5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
88 #include "dquote_static.c"
95 # if defined(BUGGY_MSC6)
96 /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
97 # pragma optimize("a",off)
98 /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
99 # pragma optimize("w",on )
100 # endif /* BUGGY_MSC6 */
104 #define STATIC static
107 typedef struct RExC_state_t {
108 U32 flags; /* are we folding, multilining? */
109 char *precomp; /* uncompiled string. */
110 REGEXP *rx_sv; /* The SV that is the regexp. */
111 regexp *rx; /* perl core regexp structure */
112 regexp_internal *rxi; /* internal data for regexp object pprivate field */
113 char *start; /* Start of input for compile */
114 char *end; /* End of input for compile */
115 char *parse; /* Input-scan pointer. */
116 I32 whilem_seen; /* number of WHILEM in this expr */
117 regnode *emit_start; /* Start of emitted-code area */
118 regnode *emit_bound; /* First regnode outside of the allocated space */
119 regnode *emit; /* Code-emit pointer; ®dummy = don't = compiling */
120 I32 naughty; /* How bad is this pattern? */
121 I32 sawback; /* Did we see \1, ...? */
123 I32 size; /* Code size. */
124 I32 npar; /* Capture buffer count, (OPEN). */
125 I32 cpar; /* Capture buffer count, (CLOSE). */
126 I32 nestroot; /* root parens we are in - used by accept */
130 regnode **open_parens; /* pointers to open parens */
131 regnode **close_parens; /* pointers to close parens */
132 regnode *opend; /* END node in program */
133 I32 utf8; /* whether the pattern is utf8 or not */
134 I32 orig_utf8; /* whether the pattern was originally in utf8 */
135 /* XXX use this for future optimisation of case
136 * where pattern must be upgraded to utf8. */
137 I32 uni_semantics; /* If a d charset modifier should use unicode
138 rules, even if the pattern is not in
140 HV *paren_names; /* Paren names */
142 regnode **recurse; /* Recurse regops */
143 I32 recurse_count; /* Number of recurse regops */
146 I32 override_recoding;
148 char *starttry; /* -Dr: where regtry was called. */
149 #define RExC_starttry (pRExC_state->starttry)
152 const char *lastparse;
154 AV *paren_name_list; /* idx -> name */
155 #define RExC_lastparse (pRExC_state->lastparse)
156 #define RExC_lastnum (pRExC_state->lastnum)
157 #define RExC_paren_name_list (pRExC_state->paren_name_list)
161 #define RExC_flags (pRExC_state->flags)
162 #define RExC_precomp (pRExC_state->precomp)
163 #define RExC_rx_sv (pRExC_state->rx_sv)
164 #define RExC_rx (pRExC_state->rx)
165 #define RExC_rxi (pRExC_state->rxi)
166 #define RExC_start (pRExC_state->start)
167 #define RExC_end (pRExC_state->end)
168 #define RExC_parse (pRExC_state->parse)
169 #define RExC_whilem_seen (pRExC_state->whilem_seen)
170 #ifdef RE_TRACK_PATTERN_OFFSETS
171 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */
173 #define RExC_emit (pRExC_state->emit)
174 #define RExC_emit_start (pRExC_state->emit_start)
175 #define RExC_emit_bound (pRExC_state->emit_bound)
176 #define RExC_naughty (pRExC_state->naughty)
177 #define RExC_sawback (pRExC_state->sawback)
178 #define RExC_seen (pRExC_state->seen)
179 #define RExC_size (pRExC_state->size)
180 #define RExC_npar (pRExC_state->npar)
181 #define RExC_nestroot (pRExC_state->nestroot)
182 #define RExC_extralen (pRExC_state->extralen)
183 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
184 #define RExC_seen_evals (pRExC_state->seen_evals)
185 #define RExC_utf8 (pRExC_state->utf8)
186 #define RExC_uni_semantics (pRExC_state->uni_semantics)
187 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
188 #define RExC_open_parens (pRExC_state->open_parens)
189 #define RExC_close_parens (pRExC_state->close_parens)
190 #define RExC_opend (pRExC_state->opend)
191 #define RExC_paren_names (pRExC_state->paren_names)
192 #define RExC_recurse (pRExC_state->recurse)
193 #define RExC_recurse_count (pRExC_state->recurse_count)
194 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
195 #define RExC_contains_locale (pRExC_state->contains_locale)
196 #define RExC_override_recoding (pRExC_state->override_recoding)
199 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
200 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
201 ((*s) == '{' && regcurly(s)))
204 #undef SPSTART /* dratted cpp namespace... */
207 * Flags to be passed up and down.
209 #define WORST 0 /* Worst case. */
210 #define HASWIDTH 0x01 /* Known to match non-null strings. */
212 /* Simple enough to be STAR/PLUS operand, in an EXACT node must be a single
213 * character, and if utf8, must be invariant. Note that this is not the same thing as REGNODE_SIMPLE */
215 #define SPSTART 0x04 /* Starts with * or +. */
216 #define TRYAGAIN 0x08 /* Weeded out a declaration. */
217 #define POSTPONED 0x10 /* (?1),(?&name), (??{...}) or similar */
219 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
221 /* whether trie related optimizations are enabled */
222 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
223 #define TRIE_STUDY_OPT
224 #define FULL_TRIE_STUDY
230 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
231 #define PBITVAL(paren) (1 << ((paren) & 7))
232 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
233 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
234 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
236 /* If not already in utf8, do a longjmp back to the beginning */
237 #define UTF8_LONGJMP 42 /* Choose a value not likely to ever conflict */
238 #define REQUIRE_UTF8 STMT_START { \
239 if (! UTF) JMPENV_JUMP(UTF8_LONGJMP); \
242 /* About scan_data_t.
244 During optimisation we recurse through the regexp program performing
245 various inplace (keyhole style) optimisations. In addition study_chunk
246 and scan_commit populate this data structure with information about
247 what strings MUST appear in the pattern. We look for the longest
248 string that must appear at a fixed location, and we look for the
249 longest string that may appear at a floating location. So for instance
254 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
255 strings (because they follow a .* construct). study_chunk will identify
256 both FOO and BAR as being the longest fixed and floating strings respectively.
258 The strings can be composites, for instance
262 will result in a composite fixed substring 'foo'.
264 For each string some basic information is maintained:
266 - offset or min_offset
267 This is the position the string must appear at, or not before.
268 It also implicitly (when combined with minlenp) tells us how many
269 characters must match before the string we are searching for.
270 Likewise when combined with minlenp and the length of the string it
271 tells us how many characters must appear after the string we have
275 Only used for floating strings. This is the rightmost point that
276 the string can appear at. If set to I32 max it indicates that the
277 string can occur infinitely far to the right.
280 A pointer to the minimum length of the pattern that the string
281 was found inside. This is important as in the case of positive
282 lookahead or positive lookbehind we can have multiple patterns
287 The minimum length of the pattern overall is 3, the minimum length
288 of the lookahead part is 3, but the minimum length of the part that
289 will actually match is 1. So 'FOO's minimum length is 3, but the
290 minimum length for the F is 1. This is important as the minimum length
291 is used to determine offsets in front of and behind the string being
292 looked for. Since strings can be composites this is the length of the
293 pattern at the time it was committed with a scan_commit. Note that
294 the length is calculated by study_chunk, so that the minimum lengths
295 are not known until the full pattern has been compiled, thus the
296 pointer to the value.
300 In the case of lookbehind the string being searched for can be
301 offset past the start point of the final matching string.
302 If this value was just blithely removed from the min_offset it would
303 invalidate some of the calculations for how many chars must match
304 before or after (as they are derived from min_offset and minlen and
305 the length of the string being searched for).
306 When the final pattern is compiled and the data is moved from the
307 scan_data_t structure into the regexp structure the information
308 about lookbehind is factored in, with the information that would
309 have been lost precalculated in the end_shift field for the
312 The fields pos_min and pos_delta are used to store the minimum offset
313 and the delta to the maximum offset at the current point in the pattern.
317 typedef struct scan_data_t {
318 /*I32 len_min; unused */
319 /*I32 len_delta; unused */
323 I32 last_end; /* min value, <0 unless valid. */
326 SV **longest; /* Either &l_fixed, or &l_float. */
327 SV *longest_fixed; /* longest fixed string found in pattern */
328 I32 offset_fixed; /* offset where it starts */
329 I32 *minlen_fixed; /* pointer to the minlen relevant to the string */
330 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
331 SV *longest_float; /* longest floating string found in pattern */
332 I32 offset_float_min; /* earliest point in string it can appear */
333 I32 offset_float_max; /* latest point in string it can appear */
334 I32 *minlen_float; /* pointer to the minlen relevant to the string */
335 I32 lookbehind_float; /* is the position of the string modified by LB */
339 struct regnode_charclass_class *start_class;
343 * Forward declarations for pregcomp()'s friends.
346 static const scan_data_t zero_scan_data =
347 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
349 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
350 #define SF_BEFORE_SEOL 0x0001
351 #define SF_BEFORE_MEOL 0x0002
352 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
353 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
356 # define SF_FIX_SHIFT_EOL (0+2)
357 # define SF_FL_SHIFT_EOL (0+4)
359 # define SF_FIX_SHIFT_EOL (+2)
360 # define SF_FL_SHIFT_EOL (+4)
363 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
364 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
366 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
367 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
368 #define SF_IS_INF 0x0040
369 #define SF_HAS_PAR 0x0080
370 #define SF_IN_PAR 0x0100
371 #define SF_HAS_EVAL 0x0200
372 #define SCF_DO_SUBSTR 0x0400
373 #define SCF_DO_STCLASS_AND 0x0800
374 #define SCF_DO_STCLASS_OR 0x1000
375 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
376 #define SCF_WHILEM_VISITED_POS 0x2000
378 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
379 #define SCF_SEEN_ACCEPT 0x8000
381 #define UTF cBOOL(RExC_utf8)
382 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
383 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
384 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_DEPENDS_CHARSET)
385 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) >= REGEX_UNICODE_CHARSET)
386 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_RESTRICTED_CHARSET)
387 #define MORE_ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
388 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) >= REGEX_ASCII_RESTRICTED_CHARSET)
390 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
392 #define OOB_UNICODE 12345678
393 #define OOB_NAMEDCLASS -1
395 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
396 #define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
399 /* length of regex to show in messages that don't mark a position within */
400 #define RegexLengthToShowInErrorMessages 127
403 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
404 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
405 * op/pragma/warn/regcomp.
407 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
408 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
410 #define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
413 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
414 * arg. Show regex, up to a maximum length. If it's too long, chop and add
417 #define _FAIL(code) STMT_START { \
418 const char *ellipses = ""; \
419 IV len = RExC_end - RExC_precomp; \
422 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
423 if (len > RegexLengthToShowInErrorMessages) { \
424 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
425 len = RegexLengthToShowInErrorMessages - 10; \
431 #define FAIL(msg) _FAIL( \
432 Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \
433 msg, (int)len, RExC_precomp, ellipses))
435 #define FAIL2(msg,arg) _FAIL( \
436 Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \
437 arg, (int)len, RExC_precomp, ellipses))
440 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
442 #define Simple_vFAIL(m) STMT_START { \
443 const IV offset = RExC_parse - RExC_precomp; \
444 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
445 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
449 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
451 #define vFAIL(m) STMT_START { \
453 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
458 * Like Simple_vFAIL(), but accepts two arguments.
460 #define Simple_vFAIL2(m,a1) STMT_START { \
461 const IV offset = RExC_parse - RExC_precomp; \
462 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \
463 (int)offset, RExC_precomp, RExC_precomp + offset); \
467 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
469 #define vFAIL2(m,a1) STMT_START { \
471 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
472 Simple_vFAIL2(m, a1); \
477 * Like Simple_vFAIL(), but accepts three arguments.
479 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
480 const IV offset = RExC_parse - RExC_precomp; \
481 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \
482 (int)offset, RExC_precomp, RExC_precomp + offset); \
486 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
488 #define vFAIL3(m,a1,a2) STMT_START { \
490 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
491 Simple_vFAIL3(m, a1, a2); \
495 * Like Simple_vFAIL(), but accepts four arguments.
497 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
498 const IV offset = RExC_parse - RExC_precomp; \
499 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \
500 (int)offset, RExC_precomp, RExC_precomp + offset); \
503 #define ckWARNreg(loc,m) STMT_START { \
504 const IV offset = loc - RExC_precomp; \
505 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
506 (int)offset, RExC_precomp, RExC_precomp + offset); \
509 #define ckWARNregdep(loc,m) STMT_START { \
510 const IV offset = loc - RExC_precomp; \
511 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
513 (int)offset, RExC_precomp, RExC_precomp + offset); \
516 #define ckWARN2regdep(loc,m, a1) STMT_START { \
517 const IV offset = loc - RExC_precomp; \
518 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
520 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
523 #define ckWARN2reg(loc, m, a1) STMT_START { \
524 const IV offset = loc - RExC_precomp; \
525 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
526 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
529 #define vWARN3(loc, m, a1, a2) STMT_START { \
530 const IV offset = loc - RExC_precomp; \
531 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
532 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
535 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
536 const IV offset = loc - RExC_precomp; \
537 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
538 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
541 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
542 const IV offset = loc - RExC_precomp; \
543 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
544 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
547 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
548 const IV offset = loc - RExC_precomp; \
549 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
550 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
553 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
554 const IV offset = loc - RExC_precomp; \
555 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
556 a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
560 /* Allow for side effects in s */
561 #define REGC(c,s) STMT_START { \
562 if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
565 /* Macros for recording node offsets. 20001227 mjd@plover.com
566 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
567 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
568 * Element 0 holds the number n.
569 * Position is 1 indexed.
571 #ifndef RE_TRACK_PATTERN_OFFSETS
572 #define Set_Node_Offset_To_R(node,byte)
573 #define Set_Node_Offset(node,byte)
574 #define Set_Cur_Node_Offset
575 #define Set_Node_Length_To_R(node,len)
576 #define Set_Node_Length(node,len)
577 #define Set_Node_Cur_Length(node)
578 #define Node_Offset(n)
579 #define Node_Length(n)
580 #define Set_Node_Offset_Length(node,offset,len)
581 #define ProgLen(ri) ri->u.proglen
582 #define SetProgLen(ri,x) ri->u.proglen = x
584 #define ProgLen(ri) ri->u.offsets[0]
585 #define SetProgLen(ri,x) ri->u.offsets[0] = x
586 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
588 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
589 __LINE__, (int)(node), (int)(byte))); \
591 Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
593 RExC_offsets[2*(node)-1] = (byte); \
598 #define Set_Node_Offset(node,byte) \
599 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
600 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
602 #define Set_Node_Length_To_R(node,len) STMT_START { \
604 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
605 __LINE__, (int)(node), (int)(len))); \
607 Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
609 RExC_offsets[2*(node)] = (len); \
614 #define Set_Node_Length(node,len) \
615 Set_Node_Length_To_R((node)-RExC_emit_start, len)
616 #define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len)
617 #define Set_Node_Cur_Length(node) \
618 Set_Node_Length(node, RExC_parse - parse_start)
620 /* Get offsets and lengths */
621 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
622 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
624 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
625 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
626 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
630 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
631 #define EXPERIMENTAL_INPLACESCAN
632 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
634 #define DEBUG_STUDYDATA(str,data,depth) \
635 DEBUG_OPTIMISE_MORE_r(if(data){ \
636 PerlIO_printf(Perl_debug_log, \
637 "%*s" str "Pos:%"IVdf"/%"IVdf \
638 " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
639 (int)(depth)*2, "", \
640 (IV)((data)->pos_min), \
641 (IV)((data)->pos_delta), \
642 (UV)((data)->flags), \
643 (IV)((data)->whilem_c), \
644 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
645 is_inf ? "INF " : "" \
647 if ((data)->last_found) \
648 PerlIO_printf(Perl_debug_log, \
649 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
650 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
651 SvPVX_const((data)->last_found), \
652 (IV)((data)->last_end), \
653 (IV)((data)->last_start_min), \
654 (IV)((data)->last_start_max), \
655 ((data)->longest && \
656 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
657 SvPVX_const((data)->longest_fixed), \
658 (IV)((data)->offset_fixed), \
659 ((data)->longest && \
660 (data)->longest==&((data)->longest_float)) ? "*" : "", \
661 SvPVX_const((data)->longest_float), \
662 (IV)((data)->offset_float_min), \
663 (IV)((data)->offset_float_max) \
665 PerlIO_printf(Perl_debug_log,"\n"); \
668 static void clear_re(pTHX_ void *r);
670 /* Mark that we cannot extend a found fixed substring at this point.
671 Update the longest found anchored substring and the longest found
672 floating substrings if needed. */
675 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf)
677 const STRLEN l = CHR_SVLEN(data->last_found);
678 const STRLEN old_l = CHR_SVLEN(*data->longest);
679 GET_RE_DEBUG_FLAGS_DECL;
681 PERL_ARGS_ASSERT_SCAN_COMMIT;
683 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
684 SvSetMagicSV(*data->longest, data->last_found);
685 if (*data->longest == data->longest_fixed) {
686 data->offset_fixed = l ? data->last_start_min : data->pos_min;
687 if (data->flags & SF_BEFORE_EOL)
689 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
691 data->flags &= ~SF_FIX_BEFORE_EOL;
692 data->minlen_fixed=minlenp;
693 data->lookbehind_fixed=0;
695 else { /* *data->longest == data->longest_float */
696 data->offset_float_min = l ? data->last_start_min : data->pos_min;
697 data->offset_float_max = (l
698 ? data->last_start_max
699 : data->pos_min + data->pos_delta);
700 if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX)
701 data->offset_float_max = I32_MAX;
702 if (data->flags & SF_BEFORE_EOL)
704 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
706 data->flags &= ~SF_FL_BEFORE_EOL;
707 data->minlen_float=minlenp;
708 data->lookbehind_float=0;
711 SvCUR_set(data->last_found, 0);
713 SV * const sv = data->last_found;
714 if (SvUTF8(sv) && SvMAGICAL(sv)) {
715 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
721 data->flags &= ~SF_BEFORE_EOL;
722 DEBUG_STUDYDATA("commit: ",data,0);
725 /* Can match anything (initialization) */
727 S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
729 PERL_ARGS_ASSERT_CL_ANYTHING;
731 ANYOF_BITMAP_SETALL(cl);
732 cl->flags = ANYOF_CLASS|ANYOF_EOS|ANYOF_UNICODE_ALL
733 |ANYOF_LOC_NONBITMAP_FOLD|ANYOF_NON_UTF8_LATIN1_ALL;
735 /* If any portion of the regex is to operate under locale rules,
736 * initialization includes it. The reason this isn't done for all regexes
737 * is that the optimizer was written under the assumption that locale was
738 * all-or-nothing. Given the complexity and lack of documentation in the
739 * optimizer, and that there are inadequate test cases for locale, so many
740 * parts of it may not work properly, it is safest to avoid locale unless
742 if (RExC_contains_locale) {
743 ANYOF_CLASS_SETALL(cl); /* /l uses class */
744 cl->flags |= ANYOF_LOCALE;
747 ANYOF_CLASS_ZERO(cl); /* Only /l uses class now */
751 /* Can match anything (initialization) */
753 S_cl_is_anything(const struct regnode_charclass_class *cl)
757 PERL_ARGS_ASSERT_CL_IS_ANYTHING;
759 for (value = 0; value <= ANYOF_MAX; value += 2)
760 if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
762 if (!(cl->flags & ANYOF_UNICODE_ALL))
764 if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
769 /* Can match anything (initialization) */
771 S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
773 PERL_ARGS_ASSERT_CL_INIT;
775 Zero(cl, 1, struct regnode_charclass_class);
777 cl_anything(pRExC_state, cl);
778 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
781 /* These two functions currently do the exact same thing */
782 #define cl_init_zero S_cl_init
784 /* 'AND' a given class with another one. Can create false positives. 'cl'
785 * should not be inverted. 'and_with->flags & ANYOF_CLASS' should be 0 if
786 * 'and_with' is a regnode_charclass instead of a regnode_charclass_class. */
788 S_cl_and(struct regnode_charclass_class *cl,
789 const struct regnode_charclass_class *and_with)
791 PERL_ARGS_ASSERT_CL_AND;
793 assert(and_with->type == ANYOF);
795 /* I (khw) am not sure all these restrictions are necessary XXX */
796 if (!(ANYOF_CLASS_TEST_ANY_SET(and_with))
797 && !(ANYOF_CLASS_TEST_ANY_SET(cl))
798 && (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
799 && !(and_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
800 && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) {
803 if (and_with->flags & ANYOF_INVERT)
804 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
805 cl->bitmap[i] &= ~and_with->bitmap[i];
807 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
808 cl->bitmap[i] &= and_with->bitmap[i];
809 } /* XXXX: logic is complicated otherwise, leave it along for a moment. */
811 if (and_with->flags & ANYOF_INVERT) {
813 /* Here, the and'ed node is inverted. Get the AND of the flags that
814 * aren't affected by the inversion. Those that are affected are
815 * handled individually below */
816 U8 affected_flags = cl->flags & ~INVERSION_UNAFFECTED_FLAGS;
817 cl->flags &= (and_with->flags & INVERSION_UNAFFECTED_FLAGS);
818 cl->flags |= affected_flags;
820 /* We currently don't know how to deal with things that aren't in the
821 * bitmap, but we know that the intersection is no greater than what
822 * is already in cl, so let there be false positives that get sorted
823 * out after the synthetic start class succeeds, and the node is
824 * matched for real. */
826 /* The inversion of these two flags indicate that the resulting
827 * intersection doesn't have them */
828 if (and_with->flags & ANYOF_UNICODE_ALL) {
829 cl->flags &= ~ANYOF_UNICODE_ALL;
831 if (and_with->flags & ANYOF_NON_UTF8_LATIN1_ALL) {
832 cl->flags &= ~ANYOF_NON_UTF8_LATIN1_ALL;
835 else { /* and'd node is not inverted */
836 U8 outside_bitmap_but_not_utf8; /* Temp variable */
838 if (! ANYOF_NONBITMAP(and_with)) {
840 /* Here 'and_with' doesn't match anything outside the bitmap
841 * (except possibly ANYOF_UNICODE_ALL), which means the
842 * intersection can't either, except for ANYOF_UNICODE_ALL, in
843 * which case we don't know what the intersection is, but it's no
844 * greater than what cl already has, so can just leave it alone,
845 * with possible false positives */
846 if (! (and_with->flags & ANYOF_UNICODE_ALL)) {
847 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
848 cl->flags &= ~ANYOF_NONBITMAP_NON_UTF8;
851 else if (! ANYOF_NONBITMAP(cl)) {
853 /* Here, 'and_with' does match something outside the bitmap, and cl
854 * doesn't have a list of things to match outside the bitmap. If
855 * cl can match all code points above 255, the intersection will
856 * be those above-255 code points that 'and_with' matches. If cl
857 * can't match all Unicode code points, it means that it can't
858 * match anything outside the bitmap (since the 'if' that got us
859 * into this block tested for that), so we leave the bitmap empty.
861 if (cl->flags & ANYOF_UNICODE_ALL) {
862 ARG_SET(cl, ARG(and_with));
864 /* and_with's ARG may match things that don't require UTF8.
865 * And now cl's will too, in spite of this being an 'and'. See
866 * the comments below about the kludge */
867 cl->flags |= and_with->flags & ANYOF_NONBITMAP_NON_UTF8;
871 /* Here, both 'and_with' and cl match something outside the
872 * bitmap. Currently we do not do the intersection, so just match
873 * whatever cl had at the beginning. */
877 /* Take the intersection of the two sets of flags. However, the
878 * ANYOF_NONBITMAP_NON_UTF8 flag is treated as an 'or'. This is a
879 * kludge around the fact that this flag is not treated like the others
880 * which are initialized in cl_anything(). The way the optimizer works
881 * is that the synthetic start class (SSC) is initialized to match
882 * anything, and then the first time a real node is encountered, its
883 * values are AND'd with the SSC's with the result being the values of
884 * the real node. However, there are paths through the optimizer where
885 * the AND never gets called, so those initialized bits are set
886 * inappropriately, which is not usually a big deal, as they just cause
887 * false positives in the SSC, which will just mean a probably
888 * imperceptible slow down in execution. However this bit has a
889 * higher false positive consequence in that it can cause utf8.pm,
890 * utf8_heavy.pl ... to be loaded when not necessary, which is a much
891 * bigger slowdown and also causes significant extra memory to be used.
892 * In order to prevent this, the code now takes a different tack. The
893 * bit isn't set unless some part of the regular expression needs it,
894 * but once set it won't get cleared. This means that these extra
895 * modules won't get loaded unless there was some path through the
896 * pattern that would have required them anyway, and so any false
897 * positives that occur by not ANDing them out when they could be
898 * aren't as severe as they would be if we treated this bit like all
900 outside_bitmap_but_not_utf8 = (cl->flags | and_with->flags)
901 & ANYOF_NONBITMAP_NON_UTF8;
902 cl->flags &= and_with->flags;
903 cl->flags |= outside_bitmap_but_not_utf8;
907 /* 'OR' a given class with another one. Can create false positives. 'cl'
908 * should not be inverted. 'or_with->flags & ANYOF_CLASS' should be 0 if
909 * 'or_with' is a regnode_charclass instead of a regnode_charclass_class. */
911 S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
913 PERL_ARGS_ASSERT_CL_OR;
915 if (or_with->flags & ANYOF_INVERT) {
917 /* Here, the or'd node is to be inverted. This means we take the
918 * complement of everything not in the bitmap, but currently we don't
919 * know what that is, so give up and match anything */
920 if (ANYOF_NONBITMAP(or_with)) {
921 cl_anything(pRExC_state, cl);
924 * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
925 * <= (B1 | !B2) | (CL1 | !CL2)
926 * which is wasteful if CL2 is small, but we ignore CL2:
927 * (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
928 * XXXX Can we handle case-fold? Unclear:
929 * (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
930 * (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
932 else if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
933 && !(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
934 && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD) ) {
937 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
938 cl->bitmap[i] |= ~or_with->bitmap[i];
939 } /* XXXX: logic is complicated otherwise */
941 cl_anything(pRExC_state, cl);
944 /* And, we can just take the union of the flags that aren't affected
945 * by the inversion */
946 cl->flags |= or_with->flags & INVERSION_UNAFFECTED_FLAGS;
948 /* For the remaining flags:
949 ANYOF_UNICODE_ALL and inverted means to not match anything above
950 255, which means that the union with cl should just be
951 what cl has in it, so can ignore this flag
952 ANYOF_NON_UTF8_LATIN1_ALL and inverted means if not utf8 and ord
953 is 127-255 to match them, but then invert that, so the
954 union with cl should just be what cl has in it, so can
957 } else { /* 'or_with' is not inverted */
958 /* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
959 if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
960 && (!(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
961 || (cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) ) {
964 /* OR char bitmap and class bitmap separately */
965 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
966 cl->bitmap[i] |= or_with->bitmap[i];
967 if (ANYOF_CLASS_TEST_ANY_SET(or_with)) {
968 for (i = 0; i < ANYOF_CLASSBITMAP_SIZE; i++)
969 cl->classflags[i] |= or_with->classflags[i];
970 cl->flags |= ANYOF_CLASS;
973 else { /* XXXX: logic is complicated, leave it along for a moment. */
974 cl_anything(pRExC_state, cl);
977 if (ANYOF_NONBITMAP(or_with)) {
979 /* Use the added node's outside-the-bit-map match if there isn't a
980 * conflict. If there is a conflict (both nodes match something
981 * outside the bitmap, but what they match outside is not the same
982 * pointer, and hence not easily compared until XXX we extend
983 * inversion lists this far), give up and allow the start class to
984 * match everything outside the bitmap. If that stuff is all above
985 * 255, can just set UNICODE_ALL, otherwise caould be anything. */
986 if (! ANYOF_NONBITMAP(cl)) {
987 ARG_SET(cl, ARG(or_with));
989 else if (ARG(cl) != ARG(or_with)) {
991 if ((or_with->flags & ANYOF_NONBITMAP_NON_UTF8)) {
992 cl_anything(pRExC_state, cl);
995 cl->flags |= ANYOF_UNICODE_ALL;
1000 /* Take the union */
1001 cl->flags |= or_with->flags;
1005 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1006 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1007 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1008 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
1013 dump_trie(trie,widecharmap,revcharmap)
1014 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1015 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1017 These routines dump out a trie in a somewhat readable format.
1018 The _interim_ variants are used for debugging the interim
1019 tables that are used to generate the final compressed
1020 representation which is what dump_trie expects.
1022 Part of the reason for their existence is to provide a form
1023 of documentation as to how the different representations function.
1028 Dumps the final compressed table form of the trie to Perl_debug_log.
1029 Used for debugging make_trie().
1033 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1034 AV *revcharmap, U32 depth)
1037 SV *sv=sv_newmortal();
1038 int colwidth= widecharmap ? 6 : 4;
1040 GET_RE_DEBUG_FLAGS_DECL;
1042 PERL_ARGS_ASSERT_DUMP_TRIE;
1044 PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
1045 (int)depth * 2 + 2,"",
1046 "Match","Base","Ofs" );
1048 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1049 SV ** const tmp = av_fetch( revcharmap, state, 0);
1051 PerlIO_printf( Perl_debug_log, "%*s",
1053 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1054 PL_colors[0], PL_colors[1],
1055 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1056 PERL_PV_ESCAPE_FIRSTCHAR
1061 PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
1062 (int)depth * 2 + 2,"");
1064 for( state = 0 ; state < trie->uniquecharcount ; state++ )
1065 PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
1066 PerlIO_printf( Perl_debug_log, "\n");
1068 for( state = 1 ; state < trie->statecount ; state++ ) {
1069 const U32 base = trie->states[ state ].trans.base;
1071 PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
1073 if ( trie->states[ state ].wordnum ) {
1074 PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
1076 PerlIO_printf( Perl_debug_log, "%6s", "" );
1079 PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
1084 while( ( base + ofs < trie->uniquecharcount ) ||
1085 ( base + ofs - trie->uniquecharcount < trie->lasttrans
1086 && trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
1089 PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
1091 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
1092 if ( ( base + ofs >= trie->uniquecharcount ) &&
1093 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
1094 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
1096 PerlIO_printf( Perl_debug_log, "%*"UVXf,
1098 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
1100 PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
1104 PerlIO_printf( Perl_debug_log, "]");
1107 PerlIO_printf( Perl_debug_log, "\n" );
1109 PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=", (int)depth*2, "");
1110 for (word=1; word <= trie->wordcount; word++) {
1111 PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
1112 (int)word, (int)(trie->wordinfo[word].prev),
1113 (int)(trie->wordinfo[word].len));
1115 PerlIO_printf(Perl_debug_log, "\n" );
1118 Dumps a fully constructed but uncompressed trie in list form.
1119 List tries normally only are used for construction when the number of
1120 possible chars (trie->uniquecharcount) is very high.
1121 Used for debugging make_trie().
1124 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
1125 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1129 SV *sv=sv_newmortal();
1130 int colwidth= widecharmap ? 6 : 4;
1131 GET_RE_DEBUG_FLAGS_DECL;
1133 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
1135 /* print out the table precompression. */
1136 PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
1137 (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
1138 "------:-----+-----------------\n" );
1140 for( state=1 ; state < next_alloc ; state ++ ) {
1143 PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
1144 (int)depth * 2 + 2,"", (UV)state );
1145 if ( ! trie->states[ state ].wordnum ) {
1146 PerlIO_printf( Perl_debug_log, "%5s| ","");
1148 PerlIO_printf( Perl_debug_log, "W%4x| ",
1149 trie->states[ state ].wordnum
1152 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
1153 SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
1155 PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
1157 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1158 PL_colors[0], PL_colors[1],
1159 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1160 PERL_PV_ESCAPE_FIRSTCHAR
1162 TRIE_LIST_ITEM(state,charid).forid,
1163 (UV)TRIE_LIST_ITEM(state,charid).newstate
1166 PerlIO_printf(Perl_debug_log, "\n%*s| ",
1167 (int)((depth * 2) + 14), "");
1170 PerlIO_printf( Perl_debug_log, "\n");
1175 Dumps a fully constructed but uncompressed trie in table form.
1176 This is the normal DFA style state transition table, with a few
1177 twists to facilitate compression later.
1178 Used for debugging make_trie().
1181 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
1182 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1187 SV *sv=sv_newmortal();
1188 int colwidth= widecharmap ? 6 : 4;
1189 GET_RE_DEBUG_FLAGS_DECL;
1191 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
1194 print out the table precompression so that we can do a visual check
1195 that they are identical.
1198 PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
1200 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1201 SV ** const tmp = av_fetch( revcharmap, charid, 0);
1203 PerlIO_printf( Perl_debug_log, "%*s",
1205 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1206 PL_colors[0], PL_colors[1],
1207 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1208 PERL_PV_ESCAPE_FIRSTCHAR
1214 PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
1216 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
1217 PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
1220 PerlIO_printf( Perl_debug_log, "\n" );
1222 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
1224 PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
1225 (int)depth * 2 + 2,"",
1226 (UV)TRIE_NODENUM( state ) );
1228 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1229 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
1231 PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
1233 PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
1235 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
1236 PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
1238 PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
1239 trie->states[ TRIE_NODENUM( state ) ].wordnum );
1247 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
1248 startbranch: the first branch in the whole branch sequence
1249 first : start branch of sequence of branch-exact nodes.
1250 May be the same as startbranch
1251 last : Thing following the last branch.
1252 May be the same as tail.
1253 tail : item following the branch sequence
1254 count : words in the sequence
1255 flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
1256 depth : indent depth
1258 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
1260 A trie is an N'ary tree where the branches are determined by digital
1261 decomposition of the key. IE, at the root node you look up the 1st character and
1262 follow that branch repeat until you find the end of the branches. Nodes can be
1263 marked as "accepting" meaning they represent a complete word. Eg:
1267 would convert into the following structure. Numbers represent states, letters
1268 following numbers represent valid transitions on the letter from that state, if
1269 the number is in square brackets it represents an accepting state, otherwise it
1270 will be in parenthesis.
1272 +-h->+-e->[3]-+-r->(8)-+-s->[9]
1276 (1) +-i->(6)-+-s->[7]
1278 +-s->(3)-+-h->(4)-+-e->[5]
1280 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
1282 This shows that when matching against the string 'hers' we will begin at state 1
1283 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
1284 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
1285 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
1286 single traverse. We store a mapping from accepting to state to which word was
1287 matched, and then when we have multiple possibilities we try to complete the
1288 rest of the regex in the order in which they occured in the alternation.
1290 The only prior NFA like behaviour that would be changed by the TRIE support is
1291 the silent ignoring of duplicate alternations which are of the form:
1293 / (DUPE|DUPE) X? (?{ ... }) Y /x
1295 Thus EVAL blocks following a trie may be called a different number of times with
1296 and without the optimisation. With the optimisations dupes will be silently
1297 ignored. This inconsistent behaviour of EVAL type nodes is well established as
1298 the following demonstrates:
1300 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
1302 which prints out 'word' three times, but
1304 'words'=~/(word|word|word)(?{ print $1 })S/
1306 which doesnt print it out at all. This is due to other optimisations kicking in.
1308 Example of what happens on a structural level:
1310 The regexp /(ac|ad|ab)+/ will produce the following debug output:
1312 1: CURLYM[1] {1,32767}(18)
1323 This would be optimizable with startbranch=5, first=5, last=16, tail=16
1324 and should turn into:
1326 1: CURLYM[1] {1,32767}(18)
1328 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
1336 Cases where tail != last would be like /(?foo|bar)baz/:
1346 which would be optimizable with startbranch=1, first=1, last=7, tail=8
1347 and would end up looking like:
1350 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
1357 d = uvuni_to_utf8_flags(d, uv, 0);
1359 is the recommended Unicode-aware way of saying
1364 #define TRIE_STORE_REVCHAR \
1367 SV *zlopp = newSV(2); \
1368 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
1369 unsigned const char *const kapow = uvuni_to_utf8(flrbbbbb, uvc & 0xFF); \
1370 SvCUR_set(zlopp, kapow - flrbbbbb); \
1373 av_push(revcharmap, zlopp); \
1375 char ooooff = (char)uvc; \
1376 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
1380 #define TRIE_READ_CHAR STMT_START { \
1384 if ( foldlen > 0 ) { \
1385 uvc = utf8n_to_uvuni( scan, UTF8_MAXLEN, &len, uniflags ); \
1390 uvc = utf8n_to_uvuni( (const U8*)uc, UTF8_MAXLEN, &len, uniflags);\
1391 uvc = to_uni_fold( uvc, foldbuf, &foldlen ); \
1392 foldlen -= UNISKIP( uvc ); \
1393 scan = foldbuf + UNISKIP( uvc ); \
1396 uvc = utf8n_to_uvuni( (const U8*)uc, UTF8_MAXLEN, &len, uniflags);\
1406 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
1407 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
1408 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
1409 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
1411 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
1412 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
1413 TRIE_LIST_CUR( state )++; \
1416 #define TRIE_LIST_NEW(state) STMT_START { \
1417 Newxz( trie->states[ state ].trans.list, \
1418 4, reg_trie_trans_le ); \
1419 TRIE_LIST_CUR( state ) = 1; \
1420 TRIE_LIST_LEN( state ) = 4; \
1423 #define TRIE_HANDLE_WORD(state) STMT_START { \
1424 U16 dupe= trie->states[ state ].wordnum; \
1425 regnode * const noper_next = regnext( noper ); \
1428 /* store the word for dumping */ \
1430 if (OP(noper) != NOTHING) \
1431 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
1433 tmp = newSVpvn_utf8( "", 0, UTF ); \
1434 av_push( trie_words, tmp ); \
1438 trie->wordinfo[curword].prev = 0; \
1439 trie->wordinfo[curword].len = wordlen; \
1440 trie->wordinfo[curword].accept = state; \
1442 if ( noper_next < tail ) { \
1444 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \
1445 trie->jump[curword] = (U16)(noper_next - convert); \
1447 jumper = noper_next; \
1449 nextbranch= regnext(cur); \
1453 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
1454 /* chain, so that when the bits of chain are later */\
1455 /* linked together, the dups appear in the chain */\
1456 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
1457 trie->wordinfo[dupe].prev = curword; \
1459 /* we haven't inserted this word yet. */ \
1460 trie->states[ state ].wordnum = curword; \
1465 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
1466 ( ( base + charid >= ucharcount \
1467 && base + charid < ubound \
1468 && state == trie->trans[ base - ucharcount + charid ].check \
1469 && trie->trans[ base - ucharcount + charid ].next ) \
1470 ? trie->trans[ base - ucharcount + charid ].next \
1471 : ( state==1 ? special : 0 ) \
1475 #define MADE_JUMP_TRIE 2
1476 #define MADE_EXACT_TRIE 4
1479 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
1482 /* first pass, loop through and scan words */
1483 reg_trie_data *trie;
1484 HV *widecharmap = NULL;
1485 AV *revcharmap = newAV();
1487 const U32 uniflags = UTF8_ALLOW_DEFAULT;
1492 regnode *jumper = NULL;
1493 regnode *nextbranch = NULL;
1494 regnode *convert = NULL;
1495 U32 *prev_states; /* temp array mapping each state to previous one */
1496 /* we just use folder as a flag in utf8 */
1497 const U8 * folder = NULL;
1500 const U32 data_slot = add_data( pRExC_state, 4, "tuuu" );
1501 AV *trie_words = NULL;
1502 /* along with revcharmap, this only used during construction but both are
1503 * useful during debugging so we store them in the struct when debugging.
1506 const U32 data_slot = add_data( pRExC_state, 2, "tu" );
1507 STRLEN trie_charcount=0;
1509 SV *re_trie_maxbuff;
1510 GET_RE_DEBUG_FLAGS_DECL;
1512 PERL_ARGS_ASSERT_MAKE_TRIE;
1514 PERL_UNUSED_ARG(depth);
1519 case EXACTFU: folder = PL_fold_latin1; break;
1520 case EXACTF: folder = PL_fold; break;
1521 case EXACTFL: folder = PL_fold_locale; break;
1524 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
1526 trie->startstate = 1;
1527 trie->wordcount = word_count;
1528 RExC_rxi->data->data[ data_slot ] = (void*)trie;
1529 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
1530 if (!(UTF && folder))
1531 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
1532 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
1533 trie->wordcount+1, sizeof(reg_trie_wordinfo));
1536 trie_words = newAV();
1539 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
1540 if (!SvIOK(re_trie_maxbuff)) {
1541 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
1544 PerlIO_printf( Perl_debug_log,
1545 "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
1546 (int)depth * 2 + 2, "",
1547 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
1548 REG_NODE_NUM(last), REG_NODE_NUM(tail),
1552 /* Find the node we are going to overwrite */
1553 if ( first == startbranch && OP( last ) != BRANCH ) {
1554 /* whole branch chain */
1557 /* branch sub-chain */
1558 convert = NEXTOPER( first );
1561 /* -- First loop and Setup --
1563 We first traverse the branches and scan each word to determine if it
1564 contains widechars, and how many unique chars there are, this is
1565 important as we have to build a table with at least as many columns as we
1568 We use an array of integers to represent the character codes 0..255
1569 (trie->charmap) and we use a an HV* to store Unicode characters. We use the
1570 native representation of the character value as the key and IV's for the
1573 *TODO* If we keep track of how many times each character is used we can
1574 remap the columns so that the table compression later on is more
1575 efficient in terms of memory by ensuring the most common value is in the
1576 middle and the least common are on the outside. IMO this would be better
1577 than a most to least common mapping as theres a decent chance the most
1578 common letter will share a node with the least common, meaning the node
1579 will not be compressible. With a middle is most common approach the worst
1580 case is when we have the least common nodes twice.
1584 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1585 regnode * const noper = NEXTOPER( cur );
1586 const U8 *uc = (U8*)STRING( noper );
1587 const U8 * const e = uc + STR_LEN( noper );
1589 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1590 const U8 *scan = (U8*)NULL;
1591 U32 wordlen = 0; /* required init */
1593 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/
1595 if (OP(noper) == NOTHING) {
1599 if ( set_bit ) /* bitmap only alloced when !(UTF&&Folding) */
1600 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
1601 regardless of encoding */
1603 for ( ; uc < e ; uc += len ) {
1604 TRIE_CHARCOUNT(trie)++;
1608 if ( !trie->charmap[ uvc ] ) {
1609 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
1611 trie->charmap[ folder[ uvc ] ] = trie->charmap[ uvc ];
1615 /* store the codepoint in the bitmap, and its folded
1617 TRIE_BITMAP_SET(trie,uvc);
1619 /* store the folded codepoint */
1620 if ( folder ) TRIE_BITMAP_SET(trie,folder[ uvc ]);
1623 /* store first byte of utf8 representation of
1624 variant codepoints */
1625 if (! UNI_IS_INVARIANT(uvc)) {
1626 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
1629 set_bit = 0; /* We've done our bit :-) */
1634 widecharmap = newHV();
1636 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
1639 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
1641 if ( !SvTRUE( *svpp ) ) {
1642 sv_setiv( *svpp, ++trie->uniquecharcount );
1647 if( cur == first ) {
1650 } else if (chars < trie->minlen) {
1652 } else if (chars > trie->maxlen) {
1656 } /* end first pass */
1657 DEBUG_TRIE_COMPILE_r(
1658 PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
1659 (int)depth * 2 + 2,"",
1660 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
1661 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
1662 (int)trie->minlen, (int)trie->maxlen )
1666 We now know what we are dealing with in terms of unique chars and
1667 string sizes so we can calculate how much memory a naive
1668 representation using a flat table will take. If it's over a reasonable
1669 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
1670 conservative but potentially much slower representation using an array
1673 At the end we convert both representations into the same compressed
1674 form that will be used in regexec.c for matching with. The latter
1675 is a form that cannot be used to construct with but has memory
1676 properties similar to the list form and access properties similar
1677 to the table form making it both suitable for fast searches and
1678 small enough that its feasable to store for the duration of a program.
1680 See the comment in the code where the compressed table is produced
1681 inplace from the flat tabe representation for an explanation of how
1682 the compression works.
1687 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
1690 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
1692 Second Pass -- Array Of Lists Representation
1694 Each state will be represented by a list of charid:state records
1695 (reg_trie_trans_le) the first such element holds the CUR and LEN
1696 points of the allocated array. (See defines above).
1698 We build the initial structure using the lists, and then convert
1699 it into the compressed table form which allows faster lookups
1700 (but cant be modified once converted).
1703 STRLEN transcount = 1;
1705 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1706 "%*sCompiling trie using list compiler\n",
1707 (int)depth * 2 + 2, ""));
1709 trie->states = (reg_trie_state *)
1710 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1711 sizeof(reg_trie_state) );
1715 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1717 regnode * const noper = NEXTOPER( cur );
1718 U8 *uc = (U8*)STRING( noper );
1719 const U8 * const e = uc + STR_LEN( noper );
1720 U32 state = 1; /* required init */
1721 U16 charid = 0; /* sanity init */
1722 U8 *scan = (U8*)NULL; /* sanity init */
1723 STRLEN foldlen = 0; /* required init */
1724 U32 wordlen = 0; /* required init */
1725 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1727 if (OP(noper) != NOTHING) {
1728 for ( ; uc < e ; uc += len ) {
1733 charid = trie->charmap[ uvc ];
1735 SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1739 charid=(U16)SvIV( *svpp );
1742 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1749 if ( !trie->states[ state ].trans.list ) {
1750 TRIE_LIST_NEW( state );
1752 for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
1753 if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
1754 newstate = TRIE_LIST_ITEM( state, check ).newstate;
1759 newstate = next_alloc++;
1760 prev_states[newstate] = state;
1761 TRIE_LIST_PUSH( state, charid, newstate );
1766 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1770 TRIE_HANDLE_WORD(state);
1772 } /* end second pass */
1774 /* next alloc is the NEXT state to be allocated */
1775 trie->statecount = next_alloc;
1776 trie->states = (reg_trie_state *)
1777 PerlMemShared_realloc( trie->states,
1779 * sizeof(reg_trie_state) );
1781 /* and now dump it out before we compress it */
1782 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
1783 revcharmap, next_alloc,
1787 trie->trans = (reg_trie_trans *)
1788 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
1795 for( state=1 ; state < next_alloc ; state ++ ) {
1799 DEBUG_TRIE_COMPILE_MORE_r(
1800 PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
1804 if (trie->states[state].trans.list) {
1805 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
1809 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1810 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
1811 if ( forid < minid ) {
1813 } else if ( forid > maxid ) {
1817 if ( transcount < tp + maxid - minid + 1) {
1819 trie->trans = (reg_trie_trans *)
1820 PerlMemShared_realloc( trie->trans,
1822 * sizeof(reg_trie_trans) );
1823 Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
1825 base = trie->uniquecharcount + tp - minid;
1826 if ( maxid == minid ) {
1828 for ( ; zp < tp ; zp++ ) {
1829 if ( ! trie->trans[ zp ].next ) {
1830 base = trie->uniquecharcount + zp - minid;
1831 trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1832 trie->trans[ zp ].check = state;
1838 trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1839 trie->trans[ tp ].check = state;
1844 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1845 const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
1846 trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
1847 trie->trans[ tid ].check = state;
1849 tp += ( maxid - minid + 1 );
1851 Safefree(trie->states[ state ].trans.list);
1854 DEBUG_TRIE_COMPILE_MORE_r(
1855 PerlIO_printf( Perl_debug_log, " base: %d\n",base);
1858 trie->states[ state ].trans.base=base;
1860 trie->lasttrans = tp + 1;
1864 Second Pass -- Flat Table Representation.
1866 we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
1867 We know that we will need Charcount+1 trans at most to store the data
1868 (one row per char at worst case) So we preallocate both structures
1869 assuming worst case.
1871 We then construct the trie using only the .next slots of the entry
1874 We use the .check field of the first entry of the node temporarily to
1875 make compression both faster and easier by keeping track of how many non
1876 zero fields are in the node.
1878 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
1881 There are two terms at use here: state as a TRIE_NODEIDX() which is a
1882 number representing the first entry of the node, and state as a
1883 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
1884 TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
1885 are 2 entrys per node. eg:
1893 The table is internally in the right hand, idx form. However as we also
1894 have to deal with the states array which is indexed by nodenum we have to
1895 use TRIE_NODENUM() to convert.
1898 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1899 "%*sCompiling trie using table compiler\n",
1900 (int)depth * 2 + 2, ""));
1902 trie->trans = (reg_trie_trans *)
1903 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
1904 * trie->uniquecharcount + 1,
1905 sizeof(reg_trie_trans) );
1906 trie->states = (reg_trie_state *)
1907 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1908 sizeof(reg_trie_state) );
1909 next_alloc = trie->uniquecharcount + 1;
1912 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1914 regnode * const noper = NEXTOPER( cur );
1915 const U8 *uc = (U8*)STRING( noper );
1916 const U8 * const e = uc + STR_LEN( noper );
1918 U32 state = 1; /* required init */
1920 U16 charid = 0; /* sanity init */
1921 U32 accept_state = 0; /* sanity init */
1922 U8 *scan = (U8*)NULL; /* sanity init */
1924 STRLEN foldlen = 0; /* required init */
1925 U32 wordlen = 0; /* required init */
1926 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1928 if ( OP(noper) != NOTHING ) {
1929 for ( ; uc < e ; uc += len ) {
1934 charid = trie->charmap[ uvc ];
1936 SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1937 charid = svpp ? (U16)SvIV(*svpp) : 0;
1941 if ( !trie->trans[ state + charid ].next ) {
1942 trie->trans[ state + charid ].next = next_alloc;
1943 trie->trans[ state ].check++;
1944 prev_states[TRIE_NODENUM(next_alloc)]
1945 = TRIE_NODENUM(state);
1946 next_alloc += trie->uniquecharcount;
1948 state = trie->trans[ state + charid ].next;
1950 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1952 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1955 accept_state = TRIE_NODENUM( state );
1956 TRIE_HANDLE_WORD(accept_state);
1958 } /* end second pass */
1960 /* and now dump it out before we compress it */
1961 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
1963 next_alloc, depth+1));
1967 * Inplace compress the table.*
1969 For sparse data sets the table constructed by the trie algorithm will
1970 be mostly 0/FAIL transitions or to put it another way mostly empty.
1971 (Note that leaf nodes will not contain any transitions.)
1973 This algorithm compresses the tables by eliminating most such
1974 transitions, at the cost of a modest bit of extra work during lookup:
1976 - Each states[] entry contains a .base field which indicates the
1977 index in the state[] array wheres its transition data is stored.
1979 - If .base is 0 there are no valid transitions from that node.
1981 - If .base is nonzero then charid is added to it to find an entry in
1984 -If trans[states[state].base+charid].check!=state then the
1985 transition is taken to be a 0/Fail transition. Thus if there are fail
1986 transitions at the front of the node then the .base offset will point
1987 somewhere inside the previous nodes data (or maybe even into a node
1988 even earlier), but the .check field determines if the transition is
1992 The following process inplace converts the table to the compressed
1993 table: We first do not compress the root node 1,and mark all its
1994 .check pointers as 1 and set its .base pointer as 1 as well. This
1995 allows us to do a DFA construction from the compressed table later,
1996 and ensures that any .base pointers we calculate later are greater
1999 - We set 'pos' to indicate the first entry of the second node.
2001 - We then iterate over the columns of the node, finding the first and
2002 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
2003 and set the .check pointers accordingly, and advance pos
2004 appropriately and repreat for the next node. Note that when we copy
2005 the next pointers we have to convert them from the original
2006 NODEIDX form to NODENUM form as the former is not valid post
2009 - If a node has no transitions used we mark its base as 0 and do not
2010 advance the pos pointer.
2012 - If a node only has one transition we use a second pointer into the
2013 structure to fill in allocated fail transitions from other states.
2014 This pointer is independent of the main pointer and scans forward
2015 looking for null transitions that are allocated to a state. When it
2016 finds one it writes the single transition into the "hole". If the
2017 pointer doesnt find one the single transition is appended as normal.
2019 - Once compressed we can Renew/realloc the structures to release the
2022 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
2023 specifically Fig 3.47 and the associated pseudocode.
2027 const U32 laststate = TRIE_NODENUM( next_alloc );
2030 trie->statecount = laststate;
2032 for ( state = 1 ; state < laststate ; state++ ) {
2034 const U32 stateidx = TRIE_NODEIDX( state );
2035 const U32 o_used = trie->trans[ stateidx ].check;
2036 U32 used = trie->trans[ stateidx ].check;
2037 trie->trans[ stateidx ].check = 0;
2039 for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
2040 if ( flag || trie->trans[ stateidx + charid ].next ) {
2041 if ( trie->trans[ stateidx + charid ].next ) {
2043 for ( ; zp < pos ; zp++ ) {
2044 if ( ! trie->trans[ zp ].next ) {
2048 trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
2049 trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2050 trie->trans[ zp ].check = state;
2051 if ( ++zp > pos ) pos = zp;
2058 trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
2060 trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2061 trie->trans[ pos ].check = state;
2066 trie->lasttrans = pos + 1;
2067 trie->states = (reg_trie_state *)
2068 PerlMemShared_realloc( trie->states, laststate
2069 * sizeof(reg_trie_state) );
2070 DEBUG_TRIE_COMPILE_MORE_r(
2071 PerlIO_printf( Perl_debug_log,
2072 "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
2073 (int)depth * 2 + 2,"",
2074 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
2077 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
2080 } /* end table compress */
2082 DEBUG_TRIE_COMPILE_MORE_r(
2083 PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
2084 (int)depth * 2 + 2, "",
2085 (UV)trie->statecount,
2086 (UV)trie->lasttrans)
2088 /* resize the trans array to remove unused space */
2089 trie->trans = (reg_trie_trans *)
2090 PerlMemShared_realloc( trie->trans, trie->lasttrans
2091 * sizeof(reg_trie_trans) );
2093 { /* Modify the program and insert the new TRIE node */
2094 U8 nodetype =(U8)(flags & 0xFF);
2098 regnode *optimize = NULL;
2099 #ifdef RE_TRACK_PATTERN_OFFSETS
2102 U32 mjd_nodelen = 0;
2103 #endif /* RE_TRACK_PATTERN_OFFSETS */
2104 #endif /* DEBUGGING */
2106 This means we convert either the first branch or the first Exact,
2107 depending on whether the thing following (in 'last') is a branch
2108 or not and whther first is the startbranch (ie is it a sub part of
2109 the alternation or is it the whole thing.)
2110 Assuming its a sub part we convert the EXACT otherwise we convert
2111 the whole branch sequence, including the first.
2113 /* Find the node we are going to overwrite */
2114 if ( first != startbranch || OP( last ) == BRANCH ) {
2115 /* branch sub-chain */
2116 NEXT_OFF( first ) = (U16)(last - first);
2117 #ifdef RE_TRACK_PATTERN_OFFSETS
2119 mjd_offset= Node_Offset((convert));
2120 mjd_nodelen= Node_Length((convert));
2123 /* whole branch chain */
2125 #ifdef RE_TRACK_PATTERN_OFFSETS
2128 const regnode *nop = NEXTOPER( convert );
2129 mjd_offset= Node_Offset((nop));
2130 mjd_nodelen= Node_Length((nop));
2134 PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
2135 (int)depth * 2 + 2, "",
2136 (UV)mjd_offset, (UV)mjd_nodelen)
2139 /* But first we check to see if there is a common prefix we can
2140 split out as an EXACT and put in front of the TRIE node. */
2141 trie->startstate= 1;
2142 if ( trie->bitmap && !widecharmap && !trie->jump ) {
2144 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
2148 const U32 base = trie->states[ state ].trans.base;
2150 if ( trie->states[state].wordnum )
2153 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2154 if ( ( base + ofs >= trie->uniquecharcount ) &&
2155 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
2156 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
2158 if ( ++count > 1 ) {
2159 SV **tmp = av_fetch( revcharmap, ofs, 0);
2160 const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
2161 if ( state == 1 ) break;
2163 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
2165 PerlIO_printf(Perl_debug_log,
2166 "%*sNew Start State=%"UVuf" Class: [",
2167 (int)depth * 2 + 2, "",
2170 SV ** const tmp = av_fetch( revcharmap, idx, 0);
2171 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
2173 TRIE_BITMAP_SET(trie,*ch);
2175 TRIE_BITMAP_SET(trie, folder[ *ch ]);
2177 PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
2181 TRIE_BITMAP_SET(trie,*ch);
2183 TRIE_BITMAP_SET(trie,folder[ *ch ]);
2184 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
2190 SV **tmp = av_fetch( revcharmap, idx, 0);
2192 char *ch = SvPV( *tmp, len );
2194 SV *sv=sv_newmortal();
2195 PerlIO_printf( Perl_debug_log,
2196 "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
2197 (int)depth * 2 + 2, "",
2199 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
2200 PL_colors[0], PL_colors[1],
2201 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2202 PERL_PV_ESCAPE_FIRSTCHAR
2207 OP( convert ) = nodetype;
2208 str=STRING(convert);
2211 STR_LEN(convert) += len;
2217 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
2222 trie->prefixlen = (state-1);
2224 regnode *n = convert+NODE_SZ_STR(convert);
2225 NEXT_OFF(convert) = NODE_SZ_STR(convert);
2226 trie->startstate = state;
2227 trie->minlen -= (state - 1);
2228 trie->maxlen -= (state - 1);
2230 /* At least the UNICOS C compiler choked on this
2231 * being argument to DEBUG_r(), so let's just have
2234 #ifdef PERL_EXT_RE_BUILD
2240 regnode *fix = convert;
2241 U32 word = trie->wordcount;
2243 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
2244 while( ++fix < n ) {
2245 Set_Node_Offset_Length(fix, 0, 0);
2248 SV ** const tmp = av_fetch( trie_words, word, 0 );
2250 if ( STR_LEN(convert) <= SvCUR(*tmp) )
2251 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
2253 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
2261 NEXT_OFF(convert) = (U16)(tail - convert);
2262 DEBUG_r(optimize= n);
2268 if ( trie->maxlen ) {
2269 NEXT_OFF( convert ) = (U16)(tail - convert);
2270 ARG_SET( convert, data_slot );
2271 /* Store the offset to the first unabsorbed branch in
2272 jump[0], which is otherwise unused by the jump logic.
2273 We use this when dumping a trie and during optimisation. */
2275 trie->jump[0] = (U16)(nextbranch - convert);
2277 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
2278 * and there is a bitmap
2279 * and the first "jump target" node we found leaves enough room
2280 * then convert the TRIE node into a TRIEC node, with the bitmap
2281 * embedded inline in the opcode - this is hypothetically faster.
2283 if ( !trie->states[trie->startstate].wordnum
2285 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
2287 OP( convert ) = TRIEC;
2288 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
2289 PerlMemShared_free(trie->bitmap);
2292 OP( convert ) = TRIE;
2294 /* store the type in the flags */
2295 convert->flags = nodetype;
2299 + regarglen[ OP( convert ) ];
2301 /* XXX We really should free up the resource in trie now,
2302 as we won't use them - (which resources?) dmq */
2304 /* needed for dumping*/
2305 DEBUG_r(if (optimize) {
2306 regnode *opt = convert;
2308 while ( ++opt < optimize) {
2309 Set_Node_Offset_Length(opt,0,0);
2312 Try to clean up some of the debris left after the
2315 while( optimize < jumper ) {
2316 mjd_nodelen += Node_Length((optimize));
2317 OP( optimize ) = OPTIMIZED;
2318 Set_Node_Offset_Length(optimize,0,0);
2321 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
2323 } /* end node insert */
2324 REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, convert);
2326 /* Finish populating the prev field of the wordinfo array. Walk back
2327 * from each accept state until we find another accept state, and if
2328 * so, point the first word's .prev field at the second word. If the
2329 * second already has a .prev field set, stop now. This will be the
2330 * case either if we've already processed that word's accept state,
2331 * or that state had multiple words, and the overspill words were
2332 * already linked up earlier.
2339 for (word=1; word <= trie->wordcount; word++) {
2341 if (trie->wordinfo[word].prev)
2343 state = trie->wordinfo[word].accept;
2345 state = prev_states[state];
2348 prev = trie->states[state].wordnum;
2352 trie->wordinfo[word].prev = prev;
2354 Safefree(prev_states);
2358 /* and now dump out the compressed format */
2359 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
2361 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
2363 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
2364 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
2366 SvREFCNT_dec(revcharmap);
2370 : trie->startstate>1
2376 S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
2378 /* The Trie is constructed and compressed now so we can build a fail array if it's needed
2380 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
2381 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
2384 We find the fail state for each state in the trie, this state is the longest proper
2385 suffix of the current state's 'word' that is also a proper prefix of another word in our
2386 trie. State 1 represents the word '' and is thus the default fail state. This allows
2387 the DFA not to have to restart after its tried and failed a word at a given point, it
2388 simply continues as though it had been matching the other word in the first place.
2390 'abcdgu'=~/abcdefg|cdgu/
2391 When we get to 'd' we are still matching the first word, we would encounter 'g' which would
2392 fail, which would bring us to the state representing 'd' in the second word where we would
2393 try 'g' and succeed, proceeding to match 'cdgu'.
2395 /* add a fail transition */
2396 const U32 trie_offset = ARG(source);
2397 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
2399 const U32 ucharcount = trie->uniquecharcount;
2400 const U32 numstates = trie->statecount;
2401 const U32 ubound = trie->lasttrans + ucharcount;
2405 U32 base = trie->states[ 1 ].trans.base;
2408 const U32 data_slot = add_data( pRExC_state, 1, "T" );
2409 GET_RE_DEBUG_FLAGS_DECL;
2411 PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE;
2413 PERL_UNUSED_ARG(depth);
2417 ARG_SET( stclass, data_slot );
2418 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
2419 RExC_rxi->data->data[ data_slot ] = (void*)aho;
2420 aho->trie=trie_offset;
2421 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
2422 Copy( trie->states, aho->states, numstates, reg_trie_state );
2423 Newxz( q, numstates, U32);
2424 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
2427 /* initialize fail[0..1] to be 1 so that we always have
2428 a valid final fail state */
2429 fail[ 0 ] = fail[ 1 ] = 1;
2431 for ( charid = 0; charid < ucharcount ; charid++ ) {
2432 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
2434 q[ q_write ] = newstate;
2435 /* set to point at the root */
2436 fail[ q[ q_write++ ] ]=1;
2439 while ( q_read < q_write) {
2440 const U32 cur = q[ q_read++ % numstates ];
2441 base = trie->states[ cur ].trans.base;
2443 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
2444 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
2446 U32 fail_state = cur;
2449 fail_state = fail[ fail_state ];
2450 fail_base = aho->states[ fail_state ].trans.base;
2451 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
2453 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
2454 fail[ ch_state ] = fail_state;
2455 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
2457 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
2459 q[ q_write++ % numstates] = ch_state;
2463 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
2464 when we fail in state 1, this allows us to use the
2465 charclass scan to find a valid start char. This is based on the principle
2466 that theres a good chance the string being searched contains lots of stuff
2467 that cant be a start char.
2469 fail[ 0 ] = fail[ 1 ] = 0;
2470 DEBUG_TRIE_COMPILE_r({
2471 PerlIO_printf(Perl_debug_log,
2472 "%*sStclass Failtable (%"UVuf" states): 0",
2473 (int)(depth * 2), "", (UV)numstates
2475 for( q_read=1; q_read<numstates; q_read++ ) {
2476 PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
2478 PerlIO_printf(Perl_debug_log, "\n");
2481 /*RExC_seen |= REG_SEEN_TRIEDFA;*/
2486 * There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
2487 * These need to be revisited when a newer toolchain becomes available.
2489 #if defined(__sparc64__) && defined(__GNUC__)
2490 # if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
2491 # undef SPARC64_GCC_WORKAROUND
2492 # define SPARC64_GCC_WORKAROUND 1
2496 #define DEBUG_PEEP(str,scan,depth) \
2497 DEBUG_OPTIMISE_r({if (scan){ \
2498 SV * const mysv=sv_newmortal(); \
2499 regnode *Next = regnext(scan); \
2500 regprop(RExC_rx, mysv, scan); \
2501 PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
2502 (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
2503 Next ? (REG_NODE_NUM(Next)) : 0 ); \
2510 #define JOIN_EXACT(scan,min,flags) \
2511 if (PL_regkind[OP(scan)] == EXACT) \
2512 join_exact(pRExC_state,(scan),(min),(flags),NULL,depth+1)
2515 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, I32 *min, U32 flags,regnode *val, U32 depth) {
2516 /* Merge several consecutive EXACTish nodes into one. */
2517 regnode *n = regnext(scan);
2519 regnode *next = scan + NODE_SZ_STR(scan);
2523 regnode *stop = scan;
2524 GET_RE_DEBUG_FLAGS_DECL;
2526 PERL_UNUSED_ARG(depth);
2529 PERL_ARGS_ASSERT_JOIN_EXACT;
2530 #ifndef EXPERIMENTAL_INPLACESCAN
2531 PERL_UNUSED_ARG(flags);
2532 PERL_UNUSED_ARG(val);
2534 DEBUG_PEEP("join",scan,depth);
2536 /* Skip NOTHING, merge EXACT*. */
2538 ( PL_regkind[OP(n)] == NOTHING ||
2539 (stringok && (OP(n) == OP(scan))))
2541 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX) {
2543 if (OP(n) == TAIL || n > next)
2545 if (PL_regkind[OP(n)] == NOTHING) {
2546 DEBUG_PEEP("skip:",n,depth);
2547 NEXT_OFF(scan) += NEXT_OFF(n);
2548 next = n + NODE_STEP_REGNODE;
2555 else if (stringok) {
2556 const unsigned int oldl = STR_LEN(scan);
2557 regnode * const nnext = regnext(n);
2559 DEBUG_PEEP("merg",n,depth);
2562 if (oldl + STR_LEN(n) > U8_MAX)
2564 NEXT_OFF(scan) += NEXT_OFF(n);
2565 STR_LEN(scan) += STR_LEN(n);
2566 next = n + NODE_SZ_STR(n);
2567 /* Now we can overwrite *n : */
2568 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
2576 #ifdef EXPERIMENTAL_INPLACESCAN
2577 if (flags && !NEXT_OFF(n)) {
2578 DEBUG_PEEP("atch", val, depth);
2579 if (reg_off_by_arg[OP(n)]) {
2580 ARG_SET(n, val - n);
2583 NEXT_OFF(n) = val - n;
2589 #define GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS 0x0390
2590 #define IOTA_D_T GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS
2591 #define GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS 0x03B0
2592 #define UPSILON_D_T GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS
2595 && ( OP(scan) == EXACTF || OP(scan) == EXACTFU || OP(scan) == EXACTFA)
2596 && ( STR_LEN(scan) >= 6 ) )
2599 Two problematic code points in Unicode casefolding of EXACT nodes:
2601 U+0390 - GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
2602 U+03B0 - GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
2608 U+03B9 U+0308 U+0301 0xCE 0xB9 0xCC 0x88 0xCC 0x81
2609 U+03C5 U+0308 U+0301 0xCF 0x85 0xCC 0x88 0xCC 0x81
2611 This means that in case-insensitive matching (or "loose matching",
2612 as Unicode calls it), an EXACTF of length six (the UTF-8 encoded byte
2613 length of the above casefolded versions) can match a target string
2614 of length two (the byte length of UTF-8 encoded U+0390 or U+03B0).
2615 This would rather mess up the minimum length computation.
2617 What we'll do is to look for the tail four bytes, and then peek
2618 at the preceding two bytes to see whether we need to decrease
2619 the minimum length by four (six minus two).
2621 Thanks to the design of UTF-8, there cannot be false matches:
2622 A sequence of valid UTF-8 bytes cannot be a subsequence of
2623 another valid sequence of UTF-8 bytes.
2626 char * const s0 = STRING(scan), *s, *t;
2627 char * const s1 = s0 + STR_LEN(scan) - 1;
2628 char * const s2 = s1 - 4;
2629 #ifdef EBCDIC /* RD tunifold greek 0390 and 03B0 */
2630 const char t0[] = "\xaf\x49\xaf\x42";
2632 const char t0[] = "\xcc\x88\xcc\x81";
2634 const char * const t1 = t0 + 3;
2637 s < s2 && (t = ninstr(s, s1, t0, t1));
2640 if (((U8)t[-1] == 0x68 && (U8)t[-2] == 0xB4) ||
2641 ((U8)t[-1] == 0x46 && (U8)t[-2] == 0xB5))
2643 if (((U8)t[-1] == 0xB9 && (U8)t[-2] == 0xCE) ||
2644 ((U8)t[-1] == 0x85 && (U8)t[-2] == 0xCF))
2652 n = scan + NODE_SZ_STR(scan);
2654 if (PL_regkind[OP(n)] != NOTHING || OP(n) == NOTHING) {
2661 DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
2665 /* REx optimizer. Converts nodes into quicker variants "in place".
2666 Finds fixed substrings. */
2668 /* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
2669 to the position after last scanned or to NULL. */
2671 #define INIT_AND_WITHP \
2672 assert(!and_withp); \
2673 Newx(and_withp,1,struct regnode_charclass_class); \
2674 SAVEFREEPV(and_withp)
2676 /* this is a chain of data about sub patterns we are processing that
2677 need to be handled separately/specially in study_chunk. Its so
2678 we can simulate recursion without losing state. */
2680 typedef struct scan_frame {
2681 regnode *last; /* last node to process in this frame */
2682 regnode *next; /* next node to process when last is reached */
2683 struct scan_frame *prev; /*previous frame*/
2684 I32 stop; /* what stopparen do we use */
2688 #define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf)
2690 #define CASE_SYNST_FNC(nAmE) \
2692 if (flags & SCF_DO_STCLASS_AND) { \
2693 for (value = 0; value < 256; value++) \
2694 if (!is_ ## nAmE ## _cp(value)) \
2695 ANYOF_BITMAP_CLEAR(data->start_class, value); \
2698 for (value = 0; value < 256; value++) \
2699 if (is_ ## nAmE ## _cp(value)) \
2700 ANYOF_BITMAP_SET(data->start_class, value); \
2704 if (flags & SCF_DO_STCLASS_AND) { \
2705 for (value = 0; value < 256; value++) \
2706 if (is_ ## nAmE ## _cp(value)) \
2707 ANYOF_BITMAP_CLEAR(data->start_class, value); \
2710 for (value = 0; value < 256; value++) \
2711 if (!is_ ## nAmE ## _cp(value)) \
2712 ANYOF_BITMAP_SET(data->start_class, value); \
2719 S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
2720 I32 *minlenp, I32 *deltap,
2725 struct regnode_charclass_class *and_withp,
2726 U32 flags, U32 depth)
2727 /* scanp: Start here (read-write). */
2728 /* deltap: Write maxlen-minlen here. */
2729 /* last: Stop before this one. */
2730 /* data: string data about the pattern */
2731 /* stopparen: treat close N as END */
2732 /* recursed: which subroutines have we recursed into */
2733 /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
2736 I32 min = 0, pars = 0, code;
2737 regnode *scan = *scanp, *next;
2739 int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
2740 int is_inf_internal = 0; /* The studied chunk is infinite */
2741 I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
2742 scan_data_t data_fake;
2743 SV *re_trie_maxbuff = NULL;
2744 regnode *first_non_open = scan;
2745 I32 stopmin = I32_MAX;
2746 scan_frame *frame = NULL;
2747 GET_RE_DEBUG_FLAGS_DECL;
2749 PERL_ARGS_ASSERT_STUDY_CHUNK;
2752 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
2756 while (first_non_open && OP(first_non_open) == OPEN)
2757 first_non_open=regnext(first_non_open);
2762 while ( scan && OP(scan) != END && scan < last ){
2763 /* Peephole optimizer: */
2764 DEBUG_STUDYDATA("Peep:", data,depth);
2765 DEBUG_PEEP("Peep",scan,depth);
2766 JOIN_EXACT(scan,&min,0);
2768 /* Follow the next-chain of the current node and optimize
2769 away all the NOTHINGs from it. */
2770 if (OP(scan) != CURLYX) {
2771 const int max = (reg_off_by_arg[OP(scan)]
2773 /* I32 may be smaller than U16 on CRAYs! */
2774 : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
2775 int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
2779 /* Skip NOTHING and LONGJMP. */
2780 while ((n = regnext(n))
2781 && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
2782 || ((OP(n) == LONGJMP) && (noff = ARG(n))))
2783 && off + noff < max)
2785 if (reg_off_by_arg[OP(scan)])
2788 NEXT_OFF(scan) = off;
2793 /* The principal pseudo-switch. Cannot be a switch, since we
2794 look into several different things. */
2795 if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
2796 || OP(scan) == IFTHEN) {
2797 next = regnext(scan);
2799 /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
2801 if (OP(next) == code || code == IFTHEN) {
2802 /* NOTE - There is similar code to this block below for handling
2803 TRIE nodes on a re-study. If you change stuff here check there
2805 I32 max1 = 0, min1 = I32_MAX, num = 0;
2806 struct regnode_charclass_class accum;
2807 regnode * const startbranch=scan;
2809 if (flags & SCF_DO_SUBSTR)
2810 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
2811 if (flags & SCF_DO_STCLASS)
2812 cl_init_zero(pRExC_state, &accum);
2814 while (OP(scan) == code) {
2815 I32 deltanext, minnext, f = 0, fake;
2816 struct regnode_charclass_class this_class;
2819 data_fake.flags = 0;
2821 data_fake.whilem_c = data->whilem_c;
2822 data_fake.last_closep = data->last_closep;
2825 data_fake.last_closep = &fake;
2827 data_fake.pos_delta = delta;
2828 next = regnext(scan);
2829 scan = NEXTOPER(scan);
2831 scan = NEXTOPER(scan);
2832 if (flags & SCF_DO_STCLASS) {
2833 cl_init(pRExC_state, &this_class);
2834 data_fake.start_class = &this_class;
2835 f = SCF_DO_STCLASS_AND;
2837 if (flags & SCF_WHILEM_VISITED_POS)
2838 f |= SCF_WHILEM_VISITED_POS;
2840 /* we suppose the run is continuous, last=next...*/
2841 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
2843 stopparen, recursed, NULL, f,depth+1);
2846 if (max1 < minnext + deltanext)
2847 max1 = minnext + deltanext;
2848 if (deltanext == I32_MAX)
2849 is_inf = is_inf_internal = 1;
2851 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
2853 if (data_fake.flags & SCF_SEEN_ACCEPT) {
2854 if ( stopmin > minnext)
2855 stopmin = min + min1;
2856 flags &= ~SCF_DO_SUBSTR;
2858 data->flags |= SCF_SEEN_ACCEPT;
2861 if (data_fake.flags & SF_HAS_EVAL)
2862 data->flags |= SF_HAS_EVAL;
2863 data->whilem_c = data_fake.whilem_c;
2865 if (flags & SCF_DO_STCLASS)
2866 cl_or(pRExC_state, &accum, &this_class);
2868 if (code == IFTHEN && num < 2) /* Empty ELSE branch */
2870 if (flags & SCF_DO_SUBSTR) {
2871 data->pos_min += min1;
2872 data->pos_delta += max1 - min1;
2873 if (max1 != min1 || is_inf)
2874 data->longest = &(data->longest_float);
2877 delta += max1 - min1;
2878 if (flags & SCF_DO_STCLASS_OR) {
2879 cl_or(pRExC_state, data->start_class, &accum);
2881 cl_and(data->start_class, and_withp);
2882 flags &= ~SCF_DO_STCLASS;
2885 else if (flags & SCF_DO_STCLASS_AND) {
2887 cl_and(data->start_class, &accum);
2888 flags &= ~SCF_DO_STCLASS;
2891 /* Switch to OR mode: cache the old value of
2892 * data->start_class */
2894 StructCopy(data->start_class, and_withp,
2895 struct regnode_charclass_class);
2896 flags &= ~SCF_DO_STCLASS_AND;
2897 StructCopy(&accum, data->start_class,
2898 struct regnode_charclass_class);
2899 flags |= SCF_DO_STCLASS_OR;
2900 data->start_class->flags |= ANYOF_EOS;
2904 if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
2907 Assuming this was/is a branch we are dealing with: 'scan' now
2908 points at the item that follows the branch sequence, whatever
2909 it is. We now start at the beginning of the sequence and look
2916 which would be constructed from a pattern like /A|LIST|OF|WORDS/
2918 If we can find such a subsequence we need to turn the first
2919 element into a trie and then add the subsequent branch exact
2920 strings to the trie.
2924 1. patterns where the whole set of branches can be converted.
2926 2. patterns where only a subset can be converted.
2928 In case 1 we can replace the whole set with a single regop
2929 for the trie. In case 2 we need to keep the start and end
2932 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
2933 becomes BRANCH TRIE; BRANCH X;
2935 There is an additional case, that being where there is a
2936 common prefix, which gets split out into an EXACT like node
2937 preceding the TRIE node.
2939 If x(1..n)==tail then we can do a simple trie, if not we make
2940 a "jump" trie, such that when we match the appropriate word
2941 we "jump" to the appropriate tail node. Essentially we turn
2942 a nested if into a case structure of sorts.
2947 if (!re_trie_maxbuff) {
2948 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
2949 if (!SvIOK(re_trie_maxbuff))
2950 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2952 if ( SvIV(re_trie_maxbuff)>=0 ) {
2954 regnode *first = (regnode *)NULL;
2955 regnode *last = (regnode *)NULL;
2956 regnode *tail = scan;
2961 SV * const mysv = sv_newmortal(); /* for dumping */
2963 /* var tail is used because there may be a TAIL
2964 regop in the way. Ie, the exacts will point to the
2965 thing following the TAIL, but the last branch will
2966 point at the TAIL. So we advance tail. If we
2967 have nested (?:) we may have to move through several
2971 while ( OP( tail ) == TAIL ) {
2972 /* this is the TAIL generated by (?:) */
2973 tail = regnext( tail );
2978 regprop(RExC_rx, mysv, tail );
2979 PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
2980 (int)depth * 2 + 2, "",
2981 "Looking for TRIE'able sequences. Tail node is: ",
2982 SvPV_nolen_const( mysv )
2988 step through the branches, cur represents each
2989 branch, noper is the first thing to be matched
2990 as part of that branch and noper_next is the
2991 regnext() of that node. if noper is an EXACT
2992 and noper_next is the same as scan (our current
2993 position in the regex) then the EXACT branch is
2994 a possible optimization target. Once we have
2995 two or more consecutive such branches we can
2996 create a trie of the EXACT's contents and stich
2997 it in place. If the sequence represents all of
2998 the branches we eliminate the whole thing and
2999 replace it with a single TRIE. If it is a
3000 subsequence then we need to stitch it in. This
3001 means the first branch has to remain, and needs
3002 to be repointed at the item on the branch chain
3003 following the last branch optimized. This could
3004 be either a BRANCH, in which case the
3005 subsequence is internal, or it could be the
3006 item following the branch sequence in which
3007 case the subsequence is at the end.
3011 /* dont use tail as the end marker for this traverse */
3012 for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
3013 regnode * const noper = NEXTOPER( cur );
3014 #if defined(DEBUGGING) || defined(NOJUMPTRIE)
3015 regnode * const noper_next = regnext( noper );
3019 regprop(RExC_rx, mysv, cur);
3020 PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
3021 (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
3023 regprop(RExC_rx, mysv, noper);
3024 PerlIO_printf( Perl_debug_log, " -> %s",
3025 SvPV_nolen_const(mysv));
3028 regprop(RExC_rx, mysv, noper_next );
3029 PerlIO_printf( Perl_debug_log,"\t=> %s\t",
3030 SvPV_nolen_const(mysv));
3032 PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d)\n",
3033 REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur) );
3035 if ( (((first && optype!=NOTHING) ? OP( noper ) == optype
3036 : PL_regkind[ OP( noper ) ] == EXACT )
3037 || OP(noper) == NOTHING )
3039 && noper_next == tail
3044 if ( !first || optype == NOTHING ) {
3045 if (!first) first = cur;
3046 optype = OP( noper );
3052 Currently the trie logic handles case insensitive matching properly only
3053 when the pattern is UTF-8 and the node is EXACTFU (thus forcing unicode
3056 If/when this is fixed the following define can be swapped
3057 in below to fully enable trie logic.
3059 #define TRIE_TYPE_IS_SAFE 1
3062 #define TRIE_TYPE_IS_SAFE ((UTF && optype == EXACTFU) || optype==EXACT)
3064 if ( last && TRIE_TYPE_IS_SAFE ) {
3065 make_trie( pRExC_state,
3066 startbranch, first, cur, tail, count,
3069 if ( PL_regkind[ OP( noper ) ] == EXACT
3071 && noper_next == tail
3076 optype = OP( noper );
3086 regprop(RExC_rx, mysv, cur);
3087 PerlIO_printf( Perl_debug_log,
3088 "%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
3089 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3093 if ( last && TRIE_TYPE_IS_SAFE ) {
3094 made= make_trie( pRExC_state, startbranch, first, scan, tail, count, optype, depth+1 );
3095 #ifdef TRIE_STUDY_OPT
3096 if ( ((made == MADE_EXACT_TRIE &&
3097 startbranch == first)
3098 || ( first_non_open == first )) &&
3100 flags |= SCF_TRIE_RESTUDY;
3101 if ( startbranch == first
3104 RExC_seen &=~REG_TOP_LEVEL_BRANCHES;
3114 else if ( code == BRANCHJ ) { /* single branch is optimized. */
3115 scan = NEXTOPER(NEXTOPER(scan));
3116 } else /* single branch is optimized. */
3117 scan = NEXTOPER(scan);
3119 } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
3120 scan_frame *newframe = NULL;
3125 if (OP(scan) != SUSPEND) {
3126 /* set the pointer */
3127 if (OP(scan) == GOSUB) {
3129 RExC_recurse[ARG2L(scan)] = scan;
3130 start = RExC_open_parens[paren-1];
3131 end = RExC_close_parens[paren-1];
3134 start = RExC_rxi->program + 1;
3138 Newxz(recursed, (((RExC_npar)>>3) +1), U8);
3139 SAVEFREEPV(recursed);
3141 if (!PAREN_TEST(recursed,paren+1)) {
3142 PAREN_SET(recursed,paren+1);
3143 Newx(newframe,1,scan_frame);
3145 if (flags & SCF_DO_SUBSTR) {
3146 SCAN_COMMIT(pRExC_state,data,minlenp);
3147 data->longest = &(data->longest_float);
3149 is_inf = is_inf_internal = 1;
3150 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3151 cl_anything(pRExC_state, data->start_class);
3152 flags &= ~SCF_DO_STCLASS;
3155 Newx(newframe,1,scan_frame);
3158 end = regnext(scan);
3163 SAVEFREEPV(newframe);
3164 newframe->next = regnext(scan);
3165 newframe->last = last;
3166 newframe->stop = stopparen;
3167 newframe->prev = frame;
3177 else if (OP(scan) == EXACT) {
3178 I32 l = STR_LEN(scan);
3181 const U8 * const s = (U8*)STRING(scan);
3182 l = utf8_length(s, s + l);
3183 uc = utf8_to_uvchr(s, NULL);
3185 uc = *((U8*)STRING(scan));
3188 if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
3189 /* The code below prefers earlier match for fixed
3190 offset, later match for variable offset. */
3191 if (data->last_end == -1) { /* Update the start info. */
3192 data->last_start_min = data->pos_min;
3193 data->last_start_max = is_inf
3194 ? I32_MAX : data->pos_min + data->pos_delta;
3196 sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
3198 SvUTF8_on(data->last_found);
3200 SV * const sv = data->last_found;
3201 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3202 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3203 if (mg && mg->mg_len >= 0)
3204 mg->mg_len += utf8_length((U8*)STRING(scan),
3205 (U8*)STRING(scan)+STR_LEN(scan));
3207 data->last_end = data->pos_min + l;
3208 data->pos_min += l; /* As in the first entry. */
3209 data->flags &= ~SF_BEFORE_EOL;
3211 if (flags & SCF_DO_STCLASS_AND) {
3212 /* Check whether it is compatible with what we know already! */
3216 /* If compatible, we or it in below. It is compatible if is
3217 * in the bitmp and either 1) its bit or its fold is set, or 2)
3218 * it's for a locale. Even if there isn't unicode semantics
3219 * here, at runtime there may be because of matching against a
3220 * utf8 string, so accept a possible false positive for
3221 * latin1-range folds */
3223 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
3224 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3225 && (!(data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD)
3226 || !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3231 ANYOF_CLASS_ZERO(data->start_class);
3232 ANYOF_BITMAP_ZERO(data->start_class);
3234 ANYOF_BITMAP_SET(data->start_class, uc);
3235 else if (uc >= 0x100) {
3238 /* Some Unicode code points fold to the Latin1 range; as
3239 * XXX temporary code, instead of figuring out if this is
3240 * one, just assume it is and set all the start class bits
3241 * that could be some such above 255 code point's fold
3242 * which will generate fals positives. As the code
3243 * elsewhere that does compute the fold settles down, it
3244 * can be extracted out and re-used here */
3245 for (i = 0; i < 256; i++){
3246 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3247 ANYOF_BITMAP_SET(data->start_class, i);
3251 data->start_class->flags &= ~ANYOF_EOS;
3253 data->start_class->flags &= ~ANYOF_UNICODE_ALL;
3255 else if (flags & SCF_DO_STCLASS_OR) {
3256 /* false positive possible if the class is case-folded */
3258 ANYOF_BITMAP_SET(data->start_class, uc);
3260 data->start_class->flags |= ANYOF_UNICODE_ALL;
3261 data->start_class->flags &= ~ANYOF_EOS;
3262 cl_and(data->start_class, and_withp);
3264 flags &= ~SCF_DO_STCLASS;
3266 else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
3267 I32 l = STR_LEN(scan);
3268 UV uc = *((U8*)STRING(scan));
3270 /* Search for fixed substrings supports EXACT only. */
3271 if (flags & SCF_DO_SUBSTR) {
3273 SCAN_COMMIT(pRExC_state, data, minlenp);
3276 const U8 * const s = (U8 *)STRING(scan);
3277 l = utf8_length(s, s + l);
3278 uc = utf8_to_uvchr(s, NULL);
3281 if (flags & SCF_DO_SUBSTR)
3283 if (flags & SCF_DO_STCLASS_AND) {
3284 /* Check whether it is compatible with what we know already! */
3287 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
3288 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3289 && !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3293 ANYOF_CLASS_ZERO(data->start_class);
3294 ANYOF_BITMAP_ZERO(data->start_class);
3296 ANYOF_BITMAP_SET(data->start_class, uc);
3297 data->start_class->flags &= ~ANYOF_EOS;
3298 data->start_class->flags |= ANYOF_LOC_NONBITMAP_FOLD;
3299 if (OP(scan) == EXACTFL) {
3300 /* XXX This set is probably no longer necessary, and
3301 * probably wrong as LOCALE now is on in the initial
3303 data->start_class->flags |= ANYOF_LOCALE;
3307 /* Also set the other member of the fold pair. In case
3308 * that unicode semantics is called for at runtime, use
3309 * the full latin1 fold. (Can't do this for locale,
3310 * because not known until runtime */
3311 ANYOF_BITMAP_SET(data->start_class, PL_fold_latin1[uc]);
3314 else if (uc >= 0x100) {
3316 for (i = 0; i < 256; i++){
3317 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3318 ANYOF_BITMAP_SET(data->start_class, i);
3323 else if (flags & SCF_DO_STCLASS_OR) {
3324 if (data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD) {
3325 /* false positive possible if the class is case-folded.
3326 Assume that the locale settings are the same... */
3328 ANYOF_BITMAP_SET(data->start_class, uc);
3329 if (OP(scan) != EXACTFL) {
3331 /* And set the other member of the fold pair, but
3332 * can't do that in locale because not known until
3334 ANYOF_BITMAP_SET(data->start_class,
3335 PL_fold_latin1[uc]);
3338 data->start_class->flags &= ~ANYOF_EOS;
3340 cl_and(data->start_class, and_withp);
3342 flags &= ~SCF_DO_STCLASS;
3344 else if (REGNODE_VARIES(OP(scan))) {
3345 I32 mincount, maxcount, minnext, deltanext, fl = 0;
3346 I32 f = flags, pos_before = 0;
3347 regnode * const oscan = scan;
3348 struct regnode_charclass_class this_class;
3349 struct regnode_charclass_class *oclass = NULL;
3350 I32 next_is_eval = 0;
3352 switch (PL_regkind[OP(scan)]) {
3353 case WHILEM: /* End of (?:...)* . */
3354 scan = NEXTOPER(scan);
3357 if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
3358 next = NEXTOPER(scan);
3359 if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
3361 maxcount = REG_INFTY;
3362 next = regnext(scan);
3363 scan = NEXTOPER(scan);
3367 if (flags & SCF_DO_SUBSTR)
3372 if (flags & SCF_DO_STCLASS) {
3374 maxcount = REG_INFTY;
3375 next = regnext(scan);
3376 scan = NEXTOPER(scan);
3379 is_inf = is_inf_internal = 1;
3380 scan = regnext(scan);
3381 if (flags & SCF_DO_SUBSTR) {
3382 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */
3383 data->longest = &(data->longest_float);
3385 goto optimize_curly_tail;
3387 if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
3388 && (scan->flags == stopparen))
3393 mincount = ARG1(scan);
3394 maxcount = ARG2(scan);
3396 next = regnext(scan);
3397 if (OP(scan) == CURLYX) {
3398 I32 lp = (data ? *(data->last_closep) : 0);
3399 scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
3401 scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
3402 next_is_eval = (OP(scan) == EVAL);
3404 if (flags & SCF_DO_SUBSTR) {
3405 if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */
3406 pos_before = data->pos_min;
3410 data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
3412 data->flags |= SF_IS_INF;
3414 if (flags & SCF_DO_STCLASS) {
3415 cl_init(pRExC_state, &this_class);
3416 oclass = data->start_class;
3417 data->start_class = &this_class;
3418 f |= SCF_DO_STCLASS_AND;
3419 f &= ~SCF_DO_STCLASS_OR;
3421 /* Exclude from super-linear cache processing any {n,m}
3422 regops for which the combination of input pos and regex
3423 pos is not enough information to determine if a match
3426 For example, in the regex /foo(bar\s*){4,8}baz/ with the
3427 regex pos at the \s*, the prospects for a match depend not
3428 only on the input position but also on how many (bar\s*)
3429 repeats into the {4,8} we are. */
3430 if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
3431 f &= ~SCF_WHILEM_VISITED_POS;
3433 /* This will finish on WHILEM, setting scan, or on NULL: */
3434 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3435 last, data, stopparen, recursed, NULL,
3437 ? (f & ~SCF_DO_SUBSTR) : f),depth+1);
3439 if (flags & SCF_DO_STCLASS)
3440 data->start_class = oclass;
3441 if (mincount == 0 || minnext == 0) {
3442 if (flags & SCF_DO_STCLASS_OR) {
3443 cl_or(pRExC_state, data->start_class, &this_class);
3445 else if (flags & SCF_DO_STCLASS_AND) {
3446 /* Switch to OR mode: cache the old value of
3447 * data->start_class */
3449 StructCopy(data->start_class, and_withp,
3450 struct regnode_charclass_class);
3451 flags &= ~SCF_DO_STCLASS_AND;
3452 StructCopy(&this_class, data->start_class,
3453 struct regnode_charclass_class);
3454 flags |= SCF_DO_STCLASS_OR;
3455 data->start_class->flags |= ANYOF_EOS;
3457 } else { /* Non-zero len */
3458 if (flags & SCF_DO_STCLASS_OR) {
3459 cl_or(pRExC_state, data->start_class, &this_class);
3460 cl_and(data->start_class, and_withp);
3462 else if (flags & SCF_DO_STCLASS_AND)
3463 cl_and(data->start_class, &this_class);
3464 flags &= ~SCF_DO_STCLASS;
3466 if (!scan) /* It was not CURLYX, but CURLY. */
3468 if ( /* ? quantifier ok, except for (?{ ... }) */
3469 (next_is_eval || !(mincount == 0 && maxcount == 1))
3470 && (minnext == 0) && (deltanext == 0)
3471 && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
3472 && maxcount <= REG_INFTY/3) /* Complement check for big count */
3474 ckWARNreg(RExC_parse,
3475 "Quantifier unexpected on zero-length expression");
3478 min += minnext * mincount;
3479 is_inf_internal |= ((maxcount == REG_INFTY
3480 && (minnext + deltanext) > 0)
3481 || deltanext == I32_MAX);
3482 is_inf |= is_inf_internal;
3483 delta += (minnext + deltanext) * maxcount - minnext * mincount;
3485 /* Try powerful optimization CURLYX => CURLYN. */
3486 if ( OP(oscan) == CURLYX && data
3487 && data->flags & SF_IN_PAR
3488 && !(data->flags & SF_HAS_EVAL)
3489 && !deltanext && minnext == 1 ) {
3490 /* Try to optimize to CURLYN. */
3491 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
3492 regnode * const nxt1 = nxt;
3499 if (!REGNODE_SIMPLE(OP(nxt))
3500 && !(PL_regkind[OP(nxt)] == EXACT
3501 && STR_LEN(nxt) == 1))
3507 if (OP(nxt) != CLOSE)
3509 if (RExC_open_parens) {
3510 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3511 RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
3513 /* Now we know that nxt2 is the only contents: */
3514 oscan->flags = (U8)ARG(nxt);
3516 OP(nxt1) = NOTHING; /* was OPEN. */
3519 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3520 NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
3521 NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
3522 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3523 OP(nxt + 1) = OPTIMIZED; /* was count. */
3524 NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
3529 /* Try optimization CURLYX => CURLYM. */
3530 if ( OP(oscan) == CURLYX && data
3531 && !(data->flags & SF_HAS_PAR)
3532 && !(data->flags & SF_HAS_EVAL)
3533 && !deltanext /* atom is fixed width */
3534 && minnext != 0 /* CURLYM can't handle zero width */
3536 /* XXXX How to optimize if data == 0? */
3537 /* Optimize to a simpler form. */
3538 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
3542 while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
3543 && (OP(nxt2) != WHILEM))
3545 OP(nxt2) = SUCCEED; /* Whas WHILEM */
3546 /* Need to optimize away parenths. */
3547 if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
3548 /* Set the parenth number. */
3549 regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
3551 oscan->flags = (U8)ARG(nxt);
3552 if (RExC_open_parens) {
3553 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3554 RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
3556 OP(nxt1) = OPTIMIZED; /* was OPEN. */
3557 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3560 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3561 OP(nxt + 1) = OPTIMIZED; /* was count. */
3562 NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
3563 NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
3566 while ( nxt1 && (OP(nxt1) != WHILEM)) {
3567 regnode *nnxt = regnext(nxt1);
3569 if (reg_off_by_arg[OP(nxt1)])
3570 ARG_SET(nxt1, nxt2 - nxt1);
3571 else if (nxt2 - nxt1 < U16_MAX)
3572 NEXT_OFF(nxt1) = nxt2 - nxt1;
3574 OP(nxt) = NOTHING; /* Cannot beautify */
3579 /* Optimize again: */
3580 study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
3581 NULL, stopparen, recursed, NULL, 0,depth+1);
3586 else if ((OP(oscan) == CURLYX)
3587 && (flags & SCF_WHILEM_VISITED_POS)
3588 /* See the comment on a similar expression above.
3589 However, this time it's not a subexpression
3590 we care about, but the expression itself. */
3591 && (maxcount == REG_INFTY)
3592 && data && ++data->whilem_c < 16) {
3593 /* This stays as CURLYX, we can put the count/of pair. */
3594 /* Find WHILEM (as in regexec.c) */
3595 regnode *nxt = oscan + NEXT_OFF(oscan);
3597 if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
3599 PREVOPER(nxt)->flags = (U8)(data->whilem_c
3600 | (RExC_whilem_seen << 4)); /* On WHILEM */
3602 if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
3604 if (flags & SCF_DO_SUBSTR) {
3605 SV *last_str = NULL;
3606 int counted = mincount != 0;
3608 if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */
3609 #if defined(SPARC64_GCC_WORKAROUND)
3612 const char *s = NULL;
3615 if (pos_before >= data->last_start_min)
3618 b = data->last_start_min;
3621 s = SvPV_const(data->last_found, l);
3622 old = b - data->last_start_min;
3625 I32 b = pos_before >= data->last_start_min
3626 ? pos_before : data->last_start_min;
3628 const char * const s = SvPV_const(data->last_found, l);
3629 I32 old = b - data->last_start_min;
3633 old = utf8_hop((U8*)s, old) - (U8*)s;
3635 /* Get the added string: */
3636 last_str = newSVpvn_utf8(s + old, l, UTF);
3637 if (deltanext == 0 && pos_before == b) {
3638 /* What was added is a constant string */
3640 SvGROW(last_str, (mincount * l) + 1);
3641 repeatcpy(SvPVX(last_str) + l,
3642 SvPVX_const(last_str), l, mincount - 1);
3643 SvCUR_set(last_str, SvCUR(last_str) * mincount);
3644 /* Add additional parts. */
3645 SvCUR_set(data->last_found,
3646 SvCUR(data->last_found) - l);
3647 sv_catsv(data->last_found, last_str);
3649 SV * sv = data->last_found;
3651 SvUTF8(sv) && SvMAGICAL(sv) ?
3652 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3653 if (mg && mg->mg_len >= 0)
3654 mg->mg_len += CHR_SVLEN(last_str) - l;
3656 data->last_end += l * (mincount - 1);
3659 /* start offset must point into the last copy */
3660 data->last_start_min += minnext * (mincount - 1);
3661 data->last_start_max += is_inf ? I32_MAX
3662 : (maxcount - 1) * (minnext + data->pos_delta);
3665 /* It is counted once already... */
3666 data->pos_min += minnext * (mincount - counted);
3667 data->pos_delta += - counted * deltanext +
3668 (minnext + deltanext) * maxcount - minnext * mincount;
3669 if (mincount != maxcount) {
3670 /* Cannot extend fixed substrings found inside
3672 SCAN_COMMIT(pRExC_state,data,minlenp);
3673 if (mincount && last_str) {
3674 SV * const sv = data->last_found;
3675 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3676 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3680 sv_setsv(sv, last_str);
3681 data->last_end = data->pos_min;
3682 data->last_start_min =
3683 data->pos_min - CHR_SVLEN(last_str);
3684 data->last_start_max = is_inf
3686 : data->pos_min + data->pos_delta
3687 - CHR_SVLEN(last_str);
3689 data->longest = &(data->longest_float);
3691 SvREFCNT_dec(last_str);
3693 if (data && (fl & SF_HAS_EVAL))
3694 data->flags |= SF_HAS_EVAL;
3695 optimize_curly_tail:
3696 if (OP(oscan) != CURLYX) {
3697 while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
3699 NEXT_OFF(oscan) += NEXT_OFF(next);
3702 default: /* REF, ANYOFV, and CLUMP only? */
3703 if (flags & SCF_DO_SUBSTR) {
3704 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3705 data->longest = &(data->longest_float);
3707 is_inf = is_inf_internal = 1;
3708 if (flags & SCF_DO_STCLASS_OR)
3709 cl_anything(pRExC_state, data->start_class);
3710 flags &= ~SCF_DO_STCLASS;
3714 else if (OP(scan) == LNBREAK) {
3715 if (flags & SCF_DO_STCLASS) {
3717 data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
3718 if (flags & SCF_DO_STCLASS_AND) {
3719 for (value = 0; value < 256; value++)
3720 if (!is_VERTWS_cp(value))
3721 ANYOF_BITMAP_CLEAR(data->start_class, value);
3724 for (value = 0; value < 256; value++)
3725 if (is_VERTWS_cp(value))
3726 ANYOF_BITMAP_SET(data->start_class, value);
3728 if (flags & SCF_DO_STCLASS_OR)
3729 cl_and(data->start_class, and_withp);
3730 flags &= ~SCF_DO_STCLASS;
3734 if (flags & SCF_DO_SUBSTR) {
3735 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3737 data->pos_delta += 1;
3738 data->longest = &(data->longest_float);
3741 else if (OP(scan) == FOLDCHAR) {
3742 int d = ARG(scan) == LATIN_SMALL_LETTER_SHARP_S ? 1 : 2;
3743 flags &= ~SCF_DO_STCLASS;
3746 if (flags & SCF_DO_SUBSTR) {
3747 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3749 data->pos_delta += d;
3750 data->longest = &(data->longest_float);
3753 else if (REGNODE_SIMPLE(OP(scan))) {
3756 if (flags & SCF_DO_SUBSTR) {
3757 SCAN_COMMIT(pRExC_state,data,minlenp);
3761 if (flags & SCF_DO_STCLASS) {
3762 data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
3764 /* Some of the logic below assumes that switching
3765 locale on will only add false positives. */
3766 switch (PL_regkind[OP(scan)]) {
3770 /* Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan)); */
3771 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3772 cl_anything(pRExC_state, data->start_class);
3775 if (OP(scan) == SANY)
3777 if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */
3778 value = (ANYOF_BITMAP_TEST(data->start_class,'\n')
3779 || ANYOF_CLASS_TEST_ANY_SET(data->start_class));
3780 cl_anything(pRExC_state, data->start_class);
3782 if (flags & SCF_DO_STCLASS_AND || !value)
3783 ANYOF_BITMAP_CLEAR(data->start_class,'\n');
3786 if (flags & SCF_DO_STCLASS_AND)
3787 cl_and(data->start_class,
3788 (struct regnode_charclass_class*)scan);
3790 cl_or(pRExC_state, data->start_class,
3791 (struct regnode_charclass_class*)scan);
3794 if (flags & SCF_DO_STCLASS_AND) {
3795 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3796 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NALNUM);
3797 if (OP(scan) == ALNUMU) {
3798 for (value = 0; value < 256; value++) {
3799 if (!isWORDCHAR_L1(value)) {
3800 ANYOF_BITMAP_CLEAR(data->start_class, value);
3804 for (value = 0; value < 256; value++) {
3805 if (!isALNUM(value)) {
3806 ANYOF_BITMAP_CLEAR(data->start_class, value);
3813 if (data->start_class->flags & ANYOF_LOCALE)
3814 ANYOF_CLASS_SET(data->start_class,ANYOF_ALNUM);
3816 /* Even if under locale, set the bits for non-locale
3817 * in case it isn't a true locale-node. This will
3818 * create false positives if it truly is locale */
3819 if (OP(scan) == ALNUMU) {
3820 for (value = 0; value < 256; value++) {
3821 if (isWORDCHAR_L1(value)) {
3822 ANYOF_BITMAP_SET(data->start_class, value);
3826 for (value = 0; value < 256; value++) {
3827 if (isALNUM(value)) {
3828 ANYOF_BITMAP_SET(data->start_class, value);
3835 if (flags & SCF_DO_STCLASS_AND) {
3836 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3837 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_ALNUM);
3838 if (OP(scan) == NALNUMU) {
3839 for (value = 0; value < 256; value++) {
3840 if (isWORDCHAR_L1(value)) {
3841 ANYOF_BITMAP_CLEAR(data->start_class, value);
3845 for (value = 0; value < 256; value++) {
3846 if (isALNUM(value)) {
3847 ANYOF_BITMAP_CLEAR(data->start_class, value);
3854 if (data->start_class->flags & ANYOF_LOCALE)
3855 ANYOF_CLASS_SET(data->start_class,ANYOF_NALNUM);
3857 /* Even if under locale, set the bits for non-locale in
3858 * case it isn't a true locale-node. This will create
3859 * false positives if it truly is locale */
3860 if (OP(scan) == NALNUMU) {
3861 for (value = 0; value < 256; value++) {
3862 if (! isWORDCHAR_L1(value)) {
3863 ANYOF_BITMAP_SET(data->start_class, value);
3867 for (value = 0; value < 256; value++) {
3868 if (! isALNUM(value)) {
3869 ANYOF_BITMAP_SET(data->start_class, value);
3876 if (flags & SCF_DO_STCLASS_AND) {
3877 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3878 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NSPACE);
3879 if (OP(scan) == SPACEU) {
3880 for (value = 0; value < 256; value++) {
3881 if (!isSPACE_L1(value)) {
3882 ANYOF_BITMAP_CLEAR(data->start_class, value);
3886 for (value = 0; value < 256; value++) {
3887 if (!isSPACE(value)) {
3888 ANYOF_BITMAP_CLEAR(data->start_class, value);
3895 if (data->start_class->flags & ANYOF_LOCALE) {
3896 ANYOF_CLASS_SET(data->start_class,ANYOF_SPACE);
3898 if (OP(scan) == SPACEU) {
3899 for (value = 0; value < 256; value++) {
3900 if (isSPACE_L1(value)) {
3901 ANYOF_BITMAP_SET(data->start_class, value);
3905 for (value = 0; value < 256; value++) {
3906 if (isSPACE(value)) {
3907 ANYOF_BITMAP_SET(data->start_class, value);
3914 if (flags & SCF_DO_STCLASS_AND) {
3915 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3916 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_SPACE);
3917 if (OP(scan) == NSPACEU) {
3918 for (value = 0; value < 256; value++) {
3919 if (isSPACE_L1(value)) {
3920 ANYOF_BITMAP_CLEAR(data->start_class, value);
3924 for (value = 0; value < 256; value++) {
3925 if (isSPACE(value)) {
3926 ANYOF_BITMAP_CLEAR(data->start_class, value);
3933 if (data->start_class->flags & ANYOF_LOCALE)
3934 ANYOF_CLASS_SET(data->start_class,ANYOF_NSPACE);
3935 if (OP(scan) == NSPACEU) {
3936 for (value = 0; value < 256; value++) {
3937 if (!isSPACE_L1(value)) {
3938 ANYOF_BITMAP_SET(data->start_class, value);
3943 for (value = 0; value < 256; value++) {
3944 if (!isSPACE(value)) {
3945 ANYOF_BITMAP_SET(data->start_class, value);
3952 if (flags & SCF_DO_STCLASS_AND) {
3953 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3954 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NDIGIT);
3955 for (value = 0; value < 256; value++)
3956 if (!isDIGIT(value))
3957 ANYOF_BITMAP_CLEAR(data->start_class, value);
3961 if (data->start_class->flags & ANYOF_LOCALE)
3962 ANYOF_CLASS_SET(data->start_class,ANYOF_DIGIT);
3963 for (value = 0; value < 256; value++)
3965 ANYOF_BITMAP_SET(data->start_class, value);
3969 if (flags & SCF_DO_STCLASS_AND) {
3970 if (!(data->start_class->flags & ANYOF_LOCALE))
3971 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_DIGIT);
3972 for (value = 0; value < 256; value++)
3974 ANYOF_BITMAP_CLEAR(data->start_class, value);
3977 if (data->start_class->flags & ANYOF_LOCALE)
3978 ANYOF_CLASS_SET(data->start_class,ANYOF_NDIGIT);
3979 for (value = 0; value < 256; value++)
3980 if (!isDIGIT(value))
3981 ANYOF_BITMAP_SET(data->start_class, value);
3984 CASE_SYNST_FNC(VERTWS);
3985 CASE_SYNST_FNC(HORIZWS);
3988 if (flags & SCF_DO_STCLASS_OR)
3989 cl_and(data->start_class, and_withp);
3990 flags &= ~SCF_DO_STCLASS;
3993 else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
3994 data->flags |= (OP(scan) == MEOL
3998 else if ( PL_regkind[OP(scan)] == BRANCHJ
3999 /* Lookbehind, or need to calculate parens/evals/stclass: */
4000 && (scan->flags || data || (flags & SCF_DO_STCLASS))
4001 && (OP(scan) == IFMATCH || OP(scan) == UNLESSM)) {
4002 if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4003 || OP(scan) == UNLESSM )
4005 /* Negative Lookahead/lookbehind
4006 In this case we can't do fixed string optimisation.
4009 I32 deltanext, minnext, fake = 0;
4011 struct regnode_charclass_class intrnl;
4014 data_fake.flags = 0;
4016 data_fake.whilem_c = data->whilem_c;
4017 data_fake.last_closep = data->last_closep;
4020 data_fake.last_closep = &fake;
4021 data_fake.pos_delta = delta;
4022 if ( flags & SCF_DO_STCLASS && !scan->flags
4023 && OP(scan) == IFMATCH ) { /* Lookahead */
4024 cl_init(pRExC_state, &intrnl);
4025 data_fake.start_class = &intrnl;
4026 f |= SCF_DO_STCLASS_AND;
4028 if (flags & SCF_WHILEM_VISITED_POS)
4029 f |= SCF_WHILEM_VISITED_POS;
4030 next = regnext(scan);
4031 nscan = NEXTOPER(NEXTOPER(scan));
4032 minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
4033 last, &data_fake, stopparen, recursed, NULL, f, depth+1);
4036 FAIL("Variable length lookbehind not implemented");
4038 else if (minnext > (I32)U8_MAX) {
4039 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4041 scan->flags = (U8)minnext;
4044 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4046 if (data_fake.flags & SF_HAS_EVAL)
4047 data->flags |= SF_HAS_EVAL;
4048 data->whilem_c = data_fake.whilem_c;
4050 if (f & SCF_DO_STCLASS_AND) {
4051 if (flags & SCF_DO_STCLASS_OR) {
4052 /* OR before, AND after: ideally we would recurse with
4053 * data_fake to get the AND applied by study of the
4054 * remainder of the pattern, and then derecurse;
4055 * *** HACK *** for now just treat as "no information".
4056 * See [perl #56690].
4058 cl_init(pRExC_state, data->start_class);
4060 /* AND before and after: combine and continue */
4061 const int was = (data->start_class->flags & ANYOF_EOS);
4063 cl_and(data->start_class, &intrnl);
4065 data->start_class->flags |= ANYOF_EOS;
4069 #if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4071 /* Positive Lookahead/lookbehind
4072 In this case we can do fixed string optimisation,
4073 but we must be careful about it. Note in the case of
4074 lookbehind the positions will be offset by the minimum
4075 length of the pattern, something we won't know about
4076 until after the recurse.
4078 I32 deltanext, fake = 0;
4080 struct regnode_charclass_class intrnl;
4082 /* We use SAVEFREEPV so that when the full compile
4083 is finished perl will clean up the allocated
4084 minlens when it's all done. This way we don't
4085 have to worry about freeing them when we know
4086 they wont be used, which would be a pain.
4089 Newx( minnextp, 1, I32 );
4090 SAVEFREEPV(minnextp);
4093 StructCopy(data, &data_fake, scan_data_t);
4094 if ((flags & SCF_DO_SUBSTR) && data->last_found) {
4097 SCAN_COMMIT(pRExC_state, &data_fake,minlenp);
4098 data_fake.last_found=newSVsv(data->last_found);
4102 data_fake.last_closep = &fake;
4103 data_fake.flags = 0;
4104 data_fake.pos_delta = delta;
4106 data_fake.flags |= SF_IS_INF;
4107 if ( flags & SCF_DO_STCLASS && !scan->flags
4108 && OP(scan) == IFMATCH ) { /* Lookahead */
4109 cl_init(pRExC_state, &intrnl);
4110 data_fake.start_class = &intrnl;
4111 f |= SCF_DO_STCLASS_AND;
4113 if (flags & SCF_WHILEM_VISITED_POS)
4114 f |= SCF_WHILEM_VISITED_POS;
4115 next = regnext(scan);
4116 nscan = NEXTOPER(NEXTOPER(scan));
4118 *minnextp = study_chunk(pRExC_state, &nscan, minnextp, &deltanext,
4119 last, &data_fake, stopparen, recursed, NULL, f,depth+1);
4122 FAIL("Variable length lookbehind not implemented");
4124 else if (*minnextp > (I32)U8_MAX) {
4125 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4127 scan->flags = (U8)*minnextp;
4132 if (f & SCF_DO_STCLASS_AND) {
4133 const int was = (data->start_class->flags & ANYOF_EOS);
4135 cl_and(data->start_class, &intrnl);
4137 data->start_class->flags |= ANYOF_EOS;
4140 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4142 if (data_fake.flags & SF_HAS_EVAL)
4143 data->flags |= SF_HAS_EVAL;
4144 data->whilem_c = data_fake.whilem_c;
4145 if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
4146 if (RExC_rx->minlen<*minnextp)
4147 RExC_rx->minlen=*minnextp;
4148 SCAN_COMMIT(pRExC_state, &data_fake, minnextp);
4149 SvREFCNT_dec(data_fake.last_found);
4151 if ( data_fake.minlen_fixed != minlenp )
4153 data->offset_fixed= data_fake.offset_fixed;
4154 data->minlen_fixed= data_fake.minlen_fixed;
4155 data->lookbehind_fixed+= scan->flags;
4157 if ( data_fake.minlen_float != minlenp )
4159 data->minlen_float= data_fake.minlen_float;
4160 data->offset_float_min=data_fake.offset_float_min;
4161 data->offset_float_max=data_fake.offset_float_max;
4162 data->lookbehind_float+= scan->flags;
4171 else if (OP(scan) == OPEN) {
4172 if (stopparen != (I32)ARG(scan))
4175 else if (OP(scan) == CLOSE) {
4176 if (stopparen == (I32)ARG(scan)) {
4179 if ((I32)ARG(scan) == is_par) {
4180 next = regnext(scan);
4182 if ( next && (OP(next) != WHILEM) && next < last)
4183 is_par = 0; /* Disable optimization */
4186 *(data->last_closep) = ARG(scan);
4188 else if (OP(scan) == EVAL) {
4190 data->flags |= SF_HAS_EVAL;
4192 else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
4193 if (flags & SCF_DO_SUBSTR) {
4194 SCAN_COMMIT(pRExC_state,data,minlenp);
4195 flags &= ~SCF_DO_SUBSTR;
4197 if (data && OP(scan)==ACCEPT) {
4198 data->flags |= SCF_SEEN_ACCEPT;
4203 else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
4205 if (flags & SCF_DO_SUBSTR) {
4206 SCAN_COMMIT(pRExC_state,data,minlenp);
4207 data->longest = &(data->longest_float);
4209 is_inf = is_inf_internal = 1;
4210 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
4211 cl_anything(pRExC_state, data->start_class);
4212 flags &= ~SCF_DO_STCLASS;
4214 else if (OP(scan) == GPOS) {
4215 if (!(RExC_rx->extflags & RXf_GPOS_FLOAT) &&
4216 !(delta || is_inf || (data && data->pos_delta)))
4218 if (!(RExC_rx->extflags & RXf_ANCH) && (flags & SCF_DO_SUBSTR))
4219 RExC_rx->extflags |= RXf_ANCH_GPOS;
4220 if (RExC_rx->gofs < (U32)min)
4221 RExC_rx->gofs = min;
4223 RExC_rx->extflags |= RXf_GPOS_FLOAT;
4227 #ifdef TRIE_STUDY_OPT
4228 #ifdef FULL_TRIE_STUDY
4229 else if (PL_regkind[OP(scan)] == TRIE) {
4230 /* NOTE - There is similar code to this block above for handling
4231 BRANCH nodes on the initial study. If you change stuff here
4233 regnode *trie_node= scan;
4234 regnode *tail= regnext(scan);
4235 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4236 I32 max1 = 0, min1 = I32_MAX;
4237 struct regnode_charclass_class accum;
4239 if (flags & SCF_DO_SUBSTR) /* XXXX Add !SUSPEND? */
4240 SCAN_COMMIT(pRExC_state, data,minlenp); /* Cannot merge strings after this. */
4241 if (flags & SCF_DO_STCLASS)
4242 cl_init_zero(pRExC_state, &accum);
4248 const regnode *nextbranch= NULL;
4251 for ( word=1 ; word <= trie->wordcount ; word++)
4253 I32 deltanext=0, minnext=0, f = 0, fake;
4254 struct regnode_charclass_class this_class;
4256 data_fake.flags = 0;
4258 data_fake.whilem_c = data->whilem_c;
4259 data_fake.last_closep = data->last_closep;
4262 data_fake.last_closep = &fake;
4263 data_fake.pos_delta = delta;
4264 if (flags & SCF_DO_STCLASS) {
4265 cl_init(pRExC_state, &this_class);
4266 data_fake.start_class = &this_class;
4267 f = SCF_DO_STCLASS_AND;
4269 if (flags & SCF_WHILEM_VISITED_POS)
4270 f |= SCF_WHILEM_VISITED_POS;
4272 if (trie->jump[word]) {
4274 nextbranch = trie_node + trie->jump[0];
4275 scan= trie_node + trie->jump[word];
4276 /* We go from the jump point to the branch that follows
4277 it. Note this means we need the vestigal unused branches
4278 even though they arent otherwise used.
4280 minnext = study_chunk(pRExC_state, &scan, minlenp,
4281 &deltanext, (regnode *)nextbranch, &data_fake,
4282 stopparen, recursed, NULL, f,depth+1);
4284 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
4285 nextbranch= regnext((regnode*)nextbranch);
4287 if (min1 > (I32)(minnext + trie->minlen))
4288 min1 = minnext + trie->minlen;
4289 if (max1 < (I32)(minnext + deltanext + trie->maxlen))
4290 max1 = minnext + deltanext + trie->maxlen;
4291 if (deltanext == I32_MAX)
4292 is_inf = is_inf_internal = 1;
4294 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4296 if (data_fake.flags & SCF_SEEN_ACCEPT) {
4297 if ( stopmin > min + min1)
4298 stopmin = min + min1;
4299 flags &= ~SCF_DO_SUBSTR;
4301 data->flags |= SCF_SEEN_ACCEPT;
4304 if (data_fake.flags & SF_HAS_EVAL)
4305 data->flags |= SF_HAS_EVAL;
4306 data->whilem_c = data_fake.whilem_c;
4308 if (flags & SCF_DO_STCLASS)
4309 cl_or(pRExC_state, &accum, &this_class);
4312 if (flags & SCF_DO_SUBSTR) {
4313 data->pos_min += min1;
4314 data->pos_delta += max1 - min1;
4315 if (max1 != min1 || is_inf)
4316 data->longest = &(data->longest_float);
4319 delta += max1 - min1;
4320 if (flags & SCF_DO_STCLASS_OR) {
4321 cl_or(pRExC_state, data->start_class, &accum);
4323 cl_and(data->start_class, and_withp);
4324 flags &= ~SCF_DO_STCLASS;
4327 else if (flags & SCF_DO_STCLASS_AND) {
4329 cl_and(data->start_class, &accum);
4330 flags &= ~SCF_DO_STCLASS;
4333 /* Switch to OR mode: cache the old value of
4334 * data->start_class */
4336 StructCopy(data->start_class, and_withp,
4337 struct regnode_charclass_class);
4338 flags &= ~SCF_DO_STCLASS_AND;
4339 StructCopy(&accum, data->start_class,
4340 struct regnode_charclass_class);
4341 flags |= SCF_DO_STCLASS_OR;
4342 data->start_class->flags |= ANYOF_EOS;
4349 else if (PL_regkind[OP(scan)] == TRIE) {
4350 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4353 min += trie->minlen;
4354 delta += (trie->maxlen - trie->minlen);
4355 flags &= ~SCF_DO_STCLASS; /* xxx */
4356 if (flags & SCF_DO_SUBSTR) {
4357 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
4358 data->pos_min += trie->minlen;
4359 data->pos_delta += (trie->maxlen - trie->minlen);
4360 if (trie->maxlen != trie->minlen)
4361 data->longest = &(data->longest_float);
4363 if (trie->jump) /* no more substrings -- for now /grr*/
4364 flags &= ~SCF_DO_SUBSTR;
4366 #endif /* old or new */
4367 #endif /* TRIE_STUDY_OPT */
4369 /* Else: zero-length, ignore. */
4370 scan = regnext(scan);
4375 stopparen = frame->stop;
4376 frame = frame->prev;
4377 goto fake_study_recurse;
4382 DEBUG_STUDYDATA("pre-fin:",data,depth);
4385 *deltap = is_inf_internal ? I32_MAX : delta;
4386 if (flags & SCF_DO_SUBSTR && is_inf)
4387 data->pos_delta = I32_MAX - data->pos_min;
4388 if (is_par > (I32)U8_MAX)
4390 if (is_par && pars==1 && data) {
4391 data->flags |= SF_IN_PAR;
4392 data->flags &= ~SF_HAS_PAR;
4394 else if (pars && data) {
4395 data->flags |= SF_HAS_PAR;
4396 data->flags &= ~SF_IN_PAR;
4398 if (flags & SCF_DO_STCLASS_OR)
4399 cl_and(data->start_class, and_withp);
4400 if (flags & SCF_TRIE_RESTUDY)
4401 data->flags |= SCF_TRIE_RESTUDY;
4403 DEBUG_STUDYDATA("post-fin:",data,depth);
4405 return min < stopmin ? min : stopmin;
4409 S_add_data(RExC_state_t *pRExC_state, U32 n, const char *s)
4411 U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
4413 PERL_ARGS_ASSERT_ADD_DATA;
4415 Renewc(RExC_rxi->data,
4416 sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
4417 char, struct reg_data);
4419 Renew(RExC_rxi->data->what, count + n, U8);
4421 Newx(RExC_rxi->data->what, n, U8);
4422 RExC_rxi->data->count = count + n;
4423 Copy(s, RExC_rxi->data->what + count, n, U8);
4427 /*XXX: todo make this not included in a non debugging perl */
4428 #ifndef PERL_IN_XSUB_RE
4430 Perl_reginitcolors(pTHX)
4433 const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
4435 char *t = savepv(s);
4439 t = strchr(t, '\t');
4445 PL_colors[i] = t = (char *)"";
4450 PL_colors[i++] = (char *)"";
4457 #ifdef TRIE_STUDY_OPT
4458 #define CHECK_RESTUDY_GOTO \
4460 (data.flags & SCF_TRIE_RESTUDY) \
4464 #define CHECK_RESTUDY_GOTO
4468 - pregcomp - compile a regular expression into internal code
4470 * We can't allocate space until we know how big the compiled form will be,
4471 * but we can't compile it (and thus know how big it is) until we've got a
4472 * place to put the code. So we cheat: we compile it twice, once with code
4473 * generation turned off and size counting turned on, and once "for real".
4474 * This also means that we don't allocate space until we are sure that the
4475 * thing really will compile successfully, and we never have to move the
4476 * code and thus invalidate pointers into it. (Note that it has to be in
4477 * one piece because free() must be able to free it all.) [NB: not true in perl]
4479 * Beware that the optimization-preparation code in here knows about some
4480 * of the structure of the compiled regexp. [I'll say.]
4485 #ifndef PERL_IN_XSUB_RE
4486 #define RE_ENGINE_PTR &PL_core_reg_engine
4488 extern const struct regexp_engine my_reg_engine;
4489 #define RE_ENGINE_PTR &my_reg_engine
4492 #ifndef PERL_IN_XSUB_RE
4494 Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
4497 HV * const table = GvHV(PL_hintgv);
4499 PERL_ARGS_ASSERT_PREGCOMP;
4501 /* Dispatch a request to compile a regexp to correct
4504 SV **ptr= hv_fetchs(table, "regcomp", FALSE);
4505 GET_RE_DEBUG_FLAGS_DECL;
4506 if (ptr && SvIOK(*ptr) && SvIV(*ptr)) {
4507 const regexp_engine *eng=INT2PTR(regexp_engine*,SvIV(*ptr));
4509 PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
4512 return CALLREGCOMP_ENG(eng, pattern, flags);
4515 return Perl_re_compile(aTHX_ pattern, flags);
4520 Perl_re_compile(pTHX_ SV * const pattern, U32 orig_pm_flags)
4525 register regexp_internal *ri;
4534 /* these are all flags - maybe they should be turned
4535 * into a single int with different bit masks */
4536 I32 sawlookahead = 0;
4539 bool used_setjump = FALSE;
4540 regex_charset initial_charset = get_regex_charset(orig_pm_flags);
4545 RExC_state_t RExC_state;
4546 RExC_state_t * const pRExC_state = &RExC_state;
4547 #ifdef TRIE_STUDY_OPT
4549 RExC_state_t copyRExC_state;
4551 GET_RE_DEBUG_FLAGS_DECL;
4553 PERL_ARGS_ASSERT_RE_COMPILE;
4555 DEBUG_r(if (!PL_colorset) reginitcolors());
4557 RExC_utf8 = RExC_orig_utf8 = SvUTF8(pattern);
4558 RExC_uni_semantics = 0;
4559 RExC_contains_locale = 0;
4561 /****************** LONG JUMP TARGET HERE***********************/
4562 /* Longjmp back to here if have to switch in midstream to utf8 */
4563 if (! RExC_orig_utf8) {
4564 JMPENV_PUSH(jump_ret);
4565 used_setjump = TRUE;
4568 if (jump_ret == 0) { /* First time through */
4569 exp = SvPV(pattern, plen);
4571 /* ignore the utf8ness if the pattern is 0 length */
4573 RExC_utf8 = RExC_orig_utf8 = 0;
4577 SV *dsv= sv_newmortal();
4578 RE_PV_QUOTED_DECL(s, RExC_utf8,
4579 dsv, exp, plen, 60);
4580 PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
4581 PL_colors[4],PL_colors[5],s);
4584 else { /* longjumped back */
4587 /* If the cause for the longjmp was other than changing to utf8, pop
4588 * our own setjmp, and longjmp to the correct handler */
4589 if (jump_ret != UTF8_LONGJMP) {
4591 JMPENV_JUMP(jump_ret);
4596 /* It's possible to write a regexp in ascii that represents Unicode
4597 codepoints outside of the byte range, such as via \x{100}. If we
4598 detect such a sequence we have to convert the entire pattern to utf8
4599 and then recompile, as our sizing calculation will have been based
4600 on 1 byte == 1 character, but we will need to use utf8 to encode
4601 at least some part of the pattern, and therefore must convert the whole
4604 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
4605 "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
4606 exp = (char*)Perl_bytes_to_utf8(aTHX_ (U8*)SvPV(pattern, plen), &len);
4608 RExC_orig_utf8 = RExC_utf8 = 1;
4612 #ifdef TRIE_STUDY_OPT
4616 pm_flags = orig_pm_flags;
4618 if (initial_charset == REGEX_LOCALE_CHARSET) {
4619 RExC_contains_locale = 1;
4621 else if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
4623 /* Set to use unicode semantics if the pattern is in utf8 and has the
4624 * 'depends' charset specified, as it means unicode when utf8 */
4625 set_regex_charset(&pm_flags, REGEX_UNICODE_CHARSET);
4629 RExC_flags = pm_flags;
4633 RExC_in_lookbehind = 0;
4634 RExC_seen_zerolen = *exp == '^' ? -1 : 0;
4635 RExC_seen_evals = 0;
4637 RExC_override_recoding = 0;
4639 /* First pass: determine size, legality. */
4647 RExC_emit = &PL_regdummy;
4648 RExC_whilem_seen = 0;
4649 RExC_open_parens = NULL;
4650 RExC_close_parens = NULL;
4652 RExC_paren_names = NULL;
4654 RExC_paren_name_list = NULL;
4656 RExC_recurse = NULL;
4657 RExC_recurse_count = 0;
4659 #if 0 /* REGC() is (currently) a NOP at the first pass.
4660 * Clever compilers notice this and complain. --jhi */
4661 REGC((U8)REG_MAGIC, (char*)RExC_emit);
4663 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n"));
4664 if (reg(pRExC_state, 0, &flags,1) == NULL) {
4665 RExC_precomp = NULL;
4669 /* Here, finished first pass. Get rid of any added setjmp */
4675 PerlIO_printf(Perl_debug_log,
4676 "Required size %"IVdf" nodes\n"
4677 "Starting second pass (creation)\n",
4680 RExC_lastparse=NULL;
4683 /* The first pass could have found things that force Unicode semantics */
4684 if ((RExC_utf8 || RExC_uni_semantics)
4685 && get_regex_charset(pm_flags) == REGEX_DEPENDS_CHARSET)
4687 set_regex_charset(&pm_flags, REGEX_UNICODE_CHARSET);
4690 /* Small enough for pointer-storage convention?
4691 If extralen==0, this means that we will not need long jumps. */
4692 if (RExC_size >= 0x10000L && RExC_extralen)
4693 RExC_size += RExC_extralen;
4696 if (RExC_whilem_seen > 15)
4697 RExC_whilem_seen = 15;
4699 /* Allocate space and zero-initialize. Note, the two step process
4700 of zeroing when in debug mode, thus anything assigned has to
4701 happen after that */
4702 rx = (REGEXP*) newSV_type(SVt_REGEXP);
4703 r = (struct regexp*)SvANY(rx);
4704 Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
4705 char, regexp_internal);
4706 if ( r == NULL || ri == NULL )
4707 FAIL("Regexp out of space");
4709 /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
4710 Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode), char);
4712 /* bulk initialize base fields with 0. */
4713 Zero(ri, sizeof(regexp_internal), char);
4716 /* non-zero initialization begins here */
4718 r->engine= RE_ENGINE_PTR;
4719 r->extflags = pm_flags;
4721 bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
4722 bool has_charset = (get_regex_charset(r->extflags) != REGEX_DEPENDS_CHARSET);
4724 /* The caret is output if there are any defaults: if not all the STD
4725 * flags are set, or if no character set specifier is needed */
4727 (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
4729 bool has_runon = ((RExC_seen & REG_SEEN_RUN_ON_COMMENT)==REG_SEEN_RUN_ON_COMMENT);
4730 U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
4731 >> RXf_PMf_STD_PMMOD_SHIFT);
4732 const char *fptr = STD_PAT_MODS; /*"msix"*/
4734 /* Allocate for the worst case, which is all the std flags are turned
4735 * on. If more precision is desired, we could do a population count of
4736 * the flags set. This could be done with a small lookup table, or by
4737 * shifting, masking and adding, or even, when available, assembly
4738 * language for a machine-language population count.
4739 * We never output a minus, as all those are defaults, so are
4740 * covered by the caret */
4741 const STRLEN wraplen = plen + has_p + has_runon
4742 + has_default /* If needs a caret */
4744 /* If needs a character set specifier */
4745 + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
4746 + (sizeof(STD_PAT_MODS) - 1)
4747 + (sizeof("(?:)") - 1);
4749 p = sv_grow(MUTABLE_SV(rx), wraplen + 1); /* +1 for the ending NUL */
4751 SvFLAGS(rx) |= SvUTF8(pattern);
4754 /* If a default, cover it using the caret */
4756 *p++= DEFAULT_PAT_MOD;
4760 const char* const name = get_regex_charset_name(r->extflags, &len);
4761 Copy(name, p, len, char);
4765 *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
4768 while((ch = *fptr++)) {
4776 Copy(RExC_precomp, p, plen, char);
4777 assert ((RX_WRAPPED(rx) - p) < 16);
4778 r->pre_prefix = p - RX_WRAPPED(rx);
4784 SvCUR_set(rx, p - SvPVX_const(rx));
4788 r->nparens = RExC_npar - 1; /* set early to validate backrefs */
4790 if (RExC_seen & REG_SEEN_RECURSE) {
4791 Newxz(RExC_open_parens, RExC_npar,regnode *);
4792 SAVEFREEPV(RExC_open_parens);
4793 Newxz(RExC_close_parens,RExC_npar,regnode *);
4794 SAVEFREEPV(RExC_close_parens);
4797 /* Useful during FAIL. */
4798 #ifdef RE_TRACK_PATTERN_OFFSETS
4799 Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
4800 DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
4801 "%s %"UVuf" bytes for offset annotations.\n",
4802 ri->u.offsets ? "Got" : "Couldn't get",
4803 (UV)((2*RExC_size+1) * sizeof(U32))));
4805 SetProgLen(ri,RExC_size);
4809 REH_CALL_COMP_BEGIN_HOOK(pRExC_state->rx);
4811 /* Second pass: emit code. */
4812 RExC_flags = pm_flags; /* don't let top level (?i) bleed */
4817 RExC_emit_start = ri->program;
4818 RExC_emit = ri->program;
4819 RExC_emit_bound = ri->program + RExC_size + 1;
4821 /* Store the count of eval-groups for security checks: */
4822 RExC_rx->seen_evals = RExC_seen_evals;
4823 REGC((U8)REG_MAGIC, (char*) RExC_emit++);
4824 if (reg(pRExC_state, 0, &flags,1) == NULL) {
4828 /* XXXX To minimize changes to RE engine we always allocate
4829 3-units-long substrs field. */
4830 Newx(r->substrs, 1, struct reg_substr_data);
4831 if (RExC_recurse_count) {
4832 Newxz(RExC_recurse,RExC_recurse_count,regnode *);
4833 SAVEFREEPV(RExC_recurse);
4837 r->minlen = minlen = sawlookahead = sawplus = sawopen = 0;
4838 Zero(r->substrs, 1, struct reg_substr_data);
4840 #ifdef TRIE_STUDY_OPT
4842 StructCopy(&zero_scan_data, &data, scan_data_t);
4843 copyRExC_state = RExC_state;
4846 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
4848 RExC_state = copyRExC_state;
4849 if (seen & REG_TOP_LEVEL_BRANCHES)
4850 RExC_seen |= REG_TOP_LEVEL_BRANCHES;
4852 RExC_seen &= ~REG_TOP_LEVEL_BRANCHES;
4853 if (data.last_found) {
4854 SvREFCNT_dec(data.longest_fixed);
4855 SvREFCNT_dec(data.longest_float);
4856 SvREFCNT_dec(data.last_found);
4858 StructCopy(&zero_scan_data, &data, scan_data_t);
4861 StructCopy(&zero_scan_data, &data, scan_data_t);
4864 /* Dig out information for optimizations. */
4865 r->extflags = RExC_flags; /* was pm_op */
4866 /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
4869 SvUTF8_on(rx); /* Unicode in it? */
4870 ri->regstclass = NULL;
4871 if (RExC_naughty >= 10) /* Probably an expensive pattern. */
4872 r->intflags |= PREGf_NAUGHTY;
4873 scan = ri->program + 1; /* First BRANCH. */
4875 /* testing for BRANCH here tells us whether there is "must appear"
4876 data in the pattern. If there is then we can use it for optimisations */
4877 if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES)) { /* Only one top-level choice. */
4879 STRLEN longest_float_length, longest_fixed_length;
4880 struct regnode_charclass_class ch_class; /* pointed to by data */
4882 I32 last_close = 0; /* pointed to by data */
4883 regnode *first= scan;
4884 regnode *first_next= regnext(first);
4886 * Skip introductions and multiplicators >= 1
4887 * so that we can extract the 'meat' of the pattern that must
4888 * match in the large if() sequence following.
4889 * NOTE that EXACT is NOT covered here, as it is normally
4890 * picked up by the optimiser separately.
4892 * This is unfortunate as the optimiser isnt handling lookahead
4893 * properly currently.
4896 while ((OP(first) == OPEN && (sawopen = 1)) ||
4897 /* An OR of *one* alternative - should not happen now. */
4898 (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
4899 /* for now we can't handle lookbehind IFMATCH*/
4900 (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
4901 (OP(first) == PLUS) ||
4902 (OP(first) == MINMOD) ||
4903 /* An {n,m} with n>0 */
4904 (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
4905 (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
4908 * the only op that could be a regnode is PLUS, all the rest
4909 * will be regnode_1 or regnode_2.
4912 if (OP(first) == PLUS)
4915 first += regarglen[OP(first)];
4917 first = NEXTOPER(first);
4918 first_next= regnext(first);
4921 /* Starting-point info. */
4923 DEBUG_PEEP("first:",first,0);
4924 /* Ignore EXACT as we deal with it later. */
4925 if (PL_regkind[OP(first)] == EXACT) {
4926 if (OP(first) == EXACT)
4927 NOOP; /* Empty, get anchored substr later. */
4929 ri->regstclass = first;
4932 else if (PL_regkind[OP(first)] == TRIE &&
4933 ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
4936 /* this can happen only on restudy */
4937 if ( OP(first) == TRIE ) {
4938 struct regnode_1 *trieop = (struct regnode_1 *)
4939 PerlMemShared_calloc(1, sizeof(struct regnode_1));
4940 StructCopy(first,trieop,struct regnode_1);
4941 trie_op=(regnode *)trieop;
4943 struct regnode_charclass *trieop = (struct regnode_charclass *)
4944 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
4945 StructCopy(first,trieop,struct regnode_charclass);
4946 trie_op=(regnode *)trieop;
4949 make_trie_failtable(pRExC_state, (regnode *)first, trie_op, 0);
4950 ri->regstclass = trie_op;
4953 else if (REGNODE_SIMPLE(OP(first)))
4954 ri->regstclass = first;
4955 else if (PL_regkind[OP(first)] == BOUND ||
4956 PL_regkind[OP(first)] == NBOUND)
4957 ri->regstclass = first;
4958 else if (PL_regkind[OP(first)] == BOL) {
4959 r->extflags |= (OP(first) == MBOL
4961 : (OP(first) == SBOL
4964 first = NEXTOPER(first);
4967 else if (OP(first) == GPOS) {
4968 r->extflags |= RXf_ANCH_GPOS;
4969 first = NEXTOPER(first);
4972 else if ((!sawopen || !RExC_sawback) &&
4973 (OP(first) == STAR &&
4974 PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
4975 !(r->extflags & RXf_ANCH) && !(RExC_seen & REG_SEEN_EVAL))
4977 /* turn .* into ^.* with an implied $*=1 */
4979 (OP(NEXTOPER(first)) == REG_ANY)
4982 r->extflags |= type;
4983 r->intflags |= PREGf_IMPLICIT;
4984 first = NEXTOPER(first);
4987 if (sawplus && !sawlookahead && (!sawopen || !RExC_sawback)
4988 && !(RExC_seen & REG_SEEN_EVAL)) /* May examine pos and $& */
4989 /* x+ must match at the 1st pos of run of x's */
4990 r->intflags |= PREGf_SKIP;
4992 /* Scan is after the zeroth branch, first is atomic matcher. */
4993 #ifdef TRIE_STUDY_OPT
4996 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
4997 (IV)(first - scan + 1))
5001 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
5002 (IV)(first - scan + 1))
5008 * If there's something expensive in the r.e., find the
5009 * longest literal string that must appear and make it the
5010 * regmust. Resolve ties in favor of later strings, since
5011 * the regstart check works with the beginning of the r.e.
5012 * and avoiding duplication strengthens checking. Not a
5013 * strong reason, but sufficient in the absence of others.
5014 * [Now we resolve ties in favor of the earlier string if
5015 * it happens that c_offset_min has been invalidated, since the
5016 * earlier string may buy us something the later one won't.]
5019 data.longest_fixed = newSVpvs("");
5020 data.longest_float = newSVpvs("");
5021 data.last_found = newSVpvs("");
5022 data.longest = &(data.longest_fixed);
5024 if (!ri->regstclass) {
5025 cl_init(pRExC_state, &ch_class);
5026 data.start_class = &ch_class;
5027 stclass_flag = SCF_DO_STCLASS_AND;
5028 } else /* XXXX Check for BOUND? */
5030 data.last_closep = &last_close;
5032 minlen = study_chunk(pRExC_state, &first, &minlen, &fake, scan + RExC_size, /* Up to end */
5033 &data, -1, NULL, NULL,
5034 SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag,0);
5040 if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
5041 && data.last_start_min == 0 && data.last_end > 0
5042 && !RExC_seen_zerolen
5043 && !(RExC_seen & REG_SEEN_VERBARG)
5044 && (!(RExC_seen & REG_SEEN_GPOS) || (r->extflags & RXf_ANCH_GPOS)))
5045 r->extflags |= RXf_CHECK_ALL;
5046 scan_commit(pRExC_state, &data,&minlen,0);
5047 SvREFCNT_dec(data.last_found);
5049 /* Note that code very similar to this but for anchored string
5050 follows immediately below, changes may need to be made to both.
5053 longest_float_length = CHR_SVLEN(data.longest_float);
5054 if (longest_float_length
5055 || (data.flags & SF_FL_BEFORE_EOL
5056 && (!(data.flags & SF_FL_BEFORE_MEOL)
5057 || (RExC_flags & RXf_PMf_MULTILINE))))
5061 if (SvCUR(data.longest_fixed) /* ok to leave SvCUR */
5062 && data.offset_fixed == data.offset_float_min
5063 && SvCUR(data.longest_fixed) == SvCUR(data.longest_float))
5064 goto remove_float; /* As in (a)+. */
5066 /* copy the information about the longest float from the reg_scan_data
5067 over to the program. */
5068 if (SvUTF8(data.longest_float)) {
5069 r->float_utf8 = data.longest_float;
5070 r->float_substr = NULL;
5072 r->float_substr = data.longest_float;
5073 r->float_utf8 = NULL;
5075 /* float_end_shift is how many chars that must be matched that
5076 follow this item. We calculate it ahead of time as once the
5077 lookbehind offset is added in we lose the ability to correctly
5079 ml = data.minlen_float ? *(data.minlen_float)
5080 : (I32)longest_float_length;
5081 r->float_end_shift = ml - data.offset_float_min
5082 - longest_float_length + (SvTAIL(data.longest_float) != 0)
5083 + data.lookbehind_float;
5084 r->float_min_offset = data.offset_float_min - data.lookbehind_float;
5085 r->float_max_offset = data.offset_float_max;
5086 if (data.offset_float_max < I32_MAX) /* Don't offset infinity */
5087 r->float_max_offset -= data.lookbehind_float;
5089 t = (data.flags & SF_FL_BEFORE_EOL /* Can't have SEOL and MULTI */
5090 && (!(data.flags & SF_FL_BEFORE_MEOL)
5091 || (RExC_flags & RXf_PMf_MULTILINE)));
5092 fbm_compile(data.longest_float, t ? FBMcf_TAIL : 0);
5096 r->float_substr = r->float_utf8 = NULL;
5097 SvREFCNT_dec(data.longest_float);
5098 longest_float_length = 0;
5101 /* Note that code very similar to this but for floating string
5102 is immediately above, changes may need to be made to both.
5105 longest_fixed_length = CHR_SVLEN(data.longest_fixed);
5106 if (longest_fixed_length
5107 || (data.flags & SF_FIX_BEFORE_EOL /* Cannot have SEOL and MULTI */
5108 && (!(data.flags & SF_FIX_BEFORE_MEOL)
5109 || (RExC_flags & RXf_PMf_MULTILINE))))
5113 /* copy the information about the longest fixed
5114 from the reg_scan_data over to the program. */
5115 if (SvUTF8(data.longest_fixed)) {
5116 r->anchored_utf8 = data.longest_fixed;
5117 r->anchored_substr = NULL;
5119 r->anchored_substr = data.longest_fixed;
5120 r->anchored_utf8 = NULL;
5122 /* fixed_end_shift is how many chars that must be matched that
5123 follow this item. We calculate it ahead of time as once the
5124 lookbehind offset is added in we lose the ability to correctly
5126 ml = data.minlen_fixed ? *(data.minlen_fixed)
5127 : (I32)longest_fixed_length;
5128 r->anchored_end_shift = ml - data.offset_fixed
5129 - longest_fixed_length + (SvTAIL(data.longest_fixed) != 0)
5130 + data.lookbehind_fixed;
5131 r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
5133 t = (data.flags & SF_FIX_BEFORE_EOL /* Can't have SEOL and MULTI */
5134 && (!(data.flags & SF_FIX_BEFORE_MEOL)
5135 || (RExC_flags & RXf_PMf_MULTILINE)));
5136 fbm_compile(data.longest_fixed, t ? FBMcf_TAIL : 0);
5139 r->anchored_substr = r->anchored_utf8 = NULL;
5140 SvREFCNT_dec(data.longest_fixed);
5141 longest_fixed_length = 0;
5144 && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
5145 ri->regstclass = NULL;
5147 if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
5149 && !(data.start_class->flags & ANYOF_EOS)
5150 && !cl_is_anything(data.start_class))
5152 const U32 n = add_data(pRExC_state, 1, "f");
5153 data.start_class->flags |= ANYOF_IS_SYNTHETIC;
5155 Newx(RExC_rxi->data->data[n], 1,
5156 struct regnode_charclass_class);
5157 StructCopy(data.start_class,
5158 (struct regnode_charclass_class*)RExC_rxi->data->data[n],
5159 struct regnode_charclass_class);
5160 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
5161 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
5162 DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
5163 regprop(r, sv, (regnode*)data.start_class);
5164 PerlIO_printf(Perl_debug_log,
5165 "synthetic stclass \"%s\".\n",
5166 SvPVX_const(sv));});
5169 /* A temporary algorithm prefers floated substr to fixed one to dig more info. */
5170 if (longest_fixed_length > longest_float_length) {
5171 r->check_end_shift = r->anchored_end_shift;
5172 r->check_substr = r->anchored_substr;
5173 r->check_utf8 = r->anchored_utf8;
5174 r->check_offset_min = r->check_offset_max = r->anchored_offset;
5175 if (r->extflags & RXf_ANCH_SINGLE)
5176 r->extflags |= RXf_NOSCAN;
5179 r->check_end_shift = r->float_end_shift;
5180 r->check_substr = r->float_substr;
5181 r->check_utf8 = r->float_utf8;
5182 r->check_offset_min = r->float_min_offset;
5183 r->check_offset_max = r->float_max_offset;
5185 /* XXXX Currently intuiting is not compatible with ANCH_GPOS.
5186 This should be changed ASAP! */
5187 if ((r->check_substr || r->check_utf8) && !(r->extflags & RXf_ANCH_GPOS)) {
5188 r->extflags |= RXf_USE_INTUIT;
5189 if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
5190 r->extflags |= RXf_INTUIT_TAIL;
5192 /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
5193 if ( (STRLEN)minlen < longest_float_length )
5194 minlen= longest_float_length;
5195 if ( (STRLEN)minlen < longest_fixed_length )
5196 minlen= longest_fixed_length;
5200 /* Several toplevels. Best we can is to set minlen. */
5202 struct regnode_charclass_class ch_class;
5205 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
5207 scan = ri->program + 1;
5208 cl_init(pRExC_state, &ch_class);
5209 data.start_class = &ch_class;
5210 data.last_closep = &last_close;
5213 minlen = study_chunk(pRExC_state, &scan, &minlen, &fake, scan + RExC_size,
5214 &data, -1, NULL, NULL, SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS,0);
5218 r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
5219 = r->float_substr = r->float_utf8 = NULL;
5221 if (!(data.start_class->flags & ANYOF_EOS)
5222 && !cl_is_anything(data.start_class))
5224 const U32 n = add_data(pRExC_state, 1, "f");
5225 data.start_class->flags |= ANYOF_IS_SYNTHETIC;
5227 Newx(RExC_rxi->data->data[n], 1,
5228 struct regnode_charclass_class);
5229 StructCopy(data.start_class,
5230 (struct regnode_charclass_class*)RExC_rxi->data->data[n],
5231 struct regnode_charclass_class);
5232 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
5233 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
5234 DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
5235 regprop(r, sv, (regnode*)data.start_class);
5236 PerlIO_printf(Perl_debug_log,
5237 "synthetic stclass \"%s\".\n",
5238 SvPVX_const(sv));});
5242 /* Guard against an embedded (?=) or (?<=) with a longer minlen than
5243 the "real" pattern. */
5245 PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf"\n",
5246 (IV)minlen, (IV)r->minlen);
5248 r->minlenret = minlen;
5249 if (r->minlen < minlen)
5252 if (RExC_seen & REG_SEEN_GPOS)
5253 r->extflags |= RXf_GPOS_SEEN;
5254 if (RExC_seen & REG_SEEN_LOOKBEHIND)
5255 r->extflags |= RXf_LOOKBEHIND_SEEN;
5256 if (RExC_seen & REG_SEEN_EVAL)
5257 r->extflags |= RXf_EVAL_SEEN;
5258 if (RExC_seen & REG_SEEN_CANY)
5259 r->extflags |= RXf_CANY_SEEN;
5260 if (RExC_seen & REG_SEEN_VERBARG)
5261 r->intflags |= PREGf_VERBARG_SEEN;
5262 if (RExC_seen & REG_SEEN_CUTGROUP)
5263 r->intflags |= PREGf_CUTGROUP_SEEN;
5264 if (RExC_paren_names)
5265 RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
5267 RXp_PAREN_NAMES(r) = NULL;
5269 #ifdef STUPID_PATTERN_CHECKS
5270 if (RX_PRELEN(rx) == 0)
5271 r->extflags |= RXf_NULL;
5272 if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
5273 /* XXX: this should happen BEFORE we compile */
5274 r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
5275 else if (RX_PRELEN(rx) == 3 && memEQ("\\s+", RX_PRECOMP(rx), 3))
5276 r->extflags |= RXf_WHITE;
5277 else if (RX_PRELEN(rx) == 1 && RXp_PRECOMP(rx)[0] == '^')
5278 r->extflags |= RXf_START_ONLY;
5280 if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
5281 /* XXX: this should happen BEFORE we compile */
5282 r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
5284 regnode *first = ri->program + 1;
5287 if (PL_regkind[fop] == NOTHING && OP(NEXTOPER(first)) == END)
5288 r->extflags |= RXf_NULL;
5289 else if (PL_regkind[fop] == BOL && OP(NEXTOPER(first)) == END)
5290 r->extflags |= RXf_START_ONLY;
5291 else if (fop == PLUS && OP(NEXTOPER(first)) == SPACE
5292 && OP(regnext(first)) == END)
5293 r->extflags |= RXf_WHITE;
5297 if (RExC_paren_names) {
5298 ri->name_list_idx = add_data( pRExC_state, 1, "a" );
5299 ri->data->data[ri->name_list_idx] = (void*)SvREFCNT_inc(RExC_paren_name_list);
5302 ri->name_list_idx = 0;
5304 if (RExC_recurse_count) {
5305 for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
5306 const regnode *scan = RExC_recurse[RExC_recurse_count-1];
5307 ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
5310 Newxz(r->offs, RExC_npar, regexp_paren_pair);
5311 /* assume we don't need to swap parens around before we match */
5314 PerlIO_printf(Perl_debug_log,"Final program:\n");
5317 #ifdef RE_TRACK_PATTERN_OFFSETS
5318 DEBUG_OFFSETS_r(if (ri->u.offsets) {
5319 const U32 len = ri->u.offsets[0];
5321 GET_RE_DEBUG_FLAGS_DECL;
5322 PerlIO_printf(Perl_debug_log, "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
5323 for (i = 1; i <= len; i++) {
5324 if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
5325 PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
5326 (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
5328 PerlIO_printf(Perl_debug_log, "\n");
5334 #undef RE_ENGINE_PTR
5338 Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
5341 PERL_ARGS_ASSERT_REG_NAMED_BUFF;
5343 PERL_UNUSED_ARG(value);
5345 if (flags & RXapif_FETCH) {
5346 return reg_named_buff_fetch(rx, key, flags);
5347 } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
5348 Perl_croak_no_modify(aTHX);
5350 } else if (flags & RXapif_EXISTS) {
5351 return reg_named_buff_exists(rx, key, flags)
5354 } else if (flags & RXapif_REGNAMES) {
5355 return reg_named_buff_all(rx, flags);
5356 } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
5357 return reg_named_buff_scalar(rx, flags);
5359 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
5365 Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
5368 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
5369 PERL_UNUSED_ARG(lastkey);
5371 if (flags & RXapif_FIRSTKEY)
5372 return reg_named_buff_firstkey(rx, flags);
5373 else if (flags & RXapif_NEXTKEY)
5374 return reg_named_buff_nextkey(rx, flags);
5376 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter", (int)flags);
5382 Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
5385 AV *retarray = NULL;
5387 struct regexp *const rx = (struct regexp *)SvANY(r);
5389 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
5391 if (flags & RXapif_ALL)
5394 if (rx && RXp_PAREN_NAMES(rx)) {
5395 HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
5398 SV* sv_dat=HeVAL(he_str);
5399 I32 *nums=(I32*)SvPVX(sv_dat);
5400 for ( i=0; i<SvIVX(sv_dat); i++ ) {
5401 if ((I32)(rx->nparens) >= nums[i]
5402 && rx->offs[nums[i]].start != -1
5403 && rx->offs[nums[i]].end != -1)
5406 CALLREG_NUMBUF_FETCH(r,nums[i],ret);
5410 ret = newSVsv(&PL_sv_undef);
5413 av_push(retarray, ret);
5416 return newRV_noinc(MUTABLE_SV(retarray));
5423 Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
5426 struct regexp *const rx = (struct regexp *)SvANY(r);
5428 PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
5430 if (rx && RXp_PAREN_NAMES(rx)) {
5431 if (flags & RXapif_ALL) {
5432 return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
5434 SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
5448 Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
5450 struct regexp *const rx = (struct regexp *)SvANY(r);
5452 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
5454 if ( rx && RXp_PAREN_NAMES(rx) ) {
5455 (void)hv_iterinit(RXp_PAREN_NAMES(rx));
5457 return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
5464 Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
5466 struct regexp *const rx = (struct regexp *)SvANY(r);
5467 GET_RE_DEBUG_FLAGS_DECL;
5469 PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
5471 if (rx && RXp_PAREN_NAMES(rx)) {
5472 HV *hv = RXp_PAREN_NAMES(rx);
5474 while ( (temphe = hv_iternext_flags(hv,0)) ) {
5477 SV* sv_dat = HeVAL(temphe);
5478 I32 *nums = (I32*)SvPVX(sv_dat);
5479 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
5480 if ((I32)(rx->lastparen) >= nums[i] &&
5481 rx->offs[nums[i]].start != -1 &&
5482 rx->offs[nums[i]].end != -1)
5488 if (parno || flags & RXapif_ALL) {
5489 return newSVhek(HeKEY_hek(temphe));
5497 Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
5502 struct regexp *const rx = (struct regexp *)SvANY(r);
5504 PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
5506 if (rx && RXp_PAREN_NAMES(rx)) {
5507 if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
5508 return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
5509 } else if (flags & RXapif_ONE) {
5510 ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
5511 av = MUTABLE_AV(SvRV(ret));
5512 length = av_len(av);
5514 return newSViv(length + 1);
5516 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar", (int)flags);
5520 return &PL_sv_undef;
5524 Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
5526 struct regexp *const rx = (struct regexp *)SvANY(r);
5529 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
5531 if (rx && RXp_PAREN_NAMES(rx)) {
5532 HV *hv= RXp_PAREN_NAMES(rx);
5534 (void)hv_iterinit(hv);
5535 while ( (temphe = hv_iternext_flags(hv,0)) ) {
5538 SV* sv_dat = HeVAL(temphe);
5539 I32 *nums = (I32*)SvPVX(sv_dat);
5540 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
5541 if ((I32)(rx->lastparen) >= nums[i] &&
5542 rx->offs[nums[i]].start != -1 &&
5543 rx->offs[nums[i]].end != -1)
5549 if (parno || flags & RXapif_ALL) {
5550 av_push(av, newSVhek(HeKEY_hek(temphe)));
5555 return newRV_noinc(MUTABLE_SV(av));
5559 Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
5562 struct regexp *const rx = (struct regexp *)SvANY(r);
5567 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
5570 sv_setsv(sv,&PL_sv_undef);
5574 if (paren == RX_BUFF_IDX_PREMATCH && rx->offs[0].start != -1) {
5576 i = rx->offs[0].start;
5580 if (paren == RX_BUFF_IDX_POSTMATCH && rx->offs[0].end != -1) {
5582 s = rx->subbeg + rx->offs[0].end;
5583 i = rx->sublen - rx->offs[0].end;
5586 if ( 0 <= paren && paren <= (I32)rx->nparens &&
5587 (s1 = rx->offs[paren].start) != -1 &&
5588 (t1 = rx->offs[paren].end) != -1)
5592 s = rx->subbeg + s1;
5594 sv_setsv(sv,&PL_sv_undef);
5597 assert(rx->sublen >= (s - rx->subbeg) + i );
5599 const int oldtainted = PL_tainted;
5601 sv_setpvn(sv, s, i);
5602 PL_tainted = oldtainted;
5603 if ( (rx->extflags & RXf_CANY_SEEN)
5604 ? (RXp_MATCH_UTF8(rx)
5605 && (!i || is_utf8_string((U8*)s, i)))
5606 : (RXp_MATCH_UTF8(rx)) )
5613 if (RXp_MATCH_TAINTED(rx)) {
5614 if (SvTYPE(sv) >= SVt_PVMG) {
5615 MAGIC* const mg = SvMAGIC(sv);
5618 SvMAGIC_set(sv, mg->mg_moremagic);
5620 if ((mgt = SvMAGIC(sv))) {
5621 mg->mg_moremagic = mgt;
5622 SvMAGIC_set(sv, mg);
5632 sv_setsv(sv,&PL_sv_undef);
5638 Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
5639 SV const * const value)
5641 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
5643 PERL_UNUSED_ARG(rx);
5644 PERL_UNUSED_ARG(paren);
5645 PERL_UNUSED_ARG(value);
5648 Perl_croak_no_modify(aTHX);
5652 Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
5655 struct regexp *const rx = (struct regexp *)SvANY(r);
5659 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
5661 /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
5663 /* $` / ${^PREMATCH} */
5664 case RX_BUFF_IDX_PREMATCH:
5665 if (rx->offs[0].start != -1) {
5666 i = rx->offs[0].start;
5674 /* $' / ${^POSTMATCH} */
5675 case RX_BUFF_IDX_POSTMATCH:
5676 if (rx->offs[0].end != -1) {
5677 i = rx->sublen - rx->offs[0].end;
5679 s1 = rx->offs[0].end;
5685 /* $& / ${^MATCH}, $1, $2, ... */
5687 if (paren <= (I32)rx->nparens &&
5688 (s1 = rx->offs[paren].start) != -1 &&
5689 (t1 = rx->offs[paren].end) != -1)
5694 if (ckWARN(WARN_UNINITIALIZED))
5695 report_uninit((const SV *)sv);
5700 if (i > 0 && RXp_MATCH_UTF8(rx)) {
5701 const char * const s = rx->subbeg + s1;
5706 if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
5713 Perl_reg_qr_package(pTHX_ REGEXP * const rx)
5715 PERL_ARGS_ASSERT_REG_QR_PACKAGE;
5716 PERL_UNUSED_ARG(rx);
5720 return newSVpvs("Regexp");
5723 /* Scans the name of a named buffer from the pattern.
5724 * If flags is REG_RSN_RETURN_NULL returns null.
5725 * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
5726 * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
5727 * to the parsed name as looked up in the RExC_paren_names hash.
5728 * If there is an error throws a vFAIL().. type exception.
5731 #define REG_RSN_RETURN_NULL 0
5732 #define REG_RSN_RETURN_NAME 1
5733 #define REG_RSN_RETURN_DATA 2
5736 S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
5738 char *name_start = RExC_parse;
5740 PERL_ARGS_ASSERT_REG_SCAN_NAME;
5742 if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
5743 /* skip IDFIRST by using do...while */
5746 RExC_parse += UTF8SKIP(RExC_parse);
5747 } while (isALNUM_utf8((U8*)RExC_parse));
5751 } while (isALNUM(*RExC_parse));
5756 = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
5757 SVs_TEMP | (UTF ? SVf_UTF8 : 0));
5758 if ( flags == REG_RSN_RETURN_NAME)
5760 else if (flags==REG_RSN_RETURN_DATA) {
5763 if ( ! sv_name ) /* should not happen*/
5764 Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
5765 if (RExC_paren_names)
5766 he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
5768 sv_dat = HeVAL(he_str);
5770 vFAIL("Reference to nonexistent named group");
5774 Perl_croak(aTHX_ "panic: bad flag in reg_scan_name");
5781 #define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \
5782 int rem=(int)(RExC_end - RExC_parse); \
5791 if (RExC_lastparse!=RExC_parse) \
5792 PerlIO_printf(Perl_debug_log," >%.*s%-*s", \
5795 iscut ? "..." : "<" \
5798 PerlIO_printf(Perl_debug_log,"%16s",""); \
5801 num = RExC_size + 1; \
5803 num=REG_NODE_NUM(RExC_emit); \
5804 if (RExC_lastnum!=num) \
5805 PerlIO_printf(Perl_debug_log,"|%4d",num); \
5807 PerlIO_printf(Perl_debug_log,"|%4s",""); \
5808 PerlIO_printf(Perl_debug_log,"|%*s%-4s", \
5809 (int)((depth*2)), "", \
5813 RExC_lastparse=RExC_parse; \
5818 #define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \
5819 DEBUG_PARSE_MSG((funcname)); \
5820 PerlIO_printf(Perl_debug_log,"%4s","\n"); \
5822 #define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \
5823 DEBUG_PARSE_MSG((funcname)); \
5824 PerlIO_printf(Perl_debug_log,fmt "\n",args); \
5827 /* This section of code defines the inversion list object and its methods. The
5828 * interfaces are highly subject to change, so as much as possible is static to
5829 * this file. An inversion list is here implemented as a malloc'd C array with
5830 * some added info. More will be coming when functionality is added later.
5832 * It is currently implemented as an HV to the outside world, but is actually
5833 * an SV pointing to an array of UVs that the SV thinks are bytes. This allows
5834 * us to have an array of UV whose memory management is automatically handled
5835 * by the existing facilities for SV's.
5837 * Some of the methods should always be private to the implementation, and some
5838 * should eventually be made public */
5840 #define INVLIST_INITIAL_LEN 10
5842 PERL_STATIC_INLINE UV*
5843 S_invlist_array(pTHX_ HV* const invlist)
5845 /* Returns the pointer to the inversion list's array. Every time the
5846 * length changes, this needs to be called in case malloc or realloc moved
5849 PERL_ARGS_ASSERT_INVLIST_ARRAY;
5851 return (UV *) SvPVX(invlist);
5854 PERL_STATIC_INLINE UV
5855 S_invlist_len(pTHX_ HV* const invlist)
5857 /* Returns the current number of elements in the inversion list's array */
5859 PERL_ARGS_ASSERT_INVLIST_LEN;
5861 return SvCUR(invlist) / sizeof(UV);
5864 PERL_STATIC_INLINE UV
5865 S_invlist_max(pTHX_ HV* const invlist)
5867 /* Returns the maximum number of elements storable in the inversion list's
5868 * array, without having to realloc() */
5870 PERL_ARGS_ASSERT_INVLIST_MAX;
5872 return SvLEN(invlist) / sizeof(UV);
5875 PERL_STATIC_INLINE void
5876 S_invlist_set_len(pTHX_ HV* const invlist, const UV len)
5878 /* Sets the current number of elements stored in the inversion list */
5880 PERL_ARGS_ASSERT_INVLIST_SET_LEN;
5882 SvCUR_set(invlist, len * sizeof(UV));
5885 PERL_STATIC_INLINE void
5886 S_invlist_set_max(pTHX_ HV* const invlist, const UV max)
5889 /* Sets the maximum number of elements storable in the inversion list
5890 * without having to realloc() */
5892 PERL_ARGS_ASSERT_INVLIST_SET_MAX;
5894 if (max < invlist_len(invlist)) {
5895 Perl_croak(aTHX_ "panic: Can't make max size '%"UVuf"' less than current length %"UVuf" in inversion list", invlist_max(invlist), invlist_len(invlist));
5898 SvLEN_set(invlist, max * sizeof(UV));
5901 #ifndef PERL_IN_XSUB_RE
5903 Perl__new_invlist(pTHX_ IV initial_size)
5906 /* Return a pointer to a newly constructed inversion list, with enough
5907 * space to store 'initial_size' elements. If that number is negative, a
5908 * system default is used instead */
5910 if (initial_size < 0) {
5911 initial_size = INVLIST_INITIAL_LEN;
5914 /* Allocate the initial space */
5915 return (HV *) newSV(initial_size * sizeof(UV));
5919 PERL_STATIC_INLINE void
5920 S_invlist_destroy(pTHX_ HV* const invlist)
5922 /* Inversion list destructor */
5924 PERL_ARGS_ASSERT_INVLIST_DESTROY;
5926 SvREFCNT_dec(invlist);
5930 S_invlist_extend(pTHX_ HV* const invlist, const UV new_max)
5932 /* Grow the maximum size of an inversion list */
5934 PERL_ARGS_ASSERT_INVLIST_EXTEND;
5936 SvGROW((SV *)invlist, new_max * sizeof(UV));
5939 PERL_STATIC_INLINE void
5940 S_invlist_trim(pTHX_ HV* const invlist)
5942 PERL_ARGS_ASSERT_INVLIST_TRIM;
5944 /* Change the length of the inversion list to how many entries it currently
5947 SvPV_shrink_to_cur((SV *) invlist);
5950 /* An element is in an inversion list iff its index is even numbered: 0, 2, 4,
5953 #define ELEMENT_IN_INVLIST_SET(i) (! ((i) & 1))
5954 #define PREV_ELEMENT_IN_INVLIST_SET(i) ! ELEMENT_IN_INVLIST_SET(i)
5956 #ifndef PERL_IN_XSUB_RE
5958 Perl__append_range_to_invlist(pTHX_ HV* const invlist, const UV start, const UV end)
5960 /* Subject to change or removal. Append the range from 'start' to 'end' at
5961 * the end of the inversion list. The range must be above any existing
5964 UV* array = invlist_array(invlist);
5965 UV max = invlist_max(invlist);
5966 UV len = invlist_len(invlist);
5968 PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
5972 /* Here, the existing list is non-empty. The current max entry in the
5973 * list is generally the first value not in the set, except when the
5974 * set extends to the end of permissible values, in which case it is
5975 * the first entry in that final set, and so this call is an attempt to
5976 * append out-of-order */
5978 UV final_element = len - 1;
5979 if (array[final_element] > start
5980 || ELEMENT_IN_INVLIST_SET(final_element))
5982 Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list");
5985 /* Here, it is a legal append. If the new range begins with the first
5986 * value not in the set, it is extending the set, so the new first
5987 * value not in the set is one greater than the newly extended range.
5989 if (array[final_element] == start) {
5990 if (end != UV_MAX) {
5991 array[final_element] = end + 1;
5994 /* But if the end is the maximum representable on the machine,
5995 * just let the range that this would extend have no end */
5996 invlist_set_len(invlist, len - 1);
6002 /* Here the new range doesn't extend any existing set. Add it */
6004 len += 2; /* Includes an element each for the start and end of range */
6006 /* If overflows the existing space, extend, which may cause the array to be
6009 invlist_extend(invlist, len);
6010 array = invlist_array(invlist);
6013 invlist_set_len(invlist, len);
6015 /* The next item on the list starts the range, the one after that is
6016 * one past the new range. */
6017 array[len - 2] = start;
6018 if (end != UV_MAX) {
6019 array[len - 1] = end + 1;
6022 /* But if the end is the maximum representable on the machine, just let
6023 * the range have no end */
6024 invlist_set_len(invlist, len - 1);
6030 S_invlist_union(pTHX_ HV* const a, HV* const b)
6032 /* Return a new inversion list which is the union of two inversion lists.
6033 * The basis for this comes from "Unicode Demystified" Chapter 13 by
6034 * Richard Gillam, published by Addison-Wesley, and explained at some
6035 * length there. The preface says to incorporate its examples into your
6036 * code at your own risk.
6038 * The algorithm is like a merge sort.
6040 * XXX A potential performance improvement is to keep track as we go along
6041 * if only one of the inputs contributes to the result, meaning the other
6042 * is a subset of that one. In that case, we can skip the final copy and
6043 * return the larger of the input lists */
6045 UV* array_a = invlist_array(a); /* a's array */
6046 UV* array_b = invlist_array(b);
6047 UV len_a = invlist_len(a); /* length of a's array */
6048 UV len_b = invlist_len(b);
6050 HV* u; /* the resulting union */
6054 UV i_a = 0; /* current index into a's array */
6058 /* running count, as explained in the algorithm source book; items are
6059 * stopped accumulating and are output when the count changes to/from 0.
6060 * The count is incremented when we start a range that's in the set, and
6061 * decremented when we start a range that's not in the set. So its range
6062 * is 0 to 2. Only when the count is zero is something not in the set.
6066 PERL_ARGS_ASSERT_INVLIST_UNION;
6068 /* Size the union for the worst case: that the sets are completely
6070 u = _new_invlist(len_a + len_b);
6071 array_u = invlist_array(u);
6073 /* Go through each list item by item, stopping when exhausted one of
6075 while (i_a < len_a && i_b < len_b) {
6076 UV cp; /* The element to potentially add to the union's array */
6077 bool cp_in_set; /* is it in the the input list's set or not */
6079 /* We need to take one or the other of the two inputs for the union.
6080 * Since we are merging two sorted lists, we take the smaller of the
6081 * next items. In case of a tie, we take the one that is in its set
6082 * first. If we took one not in the set first, it would decrement the
6083 * count, possibly to 0 which would cause it to be output as ending the
6084 * range, and the next time through we would take the same number, and
6085 * output it again as beginning the next range. By doing it the
6086 * opposite way, there is no possibility that the count will be
6087 * momentarily decremented to 0, and thus the two adjoining ranges will
6088 * be seamlessly merged. (In a tie and both are in the set or both not
6089 * in the set, it doesn't matter which we take first.) */
6090 if (array_a[i_a] < array_b[i_b]
6091 || (array_a[i_a] == array_b[i_b] && ELEMENT_IN_INVLIST_SET(i_a)))
6093 cp_in_set = ELEMENT_IN_INVLIST_SET(i_a);
6097 cp_in_set = ELEMENT_IN_INVLIST_SET(i_b);
6101 /* Here, have chosen which of the two inputs to look at. Only output
6102 * if the running count changes to/from 0, which marks the
6103 * beginning/end of a range in that's in the set */
6106 array_u[i_u++] = cp;
6113 array_u[i_u++] = cp;
6118 /* Here, we are finished going through at least one of the lists, which
6119 * means there is something remaining in at most one. We check if the list
6120 * that hasn't been exhausted is positioned such that we are in the middle
6121 * of a range in its set or not. (i_a and i_b point to the element beyond
6122 * the one we care about.) If in the set, we decrement 'count'; if 0, there
6123 * is potentially more to output.
6124 * There are four cases:
6125 * 1) Both weren't in their sets, count is 0, and remains 0. What's left
6126 * in the union is entirely from the non-exhausted set.
6127 * 2) Both were in their sets, count is 2. Nothing further should
6128 * be output, as everything that remains will be in the exhausted
6129 * list's set, hence in the union; decrementing to 1 but not 0 insures
6131 * 3) the exhausted was in its set, non-exhausted isn't, count is 1.
6132 * Nothing further should be output because the union includes
6133 * everything from the exhausted set. Not decrementing ensures that.
6134 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
6135 * decrementing to 0 insures that we look at the remainder of the
6136 * non-exhausted set */
6137 if ((i_a != len_a && PREV_ELEMENT_IN_INVLIST_SET(i_a))
6138 || (i_b != len_b && PREV_ELEMENT_IN_INVLIST_SET(i_b)))
6143 /* The final length is what we've output so far, plus what else is about to
6144 * be output. (If 'count' is non-zero, then the input list we exhausted
6145 * has everything remaining up to the machine's limit in its set, and hence
6146 * in the union, so there will be no further output. */
6149 /* At most one of the subexpressions will be non-zero */
6150 len_u += (len_a - i_a) + (len_b - i_b);
6153 /* Set result to final length, which can change the pointer to array_u, so
6155 if (len_u != invlist_len(u)) {
6156 invlist_set_len(u, len_u);
6158 array_u = invlist_array(u);
6161 /* When 'count' is 0, the list that was exhausted (if one was shorter than
6162 * the other) ended with everything above it not in its set. That means
6163 * that the remaining part of the union is precisely the same as the
6164 * non-exhausted list, so can just copy it unchanged. (If both list were
6165 * exhausted at the same time, then the operations below will be both 0.)
6168 IV copy_count; /* At most one will have a non-zero copy count */
6169 if ((copy_count = len_a - i_a) > 0) {
6170 Copy(array_a + i_a, array_u + i_u, copy_count, UV);
6172 else if ((copy_count = len_b - i_b) > 0) {
6173 Copy(array_b + i_b, array_u + i_u, copy_count, UV);
6181 S_invlist_intersection(pTHX_ HV* const a, HV* const b)
6183 /* Return the intersection of two inversion lists. The basis for this
6184 * comes from "Unicode Demystified" Chapter 13 by Richard Gillam, published
6185 * by Addison-Wesley, and explained at some length there. The preface says
6186 * to incorporate its examples into your code at your own risk. In fact,
6189 * The algorithm is like a merge sort, and is essentially the same as the
6193 UV* array_a = invlist_array(a); /* a's array */
6194 UV* array_b = invlist_array(b);
6195 UV len_a = invlist_len(a); /* length of a's array */
6196 UV len_b = invlist_len(b);
6198 HV* r; /* the resulting intersection */
6202 UV i_a = 0; /* current index into a's array */
6206 /* running count, as explained in the algorithm source book; items are
6207 * stopped accumulating and are output when the count changes to/from 2.
6208 * The count is incremented when we start a range that's in the set, and
6209 * decremented when we start a range that's not in the set. So its range
6210 * is 0 to 2. Only when the count is 2 is something in the intersection.
6214 PERL_ARGS_ASSERT_INVLIST_INTERSECTION;
6216 /* Size the intersection for the worst case: that the intersection ends up
6217 * fragmenting everything to be completely disjoint */
6218 r= _new_invlist(len_a + len_b);
6219 array_r = invlist_array(r);
6221 /* Go through each list item by item, stopping when exhausted one of
6223 while (i_a < len_a && i_b < len_b) {
6224 UV cp; /* The element to potentially add to the intersection's
6226 bool cp_in_set; /* Is it in the input list's set or not */
6228 /* We need to take one or the other of the two inputs for the
6229 * intersection. Since we are merging two sorted lists, we take the
6230 * smaller of the next items. In case of a tie, we take the one that
6231 * is not in its set first (a difference from the union algorithm). If
6232 * we took one in the set first, it would increment the count, possibly
6233 * to 2 which would cause it to be output as starting a range in the
6234 * intersection, and the next time through we would take that same
6235 * number, and output it again as ending the set. By doing it the
6236 * opposite of this, there is no possibility that the count will be
6237 * momentarily incremented to 2. (In a tie and both are in the set or
6238 * both not in the set, it doesn't matter which we take first.) */
6239 if (array_a[i_a] < array_b[i_b]
6240 || (array_a[i_a] == array_b[i_b] && ! ELEMENT_IN_INVLIST_SET(i_a)))
6242 cp_in_set = ELEMENT_IN_INVLIST_SET(i_a);
6246 cp_in_set = ELEMENT_IN_INVLIST_SET(i_b);
6250 /* Here, have chosen which of the two inputs to look at. Only output
6251 * if the running count changes to/from 2, which marks the
6252 * beginning/end of a range that's in the intersection */
6256 array_r[i_r++] = cp;
6261 array_r[i_r++] = cp;
6267 /* Here, we are finished going through at least one of the lists, which
6268 * means there is something remaining in at most one. We check if the list
6269 * that has been exhausted is positioned such that we are in the middle
6270 * of a range in its set or not. (i_a and i_b point to elements 1 beyond
6271 * the ones we care about.) There are four cases:
6272 * 1) Both weren't in their sets, count is 0, and remains 0. There's
6273 * nothing left in the intersection.
6274 * 2) Both were in their sets, count is 2 and perhaps is incremented to
6275 * above 2. What should be output is exactly that which is in the
6276 * non-exhausted set, as everything it has is also in the intersection
6277 * set, and everything it doesn't have can't be in the intersection
6278 * 3) The exhausted was in its set, non-exhausted isn't, count is 1, and
6279 * gets incremented to 2. Like the previous case, the intersection is
6280 * everything that remains in the non-exhausted set.
6281 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
6282 * remains 1. And the intersection has nothing more. */
6283 if ((i_a == len_a && PREV_ELEMENT_IN_INVLIST_SET(i_a))
6284 || (i_b == len_b && PREV_ELEMENT_IN_INVLIST_SET(i_b)))
6289 /* The final length is what we've output so far plus what else is in the
6290 * intersection. At most one of the subexpressions below will be non-zero */
6293 len_r += (len_a - i_a) + (len_b - i_b);
6296 /* Set result to final length, which can change the pointer to array_r, so
6298 if (len_r != invlist_len(r)) {
6299 invlist_set_len(r, len_r);
6301 array_r = invlist_array(r);
6304 /* Finish outputting any remaining */
6305 if (count >= 2) { /* At most one will have a non-zero copy count */
6307 if ((copy_count = len_a - i_a) > 0) {
6308 Copy(array_a + i_a, array_r + i_r, copy_count, UV);
6310 else if ((copy_count = len_b - i_b) > 0) {
6311 Copy(array_b + i_b, array_r + i_r, copy_count, UV);
6319 S_add_range_to_invlist(pTHX_ HV* invlist, const UV start, const UV end)
6321 /* Add the range from 'start' to 'end' inclusive to the inversion list's
6322 * set. A pointer to the inversion list is returned. This may actually be
6323 * a new list, in which case the passed in one has been destroyed. The
6324 * passed in inversion list can be NULL, in which case a new one is created
6325 * with just the one range in it */
6331 if (invlist == NULL) {
6332 invlist = _new_invlist(2);
6336 len = invlist_len(invlist);
6339 /* If comes after the final entry, can just append it to the end */
6341 || start >= invlist_array(invlist)
6342 [invlist_len(invlist) - 1])
6344 _append_range_to_invlist(invlist, start, end);
6348 /* Here, can't just append things, create and return a new inversion list
6349 * which is the union of this range and the existing inversion list */
6350 range_invlist = _new_invlist(2);
6351 _append_range_to_invlist(range_invlist, start, end);
6353 added_invlist = invlist_union(invlist, range_invlist);
6355 /* The passed in list can be freed, as well as our temporary */
6356 invlist_destroy(range_invlist);
6357 if (invlist != added_invlist) {
6358 invlist_destroy(invlist);
6361 return added_invlist;
6364 PERL_STATIC_INLINE HV*
6365 S_add_cp_to_invlist(pTHX_ HV* invlist, const UV cp) {
6366 return add_range_to_invlist(invlist, cp, cp);
6369 /* End of inversion list object */
6372 - reg - regular expression, i.e. main body or parenthesized thing
6374 * Caller must absorb opening parenthesis.
6376 * Combining parenthesis handling with the base level of regular expression
6377 * is a trifle forced, but the need to tie the tails of the branches to what
6378 * follows makes it hard to avoid.
6380 #define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
6382 #define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
6384 #define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
6388 S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
6389 /* paren: Parenthesized? 0=top, 1=(, inside: changed to letter. */
6392 register regnode *ret; /* Will be the head of the group. */
6393 register regnode *br;
6394 register regnode *lastbr;
6395 register regnode *ender = NULL;
6396 register I32 parno = 0;
6398 U32 oregflags = RExC_flags;
6399 bool have_branch = 0;
6401 I32 freeze_paren = 0;
6402 I32 after_freeze = 0;
6404 /* for (?g), (?gc), and (?o) warnings; warning
6405 about (?c) will warn about (?g) -- japhy */
6407 #define WASTED_O 0x01
6408 #define WASTED_G 0x02
6409 #define WASTED_C 0x04
6410 #define WASTED_GC (0x02|0x04)
6411 I32 wastedflags = 0x00;
6413 char * parse_start = RExC_parse; /* MJD */
6414 char * const oregcomp_parse = RExC_parse;
6416 GET_RE_DEBUG_FLAGS_DECL;
6418 PERL_ARGS_ASSERT_REG;
6419 DEBUG_PARSE("reg ");
6421 *flagp = 0; /* Tentatively. */
6424 /* Make an OPEN node, if parenthesized. */
6426 if ( *RExC_parse == '*') { /* (*VERB:ARG) */
6427 char *start_verb = RExC_parse;
6428 STRLEN verb_len = 0;
6429 char *start_arg = NULL;
6430 unsigned char op = 0;
6432 int internal_argval = 0; /* internal_argval is only useful if !argok */
6433 while ( *RExC_parse && *RExC_parse != ')' ) {
6434 if ( *RExC_parse == ':' ) {
6435 start_arg = RExC_parse + 1;
6441 verb_len = RExC_parse - start_verb;
6444 while ( *RExC_parse && *RExC_parse != ')' )
6446 if ( *RExC_parse != ')' )
6447 vFAIL("Unterminated verb pattern argument");
6448 if ( RExC_parse == start_arg )
6451 if ( *RExC_parse != ')' )
6452 vFAIL("Unterminated verb pattern");
6455 switch ( *start_verb ) {
6456 case 'A': /* (*ACCEPT) */
6457 if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
6459 internal_argval = RExC_nestroot;
6462 case 'C': /* (*COMMIT) */
6463 if ( memEQs(start_verb,verb_len,"COMMIT") )
6466 case 'F': /* (*FAIL) */
6467 if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
6472 case ':': /* (*:NAME) */
6473 case 'M': /* (*MARK:NAME) */
6474 if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
6479 case 'P': /* (*PRUNE) */
6480 if ( memEQs(start_verb,verb_len,"PRUNE") )
6483 case 'S': /* (*SKIP) */
6484 if ( memEQs(start_verb,verb_len,"SKIP") )
6487 case 'T': /* (*THEN) */
6488 /* [19:06] <TimToady> :: is then */
6489 if ( memEQs(start_verb,verb_len,"THEN") ) {
6491 RExC_seen |= REG_SEEN_CUTGROUP;
6497 vFAIL3("Unknown verb pattern '%.*s'",
6498 verb_len, start_verb);
6501 if ( start_arg && internal_argval ) {
6502 vFAIL3("Verb pattern '%.*s' may not have an argument",
6503 verb_len, start_verb);
6504 } else if ( argok < 0 && !start_arg ) {
6505 vFAIL3("Verb pattern '%.*s' has a mandatory argument",
6506 verb_len, start_verb);
6508 ret = reganode(pRExC_state, op, internal_argval);
6509 if ( ! internal_argval && ! SIZE_ONLY ) {
6511 SV *sv = newSVpvn( start_arg, RExC_parse - start_arg);
6512 ARG(ret) = add_data( pRExC_state, 1, "S" );
6513 RExC_rxi->data->data[ARG(ret)]=(void*)sv;
6520 if (!internal_argval)
6521 RExC_seen |= REG_SEEN_VERBARG;
6522 } else if ( start_arg ) {
6523 vFAIL3("Verb pattern '%.*s' may not have an argument",
6524 verb_len, start_verb);
6526 ret = reg_node(pRExC_state, op);
6528 nextchar(pRExC_state);
6531 if (*RExC_parse == '?') { /* (?...) */
6532 bool is_logical = 0;
6533 const char * const seqstart = RExC_parse;
6534 bool has_use_defaults = FALSE;
6537 paren = *RExC_parse++;
6538 ret = NULL; /* For look-ahead/behind. */
6541 case 'P': /* (?P...) variants for those used to PCRE/Python */
6542 paren = *RExC_parse++;
6543 if ( paren == '<') /* (?P<...>) named capture */
6545 else if (paren == '>') { /* (?P>name) named recursion */
6546 goto named_recursion;
6548 else if (paren == '=') { /* (?P=...) named backref */
6549 /* this pretty much dupes the code for \k<NAME> in regatom(), if
6550 you change this make sure you change that */
6551 char* name_start = RExC_parse;
6553 SV *sv_dat = reg_scan_name(pRExC_state,
6554 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
6555 if (RExC_parse == name_start || *RExC_parse != ')')
6556 vFAIL2("Sequence %.3s... not terminated",parse_start);
6559 num = add_data( pRExC_state, 1, "S" );
6560 RExC_rxi->data->data[num]=(void*)sv_dat;
6561 SvREFCNT_inc_simple_void(sv_dat);
6564 ret = reganode(pRExC_state,
6567 : (MORE_ASCII_RESTRICTED)
6569 : (AT_LEAST_UNI_SEMANTICS)
6577 Set_Node_Offset(ret, parse_start+1);
6578 Set_Node_Cur_Length(ret); /* MJD */
6580 nextchar(pRExC_state);
6584 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
6586 case '<': /* (?<...) */
6587 if (*RExC_parse == '!')
6589 else if (*RExC_parse != '=')
6595 case '\'': /* (?'...') */
6596 name_start= RExC_parse;
6597 svname = reg_scan_name(pRExC_state,
6598 SIZE_ONLY ? /* reverse test from the others */
6599 REG_RSN_RETURN_NAME :
6600 REG_RSN_RETURN_NULL);
6601 if (RExC_parse == name_start) {
6603 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
6606 if (*RExC_parse != paren)
6607 vFAIL2("Sequence (?%c... not terminated",
6608 paren=='>' ? '<' : paren);
6612 if (!svname) /* shouldn't happen */
6614 "panic: reg_scan_name returned NULL");
6615 if (!RExC_paren_names) {
6616 RExC_paren_names= newHV();
6617 sv_2mortal(MUTABLE_SV(RExC_paren_names));
6619 RExC_paren_name_list= newAV();
6620 sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
6623 he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
6625 sv_dat = HeVAL(he_str);
6627 /* croak baby croak */
6629 "panic: paren_name hash element allocation failed");
6630 } else if ( SvPOK(sv_dat) ) {
6631 /* (?|...) can mean we have dupes so scan to check
6632 its already been stored. Maybe a flag indicating
6633 we are inside such a construct would be useful,
6634 but the arrays are likely to be quite small, so
6635 for now we punt -- dmq */
6636 IV count = SvIV(sv_dat);
6637 I32 *pv = (I32*)SvPVX(sv_dat);
6639 for ( i = 0 ; i < count ; i++ ) {
6640 if ( pv[i] == RExC_npar ) {
6646 pv = (I32*)SvGROW(sv_dat, SvCUR(sv_dat) + sizeof(I32)+1);
6647 SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
6648 pv[count] = RExC_npar;
6649 SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
6652 (void)SvUPGRADE(sv_dat,SVt_PVNV);
6653 sv_setpvn(sv_dat, (char *)&(RExC_npar), sizeof(I32));
6655 SvIV_set(sv_dat, 1);
6658 /* Yes this does cause a memory leak in debugging Perls */
6659 if (!av_store(RExC_paren_name_list, RExC_npar, SvREFCNT_inc(svname)))
6660 SvREFCNT_dec(svname);
6663 /*sv_dump(sv_dat);*/
6665 nextchar(pRExC_state);
6667 goto capturing_parens;
6669 RExC_seen |= REG_SEEN_LOOKBEHIND;
6670 RExC_in_lookbehind++;
6672 case '=': /* (?=...) */
6673 RExC_seen_zerolen++;
6675 case '!': /* (?!...) */
6676 RExC_seen_zerolen++;
6677 if (*RExC_parse == ')') {
6678 ret=reg_node(pRExC_state, OPFAIL);
6679 nextchar(pRExC_state);
6683 case '|': /* (?|...) */
6684 /* branch reset, behave like a (?:...) except that
6685 buffers in alternations share the same numbers */
6687 after_freeze = freeze_paren = RExC_npar;
6689 case ':': /* (?:...) */
6690 case '>': /* (?>...) */
6692 case '$': /* (?$...) */
6693 case '@': /* (?@...) */
6694 vFAIL2("Sequence (?%c...) not implemented", (int)paren);
6696 case '#': /* (?#...) */
6697 while (*RExC_parse && *RExC_parse != ')')
6699 if (*RExC_parse != ')')
6700 FAIL("Sequence (?#... not terminated");
6701 nextchar(pRExC_state);
6704 case '0' : /* (?0) */
6705 case 'R' : /* (?R) */
6706 if (*RExC_parse != ')')
6707 FAIL("Sequence (?R) not terminated");
6708 ret = reg_node(pRExC_state, GOSTART);
6709 *flagp |= POSTPONED;
6710 nextchar(pRExC_state);
6713 { /* named and numeric backreferences */
6715 case '&': /* (?&NAME) */
6716 parse_start = RExC_parse - 1;
6719 SV *sv_dat = reg_scan_name(pRExC_state,
6720 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
6721 num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
6723 goto gen_recurse_regop;
6726 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
6728 vFAIL("Illegal pattern");
6730 goto parse_recursion;
6732 case '-': /* (?-1) */
6733 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
6734 RExC_parse--; /* rewind to let it be handled later */
6738 case '1': case '2': case '3': case '4': /* (?1) */
6739 case '5': case '6': case '7': case '8': case '9':
6742 num = atoi(RExC_parse);
6743 parse_start = RExC_parse - 1; /* MJD */
6744 if (*RExC_parse == '-')
6746 while (isDIGIT(*RExC_parse))
6748 if (*RExC_parse!=')')
6749 vFAIL("Expecting close bracket");
6752 if ( paren == '-' ) {
6754 Diagram of capture buffer numbering.
6755 Top line is the normal capture buffer numbers
6756 Bottom line is the negative indexing as from
6760 /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
6764 num = RExC_npar + num;
6767 vFAIL("Reference to nonexistent group");
6769 } else if ( paren == '+' ) {
6770 num = RExC_npar + num - 1;
6773 ret = reganode(pRExC_state, GOSUB, num);
6775 if (num > (I32)RExC_rx->nparens) {
6777 vFAIL("Reference to nonexistent group");
6779 ARG2L_SET( ret, RExC_recurse_count++);
6781 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
6782 "Recurse #%"UVuf" to %"IVdf"\n", (UV)ARG(ret), (IV)ARG2L(ret)));
6786 RExC_seen |= REG_SEEN_RECURSE;
6787 Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
6788 Set_Node_Offset(ret, parse_start); /* MJD */
6790 *flagp |= POSTPONED;
6791 nextchar(pRExC_state);
6793 } /* named and numeric backreferences */
6796 case '?': /* (??...) */
6798 if (*RExC_parse != '{') {
6800 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
6803 *flagp |= POSTPONED;
6804 paren = *RExC_parse++;
6806 case '{': /* (?{...}) */
6811 char *s = RExC_parse;
6813 RExC_seen_zerolen++;
6814 RExC_seen |= REG_SEEN_EVAL;
6815 while (count && (c = *RExC_parse)) {
6826 if (*RExC_parse != ')') {
6828 vFAIL("Sequence (?{...}) not terminated or not {}-balanced");
6832 OP_4tree *sop, *rop;
6833 SV * const sv = newSVpvn(s, RExC_parse - 1 - s);
6836 Perl_save_re_context(aTHX);
6837 rop = Perl_sv_compile_2op_is_broken(aTHX_ sv, &sop, "re", &pad);
6838 sop->op_private |= OPpREFCOUNTED;
6839 /* re_dup will OpREFCNT_inc */
6840 OpREFCNT_set(sop, 1);
6843 n = add_data(pRExC_state, 3, "nop");
6844 RExC_rxi->data->data[n] = (void*)rop;
6845 RExC_rxi->data->data[n+1] = (void*)sop;
6846 RExC_rxi->data->data[n+2] = (void*)pad;
6849 else { /* First pass */
6850 if (PL_reginterp_cnt < ++RExC_seen_evals
6852 /* No compiled RE interpolated, has runtime
6853 components ===> unsafe. */
6854 FAIL("Eval-group not allowed at runtime, use re 'eval'");
6855 if (PL_tainting && PL_tainted)
6856 FAIL("Eval-group in insecure regular expression");
6857 #if PERL_VERSION > 8
6858 if (IN_PERL_COMPILETIME)
6863 nextchar(pRExC_state);
6865 ret = reg_node(pRExC_state, LOGICAL);
6868 REGTAIL(pRExC_state, ret, reganode(pRExC_state, EVAL, n));
6869 /* deal with the length of this later - MJD */
6872 ret = reganode(pRExC_state, EVAL, n);
6873 Set_Node_Length(ret, RExC_parse - parse_start + 1);
6874 Set_Node_Offset(ret, parse_start);
6877 case '(': /* (?(?{...})...) and (?(?=...)...) */
6880 if (RExC_parse[0] == '?') { /* (?(?...)) */
6881 if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
6882 || RExC_parse[1] == '<'
6883 || RExC_parse[1] == '{') { /* Lookahead or eval. */
6886 ret = reg_node(pRExC_state, LOGICAL);
6889 REGTAIL(pRExC_state, ret, reg(pRExC_state, 1, &flag,depth+1));
6893 else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */
6894 || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
6896 char ch = RExC_parse[0] == '<' ? '>' : '\'';
6897 char *name_start= RExC_parse++;
6899 SV *sv_dat=reg_scan_name(pRExC_state,
6900 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
6901 if (RExC_parse == name_start || *RExC_parse != ch)
6902 vFAIL2("Sequence (?(%c... not terminated",
6903 (ch == '>' ? '<' : ch));
6906 num = add_data( pRExC_state, 1, "S" );
6907 RExC_rxi->data->data[num]=(void*)sv_dat;
6908 SvREFCNT_inc_simple_void(sv_dat);
6910 ret = reganode(pRExC_state,NGROUPP,num);
6911 goto insert_if_check_paren;
6913 else if (RExC_parse[0] == 'D' &&
6914 RExC_parse[1] == 'E' &&
6915 RExC_parse[2] == 'F' &&
6916 RExC_parse[3] == 'I' &&
6917 RExC_parse[4] == 'N' &&
6918 RExC_parse[5] == 'E')
6920 ret = reganode(pRExC_state,DEFINEP,0);
6923 goto insert_if_check_paren;
6925 else if (RExC_parse[0] == 'R') {
6928 if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
6929 parno = atoi(RExC_parse++);
6930 while (isDIGIT(*RExC_parse))
6932 } else if (RExC_parse[0] == '&') {
6935 sv_dat = reg_scan_name(pRExC_state,
6936 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
6937 parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
6939 ret = reganode(pRExC_state,INSUBP,parno);
6940 goto insert_if_check_paren;
6942 else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
6945 parno = atoi(RExC_parse++);
6947 while (isDIGIT(*RExC_parse))
6949 ret = reganode(pRExC_state, GROUPP, parno);
6951 insert_if_check_paren:
6952 if ((c = *nextchar(pRExC_state)) != ')')
6953 vFAIL("Switch condition not recognized");
6955 REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
6956 br = regbranch(pRExC_state, &flags, 1,depth+1);
6958 br = reganode(pRExC_state, LONGJMP, 0);
6960 REGTAIL(pRExC_state, br, reganode(pRExC_state, LONGJMP, 0));
6961 c = *nextchar(pRExC_state);
6966 vFAIL("(?(DEFINE)....) does not allow branches");
6967 lastbr = reganode(pRExC_state, IFTHEN, 0); /* Fake one for optimizer. */
6968 regbranch(pRExC_state, &flags, 1,depth+1);
6969 REGTAIL(pRExC_state, ret, lastbr);
6972 c = *nextchar(pRExC_state);
6977 vFAIL("Switch (?(condition)... contains too many branches");
6978 ender = reg_node(pRExC_state, TAIL);
6979 REGTAIL(pRExC_state, br, ender);
6981 REGTAIL(pRExC_state, lastbr, ender);
6982 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
6985 REGTAIL(pRExC_state, ret, ender);
6986 RExC_size++; /* XXX WHY do we need this?!!
6987 For large programs it seems to be required
6988 but I can't figure out why. -- dmq*/
6992 vFAIL2("Unknown switch condition (?(%.2s", RExC_parse);
6996 RExC_parse--; /* for vFAIL to print correctly */
6997 vFAIL("Sequence (? incomplete");
6999 case DEFAULT_PAT_MOD: /* Use default flags with the exceptions
7001 has_use_defaults = TRUE;
7002 STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
7003 set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
7004 ? REGEX_UNICODE_CHARSET
7005 : REGEX_DEPENDS_CHARSET);
7009 parse_flags: /* (?i) */
7011 U32 posflags = 0, negflags = 0;
7012 U32 *flagsp = &posflags;
7013 char has_charset_modifier = '\0';
7014 regex_charset cs = (RExC_utf8 || RExC_uni_semantics)
7015 ? REGEX_UNICODE_CHARSET
7016 : REGEX_DEPENDS_CHARSET;
7018 while (*RExC_parse) {
7019 /* && strchr("iogcmsx", *RExC_parse) */
7020 /* (?g), (?gc) and (?o) are useless here
7021 and must be globally applied -- japhy */
7022 switch (*RExC_parse) {
7023 CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp);
7024 case LOCALE_PAT_MOD:
7025 if (has_charset_modifier) {
7026 goto excess_modifier;
7028 else if (flagsp == &negflags) {
7031 cs = REGEX_LOCALE_CHARSET;
7032 has_charset_modifier = LOCALE_PAT_MOD;
7033 RExC_contains_locale = 1;
7035 case UNICODE_PAT_MOD:
7036 if (has_charset_modifier) {
7037 goto excess_modifier;
7039 else if (flagsp == &negflags) {
7042 cs = REGEX_UNICODE_CHARSET;
7043 has_charset_modifier = UNICODE_PAT_MOD;
7045 case ASCII_RESTRICT_PAT_MOD:
7046 if (flagsp == &negflags) {
7049 if (has_charset_modifier) {
7050 if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
7051 goto excess_modifier;
7053 /* Doubled modifier implies more restricted */
7054 cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
7057 cs = REGEX_ASCII_RESTRICTED_CHARSET;
7059 has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
7061 case DEPENDS_PAT_MOD:
7062 if (has_use_defaults) {
7063 goto fail_modifiers;
7065 else if (flagsp == &negflags) {
7068 else if (has_charset_modifier) {
7069 goto excess_modifier;
7072 /* The dual charset means unicode semantics if the
7073 * pattern (or target, not known until runtime) are
7074 * utf8, or something in the pattern indicates unicode
7076 cs = (RExC_utf8 || RExC_uni_semantics)
7077 ? REGEX_UNICODE_CHARSET
7078 : REGEX_DEPENDS_CHARSET;
7079 has_charset_modifier = DEPENDS_PAT_MOD;
7083 if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
7084 vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
7086 else if (has_charset_modifier == *(RExC_parse - 1)) {
7087 vFAIL2("Regexp modifier \"%c\" may not appear twice", *(RExC_parse - 1));
7090 vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
7095 vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"", *(RExC_parse - 1));
7097 case ONCE_PAT_MOD: /* 'o' */
7098 case GLOBAL_PAT_MOD: /* 'g' */
7099 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
7100 const I32 wflagbit = *RExC_parse == 'o' ? WASTED_O : WASTED_G;
7101 if (! (wastedflags & wflagbit) ) {
7102 wastedflags |= wflagbit;
7105 "Useless (%s%c) - %suse /%c modifier",
7106 flagsp == &negflags ? "?-" : "?",
7108 flagsp == &negflags ? "don't " : "",
7115 case CONTINUE_PAT_MOD: /* 'c' */
7116 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
7117 if (! (wastedflags & WASTED_C) ) {
7118 wastedflags |= WASTED_GC;
7121 "Useless (%sc) - %suse /gc modifier",
7122 flagsp == &negflags ? "?-" : "?",
7123 flagsp == &negflags ? "don't " : ""
7128 case KEEPCOPY_PAT_MOD: /* 'p' */
7129 if (flagsp == &negflags) {
7131 ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
7133 *flagsp |= RXf_PMf_KEEPCOPY;
7137 /* A flag is a default iff it is following a minus, so
7138 * if there is a minus, it means will be trying to
7139 * re-specify a default which is an error */
7140 if (has_use_defaults || flagsp == &negflags) {
7143 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
7147 wastedflags = 0; /* reset so (?g-c) warns twice */
7153 RExC_flags |= posflags;
7154 RExC_flags &= ~negflags;
7155 set_regex_charset(&RExC_flags, cs);
7157 oregflags |= posflags;
7158 oregflags &= ~negflags;
7159 set_regex_charset(&oregflags, cs);
7161 nextchar(pRExC_state);
7172 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
7177 }} /* one for the default block, one for the switch */
7184 ret = reganode(pRExC_state, OPEN, parno);
7187 RExC_nestroot = parno;
7188 if (RExC_seen & REG_SEEN_RECURSE
7189 && !RExC_open_parens[parno-1])
7191 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
7192 "Setting open paren #%"IVdf" to %d\n",
7193 (IV)parno, REG_NODE_NUM(ret)));
7194 RExC_open_parens[parno-1]= ret;
7197 Set_Node_Length(ret, 1); /* MJD */
7198 Set_Node_Offset(ret, RExC_parse); /* MJD */
7206 /* Pick up the branches, linking them together. */
7207 parse_start = RExC_parse; /* MJD */
7208 br = regbranch(pRExC_state, &flags, 1,depth+1);
7210 /* branch_len = (paren != 0); */
7214 if (*RExC_parse == '|') {
7215 if (!SIZE_ONLY && RExC_extralen) {
7216 reginsert(pRExC_state, BRANCHJ, br, depth+1);
7219 reginsert(pRExC_state, BRANCH, br, depth+1);
7220 Set_Node_Length(br, paren != 0);
7221 Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
7225 RExC_extralen += 1; /* For BRANCHJ-BRANCH. */
7227 else if (paren == ':') {
7228 *flagp |= flags&SIMPLE;
7230 if (is_open) { /* Starts with OPEN. */
7231 REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */
7233 else if (paren != '?') /* Not Conditional */
7235 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
7237 while (*RExC_parse == '|') {
7238 if (!SIZE_ONLY && RExC_extralen) {
7239 ender = reganode(pRExC_state, LONGJMP,0);
7240 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender); /* Append to the previous. */
7243 RExC_extralen += 2; /* Account for LONGJMP. */
7244 nextchar(pRExC_state);
7246 if (RExC_npar > after_freeze)
7247 after_freeze = RExC_npar;
7248 RExC_npar = freeze_paren;
7250 br = regbranch(pRExC_state, &flags, 0, depth+1);
7254 REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */
7256 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
7259 if (have_branch || paren != ':') {
7260 /* Make a closing node, and hook it on the end. */
7263 ender = reg_node(pRExC_state, TAIL);
7266 ender = reganode(pRExC_state, CLOSE, parno);
7267 if (!SIZE_ONLY && RExC_seen & REG_SEEN_RECURSE) {
7268 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
7269 "Setting close paren #%"IVdf" to %d\n",
7270 (IV)parno, REG_NODE_NUM(ender)));
7271 RExC_close_parens[parno-1]= ender;
7272 if (RExC_nestroot == parno)
7275 Set_Node_Offset(ender,RExC_parse+1); /* MJD */
7276 Set_Node_Length(ender,1); /* MJD */
7282 *flagp &= ~HASWIDTH;
7285 ender = reg_node(pRExC_state, SUCCEED);
7288 ender = reg_node(pRExC_state, END);
7290 assert(!RExC_opend); /* there can only be one! */
7295 REGTAIL(pRExC_state, lastbr, ender);
7297 if (have_branch && !SIZE_ONLY) {
7299 RExC_seen |= REG_TOP_LEVEL_BRANCHES;
7301 /* Hook the tails of the branches to the closing node. */
7302 for (br = ret; br; br = regnext(br)) {
7303 const U8 op = PL_regkind[OP(br)];
7305 REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
7307 else if (op == BRANCHJ) {
7308 REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
7316 static const char parens[] = "=!<,>";
7318 if (paren && (p = strchr(parens, paren))) {
7319 U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
7320 int flag = (p - parens) > 1;
7323 node = SUSPEND, flag = 0;
7324 reginsert(pRExC_state, node,ret, depth+1);
7325 Set_Node_Cur_Length(ret);
7326 Set_Node_Offset(ret, parse_start + 1);
7328 REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
7332 /* Check for proper termination. */
7334 RExC_flags = oregflags;
7335 if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
7336 RExC_parse = oregcomp_parse;
7337 vFAIL("Unmatched (");
7340 else if (!paren && RExC_parse < RExC_end) {
7341 if (*RExC_parse == ')') {
7343 vFAIL("Unmatched )");
7346 FAIL("Junk on end of regexp"); /* "Can't happen". */
7350 if (RExC_in_lookbehind) {
7351 RExC_in_lookbehind--;
7353 if (after_freeze > RExC_npar)
7354 RExC_npar = after_freeze;
7359 - regbranch - one alternative of an | operator
7361 * Implements the concatenation operator.
7364 S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
7367 register regnode *ret;
7368 register regnode *chain = NULL;
7369 register regnode *latest;
7370 I32 flags = 0, c = 0;
7371 GET_RE_DEBUG_FLAGS_DECL;
7373 PERL_ARGS_ASSERT_REGBRANCH;
7375 DEBUG_PARSE("brnc");
7380 if (!SIZE_ONLY && RExC_extralen)
7381 ret = reganode(pRExC_state, BRANCHJ,0);
7383 ret = reg_node(pRExC_state, BRANCH);
7384 Set_Node_Length(ret, 1);
7388 if (!first && SIZE_ONLY)
7389 RExC_extralen += 1; /* BRANCHJ */
7391 *flagp = WORST; /* Tentatively. */
7394 nextchar(pRExC_state);
7395 while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
7397 latest = regpiece(pRExC_state, &flags,depth+1);
7398 if (latest == NULL) {
7399 if (flags & TRYAGAIN)
7403 else if (ret == NULL)
7405 *flagp |= flags&(HASWIDTH|POSTPONED);
7406 if (chain == NULL) /* First piece. */
7407 *flagp |= flags&SPSTART;
7410 REGTAIL(pRExC_state, chain, latest);
7415 if (chain == NULL) { /* Loop ran zero times. */
7416 chain = reg_node(pRExC_state, NOTHING);
7421 *flagp |= flags&SIMPLE;
7428 - regpiece - something followed by possible [*+?]
7430 * Note that the branching code sequences used for ? and the general cases
7431 * of * and + are somewhat optimized: they use the same NOTHING node as
7432 * both the endmarker for their branch list and the body of the last branch.
7433 * It might seem that this node could be dispensed with entirely, but the
7434 * endmarker role is not redundant.
7437 S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
7440 register regnode *ret;
7442 register char *next;
7444 const char * const origparse = RExC_parse;
7446 I32 max = REG_INFTY;
7447 #ifdef RE_TRACK_PATTERN_OFFSETS
7450 const char *maxpos = NULL;
7451 GET_RE_DEBUG_FLAGS_DECL;
7453 PERL_ARGS_ASSERT_REGPIECE;
7455 DEBUG_PARSE("piec");
7457 ret = regatom(pRExC_state, &flags,depth+1);
7459 if (flags & TRYAGAIN)
7466 if (op == '{' && regcurly(RExC_parse)) {
7468 #ifdef RE_TRACK_PATTERN_OFFSETS
7469 parse_start = RExC_parse; /* MJD */
7471 next = RExC_parse + 1;
7472 while (isDIGIT(*next) || *next == ',') {
7481 if (*next == '}') { /* got one */
7485 min = atoi(RExC_parse);
7489 maxpos = RExC_parse;
7491 if (!max && *maxpos != '0')
7492 max = REG_INFTY; /* meaning "infinity" */
7493 else if (max >= REG_INFTY)
7494 vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
7496 nextchar(pRExC_state);
7499 if ((flags&SIMPLE)) {
7500 RExC_naughty += 2 + RExC_naughty / 2;
7501 reginsert(pRExC_state, CURLY, ret, depth+1);
7502 Set_Node_Offset(ret, parse_start+1); /* MJD */
7503 Set_Node_Cur_Length(ret);
7506 regnode * const w = reg_node(pRExC_state, WHILEM);
7509 REGTAIL(pRExC_state, ret, w);
7510 if (!SIZE_ONLY && RExC_extralen) {
7511 reginsert(pRExC_state, LONGJMP,ret, depth+1);
7512 reginsert(pRExC_state, NOTHING,ret, depth+1);
7513 NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
7515 reginsert(pRExC_state, CURLYX,ret, depth+1);
7517 Set_Node_Offset(ret, parse_start+1);
7518 Set_Node_Length(ret,
7519 op == '{' ? (RExC_parse - parse_start) : 1);
7521 if (!SIZE_ONLY && RExC_extralen)
7522 NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
7523 REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
7525 RExC_whilem_seen++, RExC_extralen += 3;
7526 RExC_naughty += 4 + RExC_naughty; /* compound interest */
7535 vFAIL("Can't do {n,m} with n > m");
7537 ARG1_SET(ret, (U16)min);
7538 ARG2_SET(ret, (U16)max);
7550 #if 0 /* Now runtime fix should be reliable. */
7552 /* if this is reinstated, don't forget to put this back into perldiag:
7554 =item Regexp *+ operand could be empty at {#} in regex m/%s/
7556 (F) The part of the regexp subject to either the * or + quantifier
7557 could match an empty string. The {#} shows in the regular
7558 expression about where the problem was discovered.
7562 if (!(flags&HASWIDTH) && op != '?')
7563 vFAIL("Regexp *+ operand could be empty");
7566 #ifdef RE_TRACK_PATTERN_OFFSETS
7567 parse_start = RExC_parse;
7569 nextchar(pRExC_state);
7571 *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
7573 if (op == '*' && (flags&SIMPLE)) {
7574 reginsert(pRExC_state, STAR, ret, depth+1);
7578 else if (op == '*') {
7582 else if (op == '+' && (flags&SIMPLE)) {
7583 reginsert(pRExC_state, PLUS, ret, depth+1);
7587 else if (op == '+') {
7591 else if (op == '?') {
7596 if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
7597 ckWARN3reg(RExC_parse,
7598 "%.*s matches null string many times",
7599 (int)(RExC_parse >= origparse ? RExC_parse - origparse : 0),
7603 if (RExC_parse < RExC_end && *RExC_parse == '?') {
7604 nextchar(pRExC_state);
7605 reginsert(pRExC_state, MINMOD, ret, depth+1);
7606 REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
7608 #ifndef REG_ALLOW_MINMOD_SUSPEND
7611 if (RExC_parse < RExC_end && *RExC_parse == '+') {
7613 nextchar(pRExC_state);
7614 ender = reg_node(pRExC_state, SUCCEED);
7615 REGTAIL(pRExC_state, ret, ender);
7616 reginsert(pRExC_state, SUSPEND, ret, depth+1);
7618 ender = reg_node(pRExC_state, TAIL);
7619 REGTAIL(pRExC_state, ret, ender);
7623 if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
7625 vFAIL("Nested quantifiers");
7632 /* reg_namedseq(pRExC_state,UVp, UV depth)
7634 This is expected to be called by a parser routine that has
7635 recognized '\N' and needs to handle the rest. RExC_parse is
7636 expected to point at the first char following the N at the time
7639 The \N may be inside (indicated by valuep not being NULL) or outside a
7642 \N may begin either a named sequence, or if outside a character class, mean
7643 to match a non-newline. For non single-quoted regexes, the tokenizer has
7644 attempted to decide which, and in the case of a named sequence converted it
7645 into one of the forms: \N{} (if the sequence is null), or \N{U+c1.c2...},
7646 where c1... are the characters in the sequence. For single-quoted regexes,
7647 the tokenizer passes the \N sequence through unchanged; this code will not
7648 attempt to determine this nor expand those. The net effect is that if the
7649 beginning of the passed-in pattern isn't '{U+' or there is no '}', it
7650 signals that this \N occurrence means to match a non-newline.
7652 Only the \N{U+...} form should occur in a character class, for the same
7653 reason that '.' inside a character class means to just match a period: it
7654 just doesn't make sense.
7656 If valuep is non-null then it is assumed that we are parsing inside
7657 of a charclass definition and the first codepoint in the resolved
7658 string is returned via *valuep and the routine will return NULL.
7659 In this mode if a multichar string is returned from the charnames
7660 handler, a warning will be issued, and only the first char in the
7661 sequence will be examined. If the string returned is zero length
7662 then the value of *valuep is undefined and NON-NULL will
7663 be returned to indicate failure. (This will NOT be a valid pointer
7666 If valuep is null then it is assumed that we are parsing normal text and a
7667 new EXACT node is inserted into the program containing the resolved string,
7668 and a pointer to the new node is returned. But if the string is zero length
7669 a NOTHING node is emitted instead.
7671 On success RExC_parse is set to the char following the endbrace.
7672 Parsing failures will generate a fatal error via vFAIL(...)
7675 S_reg_namedseq(pTHX_ RExC_state_t *pRExC_state, UV *valuep, I32 *flagp, U32 depth)
7677 char * endbrace; /* '}' following the name */
7678 regnode *ret = NULL;
7681 GET_RE_DEBUG_FLAGS_DECL;
7683 PERL_ARGS_ASSERT_REG_NAMEDSEQ;
7687 /* The [^\n] meaning of \N ignores spaces and comments under the /x
7688 * modifier. The other meaning does not */
7689 p = (RExC_flags & RXf_PMf_EXTENDED)
7690 ? regwhite( pRExC_state, RExC_parse )
7693 /* Disambiguate between \N meaning a named character versus \N meaning
7694 * [^\n]. The former is assumed when it can't be the latter. */
7695 if (*p != '{' || regcurly(p)) {
7698 /* no bare \N in a charclass */
7699 vFAIL("\\N in a character class must be a named character: \\N{...}");
7701 nextchar(pRExC_state);
7702 ret = reg_node(pRExC_state, REG_ANY);
7703 *flagp |= HASWIDTH|SIMPLE;
7706 Set_Node_Length(ret, 1); /* MJD */
7710 /* Here, we have decided it should be a named sequence */
7712 /* The test above made sure that the next real character is a '{', but
7713 * under the /x modifier, it could be separated by space (or a comment and
7714 * \n) and this is not allowed (for consistency with \x{...} and the
7715 * tokenizer handling of \N{NAME}). */
7716 if (*RExC_parse != '{') {
7717 vFAIL("Missing braces on \\N{}");
7720 RExC_parse++; /* Skip past the '{' */
7722 if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */
7723 || ! (endbrace == RExC_parse /* nothing between the {} */
7724 || (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked below */
7725 && strnEQ(RExC_parse, "U+", 2)))) /* for a better error msg) */
7727 if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
7728 vFAIL("\\N{NAME} must be resolved by the lexer");
7731 if (endbrace == RExC_parse) { /* empty: \N{} */
7733 RExC_parse = endbrace + 1;
7734 return reg_node(pRExC_state,NOTHING);
7738 ckWARNreg(RExC_parse,
7739 "Ignoring zero length \\N{} in character class"
7741 RExC_parse = endbrace + 1;
7744 return (regnode *) &RExC_parse; /* Invalid regnode pointer */
7747 REQUIRE_UTF8; /* named sequences imply Unicode semantics */
7748 RExC_parse += 2; /* Skip past the 'U+' */
7750 if (valuep) { /* In a bracketed char class */
7751 /* We only pay attention to the first char of
7752 multichar strings being returned. I kinda wonder
7753 if this makes sense as it does change the behaviour
7754 from earlier versions, OTOH that behaviour was broken
7755 as well. XXX Solution is to recharacterize as
7756 [rest-of-class]|multi1|multi2... */
7758 STRLEN length_of_hex;
7759 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
7760 | PERL_SCAN_DISALLOW_PREFIX
7761 | (SIZE_ONLY ? PERL_SCAN_SILENT_ILLDIGIT : 0);
7763 char * endchar = RExC_parse + strcspn(RExC_parse, ".}");
7764 if (endchar < endbrace) {
7765 ckWARNreg(endchar, "Using just the first character returned by \\N{} in character class");
7768 length_of_hex = (STRLEN)(endchar - RExC_parse);
7769 *valuep = grok_hex(RExC_parse, &length_of_hex, &flags, NULL);
7771 /* The tokenizer should have guaranteed validity, but it's possible to
7772 * bypass it by using single quoting, so check */
7773 if (length_of_hex == 0
7774 || length_of_hex != (STRLEN)(endchar - RExC_parse) )
7776 RExC_parse += length_of_hex; /* Includes all the valid */
7777 RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
7778 ? UTF8SKIP(RExC_parse)
7780 /* Guard against malformed utf8 */
7781 if (RExC_parse >= endchar) RExC_parse = endchar;
7782 vFAIL("Invalid hexadecimal number in \\N{U+...}");
7785 RExC_parse = endbrace + 1;
7786 if (endchar == endbrace) return NULL;
7788 ret = (regnode *) &RExC_parse; /* Invalid regnode pointer */
7790 else { /* Not a char class */
7792 /* What is done here is to convert this to a sub-pattern of the form
7793 * (?:\x{char1}\x{char2}...)
7794 * and then call reg recursively. That way, it retains its atomicness,
7795 * while not having to worry about special handling that some code
7796 * points may have. toke.c has converted the original Unicode values
7797 * to native, so that we can just pass on the hex values unchanged. We
7798 * do have to set a flag to keep recoding from happening in the
7801 SV * substitute_parse = newSVpvn_flags("?:", 2, SVf_UTF8|SVs_TEMP);
7803 char *endchar; /* Points to '.' or '}' ending cur char in the input
7805 char *orig_end = RExC_end;
7807 while (RExC_parse < endbrace) {
7809 /* Code points are separated by dots. If none, there is only one
7810 * code point, and is terminated by the brace */
7811 endchar = RExC_parse + strcspn(RExC_parse, ".}");
7813 /* Convert to notation the rest of the code understands */
7814 sv_catpv(substitute_parse, "\\x{");
7815 sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
7816 sv_catpv(substitute_parse, "}");
7818 /* Point to the beginning of the next character in the sequence. */
7819 RExC_parse = endchar + 1;
7821 sv_catpv(substitute_parse, ")");
7823 RExC_parse = SvPV(substitute_parse, len);
7825 /* Don't allow empty number */
7827 vFAIL("Invalid hexadecimal number in \\N{U+...}");
7829 RExC_end = RExC_parse + len;
7831 /* The values are Unicode, and therefore not subject to recoding */
7832 RExC_override_recoding = 1;
7834 ret = reg(pRExC_state, 1, flagp, depth+1);
7836 RExC_parse = endbrace;
7837 RExC_end = orig_end;
7838 RExC_override_recoding = 0;
7840 nextchar(pRExC_state);
7850 * It returns the code point in utf8 for the value in *encp.
7851 * value: a code value in the source encoding
7852 * encp: a pointer to an Encode object
7854 * If the result from Encode is not a single character,
7855 * it returns U+FFFD (Replacement character) and sets *encp to NULL.
7858 S_reg_recode(pTHX_ const char value, SV **encp)
7861 SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
7862 const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
7863 const STRLEN newlen = SvCUR(sv);
7864 UV uv = UNICODE_REPLACEMENT;
7866 PERL_ARGS_ASSERT_REG_RECODE;
7870 ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
7873 if (!newlen || numlen != newlen) {
7874 uv = UNICODE_REPLACEMENT;
7882 - regatom - the lowest level
7884 Try to identify anything special at the start of the pattern. If there
7885 is, then handle it as required. This may involve generating a single regop,
7886 such as for an assertion; or it may involve recursing, such as to
7887 handle a () structure.
7889 If the string doesn't start with something special then we gobble up
7890 as much literal text as we can.
7892 Once we have been able to handle whatever type of thing started the
7893 sequence, we return.
7895 Note: we have to be careful with escapes, as they can be both literal
7896 and special, and in the case of \10 and friends can either, depending
7897 on context. Specifically there are two separate switches for handling
7898 escape sequences, with the one for handling literal escapes requiring
7899 a dummy entry for all of the special escapes that are actually handled
7904 S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
7907 register regnode *ret = NULL;
7909 char *parse_start = RExC_parse;
7911 GET_RE_DEBUG_FLAGS_DECL;
7912 DEBUG_PARSE("atom");
7913 *flagp = WORST; /* Tentatively. */
7915 PERL_ARGS_ASSERT_REGATOM;
7918 switch ((U8)*RExC_parse) {
7920 RExC_seen_zerolen++;
7921 nextchar(pRExC_state);
7922 if (RExC_flags & RXf_PMf_MULTILINE)
7923 ret = reg_node(pRExC_state, MBOL);
7924 else if (RExC_flags & RXf_PMf_SINGLELINE)
7925 ret = reg_node(pRExC_state, SBOL);
7927 ret = reg_node(pRExC_state, BOL);
7928 Set_Node_Length(ret, 1); /* MJD */
7931 nextchar(pRExC_state);
7933 RExC_seen_zerolen++;
7934 if (RExC_flags & RXf_PMf_MULTILINE)
7935 ret = reg_node(pRExC_state, MEOL);
7936 else if (RExC_flags & RXf_PMf_SINGLELINE)
7937 ret = reg_node(pRExC_state, SEOL);
7939 ret = reg_node(pRExC_state, EOL);
7940 Set_Node_Length(ret, 1); /* MJD */
7943 nextchar(pRExC_state);
7944 if (RExC_flags & RXf_PMf_SINGLELINE)
7945 ret = reg_node(pRExC_state, SANY);
7947 ret = reg_node(pRExC_state, REG_ANY);
7948 *flagp |= HASWIDTH|SIMPLE;
7950 Set_Node_Length(ret, 1); /* MJD */
7954 char * const oregcomp_parse = ++RExC_parse;
7955 ret = regclass(pRExC_state,depth+1);
7956 if (*RExC_parse != ']') {
7957 RExC_parse = oregcomp_parse;
7958 vFAIL("Unmatched [");
7960 nextchar(pRExC_state);
7961 *flagp |= HASWIDTH|SIMPLE;
7962 Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
7966 nextchar(pRExC_state);
7967 ret = reg(pRExC_state, 1, &flags,depth+1);
7969 if (flags & TRYAGAIN) {
7970 if (RExC_parse == RExC_end) {
7971 /* Make parent create an empty node if needed. */
7979 *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
7983 if (flags & TRYAGAIN) {
7987 vFAIL("Internal urp");
7988 /* Supposed to be caught earlier. */
7991 if (!regcurly(RExC_parse)) {
8000 vFAIL("Quantifier follows nothing");
8005 This switch handles escape sequences that resolve to some kind
8006 of special regop and not to literal text. Escape sequnces that
8007 resolve to literal text are handled below in the switch marked
8010 Every entry in this switch *must* have a corresponding entry
8011 in the literal escape switch. However, the opposite is not
8012 required, as the default for this switch is to jump to the
8013 literal text handling code.
8015 switch ((U8)*++RExC_parse) {
8016 /* Special Escapes */
8018 RExC_seen_zerolen++;
8019 ret = reg_node(pRExC_state, SBOL);
8021 goto finish_meta_pat;
8023 ret = reg_node(pRExC_state, GPOS);
8024 RExC_seen |= REG_SEEN_GPOS;
8026 goto finish_meta_pat;
8028 RExC_seen_zerolen++;
8029 ret = reg_node(pRExC_state, KEEPS);
8031 /* XXX:dmq : disabling in-place substitution seems to
8032 * be necessary here to avoid cases of memory corruption, as
8033 * with: C<$_="x" x 80; s/x\K/y/> -- rgs
8035 RExC_seen |= REG_SEEN_LOOKBEHIND;
8036 goto finish_meta_pat;
8038 ret = reg_node(pRExC_state, SEOL);
8040 RExC_seen_zerolen++; /* Do not optimize RE away */
8041 goto finish_meta_pat;
8043 ret = reg_node(pRExC_state, EOS);
8045 RExC_seen_zerolen++; /* Do not optimize RE away */
8046 goto finish_meta_pat;
8048 ret = reg_node(pRExC_state, CANY);
8049 RExC_seen |= REG_SEEN_CANY;
8050 *flagp |= HASWIDTH|SIMPLE;
8051 goto finish_meta_pat;
8053 ret = reg_node(pRExC_state, CLUMP);
8055 goto finish_meta_pat;
8057 switch (get_regex_charset(RExC_flags)) {
8058 case REGEX_LOCALE_CHARSET:
8061 case REGEX_UNICODE_CHARSET:
8064 case REGEX_ASCII_RESTRICTED_CHARSET:
8065 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8068 case REGEX_DEPENDS_CHARSET:
8074 ret = reg_node(pRExC_state, op);
8075 *flagp |= HASWIDTH|SIMPLE;
8076 goto finish_meta_pat;
8078 switch (get_regex_charset(RExC_flags)) {
8079 case REGEX_LOCALE_CHARSET:
8082 case REGEX_UNICODE_CHARSET:
8085 case REGEX_ASCII_RESTRICTED_CHARSET:
8086 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8089 case REGEX_DEPENDS_CHARSET:
8095 ret = reg_node(pRExC_state, op);
8096 *flagp |= HASWIDTH|SIMPLE;
8097 goto finish_meta_pat;
8099 RExC_seen_zerolen++;
8100 RExC_seen |= REG_SEEN_LOOKBEHIND;
8101 switch (get_regex_charset(RExC_flags)) {
8102 case REGEX_LOCALE_CHARSET:
8105 case REGEX_UNICODE_CHARSET:
8108 case REGEX_ASCII_RESTRICTED_CHARSET:
8109 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8112 case REGEX_DEPENDS_CHARSET:
8118 ret = reg_node(pRExC_state, op);
8119 FLAGS(ret) = get_regex_charset(RExC_flags);
8121 if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
8122 ckWARNregdep(RExC_parse, "\"\\b{\" is deprecated; use \"\\b\\{\" instead");
8124 goto finish_meta_pat;
8126 RExC_seen_zerolen++;
8127 RExC_seen |= REG_SEEN_LOOKBEHIND;
8128 switch (get_regex_charset(RExC_flags)) {
8129 case REGEX_LOCALE_CHARSET:
8132 case REGEX_UNICODE_CHARSET:
8135 case REGEX_ASCII_RESTRICTED_CHARSET:
8136 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8139 case REGEX_DEPENDS_CHARSET:
8145 ret = reg_node(pRExC_state, op);
8146 FLAGS(ret) = get_regex_charset(RExC_flags);
8148 if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
8149 ckWARNregdep(RExC_parse, "\"\\B{\" is deprecated; use \"\\B\\{\" instead");
8151 goto finish_meta_pat;
8153 switch (get_regex_charset(RExC_flags)) {
8154 case REGEX_LOCALE_CHARSET:
8157 case REGEX_UNICODE_CHARSET:
8160 case REGEX_ASCII_RESTRICTED_CHARSET:
8161 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8164 case REGEX_DEPENDS_CHARSET:
8170 ret = reg_node(pRExC_state, op);
8171 *flagp |= HASWIDTH|SIMPLE;
8172 goto finish_meta_pat;
8174 switch (get_regex_charset(RExC_flags)) {
8175 case REGEX_LOCALE_CHARSET:
8178 case REGEX_UNICODE_CHARSET:
8181 case REGEX_ASCII_RESTRICTED_CHARSET:
8182 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8185 case REGEX_DEPENDS_CHARSET:
8191 ret = reg_node(pRExC_state, op);
8192 *flagp |= HASWIDTH|SIMPLE;
8193 goto finish_meta_pat;
8195 switch (get_regex_charset(RExC_flags)) {
8196 case REGEX_LOCALE_CHARSET:
8199 case REGEX_ASCII_RESTRICTED_CHARSET:
8200 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8203 case REGEX_DEPENDS_CHARSET: /* No difference between these */
8204 case REGEX_UNICODE_CHARSET:
8210 ret = reg_node(pRExC_state, op);
8211 *flagp |= HASWIDTH|SIMPLE;
8212 goto finish_meta_pat;
8214 switch (get_regex_charset(RExC_flags)) {
8215 case REGEX_LOCALE_CHARSET:
8218 case REGEX_ASCII_RESTRICTED_CHARSET:
8219 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8222 case REGEX_DEPENDS_CHARSET: /* No difference between these */
8223 case REGEX_UNICODE_CHARSET:
8229 ret = reg_node(pRExC_state, op);
8230 *flagp |= HASWIDTH|SIMPLE;
8231 goto finish_meta_pat;
8233 ret = reg_node(pRExC_state, LNBREAK);
8234 *flagp |= HASWIDTH|SIMPLE;
8235 goto finish_meta_pat;
8237 ret = reg_node(pRExC_state, HORIZWS);
8238 *flagp |= HASWIDTH|SIMPLE;
8239 goto finish_meta_pat;
8241 ret = reg_node(pRExC_state, NHORIZWS);
8242 *flagp |= HASWIDTH|SIMPLE;
8243 goto finish_meta_pat;
8245 ret = reg_node(pRExC_state, VERTWS);
8246 *flagp |= HASWIDTH|SIMPLE;
8247 goto finish_meta_pat;
8249 ret = reg_node(pRExC_state, NVERTWS);
8250 *flagp |= HASWIDTH|SIMPLE;
8252 nextchar(pRExC_state);
8253 Set_Node_Length(ret, 2); /* MJD */
8258 char* const oldregxend = RExC_end;
8260 char* parse_start = RExC_parse - 2;
8263 if (RExC_parse[1] == '{') {
8264 /* a lovely hack--pretend we saw [\pX] instead */
8265 RExC_end = strchr(RExC_parse, '}');
8267 const U8 c = (U8)*RExC_parse;
8269 RExC_end = oldregxend;
8270 vFAIL2("Missing right brace on \\%c{}", c);
8275 RExC_end = RExC_parse + 2;
8276 if (RExC_end > oldregxend)
8277 RExC_end = oldregxend;
8281 ret = regclass(pRExC_state,depth+1);
8283 RExC_end = oldregxend;
8286 Set_Node_Offset(ret, parse_start + 2);
8287 Set_Node_Cur_Length(ret);
8288 nextchar(pRExC_state);
8289 *flagp |= HASWIDTH|SIMPLE;
8293 /* Handle \N and \N{NAME} here and not below because it can be
8294 multicharacter. join_exact() will join them up later on.
8295 Also this makes sure that things like /\N{BLAH}+/ and
8296 \N{BLAH} being multi char Just Happen. dmq*/
8298 ret= reg_namedseq(pRExC_state, NULL, flagp, depth);
8300 case 'k': /* Handle \k<NAME> and \k'NAME' */
8303 char ch= RExC_parse[1];
8304 if (ch != '<' && ch != '\'' && ch != '{') {
8306 vFAIL2("Sequence %.2s... not terminated",parse_start);
8308 /* this pretty much dupes the code for (?P=...) in reg(), if
8309 you change this make sure you change that */
8310 char* name_start = (RExC_parse += 2);
8312 SV *sv_dat = reg_scan_name(pRExC_state,
8313 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
8314 ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
8315 if (RExC_parse == name_start || *RExC_parse != ch)
8316 vFAIL2("Sequence %.3s... not terminated",parse_start);
8319 num = add_data( pRExC_state, 1, "S" );
8320 RExC_rxi->data->data[num]=(void*)sv_dat;
8321 SvREFCNT_inc_simple_void(sv_dat);
8325 ret = reganode(pRExC_state,
8328 : (MORE_ASCII_RESTRICTED)
8330 : (AT_LEAST_UNI_SEMANTICS)
8338 /* override incorrect value set in reganode MJD */
8339 Set_Node_Offset(ret, parse_start+1);
8340 Set_Node_Cur_Length(ret); /* MJD */
8341 nextchar(pRExC_state);
8347 case '1': case '2': case '3': case '4':
8348 case '5': case '6': case '7': case '8': case '9':
8351 bool isg = *RExC_parse == 'g';
8356 if (*RExC_parse == '{') {
8360 if (*RExC_parse == '-') {
8364 if (hasbrace && !isDIGIT(*RExC_parse)) {
8365 if (isrel) RExC_parse--;
8367 goto parse_named_seq;
8369 num = atoi(RExC_parse);
8370 if (isg && num == 0)
8371 vFAIL("Reference to invalid group 0");
8373 num = RExC_npar - num;
8375 vFAIL("Reference to nonexistent or unclosed group");
8377 if (!isg && num > 9 && num >= RExC_npar)
8380 char * const parse_start = RExC_parse - 1; /* MJD */
8381 while (isDIGIT(*RExC_parse))
8383 if (parse_start == RExC_parse - 1)
8384 vFAIL("Unterminated \\g... pattern");
8386 if (*RExC_parse != '}')
8387 vFAIL("Unterminated \\g{...} pattern");
8391 if (num > (I32)RExC_rx->nparens)
8392 vFAIL("Reference to nonexistent group");
8395 ret = reganode(pRExC_state,
8398 : (MORE_ASCII_RESTRICTED)
8400 : (AT_LEAST_UNI_SEMANTICS)
8408 /* override incorrect value set in reganode MJD */
8409 Set_Node_Offset(ret, parse_start+1);
8410 Set_Node_Cur_Length(ret); /* MJD */
8412 nextchar(pRExC_state);
8417 if (RExC_parse >= RExC_end)
8418 FAIL("Trailing \\");
8421 /* Do not generate "unrecognized" warnings here, we fall
8422 back into the quick-grab loop below */
8429 if (RExC_flags & RXf_PMf_EXTENDED) {
8430 if ( reg_skipcomment( pRExC_state ) )
8437 parse_start = RExC_parse - 1;
8450 char_state latest_char_state = generic_char;
8451 register STRLEN len;
8456 U8 tmpbuf[UTF8_MAXBYTES_CASE+1], *foldbuf;
8457 regnode * orig_emit;
8460 orig_emit = RExC_emit; /* Save the original output node position in
8461 case we need to output a different node
8463 ret = reg_node(pRExC_state,
8464 (U8) ((! FOLD) ? EXACT
8467 : (MORE_ASCII_RESTRICTED)
8469 : (AT_LEAST_UNI_SEMANTICS)
8474 for (len = 0, p = RExC_parse - 1;
8475 len < 127 && p < RExC_end;
8478 char * const oldp = p;
8480 if (RExC_flags & RXf_PMf_EXTENDED)
8481 p = regwhite( pRExC_state, p );
8492 /* Literal Escapes Switch
8494 This switch is meant to handle escape sequences that
8495 resolve to a literal character.
8497 Every escape sequence that represents something
8498 else, like an assertion or a char class, is handled
8499 in the switch marked 'Special Escapes' above in this
8500 routine, but also has an entry here as anything that
8501 isn't explicitly mentioned here will be treated as
8502 an unescaped equivalent literal.
8506 /* These are all the special escapes. */
8507 case 'A': /* Start assertion */
8508 case 'b': case 'B': /* Word-boundary assertion*/
8509 case 'C': /* Single char !DANGEROUS! */
8510 case 'd': case 'D': /* digit class */
8511 case 'g': case 'G': /* generic-backref, pos assertion */
8512 case 'h': case 'H': /* HORIZWS */
8513 case 'k': case 'K': /* named backref, keep marker */
8514 case 'N': /* named char sequence */
8515 case 'p': case 'P': /* Unicode property */
8516 case 'R': /* LNBREAK */
8517 case 's': case 'S': /* space class */
8518 case 'v': case 'V': /* VERTWS */
8519 case 'w': case 'W': /* word class */
8520 case 'X': /* eXtended Unicode "combining character sequence" */
8521 case 'z': case 'Z': /* End of line/string assertion */
8525 /* Anything after here is an escape that resolves to a
8526 literal. (Except digits, which may or may not)
8545 ender = ASCII_TO_NATIVE('\033');
8549 ender = ASCII_TO_NATIVE('\007');
8554 STRLEN brace_len = len;
8556 const char* error_msg;
8558 bool valid = grok_bslash_o(p,
8565 RExC_parse = p; /* going to die anyway; point
8566 to exact spot of failure */
8573 if (PL_encoding && ender < 0x100) {
8574 goto recode_encoding;
8583 char* const e = strchr(p, '}');
8587 vFAIL("Missing right brace on \\x{}");
8590 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
8591 | PERL_SCAN_DISALLOW_PREFIX;
8592 STRLEN numlen = e - p - 1;
8593 ender = grok_hex(p + 1, &numlen, &flags, NULL);
8600 I32 flags = PERL_SCAN_DISALLOW_PREFIX;
8602 ender = grok_hex(p, &numlen, &flags, NULL);
8605 if (PL_encoding && ender < 0x100)
8606 goto recode_encoding;
8610 ender = grok_bslash_c(*p++, UTF, SIZE_ONLY);
8612 case '0': case '1': case '2': case '3':case '4':
8613 case '5': case '6': case '7': case '8':case '9':
8615 (isDIGIT(p[1]) && atoi(p) >= RExC_npar))
8617 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
8619 ender = grok_oct(p, &numlen, &flags, NULL);
8629 if (PL_encoding && ender < 0x100)
8630 goto recode_encoding;
8633 if (! RExC_override_recoding) {
8634 SV* enc = PL_encoding;
8635 ender = reg_recode((const char)(U8)ender, &enc);
8636 if (!enc && SIZE_ONLY)
8637 ckWARNreg(p, "Invalid escape in the specified encoding");
8643 FAIL("Trailing \\");
8646 if (!SIZE_ONLY&& isALPHA(*p)) {
8647 /* Include any { following the alpha to emphasize
8648 * that it could be part of an escape at some point
8650 int len = (*(p + 1) == '{') ? 2 : 1;
8651 ckWARN3reg(p + len, "Unrecognized escape \\%.*s passed through", len, p);
8653 goto normal_default;
8658 if (UTF8_IS_START(*p) && UTF) {
8660 ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
8661 &numlen, UTF8_ALLOW_DEFAULT);
8667 } /* End of switch on the literal */
8669 /* Certain characters are problematic because their folded
8670 * length is so different from their original length that it
8671 * isn't handleable by the optimizer. They are therefore not
8672 * placed in an EXACTish node; and are here handled specially.
8673 * (Even if the optimizer handled LATIN_SMALL_LETTER_SHARP_S,
8674 * putting it in a special node keeps regexec from having to
8675 * deal with a non-utf8 multi-char fold */
8677 && (ender > 255 || (! MORE_ASCII_RESTRICTED && ! LOC)))
8679 /* We look for either side of the fold. For example \xDF
8680 * folds to 'ss'. We look for both the single character
8681 * \xDF and the sequence 'ss'. When we find something that
8682 * could be one of those, we stop and flush whatever we
8683 * have output so far into the EXACTish node that was being
8684 * built. Then restore the input pointer to what it was.
8685 * regatom will return that EXACT node, and will be called
8686 * again, positioned so the first character is the one in
8687 * question, which we return in a different node type.
8688 * The multi-char folds are a sequence, so the occurrence
8689 * of the first character in that sequence doesn't
8690 * necessarily mean that what follows is the rest of the
8691 * sequence. We keep track of that with a state machine,
8692 * with the state being set to the latest character
8693 * processed before the current one. Most characters will
8694 * set the state to 0, but if one occurs that is part of a
8695 * potential tricky fold sequence, the state is set to that
8696 * character, and the next loop iteration sees if the state
8697 * should progress towards the final folded-from character,
8698 * or if it was a false alarm. If it turns out to be a
8699 * false alarm, the character(s) will be output in a new
8700 * EXACTish node, and join_exact() will later combine them.
8701 * In the case of the 'ss' sequence, which is more common
8702 * and more easily checked, some look-ahead is done to
8703 * save time by ruling-out some false alarms */
8706 latest_char_state = generic_char;
8710 case 0x17F: /* LATIN SMALL LETTER LONG S */
8711 if (AT_LEAST_UNI_SEMANTICS) {
8712 if (latest_char_state == char_s) { /* 'ss' */
8713 ender = LATIN_SMALL_LETTER_SHARP_S;
8716 else if (p < RExC_end) {
8718 /* Look-ahead at the next character. If it
8719 * is also an s, we handle as a sharp s
8720 * tricky regnode. */
8721 if (*p == 's' || *p == 'S') {
8723 /* But first flush anything in the
8724 * EXACTish buffer */
8729 p++; /* Account for swallowing this
8731 ender = LATIN_SMALL_LETTER_SHARP_S;
8734 /* Here, the next character is not a
8735 * literal 's', but still could
8736 * evaluate to one if part of a \o{},
8737 * \x or \OCTAL-DIGIT. The minimum
8738 * length required for that is 4, eg
8742 && (isDIGIT(*(p + 1))
8744 || *(p + 1) == 'o' ))
8747 /* Here, it could be an 's', too much
8748 * bother to figure it out here. Flush
8749 * the buffer if any; when come back
8750 * here, set the state so know that the
8751 * previous char was an 's' */
8753 latest_char_state = generic_char;
8757 latest_char_state = char_s;
8763 /* Here, can't be an 'ss' sequence, or at least not
8764 * one that could fold to/from the sharp ss */
8765 latest_char_state = generic_char;
8767 case 0x03C5: /* First char in upsilon series */
8768 case 0x03A5: /* Also capital UPSILON, which folds to
8769 03C5, and hence exhibits the same
8771 if (p < RExC_end - 4) { /* Need >= 4 bytes left */
8772 latest_char_state = upsilon_1;
8779 latest_char_state = generic_char;
8782 case 0x03B9: /* First char in iota series */
8783 case 0x0399: /* Also capital IOTA */
8784 case 0x1FBE: /* GREEK PROSGEGRAMMENI folds to 3B9 */
8785 case 0x0345: /* COMBINING GREEK YPOGEGRAMMENI folds
8787 if (p < RExC_end - 4) {
8788 latest_char_state = iota_1;
8795 latest_char_state = generic_char;
8799 if (latest_char_state == upsilon_1) {
8800 latest_char_state = upsilon_2;
8802 else if (latest_char_state == iota_1) {
8803 latest_char_state = iota_2;
8806 latest_char_state = generic_char;
8810 if (latest_char_state == upsilon_2) {
8811 ender = GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS;
8814 else if (latest_char_state == iota_2) {
8815 ender = GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS;
8818 latest_char_state = generic_char;
8821 /* These are the tricky fold characters. Flush any
8822 * buffer first. (When adding to this list, also should
8823 * add them to fold_grind.t to make sure get tested) */
8824 case GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS:
8825 case GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS:
8826 case LATIN_SMALL_LETTER_SHARP_S:
8827 case LATIN_CAPITAL_LETTER_SHARP_S:
8828 case 0x1FD3: /* GREEK SMALL LETTER IOTA WITH DIALYTIKA AND OXIA */
8829 case 0x1FE3: /* GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND OXIA */
8836 char* const oldregxend = RExC_end;
8837 U8 tmpbuf[UTF8_MAXBYTES+1];
8839 /* Here, we know we need to generate a special
8840 * regnode, and 'ender' contains the tricky
8841 * character. What's done is to pretend it's in a
8842 * [bracketed] class, and let the code that deals
8843 * with those handle it, as that code has all the
8844 * intelligence necessary. First save the current
8845 * parse state, get rid of the already allocated
8846 * but empty EXACT node that the ANYOFV node will
8847 * replace, and point the parse to a buffer which
8848 * we fill with the character we want the regclass
8849 * code to think is being parsed */
8850 RExC_emit = orig_emit;
8851 RExC_parse = (char *) tmpbuf;
8853 U8 *d = uvchr_to_utf8(tmpbuf, ender);
8855 RExC_end = (char *) d;
8857 else { /* ender above 255 already excluded */
8858 tmpbuf[0] = (U8) ender;
8860 RExC_end = RExC_parse + 1;
8863 ret = regclass(pRExC_state,depth+1);
8865 /* Here, have parsed the buffer. Reset the parse to
8866 * the actual input, and return */
8867 RExC_end = oldregxend;
8870 Set_Node_Offset(ret, RExC_parse);
8871 Set_Node_Cur_Length(ret);
8872 nextchar(pRExC_state);
8873 *flagp |= HASWIDTH|SIMPLE;
8879 if ( RExC_flags & RXf_PMf_EXTENDED)
8880 p = regwhite( pRExC_state, p );
8882 /* Prime the casefolded buffer. Locale rules, which apply
8883 * only to code points < 256, aren't known until execution,
8884 * so for them, just output the original character using
8886 if (LOC && ender < 256) {
8887 if (UNI_IS_INVARIANT(ender)) {
8888 *tmpbuf = (U8) ender;
8891 *tmpbuf = UTF8_TWO_BYTE_HI(ender);
8892 *(tmpbuf + 1) = UTF8_TWO_BYTE_LO(ender);
8896 else if (isASCII(ender)) { /* Note: Here can't also be LOC
8898 ender = toLOWER(ender);
8899 *tmpbuf = (U8) ender;
8902 else if (! MORE_ASCII_RESTRICTED && ! LOC) {
8904 /* Locale and /aa require more selectivity about the
8905 * fold, so are handled below. Otherwise, here, just
8907 ender = toFOLD_uni(ender, tmpbuf, &foldlen);
8910 /* Under locale rules or /aa we are not to mix,
8911 * respectively, ords < 256 or ASCII with non-. So
8912 * reject folds that mix them, using only the
8913 * non-folded code point. So do the fold to a
8914 * temporary, and inspect each character in it. */
8915 U8 trialbuf[UTF8_MAXBYTES_CASE+1];
8917 UV tmpender = toFOLD_uni(ender, trialbuf, &foldlen);
8918 U8* e = s + foldlen;
8919 bool fold_ok = TRUE;
8923 || (LOC && (UTF8_IS_INVARIANT(*s)
8924 || UTF8_IS_DOWNGRADEABLE_START(*s))))
8932 Copy(trialbuf, tmpbuf, foldlen, U8);
8936 uvuni_to_utf8(tmpbuf, ender);
8937 foldlen = UNISKIP(ender);
8941 if (p < RExC_end && ISMULT2(p)) { /* Back off on ?+*. */
8946 /* Emit all the Unicode characters. */
8948 for (foldbuf = tmpbuf;
8950 foldlen -= numlen) {
8951 ender = utf8_to_uvchr(foldbuf, &numlen);
8953 const STRLEN unilen = reguni(pRExC_state, ender, s);
8956 /* In EBCDIC the numlen
8957 * and unilen can differ. */
8959 if (numlen >= foldlen)
8963 break; /* "Can't happen." */
8967 const STRLEN unilen = reguni(pRExC_state, ender, s);
8976 REGC((char)ender, s++);
8982 /* Emit all the Unicode characters. */
8984 for (foldbuf = tmpbuf;
8986 foldlen -= numlen) {
8987 ender = utf8_to_uvchr(foldbuf, &numlen);
8989 const STRLEN unilen = reguni(pRExC_state, ender, s);
8992 /* In EBCDIC the numlen
8993 * and unilen can differ. */
8995 if (numlen >= foldlen)
9003 const STRLEN unilen = reguni(pRExC_state, ender, s);
9012 REGC((char)ender, s++);
9015 loopdone: /* Jumped to when encounters something that shouldn't be in
9018 Set_Node_Cur_Length(ret); /* MJD */
9019 nextchar(pRExC_state);
9021 /* len is STRLEN which is unsigned, need to copy to signed */
9024 vFAIL("Internal disaster");
9028 if (len == 1 && UNI_IS_INVARIANT(ender))
9032 RExC_size += STR_SZ(len);
9035 RExC_emit += STR_SZ(len);
9043 /* Jumped to when an unrecognized character set is encountered */
9045 Perl_croak(aTHX_ "panic: Unknown regex character set encoding: %u", get_regex_charset(RExC_flags));
9050 S_regwhite( RExC_state_t *pRExC_state, char *p )
9052 const char *e = RExC_end;
9054 PERL_ARGS_ASSERT_REGWHITE;
9059 else if (*p == '#') {
9068 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
9076 /* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
9077 Character classes ([:foo:]) can also be negated ([:^foo:]).
9078 Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
9079 Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
9080 but trigger failures because they are currently unimplemented. */
9082 #define POSIXCC_DONE(c) ((c) == ':')
9083 #define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
9084 #define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
9087 S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value)
9090 I32 namedclass = OOB_NAMEDCLASS;
9092 PERL_ARGS_ASSERT_REGPPOSIXCC;
9094 if (value == '[' && RExC_parse + 1 < RExC_end &&
9095 /* I smell either [: or [= or [. -- POSIX has been here, right? */
9096 POSIXCC(UCHARAT(RExC_parse))) {
9097 const char c = UCHARAT(RExC_parse);
9098 char* const s = RExC_parse++;
9100 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
9102 if (RExC_parse == RExC_end)
9103 /* Grandfather lone [:, [=, [. */
9106 const char* const t = RExC_parse++; /* skip over the c */
9109 if (UCHARAT(RExC_parse) == ']') {
9110 const char *posixcc = s + 1;
9111 RExC_parse++; /* skip over the ending ] */
9114 const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
9115 const I32 skip = t - posixcc;
9117 /* Initially switch on the length of the name. */
9120 if (memEQ(posixcc, "word", 4)) /* this is not POSIX, this is the Perl \w */
9121 namedclass = complement ? ANYOF_NALNUM : ANYOF_ALNUM;
9124 /* Names all of length 5. */
9125 /* alnum alpha ascii blank cntrl digit graph lower
9126 print punct space upper */
9127 /* Offset 4 gives the best switch position. */
9128 switch (posixcc[4]) {
9130 if (memEQ(posixcc, "alph", 4)) /* alpha */
9131 namedclass = complement ? ANYOF_NALPHA : ANYOF_ALPHA;
9134 if (memEQ(posixcc, "spac", 4)) /* space */
9135 namedclass = complement ? ANYOF_NPSXSPC : ANYOF_PSXSPC;
9138 if (memEQ(posixcc, "grap", 4)) /* graph */
9139 namedclass = complement ? ANYOF_NGRAPH : ANYOF_GRAPH;
9142 if (memEQ(posixcc, "asci", 4)) /* ascii */
9143 namedclass = complement ? ANYOF_NASCII : ANYOF_ASCII;
9146 if (memEQ(posixcc, "blan", 4)) /* blank */
9147 namedclass = complement ? ANYOF_NBLANK : ANYOF_BLANK;
9150 if (memEQ(posixcc, "cntr", 4)) /* cntrl */
9151 namedclass = complement ? ANYOF_NCNTRL : ANYOF_CNTRL;
9154 if (memEQ(posixcc, "alnu", 4)) /* alnum */
9155 namedclass = complement ? ANYOF_NALNUMC : ANYOF_ALNUMC;
9158 if (memEQ(posixcc, "lowe", 4)) /* lower */
9159 namedclass = complement ? ANYOF_NLOWER : ANYOF_LOWER;
9160 else if (memEQ(posixcc, "uppe", 4)) /* upper */
9161 namedclass = complement ? ANYOF_NUPPER : ANYOF_UPPER;
9164 if (memEQ(posixcc, "digi", 4)) /* digit */
9165 namedclass = complement ? ANYOF_NDIGIT : ANYOF_DIGIT;
9166 else if (memEQ(posixcc, "prin", 4)) /* print */
9167 namedclass = complement ? ANYOF_NPRINT : ANYOF_PRINT;
9168 else if (memEQ(posixcc, "punc", 4)) /* punct */
9169 namedclass = complement ? ANYOF_NPUNCT : ANYOF_PUNCT;
9174 if (memEQ(posixcc, "xdigit", 6))
9175 namedclass = complement ? ANYOF_NXDIGIT : ANYOF_XDIGIT;
9179 if (namedclass == OOB_NAMEDCLASS)
9180 Simple_vFAIL3("POSIX class [:%.*s:] unknown",
9182 assert (posixcc[skip] == ':');
9183 assert (posixcc[skip+1] == ']');
9184 } else if (!SIZE_ONLY) {
9185 /* [[=foo=]] and [[.foo.]] are still future. */
9187 /* adjust RExC_parse so the warning shows after
9189 while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
9191 Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
9194 /* Maternal grandfather:
9195 * "[:" ending in ":" but not in ":]" */
9205 S_checkposixcc(pTHX_ RExC_state_t *pRExC_state)
9209 PERL_ARGS_ASSERT_CHECKPOSIXCC;
9211 if (POSIXCC(UCHARAT(RExC_parse))) {
9212 const char *s = RExC_parse;
9213 const char c = *s++;
9217 if (*s && c == *s && s[1] == ']') {
9219 "POSIX syntax [%c %c] belongs inside character classes",
9222 /* [[=foo=]] and [[.foo.]] are still future. */
9223 if (POSIXCC_NOTYET(c)) {
9224 /* adjust RExC_parse so the error shows after
9226 while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse++) != ']')
9228 Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
9234 /* No locale test, and always Unicode semantics */
9235 #define _C_C_T_NOLOC_(NAME,TEST,WORD) \
9237 for (value = 0; value < 256; value++) \
9239 stored += set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9243 case ANYOF_N##NAME: \
9244 for (value = 0; value < 256; value++) \
9246 stored += set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9251 /* Like the above, but there are differences if we are in uni-8-bit or not, so
9252 * there are two tests passed in, to use depending on that. There aren't any
9253 * cases where the label is different from the name, so no need for that
9255 #define _C_C_T_(NAME, TEST_8, TEST_7, WORD) \
9257 if (LOC) ANYOF_CLASS_SET(ret, ANYOF_##NAME); \
9258 else if (UNI_SEMANTICS) { \
9259 for (value = 0; value < 256; value++) { \
9260 if (TEST_8(value)) stored += \
9261 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9265 for (value = 0; value < 128; value++) { \
9266 if (TEST_7(UNI_TO_NATIVE(value))) stored += \
9267 set_regclass_bit(pRExC_state, ret, \
9268 (U8) UNI_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate); \
9274 case ANYOF_N##NAME: \
9275 if (LOC) ANYOF_CLASS_SET(ret, ANYOF_N##NAME); \
9276 else if (UNI_SEMANTICS) { \
9277 for (value = 0; value < 256; value++) { \
9278 if (! TEST_8(value)) stored += \
9279 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9283 for (value = 0; value < 128; value++) { \
9284 if (! TEST_7(UNI_TO_NATIVE(value))) stored += set_regclass_bit( \
9285 pRExC_state, ret, (U8) UNI_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate); \
9287 if (AT_LEAST_ASCII_RESTRICTED) { \
9288 for (value = 128; value < 256; value++) { \
9289 stored += set_regclass_bit( \
9290 pRExC_state, ret, (U8) UNI_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate); \
9292 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL; \
9295 /* For a non-ut8 target string with DEPENDS semantics, all above \
9296 * ASCII Latin1 code points match the complement of any of the \
9297 * classes. But in utf8, they have their Unicode semantics, so \
9298 * can't just set them in the bitmap, or else regexec.c will think \
9299 * they matched when they shouldn't. */ \
9300 ANYOF_FLAGS(ret) |= ANYOF_NON_UTF8_LATIN1_ALL; \
9308 S_set_regclass_bit_fold(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, HV** invlist_ptr, AV** alternate_ptr)
9311 /* Handle the setting of folds in the bitmap for non-locale ANYOF nodes.
9312 * Locale folding is done at run-time, so this function should not be
9313 * called for nodes that are for locales.
9315 * This function sets the bit corresponding to the fold of the input
9316 * 'value', if not already set. The fold of 'f' is 'F', and the fold of
9319 * It also knows about the characters that are in the bitmap that have
9320 * folds that are matchable only outside it, and sets the appropriate lists
9323 * It returns the number of bits that actually changed from 0 to 1 */
9328 PERL_ARGS_ASSERT_SET_REGCLASS_BIT_FOLD;
9330 fold = (AT_LEAST_UNI_SEMANTICS) ? PL_fold_latin1[value]
9333 /* It assumes the bit for 'value' has already been set */
9334 if (fold != value && ! ANYOF_BITMAP_TEST(node, fold)) {
9335 ANYOF_BITMAP_SET(node, fold);
9338 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value) && (! isASCII(value) || ! MORE_ASCII_RESTRICTED)) {
9339 /* Certain Latin1 characters have matches outside the bitmap. To get
9340 * here, 'value' is one of those characters. None of these matches is
9341 * valid for ASCII characters under /aa, which have been excluded by
9342 * the 'if' above. The matches fall into three categories:
9343 * 1) They are singly folded-to or -from an above 255 character, as
9344 * LATIN SMALL LETTER Y WITH DIAERESIS and LATIN CAPITAL LETTER Y
9346 * 2) They are part of a multi-char fold with another character in the
9347 * bitmap, only LATIN SMALL LETTER SHARP S => "ss" fits that bill;
9348 * 3) They are part of a multi-char fold with a character not in the
9349 * bitmap, such as various ligatures.
9350 * We aren't dealing fully with multi-char folds, except we do deal
9351 * with the pattern containing a character that has a multi-char fold
9352 * (not so much the inverse).
9353 * For types 1) and 3), the matches only happen when the target string
9354 * is utf8; that's not true for 2), and we set a flag for it.
9356 * The code below adds to the passed in inversion list the single fold
9357 * closures for 'value'. The values are hard-coded here so that an
9358 * innocent-looking character class, like /[ks]/i won't have to go out
9359 * to disk to find the possible matches. XXX It would be better to
9360 * generate these via regen, in case a new version of the Unicode
9361 * standard adds new mappings, though that is not really likely. */
9366 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212A);
9370 /* LATIN SMALL LETTER LONG S */
9371 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x017F);
9374 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9375 GREEK_SMALL_LETTER_MU);
9376 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9377 GREEK_CAPITAL_LETTER_MU);
9379 case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
9380 case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
9382 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212B);
9383 if (DEPENDS_SEMANTICS) { /* See DEPENDS comment below */
9384 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9385 PL_fold_latin1[value]);
9388 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
9389 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9390 LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
9392 case LATIN_SMALL_LETTER_SHARP_S:
9393 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9394 LATIN_CAPITAL_LETTER_SHARP_S);
9396 /* Under /a, /d, and /u, this can match the two chars "ss" */
9397 if (! MORE_ASCII_RESTRICTED) {
9398 add_alternate(alternate_ptr, (U8 *) "ss", 2);
9400 /* And under /u or /a, it can match even if the target is
9402 if (AT_LEAST_UNI_SEMANTICS) {
9403 ANYOF_FLAGS(node) |= ANYOF_NONBITMAP_NON_UTF8;
9417 /* These all are targets of multi-character folds from code
9418 * points that require UTF8 to express, so they can't match
9419 * unless the target string is in UTF-8, so no action here is
9420 * necessary, as regexec.c properly handles the general case
9421 * for UTF-8 matching */
9424 /* Use deprecated warning to increase the chances of this
9426 ckWARN2regdep(RExC_parse, "Perl folding rules are not up-to-date for 0x%x; please use the perlbug utility to report;", value);
9430 else if (DEPENDS_SEMANTICS
9432 && PL_fold_latin1[value] != value)
9434 /* Under DEPENDS rules, non-ASCII Latin1 characters match their
9435 * folds only when the target string is in UTF-8. We add the fold
9436 * here to the list of things to match outside the bitmap, which
9437 * won't be looked at unless it is UTF8 (or else if something else
9438 * says to look even if not utf8, but those things better not happen
9439 * under DEPENDS semantics. */
9440 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, PL_fold_latin1[value]);
9447 PERL_STATIC_INLINE U8
9448 S_set_regclass_bit(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, HV** invlist_ptr, AV** alternate_ptr)
9450 /* This inline function sets a bit in the bitmap if not already set, and if
9451 * appropriate, its fold, returning the number of bits that actually
9452 * changed from 0 to 1 */
9456 PERL_ARGS_ASSERT_SET_REGCLASS_BIT;
9458 if (ANYOF_BITMAP_TEST(node, value)) { /* Already set */
9462 ANYOF_BITMAP_SET(node, value);
9465 if (FOLD && ! LOC) { /* Locale folds aren't known until runtime */
9466 stored += set_regclass_bit_fold(pRExC_state, node, value, invlist_ptr, alternate_ptr);
9473 S_add_alternate(pTHX_ AV** alternate_ptr, U8* string, STRLEN len)
9475 /* Adds input 'string' with length 'len' to the ANYOF node's unicode
9476 * alternate list, pointed to by 'alternate_ptr'. This is an array of
9477 * the multi-character folds of characters in the node */
9480 PERL_ARGS_ASSERT_ADD_ALTERNATE;
9482 if (! *alternate_ptr) {
9483 *alternate_ptr = newAV();
9485 sv = newSVpvn_utf8((char*)string, len, TRUE);
9486 av_push(*alternate_ptr, sv);
9491 parse a class specification and produce either an ANYOF node that
9492 matches the pattern or perhaps will be optimized into an EXACTish node
9493 instead. The node contains a bit map for the first 256 characters, with the
9494 corresponding bit set if that character is in the list. For characters
9495 above 255, a range list is used */
9498 S_regclass(pTHX_ RExC_state_t *pRExC_state, U32 depth)
9501 register UV nextvalue;
9502 register IV prevvalue = OOB_UNICODE;
9503 register IV range = 0;
9504 UV value = 0; /* XXX:dmq: needs to be referenceable (unfortunately) */
9505 register regnode *ret;
9508 char *rangebegin = NULL;
9509 bool need_class = 0;
9510 bool allow_full_fold = TRUE; /* Assume wants multi-char folding */
9512 STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
9513 than just initialized. */
9516 /* code points this node matches that can't be stored in the bitmap */
9517 HV* nonbitmap = NULL;
9519 /* The items that are to match that aren't stored in the bitmap, but are a
9520 * result of things that are stored there. This is the fold closure of
9521 * such a character, either because it has DEPENDS semantics and shouldn't
9522 * be matched unless the target string is utf8, or is a code point that is
9523 * too large for the bit map, as for example, the fold of the MICRO SIGN is
9524 * above 255. This all is solely for performance reasons. By having this
9525 * code know the outside-the-bitmap folds that the bitmapped characters are
9526 * involved with, we don't have to go out to disk to find the list of
9527 * matches, unless the character class includes code points that aren't
9528 * storable in the bit map. That means that a character class with an 's'
9529 * in it, for example, doesn't need to go out to disk to find everything
9530 * that matches. A 2nd list is used so that the 'nonbitmap' list is kept
9531 * empty unless there is something whose fold we don't know about, and will
9532 * have to go out to the disk to find. */
9533 HV* l1_fold_invlist = NULL;
9535 /* List of multi-character folds that are matched by this node */
9536 AV* unicode_alternate = NULL;
9538 UV literal_endpoint = 0;
9540 UV stored = 0; /* how many chars stored in the bitmap */
9542 regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
9543 case we need to change the emitted regop to an EXACT. */
9544 const char * orig_parse = RExC_parse;
9545 GET_RE_DEBUG_FLAGS_DECL;
9547 PERL_ARGS_ASSERT_REGCLASS;
9549 PERL_UNUSED_ARG(depth);
9552 DEBUG_PARSE("clas");
9554 /* Assume we are going to generate an ANYOF node. */
9555 ret = reganode(pRExC_state, ANYOF, 0);
9559 ANYOF_FLAGS(ret) = 0;
9562 if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
9566 ANYOF_FLAGS(ret) |= ANYOF_INVERT;
9568 /* We have decided to not allow multi-char folds in inverted character
9569 * classes, due to the confusion that can happen, especially with
9570 * classes that are designed for a non-Unicode world: You have the
9571 * peculiar case that:
9572 "s s" =~ /^[^\xDF]+$/i => Y
9573 "ss" =~ /^[^\xDF]+$/i => N
9575 * See [perl #89750] */
9576 allow_full_fold = FALSE;
9580 RExC_size += ANYOF_SKIP;
9581 listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
9584 RExC_emit += ANYOF_SKIP;
9586 ANYOF_FLAGS(ret) |= ANYOF_LOCALE;
9588 ANYOF_BITMAP_ZERO(ret);
9589 listsv = newSVpvs("# comment\n");
9590 initial_listsv_len = SvCUR(listsv);
9593 nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
9595 if (!SIZE_ONLY && POSIXCC(nextvalue))
9596 checkposixcc(pRExC_state);
9598 /* allow 1st char to be ] (allowing it to be - is dealt with later) */
9599 if (UCHARAT(RExC_parse) == ']')
9603 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
9607 namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
9610 rangebegin = RExC_parse;
9612 value = utf8n_to_uvchr((U8*)RExC_parse,
9613 RExC_end - RExC_parse,
9614 &numlen, UTF8_ALLOW_DEFAULT);
9615 RExC_parse += numlen;
9618 value = UCHARAT(RExC_parse++);
9620 nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
9621 if (value == '[' && POSIXCC(nextvalue))
9622 namedclass = regpposixcc(pRExC_state, value);
9623 else if (value == '\\') {
9625 value = utf8n_to_uvchr((U8*)RExC_parse,
9626 RExC_end - RExC_parse,
9627 &numlen, UTF8_ALLOW_DEFAULT);
9628 RExC_parse += numlen;
9631 value = UCHARAT(RExC_parse++);
9632 /* Some compilers cannot handle switching on 64-bit integer
9633 * values, therefore value cannot be an UV. Yes, this will
9634 * be a problem later if we want switch on Unicode.
9635 * A similar issue a little bit later when switching on
9636 * namedclass. --jhi */
9637 switch ((I32)value) {
9638 case 'w': namedclass = ANYOF_ALNUM; break;
9639 case 'W': namedclass = ANYOF_NALNUM; break;
9640 case 's': namedclass = ANYOF_SPACE; break;
9641 case 'S': namedclass = ANYOF_NSPACE; break;
9642 case 'd': namedclass = ANYOF_DIGIT; break;
9643 case 'D': namedclass = ANYOF_NDIGIT; break;
9644 case 'v': namedclass = ANYOF_VERTWS; break;
9645 case 'V': namedclass = ANYOF_NVERTWS; break;
9646 case 'h': namedclass = ANYOF_HORIZWS; break;
9647 case 'H': namedclass = ANYOF_NHORIZWS; break;
9648 case 'N': /* Handle \N{NAME} in class */
9650 /* We only pay attention to the first char of
9651 multichar strings being returned. I kinda wonder
9652 if this makes sense as it does change the behaviour
9653 from earlier versions, OTOH that behaviour was broken
9655 UV v; /* value is register so we cant & it /grrr */
9656 if (reg_namedseq(pRExC_state, &v, NULL, depth)) {
9666 if (RExC_parse >= RExC_end)
9667 vFAIL2("Empty \\%c{}", (U8)value);
9668 if (*RExC_parse == '{') {
9669 const U8 c = (U8)value;
9670 e = strchr(RExC_parse++, '}');
9672 vFAIL2("Missing right brace on \\%c{}", c);
9673 while (isSPACE(UCHARAT(RExC_parse)))
9675 if (e == RExC_parse)
9676 vFAIL2("Empty \\%c{}", c);
9678 while (isSPACE(UCHARAT(RExC_parse + n - 1)))
9686 if (UCHARAT(RExC_parse) == '^') {
9689 value = value == 'p' ? 'P' : 'p'; /* toggle */
9690 while (isSPACE(UCHARAT(RExC_parse))) {
9696 /* Add the property name to the list. If /i matching, give
9697 * a different name which consists of the normal name
9698 * sandwiched between two underscores and '_i'. The design
9699 * is discussed in the commit message for this. */
9700 Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%s%.*s%s\n",
9701 (value=='p' ? '+' : '!'),
9710 /* The \p could match something in the Latin1 range, hence
9711 * something that isn't utf8 */
9712 ANYOF_FLAGS(ret) |= ANYOF_NONBITMAP_NON_UTF8;
9713 namedclass = ANYOF_MAX; /* no official name, but it's named */
9715 /* \p means they want Unicode semantics */
9716 RExC_uni_semantics = 1;
9719 case 'n': value = '\n'; break;
9720 case 'r': value = '\r'; break;
9721 case 't': value = '\t'; break;
9722 case 'f': value = '\f'; break;
9723 case 'b': value = '\b'; break;
9724 case 'e': value = ASCII_TO_NATIVE('\033');break;
9725 case 'a': value = ASCII_TO_NATIVE('\007');break;
9727 RExC_parse--; /* function expects to be pointed at the 'o' */
9729 const char* error_msg;
9730 bool valid = grok_bslash_o(RExC_parse,
9735 RExC_parse += numlen;
9740 if (PL_encoding && value < 0x100) {
9741 goto recode_encoding;
9745 if (*RExC_parse == '{') {
9746 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
9747 | PERL_SCAN_DISALLOW_PREFIX;
9748 char * const e = strchr(RExC_parse++, '}');
9750 vFAIL("Missing right brace on \\x{}");
9752 numlen = e - RExC_parse;
9753 value = grok_hex(RExC_parse, &numlen, &flags, NULL);
9757 I32 flags = PERL_SCAN_DISALLOW_PREFIX;
9759 value = grok_hex(RExC_parse, &numlen, &flags, NULL);
9760 RExC_parse += numlen;
9762 if (PL_encoding && value < 0x100)
9763 goto recode_encoding;
9766 value = grok_bslash_c(*RExC_parse++, UTF, SIZE_ONLY);
9768 case '0': case '1': case '2': case '3': case '4':
9769 case '5': case '6': case '7':
9771 /* Take 1-3 octal digits */
9772 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
9774 value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
9775 RExC_parse += numlen;
9776 if (PL_encoding && value < 0x100)
9777 goto recode_encoding;
9781 if (! RExC_override_recoding) {
9782 SV* enc = PL_encoding;
9783 value = reg_recode((const char)(U8)value, &enc);
9784 if (!enc && SIZE_ONLY)
9785 ckWARNreg(RExC_parse,
9786 "Invalid escape in the specified encoding");
9790 /* Allow \_ to not give an error */
9791 if (!SIZE_ONLY && isALNUM(value) && value != '_') {
9792 ckWARN2reg(RExC_parse,
9793 "Unrecognized escape \\%c in character class passed through",
9798 } /* end of \blah */
9804 if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
9806 /* What matches in a locale is not known until runtime, so need to
9807 * (one time per class) allocate extra space to pass to regexec.
9808 * The space will contain a bit for each named class that is to be
9809 * matched against. This isn't needed for \p{} and pseudo-classes,
9810 * as they are not affected by locale, and hence are dealt with
9812 if (LOC && namedclass < ANYOF_MAX && ! need_class) {
9815 RExC_size += ANYOF_CLASS_SKIP - ANYOF_SKIP;
9818 RExC_emit += ANYOF_CLASS_SKIP - ANYOF_SKIP;
9819 ANYOF_CLASS_ZERO(ret);
9821 ANYOF_FLAGS(ret) |= ANYOF_CLASS;
9824 /* a bad range like a-\d, a-[:digit:]. The '-' is taken as a
9825 * literal, as is the character that began the false range, i.e.
9826 * the 'a' in the examples */
9830 RExC_parse >= rangebegin ?
9831 RExC_parse - rangebegin : 0;
9832 ckWARN4reg(RExC_parse,
9833 "False [] range \"%*.*s\"",
9837 set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
9838 if (prevvalue < 256) {
9840 set_regclass_bit(pRExC_state, ret, (U8) prevvalue, &l1_fold_invlist, &unicode_alternate);
9843 nonbitmap = add_cp_to_invlist(nonbitmap, prevvalue);
9847 range = 0; /* this was not a true range */
9853 const char *what = NULL;
9856 /* Possible truncation here but in some 64-bit environments
9857 * the compiler gets heartburn about switch on 64-bit values.
9858 * A similar issue a little earlier when switching on value.
9860 switch ((I32)namedclass) {
9862 case _C_C_T_(ALNUMC, isALNUMC_L1, isALNUMC, "XPosixAlnum");
9863 case _C_C_T_(ALPHA, isALPHA_L1, isALPHA, "XPosixAlpha");
9864 case _C_C_T_(BLANK, isBLANK_L1, isBLANK, "XPosixBlank");
9865 case _C_C_T_(CNTRL, isCNTRL_L1, isCNTRL, "XPosixCntrl");
9866 case _C_C_T_(GRAPH, isGRAPH_L1, isGRAPH, "XPosixGraph");
9867 case _C_C_T_(LOWER, isLOWER_L1, isLOWER, "XPosixLower");
9868 case _C_C_T_(PRINT, isPRINT_L1, isPRINT, "XPosixPrint");
9869 case _C_C_T_(PSXSPC, isPSXSPC_L1, isPSXSPC, "XPosixSpace");
9870 case _C_C_T_(PUNCT, isPUNCT_L1, isPUNCT, "XPosixPunct");
9871 case _C_C_T_(UPPER, isUPPER_L1, isUPPER, "XPosixUpper");
9872 /* \s, \w match all unicode if utf8. */
9873 case _C_C_T_(SPACE, isSPACE_L1, isSPACE, "SpacePerl");
9874 case _C_C_T_(ALNUM, isWORDCHAR_L1, isALNUM, "Word");
9875 case _C_C_T_(XDIGIT, isXDIGIT_L1, isXDIGIT, "XPosixXDigit");
9876 case _C_C_T_NOLOC_(VERTWS, is_VERTWS_latin1(&value), "VertSpace");
9877 case _C_C_T_NOLOC_(HORIZWS, is_HORIZWS_latin1(&value), "HorizSpace");
9880 ANYOF_CLASS_SET(ret, ANYOF_ASCII);
9882 for (value = 0; value < 128; value++)
9884 set_regclass_bit(pRExC_state, ret, (U8) ASCII_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate);
9887 what = NULL; /* Doesn't match outside ascii, so
9888 don't want to add +utf8:: */
9892 ANYOF_CLASS_SET(ret, ANYOF_NASCII);
9894 for (value = 128; value < 256; value++)
9896 set_regclass_bit(pRExC_state, ret, (U8) ASCII_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate);
9898 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
9904 ANYOF_CLASS_SET(ret, ANYOF_DIGIT);
9906 /* consecutive digits assumed */
9907 for (value = '0'; value <= '9'; value++)
9909 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate);
9916 ANYOF_CLASS_SET(ret, ANYOF_NDIGIT);
9918 /* consecutive digits assumed */
9919 for (value = 0; value < '0'; value++)
9921 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate);
9922 for (value = '9' + 1; value < 256; value++)
9924 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate);
9928 if (AT_LEAST_ASCII_RESTRICTED ) {
9929 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
9933 /* this is to handle \p and \P */
9936 vFAIL("Invalid [::] class");
9939 if (what && ! (AT_LEAST_ASCII_RESTRICTED)) {
9940 /* Strings such as "+utf8::isWord\n" */
9941 Perl_sv_catpvf(aTHX_ listsv, "%cutf8::Is%s\n", yesno, what);
9946 } /* end of namedclass \blah */
9949 if (prevvalue > (IV)value) /* b-a */ {
9950 const int w = RExC_parse - rangebegin;
9951 Simple_vFAIL4("Invalid [] range \"%*.*s\"", w, w, rangebegin);
9952 range = 0; /* not a valid range */
9956 prevvalue = value; /* save the beginning of the range */
9957 if (RExC_parse+1 < RExC_end
9958 && *RExC_parse == '-'
9959 && RExC_parse[1] != ']')
9963 /* a bad range like \w-, [:word:]- ? */
9964 if (namedclass > OOB_NAMEDCLASS) {
9965 if (ckWARN(WARN_REGEXP)) {
9967 RExC_parse >= rangebegin ?
9968 RExC_parse - rangebegin : 0;
9970 "False [] range \"%*.*s\"",
9975 set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
9977 range = 1; /* yeah, it's a range! */
9978 continue; /* but do it the next time */
9982 /* non-Latin1 code point implies unicode semantics. Must be set in
9983 * pass1 so is there for the whole of pass 2 */
9985 RExC_uni_semantics = 1;
9988 /* now is the next time */
9990 if (prevvalue < 256) {
9991 const IV ceilvalue = value < 256 ? value : 255;
9994 /* In EBCDIC [\x89-\x91] should include
9995 * the \x8e but [i-j] should not. */
9996 if (literal_endpoint == 2 &&
9997 ((isLOWER(prevvalue) && isLOWER(ceilvalue)) ||
9998 (isUPPER(prevvalue) && isUPPER(ceilvalue))))
10000 if (isLOWER(prevvalue)) {
10001 for (i = prevvalue; i <= ceilvalue; i++)
10002 if (isLOWER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
10004 set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
10007 for (i = prevvalue; i <= ceilvalue; i++)
10008 if (isUPPER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
10010 set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
10016 for (i = prevvalue; i <= ceilvalue; i++) {
10017 stored += set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
10021 const UV prevnatvalue = NATIVE_TO_UNI(prevvalue);
10022 const UV natvalue = NATIVE_TO_UNI(value);
10023 nonbitmap = add_range_to_invlist(nonbitmap, prevnatvalue, natvalue);
10026 literal_endpoint = 0;
10030 range = 0; /* this range (if it was one) is done now */
10037 /****** !SIZE_ONLY AFTER HERE *********/
10039 /* If folding and there are code points above 255, we calculate all
10040 * characters that could fold to or from the ones already on the list */
10041 if (FOLD && nonbitmap) {
10044 HV* fold_intersection;
10047 /* This is a list of all the characters that participate in folds
10048 * (except marks, etc in multi-char folds */
10049 if (! PL_utf8_foldable) {
10050 SV* swash = swash_init("utf8", "Cased", &PL_sv_undef, 1, 0);
10051 PL_utf8_foldable = _swash_to_invlist(swash);
10054 /* This is a hash that for a particular fold gives all characters
10055 * that are involved in it */
10056 if (! PL_utf8_foldclosures) {
10058 /* If we were unable to find any folds, then we likely won't be
10059 * able to find the closures. So just create an empty list.
10060 * Folding will effectively be restricted to the non-Unicode rules
10061 * hard-coded into Perl. (This case happens legitimately during
10062 * compilation of Perl itself before the Unicode tables are
10064 if (invlist_len(PL_utf8_foldable) == 0) {
10065 PL_utf8_foldclosures = _new_invlist(0);
10067 /* If the folds haven't been read in, call a fold function
10069 if (! PL_utf8_tofold) {
10070 U8 dummy[UTF8_MAXBYTES+1];
10072 to_utf8_fold((U8*) "A", dummy, &dummy_len);
10074 PL_utf8_foldclosures = _swash_inversion_hash(PL_utf8_tofold);
10078 /* Only the characters in this class that participate in folds need
10079 * be checked. Get the intersection of this class and all the
10080 * possible characters that are foldable. This can quickly narrow
10081 * down a large class */
10082 fold_intersection = invlist_intersection(PL_utf8_foldable, nonbitmap);
10084 /* Now look at the foldable characters in this class individually */
10085 fold_list = invlist_array(fold_intersection);
10086 for (i = 0; i < invlist_len(fold_intersection); i++) {
10089 /* The next entry is the beginning of the range that is in the
10091 UV start = fold_list[i++];
10094 /* The next entry is the beginning of the next range, which
10095 * isn't in the class, so the end of the current range is one
10096 * less than that */
10097 UV end = fold_list[i] - 1;
10099 /* Look at every character in the range */
10100 for (j = start; j <= end; j++) {
10103 U8 foldbuf[UTF8_MAXBYTES_CASE+1];
10106 _to_uni_fold_flags(j, foldbuf, &foldlen, allow_full_fold);
10108 if (foldlen > (STRLEN)UNISKIP(f)) {
10110 /* Any multicharacter foldings (disallowed in
10111 * lookbehind patterns) require the following
10112 * transform: [ABCDEF] -> (?:[ABCabcDEFd]|pq|rst) where
10113 * E folds into "pq" and F folds into "rst", all other
10114 * characters fold to single characters. We save away
10115 * these multicharacter foldings, to be later saved as
10116 * part of the additional "s" data. */
10117 if (! RExC_in_lookbehind) {
10119 U8* e = foldbuf + foldlen;
10121 /* If any of the folded characters of this are in
10122 * the Latin1 range, tell the regex engine that
10123 * this can match a non-utf8 target string. The
10124 * only multi-byte fold whose source is in the
10125 * Latin1 range (U+00DF) applies only when the
10126 * target string is utf8, or under unicode rules */
10127 if (j > 255 || AT_LEAST_UNI_SEMANTICS) {
10130 /* Can't mix ascii with non- under /aa */
10131 if (MORE_ASCII_RESTRICTED
10132 && (isASCII(*loc) != isASCII(j)))
10134 goto end_multi_fold;
10136 if (UTF8_IS_INVARIANT(*loc)
10137 || UTF8_IS_DOWNGRADEABLE_START(*loc))
10139 /* Can't mix above and below 256 under
10142 goto end_multi_fold;
10145 |= ANYOF_NONBITMAP_NON_UTF8;
10148 loc += UTF8SKIP(loc);
10152 add_alternate(&unicode_alternate, foldbuf, foldlen);
10156 /* This is special-cased, as it is the only letter which
10157 * has both a multi-fold and single-fold in Latin1. All
10158 * the other chars that have single and multi-folds are
10159 * always in utf8, and the utf8 folding algorithm catches
10161 if (! LOC && j == LATIN_CAPITAL_LETTER_SHARP_S) {
10162 stored += set_regclass_bit(pRExC_state,
10164 LATIN_SMALL_LETTER_SHARP_S,
10165 &l1_fold_invlist, &unicode_alternate);
10169 /* Single character fold. Add everything in its fold
10170 * closure to the list that this node should match */
10173 /* The fold closures data structure is a hash with the
10174 * keys being every character that is folded to, like
10175 * 'k', and the values each an array of everything that
10176 * folds to its key. e.g. [ 'k', 'K', KELVIN_SIGN ] */
10177 if ((listp = hv_fetch(PL_utf8_foldclosures,
10178 (char *) foldbuf, foldlen, FALSE)))
10180 AV* list = (AV*) *listp;
10182 for (k = 0; k <= av_len(list); k++) {
10183 SV** c_p = av_fetch(list, k, FALSE);
10186 Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
10190 /* /aa doesn't allow folds between ASCII and
10191 * non-; /l doesn't allow them between above
10193 if ((MORE_ASCII_RESTRICTED
10194 && (isASCII(c) != isASCII(j)))
10195 || (LOC && ((c < 256) != (j < 256))))
10200 if (c < 256 && AT_LEAST_UNI_SEMANTICS) {
10201 stored += set_regclass_bit(pRExC_state,
10204 &l1_fold_invlist, &unicode_alternate);
10206 /* It may be that the code point is already
10207 * in this range or already in the bitmap,
10208 * in which case we need do nothing */
10209 else if ((c < start || c > end)
10211 || ! ANYOF_BITMAP_TEST(ret, c)))
10213 nonbitmap = add_cp_to_invlist(nonbitmap, c);
10220 invlist_destroy(fold_intersection);
10223 /* Combine the two lists into one. */
10224 if (l1_fold_invlist) {
10226 HV* temp = invlist_union(nonbitmap, l1_fold_invlist);
10227 invlist_destroy(nonbitmap);
10229 invlist_destroy(l1_fold_invlist);
10232 nonbitmap = l1_fold_invlist;
10236 /* Here, we have calculated what code points should be in the character
10237 * class. Now we can see about various optimizations. Fold calculation
10238 * needs to take place before inversion. Otherwise /[^k]/i would invert to
10239 * include K, which under /i would match k. */
10241 /* Optimize inverted simple patterns (e.g. [^a-z]). Note that we haven't
10242 * set the FOLD flag yet, so this this does optimize those. It doesn't
10243 * optimize locale. Doing so perhaps could be done as long as there is
10244 * nothing like \w in it; some thought also would have to be given to the
10245 * interaction with above 0x100 chars */
10247 && (ANYOF_FLAGS(ret) & ANYOF_FLAGS_ALL) == ANYOF_INVERT
10248 && ! unicode_alternate
10250 && SvCUR(listsv) == initial_listsv_len)
10252 for (value = 0; value < ANYOF_BITMAP_SIZE; ++value)
10253 ANYOF_BITMAP(ret)[value] ^= 0xFF;
10254 stored = 256 - stored;
10256 /* The inversion means that everything above 255 is matched; and at the
10257 * same time we clear the invert flag */
10258 ANYOF_FLAGS(ret) = ANYOF_UNICODE_ALL;
10261 /* Folding in the bitmap is taken care of above, but not for locale (for
10262 * which we have to wait to see what folding is in effect at runtime), and
10263 * for things not in the bitmap. Set run-time fold flag for these */
10264 if (FOLD && (LOC || nonbitmap || unicode_alternate)) {
10265 ANYOF_FLAGS(ret) |= ANYOF_LOC_NONBITMAP_FOLD;
10268 /* A single character class can be "optimized" into an EXACTish node.
10269 * Note that since we don't currently count how many characters there are
10270 * outside the bitmap, we are XXX missing optimization possibilities for
10271 * them. This optimization can't happen unless this is a truly single
10272 * character class, which means that it can't be an inversion into a
10273 * many-character class, and there must be no possibility of there being
10274 * things outside the bitmap. 'stored' (only) for locales doesn't include
10275 * \w, etc, so have to make a special test that they aren't present
10277 * Similarly A 2-character class of the very special form like [bB] can be
10278 * optimized into an EXACTFish node, but only for non-locales, and for
10279 * characters which only have the two folds; so things like 'fF' and 'Ii'
10280 * wouldn't work because they are part of the fold of 'LATIN SMALL LIGATURE
10283 && ! unicode_alternate
10284 && SvCUR(listsv) == initial_listsv_len
10285 && ! (ANYOF_FLAGS(ret) & (ANYOF_INVERT|ANYOF_UNICODE_ALL))
10286 && (((stored == 1 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
10287 || (! ANYOF_CLASS_TEST_ANY_SET(ret)))))
10288 || (stored == 2 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
10289 && (! _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value))
10290 /* If the latest code point has a fold whose
10291 * bit is set, it must be the only other one */
10292 && ((prevvalue = PL_fold_latin1[value]) != (IV)value)
10293 && ANYOF_BITMAP_TEST(ret, prevvalue)))))
10295 /* Note that the information needed to decide to do this optimization
10296 * is not currently available until the 2nd pass, and that the actually
10297 * used EXACTish node takes less space than the calculated ANYOF node,
10298 * and hence the amount of space calculated in the first pass is larger
10299 * than actually used, so this optimization doesn't gain us any space.
10300 * But an EXACT node is faster than an ANYOF node, and can be combined
10301 * with any adjacent EXACT nodes later by the optimizer for further
10302 * gains. The speed of executing an EXACTF is similar to an ANYOF
10303 * node, so the optimization advantage comes from the ability to join
10304 * it to adjacent EXACT nodes */
10306 const char * cur_parse= RExC_parse;
10308 RExC_emit = (regnode *)orig_emit;
10309 RExC_parse = (char *)orig_parse;
10313 /* A locale node with one point can be folded; all the other cases
10314 * with folding will have two points, since we calculate them above
10316 if (ANYOF_FLAGS(ret) & ANYOF_LOC_NONBITMAP_FOLD) {
10322 } /* else 2 chars in the bit map: the folds of each other */
10323 else if (AT_LEAST_UNI_SEMANTICS || !isASCII(value)) {
10325 /* To join adjacent nodes, they must be the exact EXACTish type.
10326 * Try to use the most likely type, by using EXACTFU if the regex
10327 * calls for them, or is required because the character is
10331 else { /* Otherwise, more likely to be EXACTF type */
10335 ret = reg_node(pRExC_state, op);
10336 RExC_parse = (char *)cur_parse;
10337 if (UTF && ! NATIVE_IS_INVARIANT(value)) {
10338 *STRING(ret)= UTF8_EIGHT_BIT_HI((U8) value);
10339 *(STRING(ret) + 1)= UTF8_EIGHT_BIT_LO((U8) value);
10341 RExC_emit += STR_SZ(2);
10344 *STRING(ret)= (char)value;
10346 RExC_emit += STR_SZ(1);
10348 SvREFCNT_dec(listsv);
10353 UV* nonbitmap_array = invlist_array(nonbitmap);
10354 UV nonbitmap_len = invlist_len(nonbitmap);
10357 /* Here have the full list of items to match that aren't in the
10358 * bitmap. Convert to the structure that the rest of the code is
10359 * expecting. XXX That rest of the code should convert to this
10361 for (i = 0; i < nonbitmap_len; i++) {
10363 /* The next entry is the beginning of the range that is in the
10365 UV start = nonbitmap_array[i++];
10368 /* The next entry is the beginning of the next range, which isn't
10369 * in the class, so the end of the current range is one less than
10370 * that. But if there is no next range, it means that the range
10371 * begun by 'start' extends to infinity, which for this platform
10372 * ends at UV_MAX */
10373 if (i == nonbitmap_len) {
10377 end = nonbitmap_array[i] - 1;
10380 if (start == end) {
10381 Perl_sv_catpvf(aTHX_ listsv, "%04"UVxf"\n", start);
10384 /* The \t sets the whole range */
10385 Perl_sv_catpvf(aTHX_ listsv, "%04"UVxf"\t%04"UVxf"\n",
10390 invlist_destroy(nonbitmap);
10393 if (SvCUR(listsv) == initial_listsv_len && ! unicode_alternate) {
10394 ARG_SET(ret, ANYOF_NONBITMAP_EMPTY);
10395 SvREFCNT_dec(listsv);
10396 SvREFCNT_dec(unicode_alternate);
10400 AV * const av = newAV();
10402 /* The 0th element stores the character class description
10403 * in its textual form: used later (regexec.c:Perl_regclass_swash())
10404 * to initialize the appropriate swash (which gets stored in
10405 * the 1st element), and also useful for dumping the regnode.
10406 * The 2nd element stores the multicharacter foldings,
10407 * used later (regexec.c:S_reginclass()). */
10408 av_store(av, 0, listsv);
10409 av_store(av, 1, NULL);
10411 /* Store any computed multi-char folds only if we are allowing
10413 if (allow_full_fold) {
10414 av_store(av, 2, MUTABLE_SV(unicode_alternate));
10415 if (unicode_alternate) { /* This node is variable length */
10420 av_store(av, 2, NULL);
10422 rv = newRV_noinc(MUTABLE_SV(av));
10423 n = add_data(pRExC_state, 1, "s");
10424 RExC_rxi->data->data[n] = (void*)rv;
10432 /* reg_skipcomment()
10434 Absorbs an /x style # comments from the input stream.
10435 Returns true if there is more text remaining in the stream.
10436 Will set the REG_SEEN_RUN_ON_COMMENT flag if the comment
10437 terminates the pattern without including a newline.
10439 Note its the callers responsibility to ensure that we are
10440 actually in /x mode
10445 S_reg_skipcomment(pTHX_ RExC_state_t *pRExC_state)
10449 PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
10451 while (RExC_parse < RExC_end)
10452 if (*RExC_parse++ == '\n') {
10457 /* we ran off the end of the pattern without ending
10458 the comment, so we have to add an \n when wrapping */
10459 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
10467 Advances the parse position, and optionally absorbs
10468 "whitespace" from the inputstream.
10470 Without /x "whitespace" means (?#...) style comments only,
10471 with /x this means (?#...) and # comments and whitespace proper.
10473 Returns the RExC_parse point from BEFORE the scan occurs.
10475 This is the /x friendly way of saying RExC_parse++.
10479 S_nextchar(pTHX_ RExC_state_t *pRExC_state)
10481 char* const retval = RExC_parse++;
10483 PERL_ARGS_ASSERT_NEXTCHAR;
10486 if (*RExC_parse == '(' && RExC_parse[1] == '?' &&
10487 RExC_parse[2] == '#') {
10488 while (*RExC_parse != ')') {
10489 if (RExC_parse == RExC_end)
10490 FAIL("Sequence (?#... not terminated");
10496 if (RExC_flags & RXf_PMf_EXTENDED) {
10497 if (isSPACE(*RExC_parse)) {
10501 else if (*RExC_parse == '#') {
10502 if ( reg_skipcomment( pRExC_state ) )
10511 - reg_node - emit a node
10513 STATIC regnode * /* Location. */
10514 S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
10517 register regnode *ptr;
10518 regnode * const ret = RExC_emit;
10519 GET_RE_DEBUG_FLAGS_DECL;
10521 PERL_ARGS_ASSERT_REG_NODE;
10524 SIZE_ALIGN(RExC_size);
10528 if (RExC_emit >= RExC_emit_bound)
10529 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d", op);
10531 NODE_ALIGN_FILL(ret);
10533 FILL_ADVANCE_NODE(ptr, op);
10534 REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 1);
10535 #ifdef RE_TRACK_PATTERN_OFFSETS
10536 if (RExC_offsets) { /* MJD */
10537 MJD_OFFSET_DEBUG(("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
10538 "reg_node", __LINE__,
10540 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
10541 ? "Overwriting end of array!\n" : "OK",
10542 (UV)(RExC_emit - RExC_emit_start),
10543 (UV)(RExC_parse - RExC_start),
10544 (UV)RExC_offsets[0]));
10545 Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
10553 - reganode - emit a node with an argument
10555 STATIC regnode * /* Location. */
10556 S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
10559 register regnode *ptr;
10560 regnode * const ret = RExC_emit;
10561 GET_RE_DEBUG_FLAGS_DECL;
10563 PERL_ARGS_ASSERT_REGANODE;
10566 SIZE_ALIGN(RExC_size);
10571 assert(2==regarglen[op]+1);
10573 Anything larger than this has to allocate the extra amount.
10574 If we changed this to be:
10576 RExC_size += (1 + regarglen[op]);
10578 then it wouldn't matter. Its not clear what side effect
10579 might come from that so its not done so far.
10584 if (RExC_emit >= RExC_emit_bound)
10585 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d", op);
10587 NODE_ALIGN_FILL(ret);
10589 FILL_ADVANCE_NODE_ARG(ptr, op, arg);
10590 REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 2);
10591 #ifdef RE_TRACK_PATTERN_OFFSETS
10592 if (RExC_offsets) { /* MJD */
10593 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
10597 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0] ?
10598 "Overwriting end of array!\n" : "OK",
10599 (UV)(RExC_emit - RExC_emit_start),
10600 (UV)(RExC_parse - RExC_start),
10601 (UV)RExC_offsets[0]));
10602 Set_Cur_Node_Offset;
10610 - reguni - emit (if appropriate) a Unicode character
10613 S_reguni(pTHX_ const RExC_state_t *pRExC_state, UV uv, char* s)
10617 PERL_ARGS_ASSERT_REGUNI;
10619 return SIZE_ONLY ? UNISKIP(uv) : (uvchr_to_utf8((U8*)s, uv) - (U8*)s);
10623 - reginsert - insert an operator in front of already-emitted operand
10625 * Means relocating the operand.
10628 S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
10631 register regnode *src;
10632 register regnode *dst;
10633 register regnode *place;
10634 const int offset = regarglen[(U8)op];
10635 const int size = NODE_STEP_REGNODE + offset;
10636 GET_RE_DEBUG_FLAGS_DECL;
10638 PERL_ARGS_ASSERT_REGINSERT;
10639 PERL_UNUSED_ARG(depth);
10640 /* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
10641 DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
10650 if (RExC_open_parens) {
10652 /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
10653 for ( paren=0 ; paren < RExC_npar ; paren++ ) {
10654 if ( RExC_open_parens[paren] >= opnd ) {
10655 /*DEBUG_PARSE_FMT("open"," - %d",size);*/
10656 RExC_open_parens[paren] += size;
10658 /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
10660 if ( RExC_close_parens[paren] >= opnd ) {
10661 /*DEBUG_PARSE_FMT("close"," - %d",size);*/
10662 RExC_close_parens[paren] += size;
10664 /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
10669 while (src > opnd) {
10670 StructCopy(--src, --dst, regnode);
10671 #ifdef RE_TRACK_PATTERN_OFFSETS
10672 if (RExC_offsets) { /* MJD 20010112 */
10673 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
10677 (UV)(dst - RExC_emit_start) > RExC_offsets[0]
10678 ? "Overwriting end of array!\n" : "OK",
10679 (UV)(src - RExC_emit_start),
10680 (UV)(dst - RExC_emit_start),
10681 (UV)RExC_offsets[0]));
10682 Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
10683 Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
10689 place = opnd; /* Op node, where operand used to be. */
10690 #ifdef RE_TRACK_PATTERN_OFFSETS
10691 if (RExC_offsets) { /* MJD */
10692 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
10696 (UV)(place - RExC_emit_start) > RExC_offsets[0]
10697 ? "Overwriting end of array!\n" : "OK",
10698 (UV)(place - RExC_emit_start),
10699 (UV)(RExC_parse - RExC_start),
10700 (UV)RExC_offsets[0]));
10701 Set_Node_Offset(place, RExC_parse);
10702 Set_Node_Length(place, 1);
10705 src = NEXTOPER(place);
10706 FILL_ADVANCE_NODE(place, op);
10707 REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (place) - 1);
10708 Zero(src, offset, regnode);
10712 - regtail - set the next-pointer at the end of a node chain of p to val.
10713 - SEE ALSO: regtail_study
10715 /* TODO: All three parms should be const */
10717 S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
10720 register regnode *scan;
10721 GET_RE_DEBUG_FLAGS_DECL;
10723 PERL_ARGS_ASSERT_REGTAIL;
10725 PERL_UNUSED_ARG(depth);
10731 /* Find last node. */
10734 regnode * const temp = regnext(scan);
10736 SV * const mysv=sv_newmortal();
10737 DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
10738 regprop(RExC_rx, mysv, scan);
10739 PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
10740 SvPV_nolen_const(mysv), REG_NODE_NUM(scan),
10741 (temp == NULL ? "->" : ""),
10742 (temp == NULL ? PL_reg_name[OP(val)] : "")
10750 if (reg_off_by_arg[OP(scan)]) {
10751 ARG_SET(scan, val - scan);
10754 NEXT_OFF(scan) = val - scan;
10760 - regtail_study - set the next-pointer at the end of a node chain of p to val.
10761 - Look for optimizable sequences at the same time.
10762 - currently only looks for EXACT chains.
10764 This is experimental code. The idea is to use this routine to perform
10765 in place optimizations on branches and groups as they are constructed,
10766 with the long term intention of removing optimization from study_chunk so
10767 that it is purely analytical.
10769 Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
10770 to control which is which.
10773 /* TODO: All four parms should be const */
10776 S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
10779 register regnode *scan;
10781 #ifdef EXPERIMENTAL_INPLACESCAN
10784 GET_RE_DEBUG_FLAGS_DECL;
10786 PERL_ARGS_ASSERT_REGTAIL_STUDY;
10792 /* Find last node. */
10796 regnode * const temp = regnext(scan);
10797 #ifdef EXPERIMENTAL_INPLACESCAN
10798 if (PL_regkind[OP(scan)] == EXACT)
10799 if (join_exact(pRExC_state,scan,&min,1,val,depth+1))
10803 switch (OP(scan)) {
10809 if( exact == PSEUDO )
10811 else if ( exact != OP(scan) )
10820 SV * const mysv=sv_newmortal();
10821 DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
10822 regprop(RExC_rx, mysv, scan);
10823 PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
10824 SvPV_nolen_const(mysv),
10825 REG_NODE_NUM(scan),
10826 PL_reg_name[exact]);
10833 SV * const mysv_val=sv_newmortal();
10834 DEBUG_PARSE_MSG("");
10835 regprop(RExC_rx, mysv_val, val);
10836 PerlIO_printf(Perl_debug_log, "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
10837 SvPV_nolen_const(mysv_val),
10838 (IV)REG_NODE_NUM(val),
10842 if (reg_off_by_arg[OP(scan)]) {
10843 ARG_SET(scan, val - scan);
10846 NEXT_OFF(scan) = val - scan;
10854 - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
10858 S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
10864 for (bit=0; bit<32; bit++) {
10865 if (flags & (1<<bit)) {
10866 if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
10869 if (!set++ && lead)
10870 PerlIO_printf(Perl_debug_log, "%s",lead);
10871 PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
10874 if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
10875 if (!set++ && lead) {
10876 PerlIO_printf(Perl_debug_log, "%s",lead);
10879 case REGEX_UNICODE_CHARSET:
10880 PerlIO_printf(Perl_debug_log, "UNICODE");
10882 case REGEX_LOCALE_CHARSET:
10883 PerlIO_printf(Perl_debug_log, "LOCALE");
10885 case REGEX_ASCII_RESTRICTED_CHARSET:
10886 PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
10888 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
10889 PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
10892 PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
10898 PerlIO_printf(Perl_debug_log, "\n");
10900 PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
10906 Perl_regdump(pTHX_ const regexp *r)
10910 SV * const sv = sv_newmortal();
10911 SV *dsv= sv_newmortal();
10912 RXi_GET_DECL(r,ri);
10913 GET_RE_DEBUG_FLAGS_DECL;
10915 PERL_ARGS_ASSERT_REGDUMP;
10917 (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
10919 /* Header fields of interest. */
10920 if (r->anchored_substr) {
10921 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
10922 RE_SV_DUMPLEN(r->anchored_substr), 30);
10923 PerlIO_printf(Perl_debug_log,
10924 "anchored %s%s at %"IVdf" ",
10925 s, RE_SV_TAIL(r->anchored_substr),
10926 (IV)r->anchored_offset);
10927 } else if (r->anchored_utf8) {
10928 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
10929 RE_SV_DUMPLEN(r->anchored_utf8), 30);
10930 PerlIO_printf(Perl_debug_log,
10931 "anchored utf8 %s%s at %"IVdf" ",
10932 s, RE_SV_TAIL(r->anchored_utf8),
10933 (IV)r->anchored_offset);
10935 if (r->float_substr) {
10936 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
10937 RE_SV_DUMPLEN(r->float_substr), 30);
10938 PerlIO_printf(Perl_debug_log,
10939 "floating %s%s at %"IVdf"..%"UVuf" ",
10940 s, RE_SV_TAIL(r->float_substr),
10941 (IV)r->float_min_offset, (UV)r->float_max_offset);
10942 } else if (r->float_utf8) {
10943 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
10944 RE_SV_DUMPLEN(r->float_utf8), 30);
10945 PerlIO_printf(Perl_debug_log,
10946 "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
10947 s, RE_SV_TAIL(r->float_utf8),
10948 (IV)r->float_min_offset, (UV)r->float_max_offset);
10950 if (r->check_substr || r->check_utf8)
10951 PerlIO_printf(Perl_debug_log,
10953 (r->check_substr == r->float_substr
10954 && r->check_utf8 == r->float_utf8
10955 ? "(checking floating" : "(checking anchored"));
10956 if (r->extflags & RXf_NOSCAN)
10957 PerlIO_printf(Perl_debug_log, " noscan");
10958 if (r->extflags & RXf_CHECK_ALL)
10959 PerlIO_printf(Perl_debug_log, " isall");
10960 if (r->check_substr || r->check_utf8)
10961 PerlIO_printf(Perl_debug_log, ") ");
10963 if (ri->regstclass) {
10964 regprop(r, sv, ri->regstclass);
10965 PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
10967 if (r->extflags & RXf_ANCH) {
10968 PerlIO_printf(Perl_debug_log, "anchored");
10969 if (r->extflags & RXf_ANCH_BOL)
10970 PerlIO_printf(Perl_debug_log, "(BOL)");
10971 if (r->extflags & RXf_ANCH_MBOL)
10972 PerlIO_printf(Perl_debug_log, "(MBOL)");
10973 if (r->extflags & RXf_ANCH_SBOL)
10974 PerlIO_printf(Perl_debug_log, "(SBOL)");
10975 if (r->extflags & RXf_ANCH_GPOS)
10976 PerlIO_printf(Perl_debug_log, "(GPOS)");
10977 PerlIO_putc(Perl_debug_log, ' ');
10979 if (r->extflags & RXf_GPOS_SEEN)
10980 PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
10981 if (r->intflags & PREGf_SKIP)
10982 PerlIO_printf(Perl_debug_log, "plus ");
10983 if (r->intflags & PREGf_IMPLICIT)
10984 PerlIO_printf(Perl_debug_log, "implicit ");
10985 PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
10986 if (r->extflags & RXf_EVAL_SEEN)
10987 PerlIO_printf(Perl_debug_log, "with eval ");
10988 PerlIO_printf(Perl_debug_log, "\n");
10989 DEBUG_FLAGS_r(regdump_extflags("r->extflags: ",r->extflags));
10991 PERL_ARGS_ASSERT_REGDUMP;
10992 PERL_UNUSED_CONTEXT;
10993 PERL_UNUSED_ARG(r);
10994 #endif /* DEBUGGING */
10998 - regprop - printable representation of opcode
11000 #define EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags) \
11003 Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]); \
11004 if (flags & ANYOF_INVERT) \
11005 /*make sure the invert info is in each */ \
11006 sv_catpvs(sv, "^"); \
11012 Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o)
11017 RXi_GET_DECL(prog,progi);
11018 GET_RE_DEBUG_FLAGS_DECL;
11020 PERL_ARGS_ASSERT_REGPROP;
11024 if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */
11025 /* It would be nice to FAIL() here, but this may be called from
11026 regexec.c, and it would be hard to supply pRExC_state. */
11027 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(o), (int)REGNODE_MAX);
11028 sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
11030 k = PL_regkind[OP(o)];
11033 sv_catpvs(sv, " ");
11034 /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
11035 * is a crude hack but it may be the best for now since
11036 * we have no flag "this EXACTish node was UTF-8"
11038 pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
11039 PERL_PV_ESCAPE_UNI_DETECT |
11040 PERL_PV_ESCAPE_NONASCII |
11041 PERL_PV_PRETTY_ELLIPSES |
11042 PERL_PV_PRETTY_LTGT |
11043 PERL_PV_PRETTY_NOCLEAR
11045 } else if (k == TRIE) {
11046 /* print the details of the trie in dumpuntil instead, as
11047 * progi->data isn't available here */
11048 const char op = OP(o);
11049 const U32 n = ARG(o);
11050 const reg_ac_data * const ac = IS_TRIE_AC(op) ?
11051 (reg_ac_data *)progi->data->data[n] :
11053 const reg_trie_data * const trie
11054 = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
11056 Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
11057 DEBUG_TRIE_COMPILE_r(
11058 Perl_sv_catpvf(aTHX_ sv,
11059 "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
11060 (UV)trie->startstate,
11061 (IV)trie->statecount-1, /* -1 because of the unused 0 element */
11062 (UV)trie->wordcount,
11065 (UV)TRIE_CHARCOUNT(trie),
11066 (UV)trie->uniquecharcount
11069 if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
11071 int rangestart = -1;
11072 U8* bitmap = IS_ANYOF_TRIE(op) ? (U8*)ANYOF_BITMAP(o) : (U8*)TRIE_BITMAP(trie);
11073 sv_catpvs(sv, "[");
11074 for (i = 0; i <= 256; i++) {
11075 if (i < 256 && BITMAP_TEST(bitmap,i)) {
11076 if (rangestart == -1)
11078 } else if (rangestart != -1) {
11079 if (i <= rangestart + 3)
11080 for (; rangestart < i; rangestart++)
11081 put_byte(sv, rangestart);
11083 put_byte(sv, rangestart);
11084 sv_catpvs(sv, "-");
11085 put_byte(sv, i - 1);
11090 sv_catpvs(sv, "]");
11093 } else if (k == CURLY) {
11094 if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
11095 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
11096 Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
11098 else if (k == WHILEM && o->flags) /* Ordinal/of */
11099 Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
11100 else if (k == REF || k == OPEN || k == CLOSE || k == GROUPP || OP(o)==ACCEPT) {
11101 Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
11102 if ( RXp_PAREN_NAMES(prog) ) {
11103 if ( k != REF || (OP(o) < NREF)) {
11104 AV *list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
11105 SV **name= av_fetch(list, ARG(o), 0 );
11107 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
11110 AV *list= MUTABLE_AV(progi->data->data[ progi->name_list_idx ]);
11111 SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
11112 I32 *nums=(I32*)SvPVX(sv_dat);
11113 SV **name= av_fetch(list, nums[0], 0 );
11116 for ( n=0; n<SvIVX(sv_dat); n++ ) {
11117 Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
11118 (n ? "," : ""), (IV)nums[n]);
11120 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
11124 } else if (k == GOSUB)
11125 Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o)); /* Paren and offset */
11126 else if (k == VERB) {
11128 Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
11129 SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
11130 } else if (k == LOGICAL)
11131 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* 2: embedded, otherwise 1 */
11132 else if (k == FOLDCHAR)
11133 Perl_sv_catpvf(aTHX_ sv, "[0x%"UVXf"]", PTR2UV(ARG(o)) );
11134 else if (k == ANYOF) {
11135 int i, rangestart = -1;
11136 const U8 flags = ANYOF_FLAGS(o);
11139 /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
11140 static const char * const anyofs[] = {
11173 if (flags & ANYOF_LOCALE)
11174 sv_catpvs(sv, "{loc}");
11175 if (flags & ANYOF_LOC_NONBITMAP_FOLD)
11176 sv_catpvs(sv, "{i}");
11177 Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
11178 if (flags & ANYOF_INVERT)
11179 sv_catpvs(sv, "^");
11181 /* output what the standard cp 0-255 bitmap matches */
11182 for (i = 0; i <= 256; i++) {
11183 if (i < 256 && ANYOF_BITMAP_TEST(o,i)) {
11184 if (rangestart == -1)
11186 } else if (rangestart != -1) {
11187 if (i <= rangestart + 3)
11188 for (; rangestart < i; rangestart++)
11189 put_byte(sv, rangestart);
11191 put_byte(sv, rangestart);
11192 sv_catpvs(sv, "-");
11193 put_byte(sv, i - 1);
11200 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
11201 /* output any special charclass tests (used entirely under use locale) */
11202 if (ANYOF_CLASS_TEST_ANY_SET(o))
11203 for (i = 0; i < (int)(sizeof(anyofs)/sizeof(char*)); i++)
11204 if (ANYOF_CLASS_TEST(o,i)) {
11205 sv_catpv(sv, anyofs[i]);
11209 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
11211 if (flags & ANYOF_NON_UTF8_LATIN1_ALL) {
11212 sv_catpvs(sv, "{non-utf8-latin1-all}");
11215 /* output information about the unicode matching */
11216 if (flags & ANYOF_UNICODE_ALL)
11217 sv_catpvs(sv, "{unicode_all}");
11218 else if (ANYOF_NONBITMAP(o))
11219 sv_catpvs(sv, "{unicode}");
11220 if (flags & ANYOF_NONBITMAP_NON_UTF8)
11221 sv_catpvs(sv, "{outside bitmap}");
11223 if (ANYOF_NONBITMAP(o)) {
11225 SV * const sw = regclass_swash(prog, o, FALSE, &lv, 0);
11229 U8 s[UTF8_MAXBYTES_CASE+1];
11231 for (i = 0; i <= 256; i++) { /* just the first 256 */
11232 uvchr_to_utf8(s, i);
11234 if (i < 256 && swash_fetch(sw, s, TRUE)) {
11235 if (rangestart == -1)
11237 } else if (rangestart != -1) {
11238 if (i <= rangestart + 3)
11239 for (; rangestart < i; rangestart++) {
11240 const U8 * const e = uvchr_to_utf8(s,rangestart);
11242 for(p = s; p < e; p++)
11246 const U8 *e = uvchr_to_utf8(s,rangestart);
11248 for (p = s; p < e; p++)
11250 sv_catpvs(sv, "-");
11251 e = uvchr_to_utf8(s, i-1);
11252 for (p = s; p < e; p++)
11259 sv_catpvs(sv, "..."); /* et cetera */
11263 char *s = savesvpv(lv);
11264 char * const origs = s;
11266 while (*s && *s != '\n')
11270 const char * const t = ++s;
11288 Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
11290 else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
11291 Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
11293 PERL_UNUSED_CONTEXT;
11294 PERL_UNUSED_ARG(sv);
11295 PERL_UNUSED_ARG(o);
11296 PERL_UNUSED_ARG(prog);
11297 #endif /* DEBUGGING */
11301 Perl_re_intuit_string(pTHX_ REGEXP * const r)
11302 { /* Assume that RE_INTUIT is set */
11304 struct regexp *const prog = (struct regexp *)SvANY(r);
11305 GET_RE_DEBUG_FLAGS_DECL;
11307 PERL_ARGS_ASSERT_RE_INTUIT_STRING;
11308 PERL_UNUSED_CONTEXT;
11312 const char * const s = SvPV_nolen_const(prog->check_substr
11313 ? prog->check_substr : prog->check_utf8);
11315 if (!PL_colorset) reginitcolors();
11316 PerlIO_printf(Perl_debug_log,
11317 "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
11319 prog->check_substr ? "" : "utf8 ",
11320 PL_colors[5],PL_colors[0],
11323 (strlen(s) > 60 ? "..." : ""));
11326 return prog->check_substr ? prog->check_substr : prog->check_utf8;
11332 handles refcounting and freeing the perl core regexp structure. When
11333 it is necessary to actually free the structure the first thing it
11334 does is call the 'free' method of the regexp_engine associated to
11335 the regexp, allowing the handling of the void *pprivate; member
11336 first. (This routine is not overridable by extensions, which is why
11337 the extensions free is called first.)
11339 See regdupe and regdupe_internal if you change anything here.
11341 #ifndef PERL_IN_XSUB_RE
11343 Perl_pregfree(pTHX_ REGEXP *r)
11349 Perl_pregfree2(pTHX_ REGEXP *rx)
11352 struct regexp *const r = (struct regexp *)SvANY(rx);
11353 GET_RE_DEBUG_FLAGS_DECL;
11355 PERL_ARGS_ASSERT_PREGFREE2;
11357 if (r->mother_re) {
11358 ReREFCNT_dec(r->mother_re);
11360 CALLREGFREE_PVT(rx); /* free the private data */
11361 SvREFCNT_dec(RXp_PAREN_NAMES(r));
11364 SvREFCNT_dec(r->anchored_substr);
11365 SvREFCNT_dec(r->anchored_utf8);
11366 SvREFCNT_dec(r->float_substr);
11367 SvREFCNT_dec(r->float_utf8);
11368 Safefree(r->substrs);
11370 RX_MATCH_COPY_FREE(rx);
11371 #ifdef PERL_OLD_COPY_ON_WRITE
11372 SvREFCNT_dec(r->saved_copy);
11379 This is a hacky workaround to the structural issue of match results
11380 being stored in the regexp structure which is in turn stored in
11381 PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
11382 could be PL_curpm in multiple contexts, and could require multiple
11383 result sets being associated with the pattern simultaneously, such
11384 as when doing a recursive match with (??{$qr})
11386 The solution is to make a lightweight copy of the regexp structure
11387 when a qr// is returned from the code executed by (??{$qr}) this
11388 lightweight copy doesn't actually own any of its data except for
11389 the starp/end and the actual regexp structure itself.
11395 Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
11397 struct regexp *ret;
11398 struct regexp *const r = (struct regexp *)SvANY(rx);
11399 register const I32 npar = r->nparens+1;
11401 PERL_ARGS_ASSERT_REG_TEMP_COPY;
11404 ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
11405 ret = (struct regexp *)SvANY(ret_x);
11407 (void)ReREFCNT_inc(rx);
11408 /* We can take advantage of the existing "copied buffer" mechanism in SVs
11409 by pointing directly at the buffer, but flagging that the allocated
11410 space in the copy is zero. As we've just done a struct copy, it's now
11411 a case of zero-ing that, rather than copying the current length. */
11412 SvPV_set(ret_x, RX_WRAPPED(rx));
11413 SvFLAGS(ret_x) |= SvFLAGS(rx) & (SVf_POK|SVp_POK|SVf_UTF8);
11414 memcpy(&(ret->xpv_cur), &(r->xpv_cur),
11415 sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
11416 SvLEN_set(ret_x, 0);
11417 SvSTASH_set(ret_x, NULL);
11418 SvMAGIC_set(ret_x, NULL);
11419 Newx(ret->offs, npar, regexp_paren_pair);
11420 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
11422 Newx(ret->substrs, 1, struct reg_substr_data);
11423 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
11425 SvREFCNT_inc_void(ret->anchored_substr);
11426 SvREFCNT_inc_void(ret->anchored_utf8);
11427 SvREFCNT_inc_void(ret->float_substr);
11428 SvREFCNT_inc_void(ret->float_utf8);
11430 /* check_substr and check_utf8, if non-NULL, point to either their
11431 anchored or float namesakes, and don't hold a second reference. */
11433 RX_MATCH_COPIED_off(ret_x);
11434 #ifdef PERL_OLD_COPY_ON_WRITE
11435 ret->saved_copy = NULL;
11437 ret->mother_re = rx;
11443 /* regfree_internal()
11445 Free the private data in a regexp. This is overloadable by
11446 extensions. Perl takes care of the regexp structure in pregfree(),
11447 this covers the *pprivate pointer which technically perl doesn't
11448 know about, however of course we have to handle the
11449 regexp_internal structure when no extension is in use.
11451 Note this is called before freeing anything in the regexp
11456 Perl_regfree_internal(pTHX_ REGEXP * const rx)
11459 struct regexp *const r = (struct regexp *)SvANY(rx);
11460 RXi_GET_DECL(r,ri);
11461 GET_RE_DEBUG_FLAGS_DECL;
11463 PERL_ARGS_ASSERT_REGFREE_INTERNAL;
11469 SV *dsv= sv_newmortal();
11470 RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
11471 dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
11472 PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
11473 PL_colors[4],PL_colors[5],s);
11476 #ifdef RE_TRACK_PATTERN_OFFSETS
11478 Safefree(ri->u.offsets); /* 20010421 MJD */
11481 int n = ri->data->count;
11482 PAD* new_comppad = NULL;
11487 /* If you add a ->what type here, update the comment in regcomp.h */
11488 switch (ri->data->what[n]) {
11493 SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
11496 Safefree(ri->data->data[n]);
11499 new_comppad = MUTABLE_AV(ri->data->data[n]);
11502 if (new_comppad == NULL)
11503 Perl_croak(aTHX_ "panic: pregfree comppad");
11504 PAD_SAVE_LOCAL(old_comppad,
11505 /* Watch out for global destruction's random ordering. */
11506 (SvTYPE(new_comppad) == SVt_PVAV) ? new_comppad : NULL
11509 refcnt = OpREFCNT_dec((OP_4tree*)ri->data->data[n]);
11512 op_free((OP_4tree*)ri->data->data[n]);
11514 PAD_RESTORE_LOCAL(old_comppad);
11515 SvREFCNT_dec(MUTABLE_SV(new_comppad));
11516 new_comppad = NULL;
11521 { /* Aho Corasick add-on structure for a trie node.
11522 Used in stclass optimization only */
11524 reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
11526 refcount = --aho->refcount;
11529 PerlMemShared_free(aho->states);
11530 PerlMemShared_free(aho->fail);
11531 /* do this last!!!! */
11532 PerlMemShared_free(ri->data->data[n]);
11533 PerlMemShared_free(ri->regstclass);
11539 /* trie structure. */
11541 reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
11543 refcount = --trie->refcount;
11546 PerlMemShared_free(trie->charmap);
11547 PerlMemShared_free(trie->states);
11548 PerlMemShared_free(trie->trans);
11550 PerlMemShared_free(trie->bitmap);
11552 PerlMemShared_free(trie->jump);
11553 PerlMemShared_free(trie->wordinfo);
11554 /* do this last!!!! */
11555 PerlMemShared_free(ri->data->data[n]);
11560 Perl_croak(aTHX_ "panic: regfree data code '%c'", ri->data->what[n]);
11563 Safefree(ri->data->what);
11564 Safefree(ri->data);
11570 #define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
11571 #define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
11572 #define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
11575 re_dup - duplicate a regexp.
11577 This routine is expected to clone a given regexp structure. It is only
11578 compiled under USE_ITHREADS.
11580 After all of the core data stored in struct regexp is duplicated
11581 the regexp_engine.dupe method is used to copy any private data
11582 stored in the *pprivate pointer. This allows extensions to handle
11583 any duplication it needs to do.
11585 See pregfree() and regfree_internal() if you change anything here.
11587 #if defined(USE_ITHREADS)
11588 #ifndef PERL_IN_XSUB_RE
11590 Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
11594 const struct regexp *r = (const struct regexp *)SvANY(sstr);
11595 struct regexp *ret = (struct regexp *)SvANY(dstr);
11597 PERL_ARGS_ASSERT_RE_DUP_GUTS;
11599 npar = r->nparens+1;
11600 Newx(ret->offs, npar, regexp_paren_pair);
11601 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
11603 /* no need to copy these */
11604 Newx(ret->swap, npar, regexp_paren_pair);
11607 if (ret->substrs) {
11608 /* Do it this way to avoid reading from *r after the StructCopy().
11609 That way, if any of the sv_dup_inc()s dislodge *r from the L1
11610 cache, it doesn't matter. */
11611 const bool anchored = r->check_substr
11612 ? r->check_substr == r->anchored_substr
11613 : r->check_utf8 == r->anchored_utf8;
11614 Newx(ret->substrs, 1, struct reg_substr_data);
11615 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
11617 ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
11618 ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
11619 ret->float_substr = sv_dup_inc(ret->float_substr, param);
11620 ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
11622 /* check_substr and check_utf8, if non-NULL, point to either their
11623 anchored or float namesakes, and don't hold a second reference. */
11625 if (ret->check_substr) {
11627 assert(r->check_utf8 == r->anchored_utf8);
11628 ret->check_substr = ret->anchored_substr;
11629 ret->check_utf8 = ret->anchored_utf8;
11631 assert(r->check_substr == r->float_substr);
11632 assert(r->check_utf8 == r->float_utf8);
11633 ret->check_substr = ret->float_substr;
11634 ret->check_utf8 = ret->float_utf8;
11636 } else if (ret->check_utf8) {
11638 ret->check_utf8 = ret->anchored_utf8;
11640 ret->check_utf8 = ret->float_utf8;
11645 RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
11648 RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
11650 if (RX_MATCH_COPIED(dstr))
11651 ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen);
11653 ret->subbeg = NULL;
11654 #ifdef PERL_OLD_COPY_ON_WRITE
11655 ret->saved_copy = NULL;
11658 if (ret->mother_re) {
11659 if (SvPVX_const(dstr) == SvPVX_const(ret->mother_re)) {
11660 /* Our storage points directly to our mother regexp, but that's
11661 1: a buffer in a different thread
11662 2: something we no longer hold a reference on
11663 so we need to copy it locally. */
11664 /* Note we need to sue SvCUR() on our mother_re, because it, in
11665 turn, may well be pointing to its own mother_re. */
11666 SvPV_set(dstr, SAVEPVN(SvPVX_const(ret->mother_re),
11667 SvCUR(ret->mother_re)+1));
11668 SvLEN_set(dstr, SvCUR(ret->mother_re)+1);
11670 ret->mother_re = NULL;
11674 #endif /* PERL_IN_XSUB_RE */
11679 This is the internal complement to regdupe() which is used to copy
11680 the structure pointed to by the *pprivate pointer in the regexp.
11681 This is the core version of the extension overridable cloning hook.
11682 The regexp structure being duplicated will be copied by perl prior
11683 to this and will be provided as the regexp *r argument, however
11684 with the /old/ structures pprivate pointer value. Thus this routine
11685 may override any copying normally done by perl.
11687 It returns a pointer to the new regexp_internal structure.
11691 Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
11694 struct regexp *const r = (struct regexp *)SvANY(rx);
11695 regexp_internal *reti;
11697 RXi_GET_DECL(r,ri);
11699 PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
11703 Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode), char, regexp_internal);
11704 Copy(ri->program, reti->program, len+1, regnode);
11707 reti->regstclass = NULL;
11710 struct reg_data *d;
11711 const int count = ri->data->count;
11714 Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
11715 char, struct reg_data);
11716 Newx(d->what, count, U8);
11719 for (i = 0; i < count; i++) {
11720 d->what[i] = ri->data->what[i];
11721 switch (d->what[i]) {
11722 /* legal options are one of: sSfpontTua
11723 see also regcomp.h and pregfree() */
11724 case 'a': /* actually an AV, but the dup function is identical. */
11727 case 'p': /* actually an AV, but the dup function is identical. */
11728 case 'u': /* actually an HV, but the dup function is identical. */
11729 d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
11732 /* This is cheating. */
11733 Newx(d->data[i], 1, struct regnode_charclass_class);
11734 StructCopy(ri->data->data[i], d->data[i],
11735 struct regnode_charclass_class);
11736 reti->regstclass = (regnode*)d->data[i];
11739 /* Compiled op trees are readonly and in shared memory,
11740 and can thus be shared without duplication. */
11742 d->data[i] = (void*)OpREFCNT_inc((OP*)ri->data->data[i]);
11746 /* Trie stclasses are readonly and can thus be shared
11747 * without duplication. We free the stclass in pregfree
11748 * when the corresponding reg_ac_data struct is freed.
11750 reti->regstclass= ri->regstclass;
11754 ((reg_trie_data*)ri->data->data[i])->refcount++;
11758 d->data[i] = ri->data->data[i];
11761 Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'", ri->data->what[i]);
11770 reti->name_list_idx = ri->name_list_idx;
11772 #ifdef RE_TRACK_PATTERN_OFFSETS
11773 if (ri->u.offsets) {
11774 Newx(reti->u.offsets, 2*len+1, U32);
11775 Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
11778 SetProgLen(reti,len);
11781 return (void*)reti;
11784 #endif /* USE_ITHREADS */
11786 #ifndef PERL_IN_XSUB_RE
11789 - regnext - dig the "next" pointer out of a node
11792 Perl_regnext(pTHX_ register regnode *p)
11795 register I32 offset;
11800 if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */
11801 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(p), (int)REGNODE_MAX);
11804 offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
11813 S_re_croak2(pTHX_ const char* pat1,const char* pat2,...)
11816 STRLEN l1 = strlen(pat1);
11817 STRLEN l2 = strlen(pat2);
11820 const char *message;
11822 PERL_ARGS_ASSERT_RE_CROAK2;
11828 Copy(pat1, buf, l1 , char);
11829 Copy(pat2, buf + l1, l2 , char);
11830 buf[l1 + l2] = '\n';
11831 buf[l1 + l2 + 1] = '\0';
11833 /* ANSI variant takes additional second argument */
11834 va_start(args, pat2);
11838 msv = vmess(buf, &args);
11840 message = SvPV_const(msv,l1);
11843 Copy(message, buf, l1 , char);
11844 buf[l1-1] = '\0'; /* Overwrite \n */
11845 Perl_croak(aTHX_ "%s", buf);
11848 /* XXX Here's a total kludge. But we need to re-enter for swash routines. */
11850 #ifndef PERL_IN_XSUB_RE
11852 Perl_save_re_context(pTHX)
11856 struct re_save_state *state;
11858 SAVEVPTR(PL_curcop);
11859 SSGROW(SAVESTACK_ALLOC_FOR_RE_SAVE_STATE + 1);
11861 state = (struct re_save_state *)(PL_savestack + PL_savestack_ix);
11862 PL_savestack_ix += SAVESTACK_ALLOC_FOR_RE_SAVE_STATE;
11863 SSPUSHUV(SAVEt_RE_STATE);
11865 Copy(&PL_reg_state, state, 1, struct re_save_state);
11867 PL_reg_start_tmp = 0;
11868 PL_reg_start_tmpl = 0;
11869 PL_reg_oldsaved = NULL;
11870 PL_reg_oldsavedlen = 0;
11871 PL_reg_maxiter = 0;
11872 PL_reg_leftiter = 0;
11873 PL_reg_poscache = NULL;
11874 PL_reg_poscache_size = 0;
11875 #ifdef PERL_OLD_COPY_ON_WRITE
11879 /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
11881 const REGEXP * const rx = PM_GETRE(PL_curpm);
11884 for (i = 1; i <= RX_NPARENS(rx); i++) {
11885 char digits[TYPE_CHARS(long)];
11886 const STRLEN len = my_snprintf(digits, sizeof(digits), "%lu", (long)i);
11887 GV *const *const gvp
11888 = (GV**)hv_fetch(PL_defstash, digits, len, 0);
11891 GV * const gv = *gvp;
11892 if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
11902 clear_re(pTHX_ void *r)
11905 ReREFCNT_dec((REGEXP *)r);
11911 S_put_byte(pTHX_ SV *sv, int c)
11913 PERL_ARGS_ASSERT_PUT_BYTE;
11915 /* Our definition of isPRINT() ignores locales, so only bytes that are
11916 not part of UTF-8 are considered printable. I assume that the same
11917 holds for UTF-EBCDIC.
11918 Also, code point 255 is not printable in either (it's E0 in EBCDIC,
11919 which Wikipedia says:
11921 EO, or Eight Ones, is an 8-bit EBCDIC character code represented as all
11922 ones (binary 1111 1111, hexadecimal FF). It is similar, but not
11923 identical, to the ASCII delete (DEL) or rubout control character.
11924 ) So the old condition can be simplified to !isPRINT(c) */
11927 Perl_sv_catpvf(aTHX_ sv, "\\x%02x", c);
11930 Perl_sv_catpvf(aTHX_ sv, "\\x{%x}", c);
11934 const char string = c;
11935 if (c == '-' || c == ']' || c == '\\' || c == '^')
11936 sv_catpvs(sv, "\\");
11937 sv_catpvn(sv, &string, 1);
11942 #define CLEAR_OPTSTART \
11943 if (optstart) STMT_START { \
11944 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
11948 #define DUMPUNTIL(b,e) CLEAR_OPTSTART; node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
11950 STATIC const regnode *
11951 S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
11952 const regnode *last, const regnode *plast,
11953 SV* sv, I32 indent, U32 depth)
11956 register U8 op = PSEUDO; /* Arbitrary non-END op. */
11957 register const regnode *next;
11958 const regnode *optstart= NULL;
11960 RXi_GET_DECL(r,ri);
11961 GET_RE_DEBUG_FLAGS_DECL;
11963 PERL_ARGS_ASSERT_DUMPUNTIL;
11965 #ifdef DEBUG_DUMPUNTIL
11966 PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
11967 last ? last-start : 0,plast ? plast-start : 0);
11970 if (plast && plast < last)
11973 while (PL_regkind[op] != END && (!last || node < last)) {
11974 /* While that wasn't END last time... */
11977 if (op == CLOSE || op == WHILEM)
11979 next = regnext((regnode *)node);
11982 if (OP(node) == OPTIMIZED) {
11983 if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
11990 regprop(r, sv, node);
11991 PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
11992 (int)(2*indent + 1), "", SvPVX_const(sv));
11994 if (OP(node) != OPTIMIZED) {
11995 if (next == NULL) /* Next ptr. */
11996 PerlIO_printf(Perl_debug_log, " (0)");
11997 else if (PL_regkind[(U8)op] == BRANCH && PL_regkind[OP(next)] != BRANCH )
11998 PerlIO_printf(Perl_debug_log, " (FAIL)");
12000 PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
12001 (void)PerlIO_putc(Perl_debug_log, '\n');
12005 if (PL_regkind[(U8)op] == BRANCHJ) {
12008 register const regnode *nnode = (OP(next) == LONGJMP
12009 ? regnext((regnode *)next)
12011 if (last && nnode > last)
12013 DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
12016 else if (PL_regkind[(U8)op] == BRANCH) {
12018 DUMPUNTIL(NEXTOPER(node), next);
12020 else if ( PL_regkind[(U8)op] == TRIE ) {
12021 const regnode *this_trie = node;
12022 const char op = OP(node);
12023 const U32 n = ARG(node);
12024 const reg_ac_data * const ac = op>=AHOCORASICK ?
12025 (reg_ac_data *)ri->data->data[n] :
12027 const reg_trie_data * const trie =
12028 (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
12030 AV *const trie_words = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
12032 const regnode *nextbranch= NULL;
12035 for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
12036 SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
12038 PerlIO_printf(Perl_debug_log, "%*s%s ",
12039 (int)(2*(indent+3)), "",
12040 elem_ptr ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr), SvCUR(*elem_ptr), 60,
12041 PL_colors[0], PL_colors[1],
12042 (SvUTF8(*elem_ptr) ? PERL_PV_ESCAPE_UNI : 0) |
12043 PERL_PV_PRETTY_ELLIPSES |
12044 PERL_PV_PRETTY_LTGT
12049 U16 dist= trie->jump[word_idx+1];
12050 PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
12051 (UV)((dist ? this_trie + dist : next) - start));
12054 nextbranch= this_trie + trie->jump[0];
12055 DUMPUNTIL(this_trie + dist, nextbranch);
12057 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
12058 nextbranch= regnext((regnode *)nextbranch);
12060 PerlIO_printf(Perl_debug_log, "\n");
12063 if (last && next > last)
12068 else if ( op == CURLY ) { /* "next" might be very big: optimizer */
12069 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
12070 NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
12072 else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
12074 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
12076 else if ( op == PLUS || op == STAR) {
12077 DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
12079 else if (PL_regkind[(U8)op] == ANYOF) {
12080 /* arglen 1 + class block */
12081 node += 1 + ((ANYOF_FLAGS(node) & ANYOF_CLASS)
12082 ? ANYOF_CLASS_SKIP : ANYOF_SKIP);
12083 node = NEXTOPER(node);
12085 else if (PL_regkind[(U8)op] == EXACT) {
12086 /* Literal string, where present. */
12087 node += NODE_SZ_STR(node) - 1;
12088 node = NEXTOPER(node);
12091 node = NEXTOPER(node);
12092 node += regarglen[(U8)op];
12094 if (op == CURLYX || op == OPEN)
12098 #ifdef DEBUG_DUMPUNTIL
12099 PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
12104 #endif /* DEBUGGING */
12108 * c-indentation-style: bsd
12109 * c-basic-offset: 4
12110 * indent-tabs-mode: t
12113 * ex: set ts=8 sts=4 sw=4 noet: