5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
88 #include "dquote_static.c"
95 # if defined(BUGGY_MSC6)
96 /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
97 # pragma optimize("a",off)
98 /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
99 # pragma optimize("w",on )
100 # endif /* BUGGY_MSC6 */
104 #define STATIC static
107 typedef struct RExC_state_t {
108 U32 flags; /* are we folding, multilining? */
109 char *precomp; /* uncompiled string. */
110 REGEXP *rx_sv; /* The SV that is the regexp. */
111 regexp *rx; /* perl core regexp structure */
112 regexp_internal *rxi; /* internal data for regexp object pprivate field */
113 char *start; /* Start of input for compile */
114 char *end; /* End of input for compile */
115 char *parse; /* Input-scan pointer. */
116 I32 whilem_seen; /* number of WHILEM in this expr */
117 regnode *emit_start; /* Start of emitted-code area */
118 regnode *emit_bound; /* First regnode outside of the allocated space */
119 regnode *emit; /* Code-emit pointer; ®dummy = don't = compiling */
120 I32 naughty; /* How bad is this pattern? */
121 I32 sawback; /* Did we see \1, ...? */
123 I32 size; /* Code size. */
124 I32 npar; /* Capture buffer count, (OPEN). */
125 I32 cpar; /* Capture buffer count, (CLOSE). */
126 I32 nestroot; /* root parens we are in - used by accept */
130 regnode **open_parens; /* pointers to open parens */
131 regnode **close_parens; /* pointers to close parens */
132 regnode *opend; /* END node in program */
133 I32 utf8; /* whether the pattern is utf8 or not */
134 I32 orig_utf8; /* whether the pattern was originally in utf8 */
135 /* XXX use this for future optimisation of case
136 * where pattern must be upgraded to utf8. */
137 I32 uni_semantics; /* If a d charset modifier should use unicode
138 rules, even if the pattern is not in
140 HV *paren_names; /* Paren names */
142 regnode **recurse; /* Recurse regops */
143 I32 recurse_count; /* Number of recurse regops */
146 I32 override_recoding;
148 char *starttry; /* -Dr: where regtry was called. */
149 #define RExC_starttry (pRExC_state->starttry)
152 const char *lastparse;
154 AV *paren_name_list; /* idx -> name */
155 #define RExC_lastparse (pRExC_state->lastparse)
156 #define RExC_lastnum (pRExC_state->lastnum)
157 #define RExC_paren_name_list (pRExC_state->paren_name_list)
161 #define RExC_flags (pRExC_state->flags)
162 #define RExC_precomp (pRExC_state->precomp)
163 #define RExC_rx_sv (pRExC_state->rx_sv)
164 #define RExC_rx (pRExC_state->rx)
165 #define RExC_rxi (pRExC_state->rxi)
166 #define RExC_start (pRExC_state->start)
167 #define RExC_end (pRExC_state->end)
168 #define RExC_parse (pRExC_state->parse)
169 #define RExC_whilem_seen (pRExC_state->whilem_seen)
170 #ifdef RE_TRACK_PATTERN_OFFSETS
171 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */
173 #define RExC_emit (pRExC_state->emit)
174 #define RExC_emit_start (pRExC_state->emit_start)
175 #define RExC_emit_bound (pRExC_state->emit_bound)
176 #define RExC_naughty (pRExC_state->naughty)
177 #define RExC_sawback (pRExC_state->sawback)
178 #define RExC_seen (pRExC_state->seen)
179 #define RExC_size (pRExC_state->size)
180 #define RExC_npar (pRExC_state->npar)
181 #define RExC_nestroot (pRExC_state->nestroot)
182 #define RExC_extralen (pRExC_state->extralen)
183 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
184 #define RExC_seen_evals (pRExC_state->seen_evals)
185 #define RExC_utf8 (pRExC_state->utf8)
186 #define RExC_uni_semantics (pRExC_state->uni_semantics)
187 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
188 #define RExC_open_parens (pRExC_state->open_parens)
189 #define RExC_close_parens (pRExC_state->close_parens)
190 #define RExC_opend (pRExC_state->opend)
191 #define RExC_paren_names (pRExC_state->paren_names)
192 #define RExC_recurse (pRExC_state->recurse)
193 #define RExC_recurse_count (pRExC_state->recurse_count)
194 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
195 #define RExC_contains_locale (pRExC_state->contains_locale)
196 #define RExC_override_recoding (pRExC_state->override_recoding)
199 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
200 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
201 ((*s) == '{' && regcurly(s)))
204 #undef SPSTART /* dratted cpp namespace... */
207 * Flags to be passed up and down.
209 #define WORST 0 /* Worst case. */
210 #define HASWIDTH 0x01 /* Known to match non-null strings. */
212 /* Simple enough to be STAR/PLUS operand, in an EXACT node must be a single
213 * character, and if utf8, must be invariant. Note that this is not the same thing as REGNODE_SIMPLE */
215 #define SPSTART 0x04 /* Starts with * or +. */
216 #define TRYAGAIN 0x08 /* Weeded out a declaration. */
217 #define POSTPONED 0x10 /* (?1),(?&name), (??{...}) or similar */
219 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
221 /* whether trie related optimizations are enabled */
222 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
223 #define TRIE_STUDY_OPT
224 #define FULL_TRIE_STUDY
230 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
231 #define PBITVAL(paren) (1 << ((paren) & 7))
232 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
233 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
234 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
236 /* If not already in utf8, do a longjmp back to the beginning */
237 #define UTF8_LONGJMP 42 /* Choose a value not likely to ever conflict */
238 #define REQUIRE_UTF8 STMT_START { \
239 if (! UTF) JMPENV_JUMP(UTF8_LONGJMP); \
242 /* About scan_data_t.
244 During optimisation we recurse through the regexp program performing
245 various inplace (keyhole style) optimisations. In addition study_chunk
246 and scan_commit populate this data structure with information about
247 what strings MUST appear in the pattern. We look for the longest
248 string that must appear at a fixed location, and we look for the
249 longest string that may appear at a floating location. So for instance
254 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
255 strings (because they follow a .* construct). study_chunk will identify
256 both FOO and BAR as being the longest fixed and floating strings respectively.
258 The strings can be composites, for instance
262 will result in a composite fixed substring 'foo'.
264 For each string some basic information is maintained:
266 - offset or min_offset
267 This is the position the string must appear at, or not before.
268 It also implicitly (when combined with minlenp) tells us how many
269 characters must match before the string we are searching for.
270 Likewise when combined with minlenp and the length of the string it
271 tells us how many characters must appear after the string we have
275 Only used for floating strings. This is the rightmost point that
276 the string can appear at. If set to I32 max it indicates that the
277 string can occur infinitely far to the right.
280 A pointer to the minimum length of the pattern that the string
281 was found inside. This is important as in the case of positive
282 lookahead or positive lookbehind we can have multiple patterns
287 The minimum length of the pattern overall is 3, the minimum length
288 of the lookahead part is 3, but the minimum length of the part that
289 will actually match is 1. So 'FOO's minimum length is 3, but the
290 minimum length for the F is 1. This is important as the minimum length
291 is used to determine offsets in front of and behind the string being
292 looked for. Since strings can be composites this is the length of the
293 pattern at the time it was committed with a scan_commit. Note that
294 the length is calculated by study_chunk, so that the minimum lengths
295 are not known until the full pattern has been compiled, thus the
296 pointer to the value.
300 In the case of lookbehind the string being searched for can be
301 offset past the start point of the final matching string.
302 If this value was just blithely removed from the min_offset it would
303 invalidate some of the calculations for how many chars must match
304 before or after (as they are derived from min_offset and minlen and
305 the length of the string being searched for).
306 When the final pattern is compiled and the data is moved from the
307 scan_data_t structure into the regexp structure the information
308 about lookbehind is factored in, with the information that would
309 have been lost precalculated in the end_shift field for the
312 The fields pos_min and pos_delta are used to store the minimum offset
313 and the delta to the maximum offset at the current point in the pattern.
317 typedef struct scan_data_t {
318 /*I32 len_min; unused */
319 /*I32 len_delta; unused */
323 I32 last_end; /* min value, <0 unless valid. */
326 SV **longest; /* Either &l_fixed, or &l_float. */
327 SV *longest_fixed; /* longest fixed string found in pattern */
328 I32 offset_fixed; /* offset where it starts */
329 I32 *minlen_fixed; /* pointer to the minlen relevant to the string */
330 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
331 SV *longest_float; /* longest floating string found in pattern */
332 I32 offset_float_min; /* earliest point in string it can appear */
333 I32 offset_float_max; /* latest point in string it can appear */
334 I32 *minlen_float; /* pointer to the minlen relevant to the string */
335 I32 lookbehind_float; /* is the position of the string modified by LB */
339 struct regnode_charclass_class *start_class;
343 * Forward declarations for pregcomp()'s friends.
346 static const scan_data_t zero_scan_data =
347 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
349 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
350 #define SF_BEFORE_SEOL 0x0001
351 #define SF_BEFORE_MEOL 0x0002
352 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
353 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
356 # define SF_FIX_SHIFT_EOL (0+2)
357 # define SF_FL_SHIFT_EOL (0+4)
359 # define SF_FIX_SHIFT_EOL (+2)
360 # define SF_FL_SHIFT_EOL (+4)
363 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
364 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
366 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
367 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
368 #define SF_IS_INF 0x0040
369 #define SF_HAS_PAR 0x0080
370 #define SF_IN_PAR 0x0100
371 #define SF_HAS_EVAL 0x0200
372 #define SCF_DO_SUBSTR 0x0400
373 #define SCF_DO_STCLASS_AND 0x0800
374 #define SCF_DO_STCLASS_OR 0x1000
375 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
376 #define SCF_WHILEM_VISITED_POS 0x2000
378 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
379 #define SCF_SEEN_ACCEPT 0x8000
381 #define UTF cBOOL(RExC_utf8)
382 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
383 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
384 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_DEPENDS_CHARSET)
385 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) >= REGEX_UNICODE_CHARSET)
386 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_RESTRICTED_CHARSET)
387 #define MORE_ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
388 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) >= REGEX_ASCII_RESTRICTED_CHARSET)
390 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
392 #define OOB_UNICODE 12345678
393 #define OOB_NAMEDCLASS -1
395 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
396 #define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
399 /* length of regex to show in messages that don't mark a position within */
400 #define RegexLengthToShowInErrorMessages 127
403 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
404 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
405 * op/pragma/warn/regcomp.
407 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
408 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
410 #define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
413 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
414 * arg. Show regex, up to a maximum length. If it's too long, chop and add
417 #define _FAIL(code) STMT_START { \
418 const char *ellipses = ""; \
419 IV len = RExC_end - RExC_precomp; \
422 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
423 if (len > RegexLengthToShowInErrorMessages) { \
424 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
425 len = RegexLengthToShowInErrorMessages - 10; \
431 #define FAIL(msg) _FAIL( \
432 Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \
433 msg, (int)len, RExC_precomp, ellipses))
435 #define FAIL2(msg,arg) _FAIL( \
436 Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \
437 arg, (int)len, RExC_precomp, ellipses))
440 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
442 #define Simple_vFAIL(m) STMT_START { \
443 const IV offset = RExC_parse - RExC_precomp; \
444 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
445 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
449 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
451 #define vFAIL(m) STMT_START { \
453 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
458 * Like Simple_vFAIL(), but accepts two arguments.
460 #define Simple_vFAIL2(m,a1) STMT_START { \
461 const IV offset = RExC_parse - RExC_precomp; \
462 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \
463 (int)offset, RExC_precomp, RExC_precomp + offset); \
467 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
469 #define vFAIL2(m,a1) STMT_START { \
471 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
472 Simple_vFAIL2(m, a1); \
477 * Like Simple_vFAIL(), but accepts three arguments.
479 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
480 const IV offset = RExC_parse - RExC_precomp; \
481 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \
482 (int)offset, RExC_precomp, RExC_precomp + offset); \
486 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
488 #define vFAIL3(m,a1,a2) STMT_START { \
490 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
491 Simple_vFAIL3(m, a1, a2); \
495 * Like Simple_vFAIL(), but accepts four arguments.
497 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
498 const IV offset = RExC_parse - RExC_precomp; \
499 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \
500 (int)offset, RExC_precomp, RExC_precomp + offset); \
503 #define ckWARNreg(loc,m) STMT_START { \
504 const IV offset = loc - RExC_precomp; \
505 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
506 (int)offset, RExC_precomp, RExC_precomp + offset); \
509 #define ckWARNregdep(loc,m) STMT_START { \
510 const IV offset = loc - RExC_precomp; \
511 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
513 (int)offset, RExC_precomp, RExC_precomp + offset); \
516 #define ckWARN2regdep(loc,m, a1) STMT_START { \
517 const IV offset = loc - RExC_precomp; \
518 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
520 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
523 #define ckWARN2reg(loc, m, a1) STMT_START { \
524 const IV offset = loc - RExC_precomp; \
525 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
526 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
529 #define vWARN3(loc, m, a1, a2) STMT_START { \
530 const IV offset = loc - RExC_precomp; \
531 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
532 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
535 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
536 const IV offset = loc - RExC_precomp; \
537 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
538 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
541 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
542 const IV offset = loc - RExC_precomp; \
543 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
544 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
547 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
548 const IV offset = loc - RExC_precomp; \
549 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
550 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
553 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
554 const IV offset = loc - RExC_precomp; \
555 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
556 a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
560 /* Allow for side effects in s */
561 #define REGC(c,s) STMT_START { \
562 if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
565 /* Macros for recording node offsets. 20001227 mjd@plover.com
566 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
567 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
568 * Element 0 holds the number n.
569 * Position is 1 indexed.
571 #ifndef RE_TRACK_PATTERN_OFFSETS
572 #define Set_Node_Offset_To_R(node,byte)
573 #define Set_Node_Offset(node,byte)
574 #define Set_Cur_Node_Offset
575 #define Set_Node_Length_To_R(node,len)
576 #define Set_Node_Length(node,len)
577 #define Set_Node_Cur_Length(node)
578 #define Node_Offset(n)
579 #define Node_Length(n)
580 #define Set_Node_Offset_Length(node,offset,len)
581 #define ProgLen(ri) ri->u.proglen
582 #define SetProgLen(ri,x) ri->u.proglen = x
584 #define ProgLen(ri) ri->u.offsets[0]
585 #define SetProgLen(ri,x) ri->u.offsets[0] = x
586 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
588 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
589 __LINE__, (int)(node), (int)(byte))); \
591 Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
593 RExC_offsets[2*(node)-1] = (byte); \
598 #define Set_Node_Offset(node,byte) \
599 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
600 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
602 #define Set_Node_Length_To_R(node,len) STMT_START { \
604 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
605 __LINE__, (int)(node), (int)(len))); \
607 Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
609 RExC_offsets[2*(node)] = (len); \
614 #define Set_Node_Length(node,len) \
615 Set_Node_Length_To_R((node)-RExC_emit_start, len)
616 #define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len)
617 #define Set_Node_Cur_Length(node) \
618 Set_Node_Length(node, RExC_parse - parse_start)
620 /* Get offsets and lengths */
621 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
622 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
624 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
625 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
626 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
630 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
631 #define EXPERIMENTAL_INPLACESCAN
632 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
634 #define DEBUG_STUDYDATA(str,data,depth) \
635 DEBUG_OPTIMISE_MORE_r(if(data){ \
636 PerlIO_printf(Perl_debug_log, \
637 "%*s" str "Pos:%"IVdf"/%"IVdf \
638 " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
639 (int)(depth)*2, "", \
640 (IV)((data)->pos_min), \
641 (IV)((data)->pos_delta), \
642 (UV)((data)->flags), \
643 (IV)((data)->whilem_c), \
644 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
645 is_inf ? "INF " : "" \
647 if ((data)->last_found) \
648 PerlIO_printf(Perl_debug_log, \
649 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
650 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
651 SvPVX_const((data)->last_found), \
652 (IV)((data)->last_end), \
653 (IV)((data)->last_start_min), \
654 (IV)((data)->last_start_max), \
655 ((data)->longest && \
656 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
657 SvPVX_const((data)->longest_fixed), \
658 (IV)((data)->offset_fixed), \
659 ((data)->longest && \
660 (data)->longest==&((data)->longest_float)) ? "*" : "", \
661 SvPVX_const((data)->longest_float), \
662 (IV)((data)->offset_float_min), \
663 (IV)((data)->offset_float_max) \
665 PerlIO_printf(Perl_debug_log,"\n"); \
668 static void clear_re(pTHX_ void *r);
670 /* Mark that we cannot extend a found fixed substring at this point.
671 Update the longest found anchored substring and the longest found
672 floating substrings if needed. */
675 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf)
677 const STRLEN l = CHR_SVLEN(data->last_found);
678 const STRLEN old_l = CHR_SVLEN(*data->longest);
679 GET_RE_DEBUG_FLAGS_DECL;
681 PERL_ARGS_ASSERT_SCAN_COMMIT;
683 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
684 SvSetMagicSV(*data->longest, data->last_found);
685 if (*data->longest == data->longest_fixed) {
686 data->offset_fixed = l ? data->last_start_min : data->pos_min;
687 if (data->flags & SF_BEFORE_EOL)
689 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
691 data->flags &= ~SF_FIX_BEFORE_EOL;
692 data->minlen_fixed=minlenp;
693 data->lookbehind_fixed=0;
695 else { /* *data->longest == data->longest_float */
696 data->offset_float_min = l ? data->last_start_min : data->pos_min;
697 data->offset_float_max = (l
698 ? data->last_start_max
699 : data->pos_min + data->pos_delta);
700 if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX)
701 data->offset_float_max = I32_MAX;
702 if (data->flags & SF_BEFORE_EOL)
704 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
706 data->flags &= ~SF_FL_BEFORE_EOL;
707 data->minlen_float=minlenp;
708 data->lookbehind_float=0;
711 SvCUR_set(data->last_found, 0);
713 SV * const sv = data->last_found;
714 if (SvUTF8(sv) && SvMAGICAL(sv)) {
715 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
721 data->flags &= ~SF_BEFORE_EOL;
722 DEBUG_STUDYDATA("commit: ",data,0);
725 /* Can match anything (initialization) */
727 S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
729 PERL_ARGS_ASSERT_CL_ANYTHING;
731 ANYOF_BITMAP_SETALL(cl);
732 cl->flags = ANYOF_CLASS|ANYOF_EOS|ANYOF_UNICODE_ALL
733 |ANYOF_LOC_NONBITMAP_FOLD|ANYOF_NON_UTF8_LATIN1_ALL;
735 /* If any portion of the regex is to operate under locale rules,
736 * initialization includes it. The reason this isn't done for all regexes
737 * is that the optimizer was written under the assumption that locale was
738 * all-or-nothing. Given the complexity and lack of documentation in the
739 * optimizer, and that there are inadequate test cases for locale, so many
740 * parts of it may not work properly, it is safest to avoid locale unless
742 if (RExC_contains_locale) {
743 ANYOF_CLASS_SETALL(cl); /* /l uses class */
744 cl->flags |= ANYOF_LOCALE;
747 ANYOF_CLASS_ZERO(cl); /* Only /l uses class now */
751 /* Can match anything (initialization) */
753 S_cl_is_anything(const struct regnode_charclass_class *cl)
757 PERL_ARGS_ASSERT_CL_IS_ANYTHING;
759 for (value = 0; value <= ANYOF_MAX; value += 2)
760 if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
762 if (!(cl->flags & ANYOF_UNICODE_ALL))
764 if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
769 /* Can match anything (initialization) */
771 S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
773 PERL_ARGS_ASSERT_CL_INIT;
775 Zero(cl, 1, struct regnode_charclass_class);
777 cl_anything(pRExC_state, cl);
778 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
781 /* These two functions currently do the exact same thing */
782 #define cl_init_zero S_cl_init
784 /* 'AND' a given class with another one. Can create false positives. 'cl'
785 * should not be inverted. 'and_with->flags & ANYOF_CLASS' should be 0 if
786 * 'and_with' is a regnode_charclass instead of a regnode_charclass_class. */
788 S_cl_and(struct regnode_charclass_class *cl,
789 const struct regnode_charclass_class *and_with)
791 PERL_ARGS_ASSERT_CL_AND;
793 assert(and_with->type == ANYOF);
795 /* I (khw) am not sure all these restrictions are necessary XXX */
796 if (!(ANYOF_CLASS_TEST_ANY_SET(and_with))
797 && !(ANYOF_CLASS_TEST_ANY_SET(cl))
798 && (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
799 && !(and_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
800 && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) {
803 if (and_with->flags & ANYOF_INVERT)
804 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
805 cl->bitmap[i] &= ~and_with->bitmap[i];
807 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
808 cl->bitmap[i] &= and_with->bitmap[i];
809 } /* XXXX: logic is complicated otherwise, leave it along for a moment. */
811 if (and_with->flags & ANYOF_INVERT) {
813 /* Here, the and'ed node is inverted. Get the AND of the flags that
814 * aren't affected by the inversion. Those that are affected are
815 * handled individually below */
816 U8 affected_flags = cl->flags & ~INVERSION_UNAFFECTED_FLAGS;
817 cl->flags &= (and_with->flags & INVERSION_UNAFFECTED_FLAGS);
818 cl->flags |= affected_flags;
820 /* We currently don't know how to deal with things that aren't in the
821 * bitmap, but we know that the intersection is no greater than what
822 * is already in cl, so let there be false positives that get sorted
823 * out after the synthetic start class succeeds, and the node is
824 * matched for real. */
826 /* The inversion of these two flags indicate that the resulting
827 * intersection doesn't have them */
828 if (and_with->flags & ANYOF_UNICODE_ALL) {
829 cl->flags &= ~ANYOF_UNICODE_ALL;
831 if (and_with->flags & ANYOF_NON_UTF8_LATIN1_ALL) {
832 cl->flags &= ~ANYOF_NON_UTF8_LATIN1_ALL;
835 else { /* and'd node is not inverted */
836 U8 outside_bitmap_but_not_utf8; /* Temp variable */
838 if (! ANYOF_NONBITMAP(and_with)) {
840 /* Here 'and_with' doesn't match anything outside the bitmap
841 * (except possibly ANYOF_UNICODE_ALL), which means the
842 * intersection can't either, except for ANYOF_UNICODE_ALL, in
843 * which case we don't know what the intersection is, but it's no
844 * greater than what cl already has, so can just leave it alone,
845 * with possible false positives */
846 if (! (and_with->flags & ANYOF_UNICODE_ALL)) {
847 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
848 cl->flags &= ~ANYOF_NONBITMAP_NON_UTF8;
851 else if (! ANYOF_NONBITMAP(cl)) {
853 /* Here, 'and_with' does match something outside the bitmap, and cl
854 * doesn't have a list of things to match outside the bitmap. If
855 * cl can match all code points above 255, the intersection will
856 * be those above-255 code points that 'and_with' matches. If cl
857 * can't match all Unicode code points, it means that it can't
858 * match anything outside the bitmap (since the 'if' that got us
859 * into this block tested for that), so we leave the bitmap empty.
861 if (cl->flags & ANYOF_UNICODE_ALL) {
862 ARG_SET(cl, ARG(and_with));
864 /* and_with's ARG may match things that don't require UTF8.
865 * And now cl's will too, in spite of this being an 'and'. See
866 * the comments below about the kludge */
867 cl->flags |= and_with->flags & ANYOF_NONBITMAP_NON_UTF8;
871 /* Here, both 'and_with' and cl match something outside the
872 * bitmap. Currently we do not do the intersection, so just match
873 * whatever cl had at the beginning. */
877 /* Take the intersection of the two sets of flags. However, the
878 * ANYOF_NONBITMAP_NON_UTF8 flag is treated as an 'or'. This is a
879 * kludge around the fact that this flag is not treated like the others
880 * which are initialized in cl_anything(). The way the optimizer works
881 * is that the synthetic start class (SSC) is initialized to match
882 * anything, and then the first time a real node is encountered, its
883 * values are AND'd with the SSC's with the result being the values of
884 * the real node. However, there are paths through the optimizer where
885 * the AND never gets called, so those initialized bits are set
886 * inappropriately, which is not usually a big deal, as they just cause
887 * false positives in the SSC, which will just mean a probably
888 * imperceptible slow down in execution. However this bit has a
889 * higher false positive consequence in that it can cause utf8.pm,
890 * utf8_heavy.pl ... to be loaded when not necessary, which is a much
891 * bigger slowdown and also causes significant extra memory to be used.
892 * In order to prevent this, the code now takes a different tack. The
893 * bit isn't set unless some part of the regular expression needs it,
894 * but once set it won't get cleared. This means that these extra
895 * modules won't get loaded unless there was some path through the
896 * pattern that would have required them anyway, and so any false
897 * positives that occur by not ANDing them out when they could be
898 * aren't as severe as they would be if we treated this bit like all
900 outside_bitmap_but_not_utf8 = (cl->flags | and_with->flags)
901 & ANYOF_NONBITMAP_NON_UTF8;
902 cl->flags &= and_with->flags;
903 cl->flags |= outside_bitmap_but_not_utf8;
907 /* 'OR' a given class with another one. Can create false positives. 'cl'
908 * should not be inverted. 'or_with->flags & ANYOF_CLASS' should be 0 if
909 * 'or_with' is a regnode_charclass instead of a regnode_charclass_class. */
911 S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
913 PERL_ARGS_ASSERT_CL_OR;
915 if (or_with->flags & ANYOF_INVERT) {
917 /* Here, the or'd node is to be inverted. This means we take the
918 * complement of everything not in the bitmap, but currently we don't
919 * know what that is, so give up and match anything */
920 if (ANYOF_NONBITMAP(or_with)) {
921 cl_anything(pRExC_state, cl);
924 * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
925 * <= (B1 | !B2) | (CL1 | !CL2)
926 * which is wasteful if CL2 is small, but we ignore CL2:
927 * (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
928 * XXXX Can we handle case-fold? Unclear:
929 * (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
930 * (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
932 else if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
933 && !(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
934 && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD) ) {
937 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
938 cl->bitmap[i] |= ~or_with->bitmap[i];
939 } /* XXXX: logic is complicated otherwise */
941 cl_anything(pRExC_state, cl);
944 /* And, we can just take the union of the flags that aren't affected
945 * by the inversion */
946 cl->flags |= or_with->flags & INVERSION_UNAFFECTED_FLAGS;
948 /* For the remaining flags:
949 ANYOF_UNICODE_ALL and inverted means to not match anything above
950 255, which means that the union with cl should just be
951 what cl has in it, so can ignore this flag
952 ANYOF_NON_UTF8_LATIN1_ALL and inverted means if not utf8 and ord
953 is 127-255 to match them, but then invert that, so the
954 union with cl should just be what cl has in it, so can
957 } else { /* 'or_with' is not inverted */
958 /* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
959 if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
960 && (!(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
961 || (cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) ) {
964 /* OR char bitmap and class bitmap separately */
965 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
966 cl->bitmap[i] |= or_with->bitmap[i];
967 if (ANYOF_CLASS_TEST_ANY_SET(or_with)) {
968 for (i = 0; i < ANYOF_CLASSBITMAP_SIZE; i++)
969 cl->classflags[i] |= or_with->classflags[i];
970 cl->flags |= ANYOF_CLASS;
973 else { /* XXXX: logic is complicated, leave it along for a moment. */
974 cl_anything(pRExC_state, cl);
977 if (ANYOF_NONBITMAP(or_with)) {
979 /* Use the added node's outside-the-bit-map match if there isn't a
980 * conflict. If there is a conflict (both nodes match something
981 * outside the bitmap, but what they match outside is not the same
982 * pointer, and hence not easily compared until XXX we extend
983 * inversion lists this far), give up and allow the start class to
984 * match everything outside the bitmap. If that stuff is all above
985 * 255, can just set UNICODE_ALL, otherwise caould be anything. */
986 if (! ANYOF_NONBITMAP(cl)) {
987 ARG_SET(cl, ARG(or_with));
989 else if (ARG(cl) != ARG(or_with)) {
991 if ((or_with->flags & ANYOF_NONBITMAP_NON_UTF8)) {
992 cl_anything(pRExC_state, cl);
995 cl->flags |= ANYOF_UNICODE_ALL;
1000 /* Take the union */
1001 cl->flags |= or_with->flags;
1005 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1006 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1007 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1008 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
1013 dump_trie(trie,widecharmap,revcharmap)
1014 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1015 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1017 These routines dump out a trie in a somewhat readable format.
1018 The _interim_ variants are used for debugging the interim
1019 tables that are used to generate the final compressed
1020 representation which is what dump_trie expects.
1022 Part of the reason for their existence is to provide a form
1023 of documentation as to how the different representations function.
1028 Dumps the final compressed table form of the trie to Perl_debug_log.
1029 Used for debugging make_trie().
1033 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1034 AV *revcharmap, U32 depth)
1037 SV *sv=sv_newmortal();
1038 int colwidth= widecharmap ? 6 : 4;
1040 GET_RE_DEBUG_FLAGS_DECL;
1042 PERL_ARGS_ASSERT_DUMP_TRIE;
1044 PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
1045 (int)depth * 2 + 2,"",
1046 "Match","Base","Ofs" );
1048 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1049 SV ** const tmp = av_fetch( revcharmap, state, 0);
1051 PerlIO_printf( Perl_debug_log, "%*s",
1053 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1054 PL_colors[0], PL_colors[1],
1055 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1056 PERL_PV_ESCAPE_FIRSTCHAR
1061 PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
1062 (int)depth * 2 + 2,"");
1064 for( state = 0 ; state < trie->uniquecharcount ; state++ )
1065 PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
1066 PerlIO_printf( Perl_debug_log, "\n");
1068 for( state = 1 ; state < trie->statecount ; state++ ) {
1069 const U32 base = trie->states[ state ].trans.base;
1071 PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
1073 if ( trie->states[ state ].wordnum ) {
1074 PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
1076 PerlIO_printf( Perl_debug_log, "%6s", "" );
1079 PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
1084 while( ( base + ofs < trie->uniquecharcount ) ||
1085 ( base + ofs - trie->uniquecharcount < trie->lasttrans
1086 && trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
1089 PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
1091 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
1092 if ( ( base + ofs >= trie->uniquecharcount ) &&
1093 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
1094 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
1096 PerlIO_printf( Perl_debug_log, "%*"UVXf,
1098 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
1100 PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
1104 PerlIO_printf( Perl_debug_log, "]");
1107 PerlIO_printf( Perl_debug_log, "\n" );
1109 PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=", (int)depth*2, "");
1110 for (word=1; word <= trie->wordcount; word++) {
1111 PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
1112 (int)word, (int)(trie->wordinfo[word].prev),
1113 (int)(trie->wordinfo[word].len));
1115 PerlIO_printf(Perl_debug_log, "\n" );
1118 Dumps a fully constructed but uncompressed trie in list form.
1119 List tries normally only are used for construction when the number of
1120 possible chars (trie->uniquecharcount) is very high.
1121 Used for debugging make_trie().
1124 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
1125 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1129 SV *sv=sv_newmortal();
1130 int colwidth= widecharmap ? 6 : 4;
1131 GET_RE_DEBUG_FLAGS_DECL;
1133 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
1135 /* print out the table precompression. */
1136 PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
1137 (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
1138 "------:-----+-----------------\n" );
1140 for( state=1 ; state < next_alloc ; state ++ ) {
1143 PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
1144 (int)depth * 2 + 2,"", (UV)state );
1145 if ( ! trie->states[ state ].wordnum ) {
1146 PerlIO_printf( Perl_debug_log, "%5s| ","");
1148 PerlIO_printf( Perl_debug_log, "W%4x| ",
1149 trie->states[ state ].wordnum
1152 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
1153 SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
1155 PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
1157 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1158 PL_colors[0], PL_colors[1],
1159 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1160 PERL_PV_ESCAPE_FIRSTCHAR
1162 TRIE_LIST_ITEM(state,charid).forid,
1163 (UV)TRIE_LIST_ITEM(state,charid).newstate
1166 PerlIO_printf(Perl_debug_log, "\n%*s| ",
1167 (int)((depth * 2) + 14), "");
1170 PerlIO_printf( Perl_debug_log, "\n");
1175 Dumps a fully constructed but uncompressed trie in table form.
1176 This is the normal DFA style state transition table, with a few
1177 twists to facilitate compression later.
1178 Used for debugging make_trie().
1181 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
1182 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1187 SV *sv=sv_newmortal();
1188 int colwidth= widecharmap ? 6 : 4;
1189 GET_RE_DEBUG_FLAGS_DECL;
1191 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
1194 print out the table precompression so that we can do a visual check
1195 that they are identical.
1198 PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
1200 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1201 SV ** const tmp = av_fetch( revcharmap, charid, 0);
1203 PerlIO_printf( Perl_debug_log, "%*s",
1205 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1206 PL_colors[0], PL_colors[1],
1207 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1208 PERL_PV_ESCAPE_FIRSTCHAR
1214 PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
1216 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
1217 PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
1220 PerlIO_printf( Perl_debug_log, "\n" );
1222 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
1224 PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
1225 (int)depth * 2 + 2,"",
1226 (UV)TRIE_NODENUM( state ) );
1228 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1229 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
1231 PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
1233 PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
1235 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
1236 PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
1238 PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
1239 trie->states[ TRIE_NODENUM( state ) ].wordnum );
1247 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
1248 startbranch: the first branch in the whole branch sequence
1249 first : start branch of sequence of branch-exact nodes.
1250 May be the same as startbranch
1251 last : Thing following the last branch.
1252 May be the same as tail.
1253 tail : item following the branch sequence
1254 count : words in the sequence
1255 flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
1256 depth : indent depth
1258 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
1260 A trie is an N'ary tree where the branches are determined by digital
1261 decomposition of the key. IE, at the root node you look up the 1st character and
1262 follow that branch repeat until you find the end of the branches. Nodes can be
1263 marked as "accepting" meaning they represent a complete word. Eg:
1267 would convert into the following structure. Numbers represent states, letters
1268 following numbers represent valid transitions on the letter from that state, if
1269 the number is in square brackets it represents an accepting state, otherwise it
1270 will be in parenthesis.
1272 +-h->+-e->[3]-+-r->(8)-+-s->[9]
1276 (1) +-i->(6)-+-s->[7]
1278 +-s->(3)-+-h->(4)-+-e->[5]
1280 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
1282 This shows that when matching against the string 'hers' we will begin at state 1
1283 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
1284 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
1285 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
1286 single traverse. We store a mapping from accepting to state to which word was
1287 matched, and then when we have multiple possibilities we try to complete the
1288 rest of the regex in the order in which they occured in the alternation.
1290 The only prior NFA like behaviour that would be changed by the TRIE support is
1291 the silent ignoring of duplicate alternations which are of the form:
1293 / (DUPE|DUPE) X? (?{ ... }) Y /x
1295 Thus EVAL blocks following a trie may be called a different number of times with
1296 and without the optimisation. With the optimisations dupes will be silently
1297 ignored. This inconsistent behaviour of EVAL type nodes is well established as
1298 the following demonstrates:
1300 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
1302 which prints out 'word' three times, but
1304 'words'=~/(word|word|word)(?{ print $1 })S/
1306 which doesnt print it out at all. This is due to other optimisations kicking in.
1308 Example of what happens on a structural level:
1310 The regexp /(ac|ad|ab)+/ will produce the following debug output:
1312 1: CURLYM[1] {1,32767}(18)
1323 This would be optimizable with startbranch=5, first=5, last=16, tail=16
1324 and should turn into:
1326 1: CURLYM[1] {1,32767}(18)
1328 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
1336 Cases where tail != last would be like /(?foo|bar)baz/:
1346 which would be optimizable with startbranch=1, first=1, last=7, tail=8
1347 and would end up looking like:
1350 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
1357 d = uvuni_to_utf8_flags(d, uv, 0);
1359 is the recommended Unicode-aware way of saying
1364 #define TRIE_STORE_REVCHAR \
1367 SV *zlopp = newSV(2); \
1368 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
1369 unsigned const char *const kapow = uvuni_to_utf8(flrbbbbb, uvc & 0xFF); \
1370 SvCUR_set(zlopp, kapow - flrbbbbb); \
1373 av_push(revcharmap, zlopp); \
1375 char ooooff = (char)uvc; \
1376 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
1380 #define TRIE_READ_CHAR STMT_START { \
1384 if ( foldlen > 0 ) { \
1385 uvc = utf8n_to_uvuni( scan, UTF8_MAXLEN, &len, uniflags ); \
1390 uvc = utf8n_to_uvuni( (const U8*)uc, UTF8_MAXLEN, &len, uniflags);\
1391 uvc = to_uni_fold( uvc, foldbuf, &foldlen ); \
1392 foldlen -= UNISKIP( uvc ); \
1393 scan = foldbuf + UNISKIP( uvc ); \
1396 uvc = utf8n_to_uvuni( (const U8*)uc, UTF8_MAXLEN, &len, uniflags);\
1406 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
1407 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
1408 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
1409 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
1411 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
1412 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
1413 TRIE_LIST_CUR( state )++; \
1416 #define TRIE_LIST_NEW(state) STMT_START { \
1417 Newxz( trie->states[ state ].trans.list, \
1418 4, reg_trie_trans_le ); \
1419 TRIE_LIST_CUR( state ) = 1; \
1420 TRIE_LIST_LEN( state ) = 4; \
1423 #define TRIE_HANDLE_WORD(state) STMT_START { \
1424 U16 dupe= trie->states[ state ].wordnum; \
1425 regnode * const noper_next = regnext( noper ); \
1428 /* store the word for dumping */ \
1430 if (OP(noper) != NOTHING) \
1431 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
1433 tmp = newSVpvn_utf8( "", 0, UTF ); \
1434 av_push( trie_words, tmp ); \
1438 trie->wordinfo[curword].prev = 0; \
1439 trie->wordinfo[curword].len = wordlen; \
1440 trie->wordinfo[curword].accept = state; \
1442 if ( noper_next < tail ) { \
1444 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \
1445 trie->jump[curword] = (U16)(noper_next - convert); \
1447 jumper = noper_next; \
1449 nextbranch= regnext(cur); \
1453 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
1454 /* chain, so that when the bits of chain are later */\
1455 /* linked together, the dups appear in the chain */\
1456 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
1457 trie->wordinfo[dupe].prev = curword; \
1459 /* we haven't inserted this word yet. */ \
1460 trie->states[ state ].wordnum = curword; \
1465 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
1466 ( ( base + charid >= ucharcount \
1467 && base + charid < ubound \
1468 && state == trie->trans[ base - ucharcount + charid ].check \
1469 && trie->trans[ base - ucharcount + charid ].next ) \
1470 ? trie->trans[ base - ucharcount + charid ].next \
1471 : ( state==1 ? special : 0 ) \
1475 #define MADE_JUMP_TRIE 2
1476 #define MADE_EXACT_TRIE 4
1479 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
1482 /* first pass, loop through and scan words */
1483 reg_trie_data *trie;
1484 HV *widecharmap = NULL;
1485 AV *revcharmap = newAV();
1487 const U32 uniflags = UTF8_ALLOW_DEFAULT;
1492 regnode *jumper = NULL;
1493 regnode *nextbranch = NULL;
1494 regnode *convert = NULL;
1495 U32 *prev_states; /* temp array mapping each state to previous one */
1496 /* we just use folder as a flag in utf8 */
1497 const U8 * folder = NULL;
1500 const U32 data_slot = add_data( pRExC_state, 4, "tuuu" );
1501 AV *trie_words = NULL;
1502 /* along with revcharmap, this only used during construction but both are
1503 * useful during debugging so we store them in the struct when debugging.
1506 const U32 data_slot = add_data( pRExC_state, 2, "tu" );
1507 STRLEN trie_charcount=0;
1509 SV *re_trie_maxbuff;
1510 GET_RE_DEBUG_FLAGS_DECL;
1512 PERL_ARGS_ASSERT_MAKE_TRIE;
1514 PERL_UNUSED_ARG(depth);
1519 case EXACTFU: folder = PL_fold_latin1; break;
1520 case EXACTF: folder = PL_fold; break;
1521 case EXACTFL: folder = PL_fold_locale; break;
1524 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
1526 trie->startstate = 1;
1527 trie->wordcount = word_count;
1528 RExC_rxi->data->data[ data_slot ] = (void*)trie;
1529 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
1530 if (!(UTF && folder))
1531 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
1532 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
1533 trie->wordcount+1, sizeof(reg_trie_wordinfo));
1536 trie_words = newAV();
1539 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
1540 if (!SvIOK(re_trie_maxbuff)) {
1541 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
1544 PerlIO_printf( Perl_debug_log,
1545 "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
1546 (int)depth * 2 + 2, "",
1547 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
1548 REG_NODE_NUM(last), REG_NODE_NUM(tail),
1552 /* Find the node we are going to overwrite */
1553 if ( first == startbranch && OP( last ) != BRANCH ) {
1554 /* whole branch chain */
1557 /* branch sub-chain */
1558 convert = NEXTOPER( first );
1561 /* -- First loop and Setup --
1563 We first traverse the branches and scan each word to determine if it
1564 contains widechars, and how many unique chars there are, this is
1565 important as we have to build a table with at least as many columns as we
1568 We use an array of integers to represent the character codes 0..255
1569 (trie->charmap) and we use a an HV* to store Unicode characters. We use the
1570 native representation of the character value as the key and IV's for the
1573 *TODO* If we keep track of how many times each character is used we can
1574 remap the columns so that the table compression later on is more
1575 efficient in terms of memory by ensuring the most common value is in the
1576 middle and the least common are on the outside. IMO this would be better
1577 than a most to least common mapping as theres a decent chance the most
1578 common letter will share a node with the least common, meaning the node
1579 will not be compressible. With a middle is most common approach the worst
1580 case is when we have the least common nodes twice.
1584 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1585 regnode * const noper = NEXTOPER( cur );
1586 const U8 *uc = (U8*)STRING( noper );
1587 const U8 * const e = uc + STR_LEN( noper );
1589 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1590 const U8 *scan = (U8*)NULL;
1591 U32 wordlen = 0; /* required init */
1593 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/
1595 if (OP(noper) == NOTHING) {
1599 if ( set_bit ) /* bitmap only alloced when !(UTF&&Folding) */
1600 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
1601 regardless of encoding */
1603 for ( ; uc < e ; uc += len ) {
1604 TRIE_CHARCOUNT(trie)++;
1608 if ( !trie->charmap[ uvc ] ) {
1609 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
1611 trie->charmap[ folder[ uvc ] ] = trie->charmap[ uvc ];
1615 /* store the codepoint in the bitmap, and its folded
1617 TRIE_BITMAP_SET(trie,uvc);
1619 /* store the folded codepoint */
1620 if ( folder ) TRIE_BITMAP_SET(trie,folder[ uvc ]);
1623 /* store first byte of utf8 representation of
1624 variant codepoints */
1625 if (! UNI_IS_INVARIANT(uvc)) {
1626 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
1629 set_bit = 0; /* We've done our bit :-) */
1634 widecharmap = newHV();
1636 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
1639 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
1641 if ( !SvTRUE( *svpp ) ) {
1642 sv_setiv( *svpp, ++trie->uniquecharcount );
1647 if( cur == first ) {
1650 } else if (chars < trie->minlen) {
1652 } else if (chars > trie->maxlen) {
1656 } /* end first pass */
1657 DEBUG_TRIE_COMPILE_r(
1658 PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
1659 (int)depth * 2 + 2,"",
1660 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
1661 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
1662 (int)trie->minlen, (int)trie->maxlen )
1666 We now know what we are dealing with in terms of unique chars and
1667 string sizes so we can calculate how much memory a naive
1668 representation using a flat table will take. If it's over a reasonable
1669 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
1670 conservative but potentially much slower representation using an array
1673 At the end we convert both representations into the same compressed
1674 form that will be used in regexec.c for matching with. The latter
1675 is a form that cannot be used to construct with but has memory
1676 properties similar to the list form and access properties similar
1677 to the table form making it both suitable for fast searches and
1678 small enough that its feasable to store for the duration of a program.
1680 See the comment in the code where the compressed table is produced
1681 inplace from the flat tabe representation for an explanation of how
1682 the compression works.
1687 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
1690 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
1692 Second Pass -- Array Of Lists Representation
1694 Each state will be represented by a list of charid:state records
1695 (reg_trie_trans_le) the first such element holds the CUR and LEN
1696 points of the allocated array. (See defines above).
1698 We build the initial structure using the lists, and then convert
1699 it into the compressed table form which allows faster lookups
1700 (but cant be modified once converted).
1703 STRLEN transcount = 1;
1705 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1706 "%*sCompiling trie using list compiler\n",
1707 (int)depth * 2 + 2, ""));
1709 trie->states = (reg_trie_state *)
1710 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1711 sizeof(reg_trie_state) );
1715 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1717 regnode * const noper = NEXTOPER( cur );
1718 U8 *uc = (U8*)STRING( noper );
1719 const U8 * const e = uc + STR_LEN( noper );
1720 U32 state = 1; /* required init */
1721 U16 charid = 0; /* sanity init */
1722 U8 *scan = (U8*)NULL; /* sanity init */
1723 STRLEN foldlen = 0; /* required init */
1724 U32 wordlen = 0; /* required init */
1725 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1727 if (OP(noper) != NOTHING) {
1728 for ( ; uc < e ; uc += len ) {
1733 charid = trie->charmap[ uvc ];
1735 SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1739 charid=(U16)SvIV( *svpp );
1742 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1749 if ( !trie->states[ state ].trans.list ) {
1750 TRIE_LIST_NEW( state );
1752 for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
1753 if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
1754 newstate = TRIE_LIST_ITEM( state, check ).newstate;
1759 newstate = next_alloc++;
1760 prev_states[newstate] = state;
1761 TRIE_LIST_PUSH( state, charid, newstate );
1766 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1770 TRIE_HANDLE_WORD(state);
1772 } /* end second pass */
1774 /* next alloc is the NEXT state to be allocated */
1775 trie->statecount = next_alloc;
1776 trie->states = (reg_trie_state *)
1777 PerlMemShared_realloc( trie->states,
1779 * sizeof(reg_trie_state) );
1781 /* and now dump it out before we compress it */
1782 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
1783 revcharmap, next_alloc,
1787 trie->trans = (reg_trie_trans *)
1788 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
1795 for( state=1 ; state < next_alloc ; state ++ ) {
1799 DEBUG_TRIE_COMPILE_MORE_r(
1800 PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
1804 if (trie->states[state].trans.list) {
1805 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
1809 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1810 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
1811 if ( forid < minid ) {
1813 } else if ( forid > maxid ) {
1817 if ( transcount < tp + maxid - minid + 1) {
1819 trie->trans = (reg_trie_trans *)
1820 PerlMemShared_realloc( trie->trans,
1822 * sizeof(reg_trie_trans) );
1823 Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
1825 base = trie->uniquecharcount + tp - minid;
1826 if ( maxid == minid ) {
1828 for ( ; zp < tp ; zp++ ) {
1829 if ( ! trie->trans[ zp ].next ) {
1830 base = trie->uniquecharcount + zp - minid;
1831 trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1832 trie->trans[ zp ].check = state;
1838 trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1839 trie->trans[ tp ].check = state;
1844 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1845 const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
1846 trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
1847 trie->trans[ tid ].check = state;
1849 tp += ( maxid - minid + 1 );
1851 Safefree(trie->states[ state ].trans.list);
1854 DEBUG_TRIE_COMPILE_MORE_r(
1855 PerlIO_printf( Perl_debug_log, " base: %d\n",base);
1858 trie->states[ state ].trans.base=base;
1860 trie->lasttrans = tp + 1;
1864 Second Pass -- Flat Table Representation.
1866 we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
1867 We know that we will need Charcount+1 trans at most to store the data
1868 (one row per char at worst case) So we preallocate both structures
1869 assuming worst case.
1871 We then construct the trie using only the .next slots of the entry
1874 We use the .check field of the first entry of the node temporarily to
1875 make compression both faster and easier by keeping track of how many non
1876 zero fields are in the node.
1878 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
1881 There are two terms at use here: state as a TRIE_NODEIDX() which is a
1882 number representing the first entry of the node, and state as a
1883 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
1884 TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
1885 are 2 entrys per node. eg:
1893 The table is internally in the right hand, idx form. However as we also
1894 have to deal with the states array which is indexed by nodenum we have to
1895 use TRIE_NODENUM() to convert.
1898 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1899 "%*sCompiling trie using table compiler\n",
1900 (int)depth * 2 + 2, ""));
1902 trie->trans = (reg_trie_trans *)
1903 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
1904 * trie->uniquecharcount + 1,
1905 sizeof(reg_trie_trans) );
1906 trie->states = (reg_trie_state *)
1907 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1908 sizeof(reg_trie_state) );
1909 next_alloc = trie->uniquecharcount + 1;
1912 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1914 regnode * const noper = NEXTOPER( cur );
1915 const U8 *uc = (U8*)STRING( noper );
1916 const U8 * const e = uc + STR_LEN( noper );
1918 U32 state = 1; /* required init */
1920 U16 charid = 0; /* sanity init */
1921 U32 accept_state = 0; /* sanity init */
1922 U8 *scan = (U8*)NULL; /* sanity init */
1924 STRLEN foldlen = 0; /* required init */
1925 U32 wordlen = 0; /* required init */
1926 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1928 if ( OP(noper) != NOTHING ) {
1929 for ( ; uc < e ; uc += len ) {
1934 charid = trie->charmap[ uvc ];
1936 SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1937 charid = svpp ? (U16)SvIV(*svpp) : 0;
1941 if ( !trie->trans[ state + charid ].next ) {
1942 trie->trans[ state + charid ].next = next_alloc;
1943 trie->trans[ state ].check++;
1944 prev_states[TRIE_NODENUM(next_alloc)]
1945 = TRIE_NODENUM(state);
1946 next_alloc += trie->uniquecharcount;
1948 state = trie->trans[ state + charid ].next;
1950 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1952 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1955 accept_state = TRIE_NODENUM( state );
1956 TRIE_HANDLE_WORD(accept_state);
1958 } /* end second pass */
1960 /* and now dump it out before we compress it */
1961 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
1963 next_alloc, depth+1));
1967 * Inplace compress the table.*
1969 For sparse data sets the table constructed by the trie algorithm will
1970 be mostly 0/FAIL transitions or to put it another way mostly empty.
1971 (Note that leaf nodes will not contain any transitions.)
1973 This algorithm compresses the tables by eliminating most such
1974 transitions, at the cost of a modest bit of extra work during lookup:
1976 - Each states[] entry contains a .base field which indicates the
1977 index in the state[] array wheres its transition data is stored.
1979 - If .base is 0 there are no valid transitions from that node.
1981 - If .base is nonzero then charid is added to it to find an entry in
1984 -If trans[states[state].base+charid].check!=state then the
1985 transition is taken to be a 0/Fail transition. Thus if there are fail
1986 transitions at the front of the node then the .base offset will point
1987 somewhere inside the previous nodes data (or maybe even into a node
1988 even earlier), but the .check field determines if the transition is
1992 The following process inplace converts the table to the compressed
1993 table: We first do not compress the root node 1,and mark all its
1994 .check pointers as 1 and set its .base pointer as 1 as well. This
1995 allows us to do a DFA construction from the compressed table later,
1996 and ensures that any .base pointers we calculate later are greater
1999 - We set 'pos' to indicate the first entry of the second node.
2001 - We then iterate over the columns of the node, finding the first and
2002 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
2003 and set the .check pointers accordingly, and advance pos
2004 appropriately and repreat for the next node. Note that when we copy
2005 the next pointers we have to convert them from the original
2006 NODEIDX form to NODENUM form as the former is not valid post
2009 - If a node has no transitions used we mark its base as 0 and do not
2010 advance the pos pointer.
2012 - If a node only has one transition we use a second pointer into the
2013 structure to fill in allocated fail transitions from other states.
2014 This pointer is independent of the main pointer and scans forward
2015 looking for null transitions that are allocated to a state. When it
2016 finds one it writes the single transition into the "hole". If the
2017 pointer doesnt find one the single transition is appended as normal.
2019 - Once compressed we can Renew/realloc the structures to release the
2022 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
2023 specifically Fig 3.47 and the associated pseudocode.
2027 const U32 laststate = TRIE_NODENUM( next_alloc );
2030 trie->statecount = laststate;
2032 for ( state = 1 ; state < laststate ; state++ ) {
2034 const U32 stateidx = TRIE_NODEIDX( state );
2035 const U32 o_used = trie->trans[ stateidx ].check;
2036 U32 used = trie->trans[ stateidx ].check;
2037 trie->trans[ stateidx ].check = 0;
2039 for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
2040 if ( flag || trie->trans[ stateidx + charid ].next ) {
2041 if ( trie->trans[ stateidx + charid ].next ) {
2043 for ( ; zp < pos ; zp++ ) {
2044 if ( ! trie->trans[ zp ].next ) {
2048 trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
2049 trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2050 trie->trans[ zp ].check = state;
2051 if ( ++zp > pos ) pos = zp;
2058 trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
2060 trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2061 trie->trans[ pos ].check = state;
2066 trie->lasttrans = pos + 1;
2067 trie->states = (reg_trie_state *)
2068 PerlMemShared_realloc( trie->states, laststate
2069 * sizeof(reg_trie_state) );
2070 DEBUG_TRIE_COMPILE_MORE_r(
2071 PerlIO_printf( Perl_debug_log,
2072 "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
2073 (int)depth * 2 + 2,"",
2074 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
2077 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
2080 } /* end table compress */
2082 DEBUG_TRIE_COMPILE_MORE_r(
2083 PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
2084 (int)depth * 2 + 2, "",
2085 (UV)trie->statecount,
2086 (UV)trie->lasttrans)
2088 /* resize the trans array to remove unused space */
2089 trie->trans = (reg_trie_trans *)
2090 PerlMemShared_realloc( trie->trans, trie->lasttrans
2091 * sizeof(reg_trie_trans) );
2093 { /* Modify the program and insert the new TRIE node */
2094 U8 nodetype =(U8)(flags & 0xFF);
2098 regnode *optimize = NULL;
2099 #ifdef RE_TRACK_PATTERN_OFFSETS
2102 U32 mjd_nodelen = 0;
2103 #endif /* RE_TRACK_PATTERN_OFFSETS */
2104 #endif /* DEBUGGING */
2106 This means we convert either the first branch or the first Exact,
2107 depending on whether the thing following (in 'last') is a branch
2108 or not and whther first is the startbranch (ie is it a sub part of
2109 the alternation or is it the whole thing.)
2110 Assuming its a sub part we convert the EXACT otherwise we convert
2111 the whole branch sequence, including the first.
2113 /* Find the node we are going to overwrite */
2114 if ( first != startbranch || OP( last ) == BRANCH ) {
2115 /* branch sub-chain */
2116 NEXT_OFF( first ) = (U16)(last - first);
2117 #ifdef RE_TRACK_PATTERN_OFFSETS
2119 mjd_offset= Node_Offset((convert));
2120 mjd_nodelen= Node_Length((convert));
2123 /* whole branch chain */
2125 #ifdef RE_TRACK_PATTERN_OFFSETS
2128 const regnode *nop = NEXTOPER( convert );
2129 mjd_offset= Node_Offset((nop));
2130 mjd_nodelen= Node_Length((nop));
2134 PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
2135 (int)depth * 2 + 2, "",
2136 (UV)mjd_offset, (UV)mjd_nodelen)
2139 /* But first we check to see if there is a common prefix we can
2140 split out as an EXACT and put in front of the TRIE node. */
2141 trie->startstate= 1;
2142 if ( trie->bitmap && !widecharmap && !trie->jump ) {
2144 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
2148 const U32 base = trie->states[ state ].trans.base;
2150 if ( trie->states[state].wordnum )
2153 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2154 if ( ( base + ofs >= trie->uniquecharcount ) &&
2155 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
2156 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
2158 if ( ++count > 1 ) {
2159 SV **tmp = av_fetch( revcharmap, ofs, 0);
2160 const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
2161 if ( state == 1 ) break;
2163 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
2165 PerlIO_printf(Perl_debug_log,
2166 "%*sNew Start State=%"UVuf" Class: [",
2167 (int)depth * 2 + 2, "",
2170 SV ** const tmp = av_fetch( revcharmap, idx, 0);
2171 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
2173 TRIE_BITMAP_SET(trie,*ch);
2175 TRIE_BITMAP_SET(trie, folder[ *ch ]);
2177 PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
2181 TRIE_BITMAP_SET(trie,*ch);
2183 TRIE_BITMAP_SET(trie,folder[ *ch ]);
2184 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
2190 SV **tmp = av_fetch( revcharmap, idx, 0);
2192 char *ch = SvPV( *tmp, len );
2194 SV *sv=sv_newmortal();
2195 PerlIO_printf( Perl_debug_log,
2196 "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
2197 (int)depth * 2 + 2, "",
2199 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
2200 PL_colors[0], PL_colors[1],
2201 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2202 PERL_PV_ESCAPE_FIRSTCHAR
2207 OP( convert ) = nodetype;
2208 str=STRING(convert);
2211 STR_LEN(convert) += len;
2217 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
2222 trie->prefixlen = (state-1);
2224 regnode *n = convert+NODE_SZ_STR(convert);
2225 NEXT_OFF(convert) = NODE_SZ_STR(convert);
2226 trie->startstate = state;
2227 trie->minlen -= (state - 1);
2228 trie->maxlen -= (state - 1);
2230 /* At least the UNICOS C compiler choked on this
2231 * being argument to DEBUG_r(), so let's just have
2234 #ifdef PERL_EXT_RE_BUILD
2240 regnode *fix = convert;
2241 U32 word = trie->wordcount;
2243 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
2244 while( ++fix < n ) {
2245 Set_Node_Offset_Length(fix, 0, 0);
2248 SV ** const tmp = av_fetch( trie_words, word, 0 );
2250 if ( STR_LEN(convert) <= SvCUR(*tmp) )
2251 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
2253 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
2261 NEXT_OFF(convert) = (U16)(tail - convert);
2262 DEBUG_r(optimize= n);
2268 if ( trie->maxlen ) {
2269 NEXT_OFF( convert ) = (U16)(tail - convert);
2270 ARG_SET( convert, data_slot );
2271 /* Store the offset to the first unabsorbed branch in
2272 jump[0], which is otherwise unused by the jump logic.
2273 We use this when dumping a trie and during optimisation. */
2275 trie->jump[0] = (U16)(nextbranch - convert);
2277 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
2278 * and there is a bitmap
2279 * and the first "jump target" node we found leaves enough room
2280 * then convert the TRIE node into a TRIEC node, with the bitmap
2281 * embedded inline in the opcode - this is hypothetically faster.
2283 if ( !trie->states[trie->startstate].wordnum
2285 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
2287 OP( convert ) = TRIEC;
2288 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
2289 PerlMemShared_free(trie->bitmap);
2292 OP( convert ) = TRIE;
2294 /* store the type in the flags */
2295 convert->flags = nodetype;
2299 + regarglen[ OP( convert ) ];
2301 /* XXX We really should free up the resource in trie now,
2302 as we won't use them - (which resources?) dmq */
2304 /* needed for dumping*/
2305 DEBUG_r(if (optimize) {
2306 regnode *opt = convert;
2308 while ( ++opt < optimize) {
2309 Set_Node_Offset_Length(opt,0,0);
2312 Try to clean up some of the debris left after the
2315 while( optimize < jumper ) {
2316 mjd_nodelen += Node_Length((optimize));
2317 OP( optimize ) = OPTIMIZED;
2318 Set_Node_Offset_Length(optimize,0,0);
2321 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
2323 } /* end node insert */
2324 REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, convert);
2326 /* Finish populating the prev field of the wordinfo array. Walk back
2327 * from each accept state until we find another accept state, and if
2328 * so, point the first word's .prev field at the second word. If the
2329 * second already has a .prev field set, stop now. This will be the
2330 * case either if we've already processed that word's accept state,
2331 * or that state had multiple words, and the overspill words were
2332 * already linked up earlier.
2339 for (word=1; word <= trie->wordcount; word++) {
2341 if (trie->wordinfo[word].prev)
2343 state = trie->wordinfo[word].accept;
2345 state = prev_states[state];
2348 prev = trie->states[state].wordnum;
2352 trie->wordinfo[word].prev = prev;
2354 Safefree(prev_states);
2358 /* and now dump out the compressed format */
2359 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
2361 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
2363 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
2364 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
2366 SvREFCNT_dec(revcharmap);
2370 : trie->startstate>1
2376 S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
2378 /* The Trie is constructed and compressed now so we can build a fail array if it's needed
2380 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
2381 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
2384 We find the fail state for each state in the trie, this state is the longest proper
2385 suffix of the current state's 'word' that is also a proper prefix of another word in our
2386 trie. State 1 represents the word '' and is thus the default fail state. This allows
2387 the DFA not to have to restart after its tried and failed a word at a given point, it
2388 simply continues as though it had been matching the other word in the first place.
2390 'abcdgu'=~/abcdefg|cdgu/
2391 When we get to 'd' we are still matching the first word, we would encounter 'g' which would
2392 fail, which would bring us to the state representing 'd' in the second word where we would
2393 try 'g' and succeed, proceeding to match 'cdgu'.
2395 /* add a fail transition */
2396 const U32 trie_offset = ARG(source);
2397 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
2399 const U32 ucharcount = trie->uniquecharcount;
2400 const U32 numstates = trie->statecount;
2401 const U32 ubound = trie->lasttrans + ucharcount;
2405 U32 base = trie->states[ 1 ].trans.base;
2408 const U32 data_slot = add_data( pRExC_state, 1, "T" );
2409 GET_RE_DEBUG_FLAGS_DECL;
2411 PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE;
2413 PERL_UNUSED_ARG(depth);
2417 ARG_SET( stclass, data_slot );
2418 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
2419 RExC_rxi->data->data[ data_slot ] = (void*)aho;
2420 aho->trie=trie_offset;
2421 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
2422 Copy( trie->states, aho->states, numstates, reg_trie_state );
2423 Newxz( q, numstates, U32);
2424 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
2427 /* initialize fail[0..1] to be 1 so that we always have
2428 a valid final fail state */
2429 fail[ 0 ] = fail[ 1 ] = 1;
2431 for ( charid = 0; charid < ucharcount ; charid++ ) {
2432 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
2434 q[ q_write ] = newstate;
2435 /* set to point at the root */
2436 fail[ q[ q_write++ ] ]=1;
2439 while ( q_read < q_write) {
2440 const U32 cur = q[ q_read++ % numstates ];
2441 base = trie->states[ cur ].trans.base;
2443 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
2444 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
2446 U32 fail_state = cur;
2449 fail_state = fail[ fail_state ];
2450 fail_base = aho->states[ fail_state ].trans.base;
2451 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
2453 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
2454 fail[ ch_state ] = fail_state;
2455 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
2457 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
2459 q[ q_write++ % numstates] = ch_state;
2463 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
2464 when we fail in state 1, this allows us to use the
2465 charclass scan to find a valid start char. This is based on the principle
2466 that theres a good chance the string being searched contains lots of stuff
2467 that cant be a start char.
2469 fail[ 0 ] = fail[ 1 ] = 0;
2470 DEBUG_TRIE_COMPILE_r({
2471 PerlIO_printf(Perl_debug_log,
2472 "%*sStclass Failtable (%"UVuf" states): 0",
2473 (int)(depth * 2), "", (UV)numstates
2475 for( q_read=1; q_read<numstates; q_read++ ) {
2476 PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
2478 PerlIO_printf(Perl_debug_log, "\n");
2481 /*RExC_seen |= REG_SEEN_TRIEDFA;*/
2486 * There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
2487 * These need to be revisited when a newer toolchain becomes available.
2489 #if defined(__sparc64__) && defined(__GNUC__)
2490 # if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
2491 # undef SPARC64_GCC_WORKAROUND
2492 # define SPARC64_GCC_WORKAROUND 1
2496 #define DEBUG_PEEP(str,scan,depth) \
2497 DEBUG_OPTIMISE_r({if (scan){ \
2498 SV * const mysv=sv_newmortal(); \
2499 regnode *Next = regnext(scan); \
2500 regprop(RExC_rx, mysv, scan); \
2501 PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
2502 (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
2503 Next ? (REG_NODE_NUM(Next)) : 0 ); \
2510 #define JOIN_EXACT(scan,min,flags) \
2511 if (PL_regkind[OP(scan)] == EXACT) \
2512 join_exact(pRExC_state,(scan),(min),(flags),NULL,depth+1)
2515 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, I32 *min, U32 flags,regnode *val, U32 depth) {
2516 /* Merge several consecutive EXACTish nodes into one. */
2517 regnode *n = regnext(scan);
2519 regnode *next = scan + NODE_SZ_STR(scan);
2523 regnode *stop = scan;
2524 GET_RE_DEBUG_FLAGS_DECL;
2526 PERL_UNUSED_ARG(depth);
2529 PERL_ARGS_ASSERT_JOIN_EXACT;
2530 #ifndef EXPERIMENTAL_INPLACESCAN
2531 PERL_UNUSED_ARG(flags);
2532 PERL_UNUSED_ARG(val);
2534 DEBUG_PEEP("join",scan,depth);
2536 /* Skip NOTHING, merge EXACT*. */
2538 ( PL_regkind[OP(n)] == NOTHING ||
2539 (stringok && (OP(n) == OP(scan))))
2541 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX) {
2543 if (OP(n) == TAIL || n > next)
2545 if (PL_regkind[OP(n)] == NOTHING) {
2546 DEBUG_PEEP("skip:",n,depth);
2547 NEXT_OFF(scan) += NEXT_OFF(n);
2548 next = n + NODE_STEP_REGNODE;
2555 else if (stringok) {
2556 const unsigned int oldl = STR_LEN(scan);
2557 regnode * const nnext = regnext(n);
2559 DEBUG_PEEP("merg",n,depth);
2562 if (oldl + STR_LEN(n) > U8_MAX)
2564 NEXT_OFF(scan) += NEXT_OFF(n);
2565 STR_LEN(scan) += STR_LEN(n);
2566 next = n + NODE_SZ_STR(n);
2567 /* Now we can overwrite *n : */
2568 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
2576 #ifdef EXPERIMENTAL_INPLACESCAN
2577 if (flags && !NEXT_OFF(n)) {
2578 DEBUG_PEEP("atch", val, depth);
2579 if (reg_off_by_arg[OP(n)]) {
2580 ARG_SET(n, val - n);
2583 NEXT_OFF(n) = val - n;
2589 #define GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS 0x0390
2590 #define IOTA_D_T GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS
2591 #define GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS 0x03B0
2592 #define UPSILON_D_T GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS
2595 && ( OP(scan) == EXACTF || OP(scan) == EXACTFU || OP(scan) == EXACTFA)
2596 && ( STR_LEN(scan) >= 6 ) )
2599 Two problematic code points in Unicode casefolding of EXACT nodes:
2601 U+0390 - GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
2602 U+03B0 - GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
2608 U+03B9 U+0308 U+0301 0xCE 0xB9 0xCC 0x88 0xCC 0x81
2609 U+03C5 U+0308 U+0301 0xCF 0x85 0xCC 0x88 0xCC 0x81
2611 This means that in case-insensitive matching (or "loose matching",
2612 as Unicode calls it), an EXACTF of length six (the UTF-8 encoded byte
2613 length of the above casefolded versions) can match a target string
2614 of length two (the byte length of UTF-8 encoded U+0390 or U+03B0).
2615 This would rather mess up the minimum length computation.
2617 What we'll do is to look for the tail four bytes, and then peek
2618 at the preceding two bytes to see whether we need to decrease
2619 the minimum length by four (six minus two).
2621 Thanks to the design of UTF-8, there cannot be false matches:
2622 A sequence of valid UTF-8 bytes cannot be a subsequence of
2623 another valid sequence of UTF-8 bytes.
2626 char * const s0 = STRING(scan), *s, *t;
2627 char * const s1 = s0 + STR_LEN(scan) - 1;
2628 char * const s2 = s1 - 4;
2629 #ifdef EBCDIC /* RD tunifold greek 0390 and 03B0 */
2630 const char t0[] = "\xaf\x49\xaf\x42";
2632 const char t0[] = "\xcc\x88\xcc\x81";
2634 const char * const t1 = t0 + 3;
2637 s < s2 && (t = ninstr(s, s1, t0, t1));
2640 if (((U8)t[-1] == 0x68 && (U8)t[-2] == 0xB4) ||
2641 ((U8)t[-1] == 0x46 && (U8)t[-2] == 0xB5))
2643 if (((U8)t[-1] == 0xB9 && (U8)t[-2] == 0xCE) ||
2644 ((U8)t[-1] == 0x85 && (U8)t[-2] == 0xCF))
2651 /* Allow dumping but overwriting the collection of skipped
2652 * ops and/or strings with fake optimized ops */
2653 n = scan + NODE_SZ_STR(scan);
2661 DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
2665 /* REx optimizer. Converts nodes into quicker variants "in place".
2666 Finds fixed substrings. */
2668 /* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
2669 to the position after last scanned or to NULL. */
2671 #define INIT_AND_WITHP \
2672 assert(!and_withp); \
2673 Newx(and_withp,1,struct regnode_charclass_class); \
2674 SAVEFREEPV(and_withp)
2676 /* this is a chain of data about sub patterns we are processing that
2677 need to be handled separately/specially in study_chunk. Its so
2678 we can simulate recursion without losing state. */
2680 typedef struct scan_frame {
2681 regnode *last; /* last node to process in this frame */
2682 regnode *next; /* next node to process when last is reached */
2683 struct scan_frame *prev; /*previous frame*/
2684 I32 stop; /* what stopparen do we use */
2688 #define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf)
2690 #define CASE_SYNST_FNC(nAmE) \
2692 if (flags & SCF_DO_STCLASS_AND) { \
2693 for (value = 0; value < 256; value++) \
2694 if (!is_ ## nAmE ## _cp(value)) \
2695 ANYOF_BITMAP_CLEAR(data->start_class, value); \
2698 for (value = 0; value < 256; value++) \
2699 if (is_ ## nAmE ## _cp(value)) \
2700 ANYOF_BITMAP_SET(data->start_class, value); \
2704 if (flags & SCF_DO_STCLASS_AND) { \
2705 for (value = 0; value < 256; value++) \
2706 if (is_ ## nAmE ## _cp(value)) \
2707 ANYOF_BITMAP_CLEAR(data->start_class, value); \
2710 for (value = 0; value < 256; value++) \
2711 if (!is_ ## nAmE ## _cp(value)) \
2712 ANYOF_BITMAP_SET(data->start_class, value); \
2719 S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
2720 I32 *minlenp, I32 *deltap,
2725 struct regnode_charclass_class *and_withp,
2726 U32 flags, U32 depth)
2727 /* scanp: Start here (read-write). */
2728 /* deltap: Write maxlen-minlen here. */
2729 /* last: Stop before this one. */
2730 /* data: string data about the pattern */
2731 /* stopparen: treat close N as END */
2732 /* recursed: which subroutines have we recursed into */
2733 /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
2736 I32 min = 0, pars = 0, code;
2737 regnode *scan = *scanp, *next;
2739 int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
2740 int is_inf_internal = 0; /* The studied chunk is infinite */
2741 I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
2742 scan_data_t data_fake;
2743 SV *re_trie_maxbuff = NULL;
2744 regnode *first_non_open = scan;
2745 I32 stopmin = I32_MAX;
2746 scan_frame *frame = NULL;
2747 GET_RE_DEBUG_FLAGS_DECL;
2749 PERL_ARGS_ASSERT_STUDY_CHUNK;
2752 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
2756 while (first_non_open && OP(first_non_open) == OPEN)
2757 first_non_open=regnext(first_non_open);
2762 while ( scan && OP(scan) != END && scan < last ){
2763 /* Peephole optimizer: */
2764 DEBUG_STUDYDATA("Peep:", data,depth);
2765 DEBUG_PEEP("Peep",scan,depth);
2766 JOIN_EXACT(scan,&min,0);
2768 /* Follow the next-chain of the current node and optimize
2769 away all the NOTHINGs from it. */
2770 if (OP(scan) != CURLYX) {
2771 const int max = (reg_off_by_arg[OP(scan)]
2773 /* I32 may be smaller than U16 on CRAYs! */
2774 : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
2775 int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
2779 /* Skip NOTHING and LONGJMP. */
2780 while ((n = regnext(n))
2781 && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
2782 || ((OP(n) == LONGJMP) && (noff = ARG(n))))
2783 && off + noff < max)
2785 if (reg_off_by_arg[OP(scan)])
2788 NEXT_OFF(scan) = off;
2793 /* The principal pseudo-switch. Cannot be a switch, since we
2794 look into several different things. */
2795 if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
2796 || OP(scan) == IFTHEN) {
2797 next = regnext(scan);
2799 /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
2801 if (OP(next) == code || code == IFTHEN) {
2802 /* NOTE - There is similar code to this block below for handling
2803 TRIE nodes on a re-study. If you change stuff here check there
2805 I32 max1 = 0, min1 = I32_MAX, num = 0;
2806 struct regnode_charclass_class accum;
2807 regnode * const startbranch=scan;
2809 if (flags & SCF_DO_SUBSTR)
2810 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
2811 if (flags & SCF_DO_STCLASS)
2812 cl_init_zero(pRExC_state, &accum);
2814 while (OP(scan) == code) {
2815 I32 deltanext, minnext, f = 0, fake;
2816 struct regnode_charclass_class this_class;
2819 data_fake.flags = 0;
2821 data_fake.whilem_c = data->whilem_c;
2822 data_fake.last_closep = data->last_closep;
2825 data_fake.last_closep = &fake;
2827 data_fake.pos_delta = delta;
2828 next = regnext(scan);
2829 scan = NEXTOPER(scan);
2831 scan = NEXTOPER(scan);
2832 if (flags & SCF_DO_STCLASS) {
2833 cl_init(pRExC_state, &this_class);
2834 data_fake.start_class = &this_class;
2835 f = SCF_DO_STCLASS_AND;
2837 if (flags & SCF_WHILEM_VISITED_POS)
2838 f |= SCF_WHILEM_VISITED_POS;
2840 /* we suppose the run is continuous, last=next...*/
2841 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
2843 stopparen, recursed, NULL, f,depth+1);
2846 if (max1 < minnext + deltanext)
2847 max1 = minnext + deltanext;
2848 if (deltanext == I32_MAX)
2849 is_inf = is_inf_internal = 1;
2851 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
2853 if (data_fake.flags & SCF_SEEN_ACCEPT) {
2854 if ( stopmin > minnext)
2855 stopmin = min + min1;
2856 flags &= ~SCF_DO_SUBSTR;
2858 data->flags |= SCF_SEEN_ACCEPT;
2861 if (data_fake.flags & SF_HAS_EVAL)
2862 data->flags |= SF_HAS_EVAL;
2863 data->whilem_c = data_fake.whilem_c;
2865 if (flags & SCF_DO_STCLASS)
2866 cl_or(pRExC_state, &accum, &this_class);
2868 if (code == IFTHEN && num < 2) /* Empty ELSE branch */
2870 if (flags & SCF_DO_SUBSTR) {
2871 data->pos_min += min1;
2872 data->pos_delta += max1 - min1;
2873 if (max1 != min1 || is_inf)
2874 data->longest = &(data->longest_float);
2877 delta += max1 - min1;
2878 if (flags & SCF_DO_STCLASS_OR) {
2879 cl_or(pRExC_state, data->start_class, &accum);
2881 cl_and(data->start_class, and_withp);
2882 flags &= ~SCF_DO_STCLASS;
2885 else if (flags & SCF_DO_STCLASS_AND) {
2887 cl_and(data->start_class, &accum);
2888 flags &= ~SCF_DO_STCLASS;
2891 /* Switch to OR mode: cache the old value of
2892 * data->start_class */
2894 StructCopy(data->start_class, and_withp,
2895 struct regnode_charclass_class);
2896 flags &= ~SCF_DO_STCLASS_AND;
2897 StructCopy(&accum, data->start_class,
2898 struct regnode_charclass_class);
2899 flags |= SCF_DO_STCLASS_OR;
2900 data->start_class->flags |= ANYOF_EOS;
2904 if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
2907 Assuming this was/is a branch we are dealing with: 'scan' now
2908 points at the item that follows the branch sequence, whatever
2909 it is. We now start at the beginning of the sequence and look
2916 which would be constructed from a pattern like /A|LIST|OF|WORDS/
2918 If we can find such a subsequence we need to turn the first
2919 element into a trie and then add the subsequent branch exact
2920 strings to the trie.
2924 1. patterns where the whole set of branches can be converted.
2926 2. patterns where only a subset can be converted.
2928 In case 1 we can replace the whole set with a single regop
2929 for the trie. In case 2 we need to keep the start and end
2932 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
2933 becomes BRANCH TRIE; BRANCH X;
2935 There is an additional case, that being where there is a
2936 common prefix, which gets split out into an EXACT like node
2937 preceding the TRIE node.
2939 If x(1..n)==tail then we can do a simple trie, if not we make
2940 a "jump" trie, such that when we match the appropriate word
2941 we "jump" to the appropriate tail node. Essentially we turn
2942 a nested if into a case structure of sorts.
2947 if (!re_trie_maxbuff) {
2948 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
2949 if (!SvIOK(re_trie_maxbuff))
2950 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2952 if ( SvIV(re_trie_maxbuff)>=0 ) {
2954 regnode *first = (regnode *)NULL;
2955 regnode *last = (regnode *)NULL;
2956 regnode *tail = scan;
2961 SV * const mysv = sv_newmortal(); /* for dumping */
2963 /* var tail is used because there may be a TAIL
2964 regop in the way. Ie, the exacts will point to the
2965 thing following the TAIL, but the last branch will
2966 point at the TAIL. So we advance tail. If we
2967 have nested (?:) we may have to move through several
2971 while ( OP( tail ) == TAIL ) {
2972 /* this is the TAIL generated by (?:) */
2973 tail = regnext( tail );
2978 regprop(RExC_rx, mysv, tail );
2979 PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
2980 (int)depth * 2 + 2, "",
2981 "Looking for TRIE'able sequences. Tail node is: ",
2982 SvPV_nolen_const( mysv )
2988 step through the branches, cur represents each
2989 branch, noper is the first thing to be matched
2990 as part of that branch and noper_next is the
2991 regnext() of that node. if noper is an EXACT
2992 and noper_next is the same as scan (our current
2993 position in the regex) then the EXACT branch is
2994 a possible optimization target. Once we have
2995 two or more consecutive such branches we can
2996 create a trie of the EXACT's contents and stich
2997 it in place. If the sequence represents all of
2998 the branches we eliminate the whole thing and
2999 replace it with a single TRIE. If it is a
3000 subsequence then we need to stitch it in. This
3001 means the first branch has to remain, and needs
3002 to be repointed at the item on the branch chain
3003 following the last branch optimized. This could
3004 be either a BRANCH, in which case the
3005 subsequence is internal, or it could be the
3006 item following the branch sequence in which
3007 case the subsequence is at the end.
3011 /* dont use tail as the end marker for this traverse */
3012 for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
3013 regnode * const noper = NEXTOPER( cur );
3014 #if defined(DEBUGGING) || defined(NOJUMPTRIE)
3015 regnode * const noper_next = regnext( noper );
3019 regprop(RExC_rx, mysv, cur);
3020 PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
3021 (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
3023 regprop(RExC_rx, mysv, noper);
3024 PerlIO_printf( Perl_debug_log, " -> %s",
3025 SvPV_nolen_const(mysv));
3028 regprop(RExC_rx, mysv, noper_next );
3029 PerlIO_printf( Perl_debug_log,"\t=> %s\t",
3030 SvPV_nolen_const(mysv));
3032 PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d)\n",
3033 REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur) );
3035 if ( (((first && optype!=NOTHING) ? OP( noper ) == optype
3036 : PL_regkind[ OP( noper ) ] == EXACT )
3037 || OP(noper) == NOTHING )
3039 && noper_next == tail
3044 if ( !first || optype == NOTHING ) {
3045 if (!first) first = cur;
3046 optype = OP( noper );
3052 Currently the trie logic handles case insensitive matching properly only
3053 when the pattern is UTF-8 and the node is EXACTFU (thus forcing unicode
3056 If/when this is fixed the following define can be swapped
3057 in below to fully enable trie logic.
3059 #define TRIE_TYPE_IS_SAFE 1
3062 #define TRIE_TYPE_IS_SAFE ((UTF && optype == EXACTFU) || optype==EXACT)
3064 if ( last && TRIE_TYPE_IS_SAFE ) {
3065 make_trie( pRExC_state,
3066 startbranch, first, cur, tail, count,
3069 if ( PL_regkind[ OP( noper ) ] == EXACT
3071 && noper_next == tail
3076 optype = OP( noper );
3086 regprop(RExC_rx, mysv, cur);
3087 PerlIO_printf( Perl_debug_log,
3088 "%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
3089 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3093 if ( last && TRIE_TYPE_IS_SAFE ) {
3094 made= make_trie( pRExC_state, startbranch, first, scan, tail, count, optype, depth+1 );
3095 #ifdef TRIE_STUDY_OPT
3096 if ( ((made == MADE_EXACT_TRIE &&
3097 startbranch == first)
3098 || ( first_non_open == first )) &&
3100 flags |= SCF_TRIE_RESTUDY;
3101 if ( startbranch == first
3104 RExC_seen &=~REG_TOP_LEVEL_BRANCHES;
3114 else if ( code == BRANCHJ ) { /* single branch is optimized. */
3115 scan = NEXTOPER(NEXTOPER(scan));
3116 } else /* single branch is optimized. */
3117 scan = NEXTOPER(scan);
3119 } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
3120 scan_frame *newframe = NULL;
3125 if (OP(scan) != SUSPEND) {
3126 /* set the pointer */
3127 if (OP(scan) == GOSUB) {
3129 RExC_recurse[ARG2L(scan)] = scan;
3130 start = RExC_open_parens[paren-1];
3131 end = RExC_close_parens[paren-1];
3134 start = RExC_rxi->program + 1;
3138 Newxz(recursed, (((RExC_npar)>>3) +1), U8);
3139 SAVEFREEPV(recursed);
3141 if (!PAREN_TEST(recursed,paren+1)) {
3142 PAREN_SET(recursed,paren+1);
3143 Newx(newframe,1,scan_frame);
3145 if (flags & SCF_DO_SUBSTR) {
3146 SCAN_COMMIT(pRExC_state,data,minlenp);
3147 data->longest = &(data->longest_float);
3149 is_inf = is_inf_internal = 1;
3150 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3151 cl_anything(pRExC_state, data->start_class);
3152 flags &= ~SCF_DO_STCLASS;
3155 Newx(newframe,1,scan_frame);
3158 end = regnext(scan);
3163 SAVEFREEPV(newframe);
3164 newframe->next = regnext(scan);
3165 newframe->last = last;
3166 newframe->stop = stopparen;
3167 newframe->prev = frame;
3177 else if (OP(scan) == EXACT) {
3178 I32 l = STR_LEN(scan);
3181 const U8 * const s = (U8*)STRING(scan);
3182 l = utf8_length(s, s + l);
3183 uc = utf8_to_uvchr(s, NULL);
3185 uc = *((U8*)STRING(scan));
3188 if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
3189 /* The code below prefers earlier match for fixed
3190 offset, later match for variable offset. */
3191 if (data->last_end == -1) { /* Update the start info. */
3192 data->last_start_min = data->pos_min;
3193 data->last_start_max = is_inf
3194 ? I32_MAX : data->pos_min + data->pos_delta;
3196 sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
3198 SvUTF8_on(data->last_found);
3200 SV * const sv = data->last_found;
3201 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3202 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3203 if (mg && mg->mg_len >= 0)
3204 mg->mg_len += utf8_length((U8*)STRING(scan),
3205 (U8*)STRING(scan)+STR_LEN(scan));
3207 data->last_end = data->pos_min + l;
3208 data->pos_min += l; /* As in the first entry. */
3209 data->flags &= ~SF_BEFORE_EOL;
3211 if (flags & SCF_DO_STCLASS_AND) {
3212 /* Check whether it is compatible with what we know already! */
3216 /* If compatible, we or it in below. It is compatible if is
3217 * in the bitmp and either 1) its bit or its fold is set, or 2)
3218 * it's for a locale. Even if there isn't unicode semantics
3219 * here, at runtime there may be because of matching against a
3220 * utf8 string, so accept a possible false positive for
3221 * latin1-range folds */
3223 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
3224 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3225 && (!(data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD)
3226 || !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3231 ANYOF_CLASS_ZERO(data->start_class);
3232 ANYOF_BITMAP_ZERO(data->start_class);
3234 ANYOF_BITMAP_SET(data->start_class, uc);
3235 else if (uc >= 0x100) {
3238 /* Some Unicode code points fold to the Latin1 range; as
3239 * XXX temporary code, instead of figuring out if this is
3240 * one, just assume it is and set all the start class bits
3241 * that could be some such above 255 code point's fold
3242 * which will generate fals positives. As the code
3243 * elsewhere that does compute the fold settles down, it
3244 * can be extracted out and re-used here */
3245 for (i = 0; i < 256; i++){
3246 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3247 ANYOF_BITMAP_SET(data->start_class, i);
3251 data->start_class->flags &= ~ANYOF_EOS;
3253 data->start_class->flags &= ~ANYOF_UNICODE_ALL;
3255 else if (flags & SCF_DO_STCLASS_OR) {
3256 /* false positive possible if the class is case-folded */
3258 ANYOF_BITMAP_SET(data->start_class, uc);
3260 data->start_class->flags |= ANYOF_UNICODE_ALL;
3261 data->start_class->flags &= ~ANYOF_EOS;
3262 cl_and(data->start_class, and_withp);
3264 flags &= ~SCF_DO_STCLASS;
3266 else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
3267 I32 l = STR_LEN(scan);
3268 UV uc = *((U8*)STRING(scan));
3270 /* Search for fixed substrings supports EXACT only. */
3271 if (flags & SCF_DO_SUBSTR) {
3273 SCAN_COMMIT(pRExC_state, data, minlenp);
3276 const U8 * const s = (U8 *)STRING(scan);
3277 l = utf8_length(s, s + l);
3278 uc = utf8_to_uvchr(s, NULL);
3281 if (flags & SCF_DO_SUBSTR)
3283 if (flags & SCF_DO_STCLASS_AND) {
3284 /* Check whether it is compatible with what we know already! */
3287 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
3288 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3289 && !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3293 ANYOF_CLASS_ZERO(data->start_class);
3294 ANYOF_BITMAP_ZERO(data->start_class);
3296 ANYOF_BITMAP_SET(data->start_class, uc);
3297 data->start_class->flags &= ~ANYOF_EOS;
3298 data->start_class->flags |= ANYOF_LOC_NONBITMAP_FOLD;
3299 if (OP(scan) == EXACTFL) {
3300 /* XXX This set is probably no longer necessary, and
3301 * probably wrong as LOCALE now is on in the initial
3303 data->start_class->flags |= ANYOF_LOCALE;
3307 /* Also set the other member of the fold pair. In case
3308 * that unicode semantics is called for at runtime, use
3309 * the full latin1 fold. (Can't do this for locale,
3310 * because not known until runtime */
3311 ANYOF_BITMAP_SET(data->start_class, PL_fold_latin1[uc]);
3314 else if (uc >= 0x100) {
3316 for (i = 0; i < 256; i++){
3317 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3318 ANYOF_BITMAP_SET(data->start_class, i);
3323 else if (flags & SCF_DO_STCLASS_OR) {
3324 if (data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD) {
3325 /* false positive possible if the class is case-folded.
3326 Assume that the locale settings are the same... */
3328 ANYOF_BITMAP_SET(data->start_class, uc);
3329 if (OP(scan) != EXACTFL) {
3331 /* And set the other member of the fold pair, but
3332 * can't do that in locale because not known until
3334 ANYOF_BITMAP_SET(data->start_class,
3335 PL_fold_latin1[uc]);
3338 data->start_class->flags &= ~ANYOF_EOS;
3340 cl_and(data->start_class, and_withp);
3342 flags &= ~SCF_DO_STCLASS;
3344 else if (REGNODE_VARIES(OP(scan))) {
3345 I32 mincount, maxcount, minnext, deltanext, fl = 0;
3346 I32 f = flags, pos_before = 0;
3347 regnode * const oscan = scan;
3348 struct regnode_charclass_class this_class;
3349 struct regnode_charclass_class *oclass = NULL;
3350 I32 next_is_eval = 0;
3352 switch (PL_regkind[OP(scan)]) {
3353 case WHILEM: /* End of (?:...)* . */
3354 scan = NEXTOPER(scan);
3357 if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
3358 next = NEXTOPER(scan);
3359 if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
3361 maxcount = REG_INFTY;
3362 next = regnext(scan);
3363 scan = NEXTOPER(scan);
3367 if (flags & SCF_DO_SUBSTR)
3372 if (flags & SCF_DO_STCLASS) {
3374 maxcount = REG_INFTY;
3375 next = regnext(scan);
3376 scan = NEXTOPER(scan);
3379 is_inf = is_inf_internal = 1;
3380 scan = regnext(scan);
3381 if (flags & SCF_DO_SUBSTR) {
3382 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */
3383 data->longest = &(data->longest_float);
3385 goto optimize_curly_tail;
3387 if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
3388 && (scan->flags == stopparen))
3393 mincount = ARG1(scan);
3394 maxcount = ARG2(scan);
3396 next = regnext(scan);
3397 if (OP(scan) == CURLYX) {
3398 I32 lp = (data ? *(data->last_closep) : 0);
3399 scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
3401 scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
3402 next_is_eval = (OP(scan) == EVAL);
3404 if (flags & SCF_DO_SUBSTR) {
3405 if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */
3406 pos_before = data->pos_min;
3410 data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
3412 data->flags |= SF_IS_INF;
3414 if (flags & SCF_DO_STCLASS) {
3415 cl_init(pRExC_state, &this_class);
3416 oclass = data->start_class;
3417 data->start_class = &this_class;
3418 f |= SCF_DO_STCLASS_AND;
3419 f &= ~SCF_DO_STCLASS_OR;
3421 /* Exclude from super-linear cache processing any {n,m}
3422 regops for which the combination of input pos and regex
3423 pos is not enough information to determine if a match
3426 For example, in the regex /foo(bar\s*){4,8}baz/ with the
3427 regex pos at the \s*, the prospects for a match depend not
3428 only on the input position but also on how many (bar\s*)
3429 repeats into the {4,8} we are. */
3430 if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
3431 f &= ~SCF_WHILEM_VISITED_POS;
3433 /* This will finish on WHILEM, setting scan, or on NULL: */
3434 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3435 last, data, stopparen, recursed, NULL,
3437 ? (f & ~SCF_DO_SUBSTR) : f),depth+1);
3439 if (flags & SCF_DO_STCLASS)
3440 data->start_class = oclass;
3441 if (mincount == 0 || minnext == 0) {
3442 if (flags & SCF_DO_STCLASS_OR) {
3443 cl_or(pRExC_state, data->start_class, &this_class);
3445 else if (flags & SCF_DO_STCLASS_AND) {
3446 /* Switch to OR mode: cache the old value of
3447 * data->start_class */
3449 StructCopy(data->start_class, and_withp,
3450 struct regnode_charclass_class);
3451 flags &= ~SCF_DO_STCLASS_AND;
3452 StructCopy(&this_class, data->start_class,
3453 struct regnode_charclass_class);
3454 flags |= SCF_DO_STCLASS_OR;
3455 data->start_class->flags |= ANYOF_EOS;
3457 } else { /* Non-zero len */
3458 if (flags & SCF_DO_STCLASS_OR) {
3459 cl_or(pRExC_state, data->start_class, &this_class);
3460 cl_and(data->start_class, and_withp);
3462 else if (flags & SCF_DO_STCLASS_AND)
3463 cl_and(data->start_class, &this_class);
3464 flags &= ~SCF_DO_STCLASS;
3466 if (!scan) /* It was not CURLYX, but CURLY. */
3468 if ( /* ? quantifier ok, except for (?{ ... }) */
3469 (next_is_eval || !(mincount == 0 && maxcount == 1))
3470 && (minnext == 0) && (deltanext == 0)
3471 && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
3472 && maxcount <= REG_INFTY/3) /* Complement check for big count */
3474 ckWARNreg(RExC_parse,
3475 "Quantifier unexpected on zero-length expression");
3478 min += minnext * mincount;
3479 is_inf_internal |= ((maxcount == REG_INFTY
3480 && (minnext + deltanext) > 0)
3481 || deltanext == I32_MAX);
3482 is_inf |= is_inf_internal;
3483 delta += (minnext + deltanext) * maxcount - minnext * mincount;
3485 /* Try powerful optimization CURLYX => CURLYN. */
3486 if ( OP(oscan) == CURLYX && data
3487 && data->flags & SF_IN_PAR
3488 && !(data->flags & SF_HAS_EVAL)
3489 && !deltanext && minnext == 1 ) {
3490 /* Try to optimize to CURLYN. */
3491 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
3492 regnode * const nxt1 = nxt;
3499 if (!REGNODE_SIMPLE(OP(nxt))
3500 && !(PL_regkind[OP(nxt)] == EXACT
3501 && STR_LEN(nxt) == 1))
3507 if (OP(nxt) != CLOSE)
3509 if (RExC_open_parens) {
3510 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3511 RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
3513 /* Now we know that nxt2 is the only contents: */
3514 oscan->flags = (U8)ARG(nxt);
3516 OP(nxt1) = NOTHING; /* was OPEN. */
3519 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3520 NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
3521 NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
3522 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3523 OP(nxt + 1) = OPTIMIZED; /* was count. */
3524 NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
3529 /* Try optimization CURLYX => CURLYM. */
3530 if ( OP(oscan) == CURLYX && data
3531 && !(data->flags & SF_HAS_PAR)
3532 && !(data->flags & SF_HAS_EVAL)
3533 && !deltanext /* atom is fixed width */
3534 && minnext != 0 /* CURLYM can't handle zero width */
3536 /* XXXX How to optimize if data == 0? */
3537 /* Optimize to a simpler form. */
3538 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
3542 while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
3543 && (OP(nxt2) != WHILEM))
3545 OP(nxt2) = SUCCEED; /* Whas WHILEM */
3546 /* Need to optimize away parenths. */
3547 if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
3548 /* Set the parenth number. */
3549 regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
3551 oscan->flags = (U8)ARG(nxt);
3552 if (RExC_open_parens) {
3553 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3554 RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
3556 OP(nxt1) = OPTIMIZED; /* was OPEN. */
3557 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3560 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3561 OP(nxt + 1) = OPTIMIZED; /* was count. */
3562 NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
3563 NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
3566 while ( nxt1 && (OP(nxt1) != WHILEM)) {
3567 regnode *nnxt = regnext(nxt1);
3569 if (reg_off_by_arg[OP(nxt1)])
3570 ARG_SET(nxt1, nxt2 - nxt1);
3571 else if (nxt2 - nxt1 < U16_MAX)
3572 NEXT_OFF(nxt1) = nxt2 - nxt1;
3574 OP(nxt) = NOTHING; /* Cannot beautify */
3579 /* Optimize again: */
3580 study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
3581 NULL, stopparen, recursed, NULL, 0,depth+1);
3586 else if ((OP(oscan) == CURLYX)
3587 && (flags & SCF_WHILEM_VISITED_POS)
3588 /* See the comment on a similar expression above.
3589 However, this time it's not a subexpression
3590 we care about, but the expression itself. */
3591 && (maxcount == REG_INFTY)
3592 && data && ++data->whilem_c < 16) {
3593 /* This stays as CURLYX, we can put the count/of pair. */
3594 /* Find WHILEM (as in regexec.c) */
3595 regnode *nxt = oscan + NEXT_OFF(oscan);
3597 if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
3599 PREVOPER(nxt)->flags = (U8)(data->whilem_c
3600 | (RExC_whilem_seen << 4)); /* On WHILEM */
3602 if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
3604 if (flags & SCF_DO_SUBSTR) {
3605 SV *last_str = NULL;
3606 int counted = mincount != 0;
3608 if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */
3609 #if defined(SPARC64_GCC_WORKAROUND)
3612 const char *s = NULL;
3615 if (pos_before >= data->last_start_min)
3618 b = data->last_start_min;
3621 s = SvPV_const(data->last_found, l);
3622 old = b - data->last_start_min;
3625 I32 b = pos_before >= data->last_start_min
3626 ? pos_before : data->last_start_min;
3628 const char * const s = SvPV_const(data->last_found, l);
3629 I32 old = b - data->last_start_min;
3633 old = utf8_hop((U8*)s, old) - (U8*)s;
3635 /* Get the added string: */
3636 last_str = newSVpvn_utf8(s + old, l, UTF);
3637 if (deltanext == 0 && pos_before == b) {
3638 /* What was added is a constant string */
3640 SvGROW(last_str, (mincount * l) + 1);
3641 repeatcpy(SvPVX(last_str) + l,
3642 SvPVX_const(last_str), l, mincount - 1);
3643 SvCUR_set(last_str, SvCUR(last_str) * mincount);
3644 /* Add additional parts. */
3645 SvCUR_set(data->last_found,
3646 SvCUR(data->last_found) - l);
3647 sv_catsv(data->last_found, last_str);
3649 SV * sv = data->last_found;
3651 SvUTF8(sv) && SvMAGICAL(sv) ?
3652 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3653 if (mg && mg->mg_len >= 0)
3654 mg->mg_len += CHR_SVLEN(last_str) - l;
3656 data->last_end += l * (mincount - 1);
3659 /* start offset must point into the last copy */
3660 data->last_start_min += minnext * (mincount - 1);
3661 data->last_start_max += is_inf ? I32_MAX
3662 : (maxcount - 1) * (minnext + data->pos_delta);
3665 /* It is counted once already... */
3666 data->pos_min += minnext * (mincount - counted);
3667 data->pos_delta += - counted * deltanext +
3668 (minnext + deltanext) * maxcount - minnext * mincount;
3669 if (mincount != maxcount) {
3670 /* Cannot extend fixed substrings found inside
3672 SCAN_COMMIT(pRExC_state,data,minlenp);
3673 if (mincount && last_str) {
3674 SV * const sv = data->last_found;
3675 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3676 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3680 sv_setsv(sv, last_str);
3681 data->last_end = data->pos_min;
3682 data->last_start_min =
3683 data->pos_min - CHR_SVLEN(last_str);
3684 data->last_start_max = is_inf
3686 : data->pos_min + data->pos_delta
3687 - CHR_SVLEN(last_str);
3689 data->longest = &(data->longest_float);
3691 SvREFCNT_dec(last_str);
3693 if (data && (fl & SF_HAS_EVAL))
3694 data->flags |= SF_HAS_EVAL;
3695 optimize_curly_tail:
3696 if (OP(oscan) != CURLYX) {
3697 while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
3699 NEXT_OFF(oscan) += NEXT_OFF(next);
3702 default: /* REF, ANYOFV, and CLUMP only? */
3703 if (flags & SCF_DO_SUBSTR) {
3704 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3705 data->longest = &(data->longest_float);
3707 is_inf = is_inf_internal = 1;
3708 if (flags & SCF_DO_STCLASS_OR)
3709 cl_anything(pRExC_state, data->start_class);
3710 flags &= ~SCF_DO_STCLASS;
3714 else if (OP(scan) == LNBREAK) {
3715 if (flags & SCF_DO_STCLASS) {
3717 data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
3718 if (flags & SCF_DO_STCLASS_AND) {
3719 for (value = 0; value < 256; value++)
3720 if (!is_VERTWS_cp(value))
3721 ANYOF_BITMAP_CLEAR(data->start_class, value);
3724 for (value = 0; value < 256; value++)
3725 if (is_VERTWS_cp(value))
3726 ANYOF_BITMAP_SET(data->start_class, value);
3728 if (flags & SCF_DO_STCLASS_OR)
3729 cl_and(data->start_class, and_withp);
3730 flags &= ~SCF_DO_STCLASS;
3734 if (flags & SCF_DO_SUBSTR) {
3735 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3737 data->pos_delta += 1;
3738 data->longest = &(data->longest_float);
3741 else if (OP(scan) == FOLDCHAR) {
3742 int d = ARG(scan) == LATIN_SMALL_LETTER_SHARP_S ? 1 : 2;
3743 flags &= ~SCF_DO_STCLASS;
3746 if (flags & SCF_DO_SUBSTR) {
3747 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3749 data->pos_delta += d;
3750 data->longest = &(data->longest_float);
3753 else if (REGNODE_SIMPLE(OP(scan))) {
3756 if (flags & SCF_DO_SUBSTR) {
3757 SCAN_COMMIT(pRExC_state,data,minlenp);
3761 if (flags & SCF_DO_STCLASS) {
3762 data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
3764 /* Some of the logic below assumes that switching
3765 locale on will only add false positives. */
3766 switch (PL_regkind[OP(scan)]) {
3770 /* Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan)); */
3771 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3772 cl_anything(pRExC_state, data->start_class);
3775 if (OP(scan) == SANY)
3777 if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */
3778 value = (ANYOF_BITMAP_TEST(data->start_class,'\n')
3779 || ANYOF_CLASS_TEST_ANY_SET(data->start_class));
3780 cl_anything(pRExC_state, data->start_class);
3782 if (flags & SCF_DO_STCLASS_AND || !value)
3783 ANYOF_BITMAP_CLEAR(data->start_class,'\n');
3786 if (flags & SCF_DO_STCLASS_AND)
3787 cl_and(data->start_class,
3788 (struct regnode_charclass_class*)scan);
3790 cl_or(pRExC_state, data->start_class,
3791 (struct regnode_charclass_class*)scan);
3794 if (flags & SCF_DO_STCLASS_AND) {
3795 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3796 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NALNUM);
3797 if (OP(scan) == ALNUMU) {
3798 for (value = 0; value < 256; value++) {
3799 if (!isWORDCHAR_L1(value)) {
3800 ANYOF_BITMAP_CLEAR(data->start_class, value);
3804 for (value = 0; value < 256; value++) {
3805 if (!isALNUM(value)) {
3806 ANYOF_BITMAP_CLEAR(data->start_class, value);
3813 if (data->start_class->flags & ANYOF_LOCALE)
3814 ANYOF_CLASS_SET(data->start_class,ANYOF_ALNUM);
3816 /* Even if under locale, set the bits for non-locale
3817 * in case it isn't a true locale-node. This will
3818 * create false positives if it truly is locale */
3819 if (OP(scan) == ALNUMU) {
3820 for (value = 0; value < 256; value++) {
3821 if (isWORDCHAR_L1(value)) {
3822 ANYOF_BITMAP_SET(data->start_class, value);
3826 for (value = 0; value < 256; value++) {
3827 if (isALNUM(value)) {
3828 ANYOF_BITMAP_SET(data->start_class, value);
3835 if (flags & SCF_DO_STCLASS_AND) {
3836 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3837 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_ALNUM);
3838 if (OP(scan) == NALNUMU) {
3839 for (value = 0; value < 256; value++) {
3840 if (isWORDCHAR_L1(value)) {
3841 ANYOF_BITMAP_CLEAR(data->start_class, value);
3845 for (value = 0; value < 256; value++) {
3846 if (isALNUM(value)) {
3847 ANYOF_BITMAP_CLEAR(data->start_class, value);
3854 if (data->start_class->flags & ANYOF_LOCALE)
3855 ANYOF_CLASS_SET(data->start_class,ANYOF_NALNUM);
3857 /* Even if under locale, set the bits for non-locale in
3858 * case it isn't a true locale-node. This will create
3859 * false positives if it truly is locale */
3860 if (OP(scan) == NALNUMU) {
3861 for (value = 0; value < 256; value++) {
3862 if (! isWORDCHAR_L1(value)) {
3863 ANYOF_BITMAP_SET(data->start_class, value);
3867 for (value = 0; value < 256; value++) {
3868 if (! isALNUM(value)) {
3869 ANYOF_BITMAP_SET(data->start_class, value);
3876 if (flags & SCF_DO_STCLASS_AND) {
3877 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3878 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NSPACE);
3879 if (OP(scan) == SPACEU) {
3880 for (value = 0; value < 256; value++) {
3881 if (!isSPACE_L1(value)) {
3882 ANYOF_BITMAP_CLEAR(data->start_class, value);
3886 for (value = 0; value < 256; value++) {
3887 if (!isSPACE(value)) {
3888 ANYOF_BITMAP_CLEAR(data->start_class, value);
3895 if (data->start_class->flags & ANYOF_LOCALE) {
3896 ANYOF_CLASS_SET(data->start_class,ANYOF_SPACE);
3898 if (OP(scan) == SPACEU) {
3899 for (value = 0; value < 256; value++) {
3900 if (isSPACE_L1(value)) {
3901 ANYOF_BITMAP_SET(data->start_class, value);
3905 for (value = 0; value < 256; value++) {
3906 if (isSPACE(value)) {
3907 ANYOF_BITMAP_SET(data->start_class, value);
3914 if (flags & SCF_DO_STCLASS_AND) {
3915 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3916 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_SPACE);
3917 if (OP(scan) == NSPACEU) {
3918 for (value = 0; value < 256; value++) {
3919 if (isSPACE_L1(value)) {
3920 ANYOF_BITMAP_CLEAR(data->start_class, value);
3924 for (value = 0; value < 256; value++) {
3925 if (isSPACE(value)) {
3926 ANYOF_BITMAP_CLEAR(data->start_class, value);
3933 if (data->start_class->flags & ANYOF_LOCALE)
3934 ANYOF_CLASS_SET(data->start_class,ANYOF_NSPACE);
3935 if (OP(scan) == NSPACEU) {
3936 for (value = 0; value < 256; value++) {
3937 if (!isSPACE_L1(value)) {
3938 ANYOF_BITMAP_SET(data->start_class, value);
3943 for (value = 0; value < 256; value++) {
3944 if (!isSPACE(value)) {
3945 ANYOF_BITMAP_SET(data->start_class, value);
3952 if (flags & SCF_DO_STCLASS_AND) {
3953 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3954 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NDIGIT);
3955 for (value = 0; value < 256; value++)
3956 if (!isDIGIT(value))
3957 ANYOF_BITMAP_CLEAR(data->start_class, value);
3961 if (data->start_class->flags & ANYOF_LOCALE)
3962 ANYOF_CLASS_SET(data->start_class,ANYOF_DIGIT);
3963 for (value = 0; value < 256; value++)
3965 ANYOF_BITMAP_SET(data->start_class, value);
3969 if (flags & SCF_DO_STCLASS_AND) {
3970 if (!(data->start_class->flags & ANYOF_LOCALE))
3971 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_DIGIT);
3972 for (value = 0; value < 256; value++)
3974 ANYOF_BITMAP_CLEAR(data->start_class, value);
3977 if (data->start_class->flags & ANYOF_LOCALE)
3978 ANYOF_CLASS_SET(data->start_class,ANYOF_NDIGIT);
3979 for (value = 0; value < 256; value++)
3980 if (!isDIGIT(value))
3981 ANYOF_BITMAP_SET(data->start_class, value);
3984 CASE_SYNST_FNC(VERTWS);
3985 CASE_SYNST_FNC(HORIZWS);
3988 if (flags & SCF_DO_STCLASS_OR)
3989 cl_and(data->start_class, and_withp);
3990 flags &= ~SCF_DO_STCLASS;
3993 else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
3994 data->flags |= (OP(scan) == MEOL
3998 else if ( PL_regkind[OP(scan)] == BRANCHJ
3999 /* Lookbehind, or need to calculate parens/evals/stclass: */
4000 && (scan->flags || data || (flags & SCF_DO_STCLASS))
4001 && (OP(scan) == IFMATCH || OP(scan) == UNLESSM)) {
4002 if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4003 || OP(scan) == UNLESSM )
4005 /* Negative Lookahead/lookbehind
4006 In this case we can't do fixed string optimisation.
4009 I32 deltanext, minnext, fake = 0;
4011 struct regnode_charclass_class intrnl;
4014 data_fake.flags = 0;
4016 data_fake.whilem_c = data->whilem_c;
4017 data_fake.last_closep = data->last_closep;
4020 data_fake.last_closep = &fake;
4021 data_fake.pos_delta = delta;
4022 if ( flags & SCF_DO_STCLASS && !scan->flags
4023 && OP(scan) == IFMATCH ) { /* Lookahead */
4024 cl_init(pRExC_state, &intrnl);
4025 data_fake.start_class = &intrnl;
4026 f |= SCF_DO_STCLASS_AND;
4028 if (flags & SCF_WHILEM_VISITED_POS)
4029 f |= SCF_WHILEM_VISITED_POS;
4030 next = regnext(scan);
4031 nscan = NEXTOPER(NEXTOPER(scan));
4032 minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
4033 last, &data_fake, stopparen, recursed, NULL, f, depth+1);
4036 FAIL("Variable length lookbehind not implemented");
4038 else if (minnext > (I32)U8_MAX) {
4039 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4041 scan->flags = (U8)minnext;
4044 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4046 if (data_fake.flags & SF_HAS_EVAL)
4047 data->flags |= SF_HAS_EVAL;
4048 data->whilem_c = data_fake.whilem_c;
4050 if (f & SCF_DO_STCLASS_AND) {
4051 if (flags & SCF_DO_STCLASS_OR) {
4052 /* OR before, AND after: ideally we would recurse with
4053 * data_fake to get the AND applied by study of the
4054 * remainder of the pattern, and then derecurse;
4055 * *** HACK *** for now just treat as "no information".
4056 * See [perl #56690].
4058 cl_init(pRExC_state, data->start_class);
4060 /* AND before and after: combine and continue */
4061 const int was = (data->start_class->flags & ANYOF_EOS);
4063 cl_and(data->start_class, &intrnl);
4065 data->start_class->flags |= ANYOF_EOS;
4069 #if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4071 /* Positive Lookahead/lookbehind
4072 In this case we can do fixed string optimisation,
4073 but we must be careful about it. Note in the case of
4074 lookbehind the positions will be offset by the minimum
4075 length of the pattern, something we won't know about
4076 until after the recurse.
4078 I32 deltanext, fake = 0;
4080 struct regnode_charclass_class intrnl;
4082 /* We use SAVEFREEPV so that when the full compile
4083 is finished perl will clean up the allocated
4084 minlens when it's all done. This way we don't
4085 have to worry about freeing them when we know
4086 they wont be used, which would be a pain.
4089 Newx( minnextp, 1, I32 );
4090 SAVEFREEPV(minnextp);
4093 StructCopy(data, &data_fake, scan_data_t);
4094 if ((flags & SCF_DO_SUBSTR) && data->last_found) {
4097 SCAN_COMMIT(pRExC_state, &data_fake,minlenp);
4098 data_fake.last_found=newSVsv(data->last_found);
4102 data_fake.last_closep = &fake;
4103 data_fake.flags = 0;
4104 data_fake.pos_delta = delta;
4106 data_fake.flags |= SF_IS_INF;
4107 if ( flags & SCF_DO_STCLASS && !scan->flags
4108 && OP(scan) == IFMATCH ) { /* Lookahead */
4109 cl_init(pRExC_state, &intrnl);
4110 data_fake.start_class = &intrnl;
4111 f |= SCF_DO_STCLASS_AND;
4113 if (flags & SCF_WHILEM_VISITED_POS)
4114 f |= SCF_WHILEM_VISITED_POS;
4115 next = regnext(scan);
4116 nscan = NEXTOPER(NEXTOPER(scan));
4118 *minnextp = study_chunk(pRExC_state, &nscan, minnextp, &deltanext,
4119 last, &data_fake, stopparen, recursed, NULL, f,depth+1);
4122 FAIL("Variable length lookbehind not implemented");
4124 else if (*minnextp > (I32)U8_MAX) {
4125 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4127 scan->flags = (U8)*minnextp;
4132 if (f & SCF_DO_STCLASS_AND) {
4133 const int was = (data->start_class->flags & ANYOF_EOS);
4135 cl_and(data->start_class, &intrnl);
4137 data->start_class->flags |= ANYOF_EOS;
4140 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4142 if (data_fake.flags & SF_HAS_EVAL)
4143 data->flags |= SF_HAS_EVAL;
4144 data->whilem_c = data_fake.whilem_c;
4145 if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
4146 if (RExC_rx->minlen<*minnextp)
4147 RExC_rx->minlen=*minnextp;
4148 SCAN_COMMIT(pRExC_state, &data_fake, minnextp);
4149 SvREFCNT_dec(data_fake.last_found);
4151 if ( data_fake.minlen_fixed != minlenp )
4153 data->offset_fixed= data_fake.offset_fixed;
4154 data->minlen_fixed= data_fake.minlen_fixed;
4155 data->lookbehind_fixed+= scan->flags;
4157 if ( data_fake.minlen_float != minlenp )
4159 data->minlen_float= data_fake.minlen_float;
4160 data->offset_float_min=data_fake.offset_float_min;
4161 data->offset_float_max=data_fake.offset_float_max;
4162 data->lookbehind_float+= scan->flags;
4171 else if (OP(scan) == OPEN) {
4172 if (stopparen != (I32)ARG(scan))
4175 else if (OP(scan) == CLOSE) {
4176 if (stopparen == (I32)ARG(scan)) {
4179 if ((I32)ARG(scan) == is_par) {
4180 next = regnext(scan);
4182 if ( next && (OP(next) != WHILEM) && next < last)
4183 is_par = 0; /* Disable optimization */
4186 *(data->last_closep) = ARG(scan);
4188 else if (OP(scan) == EVAL) {
4190 data->flags |= SF_HAS_EVAL;
4192 else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
4193 if (flags & SCF_DO_SUBSTR) {
4194 SCAN_COMMIT(pRExC_state,data,minlenp);
4195 flags &= ~SCF_DO_SUBSTR;
4197 if (data && OP(scan)==ACCEPT) {
4198 data->flags |= SCF_SEEN_ACCEPT;
4203 else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
4205 if (flags & SCF_DO_SUBSTR) {
4206 SCAN_COMMIT(pRExC_state,data,minlenp);
4207 data->longest = &(data->longest_float);
4209 is_inf = is_inf_internal = 1;
4210 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
4211 cl_anything(pRExC_state, data->start_class);
4212 flags &= ~SCF_DO_STCLASS;
4214 else if (OP(scan) == GPOS) {
4215 if (!(RExC_rx->extflags & RXf_GPOS_FLOAT) &&
4216 !(delta || is_inf || (data && data->pos_delta)))
4218 if (!(RExC_rx->extflags & RXf_ANCH) && (flags & SCF_DO_SUBSTR))
4219 RExC_rx->extflags |= RXf_ANCH_GPOS;
4220 if (RExC_rx->gofs < (U32)min)
4221 RExC_rx->gofs = min;
4223 RExC_rx->extflags |= RXf_GPOS_FLOAT;
4227 #ifdef TRIE_STUDY_OPT
4228 #ifdef FULL_TRIE_STUDY
4229 else if (PL_regkind[OP(scan)] == TRIE) {
4230 /* NOTE - There is similar code to this block above for handling
4231 BRANCH nodes on the initial study. If you change stuff here
4233 regnode *trie_node= scan;
4234 regnode *tail= regnext(scan);
4235 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4236 I32 max1 = 0, min1 = I32_MAX;
4237 struct regnode_charclass_class accum;
4239 if (flags & SCF_DO_SUBSTR) /* XXXX Add !SUSPEND? */
4240 SCAN_COMMIT(pRExC_state, data,minlenp); /* Cannot merge strings after this. */
4241 if (flags & SCF_DO_STCLASS)
4242 cl_init_zero(pRExC_state, &accum);
4248 const regnode *nextbranch= NULL;
4251 for ( word=1 ; word <= trie->wordcount ; word++)
4253 I32 deltanext=0, minnext=0, f = 0, fake;
4254 struct regnode_charclass_class this_class;
4256 data_fake.flags = 0;
4258 data_fake.whilem_c = data->whilem_c;
4259 data_fake.last_closep = data->last_closep;
4262 data_fake.last_closep = &fake;
4263 data_fake.pos_delta = delta;
4264 if (flags & SCF_DO_STCLASS) {
4265 cl_init(pRExC_state, &this_class);
4266 data_fake.start_class = &this_class;
4267 f = SCF_DO_STCLASS_AND;
4269 if (flags & SCF_WHILEM_VISITED_POS)
4270 f |= SCF_WHILEM_VISITED_POS;
4272 if (trie->jump[word]) {
4274 nextbranch = trie_node + trie->jump[0];
4275 scan= trie_node + trie->jump[word];
4276 /* We go from the jump point to the branch that follows
4277 it. Note this means we need the vestigal unused branches
4278 even though they arent otherwise used.
4280 minnext = study_chunk(pRExC_state, &scan, minlenp,
4281 &deltanext, (regnode *)nextbranch, &data_fake,
4282 stopparen, recursed, NULL, f,depth+1);
4284 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
4285 nextbranch= regnext((regnode*)nextbranch);
4287 if (min1 > (I32)(minnext + trie->minlen))
4288 min1 = minnext + trie->minlen;
4289 if (max1 < (I32)(minnext + deltanext + trie->maxlen))
4290 max1 = minnext + deltanext + trie->maxlen;
4291 if (deltanext == I32_MAX)
4292 is_inf = is_inf_internal = 1;
4294 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4296 if (data_fake.flags & SCF_SEEN_ACCEPT) {
4297 if ( stopmin > min + min1)
4298 stopmin = min + min1;
4299 flags &= ~SCF_DO_SUBSTR;
4301 data->flags |= SCF_SEEN_ACCEPT;
4304 if (data_fake.flags & SF_HAS_EVAL)
4305 data->flags |= SF_HAS_EVAL;
4306 data->whilem_c = data_fake.whilem_c;
4308 if (flags & SCF_DO_STCLASS)
4309 cl_or(pRExC_state, &accum, &this_class);
4312 if (flags & SCF_DO_SUBSTR) {
4313 data->pos_min += min1;
4314 data->pos_delta += max1 - min1;
4315 if (max1 != min1 || is_inf)
4316 data->longest = &(data->longest_float);
4319 delta += max1 - min1;
4320 if (flags & SCF_DO_STCLASS_OR) {
4321 cl_or(pRExC_state, data->start_class, &accum);
4323 cl_and(data->start_class, and_withp);
4324 flags &= ~SCF_DO_STCLASS;
4327 else if (flags & SCF_DO_STCLASS_AND) {
4329 cl_and(data->start_class, &accum);
4330 flags &= ~SCF_DO_STCLASS;
4333 /* Switch to OR mode: cache the old value of
4334 * data->start_class */
4336 StructCopy(data->start_class, and_withp,
4337 struct regnode_charclass_class);
4338 flags &= ~SCF_DO_STCLASS_AND;
4339 StructCopy(&accum, data->start_class,
4340 struct regnode_charclass_class);
4341 flags |= SCF_DO_STCLASS_OR;
4342 data->start_class->flags |= ANYOF_EOS;
4349 else if (PL_regkind[OP(scan)] == TRIE) {
4350 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4353 min += trie->minlen;
4354 delta += (trie->maxlen - trie->minlen);
4355 flags &= ~SCF_DO_STCLASS; /* xxx */
4356 if (flags & SCF_DO_SUBSTR) {
4357 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
4358 data->pos_min += trie->minlen;
4359 data->pos_delta += (trie->maxlen - trie->minlen);
4360 if (trie->maxlen != trie->minlen)
4361 data->longest = &(data->longest_float);
4363 if (trie->jump) /* no more substrings -- for now /grr*/
4364 flags &= ~SCF_DO_SUBSTR;
4366 #endif /* old or new */
4367 #endif /* TRIE_STUDY_OPT */
4369 /* Else: zero-length, ignore. */
4370 scan = regnext(scan);
4375 stopparen = frame->stop;
4376 frame = frame->prev;
4377 goto fake_study_recurse;
4382 DEBUG_STUDYDATA("pre-fin:",data,depth);
4385 *deltap = is_inf_internal ? I32_MAX : delta;
4386 if (flags & SCF_DO_SUBSTR && is_inf)
4387 data->pos_delta = I32_MAX - data->pos_min;
4388 if (is_par > (I32)U8_MAX)
4390 if (is_par && pars==1 && data) {
4391 data->flags |= SF_IN_PAR;
4392 data->flags &= ~SF_HAS_PAR;
4394 else if (pars && data) {
4395 data->flags |= SF_HAS_PAR;
4396 data->flags &= ~SF_IN_PAR;
4398 if (flags & SCF_DO_STCLASS_OR)
4399 cl_and(data->start_class, and_withp);
4400 if (flags & SCF_TRIE_RESTUDY)
4401 data->flags |= SCF_TRIE_RESTUDY;
4403 DEBUG_STUDYDATA("post-fin:",data,depth);
4405 return min < stopmin ? min : stopmin;
4409 S_add_data(RExC_state_t *pRExC_state, U32 n, const char *s)
4411 U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
4413 PERL_ARGS_ASSERT_ADD_DATA;
4415 Renewc(RExC_rxi->data,
4416 sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
4417 char, struct reg_data);
4419 Renew(RExC_rxi->data->what, count + n, U8);
4421 Newx(RExC_rxi->data->what, n, U8);
4422 RExC_rxi->data->count = count + n;
4423 Copy(s, RExC_rxi->data->what + count, n, U8);
4427 /*XXX: todo make this not included in a non debugging perl */
4428 #ifndef PERL_IN_XSUB_RE
4430 Perl_reginitcolors(pTHX)
4433 const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
4435 char *t = savepv(s);
4439 t = strchr(t, '\t');
4445 PL_colors[i] = t = (char *)"";
4450 PL_colors[i++] = (char *)"";
4457 #ifdef TRIE_STUDY_OPT
4458 #define CHECK_RESTUDY_GOTO \
4460 (data.flags & SCF_TRIE_RESTUDY) \
4464 #define CHECK_RESTUDY_GOTO
4468 - pregcomp - compile a regular expression into internal code
4470 * We can't allocate space until we know how big the compiled form will be,
4471 * but we can't compile it (and thus know how big it is) until we've got a
4472 * place to put the code. So we cheat: we compile it twice, once with code
4473 * generation turned off and size counting turned on, and once "for real".
4474 * This also means that we don't allocate space until we are sure that the
4475 * thing really will compile successfully, and we never have to move the
4476 * code and thus invalidate pointers into it. (Note that it has to be in
4477 * one piece because free() must be able to free it all.) [NB: not true in perl]
4479 * Beware that the optimization-preparation code in here knows about some
4480 * of the structure of the compiled regexp. [I'll say.]
4485 #ifndef PERL_IN_XSUB_RE
4486 #define RE_ENGINE_PTR &reh_regexp_engine
4488 extern const struct regexp_engine my_reg_engine;
4489 #define RE_ENGINE_PTR &my_reg_engine
4492 #ifndef PERL_IN_XSUB_RE
4494 Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
4497 HV * const table = GvHV(PL_hintgv);
4499 PERL_ARGS_ASSERT_PREGCOMP;
4501 /* Dispatch a request to compile a regexp to correct
4504 SV **ptr= hv_fetchs(table, "regcomp", FALSE);
4505 GET_RE_DEBUG_FLAGS_DECL;
4506 if (ptr && SvIOK(*ptr) && SvIV(*ptr)) {
4507 const regexp_engine *eng=INT2PTR(regexp_engine*,SvIV(*ptr));
4509 PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
4512 return CALLREGCOMP_ENG(eng, pattern, flags);
4515 return Perl_re_compile(aTHX_ pattern, flags);
4520 Perl_re_compile(pTHX_ SV * const pattern, U32 orig_pm_flags)
4525 register regexp_internal *ri;
4534 /* these are all flags - maybe they should be turned
4535 * into a single int with different bit masks */
4536 I32 sawlookahead = 0;
4539 bool used_setjump = FALSE;
4540 regex_charset initial_charset = get_regex_charset(orig_pm_flags);
4545 RExC_state_t RExC_state;
4546 RExC_state_t * const pRExC_state = &RExC_state;
4547 #ifdef TRIE_STUDY_OPT
4549 RExC_state_t copyRExC_state;
4551 GET_RE_DEBUG_FLAGS_DECL;
4553 PERL_ARGS_ASSERT_RE_COMPILE;
4555 DEBUG_r(if (!PL_colorset) reginitcolors());
4557 RExC_utf8 = RExC_orig_utf8 = SvUTF8(pattern);
4558 RExC_uni_semantics = 0;
4559 RExC_contains_locale = 0;
4561 /****************** LONG JUMP TARGET HERE***********************/
4562 /* Longjmp back to here if have to switch in midstream to utf8 */
4563 if (! RExC_orig_utf8) {
4564 JMPENV_PUSH(jump_ret);
4565 used_setjump = TRUE;
4568 if (jump_ret == 0) { /* First time through */
4569 exp = SvPV(pattern, plen);
4571 /* ignore the utf8ness if the pattern is 0 length */
4573 RExC_utf8 = RExC_orig_utf8 = 0;
4577 SV *dsv= sv_newmortal();
4578 RE_PV_QUOTED_DECL(s, RExC_utf8,
4579 dsv, exp, plen, 60);
4580 PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
4581 PL_colors[4],PL_colors[5],s);
4584 else { /* longjumped back */
4587 /* If the cause for the longjmp was other than changing to utf8, pop
4588 * our own setjmp, and longjmp to the correct handler */
4589 if (jump_ret != UTF8_LONGJMP) {
4591 JMPENV_JUMP(jump_ret);
4596 /* It's possible to write a regexp in ascii that represents Unicode
4597 codepoints outside of the byte range, such as via \x{100}. If we
4598 detect such a sequence we have to convert the entire pattern to utf8
4599 and then recompile, as our sizing calculation will have been based
4600 on 1 byte == 1 character, but we will need to use utf8 to encode
4601 at least some part of the pattern, and therefore must convert the whole
4604 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
4605 "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
4606 exp = (char*)Perl_bytes_to_utf8(aTHX_ (U8*)SvPV(pattern, plen), &len);
4608 RExC_orig_utf8 = RExC_utf8 = 1;
4612 #ifdef TRIE_STUDY_OPT
4616 pm_flags = orig_pm_flags;
4618 if (initial_charset == REGEX_LOCALE_CHARSET) {
4619 RExC_contains_locale = 1;
4621 else if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
4623 /* Set to use unicode semantics if the pattern is in utf8 and has the
4624 * 'depends' charset specified, as it means unicode when utf8 */
4625 set_regex_charset(&pm_flags, REGEX_UNICODE_CHARSET);
4629 RExC_flags = pm_flags;
4633 RExC_in_lookbehind = 0;
4634 RExC_seen_zerolen = *exp == '^' ? -1 : 0;
4635 RExC_seen_evals = 0;
4637 RExC_override_recoding = 0;
4639 /* First pass: determine size, legality. */
4647 RExC_emit = &PL_regdummy;
4648 RExC_whilem_seen = 0;
4649 RExC_open_parens = NULL;
4650 RExC_close_parens = NULL;
4652 RExC_paren_names = NULL;
4654 RExC_paren_name_list = NULL;
4656 RExC_recurse = NULL;
4657 RExC_recurse_count = 0;
4659 #if 0 /* REGC() is (currently) a NOP at the first pass.
4660 * Clever compilers notice this and complain. --jhi */
4661 REGC((U8)REG_MAGIC, (char*)RExC_emit);
4663 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n"));
4664 if (reg(pRExC_state, 0, &flags,1) == NULL) {
4665 RExC_precomp = NULL;
4669 /* Here, finished first pass. Get rid of any added setjmp */
4675 PerlIO_printf(Perl_debug_log,
4676 "Required size %"IVdf" nodes\n"
4677 "Starting second pass (creation)\n",
4680 RExC_lastparse=NULL;
4683 /* The first pass could have found things that force Unicode semantics */
4684 if ((RExC_utf8 || RExC_uni_semantics)
4685 && get_regex_charset(pm_flags) == REGEX_DEPENDS_CHARSET)
4687 set_regex_charset(&pm_flags, REGEX_UNICODE_CHARSET);
4690 /* Small enough for pointer-storage convention?
4691 If extralen==0, this means that we will not need long jumps. */
4692 if (RExC_size >= 0x10000L && RExC_extralen)
4693 RExC_size += RExC_extralen;
4696 if (RExC_whilem_seen > 15)
4697 RExC_whilem_seen = 15;
4699 /* Allocate space and zero-initialize. Note, the two step process
4700 of zeroing when in debug mode, thus anything assigned has to
4701 happen after that */
4702 rx = (REGEXP*) newSV_type(SVt_REGEXP);
4703 r = (struct regexp*)SvANY(rx);
4704 Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
4705 char, regexp_internal);
4706 if ( r == NULL || ri == NULL )
4707 FAIL("Regexp out of space");
4709 /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
4710 Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode), char);
4712 /* bulk initialize base fields with 0. */
4713 Zero(ri, sizeof(regexp_internal), char);
4716 /* non-zero initialization begins here */
4718 r->engine= RE_ENGINE_PTR;
4719 r->extflags = pm_flags;
4721 bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
4722 bool has_charset = (get_regex_charset(r->extflags) != REGEX_DEPENDS_CHARSET);
4724 /* The caret is output if there are any defaults: if not all the STD
4725 * flags are set, or if no character set specifier is needed */
4727 (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
4729 bool has_runon = ((RExC_seen & REG_SEEN_RUN_ON_COMMENT)==REG_SEEN_RUN_ON_COMMENT);
4730 U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
4731 >> RXf_PMf_STD_PMMOD_SHIFT);
4732 const char *fptr = STD_PAT_MODS; /*"msix"*/
4734 /* Allocate for the worst case, which is all the std flags are turned
4735 * on. If more precision is desired, we could do a population count of
4736 * the flags set. This could be done with a small lookup table, or by
4737 * shifting, masking and adding, or even, when available, assembly
4738 * language for a machine-language population count.
4739 * We never output a minus, as all those are defaults, so are
4740 * covered by the caret */
4741 const STRLEN wraplen = plen + has_p + has_runon
4742 + has_default /* If needs a caret */
4744 /* If needs a character set specifier */
4745 + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
4746 + (sizeof(STD_PAT_MODS) - 1)
4747 + (sizeof("(?:)") - 1);
4749 p = sv_grow(MUTABLE_SV(rx), wraplen + 1); /* +1 for the ending NUL */
4751 SvFLAGS(rx) |= SvUTF8(pattern);
4754 /* If a default, cover it using the caret */
4756 *p++= DEFAULT_PAT_MOD;
4760 const char* const name = get_regex_charset_name(r->extflags, &len);
4761 Copy(name, p, len, char);
4765 *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
4768 while((ch = *fptr++)) {
4776 Copy(RExC_precomp, p, plen, char);
4777 assert ((RX_WRAPPED(rx) - p) < 16);
4778 r->pre_prefix = p - RX_WRAPPED(rx);
4784 SvCUR_set(rx, p - SvPVX_const(rx));
4788 r->nparens = RExC_npar - 1; /* set early to validate backrefs */
4790 if (RExC_seen & REG_SEEN_RECURSE) {
4791 Newxz(RExC_open_parens, RExC_npar,regnode *);
4792 SAVEFREEPV(RExC_open_parens);
4793 Newxz(RExC_close_parens,RExC_npar,regnode *);
4794 SAVEFREEPV(RExC_close_parens);
4797 /* Useful during FAIL. */
4798 #ifdef RE_TRACK_PATTERN_OFFSETS
4799 Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
4800 DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
4801 "%s %"UVuf" bytes for offset annotations.\n",
4802 ri->u.offsets ? "Got" : "Couldn't get",
4803 (UV)((2*RExC_size+1) * sizeof(U32))));
4805 SetProgLen(ri,RExC_size);
4809 REH_CALL_COMP_BEGIN_HOOK(pRExC_state->rx);
4811 /* Second pass: emit code. */
4812 RExC_flags = pm_flags; /* don't let top level (?i) bleed */
4817 RExC_emit_start = ri->program;
4818 RExC_emit = ri->program;
4819 RExC_emit_bound = ri->program + RExC_size + 1;
4821 /* Store the count of eval-groups for security checks: */
4822 RExC_rx->seen_evals = RExC_seen_evals;
4823 REGC((U8)REG_MAGIC, (char*) RExC_emit++);
4824 if (reg(pRExC_state, 0, &flags,1) == NULL) {
4828 /* XXXX To minimize changes to RE engine we always allocate
4829 3-units-long substrs field. */
4830 Newx(r->substrs, 1, struct reg_substr_data);
4831 if (RExC_recurse_count) {
4832 Newxz(RExC_recurse,RExC_recurse_count,regnode *);
4833 SAVEFREEPV(RExC_recurse);
4837 r->minlen = minlen = sawlookahead = sawplus = sawopen = 0;
4838 Zero(r->substrs, 1, struct reg_substr_data);
4840 #ifdef TRIE_STUDY_OPT
4842 StructCopy(&zero_scan_data, &data, scan_data_t);
4843 copyRExC_state = RExC_state;
4846 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
4848 RExC_state = copyRExC_state;
4849 if (seen & REG_TOP_LEVEL_BRANCHES)
4850 RExC_seen |= REG_TOP_LEVEL_BRANCHES;
4852 RExC_seen &= ~REG_TOP_LEVEL_BRANCHES;
4853 if (data.last_found) {
4854 SvREFCNT_dec(data.longest_fixed);
4855 SvREFCNT_dec(data.longest_float);
4856 SvREFCNT_dec(data.last_found);
4858 StructCopy(&zero_scan_data, &data, scan_data_t);
4861 StructCopy(&zero_scan_data, &data, scan_data_t);
4864 /* Dig out information for optimizations. */
4865 r->extflags = RExC_flags; /* was pm_op */
4866 /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
4869 SvUTF8_on(rx); /* Unicode in it? */
4870 ri->regstclass = NULL;
4871 if (RExC_naughty >= 10) /* Probably an expensive pattern. */
4872 r->intflags |= PREGf_NAUGHTY;
4873 scan = ri->program + 1; /* First BRANCH. */
4875 /* testing for BRANCH here tells us whether there is "must appear"
4876 data in the pattern. If there is then we can use it for optimisations */
4877 if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES)) { /* Only one top-level choice. */
4879 STRLEN longest_float_length, longest_fixed_length;
4880 struct regnode_charclass_class ch_class; /* pointed to by data */
4882 I32 last_close = 0; /* pointed to by data */
4883 regnode *first= scan;
4884 regnode *first_next= regnext(first);
4886 * Skip introductions and multiplicators >= 1
4887 * so that we can extract the 'meat' of the pattern that must
4888 * match in the large if() sequence following.
4889 * NOTE that EXACT is NOT covered here, as it is normally
4890 * picked up by the optimiser separately.
4892 * This is unfortunate as the optimiser isnt handling lookahead
4893 * properly currently.
4896 while ((OP(first) == OPEN && (sawopen = 1)) ||
4897 /* An OR of *one* alternative - should not happen now. */
4898 (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
4899 /* for now we can't handle lookbehind IFMATCH*/
4900 (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
4901 (OP(first) == PLUS) ||
4902 (OP(first) == MINMOD) ||
4903 /* An {n,m} with n>0 */
4904 (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
4905 (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
4908 * the only op that could be a regnode is PLUS, all the rest
4909 * will be regnode_1 or regnode_2.
4912 if (OP(first) == PLUS)
4915 first += regarglen[OP(first)];
4917 first = NEXTOPER(first);
4918 first_next= regnext(first);
4921 /* Starting-point info. */
4923 DEBUG_PEEP("first:",first,0);
4924 /* Ignore EXACT as we deal with it later. */
4925 if (PL_regkind[OP(first)] == EXACT) {
4926 if (OP(first) == EXACT)
4927 NOOP; /* Empty, get anchored substr later. */
4929 ri->regstclass = first;
4932 else if (PL_regkind[OP(first)] == TRIE &&
4933 ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
4936 /* this can happen only on restudy */
4937 if ( OP(first) == TRIE ) {
4938 struct regnode_1 *trieop = (struct regnode_1 *)
4939 PerlMemShared_calloc(1, sizeof(struct regnode_1));
4940 StructCopy(first,trieop,struct regnode_1);
4941 trie_op=(regnode *)trieop;
4943 struct regnode_charclass *trieop = (struct regnode_charclass *)
4944 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
4945 StructCopy(first,trieop,struct regnode_charclass);
4946 trie_op=(regnode *)trieop;
4949 make_trie_failtable(pRExC_state, (regnode *)first, trie_op, 0);
4950 ri->regstclass = trie_op;
4953 else if (REGNODE_SIMPLE(OP(first)))
4954 ri->regstclass = first;
4955 else if (PL_regkind[OP(first)] == BOUND ||
4956 PL_regkind[OP(first)] == NBOUND)
4957 ri->regstclass = first;
4958 else if (PL_regkind[OP(first)] == BOL) {
4959 r->extflags |= (OP(first) == MBOL
4961 : (OP(first) == SBOL
4964 first = NEXTOPER(first);
4967 else if (OP(first) == GPOS) {
4968 r->extflags |= RXf_ANCH_GPOS;
4969 first = NEXTOPER(first);
4972 else if ((!sawopen || !RExC_sawback) &&
4973 (OP(first) == STAR &&
4974 PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
4975 !(r->extflags & RXf_ANCH) && !(RExC_seen & REG_SEEN_EVAL))
4977 /* turn .* into ^.* with an implied $*=1 */
4979 (OP(NEXTOPER(first)) == REG_ANY)
4982 r->extflags |= type;
4983 r->intflags |= PREGf_IMPLICIT;
4984 first = NEXTOPER(first);
4987 if (sawplus && !sawlookahead && (!sawopen || !RExC_sawback)
4988 && !(RExC_seen & REG_SEEN_EVAL)) /* May examine pos and $& */
4989 /* x+ must match at the 1st pos of run of x's */
4990 r->intflags |= PREGf_SKIP;
4992 /* Scan is after the zeroth branch, first is atomic matcher. */
4993 #ifdef TRIE_STUDY_OPT
4996 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
4997 (IV)(first - scan + 1))
5001 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
5002 (IV)(first - scan + 1))
5008 * If there's something expensive in the r.e., find the
5009 * longest literal string that must appear and make it the
5010 * regmust. Resolve ties in favor of later strings, since
5011 * the regstart check works with the beginning of the r.e.
5012 * and avoiding duplication strengthens checking. Not a
5013 * strong reason, but sufficient in the absence of others.
5014 * [Now we resolve ties in favor of the earlier string if
5015 * it happens that c_offset_min has been invalidated, since the
5016 * earlier string may buy us something the later one won't.]
5019 data.longest_fixed = newSVpvs("");
5020 data.longest_float = newSVpvs("");
5021 data.last_found = newSVpvs("");
5022 data.longest = &(data.longest_fixed);
5024 if (!ri->regstclass) {
5025 cl_init(pRExC_state, &ch_class);
5026 data.start_class = &ch_class;
5027 stclass_flag = SCF_DO_STCLASS_AND;
5028 } else /* XXXX Check for BOUND? */
5030 data.last_closep = &last_close;
5032 minlen = study_chunk(pRExC_state, &first, &minlen, &fake, scan + RExC_size, /* Up to end */
5033 &data, -1, NULL, NULL,
5034 SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag,0);
5040 if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
5041 && data.last_start_min == 0 && data.last_end > 0
5042 && !RExC_seen_zerolen
5043 && !(RExC_seen & REG_SEEN_VERBARG)
5044 && (!(RExC_seen & REG_SEEN_GPOS) || (r->extflags & RXf_ANCH_GPOS)))
5045 r->extflags |= RXf_CHECK_ALL;
5046 scan_commit(pRExC_state, &data,&minlen,0);
5047 SvREFCNT_dec(data.last_found);
5049 /* Note that code very similar to this but for anchored string
5050 follows immediately below, changes may need to be made to both.
5053 longest_float_length = CHR_SVLEN(data.longest_float);
5054 if (longest_float_length
5055 || (data.flags & SF_FL_BEFORE_EOL
5056 && (!(data.flags & SF_FL_BEFORE_MEOL)
5057 || (RExC_flags & RXf_PMf_MULTILINE))))
5061 if (SvCUR(data.longest_fixed) /* ok to leave SvCUR */
5062 && data.offset_fixed == data.offset_float_min
5063 && SvCUR(data.longest_fixed) == SvCUR(data.longest_float))
5064 goto remove_float; /* As in (a)+. */
5066 /* copy the information about the longest float from the reg_scan_data
5067 over to the program. */
5068 if (SvUTF8(data.longest_float)) {
5069 r->float_utf8 = data.longest_float;
5070 r->float_substr = NULL;
5072 r->float_substr = data.longest_float;
5073 r->float_utf8 = NULL;
5075 /* float_end_shift is how many chars that must be matched that
5076 follow this item. We calculate it ahead of time as once the
5077 lookbehind offset is added in we lose the ability to correctly
5079 ml = data.minlen_float ? *(data.minlen_float)
5080 : (I32)longest_float_length;
5081 r->float_end_shift = ml - data.offset_float_min
5082 - longest_float_length + (SvTAIL(data.longest_float) != 0)
5083 + data.lookbehind_float;
5084 r->float_min_offset = data.offset_float_min - data.lookbehind_float;
5085 r->float_max_offset = data.offset_float_max;
5086 if (data.offset_float_max < I32_MAX) /* Don't offset infinity */
5087 r->float_max_offset -= data.lookbehind_float;
5089 t = (data.flags & SF_FL_BEFORE_EOL /* Can't have SEOL and MULTI */
5090 && (!(data.flags & SF_FL_BEFORE_MEOL)
5091 || (RExC_flags & RXf_PMf_MULTILINE)));
5092 fbm_compile(data.longest_float, t ? FBMcf_TAIL : 0);
5096 r->float_substr = r->float_utf8 = NULL;
5097 SvREFCNT_dec(data.longest_float);
5098 longest_float_length = 0;
5101 /* Note that code very similar to this but for floating string
5102 is immediately above, changes may need to be made to both.
5105 longest_fixed_length = CHR_SVLEN(data.longest_fixed);
5106 if (longest_fixed_length
5107 || (data.flags & SF_FIX_BEFORE_EOL /* Cannot have SEOL and MULTI */
5108 && (!(data.flags & SF_FIX_BEFORE_MEOL)
5109 || (RExC_flags & RXf_PMf_MULTILINE))))
5113 /* copy the information about the longest fixed
5114 from the reg_scan_data over to the program. */
5115 if (SvUTF8(data.longest_fixed)) {
5116 r->anchored_utf8 = data.longest_fixed;
5117 r->anchored_substr = NULL;
5119 r->anchored_substr = data.longest_fixed;
5120 r->anchored_utf8 = NULL;
5122 /* fixed_end_shift is how many chars that must be matched that
5123 follow this item. We calculate it ahead of time as once the
5124 lookbehind offset is added in we lose the ability to correctly
5126 ml = data.minlen_fixed ? *(data.minlen_fixed)
5127 : (I32)longest_fixed_length;
5128 r->anchored_end_shift = ml - data.offset_fixed
5129 - longest_fixed_length + (SvTAIL(data.longest_fixed) != 0)
5130 + data.lookbehind_fixed;
5131 r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
5133 t = (data.flags & SF_FIX_BEFORE_EOL /* Can't have SEOL and MULTI */
5134 && (!(data.flags & SF_FIX_BEFORE_MEOL)
5135 || (RExC_flags & RXf_PMf_MULTILINE)));
5136 fbm_compile(data.longest_fixed, t ? FBMcf_TAIL : 0);
5139 r->anchored_substr = r->anchored_utf8 = NULL;
5140 SvREFCNT_dec(data.longest_fixed);
5141 longest_fixed_length = 0;
5144 && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
5145 ri->regstclass = NULL;
5147 if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
5149 && !(data.start_class->flags & ANYOF_EOS)
5150 && !cl_is_anything(data.start_class))
5152 const U32 n = add_data(pRExC_state, 1, "f");
5153 data.start_class->flags |= ANYOF_IS_SYNTHETIC;
5155 Newx(RExC_rxi->data->data[n], 1,
5156 struct regnode_charclass_class);
5157 StructCopy(data.start_class,
5158 (struct regnode_charclass_class*)RExC_rxi->data->data[n],
5159 struct regnode_charclass_class);
5160 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
5161 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
5162 DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
5163 regprop(r, sv, (regnode*)data.start_class);
5164 PerlIO_printf(Perl_debug_log,
5165 "synthetic stclass \"%s\".\n",
5166 SvPVX_const(sv));});
5169 /* A temporary algorithm prefers floated substr to fixed one to dig more info. */
5170 if (longest_fixed_length > longest_float_length) {
5171 r->check_end_shift = r->anchored_end_shift;
5172 r->check_substr = r->anchored_substr;
5173 r->check_utf8 = r->anchored_utf8;
5174 r->check_offset_min = r->check_offset_max = r->anchored_offset;
5175 if (r->extflags & RXf_ANCH_SINGLE)
5176 r->extflags |= RXf_NOSCAN;
5179 r->check_end_shift = r->float_end_shift;
5180 r->check_substr = r->float_substr;
5181 r->check_utf8 = r->float_utf8;
5182 r->check_offset_min = r->float_min_offset;
5183 r->check_offset_max = r->float_max_offset;
5185 /* XXXX Currently intuiting is not compatible with ANCH_GPOS.
5186 This should be changed ASAP! */
5187 if ((r->check_substr || r->check_utf8) && !(r->extflags & RXf_ANCH_GPOS)) {
5188 r->extflags |= RXf_USE_INTUIT;
5189 if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
5190 r->extflags |= RXf_INTUIT_TAIL;
5192 /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
5193 if ( (STRLEN)minlen < longest_float_length )
5194 minlen= longest_float_length;
5195 if ( (STRLEN)minlen < longest_fixed_length )
5196 minlen= longest_fixed_length;
5200 /* Several toplevels. Best we can is to set minlen. */
5202 struct regnode_charclass_class ch_class;
5205 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
5207 scan = ri->program + 1;
5208 cl_init(pRExC_state, &ch_class);
5209 data.start_class = &ch_class;
5210 data.last_closep = &last_close;
5213 minlen = study_chunk(pRExC_state, &scan, &minlen, &fake, scan + RExC_size,
5214 &data, -1, NULL, NULL, SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS,0);
5218 r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
5219 = r->float_substr = r->float_utf8 = NULL;
5221 if (!(data.start_class->flags & ANYOF_EOS)
5222 && !cl_is_anything(data.start_class))
5224 const U32 n = add_data(pRExC_state, 1, "f");
5225 data.start_class->flags |= ANYOF_IS_SYNTHETIC;
5227 Newx(RExC_rxi->data->data[n], 1,
5228 struct regnode_charclass_class);
5229 StructCopy(data.start_class,
5230 (struct regnode_charclass_class*)RExC_rxi->data->data[n],
5231 struct regnode_charclass_class);
5232 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
5233 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
5234 DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
5235 regprop(r, sv, (regnode*)data.start_class);
5236 PerlIO_printf(Perl_debug_log,
5237 "synthetic stclass \"%s\".\n",
5238 SvPVX_const(sv));});
5242 /* Guard against an embedded (?=) or (?<=) with a longer minlen than
5243 the "real" pattern. */
5245 PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf"\n",
5246 (IV)minlen, (IV)r->minlen);
5248 r->minlenret = minlen;
5249 if (r->minlen < minlen)
5252 if (RExC_seen & REG_SEEN_GPOS)
5253 r->extflags |= RXf_GPOS_SEEN;
5254 if (RExC_seen & REG_SEEN_LOOKBEHIND)
5255 r->extflags |= RXf_LOOKBEHIND_SEEN;
5256 if (RExC_seen & REG_SEEN_EVAL)
5257 r->extflags |= RXf_EVAL_SEEN;
5258 if (RExC_seen & REG_SEEN_CANY)
5259 r->extflags |= RXf_CANY_SEEN;
5260 if (RExC_seen & REG_SEEN_VERBARG)
5261 r->intflags |= PREGf_VERBARG_SEEN;
5262 if (RExC_seen & REG_SEEN_CUTGROUP)
5263 r->intflags |= PREGf_CUTGROUP_SEEN;
5264 if (RExC_paren_names)
5265 RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
5267 RXp_PAREN_NAMES(r) = NULL;
5269 #ifdef STUPID_PATTERN_CHECKS
5270 if (RX_PRELEN(rx) == 0)
5271 r->extflags |= RXf_NULL;
5272 if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
5273 /* XXX: this should happen BEFORE we compile */
5274 r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
5275 else if (RX_PRELEN(rx) == 3 && memEQ("\\s+", RX_PRECOMP(rx), 3))
5276 r->extflags |= RXf_WHITE;
5277 else if (RX_PRELEN(rx) == 1 && RXp_PRECOMP(rx)[0] == '^')
5278 r->extflags |= RXf_START_ONLY;
5280 if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
5281 /* XXX: this should happen BEFORE we compile */
5282 r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
5284 regnode *first = ri->program + 1;
5287 if (PL_regkind[fop] == NOTHING && OP(NEXTOPER(first)) == END)
5288 r->extflags |= RXf_NULL;
5289 else if (PL_regkind[fop] == BOL && OP(NEXTOPER(first)) == END)
5290 r->extflags |= RXf_START_ONLY;
5291 else if (fop == PLUS && OP(NEXTOPER(first)) == SPACE
5292 && OP(regnext(first)) == END)
5293 r->extflags |= RXf_WHITE;
5297 if (RExC_paren_names) {
5298 ri->name_list_idx = add_data( pRExC_state, 1, "a" );
5299 ri->data->data[ri->name_list_idx] = (void*)SvREFCNT_inc(RExC_paren_name_list);
5302 ri->name_list_idx = 0;
5304 if (RExC_recurse_count) {
5305 for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
5306 const regnode *scan = RExC_recurse[RExC_recurse_count-1];
5307 ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
5310 Newxz(r->offs, RExC_npar, regexp_paren_pair);
5311 /* assume we don't need to swap parens around before we match */
5314 PerlIO_printf(Perl_debug_log,"Final program:\n");
5317 #ifdef RE_TRACK_PATTERN_OFFSETS
5318 DEBUG_OFFSETS_r(if (ri->u.offsets) {
5319 const U32 len = ri->u.offsets[0];
5321 GET_RE_DEBUG_FLAGS_DECL;
5322 PerlIO_printf(Perl_debug_log, "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
5323 for (i = 1; i <= len; i++) {
5324 if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
5325 PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
5326 (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
5328 PerlIO_printf(Perl_debug_log, "\n");
5334 #undef RE_ENGINE_PTR
5338 Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
5341 PERL_ARGS_ASSERT_REG_NAMED_BUFF;
5343 PERL_UNUSED_ARG(value);
5345 if (flags & RXapif_FETCH) {
5346 return reg_named_buff_fetch(rx, key, flags);
5347 } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
5348 Perl_croak_no_modify(aTHX);
5350 } else if (flags & RXapif_EXISTS) {
5351 return reg_named_buff_exists(rx, key, flags)
5354 } else if (flags & RXapif_REGNAMES) {
5355 return reg_named_buff_all(rx, flags);
5356 } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
5357 return reg_named_buff_scalar(rx, flags);
5359 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
5365 Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
5368 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
5369 PERL_UNUSED_ARG(lastkey);
5371 if (flags & RXapif_FIRSTKEY)
5372 return reg_named_buff_firstkey(rx, flags);
5373 else if (flags & RXapif_NEXTKEY)
5374 return reg_named_buff_nextkey(rx, flags);
5376 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter", (int)flags);
5382 Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
5385 AV *retarray = NULL;
5387 struct regexp *const rx = (struct regexp *)SvANY(r);
5389 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
5391 if (flags & RXapif_ALL)
5394 if (rx && RXp_PAREN_NAMES(rx)) {
5395 HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
5398 SV* sv_dat=HeVAL(he_str);
5399 I32 *nums=(I32*)SvPVX(sv_dat);
5400 for ( i=0; i<SvIVX(sv_dat); i++ ) {
5401 if ((I32)(rx->nparens) >= nums[i]
5402 && rx->offs[nums[i]].start != -1
5403 && rx->offs[nums[i]].end != -1)
5406 CALLREG_NUMBUF_FETCH(r,nums[i],ret);
5410 ret = newSVsv(&PL_sv_undef);
5413 av_push(retarray, ret);
5416 return newRV_noinc(MUTABLE_SV(retarray));
5423 Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
5426 struct regexp *const rx = (struct regexp *)SvANY(r);
5428 PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
5430 if (rx && RXp_PAREN_NAMES(rx)) {
5431 if (flags & RXapif_ALL) {
5432 return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
5434 SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
5448 Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
5450 struct regexp *const rx = (struct regexp *)SvANY(r);
5452 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
5454 if ( rx && RXp_PAREN_NAMES(rx) ) {
5455 (void)hv_iterinit(RXp_PAREN_NAMES(rx));
5457 return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
5464 Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
5466 struct regexp *const rx = (struct regexp *)SvANY(r);
5467 GET_RE_DEBUG_FLAGS_DECL;
5469 PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
5471 if (rx && RXp_PAREN_NAMES(rx)) {
5472 HV *hv = RXp_PAREN_NAMES(rx);
5474 while ( (temphe = hv_iternext_flags(hv,0)) ) {
5477 SV* sv_dat = HeVAL(temphe);
5478 I32 *nums = (I32*)SvPVX(sv_dat);
5479 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
5480 if ((I32)(rx->lastparen) >= nums[i] &&
5481 rx->offs[nums[i]].start != -1 &&
5482 rx->offs[nums[i]].end != -1)
5488 if (parno || flags & RXapif_ALL) {
5489 return newSVhek(HeKEY_hek(temphe));
5497 Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
5502 struct regexp *const rx = (struct regexp *)SvANY(r);
5504 PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
5506 if (rx && RXp_PAREN_NAMES(rx)) {
5507 if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
5508 return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
5509 } else if (flags & RXapif_ONE) {
5510 ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
5511 av = MUTABLE_AV(SvRV(ret));
5512 length = av_len(av);
5514 return newSViv(length + 1);
5516 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar", (int)flags);
5520 return &PL_sv_undef;
5524 Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
5526 struct regexp *const rx = (struct regexp *)SvANY(r);
5529 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
5531 if (rx && RXp_PAREN_NAMES(rx)) {
5532 HV *hv= RXp_PAREN_NAMES(rx);
5534 (void)hv_iterinit(hv);
5535 while ( (temphe = hv_iternext_flags(hv,0)) ) {
5538 SV* sv_dat = HeVAL(temphe);
5539 I32 *nums = (I32*)SvPVX(sv_dat);
5540 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
5541 if ((I32)(rx->lastparen) >= nums[i] &&
5542 rx->offs[nums[i]].start != -1 &&
5543 rx->offs[nums[i]].end != -1)
5549 if (parno || flags & RXapif_ALL) {
5550 av_push(av, newSVhek(HeKEY_hek(temphe)));
5555 return newRV_noinc(MUTABLE_SV(av));
5559 Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
5562 struct regexp *const rx = (struct regexp *)SvANY(r);
5567 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
5570 sv_setsv(sv,&PL_sv_undef);
5574 if (paren == RX_BUFF_IDX_PREMATCH && rx->offs[0].start != -1) {
5576 i = rx->offs[0].start;
5580 if (paren == RX_BUFF_IDX_POSTMATCH && rx->offs[0].end != -1) {
5582 s = rx->subbeg + rx->offs[0].end;
5583 i = rx->sublen - rx->offs[0].end;
5586 if ( 0 <= paren && paren <= (I32)rx->nparens &&
5587 (s1 = rx->offs[paren].start) != -1 &&
5588 (t1 = rx->offs[paren].end) != -1)
5592 s = rx->subbeg + s1;
5594 sv_setsv(sv,&PL_sv_undef);
5597 assert(rx->sublen >= (s - rx->subbeg) + i );
5599 const int oldtainted = PL_tainted;
5601 sv_setpvn(sv, s, i);
5602 PL_tainted = oldtainted;
5603 if ( (rx->extflags & RXf_CANY_SEEN)
5604 ? (RXp_MATCH_UTF8(rx)
5605 && (!i || is_utf8_string((U8*)s, i)))
5606 : (RXp_MATCH_UTF8(rx)) )
5613 if (RXp_MATCH_TAINTED(rx)) {
5614 if (SvTYPE(sv) >= SVt_PVMG) {
5615 MAGIC* const mg = SvMAGIC(sv);
5618 SvMAGIC_set(sv, mg->mg_moremagic);
5620 if ((mgt = SvMAGIC(sv))) {
5621 mg->mg_moremagic = mgt;
5622 SvMAGIC_set(sv, mg);
5632 sv_setsv(sv,&PL_sv_undef);
5638 Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
5639 SV const * const value)
5641 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
5643 PERL_UNUSED_ARG(rx);
5644 PERL_UNUSED_ARG(paren);
5645 PERL_UNUSED_ARG(value);
5648 Perl_croak_no_modify(aTHX);
5652 Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
5655 struct regexp *const rx = (struct regexp *)SvANY(r);
5659 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
5661 /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
5663 /* $` / ${^PREMATCH} */
5664 case RX_BUFF_IDX_PREMATCH:
5665 if (rx->offs[0].start != -1) {
5666 i = rx->offs[0].start;
5674 /* $' / ${^POSTMATCH} */
5675 case RX_BUFF_IDX_POSTMATCH:
5676 if (rx->offs[0].end != -1) {
5677 i = rx->sublen - rx->offs[0].end;
5679 s1 = rx->offs[0].end;
5685 /* $& / ${^MATCH}, $1, $2, ... */
5687 if (paren <= (I32)rx->nparens &&
5688 (s1 = rx->offs[paren].start) != -1 &&
5689 (t1 = rx->offs[paren].end) != -1)
5694 if (ckWARN(WARN_UNINITIALIZED))
5695 report_uninit((const SV *)sv);
5700 if (i > 0 && RXp_MATCH_UTF8(rx)) {
5701 const char * const s = rx->subbeg + s1;
5706 if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
5713 Perl_reg_qr_package(pTHX_ REGEXP * const rx)
5715 PERL_ARGS_ASSERT_REG_QR_PACKAGE;
5716 PERL_UNUSED_ARG(rx);
5720 return newSVpvs("Regexp");
5723 /* Scans the name of a named buffer from the pattern.
5724 * If flags is REG_RSN_RETURN_NULL returns null.
5725 * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
5726 * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
5727 * to the parsed name as looked up in the RExC_paren_names hash.
5728 * If there is an error throws a vFAIL().. type exception.
5731 #define REG_RSN_RETURN_NULL 0
5732 #define REG_RSN_RETURN_NAME 1
5733 #define REG_RSN_RETURN_DATA 2
5736 S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
5738 char *name_start = RExC_parse;
5740 PERL_ARGS_ASSERT_REG_SCAN_NAME;
5742 if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
5743 /* skip IDFIRST by using do...while */
5746 RExC_parse += UTF8SKIP(RExC_parse);
5747 } while (isALNUM_utf8((U8*)RExC_parse));
5751 } while (isALNUM(*RExC_parse));
5756 = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
5757 SVs_TEMP | (UTF ? SVf_UTF8 : 0));
5758 if ( flags == REG_RSN_RETURN_NAME)
5760 else if (flags==REG_RSN_RETURN_DATA) {
5763 if ( ! sv_name ) /* should not happen*/
5764 Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
5765 if (RExC_paren_names)
5766 he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
5768 sv_dat = HeVAL(he_str);
5770 vFAIL("Reference to nonexistent named group");
5774 Perl_croak(aTHX_ "panic: bad flag in reg_scan_name");
5781 #define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \
5782 int rem=(int)(RExC_end - RExC_parse); \
5791 if (RExC_lastparse!=RExC_parse) \
5792 PerlIO_printf(Perl_debug_log," >%.*s%-*s", \
5795 iscut ? "..." : "<" \
5798 PerlIO_printf(Perl_debug_log,"%16s",""); \
5801 num = RExC_size + 1; \
5803 num=REG_NODE_NUM(RExC_emit); \
5804 if (RExC_lastnum!=num) \
5805 PerlIO_printf(Perl_debug_log,"|%4d",num); \
5807 PerlIO_printf(Perl_debug_log,"|%4s",""); \
5808 PerlIO_printf(Perl_debug_log,"|%*s%-4s", \
5809 (int)((depth*2)), "", \
5813 RExC_lastparse=RExC_parse; \
5818 #define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \
5819 DEBUG_PARSE_MSG((funcname)); \
5820 PerlIO_printf(Perl_debug_log,"%4s","\n"); \
5822 #define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \
5823 DEBUG_PARSE_MSG((funcname)); \
5824 PerlIO_printf(Perl_debug_log,fmt "\n",args); \
5827 /* This section of code defines the inversion list object and its methods. The
5828 * interfaces are highly subject to change, so as much as possible is static to
5829 * this file. An inversion list is here implemented as a malloc'd C UV array
5830 * with some added info that is placed as UVs at the beginning in a header
5831 * portion. An inversion list for Unicode is an array of code points, sorted
5832 * by ordinal number. The zeroth element is the first code point in the list.
5833 * The 1th element is the first element beyond that not in the list. In other
5834 * words, the first range is
5835 * invlist[0]..(invlist[1]-1)
5836 * The other ranges follow. Thus every element that is divisible by two marks
5837 * the beginning of a range that is in the list, and every element not
5838 * divisible by two marks the beginning of a range not in the list. A single
5839 * element inversion list that contains the single code point N generally
5840 * consists of two elements
5843 * (The exception is when N is the highest representable value on the
5844 * machine, in which case the list containing just it would be a single
5845 * element, itself. By extension, if the last range in the list extends to
5846 * infinity, then the first element of that range will be in the inversion list
5847 * at a position that is divisible by two, and is the final element in the
5849 * Taking the complement (inverting) an inversion list is quite simple, if the
5850 * first element is 0, remove it; otherwise add a 0 element at the beginning.
5851 * This implementation reserves an element at the beginning of each inversion list
5852 * to contain 0 when the list contains 0, and contains 1 otherwise. The actual
5853 * beginning of the list is either that element if 0, or the next one if 1.
5855 * More about inversion lists can be found in "Unicode Demystified"
5856 * Chapter 13 by Richard Gillam, published by Addison-Wesley.
5857 * More will be coming when functionality is added later.
5859 * The inversion list data structure is currently implemented as an SV pointing
5860 * to an array of UVs that the SV thinks are bytes. This allows us to have an
5861 * array of UV whose memory management is automatically handled by the existing
5862 * facilities for SV's.
5864 * Some of the methods should always be private to the implementation, and some
5865 * should eventually be made public */
5867 #define INVLIST_LEN_OFFSET 0 /* Number of elements in the inversion list */
5868 #define INVLIST_ITER_OFFSET 1 /* Current iteration position */
5870 #define INVLIST_ZERO_OFFSET 2 /* 0 or 1; must be last element in header */
5871 /* The UV at position ZERO contains either 0 or 1. If 0, the inversion list
5872 * contains the code point U+00000, and begins here. If 1, the inversion list
5873 * doesn't contain U+0000, and it begins at the next UV in the array.
5874 * Inverting an inversion list consists of adding or removing the 0 at the
5875 * beginning of it. By reserving a space for that 0, inversion can be made
5878 #define HEADER_LENGTH (INVLIST_ZERO_OFFSET + 1)
5880 /* Internally things are UVs */
5881 #define TO_INTERNAL_SIZE(x) ((x + HEADER_LENGTH) * sizeof(UV))
5882 #define FROM_INTERNAL_SIZE(x) ((x / sizeof(UV)) - HEADER_LENGTH)
5884 #define INVLIST_INITIAL_LEN 10
5886 PERL_STATIC_INLINE UV*
5887 S__invlist_array_init(pTHX_ SV* const invlist, const bool will_have_0)
5889 /* Returns a pointer to the first element in the inversion list's array.
5890 * This is called upon initialization of an inversion list. Where the
5891 * array begins depends on whether the list has the code point U+0000
5892 * in it or not. The other parameter tells it whether the code that
5893 * follows this call is about to put a 0 in the inversion list or not.
5894 * The first element is either the element with 0, if 0, or the next one,
5897 UV* zero = get_invlist_zero_addr(invlist);
5899 PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
5902 assert(! *get_invlist_len_addr(invlist));
5904 /* 1^1 = 0; 1^0 = 1 */
5905 *zero = 1 ^ will_have_0;
5906 return zero + *zero;
5909 PERL_STATIC_INLINE UV*
5910 S_invlist_array(pTHX_ SV* const invlist)
5912 /* Returns the pointer to the inversion list's array. Every time the
5913 * length changes, this needs to be called in case malloc or realloc moved
5916 PERL_ARGS_ASSERT_INVLIST_ARRAY;
5918 /* Must not be empty */
5919 assert(*get_invlist_len_addr(invlist));
5920 assert(*get_invlist_zero_addr(invlist) == 0
5921 || *get_invlist_zero_addr(invlist) == 1);
5923 /* The array begins either at the element reserved for zero if the
5924 * list contains 0 (that element will be set to 0), or otherwise the next
5925 * element (in which case the reserved element will be set to 1). */
5926 return (UV *) (get_invlist_zero_addr(invlist)
5927 + *get_invlist_zero_addr(invlist));
5930 PERL_STATIC_INLINE UV*
5931 S_get_invlist_len_addr(pTHX_ SV* invlist)
5933 /* Return the address of the UV that contains the current number
5934 * of used elements in the inversion list */
5936 PERL_ARGS_ASSERT_GET_INVLIST_LEN_ADDR;
5938 return (UV *) (SvPVX(invlist) + (INVLIST_LEN_OFFSET * sizeof (UV)));
5941 PERL_STATIC_INLINE UV
5942 S_invlist_len(pTHX_ SV* const invlist)
5944 /* Returns the current number of elements in the inversion list's array */
5946 PERL_ARGS_ASSERT_INVLIST_LEN;
5948 return *get_invlist_len_addr(invlist);
5951 PERL_STATIC_INLINE void
5952 S_invlist_set_len(pTHX_ SV* const invlist, const UV len)
5954 /* Sets the current number of elements stored in the inversion list */
5956 PERL_ARGS_ASSERT_INVLIST_SET_LEN;
5958 *get_invlist_len_addr(invlist) = len;
5960 assert(len <= SvLEN(invlist));
5962 SvCUR_set(invlist, TO_INTERNAL_SIZE(len));
5963 /* If the list contains U+0000, that element is part of the header,
5964 * and should not be counted as part of the array. It will contain
5965 * 0 in that case, and 1 otherwise. So we could flop 0=>1, 1=>0 and
5967 * SvCUR_set(invlist,
5968 * TO_INTERNAL_SIZE(len
5969 * - (*get_invlist_zero_addr(inv_list) ^ 1)));
5970 * But, this is only valid if len is not 0. The consequences of not doing
5971 * this is that the memory allocation code may think that 1 more UV is
5972 * being used than actually is, and so might do an unnecessary grow. That
5973 * seems worth not bothering to make this the precise amount.
5975 * Note that when inverting, SvCUR shouldn't change */
5978 PERL_STATIC_INLINE UV
5979 S_invlist_max(pTHX_ SV* const invlist)
5981 /* Returns the maximum number of elements storable in the inversion list's
5982 * array, without having to realloc() */
5984 PERL_ARGS_ASSERT_INVLIST_MAX;
5986 return FROM_INTERNAL_SIZE(SvLEN(invlist));
5989 PERL_STATIC_INLINE UV*
5990 S_get_invlist_zero_addr(pTHX_ SV* invlist)
5992 /* Return the address of the UV that is reserved to hold 0 if the inversion
5993 * list contains 0. This has to be the last element of the heading, as the
5994 * list proper starts with either it if 0, or the next element if not.
5995 * (But we force it to contain either 0 or 1) */
5997 PERL_ARGS_ASSERT_GET_INVLIST_ZERO_ADDR;
5999 return (UV *) (SvPVX(invlist) + (INVLIST_ZERO_OFFSET * sizeof (UV)));
6002 #ifndef PERL_IN_XSUB_RE
6004 Perl__new_invlist(pTHX_ IV initial_size)
6007 /* Return a pointer to a newly constructed inversion list, with enough
6008 * space to store 'initial_size' elements. If that number is negative, a
6009 * system default is used instead */
6013 if (initial_size < 0) {
6014 initial_size = INVLIST_INITIAL_LEN;
6017 /* Allocate the initial space */
6018 new_list = newSV(TO_INTERNAL_SIZE(initial_size));
6019 invlist_set_len(new_list, 0);
6021 /* Force iterinit() to be used to get iteration to work */
6022 *get_invlist_iter_addr(new_list) = UV_MAX;
6024 /* This should force a segfault if a method doesn't initialize this
6026 *get_invlist_zero_addr(new_list) = UV_MAX;
6033 S_invlist_extend(pTHX_ SV* const invlist, const UV new_max)
6035 /* Grow the maximum size of an inversion list */
6037 PERL_ARGS_ASSERT_INVLIST_EXTEND;
6039 SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max));
6042 PERL_STATIC_INLINE void
6043 S_invlist_trim(pTHX_ SV* const invlist)
6045 PERL_ARGS_ASSERT_INVLIST_TRIM;
6047 /* Change the length of the inversion list to how many entries it currently
6050 SvPV_shrink_to_cur((SV *) invlist);
6053 /* An element is in an inversion list iff its index is even numbered: 0, 2, 4,
6056 #define ELEMENT_IN_INVLIST_SET(i) (! ((i) & 1))
6057 #define PREV_ELEMENT_IN_INVLIST_SET(i) (! ELEMENT_IN_INVLIST_SET(i))
6059 #ifndef PERL_IN_XSUB_RE
6061 Perl__append_range_to_invlist(pTHX_ SV* const invlist, const UV start, const UV end)
6063 /* Subject to change or removal. Append the range from 'start' to 'end' at
6064 * the end of the inversion list. The range must be above any existing
6068 UV max = invlist_max(invlist);
6069 UV len = invlist_len(invlist);
6071 PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
6073 if (len == 0) { /* Empty lists must be initialized */
6074 array = _invlist_array_init(invlist, start == 0);
6077 /* Here, the existing list is non-empty. The current max entry in the
6078 * list is generally the first value not in the set, except when the
6079 * set extends to the end of permissible values, in which case it is
6080 * the first entry in that final set, and so this call is an attempt to
6081 * append out-of-order */
6083 UV final_element = len - 1;
6084 array = invlist_array(invlist);
6085 if (array[final_element] > start
6086 || ELEMENT_IN_INVLIST_SET(final_element))
6088 Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list");
6091 /* Here, it is a legal append. If the new range begins with the first
6092 * value not in the set, it is extending the set, so the new first
6093 * value not in the set is one greater than the newly extended range.
6095 if (array[final_element] == start) {
6096 if (end != UV_MAX) {
6097 array[final_element] = end + 1;
6100 /* But if the end is the maximum representable on the machine,
6101 * just let the range that this would extend have no end */
6102 invlist_set_len(invlist, len - 1);
6108 /* Here the new range doesn't extend any existing set. Add it */
6110 len += 2; /* Includes an element each for the start and end of range */
6112 /* If overflows the existing space, extend, which may cause the array to be
6115 invlist_extend(invlist, len);
6116 invlist_set_len(invlist, len); /* Have to set len here to avoid assert
6117 failure in invlist_array() */
6118 array = invlist_array(invlist);
6121 invlist_set_len(invlist, len);
6124 /* The next item on the list starts the range, the one after that is
6125 * one past the new range. */
6126 array[len - 2] = start;
6127 if (end != UV_MAX) {
6128 array[len - 1] = end + 1;
6131 /* But if the end is the maximum representable on the machine, just let
6132 * the range have no end */
6133 invlist_set_len(invlist, len - 1);
6138 Perl__invlist_union(pTHX_ SV* const a, SV* const b, SV** output)
6140 /* Take the union of two inversion lists and point 'result' to it. If
6141 * 'result' on input points to one of the two lists, the reference count to
6142 * that list will be decremented.
6143 * The basis for this comes from "Unicode Demystified" Chapter 13 by
6144 * Richard Gillam, published by Addison-Wesley, and explained at some
6145 * length there. The preface says to incorporate its examples into your
6146 * code at your own risk.
6148 * The algorithm is like a merge sort.
6150 * XXX A potential performance improvement is to keep track as we go along
6151 * if only one of the inputs contributes to the result, meaning the other
6152 * is a subset of that one. In that case, we can skip the final copy and
6153 * return the larger of the input lists, but then outside code might need
6154 * to keep track of whether to free the input list or not */
6156 UV* array_a; /* a's array */
6158 UV len_a; /* length of a's array */
6161 SV* u; /* the resulting union */
6165 UV i_a = 0; /* current index into a's array */
6169 /* running count, as explained in the algorithm source book; items are
6170 * stopped accumulating and are output when the count changes to/from 0.
6171 * The count is incremented when we start a range that's in the set, and
6172 * decremented when we start a range that's not in the set. So its range
6173 * is 0 to 2. Only when the count is zero is something not in the set.
6177 PERL_ARGS_ASSERT__INVLIST_UNION;
6179 /* If either one is empty, the union is the other one */
6180 len_a = invlist_len(a);
6185 else if (output != &b) {
6186 *output = invlist_clone(b);
6188 /* else *output already = b; */
6191 else if ((len_b = invlist_len(b)) == 0) {
6195 else if (output != &a) {
6196 *output = invlist_clone(a);
6198 /* else *output already = a; */
6202 /* Here both lists exist and are non-empty */
6203 array_a = invlist_array(a);
6204 array_b = invlist_array(b);
6206 /* Size the union for the worst case: that the sets are completely
6208 u = _new_invlist(len_a + len_b);
6210 /* Will contain U+0000 if either component does */
6211 array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0)
6212 || (len_b > 0 && array_b[0] == 0));
6214 /* Go through each list item by item, stopping when exhausted one of
6216 while (i_a < len_a && i_b < len_b) {
6217 UV cp; /* The element to potentially add to the union's array */
6218 bool cp_in_set; /* is it in the the input list's set or not */
6220 /* We need to take one or the other of the two inputs for the union.
6221 * Since we are merging two sorted lists, we take the smaller of the
6222 * next items. In case of a tie, we take the one that is in its set
6223 * first. If we took one not in the set first, it would decrement the
6224 * count, possibly to 0 which would cause it to be output as ending the
6225 * range, and the next time through we would take the same number, and
6226 * output it again as beginning the next range. By doing it the
6227 * opposite way, there is no possibility that the count will be
6228 * momentarily decremented to 0, and thus the two adjoining ranges will
6229 * be seamlessly merged. (In a tie and both are in the set or both not
6230 * in the set, it doesn't matter which we take first.) */
6231 if (array_a[i_a] < array_b[i_b]
6232 || (array_a[i_a] == array_b[i_b] && ELEMENT_IN_INVLIST_SET(i_a)))
6234 cp_in_set = ELEMENT_IN_INVLIST_SET(i_a);
6238 cp_in_set = ELEMENT_IN_INVLIST_SET(i_b);
6242 /* Here, have chosen which of the two inputs to look at. Only output
6243 * if the running count changes to/from 0, which marks the
6244 * beginning/end of a range in that's in the set */
6247 array_u[i_u++] = cp;
6254 array_u[i_u++] = cp;
6259 /* Here, we are finished going through at least one of the lists, which
6260 * means there is something remaining in at most one. We check if the list
6261 * that hasn't been exhausted is positioned such that we are in the middle
6262 * of a range in its set or not. (i_a and i_b point to the element beyond
6263 * the one we care about.) If in the set, we decrement 'count'; if 0, there
6264 * is potentially more to output.
6265 * There are four cases:
6266 * 1) Both weren't in their sets, count is 0, and remains 0. What's left
6267 * in the union is entirely from the non-exhausted set.
6268 * 2) Both were in their sets, count is 2. Nothing further should
6269 * be output, as everything that remains will be in the exhausted
6270 * list's set, hence in the union; decrementing to 1 but not 0 insures
6272 * 3) the exhausted was in its set, non-exhausted isn't, count is 1.
6273 * Nothing further should be output because the union includes
6274 * everything from the exhausted set. Not decrementing ensures that.
6275 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
6276 * decrementing to 0 insures that we look at the remainder of the
6277 * non-exhausted set */
6278 if ((i_a != len_a && PREV_ELEMENT_IN_INVLIST_SET(i_a))
6279 || (i_b != len_b && PREV_ELEMENT_IN_INVLIST_SET(i_b)))
6284 /* The final length is what we've output so far, plus what else is about to
6285 * be output. (If 'count' is non-zero, then the input list we exhausted
6286 * has everything remaining up to the machine's limit in its set, and hence
6287 * in the union, so there will be no further output. */
6290 /* At most one of the subexpressions will be non-zero */
6291 len_u += (len_a - i_a) + (len_b - i_b);
6294 /* Set result to final length, which can change the pointer to array_u, so
6296 if (len_u != invlist_len(u)) {
6297 invlist_set_len(u, len_u);
6299 array_u = invlist_array(u);
6302 /* When 'count' is 0, the list that was exhausted (if one was shorter than
6303 * the other) ended with everything above it not in its set. That means
6304 * that the remaining part of the union is precisely the same as the
6305 * non-exhausted list, so can just copy it unchanged. (If both list were
6306 * exhausted at the same time, then the operations below will be both 0.)
6309 IV copy_count; /* At most one will have a non-zero copy count */
6310 if ((copy_count = len_a - i_a) > 0) {
6311 Copy(array_a + i_a, array_u + i_u, copy_count, UV);
6313 else if ((copy_count = len_b - i_b) > 0) {
6314 Copy(array_b + i_b, array_u + i_u, copy_count, UV);
6318 /* We may be removing a reference to one of the inputs */
6319 if (&a == output || &b == output) {
6320 SvREFCNT_dec(*output);
6328 Perl__invlist_intersection(pTHX_ SV* const a, SV* const b, SV** i)
6330 /* Take the intersection of two inversion lists and point 'i' to it. If
6331 * 'i' on input points to one of the two lists, the reference count to that
6332 * list will be decremented.
6333 * The basis for this comes from "Unicode Demystified" Chapter 13 by
6334 * Richard Gillam, published by Addison-Wesley, and explained at some
6335 * length there. The preface says to incorporate its examples into your
6336 * code at your own risk. In fact, it had bugs
6338 * The algorithm is like a merge sort, and is essentially the same as the
6342 UV* array_a; /* a's array */
6344 UV len_a; /* length of a's array */
6347 SV* r; /* the resulting intersection */
6351 UV i_a = 0; /* current index into a's array */
6355 /* running count, as explained in the algorithm source book; items are
6356 * stopped accumulating and are output when the count changes to/from 2.
6357 * The count is incremented when we start a range that's in the set, and
6358 * decremented when we start a range that's not in the set. So its range
6359 * is 0 to 2. Only when the count is 2 is something in the intersection.
6363 PERL_ARGS_ASSERT__INVLIST_INTERSECTION;
6365 /* If either one is empty, the intersection is null */
6366 len_a = invlist_len(a);
6367 if ((len_a == 0) || ((len_b = invlist_len(b)) == 0)) {
6368 *i = _new_invlist(0);
6370 /* If the result is the same as one of the inputs, the input is being
6381 /* Here both lists exist and are non-empty */
6382 array_a = invlist_array(a);
6383 array_b = invlist_array(b);
6385 /* Size the intersection for the worst case: that the intersection ends up
6386 * fragmenting everything to be completely disjoint */
6387 r= _new_invlist(len_a + len_b);
6389 /* Will contain U+0000 iff both components do */
6390 array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0
6391 && len_b > 0 && array_b[0] == 0);
6393 /* Go through each list item by item, stopping when exhausted one of
6395 while (i_a < len_a && i_b < len_b) {
6396 UV cp; /* The element to potentially add to the intersection's
6398 bool cp_in_set; /* Is it in the input list's set or not */
6400 /* We need to take one or the other of the two inputs for the
6401 * intersection. Since we are merging two sorted lists, we take the
6402 * smaller of the next items. In case of a tie, we take the one that
6403 * is not in its set first (a difference from the union algorithm). If
6404 * we took one in the set first, it would increment the count, possibly
6405 * to 2 which would cause it to be output as starting a range in the
6406 * intersection, and the next time through we would take that same
6407 * number, and output it again as ending the set. By doing it the
6408 * opposite of this, there is no possibility that the count will be
6409 * momentarily incremented to 2. (In a tie and both are in the set or
6410 * both not in the set, it doesn't matter which we take first.) */
6411 if (array_a[i_a] < array_b[i_b]
6412 || (array_a[i_a] == array_b[i_b] && ! ELEMENT_IN_INVLIST_SET(i_a)))
6414 cp_in_set = ELEMENT_IN_INVLIST_SET(i_a);
6418 cp_in_set = ELEMENT_IN_INVLIST_SET(i_b);
6422 /* Here, have chosen which of the two inputs to look at. Only output
6423 * if the running count changes to/from 2, which marks the
6424 * beginning/end of a range that's in the intersection */
6428 array_r[i_r++] = cp;
6433 array_r[i_r++] = cp;
6439 /* Here, we are finished going through at least one of the lists, which
6440 * means there is something remaining in at most one. We check if the list
6441 * that has been exhausted is positioned such that we are in the middle
6442 * of a range in its set or not. (i_a and i_b point to elements 1 beyond
6443 * the ones we care about.) There are four cases:
6444 * 1) Both weren't in their sets, count is 0, and remains 0. There's
6445 * nothing left in the intersection.
6446 * 2) Both were in their sets, count is 2 and perhaps is incremented to
6447 * above 2. What should be output is exactly that which is in the
6448 * non-exhausted set, as everything it has is also in the intersection
6449 * set, and everything it doesn't have can't be in the intersection
6450 * 3) The exhausted was in its set, non-exhausted isn't, count is 1, and
6451 * gets incremented to 2. Like the previous case, the intersection is
6452 * everything that remains in the non-exhausted set.
6453 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
6454 * remains 1. And the intersection has nothing more. */
6455 if ((i_a == len_a && PREV_ELEMENT_IN_INVLIST_SET(i_a))
6456 || (i_b == len_b && PREV_ELEMENT_IN_INVLIST_SET(i_b)))
6461 /* The final length is what we've output so far plus what else is in the
6462 * intersection. At most one of the subexpressions below will be non-zero */
6465 len_r += (len_a - i_a) + (len_b - i_b);
6468 /* Set result to final length, which can change the pointer to array_r, so
6470 if (len_r != invlist_len(r)) {
6471 invlist_set_len(r, len_r);
6473 array_r = invlist_array(r);
6476 /* Finish outputting any remaining */
6477 if (count >= 2) { /* At most one will have a non-zero copy count */
6479 if ((copy_count = len_a - i_a) > 0) {
6480 Copy(array_a + i_a, array_r + i_r, copy_count, UV);
6482 else if ((copy_count = len_b - i_b) > 0) {
6483 Copy(array_b + i_b, array_r + i_r, copy_count, UV);
6487 /* We may be removing a reference to one of the inputs */
6488 if (&a == i || &b == i) {
6499 S_add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end)
6501 /* Add the range from 'start' to 'end' inclusive to the inversion list's
6502 * set. A pointer to the inversion list is returned. This may actually be
6503 * a new list, in which case the passed in one has been destroyed. The
6504 * passed in inversion list can be NULL, in which case a new one is created
6505 * with just the one range in it */
6510 if (invlist == NULL) {
6511 invlist = _new_invlist(2);
6515 len = invlist_len(invlist);
6518 /* If comes after the final entry, can just append it to the end */
6520 || start >= invlist_array(invlist)
6521 [invlist_len(invlist) - 1])
6523 _append_range_to_invlist(invlist, start, end);
6527 /* Here, can't just append things, create and return a new inversion list
6528 * which is the union of this range and the existing inversion list */
6529 range_invlist = _new_invlist(2);
6530 _append_range_to_invlist(range_invlist, start, end);
6532 _invlist_union(invlist, range_invlist, &invlist);
6534 /* The temporary can be freed */
6535 SvREFCNT_dec(range_invlist);
6540 PERL_STATIC_INLINE SV*
6541 S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) {
6542 return add_range_to_invlist(invlist, cp, cp);
6545 #ifndef PERL_IN_XSUB_RE
6547 Perl__invlist_invert(pTHX_ SV* const invlist)
6549 /* Complement the input inversion list. This adds a 0 if the list didn't
6550 * have a zero; removes it otherwise. As described above, the data
6551 * structure is set up so that this is very efficient */
6553 UV* len_pos = get_invlist_len_addr(invlist);
6555 PERL_ARGS_ASSERT__INVLIST_INVERT;
6557 /* The inverse of matching nothing is matching everything */
6558 if (*len_pos == 0) {
6559 _append_range_to_invlist(invlist, 0, UV_MAX);
6563 /* The exclusive or complents 0 to 1; and 1 to 0. If the result is 1, the
6564 * zero element was a 0, so it is being removed, so the length decrements
6565 * by 1; and vice-versa. SvCUR is unaffected */
6566 if (*get_invlist_zero_addr(invlist) ^= 1) {
6575 Perl__invlist_invert_prop(pTHX_ SV* const invlist)
6577 /* Complement the input inversion list (which must be a Unicode property,
6578 * all of which don't match above the Unicode maximum code point.) And
6579 * Perl has chosen to not have the inversion match above that either. This
6580 * adds a 0x110000 if the list didn't end with it, and removes it if it did
6586 PERL_ARGS_ASSERT__INVLIST_INVERT_PROP;
6588 _invlist_invert(invlist);
6590 len = invlist_len(invlist);
6592 if (len != 0) { /* If empty do nothing */
6593 array = invlist_array(invlist);
6594 if (array[len - 1] != PERL_UNICODE_MAX + 1) {
6595 /* Add 0x110000. First, grow if necessary */
6597 if (invlist_max(invlist) < len) {
6598 invlist_extend(invlist, len);
6599 array = invlist_array(invlist);
6601 invlist_set_len(invlist, len);
6602 array[len - 1] = PERL_UNICODE_MAX + 1;
6604 else { /* Remove the 0x110000 */
6605 invlist_set_len(invlist, len - 1);
6613 PERL_STATIC_INLINE SV*
6614 S_invlist_clone(pTHX_ SV* const invlist)
6617 /* Return a new inversion list that is a copy of the input one, which is
6620 SV* new_invlist = _new_invlist(SvCUR(invlist));
6622 PERL_ARGS_ASSERT_INVLIST_CLONE;
6624 Copy(SvPVX(invlist), SvPVX(new_invlist), SvCUR(invlist), char);
6628 #ifndef PERL_IN_XSUB_RE
6630 Perl__invlist_subtract(pTHX_ SV* const a, SV* const b, SV** result)
6632 /* Point result to an inversion list which consists of all elements in 'a'
6633 * that aren't also in 'b' */
6635 PERL_ARGS_ASSERT__INVLIST_SUBTRACT;
6637 /* Subtracting nothing retains the original */
6638 if (invlist_len(b) == 0) {
6640 /* If the result is not to be the same variable as the original, create
6643 *result = invlist_clone(a);
6646 SV *b_copy = invlist_clone(b);
6647 _invlist_invert(b_copy); /* Everything not in 'b' */
6648 _invlist_intersection(a, b_copy, result); /* Everything in 'a' not in
6650 SvREFCNT_dec(b_copy);
6661 PERL_STATIC_INLINE UV*
6662 S_get_invlist_iter_addr(pTHX_ SV* invlist)
6664 /* Return the address of the UV that contains the current iteration
6667 PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR;
6669 return (UV *) (SvPVX(invlist) + (INVLIST_ITER_OFFSET * sizeof (UV)));
6672 PERL_STATIC_INLINE void
6673 S_invlist_iterinit(pTHX_ SV* invlist) /* Initialize iterator for invlist */
6675 PERL_ARGS_ASSERT_INVLIST_ITERINIT;
6677 *get_invlist_iter_addr(invlist) = 0;
6681 S_invlist_iternext(pTHX_ SV* invlist, UV* start, UV* end)
6683 UV* pos = get_invlist_iter_addr(invlist);
6684 UV len = invlist_len(invlist);
6687 PERL_ARGS_ASSERT_INVLIST_ITERNEXT;
6690 *pos = UV_MAX; /* Force iternit() to be required next time */
6694 array = invlist_array(invlist);
6696 *start = array[(*pos)++];
6702 *end = array[(*pos)++] - 1;
6710 S_invlist_dump(pTHX_ SV* const invlist, const char * const header)
6712 /* Dumps out the ranges in an inversion list. The string 'header'
6713 * if present is output on a line before the first range */
6717 if (header && strlen(header)) {
6718 PerlIO_printf(Perl_debug_log, "%s\n", header);
6720 invlist_iterinit(invlist);
6721 while (invlist_iternext(invlist, &start, &end)) {
6722 if (end == UV_MAX) {
6723 PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. INFINITY\n", start);
6726 PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. 0x%04"UVXf"\n", start, end);
6732 #undef HEADER_LENGTH
6733 #undef INVLIST_INITIAL_LENGTH
6734 #undef TO_INTERNAL_SIZE
6735 #undef FROM_INTERNAL_SIZE
6736 #undef INVLIST_LEN_OFFSET
6737 #undef INVLIST_ZERO_OFFSET
6738 #undef INVLIST_ITER_OFFSET
6740 /* End of inversion list object */
6743 - reg - regular expression, i.e. main body or parenthesized thing
6745 * Caller must absorb opening parenthesis.
6747 * Combining parenthesis handling with the base level of regular expression
6748 * is a trifle forced, but the need to tie the tails of the branches to what
6749 * follows makes it hard to avoid.
6751 #define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
6753 #define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
6755 #define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
6759 S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
6760 /* paren: Parenthesized? 0=top, 1=(, inside: changed to letter. */
6763 register regnode *ret; /* Will be the head of the group. */
6764 register regnode *br;
6765 register regnode *lastbr;
6766 register regnode *ender = NULL;
6767 register I32 parno = 0;
6769 U32 oregflags = RExC_flags;
6770 bool have_branch = 0;
6772 I32 freeze_paren = 0;
6773 I32 after_freeze = 0;
6775 /* for (?g), (?gc), and (?o) warnings; warning
6776 about (?c) will warn about (?g) -- japhy */
6778 #define WASTED_O 0x01
6779 #define WASTED_G 0x02
6780 #define WASTED_C 0x04
6781 #define WASTED_GC (0x02|0x04)
6782 I32 wastedflags = 0x00;
6784 char * parse_start = RExC_parse; /* MJD */
6785 char * const oregcomp_parse = RExC_parse;
6787 GET_RE_DEBUG_FLAGS_DECL;
6789 PERL_ARGS_ASSERT_REG;
6790 DEBUG_PARSE("reg ");
6792 *flagp = 0; /* Tentatively. */
6795 /* Make an OPEN node, if parenthesized. */
6797 if ( *RExC_parse == '*') { /* (*VERB:ARG) */
6798 char *start_verb = RExC_parse;
6799 STRLEN verb_len = 0;
6800 char *start_arg = NULL;
6801 unsigned char op = 0;
6803 int internal_argval = 0; /* internal_argval is only useful if !argok */
6804 while ( *RExC_parse && *RExC_parse != ')' ) {
6805 if ( *RExC_parse == ':' ) {
6806 start_arg = RExC_parse + 1;
6812 verb_len = RExC_parse - start_verb;
6815 while ( *RExC_parse && *RExC_parse != ')' )
6817 if ( *RExC_parse != ')' )
6818 vFAIL("Unterminated verb pattern argument");
6819 if ( RExC_parse == start_arg )
6822 if ( *RExC_parse != ')' )
6823 vFAIL("Unterminated verb pattern");
6826 switch ( *start_verb ) {
6827 case 'A': /* (*ACCEPT) */
6828 if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
6830 internal_argval = RExC_nestroot;
6833 case 'C': /* (*COMMIT) */
6834 if ( memEQs(start_verb,verb_len,"COMMIT") )
6837 case 'F': /* (*FAIL) */
6838 if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
6843 case ':': /* (*:NAME) */
6844 case 'M': /* (*MARK:NAME) */
6845 if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
6850 case 'P': /* (*PRUNE) */
6851 if ( memEQs(start_verb,verb_len,"PRUNE") )
6854 case 'S': /* (*SKIP) */
6855 if ( memEQs(start_verb,verb_len,"SKIP") )
6858 case 'T': /* (*THEN) */
6859 /* [19:06] <TimToady> :: is then */
6860 if ( memEQs(start_verb,verb_len,"THEN") ) {
6862 RExC_seen |= REG_SEEN_CUTGROUP;
6868 vFAIL3("Unknown verb pattern '%.*s'",
6869 verb_len, start_verb);
6872 if ( start_arg && internal_argval ) {
6873 vFAIL3("Verb pattern '%.*s' may not have an argument",
6874 verb_len, start_verb);
6875 } else if ( argok < 0 && !start_arg ) {
6876 vFAIL3("Verb pattern '%.*s' has a mandatory argument",
6877 verb_len, start_verb);
6879 ret = reganode(pRExC_state, op, internal_argval);
6880 if ( ! internal_argval && ! SIZE_ONLY ) {
6882 SV *sv = newSVpvn( start_arg, RExC_parse - start_arg);
6883 ARG(ret) = add_data( pRExC_state, 1, "S" );
6884 RExC_rxi->data->data[ARG(ret)]=(void*)sv;
6891 if (!internal_argval)
6892 RExC_seen |= REG_SEEN_VERBARG;
6893 } else if ( start_arg ) {
6894 vFAIL3("Verb pattern '%.*s' may not have an argument",
6895 verb_len, start_verb);
6897 ret = reg_node(pRExC_state, op);
6899 nextchar(pRExC_state);
6902 if (*RExC_parse == '?') { /* (?...) */
6903 bool is_logical = 0;
6904 const char * const seqstart = RExC_parse;
6905 bool has_use_defaults = FALSE;
6908 paren = *RExC_parse++;
6909 ret = NULL; /* For look-ahead/behind. */
6912 case 'P': /* (?P...) variants for those used to PCRE/Python */
6913 paren = *RExC_parse++;
6914 if ( paren == '<') /* (?P<...>) named capture */
6916 else if (paren == '>') { /* (?P>name) named recursion */
6917 goto named_recursion;
6919 else if (paren == '=') { /* (?P=...) named backref */
6920 /* this pretty much dupes the code for \k<NAME> in regatom(), if
6921 you change this make sure you change that */
6922 char* name_start = RExC_parse;
6924 SV *sv_dat = reg_scan_name(pRExC_state,
6925 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
6926 if (RExC_parse == name_start || *RExC_parse != ')')
6927 vFAIL2("Sequence %.3s... not terminated",parse_start);
6930 num = add_data( pRExC_state, 1, "S" );
6931 RExC_rxi->data->data[num]=(void*)sv_dat;
6932 SvREFCNT_inc_simple_void(sv_dat);
6935 ret = reganode(pRExC_state,
6938 : (MORE_ASCII_RESTRICTED)
6940 : (AT_LEAST_UNI_SEMANTICS)
6948 Set_Node_Offset(ret, parse_start+1);
6949 Set_Node_Cur_Length(ret); /* MJD */
6951 nextchar(pRExC_state);
6955 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
6957 case '<': /* (?<...) */
6958 if (*RExC_parse == '!')
6960 else if (*RExC_parse != '=')
6966 case '\'': /* (?'...') */
6967 name_start= RExC_parse;
6968 svname = reg_scan_name(pRExC_state,
6969 SIZE_ONLY ? /* reverse test from the others */
6970 REG_RSN_RETURN_NAME :
6971 REG_RSN_RETURN_NULL);
6972 if (RExC_parse == name_start) {
6974 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
6977 if (*RExC_parse != paren)
6978 vFAIL2("Sequence (?%c... not terminated",
6979 paren=='>' ? '<' : paren);
6983 if (!svname) /* shouldn't happen */
6985 "panic: reg_scan_name returned NULL");
6986 if (!RExC_paren_names) {
6987 RExC_paren_names= newHV();
6988 sv_2mortal(MUTABLE_SV(RExC_paren_names));
6990 RExC_paren_name_list= newAV();
6991 sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
6994 he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
6996 sv_dat = HeVAL(he_str);
6998 /* croak baby croak */
7000 "panic: paren_name hash element allocation failed");
7001 } else if ( SvPOK(sv_dat) ) {
7002 /* (?|...) can mean we have dupes so scan to check
7003 its already been stored. Maybe a flag indicating
7004 we are inside such a construct would be useful,
7005 but the arrays are likely to be quite small, so
7006 for now we punt -- dmq */
7007 IV count = SvIV(sv_dat);
7008 I32 *pv = (I32*)SvPVX(sv_dat);
7010 for ( i = 0 ; i < count ; i++ ) {
7011 if ( pv[i] == RExC_npar ) {
7017 pv = (I32*)SvGROW(sv_dat, SvCUR(sv_dat) + sizeof(I32)+1);
7018 SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
7019 pv[count] = RExC_npar;
7020 SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
7023 (void)SvUPGRADE(sv_dat,SVt_PVNV);
7024 sv_setpvn(sv_dat, (char *)&(RExC_npar), sizeof(I32));
7026 SvIV_set(sv_dat, 1);
7029 /* Yes this does cause a memory leak in debugging Perls */
7030 if (!av_store(RExC_paren_name_list, RExC_npar, SvREFCNT_inc(svname)))
7031 SvREFCNT_dec(svname);
7034 /*sv_dump(sv_dat);*/
7036 nextchar(pRExC_state);
7038 goto capturing_parens;
7040 RExC_seen |= REG_SEEN_LOOKBEHIND;
7041 RExC_in_lookbehind++;
7043 case '=': /* (?=...) */
7044 RExC_seen_zerolen++;
7046 case '!': /* (?!...) */
7047 RExC_seen_zerolen++;
7048 if (*RExC_parse == ')') {
7049 ret=reg_node(pRExC_state, OPFAIL);
7050 nextchar(pRExC_state);
7054 case '|': /* (?|...) */
7055 /* branch reset, behave like a (?:...) except that
7056 buffers in alternations share the same numbers */
7058 after_freeze = freeze_paren = RExC_npar;
7060 case ':': /* (?:...) */
7061 case '>': /* (?>...) */
7063 case '$': /* (?$...) */
7064 case '@': /* (?@...) */
7065 vFAIL2("Sequence (?%c...) not implemented", (int)paren);
7067 case '#': /* (?#...) */
7068 while (*RExC_parse && *RExC_parse != ')')
7070 if (*RExC_parse != ')')
7071 FAIL("Sequence (?#... not terminated");
7072 nextchar(pRExC_state);
7075 case '0' : /* (?0) */
7076 case 'R' : /* (?R) */
7077 if (*RExC_parse != ')')
7078 FAIL("Sequence (?R) not terminated");
7079 ret = reg_node(pRExC_state, GOSTART);
7080 *flagp |= POSTPONED;
7081 nextchar(pRExC_state);
7084 { /* named and numeric backreferences */
7086 case '&': /* (?&NAME) */
7087 parse_start = RExC_parse - 1;
7090 SV *sv_dat = reg_scan_name(pRExC_state,
7091 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
7092 num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
7094 goto gen_recurse_regop;
7097 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
7099 vFAIL("Illegal pattern");
7101 goto parse_recursion;
7103 case '-': /* (?-1) */
7104 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
7105 RExC_parse--; /* rewind to let it be handled later */
7109 case '1': case '2': case '3': case '4': /* (?1) */
7110 case '5': case '6': case '7': case '8': case '9':
7113 num = atoi(RExC_parse);
7114 parse_start = RExC_parse - 1; /* MJD */
7115 if (*RExC_parse == '-')
7117 while (isDIGIT(*RExC_parse))
7119 if (*RExC_parse!=')')
7120 vFAIL("Expecting close bracket");
7123 if ( paren == '-' ) {
7125 Diagram of capture buffer numbering.
7126 Top line is the normal capture buffer numbers
7127 Bottom line is the negative indexing as from
7131 /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
7135 num = RExC_npar + num;
7138 vFAIL("Reference to nonexistent group");
7140 } else if ( paren == '+' ) {
7141 num = RExC_npar + num - 1;
7144 ret = reganode(pRExC_state, GOSUB, num);
7146 if (num > (I32)RExC_rx->nparens) {
7148 vFAIL("Reference to nonexistent group");
7150 ARG2L_SET( ret, RExC_recurse_count++);
7152 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
7153 "Recurse #%"UVuf" to %"IVdf"\n", (UV)ARG(ret), (IV)ARG2L(ret)));
7157 RExC_seen |= REG_SEEN_RECURSE;
7158 Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
7159 Set_Node_Offset(ret, parse_start); /* MJD */
7161 *flagp |= POSTPONED;
7162 nextchar(pRExC_state);
7164 } /* named and numeric backreferences */
7167 case '?': /* (??...) */
7169 if (*RExC_parse != '{') {
7171 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
7174 *flagp |= POSTPONED;
7175 paren = *RExC_parse++;
7177 case '{': /* (?{...}) */
7182 char *s = RExC_parse;
7184 RExC_seen_zerolen++;
7185 RExC_seen |= REG_SEEN_EVAL;
7186 while (count && (c = *RExC_parse)) {
7197 if (*RExC_parse != ')') {
7199 vFAIL("Sequence (?{...}) not terminated or not {}-balanced");
7203 OP_4tree *sop, *rop;
7204 SV * const sv = newSVpvn(s, RExC_parse - 1 - s);
7207 Perl_save_re_context(aTHX);
7208 rop = Perl_sv_compile_2op_is_broken(aTHX_ sv, &sop, "re", &pad);
7209 sop->op_private |= OPpREFCOUNTED;
7210 /* re_dup will OpREFCNT_inc */
7211 OpREFCNT_set(sop, 1);
7214 n = add_data(pRExC_state, 3, "nop");
7215 RExC_rxi->data->data[n] = (void*)rop;
7216 RExC_rxi->data->data[n+1] = (void*)sop;
7217 RExC_rxi->data->data[n+2] = (void*)pad;
7220 else { /* First pass */
7221 if (PL_reginterp_cnt < ++RExC_seen_evals
7223 /* No compiled RE interpolated, has runtime
7224 components ===> unsafe. */
7225 FAIL("Eval-group not allowed at runtime, use re 'eval'");
7226 if (PL_tainting && PL_tainted)
7227 FAIL("Eval-group in insecure regular expression");
7228 #if PERL_VERSION > 8
7229 if (IN_PERL_COMPILETIME)
7234 nextchar(pRExC_state);
7236 ret = reg_node(pRExC_state, LOGICAL);
7239 REGTAIL(pRExC_state, ret, reganode(pRExC_state, EVAL, n));
7240 /* deal with the length of this later - MJD */
7243 ret = reganode(pRExC_state, EVAL, n);
7244 Set_Node_Length(ret, RExC_parse - parse_start + 1);
7245 Set_Node_Offset(ret, parse_start);
7248 case '(': /* (?(?{...})...) and (?(?=...)...) */
7251 if (RExC_parse[0] == '?') { /* (?(?...)) */
7252 if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
7253 || RExC_parse[1] == '<'
7254 || RExC_parse[1] == '{') { /* Lookahead or eval. */
7257 ret = reg_node(pRExC_state, LOGICAL);
7260 REGTAIL(pRExC_state, ret, reg(pRExC_state, 1, &flag,depth+1));
7264 else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */
7265 || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
7267 char ch = RExC_parse[0] == '<' ? '>' : '\'';
7268 char *name_start= RExC_parse++;
7270 SV *sv_dat=reg_scan_name(pRExC_state,
7271 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
7272 if (RExC_parse == name_start || *RExC_parse != ch)
7273 vFAIL2("Sequence (?(%c... not terminated",
7274 (ch == '>' ? '<' : ch));
7277 num = add_data( pRExC_state, 1, "S" );
7278 RExC_rxi->data->data[num]=(void*)sv_dat;
7279 SvREFCNT_inc_simple_void(sv_dat);
7281 ret = reganode(pRExC_state,NGROUPP,num);
7282 goto insert_if_check_paren;
7284 else if (RExC_parse[0] == 'D' &&
7285 RExC_parse[1] == 'E' &&
7286 RExC_parse[2] == 'F' &&
7287 RExC_parse[3] == 'I' &&
7288 RExC_parse[4] == 'N' &&
7289 RExC_parse[5] == 'E')
7291 ret = reganode(pRExC_state,DEFINEP,0);
7294 goto insert_if_check_paren;
7296 else if (RExC_parse[0] == 'R') {
7299 if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
7300 parno = atoi(RExC_parse++);
7301 while (isDIGIT(*RExC_parse))
7303 } else if (RExC_parse[0] == '&') {
7306 sv_dat = reg_scan_name(pRExC_state,
7307 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
7308 parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
7310 ret = reganode(pRExC_state,INSUBP,parno);
7311 goto insert_if_check_paren;
7313 else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
7316 parno = atoi(RExC_parse++);
7318 while (isDIGIT(*RExC_parse))
7320 ret = reganode(pRExC_state, GROUPP, parno);
7322 insert_if_check_paren:
7323 if ((c = *nextchar(pRExC_state)) != ')')
7324 vFAIL("Switch condition not recognized");
7326 REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
7327 br = regbranch(pRExC_state, &flags, 1,depth+1);
7329 br = reganode(pRExC_state, LONGJMP, 0);
7331 REGTAIL(pRExC_state, br, reganode(pRExC_state, LONGJMP, 0));
7332 c = *nextchar(pRExC_state);
7337 vFAIL("(?(DEFINE)....) does not allow branches");
7338 lastbr = reganode(pRExC_state, IFTHEN, 0); /* Fake one for optimizer. */
7339 regbranch(pRExC_state, &flags, 1,depth+1);
7340 REGTAIL(pRExC_state, ret, lastbr);
7343 c = *nextchar(pRExC_state);
7348 vFAIL("Switch (?(condition)... contains too many branches");
7349 ender = reg_node(pRExC_state, TAIL);
7350 REGTAIL(pRExC_state, br, ender);
7352 REGTAIL(pRExC_state, lastbr, ender);
7353 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
7356 REGTAIL(pRExC_state, ret, ender);
7357 RExC_size++; /* XXX WHY do we need this?!!
7358 For large programs it seems to be required
7359 but I can't figure out why. -- dmq*/
7363 vFAIL2("Unknown switch condition (?(%.2s", RExC_parse);
7367 RExC_parse--; /* for vFAIL to print correctly */
7368 vFAIL("Sequence (? incomplete");
7370 case DEFAULT_PAT_MOD: /* Use default flags with the exceptions
7372 has_use_defaults = TRUE;
7373 STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
7374 set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
7375 ? REGEX_UNICODE_CHARSET
7376 : REGEX_DEPENDS_CHARSET);
7380 parse_flags: /* (?i) */
7382 U32 posflags = 0, negflags = 0;
7383 U32 *flagsp = &posflags;
7384 char has_charset_modifier = '\0';
7385 regex_charset cs = (RExC_utf8 || RExC_uni_semantics)
7386 ? REGEX_UNICODE_CHARSET
7387 : REGEX_DEPENDS_CHARSET;
7389 while (*RExC_parse) {
7390 /* && strchr("iogcmsx", *RExC_parse) */
7391 /* (?g), (?gc) and (?o) are useless here
7392 and must be globally applied -- japhy */
7393 switch (*RExC_parse) {
7394 CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp);
7395 case LOCALE_PAT_MOD:
7396 if (has_charset_modifier) {
7397 goto excess_modifier;
7399 else if (flagsp == &negflags) {
7402 cs = REGEX_LOCALE_CHARSET;
7403 has_charset_modifier = LOCALE_PAT_MOD;
7404 RExC_contains_locale = 1;
7406 case UNICODE_PAT_MOD:
7407 if (has_charset_modifier) {
7408 goto excess_modifier;
7410 else if (flagsp == &negflags) {
7413 cs = REGEX_UNICODE_CHARSET;
7414 has_charset_modifier = UNICODE_PAT_MOD;
7416 case ASCII_RESTRICT_PAT_MOD:
7417 if (flagsp == &negflags) {
7420 if (has_charset_modifier) {
7421 if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
7422 goto excess_modifier;
7424 /* Doubled modifier implies more restricted */
7425 cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
7428 cs = REGEX_ASCII_RESTRICTED_CHARSET;
7430 has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
7432 case DEPENDS_PAT_MOD:
7433 if (has_use_defaults) {
7434 goto fail_modifiers;
7436 else if (flagsp == &negflags) {
7439 else if (has_charset_modifier) {
7440 goto excess_modifier;
7443 /* The dual charset means unicode semantics if the
7444 * pattern (or target, not known until runtime) are
7445 * utf8, or something in the pattern indicates unicode
7447 cs = (RExC_utf8 || RExC_uni_semantics)
7448 ? REGEX_UNICODE_CHARSET
7449 : REGEX_DEPENDS_CHARSET;
7450 has_charset_modifier = DEPENDS_PAT_MOD;
7454 if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
7455 vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
7457 else if (has_charset_modifier == *(RExC_parse - 1)) {
7458 vFAIL2("Regexp modifier \"%c\" may not appear twice", *(RExC_parse - 1));
7461 vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
7466 vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"", *(RExC_parse - 1));
7468 case ONCE_PAT_MOD: /* 'o' */
7469 case GLOBAL_PAT_MOD: /* 'g' */
7470 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
7471 const I32 wflagbit = *RExC_parse == 'o' ? WASTED_O : WASTED_G;
7472 if (! (wastedflags & wflagbit) ) {
7473 wastedflags |= wflagbit;
7476 "Useless (%s%c) - %suse /%c modifier",
7477 flagsp == &negflags ? "?-" : "?",
7479 flagsp == &negflags ? "don't " : "",
7486 case CONTINUE_PAT_MOD: /* 'c' */
7487 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
7488 if (! (wastedflags & WASTED_C) ) {
7489 wastedflags |= WASTED_GC;
7492 "Useless (%sc) - %suse /gc modifier",
7493 flagsp == &negflags ? "?-" : "?",
7494 flagsp == &negflags ? "don't " : ""
7499 case KEEPCOPY_PAT_MOD: /* 'p' */
7500 if (flagsp == &negflags) {
7502 ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
7504 *flagsp |= RXf_PMf_KEEPCOPY;
7508 /* A flag is a default iff it is following a minus, so
7509 * if there is a minus, it means will be trying to
7510 * re-specify a default which is an error */
7511 if (has_use_defaults || flagsp == &negflags) {
7514 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
7518 wastedflags = 0; /* reset so (?g-c) warns twice */
7524 RExC_flags |= posflags;
7525 RExC_flags &= ~negflags;
7526 set_regex_charset(&RExC_flags, cs);
7528 oregflags |= posflags;
7529 oregflags &= ~negflags;
7530 set_regex_charset(&oregflags, cs);
7532 nextchar(pRExC_state);
7543 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
7548 }} /* one for the default block, one for the switch */
7555 ret = reganode(pRExC_state, OPEN, parno);
7558 RExC_nestroot = parno;
7559 if (RExC_seen & REG_SEEN_RECURSE
7560 && !RExC_open_parens[parno-1])
7562 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
7563 "Setting open paren #%"IVdf" to %d\n",
7564 (IV)parno, REG_NODE_NUM(ret)));
7565 RExC_open_parens[parno-1]= ret;
7568 Set_Node_Length(ret, 1); /* MJD */
7569 Set_Node_Offset(ret, RExC_parse); /* MJD */
7577 /* Pick up the branches, linking them together. */
7578 parse_start = RExC_parse; /* MJD */
7579 br = regbranch(pRExC_state, &flags, 1,depth+1);
7581 /* branch_len = (paren != 0); */
7585 if (*RExC_parse == '|') {
7586 if (!SIZE_ONLY && RExC_extralen) {
7587 reginsert(pRExC_state, BRANCHJ, br, depth+1);
7590 reginsert(pRExC_state, BRANCH, br, depth+1);
7591 Set_Node_Length(br, paren != 0);
7592 Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
7596 RExC_extralen += 1; /* For BRANCHJ-BRANCH. */
7598 else if (paren == ':') {
7599 *flagp |= flags&SIMPLE;
7601 if (is_open) { /* Starts with OPEN. */
7602 REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */
7604 else if (paren != '?') /* Not Conditional */
7606 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
7608 while (*RExC_parse == '|') {
7609 if (!SIZE_ONLY && RExC_extralen) {
7610 ender = reganode(pRExC_state, LONGJMP,0);
7611 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender); /* Append to the previous. */
7614 RExC_extralen += 2; /* Account for LONGJMP. */
7615 nextchar(pRExC_state);
7617 if (RExC_npar > after_freeze)
7618 after_freeze = RExC_npar;
7619 RExC_npar = freeze_paren;
7621 br = regbranch(pRExC_state, &flags, 0, depth+1);
7625 REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */
7627 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
7630 if (have_branch || paren != ':') {
7631 /* Make a closing node, and hook it on the end. */
7634 ender = reg_node(pRExC_state, TAIL);
7637 ender = reganode(pRExC_state, CLOSE, parno);
7638 if (!SIZE_ONLY && RExC_seen & REG_SEEN_RECURSE) {
7639 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
7640 "Setting close paren #%"IVdf" to %d\n",
7641 (IV)parno, REG_NODE_NUM(ender)));
7642 RExC_close_parens[parno-1]= ender;
7643 if (RExC_nestroot == parno)
7646 Set_Node_Offset(ender,RExC_parse+1); /* MJD */
7647 Set_Node_Length(ender,1); /* MJD */
7653 *flagp &= ~HASWIDTH;
7656 ender = reg_node(pRExC_state, SUCCEED);
7659 ender = reg_node(pRExC_state, END);
7661 assert(!RExC_opend); /* there can only be one! */
7666 REGTAIL(pRExC_state, lastbr, ender);
7668 if (have_branch && !SIZE_ONLY) {
7670 RExC_seen |= REG_TOP_LEVEL_BRANCHES;
7672 /* Hook the tails of the branches to the closing node. */
7673 for (br = ret; br; br = regnext(br)) {
7674 const U8 op = PL_regkind[OP(br)];
7676 REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
7678 else if (op == BRANCHJ) {
7679 REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
7687 static const char parens[] = "=!<,>";
7689 if (paren && (p = strchr(parens, paren))) {
7690 U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
7691 int flag = (p - parens) > 1;
7694 node = SUSPEND, flag = 0;
7695 reginsert(pRExC_state, node,ret, depth+1);
7696 Set_Node_Cur_Length(ret);
7697 Set_Node_Offset(ret, parse_start + 1);
7699 REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
7703 /* Check for proper termination. */
7705 RExC_flags = oregflags;
7706 if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
7707 RExC_parse = oregcomp_parse;
7708 vFAIL("Unmatched (");
7711 else if (!paren && RExC_parse < RExC_end) {
7712 if (*RExC_parse == ')') {
7714 vFAIL("Unmatched )");
7717 FAIL("Junk on end of regexp"); /* "Can't happen". */
7721 if (RExC_in_lookbehind) {
7722 RExC_in_lookbehind--;
7724 if (after_freeze > RExC_npar)
7725 RExC_npar = after_freeze;
7730 - regbranch - one alternative of an | operator
7732 * Implements the concatenation operator.
7735 S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
7738 register regnode *ret;
7739 register regnode *chain = NULL;
7740 register regnode *latest;
7741 I32 flags = 0, c = 0;
7742 GET_RE_DEBUG_FLAGS_DECL;
7744 PERL_ARGS_ASSERT_REGBRANCH;
7746 DEBUG_PARSE("brnc");
7751 if (!SIZE_ONLY && RExC_extralen)
7752 ret = reganode(pRExC_state, BRANCHJ,0);
7754 ret = reg_node(pRExC_state, BRANCH);
7755 Set_Node_Length(ret, 1);
7759 if (!first && SIZE_ONLY)
7760 RExC_extralen += 1; /* BRANCHJ */
7762 *flagp = WORST; /* Tentatively. */
7765 nextchar(pRExC_state);
7766 while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
7768 latest = regpiece(pRExC_state, &flags,depth+1);
7769 if (latest == NULL) {
7770 if (flags & TRYAGAIN)
7774 else if (ret == NULL)
7776 *flagp |= flags&(HASWIDTH|POSTPONED);
7777 if (chain == NULL) /* First piece. */
7778 *flagp |= flags&SPSTART;
7781 REGTAIL(pRExC_state, chain, latest);
7786 if (chain == NULL) { /* Loop ran zero times. */
7787 chain = reg_node(pRExC_state, NOTHING);
7792 *flagp |= flags&SIMPLE;
7799 - regpiece - something followed by possible [*+?]
7801 * Note that the branching code sequences used for ? and the general cases
7802 * of * and + are somewhat optimized: they use the same NOTHING node as
7803 * both the endmarker for their branch list and the body of the last branch.
7804 * It might seem that this node could be dispensed with entirely, but the
7805 * endmarker role is not redundant.
7808 S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
7811 register regnode *ret;
7813 register char *next;
7815 const char * const origparse = RExC_parse;
7817 I32 max = REG_INFTY;
7818 #ifdef RE_TRACK_PATTERN_OFFSETS
7821 const char *maxpos = NULL;
7822 GET_RE_DEBUG_FLAGS_DECL;
7824 PERL_ARGS_ASSERT_REGPIECE;
7826 DEBUG_PARSE("piec");
7828 ret = regatom(pRExC_state, &flags,depth+1);
7830 if (flags & TRYAGAIN)
7837 if (op == '{' && regcurly(RExC_parse)) {
7839 #ifdef RE_TRACK_PATTERN_OFFSETS
7840 parse_start = RExC_parse; /* MJD */
7842 next = RExC_parse + 1;
7843 while (isDIGIT(*next) || *next == ',') {
7852 if (*next == '}') { /* got one */
7856 min = atoi(RExC_parse);
7860 maxpos = RExC_parse;
7862 if (!max && *maxpos != '0')
7863 max = REG_INFTY; /* meaning "infinity" */
7864 else if (max >= REG_INFTY)
7865 vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
7867 nextchar(pRExC_state);
7870 if ((flags&SIMPLE)) {
7871 RExC_naughty += 2 + RExC_naughty / 2;
7872 reginsert(pRExC_state, CURLY, ret, depth+1);
7873 Set_Node_Offset(ret, parse_start+1); /* MJD */
7874 Set_Node_Cur_Length(ret);
7877 regnode * const w = reg_node(pRExC_state, WHILEM);
7880 REGTAIL(pRExC_state, ret, w);
7881 if (!SIZE_ONLY && RExC_extralen) {
7882 reginsert(pRExC_state, LONGJMP,ret, depth+1);
7883 reginsert(pRExC_state, NOTHING,ret, depth+1);
7884 NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
7886 reginsert(pRExC_state, CURLYX,ret, depth+1);
7888 Set_Node_Offset(ret, parse_start+1);
7889 Set_Node_Length(ret,
7890 op == '{' ? (RExC_parse - parse_start) : 1);
7892 if (!SIZE_ONLY && RExC_extralen)
7893 NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
7894 REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
7896 RExC_whilem_seen++, RExC_extralen += 3;
7897 RExC_naughty += 4 + RExC_naughty; /* compound interest */
7906 vFAIL("Can't do {n,m} with n > m");
7908 ARG1_SET(ret, (U16)min);
7909 ARG2_SET(ret, (U16)max);
7921 #if 0 /* Now runtime fix should be reliable. */
7923 /* if this is reinstated, don't forget to put this back into perldiag:
7925 =item Regexp *+ operand could be empty at {#} in regex m/%s/
7927 (F) The part of the regexp subject to either the * or + quantifier
7928 could match an empty string. The {#} shows in the regular
7929 expression about where the problem was discovered.
7933 if (!(flags&HASWIDTH) && op != '?')
7934 vFAIL("Regexp *+ operand could be empty");
7937 #ifdef RE_TRACK_PATTERN_OFFSETS
7938 parse_start = RExC_parse;
7940 nextchar(pRExC_state);
7942 *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
7944 if (op == '*' && (flags&SIMPLE)) {
7945 reginsert(pRExC_state, STAR, ret, depth+1);
7949 else if (op == '*') {
7953 else if (op == '+' && (flags&SIMPLE)) {
7954 reginsert(pRExC_state, PLUS, ret, depth+1);
7958 else if (op == '+') {
7962 else if (op == '?') {
7967 if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
7968 ckWARN3reg(RExC_parse,
7969 "%.*s matches null string many times",
7970 (int)(RExC_parse >= origparse ? RExC_parse - origparse : 0),
7974 if (RExC_parse < RExC_end && *RExC_parse == '?') {
7975 nextchar(pRExC_state);
7976 reginsert(pRExC_state, MINMOD, ret, depth+1);
7977 REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
7979 #ifndef REG_ALLOW_MINMOD_SUSPEND
7982 if (RExC_parse < RExC_end && *RExC_parse == '+') {
7984 nextchar(pRExC_state);
7985 ender = reg_node(pRExC_state, SUCCEED);
7986 REGTAIL(pRExC_state, ret, ender);
7987 reginsert(pRExC_state, SUSPEND, ret, depth+1);
7989 ender = reg_node(pRExC_state, TAIL);
7990 REGTAIL(pRExC_state, ret, ender);
7994 if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
7996 vFAIL("Nested quantifiers");
8003 /* reg_namedseq(pRExC_state,UVp, UV depth)
8005 This is expected to be called by a parser routine that has
8006 recognized '\N' and needs to handle the rest. RExC_parse is
8007 expected to point at the first char following the N at the time
8010 The \N may be inside (indicated by valuep not being NULL) or outside a
8013 \N may begin either a named sequence, or if outside a character class, mean
8014 to match a non-newline. For non single-quoted regexes, the tokenizer has
8015 attempted to decide which, and in the case of a named sequence converted it
8016 into one of the forms: \N{} (if the sequence is null), or \N{U+c1.c2...},
8017 where c1... are the characters in the sequence. For single-quoted regexes,
8018 the tokenizer passes the \N sequence through unchanged; this code will not
8019 attempt to determine this nor expand those. The net effect is that if the
8020 beginning of the passed-in pattern isn't '{U+' or there is no '}', it
8021 signals that this \N occurrence means to match a non-newline.
8023 Only the \N{U+...} form should occur in a character class, for the same
8024 reason that '.' inside a character class means to just match a period: it
8025 just doesn't make sense.
8027 If valuep is non-null then it is assumed that we are parsing inside
8028 of a charclass definition and the first codepoint in the resolved
8029 string is returned via *valuep and the routine will return NULL.
8030 In this mode if a multichar string is returned from the charnames
8031 handler, a warning will be issued, and only the first char in the
8032 sequence will be examined. If the string returned is zero length
8033 then the value of *valuep is undefined and NON-NULL will
8034 be returned to indicate failure. (This will NOT be a valid pointer
8037 If valuep is null then it is assumed that we are parsing normal text and a
8038 new EXACT node is inserted into the program containing the resolved string,
8039 and a pointer to the new node is returned. But if the string is zero length
8040 a NOTHING node is emitted instead.
8042 On success RExC_parse is set to the char following the endbrace.
8043 Parsing failures will generate a fatal error via vFAIL(...)
8046 S_reg_namedseq(pTHX_ RExC_state_t *pRExC_state, UV *valuep, I32 *flagp, U32 depth)
8048 char * endbrace; /* '}' following the name */
8049 regnode *ret = NULL;
8052 GET_RE_DEBUG_FLAGS_DECL;
8054 PERL_ARGS_ASSERT_REG_NAMEDSEQ;
8058 /* The [^\n] meaning of \N ignores spaces and comments under the /x
8059 * modifier. The other meaning does not */
8060 p = (RExC_flags & RXf_PMf_EXTENDED)
8061 ? regwhite( pRExC_state, RExC_parse )
8064 /* Disambiguate between \N meaning a named character versus \N meaning
8065 * [^\n]. The former is assumed when it can't be the latter. */
8066 if (*p != '{' || regcurly(p)) {
8069 /* no bare \N in a charclass */
8070 vFAIL("\\N in a character class must be a named character: \\N{...}");
8072 nextchar(pRExC_state);
8073 ret = reg_node(pRExC_state, REG_ANY);
8074 *flagp |= HASWIDTH|SIMPLE;
8077 Set_Node_Length(ret, 1); /* MJD */
8081 /* Here, we have decided it should be a named sequence */
8083 /* The test above made sure that the next real character is a '{', but
8084 * under the /x modifier, it could be separated by space (or a comment and
8085 * \n) and this is not allowed (for consistency with \x{...} and the
8086 * tokenizer handling of \N{NAME}). */
8087 if (*RExC_parse != '{') {
8088 vFAIL("Missing braces on \\N{}");
8091 RExC_parse++; /* Skip past the '{' */
8093 if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */
8094 || ! (endbrace == RExC_parse /* nothing between the {} */
8095 || (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked below */
8096 && strnEQ(RExC_parse, "U+", 2)))) /* for a better error msg) */
8098 if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
8099 vFAIL("\\N{NAME} must be resolved by the lexer");
8102 if (endbrace == RExC_parse) { /* empty: \N{} */
8104 RExC_parse = endbrace + 1;
8105 return reg_node(pRExC_state,NOTHING);
8109 ckWARNreg(RExC_parse,
8110 "Ignoring zero length \\N{} in character class"
8112 RExC_parse = endbrace + 1;
8115 return (regnode *) &RExC_parse; /* Invalid regnode pointer */
8118 REQUIRE_UTF8; /* named sequences imply Unicode semantics */
8119 RExC_parse += 2; /* Skip past the 'U+' */
8121 if (valuep) { /* In a bracketed char class */
8122 /* We only pay attention to the first char of
8123 multichar strings being returned. I kinda wonder
8124 if this makes sense as it does change the behaviour
8125 from earlier versions, OTOH that behaviour was broken
8126 as well. XXX Solution is to recharacterize as
8127 [rest-of-class]|multi1|multi2... */
8129 STRLEN length_of_hex;
8130 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
8131 | PERL_SCAN_DISALLOW_PREFIX
8132 | (SIZE_ONLY ? PERL_SCAN_SILENT_ILLDIGIT : 0);
8134 char * endchar = RExC_parse + strcspn(RExC_parse, ".}");
8135 if (endchar < endbrace) {
8136 ckWARNreg(endchar, "Using just the first character returned by \\N{} in character class");
8139 length_of_hex = (STRLEN)(endchar - RExC_parse);
8140 *valuep = grok_hex(RExC_parse, &length_of_hex, &flags, NULL);
8142 /* The tokenizer should have guaranteed validity, but it's possible to
8143 * bypass it by using single quoting, so check */
8144 if (length_of_hex == 0
8145 || length_of_hex != (STRLEN)(endchar - RExC_parse) )
8147 RExC_parse += length_of_hex; /* Includes all the valid */
8148 RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
8149 ? UTF8SKIP(RExC_parse)
8151 /* Guard against malformed utf8 */
8152 if (RExC_parse >= endchar) RExC_parse = endchar;
8153 vFAIL("Invalid hexadecimal number in \\N{U+...}");
8156 RExC_parse = endbrace + 1;
8157 if (endchar == endbrace) return NULL;
8159 ret = (regnode *) &RExC_parse; /* Invalid regnode pointer */
8161 else { /* Not a char class */
8163 /* What is done here is to convert this to a sub-pattern of the form
8164 * (?:\x{char1}\x{char2}...)
8165 * and then call reg recursively. That way, it retains its atomicness,
8166 * while not having to worry about special handling that some code
8167 * points may have. toke.c has converted the original Unicode values
8168 * to native, so that we can just pass on the hex values unchanged. We
8169 * do have to set a flag to keep recoding from happening in the
8172 SV * substitute_parse = newSVpvn_flags("?:", 2, SVf_UTF8|SVs_TEMP);
8174 char *endchar; /* Points to '.' or '}' ending cur char in the input
8176 char *orig_end = RExC_end;
8178 while (RExC_parse < endbrace) {
8180 /* Code points are separated by dots. If none, there is only one
8181 * code point, and is terminated by the brace */
8182 endchar = RExC_parse + strcspn(RExC_parse, ".}");
8184 /* Convert to notation the rest of the code understands */
8185 sv_catpv(substitute_parse, "\\x{");
8186 sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
8187 sv_catpv(substitute_parse, "}");
8189 /* Point to the beginning of the next character in the sequence. */
8190 RExC_parse = endchar + 1;
8192 sv_catpv(substitute_parse, ")");
8194 RExC_parse = SvPV(substitute_parse, len);
8196 /* Don't allow empty number */
8198 vFAIL("Invalid hexadecimal number in \\N{U+...}");
8200 RExC_end = RExC_parse + len;
8202 /* The values are Unicode, and therefore not subject to recoding */
8203 RExC_override_recoding = 1;
8205 ret = reg(pRExC_state, 1, flagp, depth+1);
8207 RExC_parse = endbrace;
8208 RExC_end = orig_end;
8209 RExC_override_recoding = 0;
8211 nextchar(pRExC_state);
8221 * It returns the code point in utf8 for the value in *encp.
8222 * value: a code value in the source encoding
8223 * encp: a pointer to an Encode object
8225 * If the result from Encode is not a single character,
8226 * it returns U+FFFD (Replacement character) and sets *encp to NULL.
8229 S_reg_recode(pTHX_ const char value, SV **encp)
8232 SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
8233 const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
8234 const STRLEN newlen = SvCUR(sv);
8235 UV uv = UNICODE_REPLACEMENT;
8237 PERL_ARGS_ASSERT_REG_RECODE;
8241 ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
8244 if (!newlen || numlen != newlen) {
8245 uv = UNICODE_REPLACEMENT;
8253 - regatom - the lowest level
8255 Try to identify anything special at the start of the pattern. If there
8256 is, then handle it as required. This may involve generating a single regop,
8257 such as for an assertion; or it may involve recursing, such as to
8258 handle a () structure.
8260 If the string doesn't start with something special then we gobble up
8261 as much literal text as we can.
8263 Once we have been able to handle whatever type of thing started the
8264 sequence, we return.
8266 Note: we have to be careful with escapes, as they can be both literal
8267 and special, and in the case of \10 and friends can either, depending
8268 on context. Specifically there are two separate switches for handling
8269 escape sequences, with the one for handling literal escapes requiring
8270 a dummy entry for all of the special escapes that are actually handled
8275 S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
8278 register regnode *ret = NULL;
8280 char *parse_start = RExC_parse;
8282 GET_RE_DEBUG_FLAGS_DECL;
8283 DEBUG_PARSE("atom");
8284 *flagp = WORST; /* Tentatively. */
8286 PERL_ARGS_ASSERT_REGATOM;
8289 switch ((U8)*RExC_parse) {
8291 RExC_seen_zerolen++;
8292 nextchar(pRExC_state);
8293 if (RExC_flags & RXf_PMf_MULTILINE)
8294 ret = reg_node(pRExC_state, MBOL);
8295 else if (RExC_flags & RXf_PMf_SINGLELINE)
8296 ret = reg_node(pRExC_state, SBOL);
8298 ret = reg_node(pRExC_state, BOL);
8299 Set_Node_Length(ret, 1); /* MJD */
8302 nextchar(pRExC_state);
8304 RExC_seen_zerolen++;
8305 if (RExC_flags & RXf_PMf_MULTILINE)
8306 ret = reg_node(pRExC_state, MEOL);
8307 else if (RExC_flags & RXf_PMf_SINGLELINE)
8308 ret = reg_node(pRExC_state, SEOL);
8310 ret = reg_node(pRExC_state, EOL);
8311 Set_Node_Length(ret, 1); /* MJD */
8314 nextchar(pRExC_state);
8315 if (RExC_flags & RXf_PMf_SINGLELINE)
8316 ret = reg_node(pRExC_state, SANY);
8318 ret = reg_node(pRExC_state, REG_ANY);
8319 *flagp |= HASWIDTH|SIMPLE;
8321 Set_Node_Length(ret, 1); /* MJD */
8325 char * const oregcomp_parse = ++RExC_parse;
8326 ret = regclass(pRExC_state,depth+1);
8327 if (*RExC_parse != ']') {
8328 RExC_parse = oregcomp_parse;
8329 vFAIL("Unmatched [");
8331 nextchar(pRExC_state);
8332 *flagp |= HASWIDTH|SIMPLE;
8333 Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
8337 nextchar(pRExC_state);
8338 ret = reg(pRExC_state, 1, &flags,depth+1);
8340 if (flags & TRYAGAIN) {
8341 if (RExC_parse == RExC_end) {
8342 /* Make parent create an empty node if needed. */
8350 *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
8354 if (flags & TRYAGAIN) {
8358 vFAIL("Internal urp");
8359 /* Supposed to be caught earlier. */
8362 if (!regcurly(RExC_parse)) {
8371 vFAIL("Quantifier follows nothing");
8376 This switch handles escape sequences that resolve to some kind
8377 of special regop and not to literal text. Escape sequnces that
8378 resolve to literal text are handled below in the switch marked
8381 Every entry in this switch *must* have a corresponding entry
8382 in the literal escape switch. However, the opposite is not
8383 required, as the default for this switch is to jump to the
8384 literal text handling code.
8386 switch ((U8)*++RExC_parse) {
8387 /* Special Escapes */
8389 RExC_seen_zerolen++;
8390 ret = reg_node(pRExC_state, SBOL);
8392 goto finish_meta_pat;
8394 ret = reg_node(pRExC_state, GPOS);
8395 RExC_seen |= REG_SEEN_GPOS;
8397 goto finish_meta_pat;
8399 RExC_seen_zerolen++;
8400 ret = reg_node(pRExC_state, KEEPS);
8402 /* XXX:dmq : disabling in-place substitution seems to
8403 * be necessary here to avoid cases of memory corruption, as
8404 * with: C<$_="x" x 80; s/x\K/y/> -- rgs
8406 RExC_seen |= REG_SEEN_LOOKBEHIND;
8407 goto finish_meta_pat;
8409 ret = reg_node(pRExC_state, SEOL);
8411 RExC_seen_zerolen++; /* Do not optimize RE away */
8412 goto finish_meta_pat;
8414 ret = reg_node(pRExC_state, EOS);
8416 RExC_seen_zerolen++; /* Do not optimize RE away */
8417 goto finish_meta_pat;
8419 ret = reg_node(pRExC_state, CANY);
8420 RExC_seen |= REG_SEEN_CANY;
8421 *flagp |= HASWIDTH|SIMPLE;
8422 goto finish_meta_pat;
8424 ret = reg_node(pRExC_state, CLUMP);
8426 goto finish_meta_pat;
8428 switch (get_regex_charset(RExC_flags)) {
8429 case REGEX_LOCALE_CHARSET:
8432 case REGEX_UNICODE_CHARSET:
8435 case REGEX_ASCII_RESTRICTED_CHARSET:
8436 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8439 case REGEX_DEPENDS_CHARSET:
8445 ret = reg_node(pRExC_state, op);
8446 *flagp |= HASWIDTH|SIMPLE;
8447 goto finish_meta_pat;
8449 switch (get_regex_charset(RExC_flags)) {
8450 case REGEX_LOCALE_CHARSET:
8453 case REGEX_UNICODE_CHARSET:
8456 case REGEX_ASCII_RESTRICTED_CHARSET:
8457 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8460 case REGEX_DEPENDS_CHARSET:
8466 ret = reg_node(pRExC_state, op);
8467 *flagp |= HASWIDTH|SIMPLE;
8468 goto finish_meta_pat;
8470 RExC_seen_zerolen++;
8471 RExC_seen |= REG_SEEN_LOOKBEHIND;
8472 switch (get_regex_charset(RExC_flags)) {
8473 case REGEX_LOCALE_CHARSET:
8476 case REGEX_UNICODE_CHARSET:
8479 case REGEX_ASCII_RESTRICTED_CHARSET:
8480 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8483 case REGEX_DEPENDS_CHARSET:
8489 ret = reg_node(pRExC_state, op);
8490 FLAGS(ret) = get_regex_charset(RExC_flags);
8492 if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
8493 ckWARNregdep(RExC_parse, "\"\\b{\" is deprecated; use \"\\b\\{\" instead");
8495 goto finish_meta_pat;
8497 RExC_seen_zerolen++;
8498 RExC_seen |= REG_SEEN_LOOKBEHIND;
8499 switch (get_regex_charset(RExC_flags)) {
8500 case REGEX_LOCALE_CHARSET:
8503 case REGEX_UNICODE_CHARSET:
8506 case REGEX_ASCII_RESTRICTED_CHARSET:
8507 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8510 case REGEX_DEPENDS_CHARSET:
8516 ret = reg_node(pRExC_state, op);
8517 FLAGS(ret) = get_regex_charset(RExC_flags);
8519 if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
8520 ckWARNregdep(RExC_parse, "\"\\B{\" is deprecated; use \"\\B\\{\" instead");
8522 goto finish_meta_pat;
8524 switch (get_regex_charset(RExC_flags)) {
8525 case REGEX_LOCALE_CHARSET:
8528 case REGEX_UNICODE_CHARSET:
8531 case REGEX_ASCII_RESTRICTED_CHARSET:
8532 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8535 case REGEX_DEPENDS_CHARSET:
8541 ret = reg_node(pRExC_state, op);
8542 *flagp |= HASWIDTH|SIMPLE;
8543 goto finish_meta_pat;
8545 switch (get_regex_charset(RExC_flags)) {
8546 case REGEX_LOCALE_CHARSET:
8549 case REGEX_UNICODE_CHARSET:
8552 case REGEX_ASCII_RESTRICTED_CHARSET:
8553 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8556 case REGEX_DEPENDS_CHARSET:
8562 ret = reg_node(pRExC_state, op);
8563 *flagp |= HASWIDTH|SIMPLE;
8564 goto finish_meta_pat;
8566 switch (get_regex_charset(RExC_flags)) {
8567 case REGEX_LOCALE_CHARSET:
8570 case REGEX_ASCII_RESTRICTED_CHARSET:
8571 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8574 case REGEX_DEPENDS_CHARSET: /* No difference between these */
8575 case REGEX_UNICODE_CHARSET:
8581 ret = reg_node(pRExC_state, op);
8582 *flagp |= HASWIDTH|SIMPLE;
8583 goto finish_meta_pat;
8585 switch (get_regex_charset(RExC_flags)) {
8586 case REGEX_LOCALE_CHARSET:
8589 case REGEX_ASCII_RESTRICTED_CHARSET:
8590 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8593 case REGEX_DEPENDS_CHARSET: /* No difference between these */
8594 case REGEX_UNICODE_CHARSET:
8600 ret = reg_node(pRExC_state, op);
8601 *flagp |= HASWIDTH|SIMPLE;
8602 goto finish_meta_pat;
8604 ret = reg_node(pRExC_state, LNBREAK);
8605 *flagp |= HASWIDTH|SIMPLE;
8606 goto finish_meta_pat;
8608 ret = reg_node(pRExC_state, HORIZWS);
8609 *flagp |= HASWIDTH|SIMPLE;
8610 goto finish_meta_pat;
8612 ret = reg_node(pRExC_state, NHORIZWS);
8613 *flagp |= HASWIDTH|SIMPLE;
8614 goto finish_meta_pat;
8616 ret = reg_node(pRExC_state, VERTWS);
8617 *flagp |= HASWIDTH|SIMPLE;
8618 goto finish_meta_pat;
8620 ret = reg_node(pRExC_state, NVERTWS);
8621 *flagp |= HASWIDTH|SIMPLE;
8623 nextchar(pRExC_state);
8624 Set_Node_Length(ret, 2); /* MJD */
8629 char* const oldregxend = RExC_end;
8631 char* parse_start = RExC_parse - 2;
8634 if (RExC_parse[1] == '{') {
8635 /* a lovely hack--pretend we saw [\pX] instead */
8636 RExC_end = strchr(RExC_parse, '}');
8638 const U8 c = (U8)*RExC_parse;
8640 RExC_end = oldregxend;
8641 vFAIL2("Missing right brace on \\%c{}", c);
8646 RExC_end = RExC_parse + 2;
8647 if (RExC_end > oldregxend)
8648 RExC_end = oldregxend;
8652 ret = regclass(pRExC_state,depth+1);
8654 RExC_end = oldregxend;
8657 Set_Node_Offset(ret, parse_start + 2);
8658 Set_Node_Cur_Length(ret);
8659 nextchar(pRExC_state);
8660 *flagp |= HASWIDTH|SIMPLE;
8664 /* Handle \N and \N{NAME} here and not below because it can be
8665 multicharacter. join_exact() will join them up later on.
8666 Also this makes sure that things like /\N{BLAH}+/ and
8667 \N{BLAH} being multi char Just Happen. dmq*/
8669 ret= reg_namedseq(pRExC_state, NULL, flagp, depth);
8671 case 'k': /* Handle \k<NAME> and \k'NAME' */
8674 char ch= RExC_parse[1];
8675 if (ch != '<' && ch != '\'' && ch != '{') {
8677 vFAIL2("Sequence %.2s... not terminated",parse_start);
8679 /* this pretty much dupes the code for (?P=...) in reg(), if
8680 you change this make sure you change that */
8681 char* name_start = (RExC_parse += 2);
8683 SV *sv_dat = reg_scan_name(pRExC_state,
8684 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
8685 ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
8686 if (RExC_parse == name_start || *RExC_parse != ch)
8687 vFAIL2("Sequence %.3s... not terminated",parse_start);
8690 num = add_data( pRExC_state, 1, "S" );
8691 RExC_rxi->data->data[num]=(void*)sv_dat;
8692 SvREFCNT_inc_simple_void(sv_dat);
8696 ret = reganode(pRExC_state,
8699 : (MORE_ASCII_RESTRICTED)
8701 : (AT_LEAST_UNI_SEMANTICS)
8709 /* override incorrect value set in reganode MJD */
8710 Set_Node_Offset(ret, parse_start+1);
8711 Set_Node_Cur_Length(ret); /* MJD */
8712 nextchar(pRExC_state);
8718 case '1': case '2': case '3': case '4':
8719 case '5': case '6': case '7': case '8': case '9':
8722 bool isg = *RExC_parse == 'g';
8727 if (*RExC_parse == '{') {
8731 if (*RExC_parse == '-') {
8735 if (hasbrace && !isDIGIT(*RExC_parse)) {
8736 if (isrel) RExC_parse--;
8738 goto parse_named_seq;
8740 num = atoi(RExC_parse);
8741 if (isg && num == 0)
8742 vFAIL("Reference to invalid group 0");
8744 num = RExC_npar - num;
8746 vFAIL("Reference to nonexistent or unclosed group");
8748 if (!isg && num > 9 && num >= RExC_npar)
8751 char * const parse_start = RExC_parse - 1; /* MJD */
8752 while (isDIGIT(*RExC_parse))
8754 if (parse_start == RExC_parse - 1)
8755 vFAIL("Unterminated \\g... pattern");
8757 if (*RExC_parse != '}')
8758 vFAIL("Unterminated \\g{...} pattern");
8762 if (num > (I32)RExC_rx->nparens)
8763 vFAIL("Reference to nonexistent group");
8766 ret = reganode(pRExC_state,
8769 : (MORE_ASCII_RESTRICTED)
8771 : (AT_LEAST_UNI_SEMANTICS)
8779 /* override incorrect value set in reganode MJD */
8780 Set_Node_Offset(ret, parse_start+1);
8781 Set_Node_Cur_Length(ret); /* MJD */
8783 nextchar(pRExC_state);
8788 if (RExC_parse >= RExC_end)
8789 FAIL("Trailing \\");
8792 /* Do not generate "unrecognized" warnings here, we fall
8793 back into the quick-grab loop below */
8800 if (RExC_flags & RXf_PMf_EXTENDED) {
8801 if ( reg_skipcomment( pRExC_state ) )
8808 parse_start = RExC_parse - 1;
8821 char_state latest_char_state = generic_char;
8822 register STRLEN len;
8827 U8 tmpbuf[UTF8_MAXBYTES_CASE+1], *foldbuf;
8828 regnode * orig_emit;
8831 orig_emit = RExC_emit; /* Save the original output node position in
8832 case we need to output a different node
8834 ret = reg_node(pRExC_state,
8835 (U8) ((! FOLD) ? EXACT
8838 : (MORE_ASCII_RESTRICTED)
8840 : (AT_LEAST_UNI_SEMANTICS)
8845 for (len = 0, p = RExC_parse - 1;
8846 len < 127 && p < RExC_end;
8849 char * const oldp = p;
8851 if (RExC_flags & RXf_PMf_EXTENDED)
8852 p = regwhite( pRExC_state, p );
8863 /* Literal Escapes Switch
8865 This switch is meant to handle escape sequences that
8866 resolve to a literal character.
8868 Every escape sequence that represents something
8869 else, like an assertion or a char class, is handled
8870 in the switch marked 'Special Escapes' above in this
8871 routine, but also has an entry here as anything that
8872 isn't explicitly mentioned here will be treated as
8873 an unescaped equivalent literal.
8877 /* These are all the special escapes. */
8878 case 'A': /* Start assertion */
8879 case 'b': case 'B': /* Word-boundary assertion*/
8880 case 'C': /* Single char !DANGEROUS! */
8881 case 'd': case 'D': /* digit class */
8882 case 'g': case 'G': /* generic-backref, pos assertion */
8883 case 'h': case 'H': /* HORIZWS */
8884 case 'k': case 'K': /* named backref, keep marker */
8885 case 'N': /* named char sequence */
8886 case 'p': case 'P': /* Unicode property */
8887 case 'R': /* LNBREAK */
8888 case 's': case 'S': /* space class */
8889 case 'v': case 'V': /* VERTWS */
8890 case 'w': case 'W': /* word class */
8891 case 'X': /* eXtended Unicode "combining character sequence" */
8892 case 'z': case 'Z': /* End of line/string assertion */
8896 /* Anything after here is an escape that resolves to a
8897 literal. (Except digits, which may or may not)
8916 ender = ASCII_TO_NATIVE('\033');
8920 ender = ASCII_TO_NATIVE('\007');
8925 STRLEN brace_len = len;
8927 const char* error_msg;
8929 bool valid = grok_bslash_o(p,
8936 RExC_parse = p; /* going to die anyway; point
8937 to exact spot of failure */
8944 if (PL_encoding && ender < 0x100) {
8945 goto recode_encoding;
8954 char* const e = strchr(p, '}');
8958 vFAIL("Missing right brace on \\x{}");
8961 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
8962 | PERL_SCAN_DISALLOW_PREFIX;
8963 STRLEN numlen = e - p - 1;
8964 ender = grok_hex(p + 1, &numlen, &flags, NULL);
8971 I32 flags = PERL_SCAN_DISALLOW_PREFIX;
8973 ender = grok_hex(p, &numlen, &flags, NULL);
8976 if (PL_encoding && ender < 0x100)
8977 goto recode_encoding;
8981 ender = grok_bslash_c(*p++, UTF, SIZE_ONLY);
8983 case '0': case '1': case '2': case '3':case '4':
8984 case '5': case '6': case '7': case '8':case '9':
8986 (isDIGIT(p[1]) && atoi(p) >= RExC_npar))
8988 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
8990 ender = grok_oct(p, &numlen, &flags, NULL);
9000 if (PL_encoding && ender < 0x100)
9001 goto recode_encoding;
9004 if (! RExC_override_recoding) {
9005 SV* enc = PL_encoding;
9006 ender = reg_recode((const char)(U8)ender, &enc);
9007 if (!enc && SIZE_ONLY)
9008 ckWARNreg(p, "Invalid escape in the specified encoding");
9014 FAIL("Trailing \\");
9017 if (!SIZE_ONLY&& isALPHA(*p)) {
9018 /* Include any { following the alpha to emphasize
9019 * that it could be part of an escape at some point
9021 int len = (*(p + 1) == '{') ? 2 : 1;
9022 ckWARN3reg(p + len, "Unrecognized escape \\%.*s passed through", len, p);
9024 goto normal_default;
9029 if (UTF8_IS_START(*p) && UTF) {
9031 ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
9032 &numlen, UTF8_ALLOW_DEFAULT);
9038 } /* End of switch on the literal */
9040 /* Certain characters are problematic because their folded
9041 * length is so different from their original length that it
9042 * isn't handleable by the optimizer. They are therefore not
9043 * placed in an EXACTish node; and are here handled specially.
9044 * (Even if the optimizer handled LATIN_SMALL_LETTER_SHARP_S,
9045 * putting it in a special node keeps regexec from having to
9046 * deal with a non-utf8 multi-char fold */
9048 && (ender > 255 || (! MORE_ASCII_RESTRICTED && ! LOC)))
9050 /* We look for either side of the fold. For example \xDF
9051 * folds to 'ss'. We look for both the single character
9052 * \xDF and the sequence 'ss'. When we find something that
9053 * could be one of those, we stop and flush whatever we
9054 * have output so far into the EXACTish node that was being
9055 * built. Then restore the input pointer to what it was.
9056 * regatom will return that EXACT node, and will be called
9057 * again, positioned so the first character is the one in
9058 * question, which we return in a different node type.
9059 * The multi-char folds are a sequence, so the occurrence
9060 * of the first character in that sequence doesn't
9061 * necessarily mean that what follows is the rest of the
9062 * sequence. We keep track of that with a state machine,
9063 * with the state being set to the latest character
9064 * processed before the current one. Most characters will
9065 * set the state to 0, but if one occurs that is part of a
9066 * potential tricky fold sequence, the state is set to that
9067 * character, and the next loop iteration sees if the state
9068 * should progress towards the final folded-from character,
9069 * or if it was a false alarm. If it turns out to be a
9070 * false alarm, the character(s) will be output in a new
9071 * EXACTish node, and join_exact() will later combine them.
9072 * In the case of the 'ss' sequence, which is more common
9073 * and more easily checked, some look-ahead is done to
9074 * save time by ruling-out some false alarms */
9077 latest_char_state = generic_char;
9081 case 0x17F: /* LATIN SMALL LETTER LONG S */
9082 if (AT_LEAST_UNI_SEMANTICS) {
9083 if (latest_char_state == char_s) { /* 'ss' */
9084 ender = LATIN_SMALL_LETTER_SHARP_S;
9087 else if (p < RExC_end) {
9089 /* Look-ahead at the next character. If it
9090 * is also an s, we handle as a sharp s
9091 * tricky regnode. */
9092 if (*p == 's' || *p == 'S') {
9094 /* But first flush anything in the
9095 * EXACTish buffer */
9100 p++; /* Account for swallowing this
9102 ender = LATIN_SMALL_LETTER_SHARP_S;
9105 /* Here, the next character is not a
9106 * literal 's', but still could
9107 * evaluate to one if part of a \o{},
9108 * \x or \OCTAL-DIGIT. The minimum
9109 * length required for that is 4, eg
9113 && (isDIGIT(*(p + 1))
9115 || *(p + 1) == 'o' ))
9118 /* Here, it could be an 's', too much
9119 * bother to figure it out here. Flush
9120 * the buffer if any; when come back
9121 * here, set the state so know that the
9122 * previous char was an 's' */
9124 latest_char_state = generic_char;
9128 latest_char_state = char_s;
9134 /* Here, can't be an 'ss' sequence, or at least not
9135 * one that could fold to/from the sharp ss */
9136 latest_char_state = generic_char;
9138 case 0x03C5: /* First char in upsilon series */
9139 case 0x03A5: /* Also capital UPSILON, which folds to
9140 03C5, and hence exhibits the same
9142 if (p < RExC_end - 4) { /* Need >= 4 bytes left */
9143 latest_char_state = upsilon_1;
9150 latest_char_state = generic_char;
9153 case 0x03B9: /* First char in iota series */
9154 case 0x0399: /* Also capital IOTA */
9155 case 0x1FBE: /* GREEK PROSGEGRAMMENI folds to 3B9 */
9156 case 0x0345: /* COMBINING GREEK YPOGEGRAMMENI folds
9158 if (p < RExC_end - 4) {
9159 latest_char_state = iota_1;
9166 latest_char_state = generic_char;
9170 if (latest_char_state == upsilon_1) {
9171 latest_char_state = upsilon_2;
9173 else if (latest_char_state == iota_1) {
9174 latest_char_state = iota_2;
9177 latest_char_state = generic_char;
9181 if (latest_char_state == upsilon_2) {
9182 ender = GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS;
9185 else if (latest_char_state == iota_2) {
9186 ender = GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS;
9189 latest_char_state = generic_char;
9192 /* These are the tricky fold characters. Flush any
9193 * buffer first. (When adding to this list, also should
9194 * add them to fold_grind.t to make sure get tested) */
9195 case GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS:
9196 case GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS:
9197 case LATIN_SMALL_LETTER_SHARP_S:
9198 case LATIN_CAPITAL_LETTER_SHARP_S:
9199 case 0x1FD3: /* GREEK SMALL LETTER IOTA WITH DIALYTIKA AND OXIA */
9200 case 0x1FE3: /* GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND OXIA */
9207 char* const oldregxend = RExC_end;
9208 U8 tmpbuf[UTF8_MAXBYTES+1];
9210 /* Here, we know we need to generate a special
9211 * regnode, and 'ender' contains the tricky
9212 * character. What's done is to pretend it's in a
9213 * [bracketed] class, and let the code that deals
9214 * with those handle it, as that code has all the
9215 * intelligence necessary. First save the current
9216 * parse state, get rid of the already allocated
9217 * but empty EXACT node that the ANYOFV node will
9218 * replace, and point the parse to a buffer which
9219 * we fill with the character we want the regclass
9220 * code to think is being parsed */
9221 RExC_emit = orig_emit;
9222 RExC_parse = (char *) tmpbuf;
9224 U8 *d = uvchr_to_utf8(tmpbuf, ender);
9226 RExC_end = (char *) d;
9228 else { /* ender above 255 already excluded */
9229 tmpbuf[0] = (U8) ender;
9231 RExC_end = RExC_parse + 1;
9234 ret = regclass(pRExC_state,depth+1);
9236 /* Here, have parsed the buffer. Reset the parse to
9237 * the actual input, and return */
9238 RExC_end = oldregxend;
9241 Set_Node_Offset(ret, RExC_parse);
9242 Set_Node_Cur_Length(ret);
9243 nextchar(pRExC_state);
9244 *flagp |= HASWIDTH|SIMPLE;
9250 if ( RExC_flags & RXf_PMf_EXTENDED)
9251 p = regwhite( pRExC_state, p );
9253 /* Prime the casefolded buffer. Locale rules, which apply
9254 * only to code points < 256, aren't known until execution,
9255 * so for them, just output the original character using
9257 if (LOC && ender < 256) {
9258 if (UNI_IS_INVARIANT(ender)) {
9259 *tmpbuf = (U8) ender;
9262 *tmpbuf = UTF8_TWO_BYTE_HI(ender);
9263 *(tmpbuf + 1) = UTF8_TWO_BYTE_LO(ender);
9267 else if (isASCII(ender)) { /* Note: Here can't also be LOC
9269 ender = toLOWER(ender);
9270 *tmpbuf = (U8) ender;
9273 else if (! MORE_ASCII_RESTRICTED && ! LOC) {
9275 /* Locale and /aa require more selectivity about the
9276 * fold, so are handled below. Otherwise, here, just
9278 ender = toFOLD_uni(ender, tmpbuf, &foldlen);
9281 /* Under locale rules or /aa we are not to mix,
9282 * respectively, ords < 256 or ASCII with non-. So
9283 * reject folds that mix them, using only the
9284 * non-folded code point. So do the fold to a
9285 * temporary, and inspect each character in it. */
9286 U8 trialbuf[UTF8_MAXBYTES_CASE+1];
9288 UV tmpender = toFOLD_uni(ender, trialbuf, &foldlen);
9289 U8* e = s + foldlen;
9290 bool fold_ok = TRUE;
9294 || (LOC && (UTF8_IS_INVARIANT(*s)
9295 || UTF8_IS_DOWNGRADEABLE_START(*s))))
9303 Copy(trialbuf, tmpbuf, foldlen, U8);
9307 uvuni_to_utf8(tmpbuf, ender);
9308 foldlen = UNISKIP(ender);
9312 if (p < RExC_end && ISMULT2(p)) { /* Back off on ?+*. */
9317 /* Emit all the Unicode characters. */
9319 for (foldbuf = tmpbuf;
9321 foldlen -= numlen) {
9322 ender = utf8_to_uvchr(foldbuf, &numlen);
9324 const STRLEN unilen = reguni(pRExC_state, ender, s);
9327 /* In EBCDIC the numlen
9328 * and unilen can differ. */
9330 if (numlen >= foldlen)
9334 break; /* "Can't happen." */
9338 const STRLEN unilen = reguni(pRExC_state, ender, s);
9347 REGC((char)ender, s++);
9353 /* Emit all the Unicode characters. */
9355 for (foldbuf = tmpbuf;
9357 foldlen -= numlen) {
9358 ender = utf8_to_uvchr(foldbuf, &numlen);
9360 const STRLEN unilen = reguni(pRExC_state, ender, s);
9363 /* In EBCDIC the numlen
9364 * and unilen can differ. */
9366 if (numlen >= foldlen)
9374 const STRLEN unilen = reguni(pRExC_state, ender, s);
9383 REGC((char)ender, s++);
9386 loopdone: /* Jumped to when encounters something that shouldn't be in
9389 Set_Node_Cur_Length(ret); /* MJD */
9390 nextchar(pRExC_state);
9392 /* len is STRLEN which is unsigned, need to copy to signed */
9395 vFAIL("Internal disaster");
9399 if (len == 1 && UNI_IS_INVARIANT(ender))
9403 RExC_size += STR_SZ(len);
9406 RExC_emit += STR_SZ(len);
9414 /* Jumped to when an unrecognized character set is encountered */
9416 Perl_croak(aTHX_ "panic: Unknown regex character set encoding: %u", get_regex_charset(RExC_flags));
9421 S_regwhite( RExC_state_t *pRExC_state, char *p )
9423 const char *e = RExC_end;
9425 PERL_ARGS_ASSERT_REGWHITE;
9430 else if (*p == '#') {
9439 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
9447 /* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
9448 Character classes ([:foo:]) can also be negated ([:^foo:]).
9449 Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
9450 Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
9451 but trigger failures because they are currently unimplemented. */
9453 #define POSIXCC_DONE(c) ((c) == ':')
9454 #define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
9455 #define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
9458 S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value)
9461 I32 namedclass = OOB_NAMEDCLASS;
9463 PERL_ARGS_ASSERT_REGPPOSIXCC;
9465 if (value == '[' && RExC_parse + 1 < RExC_end &&
9466 /* I smell either [: or [= or [. -- POSIX has been here, right? */
9467 POSIXCC(UCHARAT(RExC_parse))) {
9468 const char c = UCHARAT(RExC_parse);
9469 char* const s = RExC_parse++;
9471 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
9473 if (RExC_parse == RExC_end)
9474 /* Grandfather lone [:, [=, [. */
9477 const char* const t = RExC_parse++; /* skip over the c */
9480 if (UCHARAT(RExC_parse) == ']') {
9481 const char *posixcc = s + 1;
9482 RExC_parse++; /* skip over the ending ] */
9485 const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
9486 const I32 skip = t - posixcc;
9488 /* Initially switch on the length of the name. */
9491 if (memEQ(posixcc, "word", 4)) /* this is not POSIX, this is the Perl \w */
9492 namedclass = complement ? ANYOF_NALNUM : ANYOF_ALNUM;
9495 /* Names all of length 5. */
9496 /* alnum alpha ascii blank cntrl digit graph lower
9497 print punct space upper */
9498 /* Offset 4 gives the best switch position. */
9499 switch (posixcc[4]) {
9501 if (memEQ(posixcc, "alph", 4)) /* alpha */
9502 namedclass = complement ? ANYOF_NALPHA : ANYOF_ALPHA;
9505 if (memEQ(posixcc, "spac", 4)) /* space */
9506 namedclass = complement ? ANYOF_NPSXSPC : ANYOF_PSXSPC;
9509 if (memEQ(posixcc, "grap", 4)) /* graph */
9510 namedclass = complement ? ANYOF_NGRAPH : ANYOF_GRAPH;
9513 if (memEQ(posixcc, "asci", 4)) /* ascii */
9514 namedclass = complement ? ANYOF_NASCII : ANYOF_ASCII;
9517 if (memEQ(posixcc, "blan", 4)) /* blank */
9518 namedclass = complement ? ANYOF_NBLANK : ANYOF_BLANK;
9521 if (memEQ(posixcc, "cntr", 4)) /* cntrl */
9522 namedclass = complement ? ANYOF_NCNTRL : ANYOF_CNTRL;
9525 if (memEQ(posixcc, "alnu", 4)) /* alnum */
9526 namedclass = complement ? ANYOF_NALNUMC : ANYOF_ALNUMC;
9529 if (memEQ(posixcc, "lowe", 4)) /* lower */
9530 namedclass = complement ? ANYOF_NLOWER : ANYOF_LOWER;
9531 else if (memEQ(posixcc, "uppe", 4)) /* upper */
9532 namedclass = complement ? ANYOF_NUPPER : ANYOF_UPPER;
9535 if (memEQ(posixcc, "digi", 4)) /* digit */
9536 namedclass = complement ? ANYOF_NDIGIT : ANYOF_DIGIT;
9537 else if (memEQ(posixcc, "prin", 4)) /* print */
9538 namedclass = complement ? ANYOF_NPRINT : ANYOF_PRINT;
9539 else if (memEQ(posixcc, "punc", 4)) /* punct */
9540 namedclass = complement ? ANYOF_NPUNCT : ANYOF_PUNCT;
9545 if (memEQ(posixcc, "xdigit", 6))
9546 namedclass = complement ? ANYOF_NXDIGIT : ANYOF_XDIGIT;
9550 if (namedclass == OOB_NAMEDCLASS)
9551 Simple_vFAIL3("POSIX class [:%.*s:] unknown",
9553 assert (posixcc[skip] == ':');
9554 assert (posixcc[skip+1] == ']');
9555 } else if (!SIZE_ONLY) {
9556 /* [[=foo=]] and [[.foo.]] are still future. */
9558 /* adjust RExC_parse so the warning shows after
9560 while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
9562 Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
9565 /* Maternal grandfather:
9566 * "[:" ending in ":" but not in ":]" */
9576 S_checkposixcc(pTHX_ RExC_state_t *pRExC_state)
9580 PERL_ARGS_ASSERT_CHECKPOSIXCC;
9582 if (POSIXCC(UCHARAT(RExC_parse))) {
9583 const char *s = RExC_parse;
9584 const char c = *s++;
9588 if (*s && c == *s && s[1] == ']') {
9590 "POSIX syntax [%c %c] belongs inside character classes",
9593 /* [[=foo=]] and [[.foo.]] are still future. */
9594 if (POSIXCC_NOTYET(c)) {
9595 /* adjust RExC_parse so the error shows after
9597 while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse++) != ']')
9599 Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
9605 /* No locale test, and always Unicode semantics */
9606 #define _C_C_T_NOLOC_(NAME,TEST,WORD) \
9608 for (value = 0; value < 256; value++) \
9610 stored += set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9614 case ANYOF_N##NAME: \
9615 for (value = 0; value < 256; value++) \
9617 stored += set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9622 /* Like the above, but there are differences if we are in uni-8-bit or not, so
9623 * there are two tests passed in, to use depending on that. There aren't any
9624 * cases where the label is different from the name, so no need for that
9626 #define _C_C_T_(NAME, TEST_8, TEST_7, WORD) \
9628 if (LOC) ANYOF_CLASS_SET(ret, ANYOF_##NAME); \
9629 else if (UNI_SEMANTICS) { \
9630 for (value = 0; value < 256; value++) { \
9631 if (TEST_8(value)) stored += \
9632 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9636 for (value = 0; value < 128; value++) { \
9637 if (TEST_7(UNI_TO_NATIVE(value))) stored += \
9638 set_regclass_bit(pRExC_state, ret, \
9639 (U8) UNI_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate); \
9645 case ANYOF_N##NAME: \
9646 if (LOC) ANYOF_CLASS_SET(ret, ANYOF_N##NAME); \
9647 else if (UNI_SEMANTICS) { \
9648 for (value = 0; value < 256; value++) { \
9649 if (! TEST_8(value)) stored += \
9650 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9654 for (value = 0; value < 128; value++) { \
9655 if (! TEST_7(UNI_TO_NATIVE(value))) stored += set_regclass_bit( \
9656 pRExC_state, ret, (U8) UNI_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate); \
9658 if (AT_LEAST_ASCII_RESTRICTED) { \
9659 for (value = 128; value < 256; value++) { \
9660 stored += set_regclass_bit( \
9661 pRExC_state, ret, (U8) UNI_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate); \
9663 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL; \
9666 /* For a non-ut8 target string with DEPENDS semantics, all above \
9667 * ASCII Latin1 code points match the complement of any of the \
9668 * classes. But in utf8, they have their Unicode semantics, so \
9669 * can't just set them in the bitmap, or else regexec.c will think \
9670 * they matched when they shouldn't. */ \
9671 ANYOF_FLAGS(ret) |= ANYOF_NON_UTF8_LATIN1_ALL; \
9679 S_set_regclass_bit_fold(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, SV** invlist_ptr, AV** alternate_ptr)
9682 /* Handle the setting of folds in the bitmap for non-locale ANYOF nodes.
9683 * Locale folding is done at run-time, so this function should not be
9684 * called for nodes that are for locales.
9686 * This function sets the bit corresponding to the fold of the input
9687 * 'value', if not already set. The fold of 'f' is 'F', and the fold of
9690 * It also knows about the characters that are in the bitmap that have
9691 * folds that are matchable only outside it, and sets the appropriate lists
9694 * It returns the number of bits that actually changed from 0 to 1 */
9699 PERL_ARGS_ASSERT_SET_REGCLASS_BIT_FOLD;
9701 fold = (AT_LEAST_UNI_SEMANTICS) ? PL_fold_latin1[value]
9704 /* It assumes the bit for 'value' has already been set */
9705 if (fold != value && ! ANYOF_BITMAP_TEST(node, fold)) {
9706 ANYOF_BITMAP_SET(node, fold);
9709 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value) && (! isASCII(value) || ! MORE_ASCII_RESTRICTED)) {
9710 /* Certain Latin1 characters have matches outside the bitmap. To get
9711 * here, 'value' is one of those characters. None of these matches is
9712 * valid for ASCII characters under /aa, which have been excluded by
9713 * the 'if' above. The matches fall into three categories:
9714 * 1) They are singly folded-to or -from an above 255 character, as
9715 * LATIN SMALL LETTER Y WITH DIAERESIS and LATIN CAPITAL LETTER Y
9717 * 2) They are part of a multi-char fold with another character in the
9718 * bitmap, only LATIN SMALL LETTER SHARP S => "ss" fits that bill;
9719 * 3) They are part of a multi-char fold with a character not in the
9720 * bitmap, such as various ligatures.
9721 * We aren't dealing fully with multi-char folds, except we do deal
9722 * with the pattern containing a character that has a multi-char fold
9723 * (not so much the inverse).
9724 * For types 1) and 3), the matches only happen when the target string
9725 * is utf8; that's not true for 2), and we set a flag for it.
9727 * The code below adds to the passed in inversion list the single fold
9728 * closures for 'value'. The values are hard-coded here so that an
9729 * innocent-looking character class, like /[ks]/i won't have to go out
9730 * to disk to find the possible matches. XXX It would be better to
9731 * generate these via regen, in case a new version of the Unicode
9732 * standard adds new mappings, though that is not really likely. */
9737 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212A);
9741 /* LATIN SMALL LETTER LONG S */
9742 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x017F);
9745 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9746 GREEK_SMALL_LETTER_MU);
9747 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9748 GREEK_CAPITAL_LETTER_MU);
9750 case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
9751 case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
9753 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212B);
9754 if (DEPENDS_SEMANTICS) { /* See DEPENDS comment below */
9755 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9756 PL_fold_latin1[value]);
9759 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
9760 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9761 LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
9763 case LATIN_SMALL_LETTER_SHARP_S:
9764 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9765 LATIN_CAPITAL_LETTER_SHARP_S);
9767 /* Under /a, /d, and /u, this can match the two chars "ss" */
9768 if (! MORE_ASCII_RESTRICTED) {
9769 add_alternate(alternate_ptr, (U8 *) "ss", 2);
9771 /* And under /u or /a, it can match even if the target is
9773 if (AT_LEAST_UNI_SEMANTICS) {
9774 ANYOF_FLAGS(node) |= ANYOF_NONBITMAP_NON_UTF8;
9788 /* These all are targets of multi-character folds from code
9789 * points that require UTF8 to express, so they can't match
9790 * unless the target string is in UTF-8, so no action here is
9791 * necessary, as regexec.c properly handles the general case
9792 * for UTF-8 matching */
9795 /* Use deprecated warning to increase the chances of this
9797 ckWARN2regdep(RExC_parse, "Perl folding rules are not up-to-date for 0x%x; please use the perlbug utility to report;", value);
9801 else if (DEPENDS_SEMANTICS
9803 && PL_fold_latin1[value] != value)
9805 /* Under DEPENDS rules, non-ASCII Latin1 characters match their
9806 * folds only when the target string is in UTF-8. We add the fold
9807 * here to the list of things to match outside the bitmap, which
9808 * won't be looked at unless it is UTF8 (or else if something else
9809 * says to look even if not utf8, but those things better not happen
9810 * under DEPENDS semantics. */
9811 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, PL_fold_latin1[value]);
9818 PERL_STATIC_INLINE U8
9819 S_set_regclass_bit(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, SV** invlist_ptr, AV** alternate_ptr)
9821 /* This inline function sets a bit in the bitmap if not already set, and if
9822 * appropriate, its fold, returning the number of bits that actually
9823 * changed from 0 to 1 */
9827 PERL_ARGS_ASSERT_SET_REGCLASS_BIT;
9829 if (ANYOF_BITMAP_TEST(node, value)) { /* Already set */
9833 ANYOF_BITMAP_SET(node, value);
9836 if (FOLD && ! LOC) { /* Locale folds aren't known until runtime */
9837 stored += set_regclass_bit_fold(pRExC_state, node, value, invlist_ptr, alternate_ptr);
9844 S_add_alternate(pTHX_ AV** alternate_ptr, U8* string, STRLEN len)
9846 /* Adds input 'string' with length 'len' to the ANYOF node's unicode
9847 * alternate list, pointed to by 'alternate_ptr'. This is an array of
9848 * the multi-character folds of characters in the node */
9851 PERL_ARGS_ASSERT_ADD_ALTERNATE;
9853 if (! *alternate_ptr) {
9854 *alternate_ptr = newAV();
9856 sv = newSVpvn_utf8((char*)string, len, TRUE);
9857 av_push(*alternate_ptr, sv);
9862 parse a class specification and produce either an ANYOF node that
9863 matches the pattern or perhaps will be optimized into an EXACTish node
9864 instead. The node contains a bit map for the first 256 characters, with the
9865 corresponding bit set if that character is in the list. For characters
9866 above 255, a range list is used */
9869 S_regclass(pTHX_ RExC_state_t *pRExC_state, U32 depth)
9872 register UV nextvalue;
9873 register IV prevvalue = OOB_UNICODE;
9874 register IV range = 0;
9875 UV value = 0; /* XXX:dmq: needs to be referenceable (unfortunately) */
9876 register regnode *ret;
9879 char *rangebegin = NULL;
9880 bool need_class = 0;
9881 bool allow_full_fold = TRUE; /* Assume wants multi-char folding */
9883 STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
9884 than just initialized. */
9887 /* code points this node matches that can't be stored in the bitmap */
9888 SV* nonbitmap = NULL;
9890 /* The items that are to match that aren't stored in the bitmap, but are a
9891 * result of things that are stored there. This is the fold closure of
9892 * such a character, either because it has DEPENDS semantics and shouldn't
9893 * be matched unless the target string is utf8, or is a code point that is
9894 * too large for the bit map, as for example, the fold of the MICRO SIGN is
9895 * above 255. This all is solely for performance reasons. By having this
9896 * code know the outside-the-bitmap folds that the bitmapped characters are
9897 * involved with, we don't have to go out to disk to find the list of
9898 * matches, unless the character class includes code points that aren't
9899 * storable in the bit map. That means that a character class with an 's'
9900 * in it, for example, doesn't need to go out to disk to find everything
9901 * that matches. A 2nd list is used so that the 'nonbitmap' list is kept
9902 * empty unless there is something whose fold we don't know about, and will
9903 * have to go out to the disk to find. */
9904 SV* l1_fold_invlist = NULL;
9906 /* List of multi-character folds that are matched by this node */
9907 AV* unicode_alternate = NULL;
9909 UV literal_endpoint = 0;
9911 UV stored = 0; /* how many chars stored in the bitmap */
9913 regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
9914 case we need to change the emitted regop to an EXACT. */
9915 const char * orig_parse = RExC_parse;
9916 GET_RE_DEBUG_FLAGS_DECL;
9918 PERL_ARGS_ASSERT_REGCLASS;
9920 PERL_UNUSED_ARG(depth);
9923 DEBUG_PARSE("clas");
9925 /* Assume we are going to generate an ANYOF node. */
9926 ret = reganode(pRExC_state, ANYOF, 0);
9930 ANYOF_FLAGS(ret) = 0;
9933 if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
9937 ANYOF_FLAGS(ret) |= ANYOF_INVERT;
9939 /* We have decided to not allow multi-char folds in inverted character
9940 * classes, due to the confusion that can happen, especially with
9941 * classes that are designed for a non-Unicode world: You have the
9942 * peculiar case that:
9943 "s s" =~ /^[^\xDF]+$/i => Y
9944 "ss" =~ /^[^\xDF]+$/i => N
9946 * See [perl #89750] */
9947 allow_full_fold = FALSE;
9951 RExC_size += ANYOF_SKIP;
9952 listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
9955 RExC_emit += ANYOF_SKIP;
9957 ANYOF_FLAGS(ret) |= ANYOF_LOCALE;
9959 ANYOF_BITMAP_ZERO(ret);
9960 listsv = newSVpvs("# comment\n");
9961 initial_listsv_len = SvCUR(listsv);
9964 nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
9966 if (!SIZE_ONLY && POSIXCC(nextvalue))
9967 checkposixcc(pRExC_state);
9969 /* allow 1st char to be ] (allowing it to be - is dealt with later) */
9970 if (UCHARAT(RExC_parse) == ']')
9974 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
9978 namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
9981 rangebegin = RExC_parse;
9983 value = utf8n_to_uvchr((U8*)RExC_parse,
9984 RExC_end - RExC_parse,
9985 &numlen, UTF8_ALLOW_DEFAULT);
9986 RExC_parse += numlen;
9989 value = UCHARAT(RExC_parse++);
9991 nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
9992 if (value == '[' && POSIXCC(nextvalue))
9993 namedclass = regpposixcc(pRExC_state, value);
9994 else if (value == '\\') {
9996 value = utf8n_to_uvchr((U8*)RExC_parse,
9997 RExC_end - RExC_parse,
9998 &numlen, UTF8_ALLOW_DEFAULT);
9999 RExC_parse += numlen;
10002 value = UCHARAT(RExC_parse++);
10003 /* Some compilers cannot handle switching on 64-bit integer
10004 * values, therefore value cannot be an UV. Yes, this will
10005 * be a problem later if we want switch on Unicode.
10006 * A similar issue a little bit later when switching on
10007 * namedclass. --jhi */
10008 switch ((I32)value) {
10009 case 'w': namedclass = ANYOF_ALNUM; break;
10010 case 'W': namedclass = ANYOF_NALNUM; break;
10011 case 's': namedclass = ANYOF_SPACE; break;
10012 case 'S': namedclass = ANYOF_NSPACE; break;
10013 case 'd': namedclass = ANYOF_DIGIT; break;
10014 case 'D': namedclass = ANYOF_NDIGIT; break;
10015 case 'v': namedclass = ANYOF_VERTWS; break;
10016 case 'V': namedclass = ANYOF_NVERTWS; break;
10017 case 'h': namedclass = ANYOF_HORIZWS; break;
10018 case 'H': namedclass = ANYOF_NHORIZWS; break;
10019 case 'N': /* Handle \N{NAME} in class */
10021 /* We only pay attention to the first char of
10022 multichar strings being returned. I kinda wonder
10023 if this makes sense as it does change the behaviour
10024 from earlier versions, OTOH that behaviour was broken
10026 UV v; /* value is register so we cant & it /grrr */
10027 if (reg_namedseq(pRExC_state, &v, NULL, depth)) {
10037 if (RExC_parse >= RExC_end)
10038 vFAIL2("Empty \\%c{}", (U8)value);
10039 if (*RExC_parse == '{') {
10040 const U8 c = (U8)value;
10041 e = strchr(RExC_parse++, '}');
10043 vFAIL2("Missing right brace on \\%c{}", c);
10044 while (isSPACE(UCHARAT(RExC_parse)))
10046 if (e == RExC_parse)
10047 vFAIL2("Empty \\%c{}", c);
10048 n = e - RExC_parse;
10049 while (isSPACE(UCHARAT(RExC_parse + n - 1)))
10057 if (UCHARAT(RExC_parse) == '^') {
10060 value = value == 'p' ? 'P' : 'p'; /* toggle */
10061 while (isSPACE(UCHARAT(RExC_parse))) {
10067 /* Add the property name to the list. If /i matching, give
10068 * a different name which consists of the normal name
10069 * sandwiched between two underscores and '_i'. The design
10070 * is discussed in the commit message for this. */
10071 Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%s%.*s%s\n",
10072 (value=='p' ? '+' : '!'),
10073 (FOLD) ? "__" : "",
10079 RExC_parse = e + 1;
10081 /* The \p could match something in the Latin1 range, hence
10082 * something that isn't utf8 */
10083 ANYOF_FLAGS(ret) |= ANYOF_NONBITMAP_NON_UTF8;
10084 namedclass = ANYOF_MAX; /* no official name, but it's named */
10086 /* \p means they want Unicode semantics */
10087 RExC_uni_semantics = 1;
10090 case 'n': value = '\n'; break;
10091 case 'r': value = '\r'; break;
10092 case 't': value = '\t'; break;
10093 case 'f': value = '\f'; break;
10094 case 'b': value = '\b'; break;
10095 case 'e': value = ASCII_TO_NATIVE('\033');break;
10096 case 'a': value = ASCII_TO_NATIVE('\007');break;
10098 RExC_parse--; /* function expects to be pointed at the 'o' */
10100 const char* error_msg;
10101 bool valid = grok_bslash_o(RExC_parse,
10106 RExC_parse += numlen;
10111 if (PL_encoding && value < 0x100) {
10112 goto recode_encoding;
10116 if (*RExC_parse == '{') {
10117 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
10118 | PERL_SCAN_DISALLOW_PREFIX;
10119 char * const e = strchr(RExC_parse++, '}');
10121 vFAIL("Missing right brace on \\x{}");
10123 numlen = e - RExC_parse;
10124 value = grok_hex(RExC_parse, &numlen, &flags, NULL);
10125 RExC_parse = e + 1;
10128 I32 flags = PERL_SCAN_DISALLOW_PREFIX;
10130 value = grok_hex(RExC_parse, &numlen, &flags, NULL);
10131 RExC_parse += numlen;
10133 if (PL_encoding && value < 0x100)
10134 goto recode_encoding;
10137 value = grok_bslash_c(*RExC_parse++, UTF, SIZE_ONLY);
10139 case '0': case '1': case '2': case '3': case '4':
10140 case '5': case '6': case '7':
10142 /* Take 1-3 octal digits */
10143 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
10145 value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
10146 RExC_parse += numlen;
10147 if (PL_encoding && value < 0x100)
10148 goto recode_encoding;
10152 if (! RExC_override_recoding) {
10153 SV* enc = PL_encoding;
10154 value = reg_recode((const char)(U8)value, &enc);
10155 if (!enc && SIZE_ONLY)
10156 ckWARNreg(RExC_parse,
10157 "Invalid escape in the specified encoding");
10161 /* Allow \_ to not give an error */
10162 if (!SIZE_ONLY && isALNUM(value) && value != '_') {
10163 ckWARN2reg(RExC_parse,
10164 "Unrecognized escape \\%c in character class passed through",
10169 } /* end of \blah */
10172 literal_endpoint++;
10175 if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
10177 /* What matches in a locale is not known until runtime, so need to
10178 * (one time per class) allocate extra space to pass to regexec.
10179 * The space will contain a bit for each named class that is to be
10180 * matched against. This isn't needed for \p{} and pseudo-classes,
10181 * as they are not affected by locale, and hence are dealt with
10183 if (LOC && namedclass < ANYOF_MAX && ! need_class) {
10186 RExC_size += ANYOF_CLASS_SKIP - ANYOF_SKIP;
10189 RExC_emit += ANYOF_CLASS_SKIP - ANYOF_SKIP;
10190 ANYOF_CLASS_ZERO(ret);
10192 ANYOF_FLAGS(ret) |= ANYOF_CLASS;
10195 /* a bad range like a-\d, a-[:digit:]. The '-' is taken as a
10196 * literal, as is the character that began the false range, i.e.
10197 * the 'a' in the examples */
10201 RExC_parse >= rangebegin ?
10202 RExC_parse - rangebegin : 0;
10203 ckWARN4reg(RExC_parse,
10204 "False [] range \"%*.*s\"",
10208 set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
10209 if (prevvalue < 256) {
10211 set_regclass_bit(pRExC_state, ret, (U8) prevvalue, &l1_fold_invlist, &unicode_alternate);
10214 nonbitmap = add_cp_to_invlist(nonbitmap, prevvalue);
10218 range = 0; /* this was not a true range */
10224 const char *what = NULL;
10227 /* Possible truncation here but in some 64-bit environments
10228 * the compiler gets heartburn about switch on 64-bit values.
10229 * A similar issue a little earlier when switching on value.
10231 switch ((I32)namedclass) {
10233 case _C_C_T_(ALNUMC, isALNUMC_L1, isALNUMC, "XPosixAlnum");
10234 case _C_C_T_(ALPHA, isALPHA_L1, isALPHA, "XPosixAlpha");
10235 case _C_C_T_(BLANK, isBLANK_L1, isBLANK, "XPosixBlank");
10236 case _C_C_T_(CNTRL, isCNTRL_L1, isCNTRL, "XPosixCntrl");
10237 case _C_C_T_(GRAPH, isGRAPH_L1, isGRAPH, "XPosixGraph");
10238 case _C_C_T_(LOWER, isLOWER_L1, isLOWER, "XPosixLower");
10239 case _C_C_T_(PRINT, isPRINT_L1, isPRINT, "XPosixPrint");
10240 case _C_C_T_(PSXSPC, isPSXSPC_L1, isPSXSPC, "XPosixSpace");
10241 case _C_C_T_(PUNCT, isPUNCT_L1, isPUNCT, "XPosixPunct");
10242 case _C_C_T_(UPPER, isUPPER_L1, isUPPER, "XPosixUpper");
10243 /* \s, \w match all unicode if utf8. */
10244 case _C_C_T_(SPACE, isSPACE_L1, isSPACE, "SpacePerl");
10245 case _C_C_T_(ALNUM, isWORDCHAR_L1, isALNUM, "Word");
10246 case _C_C_T_(XDIGIT, isXDIGIT_L1, isXDIGIT, "XPosixXDigit");
10247 case _C_C_T_NOLOC_(VERTWS, is_VERTWS_latin1(&value), "VertSpace");
10248 case _C_C_T_NOLOC_(HORIZWS, is_HORIZWS_latin1(&value), "HorizSpace");
10251 ANYOF_CLASS_SET(ret, ANYOF_ASCII);
10253 for (value = 0; value < 128; value++)
10255 set_regclass_bit(pRExC_state, ret, (U8) ASCII_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate);
10258 what = NULL; /* Doesn't match outside ascii, so
10259 don't want to add +utf8:: */
10263 ANYOF_CLASS_SET(ret, ANYOF_NASCII);
10265 for (value = 128; value < 256; value++)
10267 set_regclass_bit(pRExC_state, ret, (U8) ASCII_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate);
10269 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
10275 ANYOF_CLASS_SET(ret, ANYOF_DIGIT);
10277 /* consecutive digits assumed */
10278 for (value = '0'; value <= '9'; value++)
10280 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate);
10287 ANYOF_CLASS_SET(ret, ANYOF_NDIGIT);
10289 /* consecutive digits assumed */
10290 for (value = 0; value < '0'; value++)
10292 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate);
10293 for (value = '9' + 1; value < 256; value++)
10295 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate);
10299 if (AT_LEAST_ASCII_RESTRICTED ) {
10300 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
10304 /* this is to handle \p and \P */
10307 vFAIL("Invalid [::] class");
10310 if (what && ! (AT_LEAST_ASCII_RESTRICTED)) {
10311 /* Strings such as "+utf8::isWord\n" */
10312 Perl_sv_catpvf(aTHX_ listsv, "%cutf8::Is%s\n", yesno, what);
10317 } /* end of namedclass \blah */
10320 if (prevvalue > (IV)value) /* b-a */ {
10321 const int w = RExC_parse - rangebegin;
10322 Simple_vFAIL4("Invalid [] range \"%*.*s\"", w, w, rangebegin);
10323 range = 0; /* not a valid range */
10327 prevvalue = value; /* save the beginning of the range */
10328 if (RExC_parse+1 < RExC_end
10329 && *RExC_parse == '-'
10330 && RExC_parse[1] != ']')
10334 /* a bad range like \w-, [:word:]- ? */
10335 if (namedclass > OOB_NAMEDCLASS) {
10336 if (ckWARN(WARN_REGEXP)) {
10338 RExC_parse >= rangebegin ?
10339 RExC_parse - rangebegin : 0;
10341 "False [] range \"%*.*s\"",
10346 set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
10348 range = 1; /* yeah, it's a range! */
10349 continue; /* but do it the next time */
10353 /* non-Latin1 code point implies unicode semantics. Must be set in
10354 * pass1 so is there for the whole of pass 2 */
10356 RExC_uni_semantics = 1;
10359 /* now is the next time */
10361 if (prevvalue < 256) {
10362 const IV ceilvalue = value < 256 ? value : 255;
10365 /* In EBCDIC [\x89-\x91] should include
10366 * the \x8e but [i-j] should not. */
10367 if (literal_endpoint == 2 &&
10368 ((isLOWER(prevvalue) && isLOWER(ceilvalue)) ||
10369 (isUPPER(prevvalue) && isUPPER(ceilvalue))))
10371 if (isLOWER(prevvalue)) {
10372 for (i = prevvalue; i <= ceilvalue; i++)
10373 if (isLOWER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
10375 set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
10378 for (i = prevvalue; i <= ceilvalue; i++)
10379 if (isUPPER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
10381 set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
10387 for (i = prevvalue; i <= ceilvalue; i++) {
10388 stored += set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
10392 const UV prevnatvalue = NATIVE_TO_UNI(prevvalue);
10393 const UV natvalue = NATIVE_TO_UNI(value);
10394 nonbitmap = add_range_to_invlist(nonbitmap, prevnatvalue, natvalue);
10397 literal_endpoint = 0;
10401 range = 0; /* this range (if it was one) is done now */
10408 /****** !SIZE_ONLY AFTER HERE *********/
10410 /* If folding and there are code points above 255, we calculate all
10411 * characters that could fold to or from the ones already on the list */
10412 if (FOLD && nonbitmap) {
10413 UV start, end; /* End points of code point ranges */
10415 SV* fold_intersection;
10417 /* This is a list of all the characters that participate in folds
10418 * (except marks, etc in multi-char folds */
10419 if (! PL_utf8_foldable) {
10420 SV* swash = swash_init("utf8", "Cased", &PL_sv_undef, 1, 0);
10421 PL_utf8_foldable = _swash_to_invlist(swash);
10424 /* This is a hash that for a particular fold gives all characters
10425 * that are involved in it */
10426 if (! PL_utf8_foldclosures) {
10428 /* If we were unable to find any folds, then we likely won't be
10429 * able to find the closures. So just create an empty list.
10430 * Folding will effectively be restricted to the non-Unicode rules
10431 * hard-coded into Perl. (This case happens legitimately during
10432 * compilation of Perl itself before the Unicode tables are
10434 if (invlist_len(PL_utf8_foldable) == 0) {
10435 PL_utf8_foldclosures = newHV();
10437 /* If the folds haven't been read in, call a fold function
10439 if (! PL_utf8_tofold) {
10440 U8 dummy[UTF8_MAXBYTES+1];
10442 to_utf8_fold((U8*) "A", dummy, &dummy_len);
10444 PL_utf8_foldclosures = _swash_inversion_hash(PL_utf8_tofold);
10448 /* Only the characters in this class that participate in folds need
10449 * be checked. Get the intersection of this class and all the
10450 * possible characters that are foldable. This can quickly narrow
10451 * down a large class */
10452 _invlist_intersection(PL_utf8_foldable, nonbitmap, &fold_intersection);
10454 /* Now look at the foldable characters in this class individually */
10455 invlist_iterinit(fold_intersection);
10456 while (invlist_iternext(fold_intersection, &start, &end)) {
10459 /* Look at every character in the range */
10460 for (j = start; j <= end; j++) {
10463 U8 foldbuf[UTF8_MAXBYTES_CASE+1];
10466 _to_uni_fold_flags(j, foldbuf, &foldlen, allow_full_fold);
10468 if (foldlen > (STRLEN)UNISKIP(f)) {
10470 /* Any multicharacter foldings (disallowed in
10471 * lookbehind patterns) require the following
10472 * transform: [ABCDEF] -> (?:[ABCabcDEFd]|pq|rst) where
10473 * E folds into "pq" and F folds into "rst", all other
10474 * characters fold to single characters. We save away
10475 * these multicharacter foldings, to be later saved as
10476 * part of the additional "s" data. */
10477 if (! RExC_in_lookbehind) {
10479 U8* e = foldbuf + foldlen;
10481 /* If any of the folded characters of this are in
10482 * the Latin1 range, tell the regex engine that
10483 * this can match a non-utf8 target string. The
10484 * only multi-byte fold whose source is in the
10485 * Latin1 range (U+00DF) applies only when the
10486 * target string is utf8, or under unicode rules */
10487 if (j > 255 || AT_LEAST_UNI_SEMANTICS) {
10490 /* Can't mix ascii with non- under /aa */
10491 if (MORE_ASCII_RESTRICTED
10492 && (isASCII(*loc) != isASCII(j)))
10494 goto end_multi_fold;
10496 if (UTF8_IS_INVARIANT(*loc)
10497 || UTF8_IS_DOWNGRADEABLE_START(*loc))
10499 /* Can't mix above and below 256 under
10502 goto end_multi_fold;
10505 |= ANYOF_NONBITMAP_NON_UTF8;
10508 loc += UTF8SKIP(loc);
10512 add_alternate(&unicode_alternate, foldbuf, foldlen);
10516 /* This is special-cased, as it is the only letter which
10517 * has both a multi-fold and single-fold in Latin1. All
10518 * the other chars that have single and multi-folds are
10519 * always in utf8, and the utf8 folding algorithm catches
10521 if (! LOC && j == LATIN_CAPITAL_LETTER_SHARP_S) {
10522 stored += set_regclass_bit(pRExC_state,
10524 LATIN_SMALL_LETTER_SHARP_S,
10525 &l1_fold_invlist, &unicode_alternate);
10529 /* Single character fold. Add everything in its fold
10530 * closure to the list that this node should match */
10533 /* The fold closures data structure is a hash with the
10534 * keys being every character that is folded to, like
10535 * 'k', and the values each an array of everything that
10536 * folds to its key. e.g. [ 'k', 'K', KELVIN_SIGN ] */
10537 if ((listp = hv_fetch(PL_utf8_foldclosures,
10538 (char *) foldbuf, foldlen, FALSE)))
10540 AV* list = (AV*) *listp;
10542 for (k = 0; k <= av_len(list); k++) {
10543 SV** c_p = av_fetch(list, k, FALSE);
10546 Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
10550 /* /aa doesn't allow folds between ASCII and
10551 * non-; /l doesn't allow them between above
10553 if ((MORE_ASCII_RESTRICTED
10554 && (isASCII(c) != isASCII(j)))
10555 || (LOC && ((c < 256) != (j < 256))))
10560 if (c < 256 && AT_LEAST_UNI_SEMANTICS) {
10561 stored += set_regclass_bit(pRExC_state,
10564 &l1_fold_invlist, &unicode_alternate);
10566 /* It may be that the code point is already
10567 * in this range or already in the bitmap,
10568 * in which case we need do nothing */
10569 else if ((c < start || c > end)
10571 || ! ANYOF_BITMAP_TEST(ret, c)))
10573 nonbitmap = add_cp_to_invlist(nonbitmap, c);
10580 SvREFCNT_dec(fold_intersection);
10583 /* Combine the two lists into one. */
10584 if (l1_fold_invlist) {
10586 _invlist_union(nonbitmap, l1_fold_invlist, &nonbitmap);
10587 SvREFCNT_dec(l1_fold_invlist);
10590 nonbitmap = l1_fold_invlist;
10594 /* Here, we have calculated what code points should be in the character
10595 * class. Now we can see about various optimizations. Fold calculation
10596 * needs to take place before inversion. Otherwise /[^k]/i would invert to
10597 * include K, which under /i would match k. */
10599 /* Optimize inverted simple patterns (e.g. [^a-z]). Note that we haven't
10600 * set the FOLD flag yet, so this this does optimize those. It doesn't
10601 * optimize locale. Doing so perhaps could be done as long as there is
10602 * nothing like \w in it; some thought also would have to be given to the
10603 * interaction with above 0x100 chars */
10605 && (ANYOF_FLAGS(ret) & ANYOF_INVERT)
10606 && ! unicode_alternate
10607 /* In case of /d, there are some things that should match only when in
10608 * not in the bitmap, i.e., they require UTF8 to match. These are
10609 * listed in nonbitmap. */
10611 || ! DEPENDS_SEMANTICS
10612 || (ANYOF_FLAGS(ret) & ANYOF_NONBITMAP_NON_UTF8))
10613 && SvCUR(listsv) == initial_listsv_len)
10616 for (value = 0; value < ANYOF_BITMAP_SIZE; ++value)
10617 ANYOF_BITMAP(ret)[value] ^= 0xFF;
10618 /* The inversion means that everything above 255 is matched */
10619 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
10622 /* Here, also has things outside the bitmap. Go through each bit
10623 * individually and add it to the list to get rid of from those
10624 * things not in the bitmap */
10625 SV *remove_list = _new_invlist(2);
10626 _invlist_invert(nonbitmap);
10627 for (value = 0; value < 256; ++value) {
10628 if (ANYOF_BITMAP_TEST(ret, value)) {
10629 ANYOF_BITMAP_CLEAR(ret, value);
10630 remove_list = add_cp_to_invlist(remove_list, value);
10633 ANYOF_BITMAP_SET(ret, value);
10636 _invlist_subtract(nonbitmap, remove_list, &nonbitmap);
10637 SvREFCNT_dec(remove_list);
10640 stored = 256 - stored;
10642 /* Clear the invert flag since have just done it here */
10643 ANYOF_FLAGS(ret) &= ~ANYOF_INVERT;
10646 /* Folding in the bitmap is taken care of above, but not for locale (for
10647 * which we have to wait to see what folding is in effect at runtime), and
10648 * for things not in the bitmap. Set run-time fold flag for these */
10649 if (FOLD && (LOC || nonbitmap || unicode_alternate)) {
10650 ANYOF_FLAGS(ret) |= ANYOF_LOC_NONBITMAP_FOLD;
10653 /* A single character class can be "optimized" into an EXACTish node.
10654 * Note that since we don't currently count how many characters there are
10655 * outside the bitmap, we are XXX missing optimization possibilities for
10656 * them. This optimization can't happen unless this is a truly single
10657 * character class, which means that it can't be an inversion into a
10658 * many-character class, and there must be no possibility of there being
10659 * things outside the bitmap. 'stored' (only) for locales doesn't include
10660 * \w, etc, so have to make a special test that they aren't present
10662 * Similarly A 2-character class of the very special form like [bB] can be
10663 * optimized into an EXACTFish node, but only for non-locales, and for
10664 * characters which only have the two folds; so things like 'fF' and 'Ii'
10665 * wouldn't work because they are part of the fold of 'LATIN SMALL LIGATURE
10668 && ! unicode_alternate
10669 && SvCUR(listsv) == initial_listsv_len
10670 && ! (ANYOF_FLAGS(ret) & (ANYOF_INVERT|ANYOF_UNICODE_ALL))
10671 && (((stored == 1 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
10672 || (! ANYOF_CLASS_TEST_ANY_SET(ret)))))
10673 || (stored == 2 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
10674 && (! _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value))
10675 /* If the latest code point has a fold whose
10676 * bit is set, it must be the only other one */
10677 && ((prevvalue = PL_fold_latin1[value]) != (IV)value)
10678 && ANYOF_BITMAP_TEST(ret, prevvalue)))))
10680 /* Note that the information needed to decide to do this optimization
10681 * is not currently available until the 2nd pass, and that the actually
10682 * used EXACTish node takes less space than the calculated ANYOF node,
10683 * and hence the amount of space calculated in the first pass is larger
10684 * than actually used, so this optimization doesn't gain us any space.
10685 * But an EXACT node is faster than an ANYOF node, and can be combined
10686 * with any adjacent EXACT nodes later by the optimizer for further
10687 * gains. The speed of executing an EXACTF is similar to an ANYOF
10688 * node, so the optimization advantage comes from the ability to join
10689 * it to adjacent EXACT nodes */
10691 const char * cur_parse= RExC_parse;
10693 RExC_emit = (regnode *)orig_emit;
10694 RExC_parse = (char *)orig_parse;
10698 /* A locale node with one point can be folded; all the other cases
10699 * with folding will have two points, since we calculate them above
10701 if (ANYOF_FLAGS(ret) & ANYOF_LOC_NONBITMAP_FOLD) {
10708 else { /* else 2 chars in the bit map: the folds of each other */
10710 /* Use the folded value, which for the cases where we get here,
10711 * is just the lower case of the current one (which may resolve to
10712 * itself, or to the other one */
10713 value = toLOWER_LATIN1(value);
10714 if (AT_LEAST_UNI_SEMANTICS || !isASCII(value)) {
10716 /* To join adjacent nodes, they must be the exact EXACTish
10717 * type. Try to use the most likely type, by using EXACTFU if
10718 * the regex calls for them, or is required because the
10719 * character is non-ASCII */
10722 else { /* Otherwise, more likely to be EXACTF type */
10727 ret = reg_node(pRExC_state, op);
10728 RExC_parse = (char *)cur_parse;
10729 if (UTF && ! NATIVE_IS_INVARIANT(value)) {
10730 *STRING(ret)= UTF8_EIGHT_BIT_HI((U8) value);
10731 *(STRING(ret) + 1)= UTF8_EIGHT_BIT_LO((U8) value);
10733 RExC_emit += STR_SZ(2);
10736 *STRING(ret)= (char)value;
10738 RExC_emit += STR_SZ(1);
10740 SvREFCNT_dec(listsv);
10746 invlist_iterinit(nonbitmap);
10747 while (invlist_iternext(nonbitmap, &start, &end)) {
10748 if (start == end) {
10749 Perl_sv_catpvf(aTHX_ listsv, "%04"UVxf"\n", start);
10752 /* The \t sets the whole range */
10753 Perl_sv_catpvf(aTHX_ listsv, "%04"UVxf"\t%04"UVxf"\n",
10758 SvREFCNT_dec(nonbitmap);
10761 if (SvCUR(listsv) == initial_listsv_len && ! unicode_alternate) {
10762 ARG_SET(ret, ANYOF_NONBITMAP_EMPTY);
10763 SvREFCNT_dec(listsv);
10764 SvREFCNT_dec(unicode_alternate);
10768 AV * const av = newAV();
10770 /* The 0th element stores the character class description
10771 * in its textual form: used later (regexec.c:Perl_regclass_swash())
10772 * to initialize the appropriate swash (which gets stored in
10773 * the 1st element), and also useful for dumping the regnode.
10774 * The 2nd element stores the multicharacter foldings,
10775 * used later (regexec.c:S_reginclass()). */
10776 av_store(av, 0, listsv);
10777 av_store(av, 1, NULL);
10779 /* Store any computed multi-char folds only if we are allowing
10781 if (allow_full_fold) {
10782 av_store(av, 2, MUTABLE_SV(unicode_alternate));
10783 if (unicode_alternate) { /* This node is variable length */
10788 av_store(av, 2, NULL);
10790 rv = newRV_noinc(MUTABLE_SV(av));
10791 n = add_data(pRExC_state, 1, "s");
10792 RExC_rxi->data->data[n] = (void*)rv;
10800 /* reg_skipcomment()
10802 Absorbs an /x style # comments from the input stream.
10803 Returns true if there is more text remaining in the stream.
10804 Will set the REG_SEEN_RUN_ON_COMMENT flag if the comment
10805 terminates the pattern without including a newline.
10807 Note its the callers responsibility to ensure that we are
10808 actually in /x mode
10813 S_reg_skipcomment(pTHX_ RExC_state_t *pRExC_state)
10817 PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
10819 while (RExC_parse < RExC_end)
10820 if (*RExC_parse++ == '\n') {
10825 /* we ran off the end of the pattern without ending
10826 the comment, so we have to add an \n when wrapping */
10827 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
10835 Advances the parse position, and optionally absorbs
10836 "whitespace" from the inputstream.
10838 Without /x "whitespace" means (?#...) style comments only,
10839 with /x this means (?#...) and # comments and whitespace proper.
10841 Returns the RExC_parse point from BEFORE the scan occurs.
10843 This is the /x friendly way of saying RExC_parse++.
10847 S_nextchar(pTHX_ RExC_state_t *pRExC_state)
10849 char* const retval = RExC_parse++;
10851 PERL_ARGS_ASSERT_NEXTCHAR;
10854 if (*RExC_parse == '(' && RExC_parse[1] == '?' &&
10855 RExC_parse[2] == '#') {
10856 while (*RExC_parse != ')') {
10857 if (RExC_parse == RExC_end)
10858 FAIL("Sequence (?#... not terminated");
10864 if (RExC_flags & RXf_PMf_EXTENDED) {
10865 if (isSPACE(*RExC_parse)) {
10869 else if (*RExC_parse == '#') {
10870 if ( reg_skipcomment( pRExC_state ) )
10879 - reg_node - emit a node
10881 STATIC regnode * /* Location. */
10882 S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
10885 register regnode *ptr;
10886 regnode * const ret = RExC_emit;
10887 GET_RE_DEBUG_FLAGS_DECL;
10889 PERL_ARGS_ASSERT_REG_NODE;
10892 SIZE_ALIGN(RExC_size);
10896 if (RExC_emit >= RExC_emit_bound)
10897 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d", op);
10899 NODE_ALIGN_FILL(ret);
10901 FILL_ADVANCE_NODE(ptr, op);
10902 REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 1);
10903 #ifdef RE_TRACK_PATTERN_OFFSETS
10904 if (RExC_offsets) { /* MJD */
10905 MJD_OFFSET_DEBUG(("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
10906 "reg_node", __LINE__,
10908 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
10909 ? "Overwriting end of array!\n" : "OK",
10910 (UV)(RExC_emit - RExC_emit_start),
10911 (UV)(RExC_parse - RExC_start),
10912 (UV)RExC_offsets[0]));
10913 Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
10921 - reganode - emit a node with an argument
10923 STATIC regnode * /* Location. */
10924 S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
10927 register regnode *ptr;
10928 regnode * const ret = RExC_emit;
10929 GET_RE_DEBUG_FLAGS_DECL;
10931 PERL_ARGS_ASSERT_REGANODE;
10934 SIZE_ALIGN(RExC_size);
10939 assert(2==regarglen[op]+1);
10941 Anything larger than this has to allocate the extra amount.
10942 If we changed this to be:
10944 RExC_size += (1 + regarglen[op]);
10946 then it wouldn't matter. Its not clear what side effect
10947 might come from that so its not done so far.
10952 if (RExC_emit >= RExC_emit_bound)
10953 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d", op);
10955 NODE_ALIGN_FILL(ret);
10957 FILL_ADVANCE_NODE_ARG(ptr, op, arg);
10958 REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 2);
10959 #ifdef RE_TRACK_PATTERN_OFFSETS
10960 if (RExC_offsets) { /* MJD */
10961 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
10965 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0] ?
10966 "Overwriting end of array!\n" : "OK",
10967 (UV)(RExC_emit - RExC_emit_start),
10968 (UV)(RExC_parse - RExC_start),
10969 (UV)RExC_offsets[0]));
10970 Set_Cur_Node_Offset;
10978 - reguni - emit (if appropriate) a Unicode character
10981 S_reguni(pTHX_ const RExC_state_t *pRExC_state, UV uv, char* s)
10985 PERL_ARGS_ASSERT_REGUNI;
10987 return SIZE_ONLY ? UNISKIP(uv) : (uvchr_to_utf8((U8*)s, uv) - (U8*)s);
10991 - reginsert - insert an operator in front of already-emitted operand
10993 * Means relocating the operand.
10996 S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
10999 register regnode *src;
11000 register regnode *dst;
11001 register regnode *place;
11002 const int offset = regarglen[(U8)op];
11003 const int size = NODE_STEP_REGNODE + offset;
11004 GET_RE_DEBUG_FLAGS_DECL;
11006 PERL_ARGS_ASSERT_REGINSERT;
11007 PERL_UNUSED_ARG(depth);
11008 /* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
11009 DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
11018 if (RExC_open_parens) {
11020 /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
11021 for ( paren=0 ; paren < RExC_npar ; paren++ ) {
11022 if ( RExC_open_parens[paren] >= opnd ) {
11023 /*DEBUG_PARSE_FMT("open"," - %d",size);*/
11024 RExC_open_parens[paren] += size;
11026 /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
11028 if ( RExC_close_parens[paren] >= opnd ) {
11029 /*DEBUG_PARSE_FMT("close"," - %d",size);*/
11030 RExC_close_parens[paren] += size;
11032 /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
11037 while (src > opnd) {
11038 StructCopy(--src, --dst, regnode);
11039 #ifdef RE_TRACK_PATTERN_OFFSETS
11040 if (RExC_offsets) { /* MJD 20010112 */
11041 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
11045 (UV)(dst - RExC_emit_start) > RExC_offsets[0]
11046 ? "Overwriting end of array!\n" : "OK",
11047 (UV)(src - RExC_emit_start),
11048 (UV)(dst - RExC_emit_start),
11049 (UV)RExC_offsets[0]));
11050 Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
11051 Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
11057 place = opnd; /* Op node, where operand used to be. */
11058 #ifdef RE_TRACK_PATTERN_OFFSETS
11059 if (RExC_offsets) { /* MJD */
11060 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
11064 (UV)(place - RExC_emit_start) > RExC_offsets[0]
11065 ? "Overwriting end of array!\n" : "OK",
11066 (UV)(place - RExC_emit_start),
11067 (UV)(RExC_parse - RExC_start),
11068 (UV)RExC_offsets[0]));
11069 Set_Node_Offset(place, RExC_parse);
11070 Set_Node_Length(place, 1);
11073 src = NEXTOPER(place);
11074 FILL_ADVANCE_NODE(place, op);
11075 REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (place) - 1);
11076 Zero(src, offset, regnode);
11080 - regtail - set the next-pointer at the end of a node chain of p to val.
11081 - SEE ALSO: regtail_study
11083 /* TODO: All three parms should be const */
11085 S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
11088 register regnode *scan;
11089 GET_RE_DEBUG_FLAGS_DECL;
11091 PERL_ARGS_ASSERT_REGTAIL;
11093 PERL_UNUSED_ARG(depth);
11099 /* Find last node. */
11102 regnode * const temp = regnext(scan);
11104 SV * const mysv=sv_newmortal();
11105 DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
11106 regprop(RExC_rx, mysv, scan);
11107 PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
11108 SvPV_nolen_const(mysv), REG_NODE_NUM(scan),
11109 (temp == NULL ? "->" : ""),
11110 (temp == NULL ? PL_reg_name[OP(val)] : "")
11118 if (reg_off_by_arg[OP(scan)]) {
11119 ARG_SET(scan, val - scan);
11122 NEXT_OFF(scan) = val - scan;
11128 - regtail_study - set the next-pointer at the end of a node chain of p to val.
11129 - Look for optimizable sequences at the same time.
11130 - currently only looks for EXACT chains.
11132 This is experimental code. The idea is to use this routine to perform
11133 in place optimizations on branches and groups as they are constructed,
11134 with the long term intention of removing optimization from study_chunk so
11135 that it is purely analytical.
11137 Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
11138 to control which is which.
11141 /* TODO: All four parms should be const */
11144 S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
11147 register regnode *scan;
11149 #ifdef EXPERIMENTAL_INPLACESCAN
11152 GET_RE_DEBUG_FLAGS_DECL;
11154 PERL_ARGS_ASSERT_REGTAIL_STUDY;
11160 /* Find last node. */
11164 regnode * const temp = regnext(scan);
11165 #ifdef EXPERIMENTAL_INPLACESCAN
11166 if (PL_regkind[OP(scan)] == EXACT)
11167 if (join_exact(pRExC_state,scan,&min,1,val,depth+1))
11171 switch (OP(scan)) {
11177 if( exact == PSEUDO )
11179 else if ( exact != OP(scan) )
11188 SV * const mysv=sv_newmortal();
11189 DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
11190 regprop(RExC_rx, mysv, scan);
11191 PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
11192 SvPV_nolen_const(mysv),
11193 REG_NODE_NUM(scan),
11194 PL_reg_name[exact]);
11201 SV * const mysv_val=sv_newmortal();
11202 DEBUG_PARSE_MSG("");
11203 regprop(RExC_rx, mysv_val, val);
11204 PerlIO_printf(Perl_debug_log, "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
11205 SvPV_nolen_const(mysv_val),
11206 (IV)REG_NODE_NUM(val),
11210 if (reg_off_by_arg[OP(scan)]) {
11211 ARG_SET(scan, val - scan);
11214 NEXT_OFF(scan) = val - scan;
11222 - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
11226 S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
11232 for (bit=0; bit<32; bit++) {
11233 if (flags & (1<<bit)) {
11234 if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
11237 if (!set++ && lead)
11238 PerlIO_printf(Perl_debug_log, "%s",lead);
11239 PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
11242 if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
11243 if (!set++ && lead) {
11244 PerlIO_printf(Perl_debug_log, "%s",lead);
11247 case REGEX_UNICODE_CHARSET:
11248 PerlIO_printf(Perl_debug_log, "UNICODE");
11250 case REGEX_LOCALE_CHARSET:
11251 PerlIO_printf(Perl_debug_log, "LOCALE");
11253 case REGEX_ASCII_RESTRICTED_CHARSET:
11254 PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
11256 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
11257 PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
11260 PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
11266 PerlIO_printf(Perl_debug_log, "\n");
11268 PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
11274 Perl_regdump(pTHX_ const regexp *r)
11278 SV * const sv = sv_newmortal();
11279 SV *dsv= sv_newmortal();
11280 RXi_GET_DECL(r,ri);
11281 GET_RE_DEBUG_FLAGS_DECL;
11283 PERL_ARGS_ASSERT_REGDUMP;
11285 (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
11287 /* Header fields of interest. */
11288 if (r->anchored_substr) {
11289 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
11290 RE_SV_DUMPLEN(r->anchored_substr), 30);
11291 PerlIO_printf(Perl_debug_log,
11292 "anchored %s%s at %"IVdf" ",
11293 s, RE_SV_TAIL(r->anchored_substr),
11294 (IV)r->anchored_offset);
11295 } else if (r->anchored_utf8) {
11296 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
11297 RE_SV_DUMPLEN(r->anchored_utf8), 30);
11298 PerlIO_printf(Perl_debug_log,
11299 "anchored utf8 %s%s at %"IVdf" ",
11300 s, RE_SV_TAIL(r->anchored_utf8),
11301 (IV)r->anchored_offset);
11303 if (r->float_substr) {
11304 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
11305 RE_SV_DUMPLEN(r->float_substr), 30);
11306 PerlIO_printf(Perl_debug_log,
11307 "floating %s%s at %"IVdf"..%"UVuf" ",
11308 s, RE_SV_TAIL(r->float_substr),
11309 (IV)r->float_min_offset, (UV)r->float_max_offset);
11310 } else if (r->float_utf8) {
11311 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
11312 RE_SV_DUMPLEN(r->float_utf8), 30);
11313 PerlIO_printf(Perl_debug_log,
11314 "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
11315 s, RE_SV_TAIL(r->float_utf8),
11316 (IV)r->float_min_offset, (UV)r->float_max_offset);
11318 if (r->check_substr || r->check_utf8)
11319 PerlIO_printf(Perl_debug_log,
11321 (r->check_substr == r->float_substr
11322 && r->check_utf8 == r->float_utf8
11323 ? "(checking floating" : "(checking anchored"));
11324 if (r->extflags & RXf_NOSCAN)
11325 PerlIO_printf(Perl_debug_log, " noscan");
11326 if (r->extflags & RXf_CHECK_ALL)
11327 PerlIO_printf(Perl_debug_log, " isall");
11328 if (r->check_substr || r->check_utf8)
11329 PerlIO_printf(Perl_debug_log, ") ");
11331 if (ri->regstclass) {
11332 regprop(r, sv, ri->regstclass);
11333 PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
11335 if (r->extflags & RXf_ANCH) {
11336 PerlIO_printf(Perl_debug_log, "anchored");
11337 if (r->extflags & RXf_ANCH_BOL)
11338 PerlIO_printf(Perl_debug_log, "(BOL)");
11339 if (r->extflags & RXf_ANCH_MBOL)
11340 PerlIO_printf(Perl_debug_log, "(MBOL)");
11341 if (r->extflags & RXf_ANCH_SBOL)
11342 PerlIO_printf(Perl_debug_log, "(SBOL)");
11343 if (r->extflags & RXf_ANCH_GPOS)
11344 PerlIO_printf(Perl_debug_log, "(GPOS)");
11345 PerlIO_putc(Perl_debug_log, ' ');
11347 if (r->extflags & RXf_GPOS_SEEN)
11348 PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
11349 if (r->intflags & PREGf_SKIP)
11350 PerlIO_printf(Perl_debug_log, "plus ");
11351 if (r->intflags & PREGf_IMPLICIT)
11352 PerlIO_printf(Perl_debug_log, "implicit ");
11353 PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
11354 if (r->extflags & RXf_EVAL_SEEN)
11355 PerlIO_printf(Perl_debug_log, "with eval ");
11356 PerlIO_printf(Perl_debug_log, "\n");
11357 DEBUG_FLAGS_r(regdump_extflags("r->extflags: ",r->extflags));
11359 PERL_ARGS_ASSERT_REGDUMP;
11360 PERL_UNUSED_CONTEXT;
11361 PERL_UNUSED_ARG(r);
11362 #endif /* DEBUGGING */
11366 - regprop - printable representation of opcode
11368 #define EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags) \
11371 Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]); \
11372 if (flags & ANYOF_INVERT) \
11373 /*make sure the invert info is in each */ \
11374 sv_catpvs(sv, "^"); \
11380 Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o)
11385 RXi_GET_DECL(prog,progi);
11386 GET_RE_DEBUG_FLAGS_DECL;
11388 PERL_ARGS_ASSERT_REGPROP;
11392 if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */
11393 /* It would be nice to FAIL() here, but this may be called from
11394 regexec.c, and it would be hard to supply pRExC_state. */
11395 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(o), (int)REGNODE_MAX);
11396 sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
11398 k = PL_regkind[OP(o)];
11401 sv_catpvs(sv, " ");
11402 /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
11403 * is a crude hack but it may be the best for now since
11404 * we have no flag "this EXACTish node was UTF-8"
11406 pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
11407 PERL_PV_ESCAPE_UNI_DETECT |
11408 PERL_PV_ESCAPE_NONASCII |
11409 PERL_PV_PRETTY_ELLIPSES |
11410 PERL_PV_PRETTY_LTGT |
11411 PERL_PV_PRETTY_NOCLEAR
11413 } else if (k == TRIE) {
11414 /* print the details of the trie in dumpuntil instead, as
11415 * progi->data isn't available here */
11416 const char op = OP(o);
11417 const U32 n = ARG(o);
11418 const reg_ac_data * const ac = IS_TRIE_AC(op) ?
11419 (reg_ac_data *)progi->data->data[n] :
11421 const reg_trie_data * const trie
11422 = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
11424 Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
11425 DEBUG_TRIE_COMPILE_r(
11426 Perl_sv_catpvf(aTHX_ sv,
11427 "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
11428 (UV)trie->startstate,
11429 (IV)trie->statecount-1, /* -1 because of the unused 0 element */
11430 (UV)trie->wordcount,
11433 (UV)TRIE_CHARCOUNT(trie),
11434 (UV)trie->uniquecharcount
11437 if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
11439 int rangestart = -1;
11440 U8* bitmap = IS_ANYOF_TRIE(op) ? (U8*)ANYOF_BITMAP(o) : (U8*)TRIE_BITMAP(trie);
11441 sv_catpvs(sv, "[");
11442 for (i = 0; i <= 256; i++) {
11443 if (i < 256 && BITMAP_TEST(bitmap,i)) {
11444 if (rangestart == -1)
11446 } else if (rangestart != -1) {
11447 if (i <= rangestart + 3)
11448 for (; rangestart < i; rangestart++)
11449 put_byte(sv, rangestart);
11451 put_byte(sv, rangestart);
11452 sv_catpvs(sv, "-");
11453 put_byte(sv, i - 1);
11458 sv_catpvs(sv, "]");
11461 } else if (k == CURLY) {
11462 if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
11463 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
11464 Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
11466 else if (k == WHILEM && o->flags) /* Ordinal/of */
11467 Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
11468 else if (k == REF || k == OPEN || k == CLOSE || k == GROUPP || OP(o)==ACCEPT) {
11469 Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
11470 if ( RXp_PAREN_NAMES(prog) ) {
11471 if ( k != REF || (OP(o) < NREF)) {
11472 AV *list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
11473 SV **name= av_fetch(list, ARG(o), 0 );
11475 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
11478 AV *list= MUTABLE_AV(progi->data->data[ progi->name_list_idx ]);
11479 SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
11480 I32 *nums=(I32*)SvPVX(sv_dat);
11481 SV **name= av_fetch(list, nums[0], 0 );
11484 for ( n=0; n<SvIVX(sv_dat); n++ ) {
11485 Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
11486 (n ? "," : ""), (IV)nums[n]);
11488 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
11492 } else if (k == GOSUB)
11493 Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o)); /* Paren and offset */
11494 else if (k == VERB) {
11496 Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
11497 SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
11498 } else if (k == LOGICAL)
11499 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* 2: embedded, otherwise 1 */
11500 else if (k == FOLDCHAR)
11501 Perl_sv_catpvf(aTHX_ sv, "[0x%"UVXf"]", PTR2UV(ARG(o)) );
11502 else if (k == ANYOF) {
11503 int i, rangestart = -1;
11504 const U8 flags = ANYOF_FLAGS(o);
11507 /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
11508 static const char * const anyofs[] = {
11541 if (flags & ANYOF_LOCALE)
11542 sv_catpvs(sv, "{loc}");
11543 if (flags & ANYOF_LOC_NONBITMAP_FOLD)
11544 sv_catpvs(sv, "{i}");
11545 Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
11546 if (flags & ANYOF_INVERT)
11547 sv_catpvs(sv, "^");
11549 /* output what the standard cp 0-255 bitmap matches */
11550 for (i = 0; i <= 256; i++) {
11551 if (i < 256 && ANYOF_BITMAP_TEST(o,i)) {
11552 if (rangestart == -1)
11554 } else if (rangestart != -1) {
11555 if (i <= rangestart + 3)
11556 for (; rangestart < i; rangestart++)
11557 put_byte(sv, rangestart);
11559 put_byte(sv, rangestart);
11560 sv_catpvs(sv, "-");
11561 put_byte(sv, i - 1);
11568 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
11569 /* output any special charclass tests (used entirely under use locale) */
11570 if (ANYOF_CLASS_TEST_ANY_SET(o))
11571 for (i = 0; i < (int)(sizeof(anyofs)/sizeof(char*)); i++)
11572 if (ANYOF_CLASS_TEST(o,i)) {
11573 sv_catpv(sv, anyofs[i]);
11577 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
11579 if (flags & ANYOF_NON_UTF8_LATIN1_ALL) {
11580 sv_catpvs(sv, "{non-utf8-latin1-all}");
11583 /* output information about the unicode matching */
11584 if (flags & ANYOF_UNICODE_ALL)
11585 sv_catpvs(sv, "{unicode_all}");
11586 else if (ANYOF_NONBITMAP(o))
11587 sv_catpvs(sv, "{unicode}");
11588 if (flags & ANYOF_NONBITMAP_NON_UTF8)
11589 sv_catpvs(sv, "{outside bitmap}");
11591 if (ANYOF_NONBITMAP(o)) {
11593 SV * const sw = regclass_swash(prog, o, FALSE, &lv, 0);
11597 U8 s[UTF8_MAXBYTES_CASE+1];
11599 for (i = 0; i <= 256; i++) { /* just the first 256 */
11600 uvchr_to_utf8(s, i);
11602 if (i < 256 && swash_fetch(sw, s, TRUE)) {
11603 if (rangestart == -1)
11605 } else if (rangestart != -1) {
11606 if (i <= rangestart + 3)
11607 for (; rangestart < i; rangestart++) {
11608 const U8 * const e = uvchr_to_utf8(s,rangestart);
11610 for(p = s; p < e; p++)
11614 const U8 *e = uvchr_to_utf8(s,rangestart);
11616 for (p = s; p < e; p++)
11618 sv_catpvs(sv, "-");
11619 e = uvchr_to_utf8(s, i-1);
11620 for (p = s; p < e; p++)
11627 sv_catpvs(sv, "..."); /* et cetera */
11631 char *s = savesvpv(lv);
11632 char * const origs = s;
11634 while (*s && *s != '\n')
11638 const char * const t = ++s;
11656 Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
11658 else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
11659 Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
11661 PERL_UNUSED_CONTEXT;
11662 PERL_UNUSED_ARG(sv);
11663 PERL_UNUSED_ARG(o);
11664 PERL_UNUSED_ARG(prog);
11665 #endif /* DEBUGGING */
11669 Perl_re_intuit_string(pTHX_ REGEXP * const r)
11670 { /* Assume that RE_INTUIT is set */
11672 struct regexp *const prog = (struct regexp *)SvANY(r);
11673 GET_RE_DEBUG_FLAGS_DECL;
11675 PERL_ARGS_ASSERT_RE_INTUIT_STRING;
11676 PERL_UNUSED_CONTEXT;
11680 const char * const s = SvPV_nolen_const(prog->check_substr
11681 ? prog->check_substr : prog->check_utf8);
11683 if (!PL_colorset) reginitcolors();
11684 PerlIO_printf(Perl_debug_log,
11685 "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
11687 prog->check_substr ? "" : "utf8 ",
11688 PL_colors[5],PL_colors[0],
11691 (strlen(s) > 60 ? "..." : ""));
11694 return prog->check_substr ? prog->check_substr : prog->check_utf8;
11700 handles refcounting and freeing the perl core regexp structure. When
11701 it is necessary to actually free the structure the first thing it
11702 does is call the 'free' method of the regexp_engine associated to
11703 the regexp, allowing the handling of the void *pprivate; member
11704 first. (This routine is not overridable by extensions, which is why
11705 the extensions free is called first.)
11707 See regdupe and regdupe_internal if you change anything here.
11709 #ifndef PERL_IN_XSUB_RE
11711 Perl_pregfree(pTHX_ REGEXP *r)
11717 Perl_pregfree2(pTHX_ REGEXP *rx)
11720 struct regexp *const r = (struct regexp *)SvANY(rx);
11721 GET_RE_DEBUG_FLAGS_DECL;
11723 PERL_ARGS_ASSERT_PREGFREE2;
11725 if (r->mother_re) {
11726 ReREFCNT_dec(r->mother_re);
11728 CALLREGFREE_PVT(rx); /* free the private data */
11729 SvREFCNT_dec(RXp_PAREN_NAMES(r));
11732 SvREFCNT_dec(r->anchored_substr);
11733 SvREFCNT_dec(r->anchored_utf8);
11734 SvREFCNT_dec(r->float_substr);
11735 SvREFCNT_dec(r->float_utf8);
11736 Safefree(r->substrs);
11738 RX_MATCH_COPY_FREE(rx);
11739 #ifdef PERL_OLD_COPY_ON_WRITE
11740 SvREFCNT_dec(r->saved_copy);
11747 This is a hacky workaround to the structural issue of match results
11748 being stored in the regexp structure which is in turn stored in
11749 PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
11750 could be PL_curpm in multiple contexts, and could require multiple
11751 result sets being associated with the pattern simultaneously, such
11752 as when doing a recursive match with (??{$qr})
11754 The solution is to make a lightweight copy of the regexp structure
11755 when a qr// is returned from the code executed by (??{$qr}) this
11756 lightweight copy doesn't actually own any of its data except for
11757 the starp/end and the actual regexp structure itself.
11763 Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
11765 struct regexp *ret;
11766 struct regexp *const r = (struct regexp *)SvANY(rx);
11767 register const I32 npar = r->nparens+1;
11769 PERL_ARGS_ASSERT_REG_TEMP_COPY;
11772 ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
11773 ret = (struct regexp *)SvANY(ret_x);
11775 (void)ReREFCNT_inc(rx);
11776 /* We can take advantage of the existing "copied buffer" mechanism in SVs
11777 by pointing directly at the buffer, but flagging that the allocated
11778 space in the copy is zero. As we've just done a struct copy, it's now
11779 a case of zero-ing that, rather than copying the current length. */
11780 SvPV_set(ret_x, RX_WRAPPED(rx));
11781 SvFLAGS(ret_x) |= SvFLAGS(rx) & (SVf_POK|SVp_POK|SVf_UTF8);
11782 memcpy(&(ret->xpv_cur), &(r->xpv_cur),
11783 sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
11784 SvLEN_set(ret_x, 0);
11785 SvSTASH_set(ret_x, NULL);
11786 SvMAGIC_set(ret_x, NULL);
11787 Newx(ret->offs, npar, regexp_paren_pair);
11788 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
11790 Newx(ret->substrs, 1, struct reg_substr_data);
11791 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
11793 SvREFCNT_inc_void(ret->anchored_substr);
11794 SvREFCNT_inc_void(ret->anchored_utf8);
11795 SvREFCNT_inc_void(ret->float_substr);
11796 SvREFCNT_inc_void(ret->float_utf8);
11798 /* check_substr and check_utf8, if non-NULL, point to either their
11799 anchored or float namesakes, and don't hold a second reference. */
11801 RX_MATCH_COPIED_off(ret_x);
11802 #ifdef PERL_OLD_COPY_ON_WRITE
11803 ret->saved_copy = NULL;
11805 ret->mother_re = rx;
11811 /* regfree_internal()
11813 Free the private data in a regexp. This is overloadable by
11814 extensions. Perl takes care of the regexp structure in pregfree(),
11815 this covers the *pprivate pointer which technically perl doesn't
11816 know about, however of course we have to handle the
11817 regexp_internal structure when no extension is in use.
11819 Note this is called before freeing anything in the regexp
11824 Perl_regfree_internal(pTHX_ REGEXP * const rx)
11827 struct regexp *const r = (struct regexp *)SvANY(rx);
11828 RXi_GET_DECL(r,ri);
11829 GET_RE_DEBUG_FLAGS_DECL;
11831 PERL_ARGS_ASSERT_REGFREE_INTERNAL;
11837 SV *dsv= sv_newmortal();
11838 RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
11839 dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
11840 PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
11841 PL_colors[4],PL_colors[5],s);
11844 #ifdef RE_TRACK_PATTERN_OFFSETS
11846 Safefree(ri->u.offsets); /* 20010421 MJD */
11849 int n = ri->data->count;
11850 PAD* new_comppad = NULL;
11855 /* If you add a ->what type here, update the comment in regcomp.h */
11856 switch (ri->data->what[n]) {
11861 SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
11864 Safefree(ri->data->data[n]);
11867 new_comppad = MUTABLE_AV(ri->data->data[n]);
11870 if (new_comppad == NULL)
11871 Perl_croak(aTHX_ "panic: pregfree comppad");
11872 PAD_SAVE_LOCAL(old_comppad,
11873 /* Watch out for global destruction's random ordering. */
11874 (SvTYPE(new_comppad) == SVt_PVAV) ? new_comppad : NULL
11877 refcnt = OpREFCNT_dec((OP_4tree*)ri->data->data[n]);
11880 op_free((OP_4tree*)ri->data->data[n]);
11882 PAD_RESTORE_LOCAL(old_comppad);
11883 SvREFCNT_dec(MUTABLE_SV(new_comppad));
11884 new_comppad = NULL;
11889 { /* Aho Corasick add-on structure for a trie node.
11890 Used in stclass optimization only */
11892 reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
11894 refcount = --aho->refcount;
11897 PerlMemShared_free(aho->states);
11898 PerlMemShared_free(aho->fail);
11899 /* do this last!!!! */
11900 PerlMemShared_free(ri->data->data[n]);
11901 PerlMemShared_free(ri->regstclass);
11907 /* trie structure. */
11909 reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
11911 refcount = --trie->refcount;
11914 PerlMemShared_free(trie->charmap);
11915 PerlMemShared_free(trie->states);
11916 PerlMemShared_free(trie->trans);
11918 PerlMemShared_free(trie->bitmap);
11920 PerlMemShared_free(trie->jump);
11921 PerlMemShared_free(trie->wordinfo);
11922 /* do this last!!!! */
11923 PerlMemShared_free(ri->data->data[n]);
11928 Perl_croak(aTHX_ "panic: regfree data code '%c'", ri->data->what[n]);
11931 Safefree(ri->data->what);
11932 Safefree(ri->data);
11938 #define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
11939 #define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
11940 #define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
11943 re_dup - duplicate a regexp.
11945 This routine is expected to clone a given regexp structure. It is only
11946 compiled under USE_ITHREADS.
11948 After all of the core data stored in struct regexp is duplicated
11949 the regexp_engine.dupe method is used to copy any private data
11950 stored in the *pprivate pointer. This allows extensions to handle
11951 any duplication it needs to do.
11953 See pregfree() and regfree_internal() if you change anything here.
11955 #if defined(USE_ITHREADS)
11956 #ifndef PERL_IN_XSUB_RE
11958 Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
11962 const struct regexp *r = (const struct regexp *)SvANY(sstr);
11963 struct regexp *ret = (struct regexp *)SvANY(dstr);
11965 PERL_ARGS_ASSERT_RE_DUP_GUTS;
11967 npar = r->nparens+1;
11968 Newx(ret->offs, npar, regexp_paren_pair);
11969 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
11971 /* no need to copy these */
11972 Newx(ret->swap, npar, regexp_paren_pair);
11975 if (ret->substrs) {
11976 /* Do it this way to avoid reading from *r after the StructCopy().
11977 That way, if any of the sv_dup_inc()s dislodge *r from the L1
11978 cache, it doesn't matter. */
11979 const bool anchored = r->check_substr
11980 ? r->check_substr == r->anchored_substr
11981 : r->check_utf8 == r->anchored_utf8;
11982 Newx(ret->substrs, 1, struct reg_substr_data);
11983 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
11985 ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
11986 ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
11987 ret->float_substr = sv_dup_inc(ret->float_substr, param);
11988 ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
11990 /* check_substr and check_utf8, if non-NULL, point to either their
11991 anchored or float namesakes, and don't hold a second reference. */
11993 if (ret->check_substr) {
11995 assert(r->check_utf8 == r->anchored_utf8);
11996 ret->check_substr = ret->anchored_substr;
11997 ret->check_utf8 = ret->anchored_utf8;
11999 assert(r->check_substr == r->float_substr);
12000 assert(r->check_utf8 == r->float_utf8);
12001 ret->check_substr = ret->float_substr;
12002 ret->check_utf8 = ret->float_utf8;
12004 } else if (ret->check_utf8) {
12006 ret->check_utf8 = ret->anchored_utf8;
12008 ret->check_utf8 = ret->float_utf8;
12013 RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
12016 RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
12018 if (RX_MATCH_COPIED(dstr))
12019 ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen);
12021 ret->subbeg = NULL;
12022 #ifdef PERL_OLD_COPY_ON_WRITE
12023 ret->saved_copy = NULL;
12026 if (ret->mother_re) {
12027 if (SvPVX_const(dstr) == SvPVX_const(ret->mother_re)) {
12028 /* Our storage points directly to our mother regexp, but that's
12029 1: a buffer in a different thread
12030 2: something we no longer hold a reference on
12031 so we need to copy it locally. */
12032 /* Note we need to sue SvCUR() on our mother_re, because it, in
12033 turn, may well be pointing to its own mother_re. */
12034 SvPV_set(dstr, SAVEPVN(SvPVX_const(ret->mother_re),
12035 SvCUR(ret->mother_re)+1));
12036 SvLEN_set(dstr, SvCUR(ret->mother_re)+1);
12038 ret->mother_re = NULL;
12042 #endif /* PERL_IN_XSUB_RE */
12047 This is the internal complement to regdupe() which is used to copy
12048 the structure pointed to by the *pprivate pointer in the regexp.
12049 This is the core version of the extension overridable cloning hook.
12050 The regexp structure being duplicated will be copied by perl prior
12051 to this and will be provided as the regexp *r argument, however
12052 with the /old/ structures pprivate pointer value. Thus this routine
12053 may override any copying normally done by perl.
12055 It returns a pointer to the new regexp_internal structure.
12059 Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
12062 struct regexp *const r = (struct regexp *)SvANY(rx);
12063 regexp_internal *reti;
12065 RXi_GET_DECL(r,ri);
12067 PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
12071 Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode), char, regexp_internal);
12072 Copy(ri->program, reti->program, len+1, regnode);
12075 reti->regstclass = NULL;
12078 struct reg_data *d;
12079 const int count = ri->data->count;
12082 Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
12083 char, struct reg_data);
12084 Newx(d->what, count, U8);
12087 for (i = 0; i < count; i++) {
12088 d->what[i] = ri->data->what[i];
12089 switch (d->what[i]) {
12090 /* legal options are one of: sSfpontTua
12091 see also regcomp.h and pregfree() */
12092 case 'a': /* actually an AV, but the dup function is identical. */
12095 case 'p': /* actually an AV, but the dup function is identical. */
12096 case 'u': /* actually an HV, but the dup function is identical. */
12097 d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
12100 /* This is cheating. */
12101 Newx(d->data[i], 1, struct regnode_charclass_class);
12102 StructCopy(ri->data->data[i], d->data[i],
12103 struct regnode_charclass_class);
12104 reti->regstclass = (regnode*)d->data[i];
12107 /* Compiled op trees are readonly and in shared memory,
12108 and can thus be shared without duplication. */
12110 d->data[i] = (void*)OpREFCNT_inc((OP*)ri->data->data[i]);
12114 /* Trie stclasses are readonly and can thus be shared
12115 * without duplication. We free the stclass in pregfree
12116 * when the corresponding reg_ac_data struct is freed.
12118 reti->regstclass= ri->regstclass;
12122 ((reg_trie_data*)ri->data->data[i])->refcount++;
12126 d->data[i] = ri->data->data[i];
12129 Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'", ri->data->what[i]);
12138 reti->name_list_idx = ri->name_list_idx;
12140 #ifdef RE_TRACK_PATTERN_OFFSETS
12141 if (ri->u.offsets) {
12142 Newx(reti->u.offsets, 2*len+1, U32);
12143 Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
12146 SetProgLen(reti,len);
12149 return (void*)reti;
12152 #endif /* USE_ITHREADS */
12154 #ifndef PERL_IN_XSUB_RE
12157 - regnext - dig the "next" pointer out of a node
12160 Perl_regnext(pTHX_ register regnode *p)
12163 register I32 offset;
12168 if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */
12169 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(p), (int)REGNODE_MAX);
12172 offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
12181 S_re_croak2(pTHX_ const char* pat1,const char* pat2,...)
12184 STRLEN l1 = strlen(pat1);
12185 STRLEN l2 = strlen(pat2);
12188 const char *message;
12190 PERL_ARGS_ASSERT_RE_CROAK2;
12196 Copy(pat1, buf, l1 , char);
12197 Copy(pat2, buf + l1, l2 , char);
12198 buf[l1 + l2] = '\n';
12199 buf[l1 + l2 + 1] = '\0';
12201 /* ANSI variant takes additional second argument */
12202 va_start(args, pat2);
12206 msv = vmess(buf, &args);
12208 message = SvPV_const(msv,l1);
12211 Copy(message, buf, l1 , char);
12212 buf[l1-1] = '\0'; /* Overwrite \n */
12213 Perl_croak(aTHX_ "%s", buf);
12216 /* XXX Here's a total kludge. But we need to re-enter for swash routines. */
12218 #ifndef PERL_IN_XSUB_RE
12220 Perl_save_re_context(pTHX)
12224 struct re_save_state *state;
12226 SAVEVPTR(PL_curcop);
12227 SSGROW(SAVESTACK_ALLOC_FOR_RE_SAVE_STATE + 1);
12229 state = (struct re_save_state *)(PL_savestack + PL_savestack_ix);
12230 PL_savestack_ix += SAVESTACK_ALLOC_FOR_RE_SAVE_STATE;
12231 SSPUSHUV(SAVEt_RE_STATE);
12233 Copy(&PL_reg_state, state, 1, struct re_save_state);
12235 PL_reg_start_tmp = 0;
12236 PL_reg_start_tmpl = 0;
12237 PL_reg_oldsaved = NULL;
12238 PL_reg_oldsavedlen = 0;
12239 PL_reg_maxiter = 0;
12240 PL_reg_leftiter = 0;
12241 PL_reg_poscache = NULL;
12242 PL_reg_poscache_size = 0;
12243 #ifdef PERL_OLD_COPY_ON_WRITE
12247 /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
12249 const REGEXP * const rx = PM_GETRE(PL_curpm);
12252 for (i = 1; i <= RX_NPARENS(rx); i++) {
12253 char digits[TYPE_CHARS(long)];
12254 const STRLEN len = my_snprintf(digits, sizeof(digits), "%lu", (long)i);
12255 GV *const *const gvp
12256 = (GV**)hv_fetch(PL_defstash, digits, len, 0);
12259 GV * const gv = *gvp;
12260 if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
12270 clear_re(pTHX_ void *r)
12273 ReREFCNT_dec((REGEXP *)r);
12279 S_put_byte(pTHX_ SV *sv, int c)
12281 PERL_ARGS_ASSERT_PUT_BYTE;
12283 /* Our definition of isPRINT() ignores locales, so only bytes that are
12284 not part of UTF-8 are considered printable. I assume that the same
12285 holds for UTF-EBCDIC.
12286 Also, code point 255 is not printable in either (it's E0 in EBCDIC,
12287 which Wikipedia says:
12289 EO, or Eight Ones, is an 8-bit EBCDIC character code represented as all
12290 ones (binary 1111 1111, hexadecimal FF). It is similar, but not
12291 identical, to the ASCII delete (DEL) or rubout control character.
12292 ) So the old condition can be simplified to !isPRINT(c) */
12295 Perl_sv_catpvf(aTHX_ sv, "\\x%02x", c);
12298 Perl_sv_catpvf(aTHX_ sv, "\\x{%x}", c);
12302 const char string = c;
12303 if (c == '-' || c == ']' || c == '\\' || c == '^')
12304 sv_catpvs(sv, "\\");
12305 sv_catpvn(sv, &string, 1);
12310 #define CLEAR_OPTSTART \
12311 if (optstart) STMT_START { \
12312 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
12316 #define DUMPUNTIL(b,e) CLEAR_OPTSTART; node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
12318 STATIC const regnode *
12319 S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
12320 const regnode *last, const regnode *plast,
12321 SV* sv, I32 indent, U32 depth)
12324 register U8 op = PSEUDO; /* Arbitrary non-END op. */
12325 register const regnode *next;
12326 const regnode *optstart= NULL;
12328 RXi_GET_DECL(r,ri);
12329 GET_RE_DEBUG_FLAGS_DECL;
12331 PERL_ARGS_ASSERT_DUMPUNTIL;
12333 #ifdef DEBUG_DUMPUNTIL
12334 PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
12335 last ? last-start : 0,plast ? plast-start : 0);
12338 if (plast && plast < last)
12341 while (PL_regkind[op] != END && (!last || node < last)) {
12342 /* While that wasn't END last time... */
12345 if (op == CLOSE || op == WHILEM)
12347 next = regnext((regnode *)node);
12350 if (OP(node) == OPTIMIZED) {
12351 if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
12358 regprop(r, sv, node);
12359 PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
12360 (int)(2*indent + 1), "", SvPVX_const(sv));
12362 if (OP(node) != OPTIMIZED) {
12363 if (next == NULL) /* Next ptr. */
12364 PerlIO_printf(Perl_debug_log, " (0)");
12365 else if (PL_regkind[(U8)op] == BRANCH && PL_regkind[OP(next)] != BRANCH )
12366 PerlIO_printf(Perl_debug_log, " (FAIL)");
12368 PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
12369 (void)PerlIO_putc(Perl_debug_log, '\n');
12373 if (PL_regkind[(U8)op] == BRANCHJ) {
12376 register const regnode *nnode = (OP(next) == LONGJMP
12377 ? regnext((regnode *)next)
12379 if (last && nnode > last)
12381 DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
12384 else if (PL_regkind[(U8)op] == BRANCH) {
12386 DUMPUNTIL(NEXTOPER(node), next);
12388 else if ( PL_regkind[(U8)op] == TRIE ) {
12389 const regnode *this_trie = node;
12390 const char op = OP(node);
12391 const U32 n = ARG(node);
12392 const reg_ac_data * const ac = op>=AHOCORASICK ?
12393 (reg_ac_data *)ri->data->data[n] :
12395 const reg_trie_data * const trie =
12396 (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
12398 AV *const trie_words = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
12400 const regnode *nextbranch= NULL;
12403 for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
12404 SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
12406 PerlIO_printf(Perl_debug_log, "%*s%s ",
12407 (int)(2*(indent+3)), "",
12408 elem_ptr ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr), SvCUR(*elem_ptr), 60,
12409 PL_colors[0], PL_colors[1],
12410 (SvUTF8(*elem_ptr) ? PERL_PV_ESCAPE_UNI : 0) |
12411 PERL_PV_PRETTY_ELLIPSES |
12412 PERL_PV_PRETTY_LTGT
12417 U16 dist= trie->jump[word_idx+1];
12418 PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
12419 (UV)((dist ? this_trie + dist : next) - start));
12422 nextbranch= this_trie + trie->jump[0];
12423 DUMPUNTIL(this_trie + dist, nextbranch);
12425 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
12426 nextbranch= regnext((regnode *)nextbranch);
12428 PerlIO_printf(Perl_debug_log, "\n");
12431 if (last && next > last)
12436 else if ( op == CURLY ) { /* "next" might be very big: optimizer */
12437 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
12438 NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
12440 else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
12442 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
12444 else if ( op == PLUS || op == STAR) {
12445 DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
12447 else if (PL_regkind[(U8)op] == ANYOF) {
12448 /* arglen 1 + class block */
12449 node += 1 + ((ANYOF_FLAGS(node) & ANYOF_CLASS)
12450 ? ANYOF_CLASS_SKIP : ANYOF_SKIP);
12451 node = NEXTOPER(node);
12453 else if (PL_regkind[(U8)op] == EXACT) {
12454 /* Literal string, where present. */
12455 node += NODE_SZ_STR(node) - 1;
12456 node = NEXTOPER(node);
12459 node = NEXTOPER(node);
12460 node += regarglen[(U8)op];
12462 if (op == CURLYX || op == OPEN)
12466 #ifdef DEBUG_DUMPUNTIL
12467 PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
12472 #endif /* DEBUGGING */
12476 * c-indentation-style: bsd
12477 * c-basic-offset: 4
12478 * indent-tabs-mode: t
12481 * ex: set ts=8 sts=4 sw=4 noet: