c = *RExC_parse)) {
7201 if (*RExC_parse != ')') {
7203 vFAIL("Sequence (?{...}) not terminated or not {}-balanced");
7207 OP_4tree *sop, *rop;
7208 SV * const sv = newSVpvn(s, RExC_parse - 1 - s);
7211 Perl_save_re_context(aTHX);
7212 rop = Perl_sv_compile_2op_is_broken(aTHX_ sv, &sop, "re", &pad);
7213 sop->op_private |= OPpREFCOUNTED;
7214 /* re_dup will OpREFCNT_inc */
7215 OpREFCNT_set(sop, 1);
7218 n = add_data(pRExC_state, 3, "nop");
7219 RExC_rxi->data->data[n] = (void*)rop;
7220 RExC_rxi->data->data[n+1] = (void*)sop;
7221 RExC_rxi->data->data[n+2] = (void*)pad;
7224 else { /* First pass */
7225 if (PL_reginterp_cnt < ++RExC_seen_evals
7227 /* No compiled RE interpolated, has runtime
7228 components ===> unsafe. */
7229 FAIL("Eval-group not allowed at runtime, use re 'eval'");
7230 if (PL_tainting && PL_tainted)
7231 FAIL("Eval-group in insecure regular expression");
7232 #if PERL_VERSION > 8
7233 if (IN_PERL_COMPILETIME)
7238 nextchar(pRExC_state);
7240 ret = reg_node(pRExC_state, LOGICAL);
7243 REGTAIL(pRExC_state, ret, reganode(pRExC_state, EVAL, n));
7244 /* deal with the length of this later - MJD */
7247 ret = reganode(pRExC_state, EVAL, n);
7248 Set_Node_Length(ret, RExC_parse - parse_start + 1);
7249 Set_Node_Offset(ret, parse_start);
7252 case '(': /* (?(?{...})...) and (?(?=...)...) */
7255 if (RExC_parse[0] == '?') { /* (?(?...)) */
7256 if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
7257 || RExC_parse[1] == '<'
7258 || RExC_parse[1] == '{') { /* Lookahead or eval. */
7261 ret = reg_node(pRExC_state, LOGICAL);
7264 REGTAIL(pRExC_state, ret, reg(pRExC_state, 1, &flag,depth+1));
7268 else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */
7269 || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
7271 char ch = RExC_parse[0] == '<' ? '>' : '\'';
7272 char *name_start= RExC_parse++;
7274 SV *sv_dat=reg_scan_name(pRExC_state,
7275 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
7276 if (RExC_parse == name_start || *RExC_parse != ch)
7277 vFAIL2("Sequence (?(%c... not terminated",
7278 (ch == '>' ? '<' : ch));
7281 num = add_data( pRExC_state, 1, "S" );
7282 RExC_rxi->data->data[num]=(void*)sv_dat;
7283 SvREFCNT_inc_simple_void(sv_dat);
7285 ret = reganode(pRExC_state,NGROUPP,num);
7286 goto insert_if_check_paren;
7288 else if (RExC_parse[0] == 'D' &&
7289 RExC_parse[1] == 'E' &&
7290 RExC_parse[2] == 'F' &&
7291 RExC_parse[3] == 'I' &&
7292 RExC_parse[4] == 'N' &&
7293 RExC_parse[5] == 'E')
7295 ret = reganode(pRExC_state,DEFINEP,0);
7298 goto insert_if_check_paren;
7300 else if (RExC_parse[0] == 'R') {
7303 if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
7304 parno = atoi(RExC_parse++);
7305 while (isDIGIT(*RExC_parse))
7307 } else if (RExC_parse[0] == '&') {
7310 sv_dat = reg_scan_name(pRExC_state,
7311 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
7312 parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
7314 ret = reganode(pRExC_state,INSUBP,parno);
7315 goto insert_if_check_paren;
7317 else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
7320 parno = atoi(RExC_parse++);
7322 while (isDIGIT(*RExC_parse))
7324 ret = reganode(pRExC_state, GROUPP, parno);
7326 insert_if_check_paren:
7327 if ((c = *nextchar(pRExC_state)) != ')')
7328 vFAIL("Switch condition not recognized");
7330 REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
7331 br = regbranch(pRExC_state, &flags, 1,depth+1);
7333 br = reganode(pRExC_state, LONGJMP, 0);
7335 REGTAIL(pRExC_state, br, reganode(pRExC_state, LONGJMP, 0));
7336 c = *nextchar(pRExC_state);
7341 vFAIL("(?(DEFINE)....) does not allow branches");
7342 lastbr = reganode(pRExC_state, IFTHEN, 0); /* Fake one for optimizer. */
7343 regbranch(pRExC_state, &flags, 1,depth+1);
7344 REGTAIL(pRExC_state, ret, lastbr);
7347 c = *nextchar(pRExC_state);
7352 vFAIL("Switch (?(condition)... contains too many branches");
7353 ender = reg_node(pRExC_state, TAIL);
7354 REGTAIL(pRExC_state, br, ender);
7356 REGTAIL(pRExC_state, lastbr, ender);
7357 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
7360 REGTAIL(pRExC_state, ret, ender);
7361 RExC_size++; /* XXX WHY do we need this?!!
7362 For large programs it seems to be required
7363 but I can't figure out why. -- dmq*/
7367 vFAIL2("Unknown switch condition (?(%.2s", RExC_parse);
7371 RExC_parse--; /* for vFAIL to print correctly */
7372 vFAIL("Sequence (? incomplete");
7374 case DEFAULT_PAT_MOD: /* Use default flags with the exceptions
7376 has_use_defaults = TRUE;
7377 STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
7378 set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
7379 ? REGEX_UNICODE_CHARSET
7380 : REGEX_DEPENDS_CHARSET);
7384 parse_flags: /* (?i) */
7386 U32 posflags = 0, negflags = 0;
7387 U32 *flagsp = &posflags;
7388 char has_charset_modifier = '\0';
7389 regex_charset cs = (RExC_utf8 || RExC_uni_semantics)
7390 ? REGEX_UNICODE_CHARSET
7391 : REGEX_DEPENDS_CHARSET;
7393 while (*RExC_parse) {
7394 /* && strchr("iogcmsx", *RExC_parse) */
7395 /* (?g), (?gc) and (?o) are useless here
7396 and must be globally applied -- japhy */
7397 switch (*RExC_parse) {
7398 CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp);
7399 case LOCALE_PAT_MOD:
7400 if (has_charset_modifier) {
7401 goto excess_modifier;
7403 else if (flagsp == &negflags) {
7406 cs = REGEX_LOCALE_CHARSET;
7407 has_charset_modifier = LOCALE_PAT_MOD;
7408 RExC_contains_locale = 1;
7410 case UNICODE_PAT_MOD:
7411 if (has_charset_modifier) {
7412 goto excess_modifier;
7414 else if (flagsp == &negflags) {
7417 cs = REGEX_UNICODE_CHARSET;
7418 has_charset_modifier = UNICODE_PAT_MOD;
7420 case ASCII_RESTRICT_PAT_MOD:
7421 if (flagsp == &negflags) {
7424 if (has_charset_modifier) {
7425 if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
7426 goto excess_modifier;
7428 /* Doubled modifier implies more restricted */
7429 cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
7432 cs = REGEX_ASCII_RESTRICTED_CHARSET;
7434 has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
7436 case DEPENDS_PAT_MOD:
7437 if (has_use_defaults) {
7438 goto fail_modifiers;
7440 else if (flagsp == &negflags) {
7443 else if (has_charset_modifier) {
7444 goto excess_modifier;
7447 /* The dual charset means unicode semantics if the
7448 * pattern (or target, not known until runtime) are
7449 * utf8, or something in the pattern indicates unicode
7451 cs = (RExC_utf8 || RExC_uni_semantics)
7452 ? REGEX_UNICODE_CHARSET
7453 : REGEX_DEPENDS_CHARSET;
7454 has_charset_modifier = DEPENDS_PAT_MOD;
7458 if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
7459 vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
7461 else if (has_charset_modifier == *(RExC_parse - 1)) {
7462 vFAIL2("Regexp modifier \"%c\" may not appear twice", *(RExC_parse - 1));
7465 vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
7470 vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"", *(RExC_parse - 1));
7472 case ONCE_PAT_MOD: /* 'o' */
7473 case GLOBAL_PAT_MOD: /* 'g' */
7474 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
7475 const I32 wflagbit = *RExC_parse == 'o' ? WASTED_O : WASTED_G;
7476 if (! (wastedflags & wflagbit) ) {
7477 wastedflags |= wflagbit;
7480 "Useless (%s%c) - %suse /%c modifier",
7481 flagsp == &negflags ? "?-" : "?",
7483 flagsp == &negflags ? "don't " : "",
7490 case CONTINUE_PAT_MOD: /* 'c' */
7491 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
7492 if (! (wastedflags & WASTED_C) ) {
7493 wastedflags |= WASTED_GC;
7496 "Useless (%sc) - %suse /gc modifier",
7497 flagsp == &negflags ? "?-" : "?",
7498 flagsp == &negflags ? "don't " : ""
7503 case KEEPCOPY_PAT_MOD: /* 'p' */
7504 if (flagsp == &negflags) {
7506 ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
7508 *flagsp |= RXf_PMf_KEEPCOPY;
7512 /* A flag is a default iff it is following a minus, so
7513 * if there is a minus, it means will be trying to
7514 * re-specify a default which is an error */
7515 if (has_use_defaults || flagsp == &negflags) {
7518 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
7522 wastedflags = 0; /* reset so (?g-c) warns twice */
7528 RExC_flags |= posflags;
7529 RExC_flags &= ~negflags;
7530 set_regex_charset(&RExC_flags, cs);
7532 oregflags |= posflags;
7533 oregflags &= ~negflags;
7534 set_regex_charset(&oregflags, cs);
7536 nextchar(pRExC_state);
7547 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
7552 }} /* one for the default block, one for the switch */
7559 ret = reganode(pRExC_state, OPEN, parno);
7562 RExC_nestroot = parno;
7563 if (RExC_seen & REG_SEEN_RECURSE
7564 && !RExC_open_parens[parno-1])
7566 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
7567 "Setting open paren #%"IVdf" to %d\n",
7568 (IV)parno, REG_NODE_NUM(ret)));
7569 RExC_open_parens[parno-1]= ret;
7572 Set_Node_Length(ret, 1); /* MJD */
7573 Set_Node_Offset(ret, RExC_parse); /* MJD */
7581 /* Pick up the branches, linking them together. */
7582 parse_start = RExC_parse; /* MJD */
7583 br = regbranch(pRExC_state, &flags, 1,depth+1);
7585 /* branch_len = (paren != 0); */
7589 if (*RExC_parse == '|') {
7590 if (!SIZE_ONLY && RExC_extralen) {
7591 reginsert(pRExC_state, BRANCHJ, br, depth+1);
7594 reginsert(pRExC_state, BRANCH, br, depth+1);
7595 Set_Node_Length(br, paren != 0);
7596 Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
7600 RExC_extralen += 1; /* For BRANCHJ-BRANCH. */
7602 else if (paren == ':') {
7603 *flagp |= flags&SIMPLE;
7605 if (is_open) { /* Starts with OPEN. */
7606 REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */
7608 else if (paren != '?') /* Not Conditional */
7610 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
7612 while (*RExC_parse == '|') {
7613 if (!SIZE_ONLY && RExC_extralen) {
7614 ender = reganode(pRExC_state, LONGJMP,0);
7615 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender); /* Append to the previous. */
7618 RExC_extralen += 2; /* Account for LONGJMP. */
7619 nextchar(pRExC_state);
7621 if (RExC_npar > after_freeze)
7622 after_freeze = RExC_npar;
7623 RExC_npar = freeze_paren;
7625 br = regbranch(pRExC_state, &flags, 0, depth+1);
7629 REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */
7631 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
7634 if (have_branch || paren != ':') {
7635 /* Make a closing node, and hook it on the end. */
7638 ender = reg_node(pRExC_state, TAIL);
7641 ender = reganode(pRExC_state, CLOSE, parno);
7642 if (!SIZE_ONLY && RExC_seen & REG_SEEN_RECURSE) {
7643 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
7644 "Setting close paren #%"IVdf" to %d\n",
7645 (IV)parno, REG_NODE_NUM(ender)));
7646 RExC_close_parens[parno-1]= ender;
7647 if (RExC_nestroot == parno)
7650 Set_Node_Offset(ender,RExC_parse+1); /* MJD */
7651 Set_Node_Length(ender,1); /* MJD */
7657 *flagp &= ~HASWIDTH;
7660 ender = reg_node(pRExC_state, SUCCEED);
7663 ender = reg_node(pRExC_state, END);
7665 assert(!RExC_opend); /* there can only be one! */
7670 REGTAIL(pRExC_state, lastbr, ender);
7672 if (have_branch && !SIZE_ONLY) {
7674 RExC_seen |= REG_TOP_LEVEL_BRANCHES;
7676 /* Hook the tails of the branches to the closing node. */
7677 for (br = ret; br; br = regnext(br)) {
7678 const U8 op = PL_regkind[OP(br)];
7680 REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
7682 else if (op == BRANCHJ) {
7683 REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
7691 static const char parens[] = "=!<,>";
7693 if (paren && (p = strchr(parens, paren))) {
7694 U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
7695 int flag = (p - parens) > 1;
7698 node = SUSPEND, flag = 0;
7699 reginsert(pRExC_state, node,ret, depth+1);
7700 Set_Node_Cur_Length(ret);
7701 Set_Node_Offset(ret, parse_start + 1);
7703 REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
7707 /* Check for proper termination. */
7709 RExC_flags = oregflags;
7710 if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
7711 RExC_parse = oregcomp_parse;
7712 vFAIL("Unmatched (");
7715 else if (!paren && RExC_parse < RExC_end) {
7716 if (*RExC_parse == ')') {
7718 vFAIL("Unmatched )");
7721 FAIL("Junk on end of regexp"); /* "Can't happen". */
7725 if (RExC_in_lookbehind) {
7726 RExC_in_lookbehind--;
7728 if (after_freeze > RExC_npar)
7729 RExC_npar = after_freeze;
7734 - regbranch - one alternative of an | operator
7736 * Implements the concatenation operator.
7739 S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
7742 register regnode *ret;
7743 register regnode *chain = NULL;
7744 register regnode *latest;
7745 I32 flags = 0, c = 0;
7746 GET_RE_DEBUG_FLAGS_DECL;
7748 PERL_ARGS_ASSERT_REGBRANCH;
7750 DEBUG_PARSE("brnc");
7755 if (!SIZE_ONLY && RExC_extralen)
7756 ret = reganode(pRExC_state, BRANCHJ,0);
7758 ret = reg_node(pRExC_state, BRANCH);
7759 Set_Node_Length(ret, 1);
7763 if (!first && SIZE_ONLY)
7764 RExC_extralen += 1; /* BRANCHJ */
7766 *flagp = WORST; /* Tentatively. */
7769 nextchar(pRExC_state);
7770 while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
7772 latest = regpiece(pRExC_state, &flags,depth+1);
7773 if (latest == NULL) {
7774 if (flags & TRYAGAIN)
7778 else if (ret == NULL)
7780 *flagp |= flags&(HASWIDTH|POSTPONED);
7781 if (chain == NULL) /* First piece. */
7782 *flagp |= flags&SPSTART;
7785 REGTAIL(pRExC_state, chain, latest);
7790 if (chain == NULL) { /* Loop ran zero times. */
7791 chain = reg_node(pRExC_state, NOTHING);
7796 *flagp |= flags&SIMPLE;
7803 - regpiece - something followed by possible [*+?]
7805 * Note that the branching code sequences used for ? and the general cases
7806 * of * and + are somewhat optimized: they use the same NOTHING node as
7807 * both the endmarker for their branch list and the body of the last branch.
7808 * It might seem that this node could be dispensed with entirely, but the
7809 * endmarker role is not redundant.
7812 S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
7815 register regnode *ret;
7817 register char *next;
7819 const char * const origparse = RExC_parse;
7821 I32 max = REG_INFTY;
7822 #ifdef RE_TRACK_PATTERN_OFFSETS
7825 const char *maxpos = NULL;
7826 GET_RE_DEBUG_FLAGS_DECL;
7828 PERL_ARGS_ASSERT_REGPIECE;
7830 DEBUG_PARSE("piec");
7832 ret = regatom(pRExC_state, &flags,depth+1);
7834 if (flags & TRYAGAIN)
7841 if (op == '{' && regcurly(RExC_parse)) {
7843 #ifdef RE_TRACK_PATTERN_OFFSETS
7844 parse_start = RExC_parse; /* MJD */
7846 next = RExC_parse + 1;
7847 while (isDIGIT(*next) || *next == ',') {
7856 if (*next == '}') { /* got one */
7860 min = atoi(RExC_parse);
7864 maxpos = RExC_parse;
7866 if (!max && *maxpos != '0')
7867 max = REG_INFTY; /* meaning "infinity" */
7868 else if (max >= REG_INFTY)
7869 vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
7871 nextchar(pRExC_state);
7874 if ((flags&SIMPLE)) {
7875 RExC_naughty += 2 + RExC_naughty / 2;
7876 reginsert(pRExC_state, CURLY, ret, depth+1);
7877 Set_Node_Offset(ret, parse_start+1); /* MJD */
7878 Set_Node_Cur_Length(ret);
7881 regnode * const w = reg_node(pRExC_state, WHILEM);
7884 REGTAIL(pRExC_state, ret, w);
7885 if (!SIZE_ONLY && RExC_extralen) {
7886 reginsert(pRExC_state, LONGJMP,ret, depth+1);
7887 reginsert(pRExC_state, NOTHING,ret, depth+1);
7888 NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
7890 reginsert(pRExC_state, CURLYX,ret, depth+1);
7892 Set_Node_Offset(ret, parse_start+1);
7893 Set_Node_Length(ret,
7894 op == '{' ? (RExC_parse - parse_start) : 1);
7896 if (!SIZE_ONLY && RExC_extralen)
7897 NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
7898 REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
7900 RExC_whilem_seen++, RExC_extralen += 3;
7901 RExC_naughty += 4 + RExC_naughty; /* compound interest */
7910 vFAIL("Can't do {n,m} with n > m");
7912 ARG1_SET(ret, (U16)min);
7913 ARG2_SET(ret, (U16)max);
7925 #if 0 /* Now runtime fix should be reliable. */
7927 /* if this is reinstated, don't forget to put this back into perldiag:
7929 =item Regexp *+ operand could be empty at {#} in regex m/%s/
7931 (F) The part of the regexp subject to either the * or + quantifier
7932 could match an empty string. The {#} shows in the regular
7933 expression about where the problem was discovered.
7937 if (!(flags&HASWIDTH) && op != '?')
7938 vFAIL("Regexp *+ operand could be empty");
7941 #ifdef RE_TRACK_PATTERN_OFFSETS
7942 parse_start = RExC_parse;
7944 nextchar(pRExC_state);
7946 *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
7948 if (op == '*' && (flags&SIMPLE)) {
7949 reginsert(pRExC_state, STAR, ret, depth+1);
7953 else if (op == '*') {
7957 else if (op == '+' && (flags&SIMPLE)) {
7958 reginsert(pRExC_state, PLUS, ret, depth+1);
7962 else if (op == '+') {
7966 else if (op == '?') {
7971 if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
7972 ckWARN3reg(RExC_parse,
7973 "%.*s matches null string many times",
7974 (int)(RExC_parse >= origparse ? RExC_parse - origparse : 0),
7978 if (RExC_parse < RExC_end && *RExC_parse == '?') {
7979 nextchar(pRExC_state);
7980 reginsert(pRExC_state, MINMOD, ret, depth+1);
7981 REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
7983 #ifndef REG_ALLOW_MINMOD_SUSPEND
7986 if (RExC_parse < RExC_end && *RExC_parse == '+') {
7988 nextchar(pRExC_state);
7989 ender = reg_node(pRExC_state, SUCCEED);
7990 REGTAIL(pRExC_state, ret, ender);
7991 reginsert(pRExC_state, SUSPEND, ret, depth+1);
7993 ender = reg_node(pRExC_state, TAIL);
7994 REGTAIL(pRExC_state, ret, ender);
7998 if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
8000 vFAIL("Nested quantifiers");
8007 /* reg_namedseq(pRExC_state,UVp, UV depth)
8009 This is expected to be called by a parser routine that has
8010 recognized '\N' and needs to handle the rest. RExC_parse is
8011 expected to point at the first char following the N at the time
8014 The \N may be inside (indicated by valuep not being NULL) or outside a
8017 \N may begin either a named sequence, or if outside a character class, mean
8018 to match a non-newline. For non single-quoted regexes, the tokenizer has
8019 attempted to decide which, and in the case of a named sequence converted it
8020 into one of the forms: \N{} (if the sequence is null), or \N{U+c1.c2...},
8021 where c1... are the characters in the sequence. For single-quoted regexes,
8022 the tokenizer passes the \N sequence through unchanged; this code will not
8023 attempt to determine this nor expand those. The net effect is that if the
8024 beginning of the passed-in pattern isn't '{U+' or there is no '}', it
8025 signals that this \N occurrence means to match a non-newline.
8027 Only the \N{U+...} form should occur in a character class, for the same
8028 reason that '.' inside a character class means to just match a period: it
8029 just doesn't make sense.
8031 If valuep is non-null then it is assumed that we are parsing inside
8032 of a charclass definition and the first codepoint in the resolved
8033 string is returned via *valuep and the routine will return NULL.
8034 In this mode if a multichar string is returned from the charnames
8035 handler, a warning will be issued, and only the first char in the
8036 sequence will be examined. If the string returned is zero length
8037 then the value of *valuep is undefined and NON-NULL will
8038 be returned to indicate failure. (This will NOT be a valid pointer
8041 If valuep is null then it is assumed that we are parsing normal text and a
8042 new EXACT node is inserted into the program containing the resolved string,
8043 and a pointer to the new node is returned. But if the string is zero length
8044 a NOTHING node is emitted instead.
8046 On success RExC_parse is set to the char following the endbrace.
8047 Parsing failures will generate a fatal error via vFAIL(...)
8050 S_reg_namedseq(pTHX_ RExC_state_t *pRExC_state, UV *valuep, I32 *flagp, U32 depth)
8052 char * endbrace; /* '}' following the name */
8053 regnode *ret = NULL;
8056 GET_RE_DEBUG_FLAGS_DECL;
8058 PERL_ARGS_ASSERT_REG_NAMEDSEQ;
8062 /* The [^\n] meaning of \N ignores spaces and comments under the /x
8063 * modifier. The other meaning does not */
8064 p = (RExC_flags & RXf_PMf_EXTENDED)
8065 ? regwhite( pRExC_state, RExC_parse )
8068 /* Disambiguate between \N meaning a named character versus \N meaning
8069 * [^\n]. The former is assumed when it can't be the latter. */
8070 if (*p != '{' || regcurly(p)) {
8073 /* no bare \N in a charclass */
8074 vFAIL("\\N in a character class must be a named character: \\N{...}");
8076 nextchar(pRExC_state);
8077 ret = reg_node(pRExC_state, REG_ANY);
8078 *flagp |= HASWIDTH|SIMPLE;
8081 Set_Node_Length(ret, 1); /* MJD */
8085 /* Here, we have decided it should be a named sequence */
8087 /* The test above made sure that the next real character is a '{', but
8088 * under the /x modifier, it could be separated by space (or a comment and
8089 * \n) and this is not allowed (for consistency with \x{...} and the
8090 * tokenizer handling of \N{NAME}). */
8091 if (*RExC_parse != '{') {
8092 vFAIL("Missing braces on \\N{}");
8095 RExC_parse++; /* Skip past the '{' */
8097 if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */
8098 || ! (endbrace == RExC_parse /* nothing between the {} */
8099 || (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked below */
8100 && strnEQ(RExC_parse, "U+", 2)))) /* for a better error msg) */
8102 if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
8103 vFAIL("\\N{NAME} must be resolved by the lexer");
8106 if (endbrace == RExC_parse) { /* empty: \N{} */
8108 RExC_parse = endbrace + 1;
8109 return reg_node(pRExC_state,NOTHING);
8113 ckWARNreg(RExC_parse,
8114 "Ignoring zero length \\N{} in character class"
8116 RExC_parse = endbrace + 1;
8119 return (regnode *) &RExC_parse; /* Invalid regnode pointer */
8122 REQUIRE_UTF8; /* named sequences imply Unicode semantics */
8123 RExC_parse += 2; /* Skip past the 'U+' */
8125 if (valuep) { /* In a bracketed char class */
8126 /* We only pay attention to the first char of
8127 multichar strings being returned. I kinda wonder
8128 if this makes sense as it does change the behaviour
8129 from earlier versions, OTOH that behaviour was broken
8130 as well. XXX Solution is to recharacterize as
8131 [rest-of-class]|multi1|multi2... */
8133 STRLEN length_of_hex;
8134 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
8135 | PERL_SCAN_DISALLOW_PREFIX
8136 | (SIZE_ONLY ? PERL_SCAN_SILENT_ILLDIGIT : 0);
8138 char * endchar = RExC_parse + strcspn(RExC_parse, ".}");
8139 if (endchar < endbrace) {
8140 ckWARNreg(endchar, "Using just the first character returned by \\N{} in character class");
8143 length_of_hex = (STRLEN)(endchar - RExC_parse);
8144 *valuep = grok_hex(RExC_parse, &length_of_hex, &flags, NULL);
8146 /* The tokenizer should have guaranteed validity, but it's possible to
8147 * bypass it by using single quoting, so check */
8148 if (length_of_hex == 0
8149 || length_of_hex != (STRLEN)(endchar - RExC_parse) )
8151 RExC_parse += length_of_hex; /* Includes all the valid */
8152 RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
8153 ? UTF8SKIP(RExC_parse)
8155 /* Guard against malformed utf8 */
8156 if (RExC_parse >= endchar) RExC_parse = endchar;
8157 vFAIL("Invalid hexadecimal number in \\N{U+...}");
8160 RExC_parse = endbrace + 1;
8161 if (endchar == endbrace) return NULL;
8163 ret = (regnode *) &RExC_parse; /* Invalid regnode pointer */
8165 else { /* Not a char class */
8167 /* What is done here is to convert this to a sub-pattern of the form
8168 * (?:\x{char1}\x{char2}...)
8169 * and then call reg recursively. That way, it retains its atomicness,
8170 * while not having to worry about special handling that some code
8171 * points may have. toke.c has converted the original Unicode values
8172 * to native, so that we can just pass on the hex values unchanged. We
8173 * do have to set a flag to keep recoding from happening in the
8176 SV * substitute_parse = newSVpvn_flags("?:", 2, SVf_UTF8|SVs_TEMP);
8178 char *endchar; /* Points to '.' or '}' ending cur char in the input
8180 char *orig_end = RExC_end;
8182 while (RExC_parse < endbrace) {
8184 /* Code points are separated by dots. If none, there is only one
8185 * code point, and is terminated by the brace */
8186 endchar = RExC_parse + strcspn(RExC_parse, ".}");
8188 /* Convert to notation the rest of the code understands */
8189 sv_catpv(substitute_parse, "\\x{");
8190 sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
8191 sv_catpv(substitute_parse, "}");
8193 /* Point to the beginning of the next character in the sequence. */
8194 RExC_parse = endchar + 1;
8196 sv_catpv(substitute_parse, ")");
8198 RExC_parse = SvPV(substitute_parse, len);
8200 /* Don't allow empty number */
8202 vFAIL("Invalid hexadecimal number in \\N{U+...}");
8204 RExC_end = RExC_parse + len;
8206 /* The values are Unicode, and therefore not subject to recoding */
8207 RExC_override_recoding = 1;
8209 ret = reg(pRExC_state, 1, flagp, depth+1);
8211 RExC_parse = endbrace;
8212 RExC_end = orig_end;
8213 RExC_override_recoding = 0;
8215 nextchar(pRExC_state);
8225 * It returns the code point in utf8 for the value in *encp.
8226 * value: a code value in the source encoding
8227 * encp: a pointer to an Encode object
8229 * If the result from Encode is not a single character,
8230 * it returns U+FFFD (Replacement character) and sets *encp to NULL.
8233 S_reg_recode(pTHX_ const char value, SV **encp)
8236 SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
8237 const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
8238 const STRLEN newlen = SvCUR(sv);
8239 UV uv = UNICODE_REPLACEMENT;
8241 PERL_ARGS_ASSERT_REG_RECODE;
8245 ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
8248 if (!newlen || numlen != newlen) {
8249 uv = UNICODE_REPLACEMENT;
8257 - regatom - the lowest level
8259 Try to identify anything special at the start of the pattern. If there
8260 is, then handle it as required. This may involve generating a single regop,
8261 such as for an assertion; or it may involve recursing, such as to
8262 handle a () structure.
8264 If the string doesn't start with something special then we gobble up
8265 as much literal text as we can.
8267 Once we have been able to handle whatever type of thing started the
8268 sequence, we return.
8270 Note: we have to be careful with escapes, as they can be both literal
8271 and special, and in the case of \10 and friends can either, depending
8272 on context. Specifically there are two separate switches for handling
8273 escape sequences, with the one for handling literal escapes requiring
8274 a dummy entry for all of the special escapes that are actually handled
8279 S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
8282 register regnode *ret = NULL;
8284 char *parse_start = RExC_parse;
8286 GET_RE_DEBUG_FLAGS_DECL;
8287 DEBUG_PARSE("atom");
8288 *flagp = WORST; /* Tentatively. */
8290 PERL_ARGS_ASSERT_REGATOM;
8293 switch ((U8)*RExC_parse) {
8295 RExC_seen_zerolen++;
8296 nextchar(pRExC_state);
8297 if (RExC_flags & RXf_PMf_MULTILINE)
8298 ret = reg_node(pRExC_state, MBOL);
8299 else if (RExC_flags & RXf_PMf_SINGLELINE)
8300 ret = reg_node(pRExC_state, SBOL);
8302 ret = reg_node(pRExC_state, BOL);
8303 Set_Node_Length(ret, 1); /* MJD */
8306 nextchar(pRExC_state);
8308 RExC_seen_zerolen++;
8309 if (RExC_flags & RXf_PMf_MULTILINE)
8310 ret = reg_node(pRExC_state, MEOL);
8311 else if (RExC_flags & RXf_PMf_SINGLELINE)
8312 ret = reg_node(pRExC_state, SEOL);
8314 ret = reg_node(pRExC_state, EOL);
8315 Set_Node_Length(ret, 1); /* MJD */
8318 nextchar(pRExC_state);
8319 if (RExC_flags & RXf_PMf_SINGLELINE)
8320 ret = reg_node(pRExC_state, SANY);
8322 ret = reg_node(pRExC_state, REG_ANY);
8323 *flagp |= HASWIDTH|SIMPLE;
8325 Set_Node_Length(ret, 1); /* MJD */
8329 char * const oregcomp_parse = ++RExC_parse;
8330 ret = regclass(pRExC_state,depth+1);
8331 if (*RExC_parse != ']') {
8332 RExC_parse = oregcomp_parse;
8333 vFAIL("Unmatched [");
8335 nextchar(pRExC_state);
8336 *flagp |= HASWIDTH|SIMPLE;
8337 Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
8341 nextchar(pRExC_state);
8342 ret = reg(pRExC_state, 1, &flags,depth+1);
8344 if (flags & TRYAGAIN) {
8345 if (RExC_parse == RExC_end) {
8346 /* Make parent create an empty node if needed. */
8354 *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
8358 if (flags & TRYAGAIN) {
8362 vFAIL("Internal urp");
8363 /* Supposed to be caught earlier. */
8366 if (!regcurly(RExC_parse)) {
8375 vFAIL("Quantifier follows nothing");
8380 This switch handles escape sequences that resolve to some kind
8381 of special regop and not to literal text. Escape sequnces that
8382 resolve to literal text are handled below in the switch marked
8385 Every entry in this switch *must* have a corresponding entry
8386 in the literal escape switch. However, the opposite is not
8387 required, as the default for this switch is to jump to the
8388 literal text handling code.
8390 switch ((U8)*++RExC_parse) {
8391 /* Special Escapes */
8393 RExC_seen_zerolen++;
8394 ret = reg_node(pRExC_state, SBOL);
8396 goto finish_meta_pat;
8398 ret = reg_node(pRExC_state, GPOS);
8399 RExC_seen |= REG_SEEN_GPOS;
8401 goto finish_meta_pat;
8403 RExC_seen_zerolen++;
8404 ret = reg_node(pRExC_state, KEEPS);
8406 /* XXX:dmq : disabling in-place substitution seems to
8407 * be necessary here to avoid cases of memory corruption, as
8408 * with: C<$_="x" x 80; s/x\K/y/> -- rgs
8410 RExC_seen |= REG_SEEN_LOOKBEHIND;
8411 goto finish_meta_pat;
8413 ret = reg_node(pRExC_state, SEOL);
8415 RExC_seen_zerolen++; /* Do not optimize RE away */
8416 goto finish_meta_pat;
8418 ret = reg_node(pRExC_state, EOS);
8420 RExC_seen_zerolen++; /* Do not optimize RE away */
8421 goto finish_meta_pat;
8423 ret = reg_node(pRExC_state, CANY);
8424 RExC_seen |= REG_SEEN_CANY;
8425 *flagp |= HASWIDTH|SIMPLE;
8426 goto finish_meta_pat;
8428 ret = reg_node(pRExC_state, CLUMP);
8430 goto finish_meta_pat;
8432 switch (get_regex_charset(RExC_flags)) {
8433 case REGEX_LOCALE_CHARSET:
8436 case REGEX_UNICODE_CHARSET:
8439 case REGEX_ASCII_RESTRICTED_CHARSET:
8440 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8443 case REGEX_DEPENDS_CHARSET:
8449 ret = reg_node(pRExC_state, op);
8450 *flagp |= HASWIDTH|SIMPLE;
8451 goto finish_meta_pat;
8453 switch (get_regex_charset(RExC_flags)) {
8454 case REGEX_LOCALE_CHARSET:
8457 case REGEX_UNICODE_CHARSET:
8460 case REGEX_ASCII_RESTRICTED_CHARSET:
8461 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8464 case REGEX_DEPENDS_CHARSET:
8470 ret = reg_node(pRExC_state, op);
8471 *flagp |= HASWIDTH|SIMPLE;
8472 goto finish_meta_pat;
8474 RExC_seen_zerolen++;
8475 RExC_seen |= REG_SEEN_LOOKBEHIND;
8476 switch (get_regex_charset(RExC_flags)) {
8477 case REGEX_LOCALE_CHARSET:
8480 case REGEX_UNICODE_CHARSET:
8483 case REGEX_ASCII_RESTRICTED_CHARSET:
8484 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8487 case REGEX_DEPENDS_CHARSET:
8493 ret = reg_node(pRExC_state, op);
8494 FLAGS(ret) = get_regex_charset(RExC_flags);
8496 if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
8497 ckWARNregdep(RExC_parse, "\"\\b{\" is deprecated; use \"\\b\\{\" instead");
8499 goto finish_meta_pat;
8501 RExC_seen_zerolen++;
8502 RExC_seen |= REG_SEEN_LOOKBEHIND;
8503 switch (get_regex_charset(RExC_flags)) {
8504 case REGEX_LOCALE_CHARSET:
8507 case REGEX_UNICODE_CHARSET:
8510 case REGEX_ASCII_RESTRICTED_CHARSET:
8511 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8514 case REGEX_DEPENDS_CHARSET:
8520 ret = reg_node(pRExC_state, op);
8521 FLAGS(ret) = get_regex_charset(RExC_flags);
8523 if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
8524 ckWARNregdep(RExC_parse, "\"\\B{\" is deprecated; use \"\\B\\{\" instead");
8526 goto finish_meta_pat;
8528 switch (get_regex_charset(RExC_flags)) {
8529 case REGEX_LOCALE_CHARSET:
8532 case REGEX_UNICODE_CHARSET:
8535 case REGEX_ASCII_RESTRICTED_CHARSET:
8536 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8539 case REGEX_DEPENDS_CHARSET:
8545 ret = reg_node(pRExC_state, op);
8546 *flagp |= HASWIDTH|SIMPLE;
8547 goto finish_meta_pat;
8549 switch (get_regex_charset(RExC_flags)) {
8550 case REGEX_LOCALE_CHARSET:
8553 case REGEX_UNICODE_CHARSET:
8556 case REGEX_ASCII_RESTRICTED_CHARSET:
8557 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8560 case REGEX_DEPENDS_CHARSET:
8566 ret = reg_node(pRExC_state, op);
8567 *flagp |= HASWIDTH|SIMPLE;
8568 goto finish_meta_pat;
8570 switch (get_regex_charset(RExC_flags)) {
8571 case REGEX_LOCALE_CHARSET:
8574 case REGEX_ASCII_RESTRICTED_CHARSET:
8575 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8578 case REGEX_DEPENDS_CHARSET: /* No difference between these */
8579 case REGEX_UNICODE_CHARSET:
8585 ret = reg_node(pRExC_state, op);
8586 *flagp |= HASWIDTH|SIMPLE;
8587 goto finish_meta_pat;
8589 switch (get_regex_charset(RExC_flags)) {
8590 case REGEX_LOCALE_CHARSET:
8593 case REGEX_ASCII_RESTRICTED_CHARSET:
8594 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8597 case REGEX_DEPENDS_CHARSET: /* No difference between these */
8598 case REGEX_UNICODE_CHARSET:
8604 ret = reg_node(pRExC_state, op);
8605 *flagp |= HASWIDTH|SIMPLE;
8606 goto finish_meta_pat;
8608 ret = reg_node(pRExC_state, LNBREAK);
8609 *flagp |= HASWIDTH|SIMPLE;
8610 goto finish_meta_pat;
8612 ret = reg_node(pRExC_state, HORIZWS);
8613 *flagp |= HASWIDTH|SIMPLE;
8614 goto finish_meta_pat;
8616 ret = reg_node(pRExC_state, NHORIZWS);
8617 *flagp |= HASWIDTH|SIMPLE;
8618 goto finish_meta_pat;
8620 ret = reg_node(pRExC_state, VERTWS);
8621 *flagp |= HASWIDTH|SIMPLE;
8622 goto finish_meta_pat;
8624 ret = reg_node(pRExC_state, NVERTWS);
8625 *flagp |= HASWIDTH|SIMPLE;
8627 nextchar(pRExC_state);
8628 Set_Node_Length(ret, 2); /* MJD */
8633 char* const oldregxend = RExC_end;
8635 char* parse_start = RExC_parse - 2;
8638 if (RExC_parse[1] == '{') {
8639 /* a lovely hack--pretend we saw [\pX] instead */
8640 RExC_end = strchr(RExC_parse, '}');
8642 const U8 c = (U8)*RExC_parse;
8644 RExC_end = oldregxend;
8645 vFAIL2("Missing right brace on \\%c{}", c);
8650 RExC_end = RExC_parse + 2;
8651 if (RExC_end > oldregxend)
8652 RExC_end = oldregxend;
8656 ret = regclass(pRExC_state,depth+1);
8658 RExC_end = oldregxend;
8661 Set_Node_Offset(ret, parse_start + 2);
8662 Set_Node_Cur_Length(ret);
8663 nextchar(pRExC_state);
8664 *flagp |= HASWIDTH|SIMPLE;
8668 /* Handle \N and \N{NAME} here and not below because it can be
8669 multicharacter. join_exact() will join them up later on.
8670 Also this makes sure that things like /\N{BLAH}+/ and
8671 \N{BLAH} being multi char Just Happen. dmq*/
8673 ret= reg_namedseq(pRExC_state, NULL, flagp, depth);
8675 case 'k': /* Handle \k<NAME> and \k'NAME' */
8678 char ch= RExC_parse[1];
8679 if (ch != '<' && ch != '\'' && ch != '{') {
8681 vFAIL2("Sequence %.2s... not terminated",parse_start);
8683 /* this pretty much dupes the code for (?P=...) in reg(), if
8684 you change this make sure you change that */
8685 char* name_start = (RExC_parse += 2);
8687 SV *sv_dat = reg_scan_name(pRExC_state,
8688 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
8689 ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
8690 if (RExC_parse == name_start || *RExC_parse != ch)
8691 vFAIL2("Sequence %.3s... not terminated",parse_start);
8694 num = add_data( pRExC_state, 1, "S" );
8695 RExC_rxi->data->data[num]=(void*)sv_dat;
8696 SvREFCNT_inc_simple_void(sv_dat);
8700 ret = reganode(pRExC_state,
8703 : (MORE_ASCII_RESTRICTED)
8705 : (AT_LEAST_UNI_SEMANTICS)
8713 /* override incorrect value set in reganode MJD */
8714 Set_Node_Offset(ret, parse_start+1);
8715 Set_Node_Cur_Length(ret); /* MJD */
8716 nextchar(pRExC_state);
8722 case '1': case '2': case '3': case '4':
8723 case '5': case '6': case '7': case '8': case '9':
8726 bool isg = *RExC_parse == 'g';
8731 if (*RExC_parse == '{') {
8735 if (*RExC_parse == '-') {
8739 if (hasbrace && !isDIGIT(*RExC_parse)) {
8740 if (isrel) RExC_parse--;
8742 goto parse_named_seq;
8744 num = atoi(RExC_parse);
8745 if (isg && num == 0)
8746 vFAIL("Reference to invalid group 0");
8748 num = RExC_npar - num;
8750 vFAIL("Reference to nonexistent or unclosed group");
8752 if (!isg && num > 9 && num >= RExC_npar)
8755 char * const parse_start = RExC_parse - 1; /* MJD */
8756 while (isDIGIT(*RExC_parse))
8758 if (parse_start == RExC_parse - 1)
8759 vFAIL("Unterminated \\g... pattern");
8761 if (*RExC_parse != '}')
8762 vFAIL("Unterminated \\g{...} pattern");
8766 if (num > (I32)RExC_rx->nparens)
8767 vFAIL("Reference to nonexistent group");
8770 ret = reganode(pRExC_state,
8773 : (MORE_ASCII_RESTRICTED)
8775 : (AT_LEAST_UNI_SEMANTICS)
8783 /* override incorrect value set in reganode MJD */
8784 Set_Node_Offset(ret, parse_start+1);
8785 Set_Node_Cur_Length(ret); /* MJD */
8787 nextchar(pRExC_state);
8792 if (RExC_parse >= RExC_end)
8793 FAIL("Trailing \\");
8796 /* Do not generate "unrecognized" warnings here, we fall
8797 back into the quick-grab loop below */
8804 if (RExC_flags & RXf_PMf_EXTENDED) {
8805 if ( reg_skipcomment( pRExC_state ) )
8812 parse_start = RExC_parse - 1;
8825 char_state latest_char_state = generic_char;
8826 register STRLEN len;
8831 U8 tmpbuf[UTF8_MAXBYTES_CASE+1], *foldbuf;
8832 regnode * orig_emit;
8835 orig_emit = RExC_emit; /* Save the original output node position in
8836 case we need to output a different node
8838 ret = reg_node(pRExC_state,
8839 (U8) ((! FOLD) ? EXACT
8842 : (MORE_ASCII_RESTRICTED)
8844 : (AT_LEAST_UNI_SEMANTICS)
8849 for (len = 0, p = RExC_parse - 1;
8850 len < 127 && p < RExC_end;
8853 char * const oldp = p;
8855 if (RExC_flags & RXf_PMf_EXTENDED)
8856 p = regwhite( pRExC_state, p );
8867 /* Literal Escapes Switch
8869 This switch is meant to handle escape sequences that
8870 resolve to a literal character.
8872 Every escape sequence that represents something
8873 else, like an assertion or a char class, is handled
8874 in the switch marked 'Special Escapes' above in this
8875 routine, but also has an entry here as anything that
8876 isn't explicitly mentioned here will be treated as
8877 an unescaped equivalent literal.
8881 /* These are all the special escapes. */
8882 case 'A': /* Start assertion */
8883 case 'b': case 'B': /* Word-boundary assertion*/
8884 case 'C': /* Single char !DANGEROUS! */
8885 case 'd': case 'D': /* digit class */
8886 case 'g': case 'G': /* generic-backref, pos assertion */
8887 case 'h': case 'H': /* HORIZWS */
8888 case 'k': case 'K': /* named backref, keep marker */
8889 case 'N': /* named char sequence */
8890 case 'p': case 'P': /* Unicode property */
8891 case 'R': /* LNBREAK */
8892 case 's': case 'S': /* space class */
8893 case 'v': case 'V': /* VERTWS */
8894 case 'w': case 'W': /* word class */
8895 case 'X': /* eXtended Unicode "combining character sequence" */
8896 case 'z': case 'Z': /* End of line/string assertion */
8900 /* Anything after here is an escape that resolves to a
8901 literal. (Except digits, which may or may not)
8920 ender = ASCII_TO_NATIVE('\033');
8924 ender = ASCII_TO_NATIVE('\007');
8929 STRLEN brace_len = len;
8931 const char* error_msg;
8933 bool valid = grok_bslash_o(p,
8940 RExC_parse = p; /* going to die anyway; point
8941 to exact spot of failure */
8948 if (PL_encoding && ender < 0x100) {
8949 goto recode_encoding;
8958 char* const e = strchr(p, '}');
8962 vFAIL("Missing right brace on \\x{}");
8965 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
8966 | PERL_SCAN_DISALLOW_PREFIX;
8967 STRLEN numlen = e - p - 1;
8968 ender = grok_hex(p + 1, &numlen, &flags, NULL);
8975 I32 flags = PERL_SCAN_DISALLOW_PREFIX;
8977 ender = grok_hex(p, &numlen, &flags, NULL);
8980 if (PL_encoding && ender < 0x100)
8981 goto recode_encoding;
8985 ender = grok_bslash_c(*p++, UTF, SIZE_ONLY);
8987 case '0': case '1': case '2': case '3':case '4':
8988 case '5': case '6': case '7': case '8':case '9':
8990 (isDIGIT(p[1]) && atoi(p) >= RExC_npar))
8992 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
8994 ender = grok_oct(p, &numlen, &flags, NULL);
9004 if (PL_encoding && ender < 0x100)
9005 goto recode_encoding;
9008 if (! RExC_override_recoding) {
9009 SV* enc = PL_encoding;
9010 ender = reg_recode((const char)(U8)ender, &enc);
9011 if (!enc && SIZE_ONLY)
9012 ckWARNreg(p, "Invalid escape in the specified encoding");
9018 FAIL("Trailing \\");
9021 if (!SIZE_ONLY&& isALPHA(*p)) {
9022 /* Include any { following the alpha to emphasize
9023 * that it could be part of an escape at some point
9025 int len = (*(p + 1) == '{') ? 2 : 1;
9026 ckWARN3reg(p + len, "Unrecognized escape \\%.*s passed through", len, p);
9028 goto normal_default;
9033 if (UTF8_IS_START(*p) && UTF) {
9035 ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
9036 &numlen, UTF8_ALLOW_DEFAULT);
9042 } /* End of switch on the literal */
9044 /* Certain characters are problematic because their folded
9045 * length is so different from their original length that it
9046 * isn't handleable by the optimizer. They are therefore not
9047 * placed in an EXACTish node; and are here handled specially.
9048 * (Even if the optimizer handled LATIN_SMALL_LETTER_SHARP_S,
9049 * putting it in a special node keeps regexec from having to
9050 * deal with a non-utf8 multi-char fold */
9052 && (ender > 255 || (! MORE_ASCII_RESTRICTED && ! LOC)))
9054 /* We look for either side of the fold. For example \xDF
9055 * folds to 'ss'. We look for both the single character
9056 * \xDF and the sequence 'ss'. When we find something that
9057 * could be one of those, we stop and flush whatever we
9058 * have output so far into the EXACTish node that was being
9059 * built. Then restore the input pointer to what it was.
9060 * regatom will return that EXACT node, and will be called
9061 * again, positioned so the first character is the one in
9062 * question, which we return in a different node type.
9063 * The multi-char folds are a sequence, so the occurrence
9064 * of the first character in that sequence doesn't
9065 * necessarily mean that what follows is the rest of the
9066 * sequence. We keep track of that with a state machine,
9067 * with the state being set to the latest character
9068 * processed before the current one. Most characters will
9069 * set the state to 0, but if one occurs that is part of a
9070 * potential tricky fold sequence, the state is set to that
9071 * character, and the next loop iteration sees if the state
9072 * should progress towards the final folded-from character,
9073 * or if it was a false alarm. If it turns out to be a
9074 * false alarm, the character(s) will be output in a new
9075 * EXACTish node, and join_exact() will later combine them.
9076 * In the case of the 'ss' sequence, which is more common
9077 * and more easily checked, some look-ahead is done to
9078 * save time by ruling-out some false alarms */
9081 latest_char_state = generic_char;
9085 case 0x17F: /* LATIN SMALL LETTER LONG S */
9086 if (AT_LEAST_UNI_SEMANTICS) {
9087 if (latest_char_state == char_s) { /* 'ss' */
9088 ender = LATIN_SMALL_LETTER_SHARP_S;
9091 else if (p < RExC_end) {
9093 /* Look-ahead at the next character. If it
9094 * is also an s, we handle as a sharp s
9095 * tricky regnode. */
9096 if (*p == 's' || *p == 'S') {
9098 /* But first flush anything in the
9099 * EXACTish buffer */
9104 p++; /* Account for swallowing this
9106 ender = LATIN_SMALL_LETTER_SHARP_S;
9109 /* Here, the next character is not a
9110 * literal 's', but still could
9111 * evaluate to one if part of a \o{},
9112 * \x or \OCTAL-DIGIT. The minimum
9113 * length required for that is 4, eg
9117 && (isDIGIT(*(p + 1))
9119 || *(p + 1) == 'o' ))
9122 /* Here, it could be an 's', too much
9123 * bother to figure it out here. Flush
9124 * the buffer if any; when come back
9125 * here, set the state so know that the
9126 * previous char was an 's' */
9128 latest_char_state = generic_char;
9132 latest_char_state = char_s;
9138 /* Here, can't be an 'ss' sequence, or at least not
9139 * one that could fold to/from the sharp ss */
9140 latest_char_state = generic_char;
9142 case 0x03C5: /* First char in upsilon series */
9143 case 0x03A5: /* Also capital UPSILON, which folds to
9144 03C5, and hence exhibits the same
9146 if (p < RExC_end - 4) { /* Need >= 4 bytes left */
9147 latest_char_state = upsilon_1;
9154 latest_char_state = generic_char;
9157 case 0x03B9: /* First char in iota series */
9158 case 0x0399: /* Also capital IOTA */
9159 case 0x1FBE: /* GREEK PROSGEGRAMMENI folds to 3B9 */
9160 case 0x0345: /* COMBINING GREEK YPOGEGRAMMENI folds
9162 if (p < RExC_end - 4) {
9163 latest_char_state = iota_1;
9170 latest_char_state = generic_char;
9174 if (latest_char_state == upsilon_1) {
9175 latest_char_state = upsilon_2;
9177 else if (latest_char_state == iota_1) {
9178 latest_char_state = iota_2;
9181 latest_char_state = generic_char;
9185 if (latest_char_state == upsilon_2) {
9186 ender = GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS;
9189 else if (latest_char_state == iota_2) {
9190 ender = GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS;
9193 latest_char_state = generic_char;
9196 /* These are the tricky fold characters. Flush any
9197 * buffer first. (When adding to this list, also should
9198 * add them to fold_grind.t to make sure get tested) */
9199 case GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS:
9200 case GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS:
9201 case LATIN_SMALL_LETTER_SHARP_S:
9202 case LATIN_CAPITAL_LETTER_SHARP_S:
9203 case 0x1FD3: /* GREEK SMALL LETTER IOTA WITH DIALYTIKA AND OXIA */
9204 case 0x1FE3: /* GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND OXIA */
9211 char* const oldregxend = RExC_end;
9212 U8 tmpbuf[UTF8_MAXBYTES+1];
9214 /* Here, we know we need to generate a special
9215 * regnode, and 'ender' contains the tricky
9216 * character. What's done is to pretend it's in a
9217 * [bracketed] class, and let the code that deals
9218 * with those handle it, as that code has all the
9219 * intelligence necessary. First save the current
9220 * parse state, get rid of the already allocated
9221 * but empty EXACT node that the ANYOFV node will
9222 * replace, and point the parse to a buffer which
9223 * we fill with the character we want the regclass
9224 * code to think is being parsed */
9225 RExC_emit = orig_emit;
9226 RExC_parse = (char *) tmpbuf;
9228 U8 *d = uvchr_to_utf8(tmpbuf, ender);
9230 RExC_end = (char *) d;
9232 else { /* ender above 255 already excluded */
9233 tmpbuf[0] = (U8) ender;
9235 RExC_end = RExC_parse + 1;
9238 ret = regclass(pRExC_state,depth+1);
9240 /* Here, have parsed the buffer. Reset the parse to
9241 * the actual input, and return */
9242 RExC_end = oldregxend;
9245 Set_Node_Offset(ret, RExC_parse);
9246 Set_Node_Cur_Length(ret);
9247 nextchar(pRExC_state);
9248 *flagp |= HASWIDTH|SIMPLE;
9254 if ( RExC_flags & RXf_PMf_EXTENDED)
9255 p = regwhite( pRExC_state, p );
9257 /* Prime the casefolded buffer. Locale rules, which apply
9258 * only to code points < 256, aren't known until execution,
9259 * so for them, just output the original character using
9261 if (LOC && ender < 256) {
9262 if (UNI_IS_INVARIANT(ender)) {
9263 *tmpbuf = (U8) ender;
9266 *tmpbuf = UTF8_TWO_BYTE_HI(ender);
9267 *(tmpbuf + 1) = UTF8_TWO_BYTE_LO(ender);
9271 else if (isASCII(ender)) { /* Note: Here can't also be LOC
9273 ender = toLOWER(ender);
9274 *tmpbuf = (U8) ender;
9277 else if (! MORE_ASCII_RESTRICTED && ! LOC) {
9279 /* Locale and /aa require more selectivity about the
9280 * fold, so are handled below. Otherwise, here, just
9282 ender = toFOLD_uni(ender, tmpbuf, &foldlen);
9285 /* Under locale rules or /aa we are not to mix,
9286 * respectively, ords < 256 or ASCII with non-. So
9287 * reject folds that mix them, using only the
9288 * non-folded code point. So do the fold to a
9289 * temporary, and inspect each character in it. */
9290 U8 trialbuf[UTF8_MAXBYTES_CASE+1];
9292 UV tmpender = toFOLD_uni(ender, trialbuf, &foldlen);
9293 U8* e = s + foldlen;
9294 bool fold_ok = TRUE;
9298 || (LOC && (UTF8_IS_INVARIANT(*s)
9299 || UTF8_IS_DOWNGRADEABLE_START(*s))))
9307 Copy(trialbuf, tmpbuf, foldlen, U8);
9311 uvuni_to_utf8(tmpbuf, ender);
9312 foldlen = UNISKIP(ender);
9316 if (p < RExC_end && ISMULT2(p)) { /* Back off on ?+*. */
9321 /* Emit all the Unicode characters. */
9323 for (foldbuf = tmpbuf;
9325 foldlen -= numlen) {
9326 ender = utf8_to_uvchr(foldbuf, &numlen);
9328 const STRLEN unilen = reguni(pRExC_state, ender, s);
9331 /* In EBCDIC the numlen
9332 * and unilen can differ. */
9334 if (numlen >= foldlen)
9338 break; /* "Can't happen." */
9342 const STRLEN unilen = reguni(pRExC_state, ender, s);
9351 REGC((char)ender, s++);
9357 /* Emit all the Unicode characters. */
9359 for (foldbuf = tmpbuf;
9361 foldlen -= numlen) {
9362 ender = utf8_to_uvchr(foldbuf, &numlen);
9364 const STRLEN unilen = reguni(pRExC_state, ender, s);
9367 /* In EBCDIC the numlen
9368 * and unilen can differ. */
9370 if (numlen >= foldlen)
9378 const STRLEN unilen = reguni(pRExC_state, ender, s);
9387 REGC((char)ender, s++);
9390 loopdone: /* Jumped to when encounters something that shouldn't be in
9393 Set_Node_Cur_Length(ret); /* MJD */
9394 nextchar(pRExC_state);
9396 /* len is STRLEN which is unsigned, need to copy to signed */
9399 vFAIL("Internal disaster");
9403 if (len == 1 && UNI_IS_INVARIANT(ender))
9407 RExC_size += STR_SZ(len);
9410 RExC_emit += STR_SZ(len);
9418 /* Jumped to when an unrecognized character set is encountered */
9420 Perl_croak(aTHX_ "panic: Unknown regex character set encoding: %u", get_regex_charset(RExC_flags));
9425 S_regwhite( RExC_state_t *pRExC_state, char *p )
9427 const char *e = RExC_end;
9429 PERL_ARGS_ASSERT_REGWHITE;
9434 else if (*p == '#') {
9443 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
9451 /* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
9452 Character classes ([:foo:]) can also be negated ([:^foo:]).
9453 Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
9454 Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
9455 but trigger failures because they are currently unimplemented. */
9457 #define POSIXCC_DONE(c) ((c) == ':')
9458 #define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
9459 #define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
9462 S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value)
9465 I32 namedclass = OOB_NAMEDCLASS;
9467 PERL_ARGS_ASSERT_REGPPOSIXCC;
9469 if (value == '[' && RExC_parse + 1 < RExC_end &&
9470 /* I smell either [: or [= or [. -- POSIX has been here, right? */
9471 POSIXCC(UCHARAT(RExC_parse))) {
9472 const char c = UCHARAT(RExC_parse);
9473 char* const s = RExC_parse++;
9475 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
9477 if (RExC_parse == RExC_end)
9478 /* Grandfather lone [:, [=, [. */
9481 const char* const t = RExC_parse++; /* skip over the c */
9484 if (UCHARAT(RExC_parse) == ']') {
9485 const char *posixcc = s + 1;
9486 RExC_parse++; /* skip over the ending ] */
9489 const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
9490 const I32 skip = t - posixcc;
9492 /* Initially switch on the length of the name. */
9495 if (memEQ(posixcc, "word", 4)) /* this is not POSIX, this is the Perl \w */
9496 namedclass = complement ? ANYOF_NALNUM : ANYOF_ALNUM;
9499 /* Names all of length 5. */
9500 /* alnum alpha ascii blank cntrl digit graph lower
9501 print punct space upper */
9502 /* Offset 4 gives the best switch position. */
9503 switch (posixcc[4]) {
9505 if (memEQ(posixcc, "alph", 4)) /* alpha */
9506 namedclass = complement ? ANYOF_NALPHA : ANYOF_ALPHA;
9509 if (memEQ(posixcc, "spac", 4)) /* space */
9510 namedclass = complement ? ANYOF_NPSXSPC : ANYOF_PSXSPC;
9513 if (memEQ(posixcc, "grap", 4)) /* graph */
9514 namedclass = complement ? ANYOF_NGRAPH : ANYOF_GRAPH;
9517 if (memEQ(posixcc, "asci", 4)) /* ascii */
9518 namedclass = complement ? ANYOF_NASCII : ANYOF_ASCII;
9521 if (memEQ(posixcc, "blan", 4)) /* blank */
9522 namedclass = complement ? ANYOF_NBLANK : ANYOF_BLANK;
9525 if (memEQ(posixcc, "cntr", 4)) /* cntrl */
9526 namedclass = complement ? ANYOF_NCNTRL : ANYOF_CNTRL;
9529 if (memEQ(posixcc, "alnu", 4)) /* alnum */
9530 namedclass = complement ? ANYOF_NALNUMC : ANYOF_ALNUMC;
9533 if (memEQ(posixcc, "lowe", 4)) /* lower */
9534 namedclass = complement ? ANYOF_NLOWER : ANYOF_LOWER;
9535 else if (memEQ(posixcc, "uppe", 4)) /* upper */
9536 namedclass = complement ? ANYOF_NUPPER : ANYOF_UPPER;
9539 if (memEQ(posixcc, "digi", 4)) /* digit */
9540 namedclass = complement ? ANYOF_NDIGIT : ANYOF_DIGIT;
9541 else if (memEQ(posixcc, "prin", 4)) /* print */
9542 namedclass = complement ? ANYOF_NPRINT : ANYOF_PRINT;
9543 else if (memEQ(posixcc, "punc", 4)) /* punct */
9544 namedclass = complement ? ANYOF_NPUNCT : ANYOF_PUNCT;
9549 if (memEQ(posixcc, "xdigit", 6))
9550 namedclass = complement ? ANYOF_NXDIGIT : ANYOF_XDIGIT;
9554 if (namedclass == OOB_NAMEDCLASS)
9555 Simple_vFAIL3("POSIX class [:%.*s:] unknown",
9557 assert (posixcc[skip] == ':');
9558 assert (posixcc[skip+1] == ']');
9559 } else if (!SIZE_ONLY) {
9560 /* [[=foo=]] and [[.foo.]] are still future. */
9562 /* adjust RExC_parse so the warning shows after
9564 while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
9566 Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
9569 /* Maternal grandfather:
9570 * "[:" ending in ":" but not in ":]" */
9580 S_checkposixcc(pTHX_ RExC_state_t *pRExC_state)
9584 PERL_ARGS_ASSERT_CHECKPOSIXCC;
9586 if (POSIXCC(UCHARAT(RExC_parse))) {
9587 const char *s = RExC_parse;
9588 const char c = *s++;
9592 if (*s && c == *s && s[1] == ']') {
9594 "POSIX syntax [%c %c] belongs inside character classes",
9597 /* [[=foo=]] and [[.foo.]] are still future. */
9598 if (POSIXCC_NOTYET(c)) {
9599 /* adjust RExC_parse so the error shows after
9601 while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse++) != ']')
9603 Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
9609 /* No locale test, and always Unicode semantics, no ignore-case differences */
9610 #define _C_C_T_NOLOC_(NAME,TEST,WORD) \
9612 for (value = 0; value < 256; value++) \
9614 stored += set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9618 case ANYOF_N##NAME: \
9619 for (value = 0; value < 256; value++) \
9621 stored += set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9626 /* Like the above, but there are differences if we are in uni-8-bit or not, so
9627 * there are two tests passed in, to use depending on that. There aren't any
9628 * cases where the label is different from the name, so no need for that
9630 * Sets 'what' to WORD which is the property name for non-bitmap code points;
9631 * But, uses FOLD_WORD instead if /i has been selected, to allow a different
9633 #define _C_C_T_(NAME, TEST_8, TEST_7, WORD, FOLD_WORD) \
9635 if (LOC) ANYOF_CLASS_SET(ret, ANYOF_##NAME); \
9636 else if (UNI_SEMANTICS) { \
9637 for (value = 0; value < 256; value++) { \
9638 if (TEST_8(value)) stored += \
9639 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9643 for (value = 0; value < 128; value++) { \
9644 if (TEST_7(UNI_TO_NATIVE(value))) stored += \
9645 set_regclass_bit(pRExC_state, ret, \
9646 (U8) UNI_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate); \
9657 case ANYOF_N##NAME: \
9658 if (LOC) ANYOF_CLASS_SET(ret, ANYOF_N##NAME); \
9659 else if (UNI_SEMANTICS) { \
9660 for (value = 0; value < 256; value++) { \
9661 if (! TEST_8(value)) stored += \
9662 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9666 for (value = 0; value < 128; value++) { \
9667 if (! TEST_7(UNI_TO_NATIVE(value))) stored += set_regclass_bit( \
9668 pRExC_state, ret, (U8) UNI_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate); \
9670 if (AT_LEAST_ASCII_RESTRICTED) { \
9671 for (value = 128; value < 256; value++) { \
9672 stored += set_regclass_bit( \
9673 pRExC_state, ret, (U8) UNI_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate); \
9675 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL; \
9678 /* For a non-ut8 target string with DEPENDS semantics, all above \
9679 * ASCII Latin1 code points match the complement of any of the \
9680 * classes. But in utf8, they have their Unicode semantics, so \
9681 * can't just set them in the bitmap, or else regexec.c will think \
9682 * they matched when they shouldn't. */ \
9683 ANYOF_FLAGS(ret) |= ANYOF_NON_UTF8_LATIN1_ALL; \
9696 S_set_regclass_bit_fold(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, SV** invlist_ptr, AV** alternate_ptr)
9699 /* Handle the setting of folds in the bitmap for non-locale ANYOF nodes.
9700 * Locale folding is done at run-time, so this function should not be
9701 * called for nodes that are for locales.
9703 * This function sets the bit corresponding to the fold of the input
9704 * 'value', if not already set. The fold of 'f' is 'F', and the fold of
9707 * It also knows about the characters that are in the bitmap that have
9708 * folds that are matchable only outside it, and sets the appropriate lists
9711 * It returns the number of bits that actually changed from 0 to 1 */
9716 PERL_ARGS_ASSERT_SET_REGCLASS_BIT_FOLD;
9718 fold = (AT_LEAST_UNI_SEMANTICS) ? PL_fold_latin1[value]
9721 /* It assumes the bit for 'value' has already been set */
9722 if (fold != value && ! ANYOF_BITMAP_TEST(node, fold)) {
9723 ANYOF_BITMAP_SET(node, fold);
9726 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value) && (! isASCII(value) || ! MORE_ASCII_RESTRICTED)) {
9727 /* Certain Latin1 characters have matches outside the bitmap. To get
9728 * here, 'value' is one of those characters. None of these matches is
9729 * valid for ASCII characters under /aa, which have been excluded by
9730 * the 'if' above. The matches fall into three categories:
9731 * 1) They are singly folded-to or -from an above 255 character, as
9732 * LATIN SMALL LETTER Y WITH DIAERESIS and LATIN CAPITAL LETTER Y
9734 * 2) They are part of a multi-char fold with another character in the
9735 * bitmap, only LATIN SMALL LETTER SHARP S => "ss" fits that bill;
9736 * 3) They are part of a multi-char fold with a character not in the
9737 * bitmap, such as various ligatures.
9738 * We aren't dealing fully with multi-char folds, except we do deal
9739 * with the pattern containing a character that has a multi-char fold
9740 * (not so much the inverse).
9741 * For types 1) and 3), the matches only happen when the target string
9742 * is utf8; that's not true for 2), and we set a flag for it.
9744 * The code below adds to the passed in inversion list the single fold
9745 * closures for 'value'. The values are hard-coded here so that an
9746 * innocent-looking character class, like /[ks]/i won't have to go out
9747 * to disk to find the possible matches. XXX It would be better to
9748 * generate these via regen, in case a new version of the Unicode
9749 * standard adds new mappings, though that is not really likely. */
9754 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212A);
9758 /* LATIN SMALL LETTER LONG S */
9759 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x017F);
9762 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9763 GREEK_SMALL_LETTER_MU);
9764 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9765 GREEK_CAPITAL_LETTER_MU);
9767 case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
9768 case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
9770 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212B);
9771 if (DEPENDS_SEMANTICS) { /* See DEPENDS comment below */
9772 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9773 PL_fold_latin1[value]);
9776 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
9777 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9778 LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
9780 case LATIN_SMALL_LETTER_SHARP_S:
9781 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9782 LATIN_CAPITAL_LETTER_SHARP_S);
9784 /* Under /a, /d, and /u, this can match the two chars "ss" */
9785 if (! MORE_ASCII_RESTRICTED) {
9786 add_alternate(alternate_ptr, (U8 *) "ss", 2);
9788 /* And under /u or /a, it can match even if the target is
9790 if (AT_LEAST_UNI_SEMANTICS) {
9791 ANYOF_FLAGS(node) |= ANYOF_NONBITMAP_NON_UTF8;
9805 /* These all are targets of multi-character folds from code
9806 * points that require UTF8 to express, so they can't match
9807 * unless the target string is in UTF-8, so no action here is
9808 * necessary, as regexec.c properly handles the general case
9809 * for UTF-8 matching */
9812 /* Use deprecated warning to increase the chances of this
9814 ckWARN2regdep(RExC_parse, "Perl folding rules are not up-to-date for 0x%x; please use the perlbug utility to report;", value);
9818 else if (DEPENDS_SEMANTICS
9820 && PL_fold_latin1[value] != value)
9822 /* Under DEPENDS rules, non-ASCII Latin1 characters match their
9823 * folds only when the target string is in UTF-8. We add the fold
9824 * here to the list of things to match outside the bitmap, which
9825 * won't be looked at unless it is UTF8 (or else if something else
9826 * says to look even if not utf8, but those things better not happen
9827 * under DEPENDS semantics. */
9828 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, PL_fold_latin1[value]);
9835 PERL_STATIC_INLINE U8
9836 S_set_regclass_bit(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, SV** invlist_ptr, AV** alternate_ptr)
9838 /* This inline function sets a bit in the bitmap if not already set, and if
9839 * appropriate, its fold, returning the number of bits that actually
9840 * changed from 0 to 1 */
9844 PERL_ARGS_ASSERT_SET_REGCLASS_BIT;
9846 if (ANYOF_BITMAP_TEST(node, value)) { /* Already set */
9850 ANYOF_BITMAP_SET(node, value);
9853 if (FOLD && ! LOC) { /* Locale folds aren't known until runtime */
9854 stored += set_regclass_bit_fold(pRExC_state, node, value, invlist_ptr, alternate_ptr);
9861 S_add_alternate(pTHX_ AV** alternate_ptr, U8* string, STRLEN len)
9863 /* Adds input 'string' with length 'len' to the ANYOF node's unicode
9864 * alternate list, pointed to by 'alternate_ptr'. This is an array of
9865 * the multi-character folds of characters in the node */
9868 PERL_ARGS_ASSERT_ADD_ALTERNATE;
9870 if (! *alternate_ptr) {
9871 *alternate_ptr = newAV();
9873 sv = newSVpvn_utf8((char*)string, len, TRUE);
9874 av_push(*alternate_ptr, sv);
9879 parse a class specification and produce either an ANYOF node that
9880 matches the pattern or perhaps will be optimized into an EXACTish node
9881 instead. The node contains a bit map for the first 256 characters, with the
9882 corresponding bit set if that character is in the list. For characters
9883 above 255, a range list is used */
9886 S_regclass(pTHX_ RExC_state_t *pRExC_state, U32 depth)
9889 register UV nextvalue;
9890 register IV prevvalue = OOB_UNICODE;
9891 register IV range = 0;
9892 UV value = 0; /* XXX:dmq: needs to be referenceable (unfortunately) */
9893 register regnode *ret;
9896 char *rangebegin = NULL;
9897 bool need_class = 0;
9898 bool allow_full_fold = TRUE; /* Assume wants multi-char folding */
9900 STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
9901 than just initialized. */
9904 /* code points this node matches that can't be stored in the bitmap */
9905 SV* nonbitmap = NULL;
9907 /* The items that are to match that aren't stored in the bitmap, but are a
9908 * result of things that are stored there. This is the fold closure of
9909 * such a character, either because it has DEPENDS semantics and shouldn't
9910 * be matched unless the target string is utf8, or is a code point that is
9911 * too large for the bit map, as for example, the fold of the MICRO SIGN is
9912 * above 255. This all is solely for performance reasons. By having this
9913 * code know the outside-the-bitmap folds that the bitmapped characters are
9914 * involved with, we don't have to go out to disk to find the list of
9915 * matches, unless the character class includes code points that aren't
9916 * storable in the bit map. That means that a character class with an 's'
9917 * in it, for example, doesn't need to go out to disk to find everything
9918 * that matches. A 2nd list is used so that the 'nonbitmap' list is kept
9919 * empty unless there is something whose fold we don't know about, and will
9920 * have to go out to the disk to find. */
9921 SV* l1_fold_invlist = NULL;
9923 /* List of multi-character folds that are matched by this node */
9924 AV* unicode_alternate = NULL;
9926 UV literal_endpoint = 0;
9928 UV stored = 0; /* how many chars stored in the bitmap */
9930 regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
9931 case we need to change the emitted regop to an EXACT. */
9932 const char * orig_parse = RExC_parse;
9933 GET_RE_DEBUG_FLAGS_DECL;
9935 PERL_ARGS_ASSERT_REGCLASS;
9937 PERL_UNUSED_ARG(depth);
9940 DEBUG_PARSE("clas");
9942 /* Assume we are going to generate an ANYOF node. */
9943 ret = reganode(pRExC_state, ANYOF, 0);
9947 ANYOF_FLAGS(ret) = 0;
9950 if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
9954 ANYOF_FLAGS(ret) |= ANYOF_INVERT;
9956 /* We have decided to not allow multi-char folds in inverted character
9957 * classes, due to the confusion that can happen, especially with
9958 * classes that are designed for a non-Unicode world: You have the
9959 * peculiar case that:
9960 "s s" =~ /^[^\xDF]+$/i => Y
9961 "ss" =~ /^[^\xDF]+$/i => N
9963 * See [perl #89750] */
9964 allow_full_fold = FALSE;
9968 RExC_size += ANYOF_SKIP;
9969 listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
9972 RExC_emit += ANYOF_SKIP;
9974 ANYOF_FLAGS(ret) |= ANYOF_LOCALE;
9976 ANYOF_BITMAP_ZERO(ret);
9977 listsv = newSVpvs("# comment\n");
9978 initial_listsv_len = SvCUR(listsv);
9981 nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
9983 if (!SIZE_ONLY && POSIXCC(nextvalue))
9984 checkposixcc(pRExC_state);
9986 /* allow 1st char to be ] (allowing it to be - is dealt with later) */
9987 if (UCHARAT(RExC_parse) == ']')
9991 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
9995 namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
9998 rangebegin = RExC_parse;
10000 value = utf8n_to_uvchr((U8*)RExC_parse,
10001 RExC_end - RExC_parse,
10002 &numlen, UTF8_ALLOW_DEFAULT);
10003 RExC_parse += numlen;
10006 value = UCHARAT(RExC_parse++);
10008 nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
10009 if (value == '[' && POSIXCC(nextvalue))
10010 namedclass = regpposixcc(pRExC_state, value);
10011 else if (value == '\\') {
10013 value = utf8n_to_uvchr((U8*)RExC_parse,
10014 RExC_end - RExC_parse,
10015 &numlen, UTF8_ALLOW_DEFAULT);
10016 RExC_parse += numlen;
10019 value = UCHARAT(RExC_parse++);
10020 /* Some compilers cannot handle switching on 64-bit integer
10021 * values, therefore value cannot be an UV. Yes, this will
10022 * be a problem later if we want switch on Unicode.
10023 * A similar issue a little bit later when switching on
10024 * namedclass. --jhi */
10025 switch ((I32)value) {
10026 case 'w': namedclass = ANYOF_ALNUM; break;
10027 case 'W': namedclass = ANYOF_NALNUM; break;
10028 case 's': namedclass = ANYOF_SPACE; break;
10029 case 'S': namedclass = ANYOF_NSPACE; break;
10030 case 'd': namedclass = ANYOF_DIGIT; break;
10031 case 'D': namedclass = ANYOF_NDIGIT; break;
10032 case 'v': namedclass = ANYOF_VERTWS; break;
10033 case 'V': namedclass = ANYOF_NVERTWS; break;
10034 case 'h': namedclass = ANYOF_HORIZWS; break;
10035 case 'H': namedclass = ANYOF_NHORIZWS; break;
10036 case 'N': /* Handle \N{NAME} in class */
10038 /* We only pay attention to the first char of
10039 multichar strings being returned. I kinda wonder
10040 if this makes sense as it does change the behaviour
10041 from earlier versions, OTOH that behaviour was broken
10043 UV v; /* value is register so we cant & it /grrr */
10044 if (reg_namedseq(pRExC_state, &v, NULL, depth)) {
10054 if (RExC_parse >= RExC_end)
10055 vFAIL2("Empty \\%c{}", (U8)value);
10056 if (*RExC_parse == '{') {
10057 const U8 c = (U8)value;
10058 e = strchr(RExC_parse++, '}');
10060 vFAIL2("Missing right brace on \\%c{}", c);
10061 while (isSPACE(UCHARAT(RExC_parse)))
10063 if (e == RExC_parse)
10064 vFAIL2("Empty \\%c{}", c);
10065 n = e - RExC_parse;
10066 while (isSPACE(UCHARAT(RExC_parse + n - 1)))
10074 if (UCHARAT(RExC_parse) == '^') {
10077 value = value == 'p' ? 'P' : 'p'; /* toggle */
10078 while (isSPACE(UCHARAT(RExC_parse))) {
10084 /* Add the property name to the list. If /i matching, give
10085 * a different name which consists of the normal name
10086 * sandwiched between two underscores and '_i'. The design
10087 * is discussed in the commit message for this. */
10088 Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%s%.*s%s\n",
10089 (value=='p' ? '+' : '!'),
10090 (FOLD) ? "__" : "",
10096 RExC_parse = e + 1;
10098 /* The \p could match something in the Latin1 range, hence
10099 * something that isn't utf8 */
10100 ANYOF_FLAGS(ret) |= ANYOF_NONBITMAP_NON_UTF8;
10101 namedclass = ANYOF_MAX; /* no official name, but it's named */
10103 /* \p means they want Unicode semantics */
10104 RExC_uni_semantics = 1;
10107 case 'n': value = '\n'; break;
10108 case 'r': value = '\r'; break;
10109 case 't': value = '\t'; break;
10110 case 'f': value = '\f'; break;
10111 case 'b': value = '\b'; break;
10112 case 'e': value = ASCII_TO_NATIVE('\033');break;
10113 case 'a': value = ASCII_TO_NATIVE('\007');break;
10115 RExC_parse--; /* function expects to be pointed at the 'o' */
10117 const char* error_msg;
10118 bool valid = grok_bslash_o(RExC_parse,
10123 RExC_parse += numlen;
10128 if (PL_encoding && value < 0x100) {
10129 goto recode_encoding;
10133 if (*RExC_parse == '{') {
10134 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
10135 | PERL_SCAN_DISALLOW_PREFIX;
10136 char * const e = strchr(RExC_parse++, '}');
10138 vFAIL("Missing right brace on \\x{}");
10140 numlen = e - RExC_parse;
10141 value = grok_hex(RExC_parse, &numlen, &flags, NULL);
10142 RExC_parse = e + 1;
10145 I32 flags = PERL_SCAN_DISALLOW_PREFIX;
10147 value = grok_hex(RExC_parse, &numlen, &flags, NULL);
10148 RExC_parse += numlen;
10150 if (PL_encoding && value < 0x100)
10151 goto recode_encoding;
10154 value = grok_bslash_c(*RExC_parse++, UTF, SIZE_ONLY);
10156 case '0': case '1': case '2': case '3': case '4':
10157 case '5': case '6': case '7':
10159 /* Take 1-3 octal digits */
10160 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
10162 value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
10163 RExC_parse += numlen;
10164 if (PL_encoding && value < 0x100)
10165 goto recode_encoding;
10169 if (! RExC_override_recoding) {
10170 SV* enc = PL_encoding;
10171 value = reg_recode((const char)(U8)value, &enc);
10172 if (!enc && SIZE_ONLY)
10173 ckWARNreg(RExC_parse,
10174 "Invalid escape in the specified encoding");
10178 /* Allow \_ to not give an error */
10179 if (!SIZE_ONLY && isALNUM(value) && value != '_') {
10180 ckWARN2reg(RExC_parse,
10181 "Unrecognized escape \\%c in character class passed through",
10186 } /* end of \blah */
10189 literal_endpoint++;
10192 if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
10194 /* What matches in a locale is not known until runtime, so need to
10195 * (one time per class) allocate extra space to pass to regexec.
10196 * The space will contain a bit for each named class that is to be
10197 * matched against. This isn't needed for \p{} and pseudo-classes,
10198 * as they are not affected by locale, and hence are dealt with
10200 if (LOC && namedclass < ANYOF_MAX && ! need_class) {
10203 RExC_size += ANYOF_CLASS_SKIP - ANYOF_SKIP;
10206 RExC_emit += ANYOF_CLASS_SKIP - ANYOF_SKIP;
10207 ANYOF_CLASS_ZERO(ret);
10209 ANYOF_FLAGS(ret) |= ANYOF_CLASS;
10212 /* a bad range like a-\d, a-[:digit:]. The '-' is taken as a
10213 * literal, as is the character that began the false range, i.e.
10214 * the 'a' in the examples */
10218 RExC_parse >= rangebegin ?
10219 RExC_parse - rangebegin : 0;
10220 ckWARN4reg(RExC_parse,
10221 "False [] range \"%*.*s\"",
10225 set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
10226 if (prevvalue < 256) {
10228 set_regclass_bit(pRExC_state, ret, (U8) prevvalue, &l1_fold_invlist, &unicode_alternate);
10231 nonbitmap = add_cp_to_invlist(nonbitmap, prevvalue);
10235 range = 0; /* this was not a true range */
10241 const char *what = NULL;
10244 /* Possible truncation here but in some 64-bit environments
10245 * the compiler gets heartburn about switch on 64-bit values.
10246 * A similar issue a little earlier when switching on value.
10248 switch ((I32)namedclass) {
10250 case _C_C_T_(ALNUMC, isALNUMC_L1, isALNUMC, "XPosixAlnum", "XPosixAlnum");
10251 case _C_C_T_(ALPHA, isALPHA_L1, isALPHA, "XPosixAlpha", "XPosixAlpha");
10252 case _C_C_T_(BLANK, isBLANK_L1, isBLANK, "XPosixBlank", "XPosixBlank");
10253 case _C_C_T_(CNTRL, isCNTRL_L1, isCNTRL, "XPosixCntrl", "XPosixCntrl");
10254 case _C_C_T_(GRAPH, isGRAPH_L1, isGRAPH, "XPosixGraph", "XPosixGraph");
10255 case _C_C_T_(LOWER, isLOWER_L1, isLOWER, "XPosixLower", "__XPosixLower_i");
10256 case _C_C_T_(PRINT, isPRINT_L1, isPRINT, "XPosixPrint", "XPosixPrint");
10257 case _C_C_T_(PSXSPC, isPSXSPC_L1, isPSXSPC, "XPosixSpace", "XPosixSpace");
10258 case _C_C_T_(PUNCT, isPUNCT_L1, isPUNCT, "XPosixPunct", "XPosixPunct");
10259 case _C_C_T_(UPPER, isUPPER_L1, isUPPER, "XPosixUpper", "__XPosixUpper_i");
10260 /* \s, \w match all unicode if utf8. */
10261 case _C_C_T_(SPACE, isSPACE_L1, isSPACE, "SpacePerl", "SpacePerl");
10262 case _C_C_T_(ALNUM, isWORDCHAR_L1, isALNUM, "Word", "Word");
10263 case _C_C_T_(XDIGIT, isXDIGIT_L1, isXDIGIT, "XPosixXDigit", "XPosixXDigit");
10264 case _C_C_T_NOLOC_(VERTWS, is_VERTWS_latin1(&value), "VertSpace");
10265 case _C_C_T_NOLOC_(HORIZWS, is_HORIZWS_latin1(&value), "HorizSpace");
10268 ANYOF_CLASS_SET(ret, ANYOF_ASCII);
10270 for (value = 0; value < 128; value++)
10272 set_regclass_bit(pRExC_state, ret, (U8) ASCII_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate);
10275 what = NULL; /* Doesn't match outside ascii, so
10276 don't want to add +utf8:: */
10280 ANYOF_CLASS_SET(ret, ANYOF_NASCII);
10282 for (value = 128; value < 256; value++)
10284 set_regclass_bit(pRExC_state, ret, (U8) ASCII_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate);
10286 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
10292 ANYOF_CLASS_SET(ret, ANYOF_DIGIT);
10294 /* consecutive digits assumed */
10295 for (value = '0'; value <= '9'; value++)
10297 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate);
10304 ANYOF_CLASS_SET(ret, ANYOF_NDIGIT);
10306 /* consecutive digits assumed */
10307 for (value = 0; value < '0'; value++)
10309 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate);
10310 for (value = '9' + 1; value < 256; value++)
10312 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate);
10316 if (AT_LEAST_ASCII_RESTRICTED ) {
10317 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
10321 /* this is to handle \p and \P */
10324 vFAIL("Invalid [::] class");
10327 if (what && ! (AT_LEAST_ASCII_RESTRICTED)) {
10328 /* Strings such as "+utf8::isWord\n" */
10329 Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%s\n", yesno, what);
10334 } /* end of namedclass \blah */
10337 if (prevvalue > (IV)value) /* b-a */ {
10338 const int w = RExC_parse - rangebegin;
10339 Simple_vFAIL4("Invalid [] range \"%*.*s\"", w, w, rangebegin);
10340 range = 0; /* not a valid range */
10344 prevvalue = value; /* save the beginning of the range */
10345 if (RExC_parse+1 < RExC_end
10346 && *RExC_parse == '-'
10347 && RExC_parse[1] != ']')
10351 /* a bad range like \w-, [:word:]- ? */
10352 if (namedclass > OOB_NAMEDCLASS) {
10353 if (ckWARN(WARN_REGEXP)) {
10355 RExC_parse >= rangebegin ?
10356 RExC_parse - rangebegin : 0;
10358 "False [] range \"%*.*s\"",
10363 set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
10365 range = 1; /* yeah, it's a range! */
10366 continue; /* but do it the next time */
10370 /* non-Latin1 code point implies unicode semantics. Must be set in
10371 * pass1 so is there for the whole of pass 2 */
10373 RExC_uni_semantics = 1;
10376 /* now is the next time */
10378 if (prevvalue < 256) {
10379 const IV ceilvalue = value < 256 ? value : 255;
10382 /* In EBCDIC [\x89-\x91] should include
10383 * the \x8e but [i-j] should not. */
10384 if (literal_endpoint == 2 &&
10385 ((isLOWER(prevvalue) && isLOWER(ceilvalue)) ||
10386 (isUPPER(prevvalue) && isUPPER(ceilvalue))))
10388 if (isLOWER(prevvalue)) {
10389 for (i = prevvalue; i <= ceilvalue; i++)
10390 if (isLOWER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
10392 set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
10395 for (i = prevvalue; i <= ceilvalue; i++)
10396 if (isUPPER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
10398 set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
10404 for (i = prevvalue; i <= ceilvalue; i++) {
10405 stored += set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
10409 const UV prevnatvalue = NATIVE_TO_UNI(prevvalue);
10410 const UV natvalue = NATIVE_TO_UNI(value);
10411 nonbitmap = add_range_to_invlist(nonbitmap, prevnatvalue, natvalue);
10414 literal_endpoint = 0;
10418 range = 0; /* this range (if it was one) is done now */
10425 /****** !SIZE_ONLY AFTER HERE *********/
10427 /* If folding and there are code points above 255, we calculate all
10428 * characters that could fold to or from the ones already on the list */
10429 if (FOLD && nonbitmap) {
10430 UV start, end; /* End points of code point ranges */
10432 SV* fold_intersection;
10434 /* This is a list of all the characters that participate in folds
10435 * (except marks, etc in multi-char folds */
10436 if (! PL_utf8_foldable) {
10437 SV* swash = swash_init("utf8", "Cased", &PL_sv_undef, 1, 0);
10438 PL_utf8_foldable = _swash_to_invlist(swash);
10441 /* This is a hash that for a particular fold gives all characters
10442 * that are involved in it */
10443 if (! PL_utf8_foldclosures) {
10445 /* If we were unable to find any folds, then we likely won't be
10446 * able to find the closures. So just create an empty list.
10447 * Folding will effectively be restricted to the non-Unicode rules
10448 * hard-coded into Perl. (This case happens legitimately during
10449 * compilation of Perl itself before the Unicode tables are
10451 if (invlist_len(PL_utf8_foldable) == 0) {
10452 PL_utf8_foldclosures = newHV();
10454 /* If the folds haven't been read in, call a fold function
10456 if (! PL_utf8_tofold) {
10457 U8 dummy[UTF8_MAXBYTES+1];
10460 /* This particular string is above \xff in both UTF-8 and
10462 to_utf8_fold((U8*) "\xC8\x80", dummy, &dummy_len);
10463 assert(PL_utf8_tofold); /* Verify that worked */
10465 PL_utf8_foldclosures = _swash_inversion_hash(PL_utf8_tofold);
10469 /* Only the characters in this class that participate in folds need
10470 * be checked. Get the intersection of this class and all the
10471 * possible characters that are foldable. This can quickly narrow
10472 * down a large class */
10473 _invlist_intersection(PL_utf8_foldable, nonbitmap, &fold_intersection);
10475 /* Now look at the foldable characters in this class individually */
10476 invlist_iterinit(fold_intersection);
10477 while (invlist_iternext(fold_intersection, &start, &end)) {
10480 /* Look at every character in the range */
10481 for (j = start; j <= end; j++) {
10484 U8 foldbuf[UTF8_MAXBYTES_CASE+1];
10487 _to_uni_fold_flags(j, foldbuf, &foldlen, allow_full_fold);
10489 if (foldlen > (STRLEN)UNISKIP(f)) {
10491 /* Any multicharacter foldings (disallowed in
10492 * lookbehind patterns) require the following
10493 * transform: [ABCDEF] -> (?:[ABCabcDEFd]|pq|rst) where
10494 * E folds into "pq" and F folds into "rst", all other
10495 * characters fold to single characters. We save away
10496 * these multicharacter foldings, to be later saved as
10497 * part of the additional "s" data. */
10498 if (! RExC_in_lookbehind) {
10500 U8* e = foldbuf + foldlen;
10502 /* If any of the folded characters of this are in
10503 * the Latin1 range, tell the regex engine that
10504 * this can match a non-utf8 target string. The
10505 * only multi-byte fold whose source is in the
10506 * Latin1 range (U+00DF) applies only when the
10507 * target string is utf8, or under unicode rules */
10508 if (j > 255 || AT_LEAST_UNI_SEMANTICS) {
10511 /* Can't mix ascii with non- under /aa */
10512 if (MORE_ASCII_RESTRICTED
10513 && (isASCII(*loc) != isASCII(j)))
10515 goto end_multi_fold;
10517 if (UTF8_IS_INVARIANT(*loc)
10518 || UTF8_IS_DOWNGRADEABLE_START(*loc))
10520 /* Can't mix above and below 256 under
10523 goto end_multi_fold;
10526 |= ANYOF_NONBITMAP_NON_UTF8;
10529 loc += UTF8SKIP(loc);
10533 add_alternate(&unicode_alternate, foldbuf, foldlen);
10537 /* This is special-cased, as it is the only letter which
10538 * has both a multi-fold and single-fold in Latin1. All
10539 * the other chars that have single and multi-folds are
10540 * always in utf8, and the utf8 folding algorithm catches
10542 if (! LOC && j == LATIN_CAPITAL_LETTER_SHARP_S) {
10543 stored += set_regclass_bit(pRExC_state,
10545 LATIN_SMALL_LETTER_SHARP_S,
10546 &l1_fold_invlist, &unicode_alternate);
10550 /* Single character fold. Add everything in its fold
10551 * closure to the list that this node should match */
10554 /* The fold closures data structure is a hash with the
10555 * keys being every character that is folded to, like
10556 * 'k', and the values each an array of everything that
10557 * folds to its key. e.g. [ 'k', 'K', KELVIN_SIGN ] */
10558 if ((listp = hv_fetch(PL_utf8_foldclosures,
10559 (char *) foldbuf, foldlen, FALSE)))
10561 AV* list = (AV*) *listp;
10563 for (k = 0; k <= av_len(list); k++) {
10564 SV** c_p = av_fetch(list, k, FALSE);
10567 Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
10571 /* /aa doesn't allow folds between ASCII and
10572 * non-; /l doesn't allow them between above
10574 if ((MORE_ASCII_RESTRICTED
10575 && (isASCII(c) != isASCII(j)))
10576 || (LOC && ((c < 256) != (j < 256))))
10581 if (c < 256 && AT_LEAST_UNI_SEMANTICS) {
10582 stored += set_regclass_bit(pRExC_state,
10585 &l1_fold_invlist, &unicode_alternate);
10587 /* It may be that the code point is already
10588 * in this range or already in the bitmap,
10589 * in which case we need do nothing */
10590 else if ((c < start || c > end)
10592 || ! ANYOF_BITMAP_TEST(ret, c)))
10594 nonbitmap = add_cp_to_invlist(nonbitmap, c);
10601 SvREFCNT_dec(fold_intersection);
10604 /* Combine the two lists into one. */
10605 if (l1_fold_invlist) {
10607 _invlist_union(nonbitmap, l1_fold_invlist, &nonbitmap);
10608 SvREFCNT_dec(l1_fold_invlist);
10611 nonbitmap = l1_fold_invlist;
10615 /* Here, we have calculated what code points should be in the character
10616 * class. Now we can see about various optimizations. Fold calculation
10617 * needs to take place before inversion. Otherwise /[^k]/i would invert to
10618 * include K, which under /i would match k. */
10620 /* Optimize inverted simple patterns (e.g. [^a-z]). Note that we haven't
10621 * set the FOLD flag yet, so this this does optimize those. It doesn't
10622 * optimize locale. Doing so perhaps could be done as long as there is
10623 * nothing like \w in it; some thought also would have to be given to the
10624 * interaction with above 0x100 chars */
10626 && (ANYOF_FLAGS(ret) & ANYOF_INVERT)
10627 && ! unicode_alternate
10628 /* In case of /d, there are some things that should match only when in
10629 * not in the bitmap, i.e., they require UTF8 to match. These are
10630 * listed in nonbitmap. */
10632 || ! DEPENDS_SEMANTICS
10633 || (ANYOF_FLAGS(ret) & ANYOF_NONBITMAP_NON_UTF8))
10634 && SvCUR(listsv) == initial_listsv_len)
10637 for (value = 0; value < ANYOF_BITMAP_SIZE; ++value)
10638 ANYOF_BITMAP(ret)[value] ^= 0xFF;
10639 /* The inversion means that everything above 255 is matched */
10640 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
10643 /* Here, also has things outside the bitmap. Go through each bit
10644 * individually and add it to the list to get rid of from those
10645 * things not in the bitmap */
10646 SV *remove_list = _new_invlist(2);
10647 _invlist_invert(nonbitmap);
10648 for (value = 0; value < 256; ++value) {
10649 if (ANYOF_BITMAP_TEST(ret, value)) {
10650 ANYOF_BITMAP_CLEAR(ret, value);
10651 remove_list = add_cp_to_invlist(remove_list, value);
10654 ANYOF_BITMAP_SET(ret, value);
10657 _invlist_subtract(nonbitmap, remove_list, &nonbitmap);
10658 SvREFCNT_dec(remove_list);
10661 stored = 256 - stored;
10663 /* Clear the invert flag since have just done it here */
10664 ANYOF_FLAGS(ret) &= ~ANYOF_INVERT;
10667 /* Folding in the bitmap is taken care of above, but not for locale (for
10668 * which we have to wait to see what folding is in effect at runtime), and
10669 * for things not in the bitmap. Set run-time fold flag for these */
10670 if (FOLD && (LOC || nonbitmap || unicode_alternate)) {
10671 ANYOF_FLAGS(ret) |= ANYOF_LOC_NONBITMAP_FOLD;
10674 /* A single character class can be "optimized" into an EXACTish node.
10675 * Note that since we don't currently count how many characters there are
10676 * outside the bitmap, we are XXX missing optimization possibilities for
10677 * them. This optimization can't happen unless this is a truly single
10678 * character class, which means that it can't be an inversion into a
10679 * many-character class, and there must be no possibility of there being
10680 * things outside the bitmap. 'stored' (only) for locales doesn't include
10681 * \w, etc, so have to make a special test that they aren't present
10683 * Similarly A 2-character class of the very special form like [bB] can be
10684 * optimized into an EXACTFish node, but only for non-locales, and for
10685 * characters which only have the two folds; so things like 'fF' and 'Ii'
10686 * wouldn't work because they are part of the fold of 'LATIN SMALL LIGATURE
10689 && ! unicode_alternate
10690 && SvCUR(listsv) == initial_listsv_len
10691 && ! (ANYOF_FLAGS(ret) & (ANYOF_INVERT|ANYOF_UNICODE_ALL))
10692 && (((stored == 1 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
10693 || (! ANYOF_CLASS_TEST_ANY_SET(ret)))))
10694 || (stored == 2 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
10695 && (! _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value))
10696 /* If the latest code point has a fold whose
10697 * bit is set, it must be the only other one */
10698 && ((prevvalue = PL_fold_latin1[value]) != (IV)value)
10699 && ANYOF_BITMAP_TEST(ret, prevvalue)))))
10701 /* Note that the information needed to decide to do this optimization
10702 * is not currently available until the 2nd pass, and that the actually
10703 * used EXACTish node takes less space than the calculated ANYOF node,
10704 * and hence the amount of space calculated in the first pass is larger
10705 * than actually used, so this optimization doesn't gain us any space.
10706 * But an EXACT node is faster than an ANYOF node, and can be combined
10707 * with any adjacent EXACT nodes later by the optimizer for further
10708 * gains. The speed of executing an EXACTF is similar to an ANYOF
10709 * node, so the optimization advantage comes from the ability to join
10710 * it to adjacent EXACT nodes */
10712 const char * cur_parse= RExC_parse;
10714 RExC_emit = (regnode *)orig_emit;
10715 RExC_parse = (char *)orig_parse;
10719 /* A locale node with one point can be folded; all the other cases
10720 * with folding will have two points, since we calculate them above
10722 if (ANYOF_FLAGS(ret) & ANYOF_LOC_NONBITMAP_FOLD) {
10729 else { /* else 2 chars in the bit map: the folds of each other */
10731 /* Use the folded value, which for the cases where we get here,
10732 * is just the lower case of the current one (which may resolve to
10733 * itself, or to the other one */
10734 value = toLOWER_LATIN1(value);
10735 if (AT_LEAST_UNI_SEMANTICS || !isASCII(value)) {
10737 /* To join adjacent nodes, they must be the exact EXACTish
10738 * type. Try to use the most likely type, by using EXACTFU if
10739 * the regex calls for them, or is required because the
10740 * character is non-ASCII */
10743 else { /* Otherwise, more likely to be EXACTF type */
10748 ret = reg_node(pRExC_state, op);
10749 RExC_parse = (char *)cur_parse;
10750 if (UTF && ! NATIVE_IS_INVARIANT(value)) {
10751 *STRING(ret)= UTF8_EIGHT_BIT_HI((U8) value);
10752 *(STRING(ret) + 1)= UTF8_EIGHT_BIT_LO((U8) value);
10754 RExC_emit += STR_SZ(2);
10757 *STRING(ret)= (char)value;
10759 RExC_emit += STR_SZ(1);
10761 SvREFCNT_dec(listsv);
10767 invlist_iterinit(nonbitmap);
10768 while (invlist_iternext(nonbitmap, &start, &end)) {
10769 if (start == end) {
10770 Perl_sv_catpvf(aTHX_ listsv, "%04"UVxf"\n", start);
10773 /* The \t sets the whole range */
10774 Perl_sv_catpvf(aTHX_ listsv, "%04"UVxf"\t%04"UVxf"\n",
10779 SvREFCNT_dec(nonbitmap);
10782 if (SvCUR(listsv) == initial_listsv_len && ! unicode_alternate) {
10783 ARG_SET(ret, ANYOF_NONBITMAP_EMPTY);
10784 SvREFCNT_dec(listsv);
10785 SvREFCNT_dec(unicode_alternate);
10789 AV * const av = newAV();
10791 /* The 0th element stores the character class description
10792 * in its textual form: used later (regexec.c:Perl_regclass_swash())
10793 * to initialize the appropriate swash (which gets stored in
10794 * the 1st element), and also useful for dumping the regnode.
10795 * The 2nd element stores the multicharacter foldings,
10796 * used later (regexec.c:S_reginclass()). */
10797 av_store(av, 0, listsv);
10798 av_store(av, 1, NULL);
10800 /* Store any computed multi-char folds only if we are allowing
10802 if (allow_full_fold) {
10803 av_store(av, 2, MUTABLE_SV(unicode_alternate));
10804 if (unicode_alternate) { /* This node is variable length */
10809 av_store(av, 2, NULL);
10811 rv = newRV_noinc(MUTABLE_SV(av));
10812 n = add_data(pRExC_state, 1, "s");
10813 RExC_rxi->data->data[n] = (void*)rv;
10821 /* reg_skipcomment()
10823 Absorbs an /x style # comments from the input stream.
10824 Returns true if there is more text remaining in the stream.
10825 Will set the REG_SEEN_RUN_ON_COMMENT flag if the comment
10826 terminates the pattern without including a newline.
10828 Note its the callers responsibility to ensure that we are
10829 actually in /x mode
10834 S_reg_skipcomment(pTHX_ RExC_state_t *pRExC_state)
10838 PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
10840 while (RExC_parse < RExC_end)
10841 if (*RExC_parse++ == '\n') {
10846 /* we ran off the end of the pattern without ending
10847 the comment, so we have to add an \n when wrapping */
10848 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
10856 Advances the parse position, and optionally absorbs
10857 "whitespace" from the inputstream.
10859 Without /x "whitespace" means (?#...) style comments only,
10860 with /x this means (?#...) and # comments and whitespace proper.
10862 Returns the RExC_parse point from BEFORE the scan occurs.
10864 This is the /x friendly way of saying RExC_parse++.
10868 S_nextchar(pTHX_ RExC_state_t *pRExC_state)
10870 char* const retval = RExC_parse++;
10872 PERL_ARGS_ASSERT_NEXTCHAR;
10875 if (*RExC_parse == '(' && RExC_parse[1] == '?' &&
10876 RExC_parse[2] == '#') {
10877 while (*RExC_parse != ')') {
10878 if (RExC_parse == RExC_end)
10879 FAIL("Sequence (?#... not terminated");
10885 if (RExC_flags & RXf_PMf_EXTENDED) {
10886 if (isSPACE(*RExC_parse)) {
10890 else if (*RExC_parse == '#') {
10891 if ( reg_skipcomment( pRExC_state ) )
10900 - reg_node - emit a node
10902 STATIC regnode * /* Location. */
10903 S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
10906 register regnode *ptr;
10907 regnode * const ret = RExC_emit;
10908 GET_RE_DEBUG_FLAGS_DECL;
10910 PERL_ARGS_ASSERT_REG_NODE;
10913 SIZE_ALIGN(RExC_size);
10917 if (RExC_emit >= RExC_emit_bound)
10918 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d", op);
10920 NODE_ALIGN_FILL(ret);
10922 FILL_ADVANCE_NODE(ptr, op);
10923 REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 1);
10924 #ifdef RE_TRACK_PATTERN_OFFSETS
10925 if (RExC_offsets) { /* MJD */
10926 MJD_OFFSET_DEBUG(("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
10927 "reg_node", __LINE__,
10929 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
10930 ? "Overwriting end of array!\n" : "OK",
10931 (UV)(RExC_emit - RExC_emit_start),
10932 (UV)(RExC_parse - RExC_start),
10933 (UV)RExC_offsets[0]));
10934 Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
10942 - reganode - emit a node with an argument
10944 STATIC regnode * /* Location. */
10945 S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
10948 register regnode *ptr;
10949 regnode * const ret = RExC_emit;
10950 GET_RE_DEBUG_FLAGS_DECL;
10952 PERL_ARGS_ASSERT_REGANODE;
10955 SIZE_ALIGN(RExC_size);
10960 assert(2==regarglen[op]+1);
10962 Anything larger than this has to allocate the extra amount.
10963 If we changed this to be:
10965 RExC_size += (1 + regarglen[op]);
10967 then it wouldn't matter. Its not clear what side effect
10968 might come from that so its not done so far.
10973 if (RExC_emit >= RExC_emit_bound)
10974 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d", op);
10976 NODE_ALIGN_FILL(ret);
10978 FILL_ADVANCE_NODE_ARG(ptr, op, arg);
10979 REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 2);
10980 #ifdef RE_TRACK_PATTERN_OFFSETS
10981 if (RExC_offsets) { /* MJD */
10982 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
10986 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0] ?
10987 "Overwriting end of array!\n" : "OK",
10988 (UV)(RExC_emit - RExC_emit_start),
10989 (UV)(RExC_parse - RExC_start),
10990 (UV)RExC_offsets[0]));
10991 Set_Cur_Node_Offset;
10999 - reguni - emit (if appropriate) a Unicode character
11002 S_reguni(pTHX_ const RExC_state_t *pRExC_state, UV uv, char* s)
11006 PERL_ARGS_ASSERT_REGUNI;
11008 return SIZE_ONLY ? UNISKIP(uv) : (uvchr_to_utf8((U8*)s, uv) - (U8*)s);
11012 - reginsert - insert an operator in front of already-emitted operand
11014 * Means relocating the operand.
11017 S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
11020 register regnode *src;
11021 register regnode *dst;
11022 register regnode *place;
11023 const int offset = regarglen[(U8)op];
11024 const int size = NODE_STEP_REGNODE + offset;
11025 GET_RE_DEBUG_FLAGS_DECL;
11027 PERL_ARGS_ASSERT_REGINSERT;
11028 PERL_UNUSED_ARG(depth);
11029 /* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
11030 DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
11039 if (RExC_open_parens) {
11041 /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
11042 for ( paren=0 ; paren < RExC_npar ; paren++ ) {
11043 if ( RExC_open_parens[paren] >= opnd ) {
11044 /*DEBUG_PARSE_FMT("open"," - %d",size);*/
11045 RExC_open_parens[paren] += size;
11047 /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
11049 if ( RExC_close_parens[paren] >= opnd ) {
11050 /*DEBUG_PARSE_FMT("close"," - %d",size);*/
11051 RExC_close_parens[paren] += size;
11053 /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
11058 while (src > opnd) {
11059 StructCopy(--src, --dst, regnode);
11060 #ifdef RE_TRACK_PATTERN_OFFSETS
11061 if (RExC_offsets) { /* MJD 20010112 */
11062 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
11066 (UV)(dst - RExC_emit_start) > RExC_offsets[0]
11067 ? "Overwriting end of array!\n" : "OK",
11068 (UV)(src - RExC_emit_start),
11069 (UV)(dst - RExC_emit_start),
11070 (UV)RExC_offsets[0]));
11071 Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
11072 Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
11078 place = opnd; /* Op node, where operand used to be. */
11079 #ifdef RE_TRACK_PATTERN_OFFSETS
11080 if (RExC_offsets) { /* MJD */
11081 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
11085 (UV)(place - RExC_emit_start) > RExC_offsets[0]
11086 ? "Overwriting end of array!\n" : "OK",
11087 (UV)(place - RExC_emit_start),
11088 (UV)(RExC_parse - RExC_start),
11089 (UV)RExC_offsets[0]));
11090 Set_Node_Offset(place, RExC_parse);
11091 Set_Node_Length(place, 1);
11094 src = NEXTOPER(place);
11095 FILL_ADVANCE_NODE(place, op);
11096 REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (place) - 1);
11097 Zero(src, offset, regnode);
11101 - regtail - set the next-pointer at the end of a node chain of p to val.
11102 - SEE ALSO: regtail_study
11104 /* TODO: All three parms should be const */
11106 S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
11109 register regnode *scan;
11110 GET_RE_DEBUG_FLAGS_DECL;
11112 PERL_ARGS_ASSERT_REGTAIL;
11114 PERL_UNUSED_ARG(depth);
11120 /* Find last node. */
11123 regnode * const temp = regnext(scan);
11125 SV * const mysv=sv_newmortal();
11126 DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
11127 regprop(RExC_rx, mysv, scan);
11128 PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
11129 SvPV_nolen_const(mysv), REG_NODE_NUM(scan),
11130 (temp == NULL ? "->" : ""),
11131 (temp == NULL ? PL_reg_name[OP(val)] : "")
11139 if (reg_off_by_arg[OP(scan)]) {
11140 ARG_SET(scan, val - scan);
11143 NEXT_OFF(scan) = val - scan;
11149 - regtail_study - set the next-pointer at the end of a node chain of p to val.
11150 - Look for optimizable sequences at the same time.
11151 - currently only looks for EXACT chains.
11153 This is experimental code. The idea is to use this routine to perform
11154 in place optimizations on branches and groups as they are constructed,
11155 with the long term intention of removing optimization from study_chunk so
11156 that it is purely analytical.
11158 Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
11159 to control which is which.
11162 /* TODO: All four parms should be const */
11165 S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
11168 register regnode *scan;
11170 #ifdef EXPERIMENTAL_INPLACESCAN
11173 GET_RE_DEBUG_FLAGS_DECL;
11175 PERL_ARGS_ASSERT_REGTAIL_STUDY;
11181 /* Find last node. */
11185 regnode * const temp = regnext(scan);
11186 #ifdef EXPERIMENTAL_INPLACESCAN
11187 if (PL_regkind[OP(scan)] == EXACT)
11188 if (join_exact(pRExC_state,scan,&min,1,val,depth+1))
11192 switch (OP(scan)) {
11198 if( exact == PSEUDO )
11200 else if ( exact != OP(scan) )
11209 SV * const mysv=sv_newmortal();
11210 DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
11211 regprop(RExC_rx, mysv, scan);
11212 PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
11213 SvPV_nolen_const(mysv),
11214 REG_NODE_NUM(scan),
11215 PL_reg_name[exact]);
11222 SV * const mysv_val=sv_newmortal();
11223 DEBUG_PARSE_MSG("");
11224 regprop(RExC_rx, mysv_val, val);
11225 PerlIO_printf(Perl_debug_log, "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
11226 SvPV_nolen_const(mysv_val),
11227 (IV)REG_NODE_NUM(val),
11231 if (reg_off_by_arg[OP(scan)]) {
11232 ARG_SET(scan, val - scan);
11235 NEXT_OFF(scan) = val - scan;
11243 - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
11247 S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
11253 for (bit=0; bit<32; bit++) {
11254 if (flags & (1<<bit)) {
11255 if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
11258 if (!set++ && lead)
11259 PerlIO_printf(Perl_debug_log, "%s",lead);
11260 PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
11263 if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
11264 if (!set++ && lead) {
11265 PerlIO_printf(Perl_debug_log, "%s",lead);
11268 case REGEX_UNICODE_CHARSET:
11269 PerlIO_printf(Perl_debug_log, "UNICODE");
11271 case REGEX_LOCALE_CHARSET:
11272 PerlIO_printf(Perl_debug_log, "LOCALE");
11274 case REGEX_ASCII_RESTRICTED_CHARSET:
11275 PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
11277 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
11278 PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
11281 PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
11287 PerlIO_printf(Perl_debug_log, "\n");
11289 PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
11295 Perl_regdump(pTHX_ const regexp *r)
11299 SV * const sv = sv_newmortal();
11300 SV *dsv= sv_newmortal();
11301 RXi_GET_DECL(r,ri);
11302 GET_RE_DEBUG_FLAGS_DECL;
11304 PERL_ARGS_ASSERT_REGDUMP;
11306 (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
11308 /* Header fields of interest. */
11309 if (r->anchored_substr) {
11310 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
11311 RE_SV_DUMPLEN(r->anchored_substr), 30);
11312 PerlIO_printf(Perl_debug_log,
11313 "anchored %s%s at %"IVdf" ",
11314 s, RE_SV_TAIL(r->anchored_substr),
11315 (IV)r->anchored_offset);
11316 } else if (r->anchored_utf8) {
11317 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
11318 RE_SV_DUMPLEN(r->anchored_utf8), 30);
11319 PerlIO_printf(Perl_debug_log,
11320 "anchored utf8 %s%s at %"IVdf" ",
11321 s, RE_SV_TAIL(r->anchored_utf8),
11322 (IV)r->anchored_offset);
11324 if (r->float_substr) {
11325 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
11326 RE_SV_DUMPLEN(r->float_substr), 30);
11327 PerlIO_printf(Perl_debug_log,
11328 "floating %s%s at %"IVdf"..%"UVuf" ",
11329 s, RE_SV_TAIL(r->float_substr),
11330 (IV)r->float_min_offset, (UV)r->float_max_offset);
11331 } else if (r->float_utf8) {
11332 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
11333 RE_SV_DUMPLEN(r->float_utf8), 30);
11334 PerlIO_printf(Perl_debug_log,
11335 "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
11336 s, RE_SV_TAIL(r->float_utf8),
11337 (IV)r->float_min_offset, (UV)r->float_max_offset);
11339 if (r->check_substr || r->check_utf8)
11340 PerlIO_printf(Perl_debug_log,
11342 (r->check_substr == r->float_substr
11343 && r->check_utf8 == r->float_utf8
11344 ? "(checking floating" : "(checking anchored"));
11345 if (r->extflags & RXf_NOSCAN)
11346 PerlIO_printf(Perl_debug_log, " noscan");
11347 if (r->extflags & RXf_CHECK_ALL)
11348 PerlIO_printf(Perl_debug_log, " isall");
11349 if (r->check_substr || r->check_utf8)
11350 PerlIO_printf(Perl_debug_log, ") ");
11352 if (ri->regstclass) {
11353 regprop(r, sv, ri->regstclass);
11354 PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
11356 if (r->extflags & RXf_ANCH) {
11357 PerlIO_printf(Perl_debug_log, "anchored");
11358 if (r->extflags & RXf_ANCH_BOL)
11359 PerlIO_printf(Perl_debug_log, "(BOL)");
11360 if (r->extflags & RXf_ANCH_MBOL)
11361 PerlIO_printf(Perl_debug_log, "(MBOL)");
11362 if (r->extflags & RXf_ANCH_SBOL)
11363 PerlIO_printf(Perl_debug_log, "(SBOL)");
11364 if (r->extflags & RXf_ANCH_GPOS)
11365 PerlIO_printf(Perl_debug_log, "(GPOS)");
11366 PerlIO_putc(Perl_debug_log, ' ');
11368 if (r->extflags & RXf_GPOS_SEEN)
11369 PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
11370 if (r->intflags & PREGf_SKIP)
11371 PerlIO_printf(Perl_debug_log, "plus ");
11372 if (r->intflags & PREGf_IMPLICIT)
11373 PerlIO_printf(Perl_debug_log, "implicit ");
11374 PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
11375 if (r->extflags & RXf_EVAL_SEEN)
11376 PerlIO_printf(Perl_debug_log, "with eval ");
11377 PerlIO_printf(Perl_debug_log, "\n");
11378 DEBUG_FLAGS_r(regdump_extflags("r->extflags: ",r->extflags));
11380 PERL_ARGS_ASSERT_REGDUMP;
11381 PERL_UNUSED_CONTEXT;
11382 PERL_UNUSED_ARG(r);
11383 #endif /* DEBUGGING */
11387 - regprop - printable representation of opcode
11389 #define EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags) \
11392 Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]); \
11393 if (flags & ANYOF_INVERT) \
11394 /*make sure the invert info is in each */ \
11395 sv_catpvs(sv, "^"); \
11401 Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o)
11406 RXi_GET_DECL(prog,progi);
11407 GET_RE_DEBUG_FLAGS_DECL;
11409 PERL_ARGS_ASSERT_REGPROP;
11413 if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */
11414 /* It would be nice to FAIL() here, but this may be called from
11415 regexec.c, and it would be hard to supply pRExC_state. */
11416 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(o), (int)REGNODE_MAX);
11417 sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
11419 k = PL_regkind[OP(o)];
11422 sv_catpvs(sv, " ");
11423 /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
11424 * is a crude hack but it may be the best for now since
11425 * we have no flag "this EXACTish node was UTF-8"
11427 pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
11428 PERL_PV_ESCAPE_UNI_DETECT |
11429 PERL_PV_ESCAPE_NONASCII |
11430 PERL_PV_PRETTY_ELLIPSES |
11431 PERL_PV_PRETTY_LTGT |
11432 PERL_PV_PRETTY_NOCLEAR
11434 } else if (k == TRIE) {
11435 /* print the details of the trie in dumpuntil instead, as
11436 * progi->data isn't available here */
11437 const char op = OP(o);
11438 const U32 n = ARG(o);
11439 const reg_ac_data * const ac = IS_TRIE_AC(op) ?
11440 (reg_ac_data *)progi->data->data[n] :
11442 const reg_trie_data * const trie
11443 = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
11445 Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
11446 DEBUG_TRIE_COMPILE_r(
11447 Perl_sv_catpvf(aTHX_ sv,
11448 "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
11449 (UV)trie->startstate,
11450 (IV)trie->statecount-1, /* -1 because of the unused 0 element */
11451 (UV)trie->wordcount,
11454 (UV)TRIE_CHARCOUNT(trie),
11455 (UV)trie->uniquecharcount
11458 if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
11460 int rangestart = -1;
11461 U8* bitmap = IS_ANYOF_TRIE(op) ? (U8*)ANYOF_BITMAP(o) : (U8*)TRIE_BITMAP(trie);
11462 sv_catpvs(sv, "[");
11463 for (i = 0; i <= 256; i++) {
11464 if (i < 256 && BITMAP_TEST(bitmap,i)) {
11465 if (rangestart == -1)
11467 } else if (rangestart != -1) {
11468 if (i <= rangestart + 3)
11469 for (; rangestart < i; rangestart++)
11470 put_byte(sv, rangestart);
11472 put_byte(sv, rangestart);
11473 sv_catpvs(sv, "-");
11474 put_byte(sv, i - 1);
11479 sv_catpvs(sv, "]");
11482 } else if (k == CURLY) {
11483 if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
11484 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
11485 Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
11487 else if (k == WHILEM && o->flags) /* Ordinal/of */
11488 Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
11489 else if (k == REF || k == OPEN || k == CLOSE || k == GROUPP || OP(o)==ACCEPT) {
11490 Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
11491 if ( RXp_PAREN_NAMES(prog) ) {
11492 if ( k != REF || (OP(o) < NREF)) {
11493 AV *list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
11494 SV **name= av_fetch(list, ARG(o), 0 );
11496 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
11499 AV *list= MUTABLE_AV(progi->data->data[ progi->name_list_idx ]);
11500 SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
11501 I32 *nums=(I32*)SvPVX(sv_dat);
11502 SV **name= av_fetch(list, nums[0], 0 );
11505 for ( n=0; n<SvIVX(sv_dat); n++ ) {
11506 Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
11507 (n ? "," : ""), (IV)nums[n]);
11509 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
11513 } else if (k == GOSUB)
11514 Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o)); /* Paren and offset */
11515 else if (k == VERB) {
11517 Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
11518 SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
11519 } else if (k == LOGICAL)
11520 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* 2: embedded, otherwise 1 */
11521 else if (k == FOLDCHAR)
11522 Perl_sv_catpvf(aTHX_ sv, "[0x%"UVXf"]", PTR2UV(ARG(o)) );
11523 else if (k == ANYOF) {
11524 int i, rangestart = -1;
11525 const U8 flags = ANYOF_FLAGS(o);
11528 /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
11529 static const char * const anyofs[] = {
11562 if (flags & ANYOF_LOCALE)
11563 sv_catpvs(sv, "{loc}");
11564 if (flags & ANYOF_LOC_NONBITMAP_FOLD)
11565 sv_catpvs(sv, "{i}");
11566 Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
11567 if (flags & ANYOF_INVERT)
11568 sv_catpvs(sv, "^");
11570 /* output what the standard cp 0-255 bitmap matches */
11571 for (i = 0; i <= 256; i++) {
11572 if (i < 256 && ANYOF_BITMAP_TEST(o,i)) {
11573 if (rangestart == -1)
11575 } else if (rangestart != -1) {
11576 if (i <= rangestart + 3)
11577 for (; rangestart < i; rangestart++)
11578 put_byte(sv, rangestart);
11580 put_byte(sv, rangestart);
11581 sv_catpvs(sv, "-");
11582 put_byte(sv, i - 1);
11589 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
11590 /* output any special charclass tests (used entirely under use locale) */
11591 if (ANYOF_CLASS_TEST_ANY_SET(o))
11592 for (i = 0; i < (int)(sizeof(anyofs)/sizeof(char*)); i++)
11593 if (ANYOF_CLASS_TEST(o,i)) {
11594 sv_catpv(sv, anyofs[i]);
11598 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
11600 if (flags & ANYOF_NON_UTF8_LATIN1_ALL) {
11601 sv_catpvs(sv, "{non-utf8-latin1-all}");
11604 /* output information about the unicode matching */
11605 if (flags & ANYOF_UNICODE_ALL)
11606 sv_catpvs(sv, "{unicode_all}");
11607 else if (ANYOF_NONBITMAP(o))
11608 sv_catpvs(sv, "{unicode}");
11609 if (flags & ANYOF_NONBITMAP_NON_UTF8)
11610 sv_catpvs(sv, "{outside bitmap}");
11612 if (ANYOF_NONBITMAP(o)) {
11614 SV * const sw = regclass_swash(prog, o, FALSE, &lv, 0);
11618 U8 s[UTF8_MAXBYTES_CASE+1];
11620 for (i = 0; i <= 256; i++) { /* just the first 256 */
11621 uvchr_to_utf8(s, i);
11623 if (i < 256 && swash_fetch(sw, s, TRUE)) {
11624 if (rangestart == -1)
11626 } else if (rangestart != -1) {
11627 if (i <= rangestart + 3)
11628 for (; rangestart < i; rangestart++) {
11629 const U8 * const e = uvchr_to_utf8(s,rangestart);
11631 for(p = s; p < e; p++)
11635 const U8 *e = uvchr_to_utf8(s,rangestart);
11637 for (p = s; p < e; p++)
11639 sv_catpvs(sv, "-");
11640 e = uvchr_to_utf8(s, i-1);
11641 for (p = s; p < e; p++)
11648 sv_catpvs(sv, "..."); /* et cetera */
11652 char *s = savesvpv(lv);
11653 char * const origs = s;
11655 while (*s && *s != '\n')
11659 const char * const t = ++s;
11677 Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
11679 else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
11680 Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
11682 PERL_UNUSED_CONTEXT;
11683 PERL_UNUSED_ARG(sv);
11684 PERL_UNUSED_ARG(o);
11685 PERL_UNUSED_ARG(prog);
11686 #endif /* DEBUGGING */
11690 Perl_re_intuit_string(pTHX_ REGEXP * const r)
11691 { /* Assume that RE_INTUIT is set */
11693 struct regexp *const prog = (struct regexp *)SvANY(r);
11694 GET_RE_DEBUG_FLAGS_DECL;
11696 PERL_ARGS_ASSERT_RE_INTUIT_STRING;
11697 PERL_UNUSED_CONTEXT;
11701 const char * const s = SvPV_nolen_const(prog->check_substr
11702 ? prog->check_substr : prog->check_utf8);
11704 if (!PL_colorset) reginitcolors();
11705 PerlIO_printf(Perl_debug_log,
11706 "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
11708 prog->check_substr ? "" : "utf8 ",
11709 PL_colors[5],PL_colors[0],
11712 (strlen(s) > 60 ? "..." : ""));
11715 return prog->check_substr ? prog->check_substr : prog->check_utf8;
11721 handles refcounting and freeing the perl core regexp structure. When
11722 it is necessary to actually free the structure the first thing it
11723 does is call the 'free' method of the regexp_engine associated to
11724 the regexp, allowing the handling of the void *pprivate; member
11725 first. (This routine is not overridable by extensions, which is why
11726 the extensions free is called first.)
11728 See regdupe and regdupe_internal if you change anything here.
11730 #ifndef PERL_IN_XSUB_RE
11732 Perl_pregfree(pTHX_ REGEXP *r)
11738 Perl_pregfree2(pTHX_ REGEXP *rx)
11741 struct regexp *const r = (struct regexp *)SvANY(rx);
11742 GET_RE_DEBUG_FLAGS_DECL;
11744 PERL_ARGS_ASSERT_PREGFREE2;
11746 if (r->mother_re) {
11747 ReREFCNT_dec(r->mother_re);
11749 CALLREGFREE_PVT(rx); /* free the private data */
11750 SvREFCNT_dec(RXp_PAREN_NAMES(r));
11753 SvREFCNT_dec(r->anchored_substr);
11754 SvREFCNT_dec(r->anchored_utf8);
11755 SvREFCNT_dec(r->float_substr);
11756 SvREFCNT_dec(r->float_utf8);
11757 Safefree(r->substrs);
11759 RX_MATCH_COPY_FREE(rx);
11760 #ifdef PERL_OLD_COPY_ON_WRITE
11761 SvREFCNT_dec(r->saved_copy);
11768 This is a hacky workaround to the structural issue of match results
11769 being stored in the regexp structure which is in turn stored in
11770 PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
11771 could be PL_curpm in multiple contexts, and could require multiple
11772 result sets being associated with the pattern simultaneously, such
11773 as when doing a recursive match with (??{$qr})
11775 The solution is to make a lightweight copy of the regexp structure
11776 when a qr// is returned from the code executed by (??{$qr}) this
11777 lightweight copy doesn't actually own any of its data except for
11778 the starp/end and the actual regexp structure itself.
11784 Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
11786 struct regexp *ret;
11787 struct regexp *const r = (struct regexp *)SvANY(rx);
11788 register const I32 npar = r->nparens+1;
11790 PERL_ARGS_ASSERT_REG_TEMP_COPY;
11793 ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
11794 ret = (struct regexp *)SvANY(ret_x);
11796 (void)ReREFCNT_inc(rx);
11797 /* We can take advantage of the existing "copied buffer" mechanism in SVs
11798 by pointing directly at the buffer, but flagging that the allocated
11799 space in the copy is zero. As we've just done a struct copy, it's now
11800 a case of zero-ing that, rather than copying the current length. */
11801 SvPV_set(ret_x, RX_WRAPPED(rx));
11802 SvFLAGS(ret_x) |= SvFLAGS(rx) & (SVf_POK|SVp_POK|SVf_UTF8);
11803 memcpy(&(ret->xpv_cur), &(r->xpv_cur),
11804 sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
11805 SvLEN_set(ret_x, 0);
11806 SvSTASH_set(ret_x, NULL);
11807 SvMAGIC_set(ret_x, NULL);
11808 Newx(ret->offs, npar, regexp_paren_pair);
11809 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
11811 Newx(ret->substrs, 1, struct reg_substr_data);
11812 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
11814 SvREFCNT_inc_void(ret->anchored_substr);
11815 SvREFCNT_inc_void(ret->anchored_utf8);
11816 SvREFCNT_inc_void(ret->float_substr);
11817 SvREFCNT_inc_void(ret->float_utf8);
11819 /* check_substr and check_utf8, if non-NULL, point to either their
11820 anchored or float namesakes, and don't hold a second reference. */
11822 RX_MATCH_COPIED_off(ret_x);
11823 #ifdef PERL_OLD_COPY_ON_WRITE
11824 ret->saved_copy = NULL;
11826 ret->mother_re = rx;
11832 /* regfree_internal()
11834 Free the private data in a regexp. This is overloadable by
11835 extensions. Perl takes care of the regexp structure in pregfree(),
11836 this covers the *pprivate pointer which technically perl doesn't
11837 know about, however of course we have to handle the
11838 regexp_internal structure when no extension is in use.
11840 Note this is called before freeing anything in the regexp
11845 Perl_regfree_internal(pTHX_ REGEXP * const rx)
11848 struct regexp *const r = (struct regexp *)SvANY(rx);
11849 RXi_GET_DECL(r,ri);
11850 GET_RE_DEBUG_FLAGS_DECL;
11852 PERL_ARGS_ASSERT_REGFREE_INTERNAL;
11858 SV *dsv= sv_newmortal();
11859 RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
11860 dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
11861 PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
11862 PL_colors[4],PL_colors[5],s);
11865 #ifdef RE_TRACK_PATTERN_OFFSETS
11867 Safefree(ri->u.offsets); /* 20010421 MJD */
11870 int n = ri->data->count;
11871 PAD* new_comppad = NULL;
11876 /* If you add a ->what type here, update the comment in regcomp.h */
11877 switch (ri->data->what[n]) {
11882 SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
11885 Safefree(ri->data->data[n]);
11888 new_comppad = MUTABLE_AV(ri->data->data[n]);
11891 if (new_comppad == NULL)
11892 Perl_croak(aTHX_ "panic: pregfree comppad");
11893 PAD_SAVE_LOCAL(old_comppad,
11894 /* Watch out for global destruction's random ordering. */
11895 (SvTYPE(new_comppad) == SVt_PVAV) ? new_comppad : NULL
11898 refcnt = OpREFCNT_dec((OP_4tree*)ri->data->data[n]);
11901 op_free((OP_4tree*)ri->data->data[n]);
11903 PAD_RESTORE_LOCAL(old_comppad);
11904 SvREFCNT_dec(MUTABLE_SV(new_comppad));
11905 new_comppad = NULL;
11910 { /* Aho Corasick add-on structure for a trie node.
11911 Used in stclass optimization only */
11913 reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
11915 refcount = --aho->refcount;
11918 PerlMemShared_free(aho->states);
11919 PerlMemShared_free(aho->fail);
11920 /* do this last!!!! */
11921 PerlMemShared_free(ri->data->data[n]);
11922 PerlMemShared_free(ri->regstclass);
11928 /* trie structure. */
11930 reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
11932 refcount = --trie->refcount;
11935 PerlMemShared_free(trie->charmap);
11936 PerlMemShared_free(trie->states);
11937 PerlMemShared_free(trie->trans);
11939 PerlMemShared_free(trie->bitmap);
11941 PerlMemShared_free(trie->jump);
11942 PerlMemShared_free(trie->wordinfo);
11943 /* do this last!!!! */
11944 PerlMemShared_free(ri->data->data[n]);
11949 Perl_croak(aTHX_ "panic: regfree data code '%c'", ri->data->what[n]);
11952 Safefree(ri->data->what);
11953 Safefree(ri->data);
11959 #define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
11960 #define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
11961 #define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
11964 re_dup - duplicate a regexp.
11966 This routine is expected to clone a given regexp structure. It is only
11967 compiled under USE_ITHREADS.
11969 After all of the core data stored in struct regexp is duplicated
11970 the regexp_engine.dupe method is used to copy any private data
11971 stored in the *pprivate pointer. This allows extensions to handle
11972 any duplication it needs to do.
11974 See pregfree() and regfree_internal() if you change anything here.
11976 #if defined(USE_ITHREADS)
11977 #ifndef PERL_IN_XSUB_RE
11979 Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
11983 const struct regexp *r = (const struct regexp *)SvANY(sstr);
11984 struct regexp *ret = (struct regexp *)SvANY(dstr);
11986 PERL_ARGS_ASSERT_RE_DUP_GUTS;
11988 npar = r->nparens+1;
11989 Newx(ret->offs, npar, regexp_paren_pair);
11990 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
11992 /* no need to copy these */
11993 Newx(ret->swap, npar, regexp_paren_pair);
11996 if (ret->substrs) {
11997 /* Do it this way to avoid reading from *r after the StructCopy().
11998 That way, if any of the sv_dup_inc()s dislodge *r from the L1
11999 cache, it doesn't matter. */
12000 const bool anchored = r->check_substr
12001 ? r->check_substr == r->anchored_substr
12002 : r->check_utf8 == r->anchored_utf8;
12003 Newx(ret->substrs, 1, struct reg_substr_data);
12004 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
12006 ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
12007 ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
12008 ret->float_substr = sv_dup_inc(ret->float_substr, param);
12009 ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
12011 /* check_substr and check_utf8, if non-NULL, point to either their
12012 anchored or float namesakes, and don't hold a second reference. */
12014 if (ret->check_substr) {
12016 assert(r->check_utf8 == r->anchored_utf8);
12017 ret->check_substr = ret->anchored_substr;
12018 ret->check_utf8 = ret->anchored_utf8;
12020 assert(r->check_substr == r->float_substr);
12021 assert(r->check_utf8 == r->float_utf8);
12022 ret->check_substr = ret->float_substr;
12023 ret->check_utf8 = ret->float_utf8;
12025 } else if (ret->check_utf8) {
12027 ret->check_utf8 = ret->anchored_utf8;
12029 ret->check_utf8 = ret->float_utf8;
12034 RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
12037 RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
12039 if (RX_MATCH_COPIED(dstr))
12040 ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen);
12042 ret->subbeg = NULL;
12043 #ifdef PERL_OLD_COPY_ON_WRITE
12044 ret->saved_copy = NULL;
12047 if (ret->mother_re) {
12048 if (SvPVX_const(dstr) == SvPVX_const(ret->mother_re)) {
12049 /* Our storage points directly to our mother regexp, but that's
12050 1: a buffer in a different thread
12051 2: something we no longer hold a reference on
12052 so we need to copy it locally. */
12053 /* Note we need to sue SvCUR() on our mother_re, because it, in
12054 turn, may well be pointing to its own mother_re. */
12055 SvPV_set(dstr, SAVEPVN(SvPVX_const(ret->mother_re),
12056 SvCUR(ret->mother_re)+1));
12057 SvLEN_set(dstr, SvCUR(ret->mother_re)+1);
12059 ret->mother_re = NULL;
12063 #endif /* PERL_IN_XSUB_RE */
12068 This is the internal complement to regdupe() which is used to copy
12069 the structure pointed to by the *pprivate pointer in the regexp.
12070 This is the core version of the extension overridable cloning hook.
12071 The regexp structure being duplicated will be copied by perl prior
12072 to this and will be provided as the regexp *r argument, however
12073 with the /old/ structures pprivate pointer value. Thus this routine
12074 may override any copying normally done by perl.
12076 It returns a pointer to the new regexp_internal structure.
12080 Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
12083 struct regexp *const r = (struct regexp *)SvANY(rx);
12084 regexp_internal *reti;
12086 RXi_GET_DECL(r,ri);
12088 PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
12092 Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode), char, regexp_internal);
12093 Copy(ri->program, reti->program, len+1, regnode);
12096 reti->regstclass = NULL;
12099 struct reg_data *d;
12100 const int count = ri->data->count;
12103 Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
12104 char, struct reg_data);
12105 Newx(d->what, count, U8);
12108 for (i = 0; i < count; i++) {
12109 d->what[i] = ri->data->what[i];
12110 switch (d->what[i]) {
12111 /* legal options are one of: sSfpontTua
12112 see also regcomp.h and pregfree() */
12113 case 'a': /* actually an AV, but the dup function is identical. */
12116 case 'p': /* actually an AV, but the dup function is identical. */
12117 case 'u': /* actually an HV, but the dup function is identical. */
12118 d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
12121 /* This is cheating. */
12122 Newx(d->data[i], 1, struct regnode_charclass_class);
12123 StructCopy(ri->data->data[i], d->data[i],
12124 struct regnode_charclass_class);
12125 reti->regstclass = (regnode*)d->data[i];
12128 /* Compiled op trees are readonly and in shared memory,
12129 and can thus be shared without duplication. */
12131 d->data[i] = (void*)OpREFCNT_inc((OP*)ri->data->data[i]);
12135 /* Trie stclasses are readonly and can thus be shared
12136 * without duplication. We free the stclass in pregfree
12137 * when the corresponding reg_ac_data struct is freed.
12139 reti->regstclass= ri->regstclass;
12143 ((reg_trie_data*)ri->data->data[i])->refcount++;
12147 d->data[i] = ri->data->data[i];
12150 Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'", ri->data->what[i]);
12159 reti->name_list_idx = ri->name_list_idx;
12161 #ifdef RE_TRACK_PATTERN_OFFSETS
12162 if (ri->u.offsets) {
12163 Newx(reti->u.offsets, 2*len+1, U32);
12164 Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
12167 SetProgLen(reti,len);
12170 return (void*)reti;
12173 #endif /* USE_ITHREADS */
12175 #ifndef PERL_IN_XSUB_RE
12178 - regnext - dig the "next" pointer out of a node
12181 Perl_regnext(pTHX_ register regnode *p)
12184 register I32 offset;
12189 if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */
12190 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(p), (int)REGNODE_MAX);
12193 offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
12202 S_re_croak2(pTHX_ const char* pat1,const char* pat2,...)
12205 STRLEN l1 = strlen(pat1);
12206 STRLEN l2 = strlen(pat2);
12209 const char *message;
12211 PERL_ARGS_ASSERT_RE_CROAK2;
12217 Copy(pat1, buf, l1 , char);
12218 Copy(pat2, buf + l1, l2 , char);
12219 buf[l1 + l2] = '\n';
12220 buf[l1 + l2 + 1] = '\0';
12222 /* ANSI variant takes additional second argument */
12223 va_start(args, pat2);
12227 msv = vmess(buf, &args);
12229 message = SvPV_const(msv,l1);
12232 Copy(message, buf, l1 , char);
12233 buf[l1-1] = '\0'; /* Overwrite \n */
12234 Perl_croak(aTHX_ "%s", buf);
12237 /* XXX Here's a total kludge. But we need to re-enter for swash routines. */
12239 #ifndef PERL_IN_XSUB_RE
12241 Perl_save_re_context(pTHX)
12245 struct re_save_state *state;
12247 SAVEVPTR(PL_curcop);
12248 SSGROW(SAVESTACK_ALLOC_FOR_RE_SAVE_STATE + 1);
12250 state = (struct re_save_state *)(PL_savestack + PL_savestack_ix);
12251 PL_savestack_ix += SAVESTACK_ALLOC_FOR_RE_SAVE_STATE;
12252 SSPUSHUV(SAVEt_RE_STATE);
12254 Copy(&PL_reg_state, state, 1, struct re_save_state);
12256 PL_reg_start_tmp = 0;
12257 PL_reg_start_tmpl = 0;
12258 PL_reg_oldsaved = NULL;
12259 PL_reg_oldsavedlen = 0;
12260 PL_reg_maxiter = 0;
12261 PL_reg_leftiter = 0;
12262 PL_reg_poscache = NULL;
12263 PL_reg_poscache_size = 0;
12264 #ifdef PERL_OLD_COPY_ON_WRITE
12268 /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
12270 const REGEXP * const rx = PM_GETRE(PL_curpm);
12273 for (i = 1; i <= RX_NPARENS(rx); i++) {
12274 char digits[TYPE_CHARS(long)];
12275 const STRLEN len = my_snprintf(digits, sizeof(digits), "%lu", (long)i);
12276 GV *const *const gvp
12277 = (GV**)hv_fetch(PL_defstash, digits, len, 0);
12280 GV * const gv = *gvp;
12281 if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
12291 clear_re(pTHX_ void *r)
12294 ReREFCNT_dec((REGEXP *)r);
12300 S_put_byte(pTHX_ SV *sv, int c)
12302 PERL_ARGS_ASSERT_PUT_BYTE;
12304 /* Our definition of isPRINT() ignores locales, so only bytes that are
12305 not part of UTF-8 are considered printable. I assume that the same
12306 holds for UTF-EBCDIC.
12307 Also, code point 255 is not printable in either (it's E0 in EBCDIC,
12308 which Wikipedia says:
12310 EO, or Eight Ones, is an 8-bit EBCDIC character code represented as all
12311 ones (binary 1111 1111, hexadecimal FF). It is similar, but not
12312 identical, to the ASCII delete (DEL) or rubout control character.
12313 ) So the old condition can be simplified to !isPRINT(c) */
12316 Perl_sv_catpvf(aTHX_ sv, "\\x%02x", c);
12319 Perl_sv_catpvf(aTHX_ sv, "\\x{%x}", c);
12323 const char string = c;
12324 if (c == '-' || c == ']' || c == '\\' || c == '^')
12325 sv_catpvs(sv, "\\");
12326 sv_catpvn(sv, &string, 1);
12331 #define CLEAR_OPTSTART \
12332 if (optstart) STMT_START { \
12333 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
12337 #define DUMPUNTIL(b,e) CLEAR_OPTSTART; node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
12339 STATIC const regnode *
12340 S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
12341 const regnode *last, const regnode *plast,
12342 SV* sv, I32 indent, U32 depth)
12345 register U8 op = PSEUDO; /* Arbitrary non-END op. */
12346 register const regnode *next;
12347 const regnode *optstart= NULL;
12349 RXi_GET_DECL(r,ri);
12350 GET_RE_DEBUG_FLAGS_DECL;
12352 PERL_ARGS_ASSERT_DUMPUNTIL;
12354 #ifdef DEBUG_DUMPUNTIL
12355 PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
12356 last ? last-start : 0,plast ? plast-start : 0);
12359 if (plast && plast < last)
12362 while (PL_regkind[op] != END && (!last || node < last)) {
12363 /* While that wasn't END last time... */
12366 if (op == CLOSE || op == WHILEM)
12368 next = regnext((regnode *)node);
12371 if (OP(node) == OPTIMIZED) {
12372 if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
12379 regprop(r, sv, node);
12380 PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
12381 (int)(2*indent + 1), "", SvPVX_const(sv));
12383 if (OP(node) != OPTIMIZED) {
12384 if (next == NULL) /* Next ptr. */
12385 PerlIO_printf(Perl_debug_log, " (0)");
12386 else if (PL_regkind[(U8)op] == BRANCH && PL_regkind[OP(next)] != BRANCH )
12387 PerlIO_printf(Perl_debug_log, " (FAIL)");
12389 PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
12390 (void)PerlIO_putc(Perl_debug_log, '\n');
12394 if (PL_regkind[(U8)op] == BRANCHJ) {
12397 register const regnode *nnode = (OP(next) == LONGJMP
12398 ? regnext((regnode *)next)
12400 if (last && nnode > last)
12402 DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
12405 else if (PL_regkind[(U8)op] == BRANCH) {
12407 DUMPUNTIL(NEXTOPER(node), next);
12409 else if ( PL_regkind[(U8)op] == TRIE ) {
12410 const regnode *this_trie = node;
12411 const char op = OP(node);
12412 const U32 n = ARG(node);
12413 const reg_ac_data * const ac = op>=AHOCORASICK ?
12414 (reg_ac_data *)ri->data->data[n] :
12416 const reg_trie_data * const trie =
12417 (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
12419 AV *const trie_words = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
12421 const regnode *nextbranch= NULL;
12424 for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
12425 SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
12427 PerlIO_printf(Perl_debug_log, "%*s%s ",
12428 (int)(2*(indent+3)), "",
12429 elem_ptr ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr), SvCUR(*elem_ptr), 60,
12430 PL_colors[0], PL_colors[1],
12431 (SvUTF8(*elem_ptr) ? PERL_PV_ESCAPE_UNI : 0) |
12432 PERL_PV_PRETTY_ELLIPSES |
12433 PERL_PV_PRETTY_LTGT
12438 U16 dist= trie->jump[word_idx+1];
12439 PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
12440 (UV)((dist ? this_trie + dist : next) - start));
12443 nextbranch= this_trie + trie->jump[0];
12444 DUMPUNTIL(this_trie + dist, nextbranch);
12446 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
12447 nextbranch= regnext((regnode *)nextbranch);
12449 PerlIO_printf(Perl_debug_log, "\n");
12452 if (last && next > last)
12457 else if ( op == CURLY ) { /* "next" might be very big: optimizer */
12458 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
12459 NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
12461 else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
12463 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
12465 else if ( op == PLUS || op == STAR) {
12466 DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
12468 else if (PL_regkind[(U8)op] == ANYOF) {
12469 /* arglen 1 + class block */
12470 node += 1 + ((ANYOF_FLAGS(node) & ANYOF_CLASS)
12471 ? ANYOF_CLASS_SKIP : ANYOF_SKIP);
12472 node = NEXTOPER(node);
12474 else if (PL_regkind[(U8)op] == EXACT) {
12475 /* Literal string, where present. */
12476 node += NODE_SZ_STR(node) - 1;
12477 node = NEXTOPER(node);
12480 node = NEXTOPER(node);
12481 node += regarglen[(U8)op];
12483 if (op == CURLYX || op == OPEN)
12487 #ifdef DEBUG_DUMPUNTIL
12488 PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
12493 #endif /* DEBUGGING */
12497 * c-indentation-style: bsd
12498 * c-basic-offset: 4
12499 * indent-tabs-mode: t
12502 * ex: set ts=8 sts=4 sw=4 noet: